1986

Discretes

Analog Switches \& Multiplexers

Amplifiers

Analog Functions
Timer/Counter
Circuits
Display Driver
Microcontrollers Microperipherals

WINIERSIL

Component Data Catalog 1986
Excellence in Signal Processing and Control Integrated Circuits

Component Data Catalog 1986

CAUTION: Intersil's products are not intended for use as components in any life support or other medical devices intended for surgical implant into the human body.
intersil cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in an Intersil product. No circuit patent licenses are implied. Intersil reserves the right to change the circuitry and specifications without notice at any time.
Description Page
Section 1 - Selector Guides 1-1
Section 2 - Discretes
2N2607 P-Channel JFET General Purpose Amplifier 2-1
2N2608 P-Channel JFET General Purpose Amplifier 2-1
2N2609 P-Channel JFET General Purpose Amplifier 2-1
2N2609JAN P-Channel JFET General Purpose Amplifier 2-1
2N3684 N-Channel JFET Low Noise Amplifier 2-2
2N3685 N-Channel JFET Low Noise Amplifier 2-2
2N3686 N-Channel JFET Low Noise Amplifier 2-2
2N3687 N-Channel JFET Low Noise Amplifier 2-2
2N3810/A Dual Matched PNP General Purpose Amplifier 2-3
2N3811/A Dual Matched PNP General Purpose Amplifier 2-3
2N3821 N-Channel JFET High Frequency Amplifier 2-5
2N3821JAN N-Channel JFET High Frequency Amplifier 2-5
2N3821JTX N-Channel JFET High Frequency Amplifier 2-5
2N3821JTXV N-Channel JFET High Frequency Amplifier 2-5
2N3822 N-Channel JFET High Frequency Amplifier 2-5
2N3822JAN N-Channel JFET High Frequency Amplifier 2-5
2N3822JTX N-Channel JFET High Frequency Amplifier 2-5
2N3822JTXV N-Channel JFET High Frequency Amplifier 2-5
2N3823 N-Channel JFET High Frequency Amplifier 2-7
2N3823JAN N-Channel JFET High Frequency Amplifier 2-7
2N3823JTX N-Channel JFET High Frequency Amplifier 2-7
2N3823JTXV N-Channel JFET High Frequency Amplifier 2-7
2N3824 N--Channel JFET Switch 2-8
2N3921 Dual N-Channel JFET General Purpose Amplifier 2-9
2N3922 Dual N-Channel JFET General Purpose Amplifier 2-9
2N3954 Dual N-Channel JFET General Purpose Amplifier 2-11
2N3954A Dual N-Channel JFET General Purpose Amplifier 2-11
2N3955 Dual N-Channel JFET General Purpose Amplifier 2-11
2N3955A Dual N-Channel JFET General Purpose Amplifier 2-11
2N3956 Dual N-Channel JFET General Purpose Amplifier 2-11
2N3957 Dual N-Channel JFET General Purpose Amplifier 2-11
2N3958 Dual N-Channel JFET General Purpose Amplifier 2-11
2N3970 N-Channel JFET Switch 2-13
2N3971 N-Channel JFET Switch 2-13
2N3972 N-Channel JFET Switch 2-13
2N3993 P-Channel JFET General Purpose Amplifier/Switch 2-15
2N3994 P-Channel JFET General Purpose Amplifier/Switch 2-15
2N4044 Dielectrically Isolated Dual NPN General Purpose Amplifier 2-17
2N4045 Dielectrically Isolated Dual NPN General Purpose Amplifier 2-17
2N4100 Dielectrically Isolated Dual NPN General Purpose Amplifier 2-17
2N4878 Dielectrically Isolated Dual NPN General Purpose Amplifier 2-17
2N4879 Dielectrically Isolated Dual NPN General Purpose Amplifier 2-17
2N4880 Dielectrically Isolated Dual NPN General Purpose Amplifier 2-17
ITE4091 N-Channel JFET Switch 2-19
2N4091 N-Channel JFET Switch 2-19
2N4091 JANTX N-Channel JFET Switch 2-19

Table of Contents

Description Page
Section 2 - Discretes (Cont.)
ITE4092 N-Channel JFET Switch 2-19
2N4092 N-Channel JFET Switch 2-19
2N4092 JANTX N-Channel JFET Switch 2-19
ITE4093 N-Channel JFET Switch 2-19
2N4093 N-Channel JFET Switch 2-19
2 N4093 JANTX N-Channel JFET Switch 2-19
2N4117 N-Channel JFET General Purpose Amplifier 2-21
2N4117A N-Channel JFET General Purpose Amplifier 2-21
2N4118 N-Channel JFET General Purpose Amplifier 2-21
2N4118A N-Channel JFET General Purpose Amplifier 2-21
2N4119 N-Channel JFET General Purpose Amplifier 2-21
2N4119A N-Channel JFET General Purpose Amplifier 2-21
2N4220 N-Channel JFET General Purpose Amplifier/Switch 2-22
2N4221 N-Channel JFET General Purpose Amplifier/Switch 2-22
2N4222 N-Channel JFET General Purpose Amplifier/Switch 2-22
2N4223 N-Channel JFET High Frequency Amplifier 2-23
2N4224 N-Channel JFET High Frequency Amplifier 2-23
2N4338 N-Channel JFET Low Noise Amplifier 2-24
2N4339 N-Channel JFET Low Noise Amplifier 2-24
2N4340 N-Channel JFET Low Noise Amplifier 2-24
2N4341 N-Channel JFET Low Noise Amplifier 2-24
2N4351 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 2-25
ITE4391 N-Channel JFET Switch 2-26
2N4391 N-Channel JFET Switch 2-26
ITE4392 N-Channel JFET Switch 2-26
2N4392 N-Channel JFET Switch 2-26
ITE4393 N-Channel JFET Switch 2-26
2N4393 N-Channel JFET Switch 2-26
ITE4416 N-Channel JFET High Frequency Amplifier 2-28
2N4416/A N-Channel JFET High Frequency Amplifier 2-28
2N4856 N-Channel JFET Switch 2-30
2N4856JAN,JTX,JTXV N-Channel JFET Switch 2-30
2N4857 N-Channel JFET Switch 2-30
2N4857JAN,JTX,JTXV N-Channel JFET Switch 2-30
2N4858 N-Channel JFET Switch 2-30
2N4858JAN,JTX,JTXV N-Channel JFET Switch 2-30
2N4859 N-Channel JFET Switch 2-30
2N4860 N-Channel JFET Switch 2-30
2N4861 N-Channel JFET Switch 2-30
2N4867/A N-Channel JFET Low Noise Amplifier 2-32
2N4868/A N-Channel JFET Low Noise Amplifier 2-32
2N4869/A N-Channel JFET Low Noise Amplifier 2-32
2N5018 P-Channel JFET Switch 2-34
2N5019 P-Channel JFET Switch 2-34.
2N5114 P-Channel JFET Switch 2-36
2N5114JAN,JTX,JTXV P-Channel JFET Switch 2-36
2N5115 P-Channel JFET Switch 2-36
2N5115JAN,JTX,JTXV P-Channel JFET Switch 2-36
2N5116 P-Channel JFET Switch 2-36

Table of Contents

Description Page
Section 2 - Discretes (Cont.)
2N5116JAN,JTX,JTXV P-Channel JFET Switch 2-36
2N5117 Dielectrically Isolated Dual PNP General Purpose Amplifier 2-38
2N5118 Dielectrically Isolated Dual PNP General Purpose Amplifier 2-38
2N5119 Dielectrically Isolated Dual PNP General Purpose Amplifier 2-38
2N5196 Dual N-Channel JFET General Purpose Amplifier 2-40
2N5197 Dual N-Channel JFET General Purpose Amplifier 2-40
2N5198 Dual N-Channel JFET General Purpose Amplifier 2-40
2N5199 Dual N-Channel JFET General Purpose Amplifier 2-40
2N5397 N-Channel JFET High Frequency Amplifier 2-42
2N5398 N-Channel JFET High Frequency Amplifier 2-42
2N5432 N-Channel JFET Switch 2-44
2N5433 N-Channel JFET Switch 2-44
2N5434 N-Channel JFET Switch 2-44
2N5452 Dual N-Channel JFET General Purpose Amplifier 2-46
2N5453 Dual N-Channel JFET General Purpose Amplifier 2-46
2N5454 Dual N-Channel JFET General Purpose Amplifier 2-46
2N5457 N-Channel JFET General Purpose Amplifier/Switch 2-48
2N5458 N-Channel JFET General Purpose Amplifier/Switch 2-48
2N5459 N-Channel JFET General Purpose Amplifier/Switch 2-48
2N5460 P-Channel JFET Low Noise Amplifier 2-49
2N5461 P-Channel JFET Low Noise Amplifier 2-49
2N5462 P-Channel JFET Low Noise Amplifier 2-49
2N5463 P-Channel JFET Low Noise Amplifier 2-49
2N5464 P-Channel JFET Low Noise Amplifier 2-49
2N5465 P-Channel JFET Low Noise Amplifier 2-49
2N5484 N-Channel JFET High Frequency Amplifier 2-50
2N5485 N-Channel JFET High Frequency Amplifier 2-50
2N5486 N-Channel JFET High Frequency Amplifier 2-50
2N5515 Dual N-Channel JFET Low Noise Amplifier 2-52
2N5516 Dual N-Channel JFET Low Noise Amplifier 2-52
$2 N 5517$ Dual N-Channel JFET Low Noise Amplifier 2-52
2N5518 Dual N-Channel JFET Low Noise Amplifier 2-52
2N5519 Dual N-Channel JFET Low Noise Amplifier 2-52
2N5520 Dual N-Channel JFET Low Noise Amplifier 2-52
2N5521 Dual N-Channel JFET Low Noise Amplifier 2-52
2N5522 Dual N-Channel JFET Low Noise Amplifier 2-52
2N5523 Dual N-Channel JFET Low Noise Amplifier 2-52
2N5524 Dual N-Channel JFET Low Noise Amplifier 2-52
2N5638 N-Channel JFET Switch 2-54
2N5639 N-Channel JFET Switch 2-54
2N5640 N-Channel JFET Switch 2-54
2N5902 Dual N-Channel JFET General Purpose Amplifier 2-56
2N5903 Dual N-Channel JFET General Purpose Amplifier 2-56
2N5904 Dual N-Channel JFET General Purpose Amplifier 2-56
2N5905 Dual N-Channel JFET General Purpose Amplifier 2-56
2N5906 Dual N-Channel JFET General Purpose Amplifier 2-56
2N5907 Dual N-Channel JFET General Purpose Amplifier 2-56
2N5908 Dual N-Channel JFET General Purpose Amplifier 2-56
2N5909 Dual N-Channel JFET General Purpose Amplifier 2-56

Table of Contents

Description Page
Section 2 - Discretes (Cont.)
$2 N 5911$ Dual N-Channel JFET High Frequency Amplifier 2-58
IT5911 Dual N-Channel JFET High Frequency Amplifier 2-58
2 N5912 Dual N-Channel JFET High Frequency Amplifier 2-58
IT5912 Dual N-Channel JFET High Frequency Amplifier 2-58
2N6483 Dual N-Channel JFET Low Noise Amplifier 2-60
2N6484 Dual N-Channel JFET Low Noise Amplifier 2-60
2N6485 Dual N-Channel JFET Low Noise Amplifier 2-60
IMF6485 Dual N-Channel JFET Low Noise Amplifier 2-62
3N161 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/ Switch 2-64
3N163 P-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 2-65
3N164 P-Channel Enhancement Mode MOSFET General Purpose/Switch 2-65
3N165 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-67
3N166 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-67
3N170 N-Channel Enhancement Mode MOSFET Switch 2-69
3N171 N-Channel Enhancement Mode MOSFET Switch 2-69
3N172 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/ Switch 2-71
3N173 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/ Switch 2-71
3N188 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-72
3N189 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-72
3N190 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-72
3N191 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-72
ID100 Dual Low Leakage Diode 2-74
ID101 Dual Low Leakage Diode 2-74
IT100 P-Channel JFET Switch 2-76
IT101 P-Channel JFET Switch 2-76
IT120 Dual NPN General Purpose Amplifier 2-77
IT120A Dual NPN General Purpose Amplifier 2-77
IT121 Dual NPN General Purpose Amplifier 2-77
IT122 Dual NPN General Purpose Amplifier 2-77
IT124 Dual Super-Beta NPN General Purpose Amplifier 2-79
IT126 Dual NPN General Purpose Amplifier 2-81
IT127 Dual NPN General Purpose Amplifier 2-81
IT128 Dual NPN General Purpose Amplifier 2-81
IT129 Dual NPN General Purpose Amplifier 2-81
IT130 Dual PNP General Purpose Amplifier 2-83
IT130A Dual PNP General Purpose Amplifier 2-83
IT131 Dual PNP General Purpose Amplifier 2-83
IT132 Dual PNP General Purpose Amplifier 2-83
IT136 Dual PNP General Purpose Amplifier 2-85
IT137 Dual PNP General Purpose Amplifier 2-85
IT138 Dual PNP General Purpose Amplifier 2-85
IT139 Dual PNP General Purpose Amplifier 2-85
IT500 Dual Cascoded N-Channel JFET General Purpose Amplifier 2-87
IT501 Dual Cascoded N-Channel JFET General Purpose Amplifier 2-87
IT502 Dual Cascoded N-Channel JFET General Purpose Amplifier 2-87
IT503 Dual Cascoded N-Channel JFET General Purpose Amplifier 2-87

Table of Contents

Description Page
Section 2 - Discretes (Cont.)
IT504 Dual Cascoded N-Channel JFET General Purpose Amplifier 2-87
IT505 Dual Cascoded N-Channel JFET General Purpose Amplifier 2-87
IT550 Dual N-Channel JFET Switch 2-90
IT1700 P-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-92
IT1750 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 2-93
J105 N-Channel JFET Switch 2-94
J106 N-Channel JFET Switch 2-94
J107 N-Channel JFET Switch 2-94
J111 N-Channel JFET Switch 2-95
J112 N-Channel JFET Switch 2-95
J113 N-Channel JFET Switch 2-95
J174 P-Channel JFET Switch 2-97
J175 P-Channel JFET Switch 2-97
J176 P-Channel JFET Switch 2-97
J177 P-Channel JFET Switch 2-97
J201 N-Channel JFET General Purpose Amplifier 2-99
J202 N-Channel JFET General Purpose Amplifier 2-99
J203 N-Channel JFET General Purpose Amplifier 2-99
J204 N-Channel JFET General Purpose Amplifier 2-99
J308 N-Channel JFET High Frequency Amplifier 2-100
J309 N-Channel JFET High Frequency Amplifier 2-100
J310 N-Channel JFET High Frequency Amplifier 2-100
LM114/H Dual NPN General Purpose Amplifier 2-102
LM114A/AH Dual NPN General Purpose Amplifier 2-102
M116 Diode Protected N-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-104
U200 N-Channel JFET Switch 2-105
U201 N-Channel JFET Switch 2-105
U202 N-Channel JFET Switch 2-105
U231 Dual N-Channel JFET General Purpose Amplifier 2-106
U232 Dual N-Channel JFET General Purpose Amplifier 2-106
U233 Dual N-Channel JFET General Purpose Amplifier 2-106
U234 Dual N-Channel JFET General Purpose Amplifier 2-106
U235 Dual N-Channel JFET General Purpose Amplifier 2-106
U257 Dual N-Channel JFET High Frequency Amplifier 2-108
U304 P-Channel JFET Switch 2-109
U305 P-Channel JFET Switch 2-109
U306 P-Channel JFET Switch 2-109
U308 N-Channel JFET High Frequency Amplifier 2-111
U309 N-Channel JFET High Frequency Amplifier 2-111
U310 N-Channel JFET High Frequency Amplifier 2-111
U401 Dual N-Channel JFET Switch 2-113
U402 Dual N-Channel JFET Switch 2-113
U403 Dual N-Channel JFET Switch 2-113
U404 Dual N-Channel JFET Switch 2-113
U405 Dual N-Channel JFET Switch 2-113
U406 Dual N-Channel JFET Switch 2-113
U1897 N-Channel JFET Switch 2-115
U1898 N-Channel JFET Switch 2-115
U1899 N-Channel JFET Switch 2-115
Description Page
Section 2 - Discretes (Cont.)
VCR2N Voltage Controlled Resistors 2-117
VCR3P Voltage Controlled Resistors 2-117
VCR4N Voltage Controlled Resistors 2-117
VCR7N Voltage Controlled Resistors 2-117
VCR11N Voltage Controlled Resistors 2-120
Section 3 - Analog Switches and Multiplexers
D123 SPST 6-Channel JFET Switch Driver 3-1
D125 SPST 6-Channel JFET Switch Driver 3-1
D129 4-Channel Decoded JFET Switch Driver 3-6
DG118 SPST 4-Channel Driver With Switch 3-8
DG123 SPST 5--Channel Driver With Switch 3-8
DG125 SPST 5-Channel Driver With Switch 3-8
DG126 Dual DPST 80 Ohm JFET Analog Switch 3-12
DG129 Dual DPST 30 Ohm JFET Analog Switch 3-12
DG133 Dual SPST 30/35 Ohm JFET Analog Switch 3-12
DG134 Dual SPST 80 Ohm JFET Analog Switch 3-12
DG140 Dual DPST 10/15 Ohm JFET Analog Switch 3-12
DG141 Dual SPST 10 Ohm JFET Analog Switch 3-12
DG151 Dual SPST 15 Ohm JFET Analog Switch 3-12
DG152 Dual SPST 50 Ohm JFET Analog Switch 3-12
DG153 Dual DPST 15 Ohm JFET Analog Switch 3-12
DG154 Dual DPST 50 Ohm JFET Analog Switch 3-12
DG139 DPDT 30 Ohm Differentially Driven JFET Switch 3-17
DG142 DPDT 80 Ohm Differentially Driven JFET Switch 3-17
DG143 SPDT 80 Ohm Differentially Driven JFET Switch 3-17
DG144 SPDT 30 Ohm Differentially Driven JFET Switch 3-17
DG145 DPDT 10 Ohm Differentially Driven JFET Switch 3-17
DG146 SPDT 10 Ohm Differentially Driven JFET Switch 3-17
DG161 SPDT 15 Ohm Differentially Driven JFET Switch 3-17
DG162 SPDT 50 Ohm Differentially Driven JFET Switch 3-17
DG163 DPDT 15 Ohm Differentially Driven JFET Switch 3-17
DG164 DPDT 50 Ohm Differentially Driven JFET Switch 3-17
DG180 Dual SPST 10 Ohm High-Speed Driver With JFET Switch 3-22
DG181 Dual SPST 30 Ohm High-Speed Driver With JFET Switch 3-22
DG182 Dual SPST 75 Ohm High-Speed Driver With JFET Switch 3-22
DG183 Dual DPST 10 Ohm High-Speed Driver With JFET Switch 3-22
DG184 Dual DPST 30 Ohm High-Speed Driver With JFET Switch 3-22
DG185 Dual DPST 75 Ohm High-Speed Driver With JFET Switch 3-22
DG186 SPDT 10 Ohm High-Speed Driver With JFET Switch 3-22
DG187 SPDT 30 Ohm High-Speed Driver With JFET Switch 3-22
DG188 SPDT 75 Ohm High-Speed Driver With JFET Switch 3-22
DG189 Dual SPDT 10 Ohm High-Speed Driver With JFET Switch 3-22
DG190 Dual SPDT 30 Ohm High-Speed Driver With JFET Switch 3-22
DG191 Dual SPDT 75 Ohm High-Speed Driver With JFET Switch 3-22
DG200 Dual SPST CMOS Analog Switch 3-27
IH5200 Dual SPST CMOS Analog Switch 3-27
DG201 Quad SPST CMOS Analog Switch 3-32

Table of Contents

DescriptionSection 3 - Analog Switches and Multiplexers (Cont.)
IH5201 Quad SPST CMOS Analog Switch 3-32
DG211 SPST 4-Channel Analog Switch 3-36
DG212 SPST 4-Channel Anaiog Switch 3-36
DGM181 Dual SPST 50 Ohm High-Speed CMOS Analog Switch 3-39
DGM182 Dual SPST 50/75 Ohm High-Speed CMOS Analog Switch 3-39
DGM184 Dual DPST 50 Ohm High-Speed CMOS Analog Switch 3-39
DGM185 Dual DPST 50/75 Ohm High-Speed CMOS Analog Switch 3-39
DGM187 SPDT 50 Ohm High-Speed CMOS Analog Switch 3-39
DGM188 SPDT 50/75 Ohm High-Speed CMOS Analog Switch 3-39
DGM190 Dual SPDT 50 Ohm High-Speed CMOS Analog Switch 3-39
DGM191 Dual SPDT 50/75 Ohm High-Speed CMOS Analog Switch 3-39
G115 6-Channel MOSFET Switch 3-45
G123 4-Channel MOSFET Switch 3-45
G116 5 Channel MOSFET Switch 3-48
G118 6 Channel MOSFET Switch 3-48
G119 6 Channel MOSFET Switch 3-48
IH311 High Speed SPST 4-Channel Analog Switch 3-52
IH312 High Speed SPST 4-Channel Analog Switch 3-52
IH401 QUAD Varafet Analog Switch 3-59
IH401A QUAD Varafet Analog Switch 3-59
IH5009 Quad 100 Ohm Virtual Ground Analog Switch 3-65
IH5010 Quad 150 Ohm Virtual Ground Analog Switch 3-65
IH5011 Quad 100 Ohm Virtual Ground Analog Switch 3-65
IH5012 Quad 150 Ohm Virtual Ground Analog Switch 3-65
IH5013 Triple 100 Ohm Virtual Ground Annaiog Switch 3-65
IH5014 Triple 150 Ohm Virtual Ground Analog Switch 3-65
IH5015 Triple 100 Ohm Virtual Groung Analog Switch 3-65
IH5016 Triple 150 Ohm Virtual Ground Analog Switch 3-65
IH5017 Dual 100 Ohm Virtual Ground Analog Switch 3-65
IH5018 Dual 150 Ohm Virtual Ground Analog Switch 3-65
IH5019 Dual 100 Ohm Virtual Ground Analog Switch 3-65
IH5020 Dual 150 Ohm Virtual Ground Analog Switch 3-65
IH5021 Single 100 Ohm Virtual Ground Analog Switch 3-65
IH5022 Single 150 Ohm Virtual Ground Analog Switch 3-65
IH5023 Singie 100 Ohm Virtual Ground Analog Switch 3-65
IH5024 Single 150 Ohm Virtual Ground Analog Switch 3-65
IH5025 Quad 100 Ohm Positive Signal Analog Switch 3-71
IH5026 Quad 150 Ohm Positive Signal Analog Switch 3-71
IH5027 Quad 100 Ohm Positive Signal Analog Switch 3-71
IH5028 Quad 150 Ohm Positive Signal Analog Switch 3-71
IH5029 Triple 100 Ohm Positive Signal Analog Switch 3-71
IH5030 Triple 150 Ohm Positive Signal Analog Switch 3-71
IH5031 Triple 100 Ohm Positive Signal Analog Switch 3-71
IH5032 Triple 150 Ohm Positive Signal Analog Switch 3-71
IH5033 Dual 100 Ohm Positive Signal Analog Switch 3-71
IH5034 Dual 150 Ohm Positive Signal Analog Switch 3-71
IH5035 Dual 100 Ohm Positive Signal Analog Switch 3-71
IH5036 Dual 150 Ohm Positive Signal Analog Switch 3-71
IH5037 Single 100 Ohm Positive Signal Analog Switch 3-71
Section 3 - Analog Switches and Multiplexers (Cont.)
IH5038 Single 150 Ohm Positive Signal Analog Switch 3-71
IH5040 SPST 75 Ohm High-Level CMOS Analog Switch 3-79
IH5041 Dual SPST 75 Ohm High-Level CMOS Analog Switch 3-79
IH5042 SPDT 75 Ohm High-Level CMOS Analog Switch 3-79
IH5043 Dual SPDT 75 Ohm High-Level CMOS Analog Switch 3-79
IH5044 DPST 75 Ohm High-Level CMOS Analog Switch 3-79
IH5045 Dual DPST 75 Ohm High-Level CMOS Analog Switch 3-79
IH5046 DPDT 75 Ohm High-Level CMOS Analog Switch 3-79
IH5047 4PST 75 Ohm High-Level CMOS Analog Switch 3-79
IH5048 Dual SPST 35 Ohm High-Level CMOS Analog Switch 3-88
IH5049 Dual DPST 35 Ohm High-Level CMOS Analog Switch 3-88
IH5050 SPDT 35 Ohm High-Level CMOS Analog Switch 3-88
IH5051 Dual SPDT 35 Ohm High-Level CMOS Analog Switch 3-88
IH5052 QUAD CMOS Analog Switch 3-93
IH5053 QUAD CMOS Analog Switch 3-93
IH5108 8-Channel Fault Protected Analog Multiplexer 3-99
IH5116 16-Channel Fault Protected Analog Multiplexer 3-107
IH5140 SPST High-Level CMOS Analog Switch 3-110
IH5141 Dual SPST High-Level CMOS Analog Switch 3-110
IH5142 SPDT High-Level CMOS Analog Switch 3-110
IH5143 Dual SPDT High-Level CMOS Analog Switch 3-110
IH5144 DPST High-Level CMOS Analog Switch 3-110
IH5145 Dual DPST High-Level CMOS Analog Switch 3-110
IH5148 Dual SPST High-Level CMOS Analog Switch 3-119
IH5149 Dual DPST High-Level CMOS Analog Switch 3-119
IH5150 SPDT High-Level CMOS Analog Switch 3-119
IH5151 Dual SPDT High-Level CMOS Analog Switch 3-119
IH5208 4-Channel Differential Fault Protecteu Analog Multiplexer 3-127
IH5216 8-Channel Differential Fault Protected Analog Multiplexer 3-135
IH5341 Dual SPST CMOS RF/Video Switch 3-138
IH5352 QUAD SPST CMOS RF/Video Switch 3-144
IH6108 8-Channel CMOS Analog Multiplexer 3-149
IH6116 16-Channel CMOS Analog Multiplexer 3-155
IH6201 Dual CMOS Driver/Voltage Translator 3-162
IH6208 4-Channel Differential CMOS Analog Multiplexer 3-166
IH6216 8-Channel Differential CMOS Analog Multiplexer 3-172
MM450 Dual Differential High Voltage Analog Switch 3-178
MM550 Dual Differential High Voltage Analog Switch 3-178
MM451 Four Channel High Voltage Multiplexer 3-178
MM551 Four Channel High Voltage Multiplexer 3-178
MM452 Quad SPST High Voltage Analog Switch 3-178
MM552 Quad SPST High Voltage Analog Switch 3-178
MM455 Three SPST High Voltage Analog Switch 3-178
MM555 Three SPST High Voltage Analog Switch 3-178
Section 4 - Amplifiers - Operational and Special Purpose
ICH8500/A Ultra Low Input-Bias Operational Amplifier 4-1
ICH8510 Power Operational Amplifier 4-7

Table of Contents

Description Page
Section 4 - Amplifiers - Operational and Special Purpose (Cont.)
ICH8520 Power Operational Amplifier 4-7
ICH8530 Power Operational Amplifier 4-7
ICH8515 Power Operational Amplifier 4-16
ICL7605 Commutating Auto-Zero (CAZ) Instrumentation Amplifier 4-23
ICL7606 Commutating Auto-Zero (CAD) Instrumentation Amplifier 4-23
ICL76XX Series Low Power CMOS Operational Amplifiers 4-34
ICL7650 Chopper-Stabilized Operational Amplifier 4-50
ICL7652 Chopper-Stabilized Low-Noise Operational Amplifier 4-57
ICL8007 JFET Input Operational Amplifier 4-65
ICL8021 Low Power Bipolar Operational Amplifier 4-69
ICL8022 Dual Low Power Bipolar Operational Amplifier 4-69
ICL8023 Triple Low Power Bipolar Operational Amplifier 4-69
ICL8043 Dual JFET Input Operational Amplifier 4-74
ICL8048 Logarithmic Amplifier 4-82
ICL8049 Antilog Amplifier 4-82
ICL8063 Power Transistor Driver/Amplifier 4-90
LH2108 Dual Super-Beta Operational Amplifier 4-99
LH2308 Dual Super-Beta Operational Amplifier 4-99
LM108/A Super-Beta Operational Amplifier 4-102
LM308/A Super-Beta Operational Amplifier 4-102
NE/SE592 Video Amplifier 4-106
Section 5 - Special Analog Functions
AD590 2-Wire Current Output Temperature Transducer 5-1
ICL7660 CMOS Voltage Converter 5-12
ICL7662 CMOS Voltage Converter 5-20
ICL7663 CMOS Programmable Micropower Positive Voltage Regulator 5-27
ICL7664 CMOS Programmable Micropower Negative Voltage Regulator 5-27
ICL7665 Micropower Under/Over Voltage Detector 5-39
ICL7667 Dual Power MOSFET Driver 5-47
ICL7673 Automatic Battery Back-up Switch 5-55
ICL8013 Four Quadrant Analog Multiplier 5-63
ICL8038 Precision Waveform Generator/Voltage Controlled Oscillator 5-72
ICL8069 Low Voltage Reference 5-81
ICL8211 Programmable Voltage Detector 5-83
ICL8212 Programmable Voltage Detector 5-83
IH5110 General Purpose Sample \& Hold 5-94
IH5111 General Purpose Sample \& Hold 5-94
IH5112 General Purpose Sample \& Hold 5-94
IH5113 General Purpose Sample \& Hold 5-94
IH5114 General Purpose Sample \& Hold 5-94
IH5115 General Purpose Sample \& Hold 5-94
Section 6 - Data Acquisition
AD7520 10/12-Bit Multiplying D/A Converter 6-1
AD7521 10/12-Bit Multiplying D/A Converter 6-1
Description Page
Section 6 - Data Acquisition (Cont.)
AD7530 10/12-Bit Multiplying D/A Converter 6-1
AD7531 10/12-Bit Multiplying D/A Converter 6-1
AD7523 8-Bit Multiplying D/A Converter 6-7
AD7533 10-Bit Multiplying D/A Converter 6-11
AD7541 12-Bit Multiplying D/A Converter 6-16
ADC0802 8-Bit $\mu \mathrm{P}$-Compatible A/D Converter 6-22
ADC0803 8-Bit μ P-Compatible A/D Converter 6-22
ADC0804 8-Bit $\mu \mathrm{P}$-Compatible A/D Converter 6-22
ICL7106 3 ½-Digit LCD Single-Chip A/D Converter 6-37
ICL7107 3 ½-Digit LED Single-Chip A/D Converter 6-37
ICL7109 12-Bit $\mu \mathrm{P}$-Compatible A/D Converter 6-48
ICL_7115 14-Bit High-Speed CMOS μ P-Compatible A/D Converter 6-66
ICL7116 3 ½-Digit with Display Hold Single-Chip A/D Converter 6-78
ICL7117 $31 / 2$-Digit with Display Hold Single-Chip A/D Converter 6-78
ICL7126 3 ½-Digit Low-Power Single-Chip A/D Converter 6-88
ICL7129 $41 / 2$ Digit LCD Single-Chip A/D Converter 6-98
ICL7134 14-Bit Multiplying $\mu \mathrm{P}$-Compatible D/A Converter 6-109
ICL7135 $41 / 2-$ Digit BCD Output A/D Converter 6-121
ICL7136 3 ½-Digit LCD Low Power A/D Converter 6-132
ICL7137 3 ½-Digit LED Low Power Single-Chip A/D Converter 6-142
ICL8018A 4-Bit Expandable Current Switch 6-151
ICL8019A 4-Bit Expandable Current Switch 6-151
ICL8020A 4-Bit Expandable Current Switch 6-151
ICL7104/ICL8052 12/14/16-Bit μ P-Compatible 2-Chip A/D Converter 6-157
ICL7104/ICL8068 12/14/16-Bit μ P-Compatible 2-Chip A/D Converter 6-157
Section 7 - Timer/Counter Circuits
ICM7206 CMOS Touch-Tone Encoder 7-1
ICM7207/A CMOS Timebase Generator 7-10
ICM7208 7-Digit LED Display Counter 7-15
ICM7209 Timebase Generator 7-22
ICM7213 One Second/One Minute Timebase Generator 7-25
ICM7215 6-Digit LED Display 4-Function Stopwatch 7-30
ICM7216A 8-Digit Multi-Function Frequency Counter/Timer 7-36
ICM7216B 8-Digit Multi-Function Frequency Counter/Timer 7-36
ICM7216C 8-Digit Multi-Function Frequency Counter/Timer 7-36
ICM7216D 8-Digit Multi-Function Frequency Counter/Timer 7-36
ICM7217 4-Digit LED Display Programmable Up/Down Counter 7-52
ICM7227 4-Digit LED Display Programmable Up/Down Counter 7-52
ICM7224 4 ½-Digit LCD/LED Display Counter 7-67
ICM7225 $41 / 2$-Digit LCD/LED Display Counter 7-67
ICM7226A/B 8-Digit Multi-Function Frequency Counter/Timer 7-75
ICM7236 4 ½-Digit Counter/Vacuum Fluorescent Display Driver 7-88
ICM7240 Programmable Timer 7-93
ICM7250 Programmable Timer 7-93
ICM7260 Programmable Timer 7-93
ICM7241 Timebase Generator 7-103
ICM7242 Long-Range Fixed Timer 7-105

Table of Contents

Description Page
Section 7 - Timer/Counter Circuits (Cont.)
ICM7245 Stepper Motor Quartz Clock 7-111
ICM7249 5-1⁄2 Digit LCD μ-Power Event/Hour Meter 7-115
ICM7555 General Purpose Timer 7-123
ICM7556 Dual General Purpose Timer 7-123
Section 8 - Display Drivers
ICM7211 4-Digit LCD/LED Display Driver 8-1
ICM7212 4-Digit LCD/LED Display Driver 8-1
ICM7218 8-Digit LED Multiplexed Display Driver 8-10
ICM7231 Numeric Triplexed LCD Display Driver 8-20
ICM7232 Numeric Triplexed LCD Display Driver 8-20
ICM7233 Alphanumeric Triplexed LCD Display Driver 8-20
ICM7234 Alphanumeric Triplexed LCD Display Driver 8-20
ICM7235 4-Digit Vacuum Fluorescent Display Driver 8-40
ICM7243 8-Character LED μ P-Compatible Display Driver 8-45
ICM7280 Dot Matrix LCD Controller/Row Driver 8-54
ICM7281 40-Column LCD Dot Matrix Display Driver 8-69
ICM7283 LCD Dot Matrix Controller/Row Driver 8-79
Section 9 - Microcontrollers, Microperipherals, Memory
ICM7170 μ P-Compatible Real-Time Clock 9-1
IM4702/4712 Baud Rate Generator 9-9
IM6402 Universal Asynchronous Receiver Transmitter (UART) 9-16
IM6403 Universal Asynchronous Receiver Transmitter (UART) 9-16
IM6653 4096-Bit CMOS UV EPROM 9-25
IM6654 4096-Bit CMOS UV EPROM 9-25
IM80C35 8-Bit CMOS Microcontroller 9-33
IM80C39 8-Bit CMOS Microcontroller 9-33
IM80C48 8-Bit CMOS Microcontroller 9-33
IM80C49 8-Bit CMOS Microcontroller 9-33
IM82C43 CMOS I/O Expander 9-45
Section 10 - High Reliability/Military Products and Ordering Information 10-1

Alphanumeric Index

2N2607 P-Channel JFET General Purpose Amplifier 2-1
2N2608 P-Channel JFET General Purpose Amplifier 2-1
2N2609 P-Channel JFET General Purpose Amplifier 2-1
2N2609JAN P-Channel JFET General Purpose Amplifier 2-1
2N3684 N-Channel JFET Low Noise Amplifier 2-2
2N3685 N-Channel JFET Low Noise Amplifier 2-2
2N3686 N-Channel JFET Low Noise Amplifier 2-2
2N3687 N-Channel JFET Low Noise Amplifier 2-2
2N3810/A Dual Matched PNP General Purpose Amplifier 2-3
2N3811/A Dual Matched PNP General Purpose Amplifier 2-3
2N3821 N-Channel JFET High Frequency Amplifier 2-5
2N3821JAN N-Channel JFET High Frequency Amplifier 2-5
2N3821JTX N-Channel JFET High Frequency Amplifier 2-5
2N3821JTXV N-Channel JFET High Frequency Amplifier 2-5
2N3822 N-Channel JFET High Frequency Amplifier 2-5
2N3822JAN N-Channel JFET High Frequency Amplifier 2-5
2N3822JTX N-Channel JFET High Frequency Amplifier 2-5
2N3822JTXV N-Channel JFET High Frequency Amplifier 2-5
2N3823 N-Channel JFET High Frequency Amplifier 2-7
2N3823JAN N-Channel JFET High Frequency Amplifier 2-7
2N3823JTX N-Channel JFET High Frequency Amplifier 2-7
2N3823JTXV N-Channel JFET High Frequency Amplifier 2-7
2N3824 N-Channel JFET Switch 2-8
2N3921 Dual N-Channel JFET General Purpose Amplifier 2-9
2N3922 Dual N-Channel JFET General Purpose Amplifier 2-9
2N3954 Dual N-Channel JFET General Purpose Amplifier 2-11
2N3954A Dual N-Channel JFET General Purpose Amplifier 2-11
2N3955 Dual N-Channel JFET General Purpose Amplifier 2-11
2N3955A Dual N-Channel JFET General Purpose Amplifier 2-11
2N3956 Dual N-Channel JFET General Purpose Amplifier 2-11
2N3957 Dual N-Channel JFET General Purpose Amplifier 2-11
2N3958 Dual N-Channel JFET General Purpose Amplifier 2-11
2N3970 N-Channel JFET Switch 2-13
2N3971 N-Channel JFET Switch 2-13
2N3972 N-Channel JFET Switch 2-13
2N3993 P-Channel JFET General Purpose Amplifier/Switch 2-15
2N3994 P-Channel JFET General Purpose Amplifier/Switch 2-15
2N4044 Dielectrically Isolated Dual NPN General Purpose Amplifier 2-17
2N4045 Dielectrically Isolated Dual NPN General Purpose Amplifier 2-17
2N4091 JANTX N-Channel JFET Switch 2-19
2N4091 N-Channel JFET Switch 2-19
2N4092 JANTX N-Channel JFET Switch 2-19
2N4092 N-Channel JFET Switch 2-19
2N4093 JANTX N-Channel JFET Switch 2-19
2N4093 N-Channel JFET Switch 2-19
2N4100 Dielectrically Isolated Dual NPN General Purpose Amplifier 2-17
2N4117 N-Channel JFET General Purpose Amplifier 2-21
2N4117A N-Channel JFET General Purpose Amplifier 2-21
2N4118 N-Channel JFET General Purpose Amplifier 2-21
2N4118A N-Channel JFET General Purpose Amplifier 2-21
2N4119 N-Channel JFET General Purpose Amplifier 2-21
2N4119A N-Channel JFET General Purpose Amplifier 2-21
2N4220 N-Channel JFET General Purpose Amplifier/Switch 2-22
2N4221 N-Channel JFET General Purpose Amplifier/Switch 2-22

Alphanumeric Index (Conitinued)

2N4222 N-Channel JFET General Purpose Amplifier/Switch 2-22
2N4223 N-Channel JFET High Frequency Amplifier 2-23
2N4224 N-Channel JFET High Frequency Amplifier 2-23
2N4338 N-Channel JFET Low Noise Amplifier 2-24
2N4339 N-Channel JFET Low Noise Amplifier 2-24
2N4340 N-Channel JFET Low Noise Amplifier 2-24
2N4341 N-Channel JFET Low Noise Amplifier 2-24
2N4351 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 2-25
2N4391 N-Channel JFET Switch 2-26
2N4392 N-Channel JFET Switch 2-26
2N4393 N-Channel JFET Switch 2-26
2N4416/A N-Channel JFET High Frequency Amplifier 2-28
2N4856 N-Channel JFET Switch 2-30
2N4856JAN,JTX,JTXV N-Channel JFET Switch 2-30
2N4857 N-Channel JFET Switch 2-30
2N4857JAN,JTX,JTXV N-Channel JFET Switch 2-30
2N4858 N-Channel JFET Switch 2-30
2N4858JAN,JTX,JTXV N-Channel JFET Switch 2-30
2N4859 N-Channel JFET Switch 2-30
2N4860 N-Channel JFET Switch 2-30
2N4861 N-Channel JFET Switch 2-30
2N4867/A N-Channel JFET Low Noise Amplifier 2-32
2N4868/A N-Channel JFET Low Noise Amplifier 2-32
2N4869/A N-Channel JFET Low Noise Amplifier 2-32
2N4878 Dielectrically Isolated Dual NPN General Purpose Amplifier 2-17
2N4879 Dielectrically Isolated Dual NPN General Purpose Amplifier 2-17
2N4880 Dielectrically Isolated Dual NPN General Purpose Amplifier 2-17
2N5018 P-Channel JFET Switch 2-34
2N5019 P-Channel JFET Switch 2-34
2N5114 P-Channel JFET Switch 2-36
2N5114JAN,JTX,JTXV P-Channel JFET Switch 2-36
2N5115 P-Channel JFET Switch 2-36
2N5115JAN,JTX,JTXV P-Channel JFET Switch 2-36
2N5116 P-Channel JFET Switch 2-36
2N5116JAN,JTX,JTXV P-Channel JFET Switch 2-36
2N5117 Dielectrically Isolated Dual PNP General Purpose Amplifier 2-38
2N5118 Dielectrically Isolated Dual PNP General Purpose Amplifier 2-38
2N5119 Dielectrically Isolated Dual PNP General Purpose Amplifier 2-38
2N5196 Dual N-Channel JFET General Purpose Amplifier 2-40
2N5197 Dual N-Channel JFET General Purpose Amplifier 2-40
2N5198 Dual N-Channel JFET General Purpose Amplifier 2-40
2N5199 Dual N-Channel JFET General Purpose Amplifier 2-40
2N5397 N-Channel JFET High Frequency Amplifier 2-42
2N5398 N-Channel JFET High Frequency Amplifier 2-42
2N5432 N-Channel JFET Switch 2-44
2N5433 N-Channel JFET Switch 2-44
2N5434 N-Channel JFET Switch 2-44
2N5452 Dual N-Channel JFET General Purpose Amplifier 2-46
2N5453 Dual N-Channel JFET General Purpose Amplifier 2-46
2N5454 Dual N-Channel JFET General Purpose Amplifier 2-46
2N5457 N-Channel JFET General Purpose Amplifier/Switch 2-48
2N5458 N-Channel JFET General Purpose Amplifier/Switch 2-48
2N5459 N-Channel JFET General Purpose Amplifier/Switch 2-48
2N5460 P-Channel JFET Low Noise Amplifier 2-49

Alphanumeric Index

2N5461 P-Channel JFET Low Noise Amplifier 2-49
2N5462 P-Channel JFET Low Noise Amplifier 2-49
2N5463 P-Channel JFET Low Noise Amplifier 2-49
2N5464 P-Channel JFET Low Noise Amplifier 2-49
2N5465 P-Channel JFET Low Noise Amplifier 2-49
2N5484 N-Channel JFET High Frequency Amplifier 2-50
2N5485 N-Channel JFET High Frequency Amplifier 2-50
2N5486 N-Channel JFET High Frequency Amplifier 2-50
2N5515 Dual N-Channel JFET Low Noise Amplifier 2-52
$2 N 5516$ Dual N-Channel JFET Low Noise Amplifier 2-52
$2 N 5517$ Dual N-Channel JFET Low Noise Amplifier 2-52
$2 N 5518$ Dual N -Channel JFET Low Noise Amplifier 2-52
$2 N 5519$ Dual N-Channel JFET Low Noise Amplifier 2-52
2N5520 Dual N-Channel JFET Low Noise Amplifier 2-52
2N5521 Dual N-Channel JFET Low Noise Amplifier 2-52
2N5522 Dual N-Channel JFET Low Noise Amplifier 2-52
2N5523 Dual N-Channel JFET Low Noise Amplifier 2-52
2N5524 Dual N-Channel JFET Low Noise Amplifier 2-52
2N5638 N-Channel JFET Switch 2-54
2N5639 N-Channel JFET Switch 2-54
2N5640 N-Channel JFET Switch 2-54
2N5902 Dual N-Channel JFET General Purpose Amplifier 2-56
2N5903 Dual N-Channel JFET General Purpose Amplifier 2-56
2N5904 Dual N-Channel JFET General Purpose Amplifier 2-56
2N5905 Dual N-Channel JFET General Purpose Amplifier 2-56
2N5906 Dual N-Channel JFET General Purpose Amplifier 2-56
2N5907 Dual N-Channel JFET General Purpose Amplifier 2-56
2N5908 Dual N-Channel JFET General Purpose Amplifier 2-56
2N5909 Dual N-Channel JFET General Purpose Amplifier 2-56
2N5911 Dual N-Channel JFET High Frequency Amplifier 2-58
2N5912 Dual N-Channel JFET High Frequency Amplifier 2-58
2N6483 Dual N-Channel JFET Low Noise Amplifier 2-60
2N6484 Dual N-Channel JFET Low Noise Amplifier 2-60
2N6485 Dual N-Channel JFET Low Noise Amplifier 2-60
3N161 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/ Switch 2-64
3N163 P-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 2-65
3N164 P-Channel Enhancement Mode MOSFET General Purpose/Switch 2-65
3N165 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-67
3N166 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-67
3N170 N-Channel Enhancement Mode MOSFET Switch 2-69
3N171 N-Channel Enhancement Mode MOSFET Switch 2-69
3N172 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/ Switch 2-71
3N173 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/ Switch 2-71
3N188 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-72
3N189 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-72
3N190 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-72
3N191 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-72
AD590 2-Wire Current Output Temperature Transducer 5-1
AD7520 10/12-Bit Multiplying D/A Converter 6-1
AD7521 10/12-Bit Multiplying D/A Converter 6-1
AD7523 8-Bit Multiplying D/A Converter 6-7
AD7530 10/12-Bit Multiplying D/A Converter 6-1
AD7531 10/12-Bit Multiplying D/A Converter 6-1
AD7533 10-Bit Multiplying D/A Converter 6-11
AD7541 12-Bit Multiplying D/A Converter 6-16
ADC0802 8-Bit μ P-Compatible A/D Converter 6-22
ADC0803 8-Bit μ P-Compatible A/D Converter 6-22
ADC0804 8-Bit $\mu \mathrm{P}$-Compatible A/D Converter 6-22
D123 SPST 6-Channel JFET Switch Driver 3-1
D125 SPST 6-Channel JFET Switch Driver 3-1
D129 4-Channel Decoded JFET Switch Driver 3-6
DG118 SPST 4-Channel Driver With Switch 3-8
DG123 SPST 5-Channel Driver With Switch 3-8
DG125 SPST 5-Channel Driver With Switch 3-8
DG126 Dual DPST 80 Ohm JFET Analog Switch 3-12
DG129 Dual DPST 30 Ohm JFET Analog Switch 3-12
DG133 Dual SPST 30/35 Ohm JFET Analog Switch 3-12
DG134 Dual SPST 80 Ohm JFET Analog Switch 3-12
DG139 DPDT 30 Ohm Differentially Driven JFET Switch 3-17
DG140 Dual DPST 10/15 Ohm JFET Analog Switch 3-12
DG141 Dual SPST 10 Ohm JFET Analog Switch 3-12
DG142 DPDT 80 Ohm Differentially Driven JFET Switch 3-17
DG143 SPDT 80 Ohm Differentially Driven JFET Switch 3-17
DG144 SPDT 30 Ohm Differentially Driven JFET Switch 3-17
DG145 DPDT 10 Ohm Differentially Driven JFET Switch 3-17
DG146 SPDT 10 Ohm Differentially Driven JFET Switch 3-17
DG151 Dual SPST 15 Ohm JFET Analog Switch 3-12
DG152 Dual SPST 50 Ohm JFET Analog Switch 3-12
DG153 Dual DPST 15 Ohm JFET Analog Switch 3-12
DG154 Dual DPST 50 Ohm JFET Analog Switch 3-12
DG161 SPDT 15 Ohm Differentially Driven JFET Switch 3-17
DG162 SPDT 50 Ohm Differentially Driven JFET Switch 3-17
DG163 DPDT 15 Ohm Differentially Driven JFET Switch 3-17
DG164 DPDT 50 Ohm Differentially Driven JFET Switch 3-17
DG180 Dual SPST 10 Ohm High-Speed Driver With JFET Switch 3-22
DG181 Dual SPST 30 Ohm High-Speed Driver With JFET Switch 3-22
DG182 Dual SPST 75 Ohm High-Speed Driver With JFET Switch 3-22
DG183 Dual DPST 10 Ohm High-Speed Driver With JFET Switch 3-22
DG184 Dual DPST 30 Ohm High-Speed Driver With JFET Switch 3-22
DG185 Dual DPST 75 Ohm High-Speed Driver With JFET Switch 3-22
DG186 SPDT 10 Ohm High-Speed Driver With JFET Switch 3-22
DG187 SPDT 30 Ohm High-Speed Driver With JFET Switch 3-22
DG188 SPDT 75 Ohm High-Speed Driver With JFET Switch 3-22
DG189 Dual SPDT 10 Ohm High-Speed Driver With JFET Switch 3-22
DG190 Dual SPDT 30 Ohm High-Speed Driver With JFET Switch 3-22
DG191 Dual SPDT 75 Ohm High-Speed Driver With JFET Switch 3-22
DG200 Dual SPST CMOS Analog Switch 3-27
DG201 Quad SPST CMOS Analog Switch 3-32
DG211 SPST 4-Channel Analog Switch 3-36
DG212 SPST 4-Channel Analog Switch 3-36
DGM181 Dual SPST 50 Ohm High-Speed CMOS Analog Switch 3-39
DGM182 Dual SPST 50/75 Ohm High-Speed CMOS Analog Switch 3-39
DGM184 Dual DPST 50 Ohm High-Speed CMOS Analog Switch 3-39
DGM185 Dual DPST 50/75 Ohm High-Speed CMOS Analog Switch 3-39
DGM187 SPDT 50 Ohm High-Speed CMOS Analog Switch 3-39
DGM188 SPDT 50/75 Ohm High-Speed CMOS Analog Switch 3-39
DGM190 Dual SPDT 50 Ohm High-Speed CMOS Analog Switch 3-39
DGM191 Dual SPDT 50/75 Ohm High-Speed CMOS Analog Switch 3-39
G115 6-Channel MOSFET Switch 3-45
G116 5 Channel MOSFET Switch 3-48
G118 6 Channel MOSFET Switch 3-48
G119 6 Channel MOSFET Switch 3-48
G123 4-Channel MOSFET. Switch 3-45
ICH8500/A Ultra Low Input-Bias Operational Amplifier 4-1
ICH8510 Power Operational Amplifier 4-7
ICH8515 Power Operational Amplifier 4-16
ICH8520 Power Operational Amplifier 4-7
ICH8530 Power Operational Amplifier 4-7
ICL76XX Series Low Power CMOS Operational Amplifiers 4-34
ICL7104/ICL8052 12/14/16-Bit μ P-Compatible 2-Chip A/D Converter 6-157
ICL7104/ICL8068 12/14/16-Bit μ P-Compatible 2-Chip A/D Converter 6-157
ICL7106 3 ½-Digit LCD Single-Chip A/D Converter 6-37
ICL7107 3 ½-Digit LED Single-Chip A/D Converter 6-37
ICL7109 12-Bit $\mu \mathrm{P}$-Compatible A/D Converter 6-48
ICL7115 14-Bit High-Speed CMOS μ P-Compatible A/D Converter 6-66
ICL7116 3 ½-Digit with Display Hold Single-Chip A/D Converter 6-78
ICL7117 3 ¹⁄2-Digit with Display Hold Single-Chip A/D Converter 6-78
ICL7126 3 ½-Digit Low-Power Single-Chip A/D Converter 6-88
ICL7129 $4 \frac{1}{2}$ Digit LCD Single-Chip A/D Converter 6-98
ICL7134 14-Bit Multiplying $\mu \mathrm{P}$-Compatible D/A Converter 6-109
ICL7135 $41 / 2$-Digit BCD Output A/D Converter 6-121
ICL7136 3 ½-Digit LCD Low Power A/D Converter 6-132
ICL7137 3 ½-Digit LED Low Power Single-Chip A/D Converter 6-142
ICL7605 Commutating Auto-Zero (CAZ) Instrumentation Amplifier 4-23
ICL7606 Commutating Auto-Zero (CAD) Instrumentation Amplifier 4-23
ICL7650 Chopper-Stabilized Operational Amplifier 4-50
ICL7652 Chopper-Stabilized Low-Noise Operational Amplifier 4-57
ICL7660 CMOS Voltage Converter 5-12
ICL7662 CMOS Voltage Converter 5-20
ICL7663 CMOS Programmable Micropower Positive Voltage Regulator 5-27
ICL7664 CMOS Programmable Micropower Negative Voltage Regulator 5-27
ICL7665 Micropower Under/Over Voltage Detector 5-39
ICL7667 Dual Power MOSFET Driver 5-47
ICL7673 Automatic Battery Back-up Switch 5-55
ICL8007 JFET Input Operational Amplifier 4-65
ICL8013 Four Quadrant Analog Multiplier 5-63
ICL8018A 4-Bit Expandable Current Switch 6-151
ICL8019A 4-Bit Expandable Current Switch 6-151
ICL8020A 4-Bit Expandable Current Switch 6-151
ICL8021 Low Power Bipolar Operational Amplifier 4-69
ICL8022 Dual Low Power Bipolar Operational Amplifier 4-69
ICL8023 Triple Low Power Bipolar Operational Amplifier 4-69
ICL8038 Precision Waveform Generator/Voltage Controlled Oscillator 5-72
ICL8043 Dual JFET Input Operational Amplifier 4-74
ICL8048 Logarithmic Amplifier 4-82
ICL8049 Antilog Amplifier 4-82
ICL8063 Power Transistor Driver/Amplifier 4-90
ICL8069 Low Voltage Reference 5-81
ICL8211 Programmable Voltage Detector 5-83

Alphanumeric Index (Conitinea)

ICL8212 Programmable Voltage Detector 5-83
ICM7170 μ P-Compatible Real-Time Clock 9-1
ICM7206 CMOS Touch-Tone Encoder 7-1
ICM7207/A CMOS Timebase Generator 7-10
ICM7208 7-Digit LED Display Counter 7-15
ICM7209 Timebase Generator 7-22
ICM7211 4-Digit LCD/LED Display Driver 8-1
ICM7212 4-Digit LCD/LED Display Driver 8-1
ICM7213 One Second/One Minute Timebase Generator 7-25
ICM7215 6-Digit LED Display 4-Function Stopwatch 7-30
ICM7216A 8-Digit Multi-Function Frequency Counter/Timer 7-36
ICM7216B 8-Digit Multi-Function Frequency Counter/Timer 7-36
ICM7216C 8-Digit Multi-Function Frequency Counter/Timer 7-36
ICM7216D 8-Digit Multi-Function Frequency Counter/Timer 7-36
ICM7217 4-Digit LED Display Programmable Up/Down Counter 7-52
ICM7218 8-Digit LED Multiplexed Display Driver 8-10
ICM7224 4 ½-Digit LCD/LED Display Counter 7-67
ICM7225 4 ½-Digit LCD/LED Display Counter 7-67
ICM7226A/B 8-Digit Multi-Function Frequency Counter/Timer 7-75
ICM7227 4-Digit LED Display Programmable Up/Down Counter 7-52
ICM7231 Numeric Triplexed LCD Display Driver 8-20
ICM7232 Numeric Triplexed LCD Display Driver 8-20
ICM7233 Alphanumeric Triplexed LCD Display Driver 8-20
ICM7234 Alphanumeric Triplexed LCD Display Driver 8-20
ICM7235 4-Digit Vacuum Fluorescent Display Driver 8-40
ICM7236 $41 / 2$-Digit Counter/Vacuum Fluorescent Display Driver 7-88
ICM7240 Programmable Timer 7-93
ICM7241 Timebase Generator 7-103
ICM7242 Long-Range Fixed Timer 7-105
ICM7243 8-Character LED $\mu \mathrm{P}$-Compatible Display Driver 8-45
ICM7245 Stepper Motor Quartz Clock 7-111
ICM7249 5-1⁄2 Digit LCD μ-Power Event/Hour Meter 7--115
ICM7250 Programmable Timer 7-93
ICM7260 Programmable Timer 7-93
ICM7280 Dot Matrix LCD Controller/Row Driver 8-54
ICM7281 40-Column LCD Dot Matrix Display Driver 8-69
ICM7283 LCD Dot Matrix Controller/Row Driver 8-79
ICM7555 General Purpose Timer 7-123
ICM7556 Dual General Purpose Timer 7-123
ID100 Dual Low Leakage Diode 2-74
ID101 Dual Low Leakage Diode 2-74
IH311 High Speed SPST 4-Channel Analog Switch 3-52
IH312 High Speed SPST 4-Channel Analog Switch 3-52
IH401 QUAD Varafet Analog Switch 3-59
IH401A QUAD Varafet Analog Switch 3-59
IH5009 Quad 100 Ohm Virtual Ground Analog Switch 3-65
IH5010 Quad 150 Ohm Virtual Ground Analog Switch 3-65
IH5011 Quad 100 Ohm Virtual Ground Analog Switch 3-65
IH5012 Quad 150 Ohm Virtual Ground Analog Switch 3-65
IH5013 Triple 100 Ohm Virtual Ground Analog Switch 3-65
IH5014 Triple 150 Ohm Virtual Ground Analog Switch 3-65
IH5015 Triple 100 Ohm Virtual Groung Analog Switch 3-65
IH5016 Triple 150 Ohm Virtual Ground Analog Switch 3-65
IH5017 Dual 100 Ohm Virtual Ground Analog Switch 3-65

Alphanumeric Index (Conituad)

IH5018 Dual 150 Ohm Virtual Ground Analog Switch 3-65
IH5019 nual 100 Ohm Virtual Ground Analog Switch 3-65
IH5020 Dual 150 Ohm Virtual Ground Analog Switch 3-65
IH5021 Single 100 Ohm Virtual Ground Analog Switch 3-65
IH5022 Single 150 Ohm Virtual Ground Analog Switch 3-65
IH5023 Single 100 Ohm Virtual Ground Analog Switch 3-65
IH5024 Single 150 Ohm Virtual Ground Analog Switch 3-65
IH5025 Quad 100 Ohm Positive Signal Analog Switch 3-71
IH5026 Quad 150 Ohm Positive Signal Analog Switch 3-71
IH5027 Quad 100 Ohm Positive Signal Analog Switch 3-71
IH5028 Quad 150 Ohm Positive Signal Analog Switch 3-71
IH5029 Triple 100 Ohm Positive Signal Analog Switch 3-71
IH5030 Triple 150 Ohm Positive Signal Analog Switch 3-71
IH5031 Triple 100 Ohm Positive Signal Analog Switch 3-71
IH5032 Triple 150 Ohm Positive Signal Analog Switch 3-71
IH5033 Dual 100 Ohm Positive Signal Analog Switch 3-71
IH5034 Dual 150 Ohm Positive Signal Analog Switch 3-71
IH5035 Dual 100 Ohm Positive Signal Analog Switch 3-71
IH5036 Dual 150 Ohm Positive Signal Analog Switch 3-71
IH5037 Single 100 Ohm Positive Signal Analog Switch 3-71
IH5038 Single 150 Ohm Positive Signal Analog Switch 3-71
IH5040 SPST 75 Ohm High-Level CMOS Analog Switch 3-79
IH5041 Dual SPST 75 Ohm High-Level CMOS Analog Switch 3-79
IH5042 SPDT 75 Ohm High-Level CMOS Analog Switch 3-79
IH5043 Dual SPDT 75 Ohm High-Level CMOS Analog Switch 3-79
IH5044 DPST 75 Ohm High-Level CMOS Analog Switch 3-79
IH5045 Dual DPST 75 Ohm High-Level CMOS Analog Switch 3-79
IH5046 DPDT 75 Ohm High-Level CMOS Analog Switch 3-79
IH5047 4PST 75 Ohm High-Level CMOS Analog Switch 3-79
IH5048 Dual SPST 35 Ohm High-Level CMOS Analog Switch 3-88
IH5049 Dual DPST 35 Ohm High-Level CMOS Analog Switch 3-88
IH5050 SPDT 35 Ohm High-Level CMOS Analog Switch 3-88
IH5051 Dual SPDT 35 Ohm High-Level CMOS Analog Switch 3-88
IH5052 QUAD CMOS Analog Switch 3-93
H5053 QUAD CMOS Analog Switch 3-93
IH5108 8-Channel Fault Protected Analog Multiplexer 3-99
IH5110 General Purpose Sample \& Hold 5-94
IH5111 General Purpose Sample \& Hold 5-94
IH5112 General Purpose Sample \& Hold 5-94
IH5113 General Purpose Sample \& Hold 5-94
IH5114 General Purpose Sample \& Hold 5-94
IH5115 General Purpose Sample \& Hold 5-94
IH5116 16-Channel Fault Protected Analog Multiplexer 3-107
IH5140 SPST High-Level CMOS Analog Switch 3-110
IH5141 Dual SPST High-Level CMOS Analog Switch 3-110
IH5142 SPDT High-Level CMOS Analog Switch 3-110
IH5143 Dual SPDT High-Level CMOS Analog Switch 3-110
IH5144 DPST High-Level CMOS Analog Switch 3-110
IH5145 Dual DPST High-Level CMOS Analog Switch 3-110
IH5148 Dual SPST High-Level CMOS Analog Switch 3-119
IH5149 Dual DPST High-Level CMOS Analog Switch 3-119
IH5150 SPDT High-Level CMOS Analog Switch 3-119
IH5151 Dual SPDT High-Level CMOS Analog Switch 3-119
IH5200 Dual SPST CMOS Analog Switch 3-27

Alphanumeric Index

IH5201 Quad SPST CMOS Analog Switch 3-32
IH5208 4-Channel Differential Fault Protected Analog Multiplexer 3-127
IH5216 8-Channel Differential Fault Protected Analog Multiplexer 3-135
IH5341 Dual SPST CMOS RF/Video Switch 3-138
IH5352 QUAD SPST CMOS RF/Video Switch 3-144
IH6108 8-Channel CMOS Analog Multiplexer 3-149
IH6116 16-Channel CMOS Analog Multiplexer 3-155
IH6201 Dual CMOS Driver/Voltage Translator 3-162
IH6208 4-Channel Differential CMOS Analog Multiplexer 3-166
IH6216 8-Channel Differential CMOS Analog Multiplexer 3-172
IM80C35 8-Bit CMOS Microcontroller 9-33
IM80C39 8-Bit CMOS Microcontroller 9-33
IM80C48 8-Bit CMOS Microcontroller 9-33
IM80C49 8-Bit CMOS Microcontroller 9-33
IM82C43 CMOS I/O Expander 9-45
IM4702/4712 Baud Rate Generator 9-9
IM6402 Universal Asynchronous Receiver Transmitter (UART) 9-16
IM6403 Universal Asynchronous Receiver Transmitter (UART) 9-16
IM6653 4096-Bit CMOS UV EPROM 9-25
IM6654 4096-Bit CMOS UV EPROM 9-25
IMF6485 Dual N-Channel JFET Low Noise Amplifier 2-62
IT100 P-Channel JFET Switch 2-76
IT101 P-Channel JFET Switch 2-76
IT120 Dual NPN General Purpose Amplifier. 2-77
IT120A Dual NPN General Purpose Amplifier 2-77
IT121 Dual NPN General Purpose Amplifier 2-77
IT122 Dual NPN General Purpose Amplifier 2-77
IT124 Dual Super-Beta NPN General Purpose Amplifier 2-79
IT126 Dual NPN General Purpose Amplifier 2-81
IT127 Dual NPN General Purpose Amplifier 2-81
IT128 Dual NPN General Purpose Amplifier 2-81
IT129 Dual NPN General Purpose Amplifier 2-81
IT130 Dual PNP General Purpose Amplifier 2-83
IT130A Dual PNP General Purpose Amplifier 2-83
IT131 Dual PNP General Purpose Amplifier 2-83
IT132 Dual PNP General Purpose Amplifier 2-83
IT136 Dual PNP General Purpose Amplifier 2-85
IT137 Dual PNP General Purpose Amplifier 2-85
IT138 Dual PNP General Purpose Amplifier 2-85
IT139 Dual PNP General Purpose Amplifier 2-85
IT500 Dual Cascoded N-Channel JFET General Purpose Amplifier 2-87
IT501 Dual Cascoded N-Channel JFET General Purpose Amplifier 2-87
IT502 Dual Cascoded N-Channel JFET General Purpose Amplifier 2-87
IT503 Dual Cascoded N-Channel JFET General Purpose Amplifier 2-87
IT504 Dual Cascoded N-Channel JFET General Purpose Amplifier 2-87
IT505 Dual Cascoded N-Channel JFET General Purpose Amplifier 2-87
IT550 Dual N-Channel JFET Switch 2-90
IT1700 P-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-92
IT1750 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 2-93
IT5911 Dual N-Channel JFET High Frequency Amplifier 2-58
IT5912 Dual N-Channel JFET High Frequency Amplifier 2-58
ITE4091 N-Channel JFET Switch 2-19
ITE4092 N-Channel JFET Switch 2-19
ITE4093 N-Channel JFET Switch 2-19

Alphanumeric Index

ITE4391 N-Channel JFET Switch 2-26
ITE4392 N-Channel JFET Switch 2-26
ITE4393 N-Channel JFET Switch 2-26
ITE4416 N-Channel JFET High Frequency Amplifier 2-28
J105 N-Channel JFET Switch 2-94
J106 N-Channel JFET Switch 2-94
J107 N-Channel JFET Switch 2-94
J111 N-Channel JFET Switch 2-95
J112 N-Channel JFET Switch 2-95
J113 N-Channel JFET Switch 2-95
J174 P-Channel JFET Switch 2-97
J175 P-Channel JFET Switch 2-97
J176 P-Channel JFET Switch 2-97
J177 P-Channel JFET Switch 2-97
J201 N-Channel JFET General Purpose Amplifier 2-99
J202 N-Channel JFET General Purpose Amplifier 2-99
J203 N-Channel JFET General Purpose Amplifier 2-99
J204 N-Channel JFET General Purpose Amplifier 2-99
J308 N-Channel JFET High Frequency Amplifier 2-100
J309 N-Channel JFET High Frequency Amplifier 2-100
J310 N-Channel JFET High Frequency Amplifier 2-100
LH2108 Dual Super-Beta Operational Amplifier 4-99
LH2308 Dual Super-Beta Operational Amplifier 4-99
LM108/A Super-Beta Operational Amplifier 4-102
LM114/H Dual NPN General Purpose Amplifier 2-102
LM114A/AH Dual NPN General Purpose Amplifier 2-102
LM308/A Super-Beta Operational Amplifier 4-102
M116 Diode Protected N-Channel Enhancement Mode MOSFET General Purpose Amplifier 2-104
MM450 Dual Differential High Voltage Analog Switch 3-178
MM451 Four Channel High Voltage Multiplexer 3-178
MM452 Quad SPST High Voltage Analog Switch 3-178
MM455 Three SPST High Voltage Analog Switch 3-178
MM550 Dual Differential High Voltage Analog Switch 3-178
MM551 Four Channel High Voltage Multiplexer 3-178
MM552 Quad SPST High Voltage Analog Switch 3-178
MM555 Three SPST High Voltage Analog Switch 3-178
NE/SE592 Video Amplifier 4-106
U200 N-Channel JFET Switch 2-105
U201 N-Channel JFET Switch 2-105
U202 N-Channel JFET Switch 2-105
U231 Dual N-Channel JFET General Purpose Amplifier 2-106
U232 Dual N-Channel JFET General Purpose Amplifier 2-106
U233 Dual N-Channel JFET General Purpose Amplifier 2-106
U234 Dual N-Channel JFET General Purpose Amplifier 2-106
U235 Dual N-Channel JFET General Purpose Amplifier 2-106
U257 Dual N-Channel JFET High Frequency Amplifier 2-108
U304 P-Channel JFET Switch 2-109
U305 P-Channel JFET Switch 2-109
U306 P-Channel JFET Switch 2-109
U308 N-Channel JFET High Frequency Amplifier 2-111
U309 N-Channel JFET High Frequency Amplifier 2-111
U310 N-Channel JFET High Frequency Amplifier 2-111
U401 Dual N-Channel JFET Switch 2-113
U402 Dual N-Channel JFET Switch 2-113

Alphanumeric Index (Conitiveed)

U403 Dual N-Channel JFET Switch 2-113
U404 Dual N-Channel JFET Switch 2-113
U405 Dual N-Channel JFET Switch 2-113
U406 Dual N-Channel JFET Switch 2-113
U1897 N-Channel JFET Switch 2-115
U1898 N-Channel JFET Switch 2-115
U1899 N-Channel JFET Switch 2-115
VCR2N Voltage Controlled Resistors 2-117
VCR3P Voltage Controlled Resistors 2-117
VCR4N Voltage Controlled Resistors 2-117
VCR7N Voltage Controlled Resistors 2-117
VCR11N Voltage Controlled Resistors 2-120

ALPHANUMERIC CROSS REFERENCE

alternate SOURCE PRODUCT	INTERSIL Equivalent	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT
100 S	2N5458	2N2606	2N2607	2N3331	2N5270	2N3814	17132
1004	2N3684	2N2607	2N2607	2N3332	2N5268	2N3815	17132
102M	2N5686	2 N 2608	2N2608	$2 N 3333$	1 T 132	2N3816	$1 T 130$
102 S	2 N 4547	2 N 2609	2 N 2609	$2 N 3334$	T132	2 N 3816 A	IT130A
103 M	2N5457	2N2609JAN	2N2609JAN	2N3335	17132	2N3817	17130
1035	2N5459	2N2639	$1 T 120$	2N3336	$1 T 132$	2N3817A	IT130A
104M	2N5458	2N2640	17122	2N3347	17137	2N3819	2 N 5484
105 M 1054	2 N 5459	2 N 2641	$1 T 122$ 11120	2N3348	17138	2 N 3820	2 N 2608
1054 106 M	$2 N 4340$ 2N5485	2N2642 2N2643	T1 120 T122	$2 N 3349$ 2N3350	11139 T137	$2 N 3821$ 2 N3822	2N3821 2N3822
107M	2N5485	2N2644	17122	2N3351	11138	2N3823	2N3823
1100	2N3685	2N2652	17120	2N3352	IT139	2N3824	2N3824
1200	$2 N 3686$	2 N 2652 A	$1 T 120$	2N3365	2 N 4340	2 N3907	1 T 120
125 U	2N4339	2N2720	17120	2N3366	2 N 4338	2 N 3908	17120
1277A	2N3822	2N2721	IT122	2N3367	2N4338	2N3909	2N2609
1278A	2N3821	2N2722	IT120	2N3368	2 N 4341	2N3909A	2N2609
1279 A	2 N 3821	2 N 2802	'IT139	2N3369	2N4339	2 N 3921	2N3921
1280A	2N4224	2N2803	17139	2N3370	2 N 4338	2N3922	2N3922
1281A	2N3822	2N2804	11139	2N3376	2N2608	2N3949	1 T 132
1282A	2N4341	2N2805	17139	2N3378	2N2608	2N3950	IT132
1283A	2 N 4340	2 N 2806	17139	2N3380	2N2609	2N3954	2N3954
1284A	2 N 4222	2N2807	17139	2N3382	2N3994	2N3954A	2N3954A
1285A	2 N 3821	2 N 2841	2 N 2607	2 N3384	2 N 3993	$2 N 3955$	$2 N 3955$
1286 A	2 N 4220	2N2842	2 N 2607	2 N3386	2N5114	2N3955A	2N3955A
130 U	2N3687	2N2843	2N2607	2N3409	1 T 122	2N3956	2N3956
1325A	2N4222	2N2844	2N2607	2N3410	$1 T 122$	2N3957	2N3957
135 U	2N4339	2 N 2903	17122	2N3411	17122	2N3966	2N4416
14 l	2N4224 2N4416	2N2903A 2N2910	$1 T 120$ $1 T 122$	$2 N 3423$ 2 N3424	$T 122$ $T 122$	2N3967 2N3967	2N4221 2N4221
1714 A	2N4340	2N2913	17122	2N3425	IT122	2N3968	2N3685
1825	2 N 4391	2N2914	T120	2 N 3436	2N4341	2N3968A	2N3685
1835	2N3823	2N2915	17120	2 N 3437	2 N 4340	2N3969	2N3686
1975	2 N 4338	2N2915A	T120	2 N 3438	2 N 4338	2N3969A	2N3686
1985	2 N 4340	2 N 2916	11120	2 N 3452	2N4220	2 N 3970	2N3970
1995	2N4341	2N2916A	IT120	2N3453	2N4338	2N3971	2N3971
2000M	2 N 3823	2 N 2917	1 T 122	2N3454	2 N 4338	2 N 3972	2N3972
2001 M	2 N 3823	2 N 2918	11122	2N3455	2 N 4340	2 N 3993	2N3993
2005	2 N 4392	2 N 2919	T120	2 N 3456	2 N 4338	2N3993A	2N3993
200 U	2N3824	2N2919A	17120	2N3457	2N4338	2N3994	2N3994
2015	2 N 4391	2N2920	2N2920	2N3458	2 N 4341	2N3994A	2N3994
2025	2N4392	2N2920A	2N2920	2N3459	2N4339	2N4009	$1 T 132$
2035	2 N 3821	2 N 2936	17120	2N3460	2N4338	2N4010	17132
2045	2 N 3821	2 N 2937	IT120	2 N 3513	1 T 122	2 N 4011	11132
2078A	2N3955	2 N 2972	T1122	2N3514	T122	2N4015	T139
2079A	2N3955	2N2973	1 T 122	2N3515	17122	2N4016	17137
2080A	2N3955A	2N2974	17120	2N3516	17122	2N4017	17139
2081A	2 N 3955 A	2 N 2975	11120	$2 N 3517$	T1122	2N4018	17139
2093 M	2 N 3687	2 N 2976	17120	2 N 3521	17122	2 N 4019	11139
2094 M	2 N3686	2N2977	17120	2 N 3522	17122	2 N 402 O	T1139
2095M	2N3686	2N2978	1 T 120	2N3574	2N2607	2N4021	17139
2098A	2 N 3954	2N2979	17120	2N3575	2N2607	2 N 4022	17139
2099A	2N3955A	2 N 2980	1 T 121	2N3578	2N2608	2 N 4023	$1 T 137$
210 U	2 N 4416	2 N 2981	1 T 122	$2 N 3587$	1 T 122	2 N 4024	11137
$\begin{aligned} & 2130 U \\ & 21321 \end{aligned}$	$\begin{aligned} & 2 N 5452 \\ & 2 N 3955 \end{aligned}$	2N2982 2N3043	IT122 T121	2N3608 2N3680	3 N 172 $1 T 120$	2N4025 2N4026	17137 3N163
2134 U	2N3956	2N3044	T122	2N3684	2N3684	2 N 4038	2 N 4351
2136 U	2 N3957	2N3045	17122	2N3684A	2N3684	2N4039	2N4351
2138 U	2 N 3958	2 N 3046	17121	2 N 3685	2N3685	2 N 4065	3N163
21394	2 N 3958	2 N 3047	17122	2N3685A	2N3685	2 N 4066	3N166
2147 U	2N3958	2N3048	17122	2N3686	2N3686	2N4067	3N166
2148 U	2N3958	2N3049	17139	2N3686A	2N3686	2 N 4082	2N3954
21490	2N3958	2 N 3050	T139	$2 N 3687$	2 N 3687	2 N 4083	2N3955
2315	2N3954	2N3051	T139	2N3687A	2N3687	2 N 4084	2N3954
2325 2335	2N3955 2N3956	2N3052 2N3059	17129 T139	2N3726 2N3727	T1131 T130	2N4085 2N4091	$2 N 3955$ 2N4091
2345	$2 N 3957$	2N3066	2 N 4340	2N3728	17122	2N4091A	2 N 4091
2355	2 N 3958	2 N 3067	2 N 4338	2N3729	17121	2N4091JAN	2 N 4091 JAN
2410	2 N 4869	2N3068	2N4338	2 N 3800	17132	2N4091JANTX	2 N4091 JANTX
250 U 2510	2N4091 2N4392	2N3069 2N3070	2N4341 2N4339	$2 N 3801$ 2N3802	1132 $1 T 132$	2N4091JANTXV	$\begin{aligned} & \text { 2N4091 JANTXV } \\ & \text { 2N4092 } \end{aligned}$
2 N 2060	17120	2 N3071	2N4338	2 N 3803	1 T 132	2 N 4092 A	2 N 4092
2N2060A	17121	2N3084	2N4339	$2 N 3804$	17130	2N4092JAN	2 N 4092 JAN
2N2060B	$1 T 121$	2N3085	2N4339	2N3804A	1 T 130 A	2N4092JANTX	2N4092JANTX
2 N 2223	11122	2N3086	2 N 4339	2 N 3805	IT130	2N4092JANTXV	2 N 4092 JANTXV
2N2223A	17121	2N3087	2N4339	2N3805A	IT130A	2N4093	2 N 4093
2N2386	2N2608	2N3088	2N4339	${ }^{2}$ N3806	IT122	2N4093A	2N4093
2N2386A	2N2608	2N3088A	2N4339	2N3807	17122	2N4093JAN	2N4093JAN
2 N 2453	1 T 122	2 N 3089	2N4339	2 N 3808	11122	$2 N 4093 J A N T X$	2 N4093JANTX
2N2453A	T1121	2N3089A	2N4339	2N3809	17122	2N4093JANTXV	2N4093JANTXV
2N2480	17122	2N3113	2N2607	2N3810	2N3810	2N4100	2N4100
2N2480A	17121	2 N 3277	2N2606	2N3810A	2 N 3810 A	${ }^{2} \mathrm{~N} 4117$	${ }^{2 N} 4117$
2 N 2497	2N2608	2N3278 2N3328	2N2607	2N3811 2N3811	${ }^{2} 2$ N3811	2N4117A	2 N 4117 A
2N2498 2N2499	2N2608 2N2609	$2 N 3328$ 2 N 3329	2N5265 2N5267	2N3811A	${ }_{\text {2N3811A }}$	2N4118 2N4118A	2N4118
2N2500	2N2608	2N3330	2N5268	2 N 3813	1 T 132	2N4119	2N4119

ALTERNATE SOURCE PRODUCT	INTERSIL Equivalent	ALTERNATE SOURCE PRODUCT	intersil EQUIVALENT	ALTERNATE SOURCE PRODUCT	NTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	NTERSIL EQUIVALENT
$\begin{aligned} & \text { 2N4119A } \\ & \text { 2N4120 } \\ & \text { 2N4139 } \\ & \text { 2N4:20 } \\ & \text { 2N4220A } \end{aligned}$	2N4119A 3N163 2N3822 2N4220 2N4220	2N5045 2N5046 2N5047 2N5078 2N5090	$\begin{aligned} & \text { 2N5453 } \\ & \text { 2N5454 } \\ & \text { 2N5454 } \\ & \text { 2N5397 } \\ & \text { IT122 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 N 5484 \\ & 2 N 5485 \\ & 2 N 5486 \\ & 2 N 5515 \\ & 2 N 5515 \end{aligned}$	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N5485 } \\ & \text { 2N5486 } \\ & \text { 2N5515 } \\ & \text { 2N5516 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N6484 } \\ & \text { 2N6485 } \\ & \text { 2N6502 } \\ & \text { 2N6503 } \\ & \text { 2N6550 } \end{aligned}$	$\begin{aligned} & \text { 2N6484 } \\ & \text { 2N6485 } \\ & \text { IT122 } \\ & \text { IT122 } \\ & \text { 2N4868A } \end{aligned}$
2N4221 2N4221A 2N4222 ${ }_{2 N 4223}$ 2N4 2N4223	$\begin{aligned} & \text { 2N4221 } \\ & \text { 2N4221 } \\ & \text { 2N4222 } \\ & \text { 2N4222 } \\ & \text { 2N4223 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5103 } \\ & \text { 2N5104 } \\ & \text { 2N5105 } \\ & \text { 2N5114 } \\ & \text { 2N5114JAN } \end{aligned}$	$\begin{aligned} & \text { 2N4416 } \\ & \text { 2N4416 } \\ & \text { 2N4416 } \\ & \text { 2N5114 } \\ & \text { 2N5114JAN } \end{aligned}$	2N5517 2N5518 2N5519 2N5520 2N5521	$\begin{aligned} & \text { 2N5517 } \\ & \text { 2N5518 } \\ & \text { 2N5519 } \\ & \text { 2N5520 } \\ & \text { 2N5521 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N6568 } \\ & \text { 2SC294 } \\ & \text { 2SJ11 } \\ & \text { 2SJ12 } \\ & \text { 2SJ13 } \end{aligned}$	$\begin{aligned} & \text { 2N5432 } \\ & \text { iT122 } \\ & \text { 2N2607 } \\ & \text { 2N2607 } \\ & \text { 2N5270 } \end{aligned}$
2N4224 2N4267 2N4268 2N4302 2N4303	2N4224 3N163 3N161 2N4302 2N5459	2N5114JANTX 2N5114JANTXV 2N5115 2N5115JAN 2N5115JANTX	```2N5114JANTX 2N5114JANTXV 2N5115 2N5115JAN 2N5115JANTX```	$\begin{aligned} & \text { 2N5522 } \\ & \text { 2N5523 } \\ & \text { 2N5524 } \\ & \text { 2N5545 } \\ & \text { 2N5546 } \end{aligned}$	2N5522 2N5523 2N5524 2N3954 2N3955A	$\begin{aligned} & \text { 2SJ15 } \\ & \text { 2SS16 } \\ & \text { 2SJ47 } \\ & \text { 2S448 } \\ & \text { 2SJ49 } \end{aligned}$	$\begin{aligned} & \text { 2N2607 } \\ & \text { 2N2607 } \\ & * * \\ & * * \end{aligned}$
$\begin{aligned} & \text { 2N4304 } \\ & \text { 2N4338 } \\ & \text { 2N4339 } \\ & \text { 2N4340 } \\ & \text { 2N4341 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5458 } \\ & \text { 2N4338 } \\ & \text { 2N4339 } \\ & \text { 2N4340 } \\ & \text { 2N4341 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5115JANTXV } \\ & \text { 2N5116 } \\ & \text { 2N5116JAN } \\ & \text { 2N5116JANTX } \\ & \text { 2N5116JANTXV } \end{aligned}$	$\begin{aligned} & \text { 2N5115JANTXV } \\ & \text { 2N5116 } \\ & \text { 2N5116JAN } \\ & \text { 2N5116JANTX } \\ & \text { 2N5116JANTXV } \end{aligned}$	$\begin{aligned} & \text { 2N5547 } \\ & \text { 2N5549 } \\ & \text { 2N5555 } \\ & \text { 2N5556 } \\ & \text { 2N5557 } \end{aligned}$	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N4093 } \\ & \text { J310 } \\ & \text { 2N3685 } \\ & \text { 2N3684 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \mathrm{~S} 150 \\ & 2 \mathrm{~S} 578 \\ & 2 \mathrm{SJ79} \\ & 2 \mathrm{~S} 880 \\ & 2 \mathrm{SK} 11 \\ & \hline \end{aligned}$	2N5457
2N4342 2N4343 2N4351 2N4352 2N4353	2N5461 2N5462 2N4351 3N163 3N172	$\begin{aligned} & 2 N 5117 \\ & \text { 2N5118 } \\ & \text { 2N5119 } \\ & \text { 2N5120 } \\ & \text { 2N5121 } \end{aligned}$	$\begin{aligned} & \text { 2N5117 } \\ & \text { 2N5118 } \\ & \text { 2N5119 } \\ & \$ 131 \\ & \$ 132 \end{aligned}$	$\begin{aligned} & \text { 2N5558 } \\ & \text { 2N5561 } \\ & \text { 2N55662 } \\ & \text { 2N5563 } \\ & \text { 2N5564 } \end{aligned}$	2N3684 $\cup 401$ $\cup 402$ $U 404$ $1 T 550$	$\begin{aligned} & \text { 2SK12 } \\ & \text { 2SK13 } \\ & \text { 2SK132 } \\ & \text { 2SK133 } \\ & \text { 2SK134 } \end{aligned}$	$\begin{aligned} & 2 N 5457 \\ & 2 N 5457 \\ & * * \\ & * * \end{aligned}$
2N4360 2N4381 2N4382 2N4391 2N4392	$\begin{aligned} & \text { 2N5460 } \\ & \text { 2N2609 } \\ & \text { 2N5115 } \\ & \text { 2N4391 } \\ & \text { 2N4392 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5122 } \\ & \text { 2N5123 } \\ & \text { 2N5124 } \\ & \text { 2N5125 } \\ & \text { 2N5158 } \\ & \hline \end{aligned}$	1T132 IT131 IT132 IT132 2N5434	$\begin{aligned} & \text { 2N5565 } \\ & \text { 2N5566 } \\ & \text { 2N5592 } \\ & \text { 2N5593 } \\ & \text { 2N5594 } \\ & \hline \end{aligned}$	1T550 1T550 2N3822 2N3822 2N3822	$\begin{aligned} & \text { 2SK135 } \\ & \text { 2SK15 } \\ & \text { 2SK17 } \\ & \text { 2SK178 } \\ & 28 K 179 \\ & \hline \end{aligned}$	$\begin{aligned} & * * \\ & \text { 2N4868 } \\ & \text { 2N5484 } \\ & * * \\ & * * \\ & \hline \end{aligned}$
2N4393 2N4416 2N4416A 2N4417 2N4445	2N4393 2N4416 2N4416A 2N4416 2N5432 2N5432	$\begin{aligned} & \text { 2N5159 } \\ & \text { 2N5163 } \\ & \text { 2N5196 } \\ & \text { 2N5197 } \\ & \text { 2N5198 } \end{aligned}$	2N5433 $2 N 3822$ 2N5196 2N5197 2N5198	$\begin{aligned} & \text { 2N5638 } \\ & \text { 2N5639 } \\ & \text { 2N5640 } \\ & \text { 2N5647 } \\ & \text { 2N5648 } \end{aligned}$	2N5638 2N5639 2N5640 2N4117A 2N4117A	$\begin{aligned} & \text { 2SK18 } \\ & \text { 2SK180 } \\ & \text { 2SK19 } \\ & \text { 2SK23 } \\ & \text { 2SK30 } \end{aligned}$	$\begin{aligned} & \text { 2N3821 } \\ & \text { iT* } \\ & \text { 2TE416 } \\ & \text { 2N5459 } \\ & \text { 2N5458 } \end{aligned}$
$\begin{aligned} & \text { 2N4446 } \\ & \text { 2N4447 } \\ & \text { 2N4448 } \\ & \text { 2N4856 } \\ & \text { 2N4856A } \\ & \hline \end{aligned}$	2N5434 2N5432 2N5434 2N4856 2N4856	$\begin{aligned} & \text { 2N5199 } \\ & \text { 2N5245 } \\ & \text { 2N5246 } \\ & \text { 2N5247 } \\ & \text { 2N5248 } \\ & \hline \end{aligned}$	2N5199 1TE4416 2N5484 2N5486 2N5486	$\begin{aligned} & \text { 2N5649 } \\ & \text { 2N5653 } \\ & \text { 2N5654 } \\ & \text { 2N5668 } \\ & \text { 2N5669 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4117A } \\ & \text { 2N5638 } \\ & \text { 2N5639 } \\ & \text { 2N5584 } \\ & \text { 2N5485 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2SK32 } \\ & \text { SKS33 } \\ & \text { 2SK34 } \\ & \text { 2SK } 37 \\ & \text { 2SK41 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3822 } \\ & \text { 2N5397 } \\ & \text { 2N3822 } \\ & \text { 2N5484 } \\ & \text { 2N5459 } \\ & \hline \end{aligned}$
2N4856JAN 2N4856JANTX 2N4856JANTXV 2N4857 2N4857A	$\begin{aligned} & \text { 2N4856JAN } \\ & \text { 2N4565JANTX } \\ & \text { 2N4856JANTXV } \\ & \text { 2N4857 } \\ & \text { 2N4857 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5254 } \\ & \text { 2N5255 } \\ & \text { 2N5256 } \\ & \text { 2N5257 } \\ & \text { 2N5258 } \end{aligned}$	IT132 1 T 132 IT130 2N5457 2N5458 2N5458	$\begin{aligned} & 2 N 5670 \\ & \text { 2N5793 } \\ & 2 N 5794 \\ & 2 N 5795 \\ & 2 N 5796 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 N 5486 \\ & 1 T 129 \\ & 1 T 129 \\ & 1 T 139 \\ & 1 T 139 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2SK42 } \\ & \text { 2SK43 } \\ & \text { 2SK44 } \\ & \text { 2SK46 } \\ & \text { 2SK48 } \\ & \hline \end{aligned}$	2N3822 ITE4092 ITE4416 2N5459 2N3821
$\begin{aligned} & \text { 2N4857JAN } \\ & \text { 2N4857JANTX } \\ & \text { 2N4857JANTXV } \\ & \text { 2N4858 } \\ & \text { 2N4858A } \end{aligned}$	$\begin{aligned} & \text { 2N4857JAN } \\ & \text { 2N857JANTX } \\ & \text { 2N4857JANTXV } \\ & \text { 2N4858 } \\ & \text { 2N4858 } \end{aligned}$	$\begin{aligned} & \text { 2N5259 } \\ & \text { 2N5265 } \\ & \text { 2N5266 } \\ & \text { 2N5267 } \\ & \text { 2N5268 } \end{aligned}$	2N5459 2N2607 2N2607 2N2608 2N2608	$\begin{aligned} & \text { 2N5797 } \\ & 2 N 5798 \\ & 2 N 5799 \\ & \text { 2N5800 } \\ & \text { 2N5801 } \end{aligned}$	2N2608 2N2608 2N2608 2N2608 2N4393	$\begin{aligned} & \text { 2SK49 } \\ & \text { 2SK50 } \\ & \text { 2SK54 } \\ & \text { 2SK55 } \\ & \text { 2SK556 } \\ & \text { 2SK56 } \end{aligned}$	$\begin{aligned} & \text { 2N5484 } \\ & \text { 1TE4416 } \\ & \text { 2N3822 } \\ & \text { 2N3822 } \\ & \text { 2N5459 } \end{aligned}$
$\begin{aligned} & \text { 2N4858JAN } \\ & \text { 2NA558JANTX } \\ & \text { 2N4858JANTXV } \\ & \text { 2N4859 } \\ & \text { 2N4859A } \end{aligned}$	$\begin{aligned} & \text { 2N4858JAN } \\ & \text { 2N4888JANTX } \\ & \text { 2N485JANTXV } \\ & \text { 2N45899 } \\ & \text { 2N4859 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5269 } \\ & \text { 2N5270 } \\ & \text { 2N5277 } \\ & \text { 2N5278 } \\ & \text { 2N5358 } \end{aligned}$	$\begin{aligned} & \text { 2N2609 } \\ & \text { 2N2609 } \\ & \text { 2N4341 } \\ & \text { 2N4341 } \\ & \text { 2N4220 } \end{aligned}$	$\begin{aligned} & \text { 2N5802 } \\ & \text { 2N5803 } \\ & \text { 2N5843 } \\ & \text { 2N5844 } \\ & \text { 2N5902 } \end{aligned}$	$\begin{aligned} & \text { 2N4393 } \\ & \text { 2N4392 } \\ & \text { IT130 } \\ & \text { IT130 } \\ & \text { 2N5902 } \end{aligned}$	$\begin{aligned} & \text { 2SK61 } \\ & \text { 2SK665 } \\ & \text { 2SK66 } \\ & \text { 2SK68 } \\ & \text { 2SK72 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5397 } \\ & \text { J201 } \\ & \text { 2N3821 } \\ & \text { 2N3822 } \\ & \text { 2N5196 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 2N4859JAN } \\ & \text { 2N4859JANTX } \\ & \text { 2N4860 } \\ & \text { 2N4860A } \\ & \text { 2N4860JAN } \end{aligned}$	$\begin{aligned} & \text { 2N4856JAN } \\ & \text { 2N4856JANTX } \\ & \text { 2N4860 } \\ & \text { 2N4860 } \\ & \text { 2N4857JAN } \end{aligned}$	2N5359 2N5360 2N5361 2N5362 2N5363	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4221 } \\ & \text { 2N4221 } \\ & \text { 2N4222 } \\ & \text { 2N42.22 } \end{aligned}$	$\begin{aligned} & \text { 2N5903 } \\ & \text { 2N5904 } \\ & \text { 2N5905 } \\ & \text { 2N5906 } \\ & \text { 2N5907 } \end{aligned}$	2N5903 2N5904 2N5905 2N5906 2N5907	$\begin{aligned} & \text { 3GS } \\ & \text { 3N145 } \\ & \text { 3N146 } \\ & \text { 3N147 } \\ & \text { 3N1488 } \end{aligned}$	$\begin{aligned} & 2 N 3821 \\ & 3 N 163 \\ & 3 N 163 \\ & 3 N 189 \\ & \text { 3N189 } \end{aligned}$
$\begin{aligned} & \text { 2N4860JANTX } \\ & \text { 2N4861 } \\ & \text { 2N4861A } \\ & \text { 2N4866 JAN } \\ & \text { 2N4861 JANTX } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4857JANTX } \\ & \text { 2N4861 } \\ & \text { 2N4861 } \\ & \text { 2N4858JAN } \\ & \text { 2N4858JANTX } \end{aligned}$	$\begin{aligned} & \text { 2N5364 } \\ & \text { 2N5391 } \\ & \text { 2N5392 } \\ & \text { 2N5393 } \\ & \text { 2N5394 } \end{aligned}$	2N4222 2N4867A 2N4868A 2N4869A 2N4869A	2N5908 2N5909 2N5911 2N5912 2N5949	2N5908 2N5909 2N5911 2N5912 2N5486	3N149 3N150 3N151 3N155 3N155A	$\begin{aligned} & \text { 3N161 } \\ & \text { 3N163 } \\ & \text { 3N190 } \\ & \text { 3N63 } \\ & \text { 3N163 } \\ & \hline \end{aligned}$
2N4867 2N4867A 2N4868 2N4868A 2N4869 2N4869	$\begin{aligned} & \text { 2N4867 } \\ & \text { 2N4867A } \\ & \text { 2N4868 } \\ & \text { 2N4868A } \\ & \text { 2N4869 } \end{aligned}$	2N5395 2N5396 2N5397 2N5398 2N5432	$\begin{aligned} & \text { 2N4869A } \\ & \text { 2N4869A } \\ & \text { 2N5397 } \\ & \text { 2N5398 } \\ & \text { 2N5432 } \\ & \hline \end{aligned}$	2N5950 2N5951 2N5952 2N5953 2N6085	2N5486 2N5486 2N5484 2N5484 $1 T 122$	3N156 3N156A 3N157 3N157A 3N158 3N158	$\begin{aligned} & 3 N 163 \\ & 3 N 163 \\ & \text { 3N163 } \\ & \text { 3N163 } \\ & \text { 3N163 } \end{aligned}$
$\begin{aligned} & \text { 2N4869A } \\ & \text { 2N4878 } \\ & \text { 2N4879 } \\ & \text { 2N4880 } \\ & \text { 2N4937 } \end{aligned}$	2N4869A 2N4878 2N4879 2N4880 1T131	$\begin{aligned} & \text { 2N5433 } \\ & \text { 2N5434 } \\ & \text { 2N5452 } \\ & \text { 2N5453 } \\ & \text { 2N5454 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5433 } \\ & \text { 2N5434 } \\ & \text { 2N5452 } \\ & \text { 2N5453 } \\ & \text { 2N5454 } \end{aligned}$	$\begin{aligned} & \text { 2N6086 } \\ & \text { 2N6087 } \\ & \text { 2N6088 } \\ & \text { 2N6089 } \\ & \text { 2N6090 } \\ & \hline \end{aligned}$	$\begin{aligned} & T T 122 \\ & T 121 \\ & T 121 \\ & T 121 \\ & T 122 \\ & T 121 \end{aligned}$	$\begin{aligned} & \text { 3N158A } \\ & \text { 3N160 } \\ & \text { 3N161 } \\ & \text { 3N163 } \\ & \text { 3N164 } \end{aligned}$	$\begin{aligned} & \text { 3N163 } \\ & \text { 3N161 } \\ & \text { 3N161 } \\ & \text { 3N163 } \\ & \text { 3N1664 } \end{aligned}$
$\begin{aligned} & \text { 2N4938 } \\ & \text { 2N4939 } \\ & \text { 2N4940 } \\ & \text { 2N4941 } \\ & \text { 2N4942 } \end{aligned}$	$\begin{aligned} & T 132 \\ & T 132 \\ & T 132 \\ & T 132 \\ & T 131 \\ & T 132 \end{aligned}$	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \text { 2N5460 } \\ & \text { 2N5461 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \text { 2N5460 } \\ & \text { 2N5461 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N6091 } \\ & \text { 2N6092 } \\ & \text { 2N6441 } \\ & \text { 2N6442 } \\ & \text { 2N6443 } \end{aligned}$	17121 $T 121$ $T 122$ $T 122$ $T 122$	$\begin{aligned} & 3 N 165 \\ & 3 N 166 \\ & 3 N 167 \\ & \text { 3N168 } \\ & \text { 3N169 } \end{aligned}$	$\begin{aligned} & \text { 3N165 } \\ & \text { 3N166 } \\ & \text { 3N161 } \\ & \text { 3N161 } \\ & \text { 3N170 } \\ & \hline \end{aligned}$
2N4955 2N4956 2N4977 2N4978 2N4979 \qquad	17122 17122 2N5433 2N5433 2N4859	$\begin{aligned} & \text { 2N5462 } \\ & \text { 2N5463 } \\ & \text { 2N5464 } \\ & \text { 2N5465 } \\ & \text { 2N5471 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 N 5462 \\ & 2 N 5463 \\ & 2 N 5464 \\ & 2 N 5465 \\ & 2 N 5265 \\ & 2 N 5265 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N6444 } \\ & \text { 2N6445 } \\ & \text { 2N6446 } \\ & \text { 2N6447 } \\ & \text { 2N6448 } \end{aligned}$	$\begin{aligned} & T 122 \\ & T 121 \\ & T 121 \\ & T 121 \\ & T 121 \\ & \hline T 121 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 N 170 \\ & 3 N 1171 \\ & 3 N 172 \\ & 3 N 1173 \\ & 3 N 174 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 N 170 \\ & \text { 3N171 } \\ & \text { 3N172 } \\ & \text { 3N173 } \\ & 3 N 163 \end{aligned}$
2N5018 2N5019 2N5020 2N5021 2N5033	2N5018 2N5019 2N2843 2N2607 2N5460	$\begin{aligned} & \text { 2N5472 } \\ & \text { 2N5473 } \\ & \text { 2N5474 } \\ & \text { 2N5475 } \\ & \text { 2N5476 } \end{aligned}$	$\begin{aligned} & \text { 2N5265 } \\ & \text { 2N5266 } \end{aligned}$	$\begin{aligned} & \text { 2N6451 } \\ & \text { 2N6452 } \\ & \text { 2N6453 } \\ & \text { 2N6454 } \\ & \text { 2N6483 } \end{aligned}$	$\begin{aligned} & U 310 \\ & \text { U310 } \\ & 4310 \\ & 4310 \\ & 2 N 6483 \end{aligned}$	$\begin{aligned} & 3 N 175 \\ & 3 N 176 \\ & 3 N 177 \\ & 3 N 178 \\ & 3 N 179 \end{aligned}$	$\begin{aligned} & 3 N 170 \\ & 3 N 170 \\ & 3 N 171 \\ & 3 N 172 \\ & 3 N 172 \end{aligned}$

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT						
$\begin{aligned} & \text { 3N180 } \\ & \text { 3N181 } \\ & \text { 3N182 } \\ & \text { 3N183 } \\ & \text { 3N188 } \end{aligned}$	3N172 3N161 3N161 3N161 3N188	AD7520KD AD7520KN AD7520LD AD7520LN AD7520SD	AD7520KD AD7520KN AD7520LD AD7520LN AD7520SD	$\begin{aligned} & \text { AHO139D/883 } \\ & \text { AHO140CD } \\ & \text { AHO140D } \\ & \text { AHO140D/883 } \\ & \text { AHO141CD } \end{aligned}$	$\begin{aligned} & \text { DG139AK/883B } \\ & \text { DG140BK } \\ & \text { DG140AK } \\ & \text { DG140AK/883B } \\ & \text { DG141BK } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BF801 } \\ & \text { BF802 } \\ & \text { BF804 } \\ & \text { BF805 } \\ & \text { BF806 } \end{aligned}$	$\begin{aligned} & \text { 2N4867 } \\ & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4869 } \\ & \text { 2N4869 } \end{aligned}$
$\begin{aligned} & \text { 3N189 } \\ & \text { 3N190 } \\ & \text { 3N191 } \\ & \text { 3N207 } \\ & \text { 3N208 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3N189 } \\ & \text { 3N190 } \\ & \text { 3N191 } \\ & \text { 3N190 } \\ & \text { 3N188 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD7520TD } \\ & \text { AD7520UD } \\ & \text { AD7521 JD } \\ & \text { AD7521 } \mathrm{JN} \\ & \text { AD7521 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD7520TD } \\ & \text { AD7520UD } \\ & \text { AD7521 JD } \\ & \text { AD7521 JN } \\ & \text { AD7521 } \end{aligned}$	$\begin{aligned} & \text { AHO141D } \\ & \text { AHO141D/883 } \\ & \text { AHO142CD } \\ & \text { AHO142D } \\ & \text { AHO142D/883 } \end{aligned}$	DG141AK DG141AK/883B DG142BK DG142AK DG142AK/883B	BF808 BF810 BF811 BF815 BF816	$\begin{aligned} & \text { 2N4868 } \\ & \text { 2N4858 } \end{aligned}$
$\begin{aligned} & \text { 3SK22 } \\ & \text { 3SK23 } \\ & \text { 3SK28 } \\ & 42 \mathrm{~T} \\ & 4360 T P \\ & \hline \end{aligned}$	2N5486 2N5397 2N5397 2N4392 2N5462	$\begin{aligned} & \text { AD7521KN } \\ & \text { AD7521LD } \\ & \text { AD7521 } \\ & \text { AD7521SD } \\ & \text { AD7521 } \end{aligned}$	$\begin{aligned} & \text { AD7521 } \mathrm{KN} \\ & \text { AD7521LD } \\ & \text { AD7521 } \\ & \text { AD7521SD } \\ & \text { AD7521 } \end{aligned}$	$\begin{aligned} & \text { AHO143CD } \\ & \text { AHO143D } \\ & \text { AHO143D/883 } \\ & \text { AHO144CD } \\ & \text { AHO144D } \end{aligned}$	$\begin{aligned} & \text { DG143BK } \\ & \text { DG143AK } \\ & \text { DG143AK/883B } \\ & \text { DG144BK } \\ & \text { DG144AK } \end{aligned}$	$\begin{aligned} & \text { BF817 } \\ & \text { BF818 } \\ & \text { BFQ10 } \\ & \text { BFQ11 } \\ & \text { BFQ12 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4858 } \\ & \text { 2N4858 } \\ & \text { U401 } \\ & \text { U401 } \\ & \text { U402 } \end{aligned}$
$\begin{aligned} & 5033 \mathrm{TP} \\ & 588 \mathrm{U} \\ & 58 \mathrm{~T} \\ & 59 \mathrm{~T} \\ & 703 \mathrm{U} \\ & \hline \end{aligned}$	2N5460 2N4416 2N5457 2N4416 2N4220	$\begin{aligned} & \text { AD7521UD } \\ & \text { AD7523AD } \\ & \text { AD7523BD } \\ & \text { AD7523CD } \\ & \text { AD7523JN } \end{aligned}$	AD7521UD AD7523AD AD7523BD AD7523CD AD7523JN	$\begin{aligned} & \text { AHO144D/883 } \\ & \text { AHO145CD } \\ & \text { AHO145D } \\ & \text { AHO145D/883 } \\ & \text { AH0146CD } \end{aligned}$	$\begin{aligned} & \text { DG144AK/883B } \\ & \text { DG145BK } \\ & \text { DG145AK } \\ & \text { DG145AK/883B } \\ & \text { DG145BK } \end{aligned}$	$\begin{aligned} & \text { BFQ13 } \\ & \text { BFQ14 } \\ & \text { BFQ15 } \\ & \text { BFQ16 } \\ & \text { BFQ23 } \\ & \hline \end{aligned}$	$\begin{aligned} & \cup 403 \\ & U 404 \\ & \text { U405 } \\ & \text { U406 } \\ & \text { IT5912 } \end{aligned}$
$\begin{aligned} & 704 \mathrm{U} \\ & 705 \mathrm{U} \\ & 707 \mathrm{U} \\ & 714 \mathrm{U} \\ & 734 \mathrm{E} \end{aligned}$	2N4220 2N4224 2N4860 2N3822 2N4416	AD7523KN AD7523LN AD7523SD AD7523TD AD7523UD	$\begin{aligned} & \text { AD7523KN } \\ & \text { AD7523LN } \\ & \text { AD7523SD } \\ & \text { AD7523TD } \\ & \text { AD7523UD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AHO146D } \\ & \text { AHO146D/883 } \\ & \text { AHO151CD } \\ & \text { AHO151D/883 } \\ & \text { AH0152CD } \end{aligned}$	$\begin{aligned} & \text { DG146AK } \\ & \text { DGG146AK/883B } \\ & \text { DG151BK } \\ & \text { DG151AK/883B } \\ & \text { DG152BK } \end{aligned}$	$\begin{aligned} & \text { BFQ26 } \\ & \text { BFQ44 } \\ & \text { BFQ45 } \\ & \text { BFQ49A } \\ & \text { BFQ49B } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { U403 } \\ & \text { 1T5912 } \\ & \text { 1T5912 } \\ & \text { 2N3055 } \\ & \text { 2N3958 } \\ & \hline \end{aligned}$
$\begin{aligned} & 734 U \\ & 751 U \\ & 752 U \\ & 753 U \\ & 754 U \\ & \hline \end{aligned}$	2N5516 2N4340 2N4340 2N4341 2N4340	AD7530JD AD7530JN AD7530KD AD7530KN AD7530LD	AD7530JD AD7530JN AD7530KD AD7530KN AD7530LD	$\begin{aligned} & \text { AHO152D } \\ & \text { AHO152D/883 } \\ & \text { AHO153CD } \\ & \text { AHO153D } \\ & \text { AHO153D/883 } \end{aligned}$	DG152AK DG152AK/883B DG153BK DG153AK DG153AK/883B	$\begin{aligned} & \text { BFQ49C } \\ & \text { BFS21 } \\ & \text { BFS21A } \\ & \text { BFS67 } \\ & \text { BFS67P } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3958 } \\ & \text { 2N5199 } \\ & \text { 2N5199 } \\ & \text { 2N3821 } \\ & \text { 2N5459 } \end{aligned}$
$755 U$ 756 U A190 A191 A192	2N4341 2N4340 ITE4416 ITE4416 2N4416	AD7530LN AD7531JD AD7531 JN AD7531KD AD7531 KN	$\begin{aligned} & \text { AD7530LN } \\ & \text { AD7531 } \\ & \text { AD7531 } \\ & \text { AD7531 } \\ & \text { ADD } \\ & \text { AD531 KN } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AHO154CD } \\ & \text { AHO154D } \\ & \text { AHO154D/883 } \\ & \text { AHO155D } \\ & \text { AH0161CD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG154BK } \\ & \text { DG154AK } \\ & \text { DG143AK/883B } \\ & \text { DG151AK } \\ & \text { DG161BK } \end{aligned}$	BFS68 BFS68P BFS70 BFS71 BFS72	$\begin{aligned} & \text { 2N3823 } \\ & \text { 2N4416 } \\ & \text { 2N3821 } \\ & \text { 2N3822 } \\ & \text { 2N3823 } \\ & \hline \end{aligned}$
A193 A194 A195 A196 A197	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N5484 } \\ & \text { 2N5484 } \\ & \text { ITE4416 } \\ & \text { ITE4391 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD7531LD } \\ & \text { AD7531LN } \\ & \text { AD7533AD } \\ & \text { AD7533BD } \\ & \text { AD7533CD } \end{aligned}$	$\begin{aligned} & \text { AD7531LD } \\ & \text { AD7531LN } \\ & \text { AD7533AD } \\ & \text { AD7533BD } \\ & \text { AD7533CD } \end{aligned}$	$\begin{aligned} & \text { AHO161D } \\ & \text { AHO161D/883 } \\ & \text { AH0162CD } \\ & \text { AH0162D } \\ & \text { AHO162D/883B } \\ & \hline \end{aligned}$	DG161AK DG161AK/883B DG162BK DG162AK DG162AK/883B	BFS73 BFS74 BFS75 BFS76 BFS77	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N4856 } \\ & \text { 2N4857 } \\ & \text { 2N4858 } \\ & \text { 2N4859 } \end{aligned}$
A198 A199 A5T3821 A5T3822 A5T3823	$\begin{aligned} & \text { ITE4392 } \\ & \text { ITE4393 } \\ & \text { 2N5484 } \\ & \text { 2N5484 } \\ & \text { 2N4416 } \end{aligned}$	AD7533JN AD7533KN AD7533LN AD7533SD AD7533TD	AD7533JN AD7533KN AD7533LN AD7533SD AD7533TD	$\begin{aligned} & \text { AHO163CD } \\ & \text { AHO163D } \\ & \text { AHO163D/883 } \\ & \text { AHO164CD } \\ & \text { AHO164D } \end{aligned}$	$\begin{aligned} & \text { DG163BK } \\ & \text { DG163AK } \\ & \text { DG163AK/883B } \\ & \text { DG164BK } \\ & \text { DG164AK } \end{aligned}$	$\begin{aligned} & \text { BFS78 } \\ & \text { BFS79 } \\ & \text { BFS80 } \\ & \text { BFT10 } \\ & \text { BFT11 } \end{aligned}$	$\begin{aligned} & \text { 2N4860 } \\ & \text { 2N4861 } \\ & \text { 2N4416A } \\ & \text { 2N5397 } \\ & \text { 2N5019 } \end{aligned}$
A5T3824 A5T5460 A5T5461 A5T5462 AD108	$\begin{aligned} & \text { 2N4341 } \\ & \text { 2N5460 } \\ & \text { 2N5461 } \\ & \text { 2N5462 } \\ & \text { LM108 } \\ & \hline \end{aligned}$	AD7533UD AD7541AD AD7541BD AD7541 AD7541 KN	$\begin{aligned} & \text { AD7533UD } \\ & \text { AD7541AD } \\ & \text { AD75418D } \\ & \text { AD7541 JN } \\ & \text { AD7541 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AHO164D/883 } \\ & \text { AH5009CN } \\ & \text { AH5010CN } \\ & \text { AH5012CN } \\ & \text { AH5013CN } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG164AK/883B } \\ & \text { 1H5009CPD } \\ & \text { 1H5010CPD } \\ & \text { IH5012CPE } \\ & \text { IH5013CPD } \\ & \hline \end{aligned}$	BFW10 BFW11 BFW12 BFW13 BFW39	$\begin{aligned} & \text { 2N3823 } \\ & \text { 2N3822 } \\ & \text { 2N4416 } \\ & \text { 2N4867 } \\ & \text { 1T129 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { AD308 } \\ & \text { AD3954 } \\ & \text { AD3954A } \\ & \text { AD3955 } \\ & \text { AD3956 } \end{aligned}$	$\begin{aligned} & \text { LM308 } \\ & \text { 2N3954 } \\ & \text { 2N3954A } \\ & \text { 2N3955 } \\ & \text { 2N3956 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD7541SD } \\ & \text { AD7541TD } \\ & \text { AD810 } \\ & \text { AD811 } \\ & \text { AD812 } \end{aligned}$	$\begin{aligned} & \text { AD7541SD } \\ & \text { AD7541TD } \\ & \text { 2N4878 } \\ & \text { 2N4878 } \\ & \text { 2N4878 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AH5014CN } \\ & \text { AH5015CN } \\ & \text { AH5016CN } \\ & \text { AM5011CN } \\ & \text { BC264 } \end{aligned}$	IH5014CPD IH5015CPE IH5016CPE IH5011CPE 2N5458	BFW39A BFW54 BFW55 BFW56 BFW61	$\begin{aligned} & \text { IT120 } \\ & \text { 2N3822 } \\ & \text { 2N3822 } \\ & \text { 2N4860 } \\ & \text { 2N4224 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { AD3958 } \\ & \text { AD503 } \\ & \text { AD589 } \\ & \text { AD590 } \\ & \text { AD5905 } \end{aligned}$	$\begin{aligned} & \text { 2N3958 } \\ & \text { AD503 } \\ & \text { ICL8069 } \\ & \text { AD590 } \\ & \text { 2N5905 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD813 } \\ & \text { AD814 } \\ & \text { AD815 } \\ & \text { AD816 } \\ & \text { AD818 } \end{aligned}$	$\begin{aligned} & 2 N 4878 \\ & \text { IT124 } \\ & \text { T124 } \\ & \text { IT120A } \\ & \text { IT140 } \end{aligned}$	BC264A BC264B BC264C BC264D BCY87	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5458 } \\ & \text { 2N4416 } \\ & \text { IT121 } \end{aligned}$	$\begin{aligned} & \text { BFX11 } \\ & \text { BFX15 } \\ & \text { BFX36 } \\ & \text { BFX70 } \\ & \text { BFX71 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IT132 } \\ & \text { T122 } \\ & \text { T131 } \\ & \text { T122 } \\ & \text { IT122 } \\ & \hline \end{aligned}$
AD5906 AD5907 AD5908 AD5909 AD7506/COM/CHIPS	$\begin{aligned} & \text { 2N5906 } \\ & \text { 2N5907 } \\ & \text { 2N5908 } \\ & \text { 2N5909 } \\ & \text { IH6116C/D } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD820 } \\ & \text { AD821 } \\ & \text { AD823 } \\ & \text { AD830 } \\ & \text { AD831 } \\ & \hline \end{aligned}$	IT132 IT130A IT130A 2N5520 2N5521	BCY88 BCY89 BF244 BF244A BF244B	$\begin{aligned} & \text { IT122 } \\ & \text { IT122 } \\ & \text { 2N5486 } \\ & \text { 2N5484 } \\ & \text { 2N5485 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BFX72 } \\ & \text { BFX78 } \\ & \text { BFX82 } \\ & \text { BFX83 } \\ & \text { BFX99 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IT122 } \\ & \text { 2N5397 } \\ & \text { 2N5019 } \\ & \text { 2N5019 } \\ & \text { IT120A } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { AD7506/MIL/CHIPS } \\ & \text { AD7506JD } \\ & \text { AD7506JD/883B } \\ & \text { AD7506JN } \\ & \text { AD7506KD } \end{aligned}$	IH6116M/D IH6116CJI \|H6116CJI/883B IH6116CPI IH6116CJI	$\begin{aligned} & \text { AD832 } \\ & \text { AD833 } \\ & \text { AD833A } \\ & \text { AD835 } \\ & \text { AD836 } \end{aligned}$	$\begin{aligned} & \text { 2N5522 } \\ & \text { 2N5523 } \\ & \text { 2N5524 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \hline \end{aligned}$	BF244C BF245 BF245A BF245B BF245C	$\begin{aligned} & \text { 2N5486 } \\ & \text { 2N5486 } \\ & \text { 2N4416 } \\ & \text { 2N4416 } \\ & \text { 2N4416 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BFY20 } \\ & \text { BFY81 } \\ & \text { BFY82 } \\ & \text { BFY83 } \\ & \text { BFY84 } \end{aligned}$	$\begin{aligned} & \text { IT122 } \\ & \text { IT122 } \end{aligned}$
$\begin{aligned} & \text { AD7506KD/883B } \\ & \text { AD7506KN } \\ & \text { AD7506SD } \\ & \text { AD7506SD/883B } \\ & \text { AD7506TD } \end{aligned}$	$\begin{aligned} & \text { IH6116CJI/883B } \\ & \text { IH6116CPI } \\ & \text { IH6116MJI } \\ & \text { IH6116MJ/883B } \\ & \text { IH6116MJI } \end{aligned}$	$\begin{aligned} & \text { AD837 } \\ & \text { AD838 } \\ & \text { AD839 } \\ & \text { AD840 } \end{aligned}$	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \text { 2N5520 } \\ & \text { 2N5521 } \end{aligned}$	$\begin{aligned} & \text { BF246 } \\ & \text { BF246A } \\ & \text { BF246B } \\ & \text { BF246C } \\ & \text { BF247 } \end{aligned}$	$\begin{aligned} & \text { 2N5485 } \\ & \text { 2N5639 } \\ & \text { 2N5638 } \\ & \text { 2N5638 } \\ & \text { 2N4091 } \end{aligned}$	BFY85 BFY86 BFY91 BFY92 BN209	IT122 IT122 IT122 IT122 IT122
AD7506TD/883B AD7507/COM/CHIPS AD7507/MIL/CHIPS AD7507JD AD7507JD/883B	$\begin{aligned} & \text { IH6116MJI/883B } \\ & \text { IH6216C/D } \\ & \text { IH6216M/D } \\ & \text { IH6216CJI } \\ & \text { IH6216CJI/883B } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD842 } \\ & \text { AHO126CD } \\ & \text { AHO126D } \\ & \text { AHO126D/883 } \\ & \text { AHO129CD } \end{aligned}$	$\begin{aligned} & \text { 2N5523 } \\ & \text { DG126BK } \\ & \text { DG126AK } \\ & \text { DG126AK/883B } \\ & \text { DG129BK } \\ & \hline \end{aligned}$	BF247A BF247B BF247C BF256 BF256A	$\begin{aligned} & \text { 2N4091 } \\ & \text { 2N4091 } \\ & \text { 2N4091 } \\ & \text { 2N5484 } \\ & \text { 2N5484 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BSV22 } \\ & \text { BSV78 } \\ & \text { BSV79 } \\ & \text { BSV80 } \\ & \text { BSX82 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4416 } \\ & \text { 2N4856A } \\ & \text { 2N4857A } \\ & \text { 2N48588 } \\ & \text { 2N3822 } \end{aligned}$
AD7507 JN AD7507KD AD7507KD/883B AD7507KN AD7507SD	$\begin{aligned} & \text { IH6216CPI } \\ & \text { IH6216CJI } \\ & \text { IH6216CJI/883B } \\ & \text { IH6216CPI } \\ & \text { IH6216M/D } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AHO129D } \\ & \text { AHO129D/883 } \\ & \text { AHO133CD } \\ & \text { AHO133D } \\ & \text { AHO133D/883 } \end{aligned}$	$\begin{aligned} & \text { DG129AK } \\ & \text { DG129AK/883B } \\ & \text { DG133BK } \\ & \text { DG133AK } \\ & \text { DG133AK/883B } \end{aligned}$	BF256B BF256C BF320 BF320A BF320B	$\begin{aligned} & \text { 2N4416 } \\ & \text { 2N4416 } \\ & \text { 2N5461 } \\ & \text { 2N5460 } \\ & \text { 2N5461 } \end{aligned}$	C21 C2306 C38 C 413 N C610	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N5196 } \\ & \text { 2N4338 } \\ & \text { 2N5434 } \\ & \text { 2N4392 } \end{aligned}$
$\begin{aligned} & \text { AD7507SD/883B } \\ & \text { AD7507TD } \\ & \text { AD7507TD/883B } \\ & \text { AD7520JD } \\ & \text { AD7520JN } \end{aligned}$	$\begin{aligned} & \text { IH6216MJI/8838 } \\ & \text { IH6216MJI } \\ & \text { IH6216MJI/883B } \\ & \text { AD7520JJ } \\ & \text { AD7520JN } \end{aligned}$	$\begin{aligned} & \text { AHO134CD } \\ & \text { AHO134D } \\ & \text { AHO134D/883. } \\ & \text { AHO139CD } \\ & \text { AHO139D } \end{aligned}$	$\begin{aligned} & \text { DG134BK } \\ & \text { DG134AK } \\ & \text { DG134AK/883B } \\ & \text { DG139BK } \\ & \text { DG139AK } \end{aligned}$	$\begin{aligned} & \text { BF320C } \\ & \text { BF346 } \\ & \text { BF347 } \\ & \text { BF348 } \\ & \text { BF800 } \end{aligned}$	$\begin{aligned} & \text { 2N5462 } \\ & \text { ITE4392 } \\ & \text { J201 } \\ & \text { J310 } \\ & \text { 2N4867 } \end{aligned}$	C611 C612 C613 C614 C615	$\begin{aligned} & \text { 2N4221 } \\ & \text { 2N4221 } \\ & \text { 2N4221 } \\ & \text { 2N4220 } \\ & \text { 2N4221 } \end{aligned}$

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT						
$\begin{aligned} & \text { C620 } \\ & \text { C621 } \\ & \text { C622 } \\ & \text { C623 } \\ & \text { C624 } \end{aligned}$	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4220 } \end{aligned}$	$\begin{aligned} & \text { D1202 } \\ & \text { D1203 } \\ & \text { D123AL } \\ & \text { D123AP } \\ & \text { D123BP } \end{aligned}$	$\begin{aligned} & 2 N 3821 \\ & \text { 2N4220 } \\ & \text { D123AL } \\ & \text { D123AK } \\ & \text { D123BK } \end{aligned}$	DG151BP DG152AL DG152AP DG152BP DG153AL	$\begin{aligned} & \text { DG151BK } \\ & \text { DG152AL } \\ & \text { DG152AK } \\ & \text { DG152BBK } \\ & \text { DG153AL } \end{aligned}$	DG188BP DG189AL DG189AP DG189BP DG190AL	$\begin{aligned} & \text { DG188BK } \\ & \text { DG189AL } \\ & \text { DG189AK } \\ & \text { DG189BK } \\ & \text { DGM190AL } \end{aligned}$
$\begin{aligned} & \text { C625 } \\ & \text { C650 } \\ & \text { C651 } \\ & \text { C652 } \\ & \text { C653 } \end{aligned}$	2N4220 2N4220 2N4220 2N4220 2N4220	D123BP D125AL D125AP D1258P D129AL	D123BJ D125AL D125AP D125BK D129AL	DG153AP DG153BP DG154AL DG154AP DG154BP	$\begin{aligned} & \text { DG153AK } \\ & \text { DG153BK } \\ & \text { DG154AL } \\ & \text { DG154AK } \\ & \text { DG154BK } \end{aligned}$	$\begin{aligned} & \text { DG190AL } \\ & \text { DG190AP } \\ & \text { DG190AP } \\ & \text { DG190BP } \\ & \text { DG190BP } \end{aligned}$	$\begin{aligned} & \text { DG190AL } \\ & \text { DGM190AK } \\ & \text { DG190AK } \\ & \text { DGM190CJ } \\ & \text { DGM190BK } \end{aligned}$
C6690 C6691 C6692 C673 C674	$\begin{aligned} & 2 N 4341 \\ & 2 N 4341 \\ & 2 N 4339 \\ & 2 N 4341 \\ & \text { 2N4341 } \end{aligned}$	D129AP D129BP D1301 D1302 D1303	$\begin{aligned} & \text { D129AK } \\ & \text { D129BK } \\ & \text { 2N4222 } \\ & \text { 2N4220 } \\ & \text { 2N4220 } \end{aligned}$	DG161AL DG161AP DG161BP DG162AL DG162AP	DG161AL DG161AK DG161BK DG162AL DG162AK	$\begin{aligned} & \text { DG190BP } \\ & \text { DG191AL } \\ & \text { DG191AL } \\ & \text { DG191AP } \\ & \text { DG191A } \end{aligned}$	DG190BK DGM191AL DG191AL DGM191AK DG191AK
$\begin{aligned} & \text { C680 } \\ & \text { C } 580 \mathrm{~A} \\ & \text { C681 } \\ & \text { C681A } \\ & \text { C682 } \end{aligned}$	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4339 } \end{aligned}$	D1420 D1421 D1422 D2T2218 D2T2218A	$\begin{aligned} & \text { 2N4868 } \\ & \text { 2N3822 } \\ & \text { 2N4869 } \\ & \text { IT129 } \\ & \text { IT129 } \end{aligned}$	DGI62BP DG163AL DG163AP DG163BP DG164AL	$\begin{aligned} & \text { DG162BK } \\ & \text { DG163AL } \\ & \text { DG163AK } \\ & \text { DG163BK } \\ & \text { DG164AL } \end{aligned}$	$\begin{aligned} & \text { DG191BP } \\ & \text { DG191BP } \\ & \text { DG191BP } \\ & \text { DG200AA } \\ & \text { DG200AK } \end{aligned}$	DGM191CJ DGM191BK DG191BK DG200AA DG200AK
$\begin{aligned} & \text { C682A } \\ & \text { C683 } \\ & \text { C683A } \\ & \text { C684 } \\ & \text { C684A } \end{aligned}$	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { 2N4220 } \\ & \text { 2N4220 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { D2T2219 } \\ & \text { D2T2219A } \\ & \text { D2T2904 } \\ & \text { D2T2904A } \\ & \text { D2T2905 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IT129 } \\ & \text { IT129 } \\ & \text { IT139 } \\ & \text { IT139 } \\ & \text { IT139 } \end{aligned}$	DG164AP DG164BP DG180AA DG180AL DG180AP	DG164AK DG164BK DG180AA DG180AL DG180AK	$\begin{aligned} & \text { DG200AL } \\ & \text { DG200AP } \\ & \text { DG200BA } \\ & \text { DG200BK } \\ & \text { DG200BP } \end{aligned}$	$\begin{aligned} & \text { DG200AL } \\ & \text { DG200AK } \\ & \text { DG200BA } \\ & \text { DG200BK } \\ & \text { DG200BK } \end{aligned}$
C685 C685A C80 C81 C84	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4220 } \\ & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4338 } \end{aligned}$	$\begin{aligned} & \text { D2T2905A } \\ & \text { D2T918 } \\ & \text { DA102 } \\ & \text { DA402 } \\ & \text { DAC1020LCD } \end{aligned}$	$\begin{aligned} & \text { IT139 } \\ & \text { IT129 } \\ & \text { 2N5196 } \\ & \text { 2N5196 } \\ & \text { AD7520LD } \end{aligned}$	$\begin{aligned} & \text { DG180BA } \\ & \text { DG180BP } \\ & \text { DG181AA } \\ & \text { DG181AA } \\ & \text { DG181AL } \end{aligned}$	$\begin{aligned} & \text { DG180BA } \\ & \text { DG180BK } \\ & \text { DGM181AA } \\ & \text { DG181AA } \\ & \text { DGM181AL } \end{aligned}$	$\begin{aligned} & \text { DG200CJ } \\ & \text { DG201AK } \\ & \text { DG201AP } \\ & \text { DG201BK } \\ & \text { DG201CJ } \end{aligned}$	$\begin{aligned} & \text { DG200CJ } \\ & \text { DG201AK } \\ & \text { DG201AK } \\ & \text { DG201BK } \\ & \text { DG201CJ } \end{aligned}$
$\begin{aligned} & \mathrm{C} 85 \\ & \mathrm{C} 91 \\ & \mathrm{C} 92 \\ & \mathrm{C} 93 \\ & \mathrm{C} 94 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4858 } \\ & \text { 2N4091 } \\ & \text { 2N4393 } \\ & \text { 2N5457 } \end{aligned}$	DAC1020LD DAC1021LCD DAC1021LD DAC1022LCD DAC1022LD	AD7520UD AD7520kD AD7520TD AD7520JD AD7520SD	DG181AL DG181AP DG181AP DG181BA DG181BA	DG181AL DGM181AK DG181AK DGM181BA DG181BA	$\begin{aligned} & \text { DG210BP } \\ & \text { DG281AA } \\ & \text { DG281AP } \\ & \text { DG281BA } \\ & \text { DG281BP } \end{aligned}$	$\begin{aligned} & \text { DG201BK } \\ & \text { IH182MTW } \\ & \text { H182MJD } \\ & \text { IH182CTW } \\ & \text { IH182CJO } \end{aligned}$
$\begin{aligned} & \text { C94E } \\ & \text { C95 } \\ & \text { C95E } \\ & \text { C96E } \\ & \text { C97E } \end{aligned}$	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5457 } \\ & \text { 2N5459 } \\ & \text { 2N5484 } \\ & \text { 2N3822 } \end{aligned}$	DAC1218LCD DAC1218LCN DAC1218LCN DAC1219LCD DAC1219LCN	AD7541BD AD7541LN AD7541KN AD7541AD AD7541JN	$\begin{aligned} & \text { DG181BP } \\ & \text { DG181BP } \\ & \text { DG181BP } \\ & \text { DG182AA } \\ & \text { DG182AA } \end{aligned}$	DGM181CJ DGM181BK DG181BK DGM182AA DG182AA	$\begin{aligned} & \text { DG284AP } \\ & \text { DG284BP } \\ & \text { DG287AA } \\ & \text { DG287AP } \\ & \text { DG287BA } \end{aligned}$	$\begin{aligned} & \text { IH185MJJE } \\ & \text { IH185CJE } \\ & \text { IH188MTW } \\ & \text { IH188MJD } \\ & \text { IH188CTW } \end{aligned}$
$\begin{aligned} & \text { C98E } \\ & \text { CA308 } \\ & \text { CC4445 } \\ & \text { CC4446 } \\ & \text { CC697 } \end{aligned}$	$\begin{aligned} & \text { 2N3822 } \\ & \text { LM308 } \\ & \text { 2N5432 } \\ & \text { 2N5434 } \\ & \text { 2N4856 } \end{aligned}$	DAC1220LCD DAC1220LD DAC1221LCD DAC1221LD DAC1222LCD	AD7521LD AD7521UD AD7521KD AD7521TD AD7521JD	$\begin{aligned} & \text { DG182AL } \\ & \text { DG182AL } \\ & \text { DG182AP } \\ & \text { DG182AP } \\ & \text { DG182BA } \end{aligned}$	$\begin{aligned} & \text { DGM182AL } \\ & \text { DG182AL } \\ & \text { DGM182AK } \\ & \text { DG182AK } \\ & \text { DGM182BA } \end{aligned}$	$\begin{aligned} & \text { DG287BP } \\ & \text { DG290AP } \\ & \text { DG290BP } \\ & \text { DG381AA } \\ & \text { DG381AK } \end{aligned}$	IH188CJD IH191MJE IHI91CJE DGM182AA DGM182AK
$\begin{aligned} & \text { CD22001H } \\ & \text { CD22015E } \\ & \text { CF2386 } \\ & \text { CF24 } \\ & \text { CFM13026 } \end{aligned}$	$\begin{aligned} & \text { ICM1424C } \\ & \text { ICM7051A } \\ & \text { 2N5458 } \\ & \text { 2N3824 } \\ & \text { 2N4858 } \end{aligned}$	$\begin{aligned} & \text { DAC1222LD } \\ & \text { DG123AL } \\ & \text { DG123AP } \\ & \text { DG123BP } \\ & \text { DG125AL } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD7521SD } \\ & \text { DG123AL } \\ & \text { DG123AK } \\ & \text { DG123BK } \\ & \text { DG125AL } \end{aligned}$	$\begin{aligned} & \text { DG182BA } \\ & \text { DG182BP } \\ & \text { DG1828P } \\ & \text { DG182BP } \\ & \text { DG183AL } \end{aligned}$	$\begin{aligned} & \text { DG182BA } \\ & \text { DGM182CJ } \\ & \text { DGM182BK } \\ & \text { DG182BK } \\ & \text { DG183AL } \\ & \hline \end{aligned}$	DG381AP DG381BA DG381BK DG381BP DG381CJ	DGM182AK DGM181BA DGM181BK DGM1818K DGM181CJ
CM600 CM601 CM602 CM603 CM640	$\begin{aligned} & \text { 2N4092 } \\ & \text { 2N4091 } \\ & \text { 2N4091 } \\ & \text { 2N4091 } \\ & \text { 2N4093 } \end{aligned}$	$\begin{aligned} & \text { DG125AP } \\ & \text { DG125BP } \\ & \text { DG126AK } \\ & \text { DG126AL } \\ & \text { DG126BP } \end{aligned}$	$\begin{aligned} & \text { DG125AK } \\ & \text { DG125BK } \\ & \text { DG126AK } \\ & \text { DG126AL } \\ & \text { DG126BK } \end{aligned}$	DG183AP DG183BP DG184AL DG184AL DG184AP	$\begin{aligned} & \text { DG183AK } \\ & \text { DG183BK } \\ & \text { DGM184AL } \\ & \text { DG184AL } \\ & \text { DGM184AK } \end{aligned}$	$\begin{aligned} & \text { DG384AAK } \\ & \text { DG384AP } \\ & \text { DG384BK } \\ & \text { DG384BP } \\ & \text { DG384CJ } \end{aligned}$	DGM185AK DGM185AK DGM184BK DGM184BK DGM184CJ
CM641 CM642 CM643 CM644 CM645	$\begin{aligned} & \text { 2N4093 } \\ & \text { 2N4093 } \\ & \text { 2N4092 } \\ & \text { 2N4092 } \\ & \text { 2N4092 } \end{aligned}$	$\begin{aligned} & \text { DG129AL } \\ & \text { DG129AP } \\ & \text { DG129BP } \\ & \text { DG133AL } \\ & \text { DG133AP } \end{aligned}$	$\begin{aligned} & \text { DG129AL } \\ & \text { DG129AK } \\ & \text { DG129BK } \\ & \text { DG133AL } \\ & \text { DG133AK } \\ & \hline \end{aligned}$	DG184AP DG184BP DG184BP DG184BP DG185AL	DG184AK DGM184CJ DGM184BK DG184BK DGM185AL	$\begin{aligned} & \text { DG387AA } \\ & \text { DG387AK } \\ & \text { DG387AP } \\ & \text { DG387BA } \\ & \text { DG387BK } \\ & \hline \end{aligned}$	DGM188AA DGM188AK DGM188AK DGM187BA DGM1878K
CM646 CM647 CM650 CM651 CM652	$\begin{aligned} & \text { 2N4092 } \\ & \text { 2N4091 } \\ & \text { 2N5432 } \\ & \text { 2N5433 } \\ & \text { 2N5432 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG133BP } \\ & \text { DG134AL } \\ & \text { DG134AP } \\ & \text { DG134BP } \\ & \text { DG139AL } \end{aligned}$	$\begin{aligned} & \text { DG133BK } \\ & \text { DG134AL } \\ & \text { DG134AK } \\ & \text { DG134BK } \end{aligned}$	$\begin{aligned} & \text { DG185AL } \\ & \text { DG185AP } \\ & \text { DG185AP } \\ & \text { DG185BP } \\ & \text { DG185BP } \end{aligned}$	DG185AL DGM185AK DG185AK DGM185CJ DGM185BK	$\begin{aligned} & \text { DG387BP } \\ & \text { DG390AK } \\ & \text { DG390AP } \\ & \text { DG390BK } \\ & \text { DG390BP } \end{aligned}$	DGM187BK DGM191AK DGM191AK DGM1908K DGM190BK
CM653 CM697 CM800 CM856 CM860	$\begin{aligned} & \text { 2N5433 } \\ & \text { 2N4868A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG139AP } \\ & \text { DG139BP } \\ & \text { DG140AL } \\ & \text { DG140AP } \\ & \text { DG140BP } \end{aligned}$	$\begin{aligned} & \text { DG139AK } \\ & \text { DG139BK } \\ & \text { DG140AL } \\ & \text { DG140AK } \\ & \text { DG140BK } \end{aligned}$	DG185BP DG186AA DG186AL DG186AP DG186BA	DG185BK DG186AA DG186AL DG186AK DG186BA	$\begin{aligned} & \text { DG390CJ } \\ & \text { DG503 } \\ & \text { DG5040AK } \\ & \text { DG5040AL } \\ & \text { DG5040CJ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DGM190CJ } \\ & \text { AD503 } \\ & \text { IH5040MJE } \\ & \text { IH5040MFD } \\ & \text { IH5040CPE } \end{aligned}$
CM $\times 740$ CP640 CP643 CP650 CP651	$\begin{aligned} & 2 N 5432 \\ & \text { 2N4091 } \\ & \text { 2N5434 } \\ & \text { 2N5432 } \\ & \text { 2N5433 } \end{aligned}$	$\begin{aligned} & \text { DG141AL } \\ & \text { DG141AP } \\ & \text { DG141BP } \\ & \text { DG142AL } \\ & \text { DG142AP } \end{aligned}$	$\begin{aligned} & \text { DG141AL } \\ & \text { DG141AK } \\ & \text { DG141BK } \\ & \text { DG142AL } \\ & \text { DG142AK } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG186BP } \\ & \text { DG187AA } \\ & \text { DG187AA } \\ & \text { DG187AL } \\ & \text { DG187AL } \end{aligned}$	DG186BK DGM187AA DG187AA DGM187AL DG187AL	DG5040CK DG5041AA DG5041AK DG5041AL DG5041CJ	IH5040CJE IH5041MTW IH5041MJE IH5041MFD IH5041CPE
CP652 CP653 D1101 D1102 D1103	$\begin{aligned} & \text { 2N5433 } \\ & \text { 2N5433 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 2N4338 } \end{aligned}$	$\begin{aligned} & \text { DG142BP } \\ & \text { DG143AL } \\ & \text { DG143AP } \\ & \text { DG143BP } \\ & \text { DG144AL } \end{aligned}$	$\begin{aligned} & \text { DG142BK } \\ & \text { DG143AL } \\ & \text { DG143AK } \\ & \text { DG143BK } \\ & \text { DG144AL } \end{aligned}$	$\begin{aligned} & \text { DG187AP } \\ & \text { DG187AP } \\ & \text { DG187BA } \\ & \text { DG187BA } \\ & \text { DG187BP } \end{aligned}$	DGM187AK DG187AK DGM187BA DG187BA DGM187BK	$\begin{aligned} & \text { DG5041CK } \\ & \text { DG5042AA } \\ & \text { DG5042AK } \\ & \text { DG5042AL } \\ & \text { DG5042CJ } \end{aligned}$	IH5041CJE IH5042MTW IH5042MJE IH5042MFD IH5042CPE
$\begin{aligned} & \text { D1177 } \\ & \text { D1178 } \\ & \text { D1179 } \\ & \text { D1180 } \\ & \text { D1181 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 2N4338 } \\ & \text { 2N3822 } \\ & \text { 2N4338 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG144AP } \\ & \text { DG144BP } \\ & \text { DG145AL } \\ & \text { DG145AP } \\ & \text { DG145BP } \end{aligned}$	$\begin{aligned} & \text { DG144AK } \\ & \text { DG144BK } \\ & \text { DG145AL } \\ & \text { DG145AK } \\ & \text { DG145BK } \end{aligned}$	$\begin{aligned} & \text { DG187BP } \\ & \text { DG188AA } \\ & \text { DG188AA } \\ & \text { DG188AL } \\ & \text { DG188AL } \\ & \hline \end{aligned}$	DG187BK DGM188AA DG188AA DGM188AL DG188AL	$\begin{aligned} & \text { DG5042CK } \\ & \text { DG5043AK } \\ & \text { DG5043AL } \\ & \text { DG5043CJ } \\ & \text { DG5043CK } \end{aligned}$	$\begin{aligned} & \text { IH5042CJE } \\ & \text { IH5043MJE } \\ & \text { IH5043MFD } \\ & \text { IH5043CPE } \\ & \text { IH5043CJE } \end{aligned}$
D1182 D1183 D1 184 D1185 D1201	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4341 } \\ & \text { 2N4340 } \\ & \text { 2N4339 } \\ & \text { 2N4224 } \end{aligned}$	DG146AL DG146AP DG146BP DG151AL DG151AP	DG146AL DG146AK DG146BK DG151AL DG151AK	$\begin{aligned} & \text { DG188AP } \\ & \text { DG188AP } \\ & \text { DG188AP } \\ & \text { DG188BA } \\ & \text { DG188BA } \end{aligned}$	DGM188BK DGM188AK DG188AK DGM188BA DG188BA	DG5044AA DG5044AK DG5044AL DG5044CJ DG5044CK	IH5044MTW IH5044MJE IH5044MFD IH5044CPE IH5044CJE

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSBL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT
DG5045AK DG5045AL DG5045CJ DG5045CK DG506AR	IH5045M.JE IH5045MFD IH5045CPE IH5045CJE IH6116MJI	$\begin{aligned} & \text { E211 } \\ & \text { E212 } \\ & \text { E231 } \\ & \text { E232 } \end{aligned}$	$\begin{aligned} & \text { 2N5397 } \\ & \text { 2N5397 } \\ & \text { 2N4867 } \\ & \text { 2N4868 } \\ & \text { 2N4869 } \end{aligned}$	FM1111 FM1111A FM1112 FM1200 FM1201	$\begin{aligned} & \text { 2N3957 } \\ & \text { 2N5909 } \\ & \text { 2N5196 } \\ & \text { 2N3954 } \\ & \text { 2N3954 } \end{aligned}$	HI1-0200-8 H11-0201-2 HI1-0201-4 HI1-0201.5 H11-0201-8	$\begin{aligned} & \text { DG200AK/883B } \\ & \text { DG201AK } \\ & \text { DG201BK } \\ & \text { DG201BK } \\ & \text { DG201AK/883B } \end{aligned}$
$\begin{aligned} & \text { DG506BR } \\ & \text { DG506CJ } \\ & \text { DG507AR } \\ & \text { DG507BR } \\ & \text { DG507CJ } \end{aligned}$	IH6116CJI IH6116CPI IH6216MJI IH6216CJI IH6216CPI	$\begin{aligned} & \text { E270 } \\ & \text { E271 } \\ & \text { E300 } \\ & \text { E304 } \\ & \text { E305 } \end{aligned}$	$\begin{aligned} & \text { J270 } \\ & \text { J271 } \\ & \text { 2N5397 } \\ & \text { 2N5486 } \\ & \text { 2N5484 } \end{aligned}$	FM1 202 FM1203 FM1204 FM1205 FM1206	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3955A } \\ & \text { 2N3955 } \\ & \text { 2N3954 } \\ & \text { 2N3954 } \end{aligned}$	HI1-0381-2 HI1-0381-5 HI1-0381-8 HI1-0384-2 H11-0384-5	$\begin{aligned} & \text { DGM182AK } \\ & \text { DGM181BK } \\ & \text { DGM182AK/883B } \\ & \text { DGM185AK } \\ & \text { DGM184BK } \end{aligned}$
$\begin{aligned} & \text { DG508AP } \\ & \text { DG508BP } \\ & \text { DG508CJ } \\ & \text { DG509AP } \\ & \text { DG509BP } \end{aligned}$	IH6108MJE IH6108CJE IH6108CPE IH5208MJE IH6208CJE	$\begin{aligned} & \text { E308 } \\ & \text { E309 } \\ & \text { E310 } \\ & \text { E311 } \end{aligned}$	$\begin{aligned} & J 308 \\ & J 309 \\ & J 310 \\ & \text { J310 } \\ & \text { 2N5397 } \\ & \hline \end{aligned}$	FM1207 FM1208 FM1209 FM1210 FM1211	$\begin{aligned} & \text { 2N3954 } \\ & 2 N 3955 \mathrm{~A} \\ & \text { 2N3955 } \\ & \text { 2N3955A } \\ & \text { IT5911 } \\ & \hline \end{aligned}$	HII -0384-8 HII 0387-2 HI1-0387-5 HI1-0387-8 HI1-0390-2	DGM185AK/883B DGM188AK DGM187BK DGM188AK/883B DGM191AK
DG509CJ DGM111AL DGM111AP DGM111BP DN3066A	$\begin{aligned} & \text { IH6208CPE } \\ & \text { DG111AL } \\ & \text { DG111AK } \\ & \text { DG111BK } \\ & 2 N 3821 \end{aligned}$	$\begin{aligned} & \text { E400 } \\ & \text { E401 } \\ & \text { E402 } \\ & \text { E410 } \\ & \text { E411 } \end{aligned}$	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N3955 } \\ & \text { 2N3957 } \\ & \text { 2N3955 } \\ & \text { 1T5911 } \\ & \hline \end{aligned}$	FM3954 FM3954A FM3955 FM3955A FM3956	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3954A. } \\ & \text { 2N3955 } \\ & \text { 2N3955A } \\ & \text { 2N3956 } \end{aligned}$	HI1-0390-5 HII-0390-8 HI1-0506-2 HII-0506-5 HI1-0506-8	DGM190BK DGM191AK/883B IH6116MJI IH6116CJI IH6116MJI/883B
DN3067A DN3068A DN3069A DN3070A ON3071A	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N3822 } \\ & \text { 2N3821 } \\ & \text { 2N4338 } \end{aligned}$	$\begin{aligned} & \text { E412 } \\ & \text { E413 } \\ & \text { E414 } \\ & \text { E415 } \\ & \text { E420 } \end{aligned}$	$\begin{aligned} & \text { IT5911 } \\ & 2 N 5454 \\ & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \text { IT5911 } \end{aligned}$	FM3957 FM3958 FP4339 FP4340 FT0654A	$\begin{aligned} & \text { 2N3957 } \\ & \text { TT5911 } \\ & \text { 2N4339 } \\ & \text { 2N4340 } \\ & \text { 2N5486 } \end{aligned}$	HI1-0506A-2 HI1-0506A-5 HII-0506A-8 H 11 -0507-2 HI1-0507-5	$\begin{aligned} & \text { IH5116MJI } \\ & \text { IH5116IJI } \\ & \text { H5116MJ/883B } \\ & \text { IH6216MJI } \\ & \text { IH6216CJI } \end{aligned}$
DN3365A DN3365B DN3366A DN3366B DN3367A	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4091 } \\ & \text { 2N3686 } \\ & \text { 2N4091 } \\ & \text { 2N3687 } \end{aligned}$	E421 E430 E431 ESM25 ESM25A	$\begin{aligned} & \text { IT5912 } \\ & \text { J309 (X2) } \\ & \text { J310(X2) } \\ & \text { U401 } \\ & \text { U401 } \end{aligned}$	FT0654B FT0654C FT0654D FT3820 FT3820	$\begin{aligned} & \text { 2N5486 } \\ & \text { 2N4221 } \\ & \text { 2N4221 } \\ & \text { 2N5460 } \\ & \text { 2N5019 } \end{aligned}$	HI1-0507.8 HI1-0507A-2 HII-0507A-5 H11-0507A-8 HI1-0508-2	$\begin{aligned} & \text { H6216MJI/883B } \\ & \text { IH5216MJI } \\ & \text { IH5216IJI } \\ & \text { IH5216MJ/883B } \\ & \text { H6108MJE } \end{aligned}$
DN3367B DN3368A DN3368B DN3369A DN3369B	$\begin{aligned} & \text { 2N4091 } \\ & \text { 2N4341 } \\ & \text { 2N4221 } \\ & \text { 2N4339 } \\ & \text { 2N4220 } \end{aligned}$	ESM4091 ESM4092 ESM4093 ESM4302 ESM4303	$\begin{aligned} & \text { 2N4091 } \\ & \text { 2N4092 } \\ & \text { 2N4093 } \\ & \text { 2N5457 } \\ & \text { 2N5459 } \end{aligned}$	FT3909 FT703 FT704 G115AP G115BP	$\begin{aligned} & \text { 2N5019 } \\ & \text { 3N161 } \\ & \text { 3N163 } \\ & \text { G115AK } \\ & \text { G115BK } \end{aligned}$	H11-0508-5 HI1-0508-8 H 11 -0508A-2 H11-0508A-5 HI 1-0508A-8	$\begin{aligned} & \text { IH6108CJE } \\ & \text { IH6108MJE/883B } \\ & \text { IH5108MJE } \\ & \text { IH5108IJE } \\ & \text { IH5108MJE/883B } \end{aligned}$
DN3370A DN3370B DN3436A DN3436B DN3437A	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4341 } \\ & \text { 2N4222 } \\ & \text { 2N4340 } \end{aligned}$	ESM4304 ESM4445 ESM4446 ESM4447 ESM4448	$\begin{aligned} & \text { 2N5458 } \\ & \text { 2N5432 } \\ & \text { 2N5434 } \\ & \text { 2N5432 } \\ & \text { 2N5434 } \\ & \hline \end{aligned}$	G115BP G116AL G116AP G116BP G116BP	G115BJ G116AL G116AK G116BK G116BJ	HI1-0509-2 HI1-0509-5 H 11 -0509-8 HI1-0509A-2 H11-0509A-5	$\begin{aligned} & \text { IH6208MJE } \\ & \text { IH6208CJE } \\ & \text { IH6208MJE/883B } \\ & \text { IH5208MJE } \\ & \text { IH52081JE } \end{aligned}$
DN3437B DN3438A DN3438B DN3458A DN3458B	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4338 } \\ & \text { 2N4339 } \\ & \text { 2N4341 } \\ & \text { 2N4222 } \end{aligned}$	$\begin{aligned} & \text { FE0654A } \\ & \text { FE0654B } \\ & \text { FE100 } \\ & \text { FE100A } \\ & \text { FE102 } \end{aligned}$	$\begin{aligned} & \text { 2N4386 } \\ & \text { 2N5485 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 2N4119 } \end{aligned}$	G117AL G118AL G118AP G119AL G123AL	G117AL G118AL G118AK G119AL G123AL	HI1-0509A-8 HI1-5040-2 HI1-5040-5 HI1-5040-8 HI1-5041-2	$\begin{aligned} & \text { IH5208MJE/883B } \\ & \text { IH5040MJE } \\ & \text { IH5040CJE } \\ & \text { IH5040MJE/883B } \\ & \text { IH5041 MJE } \end{aligned}$
DN3459A DN3459B DN3460A DN3460B DNXI	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N4220 } \\ & \text { 2N4338 } \\ & \text { 2N4220 } \\ & \text { 2N4338 } \\ & \hline \end{aligned}$	FE102A FE104 FE104A FE1600 FE200	$\begin{aligned} & \text { 2N4119 } \\ & \text { 2N4118 } \\ & \text { 2N4118 } \\ & \text { 2N4092 } \\ & \text { 2N3821 } \end{aligned}$	G123AP GET5457 GET5458 GET5459 HA.2720	$\begin{aligned} & \text { G123AK } \\ & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \text { ICL8021 } \\ & \hline \end{aligned}$	HI1-5041-5 HI1-5041-8 HI1-5042-2 HI1-5042-5 HI1-5042-8	$\begin{aligned} & \text { IH5041CJE } \\ & \text { IH5041 MJE/883B } \\ & \text { IH5042MJE } \\ & \text { IH5042CJE } \\ & \text { IH5142MJE/883B } \end{aligned}$
DNX2 DNX3 DNX4 DNX5 DNX6	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4869 } \\ & \text { 2N4868 } \\ & \text { 2N4338 } \\ & \hline \end{aligned}$	FE202 FE204 FE300 FE302 FE304	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 2N3822 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \hline \end{aligned}$	HA7807 HA7809 HD43871 HD43871 HDIG1030	IT132 IT132 ICM7050H ICM7050G 3N163	HI1-5043-2 HI1-5043-5 HI1-5043-8 HII-5044-2 HI1-5044-5	IH5143MJE IH5143CJE IH5143MJE/883B IH5144MJE IH5144CJE
DNX7 DNX8 DNX9 DSOO26 DU4339	$\begin{aligned} & \text { 2N4416 } \\ & \text { 2N4416 } \\ & \text { 2N4339 } \\ & \text { 1CL.7667 } \\ & \text { 2N5397 } \end{aligned}$	FE3819 FE4302 FE4303 FE4304 FE5245	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N5457 } \\ & \text { 2N5459 } \\ & \text { 2N5458 } \\ & \text { 2N4416 } \end{aligned}$	HEP801 HEP802 HEP803 HEPFOO21 HEPF 1035	$\begin{aligned} & \text { 2N3822 } \\ & \text { 2N5484 } \\ & 2 N 5019 \\ & 2 N 5484 \\ & \text { N176 } \\ & \hline \end{aligned}$	HI1-5044-8 HI1-5045-2 HI1-5045-5 HII-5045-8 H11,5046-2	IH5144MJE/883B IH5145MJE IH5145CJE IH5145MJE/883B IH5046MJE
$\begin{aligned} & \text { DU4340 } \\ & \text { E100 } \\ & \text { E101 } \\ & \text { E102 } \\ & \text { E103 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5398 } \\ & \text { 2N5458 } \\ & \text { J204 } \\ & \text { 2N5457 } \\ & \text { 2N5459 } \\ & \hline \end{aligned}$	FE5246 FE5247 FE5457 FE5458 FE5459	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N5486 } \\ & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \hline \end{aligned}$	HEPF2004 HEPF2005 HIO-0201-6 HIO-0381-6 HIO-0384-6	$\begin{aligned} & 2 N 5484 \\ & \text { 2N5459 } \\ & \text { DG201C/D } \\ & \text { DGM181C/D } \\ & \text { DGM184C/D } \end{aligned}$	HI1-5046. 5 H11-5046-8 HI1-5047-2 HI1-5047-5 HI1-5047-8	$\begin{aligned} & \text { IH5046CJE } \\ & \text { IH5046MJE/883B } \\ & \text { IH5047MJE } \\ & \text { IH5047CJE } \\ & \text { IH5047MJE/883B } \end{aligned}$
$\begin{aligned} & \text { E105 } \\ & \text { E106 } \\ & \text { E107 } \\ & \text { E108 } \\ & \text { E109 } \end{aligned}$	$\begin{aligned} & \mathrm{J} 105 \\ & \mathrm{~J} 106 \\ & \mathrm{~J} 107 \\ & \mathrm{~J} 105 \\ & \mathrm{~J} 106 \end{aligned}$	FE5484 FE5485 FE5486 FF400 FM1 100	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N5485 } \\ & \text { 2N5486 } \\ & \text { 2N5457 } \\ & \text { 2N3954A } \end{aligned}$	$\begin{aligned} & \text { HIO-0387-6 } \\ & \text { HIO-0390-6 } \\ & \text { HIO-0506-6 } \\ & \text { HIO-0506A-6 } \\ & \text { HIO-0507-6 } \end{aligned}$	DGM187C/D DGM190C/D 1H6116C/D 1H5116C/D 1H6216C/D	HI1-5049-2 Hil-5049-5 HI1-5049-8 HI1-5050-2 HI1-5050-5	IH5149MJE IH5149CJE IH5149MJE/883B IH5150MJE iH5150CJE
E110 Elll E1115 E111A E112	$\begin{aligned} & \mathrm{J} 107 \\ & \mathrm{~J} 111 \\ & \text { ICM1115A } \\ & \mathrm{J} 111 \\ & \mathrm{~J} 112 \\ & \hline \end{aligned}$	FM1 100A FM1 101A FM1102 FM1102A FM1103	$\begin{aligned} & \text { 2N5906 } \\ & \text { 2N5906 } \\ & \text { 2N3954 } \\ & \text { 2N5906 } \\ & \text { 2N3955 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HIO-0507A-6 } \\ & \text { HIO-0508-6 } \\ & \text { HIO-0508A-6 } \\ & \text { HIO-0509-6 } \\ & \text { HIO-0509A-6 } \end{aligned}$	IH5216C/D IH6108C/D 1H5108C/D IH6208C/D 1H5208C/D	HI1-5050-8 HI1-5051-2 HI1-5051-5 HI1-5051-8 H12-0200-2	$\begin{aligned} & \text { IH5150MJE/883B } \\ & \text { IH5151MJE } \\ & \text { IH5151CJE } \\ & \text { IH5151MJE/883B } \\ & \text { DG200AA } \end{aligned}$
E112A E113 E113A E114 E1151	$\begin{aligned} & \text { J112 } \\ & \mathrm{J} 113 \\ & \mathrm{~J} 113 \\ & \mathrm{~J} 204 \\ & \text { ICM1115B } \end{aligned}$	FM1103A FM1104 FM1 104A FM1105 FM1105A	$\begin{aligned} & \text { 2N5908 } \\ & \text { 2N3957 } \\ & \text { 2N5909 } \\ & \text { 2N3954A } \\ & \text { IT500 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HIO-5040-6 } \\ & \text { HIO-5041-6 } \\ & \text { HIO-5042-6 } \\ & \text { HIO-5043-6 } \\ & \text { HIO-5044-6 } \end{aligned}$	$\begin{aligned} & \text { IH5140C/D } \\ & \text { 1H5141C/D } \\ & \text { 1H5142C/D } \\ & \text { 1H5143C/D } \\ & \text { 1H5144C/D } \end{aligned}$	$\begin{aligned} & \mathrm{HI} 2-0200-4 \\ & \mathrm{HI} 2-0200-5 \\ & \mathrm{HH} 2-0200-8 \\ & \mathrm{HH2-0381-2} \\ & \mathrm{HI} 2-0381-5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG200BA } \\ & \text { DG200BA } \\ & \text { DG200AA/883B } \\ & \text { DGM182AA } \\ & \text { DGM181BA } \end{aligned}$
E1426 E174 E175 E176 E177	$\begin{aligned} & \text { ICM7050U } \\ & 3174 \\ & J 175 \\ & J 176 \\ & J 177 \\ & \hline \end{aligned}$	FMI 106 FM1106A FM1 107 FM1107A FM1108	$\begin{aligned} & \text { 2N3954A } \\ & \text { IT500 } \\ & \text { 2N3954 } \\ & \text { TT500 } \\ & \text { 2N3955 } \\ & \hline \end{aligned}$	HiO-5045-6 HIO-5046-6 HIO-5047-6 HIO-5049-6 HIO-5050-6	$\begin{aligned} & \text { IH5145C/D } \\ & \text { IH5046C/D } \\ & \text { IH5047C/D } \\ & \text { IH5149C/D } \\ & \text { IH5150C/D } \end{aligned}$	$\begin{aligned} & \mathrm{H} 2-0381-8 \\ & \mathrm{H} 2-0387-2 \\ & \mathrm{H} 12-0387-5 \\ & \mathrm{H} 12-0387-8 \\ & \mathrm{HI} 2-0200-5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DGM181AA/883B } \\ & \text { DGM188AA } \\ & \text { DGM187BA } \\ & \text { DGM188AA/883B } \\ & \text { DG200CJ } \end{aligned}$
E201 E202 E203 E204 E210	$\begin{aligned} & \mathrm{J} 201 \\ & \mathrm{~J} 202 \\ & \mathrm{~J} 203 \\ & \mathrm{~J} 204 \\ & \text { 2N5397 } \end{aligned}$	FM1108A FM1109 FM1109A FM1110 FM1110A	$\begin{aligned} & 1 T 502 \\ & 2 N 3957 \\ & 1 T 503 \\ & \text { 2N3955 } \\ & \text { 2N5908 } \end{aligned}$	HIO-5051-6 HI1-0200-2 HI1-0200-4 HI1-0200-5 HI1-0200-6	$\begin{aligned} & \text { IH5051C/D } \\ & \text { DG200AK } \\ & \text { DG200BK } \\ & \text { DG200BK } \\ & \text { DG200C/D } \end{aligned}$	H13-0201-5 HI3-0381-5 HI3-0384-5 H13-0390-5 HI3-0506-5	$\begin{aligned} & \text { DG201CJ } \\ & \text { DGM181CJ } \\ & \text { DGM184CJ } \\ & \text { DGM190CJ } \\ & \text { IH6116CPI } \end{aligned}$

ALTERNATE SOURCE PRODUCT	INTERSIL. EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL. EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT
$\begin{aligned} & \text { H13-0506A-5 } \\ & \text { H13-0507-5 } \\ & \text { H13-0507A-5 } \\ & \text { H13-0508-5 } \\ & \text { H13-0508A-5 } \end{aligned}$	IH5116CPI IH6216CPI IH5216CPI IH6108CPE IH5108CPE	ITC4023 ITC4024 ITC4025 ITE2453 ITE2639	$\begin{aligned} & \text { IT137 } \\ & \text { IT137 } \\ & \text { T1137 } \\ & \text { T120 } \\ & \text { IT120 } \end{aligned}$	j 109 J 109.18 1 110 J 10.18 1 11	$\begin{aligned} & J 106 \\ & J 106 \\ & J 107 \\ & \mathrm{~J} 107 \\ & \mathrm{1111} \end{aligned}$	$\begin{aligned} & J 4393 \\ & J 4416 \\ & J 4856 \\ & J 4857 \\ & J 4858 \end{aligned}$	ITE4393 ITE4416 ITE4856 ITE4857 ITE4858
$\begin{aligned} & \text { H13-0509-5 } \\ & \text { H13-0509A-5 } \\ & \text { ID100 } \\ & \text { D101 } \\ & \text { IMF3954 } \end{aligned}$	IH6208CPE IH5208CPE ID100 10101 2N3954	ITE2640 ITE2641 ITE2642 ITE2643 ITE2644	IT122 IT122 IT120 IT122 1 T122	$\begin{aligned} & J 1111-18 \\ & \text { J111A } \\ & \text { J111A-18 } \\ & \text { J112 } \\ & \text { 1112-18 } \end{aligned}$	$\begin{aligned} & \text { J111 } \\ & \text { J111 } \\ & \text { J111 } \\ & \text { J112 } \end{aligned}$	$\begin{aligned} & \text { J4859 } \\ & \text { J4860 } \\ & \text { J4861 } \\ & \text { J4867 } \\ & \text { J4867A } \end{aligned}$	ITE4859 ITE4860 ITE4861 2N4867 2N4867A
IMF3954A IMF3955 IMF3955A IMF3956 IMF3957	$\begin{aligned} & \text { 2N3954A } \\ & \text { 2N3955 } \\ & \text { 2N3955A } \\ & \text { 2N3956 } \\ & \text { 2N } 3957 \end{aligned}$	ITE2720 ITE2721 ITE2722 ITE2903 ITE2913	IT120 IT122 IT120 4 T 122 IT122	$\begin{aligned} & \text { J112A } \\ & \text { J112A-18 } \\ & \text { J113 } \\ & \text { J113-18 } \\ & \text { J113A } \end{aligned}$	$\begin{aligned} & \mathrm{J} 112 \\ & \mathrm{~J} 112 \\ & \mathrm{~J} 113 \\ & \mathrm{~J} 113 \\ & \mathrm{~J} 113 \end{aligned}$	$\begin{aligned} & \text { J4867RR } \\ & \text { J4868 } \\ & \text { J4868AA } \\ & \text { J4868RRR } \\ & \text { J4869 } \end{aligned}$	$\begin{aligned} & \text { 2N4867 } \\ & \text { 2N4868 } \\ & \text { 2N4868A } \\ & \text { 2N4868 } \\ & \text { 2N4869 } \end{aligned}$
IMF3958 IMF5911 IMF5912 IMF6485 IT100	2N3958 IMF5911 IMF5912 IMF6485 IT100	ITE2914 ITE2915 ITE2916 ITE2917 ITE2918	$\begin{aligned} & \text { IT122 } \\ & \text { TT120 } \\ & \text { IT120 } \\ & \text { IT122 } \\ & \text { IT122 } \end{aligned}$	$\begin{aligned} & \mathrm{J} 113 \mathrm{~A}-18 \\ & \mathrm{~J} 114 \\ & \mathrm{~J} 1401 \\ & \mathrm{~J} 1402 \\ & \mathrm{~J} 1403 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J113} \\ & 2 N 5555 \\ & \text { IT501 } \\ & \text { IT502 } \\ & \text { IT503 } \end{aligned}$	$\begin{aligned} & \text { J4869A } \\ & \text { J4869RR } \\ & \text { J5103 } \\ & \text { J5104 } \\ & \text { J5105 } \end{aligned}$	$\begin{aligned} & \text { 2N4869A } \\ & \text { 2N48699 } \\ & \text { 2N5484 } \\ & \text { 2N5485 } \\ & \text { 2N5486 } \end{aligned}$
IT101 IT108 iT109 IT120 IT120A	IT101 ITE4416 ITE4416 IT120 IT120A	ITE2919 ITE2920 ITE2936 ITE2937 ITE2972	IT120 IT120 $1 T 120$ IT120 IT122	$\begin{aligned} & \mathrm{J} 1404 \\ & \mathrm{~J} 1405 \\ & \mathrm{~J} 1406 \\ & \mathrm{~J} 174 \\ & \mathrm{~J} 174-18 \end{aligned}$	$\begin{aligned} & 1 T 503 \\ & 1 T 504 \\ & 1 T 505 \\ & J 174 \\ & J 174 \end{aligned}$	$\begin{aligned} & \text { J5163 } \\ & \text { K114-18 } \\ & \text { K210-18 } \\ & \text { K211-18 } \\ & \text { K212-18 } \end{aligned}$	$\begin{aligned} & \text { 2N5486 } \\ & \text { 2N5555 } \\ & \text { 2N5397 } \\ & \text { 2N5397 } \\ & \text { 2N5397 } \end{aligned}$
$\begin{aligned} & \text { IT121 } \\ & \text { TT122 } \\ & \text { TT124 } \\ & \text { T126 } \\ & \text { TT127 } \\ & \hline \end{aligned}$	IT121 IT122 IT124 IT126 IT127	ITE2973 ITE2974 ITE2975 ITE2976 ITE2977	IT122 IT120 IT120 IT120 IT120	$\mathrm{J175}$ $\mathrm{~J} 175-18$ 1 76 $\mathrm{~J} 76-18$ J 77	$\begin{aligned} & J 175 \\ & J 175 \\ & J 176 \\ & J 176 \\ & J 177 \\ & \hline \end{aligned}$	$\begin{aligned} & K 300-18 \\ & \text { K304-18 } \\ & K 305-18 \\ & \text { K308-18 } \\ & \text { K309-18 } \end{aligned}$	$\begin{aligned} & \text { 2N5397 } \\ & \text { 2N5486 } \\ & \text { 2N5484 } \\ & \text { J308 } \\ & J 309 \\ & \hline \end{aligned}$
IT128 IT129 IT130 IT130A 17131	$\begin{aligned} & \text { TT128 } \\ & \text { TT129 } \\ & \text { TT130 } \\ & \text { IT130A } \\ & \text { TT131 } \\ & \hline \end{aligned}$	ITE2978 ITE2979 ITE3066 ITE3067 ITE3068	$\begin{aligned} & \text { IT120 } \\ & \text { IT120 } \\ & \text { 2N3685 } \\ & \text { 2N3686 } \\ & \text { 2N3687 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 177-18 \\ & \mathrm{~J} 201 \\ & \mathrm{~J} 201-18 \\ & \mathrm{~J} 202 \\ & \mathrm{~J} 202-18 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 177 \\ & \mathrm{~J} 201 \\ & \mathrm{~J} 201 \\ & \mathrm{~J} 202 \\ & \mathrm{~J} 202 \end{aligned}$	K310-18 KE3684 KE3685 KE3686 KE3687	$\begin{aligned} & \text { J310 } \\ & \text { 2N3684 } \\ & \text { 2N3685 } \\ & \text { 2N3686 } \\ & \text { 2N3687 } \end{aligned}$
$\begin{aligned} & \text { T132 } \\ & \text { T136 } \\ & \text { T137 } \\ & \text { T1 } 138 \\ & \text { TT139 } \\ & \hline \end{aligned}$	IT132 IT136 1 T137 IT138 IT139	ITE3347 ITE3348 ITE3349 ITE. 3350 ITE3351	$\begin{aligned} & \text { IT137 } \\ & \text { IT138 } \\ & \text { IT139 } \\ & \text { T137 } \\ & \text { IT138 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 203 \\ & \mathrm{~J} 203-18 \\ & \mathrm{~J} 204 \\ & \mathrm{~J} 204-18 \\ & \mathrm{~J} 210 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 203 \\ & \mathrm{~J} 203 \\ & \mathrm{~J} 204 \\ & \mathrm{~J} 204 \\ & \text { 2N5397 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { KE3823 } \\ & \text { KE3970 } \\ & \text { KE3971 } \\ & \text { KE3972 } \\ & \text { KE4091 } \end{aligned}$	$\begin{aligned} & \text { 2N3823 } \\ & \text { ITE4391 } \\ & \text { ITE4392 } \\ & \text { ITE4393 } \\ & \text { ITE4091 } \end{aligned}$
$\begin{aligned} & \text { IT140 } \\ & \text { IT1700 } \\ & \text { IT1701 } \\ & \text { T17002 } \\ & \text { IT1750 } \end{aligned}$	$\begin{aligned} & \text { IT140 } \\ & \text { IT1700 } \\ & \text { 3N172 } \\ & \text { 3N163 } \\ & \text { TT1750 } \end{aligned}$	ITE3680 ITE3800 ITE3802 ITE3804 ITE3806	$\begin{aligned} & \text { IT120 } \\ & \text { IT132 } \\ & \text { IT132 } \\ & \text { IT130 } \\ & \text { IT132 } \end{aligned}$	$\begin{aligned} & \mathrm{J} 211 \\ & \mathrm{~J} 212 \\ & \mathrm{~J} 230 \\ & \mathrm{~J} 231 \\ & \mathrm{~J} 232 \end{aligned}$	$\begin{aligned} & \text { 2N5397 } \\ & \text { 2N5397 } \\ & \text { 2N4867 } \\ & \text { 2N4868 } \\ & \text { 2N4869 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { KE4092 } \\ & \text { KE4093 } \\ & \text { KE4220 } \\ & \text { KE4221 } \\ & \text { KE4222 } \end{aligned}$	$\begin{aligned} & \text { ITE4092 } \\ & \text { ITE4093 } \\ & \text { 2N5457 } \\ & \text { 2N5459 } \\ & \text { 2N5459 } \end{aligned}$
$\begin{aligned} & \text { IT2700 } \\ & \text { IT2701 } \\ & \text { IT400 } \\ & \text { IT500 } \\ & \text { IT500P } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3N165 } \\ & \text { 3N165 } \\ & \text { 2N4392 } \\ & \text { 1T500 } \\ & \text { IT500 } \\ & \hline \end{aligned}$	ITE3807 ITE3808 ITE3809 ITE3810 ITE3811	$\begin{aligned} & \text { IT132 } \\ & \text { IT132 } \\ & \text { IT132 } \\ & \text { IT130 } \\ & \text { IT130 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 270 \\ & \mathrm{j} 270-18 \\ & \mathrm{~J} 271 \\ & \mathrm{j} 271-18 \\ & \mathrm{~J} 300 \end{aligned}$	$\begin{aligned} & \mathrm{J} 270 \\ & \mathrm{~J} 270 \\ & \mathrm{~J} 271 \\ & \mathrm{~J} 271 \\ & \text { 2N5397 } \end{aligned}$	KE4223 KE4391 KE4392 KE4393 KE4416	$\begin{aligned} & \text { J204 } \\ & \text { ITE4391 } \\ & \text { ITE4392 } \\ & \text { ITE4393 } \\ & \text { ITE4416 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { TT501 } \\ & 1 T 501 P \\ & 1 T 502 \\ & 1 T 502 P \\ & 15503 \end{aligned}$	$\begin{aligned} & \text { IT501 } \\ & \text { IT501 } \\ & \text { 1T502 } \\ & \text { 1T502 } \\ & \text { IT503 } \end{aligned}$	iTE3907 ITE3908 ITE4017 ITE4018 ITE4019	$\begin{aligned} & \text { IT120 } \\ & \text { IT120 } \\ & \text { IT139 } \\ & \text { IT139 } \\ & \text { IT139 } \end{aligned}$	$\begin{aligned} & J 304 \\ & J 305 \\ & J 308 \\ & J 309 \\ & J 310 \end{aligned}$	$\begin{aligned} & \text { 2N5486 } \\ & \text { 2N5484 } \\ & \text { J308 } \\ & \text { J309 } \\ & \text { J310 } \end{aligned}$	KE4856 KE4857 KE4858 KE4859 KE4860	ITE4391 ITE4392 ITE4393 ITE4391 ITE4392
$\begin{aligned} & \text { TT503P } \\ & \text { TT504 } \\ & \text { 1T505 } \\ & \text { TT550 } \\ & \text { TT5911 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TT503 } \\ & \text { T504 } \\ & 1 T 505 \\ & \text { TT50 } \\ & \text { TT5911 } \end{aligned}$	ITE4020 ITE4021 ITE4022 ITE4023 ITE4024	$\begin{aligned} & \text { IT139 } \\ & \text { IT139 } \\ & \text { IT139 } \\ & \text { IT137 } \\ & \text { IT137 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { J315 } \\ & \text { J316 } \\ & \text { J317 } \\ & \text { J3970 } \\ & \text { J3971 } \end{aligned}$	$\begin{aligned} & \text { 2N5397 } \\ & \text { U309 } \\ & \text { U310 } \\ & \text { TE4391 } \\ & \text { TTE4392 } \end{aligned}$	KE4861 KE510 KE5103 KE5104 KE5105	$\begin{aligned} & \text { ITE4393 } \\ & \text { ITE4393 } \\ & \text { J204 } \\ & \text { ITE4416 } \\ & \text { ITE4416 } \end{aligned}$
1 IT5912 ITC2972 ITC2973 ITC2974 ITC2975	IT5912 IT122 $1 T 122$ IT120 IT120	ITE4025 ITE4091 ITE4092 ITE4093 ITE4117	17137 ITE4091 ITE4092 ITE4093 2N4117	$\begin{aligned} & J 3972 \\ & j 401 \\ & j 402 \\ & J 403 \\ & J 404 \\ & \hline \end{aligned}$	ITE4393 IT501 IT502 IT503 17503	KE511 KH5196 KH5197 KH5198 KH5199	$\begin{aligned} & \text { 1TE4392 } \\ & \text { 2N5196 } \\ & \text { 2N5197 } \\ & \text { 2N5198 } \\ & \text { 2N5199 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { ITC2976 } \\ & \text { ITC2977 } \\ & \text { ITC2978 } \\ & \text { ITC2979 } \\ & \text { ITC } 3347 \\ & \hline \end{aligned}$	IT120 17120 IT120 IT120 IT137	ITE4118 ITE4119 ITE4338 ITE4339 ITE4340	$\begin{aligned} & \text { 2N4118 } \\ & \text { 2N4119 } \\ & \text { 2N4338 } \\ & \text { 2N4339 } \\ & \text { 2N4340 } \\ & \hline \end{aligned}$	$\begin{aligned} & J 405 \\ & j 406 \\ & J 4091 \\ & J 4092 \\ & 34093 \end{aligned}$	IT504 IT505 ITE4091 1TE4092 ITE4093	KS5183 KS5240B01H KS5240B01J KS5240810 H KS5240B12H	ICM7269 ICM7245B ICM7245A ICM7245D ICM7245E
ITC3348 ITC3349 ITC3350 ITC3351 ITC3352	IT138 IT139 IT137 IT138 IT139	ITE4341 ITE4391 ITE4392 ITE4393 ITE4416	2N4341 ITE4391 ITE4392 iTE4393 ITE4416	$\begin{aligned} & J 410 \\ & J 411 \\ & \mathrm{~J} 412 \\ & \mathrm{~J} 420 \\ & \mathrm{~J} 421 \end{aligned}$	$\begin{aligned} & \text { IT502 } \\ & \text { T503 } \\ & \text { iT503 } \\ & \text { T5911 } \\ & 1 T 5912 \end{aligned}$	KS5240B20H KS5240U01E LDF603 LDF604 LDF605	$\begin{aligned} & \text { ICM7245F } \\ & \text { ICM7245U } \\ & \text { 2N4221 } \\ & \text { 2N4221 } \\ & \text { 2N4221 } \end{aligned}$
ITC3800 ITC3802 ITC3804 ITC3806 ITC3807	IT132 1 T132 1 T130 IT132 IT132	ITE4867 ITE4868 ITE4869 J100 $J 101$	$\begin{aligned} & \text { 2N4867 } \\ & \text { 2N4868 } \\ & \text { 2N4869 } \\ & \text { 2N5458 } \\ & \text { 2N4338 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 4220 \\ & \mathrm{~J} 4221 \\ & \mathrm{~J} 4222 \\ & \mathrm{~J} 4223 \\ & \mathrm{~J} 4224 \end{aligned}$	$\begin{aligned} & \text { J204 } \\ & \text { J202 } \\ & \text { J203 } \\ & \text { J202 } \end{aligned}$	LF11201D LF11201D/883 LF112020 LF11202D/883 LF11508D	$\begin{aligned} & \text { DG201AK } \\ & \text { DG201AK/883B } \\ & \text { IH202MJE } \\ & \text { IH202MJE/883B } \\ & \text { IH6108MJE } \end{aligned}$
$\begin{aligned} & \text { ITC3808 } \\ & \text { ITC3809 } \\ & \text { ITC3810 } \\ & \text { ITC3811 } \\ & \text { ITC4017 } \end{aligned}$	$\begin{aligned} & \text { IT132 } \\ & \text { IT132 } \\ & \text { IT130 } \\ & \text { IT130 } \\ & \text { T139 } \end{aligned}$	$\begin{aligned} & \mathrm{J} 102 \\ & \mathrm{~J} 103 \\ & \mathrm{~J} 105 \\ & \mathrm{~J} 105-18 \\ & \mathrm{~J} 106 \end{aligned}$	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5459 } \\ & \text { J105 } \\ & \text { J105 } \\ & \text { J106 } \\ & \hline \end{aligned}$	$\begin{aligned} & J 430 \\ & J 4302 \\ & J 4303 \\ & J 4304 \\ & J 431 \end{aligned}$	$\begin{aligned} & \mathrm{J} 309(\times 2) \\ & 2 N 4302 \\ & \text { 2N5459 } \\ & \text { 2N5458 } \\ & \mathrm{J} 310(\times 2) \\ & \hline \end{aligned}$	LF11508D/883 LF11509D LF11509D/883 LF13201D LF13201N	$\begin{aligned} & \text { IH6108MJE/883B } \\ & \text { 1H6208MJE } \\ & \text { lH6208MJE/883B } \\ & \text { DG201BK } \\ & \text { DG201CJ } \\ & \hline \end{aligned}$
ITC4018 ITC4019 ITC4020 ITC4021 ITC4022	IT139 IT139 IT139 IT139 17139	$\begin{aligned} & J 106-18 \\ & J 107 \\ & \mathrm{~J} 107-18 \\ & \mathrm{~J} 108 \\ & \mathrm{~J} 108-18 \end{aligned}$	$\begin{aligned} & \mathrm{J} 106 \\ & \mathrm{~J} 107 \\ & \mathrm{~J} 107 \\ & \mathrm{~J} 105 \\ & \mathrm{~J} 05 \end{aligned}$	$\begin{aligned} & J 433 \\ & J 4338 \\ & J 4339 \\ & \mathrm{j} 4391 \\ & J 4392 \end{aligned}$	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5457 } \\ & \text { 2N5457 } \\ & \text { ITE4391 } \\ & \text { ITE4392. } \end{aligned}$	LF13202D LF13508D LF13508N LF13509D LF13509N	IH2O2CJE IH6108CJE IH6108CPE IH6208CJE IH6208CPE

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT						
LH0042 LH2108 LH2308 LM105 LM108	LH0042 LH2108 LH2308 LM105 LM108	LTC1044 LTC1052 LTC7652 M103 M104	ICL7660 ICL7650 ICL7652 3N161 3N161	MD7003A MD7003B MD7004 MD7007 MD7007A	$\begin{aligned} & \text { IT132 } \\ & \text { IT132 } \\ & \text { IT129 } \\ & \text { IT129 } \\ & \text { IT129 } \end{aligned}$	MEM807A MEM814 MEM816 MEM817 MEM823	$\begin{aligned} & \text { 3N172 } \\ & \text { 3N161 } \\ & \text { 3N172 } \\ & \text { 3N172 } \\ & \text { MFE823 } \end{aligned}$
LM113 LM114 LM114A LM114AH LM114H	ICL8069 IT120 IT120A IT120A IT120.	M106 M107 M108 M113 M114	$\begin{aligned} & \text { 3N166 } \\ & \text { 3N189 } \\ & \text { 3N191 } \\ & \text { 3N161 } \\ & \text { 3N161 } \end{aligned}$	MD7007B MD708 MD708A MD708B MD8001	IT129 IT129 IT129 T129 IT120	MEM954 MEM954A MEM954B MEM955 MEM955A	3N188 3N188 3N188 3N190 3N190
LM115 LM115A LM115AH LM115H LM194	IT120 IT120A IT120A IT120 IT120A	M116 M117 M119 M163 M164	$\begin{aligned} & \text { M116 } \\ & \text { 2N4351 } \\ & \text { 3N161 } \\ & \text { 3N163 } \\ & \text { 3N164 } \end{aligned}$	MD8002 MD8003 MD918 MD918A MD918B	$\begin{aligned} & \text { IT120 } \\ & \text { IT122 } \end{aligned}$	MEM955B MF510 MF803 MF818 MFE 2000	$\begin{aligned} & \text { 3N190 } \\ & \text { 2N4092 } \\ & \text { 2N4338 } \\ & \text { 2N4858 } \\ & \text { 2N4416 } \\ & \hline \end{aligned}$
LM305 LM308 LM394 LM4250 LS3069	LM305 LM308 IT120A LM4250 2N5458	M5001 M511 M511A M517 M58434P	$\begin{aligned} & \text { ICM7269 } \\ & \text { 3N172 } \\ & \text { 3N172 } \\ & \text { 3N163 } \\ & \text { ICM7038D } \end{aligned}$	MD982 MD984 MEF103 MEF104 MEF3069	$\begin{aligned} & \text { IT139 } \\ & \text { IT139 } \\ & \text { 2N5457 } \\ & \text { 2N5459 } \\ & \text { 2N4341 } \end{aligned}$	MFE2001 MFE2004 MFE2005 MFE2006 MFE2007	$\begin{aligned} & \text { 2N4416 } \\ & \text { 2N4093 } \\ & \text { 2N4092 } \\ & \text { 2N4091 } \\ & \text { 2N4860 } \end{aligned}$
LS3070 LS3071 LS3458 LS3459 LS3460	2N5458 2N5458 J204 J204 J204	M58435P M58436-001P M58437-001P MA7807 MA7809	ICM1115B ICM7050G ICM7070 TTM TT132 T132	MEF3070 MEF3458 MEF3459 MEF3460 MEF3684	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N4341 } \\ & \text { 2N4339 } \\ & \text { 2N4338 } \\ & \text { 2N3684 } \end{aligned}$	MFE2008 MFE2009 MFE2010 MFE2011 MFE2012	$\begin{aligned} & \text { 2N4859 } \\ & \text { 2N4859 } \\ & \text { 2N4859 } \\ & \text { 2N5433 } \\ & \text { 2N5434 } \end{aligned}$
LS3684 LS3685 LS3686 LS3819	$\begin{aligned} & \text { 2N3684 } \\ & \text { 2N3685 } \\ & \text { 2N3686 } \\ & \text { 2N3687 } \\ & \text { 2N5484 } \end{aligned}$	MAT-01AH MAT-01FH MAT-01GH MAT-01H MB101	IT140 IT140 IT140 IT140 ICM7245B	MEF3685 MEF3686 MEF3687 MEF3821 MEF3822	$\begin{aligned} & \text { 2N3685 } \\ & \text { 2N3686 } \\ & \text { 2N3687 } \\ & \text { 2N3821 } \\ & \text { 2N3822 } \end{aligned}$	MFE2012 MFE2093 MFE2094 MFE2095 MFE2133	$\begin{aligned} & \text { 2N5433 } \\ & \text { 2N4338 } \\ & \text { 2N4339 } \\ & \text { 2N4340 } \\ & \text { 2N4860 } \end{aligned}$
$\begin{aligned} & \text { LS3821 } \\ & \text { LS3822 } \\ & \text { LS3823 } \\ & \text { LS3921 } \\ & \text { LS3922 } \end{aligned}$	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5458 } \\ & \text { 2N3921 } \\ & \text { 2N3922 } \\ & \hline \end{aligned}$	MB103 MB105 MB107 MB108 MB143	ICM7245E ICM7245U ICM7245D ICM7245E ICM7245A	MEF3823 MEF3954 MEF3955 MEF3956 MEF3957	$\begin{aligned} & \text { 2N3823 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \hline \end{aligned}$	MFE2912 MFE3002 MFE3003 MFE3020 MFE3021	$\begin{aligned} & \text { 2N5433 } \\ & \text { 3N170 } \\ & \text { 3N164 } \\ & \text { 3N166 } \\ & \text { 3N166 } \\ & \hline \end{aligned}$
LS3966 LS3967 LS3968 LS3969 LS4220	ITE4416 ITE4416 ITE4416 ITE4416 J204	MB144 MB510 MB511 MB512 MB513	ICM7245F ICM1115B ICM7050H ICM7050H ICM7050G	MEF3958 MEF4223 MEF4224 MEF4391 MEF4392	$\begin{aligned} & \text { 2N3958 } \\ & \text { 2N4223 } \\ & \text { 2N4224 } \\ & \text { ITE4391 } \\ & \text { ITE4392 } \end{aligned}$	MFE4007 MFE4008 MFE4009 MFE4010 MFE 4011	$\begin{aligned} & \text { 2N3686 } \\ & \text { 2N3686 } \\ & \text { 2N3685 } \\ & \text { 2N2608 } \\ & \text { 2N2608 } \end{aligned}$
$\begin{aligned} & \text { LS4221 } \\ & \text { LS4222 } \\ & \text { LS4223 } \\ & \text { LS4224 } \\ & \text { LS4338 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 202 \\ & \mathrm{~J} 203 \\ & \mathrm{~J} 202 \\ & \text { J202 } \\ & \text { 2N5457 } \end{aligned}$	M8521 MB522 MB531 MB533 MB541	ITS9068 ITS9068 ICM7050H ICM7050H ICM7052	MEF4393 MEF4416 MEF4856 MEF4857 MEF4858	$\begin{aligned} & \text { ITE4393 } \\ & \text { ITE4416 } \\ & \text { 2N4856 } \\ & \text { 2N4857 } \\ & \text { 2N4858 } \\ & \hline \end{aligned}$	MFE4012 MFE823 MHW590 MJ41 MJ6	2N2609 IT1700 AD590 ICM1424C ICM7220
LS4339 LS4340 LS4341 LS4391 LS4392	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { ITE4391 } \\ & \text { ITE4392. } \end{aligned}$	MB542 MB7B MCC14440 MCC14483 MD1120	ICM7052 ICM7245U ICM1424C ICM7210 IT122	MEF4859 MEF4860 MEF4861 MEF5103 MEF5104	$\begin{aligned} & \text { 2N4859 } \\ & \text { 2N4860 } \\ & \text { 2N4861 } \\ & \text { ITE4416 } \\ & \text { ITE4416 } \end{aligned}$	MK10 MM450H MM451H MM452D MM452F	2N4416 MM450H MM451H MM452J MM452F
LS4393 LS4416 LS4856 LS4857 LS4858	ITE4393 ITE4416 ITE4091 ITE4092 ITE4093	MD1121 MD1122 MD1123 MD1129 MD1 130	$\begin{aligned} & \text { IT122 } \\ & \text { IT122 } \\ & \text { IT139 } \\ & \text { IT129 } \\ & \text { IT139 } \end{aligned}$	MEF5105 MEF5245 MEF5246 MEF5247 MEF5248	$\begin{aligned} & \text { ITE4416 } \\ & \text { ITE4416 } \\ & \text { 2N5484 } \\ & \text { 2N5486 } \\ & \text { 2N5486 } \end{aligned}$	MM455H MM550H MM551H MM552D MM552F	MM455H MM550H MM551H MM552 J MM552F
LS4859 LS4860 LS4861 LS5103 LS5104	$\begin{aligned} & \text { ITE4091 } \\ & \text { ITE4092 } \\ & \text { TTE4093 } \\ & \text { 2N5484 } \\ & \text { 2N5485 } \end{aligned}$	MD2218 MD2218A MD2219 MD2219A MD2369	$\begin{aligned} & \text { IT129 } \\ & \text { IT129 } \end{aligned}$	MEF5284 MEF5285 MEF5286 MEF5561 MEF5562	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N5485 } \\ & \text { 2N5486 } \\ & \text { U401 } \\ & \text { U402 } \end{aligned}$	MM555H MMF1 MMF2 MMF3 MMF4	$\begin{aligned} & \text { MM555H } \\ & \text { 2N5197 } \\ & \text { 2N3921 } \\ & \text { 2N5198 } \\ & \text { 2N3922 } \\ & \hline \end{aligned}$
LS5105 LS5245 LS5246 LS5247 LS5248	$\begin{aligned} & \text { 2N5486 } \\ & \text { ITE4416 } \\ & \text { 2N5484 } \\ & \text { 2N5486 } \\ & \text { 2N5486 } \\ & \hline \end{aligned}$	MD2369A MD2369B MD2904 MD2904A MD2905	$\begin{aligned} & \text { IT129 } \\ & \text { IT122 } \\ & \text { IT139 } \\ & \text { IT139 } \\ & \text { IT139 } \end{aligned}$	MEF5563 MEM511 MEM511A MEM511C MEM517	$\begin{aligned} & \text { U403 } \\ & \text { 3N172 } \end{aligned}$	MMF5 MMF6 MMT3823 MN6091 MN6092A	$\begin{aligned} & \text { 2N5199 } \\ & \text { 2N3955A } \\ & \text { 2N3823 } \\ & \text { ICM7038B } \\ & \text { ICM7038E } \end{aligned}$
LS5358 LS5360 LS5361 LS5362	$\begin{aligned} & \mathrm{J} 204 \\ & \mathrm{~J} 204 \\ & \mathrm{~J} 202 \\ & \mathrm{~J} 202 \\ & \mathrm{~J} 203 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MD2905A } \\ & \text { MD2974 } \\ & \text { MD2975 } \\ & \text { MD2978 } \\ & \text { MD2979 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IT139 } \\ & \text { IT120 } \\ & \hline \end{aligned}$	MEM517A MEM517B MEM517C MEM550 MEM550C	$\begin{aligned} & \text { 3N172 } \\ & \text { 3N172 } \\ & \text { 3N172 } \\ & \text { 3N189 } \\ & \text { 3N189 } \\ & \hline \end{aligned}$	MN6093 MN6252 MP301 MP302 MP303	ICM7051A ICM7050G IT124 IT124 IT124
LS5363 LS5364 LS5391 LS5392 LS5393	$\begin{aligned} & \text { J203 } \\ & \text { J203 } \\ & \text { 2N4867A } \\ & \text { 2N4868A } \\ & \text { 2N4869A } \end{aligned}$	MD3008 MD3250 MD3250A MD3251 MD3251A	$\begin{aligned} & \text { IT120 } \\ & \text { TT132 } \\ & \text { IT131 } \\ & \text { IT132 } \\ & \text { IT131 } \\ & \hline \end{aligned}$	MEM550F MEM551 MEM551C MEM556 MEM556C	$\begin{aligned} & \text { 3N189 } \\ & \text { 3N190 } \\ & \text { 3N189 } \\ & \text { 3N172 } \\ & \text { 3N172 } \end{aligned}$	MP310 MP311 MP312 MP313 MP318	$\begin{aligned} & \text { 2N4045 } \\ & \text { 2N4045 } \\ & \text { 2N4044 } \\ & \text { IT124 } \\ & \text { IT120A } \end{aligned}$
$\begin{aligned} & \text { LS5394 } \\ & \text { LS5395 } \\ & \text { LS5396 } \\ & \text { LS5457 } \\ & \text { LS5458 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4869A } \\ & \text { 2N4869A } \\ & \text { 2N4869A } \\ & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \hline \end{aligned}$	MD3409 MD3410 MD3467 MD3725 MD3762	$\begin{aligned} & \text { IT129 } \\ & \text { IT129 } \\ & \text { IT139 } \\ & \text { IT129 } \\ & \text { IT139 } \\ & \hline \end{aligned}$	MEM560 MEM560C MEM561 MEM561C MEM562	$\begin{aligned} & \text { 3N161 } \\ & \text { 3N161 } \\ & \text { 3N163 } \\ & \text { 3N163 } \\ & \text { 2N4351 } \\ & \hline \end{aligned}$	MP350 MP351 MP352 MP358 MP360	IT132 IT130 IT130 IT130A IT132
LS5459 LS5484 LS5485 LS5486 LS5556	$\begin{aligned} & \text { 2N5459 } \\ & \text { 2N5484 } \\ & \text { 2N5485 } \\ & \text { 2N5486 } \\ & \text { 2N3685 } \end{aligned}$	MD4957 MD5000 MD5000A MD5000B MD7000	$\begin{aligned} & \text { IT132 } \\ & \text { IT129 } \\ & \hline \end{aligned}$	MEM562C MEM563 MEM563C MEM711 MEM712	$\begin{aligned} & 2 \mathrm{~N} 4351 \\ & 2 \mathrm{~N} 4351 \\ & \text { 2N4351 } \\ & \text { M116 } \\ & \text { M116 } \end{aligned}$	MP361 MP362 MP3954 MP3954A MP3955	$\begin{aligned} & \text { IT130A } \\ & \text { IT130A } \\ & \text { 2N3954 } \\ & \text { 2N3954A } \\ & \text { 2N3955 } \\ & \hline \end{aligned}$
LS5557 LS5558 LS5638 LS5639 LS5640	$\begin{aligned} & \text { 2N3684 } \\ & \text { 2N3684 } \\ & \text { 2N5638 } \\ & \text { 2N5639 } \\ & \text { 2N5640 } \end{aligned}$	MD7001 MD7002 MD7002A MD7002B MD7003	IT139 IT122 IT122 IT122 IT132	MEM712A MEM713 MEM806 MEM806A MEM807	M116 3N170 3N163 3N163 3N172	MP3956 MP3957 MP3958 MP5905 MP5906	$\begin{aligned} & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \text { 2N3958 } \\ & \text { 2N5905 } \\ & \text { 2N5906 } \end{aligned}$

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT						
MP5907 MP5908 MP5909 MP5911 MP5912	2N5907 2N5908 2N5909 2N5911 2N5912	NF4303 NF4304 NF4445 NF4446 NF4447	$\begin{aligned} & \text { 2N5459 } \\ & \text { 2N5458 } \\ & \text { 2N5432 } \\ & \text { 2N5433 } \\ & \text { 2N5433 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PF511 } \\ & \text { PF5301 } \\ & \text { PF5301-1 } \\ & \text { PF5301-2 } \\ & \text { PF5301-3 } \end{aligned}$	$\begin{aligned} & \text { 2N51144 } \\ & \text { 2N4118A } \\ & \text { 2N4117A } \\ & \text { 2N41188 } \\ & \text { 2N41188A } \end{aligned}$	SG305 SG308 SG4250 SG733 S17135CPI	LM305 LM308 LM4250 UA733 ICL7135CPI
MP7520JD MP7520JN MP7520KD MP7520KN MP75201 D	AD7520JD AD7520JN AD7520KD AD7520KN AD7520LD	NF4448 NF500 NF501 NF506 NF5101	$\begin{aligned} & \text { 2N5433 } \\ & \text { 2N4224 } \\ & \text { 2N4224 } \\ & \text { 2N4416 } \\ & \text { 2N4867 } \end{aligned}$	PL1091 PL1092 PL1093 PL1094 PM308	$\begin{aligned} & \text { 2N3823 } \\ & \text { LM308 } \end{aligned}$	SI7660 SI7661 SJM181BCC SJM181BIC SJM182BCC	ICL7660 ICL.7662 JM38510/11101BCC JM38510/11101BIC JM38510/11102BCC
MP7520LN MP7520SD MP7520TD MP7520UD MP7521JD	AD7520LN AD7520SD AD7520TD AD7520UD AD7521JD	NF5102 NF5103 NF511 NF5163 NF520	2N4867 2N4867 2N4860 2N4341 2N3684	PN3684 PN3685 PN3686 PN3687 PN4091	$\begin{aligned} & \text { 2N3684 } \\ & \text { 2N3685 } \\ & \text { 2N3686 } \\ & \text { 2N3687 } \\ & \text { ITE4091 } \end{aligned}$	SJM182BIC SJM184BEC SJM185BEC SJM187BCC SJM187BIC	JM38510/11102BIC JM38510/111038EC JM38510/11104BEC JM38510/11105BCC JM38510/11105BIC
MP7521JN MP7521KD MP7521KN MP7521LD MP7521LN	$\begin{aligned} & \text { AD7521 } \mathrm{NN} \\ & \text { AD7521 } \\ & \text { AD7521kN } \\ & \text { AD7521LD } \\ & \text { AD7521LN } \end{aligned}$	NF521 NF522 NF523 NF530 NF5301	$\begin{aligned} & \text { 2N3685 } \\ & \text { 2N3686 } \\ & \text { 2N3865 } \\ & \text { 2N4341 } \\ & \text { 2N4118A } \end{aligned}$	$\begin{aligned} & \text { PN4092 } \\ & \text { PN4093 } \\ & \text { PN4220 } \\ & \text { PN4221 } \\ & \text { PN4222 } \end{aligned}$	$\begin{aligned} & \text { ITE4092 } \\ & \text { ITE4093 } \\ & \text { J204 } \\ & \text { J202 } \\ & \text { J203 } \end{aligned}$	$\begin{aligned} & \text { SJM188BCC } \\ & \text { SJM188BIC } \\ & \text { SJM190BEC } \\ & \text { SJM191BEC } \\ & \text { SL301AT } \end{aligned}$	JM38510/11106BCC JM38510/11106BIC JM38510/11107BEC JM38510/11108BEC IT129
MP7521SD MP7521TD MP7521UD MP7523JN MP7523KN	$\begin{aligned} & \text { AD7521SD } \\ & \text { AD7521TD } \\ & \text { AD7521UD } \\ & \text { AD7523JN } \\ & \text { AD7523KN } \end{aligned}$	NF5301-1 NF5301-2 NF5301-3 NF531 NF532	$\begin{aligned} & \text { 2N4117A } \\ & \text { 2N4118A } \\ & \text { 2N4118A } \\ & \text { 2N4339 } \\ & \text { 2N4341 } \\ & \hline \end{aligned}$	PN4223 PN4224 PN4342 PN4360 PN4391	$\begin{aligned} & \mathrm{J} 204 \\ & \mathrm{~J} 202 \\ & \text { 2N5461 } \\ & \text { 2N5460 } \\ & \text { ITE4391 } \\ & \hline \end{aligned}$	SL301BT SL301CT SL301ET SL360C SL362C	$\begin{aligned} & \text { IT129 } \\ & \hline \end{aligned}$
MP7523LN MP7621AD MP7621BD MP7621JN MP7621KN	AD7523LN AD7541AD AD7541BD AD7541 JN AD7541 KN	NF533 NF5457 NF5458 NF5459 NF5484	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \text { 2N5484 } \end{aligned}$	PN4392 PN4416 PN4856 PN4857 PN4858	$\begin{aligned} & \text { ITE4392 } \\ & \text { ITE4416 } \\ & \text { 2N4856 } \\ & \text { 2N4857 } \\ & \text { 2N4858 } \end{aligned}$	SM5011 SM5510 SM5530B SU2000 SU2020	ICM7050G ICM1115B ICM7070P 2N4340 2N3954
MP7621SD MP7621TD MP804 MP830 MP831	$\begin{aligned} & \text { AD7541SD } \\ & \text { AD7541TD } \\ & \text { 2N5520 } \\ & \text { 2N5520 } \\ & \text { 2N5521 } \\ & \hline \end{aligned}$	NF5485 NF5486 NF5555 NF5638 NF5639	$\begin{aligned} & \text { 2N5485 } \\ & \text { 2N5486 } \\ & \text { 2N5484 } \\ & \text { 2N5638 } \\ & \text { 2N5639 } \\ & \hline \end{aligned}$	PN4859 PN4860 PN4861 PN5033 PTC151	$\begin{aligned} & \text { 2N4859 } \\ & \text { 2N4860 } \\ & \text { 2N4861 } \\ & \text { 2N5460 } \\ & \text { 2N5484 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SU2021 } \\ & \text { SU2022 } \\ & \text { SU2023 } \\ & \text { SU2024 } \\ & \text { SU2025 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3954 } \\ & \hline \end{aligned}$
MP832 MP833 MP835 MP836 MP837	$\begin{aligned} & \text { 2N5522 } \\ & \text { 2N5523 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3955 } \end{aligned}$	NF5640 NF5653 NF5654 NF580 NF581	$\begin{aligned} & \text { 2N5640 } \\ & \text { 2N4860 } \\ & \text { 2N4861 } \\ & \text { 2N5432 } \\ & \text { 2N5432 } \end{aligned}$	$\begin{aligned} & \text { PTC152 } \\ & \text { S1424 } \\ & \text { SA2253 } \\ & \text { SA2254 } \\ & \text { SA2255 } \end{aligned}$	$\begin{aligned} & \text { 2N5485 } \\ & \text { ICM1424C } \\ & \text { IT122 } \\ & \text { IT122 } \\ & \text { IT122 } \end{aligned}$	$\begin{aligned} & \text { SU2026 } \\ & \text { SU2027 } \\ & \text { SU2028 } \\ & \text { SU2029 } \\ & \text { SU2029 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \text { 2N5197 } \\ & \text { 2N3954 } \end{aligned}$
MP838 MP839 MP840 MP841 MP842	$\begin{aligned} & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \text { 2N5520 } \\ & \text { 2N5521 } \\ & \text { 2N5523 } \\ & \hline \end{aligned}$	NF582 NF583 NF584 NF585 NF6451	2N5433 2N5434 2N5433 2N4859 U310	SA2644 SA2648 SA2710 SA2711 SA2712	$\begin{aligned} & \text { IT120 } \\ & \text { IT121 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SU2030 } \\ & \text { SU2030 } \\ & \text { SU2031 } \\ & \text { SU2031 } \\ & \text { SU2032 } \end{aligned}$	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N3954 } \\ & \text { 2N5198 } \\ & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \hline \end{aligned}$
MPF 102 MPF 103 MPF 104 MPF 105 MPF106	$\begin{aligned} & \text { 2N5486 } \\ & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \text { 2N5485 } \end{aligned}$	NF6452 NF6453 NF6454 NKT80111 NKT80112	$\begin{aligned} & \text { U310 } \\ & \text { U310 } \\ & \text { U310 } \\ & \text { 2N4220 } \\ & \text { 2N4220 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SA2713 } \\ & \text { SA2714 } \\ & \text { SA2715 } \\ & \text { SA2716 } \\ & \text { SA2717 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IT121 } \\ & \text { IT122 } \\ & \text { IT120 } \\ & \text { IT120 } \\ & \text { IT121 } \end{aligned}$	SU2033 SU2034 SU2034 SU2035 SU2035	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3954 } \\ & \hline \end{aligned}$
MPF 107 MPF108 MPF 109 MPF 111 MPF112	$\begin{aligned} & \text { 2N5486 } \\ & \text { 2N5486 } \\ & \text { 2N5484 } \\ & \text { 2N5458 } \\ & \text { 2N5458 } \end{aligned}$	NKT80113 NKT80211 NKT80212 NKT80213 NKT80214	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N4339 } \end{aligned}$	$\begin{aligned} & \text { SA2718 } \\ & \text { SA2719 } \\ & \text { SA2720 } \\ & \text { SA2721 } \\ & \text { SA2722 } \end{aligned}$	$\begin{aligned} & \text { IT122 } \\ & \text { IT120 } \\ & \text { IT121 } \\ & \text { IT122 } \\ & \text { IT120 } \end{aligned}$	$\begin{aligned} & \text { SU2074 } \\ & \text { SU2075 } \\ & \text { SU2076 } \\ & \text { SU2077 } \\ & \text { SU2077 } \end{aligned}$	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3954 } \\ & \hline \end{aligned}$
MPF161 MPF208 MPF209 MPF256 MPF4391	$\begin{aligned} & \text { 2N5398 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 1TE4416 } \\ & \text { ITE4391 } \end{aligned}$	NKT80215 NKT80216 NKT80421 NKT80422 NKT80423	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { 2N4220 } \\ & \text { 2N4220 } \\ & \text { 2N4220 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SA2723 } \\ & \text { SA2724 } \\ & \text { SA2726 } \\ & \text { SA2727 } \\ & \text { SA2738 } \end{aligned}$	IT121 IT122 IT122 IT122 IT120A	$\begin{aligned} & \text { SU2078 } \\ & \text { SU2079 } \\ & \text { SU2080 } \\ & \text { SU2081 } \\ & \text { SU2098 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N3955 } \\ & \text { U404 } \\ & \text { U404 } \\ & \text { 2N5197 } \end{aligned}$
MPF4392 MPF4393 MPF820 MPF970 MPF971	ITE4392 ITE4393 $J 310$ $J 175$ $J 175$	NKT80424 NPC108 NPC211N NPC212N NPC213N	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N5484 } \\ & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \hline \end{aligned}$	SA2739 SCL54301 SCL5478 SDF1001 SDF1002	IT120 ICM1424C ICM7269 2N5432 2N5433	$\begin{aligned} & \text { SU2098A } \\ & \text { SU20988 } \\ & \text { SU2099 } \\ & \text { SU2099A } \\ & \text { SU2365 } \end{aligned}$	$\begin{aligned} & \text { 2N5197 } \\ & \text { 2N5196 } \\ & \text { 2N5197 } \\ & \text { 2N5197 } \\ & \text { 2N3954 } \end{aligned}$
MPS5010 MSM5001 MSM5011 MSM5977 MTF101	ICL8069 ICM7269 ICM1424C ICM1424C 2N5484	NPC214N NPC215N NPC216N NPD5564 NPD5565	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { IT550 } \\ & \text { IT550 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SDF1003 } \\ & \text { SDF500 } \\ & \text { SDF501 } \\ & \text { SDF502 } \\ & \text { SDF503 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5434 } \\ & \text { 2N5520 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SU2365A } \\ & \text { SU2366 } \\ & \text { SU2366A } \\ & \text { SU2367 } \\ & \text { SU2367A } \end{aligned}$	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \hline \end{aligned}$
MTF102 MTF103 MTF104 ND5700 ND5701	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N5457 } \\ & \text { 2N5459 } \\ & \text { T120A } \\ & \text { T120A } \end{aligned}$	NPD5566 NPD8301 NPD8302 NPD8303 OT3	$\begin{aligned} & \text { IT550 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3956 } \\ & \text { 2N4338 } \\ & \hline \end{aligned}$	SDF504 SDF505 SDF506 SDF507 SDF508	$\begin{aligned} & \text { 2N5520 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SU2368 } \\ & \text { SU2368A } \\ & \text { SU2369 } \\ & \text { SU2369A } \\ & \text { SU2410 } \end{aligned}$	$\begin{aligned} & \text { 2N3956 } \\ & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \text { 2N3957 } \\ & \text { 2N5907 } \end{aligned}$
ND5702 NDF9401 NDF9402 NDF9403 NDF9404	$\begin{aligned} & \text { IT120 } \\ & \text { IT500 } \\ & \text { IT501 } \\ & \text { IT502 } \\ & \text { IT503 } \end{aligned}$	$\begin{aligned} & \text { P1004 } \\ & \text { P1005 } \\ & \text { P1027 } \\ & \text { P1028 } \\ & \text { P1029 } \end{aligned}$	$\begin{aligned} & \text { 2N5116 } \\ & \text { 2N5115 } \\ & \text { 2N5267 } \\ & \text { 2N5270 } \\ & \text { 2N5270 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SDF509 } \\ & \text { SDF510 } \\ & \text { SDF512 } \\ & \text { SDF513 } \\ & \text { SDF514 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5520 } \\ & \text { 2N3954 } \end{aligned}$	$\begin{aligned} & \text { SU24111 } \\ & \text { SU2412 } \\ & \text { SU2652 } \\ & \text { SU2652M } \\ & \text { SU2653 } \end{aligned}$	$\begin{aligned} & \text { 2N5908 } \\ & 2 N 5909 \\ & \text { U401 } \\ & \text { U401 } \\ & \text { U401 } \\ & \hline \end{aligned}$
NDF9405 NDF9406 NDF9407 NDF9408 NDF9409	$\begin{aligned} & \text { IT504 } \\ & \text { 1T500 } \\ & \text { IT501 } \\ & \text { IT502 } \\ & \text { IT503 } \end{aligned}$	$\begin{aligned} & \text { P1069E } \\ & \text { P1086E } \\ & \text { P1087E } \\ & \text { P1117E } \\ & \text { P1118E } \end{aligned}$	$\begin{aligned} & \text { 2N2609 } \\ & \text { 2N5115 } \\ & \text { 2N5516 } \\ & \text { 2N5640 } \\ & \text { 2N5641 } \end{aligned}$	SDF661 SDF662 SDF663 SES3819 SFT601	IT122 IT122 IT122 2N5484 2N4338	$\begin{aligned} & \text { SU2653M } \\ & \text { SU2654 } \\ & \text { SU2654M } \\ & \text { SU2655 } \\ & \text { SU2655M } \end{aligned}$	U401 U401 U401 U402 U402
NDF9410 NE590 NE592 NF3819 NF4302	$\begin{aligned} & \text { IT504 } \\ & \text { AD590 } \\ & \text { NE592 } \\ & \text { 2N5484 } \\ & \text { 2N5457 } \end{aligned}$	P1119E PF510 PF5101 PF5102 PF5103	$\begin{aligned} & \text { 2N5640 } \\ & \text { 2N5115 } \\ & \text { 2N4867 } \\ & \text { 2N4867 } \\ & \text { 2N4867 } \end{aligned}$	SFT602 SFT603 SFT604 SG105 SG108	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { LM105 } \\ & \text { LM108 } \end{aligned}$	$\begin{aligned} & \text { SU2656 } \\ & \text { SU2656M } \\ & \text { S } \times 3819 \\ & \text { SX3820 } \\ & \text { TC8031P } \end{aligned}$	U404 U404 2N5484 2N2608 ICM7038A

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT						
$\begin{aligned} & \text { TC8032P } \\ & \text { TC8051P } \\ & \text { TC8052P } \\ & \text { TC8056PA } \\ & \text { TC8057P } \end{aligned}$	ICM7038F ICM7038B ICM7038E ICM1115B ICM7038D	TO710 TO711 TD713 TIS14 TIS25	$\begin{aligned} & \text { IT122 } \\ & \text { iT122 } \\ & \text { IT122 } \\ & \text { 2N4340 } \\ & \text { 2N3954 } \end{aligned}$	$\begin{aligned} & \text { U112 } \\ & \text { U113 } \\ & \text { U114 } \\ & \text { U1177 } \\ & \text { U1178 } \end{aligned}$	$\begin{aligned} & \text { 2N2608 } \\ & \text { 2N2608 } \\ & \text { 2N2608 } \\ & \text { 2N4220 } \\ & \text { 2N3821 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{U} 285 \\ & \mathrm{U} 290 \\ & \mathrm{U} 291 \\ & \mathrm{U} 295 \\ & \mathrm{U} 296 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5454 } \\ & \text { 2N5432 } \\ & \text { 2N5434 } \\ & \text { 2N5432 } \\ & \text { 2N5434 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { TD100 } \\ & \text { TD101 } \\ & \text { TD102 } \\ & \text { TO200 } \\ & \text { TD201 } \end{aligned}$	17129 $T 129$ $T 129$ $\$ 1129$ $\$ 1129$	TIS26 TIS27 TS34 TS4 TiS42	2N3954 2N3955 2N5486 2N4859 2N4393	U1179 U1180 Ul181 U1182 U1277	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N4221 } \\ & \text { 2N4220 } \\ & \text { 2N3821 } \\ & \text { 2N3684 } \\ & \hline \end{aligned}$	U300 U3000 U3001 U3002 U301	$\begin{aligned} & \text { 2N5114 } \\ & \text { 2N4341 } \\ & \text { 2N4339 } \\ & \text { 2N4338 } \\ & \text { 2N5115 } \end{aligned}$
$\begin{aligned} & \text { TD202 } \\ & \text { TD2219 } \\ & \text { TD224 } \\ & \text { TD225 } \\ & \text { TD226 } \\ & \hline \end{aligned}$	17129 $T 129$ $T 122$ $T 122$ $T 122$	TIS58 TS59 TS68 TIS69 TIS70	2N5484 2N5486 2N355A 2N3955A 2N3956	$U 1278$ $U 1279$ $U 1280$ $U 1281$ $U 1282$	$\begin{aligned} & \text { 2N3685 } \\ & \text { 2N3686 } \\ & \text { 2N3684 } \\ & \text { 2N3822 } \\ & \text { 2N4341 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { U3010 } \\ & \text { U3011 } \\ & \text { U3012 } \\ & \text { U304 } \\ & \text { U305 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4341 } \\ & \text { 2N4340 } \\ & \text { 2N4338 } \\ & \text { U304 } \\ & \text { U305 } \end{aligned}$
$\begin{aligned} & \text { TD227 } \\ & \text { TD228 } \\ & \text { TD229 } \\ & \text { TD230 } \\ & \text { TD231 } \end{aligned}$	$\begin{aligned} & \text { IT122 } \\ & \text { IT122 } \\ & 1 T 122 \\ & \text { IT121 } \\ & \text { IT121 } \end{aligned}$	TIS73 TIS74 TIS75 TIS88 TIS88A	ITE4391 ITE4392 ITE4393 2N4416 2N4416	U1283 U1284 U1285 U1286 U1287	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N4341 } \\ & \text { 2N4220 } \\ & \text { 2N4341 } \\ & \text { 2N4092 } \end{aligned}$	$\begin{aligned} & \text { U306 } \\ & \text { U308 } \\ & \text { U309 } \\ & \text { U311 } \end{aligned}$	$\begin{aligned} & \text { U306 } \\ & \text { U308 } \\ & \text { U309 } \\ & \text { U310 } \end{aligned}$
$\begin{aligned} & \text { TD232 } \\ & \text { TD233 } \\ & \text { TD234 } \\ & \text { TD235 } \\ & \text { TD236 } \end{aligned}$	$\begin{aligned} & \text { IT122 } \\ & \text { IT122 } \end{aligned}$	$\begin{aligned} & \text { TIXS33 } \\ & \text { TIXS35 } \\ & \text { TIXS36 } \\ & \text { TIXS41 } \\ & \text { TIXS42 } \end{aligned}$	$\begin{aligned} & \text { 2N4392 } \\ & \text { 2N4857 } \\ & \text { 2N4391 } \\ & \text { 2N4859 } \\ & \text { 2N5639 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { U1321 } \\ & U 1322 \\ & U 1323 \\ & U 1324 \\ & U 1325 \end{aligned}$	$\begin{aligned} & \text { 2N4860 } \\ & \text { 2N3822 } \\ & \text { 2N3822 } \\ & \text { 2N3687 } \\ & \text { 2N3686 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { U312 } \\ & \text { U314 } \\ & \text { U315 } \\ & \text { U316 } \\ & \text { U317 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5397 } \\ & \text { 2N5555 } \\ & \text { 2N5397 } \\ & \text { U309 } \\ & \text { U310 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { TD237 } \\ & \text { TD238 } \\ & \text { TD239 } \\ & \text { TD240 } \\ & \text { TD241 } \end{aligned}$	$T 1122$ $T 1122$ $T 122$ $T 121$ $T 1121$	$\begin{aligned} & \text { TIXS59 } \\ & \text { TIXS78 } \\ & \text { TIXS79 } \\ & \text { TL182CL } \\ & \text { TL182CN } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5459 } \\ & \text { 2N4341 } \\ & \text { 2N4341 } \\ & \text { DGM182BA } \\ & \text { DGM182CJ } \end{aligned}$	U133 U1420 U1421 U1422 U146	2N2608 2N3821 2N3822 2N3822 2N2608	$\begin{aligned} & \text { U320 } \\ & \text { U321 } \\ & \text { U322 } \\ & \text { U328 } \\ & \text { U329 } \end{aligned}$	$\begin{aligned} & \text { 2N5433 } \\ & \text { 2N5434 } \\ & \text { 2N5433 } \\ & * * * \\ & * * \end{aligned}$
$\begin{aligned} & \text { TD242 } \\ & \text { TD243 } \\ & \text { TD244 } \\ & \text { TD245 } \\ & \text { TD246 } \end{aligned}$	IT120A T112A T129 T1129 T129	TL182IL TL182IN TL182ML TL185CJ TL185CN	DGM182BA DGM182CJ DGM182AA IH5045CJE IH5045CPE	$\begin{aligned} & \cup 147 \\ & U 148 \\ & \text { U149 } \\ & U 168 \\ & \text { U1714 } \end{aligned}$	$\begin{aligned} & \text { 2N2608 } \\ & \text { 2N2608 } \\ & \text { 2N2609 } \\ & \text { 2N2609 } \\ & \text { 2N4340 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { U330 } \\ & \text { U331 } \\ & \text { U350 } \\ & \text { U401 } \end{aligned}$	$\begin{gathered} * * \\ * * \\ * * \\ \text { U401 } \\ \text { U402 } \end{gathered}$
$\begin{aligned} & \text { TD247 } \\ & \text { TO248 } \\ & \text { TD250 } \\ & \text { TD2905 } \\ & \text { TD400 } \end{aligned}$	IT129 IT129 IT120A IT139 IT139	TL185IJ TLI85IN TL185MJ TL188CL TL188CN	IH5045CJE IH5045CPE IH5045MJE IH5042CTW IH5042CPE	U1715 $\cup 182$ $U 183$ $U 1837 \mathrm{E}$ U184	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N4857 } \\ & \text { 2N3824 } \\ & \text { 2N5486 } \\ & \text { 2N5397 } \\ & \hline \end{aligned}$	$\begin{aligned} & U 403 \\ & \cup 404 \\ & U 405 \\ & U 406 \\ & \cup 410 \end{aligned}$	U403 U404 U405 U406 2N3955
$\begin{aligned} & \text { TD401 } \\ & \text { TD402 } \\ & \text { TD500 } \\ & \text { TD501 } \\ & \text { TD502 } \end{aligned}$	IT139 iT139 IT139 IT139 IT139	TL188IL TL188IN TL188ML TLI91CJ TL191 CN	IH5042CTW IH5042CPE IH5042MTW IH5043CJE IH5043CPE	U1897E U1898E U1899E $\cup 197$ U198	$\begin{aligned} & \text { U1897 } \\ & \text { U1898 } \\ & \text { U1899 } \\ & \text { 2N4338 } \\ & \text { 2N4340 } \\ & \hline \end{aligned}$	U411 U412 U421 U422 U423	$\begin{aligned} & \text { 2N3956 } \\ & \text { 2N3958 } \\ & \text { 2N5908 } \\ & \text { 2N5908 } \\ & \text { 2N5909 } \end{aligned}$
$\begin{aligned} & \text { TD509 } \\ & \text { TD510 } \\ & \text { TD511 } \\ & \text { TD512 } \\ & \text { TD513 } \end{aligned}$	IT132 IT132 IT132 IT132 IT132	TL191IJ TL191IN TL191MJ TL503 TL592	IH5043CJE IH5043CPE iH5043MJE AD503 NE592	U199 U1994E U200 U201 U202	$\begin{aligned} & \text { 2N4341 } \\ & \text { 2N4416 } \\ & \text { 2N4861 } \\ & \text { 2N4860 } \\ & \text { 2N4859 } \\ & \hline \end{aligned}$	$\begin{aligned} & U 424 \\ & U 425 \\ & U 426 \\ & U 430 \\ & U 431 \end{aligned}$	$\begin{aligned} & \text { 2N5908 } \\ & 2 N 5908 \\ & 2 N 5909 \\ & \mathrm{~J} 309(\times 2) \\ & \mathrm{J} 310(\times 2) \\ & \hline \end{aligned}$
$\begin{aligned} & \text { TD514 } \\ & \text { TD517 } \\ & \text { TD518 } \\ & \text { TD519 } \\ & \text { TD520 } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 T 132 \\ & 1 T 139 \\ & \hline \end{aligned}$	TLC555 TN4117 TN4117A TN4118 TN4118A	$\begin{aligned} & \text { ICM7555 } \\ & \text { 2N4117 } \\ & \text { 2N4117A } \\ & \text { 2N41188 } \\ & \text { 2N4118A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { U2047E } \\ & \text { U221 } \\ & \text { U222 } \\ & \mathrm{U} 231 \\ & \mathrm{U} 232 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4416 } \\ & 2 \mathrm{~N} 4391 \\ & 2 \mathrm{~N} 4391 \\ & \mathrm{U} 231 \\ & \mathrm{U} 232 \\ & \hline \end{aligned}$	U440 U441 UA105 UA108 UA305	$\begin{aligned} & \text { IT5911 } \\ & \text { IT5912 } \\ & \text { LM105 } \\ & \text { LM108 } \\ & \text { LM305 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { TD521 } \\ & \text { TD522 } \\ & \text { TD523 } \\ & \text { TD524 } \\ & \text { TD525 } \end{aligned}$	IT139 IT139 IT139 IT139 IT132	TN4119 TN4119A TN4338 TN4339 TN4340	$\begin{aligned} & \text { 2N4119 } \\ & \text { 2N4119A } \\ & \text { 2N4338 } \\ & \text { 2N4339 } \\ & \text { 2N4340 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{U} 233 \\ & \mathrm{U} 234 \\ & \mathrm{U} 235 \\ & \mathrm{U} 240 \\ & \mathrm{U} 241 \end{aligned}$	$\begin{aligned} & \mathrm{U} 233 \\ & \mathrm{U} 234 \\ & \mathrm{U} 235 \\ & \text { 2N5432 } \\ & \text { 2N5433 } \\ & \hline \end{aligned}$	UA308 UA733 UC100 UC110 UC115	$\begin{aligned} & \text { LM308 } \\ & \text { UA733 } \\ & \text { 2N3684 } \\ & \text { 2N3685 } \\ & \text { 2N4340 } \end{aligned}$
$\begin{aligned} & \text { TD526 } \\ & \text { TD527 } \\ & \text { TD528 } \\ & \text { TD5432 } \\ & \text { TD5433 } \\ & \hline \end{aligned}$	IT132 IT131 IT131 2N5432 2N5433	$\begin{aligned} & \text { TN4341 } \\ & \text { TN5277 } \\ & \text { TN5278 } \\ & \text { TP5114 } \\ & \text { TP5115 } \end{aligned}$	$\begin{aligned} & \text { 2N4341 } \\ & \text { 2N4341 } \\ & \text { 2N4341 } \\ & \text { 2N5114 } \\ & \text { 2N5115 } \end{aligned}$	$\begin{aligned} & \mathrm{U} 242 \\ & \mathrm{U} 243 \\ & \mathrm{U} 244 \\ & \mathrm{U} 248 \\ & \mathrm{U} 248 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 2N5432 } \\ & \text { 2N5433 } \\ & \text { 2N5433 } \\ & \text { 2N5902 } \\ & \text { 2N5906 } \\ & \hline \end{aligned}$	UC120 UC130 UC155 UC1700 UC1764	$\begin{aligned} & \text { 2N3686 } \\ & \text { 2N3687 } \\ & \text { 2N4416 } \\ & \text { 3N163 } \\ & \text { 3N163 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { TD5434 } \\ & \text { TD550 } \\ & \text { TD5902 } \\ & \text { TD5902A } \\ & \text { TD5903 } \end{aligned}$	$\begin{aligned} & \text { 2N5434 } \\ & \text { iT129 } \\ & \text { 2N5902 } \\ & \text { 2N5902 } \\ & \text { 2N5903 } \end{aligned}$	$\begin{aligned} & \text { TP5116 } \\ & \text { TSC426 } \\ & \text { TSC7106CJL } \\ & \text { TSC7106CPL } \\ & \text { TSC7106RCPL } \end{aligned}$	2N5116 ICL7667 ICL7106CJL ICL7106CPL ICL7106RCPL	$\begin{aligned} & \text { U249 } \\ & \text { U249A } \\ & \text { U250 } \\ & \text { U250A } \\ & \text { U251 } \end{aligned}$	$\begin{aligned} & \text { 2N5903 } \\ & \text { 2N5907 } \\ & \text { 2N5904 } \\ & \text { 2N5908 } \\ & \text { 2N5905 } \\ & \hline \end{aligned}$	UC20 UC200 UC201 UC21 UC210	$\begin{aligned} & \text { 2N3686 } \\ & \text { 2N3824 } \\ & \text { 2N3824 } \\ & \text { 2N3687 } \\ & \text { 2N4416 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { TD5903A } \\ & \text { TD5904 } \\ & \text { TD5904A } \\ & \text { TD5905 } \\ & \text { TD5905A } \end{aligned}$	$\begin{aligned} & \text { 2N5903 } \\ & \text { 2N5904 } \\ & \text { 2N5904 } \\ & \text { 2N5905 } \\ & \text { 2N5905 } \end{aligned}$	$\begin{aligned} & \text { TSC7107CJL } \\ & \text { TSC7107CPL } \\ & \text { TSC7107RCPL } \\ & \text { TSC7109CPL } \\ & \text { TSC71091JL } \\ & \hline \end{aligned}$	ICL7107CJL ICL7107CPL ICL7107RCPL ICL7109CPL ICL7109IJL	$\begin{aligned} & \text { U251A } \\ & \text { U252 } \\ & \text { U253 } \\ & \text { U254 } \\ & \text { U255 } \end{aligned}$	$\begin{aligned} & \text { 2N5909 } \\ & \text { 1T5911 } \\ & \text { 1T5912 } \\ & \text { 2N4859 } \\ & \text { 2N4860 } \\ & \hline \end{aligned}$	UC2130 UC2132 UC2134 UC2136 UC2138	$\begin{aligned} & \text { 2N5452 } \\ & \text { 2N5453 } \\ & \text { 2N5454 } \\ & \text { 2N5454 } \\ & \text { 2N5454 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { TD5906 } \\ & \text { TD5906A } \\ & \text { TD5907 } \\ & \text { TD5907A } \\ & \text { TD5908 } \end{aligned}$	$\begin{aligned} & 2 N 5906 \\ & \text { 2N5906 } \\ & \text { 2N5907 } \\ & \text { 2N5907 } \\ & \text { 2N5908 } \end{aligned}$	$\begin{aligned} & \text { TSC7109MJL } \\ & \text { TSC7116CJL } \\ & \text { TSC7116CPL } \\ & \text { TSC7117CJL } \\ & \text { TSC7117CPL } \end{aligned}$	ICL7109MJL ICL7116CJL ICL7116CPL ICL7117CJ ICL7117CPL	$\begin{aligned} & \text { U256 } \\ & \text { U257 } \\ & \text { U257/TO-71 } \\ & \text { U266 } \\ & \text { U273 } \end{aligned}$	$\begin{aligned} & \text { 2N4861 } \\ & \text { U257 } \\ & \text { U257/TO-71 } \\ & \text { 2N4856 } \\ & \text { 2N4118A. } \end{aligned}$	UC2139 UC2147 UC2148 UC2149 UC220	$\begin{aligned} & \text { 2N3958 } \\ & \text { 2N3822 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { TD5908A } \\ & \text { TD5909 } \\ & \text { TD5909A } \\ & \text { TD5911 } \\ & \text { TD5911A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5908 } \\ & \text { 2N5909 } \\ & \text { 2N5909 } \\ & \text { 1T59111 } \\ & \text { T5911 } \end{aligned}$	TSC7126CJL TSC7126RCPL TSC7135CJI TSC7135CPI TSC7650	ICL7126CJL ICL7126RCPL ICL7135CH ICL7135CP\| ICL7650	U273A U274 U274A U275 U275A	$\begin{aligned} & \text { 2N4118A } \\ & \text { 2N4119A } \\ & \text { 2N4119A } \\ & \text { 2N4119A } \\ & \text { 2N41199A } \end{aligned}$	UC240 UC241 UC250 UC251 UC2766	$\begin{aligned} & \text { 2N4869 } \\ & \text { 2N4869 } \\ & \text { 2N4091 } \\ & \text { 2N4392 } \\ & \text { 3N166 } \end{aligned}$
TD5912 TD5912A TD700 TD701 TD709	IT5912 IT5912 IT122 IT122 $1 T 122$	$\begin{aligned} & \text { TSC7660 } \\ & \text { TSC9491 } \\ & \text { TT-590 } \\ & \text { U110 } \\ & \text { U111 } \end{aligned}$	$\begin{aligned} & \text { ICL7660 } \\ & \text { ICL8069 } \\ & \text { AD590 } \\ & \text { 2N2608 } \\ & \text { 2N2608 } \end{aligned}$	U280 U281 U282 U283 U284	$\begin{aligned} & \text { 2N5452 } \\ & \text { 2N5453 } \\ & \text { 2N5453 } \\ & \text { 2N5453 } \\ & \text { 2N5454 } \end{aligned}$	UC300 UC310 UC320 UC330 UC340	$\begin{aligned} & \text { 2N2608 } \\ & \text { 2N2607 } \end{aligned}$

Section 1 - Selector Guides

2. DISCRETES

Switches-Junction FET N Channel

PART NUMBER	PACKAGE	rDS(ON) Ω Max	$\begin{gathered} \mathbf{V}_{\mathbf{P}} \\ \mathbf{V} \\ \mathbf{M i n} \end{gathered}$	Max	$\begin{gathered} \text { IGSS } \\ \text { pA } \\ \text { Max } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{BV}_{\mathrm{GSS}} \\ \mathbf{V} \\ M \mathrm{Min} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I}_{\text {D(OFF }} \\ \text { pA } \\ \text { Max } \\ \hline \end{gathered}$	IDSS mA Min	Max	$\begin{gathered} \mathrm{t}_{\mathrm{ap}} \\ \mathrm{~ns} \\ \mathrm{Max} \end{gathered}$	$\begin{gathered} \mathrm{C}_{\text {rss }} \\ \mathrm{pF} \\ \mathrm{Max} \end{gathered}$	$\begin{gathered} \mathrm{C}_{\text {iss }} \\ \mathrm{pF} \\ \text { Max } \end{gathered}$	COMMENTS
2N3824	TO-72	250		8.0	-100	-50					3	6	High Isolation
2N3970	TO-18	30	-4.0	-10.0	-250	-40	250	50	150	50	6	25	High Isolation
2N3971	TO-18	60	-2.0	-5.0	-250	-40	250	25	75	90	6	25	High Isolation
2N3972	TO-18	100	-0.5	-3.0	-250	-40	250	5	30	180	6	25	High Isolation
* 2N4091	TO-18	30	-5.0	- 10.0	-200	-40	200	30		65	5	16	High Isolation
2N4091A	TO-18	30	-5.0	-10.0	-40	-50	200	30		65	5	16	High Isolation
* 2N4092	TO-18	50	-2.0	-7.0	-200	-40	200	15		95	5	16	High Isolation
2N4092A	TO-18	50	-2.0	-7.0	40	-50	200	15		95	5	16	High Isolation
* 2N4093	TO-18	80	-1.0	-5.0	-200	-40	200	8		140	5	16	High Isolation
2N4093A	TO-18	80	-1.0	-5.0	40	-50	200	8		140	5	16	High Isolation
2N4391	TO-18	30	-4.0	-10.0	-100	-40	100	50	150	55	3.5	14	High Isolation
2N4392	TO-18	60	-2.0	-5.0	-100	-40	100	25	75	75	3.5	14	High Isolation
2N4393	TO-18	100	-0.5	-3.0	-100	-40	100	5	30	100	3.5	14	High Isolation
* 2N4856	TO-18	25	-4.0	-10.0	-250	-40	250	50		34	8	18	High Isolation
* 2N4857	TO-18	40	-2.0	-6.0	-250	-40	250	20	100	60	8	18	High Isolation
* 2N4858	TO-18	60	-0.8	-4.0	-250	-40	250	8	80	120	8	18	High Isolation
* 2N4859	TO-18	25	-4.0	-10.0	-250	-30	250	50		34	8	18	High Isolation
* 2N4860	TO-18	40	-2.0	-6.0	-250	-30	250	20	100	60	8	18	High Isolation
* 2N4861	TO-18	60	-0.8	-4.0	-250	-30	250	8	80	120	8	18	High Isolation
2N4978	TO-18	20	-2.0	-8.0	-500	-30	500	15		55	8	35	Low ros(on)
2N5432	TO-52	5	-4.0	-10.0	-200	-25	200	150		41	15	30	Low ros(on)
2N5433	TO-52	7	-3.0	-9.0	-200	-25	200	100		41	15	30	Low ros(on)
2N5434	TO-52	10	-1.0	-4.0	-200	-25	200	30		41	15	30	Low ros(on)
2N5555	TO-92	150		-10.0	- $1 \mathrm{n} A$	-25	10nA	15		35	1.2	5	Low Cost
2N5638	TO-92	30		-12.0	$-1 n A$	-30	$1 \cap \mathrm{~A}$	50		24	4	10	L.ow Cost
2N5639	TO-92	60		-8.0	$-1 n A$	-30	$1 \mathrm{n} A$	25		44	4	10	Low Cost
2N5640	T0-92	100		-6.0	- inA	-30	$1 \cap A$	5		63	4	10	Low Cost
2N5653	TO-92	50		-12.0	$-1 n A$	-30	$1 \cap A$	40		24	3.5	10	Low Cost
2N5654	TO-92	100		-8.0	$-1 n A$	-30	inA	15		44	3.5	10	Low Cost
ITE4091	TO. 92	30	-5.0	-10.0	-200	-40	200	30		65	5	16	Low Cost
ITE4092	TO-92	50	-2.0	-7.0	-200	-40	200	15		95	5	16	Low Cost
ITE4093	TO-92	80	-1.0	-5.0	-200	-40	200	8		140	5	16	Low Cost
ITE4391	T0-92	30	-4.0	-10.0	-100	-40	100	50	150	55	3.5	14	Low Cost
ITE4392	TO-92	60	-2.0	-5.0	-100	-40	100	25	75	75	3.5	14	Low Cost
ITE4393	TO-92	100	-0.5	-3.0	-100	-40	100	5	30	100	3.5	14	Low Cost
J105	TO-92	3	-4.5	-10.0	$-3 n A$	-25	3nA	500		20			Lowest r ${ }_{\text {DS }}(\mathrm{ON})$
J106	T0-92	6	-2.0	-6.0	$-3 n A$	-25	$3 n A$	200		20			Lowest $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$
J107	TO-92	8	-0.5	-4.5	$-3 n A$	-25	$3 n A$	100		20			Lowest $\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$
J108	TO-92	8	-3.0	-10.0	$-3 n A$	-25	$3 n A$	80		41			Low Cost
J109	T0.92	12	-2.0	-6.0	$-3 n A$	-25	$3 n \mathrm{~A}$	40		41			Low Cost
J110	TO-92	18	-0.5	-4.0	$-3 n A$	-25	$3 n A$	10		41			Low Cost
J111	TO-92	30	-3.0	-10.0	$-1 n A$	-35	$1 \cap \mathrm{~A}$	20		48			Lowest Cost
$J 112$	TO-92	50	-1.0	-5.0	$-1 n A$	-35	$1 \cap \mathrm{~A}$	5		48			Lowest Cost
$J 113$	TO-92	100	-0.5	-3.0	$-1 n A$	-35	$1 n A$	2		48			Lowest Cost
$J 114$	TO-92	150		-10.0	$-1 n A$	-25	$1 \mathrm{~A} A$	15		26			Low Cost

[^0]
2. DISCRETES

Switches-Junction FET

 N Channel| PART NUMBER | PACKAGE | $\begin{gathered} \text { rDS(ON) } \\ \Omega \\ \text { Max } \\ \hline \end{gathered}$ | $\begin{gathered} \mathbf{V}_{\mathbf{p}} \\ \mathbf{V} \\ \mathbf{M i n} \end{gathered}$ | Max | IGSS pA
 Max | $B V_{\text {GSS }}$ V Min | $I_{D(O F F)}$ pA Max | IDSS mA Min | Max | $\begin{gathered} \mathbf{t a p}_{\text {ap }} \\ \text { ns } \\ \text { Max } \end{gathered}$ | $\mathrm{C}_{\mathrm{rss}}$ pF
 Max | $C_{\text {iss }}$ pF
 Max | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PN4091 | TO-92 | 30 | -5.0 | -10.0 | -200 | -40 | 200 | 30 | | 65 | 5 | 16 | Low Cost |
| PN4092 | TO-92 | 50 | -2.0 | -7.0 | -200 | -40 | 200 | 15 | | 95 | 5 | 16 | Low Cost |
| PN4093 | TO-92 | 80 | -1.0 | -5.0 | -200 | -40 | 200 | 8 | | 140 | 5 | 16 | Low Cost |
| PN5432 | TO-92 | 5 | -4.0 | -10.0 | -200 | -25 | 200 | 150 | | 41 | 15 | 30 | Lowest $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ |
| PN5433 | TO-92 | 7 | -3.0 | -9.0 | -200 | -25 | 200 | 100 | | 41 | 15 | 30 | Lowest $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ |
| PN5434 | TO-92 | 10 | -1.0 | -4.0 | -200 | -25 | 200 | 30 | | 41 | 15 | 30 | Lowest $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ |
| U200 | TO-18 | 150 | -0.5 | -3.0 | -1nA | -30 | 1 nA | 3 | 25 | | 8 | 30 | Low Cost |
| U201 | TO-18 | 75 | -1.5 | -5.0 | $-1 n A$ | -30 | 1 nA | 15 | 75 | | 8 | 30 | Low Cost |
| U202 | TO-18 | 50 | -3.5 | -10.0 | $-1 n A$ | -30 | 1 nA | 30 | 150 | | 8 | 30 | Low Cost |
| U1897 | TO-92 | 30 | -5.0 | -10.0 | -400 | -40 | 200 | 30 | | 65 | 5 | 16 | Low Cost |
| U1898 | TO-92 | 50 | -2.0 | -7.0 | -400 | -40 | 200 | 15 | | 95 | 5 | 16 | Low Cost |
| U1899 | TO-92 | 80 | -1.0 | -5.0 | -400 | -40 | 200 | 8 | | 140 | 5 | 16 | Low Cost |

*Also available as JAN/JANTX \& JANTXV
**Most TO-92's are available lead formed to a TO-18 or TO-5 configuration

2. DISCRETES

Switches-Junction FET P Channel

PART NUMBER	PACKAGE	$\begin{gathered} \text { rDS(ON) } \\ \Omega \\ \text { Max } \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{V}_{\mathbf{P}} \\ \mathbf{V} \\ \mathbf{M i n} \end{gathered}$	Max	$\begin{aligned} & \text { IGSS } \\ & \text { pA } \\ & \text { Max } \end{aligned}$	$\mathrm{BV}_{\text {GSS }}$ V Min	$\begin{gathered} \mathrm{I}_{\mathrm{D}(\mathrm{OFF})} \mathrm{pA} \\ \mathrm{Max} \\ \hline \end{gathered}$	IDSs mA Min	Max	$\begin{gathered} \mathbf{t}_{\text {ap }} \\ \text { ns } \\ \mathbf{M a x} \end{gathered}$	$\begin{aligned} & \mathrm{C}_{\text {rss }} \\ & \mathrm{pF} \\ & \mathrm{Max} \end{aligned}$	$C_{\text {iss }}$ Max	COMMENTS
2N3382	T0.72	300	1.0	5.0	15nA	30	-2nA	-3	-30			16 typ	Low ros(on)
2N3384	TO-72	180	4.0	5.0	15nA	30	-2nA	-15	-30			16 typ	Low r $\mathrm{DS}(\mathrm{ON}$)
2N3386	TO-72	150	4.0	9.5	15nA	30	$-2.5 n A$	-15	-50			16 typ	Low ros(on)
2N3993	TO-72	150	4.0	9.5	1.2 nA	25	$-1.2 \mathrm{nA}$	-10			4.5	16	
2N3994	T0-72	300	1.0	5.5	$1.2 n \mathrm{~A}$	25	$-1.2 \mathrm{nA}$	-2			4.5	16	
2N5018	TO-18	75		12.0	2 nA	30	$-10 n A$	-10		100	10	45	Low ros(on)
2N5019	TO-18	150		7.0	2nA	30	$-10 n A$	-5		215	10	45	Low rds(ON)
* 2N5114	TO-18	75	5.0	10.0	500	30	-500	-30	-90	37	7	25	Low ros(on)
* 2N5115	TO-18	100	3.0	6.0	500	30	-500	-15	-60	66	7	25	Low r ${ }^{\text {DS }(O N)}$
* 2N5116	TO-18	150	1.0	4.0	500	30	-500	-5	-25	102	7	25	Low rDS(ON)
IT100	TO-18	75	2.0	4.5	200	35	-100	-10			12	35	TTL Compatible
IT101	TO-18	60	4.0	10.0	200	35	-100	-20			12	35	TTL Compatible
$J 174$	TO-92	85	5.0	10.0	1 nA	30	$-1 n A$	-20	-100	22			Low Cost
$J 175$	T0-92	125	3.0	6.0	$1 \mathrm{n} A$	30	$-1 n A$	-7	-60	45			Low Cost
J176	TO-92	250	1.0	4.0	1 nA	30	$-1 n A$	-2	-25	70			Low Cost
$J 177$	TO-92	300	0.8	2.25	1 nA	30	$-1 n A$	-1.5	-20	90			TTL Compatible
PN5114	TO-92	75	5.0	10.0	500	30	-500	-30	-90	37	7	25	Low Cost
PN5115	T0-92	100	3.0	6.0	500	30	-500	-15	-60	68	7	25	Low Cost
PN5116	TO-92	150	1.0	4.0	500	30	-500	-5	-25	102	7	25	Low Cost
U304	TO-18	85	5.0	10.0	500	30	-500	-30	-90	70	7	27	High Off Isolation
U305	TO-18	110	3.0	6.0	500	30	-500	-15	-60	105	7	27	High Off Isolation
U306	TO-18	175	1.0	4.0	500	30	-500	-5	-25	140	7	27	High Off Isolation

[^1]
2. DISCRETES

Switches and Amplifiers MOSFET
 N-Channel

$\begin{aligned} & \text { PART } \\ & \text { NUMBER } \end{aligned}$	PACKAGE	$\begin{gathered} V_{\text {GSSTH) }} \\ \mathbf{V} \end{gathered}$	Max	$\begin{gathered} \mathrm{BV}_{\mathrm{DSS}} \\ \mathbf{~ M i n} \end{gathered}$	$\begin{aligned} & \text { IDSS } \\ & \text { pA } \\ & \text { Max } \end{aligned}$	IGSS pA Max	g_{f} $\mu \mathrm{mho}$ Min	$\begin{gathered} \text { rDSON } \\ \text { O } \\ \text { Max } \end{gathered}$	$\begin{aligned} & \text { IDOON) } \\ & \text { mA } \\ & \text { Min } \end{aligned}$	$I_{D(O N)}$ mA Max	COMMENTS
2N4351	T0.72	1.0	5.0	25	10nA	10	1000	300	3		High Input Z
3N170	T0.72	1.0	2.0	25	10nA	10	1000	200	10		High Input Z
3N171	TO-72	1.5	3.0	25	10 nA	10	1000	200	10		High Input Z
IT1750	TO.72	0.5	3.0	25	10 nA	10	3000	50	10		Low r ${ }^{\text {DSS(ON) }}$
M116	тO-72	1.0	5.0	30	10 nA	100		100			Diode Protected
M117	T0.72	1.0	5.0	30	10nA	1		100			High Input Z

P-Channel

Generally used where max. isolation between signal source and logic drive is required: switch "On" resistance varies with signal amplitude.

PART NUMBER	PACKAGE	$\begin{gathered} \mathbf{V}_{\text {GS(TH) }} \\ \mathbf{V} \\ \mathbf{M i n} \end{gathered}$	Max	$\begin{gathered} \mathrm{BV}_{\mathrm{DSS}} \\ \mathbf{V} \\ \text { Min } \end{gathered}$	Idss pA Max	IGSs pA Max	$\underset{\text { Min }}{\substack{\mathrm{g}_{\mathrm{fs}} \\ \mathrm{mino}^{2}}}$	$\begin{gathered} \text { rDS(ON) } \\ \Omega \\ \operatorname{Max} \\ \hline \end{gathered}$	$I_{D(O N)}$ mA Min	$I_{\text {DON }}$ mA Max	COMMENTS
2N4352	TO-72	-1.0	-5.0	-25	-10nA	10	1000	600	-3		High Input Z
3N155	TO-72	-1.5	-3.2	-35	$-1 \mathrm{nA}$	10	1000	600	-5		High Input Z
3N155A	T0.72	-1.5	-3.2	-35	-250	10	1000	300	-5		High Input Z
3N157	TO-72	-1.5	-3.2	-35	-1nA	10	1000		-5		High Input Z
3N157A	тO-72	-1.5	-3.2	-50	-250	10	1000		-5		High Input Z
3N161	TO-72	-1.5	-5.0	-25	-10nA	-100	3500		-40	-120	Diode Protected
3N163	T0-72	-2.0	-5.0	-40	-200	-10	2000	250	-5	-30	High input Z
3N164	TO-72	-2.0	-5.0	-30	400	10	1000	300	-3	-30	High Input Z
3N172	TO-72	-2.0	-5.0	-40	-400	-200		250	-5	-30	Diode Protected
3N173	TO-72	-2.0	-5.0	-30	-10nA	-500		350	-5	-30	Diode Protected
IT1700	TO-72	-2.0	-5.0	-40	200		2000	400	-2		High Input Z
IT1701	T0-72	-2.0	-5.0	-40	200	100	2000	400	-2		Diode Protected

Low Leakage Diodes

PART NUMBER	PACKAGE	$\begin{gathered} \mathbf{I}_{\mathbf{R} @ 1 \mathbf{1}}(\mathrm{pA}) \\ \text { Typ } \\ \hline \end{gathered}$	$I_{R} @ 10 \mathrm{~V}, 125^{\circ} \mathrm{C}$ (nA) Max	$\mathrm{BV}_{\mathrm{R}} @ 1 \mu \mathrm{~A}$ (V) Min	$\begin{aligned} & \mathbf{V}_{\mathbf{F}} @ \\ & (\mathrm{~V}) \\ & \mathrm{Min} \\ & \hline \end{aligned}$		COMMENTS
ID100	TO-78	0.1	10	30	0.8	1.1	(Note 1)
ID101	TO-71	0.1	10	30	0.8	1.1	(Note 1)

Note 1. Used to protect the inputs of MOSFETs such as $3 N 163$, while maintaining input leakage <0.1 pA.
*Also available as JAN/JANTX \& JANTXV.
**Most TO-92's are available lead formed to a TO-18 or TO-5 configuration.

2. DISCRETES

Amplifiers - Junction FET

N Channel

[^2]
2. DISCRETES

Amplifiers - Junction FET N Channel

PART NUMBER	PACKAGE	$g_{\text {fs }}$ $\mu \mathrm{mho}$ Min	IDSS mA Min	Max	$\begin{gathered} V_{\mathbf{P}} \\ \mathbf{V} \\ \mathbf{M i n} \end{gathered}$	Max	$I_{\text {GSS }}$ pA Max		$\mathrm{C}_{\text {iss }}$ pF Max	$\mathrm{C}_{\text {rss }}$ pF Max	$\begin{gathered} e_{\mathrm{n}} \\ \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ \operatorname{Max} \end{gathered}$	COMMENTS
J300	TO-92	4500	4.0	45.0	-1.5	-7.0	-500	-25	5.5	1.7		VHF AMP/Low Cost
J308	TO-92	8000	12.0	60.0	-1.0	-6.5	$-1 n A$	-25			2.7 dB @ 450MHz	VHF Amp/Low Cost
J309	TO-92	10,000	12.0	30.0	-1.0	-4.0	$-1 n A$	-25			2.7 dB @ 450 MHz	VHF Amp/Low Cost
J310	TO-92	8000	24.0	60.0	-2.0	-6.5	$-\ln A$	-25			2.7 dB @ 450 MHz	VHF Amp/Low Cost
PN4302	TO-92	1000	0.5	5.0		-4.0	$-\ln A$	-30	6	2	2 do	PA/Low Cost
PN4303	TO-92	2000	4.0	10.0		-6.0	$-1 n A$	-30	6	2	2dB@1kHz	iPA/Low Cost
PN4304	T0.92	1000	0.5	15.0		-10.0	$-1 n A$	-30	6	2	3 dB @ 1kHz	GPA/Low Cost
PN4338	T0-92	600	0.2	0.6	-0.3	-1.0	-100	-50	7	3	1 dB @ 1kHz	GPA/VCR
PN4339	TO-92	800	0.5	1.5	-0.6	-1.8	-100	-50	7	3	1 db @ 1kHz	GPA/VCR
PN4340	TO-92	1300	1.2	3.6	-1.0	-3.0	-100	-50	7	3	1db @ 1kHz	GPANCR
PN4341	T0-92	2000	3.0	9.0	-2.0	-6.0	-100	-50	7	3	1 db @ 1kHZ	GPANCR
PN4416	TO-92	4500	5.0	15.0		-6.0	-100	-30	4	2		High Gain/Low Cost
PN5163	TO-92	2000	1.0	40.0	-0.4	-8.0	-10nA	-25	20	5	50 @ 1kHz	Low Cost
U308	TO-52	10,000	12.0	60.0	-1.0	-6.0	-150	-25	7 typ .	4.0typ.	2.7 dB @ 450MHz	VHF Amp
U309	TO-52	10,000	12.0	30.0	-.1.0	-4.0	-150	-25	7typ.	4.0typ.	2.7 dB @ 450 MHz	VHF Amp
U310	TO-52	10,000	24.0	60.0	-2.5	-6.0	-150	-25	7typ.	4.0typ.	2.7 dB @ 450 MHz	VHF Amp

*Available as JAN/TX/TXV.
**Most TO-92's are available lead formed to a TO-18 or TO-5 configuration.

2. DISCRETES

Amplifiers - Junction FET P-Channel

[^3]Differential Amplifiers -
Dual Monolithic N-Channel Junction FETs

PART NUMBER	PACKAGE	$\begin{aligned} & V_{\text {GS1.2 }}^{2} \\ & \text { mV } \\ & \text { Max } \end{aligned}$	$\Delta \mathbf{V}_{\mathrm{GS}}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max	$\begin{aligned} & I_{G} \\ & p A \\ & \text { Max } \end{aligned}$	$\begin{gathered} \text { BV GSS }_{\text {GSS }} \\ \text { Min } \end{gathered}$	$\begin{gathered} \mathbf{V}_{\mathbf{p}} \\ \mathbf{v} \\ \mathbf{M i n} \end{gathered}$	Max	$\underset{\text { Min }}{\substack{\mathrm{g}_{\text {st }} \\ \text { mino }}}$	Max	IDSS mA Min	Max	$\stackrel{e_{\mathrm{n}}}{\mathrm{nV} / \sqrt{\mathrm{Hz}}}$ Max	COMMENTS
2N3921	TO-71	5	10	250	-50		-3.0	1.5	7.5	1	10.0	2dB @ 1kHz	GP Diff Amp
2N3922	т0.71	5	25	250	-50		-3.0	1.5	7.5	1	10.0	2dB@1kHz	GP Diff Amp
2N3954	T0.71	5	10	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100Hz	General Purpose
2N3954A	T0.71	5	5	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100Hz	General Purpose
2N3955	T0-71	10	25	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100Hz	General Purpose
2N3955A	T0.71	5	15	--50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100Hz	General Purpose
2N3956	T0.71	15	50	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100Hz	General Purpose
2N3957	T0.71	20	75	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100Hz	General Purpose
2N3958	T0.71	25	100	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100Hz	General Purpose
2N5045	т0.71	5	65		-50	-0.5	-4.5	1.5	6.0	0.5	8.0	200 @ 10Hz	GP Diff Amp
2N5046	T0.71	10	133		-50	-0.5	-4.5	1.5	6.0	0.5	8.0	200 @ 10Hz	GP Diff Amp
2N5047	T0.71	15	200		-50	-0.5	-4.5	1.5	6.0	0.5	8.0		GP Diff Amp
2N5196	T0.71	5	5	-15	-50	-0.7	-4.0	0.7 @	$200 \mu \mathrm{~A}$	0.7	7.0	20 @ 1kHz	Low Noise, GPA
2N5197	T0.71	5	10	-15	-50	-0.7	-4.0	0.7 @	$200 \mu \mathrm{~A}$	0.7	7.0	20 @ 1kHz	Low Noise, GPA
2N5198	T0.71	10	20	-15	-50	-0.7	-4.0	0.7 @	$200 \mu \mathrm{~A}$	0.7	7.0	20 @ 1kHz	Low Noise, GPA
2N5199	T0.71	15	40	-15	-50	-0.7	-4.0	0.7 (1)	$200 \mu \mathrm{~A}$	0.7	7.0	20 (1) 1kHz	Low Noise, GPA
2N5515	T0.71	5	5	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10Hz	GP Diff Amp
2N5516	T0.71	5	10	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10Hz	GP Diff Amp
2N5517	T0.71	10	20	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10Hz	GP Diff Amp
2N5518	T0.71	15	40	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10Hz	GP Diff Amp
2N5519	T0.71	15	80	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10Hz	GP Diff Amp
2N5520	T0.71	5	5	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10Hz	Lowest Noise
2N5521	T0.71	5	10	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10Hz	Lowest Noise
2N5522	T0-71	10	20	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10Hz	Lowest Noise
2N5523	T0.71	15	40	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10Hz	Lowest Noise
2N5524	T0.71	15	80	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10Hz	Lowest Noise
2N5545	T0.71	5	10	-50	-50	-0.5	-4.5	1.5	6	0.5	8.0	180 @ 10Hz	GP Diff Amp
2N5546	T0.71	10	20	-50	-50	-0.5	-4.5	1.5	6	0.5	8.0	200 @ 10Hz	GP Diff Amp
2N5547	T0.71	15	40	-50	-50	-0.5	-4.5	1.5	6	0.5	8.0		GP Diff Amp
2N5902	т0.78	5	5	-3	-40	-0.6	-4.5	0.07	. 250	0.03	0.50	100 @ 1kHz	Low Leakage
2N5903	T0.78	5	10	-3	-40	-0.6	-4.5	0.07	. 250	0.03	0.50	100 @ 1kHz	Low Leakage
2N5904	T0.78	10	20	-3	-40	-0.6	-4.5	0.07	. 250	0.03	0.50	100 @ 1kHz	Low Leakage
2N5905	T0.78	15	40	-3	-40	-0.6	-4.5	0.07	. 250	0.03	0.50	100 @ 1kHz	Low Leakage
2N5906	т0-99	5	5	-1	-40	-0.6	-4.5	0.07	0.25	0.03	0.50	100 @ 1kHz	Low Leakage
2N5907	то-99	5	10	-1	-40	-0.6	-4.5	0.07	0.25	0.03	0.50	100 @ 1kHz	Low Leakage
2N5908	т0.99	10	20	-1	-40	-0.6	-4.5	0.07	0.25	0.03	0.50	100 @ 1kHz	Low Leakage
2N5909	т0.99	15	40	-1	-40	-0.6	-4.5	0.07	0.25	0.03	0.50	100 @ 1kHz	Low Leakage
2N5911	т0-99	10	20	-100	-25	-1.0	-5.0	5/10@	5 mA	7.0	40.0	20 @ 10kHz	RF Amplifier
2N5912	T0.99	15	40	-100	-25	-1.0	-5.0	5/10 @	5 mA	7.0	40.0	20 @ 10kHz	RF Amplifier
2N6483	T0.71	5	5	-100	-50	-0.7	-4.0	1	4	0.5	7.5	10 @ 10Hz	Low Noise
2N6484	T0.71	10	10	-100	-50	-0.7	-4.0	1	4	0.5	7.5	10 @ 10Hz	Low Noise
2N6485	T0-71	15	25	-100	-50	-0.7	-4.0	1	4	0.5	7.5	10 @ 10Hz	Low Noise
17500	TO-52	5	5	-5	-50	-0.7	-4.0	0.711.6	(1)200 $\mu \mathrm{A}$	0.7	7.0	35 @ 10Hz	Cascode RF Amp
17501	TO-52	5	10	-5	-50	-0.7	-4.0	0.711.6	(1)200 $\mu \mathrm{A}$	0.7	7.0	35 @ 10Hz	Cascode RF Amp
17502	TO-52	10	20	-5	-50	-0.7	-4.0	0.711.6	Q $200 \mu \mathrm{~A}$	0.7	7.0	35 @ 10Hz	Cascode RF Amp
17503	TO-52	15	40	-5	-50	-0.7	-4.0	0.711.6	@ 200 $\mu \mathrm{A}$	0.7	7.0	35 @ 10Hz	Cascode RF Amp
1 I504	TO-52	25	100	-5	-25	-0.7	-4.0	0.711.6	(1)200 $\mu \mathrm{A}$	0.7	7.0	35 @ 10Hz	Cascode RF Amp
IT505	TO-52	50	200	-5	-25	-0.7	-4.0	0.711.6	(1)200 $\mu \mathrm{A}$	0.7	7.0	35 @ 10Hz	Cascode RF Amp

[^4]
2. DISCRETES

Differential Amplifiers - continued

Dual Monolithic N-Channel Junction FETs

PART NUMBER	PACKAGE	$\mathrm{V}_{\text {GS1.2 }}$ mV Max	$\Delta V_{\text {GS }}$ ${ }_{\mu} \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max	I_{G} pA Max		$\begin{gathered} V_{p} \\ V \\ M i n \end{gathered}$	Max	$g_{\text {fs }}$ mmho* Min	Max	IDSS mA Min	Max	$\begin{gathered} e_{\mathrm{n}} \\ \mathrm{nV} / \sqrt{ } \mathrm{Hz} \\ \text { Max } \end{gathered}$	COMMENTS
IT550	TO-71	50	100		-40	$-0 . .5$	-3.0	7.5/12.5	@ 2mA	5.0	30.0	$50 @ 10 \mathrm{~Hz}$	Cascode RF Amp
1 T5911	TO-71	10	20	-100	-25	-1.0	-5.0	5/10@	5 mA	7.0	40.0	20 @ 10kHz	RF Amplifier
IT5912	TO-71	15	40	-100	-25	-1.0	-5.0	5/10@	5 mA	7.0	40.0	20 @ 10kHz	RF Amplifier
ITC5911	T0-99	10	20	-100	-25	-1.0	-5.0	5/10@	5 mA	7.0	40.0	20 @ 10kHz	RF Amplifier
ITC5912	T0-99	15	40	-100	-25	-1.0	-5.0	5/10@	5mA	7.0	40.0	$20 @ 10 \mathrm{kHz}$	RF Amplifier
U231	TO-71	5	10	-50	-50	-0.5	-4.5	1	5	0.5	5.0	80 @ 100 Hz	GP Diff Amp
U232	TO-71	10	25	-50	-50	-0.5	-4.5	1	5	0.5	5.0	80 @ 100Hz	GP Diff Amp
U233	TO-71	15	50	-50	-50	-0.5	-4.5	1	5	0.5	5.0	80 @ 100Hz	GP Diff Amp
U234	T0-71	20	75	-50	-50	-0.5	-4.5	1	5	0.5	5.0	80 @ 100Hz	GP Diff Amp
U235	TO-71	25	100	-50	-50	-0.5	-4.5	1	5	0.5	5.0	80 @ 100Hz	GP Diff Amp
U257	T0.78	100			-25	-1.0	-5.0	4.5	10	5.0	40.0	30 @ 10kHz	Low Cost
U426	TO-78	25	40	-0.5	-40	-0.4	-3.0	0.3	1.5	. 06	1.8	70 @ 10Hz	Low Cost
U440	TO-71	10			-25	-1.0	-6.0	4.5/9 @	@ $5 \mu \mathrm{~A}$	6	30		High Gain
U441	TO-71	20			-25	-1.0	-6.0	4.5/9@	@ $5 \mu \mathrm{~A}$	6	30		High Gain

Dual Monolithic P-Channel MOSFETs (Enhancement)

PART NUMBER	PACKAGE	$\begin{gathered} V_{\text {GSSTH }} \\ V \\ \text { Min } \end{gathered}$	Max	$\begin{gathered} B V_{\text {DDS }} \\ V \\ \text { Min/Max } \end{gathered}$	IDss pA Max	$\mathrm{I}_{\text {GSS }}$ pA Max		$I_{D(O N)}$ mA Min	Max	rDS(ON) Ω Max	$V_{G S 1-2}$ mV Max	COMMENTS
3N165	TO-99	-2	-5	-40	-200	-10	1500	-5.0	-30	300	100	Low Leakage
3N166	TO-99	-2	-5	-40	-200	-10	1500	-5.0	-30	300		Low Leakage
3N188	TO-99	-2	-5	-40	-200	-200	1500	-5.0	-30	300	100	Diode Protected
3N189	TO-99	-2	-5	-40	-200	-200	1500	-5.0	-30	300		Diode. Protected
3N190	TO-99	-2	-5	-40	-200	-10	1500	-5.0	-30	300	100	High Input Z
3N191	TO-99	-2	-5	-40	-200	-10	1500	-5.0	-30	300		High Input Z

[^5]
2. DISCRETES

Differential Amplifiers -
Dual NPN Bipolar Transistors

PART NUMBER	PACKAGE	$V_{\text {BE } 1.2}$ mV Max	$\begin{gathered} \Delta \mathbf{V}_{\mathrm{BE}} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mathrm{Max} \end{gathered}$	$\begin{gathered} h_{\text {FE }} \\ (\text { Note 1) } \\ \text { Min } \\ \hline \end{gathered}$	$\mathrm{I}_{\mathrm{B} 1-2}$ (Note 1) nA Max	$\mathrm{BV}_{\text {CEO }}$ V Min	$\begin{aligned} & \text { ICBO } \\ & \text { nA } \\ & \text { Max } \end{aligned}$	NF dB Max	$\begin{gathered} \mathbf{f}_{\mathbf{t}} \\ \mathbf{M H z} @ \mathbf{I}_{\mathrm{C}} \\ \mathbf{M i n} \end{gathered}$	$\mathrm{C}_{\text {obo }}$ pF Max	COMMENTS
2N2453	TO-78	3	10	80		30	5	7 typ.			Audio Amp
2N2453A	TO-78	3	5	80		60	5	4 typ.			Audio Amp
2N2920	TO-78	3	10	150		60	2	3 typ.	60 @ 0.5 mA	6	High Gain, Low Noise
2N2920A	TO-78	1.5	5	150		60	2	3 typ.	60 @ 0.5mA	6	High Gain, Low Noise
2N4044	TO-78	3	3	200	5	60	0.1	2	200 @ 1mA	0.8	Low Capacitance
2N4045	TO-78	5	10	80	25	45	0.1	3	150 @1mA	0.8	Low Capacitance
2N4100	TC-78	5	5	150	10	55	0.1	3	150 @ 1mA	0.8	Low Capacitance
2N4878	TO-71	3	3	200	5	60	0.1	2 typ.	200 @ 1mA	0.8	Low Capacitance
2N4879	TO-71	5	5	150	10	55	0.1	3 typ.	150 @ 1mA	0.8	Low Capacitance
2N4880	TO-71	5	10	80	25	45	0.1	3 typ.	150 @ 1mA	0.8	Low Capacitance
IT120	TO-78	2	5	200	5	45	1.0	2 typ.	150 @ 1mA	2	Low Cost, Low $\mathrm{V}_{\text {OS }}$
	TO-71										
IT120A	TO-78	1	3	200	2.5	45	1.0	2 typ.	150 @ 1mA	2	Low Cost, Low $\mathrm{V}_{\text {OS }}$
	TO-71										
IT121	TO-78	3	10	80	25	45	1.0	2 typ.	180 @ 1mA	2	Low Cost
	TO.71										
IT122	TO-78	5	20	80	25	45	1.0	2 typ.	$180 @ 1 \mathrm{~mA}$	2	Low Cost
	TO-71										
IT124	TO-78	5	15	1500	0.6A	2	0.1	3	100@100 A	0.8	Super β for
											Log Amps
IT126	TO-78	1	3	150	2.5	60	0.1	1 typ.	250 @ 10mA	3	Low $\mathrm{V}_{\text {OS }}$
	TO.71										
IT127	TO-78	2	5	150	5	60	0.1	1 typ.	250 @ 10mA	3	Low $\mathrm{V}_{\text {OS }}$
	TO-71										
IT128	TO-78	3	10	100	10	55	0.1	1 typ.	250 @ 10mA	3	Low $\mathrm{V}_{\text {OS }}$
	TO-71										
IT129	T0.78	10	20	70	20	45	0.1	1 typ.	250 @ 10mA	3	Low V ${ }_{\text {OS }}$
	TO-71										
LM114	TO-71	2.0	10	250	10	45	0.050				Low $\mathrm{V}_{\text {OS }}$
LM114A	TO.71	0.5	2	500	2	45	0.010				Low $\mathrm{V}_{\text {OS }}$
LM114AH	T0.78	0.5	2	500	2	45	0.010				Low $\mathrm{V}_{\text {OS }}$
LM114B	TO-71	1.0	5	250	10	45	0.050				Low $\mathrm{V}_{\text {OS }}$
LM114BH	TO-78	1.0	5	250	10	45	0.050				Low $\mathrm{V}_{\text {OS }}$
LM114H	TO-78	2.0	10	250	10	45	0.050				Low $\mathrm{V}_{\text {OS }}$

NOTE:

1. $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$

2. DISCRETES

Differential Amplifiers -

Dual PNP Bipolar Transistors

PART NUMBER	PACKAGE	$\begin{gathered} \text { VBE } 1.2^{\mathrm{mV}} \\ \mathrm{Max} \\ \hline \end{gathered}$	$\Delta V_{B E}$ ${ }_{\mu} \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max	$\begin{gathered} h_{\text {FE }} \\ (\text { Note 1) } \\ \text { Min } \\ \hline \end{gathered}$	$I_{B 1-2}$ (Note 1) nA Max	$\mathrm{BV}_{\text {CEO }}$ V Min	$I_{\text {CBO }}$ nA Max	NF dB Max	$\begin{gathered} \mathbf{f}_{\mathbf{t}} \\ \mathbf{M H z} @ \mathbf{l}_{\mathbf{C}} \\ \mathbf{M i n} \\ \hline \end{gathered}$	$\mathrm{C}_{\text {obo }}$ pF Max	COMMENTS
2N3810	TO-78	3	10	100		-60	10	3 typ.	100 @ 1mA	4	Low $\mathrm{V}_{\text {OS }}$
2N3810A	TO-78	1.5	5	100		-60	10	3 typ.	100 @ 1mA	4	Low $\mathrm{V}_{\text {OS }}$
2N3811	TO-78	3	10	225		-60	10	3 typ.	100 @ 1mA	4	Low $\mathrm{V}_{\text {OS }}$
2N3811A	TO-78	1.5	5	225		-60	10	3 typ.	100 @ 1mA	4	Low $\mathrm{V}_{\text {OS }}$
2N5117	TO-78	3	3	100	10	-45	0.1	4 typ.	100 @ 0.5mA	0.8	Low $\mathrm{V}_{\text {OS }}$
2N5118	TO-78	5	5	100	15	-45	0.1	4 typ.	100 @ 0.5mA	0.8	Low Cost
2N5119	TO-78	5	10	50	40	-45	0.1	4 typ.	100 @ 0.5mA	0.8	Low Cost
IT130	TO-78	2	5	200	5	-45	1.0	2 typ.	150 @ 1mA	2	Low $\mathrm{V}_{\text {OS }}$
	TO-71										
IT130A	TO-78	1	3	200	2.5	-45	1.0	2 typ.	150 @ 1mA	2	Low $\mathrm{V}_{\text {OS }}$
	TO-71										
IT131	TO-78	3	10	80	25	-45	1.0	2 typ.	150 @ 1mA	2	Low Cost
	TO-71										
IT132	TO-78	5	20	80	25	-45	1.0	2 typ.	150 @ 1mA	2	Low Cost
	TO-71										
IT136	TO-78	1	3	150	2.5	-60	0.1	2 typ.	250 @ 10mA	4	Low $\mathrm{V}_{\text {OS }}$
	TO-71										
IT137	TO-78	2	5	150	5	-60	0.1	2 typ.	250 @ 10mA	4	Low $\mathrm{V}_{\text {OS }}$
	TO-71										
IT138	TO-78	3	10	100	10	-55	0.1	2 typ.	250 @ 10mA	4	Low $\mathrm{V}_{\text {OS }}$
	TO-71										
IT139	TO-78	5	20	70	20	-45	0.1	2 typ.	250 @ 10mA	4	Low V_{OS}
	TO-71										

Note:

1. $I_{C}=10 \mu A, V_{C E}=5 \mathrm{~V}$

3. ANALOG SWITCH \& MULTIPLEXERS

General Purpose Analog Switch Selector Guide

SWITCH FAMILY	SPECIAL FEATURES	SWITCH TYPE	SWITCH PARAMETERS				
			$\begin{aligned} & \mathrm{R}_{\mathrm{DS} \text { (ON) }}^{\text {(ßMax) }} \end{aligned}$	ID(OFF) (nA Max)	$\begin{gathered} \text { (ns Max) } \end{gathered}$	$\stackrel{\text { toff }}{\text { (ns Max) }}$	ANALOG VOLTAGE RANGE (SUPPLY $= \pm 15 \mathrm{~V})$
DG118-125	Inverting/non-invering logic inputs	PMOS	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	-
$\begin{aligned} & \hline \text { DG126-54 } \\ & \text { DG139-164 } \end{aligned}$	SPST/DPST SPDT/DPDT switch capability, low RDS(ON) TTL compatible	NJFET	$\begin{aligned} & 10 \\ & 15 \\ & 30 \\ & 50 \\ & 80 \end{aligned}$	$\begin{gathered} \hline 10 \\ 10 \\ 10 \\ 1 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 2500 \\ & 2500 \\ & 1600 \\ & 1600 \\ & 1600 \end{aligned}$	-
DG180-191	Mature, industrystandard switch, low R $\mathrm{DS}(\mathrm{ON})$	N-JFET	$\begin{aligned} & 10 \\ & 30 \\ & 75 \end{aligned}$	$\begin{gathered} \hline 10 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 300 \\ & 150 \\ & 250 \end{aligned}$	$\begin{aligned} & 250 \\ & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & -7.5 \text { to }+15 \\ & -7.5 \text { to }+15 \\ & -10 \text { to }+15 \end{aligned}$
DGM181-191	Monolithic replacement for DG180 family	CMOS	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 450 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & -15 \text { to }+15 \\ & -15 \text { to }+15 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { DG200/201 } \\ & \text { IH5200/5201 } \end{aligned}$	Industry-standard low cost	CMOS	$\begin{aligned} & 70 / 80 \\ & 70 / 80 \end{aligned}$	$\begin{gathered} 2.0 \\ 0.05 \end{gathered}$	$\begin{gathered} 1000 \\ 700 \end{gathered}$	$\begin{aligned} & 500 \\ & 250 \end{aligned}$	$\begin{aligned} & -15 \text { to }+15 \\ & -15 \text { to }+15 \end{aligned}$
$\begin{aligned} & \hline \text { DG211. } \\ & \text { DG212. } \end{aligned}$	Low leakage, inverting logic inputs	CMOS	175	5.0	1000	500	-15 to +15
1H5025-38	Low cost, low leakage. O.C. TLL compatible	P.JFET	$\begin{aligned} & \hline 100 \\ & 150 \\ & 100 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \text { to }+20 \\ & \hline \end{aligned}$
1H5040-53	Low quiescent current Low RDS(ON)	cmos	$\begin{aligned} & 35 \\ & 75 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & 150 \\ & 250 \end{aligned}$	$\begin{aligned} & -15 \text { to }+15 \\ & -15 \text { to }+15 \end{aligned}$
1H5140-45	High speed, low power, low leakage	CMOS	50	0.05	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 75- \\ & 125 \end{aligned}$	-15 to +14
1H5148.51	Low R $\mathrm{RS}_{(\mathrm{ON})}$, high speed, low power	CMOS	25	0.05	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	$\begin{array}{r} 200 \\ 250 \\ \hline \end{array}$	-14 to +14
$\begin{aligned} & \text { IH6201/ } \\ & \text { IH401/A } \end{aligned}$	TTL level translator/low charge injection switch	NJFET	30-50	0.05	456		-

[^6]3. ANALOG SWITCH \& MULTIPLEXERS

General Purpose Analog Switch Selector Guide. (Continued)

SWITCH CONFIGURATION										
SPST	DUAL SPST	TRIPLE SPST	$\begin{aligned} & \text { QUAD } \\ & \text { SPST } \end{aligned}$	FIVE SPST	SPDT	$\begin{aligned} & \text { DUAL } \\ & \text { SPDT } \end{aligned}$	DPST	DUAL DPST	DPDT	4PST
			DG118	$\begin{aligned} & \text { DG123 } \\ & \text { DG125 } \end{aligned}$						
	DG141 DG151 DG133 DG152 DG134				DG146 DG161 DG144 DG162 DG143			DG140 DG153 DG129 DG154 DG126	DG145 DG163 DG139 DG164 DG142	
	DG180 DG181 DG182				$\begin{aligned} & \text { DG186 } \\ & \text { DG187 } \\ & \text { DG188 } \end{aligned}$	$\begin{aligned} & \text { DG189 } \\ & \text { DG190 } \\ & \text { DG191 } \end{aligned}$		DG183 DG184 DG185		
	DGM182				DGM187 DGM188	DGM190 DGM191		DGM184 DGM185		
	$\begin{aligned} & \hline \text { DG200 } \\ & \text { IH5200 } \end{aligned}$		$\begin{aligned} & \text { DG201 } \\ & \text { IH5201 } \end{aligned}$							
			$\begin{aligned} & \text { DG211 } \\ & \text { DG212 } \end{aligned}$							
$\begin{aligned} & \text { IH5037 } \\ & \text { IH5038 } \end{aligned}$	$\begin{aligned} & \text { IH5033 } \\ & \text { IH5034 } \\ & \text { IH5035 } \\ & \text { IH5036 } \end{aligned}$	$\begin{aligned} & \text { IH5029 } \\ & \text { IH5030 } \\ & \text { IH5031 } \\ & \text { IH5032 } \end{aligned}$	$\begin{aligned} & \text { H55025 } \\ & \text { IH5026 } \\ & \text { IH5027 } \\ & \text { HH5028 } \end{aligned}$							
IH5040	$\begin{aligned} & \text { IH5048 } \\ & \text { IH5041 } \end{aligned}$		$\begin{aligned} & \mathrm{H} H 5052 \\ & \mathrm{IH} 5053 \end{aligned}$		IH5042	$\begin{aligned} & \text { IH5051 } \\ & \text { IH5043 } \end{aligned}$	IH5044	$\begin{aligned} & \text { 1H5049 } \\ & \text { IH5045 } \end{aligned}$	IH5046	IH5047
IH5140	1H5141				1H5142	IH5143	1H5144	IH5145		
	IH5148				IH5150	IH5151		1H5149		
			IH401 IH401A							

3. ANALOG SWITCH \& MULTIPLEXERS

Special Purpose Analog Switch

SWITCH FAMILY	SPECIAL FEATURES	SWITCH TYPE	rDS(ON) (Ω Max)	ID(OFF) (nA Max)	${ }^{\prime} \mathrm{ON}$ (ns Max)	toff (ns Max)	ANALOG VOLTAGE RANGE $\left(V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}\right)$	SWITCH CONFIGURATION			
								SPST	$\begin{aligned} & \text { DUAL } \\ & \text { SPST } \end{aligned}$	TRIPLE SPST	$\begin{aligned} & \text { QUAD } \\ & \text { SPST } \end{aligned}$
IH5009-24	Lowest cost; virtual ground switch	P-JFET	$\begin{aligned} & 100 \\ & 150 \\ & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & -0.2 \text { to }+0.2 \\ & -0.2 \text { to }+0.2 \\ & -0.2 \text { to }+0.2 \\ & -0.2 \text { to }+0.2 \end{aligned}$	$\begin{aligned} & \hline \text { IH5021 } \\ & \text { IH5022 } \\ & \text { IH5023 } \\ & \text { IH5024 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { H5017 } \\ & \text { IH5018 } \\ & \text { IH5019 } \\ & \text { IH5020 } \end{aligned}\right.$	$\begin{aligned} & \text { IH5013 } \\ & \text { IH5014 } \\ & \text { IH5015 } \\ & \text { IH5016 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IH5009 } \\ & \text { IH5010 } \\ & \text { IH5011 } \\ & \text { IH5012 } \end{aligned}$
IH5341/52*	Video Switch, offisolation $60 \mathrm{~dB}(10 \mathrm{MHz})$	CMOS	75	1.0	300	150	-15 to +15		IH5341		* H 5352

* New Product

Multiplexers

SWITCH FAMILY	SPECIAL FEATURES	rDS(ON) (Ω Max)	$I_{D(O F F}$ (nA Max)	${ }^{t} \mathrm{ON}$ (ns Max)	$t_{0 F F}$ (ns Max)	ANALOG VOLTAGE RANGE $\mathbf{V}_{\text {SUPPLY }}=$ $(\pm 15 \mathrm{~V})$	CONFIGURATION			
							8-CHANNEL SINGLE. ENDED	4-CHANNEL DIFFER. ENTIAL	16-CHANNEL SINGLEENDED	8-CHANNEL DIFFERENITAL
IH5108	Industry standard pinouts, fault protection up to $\pm 25 \mathrm{~V}$ input, low leakage, low input current	900	1.0	1500	1000	$\begin{aligned} & -25 \text { to }+25 \\ & \text { (Input) } \end{aligned}$	IH5108	IH5208		
		1000	1.0	1500	1000	$\begin{aligned} & -25 \text { to }+25 \\ & \text { (Input) } \end{aligned}$			*IH5116	* H 5216
IH6108	Industrial standard pinouts, low leakage, low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ break before make switching	300	1.0	1500	1000	-14 to +14	IH6108	IH6208		
		600	1.0	1500	1000	-14 to +14			IH6116	IH6216

Drivers for JFET Switches

TYPE	NUMBER OF CHANNELS	OUTPUT SWING		${ }^{t} \mathrm{ON}$ (ns Max)	$t_{\text {OFF }}$ (ns Max)	$\begin{aligned} & \text { IINL } \\ & (\mu \mathrm{A} \text { Max) } \end{aligned}$	$I_{I N H}$ ($\mu \mathrm{A}$ Max)	LOGIC INPUT LEVEL	POWER CONSUM(mW)
		POSITIVE (V Max)	NEGATIVE (V Max)						
D123	6	$V_{\text {SUPPLY }}$	- 19.7	250	400-800	1.0	1.0	TTLDTL	20
D125	6	V SUPPLY	-19.7	250	400-800	700	1.0	TTL	50
D129	4	$V_{\text {SUPPL }}$	-19.3	250	1000	200	0.25	TTUDTL	55
IH6201	2	+14.0	-14.0	200	300	1.0	1.0	TL	350

4. AMPLIFIERS

Operational Amplifiers: Low Power

	TYPE	DESCRIPTION	louiescent (Per Channel) ($\mu \mathrm{A}$ Typ)	$V_{\text {SUPPLY }}$ (V Max)	$\begin{aligned} & \text { Vos }_{\text {(mV }}^{\text {Max }} \end{aligned}$	$\begin{aligned} & \text { IBIAS } \\ & \text { (nA Max) } \end{aligned}$	GBW (MHz)	COMPEN. SATION	TEMPERATURE RANGE (${ }^{\circ} \mathrm{C}$)
$\frac{9}{c}$	ICL7611	CMOS, Selectable I_{0}	10	± 9	2, 5, 15	0.05	0.044	INT	$\left\{\begin{array}{c} 0 \text { to }{ }_{8}+70 \\ -55 \text { to }+125 \\ \\ -55 \text { to }+125 \\ 0 \text { to }+70 \end{array}\right.$
	ICL7612	CMOS, Extended CMVR	10	± 9	2, 5, 15	0.05	0.044	INT	
	ICL7613	CMOS, Input Protected	10	± 9	2, 5, 15	0.05	0.044	INT	
	ICL8021M	Bipolar, Selectable IQ	30	± 18	3	20	0.27	INT	
	ICL8021C	Bipolar, Selectable I_{0}	30	± 18	6	30	0.27	INT	
$\frac{9}{8}$	ICL8022M	Dual 8021M	30	± 18	3	20	0.27	INT	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$
	ICL8022C	Dual 8021C	30	± 18	6	30	0.27	INT	
0$\frac{y}{2}$$\frac{1}{6}$	ICL7631	CMOS, Selectable I_{Q}	10	± 9	5, 10, 20	0.05	0.044	INT	$\left\{\begin{array}{c} 0 \text { to }{ }_{8}+70 \\ -55 \text { to }+125 \\ -55 \text { to }+125 \\ 0 \text { to }+70 \end{array}\right.$
	ICL7632	CMOS, Selectable I_{Q}	10	± 9	5, 10, 20	0.05	0.044	NONE	
	ICL8023M	Triple 8021M	30	± 18	3	20	0.27	INT	
	ICL8023C	Triple 8021C	30	± 18	6	30	0.27	INT	
8 8 0 0	ICL7642	CMOS, Fixed ${ }_{\text {Q }}$	10	± 9	5, 10, 20	0.05	0.044	INT	

Operational Amplifiers: General Purpose

	TYPE	DESCRIPTION	$\begin{gathered} V_{\mathrm{OS}} \\ (\mathrm{mV} \text { Max) } \end{gathered}$	$\begin{gathered} I_{B 1 A S} \\ \text { (pA Max) } \end{gathered}$	SLEW RATE ($/ 1 \mu \mathrm{~S}$)	GBW (MHz)	COMPEN SATION	$\mathbf{V}_{\text {SUPPLY }}$ (V Max)	TEMPERATURE RANGE (${ }^{\circ} \mathrm{C}$)
$\frac{\ddot{3}}{\frac{0}{6}}$	LM108	Bipolar, Super-Beta	2.0	2000	-	1.0	EXT	± 20	-55 to +125
	LM308	Bipolar, Super-Beta	7.5	7000	-	1.0	EXT	± 18	0 to +70
	ICL7611	CMOS, Selectable IQ	2, 5, 15	50	1.6	1.4	INT	± 9	$\left\{\begin{array}{c}0 \text { to }+70 \\ -55 \text { to }+125\end{array}\right.$
	ICL8007M	JFET Input Op-Amp	20	20	6	1.0	INT	± 18	-55 to +125
	ICL8007C	JFET Input Op-Amp	50	50	6	1.0	INT	± 18	0 to +70
$\frac{3}{3}$	LH2108	Bipolar, Super-Beta	2.0	2000	-	1.0	EXT	± 20	-55 to +125
	LH2308	Bipolar, Super-Beta	7.5	7000	-	1.0	EXT	± 18	0 to +70
	ICL7621	CMOS, Fixed la	2, 5, 15	50	0.16	0.48	INT	± 9	$\left\{\begin{array}{c}0 \text { to } 0+70 \\ -55 \text { to }+125\end{array}\right.$
	ICL8043M	JFET Input Op-Amp	20	20	6	1.0	INT	± 18	-55 to +125
	ICL8043C	JFET Input Op-Amp	50	50	6	1.0	INT	± 18	0 to +70
	ICL7631	CMOS, Selectable Io	5, 10, 20	50	1.6	1.4	INT	± 9	$\left\{\begin{array}{c}0 \text { to }+70 \\ -55 \text { to }+125\end{array}\right.$
88	ICL7641	CMOS, Fixed la	5, 10, 20	50	1.6	1.4	INT	± 9	$\left\{\begin{array}{c}0 \text { to }+70 \\ -55 \text { to }+125\end{array}\right.$

Operational Amplifiers: High Output Current

	TYPE	DESCRIPTION	$\begin{aligned} & \text { IOUT } \\ & \text { (A Min) } \end{aligned}$	Vout	$V_{\text {SUPPLY }}$ (Max)	$\begin{gathered} \text { VOS } \\ \text { (mV Max) } \end{gathered}$	$\begin{gathered} \text { IBIAS } \\ \text { (nA Max) } \end{gathered}$	$\begin{aligned} & \text { Avol } \\ & \text { (dB Typ) } \end{aligned}$	TEMPRATURE RANGE $\left({ }^{\circ} \mathrm{C}\right)$
$\begin{aligned} & \text { 品 } \\ & \stackrel{y}{c} \\ & \frac{2}{n} \end{aligned}$	ICH8510M	Hybrid Amplifier	1.0	± 26	± 32	3.0	250	100	-55 to +125
	ICH8510	Hybrid Amplifier	1.0	± 26	± 32	6.0	250	100	-25 to +85
	ICH8515M	Hybrid Amplifier	1.5	± 12	± 18	3.0	250	100	-55 to +125
	ICH85151	Hybrid Amplifier	1.25	± 12	± 18	6.0	50	100	-25 to +85
	ICH8520M	Hybrid Amplifier	2.0	± 26	± 32	3.0	250	100	-55 to +125
	ICH85021	Hybrid Amplifier	2.0	± 26	± 32	6.0	500	100	-25 to +85
	ICH8530M	Hybrid Amplifier	2.7	± 25	± 32	3.0	250	100	-55 to +125
	ICH85301	Hybrid Amplifier	2.7	± 25	± 32	6.0	500	100	-25 to +85

Operational Amplifiers: Low/Ultra-low Input Offset Voltage

	TYPE	DESCRIPTION	$\begin{gathered} \text { Vos } \\ (\mu \mathrm{V} \text { Max) } \end{gathered}$	$\begin{gathered} \Delta V o s / \Delta T \\ \left(\mu V /^{\circ} \mathrm{C}\right) \\ (\mathrm{Max}) \\ \hline \end{gathered}$	$\Delta V o s / \Delta t$ (nV/month) (Тур)	$\begin{gathered} \text { IBIAS } \\ \text { (pA Max) } \end{gathered}$	GBW (MHz)	VSUPPLY (V Max)	TEMPERATURE RANGE $\left({ }^{\circ} \mathrm{C}\right)$
$\frac{9}{2}$	ICL7650C	CMOS, Chopper-	± 5	± 0.05	100	10	2.0	± 9	0 to +70
	ICL7650I	stabilized	± 5	± 0.05	100	10	2.0	± 9	-25 to +85
	ICL7650M	CMOS, Chopperstabilized	± 5	± 0.05	100	10	2.0	± 9	-55 to +125
	ICL7652C	Low-noise 7650C	± 5	± 0.05	100	30	2.0	± 9	0 to +70
	ICL76521	Low-noise 76501	± 5	± 0.05	100	30	2.0	± 9	-25 to +85
	LM108A	Bipolar, Super-Beta	500	5.0	-	2000	1.0	± 20	-55 to +125
	LM308A	Bipolar, Super-Beta	500	5.0	-	7000	1.0	± 18	0 to +70
\%	LH2108A	Bipolar, Super-Beta	500	5.0	-	2000	1.0	± 20	-55 to +125
	LH2308A	Bipolar, Super-Beta	500	5.0	-	7000	1.0	± 20	0 to +70

Operational Amplifiers: Low Input Bias Current

	TYPE	DESCRIPTION	IBIAS (pA Max)	$\begin{aligned} & \text { IOS } \\ & \text { (pA Typ) } \end{aligned}$	$\begin{aligned} & \mathrm{VOS}_{\text {(mV Max) }} \end{aligned}$	$\begin{aligned} & \text { GBW } \\ & \text { (MHz) } \end{aligned}$	COMPEN SATION	$V_{\text {SUPPLY }}$ (${ }^{\text {Max) }}$	TEMPERATURE RANGE (${ }^{\circ} \mathrm{C}$)
$\frac{\frac{\infty}{2}}{\frac{\circ}{6}}$	ICL7611 ICL7612 ICL7613 ICL7614 ICL7615 ICL8007M ICL8007AM ICL8007C ICL8007AC ICH8500 ICH8500A	CMOS, Selectable I_{Q} CMOS, Extended CMVR CMOS, Input Protected CMOS, Fixed I_{Q} CMOS, Input Protected JFET Input Op-Amp JFET Input, Low Bias JFET Input Op-Amp JFET Input, Low Bias PMOS Input PMOS Input, Low Bias	$\begin{aligned} & \hline 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 20 \\ & 4.0 \\ & 50 \\ & 4.0 \\ & 0.1 \\ & 0.01 \end{aligned}$	0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.5 0.2	$\begin{aligned} & 2,5,15 \\ & 2,5,15 \\ & 2,5,15 \\ & 2,5,15 \\ & 2,5,15 \\ & 20 \\ & 30 \\ & 50 \\ & 30 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.4 \\ & 1.4 \\ & 0.48 \\ & 0.48 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 0.7 \\ & 0.7 \end{aligned}$	INT INT INT EXT EXT INT INT INT INT INT INT	$\begin{aligned} & \pm 9 \\ & \pm 18 \end{aligned}$	$\left\{\begin{array}{c} 0 \text { to }+70 \\ \& \\ -55 \text { to }+125 \\ \\ -55 \text { to }+125 \\ -55 \text { to }+125 \\ 0 \text { to }+70 \\ 0 \text { to }+70 \\ -25 \text { to }+85 \\ -25 \text { to }+85 \end{array}\right.$
\sum_{5}^{0}	ICL7621 ICL7622 ICL8043M ICL8043C	CMOS, Fixed I_{Q} CMOS, Offset Nuil Pins JFET Input Op-Amp JFET Input Op-Amp	$\begin{aligned} & 50 \\ & 50 \\ & 20 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2,5,15 \\ & 2,5,15 \\ & 20 \\ & 50 \end{aligned} .$	$\begin{aligned} & 0.48 \\ & 0.48 \\ & 1.0 \\ & 1.0 \end{aligned}$	INT INT INT INT	$\begin{aligned} & \pm 9 \\ & \pm 9 \\ & \pm 18 \\ & \pm 18 \end{aligned}$	$\left\{\begin{array}{r} 0 \text { to }+70 \\ -55 \text { to }+125 \\ -55 \text { to }+125 \\ 0 \text { to }+70 \end{array}\right.$
	ICL7631 ICL7632	CMOS, Selectable IQ CMOS, Selectable I_{Q}		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 5,10,20 \\ & 5,10,20 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	INT NONE	$\begin{aligned} & \pm 9 \\ & \pm 9 \end{aligned}$) $\begin{array}{r}0 \text { to }{ }_{8}+70 \\ -55 \text { to }+125\end{array}$
号	ICL7641 ICL7642	CMOS, Fixed I_{Q} CMOS, Fixed I_{Q}	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 5,10,20 \\ & 5,10,20 \end{aligned}$		$\begin{aligned} & \text { INT } \\ & \text { INT } \end{aligned}$	$\begin{aligned} & \pm 9 \\ & \pm 9 \end{aligned}$	$\} \begin{array}{r}0 \text { to }{ }_{8}+70 \\ -55 \text { to }+125\end{array}$

4. AMPLIFIERS

Commutating Auto-Zero (CAZ) Instrumentation Amplifiers

TYPE	DESCRIPTION	$V_{0 S}$ ($\mu \mathrm{V}$ Max)	$\Delta \operatorname{Vos} / \Delta T$ $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$ (Max)	Δ Vos/ $\Delta \mathrm{t}$ (nV/month) (Typ)	$I_{\text {BIAS }}$ (pA Max)	SIGNAL BANDWIDTH (Hz Max)	Avol (dB Typ)	TEMPERATURE RANGE ($\left.{ }^{\circ} \mathrm{C}\right)$
ICL7605C	CMOS, Compensated	5.0	0.2	40	1500	10	105	0 to +70
ICL76051	CMOS, Compensated	5.0	0.2	40	1500	10	105	-25 to +85
ICL7605M	CMOS, Compensated	5.0	0.2	40	1500	10	105	-55 to +125
ICL7606C	CMOS, Uncompensated	5.0	0.2	40	1500	10	105	0 to +70
ICL76061	CMOS, Uncompensated	5.0	0.2	40	1500	10	105	-25 to +85
ICL7606M	CMOS, Uncompensated	5.0	0.2	40	1500	10	105	-55 to +125

Log/Antilog Amplifiers

TYPE	DESCRIPTION	ABSOLUTE ERROR (mV Max)	Vos (mV Max)	Δ Vout/ ΔT ($\mathrm{mV} /{ }^{\circ} \mathrm{C}$) (Typ)	DYNAMIC RANGE (dB)	OUTPUT SWING (V Typ)	$\mathbf{V}_{\text {SUPPLY }}$ (V Max)	TEMPERATURE RANGE (${ }^{\circ} \mathrm{C}$)
ICL8048BC	Logarithmic Amplifier,	30	25	0.8	120	± 14	± 18	0 to +70
ICL8048CC	1V/Decade Output	60	50	0.8	120	± 14	± 18	0 to +70
ICL8049BC	Antilog Amplifier	10	25	0.38	60	± 14	± 18	0 to +70
ICL8049CC	iV/Decade Input	25	50	0.55	60	± 14	± 18	0 to +70

Power Transistor Drive Amplifiers

TYPE	DESCRIPTION	Iout (mA Min)	$V_{\text {OUT }}$ (V Min)	$V_{0 S}$ (mV Max)	Avol (VN)	SUPPLY CURRENT (mA Max)	$\mathbf{V}_{\text {SUPPLY }}$ (V Max)	TEMPERATURE RANGE $\left({ }^{\circ} \mathrm{C}\right)$
$\begin{aligned} & \text { ICL8063M } \\ & \text { ICL8063C } \end{aligned}$	Bipolar Monolithic Driver Amplifier	$\begin{aligned} & +501-25 \\ & +401-20 \end{aligned}$	$\begin{aligned} & \pm 27 V \\ & \pm 27 V \end{aligned}$	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & \pm 35 \\ & \pm 35 \end{aligned}$	$\begin{array}{r} -55 \text { to }+125 \\ 0 \text { to }+70 \end{array}$

Video Amplifiers

TYPE	DESCRIPTION	A_{v} (NM)	SIGNAL BANDWIDTH (MHz)	V_{∞} (Max)	IBIAS (uA Max)	$\bar{\omega}_{n}$ (m V RMS)	$V_{\text {SUPPLY }}$ (V Max)	TEMPERATURE RANGE $\left({ }^{\circ} \mathrm{C}\right)$
NE592	Bipolar, Programmable gain amplifier	100/400	90/40	0.75	30	12	± 8	0 to +70
SE592		$100 / 400$	$90 / 40$	0.75	20	12	± 8	-55 to +125

Power Supply Circuits (CMOS)

| TYPE | FUNCTION | DESCRIPTION |
| :---: | :--- | :--- | :--- | :---: |

*New Product

Sample and Hold Circuits

TYPE	DESCRIPTION	$V_{\text {Input }}$ (V Max)	ACQUISITION time (14)	Charge INJECTION ERROR (mV)	Vos (mV)	DRIFT RATE ($\mathrm{mV} / \mathrm{sec}$)	$\mathbf{V}_{\text {SUPPLY }}$ (V Max)	TEMPERATURE RANGE ($\left.{ }^{\circ} \mathrm{C}\right)$
1H5110	General purpose	± 7.5	6	5	40	5	$\pm 16 \mathrm{~V}$	
1H5111	Sample/Hold Circuit,	± 10.5	6	5	40	5	$\pm 16 \mathrm{~V}$	-25 to +85
IH5112	TLL Compatible	± 7.5	6	5	10	5	$\pm 16 \mathrm{~V}$	
IH5113	Hold Input	± 10.0		5	10	5	$\pm 16 \mathrm{~V}$	-55 to +125
1H5114		± 7.5	6	5	5	5	$\pm 16 \mathrm{~V}$	
1H5115		± 10.0	6	5	5	5	$\pm 16 \mathrm{~V}$	

5. SPECIAL ANALOG FUNCTIONS

Temperature Transducers

TYPE	DESCRIPTION	ACCURACY $\left({ }^{\circ} \mathrm{C}\right)$	$\mathbf{V}_{\text {SUPPLY }}$ (M)	TEMPERATURE RANGE (${ }^{\circ} \mathrm{C}$)
AD5901	The AD590 is a 2-wire,	± 10	4 to 30	-55 to +150
AD590J	current-output	± 5.0	4 to 30	-55 to +150
AD590K	temperature transducer.	± 2.5	4 to 30	-55 to +150
AD590L	Output current	± 1.0	4 to 30	-55 to +150
AD590M	varies linearly at $1 \mu \mathrm{~A}{ }^{\circ} \mathrm{K}$.	± 0.5	4 to 30	-55 to +150

Voltage References and Detectors

TYPE	FUNCTION	DESCRIPTION	temperature RANGE (${ }^{\circ} \mathrm{C}$)
ICL7665	Programmable Micropower Voltage Detector	Contains two individually programmable voltage comparators, and requires only $3 \mu \mathrm{~A}$ supply current. Intended for battery operated systems that require low or high voltage warnings etc. Open drain outputs for interfacing.	0 to +70
ICL8069	Low Voltage Reference	A 1.20 V temperature compensated bandgap voltage reference. It achieves excellent stability and low noise at currents as low as $50 \mu \mathrm{~A}$.	$\begin{gathered} 0 \text { to }+70 \\ -55 \text { to }+125 \end{gathered}$
ICL8211	Programmable Voltage Detector	The ICL8211 is a micropower voltage detector. It contains a 1.15 V reference, a comparator, a hysteresis output and a non-inverting main-output.	$\begin{gathered} 0 \text { to }+70 \\ -55 \text { to }+125 \end{gathered}$
ICL8212	Programmable Voltage Detector	The ICL8212 is similar in operation to the ICL8211 except that its main output is inverting as opposed to non-inverting.	$\begin{gathered} 0 \text { to }+70 \\ -55 \text { to }+125 \end{gathered}$

Miscellaneous Circuits

TYPE	FUNCTION	DESCRIPTION	TEMPERATURE RANGE (${ }^{\circ} \mathrm{C}$)
ICM7206	CMOS Touch Tone" Encoder	The ICM7206 is a 2-of-8 sine wave DTMF generator for use in telephone dialing systems. Requires a 3.58 MHz crystal \& will work with 3×4 or 4×4 keypads.	-40 to +85
ICL7667	Dual Power MOSFET Driver	The ICL7667 is a TTL-compatible high-speed CMOS driver designed to provide high output current (1.5A) and voltage (up to +15 V) for driving the gates of power MOSFETs.	$\begin{gathered} 0 \text { to }+70 \\ -55 \text { to }+125 \end{gathered}$
ICL8013	4-Quadrant Analog Multiplier	The ICL8013 is a bipolar 4-quadrant multiplier. The output is proportional to the product of two input voltages. An internal op-amp is included for level shifting.	$\begin{gathered} 0 \text { to }+70 \\ -55 \text { to }+125 \end{gathered}$
ICL8038	Precision Waveform Generator	The ICL8038 is a bipolar function generator and is capable of producing high accuracy sine, square and triangular waveforms. Frequency range is 0.001 Hz to 300 kHz .	$\begin{gathered} 0 \text { to }+70 \\ -55 \text { to }+125 \end{gathered}$

[^7]
Integrating Analog-to-Digital Converters with Display Drivers (CMOS)

	TYPE	ACCURACY SPECIAL FEATURES	DISPLAY TYPE	CONVER- SIONSISEC	INPUT VOLTAGE RANGES	NON LIN. EARITY	ROLLOVER ERROR	\qquad	$\begin{aligned} & \text { SUPPLY } \\ & \mathbf{V}_{\text {SUPPLY }} \\ & \text { ISUPPLY }^{\prime} \end{aligned}$	TEMP RANGE (${ }^{\circ} \mathrm{C}$)
	ICL7106	Low Cost	LCD, 7 . Segment Direct Drive	0.1 to 15	$\begin{aligned} & 0 \text { to } \pm 0.2 \mathrm{~V} \\ & 0 \text { to } \pm 2.0 \mathrm{~V} \end{aligned}$	± 1 Count	± 1 Count	$1_{\mu} \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} +9 \mathrm{~V} \text { (Typ) } \\ 1.8 \mathrm{~mA} \text { (Max) } \end{gathered}$	0 to +70
	ICL7107	Low Cost	LED, 7 . Segment Common Anode	0.1 to 15	$\begin{aligned} & 0 \text { to } \pm 0.2 \mathrm{~V} \\ & 0 \text { to } \pm 2.0 \mathrm{~V} \end{aligned}$	± 1 Count	± 1 Count	$1_{\mu} \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} \pm 5 \mathrm{~V} \text { (Typ) } \\ 1.8 \mathrm{~mA} \text { (Max) } \end{gathered}$	0 to +70
	ICL7116	Display Hold Input	LCD, 7 . Segment Direct Drive	0.1 to 15	$\begin{aligned} & 0 \text { to } \pm 0.2 \mathrm{~V} \\ & 0 \text { to } \pm 2.0 \mathrm{~V} \end{aligned}$	± 1 Count	± 1 Count	${ }_{1 \mu} \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} +9 \mathrm{~V} \text { (Typ) } \\ 1.8 \mathrm{~mA} \text { (Max) } \end{gathered}$	0 to +70
	ICL7117	Display Hold Input	LED, 7 . Segment Common Anode	0.1 to 15	$\begin{aligned} & 0 \text { to } \pm 0.2 \mathrm{~V} \\ & 0 \text { to } \pm 2.0 \mathrm{~V} \end{aligned}$	± 1 Count	± 1 Count	$1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} \pm 5 \mathrm{~V} \text { (Typ) } \\ 1.8 \mathrm{~mA} \text { (Max } \end{gathered}$	0 to +70
	ICL7126	Low Power Operation	LCD, 7 - Segment Direct Drive	0.1 to 4	$\begin{aligned} & 0 \text { to } \pm 0.2 \mathrm{~V} \\ & 0 \text { to } \pm 2.0 \mathrm{~V} \end{aligned}$	± 1 Count	± 1 Count	$1_{\mu} \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} +9 \mathrm{~V} \text { (Typ) } \\ 100 \mu \mathrm{~A} \text { (Max) } \end{gathered}$	0 to +70
	ICL7136	Improved '7126, Low Power Operation	LCD 7. Segment Direct Drive	0.1 to 4	$\begin{aligned} & 0 \text { to } \pm 0.2 \mathrm{~V} \\ & 0 \text { to } \pm 2.0 \mathrm{~V} \end{aligned}$	± 1 Count	± 1 Count	$1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} +9 \mathrm{~V}(\mathrm{Typ}) \\ 100 \mu \mathrm{~A}(\mathrm{Max}) \end{gathered}$	0 to +70
	ICL7137	Improved '7107, Low Power Operation	LED 7. Segment Common Anode	0.1 to 4	$\begin{aligned} & 0 \text { to } \pm 0.2 \mathrm{~V} \\ & 0 \text { to } \pm 2.0 \mathrm{~V} \end{aligned}$	± 1 Count	± 1 Count	$1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} \pm 5 \mathrm{~V}(\mathrm{Typ}) \\ 200 \mu \mathrm{~A} \text { max } \\ \hline \end{gathered}$	0 to +70
$\begin{aligned} & 5 \\ & \hline 0 \\ & \hline 0 \\ & =0 \end{aligned}$	ICL7129	Range, DisplayHold \& Decimal Point Inputs	LCD, 7 . Segment Triplexed	2	$\left\lvert\, \begin{aligned} & 0 \text { to } \pm 0.2 \mathrm{~V} \\ & 0 \text { to }+2.0 \mathrm{~V} \end{aligned}\right.$	± 1 Count	$\begin{aligned} & 0.5 \text { Count } \\ & \text { (typ) } \end{aligned}$	$\underset{\text { (typ) }}{ \pm 0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}}$	$\begin{gathered} +9 \mathrm{~V}(\text { Typ) } \\ 1.4 \mathrm{~mA} \text { (Max) } \end{gathered}$	0 to +70

6. DATA ACQUISITION

Integrating Analog-to-Digital Converters (CMOS)

	TYPE	SPECIAL FEATURES	DIGITAL OUTPUT FORMAT	CONVER- SIONS PER SECOND	INPUT VOLTAGE RANGES	NON UNEARTTY	ROLLOVER ERROR	STABILITY ZERO INPUT DRIFT	$\begin{aligned} & \text { SUPPLY } \\ & \text { V SUPPLY }^{\prime} \\ & \text { ISUPPLY }^{\text {S}} \end{aligned}$	TEMP Range (${ }^{\circ} \mathrm{C}$)
$\begin{aligned} & \frac{5}{C} \\ & \frac{0}{B} \\ & \dot{B} \end{aligned}$	ICL7135	Under \& over range outputs, polarity output	Multiplexed BCD with strobes	0.1 to 7.5	$\begin{aligned} & 0 \text { to } \pm 0.2 \mathrm{~V} \\ & 0 \text { to } \pm 2.0 \mathrm{~V} \end{aligned}$	± 1 Count	± 1 Count	$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} \pm 5 \mathrm{~V} \text { (Typ) } \\ 3.0 \mathrm{~mA} \text { (Max) } \end{gathered}$	0 to +70
	ICL7109	μ P-Compatible, run/hold input, UART Handshake	8/4 Bits, Separate Enables	30 (Max)	$\begin{aligned} & 0 \text { to } \pm 4.0 \mathrm{~V} \\ & 0 \text { to } \pm 3.5 \mathrm{~V} \end{aligned}$	± 1 Count	± 1 Count	${ }_{1 \mu} \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} \pm 5 \mathrm{~V} \text { (Тyp) } \\ 1.5 \mathrm{~mA} \text { (Max) } \end{gathered}$	$\begin{gathered} 0 \text { to }+70 \\ -25 \text { to }+85 \\ -55 \text { to }+125 \end{gathered}$
	$\begin{aligned} & \text { ICL710412 } \\ & \text { ICL8052 } \end{aligned}$	${ }_{\mu}$ P-Compatible, 2-Chip Set, Low Input Leakage	8/4 Bits, Separate Enables	48.8 (Max)	$\pm 10 \mathrm{~V}$	+1 LSB	+1 LSB	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} +5 \mathrm{~V} \text { and } \\ \pm 15 \mathrm{~V} \text { (Typ) } \\ 1.0 \mathrm{~mA} \text { (Max) } \end{gathered}$	0 to +70
	$\begin{aligned} & \text { ICL7104-12 } \\ & \text { ICL8068 } \end{aligned}$	μ P-Compatible, 2-Chip Set, Low Input Noise	8/4 Bits, Separate Enables	48.8 (Max)	$\pm 10 \mathrm{~V}$	+1 LSB	+1 LSB	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{array}{\|c\|} \hline+5 \mathrm{~V} \text { and } \\ \pm 15 \mathrm{~V} \text { (Typ) } \\ 1.0 \mathrm{~mA} \text { (Max) } \end{array}$	0 to +70
\pm	$\left\{\begin{array}{l} \text { ICL7104-14 } \\ \text { ICL8052 } \end{array}\right.$	${ }_{\mu} \mathrm{P}$-Compatible, 2-Chip Set, Low Input Leakage	8/4 Bits, Separate Enables	12.2 (Max)	$\pm 10 \mathrm{~V}$	+1 LSB	+1 LSB	$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} +5 \mathrm{~V} \text { and } \\ \pm 15 \mathrm{~V} \text { (Typ) } \\ 1.0 \mathrm{~mA} \text { (Max) } \end{gathered}$	0 to +70
	$\begin{aligned} & \text { ICL7104-14 } \\ & \text { ICL8068 } \end{aligned}$	${ }_{\mu} \mathrm{P}$-Compatible, 2-Chip Set, Low Input Noise	8/4 Bits, Separate Enables	12.2 (Max)	$\pm 10 \mathrm{~V}$	+1 LSB	+1 LSB	$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{array}{\|c\|} \hline+5 \mathrm{~V} \text { and } \\ \pm 15 \mathrm{~V} \text { (Typ) } \\ 1.0 \mathrm{~mA} \text { (Max) } \end{array}$	0 to +70
$\left.\left\lvert\, \begin{array}{l} \stackrel{5}{0} \\ \stackrel{6}{\circ} \end{array}\right.\right)$	$\begin{aligned} & \text { ICL.7104-16 } \\ & \text { ICL8052 } \\ & \hline \end{aligned}$	${ }_{\mu} \mathrm{P}$-Compatible, 2-Chip Set, Low Input Leakage	8/8 Bits, Separate Enables	3 (Max)	$\pm 10 \mathrm{~V}$	+1 LSB	+1 LSB	$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} +5 \mathrm{~V} \text { and } \\ \pm 15 \mathrm{~V} \text { (Typ) } \\ 1.0 \mathrm{~mA} \text { (Max) } \end{gathered}$	0 to +70
	$\begin{aligned} & \text { ICL7104-16 } \\ & \text { ICL8068 } \end{aligned}$	${ }_{\mu} \mathrm{P}$-Compatible, 2-Chip Set, Low Input Noise	8/8 Bits, Separate Enables	3 (Max)	$\pm 10 \mathrm{~V}$	+ 1 LSB	+1 LSB	$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{array}{\|c\|} \hline+5 \mathrm{~V} \text { and } \\ \pm 15 \mathrm{~V}(\text { Typ) } \\ 1.0 \mathrm{~mA} \text { (Max) } \end{array}$	0 to +70

Successive Approximation Analog-to-Digital Converters (CMOS)

	TYPE	SPECIAL FEATURES	DIGITAL OUTPUT FORMAT	CONVERSION SPEED $(\mu \mathrm{s})$	$\begin{aligned} & \text { INPUT } \\ & \text { VOLTAGE } \\ & \text { RANGE } \end{aligned}$	OVERALL ACCURACY	TOTAL ERROR	GAIN TEMP. COEFF	SUPPLY VSUPPLYI Isupply	TEMP RANGE (${ }^{\circ} \mathrm{C}$)
	ADC0802	${ }_{\mu} \mathrm{P}$-Compatible, Differential Inputs	8-Bit Binary	$\begin{gathered} 114 \\ (\text { Max) } \\ \hline \end{gathered}$	0 to +5.0 V	-	$\pm 1 / 2$ LSB (Unadjusted)	-	$\begin{gathered} +5 \mathrm{~V} \text { (Typ) } \\ 25 \mathrm{~mA}(\mathrm{Max}) \end{gathered}$	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \\ -55 \text { to }+125 \end{gathered}$
$\left\|\begin{array}{c} - \\ \hline \boldsymbol{\omega} \\ \dot{\infty} \end{array}\right\|$	ADC0803	${ }_{\mu} \mathrm{P}$-Compatible, Differential Inputs	8-Bit Binary	$\begin{gathered} 114 \\ (\text { Max) } \end{gathered}$	0 to +5.0 V	-	$\pm 1 / 2$ LSB (Adjusted)	-	$\begin{gathered} +5 \mathrm{~V} \text { (Typ) } \\ 25 \mathrm{~mA}(\mathrm{Max}) \end{gathered}$	$\begin{array}{\|c\|} \hline 0 \text { to }+70 \\ -40 \text { to }+85 \\ -55 \text { to }+125 \end{array}$
	ADC0804	${ }_{\mu} \mathrm{P}$-Compatible, Differential Inputs	8-Bit Binary	$\begin{gathered} 114 \\ (M a x) \\ \hline \end{gathered}$	0 to +5.0 V	-	$\pm 1 \& S B$ (Unadjusted)	-	$\begin{gathered} +5 \mathrm{~V} \text { (Typ) } \\ 25 \mathrm{~mA}(\text { Max }) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 0 \text { to }+70 \\ -40 \text { to }+85 \\ -55 \text { to }+125 \\ \hline \end{array}$
	ICL7115J/K	${ }_{\mu} \mathrm{P}$-Compatible, High Speed Converter	8/6 Bits A0 Byte Enable	$\begin{gathered} 40 \\ (\text { Max) } \end{gathered}$	$\begin{aligned} & 0 \text { to }+5.0 \mathrm{~V} \\ & 0 \text { to }-5.0 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.01 \%(J) \\ 0.006 \%(K) \end{array}$	+1 LSB	$4 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} +5 \mathrm{~V} \text { (Тур) } \\ 5 \mathrm{~mA}(Т \mathrm{Y}) \end{gathered}$	0 to +70

6. DATA ACQUISITION

Digital-to-Analog Converters (CMOS)

	TYPE	SPECIAL FEATURES	$\begin{aligned} & \text { DIGITAL } \\ & \text { INPUT } \\ & \text { FORMAT } \end{aligned}$	$\begin{aligned} & \text { SETTLING } \\ & \text { TIME } \\ & \text { TO } \\ & 0.05 \% \text { FS) } \end{aligned}$	OUTPUT VOLTAGE CURRENT	NON LINEARITY	GAIN ERROR	STABILITY GAIN LINERITY	SUPPLY VSUPPLY IsuppLy	TEMP RANGE (${ }^{\circ} \mathrm{C}$)
$\stackrel{6}{\infty}$	AD7523	${ }_{\mu}$ P-Compatible, Low Power Multiplying DAC	Binaryl Offset Binary	$\begin{aligned} & 200 \mathrm{~ns} \\ & (\text { Max }) \end{aligned}$	$\begin{gathered} \pm V_{\text {REF }} A \\ 10 K \Omega \\ \text { (Max) } \end{gathered}$	$\begin{gathered} 0.2 \%(J, A, S) \\ 0.1 \%(K, B, T) \\ 0.05 \%(L, C, U) \end{gathered}$	1.5\% (Max)	$\begin{array}{r} 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	$\begin{gathered} +15 \mathrm{~V}(T y p) \\ 100 \mu \mathrm{~A}(\mathrm{Max}) \end{gathered}$	$\begin{gathered} 0 \text { to }+70 \\ -25 \text { to }+85 \\ -55 \text { to }+125 \end{gathered}$
	AD7520	${ }_{\mu} \mathrm{P}$-Compatible, 8, 9, 10 Bit Lin. Multiplying DAC	Binaryl Offset Binary	$\begin{gathered} 500 \mathrm{~ns} \\ (\mathrm{Typ}) \end{gathered}$	$\begin{gathered} \pm V_{\text {REF }} \\ 10 K \Omega \\ \text { (Max) } \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 0.2 \% \\ 0.1 \%(J, A, S) \\ 0.05 \%(L, B, C, U) \\ \hline \end{array}$	0.3\% (Typ)	$\begin{array}{r} 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & +15 \mathrm{~V} \text { (Typ) } \\ & 2 \mathrm{~mA}(\mathrm{Max}) \end{aligned}$	$\begin{gathered} 0 \text { to }+70 \\ -25 \text { to }+85 \\ -55 \text { to }+125 \end{gathered}$
	AD7530	Same as '7520 But no leakage fieed thru specs	Binaryl Offset Binary	$\begin{gathered} 500 \mathrm{~ns} \\ (\mathrm{Typ}) \end{gathered}$	$\begin{gathered} \pm V_{\text {REF }} \\ 10 K \Omega \\ (\text { Max }) \end{gathered}$	$\begin{aligned} & \hline 0.2 \%(J, A, S) \\ & 0.1 \%(K, B, T) \\ & 0.05 \%(L, C, U) \end{aligned}$	0.3\% (Typ)	$\begin{array}{r} 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & +15 \mathrm{~V} \text { (Typ) } \\ & 2 \mathrm{~mA}(\text { Max }) \end{aligned}$	$\begin{gathered} 0 \text { to }+70 \\ -25 \text { to }+85 \\ -55 \text { to }+125 \end{gathered}$
	AD7533	${ }_{\mu}$ P-Compatible, Lowest Cost 10-bit DAC	Binaryl Offset Binary	$\begin{gathered} 600 \mathrm{~ns} \\ (\mathrm{Typ}) \end{gathered}$	$\begin{gathered} \pm V_{\text {REF }} A \\ 10 K \Omega \\ (\mathrm{Max}) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 0.2 \% \\ 0.1 \% \\ 0.0, A, S) \\ 0.05 \% \\ \hline \end{array}(L, C, C, U)$	1.4\% (Max)	$\begin{aligned} & 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & +15 \mathrm{~V} \text { (Тyp) } \\ & 2 \mathrm{~mA}(\text { Max }) \end{aligned}$	$\begin{gathered} 0 \text { to }+70 \\ -25 \text { to }+85 \\ -55 \text { to }+125 \end{gathered}$
	AD7521	${ }_{\mu} \mathrm{P}$-Compatible, 8, 9, 10 Bit Lin. Multiplying DAC	Binaryl Offset Binary	$\begin{gathered} 500 \mathrm{~ns} \\ (\mathrm{Typ}) \end{gathered}$	$\begin{gathered} \pm V_{\text {REF }} A \\ 10 K \Omega \\ (M a x) \end{gathered}$	$\begin{gathered} 0.2 \%(J, A, S) \\ 0.1 \%(K, B, T) \\ 0.05 \%(L, C, U) \end{gathered}$	0.3\% (Typ)	$\begin{array}{r} 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & +15 \mathrm{~V} \text { (Typ) } \\ & 2 \mathrm{~mA}(\text { Max }) \end{aligned}$	$\begin{gathered} 0 \text { to }+70 \\ -25 \text { to }+85 \\ -55 \text { to }+125 \end{gathered}$
	AD7531	Same as '7521 But no leakage Heed thru specs	$\begin{array}{\|l\|} \hline \text { Binaryl } \\ \text { Offset } \\ \text { Binary } \end{array}$	$\begin{gathered} 500 \mathrm{~ns} \\ \text { (Typ) } \end{gathered}$	$\begin{gathered} \pm V_{\text {REF }} A \\ 10 K \Omega \\ (\text { Max }) \end{gathered}$	$\begin{array}{\|l} \hline 0.2 \%(J, A, S) \\ 0.1 \%(K, B, T) \\ 0.05 \%(L, C, U) \end{array}$	0.3\% (Typ)	$\begin{array}{r} 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & +15 \mathrm{~V} \text { (Typ) } \\ & 2 \mathrm{~mA}(\text { Max }) \end{aligned}$	$\begin{gathered} 0 \text { to }+70 \\ -25 \text { to }+85 \\ -55 \text { to }+125 \end{gathered}$
	AD7541	${ }_{\mu}$ P-Compatible, High performance DAC	Binaryl Offset Binary	$\begin{aligned} & 1 \mu \mathrm{~S} \\ & (\text { Max) } \end{aligned}$	$\begin{gathered} \pm V_{\text {REF }} A \\ 10 K \Omega \\ (\text { Max }) \end{gathered}$	$\begin{aligned} & 0.02 \%(J, A, S) \\ & 0.01 \%(\mathbb{K}, \mathrm{~B}, \mathrm{~T}) \\ & 0.01 \%(\mathrm{~L}, \mathrm{C}, \mathrm{U}) \end{aligned}$	0.3\% (Max)	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +15 \mathrm{~V} \text { (Typ) } \\ & 2 \mathrm{~mA}(\text { Max }) \end{aligned}$	$\begin{gathered} 0 \text { to }+70 \\ -25 \text { to }+85 \\ -55 \text { to }+125 \end{gathered}$
	AD7134	${ }_{\mu}$ P-Compatible, Low power Multiplying DAC	Binaryl 2's Complement	$\begin{gathered} 3 \mu \mathrm{~S} \\ \text { (Max) } \end{gathered}$	$\begin{gathered} \pm V_{\text {REF }} A \\ 7 K \Omega \\ (M a x) \end{gathered}$	$\begin{gathered} 0.1 \%(J, A, S) \\ 0.006 \%(K, B, T) \\ 0.003 \%(L C, U) \end{gathered}$	$\begin{gathered} 0.02 \%(J) \\ 0.012 \%(\mathbb{K}) \\ 0.006 \%(L) \end{gathered}$	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} +5 \mathrm{~V}(\mathrm{Typ}) \\ 0.5 \mathrm{~mA}(\mathrm{Max}) \end{gathered}$	$\begin{gathered} 0 \text { to }+70 \\ -25 \text { to }+85 \\ -55 \text { to }+125 \end{gathered}$

Quad Current Switches For D/A Conversion (Singles or Matched Pairs)

TYPE	DESCRIPTION	ABSOLUTE ERROR (\% Max)	ERROR TEMPCO. (PPM/ ${ }^{\circ} \mathrm{C}$ Max)	$V_{\text {SUPPLY }}$ (V Max)	ISUPPLY (mA Max)	TEMPERATURE RANGE (${ }^{\circ} \mathrm{C}$)
ICL8018A ICL8019A ICL8020A	High precision current switches for use in summing DIA converters	$\begin{aligned} & \pm 0.01 \\ & \pm 0.10 \\ & \pm 1.00 \\ & \hline \end{aligned}$	$\begin{gathered} \pm 5 \\ \pm 25 \\ \pm 50 \end{gathered}$	$\begin{aligned} & \pm 20^{\circ} \\ & \pm 25 \\ & \pm 20 \\ & \hline \end{aligned}$	$\begin{gathered} 10 \\ \pm 20 \\ 10 \end{gathered}$	$\left\{\begin{array}{c}0 \text { to }+70 \\ -55 \text { to }+125\end{array}\right.$

7. TIMER/COUNTER CIRCUITS

Timer/Counters With Display Drivers

These counters will measure frequency when used with the ICM7207 (0.01 and 0.1 second timebase) or the ICM7207A (0.1 and 1.0 second timebase)
7. TIMER/COUNTER CIRCUITS

Timers/Counters Without Display Drivers

TYPE	SPECIAL FEATURES	
ICM7555		Low power CMOS equivalent of industry standard 555 timer-only 80μ A supply current. ICM7555 does not have the large supply current transients of the bipolar 555 and does not require the large bypassing capacitors needed by the 555 . Low leakage threshold and trigger inputs allow use of higher impedance RC timing com- ponents for extra long time delays.
ICM7556		An ICM7556 is a dual ICM7555, a CMOS, low power equivalent of the Bipolar 556 Timer.
ICM7240 ICM7250 ICM7260	Binary $0-225$ BCD 0-99 Time 0-59	Programmable CMOS counter/timer. Uses on-board RC oscillator or an external clock. The count is programmed by wire-AND connection of the outputs. Excelient for ON/OFF delay timers, $-N$ counters, and long period delays.
ICM7242	Fixed 128/255	RC oscillator + 8-bit counter, similar to ICM7240 but with fixed 256 count. Used for extremely long time delays. Cascadable.

Oscillator/Divider Selector Guide

TYPE	OUTPUT FREQUENCY	SUPPLY VOLTAGE (M)	TYPICAL CURRENT ($\mu \mathrm{A}$)	PULSE WIDTH (ms)	CRYSTAL FREQUENCY	OTHER OUTPUTS/COMMENTS
ICM7213	1 Pulse/Min	2-4	100	125, 1000	4.19 MHz	1 Pulse/Sec, 2048, 1024, 34.133, 16 Hz
ICM7207A	0.5 Hz	4.5.5	260	$\begin{aligned} & 1000, \\ & 0.391 \end{aligned}$	5.24288 MHz	$5 \mathrm{~Hz}, 1600 \mathrm{~Hz}$ (Note 1)
ICM7213	1 Hz	2-4	100	7.8	4.19 MHz	1 Pulse/Min, 2048, 1024, 34.133, 16 Hz
ICM7207A ICM7207	$\begin{aligned} & 5 \mathrm{~Hz} \\ & 5 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 4-5.5 \\ & 4-5.5 \end{aligned}$	$\begin{aligned} & 260 \\ & 260 \end{aligned}$	$\begin{aligned} & 100,0.391 \\ & 100,0.312 \end{aligned}$	$\begin{aligned} & 5.24288 \mathrm{MHz} \\ & 6.5536 \mathrm{MHz} \end{aligned}$	$0.5,1600 \mathrm{~Hz}$ $50 \mathrm{~Hz}, 1280 \mathrm{~Hz}$
ICM7213	16 Hz	2-4	100	Sq. Wave	4.19 MHz	1 Pulse/Min, 2048, 1024, 34.133, 1 Hz
ICMi7207	50 Hz	4.5 .5	260	20,0.312	6.5536 MHz	$5 \mathrm{~Hz}, 1280 \mathrm{~Hz}$
ICM7213 ICM7213 ICM7207A ICM7207	$\begin{aligned} & 1000 \mathrm{~Hz} \\ & 1024 \mathrm{~Hz} \\ & 1280 \mathrm{~Hz} \\ & 1600 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 2-4 \\ & 2-4 \\ & 4.5 .5 \\ & 4-5.5 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 260 \\ & 260 \end{aligned}$	Sq. Wave Sq. Wave Sq. Wave Sq. Wave	$\begin{aligned} & \text { 4.096 MHz } \\ & \text { 4.19 MHz } \\ & \text { 5.24288 MHz } \\ & \text { 6.5536 Mhz } \end{aligned}$	$\begin{aligned} & \text { 2000, 2000 Pulses/Min } \\ & 1 \text { Pulse/Min, 2048, } 34.133,16,1 \mathrm{~Hz} \\ & 0.5,5 \mathrm{~Hz} \\ & 5,50 \mathrm{~Hz} \end{aligned}$
ICM7213	2048 Hz	2.4	100	Sq. Wave	4.19 MHz	1 Pulse/Min, 1024, 34.133, 16, 1 Hz
ICM7209	$\begin{aligned} & 250 \mathrm{kHz} \\ & 10 \mathrm{MHZ} \end{aligned}$	4.5-5.5	11,000	Sq. Wave	$1-10 \mathrm{MHz}$	(Note 2)

[^8]| TYPE | \# OF CHARACTERS OR DIGITS | | | | | display
 TYPE | | | | | | FONT | | | interface | | | | FEATURES AND COMMENTS |
| :---: |
| | W of 7 -Segment Digits | suopipunuuy so slu!od lewioeg to" | | | | LED. Common Anode Non-MUX | | | | | | | Code 8 (0.9, H, E, L, P, •, and Blank) | | | | | | |
| ICM7211 | 4 | | | | | | | | - | | | \bullet | | - | - | | | 1000 | Drives Conventional LCD Displays. Includes RC Oscillator, Divider Chain, Latches, Interface and LCD Drivers. Evaluation Kit Available |
| 1CM7211A | 4 | | | | | | | | e | | | | \bigcirc | - | \bigcirc | | | 1000 | |
| ICM 7211 M | 4 | | | | | | | | - | | | - | | | - | | | 200 | |
| ICM7211AM | 4 | | | | | | | | \bullet | | | | - | | - | | | 200 | |
| ICM7212 | 4 | | | | | φ | | | | | | 0 | | - | - | | | 1000 | Drives Common Anode LED Displays. 28 Current Controlled Outputs. Includes Latches, Interface and Brightness Control. Evaluation Kit Available. |
| ICM7212A | 4 | | | | | \bigcirc | | | | | | | \bigcirc | - | - | | | 1000 | |
| ICM7212M | 4 | | | | | - | | | | | | - | | | - | | | 200 | |
| ICM7212AM | 4 | | | | | - | | | | | | | - | | - | | | 200 | |
| ICM7218A | 8 | 8 | | | | | | \bigcirc | | | | 0 | - | | | 0 | | 550 | 3 Decode Formats Drives UP to 64 Independent LED's. Includes 8×8 Memory, Multiplexed LED Drivers, Decoders, Interface and control. Applications Include Bar Graphs. |
| ICM7218B | 8 | 8 | | | | | \bullet | | | | | \bullet | \bullet | | | - | | 550 | |
| 1CM7218C | 8 | 8 | | | | | | \bullet | | | | \bigcirc | - | | - | | | 500 | |
| ICM7218D | 8 | 8 | | | | | - | | | | | \bigcirc | - | | - | | | 500 | |
| ICM7218E | 8 | 8 | | | | | | \bullet | | | | 0 | \bullet | | - | | | 500 | |
| ICM7231A | 8 | 16 | | | | | | | | 3 | | \bullet | | | - | | | 500 | 8 Digits, 16 Annunciators on COM 3, Hexadecimal |
| ICM7231B | 8 | 16 | | | | | | | | 3 | | | - | | - | | | 500 | 8 Digits, 16 Annunciators on COM 3, Code B |
| ICM7231C | 8 | 16 | | | | | | | | 3 | | | - | | - | | | 500 | 8 Digits, 16 Annunicators on COM 1+3, Code B |
| ICM7232A | 10 | 20 | | | | | | | | 3 | | \bullet | | | | | - | 350 | 10 Digits, 20 Annunciators on COM 3, Hexadecimal |
| 1CM7232B | 10 | 20 | | | | | | | | 3 | | | - | | | | - | 350 | 10 Digits, 20 Annunciators on COM 3, Code B |
| ICM7232C | 10 | 20 | | | | | | | | 3 | | | \bullet | | | | - | 350 | 10 Digits, 20 Annunciators on COM 1+3, Code B |
| ICM7233A | | | | | 4 | | | | | 3 | | | | - | - | | | 500 | 4 Alphanumeric Characters. Evaluation Kit Available |
| ICM7233B | | | | | 4 | | | | | 3 | | | | - | - | | | 500 | 4 Alphanumeric Characters. Full-Width Numbers |
| ICM7234A | | | | | 5 | | | | | 3 | | | | \bullet | | | - 3 | 350 | 5 Alphanumeric Characters. Half-Width Numbers |
| ICM7234B | | | | | 5 | | | | | 3 | | | | \bullet | | | - 3 | 350 | 5 Alphanumeric Characters. Full-Width Numbers |
| ICM7235 | 4 | | | | | | | | | | \bullet | \bullet | | \bullet | - | | | 1000 | Drives 30 Volt Vacuum Fluorescent Displays Directly. Includes Latch/Decoder $\mu \mathrm{P}$ Interface or 4-Bit Input. Hexadecimal or Code B Format Available. |
| ICM7235A | 4 | | | | | | | | | | \bullet | | \bullet | - | - | | | 1000 | |
| ICM7235M | 4 | | | | | | | | | | \bullet | \bigcirc | | | - | | | 200 | |
| ICM7235AM | 4 | | | | | | | | | | \bullet | | - | | \bullet | | | 200 | |
| ICM7243A | | | | 8 | | | \bullet | | | | | | | \bullet | \bullet | | | 250 | 8 Alphanumeric Characters + Decimal Pt. can be Daisy Chained or Cascaded. Evaluation Kit Available. |
| ICM7243B | | | 8 | | | | - | | | | | | | - | \bullet | | | 250 | |
| 1CM7280* | | 14 | | | 80 | | | | | $\begin{array}{\|l\|} \hline 78 \\ 10 \end{array}$ | | | | - | - | | | 400 | $1 \times 80 \mathrm{Ch}$. Dot Matrix LCD Controller and Row Driver. Use with ICM7281. |
| ICM7283* | | 14 | | | 80 | | | | | 16 | | | | - | - | | | 400 | 2×40 Ch. Dot Matrix LCD Controller and Row Driver. Use with ICM7281. |
| LCM7281* | | | | | - | | | | | - | | | | | | | | | Column Driver for use with ICM7280 or ICM7283. |

[^9]
Microcontrollers, Microperipherals, Memory

Microcontrollers

$\begin{aligned} & \text { BASIC } \\ & \text { PART } \\ & \text { NUMBER } \end{aligned}$	DESCRIPTION	$\begin{gathered} \mathrm{f}_{\mathrm{c}} \mathrm{~Hz} \end{gathered}$	INTERNAL MEMORY		PACKAGE	TEMPERATURE RANGE $\left({ }^{\circ} \mathrm{C}\right)$
			ROM	RAM		
$1 \mathrm{MB0C48}$	8048/80C48 Family Compatible	6	$1 \mathrm{~K} \times 8$	64×8	PL, JL	
IM80649*	2 X the memory of IM80C48	6	$2 \mathrm{~K} \times 8$	128×8	PL, JL	$0-+70$
Im80C35*	Same as IM80C48 without ROM	6	None	64×8	PL, JL	$-40-+85$
IM80C39*	Same as IM80C49 without ROM	6	None	128×8	PL, JL	

Microprocessor Peripherals - See also Display Drivers, Counters, A/D, and D/A Converters.

TYPE	DESCRIPTION		PACKAGE	TEMPERATURE RANGE (${ }^{\circ} \mathrm{C}$)
CMM7170*	${ }_{\mu}$ P-Compatible Real-Time Clock, Binary Time Format, Micropower Standby Operation ($2 \mu \mathrm{~A} @ 2.8 \mathrm{~V}$)	4.19	PG, JG	$-40-+85$
$\begin{aligned} & \text { IM6402 } \\ & \text { IM6402-1 } \\ & \text { IM6402A } \end{aligned}$	CMOS Industry Standard Compatible UART High-Speed Version of IM6402 10 V Operating Version of IM6402	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} \text { PL } \\ \text { PL, JL } \\ \text { PL, JL } \end{gathered}$	$\begin{aligned} & -40-+85 \\ & -55-+125 \end{aligned}$
IM6403 IM6403-1 IM6403A	Like Corresponding IM6402 Device but with On-board Crystal Oscillator and Baud Rate Generator	$\begin{gathered} 2.46 \\ 3.58 \\ 6.0 \end{gathered}$	$\begin{gathered} \text { PL } \\ \text { PL, JL } \\ \text { PL, JL } \end{gathered}$	$\begin{aligned} & -40-+85 \\ & -55-+125 \end{aligned}$
M82C43*	CMOS I/O Expander for 80C48/49 Microcomputers		PG, JG	$\begin{gathered} 0-+70 \\ -40-+85 \end{gathered}$
IM4702/12	Baud Rate Generator	3.58	PE, JE	$-40-+85$

CMOS EPROMs

ORGANIZATION/ TYPE	MAX ACCESS TIME (ns)	$V_{C C}$ (V)	Icc MAX (mA) OPERATING	Icc MAX ($\mu \mathrm{A}$) STANDBY	PACKAGE	TEMPERATURE RANGE (${ }^{\circ} \mathrm{C}$)
1024×4						
IM66531	550	5	6	140	JG	$-40-+85$
IM6653M	600	5	6	140	JG	$-55-+125$
IM6653-1]	450	5	6	140	JG	$-40-+85$
IM6653AI	300	10	12	140	JG	$-40-+85$
IM6653AM	350	10	12	140	JG	$-55-+125$
512×8						
IM66541	550	5	6	140	JG	$-40-+85$
IM6654M	600	5	6	140	JG	$-55-+125$
IM6654-1I	450	5	6	140	JG	$-40-+85$
IM6654AI	300	10	12	140	JG	$-40-+85$
IM6654AM	350	10	12	140	JG	$-55-+125$

[^10]
Section 2 - Discretes

2N2607-2N2609 2N2609JAN
P-Channel JFET
General Purpose Amplifier

APPLICATIONS

- Low-Level Choppers
- Data Switches
- Commutators

ORDERING INFORMATION*

TO-18	WAFER	DICE
2N2607	2N2607/W	2N2607/D
2N2608	2N2608/W	2N2608/D
2N2609	2N2609/W	2N2609/D
2N2609JAN	-	-

*When ordering wafer/dice refer to Section 10, page 10-1.

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source Voltage ... 30V
Gate-Drain Voltage .. 30V
Gate Current ... 50 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$
Power Dissipation ... 300 mW
Derate above $25^{\circ} \mathrm{C}$............................. $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		2N2607		2N2608		2N2609		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
IGSSR	Gate Reverse Current	$\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			3		10		30	nA
		$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$			3		10		30	$\mu \mathrm{A}$
$B V_{\text {GSS }}$	Gate-Drain Breakdown Voltage	$1_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		30		30		30		V
V_{P}	Gate-Source Pinch-Off Voitage	$V_{D S}=-5 V, I_{D}=-1 \mu A$		1	4	1	4	1	4	V
IDSS	Drain Current at Zero Gate Voltage	$\mathrm{V}_{\mathrm{DS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		-0.30	-1.50	-0.90	-4.50	-2	-10	mA
gfs	Small-Signal Common-Source Forward Transconductance	$V_{D S}=-5 V, V_{G S}=0, f=1 \mathrm{kHz}$		330		1000		2500		$\mu \mathrm{s}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance	$\begin{aligned} & V_{D S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=1 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \text { (Note 1) } \end{aligned}$			10		17		30	pF
NF	Noise Figure (Note 1)	$\begin{aligned} & V_{D S}=-5 \mathrm{~V}, \\ & V_{G S}=0, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \Omega$		3					dB
			$\mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$				3		3	dB

NOTE 1: For design reference only, not 100% tested.

FEATURES

- Low Noise
- High Input Impedance
- Low Capacitance

ORDERING INFORMATION*

TO-72	WAFER	DICE
2N3684	2N3684/W	2N3684/D
2N3685	2N3685/W	2N3685/D
2N3686	2N3686/W	2N3686/D
2N3687	2N3687/W	2N3687/D

*When ordering wafer/dice refer to Section 10, page 10-1.

APPLICATIONS

- Low Level Choppers
- Data Switches
- Multiplexers
- Low Noise Amplifiers

CHIP TOPOGRAPHY

ELECTRICAL CHARACTERISTICS
$\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	2N3684		2N3685		2N3686		2N3687		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
BV ${ }_{\text {GSS }}$	Gate to Source Breakdown Voltage	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=1.0 \mu \mathrm{~A}$	-50		-50		-50		-50		V
V_{p}	Pinch-Off Voltage	$\mathrm{V}_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.001 \mu \mathrm{~A}$	-2.0	-5.0	-1.0	-3.5	-0.6	-2.0	-0.3	-1.2	
$I_{\text {GSS }}$	Total Gate Leakage Current	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		-0.1		-0.1		-0.1		-0.1	nA
	$\cdots T_{A}=150^{\circ} \mathrm{C}$			-0.5		-0.5		-0.5		-0.5	$\mu \mathrm{A}$
IDSS	Saturation Current, Drain-to-Source	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}$	2.5	7.5	1.0	3.0	0.4	1.2	0.1	0.5	mA
$\left\|Y_{\text {fs }}\right\|$	Forward Transadmittance	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, V_{G S}=0 \\ & f=1 \mathrm{kHz} \end{aligned}$	2000	3000	1500	2500	1000	2000	500	1500	$\mu \mathrm{s}$
G_{os}	Common Source Output Conductance			50		25		10		5	$\mu \mathrm{S}$
$\mathrm{C}_{\text {iss }}$	Common Source Input Capacitance	$\begin{aligned} & V_{D S}=20 V, V_{G S}=0 \\ & f=1 \mathrm{MHz}(\text { Note } 1) \end{aligned}$.	4.0		4.0		4.0		4.0	pF
Crss	Common Source Short Circuit Reverse Transfer Capacitance			1.2		1.2		1.2		1.2	pF
r ${ }_{\text {DS }}$ (on)	On Resistance	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=0$		600		800		1200		2400	ohms
NF	Noise Figure (Note 1)	$\begin{aligned} & f=100 \mathrm{~Hz}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \Omega \\ & N B W=6 \mathrm{~Hz}, V_{D S}=10 \mathrm{~V}, \\ & V_{G S}=0 \mathrm{~V} \end{aligned}$		0.5		0.5	\cdots	0.5		0.5	dB

NOTE 1: For design reference only, not 100% tested.

2N3810/A, 2N3811/A
 Dual Matched PNP
 General Purpose Amplifier

PIN CONFIGURATION

TO-78

ORDERING INFORMATION*

TO-78	WAFER	DICE
2N3810	2N3810/W	2N3810/D
2N3810A		
2N3811	2N3811/W	2N3811/D
2N3811A		

*When ordering wafer/dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ Ambient Temperature unless otherwise noted

SYMBOL	PARAMETER	TEST CONDITIONS		2N38	10/A	2N3	11/A	UNIT
				MIN	MAX	MIN	MAX	
$\mathrm{BV}_{\mathrm{CBO}}$	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$		-60		-60		V
$\mathrm{BV}_{\text {CEO }}$	Collector-Emitter Breakdown Voltage (Note 2)	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$		-60		-60		
$\mathrm{BV}_{\text {EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \mathrm{I} \mathrm{C}=0$		-5		-5		
${ }^{1} \mathrm{C}$ (off)	Collector Cutoff Current	$V_{C B}=-50 \mathrm{~V}, I_{E}=0$			-10		-10	nA
	$\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$				-10		-10	$\mu \mathrm{A}$
IE(off)	Emitter Cutoff Current	$\mathrm{V}_{\mathrm{BE}}=4 \mathrm{~V}$, IC			-20		-20	nA
$h_{\text {fe }}$	Static Forward Current Transfer Ratio	$V_{C E}=-5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{~A}$	100		225		
			$\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$ to -1 mA	150	450	300	900	
			$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \mathrm{(Note} \mathrm{2)}$	125		250		
			$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$	75		150		
$V_{B E}$ (sat)	Base-Emitter Saturation Voltage	$\begin{aligned} & V_{C E}=-5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A} \end{aligned}$	$\mathrm{I}_{\mathrm{B}}=-10 \mu \mathrm{~A}$		-0.7		-0.7	V
			$\mathrm{I}_{\mathrm{B}}=-100 \mu \mathrm{~A}$		-0.8		-0.8	
$\mathrm{V}_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage (Note 2)	$\mathrm{I}_{\mathrm{B}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$			-0.2		-0.2	
		$\mathrm{I}_{\mathrm{B}}=-100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$			-0.25		-0.25	
$h_{\text {ie }}$	Input Impedance (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		3	30	10	40	k Ω
$\mathrm{hfe}^{\text {fe }}$	Forward Current Transfer Ratio (Note 4)			150	600	300	900	
$\mathrm{hre}_{\text {re }}$	Reverse Voltage Transfer Ratio (Note 4)				0.25		0.25	
$\mathrm{h}_{\text {oe }}$	Output Admittance (Note 4)			5	60	5	60	$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER		TEST CONDITIONS		2N3810/A		2N3811/A		UNIT		
			MIN	MAX	MIN	MAX					
$\mathrm{h}_{\text {fe }} \mid$	Magnitude of small signal current gain (Note 4)				$\mathrm{V}_{\mathrm{CE}}=-5 \mathrm{~V}$	$\mathrm{I}^{\prime}=-1 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$	1	5	1	5	
			$\mathrm{I}_{\mathrm{C}}=-500 \mu \mathrm{~A}, \mathrm{f}=30 \mathrm{MHz}$	1			1				
Cobo	Output Capacitance (Note 4)		$\mathrm{V}_{C B}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}$			4		4	pF		
$\mathrm{C}_{\text {ibo }}$	Input Capacitance (Note 4)		$\mathrm{V}_{C B}=-0.5 \mathrm{~V}, \mathrm{I} \mathrm{C}=0, \mathrm{f}=1 \mathrm{MHz}$			8		8			
$\mathrm{h}_{\mathrm{FE}_{1} / \mathrm{hFE}_{2}}$	DC Current Gain Ratio \quad A devices		$V_{C E}=-5 \mathrm{~V}, \mathrm{IC}=100 \mu \mathrm{~A}$		0.9	1.0	0.9	1.0			
			0.95	1.0	0.95	1.0					
$\mid \mathrm{V}_{\mathrm{BE}_{1}-\mathrm{V}_{\mathrm{BE}_{2}} \mid}$	Base-Emitter Voltage Differential				$V_{C E}=-5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$ to, 10 mA		-5		-5	mV
		A devices		-2.5				-2.5			
			$I_{C}=100 \mu \mathrm{~A}$			-3		-3			
		A devices				-1.5		-1.5			
$\frac{\Delta \mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}}{\Delta \mathrm{~T}}$	Base-Emitter Voltage Differential Gradient	A devices	$V_{C E}=-5, I_{C}=100 \mu \mathrm{~A}$			$\begin{gathered} 10 \\ 5 \end{gathered}$		$\begin{gathered} 10 \\ 5 \end{gathered}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
NF	Spot Noise Figure (Note 4)		$\begin{aligned} & V_{C E}=-10 \mathrm{~V}, \mathrm{IC}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3 \mathrm{k} \Omega, \\ & f=100 \mathrm{~Hz}, \text { Noise Bandwidth }=20 \mathrm{~Hz} \end{aligned}$			7		4	dB		
			$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{IC}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3 \mathrm{~K} \Omega, \\ & \mathrm{f}=1 \mathrm{kHz}, \text { Noise Bandwidth }=200 \mathrm{kHz} \end{aligned}$			3		1.5			
			$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{IC}=-100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3 \mathrm{k} \Omega \\ & \mathrm{f}=10 \mathrm{kHz}, \text { Noise Bandwidth }=2 \mathrm{kHz} \end{aligned}$			2.5		1.5			
			$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3 \mathrm{k} \Omega, \\ & \text { Noise Bandwidth }=15.7 \mathrm{kHz}(\text { Note 3) } \end{aligned}$			3.5		2.5			

NOTES: 1. Per transistor.
2. Pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2.0 \%$.
3. 3 dB down at 10 Hz and 10 kHz .
4. For design reference only, not 100% tested.

2N3821, 2N3822, JAN, JTX, JTXV N-Channel JFET
 High Frequency Amplifier

FEATURES

- Low Capacitance
- Up to 6500μ s Transconductance

ORDERING INFORMATION*

TO-72	WAFER	DICE
2N3821	2N3821/W	2N3821/D
2N3822	2N3822/W	2N3822/D

*When ordering wafer/dice refer to Section 10, page 10-1.
†add JAN, JTX, JTXV to basic part number to specify these devices.

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source Voltage ... -50 V
Gate-Drain Voltage ... -50. 5
Gate Current ... 10mA
Storage Temperature Range $\ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Power Dissipation ... 300 mW

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER		TEST CONDITIONS	2N3821		2N3822		UNIT	
			MIN	MAX	MIN	MAX			
IGSS	Gate Reverse Current $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$			$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		-0.1		-0.1	nA
					-0.1		-0.1	$\mu \mathrm{A}$	
BVGSS	Gate-Source Breakdown Voltage		$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	-50		-50		V	
$\mathrm{V}_{\mathrm{GS} \text { (off) }}$	Gate-Source Cutoff Voltage		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}$		-4		-6		
V_{GS}	Gate-Source Voltage		$V_{D S}=15 \mathrm{~V}, I_{D}=50 \mu \mathrm{~A}$	-0.5	-2				
			$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$			-1	-4		
IDSS	Saturation Drain Current (Note 1)		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	0.5	2.5	2	10	mA	

SYMBOL	PARAMETER	TEST CONDITIONS		2N3821		2N3822		UNIT
				MIN	MAX	MIN	MAX	
9fs,	Common-Source Forward Transconductance (Note 1)	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$	1500	4500	3000	6500	
$\left.\right\|_{\text {yss }} \mid$	Common-Source Forward Transadmittance (Note 2)		$\mathrm{f}=100 \mathrm{MHz}$	1500		3000		$\mu \mathrm{s}$
gos	Common-Source Output Conductance (Note 1)		$\mathrm{f}=1 \mathrm{kHz}$		10		20	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Note 2)		$\mathrm{f}=1 \mathrm{MHz}$		6		6	pF
$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance (Note 2)				3		3	
NF	Noise Figure (Note 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{R}_{\mathrm{gen}}=1 \mathrm{meg}, \mathrm{BW}=5 \mathrm{~Hz} \\ & \hline \end{aligned}$	$\mathrm{f}=10 \mathrm{~Hz}$		5		5	dB
\bar{e}_{n}	Equivalent Input Noise Voltage (Note 2)	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{BW}=5 \mathrm{~Hz} \end{aligned}$			200		200	$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$

NOTES: 1. These parameters are measured during a 2 ms interval 100 ms after DC power is applied.
2. For design reference only, not 100% tested.

2N3823, JAN, JTX, JTXV N-Channel JFET High Frequency Amplifier

FEATURES

- Low Noise
- Low Capacitance
- Transductance Up to $6500 \mu \mathrm{~s}$

ORDERING INFORMATION*

TO-72	WAFER	DICE
2N3823	2N3823/W	$2 N 3823 / D$

CHIP TOPOGRAPHY

CT000611

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage 30 V
Gate Current ... 10mA
Storage Temperature Range $\ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Power Dissipation .. 300 mW
Derate above $25^{\circ} \mathrm{C} \ldots \ldots2 .0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
*When ordering wafer/dice refer to Section 10, page 10-1.
\dagger †add JAN, JTX, JTXV to basic part number to specify these devices
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
		$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-0.5	nA
IGSS	Gate Reverse Current $\quad \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$				-0.5	$\mu \mathrm{A}$
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-30		
$\mathrm{V}_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}$			-8	V
V_{GS}	Gate-Source Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=400 \mu \mathrm{~A}$		-1.0	-7.5	
IDSS	Saturation Drain Current	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		4	20	mA
Ifs	Common-Source Forward Transconductance (Note 1)	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$	3,500	6,500	
$\left\|Y_{\text {fs }}\right\|$	Common-Source Forward Transadmittance (Note 2)		$f=100 \mathrm{MHz}$	3,200		
gos	Common-Source Output Transconductance (Note 1)		$\mathrm{f}=1 \mathrm{kHz}$		35	$\mu \mathrm{s}$
giss	Common-Source input Conductance (Note 2)				800	
goss	Common-Source Output Conductance (Note 2)		$\mathrm{f}=200 \mathrm{MHz}$		200	
Ciss	Common-Source Input Capacitance (Note 2)		$f=1 \mathrm{MHz}$		6	pF
Crss	Common-Source Reverse Transfer Capacitance (Note 2)				2	
NF	Noise Figure (Note 2)	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, V_{G S}=0 \\ & R_{G}=1 \mathrm{k} \Omega \end{aligned}$	$f=100 \mathrm{MHz}$		2.5	dB

[^11]2N3824 N-Channel JFET Switch

FEATURES

- $\mathbf{r d s}_{\mathrm{ds}}<\mathbf{2 5 0}$ Ohms
- $I_{D(o f f)}<0.1 n A$

ORDERING INFORMATION*

TO-72	WAFER	DICE
2N3824	2N3824/W	2N3824/D

CHIP TOPOGRAPHY

5003

ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage
Gate Current
Storage Temperature Range $\ldots \ldots \ldots . . .65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Load Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$
Power Dissipation .300 mW
Derate above $25^{\circ} \mathrm{C}$
$2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
*When ordering wafer/dice refer to Section 10 , page 10-1.

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

SYMBOL	PARAMETER	TEST CONDITIONS		LIMITS		UNIT
				MIN	MAX	
		$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-0.1	nA
IGSS	Gate Reverse Current $\quad \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$				-0.1	$\mu \mathrm{A}$
$B V_{\text {GSS }}$	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-50		V
	Drain Cutoff Current $\quad T_{A}=150^{\circ} \mathrm{C}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}$			0.1	$n \mathrm{~A}$
ID(off)					0.1	$\mu \mathrm{A}$
$\mathrm{r}_{\mathrm{ds}(\mathrm{O}}$)	Drain-Source ON Resistance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$	$f=1 \mathrm{kHz}$	\cdots	250	Ω
Ciss	Common-Source Input Capacitance (Note 1)	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{MHz}$	-	6	pF
Crss	Common-Source Reverse Transfer Capacitance (Note 1)	$V_{G S}=-8 V, V_{D S}=0$		$\because \therefore$	3	pF

NOTE 1: For design reference only, not 100% tested.

ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage (Note 1)........ -50V
Gate Current (Note 1) 50mA
Storage Temperature Range $\ldots \ldots \ldots65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Load Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$
Total Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C} .1 .7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
*When ordering wafer/dice refer to Section 10, page 10-1.
ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
	Gate Reverse Current	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-1	nA
IGSS					-1	$\mu \mathrm{A}$
BV ${ }_{\text {DGO }}$	Drain-Gate Breakdown Voltage	$l_{D}=1 \mu A, I_{S}=0$		50		
$\mathrm{V}_{\mathrm{GS} \text { (off) }}$	Gate-Source Cutoff Voltage	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$			-3	V
$V_{G S}$	Gate-Source Voltage	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$		-0.2	-2.7	
	Gate Operating Current	$V_{D G}=10 \mathrm{~V}, \mathrm{ID}=700 \mu \mathrm{~A}$			-250	pA
iG					-25	nA
IDSS	Saturation Drain Current (Note 1)	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		1	10	mA
gfs	Common-Source Forward Transconductance (Note 2)	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{kHz}$	1500	7500	
gos	Common-Source Output Conductance				35	$\mu \mathrm{s}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Note 3)				18	
Crss	Common-Source Reverse Transfer Capacitance (Note 3)		$f=1 \mathrm{MHz}$		6	p
g_{fs}	Common-Source Forward Transconductance	$V_{D G}=10 \mathrm{~V}, I_{D}=700 \mu \mathrm{~A}$		1500		
goss	Common-Source Output Conductance		$f=1 \mathrm{kHz}$		20	$\mu \mathrm{s}$
NF	Spot Noise Figure (Note 3)	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\begin{aligned} & f=1 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{G}}=1 \mathrm{meg} \end{aligned}$		2	dB

MATCHING CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS		2N3921		2N3922		UNIT
				MIN	MAX	MIN	MAX	
$\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|$	Differential Gate-Source Voltage	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, \\ & I_{D}=700 \mu \mathrm{~A} \end{aligned}$			5		5	mV
$\frac{\Delta\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}}$	Gate-Source Differential Voltage Change with Temperature		$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \\ & T_{B}=100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		10		25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{gfs}_{\text {f }} / \mathrm{g}_{\text {fis }}$	Transconductance Ratio		$\mathrm{f}=1 \mathrm{kHz}$	0.95	1.0	0.95	1.0	

NOTES: 1. Per transistor.
2. Pulse test duration $=2 \mathrm{~ms}$.
3. For design reference only, not 100% tested.

FEATURES

- Low Offset and Drift
- Low Capacitance
- Low Noise
- Superior Tracking Ability
- Low Output Conductance

ORDERING INFORMATION*

TO-71	WAFER	DICE
2N3954	2N3954/W	2N3954/D
2N3954A	2N3954A/W	2N3954A/D
2N3955	2N3955/W	2N3955/D
2N3955A	2N3955A/W	2N3955A/D
2N3956	2N3956/W	2N3956/D
2N3957	2N3957/W	2N3957/D
2N3958	2N3958/W	2N3958/D

ABSOLUTE MAXIMUM RATINGS

*When ordering wafer/dice refer to Section 10, page 10-1.
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		2N3954		2N3954A		2N3955		2N3955A		2N3956		2N3957		2N3958		UNIT
				MIN	MAX													
	Gate Reverse Current	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DS}}=0 \end{aligned}$			-100		-100		-100		-100		-100		-100		-100	pA
IGSS	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$				-500		-500		-500		-500		-500		-500		-500	$n \mathrm{~A}$
$\mathrm{BV}_{\text {Gss }}$	Gate-Source Breakdown Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \\ & \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A} \end{aligned}$		-50		-50		-50		-50		-50		-50		-50		
$V_{\text {GS(oft) }}$	Gate-Source Cutoff Voltage	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA} \\ & \hline \end{aligned}$		-1.0	-4.5	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5	
$\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$	Gate-Source Forward Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \\ & \mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA} \end{aligned}$			2.0		2.0		2.0		2.0		2.0		2.0		2.0	V
$V_{G S}$	Gate-Source Voltage	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}$		-4.2		-4.2		-4.2		-4.2		-4.2		-4.2		-4.2	
			$\mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$	-0.5	-4.0	-0.5	-4.0	-0.5	-4.0	-0.4	-4.0	-0.5	-4.0	-0.5	-4.0	-0.5	-4.0	
I_{G}	Gate Operating Current	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \end{aligned}$			-50		-50		-50		-50		-50		-50		-50	pA
	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$				-250		-250		-250		-250		-250		-250		-250	nA
$\mathrm{I}_{\text {ds }}$	Saturation Drain Current	$\begin{aligned} & V_{\mathrm{DS}}=20 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$		0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	mA

2N3954-2N3958 2N3954A/2N3955A

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS		2N3954		2N3954A		2N3955		2N3955A		2N3956		2N3957		2N3958		UNIT
				MIN	MAX													
g_{ts}	Common-Source Forward		$\mathrm{f}=1 \mathrm{kHz}$	1000	3000	1000	3000	1000	3000	1000	3000	1000	3000	1000	3000	1000	3000	
	Transconductance	(Note 2)	$\mathrm{f}=200 \mathrm{MHz}$	1000		1000		1000		1000		1000		1000		1000		
$\mathrm{g}_{\text {os }}$	Common-Source Output Conductance	$\begin{aligned} & V_{\mathrm{DS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$		35		35		35		35		35		35		35	$\mu \mathrm{s}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Note 2)		$f=1 \mathrm{MHz}$		4.0		4.0		4.0		4.0		4.0		4.0		4.0	pF
$\mathrm{C}_{\text {rss }}$	Common Source Reverse Transfer Capacitance (Note 2)				1.2		1.2		1.2		1.2		1.2		1.2		1.2	
$\mathrm{C}_{\text {dgo }}$	Drain-Gate Capacitance (Note 2)	$\begin{array}{\|l} \hline V_{D G}=10 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{S}}=0 \\ \hline \end{array}$			1.5		1.5		1.5		1.5		1.5		1.5		1.5	
NF	Common-Source Spot Noise Figure (Note 2)	$\begin{aligned} & V_{D S}=20 \mathrm{~V} \\ & V_{G S}=0 \\ & R_{G}=10 \mathrm{M} \Omega \end{aligned}$	$f=100 \mathrm{~Hz}$		0.5		0.5		0.5		0.5		0.5		0.5		0.5	dB
$\left\|I_{G 1}-I_{G 2}\right\|$	Differential Gate Current	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\mathrm{T}=125^{\circ} \mathrm{C}$		10		10		10		10		10		10		10	nA
$\mathrm{l}_{\text {DSS1 }} / \mathrm{l}_{\text {DSS2 }}$	Drain Saturation Current Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$		0.95	1.0	0.95	1.0	0.95	1.0	0.95	1.0	0.95	1.0	0.90	1.0	0.85	1.0	
$\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|$	Differential Gate-Source Voltage	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & \mathrm{D}_{\mathrm{D}}=200 \mu \mathrm{~A} \end{aligned}$			5.0		5.0		10.0		5.0		15		20		25	mV
$\Delta \mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}$	Gate-Source Differential Voltage Change With Temperature		$\begin{aligned} & T=25^{\circ} \mathrm{C} \text { to } \\ & -55^{\circ} \mathrm{C} \end{aligned}$		0.8		0.4		2.0		1.2		4.0		6.0		8.0	
ΔT			$\begin{aligned} & T=25^{\circ} \mathrm{C} \text { to } \\ & 125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		1.0		0.5		2.5		1.5		5.0		7.5		10.0	
$\mathrm{g}_{\mathrm{ts} 1} / \mathrm{g}_{\mathrm{is} 2}$	Transconductance Ratio		$f=1 \mathrm{kHz}$	0.97	1.0	0.97	1.0	0.97	1.0	0.95	1.0	0.95	1.0	0.90	1.0	0.85	1.0	

NOTES: 1. Per Transistor.
2. For design reference only, not 100% tested.

FEATURES

- Low rDS(on)
- ID(OFF) < 250pA
- Fast Switching

ORDERING INFORMATION*

TO-18	WAFER	DICE
2N3970	2N3970/W	2N3970/D
2N3971	2N3971/W	2N3971/D
2N3972	2N3972/W	2N3972/D

*When ordering wafer/dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

SYMBOL	PARAMETER	TEST CONDITIONS		2N3970		2N3971		2N3972		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
BVGSS	Gate Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-40		-40		-40		V
IDGO	Drain Reverse Current	$V_{D G}=20 \mathrm{~V}, I_{S}=0$			250		250		250	pA
	$T_{A}=150^{\circ} \mathrm{C}$				500		500		500	nA
l (0ff)	Drain Cutoff Current $\quad T_{A}=150^{\circ} \mathrm{C}$	$V_{\text {DG }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}$			250		250		250	pA
					500		500		500	nA
$\mathrm{V}_{\text {GS(}}$ (ff)	Gate-Source Cutoff Voltage	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-4	-10	-2	-5	-0.5	-3	V
IDSS	Saturation Drain Current (Pulse width $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$)	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		50	150	25	75	5	30	mA
$V_{\text {DS }}(\mathrm{on})$	Drain-Source ON Voltage	$\mathrm{V}_{\mathrm{GS}}=0$	$I_{D}=5 \mathrm{~mA}$						2	V
			$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$				1.5			
			$1 \mathrm{D}=20 \mathrm{~mA}$		1					
rDS(on)	Static Drain-Source ON Resistance	$V_{G S}=0, I_{D}=1 \mathrm{~mA}$			30		60		100	Ω
rds(on)	Drain-Source ON Resistance	$V_{G S}=0, I_{D}=0$	$f=1 \mathrm{kHz}$		30		60		100	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 1)	$f=1 \mathrm{MHz}$		25		25		25	
$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V} \\ & \text { (Note 1) } \end{aligned}$			6		6		6	pF
t_{d}	Turn-On Delay Time (Note 1)	$V_{D D}=10 \mathrm{~V}$, $V_{G S}(o n)=0$ $I_{D(o n)}$ $V_{G S(\text { off })}$ R_{L} $2 N 3970$ 20 mA -10 V 450Ω $2 N 3971$ 10 mA -5 V 850Ω $2 N 3972$ 5 mA -3 V $1.6 \mathrm{~K} \Omega$			10		15		40	ns
t_{r}	Rise Time (Note 1)				10		15		40	
toff	Turn-Off Time (Note 1)				30		60		100	

NOTE 1: For design reference only, not 100% tested.

ELECTRICAL CHARACTERISTICS (CONT.)

General Purpose Amplifier/Switch

FEATURES

- Low rDS(on)
- High $\mathrm{Y}_{\mathrm{fs}} / \mathrm{C}_{\text {iss }}$ Ratio (High-Frequency Figure-ofMerit)

PIN CONFIGURATION

TO-72

ORDERING INFORMATION*

TO-72	WAFER	DICE
2N3993	2N3993/W	2N3993/D
2N3994	2N3994/W	2N3994/D

*When ordering wafer/dice refer to Section 10, page 10-1.

APPLICATIONS

Used in high-speed commutator and chopper applications. Also ideal for ' Virtual Gnd' switching; needs no ext. translator circuit to switch ± 10 VAC. Can be driven direct from TTL or CMOS logic.

ELECTRICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS (Note 3)		2N3993		2N3994		UNIT
				MIN	MAX	MIN	MAX	
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}$,	$\mathrm{V}_{\mathrm{DS}}=0$	25		25		V
IDGO	Drain Reverse Current	$V_{D G}=-15 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{S}}=0$		-1.2		-1.2	nA
		$V_{D G}=-15 \mathrm{~V}$,	$\begin{aligned} & I_{S}=0, \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$		-1.2		-1.2	$\mu \mathrm{A}$
IDSS	Zero-Gate-Voltage Drain Current	$V_{D S}=-10 \mathrm{~V}$,	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0, \\ & (\text { See Note 1) } \end{aligned}$	-10		-2		mA
ID(off)	Drain Cutoff Current	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}$				-1.2	nA
		$V_{D S}=-10 \mathrm{~V}$,	$\begin{aligned} & V_{G S}=6 \mathrm{~V}, \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$				-1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$		-1.2			nA
		$V_{D S}=-10 \mathrm{~V}$,	$\begin{aligned} & V_{G S}=10 \mathrm{~V}, \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$		-1			$\mu \mathrm{A}$
V_{GS} (off)	Gate-Source Voltage	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{D}}=-1 \mu \mathrm{~A}$	4	9.5	1	5.5	V
rds(on)	Small-Signal Drain-Source On-State Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$I_{D}=0,$		150		300	Ω
$\left\|y_{f s}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & V_{D S}=-10 \mathrm{~V}, \\ & f=1 \mathrm{kHz}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0, \\ & \text { (See Note 1) } \end{aligned}$	6	12	4	10	$\mu \mathrm{s}$
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance (Note 4)	$\begin{aligned} & V_{D S}=-10 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0, \\ & \text { (See Note 2) } \end{aligned}$		16		16	pF

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS (Note 3)		2N3993		2N3934		UNIT
				MIN	MAX	MIN	MAX	
$\mathrm{Crss}^{\text {r }}$	Common-Source Short-Circuit Reverse Transfer Capacitance (Note 4)	$\begin{aligned} & V_{D S}=0, \\ & f=1 \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}$,				5	pF
		$\begin{aligned} & V_{D S}=0, \\ & f=1 \mathrm{MHz} \end{aligned}$	$V_{G S}=10 \mathrm{~V}$,		4.5			pF

NOTES: 1. These parameters must be measured using pulse techniques, $t_{p}=100 \mathrm{~ms}$, duty cycle $\leq 10 \%$.
2. This parameter must be measured with bias voltage applied for less than 5 seconds to avoid overheating.
3. The case should be connected to the source for all measurements.
4. For design reference only, not 100% tested.

2N4044, 2N4045, 2N4100, 2N4878, 2N4879, 2N4880 Dielectrically Isolated Dual NPN General Purpose Amplifier

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Collector-Base or Collector-Emitter Voltage (Note 1) 2N4044, 2N4878 2N4100, 2N4879 .. 55V 2N4045, 2N4880 ... 45V
Collector-Collector Voltage..................................... 100 V
Emitter Base Voltage (Note 2) 7V
Collector Current (Note 1) 10mA
Storage Temperature Range $\ldots \ldots \ldots65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$
ORDERING INFORMATION*

TO-78	TO-71	WAFER	DICE
2N4044	2N4878	2N4044/W	2N4044/D
2N4045	2N4879	2N4045/W	2N4045/D
2N4100	2N4880	2N4100/W	2N4100/D

*When ordering wafer/dice refer to Section 10, page 10-1.

	TO-71		TO-78	
	ONE	BOTH	ONE	BOTH
	SIDE	SIDES	SIDE	SIDES
Power Dissipation $\ldots \ldots$.	200 mW	400 mW	250 mW	500 mW
Derate above $25^{\circ} \mathrm{C}$ $\left(\mathrm{mW} /{ }^{\circ} \mathrm{C}\right) \ldots \ldots \ldots \ldots$.	1.3	2.7	1.7	3.3

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ urless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { 2N4044 } \\ & \text { 2N4878 } \end{aligned}$		$\begin{aligned} & \text { 2N4100 } \\ & \text { 2N4879 } \end{aligned}$		$\begin{aligned} & \text { 2N4045 } \\ & \text { 2N4880 } \end{aligned}$		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{h}_{\text {FE }}$	DC Current Gain	$\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V}$	200	600	150	600	80	800	
		$\mathrm{I}^{\prime} \mathrm{C}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$	225		175		100		
	$T_{A}=-55^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	75		50		30		
$\mathrm{V}_{\text {BE }}$ (on)	Emitter-Base On Voltage			0.7		0.7		0.7	V
$V_{\text {CE(sat) }}$	Collector Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~mA}$		0.35		0.35		0.35	
${ }^{\text {ICBO }}$	Coilector Cutoff Current$T_{A}=150^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}, 30 \mathrm{~V} *$		0.1		0.1		0.1*	nA
				0.1		0.1		0.1*	$\mu \mathrm{A}$
IEBO	Emitter Cutoff Current	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\text {EB }}=5 \mathrm{~V}$		0.1		0.1		0.1	nA
$\mathrm{C}_{\text {obo }}$	Output Capacitance (Note 4)	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		0.8		0.8		0.8	pF

2N4044, 2N4045, 2N4100, 2N4878, 2N4879, 2N4880

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		$\begin{aligned} & \text { 2N4044 } \\ & \text { 2N4878 } \end{aligned}$		$\begin{aligned} & \text { 2N4100 } \\ & \text { 2N4879 } \end{aligned}$		$\begin{aligned} & \text { 2N4045 } \\ & \text { 2N4880 } \end{aligned}$		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{C}_{\text {te }}$	Emitter Transition Capacitance (Note 4)	$\mathrm{IC}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$			1		1		1	pF
$\mathrm{C}_{\mathrm{C}_{1}, \mathrm{C}_{2}}$	Collector to Collector Capacitance (Note 4)	$\mathrm{V}_{C C}=0, f=1 \mathrm{MHz}$			0.8		0.8		0.8	pF
${ }^{1} C_{1}, C_{2}$	Collector to Collector Leakage Current	$V_{C C}= \pm 100 \mathrm{~V}$			5		5		5	pA
$\mathrm{V}_{\text {CEO(sust) }}$	Collector to Emitter Sustaining Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$		60		55		45		V
f_{t}	Current Gain Bandwidth Product (Note 4)	$\mathrm{IC}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$		200		150		150		MHz
ft_{t}	Current Gain Bandwidth Product (Note 4)	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$		20		15		15		MHz
NF	Narrow Band Noise Figure (Note 4)	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & R_{G}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$		2		3		3	dB
$\mathrm{BV}_{\mathrm{CBO}}$	Collector Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$		60		55		45		V
$\mathrm{BV}_{\text {Ebo }}$	Emitter Base Breakdown Voltage	$\mathrm{IE}=10 \mu \mathrm{~A}, \mathrm{I} \mathrm{C}=0$		7		7		7		V

MATCHING CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

$\mathrm{h}_{\mathrm{FE}_{1} / \mathrm{h}_{\mathrm{FE}_{2}} \text { }}$	$\begin{array}{\|l\|} \hline \text { DC Current Gain Ratio } \\ \text { (Note 3) } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \text { to } 1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	0.9	1	0.85	1	0.8	1		
$\left\|\mathrm{V}_{\mathrm{BE}_{1}-\mathrm{V}^{\text {BE }}}\right\|$	Base Emitter Voltage Differential	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$		3		5		5	mV	
$\\|_{B_{1}-I_{B_{2}} \mid}$	Base Current Differential	$\mathrm{IC}^{\text {c }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$		5		10		25	nA	
$\left\|\Delta\left(V_{B E_{1}}-V_{B E_{2}}\right)\right\| / \Delta T$	Base Emitter Voltage Differential Change with Temperature	$\begin{aligned} & \mathrm{IC}=10 \mu \mathrm{~A}, \\ & \mathrm{~V}_{C E}=5 \mathrm{~V} \\ & \mathrm{~T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		3		5		10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
$\left\|\Delta\left(I_{B_{1}}-l_{B_{2}}\right)\right\| / \Delta T$				0.3		0.5		1	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$	

SMALL SIGNAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	TYPICAL VALUE	UNIT
$h_{1 b}$	Input Resistance	$\mathrm{I}_{C}=-1 \mathrm{~mA}, \mathrm{~V}_{C B}=5 \mathrm{~V}$ (Note 4)	28	Ω
$h_{\text {rb }}$	Voltage Feedback Ratio		43	$\times 10^{-3}$
$\mathrm{hfe}_{\text {fe }}$	Small Signal Current Gain	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ (Note 4)	250	
$h_{\text {ob }}$	Output Conductance		60	$\mu \mathrm{S}$
$h_{l e}$	Input Resistance		9.6	$k \Omega$
$\mathrm{hre}_{\text {re }}$	Voltage Feedback Ratio		42	$\times 10^{-3}$
$\mathrm{h}_{\text {Oe }}$	Output Conductance		12	$\mu \mathrm{S}$

NOTES: 1. Per transistor.
2. The reverse base-emitter voltage must never exceed 7.0 volts and the reverse base-emitter current must never exceed $10 \mu \mathrm{~A}$.
3. The lowest of two $h_{F E}$ readings is taken as $h_{F E}$ for purposes of this ratio.
4. For design reference only, not 100% tested.

ITE4091-ITE4093 2N4091-2N4093 JAN, JTXV, JANTX* N-Channel JFET
 Switch

FEATURES

- Low rDS(on)
- ID(OFF) < 100pA (JAN TX Types)
- Fast Switching
PIN CONFIGURATIONS

ORDERING INFORMATION*

TO-92	TO-18 \dagger	WAFER	DICE
ITE 4091	2N4091	2N4091/W	2N4091/D
ITE 4092	2N4092	2N4092/W	2N4092/D
ITE 4093	2N4093	2N4093/W	2N4093/D

†add JANTX to these part numbers if JANTX processing is desired.
*When ordering wafer/dice refer to Section 10, page 10-1.

CHIP TOPOGRAPHY

CT005511

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage
-40V
Gate Current ... 10mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots+300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		2N/ITE 4091		2N/ITE 4092		$\begin{gathered} \text { 2N/ITE } \\ 4093 \end{gathered}$		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{BV}_{\text {GSS }}$	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$,	$V_{D S}=0$	-40		-40		-40		V
	Drain Reverse Current (Not JANTX Specified) $\quad T_{A}=150^{\circ} \mathrm{C}$	$V_{D G}=20 \mathrm{~V}, \mathrm{I}^{\prime}=0$			200		200		200	pA
IJGO					400		400		400	$n \mathrm{~A}$
	Gate Reverse Current (JANTX, ITE devices only) $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	$V_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-100		-100		-100	pA
IGSS					-200		-200		-200	nA
ID(OFF)	JAN, JTXV; $T_{\text {A }}=25^{\circ} \mathrm{C} \quad$ JANTX	$V_{D S}=20 \mathrm{~V}$	$\begin{aligned} & V_{G S}=-12 V(4091) \\ & V_{G S}=-8 V(4092) \\ & V_{G S}=-6 V(4093) \end{aligned}$		100		100		100	pA
					200		200		200	
	Drain Cutoff Current ${ }^{\text {dan }}$ J				200		200		200	
	JAN, JTXV, $T_{A}=150^{\circ} \mathrm{C}$				400		400		400	nA
V_{P}	Gate-Source Pinch-Off Voltage	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-5	-10	-2	-7	-1	-5	V
IDSS	Drain Current at Zero Gate Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \text { Pulse Test Duraton }=2 \mathrm{~ms} \end{aligned}$		30		15		8		mA
$\mathrm{V}_{\mathrm{DS}(\mathrm{ON})}$	Drain-Source ON Voltage	$\mathrm{V}_{\mathrm{GS}}=0$	$\mathrm{l}_{\mathrm{D}}=2.5 \mathrm{~mA}$						0.2	V
			$\mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$				0.2			
			$\mathrm{I}_{\mathrm{D}}=6.6 \mathrm{~mA}$		0.2					

2N4091-2N4093 JAN, JTXV, JANTX*

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS				$\begin{gathered} \text { 2N/ITE } \\ 4091 \end{gathered}$		$\begin{gathered} \text { 2N/ITE } \\ 4092 \end{gathered}$		2N/ITE 4093		UNIT
						MIN	MAX	MIN	MAX	MIN	MAX	
r ${ }^{\text {dS }}$ (on)	Static Drain-Source ON Resistance	$V_{G S}$	$0, I_{D}=$				30		50		80	Ω
rds(on)	Static Drain Source ON Resistance	$V_{G S}=0, I_{D}=0, f=1 \mathrm{kHz}$					30		50		80	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz} \\ & (\text { Note 1) } \end{aligned}$					16		16		16	pF
	JANTX Only						5		5		5	
$\mathrm{Cr}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0, V_{G S}=-20 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & (\text { Note 1) } \end{aligned}$					5		5		5	
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-ON Delay Time (Note 1)						15		15		20	ns
tr_{r}	Rise Time ($\mathrm{Note} \mathrm{1)}$						10		20		40	
toff	Turn-OFF Time (Note 1)						40		60		80	

NOTE 1. For design reference only, not 100% tested.

2N4117－19，2N4117A－19A N－Channel JFET

 General Purpose AmplifierFEATURES
－Low Leakage
－Low Capacitance

ORDERING INFORMATION＊

TO－72	WAFER	CHIP
2N4117	2N4117／W	2N4117／D
2N4117A	-	-
2N4118	2N4118／W	2N4118／D
2N4118A	-	-
2N4119	2N4119／W	2N4119／D
2N4119A	-	-

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS

（ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted）
Gate－Source or Gate－Drain Voltage ．．．．．．．．．．．．．．．．．．．．．－ 40 V
Gate Current ．．50mA
Storage Temperature Range $\ldots \ldots \ldots . . .-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range ．．．．．．．．．$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature（Soldering，10sec）．．．．．．．．．．．．．．$+300^{\circ} \mathrm{C}$
Power Dissipation
.300 mW
Derate above $25^{\circ} \mathrm{C}$
$2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
＊When ordering wafer／dice refer to Section 10，page 10－1．
ELECTRICAL CHARACTERISTICS（ $25^{\circ} \mathrm{C}$ unless otherwise noted）

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { 2N4117 } \\ \text { 2N4117A } \end{gathered}$		$\begin{gathered} \text { 2N4118 } \\ \text { 2N4118A } \end{gathered}$		$\begin{gathered} \text { 2N4119 } \\ \text { 2N4119A } \end{gathered}$		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
BVGSS	Gate－Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	－40		－40		－40		V
IGSS	Gate Reverse Current A devices	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		－10		－10		－10	pA
				－1		－1		－1	
				－25		－25		－25	nA
	$T_{A}=+100^{\circ} \mathrm{C}$ A devices			－2．5		－2．5		－2．5	
$V_{\text {GS }}$（off）	Gate－Source Pinch－Off Voltage	$V_{D S}=10 \mathrm{~V}, I_{D}=1 \mathrm{nA}$	－0．6	－1．8	－1	－3	－2	－6	V
IDSS	Drain Current at Zero Gate Voltage（Note 1）	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & V_{G S}=0 \end{aligned}$	0.02	0.09	0.08	0.24	0.20	0.60	mA
g_{fs}	Common－Source Forward Transconductance．（Note 1）	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	70	210	80	250	100	330	$\mu \mathrm{s}$
gis	Common－Source Forward Transconductance（Note 2）	$V_{G S}=0, f=30 \mathrm{MHz}$	60		70		90		
gos	Common－Source Output Conductance	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		3		5		10	
$\mathrm{C}_{\text {iss }}$	Common－Source Input Capacitance（Note 2）	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		3		3		3	pF
$\mathrm{Crss}^{\text {r }}$	Common－Source Reverse Transfer Capacitance（Note 2）	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		1.5		1.5		1.5	

NOTES：1．Pulse test：Pulse duration of 2 ms used during test．
2．For design reference only，not 100% tested．

2N4220-2N4222 N -Channel JFET

General Purpose Amplifier/Switch

FEATURES

- $C_{\text {rss }}<2 \mathrm{pF}$
- Moderately High Forward Transconductance

PIN CONFIGURATION

ORDERING INFORMATION*

TO-72	WAFER	DICE
2N4220	2N4220/W	2N4220/D
2N4221	2N4221/W	2N4221/D
2N4222	2N4222/W	2N4222/D

*When ordering wafer/dice refer to Section 10, page 10-1.

CHIP TOPOGRAPHY

CT000321

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			2N4220		2N4221		2N4222		UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	
		$V_{G S}=-15 \mathrm{~V}, V_{\mathrm{DS}}=0$				-0.1		-0.1		-0.1	nA
IGSS	Gate Reverse Current $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$					-0.1		-0.1		-0.1	$\mu \mathrm{A}$
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$			-30		-30		-30		V
$V_{G S}$ (off)	Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{ID}=0.1 \mathrm{nA}$				-4		-6		-8	
$V_{G S}$	Gate-Source Voltage	$V_{D S}=15 \mathrm{~V}$	$\begin{aligned} & I_{D}=50 \mu \mathrm{~A}(2 N 4220) \\ & I_{D}=200 \mu \mathrm{~A}(2 N 4221) \\ & I_{D}=500 \mu \mathrm{~A}(2 N 4222) \end{aligned}$		-0.5	-2.5	-1	-5	-2	-6	V
IDSS	Saturation Drain Current (Note 1)	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			0.5	3	2	6	5	15	mA
gfs	Common-Source Forward Transconductance (Note 1)	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0$		$\mathrm{f}=1 \mathrm{kHz}$	1000	4000	2000	5000	2500	6000	
$\mid \mathrm{yf} f_{\mathrm{s}}$!	Common-Source Forward Transadmittance (Note 2)			$\mathrm{f}=100 \mathrm{MHz}$	750		750	!	750	:	$\mu \mathrm{s}$
gos	Common-Source Output Conductance (Note 1)			$f=1 \mathrm{kHz}$		10		20		40	
Ciss	Common-Source Input Capacitance (Note 2)			$f=1 \mathrm{MHz}$		6		6		6	
Crss	Common-Source Reverse Transfer Capacitance (Note 2)				2		2		2	pF	

NOTES: 1. Pulse test duration 2 ms .
2. For design reference only, not 100% tested.
－ $\mathrm{Crss}_{\text {}}<2 \mathrm{pF}$

ORDERING INFORMATION＊

TO－72	WAFER	DICE
2N4223	2N4223／W	2N4223／D
2N4224	2N4224／W	2N4224／D

CHIP TOPOGRAPHY

Ст000611

ABSOLUTE MAXIMUM RATINGS

（ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted）
Gate－Source or Gate－Drain Voltage ．．．．．．．．．．．．．．．．．．．．． 30 V
Gate Current ．．．10mA
Storage Temperature Range $\ldots \ldots \ldots65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range ．．．．．．．．．$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature（Soldering， 10 sec ）$\ldots+300^{\circ} \mathrm{C}$
Power Dissipation ．．300mW

＊When ordering wafer／dice refer to Section 10，page 10－1．
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted）

SYMBOL	PARAMETER	TEST CONDITIONS		2N4223		2N4224		UNIT
				MIN	MAX	MIN	MAX	
		$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			－0．25		－0．5	nA
IGSS	Gate Reverse Current $\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$				－0．25		－0．5	$\mu \mathrm{A}$
BVGSS	Gate－Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		－30		－30		
$\mathrm{V}_{\text {GS（off）}}$	Gate－Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}$	$\begin{aligned} & \text { (2N4223) } \\ & \text { (2N4224) } \\ & \hline \end{aligned}$	－0．1	－8	－0．1	－8	V
VGS	Gate－Source Voltage		$\begin{aligned} & \text { (2N4223) } \\ & \text { (2N4224) } \\ & \hline \end{aligned}$	－1．0	－7．0	－1．0	－7．5	
IDSS	Saturation Drain Current（Note 1）	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		3	18	2	20	mA
g_{fs}	Common－Source Forward Transconductance（Note 1）	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$	3000	7000	2000	7500	$\mu \mathrm{s}$
$\mathrm{C}_{\text {iss }}$	Common－Source input Capacitance（Output Shorted）	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ （Note 2）	$f=1 \mathrm{MHz}$		6		6	
Crss	Common－Source Reverse Transfer Capacitance				2		2	pF
$\left\|y_{f s}\right\|$	Common－Source Forward Transadmittance	$V_{D S}=15 \mathrm{~V}, V_{G S}=0$ （Note 2）	$f=200 \mathrm{MHz}$	2700		1700		$\mu \mathrm{S}$
Giss	Common－Source Input Conductance（Output Shorted）				800		800	
goss	Common－Source Output Conductance（Input Shorted）				200		200	
$\mathrm{G}_{\text {ps }}$	Small Signal Power Gain			10				
NF	Noise Figure（Note 2）	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, V_{G S}=0, \\ & R_{\text {gen }}=1 \mathrm{k} \Omega \end{aligned}$			5			dB

NOTES：1．Pulse test，duration 2 ms ．
2．For design reference only，not 100% tested．

FEATURES

- Exceptionally High Figure of Merit
- Radiation Immunity
- Extremely Low Noise and Capacitance
- High Input Impedance

ORDERING INFORMATION*

TO-18	WAFER	DICE
2N4338	2N4338/W	2N4338/D
2N4339	2N4339/W	2N4339/D
2N4340	2N4340/W	2N4340/D
2N4341	2N4341/W	2N4341/D

APPLICATIONS

- Low-level Choppers
- Data Switches
- Multiplexers and Low Noise Amplifiers

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage
Gate Current .. 50mA
Storage Temperature Range $\ldots \ldots \ldots . . .-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$
Power Dissipation ... 300 mW

*When ordering wafer/dice refer to Section 10 , page 10-1.

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		2N4338		2N4339		2N4340		2N4341		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-0.1		-0.1		-0.1		-0.1	nA
IGSS	Gate Reverse Current $T_{A}=150^{\circ} \mathrm{C}$				-0.1		-0.1		-0.1		-0.1	$\mu \mathrm{A}$
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-50		-50		-50		-50		V
$\mathrm{V}_{\mathrm{GS} \text { (off) }}$	Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mu \mathrm{~A}$		-0.3	-1	-0.6	-1.8	-1	-3	-2	-6	
ID(off)	Drain Cutoff Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=() \end{aligned}$			$\begin{aligned} & 0.05 \\ & (-5) \end{aligned}$		$\begin{aligned} & 0.05 \\ & (-5) \end{aligned}$		$\begin{aligned} & 0.05 \\ & (-5) \end{aligned}$		$\begin{gathered} 0.07 \\ (-10) \end{gathered}$	$\begin{aligned} & n A \\ & (\mathrm{~V}) \\ & \hline \end{aligned}$
l DSS	Saturation Drain Current	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.2	0.6	0.5	1.5	1.2	3.6	3	9	mA
Gfs	Common-Source Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{kHz}$	600	1800	800	2400	1300	3000	2000	4000	$\mu \mathrm{s}$
Gos	Common-Source Output Conductance				5		15		30		60	
r ${ }^{\text {DS }(0 n) ~}$	Drain-Source ON Resistance	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{DS}}=0$			2500		1700		1500		800	ohm
Ciss	Common-Source Input Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \text { (Note 1) } \end{aligned}$	$f=1 \mathrm{MHz}$		7		7		7		7	pF
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance				3		3		3		3	
NF	Noise Figure (Note 1)	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{R}_{\mathrm{gen}}=1 \mathrm{meg}, \\ & \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$	$f=1 \mathrm{kHz}$		1		1		1		1	dB

NOTE 1: For design reference only, not 100% tested.

FEATURES

- Low ON Resistance
- Low Capacitance
- High Gain
- High Gate Breakdown Voltage
- Low Threshold Voltage

ORDERING INFORMATION*

TO-72	WAFER	DICE
2N4351	2N4351/W	2N4351/D

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Source Voltage or Drain-Body Voltage 25V
Peak Gate-Source Voltage (Note 1) $\pm 125 \mathrm{~V}$
Drain Current... 100 mA
Storage Temperature Range $\ldots-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots+300^{\circ} \mathrm{C}$
Power Dissipation ... 375 mW

*When ordering wafer/dice refer to Section 10 , page 10-1.
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted) Substrate connected to source.

SYMEOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
BVDSS	Drain-Source Breakdown Voltage	$I_{D}=10 \mu \mathrm{~A}, V_{G S}=0$	25		V
IGSS	Gate Leakage Current	$V_{G S}= \pm 30 \mathrm{~V}, V_{D S}=0$		10	pA
IDSS	Zero-Gate-Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		10	$n \mathrm{~A}$
V_{GS} (th)	Gate-Source Threshold Voltage	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$	1	5	V
ID(on)	'ON' Drain Current	$V_{G S}=10 \mathrm{~V}, V_{D S}=10 \mathrm{~V}$	3		mA
$\mathrm{V}_{\text {DS }}$ (on)	Drain-Source ''ON' Voitage	$\mathrm{l}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		1	V
rDS(on)	Drain-Source Resistance	$V_{G S}=10 \mathrm{~V}, \mathrm{i}_{\mathrm{D}}=0, \mathrm{f}=1 \mathrm{kHz}$		300	ohms
$\left\|y_{f s}\right\|$	Forward Transfer Admittance	$V_{D S}=10 \mathrm{~V}, I_{D}=2 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$	1000		$\mu \mathrm{s}$
$\mathrm{Cr}_{\text {rss }}$	Reverse Transfer Capacitance (Note 2)	$V_{D S}=0, V_{G S}=0, f=1 \mathrm{MHz}$		1.3	pF
$\mathrm{C}_{\text {iss }}$	Input Capacitance (Note 2)	$V_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$		5.0	
$\mathrm{C}_{\mathrm{d} \text { (sub) }}$	Drain-Substrate Capacitance (Note 2)	$V_{D(S U B)}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		5.0	
$t_{d(0 n)}$	Turn-On Delay (Note 2)			45	ns
t_{r}	Rise Time (Note 2)			65	
$t_{d}(\mathrm{off})$	Turn-Off Delay (Note 2)			60	
t_{f}	Fall Time (Note 2)			100	

NOTES: 1. Device must not be tested at $\pm 125 \mathrm{~V}$ more than once or longer than 300 ms .
2. For design reference only, not 100% tested.

ITE4391-ITE4393 2N4391-2N4393 N-Channel JFET Switch

FEATURES

- $\mathbf{r}_{\mathrm{ds}(0 n)}<\mathbf{3 0 0}$ Ohms (2N4391)
- $I_{D(O F F)}<100 \mathrm{pA}$
- Switches $\pm 10 \mathrm{VAC}$ With $\pm 15 \mathrm{~V}$ Supplies (2N4392, 2N4393)

PIN CONFIGURATION

ORDERING INFORMATION*

TO-92	TO-18	WAFER	DICE
ITE 4391	2N4391	2N4391/W	2N4391/D
ITE 4392	2N4392	2N4392/W	2N4392/D
ITE 4393	2N4393	2N4393/W	2N4393/D

*When ordering wafer/dice refer to Section 10, page 10-1.

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage 40V
Gate Current ... 10mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$

	TO-18	TO-92
Power Dissipation	1.8 W	360 mW
Derate above $25^{\circ} \mathrm{C}$	$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Plastic
Storage.................................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating $-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	4391		4392		4393		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
		$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		-100		-100		-100	pA
IGSS	Gate Reverse Current $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$			-200		-200		-200	nA
$\mathrm{BV}_{\mathrm{GSS}}$	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	-40		-40		-40		V
		$V_{D S}=20 V \|$$V_{G S}=-5 V(4393)$ $V_{G S}=-7 V(4392)$ $V_{G S}=-12 V(4391)$		100		100		100	pA
${ }^{1}(\mathrm{off})$	Drain Cutoff Current $T_{\text {A }}=150^{\circ} \mathrm{C}$			200		200		200	nA
$\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$	Gate-Source Forward Voltage	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$		1		1		1	
$\mathrm{V}_{\text {GS(off) }}$	Gate-Source Cutoff Voltage	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	-4	-10	-2	-5	-0.5	-3	V
IDSS	Saturation Drain Current (Note 1)	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	50	150	25	75	5	30	mA
$\mathrm{V}_{\text {DS(on) }}$	Drain-Source ON Voltage	$V_{G S}=0$ $\mathrm{D}=3 \mathrm{~mA}(4393)$ $\|$$\mathrm{D}=6 \mathrm{~mA}(4392)$ $\mathrm{I}_{\mathrm{D}}=12 \mathrm{~mA}(4391)$		0.4		0.4		0.4	V
rDS(on)	Static Drain-Source ON Resistance	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		30		60		100	
r_{ds} (on)	Drain-Source ON Resistance	$V_{G S}=0, I_{D}=0$ $f=1 \mathrm{kHz}$		30		60		100	Ω

ITE4391-ITE4393 2N4391-2N4393

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS			4391		4392		4393		UNIT	
					MIN	MAX	MIN	MAX	MIN	MAX		
Ciss	Common-Source Input Capacitance (Note 2)	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		$\mathrm{f}=1 \mathrm{MHz}$		14		14		14	pF	
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance (Note 2)	$V_{D S}=0$	$V_{G S}=-5 \mathrm{~V}$							3.5		
			$\mathrm{V}_{\mathrm{GS}}=-7 \mathrm{~V}$					3.5				
			$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$			3.5						
t_{d}	Turn-ON Delay Time (Note 2)	$\begin{array}{r} V_{D D}=10 \mathrm{~V}, V_{G S \text { (on) }}=0 \\ I_{D(\text { on })} \end{array}$		$\mathrm{V}_{\mathrm{GS} \text { (off) }}$		15		15		15	ns	
t_{r}	Rise Time (Note 2)				5		5		5			
toff	Turn-OFF Delay Time (Note 2)	$\begin{aligned} & 4391 \\ & 4392 \\ & 4393 \end{aligned}$	$\begin{gathered} 12 \mathrm{~mA} \\ 6 \\ 3 \\ \hline \end{gathered}$		$\begin{gathered} -12 V \\ -7 \\ -5 \\ \hline \end{gathered}$		20		35			50
t_{f}	Fall Time (Note 2)					15		20		30		

NOTES: 1. Pulse test required, pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. For design reference only, not 100% tested.

FEATURES

- Low Noise
- Low Feedback Capacitance
- Low Output Capacitance
- High Transconductance
- High Power Gain

ORDERING INFORMATION*

TO-92	TO-72	WAFER	DICE
ITE 4416	2N4416	2N4416/W	2N4416/D
-	2N4416A	2N4416A/W	2N4416A/D

*When ordering wafer/dice refer to Section 10, page 10-1.
($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)Gate-Source or Gate-Drain Voltage2N4416, ITE4416$-30 \mathrm{~V}$
2N4416A
10 mA
Storage Temperature Range2N4416/2N4416A $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ITE4416 $-55^{\circ} \mathrm{C}+150^{\circ} \mathrm{C}$Operating Temperature Range
2N4416/2N4416A............... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Power Dissipation 300 mWDerate above $25^{\circ} \mathrm{C}$
2N4416/2N4416A $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ITE4416 $2.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT		
$\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$	Gate-Source Forward Voltage		$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$			1	V		
IGSS	Gate Reverse Current $\quad T_{A}=150^{\circ} \mathrm{C}$		$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-0.1	nA		
			.	-0.1	$\mu \mathrm{A}$				
$\mathrm{BV}_{\mathrm{GSS}}$	Gate-Source Breakdown Voltage	2N4416/ITE4416			$I_{G}=-1 \mu A, V_{D S}=0$		-30		V
		2N4416A	-35						
$V_{G S(0 f f)}$	Gate-Source Cutoff Voltage	2N4416/ITE4416	$V_{D S}=15 \mathrm{~V}, I_{D}=1 \mathrm{nA}$			-6			
		2N4416A			-2.5	-6			
IDSS	Drain Current at Zero Gate Voltage		$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$	5	15	mA		
$\mathrm{gis}^{\text {s }}$	Common-Source Forward Transconductance				4500	7500	$\mu \mathrm{S}$		
gos	Common-Source Output Conductance					50	$\mu \mathrm{s}$		
Crss	Common-Source Reverse Transfer Capacitance (Note 1)			$\mathrm{f}=1 \mathrm{MHz}$		0.8	pF		
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Note 1)					4			
$\mathrm{C}_{\text {oss }}$	Common-Source Output Capacitance (Note 1)					2	pF		

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS		MHz			UNIT
			MIN	MAX	MIN	MAX	
giss	Common-Source Input Conductance	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0($ Note 1)		100		1000	$\mu \mathrm{S}$
$\mathrm{b}_{\text {iss }}$	Common-Source Input Susceptance			2500		10,000	
Goss	Common-Source Output Conductance			75		100	
boss	Common-Source Output Susceptance			1000		4000	
$\mathrm{g}_{\text {fs }}$	Common-Source Forward Transconductance				4000	,	
Gps	Common-Source Power Gain	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$ (Note 1)	18		10		dB
NF	Noise Figure (Note 1)	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$		2		4	

NOTE 1: For design reference only, not 100% tested.

2N4856-2N4861 2N4856-2N4858 JAN, JTX, JTXV* N-Channel JFET Switch

FEATURES

- Low rDS(on)
- ID(off) < 250pA
- Switches $\pm 10 \mathrm{~V}$ Signals With $\pm 15 \mathrm{~V}$ Supplies (2N4858, 2N4861)

PIN CONFIGURATION

ORDERING INFORMATION*

TO-18	WAFER	DICE
2N4856 \dagger	2N4856/W	2N4856/D
2N4857 \dagger	2N4857/W	2N4857/D
2N4858 \dagger	2N4858/W	2N4858/D
2N4859	2N4859/W	2N4859/D
2N4860	2N4860/W	2N4860/D
2N4861	2N4861/W	2N4861/D

†add JAN, JTX, JTXV, to basic part number to specify these devices. *When ordering wafer/dice refer to Section 10, page 10-1.

CHIP TOPOGRAPHY

5001

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage 2N4856-58-40V
2N4859-61 $-30 \mathrm{~V}$
Gate Current 50 mA
Storage Temperature Range $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Led Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$Power Dissipation ..1.8W

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER		TEST CONDITIONS		2N4856,59		2N4857,60		2N4858,61		UNIT		
			MIN	MAX	MIN	MAX	MIN	MAX					
$B V_{G S S}$	Gate-Source Breakdown Voltage	2N4856-58			$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-40		-40		-40		V
		2N4859-61	-30				-30		-30				
IGSS	Gate Reverse Current		$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-250		-250		-250	pA		
		$T_{A}=150^{\circ} \mathrm{O}$	$V_{G S}=-15 \mathrm{~V}, V_{D S}=0$			-500		-500		- 500	nA		
	Drain Cutoff Current		$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$			250		250		250	pA		
ID(off)		$\mathrm{T}_{A}=150^{\circ} \mathrm{C}$				500		500		500	nA		
V_{GS} (off)	Gate-Source Cutoff Voltage		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}$		-4	-10	-2	-6	-0.8	-4	V		
IDSS	Saturation Drain Current (Note 1)		$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		50	*	20	100	8	80	mA		
$V_{\text {DS(on) }}$	Drain-Source ON Voltage		$V_{G S}=0, l_{D}=()$			$\begin{aligned} & 0.75 \\ & (20) \end{aligned}$		$\begin{aligned} & 0.50 \\ & (10) \end{aligned}$		$\begin{aligned} & 0.50 \\ & (5) \\ & \hline \end{aligned}$	$\begin{gathered} V \\ (\mathrm{~mA}) \end{gathered}$		
$\mathrm{rds}^{\text {d }}$ (on)	Drain-Source ON Resistance		$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=0$	$\mathrm{f}=1 \mathrm{kHz}$		25		40		60	ohm		

2N4856-2N4861 2N4856-2N4858 JAN, JTX, JTXV*

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS		2N4856,59		2N4857,60		2N4858,61		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance	$\begin{aligned} & V_{D S}=0, V_{G S}=-10 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$	$\mathrm{f}=1 \mathrm{MHz}$		18		18		18	pF
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance				8		8		8	
t_{d}	Turn-ON Delay Time (Note 2)				6		6		10	ns
tr_{r}	Rise Time (Note 2)				3		4		10	
$t_{\text {off }}$	Turn-OFF Time (Note 2)				25		50		100	

NOTES: 1. Pulse test required, pulse width $=100 \mu \mathrm{~s}$, duty cycle $\leq 10 \%$.
2. For design reference only, not 100% tested.

2N4867/A-2N4869/A
 N-Channel JFET
 Low Noise Amplifier

FEATURES

- Low Noise Voltage
- Low Leakage
- High Gain

ORDERING INFORMATION*

TO-72	WAFER	DICE
2N4867	2N4867/W	2N4867/D
2N4867A	2N4867A/W	2N4867A/D
2N4868	2N4868/W	2N4868/D
2N4868A	2N4868A/W	2N4868A/D
2N4869	2N4869/W	2N4869/D
2N4869A	2N4869A/W	2N4869A/D

*When ordering wafer/dice refer to Section 10, page 10-1.
ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		$\begin{gathered} \text { 2N4867 } \\ \text { 2N4867A } \end{gathered}$		$\begin{gathered} \text { 2N4868 } \\ \text { 2N4868A } \end{gathered}$		$\begin{gathered} \text { 2N4869 } \\ \text { 2N4869A } \end{gathered}$		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
		$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-0.25		-0.25		-0.25	nA
lGSS	Gate Reverse Current $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$				-0.25		-0.25		-0.25	$\mu \mathrm{A}$
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-40		-40		-40		
$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$		-0.7	-2	-1	-3	-1.8	-5	\checkmark
IDSS	Saturation Drain Current (Note 1)	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.4	1.2	1	3	2.5	7.5	mA
Gfs	Common-Source Forward Transconductance (Note 1)	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$	700	2000	1000	3000	1300	4000	$\mu \mathrm{S}$
gos	Common-Source Output Conductance				1.5		4		10	
Crss	Common-Source Reverse Transfer Capacitance (Note 2)		$\mathrm{f}=1 \mathrm{MHz}$		5		5		5	
Ciss	Common-Source Input Capacitance (Note 2)				25		25		25	pF

2N4867/A-2N4869/A

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS		$\begin{gathered} \text { 2N4867 } \\ \text { 2N4867A } \end{gathered}$		$\begin{gathered} \text { 2N4868 } \\ \text { 2N4868A } \end{gathered}$		$\begin{gathered} \text { 2N4869 } \\ \text { 2N4869A } \end{gathered}$		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
\bar{e}_{n}	Short Circuit Equivalent Input	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	$f=10 \mathrm{~Hz}$		20		20		20	nV
			$\mathrm{f}=1 \mathrm{kHz}$		10		10		10	
	Noise Voltage		$\mathrm{f}=10 \mathrm{~Hz}$		10		10		10	$\frac{\sqrt{\mathrm{Hz}}}{}$
	(Note 2)		$\mathrm{f}=1 \mathrm{kHz}$		5		5		5	
NF	Spot Noise Figure (Note 2)	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{\mathrm{GS}}=0 \\ & R_{\text {gen }}=20 \mathrm{~K},(2 N 4867 \text { Series }) \\ & R_{\text {gen }}=5 \mathrm{~K},(2 N 4867 \mathrm{~A} \text { Series }) \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$		1		1		1	dB

NOTES: 1. Pulse test duration $=2 \mathrm{~ms}$.
2. For design reference only, not 100% tested.

2N5018, 2N5019 P-Channel JFET
Switch

FEATURES

- Low Insertion Loss
- No Offset or Error Voltages Generated By Closed Switch
- Purely Resistive

ORDERING INFORMATION*

TO-18	WAFER	DICE
2N5018	2N5018/W	2N5018/D
2N5019	2N5019/W	2N5019/D

*When ordering wafer/dice refer to Section 10, page 10-1.

APPLICATIONS

- Analog Switches
- Commutators
- Choppers

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage 30 V
Gate Current ... 50mA
Storage Temperature Range $\ldots . . \ldots-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$
Power Dissipation .. 500 mW

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			2N5018		2N5019		UNIT
					MIN	MAX	MIN	MAX	
BV ${ }_{\text {GSS }}$	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$			30		30		V
IGSSR	Gate Reverse Current	$\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$				2		2	nA
		$V_{D S}=-15 \mathrm{~V}$,	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}(2 \mathrm{~N} 5018) \\ & \mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}(2 \mathrm{~N} 5019) \end{aligned}$			-10		-10	
${ }^{1} \mathrm{D}$ (off)	Drain Cutoff Current $\mathrm{T}_{\text {A }}=150^{\circ} \mathrm{C}$					-10		-10	$\mu \mathrm{A}$
IDGO	Drain Reverse Current T	$V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$				-2		-2	nA
						-3		-3	$\mu \mathrm{A}$
$\mathrm{V}_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mu \mathrm{~A}$				10		5	V
IDSS	Saturation Drain Current	$\mathrm{V}_{\mathrm{DS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			-10		-5		mA
$\mathrm{V}_{\text {DS(on) }}$	Drain-Source ON Voltage	$\begin{aligned} V_{G S}=0, I_{D} & =-6 m A(2 N 5018), \\ I_{D} & =-3 \mathrm{~mA}(2 N 5019) \end{aligned}$				-0.5		-0.5	V
$\mathrm{r}_{\text {ds(on) }}$	Static Drain-Source ON Resistance	$I_{D}=-1 \mathrm{~mA}, V_{G S}=0$				75		150	Ω
$\mathrm{r}_{\mathrm{ds}(\mathrm{on})}$	Drain-Source ON Resistance	$\mathrm{I}_{\mathrm{D}}=0, \mathrm{~V}_{\mathrm{GS}}=0$		$\mathrm{f}=1 \mathrm{kHz}$		75		150	
Ciss	Common-Source Input Capacitance (Note 1)	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}$	$G S=0$	$\mathrm{f}=1 \mathrm{MHz}$		45		45	
Crss	Common-Source Reserve Transfer Capacitance (Note 1)	$\begin{aligned} V_{D S}=0, & V_{G S}= \\ & (2 N 50 \\ & V_{G S}= \end{aligned}$	$\begin{aligned} & =12 \mathrm{~V} \\ & 18), \\ & =7 \mathrm{~V}(2 \mathrm{~N} 5019) \end{aligned}$			10		10	pF

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS			2N5018		2N5019		UNIT
					MIN	MAX	MIN	MAX	
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-ON Delay Time (Note 1)	$V_{D D}=-6 V^{\prime}, V_{G S}$ (on) $=0$				15		15	ns
tr_{r}	Rise Time (Note 1)					20		75	
		$\mathrm{V}_{\mathrm{GS} \text { (off) }}$	ID(on)	R_{L}					
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off Delay Time (Note 1)	2N50182N5019	-6mA	$\begin{aligned} & 910 \Omega \\ & 1.8 \mathrm{k} \Omega \end{aligned}$		15		25	
t_{f}	Fall Time (Note 1)		-3mA			50		100	

NOTES: 1. For design reference only, not 100% tested.

GENERAL DESCRIPTION
 Ideal for inverting switching or 'Virtual Gnd' switching into inverting input of Op. Amp. No driver is required and $\pm 10 \mathrm{VAC}$ signals can be handled using only +5 V logic (TTL or CMOS).

PIN CONFIGURATION

ORDERING INFORMATION*

TO18 \dagger	WAFER	DICE
2N5114	2N5114/W	2N5114/D
2N5115	2N5115/W	2N5115/D
2N5116	2N5116/W	2N5116/D

*When ordering wafer/dice refer to Section 10, page 10-1. †add JAN, JTX, JTXV to basic part number to specify these devices.

FEATURES

- Low ON Resistance
- ID(off) < 500pA
- Switches directly from TTL Logic

SWITCHING CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	2N5114	2N5115	2N5116	JAN TX 2N5114	$\begin{aligned} & \text { JAN TX } \\ & \text { 2N55115 } \end{aligned}$	JAN TX 2N5116	UNIT
	MAX	MAX	MAX	MAX	MAX	MAX	
t_{d} Turn-ON Delay Time	6	10	12	6	10	25	ns
$\mathrm{tr}_{\text {r }}$ Rise Time (Note 2)	10	20	30	10	20	35	
Turn-OFF Delay Time (Note 2)	6	8	10	6	8	20	
t_{f} Fall Time (Note 2)	15	30	50	15	30	60	

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	2N5114		2N5115		2N5116		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
BV ${ }_{\text {GSS }}$	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	30		30		30		V
				500		500		500	pA
IGSS	Gate Reverse Current $\quad \mathrm{T}_{A}=150^{\circ} \mathrm{C}$	$V_{G S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		1.0		1.0		1.0	$\mu \mathrm{A}$
		$2 N 5114=12 V$		-500		-500		-500	pA
${ }^{\prime} \mathrm{D}$ (off)	Drain Cutoff Current $T_{\text {, }} \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	$\begin{aligned} \mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=2 \mathrm{~N} 5115 & =7 \mathrm{~V} \\ 2 N 5116 & =5 \mathrm{~V} \end{aligned}$		-1.0		-1.0		-1.0	$\mu \mathrm{A}$
V_{P}	Gate-Source Pinch-Off Voltage	$V_{D S}=-15 \mathrm{~V}, 1 \mathrm{D}=-1 \mathrm{nA}$	5	10	3	6	1	4	V

2N5114－2N5116，JAN，JTX，JTXV

ELECTRICAL CHARACTERISTICS（CONT．）

SYMBOL	PARAMETER	TEST CONDITIONS	2N5114		2N5115		2N5116		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
IDSS	Drain Current at Zero Gate Voltage （Note 1）	V $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\text {DS }}=\quad \begin{aligned} & 2 N 5114=-18 \mathrm{~V} \\ & 2 N 5115=-15 \mathrm{~V} \\ & 2 N 5116=-15 \mathrm{~V}\end{aligned}$	－30	－90	－15	－60	－5	－25	mA
$\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$	Forward Gate－Source Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$		－1		－1		－1	
$\mathrm{V}_{\mathrm{DS} \text {（on）}}$	Drain－Source ON Voltage	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=\quad$$2 N 5114=-15 m A$ $2 N 5115=-7 m A$ $2 N 5116=-3 m A$		－1．3		－0．8		－0．6	V
r DS （on）	Static Drain－Source ON Resistance	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$		75		100		150	Ω
	Small－Signal Drain－Source ON	$V_{G S}=0, I_{D}=0, f=1 \mathrm{kHz}$		75		100		150	
rds（on）	Resistance Jan TX only			75		100		175	
	Common－Source Input Capacitance（Note 2） Jan TX only	$V_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$		25		25		25	
Ciss				25		25		27	
Crss	Common－Source Reverse Transfer Capacitance（Note 2）			7		7		7	pF

NOTES：1．Pulse test；duration $=2 \mathrm{~ms}$ ．
2．For design reference only，not 100% tested．

TYPICAL PERFORMANCE CHARACTERISTICS

OP001111

OP001211

OP001311

FEATURES

- High Gain at Low Current
- Low Output Capacitance
- Good hfe Match
- Tight VBe Tracking
- Dielectrically Isolated Matched Pairs for Differential Amplifiers

PIN CONFIGURATION

PC00110:

ORDERING INFORMATION*

TO-78	WAFER	DICE
$2 N 5117$	2N5117/W	2N5117/D
2N5118	2N5118/W	2N5118/D
$2 N 5119$	$2 N 5119 / W$	$2 N 5119 / D$

*When ordering wafer/dice refer to Section 10, page 10-1.
ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		$\begin{aligned} & \text { 2N5117 } \\ & \text { 2N5118 } \end{aligned}$		2N5119		UNIT
				MIN	MAX	MIN	MAX	
hfe	DC Current Gain	$I^{\prime}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$		100	300	50		
		$\mathrm{I} \mathrm{C}=500 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$		100		50		
	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$		30		20		
i CBO	Collector Cutoff-Current $\quad T_{A}=150^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=30 \mathrm{~V}$			0.1		0.1	nA
	$T_{A}=150^{\circ} \mathrm{C}$				0.1		0.1	$\mu \mathrm{A}$
IEBO	Emitter Cutoff Current	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=5.0 \mathrm{~V}$			0.1		0.1	nA
${ }^{\prime} C_{1}-C_{2}$	Collector-Collector Leakage	$V_{C C}=100 \mathrm{~V}$			5.0		5.0	pA
GBW	Current Gain Bandwith Product (Note 4)	$\mathrm{I}^{\prime}=500 \mu \mathrm{~A}, \mathrm{~V}_{C E}=10 \mathrm{~V}$		100		100		MHz
$\mathrm{C}_{\text {cb }}$	Output Capacitance (Note 4)	$\mathrm{IE}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5.0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$			0.8		0.8	
$\mathrm{C}_{\text {te }}$	Emitter Transition Capacitance (Note 4)	$\mathrm{lC}=0, \mathrm{~V}_{\text {EB }}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}$			1.0		1.0	pF
$\mathrm{C}_{\mathrm{C}_{1}-\mathrm{C}_{2}}$	Collector-Collector Capacitance (Note 4)	$\mathrm{V}_{\mathrm{CC}}=0, \mathrm{f}=1 \mathrm{MHz}$			0.8		0.8	
$\mathrm{V}_{\text {CEO }}$ (sust)	Collector-Emitter Sustaining Voltage	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$		45		45		V
NF	Narrow Band Noise Figure (Note 4)	$\begin{aligned} & \mathrm{lC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V} \\ & \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$	$f=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$		4.0		4.0	dB
$\mathrm{BV}_{\mathrm{CBO}}$	Collector Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$		45		45		V
BVEBO	Emitter Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{IC}=0$		7.0		7.0		V

SYMBOL	PARAMETER	TEST CONDITIONS		2N5117		2N5118		2N5119		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{h}_{\mathrm{FE}_{1} / \mathrm{h}_{\mathrm{FE}_{2}} \text { }}$	DC Current Gain Ratio (Note 3)	$\mathrm{IC}=10 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}, \mathrm{~V}$	$C E=5 \mathrm{~V}$	0.9	1.0					
		$\mathrm{i}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$				0.85	1.0	0.8	1.0	
$\mathrm{V}_{\mathrm{BE}_{1}-\mathrm{V}_{\mathrm{BE}}}$	Base-Emitter Voitage Differential	$\mathrm{LC}=10 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}, \mathrm{~V}$	CE $=5 \mathrm{~V}$		3.0					mV
		$\mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$					5.0		5.0	
${ }^{\mathrm{I}_{\mathrm{B}_{1}}{ }^{-1} \mathrm{~B}_{2}}$	Base Current Differential				10.0		15		40	nA
${ }^{\Delta}\left(V_{B E_{1}}-V_{B B_{2}}\right) / \Delta T$	Base Voltage Differential Change with Temperature		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		3.0		5.0		10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta\left(\mathrm{I}_{\left.\mathrm{B}_{1}-1 \mathrm{~B}_{2}\right)}\right) / \Delta \mathrm{T}$	Base-Current Differential Change with Temperature		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		0.3		0.5		1.0	$n A /{ }^{\circ} \mathrm{C}$

NOTES: 1. Per transistor.

2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed $10 \mu \mathrm{~A}$.
3. Lower of two $h_{F E}$ readings is defined as $h_{F E}$.
4. For design reference only, not 100% tested.

PIN CONFIGURATION

ORDERING INFORMATION*

TO-71	WAFER	DICE
2N5196	2N5196/W	2N5196/D
2N5197	2N5197/W	2N5197/D
2N5198	2N5198/W	2N5198/D
2N5199	2N5199/W	2N5199/D

*When ordering wafer/dice refer to Section 10, page 10-1.

CHIP TOPOGRAPHY
6037

ALL BOND PADS ARE $4 \times 4 \mathrm{MIL}$.
CT00070

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage (Note 1)........ -50V
Gate Current (Note 1) ..50mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$
ONE SIDE BOTH SIDES
Power Dissipation $\left(T_{A}=85^{\circ} \mathrm{C}\right) \ldots . \quad 250 \mathrm{~mW} \quad 500 \mathrm{~mW}$ Derate above $25^{\circ} \mathrm{C}$............... $\quad 2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \quad 4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
IGSS	Gate Reverse Current $\quad T_{A}=150^{\circ} \mathrm{C}$	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-25	pA
					-50	nA
BV ${ }_{\text {GSS }}$	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-50		
$V_{\text {GS(off) }}$	Gate-Source Cutoff Voltage	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-0.7	-4	V
$V_{G S}$	Gate-Source Voltage	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$		-0.2	-3.8	
I_{G}	Gate Operating Current				-15	pA
	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$				-15	nA
IDSS	Saturation Drain Current (Note 2)	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.7	7	mA
gfs	Common-Source Forward Transconductance (Note 2)	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$	1000	4000	$\mu \mathrm{s}$
$\mathrm{gfs}^{\text {f }}$	Common-Source Forward Transconductance (Note 2)	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		700	1600	
gos	Common-Source Output Conductance (Note 2)	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			50	
gos	Common-Source Output Conductance (Note 2)	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$			4	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Note 4)	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{G S}=0$	$f=1 \mathrm{MHz}$		6	
Crss	Common-Source Reverse Transfer Capacitance (Note 4)		$\mathrm{f}=1 \mathrm{MHz}$		2	pr
NF	Spot Noise Figure (Note 4)		$\begin{aligned} & f=100 \mathrm{~Hz}, \\ & R_{G}=10 \mathrm{M} \Omega \end{aligned}$		0.5	dB
\bar{e}_{n}	Equivalent Input Noise Voltage (Note 4)		$\mathrm{f}=1 \mathrm{kHz}$		20	$\frac{\mu \mathrm{nV}}{\sqrt{\mathrm{~Hz}}}$

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS		2N5196		2N5197		2N5198		2N5199		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
$\\|_{\text {G1- }}{ }^{\text {G2 }} 1$	Differential Gate Current	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \\ & 1 \mathrm{D}=200 \mu \mathrm{~A} \end{aligned}$	$125^{\circ} \mathrm{C}$		5		5		5		5	nA	
IDSS1/DSS2	Saturation Drain Current Ratio (Note 2)	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.95	1	0.95	1	0.95	1	0.95	1		
$\mathrm{g}_{\mathrm{fs} 1 / \mathrm{g} \text { fs2 }}$	Transconductance Ratio (Note 2)	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \\ & 1 D=200 \mu \mathrm{~A} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$	0.97	1	0.97	1	0.95	1	0.95	1		
$\begin{aligned} & \left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\| \\ & \frac{\Delta\left\|\mathrm{V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}} \end{aligned}$	Differential Gate-Source Voltage Gate-Source Differential Voltage Change with Temperature (Note 3)				5		5		10		15	mV	
			$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{B}=125^{\circ} \mathrm{C} \end{aligned}$		5		10		20		40	$\mu / /^{\circ} \mathrm{C}$	
			$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & T_{B}=25^{\circ} \mathrm{C} \end{aligned}$		5		10		20		40		
$\mid g_{\text {os } 1-g_{\text {os } 2} \mid}$	Differential Output Conductance		$\mathrm{f}=1 \mathrm{kHz}$		1		1		1		1	is	

NOTES: 1. Per transistor.
2. Pulse test required, pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $<3 \%$.
3. Measured at endpoints T_{A} and T_{B}.
4. For design reference only, not 100% tested.

FEATURES

- $G_{p s}=15 \mathrm{~dB}$ Minimum (Common Gate) at 450 MHz
- Low Noise
- Low Capacitance

ORDERING INFORMATION*

TO-72	WAFER	DICE
2N5397	2N5397/W	2N5397/D
2N5398	2N5398/W	2N5398/D

CHIP TOPOGRAPHY

5011

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Gate Voltage
Drain-Source Voltage.. 25V
Continuous Forward Gate Current...................... 10mA
Storage Temperature Range $\ldots \ldots \ldots65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Power Dissipation ... 300 mW

*When ordering wafer/dice refer to Section 10, page 10-1.
ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		2N5397		2N5398		UNIT
				MIN	MAX	MIN	MAX	
IGSS	Gate Reverse Current	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-0.1		0.1	nA
GSS	, $\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$		$150^{\circ} \mathrm{C}$		-0.1		-0.1	$\mu \mathrm{A}$
BV GSS	Gate-Source Breakdown Voltage	$V_{D S}=0, I_{G}=-1 \mu \mathrm{~A}$		-25		-25		V
$\mathrm{V}_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-1.0	-6.0	-1.0	-6.0	
IDSS	Saturation Drain Current (Note 1)	$V_{D S}=10 \mathrm{~V}, V_{D S}=0$		10.	30	5	40	mA
$\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$	Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}$			1		1	V
gfs	Common-Source Forward Transconductance (Note 1)	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$	6000	10,000			$\mu \mathrm{S}$
		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$				5500	10,000	
goss	Common-Source Output Conductance	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$			200			
		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					400	
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance (Note 2)	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	$f=1 \mathrm{MHz}$		1.2			pF
		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					1.3	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Note 2)	$V_{D G}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA}$			5.0			
		$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					5.5	

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS		2N5397		2N5398		UNIT
				MIN	MAX	MIN	MAX	
Giss	Common-Source Input Conductance (Note 2)	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	$\mathrm{f}=450 \mathrm{MHz}$		2000			$\mu \mathrm{s}$
		$V_{D G}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					3000	
Goss	Common-Source Output	$\mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$			400			
	Conductance (Note 2)	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					500	
Gfs	Common-Source Forward	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$		5500	9000			
	Transconductance (Note 1, 2)	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$				5000	10,000	
G_{ps}	Common-Source Power Gain (neutralized)	$V_{D G}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA}$ (Note 2)		15				dB
NF	Common-Source, Spot Noise Figure (neutralized)				3.5			

NOTES: 1. Pulse test duration $=2 \mathrm{~ms}$
2. For design reference only, not 100% tested.

FEATURES

- Low rds(on)
- Excellent Switching
- Low Cutoff Current

ORDERING INFORMATION*

TO-52	WAFER	DICE
$2 N 5432$	$2 N 5432 / W$	$2 N 5432 / D$
$2 N 5433$	$2 N 5433 / W$	$2 N 5433 / D$
$2 N 5434$	$2 N 5434 / W$	$2 N 5434 / D$

*When ordering wafer/dice refer to Section 10, page 10-1.

CHIP TOPOGRAPHY

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		2N5432		2N5433		2N5434		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
		$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-200		-200		-200	pA
IGSS	Gate Reverse Current $\quad T_{A}=150^{\circ} \mathrm{C}$				-200		-200		-200	nA
BVGSS	Gate Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-25		-25		-25		V
	Drain Cutoff Current $\quad T_{A}=150^{\circ} \mathrm{C}$	$V_{D S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$			200		200		200	pA
ID(off)					200		200		200	nA
$\mathrm{V}_{\text {GS(off) }}$	Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{nA}$		-4	-10	-3	-9	-1	-4	V
IDSS	Saturation Drain Current (Note 1)	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		150		100		30		mA
rDS(on)	Static Drain-Source ON Resistance Drain-Source ON Voltage	$V_{G S}=0, I_{D}=10 \mathrm{~mA}$		2	5		7		10	ohm
$V_{D S}(o n)$					50		70		100	mV
$\mathrm{r}_{\mathrm{ds}(\mathrm{on})}$	Drain-Source ON Resistance	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=0$	$f=1 \mathrm{kHz}$		5		7		10	ohm
Ciss	Common-Source Input Capacitance (Note 2)	$V_{D S}=0, V_{G S}=-10 \mathrm{~V}$	$f=1 \mathrm{MHz}$		30		30		30	
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance (Note 2)				15		15		15	pF

2N5432-2N5434

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	2N5432		2N5433		2N5434		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{t}_{\text {d }}$	Turn-ON Delay Time (Note 2)	$\begin{aligned} & V_{D D}=1.5 \mathrm{~V}, \\ & V_{G S(\text { on })}=0, \\ & V_{G S(\text { off })}=-12 \mathrm{~V} \\ & V_{D(\text { on })}=10 \mathrm{~mA} \end{aligned}$		4		4		4	ns
t_{r}	Rise Time (Note 2)			1		1		1	
$\mathrm{t}_{\text {off }}$	Turn-OFF Delay Time (Note 2)			6		6		6	
t_{f}	Fall Time (Note 2)			30		30		30	

NOTES: 1. Pulse test required, pulsewidth $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. For design reference only, not 100% tested.

GENERAL DESCRIPTION

Matched FET pairs for differential amplifiers．This family of general purpose FETs is characterized for low and medium frequency differential amplifier applications requir－ ing low drift and low offset voltage．

PIN CONFIGURATION

PC002501

ORDERING INFORMATION＊

TO－71	WAFER	DICE
$2 N 5452$	$2 N 5452 / W$	$2 N 5452 / D$
$2 N 5453$	$2 N 5453 / W$	$2 N 5453 / D$
$2 N 5454$	$2 N 5454 / W$	$2 N 5454 / D$

＊When ordering wafer／dice refer to Section 10，page 10－1．

FEATURES

－Low Offset Voltage
－Low Drift
－Low Capacitance
－Low Output Conductance

CHIP TOPOGRAPHY

 CT00070

ABSOLUTE MAXIMUM RATINGS

（ $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted）
Gate－Source or Gate Drain Voltage （Note 1）
$-50 \mathrm{~V}$
Gate Current（Note 1）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．50mA
Storage Temperature Range $\ldots \ldots-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature（Soldering， 10 sec ）$\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$
ONE SIDE BOTH SIDES
Power Dissipation（ $T_{C}=85^{\circ} \mathrm{C}$ ）．．．． $250 \mathrm{~mW} \quad 500 \mathrm{~mW}$ Derate above $25^{\circ} \mathrm{C}$ ．．．．．．．．．．．．．．．$\quad 2.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \quad 4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted）

SYMBOL	PARAMETER	TEST CONDITIONS		2N5452		2N5453		2N5454		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
		$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			－100		－100		－100	pA
Igss	Gate Reverse Current $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$				－200		－200		－200	nA
BVGSS	Gate－Source Breakdown Voltage	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$		－50		－50		－50		V
V_{GS}（off）	Gate－Source Cutoff Voltage	$V_{D S}=20 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=1 \mathrm{nA}$		－1	－4．5	－1	－4．5	－1	－4．5	
$\mathrm{V}_{G S}$	Gate－Source Voltage	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}$		－0．2	－4．2	－0．2	－4．2	－0．2	－4．2	
$\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$	Gate－Source Forward Voltage	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}$			2		2		2	
loss	Saturation Drain Current	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.5	5.0	0.5	5.0	0.5	5.0	mA
9fs	Common－Source Forward	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$	1000	3000	1000	3000	1000	3000	$\mu \mathrm{s}$
	Transconductance（Note 2）		$\mathrm{f}=100 \mathrm{MHz}$	1000		1000		1000		
gos	Common－Source Output Conductance		$\mathrm{f}=1 \mathrm{kHz}$		3.0		3.0		3.0	
		$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$			1.0		1.0		1.0	
$\mathrm{C}_{\text {iss }}$	Common－Source Input Capacitance（Note 2）	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{MHz}$		4.0		4.0		4.0	pF
Crss	Common－Source Reverse Transfer Capacitance（Note 2）				1.2		1.2		1.2	
$\mathrm{C}_{\text {dgo }}$	Drain－Gate Capacitance（Note 2）	$V_{\text {DG }}=10 \mathrm{~V}, \mathrm{IS}=0$			1.5		1.5		1.5	

2N5452-2N5454

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS		2N5452		2N5453		2N5454		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
\bar{e}_{n}	Equivalent Short Circuit Input Noise Voltage	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{kHz}$		20		20		20	$\frac{n!}{\sqrt{\text { Hz }}}$
NF	Common-Source Spot Noise Figure (Note 2)	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, V_{G S}=0 \\ & R_{G}=10 \mathrm{M} \Omega \\ & \hline \end{aligned}$	$f=100 \mathrm{~Hz}$		0.5		0.5		0.5	d3
loss1/loss2	Drain Saturation Current Ratio	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.95	1.0	0.95	1.0	0.95	1.0	
$\left\|V_{G S 1}-V_{G S 2}\right\|$	Differential Gate-Source Voltage	$V_{D S}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$			5.0		10.0		15.0	
	Gate-Source Voltage		$\mathrm{T}=25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$		0.4		0.8		2.0	
$\Delta V_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}$	Differential Change with Temperature		$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		0.5		1.0		2.5	mV
$\mathrm{g}_{\mathrm{fs} 1} / \mathrm{g}_{\mathrm{fs} 2}$	Transconductance Ratio		$\mathrm{f}=1 \mathrm{kHz}$	0.97	1.0	0.97	1.0	0.95	1.0	
$\left\|g_{\text {os } 1}-g_{\text {os } 2}\right\|$	Differential Output Conductance				0.25		0.25		0.25	$\mu \mathrm{s}$

NOTES: 1. Per transistor.
2. For design reference only, not 100% tested.

FIN CONFIGURATION

TO-92

ORDERING INFORMATION*

TO-92	WAFER	DICE
2N5457	2N5457/W	2N5457/D
2N5453	2N5458/W	2N5458/D
2N5459	2N5459/W	2N5459/D

*When ordering wafer/dice refer to Section 10, page 10-1.

CHIP TOPOGRAPHY

CT000321

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Gate Voltage .. 25 V
Drain-Source Voltage.. 25V
Continuous Forward Gate Current....................... 10mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots+300^{\circ} \mathrm{C}$
Power Dissipation .310 mW Derate above $25^{\circ} \mathrm{C} \ldots \ldots2 .82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
BVGSS	Gate-Source Breakdown Voltage		$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	-25	-60		V
IGSS	Gate Reverse Current		$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$. 05	-1.0	nA
			$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$			-200	
V_{GS} (off)	Gate-Source Cutoff Voltage	2N5457	$V_{D S}=15 V, I_{D}=10 \mathrm{nA}$	-0.5		-6.0	V
		2N5458		-1.0		-7.0	
		2N5459		-2.0		-8.0	
VGS	Gate-Source Voltage	2N5457	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, I_{D}=100 \mu \mathrm{~A} \\ & V_{D S}=15 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ & V_{D S}=15 \mathrm{~V}, I_{D}=400 \mu \mathrm{~A} \end{aligned}$		-2.5		V
		2N5458			-3.5		
		2N5459			-4.5		
IDSS	Zero-Gate-Voltage Drain Current (Note 1)	2N5457	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	1.0	3.0	5.0	mA
		2N5458		2.0	6.0	9.0	
		2N5459		4.0	9.0	16	
$\left\|y_{f s}\right\|$	Forward Transfer Admittance	2N5457	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0, f=1 \mathrm{kHz}$	1000	3000	5000	$\mu \mathrm{s}$
		2N5458		1500	4000	5500	
		2N5459		2000	4500	6000	
$\left\|y_{\text {os }}\right\|$	Output Admittance		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{kHz}$		10	50	$\mu \mathrm{s}$
$\mathrm{C}_{\text {iss }}$	Input Capacitance (Note 2)		$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}$		4.5	7.0	pF
$\mathrm{Cr}_{\text {rss }}$	Reverse Transfer Capacitance (Note 2)		$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$		1.5	3.0	pF
NF	Noise Figure (Note 2)		$\begin{aligned} & V_{D S}=15 \mathrm{~V}, V_{G S}=0, R_{G}=1 \mathrm{MHz} \\ & B W=1 \mathrm{~Hz}, f=1 \mathrm{kHz} \end{aligned}$			3.0	dB

NOTES: 1. Pulse test required. PW $\leq 630 \mathrm{~ms}$, duty cycle $\leq 10 \%$
2. For design reference only, not 100% tested.

2N5460-2N5465 P-Channel JFET Low Noise Amplifier

PIN CONFIGURATION

ORDERING INFORMATION*

TO-92	WAFER	DICE
2N5460	2N5460/W	2N5460/D
2N5461	2N5461/W	2N5461/D
2N5462	2N5462/W	2N5462/D
2N5463	2N5463/W	2N5463/D
2N5464	2N5464/W	2N5464/D
2N5465	2N5465/W	2N5465/D

ABSOLUTE MAXIMUM RATINGS

*When ordering wafer/dice refer to Section 10, page 10-1.
ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER		TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{BV}_{\mathrm{GSS}}$	Gate-Source Breakdown Voltage	2N5460, 2N5461, 2N5462	$\mathrm{IG}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		40			V
		2N5463, 2N5464, 2N5465			60			
$V_{G S}(\mathrm{off})$	Gate-Source Cutoff Voltage	2N5460, 2N5463	$V_{D S}=-15 \mathrm{~V}, I_{D}=1.0 \mu \mathrm{~A}$		0.75		6.0	V
		2N5461, 2N5464			1.0		7.5	
		2N5462, 2N5465			1.8		9.0	
IGSS	Gate Reverse Current	2N5460, 2N5461, 2N5462	$V_{D S}=0$	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$			5.0	nA
		2N5463, 2N5464, 2N5465		$\mathrm{V}_{G S}=30 \mathrm{~V}$			5.0	
	$T_{A}=100^{\circ} \mathrm{C}$	2N5460, 2N5461, 2N5462		$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
		2N5463, 2N5464, 2N5465		$\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}$.		1.0	
IDSS	Zero-Gate Voltage Drain Current	2N5460, 2N5463	$V_{D S}=-15 \mathrm{~V}$	$\mathrm{V}_{\mathrm{GS}}=0$	-1.0		-5.0	mA
		2N5461, 2N5464			-2.0		-9.0	
		2N5462, 2N5465			-4.0		-16	
V_{GS}	Gate-Source Voltage	2N5460, 2N5463		$\mathrm{I}^{\mathrm{D}}=0.1 \mathrm{~mA}$	0.5		4.0	V
		2N5461, 2N5464		$\mathrm{I}_{\mathrm{D}}=-0.2 \mathrm{~mA}$	0.8		4.5	
		2N5462, 2N5465		$\mathrm{ID}^{\text {a }}=-0.4 \mathrm{~mA}$	1.5		6.0	
gts	Forward Transadmittance	2N5460, 2N5463	$\begin{aligned} & V_{\mathrm{DS}}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{f}=1.0 \mathrm{kHz}$	1000		4000	$\mu \mathrm{s}$
		2N5461, 2N5464			1500		5000	
		2N5462, 2N5465			2000		6000	
gos	Output Admittance						75	$\mu \mathrm{S}$
$\mathrm{C}_{\text {iss }}$	Input Capacitance (Note 1)			$\mathrm{f}=1 \mathrm{MHz}$		5.0	7	pF
Crss	Reverse Transfer Capacitance (Note 1)					1.0	2.0	pF
NF	Common-Source Noise Figure (Note 1)			$\begin{aligned} & f=100 \mathrm{~Hz} \\ & \mathrm{BW}=1.0 \mathrm{~Hz} \\ & \mathrm{R}_{\mathrm{G}}=1.0 \mathrm{M} \Omega \end{aligned}$		1.0	2.5	DB
\bar{e}_{n}	Equivalent Short-Circuit Input Noise Voltage (Note 1)					60	115	$\begin{aligned} & \mathrm{nV} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$

NOTE 1: For design reference only, not 100% tested.

FEATURES

- Up to 400 MHz Operation
- Economy Packaging
- Crss $^{<1.0 p F}$

ORDERING INFORMATION*

TO-92	WAFER	DICE
$2 N 5484$	$2 N 5484 / W$	$2 N 5484 / D$
$2 N 5485$	$2 N 5485 / W$	$2 N 5485 / D$
$2 N 5486$	$2 N 5486 / W$	$2 N 5486 / D$

CHIP TOPOGRAPHY

ст00221I
ABSOLUTE MAXIMUM RATINGS($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)Drain-Gate Voltage25 V
Source Gate Voltage 25 V
Drain Current 30mA
Forward Gate Current 10 mA
Storage Temperature Range $150^{\circ} \mathrm{C}$
Operating Temperature Range

\qquad
$-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$
Power Dissipation (Soldering, 10sec) 310 mW
*When ordering wafer/dice refer to Section 10, page 10-1.
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARANETER	TEST CONDITIONS		2N5484		2N5485		2N5486		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
		$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-1.0		-1.0		-1.0	nA
IGSS	Gate Reverse Current $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$				-200		-200		-200	
$\mathrm{BV}_{\text {GSS }}$	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-25		-25		-25		V
$\mathrm{V}_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$		-0.3	-3.0	-0.5	-4.0	-2.0	-6.0	
IDSS	Saturation Drain Current	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 1)		1.0	5.0	4.0	10	8.0	20	mA
g_{s}	Common-Source Forward Transconductance	$f=1 \mathrm{kHz}$		3000	6000	3500	7000	4000	8000	$\mu \mathrm{s}$
gos	Common-Source Output Conductance				50		60		75	
	Common-Source Forward	$V_{D S}=15 \mathrm{~V}, V_{G S}=0$	$\mathrm{f}=100 \mathrm{MHz}$	2500						
Re (yts)	Transconductance (Note 2)		$f=400 \mathrm{MHz}$			3000		3500		
	Common-Source Output		$\mathrm{f}=100 \mathrm{MHz}$		75					
Re (yos)	Conductance (Note 2)		$f=400 \mathrm{MHz}$				100		100	
$R \mathrm{e}_{\text {(yis) }}$	Common-Source input Conductance (Note 2)		$f=100 \mathrm{MHz}$		100					
			$\mathrm{f}=400 \mathrm{MHz}$				1000		1000	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Note 2)		$\mathrm{f}=1 \mathrm{MHz}$		5.0		5.0		5.0	pF
Crss	Common-Source Reverse Transfer Capacitance (Note 2)				1.0		1.0		1.0	
Coss	Common-Source Output Capacitance (Note 2)				2.0		2.0		2.0	

2N5484-2N5486

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS		2N5484		2N5485		2N5486		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$	$\mathrm{f}=1 \mathrm{kHz}$		2.5		2.5		2.5	
		$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega \end{aligned}$			3.0					
NF	Noise Figure		$f=100 \mathrm{MHz}$				2.0		2.0	
	(Note 2)	$\mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$	$f=400 \mathrm{MHz}$				4.0		4.0	
		$V_{D S}=15 \mathrm{~V}, I_{D}=1 \mathrm{~mA}$		16	25					dB
G_{ps}	Common-Source Power Gain		$f=100 \mathrm{MHz}$			18	30	18	30	
	(Note 2)	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$	$\mathrm{f}=400 \mathrm{MHz}$			10	20	10	20	

NOTES: 1. Pulse test required. Pulse width $=300 \mu$, duty cycle $\leq 3 \%$.
2. For design reference only, not 100% tested.

FEATURES

- Tight Temperature Tracking
- Tight Matching
- High Common Mode Rejection
- Low Noise

ORDERING INFORMATION*

TO-72	WAFER	DICE
2N5515	2N5515/W	2N5515/D
2N5516	2N5516/W	2N5516/D
2N5517	2N5517/W	2N5517/D
2N5518	2N5518/W	2N5518/D
2N5519	2N5519/W	2N5519/D
2N5520		
2N5521		
2N5522		
2N5523		
2N5524		

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)		
Gate-Source or Gate-Drain Voltage -40V		
Gate Current (Note 1)50mA		
Storage Temperature Range $\ldots \ldots \ldots \ldots . .65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$		
Operating Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
Lead Temperature (Soldering, 10sec) $\ldots . . \ldots \ldots . . .+300^{\circ} \mathrm{C}$		
	ONE SIDE	BOTH SIDES
Power Dissipation ($\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$)	250	
	$2.0 \mathrm{~mW} /{ }^{\circ}$	3.0 mW

NOTE: Per transistor.
*When ordering wafer/dice refer to Section 10 , page 10-1.
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
		$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-250	pA
IGSS	Gate Reverse Current $\quad T_{A}=150^{\circ} \mathrm{C}$				-250	nA
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-40		
V_{P}	Gate-Source Pinch-Off Voltage	$V_{D S}=20 \mathrm{~V}, I_{D}=1 \mathrm{nA}$		-0.7	-4	V
IDSS	Drain Current at Zero Gate Voltage (Note 1)	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.5	7.5	mA
$\mathrm{g}_{\text {fs }}$	Common-Source Forward Transconductance (Note 1)		$f=1 \mathrm{kHz}$	1000	4000	$\mu \mathrm{s}$
goss	Common-Source Output Conductance				10	
Crss	Common-Source Reverse Transfer Capacitance (Note 3)		$f=1 \mathrm{MHz}$		5	pF
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Note 3)				25	

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
\bar{e}_{n}	Equivalent input Noise Voltage (Note 3)	2N5515-19	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$	$\mathrm{f}=10 \mathrm{~Hz}$		30	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		2N5520-24				15	
		2N5515-24		$\mathrm{f}=1 \mathrm{kHz}$		10	
	Gate Current $\quad \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$					-100	pA
I_{G}					-100	nA	
V_{GS}	Gate Source Voltage				-0.2	-3.8	V
g_{fs}	Common-Source Forward Transconductance (Note 1)			$f=1 \mathrm{kHz}$	500	1000	$\mu \mathrm{s}$
goss	Common-Source Output Conductance					1	$\mu \mathrm{s}$

MATCHING CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	2N5515,20		2N5516,21		2N5517,22		2N5518,23		2N5519,24		UNIT
			MIN	MAX									
ID	Drain Current Ratio at	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	0.95	1	0.95	1	0.95	1	0.95	1	0.90	1	
$\left\|\left.\right\|_{G 1}-I_{G 2}\right\|$	Differential Gate Current $\left(+125^{\circ} \mathrm{C}\right)$	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$		10		10		10		10		10	nA
$\mathrm{g}_{\mathrm{f} 1} / \mathrm{g}_{\mathrm{fs} 2}$	Transconductance Ratio (Note 1)	$\begin{aligned} & \mathrm{V}_{\mathrm{DG}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	0.97	1	0.97	1	0.95	1	0.95	1	0.90	1	
$\mid \mathrm{g}_{\mathrm{oss} 1}-\mathrm{goss}^{1} 1$	Differential Output Conductance	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		0.1		0.1		0.1		0.1		0.1	$\mu \mathrm{s}$
$\left\|V_{G S 1}-V_{G S 2}\right\|$	Differential Gate-Source Voltage	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$		5		5		10		15		15	mV
$\frac{\Delta\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}}$	Gate-Source Voltage Differential Drift ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		5		10		20		40		80	${ }^{\mu}{ }^{\circ} \mathrm{V} /$
CMRR	Common Mode Rejection Ratio (Note 2, 3)	$\begin{aligned} & V_{D D}=10 \text { to } 20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$	100		100		90						dB

NOTES: 1. Pulse duration of 28 ms used during test.
2. $C M R R=20 \log _{10} \Delta V_{D D} / \Delta I V_{G S 1}-V_{G S 2} I,\left(\Delta V_{D D}=10 V\right)$
3. For design reference only, not 100% tested.

FEATURES

- Economy Packaging
- Fast Switching
- Low Drain-Source 'ON' Resistance
PIN CONFIGURATION

ORDERING INFORMATION*

TO-92	WAFER	DICE
2N5638	2N5638/W	2N5638/D
2N5639	2N5639/W	2N5639/D
2N5640	2N5640/W	2N5640/D

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Drain-Source Voltage 30 V
Drain-Gate Voltage 30 V
Source-Gate Voltage 30 V
Storage Temperature Range 10 mA
Operating Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Power Dissipation 310 mW
Derate above $25^{\circ} \mathrm{C}$ $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
*When ordering wafer/dice refer to Section 10, page 10-1.
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		2N5638		2N5639		2N5640		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
$B V_{\text {GSS }}$	Gate Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-30		-30		-30		V
		$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-1.0		-1.0		-1.0	nA
IGSS	Gate Reverse Current $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$				-1.0		-1.0		-1.0	$\mu \mathrm{A}$
		$\begin{aligned} & V_{D S}=15 \mathrm{~V}, V_{G S}=-12 V(2 N 5638) \\ & V_{G S}=-8 V(2 N 5639), V_{G S}=-6 \mathrm{~V}(2 N 5640) \end{aligned}$			1.0		1.0		1.0	$n \mathrm{~A}$
ID(off)	Drain Cutoff Current $\quad \mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$				1.0		1.0		1.0	$\mu \mathrm{A}$
IDSS	Saturation Drain Current	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 1)		50		25		5.0		mA
VDS(on)	Drain-Source ON Voitage	$\begin{aligned} & V_{G S}=0, I_{D}=12 \mathrm{~mA}(2 N 5638), \\ & I_{D}=6 \mathrm{~mA}(2 N 5639), I_{D}=3 \mathrm{~mA}(2 N 5640) \end{aligned}$			0.5		0.5		0.5	V
${ }^{r} \mathrm{DS}_{\text {(on) }}$	Static Drain-Source ON Resistance	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$			30		60		100	Ω
${ }^{\text {r ds }}$ (on)	Drain-Source ON Resistance	$V_{G S}=0, I_{D}=0$	$\mathrm{f}=1 \mathrm{kHz}$		30		60		100	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Note 2)	$V_{G S}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	$\mathrm{f}=1 \mathrm{MHz}$		10		10		10	pF
Crss	Common-Source Reverse Transfer Capacitance (Note 2)				4.0		4.0		4.0	
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time (Note 2)	$\begin{array}{ll} V_{D D}=10 \mathrm{~V} & I D(o n)=12 \mathrm{~mA}(2 N 5638) \\ V_{G S(\text { on })}=0 & I_{(0 n)}=6 \mathrm{~mA}(2 N 5639) \\ V_{G S(\text { off })}=-10 \mathrm{~V} & I_{D(o n)}=3 \mathrm{~mA}(2 N 5640) \\ R_{G}=50 \Omega & \\ \text { (Note 2) } & \\ \hline \end{array}$			4.0		6.0		8.0	ns
t_{r}	Rise Time (Note 2)				5.0		8.0		10	
t_{d}	Turn-OFF Delay Time (Note 2)				5.0		10		15	
t_{f}	Fall Time (Note 2)				10		20		30	

[^12]2N5638-2N5640

$$
R_{L}=\frac{V_{D D}}{I_{D}}-\left(r_{D S}(0 n)+50\right)
$$

2

2N5902-2N5909 Dual N-Channel JFET General Purpose Amplifier

FEATURES

- Tight Tracking
- Good Matching

PIN CONFIGURATION

 PC001511

ORDERING INFORMATION*

TO-99	WAFER	DICE
2N5902	2N5902/W	2N5902/D
2N5903	2N5903/W	2N5903/D
2N5904	2N5904/W	2N5904/D
2N5905	2N5905/W	2N5905/D
2N5906	2N5906/W	2N5906/D
2N5907	2N5907/W	2N5907/D
2N5908	2N5908/W	2N5908/D
2N5909	2N5909/W	2N5909/D

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Gate-Drain or Gate-Source
Voltage (Note 1)
-40V
Gate Current (Note 1) 10mA
Storage Temperature Range $\ldots \ldots \ldots65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$
ONE SIDE BOTH SIDES
Power Dissipation..................... 367 mW 500mW Derate above $25^{\circ} \mathrm{C} \ldots \ldots \ldots \quad 3 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \quad 4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
*When ordering wafer/dice refer to Section 10, page 10-1.
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		2N5902-6		2N5903-7		2N5904-8		2N5905-9		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mid \mathbf{I}_{\mathbf{G} 1-\left.\right\|_{\mathbf{G} 2} \mid}$	Differential Gate Current	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, \\ & T_{D}=30 \mu \mathrm{~A}, \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	2N5902-5		2.0		2.0		2.0		2.0	nA
			2N5906-9		0.2		0.2		0.2		0.2	
$\frac{\text { IDSS1 }}{\text { IDSS2 }}$	Saturation Drain Current Ratio	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.95	1	0.95	1	0.95	1	0.95	1	
$\frac{\mathrm{g}_{\mathrm{fs} 1}}{\mathrm{~g}_{\mathrm{fs} 2}}$	Transconductance Ratio	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, \\ & I_{D}=30 \mu \mathrm{~A} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$	0.97	1	0.97	1	0.95	1	0.95	1	
$\left\|V_{G S 1}-V_{G S 2}\right\|$	Differential Gate-Source Voltage				5		5		10		15	mV
$\underline{\Delta} \mathrm{V}_{\mathrm{BS} 1}-\mathrm{V}_{\mathrm{GS} 2} \mid$	Gate-Source Voltage Differential Drift (Measured at end points T_{A} and T_{B})		$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{B}=125^{\circ} \mathrm{C} \end{aligned}$		5		10		20		40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
ΔT			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{B}}=25^{\circ} \mathrm{C} \end{aligned}$		5		10		20		40	
$\left\|g_{o s 1}-g_{o s 2}\right\|$	Differential Output Conductance		$f=1 \mathrm{kHz}$		0.2		0.2		0.2		0.2	$\mu \mathrm{S}$

2N5902-2N5909

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		2N5902-5		2N5906-9		UNIT
				MIN	MAX	MIN	MAX	
		$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-5		-2	PA
IGss	Gate Reverse Current $\quad T_{A}=125^{\circ} \mathrm{C}$				-10		-5	nA
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{IG}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$		-40		-40		v
V_{GS} (off)	Gate-Source Cutoff Voltage	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-0.6	-4.5	-0.6	-4.5	
V_{GS}	Gate Source Voltage	$V_{D G}=10 \mathrm{~V}, I_{D}=30 \mu \mathrm{~A}$			-4		-4	
					-3		-1	PA
I_{G}	Gate Operating Current $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$				-3		-1	nA
loss	Saturation Drain Current	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$	30	500	30	500	$\mu \mathrm{A}$
9fs	Common-Source Forward Transconductance			70	250	70	250	$\mu \mathrm{s}$
Gos	Common-Source Output Conductance				5		5	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance	$V_{D S}=10 \mathrm{~V}, V_{G S}=0$ (Note 1)	$\mathrm{f}=1 \mathrm{MHz}$		3		3	pF
$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance				1.5		1.5	
9fs	Common-Source Forward Transconductance	$V_{D G}=10 \mathrm{~V}, I_{D}=30 \mu \mathrm{~A}$	$\mathrm{f}=1 \mathrm{kHz}$	50	150	50	150	$\mu \mathrm{s}$
gos	Common-Source Output Conductance				1		1	
\bar{e}_{n}	Equivalent Short Circuit Input Noise Voltage (Note 1)	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			0.2		0.1	$\frac{\mu V}{\sqrt{H z}}$
NF	Spot Noise Figure (Note 1)		$\begin{aligned} \mathrm{f} & =100 \mathrm{~Hz} \\ \mathrm{R}_{\mathrm{G}} & =10 \mathrm{M} \Omega \end{aligned}$		3		1	dB

NOTE 1: For design reference only, not 100% tested.

FEATURES

- Tight Tracking
- Low Insertion Loss
- Good Matching

PIN CONFIGURATION

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS
($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage
$-25 \mathrm{~V}$
Gate Current .50 mA
Storage Temperature Range $\ldots \ldots \ldots . . .-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$

	TO-71		TO-99	
	ONE SIDE	BOTH SIDES	ONE	BOTH
SIDE				
SIDES				

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
		$V_{G S}=-15 \mathrm{~V}, V_{D S}=0$			-100	pA
lGSS	Gate Reverse Current $\quad T_{A}=150^{\circ} \mathrm{C}$				-250	nA
BV ${ }_{\text {GSS }}$	Gate Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, V_{D S}=0$		-25		
V_{GS} (off)	Gate-Source Cutoff Voltage	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-1	-5	V
$V_{\text {GS }}$	Gate-Source Voltage	$V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$		-0.3	-4	
IG	Gate Operating Current $\quad \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$				-100	pA
					-100	nA
IDSS	Saturation Drain Current (Pulsewidth $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$)	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		7	40	mA
gf_{s}	Common-Source Forward Transconductance	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$	$f=1 \mathrm{kHz}$	5000	10,000	
gf_{s}	Common-Source Forward Transconductance (Note 1)		$f=100 \mathrm{MHz}$	5000	10,000	
gos	Common-Source Output Conductance		$f=1 \mathrm{kHz}$		100	$\mu \mathrm{s}$
goss	Common-Source Output Conductance (Note 1)		$\mathrm{f}=100 \mathrm{MHz}$		150	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Note 1)				5	
$\mathrm{Cr}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance (Note 1)		$f=1 \mathrm{MHz}$		1.2	pF
\bar{e}_{n}	Equivalent Short Circuit Input Noise Voltage (Note 1)		$\mathrm{f}=10 \mathrm{kHz}$		20	$\frac{n V}{\sqrt{H z}}$
NF	Spot Noise Figure (Note 1)		$\begin{aligned} & f=10 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{G}}=100 \mathrm{k} \Omega \\ & \hline \end{aligned}$		1	dB

SYMBOL	PARAMETER	TEST CONDITIONS		IT, 2N5911		IT, 2N5912		UNIT
				MIN	MAX	MIN	MAX	
$\left\|\mathrm{I}_{\mathrm{G} 1} \mathrm{l}_{\mathrm{G} 2}\right\|$	Differential Gate Current	$V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$	$125^{\circ} \mathrm{C}$		20		20	nA
$\frac{\mathrm{ldss} 1}{\mathrm{l} \mathrm{DSS2}}$	Saturation Drain Current Ratio	$V_{D S}=10 \mathrm{~V}, V_{G S}=0$ (Pulsewidth $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$)		0.95	1	0.95	1	
$\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|$	Differential Gate-Source Voltage	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$			10		15	mV
$\Delta\left\|\mathrm{V}_{\mathrm{GS1}} 1 \mathrm{~V}_{\mathrm{GS} 2}\right\|$	Gate-Source Voltage Differential Drift (Measured at end points, T_{A} and T_{B})		$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{B}=125^{\circ} \mathrm{C} \end{aligned}$		20		40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
ΔT			$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & T_{B}=25^{\circ} \mathrm{C} \end{aligned}$		20		40	
$\frac{\mathrm{gfs}^{1}}{} \mathrm{~g}_{\mathrm{fs} 2}$	Transconductance Ratio		$\mathrm{f}=1 \mathrm{kHz}$	0.95	1	0.95	1	

NOTE 1: For design reference only, not 100% tested.

FEATURES

－Ultra Low Noise
－High CMRR
－Low Offset
－Tight Tracking

ORDERING INFORMATION＊

TO－71	WAFER	DICE
2N6483	2N6483／W	2N6483／D
2N6484	2N6484／W	2N6484／D
2N6485	2N6485／W	2N6485／D

CHIP TOPOGRAPHY

6019

ABSOLUTE MAXIMUM RATINGS

$\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted）
Gate－Source or Gate－Drain Voltage（Note 1）$\ldots \ldots . .-50 \mathrm{~V}$
Gate－Gate Voltage ．．． 50 V
Gate Current（Note 1）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．50mA
Storage Temperature Range ．．．．．．．．．．．．$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature（Soldering，10sec）$\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$
ONE SIDE BOTH SIDES
Power Dissipation．．．．．．．．．．．．．．．．．．．． $250 \mathrm{~mW} \quad 400 \mathrm{~mW}$
Derate above $25^{\circ} \mathrm{C}$ ．．．．．．．．．．．．．．．．．$\quad 1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \quad 2.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
＊When ordering wafer／dice refer to Section 10，page 10－1．
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted）

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
				－200	pA
IGSS	Gate Reverse Current $\quad T_{\text {A }}=150^{\circ} \mathrm{C}$	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		－200	nA
BVGSS	Gate－Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	－50		V
V_{p}	Gate－Source Pinch Off Voltage	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	－0．7	－4．0	
IDSS	Drain Current at Zero Gate Voltage（Note 2）	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	0.5	7.5	mA
g_{fs}	Common－Source Forward Transconductance（Note 2）	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, V_{G S}=0, f=1 \mathrm{kHz} \\ & \text { (Note 6) } \end{aligned}$	1000	4000	$\mu \mathrm{s}$
goss	Common－Source Output Conductance				
Ciss	Common－Source Input Capacitance	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz} \\ & \text { (Note 6) } \end{aligned}$		20	pF
Crss	Common－Source Reverse Transfer Capacitance			3.5	
	Gate Current	$V_{G D}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$（Note 6）		100	pA
I_{G}				100	nA
V_{GS}	Gate Source Voltage	$\mathrm{V}_{\mathrm{DG}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$	0.2	3.8	V
g_{fs}	Common－Source Forward Transconductance	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{kHz}$	500	1500	$\mu \mathrm{s}$
gos	Common－Source Output Conductance	$\mathrm{V}_{\text {DG }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		1	
\bar{e}_{n}	Equivalent Input Noise Voltage（Note 6）	$V_{D S}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, \mathrm{f}=10 \mathrm{~Hz}$		10	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{kHz}$		5	

NOTES：1．Per transistor．
2．Pulse test required；pulse width $=2 \mathrm{~ms}$ ．

2N6483-2N6485

MATCHING CHARACTERISTICS
(@) $25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	2N6483		2N6484		2N6485		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
$\frac{\mathrm{IDSS} 1}{\mathrm{IDSS2}}$	Drain Current Ratio at Zero Gate Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \text { (Note 4) } \end{aligned}$	0.95	1	0.95	1	0.95	1	
\| $\mathrm{I}_{\mathrm{G} 1}-\mathrm{I}_{\mathrm{G} 2}$ \|	Differential Gate Current	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \end{aligned}$		10		10		10	nA
$\frac{\mathrm{g}_{\mathrm{fs} 1}}{\mathrm{~g}_{\mathrm{gs} 2}}$	Transconductance Ratio	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, \\ & \mathrm{f}=1 \mathrm{kHz}(\text { Note 4) } \end{aligned}$	0.97	1	0.97	1	0.95	1	
$\left\|g_{o s 1}-g_{o s 2}\right\|$	Differential Output Conductance (Note 6)	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		0.1		0.1		0.1	$\mu \mathrm{s}$
$\left\|V_{G S 1}-V_{G S 2}\right\|$	Differential Gate-Source Voltage	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		5		10		15	mV
$\frac{\Delta\left\|V_{G S 1}-V_{G S 2}\right\|}{\Delta T}$	Gate-Source Voltage Differential Drift	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		5		10		25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
CMRR	Common Mode Rejection Ratio (Note 6)	$V_{D D}=10 \text { to } 20 \mathrm{~V} \text {, }$ $I_{D}=200 \mu \mathrm{~A}(\text { Note } 5)$	100		100		90		dB

NOTES: 3. These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
4. Pulse duration of 2 ms used during test.
5. $C M R R=20 \log _{10} \Delta \mathrm{~V}_{\mathrm{DD}} / \Delta \mid \mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS}} \mathrm{l},\left(\Delta \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}\right)$, not included in JEDEC registration.
6. For design reference only, not 100% tested.

TYPICAL PERFORMANCE CHARACTERISTICS

$\bar{e}_{\mathbf{n}}$ vs. FREQUENCY

GATE CURRENT vs. VDG

$\bar{e}_{\mathbf{n}}$ vs. FREQUENCY

OP00161I
TYPICAL CAPACITANCE vs. VDS

GENERAL DESCRIPTION

This N-Channel Junction FET is characterized for ultra low noise applications requiring tightly controlled and specified noise parameters at 10 Hz and 1000 Hz . Tight matching specifications make this device ideal as the input stage for low frequency differential instrumentation amplifiers.

ORDERING INFORMATION*

TO-71	WAFER	DICE
IMF6485	IMF6485/W	IMF6485/D

*When ordering wafer/dice refer to Section 10, page 10-1.

FEATURES

- Ultra Low Noise
- High CMRR
- Low Offset
- Tight Tracking

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage (Note 1)........ -50V
Gate-Gate Voltage .. 50 V
Gate Current (Note 1) 50mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)
-55 to +1750
ONE S!DE
BOTH SIDES
Power Dissipation.
Derate above $25^{\circ} \mathrm{C}$
250 mW
$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
400 mW
$2.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

NOTES: 1. Per transistor.
2. Pulse test required; pulse width $=2 \mathrm{~ms}$.
3. For design reference only, not 100% tested.

MATCHING CHARACTERISTICS
(@) $25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
$\frac{\operatorname{lDSS} 1}{\mathrm{I}_{\mathrm{DSS} 2}}$	Drain Current Ratio at Zero Gate Voltage	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0($ Note 2)	0.95	1	
$\left\|I_{G 1}-I_{G 2}\right\|$	Differential Gate Current	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ & T_{A}=+125^{\circ} \mathrm{C} \end{aligned}$		10	nA
$\frac{\mathrm{g}_{\mathrm{fs} 1}}{\mathrm{~g}_{\mathrm{gs} 2}}$	Transconductance Ratio	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, \\ & f=1 \mathrm{kHz}(\text { Note } 2) \end{aligned}$	0.95	1	
\mid gos1 - gos2 \mid	Differential Output Conductance (Note 4)	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, \\ & f=1 \mathrm{kHz} \end{aligned}$		0.1	$\mu \mathrm{s}$
$\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|$	Differential Gate-Source Voltage	$V_{D G}=20 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$		25	mV
$\frac{\Delta\left\|V_{G S 1}-V_{G S 2}\right\|}{\Delta T}$	Gate-Source Voltage Differential Drift	$\begin{aligned} & V_{C G}=20 V, I_{D}=200 \mu \mathrm{~A} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
CMRR	Common Mode Rejection Ratio (Note 3, 4)	$\begin{aligned} & V_{D D}=10 \text { to } 20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$	90		dB

NOTES: 1. These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
2. Pulse duration of 2 ms used during test.
3. $C M R R=20 \log _{10} \Delta V_{D D} / \Delta\left|V_{G S 1}-V_{G S 2}\right|,\left(\Delta V_{D D}=10 \mathrm{~V}\right)$
4. For design reference only, not 100% tested.

TYPICAL PERFORMANCE CHARACTERISTICS

Enhancement Mode MOSFET

 General Purpose Amplifier/Switch
FEATURES

- Channel Cut Off With Zero Gate Voltage
- Square-Law Transfer Characteristic Reduces Distortion
- Independent Substrate Connection Provides Flexibility in Biasing
- Internally Connected Diode Protects Gate From Damage Due to Overvoltage

PIN CONFIGURATION

PC00271I

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Source or Drain-Gate Voltage....................... 40V
Drain Current.. 50mA
Gate Forward Current..10 10 A
Gate Reverse Current ..1mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature $\ldots \ldots \ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$
Power Dissipation ..375mW
Derate above $25^{\circ} \mathrm{C} \ldots \ldots3 .3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
*When ordering wafer/dice refer to Section 10, page 10-1.
ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{B S}=0$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
IGSSF	Forward Gate-Terminal Current$T_{A}=+100^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{GS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-100		pA
				-		-1	nA
BV GSS	Forward Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-0.1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$		-25			\checkmark
Idss	Zero-Gate-Voitage Drain Current	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$				-10	nA
		$\mathrm{V}_{\mathrm{DS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$				-10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	Gate-Source Threshold Voltage	$V_{D S}=-15 \mathrm{~V}, I_{D}=-10 \mu \mathrm{~A}$		-1.5		-5	\checkmark
V_{GS}	Gate-Source Voltage	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-8 \mathrm{~mA}$		-4.5		-8	
${ }^{\text {D }}$ (on)	On-State Drain Current	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-15 \mathrm{~V}$		-40		-120	mA
$\left\|y_{f s}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$V_{D S}=-15 \mathrm{~V}, I_{D}=-8 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$	3500		6500	$\mu \mathrm{S}$
$\left\|y_{0 s}\right\|$	Small-Signal Common-Source Output Admittance					250	
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance (Note 1)		$\mathrm{f}=1 \mathrm{MHz}$			10	pF
$\mathrm{C}_{\text {rss }}$	Common-Source Short Circuit Reverse Transfer Capacitance (Note 1)					4	

[^13]
FEATURES

- Very High Input Impedance
- High Gate Breakdown
- Fast Switching
- Low Capacitance

PIN CONFIGURATION

TO-72

ORDERING INFORMATION*

TO-72	WAFER	DICE
3N163	3N163/W	3N163/D
3N164	3N164/W	3N164/D

*When ordering wafer/dice refer to Section 10, page 10-1.

ABSOLUTE MAXIMUM RATINGS (Note 1)($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Source or Drain-Gate Voltage
3N163 -40V
3N164 $-30 \mathrm{~V}$
Static Gate-Source Voltage $\pm 40 \mathrm{~V}$
3N164 $\pm 30 \mathrm{~V}$
Transient Gate-Source Voltage (Note 2) $\pm 125 \mathrm{~V}$
Drain Current 50 mA
Storage Temperature $+200^{\circ} \mathrm{C}$
Operating Temperature$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Power Dissipation 375 mW
Derate above $+25^{\circ} \mathrm{C}$ $3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

NOTES:

1. See handling precautions on 3N170 data sheet.
2. Devices must not be tested at $\pm 125 \mathrm{~V}$ more than once, nor for longer than 300 ms .

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless noted)

SYMBOL	PARAMETER	TEST CONDITIONS	3N163		3N164		UNIT
			MIN	MAX	MIN	MAX	
IGSSR	Gate Reverse Leakage Current	$\begin{aligned} & V_{G S}=-40 V(3 N 163) \\ & V_{G S}=-30 V(3 N 164) \end{aligned}$		10		10	pA
IGSSF	Gate Forward Current			-10		-10	
	T $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			-25		-25	
$B V_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	-40		-30		V
$B V_{\text {SDS }}$	Source-Drain Breakdown Voltage	$I_{S}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GD}}=0, \mathrm{~V}_{\mathrm{DS}}=0$	-40		-30		
$\mathrm{V}_{\text {GS }}$ (th)	Threshold Voltage	$V_{D S}=V_{G S}, I_{D}=-10 \mu \mathrm{~A}$	-2.0	-5.0	-2.0	-5.0	
$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	Threshold Voltage	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$	-2.0	-5.0	-2.0	-5.0	
$V_{G S}$	Gate Source Voltage	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~mA}$	-3.0	-6.5	-3.0	-6.5	
IDSS	Zero Gate Voltage Drain Current	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		200		400	pA
ISDS	Source Drain Current	$\mathrm{V}_{\mathrm{SD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DB}}=0$		400		800	
r ${ }^{\text {DS(on) }}$	Drain-Source on Resistance	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{~A}$		250		300	ohms
ID(on)	On Drain Current	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$	-5.0	-30.0	-3.0	-30.0	mA
Gfs	Forward Transconductance	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$	2000	4000	1000	4000	
gos	Output Admittance			250		250	$\mu \mathrm{s}$

ल ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	3N163		3N164		UNIT
			MIN	MAX	MIN	MAX	
$\mathrm{C}_{\text {iss }}$	Input Capacitance-Output Shorted	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, I_{D}=-10 \mathrm{~mA}, f=1 \mathrm{MHz} \\ & (\text { Note 1) } \end{aligned}$		2.5		2.5	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			0.7		0.7	
$\mathrm{C}_{\text {oss }}$	Output Capacitance input Shorted			3.0		3.0	

NOTE 1: For design reference only, not 100% tested.
SWITCHING CHARACTERISTICS (® $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{B S}=0$)

SYMBOL	PARAMETER	TEST CONDITIONS	3N163		3N164		UNIT
			MIN	MAX	MIN	MAX	
ton	Turn-On Delay Time	$\begin{aligned} & V_{D D}=-15 \mathrm{~V} \\ & I_{D(\text { on })}=-10 \mathrm{~mA} \text { (Note 1) } \\ & R_{G}=R_{L}=1.4 \mathrm{k} \Omega \\ & \hline \end{aligned}$		12		12	ns
t_{r}	Rise Time			24		24	
$\mathrm{t}_{\text {off }}$	Turn-Off Time			50		50	

sWitching time circuit

SWITCHING WAVEFORM

3N165, 3N166
 Dual P-Channel Enhancement Mode MOSFET
 General Purpose Amplifier

FEATURES

- Very High Impedance
- High Gate Breakdown
- Low Capacitance

DEVICE SCHEMATIC

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS (Note 1)($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Diain-Source or Drain-Gate Voltage (Note 2)3N16540 V
3N166 30 V
Transient Gate-Source Voltage (Note 3) ± 125
Gate-Gate Voltage $\pm 80 \mathrm{~V}$
Drain Current (Note 2) 50 mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$
Power DissipationOne Side300 mW
Both Sides 525 mW
Total Derating above $25^{\circ} \mathrm{C}$ $4.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ORDERING INFORMATION*

TO-99	WAFER	DICE
3N165	3N165/W	3N165/D
3N166	3N166/W	3N166/D

*When ordering wafer/dice refer to Section 10, page 10-1.
ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless noted)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			MIN	MAX	
IGSSR	Gate Reverse Leakage Current	$\mathrm{V}_{\mathrm{GS}}=40 \mathrm{~V}$		10	pA
IGSSF	Gate Forward Leakage Current	$\mathrm{V}_{\mathrm{GS}}=-40 \mathrm{~V}$		-10	
	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			-25	
loss	Drain to Source Leakage Current	$\mathrm{V}_{\text {DS }}=-20 \mathrm{~V}$		-200	
ISDS	Source to Drain Leakage Current	$V_{S D}=-20, V_{D B}=0$		-400	
ID(on)	On Drain Current	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$	-5	-30	mA
$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate Source Threshold Voltage	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$	-2	-5	V
$\mathrm{V}_{\mathrm{GS}}($ th)	Gate Source Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$	-2	-5	
rDS(on)	Drain Source ON Resistance	$V_{G S}=-20 \mathrm{~V}, I_{D}=-100 \mu \mathrm{~A}$		300	ohms
g_{fs}	Forward Transconductance	$V_{D S}=-15 V, I_{D}=-10 \mathrm{~mA}, f=1 \mathrm{kHz}$	1500	3000	
gos	Output Admittance			300	$\mu \mathrm{s}$

3N165, 3N166
ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			MIN	MAX	
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, I_{D}=-10 \mathrm{~mA}, f=1 \mathrm{MHz} \\ & (\text { Note 4) } \end{aligned}$		3.0	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			0.7	
$\mathrm{Cos}^{\text {oss }}$	Output Capacitance			3.0	
$\mathrm{R}_{\mathrm{E}}\left(\mathrm{Y}_{\mathrm{fs}}\right)$	Common Source Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$ (Note 4)	1200		$\mu \mathrm{s}$

MATCHING CHARACTERISTICS 3N165

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			MIN	MAX	
$\mathrm{Y}_{\mathrm{fs} 1} / Y_{\text {fs } 2}$	Forward Transconductance Ratio	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1500 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{kHz}$	0.90	1.0	
$\mathrm{V}_{\mathrm{GS} 1-2}$	Gate Source Threshold Voltage Differential	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}$		100	mV
$\frac{\Delta \mathrm{V}_{\mathrm{GS} 1-2}}{\Delta \mathrm{~T}}$	Gate Source Threshold Voltage Differential Change with Temperature	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, I_{A}=-500 \mu \mathrm{~A} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }=+25^{\circ} \mathrm{C} \end{aligned}$		100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

NOTES 1. See handling precautions on 3N170 data sheet.
2. Per transistor
3. Devices must not be tested at $\pm 125 \mathrm{~V}$ more than once, nor for longer than 300 ms .
4. For design reference only, not 100% tested.

3N170, 3N171
 N-Channel Enhancement Mode MOSFET Switch

FEATURES

- Low Switching Voltages
- Fast Switching Times
- Low Drain-Source Resistance
- Low Reverse Transfer Capacitance

HANDLING PRECAUTIONS

MOS field-effect transistors have extremely high input resistance and can be damaged by the accumulation of excess static charge. To avoid possible damage to the device while wiring, testing, or in actual operation, follow the procedures outlined below.

1. To avoid the build-up of static charge, the leads of the devices should remain shorted together with a metal ring except when being tested or used.
2. Avoid unnecessary handling. Pick up devices by the case instead of the leads.
3. Do not insert or remove devices from circuits with the power on as transient voltages may cause permanent damage to the devices.

ORDERING INFORMATION*

TO-72	WAFER	DICE
3N170	3N170/W	3N170/D
3N171	3N171/W	3N171/D

*When ordering wafer/dice refer to Section 10, page 10-1.

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Gate Voltage $\pm 35 \mathrm{~V}$
Drain-Source Voltage 25V
Gate-Source Voltage $\pm 35 \mathrm{~V}$
Drain Current 30 mA
Storage Temperature Range $+200^{\circ} \mathrm{C}$
Operating Temperature Range

\qquad $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted) Substrate connected to source.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			MIN	MAX	
$B V_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	25		V
IGSS	Gate Leakage Current $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{GS}}=-35 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		$\frac{10}{100}$	pA
IDSS	Zero-Gate-Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		10	nA
	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	Gate-Source $\quad 3 \mathrm{3N170}$	$V_{D S}=10 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A}$	1.0	2.0	V
	Threshold Voltage $\quad 3 \mathrm{~N} 171$		1.5	3.0	
ID(on)	''ON' Drain Current	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$	10		mA
$\mathrm{V}_{\text {DS }}$ (on)	Drain-Source 'ON' Voltage	$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		2.0	V
$\mathrm{r}_{\text {ds }}$ (on)	Drain-Source ON Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0, \mathrm{f}=1.0 \mathrm{kHz}$		200	Ω
$\left\|Y_{f s}\right\|$	Forward Transfer Admittance	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, I_{D}=2.0 \mathrm{~mA}, \\ & f=1.0 \mathrm{kHz} \end{aligned}$	1000		$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			MIN	MAX	
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance (Note 1)	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}$		1.3	pF
$\mathrm{C}_{\text {iss }}$	Input Capacitance (Note 1)	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}$		5.0	
$\mathrm{C}_{\mathrm{d} \text { (sub) }}$	Drain-Substrate Capacitance (Note 1)	$V_{D(S U B)}=10 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$		5.0	
$t_{\text {d }}$ (on)	Turn-On Delay Time (Note 1)	$\begin{aligned} & V_{D D}=10 \mathrm{~V}, 1 \mathrm{D}(\mathrm{on})=10 \mathrm{~mA}, \\ & V_{G S}(\mathrm{on})=10 \mathrm{~V}, V_{G S(\text { off })}=0, \\ & R_{G}=50 \Omega \end{aligned}$		3.0	ns
t_{r}	Rise Time (Note 1)			10	
$t_{\text {d }}$ (off)	Turn-Off Delay Time (Note 1)			3.0	
t_{f}	Fall Time (Note 1)			15	

NOTE 1: For design reference only, not 100% tested.

3N172, 3N173
 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch

NNIER

FEATURES

- High Input Impedance
- Diode Protected Gate

PIN CONFIGURATION

TO. 72

DEVICE SCHEMATIC

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Source or Drain-Gate Voltage
3N172
\qquad
Drain Current.. 50 mA
Gate Forward Current...................................... $10 \mu \mathrm{~A}$
Gate Reverse Current .. 1 mA
Storage Temperature $. ~-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$
Power Dissipation .. 375 mW

ORDERING INFORMATION*

TO-72	WAFER	DICE
3N172	3N172/W	3N172/D
3N173	3N173/W	3N173/D

*When ordering wafer/dice refer to Section 10, page 10-1.
ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless noted)

SYMBOL	PARAMETER	TEST CONDITIONS	3N172		3N173		UNIT
			MIN	MAX	MIN	MAX	
IGSS	Gate Reverse Current $\mathrm{T}^{\text {T }}=+125^{\circ} \mathrm{C}$	$V_{G S}=-20 \mathrm{~V}$		-200		-500	pA
				-0.5		-1.0	$\mu \mathrm{A}$
BVGSS	Gate Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$	-40	-125	-30	-125	V
BV ${ }^{\text {DSS }}$	Drain-Source Breakdown Voltage	$I_{D}=-10 \mu \mathrm{~A}$	-40		-30		
BVSDS	Source-Drain Breakdown Voltage	IS $=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DB}}=0$	-40		-30		
$V_{G S(t h)}$	Threshold Voltage	$V_{D S}=V_{G S}, I_{D}=-10 \mu \mathrm{~A}$	-2.0	-5.0	-2.0	-5.0	
		$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$	-2.0	-5.0	-2.0	-5.0	
VGS	Gate Source Voltage	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}$	-3.0	-6.5	-2.5	-6.5	
IDSS	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		-0.4		-10	nA
ISDS	Zero Gate Voltage Source Current	$\mathrm{V}_{\mathrm{SD}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=0, \mathrm{~V}_{\mathrm{GD}}=0$		-0.4		-10	
rbS(on)	Drain Source On Resistance	$V_{G S}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{~A}$		250		350	ohms
ID(on)	On Drain Current	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$	-5.0	-30	-5.0	-30	mA

3N188-3N191

Dual P-Channel

Enhancement Mode MOSFET General Purpose Amplifier

FEATURES

- Very High Input Impedance
- High Gate Breakdown 3N190-3N191
- Zener Protected Gate 3N188-3N189
- Low Capacitance

PIN CONFIGURATION

PC002011
ORDERING INFORMATION*

TO-99	WAFER	DICE
3N188	-	-
3N189	-	-
3N190	3N190/W	3N190/D
3N191	3N191/W	3N191/D

*When ordering wafer/dice refer to Section 10, page 10-1.

CHIP TOPOGRAPHY

2506

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Source or Drain-Gate Voltage (Note 1) 3N188, 3N18940 V
3N190, 3N191 30 V

Transient Gate-Source Voltage (Notes 1 and 2) .. $\pm 125 \mathrm{~V}$
\qquad
Drain Current (Note 1) 50mA
Storage Temperature $\ldots \ldots \ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature $\ldots \ldots \ldots \ldots \ldots . . .5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $\ldots . . \ldots \ldots . .+300^{\circ} \mathrm{C}$
Power Dissipation
One Side
.300mW
Both Sides ... 525 mW
Total Derating above $25^{\circ} \mathrm{C} \ldots \ldots \ldots \ldots . .4 .2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	3N188 3N189		3N190 3N191		UNIT
			MIN	MAX	MIN	MAX	
IGSSR	Gate Reverse Current	$\mathrm{V}_{\mathrm{GS}}=40 \mathrm{~V}$				10	pA
IGSSF	Gate Forward Current $\quad T_{A}=125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{GS}}=-40 \mathrm{~V}$		-200		-10	
				-200		-25	
BV ${ }_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$	-40		-40		V
$\mathrm{BV}_{\text {SDS }}$	Source-Drain Breakdown Voltage	$\mathrm{I}_{\mathrm{S}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BD}}=0$	-40		-40		
$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$	-2.0	-5.0	-2.0	-5.0	
		$V_{D S}=V_{G S}, I_{D}=-10 \mu \mathrm{~A}$	-2.0	-5.0	-2.0	-5.0	
V_{GS}	Gate Source Voltage	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}$	-3.0	-6.5	-3.0	-6.5	
IDSS	Zero Gate Voltage Drain Current	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}$		-200		-200	pA
ISDS	Source Drain Current	$\mathrm{V}_{\text {SD }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=0$		-400		-400	
rDS(on)	Drain-Source on Resistance	$V_{D S}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{~A}$		300		300	ohms
${ }^{\text {d }}$ (on)	On Drain Current	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$	-5.0	-30.0	-5.0	-30.0	mA

3N188-3N191

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS		3N188 3N189		3N190 3N191		UNIT
				MIN	MAX	MIN	MAX	
Gfs	Forward Transconductance (Note 3)	$V_{D S}=-15 V, I_{D}=-10 \mathrm{~mA}$	$f=1 \mathrm{kHz}$	1500	4000	1500	4000	$\mu \mathrm{s}$
$\mathrm{Y}_{\text {OS }}$	Output Admittance				300		300	
Ciss	Input Capacitance Output Shorted (Note 5)		$f=1 \mathrm{MHz}$		4.5		4.5	pF
Crss	Reverse Transfer Capacitance (Note 5)				1.5		1.0	
$\mathrm{C}_{\text {oss }}$	Output Capacitance Input Shorted (Note 5)				3.0		3.0	

SWITCHING CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless noted)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			MIN	MAX	
$t_{\text {d }}(\mathrm{on}$)	Turn On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA} \\ & R_{G}=R_{L}=1.4 \mathrm{k} \Omega \text { (Note 5) } \end{aligned}$		15	ns
tr_{r}	Rise Time			30	
$\mathrm{t}_{\text {off }}$	Turn Off Time			50	

MATCHING CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless noted) 3 N 188 and 3 N 190

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			MIN	MAX	
$\mathrm{Y}_{\mathrm{fs} 1} / \mathrm{Y}_{\mathrm{fs} 2}$	Forward Transconductance Ratio	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{kHz}$	0.85	1.0	
$\mathrm{V}_{\mathrm{GS1} 1-2}$	Gate Source Threshold Voltage Differential	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}$		100	mV
$\frac{\Delta V_{\mathrm{GS} 1-2}}{\Delta \mathrm{~T}}$	Gate Source Threshold Voltage Differential Change with Temperature (Note 4)	$\begin{aligned} & \mathrm{VDS}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}, \\ & \mathrm{~T}=-55^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$		100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta \mathrm{V}_{\mathrm{GS} 1-2}}{\Delta \mathrm{~T}}$	Gate Source Threshold Voltage Differential Change with Temperature (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A} \\ & \mathrm{~T}=+25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

NOTES: 1. Per transistor.
2. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
3. Pulse test duration $=300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.
4. Measured at end points, T_{A} and T_{B}
5. For design reference only, not 100% tested.

GENERAL DESCRIPTION

The ID100 and ID101 are monolithic dual diodes intended for use in applications requiring extremely low leakage currents. Applications include interstage coupling with reverse isolation, signal clipping and clamping and protection of ultra low leakage FET differential dual and operational amplifiers.

ORDERING INFORMATION*

TO78	TO71	WAFER	CHIP
ID100	ID101	iD100/W	ID100/D

*When ordering wafer/dice refer to Section 10, page 10-1.

FEATURES

- $I_{R}=0.1 p A$ (Typical)
- $B V_{R}>30 V$
- $\mathrm{C}_{\mathrm{rss}}=0.75 \mathrm{pF}$ (Typical)

ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Diode Reverse Voltage 30 V
Diode to Diode Voltage $\pm 50 \mathrm{~V}$
Forward Current 20 mA
Reverse Current $100 \mu \mathrm{~A}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C}$ $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	ID100, ID101			UNIT	
			MIN	TYP	MAX		
V_{F}	Forward Voltage Drop	$I_{F}=10 \mathrm{~mA}$	0.8		1.1	V	
BV_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=1 \mu \mathrm{~A}$	30			V	
I_{R}	Reverse Leakage Current	$V_{R}=1 \mathrm{~V}$		0.1		pA	
		$V_{R}=10 \mathrm{~V}$		2.0	10		
	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$				10	nA	
$\\|_{\mathrm{R}_{1}-l_{\mathrm{R}_{2}} \mid}$	Differential Leakage Current				3	pA	
$\mathrm{C}_{\text {rss }}$	Total Reverse Capacitance	$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ (Note 1)		0.75	1	pF	

NOTE 1: For design reference only, not 100% tested.

TYPICAL PERFORMANCE CHARACTERISTICS

FEATURES

- Interfaces Directly w/TTL Logic Elements
- rDS(on) $<75 \Omega$ for 5V Logic Drive
- $I_{D(0 f f)}<100 p A$

CHIP TOPOGRAPHY

CT003411

ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source Voltage
35 V
Gate-Drain Voltage ... 35V
Storage Temperature Range $\ldots . . \ldots-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range........$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$
Power Dissipation ... 300 mW
Derate above $25^{\circ} \mathrm{C}$.......................... $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	IT100		IT101		UNIT
			MIN	MAX	MIN	MAX	
IDSs	Drain Current	$\mathrm{V}_{G S}=0, \mathrm{~V}_{\text {DS }}=-15 \mathrm{~V}$	-10		-20		mA
V_{P}	Pinch Off Voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}, \mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}$	2	4.5	4	10	
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	35		35		\checkmark
IGSS	Gate Reverse Current	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		200		200	pA
9fs	Transconductance	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V}$	8		8		mS
gos	Output Conductance			1		1	
${ }^{\text {D }}$ (off)	Drain (OFF) Leakage	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=15 \mathrm{~V}$		-100		-100	pA
rDS(on)	Drain-Source "ON" Resistance	$V_{G S}=0, V_{D S}=-0.1 \mathrm{~V}$		75		60	Ω
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DG}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 1)		35		35	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance	$\mathrm{V}_{\mathrm{DG}}=-10 \mathrm{~V}, \mathrm{I}$ = $=0$ (Note 1)		12		12	

NOTE 1: For design reference only, not 100% tested.

IT120, IT122 Dual NPN
 General Purpose Amplifier

FEATURES

- High hfe at Low Current
- Low Output Capacitance
- Good Matching
- Tight VBE Tracking
PIN CONFIGURATION

ORDERING INFORMATION*

TO-78	TO-71	WAFER	DICE
IT120	IT120-TO71	IT120/W	IT120/D
IT121	IT121-TO71	IT121/W	IT121/D
IT122	IT122-TO71	IT122/W	IT122/D

*When ordering wafer/dice refer to Section 10, page 10-1.

ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Collector-Base Voltage (Note 1)45V
Collector-Emitter Voltage (Note 1) 45 V
Emitter Base Voltage (Notes 1 and 2) 7V
Collector Current (Note 1) mA
Collector-Collector Voltage 60 V
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
\qquad
\qquad
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$

	T0-78		T0-71	
	ONE SIDE	$\begin{aligned} & \text { BOTH } \\ & \text { SIDES } \end{aligned}$	ONE SIDE	BOTH SIDES
Power Dissipation Derate Above	250 mW	500 mW	200 mW	400 mW
$25^{\circ} \mathrm{C}$.............	$7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$1.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		IT120A		IT120		IT121		IT122		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
hFE	DC Current Gain	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$,	5.0 V	200		200		80		80		
		$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}$,	$=5.0 \mathrm{~V}$	225		225		100		100		
	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$		75		75		30		30		
$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$	Emitter-Base On Voltage				0.7		0.7		0.7		0.7	V
$\mathrm{V}_{\text {CE }}(\mathrm{SAT})$	Collector Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.05 \mathrm{~mA}$			0.5		0.5		0.5		0.5	
ICBO	Collector Cutoff Current	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}$			1.0		1.0		1.0		1.0	$n \mathrm{~A}$
					10		10		10		10	$\mu \mathrm{A}$
IEBO	Emitter Cutoff Current	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=5.0 \mathrm{~V}$			1.0		1.0		1.0		1.0	nA
Cobo	Output Capacitance	$\begin{aligned} & \mathrm{IE}_{\mathrm{E}}=0, \\ & \mathrm{~V}_{\mathrm{CB}}=5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & f=1 \mathrm{MHz} \\ & (\text { Note } 3 \text {) } \end{aligned}$		2.0		2.0		2.0		2.0	pF
$\mathrm{C}_{\text {te }}$	Emitter Transition Capacitance	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0, \\ & \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V} \end{aligned}$			2.5		2.5		2.5		2.5	
$\mathrm{C}_{\mathrm{C}_{1}, \mathrm{C}_{2}}$	Collector to Collector Capacitance	$V_{C C}=0$			4.0		4.0		4.0		4.0	
$\mathrm{IC}_{1}, \mathrm{C}_{2}$	Collector to Collector Leakage Current	$\mathrm{V}_{C C}= \pm 60 \mathrm{~V}$ (Note 3)			10		10		10		10	nA

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	IT120A		IT120		IT121		IT122		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{V}_{\text {CEO }}$ (SUST)	Collector to Emitter Sustaining Voltage	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	45		45		45		45		V	
GBW	$\begin{aligned} & \text { Current Gain Bandwidth } \\ & \text { Product (Note 3) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{C}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 10 \\ 220 \end{gathered}$		$\begin{gathered} 10 \\ 220 \end{gathered}$		$\begin{gathered} 7 \\ 180 \end{gathered}$		$\begin{gathered} 7 \\ 180 \end{gathered}$		MHz	
$\mathrm{IV}_{\mathrm{BE}_{1}-\mathrm{V}_{\mathrm{BE}_{2}} \mathrm{I}}$	Base Emitter Voltage Differential	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$		1		2		3		5	mV	
$\\|_{B_{1}-I_{B_{2}} \mid}$	Base Current Differential			2.5		5		25		25	nA	
$\frac{\Delta\left(V_{B E_{1}}-V_{B E_{2}}\right)}{\Delta T}$	Base-Emitter Voltage Differential Change with Temperature	(Note 3) $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$		3		5		10		20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	

NOTES: 1. Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed $10 \mu \mathrm{~A}$. 3. For design reference only, not 100% tested.

FEATURES

－Very High Gain
－Low Output Capacitance
－Tight VBE Matching
－High GBW

ORDERING INFORMATION＊

TO－78	WAFER	DICE
IT124	IT124／W	IT124／D

＊When ordering wafer／dice refer to Section 10 ，page 10－1．

CHIP TOPOGRAPHY

	ONE SIDE	BOTH SIDES
Power Dissipation $\ldots \ldots \ldots \ldots \ldots \ldots .$.	300 mW	500 mW
Derate above $25^{\circ} \mathrm{C} \ldots \ldots \ldots \ldots .$.	$2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS＠ $25^{\circ} \mathrm{C}$（uniess otherwise noted）

SYMEOL	PARAMETER	TEST CONDITIONS	LIM	ITS	UNIT
			MIN	MAX	
hFE	DC Current Gain $\quad \square$	$\mathrm{I}_{\mathrm{C}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$	1500		
		$\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}$	1500		
	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		600		
$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$	Emitter－Base＇＇ON＇Voltage			0.7	V
$\mathrm{V}_{\text {CE }}(\mathrm{SAT})$	Collector Saturation Voltage	$\mathrm{IC}^{2}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~mA}$		0.5	
$\mathrm{I}_{\mathrm{CBO}}$	Collector Cutoff Current $\mathrm{T}_{\text {A }}=+150^{\circ} \mathrm{C}$	$I_{E}=0, V_{C B}=1 \mathrm{~V}$		100	pA
				100	nA
lebo	Emitter Cutoff Current	$I_{C}=0, V_{E B}=5 \mathrm{~V}$		100	pA
Cobo	Output Capacitance（Note 3）	$\mathrm{i}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=1 \mathrm{~V}$		0.8	pF
$\mathrm{C}_{\text {te }}$	Emitter Transition Capacitance（Note 3）	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V} \quad i=1 \mathrm{MHz}$		1.0	
$\mathrm{C}_{\mathrm{C}_{1} \mathrm{C}_{2}}$	Coilector to Collector Capacitance（Note 3）	$\mathrm{V}_{C C}=0$		0.8	
${ }^{1} \mathrm{C}_{1} \mathrm{C}_{2}$	Collector to Collector Leakage Current	$\mathrm{V}_{\text {CC }}= \pm 50 \mathrm{~V}$		250	pA
GBW	Current Gain Bandwidth Product（Note 3）	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V}$	10		MHz
		$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}$	100		
NF	Narrow Band Noise Figure（Note 3）	$\begin{aligned} & \mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{RG}_{\mathrm{G}}=10 \mathrm{k} \Omega \\ & \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$		3	dB
$\mathrm{BV}_{\mathrm{CBO}}$	Collector－Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	2		V
BVEBO（Note 2）	Emitter－Base Breakdown Voltage	$\mathrm{I}_{E}=10 \mu \mathrm{~A}, \mathrm{I}_{C}=0$	7		
$\mathrm{V}_{\text {CEO }}$（SUST）	Collector－Emitter Sustaining Voltage	$I_{C}=1 \mathrm{~mA}, I_{B}=0$	2		

MATCHING CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			TYP	MAX	
$\left\|V_{B E 1}-V_{B E 2}\right\|$	Base Emitter Voltage Differential	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}$	2	5	mV
$\Delta I\left(V_{\text {BE1 }}-\mathrm{V}_{\text {BE2 }}\right) / / \Delta T$	Base Emitter Voltage Differential Change with Temperature (Note 3)	$\begin{aligned} & \mathrm{IC}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V} C E=1 \mathrm{~V} \\ & \mathrm{~T}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	5	15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{H}_{\mathrm{B} 1-\mathrm{l}_{\mathrm{B} 2} \mathrm{If}^{\prime}}$	Base Current Differential	$\mathrm{T}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V}$. 6	nA

NOTES: 1. Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed $10 \mu \mathrm{~A}$
3. For design reference only, not 100% tested.

ORDERING INFORMATION*

TO78	TO-71	WAFER	DICE
IT126	IT126-TO71	IT126/W	IT126/D
IT127	IT127-TO71	IT127/W	IT127/D
IT128	IT128-TO71	IT128/W	IT128/D
IT129	IT129-TO71	IT129/W	IT129/D

*When ordering wafer/dice refer to Section 10, page 10-1.

FEATURES

- High Gain at Low Current
- Low Output Capacitance
- Tight IB Match
- Tight VBE Tracking
- Dielectrically Isolated Matched Pairs for Differential Amplifiers

PIN CONFIGURATION

$$
\begin{aligned}
& \text { TO.71 } \\
& \text { TO. } 78
\end{aligned}
$$

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Collector-Base Voltage (Note 1)
\qquad
IT12860V
IT129 45 V
Collector-Emitter Voltage (Note 1)
IT126, IT127. 60 V
IT128 55V
IT129 45 V
Emitter-Base Voltage (Notes 1 and 2) 7.0V
Collector Current (Note 1) 100 mA
Collector-Collector Voltage 70 V
Storage Temperature Range $\ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $\ldots \ldots . \ldots \ldots . .+300^{\circ} \mathrm{C}$

	TO71		TO78	
	ONE	BOTH	ONE	BOTH
Power Dissipation	SIDE	SIDES	SIDE	SIDES
Total Dissipation at $25^{\circ} \mathrm{C} \ldots \ldots . .200 \mathrm{~mW}$	400 mW	250 mW	500 mW	
	1.3	2.7	1.7	3.3
Derating Factor................. $\mathrm{mW} /{ }^{\circ} \mathrm{C}$				

[^14]ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	IT126		IT127		IT128		IT129		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{C}_{\text {obo }}$	Output Capacitance (Note 3)	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$		3		3		3		3	pF
$\mathrm{BV}_{\mathrm{C}_{1}} \mathrm{C}_{2}$	Collector to Collector Breakdown Voltage	$\mathrm{IC}_{\mathrm{C}}= \pm 1 \mu \mathrm{~A}$	± 100		± 100		± 100		± 100		v
$\mathrm{V}_{\text {CEO(sust) }}$	Collector to Emitter Sustaining Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	60		60		55		45		
$\mathrm{BV}_{\mathrm{CBO}}$	Collector Base Breakdown Voltage	$\mathrm{IC}^{\prime}=10 \mu \mathrm{~A}, \mathrm{IE}_{\mathrm{E}}=0$	60		60		55		45		
$\mathrm{BV}_{\text {EBO }}$	Emitter Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	7		7		7		7		

MATCHING CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	IT126		IT127		IT128		IT129		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
$\left\|V_{B E_{1}}-V_{B E_{2}}\right\|$	Base Emitter Voltage Differential	$\mathrm{IC}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$		1		2		3		5	mV	
$\left.\frac{\Delta\left(\mathrm{V}_{\mathrm{BE}}^{1}-\right.}{} \cdot \mathrm{V}_{\mathrm{BE}_{2}} \mathrm{I}\right),$	Base Emitter Voltage Differential Change with Temperature (Note 3)	$\begin{gathered} I_{C}=1 \mathrm{~mA}, V_{C E}=5 \mathrm{~V} \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		3		5		10		20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
$\\|_{B_{1}-l_{B_{2}} \mid}$	Base Current Differential	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V}$		2.5		5		10		20	nA	
		$\mathrm{IC}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$		0.25		0.5		1.0		2.0	$\mu \mathrm{A}$	

NOTES: 1. Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed $10 \mu \mathrm{~A}$.
3. For design reference only, not 100% tested.

IT130-IT132
 Dual PNP
 General Purpose Amplifier

ABSOLUTE MAXIMUM RATINGS
($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Collector-Base Voltage (Note 1)
45 V
Collector-Emitter Voltage (Note 1).......................... 45V
Emitter Base Voltage (Notes 1 and 2)..................... 7 V
Collector Current (Note 1)...................................50. 50 A
Collector-Collector Voltage..................................... 60V
Storage Temperature Range $\ldots \ldots \ldots65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$

T0-71

ONE	BOTH	ONE	BOTH
SIDE	SIDES	SIDE	SIDES

$200 \mathrm{~mW} \quad 400 \mathrm{~mW} \quad 250 \mathrm{~mW} \quad 500 \mathrm{~mW}$ $1.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \quad 2.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \quad 1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} 3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Power Dissipation
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise $\begin{array}{c}\text { Powed })\end{array}$

SYMBOL	PARAMETER	TEST CONDITIONS	IT130A		IT130		IT131		IT132		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$h_{\text {FE }}$	DC Current Gain	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	200		200		80		80		
		$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$	225		225		100		100		
	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$	75		75		30		30		
$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$	Emitter-Base On Voltage	$\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$		0.7		0.7		0.7		0.7	V
$\mathrm{V}_{\text {CE }}(\mathrm{SAT})$	Collector Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.05 \mathrm{~mA}$		0.5		0.5		0.5		0.5	
ICBO	Collector Cutoff Current	$I_{E}=0, V_{C B}=45 \mathrm{~V}$		-1.0		-1.0		-1.0		-1.0	nA
	$T_{A}=+150^{\circ} \mathrm{C}$			-10		-10		-10		-10	$\mu \mathrm{A}$
lebo	Emitter Cutoff Current	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\text {EB }}=5.0 \mathrm{~V}$		-1.0		-1.0		-1.0		-1.0	nA
$\mathrm{C}_{\text {ob }}$ (Note 3)	Output Capacitance	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5.0 \mathrm{~V}$		2.0		2.0		2.0		2.0	pF
$\mathrm{C}_{\text {te }}$ (Note 3)	Emitter Transition Capacitance	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$		2.5		2.5		2.5		2.5	
$\mathrm{C}_{\mathrm{C}_{1}-\mathrm{C}_{2}}$ (Note 3)	Collector to Collector Capacitance	$V_{C C}=0$		4.0		4.0		4.0		4.0	
${ }^{\prime} C_{1-} C_{2}$	Collector to Collector Leakage Current	$\mathrm{V}_{\mathrm{CC}}= \pm 60 \mathrm{~V}$		10		10		10		10	$n \mathrm{~A}$
$\mathrm{V}_{\text {CEO }}$ (SUST)	Collector to Emitter Sustaining Voltage	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	-45		-45		-45		-45		V
GBW	Current Gain Bandwidth Product (Note 3)	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V}$	5		5		4		4		MHz
		$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}$	110		110		90		90		
$\left\|V_{B E_{1}}-V_{B E_{2}}\right\|$	Base Emitter Voltage Differential	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$		1		2		3		5	mV

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	IT130A		IT130		IT131		IT132		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{II}_{\mathrm{B}_{1}-\mathrm{I}_{2} \mathrm{I}}$	Base Current Differential	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$		2.5		5		25		25	nA
$\Delta\left(V_{B E_{1}}-V_{B E_{2}}\right) / \Delta T$	Base-Emitter Voltage Differential Change with Temperature (Note 3)	$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & I_{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V} \end{aligned}$		3		5		10		20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

NOTES: 1. Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 V , and the reverse base-to-emitter current must never exceed $10 \mu \mathrm{~A}$.
3. For design reference only, not 100% tested.

IT136-IT139
 Dual PNP
 General Purpose Amplifier

FEATURES

- High Gain at Low Current
- Low Output Capacitance
- Tight IB Match
- Tight VBE Tracking
- Dielectricaily Isolated Matched Pairs for Differential Amplifiers

PIN CONFIGURATION

PC002411

ORDERING INFORMATION*

TO-78	TO-71	WAFER	DICE
IT136	IT136-TO71	IT136/W	IT136/D
IT137	IT137-TO71	IT137/W	IT137/D
IT138	IT138-TO71	IT138/W	IT138/D
IT139	IT139-TO71	IT139/W	IT139/D

*When ordering wafer/dice refer to Section 10 , page 10-1.

CHIP TOPOGRAPHY

CT003911

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Collector-Base Voltage (Note 1)
IT136, IT137..60V 55 V
IT138 .. 55 V
IT139 .. 45V
Collector-Emitter Voltage (Note 1)
IT136, IT137.. 60V
IT 138... 55V
IT139... 45V
Emitter Base Voltage (Notes 1 and 2)..................... 7 V
Collector Current (Note 1)................................. 100 mA
Collector-Collector Voltage.................................... 70V
Storage Temperature Range $\ldots \ldots-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$

	TO-71		TO-78	
	ONE	BOTH	ONE	BOTH
	SIDE	SIDES	SIDE	SIDES
Power Dissipation	200 mW	400 mW	250 mW	500 mW
Derate above $25^{\circ} \mathrm{C}$	\ldots	$1.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$2.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
	$3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$			

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	IT136		IT137		IT138		IT139		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
hFE	DC Current Gain	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	150		150		100		70		
		$I_{C}=1.0 \mathrm{~mA}, V_{C E}=5 \mathrm{~V}$	150	800	150	800	100	800	70	800	
		$I_{C}=10 \mathrm{~mA}, V_{C E}=5 \mathrm{~V}$	125		125		80		50		
		$I_{C}=50 \mathrm{~mA}, V_{C E}=5 \mathrm{~V}$	65		60		40		25		
	$T_{A}=55^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$	75		75		60		40		
$V_{\text {bE }}(\mathrm{on}$)	Emitter-Base On Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$. 9		. 9		. 9		. 9	V
		$I_{C}=50 \mathrm{~mA}, V_{C E}=5 \mathrm{~V}$		1.0		1.0		1.0		1.0	
$V_{\text {CE }}$ (sat)	Collector Saturation Voitage	$I_{C}=1 \mathrm{~mA}, I_{B}=.1 \mathrm{~mA}$. 3		. 3		. 3		. 3	
		$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$. 6		. 6		. 6		. 6	

IT136-IT139
ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	IT136		IT137		IT138		IT139		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
ICBO	Collector Cutoff Current	$\mathrm{IE}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=45 \mathrm{~V}, 30 \mathrm{~V} *$		0.1		0.1		0.1		0.1*	nA	
	$\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$			0.1		0.1		0.1		0.1*	$\mu \mathrm{A}$	
IEBO	Emitter Cutoff Current	$\mathrm{I}^{\prime}=0, \mathrm{~V}_{\mathrm{EB}}=5 \mathrm{~V}$		0.1	\cdots	0.1		0.1		0.1	nA	
$\mathrm{C}_{\text {obo }}$	Output Capacitance (Note 3)	$\mathrm{I}_{\mathrm{E}}=0, V_{C B}=20 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		3		3		3		3	pF	
$B V_{C_{1}} C_{2}$	Collector to Collector Breakdown Voltage	$\mathrm{IC}_{\mathrm{C}}= \pm 1 \mu \mathrm{~A}$	± 100	.	± 100		± 100		± 100		V	
$\mathrm{V}_{\text {CEO }}$ (sust)	Collector to Emitter Sustaining Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	60		60		55		45			
$\mathrm{BV}_{\mathrm{CBO}}$	Collector Base Breakdown Voltage	$I^{\prime} C=10 \mu A, I_{E}=0$	60		60		55		45			
$B V_{E B O}$	Emitter Base Breakdown Voltage	$I_{E}=10 \mu A, I_{C}=0$	7		7		7		7			
$\left\|\mathrm{VBE}_{1}-\mathrm{V}_{\mathrm{BE}_{2}}\right\|$	Base Emitter Voltage Differential	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}$		1		2		3		5	mV	
$\Delta I\left(V_{B E_{1}}-V_{B E_{2}}\right) / / \Delta T$	Base Emitter Voltage Differential Change with Temperature (Note 3)	$\begin{aligned} & I_{C}=1 \mathrm{~mA}, V_{C E}=5 V \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		3		5		10		20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
$\\|^{1 / B_{1}-\left.\right\|_{B_{2}} \mid}$	Base Current Differential	$\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$		2.5		5		10		20	nA	
		$\mathrm{I}^{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$. 25		. 5		1.0		2.0	$\mu \mathrm{A}$	

NOTES: 1. Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed $10 \mu \mathrm{~A}$.
3. For design reference only, not 100% tested.

IT500-IT505
 Dual Cascoded N-Channel JFET General Purpose Amplifier

GENERAL DESCRIPTION

A low noise, low leakage FET that employs a cascode structure to accomplish very low I_{G} at high voltage levels, while giving high transconductance and very high common, mode rejection ratio.

PIN CONFIGURATION

TO. 71
low profile

PC002611

SCHEMATIC DIAGRAM

ORDERING INFORMATION*

TO-71	WAFER	DICE
IT500	IT500/W	IT500/D
IT501	IT501/W	IT501/D
IT502	IT502/W	IT502/D
IT503	IT503/W	IT503/D
IT504	IT504/W	IT504/D
IT505	IT505/W	IT505/D

*When ordering wafer/dice refer to Section 10, page 10-1.

FEATURES

- $C_{\text {MRR }}>120 \mathrm{~dB}$
- $\mathrm{IG}_{\mathrm{G}}<5 \mathrm{PA}$ @ $50 \mathrm{~V}_{\mathrm{DG}}$
- Crss $^{\text {r }}<0.5 \mathrm{pF}$
- Gos $>.025 \mu \mathrm{~s}$

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Voltages (Note 1)... 60V
Drain Current (Note 1) 50mA
Gate-Gate Voltage ... $\pm 60 \mathrm{~V}$
Storage Temperature..................... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature $\ldots \ldots \ldots \ldots \ldots5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$

	ONE SIDE	BOTH SIDES
Power Dissipation (Note 3) $\ldots \ldots .$.	250 mW	500 mW
Derate above $25^{\circ} \mathrm{C} \ldots \ldots$.	$3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

NOTE 1. Per transistor.
NOTE 2. Due to the non-symmetrical structure of these devices, the drain and source ARE NOT interchangeable.
NOTE 3. @ $85^{\circ} \mathrm{C}$ free air temp.

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise specified)

SYMBOL	CHARACTERISTICS	TEST CONDITIONS		LIMITS		UNIT
				MIN	MAX	
IGSS	Gate Reverse Current $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	$V_{G S}=-20 \mathrm{~V}, V_{D S}=0$	\%		-100	pA
					-5	nA
BV GSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{O S}=0$		-60		V
$V_{\text {GS(off) }}$	Gate-Source Cutoff Voltage	$V_{D S}=20 V, I_{D}=1 n A$		-0.7	-4	
V_{GS}	Gate-Source Voltage	$\int V_{D G}=50 \mathrm{~V}, 1 \mathrm{D}=200 \mu \mathrm{~A}$		-0.2	-3.8	
I_{G}	Gate Operating Current $T^{T_{A}=125}$				-5	pA
					-5	$n \mathrm{~A}$
IDSS	Saturation Drain Current (Note 1)	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.7	7	mA
g_{fs}	Common-Source Forward Transconductance (Note 1)	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$	1000	4000	$\mu \mathrm{s}$
9fs	Common-Source Forward Transconductance (Note 1)	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		700	1600	
gos	Common-Source Output Conductance	$V_{D S}=20 \mathrm{~V}, V_{G S}=0$			1	
gos	Common-Source Output Conductance	$V_{D S}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$			0.025	
$\mathrm{C}_{\mathrm{g} 1 \mathrm{~g} 2}$	Gate to Gate Capacitance (Note 4)	$\mathrm{V}_{\mathrm{G} 1}=\mathrm{V}_{\mathrm{G} 2}=10 \mathrm{~V}$	$f=1 \mathrm{MHz}$		3.5	pF
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Note 4)	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			7.	pF
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance (Note 3, 4)				0.5	
NF	Spot Noise Figure (Note 4)		$\begin{aligned} & f=100 \mathrm{~Hz} \\ & R_{\mathrm{G}}=10 \mathrm{M} \Omega \end{aligned}$		0.5	dB
\bar{e}_{n}	Equivalent Input Noise Voltage (Note 4)		$\mathrm{f}=10 \mathrm{~Hz}$		0.035	
			$\mathrm{f}=1 \mathrm{kHz}$		0.010	$\frac{\mu}{\sqrt{H z}}$

$* * C_{M R A}=20 \log _{10} \Delta V_{D D} / \Delta\left[V_{g s 1}-V_{g s 2}\right], \Delta V_{D D}=10 /-20 \mathrm{~V}$
NOTES: 1. Pulse test required, pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. Measured at end points, T_{A} and T_{B}.
3. With case guarded $\mathrm{C}_{\mathrm{rss}}$ is typically $<0.15 \mathrm{pF}$.
4. For design reference only, not 100% tested.

OUTPUT CHARACTERISTICS

OUTPUT CHARACTERISTICS

TYPICAL CAPACITANCE VS. GATE-SOURCE VOLTAGE

FEATURES

- Specified Matching Characteristics
- High Gain
- Low "ON" Resistance

PIN CONFIGURATION

TO-71

ORDERING INFORMATION*

TO-71	WAFER	DICE
IT550	IT550/W	IT550/D

*When ordering wafer/dice refer to Section 10, page 10-1.

CHIP TOPOGRAPHY

6033

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			TS	UNIT
				MIN	MAX	
IGSSR	Gate-Reverse Current	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-100	pA
	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$				-200	mA
BV ${ }_{\text {GSS }}$	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-40		V
V_{GS} (off)	Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-0.5	-3	
$\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$	Gate-Source Voltage	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=2 \mathrm{~mA}$			1.0	
IDSS	Saturation Drain Current (Note 1)	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		5	30	mA
r ${ }_{\text {DS }}$ (on)	Static Drain Source ON Resistance	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$			100	Ω
g_{fs}	Common-Source Forward Transconductance (Note 1)	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$	$f=1 \mathrm{kHz}$	7500	12,500	$\mu \mathrm{s}$
			$\mathrm{f}=100 \mathrm{MHz}$ (Note 4)	7000		
gos	Common-Source Output Conductance		$f=1 \mathrm{kHz}$		45	
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		$\mathrm{f}=1 \mathrm{MHz}$		3	pF
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		(Note 4)		12	
NF	Spot Noise Figure (Note 4)		$f=10 \mathrm{~Hz}, \mathrm{R}_{\mathrm{g}}=1 \mathrm{M}$		1.0	dB
e_{n}	Equivalent Short Circuit Input Noise Voltage (Note 4)		$t=10 \mathrm{~Hz}$		50	$\frac{n V}{\sqrt{H z}}$
$\frac{\mathrm{IDSS}_{1}}{\mathrm{I}_{\mathrm{DSS}}}$	Saturation Drain Current Ratio (Notes 1, 2)	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.95	1	-

IT550

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			MIN	MAX	
$\left\|V_{G S 1}-V_{G S 2}\right\|$	Differential Gate-Source Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$		50	mV
$\frac{\Delta\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}}$	Gate-Source Voltage Differential Drift (Note 3)	$\left(T_{A}=-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$		100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\frac{\mathrm{g}_{\mathrm{fs} 1}}{\mathrm{~g}_{\mathrm{fs} 2}}$	Transconductance Ratio (Notes 1, 2)	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA} \mathrm{f}=1 \mathrm{kHz}$	0.90	1	-

NOTES: 1. Pulse test required; pulse width $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. Assumes smaller value in numerator
3. Measured at end points T_{A} and T_{B}.
4. For design reference only, not 100% tested.

Enhancement Mode MOSFET General Purpose Amplifier

ABSOLUTE MAXIMUM RATINGS

ORDERING INFORMATION*

TO-72	WAFER	DICE
IT1700	IT1700/W	IT1700/D

*When ordering wafer/dice refer to Section 10, page 10-1.
ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted), $\mathrm{V}_{\mathrm{BS}}=0$ unless otherwise noted.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			MIN	MAX	
BV ${ }_{\text {DSS }}$	Drain to Source Breakdown Voltage	$V_{G S}=0, I_{D}=-10 \mu \mathrm{~A}$	-40		V
BVSDS	Source to Drain Breakdown Voltage	$V_{G S}=0, i_{D}=-10 \mu \mathrm{~A}$	-40		V
IGSS	Gate Leakage Current		(See note 2)		
IDSS	Drain to Source Leakage Current	$V_{G S}=0, V_{D S}=-20 \mathrm{~V}$		200	pA
loss ($150^{\circ} \mathrm{C}$)	Drain to Source Leakage Current			0.4	$\mu \mathrm{A}$
ISDS	Source to Drain Leakage Current			400	pA
ISDS ($150^{\circ} \mathrm{C}$)	Source to Drain Leakage Current			0.8	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	Gate Threshold Voltage	$V_{\text {GS }}=V_{\text {DS }}, I_{D}=-10 \mu \mathrm{~A}$	-2	-5	V
rDS(on)	Static Drain to Source "on" Resistance	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		400	ohms
IDS(on)	Drain to Source 'on' Current	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V}$	2		mA
gfs	Forward Transconductance Common Source	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	2000	4000	$\mu \mathrm{s}$
Ciss	Small Signal, Short Circuit, Common Source, Input Capacitance	$\begin{aligned} & \mathrm{VDS}=-15 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=-10 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{MHz}(\text { Note } 3) \end{aligned}$		5	pF
Crss	Small Signal, Short Circuit, Common Source, Reverse Transfer Capacitance	$\begin{aligned} & V_{\mathrm{DG}}=-15 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=0 \\ & \mathrm{f}=1 \mathrm{MHz}(\text { Note } 3) \end{aligned}$		1.2	pF
Coss	Small Signal, Short Circuit, Common Source, Output Capacitance	$\begin{aligned} & V_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=-10 \mathrm{~mA} \\ & f=1 \mathrm{MHz}(\text { Note 3) } \end{aligned}$		3.5	pF

NOTES: 1. Device must not be tested at $\pm 125 \mathrm{~V}$ more than once nor longer than 300 ms .
2. Actual gate current is immeasurable. Package suppliers are required to guarantee a package leakage of $<10 \mathrm{pA}$. External package leakage is the dominant mode which is sensitive to both transient and storage environment, which cannot be guaranteed.
3. For design reference only, not 100% tested.

FEATURES

- Low ON Resistance
- Low C_{dg}
- High Gain
- Low Threshold Voltage

ORDERING INFORMATION*

TO-72	WAFER	DICE
IT1750	IT1750/W	IT1750/D

ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)Drain-Source and Gate-Source Voltage25 V
Peak Gate-Source Voltage (Note 1) $\pm 125 \mathrm{~V}$
Drain Current 100 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$Operating Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$Power Dissipation .. 375 mWDerate above $25^{\circ} \mathrm{C} . . . \ldots \ldots3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
*When ordering wafer/dice refer to Section 10 , page $10-1$.

ELECTRICAL CHARACTERISTICS

($T_{A}=25^{\circ} \mathrm{C}$, Body connected to Source and $\mathrm{V}_{B S}=0$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
$\mathrm{V}_{\text {GS }}$ (th)	Gate to Source Threshold Voltage	$V_{\text {DS }}=V_{\text {GS }}, I_{\text {d }}=10 \mu \mathrm{~A}$	0.50	1.5	3.0	V
loss	Drain Leakage Current	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.1	10	nA
IGSS	Gate Leakage Current		See note 2.			
BV ${ }^{\text {DSS }}$	Drain Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A},{ }^{*} \mathrm{~V}_{\mathrm{GS}}=0$	25			V
rDS(on)	Drain To Source on Resistance	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$		25	50	ohms
ld(on)	Drain Current	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	10	50		mA
$\mathrm{Y}_{\text {fs }}$	Forward Transadmittance	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA}, \\ & f=1 \mathrm{kHz} \end{aligned}$	3,000			$\mu \mathrm{s}$
Ciss	Total Gate Input Capacitance	$\begin{aligned} & l D=10 \mathrm{~mA}, V_{D S}=10 \mathrm{~V}, \\ & f=1 \mathrm{MHz}(\text { Note 3) } \end{aligned}$		5.0	6.0	pF
$\mathrm{C}_{\text {dg }}$	Gate to Drain Capacitance	$V_{D G}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ (Note 3)		1.3	1.6	pF

NOTES: 1. Devices must not be tested at $\pm 125 \mathrm{~V}$ more than once nor longer than 300 ms .
2. Actual gate current is immeasurable. Package suppliers are required to guarantee a package leakage of < 10pA. External package leakage is the dominant mode which is sensitive to both transient and storage environment, which cannot be guaranteed.
3. For design reference only, not 100% tested.

FEATURES

- Low rDS(on)

PIN CONFIGURATION

TO-92

ORDERING INFORMATION*

J105	TO-92 only
J106	TO-92 only
J107	TO-92 only

*When ordering wafer/dice refer to Section 10, page 10-1

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

SYMBOL	PARAMETER	TEST CONDITIONS		$J 105$			$J 106$			J107			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
IGSS	Gate-Reverse Current (Note 1)	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=$	- -15 V			-3			-3			-3	nA
$\mathrm{V}_{\text {GS(0ff) }}$	Gate-Source Cutoff Voltage	$V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1$		-4.5		-10	-2		-6	-0.5		-4.5	
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{l}_{\mathrm{G}}=$	$-1 \mu \mathrm{~A}$	-25			-25			-25			V
IDSS	Drain Saturation Current (Note 2)	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}$	$=0 \mathrm{~V}$	500			200			100			mA
ID(off)	Drain Cutoff Current (Note 1)	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=$	$=-10 \mathrm{~V}$			3			3			3	nA
ros(on)	Drain source ON Resistance	$\mathrm{V}_{\mathrm{DS}} \leq 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$				3			6			8	Ω
$\mathrm{C}_{\text {dg(off) }}$	Drain Gate OFF Capacitance	$\left\lvert\, \begin{aligned} & \text { (Note 3) } \\ & V_{D S}=V_{G S}=0 V\end{aligned} \quad f=1 \mathrm{MHz}\right.$				35			35			35	pF
$\mathrm{C}_{\text {sg(off) }}$	Source Gate OFF Capacitance					35			35	\cdots		35	
$\begin{aligned} & C_{d g(o n)} \\ & +C_{s g(o n)} \end{aligned}$	Drain Gate plus Source Gate ON Capacitance					160			160		,	160	
$t_{d}(0 n)$	Turn On Delay Time	Switching Time-TestConditions (Note 3)J105 J106 $\quad \mathrm{J107}$			15			15			15		ns
tr_{r}	Rise Time				20			20			20		
$\mathrm{t}_{\mathrm{d} \text { (} \mathrm{Off} \text {) }}$	Turn Off Delay Time	1.5 V 1.5 V 1.5 V $V_{D D}$ 1.5 V $V_{G S(\text { off })}$ -12 V -7 V -5 V R_{L} 50Ω 50Ω 50Ω			15			15			15		
t_{t}	Fall Time				20			20			20		

NOTES: 1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
2. Pulse test duration $=300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$,
3. For design reference only, not 100% tested.

J111-J113

FEATURES

- Low Cost
- Automated Insertion Package
- Low Insertion Loss
- No Offset or Error Voltage Generated By Closed Switch
- Purely Resistive
- High Isolation Resistance From Driver
- Fast Switching
- Short Sample and Hold Aperture Time
PIN CONFIGURATION

ORDERING INFORMATION*

TO-92	WAFER	DICE
J111	J111/W	J111/D
J112	J112/W	J112/D
J113	J113/W	J113/D

*When ordering wafer/dice refer to Section 10 , page 10-1.

APPLICATIONS

- Analog Switches
- Choppers
- Commutators

CHIP TOPOGRAPHY

сто06601

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage
$-35 \mathrm{~V}$
Gate Current ... 50 mA
Storage Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range.........$-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$
Power Dissipation ... 360 mW
Derate Above $25^{\circ} \mathrm{C}$......................... $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

SYMBOL	PARAMETER	TEST CONDITIONS		$J 111$			$J 112$			J113			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
IGSSR	Gate Reverse Current (Note 1)	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}$	$=-15 \mathrm{~V}$			-1			-1			-1	nA
$\mathrm{V}_{\text {GS }}$ (off)	Gate Source Cutoff Voltage	$V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=$		-3		-10	-1		-5	-0.5		-3	
BVGSS	Gate Source Breakdown Voltage	$V_{D S}=0 V, I_{G}$	$-1 \mu \mathrm{~A}$	-35			-35			-35			V
IDSS	Drain Saturation Current (Note 2)	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}}$	S $=0 \mathrm{~V}$	20			5			2			mA
ID(off)	Drain Cutoff Current (Note 1)	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}$	$=-10 \mathrm{~V}$			1			1			1.	nA
rDS(on)	Drain Source ON Resistance	$V_{D S}=0.1 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V}$				30			50			100	Ω
$\mathrm{C}_{\text {dg(off) }}$	Drain Gate OFF Capacitance	$\left\{\begin{array}{l} V_{D S}=0 V \\ V_{G S}=-10 V \\ (\text { Note 3) } \end{array}\right.$	$\mathrm{f}=1 \mathrm{MHz}$			5			5			5	pF
$\mathrm{C}_{\text {sg(off) }}$	Source Gate OFF Capacitance					5			5			5	
	Drain Gate Plus Source Gate ON Capacitance	$\begin{aligned} & V_{D S}=V_{G S}=0 \\ & \text { (Note 3) } \end{aligned}$				28			28			28	

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	J111			$J 112$			$J 113$			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
$t_{\text {d }}(\mathrm{on})$	Turn On Delay Time	Switching Time Test Conditions (Note 3)		7			7			7		ns
t_{r}	Rise Time	$J 111$ $J 112$ $J 113$ 10 V 10 V 10 V $V_{D D}$ $V_{G S \text { (off) }}$ -12 V -7 V -5 V R_{L} $0.8 \mathrm{k} \Omega$ $1.6 \mathrm{k} \Omega$ $3.2 \mathrm{k} \Omega$		6			6			6		
$t_{\text {d }}$ (ff)	Turn Off Delay Time			20			20			20		
t_{f}	Fall Time			15			15	.		15		

NOTES: 1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
2. Pulse Test duration $300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.
3. For design reference only, not 100% tested

APPLICATIONS

- Analog Switches
- Choppers
- Commutators

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)Gate-Drain or Gate-Source Voltage30 V
Gate Current 50mA
Storage Temperature Range

\qquadOperating Temperature Range $-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$Power Dissipation350 m
Derate above $25^{\circ} \mathrm{C}$ $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

FEATURES

- Low Insertion Loss
- No Offset or Error Generated By Closed Switch - Purely Resistive
- High Isolation Resistance From Driver
- Short Sample and Hold Aperture Time
- Fast Switching

PIN CONFIGURATION

ro-92

ORDERING INFORMATION*

TO-92	WAFER	DICE
J17X	J17X/W	J17X/D

*When ordering wafer/dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

SYMBOL	PARAMETER	TEST CONDITIONS		$J 174$			J175			J176			$J 177$			UNIT
				MIN	TYP	MAX										
IGSS	Gate Reverse Current (Note 1)	$V_{D S}=0, V_{G S}=20 \mathrm{~V}$				1			1			1			1	nA
$V_{G S(0 f f)}$	Gate Source Cutoff Voltage	$V_{D S}=-15 V, I_{D}=-10 n A$		5		10	3		6	1		4	0.8		2.25	
$B V_{G S S}$	Gate Source Breakdown Voltage	$V_{D S}=0, I_{G}=1 \mu \mathrm{~A}$		30			30			30			30			
loss	Drain Saturation Current (Note 2)	$V_{D S}=-15 \mathrm{~V}, V_{G S}=0$		-20		-100	-7		-60	-2		-25	-1.5		-20	mA
ID(off)	Drain Cutoff Current (Note 1)	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$				-1			-1			-1			-1	$n A$
ros(on)	Drain-Source ON Resistance	$V_{G S}=0, V_{D S}=-0.1 \mathrm{~V}$				85			125			250			300	Ω
$\mathrm{C}_{\mathrm{dg} \text { (off) }}$	Drain-Gate OFF Capacitance	$\left\{\begin{array}{l} V_{D S}=0 \\ V_{G S}=10 \mathrm{~V} \end{array}\right.$			5.5			5.5			5.5			5.5		
$\mathrm{C}_{\text {sg(off) }}$	Source-Gate OFF Capacitance				5.5			5.5			5.5			5.5		
$\begin{aligned} & C_{\text {dg(on) }} \\ & + \\ & \mathrm{C}_{\text {sg(on }} \end{aligned}$	Drain-Gate Plus Source Gate ON Capacitance	$V_{D S}=V_{G S}=0$$\quad \begin{aligned} & f=1 \mathrm{MHz} \\ & \text { (Note 3) }\end{aligned}$			40			40			40			40		pF

NOTES: 1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
2. Pulse test duration $-300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.
3. For design reference only, not 100% tested.

J201-J204
 N-Channel JFET General Purpose Amplifier

CHIP TOPOGRAPHY
5010

CT004311
ABSOLUTE MAXIMUM RATINGS($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)Gate-Source or Gate-Drain Voltage$-40 \mathrm{~V}$
Gate Current 50mA
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$
Power Dissipation 360 mW
Derate above $25^{\circ} \mathrm{C}$ $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
*When ordering wafer/dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

SYMBOL	PARAMETER	TEST CONDITIONS		J201			J202			J203			J204			UNIT
				MIN	TYP	MAX										
IGSS	Gate Reverse Current (Note 1)	$V_{D S}=0, V_{G S}=-20 \mathrm{~V}$				-100	.		-100			-100			-100	pA
$\mathrm{V}_{\text {GS(}}$ (ff)	Gate-Source Cutoff Voltage	$V_{D S}=20 V, l_{D}=10 n A$		-0.3		-1.5	-0.8		-4.0	-2.0		-10.0	-0.3		-2.0	
$B V_{\text {GSS }}$	Gate-Source Breakdown Voltage	$V_{D S}=0, I_{G}=1 \mu \mathrm{~A}$		-40			-40			-40			-25		.	
IDSS	Saturation Drain Current (Note 2)	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.2		1.0	0.9		4.5	4.0		20	0.2	1.2	3.0	mA
I_{G}	Gate Current (Note 1)	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$			-3.5			-3.5			-3.5			-3.5		pA
Gfs	Common-Source Forward Transconductance (Note 2)	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & V_{\mathrm{GS}}=0 \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$	500			1,000			1,500			500	1,500		$\mu \mathrm{s}$
gos	Common Source Output Conductance				1			3.5			10			2.5		
Ciss	Common-Source Input Capacitance		$\left\{\begin{array}{l} \mathrm{f}=1 \mathrm{MHz} \\ \text { (Note 3) } \end{array}\right.$		4		'	4			4			4		pF
Crss	Common-Source Reverse Transfer Capacitance				1			1			1			1		
\bar{e}_{n}	Equivalent Short-Circuit Input Noise Voltage	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & \text { (Note 3) } \end{aligned}$		5			5			5			10		$\frac{n V}{\sqrt{\mathrm{~Hz}}}$

NOTES: 1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
2. Pulse test duration $=2 \mathrm{~ms}$.
3. For design reference only, not 100% tested.

J308-J310
 N-Channel JFET
 High Frequency Amplifier

FEATURES

- Industry Standard Part in Low Cost Plastic Package
- High Power Gain
- Low Noise
- Dynamic Range Greater Than 100dB
- Easily Matched to 75Ω Input

PIN CONFIGURATION

то-92

ORDERING INFORMATION*

TO-92	WAFER	DICE
J30X	$\mathrm{J} 30 \mathrm{X} / \mathrm{W}$	J30X/D

*When ordering wafer/dice refer to Section 10, page 10-1.

APPLICATIONS

- VHF/UHF Amplifiers
- Oscillators
- Mixers

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Gate Voltage $-25 \mathrm{~V}$
Drain-Source Voltage $-25 \mathrm{~V}$
Continuous Forward Gate Current $-10 \mathrm{~mA}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Power Dissipation 360 mW
Derate above $25^{\circ} \mathrm{C}$

$$
3.27 \mathrm{~mW} \%^{\circ} \mathrm{C}
$$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

SYMBOL	PARAMETER	TEST CONDITIONS		$J 308$			J309			$J 310$			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
BVGSS	Gate-Source Breakdown Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{DS}}=0 \end{aligned}$		-25			-25			-25			V
IGSS	Gate Reverse Current	$\begin{aligned} & V_{G S}=-15 \mathrm{~V}, \\ & V_{\mathrm{DS}}=0 \end{aligned}$				-1.0			-1.0			-1.0	nA
	$T_{A}=125^{\circ} \mathrm{C}$					-1.0			-1.0			-1.0	$\mu \mathrm{A}$
V_{GS} (off)	Gate-Source Cutoff Voltage	$\begin{aligned} & V_{D S}=10 V \\ & V_{D}=\ln A \end{aligned}$		-1.0		-6:5	-1.0		-4.0	-2.0		-6.5	V
I DSS	Saturation Drain Current (Note 1)	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & V_{G S}=0 \\ & \hline \end{aligned}$		12		60	12		30	24	,	60	mA
$V_{G S(f)}$	Gate-Source Forward Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0, \\ & \mathrm{l}_{\mathrm{G}}=1 \mathrm{~mA} \\ & \hline \end{aligned}$				1.0			1.0			1.0	V
g_{fs}	Common-Source Forward Transconductance	$V_{D S}=10 \mathrm{~V}$	$f=1 \mathrm{kHz}$	8,000		20,000	10,000		20,000	8,000		18,000	μs
gos	Common-Source Output Conductance					200			200			200	
Gfg	Common-Gate Forward Transconductance	$\mathrm{ID}=10 \mathrm{~mA}$ (Note 2)			13,000			13,000		\because	12,000		
gog	Common Gate Output Conductance				150			150			150		

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS		J308			J309			J310			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
C_{gd}	Gate-Drain Capacitance	$\begin{aligned} & V_{\mathrm{DS}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & f=1 \mathrm{MHz} \\ & \text { (Note 2) } \end{aligned}$		1.8	2.5		1.8	2.5		1.8	2.5	pF
C_{gs}	Gate-Source Capacitance				4.3	5.0		4.3	5.0		4.3	5.0	
e_{n}	Equivalent Short-Circuit Input Noise Voltage	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & I_{D}=10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & f=100 \mathrm{~Hz}^{-} \\ & \text {(Note 2) } \end{aligned}$		10			10	-		10		$\frac{n V}{\sqrt{H z}}$
Re (Vis)	Common-Source Forward Transconductance	$\left\{\begin{array}{l} V_{D S}=10 \mathrm{~V}, \\ l_{D}=10 \mathrm{~mA} \\ \text { (Note 2) } \end{array}\right.$	$\mathrm{f}=105 \mathrm{MHz}$		12			12			12		$\mu \mathrm{s}$
Re(Vig)	Common-Gate Input Conductance				14		,	14			14		
$\mathrm{Re}_{(\text {(Vis) }}$	Common-Source Input Conductance				0.4			0.4			0.4		
Re(Vos)	Common-Source Output Conductance				0.15			0.15			0.15		
G_{pg}	Common-Gate Power Gain at Noise Match				16			16			16		dB
NF	Noise Figure				1.5			1.5			1.5		
G_{pg}	Common-Gate Power Gain at Noise Match		$f=450 \mathrm{MHz}$		11			11			11		
NF	Noise Figure				2.7			2.7			2.7		

NOTES: 1. Pulse test PW $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. For design reference only, not 100% tested.

GENERAL DESCRIPTION

These devices contain a pair of junction-isolated NPN transistors fabricated on a single silicon substrate. This monolithic structure makes possible extremely tight parameter matching at low cost. Further, advanced processing techniques yield exceptionally high current gains at low collector currents, virtual elimination of 'popcorn noise," low leakages and improved long-term stability.

Although designed primarily for high breakdown voltage and exceptional DC characteristics, these transistors have surprisingly good high-frequency performance. The gainbandwidth product is 300 MHz with 1 mA collector current and 5 V collector-base voltage and 22 MHz with $10 \mu \mathrm{~A}$ collector current. Typical collector-base capacitance is only 1.6 pF at 5 V .

ORDERING INFORMATION*

TO-71	TO-78	WAFER	DICE
LM114	LM114H	LM114/W	LM114/D
LM114A	LM114AH		

*When ordering wafer/dice refer to Section 10, page 10-1.

FEATURES

- Low Offset Voltage
- Low Drift
- High Current Gain
- Tight Beta Match
- High Breakdown Voltage
- Matching Guaranteed Over A OV to 45V Collector-Base Voltage Range
- CMRR > 100 dB

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS
($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Collector-Base Voltage (1) 45 V
Collector-Emitter Voltage (1) 45 V
Collector-Collector Voltage 45 V
Emitter-Base Voltage (1) 6 V
Collector Current (1) 20 mA
Storage Temperature Range $+200^{\circ} \mathrm{C}$
Operating Temperature Range

\qquad $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$
Power Dissipation ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$). 800 mW
Derate above $25^{\circ} \mathrm{C}$ $14 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (NOTE 2)

SYMBOL	PARAMETER	TEST CONDITIONS	MAXIMUM LIMITS		UNIT
			LM114A, AH	LM114, H	
$\mathrm{V}_{\text {BE1-2 }}$	Offset Voltage	$1 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{C}} \leq 100 \mu \mathrm{~A}$	0.5	2.0	mV
lB-2	Offset Current	$\mathrm{I}_{\mathrm{I}}=10 \mu \mathrm{~A}$	2.0	10	nA
	Bias Current	$\mathrm{IC}=1 \mu \mathrm{~A}$	0.5	40	nA
		$\mathrm{I}^{\prime} \mathrm{C}=10 \mu \mathrm{~A}$	20		
		$\mathrm{I}_{\mathrm{C}}=1 \mu \mathrm{~A}$	3.0		
$\Delta \mathrm{V}_{\mathrm{BE}} / \mathrm{V}$	Offset Voltage Change	$\mathrm{OV} \leq \mathrm{V}_{\text {CB }} \leq \mathrm{V}_{\mathrm{MAX}}, \mathrm{IC}=10 \mu \mathrm{~A}$	0.2	1.5	mV
$\Delta \mathrm{V}_{\mathrm{BE}} / \mathrm{V}$	Offset Current Change		1.0	4.0	nA

LM114/H, LM114A/AH

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	MAXIMUM LIMITS		UNIT
			$\begin{gathered} \text { LM114A, } \\ A H \end{gathered}$	$\begin{gathered} \text { LM114, } \\ H \end{gathered}$	
$\begin{aligned} & \hline \Delta \mathrm{V}_{\mathrm{BE} /} / \Delta \mathrm{T} \\ & \Delta \mathrm{l}_{\mathrm{B} 1-2} / \Delta \mathrm{T} \\ & \Delta I_{\mathrm{B}} / \Delta \mathrm{T} \\ & \hline \end{aligned}$	Offset Voltage Drift	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$	2.0	10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Offset Current		12	50	
	Bias Current		60	150	nA
ICBO	Collector-Base Leakage Current$T_{A}=125^{\circ} \mathrm{C}$ (Note 3)	$\mathrm{V}_{\mathrm{CB}}=\mathrm{V}_{\text {MAX }}$	10	50	pA
			10	50	nA
ICeo	Collector-Emitter Leakage Current$T_{A}=125^{\circ} \mathrm{C} \text { (Note 3) }$	$\mathrm{V}_{C E}=\mathrm{V}_{\text {MAX }}, \mathrm{V}_{\text {EB }}=0 \mathrm{~V}$	50	200	pA
			50	200	nA
${ }^{\text {C }} 12-\mathrm{C} 2$	Collector-Collector Leakage Current$T_{A}=125^{\circ} \mathrm{C} \text { (Note 3) }$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {MAX }}$	100	300	pA
			100	300	nA

NOTES: 1: Per transistor.
2: These specifications apply for $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{OV} \leq \mathrm{V}_{C B} \leq \mathrm{V}_{\mathrm{MAX}}$, unless otherwise specified. For the LM114 and LM114A, $V_{\text {MAX }}=30 \mathrm{~V}$
3. For design reference only, not 100% tested.

Diode Protected N-Channel

Enhancement Mode MOSFET

 General Purpose Amplifier
FEATURES

- Log IGSS
- Integrated Zener Clamp for Gate Protection

PIN CONFIGURATION

- 10.72

ORDERING INFORMATION*

TO-72	WAFER	DICE
M116	M116/W	M116/D

*When ordering wafer/dice refer to Section 10 , page $10-1$.

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS
($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain to Source Voltage 30 V
Gate to Drain Voltage 30 V
Drain Current 50 mA
Gate Zener Current $\pm 0.1 \mathrm{~mA}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$
Power Dissipation 225 mW
Derate above $25^{\circ} \mathrm{C}$ $2.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted, $\left.\mathrm{V}_{\mathrm{BS}}=0\right)$

SYMBOL	PARAMETER	TEST CONDITIONS	M116		UNIT
			MIN	MAX	
rDS(on)	Drain Source ON Resistance	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BS}}=0$		100	Ω
		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BS}}=0$		200	
$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BS}}=0$	1	5	V
BV DSS	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0$	30		
$\mathrm{BV}_{\text {SDS }}$	Source-Drain Breakdown Voltage	$\mathrm{I}^{\prime}=1 \mu \mathrm{~A}, \mathrm{~V}_{G D}=\mathrm{V}_{\mathrm{BD}}=0$	30		
BVGBS	Gate-Body Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {SB }}=\mathrm{V}_{\mathrm{DB}}=0$	30	60	
IDIOFF)	Drain Cutoff Current	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0$		10	nA
Is(OFF)	Source Cutoff Current	$\mathrm{V}_{\mathrm{SD}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=0$		10	
IGSs	Gate-Body Leakage	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{BS}}=0$		100	pA
$\mathrm{C}_{\text {gs }}$	Gate-Source (Note 1)	$\begin{aligned} & \mathrm{V}_{\mathrm{GB}}=\mathrm{V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0, f=1 \mathrm{MHz} \\ & \text { Body Guarded } \end{aligned}$		2.5	pF
$\mathrm{C}_{\text {gd }}$	Gate-Drain Capacitance (Note 1)			2.5	
C_{db}	Drain-Body Capacitance (Note 1)	$\mathrm{V}_{G B}=0, \mathrm{~V}_{\mathrm{DB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		7	
$\mathrm{C}_{\text {iss }}$	Input Capacitance (Note 1)	$V_{G B}=0, V_{D B}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{BS}}=0, f=1 \mathrm{MHz}$		10	

NOTE 1: For design reference only, not 100% tested.

APPLICATIONS
 - Analog Switches
 - Commutators
 - Choppers

ORDERING INFORMATION*

TO-18	WAFER	DICE
U200	U200/W	U200/D
U201	U201/W	U201/D
U202	U202/W	U202/D

*When ordering wafer/dice refer to Section 10, page 10-1.

CHIP TOPOGRAPHY

5001

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage 30 V
Gate Current .. 50mA
Storage Temperature Range $\ldots \ldots \ldots . .,-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Total Device Dissipation ($T_{\mathrm{C}}=25^{\circ} \mathrm{C}$)1.8W
Derate above $25^{\circ} \mathrm{C} .10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		U200		U201		U202		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
IGSS	Gate Reverse Current	$\mathrm{V}_{\mathrm{GSS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-1		-1		-1	nA
	$\square T_{A}=150^{\circ} \mathrm{C}$				-1		-1		-1	$\mu \mathrm{A}$
BV GSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-30		-30		-30		V
$\mathrm{V}_{\text {GS(off) }}$	Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$		-0.5	-3	-1.5	-5	-3.5	-10	
${ }^{1} \mathrm{D}$ (off)	Drain Cutoff Current	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=-12 \mathrm{~V}$			1		1		1	nA
	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$				1		1		1	$\mu \mathrm{A}$
IDSS	Saturation Drain Current (Note 1)	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		3	25	15	75	30	150	mA
$\mathrm{ras}_{\text {don }}$	Drain-Source ON Resistance	$V_{G S}=0, I_{D}=0$	$\mathrm{f}=1 \mathrm{kHz}$		150		75		50	ohm
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Note 2)	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$,	$f=1 \mathrm{MHz}$		30		30		30	pF
Crss	Common-Source Reverse Transfer Capacitance (Note 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0, \\ & \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V} \end{aligned}$			8	.	8		8	

NOTES: 1: Pulse test required, pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. For design reference only, not 100% tested. ㅈNMR

FEATURES

- Good Matching Characteristics

PIN CONFIGURATION

ORDERING INFORMATION*

TO-71	WAFER	DICE
U23X	U23X/W	U23X/D

*When ordering wafer/dice refer to Section 10, page 10-1.

APPLICATIONS

- Differential Amplifiers
- Low and Medium Frequency Amplifiers

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted.

SYMBOL	PARAMETER	TEST CONDITIONS		LIN	ITS	UNIT
				MIN	MAX	
IGSS		$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-100	pA
	Gate Reverse Current $\quad \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$				-500	nA
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-50		
$\mathrm{V}_{\mathrm{GS} \text { (off) }}$	Gate-Source Cutoff Voltage	$V_{D S}=20 V, I_{D}=1 n A$		-0.5	-4.5	V
V_{GS}	Gate-Source Voltage			-0.3	-4.0	
$\mathrm{IG}_{\mathbf{G}}$	Gate Operating Current $\quad T_{A}=125^{\circ} \mathrm{C}$	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$			-50	pA
					-250	nA
IDSS	Saturation Drain Current (Note 2)	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.5	5.0	mA
$\mathrm{gfs}^{\text {s }}$	Common-Source Forward Transconductance (Note 1)	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$	1000	3000	$\mu \mathrm{s}$
			$\begin{aligned} & \mathrm{f}=100 \mathrm{MHz} \\ & (\text { Note } 4) \end{aligned}$	1000		
gis	Common-Source Forward Transconductance (Note 1)	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$	$f=1 \mathrm{kHz}$	600	1600	
gos	Common-Source Output Capacitance	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			35	
gos	Common-Source Output Conductance	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$			10	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, V_{G S}=0 \\ & \text { (Note 4) } \end{aligned}$	$f=1 \mathrm{MHz}$		6	pF
$\mathrm{Cr}_{\text {rs }}$	Common-Source Reverse Transfer Capacitance				2	
$\overline{e_{n}}$	Equivalent Short Circuit Input Noise Voltage		$f=100 \mathrm{~Hz}$		80	$\frac{n V}{\sqrt{H z}}$

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	MATCHING CHARACTERISTICS	TEST CONDITIONS		U231 MAX	$\begin{aligned} & \text { U232 } \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & \text { U233 } \\ & \text { MAX } \end{aligned}$	U234 MAX	$\begin{aligned} & \text { U235 } \\ & \text { MAX } \end{aligned}$	UNIT
$1 l_{\text {G1 }}-l_{\text {G2 }}!$	Differential Gate Current (Note 4)	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$	$125^{\circ} \mathrm{C}$	10	10	10	10	10	nA
$\frac{(\operatorname{lDSS} 1-\operatorname{lDSS} 2)}{\operatorname{lDSS}^{2}}$	Saturation Drain Current Match (Note 2, 4)	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		5	5	5	10	15	\%
$\left\|V_{\text {GS } 1-} \mathrm{V}_{\text {GS } 2}\right\|$	Differential Gate-Source Voltage	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5	10	15	20	25	mV
$\frac{\Delta\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}}$	Gate-Source Voltage Differential Drift (Note 3)		$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{B}=125^{\circ} \mathrm{C} \end{aligned}$	10	25	50	75	100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}$			$\begin{aligned} T_{A} & =-55^{\circ} \mathrm{C} \\ T_{B} & =25^{\circ} \mathrm{C} \end{aligned}$	10	25	50	75	100	
$\frac{\left(\mathrm{g}_{\mathrm{fs} 1}-\mathrm{g}_{\mathrm{fs} 2}\right)}{\mathrm{g}_{\mathrm{fs} 1}}$	Transconductance Match (Note 2)		$\mathrm{f}=1 \mathrm{kHz}$	3	5	5	10	15	\%
$\mid g_{\text {os } 1}$ - gos 1	Differential Output Conductance			5	5	5	5	5	$\mu \mathrm{s}$

NOTES: 1. Per transistor.
2. Pulse test required, pulse width $=300 \mu$ s, duty cycle $\leq 3 \%$.
3. Measured at end points, T_{A} and T_{B}
4. For design reference only, not 100% tested.

FEATURES

- gts $_{\text {s }}>5000 \mu \mathrm{~s}$ From DC to 100 MHz
- Matched VGS, gis and gos

PIN CONFIGURATION

PC00151I

ORDERING INFORMATION*

TO-99	WAFER	DICE
U257	U257/W	U257/D

*When ordering wafer/dice refer to Section 10, page 10-1.

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS
($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage (Note 1)........ -25V
Gate Current (Note 1) .. 50mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$

	ONE SIDE	BOTH SIDES
Power Dissipation		
$\left(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \ldots$	250 mW	500 mW
Derate above $25^{\circ} \mathrm{C} \ldots \ldots \ldots \ldots$	$3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
IGSSR	Gate Reverse Current$T_{A}=150^{\circ} \mathrm{C}$	$V_{G S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-100	pA
					-250	nA
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-25		
VGS(off)	Gate-Source Cutoff Voltage	$V_{D S}=10 \mathrm{~V}, I_{D}=1 \mathrm{nA}$		-1	-5	
IDSS	Saturation Drain Current (Note 2)	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		5	40	mA
g_{fs}	Common-Source Forward Transconductance	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$	$f=1 \mathrm{kHz}$	5000	10,000	
g_{fs}	Common-Source Forward Transconductance	$V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$	$\mathrm{f}=100 \mathrm{MHz}$ (Note 3)	5000	10,000	
gos	Common-Source Output Conductance	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$	$f=1 \mathrm{kHz}$		150	$\mu \mathrm{s}$
Goss	Common-Source Output Conductance	$V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$(Note 3)	$\mathrm{f}=100 \mathrm{MHz}$		150	
Ciss	Common-Source Input Capacitance		$f=1 \mathrm{MHz}$		5	pF
Crss	Common-Source Reverse Transfer Capacitance				1.2	
$\overline{e_{n}}$	Equivalent Input Noise Voltage		$f=10 \mathrm{kHz}$		30	$\frac{n V}{\sqrt{H z}}$
$\frac{\text { ldss1 }}{\text { IDSS2 }}$	Drain Current Ratio at Zero Gate Voltage (Note 2)	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.85	1	
$\left\|V_{G S 1}-V_{G S 2}\right\|$	Differential Gate-Source Voltage	$V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$			100	mV
$\frac{g_{f s} 1}{g_{f_{s} 2}}$	Transconductance Ratio		$\mathrm{f}=1 \mathrm{kHz}$	0.85	1	
$\left\|g_{o s} 1-g_{o s} 2\right\|$	Differential Output Conductance				20	$\mu \mathrm{S}$

NOTES: 1. Per transistor.
2. Pulse test required, pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
3. For design reference only, not 100% tested.

U304-U306
 P-Channel JFET Switch

APPLICATIONS

FEATURES

- Low ON Resistance
- $I_{D(o f f)}<500 \mathrm{pA}$
- Switches directly from TTL Logic (U306)

ORDERING INFORMATION*

TO-18	WAFER	DICE
U304	U304/W	U304/D
U305	U305/W	U305/D
U306	U306/W	U306/D

*When ordering wafer/dice refer to Section 10 , page 10-1.

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted.

SYMBOL	PARAMETER	TEST CONDITIONS		U304		U305		U306		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
IGSSR	Gate Reverse Current	$V_{G S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			500		500		500	pA
	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$				1.0		1.0		1.0	$\mu \mathrm{A}$
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		30		30		30		V
$V_{G S}$ (off)	Gate-Source Cutoff Voltage	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1$		5	10	3	6	1	4	
VDS(on)	Drain-Source ON Voltage	$\begin{aligned} V_{G S}=0, I_{D} & =-15 \mathrm{~mA}(\mathrm{U} 304), \\ I_{D} & =-7 \mathrm{~mA}(\mathrm{U} 305), \\ I_{D} & =-3 \mathrm{~mA}(\mathrm{U} 306) \end{aligned}$			-1.3		-0.8		-0.6	
ioss	Saturation Drain Current (Note 1)	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		-30	-90	-15	-60	-5	-25	mA
${ }^{1} \mathrm{D}$ (off)	Drain Cutoff Current $T_{A}=150^{\circ} \mathrm{C}$	$\begin{aligned} V_{D S}=-15 V, V_{G S} & =12 V(U 304) \\ V_{G S} & =7 V(U 305) \\ V_{G S} & =5 V(\mathrm{U} 306) \end{aligned}$			-500		-500		-500 -1.0	pA $\mu \mathrm{A}$
rDS(on)	Static Drain-Source ON Resistance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$			85		110		175	Ω
$\mathrm{rds}^{(o n)}$	Drain-Source ON Resistance	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$	$f=1 \mathrm{kHz}$		85		110		175	Ω
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Note 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$			27		27		27	
$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance (Note 2)	$\begin{aligned} \hline \mathrm{V}_{\mathrm{DS}}=0, & \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V} \\ & (\mathrm{U} 304) \\ & V_{\mathrm{GS}}=7 \mathrm{~V} \\ & (\mathrm{U} 305), \\ & \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} \\ & (\mathrm{U} 306) \end{aligned}$	$\mathrm{f}=1 \mathrm{MHz}$		7		7		7	pF

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS				U304		U305		U306		UNIT
						MIN	MAX	MIN	MAX	MIN	MAX	
$t_{\text {d }}$ (on)			U304	U305	U306							ns
	Turn-ON Delay Time (Note 2)	$V_{D D}$	-10V	-6V	-6V		20		25		25	
t_{r}	Rise Time (Note 2)	$\mathrm{V}_{\mathrm{GS} \text { (off) }}$	12 V	7 V	5 V		15		25		35	
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-OFF Delay Time (Note 2)	R_{L}	580Ω	743Ω	1800ת		10		15		20	
$\mathrm{tf}^{\text {f }}$	Fall Time (Note 2)	$\mathrm{V}_{\mathrm{GS} \text { (on) }}$	0	0	0		25		40		60	
		ID(on)	-15mA	-7mA	-3mA							

NOTES: 1. Pulse test pulsewidth $=300 \mu$ s, duty cycle $\leq 3 \%$.
2. For design reference only, not 100% tested.

FEATURES

- High Power Gain
- Low Noise
- Dynamic Range Greater Than 100dB
- Easily Matched to 75Ω Input

PIN CONFIGURATIONS

TO-52

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage
-25V
Gate Current ... 20mA
Storage Temperature.................... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots . . \ldots \ldots . . .+300^{\circ} \mathrm{C}$
Power Dissipation ... 500 mW
Derate above $25^{\circ} \mathrm{C} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ORDERING INFORMATION*

TO-52	WAFER	DICE
U308	U308/W	U308/D
U309	U309/W	U309/D
U310	U310/W	U310/D

*When ordering wafer/dice refer to Section 10, page 10-1.
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		U308			U309			U310			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
IGSS	Gate Reverse Current	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$				-150			-150			-150	pA
	$T_{A}=125^{\circ} \mathrm{C}$					-150			-150			-150	nA
$\mathrm{BV}_{\mathrm{GSS}}$	Gate-Source Breakdown Voltage	$I_{G}=-1 \mu \mathrm{~A}, V_{D S}=0$		-25			-25			-25			V
$\mathrm{V}_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-1.0		-6.0	-1.0		-4.0	-2.5		-6.0	
loss	Saturation Drain Current (Note 1)	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		12		60	12		30	24		60	mA
$\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$	Gate-Source Forward Voltage	$\mathrm{I}_{\mathrm{G}}=10 \mathrm{~mA}, V_{D S}=0$				1.0			1.0			1.0	V
$9_{\text {fg }}$	Common-Gate Forward Transconductance (Note 1)	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & I_{D}=10 \mathrm{~mA} \end{aligned}$	$f=1 \mathrm{kHz}$	10	17		10	17		10	17		$\mu \mathrm{s}$
gogs	Common Gate Output Conductance					250			250			250	$\mu \mathrm{S}$
C_{gd}	Drain-Gate Capacitance	$\begin{aligned} & V_{G S}=-10 \mathrm{~V}, \\ & V_{D S}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & f=1 \mathrm{MHz} \\ & \text { (Note 2) } \end{aligned}$			2.5			2.5			2.5	pF
C_{gs}	Gate-Source Capacitance					5.0			5.0			5.0	
\bar{e}_{n}	Equivalent Short Circuit Input Noise Voltage	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & I_{D}=10 \mathrm{~mA} \end{aligned}$	$\begin{gathered} f=100 \mathrm{~Hz} \\ \text { (Note 2) } \end{gathered}$		10			10			10		$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS		U308			U309			U310			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
g_{fg}	Common-Gate Forward Transconductance	$\begin{aligned} & V_{D S}=10 V \\ & I_{D}=10 \mathrm{~mA} \end{aligned}$	$\mathrm{f}=100 \mathrm{MHz}$		15			15			15		$\mu \mathrm{s}$
			$\mathrm{f}=450 \mathrm{MHz}$		14			14			14		
Gogs	Common-Gate Output Conductance		$f=100 \mathrm{MHz}$		0.18			0.18		.	0.18		
			$\mathrm{f}=450 \mathrm{MHz}$		0.32			0.32			0.32		
G_{pg}	Common-Gate Power Gain		$\mathrm{f}=100 \mathrm{MHz}$	14	16		14	16		14	16		dB
			$\mathrm{f}=450 \mathrm{MHz}$	10	11		10	11		10	11		
NF	Noise Figure	(Note 2)	$\dagger=100 \mathrm{MHz}$		1.5	2.0		1.5	2.0		1.5	2.0	
			$f=450 \mathrm{MHz}$		2.7	3.5		2.7	3.5		2.7	3.5	

NOTES: 1. Pulse test duration $=2 \mathrm{~ms}$.
2. For design reference only, not 100% tested.

U401-U406
 Dual N-Channel JFET Switch

FEATURES

- Minimum System Error and Calibration
- Low Drift With Temperature
- Operates From Low Power Supply Voltages
- High Output Impedance

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage 50V
Gate Current (Note 1) .. 10mA
Storage Temperature Range $\ldots \ldots \ldots65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$

Power Dissipation ($\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$) ... $300 \mathrm{~mW} \quad 500 \mathrm{~mW}$
Derate above $25^{\circ} \mathrm{C}$............... $2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \quad 5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
*When ordering wafer/dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS

ONE SIDE BOTH SIDES

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted.

SYMBOL	PARAMETER	TEST CONDITIONS		U401		U402		U403		U404		U405		U406		UNIT
				MIN	MAX											
BVGSS	Gate-Source Breakdown Voltage	$V_{D S}=0, I_{G}=-1 \mu \mathrm{~A}$		-50		-50		-50		-50		-50		-50		V
IGSS	Gate Reverse Current (Note 2)	$V_{D S}=0, V_{G S}=-30 \mathrm{~V}$			-25		-25		-25		-25		-25		-25	pA
$\mathrm{V}_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-. 5	-2.5	-. 5	-2.5	-. 5	-2.5	-. 5	-2.5	-. 5	-2.5	-. 5	-2.5	
V_{GS} (on)	Gate-Source Voltage (on)	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$			-2.3		-2.3		-2.3		-2.3		-2.3		-2.3	V
IDSS	Saturation Drain Current (Note 3)	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.5	10.0	0.5	10.0	0.5	10.0	0.5	10.0	0.5	10.0	0.5	10.0	mA
I_{G}	Operating Gate Current	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$			-15		-15		-15		-15		-15		-15	pA
	(Note 2) $\quad \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$				-10		-10		-10		-10		-10		-10	nA
$\mathrm{BV}_{\mathrm{G} 1-\mathrm{G} 2}$	Gate-Gate Breakdown Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{I}_{\mathrm{G}}= \pm 1 \mu \mathrm{~A} \end{aligned}$		± 50		V										
gis	Common-Source Forward Transconductance (Note 3)	$\begin{aligned} & V_{\mathrm{DS}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	$f=1 \mathrm{kHz}$	2000	7000	2000	7000	2000	7000	2000	7000	2000	7000	2000	7000	$\mu \mathrm{s}$
gos	Common-Source Output Conductance				20		20		20		20		20		20	
Gfs	Common-Source Forward Transconductance	$\begin{aligned} & V_{D G}=15 V \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$	1000	1600	1000	1600	1000	1600	1000	1600	1000	1600	1000	1600	
9 s	Common-Source Output Conductance				2.0		2.0		2.0		2.0		2.0		2.0	
Ciss	Common-Source Input Capacitance (Note 6)		$f=1 \mathrm{MHz}$		8.0		8.0		8.0		8.0		8.0		8.0	pF
$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance (Note 6)				3.0		3.0		3.0		3.0		3.0		3.0	

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS		U401		U402		U403		U404		U405		U406		UNIT
				MIN	MAX											
θ_{n}	Equivalent Short-Circuit Input Noise Voltage	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \\ & V_{\mathrm{GS}}=0 \end{aligned}$	$f=10 \mathrm{~Hz}$ (Note 6)		20		20		20		20		20		20	$\frac{n V}{\sqrt{H z}}$
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{DG}}=10 \text { to } 20 \mathrm{~V}, \\ & \mathrm{ID}^{2}=200 \mu \mathrm{~A}(\text { Note } 5,6) \end{aligned}$		95		95		95		95		90				dB
$\mathrm{IV}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2} \mathrm{I}$	Differential Gate-Source Voltage	$V_{\text {DG }}=10 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$			5		10		10		15		20		40	mV
$\frac{\Delta \mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}}{\Delta \mathrm{~T}}$	Gate-Sourçe Voltage Differential Drift (Note 4)	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & T_{A}=+55^{\circ} \mathrm{C}, \\ & T_{B}=+25^{\circ} \mathrm{C}, \\ & T_{C}=+125^{\circ} \mathrm{C} \end{aligned}$		10		10		25		25		40		80	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

NOTES: 1. Per transistor.
2. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
3. Pulse test duration $=300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.
4. Measured at end points, T_{A}, T_{B}, T_{C}.
5. C MRR $=20 \log _{10}\left[\frac{\Delta V_{D D}}{\Delta I V_{G S_{1}} \Delta V_{G S_{2}} I}\right], \Delta V_{D D}=10 \mathrm{~V}$.
6. For design reference only, not 100% tested.

U1897-U1899 N-Channel JFET Switch

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)	
Gate-Drain or Gate-Source Voltage -40V	
Forward Gate Cu	
Storage Temperature Range $\ldots . \ldots \ldots . .55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Operating Temperature Range $\ldots \ldots55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10sec)	
Power Dissipa	
Derate abo	

APPLICATIONS
 - Analog Switches, Choppers

ORDERING INFORMATION*

TO-92	TO-92-18	WAFER	DICE
U1897	U1897-18	U1897/W	U1897/D
U1898	U1898-18	U1898/W	U1898/D
U1899	U1899-18	U1899/W	U1899/D

*When ordering wafer/dice refer to Section 10, page 10-1.

FEATURES

- Low Insertion Loss
- No Error or Offset Voltage Generated By Closed Switch

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

SYMBOL	PARAMETER	TEST CONDITIONS		U1897		U1898		U1899		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-40		-40		-40		V
IGSS	Gate Reverse Current	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-400		-400		-400	
IDGO	Drain-Gate Leakage Current	$V_{\text {DG }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$			200		200		200	pA
ISGO	Source-Gate Leakage Current	$V_{S G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$			200		200		200	
1 D (off)	Drain Cutoff Current	$\begin{aligned} & V_{\mathrm{DS}}=20 \mathrm{~V}, \\ & V_{\mathrm{GS}}=-12 \mathrm{~V} \text { (U1897) } \\ & V_{G S}=-8 \mathrm{~V} \text { (U1898) } \\ & V_{\mathrm{GS}}=-6 \mathrm{~V} \text { (U1899) } \end{aligned}$			200		200		200	
	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$				10		10		10	nA
V_{GS} (off)	Gate-Source Cutoff Voltage	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-5.0	-10	-2.0	-7.0-	-1.0	-5.0	V
ldss	Saturation Drain Current (Note 1)	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		30		15		8.0		mA
VDS(on)	Drain-Source ON Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=6.6 \mathrm{~mA} \text { (U1897) } \\ & \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~mA}(\mathrm{U} 1898) \\ & \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~mA} \text { (U1899) } \end{aligned}$			0.2		0.2		0.2	V
r ${ }_{\text {DS }(0 n) ~}^{\text {d }}$	Static Drain-Source ON Resistance	$I_{D}=1 \mathrm{~mA}, \mathrm{~V}_{G S}=0$			30		50		80	Ω
C_{dg}	Drain-Gate Capacitance	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$	$f=1 \mathrm{MHz}$		5		5		5	pF
$\mathrm{C}_{\text {sg }}$	Source-Gate Capacitance	$V_{S G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$			5		5		5	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			16		16		16	
$\mathrm{Crss}^{\text {rem }}$	Common-Source Reverse Transfer Capacitance		(Note 2)		3.5		3.5		3.5	

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	U1897		U1898		U1899		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {d }}$ d(on)	Turn ON Delay Time (Note 2)	Switching Time Test Conditions U1897 U1898 U1899		15		15		20	ns
$\mathrm{tr}_{\mathbf{r}}$	Rise Time (Note 2)			10		20		40	
$\mathrm{t}_{\text {off }}$	Turn OFF Time (Note 2)	V_{DD} 3 V 3 V 3 V $\mathrm{~V}_{\mathrm{GS} \text { (on) }}$ 0 0 0 $\mathrm{~V}_{\mathrm{GS}}$ (off) -12 V -8 V -6 V R_{L} 425Ω 770Ω 1120Ω $\mathrm{I}_{\mathrm{D}(\text { on })}$ 6.6 mA 4 mA 2.5 mA		40		60		80	

NOTES: 1. Puise test pulsewidth $=300 \mu \mathrm{~s}$; duty cycle $<3 \%$.
2. For design reference only, not 100% tested.

VCR2N/3P/4N/7N Voltage Controlled Resistors

APPLICATIONS

- Small Signal Attenuators
- Filters
- Amplifier Gain Control
- Oscillator Amplitude Control

PIN CONFIGURATIONS

TO-18
TO.71

TO. 72
(P-Channe!)

ORDERING INFORMATION*

TO-18	TO-72	WAFER	DICE
VCR2N	-	VCR2N/W	VCR2N/D
VCR4N	-	VCR4N/W	VCR4N/D
-	VCR3P	VCR3P/W	VCR3P/D
-	VCR7N	VCR7N/W	VCR7N/D

*When ordering wafer/dice refer to Section 10, page 10-1.

CHIP TOPOGRAPHY
 VCR2N

 5007

Cr00710
VCR11N 6019

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage 15 V
Gate Current ... 10mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Power Dissipation ... 300 mW
Derate above $25^{\circ} \mathrm{C}$............................. $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

N Channel VCR FETs

SYMBOL	PARAMETER	TEST CONDITIONS		VCR2N		VCR4N		VCR7N		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
STATIC										
IGSs	Gate Reverse Current	$\begin{aligned} & V_{\mathrm{GS}}=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DS}}=0 \end{aligned}$			-5		-0.2		-0.1	nA
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-15		-15		-15		v
$V_{G S}$ (off)	Gate-Source Cutoff Voltage	$l_{D}=1 \mu \mathrm{~A}, V_{D S}=10 \mathrm{~V}$		-3.5	-7	-3.5	-7	-2.5	-5	
$\mathrm{rds}_{\text {d }}$ (on)	Drain source ON Resistance	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=0$	$f=1 \mathrm{kHz}$	20	60	200	600	4,000	8,000	Ω
DYNAMIC (Note 1)										
$\mathrm{C}_{\text {dgo }}$	Drain-Gate Capacitance	$\mathrm{V}_{\mathrm{GD}}=-10 \mathrm{~V}, \mathrm{IS}=0$	$\mathrm{f}=1 \mathrm{MHz}$		7.5		3		1.5	pF
$\mathrm{C}_{\text {sgo }}$	Source-Gate Capacitance	$V_{G S}=-10 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=0$			7.5		3		1.5	

NOTE 1: For design reference only, not 100% tested.
P Channel VCR FETS

SYMBOL	PARAMETER	TEST CONDITIONS		VCR3P		UNIT
				MIN	MAX	
STATIC						
IGSS	Gate Reverse Current	$\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	\cdots		20	nA
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		15		V
$\mathrm{V}_{\mathrm{GS} \text { (off) }}$	Gate-Source Cutoff Voltage	$\mathrm{I}_{\mathrm{D}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{D S}=-10 \mathrm{~V}$		3.5	7	
$\mathrm{r}_{\text {ds(on) }}$	Drain-Source ON Resistance	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=0$	$\mathrm{f}=1 \mathrm{kHz}$	70	200	Ω
DYNAMIC (Note 1)						
$\mathrm{C}_{\text {dgo }}$	Drain-Gate Capacitance	$V_{G D}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} \\ & (\text { Note } 1) \end{aligned}$		6	pF
$\mathrm{C}_{\text {sgo }}$	Source-Gate Capacitance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$			6	

NOTE 1: For design reference only, not 100% tested.

JFETS AS VOLTAGE REGULATORS

The voltage controlled resistor is a junction field effect transistor whose drain to source ON resistance is controlled by gate to source voltage.

The gate control terminal is high impedance thereby allowing negligible control current. The gate voltage is zero for minimum resistance, and increases as the gate voltage approaches the pinch-off voltage.

This VCR is intended for use on applications using low level AC signals. Figure 1 shows the output characteristics, with an enlarged graph of VDS $=0$ for AC signals with no DC component. Operation is in the first and third quadrants; the device will operate in the first quadrant only if a constant
current is applied to the drain and the input signal level is kept low.

Figure 1 also shows that certain combinations of gate control voltage and signal levels will cause resistance modulation. This distortion may be improved by introducing local feedback as shown in figure 2 for best frequency response and impedance levels; eliminating the feedback capacitor will require the gate control voltage to be double for the same ON resistance. The resistor values should be equal, and about 100Ω.

Best gate control voltage for best linearity is up to about 0.8 VPK ; ON resistance increases rapidly beyond this point.

JFET OUTPUT CHARACTERISTICS

JFET OUTPUT CHARACTERISTICS ENLARGED AROUND $V_{D S}=0$

Figure 1

Figure 2

APPLICATIONS

- Small Signal Attenuators
- Filters
- Amplifier Gain Control
- Oscillator Amplitude Control

PIN CONFIGURATION

то.71

ORDERING INFORMATION*

TO-71	WAFER	DICE
VCR11N	VCR11N/W	VCR11N/D

CHIP TOPOGRAPHY

6019

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	CHARACTERISTIC	TEST CONDITIONS		VCR11N		UNIT
				MIN	MAX	
IGSS	Gate Reverse Current	$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-0.2	nA
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-25		
$V_{G S}$ (off)	Gate-Source Cutoff Voltage	$\mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$		-8	-12	\checkmark
$\mathrm{r}_{\text {ds }}$ (on)	Drain Source ON Resistance	$\mathrm{V}_{\mathrm{GS}}=0, I_{\mathrm{D}}=0$	$f=1 \mathrm{kHz}$	100	200	Ω
$\mathrm{C}_{\text {dgo }}$	Drain-Gate Capacitance (Note 2)	$V_{\mathrm{GD}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$	$f=1 \mathrm{MHz}$		8	pF
$\mathrm{C}_{\text {sgo }}$	Source-Gate Capacitance (Note 2)	$V_{G S}=-10 \mathrm{~V}, I_{D}=0$	$f=1 \mathrm{MHz}$		8	pF
rosmin		$V_{D S}=100 \mathrm{mV}$	rDS1 $=200 \mu$. 95	1	Ω
rosmax		$\mathrm{V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{GS} 2}$	$\mathrm{rDS} 1=2 \mathrm{k} \mu$. 95	1	

NOTES: 1. $V_{G S 1}+$ Control Voltage necessary to force ros to 200Ω or $2 \mathrm{k} \Omega$.
2. For design reference only, not 100% tested.

Section 3 - Analog Switches and
 Multiplexers

D123／D125

SPST 6－Channel JFET
Switch Driver

GENERAL DESCRIPTION

The D123 and D125 monolithic bipolar drivers convert low－level positive logic signals（ $0 \&+5 \mathrm{~V}$ ）to the high level positive and negative voltages necessary to drive FET switches．One lead can be used to provide an enabling capability．

ORDERING INFORMATION

FEATURES

－Provides DC Level Shifting Between Low－Level Logic and MOSFET or JFET Switches
－External Collector Pull－Ups Required
－Direct Interface With G116，G117，G119，G115， and G123 MOSFET Switches

Package
K－14－pin CERDIP
L－14－pin Flat Package
P－14－pin Hermetic DIP （Special Order Only）

Temperature Range
A－Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
B －Industrial $\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
Device Chip Type

LD000401

Figure 1：Functional Diagram（Outline Dwgs DD，FD－2，JD）

D123/D125

ABSOLUTE MAXIMUM RATINGS

Input-to-Emitter Voltage (V_{IN} - V_{EE})...................... 33V
Output-to-Emitter Voltage ($\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{EE}}$) 33 V
Logic Supply-to-Emitter Voltage ($\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{EE}}$) 27 V
Input-to-Reference Voltage ($\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{R}}$) 2 V
Input-to-Logic Supply Voltage $\left(V_{I N}-V_{L}\right) \ldots \ldots \ldots \ldots . .+6 V$
Reference-to-Emitter Voltage ($\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{EE}}$) 31V
Maximum Dissipation (Note) 750 mW
Current (any pin) 30 mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $.300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature of $70^{\circ} \mathrm{C}$. Derate $10 \mathrm{~mW} /$ ${ }^{\circ} \mathrm{C}$ for higher ambient temperature.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test conditions unless otherwise specified are as follows: $\mathrm{V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=4.5 \mathrm{~V}$, lOUT $=0, \mathrm{~V}_{\mathrm{R}}=0$. Output and power supply measurements based on specified input conditions.

DEVICE NO.	PARAMETER	TEST CONDITIONS	MAX LIMIT			UNIT
			$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	
INPUT						
D123	IIN(OFF)	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	1	1	100	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {IN(ON }}$	$1 \mathrm{~N}=1 \mathrm{~mA}$	1.3	1	0.8	V
D125	IIN(OFF)	$\mathrm{V}_{\text {IN }}=4.1 \mathrm{~V}$	1	1	20	$\mu \mathrm{A}$
	$\mathrm{I} \mathrm{N}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	-0.7	-0.7	-0.7	mA
OUTPUT						
$\begin{gathered} \text { D125 \& } \\ \text { D123 } \end{gathered}$	IOUT(OFF)	$\mathrm{V}_{\text {OUT }}=+10 \mathrm{~V}$	0.1	0.1	10	$\mu \mathrm{A}$
	VOUT(ON)	l $\mathrm{OUT}=1 \mathrm{~mA}$	-19.7	-19.7	-19.5	V
	VOUT(ON)	l OUT $=4 \mathrm{~mA}$	-19.2	-19.2	-19.0	V
POWER SUPPLY						
D123	$\mathrm{I}_{\mathrm{R}(\mathrm{ON})^{(1)}}$	lout $=0$ for ON measurements. $\mathrm{V}_{\text {OUT }}=+10 \mathrm{~V}$ for OFF measurements.	0.5	0.5	0.5	mA
	$\mathrm{I}_{\text {R(OFF) }}{ }^{(2)}$		1	1	150	$\mu \mathrm{A}$
	$l_{E E}(\mathrm{ON})^{(1)}$		1	1	1	mA
	$\mathrm{I}_{\mathrm{EE}(\mathrm{OFF})^{(2)}}$		2	2	200	$\mu \mathrm{A}$
D125	L(ON) ${ }^{(1)}$		2	2	1.9	mA
	$\mathrm{l}_{\mathrm{L} \text { (OFF) }}{ }^{(1)}$		- 1	1	100	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{EE}(\mathrm{ON})^{(1)}}$		2	2	1.9	mA
	$\mathrm{I}_{\mathrm{EE}(\mathrm{OFF})^{(2)}}$		2	2	200	$\mu \mathrm{A}$
SWITCHING TIMES						
$\begin{gathered} \text { D125 \& } \\ \text { D123 } \end{gathered}$	${ }_{(}^{\text {(ON }}$)	$\begin{aligned} & \text { IOUT }=1 \mathrm{~mA}, \text { COUT }{ }^{(3)}=10 \mathrm{pF} \\ & \text { (See Switching Tirnes) }^{(4)} \end{aligned}$		250		ns
	${ }^{\text {t }}$ (OFF) ${ }^{(4)}$			800		ns
	${ }^{t}$ (on)	$\begin{gathered} \text { IOUT }=4 \mathrm{~mA}, \operatorname{COUT}(3)=10 \mathrm{pF} \\ \text { (See Switching Times) } \end{gathered}$		250		ns
	$t_{\text {(off) }}{ }^{(5)}$			600		ns

NOTES: 1. One channel ON, 5 channels OFF.

2. All channels OFF.
3. Add 30 ns per pF for 1 mA and add 8 ns per pF for 4 mA for additional capacitive loading.
4. For Dual-In-Line package add 120 ns to $t_{\text {(off) }}$.
5. For Dual-In-Line package add 30 ns to $\mathrm{t}_{\text {(off) }}$.

D123/D125

WF000601

Circuit Diagrams

Figure 2: Switching Times

TYPICAL PERFORMANCE CHARACTERISTICS

SWITCHING TIMES
VS TEMPERATURE
D123 AND D125
(SEE NOTES 4 AND 5)

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

$\underset{\text { D123 }}{\text { INS }}$

$V_{\text {SAT }}$ VS TEMPERATURE D123 AND D125

Iout(off) VS temperature D123 AND D125

APPLICATIONS

Using INTERSIL'S MOSFET SWITCH, G117, with either the D123 or D125 drivers provides a convenient means of designing a 5 channel analog multiplexer with a series on/ off switch.

Figure 3: 5-Channel Multiplexer

APPLICATION TIPS

Interfacing the D123 and D125

In order to meet all the specifications on this data sheet, certain requirements must be met by the drive circuitry.

The D125 can be turned ON easily, but care must be exercised to insure turn-off. Keeping $\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{IN}} \leq 0.4 \mathrm{~V}$ is a must to insure turn-off. To accomplish this, a shunt resistor must be added to supply the leakage current (ICES) for DTL devices. Since $\mathrm{I}_{\mathrm{CES}}=50 \mu \mathrm{~A}$, a $0.4 \mathrm{~V} / 0.05 \mathrm{~mA}=8 \mathrm{k} \Omega$ or less resistor should be used. For TTL devices using a $2 \mathrm{k} \Omega$ resistor will insure turn-off with up to $200 \mu \mathrm{~A}$ of leakage current.

Using the ENABLE Control

Device pins V_{R} or V_{L}, can be used to enable the D123 or D125 drivers. For the D123, the enabling driver must sink $I_{R(O N)} X$ no. of channels used. For the D125, IL(ON) X no. of channels used must be sourced with a voltage at least +4 V greater than V_{IN}. Switch Driver

GENERAL DESCRIPTION

The D129 is a 4-channel driver with binary decode input. It was designed to provide the DC level-shifting required to interface low-level logic outputs (0.7 to 2.2 V) to field-effect transistor inputs (up to 50 V peak-to-peak). For a 5 V input logic supply, the V^{-}terminal can be set at any voltage between -5 V and -30 V . The output transistor is capable of sinking 10 mA and will stand-off up to 50 V above V^{-}in the off-state.

The ON state of the driver is controlled by a logic " 1 "' (open) on all three input logic lines, while the OFF state of the driver is achieved by pulling any one of the three inputs to a logic ' 0 ' (ground).

The 4-channel driver is internally connected such that each one can be controlled independently or decoded from a binary counter.

FEATURES

- Quad Three-Input Gates Decode Binary Counter to Four Lines
- Inputs Compatible With Low Power TTL and DTL., $I_{F}=200 \mu A \operatorname{Max}$
- Output Current Sinking Capability 10 mA
- External Pull-Up Elements Required
- Compatible With G115 and G123 Series Multichannel MOSFET Switches Which Include Current-Limiter Pull-Up FETs

ORDERING INFORMATION

LD000701

LD000601

Figure 1: Functional Diagrams (Outline Dwgs DD, FD-2, JD)

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\mathrm{O}}-\mathrm{V}^{-}$	50 V
GND－ V^{-}	33V
V^{+}－GND	． 8 V
$V_{I N}$－GND	$\pm 6 \mathrm{~V}$
Current（an	30 mA

Storage Temperature $\ldots \ldots \ldots \ldots \ldots \ldots .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $\ldots \ldots \ldots \ldots \ldots .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation（note）$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .750 \mathrm{~mW}$
Lead Temperature（Soldering，10sec）$\ldots \ldots \ldots \ldots \ldots .300^{\circ} \mathrm{C}$

Note：Dissipation rating assumes device mounted with all leads welded or soldered to pc board in ambient temperature of $70^{\circ} \mathrm{C}$ ．Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for higher ambient temperatures．
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．
ELECTRICAL CHARACTERISTICS Test conditions unless otherwise specified $\mathrm{V}^{-}=-20 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}$

SYM－ BOL	PARAMETER	TEST CONDITIONS		MAXIMUM LIMIT						UNIT
				D129M			D1291			
				$-50^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	
OUT										
V_{OL}	Output Voltage，Low	$10=10 \mathrm{~mA}$	$\mathrm{V}_{\text {IN }}=2.2 \mathrm{~V}, \mathrm{~V}^{+}=4.5 \mathrm{~V}$	－19．3	－19．3	－19	－19．25	－19．25	－19	V
V_{OL}	Output Voltage，Low	$10=1 \mathrm{~mA}$		－19．8	－19．8	－19．75				
IOH	Output Current，High	$\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.7 \mathrm{~V}$		0.1	0.1	20	0.2	0.2	10	$\mu \mathrm{A}$
INPUT										
I／NH＊＊	Input Current Input Voltage High	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ Input Under Test， $\mathrm{V}_{\text {IN }}=0$ All Other Inputs		0.25	0.25	5	1	1	5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{N L}}{ }^{*}$	Input Current Input Voltage Low	$\mathrm{V}_{\text {IN }}=0, \mathrm{~V}^{+}=5.5 \mathrm{~V}$		－250	－200	－160	－250	－225	－200	
TIME										
$t_{\text {on }}$	Turn－ON Time	See Switching Time Test Circuit			0.25			0.3		$\mu \mathrm{s}$
$\mathrm{t}_{\text {off }}$	Turn－OFF Time				1.0			1.5		
SUPPLY										
IEE	Negative Supply Current	$\begin{aligned} & \mathrm{V}^{-}=-20 \mathrm{~V} \\ & \mathrm{~V}^{+}=5.5 \mathrm{~V} \end{aligned}$	One Channel＇＇ON＇		－2			－2．25		mA
IL	Logic Supply Current				3			3.3		
IEE	Negative Supply Current		All $V_{\mathbb{I}}=0$ ， All Channels＂OFF＂		－10			－25		$\mu \mathrm{A}$
l	Logic Supply Current				0.75			1		mA

＊Per gate Input

WF00070
Figure 2：Switching Time and Test Circuit

N DG118/DG123/DG125 4 \& 5-Channel SPST Driver With Switch

GENERAL DESCRIPTION

This series includes devices with four and five channel switching capability. Each channel is composed of a driver and a MOSFET switch. Two driver versions are supplied for inverting and noninverting applications. A MOSFET, used as a current source provides an active pull-up for faster switching.

An external biasing connection is brought out for biasing, the current source, for optimization of speed and power.

ORDERING INFORMATION

FEATURES

- Available With and Without Programmable Constant Current Pull-up
- Zener Protection on All Gates
- P-Channel Enhancement-Type MOSFET Switches
- Each Switch Summed to One Common Point

TRUTH TABLE

DG123		DG118, DG125		Switch Cond.
$\mathrm{V}_{\text {IN }}$	$V_{\text {R }}$	VIN	VL	
L	L	L	L	OFF
H	L	L	H	ON
L	H	H	L	OFF
H	H	H	H	OFF

$L=0 V, H=+V$

ABSOLUTE MAXIMUM RATINGS

Collector to Emitter ($\mathrm{V}^{+}-\mathrm{V}^{-}$) $33 V$
Collector to Pull-up ($\mathrm{V}^{+}-\mathrm{V}_{\mathrm{P}}$) 33V
Drain to Emitter ($\mathrm{V}_{\mathrm{D}}-\mathrm{V}^{-}$) 32V
Source to Emitter $\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}^{-}\right)$ 32 V
Drain to Source ($\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{S}}$) 28 V
Source to Drain ($\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{D}}$) 28V
Logic to Emitter ($\mathrm{V}_{\mathrm{L}}-\mathrm{V}^{-}$) 33V
Reference to Emitter ($\mathrm{V}_{\mathrm{R}}-\mathrm{V}^{-}$) 31 V
Reference to Input ($\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{I}}$) 6 V
Logic to Input ($\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\text {IN }}$) $\pm 6 \mathrm{~V}$
Input to Emitter ($\mathrm{V} \mathbb{N}^{-} \mathrm{V}^{-}$) 33 V
Current (any terminal) 30 mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$Dissipation (Note)750 mW
Lead Temperature (Soldering, 10 sec) $.300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with ail leads welded or soldered to printed circuit board in ambient temperature of $70^{\circ} \mathrm{C}$. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for higher ambient temperature.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test conditions unless specified otherwise are as follows: $\mathrm{V}_{\mathrm{L}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0, \mathrm{~V}^{-}=-20 \mathrm{~V}$, and $\mathrm{P}=-20 \mathrm{~V}$. Input ON and OFF test conditions used for output and power supply specifications.

$\begin{aligned} & \text { DEVICE } \\ & \text { NO. } \end{aligned}$	PARAMETER (NOTE)	TEST CONDITIONS	MAX LIMITS			UNIT
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	
INPUT						
DG123	IIN(OFF)	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	1	1	100	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {IN(ON) }}$	$\mathrm{I}_{\mathrm{N}}=1 \mathrm{~mA}$	1.3	1.0	0.8	V
DG118	IIN(OFF)	$\mathrm{V}_{\text {IN }}=4.1 \mathrm{~V}$	1	1	20	$\mu \mathrm{A}$
DG125	INION)	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$	-0.7	-0.7	-0.7	mA
OUTPUT						
All circuits	r ${ }^{\text {DS(ON }}$)	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{I}^{\prime}=-1 \mathrm{~mA}$	100	100	125	Ω
		$V_{D}=0, I_{S}=-100 \mu \mathrm{~A}$	200	200	250	Ω
		$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-100 \mu \mathrm{~A}$	450	450	600	Ω
	ID(ON)	$V_{D}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}$ (all) $=0$		4	4000	nA
	ID(OFF)	$V_{S(\text { ali) }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$		-4	-4000	$n \mathrm{~A}$
	IS(OFF)	$V_{D}=10 \mathrm{~V}, V_{S}=-10 \mathrm{~V}$		-1	-1000	nA
POWER SUPPLY						
All circuits	$\mathrm{ICCON})$	One Channel (ON)		3		mA
	IL(ON)			3		mA
	$\mathrm{I}_{\mathrm{R}(\mathrm{ON})}$			-0.5		mA
	IEE(ON)			-6		mA
All circuits	ICC(OFF)	All Channels (OFF)		10		$\mu \mathrm{A}$
	LLOFF)			10		$\mu \mathrm{A}$
	IR(OFF)			-15		$\mu \mathrm{A}$
	IEE(OFF)			-20		$\mu \mathrm{A}$
SWITCHING TIMES						
All circuits	$\left.\mathrm{t}_{(} \mathrm{ON}\right)$	See Switching Times		0.3		$\mu \mathrm{s}$
	t (OFF)			1		$\mu \mathrm{s}$

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the MOSFET switch for the given test condition.

Figure 2: Switching Times

TYPICAL PERFORMANCE CHARACTERISTICS

SWITCHING TIMES vs TEMPERATURE

rDS(ON) vs \mathbf{V}_{D} or $\mathbf{V}_{\mathbf{S}}$

DG118/DG123/DG125

APPLICATION TIPS
The recommended resistor values for interfacing RTL, DTL, and TTL Logic are shown in Figures 3 and 4.

Figure 3: DG118 and DG125 Interface

Enable Control

The V_{R} and V_{L} terminals can be used as either a Strobe or an Enable control. The requirements for sinking current at V_{R} or sourcing current at V_{L} are: $I_{L(O N)} \times$ No. of channels used, for DG118 and DG125, and $\mathrm{I}_{\mathrm{R}(\mathrm{ON})} \times$ No. of channels used for the DG123 devices. The voltage at V_{L} must be greater than the voltage at $\mathrm{V}_{\mathbb{N}}$ by at least +4 V .

Figure 4: DG123 Interface

DG126, DG129, DG133, DG134, DG140, DG141, DG151, DG152, DG153, DG154 DUAL JFET Analog Switch

GENERAL DESCRIPTION

These switching circuits contain two channels in one package, each channel consisting of a driver circuit controlling a SPST or DPST junction FET switch. The driver interfaces DTL, TTL or RTL logic signals for multiplexing, commutating, and D/A converter applications, which permits logic design directly with the switch function. Logic "'1" at the input turns the FET switch ON, and logic ' 0 ' turns it off.

FEATURES

- Each Channel Complete-Interfaces With Most Integrated Logic
- Low OFF Power Dissipation, 1mW
- Switches Analog Signals Up to 20 Volts Peak-toPeak
- Low rdS(ON), 10 Ohms Max on DG140/A and DG141/A
- Switching Times Improved $100 \%-$ 'A' $^{\prime}$ Versions

ORDERING INFORMATION

DUAL SPST
DG133 (rDS(ON) $=30 \Omega$)
DG134 $($ rDS $(0 N)=80 \Omega)$
DG141 $(\mathrm{rDS}(\mathrm{ON})=10 \Omega)$
DG151 $(\mathrm{rDS}(\mathrm{ON})=15 \Omega)$
DG152 $(\operatorname{rDS}(\mathrm{ON})=50 \Omega)$

DUAL DPST
DG $126(\mathrm{rDS}(\mathrm{ON})=80 \Omega)$
DG129 $(\mathrm{rDS}(\mathrm{ON})=30 \Omega)$
DG140 $(\operatorname{rDS}(\mathrm{ON})=10 \Omega)$
DG153 $(\mathrm{rDS}(\mathrm{ON})=15 \Omega)$
DG154 ($\mathrm{rDS}(\mathrm{ON})=50 \Omega)$

S02750I
Figure 1: Functional Diagrams (Outline Dwgs DD, FD-2, JD)

DG126, DG129, DG133, DG134, DG140, DG141, DG151, DG152, DG153, DG154

ABSOLUTE MAXIMUM RATINGS

Po

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Per Channel)

Applied voltages for all test: DG126, DG129, DG133, DG134, DG140, DG141 ($\mathrm{V}^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-18 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$), and DG 151 , DG152, DG153, DG154 ($\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$). Input test condition which guarantees FET switch ON or OFF as specified is used for output and power supply specifications.

SYMBOL (NOTE)	CHARACTERISTIC	TYPE	TEST CONDITIONS	ABSOLUTE MAX LIMIT			UNIT
				$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	
INPUT							
VIN(ON)	Input Voltage-On	All Circuits	$\mathrm{V}_{2}=-12 \mathrm{~V}$	2.9 min	2.5 min	2.0 min	Volts
$\mathrm{V}_{\text {IN(}}$ (OFF)	Input Voltage-Off		$\mathrm{V}_{2}=-12 \mathrm{~V}$	1.4	1.0	0.6	Volts
IIN(ON)	Input Current		$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$	120	60	60	$\mu \mathrm{A}$
1 IN (OFF)	Input Leakage Current		$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	0.1	0.1	2	$\mu \mathrm{A}$
SWITCH OUTPUT							
r $\mathrm{DS}(\mathrm{ON}$)	Drain-Source On Resistance	$\begin{aligned} & \text { DG126 } \\ & \text { DG134 } \end{aligned}$	$\begin{aligned} & V_{I N}=(\text { See Note }) \\ & V_{D}=10 \mathrm{~V}, I_{S}=10 \mathrm{~mA} \end{aligned}$	80	80	150	Ω
		$\begin{aligned} & \text { DG129 } \\ & \text { DG133 } \end{aligned}$		30	30	50	Ω
		$\begin{aligned} & \text { DG140 } \\ & \text { DG141 } \end{aligned}$		10	10	20	Ω
		$\begin{aligned} & \text { DG151 } \\ & \text { DG153 } \end{aligned}$	$\begin{aligned} & V_{D}=7.5 \mathrm{~V}, I_{S}=10 \mathrm{~mA} \\ & V_{\text {IN }}=(\text { See Note }) \end{aligned}$	15	15	30	Ω
		$\begin{aligned} & \text { DG152 } \\ & \text { DG154 } \end{aligned}$		50	50	100	Ω
$\mathrm{ID}(\mathrm{ON})+\mathrm{IS}(\mathrm{ON})$	Drive Leakage Current	DG126DG129DG133DG134	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$		± 2	100	nA
IS(OFF)	Source Leakage Current		$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$		± 1	100	nA
$\mathrm{I}_{\mathrm{D} \text { (OFF) }}$	Drain Leakage Current		$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$		± 1	100	nA
$\mathrm{ID}_{\mathrm{D}(\mathrm{ON})+\mathrm{I}_{\text {S }}(\mathrm{ON})}$	Drive Leakage Current	$\begin{aligned} & \text { DG140 } \\ & \text { DG141 } \end{aligned}$	$V_{D}=V_{S}=-10 \mathrm{~V}$		± 2	100	nA
$\mathrm{I}_{\text {S (OFF) }}$	Source Leakage Current		$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$		± 10	1000	$n \mathrm{~A}$
ID(OFF)	Drain Leakage Current		$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$		± 10	1000	nA
$\mathrm{ID}_{\mathrm{D}(\mathrm{ON})+\mathrm{I}_{\text {S }}(\mathrm{ON})}$	Drive Leakage Current	$\begin{aligned} & \text { DG151 } \\ & \text { DG153 } \end{aligned}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}$		± 2	500	nA
${ }^{\text {I }}$ (OFF)	Source Leakage Current		$\mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V}$		± 10	1000	nA
ID(OFF)	Drain Leakage Current		$\mathrm{V}_{\mathrm{D}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-7.5 \mathrm{~V}$		± 10	1000	nA
$\mathrm{ID}_{\mathrm{D}(\mathrm{ON})+\mathrm{IS}(\mathrm{ON})}$	Drive Leakage Current	DG152 DG154	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}$		± 2	500	nA
IS(OFF)	Source Leakage Current		$\mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V}$		± 2	200	nA
ID(OFF)	Drain Leakage Current		$\mathrm{V}_{\mathrm{D}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-7.5 \mathrm{~V}$		± 2	200	nA

NOTE: $V_{I N}$ must be a step function with a minimum slew-rate of $1 \mathrm{~V} / \mu \mathrm{s}$.

DG126, DG129, DG133, DG134, DG140, DG141, DG151, DG152, DG153, DG154

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL (NOTE)	CHARACTERISTIC	TYPE	TEST CONDITIONS	ABSOLUTE MAX LIMIT			UNIT
				$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	
POWER SUPPLY							
$\mathrm{I}_{1(\mathrm{ON})}$	Positive Power Supply Drain Current	All Circuits	One Driver $\mathrm{ON}, \mathrm{V}_{\mathbb{N}}=2.5 \mathrm{~V}$		3		mA
$I_{2(O N)}$	Negative Power Supply Drain Current				-1.8	,	mA
IR(ON)	Reference Power Supply Drain Current				-1.4		mA
$\mathrm{I}_{1 \text { (OFF) }}$	Positive Power Supply Leakage Current		Both Drivers OFF, $\mathrm{V}_{1 \times}=0.8 \mathrm{~V}$		25		$\mu \mathrm{A}$
I2(OFF)	Negative Power Supply Leakage Current				-25		$\mu \mathrm{A}$
${ }^{\text {IR(OFF) }}$	Reference Power Supply Leakage Current				-25		$\mu \mathrm{A}$
SWITCHING							
ton	Turn-On Time	See Below	DG126, DG129, DG133, DG134, DG152, DG154		600		ns
toff	Turn-Off Time	See Below	DG126, DG129, DG133, DG134, DG152, DG154		1.6		$\mu \mathrm{s}$
${ }^{\text {ton }}$	Turn-On Time	See Below	DG140, DG141, DG151, DG153		1.0		$\mu \mathrm{S}$
tofF	Turn-On Time	See Below	DG140, DG141, DG151, DG153		2.5		$\mu \mathrm{s}$
POWER							
PON	ON Driver Power	All Circuits	Both Inputs $\mathrm{V}_{1 \mathrm{~N}}=2.5 \mathrm{~V}$		175		mW
PofF	OFF. Driver Power		Both Inputs $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}$		1		mW

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

DG126, DG129, DG133, DG134, DG140,
 DG141, DG151, DG152, DG153, DG154

ELECTRICAL CHARACTERISTICS (CONT.)

Figure 2: Switching Times (at $25^{\circ} \mathrm{C}$)

DG126, DG129, DG133, DG134, DG140, DG141, DG151, DG152, DG153, DG154

TYPICAL PERFORMANCE CHARACTERISTICS (per channel)

DG126, 129, 133, 134, 140, 141
V_{IN} THRESHOLD vs TEMPERATURE

rDS(ON) vs TEMPERATURE
(Normalized to $25^{\circ} \mathrm{C}$ Value)

OP05820:

DG151, 152, 153, 154

rDS(ON) vs TEMPERATURE

ALL CIRCUITS

ON SUPPLY CURRENT vs TEMPERATURE

OP058401

ID(OFF) vs TEMPERATURE

OFF SUPPLY CURRENT vs TEMPERATURE

DG139, DG142-DG146, DG161-DG164 DUAL JFET Analog Switch

GENERAL DESCRIPTION

Each package contains a monolithic driver with differential input and 2 or 4 discrete FET switches. The driver may be treated as a special purpose differential amplifier which controls the conduction state of the FET switches. The differential output of the driver sets the switches in opposition, one pair open and the other pair closed. All switches may be opened by applying a positive control signal to the V_{R} terminal.

FEATURES

- Each Channel Complete - Interfaces With Most Integrated Logic
- Low OFF Power Dissipation, 1mW
- Switches Analog Signals Up to 20 Volts Peak-toPeak
- Low rds(ON), 10 Ohms Max on DG145 and DG146

ORDERING INFORMATION
\qquad
DG143 $(\mathrm{rDS}(O N)=80 \Omega)$
DG144 $(\mathrm{rDS}(\mathrm{ON})=30 \Omega)$
DG144 (rDS(ON) $=30 \Omega$)
DG146 (rDS(ON) $=10 \Omega)$
DG161 (rDS(ON) $=15 \Omega$)
DG162 (rDS(ON) $=50 \Omega$)

LD000901

DPDT
DG139 (rDS(ON) $=30 \Omega$)
DG142 (rDS(ON) $=80 \Omega$)
DG145 (rDS(ON) $=10 \Omega$)
DG163 (rDS(ON) $=15 \Omega$)
DG164 (rDS(ON) $=50 \Omega$)

LD001101

Figure 1: Functional Diagrams (Outline Dwgs DD, FD-2, JD)

DG139, DG142-DG146, DG161-DG164

ABSOLUTE MAXIMUM RATINGS

$V^{+}-V^{-}$

\qquad 36 V
$V_{S}-V^{-}$ 30 V
$V^{+}-V_{S}$ 30 V
$V_{S}-V_{D}$ $\pm 22 \mathrm{~V}$
$V_{R}-V^{-}$ 21V
$V^{+}-V_{R}$ 17 V
$V^{+}-V_{\text {IN1 }}$ or $V_{\text {IN2 }}$ 14 V
$V_{I N 1}-V_{I N}$ $\pm 6 \mathrm{~V}$
$V_{\text {IN1 }}-V_{R}$ $\pm 6 \mathrm{~V}$
$V_{\text {IN2 }}-V_{R}$ $\pm 6 \mathrm{~V}$
Power Dissipation (Note) 750 mW
Current (any terminal) 30 mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature

\qquad

\qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec)

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and furictional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Applied voltages for all tests: DG139, DG142, DG143, DG144, DG145, DG146 ($\left.\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-18 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0, \mathrm{~V}_{\mathrm{IN} 2}=2.5 \mathrm{~V}\right)$ and DG161, DG162, DG163, DG164 ($\left.\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0, \mathrm{~V}_{\mathrm{IN} 2}=2.5 \mathrm{~V}\right)$. Input test condition that guarantees FET switch ON or OFF as specified is used for output specifications.

SYMBOL (NOTE)	PARAMETER	TYPE	TEST CONDITIONS	ABSOLUTE MAX LIMIT			UNIT
				$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	
INPUT							
IIN1(ON)	Input Current	All Circuits	$\mathrm{V}_{\mathrm{IN} 1}=3.0 \mathrm{~V}$	120	60	60	$\mu \mathrm{A}$
IIN2(ON)			$\mathrm{V}_{1 \mathrm{~N} 2}=2.0 \mathrm{~V}$	120	60	60	$\mu \mathrm{A}$
IN1(OFF)	Input Leakage Current		$\mathrm{V}_{1 \mathrm{~N}_{1}}=2.0 \mathrm{~V}$	0.1	0.1	2	$\mu \mathrm{A}$
IIN2(OFF)			$\mathrm{V}_{\text {IN2 }}=3.0 \mathrm{~V}$	0.1	0.1	2	$\mu \mathrm{A}$
SWITCH OUTPUT							
rDS(ON)	Drain-Source On Resistance	$\begin{aligned} & \text { DG142 } \\ & \text { DG143 } \end{aligned}$	$V_{D}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$ VIN (See Note)	80	80	150	Ω
		$\begin{aligned} & \text { DG139 } \\ & \text { DG144 } \end{aligned}$		30	30	60	Ω
		$\begin{aligned} & \text { DG145 } \\ & \text { DG146 } \end{aligned}$	$\begin{aligned} & V_{D}=10 \mathrm{~V}, \text { I }=-10 \mathrm{~mA} \\ & V_{\text {IN }} \text { (See Note) } \end{aligned}$	10	10	20	Ω
		$\begin{aligned} & \text { DG161 } \\ & \text { DG163 } \end{aligned}$	$\begin{aligned} & V_{D}=7.5 \mathrm{~V}, \text { IS }=-10 \mathrm{~mA} \\ & V_{I N} \text { (See Note) } \end{aligned}$	15	15	30	Ω
		DG162 DG164		50	50	100	Ω
$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}+\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	Drive Leakage Current	$\begin{aligned} & \text { DG139 } \\ & \text { DG142 } \\ & \text { DG143 } \\ & \text { DG144 } \end{aligned}$	$V_{D}=V_{S}=-10 \mathrm{~V}$		2	100	nA
IS(OFF)	Source Leakage Current		$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$		1	100	nA
ID(OFF)	Drain Leakage Current		$V_{D}=10 \mathrm{~V}, V_{S}=-10 \mathrm{~V}$		1	100	nA
$\mathrm{ID}_{(\mathrm{ON})+\mathrm{IS}_{\text {(ON }} \text {) }}$	Drive Leakage Current	$\begin{aligned} & \text { DG145 } \\ & \text { DG146 } \end{aligned}$	$V_{D}=V_{S}=-10 \mathrm{~V}$		2	100	$n \mathrm{~A}$
IS(OFF)	Source Leakage Current		$V_{S}=10 \mathrm{~V}, V_{D}=-10 \mathrm{~V}$		10	1000	nA
ID(OFF)	Drain Leakage Current		$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$		10	1000	$n \mathrm{~A}$
$\mathrm{ID}_{\mathrm{D}(\mathrm{ON})+\mathrm{I}_{\text {S(ON }} \text {) }}$	Drive Leakage Current	$\begin{aligned} & \text { DG161 } \\ & \text { DG163 } \end{aligned}$	$V_{D}=V_{S}=-7.5 \mathrm{~V}$		2	500	$n \mathrm{~A}$
IS(OFF)	Source Leakage Current		$\mathrm{V}_{S}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V}$		10	1000	nA
ID(OFF)	Drain Leakage Current		$\mathrm{V}_{\mathrm{D}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-7.5 \mathrm{~V}$		10	1000	nA
$\mathrm{I}_{\mathrm{D}(\mathrm{ON})+\mathrm{I}_{\mathrm{S}}(\mathrm{ON})}$	Drive Leakage Current	DG162 DG164	$V_{D}=V_{S}=-7.5 \mathrm{~V}$		2	500	nA
IS(OFF)	Source Leakage Current		$\mathrm{V}_{S}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V}$		2	200	$n \mathrm{~A}$
$\mathrm{ID}(\mathrm{OFF})$	Drain Leakage Current		$V_{D}=7.5 \mathrm{~V}, \mathrm{~V}_{S}=-7.5 \mathrm{~V}$		2	200	nA

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
$\mathrm{V}_{\mathbb{N}}$ must be a step function with a minimum slew-rate of $1 \mathrm{~V} / \mu \mathrm{s}$.

DG139，DG142－DG146，DG161－DG164

ELECTRICAL CHARACTERISTICS（CONT．）

SYMBOL	PARAMETER	TYPE	TEST CONDITIONS	ABSOLUTE MAX LIMIT			UNIT
（NOTE）				$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	
POWER SUPPLY							
$l_{1(0 N)}$	Positive Power Supply Drain Current	All Circuits	$V_{i N 1}=3 V$ or $V_{I N 1}=2 V$		4.0		mA
$12(O N)$	Negative Power Supply Drain Current				－2．0		mA
IR（ON）	Reference Power Supply Drain Current				－2．0		mA
1_{1}（OFF）	Positive Power Supply Leakage Current		$V_{\text {IN1 }}=V_{\text {IN2 }},=0.8 \mathrm{~V}$		25		$\mu \mathrm{A}$
I2（OFF）	Negative Power Supply Leakage Current				－25		$\mu \mathrm{A}$
IR（OFF）	Reference Power Supply Leakage Current				－25		$\mu \mathrm{A}$
SWITCHING							
ton	Turn－On Time	DG139，DG142 DG143，DG144 DG162，DG164	See Switching Times		0.8		$\mu \mathrm{s}$
toff	Turn－Off Time	DG139，DG142 DG143，DG144 DG162，DG164	See Switching Times		1.6		$\mu \mathrm{s}$
ton	Turn－On Time	DG145，DG146 DG161，DG163	See Switching Times		1.0		$\mu \mathrm{s}$
toff	Turn－Off Time	DG145，DG146 DG161，DG163	See Switching Times		2.5		$\mu \mathrm{s}$

NOTE：（OFF）and（ON）subscript notation refers to the conduction state of the FET switch for the given test．

Figure 2: Switching Times Test Circuits

Figure 3
OP003401

Figure 4

NOTE 1: An example of Absolute Minimum Differential Voltage, $V_{9}-V_{13}$, is when $V_{9}=3 V$ and $V_{13}=2.5 \mathrm{~V}$, the V_{9} side of the switch is $O N$ and the V_{13} side of the switch is OFF at $25^{\circ} \mathrm{C}$. Conversely, when $\mathrm{V}_{9}=2 \mathrm{~V}$ and $\mathrm{V}_{13}=2.5 \mathrm{~V}$, the V_{9} side of the switch is OFF and the V_{13} side of the switch is ON at $25^{\circ} \mathrm{C}$.
TYPICAL PERFORMANCE CHARACTERISTICS (per channel)
DG139, 142, 144, 145, 146

DG161, 162, 163, 164

OP00390I

RDS(ON) vs TEMPERATURE

Is(off) vs TEMPERATURE

DG180-191
 High-Speed Driver With JFET Switch

GENERAL DESCRIPTION

The DG180 thru DG191 series of analog gates consist of 2 or 4 N -channel junction-type field-effect transistors (JFET) designed to function as electronic switches. Level-shifting drivers enable low-level inputs (0.8 to 2 V) to control the ON OFF state of each switch. The driver is designed to provide a turn-off speed which is faster than turn-on speed, so that break-before-make action is achieved when switching from one channel to another. In the ON state, each switch conducts current equally well in both directions. In the OFF condition, the switches will block voltages up to 20 V peak-to-peak. Switch-OFF input-output isolation is 50 dB at 10 MHz , due to the low output impedance of the FET-gate driving circuit.

FEATURES

- Constant ON-Resistance for Signals to $\pm 10 \mathrm{~V}$ (DG182, 185, 188, 191), to $\pm 7.5 \mathrm{~V}$ (All Devices)
- $\pm 15 \mathrm{~V}$ Power Supplies
- <2nA Leakage From Signal Channel in Both ON and OFF States
- TTL, DTL, RTL Direct Drive Compatibility
- $t_{\text {on }}$, t $_{\text {off }}<150 \mathrm{~ns}$, Break-Before-Make Action
- Cross-talk and Open Switch Isolation $>50 \mathrm{~dB}$ at 10 MHz (75Ω Load)
- JAN 38510 Approved

ORDERING INFORMATION

PART NUMBER	TYPE	rDS(on) (MAX)
DG180	Dual SPST	10
DG181	Dual SPST	30
DG182	Dual SPST	75
DG183	Dual DPST	10
DG1184	Dual DPST	30
DG185	Dual DPST	75
DG186	SPDT	10
DG187	SPDT	30
DG188	SPDT	75
DG189	Dual SPDT	10
DG110	Dual SPDT	30
DG191	Dual SPDT	75

ONE AND TWO CHANNEL SPDT AND SPST CIRCUIT CONFIGURATION

TWO CHANNEL DPST CIRCUIT CONFIGURATION

Figure 1: Functional Diagram (Typical Channel)

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}^{+} \mathrm{V}^{-}$	36V	GND-V ${ }^{-}$	27V
$V^{+}-V_{D}$	33V	GND-VIN	20V
$V_{D}-V^{-}$	33V	Current (S or D) See Note 3.	200mA
$\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{S}$	$\pm 22 \mathrm{~V}$	Storage Temperature.	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}^{-}$	36 V	Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\text {IN }}$. 8 V	Power Dissipation*.................. 450	(TW), 750 (FLAT),
VL-GND	. 8 V		825(DIP)mW
$V_{\text {IN }}$-GND 8V	Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \text { GND-V-.. } 27 \mathrm{~V} \\
& \text { GND-VIN ... } 20 \mathrm{~V} \\
& \text { Current (S or D) See Note 3.............................200mA } \\
& \text { Storage Temperature } \ldots \ldots \ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& \text { Operating Temperature }-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& \text { Power Dissipation*................... } 450 \text { (TW), } 750 \text { (FLAT), } \\
& \text { Lead Temperature (Soldering, } 10 \mathrm{sec} \text {) } 300^{\circ} \mathrm{C}
\end{aligned}
$$

*Device mounted with all leads welded or soldered to PC board. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (TW); $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (FLAT); $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (DIP) above $75^{\circ} \mathrm{C}$.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPDT (DG186, 187, 188)

Metal Can Package

Flat Package

(OUTLINE DWG FD-2)

CERDIP*

CD001101
(OUTLINE DWG JD)

DUAL SPDT (DG189, 190, 191)
Flat Package
CERDIP*

CD00130
*Side braze ceramic package available as special order only. Consult factory.
(OUTLINE DWG FD-2)
(OUTLINE DWG JE)
Figure 2: Pin Configurations and Switching State Diagram (Cont.)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}\right.$, Unless Noted)

PARAMETER	DEVICE NO.	TEST CONDITIONS (NOTE 1)	A SERIES			B SERIES			UNIT
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	
SWITCH									
IS(off)	DG181, 182, 184, 185 187, 188, 190, 191 (DG180, 183, 186, 189)	$\begin{aligned} & V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}^{+}=10 \mathrm{~V} \\ & \mathrm{~V}^{-}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}={ }^{\prime} \mathrm{OFF}^{\prime} \end{aligned}$		$\begin{gathered} \pm 1 \\ \pm(10) \end{gathered}$	$\begin{gathered} 100 \\ (1000) \end{gathered}$		$\begin{aligned} & \pm 5 \\ & (15) \end{aligned}$	$\begin{array}{r} 100 \\ (300) \\ \hline \end{array}$	nA
	DG181, 184, 187, 190 (DG180, 183, 186, 189)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{OFF}^{\prime} \end{aligned}$		$\begin{gathered} \pm 1 \\ \pm(10) \end{gathered}$	$\begin{gathered} 100 \\ (1000) \\ \hline \end{gathered}$		$\begin{aligned} & \pm 5 \\ & (15) \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ (300) \end{gathered}$	nA
	DG182, 185, 188, 191	$\begin{aligned} & V_{S}=10 \mathrm{~V}, V_{D}=-10 \mathrm{~V} \\ & V_{I N}={ }^{\prime O F F} \text { " } \end{aligned}$		± 1	100		± 5	100	nA
ID(off)	DG181, 182, 184, 185 187, 188, 190, 191 (DG180, 183, 186, 189)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}^{+}=10 \mathrm{~V} \\ & \mathrm{~V}^{-}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\text { 'OFF' }^{\prime} \end{aligned}$		$\begin{gathered} \pm 1 \\ \pm(10) \end{gathered}$	$\begin{gathered} 100 \\ (1000) \\ \hline \end{gathered}$		$\begin{aligned} & \pm 5 \\ & (15) \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ (300) \\ \hline \end{gathered}$	$n \mathrm{~A}$
	DG181, 184, 187, 190 (DG180, 183, 186, 189)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}={ }^{\prime} \mathrm{OFF}{ }^{\prime \prime} \end{aligned}$		$\begin{gathered} \pm 1 \\ \pm(10) \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ (1000) \\ \hline \end{gathered}$		$\begin{gathered} \pm 5 \\ (15) \\ \hline \end{gathered}$	$\begin{array}{r} 100 \\ (300) \\ \hline \end{array}$	nA
	DG182, 185, 188, 191	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}={ }^{\prime} \mathrm{OFF}{ }^{\prime} \text { ' } \end{aligned}$		± 1	100		± 5	100	$n \mathrm{~A}$
$I_{D(0 n)}+I_{\text {S }}($ on)	$\begin{aligned} & \text { DG180, 181, 183, } 184 \\ & 186,187,189,190 \end{aligned}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}={ }^{\prime} \mathrm{ON} '$		± 2	-200		-10	-200	nA
	DG182, 185, 188, 191	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=$ ' ON '		± 2	-200		-10	-200	nA

ELECTRICAL CHARACTERISTICS (CONT.)

PARAMETER	DEVICE NO.	TEST CONDITIONS (NOTE 1)	A SERIES			B SERIES			UNIT
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	
INPUT									
IINL	ALL	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-250	-250	-250	-250	-250	-250	$\mu \mathrm{A}$
IINH	ALL	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$		10	20		10	20	$\mu \mathrm{A}$
DYNAMIC									
$t_{\text {on }}$	10Ω Switches	See switching time test circuit		300			350		ns
	30Ω Switches			150			180		
	75Ω Switches			250			300		
$t_{\text {off }}$	10Ω Switches			250			300		
	30Ω and 75Ω Switches			130			150		
$\mathrm{C}_{S(\mathrm{off})}$	$\begin{aligned} & \text { DG181, 182, 184, 185, } \\ & \text { 187, 188,190,191 } \\ & \text { (DG180, 183, } 186189 \text {) } \end{aligned}$	$V_{S}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0, f=1 \mathrm{MHz}$	9 typical (21 typical)						pF
$\mathrm{C}_{\mathrm{D} \text { (off) }}$		$\mathrm{V}_{\mathrm{D}}=+5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0, \mathrm{f}=1 \mathrm{MHz}$	6 typical (17 typical)						
$\mathrm{C}_{\mathrm{D} \text { (on) }}+\mathrm{C}_{\text {S(on) }}$		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0, \mathrm{f}=1 \mathrm{MHz}$	14 typical (17 typical)						
OFF Isolation		$\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}$	Typically $>50 \mathrm{~dB}$ at 10 MHz (See Note 2)						
SUPPLY									
$1{ }^{+}$	$\begin{aligned} & \text { DG180, 181, 182, } 189 \\ & 190,191 \end{aligned}$	$V_{I N}=5 \mathrm{~V}$		1.5			1.5		mA
	DG183, 184, 185			0.1			0.1		
	DG186, 187, 188			0.8			0.8		
1^{-}	$\begin{aligned} & \text { DG180, 181, 182, } 189 \\ & 190,191 \end{aligned}$			-5.0			-5.0		
	DG183, 184, 185			-4.0			-4.0		
	DG186, 187, 188			-3.0			-3.0		
LL	$\begin{aligned} & \text { DG180, 181, 182, } 183 \\ & 184,185,189,190,191 \end{aligned}$			4.5			4.5		
	DG186, 187, 188			3.2			3.2		
IGND	ALL			-2.0			-2.0		
1^{+}	$\begin{aligned} & \text { DG180, 181, 182, } 189 \\ & 190,191 \end{aligned}$	$V_{I N}=0 V$		1.5			1.5		
	DG183, 184, 185			3.0			3.0		
	DG186, 187, 188			0.8			0.8		
1^{-}	$\begin{aligned} & \text { DG180, 181, 182, } 189 \\ & 190,191 \end{aligned}$			-5.0			-5.0		
	DG183, 184, 185			-5.5			-5.5		
	DG186, 187, 188			-3.0			-3.0		
I_{L}	$\begin{aligned} & \text { DG180, 181, 182, } 183 \\ & 184,185,189,190,191 \end{aligned}$			4.5			4.5		
	DG186, 187, 188			3.2			3.2		
IGND	ALL			-2.0			-2.0		

NOTES 1. See Switching State Diagrams for V_{IN} "ON" and V_{IN} "OFF" Test Conditions.
2. Off Isolation typically $>55 \mathrm{~dB}$ at 1 MHz for DG180, 183, 186, 189.
3. Saturation Drain Current for DG180, 183, 186, 189 only, typically 300mA (2 ms Pulse Duration). Maximum Current on all other devices (any terminal) 30 mA .

DG180-191
ELECTRICAL CHARACTERISTICS (CONT.) mAXIMUM RESISTANCES (rds(on) MAX)

APPLICATION HINT (for design only): Normally the minimum signal handling capability of the DG180 through DG191 family is 20V peak-to-peak for the 75Ω switches and 15 V peak-to-peak for the 10Ω and 30Ω (refer ID and Is tests above). For other Analog Signals, the following guidelines can be used: proper switch turn-off requires that $V^{-} \leq V_{\text {ANALOG }}$ (peak) $-V_{p}$ where $V_{p}=7.5 \mathrm{~V}$ for the 10Ω and 30Ω switches and $V_{p}=5.0 \mathrm{~V}$ for 75Ω switches e.g., -10 V minimum (-peak) analog signal and a 75Ω switch ($\mathrm{V}_{\mathrm{p}}=5 \mathrm{~V}$), requires that $\mathrm{V}^{-} \leq-10 \mathrm{~V}-5 \mathrm{~V}=-15 \mathrm{~V}$.

Figure 3: Switching Time Test Circuits

Switch output waveform shown for $V_{S}=$ constant with logic input waveform as shown. Note that V_{S} may be + or - as per switching time test circuit. V_{O} is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

DUAL SPST-DG 180/181/182

TEST CONDITIONS

DG 180/181/182		
$\mathrm{V}_{\text {IN }}$ "ON" $=0.8 \mathrm{~V}$	All Channels	
$\mathrm{V}_{\text {IN }}$ "OFF" $=2.0 \mathrm{~V}$	All Channels	

SWITCH STATES ARE
FOR LOGIC " 1 " INPUT = 2.0V
SPDT-DG186/187/188
TEST CONDITIONS

DG186/187/188	
$\mathrm{V}_{\text {IN }}$ ' ON ' $=2.0 \mathrm{~V}$	Channel 1
VIN ''ON' $=0.8 \mathrm{~V}$	Channel 2
V IN ${ }^{\text {'OFF' }}=2.0 \mathrm{~V}$	Channel 2
$\mathrm{V}_{\text {IN }}$ "OFF" $=0.8 \mathrm{~V}$	Channel 1

SWITCH STATES ARE
FOR LOGIC " 1 " INPUT $=2.0 \mathrm{~V}$

DUAL DPST-DG183/184/185
TEST CONDITIONS

DG183/184/185	
V_{IN} "ON" $=2.0 \mathrm{~V}$	All Channels
V_{IN} "OFF" $=0.8 \mathrm{~V}$	All Channels

SWITCH STATES ARE
FOR LOGIC " 1 " INPUT $=2.0 \mathrm{~V}$
DUAL SPDT-DG 189/190/191
TEST CONDITIONS

DG189/190/191	
$\mathrm{V}_{\text {IN }}$ "ON' $=2.0 \mathrm{~V}$	Channels 1 \& 2
$\mathrm{V}_{1 \mathrm{~N}}$ ' $\mathrm{ON}^{\prime \prime}$ ' $=0.8 \mathrm{~V}$	Channels 3 \& 4
$\mathrm{V}_{\text {IN }}$ ''OFF'" $=2.0 \mathrm{~V}$	Channels 3 \& 4
$\mathrm{V}_{\text {IN }}$ ''OFF' $=0.8 \mathrm{~V}$	Channels 1 \& 2

SWITCH STATES ARE
FOR LOGIC " 1 " INPUT $=2.0 \mathrm{~V}$

DG200/IH5200
 CMOS Dual SPST
 Analog Switches

GENERAL DESCRIPTION

The DG200/IH5200 solid state analog gates are designed using an improved, high voltage CMOS monolithic technology. They provide ease-of-use and performance advantages not previously available from solid state switches. Destructive latch-up of solid state analog gates has been eliminated by INTERSIL's CMOS technology.

The DG200 is completely spec and pin-out compatible with the industry standard device, while the IH5200 offers significantly enhanced specifications with respect to ON and OFF leakage currents, switching times, and supply current.

FEATURES

- Switches Greater Than 28Vpp Signals With $\pm 15 \mathrm{~V}$ Supplies
- Break-Before-Make Switching $t_{\text {off }} 250 n s$, $t_{o n}$ 700ns Typical
- TTL, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Complete Monolithic Construction
- Industry Standard (DG200)
- Improved Performance Version (IH5200)

ORDERING INFORMATION

INDUSTRY STANDARD PART	IMPROVED SPEC DEVICE	PACKAGE	TEMPERATURE RANGE
DG200AA	IH5200MTW	10 -Pin Metal Can	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DG200AK	IH5200MJD	14-Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DG200AL	IH5200MFD	14-Pin Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DG200BA	IH5200ITW	10 -Pin Metal Can	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DG200BK	IH5200IJD	14-Pin CERDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DG200BL	IH5200IFD	14-Pin Flat Pak	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DG200CJ	IH5200CPD	14-Pin Epoxy Dip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

CERDIP \& EPOXY DUAL-IN-LINE
PACKAGE (outline dwgs JD, PD)

CD001301

METAL CAN PACKAGE
(outline dwg TO-100)

CD00140I

FLAT PACKAGE (outline dwg FD-2)

CD001501

Figure 1: Pin Configurations

DG200/IH5200

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}^{+}-\mathrm{V}^{-}$	< 33V
$V^{+}-V_{D}$	<30V
$V_{D}-V^{-}$	<30V
$V_{D}-V_{S}$	< $\pm 22 \mathrm{~V}$
VIN-GND	<20V
Current	$>30 \mathrm{~mA}$

Storage Temperature $\ldots \ldots \ldots \ldots \ldots \ldots .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $\ldots \ldots \ldots \ldots \ldots .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots \ldots .300^{\circ} \mathrm{C}$
Power Dissipation ...
(All Leads Soldered to a P.C. Board.) Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $75^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 2: Functional Diagram (1/2 DG200/IH5200)

DG200 ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\right)$

PER CHANNEL		TEST CONDITIONS	MIN/MAX LIMITS						UNIT
SYMBOL	CHARACTERISTIC		MILITARY			COM'L/INDUSTRIAL			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$\begin{gathered} 0 / \\ -25^{\circ} \mathrm{C} \end{gathered}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & +70^{\circ} \mathrm{C} / \\ & +85^{\circ} \mathrm{C} \end{aligned}$	
$\mathrm{I} \mathrm{N}(\mathrm{ON})$	Input Logic Current	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ See Note 1	± 10	± 1	± 10		± 10	± 10	$\mu \mathrm{A}$
IIN(OFF)	Input Logic Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$ See Note 1	± 10	± 1	± 10		± 10	± 10	$\mu \mathrm{A}$
${ }^{\text {r }}$ (${ }^{\text {(ON }}$)	Drain-Source On Resistance	$\begin{aligned} & I_{s}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {ANALOG }}= \pm 10 \mathrm{~V} \end{aligned}$	70	70	100	80	80	100	Ω
rDS(ON)	Channel-to-Channel rDS(ON) Match			$\begin{gathered} 25 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 30 \\ \text { (typ) } \end{gathered}$		Ω
$V_{\text {ANALOG }}$	Min. Analog Signal Handling Capability			± 15			± 15		V
ID(OFF)	Switch OFF Leakage Current	$\begin{aligned} & V_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$		± 2	100		± 5	100	nA
IS(OFF)	Switch OFF Leakage Current	$\begin{aligned} & \text { VANALOG }=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$		± 2	100		± 5	100	nA
$\begin{aligned} & \mathrm{ID}(\mathrm{ON}) \\ & +\mathrm{I}(\mathrm{ON}) \end{aligned}$	Switch ON Leakage Current	$\begin{aligned} & V_{D}=V_{S}=-14 V \text { to } \\ & +14 V \end{aligned}$		± 2	200		± 10	200	nA
$t_{\text {on }}$	Switch "ON" Time See Note 1	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, V_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } 3 \end{aligned}$		1.0			1.0		$\mu \mathrm{s}$
$t_{\text {off }}$	Switch 'OFF' Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } 3 \end{aligned}$		0.5			0.5		$\mu \mathrm{s}$
$Q_{(i N J .)}$	Charge Injection	See Fig. 4		$\begin{gathered} 15 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 20 \\ \text { (typ) } \end{gathered}$		mV

PER CHANNEL		TEST CONDITIONS	MIN/MAX LIMITS						UNIT
SYMBOL	CHARACTERISTIC		MILITARY			COM'L/INDUSTRIAL			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$\begin{gathered} 01 \\ -25^{\circ} \mathrm{C} \end{gathered}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & +70^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	
OIRR	Min. Off Isolation Rejection Ratio	$\begin{aligned} & f=1 \mathrm{MHz}, R_{L}=100 \Omega, \\ & C_{L} \leq 5 \mathrm{pF} \\ & \text { See Fig. } 5 \text { (Note 1) } \end{aligned}$		$\begin{gathered} 54 \\ (\text { (yyp) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$.	dB
IV1	+ Power Supply Quiescent Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \end{aligned}$	1000	1000	2000	1000	1000	2000	$\mu \mathrm{A}$
IV2	- Power Supply Quiescent Current		1000	1000	2000	1000	1000	2000	$\mu \mathrm{A}$
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	One Channel Off		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB

NOTE 1: Pull Down Resistor must be $\leq 2 \mathrm{k} \Omega$
NOTE 2: Typical values are for design aid only, not guaranteed and not subject to production testing.
IH5200 ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}_{\text {REF }}$ open)

PER CHANNEL		TEST CONDITIONS	MIN/MAX LIMITS						UNIT
SYMBOL	CHARACTERISTIC		MILITARY			COM'L/INDUSTRIAL			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$\begin{gathered} 0 / \\ -25^{\circ} \mathrm{C} \end{gathered}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & +70^{\circ} \mathrm{C} / \\ & +85^{\circ} \mathrm{C} \end{aligned}$	
IIN(ON)	Input Logic Current	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	± 10	± 1	± 10		± 10	± 10	$\mu \mathrm{A}$
IIN(OFF)	Input Logic Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	± 10	± 1	10		± 10	± 10	$\mu \mathrm{A}$
${ }^{\text {r }}$ (${ }^{\text {(ON }}$)	Drain-Source On Resistance	$\begin{aligned} & I_{S}=10 \mathrm{~mA} \\ & V_{\text {ANALOG }}= \pm 10 \mathrm{~V} \end{aligned}$	70	70	100	80	80	100	Ω
rDS(ON)	Channel-to-Channel rDS(ON) Match			$\begin{gathered} 25 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 30 \\ \text { (typ) } \end{gathered}$		Ω
$V_{\text {ANALOG }}$	Min. Analog Signal Handling Capability			$\begin{aligned} & \pm 15 \\ & \text { (typ) } \end{aligned}$			$\begin{aligned} & \pm 15 \\ & \text { (typ) } \end{aligned}$		V
ID(OFF)	Switch OFF Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$		± 1	50	1	± 2	50	nA
IS(OFF)	Switch OFF Leakage Current	$\begin{aligned} & V_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$		± 1	50	1	± 2	50	nA
$\begin{aligned} & \mathrm{ID}(\mathrm{ON}) \\ & +\mathrm{I}_{\mathrm{S}(\mathrm{ON})} \\ & \hline \end{aligned}$	Switch ON Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$		± 1	100	1	± 2	100	nA
t_{0}	Switch "ON" Time See Note 3	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } 3 \end{aligned}$		0.7		.	0.8		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{off}}$	Switch ''OFF' Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } 3 \end{aligned}$		0.25	.		0.4		$\mu \mathrm{s}$
$Q_{\text {(INJ. })}$	Charge Injection	See Fig. 4		$\begin{gathered} 5 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 10 \\ \text { (typ) } \end{gathered}$		mV
OIRR	Min. Off Isolation Rejection Ratio	$\begin{aligned} & f=1 \mathrm{MHz}, R_{L}=100 \Omega, \\ & C_{L} \leq 5 \mathrm{pF} \\ & \text { See Fig. } 5 \\ & \hline \end{aligned}$		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB
IV1	$\pm \text { Power Supply }$ Quiescent Current	$\begin{aligned} & V_{I N}=0 V \text { or } \\ & V_{I N}=5 V \end{aligned}$	250	200	150	300	250	200	$\mu \mathrm{A}$
Iv2	- Power Supply Quiescent Current		10	10	100	10	10	100	$\mu \mathrm{A}$
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	One Channel Off		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB

DG200/IH5200
TEST CIRCUITS

NOTE 3: All channels are turned off by high " 1 "' logic inputs and all channels are turned on by low ' 0 " inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Peak input current required for transition is typically $-120 \mu \mathrm{~A}$.

TYPICAL PERFORMANCE CHARACTERISTICS

DG200/IH5200

APPLICATIONS

Using the $\mathbf{V}_{\text {REF }}$ Terminal

The DG200 has an internal voltage divider setting the TTL threshold on the input control lines for V^{+}equal to +15 V . The schematic shown here with nominal resistor values, gives approximately 2.4 V on the $\mathrm{V}_{\text {REF }}$ pin. As the TTL input signal goes from +0.8 V to $+2.4 \mathrm{~V}, \mathrm{Q} 1$ and Q2 switch states to turn the switch ON and OFF.

If the power supply voltage is less than +15 V , then a resistor must be added between V^{+}and the $\mathrm{V}_{\text {REF }}$ pin, to restore +2.4 V at $\mathrm{V}_{\text {REF }}$. The table shows the value of this resistor for various supply voltages, to maintain TTL compatibility. If CMOS logic levels on a +5 V supply are being used, the threshold shifts are less critical, but a separate column of suitable values is given in the table. For logic swings of -5 V to +5 V , no resistor is needed.

In general, the 'low' logic level should be $<0.8 \mathrm{~V}$ to prevent Q1 and Q2 from both being ON together (this will cause incorrect switch function). With open collector logic, and a low value of pull-up resistor, the logic 'low' level can be above 0.8 V . In this case, INTERSIL can supply parts with thresholds $>1.5 \mathrm{~V}$, allowing the user to define the "low"' as $<1.5 \mathrm{~V}$ (consult factory). The $\mathrm{V}_{\text {REF }}$ point should be set at least 2.6 V above this 'low' state, or to $>4.1 \mathrm{~V}$. An external resistor of $27 \mathrm{k} \Omega$ between V^{+}and $V_{\text {REF }}$ is required, for a +15 V supply.

\mathbf{V}^{+} Supply (\mathbf{V})	TTL Resistor $(\mathbf{k} \Omega)$	CMOS Resistor $(\mathbf{k} \Omega)$
+15	-	-
+12	100	-
+10	51	-
+9	(34)	34
+8	(27)	27
+7	18	18

GENERAL DESCRIPTION

The DG201/IH5201 solid-state analog switches are designed using an improved, high-voltage CMOS monolithic technology. They provide performance advantages not previously available from solid-state switches. Destructive latch-up of solid-state analog gates has been eliminated by INTERSIL's CMOS technology.

The DG201 is completely specification and pin-out compatible with the industry standard device, while the IH5201 offers significantly enhanced specifications with respect to ON and OFF leakage currents, switching times, and supply current.

FEATURES

- Switches Greater Than 28V ${ }_{\text {p-p }}$ Signals With $\pm 15 \mathrm{~V}$ Supplies
- Break-Before-Make Switching $\mathrm{t}_{\text {off }}=250 \mathrm{~ns}$, $t_{\text {on }}=$ Typically 500ns
- TTL, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Complete Monolithic Construction
- Industry Standard (DG201)
- Improved Performance Version IH5201

ORDERING INFORMATION

INDUSTRY STANDARD PART NUMBER	IMPROVED SPEC PART NUMBER	TEMPERATURE RANGE	PACKAGE
DG201AK	IH5201MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Pin CERDIP
DG201BK	IH5201IJE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Pin CERDIP
DG201CJ	IH5201CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 -Pin Plastic DIP

LD001601

Figure 1: Functional Diagram
(1/4 DG201/IH5201)
Switch Open For Logic "1" Input

CD001601

Figure 2: Pin Configuration (Outline dwgs JE, PE) DUAL-IN-LINE PACKAGE

ABSOLUTE MAXIMUM RATINGS

V^{+}to V^{-}	< 33V
V^{+}to V_{D}	<30V
V_{D} to V^{-}	< 30V
V_{D} to V_{S}	< $\pm 22 \mathrm{~V}$
$V_{\text {REF }}$ to V	< 33V
$V_{\text {REF }}$ to $V_{\text {IN }}$	< 30V
$V_{\text {REF }}$ to GND	<20V

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DG201 ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\right)$

PER CHANNEL		TEST CONDITIONS	MIN/MAX LIMITS						UNIT
SYMBOL	CHARACTERISTIC		MILITARY			COMMERCIAL			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & +70^{\circ} \mathrm{C} / \\ & +85^{\circ} \mathrm{C} \end{aligned}$	
IIN(ON)	Input Logic Current	$V_{\text {IN }}=0.8 \mathrm{~V}$ See Note 1	10	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
IIN(OFF)	Input Logic Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$ See Note 1	10	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Drain-Source On Resistance	$\begin{aligned} & \text { IS }=10 \mathrm{~mA} \\ & V_{\text {ANALOG }}= \pm 10 \mathrm{~V} \end{aligned}$	80	80	125	100	100	125	Ω
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Channel to Channel RDS(ON) Match			$\begin{gathered} 25 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 30 \\ \text { (typ) } \end{gathered}$		Ω
$V_{\text {ANALOG }}$	Analog Signal Handling Capability			$\begin{aligned} & \pm 15 \\ & \text { (typ) } \end{aligned}$			$\begin{aligned} & \pm 15 \\ & \text { (typ) } \end{aligned}$		V
ID(OFF)	Switch OFF Leakage Current	$\begin{aligned} & V_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$		± 1	100		± 5	100	nA
IS(OFF)	Switch OFF Leakage Current	$\begin{aligned} & V_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$		± 1	100		± 5	100	$n \mathrm{~A}$
$\begin{aligned} & \mathrm{ID}(\mathrm{ON}) \\ & +\mathrm{I}_{\mathrm{S}(\mathrm{ON})} \\ & \hline \end{aligned}$	Switch ON Leakage Current	$V_{D}=V_{S}= \pm 14 \mathrm{~V}$		± 2	200		± 5	200	nA
$t_{\text {on }}$	Switch 'ON" Time See Note 2	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Figure } 3 \end{aligned}$		1.0			1.0		$\mu \mathrm{s}$
$t_{\text {off }}$	Switch "OFF" Time See Note 2	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{ANALOG}} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Figure } 3 \end{aligned}$		0.5			0.5		$\mu \mathrm{s}$
$Q_{(\text {INJ. })}$	Charge Injection	See Figure 4		$\begin{gathered} 15 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 20 \\ \text { (typ) } \end{gathered}$		mV
OIRR	Min. Off Isolation Rejection Ratio	$\begin{aligned} & f=1 \mathrm{MHz}, R_{L}=100 \Omega, \\ & C_{L} \leq 5 p F \\ & \text { See Figure } 5 \\ & \hline \end{aligned}$		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB
は	+ Power Supply Quiescent Current	$\mathrm{V}_{1} \mathrm{~N}=0 \mathrm{~V}$ to 5 V	2000	1000	2000	2000	1000	2000	$\mu \mathrm{A}$
'Q	-Power Supply Quiescent Current		2000	1000	2000	2000	1000	2000	$\mu \mathrm{A}$
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	One Channel Off		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB

NOTE 1: Typical values are for design aid only, not guaranteed and not subject to production testing.

TEST CIRCUITS

Figure 3

Figure 4

Figure 5

NOTE 2: All channels are turned off by high " 1 " logic inputs and all channels are turned on by low ' 0 ' inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Peak input current required for transition is typically $-120 \mu \mathrm{~A}$.
IH5201 ELECTRICAL CHARACTERISTICS $\left(T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{v}^{+}=+15 \mathrm{~V}, \mathrm{v}^{-}=-15 \mathrm{~V}\right)$

PER CHANNEL		TEST CONDITIONS	MIN/MAX LIMITS						UNIT
SYMBOL	CHARACTERISTIC		MILITARY			COMMERCIAL			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$\pm 125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & +70^{\circ} \mathrm{C} / \\ & +85^{\circ} \mathrm{C} \end{aligned}$	
$\mathrm{I} \mathrm{N}(\mathrm{ON})$	Input Logic Current	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	1	1	10	1	1	10	$\mu \mathrm{A}$
IIN(OFF)	Input Logic Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	1	1	10	1	1.	10	$\mu \mathrm{A}$
RDS(ON)	Drain-Source On Resistance	$\begin{aligned} & \mathrm{I}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {ANAL }} \mathrm{OG}= \pm 10 \mathrm{~V} \end{aligned}$	75	75	100	100	100	125	Ω
RDS(ON)	Channel to Channel RDS(ON) Match			$\begin{gathered} 25 \\ \text { (typ) } \end{gathered}$.	$\begin{gathered} 30 \\ \text { (typ) } \end{gathered}$		Ω
VANALOG	Analog Signal Handling Capability			$\begin{aligned} & \pm 15 \\ & \text { (typ) } \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 15 \\ & \text { (typ) } \end{aligned}$		V
ID(OFF) IS(OFF)	Switch OFF Leakage Current	$\begin{aligned} & V_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$		± 0.5	50		± 2	50	nA
$\begin{aligned} & \mathrm{ID}(\mathrm{ON}) \\ & +\mathrm{I}_{\mathrm{S}(\mathrm{ON})} \end{aligned}$	Switch ON Leakage Current	$V_{D}=V_{S}= \pm 14 \mathrm{~V}$		± 0.5	100		± 2	100	nA
t_{0}	Switch "ON" Time See Note 2	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Figure } 3 \end{aligned}$		0.7			0.8		$\mu \mathrm{s}$
$t_{\text {off }}$	Switch "OFF' Time See Note 2	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Figure } 3 \end{aligned}$		0.35			0.4		$\mu \mathrm{s}$
$Q_{\text {(INJ. })}$	Charge Injection	See Fig. 4		$\begin{gathered} 5 \\ \text { (typ) } \\ \hline \end{gathered}$			$\begin{gathered} 10 \\ \text { (typ) } \\ \hline \end{gathered}$		mV
OIRR	Min. Off Isolation Rejection Ratio	$\begin{aligned} & f=1 \mathrm{MHz}, R_{L}=100 \Omega, \\ & C_{L} \leq 5 p F \\ & \text { See Figure 5, (Note 1) } \end{aligned}$		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB
は	+ Power Supply Quiescent Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 5 V	1000	750	600	1500	1000	1000	$\mu \mathrm{A}$
IQ	- Power Supply Quiescent Current		10	10	100	20	20	200	$\mu \mathrm{A}$
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	One Channel Off (Note 1)		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$,	$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB

NOTE: Pull Down resistor must be $\leq 2 k \Omega$
NOTE: Typical values are for design aid only, not guaranteed and not subject to production testing.

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATIONS

Using the $\mathrm{V}_{\mathrm{REF}}$ Terminal

The DG201 has an internal voltage divider that sets the TTL threshold on the input control lines for $\mathrm{V}^{+}=15 \mathrm{~V}$. The schematic is shown here, with nominal resistor values, giving approximately 2.4 V on the $\mathrm{V}_{\text {REF }}$ pin. As the TTL input signal goes from +0.8 V to +2.4 V , Q1 and Q2 switch states to turn the switch ON and OFF.

If the power supply voltage is less than +15 V , then a resistor needs to be added between V^{+}and $\mathrm{V}_{\text {REF }}$ pin, to restore +2.4 V at $\mathrm{V}_{\text {REF }}$. The table shows the value of this resistor for various supply voltages, to maintain TTL compatibility. If CMOS logic levels with a +5 V supply are being used, the threshold shifts are less critical, but a separate column of suitable values is given in the table. For logic swings of -5 V to +5 V , no resistor is needed.

In general, the 'low' logic level should be $<0.8 \mathrm{~V}$ to prevent Q1 and Q2 from both being ON together (this will cause incorrect switch function). With open collector logic, and a low value of pull-up resistor, the logic 'low' level can be above 0.8 V . In this case, INTERSIL can supply parts with thresholds $>1.5 \mathrm{~V}$ (consult factory). The $\mathrm{V}_{\text {REF }}$ point should be set at least 2.6 V above this 'low' state, or to $>4.1 \mathrm{~V}$. An external resistor of $27 \mathrm{k} \Omega$ and $V_{\text {REF }}$ is required, for $\mathrm{a}+15 \mathrm{~V}$ supply.

\mathbf{V}^{+} Supply (\mathbf{V})	TTL Resistor $(\mathbf{k} \Omega)$	CMOS Resistor $(\mathbf{k} \Omega)$
+15	-	-
+12	100	-
+10	51	-
+9	(34)	34
+8	(27)	27
+7	18	18

GENERAL DESCRIPTION

The DG211 and DG212 are low cost CMOS monolithic, QUAD SPST analog switches. These can be used in general purpose switching applications for communications, instrumentation, process control and computer peripheral equipment. Both devices provide true bidirectional performance in the ON condition and will block signals to 30 V peak-to-peak in the OFF condition. The DG211 and DG212 differ only in that the digital control logic is inverted, as shown in the truth table.

DG211 and DG212 are available in a 16-pin Dual-In-Line plastic package and are rated for operation over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
DG211CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 -Pin Plastic DIP
DG212CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 -Pin Plastic DIP

FEATURES

- Switches $\pm 15 \mathrm{~V}$ Analog Signals
- TTL Compatibility
- Logic Inputs Accept Negative Voltages
- RON ≤ 175 Ohm

Four SPST Switches per Package Switches Shown for Logic " 1 " Input

Truth Table

LOGIC	DG211	DG212
0	ON	OFF
1	OFF	ON

Logic ' 0 ' $\leq 0.8 \mathrm{~V}$
Logic ' 1 ' $\geq 2.4 V$

Dual-In-Line Package

Figure 2. Pin Configuration

Figure 1: Functional Diagrams

DG211/DG212

ABSOLUTE MAXIMUM RATINGS
V^{+}to V^{-} 36V
V_{IN} to Ground $\mathrm{V}^{-}, \mathrm{V}^{+}$
V_{L} to Ground $-0.3 \mathrm{~V}, 25 \mathrm{~V}$
V_{S} or V_{D} to V^{+} $0,-36 \mathrm{~V}$
V_{S} or V_{D} to V^{-} 0, 36V
V^{+}to Ground 25 V
V^{-}to Ground $-25 \mathrm{~V}$
Current, Any Terminal Except S or D 30 mA
Continuous Current, S or D 20 mA

*Device mounted with all leads soldered or welded to PC board.
**Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

SYMBOL	PARAMETER	TEST CONDITIONS$\begin{gathered} \mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \text { GND } \end{gathered}$		LIMITS			UNIT
				MIN ${ }^{1}$	TYP ${ }^{2}$	MAX	
SWITCH							
Vanalog	Analog Signal Range	$\mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$		-15		15	V
RDS(ON)	Drain-Source On Resistance	$\begin{aligned} & V_{D}= \pm 10 \mathrm{~V}, V_{I N}=2.4 \mathrm{~V}-D G 212 \\ & I_{S}=1 \mathrm{~mA}, \mathrm{~V}_{I N}=0.8 \mathrm{~V}-\mathrm{DG} 211 \end{aligned}$			115	175	Ω
Is(off)	Source OFF Leakage Current	$\begin{aligned} & V_{\mathbb{N}}=2.4 \mathrm{~V} \\ & \mathrm{DG} 211 \\ & \mathrm{~V}_{1 \mathrm{~N}}=0.8 \mathrm{~V} \\ & \mathrm{DG} 212 \end{aligned}$	$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$		0.01	5.0	nA
			$V_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-5.0	-0.02		
${ }^{\text {D (off) }}$	Drain OFF Leakage Current		$V_{D}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-14 \mathrm{~V}$		0.01	5.0	
			$V_{D}=-14 \mathrm{~V}, \mathrm{~V}_{S}=14 \mathrm{~V}$	-5.0	-0.02		
ID(ON)	Drain ON Leakage Current ${ }^{3}$	$\begin{aligned} & V_{S}=V_{D}=-14 \mathrm{~V}, V_{I N}=0.8 \mathrm{~V}, D G 211 \\ & V_{I N}=2.4 \mathrm{~V}, D G 212 \end{aligned}$			0.1	5.0	
				-5.0	-0.15		
INPUT							
linh	Input Current With Input Voltage High	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$		-10	-0.0004		$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$			0.003	1.0	
IINL	Input Current With Input Voltage Low	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$		-1.0	-0.0004		
DYNAMIC							
ton	Turn-ON Time	See Switching Time Test Circuit ${ }^{5}$$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$			460	1000	ns
$\begin{aligned} & \mathrm{t}_{\substack{\text { off }}} \\ & \mathrm{tofft}_{2} \end{aligned}$	Turn-OFF Time				360	500	
					450		
$\mathrm{C}_{\mathrm{S}_{\text {(off) }}}$	Source OFF Capacitance	$\begin{aligned} & V_{S}=O V, V_{I N}=5 V, f=1 \mathrm{MHz}^{2} \\ & V_{D}=0 V, V_{I N}=5 V, f=1 \mathrm{MHz}^{2} \\ & V_{D}=V_{S}=0 V, V_{I N}=0 V, f=1 \mathrm{MHz}^{2} \end{aligned}$			5		pF
$\mathrm{C}_{\mathrm{D} \text { (off) }}$	Drain OFF Capacitance				5		
$\mathrm{C}_{\mathrm{D}+\mathrm{S} \text { (on) }}$	Channel ON Capacitance				16		
OIRR	OFF Isolation ${ }^{4}$	$\begin{aligned} & V_{I N}=5 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, \\ & C_{L}=15 \mathrm{pF}, V_{S}=1 \text { VRMS, } f=100 \mathrm{kHz}^{2} \end{aligned}$			70		dB
CCRR	Crosstalk (Channel to Channel)				90		
SUPPLY							
1^{+}	Positive Supply Current	$\mathrm{V}_{1 N}=0$ and 2.4 V			. 1	10	$\mu \mathrm{A}$
1^{-}	Negative Supply Current				. 1	10	
L	Logic Supply Current				1	10	

 sheet.
2. For design reference only, not 100% tested.
3. $\mathrm{ID}(\mathrm{on})$ is leakage from driver into "ON" switch.
4. OFF Isolation $=20 \log \frac{V_{S}}{V_{D}}, V_{S}=$ input to OFF switch, $V_{D}=$ output.
5. Switching times only sampled.

Switch output waveform shown for $V_{S}=$ constant with logic input waveform as shown．Note the V_{S} may be + or－ as per switching time test circuit． V_{O} is the steady state output with switch on．Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform．

Figure 3：Switching Time Test Circuit Logic shown for DG211．Invert for DG212．

DGM181-191
 High-Speed CMOS Analog Switch

GENERAL DESCRIPTION

The DGM181 family of CMOS monolithic switches utilizes intersil's latch-free junction isolated processing to combine the speed of the hybrid DG181 family with the reliability and low power consumption of a monolithic CMOS construction. These devices, therefore, are a cost effective replacement for the DG181 family.

The DGM181 family has a high state threshold of 2.4 V ; and a low state of +0.8 V .

Very low quiescent power is dissipated in either the ON or OFF state of the switch. Maximum power supply current is $10 \mu \mathrm{~A}$ from any supply, and typical quiescent currents are in the 10 nA range. OFF leakages are typically less than 200 pA at $25^{\circ} \mathrm{C}$.

FEATURES

- Pin and Function Replacement for DG181 Family
- Meets or Exceeds All DG181 Family Specifications With Monolithic Reliability
- Low Power Consumption
- 1nA Leakage From Signal Channel in Both ON and OFF States
- TTL, DTL, RTL Direct Drive Capability
- $t_{\text {on }}$, t $_{\text {off }}<150 \mathrm{~ns}$, Break-Before-Make Action
- Crosstalk and Open Load Switch Isolation $>50 \mathrm{~dB}$ at 10 MHz (75Ω Load)

ORDERING INFORMATION

TYPE	$\begin{aligned} & \text { STANDARD } \\ & \text { PART } \\ & \text { NUMBER } \end{aligned}$	$\begin{aligned} & \text { STANDARD } \\ & \text { PART } \\ & \text { NUMBER } \end{aligned}$	rDS(on) MAX AT $25^{\circ} \mathrm{C}$
Dual SPST	DGM181BX	DGMS181BX	50
	DGM182AX	DGMS182AX	50
	DGM182BX	DGMS182BX	75
Dual DPST	DGM184BX	DGMS181BX	50
	DGM185AX	DGMS185AX	50
	DGM185BX	DGMS185BX	75
SPDT	DGM187BX	DGMS187BX	50
	DGM188AX	DGMS188AX	50
	DGM188BX	DGMS188BX	75
Dual SPDT	DGM190BX	DGMS190BX	50
	DGM191AX	DGMS191AX	50
	DGM191BX	DGMS191BX	75

NOTE: 1/2 of DGM182
Figure 1: Functional Diagram (Typical Channel)

DUAL SPDT (DGM190, 191)

Flat Package

(OUTLINE DWG FD-2)

Dual-In-line Package

(OUTLINE DWGS DE, PE)

SWITCH STATES ARE FOR LOGIC " 1 " INPUT
Figure 2: Pin Configuration and Switching State Diagram (Cont.)
DGM181-191

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}^{+} \mathrm{V}^{-}$.. 36 V
$\mathrm{V}^{-}-\mathrm{V}_{\mathrm{D}} . ~ 33 V ~$
$\mathrm{V}_{\mathrm{D}} \mathrm{V}^{-}$ 33 V

$\mathrm{V}_{\mathrm{L}} \mathrm{V}^{-}$ 36 V

VL-V ${ }^{\text {GND }}$.. 20 V

GND-V - ... 27V

*Device mounted with all leads welded or soldered to PC board. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (TW); $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (FLAT); $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (DIP) above $75^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}\right.$, unless noted)

PARAMETER	DEVICE NO.	TEST CONDITIONS (Note 1)	A SERIES			B SERIES			UNIT
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	
SWITCH									
${ }^{\text {IS }}$ (off)	DGM181, 184, 187, 190	$\begin{aligned} & V_{S}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N}}={ }^{\prime O} \mathrm{OFF}{ }^{\prime} \end{aligned}$		± 1	100		± 2.0	200	nA
	DGM182, 185, 188, 191	$\begin{aligned} & V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}={ }^{\prime O F F} \text { "' } \end{aligned}$		± 1	100		± 2	200	nA
ID(off)	DGM181, 184, 187, 190	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}={ }^{\prime} \mathrm{OFF}^{\prime} \end{aligned}$		± 1	100		± 2	200	nA
	DGM182, 185, 188, 191	$\begin{aligned} & V_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}={ }^{\prime O F F} \text { ': } \end{aligned}$		± 1	100	.	± 2	200	nA
$10(0 n)+I S$ (on)	DGM181, 184, 187, 190	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=$ ' $\mathrm{ON} "$		± 2	± 200		± 5	500	nA
	DGM182, 185, 188, 191	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=$ ' $\mathrm{ON}^{\prime \prime}$		± 2	± 200		± 5	500	nA
INPUT									
IINL.	ALL	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		± 1.0	20		10	20	$\mu \mathrm{A}$
IINH	ALL	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$		± 1.0	20		10	20	$\mu \mathrm{A}$
DYNAMIC									
t_{on}	DGM181, 184, 187, 190 DGM182, 185, 188, 191	See switching time test circuit		450			500		ns
$t_{\text {off }}$	ALL			250			275		
$\mathrm{C}_{\text {S(off) }}$	$\begin{aligned} & \text { DGM181, 182, 184, 185, } \\ & 187,188,190,191 \end{aligned}$	$V_{S}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0, f=1 \mathrm{MHz}$	5 pF typical						pF
$\mathrm{C}_{\mathrm{D} \text { (off) }}$		$V_{D}=+5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0, f=1 \mathrm{MHz}$	6 pF typical						
$\mathrm{C}_{\mathrm{D} \text { (on) }}+\mathrm{C}_{\text {S(on) }}$		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0, f=1 \mathrm{MHz}$	11 pF typical						
OFF Isolation		$\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}$	Typically $>50 \mathrm{~dB}$ at 10 MHz						
SUPPLY									
1^{+}	ALL	$V_{1 N}=5 \mathrm{~V}$	10	10	100		100		$\mu \mathrm{A}$
I^{-}	ALL		10	10	100		100		
IL	ALL		10	10	100		100		
IGND	ALL		10	10	100		100		
1^{+}	ALL	$V_{1 N}=0 V$	10	10	100		100		
I^{-}	ALL		10	10	100		100		
$1 /$	ALL		10	10	100		100		
IGND	ALL		10	10	100		100		

Note 1: See Switching State Diagrams for $V_{I N}$ and $V_{I N}$ "OFF" Test Conditions.

ELECTRICAL CHARACTERISTICS MAXIMUM RESISTANCES rDS(ON)

DEVICE NUMBER	CONDITIONS (Note 1)$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}$		MILITARY TEMPERATURE			INDUSTRIAL TEMPERATURE			UNIT
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	
DGM181	$\mathrm{V}_{\mathrm{D}}=-7.5 \mathrm{~V}$	IS $=-10 \mathrm{~mA}$$V_{I N}=2 \mathrm{~N}$	-	-	$\overline{75}$	50	50	75	Ω
DGM182	$V_{D}=-10 \mathrm{~V}$		50	50	75	75	75	100	Ω
DGM184	$V_{D}=-7.5 \mathrm{~V}$		30	30	60	50	50	75	Ω
DGM185	$V_{D}=-10 \mathrm{~V}$		50	50	75	75	75	100	Ω
DGM187	$V_{D}=-7.5 \mathrm{~V}$		30	30	60	50	50	75	Ω
DGM188	$V_{D}=-10 \mathrm{~V}$		50	50	75	75	75	100	Ω
DGM190	$V_{D}=-7.5 \mathrm{~V}$		30	30	60	50	50	75	Ω
DGM191	$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$		50	50	75	75	75	100	Ω

APPLICATION COMMENT: The charge injection in these switches is of opposite polarity to that of the standard DG180 family, but considerably smaller.

SWITCHING TIME TEST CIRCUIT

Switch output waveform shown for $V_{S}=$ constant with logic input waveform as shown. Note that V_{S} may be + or - as per switching time test circuit. V_{O} is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

Figure 3: Logic input for "OFF" to "ON" Condition (DGM181/182 Shown)

Figure 4: Switching Time Test Circuit

DGM181-191
SWITCH STATES
DUAL SPST DGM181/182
TEST CONDITIONS

DGM181/182	
$\mathrm{V}_{\mathrm{IN}}{ }^{\prime \prime} \mathrm{ON}^{\prime}=0.8 \mathrm{~V}$	All Channels
$\mathrm{V}_{\mathrm{IN}}{ }^{\prime} \mathrm{OFF}^{\prime}=2.4 \mathrm{~V}$	All Channels

SPDT DGM187/188

TEST CONDITIONS

DGM187/188	
V_{IN} "ON" $=2.4 \mathrm{~V}$	Channel 1
V_{N} "ON" $=0.8 \mathrm{~V}$	Channel 2
V_{IN} "OFF" $=2.4 \mathrm{~V}$	Channel 2
$\mathrm{V}_{\text {IN }}$ "OFF" $=0.8 \mathrm{~V}$	Channel 1

DUAL DPST DGM184/185
TEST CONDITIONS

DGM184/185		
V_{IN} "ON" $=2.4 \mathrm{~V}$	All Channels	
V_{IN} "OFF" $=0.8 \mathrm{~V}$	All Channels	

DUAL SPDT DGM190/191
TEST CONDITIONS
DGM 190/191

DGM190/191	
$\mathrm{V}_{1 \mathrm{~N}}$ 'ON' $=2.4 \mathrm{~V}$	Channels 1 \& 2
$\mathrm{V}_{1 \mathrm{~N}}$ "ON" $=0.8 \mathrm{~V}$	Channels 3 \& 4
$\mathrm{V}_{1 \mathrm{~N}}{ }^{\prime \prime} \mathrm{OFF}^{\prime \prime}=2.4 \mathrm{~V}$	Channels 3 \& 4
$\mathrm{V}_{\text {IN }}$ 'OFF' $=0.8 \mathrm{~V}$	Channels 1 \& 2

G115/G123
 4 and 6-Channel MOSFET Switch

GENERAL DESCRIPTION

These switches may be connected directly to the INTERSIL switch-driver D123 series without the need of any interfacing components, and are internally protected by a Zener diode integrated on the silicon chip. A MOSFET used as a current source provides an active pull-up for faster switching capability. The active pull-up FET can be disabled without sacrificing the Zener protection of the gates.
ORDERING INFORMATION

FEATURES

- Integrated MOSFET Constant-Current Sources for Open Collector Driver Pull-up
- Integrated Zener Diode Protection for Both Positive and Negative Spike Protection
- P-Channel Enhancement-Type Switches

NOTE: Plastic package available in commercial and industrial temperature ranges only.

[^15]
© G115/G123

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Source Current (Is) ... 100 mA
Drain Current (ID) .. 100 mA
Gate Current (IG) ...5mA
Pull-up Control Current (I_{p}).............................. $100 \mu \mathrm{~A}$
Body to Source ($\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{S}}$)-2V to +25 V
Body to Drain ($V_{B}-V_{D}$) operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (per channel unless noted)

DEVICE	PARAMETER	TEST CONDITIONS		LIMITS				
				$-20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$8^{\circ}{ }^{\circ} \mathrm{C}$	MIN/ MAX	UNIT
G115 and G123	RDS(ON)	$\mathrm{V}_{\mathrm{BD}}=0, \mathrm{~V}_{\mathrm{GD}}=-30 \mathrm{~V}$	$\begin{aligned} & 1 \mathrm{~s}= \\ & 1 \mathrm{~mA} \end{aligned}$	125	125	150	Max	Ω
		$V_{B D}=+10 \mathrm{~V}, \mathrm{~V}_{G D}=-20 \mathrm{~V}$		250	250	300		
		$\mathrm{V}_{\mathrm{BD}}=+20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=-10 \mathrm{~V}$		500	500	600		
	Idoff)	$\mathrm{V}_{\mathrm{DS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BS}}=\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{PS}}=0$			-10	-500	Max	nA
	IS(OFF)	$V_{S D}=-20 \mathrm{~V}, \mathrm{~V}_{B D}=\mathrm{V}_{\mathrm{GD}}=\mathrm{V}_{P D}=0$			-5	-100	Max	nA
	IGBS	$\mathrm{V}_{\mathrm{GB}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{PB}}=0$			-5	-100	Max	nA
	$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	$V_{G B}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{PB}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=0$			-0.8		Min	mA
					-2.4		Max	
	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	$\begin{aligned} & I_{S}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DG}}=0, \\ & \mathrm{~V}_{\mathrm{BS}}=\mathrm{V}_{\mathrm{PS}}=0 \end{aligned}$		-1.5	-1.5	-1.5	Min	v
				-4	-4	-4	Max	
	BV ${ }_{\text {DSS }}$	$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GB}}=\mathrm{V}_{\mathrm{BS}}=\mathrm{V}_{\mathrm{PS}}=0$		-25	-25	-25	Min	V
	$\mathrm{BV}_{\text {SDS }}$	$\mathrm{I}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=\mathrm{V}_{\mathrm{PD}}=0$		-25	-25	-25	Min	V
	$\mathrm{BV}_{\mathrm{GBS}}$	$I_{G}=-10 \mu \mathrm{~A}, V_{D B}=V_{S B}=V_{P B}=0$		-35	-35	-35	Min	V
				-110	-110	-110	Max	V
	BV ${ }^{\text {PBS }}$	$\mathrm{IP}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{GB}}=0$		-35	-35	-35	Min	V
				-110	-110	-110	Max	V
	$\mathrm{C}_{\text {GS }}, \mathrm{C}_{\text {GD }}$	$\begin{aligned} & V_{G B}=0, v_{S B}=0, V_{D B}=0, V_{P B}=0 \\ & f=1 M H z, \text { Body Guarded } \end{aligned}$			$3 *$		Typ	pF
	CDS				$0.4{ }^{*}$		Typ	pF
G115	$\mathrm{G}_{\text {DB }}$	$\begin{aligned} & V_{D B}=-5 \mathrm{~V}, V_{S B}=V_{G B}=V_{P B}=0 \\ & f=1 \mathrm{MHZ} \end{aligned}$			$18 *$		Typ	pF
G123					$9{ }^{*}$		Typ	pF
Both	$\mathrm{C}_{\text {SB }}$	$\begin{aligned} & V_{\mathrm{SB}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=0, \mathrm{~V}_{\mathrm{GB}}=\mathrm{V}_{\mathrm{PB}}=0 \\ & \mathrm{f}=1 \mathrm{MHZ} \end{aligned}$			$3.5{ }^{*}$		Typ	pF

*Typical values not garanteed or tested in production

TYPICAL PERFORMANCE CHARACTERISTICS

Op037201

OP037301

OP037401

G115/G123

APPLICATION TIPS
 Description of Analog Switch

Single Channel

Figure 3

G-Terminal - This is the control terminal of the switch. The voltage at this terminal determines the conduction state of Q_{2}. To insure conduction of Q_{2} when voltages between $\pm 10 \mathrm{~V}$ are switched, the gate voltage $\left(V_{G}\right)$ should be at least 10 V more negative than the most negative
voltage to be switched $(-10 \mathrm{~V})$. Therefore, V_{G} should go to -20 V . To insure turn-off V_{G} should not be less than the most positive voltage to be switched, +10 V . For convenience the same potential as the body could be used.

B-Terminal - This terminal is connected to the body (substrate) of the chip and must be maintained at a voltage that is equal to or greater than the most positive voltage to be switched. This is to ensure that the drain-to-body or the source-to-body junctions do not become forward biased.

P-Terminal - The potential, with respect to the body, at this terminal determines the gate-to-source voltage of Q_{1} which determines the amount of drain current available for driver-collector pull-up. Shorting terminal P to B prevents Q_{1} and Q_{3} from conducting, but still allows the body-todrain junction of Q_{1} to act as a forward biased diode for positive gate voltages, and to act as a Zener diode for negative voltages which exceed BVDSS (-30 to -90 V) for protecting the gate of Q_{2}.

D-Terminal - The common point of the MOSFET switches (summing point).

S-Terminal - This is the normally-open terminal of the MOSFET switch and is normally used as the input.

APPLICATIONS

웅 G116, G118, G119 Monolithic MOSFET Switch

GENERAL DESCRIPTION

These switches may be connected directly to the INTERSIL switch-driver D123 series without need of any interfacing components. These MOSFET switches are internally protected by a Zener diode integrated on the silicon chip. A MOSFET used as a current source provides an active pullup for faster switching. The active pull-up FET can be disabled without sacrificing the Zener protection of the gates.

FEATURES

- P-Channel Enhancement-Type MOSFET Switches
- Zener Protection on All Gates
- With and Without Constant Current Source PullUp

ORDERING INFORMATION

LD011701

G118

LD011801

G119

LD011901
Figure 1: Functional Diagrams (Outline Dwgs PD, JD, FD-2, DD)

G116, G118, G119

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $+70^{\circ} \mathrm{C}$. For higher temperatures, derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Per Channel Unless Noted)
References to pull-up gate P do not apply to G118.

PARAMETER	TEST CONDITIONS		LIMITS					
			G116M Series		G116C Series		MIN/MAX	UNIT
			$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125{ }^{\circ} \mathrm{C}$		
$\left\lvert\, \begin{aligned} & \mathrm{rDS}(\mathrm{ON}) \\ & \text { (Note 1) } \end{aligned}\right.$	$\mathrm{V}_{\mathrm{BD}}=0, \mathrm{~V}_{\mathrm{GD}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{PB}}=0$	$\begin{aligned} & \mathrm{IS}= \\ & -1 \mathrm{~mA} \end{aligned}$	100	125	125		Max	Ω
	$\mathrm{V}_{\mathrm{BD}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{PB}}=0$		200	250	250			
	$\mathrm{V}_{\mathrm{BD}}=+20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{PB}}=0$		450	600	600			
IS(OFF)	$\mathrm{V}_{\mathrm{SD}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BD}}=\mathrm{V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{PD}}=0$		-0.5	-500	-1		Max	nA
'D(OFF)	$\mathrm{V}_{\mathrm{DS}}=-20 \mathrm{~V}$	G116	-2.5	-2500	-5		Max	nA
	$V_{B D}=V_{G D}=V_{P D}=0$	G118	-3.0	-3000	-6			
		G119	-1.5	-1500	-3			
	$\mathrm{V}_{\mathrm{G} 1 \mathrm{~B}}$ to $\mathrm{V}_{\mathrm{G} 5 \mathrm{~B}}=0, \mathrm{~V}_{\mathrm{G} 6 \mathrm{~B}}=-30 \mathrm{~V}$, $V_{D B}=-20 \mathrm{~V}, V_{S B}=V_{P B}=0$	G117	-0.5	-500	-1		Max	$n \mathrm{~A}$
BV ${ }_{\text {DSS }}$	$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=\mathrm{V}_{\mathrm{PS}}=0$		-30		-30		Min	V
BV ${ }_{\text {SDS }}$	$\mathrm{I}_{\mathrm{S}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=\mathrm{V}_{\mathrm{PD}}=0$		-30		-30		Min	
$B V_{G B S}$	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{PB}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{DB}}=0$		-30		-30		Min	
			-110		-110		Max	
BVPBS	$\mathrm{I}_{\mathrm{P}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GB}}=\mathrm{V}_{\mathrm{SB}}=V_{\mathrm{DB}}=0$		-30		-30		Min	
PPBS			-110		-110		Max	
$\mathrm{V}_{\mathrm{GD}(\text { (th) }}$	$\mathrm{I}^{\text {S }}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SB}}=0$		-1.5		-1.5		Min	
GD(th)			-4		-4		Max	
$\mathrm{IGS}(\mathrm{ON})$	$V_{G B}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{PB}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{DB}}=0$		-0.5		-0.3		Min	mA
(Note 2)			-2		-2.5		Max	
IGSS	$\mathrm{V}_{\mathrm{GB}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{BS}}=\mathrm{V}_{\mathrm{PS}}=0$		-0.5	-500	-1		Max	nA
C_{GD} or C_{GS}	$V_{P B}=0, V_{B S}=0 \text {, or } V_{B D}=0$ Body Guarded, $f=1 \mathrm{MHz}$		3		3		Typ	pF
$\mathrm{C}_{\text {SD }}$ (Note 3)			0.4		0.4		Typ	pF
$\mathrm{C}_{\text {SB }}$ (Note 3)	$\mathrm{V}_{\mathrm{PB}}=\mathrm{V}_{\mathrm{GB}}=\mathrm{V}_{\mathrm{DB}}=0, \mathrm{~V}_{\mathrm{SB}}=-5 \mathrm{~V}, \mathrm{f}=1$	1 MHz	-3.5		-3.5		Typ	pF
$C_{\text {DG }}$ (Note 3)	$\begin{aligned} & V_{P B}=V_{G B}=V_{S B}=0 \\ & V_{D B}=-5 V, f=1 M H z \end{aligned}$	G116	18		18		Typ	pF
		G118	18		18			
		G119	10		10			
	$\begin{aligned} & V_{G 6 B}=-30 V, V_{P B}=V_{S B}=0, V_{G 1 B} \text { to } \\ & V_{G 5 B}=0, V_{D B}=-5 V, f=1 M H z \end{aligned}$	G117	20		20		Typ	pF

NOTES: 1. For the G117 this is the resistance from each of the source terminals (5 terminals) and the one drain terminal to the internal junction of the output MOSFETs.
2: Not applicable to G118.
3: Typical values not guaranteed or tested in production.

APPLICATION TIPS

Description of Analog Switch

Figure 2: Single Channel

G-Terminal - This is the control terminal of the switch; the voltage at this terminal determines the conduction state of Q_{2}. To insure conduction of Q_{2} when voltages between $\pm 10 \mathrm{~V}$ are switched, the gate voltage $\left(\mathrm{V}_{\mathrm{G}}\right)$ should be at least 10 V more negative than the most negative voltage to be switched (-10 V). Therefore, V_{G} should go to -20 V . To insure turn-off V_{G} should not be less than the most positive voltage to be switched, +10 V . For convenience the same potential as the body could be used.

B-Terminal - This terminal is connected to the body (substrate) of the chip and must be maintained at a voltage that is equal to or greater than the most positive voltage to be switched. This is to insure that the drain-to-body or the source-to-body junctions do not become forward biased.

P-Terminal - The potential, with respect to the body, at this terminal determines the gate-to-source voltage of Q_{1} which determines the amount of drain current available for driver-collector pull-up. Shorting terminal P to B prevents Q_{1} and Q_{3} from conducting, but still allows the body-to-drain junction of Q_{1} to act as a forward biased diode for positive gate voltages, and to act as a Zener diode for negative voltages which exceed BV ${ }_{\text {DSS }}(-30$ to -110 V) for protecting the gate of Q_{2}.

D-Terminal - The common point of the MOSFET switches (summing point).
S-Terminal - This is the normally-open terminal of the MOSFET switch and is normally used as the input.

G116, G118, G119

APPLICATIONS

Figure 3: 5-Channel Multiplexer With Series Switch

Figure 4: 3-Channel Differential Multiplexer

GENERAL DESCRIPTION

The 1 H 311 and H 312 are CMOS, monolithic, QUAD, SPST analog switches for use in high-speed switching applications for communications, instrumentation, process control and computer peripherals. Both devices provide true bi-directional performance in the ON condition and will block signals to 30 V peak-to-peak in the OFF condition. The IH 311 and IH312 differ only in that the digital control logic is inverted, as shown in the truth table.

1 H 311 and 1 H 312 are available in 16-pin Dual-In-Line packages and are offered in both military and commercial temperature ranges.

FEATURES

- Switches $\pm 15 \mathrm{~V}$ Analog Signals
- TTL Compatibility
- Logic Inputs Accept Negative Voltages
- RON ≤ 175 Ohm

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH311MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Pin CERDIP
IH 311 CJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP
IH 311 CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin Plastic DIP
IH 312 MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Pin CERDIP
IH 312 CJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP
IH 312 CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin Plastic DIP

ABSOLUTE MAXIMUM RATINGS

*Device mounted with all leads soldered or welded to PC board.
**Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS - MILITARY TEMPERATURE RANGE

SYMBOL	PARAMETER	TEST CONDITIONS$\begin{gathered} V_{1}=+15 V, V_{2}=-15 V \\ V_{L}=5 V, \text { GND } \end{gathered}$		LIMITS			UNIT
				$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	
SWITCH							
$V_{\text {ANALOG }}$	Analog Signal Range	$\mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$			± 15		V
RDS(ON)	Drain-Source On Resistance	$\begin{aligned} & V_{D}= \pm 10 \mathrm{~V}, V_{I N}=2.4 \mathrm{~V}-\mathrm{IH} 312 \\ & I_{S}=1 \mathrm{~mA}, V_{I N}=0.8 \mathrm{~V}-1 \mathrm{H} 311 \end{aligned}$		125	125	150	Ω
IS(off)	Source OFF Leakage Current	$\begin{aligned} & V_{I N}=2.4 \mathrm{~V} \\ & 1 H 311 \\ & V_{I N}=0.8 \mathrm{~V} \\ & \mathrm{IH} 312 \end{aligned}$	$\mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$		± 1	100	nA
			$V_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$		± 1	100	
l (off)	Drain OFF Leakage Current		$V_{D}=14 \mathrm{~V}, \mathrm{~V}_{S}=-14 \mathrm{~V}$		± 1	100	
			$V_{D}=-14 \mathrm{~V}, \mathrm{~V}_{S}=14 \mathrm{~V}$		± 1	100	
ID(ON)	Drain ON Leakage Current ${ }^{3}$	$\begin{aligned} & V_{S}=V_{D}=-14 \mathrm{~V}, \mathrm{~V}_{I N}=0.8 \mathrm{~V}, \mathrm{IH} 311 \\ & V_{I N}=2.4 \mathrm{~V}, \mathrm{IH} 312 \end{aligned}$			± 2	200	
					± 2	200	
INPUT							
IINH	Input Current With Input Voltage High	$V_{I N}=2.4 V$		10	± 1	10	$\mu \mathrm{A}$
		$V_{\text {IN }}=15 \mathrm{~V}$		10	± 1	10	
IINL	Input Current With Input Voltage Low	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		10	10	10	

DYNAMIC

$\mathrm{t}_{\text {on }}$	Turn-ON Time	See Switching Time Test Circuit $V_{S}=10 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF}$		200		ns
$\mathrm{t}_{\text {off }}$	Turn-OFF Time			80		
$\mathrm{C}_{S(\text { off })}$	Source OFF Capacitance	$\begin{aligned} & V_{S}=0 V, V_{I N}=5 \mathrm{~V}, f=1 \mathrm{MHz} \\ & V_{D}=0 V, V_{\mathbb{I}}=5 \mathrm{~V}, f=1 \mathrm{MHz}^{2} \\ & V_{D}=V_{S}=0 V, V_{\mathbb{N}}=0 \mathrm{~V}, f=1 \mathrm{MHz} \end{aligned}$		5		pF
$\mathrm{C}_{\mathrm{D} \text { (off) }}$	Drain OFF Capacitance			5		
$C_{D}+\mathrm{S}$ (on)	Channel ON Capacitance			16		
OIRR	OFF Isolation ${ }^{4}$	$\begin{aligned} & V_{I N}=5 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega \\ & C_{L}=15 \mathrm{pF}, V_{S}=1 \mathrm{VRMS}, f=100 \mathrm{kHz} \end{aligned}$		70		dB
CCRR	Crosstalk (Channel to Channel)			90		
SUPPLY						
1^{+}	Positive Supply Current	$\mathrm{V}_{\mathrm{IN}}=0$ and 2.4 V	10	1	10	$\mu \mathrm{A}$
1^{-}	Negative Supply Current		10	1	10	
$1 /$	Logic Supply Current		10	1	10	

NOTES: 1. The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data sheet.
2. For design reference only, not 100% tested.
3. $I_{D(o n)}$ is leakage from driver into "ON" switch.
4. $O F F$ Isolation $=20 \log \frac{V_{S}}{V_{D}}, V_{S}=$ input to $O F F$ switch, $V_{D}=$ output.

ABSOLUTE MAXIMUM RATINGS

```\(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\)
```


V_{L} to Ground $-0.3 \mathrm{~V}, 25 \mathrm{~V}$
V_{S} or V_{D} to V^{+} . $0,-36 \mathrm{~V}$
V_{S} or V_{D} to V^{-} . $0,40 \mathrm{~V}$
V^{+}to Ground ... 25V
V^{-}to Ground.. - 25 V
Current, Any Terminal Except S or D..................30mA
Continuous Current, S or D................................20mA

Peak Current, S or D
(Pulsed at $1 \mathrm{msec}, 10 \%$ duty cycle max) 70 mA Storage Temperature.................... $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Power Dissipation (Package)*

16 Pin Plastic DIP**
470 mW
*Device mounted with all leads soldered or welded to PC board.
**Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS - COMMERCIAL TEMPERATURE RANGE

SYMBOL	PARAMETER	TEST CONDITIONS$\begin{gathered} \mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \text { GND } \end{gathered}$		LIMITS		UNIT
				$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
SWITCH						
$V_{\text {ANALOG }}$	Analog Signal Range	$\mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$		± 15		V
RDS(ON)	Drain-Source On Resistance	$\begin{aligned} & V_{D}= \pm 10 \mathrm{~V}, V_{I N}=2.4 \mathrm{~V}-\mathrm{IH} 212 \\ & I_{S}=1 \mathrm{~mA}, V_{I N}=0.8 \mathrm{~V}-\mathrm{IH} 211 \end{aligned}$		150	175	Ω
IS(off)	Source OFF Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V} \\ & \mathrm{IH} 311 \\ & \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \\ & \mathrm{IH} 312 \end{aligned}$	$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	± 5	100	nA
			$\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	± 5	100	
${ }^{\mathrm{D}}$ (off)	Drain OFF Leakage Current		$V_{D}=14 \mathrm{~V}, \mathrm{~V}_{S}=-14 \mathrm{~V}$	± 5	100	
			$\mathrm{V}_{\mathrm{D}}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=14 \mathrm{~V}$	± 5	100	
$\mathrm{ID}(\mathrm{ON})$	Drain ON Leakage Current ${ }^{3}$	$\begin{aligned} & V_{S}=V_{D}=-14 \mathrm{~V}, V_{I N}=0.8 \mathrm{~V}, \mathrm{H} 211 \\ & V_{I N}=2.4 \mathrm{~V}, \mathrm{IH} 212 \end{aligned}$		± 5	200	
				± 5	200	
INPUT						
IINH	Input Current With Input Voltage High	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$		± 1	-10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$		± 1	10	
IINL	Input Current With Input Voltage Low	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		± 1	-10	
DYNAMIC						
$t_{\text {on }}$	Turn-ON Time	See Switching Time Test Circuit ${ }^{5}$ $V_{S}=10 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$		300		ns
$\mathrm{t}_{\mathrm{off}}^{1}$ toff2	Turn-OFF Time			150		
$\mathrm{C}_{\mathrm{S}_{\text {(off) }}}$	Source OFF Capacitance	$\begin{aligned} & V_{S}=0 V, V_{I N}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & V_{D}=0 \mathrm{~V}, V_{I N}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}^{2} \\ & V_{D}=V_{S}=0 \mathrm{~V}, V_{I N}=0 \mathrm{~V}, f=1 \mathrm{MHz} \end{aligned}$		5		pF
$\mathrm{C}_{\mathrm{D} \text { (off) }}$	Drain OFF Capacitance			5		
C_{D+S} (on)	Channel ON Capacitance			16		
OIRR	OFF Isolation ${ }^{4}$	$\begin{aligned} & V_{I N}=5 V, R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, \\ & V_{S}=1 \mathrm{VRMS}, f=100 \mathrm{kHz} \end{aligned}$		70		dB
CCRR	Crosstalk (Channel to Channel)			90		
SUPPLY						
1^{+}	Positive Supply Current	$\mathrm{V}_{\mathrm{IN}}=0$ and 2.4 V		± 1	10	$\mu \mathrm{A}$
1^{-}	Negative Supply Current			± 1	-10	
IL	Logic Supply Current			± 1	10	

NOTES: 1. The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data sheet
2. For design reference only, not 100% tested.
3. $\mathrm{I}_{\mathrm{D}(\mathrm{on})}$ is leakage from driver into "ON' switch.
4. $O F F$ Isolation $=20 \log \frac{V_{S}}{V_{D}}, V_{S}=$ input to $O F F$ switch, $V_{D}=$ output.
5. Switching times only sampled.

Switch output waveform shown for $\mathrm{V}_{\mathrm{S}}=$ constant with logic input waveform as shown. Note the V_{S} may be + or as per switching time test circuit. V_{O} is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

Figure 3: Switching Time Test Circuit Logic shown for IH311. Invert for IH312.

Figure 4: Switching Time Test Circuit

GENERAL DESCRIPTION

The IH401 is made up of 4 monolithically constructed combinations of a varactor type diode and an N-channel JFET. The JFET itself is very similar to the popular 2N4391, and the driver diode is specially designed, such that its capacitance is a strong function of the voltage across it. The driver diode is electrically in series with the gate of the N -channel FET and simulates a back-to-back diode structure. This structure is needed to prevent forward biasing the source-to-gate or drain-to-gate junctions of the JFET when used in switching applications.

Previous applications of JFETs required the addition of diodes, in series with the gate, and then perhaps a gate-tosource referral resistor or a capacitor in parallel with the diode; therefore, at least 3 components were required to perform the switch function. The IH401 does this same job in one component (with a great deal better performance characteristics).
Like a standard JFET, to practically perform a solid state switch function a translator should be added to drive the diode. This translator takes the TTL levels and converts them to voltages required to drive the diode/FET system (typically a 0 V to -15 V translation and a 3 V to +15 V shift). With $\pm 15 \mathrm{~V}$ power supplies, the H 401 will typically switch $18 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ at any frequency from DC to 20 MHz , with less than $30 \Omega \mathrm{R}_{\mathrm{DS}(\mathrm{on})}$. The IH401A will typically switch $22 \mathrm{~V}_{\mathrm{p} \text {-p }}$ with less than $50 \Omega \mathrm{R}_{\mathrm{DS}}(\mathrm{on})$.

FEATURES

- $\mathrm{RDS}_{\text {(on) }}=25 \Omega$ Typical (IH 401)
- ID(off) of 10pA Typical
- Switching Times of $\mathbf{2 5 n s}$ for $t_{o n}$ and 75 ns for $t_{\text {off }}\left(R_{L}=1 \mathrm{k} \Omega\right)$
- Built-In Overvoltage Protection ($\pm 25 \mathrm{~V}$)
- Charge Injection Error of 3 mV Typical Into $0.01 \mu \mathrm{~F}$ Capacitor
- Ciss < 1pF Typical
- Can Be Used for Hybrid Construction

ORDERING INFORMATION

PART NUMBER	PACKAGE
IH401	CERDIP
IH401A	CERDIP
IH401/D	DICE

Figure 1: Pin Configuration (Outline Dwg JE)

ABSOLUTE MAXIMUM RATINGS

Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) \qquad

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS AT $\mathbf{2 5}{ }^{\circ} \mathrm{C} / \mathbf{1 2 5}^{\circ} \mathrm{C}$

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	IH401			UNIT
			MIN	TYP	MAX	
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Switch 'on' Resistance	$\begin{aligned} & V_{\text {DRIVE }}=15 \mathrm{~V}, \\ & V_{\text {DRAIN }}=-7.5 \mathrm{~V} \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \end{aligned}$		20	30	Ω
V_{P}	Pinch-Off Voltage	$I_{D}=1 \mathrm{nA}, V_{D S}=10 \mathrm{~V}$	3	6	7.5	V
${ }^{\prime} \mathrm{D}$ (off)	Switch '"off' Current or 'off" Leakage	$\mathrm{V}_{\text {DRIVE }}=-15 \mathrm{~V}$, $V_{\text {SOURCE }}=-7.5 \mathrm{~V}$, $V_{\text {DRAIN }}=+7.5 \mathrm{~V}$		10	± 500	pA
${ }^{\prime} \mathrm{D}$ (off)	Switch ''off' Leakage at $125^{\circ} \mathrm{C}$	$V_{\text {DRIVE }}=-15 \mathrm{~V}$, $V_{\text {SOURCE }}=-7.5 \mathrm{~V}$, $V_{\text {DRAIN }}=+7.5 \mathrm{~V}$		0.25	50	nA
Is(off)	Switch ''off' Current	$V_{\text {DRIVE }}=-15 \mathrm{~V}$, $V_{\text {DRAIN }}=-7.5 \mathrm{~V}$, $V_{\text {SOURCE }}=+7.5 \mathrm{~V}$		10	± 500	pA
Is(off)	Switch 'off' Leakage at $125^{\circ} \mathrm{C}$	$V_{\text {DRIVE }}=-15 \mathrm{~V}$, $V_{\text {SOURCE }}=-7.5 \mathrm{~V}$, $V_{\text {DRAIN }}=+7.5 \mathrm{~V}$		0.3	50	nA
$I_{D(0 n)}+I^{\prime}(0 n)$	Switch Leakage when Turned 'on'	$\begin{aligned} & V_{D}=V_{S}=-7.5 \mathrm{~V}, \\ & V_{\text {DRIVE }}=+15 \mathrm{~V} \end{aligned}$		0.02	± 2	nA
$V_{\text {analog }}$	AC Input Voltage Range without Distortion	See Figure 3	15	18		V_{p-p}
$V_{\text {inject }}$	Charge Injection Error Voltage	See Figure 4		3		$m V_{p-p}$
$B V_{\text {diode }}$	Diode Reverse Breakdown Voltage. This Correlates to Overvoltage Protection	$\begin{aligned} & V_{D}=V_{S}=-V \\ & \text { IDRIVE }=1 \mu \mathrm{~A}, \\ & V_{\text {DRIVE }}=0 \mathrm{~V} \end{aligned}$	-30	-45		V
$B V_{\text {GSS }}$	Gate to Source or Gate to Drain Reverse Breakdown Voltage	$\begin{aligned} & V_{\text {DRIVE }}=-V \\ & V_{D}=V_{S}=0 \mathrm{~V}, \\ & \text { IDRIVE }=1 \mu \mathrm{~A} \end{aligned}$	30	41		V
IDSS	Maximum Current Switch can Deliver (Pulsed)	$\begin{aligned} & V_{\text {DRIVE }}=15 \mathrm{~V}, \\ & V_{S}=0 \mathrm{~V}, \\ & V_{D}=+10 \mathrm{~V} \end{aligned}$	45	70		mA
t_{0}	Switch "on" time (Note 1)	See Figure 2		50		ns
$t_{\text {off }}$	Switch '"off' time (Note 1)	See Figure 2		150		ns

NOTE 1: Driving waveform must be $>100 \mathrm{~ns}$ rise and fall time.

Figure 2: Switching Time Test Circuit and Waveforms

Figure 3: Analog Input Voltage Range

Test Circuit

Figure 4: Charge Injection Test Circuit

ELECTRICAL CHARACTERISTICS AT $25^{\circ} \mathrm{C} / 125^{\circ} \mathrm{C}$

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	IH401A			UNIT
			MIN	TYP	MAX	
R DS(on)	Switch "on" Resistance	$\begin{aligned} & V_{\text {DRIIE }}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DRAIN }}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \end{aligned}$		35	50	Ω
V_{P}	Pinch-Off Voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}, \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	2	4	5	V
${ }^{1}$ (off)	Switch 'off' Current or '"off' Leakage	$\begin{aligned} & \text { VRRIVE }=-15 \mathrm{~V}, \\ & V_{\text {SOURCE }}=-10 \mathrm{~V}, \\ & \text { V DRAIN }^{2}+1 \mathrm{~V} \end{aligned}$		10	± 500	pA
${ }^{1}$ (off)	Switch "off" Leakage at $125^{\circ} \mathrm{C}$	$V_{\text {DRIVE }}=-15 \mathrm{~V}$, $V_{\text {SOURCE }}=-10 \mathrm{~V}$, $V_{\text {DRAIN }}=+10 \mathrm{~V}$		0.25	50	nA
$\mathrm{I}_{\text {S(off) }}$	Switch "off" Current	$\begin{aligned} & V_{\text {DRIVE }}=-15 \mathrm{~V}, \\ & V_{\text {DRAIN }}=-10 \mathrm{~V}, \\ & V_{\text {SOURCE }}=+10 \mathrm{~V} \\ & \hline \end{aligned}$		10	± 500	pA
Is(off)	Switch 'off' Leakage at $125^{\circ} \mathrm{C}$	$V_{\text {DRIVE }}=-15 \mathrm{~V}$, $V_{\text {SOURCE }}=-10 \mathrm{~V}$, $V_{\text {DRAIN }}=+10 \mathrm{~V}$		0.3	50	nA
	Switch Leakage when Turned "on"'	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DRIVE }}=+15 \mathrm{~V} \end{aligned}$		0.02	± 2	nA
$V_{\text {analog }}$	AC Input Voltage Range without Distortion	See Figure 3	20	22		V_{p-p}
$V_{\text {inject }}$	Charge Injection Amplitude	See Figure 4		3		$m V_{p-p}$
$\mathrm{BV}_{\text {diode }}$	Diode Reverse Breakdown Voltage. This Correlates to Overvoltage Protection	$\begin{aligned} & V_{D}=V_{S}=-V, \\ & \text { IDRIVE }=1 \mu \mathrm{~A}, \\ & V_{\text {DRIVE }}=0 \mathrm{~V} \end{aligned}$	-30	-45		v

ELECTRICAL CHARACTERISTICS AT $25^{\circ} \mathrm{C} / 125^{\circ} \mathrm{C}$ (CONT.)

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	IH401A			UNIT
			MIN	TYP	MAX	
$B V_{G S S}$	Gate to Source or Gate to Drain Reverse Breakdown Voltage	$\begin{aligned} & V_{\text {DRIVE }}=-V, \\ & V_{D}=V_{S}=0 V \\ & \text { IDRIVE }^{2}=1 \mu \mathrm{~A} \end{aligned}$	30	41		V
IdSs	Maximum Current Switch can Deliver (Pulsed)	$\begin{aligned} & \text { VDRIVE }=15 \mathrm{~V}, \\ & V_{S}=0 \mathrm{~V}, \\ & V_{D}=+10 \mathrm{~V} \end{aligned}$	35	55		$\stackrel{8}{\mathrm{~m}} \mathrm{~A}$
$t_{0 n}$	Switch 'on' time (Note 1)	See Figure 2		50		ns
$t_{\text {off }}$	Switch '"off' time (Note 1)	See Figure 2		150		ns

APPLICATIONS

IH401 Family

In general, the IH401 family can be used in any application formally using a JFET/isolation diode combination (2N4391 or similar). Like standard FET circuits, the IH401 requires a translator for normal analog switch function. The translator is used to boost the TTL input signals to the $\pm 15 \mathrm{~V}$ analog supply levels which allow the IH 401 to handle $\pm 7.5 \mathrm{~V}$ analog signals (or IH401A to handle $\pm 10 \mathrm{~V}$ analog signals). A typical simple PNP translator is shown in Figure 5.

Although this simple PNP circuit represents a minimum of components, it requires open collector TTL input and $t_{\text {(off) }}$ is limited by the collector load resistor (approximately $1.5 \mu \mathrm{~s}$ for $10 \mathrm{k} \Omega$). Improved switching speed can be obtained by increasing the complexity of the translator stage.

A translator which overcomes the problems of the simple PNP stage is the Intersil IH6201.* This translator driving an H 401 varafet produces the following typical features:

- ton time of approx. 200ns \} break before
- toff time of approx. 80ns make switch
- TTL compatible strobing levels of

- $I_{D(o n)}+I_{S(o n)}$ typically $20 p A$ up to $\pm 10 \mathrm{~V}$ analog signals
- ID(off) or IS(off) typically 20pA
- Quiescent current drain of approx. 100nA in either 'on' or 'off' case
*The IH6201 is a dual translator (two independent translators per package) constructed from monolithic CMOS technology. The schematic of one-half IH6201, driving one-fourth of an IH 401 , is shown in Figure 6.

NOTE: Each translator output has a θ and $\bar{\theta}$ output. $\bar{\theta}$ is just the inverse of θ i.e., ($\bar{\theta}$ output is 180° out of phase with respect to θ output).
Figure 6: IH6201 Driving An IH401

NOTE: Either switch is turned on when strobe input goes high.
Figure 7: Dual SPST Analog Switch

Figure 8: DPDT Analog Switch

Figure 9: Dual SPDT Analog Switch

A very useful feature of this system is that one-half of an IH6201 and one-half of an IH401 can combine to make a SPDT switch, or an IH6201 plus an IH401 can make a dual SPDT analog switch. (See Figure 9)

Figure 10: Dual DPST Analog Switch

IH5009-IH5024
 Virtual Ground Analog Switch

GENERAL DESCRIPTION

The IH5009 series of analog switches were designed to fill the need for an easy-to-use, inexpensive switch for both industrial and military applications. Although low cost is a primary design objective, performance and versatility have not been sacrificed.

Each package contains up to four channels of analog gating and is designed to eliminate the need for an external driver. The odd numbered devices are designed to be driven directly from TTL open collector logic (15 volts) while the even numbered devices are driven directly from low level TTL logic (5 volts). Each channel simulates a SPDT switch. SPDT switch action is obtained by leaving the diode cathode unconnected; for SPDT action, the cathode should be grounded (0 V). The parts are intended for high performance multiplexing and commutating usage. A logic ' 0 ' turns the channel ON and a logic " 1 " turns the channel OFF.

ORDERING INFORMATION

BASIC PART NUMBER	CHANNELS	LOGIC LEVEL	PACKAGES
IH5009	4	+15	JD,DD,PD
IH5010	4	+5	JD,DD,PD
IH5011	4	+15	JE,DE,PE
H55012	4	+5	JE,DE,PE
IH5013	3	+15	JD,DD,PD
IH5014	3	+5	JD,DD,PD
IH5015	3	+15	JE,DE,PE
IH5016	3	+5	JE,DE,PE
IH5017	2	$+15$	JD,DD,PA
1H5018	2	+5	JD,DD,PA
1H5019	2	+15	JE,DE,PA
IH5020	2	$+5$	JE,DE,PA
1H5021	1	$+15$	JD,DD,PA
IH5022	1	+5	JD,DD,PA
IH5023	1	+15	JE,DE,PA
IH5024	1	+5	JE,DE,PA

NOTE: Mil-Temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ available in ceramic packages only.

FEATURES

- Switches Analog Signals Up to 20 Volts Peak-toPeak
- Each Channel Complete - Interfaces With Most Integrated Logic
- Switching Speeds Less Than $0.5 \mu \mathrm{~s}$
- ID(OFF) Less Than 500pA Typical at $70^{\circ} \mathrm{C}$
- Effective $\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}-5 \Omega$ to 50Ω
- Commercial and Military Temperature Range Operation

NNIMRESIL

ABSOLUTE MAXIMUM RATINGS

Positive Analog Signal Voltage 30V
Negative Analog Signal Voltage............................ - 15 V
Diode Current .. 10mA
Power Dissipation (Note).................................. 500 mW
Storage Temperature \qquad
\qquad

Lead Temperature (Soldering, 10sec)300${ }^{\circ} \mathrm{C}$		
	5009C Series	C to $+70^{\circ} \mathrm{C}$
	5009M	$+125^{\circ} \mathrm{C}$
	emperature (Sold	

Lead Temperature (Soldering, 10sec)
$300^{\circ} \mathrm{C}$
Operating Temperature
5009 C Series.......................... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $75^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $5 \mathrm{~m} / \mathrm{W}^{\circ} \mathrm{C}$.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 1: Pin Connections

FOUR CHANNEL
THREE CHANNEL

DS016701
TWO CHANNEL
IH5017 ($\mathrm{rDS}(\mathrm{ON}) \leq 100 \Omega)$
1 H 5018 ($\mathrm{rDS}(\mathrm{ON}) \leq 150 \Omega$) 8 PIN DIP
IH5019 (rDS(ON) $\leq 100 \Omega$)
$1 H 5020($ rDS $(O N) \leq 150 \Omega)$ 8 PIN DIP

IH5013 (rDS(ON) $\leq 100 \Omega)$	IH5015 (rDS(ON) $\leq 100 \Omega)$
IH5014 (rDS(ON) $\leq 150 \Omega)$	IH5016 (rDS(ON) $\leq 150 \Omega)$
14 PIN DIP	16 PIN DIP

DS016901

DS00080I

Single Channel

$$
\begin{gathered}
\text { IH5021 }(\text { rDS }(\text { ON }) \leq 100 \Omega) \\
\text { IH5022 }(\text { rDS (ON }) \leq 150 \Omega) \\
8 \text { PIN DIP }
\end{gathered}
$$

IH5023 ($\mathrm{rDS}(\mathrm{ON}) \leq 100 \Omega)$
IH5024 (rDS(ON) $\leq 150 \Omega$) 8 PIN DIP

ELECTRICAL CHARACTERISTICS (per channel)

SYMBOL (Note 1)	CHARACTERISTIC	TYPE (Note 4)	TEST CONDITIONS (Note 2)	SPECIFICATION LIMIT				UNIT
				$\begin{aligned} & -55^{\circ} \mathrm{C}(\mathrm{M}) \\ & 0^{\circ} \mathrm{C}(\mathrm{C}) \\ & \text { MIN/MAX } \end{aligned}$	$25^{\circ} \mathrm{C}$		$\begin{aligned} & +125^{\circ} \mathrm{C}(\mathrm{M}) \\ & +70^{\circ} \mathrm{C}(\mathrm{C}) \\ & \text { MIN/MAX } \end{aligned}$	
					TYP	MIN/MAX		
IIN(ON)	Input Current-ON	ALL	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$		0.01	± 0.5	100	$\mu \mathrm{A}$
IIN(OFF)	Input Current-OFF	5 V Logic Ckts	$\mathrm{V}_{1 \mathrm{~N}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}$		0.04	± 0.5	20	nA
IIN(OFF)	Input Current-OFF	15V Logic Ckts	$\mathrm{V}_{\text {IN }}=+11 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}$		0.04	± 0.5	20	nA
$\mathrm{V}_{\text {IN(ON }}$	Channel Control Voltage-ON	5V Logic Ckts	See Figure 7, Note 3	0.5		0.5	0.5	V
$\mathrm{V}_{\text {IN }}(\mathrm{ON})$	Channel Control Voltage-ON	15V Logic Ckts	See Figure 8, Note 3	1.5		1.5	1.5	V
$\mathrm{V}_{\text {IN }}$ (OFF)	Channel Control Voltage-OFF	5V Logic Ckts	See Figure 6, Note 3			4.5	4.5	V
V IN(OFF)	Channel Control Voltage-OFF	15V Logic Ckts	See Figure 8, Note 3			11.0	11.0	V
ID(OFF)	Leakage Current-OFF	5 V Logic Ckts	$\mathrm{V}_{\text {IN }}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}$		0.02	± 0.5	20	nA
ID(OFF)	Leakage Current-OFF	15V Logic Ckts	$\mathrm{V}_{\text {IN }}=+11 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}$		0.02	± 0.5	20	nA
ID(ON)	Leakage Current-ON	5V Logic Ckts	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$		0.30	± 1.0	$\begin{aligned} & 1000 \text { (M) } \\ & 200 \text { (C) } \\ & \hline \end{aligned}$	nA
$\mathrm{I}(\mathrm{ON})$	Leakage Current-ON	15V Logic Ckts	$\mathrm{V}_{1} \mathrm{~N}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$		0.10	± 0.5	$\begin{aligned} & 500 \text { (M) } \\ & 100 \text { (C) } \end{aligned}$	nA
$\mathrm{I}(\mathrm{ON})$	Leakage Current-ON	5V Logic Ckts	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA}$			1.0	10	$\mu \mathrm{A}$
ID(ON)	Leakage Current-ON	15V Logic Ckts	$\mathrm{V}_{1 N}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA}$			2.0	100	$\mu \mathrm{A}$
rDS(ON)	Drain-Source ON-Resistance	5V Logic Ckts	$\mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{~V}_{1} \mathrm{~N}=0.5 \mathrm{~V}$	150	90	150	385 (M) 240 (C)	Ω
ros(ON)	Drain-Source ON-Resistance	15V Logic Ckts	$\mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=1.5 \mathrm{~V}$	100	80	100	$\begin{aligned} & 250 \text { (M) } \\ & 160 \text { (C) } \end{aligned}$	Ω
${ }^{\text {(}}$ (on)	Turn-ON Time	All	See Figures 5 \& 6		150	500		ns

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL (Note 1)	CHARACTERISTIC	TYPE (Note 4)	TEST CONDITIONS (Note 2)	SPECIFICATION LIMIT				UNIT
				$\begin{aligned} & -55^{\circ} \mathrm{C}(\mathrm{M}) \\ & 0^{\circ} \mathrm{C}(\mathrm{C}) \end{aligned}$MIN/MAX	$25^{\circ} \mathrm{C}$		$\begin{aligned} & +125^{\circ} \mathrm{C}(\mathrm{M}) \\ & +70^{\circ} \mathrm{C} \text { (C) } \\ & \text { MIN/MAX } \end{aligned}$	
					TYP	MIN/MAX		
${ }_{\text {t }}$ (off)	Turn-OFF Time	All	See Figures 5 \& 6		300	500		ns
CT	Cross Talk	All	$\mathrm{f}=100 \mathrm{~Hz}$		120			dB

NOTES 1: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
2: Refer to Figure 2 for definition of terms.
3. $V_{I N}(O N)$ and $V_{I N}(O F F)$ are test conditions guaranteed by the tests of ${ }^{\prime} D S_{(O N)}$ and ID(OFF) respectively.

4: " 5 V Logic CKTS' applies to even-numbered devices. ' 15 V Logic CKTS'" applies to odd-numbered devices.
TYPICAL PERFORMANCE CHARACTERISTICS (per channel)
$I_{D(O N)}$ vs. Is AT $25^{\circ} \mathrm{C}$

OP007911
RDS(ON) vs. TEMPERATURE (NORMALIZED TO $25^{\circ} \mathrm{C}$ VALUE)

ID(ON) vs. TEMPERATURE

CROSSTALK AS A FUNCTION OF FREQUENCY

ID(OFF) vs. TEMPERATURE

TC004201

DETAILED DESCRIPTION

The signals seen at the drain of a junction FET type analog switch can be arbitrarily divided into two categories; those which are less than $\pm 200 \mathrm{mV}$, and those which are greater than $\pm 200 \mathrm{mV}$. The former category includes all those circuits where switching is performed at the virtual ground point of an op-amp, and it is primarily towards these applications that the IH5009 family of circuits is directed.

By limiting the analog signal at the switching point to $\pm 200 \mathrm{mV}$, no external driver is required and the need for additional power supplies is eliminated.

Devices are available with both common drains and with uncommitted drains.

Those devices which feature common drains have another FET in addition to the channel switches. This FET, which has gate and source connected such that $\mathrm{V}_{\mathrm{GS}}=0$, is intended to compensate for the on-resistance of the switch. When placed in series with the feedback resistor (Figure 3) the gain is given by:

$$
\mathrm{GAIN}=\frac{10 \mathrm{k} \Omega+\mathrm{r}_{\mathrm{DS}(\mathrm{ON})(\text { compensator })}^{10 \mathrm{k} \Omega+\mathrm{rDS}^{2}(\text { switch })} .}{}
$$

AF00080
Figure 3: Use of Compensation FET

Clearly, the gain error caused by the switch is dependent on the match between the FETs rather than the absolute value of the FET on-resistarice. For the standard product, all the FETs in a given package are guaranteed to match within 50Ω. Selections down to 5Ω are available however. Contact factory for details. Since the absolute value of ${ }^{\mathrm{r} D S}(\mathrm{ON})$ is guaranteed only to be less than 100Ω or 150Ω, a substantial improvement in gain accuracy can be obtained by using the compensating FET.
DEFINITION OF TERMS

NOISE IMMUNITY

The advantage of SPDT switching is high noise immunity when the series elements is OFF. For example, if a $\pm 10 \mathrm{~V}$ analog input is being switched by TTL open collector logic, the series switch is OFF when the logic level is at +15 volts. At this time, the diode conducts and holds the source at approximately +0.7 volts with an AC impedance to ground of 25 ohms. Thus random noise superimposed on the +10 volt analog input will not falsely trigger the FET since the noise voltage will be shunted to ground.

When switching a negative voltage, the input further increases the OFF voltage beyond pinch-off, so there is no danger of the FET turning on.

SWITCHING CHARACTERISTICS

Figure 5: High Level Logic

WF01060I
Figure 6: Standard DTL, TTL, RTL

LOGIC INTERFACE CIRCUITS

LC00010t
Figure 7: Interfacing with $\mathbf{+ 5 V}$ Logic

Figure 8: Interfacing with +15 V Open Collector Logic

APPLICATIONS (Note)

NOTE: Additional applications information is given in Application Bulletins A003 'Understanding and Applying the Analog Switch" and A004 "The 5009 Series of Low Cost Analog Switches''.

IH5025-IH5038 Positive Signal Analog Switch

FEATURES

- Switches Up to +20 V Into High Impedance Loads (i.e. Non-Inverting Input of Operational Amp.)
- Driven From TTL Open Collector Logic
- ID(OFF) < 50pA
- $\mathrm{rDS}(\mathrm{ON})<150 \Omega$
- rDS(ON) Match < 50Ω Channel to Channel
- Switching Speeds < 100ns

ORDERING INFORMATION

BASIC PART NUMBER	CHANNELS	LOGIC LEVEL	PACKAGES
IH5025	4	+15	JD,DD,PD
IH5026	4	+5	JD,DD,PD
1H5027	4	+15	JE,DE,PE
IH5028	4	+5	JE,DE,PE
1H5029	3	+15	JD,DD,PD
1H5030	3	+5	JD,DD,PD
1H5031	3	+15	JE,DE,PE
1H5032	3	+5	JE,DE,PE
IH5033	2	+15	JD,DD,PA
1H5034	2	+5	JD,DD,PA
1H5035	2	+ 15	JE,DE,PA
1H5036	2	+5	JE,DE,PA
IH5037	1	+15	JD,DD, PA
1H5038	1	+5	JD,DD,PA

NOTE: Mil-Temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ available in ceramic packages only.

IH5025 (rDS(ON) $\leq 100 \Omega$)
IH5026 ($\mathrm{rDS}(\mathrm{ON}) \leq 150 \Omega$) 14 PIN DIP

CDOO42OI

IH5027 (rDS(ON) $\leq 100 \Omega$)
1H5028 ($\mathrm{rDS}(\mathrm{ON}) \leq 150 \Omega$) 16 PIN DIP

IH5029 ($\mathrm{rDS}(\mathrm{ON}) \leq 100 \Omega$)
1H5030 ($\mathrm{PDS}(\mathrm{ON}) \leq 150 \Omega$) 14 PIN DIP

1H5031 ($\mathrm{rDS}(\mathrm{ON}) \leq 100 \Omega)$
$1 H 5032(\operatorname{rDS}(O N) \leq 150 \Omega)$ 16 PIN DIP

CD002601

CD00270

Figure 1: Pin Connections

FOUR CHANNEL

IH5026 (rDS(ON) $\leq 150 \Omega$) 14 PIN DIP

DS001101
TWO CHANNEL
IH5033 (rDS(ON) $\leq 100 \Omega$) IH5034
$(\mathrm{rDS}(\mathrm{ON}) \leq 150 \Omega)$
8 PIN DIP

DS001501

IH5027 (rDS(ON) $\leq 100 \Omega$)
IH5028 (rDS(ON) $\leq 150 \Omega$) 14PIN DIP

DS001201

SINGLE CHANNEL

IH5035 (rDS(ON) $\leq 100 \Omega$) IH5036
 $(\operatorname{rDS}(\mathrm{ON}) \leq 150 \Omega)$ 8 PIN DIP

THREE CHANNEL

IH5029 (rDS(ON) $\leq 100 \Omega$)
IH5030 ($\mathrm{rDS}(\mathrm{ON}) \leq 150 \Omega$) 14 PIN DIP

1H5031 ($\mathrm{rDS}(\mathrm{ON}) \leq 100 \Omega)$ IH5032 (rDS(ON) $\leq 150 \Omega$) 16 PIN DIP

IH5037 ($\mathrm{IDS}(\mathrm{ON}) \leq 100 \Omega$) IH5038
(rDS(ON) $\leq 150 \Omega$)
8 PIN DIP

Numbers in parentheses indicate CERAMIC PACKAGE LAYOUT
Figure 2: Device Schematics

ABSOLUTE MAXIMUM RATINGS

Positive Analog Signal Voltag	V
Negative Analog Signal Voltage	0.5VDC
Drain Current	25 mA
Power Dissipation (Note)	500 mW
Storage Temperature	$+150^{\circ} \mathrm{C}$

Operating Temperature
5025 C Series....................... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
5025 M Series................ $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots \ldots .300^{\circ} \mathrm{C}$
NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $75^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $5 \mathrm{~m} / W^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (per channel)

SYMBOL (Note 1)	CHARACTERISTIC	TYPE	TEST CONDITIONS	SPECIFICATION LIMIT				UNIT MIN/MAX
				$\begin{gathered} -55^{\circ} \mathrm{C} \\ (\mathrm{M}) \\ 0^{\circ} \mathrm{C} \text { (C) } \end{gathered}$	$25^{\circ} \mathrm{C}$		$\begin{aligned} & +125^{\circ} \mathrm{C}(\mathrm{M}) \\ & +70^{\circ} \mathrm{C}(\mathrm{C}) \end{aligned}$	
					TYP	MIN/MAX		
IIN(ON)	Input Current-ON	All	$V_{I N}=0 \mathrm{~V}$		0.30	1.0	$\begin{array}{r} 100 \text { (M) } \\ 25 \text { (C) } \end{array}$	nA (max)
IIN(OFF)	Input Current-OFF	All	$V_{I N}=15 \mathrm{~V}$		0.20	1.0	$\begin{aligned} & 50 \text { (M) } \\ & 50 \text { (C) } \end{aligned}$	nA (max)
$\mathrm{V}_{\text {IN(ON }}$	Channel Control Voltage-CN	All	See Figure 3	1.5		1.5	1.5	V (max)
$\mathrm{V}_{\text {IN(OFF }}$	Channel Control Voltage-OFF	All	See Figure 3	14.0		14.0	14.0	V (min)
ID(OFF)	Leakage Current-OFF	All	See Figure 5		0.06	0.5	$\begin{array}{r} 100 \text { (M) } \\ 50 \text { (C) } \\ \hline \end{array}$	$n A(\max)$
$\mathrm{I}(\mathrm{ON})$	Leakage Current-ON	Odd Nos.	See Figure 6		1.00	10.0	5000 (M) 250 (C)	nA (max)
$1 \mathrm{D}(\mathrm{ON})$	Leakage Current-ON	Even Nos.	See Figure 6		0.10	1.0	500 (M)	nA (max)
ros(on)	Drain-Source ON-Resistance	Odd Nos.	$V_{I N}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	100	60.00	100.0	250 (M)	Ω (max)
ros(ON)	Drain-Source ON-Resistance	Even Nos.	$V_{\mathbb{N}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	150	90.00	150.0	385 (M) 240 (C)	Ω (max)
ros(ON)	Drain-Source ON-Resistance	Odd Nos.	$V_{I N}=1.0 \mathrm{~V}, I_{D}=1 \mathrm{~mA}$	160	85.00	160.0	420 (M)	Ω (max)
ros(ON)	Drain-Source ON-Resistance	Even Nos.	$V_{I N}=1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		110.00	200.0	$\begin{aligned} & 400 \text { (M) } \\ & 250 \text { (C) } \end{aligned}$	Ω (max)
${ }_{\text {ton) }}$	Turn-ON Time	All	See Figure 4		0.10	0.2	0.4	$\mu \mathrm{s}$ (max)
${ }^{\text {(}}$ (ff)	Turn-OFF Time	All	See Figure 4		0.10	0.2	0.4	$\mu \mathrm{s}$ (max)
$\mathrm{Q}_{(\text {INJ })}$	Charge Injection	All	See Figure 5		7.0	20.0		$m V_{p-p}$ (max)
$\mathrm{V}_{\text {A(OFF) }}$	Cross Coupling Rejection	All	See Figure 6		0.10	1.0		$m V_{p-p}(\max)$
$\Delta \mathrm{rOS}(\mathrm{ON})$	Channel to Channel TDS(ON) Match	All	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		25.00			Ω (max)

Note 1: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

Figure 3: Test Circuits

TC00460I

Figure 4: Test Circuits

Figure 5: Test Circuits

TC004801
Figure 6: Test Circuits

TYPICAL PERFORMANCE CHARACTERISTICS (per channel)

ID(OFF) VS. TEMPERATURE

OP00450
CROSS COUPLING REJECTION VS. FREQUENCY

ID(ON) VS. TEMPERATURE

OP004601
$\operatorname{RDS}_{(O N)}$ VS. $\mathbf{V}_{\mathbf{I N}}$

LOGIC INTERFACE CIRCUITS

When operating with TTL logic it is necessary to use pullup resistors as shown in Figures 6 and 7. This ensures the necessary positive voltages for proper gating action.

Figure 7: Interfacing with +5V Logic

LC000411
Figure 8: Interfacing with +15 V Open Collector Logic

THEORY OF OPERATION

The IH5025 series differs from the IH5009 series in that they may be driven by floating outputs. This family is generally used when operating into the non-inverting input of an operational amplifier, while the IH 5009 series is used in operations where the output feeds into the inverting (virtual ground) input.

The IH5025 model is a basic charge area switching device, in that proper gating action depends upon the capacitance vs. voltage relationship for the diode junctions. This C vs. V, when integrated, produces total charge Q. It is Q total which is switched between the series diode and the gate to source and gate to drain junctions. The charge area (C vs. V) for the diode has been chosen to be a minimum of four (4) times the area of the gate to source junction, thus providing adequate safety margins to insure proper switching action.

If normal logical voltage levels of ground to +15 V (open collector TTL) are used, only signals which are between OV and +10 V can be switched. The pinch-off range of the P -

Channel FET has been selected between 2.0V and 3.9 V ; thus with +15 V at the logical input, and a +10 V signal input, 1.1V of margin exists for turn-off. When the IH5025 is used with 5V TTL logic, a maximum of +1 V can be switched. The gate of each FET has been brought out so that a 'referral resistor" can be placed between gate and source. This is used to minimize charge injection effects. The connection is shown below:

Figure 9
For switching levels $>+10 \mathrm{~V}$, the +15 V power supply must be increased so that there is a minimum of 5 V of difference between supply and signal. For example, to switch +15 V level, +20 V TTL supply is required. Up to +20 V levels can be gated.

APPLICATIONS

Figure 10: Multiplexer from ${ }^{\text {AFOO1201 }}$ Positive Output Transducers

AF001301
Figure 11: Sample and Hold Switch

APPLICATIONS (CONT.)

Figure 12: Switching up to +20 V Signals with ${ }^{\text {AFonan1 }}$ Logic

NOTE: TO SWITCH - 10 VAC (20V 2) ((1) INCREASE $5 V$ SUPPLY TO +10V.
(2) INCREASE TTL SUPPLY FROM + 15 V TO +25V.
Figure 13: Switching Bipolar Signals with TTL Logic

APPLICATIONS (CONT.)

Figure 14: Switching Bipolar Signals with TTL Logic (Alternate Method)

AF00191
Figure 15: Using the IH5028 as a Dual SPDT Switch to Drive Ladder Networks for Bipolar Switching (up to $\pm 10 \mathrm{~V}$)

Figure 16: Gain Control with High Input Impedance

GENERAL DESCRIPTION

The IH5040 family of solid state analog switches use an improved, high voltage CMOS monolithic technology. These devices provide ease-of-use and performance advantages not previously available from solid state switches. This improved CMOS technology provides input overvoltage capability to ± 25 volts without damage to the device, and destructive latch-up has been eliminated. Early CMOS switches were destroyed when power supplies were removed with an input signal present. The IH5040 CMOS technology has eliminated this serious problem.

Key performance advantages of the 5040 series are TTL compatibility and ultra low-power operation. The quiescent current requirement is less than $1 \mu \mathrm{~A}$. Also, the 5040 guarantees Break-Before-Make switching, accomplished by extending the ton time (300ns TYP.) so that it exceeds $t_{\text {off }}$ time (200ns TYP.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON. The need for external logic required to avoid channel to channel shorting during switching is eliminated.

Many of the 5040 series improve upon and are pin-for-pin and electrical replacements for other solid state switches.

FEATURES

- Switches Greater Than 20Vpp Signals With $\pm 15 \mathrm{~V}$ Supplies
- Quiescent Current Less Than $1 \mu \mathrm{~A}$
- Overvoltage Protection to $\pm 25 \mathrm{~V}$
- Break-Before-Make Switching $t_{\text {off }}$ 200ns, $t_{o n}$ 300ns Typical
- TTL, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- New DPDT \& 4PST Configurations
- Complete Monolithic Construction

ORDERING INFORMATION

IH5040-IH5047

ABSOLUTE MAXIMUM RATINGS

V-GND... $<20 \mathrm{~V}$
VIN-GND.. $<20 \mathrm{~V}$
N-
< 33V
<30V
<30V
< $\pm 22 \mathrm{~V}$
<33V
$<30 \mathrm{~V}$
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$)

PER CHANNEL		TEST CONDITIONS	MIN/MAX LIMITS						UNIT
SYMBOL	CHARACTERISTIC		MILITARY			COMMERCIAL			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
$\operatorname{lin}(\mathrm{ON})$	Input Logic Current	$V_{\text {IN }}=2.4 \mathrm{~V}$ Note 1	± 1	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
IIN(OFF)	Input Logic Current	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ Note 1	± 1	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
rDS(on)	Drain-Source On Resistance	$\begin{aligned} & \text { IS }=10 \mathrm{~mA} \\ & V_{\text {ANALOG }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \end{aligned}$	75	75	150	80	80	130	Ω
$\Delta \mathrm{rDS}(\mathrm{ON})$	Channel to Channel rDS(ON) Match		.	$\begin{gathered} 25 \\ \text { (typ) } \end{gathered}$.		$\begin{gathered} 30 \\ \text { (typ) } \end{gathered}$	ξ	Ω
VANALOG	Min. Analog Signal Handling Capability			$\begin{aligned} & \pm 11 \\ & \text { (typ) } \end{aligned}$			$\begin{aligned} & \pm 10 \\ & \text { (typ) } \end{aligned}$		V
$\begin{aligned} & \mathrm{I}_{\mathrm{D}(\mathrm{OFF})} \\ & \mathrm{IS}(\mathrm{OFF}) \\ & \hline \end{aligned}$	Switch OFF Leakage Current	$\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{~V}$ to +10 V		± 1	100		± 5	100	$n \mathrm{~A}$
$\begin{aligned} & \mathrm{ID}(\mathrm{ON}) \\ & +\mathrm{IS}(\mathrm{ON}) \end{aligned}$	Switch On Leakage Current	$V_{D}=V_{S}=-10 \mathrm{~V}$ to +10 V		± 2	200		± 10	100	nA
t_{0}	Switch "ON" Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \\ & \text { to }+10 \mathrm{~V} \text { See Fig. } 3 \end{aligned}$		750	-		1000	\cdots	ns
toff	Switch 'OFF' Time	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, V_{\text {ANALOG }}=-10 \mathrm{~V} \\ & \text { to }+10 \mathrm{~V} \text { See Fig. } 3 \end{aligned}$	-	350			500		ns
$Q_{\text {(INJ. })}$	Charge Injection	See Fig. 3		$\begin{gathered} 15 \\ \text { (typ) } \\ \hline \end{gathered}$			$\begin{gathered} 20 \\ \text { (typ) } \end{gathered}$.	mV
OIRR	Min. Off Isolation Rejection Ratio	$f=1 \mathrm{MHz}, R_{L}=100 \Omega, C_{L} \leq 5 p F$ See Fig. 5		$\begin{gathered} 54 \\ \text { (typ) } \\ \hline \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB
$\mathrm{I}^{+} \mathrm{Q}$	V^{+}Power Supply Quiescent Current		1	1	10	10	10	100	$\mu \mathrm{A}$
$1^{-} Q$	V^{-}Power Supply Quiescent Current	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \end{aligned}$	1	1	10	10	10	100	$\mu \mathrm{A}$
1^{-}LQ	+5 V Supply Quiescent Current		1	1	10	10	10	100	$\mu \mathrm{A}$
IGND	Gnd Supply Quiescent Current	One ${ }^{\prime}$	1	1	10	10	10	100	$\mu \mathrm{A}$
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	One Channel Off; Any Other Channel Switches as per Fig. 6		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB

Note 1: Typical values are for design aid only, not guaranteed and not subject to production testing.

SWITCH STATES ARE FOR
LOGIC "1" INPUT
(OUTLINE DWG FD-2)
(OUTLINE DWGS DE, JE,
PE)
(OUTLINE DWG TO-100)

SPST IH5040
(rDS(on) $<75 \Omega$)

DUAL SPST IH5041
(rDS(on) < 75 Ω)

SPDT IH5042
(rDS(on) $<75 \Omega$)
(DG188 EQUIVALENT)

DUAL SPDT IH5043
(rDS(on) < 75 Ω)
(DG191 EQUIVALENT)

Figure 2: Switching State Diagrams

Figure 2: Switching State Diagrams (Cont.)

IH5040-IH5047

OP005201

FREQUENCY (Hz)
rDS(on) vs POWER SUPPLY
VOLTAGE

TC005301

off State depends on part

TC00540

CHARGE INJECTION vs VANALOG (SEE FIG. B) $C_{L}=10,000 \mathrm{pF}$

OP00510I

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

POWER SUPPLY QUIESCENT CURRENT vS LOGIC
 FREQUENCY RATE

TEST CIRCUITS

NOTE 1: Some channels are turned on by high " 1 " logic inputs and other channels are turned on by low ' 0 ' inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state.

APPLICATIONS

AF00580|

Figure 6: Improved Sample \& Hold Using IH5043

APPLICATIONS (CONT.)

EXAMPLE: If $-V_{\text {ANALOG }}=-10 \mathrm{VDC}$ and $+V_{\text {ANALOG }}=+10 \mathrm{VDC}$ then Ladder Legs are switched between $\pm 10 \mathrm{VDC}$, depending upon state of Logic Strobe.
 AF00210I
Figure 7: Using the CMOS Switch to Drive an R/2R Ladder Network (2 Legs)

Constant gain, constant Q, variable frequency filter which provides simultaneous Lowpass, Bandpass, and Highpass outputs. With the component values shown, center frequenc will be 235 Hz and 23.5 Hz for high and low logic inputs respectively, $Q=100$, and Gain $=100$.

AF002201
Figure 8: Digitally Tuned Low Power Active Filter

Figure 9: Interfacing with TTL Open Collector Logic (Typ. Example for +15 V Case Shown)

LC00060
Figure 10: Interfacing with CMOS Logic

APPLICATIONS (CONT.)

GENERAL DESCRIPTION

The IH5048 family of analog switches is especially made for low charge injection and low leakage. Construction includes our CMOS high level driver circuitry combined with unique 'VARAFET" switches.

FEATURES

- Low Charge Injection-5mV (Typ.)
- Quiescent Current Less Than $1 \mu \mathrm{~A}$
- TTL, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Low rDS(on) - 35Ω (Typ.)
- Pin-Out Compatible With IH5040 Family

ORDERING INFORMATION

NOTE 1. See Switching State diagrams for applicable package equivalency.

SWITCH STATES ARE FOR

DUAL SPST IH5048
(rDS (ON) < 35 Ω)

SS00210

Figure 1: Switching State Diagrams

Figure 1: Switching State Diagrams (Cont.)

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}^{+}-\mathrm{V}^{-}$	< 33V
$V^{+}-V_{D}$	<30V
$V_{D}-V^{-}$	<30V
$V_{D}-V_{S}$	$< \pm 22 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}^{-}$	< 33V
$V_{L}-V_{I N}$	< 30V
V_{L}-GND.	<20V
VIN-GND	< 20V

Current (Any Terminal) < 30mA	
Storage Temperature................... $-65^{\circ} \mathrm{C}$ to $+^{150}{ }^{\circ} \mathrm{C}$	
Operating	
Lead Temperature (Soldering, 10sec)	
Power Dissipation450m	
(All Leads Soldered to a P.C. Board)	
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$)

PER CHANNEL		TEST CONDITIONS	MIN/MAX LIMITS						UNIT
SYMBOL	CHARACTERISTIC		MILITARY			COMMERCIAL			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
$\operatorname{lin}(\mathrm{ON})$	Input Logic Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$ Note 1	± 1	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
IIN(OFF)	Input Logic Current	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ Note 1	± 1	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
rDS(on)	Drain-Source On Resistance	$\begin{aligned} & \text { IS }=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \end{aligned}$		40	60		45	75	Ω
$\Delta \mathrm{rDS}(\mathrm{ON})$	Channel to Channel rDS(ON) Match			$\begin{gathered} 15 \\ \text { (Тур) } \end{gathered}$			$\begin{gathered} 15 \\ \text { (Тур) } \end{gathered}$		Ω
Vanalog	Min. Analog Signal Handling Capability			± 10			± 10	-	V
ID(OFF) IS(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{~V}$ to +10 V	-	± 1	100		± 5	100	nA
$\begin{aligned} & \hline \mathrm{ID}(\mathrm{ON}) \\ & +\mathrm{I}_{\mathrm{S}(\mathrm{ON})} \\ & \hline \end{aligned}$	Switch On Leakage Current	$V_{D}=V_{S}=-10 \mathrm{~V}$ to +10 V		± 2	200	"	± 10	200	nA
ton	Switch "ON" Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \\ & \text { to }+10 \mathrm{~V} \text { See Fig. 2 } \end{aligned}$		500			1000		ns
toff	Switch "OFF" Time	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \\ & \text { to }+10 \mathrm{~V} \text { See Fig. } 2 \end{aligned}$		250			500		ns
$\mathrm{Q}_{\text {(INJ.) }}$	Charge Injection	See Fig. 3		1 (Typ)			2 (Typ)		mV
OIRR	Min. Off Isolation Rejection Ratio	$f=1 \mathrm{MHz}, R_{L}=100 \Omega, C_{L} \leq 5 p F$ See Fig. 4, (Note 1)		$\begin{gathered} 54 \\ \text { (Typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (Typ) } \end{gathered}$		dB
$1^{+} \mathrm{Q}$	V + Power Supply Quiescent Current		1	1	10	10	10	100	$\mu \mathrm{A}$
1^{-0}	V- Power Supply Quiescent Current	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \end{aligned}$	1	1	10	10	10	100	$\mu \mathrm{A}$
I^{-}LQ	+5 V Supply Quiescent Current		1	1	10	10	10	100	$\mu \mathrm{A}$
IGND	Gnd Supply Quiescent Current		1	1	10	10	10	100	$\mu \mathrm{A}$
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	One Channel Off; Any Other Channel Switches as per Performance Characteristics (Note 1)		$\begin{gathered} 54 \\ \text { (Typ) } \end{gathered}$	*		$\begin{gathered} 50 \\ \text { (Typ) } \end{gathered}$		dB

Note 1: Not tested in production.

TEST CIRCUITS

NOTE 1: Some channels are turned on by high ' 1 ' logic inputs and other channels are turned on by low ' 0 ' inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state.

IH5048-IH5051

TYPICAL PERFORMANCE CHARACTERISTICS (Per Channel)

rdS(on) vs Vanalog SIGNAL

OP004921
rDS(on) vs POWER SUPPLY VOLTAGE

CHARGE INJECTION vs VaNALOG (SEE FIG. 3) $C_{L}=10,000 \mathrm{pF}$

OP005301

IH5052/IH5053 QUAD CMOS Analog Switch

GENERAL DESCRIPTION

The IH5052/3 analog switches use an improved, high voltage CMOS technology, which provides performance advantages not previously available from solid state switches. Early CMOS switches were destroyed when power supplies were removed with an input signal present. The INTERSIL CMOS technology has eliminated this serious systems problem. Key performance advantages are TTL compatibility and ultra low-power operation - the quiescent current requirement is less than $10 \mu \mathrm{~A}$.
The IH5052/3 also guarantees Break-Before-Make switching. This is accomplished by extending the toN time (400ns TYP.) such that it exceeds toff time (200 ns TYP.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON, and eliminates the need for external logic required to avoid channel to channel shorting during switching. With a logical ' 0 ' (0.8 V or less) at its control inputs, the IH5052 switches are closed, while the IH5053 switches are closed with a logical " 1 " (2.4V or more) at its control inputs.

FEATURES

- Switches Greater Than 20Vpp Signals With $\pm 15 \mathrm{~V}$ Supplies
- Quiescent Current Less Than $10 \mu \mathrm{~A}$
- Overvoltage Protection to $\pm 25 \mathrm{~V}$
- Break-Before-Make Switching toff 100ns, ton 250ns Typical
- TTL, CMOS Compatible
- Non-Latching With Supply Turn-Off
- IH5052 4 Normally Closed Switches
- IH5053 4 Normally Open Switches

ORDERING INFORMATION

LD00180
Figure 1: Functional Diagram

OUTLINE DWGS
DE, JE
dUAL-IN-LINE PACKAGE

WF01050I
Figure 2: Pin Configurations

ABSOLUTE MAXIMUM RATINGS

$\mathrm{v}^{+}-\mathrm{v}^{-}$	< 33V
$V^{+}-V_{D}$	<30V
$\mathrm{V}_{\mathrm{D}}-\mathrm{V}^{-}$	30V
$V_{D}-V_{S}$	< $\pm 22 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}$	< 33V
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\text {IN }}$	< 30 V
VL-GND	<20V
$\mathrm{V}_{1 \times}$-GND	< 20 V

Current (Any Terminal) $<30 \mathrm{~mA}$
Storage Temperature....................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$
Power Dissipation .. 450 mW
(All Leads Soldered to a P.C. Board)
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {IN }}$-GND
<20V
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions"above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}\right)$

PER CHANNEL		TEST CONDITIONS	MIN/MAX LIMITS							
		MILITARY	COMMERCIAL			UNIT				
SYMBOL	CHARACTERISTIC		$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$		0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
IIN(ON)	Input Logic Current		$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}(\mathrm{IH} 5053)=0.8 \mathrm{~V}(\mathrm{IH} 5052)$	10	± 1	10		± 10		$\mu \mathrm{A}$
IIN(OFF)	Input Logic Current	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}(\mathrm{IH5053})=2.4 \mathrm{~V}(\mathrm{IH5052})$	10	± 1	10		± 10		$\mu \mathrm{A}$	
ros(ON)	Drain-Source On Resistance	$\mathrm{I}=10 \mathrm{~mA}, \mathrm{~V}_{\text {analog }}=-10 \mathrm{~V}$ to +10 V	75	75	100	80	80	100	Ω	
$\triangle \mathrm{PDS}(\mathrm{ON})$	Channel to Channel rDS(ON) Match	*	$\begin{gathered} 25 \\ \text { (typ) } \\ \hline \end{gathered}$			$\begin{gathered} 30 \\ \text { (typ) } \end{gathered}$		Ω	
Vanalog	Min. Analog Signal Handling Capability			$\begin{aligned} & \pm 11 \\ & \text { (typ) } \end{aligned}$			$\begin{aligned} & \pm 10 \\ & \text { (typ) } \end{aligned}$		V	
$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{D}(\mathrm{OFF})} / \\ \mathrm{I} \text { S(OFF) } \\ \hline \end{array}$	Switch OFF Leakage Current	$V_{\text {ANALOG }}=-10 \mathrm{~V}$ to +10 V		± 1	100		± 5	100	nA	
$\begin{aligned} & \text { ID(ON) } \\ & + \text { IS(ON) } \\ & \hline \end{aligned}$	Switch On Leakage Current	$V_{D}=V_{S}=-10 V$ to +10 V		± 2	200		± 10,	100	nA	
ton	Switch "ON" Time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {analog }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}$ See Fig. 3		500			1000		ns	
toff	Switch 'OFF' Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {analog }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See: Fig. } 3 \end{aligned}$		250			500		ns	
$\mathrm{Q}_{\text {(INJ.) }}$	Charge Injection	See Fig. 4		$\begin{gathered} 15 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 20 \\ \text { (typ) } \end{gathered}$		mV	
OIRR	Min. Off Isolation Rejection Ratio	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF} \\ & \text { See Fig. } 5 \end{aligned}$		$\begin{gathered} 54 \\ \text { (typ) } \\ \hline \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB	
1^{+}	$\begin{aligned} & \text { + Power Supply } \\ & \text { Quiescent Current } \end{aligned}$		10	10	- 100	10	10	100	$\mu \mathrm{A}$	
1^{-}	- Power Supply Quiescent Current	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \\ & \text { with GND } \end{aligned}$	10	10	100	10	10	100	$\mu \mathrm{A}$	
IVL	$\begin{aligned} & +5 \mathrm{~V} \text { Supply } \\ & \text { Quiescent Current } \end{aligned}$		10	10	100	10	10	100	$\mu \mathrm{A}$	
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	One Channel Off		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB	

NOTE 1: Typical values are for design aid only, not guaranteed and not subject to production testing.

TEST CIRCUITS

NOTE 1: The 5053 is turned on by high " 1 " logic inputs and the 5052 is turned on by low " 0 " inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state.

TYPICAL PERFORMANCE CHARACTERISTICS (Per Channel)

OP005501
rDS(ON) vs POWER SUPPLY VOLTAGE

CHARGE INJECTION vs V ANALOG
(SEE Figure B) $C_{L}=10,000 \mathrm{pF}$

CROSS COUPLING REJECTION vs FREQUENCY

Cross Coupling Rejection
Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

OFF ISOLATION vs FREQUENCY

Off Isolation Test Circuit

POWER SUPPLY QUIESCENT CURRENT vs LOGIC FREQUENCY RATE

ith level

Logic Input Waveform

LC000911
Figure 6: +15V Open Collector TTL Interface to IH5052/5053

PROGRAMMABLE GAIN NON-INVERTING AMPLIFIER WITH SELECTABLE INPUTS

Figure 7: Active Low Pass Filter with Digitally Selected Break Frequency

AF00240I
TRUTH TABLE (IH5052)

ENABLE	MUX SEQUENCE RATE	SEQUENCER OUTPUT		SWITCH STATES (-DENOTES OFF)			
		$\mathbf{2}^{\mathbf{0}}$	$\mathbf{2}^{\mathbf{1}}$	SW1	SW2	SW3	SW4
	0	0	0	-	-	-	-
1	0	0	0	ON	-	-	-
1	1 pulse	1	0	-	ON	-	-
1	2 pulses	0	1	-	-	-	-
1	3 pulses	1	1	-	-	-	ON
1	4 pulses	0	0	ON	-	-	-

Figure 8: 4-Channel Sequencing MUX

\% IH5052/IH5053

A LATCHING DPDT SWITCH

The latch feature insures positive switching action in response to non-repetitive or erratic commands. The A_{1} and A_{2} inputs are normally low. A HIGH input to A_{2} turns S_{1} and $S_{2} \mathrm{ON}$, a HIGH to A_{1} turns S_{3} and $S_{4} O N$. Desirable for use with limit detectors, peak detectors, or mechanical contact closures.

TRUTH TABLE (IH5052)

COMMAND		STATE OF SWITCHES AFTER COMMAND
A_{2}	$\mathrm{~A}_{1}$	$\mathrm{~S}_{3} \& \mathrm{~S}_{4}$
0	0	$\mathrm{~S}_{1} \& \mathrm{~S}_{2}$
0	1	same

Figure 9: A Latching DPDT

IH5108
 8-Channel Fault Protected CMOS Analog Multiplexer

GENERAL DESCRIPTION

The IH5108 is a dielectrically isolated CMOS monolithic analog multiplexer, designed as a plug-in replacement for the HI508A and similar devices, but adds fault protection to the standard performance. A unique serial MOSFET switch ensures that an OFF channel will remain OFF when the input exceeds the supply rails by up to $\pm 25 \mathrm{~V}$, even with the supply voltage at zero. Further, an ON channel will be limited to a throughput of about 1.5 V less than the supply rails, thus affording protection to any following circuitry such as op amps, D/A converters, etc.
A binary 3-bit address code together with the ENable input allows selection of any one channel, or none at all. These 4 inputs are all TTL compatible for easy logic interface; the ENable input also facilitates MUX expansion and cascading.

FEATURES

- All Channels OFF When Power OFF, for Analog Signals up to $\pm 25 \mathrm{~V}$
- Power Supply Quiescent Current Less Than 1mA
- $\pm 13 \mathrm{~V}$ Analog Signal Range
- No SCR Latchup
- Break-Before-Make Switching
- Pin Compatible With HI-508A
- Any Channel Turns OFF if Input Exceeds Supply Rails by Up to $\pm 25 \mathrm{~V}$
- TTL and CMOS Compatible Binary Address and ENable Inputs

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH 5108 MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 pin CERDIP
IH 5108 IJE	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 pin CERDIP
IH 5108 CPE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 pin plastic DIP

DECODE TRUTH TABLE

$\mathbf{A}_{\mathbf{2}}$	\mathbf{A}_{1}	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{E N}$	ON SWITCH
\mathbf{X}	\mathbf{X}	\mathbf{X}	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

$A_{0}, A_{1}, A_{2}, E N$
Logic " 1 " " $=\mathrm{V}_{\mathrm{AH}} \geq 2.4 \mathrm{~V}$
Logic ' 0 ' $=V_{A L} \leq 0.8 \mathrm{~V}$
(outline dwg JE, PE)

Figure 2: Pin Configuration

CDOO44OI

3 LINE BINARY ADDRESS INPUTS
(1 00 1) AND EN HI
ABOVE EXAMPLE SHOWS CHANNEL 6 TURNED ON

LD001901
Figure 1: Functional Diagram

ABSOLUTE MAXIMUM RATINGS

$V_{\text {IN }}(A, E N)$ to Ground $\ldots \ldots \ldots \ldots \ldots$.

Current (Any Terminal)
20 mA
Operating Temperature
-55 to $125^{\circ} \mathrm{C}$
Storage Temperature -65 to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$
Power Dissipation*
1200 mW

V^{+}to Ground 16V
V^{-}to Ground
-16V
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}\right.$, unless otherwise specified.)

CHARACTERISTIC	MEASURED TERMINAL	$\begin{aligned} & \text { NO } \\ & \text { TESTS } \\ & \text { PER } \\ & \text { TEMP } \end{aligned}$	TEST CONDITIONS	$\begin{aligned} & \text { TYP } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	MAX LIMITS						UNIT
					M SUFFIX			C SUFFIX			
					$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$\begin{aligned} & -20^{\circ} \mathrm{C} / \\ & 0^{\circ} \mathrm{C} \end{aligned}$	$25^{\circ} \mathrm{C}$	$\begin{aligned} & 85^{\circ} \mathrm{C} / \\ & 70^{\circ} \mathrm{C} \end{aligned}$	
SUPPLY											
Supply	1^{+}	1	$\begin{aligned} & V_{E N}=5 \mathrm{~V} \\ & \text { Ali } \mathrm{V}_{\mathrm{ADD}}=0 \mathrm{~V} / 5 \mathrm{~V} \\ & \hline \end{aligned}$	0.5	0.7	0.6	0.5		1.0		mA
Current	1^{-}	1		0.02	0.7	0.6	0.5		1.0		

Note 1. Readings taken 400 ms after the overvoltage occurs.

SWITCHING TIME TEST CIRCUITS

TC00670I

WF00180

Figure 3: $\mathrm{t}_{\text {transition }}$ Switching Test Circuit and Waveforms

Figure 4: topen (Break-Before-Make) Switching Test Circuit and Waveforms

Figure 5: t_{on} and $\mathrm{t}_{\text {off }}$ Switching Test Circuit and Waveforms

SWITCHING TIME TEST CIRCUITS (CONT.)

C00700
Figure 6: Break-Before-Make Delay Test Circuit and Waveforms

DETAILED DESCRIPTION

The IH5108, like all Intersil's multiplexers, contains a set of CMOS switches that form the channels, and driver and decoder circuitry to control which channel turns ON , if any. In addition, the IH5108 contains an internal regulator which provides a fully TTL compatible ENable input that is identical in operation to the Address inputs. This does away with the special conditions that many multiplexer enable inputs require for proper logic swings. The identical circuit conditions of the ENable and Address lines also helps ensure the extension of break-before-make switching to wider multiplexer systems (see applications section).

Another, and more important difference lies in the switching channel. Previous devices have used parallel n and p-channel MOSFET switches. While this scheme yields reasonably good ON resistance characteristics and allows the switching of rail-to-rail input signals, it also has a number of drawbacks. The sources and drains of the switch transistors will conduct to the substrate if the input goes outside the supply rails, and even careful use of diodes cannot avoid channel-to-output and channel-to-channel coupling in cases of input overrange. The IH5108 uses a novel series arrangement of the p - and n -channel switches (Figure 7) combined with a dielectrically isolated process to eliminate these problems.

Figure 7: Series Connection of Channel Switches

Within the normal analog signal range, the inherent variation of switch ON resistance will balance out almost as well as the customary parallel configuration, but as the analog signal approaches either supply rail, even for an ON channel, either the p- or the n-channel will become a source follower, disconnecting the channel (Figure 8). Thus protection is provided for any input or output channel against overvoltage, even in the absence of multiplexer supply voltages. This applies up to the breakdown voltage of the respective switches. Figure 9 shows a more detailed schematic of the channel switches, including the back-gate driver devices which ensure optimum channel ON resistances and breakdown voltage under the various conditions.

Under some circumstances, if the logic inputs are present but the multiplexer supplies are not, the circuit will use the logic inputs as a sort of phantom supply; this could result in an output up to that logic level. To prevent this from

IH5108

DETAILED DESCRIPTION (CONT.)
occurring, simply ensure that the ENable pin is LOW any time the multiplexer supply voltages are missing (Figure 10).

DS00210
Figure 9: Detailed Channel Switch Schematic

DS00220|
Figure 10: Protection Against Logic Input

MAXIMUM SIGNAL HANDLING CAPABILITY

The IH5108 is designed to handle signals in the $\pm 10 \mathrm{~V}$ range, with a typical rDS(on) of 600Ω; it can successfully handle signals up to $\pm 13 \mathrm{~V}$, however, $\mathrm{rDS}(o n)$ will increase to about $1.8 \mathrm{k} \Omega$. Beyond $\pm 13 \mathrm{~V}$ the device approaches an open circuit, and thus $\pm 12 \mathrm{~V}$ is about the practical limit, see Figure 11.

Figure 12 shows the input/output characteristics of an ON channel, illustrating the inherent limiting action of the series switch connection (see Detailed Description), while Figure 13 gives the ON resistance variation with temperature.

SC000101
Figure 11: $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}$ vs Signal Output Voltage @ $\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}$

Figure 12: MUX Output Voltage vs Input Voltage (Channel 1 Shown; All Channels Similar)

Figure 13: Typical rDS(on) Variation With Temperature

USING THE IH5108 WITH SUPPLIES

 OTHER THAN $\pm 15 \mathrm{~V}$The IH 5108 will operate successfully with supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$, however $\mathrm{r}_{\mathrm{DS}}(\mathrm{on})$ increases as supply voltage decreases, as shown in Figure 14. Leakage currents, on the other hand, decrease with a lowering of supply voltage, and therefore the error term product of rDS(on) and leakage current remains reasonably constant. rDS(on) also decreases as signal levels decrease. For high system accuracy [acceptable levels of rDS(on)] the maximum input signal should be 3V less than the supply voltages. The logic levels remain TTL compatible.

APPLICATION NOTES

Further information may be found in:
A003 "Understanding and Applying the Analog Switch,' by Dave Fullagar
A006 "A New CMOS Analog Gate Technology," by Dave Fullagar
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing,'" by Ed Slieger

Figure 14: Typical rDS(on) Variation With Supply Voltages

IH5108 APPLICATIONS INFORMATION

Figure 15: 1 of 16 Channel Multiplexer Using Two IH5108s. Overvoltage Protection Is Maintained Between All Channels, As Is Break-Before-Make Switching.

IH5108
IH5108 APPLICATIONS INFORMATION (CONT.)

DECODE TRUTH TABLE

$\mathbf{A}_{\mathbf{4}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{O N} \mathbf{~ S W I T C H}$
0	0	0	0	0	S 1
0	0	0	0	1	S 2
0	0	0	1	0	S 3
0	0	0	1	1	S 4
0	0	1	0	0	S 5
0	0	1	0	1	S 6
0	0	1	1	0	S 7
0	0	1	1	1	S 8
0	1	0	0	0	S 9
0	1	0	0	1	S 10
0	1	0	1	0	S 11
0	1	0	1	1	S 12
0	1	1	0	0	S 13
0	1	1	0	1	S 14
0	1	1	1	0	S 15
0	1	1	1	1	S 16

DECODE TRUTH TABLE

$\mathbf{A}_{\mathbf{4}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	ON SWITCH
1	0	0	0	0	S 17
1	0	0	0	1	S 18
1	0	0	1	0	S 19
1	0	0	1	1	S 20
1	0	1	0	0	S 21
1	0	1	0	1	S 22
1	0	1	1	0	S 23
1	0	1	1	1	S 24
1	1	0	0	0	S 25
1	1	0	0	1	S 26
1	1	0	1	0	S 27
1	1	0	1	1	S 28
1	1	1	0	0	S 29
1	1	1	0	1	S 30
1	1	1	1	0	S 31
1	1	1	1	1	S 32

Figure 16: 1 Of 32 Multiplexer Using 4 IH5108s and An IH5053 As A Submultiplexer. Note That The IH5053 Is Protected Against Overvoltages By The IH5108s. Submultiplexing Reduces Output Leakage and Capacitance.

IH5116

16-Channel Fault Protected CMOS Analog Multiplexer

GENERAL DESCRIPTION

The IH5116 is a dielectrically isolated CMOS monolithic analog multiplexer, designed as a plug-in replacement for the HI506A and similar devices, but adding fault protection to the standard performance. A unique serial MOSFET switch ensures that an OFF channel will remain OFF when the input exceeds the supply rails by up to $\pm 25 \mathrm{~V}$, even with the supply voltage at zero. Further, an ON channel will be limited to a throughput of about 1.5 V less than the supply rails, thus affording protection to any following circuitry such as op amps, D/A converters, etc. Cross talk onto 'good"' channels is also prevented.

A binary 2-bit address code together with the ENable input allows selection of any channel pair or none at all. These 3 inputs are all TTL compatible for easy logic interface. The ENable input also facilitates MUX expansion and cascading.
ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE	
$\\| \mathrm{H} 5116 \mathrm{MJI}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 pin CERDIP	
$I \mathrm{H} 5116 \mathrm{CJ}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 pin CERDIP	
$I \mathrm{H} 5116 \mathrm{CPI}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 pin Plastic DIP	

Ceramic package available as special order only (IH5116MDI/CDI)

CD031311
Figure 1: Pin Configuration (Outline dwg JE, PE)

FEATURES

- All Channels OFF When Power OFF, for Analog Signals Up to $\pm 25 \mathrm{~V}$
- Power Supply Quiescent Current Less Than 1mA
- $\pm 13 \mathrm{~V}$ Analog Signal Range
- No SCR Latchup
- Break-Before-Make Switching
- TTL and CMOS Compatible Strobe Control
- Pin Compatible With HI506A
- Any Channel Turns OFF If Input Exceeds Supply Rails By Up to $\pm \mathbf{2 5 V}$
- TTL and CMOS Compatible Binary Address and ENable Inputs

DECODE TRUTH TABLE

\mathbf{A}_{3}	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	EN	ON SWITCH
X	X	X	X	0	NONE
0	0	0	0	1	1
0	0	0	1	1	2
0	0	1	0	1	3
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	1	6
0	1	1	0	1	7
0	1	1	1	1	8
1	0	0	0	1	9
1	0	0	1	1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15
1	1	1	1	1	16

Logic " 1 " $=V_{\text {AH }} \geq 2.4 \mathrm{~V} \mathrm{~V}_{\mathrm{ENH}} \geq 2.4 \mathrm{~V}$
Logic ' 0 ' $=V_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$

tO DECODE LOGIC CONTROLLING BOTH riers of muximg

4 LIME BIMARY ADDGESS IWPUTS
(0001) AND EN = 5V
above example shows channels 9 TURNED ON.
Figure 2: Functional Diagram

WF003011
Figure 3: topen $^{\text {(Break-Before-Make) }}$ Switching Test

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\mathrm{IN}}(\mathrm{A}, \mathrm{EN})$ to Ground	-15 V to +15 V	Current (Any Terminal) 20mA
V_{S} or V_{D} to V^{+}	+25 V to -40 V	Operating Temperature -55 to $+125^{\circ} \mathrm{C}$
V_{S} or V_{D} to V^{-}	-25 V to +40 V	Storage Temperature..................... -65 to $+150^{\circ} \mathrm{C}$
V^{+}to Ground	16 V	Lead Temperature (Soldering, 10sec)300 ${ }^{\circ} \mathrm{C}$
V^{-}to Ground	-16V	Power Dissipation*................................... 1200mW

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}\right.$, unless otherwise specified.)

GENERAL DESCRIPTION

The IH5140 Family of CMOS monolithic switches utilizes Intersil's latch-free junction isolated processing to build the fastest switches currently available. These switches can be toggled at a rate of greater than 1 MHz with super fast $t_{\text {on }}$ times (80ns typical) and faster $\mathrm{t}_{\text {off }}$ times (50ns typical), guaranteeing break before make switching. This family of switches combines the speed of the hybrid FET DG180 family with the reliability and low power consumption of a monolithic CMOS construction.

OFF leakages are guaranteed to be less than 200pA at $25^{\circ} \mathrm{C}$. Very low quiescent power is dissipated in either the ON or the OFF state of the switch. Maximum power supply current is $1 \mu \mathrm{~A}$ from any supply and typical quiescent currents are in the 10 nA range which makes these devices ideal for portable equipment and military applications.

The IH5140 Family is completely compatible with TTL $(5 \mathrm{~V}$) logic, TTL open collector logic and CMOS logic. It is pin compatible with Intersil's IH5040 family and part of the DG180/190 family as shown in the switching state diagrams.

ORDERING INFORMATION

Order Part Number	Function	Package	Temperature Range
IH5140 MJE IH5140 CJE IH5140 CPE IH5140 MFD	SPST SPST SPST SPST	16 Pin CERDIP 16 Pin CERDIP 16 Pin Plastic DIP 14 Pin Flat Pack	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$
IH5141 MJE IH5141 CJE IH5141 CPE H55141 MFD IH5141 CTW IH5141 MTW	Dual SPST Dual SPST	16 Pin CERDIP 16 Pin CERDIP 16 Pin Plastic DIP 14 Pin Flat Pack TO-100 TO-100	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH5142 MJE IH5142 CJE - H5142 CPE IH5142 MFD IH5142 CTW IH5142 MTW	$\begin{aligned} & \text { SPDT } \\ & \text { SPDT } \end{aligned}$	16 Pin CERDIP 16 Pin CERDIP 16 Pin Plastic DIP 14 Pin Flat Pack TO-100 TO-100	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH5143 MJE IH5143 CJE IH5143 CPE IH5143 MFD	Dual SPDT Dual SPDT Dual SPDT dual SPDT	16 Pin CERDIP 16 Pin CERDIP 16 Pin Plastic DIP 14 Pin Flat Pack	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$
IH5144 MJE IH5144 CJE IH5144 CPE IH5144 MFD IH5144 CTW IH5144 MTW	DPST DPST DPST DPST DPST DPST	16 Pin CERDIP 16 Pin CERDIP 16 Pin Plastic DIP 14 Pin Flat Pack TO-100 TO-100	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$
IH5145 MJE IH5145 CJE IH5145 CPE IH5145 MFD	Dual DPST Dual DPST Dual DPST Dual DPST	16 Pin CERDIP 16 Pin CERDIP 16 Pin Plastic DIP 14 Pin Flat Pack	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$

Note: 1. Ceramic (side braze) devices also available; consult factory.
2. MIL temp range parts also available with MIL-STD-883 processing.

FEATURES

- Super Fast Break-Before-Make Switching
- ton 80ns Typ, toff 50ns Typ (SPST Switches)
- Power Supply Currents Less Than $1 \mu \mathrm{~A}$
- OFF Leakages Less Than 100pA @ $25^{\circ} \mathrm{C}$ Guaranteed
- Non-latching With Supply Turn-off
- Single Monolithic CMOS Chip
- Plug-in Replacements for IH5040 Family and Part of the DG180 Family to Upgrade Speed and Leakage
- Greater Than 1 MHz Toggle Rate
- Switches Greater Than 20Vp-p Signals With $\pm 15 \mathrm{~V}$ Supplies
- TTL, CMOS Direct Compatibility

Figure 1: Functional Diagram Typical Driver/ Gate - IH5142

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}^{+}-\mathrm{V}^{-}$	< 33V
$V^{+}-V_{D}$	<30V
$V_{D}-V^{-}$	< 30V
$V_{D}-V_{S}$	< $\pm 22 \mathrm{~V}$
$V_{L}-V^{-}$	< 33V
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\text {IN }}$	< 30V
V_{L}	< 20V
VIN	< 20V

Storage Temperature................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Operating Temperature $\ldots \ldots \ldots \ldots \ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$Lead Temperature (Soldering 10sec) $\ldots \ldots \ldots \ldots \ldots \ldots .300^{\circ} \mathrm{C}$Power Dissipation 450 mW

(All Leads Soldered to a P.C. Board)
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$)

PER CHANNEL		TEST CONDITIONS	MIN/MAX LIMITS						UNIT
	CHARACTERISTIC		MILITARY			COMMERCIAL			
SYMBOL			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
LOGIC INPUT									
IINH	Input Logic Current	$\mathrm{V}_{\mathbb{N}}=2.4 \mathrm{~V}$ Note 1	± 1	± 1	10		± 10	10	$\mu \mathrm{A}$
IINL	Input Logic Current	$\mathrm{V}_{1 \mathrm{~N}}=0.8 \mathrm{~V}$ Note 1	± 1	± 1	10		± 10	10	$\mu \mathrm{A}$
SWITCH									
rDS(on)	Drain-Source On Resistance	$\begin{aligned} & I_{S}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \end{aligned}$	50	50	75	75	75	100	Ω
$\Delta \mathrm{D}$ (${ }^{\text {(on) }}$	Channel to Channel rDS(on) Match			$\begin{gathered} 25 \\ \text { (typ) } \\ \hline \end{gathered}$			$\begin{gathered} 30 \\ \text { (typ) } \\ \hline \end{gathered}$		Ω
VANALOG	Min. Analog Signal Handling Capability			$\begin{aligned} & \pm 11 \\ & \text { (typ) } \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 10 \\ & \text { (typ) } \\ & \hline \end{aligned}$		V
$l_{\mathrm{D}(\mathrm{off})}+$ IS(off)	Switch OFF Leakage Current	$\begin{aligned} & V_{D}=+10 \mathrm{~V}, V_{S}=-10 \mathrm{~V} \\ & V_{D}=-10 \mathrm{~V}, V_{S}=+10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm .5 \\ & \pm .5 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	nA
$\begin{aligned} & \mathrm{I}_{\mathrm{D}(\mathrm{on})}+ \\ & \mathrm{I}_{\mathrm{S}(\mathrm{on})} \end{aligned}$	Switch On Leakage Current	$V_{D}=V_{S}=-10 \mathrm{~V}$ to +10 V		± 1	200		± 2	200	$n A$
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	One Channel Off; Any Other Channel Switches See Performance Characteristics		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$	- ${ }^{\text {b }}$		$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB
$\begin{aligned} & t_{\text {on }} \\ & t_{\text {off }} \\ & \hline \end{aligned}$	Switch "ON" Time Switch 'OFF" Time	See switching time specifications and timing diagrams.							
$\mathrm{Q}_{(\text {INJ.) }}$	Charge Injection	See Performance Characteristics		$\begin{gathered} 10 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 15 \\ \text { (typ) } \end{gathered}$		pC
OIRR	Min. Off Isolation Rejection Ratio	$f=1 \mathrm{MHz}, R_{L}=100 \Omega, C_{L} \leq 5 p F$ See Performance Characteristics		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB
SUPPLY									
1^{+}	+ Power Supply Quiescent Current	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \end{aligned}$ See Performance Characteristics	1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$
1^{-}	- Power Supply Quiescent Current		1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$
IL	+5 V Supply Quiescent Current		1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$
$I_{\text {GND }}$	Gnd Supply Quiescent Current		1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$

NOTES: 1 . Some channels are turned on by high (1) logic inputs and other channels are turned on by low (0) inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to find logical value of logic input required to produce ON or OFF state.
2. Typical values are for design aid only, not guaranteed and not subject to production testing.

TYPICAL PERFORMANCE CHARACTERISTICS

rDS(on) vs. Power Supplies

OP006501
Power Supply Currents vs. Logic Strobe Rate

OP011101
Channel to Channel Cross Coupling Rejection vs. Frequency

SWITCHING TIME SPECIFICATIONS

($\mathrm{t}_{\mathrm{on}}, \mathrm{t}_{\text {off }}$ are maximum specifications and $\mathrm{t}_{\mathrm{on}}-\mathrm{t}_{\text {off }}$ is minimum specifications)

PART NUMBER	SYMBOL	CHARACTERISTIC	TEST CONDITIONS	MILITARY			COMMERCIAL			UNIT
				$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
IH5140- 5141	ton toff $t_{0 n-t_{0 f f}}$	Switch "ON" time Switch "OFF" time Break-before-make	$\underset{*}{\text { Figure }} 2$		$\begin{gathered} 100 \\ 75 \\ 10 \end{gathered}$			$\begin{gathered} 150 \\ 125 \\ 5 \end{gathered}$		ns
	ton toff $t_{0 n-t}$ off	Switch "ON" time Switch "OFF" time Break-before-make	Figure 3		$\begin{gathered} 150 \\ 125 \\ * 10 \text { (typ) } \\ \hline \end{gathered}$			$\begin{gathered} 175 \\ 150 \\ 5 \end{gathered}$		ns
$\begin{array}{r} \text { IH5142- } \\ 5143 \end{array}$	ton toff $t_{0 \text { on }}$-toff	Switch 'ON" time Switch 'OFF' time Break-before-make	Figure 2*		$\begin{gathered} 175 \\ 125 \\ 10 \end{gathered}$			$\begin{gathered} 250 \\ 150 \\ 5 \\ \hline \end{gathered}$		ns
	ton toff $t_{0 n-t}$ off	Switch "ON" time Switch "OFF" time Break-before-make	Figure 3		$\begin{gathered} 200 \\ 125 \\ * 10(\text { typ) }) \end{gathered}$			$\begin{gathered} 300 \\ 150 \\ 5 \end{gathered}$		ns
	t_{0} $t_{0 f f}$ ton-toff	Switch "ON" time Switch "OFF" time Break-before-make	Figure 4		$\begin{gathered} 175 \\ 125 \\ 10 \end{gathered}$			$\begin{gathered} 250 \\ 150 \\ 5 \end{gathered}$		ns
	ton toff $t_{0 n-t}$ off	Switch "ON" time Switch "OFF" time Break-before-make	Figure 5		$\begin{gathered} 200 \\ 125 \\ 10 \end{gathered}$			$\begin{gathered} 300 \\ 150 \\ 5 \end{gathered}$		ns
IH51445145	t_{0} toff $t_{\text {on- }}{ }^{-1}$ off	Switch "ON" time Switch "OFF" time Break-before-make	Figure 2		$\begin{gathered} 175 \\ 125 \\ 10 \end{gathered}$			$\begin{gathered} 250 \\ 150 \\ 5 \\ \hline \end{gathered}$		ns
	ton toff $t_{0 n-t_{0 f f}}$	Switch "ON" time Switch "OFF" time Break-before-make	Figure 3		$\begin{array}{r} 200 \\ 125 \\ * 10 \\ \hline \end{array}$			$\begin{gathered} 300 \\ 150 \\ 5 \end{gathered}$		ns

NOTE: SWITCHING TIMES ARE MEASURED @ 90% PTS. * Typical values for design aid only, not guaranteed nor subject to production testing.

TC007111
Figure 2.

Figure 5.

DUAL SPDT
IH5143 (rDS(on) < 75 $)$
SWITCH STATES ARE FOR LOGIC " 1 " INPUT
Figure 6: Switching State Diagrams

FLATPACK (FD-2)	DIP (JE, PE)	TO-100
		SS004601
FLATPACK (FD-2) Figure 6:	DUAL DPST IH5145 (rDS(on) < 75 Ω) witching State Diag	DIP (JE, PE) (DG185 EQUIVALENT) (Cont.)

TYPICAL SWITCHING WAVEFORMS SCALE: VERT. $=5 \mathrm{~V} / \mathrm{DIV}$. HORIZ. $=100 \mathrm{~ns} / \mathrm{DIV}$.
ttil open collector logic drive (Corresponds to Figure 8)

$-55^{\circ} \mathrm{C}$

$+25^{\circ} \mathrm{C}$

$+125^{\circ} \mathrm{C}$

WF00470
TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 9)

$-55^{\circ} \mathrm{C}$

$+25^{\circ} \mathrm{C}$

$+125^{\circ} \mathrm{C}$
WF002501

TYPICAL SWITCHING WAVEFORMS (CONT.)

TTL OPEN COLLECTOR LOGIC DRIVE
(Corresponds to Figure 10)

$+25^{\circ} \mathrm{C}$
WF002701

TTL OPEN COLLECTOR LOGIC DRIVE
(Corresponds to Figure 11)

$+25^{\circ} \mathrm{C}$

WF002801

APPLICATION NOTE

To maximize switching speed on the IH5140 family, TTL open collector logic (15 V with a $1 \mathrm{k} \Omega$ or less collector resistor) should be used. This configuration will result in (SPST) $t_{\text {on }}$ and $t_{\text {off }}$ times of 80 ns and 50 ns , for signals between -10 V and +10 V . The SPDT and DPST switches are approximately 30 ns slower in both $\mathrm{t}_{\text {on }}$ and $\mathrm{t}_{\text {off }}$ with the same drive configuration. 15V CMOS logic levels can be used (0 V to +15 V), but propagation delays in the CMOS logic will slow down the switching (typical 50ns $\rightarrow 100 \mathrm{~ns}$ delays).

When driving the IH5140 Family from either +5V TTL or CMOS logic, switching times run 20ns slower than if they were driven from +15 V logic levels. Thus $t_{o n}$ is about 105 ns , and $\mathrm{t}_{\mathrm{off}} 75 \mathrm{~ns}$ for SPST switches, and 135 ns and 105ns ($t_{\text {on }}, t_{\text {off }}$) for SPDT or DPST switches. The low level drive can be made as fast as the high level drive if $\pm 5 \mathrm{~V}$ strobe levels are used instead of the usual $\mathrm{OV} \rightarrow+3.0 \mathrm{~V}$ drive. Pin 13 is taken to -5 V instead of the usual GND and strobe input is taken from +5 V to -5 V levels as shown in Figure 7.

The typical channel of the IH5140 family consists of both P and N -channel MOSFETs. The N -channel MOSFET uses a 'Body Puller' FET to drive the body to $-15 \mathrm{~V}(\pm 15 \mathrm{~V}$ supplies) to get good breakdown voltages when the switch is in the off state (See Fig. 8). This 'Body Puller" FET also allows the N -channel body to electrically float when the switch is in the on state producing a fairly constant $\mathrm{R}_{\mathrm{DS}}(\mathrm{ON})$ with different signal voltages. While this 'Body Puller' FET improves switch performance, it can cause a problem when analog input signals are present (negative signals only) and power supplies are off. This fault condition is shown in Figure 9.

Current will flow from -10 V analog voltage through the drain to body junction of Q1, then through the drain to body junction of Q3 to GND. This means that there is 10 V across two forward-biased silicon diodes and current will go to whatever value the input signal source is capable of supplying. If the analog input signal is derived from the same supplies as the switch this fault condition cannot
occur. Turning off the supplies would turn off the analog signal at the same time.

This fault situation can also be eliminated by placing a diode in series with the negative supply line (pin 14) as shown in Figure 10. Now when the power supplies are off and a negative input signal is present this diode is reverse biased and no current can flow.

Figure 7.

Figure 9.

APPLICATION NOTE (CONT.)

Figure 10.

APPLICATIONS

Figure 11: Improved Sample and Hold Using IH5143

AF003311
EXAMPLE: If $-V_{\text {ANALOG }}=-10 \mathrm{VDC}$ and $+\mathrm{V}_{\text {ANALOG }}=+10 \mathrm{VDC}$ then Ladder Legs are switched between $\pm 10 \mathrm{VDC}$, depending upon state of Logic Strobe.

Figure 12: Using the CMOS Switch to Drive an R/2R Ladder Network (2 Legs)

APPLICATIONS (CONT.)

CONSTANT GAIN, CONSTANT Q, VARIABLE FREQUENCY FILTER WHICH PROVIDES SIMULTANEOUS LOWPASS, BANDPASS, AND HIGHPASS OUTPUTS. WITH THE COMPONENT VALUES SHOWN, CENTER FREQUENCY WILL BE 235 Hz AND 23.5 Hz FOR HIGH AND LOW LOGIC INPUTS RESPECTIVELY, $\mathrm{Q}=100$, AND GAIN $=100$.

$$
\mathrm{f}_{\mathrm{n}}=\text { CENTER FREQUENCY }=\frac{1}{2 \pi R C}
$$

Figure 13: Digitally Tuned Low Power Active Filter

IH5148-IH5151
 High-Level CMOS
 Analog Switches

GENERAL DESCRIPTION

The IH5148 family of solid state analog switches are designed using an improved, high voltage CMOS technology. Destructive latchup has been eliminated. Early CMOS switches were destroyed when power supplies were removed with an input signal present; the IH5148 CMOS technology has eliminated this problem.

Key performance advantages of the 5148 series are TTL compatibility and ultra low-power operation. RDS(on) Switch resistance is typically in the 14Ω To 18Ω Area, for Signals in the -10 V to +10 V range. Quiescent current is less than $10 \mu \mathrm{~A}$. The 5148 also guarantees Break-Before-Make switching which is logically accomplished by extending the toN time (200nsec typ.) such that it exceeds toff time $120 n s e c$ typ.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON. The need for external logic required to avoid channel to channel shorting during switching is thus eliminated.

Many of the devices in the 5148 series are pin-for-pin compatible with other analog switches, and offer improved electrical characteristics.

FEATURES

- Low $R_{D S}(O N)-25 \Omega$
- Switches Greater Than 20Vpp Signals With $\pm 15 \mathrm{~V}$ Supplies
- Quiescent Current Less Than $100 \mu \mathrm{~A}$
- Break-Before-Make Switching toff 120nsec, Typ. ton 200nsec Typical
- TTL, CMOS Compatible
- Non-Latching With Supply Turn-Off
- Complete Monolithic Construction
- $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ Supply Range

CMOS ANALOG SWITCH PRODUCT CONDITIONING

- The Following Processes Are Performed 100\% in Accordance With MIL-STD-883
- Precap Visual - Method 2010, Cond. B
- Stabilization Bake - Method 1008
- Temperature Cycle - Method 1010
- Centrifuge - Method 2001, Cond. E
- Hermeticity - Method 1014, Cond. A, C
- (Leak Rate $<5 \times 10^{-7} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$)

ORDERING INFORMATION

ORDER PART NUMBER	FUNCTION	PACKAGE	TEMPERATURE RANGE	HARRIS EQUIVALENT
IH5148MJE	Dual SPST	16 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	HI-5048
IH5148CJE	Dual SPST	16 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	HI-5048
IH5148CPE	Dual SPST	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	HI-5048
IH5148MFD	Dual SPST	14 Pin Flat Pack	$-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	HI-5048
IH5148CTW	Dual SPST	TO-100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	HI-5048
IH5148MTW	Dual SPST	TO-100	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	HI-5048
IH5149MJE	Dual DPST	16 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	HI-5049
IH5149CJE	Dual DPST	16 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	HI-5049
IH5149CPE	Dual DPST	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	HI-5049
IH5149MFD	Dual DPST	14 Pin Flat Pack	$-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	HI-5049
IH5150MJE	SPDT	16 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	HI-5050
IH5150CJE	SPDT	16 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	HI-5050
IH5150CPE	SPDT	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	HI-5050
IH5150MFD	SPDT	14 Pin Flat Pack	$-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	HI-5050
IH5150CTW	SPDT	TO-100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	HI-5050
IH5150MTW	SPDT	TO-100	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	HI-5050
IH5151MJE	Dual SPDT	16 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	HI-5051
IH5151CJE	Dual SPDT	16 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	HI-5051
IH5151CPE	Dual SPDT	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	HI-5051
IH5151MFD	Dual SPDT	14 Pin Flat Pack	$-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	HI-5051

NOTES: 1. Ceramic (side braze) devices also available; consult factory.
2. MIL temp range parts also available with MIL-STD-883 processing.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}^{+}, \mathrm{V}^{-}$	< 36V
V^{+}, V_{D}	<30V
V_{D}, V	< 30V
V_{D}, V_{S}	< $\pm 22 \mathrm{~V}$
V_{L}, V^{-}	< 33V
$V_{L}, V_{\text {IN }}$	< 30V
V_{L}	< 20V
$V_{\text {IN }}$.	< 20V

Current (Any Terminal)	A
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)	$300^{\circ} \mathrm{C}$
Power Dissipation	
(All Leads Soldered to a P.C. Board)	
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$	

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 1: Functional Diagram (Typical Switch Schematic-IH5150 in 16 pin DIP PKG.)

IH5148-IH5151

ELECTRICAL CHARACTERISTICS ($T_{\mathrm{A}} @ 25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$)

PER CHANNEL		TEST CONDITIONS	MIN/MAX LIMITS						UNIT
SYMBOL	CHARACTERISTIC		MILITARY			COMMERCIAL			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
IIN(ON)	Input Logic Current	$\mathrm{V}_{\mathbb{N}}=2.4 \mathrm{~V}$ (Note 1)	± 1	± 1	± 10		± 1	± 10	$\mu \mathrm{A}$
lin(OFF)	Input Logic Current	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ (Note 1)	± 1	± 1	± 10		± 1	± 10	$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	Drain-Source On Resistance	$V_{D}= \pm 10 \mathrm{~V}, \mathrm{Is}^{\prime}=-10 \mathrm{~mA}$	25	25	50		30		Ω
$\triangle \mathrm{R}_{\text {DS }}(\mathrm{ON})$	Channel to Channel RDS(ON) Match			$\begin{gathered} 10 \\ \text { (Typ) } \end{gathered}$,		$\begin{gathered} 15 \\ \text { (Typ) } \\ \hline \end{gathered}$		Ω
$V_{\text {ANALOG }}$	Min. Analog Signal Handling Capability			$\begin{aligned} & \hline \pm 14 \\ & \text { (Typ) } \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 14 \\ & \text { (Typ) } \\ & \hline \end{aligned}$		V
ID(OFF) IS(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{~V}$ to +10 V		± 0.5	50		± 1.0	100	nA
$\begin{gathered} \mathrm{I}_{\mathrm{D}(\mathrm{ON})+}{ }^{\mathrm{S}(\mathrm{ON})} \end{gathered}$	Switch On Leakage Current	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$ to +10 V		± 1.0	100		± 2.0	100	nA
$Q_{(1 N J)}$	Charge Injection	See Figure 4		$\begin{aligned} & (10) \\ & (\text { Typ) } \end{aligned}$			$\begin{aligned} & (10) \\ & \text { (Typ) } \end{aligned}$		mV
OIRR	Min. Off Isolation Rejection Ratio	$\begin{aligned} & 1=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF} \\ & \text { See Figure } 5 \end{aligned}$		$\begin{gathered} 54 \\ \text { (Typ) } \\ \hline \end{gathered}$			$\begin{gathered} 50 \\ \text { (Typ) } \\ \hline \end{gathered}$		dB
SUPPLY									
1^{+}	+ Power Supply Quiescent Current	$\begin{aligned} & \mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V} . \\ & \mathrm{V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \end{aligned}$	10	10	100		10		$\mu \mathrm{A}$
1^{-}	- Power Supply Quiescent Current		10	10	100		10		$\mu \mathrm{A}$
L	+5 V Supply Quiescent Current		10	10	100		10		$\mu \mathrm{A}$
IGND	Gnd Supply Quiescent Current		10	10	100		10		$\mu \mathrm{A}$
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	One Channel Off; Any Other Channel Switches as per Figure 8		$\begin{gathered} 54 \\ \text { (Typ) } \end{gathered}$			50		dB

NOTE 1: Some channels are turned on by high " 1 ' logic inputs and other channels are turned on by low " 0 ' inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to find logical value of logic input required to produce "ON" or "OFF" state.

SWITCHING TIME SPECIFICATION
 IH5148 SPST SWITCH

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
$t_{\text {on }}$	Switch "on" time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V}$		250	ns
$\mathrm{t}_{\text {off }}$	Switch 'off' time	TO +10 V ; See Figures 3 and 6		200	ns

IH5149 DPST SWITCH

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
$\mathrm{t}_{\text {on }}$	Switch "on" time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V}$		350	ns
$\mathrm{t}_{\text {off }}$	Switch "off" time	$\mathrm{T}_{\mathrm{O}}+10 \mathrm{~V} ;$ See Figures 3 and 6		250	ns

IH5150 \& IH5151 SPDT SWITCH

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
$\mathrm{t}_{\text {on }}$	Switch "on" time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, V_{\text {ANALOG }}=-10 \mathrm{~V}$		500	ns
$\mathrm{t}_{\text {off }}$	Switch "off" time	$\mathrm{T}_{\mathrm{O}}+10 \mathrm{~V} ;$ See Figures 3 and 6		250	ns

NOTE 2: For IH5150 \& IH5151 devices, channels which are off for logic input $\geq 2.4 \mathrm{~V}$ (Pins $3 \& 4$ on 5150 , \& Pins $3 \& 4,5 \& 6$ on 5151) have slower ton time, than channels on Pins $1,16, \& 8,9$. This is done so switch will maintain break-before-make action when connected in DT configuration, i.e. Pin 1 connected in Pin 3.

SWITCH STATES ARE FOR LOGIC "1" INPUT
(TW) PACKAGE
DUAL SPST IH5148

DUAL DPST IH5149

SS007701

SS007801

SPDT IH5150

SS00790

SS008001

SS00810I

DUAL SPDT IH5151

Figure 2: Switching State Diagrams

TEST CIRCUITS

TYPICAL PERFORMANCE CHARACTERISTICS (Per Channel)

RDS(ON) @ $\pm 15 \mathrm{~V}, \pm 5 \mathrm{~V}$ SUPPLIES

CROSS COUPLING

OP05681।

CROSS COUPLING REJECTION TEST CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
OFF ISOLATION vs FREQUENCY

FREQUENCY (Hz)

TC033111

OFF ISOLATION TEST CIRCUIT

POWER SUPPLY QUIESCENT CURRENT vs LOGIC FREQUENCY RATE

TC033411

LOGIC INPUT WAVEFORM

Figure 6: Switching Time Test Circuit

IH5148-IH5151

Nulling Out Charge Injection:

Charge injection (Qinv. on spec. sheet) is caused by gate to drain, or gate to source capacitance of the output switch MOSFET. The gates of these MOSFETs typically swing from -15 V to +15 V as a rapidly changing pulse; thus this 30 Vpp pulse is coupled through gate capacitance to output load capacitance, and the output 'step' is a voltage divider from this combination. For example:
Qinject (Vpp) $\cong \frac{C_{\text {gate }}}{C_{\text {Load }}} \times 30 \mathrm{~V}$ step.
i.e.
$C_{\text {gate }}=1.5 \mathrm{pF}, C_{\text {Load }}=1000 \mathrm{pF}$, then
Qinject $(V p p)=\frac{1.5 \mathrm{pF}}{1000 \mathrm{pF}} \times 30 \mathrm{~V}$ step $=45 \mathrm{mVpp}$
Thus if you are using switch in a Sample \& Hold application with $\mathrm{C}_{\text {sample }}=1000 \mathrm{pF}$, a 45 mVpp ''Sample to Hold error step' will occur.
To null this error step out to zero the following circuit can be used:

Figure 7: Adjustable Charge Injection Compensation Circuit

The circuit shown above nulls out charge injection effects on switch pins 1 and 16; a similar circuit would be required on switch pins 8 and 9.
Simply adjust the pot until $\mathrm{V}_{\text {OUT }}=0 \mathrm{mVpp}$ pulse, with $V_{\text {ANALOG }}=0 \mathrm{~V}$.

If you do not desire to do any adjusting, but wish the least amount of charge injection possible, then the following circuit should be used:

TC032811
Figure 8: No-Adjust Charge Injection Compensation Circuit

This configuration will produce a typical charge injection of $\mathrm{V}_{\text {OUT }} \leq 10 \mathrm{mV}$ pp into the $1000 \mathrm{pF} \mathrm{S} \& \mathrm{H}$ capacitor shown.

Fault Condition Protection

If your system has analog voltage levels which are independent of the $\pm 15 \mathrm{~V}$ (Power Supplies), and these analog levels can be present when supplies are shut off, you should add fault protection diodes as shown below:

тс033311
Figure 9: Adding Diodes Protects Switch

If the analog input levels are below $\pm 15 \mathrm{~V}$, the pn junctions of Q13 \& Q15 are reversed biased. However if the $\pm 15 \mathrm{~V}$ supplies are shut off and analog levels are still present, the configuration becomes:

If $A N A L O G$ in is greater than $1 \mathrm{~V}_{\mathrm{pn}}$, then pn junction of Q15 is forward biased and excessive current will be drawn. The addition of IN914 diodes prevents the fault currents from destroying the switch. A similar event would occur if ANALOG in was less than or equal to -1V, wherein Q13 would become forward biased. The IN914 diodes form a 'back to back' diode arrangement with Q13 \& Q15 bodies.

This structure provides a degree of overvoltage protection when supplies are on normally, and analog input level exceeds supplies.

This circuit will switch up to about $\pm 18 \mathrm{~V}$ ANALOG overvoltages. Beyond this drain(N) to P (body) breakdown VOLTAGE of Q13 limits overvoltage protection.

IH5208

4-Channel Differential Fault Protected CMOS Analog Multiplexer

GENERAL DESCRIPTION

The IH5208 is a dielectrically isolated CMOS monolithic analog multiplexer, designed as a plug-in replacement for the HI509A and similar devices, but adds fault protection to the standard performance. A unique serial MOSFET switch ensures that an OFF channel will remain OFF when the input exceeds the supply rails by up to $\pm 25 \mathrm{~V}$, even with the supply voltage at zero. Further, an ON channel will be limited to a throughput of about 1.5 V less than the supply raiis, thus affording protection to any following circuitry such as op amps, D/A converters, etc.

A binary 2-bit address code together with the ENable input allows selection of any channel pair or none at all. These 3 inputs are all TTL compatible for easy logic interface; the ENable input also facilitates MUX expansion and cascading.

FEATURES

- All Channels OFF When Power OFF, for Analog Signals Up to $\pm 25 \mathrm{~V}$
- Power Supply Quiescent Current Less Than $1 \mu \mathrm{~A}$
- $\pm 13 \mathrm{~V}$ Analog Signal Range
- No SCR Latchup
- Break-Before-Make Switching
- TTL and CMOS Compatible Strobe Control
- Pin Compatible With HI-509A
- Any Channel Turns OFF If Input Exceeds Supply Rails by Up to $\pm 25 \mathrm{~V}$
- TTL and CMOS Compatible Binary Address and ENable Inputs

ORDERING $\operatorname{INFORMATION}$

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH 5208 MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 pin CERDIP
H H 5208 IJE	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 pin CERDIP
IH 5208 CPE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 pin plastic DIP

2 LINE BINARY ADDRESS INPUTS
(0) 0) AND EN = 1

ABOVE EXAMPLE SHOWS CHANNELS 1a AND ib ON
LD00210)
Figure 1: Functional Diagram

DECODE TRUTH TABLE

\mathbf{A}_{1}	\mathbf{A}_{0}	EN	ON SWITCH PAIR
X	X	0	NONE
0	0	1	$1 \mathrm{a}, 1 \mathrm{~b}$
0	1	1	$2 \mathrm{a}, 2 \mathrm{~b}$
1	0	1	$3 \mathrm{ab}, 3 \mathrm{~b}$
1	1	1	$4 \mathrm{a}, 4 \mathrm{~b}$

$A_{0}, A_{1}, E N$
Logic "'1" $=V_{\text {AH }} \geq 2.4 \mathrm{~V}$
Logic ' 0 ' $=V_{A L} \leq 0.8 \mathrm{~V}$

> TOP VIEW
> CD003201

Figure 2: Pin Configuration
(Outline dwg JE, PE)

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\mathrm{IN}}(\mathrm{A}, \mathrm{EN})$ to Ground	$\mathrm{V},+15 \mathrm{~V}$
V_{S} or V_{D} to V^{+}	+25V, -40V
V_{S} or V_{D} to V^{-}	-25V, + 40V
V^{+}to Ground	16 V
V^{-}to Ground.	-16V
Current (Any Terminal)	20 mA

*All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}$, unless otherwise specified.

[^16]

Figure 3: $\mathrm{t}_{\text {trans }}$ Switching Test

Figure 4: $\mathbf{t}_{\text {open }}$ (Break-Before-Make) Switching Test

Figure 5: t_{on} and $\mathrm{t}_{\text {off }}$ Switching Test

SWITCHING IŃFORMATION (CONT.)

Figure 6: Break-Before-Make Delay Test

DETAILED DESCRIPTION

The IH5208, like all Intersil's multiplexers, contains a set of CMOS switches that form the channels, and driver and decoder circuitry to control which channel turns ON, if any. In addition, the IH5208 contains an internal regulator which provides a fully TTL compatible ENable input that is identical in operation to the Address inputs. This does away with the special conditions that many multiplexer enable inputs require for proper logic swings. The identical circuit conditions of the ENable and Address lines also helps ensure the extension of break-before-make switching to wider multiplexer systems (see applications section).

Another, and more important difference lies in the switching channel. Previous devices have used parallel nand p-channel MOSFET switches. While this scheme yields reasonably good ON resistance characteristics and allows the switching of rail-to-rail input signals, it also has a number of drawbacks. The sources and drains of the switch transistors will conduct to the substrate if the input goes outside the supply rails, and even careful use of diodes cannot avoid channel-to-output and channel-to-channel coupling in cases of input overrange. The IH5208 uses a novel series arrangement of the p - and n -channel switches (Figure 7) combined with the dielectrically isolated process to eliminate these problems.

DS00230
Figure 7: Series Connection of Channel Switches

Within the normal analog signal range, the inherent variation of switch ON resistance will balance out almost as well as the customary parallel configuration, but as the analog signal approaches either supply rail, even for an ON channel, either the p-or the n-channel will become a source follower, disconnecting the channel (Figure 8). Thus protection is provided for any input or output channel against overvoltage, even in the absence of multiplexer supply voltages. This applies up to the breakdown voltage of the respective switches. Figure 9 shows a more detailed schematic of the channel switches, including the back-gate driver devices which ensure optimum channel ON resistances and breakdown voltage under the various conditions.

DETAILED DESCRIPTION (CONT.)

Under some circumstances, if the logic inputs are present but the multiplexer supplies are not, the circuit will use the logic inputs as a sort of phantom supply; this could result in an output up to that logic level. To prevent this from occurring, simply ensure that the ENable pin is LOW any time the multiplexer supply voltages are missing (Figure 10).

DSOO2601
Figure 9: Detailed Channel Switch Schematic

Figure 10: Protection Against Logic Input

MAXIMUM SIGNAL HANDLING CAPABILITY

The IH 5208 is designed to handle signals in the $\pm 10 \mathrm{~V}$ range, with a typical rDS(on) of 600Ω; it can successfully handle signals up to $\pm 13 \mathrm{~V}$, however, rDS(on) will increase to about $1.8 \mathrm{k} \Omega$. Beyond $\pm 13 \mathrm{~V}$ the device approaches an open circuit, and thus $\pm 12 \mathrm{~V}$ is about the practical limit, see Figure 11.

Figure 12 shows the input/output characteristics of an ON channel, illustrating the inherent limiting action of the series switch connection (see Detailed Description), while Figure 13 gives the ON resistance variation with temperature.

Figure 11: rDS(on) $^{\text {vs }}$ Signal Input Voltage @ $T_{A}=+25^{\circ} \mathrm{C}$

SC00060I
Figure 12: MUX Output Voltage vs Input Voltage Channel 1 Shown; All Channels Similar

Figure 13: Typical rDS(on) Variation vs Temperature

IH5208

USING THE IH5208 WITH SUPPLIES OTHER THAN $\pm 15 \mathrm{~V}$

The IH5208 will operate successfully with supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$, however rDS(on) increases as supply voltage decreases, as shown in Figure 14. Leakage currents, on the other hand, decrease with a lowering of supply voltage, and therefore the error term product of $\mathrm{r}_{\mathrm{DS}}(\mathrm{on})$ and leakage current remains reasonably constant. rDS(on) also decreases as signal levels decrease. For high system accuracy [acceptable leveis of $\mathrm{r}_{\mathrm{DS}}(\mathrm{on})$] the maximum input signal should be 3 V less than the supply voltages. The logic thresholds remain TTL compatible.

APPLICATION NOTES

Further information may be found in:
A003 "Understanding and Applying the Analog Switch," by Dave Fuliagar
A006 "A New CMOS Analog Gate Technology," by Dave Fullagar
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing," by Ed Slieger

Figure 14: rDS(on) vs Supply Voltages

IH5208 APPLICATIONS INFORMATION

DECODE TRUTH TABLE

$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	ON SWITCH PAIR
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6
1	1	0	7
1	1	1	8

Figure 15: 2 of 16 Channel Multiplexer Using Two IH5208s. Overvoltage Protection and Break-Before-Make Switching Are Extended to All Channels.

Figure 16: Submultiplexed 2 of 32 System. The Two IH5043s Are Overvoltage Protected By The IH5208s. Submultiplexing Reduces Output Capacitance and Leakage Currents.

GENERAL DESCRIPTION

The IH5216 is a dielectrically isolated CMOS monolithic analog multiplexer, designed as a plug-in replacement for the HI507A and similar devices, but adding fault protection to the standard performance. A unique serial MOSFET switch ensures that an OFF channel will remain OFF when the input exceeds the supply rails by up to $\pm 25 \mathrm{~V}$, even with the supply voltage at zero. Further, an ON channel will be limited to a throughput of about 1.5 V less than the supply rails, thus affording protection to any following circuitry such as op amps, D/A converters, etc. Cross talk onto 'good" channels is also prevented.

A binary 2-bit address code together with the ENable input allows selection of any channel pair or none at all. These 3 inputs are all TTL compatible for easy logic interface. The ENable input also facilitates MUX expansion and cascading.
ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
$I H 5216 \mathrm{MJI}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 pin CERDIP
$I H 5216 \mathrm{CJI}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 pin CERDIP
$I \mathrm{H} 5216 \mathrm{CPI}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 pin Plastic DIP

Ceramic package available as special order only (IH5216MDI/CDI)

FEATURES

- All Channels OFF When Power OFF, for Analog Signals Up to $\pm 25 \mathrm{~V}$
- Power Supply Quiescent Current Less Than 1mA
- $\pm 13 V$ Analog Signal Range
- No SCR Latchup
- Break-Before-Make Switching
- TTL and CMOS Compatible Strobe Control
- Pin Compatible With HI507A
- Any Channel Turns OFF If Input Exceeds Supply Rails By Up to $\pm \mathbf{2 5 V}$
- TTL and CMOS Compatible Binary Address and ENable Inputs

DECODE TRUTH TABLE

\mathbf{A}_{2}	\mathbf{A}_{1}	\mathbf{A}_{0}	EN	ON SWITCH PAIR
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

Logic ' 1 ' $=\mathrm{V}_{\mathrm{AH}}>2.4 \mathrm{~V} \mathrm{~V}_{\mathrm{ENH}}>2.4 \mathrm{~V}$
Logic ' 0 " $=V_{A L}<0.8 \mathrm{~V}$

TO DECODE LOGIC CONTROLLING BOTH TIERS OF MUXIMG

3 LINE BINARY ADDRESS INPUTS
100 0) AND EN $=5 \mathrm{~V}$
ABOVE EXAMPLE SHOWS CHANNELS 1a AND ib ON.

Figure 2: Functional Diagram

TC03850
Figure 3: $\mathrm{t}_{\text {open }}$ (Break-Before-Make) Switching Test

ABSOLUTE MAXIMUM RATINGS

$V_{\text {IN }}(A, E N)$	5 V to +15 V
V_{S} or V_{D} to V^{+}	+25 V to -40 V
V_{S} or V_{D} to V^{-}	-25 V to +40 V
V^{+}to Ground	V

V^{-}to Ground
$-16 \mathrm{~V}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}\right.$, unless otherwise specified.)

IH5341
Dual SPST CMOS RF/Video Switch

GENERAL DESCRIPTION

The 1 H5341 is a dual SPST, CMOS monolithic switch which uses a 'Series/Shunt' ('T' switch) configuration to obtain high "OFF" isolation while maintaining good frequency response in the 'ON' condition.

Construction of remote and portable video equipment with extended battery life is facilitated by the extremely low current requirements. Switching speeds are typically $t_{\text {on }}=150 \mathrm{~ns}$ and $\mathrm{t}_{\text {off }}=80 \mathrm{~ns}$, and "Break-Before-Make" switching is guaranteed.

Switch 'ON' resistance is typically $40 \Omega-50 \Omega$ with $\pm 15 \mathrm{~V}$ power supplies, increasing to typically 175Ω for $\pm 5 \mathrm{~V}$ supplies. The devices are available in TO-100 and 14-pin epoxy DIP packages.

FEATURES

- $\mathrm{RDS}_{\text {D }}$ on) $<75 \Omega$
- Switch Attenuation Varies Less Than 3dB From DC to 100 MHz
- "OFF" Isolation $>60 \mathrm{~dB}$ @ 10 MHz
- Cross Coupling Isolation $>60 \mathrm{~dB} @ 10 \mathrm{MHz}$
- Compatible With TTL, CMOS Logic
- Wide Operating Power Supply Range
- Power Supply Current $<1 \mu \mathrm{~A}$
- "Break-Before-Make'" Switching
- Fast Switching (80ns/150ns Typ)

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH5341 CPD	0 to $+70^{\circ} \mathrm{C}$	14-pin PLASTIC DIP
IH53411TW	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 -pin TO-100
IH5341MTW	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 -pin TO-100

LS007811

Figure 1: Functional Diagram
(Switches are open for a logical " 0 " control input, and closed for a logical " 1 ' control input.)

ABSOLUTE MAXIMUM RATINGS

to Ground	
V^{-}to Ground	17V
V_{L} to Ground	V^{+}to V^{-}
Logic Control Voltage	V^{+}to V^{-}
Analog Input Voltage.	V^{+}to V^{-}
Current (any Terminal)	. 50 mA

Operating Temperature:

(M Version) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
(I Version)	$.25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
(C Version) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
ge Temperature.................. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Temperature (Soldering, 10sec)	$.300^{\circ} \mathrm{C}$
Dissipation	250 mW
Derate above 25	mW/ ${ }^{\circ} \mathrm{C}$

(I Version)............................. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
(C Version) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature.................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$
Power Dissipation ...250mW
(those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS
$\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	TYP	M GRade device			I/C GRADE DEVICE			UNIT
				$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$\begin{gathered} -25 / \\ 0^{\circ} \mathrm{C} \end{gathered}$	$+25^{\circ} \mathrm{C}$	$\begin{array}{r} +85 i \\ +70^{\circ} \mathrm{C} \\ \hline \end{array}$	
$\begin{aligned} & \mathrm{v}^{+} \\ & \mathrm{v}_{\mathrm{L}} \\ & \mathrm{v}^{-} \\ & \hline \end{aligned}$	Supply Voltage Ranges Positive Supply Logic Supply Negative Supply	(Note 3)	$\begin{aligned} & 4.5>16 \\ & 4.5>V^{+} \\ & -4>-16 \end{aligned}$.					V
RDS(on)	Switch 'ON'	$\mathrm{V}_{\mathrm{D}}= \pm 5 \mathrm{~V}$		75	75	100	75	75	100	Ω
	$\begin{aligned} & \text { Resistance } \\ & \text { (Note 4) } \end{aligned}$	$\begin{aligned} & \mathrm{IS}=10 \mathrm{~mA}, \quad \mathrm{~V}_{\mathrm{IN}} \geq 2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \end{aligned}$		125	125	175	150	150	175	
R ${ }_{\text {DS }}(\mathrm{on}$)	Switch "ON" Resistance	$\begin{aligned} & \mathrm{V}^{+}=\mathrm{V}_{\mathrm{L}}=+5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V} \\ & \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 3 \mathrm{~V} \\ & \mathrm{IS}=1 \mathrm{~mA} \\ & \hline \end{aligned}$		250	250	350	300	300	350	
$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$	On Resistance Match Between Channels	$\mathrm{I}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 5 \mathrm{~V}$	5							
$\begin{aligned} & v_{\mathrm{IH}} \\ & v_{\mathrm{IL}} \end{aligned}$	Logical "1" Input Voltage Logical " 0 " Input Voltage		$\begin{aligned} & >2.4 \\ & <0.8 \end{aligned}$							V
$\begin{array}{\|l\|} \hline I_{D(\text { off })} \\ \text { or } \\ I_{\text {S(ff) }} \\ \hline \end{array}$	Switch 'OFF' Leakage (Notes 2 and 4)	$\begin{aligned} & V_{S / D}= \pm 5 \mathrm{~V} \\ & V_{\text {IN }} \leq 0.8 \mathrm{~V} \\ & V_{S / D}= \pm 14 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	
$\begin{array}{\|c\|} \hline \mathrm{I}_{\mathrm{D}(\mathrm{on})} \\ + \\ \mathrm{I}_{\text {s(on) }} \\ \hline \end{array}$	Switch 'ON"' Leakage	$\begin{aligned} & V_{S / D}= \pm 5 \mathrm{~V} \\ & V_{I N} \geq 2.4 \mathrm{~V} \\ & V_{S / D}= \pm 14 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{array}{r} 50 \\ 100 \\ \hline \end{array}$		$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	
IIN	Input Logic Current	$\mathrm{V}_{\text {IN }} \geq 2.4 \mathrm{~V}$ or $<\mathrm{OV}$	0.1	± 1	± 1	10	± 1	± 1	10	
1^{+}	Positive Supply Quiescent Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or +5 V	0.1	1	1	10	1	1	10	
1^{-}	Negative Supply Quiescent Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or +5 V	0.1	1	1	10	1	1	10	$\mu \mathrm{A}$
L.	Logic Supply Quiescent Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or +5 V	0.1	1	1	10	1	1	10	

NOTES:

1. Typical values are not tested in production. They are given as a design aid only.
2. Positive and negative voltages applied to opposite sides of switch, in both directions successively.
3. These are the operating voltages at which the other parameters are tested, and are not directly tested.
4. The logic inputs are either greater than or equal to 2.4 V or less than or equal to 0.8 V , as required, for this test.

AC ELECTRICAL CHARACTERISTICS

$\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Note 5).

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$t_{\text {on }}$	Switch "ON" Time	See Figure 4		150	300	ns
$t_{\text {off }}$	Switch 'OFF' Time	See Figure 4		80	150	
OIRR	"OFF' Isolation Rejection Ratio	See Figure 5 (Note 6)		60		dB
CCRR	Cross Coupling Rejection Ratio	See Figure 6 (Note 6)		60		
$\mathrm{f}_{3 \mathrm{~dB}}$	Switch Attenuation 3dB Frequency	See Figure 7 (Note 6)		100		

NOTES: 5. All AC parameters are sample tested only.
6. Test circuit should be built on copper clad ground plane board, with correctly terminated coax leads, etc.

TC007911
Note: Only one channel shown. Other acts identically.
Figure 4: Switching Time Test Circuit and Waveforms

TC008001
$V_{\mathrm{IN}}= \pm 5 \mathrm{~V}\left(10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right) @ \mathrm{f}=10 \mathrm{MHz}$

OIRR $=20 \log \frac{V_{\text {IN }}}{V_{\text {OUT }}}$
Note: Only one channel shown. Other acts identically.
Figure 5: OFF Isolation Test Circuit

$V \mathrm{IN}=225 \mathrm{mVrms} @ f=10 \mathrm{MHz}$
$C C R R=20 \log \frac{V_{\text {IN }}}{V_{\text {OUT }}}$
Figure 6: Cross-Coupling Rejection Test Circuit

$$
\text { ATTN: }=20 \log _{10} \frac{R_{L}}{R_{D S(o n)}+R_{L}}
$$

Nominally, at $D C$, this ratio is equal to -4 dB . When the attenuation reaches -1 dB , the frequency at which this occurs is $\mathrm{f}_{3} \mathrm{~dB}$.

TC008201

Note: Only one channel shown. Other acts identically.
Figure 7: Switch Attenuation Versus Frequency, Test Circuit

TYPICAL PERFORMANCES CHARACTERISTICS

RDS(on) Versus Analog Input Voltage with $\pm 15 \mathrm{~V}$ Power Supplies
 Frequency (See Figure 6)

OP00690|

LD002201
Figure 8: Internal Switch Configuration

DETAILED DESCRIPTION

As can be seen in Figure 8, the switch circuitry is of the so-called ' T "' configuration, where a shunt switch is closed when the switch is open. This provides much better isolation between the input and the output than single series switch does, especially at high frequencies. The result is excellent performance in the Video and RF region compared to conventional Analog Switches.

The input level shifting circuit is similar to that of the IH5140 Series of Analog Switches, giving very high speed and guaranteed 'Break-before-Make'" action, with negligible static power consumption and TTL compatibility.

RDS(on) Versus Analog Input Level with $\pm 5 \mathrm{~V}$ Power Supplies

OIRR (OFF Isolation Rejection) Versus Frequency (See Figure 5)

Typical Switch Attenuation Versus Frequency
($\mathrm{R}_{\mathrm{L}}=75 \Omega$, See Figure 7)

OP007801

TC00830
*Adjust pot for $0 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ step @ VOUT with no analog (AC) signal present
Figure 9: Charge Injection Compensation

DETAILED DESCRIPTION (CONT.)

Figure 10: Alternative Compensation Circuit

APPLICATIONS

Charge Compensation Techniques

Charge injection results from the signals out of the level translation circuit being coupled through the gate-channel and gate-source/drain capacitances to the switch inputs and outputs. This feedthrough is particularly troublesome in Sample-and-Hold or Track-and-Hold applications, as it causes a Sample (Track) to Hold offset. The IH5341 devices have a typical injected charge of 30pC-50pC (corresponding to $30 \mathrm{mV}-50 \mathrm{mV}$ in a 1000 pF capacitor), at $\mathrm{V}_{\mathrm{S} / \mathrm{D}}$ of about OV.

This Sample (Track) to Hold offset can be compensated by bringing in a signal equal in magnitude but of the opposite polarity. The circuit of Figure 9 accomplishes this charge injection compensation by using one side of the device as a S \& H (T \& H) switch, and the other side as a generator of a compensating signal. The $1 \mathrm{k} \Omega$ potentiometer allows the user to adjust the net injected charge to exactly zero for any analog voltage in the -5 V to +5 V range.

Since individual parts are very consistent in their charge injection, it is possible to replace the potentiometer with a pair of fixed resistors, and achieve less than 5 mV error for all devices without adjustment.

An alternative arrangement, using a standard TTL inverter to generate the required inversion, is shown in Figure 10. The capacitor needs to be increased, and becomes the only method of adjustment. A fixed value of 22 pF is good for analog values referred to ground, while 35 pF is optimum for $A C$ coupled signals referred to -5 V as shown in the figure. The choice of -5 V is based on the virtual disappearance at this analog level of the transient component of switching charge injection. This combination will lead to a virtually 'glitch-free" switch.

TC00850I
Figure 11: Overvoltage Protection Circuit

Overvoltage Spike Protection

If sustained operation with no supplies but with analog signals applied is possible, it is recommended that diodes (such as 1N914) be inserted in series with the supply lines to the IH5341. Such conditions can occur if these signals come from a separate power supply or another location, for example. The diodes will be reverse biased under this type of operation, preventing heavy currents from flowing from the analog source through the IH5341.

The same method of protection will provide over $\pm 25 \mathrm{~V}$ overvoltage protection on the analog inputs when the supplies are present. The schematic for this connection is shown in Figure 11.

IH5352
QUAD SPST CMOS RF/Video Switch

GENERAL DESCRIPTION

The IH5352 is a QUAD SPST, CMOS monolithic video switch which uses a ''Series/Shunt' ('T' switch) configuration to obtain high 'OFF' isolation while maintaining good frequency response in the "ON" condition.

Construction of remote and portable video equipment with extended battery life is facilitated by the extremely low current requirements. Switching speeds are typically $t_{\text {on }}=150 \mathrm{~ns}$ and $t_{\text {off }}=80 \mathrm{~ns}$, and 'Break-Before-Make" switching is guaranteed.

Switch 'ON' resistance is typically $40 \Omega-50 \Omega$ with $\pm 15 \mathrm{~V}$ power supplies, increasing to typically 175Ω for $\pm 5 \mathrm{~V}$ supplies.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH5352CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16-PIN PLASTIC DIP
$\mathrm{IH5352IJE}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -PIN CERDIP
$\mathrm{IH5352MJE}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -PIN CERDIP

FEATURES

- RDS(on) $<75 \Omega$
- Switch Attenuation Varies Less Than 3dB From DC to 100 MHz
- "OFF' Isolation > 60dB @ 10MHz
- Cross Coupling Isolation $>60 \mathrm{~dB} @ 10 \mathrm{MHz}$
- Directly Compatible with TTL, CMOS Logic
- Wide Operating Power Supply Range
- Power Supply Current $<1 \mu \mathrm{~A}$
- 'Break-Before-Make" Switching
- Fast Switching (80ns/150ns Typ)

APPLICATIONS

- Video Switch
- Communications Equipment
- Disk Drives
- Instrumentation
- CATV

LS00780I
Figure 1: Functional Diagram (Switches are open for a logic " 0 " control input, and closed for a logic " 1 " control input.)

Figure 2: Pin Configurations Package Outline Drawing: PE, JE

ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ Unless Otherwise Noted)

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

SYMBOL	PARAMETER	TEST CONDITIONS	TYP @ $25^{\circ} \mathrm{C}$	MAXIMUM RATINGS						UNIT
				M GRADE DEVICE			I/C GRADE DEVICE			
				$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$-25 / 0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$\begin{gathered} +85 / \\ +70^{\circ} \mathrm{C} \end{gathered}$	
V^{+}	Supply Voltage Ranges: Positive Supply		5 to 15							
	Logic Supply	(Note 3)	5 to 15							V
V^{-}	Negative Supply		$\begin{gathered} -5 \text { to } \\ -15 \end{gathered}$		-					
	Switch 'ON'	IS $=10 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{D}}= \pm 5 \mathrm{~V}$	50	75	75	100	75	75	100	
RDS(on)	$\begin{aligned} & \text { Resistance } \\ & \text { (Note 4) } \\ & \hline \end{aligned}$	$V_{I N} \geq 2.4 \mathrm{~V} \quad V_{D}= \pm 10 \mathrm{~V}$	100	125	125	175	150	150	175	"
RDS(on)	Switch "ON" Resistance	$\begin{aligned} & I_{S}=10 \mathrm{~mA}, \mathrm{~V}^{+}=V_{L}= \\ & +5 \mathrm{~V} V^{-}=-5 \mathrm{~V}, \\ & V_{D}= \pm 3 \mathrm{~V}, V_{I N}=3 \mathrm{~V} \end{aligned}$	175	250	250	350	300	300	350	Ω
$\Delta \mathrm{RDS}^{\text {(on) }}$	On Resistance Match Between Channels	$I_{S}=10 \mathrm{~mA}, V_{D}= \pm 5 \mathrm{~V}$	5					\cdots		
$V_{1 H}$	Logical "1" Input Voltage		> 2.4							
$\mathrm{V}_{\text {IL }}$	Logical "0' Input Voltage		<0.8		- .		.			V
ID(off) or IS(off)	Switch 'OFF' Leakage (Note 2 and 4)	$\begin{array}{\|l} V_{S / D}= \pm 5 \mathrm{~V} \\ V_{S / D}= \pm 14 \mathrm{~V} \\ V_{\text {IN }} \leq 0.8 \mathrm{~V} \\ \hline \end{array}$	-		$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	"	$\begin{array}{r} \pm 2.0 \\ \pm 2.0 \end{array}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	
$\begin{array}{\|l} \text { ID(on) } \\ + \\ \text { IS(on) } \\ \hline \end{array}$	Switch 'ON' Leakage	$\begin{aligned} & V_{S / D}= \pm 5 \mathrm{~V} \\ & V_{S / D}= \pm 14 \mathrm{~V} \\ & V_{\text {iN }} \geq 2.4 \mathrm{~V} \end{aligned}$			$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$.	$\begin{aligned} & \pm 2.0 \\ & \pm 2.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	nA
$1 / \mathrm{N}$	Logic Control Input Current	$\mathrm{V}_{1 \mathrm{~N}} \geq 2.4 \mathrm{~V}$ or $<\mathrm{OV}$	0.1	± 1.	± 1	10	± 1	± 1	10	
1^{+}	Positive Supply Quiescent Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or +5 V	0.1	1	1	10	1	1	10	
1^{-}	Negative Supply Quiescent Current	$V_{1 N}=0 V$ or +5 V	0.1	1	1	10	1.	1	10	$\mu \mathrm{A}$
L_{L}	Logic Supply Quiescent Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or +5 V	0.1	1	1	10	1	1	10	

AC ELECTRICAL CHARACTERISTICS
$\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Note 5).

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {On }}$	Switch 'ON' Time		150	300	
$\mathrm{t}_{\text {off }}$	Switch 'OFF' Time		80	150	ns
OIRR	"OFF' Isolation Rejection Ratio		60		
CCRR	Cross Coupling Rejection Ratio		60		dB
$\mathrm{f}_{3 \mathrm{~dB}}$	Switch Attenuation 3dB Frequency		100		MHz

Notes: 1. Typical values are not tested in production. They are given as a design aid only.
2. Positive and negative voltages applied to opposite sides of switch, in both directions successively.
3. These are the operating voltages at which the other parameters are tested, and are not directly tested.
4. The logic inputs are either greater than or equal to 2.4 V or less than or equal to 0.8 V , as required, for this test.
5. All AC parameters are sample tested only.

NOTE: 1 CHANNEL OF 4 SHOWN
Figure 3: Internal Switch Configuration

DETAILED DESCRIPTION

Figure 3 shows the internal circuit of one channel of the IH5352. This is identical to the IH5341 'T-Switch' configuration. Here, a shunt switch is closed, and the two series switches are open when the video switch channel is open or off. This provides much better isolation between the input and output terminals than a simple series switch does, especially at high frequencies. The result is excellent offisolation in the Video and RF frequency ranges when compared to conventional analog switches.

The control input level shifting circuitry is very similar to that of the IH5140 series of Analog Switches, and gives very high speed, guaranteed ''Break-Before-Make' action, low static power consumption and TTL compatibility.

Figure 4: Switching Time Test Circuit and Waveforms

$$
\text { OIRR }=20 \operatorname{LOG} \frac{\begin{array}{c}
\text { TCOB7411 } \\
V_{\text {IN }}
\end{array}}{V_{\text {OUT }}}
$$

$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ pn SINEWAVE @ 10MHz
Figure 5: Off Isolation Test Circuit

$V_{I N}=225 \mathrm{mV}$ RMS SINEWAVE @ 10 MHz
Figure 6: Cross-Coupling Rejection Test Circuit

Figure 7: Switch Attenuation -3dB Frequency Test Circuit

IH6108
 8-Channel CMOS Analog Multiplexer

GENERAL DESCRIPTION

The IH6108 is a CMOS monolithic, one of 8 multiplexer. The part is a plug-in replacement for the DG508. Three line decoding is used so that the 8 channels can be controlled by 3 Address inputs; additionally a fourth input is provided for use as a system enable. When the ENable input is high $(5 \mathrm{~V})$, a channel is selected by the three Address inputs, and when low ($0 \backslash$) all channels are off. The 3 Address inputs are TTL and CMOS logic compatible, with a " 1 " corresponding to any voltage greater than 2.4 V .

FEATURES

- Ultra Low Leakage - $I_{D(o f f)} \leq 100 p A$
- rDS(on) < 400 Ohms Over Full Signal and Temperature Range
- Power Supply Quiescent Current Less Than $100 \mu \mathrm{~A}$
- $\pm 14 \mathrm{~V}$ Analog Signal Range
- No SCR Latchup
- Break-Before-Make Switching
- Binary Address Control (3 Address Inputs Control 8 Channels)
- TTL and CMOS Compatible Strobe Control
- Pin Compatible With DG508, HI-508 \& AD7508

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH6108MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 pin CERDIP
IH 6108 CJE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 pin CERDIP
IH 6108 CPE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 pin plastic DIP

Ceramic package available as special order only (IH6108MDE/CDE)
3 LINE BINARY ADDRESS INPUTS

DECODE TRUTH TABLE

$\mathbf{A}_{\mathbf{2}}$	\mathbf{A}_{1}	$\mathbf{A}_{\mathbf{0}}$	EN	ON SWITCH
\mathbf{x}	\mathbf{x}	\mathbf{x}	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

A_{0}, A_{1}, A_{2}
Logic " 1 " $=\mathrm{V}_{\mathrm{AH}} \geq 2.4 \mathrm{~V} \mathrm{~V}_{\mathrm{ENH}} \geq 4.5 \mathrm{~V}$
Logic ' 0 " $=V_{A L} \leq 0.8 \mathrm{~V}$

CD003411
Figure 2: Pin Configuration
(101) AND EN @ 5V

ABOVE EXAMPLE SHOWS CHANNEL 6 TURNED ON

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\mathrm{IN}}(\mathrm{A}, \mathrm{EN})$ to Ground -15 V to 15 V

Current (Analog Source or Drain)
20 mA
V_{S} or V_{D} to $V+$
.,-32 V
V_{S} or V_{D} to $V-$
.0, 32V
$\mathrm{V}+$ to Ground
V- to Ground... -16V
Current (Any Terminal)
30 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+5 \mathrm{~V}$ (Note 1), Ground $=0 \mathrm{~V}$, unless otherwise specified.

CHARACTERISTIC		MEASURED TERMINAL	NOTESTSPERTEMP	$\begin{aligned} & \text { TYP } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	TEST CONDITIONS		MAX LIMITS						UNIT	
							M SUFFIX			C SUFFIX				
							$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$		
SWITCH														
r ${ }^{\text {DS }(O N)}$		S to D	8	180	$V_{D}=10 \mathrm{~V}, \mathrm{I}=-1.0 \mathrm{~mA}$	Sequence each switch on $V_{A L}=0.8 \mathrm{~V}, V_{A H}=2.4 \mathrm{~V}$	300	300	400	350	350	450	Ω	
		8	150	$V_{D}=-10 \mathrm{~V}, \mathrm{I}=-1.0 \mathrm{~mA}$	300		300	400	350	350	450			
$\Delta \mathrm{rDS}(\mathrm{ON})$					20	$\Delta_{\mathrm{DSS}(\mathrm{on})}=\frac{\Delta_{\mathrm{rDS}}(\mathrm{c}}{\mathrm{r}_{\mathrm{DS}}(\mathrm{o}}$	$\frac{(o n)^{\min }}{\text { on })^{\text {avg. }}} V_{S}= \pm 10 \mathrm{~V}$.			\%
IS(OFF)		S	8	0.002	$\mathrm{V}_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$			$\pm .5$	50		± 1	50	nA	
		8	0.002	$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$	$V_{E N}=0.8 \mathrm{~V}$		$\pm .5$	50		± 1	50			
ID(OFF)			D	1		0.03	$V_{D}=10 \mathrm{~V}, V_{S}=-10 \mathrm{~V}$		± 2	100		± 5		100
		1		0.03		$V_{D}=-10 \mathrm{~V}, \mathrm{~V}_{S}=10 \mathrm{~V}$		± 2	100		± 5	100		
ID(ON)		D	8	0.1	$\mathrm{V}_{\mathrm{S}(\mathrm{ALL})}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$	Sequence each switch on$\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}$		± 2	100		± 5	100		
		8	0.1	$V_{S(A L L)}=V_{D}=-10 \mathrm{~V}$			± 2	100		± 5	100			
INPUT														
$\begin{aligned} & I_{\mathrm{AN}(\mathrm{ON})} \text { or } I_{\mathrm{A}(\mathrm{on})} \\ & I_{\mathrm{AN}(\mathrm{OFF})} I_{\mathrm{A}(\mathrm{off})} \\ & \hline \end{aligned}$			A_{0}, A_{1} or A_{2} Inputs $\mathrm{A}_{0}, \mathrm{~A}_{1}$ A_{2}	3	0.01	$V_{A}=2.4 \mathrm{~V}$ or 0 V			-10	-30		-10	-30	$\mu \mathrm{A}$
		3		0.01	$V_{A}=15 \mathrm{~V}$ or 0 V			10	30		10	30		
I_{A}		3			$V_{E N}=5 \mathrm{~V}$	All $V_{A}=0$ (Address pins)		-10	-30		-10	-30		
		EN	1		$V_{E N}=0$			-10	-30		-10	-30		
DYNAMIC														
transition		D		0.3	See Fig. 1			1					$\mu \mathrm{s}$	
$\mathrm{t}_{\text {open }}$		D		0.2	See Fig. 2									
ton(EN)		D		0.6	See Fig. 3			1.5						
$t_{\text {off(}}$ (EN)		D		0.4	$\begin{aligned} & V_{E N}=0, R_{L}=200 \Omega, C_{L}=3 p F, V_{S}=3 V R M S, \\ & f=500 \mathrm{kHz} \end{aligned}$			1						
''OFF' Isolation		D		60									dB	
$\mathrm{C}_{\text {S(off) }}$		S		5	$\mathrm{V}_{\mathrm{S}}=0$	$\begin{aligned} & V_{\mathrm{EN}}=0 \mathrm{~V}, f=140 \mathrm{kHz} \text { to } \\ & 1 \mathrm{MHz} \end{aligned}$							pF	
$\mathrm{C}_{\text {d(off) }}$		D		25	$V_{D}=0$									
$\mathrm{C}_{\mathrm{DS} \text { (off) }}$		D to S		1	$V_{S}=0, V_{D}=0$									
SUPPLY														
	+	V^{+}	1	40	$V_{E N}=5 \mathrm{~V}$	All $\mathrm{V}_{\mathrm{A}}=0$ or 5 V		200			1000		$\mu \mathrm{A}$	
	-	V^{-}	1	2				100			1000			
Standby Current	$+$	V^{+}	1	1	$V_{E N}=0$			100			1000			
	-	V^{-}	1	1				100			1000			

NOTE 1: See Enable input Strobing Levels, in Application Section.

WF00340I

PROBE IMPEDANCE
$R_{p} \geq \mathbf{1 M} \Omega$
$C_{p} \leq 30 p F$
Figure 3: $\mathbf{t}_{\text {transition }}$ Switching Test

SWITCHING INFORMATION (CONT.)

IH6108 APPLICATION INFORMATION

ENable Input Strobing Levels

The ENable input on the IH6108 requires a minimum of +4.5 V to trigger to the " 1 " state and a maximum of +0.8 V to trigger to the " 0 ' state. If the ENable input is being driven from TTL logic, a pull-up resistor of 1 k to $3 \mathrm{k} \Omega$ is required from the gate output to +5 V supply. (See Figure 6)

Figure 6: ENable Input Strobing from TTL Logic

[^17]IH6108 APPLICATION INFORMATION (CONT.)

Figure 7: ENable Input Driven from CMOS Logic

The supply voltage of the CD4009 affects the switching speed of the IH6108; the same is true for TTL supply voltage levels. The following chart shows the effect, on trans for a supply varying from +4.5 V to +5.5 V .

CMOS OR TTL	TYPICAL $t_{\text {trans }}$
SUPPLY VOLTAGE	$@ 25^{\circ} \mathbf{C}$
+4.5 V	400 ns
+4.75 V	300 ns
+5.00 V	250 ns
+5.25 V	200 ns
+5.50 V	175 ns

The throughput rate can therefore be maximized by using $a+5 \mathrm{~V}$ to +5.5 V supply for the ENable Strobe Logic.

The examples shown in Figures 6 and 7 deal with ENable strobing when expansion to more than eight channels is required. In these cases the EN terminal acts as a fourth address input. If eight channels or less are being multiplexed, the EN terminal can be directly connected to +5 V logic supply to enable the IH 6108 at all times.

Using the IH6108 with supplies other than $\pm 15 \mathrm{~V}$

The IH6108 can be used with power supplies ranging from $\pm 6 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$. The switch rDS(on) will increase as the
supply voltages decrease, however, the multiplexer error term (the product of leakage times rDS(on)) will remain approximately constant since leakage decreases as the supply voltages are reduced.

Caution must be taken to ensure that the enable (EN) voltage is at least 0.7 V below $\mathrm{V}+$ at all times. If this is not done, the Address input strobing levels will not function properly. This may be achieved quite simply by connecting EN (pin 2) to $V+$ (pin 13) via a silicon diode as shown in Figure 8. When using this type of configuration, a further requirement must be met: the strobe levels of A0 and A1 must be within 2.5 V of the EN voltage in order to define a binary " 1 " state. For the case shown in Figure 8 the EN voltage is 11.3 V which means that logic high at A0 and A1 is $=+8.8 \mathrm{~V}$ (logic low continues to be $=0.8 \mathrm{~V}$). In this configuration the IH6108 cannot be driven by TTL $(+5 \mathrm{~V})$ or CMOS $(+5 \mathrm{~V})$ logic. It can be driven by TTL open collector logic or CMOS logic with +12 V supplies.

If the logic and the IH6108 have common supplies, the EN pin should again be connected to the supply through a silicon diode. In this case, tying EN to the logic supply directly will not work since it violates the 0.7 V differential voltage required between V+ and EN, (See Figure 9). A $1 \mu \mathrm{~F}$ capacitor can be placed across the diode to minimize switching glitches.

IH6108

IH6108 APPLICATION INFORMATION (CONT.)

AF005301
Figure 8: IH6108 Connection Diagram for less than $\pm 15 \mathrm{~V}$ Supply Operation

CD003901
Figure 9: IH6108 Connection Diagram with ENable Input Strobing for less than $\pm 15 \mathrm{~V}$ Supply Operation

Peak-to-Peak Signal Handling Capability

The IH6108 can handle input signals up to $\pm 14 \mathrm{~V}$ (actually -15 V to +14.3 V because of the input protection diode) when using $\pm 15 \mathrm{~V}$ supplies.

The electrical specifications of the 1 H 6108 are guaranteed for $\pm 10 \mathrm{~V}$ signals, but the specifications have very minor changes for $\pm 14 \mathrm{~V}$ signals. The notable changes are slightly lower rDS(on) and slightly higher leakages.

IH6116

GENERAL DESCRIPTION

The IH6116 is a CMOS monolithic, one of 16 multiplexer. The part is a plug-in replacement for the DG506. Four line binary decoding is used so that the 16 channels can be controlled by 4 Address inputs; additionally a fifth input is provided to be used as a system enable. When the ENable input is high (5 V) the channels are sequenced by the 4 line Address inputs, and when low (0 V), all channels are off. The 4 Address inputs are controlled by TTL logic or CMOS logic elements with a ' 0 ' corresponding to any voltage less than 0.8 V and a ' 1 '" corresponding to any voltage greater than 2.4 V . Note that the ENable input must be taken to 5 V to enable the system and less than 0.8 V to disable the system.

FEATURES

- Pin Compatible With DG506, HI-506 \& AD7506
- Ultra Low Leakage - $I_{D(o f f)} \leq 100 p A$
- ± 11 Analog Signal Range
- rDS(on) <700 Ohms Over Full Signal and Temperature Range
- Break-Before-Make Switching
- TTL and CMOS Compatible Address Control
- Binary Address Control (4 Address Inputs Control 16 Channels)
- Two Tier Submultiplexing to Facilitate Expandability
- Power Supply Quiescent Current Less Than $100 \mu \mathrm{~A}$
- No SCR Latchup

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE	
$\\| \mathrm{H} 6116 \mathrm{MJI}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 pin CERDIP	
IH 6116 CJI	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 pin CERDIP	
IH 6116 CPI	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 pin Plastic DIP	

Ceramic package available as special order only (IH6116MDI/CDI)

4 LINE BINARY ADDRESS INPUTS
(0)0 1) AND EN (ǐ 5V

ABOVE EXAMPLE SHOWS CHANNEL 9 TURNED ON
LD00240I

DECODE TRUTH TABLE

$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{E N}$	ON SWITCH
\mathbf{X}	X	X	X	0	NONE
0	0	0	0	1	1
0	0	0	1	1	2
0	0	1	0	1	3
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	1	6
0	1	1	0	1	7
0	1	1	1	1	8
1	0	0	0	1	9
1	0	0	1	1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15
1	1	1	1	1	16

Logic ${ }^{\prime \prime} 1$ "' $=V_{\text {AH }} \geq 2.4 \mathrm{~V} \mathrm{~V}_{\mathrm{ENH}} \geq 4.5 \mathrm{~V}$
Logic ${ }^{\prime} 0$ " $=\mathrm{V}_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$
Logic " 0 " $=V_{A L} \leq 0.8 V$

Figure 2: Pin Configuration

Figure 1: Functional Diagram

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\mathrm{IN}}(\mathrm{A}, \mathrm{EN})$ to Ground \qquad
V_{S} or V_{D} to $V+$ \qquad -15 V to 15 V
V_{S} or V_{D} to V_{-} -32V

V + to Ground
0, 32V
V- to Ground 16 V

Current (Any Terminal)
$-16 \mathrm{~V}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+5 \mathrm{~V}$ (Note 1), Ground $=0 \mathrm{~V}$, unless otherwise specified.

NOTE 1: See Section V. Enable Input Strobing Levels.

Figure 3: Switching Information

Figure 4: Switching Information

WF00390I
Figure 5: Switching Information

AF00550

DECODE TRUTH TABLE

$\mathbf{A}_{\mathbf{4}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	ON SWITCH
0	0	0	0	0	S 1
0	0	0	0	1	S 2
0	0	0	1	0	S 3
0	0	0	1	1	S 4
0	0	1	0	0	S 5
0	0	1	0	1	S 6
0	0	1	1	0	S 7
0	0	1	1	1	S 8
0	1	0	0	0	S 9
0	1	0	0	1	S 10
0	1	0	1	0	S 11
0	1	0	1	1	S 12
0	1	1	0	0	S 13
0	1	1	0	1	S 14
0	1	1	1	0	S 15
0	1	1	1	1	S 16

DECODE TRUTH TABLE

$\mathbf{A}_{\mathbf{4}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	ON SWITCH
1	0	0	0	0	S 17
1	0	0	0	1	S 18
1	0	0	1	0	S 19
1	0	0	1	1	S 20
1	0	1	0	0	S 21
1	0	1	0	1	S 22
1	0	1	1	0	S 23
1	0	1	1	1	S 24
1	1	0	0	0	S 25
1	1	0	0	1	S 26
1	1	0	1	0	S 27
1	1	0	1	1	S 28
1	1	1	0	0	S 29
1	1	1	0	1	S 30
1	1	1	1	0	S 31
1	1	1	1	1	S 32

Figure 6: 1 Out of 32 Channel Multiplexer Using 2 IH6116s

IH6116 APPLICATIONS (CONT.)

pullup resistor to +5 V to drive EN inputs
AF005601

DECODE TRUTH TABLE

$\mathbf{A}_{\mathbf{4}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{O N}$ SWITCH
0	0	0	0	0	S 1
0	0	0	0	1	S 2
0	0	0	1	0	S 3
0	0	0	1	1	S 4
0	0	1	0	0	S 5
0	0	1	0	1	S 6
0	0	1	1	0	S 7
0	0	1	1	1	S 8
0	1	0	0	0	S 9
0	1	0	0	1	S 10
0	1	0	1	0	S 11
0	1	0	1	1	S 12
0	1	1	0	0	S 13
0	1	1	0	1	S 14.
0	1	1	1	0	S 15
0	1	1	1	1	S 16

DECODE TRUTH TABLE

$\mathbf{A}_{\mathbf{4}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{O N}$ SWITCH
1	0	0	0	0	S 17
1	0	0	0	1	S 18
1	0	0	1	0	S 19
1	0	0	1	1	S 20
1	0	1	0	0	S 21
1	0	1	0	1	S 22
1	0	1	1	0	S 23
1	0	1	1	1	S 24
1	1	0	0	0	S 25
1	1	0	0	1	S 26
1	1	0	1	0	S 27
1	1	0	1	1	S 28
1	1	1	0	0	S 29
1	1	1	0	1	S 30
1	1	1	1	0	S 31
1	1	1	1	1	S 32

Figure 7: 1 Out of $\mathbf{3 2}$ Channel Multiplexer Using 2 IH6116s; Using An IH5041 for Submultiplexing

IH6116 APPLICATIONS (CONT.)

Figure 8: 1 Out of 64 Multiplexer Using 4 1/16s and IH5053 As Submultiplexer

General note on expandability of IH6116

The IH6116 is a two tier multiplexer, where sixteen input channels are routed to a common output in blocks of 4. Each block of 4 input channels is routed to one common output channel, and thus the submultiplexed system looks like 4 blocks of 4 inputs routed to 4 different outputs with the 4 outputs tied together. Thus 20 switches are needed to handle the 16 channels of information. The advantage of this is lower output capacitance and leakage than would be possible with a system using all 16 channels tied to one common output. Also the expandability into 32, 64, 128, channels etc. is facilitated. Figures 6, 7, and 8 show how the IH6116 can be expanded.

Figure 6 shows a 1 of 32 multiplexer, using 2 IH 6116 s . Since the 6116 is itself a 2 tier MUX, the system as shown is basically a 2 tier system. The four output channels of each

6116 are tied together so that 8 channels are tied to the $V_{\text {OUT }}$ common point. Since only one channel of information is on at a time, the common output will consist of 7 OFF channels and 1 ON channel. Thus the output leakage will correspond to 7 ID (offs) and $1 \mathrm{ID}(o n)$, or about 1.0 nA of typical leakage at room temperature. Throughput speed will be typically $0.8 \mu \mathrm{~s}$ for t_{on} and $0.3 \mu \mathrm{~s}$ for $\mathrm{t}_{\text {off }}$. Throughput channel resistance will be in the 500Ω area.

Figure 7 shows the 1 of 32 MUX of Figure 6, with a third tier of submultiplexing added to further reduce leakage and output capacitance. The IH5041 has typical ON resistances of 50Ω (max. is 75Ω) so it only increases thruput channel resistance from the 500 ohms of Figure 6 to about 550 ohms for Figure 7. Throughput channel speed is a little slower by about $0.5 \mu \mathrm{~s}$ for both ON and OFF time, and output leakage is about 0.2 nA .

IH6116

Figure 8 shows a 1 of 64 MUX using 3 tier MUXing (similar to Figure 7). The Intersil IH5053 is used to get the third tier of MUXing. The VOUT point will see 3 OFF channels and 1 ON channel at any one time, so that the typical leakages will be about 0.4 nA . Throughput channel resistance will be in the 550 ohm area with throughput switching speeds about $1.3 \mu \mathrm{~s}$ for ON time and $0.8 \mu \mathrm{~s}$ for OFF time

The IH5053 was chosen as the third tier of the MUX because it will switch the same AC signals as the IH6116 (typically plus and minus 15V) and uses break before make switching. Also power supply quiescent currents are on the order of $1-2 \mu \mathrm{~A}$, so that no excessive system power is dissipated. Note that the logic of the 5053 is such that it can be tied directly to the ENable input (as shown in the figures) with no extra circuitry being required.

Enable input strobing levels

The enable input (EN) acts as an enabling or disabling pin for the IH6116 when used as a 16 channel MUX. However when expanding the MUX to more than 16 channels, the EN pin acts as another address input. Figures 6 and 7 show the EN pin used as the A4 input.

For the system to function properly the EN input (pin 18) must go to $5 \mathrm{~V} \pm 5 \%$ for the high state and less than 0.8 V for
the low state. When using TTL logic, a pull-up resistor of $1 \mathrm{k} \Omega$ or less should be used to pull the output voltage up to 5 V . When using CMOS logic, the high state goes to the power supply so no pull-up is required.

If used on high voltage logic supplies, EN should be at least 0.7 V below $\mathrm{V}+$ at all times. See IH6108 data sheet for details.

APPLICATION NOTES

Further information may be found in:
A003 'Understanding and Applying the Analog Switch," by Dave Fullagar
A006 'A New CMOS Analog Gate Technology," by Dave Fullagar
A020 'A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing," by Ed Slieger
R009 'Reduce CMOS Multiplexer Troubles Through Proper Device Selection," by Dick Wilenken

NOTE: This multiplexer does not require external resistors and/or diodes to eliminate what is commonly known as a latch up or SCR action. Because of this fact, the rDS(ON) of the switch is maintained at specified values.

GENERAL DESCRIPTION

The IH6201 is a CMOS, Monolithic, Dual Voltage Translator; it takes low level TTL or CMOS logic signals and converts them to higher levels (i.e. to $\pm 15 \mathrm{~V}$ swings). This translator is typically used in making solid state switches, or analog gates.

When used in conjunction with the Intersil IH401 family of Varafets, the combination makes a complete solid state switch capable of switching signals up to 22 Vpp and up to 20 MHz in frequency. This switch is a "break-before-make"' type (i.e. $t_{\text {off }}$ time $<t_{\text {on }}$ time). The combination has typical $\mathrm{t}_{\mathrm{off}} \approx 80 \mathrm{~ns}$ and typ. $\mathrm{t}_{\mathrm{on}} \approx 200 \mathrm{~ns}$ for signals up to 20 Vpp in amplitude.

A TTL " 1 " input strobe will force the θ driver output up to V^{+}level; the $\bar{\theta}$ output will be driven down to the V^{-}level. When the TTL input goes to ' 0 ' ', the θ output goes to V^{-} and θ goes to V^{+}; thus θ and θ are 180° out of phase with each other. These complementary outputs can be used to create a wide variety of functions such as SPDT and DPDT switches, etc.; alternatively the complementary outputs can be used to drive N and P channel MOSFETs, to make a complete CMOS analog gate.

The driver typically uses +5 V and $\pm 15 \mathrm{~V}$ power supplies, however a wide range of V^{+}and V^{-}is also possible. It is necessary that $\mathrm{V}^{+}>5 \mathrm{~V}$ for the driver to work properly, however.

FEATURES

- Driven Direct From TTL or CMOS Logic
- Translates Logic Levels Up to 30V Levels
- Switches 20V AcPP Signals When Used in Conjunction With Intersil IH401A Varafet (As An Analog Gate)
- toN $\leq 300 \mathrm{~ns} \&$ toff $\leq 200 \mathrm{~ns}$ for 30V Level Shifts
- Quiescent Supply Current $\leq 100 \mu \mathrm{~A}$ for Any State (D.C.)
- Provides Both Normal \& Inverted Outputs

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE
${ }^{*} \mathrm{IH} 6201 \mathrm{CDE}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
${ }^{*} \mathrm{H} 6201 \mathrm{MDE}$	$-55^{\circ} \mathrm{C} \rightarrow+125^{\circ} \mathrm{C}$
1 H 6201 CJE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
1 H 6201 MJE	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH 6201 CPE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

*Special Order Only

Figure 1: Functional Diagram

(Outline dwgs DE,JE,PE)
Figure 2: Pin Configuration

DS00300

Figure 3: Schematic Diagram (One Channel)ABSOLUTE MAXIMUM RATINGS
V^{+}to V^{-} 35 V
v^{+} 35 V
V 35 V
V^{+}to $V I N$ 40 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL SPECIFICATIONS $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$

ITEM	TEST CONDITIONS	IH6201CDE			IH6201MDE			UNIT
		$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	
θ or $\bar{\theta}$ driver output swing	$V_{1 N}=0 V \Omega+3 V$ Fig. $5 B$		28			28		$V_{p p}$
$V_{I N}$ strobe level ('1')for proper transiation	$\begin{aligned} & \theta \geq 14 \mathrm{~V} \\ & \theta \geq-14 \mathrm{~V} \end{aligned}$	3.0	3.0	3.0		2.4		$V_{\text {D.C. }}$
$V_{I N}$ strobe level (' $\left.{ }^{\prime} 0^{\prime}\right)$ for proper translation	$\begin{aligned} & \theta \geq-14 \mathrm{~V} \\ & \partial \geq 14 \mathrm{~V} \end{aligned}$	0.4	0.4	0.4	.	0.8		$\mathrm{V}_{\text {D.C. }}$
IIN input strobe current draw (for $0 \mathrm{~V}-5 \mathrm{~V}$ range)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or +5 V	± 1	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
$t_{\text {on }}$ time	$V_{I N}=0 V \Omega C_{L}=30 p \mathrm{~F}$ switching turn-on time fig. 5B		400			300		ns
toff time	$V_{I N}=O V \Omega C_{I}=30 p F$ switching turn-off time fig. 5B		300			200		ns
$1^{+}\left(\mathrm{V}^{+}\right)$power supply quiescent current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or +5 V	100	100	100	100	100	100	$\mu \mathrm{A}$
$\mathrm{I}^{-}\left(\mathrm{V}^{-}\right)$power supply quiescent current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or +5 V	100	100	100	100	100	100	$\mu \mathrm{A}$
IL $\left(V_{L}\right)$ power supply quiescent current	$V_{\text {IN }}=0 \mathrm{~V}$ or +5 V	100	100	100	100	100	100	$\mu \mathrm{A}$

APPLICATIONS

Input Drive Capability

The strobe input lines are designed to be driven from TTL logic levels; this means 0.8 V to 2.4 V levels max. and min. respectively. For those users who require 0.8 V to 2.0 V operation, a pull-up resistor is recommended from the TTL output to +5 V line. This resistor is not critical and can be in the $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ range.

When using 4000 series CMOS logic, the input strobe is connected direct to the 4000 series gate output and no pull up resistors, or any other interface, is necessary.

When the input strobe voltage level goes below Gnd (i.e. to -15 V) the circuit is unaffected as long as V^{+}to $\mathrm{V}_{1 \mathrm{~N}}$ does not exceed absolute maximum rating.

Output Drive Capability

The translator output is designed to drive the Intersil IH401 family of Varafets; these are N-channel JFETS with built-in driver diodes. Driver diodes are necessary to isolate the signal source from the driver/translator output; this prevents a forward bias condition between the signal input and the $+\mathrm{V}_{\mathrm{CC}}$ supply. The IH6201 will drive any JFET provided some sort of isolation is added i.e.

You will notice in Figure 4 that a 'referral' resistor has been added from 2N4391 gate to its source. This resistor is needed to compensate for the inadequate charge area curve for isolation diode (i.e. if C vs. V plot for diode ≤ 2 [C vs. V plot for output JFET] switch won't function; then adding this resistor overcomes this condition. The 'refer-
ral' resistor is normally in the $100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ range and is not too critical.

Making a Complete Solid State Switch That Can Handle 20Vpp Signals

The limitation on signal handling capability comes from the output gating device. When a JFET is used, the pinchoff of the JFET acting with the V^{-}supply does the limiting. In fact max. signal handling capability $=2\left(V p+\left(V^{-}\right)\right) V p p$ where $V p=$ pinch-off voltage of JFET chosen. i.e. $V p=7 V$, $\mathrm{V}^{-}=-15 \mathrm{~V} \quad \therefore$ max. signal handling $=2(7 \mathrm{~V}+(-15 \mathrm{~V}))$ $\mathrm{Vpp}=2(7 \mathrm{~V}-15) \mathrm{pp}=2(-8 \mathrm{Vpp})=16 \mathrm{Vpp}$. Obviously to get $\geq 20 \mathrm{Vpp}, \mathrm{Vp} \geq 5 \mathrm{~V}$ with $\mathrm{V}^{-}=-15 \mathrm{~V}$. Another simple way to get 20 Vpp with $V p=7 \mathrm{~V}$, is to increase V^{-}to -17 V . In fact using $\mathrm{V}^{+}=+12 \mathrm{~V}$ or +15 V and setting $\mathrm{V}^{-}=-18 \mathrm{~V}$

IH6201

APPLICATIONS (CONT.)

allows one to switch 20Vpp with any member of 1 H 401 family. The advantage of using the $\mathrm{Vp}=7 \mathrm{~V}$ pinch-off (along with unsymmetrical supplies), over the $V p=5 \mathrm{~V}$ pinch-off (and $\pm 15 \mathrm{~V}$ supplies), is that you will have a much lower RDS(ON) for the $\mathrm{Vp}=7$ JFET (i.e. for the 2N4391).
$\mathrm{rDS}(\mathrm{ON}) \approx 22 \Omega, \quad \quad \mathrm{rDS}(\mathrm{ON}) \approx 35 \Omega)$ $V_{p}=7 \mathrm{~V} \quad V_{p}=5 \mathrm{~V}$

The IH6201 is a dual translator, each containing 4 CMOS FETs pairs. The schematic of one-half IH6201, driving onequarter of an H 401 , is shown in Figure 5A.

NOTE: Each translator output has a θ and $\bar{\theta}$ output. θ is just the inverse of $\bar{\theta}$.

A very useful feature of this system is that one-half of an IH6201 and one-half of an IH401 can combine to make a SPDT switch, or an IH6201 plus an IH401 can make a dual SPDT analog switch. (See Figure 8)

Figure 6: Dual SPST Analog Switch

DS003301
Figure 7: DPDT Analog Switch

NOTE: Either switch is turned on when strobe input goes high.

Figure 8: Dual SPDT

APPLICATIONS (CONT.)

Figure 9: Dual DPST

GENERAL DESCRIPTION

The IH6208 is a monolithic 2 of 8 CMOS multiplexer. The part is a plug-in replacement for the DG509. Two line binary decoding is used so that the 8 channels can be controlled in pairs by the binary inputs; additionally a third input is provided to use as a system enable. When the ENable input is high (5 V) the channels are sequenced by the 2 line binary inputs, and when low (0 V) all channels are off. The 2 Address inputs are controlled by TTL logic or CMOS logic elements with a ' 0 ' corresponding to any voltage less than 0.8 V and a " 1 " corresponding to any voltage greater than 2.4 V . Note that the ENable input must be taken to 5 V to enable the system, and less than 0.8 V to disable the system.

FEATURES

- Ultra Low Leakage - $I_{D(o f f)} \leq 100 p A$
- rDS(on) < 400 Ohms Over Full Signal and Temperature Range
- Power Supply Quiescent Current Less Than $100 \mu \mathrm{~A}$
- $\pm 14 \mathrm{~V}$ Analog Signal Range
- No SCR Latchup
- Break-Before-Make Switching
- Binary Address Control (2 Address Inputs Control 2 Out of 8 Channels)
- TTL and CMOS Compatible Address Control
- Pin Compatible With HI509, DG509 \& AD7509

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH6208MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 pin CERDIP
IH 6208 CJE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 pin CERDIP
IH 6208 CPE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 pin Plastic DIP

Ceramic package available as special order only (IH6208MDE/CDE)

2 LINE BINARY ADDRESS INPUTS
(0 0) AND EN = 5V (EN = "1" FOR + 5V, "0" FOR OV
ABOVE EXAMPLE SHOWS CHANNELS 1 a \& to ON.
LD00250

DECODE TRUTH TABLE

A $_{\mathbf{1}}$	A $_{\mathbf{0}}$	EN	ON SWITCH PAIR
X	X	0	NONE
0	0	1	$1 \mathrm{a}, 1 \mathrm{~b}$
0	1	1	$2 \mathrm{a}, 2 \mathrm{~b}$
1	0	1	$3 \mathrm{a}, 3 \mathrm{~b}$
1	1	1	$4 \mathrm{a}, 4 \mathrm{~b}$

A_{0}, A_{1}
LOGIC " 1 " $=\mathrm{V}_{\mathrm{AH}} \geq 2.4 \mathrm{~V} \mathrm{~V}_{\mathrm{ENH}} \geq 4.5 \mathrm{~V}$
LOGIC ' 0 ' $=V_{\text {AL }} \leq 0.8 \mathrm{~V}$

Figure 2: Pin Configuration

Figure 1: Functional Diagram

ABSOLUTE MAXIMUM RATINGS

Abstract

 V^{+}to Ground .. 16V V^{-}to Ground..-16V Current (Any Terminal)30mA

Current (Analog Source or Drain)20mA Storage Temperature............................ -65 to $150^{\circ} \mathrm{C}$ Lead Temp (Soldering, 10sec) $300^{\circ} \mathrm{C}$ Power Dissipation (Package)* 1200mW *All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+5 \mathrm{~V}$ (Note 1), Ground $=0 \mathrm{~V}$, unless otherwise specified.

NOTE 1: See Section 1 Enable Input Strobing Levels.

SWITCHING INFORMATION

WF00410I
TC009301
Figure 3: trans Switching Test

Figure 4: $\mathrm{t}_{\text {open }}$ (Break-Before-Make) Switching Test

Figure 5: t_{on} and $\mathrm{t}_{\text {off }}$ Switching Test

IH6208 APPLICATION INFORMATION

ENable Input Strobing Levels

The ENable input on the IH6208 requires a minimum of +4.5 V to trigger it into the " 1 " state and a maximum of +0.8 V to trigger it into the " 0 " state. If the ENable input is being driven from TTL logic, a pull-up resistor of 1 k to $3 \mathrm{k} \Omega$ is required from the gate output to +5 V supply. (See Figure $6)$.

Figure 6: ENable Input Strobing From TTL Logic

When the EN input is driven from CMOS logic, no pullup is necessary. (See Fig. 7)

Figure 7: CMOS Logic Driving ENable Pin

IH6208 APPLICATION INFORMATION (CONT.)

The supply voltage of the CD4009 affects the switching speed of the 1 H 6208 ; the same is true for TTL supply voltage levels. The chart below shows the effect on trans for a supply varying from +4.5 V to +5.5 V .

CMOS OR	TYPICAL t trans
TTL SUPPLY	@ $25^{\circ} \mathrm{C}$
+4.5 V	400 ns
+4.75 V	300 ns
+5.0 V	250 ns
+5.25 V	200 ns
+5.50 V	175 ns

The throughput rate can therefore be maximized by using $\mathrm{a}+5 \mathrm{~V}$ to +5.5 V supply for the ENable Strobe Logic.

The examples shown in Figures 6 and 7 deal with ENable strobing when expansion to more than four differential channels is required; in these cases the EN terminal acts as a third address input. If four channel pairs or less are being multiplexed, the EN terminal can be directly connected to +5 V to enable the IH6208 at all times.
Using the IH6208 with supplies other than $\pm 15 \mathrm{~V}$

The IH6208 can be used with power supplies ranging from $\pm 6 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$. The switch rDS(on) will increase as the
supply voltages decrease, however, the multiplexer error term (the product of leakage times rDS(on)) will remain approximately constant since leakage decreases as the supply voltages are reduced.

Caution must be taken to ensure that the enable (EN) voltage is at least 0.7 V below V^{+}at all times. If this is not done the Address Input strobing levels will not function properly. This may be achieved quite simply by connecting EN (pin 2) to V^{+}(pin 14) via a silicon diode as shown in Figure 8. A further requirement must be met when using this type of configuration; the strobe levels at A0 and A1 must be within 2.5 V of the EN voltage in order to define a binary " 1 " state. For the case shown in Figure 8 the EN voltage is 11.3 V , which means that logic high at AO and A 1 is $=+8.8 \mathrm{~V}$ (logic low continues to be $=0.8 \mathrm{~V}$). In this configuration the IH6208 cannot be driven by TTL (+5 V) or CMOS (+5 V) logic. It can be driven by TTL open collector logic or CMOS logic with +12 V supplies.

If the logic and the IH6208 have common supplies, the EN pin should again be connected to the supply through a silicon diode. In this case, tying EN to the logic supply directly will not work since it violates the 0.7 V differential voltage required between V^{+}and EN (See Figure 9). A $1 \mu \mathrm{~F}$ capacitor can be placed across the diode to minimize switching glitches.

CD00380
Figure 8: IH6208 Connection Diagram for Less Than $\pm 15 \mathrm{~V}$ Supply Operation

Figure 9: IH6208 Connection Diagram With ENable Input Strobing for Less Than $\pm 15 \mathrm{~V}$ Supply Operation

Peak-to-Peak Signal Handling Capability

The IH6208 can handle input signals up to $\pm 14 \mathrm{~V}$ (actually -15 V to +14.3 V because of the input protection diode) when using $\pm 15 \mathrm{~V}$ supplies.

The electrical specifications of the 1H6208 are guaranteed for $\pm 10 \mathrm{~V}$ signals, but the specifications have very minor changes for $\pm 14 \mathrm{~V}$ signals. The notable changes are slightly lower rDS(on) and slightly higher leakages.

IH6216
8-Channel Differential CMOS Analog Multiplexer

GENERAL DESCRIPTION

The IH6216 is a CMOS monolithic 2 of 16 multiplexer. The part is a plug-in replacement for the DG507. Three line binary decoding is used so that the 16 channels can be controlled in pairs by the binary inputs; additionally a fourth input is provided to use as a system enable. When the ENable input is high (5 V) the channels are sequenced by the 3 line binary inputs, and when low (0 V), all channels are off. The 3 Address inputs are controlled by TTL logic or CMOS logic elements with a ' 0 ' corresponding to any voltage less than 0.8 V and a " 1 " corresponding to any voltage greater than 3.0 V . Note that the ENable input must be taken to 5 V to enable the system and less than 0.8 V to disable the system.

FEATURES

- Pin Compatible With HI507, DG507 \& AD7507
- $\pm 11 V$ Analog Signal Range
- rDS(on) < 700 Ohms Over Full Signal and Temperature Range
- Break-Before-Make Switching
- TTL and CMOS Compatible Address Control
- Binary Address Control (3 Address Inputs Control 2 Out of 16 Channels)
- Two Tier Submultiplexing to Facilitate Expandability
- Power Supply Quiescent Current Less Than $100 \mu \mathrm{~A}$
- No SCR Latchup
- Very Low Leakage $I_{D(O F F)} \leq 100 p A$

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH 6216 MJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 pin CERDIP
IH 6216 CJI	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 pin CERDIP
IH 6216 CPI	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 pin Plastic DIP

Ceramic package available as special order only (IH6216MDI/CDI)

3 LINE BINARY ADDRESS INPUTS
(0 O O) AND EN = 5V
ABOVE EXAMPLE SHOWS CHANNELS 1 a a 1 lb ON.
LD00260I

DECODE TRUTH TABLE

CD004001
Figure 2: Pin Configuration

Figure 1: Functional Diagram

ABSOLUTE MAXIMUM RATINGS

V + to Ground... 16V
V- to Ground.. -16V
Current (Any Terminal)
30 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$V^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+5 \mathrm{~V}$ (Note 1), Ground $=0 \mathrm{~V}$, unless otherwise specified.

NOTE 1: See Enable Input Strobing Levels, Section 1.

Figure 3: Switching Information

SWITCH OUTPUT

 VD (SEE FIG. 2)

TC00990
Figure 4: Switching Information

Figure 5: Switching Information

IH6216 APPLICATIONS

*TTL gate must have pullup to drive EN input
Figure 6: 2 Out of 32 Channel Multiplexer Using 2 IH6216s

DECODE TRUTH TABLE

\mathbf{A}_{3}	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	ON SWITCH	
0	0	0	0	S1a	
0	0	0	1	S2a	
0	0	1	0	S3a	
0	0	1	1	S4a	
0	1	0	0	S5a	
0	1	0	1	S6a	
0	1	1	0	S7a	
0	1	1	1	S8a	V OUT1
1	0	0	0	S9a	
1	0	0	1	S10a	
1	0	1	0	S11a	
1	0	1	1	S12a	
1	1	0	0	S13a	
1	1	0	1	S14a	
1	1	1	0	S15a	
1	1	1	1	S16a	

DECODE TRUTH TABLE

$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	ON SWITCH	
0	0	0	0	S1b	
0	0	0	1	S2b	
0	0	1	0	S3b	
0	0	1	1	S4b	
0	1	0	0	S5b	
0	1	0	1	S6b	
0	1	1	0	S7b	
0	1	1	1	S8b	V OUT2
1	0	0	0	S9b	
1	0	0	1	S10b	
1	0	1	0	S11b	
1	0	1	1	S12b	
1	1	0	0	S13b	
1	1	0	1	S14b	
1	1	1	0	S15b	
1	1	1	1	S16b	

TL inverter must have resistor pullup to drive EN input
Figure 7: 2 One of 32 Multiplexer Using Two IH6216s, and An IH5043 for Submultiplexing

General note on expandability of IH6216

The IH6216 is a two tier multiplexer, where 8 pairs of input channels are routed to a pair of outputs in blocks of 4. Each block of 4 input channels is routed to one common output channel, and thus the submultiplexed system looks like 4 blocks of 4 inputs routed to 4 different outputs with the 4 outputs tied in pairs. Thus 20 switches are needed to handle the 16 channels of information. The advantages of this are lower output capacity and leakage than would be possible using a system with all 8 channels tied to one common output. Also the expandability into 2 out of 32,64 , 128, etc. is facilitated. Figures 6, 7, and 8 show how the IH6216 is expanded.

DECODE TRUTH TABLE

A_{3}	$A_{\mathbf{2}}$	A_{1}	A_{0}	ON SWITCH	
0	0	0	0	S1a	
0	0	0	1	S2a	
0	0	1	0	S3a	
0	0	1	1	S4a	
0	1	0	0	S5a	
0	1	0	1	S6a	
0	1	1	0	S7a	
0	1	1	1	S8a	VoUT1
1	0	0	0	S9a	
1	0	0	1	S10a	
1	0	1	0	S11a	
1	0	1	1	S12a	
1	1	0	0	S13a	
1	1	0	1	S14a	
1	1	1	0	S15a	
1	1	1	1	S16a	

Figure 6 shows a 2 of 32 multiplexer, using 2 IH 6216 s . Since the 6216 is itself a 2 tier MUX, the system as shown is basically a 2 tier system. Corresponding output points of each of the 6216 are connected together, and the ENable input strobe is used as the A_{3} input. Since each output (pins 2 and 28) corresponds to an "ON" FET and an "OFF" FET, the overall system looks like 1 "ON" FET and 3 "OFF' FETs for each of the $\mathrm{V}_{\text {out1 }}$ and $\mathrm{V}_{\text {out2 }}$ outputs. Thus the output leakage will be $1 I_{D(o n)}$ plus $3 I_{D(o f f)}$ s or about 0.4 nA at room temperature. Throughput speed will be typically $0.8 \mu \mathrm{~s}$ for $t_{\text {on }}$ and $0.3 \mu \mathrm{~s}$ for $t_{\text {off }}$, with throughput channel resistance in the 500Ω area.

DECODE TRUTH TABLE

$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	ON SWITCH	
0	0	0	0	S1b	
0	0	0	1	S2b	
0	0	1	0	S3b	
0	0	1	1	S4b	
0	1	0	0	S5b	
0	1	0	1	S6b	
0	1	1	0	S7b	
0	1	1	1	S8b	V OUT2
1	0	0	0	S5b	
1	0	0	1	S10b	
1	0	1	0	S11b	
1	0	1	1	S12b	
1	1	0	0	S13b	
1	1	0	1	S14b	
1	1	1	0	S15b	
1	1	1	1	S16b	

Figure 8: 2 One of 64 Multiplexer Using 4 IH6216s and 2 IH5043s as Submultiplexers

IH6216

Figure 7 shows the 2 of 32 MUX of Figure 6, with a third tier of submultiplexing added to further reduce leakage and output capacity. The IH5043 has typical ON resistance of 50Ω (max. is 75Ω) so it only increases throughput channel resistance from the 500 ohms of Figure 6 to about 550 ohms for Figure 7. Throughput channel speed is a little slower by about $0.5 \mu \mathrm{~s}$ for both ON and OFF time, and output leakage is about 0.2 nA .

Figure 8 shows a 2 of 64 MUX using 3 tier MUXing (similar to Figure 7). The Intersil IH5043 is used for the third tier of MUXing. Each $V_{\text {out }}$ point will see 3 OFF channels and 1 ON channel at anytime, so that the typical leakages will be about 0.4 nA . Throughput channel resistance will be in the 550Ω area and throughput switching speeds about $1.3 \mu \mathrm{~s}$ for ON time and $0.8 \mu \mathrm{~s}$ for OFF time.

The IH5043 was chosen as the third tier of the MUX because it will switch the same AC signals as the IH6216 (typically plus and minus 15 V) and uses break before make switching. Also power supply quiescent currents are typically $1-2 \mu \mathrm{~A}$ so that no excessive system power is generated. Note that the logic of the 5043 is such that it can be tied directly to the ENable input (as shown in the figures) with no extra logic being required.

Enable input strobing levels

The ENable input acts as an enabling or disabling pin for the IH6216 when used as a 2 out of 16 channel MUX, however when expanding the MUX to more than 16
channels, the EN pin acts as another address input. Figures 6 and 7 show the EN pin used as the A_{3} input.

For the system to function properly the EN input (pin 18) must go to $5 \mathrm{~V} \pm 5 \%$ for the high state and less than 0.8 V for the low state. When using TTL logic, a pull-up of $1 \mathrm{k} \Omega$ or less resistor should be used to pull the output voltage up to 5 V . When using CMOS logic, the high state goes to the power supply so no pull-up is required.

If used on high voltage logic supplies, EN should be at least 0.7 V below $\mathrm{V}+$ at all times. See IH6208 data sheet for details.

APPLICATION NOTES

Further information may be found in:
A003 "Understanding and Applying the Analog Switch," by Dave Fullagar
A006 'A New CMOS Analog Gate Technology," by Dave Fullagar
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing,'" by Ed Slieger
R009 'Reduce CMOS Multiplexer Troubles Through Proper Device Selection,' by Dick Wilenken
NOTE: This multiplexer does not require external resistors and/or diodes to eliminate what is commonly known as a latch up or SCR action. Because of this fact, the rDS(ON) of the switch is maintained at specified values.

MM450/451/452/455 MM550/551/552/555 High Voltage Analog Switch

GENERAL DESCRIPTION

The MM450, and MM550 series each contain p channel MOS enhancement mode transistors. These devices are useful in airborne and ground support systems requiring multiplexing, analog transmission, and numerous signal routing applications. The use of low threshold transistors ($\mathrm{V}_{\mathrm{TH}}=2$ volts) permits operations with large analog input swings (± 10 volts) at low gate voltages (-20 volts).

Each gate input is protected from static charge build-up by the incorporation of zener diode protective devices connected between the gate input and device bulk.

ORDERING INFORMATION

FEATURES

- Large Analog Input $- \pm 10 \mathrm{~V}$
- Low Supply Voltage - $\mathrm{V}_{\text {BULK }}=+10 \mathrm{~V}$ $V_{G G}=-20 \mathrm{~V}$
- Typical ON Resistance $-\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{~V}, 150 \Omega$
$\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}, 75 \Omega$
- Low Leakage Current - 200pA @ $25^{\circ} \mathrm{C}$
- Input Gate Protection

MM450, MM550 Dual Differential Switch
 TO. 100

DS021301
OUTLINE DWG TO-100

MM451, MM551 Four Channel 4PST Mux

OUTLINE DWG
TO. 100

DS021401

OUTLINE DWG TO-100

MM452, MM552 QUAD SPST MOS

OUTLINE DWGS
JE,FD- 2
DS021501
OUTLINE DWGS JE, FD-2

MM455, MM555 Three SPST MOS Transistor Package

OUTLINE DWG TO-100

DS02160I
OUTLINE DWG TO-100

Figure 1: Functional Diagram

ABSOLUTE MAXIMUM RATINGS (Note 1)

\qquad

NOTE 1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for FD package and $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TW package.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS (per channel unless noted)

SYMBOL	CHARACTERISTIC	TYPE	TEST CONDITIONS		LIMITS				
					$25^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$\frac{\text { MIN }}{\text { MAX }}$	UNIT
VIN	Analog Input Voltage	All			± 10			Max	V
$\mathrm{V}_{\mathrm{GS}}(\mathrm{Th})$	Threshold Voltage	All	$\begin{aligned} & V_{D G}=0 \\ & I_{D}=10 \mu \mathrm{~A} \end{aligned}$		1.0			Min	V
					3.0			Max	
RDS(ON)	Drain-Source On Resistance	All	$\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & V_{B}=10 \mathrm{~V} \\ & V_{G S}=-20 \mathrm{~V} \end{aligned}$	600		700	Max	Ω
			$\mathrm{V}_{\text {IN }}=+10 \mathrm{~V}$		200		250	Max	Ω
IGBS	Gate Leakage Current	All	$\mathrm{V}_{\mathrm{GS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{BS}}=\mathrm{V}_{\mathrm{DS}}=0$		± 5		100	Max	nA
ID(OFF)	Drain Leakage Current	MM450, MM451 MM452, MM455	$\begin{aligned} & V_{\mathrm{DB}}=-25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GB}}=\mathrm{V}_{\mathrm{SB}}=0 \end{aligned}$		± 0.5		200	Max	nA
		MM550, MM551 MM552, MM555			20	100		Max	nA
IS(OFF)	Source Leakage Current	MM450, MM451 MM452, MM455	$\begin{aligned} & V_{S B}=-25 \mathrm{~V} \\ & V_{D B}=V_{G B}=0 \end{aligned}$		± 0.5		400	Max	nA
		MM550, MM551 MM552, MM555				100		Max	nA
CDB	Drain-Body Capacitance	All	$\begin{aligned} & V_{D B}=V_{G B}=V_{S B}=0 \\ & (\text { Note 1) } \end{aligned}$		10			Typ	pF
$\mathrm{C}_{\text {SB }}$	Source-Body Capacitance	MM450, MM550			14			Typ	pF
		MM451, MM551			24			Typ	pF
		MM452, MM552			11			Typ	pF
		MM455, MM555			11			Typ	pF
$\mathrm{CaB}_{\text {G }}$	Gate-Body Capacitance	MM450, MM550			13			Typ	pF
		MM451, MM551			8			Typ	pF
		MM452, MM552			9			Typ	pF
		MM455, MM555			9			Typ	pF
CGS	Gate-Source Capacitance	All			5			Typ	pF

NOTE 1: Typical characteristics not tested in production

TYPICAL PERFORMANCE CHARACTERISTICS

Operating Temperature
MM450, MM451, MM452, MM455 .. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MM550, MM551, MM552, MM555 $\ldots \ldots \ldots .0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature...................655
Lead Temperature (Soldering, 10sec) $\ldots \ldots \ldots \ldots \ldots . .300^{\circ} \mathrm{C}$

Section 4 - Amplifiers Operational and Special Purpose

ICH8500/A
 Ultra Low Input-Bias Operational Amplifier

GENERAL DESCRIPTION

The ICM8500 and ICH8500A are hybrid circuits designed for ultra low input bias current operational amplifier applications. They are ideally suited for analog and electrometer applications where high input resistance and low input current are of prime importance.

Functionally, they are pin for pin identical to the popular 741 monolithic amplifier. These amplifiers are unconditionally stable and the input offset voltage can be adjusted to zero with an external $20 \mathrm{k} \Omega$ potentiometer. The input bias current for the inverting and noninverting inputs is 0.1 pA maximum for the ICH8500, and 0.01 pA maximum for the ICH8500A and are constant over the operating temperature range of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Pin 8 is connected to the case. This permits the designer to operate the case at any desired potential. This is the key to achieving the ultra low input currents associated with these two amplifiers. Forcing the case to the same potential as the inputs eliminates current flow between the case and the input pins, and leakage currents that may have otherwise existed between any of the other pins and the inputs are intercepted by the case.

FEATURES

- Input Diode Protection
- Input Bias Current Less Than 0.01pA (8500A) at All Operating Temperatures
- No Frequency Compensation Required
- Offset Voltage Null Capability
- Short Circuit Protection
- Low Power Consumption

APPLICATIONS

- Femto Ammeter
- Electrometers
- Long Time Integrators
- Flame Detectors
- pH Meters
- Proximity Detector
- Sample and Hold Circuits

ORDERING INFORMATION

DS019901
Figure 1: Functional Diagram

Figure 2: Pin Configuration (Outline dwg TV)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage... $\pm 18 \mathrm{~V}$
Internal Power Dissipation (1) 500 mW
Differential Voltage... $\pm 0.5 \mathrm{~V}$
Storage Temperature..................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature $\ldots-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$
Output Short Circuit DurationIndefinite

Note: 1. Rating applies for ambient temperature to $+70^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under 'Absolute Maximum Ratings' may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified, $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$)

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	ICH8500			ICH8500A			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
IBIAS	Input Bias Current (Inverting and Non-Inverting)	Case at same potential as inputs			± 0.1			± 0.01	pA
Vos	Input Offset Voltage				± 75			± 50	mV
	Offset Voltage Adjustment Range	$20 \mathrm{k} \Omega$ Potentiometer		± 50			± 50		mV
$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	Change in Input Offset Voltage Over Temperature	$\begin{aligned} & +25 \text { to }+85^{\circ} \mathrm{C} \\ & -25 \text { to }+25^{\circ} \mathrm{C} \end{aligned}$		± 200			± 100		mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta t$	Long Term Input Offset Voltage Stability	At $25^{\circ} \mathrm{C}$		± 3.0			± 3.0		mV
CMRR	Common Mode Rejection Ratio	± 5 volts common mode voltage		75			75		dB
$\Delta \mathrm{V}_{\mathrm{O}}$	Output Voltage Swing	$R_{L} \geq 10 \mathrm{k} \Omega$	± 11			± 11			V
CMVR	Common Mode Voltage Range		± 10			± 10			V
Avol.	Large Signal Voltage Gain		20,000	10^{5}		20,000	10^{5}		-
$\mathrm{C}_{\text {fb }}$	Feedback Capacitance	Case guarded		0.1			0.1		pF
SR	Slew Rate	$R_{L} \geq 2 \mathrm{k} \Omega$		0.5			0.5		$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{CiN}_{\text {IN }}$	Input Capacitance	Case guarded		0.7			0.7		pF
$\mathrm{Cl}_{\mathrm{IN}}$	Input Capacitance	Case grounded		1.5			1.5		pF

NOTE: Adjust input offset voltage to $0 \mathrm{~V} \pm 10 \mu \mathrm{~V}$ before measuring leakage.
Figure 3: Circuit Notes

OPEN LOOP VOLTAGE GAIN vs. FREQUENCY

INPUT OFFSET VOLTAGE vs. SUPPLY VOLTAGE

OP035201
\pm QUIESCENT SUPPLY CURRENT vs. SUPPLY VOLTAGE

OP03550,

INPUT VOLTAGE RANGE vs. SUPPLY VOLTAGE

\pm POWER SUPPLY REJECTION RATIO vs. SUPPLY VOLTAGE

OP035301

INPUT REFERRED NOISE VOLTAGE

OP035601

COMMON MODE REJECTION RATIO vs. SUPPLY VOLTAGE

OP035101
OUTPUT VOLTAGE SWING vs. SUPPLY VOLTAGE

OP03540
POWER CONSUMPTION vs. SUPPLY VOLTAGE

OP035701

ICH8500/A

APPLICATIONS

The Pico Ammeter

A very sensitive pico ammeter can be constructed with the ICH8500. The basic circuit (illustrated in Figure 4) employs the amplifier in the inverting or current summing mode.

Care must be taken to eliminate any stray currents from flowing into the current summing node. This can be accomplished by forcing all points surrounding the input to the same potential as the input. In this case the potential of the input is at virtual ground, or 0 V . Therefore, the case of the device is grounded to intercept any stray leakage
currents that may otherwise exist between the $\pm 15 \mathrm{~V}$ input terminals and the inverting input summing junctions. Feedback capacitance* should be kept to a minimum in order to maximize the response time of the circuit to step function input currents. The time constant of the circuit is approximately the product of the feedback capacitance C_{fb} times the feedback resistor R_{fb}. For instance, the time constant of the circuit in Figure 4 is 1 sec if $\mathrm{C}_{\mathrm{fb}}=1 \mathrm{pF}$. Thus, it takes approximately 5 sec (5 time constants) for the circuit to stabilize to within 1% of its final output voltage after a step function of input current has been applied. C_{fb} of less than 0.2 to 0.3 pF can be achieved with proper circuit layout. A practical pico ammeter circuit is illustrated in Figure 5.

Figure 4: Basic Pico Ammeter Circuit

Figure 5: Pico Ammeter Circuit

Figure 6: Sample and Hold Circuit or Integrator Circuit

The internal diodes CR1 and CR2 together with external resistor R1 protect the input stage of the amplifier from voltage transients. The two diodes contribute no error currents, since under normal operating conditions there is no voltage across them.
Feedback capacitance is the capacitance between the output and the inverting input terminal of the amplifier.

Sample and Hold Circuit

The basic principle of this circuit (Figure 6) is to rapidly charge a capacitor CSTO to a voltage equal to an input signal. The input signal is then electrically disconnected from the capacitor with the charge still remaining on CSTO. Since CSTO is in the negative feedback loop of the operational amplifier, the output voltage of the amplifier is equal to the voltage across the capacitor. Ideally, the voltage across CSTO should remain constant, causing the output of the amplifier to remain constant as well. However, the voltage across CSTO will decay at a rate proportional to the current being injected or taken out of the current summing node of the amplifier. This current can come from four sources: leakage resistance of CSTO, leakage current due to the solid state switch SW2, currents due to high resistance paths on the circuit fixture, and most important, bias current of the operational amplifier. If the ICH8500A operational amplifier is employed, this bias current is almost non-existant ($<0.01 \mathrm{pA}$). Note that the voltages on the
source, drain and gate of switch SW2 are zero or near zero when the circuit is in the hold mode. Careful construction will eliminate stray resistance paths and capacitor resistance can be eliminated if a quality capacitor is selected. The net result is a low drift sample and hold circuit.
As an example, suppose the leakage current due to all sources flowing into the current summing node of the sample and hold circuit is 100 pA . The rate of change of the voltage across the $0.01 \mu \mathrm{~F}$ storage capacitor is then $10 \mathrm{mV} /$ sec . In contrast, if an operational amplifier which exhibited an input bias current of 1 nA were employed, the rate of change of the voltage across CSTO would be $0.1 \mathrm{~V} / \mathrm{sec}$. An error build up such as this could not be tolerated in most applications.

Wave forms illustrating the operation of the sample and hold circuit are shown in Figure 7.

The Gated Integrator

The circuit in Figure 6 can double as an integrator. In this application the input voltage is applied to the integrator input terminal. The time constant of the circuit is the product of R1 and Csto. Because of the low leakage current associated with the ICH8500 and ICH8500A, very large values of R1 (Up to 10^{12} ohms) can be employed. This permits the use of small values of integrating capacitor (CSTO) in applications that require long time delays. Waveforms for the integrator circuit are illustrated in Figure 8.

Figure 8: Gated Integrator Waveforms

ICH8510/8520/8530 Power Operational Amplifier

GENERAL DESCRIPTION

The ICH8510/8520/8530 is a family of hybrid power amplifiers that have been specifically designed to drive linear and rotary actuators, electronic valves, push-pull solenoids, and DC \& AC motors.

There are three models available for up to +30 V power supply operation: 2.7 amps @ 24 volt output levels, 2 amps @ 24 V and $1 \mathrm{amp} @ 24 \mathrm{~V}$. All amplifiers are protected against shorts to ground by the addition of 2 external protection resistors. For a device operating at lower voltages, see the ICH8515 data sheet.

The design uses a conventional 741 operational amplifier, a special monolithic driver chip (BL8063), NPN \& PNP power transistors, and internal frequency compensating capacitors. The chips are mounted on a beryllium oxide substrate for optimum heat transfer to the metal package. This substrate also provides electrical isolation between amplifiers and metal package.

The I.C. power driver chip has built-in regulators that provide the 741 with typically a $\pm 13 \mathrm{~V}$ supply.

FEATURES

- Delivers Up to 2.7 Amps @ 24-28V DC (30V Supplies)
- Protected Against Inductive Kick Back With Internal Power Limiting
- Programmable Current Limiting (Short Circuit Protection)
- Package is Electrically Isolated (Allowing Easy Heat Sinking)
- Open Loop DC Gain > 100dB
- 20mA Typical Standy Quiescent Current
- Popular 8 Pin TO-3 Package
- Internal Frequency Compensation
- Can Drive Up to 0.1 Horsepower Motors

ORDERING INFORMATION

ICH85X0 \begin{tabular}{c}
Package

$K A=8$ lead TO-3 can

Temperature Range
$M=$ Military $-55^{\circ} \mathrm{C}$

$I=$ Industrial $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Basic Part Number

$8510=1 \mathrm{~A}$ output

$8520=2 \mathrm{~A}$ output

$8530=2.7 \mathrm{~A}$ output
\end{tabular}

Figure 1: Functional Diagram

CD018901

ICH8510/8520/8530

ABSOLUTE MAXIMUM RATINGS @ $T_{A}=25^{\circ} \mathrm{C}$

Supply Voltage.. $\pm 32 \mathrm{~V}$
Power Dissipation, Safe Operating Area See Curves Differential Input Voltage.................................... $\pm 30 \mathrm{~V}$
Input Voltage $\pm 15 \mathrm{~V}$ (Note 1)
Peak Output CurrentSee Curves (Note 2)
Output Short Circuit Duration
(to ground)
Continuous (Note 2)

Operating Temperature Range	$-55^{\circ} \mathrm{C} \rightarrow+12$
	1....... $-20^{\circ} \mathrm{C} \rightarrow+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Solderin	

Note 1: Rating applies to supply voltages of $\pm 15 \mathrm{~V}$. For lower supply voltages, $\mathrm{V}_{\text {INMAX }}=\mathrm{V}_{\text {SUPP }}$.
Note 2: Ratings apply as long as package dissipation is not exceeded. Device must be mounted on heat sink, see Figures 12 and 16.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $T_{A}=+25^{\circ} \mathrm{C} . \mathrm{V}_{\text {SUPPLY }}= \pm 30 \mathrm{~V}$ (unless otherwise stated)

SYMBOL	DESCRIPTION	TEST CONDITIONS	ICH85101		ICH8510M		ICH85201		ICH8520M		ICH65301		ICH8530M		UNIT
			MIN	MAX											
$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{Pd}$	Input Offset Voltage Change with Power Dissipation	Mtd on Wakefield 403 Heat Sink	-	$\begin{gathered} 4 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 2 \\ \text { (Typ.) } \end{gathered}$.	$\begin{gathered} 4 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 2 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 4 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 2 \\ \text { (Typ.) } \end{gathered}$	mV/W
Vos	Input Offset Voltage	$\begin{aligned} & \mathrm{R} s<10 \mathrm{k} \Omega \\ & \mathrm{Pd}<1 \mathrm{~W} \end{aligned}$	-6	+6	-3	+3	-6	+6	-3	+3	-6	+6	-3	+3	mV
IBIAS	Input Bias Current	$\begin{array}{\|l} \hline \mathrm{R}_{\mathrm{S}}<10 \mathrm{k} \Omega \\ \mathrm{Pd}_{\mathrm{d}}<1 \mathrm{~W} \\ \hline \end{array}$		500		250		500		250		500		250	nA
los	Input Offset Current	$\begin{array}{\|l} \hline \mathrm{Rs}<10 \mathrm{k} \Omega \\ \mathrm{Pd}_{\mathrm{d}}<1 \mathrm{~W} \\ \hline \end{array}$		200		100		200		100		200		100	nA
Avol	Large Signal Voltage Gain	$\begin{array}{\|l\|} R_{\mathrm{L}}=20 \Omega \\ V_{\mathrm{O}}>2 / 3 \mathrm{~V}_{\text {SUPP }} \\ \hline \end{array}$	$\begin{gathered} 100 \\ \text { (Typ.) } \\ \hline \end{gathered}$		$\begin{gathered} 100 \\ \text { (Typ.) } \\ \hline \end{gathered}$		$\begin{gathered} 100 \\ \text { (Typ.) } \\ \hline \end{gathered}$		$\begin{gathered} 100 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 100 \\ \text { (Typ.) } \\ \hline \end{gathered}$		$\begin{gathered} 100 \\ \text { (Typ.) } \\ \hline \end{gathered}$		dB
$\mathrm{V}_{\text {CMR }}$	Input Voltage Range	Typical	-10	+10	-10	+10	-10	+10	-10	+ 10	-10	+10	-10	+10	V
CMRR	Common Mode Rejction Ratio	RS $=10 \mathrm{k} \Omega$	$\begin{gathered} 70 \\ \text { (Typ.) } \\ \hline \end{gathered}$		$\begin{gathered} 70 \\ \text { (Тyр.) } \\ \hline \end{gathered}$		$\begin{gathered} 70 \\ \text { (Typ.) } \\ \hline \end{gathered}$		$\begin{gathered} 70 \\ \text { (Typ.) } \\ \hline \end{gathered}$		$\begin{gathered} 70 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 70 \\ \text { (Typ.) } \end{gathered}$		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$	$\begin{gathered} 77 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 77 \\ \text { (Typ.) } \\ \hline \end{gathered}$		$\begin{gathered} 77 \\ \text { (Typ.) } \\ \hline \end{gathered}$		$\begin{gathered} 77 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 77 \\ \text { (Typ.) } \\ \hline \end{gathered}$		$\begin{gathered} 77 \\ \text { (Typ.) } \\ \hline \end{gathered}$		dB
SR	Slew Rate	$\begin{aligned} & C_{L}=3 \mathrm{pF}, A_{V}=1 \\ & R_{L}=10 \Omega \\ & V_{O}=2 / 3 V_{\text {SUPP }} \end{aligned}$	$\begin{gathered} 0.5 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 0.5 \\ \text { (Typ.) } \end{gathered}$.	$\begin{gathered} 0.5 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 0.5 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 0.5 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 0.5 \\ (\text { Typ. }) \end{gathered}$		$\mathrm{V} / \mu \mathrm{s}$
V OMAX	Output Voltage Swing	$\begin{aligned} & R_{L}=20 \Omega \\ & A_{V}=10 \end{aligned}$	$\begin{aligned} \left(R_{\mathrm{L}}\right. & =30 \Omega) \\ & \pm 26 \mathrm{~V} \end{aligned}$		$\begin{array}{c\|} \hline \mathrm{R}_{\mathrm{L}}=30 \Omega \\ \pm 26 \mathrm{~V} \end{array}$		$\pm 26 \mathrm{~V}$		$\pm 26 \mathrm{~V}$		$\pm 25 \mathrm{~V}$		$\pm 25 \mathrm{~V}$		V
$I_{\text {max }}$	Output Current (3)	$\begin{aligned} & R_{L}=8 \Omega \\ & A_{V}=10 \end{aligned}$	1.0		1.0		2.0		2.0		2.7		2.7		A
${ }^{1}$	Power Supply Quiescent Current	$\begin{aligned} & R_{L}=x \\ & V_{I N}=0 \mathrm{~V} \end{aligned}$.	125		100		125		100		125		100	mA

NOTE 2: See Figure 7 if Power Suplies are less than $\pm 30 \mathrm{~V}$
ELECTRICAL SPECIFICATIONS $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$.(M) or $\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$. to $+85^{\circ} \mathrm{C}$ (I).

SYMBOL	DESCRIPTION	TEST CONDITIONS	ICH85101		ICH8510M		ICH85201		ICH8520M		ICH65301		ICH8530M		UNIT
			MIN	MAX											
$V_{0 s}$	Input Offset Voltage	$\mathrm{Pd}<1 \mathrm{~W}$	-10	+ 10	-9	+9	-10	+10	-9	+9	-10	+10	-9	+9	MV
IBIAS	Input Bias Current	$\mathrm{Pd}<1 \mathrm{~W}$		1500		750		1500		750		1500		750	nA
los	Input Offset Current			500		200		500		200		500		200	nA
Avol	Large Signal Voltage Gain	$\begin{aligned} & R_{L}=20 \Omega \\ & \Delta V_{O}=2 / 3 V_{\text {SUPP }} \end{aligned}$	$\begin{gathered} 90 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 90 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 90 \\ \text { (Тyp.) } \end{gathered}$		$\begin{gathered} 90 \\ \text { (Тyp.) } \end{gathered}$		$\begin{gathered} 90 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 90 \\ \text { (Typ.) } \end{gathered}$		dB
V ${ }_{\text {OMAX }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=20 \Omega, \mathrm{~A}_{\mathrm{V}}=10$	± 24		V										
$\mathrm{R}_{\theta \mathrm{JA}}$	Thermal Resistance Junction to Ambient	Without Heat Sink		$\begin{gathered} 40 \\ \text { (Typ.) } \end{gathered}$		40		40		40		40		40	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JC}}$	Thermal Resistance Junction to Case			$\begin{gathered} 2.5 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 2.5 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 2.5 \\ (\text { Typ. }) \end{gathered}$		$\begin{gathered} 2.5 \\ \text { (Typ.) } \end{gathered}$	'	$\begin{gathered} 2.5 \\ \text { (Typ.) } \end{gathered}$		$\begin{gathered} 2.5 \\ \text { (Typ.) } \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JA}}$	Thermal Resistance Junction to Ambient	Mtd. on Wakefield 403 Heat Sink		$\begin{gathered} \text { (Typ.) } \\ 4.0 \end{gathered}$		$\begin{gathered} \text { (Typ.) } \\ 4.0 \end{gathered}$		$\begin{gathered} \text { (Typ.) } \\ 4.0 \end{gathered}$		$\begin{gathered} \hline \text { (Typ.) } \\ 4.0 \end{gathered}$		$\begin{gathered} \hline \text { (Typ.) } \\ 4.0 \end{gathered}$		$\begin{gathered} \hline \text { (Typ.) } \\ 4.0 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$V_{\text {SUPP }}$	Supply Voltage Range		± 20	± 30	V										

ICH8510/8520/8530

How To Set The Externally Programmable, Current Limiting Resistors:

The maximum output current is set by the addition of two external resistors, $\mathrm{RSC}_{\mathrm{SC}}(+)$ and $\mathrm{RSC}_{(-)}$. Due to the current limiting circuitry, maximum output current is available only when V_{O} is close to either power supply. As V_{O} moves away from $V_{\text {SUPPLY, }}$ the maximum output current decreases in proportion to output voltage. The curve on the next page shows maximum output current versus output voltage.

Figure 3: Maximum Output Current for Given RSC

In general, for a given V_{O}, Isc limit, and case temperature $T_{C}, R_{S C}$ can be calculated from the equation below for V_{O} positive, IOUT positive.

$$
\mathrm{RSC}_{\mathrm{SC}}=\frac{\left(20.6 \mathrm{~V}_{\mathrm{O}}\right)^{*}+680-2.2\left(\mathrm{~T}_{\mathrm{C}}-25^{\circ} \mathrm{C}\right)}{\mathrm{ISC}_{\text {(LIMIT) }}}
$$

*For V_{O} negative, replace this term with $10.3\left(\mathrm{~V}_{\mathrm{O}}-1.2\right)$
For example, for $\mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A} @ \mathrm{~V}_{\mathrm{O}}=25 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$,

$$
R_{S C}=\frac{1195}{1500}=0.797
$$

Therefore for this application, $\mathrm{R}_{\mathrm{SC}}=0.82 \Omega$ (closest standard value)

When 0.82Ω is used, ISc $@ \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ will be reduced to about 1A. Except for small changes in the " $\pm \mathrm{V}_{\mathrm{O}(\text { max })}$ Limit" area, the effects of changing RSC on the IOUT vs VOUT characteristics can be determined by merely changing the lOUT scale on Figure 3 to correspond to the new value. Changes in T_{C} move the limit curve bodily up and down.

This internal current limiting circuitry however does not at all restrict the normal use of the driver. For any normal load, the static load line will be similar to that shown in Figure 3.

Clearly, as V_{O} decreases, the lo requirement falls also, more steeply than the lo available. For reactive loads, the dynamic load lines are more complex. Two typical operating point loci are sketched here:

Thus the limiting circuitry protects the load and avoids needless damage to the driver during abnormal conditions. For any 24-28VDC motor/actuator, the RSC resistors must be calculated to get proper power delivered to the motor (up to a maximum of 2.7 A) and $\mathrm{V}_{\text {SUPP }}$ set at $\pm 30 \mathrm{~V}$. For lower supply and/or output voltages, the maximum output current will follow graphs.

scoor201
Figure 5: Inductive Load (Note catch diode)

NOTE ON AMPLIFIER POWER DISSIPATION

The steady state power dissipation limit is given by

$$
P_{D}=\frac{T_{J(M A X)}-T_{A}}{R_{\theta J C}+R_{\theta C H}+R_{\theta H A}}
$$

where:
$T_{J}=$ Maximum junction temperature
$T_{A}=$ Ambient temperature
$R_{\theta J C}=$ Thermal resistance from transistor junction to case of package
$\mathrm{R}_{\theta \mathrm{CH}}=$ Thermal resistance from case to heat sink
$\mathrm{R}_{\theta H A}=$ Thermal resistance from heat sink to ambient air And since
$T_{J}=200^{\circ} \mathrm{C}$ for silicon transistors
$\mathrm{R}_{\theta \mathrm{JC}} \cong 2.0^{\circ} \mathrm{C} / \mathrm{W}$ for a steel bottom TO-3 package with die attachment to beryllia substrate header
$\mathrm{R}_{\theta \mathrm{CH}}=.045^{\circ} \mathrm{C} / \mathrm{W}$ for 1 mil thickness of Wakefield type 120 thermal joint compound
$.09^{\circ} \mathrm{C} / \mathrm{W}$ for 2 mil thickness of type 120
$.13^{\circ} \mathrm{C} / \mathrm{W}$ for 3 mil thickness of type 120
$.17^{\circ} \mathrm{C} / \mathrm{W}$ for 4 mil thickness for type 120
$.21^{\circ} \mathrm{C} / \mathrm{W}$ for 5 mil thickness of type 120
$.24^{\circ} \mathrm{C} / \mathrm{W}$ for 6 mil thickness of type 120
$\mathrm{R}_{\theta H A}=$ The choice of heat sink that a user selects depends upon the amount of room available to mount the heat sink. A sample calculation follows: by choosing a Wakefield 403 heat sink, with free air, natural convection (no fan). $\mathrm{R}_{\theta H A} \cong 2.0^{\circ} \mathrm{C} / \mathrm{W}$. Using 4 mil joint compound,
$P_{D}=\frac{200^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{A}}}{(2.0+0.17+2.0)^{\circ} \mathrm{C} / \mathrm{W}}=\frac{200^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{A}}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}$
or @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,

$$
\frac{200^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=42 \mathrm{~W}
$$

and @ $T_{A}=125^{\circ} \mathrm{C}$,

$$
\frac{200^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=18 \mathrm{~W}
$$

From Figure 6 the worst case steady state power dissipation for an 1 H 8520 ($\mathrm{R}_{S C}=0.62 \Omega$) is about 30 W and 18W respectively. Thus this heat sink is adequate.

TYPICAL PERFORMANCE CHARACTERISTICS

Safe Operating Area; lout vs Vout vs TC

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

sc007501
Small Signal Frequency Response

Max. Output Current (Amps) @ Vout $= \pm 24 \mathrm{~V}$

Sc007601
Figure 6: Maximum Output Current vs. Case Temperature

APPLICATION NOTES

The maximum inpuit voltage range, for $V_{S U P P L Y}< \pm 15 \mathrm{~V}$, is substantially less than the available output voltage swing. Thus non-inverting amplifiers, as in Figure 8, should always be set up with a gain greater than abbout 2.5 , (with $\pm 30 \mathrm{~V}$ supplies), so that the full output swing is available without hazard to the input. At first sight, it would seem that no restrictions would apply to inverting amplifiers, since the inputs are virtual ground and ground. However, under fault (output short-circuited) or high slew conditions, the input can be substantially removed from ground. Thus for inverting amplifiers with gains less than about 5, some protection should be provided at this input. A suitable resistor from the input to ground will provide protection, but also increases the effect of input offset voltage at the output. A pair of diodes, as shown in Figure 10, has no effect on normal operation, but gives excellent protection.

Figure 8: Non-Inverting Amplifier

Figure 9: Inverting Amplifier

Power dissipation is another important parameter to consider. The current protection circuit protects the device against short circuits to ground, (but only for transients to the opposite supply) provided the device has adequate heat sinking. A curve of power dissipation vs V_{O} under short circuit conditions is given in Figure 10. The limiting circuit is more closely dependent on case temperature than (output transistor) junction temperatures. Although these operating conditions are unlikely to be attained in actual use, they do represent the limiting case a heat sink must cope with. For a fully safe design, the anticipated range of V_{O} values that could occur, (steady state; including faults) should be examined for the highest power dissipation, and the device provided with a heat sink that will keep the junction temperature below $200^{\circ} \mathrm{C}$ and the case temperature below $150^{\circ} \mathrm{C}$ with the worst case ambient temperature expected.

The gain of the circuit is set to +10 , so a $\mathrm{V}_{\mathrm{IN}}=+2.4 \mathrm{~V}$ will produce a +24 V output (and deliver up to 2.7 amps output current). To reverse the piston travel, invert $\mathrm{V}_{\mathbf{I N}}$ to -2.4 V and $\mathrm{V}_{\text {OUT }}$ will go to -24 V . Diodes D1 and D2 absorb the inductive kick of the motor during transients (turn-on or turn-off); their breakdown should exceed 60 V .

Obtaining Up To 5 Amps Output Current
Capability By Paralleling Amplifiers

SC007901
Figure 12: Paralieling Power Amps for Increased Current Capability

This paralleling procedure can be repeated to get any desired output current. However, care must be taken to provide sufficient load to avoid the amplifiers pulling against each other.

Figure 13: Power Amp Driving 48 VDC Motor

ICH8510/8520/8530

Precise Rate Control of an Electronic Valve

There are two methods to get very fine control of the opening of an orifice driven by an electronic valve.

1. Keep the voltage constant, i.e., 24 VDC or 12 VDC , and vary the time the voltage is applied, i.e., if it takes five seconds to completely open an orifice at 24 VDC , then applying 24 V for only $21 / 2$ seconds opens it only 50%.
2. Simply vary the DC driving voltage to valve. Most valves obtain full opening as an inverse of applied voltage, i.e., valves open 100% in five seconds at 24VDC and in 10 seconds at 12VDC.
A circuit to perform the second method is shown below; the advantage of this is that digit switches can precisely set driving voltage to 0.2% accuracy (8 -bit DAC), thereby controlling the rate at which the valve opens.

The circuit presented in Figure 14 is also an excellent way to get a precise power supply voltage; in fact, it is possible to build a precision variable power supply using a BCD coded DAC with BCD Thumbwheel switches.

There is great power available in the sub-systems shown in Figures 14 \& 15; there the D/A converter is shown being set manually (via digit switches) to get a precise analog output (binary \#x full scale voltage), then the driver amplifier multiplies this voltage to produce the final output voltage. It seems obvious that the next logical step is to let a microprocessor control the D/A converter. Then total, pre-programmable, electronic control of an actuator, electronic valve, motor, etc., is obtained. This would be used in conjunction with a transducer/multiplex system for electronic monitoring and control of any electromechanical function.

Figure 14: Digitally Controlled Electronic Value

LC01570I

2^{0}	21	2^{2}	23	24	$2{ }^{5}$		27		BIT $\mathrm{V}_{\text {out }}$
1	1	1	1	1	1	1	1	1	+ 25 VDC
1	1	1	1	1	1	1	1	0	- 25VDC
0	1	0	1	1	0	0	1	1	+ 15VDC
0	1	0	1	1	0	0	1	0	-15VDC
1	0	0	0	0	0	0	0	1	+ 0.098VDC
1	0	0	0	0	0	0	0	0	-0.098VDC

Figure 15: Digitally Programmable Power Supply

HEAT SINK INFORMATION

Heat sinks are available from Intersil. Order part number $29-0305$ ($\$ 10.00$ ea.) with a $R_{\theta H A}=1.3^{\circ} \mathrm{C} /$ watt. A convenient mating connector is also available. Order part number 29-0306 (\$4.50 ea.).
Note: This product contains Beryllia. If used in an application where the package integrity may be breached and the internal parts crushed or machined, avoid inhalation of the dust.

APPLICATION NOTES

For Further Applications Assistance, See:
A021 ''Power D/A Converters Using The ICH8510/20/ 30," by Dick Wilenken
A026 'DC Servo Motor Systems Using The ICH8510/20/ 30," by Ken McAllister
A029 "Power Op Amp Heat Sink Kit," by Skip Osgood

ICH8515
Power Operational Amplifier

GENERAL DESCRIPTION

The ICH8515 is a hybrid power amplifier specifically designed to drive linear and rotary actuators, electronic valves, push-pull solenoids, and DC \& AC motors.

The design uses a conventional 741 operational amplifier, a special monolithic driver chip (BL8063), NPN \& PNP power transistors, and an internal frequency compensating capacitor. The chips are mounted on a beryllium oxide substrate, for optimum heat transfer to the metal package. This substrate provides electrical isolation between the amplifier and the metal package.

The 8515 has special SOA (safe operating area) circuitry which allows it to withstand a direct short to ground or to either supply indefinitely. It has been designed to operate with ± 12 or ± 15 VDC supplies and will deliver typically 1.5 to $1.8 \mathrm{~A} @+13 \mathrm{~V}$ out using $\pm 15 \mathrm{~V}$ supplies.

Internal frequency compensation provides stability down to unity gain (either inverting or noninverting) even when using inductive loads.

FEATURES

- Delivers Up to 1.5 Amps @ +12VDC ($\pm 15 \mathrm{VDC}$ Supplies)
- Protected Against Inductive Kick Back By Internal Power Limiting
- Programmable Current Limiting (Short Circuit Protection)
- Package Is Electrically Isolated (Allowing Easy Heat Sinking)
- Open Loop DC Gain > 100dB
- Popular 8 Pin TO-3 Package
- Internal Frequency Compensation
- Can Drive Up to 0.033 Horsepower Motors
- Pin Equivalent to ICH8510/20/30 Family

ORDERING INFORMATION

PART NUMBER	OUTPUT CURRENT	TEMPERATURE	PACKAGE
ICH8515MKA	1.5 A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead TO-3
ICH8515IKA	1.25 A	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead TO-3

Figure 1: Functional Diagram
DS02050
Figure 1: Functional Diagram

CDO1900

Figure 2: Pin Configuration (Outline dwg KA)
ABSOLUTE MAXIMUM RATINGS @ $T_{A}=25^{\circ} \mathrm{C}$
Supply Voltage \qquad $\pm 18 \mathrm{~V}$
Power Dissipation, Safe Operating Area....... See Curves
Differential Input Voltage \qquad
Input Voltage....................................... $\pm 15 \mathrm{~V}$ (Note 1)
Peak Output Current See Curves (Note 2) Output Short Circuit Duration
(to ground) \qquad Continuous (Note 2)

Note 1: Rating applies to supply voltages of $\pm 15 \mathrm{~V}$. For lower supply voltages, $\mathrm{V}_{\text {INMAX }}=\mathrm{V}_{\text {SUPPLY }}$.
Note 2: Rating applies as long as package dissipation is not exceeded for heat sink attached.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
OPERATING CHARACTERISTICS $T_{A}=+25^{\circ} \mathrm{C} . \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ (unless otherwise stated)

SYMBOL	PARAMETER	TEST CONDITIONS	ICH85151			ICH8515M			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
$\Delta \mathrm{VOS}^{\prime} / \Delta \mathrm{Pd}$	Input Offset Voltage Change with Power Dissipation	Mtd. on Wakefield 403 Heat Sink			$\begin{gathered} 4 \\ \text { (Typ.) } \end{gathered}$			$\begin{gathered} 2 \\ \text { (Typ.) } \end{gathered}$	mV/W
V_{OS}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{Pd}<1 \mathrm{~W}$	-6	1	6	-3	0.7	3	mV
IBIAS	Input Bias Current	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{Pd}<1 \mathrm{~W}$			500			250	nA
los	Input Offset Current	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{Pd}<1 \mathrm{~W}$			200			100	nA
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \\ & \mathrm{~V}_{\mathrm{O}}>2 / 3 \mathrm{~V}_{\mathrm{SUPPLY}} \end{aligned}$	$\begin{array}{\|c\|} \hline 100 \\ \text { (Typ.) } \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 100 \\ \text { (Typ.) } \\ \hline \end{array}$			dB
$\mathrm{V}_{\text {CMR }}$	Input Voltage Range	Typical	-10		+10	-10		+10	V
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$	$\begin{array}{\|c\|} \hline 70 \\ \text { (Typ.) } \\ \hline \end{array}$			$\begin{array}{\|c} \hline 70 \\ \text { (Typ.) } \\ \hline \end{array}$			dB
PSRR	Power Supply Rejection Ratio	$\mathrm{RS}_{\mathrm{S}}=10 \Omega$	$\begin{gathered} 77 \\ \text { (Typ.) } \\ \hline \end{gathered}$			$\begin{array}{\|c} \hline 77 \\ \text { (Typ.) } \\ \hline \end{array}$			dB
SR	Slew Rate	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~A}_{\mathrm{V}}=1, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \\ & \mathrm{~V}_{\mathrm{O}} \geq 2 / 3 \mathrm{~V}_{\text {SUPP }} \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ \text { (Typ.) } \end{gathered}$			$\begin{gathered} 0.5 \\ \text { (Typ.) } \end{gathered}$			$\mathrm{V} / \mu \mathrm{s}$
$\Delta \mathrm{V}_{0}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \Omega, A_{V}=10$	± 12			± 12			V
10	Output Current	$R_{L}=5 \Omega, A_{V}=10$	± 1.25	1.4		± 1.5	1.8		A
${ }^{1} \mathrm{Q}$	Power Supply Quiescent Current	$\mathrm{R}_{\mathrm{L}}=\infty, \quad \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		80	125		70	100	mA
OPERATING CHARACTERISTICS (continued) $\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M) or $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (I).									
Vos	Input Offset Voltage	$\mathrm{Pd}<1 \mathrm{~W}$	-10		+ 10	-9		+9	mV
$l_{\text {BIAS }}$	Input Bias Current	$\mathrm{Pd}<1 \mathrm{~W}$			1500			750	nA
los	Input Offset Current				500			200	nA
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \\ & \Delta \mathrm{~V}_{\mathrm{O}}=2 / 3 \mathrm{~V}_{\text {SUPPLY }} \end{aligned}$	$\begin{array}{\|c} 90 \\ \text { (Typ.) } \\ \hline \end{array}$			$\begin{array}{\|c} 90 \\ \text { (Typ.) } \\ \hline \end{array}$			dB
$\Delta \mathrm{V}_{0}$	Output Voltage Swing	$R_{L}=10 \Omega, A_{V}=10$	± 10			± 10			V
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance Junction to Ambient	Without Heat Sink			$\begin{gathered} 40 \\ \text { (Typ.) } \end{gathered}$			$\begin{array}{\|c\|} \hline 40 \\ \text { (Typ.) } \\ \hline \end{array}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
R ${ }_{\text {OJC }}$	Thermal Resistance Junction to Case				$\begin{array}{\|c\|} \hline 3.0 \\ (\text { Typ. }) \end{array}$			$\begin{array}{\|c\|} \hline 3.0 \\ \text { (Typ.) } \end{array}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance Junction to Ambient	Mtd. on Wakefield 403 Heat Sink		$\begin{array}{\|c\|} \hline 4.5 \\ \text { (Typ.) } \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 4.5 \\ \text { (Typ.) } \\ \hline \end{array}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$V_{\text {SUPPLY }}$	Supply Voltage Range		± 11		± 17	± 11		± 17	V

How To Set The Externally Programmable, Current Limiting Resistors:

The maximum output current is set by the addition of two external resistors. R $\mathrm{SC}(+)$ and $\mathrm{RSC}_{\mathrm{SC}}(-)$. Because of the internal power limiting circuitry, the maximum output current is available only when V_{O} is close to either power supply. As V_{O} moves away from $V_{\text {SUPPLY, }}$, the maximum output current decreases in proportion to output voltage. The curve below shows maximum output current versus output voltage.

In general, for a given V_{O}, ISc limit, and case temperature T_{C}, RSC can be calculated from the equation below for V_{O} positive, lout positive.

$$
\mathrm{R}_{\mathrm{SC}}=\frac{\left(20.6 \mathrm{~V}_{\mathrm{O}}\right)^{*}+680-2.2\left(\mathrm{~T}_{\mathrm{C}}-25^{\circ} \mathrm{C}\right)}{\mathrm{ISC} \text { (limit) in mA}}
$$

*For V_{O} negative, replace this term with $10.3\left(V_{O}-1.2\right)$
For example, for $\mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A} @ \mathrm{~V}_{\mathrm{O}}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$,

$$
R_{S C}=\frac{(20.6)(12)+680}{1500}=\frac{927.2}{1500}=.618 \Omega
$$

Therefore for this application, $\mathrm{R}_{S C}=.62 \Omega$ (closest standard value).

When 0.62Ω is used, ISC @ $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ will be reduced to about 1A. Except for small changes in the " $\pm \mathrm{V}_{\mathrm{O}(\max)}$ Limit" area, the effects of changing RSC on the lOUT vs VOUT characteristics can be determined by merely changing the lout scale on Figure 3 to correspond to the new value. Changes in T_{C} move the limit curve bodily up and down.

This internal power limiting circuitry however does not at all restrict the normal use of the driver. For any normal load, the static load line will be similar to that shown in Figure 3. Clearly, as V_{O} decreases, the lo requirement falls also, more steeply than the lo available. For reactive loads, the dynamic load lines are more complex. Two typical operating point loci are sketched here:

SC00810I
Figure 4: Capacitive Load

SC008201

Figure 5: Inductive Load (Note catch diode)
Thus the limiting circuitry protects the load and avoids needless damage to the driver during abnormal conditions. For any 12VDC motor/actuator, the RSC resistors must be calculated to get proper power delivered to the motor (up to a maximum of 1.5 amps) and $V_{\text {SUPP }}$ set at $\pm 15 \mathrm{~V}$. For lower supply and/or output voltages, the maximum output current will follow graphs of Figures 3 and 13.

NOTE ON AMPLIFIER POWER DISSIPATION

The steady state power dissipation limit is given by

$$
P_{D}=\frac{T_{J(M A X)}-T_{A}}{R_{\theta J C}+R_{\theta C H}+R_{\theta H A}}
$$

where
$T_{J}=$ Maximum junction temperature
$T_{A}=$ Ambient temperature
$R_{\theta J C}=$ Thermal resistance from transistor junction to case of package
$\mathrm{R}_{\theta \mathrm{CH}}=$ Thermal resistance from case to heat sink
$\mathrm{R}_{\theta H A}=$ Thermal resistance from heat sink to ambient air And since
$T_{J}=150^{\circ} \mathrm{C}$ for silicon transistors
$\mathrm{R}_{\theta \mathrm{JC}} \cong 2.0 \mathrm{C} /$ WATT for a steel bottom TO-3 package with die attachment to beryllia substrate header
$\mathrm{R}_{\theta \mathrm{CH}}=.045^{\circ} \mathrm{C} / \mathrm{W}$ for 1 mil thickness of Wakefield type 120 thermal joint compound $.09^{\circ} \mathrm{C} / \mathrm{W}$ for 2 mil thickness of type 120 $.13^{\circ} \mathrm{C} / \mathrm{W}$ for 3 mil thickness of type 120 $.17^{\circ} \mathrm{C} / \mathrm{W}$ for 4 mil thickness for type 120 $.21^{\circ} \mathrm{C} / \mathrm{W}$ for 5 mil thickness of type 120 $.24^{\circ} \mathrm{C} / \mathrm{W}$ for 6 mil thickness of type 120
$\mathrm{R}_{\theta H A}=$ The choice of heat sink that a user selects depends upon the amount of room available to mount the heat sink. A sample calculation follows: by choosing a Wakefield 403 heat sink, with free air, natural convection (no fan). $R_{\theta H A} \cong 2.0^{\circ} \mathrm{C} / \mathrm{W}$. Using 4 mil joint compound,

$$
P_{D}=\frac{150^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{A}}}{2.0^{\circ}+0.17^{\circ}+2.0}=\frac{150^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{A}}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}
$$

or @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,

$$
\frac{150^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=30 \mathrm{~W}
$$

and @ $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$,

$$
\frac{150^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=6 \mathrm{~W}
$$

From Figure 6 the worst case steady state power dissipation for the IH8515 ($\mathrm{RSC}_{\mathrm{SC}}=0.62 \Omega$) is about 15W and 11 W respectively. Thus this heat sink is adequate.

Figure 6: lout vs Vout

TYPICAL PERFORMANCE CHARACTERISTICS

LC015901
Input Offset Voltage vs Power Dissipation

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

sc008501
LC01600I
Input Impedance vs Gain vs Frequency

SC008601

LC01610

Quiescent Current vs Power Supply Voltage

LC016201
Large Signal Power Band Width

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

SC008901

LC016301

Small Signal Frequency Response

Figure 7: Maximum Output Current vs. Case Temperature

Figure 8: Maximum Ouitput Current vs. VSUPPLY

TYPICAL APPLICATIONS

Constant Voltage Drive For D.C. Motors

Here $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}=4$, and if $\mathrm{V}_{\text {IN }}=-3 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=+12 \mathrm{~V}$, and vice versa for $\mathrm{V}_{\mathbb{N}}=+3 \mathrm{~V}$. Diodes D1, D2 should be 1N4001 types: these absorb the inductive kickbacks of the motor. The 2000pF capacitor is used to prevent system oscillation, by providing gain rolloff @ approx. 20kHz (-3dB).

Figure 9

Constant Current Drive For D.C. Motors

$$
\frac{I_{L}}{V_{I N}}=-\frac{R_{f}}{R_{I N}} \cdot \frac{1}{R_{L}}, \text { assuming } R_{f} \gg R_{L}
$$

This circuit allows precisely set motor drive current with op. amp. feedback accuracy. If $R_{I N}=R_{F}=1 k \Omega$, and
$R_{L}=10 \Omega$, then $\frac{L_{L}}{V_{I N}}=-0.1 \mathrm{Amps} /$ Volt, and if $R_{L}=1 \Omega$
(use 4 W or more) and $R_{F}=R_{I N}=1 k \Omega$,

$$
\frac{I_{L}}{V_{I N}}=-1 \times 1=\frac{1 \mathrm{Amp}}{\text { Volt }} .
$$

thus if $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}, 1.5 \mathrm{amps}$ will flow thru the motor. Since one side of the motor will have a 1.5 V drop (with respect to GND), the VO point will go to 13.5 V and develop 12 V across motor.

HEAT SINK INFORMATION

Heat sinks are available from Intersil. Order part number $29-0305$ ($\$ 10.00$ ea.) with a $R_{\theta H A}=1.3^{\circ} \mathrm{C} /$ watt. A convenient mating connector is also available. Order part number 29-0306 (\$4.50 ea.).
NOTE: This product contains Beryllia. If used in an application where the package integrity may be breached and the internal parts crushed or machined, avoid inhalation of the dust.

ICL7605/ICL7606 Commutating Auto-Zero (CAZ) Instrumentation Amplifier

GENERAL DESCRIPTION

The ICL7605/ICL7606 CMOS commutating auto-zero (CAZ) instrumentation amplifiers are designed to replace most of today's hybrid or monolithic instrumentation amplifiers, for low frequency applications from DC to 10 Hz . This is made possible by the unique construction of this new Intersil device, which takes an entirely new design approach to low frequency amplifiers.

Unlike conventional amplifier designs, which employ three op-amps and require ultra-high accuracy in resistor tracking and matching, the CAZ instrumentation amplifier requires no trimming except for gain. The key features of the CAZ principle involve automatic compensation for longterm drift phenomena and temperature effects, and a flying capacitor input.

The ICL7605/ICL7606 consist of two analog sections a unity gain differential to single-ended voltage converter and a CAZ op amp. The first section senses the differential input and applies it to the CAZ amp section. This section consists of an operational amplifier circuit which continuously corrects itself for input voltage errors, such as input offset voltage, temperature effects, and long term drift.

The ICL7605/ICL7606 is intended for low-frequency operation in applications such as strain gauge amplifiers which require voltage gains from 1 to 1000 and bandwidths from DC to 10 Hz . Since the CAZ amp automatically corrects itself for internal errors, the only periodic adjustment required is that of gain, which is established by two external resistors. This, combined with extremely low offset and temperature coefficient figures, makes the CAZ instrumentation amplifier very desirable for operation in severe environments (temperature, humidity, toxicity, radiation, etc.) where equipment service is difficult.

FEATURES

- Exceptionally Low Input Offset Voltage - $2 \mu \mathrm{~V}$
- Low Long Term Input Offset Voltage Drift $0.2 \mu \mathrm{~V} /$ Year
- Low Input Offset Voltage Temperature Coefficient - $0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Wide Common Mode Input Voltage Range - 0.3V Above Supply Rail
- High Common Mode Rejection Ratio - 100 dB
- Operates at Supply Voltages As Low As $\pm 2 \mathrm{~V}$
- Short Circuit Protection On Outputs for $\pm 5 \mathrm{~V}$ Operation
- Static-Protected Inputs - No Special Handling Required
- Compensated (ICL7605) or Uncompensated (ICL7606) Versions

Figure 1: Pin Configuration

ORDERING INFORMATION

Order parts by the following part numbers:

PART NUMBER	COMPENSATION	TEMPERATURE RANGE	PACKAGE
ICL7605CJN	INTERNAL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18-PIN CERDIP
ICL7605IJN	INTERNAL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18-PIN CERDIP
ICL7605MJN	INTERNAL	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18-PIN CERDIP
ICL7605/D	INTERNAL		DICE**
ICL7606CJN	EXTERNAL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18-PIN CERDIP
ICL76061JN	EXTERNAL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18-PIN CERDIP
ICL7606MJN ICL7606/D	EXTERNAL EXTERNAL	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18-PIN CERDIP

[^18]

Figure 3: Functional Diagram

ICL7605/ICL7606

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (V^{+}to V^{-}) \ldots...................... 18 V
DR Input Voltage $\left.\mathrm{V}^{+}-8\right)$ to $\left(\mathrm{V}^{+}+0.3\right) \mathrm{V}$ Input Voltage ($C_{1}, C_{2}, C_{3}, C_{4}+$ DIFF IN, -DIFF IN, -INPUT, BIAS, OSC),
(Note 1) $\left(\mathrm{V}^{-}-0.3\right)$ to $\left(\mathrm{V}^{+}+0.3\right) \mathrm{V}$ Differential Input Voltage (+ DIFF IN to -DIFF IN)
(Note 2) $\left(\mathrm{V}^{-}-0.3\right)$ to $\left(\mathrm{V}^{+}+0.3\right) \mathrm{V}$
Duration of Output Short Circuit (Note 3)Unlimited

Continuous Total Power Dissipation (Note 4) 500 mW Operating Temperature Range:

ICL7605/ICL7606CJN 0 to $+70^{\circ} \mathrm{C}$
ICL7605/ICL7606IJN $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICL7605/ICL7606MJN............ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: Due to the SCR structure inherent in all CMOS devices, exceeding these limits may cause destructive latch up. For this reason, it is recommended that no inputs from sources operating on a separate power supply be applied to the $7605 / 6$ before its own power supply is established, and that when using multiple supplies, the supply for the 7605/6 should be turned on first.
Note 2: No restrictions are placed on the differential input voltages on either the + DIFF IN or - DIFF \mathbb{N} inputs so long as these voltages do not exceed the power supply voltages by more than 0.3 V .
Note 3: The outputs may be shorted to ground (GND) or to either supply (V^{+}or V^{-}). Temperatures and/or supply voltages must be limited to insure that the dissipation ratings are not exceeded.
Note 4: For operation above $25^{\circ} \mathrm{C}$ ambient temperature, derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 500 mW above $25^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, DR pin connected to V^{+}(fCOM $\simeq 160 \mathrm{~Hz}$, fCOM1 $\simeq 80 \mathrm{~Hz}$), $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F}$, Test Circuit 1 unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS		VALUE			UNIT
				MIN	TYP	MAX	
Vos	Input Offset Voltage	$R_{S} \leq 1 k \Omega$ MIL version over temp.	Low Bias Setting Med Bias Setting High Bias Setting Med Bias Setting		$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 7 \end{aligned}$	$\begin{gathered} \pm 5 \\ \pm 20 \end{gathered}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \\ & \hline \end{aligned}$
$\Delta V_{\text {OS }} / \Delta T$	Average Input Offset Voltage Temperature Coefficient (Note 5)	Low or Med Bias Settings	$\begin{aligned} & -55^{\circ} \mathrm{C}>\mathrm{T}_{A}>+25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C}>\mathrm{T}_{A}>+85^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C}>\mathrm{T}_{A}>+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{t}$	L.ong Term input Offset Voltage Stability	Low or Med Bias Settings			0.5		$\mu \mathrm{V} /$ Year
CMVR	Common Mode Input Range			-5.3		+5.3	V
CMRR	Common Mode Rejection Ratio	COSC $=0$, DR connected to $\mathrm{V}^{+}, \mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F}$ COSC $=1 \mu \mathrm{~F}$, DR connected to GND, $\mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F}$ $\mathrm{C}_{\mathrm{OSC}}=1 \mu \mathrm{~F}, \mathrm{DR}$ connected to GND, $\mathrm{C}_{3}=\mathrm{C}_{4}=10 \mu \mathrm{~F}$			$\begin{gathered} 94 \\ 100 \\ 104 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
PSRR	Power Supply Rejection Ratio				110		dB
- İIAS	-INPUT Bias Current	Any bias setting, $f_{\mathrm{c}}=160 \mathrm{~Hz}$ (Includes charge injection currents)			0.15	1.5	nA
$\bar{e}_{n}(p-p)$	Equivalent Input Noise Voltage peak-to-peak	Band Width 0.1 to 10 Hz	Low Bias Mode Med Bias Mode High Bias Mode		$\begin{aligned} & 4.0 \\ & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
\bar{e}_{n}	Equivalent Input Noise voltage	Band Width 0.1 to 1.0 Hz	All Bias Modes		1.7		$\mu \mathrm{V}$
Avol	Open Loop Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	Low Bias Setting Med Bias Setting High Bias Setting	$\begin{aligned} & 90 \\ & 90 \\ & 80 \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \\ & 100 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
$\pm \mathrm{V}_{\mathrm{O}}$	Maximum Output Voltage Swing	$\begin{aligned} & R_{L}=1 \mathrm{M} \Omega \\ & R_{L}=100 \mathrm{k} \Omega \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$	Positive Swing Negative Swing	+4.4	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \end{aligned}$	-4.5	V V V V
GBW	Bandwidth of Input Voltage Translator	$\mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F}$	All Bias Modes		10		Hz
fCOM	Nominai Commutation Frequency	Cosc $=0$	DR Connected to V^{+} DR Connected to GND		$\begin{aligned} & 160 \\ & 2560 \end{aligned}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
fCOM1	Nominal Input Converter Commutation Frequency	Cosc $=0$	DR Connected to V^{+} DR Connected to GND		$\begin{gathered} 80 \\ 1280 \end{gathered}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{BH}} \\ & \mathrm{~V}_{\mathrm{BM}} \\ & \mathrm{~V}_{\mathrm{BL}} \end{aligned}$	Bias Voltage required to set Quiescent Current	Low Bias Setting Med Bias Setting High Bias Setting		$\begin{array}{\|c\|} \hline v^{+}-0.3 \\ v^{-}+1.4 \\ v^{-}-0.3 \end{array}$	$\begin{aligned} & \mathrm{V}^{+} \\ & \text {GND } \\ & \mathrm{V}^{-} \end{aligned}$	$\begin{aligned} & v^{+}+0.3 \\ & v^{+}-1.4 \\ & v^{-}+0.3 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
IBIAS	Bias (Pin 8) Input Current				± 30		pA

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	VALUE			UNIT
			MIN	TYP	MAX	
IDR	Division Ratio Input Current	$\mathrm{V}^{+}-8.0 \leq \mathrm{V}_{\mathrm{DR}} \leq \mathrm{V}^{+}+0.3$ volt		± 30		pA
VDRH VDRL	DR Voltage required to set Oscillator division ratio	Internal oscillator division ratio 32 Internal oscillator division ratio 2	$\begin{gathered} v^{+}-0.3 \\ v^{+}-8 \end{gathered}$		$\begin{array}{\|c} v^{+}+0.3 \\ v^{+}-1.4 \end{array}$	$\begin{aligned} & V \\ & V \end{aligned}$
$\mathrm{R}_{\text {AS }}$	Effective Impedance of Voltage Translator Analog Switches	.		30		$k \Omega$
ISUPP	Supply Current.	High Bias Setting Med Bias Setting Low Bias Setting	.	$\begin{gathered} 7 \\ 1.7 \\ 0.6 \end{gathered}$	$\begin{gathered} 15 \\ 5 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{V}^{+}-\mathrm{V}^{-}$	Operating Supply Voltage Range	High Bias Setting Med or Low Bias Setting	$\begin{aligned} & 5 \\ & 4 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

Note 5: For Design only, not 100\% tested.

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT OFFSET VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF COMMUTATION FREQUENCY $\left(C_{1}, C_{2}=0.1 \mu F\right)$

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGES

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE AS A FUNCTION OF SUPPLY VOLTAGE ($\mathbf{V}^{+}-\mathrm{V}^{-}$)

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF COMMUTATION
FREQUENCY ($\mathrm{C}_{1}, \mathrm{C}_{2}=1 \mu \mathrm{~F}$)

OP018001

COMMON MODE REJECTION RATIO AS A FUNCTION OF THE INPUT DIFFERENTIAL TO SINGLE ENDED VOLTAGE CONVERTER CAPACITORS

ICL7605/ICL7606

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

MAXIMUM OUTPUT VOLTAGE AS A

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

AMPLITUDE RESPONSE OF THE INPUT DIFFERENTIAL TO SINGLE ENDED VOLTAGE CONVERTER

FUNCTION OF OUTPUT LOAD RESISTANCE

INPUT CURRENT AS A FUNCTION OF COMMUTATION FREQUENCY

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OP018601

OP018501

FREQUENCY RESPONSE OF THE 10 Hz LOW PASS FILTER USED TO MEASURE NOISE (TEST CIRCUIT 2).

- FREQUENCY - Hz

OSCILLATOR FREQUENCY AS A FUNCTION OF EXTERNAL CAPACITIVE LOADING

OP01880i

TC024911
Figure 4: Test Circuit 1

DETAILED DESCRIPTION

CAZ Instrumentation Amp Overview

The CAZ instrumentation amplifier operates on principles which are very different from those of the conventional three op-amp designs, which must use ultra-precise trimmed resistor networks in order to achieve acceptable accuracy. An important advantage of the ICL7605/ICL7606 CAZ instrumentation amp is the provision for self-compensation of internal error voltages, whether they are derived from steady-state conditions, such as temperature and supply voltage fluctuations, or are due to long term drift.

The CAZ instrumentation amplifier is constructed with monolithic CMOS technology, and consists of three distinct sections, two analog and one digital. The two analog sections - a differential to single-ended voltage converter, and a CAZ op amp - have on-chip analog switches to steer the input signal. The analog switches are driven from a self-contained digital section which consists of an RC oscillator, a programmable divider, and associated voltage translators. A functional layout of the ICL7605/ICL7606 is shown in Figure 6.

BD006201
Figure 6: Simplified Block Diagram

The ICL7605/ICL7606 have approximately constant equivalent input noise voltage, CMRR, PSRR, input offset voltage and drift values independent of the gain configuration. By comparison, hybrid-type modules which use the traditional three op amp configuration have relatively poor performance at low gain (1 to 100) with improved performance above a gain of 100 .

The only major limitation of the ICL7605/ICL7606 is its low-frequency operation (10 to 20 Hz maximum). However in many applications bandwidth is not the most important parameter.

CAZ Op Amp Section

Operation of the CAZ op-amp section of the ICL7605/ ICL7606 is best illustrated by referring to Figure 7. The basic amplifier configuration, represented by the large triangles, has one more input than does a regular op amp the $A Z$, or auto-zero terminal. The voltage on the $A Z$ input is that level at which each of the internal op amps will be auto-zeroed. In Mode A, op amp \#2 is connected in a unity gain mode through on-chip analog switches. It charges external capacitor C_{2} to a voltage equal to the $D C$ input offset voltage of the amplifier plus the instantaneous lowfrequency noise voltage. A short time later, the analog switches reconnect the on-chip op amps to the configuration shown in Mode B. In this mode, op amp \#2 has capacitor C_{2} (which is charged to a voltage equal to the offset and noise voltage of op amp \#2) connected in series to its non-inverting (+) input in such a manner as to null out the input offset and noise voltages of the amplifier. While one of the on-chip op amps is processing the input signal, the second op amp is in an auto-zero mode, charging a capacitor to a voltage equal to its equivalent DC and low frequency error voltage. The on-chip amplifiers are connected and reconnected at a rate designated as the commutation frequency ($f C O M$), so that at all times one or the other of the on-chip op amps is processing the input signal, while the voltages on capacitors C_{1} and C_{2} are being updated to compensate for variables such as low frequency noise voltage and input offset voltage changes due to temperature, drift or supply voltages effects.

Figure 7: Diagrammatic representation of the 2 half cycles of operation of the CAZ OP AMP.

DS017401
Figure 8: Schematic of analog switches connecting each internal OP AMP to its inputs and output.

Compared to the standard bipolar or FET input op amps, the CAZ amp scheme demonstrates a number of important advantages:

* Effective input offset voltages can be reduced from 1000 to 10,000 times without trimming.
* Long-term offset voltage drift phenomena can be compensated and dramatically reduced.
* Thermal effects can be compensated for over a wide operating temperature range. Reductions can be as much as 100 times or better.
* Supply voltage sensitivity is reduced.

CMOS processing is ideally suited to implement the CAZ amp structure. The digital section is easily fabricated, and the transmission gates (analog switches) which connect the on-chip op amps can be constructed for minimum charge injection and the widest operating voltage range. The analog section, which includes the on-chip op amps, contributes performance figures which are similar to bipolar or FET input designs. The CMOS structure provides the CAZ op-amp with open-loop gains of greater than 100dB, typical input offset voltages of $\pm 5 \mathrm{mV}$, and ultra-low leakage currents, typically 1 pA .
The CMOS transmission gates connect the on-chip op amps to external input and output terminals, as shown in Figure 8. Here, one op amp and its associated analog switches are required to connect each on-chip op amp, so that at any time three switches are open and three switches are closed. Each analog switch consists of a P-channel transistor in parallel with an N -channel transistor.

DIFFERENTIAL-TO-SINGLE-ENDED UNITY GAIN VOLTAGE CONVERTER

An idealized schematic of the voltage converter block is shown in Figure 9. The mode of operation is quite simple, involving two capacitors and eight switches. The switches are arranged so that four are open and four are closed. The four conducting switches connect one of the capacitors across the differential input, and the other from a ground or
reference voltage to the input of the CAZ instrumentation amp. The output signal of this configuration is shown in Figure 10, where the voltage steps equal the differential voltage $\left(V_{A}-V_{B}\right)$ at commutation times a, b, c, etc. The output waveform thus represents all information contained in the input signal from $D C$ up to the commutation frequency , including commutation and noise voltages. Sampling theory states that to preserve the information to be processed, at least two samples must be taken within a period $(1 / \mathrm{f})$ of the highest frequency being sampled. Consequently this scheme preserves information up to the commutation frequency. Above the commutation frequency, the input signal is translated to a lower frequency. This phenomenon is known as aliasing. Although the output responds to inputs above the commutation frequency, the frequencies of the output responses will be below the commutation frequency.

Figure 10: Input to Output Voltage waveforms from the differential to single ended voltage converter. For additional information, see frequency characteristics in Amplitude Response of the Input Differential to single ended voltage converter graph on page 5.

AF02820
Figure 11: 3-1/2 Digit Digital Readout Torque Wrench

The voltage converter is fabricated with CMOS analog switches, which contain a parallel combination of P-channel and N -channel transistors. The switches have a finite ON impedances of $30 \mathrm{k} \Omega$, plus parasitic capacitances to the substrate. Because of the charge injection effects which appear at both the switches and the output of the voltage converter, the values of capacitors C_{3} and C_{4} must be about $1 \mu \mathrm{~F}$ to preserve signal translation accuracies to 0.01%. The $1 \mu \mathrm{~F}$ capacitors, coupled with the $30 \mathrm{k} \Omega$ equivalent impedance of the switches, produce a low-pass filter response from: the voltage converter which is down approximately 3 dB at 10 Hz .

APPLICATIONS

Using the ICL7605/ICL7606 to Build a Digital Readout Torque Wrench

A typical application for the ICL7605/ICL7606 is in a strain gauge system, such as the digital readout torque wrench circuit shown in Figure 6. In this application, the CAZ instrumentation amplifier is used as a preamplifier, taking the differential voltage of the bridge and converting it to a single-ended voltage referenced to ground. The signal is then amplified by the CAZ instrumentation amplifier and applied to the input of a $3-1 / 2$ digit dual-slope A / D converter which drives the LCD panel meter display. The A/D converter device used in this instance is the Intersil ICL7106.

In the digital readout torque wrench circuit, the reference voltage for the ICL7106 is derived from the stimulus applied to the strain gauge, to utilize the ratiometric capabilities of
the A/D. In order to set the full-scale reading, a value of gain for the ICL7605/ICL7606 instrumentation CAZ amp must be selected along with an appropriate value for the reference voltage. The gain should be set so that at full scale, the output will swing about 0.5 V . The reference voltage required is about one-half the maximum output swing, or approximately 0.25 V .
In this type of system, only one adjustment is required. Either the amplifier gain or the reference voltage must be varied for full-scale adjustment. Total current consumption of all circuitry, less the current through the strain gauge bridge, is typically 2 mA . The accuracy is limited only by resistor ratios and the transducer.

SOME HELPFUL HINTS Testing the ICL7605/ICL7606 CAZ Instrumentation Amplifier

Figure 4 and 5 (Test Circuits) provide a convenient means of measuring most of the important electrical parameters of the CAZ instrumentation amp. The output signal can be viewed on an oscilloscope after being fed through a low-pass filter. It is recommended that for most applications, a low-pass filter of about 1.0 to 1.5 Hz be used to reduce the peak-to-peak noise to about the same level as the input offset voltage.
The output low-pass filter must be a high-input impedance RC type - not simply a capacitor across the feedback resistor R_{2}. Resistor and capacitor values of about $100 \mathrm{k} \Omega$ and $1.0 \mu \mathrm{~F}$ are necessary so that the output load impedance on the CAZ op-amp is greater than $100 \mathrm{k} \Omega$.

Figure 12: Effect of a load capacitor on output voltage waveforms.

Bias Control

The on-chip op amps consume over 90% of the power required by the ICL7605/ICL7606. For this reason, the internal op amps have externally- programmable bias levels. These levels are set by connecting the BIAS terminal to either V^{+}, GND, or V^{-}, for LOW, MED or HIGH BIAS levels, respectively. The difference between each bias setting is about a factor of 3, allowing a 9:1 ratio of quiescent supply current versus bias setting. This current programmability provides the user with a choice of device power dissipation levels, slew rates (the higher the slew rate, the better the recovery from commutation spikes), and offset errors due to "IR" voltage drops and thermoelectric effects (the higher the power dissipation, the higher the input offset error). In most cases, the medium bias (MED BIAS) setting will be found to be the best choice.

Output Loading (Resistive)

With a $10 \mathrm{k} \Omega$ load, the output voltage swing can vary across nearly the entire supply voltage range, and the device can be used with loads as low as $2 \mathrm{k} \Omega$.

However, with loads of less than $50 \mathrm{k} \Omega$, the on-chip op amps will begin to exhibit the characteristics of transconductance amplifiers, since their respective output impedances are nearly $50 \mathrm{k} \Omega$ each. Thus the open-loop gain is 20 dB less with a $2 \mathrm{k} \Omega$ load than it would be with a $20 \mathrm{k} \Omega$ load. Therefore, for high gain configurations requiring high accuracy, an output load of $100 \mathrm{k} \Omega$ or more is suggested.

There is another consideration in applying the CAZ instrumentation op amps which must not be overlooked. This is the additional power dissipation of the chip which will result from a large output voltage swing into a low resistance load. This added power dissipation can affect the initial input offset voltages under certain conditions.

Output Loading (Capacitive)

In many applications, it is desirable to include a low-pass filter at the output of the CAZ instrumentation op amp to reduce high-frequency noise outside the desired signal passband. An obvious solution when using a conventional op amp would be to place a capacitor across the external feedback resistor and thus produce a low-pass filter.

However, with the CAZ op amp concept this is not possible because of the nature of the commutation spikes. These voltage spikes exhibit a low-impedance characteristic in the direction of the auto-zero voltage and a highimpedance characteristic on the recovery edge, as shown in Figure 12. It can be seen that the effect of a large load
capacitor produces an area error in the output waveform, and hence an effective gain error. The output low-pass filter must be of a high-impedance type to avoid these area errors. For example, a 1.5 Hz filter will require a $100 \mathrm{k} \Omega$ resistor and a $1.0 \mu \mathrm{~F}$ capacitor, or a $1 \mathrm{M} \Omega$ resistor and an $0.1 \mu \mathrm{~F}$ capacitor.

Oscillator and Digital Circuitry Considerations

The oscillator has been designed to run free at about 5.2 kHz when the OSC terminal is open circuit. If the full divider network is used, this will result in a nominal commutation frequency of approximately 160 Hz . The commutation frequency is that frequency at which the on-chip op amps are switched between the signal processing and the auto-zero modes. A 160 Hz commutation frequency represents the best compromise between input offset voltage and low frequency noise. Other commutation frequencies may provide optimization of some parameters, but always at the expense of others.

The oscillator has a very high output impedance, so that a load of only a few picofarads on the OSC terminal will cause a significant shift in frequency. It is therefore recommended that if the natural oscillator frequency is desired $(5.2 \mathrm{kHz})$ the terminal remains open circuit. In other instances, it may be desirable to synchronize the oscillator with an external clock source, or to run it at another frequency. The ICL7605/ICL7606 CAZ amp provides two degrees of flexibility in this respect. First, the DR (division ratio) terminal allows a choice of either dividing the oscillator by 32 (DR terminal to V^{+}) or by 2 (DR terminal to GND) to obtain the commutation frequency. Second, the oscillator may have its frequency lowered by the addition of an external capacitor connected between the OSC terminal and the V^{+}or system GND terminals. For situations which require that the commutation frequency be synchronized with a master clock, (Figure 13) the OSC terminal may be driven from TTL logic (with resistive pull-up) or by CMOS logic, provided that the V^{+}supply is $+5 \mathrm{~V}(\pm 10 \%)$ and the logic driver also operates from a similar voltage supply. The reason for this requirement is that the logic section (including the oscillator) operates from an internal -5 V supply, referenced to V^{+}supply, which is not accessible externally.

Thermoelectric Effects

The ultimate limitations to ultra-high-sensitivity DC amplifiers are due to thermoelectric, Peltier, or thermocouple effects in electrical junctions consisting of various metals (alloys, silicon, etc.) Unless all junctions are at precisely the
same temperature, small thermoelectric voltages will be produced, generally about $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. However, these voltages can be several tens of microvolts per ${ }^{\circ} \mathrm{C}$ for certain thermocouple materials.
 external logic into the oscillator terminal.

In order to realize the extremely low offset voltages which the CAZ op amp can produce, it is necessary to take precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement across device surfaces. In addition, the supply voltages and power dissipation should be kept to a minimum by use of the MED BIAS setting. Employ a high impedance load and keep the ICL7605/ICL7606 away from equipment which dissipates heat.

Component Selection

The four capacitors (C_{1} thru C_{4}) should each be about $1.0 \mu \mathrm{~F}$. These are relatively large values for non-electrolytic capacitors, but since the voltages stored on them change significantly, problems of dielectric absorption, charge bleed-off and the like are as significant as they would be for integrating dual-slope A/D converter applications. Polypropylene types are the best for C_{3} and C_{4}, although Mylar may be adequate for C_{1} and C_{2}.

Excellent results have been obtained for commercial temperature ranges using several of the less-expensive, smaller-size capacitors, since the absolute values of the capacitors are not critical. Even polarized electrolytic capacitors rated at $1.0 \mu \mathrm{~F}$ and 50 V have been used successfully at room temperature, although no recommendations are made concerning the use of such capacitors.

Commutation Voltage Transient Effects

Although in most respects the CAZ instrumentation amplifier resembles a conventional op amp, its principal applications will be in very low level, low-frequency preamplifiers limited to DC through 10 Hz . The is due to the finite
switching transients which occur at both the input and output terminals because of commutation effects. These transients have a frequency spectrum beginning at the commutation frequency, and including all of the higher harmonics of the commutation frequency. Assuming that the commutation frequency is higher than the highest inband frequency, then the commutation transients can be filtered out with a low-pass filter.

The input commutation transients arise when each of the on-chip op amps experiences a shift in voltage which is equal to the input offset voltages (about $5-10 \mathrm{mV}$), usually occurring during the transition between the signal processing mode and the auto-zero mode. Since the input capacitances of the on-chip op-amps are typically in the 10 pF range, and since it is desirable to reduce the effective input offset voltage about 10,000 times, the offset voltage autozero capacitors C_{1} and C_{2} must have values of at least $10,000 \times 10 \mathrm{pF}$, or $0.1 \mu \mathrm{~F}$ each.

The charge that is injected into the input of each op amp when being switched into the signal processing mode produces a rapidly-decaying voltage spike at the input, plus an equivalent $D C$ input bias current averaged over a full cycle. This bias current is directly proportional to the commutation frequency, and in most instances will greatly exceed the inherent leakage currents of the input analog switches, which are typically 1.0 pA at an ambient temperature of $25^{\circ} \mathrm{C}$.

The output waveform in Figure 4 (with no input signal) is shown in Figure 14. Note that the equivalent noise voltage is amplified 1000 times, and that due to the slew rate of the on-chip op amps, the input transients of approximately 7 mV are amplified by a factor of less than 1000.

Layout Considerations

Care should be exercised in positioning components on the PC board particularly the capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4}, which must all be shielded from the OSC terminal. Also, parasitic PC board leakage capacitances associated with these four capacitors should be kept as low as possible to minimize charge injection effects.

FEATURES

GENERAL DESCRIPTION

The ICL761X/762X/763X/764X series is a family of monolithic CMOS operational amplifiers. These devices provide the designer with high performance operation at low supply voltages and selectable quiescent currents, and are an ideal design tool when ultra low input current and low power dissipation are desired.

The basic amplifier will operate at supply voltages ranging from $\pm 1.0 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$, and may be operated from a single Lithium cell.

A unique quiescent current programming pin allows setting of standby current to $1 \mathrm{~mA}, 100 \mu \mathrm{~A}$, or $10 \mu \mathrm{~A}$, with no external components. This results in power consumption as low as $20 \mu \mathrm{~W}$. Output swings range to within a few millivolts of the supply voltages.

Of particular significance is the extremely low (1pA) input current, input noise current of $.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$, and $10^{12} \Omega$ input impedance. These features optimize performance in very high source impedance applications.

The inputs are internally protected and require no special handling procedures. Outputs are fully protected against short circuits to ground or to either supply.
$A C$ performance is excellent, with a slew rate of $1.6 \mathrm{~V} / \mu \mathrm{s}$, and unity gain bandwidth of 1 MHz at $I_{Q}=1 \mathrm{~mA}$.

Because of the low power dissipation, operating temperatures and drift are quite low. Applications utilizing these features may include stable instruments, extended life designs, or high density packages.

SELECTION GUIDE

DEVICE NOMENCLATURE

- High Input Impedance - $10^{12} \Omega$
- Programmable Power Consumption - Low As $20 \mu \mathrm{~W}$
- Input Current Lower Than BIFETs - Typ 1pA
- Available As Singles, Duals, Triples, and Quads
- Output Voltage Swings to Within Millivolts Of \mathbf{V}^{-} and V^{+}
- Low Power Replacement for Many Standard Op Amps
- Compensated and Uncompensated Versions
- Inputs Protected to $\pm 200 \mathrm{~V}$ (ICL7613/15)
- Input Common Mode Voltage Range Greater Than Supply Rails (ICL7612)

APPLICATIONS

- Portable Instruments
- Telephone Headsets
- Hearing Aid/Microphone Amplifiers
- Meter Amplifiers
- Medical Instruments
- High Impedance Buffers

SPECIAL FEATURE CODES

[^19]ORDERING INFORMATION

BASIC PART NUMBER	NUMBER OF OP-AMPS IN PACKAGE, AND SPECIAL FEATURES (SEE ABOVE)	PACKAGE TYPE AND SUFFIX							
		8-LEAD TO-99		8-PIN MINIDIP $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\begin{gathered} \text { 8-PIN } \\ \text { SOIC } \\ \hline 0^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} \\ \hline \end{gathered}$	PLASTIC DIP (1) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CERAMIC DIP (1)		DICE
		$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$				$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	
$\begin{aligned} & \text { ICL7611 } \\ & \text { ICL7612 } \\ & \text { ICL7613 } \\ & \text { ICL7614 } \\ & \text { ICL7615 } \end{aligned}$	SINGLE OP-AMP: C, O, P C, O, P, V C, I, O, P E, M, O E, I, M, O	ACTV BCTV DCTV	AMTV BMTV	ACPA BCPA DCPA	$\begin{aligned} & \text { DCPA } \\ & \text { DCBA } \end{aligned}$				D/D
ICL7621	DUAL OP-AMP: C, M	ACTV BCTV DCTV	AMTV BMTV	ACPA BCPA DCPA				.	D/D
ICL7622	DUAL OP-AMP: $\mathrm{C}, \mathrm{M}, \mathrm{O}$					ACPD BCPD DCPD	ACJD BCJD DCJD	AMJD BMJD	D/D
$\begin{aligned} & \text { ICL7631 } \\ & \text { ICL7632 } \end{aligned}$	TRIPLE OP-AMP: C, P $P(3)$		-			CCPE ECPE	CCJE ECJE	CMJE	E/D
$\begin{aligned} & \text { ICL7641 } \\ & \text { ICL7642 } \end{aligned}$	QUAD OP-AMP: C, H C, L					$\begin{aligned} & \text { CCPD } \\ & \text { ECPD } \end{aligned}$	$\begin{aligned} & \text { CCJD } \\ & \text { ECJD } \end{aligned}$	CMJD	E/D

NOTES: 1. Duals and quads are available in 14 pin DIP package, triples in 16 pin only.
2. Ordering code must consist of basic part number and package suffix, e.g., ICL7611BCPA.
3. ICL7632 is not compensatable. Recommended for use in high gain circuits only.
**Parameter Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

DEVICE	DESCRIPTION	PIN ASSIGNMENTS
ICL7611XCPA ICL7611XCTV ICL7611XMTV ICL7612XCPA ICL7612XCTV ICL7612XMTV ICL7613XCPA ICL7613XCTV ICL7613XMTV	Internal compensation, plus offset null capability and external I_{Q} control	TO-99 (TOP VIEW) 8 PIN DIP (TOP VIEW) (outline dwg TV) (outline dwg PA) *Pin 7 connected to case. 8 PIN DIP (TOP VIEW) (outline dwg BA)
Figure 1: Pin Configurations		

DEVICE	DESCRIPTION	PIN ASSIGNMENTS
ICL7614XCPA ICL7614XCTV ICL7614XMTV ICL7615XCPA ICL7615XCTV ICL7615XMTV	Fixed $\mathrm{I}_{\mathrm{Q}}(100 \mu \mathrm{~A})$, external compensation, and offset null capability	TO-99 (TOP VIEW) (outline dwg TV) SOIC-8 *Pin 7 connected to case.
ICL7621XCPA ICL7621XCTV ICL7621XMTV	Dual op amps with internal compensation; l_{Q} fixed at $100 \mu \mathrm{~A}$ Pin compaptible with Texas Inst. TL082 Motorola MC1458 Raytheon RC4558	TO-99 (TOP VIEW) (outline dwg TV) *Pin 8 connected to case. * PIN DIP (TOP VIEW) (outline dwg PA)
ICL7622XCPD	Dual op amps with external compensation and offset null capability; l_{Q} fixed at $100 \mu \mathrm{~A}$ Pin compatible with Texas Inst. TL083 Fairchild $\mu \mathrm{A} 747$	14 PIN DIP (TOP VIEW) (outline dwgs JD, PD) Note: Pins 9 and 13 are internally connected.

Figure 1: Pin Configurations (Cont.)

Figure 1: Pin Configurations (Cont.)

Figure 2: Functional Diagram

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage V^{+}to V^{-}........................... 18 V
Input Voltage........................ $\mathrm{V}^{-}-0.3$ to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
Input Voltage ICL7613/15 Only

$$
V^{-}-200 V \text { to } V^{+}+200 V
$$

Differential Input Voltage ${ }^{[2]} \ldots \pm\left[\left(\mathrm{V}^{+}+0.3\right)-\left(\mathrm{V}^{-}-0.3\right)\right] \mathrm{V}$ Differential Input Voltage ${ }^{[2]}$ ICL7613/15 Only $\pm\left[\left(V^{+}+200\right)-\left(V^{-}-200\right)\right] V$

Continuous Power Dissipation
@ $25^{\circ} \mathrm{C}$
TO-99
8 Lead Minidip
14 Lead Plastic
14 Lead Cerdip
16 Lead Plastic 16 Lead Cerdip 16 Cerdip $\quad 500 \mathrm{~mW}$
Storage Temperature Range
250 mW
250 mW
375 mW
500 mW
375 mW
500mW
Operating Temperature Range
M Series
Range
C Series
.
(So
Solderin

Above $25^{\circ} \mathrm{C}$ derate as below:

$$
2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}
$$ $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $\ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

\qquad

Notes:

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Long term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time.
3. The outputs may be shorted to ground or to either supply. for $V_{\text {SUPP }} \leq 10 \mathrm{~V}$. Care must be taken to insure that the dissipation rating is not exceeded.

ELECTRICAL CHARACTERISTICS (761X and 762X ONLY)
($\mathrm{V}_{\text {SUPPLY }}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

SYMBOL	PARAMETER	TEST CONDITIONS	76XXA			76XXB			76XXD			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Vos	Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \end{aligned}$			$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & 5 \\ & 7 \end{aligned}$			$\begin{aligned} & 15 \\ & 20 \end{aligned}$	mV
$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	Temperature Coefficient of VOS	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		10			15			25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C_{(2)} \\ & \Delta T_{A}=M_{(2)} \\ & \hline \end{aligned}$		0.5	$\begin{aligned} & 30 \\ & 300 \\ & 800 \\ & \hline \end{aligned}$		0.5	$\begin{gathered} 30 \\ 300 \\ 800 \\ \hline \end{gathered}$		0.5	$\begin{gathered} 30 \\ 300 \\ 800 \\ \hline \end{gathered}$	pA
${ }_{\text {IBIAS }}$	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \end{aligned}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 400 \\ 4000 \\ \hline \end{array}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 400 \\ 4000 \\ \hline \end{array}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 400 \\ 4000 \\ \hline \end{array}$	pA
$V_{\text {CMR }}$	Common Mode Voltage Range (Except ICL7612)	$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{(1)} \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}^{(1)} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 4.4 \\ & \pm 4.2 \\ & \pm 3.7 \end{aligned}$			$\begin{aligned} & \pm 4.4 \\ & \pm 4.2 \\ & \pm 3.7 \end{aligned}$			$\begin{aligned} & \pm 4.4 \\ & \pm 4.2 \\ & \pm 3.7 \end{aligned}$			V
$\mathrm{V}_{\text {CMR }}$	Extended Common Mode Voltage Range (!CL7612 Only)	$\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}$	± 5.3			± 5.3			± 5.3			V
		$\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$	$\begin{gathered} +5.3 \\ -5.1 \end{gathered}$			$\begin{aligned} & +5.3 \\ & -5.1 \end{aligned}$			$\begin{aligned} & \hline+5.3 \\ & -5.1 \end{aligned}$			
		$\mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}$	$\begin{aligned} & +5.3 \\ & -4.5 \end{aligned}$			$\begin{aligned} & +5.3 \\ & -4.5 \end{aligned}$			$\begin{array}{\|l} +5.3 \\ -4.5 \\ \hline \end{array}$			
Vout	Output Voltage Swing	$\begin{aligned} & \text { (1) } I_{Q}=10 \mu A, R_{L}=1 M \Omega \\ & T_{A}=25^{\circ} C \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.7 \end{aligned}$			$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.7 \end{aligned}$			$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.7 \\ & \hline \end{aligned}$			v
		$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ & \Delta \mathrm{~T}_{A}=\mathrm{M} \end{aligned}$	$\begin{array}{\|l} \pm 4.9 \\ \pm 4.8 \\ \pm 4.5 \\ \hline \end{array}$			$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.5 \end{aligned}$			$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.5 \end{aligned}$.		
		$\begin{aligned} & \text { (1) } \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{A}=C \\ & \Delta T_{A}=\mathrm{M} \end{aligned}$	$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \end{aligned}$			$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \end{aligned}$			

ICL76XX
ELECTRICAL CHARACTERISTICS (761X and 762X ONLY) (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	76XXA			76XXB			76XXD			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 4.0 \mathrm{~V}, R_{L}=1 \mathrm{M} \Omega \\ & \left.l_{Q}=10 \mu A^{1}\right), T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & 86 \\ & 80 \\ & 74 \end{aligned}$	104		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	104		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	104		dB
		$\begin{aligned} & V_{O}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=\mathrm{C} \\ & \Delta T_{A}=\mathrm{M} \end{aligned}$	$\begin{aligned} & 86 \\ & 80 \\ & 74 \end{aligned}$	102		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	102		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	102		
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}^{(1)}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{A}=\mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \end{aligned}$	$\begin{aligned} & 80 \\ & 76 \\ & 72 \end{aligned}$	83		$\begin{aligned} & 76 \\ & 72 \\ & 68 \end{aligned}$	83		$\begin{aligned} & 76 \\ & 72 \\ & 68 \end{aligned}$	83		
GBW	Unity Gain Bandwidth	$\begin{aligned} & l_{Q}=10 \mu A^{(1)} \\ & I_{Q}=100 \mu A \\ & I_{Q}=1 m A^{(1)} \end{aligned}$		$\begin{array}{\|c\|} \hline 0.044 \\ 0.48 \\ 1.4 \\ \hline \end{array}$,	$\begin{array}{\|c\|} \hline 0.044 \\ 0.48 \\ 1.4 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 0.044 \\ 0.48 \\ 1.4 \\ \hline \end{array}$		MHz
RIN	Input Resistance			10^{12}			10^{12}			10^{12}		Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{(1)} \\ & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}^{(1)} \end{aligned}$	$\begin{aligned} & 76 \\ & 76 \\ & 56 \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		dB
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{(1)} \\ & \mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ & R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}^{(1)} \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \\ & \hline \end{aligned}$		dB
e_{n}	Input Referred Noise Voitage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		100			100			100		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Referred Noise Current	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
ISUPPLY	Supply Current (Per Amplifier)	No Signal, No Load $\mathrm{I}_{\mathrm{Q}} \mathrm{SET}=+5 \mathrm{~V}^{(1)}$ IQ $\mathrm{SET}=\mathrm{OV}$ ${ }_{1 Q}$ SET $=-5 V^{(1)}$		$\begin{gathered} 0.01 \\ 0.1 \\ 1.0 \end{gathered}$	$\left\|\begin{array}{c} 0.02 \\ 0.25 \\ 2.5 \end{array}\right\|$		$\begin{gathered} 0.01 \\ 0.1 \\ 1.0 \end{gathered}$	$\begin{gathered} 0.02 \\ 0.25 \\ 2.5 \end{gathered}$		$\left\|\begin{array}{c} 0.01 \\ 0.1 \\ 1.0 \end{array}\right\|$	$\begin{gathered} 0.02 \\ 0.25 \\ 2.5 \end{gathered}$	mA
$\mathrm{V}_{\mathrm{O}+} / \mathrm{V}_{\mathrm{O} 2}$	Channel Separation	$\mathrm{A}_{\mathrm{VOL}}=100$		120			120			120		dB
SR	Slew Rate ${ }^{(3)}$	$\begin{aligned} & \text { AVOL }=1, C_{L}=100 \mathrm{pF} \\ & \mathrm{~V}_{I N}=8 \mathrm{VP}-\mathrm{p} \\ & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{(1)}, R_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{C}_{\mathrm{Q}}=100 \mu \mathrm{~A}, R_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}{ }^{(1)}, R_{L}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{array}{\|c\|} \hline 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{array}$			$\begin{array}{\|c} 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{array}$		$\mathrm{V} / \mu \mathrm{s}$
tr_{r}	Rise Time ${ }^{(3)}$	$\begin{aligned} & V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\ & l_{Q}=10 \mu A^{(1)}, R_{L}=1 \mathrm{M} \Omega \\ & Q_{Q}=100 \mu A, R_{L}=100 \mathrm{k} \Omega \\ & Q_{Q}=1 \mathrm{~mA}^{(1)}, R_{L}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} 20 \\ 2 \\ 0.9 \end{gathered}$			$\begin{gathered} 20 \\ 2 \\ 0.9 \\ \hline \end{gathered}$			$\begin{gathered} 20 \\ 2 \\ 0.9 \\ \hline \end{gathered}$		$\mu \mathrm{s}$
	Overshoot Factor ${ }^{(3)}$	$\begin{aligned} & V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{1}, R_{L}=1 \mathrm{M} \Omega \\ & \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}^{1}, R_{L}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} 5 \\ 10 \\ 40 \end{gathered}$			5 10 40			5 10 40		\%

2. $\mathrm{C}=$ Commercial Temperature Range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{M}=$ Military Temperature Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
3. ICL7614/15; 39pF from pin 6 to pin.

ELECTRICAL CHARACTERISTICS (761X AND 762X ONLY)

($V_{\text {SUPPLY }}= \pm 1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified. Specs apply to ICL7611/7612/7613 only.)

SYMBOL	PARAMETER	TEST CONDITIONS	76XXA			76XXB			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
Vos	Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \end{aligned}$.		2 3			5 7	mV
$\Delta V_{0 S} / \Delta T$	Temperature Coefficient of $\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		10			15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (761X AND 762X ONLY) (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	76XXA			76XXB			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
los	Input Offiset Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \end{aligned}$		0.5	$\begin{aligned} & 30 \\ & 300 \end{aligned}$		0.5	$\begin{gathered} 30 \\ 300 \end{gathered}$	pA
$l_{\text {BIAS }}$	Input Bias Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \end{aligned}$		1.0	$\begin{gathered} 50 \\ 500 \end{gathered}$		1.0	$\begin{aligned} & 50 \\ & 500 \end{aligned}$	pA
$V_{\text {CMR }}$	Common Mode Voltage Range (Except ICL7612)		± 0.6			± 0.6			v
$V_{\text {CMR }}$	Extended Common Mode Voltage Range (ICL7612 Only)		$\begin{gathered} +0.6 \\ \text { to } \\ -1.1 \end{gathered}$			$\begin{gathered} \hline+0.6 \\ \text { to } \\ -1.1 \end{gathered}$			v
Vout	Output Voltage Swing	$\begin{aligned} & R_{L}=1 M \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \end{aligned}$		$\begin{aligned} & \pm 0.98 \\ & \pm 0.96 \end{aligned}$			$\begin{aligned} & \pm 0.98 \\ & \pm 0.96 \end{aligned}$		v
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 0.1 \mathrm{~V}, R_{L}=1 \mathrm{M} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \end{aligned}$		$\begin{aligned} & 90 \\ & 80 \end{aligned}$			$\begin{aligned} & 90 \\ & 80 \end{aligned}$		dB
GBW	Unity Gain Bandwidth			0.044			MHz		
RIN	Input Resistance			10^{12}			10^{12}		
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		80			80		
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		80			80		dB
e_{n}	Input Referred Noise Voitage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		100			100		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Referred Noise Current	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
ISUPPLY	Supply Current (Per Amplifier)	No Signal, No Load		6	15		6	15	$\mu \mathrm{A}$
SR	Slew Rate	$\begin{aligned} & A_{\text {VOL }}=1, C_{L}=100 \mathrm{pF} \\ & V_{I N}=0.2 \mathrm{Vp}-\mathrm{p} \\ & R_{L}=1 \mathrm{M} \Omega \end{aligned}$		0.016			0.016		$\mathrm{V} / \mu \mathrm{s}$
tr_{r}	Rise Time	$\begin{aligned} & V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\ & R_{L}=1 \mathrm{M} \Omega \end{aligned}$		20			20		$\mu \mathrm{s}$
	Overshoot Factor	$\begin{aligned} & V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\ & R_{L}=1 \mathrm{M} \Omega \end{aligned}$		5			5		\%

NOTE: $\mathrm{C}=$ Commercial Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right) \quad \mathrm{M}=$ Military Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.

ELECTRICAL CHARACTERISTICS (763X, 764X ONLY)

(VSUPPLY $= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

SYMBOL	PARAMETER	TEST CONDITIONS	76XXC (6)			76XXE (6)			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
vos	Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \end{aligned}$			$\begin{aligned} & 10 \\ & 15 \end{aligned}$			$\begin{aligned} & 20 \\ & 25 \\ & \hline \end{aligned}$	mV
$\Delta V_{\text {OS }} / \Delta T$	Temperature Coefficient of V_{OS}	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$ (Note 5)		20			30		
los	Input Offset Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$		0.5	$\begin{array}{r} 30 \\ 300 \\ 800 \\ \hline \end{array}$		0.5	$\begin{aligned} & 30 \\ & 300 \\ & 800 \\ & \hline \end{aligned}$	pA
$l_{\text {BIAS }}$	Input Bias Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 500 \\ 4000 \\ \hline \end{array}$		1.0	$\begin{gathered} \hline 50 \\ 500 \\ 4000 \\ \hline \end{gathered}$	pA
$V_{\text {CMR }}$	Common Mode Voltage Range	$\begin{aligned} & l_{Q}=10 \mu A^{(1)} \\ & 1 Q=100 \mu A^{(3)} \\ & l_{Q}=1 m A^{(2)} \end{aligned}$	$\begin{aligned} & \pm 4.4 \\ & \pm 4.2 \\ & \pm 3.7 \end{aligned}$			$\begin{aligned} & \pm 4.4 \\ & \pm 4.2 \\ & \pm 3.7 \end{aligned}$			v

Note: All typical values have been guaranteed by characterization and are not tested.

ELECTRICAL CHARACTERISTICS (763X, 764X ONLY) (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	76XXC (6)			76XXE (6)			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
VOUT	Output Voltage Swing	$\begin{aligned} & \text { (1) } \mathrm{I}_{Q}=10 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.7 \end{aligned}$			$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.7 \end{aligned}$			V
		$\begin{aligned} & l_{Q}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & (3) \quad T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.5 \end{aligned}$		-	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.5 \end{aligned}$			
		$\begin{aligned} & \text { (2) } \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \end{aligned}$			$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \end{aligned}$	*		
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega^{(1)} \\ & \mathrm{T}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{(1)}, \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=\mathrm{C} \\ & \Delta T_{A}=\mathrm{M} \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	104		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	104		dB
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega^{(3)} \\ & \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	102		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	102	\cdots	
		$\begin{aligned} & V_{Q}= \pm 4.0 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega^{(2)} \\ & l_{Q}=1 \mathrm{~mA}^{(1)}, T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	98		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	98		
GBW	Unity Gain Bandwidth	$\begin{aligned} & I_{Q}=10 \mu A^{(1)} \\ & l_{Q}=100 \mu A^{(3)} \\ & L_{Q}=1 m A^{(2)} \end{aligned}$		$\begin{gathered} 0.044 \\ 0.48 \\ 1.4 \end{gathered}$, .	$\begin{gathered} 0.044 \\ 0.48 \\ 1.4 \\ \hline \end{gathered}$		MHz
$\mathrm{R}_{\text {IN }}$	Input Resistance		10^{12}			10^{12}		Ω	
CMRR	Common Mode Rejection Ratio	$\begin{array}{\|l} \hline R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{(1)} \\ R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}^{(2)} \\ \hline \end{array}$	$\begin{aligned} & 70 \\ & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		dB
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{(1)} \\ & R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ & R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}^{(2)} \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \end{aligned}$		dB
e_{n}	Input Referred Noise Voltage	$R_{S}=100 \Omega, f=1 \mathrm{kHz}$		100			100		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
In	Input Referred Noise Current	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
ISUPPLY	Supply Current (Per Amplifier)	No Signal, No Load 7642 ONLY $\begin{aligned} & l_{Q}=10 \mu A^{(1)} \\ & l_{Q}=100 \mu A \\ & l_{Q}=1 m A^{(2)} \end{aligned}$		$\begin{gathered} 0.01 \\ \\ 0.01 \\ 0.1 \\ 1.0 \end{gathered}$	$\begin{gathered} 0.03 \\ 0.022 \\ 0.25 \\ 2.5 \\ \hline \end{gathered}$		$\begin{gathered} 0.01 \\ \\ 0.01 \\ 0.1 \\ 1.0 \end{gathered}$	$\begin{gathered} 0.03 \\ 0.022 \\ 0.25 \\ 2.5 \end{gathered}$	mA
$\mathrm{V}_{\mathrm{O} 1} / \mathrm{V}_{\mathrm{O} 2}$	Channel Separation	$A_{V O L}=100$		120			120		dB
SR	$\text { Slew Rate }{ }^{(4)}$	$\begin{aligned} & A V O L=1, C_{L}=100 \mathrm{pF} \\ & V_{I N}=8 V p-p \\ & I_{Q}=10 \mu A^{(1)}, R_{L}=1 \mathrm{M} \Omega \\ & I_{Q}=100 \mu A, R_{L}=100 \mathrm{k} \Omega \\ & I_{Q}=1 m A^{(1)}, R_{L}=10 \mathrm{k} \Omega^{(2)} \end{aligned}$		$\begin{gathered} 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{gathered}$,	- \cdot	$\begin{gathered} 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{gathered}$		$\mathrm{V} / \mu \mathrm{s}$
tr_{r}	Rise Time ${ }^{(4)}$	$\begin{aligned} & V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\ & l_{Q}=10 \mu A^{(1)}, R_{L}=1 \mathrm{M} \Omega \\ & l_{Q}=100 \mu A, R_{L}=100 \mathrm{k} \Omega \\ & l_{Q}=1 \mathrm{~mA}^{(2)}, R_{L}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} 20 \\ 2 \\ 0.9 \end{gathered}$			$\begin{gathered} 20 \\ 2 \\ 0.9 \\ \hline \end{gathered}$		$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS (763X, 764X ONLY) (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	76XXC (6)			76XXE (6)			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
	Overshoot Factor ${ }^{(4)}$	$\begin{aligned} & V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\ & l_{Q}=10 \mu A^{(1)}, R_{L}=1 \mathrm{M} \Omega \\ & l_{Q}=100 \mu \mathrm{~A}, R_{L}=100 \mathrm{k} \Omega \\ & l_{Q}=1 \mathrm{~mA} A^{(2)}, R_{L}=10 \mathrm{k} \Omega \end{aligned}$		5 10 40			5 10 40		\%

NOTES: 1. Does not apply to 7641.
2. Does not apply to 7642 .
3. ICL7631/32 only.
4. Does not apply to 7632 .

For Test Conditions:
$\mathrm{C}=$ Commercial Temperature Range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{M}=$ Military Temperature Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (763X AND 764X ONLY)
($V_{\text {SUPPLY }}= \pm 1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified. Specs apply to $\operatorname{ICL} 7631 / 7632 / 7642$ only.)

SYMBOL	PARAMETER	TEST CONDITIONS	76XXC			UNIT
			MIN	TYP	MAX	
Vos	Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \end{aligned}$			$\begin{aligned} & 10 \\ & 12 \end{aligned}$	mV
$\Delta V_{\text {OS }} / \Delta T$	Temperature Coefficient of VOS	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \end{aligned}$		0.5	$\begin{aligned} & 30 \\ & 300 \end{aligned}$	PA
$I_{\text {BIAS }}$	Input Bias Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \end{aligned}$		1.0	$\begin{gathered} 50 \\ 500 \end{gathered}$	pA
$\mathrm{V}_{\text {CMR }}$	Common Mode Voltage Range		± 0.6			v
Vout	Output Voltage Swing	$\begin{aligned} & R_{L}=1 \mathrm{M} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \end{aligned}$		$\begin{aligned} & \pm 0.98 \\ & \pm 0.96 \end{aligned}$		v
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 0.1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \end{aligned}$		$\begin{aligned} & 90 \\ & 80 \end{aligned}$		dB
GBW	Unity Gain Bandwidth		0.044			MHz
RIN	Input Resistance		10^{12}			Ω
CMRR	Common Mode Rejection Ratio	RS $\leq 100 \mathrm{k} \Omega$		80		dB
PSRR	Power Supply Rejection Ratio		80			dB
e_{n}	Input Referred Noise Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		100		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in_{n}	Input Referred Noise Current	$\mathrm{R}_{\mathrm{S}}=100 \Omega, f=1 \mathrm{kHz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
ISUPPLY	Supply Current (Per Amplifier)	No Signal, No Load		6	15	$\mu \mathrm{A}$
$\mathrm{V}_{\text {O1/VO2 }}$	Channel Separation	$\mathrm{A}_{\mathrm{VOL}}=100$		120		dB
SR	Slew Rate	$\begin{aligned} & A_{V O L}=1, C_{L}=100 \mathrm{pF} \\ & V_{I N}=0.2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	*	0.016		$\mathrm{V} / \mu \mathrm{s}$
t_{r}	Rise Time	$\begin{aligned} & V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\ & R_{L}=1 \mathrm{M} \Omega \end{aligned}$		20		$\mu \mathrm{s}$
	Overshoot Factor	$\begin{aligned} & V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\ & R_{L}=1 \mathrm{M} \Omega \end{aligned}$		5		\%

NOTE: $\mathrm{C}=$ Commercial Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

ICL76XX

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT PER AMPLIFIER AS A FUNCTION OF SUPPLY VOLTAGE

LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN AS A FUNCTION OF FREE-AIR TEMPERATURE

POWER SUPPLY REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE

SUPPLY CURRENT PER AMPLIFIER AS A FUNCTION OF FREE-AIR TEMPERATURE

LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN AND PHASE SHIFT AS A FUNCTION OF FREQUENCY

EQUIVALENT INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY

INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE

COMMON MODE REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE

PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY

MAXIMUM OUTPUT/SOURCE CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OP017501
VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

OP035801

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE

MAXIMUM OUTPUT SINK CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

VOLTAGE FOLLOWER LARGE SIGNAL. PULSE RESPONSE

MAXIMUM PEAK-TO-PEAK VOLTAGE
AS A FUNCTION OF FREE-ANR TEMPERATURE

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF LOAD RESISTANCE

VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

DETAILED DESCRIPTION

Static Protection

All devices are static protected by the use of input diodes. However, strong static fields should be avoided, as it is possible for the strong fields to cause degraded diode junction characteristics, which may result in increased input leakage currents.

Latchup Avoidance

Junction-isolated CMOS circuits employ configurations which produce a parasitic 4-layer (p-n-p-n) structure. The 4layer structure has characteristics similar to an SCR, and under certain circumstances may be triggered into a low impedance state resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails may be applied to any pin. (An exception to this rule concerns the inputs of the ICL7613 and ICL7615, which are protected to $\pm 200 \mathrm{~V}$.) In general, the op-amp supplies must be established simultaneously with, or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to $2 m A$ to prevent latchup.

Choosing the Proper $\mathbf{I}_{\mathbf{Q}}$

Each device in the ICL76XX family has a similar I_{Q} set-up scheme, which allows the amplifier to be set to nominal quiescent currents to $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ or 1 mA . These current settings change only very slightly over the entire supply voltage range. The ICL7611/12/13 and ICL7631/32 have an external l_{Q} control terminal, permitting user selection of each amplifiers' quiescent current. (The ICL7614/15, 7621/ 22 , and $7641 / 42$ have fixed I_{Q} settings - refer to selector guide for details.) To set the l_{Q} of programmable versions, connect the I_{Q} terminal as follows:
$I_{Q}=10 \mu A-I_{Q}$ pin to V^{+}
$I_{Q}=100 \mu A-I_{Q}$ pin to ground. If this is not possible, any voltage from $\mathrm{V}^{+}-0.8$ to $\mathrm{V}^{-}+0.8$ can be used.
$l_{Q}=1 m A-l_{Q}$ pin to V^{-}
NOTE: The negative output current available is a function of the quiescent current setting. For maximum p-p output voltage swings into low impedance loads, I_{Q} of 1 mA should be selected.

Output Stage and Load Driving Considerations

Each amplifiers' quiescent current flows primarily in the output stage. This is approximately 70% of the I_{Q} settings. This allows output swings to almost the supply rails for output loads of $1 \mathrm{M} \Omega, 100 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$, using the output stage in a highly linear class A mode. In this mode, crossover distortion is avoided and the voltage gain is maximized. However, the output stage can also be operated in Class $A B$ for higher output currents. (See graphs under Typical Operating Characteristics). During the transition from Class A to Class B operation, the output transfer characteristic is non-linear and the voltage gain decreases.

A special feature of the output stage is that it approximates a transconductance amplifier, and its gain is directly proportional to load impedance. Approximately the same open loop gains are obtained at each of the I_{Q} settings if corresponding loads of $10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$, and $1 \mathrm{M} \Omega$ are used.

Input Offset Nulling

For those models provided with OFFSET NULLING pins, nulling may be achieved by connecting a 25 K pot between the OFFSET terminals with the wiper connected to V^{+}. At quiescent currents of 1 mA and $100 \mu \mathrm{~A}$, the nulling range provided is adequate for all $V_{O S}$ selections; however with $I_{Q}=10 \mu \mathrm{~A}$, nulling may not be possible with higher values of Vos.

Frequency Compensation

The ICL7611/12/13, 7621/22, 7631, 7641/42 are internally compensated, and are stable for closed loop gains as low as unity with capacitive loads up to 100pF

The ICL7614/15 are externally compensated by connecting a capacitor between the COMP and OUT pins. A 39pF capacitor is required for unity gain compensation; for greater than unity gain applications, increased bandwidth and slew rate can be obtained by reducing the value of the compensating capacitor. Since the g_{m} of the first stage is proportional to $\sqrt{l_{Q}}$, greatest compensation is required when $l_{Q}=1 \mathrm{~mA}$.

The ICL7632 is not compensated internally, nor can it be compensated externally. The device is stable when used as follows:
l_{Q} of 1 mA for gains ≥ 20
l Q of $100 \mu \mathrm{~A}$ for gains ≥ 10
l_{Q} of $10 \mu \mathrm{~A}$ for gains ≥ 5

High Voltage Input Protection

The ICL7613 and 7615 include on-chip thin film resistors and clamping diodes which allow voltages of up to $\pm 200 \mathrm{~V}$ to be applied to either input for an indefinite time without device failure. These devices will be useful where high common mode voltages, differential mode voltages, or high transients may be experienced. Such conditions may be found when interfacing separate systems with separate supplies. Unity gain stability is somewhat degraded with capacitive loads because of the high value of input resistors.

Extended Common Mode Input Range

The ICL7612 incorporates additional processing which allows the input CMVR to exceed each power supply rail by 0.1 volt for applications where $\mathrm{V}_{\text {SUPP }} \geq \pm 1.5 \mathrm{~V}$. For those applications where $V_{\text {SUPP }} \leq \pm 1.5 \mathrm{~V}$, the input CMVR is limited in the positive direction, but may exceed the negative supply rail by 0.1 volt in the negative direction (eg. for $V_{\text {SUPP }}= \pm 1.0 \mathrm{~V}$, the input CMVR would be +0.6 volts to -1.1 volts).

OPERATION AT VSUPP $= \pm 1.0$ VOLTS

Operation at $V_{\text {SUPP }}= \pm 1.0 \mathrm{~V}$ is guaranteed at $I_{Q}=10 \mu \mathrm{~A}$ only. This applies to those devices with selectable I_{Q}, and devices that are set internally to $\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}$ (i.e., ICL7611, 7612, 7613, 7631, 7632, 7642).

Output swings to within a few millivolts of the supply rails are achievable for $R_{L} \geq 1 \mathrm{M} \Omega$. Guaranteed input CMVR is $\pm 0.6 \mathrm{~V}$ minimum and typically +0.9 V to -0.7 V at $\mathrm{V}_{\text {SUPP }}= \pm 1.0 \mathrm{~V}$. For applications where greater common mode range is desirable, refer to the description of ICL7612 above.

The user is cautioned that, due to extremely high input impedances, care must be exercised in layout, construction,
board cleanliness, and supply filtering to avoid hum and noise pickup.

APPLICATIONS

Note that in no case is l_{Q} shown. The value of l_{Q} must be chosen by the designer with regard to frequency response and power dissipation.

Figure 3: Simple Follower*

*By using the ICL7612 in these applications, the circuits will follow rail to rail inputs.

Figure 4: Level Detector*

*Low leakage currents allow integration times up to several hours.
Figure 5: Photocurrent Integrator

LCOOB20I
Since the output range swings exactly from rail to rail, frequently and duty cycle are virtually independent of power supply variations.
Figure 6: Precise Triangle/Square Wave Generator

Figure 7: Averaging AC to DC Converter for A/D Converters Such as ICL7106, 7107, 7109, 7116, 7117

AF02850
Note that $A_{V O L}=25$; single Ni-cad battery operation. Input current (from sensors connected to patient) limited to $<5 \mu \mathrm{~A}$ under fault conditions.

Figure 8: Medical Instrument Preamp

The low bias currents permit high resistance and low capacitance values to be used to achieve low frequency cutoff. $f_{C}=10 \mathrm{~Hz}, A v C L=4, P a s s b a n d$ ripple $=0.1 \mathrm{~dB}$
*Note that small capacitors (25-50pF) may be needed for stability in some cases.
Figure 9: Fifth Order Chebyshev Multiple Feedback Low Pass Filter

Note that I_{Q} on each amplifier may be different. $A_{V C L}=10$, $Q=100, t_{0}=100 \mathrm{~Hz}$.
Figure 10: Second Order Biquad Bandpass Filter

LC008401

NOTES:

1. For devices with external compensation, use 33 pF .
2. For devices with programmable standby current, connect l_{Q} pin to $V^{-}\left(l_{Q}=1 \mathrm{~mA}\right.$ mode $)$.
Figure 11: Burn-In and Life Test Circuit

Figure 12: Vos Null Circuit

LC00850I
Figure 13: Unity Gain Frequency Compensation

GENERAL DESCRIPTION

The ICL7650 chopper-stabilized amplifier is a highperformance device which offers exceptionally low offset voltage and input-bias parameters, combined with excellent bandwidth and speed characteristics. Intersil's unique CMOS approach to chopper-stabilized amplifier design yields a versatile precision component that can replace more expensive hybrid or monolithic devices.

The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier, nulled by alternate clock phases. Two external capacitors are required to store the correcting potentials on the two amplifier nulling inputs; these are the only external components necessary.

The clock oscillator and all the other control circuitry is entirely self-contained, however the 14-pin version includes a provision for the use of an external clock, if required for a particular application. In addition, the ICL7650 is internally compensated for unity-gain operation.

ORDERING INFORMATION

PART	TEMPERATURE RANGE	PACKAGE
ICL7650CPA-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-PIN Plastic
ICL7650BCPA-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-PIN Plastic
ICL7650CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-PIN Plastic
ICL7650BCPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-PIN Plastic
ICL7650CTV-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-PIN TO-99
ICL7650BCTV-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-PIN TO-99
ICL7650IJA-1	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-PIN CERDIP
ICL7650BIJA-1	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -PIN CERDIP

FEATURES

- Extremely Low Input Offset Voltage $-2 \mu \mathrm{~V}$
- Low Long-Term and Temperature Drifts of Input Offset Voltage
- Low DC Input Bias Current - 10pA (20pA 7650B)
- Extremely High Gain, CMRR and PSRR - Min 120dB
- High Slew Rate - $2.5 \mathrm{~V} / \mu \mathrm{s}$
- Wide Bandwidth -2 MHz
- Unity-Gain Compensated
- Very Low Intermodulation Effects (Open Loop Phase Shift $<10^{\circ} \mathrm{C}$ @ Chopper Frequency)
- Clamp Circuit to Avoid Overload Recovery Problems and Allow Comparator Use
- Extremely Low Chopping Spikes at Input and Output

Figure 1: Functional Diagram

CD01572I
Figure 2: Pin Configuration

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (V^{+}to V^{-}) \qquad Input Voltage ($\mathrm{V}^{+}+0.3$) to ($\mathrm{V}^{-}-0.3$) Volts Voltage on oscillator control pins................. V^{+}to V^{-} except EXT CLOCK IN: $\ldots\left(\mathrm{V}^{+}+0.3\right)$ to $\left(\mathrm{V}^{+}-6.0\right)$ Volts Duration of Output short circuitIndefinite Current into any pin \qquad .10 mA
—while operating (Note 4)............................... 100 $\mu \mathrm{A}$

Stresses above those listed under "Absolute Maximum Ratings' may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, (unless otherwise specified)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS 7650			LIMITS 7650 B			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
Vos	Input Offset Voltage	$\begin{aligned} & \hline T_{A}=+25^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}<T_{A}<+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 2 \\ & \pm 5 \end{aligned}$	$\begin{gathered} \pm 5 \\ \pm 50 \end{gathered}$		$\begin{aligned} & \pm 2 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \pm 10.0 \\ & \pm 75 \end{aligned}$	$\mu \mathrm{V}$
$\frac{\Delta V_{\text {OS }}}{\Delta T}$	Average Temp. Coefficient of Input Offset Voltage	$-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$.	0.1			0.1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{\text {OS }}}{\Delta t}$	Change in Input Offset Voltage With Time			100			100		$n \mathrm{~V} /$ month
IBIAS	Input Bias Current (doubles every $10^{\circ} \mathrm{C}$) Polarity is + or (Note 5)	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \pm 1.5 \\ & \pm 35 \\ & \pm 100 \end{aligned}$	± 10		$\begin{aligned} & \pm 1.5 \\ & \pm 35 \\ & \pm 100 \end{aligned}$	± 20	pA
los	Input Offset Current (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.0			5.0		PA
RIN	Input Resistance			10^{12}			10^{12}		Ω
Avol	Large Signal Voltage Gain	$R_{L}=10 \mathrm{k} \Omega$	1×10^{6}	5×10^{6}		1×10^{6}	5×10^{6}		V/V
V OUT	Output Voltage Swing (Note 3)	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$	± 4.7	$\begin{aligned} & \pm 4.85 \\ & \pm 4.95 \end{aligned}$		± 4.7	$\begin{aligned} & \pm 4.85 \\ & \pm 4.95 \end{aligned}$		V
CMVR	Common Mode Voltage Range		-5.0	$\begin{gathered} -5.2 \text { to } \\ +2.0 \end{gathered}$	1.5	-5.0	$\begin{gathered} -5.2 \text { to } \\ +2.0 \end{gathered}$	1.5	V
CMRR	Common Mode Rejection Ratio	$C M V R=-5 V$ to +1.5	110	120		110	120		dB
PSRR	Power Supply Rejection Ratio	$\pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	120	130		120	130		dB
e_{n}	Input Noise Voltage:	$\begin{aligned} & R_{S}=100 \Omega \\ & f=0 \text { to } 10 \mathrm{~Hz} \end{aligned}$	-	2			2		μV_{p-p}
i_{n}	Input Noise Current	$f=10 \mathrm{~Hz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
GBW	Unity Gain Bandwidth	.		2.0			2.0		MHz
SR:	Slew Rate	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		2.5			2.5		$\mathrm{V} / \mu \mathrm{s}$
t_{1}	Rise Time			0.2			0.2		$\mu \mathrm{s}$
;	Overshoot			20			20		\%
$\mathrm{V}+$ to V -	Operating Supply Range		4.5		16	4.5		16	V
ISUPP	Supply Current	no load		2.0	3.5		2.0	3.5	mA
f_{ch}	Internal Chopping Frequency	pins 12-14 open (DIP)	120	200	375	120	200	375	Hz
	Ćlamp ON Current (note 2)	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	25	70	150	25	70	150	$\mu \mathrm{A}$
	Clamp OFF Current (note 2)	$-4.0 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<+4.0 \mathrm{~V}$		1			1		pA

NOTES: 1. Operating temperature range for M series parts is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, for 1 series is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, for C series is $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
2. See OUTPUT CLAMP under detailed description
3. OUTPUT CLAMP not connected. See typical characteristic curves for output swing vs clamp current characteristics.
4. Limiting input current to $100 \mu \mathrm{~A}$ is recommended to avoid latchup problems. Typically 1 mA is safe, however this is not guaranteed.
5. $\mathrm{I}_{\mathrm{OS}}=2 \cdot \mathrm{I}_{\mathrm{BIAS}}$

0592791

ICL7650
TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT vs. SUPPLY VOLTAGE

COMMON-MODE INPUT-VOLTAGE RANGE vs SUPPLY VOLTAGE

OP01970
input offset voltage change vs. SUPPLY VOLTAGE

SUPPLY CURRENT vs. AMBIENT TEMPERATURE

CLOCK RIPPLE REFERRED TO THE INPUT vs. TEMPERATURE

INPUT OFFSET VOLTAGE vs. CHOPPING FREQUENCY

CHOPPMA FRECUENCY (CLOCK-OUD) Mz
OP020111

MAXIMUM OUTPUT CURRENT vs. SUPPLY VOLTAGE

10 Hz P-P NOISE VOLTAGE vs. CHOPPING FREQUENCY

OP019911

OUTPUT WITH ZERO INPUT;
GAIN = 1000; BALANCED SOURCE IMPEDANCE $=10 \mathrm{~K} \Omega$

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

OPEN LOOP GAIN AND PHASE SHIFT vs. FREQUENCY

OP020211
VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE*

OP020401

OPEN LOOP GAIN AND PHASE SHIFT vs. FREQUENCY

OP020311
VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE*

OPO20501

DETAILED DESCRIPTION
 Amplifier

The functional diagram shows the major elements of the ICL7650. There are two amplifiers, the main amplifier, and the nulling amplifier. Both have offset-null capability. The main amplifier is connected continuously from the input to the output, while the nulling amplifier, under the control of the chopping oscillator and clock circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET gates, are inherently high impedance, and two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrangement operates over the full common-mode and power-supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and Avol.

Careful balancing of the input switches, and the inherent balance of the input circuit, minimizes chopper frequency charge injection at the input terminals, and also the feedforward-type injection into the compensation capacitor, which is the main cause of output spikes in this type of circuit.

Intermodulation

Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite AC gain of the amplifier necessitates a small AC signal at the input. This is seen by the zeroing circuit as an error signal, which is chopped and fed back, thus injecting sum and difference frequencies and causing disturbances to the gain and phase vs. frequency characteristics near the chopping frequency. These effects are substantially reduced in the ICL7650 by feeding the nulling circuit with a dynamic current, corresponding to the compensation capacitor current, in such a way as to cancel that portion of the input signal due to finite AC gain. Since that is the major error contribution to the ICL7650, the intermodulation and gain/ phase disturbances are held to very low values, and can generally be ignored.

Capacitor Connection

The null/storage capacitors should be connected to the $\mathrm{C}_{\text {EXTA }}$ and CEXTB pins, with a common connection to the CRETN pin. This connection should be made directly by either a separate wire or PC trace to avoid injecting load current IR drops into the capacitive circuitry. The outside foil, where available, should be connected to CRETN.

Output Clamp

The OUTPUT CLAMP pin allows reduction of the overload recovery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing junction, a current path between this point and the OUTPUT pin occurs just before the device output saturates. Thus uncontrolled input differential inputs are avoided, together with the consequent charge build-up on the correctionstorage capacitors. The output swing is slightly reduced. Clock

The ICL7650 has an internal oscillator giving a chopping frequency of 200 Hz , available at the CLOCK OUT pin on the 14-pin devices. Provision has also been made for the use of an external clock in these parts. The INT/EXT pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin must be tied to V^{-}to disable the internal clock. The external clock signal may then be applied to the EXT. CLOCK IN pin. At low frequencies, the duty cycle of the external clock is not critical, since an internal divide-by-two provides the desired 50% switching duty cycle. However, since the capacitors are charged only when EXT CLK IN is HIGH, a $50-80 \%$ positive duty cycle is favored for frequencies above 500 Hz to ensure that any transients have time to settle before the capacitors are turned OFF. The external clock should swing between V^{+}and GROUND for power supplies up to $\pm 6 \mathrm{~V}$, and between V^{+}and $\mathrm{V}^{+}-6 \mathrm{~V}$ for higher supply voltages. Note that a signal of about 400 Hz will be present at the EXT CLK IN pin with INT/EXT high or open. This is the internal clock signal before the divider.

In those applications where a strobe signal is available, an alternate approach to avoid capacitor misbalancing during overload can be used. If a strobe signal is connected to EXT CLK IN so that it is low during the time that the overload signal is applied to the amplifier, neither capacitor will be charged. Since the leakage at the capacitor pins is quite low at room temperature, the typical amplifier will drift less than $10 \mu \mathrm{~V} / \mathrm{sec}$, and relatively long measurements can be made with little change in offset.

BRIEF APPLICATION NOTES Component Selection

The two required capacitors, CEXTA and CEXTB, have optimum values depending on the clock or chopping frequency. For the preset internal clock, the correct value is $0.1 \mu \mathrm{~F}$, and to maintain the same relationship between the chopping frequency and the nulling time constant this value should be scaled approximately in proportion if an external clock is used. A high-quality film-type capacitor such as mylar is preferred, although a ceramic or other lower-grade capacitor may prove suitable in many applications. For quickest settling on initial turn-on, low dielectric absorbtion capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to $1 \mu \mathrm{~V}$.

Static Protection

All device pins are static-protected by the use of input diodes. However, strong static fields and discharges should be avoided, as they can cause degraded diode junction characteristics, which may result in increased input-leakage currents.

Latchup Avoidance

Junction-isolated CMOS circuits inherently include a parasitic 4-layer ($p-n-p-n$) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be triggered into a low-impedance state, resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1 mA to avoid latchup, even under fault conditions.

Output Stage/Load Driving

The output circuit is a high-impedance type (approximately $18 \mathrm{k} \Omega$), and therefore with loads less than this value, the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the open-loop gain will be 17 dB lower with a $1 \mathrm{k} \Omega$ load than with a $10 \mathrm{k} \Omega$ load. If the amplifier is used strictly for DC, this lower gain is of little consequence, since the DC gain is typically greater than 120 dB even with a $1 \mathrm{k} \Omega$ load. However, for wideband applications, the best frequency response will be achieved with a load resistor of $10 \mathrm{k} \Omega$ or higher. This will result in a smooth 6dB/octave response from 0.1 Hz to 2 MHz , with phase shifts of less than 10° in the transition region where the main amplifier takes over from the null amplifier.

Thermo-Electric Effects

The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in thermocouple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the same temperature, thermoelectric voltages typically around $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, but up to tens of $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ for some materials, will be generated. In order to realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. Low thermoelectric-coefficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and good separation from surrounding heat-dissipating elements is advisable.

Guarding

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICL7650. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8 -lead TO-99 package is accomplished by using a 10 -lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the 14-pin dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration, but corresponds to that of the LM108).

Pin Compatibility

The basic pinout of the 8-pin device corresponds, where possible, to that of the industry-standard 8-pin devices, the LM741, LM101, etc. The null-storing external capacitors are connected to pins 1 and 8 , usually used for offset null or compensation capacitors, or simply not connected. The output-clamp pin (5) is similarly used. In the case of the OP05 and OP-07 devices, the replacement of the offset-null pot, connected between pins 1 and 8 and V^{+}, by two capacitors from those pins to V^{-}, will provide easy compatibility. As for the LM108, replacement of the compensation capacitor between pins 1 and 8 by the two capacitors to V^{-} is all that is necessary. The same operation, with the removal of any connection to pin 5, will suffice for the LM101, $\mu \mathrm{A} 748$, and similar parts.

The 14-pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of " $N C$ " pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert it to the ICL7650.

ICL7650

TYPICAL APPLICATIONS

Clearly the applications of the ICL7650 will mirror those of other op. amps. Anywhere that the performance of a circuit can be significantly improved by a reduction of inputoffset voltage and bias current, the ICL7650 is the logical choice. Basic non-inverting and inverting amplifier circuits are shown in Figures 5 and 6. Both circuits can use the output clamping circuit to enhance the overload recovery performance. The only limitations on the replacement of other op amps by the ICL7650 are the supply voltage ($\pm 8 \mathrm{~V}$ max.) and the output drive capability ($10 \mathrm{k} \Omega$ load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Figure 7, to enable the full output capabilities of the LM741 (or any other standard device) to be combined with the input capabilities of the ICL7650. The pair form a composite device, so loop gain stability, when the feedback network is added, should be watched carefully.

LC00860I
Figure 5: Non Inverting Amplifier With (Optional Clamp)
NOTE: $\mathbf{R}_{1} / / \mathbf{R}_{2}$ indicates the parallel COMbination OF R_{1} AND R_{2}

LC00870
Figure 6: Inverting Amplifier With (Optional) Clamp

NOTE: $\mathbf{R}_{\mathbf{1}} / / \mathbf{R}_{\mathbf{2}}$ INDICATES THE PARALLEL COMBINATION OF R_{1} AND R_{2}

Figure 8 shows the use of the clamp circuit to advantage in a zero-offset comparator. The usual problems in using a chopper stabilized amplifier in this application are avoided, since the clamp circuit forces the inverting input to follow the input signal. The threshold input must tolerate the output clamp current $\approx V_{\mathbb{N}} / R$ without disturbing other portions of the system.

LC008801
Figure 7: Using 741 to Boost Output Drive Capacity

LC008911
Figure 8: Low Offset Comparator

Normal logarithmic amplifiers are limited in dynamic range in the voltage-input mode by their input-offset voltage. The built-in temperature compensation and convenience features of the ICL8048 can be extended to a voltage-input dynamic range of close to 6 decades by using the ICL7650 to offset-null the ICL8048, as shown in Figure 8. The same concept can also be used with such devices as the HA2500 or HA2600 families of op amps to add very low offset voltage capability to their very high slew rates and bandwidths. Note that these circuits will also have their DC gains, CMRR, and PSRR enhanced.

FOR FURTHER APPLICATIONS ASSISTANCE, SEE A053 AND R017

ICL7652
 Chopper-Stabilized Low-Noise Operational Amplifier

GENERAL DESCRIPTION

The ICL7652 chopper-stabilized amplifier offers exceptionally low input offset voltage and is extremely stable with respect to time and temperature. It is similar to INTERSIL's ICL7650 but offers improved noise performance and a wider common-mode input voltage range. The baridwidth and slew rate are reduced slightly.
INTERSIL's unique CMOS chopper-stabilized amplifier circuitry is user-transparent, virtually eliminating the traditional chopper amplifier problems of intermodulation effects, chopping spikes, and overrange lock-up.

The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier, nulled by alternate clock phases. Two external capacitors are required to store the correcting potentials on the two amplifier nulling inputs; these are the only external components necessary.

The clock oscillator and all the other control circuitry is entirely self-contained, however the 14-pin version includes a provision for the use of an external clock, if required for a particular application. In addition, the ICL7652 is internally compensated for unity-gain operation.

FEATURES

- Extremely Low Input Offset Voltage - $\mathbf{1 0 \mu} \mathrm{V}$ Over Temperature Range
- Ultra Low Long-Term and Temperature Drifts of Input Offset Voltage ($150 \mathrm{nV} / \mathrm{Month}, 100 \mathrm{nV} /{ }^{\circ} \mathrm{C}$)
- Low DC Input Bias Current-15pA
- Extremely High Gain, CMRR and PSRR - Min 110 dB
- Low Input Noise Voltage - $0.2 \mu \mathrm{Vp}-\mathrm{p}(\mathrm{DC}-1 \mathrm{~Hz})$
- Internally Compensated for Unity-Gain Operation
- Very Low Intermodulation Effects (Open-Loop Phase Shift < $\mathbf{2}^{\circ}$ @ Chopper Frequency)
- Clamp Circuit to Avoid Overload Recovery Problems and Allow Comparator Use
- Extremely Low Chopping Spikes at Input and Output
ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ICL7652CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-pin plastic
ICL7652IJD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-pin CERDIP
ICL7652CTV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-pin TO-99
ICL 7652 ITV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-pin TO-99

ABSOLUTE MAXIMUM RATINGS

Voltage on Oscillator Control Pins $\ldots V^{+}$to V^{-}Duration of Output Short CircuitIndefiniteCurrent into Any Pin 10mA

Stresses above those listed under 'Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Test Circuit (unless otherwise specified)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
Vos	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 2	± 5	$\mu \mathrm{V}$
		Over Operating Temperature Range (Note 1)		± 10	.	
$\frac{\Delta V_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Average Temperature Coefficient of Input Offset Voltage	Operating Temperature Range (Note 1)		0.1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\therefore \frac{\Delta V^{\text {OS }}}{} \mathrm{ST}^{\prime}$	Offset Voltage vs Time			150		$n \mathrm{~V} /$ month
IBIAS	Input Bias Current (Doubles every $10^{\circ} \mathrm{C}$)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		15	30	pA
		$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$		35		
		$-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$		100		
los	Input Offset Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		25		pA
RIN	Input Resistance			10^{12}		Ω
Avol	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 4 \mathrm{~V}$	120	150		dB
VOUT	Output Voltage Swing (Note 3)	$R_{L}=10 \mathrm{k} \Omega$	± 4.7	± 4.85		V
		$R_{L}=100 \mathrm{k} \Omega$		± 4.95		
CMVR	Common-Mode Voltage Range		-4.3	-4.8 to +4.0	3.5	V
CMRR	Common-Mode Rejection Radio	CMVR $=-4.3 \mathrm{~V}$ to +3.5 V	1.10	130		dB
PSRR	Power Supply Rejection Ratio	$\pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	110	130		dB
e_{n}	Input Noise Voltage	$\mathrm{R}_{S}=100 \Omega, \mathrm{DC}$ to 1 Hz		0.2		$\mu \mathrm{Vp}$-p
		DC to 10 Hz		0.7		
i_{n}	Input Noise Current	$f=10 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
GBW	Unity-Gain Bandwidth			0.4		MHz
SR	Slew Rate	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		0.5		$\mathrm{V} / \mu \mathrm{s}$
	Overshoot			15		\%
V^{+}to V^{-}	Operating Supply Range		5.0		16	V
ISUPPLY	Supply Current	No Load		2.0	3.5	mA
$\mathrm{f}_{\text {ch }}$	Internal Chopping Frequency	Pins 12-14 Open (DIP)	200	400	600	Hz
!	Clamp ON Current (Note 2)	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	25	100	150	$\mu \mathrm{A}$
.	Clamp OFF Current (Note 2)	$-4.0 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<+4.0 \mathrm{~V}$		1		pA

NOTES: $1 .-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, or $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
2. See OUTPUT CLAMP under detailed description.
3. OUTPUT CLAMP not connected. See typical characteristics curves for output swing vs clamp current characteristics.
4. Limiting input current to $100 \mu \mathrm{~A}$ is recommended to avoid latchup problems. Typically 1 mA is safe, however this is not guaranteed.

Supply Current vs Supply Voltage

OP035901
Common-Mode Input Voltage Range vs Supply Voltage

Clock Ripple Referred to the Input vs Temperature

OP036501

Supply Current vs Ambient Temperature

OP03600I
Input Offset Voltage vs Chopping Frequency

CHOPPING FREQUENCY (CLOCK OUT) \% parameter is EXT CLK in duty cycle

Broadband Noise Balanced Source Impedance $=1 \mathrm{k} \Omega$ Gain $=1000$ $C_{E X T}=0.1 \mu \mathrm{~F}$

Maximum Output Current vs Supply Voltage

OP036101
10 Hz P-P Noise Voltage Voltage vs Chopping Frequency

CHOPPING FREQUENCY (CLOCK OUT)

Broadband Noise Balanced Source Impedance $=1 \mathrm{k} \Omega$ Gain $=1000$ $C_{E X T}=1.0 \mu \mathrm{~F}$

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

Voltage Follower Large Signal Pulse Response*

Voltage Follower Large Signal Pulse Response*

Open-Loop Gain and Phase Shift vs Frequency

OP037501
OP03760I
OP03770
*The two different responses correspond to the two phases of the clock.

N-Channel Clamp Current vs Output Voltage

OP037801

P-Channel Clamp Current vs Output

 Voltage

OP037901

Input Offset Voltage Change vs Supply Voltage

OP038001

DETAILED DESCRIPTION

The Functional Diagram (Figure 1) shows the major elements of the ICL7652. There are two amplifiers, the main amplifier, and the nulling amplifier. Both have offset-null capability. The main amplifier is connected continuously from the input to the output. The nulling amplifier, under the
control of the chopping frequency oscillator and clock circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET gates, are inherently high-impedance, and two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrangement operates over the full common-mode and power supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and Avol.

Careful balancing of the input switches, together with the inherent balance of the input circuit, minimizes chopper frequency charge injection at the input terminals. Feedfor-ward-type injection into the compensation capacitor is also minimized, which is the main cause of output spikes in this type of circuit.

Intermodulation

Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite AC gain of the amplifier necessitates a small AC signal at the input. This is seen by the zeroing circuit as an error signal, which is chopped and fed back, thus injecting sum and difference frequencies and causing disturbances to the gain and phase vs frequency characteristics near the chopping
frequency. These effects are substantially reduced in the ICL7652 by feeding the nulling circuit with a dynamic current, corresponding to the compensation capacitor current, in such a way as to cancel that portion of the input signal due to finite AC gain. Since that is the major error contribution to the ICL7652, the intermodulation and gain/ phase disturbances are held to very low values, and can generally be ignored.

Capacitor Connection

The null-storage capacitors should be connected to the Cexta and Cextb pins, with a common connection to the $C_{\text {RETN pin. This connection should be made directly by }}$ either a separate wire or PC trace to avoid injecting load current IR drops into the capacitive circuitry. The outside foil, where available, should be connected to CRETN.

Output Clamp

The OUTPUT CLAMP pin allows reduction of the overload recovery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing junction, a current path between this point and the OUTPUT pin occurs just before the device output saturates. Thus uncontrolled differential input voltages are avoided, together with the consequent charge build-up on the correctionstorage capacitors. The output swing is slightly reduced.

Clock

The ICL7652 has an internal oscillator, giving a chopping frequency of 400 Hz , available at the CLOCK OUT pin on the 14-pin devices. Provision has also been made for the use of an external clock in these parts. The INT/EXT pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin must be tied to V^{-}to disable the internal clock. The external clock signal may then be applied to the EXT CLOCK IN pin. An internal divide-by-two provides the desired 50% input switching duty cycle. Since the capacitors are charged only when EXT CLOCK IN is high, a $50 \%-80 \%$ positive duty cycle is recommended, especially for higher frequencies. The external clock can swing between V^{+}and V^{-}. The logic threshold will be at about 2.5 V below V^{+}. Note also that a signal of about 800 Hz , with a 70% duty cycle, will be present at the EXT CLOCK IN pin with INT/EXT high or open. This is the internal clock signal before being fed to the divider.

In those applications where a strobe signal is available, an alternate approach to avoid capacitor misbalancing during overload can be used. If a strobe signal is connected to EXT CLK \mathbb{N} so that it is low during the time that the overload signal is applied to the amplifier, neither capacitor will be charged. Since the leakage at the capacitor pins is quite low at room temperature, the typical amplifier will drift less than $10 \mu \mathrm{~V} / \mathrm{sec}$, and relatively long measurements can be made with little change in offset.

BRIEF APPLICATION NOTES Component Selection

The required capacitors, CEXTA and C EXTB , are normally in the range of $0.1 \mu \mathrm{~F}$ to $1.0 \mu \mathrm{~F}$. A $1.0 \mu \mathrm{~F}$ capacitor should be used in broad bandwidth circuits if minimum clock ripple noise is desired. For limited bandwidth applications where clock ripple is filtered out, using a $0.1 \mu \mathrm{~F}$ capacitor results in slightly lower offset voltage. A high-quality film-type capacitor such as mylar is preferred, although a ceramic or other
lower-grade capacitor may prove suitable in many applications. For quickest settling on initial turn-on, low dielectric absorption capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to $1 \mu \mathrm{~V}$.

Static Protection

All device pins are static-protected by the use of input diodes. However, strong static fields and discharges should be avoided, as they can cause degraded diode junction characteristics which may result in increased input-leakage currents.

Latchup Avoidance

Junction-isolated CMOS circuits inherently include a parasitic 4-layer (p-n-p-n) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be trigerred into a low-impedance state, resulting in excessive supply current. To avoid this condition no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1 mA to avoid latchup, even under fault conditions.

Output Stage/Load Driving

The output circuit is a high-impedance type (approximately $18 \mathrm{k} \Omega$), and therefore, with loads less than this the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the open-loop gain will be 17 dB lower with a $1 \mathrm{k} \Omega$ load than with a $10 \mathrm{k} \Omega$ load. If the amplifier is used strictly for DC, this lower gain is of little consequence, since the DC gain is typically greater than 120 dB even with a $1 \mathrm{k} \Omega$ load. However, for wideband applications, the best frequency response will be achieved with a load resistor of $10 \mathrm{k} \Omega$ or higher. This will result in a smooth 6dB/octave response from 0.1 Hz to 2 MHz , with phase shifts of less than 2° in the transition region where the main amplifier takes over from the null amplifier.

Thermo-Electric Effects

The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in thermo-couple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the same temperature, thermo-electric voltages typically around $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, but up to tens of $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ for some materials, will be generated. In order to realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. Low thermoelectric-coefficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and good separation from surrounding heat-dissipating elements is advisable.

Guarding

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICL7652. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8 lead TO-99 package is accomplished by using a 10 lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the 14-pin dual-in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration, but corresponds to that of the LM108).

PIN COMPATIBILITY

The basic pinout of the 8-pin device corresponds, where possible, to that of the industry-standard 8-pin devices, the LM741, LM101, etc. The null-storing external capacitors are connected to pins 1 and 8 , which are usually used for offsetnull or compensation capacitors. The output-clamp pin (5) is similarly used. In the case of the OP-05 and OP-07 devices, the replacement of the offset-null pot, connected between pins 1 and 8 and V^{+}, by two capacitors from those pins to V^{-}, will provide easy compatibility. As for the LM108, replacement of the compensation capacitor between pins 1 and 8 by the two capacitors to V^{-}is all that is necessary. The same operation, with the removal of any connection to pin 5, will suffice for the LM101, $\mu \mathrm{A} 748$, and similar parts.
The 14-pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of "NC"' pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert to the ICL7652.

TYPICAL APPLICATIONS

Figure 5: Non-Inverting Amplifier with (Optional) Clamp

LC017701
Figure 6: Inverting Amplifier with (Optional) Clamp

Clearly the applications of the ICL7652 will mirror those of other op-amps. Thus, anywhere that the performance of a circuit can be significantly improved by a reduction of input-offset voltage and bias current, the ICL7652 is the logical choice. Basic non-inverting and inverting amplifier circuits are shown in Figures 5 and 6. Both circuits can use the output clamping circuit to enhance the overload recovery performance. The only limitations on the replacement of other op-amps by the ICL7652 are the supply voltage ($\pm 8 \mathrm{~V}$ max) and the output drive capability ($10 \mathrm{k} \Omega$ load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Figure 7, to enable the full output capabilities of the LM741 (or any other standard device) to be combined with the input capabilities of the ICL7652. The pair form a composite device, so loop gain stability, when the feedback network is added, should be watched carefully.

AF031101
Figure 7: Using 741 to Boost Output Drive Capability

Figure 8 shows the use of the clamp circuit to advantage in a zero-offset comparator. The usual problems in using a chopper-stabilized amplifier in this application are avoided, since the clamp circuit forces the inverting input to follow the input signal. The threshold input must tolerate the output clamp current $\approx V_{I N} / R$ without disturbing other portions of the system.

It is possible to use the ICL7652 to offset-null such high slew rate and bandwidth amplifiers as the HA2500 and HA2600 series, as shown in Figure 9. The same basic idea can be used with low-noise bipolar devices, such as the OP05, and also with the ICL8048 logarithmic amplifier, to achieve a voltage-input dynamic range of close to 6 decades. Note that these circuits will also have their DC gains, CMRR and PSRR enhanced. More details on these and other ideas are explained in application note A053.

Mixing the ICL7652 with circuits operating at $\pm 15 \mathrm{~V}$ supplies requires the provision of a lower voltage. Although this can be done fairly easily, a highly efficient voltage divider can be built using the ICL7660 voltage converter circuit 'backwards'. A suitable connection is shown in Figure 10.

TYPICAL APPLICATIONS (CONT.)

AF031311
HA2500/10/20
HA2600/20
OR SIMILAR DEVICE
Figure 9: HA2500 or HA2600 Offset-Nulled by ICL7652

Figure 10: Splitting +15V with ICL7660 at $>95 \%$ efficiency. Same for -15 V

For further applications assistance, see A053 and R017

JFET Input Operational Amplifier

GENERAL DESCRIPTION

The Intersil ICL8007 is a low input current JFET input operational amplifier. The ICL8007A is selected for 4 pA max input current.

The devices are designed for use in very high input impedance applications. Because of their high slew rate, high common mode voltage range and absence of 'latchup', they are ideal for use as a voltage follower.
The Intersil 8007 and 8007A are short circuit protected. They require no external components for frequency compensation because the internal $6 \mathrm{~dB} /$ roll-off insures stability in closed loop applications. A unique bootstrap circuit insures unusually good common mode rejection for a JFET input op-amp and prevents large input currents as seen in some amplifiers at high common mode voltage.
ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL8007CTY ICL8007ACTV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 LEAD TO-99
ICL8007MTY ICL8007AMTV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	METAL CAN
ICL8007/D	-	DICE**

**Parameter Min/Max Limits quaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

TC025901
ICL8007 pin 4 connected to case (TY package) ICL8007A pin 8 connected to case (TV package)
Figure 1: Functional Diagram

§ ICL8007

ABSOLUTE MAXIMUM RATINGS

Supply Voltage... $\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)................................500mW
Differential Input Voltage....................................... $\pm 30 \mathrm{~V}$
Input Voltage (Note 2).. $\pm 15 \mathrm{~V}$
Storage Temperature Range $\ldots \ldots \ldots5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range 8007M, 8007AM
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
8007C, 8007AC
$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$
Output Short-Circuit Duration (Note 3)Indefinite

NOTES:

1. Rating applies for case temperatures to $125^{\circ} \mathrm{C}$; derate linearly at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+75^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature.
4. For Design only, not 100% tested.

ELECTRICAL CHARACTERISTICS $\left(V_{S}= \pm 15 \mathrm{~V}\right.$ unless otherwise specified)

CHARACTERISTICS	TEST CONDITIONS	8007M			8007C			8007AM \& 8007AC			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	

The following specifications apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$:

Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		10	20		20	50		15	30	mV
Input Offset Current			0.5	.		0.5			0.2		pA
Input Bias Current (either input)			2.0	20		3.0	50		0.5	4.0	pA
Input Resistance			10^{6}			10^{6}			10^{6}		$\mathrm{M} \Omega$
Input Capacitance			2.0			2.0			2.0		pF
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	50,000			20,000			20,000			V/V
Output Resistance			75			75			75		Ω
Output Short-Circuit Current			25			25			25		mA
Supply Current			3.4	5.2		3.4	6.0		3.4	6.0	mA
Power Consumption			102	156		102	180		102	180	mW
Slew Rate			6.0			6.0		2.5	6.0		$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth			1.0			1.0			1.0		MHz
Risetime	$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		300			300			300		ns
Overshoot	$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		10			10			10		\%

The following specifications apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (8007C and 8007 AC), and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (8007M and 8007AM):

Input Voltage Range		± 10	± 12		± 10	± 12		± 10	± 12		V
Common Mode Rejection Ratio		70	90		70	90		86	95		dB
Supply Voltage Rejection Ratio			70	300		70	600		70	200	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain		25,000			15,000			15,000			V/V
Output Voltage Swing	$\begin{aligned} & R_{L} \geq 10 k \Omega \\ & R_{L} \geq 2 k \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Input Bias Current (either input)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		2.0			50			$\begin{aligned} & 1.0 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{nA} \\ & \mathrm{pA} \end{aligned}$
Average Temperature Coefficient of Input Offset Voltage	(Note 4)			75			75			50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Figure 3: Transient Response Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

OP02580I

TRANSIENT RESPONSE

OP02610
OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE

OP026401

VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

OP025901
INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE

OP026201
INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE

OP026501

OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY

OP026001
OUTPUT SWING AS A FUNCTION OF SUPPLY VOLTAGE

OP02630
QUIESCENT SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OPO26601

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

QUIESCENT SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

INPUT VOLTAGE NOISE AS A FUNCTION OF FREQUENCY

WIDEBAND NOISE AS A FUNCTION OF SOURCE RESISTANCE

For additional information, see Application Note A005.

ICL8021/ICL8022/ ICL8023
 Low Power Bipolar Operational Amplifier

GENERAL DESCRIPTION

The Intersil ICL8021 series are low power operational amplifiers specifically designed for applications requiring very low standby power consumption over a wide range of supply voltages. The electrical characteristics of the 8021 series can be tailored to a particular application by adjusting an external resistor, RSET, which controls the quiescent current. This is advantageous because l_{Q} can be made independent of the supply voltages: it can be set to an extremely low value where power is critical, or to a larger value for high slew rate or wideband applications.

Other features of the 8021 series include low input current that remains constant with temperature, low noise, high input impedance, internal compensation and pin-forpin compatibility with the 741.

The Intersil 8022 (8023) consists of two (three) low power operational amplifiers in a single 14(16)-pin DIP. Each amplifier is identical to an 8021 low power op amp, and has separate connections for adjusting its electrical characteristics by means of an external resistor, RSET, which controls the quiescent current of that amplifier.

ORDERING INFORMATION

FEATURES

- $\mathrm{V}_{\mathrm{OS}}=3 \mathrm{mV}$ Max (Adjustable to Zero)
- $\pm 1.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ Power Supply Operation
- Power Consumption - $20 \mu \mathrm{~W}$ @ $\pm 1 \mathrm{~V}$
- Input Bias Current - 30nA Max
- Internal Compensation
- Pin-For-Pin Compatible With 741
- Short Circuit Protected

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL8021/D	-	DICE**
ICL8021CJA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL8021CBA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8 Lead S.O.I.
ICL8021CPA	$0^{\circ}{ }^{\circ}$ to $70^{\circ} \mathrm{C}$	8 Lead MINIDIP
ICL8021CTY	$0^{\circ}{ }^{\circ}$ to $70^{\circ} \mathrm{C}$	8 Lead Metal Can
ICL8021MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL8021MJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead CERDIP
ICL8021MTY	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead Metal Can
ICL8022/D	-	DICE
ICL8022CJD	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 Lead CERDIP
ICL8022CPD	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 Lead MINIDIP
ICL8022MJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead CERDIP
ICL8023/D	-	DICE
ICL8023CJE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 Lead CERDIP
ICL8023CPE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 Lead MINIDIP
ICL8023MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead CERDIP

[^20]
ICL8021/ICL8022/ICL8023

ABSOLUTE MAXIMUM RATINGS

Supply Voltage

$\pm 18 \mathrm{~V}$

Differential Input Voltage (Note 1)............................ $\pm 15 \mathrm{~V}$

Common Mode Input Voitage (Note 1) $\pm 15 \mathrm{~V}$
Output Short Circuit DurationIndefinite
Power Dissipation (Note 2) 300 mW

Cperating Temperature Range$8021 \mathrm{M} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$$8021 \mathrm{C} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$Storage Temperature Range $\ldots \ldots \ldots .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

NOTE 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 2: Rating applies for case temperatures to $+125^{\circ} \mathrm{C}$; derate linearly at $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+95^{\circ} \mathrm{C}$.

Figure 1: Functional Diagram

Figure 2: Pin Configurations

Figure 3：Voltage Offset Null Circuit

ELECTRICAL CHARACTERISTICS（ $V_{S U P P L Y}= \pm 6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}$ ，unless otherwise specified．）

CHARACTERISTICS	TEST CONDITIONS	8021M			8021C			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
The following specifications apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ：								
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		2	3		2	6	mV
input Offset Current			． 5	7.5		． 7	10	nA
input Bias Current			5	20		7	30	$n \mathrm{~A}$
input Resistance		3	10		3	10		$\mathrm{M} \Omega$
Input Voltage Range	$V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$	± 12	± 13		± 12	± 13		V
Common Mode Rejection Ratio	$R_{S} \leq 10 \mathrm{k} \Omega$	70	80		70	80		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		30	150		30	150	$\mu \mathrm{V} / \mathrm{V}$
Output Resistance	Open Loop		2			2		$k \Omega$
Output Voltage Swing	$R_{L} \geq 20 \mathrm{k} \Omega, \mathrm{V}_{\text {SUPPL }} \mathrm{Y}= \pm 15 \mathrm{~V}$	± 12	± 14		$\pm \pm 12$	± 14		V
	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{V}_{\text {SUPPL．Y }}= \pm 15 \mathrm{~V}$ ．	± 11	± 13		± 11	± 13		V
Output Short－Circuit Current			± 13			± 13		mA
Power Consumption	$\mathrm{V}_{\text {OUT }}=0$		360	480		360	600	$\mu \mathrm{W}$
Slew Rate（Unity Gain）			0.16			0.16		$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth	$R_{L}=20 \mathrm{k} \Omega, V_{I N}=20 \mathrm{mV}$		270			270		kHz
Transient Response（Unity Gain） Risetime Overshoot	$\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{iN}}=20 \mathrm{mV}$		$\begin{aligned} & 1.3 \\ & 10 \end{aligned}$			$\begin{aligned} & 1.3 \\ & 10 \end{aligned}$	．	$\begin{gathered} \mu \mathrm{s} \\ \% \end{gathered}$
The following specifications apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}(8021 \mathrm{C})$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$（8021M）								
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	$\mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ $(8021 \mathrm{M})$ 2.0 4.0				2.0	7.5	mV
Input Offset Current			1.0	11		1.5	15	$n \mathrm{~A}$
Input Bias Current			10	32		15	50	nA
Average Temperature Coefficient of input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current			1.7			0.8		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Large Signal Voltage Gain	$R_{L}=10 \mathrm{k} \Omega$	50	200		50	200	，	V / mV
Output Voitage Swing	$R_{L} \geq 10 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V

QUIESCENT CURRENT ADJUSTMENT

QUIESCENT CURRENT SETTING RESISTOR （PIN 8 to V^{-}）

$\mathbf{v}_{\mathbf{S}}$	$\mathbf{I}_{\mathbf{Q}}$			
	$10 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$300 \mu \mathbf{A}$
± 1.5	$1.5 \mathrm{M} \Omega$	$470 \mathrm{k} \Omega$	$150 \mathrm{k} \Omega$	-
± 3	$3.3 \mathrm{M} \Omega$	$1.1 \mathrm{M} \Omega$	$330 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$
± 6	$7.5 \mathrm{M} \Omega$	$2.7 \mathrm{M} \Omega$	$750 \mathrm{k} \Omega$	$220 \mathrm{k} \Omega$
± 9	$13 \mathrm{M} \Omega$	$4 \mathrm{M} \Omega$	$1.3 \mathrm{M} \Omega$	$350 \mathrm{k} \Omega$
± 12	$18 \mathrm{M} \Omega$	$5.6 \mathrm{M} \Omega$	$1.5 \mathrm{M} \Omega$	$510 \mathrm{k} \Omega$
± 15	$22 \mathrm{M} \Omega$	$7.5 \mathrm{M} \Omega$	$2.2 \mathrm{M} \Omega$	$620 \mathrm{k} \Omega$

QUIESCENT CURRENT SETTING RESISTOR （PIN 8 to V^{-}）

TYPICAL PERFORMANCE CHARACTERISTICS＊

（ $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}$ unless otherwise specified．）

TYPICAL PERFORMANCE CHARACTERISTICS* (CONT.)

GENERAL DESCRIPTION

The ICL8043 contains two FET input op amps, each similar in performance to the ICL8007. The inputs and outputs are fully short circuit protected, and no latch-up problems exist. Offset nulling is accomplished by using a single pot (for each amplifier) connected to the positive supply voltage. The devices have excellent common mode rejection.

FEATURES

- Very Low Input Current - 2pA Typical
- High Slew Rate $-6 \mathrm{~V} / \mu \mathrm{s}$
- Internal Frequency Compensation
- Low Power Dissipation - 135mW Typical
- Monolithic Construction

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL8043MJE	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CERAMIC
ICL8043CPE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Plastic
ICL8043CJE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	CERAMIC

DS018701
Figure 1: Functional Diagram (One Side)

(outline dwgs JE, PE) CD017901

Figure 2: Pin
Configuration 16 Pin DIP (Top View)

ABSOLUTE MAXIMUM RATINGS

Supply Voltag	
Internal Power Dissipation (Note 1).	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2).	5V
Voltage between Offset Null and V	.5V
Storage Temperature Range	$150^{\circ} \mathrm{C}$

Internal Power Dissipation (Note 1) 500 mW
Differential Input Voltage $\pm 30 \mathrm{~V}$
Input Voltage (Note 2)..15V
Voltage between Offset Null and $\mathrm{V}^{+} \ldots \ldots . . \ldots \ldots . . \pm 0.5 \mathrm{~V}$
Storage Temperature Range...........$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
NOTES: 1. Rating applies for case temperatures to $125^{\circ} \mathrm{C}$; derate linearly at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+95^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

ELECTRICAL CHARACTERISTICS (VSUPPLY $= \pm 15 \mathrm{~V}$ unless otherwise specified)

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	8043M			8043C			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
The following specifications apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$:									
VOS	Input Offset Voltage	RS $<100 \mathrm{k} \Omega$		10	20		20	50	miV
los	Input Offset Current			0.5			0.5		pA
IN	Input Current (either input)			2.0	20		3.0	50	pA
$\mathrm{R}_{\text {IN }}$	Input Resistance			10^{6}			10^{6}		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			2.0			2.0		pF
AV	Large Signal Voltage Gain	$R_{L}>2 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V}$	50,000			20,000			V/V
Ro	Output Resistance			75			75		Ω
Isc	Output Short-Circuit Current			25			25		mA
ISUPPLY	Supply Current (Total)			4.5	6		4.5	6.8	mA
PDISS	Power Consumption			135	180		135	204	mW
SR	Slew Rate			6.0			6.0		$\mathrm{V} / \mu \mathrm{s}$
GBW	Unity Gain Bandwidth			1.0			1.0		MHz
tr_{r}	Transient Response (Unity Gain) Risetime Overshoot	$C_{L}<100 p F, R_{L}=2 k \Omega$		$\begin{gathered} 300 \\ 10 \\ \hline \end{gathered}$			$\begin{aligned} & 300 \\ & 10 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \% \\ & \hline \end{aligned}$
The following specifications apply for $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$ (8043C), $-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$ (8043M):									
$\Delta \mathrm{V}_{\mathrm{IN}}$	Input Voltage Range		± 10	± 12	.	± 10	± 12		V
CMRR	Common Mode Rejection Ratio		70	90		70	90		dB
PSRR	Supply Voltage Rejection Ratio			70	300		70	600	$\mu \mathrm{V} / \mathrm{V}$
A_{V}	Large Signal Voltage Gain		25,000			15,000			V/V
$\Delta \mathrm{V}_{\mathrm{O}}$	Output Voltage Swing	$\mathrm{R}_{L}>10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
		$R_{L}>2 k \Omega$	± 10	± 13		± 10	± 13		V
Vos	input Offset Voliage			15	30		30	60	mV
In	Input Current (either input)	$\begin{aligned} & T_{A}=+125^{\circ} \mathrm{C} \\ & T_{A}=+70^{\circ} \mathrm{C} \end{aligned}$		2.0	15				nA
							50	175	pA
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average Temperature Coefficient of Input Offset Voltage	(Note 3)		75			75		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

NOTE: 3. For Design only, not 100% tested.

TYPICAL PERFORMANCE CHARACTERISTICS

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY

TRANSIENT RESPONSE

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY

INPUT CURRENT AS A FUNCTION OF TEMPERATURE

INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE

VOLTAGE FOLLOWER LARGE-SIGNAL PULSE RESPONSE

OUTPUT SWING AS A FUNCTION OF SUPPLY VOLTAGE

QUIESCENT SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

TOTAL QUIESCENT SUPPLY

CURRENT AS A FUNCTION OF TEMPERATURE

OP030701

CHANNEL SEPARATION

Channel separation or crosstalk is measured using the circuit of Figure 4. One amplifier is driven so that its output swings $\pm 10 \mathrm{~V}$; the signal amplitude seen in the other amplifier (referred to the input) is then measured. Typical performance is shown in Figure 5.

$$
\text { Channel Separation }=20 \log \left(\frac{V_{\text {OUT }}(A)}{V_{\text {IN }}(B)}\right)
$$

Figure 3: Offset Voltage Null Circuit
DS01880t

INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY

OP03080

WIDEBAND NOISE AS A FUNCTION OF SOURCE RESISTANCE

OP030901

Figure 4: Channel Separation Test Circuit

OP031001
Figure 5: Channel Separation Performance

APPLICATIONS

Applications for any dual amplifier fall into two categories. There are those which use the two-in-one package concept simply to save circuit-board space and cost, but more interesting are those circuits where the two sides of the dual are used to complement one another in a subsystem application. The circuits which follow have been selected on this basis.

AUTOMATIC OFFSET SUPPRESSION CIRCUIT

The circuit shown in Figure 6 uses one amplifier $\left(\mathrm{A}_{1}\right)$ as a normal gain stage, while the other $\left(A_{2}\right)$ forms part of an offset voltage zeroing loop. There are two modes of operation which occur sequentially. First, an offset null correction mode occurs during which the offset voltage of A_{1} is nulled out. Following this nulling operation, A_{1} is used
as a normal amplifier while the voltage necessary to zero its offset voltage is stored on the integrator comprised of A_{2} and C_{1}.

The advantage of this circuit is that it allows chopper amplifier performance to be achieved at one-tenth the cost. The only limitation is that during the offset nulling mode, A_{1} is disconnected from the input. However, in most data acquisition systems, many inputs are scanned sequentially. It is fairly simple to synchronize the offset nulling operation so that it does not occur when that particular amplifier is being 'looked at'". For the component values shown in Figure 3, and assuming a total leakage of 50 pA at the inverting input of A_{2}, the offset voltage referred to the input of A_{1} will drift away from zero at only $40 \mu \mathrm{~V} / \mathrm{sec}$. Thus, the offset nulling information stored on C_{1} can be 'refreshed" relatively infrequently. The measured offset voltage of A_{1} during the amplification mode was $11 \mu \mathrm{~V}$; offset voltage drift with temperature was less than $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

TC02630
${ }^{*} \mathrm{SW}_{1}, \mathrm{SW}_{2}, \& \mathrm{SW}_{3}$ ARE ALL
PART OF A SINGLE IH5043 CMOS ANALOG SWITCH CONNECTED AS SHOWN IN FIGURE 6(b)
Figure 6(a): Automatic Offset Null Circuit

Figure 7: Staircase Generator Circuit

Figure 8: Analog Counter Circuit

STAIRCASE GENERATOR

The circuit shown in Figure 7 is a high input impedance version of the so-called "diode pump" or staircase generator. Note that charge transfer takes place at the negativegoing edge of the input-signal.

The most common application for staircase generators is in low cost counters. By resetting the capacitor when the output reaches a predetermined level, the circuit may be made to count reliably up to a maximum of about 10. A straightforward circuit using a LM311 for the level detector, and a CMOS analog gate to discharge the capacitor, is shown in Figure 8. An important property of this type of counter is the ease with which the count can be changed; it is only necessary to change the voltage at which the comparator trips. A low cost A-D converter can also be designed using the same principle since the digital count between reset periods is directly proportional to the analog voltage used as a reference for the comparator.

A considerable amount of hysteresis is used in the comparator shown in Figure 8. This ensures that the capacitor is completely discharged during the reset period. In a more sophisticated circuit, a dual comparator 'window detector" could be used, the lower trip point set close to
ground to assure complete discharge. The upper trip point could then be adjusted independently to determine the pulse count.

SAMPLE \& HOLD CIRCUIT

Two important properties of the 8043 are used to advantage in this circuit. The low input bias currents give rise to slow output decay rates ('droop') in the hold mode, while the high slew rate ($6 \mathrm{~V} / \mu \mathrm{s}$) improves the tracking speed and the response time of the circuit. See Figure 6.

The ability of the circuit to track fast moving inputs is shown in Figure 10A. The upper waveform is the input ($10 \mathrm{~V} / \mathrm{div}$), the lower waveform the output ($5 \mathrm{~V} / \mathrm{div}$). The logic input is high.

Actual sample and hold waveforms are shown in Figure 10B. The center waveform is the analog input, a ramp moving at about $67 \mathrm{~V} / \mathrm{ms}$, the lower waveform is the logic input to the sample \& hold; a logic ' 1 '" initiates the sample mode. The upper waveform is the output, displaced by about 1 scope division (2V) from the input to avoid superimposing traces. The hold mode, during which the output remains constant, is clearly visible. At the beginning of a sample period, the output takes about $8 \mu \mathrm{~s}$ to catch up with the input, after which it tracks until the next hold period.

ICL8043

Figure 9: Sample And Hold Circuit

Figure 10A

TOP: 2V/DIV
CENTER: 2V/DIV
BOTTOM: 10V/DIV HORIZONTAL: $10 \mu \mathrm{~s} /$ DIV

Figure 10B

INSTRUMENTATION AMPLIFIER

A dual JFET-input operational amplifier is an attractive component around which to build an instrumentation amplifier because of the high input resistance. The circuit shown in Figure 11 uses the popular triple op-amp approach. The output amplifier is a High Speed 741 (741 HS, slew rate guaranteed $\geq 0.7 \mathrm{~V} / \mu \mathrm{s}$) so that the high slew rate of the 8043 is utilized to the full extent. Input resistance of the circuit (either input, regardless of gain configuration) is in excess of 10^{12} ohms.

For the component values shown, the overall amplifier gain is 200 (front end gain $=\frac{2 R_{1}+R_{2}}{R_{2}}$, back end
gain, $=R_{6} / R_{4}$).

Common mode rejection is largely determined by the matching between R_{4} and R_{5}, and R_{6} and R_{7}. In applications where offset nulling is required, a single potentiometer can be connected as shown in Figure 12.
Another popular circuit is given in Figure 13. In this case the gain is $1+R_{1} / R_{2}$, and the CMRR determined by the match between R_{1} and R_{4}, R_{2} and R_{3}.
For more information on FET input operational amplifiers, see Intersil Application Bulletin A005 "The 8007: A High Performance FET-input Operational Amplifier."

AF030011
Figure 11: Instrumentation Amplifier

Figure 12: Offset Nulling Both Amplifiers With One Potentiometer

AF030211
Figure 13: Modified Instrumentation Amplifier

GENERAL DESCRIPTION

The 8048 is a monolithic logarithmic amplifier capable of handling six decades of current input, or three decades of voltage input. It is fully temperature compensated and is nominally designed to provide 1 volt of output for each decade change of input. For increased flexibility, the scale factor, reference current and offset voltage are externally adjustable.

The 8049 is the antilogarithmic counterpart of the 8048; it nominally generates one decade of output voltage for each 1 volt change at the input.

FEATURES

- 1/2\% Full Scale Accuracy
- Temperature Compensated for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Operation
- Scale Factor IV/Decade, Adjustable
- 120dB Dynamic Current Range (8048)
- 60dB Dynamic Voltage Range (8048 \& 8049)
- Dual JFET-Input Op-Amps

ORDERING INFORMATION

PART NUMBER	ERROR (25 $\left.{ }^{\circ} \mathrm{C}\right)$	TEMPERATURE RANGE	PACKAGE
ICL8048BCJE	30 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP
ICL8048BCPE	30 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin Plastic DIP
ICL8048CCJE	60 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP
ICL.8048CCPE	60 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin Plastic DIP
ICL8049BCJE	10 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP
ICL8049BCPE	10 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin Plastic DIP
ICL8049CCJE	25 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP
ICL8049CCPE	25 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin Plastic DIP

ICL8048/ICL8049

ABSOLUTE MAXIMUM RATINGS (ICL8048)

Operating Temperature Range $\ldots \ldots \ldots \ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Output Short Circuit Duration $\ldots \ldots \ldots \ldots \ldots \ldots$. Indefinite
Storage Temperature Range $\ldots \ldots \ldots . .65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots \ldots .300^{\circ} \mathrm{C}$
\qquad
\qquad

ELECTRICAL CHARACTERISTICS (ICL8048) $V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, I_{\text {REF }}=1 \mathrm{~mA}$, scale factor adjusted for $1 \mathrm{~V} /$ decade unless otherwise specified.

PARAMETER	TEST CONDITIONS	8048BC			8048CC			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Dynamic Range $\ln (1 n A-1 m A)$ $V_{\text {IN }}(10 \mathrm{mV}-10 \mathrm{~V})$	$\mathrm{R}_{\text {IN }}=10 \mathrm{k} \Omega$	$\begin{aligned} & 120 \\ & 60 \end{aligned}$			$\begin{gathered} 120 \\ 60 \end{gathered}$			$\begin{aligned} & d B \\ & d B \end{aligned}$
Error, \% of Full Scale	$T_{A}=25^{\circ} \mathrm{C}, 11 \mathrm{~N}=1 \mathrm{nA}$ to 1 mA		. 20	0.5		. 25	1.0	\%
Error, \% of Full Scale	$\begin{aligned} & T_{A}^{T}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & 1 N=1 \mathrm{nA} \text { to } 1 \mathrm{~mA} \end{aligned}$. 60	1.25		. 80	2.5	\%
Error, Absolute Value	$T_{A}=25^{\circ} \mathrm{C}, 4 \mathrm{~N}=1 \mathrm{nA}$ to 1 mA		12	30		14	60	mV
Error, Absolute Value	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{N}}=1 \mathrm{nA} \text { to } 1 \mathrm{~mA} \end{aligned}$		36	75		50	150	mV
Temperature Coefficient of VOUT	$I_{1 N}=1 \mathrm{nA}$ to 1 mA		0.8			0.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection Ratio	Referred to Output		2.5			2.5		mV / V
Offset Voitage ($\mathrm{A}_{1} \& \mathrm{~A}_{2}$)	Before Nulling		15	25		15	50	mV
Wideband Noise	At Output, for $l_{1 /}=100 \mu \mathrm{~A}$		250			250		$\mu \mathrm{V}$ (RMS)
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
	$R_{L}=2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V
Power Consumption			150	200		150	200	mW
Supply Current			5	6.7		5	6.7	mA

TYPICAL PERFORMANCE CHARACTERISTICS

TRANSFER FUNCTION FOR CURRENT INPUTS

MAXIMUM ERROR VOLTAGE AT THE OUTPUT AS A FUNCTION OF INPUT CURRENT

TRANSFER FUNCTION FOR VOLTAGE INPUTS

OP031201
MAXIMUM ERROR VOLTAGE AT THE OUTPUT AS A FUNCTION OF INFUT VOLTAGE

SMALL SIGNAL BANDWIDTH AS A FUNCTION OF INPUT CURRENT

SMALL SIGNAL VOLTAGE GAIN AS A FUNCTION OF INPUT VOLTAGE FOR $R_{S}=10 \mathrm{k} \Omega$

ABSOLUTE MAXIMUM RATINGS (ICL8049)

Supply Voltage	V
$V_{\text {IN }}$ (Input Voltage)	$\pm 15 \mathrm{~V}$
IREF (Reference Current)	2mA
Voltage between Offset Null and V^{+}	0.5V
Power Dissipation	50 mW

Operating Temperature Range $\ldots \ldots \ldots \ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Output Short Circuit Duration $\ldots \ldots \ldots \ldots \ldots .$. Indefinite
Storage Temperature Range $\ldots \ldots \ldots . .65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots \ldots .300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (ICL8049) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, I REF $=1 \mathrm{~mA}$, scale factor adjusted for 1 decade (out) per volt (in), unless otherwise specified.

PARAMETER	TEST CONDITIONS	8049BC			8049CC			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Dynamic Range (VOUT)	$V_{\text {OUT }}=10 \mathrm{mV}$ to 10 V	60			60			dB
Error, Absolute Value	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 0 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~N}} \leq 3 \mathrm{~V}$		3	10		5	25	mV
Error, Absolute Value	$\begin{aligned} & \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & O V \leq V_{\mathbb{N}} \leq 3 \mathrm{~V} \end{aligned}$		20	75		30	150	mV
Temperature Coefficient, Referred to VIN	$\mathrm{V}_{1 \mathrm{~N}}=3 \mathrm{~V}$		0.38			0.55		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection Ratio	Referred to Input, for $V_{N}=0 \mathrm{~V}$		2.0			2.0		$\mu \mathrm{V} / \mathrm{V}$
Offset Voltage (A_{1} \& A_{2})	Before Nulling		15	25		15	50	mV
Wideband Noise	Referred to Input, for $\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}$		26			26		$\mu \mathrm{V}$ (RMS)
	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V
Power Consumption			150	200		150	200	mW
Supply Current			5	6.7		5	6.7	mA

TYPICAL PERFORMANCE CHARACTERISTICS

TRANSFER FUNCTION (Vout AS A FUNCTION OF V_{IN})

MAXIMUM ERROR VOLTAGE REFERRED TO THE INPUT AS A FUNCTION OF VIN

TYPICAL PERFORMANCE CHARACTERISTICS (CONT)

SMALL SIGNAL BANDWIDTH AS A FUNCTION OF

 INPUT VOLTAGE

ICL8048 DETAILED DESCRIPTION

The ICL8048 relies for its operation on the well-known exponential relationship between the collector current and the base-emitter voltage of a transistor:

$$
\begin{equation*}
I_{C}=I S\left[e q V_{B E / k T-1}\right] \tag{1}
\end{equation*}
$$

For base-emitter voltages greater than 100 mV , Eq. (1) becomes

$$
\begin{equation*}
I_{C}=I_{S} e^{q V_{B E} / k T} \tag{2}
\end{equation*}
$$

From Eq. (2), it can be shown that for two identical transistors operating at different collector currents, the V_{BE} difference $\left(\Delta \mathrm{V}_{\mathrm{BE}}\right)$ is given by:

$$
\begin{equation*}
\Delta V_{B E}=-2.303 \times \frac{\mathrm{kT}}{\mathrm{q}} \log _{10}\left[\frac{l_{\mathrm{C} 1}}{l_{\mathrm{C} 2}}\right] \tag{3}
\end{equation*}
$$

Referring to Figure 3, it is clear that the potential at the collector of Q_{2} is equal to the $\Delta V_{B E}$ between Q_{1} and Q_{2}. The output voltage is $\Delta V_{B E}$ multiplied by the gain of A_{2} :
$V_{\text {OUT }}=-2.303\left(\frac{R_{1}+R_{2}}{R_{2}}\right)\left(\frac{k T}{q}\right) \log _{10}\left(\frac{l_{I N}}{I_{\text {REF }}}\right\rfloor$
The expression $2.303 \times \frac{\mathrm{kT}}{\mathrm{q}}$ has a numerical value of 59 mV at $25^{\circ} \mathrm{C}$; thus in order to generate 1 volt/decade at the output, the ratio $\left(R_{1}+R_{2}\right) / R_{2}$ is chosen to be 16.9 For this scale factor to hold constant as a function of temperature, the $\left(R_{1}+R_{2}\right) / R_{2}$ term must have a $1 / T$ characteristic to compensate for kT / q.

In the ICL8048 this is achieved by making R_{1} a thin film resistor, deposited on the monolithic chip. It has a nominal value of $15.9 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$, and its temperature coefficient is carefully designed to provide the necessary compensation. Resistor R_{2} is external and should be a low T.C. type; it should have a nominal value of $1 \mathrm{k} \Omega$ to provide 1 volt/ decade, and must have an adjustment range of $\pm 20 \%$ to allow for production variations in the absolute value of R_{1}.

SMALL SIGNAL VOLTAGE GAIN AS A FUNCTION OF INPUT VOLTAGE

ICL8048 OFFSET AND SCALE FACTOR ADJUSTMENT*

A log amp, unlike an op-amp, cannot be offset adjusted by simply grounding the input. This is because the log of zero approaches minus infinity; reducing the input current to zero starves Q_{1} of collector current and opens the feedback loop around A_{1}. Instead, it is necessary to zero the offset voltage of A_{1} and A_{2} separately, and then to adjust the scale factor. Referring to Figure 3, this is done as follows:

1) Temporarily connect a $10 \mathrm{k} \Omega$ resistor (R_{0}) between pins 2 and 7. With no input voltage, adjust R_{4} until the output of A_{1} (pin 7) is zero. Remove R_{0}.
Note that for a current input, this adjustment is not necessary since the offset voltage of A_{1} does not cause any error for current-source inputs.
2) Set $I_{I N}=I_{R E F}=1 \mathrm{~mA}$. Adjust R_{5} such that the output of A_{2} (pin 10) is zero.
3) Set $I_{\mathbb{N}}=1 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{REF}}=1 \mathrm{~mA}$. Adjust R_{2} for $\mathrm{V}_{\mathrm{OUT}}=3$ volts (for a 1 volt/decade scale factor) or 6 volts (for a 2 volt/decade scale factor).
Step \#3 determines the scale factor. Setting $\mathbb{I}_{\mathbb{N}}=1 \mu \mathrm{~A}$ optimizes the scale factor adjustment over a fairly wide dynamic range, from 1 mA to 1 nA . Clearly, if the 8048 is to be used for inputs which only span the range $100 \mu \mathrm{~A}$ to 1 mA , it would be better to set $l_{\mathrm{N}}=100 \mu \mathrm{~A}$ in Step \#3. Similarly, adjustment for other scale factors would require different l_{N} and VOUT values.
*See A053 for an automatic offset nulling circuit.

Figure 3: ICL8048 Offset and Scale Factor Adjustment

ICL8049 DETAILED DESCRIPTION

The ICL8049 relies on the same logarithmic properties of the transistor as the ICL8048. The input voltage forces a specific $\Delta V_{B E}$ between Q_{1} and Q_{2} (Figure 4). This $V_{B E}$ difference is converted into a difference of collector currents by the transistor pair. The equation governing the behavior of the transistor pair is derived from (2) on the previous page and is as follows:

$$
\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\exp \left[\frac{q \Delta V_{B E}}{k T}\right]
$$

When numerical values for q / kT are put into this equation, it is found that a $\Delta V_{B E}$ of 59 mV (at $25^{\circ} \mathrm{C}$) is required to change the collector current ratio by a factor of ten. But for ease of application, it is desirable that a 1 volt change at the input generate a tenfoid change at the output. The required input attenuation is achieved by the network comprising R_{1} and $\mathrm{R}_{\mathbf{2}}$. In order that scale factors other than one decade per volt may be selected, R_{2} is external to the chip. It should have a value of $1 \mathrm{k} \Omega$, adjustable $\pm 20 \%$, for one decade per volt. R_{1} is a thin film resistor deposited on the monolithic chip; its temperature characteristics are chosen to compensate the temperature dependence of equation 5 , as explained on the previous page.

The overall transfer function is as follows:
$\frac{\text { louT }}{I_{\text {REF }}}=\exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{I N}}{k T}\right]$
Substituting V OUT $=$ I IOUT \times ROUT gives:
$V_{\text {OUT }}=R_{\text {OUT }} I_{\text {REF }} \exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{I N}}{k T}\right]$

For voltage references equation 7 becomes
$V_{\text {OUT }}=V_{\text {REF }} \times \frac{R_{\text {OUT }}}{R_{\text {REF }}} \exp \left\lfloor\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{I N}}{k T}\right\rceil$

ICL8049 OFFSET AND SCALE FACTOR ADJUSTMENT*

As with the log amplifier, the antilog amplifier requires three adjustments. The first step is to null out the offset voltage of A_{2}. This is accomplished by reverse biasing the base-emitter of $Q_{2} . A_{2}$ then operates as a unity gain buffer with a grounded input. The second step forces $\mathrm{V}_{\mathrm{IN}}=0$; the output is adjusted for VOUT $=10 \mathrm{~V}$. This step essentially "anchors" one point on the transfer function. The third step applies a specific input and adjusts the output to the correct voltage. This sets the scale factor. Referring to Figure 4, the exact procedure for 1 decade/volt is as follows:

1) Connect the input (pin \#16) to +15 V . This reverse biases the base-emitter of Q_{2}. Adjust R_{7} for $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$. Disconnect the input from +15 V .
2) Connect the input to Ground. Adjust R_{4} for $\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}$. Disconnect the input from Ground.
3) Connect the input to a precise 2 V supply and adjust R_{2} for $V_{\text {OUT }}=100 \mathrm{mV}$.
The procedure outlined above optimizes the performance over a 3 decade range at the output (i.e., VOUT from 10 mV to 10 V). For a more limited range of output voltages, for example 1 V to 10 V , it would be better to use a precise 1 volt supply and adjust for $\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$. For other scale factors and/or starting points, different values for R_{2} and $R_{\text {REF }}$ will be needed, but the same basic procedure applies.
*See A053 for an automatic offset nulling circuit.

Figure 4: ICL8049 Offset and Scale Factor Adjustment

APPLICATIONS INFORMATION

ICL8048 Scale Factor Adjustment

The scale factor adjustment procedures outlined previously for the ICL8048 and ICL8049, are primarily directed towards setting up 1 volt ($\Delta V_{\text {OUT }}$) per decade ($\Delta \mathrm{I}_{\mathbb{N}}$ or $\left.\Delta V_{I N}\right)$ for the log amp, or one decade ($\Delta V_{\text {OUT }}$) per volt $\left(\Delta \mathrm{V}_{\mathrm{IN}}\right)$ for the antilog amp.

This corresponds to $K=1$ in the respective transfer functions:

Log Amp: VOUT $=-K \log 10\left[\frac{I_{\mathrm{IN}}}{I_{\text {REF }}}\right]$
Antilog Amp: $V_{O U T}=$ ROUT $I_{\text {REF }} 10 \frac{-V_{I N}}{K}$
By adjusting R_{2} (Figure 3 and Figure 4) the scale factor ' K '' in equation 9 and 10 can be varied. The effect of changing K is shown graphically in Figure 5 for the log amp, and Figure 6 for the antilog amp. The nominal value of R_{2} required to give a specific value of K can be determined from equation 11. It should be remembered that R_{1} has a $\pm 20 \%$ tolerance in absolute value, so that allowance shall be made for adjusting the nominal value of R_{2} by $\pm 20 \%$.

$$
\begin{equation*}
\mathrm{R}_{2}=\frac{941}{(\mathrm{~K}-.059)} \Omega \tag{11}
\end{equation*}
$$

Frequency Compensation

Although the op-amps in both the ICL8048 and the ICL8049 are compensated for unity gain, some additional frequency compensation is required. This is because the log transistors in the feedback loop add to the loop gain. In the $8048,150 \mathrm{pF}$ should be connected between Pins 2 and 7 (Figure 3). In the 8049, 200 pF between Pins 3 and 7 is recommended (Figure 4).

EFFECT OF VARYING "K' ON THE LOG AMPLIFIER

Figure 5
EFFECT OF VARYING "K" ON THE ANTILOG AMPLIFIER

Figure 6

Error Analysis

Performing a meaningful error analysis of a circuit containing \log and antilog amplifiers is more complex than dealing with a similar circuit involving only op-amps. In this data sheet every effort has been made to simplify the analysis task, without in any way compromising the validity of the resultant numbers.

The key difference in making error calculations in log/ antilog amps, compared with op-amps, is that the gain of the former is a function of the input signal level. Thus, it is necessary, when referring errors from output to input, or vice versa, to check the input voltage level, then determine the gain of the circuit by referring to the graphs given in the Typical Performance Characteristics section.

The various error terms in the log amplifier, the ICL8048, are Referred To the Output (RTO) of the device. The error terms in the antilog amplifier, the ICL8049, are Referred To the Input (RTI) of the device. The errors are expressed in this way because in the majority of systems a number of \log amps interface with an antilog amp, as shown in Figure 7.

It is very straightforward to estimate the system error at node (A) by taking the square root of the sum-of-the squares of the errors of each contributing block.

$$
\text { Total Error }=\sqrt{x^{2}+y^{2}+z^{2}} \text { at }(A)
$$

If required, this error can be referred to the system output through the voltage gain of the antilog circuit, using the voltage gain versus input voltage plot.

The numerical values of x, y, and z in the above equation are obtained from the maximum error voltage plots. For example, with the ICL8048BC, the maximum error at the output is 30 mV at $25^{\circ} \mathrm{C}$. This means that the measured output will be within 30 mV of the theoretical transfer function, provided the unit has been adjusted per the procedures described previously. Figure 8 illustrates this point.

To determine the maximum error over the operating temperature range, the 0 to $70^{\circ} \mathrm{C}$ absolute error values given in the table of electrical characteristics should be used. For intermediate temperatures, assume a linear increase in the error between the $25^{\circ} \mathrm{C}$ value and the $70^{\circ} \mathrm{C}$ value.

For the antilog amplifier, the only difference is that the error refers to the input, i.e., the horizontal axis. It will be noticed that the maximum error voltage of the ICL8049, over the temperature range, is strongly dependent on the
input voltage. This is because the output amplifier, A_{2}, has an offset voltage drift which is directly transmitted to the output. When this error is referred to the input, it must be divided by the voltage gain, which is input voltage dependent. At $\mathrm{V}_{\mathbb{N}}=3 \mathrm{~V}$, for example, errors at the output are multiplied by $1 / .023(=43.5)$ when referred to the input.

TRANSFER FUNCTION FOR CURRENT INPUTS

It is important to note that both the ICL8048 and the ICL8049 require positive values of I REF, and the input (ICL8048) or output (ICL8049) currents (or voltages) respectively must also be positive. Application of negative I_{N} to the ICL8048 or negative IREF to either circuit will cause malfunction, and if maintained for long periods, would lead to device degradation. Some protection can be provided by placing a diode between pin 7 and ground.

SETTING UP THE REFERENCE CURRENT

In both the ICL8048 and the ICL8049 the input current reference pin (lREF) is not a true virtual ground. For the ICL8048, a fraction of the output voltage is seen on Pin 16 (Figure 3). This does not constitute an appreciable error provided $V_{\text {REF }}$ is much greater than this voltage. A 10 V or 15V reference satisfies this condition. For the ICL8049, a fraction of the input voltage appears on Pin 3 (Figure 4), placing a similar restraint on the value of $V_{\text {REF }}$.

Alternatively, I REF can be provided from a true current source. One method of implementing such a current source is shown in Figure 9.

LOG OF RATIO CIRCUIT, DIVISION

The 8048 may be used to generate the log of a ratio by modulating the IREF input. The transfer function remains the same, as defined by equation 9:
$V_{\text {OUT }}=-K \log _{10}\left\lfloor\frac{I_{I N}}{I_{\text {REF }}}\right\rfloor$
Clearly it is possible to perform division using just one ICL8048, followed by an ICL8049. For multiplication, it is generaliy necessary to use two log amps, summing their outputs into an antilog amp.

To avoid the problems caused by the I IREF input not being a true virtual ground (discussed in the previous section), the circuit of Figure 9 is again recommended if the IREF input is to be modulated.

ERROR, \% OF FULL SCALE The error as a percentage of full scale can be obtained from the following relationship:

Error, \% of Full Scale $=\frac{100 \times \text { Error, absolute value }}{\text { FullScale Output Voltage }}$
temperature coefficient of Vout or vin for the ICL8048 the temperature coefficient refers to the drift with temperature of $V_{\text {OUT }}$ for a constant input current.

For the ICL8049 it is the temperature drift of the input voltage required to hold a constant value of VOUT.

POWER SUPPLY REJECTION RATIO The ratio of the voltage change in the linear axis of the transfer function (VOUT for the ICL8048, $\mathrm{V}_{\text {IN }}$ for the ICL8049) to the change in the supply voltage, assuming that the \log axis is held constant.

WIDEBAND NOISE For the ICL8048, this is the noise occurring at the output under the specified conditions. In the case of the ICL8049, the noise is referred to the input.

SCALE FACTOR For the log amp, the scale factor (K) is the voltage change at the output for a decade (i. e. 10:1) change at the input. For the antilog amp, the scale factor is the voltage change required at the input to cause a one decade change at the output. See equations 9 and 10.

APPLICATION NOTES

For further applications assistance, see
A007 "The ICL8048/8049 Monolithic Log-Antilog Amplifiers' ', by Ray Hendry

ICL8063

Power Transistor Driver/Amplifier

GENERAL DESCRIPTION

The ICL8063 is a unique monolithic power transistor driver and amplifier that allows construction of minimum chip power amplifier systems. It includes built in safe operating area circuitry, short circuit protection and voltage regulators, and is primarily intended for driving complementary output stages.

Designed to operate with all varieties of operational amplifiers and other functions, two external power transistors, and 8 to 10 passive components, the ICL8063 is ideal for use in such applications as linear and rotary actuator drivers, stepper motor drivers, servo motor drivers, power supplies, power DACs and electronically controlled orifices.

The ICL8063 takes the output levels (typically $\pm 11 \mathrm{~V}$) from an op amp and boosts them to $\pm 30 \mathrm{~V}$ to drive power transistors, (e.g. 2N3055 (NPN) and 2N3789 (PNP)). The outputs from the ICL8063 supply up to 100 mA to the base leads of the external power transistors.

The amplifier-driver contains internal positive and negative regulators, to power an op amp or other device; thus, only $\pm 30 \mathrm{~V}$ supplies are needed for a complete power amp.

FEATURES

- Converts $\pm 12 \mathrm{~V}$ Outputs From Op Amps and Other Linear Devices to $\pm 30 \mathrm{~V}$ Levels
- When Used in Conjunction With General-Purpose Op Amps and External Complementary Power Transistors, System Can Deliver > 50 Watts to External Loads
- Built-in Safe Area Protection and Short-Circuit Protection
- Produces 25mA Quiescent Current in Power Output Stage
- Built-in $\pm 13 V$ Regulators to Power Op Amps or Other External Functions
- $500 \mathrm{k} \Omega$ Input Impedance With $\mathrm{R}_{\mathrm{BIAS}}=1 \mathrm{M} \Omega$

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL8063MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP
ICL8063CJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CERDIP
ICL8063CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PLASTIC DIP

Figure 1: Functional Diagram

CD018211

Figure 2: Pin Configuration

ABSOLUTE MAXIMUM RATINGS

Supply	35 V
Power Dissipation	500 mW
Input Voltage (Note 1)	$\pm 30 \mathrm{~V}$
Regulator Output Curr	10 m

Operating Temperature Range

ICL8063MJE $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
ICL8063CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL8063CJE $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
ge Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
mperature	300

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\text {SUPPLY }}= \pm 30 \mathrm{~V}\right)$

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	MIN/MAX LIMITS						UNIT
			ICL8063M			ICL8063C			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
Vos	Max. Offset Voltage	See Figure 3	150	50	50		75		mV
IOH	Min. Positive Drive Current	See Figure 4	50	50	50		40		mA
IOQ	Max. Positive Output Quiescent Current	See Figure 5	500	250	250		300	\cdots	$\mu \mathrm{A}$
${ }^{\text {IOL }}$	Min. Negative Drive Current	See Figure 4	25	25	25		20		mA
$\mathrm{I}_{\text {QL }}$	Max. Negative Output Quiescent Current	See Figure 6	500	250	250		300		$\mu \mathrm{A}$
VREG	Regulator Output Voltages Range		$\begin{aligned} & \pm 13.7 \\ & \pm 1.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 13.7 \\ \pm 1.0 \mathrm{~V} \end{gathered}$	V
IREG	Regulator Output Current	(See Note 2.)	10	10			10		mA
ZIN	A.C. Input Impedance	See Figure 8		$\begin{aligned} & 400 \\ & \text { (Тур) } \end{aligned}$			$\begin{gathered} 400 \\ (Т y p) \end{gathered}$		$k \Omega$
V SUPPLY	Power Supply Range				± 5 to	35 V			V
I_{Q}	Power Supply Quiescent Currents		10	6	6		7		mA
Av	Range of Voltage Gain	See Figure 9 $V_{I N}=8 \mathrm{Vp}-\mathrm{p}$	6 ± 2	6 ± 2	6 ± 2	,	6 ± 2		V/V
VOUT(MIN)	Minimum Output Swing	See Figure 9; Increase $V_{\text {IN }}$ until VOUT flattens	± 27	± 27	± 27		± 27		V
IBIAS	Input Bias Current	See Figure 10	100	100	100		100		$\mu \mathrm{A}$

NOTES: 1. For supply voltages less than $\pm 30 \mathrm{~V}$ the absolute maximum input voltage is equal to the supply voltage. 2. Care should be taken to ensure that maximum power dissipation is not exceeded.

TEST CIRCUITS

LC01210I

LC012201

FOR IOUT: $\mathrm{V}_{\text {IN }}$ IS POSITIVE: INCREASE VIN UNTIL IOUT LIMITS
FOR IOUT: VIN IS NEGATIVE: INCREASE VIN UNTIL IOUT LIMITS
Figure 3: Offset Voltage Measurement
Figure 4: Output Current Measurement

LC012301
Figure 5: Positive Output Quiescent Current

LC012401
Figure 6: Negative Output Quiescent Current

LC012501
Figure 7: On Chip Regulator Measurement

LC012601
Figure 8: A.C. Input Impedance Measurement

TEST CIRCUITS (CONT.)

Figure 9: Gain and Output Voltage Swing Measurement

LC01280
Figure 10: Input Bias Current Measurement

APPLICATIONS INFORMATION

One problem faced almost every day by circuit designers is how to interface the low voltage, low current outputs of linear and digital devices to that of power transistors and darlingtons.

For example, a low level op amp has a typical output voltage range of ± 6 to $\pm 12 \mathrm{~V}$, and output current usually on the order of about 5 milliamperes. A power transistor with a ± 35 volt supply, a collector current of 5 amperes, and a beta, or gain of 100 needs at least 50 milliamperes of drive.

In the past, connecting two transistors with widely dissimilar requirements meant that a rather ornate discrete circuit had to be built to convert the weak output signals from the first into levels large enough to drive the second. However, in addition to converting voltage and current, it was also necessary to include a number of protection circuits to guard against damage from shorts, for example, and all this design work was both tedious and expensive.

The ICL8063 provides a solution to these problems. It's a monolithic power transistor driver and power transistor amplifier circuit on the same chip, has all the necessary safe operating area circuitry and short circuit protection,
and has on-chip $\pm 13 \mathrm{~V}$ voltage regulators to eliminate the need for extra external power supplies.

Using the ICL8063 to make a complete Power Amplifier

As Figure 11 shows, using the ICL8063 allows the circuit designer to build a power amplifier block capable of delivering ± 2 amperes at ± 25 volts (50 watts) to any load, with only three additional discrete devices and 8 passive components. Moreover, the circuit draws only about ± 30 milliamperes of quiescent current from either of the $\pm 30 \mathrm{~V}$ power supplies. A similar design using discrete components would require anywhere from 50 to 100 components.

Slew rate is about the same as that of a 741 op amp, approximately $1 \mathrm{~V} / \mu \mathrm{s}$. Input current, voltage offset, CMRR and PSRR are also the same. Use of 1,000 picofarad compensation capacitors (three in this configuration) allows good stability down to unity gain non-inverting (the worst case). This circuit will drive a $1000 \mathrm{pF} \mathrm{C}_{\mathrm{L}}$ to Gnd , or in other words, the circuit can drive 30 feet of RG-58 coaxial cable for line driver applications with no problems.

Figure 11: Standard Circuit Diagram

Figure 12: Current Limiting (Safe Area) Protection Circuit (one side shown)

ICL8063

As Figure 12 indicates, setting up a current limiting (safe area) protection circuit is straightforward. The 0.4 ohm, 5 watt resistors set the maximum current one can get out of the output. The equation this SOA circuit follows is: for Vout positive,

$$
\begin{gathered}
V_{b e}=I_{L} R_{3}-\frac{R_{2}}{R_{1}+R_{2}}\left(V_{\text {OUT }}+I_{L} R_{3}-0.7 V\right) \\
\\
\approx I_{L} R_{3}-\frac{R_{2}}{R_{1}+R_{2}}\left(V_{\text {OUT }}\right)
\end{gathered}
$$

for Vout negative,

$$
\begin{aligned}
& V_{b e}=L_{L} R_{3}-\frac{R_{2}}{R_{1}+R_{2}+R_{4}}\left(V_{\text {OUT }}+I_{2} R_{3}+0.7\right) \\
& \approx L_{L} R_{3}-\frac{R_{2}}{R_{1}+R_{2}+R_{4}}\left(V_{\text {OUT }}\right)
\end{aligned}
$$

Solving these equations we get the following:

$\mathbf{V}_{\text {OUT }}$	\mathbf{I}	$\mathbf{I L}_{\mathrm{L}} @ \mathbf{2 5} 5^{\circ} \mathrm{C}$	$\mathbf{I}_{\mathrm{L}} @ 125^{\circ} \mathbf{C}$
24 V	1 mA	3 amps	2.4 amps
20 V	$830 \mu \mathrm{~A}$	2.8 amps	
16 V	$670 \mu \mathrm{~A}$	2.6 amps	
12 V	$500 \mu \mathrm{~A}$	2.4 amps	1.8 amps
8 V	$333 \mu \mathrm{~A}$	2.1 amps	
4 V	$167 \mu \mathrm{~A}$	1.9 amps	
0 V	$0 \mu \mathrm{~A}$	1.7 amps	1.1 amps

As this table indicates, maximum power delivered to a load is obtained when VOUT $\geq 24 \mathrm{~V}$.

Often design requirements necessitate an unsymmetrical output current capability. In that case, instead of the 0.4 ohm resistors protecting the npn and pnp output stages, as shown in Figure 11, simply substitute any other value. For example, if up to 3 amps are required when $\mathrm{V}_{\text {OUT }} \geq+24 \mathrm{~V}$ and only 1 amp out when VOUT $\geq-24 \mathrm{~V}$, use a 0.4 ohm resistor between pin 8 and pin 9 on the ICL8063 and a 1 ohm, 2 watt resistor between pin 7 and pin 8 . Maximum output current versus V OUT for varying values of protection resistors are as follows:

$\mathrm{V}_{\text {OUT }}$	0.4 ${ }^{\text {@ }} 25^{\circ} \mathrm{C}$	0.68 ${ }^{\text {@ }} 25^{\circ} \mathrm{C}$	$1 \Omega @ 25^{\circ} \mathrm{C}$
24 V	3 amps	1.7 amps	1.2 amps
12 V	2.4 amps	1.4 amps	0.9 amps
OV	1.7 amps	1.0 amps	0.7 amps

The biasing resistors located between pin 13 and pin 14 and between pin 2 and pin 4 are typically $1 \mathrm{~m} \Omega$ for $V_{\text {SUPPLY }}= \pm 30 \mathrm{~V}$, which guarantees adequate performance in such applications as DC motor drivers, power DACs, programmable power supplies and line drivers (with ± 30 volt supplies). The table that follows shows the proper value for R $\mathrm{R}_{\text {BIAS }}$ for optimum output current capability with supply voltages between $\pm 5 \mathrm{~V}$ and $\pm 30 \mathrm{~V}$.

$\pm V_{C C}$	$R_{\text {BIAS }}$
30 V	$1 \mathrm{M} \Omega$
25 V	$680 \mathrm{k} \Omega$
20 V	$500 \mathrm{k} \Omega$
15 V	$300 \mathrm{k} \Omega$
10 V	$150 \mathrm{k} \Omega$
5 V	$62 \mathrm{k} \Omega$

If 30 V and $1 \mathrm{M} \Omega$ are used, performance curves appear as shown in Figure 13.

Figure 13: Typical Performance Curve of Max. Output Current Vs. V $_{\text {Supp }}$ For Fixed RBIAS $=1 \mathrm{M} \Omega$

DS019401

Figure 14: Bode Plot of Open Loop Gain of Above Schematic

LC013101
Figure 15: Typical Performance of Rout vs. Frequency of Power Amplifier System

When buying external power transistors, careful attention should be paid to beta values. For 2N3055 and 2N3789 transistors used in this circuit, beta should be no more than 150 max at $\mathrm{C}_{\mathrm{C}}=20 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}$. This beta value sets the quiescent current at less than 30 mA when not delivering power to a load.

The design in Figure 11 will tolerate a short circuit to ground indefinitely, provided adequate heat sinking is used.

However if VOUT is shunted to $\pm 30 \mathrm{~V}$ the output transistors (2N3055 and 2N3789) will be destroyed, but since the safe operating area for these devices is 4 amps at 30 voits, the problem does not occur for $V_{\text {SUPP }}= \pm 15 \mathrm{~V}$.

A typical bode plot of the power amplifier system openloop frequency-response is shown in Figure 14. Referring to Figure 8, the schematic for this bode plot is shown in Figure 14.

Designing A Simple Function Generator

Using a variation of the fundamental power amplifier building block described in the previous section, the

ICL8063 can be used in the design of a simple, low cost function generator (Figure 16). It will supply sine waves, triangular waves and square waves from 2 hertz to 20 kilohertz. This complete test instrument can be plugged into a standard 110 VAC line for power. VOUT will be up to $\pm 25 \mathrm{~V}$ (50 V p-p) across loads as small as 10 ohms (about 2.5 amps maximum output current).

Capacitor working voltages should be greater than 50 V DC and all resistors should be $1 / 2 \mathrm{~W}$, unless otherwise indicated. The interconnecting leads from the 741 pins 2 and 3 to their respective resistors should be kept short, less than 2 inches if possible; longer leads may result in oscillation.

Full output swing is possible to about 5 kHz ; after that the output begins to taper off due to the slew rate of the 741 , until at 20 kHz the output swing will be about $20 \mathrm{~V}_{\mathrm{pp}}(\pm 10 \mathrm{~V}$). This problem can be remedied by simply using an op amp with a higher slew rate, such as the LF356.

Figure 16: Power Function Generator

The constant current motor drive configuration shown in Tigtre 17 is an extremely simple circuit to construct using the 1Cl.B083. This minimum device circuit can be used to dive DC motors where there is some likelihood of stalling or lock u^{n}; if the motor locks, the current drive remains concum and the system does not destroy itself. Using this approach two 6 V batteries are sufficient for good performance. A 10 volt input will produce one amp of output curcent to drive the motor, and if the motor is stalled, IOUT remams af I amp.

Fio example, suppose it is necessary to drive a 24V DC motor with 1 amp of drive current. First make VSUPPLY at least 6 wolts more than the motor being driven (in this case 30 whal . Next select RBIAS according to $V_{\text {SUPPLY }}$ from the theta sheet, which indicates $\mathrm{R}_{\mathrm{BIAS}}=1 \mathrm{M} \Omega$. Then choose $\mathrm{H}_{1}, \mathrm{H}_{2}$, and F_{a} for optimum sensitivity. That means making $\mathrm{Ha}_{\mathrm{a}}=1 \Omega$ to minimize the voltage drop across R_{a} (the drop whil be $1 \mathrm{amp} \times 1$ ohm or 1 volt). If $1 \mathrm{amp} /$ volt sensitivity is desirable let $\mathrm{P}_{2}=\mathrm{R}_{1}=10 \mathrm{k} \Omega$ to minimize feedback current Tror. Then a $\pm 1 \mathrm{~V}$ input voltage will produce a $\pm 1 \mathrm{amp}$ current through the motor.

Caparitors should be at least 50 volts working voltage and all resistors $1 / 2 \mathrm{~W}$, except for those valued at 0.4 ohms. Power across $R_{\mathrm{a}}=\mid \times V=1 \mathrm{amp} \times 1$ volt $=1$ watt, so at loast a 2 wath yalue should be used. Use large heat sinks for the 2N305s and 2N3791 power transistors. A Delta NC-641 or the equivalent is appropriate. Use a thermal compound
when mounting the transistor to the heat sink. (See Intersil ICH8510 data sheet for further information).

LC013201
Figure 17: Constant Current Motor Drive

Building A Low Cost 50 Watt per Channel Audio Amplifier

For about $\$ 20$ per channel, it is possible to build a high fidelity amplifier using the ICL8063 to drive 8 ohm speakers.

ICL8063

A channel is defined here as all amplification between turntable or tape output and power output. (Figure 18)

The input 741 stage is a preamplifier with R.I.A.A. equalization for records. Following the first 741 stage is a $10 \mathrm{k} \Omega$ control pot, whose wiper arm feeds into the power amplifier stage consisting of a second 741, the ICL8063 and the power transistors. To achieve good listening results, selection of proper resistance values in the power amplifier stage is important. Best listening is to be found at a gain value of $6[(5 k \Omega+1 k \Omega / 1 k \Omega=6)]$. 3 is a practical minimum, since the first stage 741 preamp puts out only ± 10 volt maximum signals, and if maximum power is necessary this value must be multiplied by 3 to get ± 30 volt levels at the output of the power amp stage.

Each channel delivers about 56 volts p-p across an 8 ohm speaker and this converts to 50 watts RMS power. This is derived as follows:

Power $=\frac{\mathrm{V}_{\mathrm{rms}^{2}}}{8 \mathrm{ohms}}, \mathrm{V}_{\mathrm{rms}}=\frac{56 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}}{2.82}=20 \mathrm{~V},(20 \mathrm{~V})^{2}=400 \mathrm{~V}^{2}$ \therefore Power $=\frac{400 \mathrm{~V}^{2}}{8 \mathrm{ohms}}=50$ watts RMS Power.

Distortion will be $<0.1 \%$ up to about 100 Hz , and then it increases as the frequency increases, reaching about 1\% at 20 kHz .

The ganged switch at the input is for either disc playing or FM, either from an FM tuner or a tape amplifier. Assuming DC coupling on the outputs, there is no need for a DC reference to ground (resistor) for FM position. To clear the signal in the FM position, place a 51 k תresistor to ground as shown in Figure 18 (from FM input position to ground).

BD007601
Figure 18: Hi-Fi Amplifier

Note: Intersil offers a hybrid power amplifier similar to that shown in Figure 11. See ICH8510/8520/8530 data sheet for details.

LH2108/LH2308
 Dual Super-Beta Operational Amplifier

GENERAL DESCRIPTION

The LH2108A/LH2308A and LH2108/LH2308 series of dual operational amplifiers consist of two LM108A or LM108 type op amps in a single hermetic package. Featuring all the same performance characteristics of the single device, these duals also offer closer thermal tracking, lower weight, and reduced insertion cost.

FEATURES

- Low Offset Current - 50pA
- Low Offset Voltage - 0.7 mV
- Low Offset Voltage LH2108A: 0.3mV LH2108: 0.7 mV
- Wide Input Voltage Range $- \pm 15 \mathrm{~V}$
- Wide Operating Supply Range $- \pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
LH2108D	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-PIN
LH2108AD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
LH2308D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
LH2308AD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	

Figure 1: Functional Diagram

Figure 2: Pin Configuration

ABSOLUTE MAXIMUM RATINGS

Supply Voltage \qquad .$\pm 20 \mathrm{~V}$
Power Dissipation (Note 1)................................ 500 mW
Differential Input Current (Note 2) $\pm 10 \mathrm{~mA}$
input Voltage (Note 3)...................................... $\pm 15 \mathrm{~V}$
Output Short Circuit Duration Continuous

Operating Temperature Range
LH2108A/LH2108 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ LH2308A/LH2408 $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (See Note 4)
(LH2108/LH2308) (LH2108/LH2308)

PARAMETER	TEST CONDITIONS	Limits		UNIT
		LH2108	LH2308	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	7.5	mV Max
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.2	1.0	nA Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	7.0	
Input Resistance (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	10	M Ω M M
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.6	0.8	mA Max
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} V_{S}= \pm 15 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	50	25	V / mV Min
Input Offset Voltage		3.0	10	mV Max
Average Temperature Coefficient of Input Offset Voltage (Note 6)		15	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Current		0.4	1.5	nA Max
Average Temperature Coefficient of Input Offset Current (Note 6)		2.5	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ Max
Input Bias Current		3.0	10	nA Max
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	0.4	-	mA Max
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{l} \geq 10 \mathrm{k} \Omega \end{aligned}$	25	15	V / mV Min
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 13	\checkmark Min
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 13.5	± 14	V Min
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}= \pm 13.5 \mathrm{~V}$	85	80	dB Min
Supply Voltage Rejection Ratio	$\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	80	80	
ELECTRICAL CHARACTERISTICS - LH2108/LH2308				
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.5	0.5	mV Max
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.2	1.0	nA Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	7.0	
Input Resistance	$T_{A}=25^{\circ} \mathrm{C}$	30	10	$M \Omega$ Min
Supply Current	$T_{A}=25^{\circ} \mathrm{C}$	0.6	0.8	mA Max
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} V_{S}= \pm 15 \mathrm{~V} \\ & \text { OUT }= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	80	80	V / mV Min
Input Offset Voltage		1.0	0.73	mV Max
Average Temperature Coefficient of Input Offset Voltage (Note 6)		5	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Current		0.4	1.5	nA Max
Average Temperature Coefficient of Input Offset Current (Note 6)		2.5	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ Max
Input Bias Current		3.0	10	nA Max
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	0.4	-	mA Max
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	40	60	V/mV Min
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 13	\checkmark Min
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 13.5	± 14	

LH2108/LH2308

ELECTRICAL CHARACTERISTICS (CONT.)

PARAMETER	TEST CONDITIONS	LIMITS		UNIT
		LH2108	LH2308	
Common Mode Rejection Ratio		96	96	dB Min
Supply Voltage Rejection Ratio		96	96	

NOTES: 1. The maximum junction temperature of the LH2108/A is $150^{\circ} \mathrm{C}$, and that of the LH2308/A is $85^{\circ} \mathrm{C}$. The thermal resistance of the packages is $100^{\circ} \mathrm{C} \mathrm{C} / \mathrm{W}$, junction to ambient.
2. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
3. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
4. These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified, and the LH2308A/LH2308 for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$.
5. Input resistance is guaranteed by Input Bias Current test.
6. For Design only, not 100% tested.

LM108/A, LM308/A Super-Beta Operational Amplifier

GENERAL DESCRIPTION

These differential input, precision amplifiers provide low input currents and offset voltages comparable to FET and chopper stabilized amplifiers. They feature low power consumption over a supply voltage range of $>2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$. The amplifiers may be frequency compensated with a single external capacitor. The LM108A and LM308A are high performance selections from the 108/308 amplifier family.

FEATURES

- Input Bias Current - 2nA Max to 7nA Max
- Input Offset Current - 0.2nA Max to 1nA Max
- Input Offset Voltage - 0.5mV Max to 7.5mV Max
- Δ Vos $/ \Delta \mathrm{T}-5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ to $30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Δ los $/ \Delta \mathrm{T}-2.5 \mathrm{pA} /{ }^{\circ} \mathrm{C}$ to $10 \mathrm{pA} /{ }^{\circ} \mathrm{C}$
- Pin for Pin Replacement for 101A/301A

ORDERING INFORMATION

PART NUMBER	TO-99 CAN	8 PIN MINIDIP	14 PIN CERDIP	10 PIN FLATPAK	** DICE
LM108A	LM108AH	-	LM108AJ	LM108AF	
LM308A	LM308AH	LM308AN	LM308AJ	LM308AF	
LM108	LM108H*	-	LM108J	LM108F LM308	LM308H

*If 883C processing is desired add /883C to part number.
**Parametric Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

CD01610

(outline dwg TY)

(outline dwg JD)
CD01630I

CD01620
Figure 1: Pin Configurations

LM108/A, LM308/A

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
108, 108A
$\pm 20 \mathrm{~V}$
308, 308A
$\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)
Metal CAn (TO-99)
.500 mW

DIP... 500 mW
Differential Input Current (Note 2) $\pm 10 \mathrm{~mA}$

Input Voltage (Note 3) .$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration Indefinite Operating Temperature Range

108, 108A \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ 308, 308A $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) $35^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Note 4)

PARAMETER	TEST CONDITIONS	308			308A			108			108A			UNIT
		MIN	TYP	MAX										
Input Offset Voltage			2.0	7.5		0.3	0.5		0.7	2.0		0.3	0.5	mV
Input Offset Current			0.2	1.0		0.2	1.0		0.05	0.2		0.05	0.2	nA
Input Bias Current			1.5	7		1.5	7		0.8	2.0		0.8	2.0	$n \mathrm{~A}$
Input Resistance	Note 5	10	40		10	40		30	70		30	70		$\mathrm{M} \Omega$
Supply Current	$\begin{aligned} & V_{S}= \pm 20 \mathrm{~V} \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$		0.3	0.8		0.3	0.8		0.3	0.6		0.3	0.6	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{L}>10 \mathrm{k} \Omega \end{aligned}$	25	300		80	300		50	300		80	300		V/mV

THE FOLLOWING SPECIFICATIONS APPLY OVER THE OPERATING TEMPERATURE RANGES

Input Offset Voltage				10			0.73			3.0			1.0	mV
Input Offset Current				1.5			1.5			0.4			0.4	nA
Average Temperature Coefficient of Input Offset Voltage	Note 6		6.0	30		1.0	5.0		3.0	15		1.0	5.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of input Offset Current	Note 6		2	10		2.0	10		0.5	2.5		0.5	2.5	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current				10			10			3.0			3.0	nA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{L} \geq 10 \mathrm{k} \Omega \end{aligned}$	15			60			25			40			V / mV
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 13.5			V									
Common Mode Rejection Ratio	$\begin{aligned} & V_{5}= \pm 15 \mathrm{~V} \\ & V_{\mathrm{CM}}= \pm 13.5 \mathrm{~V} \end{aligned}$	80	100		96	110		85	100		96	110		dB
Supply Voltage Rejection Ratio	$\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	80	96		96	110		80	96		96	110		dB
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$	± 13	± 14		V									
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$								0.15	0.4	\cdot	0.15	0.4	mA

NOTES: 1. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$ and the Dual In-Line package at $9 \mathrm{~mW} /$ ${ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$.
2. The inputs are shunted with back-to-back diodes for over-voltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
3. For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
4. Unless otherwise specified, these specifications apply for supply voltages from +5 V to $\pm 20 \mathrm{~V}$ for the 108 , and 108 A and +5 V to $\pm 15 \mathrm{~V}$ for the 308 and 308A.
5. Input resistance is guaranteed by Input Bias Current test.
6. For Design only, not 100% tested.

INPUT CURRENTS

OP022001

OPO22301

OUTPUT SWING

OP022601

MAXIMUM DRIFT ERROR

OP02220I

SUPPLY CURRENT

OP02270|

MAXIMUM OFFSET ERROR

OP022101
OPEN LOOP VOLTAGE GAIN

OPEN LOOP
FREQUENCY RESPONSE

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

CLOSED LOOP OUTPUT IMPEDANCE

LARGE SIGNAL FREQUENCY RESPONSE

OP023001
 PULSE RESporrate

GUARDING

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the 108 amplifier. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble at $125^{\circ} \mathrm{C}$, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8-lead TO-99 package is accomplished by using a 10 -lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximately the same voltage at the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.
The pin configuration of the dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration).

Figure 2: Frequency Compensation Circuit
STANDARD CIRCUIT

LC02150:

ALTERNATE CIRCUIT IMPROVES REItPr Mic: POWER SUPPLY NOISE BY A FACTR

GENERAL DESCRIPTION

The NE/SE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 0 to 400 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disc head amplifiers. The NE/SE592 is a pin-for-pin replacement for the $\mu A 733$ in most applications.

FEATURES

- 120 MHz Bandwidth
- Adjustable Gains From 0 to 400
- Adjustable Pass Band
- No Frequency Compensation Required
- Wave Shaping With Minimal External Components

ORDERING INFORMATION

BASIC PART NUMBER	TEMP RANGE	PACKAGE PLASIN					14-PIN CERDIP	10-PIN TO-100	8-PIN MINI DIP
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	SE592F	SE592H	-				
NE592	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	NE592N	NE592F	NE592H	NE592N-8				

Figure 1: Functional Diagram (Resistor Values Nominal Only)

ABSOLUTE MAXIMUM RATINGS
Supply Voltage $\pm 8 \mathrm{~V}$
Differential Iriput Voltage $\pm 5 \mathrm{~V}$
Common-Mode Input Voltage $\pm 6 \mathrm{~V}$
Output Current 10 mA

Operating Temperature Range

$$
\begin{aligned}
& \text { SE592 } \ldots 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\
& \text { NE } 592 \ldots \ldots \ldots \ldots
\end{aligned}
$$

Storage Temperature Pange $\ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ... 500 mW
Lead Temperature (Soldering, i0sec) $300^{\circ} \mathrm{C}$

Stresses above those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$T_{A}=+25^{\circ} \mathrm{C}, V_{\text {SUPPLY }}= \pm 6 \mathrm{~V}, V_{C M}=0$ uniess otherwise specified. $V_{S}= \pm 6.0 \mathrm{~V}$

SYMBOL.	PARAMETER	TEST CONDITIONS	NE592			SE592			UNIT
			MIN	TYP	MAX	MHN	TYP	MAX	
Avol	Differential Voltage Gain Gain 1 (Note 1) Gain 2 (Note 2)	$R_{L}=2 k \Omega, V_{\text {OUT }}=3 V p-p$	$\begin{gathered} 250 \\ 80 \end{gathered}$	$\begin{aligned} & 400 \\ & 100 \end{aligned}$	$\begin{aligned} & 600 \\ & 120 \end{aligned}$	$\begin{array}{r} 300 \\ 90 \\ \hline \end{array}$	$\begin{aligned} & 400 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 110 \end{aligned}$	V/V
BW	$\begin{aligned} & \text { Bandwidth } \\ & \text { Gain } 1 \text { (Note 1) } \\ & \text { Gain } 2 \text { (Note 2) } \end{aligned}$			$\begin{aligned} & 40 \\ & 90 \end{aligned}$			40 90		MHz
tr_{r}	```Rise Time Gain 1 (Note 1) Gain 2 (Note 2) (Note 4)```	$V_{\text {OuT }}=1 \mathrm{Vp-p}$		$\begin{gathered} 10.5 \\ 4.5 \end{gathered}$	12		$\begin{gathered} 10.5 \\ 4.5 \end{gathered}$	10	ns
t_{d}	```Propagation Delay Gain 1 (Note 1) Gain 2 (Note 2) (Note 4)```	$V_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p}$		$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	10		$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	10	ns
$\mathrm{R}_{\text {IN }}$	Input Fesistance Gain 1 (Note 1) Gain 2 (Note 2)		10	$\begin{aligned} & 4.0 \\ & 30 \end{aligned}$		20	$\begin{aligned} & 4.0 \\ & 30 \end{aligned}$		$k \Omega$
$\mathrm{Cl}_{\mathrm{IN}}$	Input Capacitance (Note 2) (Note 4)	Gain 2		2.0			2.0		pF
los	Input Offset Current			0.4	5.0		0.4	3.0	$\mu \mathrm{A}$
IBIAS	input Bias Current			9.0	30		9.0	20	$\mu \mathrm{A}$
\bar{E}_{n}	input Noise Voltage	$\mathrm{BW}=1 \mathrm{kHz}$ to 10 MHz		12			12		$\mu \mathrm{V} \mathrm{rms}$
$\Delta \mathrm{V}_{\text {IN }}$	Input Voitage Range				± 1.0			± 1.0	V
CMRR	Common-Mode Rejection Ratio Gain 2 (Note 2) Gain 2 (Note 2)	$\begin{aligned} & V_{C M} \pm 1 \mathrm{~V}, f<100 \mathrm{kHz} \\ & V_{\mathrm{CM}} \pm 1 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz} \end{aligned}$	60	$\begin{aligned} & 86 \\ & 60 \\ & \hline \end{aligned}$		60	$\begin{aligned} & 86 \\ & 60 \end{aligned}$		dB
PSRR	Supply Voltage Rejection Ratio Gain 2 (Note 2)	$\Delta V_{S}= \pm 0.5 \mathrm{~V}$	50	70		50	70		dS
VOO	Output Offset Voltage Gain 2 (Note 2)	$\mathrm{A}_{\underline{L}}=\infty$		0.35	0.75		0.35	0.75	V
$V_{\text {OCM }}$	Output Common-Mode Voitage	$\mathrm{R}_{\mathrm{L}}=\infty$	2.4	2.9	3.4	2.4	2.9	3.4	V
$\mathrm{V}_{\text {O(DIFF) }}$	Differential Output Voltage Swing	$R_{L}=2 \mathrm{k} \Omega$	3.0	4.0		3.0	4.0		V
R_{0}	Output Resistance			20			20		Ω
1^{+}	Power Supply Current (Note 3)	$R_{L}=\infty$		18	24		18	24	mA

NOTES: 1. Gain select pins $G_{1 A}$ and $G_{1 B}$ connected together.
2. Gain select pins $G_{2 A}$ and $G_{2 B}$ connected together.
3. Recommended supply voltage $= \pm 6 \mathrm{~V}$
4. For design reference onily, not 100% tested.

TYPICAL APPLICATIONS

$$
\begin{aligned}
\frac{V_{0}}{V_{i}}(S) & \cong \frac{1.4 \times 10^{4}}{Z(s)+2 r_{e}} \\
& \cong \frac{1.4 \times 10^{4}}{Z(s)+32}
\end{aligned}
$$

Filter Networks
$\left.\begin{array}{|c|c|c|}\hline \text { SCHEMATIC } & \begin{array}{c}\text { FILTER } \\ \text { TYPE }\end{array} & \frac{V_{0}}{V_{i}} \text { (S) TRANSFER } \\ \text { FUNCTION }\end{array}\right]$

NOTE: In the networks above, the R value used is assumed to include the internal $2 \mathrm{r}_{\mathrm{e}}$ of approximately 32Ω.

Figure 3: Basic Configuration

Figure 4: Disc/Tape Modulated Readback Systems

NE/SE592

For frequency $f_{1} \ll 1 / 2 \pi(32) C$
$\mathrm{V}_{\mathrm{o}} \cong 1.4 \times 10^{4} \mathrm{C} \frac{\mathrm{dV}}{\mathrm{dt}}$

Figure 5: Differentiation with High Common Noise Rejection

Section 5 - Special Analog Functions

GENERAL DESCRIPTION

The AD590 is an integrated-circuit temperature transducer which produces an output current proportional to absolute temperature. The device acts as a high impedance constant current regulator, passing $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$ for supply voltages between +4 V and +30 V . Laser trimming of the chip's thin film resistors is used to calibrate the device to $298.2 \mu \mathrm{~A}$ output at $298.2^{\circ} \mathrm{K}\left(+25^{\circ} \mathrm{C}\right)$.

The AD590 should be used in any temperature-sensing application between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{C}\right.$ and $70^{\circ} \mathrm{C}$ for TO-92) in which conventional electrical temperature sensors are currently employed. The inherent low cost of a monolithic integrated circuit combined with the elimination of support circuitry makes the AD590 an attractive alternative for many temperature measurement situations. Linearization circuitry, precision voltage amplifiers, resistancemeasuring circuitry and cold-junction compensation are not needed in applying the AD590. In the simplest application, a resistor, a power source and any voltmeter can be used to measure temperature.

In addition to temperature measurement, applications include temperature compensation or correction of discrete components, and biasing proportional to absolute temperature. The AD590 is available in chip form making it suitable for hybrid circuits and fast temperature measurements in protected environments.

The AD590 is particularly useful in remote sensing applications. The device is insensitive to voltage drops over long lines due to its high-impedance current output. Any well-insulated twisted pair is sufficient for operation hundreds of feet from the receiving circuitry. The output characteristics also make the AD590 easy to multiplex: the current can be switched by a CMOS multiplexer or the supply voltage can be switched by a logic gate output.

FEATURES

- Linear Current Output: $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
- Wide Range: $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Two-Terminal Device: Voltage In/Current Out
- Laser Trimmed to $\pm 0.5^{\circ} \mathrm{C}$ Calibration Accuracy (AD590M)
- Excellent Linearity: $\pm 0.5^{\circ} \mathrm{C}$ Over Full Range (AD590M)
- Wide Power Supply Range: +4V to +30 V
- Sensor Isolation From Case
- Low Cost

ORDERING INFORMATION

NON-LINEARITY $\left({ }^{\circ} \mathrm{C}\right)$	PART NUMBER/PACKAGE		
	TO-52 PACKAGE	TO-92 PACKAGE	DICE**
± 3.0	AD590IH	AD590IZR	AD590/D
± 1.5	AD590JH	AD590JZR	
± 0.8	AD590KH	-	
± 0.4	AD590LH	-	
± 0.3	AD590MH	-	
TEMPERATURE RANGE	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to	
$+70^{\circ} \mathrm{C}$	DICE		

**Parameter Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

Figure 1: Functional Diagram

(outline dwg TO-52)
sUBSTRATE
LEAVE FLOATING)
(outline dwg TO-92)
PC004211
Figure 2: Pin Configurations

ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Forward Voltage (V^{+}to V^{-}) +44 V	Rated Performance Temperature Range
Reverse Voltage (V^{+}to V^{-}) $\ldots . ~-20 V ~$	TO-92 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Breakdown Voltage (Case to V^{+}or V^{-}) $\pm 200 \mathrm{~V}$	TO-52 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .5{ }^{\circ}{ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings oniy and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
SPECIFICATIONS (Typical values at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}$ unless otherwise noted)

CHARACTERISTICS	AD5901	AD590J	AD590K	AD590L	AD590M	UNIT
Output Nominal Output Current @ + $125^{\circ} \mathrm{C}\left(298.2^{\circ} \mathrm{K}\right)$	298.2	298.2	298.2	298.2	298.2	$\mu \mathrm{A}$
Nominal Temperature Coefficient	1.0	1.0	1.0	1.0	1.0	$\mu \mathrm{A} /{ }^{\circ} \mathrm{K}$
Calibration Error @ $+25^{\circ} \mathrm{C}$ (Notes 1, 5)	± 10.0 max	± 5.0 max	± 2.5 max	± 1.0 max	± 0.5 max	${ }^{\circ} \mathrm{C}$
Absolute Error $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ (Note 7) Without External Calibration Adjustment With External Calibration Adjustment	$\begin{aligned} & \pm 20.0 \text { max } \\ & \pm 5.8 \text { max } \end{aligned}$	$\begin{aligned} & \pm 10.0 \text { max } \\ & \pm 3.0 \text { max } \end{aligned}$	$\begin{aligned} & \pm 5.5 \text { max } \\ & \pm 2.0 \text { max } \end{aligned}$	$\begin{aligned} & \pm 3.0 \text { max } \\ & \pm 1.6 \text { max } \end{aligned}$	$\begin{aligned} & \pm 1.7 \text { max } \\ & \pm 1.0 \text { max } \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Non-Linearity (Note 6)	± 3.0 max	± 1.5 max	± 0.8 max	± 0.4 max	± 0.3 max	${ }^{\circ} \mathrm{C}$
Repeatability (Notes 2, 6)	± 0.1 max	${ }^{\circ} \mathrm{C}$				
Long Term Drift (Notes 3, 6)	± 0.1 max	${ }^{\circ} \mathrm{C} /$ month				
Current Noise	40	40	40	40	40	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Power Supply Rejection: $\begin{aligned} & +4 \mathrm{~V}<\mathrm{V}^{+}<+5 \mathrm{~V} \\ & +5 \mathrm{~V}<\mathrm{V}^{+}<+15 \mathrm{~V} \\ & +15 \mathrm{~V}<\mathrm{V}^{+}<+30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\mu \mathrm{A} / \mathrm{V}$ $\mu \mathrm{A} / \mathrm{V}$ $\mu \mathrm{A} / \mathrm{V}$
Case Isolation to Either Lead	10^{10}	10^{10}	10^{10}	10^{10}	10^{10}	Ω
Effective Shunt Capacitance	100	100	100	100	100	pF
Electrical Turn-On Time (Note. 1)	20	20	20	20	20	$\mu \mathrm{s}$
Reverse Bias Leakage Current (Note 4)	10	10	10	10	10	pA
Power Supply Range	+4 to +30	V				

NOTES: 1. Does not include self heating effects.
2. Maximum deviation between $+25^{\circ} \mathrm{C}$ reading after temperature cycling between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{C}\right.$ and $70^{\circ} \mathrm{C}$ for $\left.\mathrm{TO}-92\right)$.
3. Conditions: Constant +5 V , constant $+125^{\circ} \mathrm{C}$.
4. Leakage current doubles every $+10^{\circ} \mathrm{C}$.
5. Mechanical strain on package (especially TO-92) may disturb calibration of device.
6. Guaranteed. But not tested.
7. $-55^{\circ} \mathrm{C}$ Guaranteed by testing @ $+25^{\circ} \mathrm{C}$ and $@+150^{\circ} \mathrm{C}$.

TRIMMING OUT ERRORS

The ideal graph of current versus temperature for the AD590 is a straight line, but as Figure 3 shows, the actual shape is slightly different. Since the sensor is limited to the range of $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ for TO-92), it is possible to optimize the accuracy by trimming. Trimming also permits extracting maximum performance from the lower-cost sensors.

The circuit of Figure 4 trims the slope of the AD590 output. The effect of this is shown in Figure 5.

The circuit of Figure 6 trims both the slope and the offset. This is shown in Figure 7. The diagrams are exaggerated to show effects, but it should be clear that these trims can be used to minimize errors over the whole range, or over any selected part of the range. In fact, it is possible to adjust the I-grade device to give less than $0.1^{\circ} \mathrm{C}$ error over the range $0^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$ and less than $0.05^{\circ} \mathrm{C}$ error from $25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.

Figure 4: Slope Trimming

Figure 5: Effect of Slope Trim

Figure 6: Slope and Offset Trimming

ACCURACY

Maximum errors over limited temperature spans, with $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, are listed by device grade in the following tables. The tables reflect the worst-case linearities, which invariably occur at the extremities of the specified temperature range. The trimming conditions for the data in the tables are shown in Figures 4 and 5.
All errors listed in the tables are $\pm^{\circ} \mathrm{C}$. For example, if $\pm 1^{\circ} \mathrm{C}$ maximum error is required over the $+25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ range (i.e., lowest temperature of $+25^{\circ} \mathrm{C}$ and span of $50^{\circ} \mathrm{C}$), then the trimming of a J-grade device, using the single-trim circuit (Figure 4), will result in output having the required accuracy over the stated range. An M-grade device with no trims will have less than $\pm 0.9^{\circ} \mathrm{C}$ error, and an 1 -grade device with two trims (Figure 5) will have less than $\pm 0.2^{\circ} \mathrm{C}$ error. If the requirement is for less than $\pm 1.4^{\circ} \mathrm{C}$ maximum error, from $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}\left(100^{\circ}\right.$ span from $-25^{\circ} \mathrm{C}$), it can be satisfied by an M-grade device with no trims, a K-grade device with one trim, or an l-grade device with two trims.

a) Untrimmed
sc005201

b) Trim One: Offset

c) Trim Two: Slope SC005401

d) Trim Three: Offset Again SC00550)

Figure 7: Effect of Slope and Offset Trimming

I GRADE - MAXIMUM ERRORS, ${ }^{\circ} \mathrm{C}$

NUMBER OF TRIMS	TEMPERATURE SPAN $-{ }^{\circ} \mathbf{C}$	LOWEST TEMPERATURE IN SPAN- ${ }^{\circ} \mathrm{C}$							
		-55	-25	0	+25	+50	+75	+100	+125
None	10	8.4	9.2	10.0	10.8	11.6	12.4	13.2	14.4
None	25	10.0	10.4	11.0	11.8	12.0	13.8	15.0	16.0
None	50	13.0	13.0	12.8	13.8	14.6	16.4	18.0	
None	100	15.2	16.0	16.6	17.4	18.8			
None	150	18.4	19.0	19.2					
None	205	20.0							
One	10	0.6	0.4	0.4	0.4	0.4	0.4	0.4	0.6
One	25	1.8	1.2	1.0	1.0	1.0	1.2	1.6	1.8
One	50	3.8	3.0	2.0	2.0	2.0	3.0	3.8	
One	100	4.8	4.5	4.2	4.2	5.0			
One	150	5.5	4.8	5.5					
One	205	5.8							
Two	10	0.3	0.2	0.1	*	*	0.1	0.2	0.3
Two	25	0.5	0.3	0.2	*	0.1	0.2	0.3	0.5
Two	50	1.2	0.6	0.4	0.2	0.2	0.3	0.7	
Two	100	1.8	1.4	1.0	2.0	2.5			
Two	150	2.6	2.0	2.8					
Two	205	3.0							

* Less than $0.05^{\circ} \mathrm{C}$.

J GRADE - MAXIMUM ERRORS, ${ }^{\circ} \mathrm{C}$

NUMBER	TEMPERATURE SPAN - ${ }^{\circ} \mathrm{C}$	LOWEST TEMPERATURE IN SPAN- ${ }^{\circ} \mathrm{C}$							
TRIMS		-55	-25	0	+25	+ 50	+75	+100	+125
None	10	4.2	4.6	5.0	5.4	5.8	6.2	6.6	7.2
None	25	5.0	5.2	5.5	5.9	6.0	6.9	7.5	8.0
None	50	6.5	6.5	6.4	6.9	7.3	8.2	9.0	
None	100	7.7	8.0	8.3	8.7	9.4			
None	150	9.2	9.5	9.6					
None	205	10.0							
One	10	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.3
One	25	0.9	0.6	0.5	0.5	0.5	0.6	0.8	0.9
One	50	1.9	1.5	1.0	1.0	1.0	1.5	1.9	
One	100	2.3	2.2	2.0	2.0	2.3			
One	150	2.5	2.4	2.5					
One	205	3.0							
Two	10	0.1	*	*	*	*	*	*	0.1
Two	25	0.2	0.1	*	*	*	*	0.1	0.2
Two	50	0.4	0.2	0.1	*	*	0.1	0.2	*
Two	100	0.7	0.5	0.3	0.7	1.0			
Two	150	1.0	0.7	1.2					
Two	205	1.6							

* Less than $\pm 0.05^{\circ} \mathrm{C}$.

K GRADE - MAXIMUM ERRORS, ${ }^{\circ} \mathrm{C}$

NUMBER OF TRIMS	TEMPERATURE SPAN - ${ }^{\circ} \mathbf{C}$	LOWEST TEMPERATURE IN SPAN- ${ }^{\circ} \mathrm{C}$							
		-55	-25	0	+25	$+50$	$+75$	+100	+125
None	10	2.1	2.3	2.5	2.7	2.9	3.1	3.3	3.6
None	25	2.6	2.7	2.8	3.0	3.2	3.5	3.8	4.2
None	50	3.8	3.5	3.4	3.6	3.8	4.3	5.1	
None	100	4.2	4.3	4.4	4.6	5.1			
None	150	4.8	4.8	5.3					
None	205	5.5							
One	10	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.2
One	25	0.6	0.4	0.3	0.3	0.3	0.4	0.5	0.6
One	50	1.2	1.0	0.7	0.7	0.7	1.0	1.2	
One	100	1.5	1.4	1.3	1.3	1.5			
One	150	1.7	1.5	1.7					
One	205	2.0							
Two	10	0.1	*	*	*	*	*	*	0.1
Two	25	0.2	0.1	*	*	*	*	0.1	0.2
Two	50	0.3	0.1	*	*	*	0.1	0.2	
Two	100	0.5	0.3	0.2	0.3	0.7			
Two	150	0.6	0.5	0.7					
Two	205	0.8							

* Less than $\pm 0.05^{\circ} \mathrm{C}$.

L GRADE - MAXIMUM ERRORS, ${ }^{\circ} \mathrm{C}$

NUMBER OF TRIMS	TEMPERATURE SPAN- ${ }^{\circ} \mathrm{C}$	LOWEST TEMPERATURE IN SPAN- ${ }^{\circ} \mathrm{C}$							
		-55	-25	0	+25	+ 50	+ 75	$+100$	$+125$
None	10	1.0	1.0	1.1	1.1	1.2	1.3	1.4	1.6
None	25	1.3	1.3	1.3	1.4	1.5	1.6	1.7	1.9
None	50	1.9	1.8	1.7	1.8	1.9	2.1	2.4	
None	100	2.4	2.4	2.4	2.4	2.7			
None	150	2.7	2.6	2.8					
None	205	3.0							
One	10	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.2
One	25	0.5	0.4	0.3	0.3	0.3	0.3	0.4	0.5
One	50	1.0	0.8	0.6	0.6	0.6	0.8	1.0	
One	100	1.3	1.2	1.1	1.1	1.3			
One	150	1.4	1.3	1.4					
One	205	1.6							
Two	10	0.1	*	*	*	*	*	*	0.1
Two	25	0.1	*	*	*	*	*	$\stackrel{*}{*}$	0.1
Two	50	0.2	*	*	*	*	*	0.2	
Two	100	0.3	0.2	0.1	0.2	0.3			
Two	150	0.3	0.2	0.3					
Two	205	0.4							

* Less than $\pm 0.05^{\circ} \mathrm{C}$.

M GRADE - MAXIMUM ERRORS, ${ }^{\circ} \mathrm{C}$

NUMBER OF TRIMS	TEMPERATURE SPAN - ${ }^{\circ} \mathrm{C}$	LOWEST TEMPERATURE IN SPAN- ${ }^{\circ} \mathrm{C}$							
		-55	-25	0	+25	$+50$	+75	+100	+125
None	10	0.6	0.5	0.6	0.6	0.7	0.7	0.7	0.9
None	25	0.8	0.8	0.7	0.7	0.8	0.8	1.0	1.1
None	50	1.0	0.9	0.8	0.9	0.9	1.1	1.2	
None	100	1.3	1.4	1.3	1.4	1.5			
None	150	1.5	1.6	1.6					
None	205	1.7							

M GRADE - MAXIMUM ERRORS, ${ }^{\circ} \mathrm{C}$ (CONT.)

NUMBER OF TRIMS	TEMPERATURE SPAN- ${ }^{\circ} \mathrm{C}$	LOWEST TEMPERATURE IN SPAN- ${ }^{\circ} \mathrm{C}$							
		-55	-25	0	+25	+50	+ 75	+100	$+125$
One	10	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.2
One	25	0.4	0.3	0.2	0.2	0.2	0.2	0.3	0.4
One	50	0.5	0.4	0.3	0.3	0.3	0.4	0.5	
One	100	0.8	0.8	0.7	0.7	0.8			
One	150	0.9	0.9	0.9					
One	205	1.0							
Two	10	0.1	*	*	*	*	*	*	0.1
Two	25	0.1	*	*	*	*	*	*	0.1
Two	50	0.2	*	*	*	*	*	0.2	
Two	100	0.2	0.1	*	0.1	0.2			
Two	150	0.3	0.2	0.3					
Two	205	0.3							

* Less than $\pm 0.05^{\circ} \mathrm{C}$.

NOTES

1. Maximum errors over all ranges are guaranteed based on the known behavior characteristic of the AD590.
2. For one-trim accuracy specifications, the $205^{\circ} \mathrm{C}$ span is assumed to be trimmed at $+25^{\circ} \mathrm{C}$; for all other spans, it is assumed that the device is trimmed at the midpoint.
3. For the $205^{\circ} \mathrm{C}$ span, it is assumed that the two-trim temperatures are in the vicinity of $0^{\circ} \mathrm{C}$ and $+140^{\circ} \mathrm{C}$; for all other spans, the specified trims are at the endpoints.
4. In precision applications, the actual errors encountered are usually dependent upon sources of error which are often overlooked in error budgets. These typically include:
a. Trim error in the calibration technique used
b. Repeatability error
c. Long-term drift errors

Trim error is usually the largest error source. This error arises from such causes as poor thermal coupling between the device to be calibrated and the reference sensor; reference sensor errors; lack of adequate time for the device being calibrated to settle to the final temperature; radically different thermal resistances between the case and the surroundings ($\mathrm{R}_{\theta \mathrm{CA}}$) when trimming and when applying the device.
Repeatability errors arise from a strain hysteresis of the package. The magnitude of this error is solely a function of the magnitude of the temperature span over which the device is used. For example, thermal shocks between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ involve extremely low hysteresis and result in repeatability errors of less than $\pm 0.05^{\circ} \mathrm{C}$. When the thermalshock excursion is widened to $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, the device will typically exhibit a repeatability error of $\pm 0.05^{\circ} \mathrm{C}$ (± 0.10 guaranteed maximum).
Long-term drift errors are related to the average operating temperature and the magnitude of the thermal shocks experienced by the device. Extended use of the AD590 at temperatures above $100^{\circ} \mathrm{C}$ typically results in long-term drift of $\pm 0.03^{\circ} \mathrm{C}$ per month; the guaranteed maximum is $\pm 0.10^{\circ} \mathrm{C}$ per month. Continuous operation at temperatures below $100^{\circ} \mathrm{C}$ induces no measurable drifts in the device. Besides the effects of operating temperature, the severity of thermal shocks incurred will also affect absolute stability. For
thermal-shock excursions less than $100^{\circ} \mathrm{C}$, the drift is difficult to measure ($<0.03^{\circ} \mathrm{C}$). However, for $200^{\circ} \mathrm{C}$ excursions, the device may drift by as much as $\pm 0.10^{\circ} \mathrm{C}$ after twenty such shocks. If severe, quick shocks are necessary in the application of the device, realistic simulated life tests are recommended for a thorough evaluation of the error introduced by such shocks.

TYPICAL APPLICATIONS

Figure 8: Simple connection. Output is proportional to absolute temperature.

TYPICAL APPLICATIONS (CONT.)

DS017001
Figure 9: Lowest-temperature sensing scheme. Available current is that of the 'coldest' sensor.

DS01710
Figure 10: Average-temperature sensing scheme. The sum of the AD590 currents appears across R , which is chosen by the formula:
$R=\frac{10 k \Omega}{n}$
n being the number of sensors.

Figure 11: Single-setpoint temperature controlier. The AD590 produces a temperature-dependent voltage across \mathbf{R} (C is for filtering noise). Setting \mathbf{R}_{2} produces a scale-zero voltage. For the Celsius scale, make $R=1 \mathrm{k} \Omega$ and $V_{\text {ZERO }}=0.273$ volts. For Fahrenheit, $R=1.8 \mathrm{k} \Omega$ and $V_{\text {ZERO }}=0.460$ volts.

BD005901
Figure 12: Multiplexing sensors. If shorted sensors are possible, a series resistor in series with the D line will limit the current (shown as R, above: only one is needed). A six-bit digital word will select one of 64 sensors.

Figure 13: Centigrade thermometer $\left(0^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}\right)$. the ultra-low bias current of the ICL7611 allows the use of large-value gain-resistors, keeping meter-current error under $\mathbf{1 / 2 \%}$, and therefore saving the expense of an extra meter-driving amplifier.

LC00770|
Figure 14: Differential thermometer. The $50 \mathrm{k} \Omega$ pot trims offsets in the devices whether internal or external, so it can be used to set the size of the difference interval. This also makes it useful for liquid-level detection (where there will be a measurable temperature difference).

Figure 15: Cold-junction compensation for type K thermocouple. The reference junction(s) should be in close thermal contact with the AD590 case. \mathbf{V}^{+}must be at least 4V, while ICL8069 current should be set at $1 \mathrm{~mA}-2 \mathrm{~mA}$. Calibration does not require shorting or removal of the thermocouple: set R_{1} for $V_{2}=10.98 \mathrm{mV}$. If very precise measurements are needed, adjust \mathbf{R}_{2} to the exact Seebeck coefficient for the thermocouple used (measured or from table) note V_{1}, and set R_{1} to buck out this voltage (i.e., set $\mathbf{V}_{\mathbf{2}}=\mathbf{V}_{\mathbf{1}}$). For other thermocouple types, adjust values to the appropriate Seebeck coefficient.

Figure 16: Simplest thermometer. Meter displays current output directly in degrees Kelvin. Using the AD590M, sensor output is within ± 1.7 degrees over the entire range, and less than ± 1 degree over the greater part of it.

	\mathbf{R}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$	$\mathbf{R}_{\mathbf{5}}$
${ }^{\circ} \mathbf{F}$	9.00	4.02	2.0	12.4	10.0	0
${ }^{\circ} \mathbf{C}$	5.00	4.02	2.0	5.11	5.0	11.8

$$
\stackrel{5}{\Sigma} R_{n}=28 k \Omega \text { nominal }
$$

$$
n=1
$$

All values in $k \Omega$

The ICL7106 has a $V_{I N}$ span of $\pm 2.0 \mathrm{~V}$, and a V_{CM} range of $\left(\mathrm{V}^{+}\right.$ -0.5) Volts to ($V^{-}+1$) Volts; R is scaled to bring each range within V_{CM} while not exceeding $\mathrm{V}_{\text {IN }}$. $\mathrm{V}_{\text {REF }}$ for both scales is 500 mV . Maximum reading on the Celsius range is $199.9^{\circ} \mathrm{C}$, limited by the (short-term) maximum allowable sensor temperature. Maximum reading on the Fahrenheit range is $199.9^{\circ} \mathrm{F}\left(93.3^{\circ} \mathrm{C}\right)$, limited by the number of display digits. See note next page.

Figure 17: Basic digital thermometer, Celsius and Fahrenheit scales

Figure 18: Basic digital thermometer, Kelvin scale. The Kelvin scale version reads from 0 to $1999^{\circ} \mathrm{K}$ theoretically, and from $223^{\circ} \mathrm{K}$ to $473^{\circ} \mathrm{K}$ actually. The $2.26 \mathrm{k} \Omega$ resistor brings the input within the ICL7106 VCM range: 2 general-purpose silicon diodes or an LED may be substituted.

AD590

Figure 19: Basic digital thermometer, Kelvin scale with zero adjust. This circuit allows 'zero adjustment'" as well as slope adjustment. The ICL8069 brings the input within the common-mode range, while the $5 \mathrm{k} \Omega$ pots trim any offset at $218^{\circ} \mathrm{K}\left(-55^{\circ} \mathrm{C}\right)$, and set the scale factor.

Note on Figure 17, Figure 18 and Figure 19: Since all 3 scales have narrow VIN spans, some optimization of ICL7106 components can be made to lower noise and preserve CMR. The table below shows the suggested values. Similar scaling can be used with the ICL7126/36.

SCALE	$\mathbf{V}_{\text {IN }}$ RANGE (V)	$\mathbf{R}_{\mathbf{I N T}(\mathbf{k} \Omega)}$	$\mathbf{C}_{\text {AZ }}(\mu \mathbf{F})$
K	0.223 to 0.473	220	0.47
C	-0.25 to +1.0	220	0.1
F	-0.29 to +0.996	220	0.1

For all:

$$
\begin{aligned}
& \mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{~F} \\
& \mathrm{C}_{\text {INT }}=0.22 \mu \mathrm{~F}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{COSC}=100 \mathrm{pF} \\
& \mathrm{R}_{\mathrm{OSC}}=100 \mathrm{k} \Omega
\end{aligned}
$$

GENERAL DESCRIPTION

The Intersil ICL7660 is a monolithic CMOS power supply circuit which offers unique performance advantages over previously available devices. The ICL7660 performs supply voltage conversion from positive to negative for an input range of +1.5 V to +10.0 V , resulting in complementary output voltages of -1.5 V to -10.0 V . Only 2 non-critical external capacitors are needed for the charge pump and charge reservoir functions. The ICL7660 can also be connected to function as a voltage doubler and will generate output voltages up to +18.6 V with a +10 V input. Note that an additional diode is required for VSUPPLY $>6.5 \mathrm{~V}$.

Contained on chip are a series DC power supply regulator, RC oscillator, voltage level translator, and four output power MOS switches. A unique logic element senses the most negative voltage in the device and ensures that the output N -channel switch source-substrate junctions are not forward biased. This assures latchup free operation.

The oscillator, when unloaded, oscillates at a nominal frequency of 10 kHz for an input supply voltage of 5.0 volts. This frequency can be lowered by the addition of an external capacitor to the 'OSC' terminal, or the oscillator may be overdriven by an external clock.

The 'LV'' terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages $(+3.5$ to +10.0 volts), the LV pin is left floating to prevent device latchup.

FEATURES

- Simple Conversion of +5 V Logic Supply to $\pm 5 \mathrm{~V}$ Supplies
- Simple Voltage Multiplication (VOUT $=(-) \mathrm{nV}_{\text {IN }}$)
- 99.9% Typical Open Circuit Voltage Conversion Efficiency
- 98\% Typical Power Efficiency
- Wide Operating Voltage Range 1.5 V to 10.0 V
- Easy to Use - Requires Only 2 External Non-Critical Passive Components

APPLICATIONS

- On Board Negative Supply for Dynamic RAMs
- Localized μ-Processor (8080 Type) Negative Supplies
- Inexpensive Negative Supplies
- Data Acquisition Systems

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ICL7660CTV	0° to $+70^{\circ} \mathrm{C}$	TO-99
ICL7660CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 PIN SOIC
ICL7660CPA	0° to $+70^{\circ} \mathrm{C}$	8 PIN MINI DIP
ICL7660MTV	-55° to $+125^{\circ} \mathrm{C}$	TO-99
ICL7660/D	-	DICE**

*Add $/ 883 B$ to part number if $883 B$ processing is required.
**Parameter $\min /$ max limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
LV and OSC Input Voltage
(Note 1) $\ldots \ldots-0.3 \mathrm{~V}$ to $(\mathrm{V} \pm+0.3 \mathrm{~V})$ for $\mathrm{V}^{+}<5.5 \mathrm{~V}$
$\left(\mathrm{V}^{+}-5.5 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ for $\mathrm{V}^{+}>5.5 \mathrm{~V}$
Current into LV (Note 1)...............20 $\mu \mathrm{A}$ for $\mathrm{V}+>3.5 \mathrm{~V}$
Output Short Duration (VSUPPLY $\leq 5.5 \mathrm{~V}$) . Continuous
Power Dissipation (Note 2)

$$
\begin{aligned}
& \text { ICL7660CTV } \\
& .500 \mathrm{~mW} \\
& \text { ICL7660CPA } \\
& .300 \mathrm{~mW} \\
& \text { ICL7660MTV... } 500 \mathrm{~mW}
\end{aligned}
$$

Operating Temperature Range

ICL7660M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ICL7660C	$\ldots 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature
(Soldering, 10sec).. $300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

BD015601
Figure 2: Functional Diagram

OPERATING CHARACTERISTICS

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{OSC}}=0$, Test Circuit Figure 3 (unless otherwise specified)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
1^{+}	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$		170	500	$\mu \mathrm{A}$
$\mathrm{V}_{\text {H1 }}{ }^{\text {d }}$	Supply Voltage Range - Hi (Dx out of circuit) (Note 3)	$0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LV Open	3.0		6.5	V
		$-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}, \mathrm{R}_{L}=10 \mathrm{k} \Omega$, LV Open	3.0		5.0	V
$\mathrm{V}_{\text {L. }}^{+}$	Supply Voltage Range - Lo (DX out of circuit)	$\mathrm{MIN} \leq \mathrm{T}_{A} \leq M A X, R_{L}=10 \mathrm{k} \Omega$, LV to GROUND	1.5		3.5	V
VH2	Supply Voltage Range - Hi (Dx in circuit)	$\mathrm{MIN} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{MAX}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LV Open	3.0		10.0	V
$\mathrm{V}_{\mathrm{L} 2}^{+}$	Supply Voltage Range - Lo (DX_{X} in circuit)	$\mathrm{MIN} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{MAX}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{LV}$ to GROUND	1.5		3.5	V

OPERATING CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
Rout	Output Source Resistance	$\mathrm{IOUT}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		55	100	Ω
		lout $=20 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			120	Ω
		lout $=20 \mathrm{~mA},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (Note 3)			150	Ω
		$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \text { IOUT }=3 \mathrm{~mA}, \text { LV to GROUND } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$			300	Ω
		$\mathrm{V}^{+}=2 \mathrm{~V}$, IOUT $=3 \mathrm{~mA}$, LV to GROUND, $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, $\mathrm{D} X$ in circuit (Note 3)			400	Ω
fosc	Oscillator Frequency			10		kHz
PEf	Power Efficiency	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	95	98		\%
Vout Ef	Voltage Conversion Efficiency	$\mathrm{R}_{\mathrm{L}}=\infty$	97	99.9		\%
ZOSC	Oscillator Impedance	$\mathrm{V}^{+}=2$ Volts		1.0		$\mathrm{M} \Omega$
		$\mathrm{V}=5 \mathrm{Volts}$		100		$\mathrm{k} \Omega$

Notes: 1. Connecting any input terminal to voltages greater than $\mathrm{V}+$ or less than GROUND may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to 'power up' of the ICL7660.
2. Derate linearly above $50^{\circ} \mathrm{C}$ by $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. ICL7660M only.

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 3)

OPERATING VOLTAGE AS A FUNCTION OF TEMPERATURE

OP001011
POWER CONVERSION EFFICIENCY AS A FUNCTION OF OSC. FREQUENCY

OP000301

OUTPUT SOURCE RESISTANCE AS A FUNCTION OF SUPPLY VOLTAGE

OP00070
FREQUENCY OF OSCILLATION AS A FUNCTION OF EXTERNAL OSC. CAPACITANCE

OP00080

OUTPUT SOURCE RESISTANCE AS A FUNCTION OF TEMPERATURE

OP000401

UNLOADED OSCILLATOR FREQUENCY AS A FUNCTION OF TEMPERATURE

OP000511

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT

OP000101

SUPPLY CURRENT \& POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT

OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT

OP00020

SUPPLY CURRENT \& POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT

OPOCO9O

NOTES:

1. For large values of $\operatorname{CosC}(>1000 \mathrm{pF})$ the values of C_{1} and C_{2} should be increased to $100 \mu \mathrm{~F}$.
2. D_{X} is required for supply voltages greater than 6.5 V @ $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$; refer to periormance curves for additional information.

Figure 3: ICL7660 Test Circuit

DETAILED DESCRIPTION

The ICL7660 contains all the necessary circuitry to complete a negative voltage converter, with the exception of 2 external capacitors which may be inexpensive $10 \mu \mathrm{~F}$ polarized electrolytic types. The mode of operation of the device may be best understood by considering Figure 4,

NOTE 4. These curves include in the supply current that current fed directly into the load R_{L} from $\mathrm{V}+$ (see Figure 3). Thus, approximately half the supply current goes directly to the positive side of the load, and the other half, through the ICL7660, to the negative side of the load. Ideally, $V_{\text {OUT }} \cong$ $2 V_{I N}, I_{S} \cong 2 I_{L}$, so $V_{I N} \cdot I_{S} \cong V_{\text {OUT }} \cdot I_{L}$.
which shows an idealized negative voltage converter. Capacitor C_{1} is charged to a voltage, V^{+}, for the half cycle when switches S_{1} and S_{3} are closed. (Note: Switches S_{2} and S_{4} are open during this half cycle.) During the second half cycle of operation, switches S_{2} and S_{4} are closed, with S_{1} and S_{3} open, thereby shifting capacitor C_{1} negatively by V^{+}volts. Charge is then transferred from C_{1} to C_{2} such that the voltage on C_{2} is exactly V^{+}, assuming ideal switches and no load on C_{2}. The ICL7660 approaches this ideal situation more closely than existing non-mechanical circuits.

In the ICL7660, the 4 switches of Figure 4 are MOS power switches; S_{1} is a P-channel device and $S_{2}, S_{3} \& S_{4}$ are N -channel devices. The main difficulty with this approach is that in integrating the switches, the substrates of $S_{3} \& S_{4}$ must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions ($\mathrm{VOUT}^{\prime}=\mathrm{V}^{+}$), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup.

This problem is eliminated in the ICL7660 by a logic network which senses the output voltage (VOUT) together with the level translators, and switches the substrates of S_{3} $\& S_{4}$ to the correct level to maintain necessary reverse bias.

The voltage regulator portion of the ICL7660 is an integral part of the anti-latchup circuitry, however its inherent voltage drop can degrade operation at low voltages.

Therefore, to improve low voltage operation the 'LV'' pin should be connected to GROUND, disabling the regulator. For supply voltages greater than 3.5 volts the LV terminal must be left open to insure latchup proof operation, and prevent device damage.

Figure 4: Idealized Negative Voltage Converter

THEORETICAL POWER EFFICIENCY CONSIDERATIONS

In theory a voltage converter can approach 100\% efficiency if certain conditions are met:

A The drive circuitry consumes minimal power.
B The output switches have extremely low ON resistance and virtually no offset.
C The impedances of the pump and reservoir capacitors are negligible at the pump frequency.
The ICL7660 approaches these conditions for negative voltage conversion if large values of C_{1} and C_{2} are used.

ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE OCCURS. The energy lost is defined by:

$$
E=1 / 2 C_{1}\left(V_{1}^{2}-V_{2}^{2}\right)
$$

where V_{1} and V_{2} are the voltages on C_{1} during the pump and transfer cycles. If the impedances of C_{1} and C_{2} are relatively high at the pump frequency (refer to Figure 4) compared to the value of R_{L}, there will be a substantial difference in the voltages V_{1} and V_{2}. Therefore it is not only desirable to make C_{2} as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for C_{1} in order to achieve maximum efficiency of operation.

DO'S AND DON'TS

1. Do not exceed maximum supply voltages.
2. Do not connect LV terminal to GROUND for supply voltages greater than 3.5 volts.
3. Do not short circuit the output to V^{+}supply for supply voltages above 5.5 volts for extended periods, however, transient conditions including startup are okay.
4. When using polarized capacitors, the + terminal of C_{1} must be connected to pin 2 of the ICL7660 and the + terminal of C_{2} must be connected to GROUND.
5. Add diode D_{X} as shown in Figure 3 for high-voltage, elevated temperature applications.
6. Add capacitor ($\sim 0.1 \mu \mathrm{~F}$, disc) from pin 8 to ground to limit rate of rise of input voltage to approximately $2 \mathrm{~V} / \mu \mathrm{s}$.

Figure 5: Simple Negative Converter

Figure 6: Paralleling Devices

TC00120
Figure 7: Cascading Devices for Increased Output Voltage

CONSIDERATIONS FOR HIGH VOLTAGE \& ELEVATED TEMPERATURE

The ICL7660 will operate efficiently over its specified temperature range with only 2 external passive components (storage \& pump capacitors), provided the operating supply voltage does not exceed 6.5 volts at $+70^{\circ} \mathrm{C}$ and 5.0 volts at $+125^{\circ} \mathrm{C}$. Exceeding these maximums at the temperatures indicated may result in destructive latchup of the ICL7660. (Ref: Graph ''Operating Voltage Vs. Temperature'')

Operation at supply voltages of up to 10.0 volts over the full temperature range without danger of latchup can be achieved by adding a general purpose diode in series with the ICL7660 output, as shown by " $D \mathrm{X}$ " in the circuit diagrams. The effect of this diode on overall circuit performance is the reduction of output voltage by one diode drop (approximately 0.6 volts).

TYPICAL APPLICATIONS

Simple Negative Voltage Converter

The majority of applications will undoubtedly utilize the ICL7660 for generation of negative supply voltages. Figure 5 shows typical connections to provide a negative supply where a positive supply of +1.5 V to +10.0 volts is available. Keep in mind that pin 6 (LV) is tied to the supply negative (GND) for supply voltages below 3.5 volts, and that diode Dx must be included for proper operation at higher voltages and/or elevated temperatures.

The output characteristics of the circuit in Figure 5 are those of a nearly ideal voltage source in series with 55 ohms. Thus for a load current of -10 mA and a supply voltage of +5 volts, the output voltage will be -4.3 volts. The dynamic output impedance due to the capacitor impedances is approximately $1 / \omega C$, where:

$$
C=C_{1}=C_{2}
$$

$$
\text { which gives } \frac{1}{\omega C}=\frac{1}{2 \pi \text { fPUMP } \times 10^{-5}} \cong 3 \text { ohms }
$$

for $\mathrm{C}=10 \mu \mathrm{~F}$ and $\mathrm{fPUMP}=5 \mathrm{kHz}$ (1/2 of oscillator frequency)

Paralleling Devices

Any number of ICL7660 voltage convertors may be paralleled to reduce output resistance. The reservoir capacitor, C_{2}, serves all devices while each device requires its own pump capacitor, C_{1}. The resultant output resistance would be approximately:

$$
R_{\text {OUT }}=\frac{R_{\text {OUT }} \text { (of ICL7660) }}{n \text { (number of devices) }}
$$

Cascading Devices

The ICL7660 may be cascaded as shown to produce larger negative multiplication of the initial supply voltage. However, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is defined by:

$$
V_{\text {OUT }}=-n\left(V_{I N}\right),
$$

where n is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the weighted sum of the individual ICL7660 ROUT values.

Changing the ICL7660 Oscillator Frequency

It may be desirable in some applications, due to noise or other considerations, to increase the oscillator frequency. This is achieved by overdriving the oscillator from an external clock, as shown in Figure 8. In order to prevent possible device latchup, a $1 \mathrm{k} \Omega$ resistor must be used in series with the clock output. In a situation where the designer has generated the external clock frequency using TTL logic, the addition of a $10 \mathrm{k} \Omega$ pullup resistor to V^{+} supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be $1 / 2$ of the clock frequency. Output transitions occur on the positivegoing edge of the clock.

Figure 8: External Clocking

It is also possible to increase the conversion efficiency of the ICL7660 at low load levels by lowering the oscillator frequency. This reduces the switching losses, and is shown in Figure 9. However, lowering the oscillator frequency will cause an undesirable increase in the impedance of the pump $\left(\mathrm{C}_{1}\right)$ and reservoir $\left(\mathrm{C}_{2}\right)$ capacitors; this is overcome by increasing the values of C_{1} and C_{2} by the same factor that the frequency has been reduced. For example, the addition of a 100pF capacitor between pin 7 (Osc) and V^{+} will lower the oscillator frequency to 1 kHz from its nominal frequency of 10 kHz (a multiple of 10), and thereby necessitate a corresponding increase in the value of C_{1} and C_{2} (from $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$).

TC00010
Figure 10: Positive Voltage Doubler

Positive Voltage Doubling

The ICL7660 may be employed to achieve positive voltage doubling using the circuit shown in Figure 10. In this application, the pump inverter switches of the ICL7660 are used to charge C_{1} to a voltage level of $V^{+}-V_{F}$ (where V^{+} is the supply voltage and V_{F} is the forward voltage drop of diode D_{1}). On the transfer cycle, the voltage on C_{1} plus the supply voltage $\left(\mathrm{V}^{+}\right)$is applied through diode D_{2} to capacitor C_{2}. The voltage thus created on C_{2} becomes $\left(2 V^{+}\right)-\left(2 V_{F}\right)$ or twice the supply voltage minus the combined forward voltage drops of diodes D_{1} and D_{2}.

The source impedance of the output (VOUT) will depend on the output current, but for $\mathrm{V}^{+}=5$ volts and an output current of 10 mA it will be approximately 60 ohms.

Combined Negative Voltage Conversion and Positive Supply Doubling

Figure 11 combines the functions shown in Figures 5 and 10 to provide negative voltage conversion and positive voltage doubling simultaneously. This approach would be, for example, suitable for generating +9 volts and -5 volts from an existing +5 volt supply. In this instance capacitors C_{1} and C_{3} perform the pump and reservoir functions respectively for the generation of the negative voltage, while capacitors C_{2} and C_{4} are pump and reservoir respectively for the doubled positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.

Voltage Splitting

The bidirectional characteristics can also be used to split a higher supply in half, as shown in Figure 12. The combined load will be evenly shared between the two sides, and a high value resistor to the LV pin ensures start-up. Because the switches share the load in parallel, the output impedance is much lower than in the standard circuits, and higher currents can be drawn from the device. By using this circuit, and then the circuit of Figure $7,+15 \mathrm{~V}$ can be converted (via +7.5 , and -7.5) to a nominal -15 V , although with rather high series output resistance ($\sim 250 \Omega$).

Figure 12: Splitting A Supply in Half

Regulated Negative Voltage Supply

In some cases, the output impedance of the ICL7660 can be a problem, particularly if the load current varies substantially. The circuit of Figure 13 can be used to overcome this by controlling the input voltage, via an ICL7611 low-power CMOS op amp, in such a way as to maintain a nearly constant output voltage. Direct feedback is inadvisable, since the ICL7660's output does not respond instantaneously to change in input, but only after the switching delay. The circuit shown supplies enough delay to accommodate the 7660, while maintaining adequate feedback. An increase in pump and storage capacitors is desirable, and the values shown provides an output impedance of less than 5Ω to a load of 10 mA .

Figure 13: Regulating the Output Voltage

Figure 14: RS232 Levels From A Single 5 V Supply

OTHER APPLICATIONS

Further information on the operation and use of the ICL7660 may be found in A051 ''Principals and Applications of the ICL7660 CMOS Voltage Converter' by Peter Bradshaw and Dave Bingham.

CMOS Voltage Converter

FEATURES

- No External Diode Needed Over Entire Temperature Range
- Pin Compatible With ICL7660
- Simple Conversion of +15 V Supply to -15 V Supply
- Simple Voltage Multiplication (VOUT $=(-) \mathrm{nV} \mathrm{IN}^{\mathrm{N}}$)
- 99.9\% Typical Open Circuit Voltage Conversion Efficiency
- 96\% Typical Power Efficiency
- Wide Operating Voltage Range 4.5 V to 20.0 V
- Easy to Use - Requires Only 2 External NonCritical Passive Components

APPLICATIONS

- On Board Negative Supply for Dynamic RAMs
- Localized μ-Processor (8080 Type) Negative Supplies
- Inexpensive Negative Supplies
- Data Acquisition Systems
- Up to -20V for Op Amps

Figure 1: Pin Configurations

Figure 2: Functional Diagram

ABSOLUTE MAXIMUM RATINGS

Power	Dissipation (Note 2)	
	ICL7662CTY	500mW
	ICL7662CPA	. 300 mW
	ICL7662MTY.	500 mW
Lead T	Temperature (Soldering, 10sec)	$300^{\circ} \mathrm{C}$

Supply Voltage.. 22 V
 $\left(\mathrm{V}^{+}-10 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ for $\mathrm{V}^{+}>10 \mathrm{~V}$
Current into LV (Note 1)20 A A for $\mathrm{V}^{+}>10 \mathrm{~V}$
Output Short Duration

Stresses above those listed under. Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{COSC}=0$, unless otherwise stated. Test Circuit Figure 3.

SYMBOL	PARAMETER	TEST CONDITIONS		LIMITS			UNIT
				MIN	TYP	MAX	
$\begin{aligned} & V^{+} L \\ & V^{+} H \end{aligned}$	Supply Voltage Range-Lo Supply Voltage Range-Hi	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega, L V=G N D \\ & R_{L}=10 \mathrm{k} \Omega, L V=\text { Open } \end{aligned}$	$\begin{aligned} & \operatorname{Min}<T_{A}<\operatorname{Max} \\ & \operatorname{Min}<T_{A}<\operatorname{Max} \end{aligned}$	$\begin{gathered} 4.5 \\ 9 \end{gathered}$		$\begin{aligned} & 11 \\ & 02 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
I^{+}	Supply Current	$R_{L}=\infty, ' L V=\text { Open }$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}<\mathrm{T}_{A}<+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & .25 \\ & .30 \\ & .40 \end{aligned}$	$\begin{aligned} & .60 \\ & .85 \\ & 1.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
R_{0}	Output Source Resistance	$\mathrm{I}_{\mathrm{o}}=20 \mathrm{~mA}, \mathrm{LV}=\text { Open }$	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}<\mathrm{T}_{A}<+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 60 \\ & 70 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \\ & 150 \\ & \hline \end{aligned}$	Ω
$1^{+} 5$	Supply Current	$\begin{aligned} & V^{+}=5 V, \\ & R_{L}=\infty, L V=G N D \end{aligned}$	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}<\mathrm{T}_{A}<+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{R}_{0} 5$	Output Source Resistance	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA}, \mathrm{LV}=\mathrm{GND} \end{aligned}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 125 \\ & 150 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \\ & 350 \\ & \hline \end{aligned}$	Ω
Fosc	Oscillator Frequency				10		kHz
Peff	Power Efficiency	$R_{L}=2 \mathrm{~K} \Omega$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \text { Min }<T_{A}<\text { Max } \end{aligned}$	$\begin{aligned} & 93 \\ & 90 \end{aligned}$	$\begin{aligned} & 96 \\ & 95 \end{aligned}$		\%
$V_{\text {OEf }}$	Voltage Conversion Effic.	$\mathrm{R}_{\mathrm{L}}=\infty$	Min $<T_{A}<\operatorname{Max}$	97	99.9		\%
losc	Oscillator Sink or Source Current	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V}\left(\mathrm{~V}_{\text {osc }}=0 \mathrm{~V} \text { to }+5 \mathrm{~V}\right) \\ & \mathrm{V}^{+}=15 \mathrm{~V}\left(\mathrm{~V}_{\text {osc }}=+5 \mathrm{~V} \text { to }+15 \mathrm{~V}\right) \end{aligned}$			$\begin{aligned} & 0.5 \\ & 4.0 \end{aligned}$		$\mu \mathrm{A}$

NOTES: 1. Connecting any terminal to voltages greater than V^{+}or less than ground may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to 'power up" of the ICL.7662.
2. Derate linearly above $50^{\circ} \mathrm{C}$ by $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Pin 1 is a Test pin and is not connected in normal use.

TYPICAL PERFORMANCE CHARACTERISTICS (See Test Circuit of Figure 3)

OUTPUT SOURCE RESISTANCE AS
A FUNCTION OF SUPPLY VOLTAGE

+ vours

POWER CONVERSION EFFICIENCY AND OUTPUT SOURCE RESISTANCE AS A. FUNCTION OF OSCILLATOR FREQUENCY OSC. FREQUENCY

OP046911
UNLOADED OSCILLATOR
FREQUENCY AS A FUNCTION OF TEMPERATURE

OUTPUT SOURCE RESISTANCE AS A FUNCTION OF SUPPLY VOLTAGE

POWER CONVERSION EFFICIENCY AND OUTPUT SOURCE RESISTANCE AS A FUNCTION OF OSC. FREQUENCY

OUTPUT VOLTAGE AS A FUNCTION OF LOAD CURRENT

OUTPUT SOURCE RESISTANCE AS A FUNCTION OF TEMPERATURE

TEMnegatune ('C)

FREQUENCY OF OSCILLATION AS A FUNCTION OF EXTERNAL OSC. CAPACITANCE

OUTPUT VOLTAGE AS A FUNCTION OF LOAD CURRENT

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

SUPPLY CURRENT \& POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT

SUPPLY CURRENT \& POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT

FREQUENCY OF OSCILLATION AS A

 FUNCTION OF SUPPLY VOLTAGE Foac (KHD)

OP047821

SUPPLY CURRENT AS A FUNCTION OF OSCILLATOR FREQUENCY

OPO47911
NOTE 4.
Note that these curves include in the supply current that current fed directly into the load R_{L} from V^{+}(see Figure 3). Thus, approximately half the supply current goes directly to the positive side of the load, and the other half, through the ICL7662, to the negative side of the load.Ideally, $V_{L O A D} \simeq 2 V_{I N}, I_{S} \simeq 2 I_{L}$, so $V_{I N} \cdot I_{S} \simeq V_{L O A D} \cdot I_{L}$

CIRCUIT DESCRIPTION

The ICL7662 contains all the necessary circuitry to complete a negative voltage converter, with the exception of 2 external capacitors which may be inexpensive $10 \mu \mathrm{~F}$ polarized electrolytic capacitors. The mode of operation of the device may be best understood by considering Figure 4, which shows an idealized negative voltage converter. Capacitor C_{1} is charged to a voltage, V^{+}, for the half cycle when switches S_{1} and S_{3} are closed. (Note: Switches S_{2} and S_{4} are open during this half cycle.) During the second half cycle of operation, switches S_{2} and S_{4} are closed, with S_{1} and S_{3} open, thereby shifting capacitor C_{1} negatively by V^{+}volts. Charge is then transferred from C_{1} to C_{2} such that the voltage on C_{2} is exactly V^{+}, assuming ideal switches and no load on C_{2}. The ICL7662 approaches this ideal situation more closely than existing non-mechanical circuits.

NOTE: 1. For large value of COSC ($>1000 \mathrm{pf}$) the values of C_{1} and C_{2} should be increased to $100 \mu \mathrm{~F}$.

Figure 3: ICL7662 Test Circuit

In the ICL7662, the 4 switches of Figure 4 are MOS power switches; S_{1} is a P-channel device and $S_{2}, S_{3} \& S_{4}$ are N-channel devices. The main difficulty with this approach is that in integrating the switches, the substrates of $S_{3} \& S_{4}$ must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions ($\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}$), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup.

This problem is eliminated in the ICL7662 by a logic network which senses the output voltage (VOUT) together with the level translators, and switches the substrates of S_{3} \& S_{4} to the correct level to maintain necessary reverse bias.

The voltage regulator portion of the ICL7662 is an integral part of the anti-latchup circuitry, however its inherent voltage drop can degrade operation at low voltages. Therefore, to improve low voltage operation the 'LV' pin should be connected to GROUND, disabling the regulator. For supply voltages greater than 11 volts the LV terminal must be left open to insure latchup proof operation, and prevent device damage.

Tco008OI
Figure 4: Idealized Negative Converter

THEORETICAL POWER EFFICIENCY CONSIDERATIONS

In theory a voltage multiplier can approach 100\% efficiency if certain conditions are met:

A The drive circuitry consumes minimal power
B The output switches have extremely low ON resistance and virtually no offset.
C The impedances of the pump and reservoir capacitors are negligible at the pump frequency.
The ICL7662 approaches these conditions for negative voltage multiplication if large values of C_{1} and C_{2} are used.
ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE OCCURS. The energy lost is defined by:

$$
E=1 / 2 C_{1}\left(V_{1}^{2}-V_{2}^{2}\right)
$$

where V_{1} and V_{2} are the voltages on C_{1} during the pump and transfer cycles. If the impedances of C_{1} and C_{2} are relatively high at the pump frequency (refer to Figure 4) compared to the value of R_{L}, there will be a substantial difference in the voltages V_{1} and V_{2}. Therefore it is not only desirable to make C_{2} as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for $\mathrm{C}_{\boldsymbol{1}}$ in order to achieve maximum efficiency of operation.

DO'S AND DON'TS

1. Do not exceed maximum supply voltages.
2. Do not connect LV terminal to GROUND for supply voltages greater than 11 volts.
3. When using polarized capacitors, the + terminal of C_{1} must be connected to pin 2 of the ICL7662 and
the + terminal of C_{2} must be connected to GROUND.

TYPICAL APPLICATIONS

Simple Negative Voltage Converter

The majority of applications will undoubtedly utilize the ICL7662 for generation of negative supply voltages. Figure 5 shows typical connections to provide a negative supply where a positive supply of +4.5 V to 20.0 V is available. Keep in mind that pin 6 (LV) is tied to the supply negative (GND) for supply voltages below 11 volts.

The output characteristics of the circuit in Figure 5 are those of a nearly ideal voltage source in series with 65 ohms. Thus for a load current of -10 mA and a supply voltage of +15 volts, the output voltage will be 14.35 volts. The dynamic output impedance due to the capacitor impedances is approximately $1 / \omega \mathrm{C}$, where:

$$
C=C_{1}=C_{2}
$$

which gives $\frac{1}{\omega C}=\frac{1}{2 \pi \text { fpump } \times 10^{-5}}=3$ ohms
for $C=10 \mu \mathrm{~F}$ and fpump $=5 \mathrm{kHz}$ (1/2 of oscillator frequency)

Paralleling Devices

Any number of ICL7662 voltage converters may be paralleled to reduce output resistance. The reservoir capacitor, C_{2}, serves all devices while each device requires its own pump capacitor, C_{1}. The resultant output resistance would be approximately

$$
\text { ROUT }=\frac{\text { ROUT (of ICL7662) }}{n \text { (number of devices) }}
$$

Cascading Devices

The ICL7662 may be cascaded as shown to produce larger negative multiplication of the initial supply voltage. However, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is defined by:

$$
V_{\text {OUT }}=-n\left(V_{\text {IN }}\right),
$$

where n is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the weighted sum of the individual ICL7662 ROUT values.

Figure 5: Simple Negative Converter

Figure 6: Paralleling Devices

Figure 7: Cascading Devices for Increased Output Voltage

Figure 8: External Clocking

Changing the ICL7662 Oscillator Frequency

It may be desirable in some applications, due to noise or other considerations, to increase the oscillator frequency. This is achieved by overdriving the oscillator from an external clock, as shown in Figure 8. In order to prevent possible device latchup, a $1 \mathrm{k} \Omega$ resistor must be used in series with the clock output. In the situation where the designer has generated the external clock frequency using TTL logic, the addition of a $10 \mathrm{k} \Omega$ pullup resistor to $\mathrm{V}+$ supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be $1 / 2$ of the clock frequency. Output transitions occur on the positivegoing edge of the clock.

It is also possible to increase the conversion efficiency of the ICL7662 at low load levels by lowering the oscillator
frequency. This reduces the switching losses, and is achieved by connecting an additional capacitor, COSC, as shown in Figure 9. However, lowering the oscillator frequency will cause an undesirable increase in the impedance of the pump $\left(\mathrm{C}_{1}\right)$ and reservoir $\left(\mathrm{C}_{2}\right)$ capacitors; this is overcome by increasing the values of C_{1} and C_{2} by the same factor that the frequency has been reduced. For example, the addition of a 100 pF capacitor between pin 7 (Osc) and V^{+}will lower the oscillator frequency to 1 kHz from its nominal frequency of 10 kHz (a multiple of 10), and thereby necessitate a corresponding increase in the value of C_{1} and C_{2} (from $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$).

Figure 9: Lowering Oscillator Frequency

Positive Voltage Doubling

The ICL7662 may be employed to achieve positive voltage doubling using the circuit shown in Figure 10. In this
application, the pump inverter switches of the ICL7662 are used to charge C_{1} to a voltage level of $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{F}}$ (where V^{+} is the supply voltage and V_{F} is the forward voltage drop of diode D_{1}). On the transfer cycle, the voltage on C_{1} plus the supply voltage $\left(\mathrm{V}^{+}\right)$is applied through diode D_{2} to capacitor C_{2}. The voltage thus created on C_{2} becomes $\left(2 V^{+}\right)-\left(2 V_{F}\right)$ or twice the supply voltage minus the combined forward voltage drops of diodes D_{1} and D_{2}.

The source impedance of the output (VOUT) will depend on the output current, but for $\mathrm{V}^{+}=15$ volts and an output current of 10 mA it will be approximately 70 ohms.

Figure 10: Positive Voltage Doubler

Combined Negative Voltage Conversion and Positive Supply Doubling

Figure 11 combines the functions shown in Figures 5 and 10 to provide negative voltage conversion and positive voltage doubling simultaneously. This approach would be, for example, suitable for generating +9 volts and -5 volts from an existing +5 volt supply. In this instance capacitors C_{1} and C_{3} perform the pump and reservoir functions respectively for the generation of the negative voltage, while capacitors C_{2} and C_{4} are pump and reservoir respectively for the doubled positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.

Voltage Splitting

The bidirectional characteristics can also be used to split a higher supply in half, as shown in Figure 12. The combined load will be evenly shared between the two sides and, a high value resistor to the LV pin ensures start-up. Because the switches share the load in parallel, the output impedance is much lower than in the standard circuits, and higher currents can be drawn from the device. By using this circuit, and then the circuit of Figure 7, +30 V can be converted (via +15 V , and -15 V) to a nominal -30 V , although with rather high series output resistance ($\sim 250 \Omega$).

Figure 12: Splitting A Supply in Half

Regulated Negative Voltage Supply

In some cases, the output impedance of the ICL7662 can be a problem, particularly if the load current varies substantially. The circuit of Figure 13 can be used to overcome this by controlling the input voltage, via an ICL7611 low-power CMOS op amp, in such a way as to maintain a nearly constant output voltage. Direct feedback is inadvisable, since the ICL7662's output does not respond instantaneously to a change in input, but only after the switching delay. The circuit shown supplies enough delay to accommodate the 7662, while maintaining adequate feedback. An increase in pump and storage capacitors is desirable, and the values shown provides an output impedance of less than 5Ω to a load of 10 mA .

Figure 13: Regulating the Output Voltage

OTHER APPLICATIONS

Further information on the operation and use of the ICL7662 may be found in A051 ''Principals and Applications of the ICL7660 CMOS Voltage Converter' by Peter Bradshaw and Dave Bingham.

ICL7663/7664 CMOS Programmable Micropower Voltage Regulators

GENERAL DESCRIPTION

The ICL7663 (positive) and ICL7664 (negative) series regulators are low-power, high-efficiency devices which accept inputs from 1.6 V to 10 V and provide adjustable outputs over the same range at currents up to 40 mA . Operating current is typically less than $4 \mu \mathrm{~A}$, regardless of load.

Output current sensing and remote shutdown are available on both devices, thereby providing protection for the regulators and the circuits they power. A unique feature, on the ICL7663 only, is a negative temperature coefficient output. This can be used, for example, to efficiently tailor the voltage applied to a multiplexed LCD through the driver (e.g., ICM7231/2/3/4) so as to extend the display operating temperature range many times.

The ICL7663 and ICL7664 are available in either an 8-pin plastic, TO-99 can, CERDIP, and SOIC packages.

ORDERING INFORMATION

POSITIVE REGULATOR		
PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7663CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Lead SOIC
ICL7663CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Lead MiniDIP
ICL7663CJA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Lead CERDIP
ICL7663/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	DICE** 8 -Lead TO-99
ICL7663CTV	$0^{\circ} \mathrm{C}$	

FEATURES

- Ideal for Battery-Operated Systems: Less Than $4 \mu \mathrm{~A}$ Typical Current Drain
- Will Handle Input Voltages From 1.6V to 16V
- Very Low Input-Output Differential Voltage
- 1.3V Bandgap Voltage Reference
- Up to 40 mA Output Current
- Output Shutdown Via Current-Limit Sensing or External Logic Signal
- Output Voltages Programmable From 1.3V to 16V
- Output Voltages With Programmable Negative Temperature Coefficients (ICL7663 Only)

NEGATIVE REGULATOR		
PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7664/D	$0^{\circ} \mathrm{C}$ - $70{ }^{\circ}$	DICE**
ICL7664CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Lead SOIC
ICL7664CJA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Lead CERDIP
ICL7664CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Lead MiniDIP
ICL7664CTV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Lead TO-99

**Parameter Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

ICL7663

ICL7664

Figure 1: Functional Diagram

ABSOLUTE MAXIMUM RATINGS, ICL7663 POSITIVE REGULATOR

Input Supply Voltage \qquad
Any Input or Output Voltage (Note 1) (Terminals 1, 2, $3,5,6,7) \ldots \ldots \ldots \ldots \ldots .(G N D-0.3 V)$ to (V 寺 +0.3 V) Output Source Current
(Terminal 2) 50 mA
(Terminal 3) ...25mA

Output Sinking Current (Terminal 7)-10mA
Power Dissipation (Note 2)
MiniDIP
200 mW
TO-99 Can... 300 mW

Operating Temperature Range $\ldots \ldots \ldots \ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature.................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings' may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 2: Pin Configurations

ICL7663 ELECTRICAL CHARACTERISTICS

$V_{\text {IN }}=9 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified. See Test Circuit Figure 3.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
V_{IN}	Input Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.6 \end{aligned}$		$\begin{aligned} & 16.0 \\ & 16.0 \\ & \hline \end{aligned}$	V
10	Quiescent Current	$\left\{\begin{array}{c\|c}\mathrm{R}_{\mathrm{L}}=\infty & \\ 1.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 8.5 \mathrm{~V}\end{array} \quad \begin{array}{r}\mathrm{V}_{\text {IN }}=16 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=9 \mathrm{~V}\end{array}\right.$		$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SET }}$	Reference Voltage		1.2	1.3	1.4	V
$\frac{\Delta V_{\text {SET }}}{\Delta T}$	Temperature Coefficient	$8.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<9 \mathrm{~V}$		± 200		ppm
$\frac{\Delta V_{S E T}}{V_{S E T} \Delta V_{I N}}$	Line Regulation	$2 \mathrm{~V}<\mathrm{V}_{\text {IN }}<9 \mathrm{~V}$		0.03		\%/V
ISET	$V_{\text {SET }}$ Input Current			± 0.01	10	nA
ISHDN	Shutdown Input Current			± 0.01	10	nA
VSHDN	Shutdown Input Voltage	$\mathrm{V}_{\text {SHDNH }}$ I: Both Vout Disabled $\mathrm{V}_{\text {SHDNLO }}$: Both $\mathrm{V}_{\text {OUT }}$ Enabled	1.4		0.3	V

ICL7663/7664
ICL7663 ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
ISENSE	Sense Pin Input Current			0.01	10	nA
$V_{C L}$	Sense Pin Input Threshold Voltage	$V_{C L}=V_{\text {OUT2 }}-V_{\text {SENSE }}$ (Current-Limit Threshold)		0.7		V
$\mathrm{R}_{\text {SAT }}$	Input Output On-Resistance (Note 3)	$\begin{aligned} & V_{\mathbb{N}}=2 V \\ & V_{\mathbb{N}}=9 \mathrm{~V} \\ & V_{\mathbb{N}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 200 \\ 70 \\ 50 \end{gathered}$		Ω
$\frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta \mathrm{I}_{\text {OUT }}}$	Load Regulation	$\begin{aligned} & \Delta l_{\text {OUT } 1}=100 \mu \mathrm{~A} @ V_{\text {OUT } 1}=5 \mathrm{~V} . \\ & \Delta \mathrm{l}_{\text {OUT } 2}=10 \mathrm{~mA} @ V_{\text {OUT2 }}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$		Ω
IOUT2	Available Output Current (VOUT2)	$\begin{aligned} & V_{I N}=3 V V_{\text {OUT }}=V_{S E T} \\ & V_{I N}=9 V V_{\text {OUT }}=5 \mathrm{~V} \\ & V_{I N}=15 \mathrm{~V} V_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \\ & 25 \\ & 40 \end{aligned}$			mA
$V_{\text {TC }}$	Negative-Tempco Output (Note 4)	Open-Circuit Voltage		0.9		V
ITC		Maximum Sink Curreni	0	8	2.0	mA
$\frac{\Delta V_{T C}}{\Delta T}$	Temperature Coefficient of $\mathrm{V}_{T C}$, Output	Open Circuit		$+2.5$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$L_{L(\text { min })}$	Minimum Load Current	(Includes $\mathrm{V}_{\text {SET }}$ Divider)	1.0			$\mu \mathrm{A}$

NOTES: 1. Connecting any terminal to voltages greater then ($V_{\mathbb{N}}^{+}+0.3 \mathrm{~V}$) or less than (GND-0.3V) may cause destructive device latchup. it is recommended that no inputs from sources operating on external power supplies be applied prior to ICL7663B power-up.
2. Derate linearly above $50^{\circ} \mathrm{C}$ at $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for minidip and $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{TO}-99 \mathrm{can}$.
3. This parameter refers to the on-resistance of the MOS pass transistor. The minimum input-output voltage differential at low current (under 5 mA), can be determined by multiplying the load current (including set resistor current, but not quiescent current) by this resistance.
4. This output has a positive temperature coefficient. Using it in combination with the inverting input of the regulator at $V_{S E T}$, a negative coefficient resuits in the output voltage. See Figure 4 for details. Pin will not source current.

ICL7663/7664

ABSOLUTE MAXIMUM RATINGS, ICL7664 NEGATIVE REGULATOR

Input Supply Voltage \qquad
Any input or Output Voltage (Note 1) Terminals 1, 2, 3, 4, 5, 6, 7) \qquad (GND + 0.3V) to (ViN -0.3 V)
Output Sink Current
(Terminals 1,7) \qquad .25 mAPower Dissipation (Note 2)MiniDIP
200 mW
TO-99 300 mW
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $.300^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ICL7664 ELECTRICAL CHARACTERISTICS

$V_{\bar{N}}=-9 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified. See Test Circuit Figure 3.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
V_{IN}	Input Voltage	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -1.5 \\ & -1.6 \end{aligned}$		$\begin{aligned} & -16.0 \\ & -16.0 \end{aligned}$	V
'Q	Quiescent Current	$\left\{\begin{array}{l}R_{L}=\infty \\ -1.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq-8.5 \mathrm{~V}\end{array}\right\} \quad \begin{aligned} & V_{I N}=16 \mathrm{~V} \\ & V_{I N}=9 \mathrm{~V}\end{aligned}$		$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$
$V_{\text {SET }}$	Reference Voltage		-1.2	-1.3	-1.4	V
$\frac{\Delta V_{\text {SET }}}{\Delta T}$	Temperature Coefficient	$-8.5 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<-9 \mathrm{~V}$		± 200		ppm
$\frac{\Delta V_{\mathrm{SET}}}{\mathrm{~V}_{\mathrm{SET}} \Delta \mathrm{~V}_{\mathrm{IN}}}$	Line Regulation	$-2 \mathrm{~V}<\mathrm{V}_{1}$ < $<-9 \mathrm{~V}$		0.03		\%/V
ISET	$V_{\text {SET }}$ Input Current			± 0.01	10	nA
ISHDN	Shutdown Input Current			± 0.01	10	nA
$V_{\text {SHDN }}$	Shutdown Input Voltage	$V_{\text {SHDN }}$ Hi: Both $V_{\text {OUT }}$ Disabled $V_{\text {SHDNLO }}$: Both VOUT Enabled	-0.3		-1.6	V
ISENSE	Sense Pin Input Current			0.01	10	nA
$\mathrm{V}_{\text {CL }}$	Sense Pin Input Threshold Voltage	$V_{C L}=V_{\text {OUT2 }}-V_{\text {SENSE }}$ (Current-Limit Threshold)		-0.35		V
$R_{\text {SAT }}$	Input-Output On-Resistance (Note 3)	$\begin{aligned} & V_{\mathbb{I N}}=2 V \\ & V_{1 N}=9 V \\ & V_{\mathbb{I N}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 150 \\ 40 \\ 30 \end{gathered}$		Ω
$\frac{\Delta V_{\text {OUT }}}{\Delta I_{\text {OUT }}}$	Load Regulation	$\Delta \mathrm{l}_{\mathrm{OUT} 1}=100 \mu \mathrm{~A}$ @ $\mathrm{V}_{\text {OUT }},=-5 \mathrm{~V}$		2.0		Ω
Iout	Output Current VOUT1 or VOUT2	$\begin{aligned} & V_{I N}=3 V V_{\text {OUT }}=V_{S E T} \\ & V_{I N}=9 V V_{O U T}=-5 V \\ & V_{I N}=15 V V_{\text {OUT }}=-5 V \end{aligned}$		$\begin{gathered} -2 \\ -20 \\ -40 \end{gathered}$		mA
$L_{\text {(min) }}$	Minimum Load Current (Includes VSET Divider)		1.0			$\mu \mathrm{A}$

NOTES: 1. Connecting any terminal to voltages greater then ($\mathrm{GND}+0.3 \mathrm{~V}$) or less then ($\mathrm{V} \overline{\mathrm{N}}-0.3 \mathrm{~V}$) may cause destructive device latchup. It is recommended that no inputs from sources operating on external power supplies be applied prior to ICL7664 power-up.
2. Derate linearly above $50^{\circ} \mathrm{C}$ at $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for minidip and $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TO-99 can.
3. This parameter refers to the on-resistance of the MOS pass transistor. The minimum input-output voltage differential can be determined by multiplying the load current (including set resistor current, but not quiescent current) by this resistance.

TC025301

NOTES: 1. S_{1} when closed, disables output current limiting.
2. For ICL7664, exchange VOUT1 and $V_{\text {Out2. }} \mathrm{S}_{2}$ action differs, as follows:

DEVICE	S $_{2}$ CLOSED	S $_{2}$ OPEN
ICL7663	$V_{\text {OUT1 }}$	$V_{\text {OUT2 }}$
ICL7664	$V_{\text {OUT1 }}+V_{\text {OUT2 }}$	$V_{\text {OUT1 }}$

3. $V_{\text {OUT }}=\frac{R_{2}+R_{1}}{R_{1}} V_{\text {SET }}$
4. I_{Q} quiescent current is measured at GND pin by meter M.
S_{3} when ON, permits normal operation,
5. when OFF, shuts down both VOUT1 and VOUT2.

Figure 3: Test Circuit for ICL7663/64 (Polarities shown are for ICL.7663. Reverse for ICL7664)

TYPICAL PERFORMANCE CHARACTERISTICS

ICL7663 OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT

HOUT (mA)
 OPO20801

ICL7663 INPUT POWER SUPPLY REJECTION RATIO

ICL7663 V OUT1 1 INPUT-OUTPUT DIFFERENTIAL VS OUTPUT CURRENT

ICL. 7663 QUIESCENT CURRENT AS A FUNCTION OF INPUT VOLTAGE

OP02120I

ICL7663 VOUT2 INPUT-OUTPUT DIFFERENTIAL VS OUTPUT CURRENT

OP021001
ICL7663 QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE

OPO21301

ICL7663/7664

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

ICL7664 OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT

ICL7664 INPUT POWER SUPPLY REJECTION RATIO

ICL7664 VOUT1 INPUT-OUTPUT DIFFERENTIAL VS OUTPUT CURRENT

ICL7664 QUIESCENT CURRENT AS A FUNCTION OF INPUT VOLTAGE

ICL7664 Vout2 INPUT-OUTPUT DIFFERENTIAL VS OUTPUT CURRENT

ICL7664 QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE

DETAILED DESCRIPTION

The ICL7663 and ICL7664 are CMOS integrated circuits which contain all the functions of a voltage regulator plus protection circuitry on a single monolithic chip. Referring to the functional diagrams (Figure 1), it can be seen that each contains a bandgap-type voltage reference of 1.3 Volts. This voltage, therefore, is the lowest output voltage the regulators can control (-1.3 V for the ICL7664). Error amplifier A drives either a P-channel (ICL7663) or an N -channel (ICL7664) pass transistor which is sufficient for low (under about 5 mA) currents; this transistor is augmented by a duplicate in the ICL7664, which permits higher current outputs. In the ICL7663, the high current output is passed by an NPN bipolar transistor connected as a follower. This configuration gives more gain and lower output impedance.

Logic-controlled shutdown is implemented via an MOS transistor of the appropriate polarity. Current-sensing is achieved with comparator C , which functions with the VOUT2 line on each chip. Finally, the positive regulator (ICL7663 only) has an output (V_{TC}) from a buffer amplifier (B), which can be used to generate programmable-tempera-ture-coefficient output voltages.

The amplifiers, reference and comparator circuitry all operate at bias levels well below $1 \mu \mathrm{~A}$ to achieve the
extremely low quiescent current. This does limit the dynamic response of the circuits, however, and transients are best dealt with outside the regulator loop.

BASIC OPERATION

The ICL7663 and ICL7664 are designed to regulate battery voltages in the 5 V to 15 V region at maximum load currents of about 5 mA to 30 mA . Although intended as low power devices, power dissipation limits must be observed. For example, the power dissipation in the case of a 10 V supply regulated down to 2 V with a load current of 30 mA clearly exceeds the power dissipation rating of the minidip: $(10-2)(30)\left(10^{-3}\right)=240 \mathrm{~mW}$. The test circuit illustrates proper use of the devices. Although the following discussion refers to the ICL7663, it applies as well to the parallel features of the ICL7664 as long as the appropriate polarities are reversed. Individual features and precautions will be discussed where appropriate.

CMOS devices generally require two precautions: every input pin must go somewhere, and maximum values of applied voltages and current limits must be rigorously observed. Neglecting these precautions may lead to, at the least, incorrect or non-operation, and at worst, destructive device failure. To avoid the problem of latchup, do not apply inputs to any piris before supply voltage is applied.

ICL7663/7664

Input Voltages - These regulators accept working inputs of 1.4 V to 18 V . When power is applied, the rate-of-rise of the input may be hundreds of volts per microsecond. This is potentially harmful to the regulators, where internal operating currents are in the nanoampere range. The $0.047 \mu \mathrm{~F}$ capacitor on the device side of the switch will limit inputs to a safe level around $2 \mathrm{~V} / \mu \mathrm{s}$. Use of this capacitor is suggested in all applications. In severe rate-of-rise cases, it may be advisable to use an RC network on the SHutDowN pin to delay output turn-on. Battery charging surges, transients, and assorted noise signals should be kept from the regulators by $R C$ filtering, zener protection, or even fusing.
Output Voltages - The resistor divider R_{2} / R_{1} is used to scale the reference voltage, $\mathrm{V}_{\mathrm{SET}}$, to the desired output using the formula $\mathrm{V}_{\text {OUT }}=\left(1+R_{2} / R_{1}\right) V_{\text {SET }}$. In the ICL7664, $V_{\text {IN }}$ and $V_{\text {SET }}$ are negative, so $V_{\text {OUT }}$ will also be negative. Suitable arrangements of these resistors, using a potentiometer, enables exact values for VOUT to be obtained. Because of the low leakage current of the $\mathrm{V}_{\text {SET }}$ terminal, these resistors can be tens of megohms for minimum additional quiescent drain current. However, some load current is required for proper operation, so for extremely low-drain applications it is necessary to draw at least $1 \mu \mathrm{~A}$. This can include the current for R_{2} and R_{1}.

Output voltages up to nearly the V_{IN} supply may be obtained at low load currents, while the low limit is the reference voltage. The minimum input-output differential in each regulator is obtained using the VOUT1 terminal.
Output Currents - For the ICL7663, low output currents of less than 5 mA are obtained with the least input-output differential from the VOUT1 terminal (connect VOUT2 to $\mathrm{V}_{\text {OUT1 }}$). Either output may be used on the ICL7664, with the unused output connected to $\mathrm{V} \overline{\mathrm{IN}}$. Where higher currents are needed, use VOUT2 on the ICL7663 (VOUT1 should be left open in this case) and parallel VOUT1 and VOUT2 on the ICL7664.

High output currents can be obtained only as far as package dissipation allows. It is strongly recommended that output current-limit sensing be used in such cases.
Current-Limit Sensing - The on-chip comparator (C in the block diagrams) permits shutdown of the regulator output in the event of excessive current drain. As the test circuits show, a current-limiting resistor, R_{CL}, is placed in series with VOUT2, and the SENSE terminal is connected to the load side of $R_{C L}$. When the current through $R_{C L}$ is high enough to produce a voltage drop equal to $\mathrm{V}_{\mathrm{CL}}(0.7 \mathrm{~V}$ for ICL7663, 0.35 V for ICL7664) the voltage feedback is bypassed and the regulator output will be limited to this current. Therefore, when the maximum load current (lload) is determined, simply divide V_{CL} by lloAD to obtain the value for RCL.
Logic-Controllable Shutdown - When equipment is not needed continuously (e.g., in remote data-acquisition systems), it is desirable to eliminate its drain on the system until it is required. This usually means switches, with their unreliable contacts. Instead, the ICL7663 and ICL7664 can be shut down by a logic signal, leaving only l_{Q} (under $4 \mu \mathrm{~A}$) as a drain on the power source. Since this pin must not be left open, it should be tied to ground if not needed. A voltage of less than 0.3 V for the ICL7663, and greater than
-0.3 V for the ICL7664 will keep the regulator ON, and a voltage level of more than 1.4 V but less than $\mathrm{V}_{\mathbb{N}} \mathrm{N}$ for the ICL7663, and less than -1.4 V but not less than $\mathrm{V} \overline{\mathrm{N}}$ for the ICL7664 control will turn the outputs OFF. If there is a possibility that the control signal could exceed the regulator input (V_{IN} or V_{IN}), the current from this signal should be limited to $100 \mu \mathrm{~A}$ maximum by a high-value ($1 \mathrm{M} \Omega$) series resistor. This situation may occur when the logic signal originates from a system powered separately from that of the regulator.
Additional Circuit Precautions - These regulators have poor rejection of voltage fluctuations from AC sources above 10 Hz or so. To prevent the output from responding (where this might be a problem), a reservoir capacitor across the load is advised. The value of this capacitor is chosen so that the regulated output voltage reaches 90% of its final value in 20 ms . From

$$
\mathrm{I}=\mathrm{C} \frac{\Delta \mathrm{~V}}{\Delta \mathrm{t}}, \mathrm{C}=\mathrm{IOUT} \frac{\left(20 \times 10^{-3}\right)}{0.9 \mathrm{~V}_{\text {OUT }}}=0.022 \frac{\mathrm{IOUT}}{\mathrm{~V}_{\text {OUT }}}
$$

In addition, where such a capacitor is used, a currentlimiting resistor is also suggested (see "Current-Limit Sensing').
Producing Output Voltages With Negative Temperature Coefficients - The ICL7663 has an additional output (not present on the ICL7664) which is 0.9 V relative to GND and has a tempco of $+2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. By applying this voltage to the inverting input of amplifier A (i.e., the VSET pin), output voltages having negative TC may be produced. The TC of the output voltage is controlled by the R_{2} / R_{3} ratio (see Figure 4 and its design equations).

APPLICATIONS

AF029911
Figure 5: Basic Application of ICL7663 as Positive Regulator with Current Limit

AF028901

$$
\begin{gathered}
V_{\text {OUT }}=\frac{R_{2}+R_{1}}{R_{1}} v_{\text {SET }} \\
\text { ICL }=\frac{0.35 \mathrm{~V}}{R_{\mathrm{CL}}}
\end{gathered}
$$

Figure 6: Basic Application of ICL7664 as Negative Regulator with Current Limit

DS017801
*Values depend on load characteristics
Figure 7: Generating regulated split supplies from a single supply.
The oscillation frequency of the ICL7660 is reduced by the external oscillator capacitor, so that it inverts the battery voltage more efficiently.

Figure 8: Once a Day System.
This circuit will turn on a regulated supply to a system for one minute every day, via the SHUTDOWN pin on the ICL7664, and under control of the ICM7223A Alarm Clock circuit. If the system decides it needs another one minute activation, pulling the REPEAT line to V^{+}(GND) during one activation will trigger a subsequent activation after a snooze interval set by the choice of SN pins (2 mins shown). Alternatively, activation of the Sleep timer, without pause, can be achieved. See ICM7223A data sheet for details.

ICL7663B/4B ADDENDUM TO THE ICL7663/4 DATASHEET

This Addendum to the standard ICL7663/4 datasheet describes changes and/or modifications to the DC Operating characteristics applicable to the ICL7663B/ICL7664B devices. The following table indicates those limits to which the ICL7663B/ICL7664B is tested and/or guaranteed operational.

ICL7663B POSITIVE REGULATOR ORDERING INFORMATION

POSITIVE REGULATOR		
ICL7663B/D	-	DICE
ICL7663BCBA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-pin S.O.I.C.
ICL7663BCJA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-pin CERDIP
ICL7663BCPA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-pin MiniDIP
ICL7663BCTV	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	TO-99

ABSOLUTE MAXIMUM RATINGS ICL7663B


```
Any Input or Output Voltage (Note 1) Terminals 1, 2, 3,
    4,5,6,7)\ldots............(GND -0.3V) to (ViN +0.3V)
Output Source Current
    (Terminal 2) ......................................50mA
    (Terminal 3) ....................................... 25mA
```

Output Sinking Current (Terminal 7) $-10 \mathrm{~mA}$Power Dissipation (Note 2)
MiniDIP 200 mW
TO-99 Can 300 mW

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ICL7663B OPERATING CHARACTERISTICS $\mathrm{V}_{\mathrm{N}} \mathbf{A}=9 \mathrm{~V}$, $\mathrm{V}_{O U T}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise speciied.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
VIN	Input Voltage	$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & 20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.6 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	V
I_{Q}	Quiescent Current	$\left\{\begin{array}{l}R_{\mathrm{L}}=\infty \\ 1.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 8.5 \mathrm{~V}\end{array}\right\}$		3.5	10	$\mu \mathrm{A}$
$V_{\text {SET }}$	Reference Voltage		1.2	1.3	1.4	V
$\frac{\Delta V_{\text {SET }}}{\Delta T}$	Temperature Coefficient	$8.5 \mathrm{~V}<\mathrm{V}_{1}{ }^{\text {N }}<9 \mathrm{~V}$		± 200		ppm
$\frac{\Delta V_{\mathrm{SET}}}{\mathrm{~V}_{\mathrm{SET}} \Delta \mathrm{~V}_{\mathrm{IN}}}$	Line Regulation	$2 \mathrm{~V}<\mathrm{V}_{\text {I }}$ ($<9 \mathrm{~V}$		0.03		\%/V
ISET	$V_{\text {SET }}$ Input Current			± 0.01	10	nA
ISHDN	Shutdown Input Current			± 0.01	10	$n \mathrm{~A}$
$V_{\text {SHDN }}$	Shutdown Input Voltage	$V_{\text {SHDNH }}$ H: Both Vout Disabled $V_{\text {SHDNLO }}$ Both VOUT Enabled	1.4		0.3	V
ISENSE	Sense Pin Input Current			0.01	10	nA
$V_{C L}$	Sense Pin Input Threshold Voltage	$V_{C L}=V_{O U T 2}-V_{S E N S E}$ (Current-Limit Threshold)		0.7		V
$R_{\text {SAT }}$	Input-Output Saturation Resistance (Note 3)	$\begin{aligned} & V_{1 N}^{+}=2 V \\ & V_{1 N}^{+}=9 \mathrm{~V} \end{aligned}$		$\begin{gathered} 200 \\ 70 \end{gathered}$		Ω
$\frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta \mathrm{l}_{\text {OUT }}}$	Load Regulation	$\begin{aligned} & \Delta \mathrm{l} \text { OUT1 }=100 \mu \mathrm{~A} @ V_{\text {OUT1 }}=5 \mathrm{~V} \\ & \Delta \mathrm{l} \text { OUT2 }=10 \mathrm{~mA} @ V_{\text {OUT2 }}=5 \mathrm{~V} \end{aligned}$		2		Ω
lout2	Available Output Current (VOUT2)	$\begin{array}{ll} V_{I N}^{T}=3 V & V_{O U T}=V_{S E T} \\ V_{I N}^{ \pm}=9 V & V_{O U T}=5 \mathrm{~V} \end{array}$	$\begin{aligned} & 10 \\ & 25 \end{aligned}$			mA
V_{TC}	Negative-Tempco Output (Note 4)	Open-Circuit Voltage		0.9		V
$I_{\text {TC }}$		Maximum Sink Current	0	8	2	mA

ICL7663/7664
ICL7663B OPERATING CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
$\frac{\Delta V_{T C}}{\Delta T}$	Temperature Coefficient	Open Circuit		+2.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
\underline{L} (min)	Minimum Load Current	(Includes $\mathrm{V}_{\text {SET }}$ Divider)			1	$\mu \mathrm{A}$

NOTES: 1 . Connecting any terminal to voltages greater than ($\mathrm{V}_{\mathrm{N}}^{\mathrm{N}}+0.3 \mathrm{~V}$) or less than ($\mathrm{GND}-0.3 \mathrm{~V}$) may cause destructive device latchup. It is recommended that no inputs from sources operating on external power supplies be applied prior to ICL7663B power-up.
2. Derate linearly above $50^{\circ} \mathrm{C}$ at $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for minidip and $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TO-99 can.
3. This parameter refers to the saturation resistance of the MOS pass transistor. The minimum input-output voltage differential at low current (under 5 mA), can be determined by multiplying the load current (including set resistor current, but not quiescent current) by this resistance. 4. This output has a positive temperature coefficient. Using it in combination with the inverting input of the regulator at $\mathrm{V}_{\text {SET }}$, a negative coefficient results in the output voltage. See Figure 3 for details. Pin will not source current.

ICL7664B NEGATIVE REGULATOR ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS ICL7664B

Negative Regulator		
ICL7664BCPA	0 to $+70^{\circ} \mathrm{C}$	8-pin MiniDIP
ICL7664BCTV	0 to $+70^{\circ} \mathrm{C}$	TO-99
ICL7664B/D	0 -	DICE
ICL7664BCBA	0 to $+70^{\circ} \mathrm{C}$	8-pin S.O.I.C
ICL7664BCJA	0 to $+70^{\circ} \mathrm{C}$	8-pin CERDIP

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ICL7664B OPERATING CHARACTERISTICS $\mathrm{V}_{\overline{I N}}=9 \mathrm{~V}, \mathrm{~V}_{\text {out }}=-5 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
V IN	Input Voltage	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & 0 \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -1.5 \\ & -1.6 \end{aligned}$		$\begin{aligned} & -10 \\ & -10 \end{aligned}$	V
10	Quiescent Current	$\left\{\begin{array}{l}R_{L}=\infty \\ -1.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq-8.5 \mathrm{~V}\end{array}\right\}$	3.5	10	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {SET }}$	Reference Voltage		-1.2	-1.3	-1.4	V
$\frac{\Delta V_{\text {SET }}}{\Delta T}$	Temperature Coefficient	$-8.5 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<-9 \mathrm{~V}$		± 200		ppm
$\frac{\Delta V_{\mathrm{SET}}}{V_{\mathrm{SET}} \Delta \mathrm{~V}_{\mathrm{IN}}}$	Line Regulation	$-2 \mathrm{~V}<\mathrm{V}_{\text {IN }}<-9 \mathrm{~V}$		0.03		\%/V
ISET	$V_{\text {SET }}$ Input Current			± 0.01	10	nA
ISHDN	Shutdown Input Current			± 0.01	10	nA
$V_{\text {SHDN }}$	Shutdown Input Voltage	$V_{\text {SHDNHI }}$ Both VOUT Disabled $V_{\text {SHDNLO }}$ Both VOUT Enabled	-0.3		-1.4	V
ISENSE	Sense Pin Input Current			0.01	10	nA
V_{CL}	Sense Pin Input Threshold Voltage	$V_{C L}=V_{O U T 2}-V_{S E N S E}$ (Current-Limit Threshold)		-0.35		V
$R_{\text {SAT }}$	Input-Output Saturation Resistance (Note 3)	$\begin{aligned} & V_{\bar{N}}=2 V \\ & V_{\mathbb{N}}=9 V \end{aligned}$		$\begin{gathered} 150 \\ 40 \end{gathered}$		Ω
$\frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta \text { IOUT }}$	Load Regulation	$\begin{aligned} & \Delta \mathrm{l}^{\prime} \mathrm{OUT}_{1}=100 \mu \mathrm{~A} @ \\ & \Delta \mathrm{OUT}=-5 \mathrm{~V} \end{aligned}$		2		Ω
Iout	Output Current VOUT1 or Vout2	$\begin{array}{ll} V_{\mathbb{I N}}=3 V & V_{\text {OUT }}=V_{\text {SET }} \\ V_{\overline{I N}}=9 \mathrm{~V} & V_{\text {OUT }}=-5 V \end{array}$		$\begin{gathered} -2 \\ -20 \end{gathered}$		mA
$L_{L(\text { min })}$	Minimum Load Current (Includes $V_{S E T}$ Divider)				1	$\mu \mathrm{A}$

NOTES: 1. Connecting any terminal to voltages greater than ($G N D+0.3 \mathrm{~V}$) or less than ($\mathrm{V} \overline{\mathbb{N}}-0.3 \mathrm{~V}$) may cause destructive device latchup. It is recommended that no inputs from sources operating on external power supplies be applied prior to ICL7664B power-up.
2. Derate linearly above $50^{\circ} \mathrm{C}$ at $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for minidip and $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TO-99 can.
3. This parameter refers to the saturation resistance of the MOS pass transistor. The minimum input-output voltage differential can be determined by multiplying the load current (including set resistor current, but not quiescent current) by this resistance.

ICL7665
 Micropower Under/Over Voltage Detector

GENERAL DESCRIPTION

The ICL7665 contains two individually programmable voltage detectors on a single chip. Requiring only $3 \mu \mathrm{~A}$ typical for operation, the device is intended for batteryoperated systems and instruments which require high or low voltage warnings, settable trip points, or fault monitoring and correction. Typical applications are battery-backup computer memories, battery-operated medical devices, radiation dosimeters, pocket pagers, portabie calibrators, test instruments, and charging systems.

FEATURES

- Exceptionally Low Supply Current (<3 A A Typ)
- Individually Programmable Upper and Lower Trip Voltages and Hysteresis Levels
- Accurate On-Chip Bandgap Reference
- Up to 20mA Output Current Sinking Ability
- Wide Supply Voltage Range

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7665CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead MiniDIP
ICL7665CTV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead TO-99
ICL7665/D	-	DICE
ICL7665CBA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8 Lead SOIC
ICL7665CJA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8 Lead CERDIP

**Parameter Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

Figure 1: Functional Diagram

ABSOLUTE MAXIMUM RATINGS

Maximum Sink Output Current OUT1 and OUT2... 25mA Maximum Source Output Current HYST1 and HYST2
$-25 m A$
Power Dissipation (Note 1)...............................200mW
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)
$.300^{\circ} \mathrm{C}$

Stresses above those listed under ''Absolute Maximum Ratings' may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

DC OPERATING CHARACTERISTICS $\left(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified. See Test Circuit
Fig. 4)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
V^{+}	Operating Supply Voltage	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	V
1^{+}	Supply Current	GND $\leq \mathrm{V}_{\text {SET } 1}, \mathrm{~V}_{\text {SET } 2} \leq \mathrm{V}^{+}$ All Outputs Open Circuit $\begin{aligned} & V^{+}=2 V \\ & V^{+}=9 V \\ & V^{+}=15 V \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.6 \\ & 2.9 \end{aligned}$	10 10 15	$\mu \mathrm{A}$
$\begin{aligned} & V_{\text {SET1 }} \\ & \text { V SET2 }^{2} \end{aligned}$	Input Trip Voltage		$\begin{aligned} & 1.15 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{gathered} 1.45 \\ 1.4 \end{gathered}$	V
$\frac{\Delta V_{\mathrm{SET}}}{\Delta \mathrm{~T}}$	Temperature Coefficient of $V_{S E T}$			± 200		ppm $/{ }^{\circ} \mathrm{C}$
$\frac{\Delta \mathrm{V}_{\mathrm{SET}}}{\Delta \mathrm{~V}_{\mathrm{S}}}$	Supply Voltage Sensitivity of $\mathrm{V}_{\mathrm{SET}}$, $\mathrm{V}_{\mathrm{SET}}$	ROUT1, ROUT2, R $_{\text {HYST1 }}, R_{\text {HYST2 }}=1 \mathrm{M} \Omega$		0.004		\%/V
$\begin{aligned} & \text { IOLK } \\ & \text { IHLK } \end{aligned}$	Output Leakage Currents on OUT and HYST	$\mathrm{V}_{\text {SET }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {SET }} \geq 2 \mathrm{~V}$		$\begin{array}{r} 10 \\ -10 \\ \hline \end{array}$	$\begin{array}{r} 200 \\ -100 \\ \hline \end{array}$	nA
$\begin{aligned} & \text { IOLK } \\ & \text { IHLK } \end{aligned}$		$\begin{aligned} & \mathrm{V}^{+}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \\ & \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$			$\begin{array}{r} 2000 \\ -500 \\ \hline \end{array}$	
VOUT1 VOUT1 VOUT1	Output Saturation Voltages	$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\text {SET } 1}=2 \mathrm{~V}, \text { IOUT1 }=2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {SET1 }}=2 \mathrm{~V}, \mathrm{I}_{\text {OUT1 }}=2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {SET } 1}=2 \mathrm{~V}, \text { IOUT } 1=2 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 0.2 \\ 0.1 \\ 0.06 \\ \hline \end{gathered}$	$\begin{aligned} & 0.5 \\ & 0.3 \\ & 0.2 \\ & \hline \end{aligned}$	V
VHYST1 VHYST1 VHYST1		$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\text {SET } 1}=2 \mathrm{~V}, l_{\mathrm{HYST} 1}=-0.5 \mathrm{~mA} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, l_{\mathrm{HYST} 1}=-0.5 \mathrm{~mA} \\ & \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {SET } 1}=2 \mathrm{~V}, I_{\text {HYST } 1}=-0.5 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & -0.15 \\ & -0.05 \\ & -0.02 \end{aligned}$	$\begin{array}{r} -0.3 \\ -0.15 \\ -0.10 \end{array}$	
VOUT2 VOUT2 VOUT2		$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=0 \mathrm{~V}, \text { IOUT2 }=2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=0 \mathrm{~V}, \text { IOUT2 }=2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=0 \mathrm{~V}, \text { IOUT2 }=2 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 0.2 \\ 0.15 \\ 0.11 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.3 \\ 0.25 \\ \hline \end{gathered}$	
$\mathrm{V}_{\text {HYST2 }}$ VHYST2 VHYST2		$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST}}=-0.2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=2 \mathrm{~V}, I_{\mathrm{HYST}}=-0.5 \mathrm{~mA} \\ & \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=2 \mathrm{~V}, I_{\text {HYST2 }}=-0.5 \mathrm{~mA} \end{aligned}$		$\begin{array}{r} -0.25 \\ -0.43 \\ 0.35 \end{array}$	$\begin{array}{r} -0.8 \\ -1.0 \\ -1.0 \\ \hline \end{array}$	
ISET	$V_{\text {SET }}$ Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\text {SET }} \leq \mathrm{V}^{+}$		0.01	10	nA
$\Delta \mathrm{V}_{\text {SET }}$	$\Delta \mathrm{V}_{\text {SET }}$ Input for Complete Output Change	ROUT $=4.7 \mathrm{k} \Omega$, RHYST $=20 \mathrm{k} \Omega$ $\mathrm{V}_{\text {OUTLO }}=1 \% \mathrm{~V}^{+}$, $\mathrm{V}_{\text {OUT }} \mathrm{HI}=99 \% \mathrm{~V}^{+}$		1		mV
$\mathrm{V}_{\text {SET } 1}-\mathrm{V}_{\text {SET2 }}$	Difference in Trip Voltages	$\mathrm{R}_{\text {OUT, }} \mathrm{R}_{\text {HYST }}=1 \mathrm{M} \Omega$		± 5	± 50	
	Output/Hysteresis Difference	ROUT, $\mathrm{R}_{\text {HYST }}=1 \mathrm{M} \Omega$		± 1		

NOTES: 1. Derate above $\pm 25^{\circ} \mathrm{C}$ ambient temperature at $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than ($\mathrm{V}^{+}+0.3 \mathrm{~V}$) or less than ($\mathrm{GND}-0.3 \mathrm{~V}$) may cause destructive device latchup. For these reason, it is recommended that no inputs from external sources not operating from the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICL7665 be turned on first. If this is not possible, currents into inputs and/or outputs must be limited to $\pm 0.5 \mathrm{~mA}$ and voltages must not exceed those defined above.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
tso1d ${ }^{\text {tsH1d }}$ tsO2d ${ }^{\text {tsH2d }}$	Output Delay Time Input Going HI	VSET Switched from 1.0 V to 1.6 V ROUT $=4.7 \mathrm{k} \Omega, C_{L}=12 \mathrm{pF}$ $R_{H Y S T}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$		$\begin{array}{r} 70 \\ 80 \\ 120 \\ 230 \end{array}$		$\mu \mathrm{s}$
tsond t'sin2d tso2d tsin2d	Output Delay Time Input Going LO	$V_{\text {SET }}$ Switched from 1.6 V to 1.0 V $R_{\text {OUT }}=4.7 \mathrm{k} \Omega, C_{L}=12 \mathrm{pF}$ $R_{\mathrm{HYST}}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$		$\begin{array}{r} 1040 \\ 610 \\ 70 \\ 30 \end{array}$		$\mu \mathrm{s}$
to1r to2r ${ }_{\mathrm{t}}^{\mathrm{H} 1 \mathrm{r}}$ ${ }_{\mathrm{H}}^{\mathrm{H} 2 \mathrm{r}}$	Output Rise Times	$V_{\text {SET }}$ Switched between 1.0 V and 1.6 V $\mathrm{R}_{\text {OUT }}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$ $R_{H Y S T}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$		$\begin{array}{r} 120 \\ 80 \\ 330 \\ 25 \end{array}$		$\mu \mathrm{s}$
$\begin{aligned} & \mathrm{t}_{\mathrm{O} 1 \mathrm{f}} \\ & \mathrm{t}_{\mathrm{O} 2 \mathrm{f}} \\ & \mathrm{t}_{\mathrm{H} 1 \mathrm{f}} \\ & \mathrm{t}_{\mathrm{H} 2 \mathrm{f}} \\ & \hline \end{aligned}$	Output Fall Times	$V_{\text {SET }}$ Switched between 1.0 V and 1.6 V $\mathrm{R}_{\text {OUT }}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$ $R_{H Y S T}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$		$\begin{array}{r}30 \\ 60 \\ 180 \\ 30 \\ \hline\end{array}$		$\mu \mathrm{s}$

Figure 3: Switching Waveforms

Figure 4: Test Circuits

TYPICAL PERFORMANCE CHARACTERISTICS

HYST1 OUTPUT SATURATION Voltage vs hysti output CURRENT

HYST1 OUTPUT CURRENT (mA)
OPO23301
HYST2 OUTPUT SATURATION VOLTAGE VS HYST2 OUTPUT CURRENT

be triggered into a potentially destructive high-current mode. This latchup can be triggered by forward-biasing an input or output with respect to the power supply, or by applying excessive supply voltages. In very-low current analog circuits, such as the ICL7665, this SCR can also be triggered by applying the input power supply extremely rapidly ('instantaneously'), e.g. through a low impedance battery and an ON/OFF switch with short lead lengths. The rate-of-rise of the supply voltage can exceed $100 \mathrm{~V} / \mu \mathrm{s}$ in such a circuit. A low-impedance capacitor (e.g. $0.05 \mu \mathrm{~F}$ disc ceramic) between the V^{+}and GrouND pins of the ICL7665 can be used to reduce the rate-of-rise of the supply voltage in battery applications. In line-operated systems, the rate-of-rise of the suppiy is limited by other considerations, and is normally not a problem.

If the SET voltages must be applied before the supply voltage V^{+}, the input current should be limited to less than 0.5 mA by appropriate external resistors, usually required for voltage setting anyway. A similar precaution should be taken with the outputs if it is likely that they will be driven by other circuits to levels outside the supplies at any time. See M011 for some other protection ideas.

PRECAUTIONS

Junction-isolated CMOS devices like the ICL7665 have an inherent SCR or 4-layer PNPN structure distributed throughout the die. Under certain circumstances, this can

DETAILED DESCRIPTION

As shown in the Functional Diagram, the ICL7665 consists of two comparators which compare input voltages on the SET1 and SET2 terminals to an internal 1.3V band-gap reference. The outputs from the two comparators drive open-drain N -channel transistors for OUT1 and OUT2, and open-drain P-channel transistors for HYST1 and HYST2 outputs. Each section, the Under-Voltage Detector and the Over-Voltage Detector, is independent of the other, although both use the internal 1.3 V reference. The offset voltages of the two comparators will normally be unequal, so $V_{S E T 1}$ will generally not quite equal $V_{S E T}$.

The input impedances of the SET1 and SET2 pins are extremely high, and for most practical applications can be ignored. The four outputs are open-drain MOS transistors, and when ON behave as low resistance switches to their respective supply rails. This minimizes errors in setting-up the hysteresis, and maximizes the output flexibility. The operating currents of the bandgap reference and the comparators are around 100 nA each.

APPLICATIONS

Figure 5: Simple Threshold Detector

Figure 5 shows the simplest connection of the ICL7665 for threshold detection. From the graph (b), it can be seen that at low input voltages OUT1 is OFF, or high, while OUT2 is ON , or low. As the input rises (e.g. at power-on) toward $V_{\text {NOM }}$ (usually the eventual operating voltage), OUT2 goes high on reaching $V_{T R 2}$. If the voltage rises above $V_{\text {NOM }}$ as much as VTR1, OUT1 goes low. The equations giving $V_{\text {SET1 }}$ and $V_{\text {SET2 }}$ are, from Figure 1(a):
$V_{\text {SET } 1}=V_{I N} \frac{R_{11}}{\left(R_{11}+R_{21}\right)} ; V_{\text {SET2 }}=V_{I N} \frac{R_{12}}{\left(R_{12}+R_{22}\right)}$
Since the voltage to trip each comparator is nominally 1.3 V , the value of $\mathrm{V}_{\mathbb{I N}}$ for each trip point can be found from
$V_{\text {TR } 1}=V_{\text {SET } 1} \frac{\left(R_{11}+R_{21}\right)}{R_{11}}=1.3 \frac{\left(R_{11}+R_{21}\right)}{R_{11}}$ for detector 1
and
$V_{\text {TR2 }}=V_{\text {SET2 }} \frac{\left(R_{12}+R_{22}\right)}{R_{12}}=1.3 \frac{\left(R_{12}+R_{22}\right)}{R_{12}}$ for detector 2.
Either detector may be used alone, as well as both together, in any of the circuits shown here.

When $\mathrm{V}_{\mathbb{I N}}$ is very close to one of the trip voltages, normal variations and noise may cause it to wander back and forth across this level, leading to erratic output ON and OFF
conditions. The addition of hysteresis, making the trip points slightly different for rising and falling inputs, will avoid this condition.

Figure 6(a) shows how to set up such hysteresis, while Figure 6(b) shows how the hysteresis around each trip point produces switching action at different points depending on whether $V_{I N}$ is rising or falling (the arrows indicate direction of change). The HYST outputs are basically switches which short out R_{31} or R_{32} when V_{IN} is above the respective trip point. Thus if the input voitage rises from a low value, the trip point will be controlled by $R_{1 n}, R_{2 n}$ and $R_{3 n}$, until the trip point is reached. As this value is passed, the detector changes state, $R_{3 n}$ is shorted out, and the trip point becomes controlled by only $R_{1 n}$ and $R_{2 n}$, a lower value. The input will then have to fall to this new point to restore the initial comparator state, but as soon as this occurs, the trip point will be raised again.

An alternative circuit for obtaining hysteresis is shown in Figure 7. In this configuration, the HYST pins put the extra resistor in parallel with the upper setting resistor. The values of the resistors differ, but the action is essentially the same. The governing equations are given in Table 1. These ignore the effects of the resistance of the HYST outputs, but these can normally be neglected if the resistor values are above about $100 \mathrm{k} \Omega$.

Figure 6: Threshold Detector with Hysteresis

Figure 7: An Alternative Hysteresis Circuit

Table 1. Set-Point Equations
a) NO HYSTERESIS

Over-Voltage $V_{\text {TRIP }}=\frac{R_{11}+R_{21}}{R_{11}} \times V_{\text {SET } 1}$
Under-Voltage $V_{\text {TRIP }}=\frac{R_{12}+R_{22}}{R_{12}} \times V_{\text {SET2 }}$
b) HYSTERESIS PER FIGURE 6A

Over-Voltage $V_{\text {TRIP }} \quad V_{U 1}=\frac{R_{11}+R_{21}+R_{31}}{R_{11}} \times V_{\text {SET } 1}$

$$
\begin{gathered}
\qquad \begin{array}{l}
V_{L 1}=\frac{R_{11}+R_{21}}{R_{11}} \times V_{\text {SET1 }} \\
V_{U 2}=\frac{R_{12}+R_{22}+R_{32}}{R_{12}} \times V_{\text {SET2 }}
\end{array} \text { Under-Voltage } V_{T R I P}
\end{gathered}
$$

$$
V_{\mathrm{L} 2}=\frac{R_{12}+R_{22}}{R_{12}} \times V_{\mathrm{SET} 2}
$$

c) HYSTERESIS PER FIGURE 7

Over-Voltage $V_{\text {TRIP }} \quad V_{U 1}=\frac{R_{11}+R_{21}}{R_{11}} \times V_{\text {SET1 }}$

$$
\begin{aligned}
& V_{L 1}=\frac{R_{11}+\frac{R_{21} R_{31}}{R_{21}+R_{31}}}{R_{11}} \times V_{\text {SET } 1} \\
& V_{U 2}=\frac{R_{12}+R_{22}}{R_{12}} \times V_{\text {SET2 }}
\end{aligned}
$$

Under-Voltage $V_{\text {TRIP }}$

$$
V_{L 2}=\frac{R_{12}+\frac{R_{22} R_{32}}{R_{22}+R_{32}}}{R_{12}} \times V_{S E T 2}
$$

ICL7665B ADDENDUM TO THE ICL7665 DATASHEET

This Addendum to the standard ICL7665B datasheet describes changes and/or modifications to the DC Operating characteristics applicable to the ICL7665B device. The following table indicates those limits to which the ICL7665B is tested and/or guaranteed operational.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7665BCPA	0 to $+70^{\circ} \mathrm{C}$	8 Lead MiniDIP
ICL7665BCTV	0 to $+70^{\circ} \mathrm{C}$	8 Lead TO-99
ICL7665B/D	0 to $+70^{\circ} \mathrm{C}$	DICE Only
ICL7665BCJA	0 -Lead Cerdip	
ICL7665BCBA	0 to $+70^{\circ} \mathrm{C}$	8-Lead S.O.I.C.

ABSOLUTE MAXIMUM RATINGS, ICL7665B

um Source Output Current HYST1

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC OPERATING CHARACTERISTICS $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
V^{+}	Operating Supply Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0 \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	V
1^{+}	Supply Current	GND $\leq \mathrm{V}_{\text {SET } 1,} \mathrm{~V}_{\text {SET } 2} \leq \mathrm{V}^{+}$ All Outputs Open Circuit $\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V} \\ & \mathrm{~V}^{+}=9 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$
$\begin{aligned} & \mathrm{V}_{\text {SET1 }} \\ & \mathrm{V}_{\mathrm{SET}} \end{aligned}$	Input Trip Voltage		$\begin{gathered} 1.15 \\ 1.2 \end{gathered}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{gathered} 1.45 \\ 1.4 \end{gathered}$	\checkmark
$\frac{\Delta V_{\text {SET }}}{\Delta T}$	Temperature Coefficient of $V_{S E T}$			± 200		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta \mathrm{V}_{\mathrm{SET}}}{\Delta \mathrm{~V}_{\mathrm{S}}}$	Supply Voltage Sensitivity of $\mathrm{V}_{\text {SET1 }} \mathrm{V}_{\mathrm{SET}}$	ROUT1, ROUT2, RHYST1, RHYST2 $=1 \mathrm{M} \Omega$		0.004		\%/V
IOLK IHLK	Output Leakage Currents on OUT and HYST	$\mathrm{V}_{\text {SET }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {SET }} \geq 2 \mathrm{~V}$		$\begin{gathered} 10 \\ -10 \end{gathered}$	$\begin{gathered} 200 \\ -100 \end{gathered}$	
$\begin{aligned} & \hline \text { IOLK } \\ & \text { IHLK } \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V}^{+}=9 \mathrm{~V}, \mathrm{~T}_{A}=70^{\circ} \mathrm{C} \\ & \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			$\begin{array}{r} 2000 \\ -500 \\ \hline \end{array}$	nA
VOUT1 VOUT1 VOUT1	Output Saturation Voltages	$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\text {SET1 }}=2 \mathrm{~V}, \text { IOUT1 }=2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {SET1 }}=2 \mathrm{~V}, \text { IOUT1 }=2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {SET } 1}=2 \mathrm{~V}, \text { IOUT1 }=2 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & \hline 0.2 \\ & 0.1 \\ & 0.06 \end{aligned}$	$\begin{gathered} 0.5 \\ 0.3 \\ 0.25 \end{gathered}$	
VHYST1 VHYST1 VHYST1		$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\text {SET }}=2 \mathrm{~V}, \text { IHYST } 1=-0.5 \mathrm{~mA} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {SET } 1}=2 \mathrm{~V}, \text { IHYST1 }=-0.5 \mathrm{~mA} \\ & \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {SET } 1}=2 \mathrm{~V}, \text { IHYST1 }=-0.5 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & -0.15 \\ & -0.05 \\ & -0.02 \end{aligned}$	$\begin{gathered} -0.3 \\ -0.15 \\ 0.15 \end{gathered}$	
VOUT2 VOUT2 VOUT2		$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=0 \mathrm{~V}, \text { IOUT2 }=2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=0 \mathrm{~V}, \text { IOUT2 }=2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=0 \mathrm{~V}, \text { OUT2 }=2 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.15 \\ & 0.11 \end{aligned}$	0.5 0.3 0.3	V
VHYST2 $V_{\text {HYST2 }}$ $V_{\text {HYST2 }}$		$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=2 \mathrm{~V}, \text { IHYST2 }=-0.2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=2 \mathrm{~V}, \text { HYST2 }=-0.5 \mathrm{~mA} \\ & \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=2 \mathrm{~V}, \text { IHYST2 }=-0.5 \mathrm{~mA} \end{aligned}$		$\begin{gathered} -0.25 \\ -0.43 \\ 0.35 \end{gathered}$	-0.8 -1 -1	

DC OPERATING CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
ISET	$\mathrm{V}_{\text {SET }}$ Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\text {SET }} \leq \mathrm{V}^{+}$		0.01	10	nA
$\Delta \mathrm{V}_{\text {SET }}$	$\Delta V_{\text {SET }}$ Input for Complete Output Change	$\mathrm{R}_{\text {OUT }}=4.7 \mathrm{k} \Omega, \mathrm{R}_{\text {HYST }}=20 \mathrm{k} \Omega$ $V_{\text {OUTLO }}=1 \% V^{+}, V_{\text {OUTHI }}=99 \% V^{+}$		1		mV
$\mathrm{V}_{\text {SET1 }}-\mathrm{V}_{\text {SET2 }}$	Difference in Trip Voltages	$R_{\text {OUT, }} R_{\text {HYST }}=1 \mathrm{M} \Omega$		± 5	± 50	
	Output/Hysteresis Difference	$\mathrm{R}_{\text {OUT }}, \mathrm{R}_{\text {HYST }}=1 \mathrm{M} \Omega$		± 1		

NOTES: 1: Derate above $\pm 25^{\circ} \mathrm{C}$ ambient temperature at $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than ($\mathrm{V}^{+}+0.3 \mathrm{~V}$) or less than (GND -0.3 V) may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating from the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICL7665B be turned on first. If this is not possible, currents into inputs and/or outputs must be limited to $\pm 0.5 \mathrm{~mA}$ and voltages must not exceed those defined above.

ICL7667
 Dual Power MOSFET Driver

ICL7667

GENERAL DESCRIPTION

The ICL7667 is a dual monolithic high-speed driver designed to convert TTL level signals into high current outputs at voltages up to 15 V . Its high speed and 1.5 A peak current output enable it to drive large capacitive loads with high slew rates and low propagation delays. With an output voltage swing only millivolts less than the supply voltage and a maximum supply voltage of 15 V , the ICL7667 is well suited for driving power MOSFETs in high frequency switched-mode power converters. The ICL7667's high current outputs (1.5A peak) minimize power losses in the power MOSFETs by rapidly charging and discharging the gate capacitance. The ICL7667's inputs are TTL compatible and can be directly driven by common pulse-width modulation control IC's.

FEATURES

- 1.5A Peak Output Current
- Fast Rise and Fall Times -40ns With 1000pF Load
- Wide Supply Voltage Range $-V_{C C}=4.5$ to 15 V
- Low Power Consumption
- 4mW With Inputs Low
-120 mW With Inputs High
- TTL/CMOS Input Compatible Power Driver - ROUT $=6 \Omega$
- Direct Interface With Common PWM Control IC's
- Pin Equivalent to DS0026/DS0056; TSC426

TYPICAL APPLICATIONS

- Switching Power Supplies
- DC/DC Converters
- Motor Controllers

BD00680|
Figure 1: Functional Diagram

Figure 2: Pin Configurations

ICL7667

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range
ICL7667C........................... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL7667M $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $\ldots \ldots \ldots \ldots \ldots .300^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS (STATIC)
Test Conditions: $\mathrm{V}_{\mathrm{CC}}=4.5$ to $15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
V_{1}	Logic 1 Input Voltage		2.4			V
$\mathrm{V}_{\text {IL }}$	Logic 0 Input Voltage				0.8	V
In	Input Current	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {cC }}$	-1	0	1	$\mu \mathrm{A}$
V_{OH}	Output Voltage High	No Load	$\begin{gathered} \mathrm{v}_{\mathrm{CC}} \\ -0.05 \end{gathered}$	V_{CC}		\checkmark
V_{OL}	Output Voltage Low	No Load		0	0.05	V
Rout	Output Resistance	$\begin{aligned} \mathrm{V}_{I N} & =\mathrm{V}_{\mathrm{IL}} \\ \mathrm{IOUT} & =-10 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CC}} & =15 \mathrm{~V} \end{aligned}$		6	20	Ω
ROUT	Output Resistance	$\begin{aligned} V_{I N} & =V_{I H} \\ \mathrm{I}_{\mathrm{OT}} & =10 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CC}} & =15 \mathrm{~V} \end{aligned}$		6	20	Ω
ICC	Power Supply Current	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ (both inputs)		4	6	mA
Icc	Power Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ (both inputs)		150	400	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (DYNAMIC)

Test Conditions: $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
TD2	Delay Time	Figure 3		50	75	ns
T_{R}	Rise Time	Figure 3		35	50	ns
T_{F}	Fall Time	Figure 3		40	55	ns
TD1	Delay Time	Figure 3		20	35	ns

TC036101
Figure 3: Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

NOTE: With the 10Ω resistor shorted (or removed), the rise, fall and delay times will be decreased by typically 10%.

Rise and Fall Times vs C_{L}

ICC vs C_{L}

$T_{D 1}, T_{D 2}$ vs Temperature

Icc vs Frequency

T_{R}, T_{F} vs Temperature

No Load Icc vs Frequency

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

OP059111

DETAILED DESCRIPTION

The ICL7667 is a dual high-power CMOS inverter whose inputs respond to TTL levels while the outputs can swing as high as 15 V . Its 1.5 A peak output current enables it to rapidly charge and discharge the gate capacitance of power MOSFETs, minimizing the switching losses in switchmode power supplies. Since the output stage is CMOS, the output will swing to within millivolts of both ground and $V_{C C}$, without any external parts or extra power supplies as required by the DS0026/56 family. Although most specifications are at $V_{C C}=15 \mathrm{~V}$, the propagation delays and specifications are almost independent of V_{CC}.

In addition to power MOS drivers, the ICL7667 is well suited for other applications such as bus, control signal, and clock drivers on large memory of microprocessor boards, where the load capacitance is large and low propagation delays are required. Other potential applications include peripheral power drivers and charge-pump voltage inverters.

INPUT STAGE

The input stage is a large N -channel FET with a P channel constant-current source. This circuit has a threshold of about 1.5 V , relatively independent of the V_{CC} voltage. This means that the inputs will be directly compatible with TTL over the entire $4.5-15 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ range. Being CMOS, the inputs draw less than $1 \mu \mathrm{~A}$ of current over the entire input voltage range of ground to V_{CC}. The quiescent current or no load supply current of the ICL7667 is affected by the input voltage, going to nearly zero when the inputs are at the 0 logic level and rising to 6 mA maximum when both inputs are the 1 logic level. A small amount of hysteresis, about $50-100 \mathrm{mV}$ at the input, is generated by positive feedback around the second stage.

OUTPUT STAGE

The ICL7667 output is a high-power CMOS inverter, swinging between ground and $V_{C C}$. At $V_{C C}=15 \mathrm{~V}$, the output impedance of the inverter is typically 6Ω, with a peak current output of typically 1.5 A . It is this high peak current capability that enables the ICL7667 to drive a 1000pF load with a rise time of only 40 ns . Because the output stage impedance is very low, up to 300 mA will flow through the series N - and P -channel output devices (from V_{CC} to ground) during output transitions. This crossover current is

responsible for a significant portion of the internal power dissipation of the ICL7667 at high frequencies. It can be minimized by keeping the rise and fall times of the input to the ICL7667 below $1 \mu \mathrm{~s}$.

APPLICATION NOTES

Although the ICL7667 is simply a dual level-shifting inverter, there are several areas to which careful attention must be paid.

GROUNDING

Since the input and the high current output current paths both include the ground pin, it is very important to minimize any common impedance in the ground return. Since the ICL7667 is an inverter, any common impedance will generate negative feedback, and will degrade the delay, rise and fall times. Use a ground plane if possible, or use separate ground returns for the input and output circuits. To minimize any common inductance in the ground return, separate the input and output circuit ground returns as close to the ICL7667 as is possible.

BYPASSING

The rapid charging and discharging of the load capacitance requires very high current spikes from the power supplies. A parallel combination of capacitors that has a low impedance over a wide frequency range should be used. A $4.7 \mu \mathrm{~F}$ tantalum capacitor in parallel with a low inductance $0.1 \mu \mathrm{~F}$ capacitor is usually sufficient bypassing.

OUTPUT DAMPING

Ringing is a common problem in any circuit with very fast rise or fall times. Such ringing will be aggravated by long inductive lines with capacitive loads. Techniques to reduce ringing include:

1) Reduce inductance by making printed circuit board traces as short as possible.
2) Reduce inductance by using a ground plane or by closely coupling the output lines to their return paths.
3) Use a 10 to 30Ω resistor in series with the output of the ICL7667. Although this reduces ringing, it will also slightly increase the rise and fall times.
4) Use good bypassing techniques to prevent ringing caused by supply voltage ringing.

ICL7667

POWER DISSIPATION

The power dissipation of the ICL7667 has three main components:

1) Input inverter current loss
2) Output stage crossover current loss
3) Output stage $I^{2} R$ power loss

The sum of the above must stay within the specified limits for reliable operation.

As noted above, the input inverter current is input voltage dependent, with an ICC of 0.2 mA maximum with a logic 0 input and 6 mA maximum with a logic 1 input.

The output stage crowbar current is the current that flows through the series N - and P -channel devices that form the output. This current, about 300 mA , occurs only during output transitions. Caution: The inputs should never be allowed to remain between V_{IL} and V_{IH} since this could leave the output stage in a high current mode, rapidly leading to destruction of the device. If only one of the drivers is being used, be sure to tie the unused input to a ground. NEVER leave an input floating. The average supply current drawn by the output stage is frequency dependent, as can be seen in ICC vs. Frequency graph in the Typical Characteristics Graphs.

The output stage $I^{2} R$ power dissipation is nothing more than the product of the output current times the voltage drop across the output device. In addition to the current drawn by any resistive load, there will be an output current due to the charging and discharging of the load capacitance. In most high frequency circuits the current used to charge and discharge capacitance dominates, and the power dissipation is approximately

$$
P_{A C}=C V_{C C^{2 f}}
$$

Where C=Load Capacitance
$f=$ Frequency
In cases where the load is a power MOSFET and the gate drive requirements are described in terms of gate charge, the ICL7667 power dissipation will be

$$
P_{A C}=Q_{G} V_{C C} f
$$

Where $Q_{G}=$ Charge required to switch the gate, in Coulombs.
$f=$ Frequency

POWER MOS DRIVER CIRCUITS

POWER MOS DRIVER REQUIREMENTS

Because it has a very high peak current output, the ICL7667 excels at driving the gate of power MOS devices. The high current output is important since it minimizes the time the power MOS device is in the linear region. Figure 5 is a typical curve of charge vs. gate voltage for a power MOSFET. The flat region is caused by the Miller capacitance, where the drain-to-gate capacitance is multiplied by the voltage gain of the FET. This increase in capacitance occurs while the power MOSFET is in the linear region and
is dissipating significant amounts of power. The very high current output of the ICL. 7667 is able to rapidly overcome this high capacitance and quickly turns the MOSFET fully on or off.

DIRECT DRIVE OF MOSFETs

Figure 6 shows interfaces between the ICL7667 and typical switching regulator ICs. Note that unlike the DS0026, the ICL7667 does not need a dropping resistor and speedup capacitor between it and the regulator IC. The ICL7667, with its high slew rate and high voltage drive can directly drive the gate of the MOSFET. The 1527 IC is the same as the 1525 IC, except that the outputs are inverted. This inversion is needed since ICL7667 is an inverting buffer.

TRANSFORMER COUPLED DRIVE OF MOSFETs

Transformers are often used for isolation between the logic and control section and the power section of a switching regulator. The high output drive capability of the ICL7667 enables it to directly drive such transformers. Figure 7 shows a typical transformer coupled drive circuit. PWM ICs with either active high or active low outputs can be used in this circuit, since any inversion required can be obtained by reversing the windings on the secondaries.

BUFFERED DRIVERS FOR MULTIPLE MOSFETs

In very high power applications which use a group of MOSFETs in parallel, the input capacitance may be very large and it can be difficult to charge and discharge quickly. Figure 8 shows a circuit which works very well with very large capacitance loads. When the input of the driver is zero, Q1 is held in conduction by the lower half of the ICL7667 and Q2 is clamped off by Q1. When the input goes positive, Q1 is turned off and a current pulse is applied to the gate of Q2 by the upper half of the ICL7667 through the transformer, T1. After about $20 \mathrm{~ns}, \mathrm{~T} 1$ saturates and Q2 is held on by its own C_{gs} and the bootstrap circuit of C1, D1 and R1. This bootstrap circuit may not be needed at frequencies greater than 10 kHz since the input capacitance of Q2 discharges slowly.

TC036501

Figure 6: Direct Drive of MOSFET Gates

Figure 7: Transformer Coupled Drive Circuit

T1 - IS THREE TURNS 30 BIFILAR ON A FERRITE BEAD.

Figure 8: Very High-Speed Driver

Figure 9: Voltage Inverter

Figure 10: Voltage Doubler

OTHER APPLICATIONS

RELAY AND LAMP DRIVERS

The ICL7667 is suitable for converting low power TTL or CMOS signals into high current, high voltage outputs for relays, lamps and other loads. Unlike many other level translator/driver ICs, the ICL7667 will both source and sink current. The continuous output current is limited to 200 mA by the $I^{2} \mathrm{R}$ power dissipation in the output FETs.

CHARGE PUMP OR VOLTAGE INVERTERS AND DOUBLERS

The low output impedance and wide $V_{C C}$ range of the ICL7667 make it well suited for charge pump circuits. Figure

9 shows a typical charge pump voltage inverter circuit and a typical performance curve. A common use of this circuit is to provide a low current negative supply for analog circuitry or RS232 drivers. With an input voltage of +15 V , this circuit will deliver 20 mA at -12.6 V . By increasing the size of the capacitors, the current capability can be increased and the voltage loss decreased. The practical range of the input frequency is 500 Hz to 250 kHz . As the frequency goes up, the charge pump capacitors can be made smaller, but the internal losses in the ICL7667 will rise, reducing the circuit efficiency.

Figure 10, a voltage doubler, is very similar in both circuitry and performance. A potential use of Figure 8 would be to supply the higher voltage needed for EEPROM or EPROM programming.

CLOCK DRIVER

Some microprocessors (such as the 68XX and 65XX families) use a clock signal to control the various LSI peripherals of the family. The ICL7667's combination of low propagation delay, high current drive capability and wide voltage swing make it attractive for this application. Although the ICL7667 is primarily intended for driving power MOSFET gates at 15V, the ICL7667 also works well as a 5V high-speed buffer. Unlike standard 4000 series CMOS, the ICL7667 uses short channel length FETs and the iCL7667 is only slightly slower at 5 V than at 15 V .

GENERAL DESCRIPTION

The Intersil ICL7673 is a monolithic CMOS battery backup circuit that offers unique performance advantages over conventional means of switching to a backup supply. The ICL7673 is intended as a low-cost solution for the switching of systems between two power supplies; main and battery backup. The main application is keep-alivebattery power switching for use in volatile CMOS RAM memory systems and real time clocks. In many applications this circuit will represent a low insertion voltage loss between the supplies and load. This circuit features low current consumption, wide operating voltage range, and exceptionally low leakage between inputs. Logic outputs are provided that can be used to indicate which supply is connected and can also be used to increase the power switching capability of the circuit by driving external PNP transistors.
The ICL7673 is available in either an 8-pin plastic minidip package, a TO-99 metal can, or as dice.

FEATURES

- Automatically Connects Output to The Greater Of Either Input Supply Voltage
- If Main Power to External Equipment Is Lost, Circuit Will Automatically Connect Battery Backup
- Reconnects Main Power When Restored
- Logic Indicator Signaling Status Of Main Power
- Low Impedance Connection Switches
- Low Internal Power Consumption
- Wide Supply Range: 2.5 to 15 Volts
- Low Leakage Between Inputs
- External Transistors May Be Added If Very Large Currents Need to Be Switched

APPLICATIONS

- On Board Battery Backup for Real-Time Clocks, Timers, or Volatile RAMs
- Over/Under Voltage Detector
- Peak Voltage Detector
- Other Uses:
- Portable Instruments, Portable Telephones, Line Operated Equipment

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7673CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-pin minidip
ICL7673CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-pin SOIC
ICL7673ITV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -pin TO-99
ICL7673/D	-	DICE ONLY*

**Parameter Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

$\mathbf{V}_{\mathbf{P}}>\mathbf{V}_{\mathbf{S}}, \mathrm{P}_{1}$ SWITCH ON AND P_{b} SWITCH ON $\mathbf{V}_{\mathbf{S}}>\mathbf{V}_{\mathbf{p}}, \mathbf{P}_{2}$ SWITCH ON AND $\mathrm{S}_{\text {bar }}$ SWITCH ON

Figure 1: Functional Diagram

ABSOLUTE MAXIMUM RATINGS

Input Supply (V_{P} or V_{S}) Voltage \ldots. -0.3 to +18 V	
Output Voltages $\mathrm{P}_{\text {bar }}$ and $\mathrm{S}_{\text {bar }} \ldots \ldots0-0.3$ to +18 V	
Peak Current	
Input $V_{P}\left(@ V_{P}=5 \mathrm{~V}\right)($ note 1)	. 38 mA
Input $\mathrm{V}_{S}\left(@ \mathrm{~V}_{S}=3 \mathrm{~V}\right)$	30 mA
$P_{\text {bar }}$ or $S_{\text {ba }}$	150 mA
Continuous Current	
Input $\mathrm{V}_{\mathrm{P}}\left(@ \mathrm{~V}_{\mathrm{P}}=5 \mathrm{~V}\right)$ (note 1)	38 mA
Input $V_{S}\left(@ V_{S}=3 \mathrm{~V}\right)$	30 mA
$\mathrm{P}_{\text {bar }}$ or $\mathrm{S}_{\text {bar }}$	50 mA

Package Dissipation
300 mW
Linear Derating Factors

TO-99	PLASTIC
$5.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
above $50^{\circ} \mathrm{C}$	above $36{ }^{\circ} \mathrm{C}$

Operating Temperature Range:
ICL7673CPA/CBA

$$
. .0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

$$
\text { ICL7673ITV }-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

Storage Temperature...................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)
$.300^{\circ} \mathrm{C}$
Note 1. Derate above $25^{\circ} \mathrm{C}$ by $0.38 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 2: Pin Configurations

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{p}	INPUT VOLTAGE	$\mathrm{V}_{\mathrm{S}}=0$ volts l load = OmA	2.5	-	15	V
$\mathrm{V}_{\text {S }}$		$V_{P}=0$ volts \| load $=0 \mathrm{~mA}$	2.5	-	15	
1^{+}	QUIESCENT SUPPLY CURRENT	$\mathrm{V}_{\mathrm{P}}=0$ volts $\mathrm{V}_{\mathrm{S}}=3$ volts I load = 0mA	-	1.5	5	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ds(on) } \mathrm{P}_{1}}$	SWITCH RESISTANCE P1 (NOTE 2)	$V_{P}=5$ volts $\mathrm{V}_{\mathrm{S}}=3$ volts \| load $=15 \mathrm{~mA}$	-	8	15	Ω
		@ $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	16	-	
		$V_{P}=9$ volts $\mathrm{V}_{\mathrm{S}}=3$ volts \| load $=15 \mathrm{~mA}$	-	6	-	Ω
		$\begin{aligned} & V_{P}=12 \text { volts } \\ & V_{S}=3 \text { volts } \\ & 1 \text { load }=15 \mathrm{~mA} \end{aligned}$	-	5	-	Ω
$\mathrm{T}_{\mathrm{C}(\mathrm{P} 1)}$	TEMPERATURE COEFFICIENT OF SWITCH RESISTANCE P1	$V_{P}=5$ volts $\mathrm{V}_{\mathrm{S}}=3$ volts \| load $=15 \mathrm{~mA}$	-	2.03	-	\%/ ${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{R}_{\text {ds(on) } \mathrm{P}_{2}}$	SWITCH RESISTANCE P2 (NOTE 2)	$\mathrm{V}_{\mathrm{P}}=0$ volts $\mathrm{V}_{\mathrm{S}}=3$ volts \| load $=1 \mathrm{~mA}$	-	40	100	Ω
		@ $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	60	-	
		$V_{P}=0$ volts $\mathrm{V}_{\mathrm{S}}=5$ volts l load $=1 \mathrm{~mA}$	-	26	-	Ω
		$V_{P}=0$ volts $V_{S}=9$ volts \| load $=1 \mathrm{~mA}$	-	16	-	Ω
$\mathrm{T}_{\mathrm{C}}(\mathrm{P} 2)$	TEMPERATURE COEFFICIENT OF SWITCH RESISTANCE P2	$V_{P}=0$ volts $\mathrm{V}_{\mathrm{S}}=3$ volts \| load $=1 \mathrm{~mA}$	-	0.7	-	\%/ ${ }^{\circ} \mathrm{C}$
L(PS)	LEAKAGE CURRENT (V_{P} to V_{S})	$\mathrm{V}_{\mathrm{P}}=5$ volts $\mathrm{V}_{\mathrm{S}}=3$ volts \| load $=10 \mathrm{~mA}$	-	0.01	20	$n A$
		(a) $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	35	-	
L(SP)	LEAKAGE CURRENT (V_{S} to V_{P})	$V_{P}=0$ volts $\mathrm{V}_{\mathrm{S}}=3$ volts \| load $=1 \mathrm{~mA}$	-	0.01	50	$n A$
		(a) $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	120	-	
Vo Pbar	OPEN DRAIN OUTPUT SATURATION VOLTAGES	$\mathrm{V}_{\mathrm{P}}=5$ volts $\mathrm{V}_{\mathrm{S}}=3$ volts 1 sink $=3.2 \mathrm{~mA}$ l load $=0 \mathrm{~mA}$	-	85	400	mV
		(1) $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	120	-	
		$V_{P}=9$ volts $\mathrm{V}_{\mathrm{S}}=3$ volts 1 sink $=3.2 \mathrm{~mA}$ l load $=0 \mathrm{~mA}$	-	50	-	mV
		$\begin{aligned} & V_{P}=12 \text { volts } \\ & V_{S}=3 \text { volts } \\ & \text { I sink }=3.2 \mathrm{~mA} \\ & \text { I load }=0 \mathrm{~mA} \end{aligned}$	-	40	-	mV
V ${ }_{\text {O }}$ Sbar		$V_{P}=0$ volts $V_{S}=3$ volts 1 sink $=3.2 \mathrm{~mA}$ 1 load $=0 \mathrm{~mA}$	-	150	400	mV
		(a) $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	210	-	
		$V_{P}=0$ volts $V_{S}=5$ volts 1 sink $=3.2 \mathrm{~mA}$ l load = 0mA	-	85	-	mV
		$V_{P}=0$ volts $\mathrm{V}_{\mathrm{S}}=9$ volts 1 sink $=3.2 \mathrm{~mA}$ l load $=0 \mathrm{~mA}$	-	50	-	mV

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IL Pbar	OUTPUT LEAKAGE CURRENTS OF Pbar AND Sbar	$V_{P}=0$ volts $V_{S}=15$ volts l load $=0 \mathrm{~mA}$	-	50	500	nA
		(a) $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	900	-	
IL Sbar		$V_{P}=15$ volts $\mathrm{V}_{\mathrm{S}}=0$ volts l load $=0 \mathrm{~mA}$	-	50	500	nA
		(a) $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	900	-	
$V_{P}-V_{S}$	SWITCHOVER UNCERTAINTY FOR COMPLETE SWITCHING OF INPUTS AND OPEN DRAIN OUTPUTS.	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3 \text { volts } \\ & \text { I sink }=3.2 \mathrm{~mA} \\ & \text { l load }=0 \mathrm{~mA} \end{aligned}$	-	5	50	mV

NOTE 2. The minimum input to output voltage can be determined by multiplying the load current by the switch resistance.

TYPICAL PERFORMANCE CHARACTERISTICS

ON-RESISTANCE SWITCH P1 AS A FUNCTION OF INPUT VOLTAGE $\mathbf{V P}_{P}$

ON-RESISTANCE SWITCH P2 AS A FUNCTION OF INPUT VOLTAGE Vs

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

SUPPLY VOLTAGE (V)
is LEAKAGE CURRENT V_{p} to V_{s} AS A FUNCTION OF INPUT VOLTAGE

OP060901

Pbar OR Sbar SATURATION VOLTAGE AS A FUNCTION OF OUTPUT CURRENT

OP01600I

DETAILED DESCRIPTION

As shown in the functional diagram (Figure 1), the ICL7673 includes a comparator which senses the input voltages V_{P} and V_{S}. The output of the comparator drives the first inverter and the open-drain N -channel transistor $P_{\text {bar }}$. The first inverter drives a large P -channel switch, P1, a second inverter, and another open-drain N -channel transistor, $\mathrm{S}_{\mathrm{bar}}$. The second inverter drives another large P channel switch P2. The ICL7673, connected to a main and a backup power supply, will connect the supply of greater potential to its output. The circuit provides break-beforemake switch action as it switches from main to backup power in the event of a main power supply failure. For proper operation, inputs V_{P} and V_{S} must not be allowed to float, and, the difference in the two supplies must be greater than 50 millivolts. The leakage current through the reverse biased parasitic diode of switch P2 is very low.

OUTPUT VOLTAGE

The output operating voltage range is 2.5 to 15 volts. The insertion loss between either input and the output is a function of load current, input voltage, and temperature. This is due to the P-channels being operated in their triode region, and, the ON-resistance of the switches is a function of output voltage V_{O}. The ON-resistance of the P-channels have positive temperature coefficients, and therefore as temperature increases the insertion loss also increases. At low load currents the output voltage is nearly equal to the greater of the two inputs. The maximum voltage drop across switch P1 or P2 is 0.5 volts, since above this voltage the body-drain parasitic diode will become forward biased. Complete switching of the inputs and open-drain outputs typically occurs in 50 microseconds.

INPUT VOLTAGE

The input operating voltage range for V_{P} or V_{S} is 2.5 to 15 volts. The input supply voltage (V_{P} or V_{S}) slew rate should be limited to 2 volts per microsecond to avoid potential harm to the circuit. In line-operated systems, the rate-of-rise (or fall) of the supply is a function of power supply design. For battery applications it may be necessary to use a capacitor between the input and ground pins to limit the rate-of-rise of the supply voltage. A low-impedance capacitor such as a $0.047 \mu \mathrm{~F}$ disc ceramic can be used to reduce the rate-of-rise.

STATUS INDICATOR OUTPUTS

The N-channel open drain output transistors can be used to indicate which supply is connected, or can be used to drive external PNP transistors to increase the power switching capability of the circuit. When using external PNP power transistors, the output current is limited by the beta and thermal characteristics of the power transistors. The application section details the use of external PNP transistors.

APPLICATIONS

A typical discrete battery backup circuit is illustrated in Figure 3. This approach requires several components, substantial printed circuit board space, and high labor cost. It also consumes a fairly high quiescent current. The ICL7673 battery backup circuit, illustrated in Figure 4, will often replace such discrete designs and offer much better performance, higher reliability, and lower system manufacturing cost. A trickle charge system could be implemented with an additional resistor and diode as shown in Figure 5. A complete low power AC to regulated DC system can be implemented using the ICL7673 and ICL7663 micropower voltage regulator as shown in Figure 6.

Figure 3: Discrete Battery Backup Circuit

TC037701
Figure 4: ICL7673 Battery Backup Circuit

Figure 5: Application Requiring Rechargeable Battery Backup

Applications for the ICL7673 include volatile semiconductor memory storage systems, real-time clocks, timers, alarm systems, and over/under voltage detectors. Other systems requiring DC power when the master AC line supply fails can also use the ICL7673.

A typical application, as illustrated in Figure 7, would be a microprocessor system requiring a 5 volt supply. In the event of primary supply failure, the system is powered down, and a 3 volt battery is employed to maintain clock or volatile memory data. The main and backup supplies are connected to V_{p} and V_{S}, with the circuit output V_{0} supplying power to the clock or volatile memory. The ICL7673 will sense the main supply, when energized, to be of greater potential than V_{S} and connect, via its internal MOS switches, V_{P} to output V_{O}. The backup input, V_{S} will be disconnected internally. In the event of main supply failure, the circuit will sense that the backup supply is now the greater potential, disconnect V_{P} from V_{0}, and connect V_{S}.

Figure 8 illustrates the use of external PNP power transistors to increase the power switching capability of the circuit. In this application the output current is limited by the beta and thermal characteristics of the power transistors.

If hysteresis is desired for a particular low power application, positive feedback can be applied between the input V_{p} and open drain output $\mathrm{S}_{\text {bar }}$ through a resistor as illustrated in Figure 9. For high power applications hysteresis can be applied as shown in Figure 10.

The ICL7673 can also be used as a clipping circuit as illustrated in Figure 11. With high impedance loads the circuit output will be nearly equal to the greater of the two input signals.

Figure 6: Power Supply for Low Power Portable AC to DC Systems

Figure 7: Typical Microprocessor Memory Application

Figure 9: Low Current Battery Backup System With Hysteresis

Figure 11: Clipping Circuits

Figure 10: High Current Backup System With Hysteresis

ICL8013

Four Quadrant
 Analog Multiplier

GENERAL DESCRIPTION

The ICL8013 is a four quadrant analog multiplier whose output is proportional to the algebraic product of two input signals. Feedback around an internal op-amp provides level shifting and can be used to generate division and square root functions. A simple arrangement of potentiometers may be used to trim gain accuracy, offset voltage and feedthrough performance. The high accuracy, wide bandwidth, and increased versatility of the ICL8013 make it ideal for ali multiplier applications in control and instrumentation systems. Applications include RMS measuring equipment, frequency doublers, balanced modulators and demodulators, function generators, and voltage controlled amplifiers.

FEATURES

- Accuracy of $\pm 0.5 \%$ (' A^{\prime} " Version)
- Full $\pm 10 \mathrm{~V}$ Input Voltage Range
- 1 MHz Bandwidth
- Uses Standard $\pm 15 \mathrm{~V}$ Supplies
- Built-in Op Amp Provides Level Shifting, Division and Square Root Functions

ORDERING INFORMATION

PART NUMBER	MULTIPLICATION ERROR	TEMPERATURE RANGE	PACKAGE
ICL8013AM TZ	$\pm 0.5 \%$		
ICL8013BM TZ	$\pm 1 \%$		
ICL8013CM TZ	$\pm 2 \%$	MAX	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ICL8013AC TZ	$\pm 5 \%$		
ICL8013BC TZ	$\pm 1 \%$		
ICL8013CC TZ MAX	$\pm 25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
ICL8013/D	$\pm 2 \%$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10-\mathrm{LEAD}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO- 100		

**Parameter Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

BD011001
Figure 1: Functional Diagram (Multiplexer)

(outline dwg TO-100)
CDO2650

Figure 2: Pin Configuration

ABSOLUTE MAXIMUM RATINGS

Supply Voltage \qquad .$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1) 500 mW
Input Voltages

($X_{I N}, Y_{I N}, Z_{I N}, X_{O S}, Y_{O S}, Z_{O S}$)
\qquad VSUPPLY

Operating Temperature Range:
ICL8013XC \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL8013XM $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10sec)
$300^{\circ} \mathrm{C}$

NOTE 1: Derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperature above $75^{\circ} \mathrm{C}$.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Unless otherwise specified $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Gain and Offset Potentiometers Externally Trimmed)

PARAMETER		TEST CONDITIONS	ICL8013A			ICL8013B			ICL8013C			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
Multiplier Function					$\frac{X Y}{10}$			$\frac{X Y}{10}$			$\frac{X Y}{10}$		
Multiplication		$\begin{aligned} & -10<X<10 \\ & -10<Y<10 \end{aligned}$			0.5			1.0		2.0*	2.0	\% Full Scale	
Divider Function				$\frac{102}{x}$			$\frac{10 z}{x}$			$\frac{10 z}{x}$			
Division Error		$\begin{aligned} & x=-10 \\ & x=-1 \end{aligned}$		$\begin{aligned} & 0.3 \\ & 1.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.3 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 0.3 \\ & 1.5 \end{aligned}$		\% Full Scale \% Full Scale	
Feedthrough		$\begin{aligned} & X=0 Y=20 V_{p-p} f=50 \mathrm{~Hz} \\ & Y=0 X=20 V_{p-p} f=50 \mathrm{~Hz} \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & 200^{*} \\ & 150^{*} \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & m V_{p-p} \\ & m V_{p-p} \end{aligned}$	
Non-Linearity	X Input	$\begin{aligned} & X=20 V_{p-p} \\ & Y= \pm 10 \mathrm{Vdc} \end{aligned}$		± 0.5			± 0.5			± 0.8		\%	
	Y Input	$\begin{aligned} & Y=20 V_{p-p} \\ & X= \pm 10 \mathrm{Vdc} \end{aligned}$		± 0.2			± 0.2			± 0.3		\%	
Frequency Response Small Signal Bandwidth (-3dB)				1.0			1.0			1.0		MHz	
Full Power Bandwidth				750			750			750		kHz	
Slew Rate				45			45			45		$\mathrm{V} / \mu \mathrm{s}$	
1\% Amplitude Error				75			75			75		kHz	
1\% Vector Error (0.5° Chase Shift)				5	.		5			5		kHz	
Settling Time (to $\pm 2 \%$ of Final Value) Overload Recovery (to $\pm 2 \%$ of Final Value)		$V_{\text {IN }}= \pm 10 \mathrm{~V}$		1 1			1 1			1 1		$\mu \mathrm{s}$ $\mu \mathrm{s}$	
Output Noise		5 Hz to 10 kHz 5 Hz to 5 MHz		$\begin{gathered} 0.6 \\ 3 \end{gathered}$		-	$\begin{gathered} 0.6 \\ 3 \end{gathered}$			$\begin{gathered} 0.6 \\ 3 \end{gathered}$		mV rms mV rms	
Input Resistance	X Input			10			10			10		$\mathrm{M} \Omega$	
	Y Input			6			6			6		$\mathrm{M} \Omega$	
	Z Input			36			36			36		$k \Omega$	
Input Bias Current	X or Y Input			2	5			7.5			10	$\mu \mathrm{A}$	
	Z Input			25			25			25		$\mu \mathrm{A}$	
Power Supply Variation	Multiplication Error	.		0.2			0.2			0.2		\%/\%	
	Output Offset				50			75			100	mV / V	
	Scale Factor			0.1			0.1			0.1		\%/\%	
Quiescent Current				3.5	6.0		3.5	6.0		3.5	6.0	mA	

ELECTRICAL CHARACTERISTICS (CONT.)

PARAMETER		TEST CONDITIONS	ICL8013A			ICL8013B			ICL8013C			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
THE FOLLOWING SPECIFICATIONS APPLY OVER THE OPERATING TEMPERATURE RANGES													
Multiplication Error			$\begin{aligned} & -10 \mathrm{~V}<X_{\text {IN }}<10 \mathrm{~V}, \\ & -10 \mathrm{~V}<\mathrm{Y}_{\mathrm{IN}}<10 \mathrm{~V} \end{aligned}$		1.5			2			3		\% Full Scale
Average Temperature Coefficients	Accuracy			0.06			0.06			0.06		\%/ ${ }^{\circ} \mathrm{C}$	
	Output Offset			0.2			0.2			0.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Scale Factor			0.04			0.04			0.04		$\% /{ }^{\circ} \mathrm{C}$	
Input Bias Current	X or Y Input	.			5			5			10	$\mu \mathrm{A}$	
	Z Input				25			25			35	$\mu \mathrm{A}$	
Input Voltage (X, Y, or Z)					± 10			± 10			± 10	V	
Output Voltage Swing		$\begin{aligned} & R_{L} \geq 2 \mathrm{k} \Omega \\ & C_{L}<1000 \mathrm{pF} \\ & \hline \end{aligned}$		± 10			± 10			± 10		V	

*Dice only

Figure 3: Differential Amplifier

LC00980I
Figure 4: Transconductance Multiplier

DETAILED DESCRIPTION

The fundamental element of the ICL8013 multiplier is the bipolar differential amplifier of Figure 3.

The small signal differential voltage gain of this circuit is given by

$$
\begin{gathered}
\qquad A V=\frac{V_{O U T}}{V_{I N}}=\frac{R_{L}}{r_{e}} \\
\text { Substituting } r_{e}=\frac{1}{g_{m}}=\frac{k T}{q_{E}} \\
V_{O U T}=V_{I N} \frac{R_{L}}{r_{e}}=V_{I N} \cdot \frac{q_{E} R_{L}}{k T}
\end{gathered}
$$

The output voltage is thus proportional to the product of the input voltage $\mathrm{V}_{\mathbb{N}}$ and the emitter current I_{E}. In the simple transconductance multiplier of Figure 4, a current source comprising Q_{3}, D_{1}, and R_{Y} is used. If V_{Y} is large compared with the drop across D_{1}, then

$$
\begin{aligned}
I_{D} & \simeq \frac{V_{Y}}{R_{Y}}=2 I_{E} \text { and } \\
V_{O U T} & =\frac{q R_{L}}{k T R_{Y}}\left(V_{X} \cdot V_{Y}\right)
\end{aligned}
$$

There are several difficulties with this simple modulator:
1: V_{Y} must be positive and greater than V_{D}.
2: Some portion of the signal at V_{X} will appear at the output unless $I_{E}=0$.
3: $\quad V_{X}$ must be a small signal for the differential pair to be linear.

4: The output voltage is not centered around ground.
The first problem relates to the method of converting the V_{Y} voltage to a current to vary the gain of the V_{X} differential pair. A better method, Figure 5, uses another differential pair but with considerable emitter degeneration. In this circuit the differential input voltage appears across the common emitter resistor, producing a current which adds or subtracts from the quiescent current in either collector. This type of voltage to current converter handles signals from 0 volts to ± 10 volts with excellent linearity.

Figure 5: Voltage to Current Converter

The second problem is called feedthrough; i.e. the product of zero and some finite input signal does not produce zero output voltage. The circuit whose operation is illustrated by Figures 6A, B, and C overcomes this problem and forms the heart of many multiplier circuits in use today.

This circuit is basically two matched differential pairs with cross coupled collectors. Consider the case shown in 6A of exactly equal current sources biasing the two pairs. With a small positive signal at $V_{I N}$, the collector current of Q_{1} and Q_{4} will increase but the collector currents of Q_{2} and Q_{3} will decrease by the same amount. Since the collectors are cross coupled the current through the load resistors remains unchanged and independent of the $V_{I N}$ input voltage.

In Figure 6B, notice that with $\mathrm{V}_{\mathrm{IN}}=0$ any variation in the ratio of biasing current sources will produce a common mode voltage across the load resistors. The differential output voltage will remain zero. In Figure 6C we apply a differential input voltage with unbalanced current sources. If $l_{E 1}$ is twice $l_{E 2}$, the gain of differential pair Q_{1} and Q_{2} is twice the gain of pair Q_{3} and Q_{4}. Therefore, the change in cross coupled collector currents will be unequal and a
differential output voltage will result. By replacing the separate biasing current sources with the voltage to current converter of Figure 5 we have a balanced multiplier circuit capable of four quadrant operation (Figure 7).

LC01020
Figure 6C: Input Signal with Unbalanced Current Sources, Differential Output Voltage

This circuit of Figure 7 still has the problem that the input voltage V_{IN} must be smail to keep the differential amplifier in the linear region. To be able to handle large signals, we need an amplitude compression circuit.

LC01010
Figure 7: Typical Four Quadrant Multiplier-Modulator

LC01030I
Figure 8A: Current Gain Cell

Figure 5 showed a current source formed by relying on the matching characteristics of a diode and the emitter base junction of a transistor. Extension of this idea to a differential circuit is shown in Figure 8A. In a differential pair, the input voltage splits the biasing current in a logarithmic ratio. (The usual assumption of linearity is useful only for small signals.) Since the input to the differential pair in Figure 8A is the difference in voltage across the two diodes, which in turn is proportional to the log of the ratio of drive currents, it follows that the ratio of diode currents and the ratio of collector currents are linearly related and independent of amplitude. If we combine this circuit with the voltage to current converter of Figure 5, we have Figure 8B. The output of the differential amplifier is now proportional to the input voltage over a large dynamic range, thereby improving linearity while minimizing drift and noise factors.

The complete schematic is shown in Figure 9. The differential pair Q_{3} and Q_{4} form a voltage to current converter whose output is compressed in collector diodes Q_{1} and Q_{2}. These diodes drive the balanced cross-coupled differential amplifier $Q_{7} / Q_{8} Q_{14} / Q_{15}$. The gain of these amplifiers is modulated by the voltage to current converter Q_{9} and Q_{10}. Transistors Q_{5}, Q_{6}, Q_{11}, and Q_{12} are constant current sources which bias the voltage to current converter. The output amplifier comprises transistors Q_{16} through Q27.

DS01840I
Figure 9: ICL8013 Schematic

MULTIPLICATION

In the standard multiplier connection, the Z terminal is connected to the op amp output. All of the modulator output current thus flows through the feedback resistor R27 and produces a proportional output voltage.

BD006911
Figure 10A: Multiplier Block Diagram

Multiplier Trimming Procedure

1. Set $X_{\mathbb{N}}=Y_{\mathbb{N}}=O V$ and adjust $Z_{O S}$ for zero Output.
2. Apply $\mathbf{a} \pm 10 \mathrm{~V}$ low frequency ($\leq 100 \mathrm{~Hz}$) sweep (sine or triangle) to $Y_{I N}$ with $X_{I N}=O V$, and adjust $X_{O S}$ for minimum output.
3. Apply the sweep signal of Step 2 to $X_{I N}$ with $Y_{I N}=O V$ and adjust $Y_{O S}$ for minimum Output.
4. Readjust ZOS as in Step 1, if necessary.
5. With $X_{I N}=10.0 \mathrm{~V}$ DC and the sweep signal of Step 2 applied to Y_{IN}, adjust the Gain potentiometer for Output $=Y_{I N}$. This is easily accomplished with a differential scope plug-in $(A+B)$ by inverting one
signal and adjusting Gain control for (Output - Y_{IN}) = Zero.

Figure 10B: Actual Circuit Connection

DIVISION

If the Z terminal is used as an input, and the output of the op-amp connected to the Y input, the device functions as a divider. Since the input to the op-amp is at virtual ground, and requires negligible bias current, the overall feedback forces the modulator output current to equal the current produced by Z .

$$
\begin{gathered}
\text { Therefore } I_{O}=X_{I N} \cdot Y_{I N}=\frac{Z_{I N}}{R}=10 Z_{I N} \\
\text { Since } Y_{I N}=E_{\text {OUT }}, E_{\text {OUT }}=\frac{10 Z_{I N}}{X_{I N}}
\end{gathered}
$$

Note that when connected as a divider, the X input must be a negative voltage to maintain overall negative feedback.

Figure 11A: Division Block Diagram

CD017111
Figure 11B: Actual Circuit Connection

Divider Trimming Procedure

1. Set trimming potentiometers at mid-scale by adjusting voltage on pins 7, 9 and 10 ($\mathrm{X}_{\mathrm{OS}}, \mathrm{Y}$ OS, Zos) for zero volts.
2. With $Z_{I N}=O V$, trim $Z_{O S}$ to hold the Output constant, as $X_{I N}$ is varied from -10 V through -1 V .
3. With $Z_{I N}=O V$ and $X_{I N}=-10.0 \mathrm{~V}$ adjust $Y_{O S}$ for zero Output voltage.
4. With $Z_{I N}=X_{I N}$ (and/or $Z_{I N}=-X_{I N}$) adjust $X_{O S}$ for minimum worst-case variation of Output, as $X_{I N}$ is varied from -10 V to -1 V .
5. Repeat Steps 2 and 3 if Step 4 required a large initial adjustment.
6. With $Z_{I N}=X_{I N}$ (and/or $\left.Z_{I N}=-X_{I N}\right)$ adjust the gain control until the output is the closest average around $+10.0 \mathrm{~V}\left(-10 \mathrm{~V}\right.$ for $\left.\mathrm{Z}_{\mathrm{IN}}=-\mathrm{X}_{\mathrm{IN}}\right)$ as X_{IN} is varied from -10 V to -3 V .

SQUARING

The squaring function is achieved by simply multiplying with the two inputs tied together. The squaring circuit may also be used as the basis for a frequency doubler since $\cos ^{2} \omega t=1 / 2(\cos 2 \omega t+1)$.

SQUARE ROOT

Tying the X and Y inputs together and using overall feedback from the Op Amp results in the square root function. The output of the modulator is again forced to equal the current produced by the Z input.

$$
\begin{gathered}
\mathrm{I}_{\mathrm{O}}=\mathrm{X}_{I N} \cdot Y_{I N}=\left(-\mathrm{E}_{\mathrm{OUT}}\right)^{2}=10 Z_{I N} \\
E_{O U T}=-\sqrt{10 Z_{I N}}
\end{gathered}
$$

The output is a negative voltage which maintains overall negative feedback. A diode in series with the Op Amp output prevents the latchup that would otherwise occur for negative input voltages.

BD007121
Figure 13A: Square Root Block Diagram

Figure 13B: Actual Circuit Connection

Square Root Trimming Procedure

1. Connect the ICL8013 in the Divider configuration.
2. Adjust ZOS, YOS, X_{OS}, and Gain using Steps 1 through 6 of Divider Trimming Procedure.
3. Convert to the Square Root configuration by connecting $X_{\mathbb{N}}$ to the Output and inserting a diode between Pin 4 and the Output node.
4. With $Z_{I N}=0 \mathrm{~V}$ adjust Z_{OS} for zero Output voltage.

VARIABLE GAIN AMPLIFIER

Most applications for the ICL8013 are straight forward variations of the simple arithmetic functions described above. Although the circuit description frequently disguises the fact, it has already been shown that the frequency doubler is nothing more than a squaring circuit. Similarly the variable gain amplifier is nothing more than a multiplier, with the input signal applied at the X input and the control voltage applied at the Y input.

Figure 14: Variable Gain Amplifier

TYPICAL APPLICATIONS

Figure 15: Multiplication

AMPLITUDE AND PHASE AS A FUNCTION OF FREQUENCY

NONLINEARITY AS A FUNCTION OF FREQUENCY

FEEDTHROUGH AS A FUNCTION OF FREQUENCY

OP02740I

DEFINITION OF TERMS

Multiplication/Division Error: This is the basic accuracy specification. It includes terms due to linearity, gain, and offset errors, and is expressed as a percentage of the full scale output.
Feedthrough: With either input at zero, the output of an ideal multiplier should be zero regardless of the signal applied to the other input. The output seen in a non-ideal multiplier is known as the feedthrough.
Nonlinearity: The maximum deviation from the best straight line constructed through the output data, expressed as a percentage of full scale. One input is held constant and the other swept through its nominal range. The nonlinearity is the component of the total multiplication/division error which cannot be trimmed out.

GENERAL DESCRIPTION

The ICL8038 Waveform Generator is a monolithic integrated circuit capable of producing high accuracy sine, square, triangular, sawtooth and pulse waveforms with a minimum of external components. The frequency (or repetition rate) can be selected externally from .001 Hz to more than 300 kHz using either resistors or capacitors, and frequency modulation and sweeping can be accomplished with an external voltage. The ICL8038 is fabricated with advanced monolithic technology, using Schottky-barrier diodes and thin film resistors, and the output is stable over a wide range of temperature and supply variations. These devices may be interfaced with phase locked loop circuitry to reduce temperature drift to less than $250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

FEATURES

- Low Frequency Drift With Temperature - 250 ppm $/{ }^{\circ} \mathrm{C}$
- Simultaneous Sine, Square, and Triangle Wave Outputs
- Low Distortion - 1\% (Sine Wave Output)
- High Linearity - 0.1\% (Triangle Wave Output)
- Wide Operating Frequency Range -0.001 Hz to 300 kHz
- Variable Duty Cycle - 2% to 98%
- High Level Outputs - TTL to 28V
- Easy to Use - Just A Handful of External Components Required

ORDERING INFORMATION

PART NUMBER	STABILITY	TEMP. RANGE	PACKAGE
ICL8038CCJD	$250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CERDIP
ICL8038BCJD	$180 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CERDIP
ICL8038ACJD	$110 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CERDIP
ICL8038BMJD $*$	$350 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \max$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP
ICL8038AMJD*	$250 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \max$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP
ICL8038/D	-	-	DICE**

*Add /883B to part number if 883 processing is required.
**Parameter Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

BD007301
Figure 1: Functional Diagram

CD017801

Figure 2: Pin Configuration (Outline dwg JD)

ICL8038

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V^{-}to V^{+})	36 V
Power Dissipation ${ }^{(1)}$	750 mW
Input Voltage (any pin)	V^{-}to V^{+}
Input Current (Pins 4 and 5)	
Output Sink Current (Pins 3	

Storage Temperature Range $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature Range:

$$
\begin{aligned}
& 8038 \mathrm{AM}, 8038 \mathrm{BM} \ldots \ldots \ldots \ldots .55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& 8038 \mathrm{AC}, 8038 \mathrm{BC}, 8038 \mathrm{CC} \ldots \ldots .0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& \text { Lead Temperature (Soldering, 10sec) } \ldots \ldots \ldots \ldots . .300^{\circ} \mathrm{C}
\end{aligned}
$$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
NOTE 1: Derate ceramic package at $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $100^{\circ} \mathrm{C}$.
ELECTRICAL CHARACTERISTICS (VSUPPLY $= \pm 10 \mathrm{~V}$ or $+20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, Test Circuit Unless
Otherwise Specified)

SYMBOL	GENERAL CHARACTERISTICS	8038CC			$8038 \mathrm{BC}(\mathrm{BM})$			8038AC(AM)			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
V SUPPLY	Supply Voltage Operating Range										
V^{+}	Single Supply	+10		$+30$	$+10$		30	$+10$		30	V
$\mathrm{V}^{+}, \mathrm{V}^{-}$	Dual Supplies	± 5		± 15	± 5		± 15	± 5		± 15	V
ISUPPLY	Supply Current ($\left.\mathrm{V}_{\text {SUPPLY }}= \pm 10 \mathrm{~V}\right)^{(2)}$										
	8038AM, 8038BM					12	15		12	15	mA
	8038AC, 8038BC, 8038CC		12	20		12	20		12	20	mA
FREQUENCY CHARACTERISTICS (all waveforms)											
$f_{\text {max }}$	Maximum Frequency of Oscillation	100			100			100			kHz
$\mathrm{f}_{\text {sweep }}$	Sweep Frequency of FM Input		10			10			10		kHz
	Sweep FM Range ${ }^{(3)}$		35:1			35:1			35:1		
	FM Linearity 10:1 Ratio		0.5			0.2			0.2		\%
$\Delta \mathrm{f} / \Delta \mathrm{T}$	Frequency Drift With Temperature ${ }^{(5)}$ $8038 \mathrm{AC}, \mathrm{BC}, \mathrm{CC} 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		250			180			110		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	8038 AM, BM, $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$						350			250	
$\Delta f / \Delta V$	Frequency Drift With Supply Voltage (Over Supply Voltage Range)		0.05			0.05			0.05		\%/V
OUTPUT CHARACTERISTICS											
IOLK	Square-Wave Leakage Current ($V_{9}=30 \mathrm{~V}$)			1			1			1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage (${ }_{\text {SINK }}=2 \mathrm{~mA}$)		0.2	0.5		0.2	0.4		0.2	0.4	V
tr_{r}	Rise Time ($\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$)		180			180			180		ns
t_{f}	Fall Time ($\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$)		40			40			40		ns
$\Delta \mathrm{D}$	Typical Duty Cycle Adjust (Note 6)	2		98	2		98	2		98	\%
$V_{\text {TRIANGLE }}$	Triangle/Sawtooth/Ramp Amplitude $\left(R_{\text {TRI }}=100 \mathrm{k} \Omega\right)$	0.30	0.33		0.30	0.33		0.30	0.33		$x \mathrm{~V}_{\text {SUPPLY }}$
	Linearity		0.1			0.05			0.05		\%
ZOUT	Output Impedance (l OUT $=5 \mathrm{~mA}$)		200			200			200		Ω
$V_{\text {SINE }}$	Sine-Wave Amplitude ($\mathrm{R}_{\mathrm{SINE}}=100 \mathrm{k} \Omega$)	0.2	0.22		0.2	0.22		0.2	0.22		$x V_{\text {SUPPLY }}$
THD	THD ($\left.\mathrm{R}_{S}=1 \mathrm{M} \Omega\right)^{(4)}$		2.0	5		1.5	3		1.0	1.5	\%
THD	THD Adjusted (Use Figure 6)		1.5			1.0			0.8		\%

NOTES: 2. R_{A} and R_{B} currents not included.

3. $V_{\text {SUPPLY }}=20 \mathrm{~V}$; R_{A} and $R_{B}=10 \mathrm{k} \Omega, f \cong 10 \mathrm{kHz}$ nominal; can be extended 1000 to 1 . See Figures 7 a and 7 b .
4. $82 \mathrm{k} \Omega$ connected between pins 11 and 12 , Triangle Duty Cycle set at 50%. (Use R_{A} and R_{B}.)
5. Figure 3 , pins 7 and 8 connected, $V_{\text {SUPPLY }}= \pm 10 \mathrm{~V}$. See Typical Curves for T.C. vs VSUPPLY.

TEST CONDITIONS

PARAMETER		Ra	R_{8}	\mathbf{R}_{L}	C_{1}	SW ${ }_{1}$	MEASURE
Supply Current		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Current into Pin 6
Sweep FM Range ${ }^{(1)}$		10 kS	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Open	Frequency at Pin 9
Frequency Drift with Temperature		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Frequency at Pin 3
Frequency Drift with Supply Voltage ${ }^{(2)}$		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Frequency at Pin 9
Output Amplitude: (Note 4)	Sine	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Pk-Pk output at Pin 2
	Triangle	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Pk-Pk output at Pin 3
Leakage Current (off) ${ }^{(3)}$		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$		3.3 nF	Closed	Current into Pin 9
Saturation Voltage (on) ${ }^{(3)}$		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$		3.3 nF	Closed	Output (low) at Pin 9
Rise and Fall Times (Note 5)		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
Duty Cycle Adjust: (Note 5)	MAX	$50 \mathrm{k} \Omega$	$\sim 1.6 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
	MIN	$-25 k \Omega$	$50 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
Triangle Waveform Linearity		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 3
Total Harmonic Distortion		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 2

NOTES: 1. The hi and lo frequencies can be obtained by connecting pin 8 to pin 7 ($f_{h i}$) and then connecting pin 8 to pin 6 ($f_{l o}$). Otherwise apply Sweep Voltage at pin $8(2 / 3$ VSUPPLY $+2 \mathrm{~V}) \leq V_{\text {SWEEP }} \leq V_{\text {SUPPLY }}$ where $V_{\text {SUPPLY }}$ is the total supply voltage. In Figure 7 b , pin 8 should vary between 5.3 V and 10 V with respect to ground.
2. $10 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}$, or $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\text {SUPPL }} \leq \pm 15 \mathrm{~V}$.
3. Oscillation can be halted by forcing pin 10 to +5 volts or -5 volts.
4. Output Amplitude is tested under static conditions by forcing pin 10 to 5.0 V then to -5.0 V .
5. Not tested; for design purposes only.

DEFINITION OF TERMS:

Supply Voltage (VSUPPLY). The total supply voltage from V^{+}to V^{-}
Supply Current. The supply current required from the power supply to operate the device, excluding load currents and the currents through R_{A} and R_{B}.
Frequency Range. The frequency range at the square wave output through which circuit operation is guaranteed.
Sweep FM Range. The ratio of maximum frequency to minimum frequency which can be obtained by applying a sweep voltage to pin 8 . For correct operation, the sweep voltage should be within the range

$$
\left(2 / 3 V_{\text {SUPPLY }}+2 V\right)<V_{\text {SWEEP }}<V_{\text {SUPPLI }}
$$

FM Linearity. The percentage deviation from the best-fit straight line on the control voltage versus output frequency curve.
Output Amplitude. The peak-to-peak signal amplitude appearing at the outputs.
Saturation Voltage. The output voltage at the collector of Q_{23} when this transistor is turned on. It is measured for a sink current of 2 mA .
Rise and Fall Times. The time required for the square wave output to change from 10% to 90%, or 90% to 10%, of its final value.
Triangle Waveform Linearity. The percentage deviation from the best-fit straight line on the rising and falling triangle waveform.
Total Harmonic Distortion. The total harmonic distortion at the sine-wave output.

TYPICAL PERFORMANCE CHARACTERISTICS

Performance of the Square-Wave Output

OP02910

OP02930

Performance of Triangle-Wave Output

Performance of Sine-Wave Output

Square-Wave Duty Cycle-50\%

Square-Wave Duty Cycle-80\%

Figure 4: Phase Relationship of Waveforms

DETAILED DESCRIPTION (See Figure 1)

An external capacitor C is charged and discharged by two current sources. Current source \#2 is switched on and off by a flip-flop, while current source \#1 is on continuously. Assuming that the flip-flop is in a state such that current source \#2 is off, and the capacitor is charged with a current I, the voltage across the capacitor rises linearily with time. When this voltage reaches the level of comparator \# 1 (set at $2 / 3$ of the supply voltage), the flip-flop is triggered, changes states, and releases current source \#2. This current source normally carries a current 21 , thus the capacitor is discharged with a net-current I and the voltage across it drops linearly with time. When it has reached the level of comparator \#2 (set at $1 / 3$ of the supply voltage), the the flip-flop is triggered into its original state and the cycle starts again.

Four waveforms are readily obtainable from this basic generator circuit. With the current sources set at I and 21 respectively, the charge and discharge times are equal. Thus a triangle waveform is created across the capacitor and the flip-flop produces a square-wave. Both waveforms are fed to buffer stages and are available at pins 3 and 9.

The levels of the current sources can, however, be selected over a wide range with two external resistors. Therefore, with the two currents set at values different from 1 and 2I, an asymmetrical sawtooth appears at terminal 3 and pulses with a duty cycle from less than 1% to greater than 99% are available at terminal 9.

The sine-wave is created by feeding the triangle-wave into a non-linear network (sine-converter). This network provides a decreasing shunt-impedance as the potential of the triangle moves toward the two extremes.

WAVEFORM TIMING

The symmetry of all waveforms can be adjusted with the external timing resistors. Two possible ways to accomplish this are shown in Figure 5. Best results are obtained by keeping the timing resistors R_{A} and R_{B} separate (a). R_{A}
controls the rising portion of the triangle and sine-wave and the 1 state of the square-wave.

The magnitude of the triangle-waveform is set at $1 / 3$ $V_{\text {SUPPLY; }}$ therefore the rising portion of the triangle is,

$$
t_{1}=\frac{C \times v}{1}=\frac{C \times 1 / 3 \times V_{\text {SUPPLY }} \times R_{A}}{1 / 5 \times V_{\text {SUPPLY }}}=\frac{5}{3} R_{A} \times C
$$

The falling portion of the triangle and sine-wave and the 0 state of the square-wave is:

$$
t_{2}=\frac{C \times V}{1}=\frac{C \times 1 / 3 V_{S U P P L Y}}{\frac{2}{5} \times \frac{V_{\text {SUPPLY }}}{R_{B}}-\frac{1}{5} \times \frac{V_{S U P P L Y}}{R_{A}}}=\frac{5}{3} \times \frac{R_{A} R_{B} C}{2 R_{A}-R_{B}}
$$

Thus a 50% duty cycle is achieved when $R_{A}=R_{B}$.
If the duty-cycle is to be varied over a small range about 50% only, the connection shown in Figure 5b is slightly more convenient. If no adjustment of the duty cycle is desired, terminals 4 and 5 can be shorted together, as shown in Figure 5c. This connection, however, causes an inherently larger variation of the duty-cycle, frequency, etc.

With two separate timing resistors, the frequency is given by

$$
f=\frac{1}{t_{1}+t_{2}}=\frac{1}{\frac{5}{3} R_{A} C\left(1+\frac{R_{B}}{2 R_{A}-R_{B}}\right)}
$$

$$
\text { or, if } R_{A}=R_{B}=R
$$

$$
f=\frac{0.3}{R C}(\text { for Figure } 5 a)
$$

If a single timing resistor is used (Figure 5 c only), the frequency is

$$
f=\frac{0.15}{R C}
$$

Figure 5: Possible Connections for the External Timing Resistors

Neither time nor frequency are dependent on supply voltage, even though none of the voltages are regulated inside the integrated circuit. This is due to the fact that both currents and thresholds are direct, linear functions of the supply voltage and thus their effects cancel.

To minimize sine-wave distortion the $82 \mathrm{k} \Omega$ resistor between pins 11 and 12 is best made variable. With this arrangement distortion of less than 1% is achievable. To reduce this even further, two potentiometers can be connected as shown in Figure 6; this configuration allows a typical reduction of sine-wave distortion close to 0.5%.

SELECTING R_{A}, R_{B} and C

For any given output frequency, there is a wide range of RC combinations that will work, however certain constraints are placed upon the magnitude of the charging current for optimum performance. At the low end, currents of less than $1 \mu \mathrm{~A}$ are undesirable because circuit leakages will contribute significant errors at high temperatures. At higher currents ($1>5 \mathrm{~mA}$), transistor betas and saturation voltages will contribute increasingly larger errors. Optimum performance will, therefore, be obtained with charging currents of $10 \mu \mathrm{~A}$ to 1 mA . If pins 7 and 8 are shorted together, the magnitude of the charging current due to R_{A} can be calculated from:

$$
I=\frac{R_{1} \times\left(V^{+}-V^{-}\right)}{\left(R_{1}+R_{2}\right)} \times \frac{1}{R_{A}}=\frac{\left(V^{+}-V^{-}\right)}{5 R_{A}}
$$

A similar calculation holds for R_{B}.

The capacitor value should be chosen at the upper end of its possible range.

WAVEFORM OUT LEVEL CONTROL AND POWER SUPPLIES

The waveform generator can be operated either from a single power-supply (10 to 30 Volts) or a dual power-supply (± 5 to ± 15 Volts). With a single power-supply the average levels of the triangle and sine-wave are at exactly one-half of the supply voltage, while the square-wave alternates between V^{+}and ground. A split power supply has the advantage that all waveforms move symmetrically about ground.

The square-wave output is not committed. A load resistor can be connected to a different power-supply, as long as the applied voltage remains within the breakdown capability of the waveform generator (30V). In this way, the squarewave output can be made TTL compatible (load resistor connected to +5 Volts) while the waveform generator itself is powered from a much higher voltage.

(a)

(b)

LC010901
LC011001
Figure 7: Connections for Frequency Modulation (a) and Sweep (b)

FREQUENCY MODULATION AND SWEEPING

The frequency of the waveform generator is a direct function of the DC voltage at terminal 8 (measured from V^{+}). By altering this voltage, frequency modulation is performed. For small deviations (e.g. $\pm 10 \%$) the modulating signal can be applied directly to pin 8, merely providing DC decoupling with a capacitor as shown in Figure 7a. An external resistor between pins 7 and 8 is not necessary, but it can be used to increase input impedance from about $8 \mathrm{k} \Omega$ (pins 7 and 8 connected together), to about ($R+8 k \Omega$).

The sine wave output has a relatively high output impedance ($1 \mathrm{k} \Omega$ Typ). The circuit of Figure 8 provides buffering, gain and amplitude adjustment. A simple op amp follower could also be used.

Figure 8: Sine Wave Output Buffer Amplifiers

For larger FM deviations or for frequency sweeping, the modulating signal is applied between the positive supply voltage and pin 8 (Figure 7b). In this way the entire bias for the current sources is created by the modulating signal, and a very large (e.g. 1000:1) sweep range is created ($f=0$ at $\mathrm{V}_{\text {sweep }}=0$). Care must be taken, however, to regulate the supply voltage; in this configuration the charge current is no longer a function of the supply voltage (yet the trigger thresholds still are) and thus the frequency becomes dependent on the supply voltage. The potential on Pin 8 may be swept down from V^{+}by (1/3 $\mathrm{V}_{\text {SUPPLY }}-2 \mathrm{~V}$).

APPLICATIONS

With a dual supply voltage the external capacitor on Pin 10 can be shorted to ground to halt the ICL8038 oscillation. Figure 9 shows a FET switch, diode ANDed with an input strobe signal to allow the output to always start on the same slope.
To obtain a 1000:1 Sweep Range on the ICL8038 the voltage across external resistors R_{A} and R_{B} must decrease to nearly zero. This requires that the highest voltage on control Pin 8 exceed the voltage at the top of R_{A} and R_{B} by a few hundred millivolts.

The Circuit of Figure 10 achieves this by using a diode to lower the effective supply voltage on the ICL8038. The large resistor on pin 5 helps reduce duty cycle variations with sweep.

Figure 9: Strobe-Tone Burst Generator

Figure 10: Variable Audio Oscillator, 20 Hz to 20 kHz

WF01510I
Figure 11: Linear Voltage Controlled Oscillator

The linearity of input sweep voltage versus output frequency can be significantly improved by using an op amp as shown in Figure 11.

USE IN PHASE-LOCKED LOOPS

Its high frequency stability makes the ICL8038 an ideal building block for a phase-locked loop as shown in Figure 12. In this application the remaining functional blocks, the phase-detector and the amplifier, can be formed by a number of available IC's (e.g. MC4344, NE562, HA2800, HA2820)

In order to match these building blocks to each other, two steps must be taken. First, two different supply voltages are ised and the square wave output is returned to the supply of the phase detector. This assures that the VCO input
voltage will not exceed the capabilities of the phase detector. If a smaller VCO signal is required, a simple resistive voltage divider is connected between pin 9 of the waveform generator and the VCO input of the phasedetector.

Second, the DC output level of the amplifier must be made compatible to the DC level required at the FM input of the waveform generator ($\mathrm{pin} 8,0.8 \mathrm{~V}^{+}$). The simplest solution here is to provide a voltage divider to $\mathrm{V}^{+}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right.$ as shown) if the amplifier has a lower output level, or to ground if its level is higher. The divider can be made part of the low-pass filter.

This application not only provides for a free-running frequency with very low temperature drift, but it also has the
unique feature of producing a large reconstituted sinewave signal with a frequency identical to that at the input.

For further information, see Intersil Application Note A013, "Everything You Always Wanted to Know About The ICL8038.'

Figure 12: Waveform Generator Used as Stable VCO in a Phase-Locked Loop

DS018601
Figure 13: Detailed Schematic

ICL8069
 Low Voltage Reference

GENERAL DESCRIPTION

The ICL8069 is a 1.2 V temperature compensated voltage reference. It uses the band-gap principle to achieve excellent stability and low noise at reverse currents down to $50 \mu \mathrm{~A}$. Applications include analog-to-digital converters, di-gital-to-analog converters, threshold detectors, and voltage regulators. Its low power consumption makes it especially suitable for battery operated equipment.

FEATURES

- Temperature Coefficient Guaranteed to $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max
- Low Bias Current - $50 \mu \mathrm{~A}$ Min
- Low Dynamic Impedance
- Low Reverse Voltage
- Low Cost

ORDERING INFORMATION

\(\left.$$
\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { ORDER P/N } \\
\text { TO-92 }\end{array} & \begin{array}{c}\text { ORDER P/N } \\
\text { TO-52 }\end{array} & \begin{array}{c}\text { TEMPERATURE } \\
\text { RANGE }\end{array}
$$ \& MAX. TEMP. COEFF.

OF V REF\end{array}\right]\)| ICL8069CCZR | ICL8069CCSQ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
| - | ICL8069CMSQ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| ICL8089DCZR | ICL8069DCSQ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| - | ICL8069DMSQ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| ICL8069/D | - | - |

**Parameter Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

DS025601
(a) Simple Reference (1.2 volts or less)

DS025701
(b) Buffered 10V Reference using a single supply.

DS025801
(c) Double regulated 100 mV reference for ICL7107 one-chip DPM circuit.

Figure 1: Functional Diagrams

Figure 2: Pin Configurations

ICL8069

ABSOLUTE MAXIMUM RATINGS

Reverse Voltage
See Note 2
Forward Current 10 mA
Reverse Current 10 mA
Power Dissipation Limited by max forward/ reverse current

Storage Temperature...................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature
ICL8069C \qquad
CL 8069M $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.
ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Reverse breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A}$	1.20	1.23	1.25	V
Reverse breakdown Voltage change	$50 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 5 \mathrm{~mA}$		15	20	mV
Reverse dynamic impedance	$\begin{aligned} & I_{R}=50 \mu \mathrm{~A} \\ & I_{R}=500 \mu \mathrm{~A} \end{aligned}$		1	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	Ω
Forward Voltage Drop	$\mathrm{I}_{\mathrm{F}}=500 \mu \mathrm{~A}$		0.7	1	V
RMS Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A} \end{aligned}$		5		$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=4.75 \mathrm{~mA} \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$,	1		$\mathrm{ppm} / \mathrm{kHR}$
Breakdown voitage Temperature coefficient $\begin{aligned} & \text { ICL8069C } \\ & \text { ICL8069D } \end{aligned}$	$\left\{\begin{array}{l} I_{R}=500 \mu \mathrm{~A} \\ T_{A}=o p e r a t i n g \\ \text { Temperature range } \\ \text { (Note 3) } \end{array}\right.$			$\begin{aligned} & .005 \\ & .01 \end{aligned}$	\%/ ${ }^{\circ} \mathrm{C}$
Reverse Current Range		0.050		5	mA

TYPICAL PERFORMANCE CHARACTERISTICS

VOLTAGE CHANGE AS A FUNCTION OF REVERSE CURRENT

REVERSE VOLTAGE AS A FUNCTION OF CIJRRENT

REVERSE VOLTAGE AS A FUNCTION OF TEMPERATURE

Notes:

1) If circuit strays in excess of 2.00 pF are anticipated, a $4.7 \mu \mathrm{~F}$ shunt capacitor will ensure stability under all operating conditions.
2) In normal use, the reverse voltage cannot exceed the reference voltage. However when plugging units into a powered-up test fixiure, an instantaneous voltage equal to the compliance of the test circuit will be seen. This should not exceed 20 V .
3) For the military part, measurements are made at $25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$. The unit is then classified as a function of the worst case T.C. from $25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$, or $25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

ICL8211/ICL8212 Programmable Voltage Detector

GENERAL DESCRIPTION

The Intersil ICL8211/8212 are micropower bipolar monolithic integrated circuits intended primarily for precise voltage detection and generation. These circuits consist of an accurate voltage reference, a comparator and a pair of output buffer/drivers.

Specifically, the ICL8211 provides a 7 mA current limited output sink when the voltage applied to the 'THRESHOLD' terminal is less than 1.15 volts (the internal reference). The ICL8212 requires a voltage in excess of 1.15 volts to switch its output on (no current limit). Both devices have a low current output (HYSTERESIS) which is switched on for input voltages in excess of 1.15 V . The HYSTERESIS output may be used to provide positive and noise free output switching using a simple feedback network.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL8211CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 lead Mini DIP
ICL8211CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 lead SOIC
ICL8211CTY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-99 Can
ICL8211MTY*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 Can
ICL8212CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 lead Mini DIP
ICL8212CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 lead SOIC
ICL8212CTY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-99 Can
ICL8212MTY*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 Can
ICL8211/D	-	DICE **
ICL8212/D	-	DICE **

* Add $/ 883 \mathrm{~B}$ to part number if 883 B processing is required.
**Parameter Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

FEATURES

- High Accuracy Voltage Sensing and Generation: Internal Reference 1.15 Volts Typical
- Low Sensitivity to Supply Voltage and Temperature Variations
- Wide Supply Voltage Range: Typ. 1.8 to 30 Volts
- Essentially Constant Supply Current Over Full Supply Voltage Range
- Easy to Set Hysteresis Voltage Range
- Defined Output Current Limit - ICL8211 High Output Current Capability - ICL8212

APPLICATIONS

- Low Voltage Sensor/Indicator
- High Voltage Sensor/Indicator
- Non Volatile Out-of-Voltage Range Sensor/ Indicator
- Programmable Voltage Reference or Zener Diode
- Series or Shunt Power Supply Regulator
- Fixed Value Constant Current Source

Figure 1: Functional Diagram

CD01860

(outline dwg BA)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
-0.5 to +30 volts
Output Voltage................................ -0.5 to +30 volts
Hysteresis Voltage +0.5 to -10 volts
Threshold Input Voltage
+30 to -5 volts with respect to GROUND and +0
to -30 volts with respect to V^{+}
Current into Any Terminal \qquad $\pm 30 \mathrm{~mA}$

Power Dissipation (Note 1 \& 2)
.300 mW
Operating Temperature Range:
ICL8211M/8212M \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ICL8211C/8212C \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
\qquad Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)
$.300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
NOTE 1: Rating applies for case temperatures to $125^{\circ} \mathrm{C}$ to ICL8211MTY/8212MTY products. Derate linearly at $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $100^{\circ} \mathrm{C}$.
NOTE 2: Derate linearly above $50^{\circ} \mathrm{C}$ by $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ICL8211C/8212C products. The threshold input voltage may exceed +7 volts for short periods of time. However for continuous operation this voltage must be maintained at a value less than 7 volts.
ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

SYMBOL	PARAMETER	TEST CONDITIONS	ICL8211			ICL8212			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
1^{+}	Supply Current	$\begin{aligned} & 2.0<\mathrm{V}^{+}<30 \\ & \mathrm{~V}_{\mathrm{T}}=1.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{T}}=0.9 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} 22 \\ 140 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ 250 \end{gathered}$	$\begin{aligned} & 50 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} 110 \\ 20 \end{gathered}$	$\begin{aligned} & 250 \\ & 40 \end{aligned}$	${ }_{\mu \mathrm{A}}$
$V_{T H}$	Threshold Trip Voltage	$V^{+}=5 \mathrm{~V}$ OUT $=4 \mathrm{~mA}$ $\mathrm{~V}^{+}=2 \mathrm{~V}$ $\mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}$ $\mathrm{~V}^{+}=30 \mathrm{~V}$	$\begin{aligned} & 0.98 \\ & 0.98 \\ & 1.00 \end{aligned}$	$\begin{array}{\|r\|} \hline 1.15 \\ 1.145 \\ 1.165 \end{array}$	$\begin{aligned} & \hline 1.19 \\ & 1.19 \\ & 1.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.145 \\ & 1.165 \end{aligned}$	$\begin{aligned} & \hline 1.19 \\ & 1.19 \\ & 1.20 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
$\mathrm{V}_{\text {THP }}$	Threshold Voltage Disparity Between Output \& Hysteresis Output	$\begin{array}{ll} \text { lout }=4 \mathrm{~mA} & \text { VOUT }=2 \mathrm{~V} \\ \text { l } \mathrm{HYST}=7 \mu \mathrm{~A} & \text { V HYST }^{2}=3 \mathrm{~V} \end{array}$		-8.0			-0.5		mV
V SUPPLY	Guaranteed Operating Supply Voltage Range (Note 5)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & 0 \text { to }+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & 2.8 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & 2.8 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	V
$V_{\text {SUPPLY }}$	Typical Operating Supply Voltage Range	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.4 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.4 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	V v V
$\Delta V_{T H} / \Delta T$	Threshold Voltage Temperature Coefficient	$\begin{aligned} & \text { lout }=4 \mathrm{~mA} \\ & \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} \end{aligned}$		+200			+200		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{T H} / \Delta \mathrm{V}^{+}$	Variation of Threshold Voltage with Supply Voltage	$\Delta \mathrm{V}^{+}=10 \%$ at $\mathrm{V}^{+}=5 \mathrm{~V}$		1.0			1.0		mV
ITH	Threshold Input Current	$\begin{aligned} & V_{T H}=1.15 \mathrm{~V} \\ & V_{T H}=1.00 \mathrm{~V} \end{aligned}$		$\begin{gathered} 100 \\ 5 \\ \hline \end{gathered}$	250		$\begin{gathered} 100 \\ 5 \end{gathered}$	250	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
IoLk	Output Leakage Current	$\begin{array}{ll} \\ V_{\text {OUT }}=30 \mathrm{~V} & V_{\text {TH }}=1.0 \mathrm{~V} \\ V_{\text {OUT }}=30 \mathrm{~V} & V_{T H}=1.3 \mathrm{~V} \\ V_{\text {OUT }}=5 \mathrm{~V} & V_{T H}=1.0 \mathrm{~V} \\ V_{\text {OUT }}=5 \mathrm{~V} & \mathrm{~V}_{\text {TH }}=1.3 \mathrm{~V}\end{array}$			$\begin{gathered} 10 \\ 1 \end{gathered}$			$\begin{gathered} 10 \\ 1 \end{gathered}$	${ }_{\mu \mathrm{A}}^{\mu \mathrm{A}}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$V_{\text {SAT }}$	Output Saturation Voltage	$\begin{array}{ll}\text { loUT }=4 \mathrm{~mA} & \begin{array}{l}\text { V } \\ \mathrm{V}_{\text {TH }}=1.0 \mathrm{~V} \\ \mathrm{~V}_{\text {lH }}=1.3 \mathrm{~V}\end{array}\end{array}$		0.17	0.4		0.17	0.4	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
IOH	Max Available Output Current	(Note 3 \& 4) $V_{T H}=1.0 \mathrm{~V}$ $V_{0 U T}=5 \mathrm{~V}$ $V_{T H}=1.3 \mathrm{~V}$ $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C} V_{T H}=1.0 \mathrm{~V}$	4	7.0	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 12 \\ & \hline \end{aligned}$	35		$\begin{aligned} & m A \\ & m A \\ & m A \end{aligned}$
LLHYS	Hysteresis Leakage Current	$\begin{array}{ll} \mathrm{V}^{+}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{HYST}}=\mathrm{V}^{-} & \mathrm{V}_{\mathrm{TH}}=1.0 \mathrm{~V} \\ \hline \end{array}$			0.1			0.1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {HYS (max) }}$	Hysteresis Sat Voltage	$\mathrm{I}_{\mathrm{HYST}}=-7 \mu \mathrm{~A} \quad \mathrm{~V}_{\mathrm{TH}}=1.3 \mathrm{~V}$ measured with respect to V^{+}		-0.1	-0.2		-0.1	-0.2	V
${ }_{\text {IHYS (max) }}$	Max Available Hysteresis Current	$\mathrm{V}_{T H}=1.3 \mathrm{~V}$	-15	-21		-15	-21		$\mu \mathrm{A}$

NOTES: 3. The maximum output current of the ICL8211 is limited by design to 15 mA under any operating conditions. The output voltage may be sustained at any voltage up to +30 V as long as the maximum power dissipation of the device is not exceeded.
4. The maximum output current of the ICL8212 is not defined, and systems using the ICL8212 must therefore ensure that the output current does not exceed 30 mA and that the maximum power dissipation of the device is not exceeded.
5. Threshold Trip Voltage is $0.80 \mathrm{~V}(\mathrm{~min})$ to $1.30 \mathrm{~V}(\mathrm{max})$.

ICL8211／ICL8212

TYPICAL PERFORMANCE CHARACTERISTICS COMMON TO ICL8211 AND ICL8212

THRESHOLD INPUT CURRENT AS A FUNCTION OF THRESHOLD VOLTAGE

HYSTERESIS OUTPUT SATURATION CURRENT AS A FUNCTION OF TEMPERATURE

OP03290

TYPICAL PERFORMANCE CHARACTERISTICS ICL8211 ONLY

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

Op033001
OUTPUT SATURATION CURRENTS AS A FUNCTION OF THRESHOLD VOLTAGE

OP03330

SUPPLY CURRENT AS A FUNCTION OF THRESHOLD VOLTAGE

OP03310｜
THRESHOLD VOLTAGE TO TURN OUTPUTS＂JUST ON＂AS A FUNCTION OF TEMPERATURE

OP033401

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

OP033201
THRESHOLD VOLTAGE TO TURN OUTPUTS＂JUST ON＂AS A FUNCTION OF SUPPLY VOLTAGE

OPO3350｜

ICL8211/ICL8212
TYPICAL PERFORMANCE CHARACTERISTICS ICL8211 ONLY (CONT.)

OUTPUT SATURATION CURRENT
AS A FUNCTION OF TEMPERATURE

OP033601

OUTPUT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

HYSTERESIS OUTPUT CURRENT AS A FUNCTION OF HYSTERESIS OUTPUT VOLTAGE

TYPICAL PERFORMANCE CHARACTERISTICS ICL8212 ONLY

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OP033901
OUTPUT SATURATION CURRENTS AS A FUNCTION OF THRESHOLD VOLTAGE

SUPPLY CURRENT AS A FUNCTION OF THRESHOLD VOLTAGE

OP034001

THRESHOLD VOLTAGE TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF TEMPERATURE

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

OP03410
THRESHOLD VOLTAGE TO TURN OUTPUTS 'JUST ON" AS A FUNCTION OF SUPPLY VOLTAGE

TYPICAL PERFORMANCE CHARACTERISTICS ICL8212 ONLY（CONT．）

OUTPUT SATURATION VOLTAGE AND CURRENT AS A FUNCTION OF TEMPERATURE

OP03450｜

OUTPUT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

HYSTERESIS OUTPUT CURRENT AS A FUNCTION OF HYSTERESIS OUTPUT VOLTAGE

OP034601

DETAILED DESCRIPTION

The ICL8211 and ICL8212 use standard linear bipolar integrated circuit technology with high value thin film resistors which define extremely low value currents．

Components Q_{1} thru Q_{10} and R_{1}, R_{2} and R_{3} set up an accurate voltage reference of 1.15 volts．This reference voltage is close to the value of the bandgap voltage for silicon and is highly stable with respect to both temperature and supply voltage．The deviation from the bandgap voltage is necessary due to the negative temperature coefficient of the thin film resistors（ -5000 ppm per ${ }^{\circ} \mathrm{C}$ ）．

Components Q_{2} thru Q_{9} and R_{2} make up a constant current source；Q_{2} and Q_{3} are identical and form a current mirror．Q_{8} has 7 times the emitter area of Q_{9} ，and due to the current mirror，the collector currents of Q_{8} and Q_{9} are forced to be equal and it can be shown that the collector current in Q_{8} and Q_{9} is

$$
\operatorname{Ic}\left(Q_{8} \text { or } Q_{9}\right)=\frac{1}{R_{2}} \times \frac{k T}{q} \ln 7
$$

or approximately $1 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
\text { Where } \mathrm{k} & =\text { Boltzman's constant } \\
\mathrm{q} & =\text { charge on an electron } \\
\text { and } \quad \mathrm{T} & =\text { absolute temperature in }{ }^{\circ} \mathrm{K}
\end{aligned}
$$

Transistors Q_{5}, Q_{6} ，and Q_{7} assure that the $V_{C E}$ of Q_{3} ， Q_{4} ，and Q_{9} remain constant with supply voltage variations． This ensures a constant current supply free from variations．

The base current of Q_{1} provides sufficient start up current for the constant source；there being two stable states for this type of circuit－either ON as defined above， or OFF if no start up current is provided．Leakage current in the transistors is not sufficient in itself to guarantee reliable startup．
Q_{4} is matched to Q_{3} and $Q_{2} ; Q_{10}$ is matched to Q_{9} ．Thus the I_{C} and $V_{B E}$ of Q_{10} are identical to that of Q_{9} or Q_{8} ．To generate the bandgap voltage，it is necessary to sum a voltage equal to the base emitter voltage of Q_{g} to a voltage proportional to the difference of the base emitter voltages of two transistors Q_{8} and Q_{9} operating at two current densities．

Thus $1.15=V_{B E}\left(Q_{9}\right.$ or $\left.Q_{10}\right)+\frac{R_{3}}{R_{2}} \times \frac{k T}{q} \ln 7$ which provides $\frac{R_{3}}{R_{2}=12}$（approx．）

The total supply current consumed by the voltage refer－ ence section is approximately $6 \mu \mathrm{~A}$ at room temperature．A voltage at the THRESHOLD input is compared to the reference 1.15 volts by the comparator consisting of transistors Q_{11} thru Q_{17} ．The outputs from the comparator are limited to two diode drops less than V^{+}or approximate－ ly 1.1 volts．Thus the base current into the hysteresis output transistor is iimited to about 500 nA and the collector current of Q_{19} to $100 \mu \mathrm{~A}$ ．

In the case of the ICL8211，Q_{21} is proportioned to have 70 times the emitter area of Q_{20} thereby limiting the output current to approximately 7 mA ， ，whereas for the ICL8212 almost all the collector current of Q_{19} is available for base drive to Q_{21} ，resulting in a maximum available collector current of the order of 30 mA ．It is advisable to externally limit this current to 25 mA or less．

APPLICATIONS

The ICL8211 and ICL8212 are similar in many respects， especially with regard to the setup of the input trip condi－ tions and hysteresis circuitry．The following discussion describes both devices，and where differences occur they are clearly noted．

General Information

THRESHOLD INPUT CONSIDERATIONS

Although any voltage between -5 V and V^{+}may be applied to the THRESHOLD terminal，it is recommended that the THRESHOLD voltage does not exceed about +6 volts since above that voltage the threshold input current increases sharply．Also，prolonged operation above this voltage will lead to degradation of device characteristics．

LED connected to the positive supply without a series current limiting resistor.

On the other hand the ICL8212 is intended for applications such as programmable zener references, and voltage regulators where output currents well in excess of 7 mA are desirable. Therefore, the output of the ICL82.12 is not current limited, and if the output is used to drive an LED, a series current limiting resistor must be used.

In most applications an input resistor divider network may be used to generate the 1.15 V required for V_{TH}. For high accuracy, currents as large as $50 \mu \mathrm{~A}$ may be used, however for those applications where current limiting may be desirable, (such as when operating from a battery) currents as low as $6 \mu \mathrm{~A}$ may be considered without a great loss of accuracy. $6 \mu \mathrm{~A}$ represents a practical minimum, since it is about this level where the device's own input current becomes a significant percentage of that flowing in the divider network.

Case 1. High accuracy required, current in resistor network unimportant Set $\mathrm{I}=50 \mu \mathrm{~A}$ for $\mathrm{V}_{\mathrm{TH}}=1.15$ volts $\therefore R_{1} \rightarrow 20 \mathrm{k} \Omega$.
Case 2. Good accuracy required, current in resistor network important Set $I=7.5 \mu \mathrm{~A}$ for $\mathrm{V}_{\mathrm{TH}}=1.15$ volts $\therefore R_{1} \rightarrow 150 \mathrm{k} \Omega$.

SETUP PROCEDURES FOR VOLTAGE LEVEL DETECTION

Case 1. Simple voltage detection - no hysteresis
Unless an input voltage of approximately 1.15 volts is to be detected, resistor networks will be used to divide or multiply the unknown voltage to be sensed. Figure 7 shows procedures on how to set up resistor networks to detect INPUT VOLTAGES of any magnitude and polarity.

For supply voltage level detection applications the input resistor network is connected across the supply terminals as shown in Figure 8.
Conditions for correct operation of OUTPUT (terminal \#4).

1. ICL8211

$$
1.8 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}
$$

2. $\mathrm{ICL8212}$
$0 \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}$

Input voltage to change the output states

$$
=\frac{\left(R_{1}+R_{2}\right)}{R_{1}} \times 1.15 \text { volts }
$$

Figure 6：Range of Input Voltage Greater Than +1.15 Volts

Range of input voltage less than $\mathbf{+ 1 . 1 5}$ volts． Input voltage to change the output states

$$
=\frac{\left(R_{1}+R_{2}\right) \times 1.15 R_{2} V_{R E F}}{R_{1}}
$$

Figure 7：Input Resistor Network Setup Procedures

LC013701
Figure 8：Combined Input and Supply Voitages

Case
2．Use of the HYSTERESIS function
The disadvantage of the simple detection circuits is that there is a small but finite input range where the outputs are neither totally＇ON＇nor totally＇OFF＇．The principle behind hysteresis is to provide positive feedback to the input trip
point such that there is a voltage difference between the input voltage necessary to turn the outputs ON and OFF．

The advantage of hysteresis is especially apparent in electrically noisy environments where simple but positive voltage detection is required．Hysteresis circuitry，however， is not limited to applications requiring better noise perfor－ mance but may be expanded into highly complex systems with multiple voltage level detection and memory applica－ tions－refer to specific applications section．

There are two simple methods to apply hysteresis to a circuit for use in supply voltage level detection．These are shown in Figure 9.

The circuit（a）of Figure 9 requires that the full current flowing in the resistor network be sourced by the HYSTER－ ESIS output，whereas for circuit（b）the current to be sourced by the HYSTERESIS output will be a function of the ratio of the two trip points and their values．For low values of hysteresis，circuit（b）is to be preferred due to the offset voltage of the hysteresis output transistor．

A third way to obtain hysteresis（ICL8211 only）is to connect a resistor between the OUTPUT and the THRESH－ OLD terminals thereby reducing the total external resis－ tance between the THRESHOLD and GROUND when the OUTPUT is switched on．

Practical Applications

a）Low Voltage Battery Indicator
This application is particularly suitable for portable or remote operated equipment which requires an indication of a depleted or discharged battery．The quiescent current taken by the system will be typically $35 \mu \mathrm{~A}$ which will increase to 7 mA when the lamp is turned on．R_{3} will provide hysteresis if required．
b）INon－Volatilel Low Voltage Detector
In this application the high trip voltage $\mathrm{V}_{\text {TR2 }}$ is set to be above the normal supply voltage range．On power up the initial condition is A ．On momentarily closing switch S_{1} the operating point changes to B and will remain at B until the supply voltage drops below $V_{T R 1}$ ，at which time the output will revert to condition A．Note that state A is always retained if the supply voltage is reduced below $\mathrm{V}_{\text {TR1 }}$（even to zero volts）and then raised back to $\mathrm{V}_{\text {NOM }}$ ．
c）（Non－volatile）Power Supply Malfunction Recorder
In many systems a transient or an extended abnormal（or absence of a）supply voltage will cause a system failure． This failure may take the form of information lost in a volatile semiconductor memory stack，a loss of time in a timer or even possible irreversible damage to components if a supply voltage exceeds a certain value．

It is，therefore，necessary to be able to detect and store the fact that an out－of－operating range supply voltage condition has occurred，even in the case where a supply voltage may have dropped to zero．Upon power up to the normal operating voltage this record must have been retained and easily interrogated．This could be important in the case of a transient power failure due to a faulty component or intermittent power supply，open circuit，etc．， where direct observation of the failure is difficult．

LC013801
Low trip voltage

$$
V_{T R 1}=\left[\frac{\left(R_{1}+R_{2} \times 1.15\right.}{\left.R_{1}\right)}+0.1\right] \text { volts }
$$

High trip voltage

$$
V_{T R 2}=\frac{\left(R_{1}+R_{2}+R_{3}\right)}{R_{1}} \times 1.15 \text { volts }
$$

LC01400I
Low trip voltage
$V_{T R 1}=\left[\frac{R_{Q} R_{S}}{\left(R_{Q}+R_{S}\right)}+R P\right] \times \frac{1}{R_{P}} \times 1.15$ volts
High trip voltage

$$
V_{T R 2}=\frac{\left(R_{P}+R_{Q}\right)}{R_{P}} \times 1.15 \text { volts }
$$

SC00620I
Figure 9：Two alternative voltage detection circuits employing hysteresis to provide pairs of well defined trip voltages．

Figure 10：Low Voltage Battery Indicator

Figure 11：Low Voltage Detector and Memory

Figure 12：Schematic of Recorder

A simple circuit to record an out of range voltage excursion may be constructed using an ICL8211, an ICL8212 plus a few resistors. This circuit will operate to 30 volts without exceeding the maximum ratings of the I.C.'s. The two voltage limits defining the in range supply voltage may be set to any value between 2.0 and 30 volts.

Referring to Figure 12, the ICL8212 is used to detect a voitage, V_{2}, which is the upper voltage limit to the operating voltage range. The ICL8211 detects the lower voltage limit of the operating voltage range, V_{1}. Hysteresis is used with the ICL8211 so that the output can be stable in either state over the operating voltage range V_{1} to V_{2} by making V_{3} the upper trip point of the ICL8211 much higher in voltage than V_{2}.

The output of the ICL8212 is used to force the output of the ICL8211 into the ON state above V_{2}. Thus there is no value of the supply voltage that will result in the output of the ICL8211 changing from the ON state to the OFF state. This may be achieved only by shorting out R_{3} for values of supply voltage between V_{1} and V_{2}.
d) Constant Current Sources

The ICL8212 may be used as a constant current source of value of approximately $25 \mu \mathrm{~A}$ by connecting the THRESHOLD terminal to GROUND. Similarly the ICL8211 will provide a $130 \mu \mathrm{~A}$ constant current source. The equivalent parallel resistance is in the tens of megohms over the supply voltage range of 2 to 30 volts. These constant current sources may be used to provide biasing for various circuitry including differential amplifiers and comparators. See Typical Operating Characteristics for complete information.

e) Zener or Precision Voltage Reference

The ICL8212 may be used to simulate a zener diode by connecting the OUTPUT terminal to the V_{Z} output and using a resistor network connected to the THRESHOLD terminal to program the zener voltage

$$
\left(V_{\text {zener }}=\frac{\left(R_{1}+R_{2}\right)}{R_{1}} \times 1.15 \text { volts }\right)
$$

Since there is no internal compensation in the ICL8212 it is necessary to use a large capacitor across the output to prevent osciliation.

Zener voltages from 2 to 30 volts may be programmed and typical impedance values between $300 \mu \mathrm{~A}$ and 25 mA will range from 4 to 7Ω. The knee is sharper and occurs at a significantly lower current than other similar devices available.

Figure 14: Constant Current Source Applications

OP034801
Figure 15: Programmable Zener or Voltage Reference

LC014201
Figure 16: Simple Voltage Regulator

f) Precision Voltage Regulators

The ICL8212 may be used as the controller for a highly stable series voltage regulator. The output voltage is simply programmed, using a resistor divider network R_{1} and R_{2}. Two capacitors C_{1} and C_{2} are required to ensure stability since the ICL8212 is uncompensated internally.
any commercial regulator. Applications would therefore include battery operated equipment especially those operating at low voltages.
g) High supply voltage dump circuit

In many circuit applications it is desirable to remove the power supply in the case of high voltage overload. For circuits consuming less than 5 mA this may be achieved using an ICL8211 driving the load directly. For higher load currents it is necessary to use an external pnp transistor or darlington pair driven by the output of the ICL8211. Resistors R_{1} and R_{2} set up the disconnect voltage and R_{3} provides optional voltage hysteresis if so desired.
h) Frequency limit detectors

Simple frequency limit detectors providing a GO/NO-GO output for use with varying amplitude input signals may be conveniently implemented with the ICL8211/8212. In the application shown, the first ICL8212 is used as a zero crossing detector. The output circuit consisting of R_{3}, R_{4} and C_{2} results in a slow output positive ramp. The negative range is much faster than the positive range. R_{5} and R_{6} provide hysteresis so that under all circumstances the second ICL8212 is turned on for sufficient time to discharge C_{3}. The time constant of $R_{7} C_{3}$ is much greater than $R_{4} C_{2}$. Depending upon the desired output polarities for low and high input frequencies, either an ICL8211 or an ICL8212 may be used as the output driver.

This circuit is sensitive to supply voltage variations and should be used with a stabilized power supply. At very low frequencies the output will switch at the input frequency.
This regulator may be used with lower input voltages than most other commercially available regulators and also consumes less power for a given output control current than

Figure 18: Frequency Limit Detector

ICL8211/ICL8212

i) Switch bounce filter

Single pole single throw (SPST) switches are less costly and more available than single pole double throw (SPDT) switches. SPST switches range from push button and slide types to calculator keyboards. A major problem with the use of switches is the mechanical bounce of the electrical contacts on closure. Contact bounce times can range from a fraction of a millisecond to several tens of milliseconds depending upon the switch type. During this contact bounce time the switch may make and break contact several times. The circuit shown in Figure 19 provides a rapid charge up of C_{1} to close to the positive supply voltage $\left(\mathrm{V}^{+}\right)$on a switch closure and a corresponding slow discharge of C_{1} on a switch break. By proportioning the time constant of $\mathrm{R}_{1} \mathrm{C}_{1}$ to approximately the manufacturer's bounce time the output as terminal \#4 of the ICL8211/8212 will be a single transition of state per desired switch closure.

j) Low voltage power disconnector

There are some classes of circuits that require the power supply to be disconnected if the power supply voltage falls below a certain value. As an example, the National LM199 precision reference has an on chip heater which malfunctions with supply voltages below 9 volts causing an excessive device temperature. The ICL8212 may be used to detect a power supply voltage of 9 volts and turn the power supply off to the LM199 heater section below that voltage.

For further applications, see A027 ''Power Supply Design using the ICL8211 and ICL8212' by D. Watson.

Figure 19: Switch Bounce Filter

IH5110-IH5115
 General Purpose Sample \& Hold

GENERAL DESCRIPTION

Each of the 5110 family is a complete Sample and Hold circuit, (except for sampling capacitor) including input buffer amplifier, output buffer amplifier and CMOS switching logic. The devices are designed to operate from $\pm 15 \mathrm{~V}$ and +5 V supplies. The input logic is designed to 'Sample" and "Hold" from standard TTL logic levels.

The design is such that the input and output buffering is performed with only one operational amplifier, by switching the sampling capacitor from the output back to input. Switches Q_{1}, Q_{2}, and Q_{3} (see Figure 1) accomplish this switching. In the sampling mode Q_{1} and Q_{3} are shorted and Q_{2} is open; thus the op. amp. charges up the sampling capacitor. In the hold mode Q_{1} and Q_{3} are open and Q_{2} is shorted; thus the sampling cap. is switched back to the noninverting input of the op. amp.

This structure provides a very accurate d.c. gain of 1 with very fast settling times (i.e. $5 \mu \mathrm{~s}$). Additionally the design has internal feedback to cancel charge injection effects (sample to hold offsets). Q_{1} and Q_{2} are driven 180 degrees out of phase to accomplish this charge nulling.

ORDERING INFORMATION

FEATURES

- Low Cost
- Military and Industrial Temperature Ranges
- $\pm 10 \mathrm{~V}$ Input Voltage Range
- 0.5mV/Sec Drift Typical @ $\mathrm{C}_{\mathrm{S}}=0.01 \mu \mathrm{~F}$
- TTL and CMOS Compatible
- Short Circuit Protected
- Input Offset Voltage Adjustable to $<\mathbf{1 0 0} \mu \mathrm{V}$ Using A 20k Ω Potentiometer
- 0.1\% Guaranteed Sample Accuracy With 10V Signals and $C_{S}=0.01 \mu \mathrm{~F}$
- Sample to Hold Offset Is 5mV Max

Figure 1: Functional Diagram
Figure 2: Pin Configuration

ABSOLUTE MAXIMUM RATINGS

Supply Volta Power Dissi Operating T

Storage Temperature Range $\ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots \ldots . .300^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, $\operatorname{Pin} 7=5 \mathrm{~V}$, $\operatorname{Pin} 8=\mathrm{GND}$, $\operatorname{Pin} 9=-15 \mathrm{~V}$, Pin $11=15 \mathrm{~V}$) Note 3

SYMBOL	CHARACTERISTIC	1H5110, 5112, 5114			IH5111, 5113, 5115			UNIT
		Rind	TYP	MAX	MIN	TYP	MAX	
Close	Aperture Time		120			200		ns
tacq.	Acquisition Time for Max Analog Voltage Step $\mathrm{C}_{\mathrm{S}}=0.1 \mu \mathrm{~F}(0.1 \%$ Accur. $)$ $\mathrm{C}_{\mathrm{S}}=0.01 \mu \mathrm{~F}(0.1 \%$ Accur.) $\mathrm{C}_{\mathrm{S}}=0.001 \mu \mathrm{~F}$ (0.1\% Accur.) See Figure 5		25 4 4	35 6 6		25 4 4	35 6 6	$\mu \mathrm{s}$
$V_{\text {drift }}$	Drift Rate $C_{S}=0.1 \mu \mathrm{~F}$ $\mathrm{C}_{\mathrm{S}}=0.01 \mu \mathrm{~F}$ $\mathrm{C}_{\mathrm{S}}=0.001 \mu \mathrm{~F}$ See Figure 3		$\begin{aligned} & 0.3 \\ & 0.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 2.5 \\ 5 \\ 10 \end{gathered}$		$\begin{aligned} & 0.3 \\ & 0.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 2.5 \\ 5 \\ 10 \\ \hline \end{gathered}$	mV / s
$V_{\text {inject }}$	Charge Injection or Sample to Hold Offsets $\begin{array}{ll} \mathrm{C}_{\mathrm{S}}=0.1 \mu \mathrm{~F} \\ \mathrm{C}_{\mathrm{S}}=0.01 \mu \mathrm{~F} & \\ \mathrm{C}_{\mathrm{S}}=0.001 \mu \mathrm{~F} \quad \text { See Note } i \& \text { Figure } 4 \\ \hline \end{array}$		$\begin{aligned} & <1 \\ & <1 \\ & 12 \end{aligned}$	$\begin{gathered} 5 \\ 5 \\ 25 \end{gathered}$		$\begin{aligned} & <1 \\ & <1 \\ & 12 \end{aligned}$	$\begin{gathered} 5 \\ 5 \\ 25 \\ \hline \end{gathered}$	mVp-p
$\mathrm{V}_{\text {switch }}$	Switching Transients or Spikes (Duration Less than $2 \mu \mathrm{~s}$) $\mathrm{C}_{\mathrm{S}}=0.1 \mu \mathrm{~F}$ $\mathrm{C}_{\mathrm{S}}=0.01 \mu \mathrm{~F}$ $\mathrm{C}_{\mathrm{S}}=0.001 \mu \mathrm{~F}$ See Figure 4		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	V
$\mathrm{V}_{\text {couple }}$	A. C. Feedthrough Coupled to Output		5			5		mVp-p
Voffset	D.C. Offset When in Sarmple Mode Trimmable 5110 to Om V With Ext. 20k Ω 5111 Potentiometer 5112 5113 See Figure 3 			40			40	mV
				10			10	
				5			5	
$\mathrm{R}_{\text {in }}$	Input Impedance in Hold or Sample Mode ($\mathrm{f} \leq 10 \mathrm{~Hz}$)		100			100		$\mathrm{M} \Omega$
$1 \pm 15 \mathrm{~V}$	Plus or Minus 15 V Supply Quiescent Current		3.4	6		3.4	6	mA
15 V	5V Supply Quiescent Current		0.3	10		0.3	10	A
$V_{\text {anaiog }}$	D.C. input Voltage Range			± 7.5			± 10	
$\Delta \mathrm{V}_{\mathrm{IN}}$	A.C. Input Voltage Range See Note 2 \& Figure 6	15			20			V
Istrobe	TTL Logic Strobe Input Current in Either Hold or Sample Mode		0.1	10		0.1	10	$\mu \mathrm{A}$

NOTES: 1. Offset voltage of op. amp. must be adjusted to 0 mV (using $20 \mathrm{k} \Omega$ potentiometer) before charge injection is measured.
2. The A.C. input voltage range differs from the D.C. input voltage range. All versions will handle any analog input within the range of plus 10 V to minus 10 V ; however the $\mathrm{IH} 5110,5112,5114$ has the added restriction that the peak to peak swing should be less than $15 \mathrm{Vp}-\mathrm{p}$ i.e. $\pm 7.5 \mathrm{Vac}$.
3. All of the electrical characteristics specs, are guaranteed with $\mathrm{C}_{\mathrm{S}}=0.01 \mu \mathrm{~F}$ in series with 100Ω as per Figure $3, \mathrm{C}_{\mathrm{S}}=0.1 \mu \mathrm{~F}$ \& $\mathrm{C}_{\mathrm{S}}=0.001 \mu \mathrm{~F}$ are for design aid only.
4. If supplies are reduced to $\pm 12 \mathrm{VDC}$, analog signal range will be reduced to $\pm 7 \mathrm{Vp}-\mathrm{p}$.

APPLICATIONS INFORMATION

CD01920
NOTES: 1. To trim output offset to 0 mV , set strobe input to sample mode (3 V), set analog input to GND, adjust potentiometer until S \& H output is 0 mV .
2. Use a low dielectric absorption capacitor such as polystyrene.

SAMPLE MODE occurs when logic input is greater than 2.4 V .
HOLD MODE occurs when logic input is less than 0.8 V .
Figure 3: Typical Connection Diagram

CD01930I
Adjust offset to 0 mV before testing for charge injection. See note 1 .

CHARGE INJECTION

SWITCHING TRANSIENTS

$V_{A}=$ GND
LOGIC INPU $\mathrm{C}_{\mathrm{s}}=0.01 \mu \mathrm{~s}$ \square] +3 V
-ov
 LOWER TRACE = TIME $=10 \mu \mathrm{~s} / \mathrm{cm}$

Figure 4: Charge Injection (sample to hold offset) Measurement Circuit; also Switching Transients Test Circuit

ACQUISITION TIME

NOTE: The acquisition time is actually a settling time spec. since the reading is only taken when the output has settled within 1% of its final value. The $6 \mu \mathrm{~s}$ spec. ($\mathrm{IH} 5111,5113 \& 5115$ is the worst reading of the t_{on} or $\mathrm{t}_{\mathrm{off}}$ settling time shown above. The above test can be performed with a 0 to +7.5 V or 0 to -7.5 V step for the $\mathrm{H} 5110,5112,5114$.

Figure 5: Typical Circuit for Measurement of A.C. Signal Handling Capability

Figure 6: Typical Circuit for Measurement of A.C. Peak to Peak Signal Handling Capability

APPLICATION TIPS

The following text serves as a guide in choosing the correct device from the H 5110 family.

First, determine the input voltage range.
The even numbered parts are designed to switch smaller A.C. signal amplitudes with the goal being to minimize the charge injection effects (sample to hold offsets). This charge injection error is shown in Figure 4. Once the voltage offset is zeroed, the 5110 has typical error amplitudes of 1 to $2 \mathrm{mVp}-\mathrm{p}$ (corresponds to 10 pc to 20pc of charge). Thus one could sample very low level d.c. signals with extreme accuracy. If very low level A.C. signals are being sampled, voltage offset potentiometer can be adjusted for a zero charge injection effect. Once the potentiometer has been adjusted, there will be a zero error going from sample to hold; however there will be a d.c. error caused by adjusting the potentiometer for zero charge injection and not for zero voltage offset. In general, this d.c. error will be in the area of 2 mV to 5 mV .

The odd numbered parts are primarily designed to handle any input in the plus or minus 10 V range, regardless of whether it is A.C. or D.C.; to obtain this, the charge injection is about a factor of 2 higher than the even numbered parts.

The use of Varafet switching elements similar to Intersil's IH401/401A leads to a trade-off between AC signal swing and charge injection.

After the voltage range and charge injection requirements have been determined, all that remains is to determine the input offset voltage the system can tolerate. By using the higher numbered parts, it is possible to eliminate the offset potentiometer if system accuracy will allow 5 mV $(5114,5115)$ or $10 \mathrm{mV}(5112,5113)$ due to the low input offset voltage on these devices.

The drift rate is specified at $10 \mathrm{mV} / \mathrm{sec}$. Max. for all models: this corresponds to approximately 100 pA total leakage into a $0.01 \mu \mathrm{~F}$ sampling capacitor (C_{s}). While the $10 \mathrm{mV} / \mathrm{sec}$. is the Max. encountered, a more typical reading is less than $1 \mathrm{mV} / \mathrm{sec}$. (true for any input between -10 V and +10 V); thus the IH 5110 family is ideal for applications requiring very low drift or droop rates.

The aperture time is spec'd at 200 ns Max. for all models, but a more typical value is 150 ns ; this is basically the off time of switch Q_{1}. The way this aperture time affects system accuracy is shown below:

Assume the input signal to the Sample and Hoid is an A.C. signal of peak amplitude A (peak to peak swing is 2.A) and frequency $2 \pi f=\omega$, then $V_{\text {input }}=A e^{j \omega t}$ and $d V / d t$
$=j A \omega e^{j \omega t}$. This means the slope of input signal $=(d V / d t)$ is a maximum at $t(t i m e)=0$. This maximum value is $\omega \mathrm{A}$ (in amplitude). (i.e.) input frequency is 10 kHz , therefore $\mathrm{dV} / \mathrm{dt}$ $=\omega \mathrm{A}=6.28 \times 10^{4} \times 10 \mathrm{~V}=6.3 \times 10^{5} \mathrm{~V} / \mathrm{sec} . \mathrm{A}=10 \mathrm{~V}$, then slope or $\mathrm{dV} / \mathrm{dt}=0.63 \mathrm{~V} / \mu \mathrm{s}$. Now if we wish error to be a Max. of say 1% of full scale 10 V , we see that $100 \mathrm{mV}(1 \% /$ aperture time $=0.63 \mathrm{~V} / \mu \mathrm{s}$. Solving this equation we see that aperture time must be 160 ns or less to get 1% holding accuracy. Since our aperture time is 150 ns typical, we have 1% accuracy in holding 10 kHz varying signals; for signal frequencies 1 kHz and less, Max. error is 0.1%. The simple interpretation of just how the off time of the switch causes this system error is due to the fact a finite time is required for the switch to react to a hold command; this reaction time manifests itself with a system voltage error because the time varying input signal is changing to a new value before the switch has actually turned off. (i.e.) in the above example off $=10 \mathrm{kHz}$ and $A=10 \mathrm{~V}$, suppose we gave the hold command (thru TTL logic) at $t=0$ (A.C. signal goes thru zero pt.) At this point we have calculated the slope to be a Max. and equal to $0.63 \mathrm{~V} / \mu \mathrm{s}$. If there were no aperture time error, we would read OV at output of Sample and Hold; however because of finite time for switch to respond to hold command, 150 ns passes before switch goes off. During this 150 ns , the input signal has gone to 100 mV above or below 0 V , thus the stored value of signal will be 100 mV and that is the reading at the output of the Sample and Hold. If the input frequency were 1 kHz , the "error voltage" would be 10 mV .

DEFINITION OF TERMS

Aperture Time: The time it takes to switch from sample mode to hold mode and the actual opening of switch.
Charge Injection: The amount of charge coupled across the switch with no input voltage.
Drift Rate: The amount of drift of output voltage at a rate caused by current flow through the storage capacitor.

$$
\left(\frac{d V}{d t}=\frac{i}{c}\right)
$$

This current is the leakage across the switch and the amplifier's bias current.
Feed Through: The amount of input signal that appears at the output when in the hold mode. Normally caused by capacitance across the switch.
Offset Voltage: Voltage measured at output with no input voltage and circuit in sample mode.
Acquisition Time: The time it takes amplifier to reach full scale output either plus or minus.

WF01610I
NOTE: Typical times for the Sample and Hold to acquire the input are 2μ s for turn on (output) goes to +10 V and 3μ s for turn off (output goes down to 0 V). As a general note, ali the electrical specifications are guaranteed with a sampling capacitor equal to $0.01 \mu \mathrm{f}$. As the above application (Fig 6) shows, other values of sampling capacitors can be used but the best combinations of $\mathrm{S} \& \mathrm{H}$ specs may not result with values other than $0.01 \mu \mathrm{~F}$. The only advantage of using a $0.001 \mu \mathrm{~F}$ for C_{S} is the acquisition time is $2 \mu \mathrm{~s}$ typical instead of $5 \mu \mathrm{~s}$ typical (with $0.01 \mu \mathrm{~F}$; however the drift rate would be worse and charge injection would be affected). To minimize drift rate, use a $0.1 \mu \mathrm{~F}$ capacitor; this should produce a $0.1 \mathrm{mV} / \mathrm{sec}$ rate of change and a charge injection amplitude of $0.2 \mathrm{mVp}-\mathrm{p}$. Of course the acquisition time will be slowed down to the $25 \mu \mathrm{~s}$ area. Also use a 0.1μ s system for slow speed changes (i.e., input frequency is less than 1 kHz . The series resistor should be about $100 \Omega-200 \Omega$ to stabilize the system.

Figure 7: Connection For Hi-Speed Sample and Hold With Following Typical Performance: W/Cs $=0.001$
a. 2μ s settling time (acquisition time) to 1% accuracy
b. 25 mV charge injection amplitude
c. $10 \mathrm{mV} / \mathrm{sec}$ drift rate

Section 6 - Data Acquisition

S

AD7520/AD7530 AD7521/AD7531 10/12-Bit Multiplying
 D/A Converters

GENERAL DESCRIPTION

The AD7520/AD7530 and AD7521/AD7531 are monolithic, high accuracy, low cost 10-bit and 12-bit resolution, multiplying digital-to-analog converters (DAC). Intersil's thin-film on CMOS processing gives up to 10-bit accuracy with TTL/CMOS compatible operation. Digital inputs are fully protected against static discharge by diodes to ground and positive supply.

Typical applications include digital/analog interfacing, multiplication and division, programmable power supplies, CRT character generation, digitally controlled gain circuits, integrators and attenuators, etc.

The AD7530 and AD7531 are identical to the AD7520 and AD7521, respectively, with the exception of output leakage current and feedthrough specifications.

FEATURES

- AD7520/AD7530: 10 Bit Resolution; 8, 9 and 10 Bit Linearity
- AD7521/AD7531: 12 Bit Resolution; 8, 9 and 10 Bit Linearity
- Low Power Dissipation: 20mW (Max)
- Low Nonlinearity Tempco: 2 ppm of FSR/ ${ }^{\circ} \mathrm{C}$
- Current Settling Time: 500 ns to 0.05% of FSR
- Supply Voltage Range: +5 V to +15 V
- TTL/CMOS Compatible
- Full Input Static Protection
- /883B Processed Versions Available

ORDERING INFORMATION

NONLINEARITY	PART NUMBER/PACKAGE		
	PLASTIC DIP	CERDIP	CERDIP
0.2\% (8-Bit)	AD75I20JN AD7530JN AD7521JN AD7531JN	AD7520JD AD7530JD AD7521JD AD7521JD	AD7520SD AD7521SD
0.1\% (9-Bit)	AD7520KN AD7530KN AD7521KN AD7531KN	$\begin{aligned} & \text { AD7520KD } \\ & \text { AD7530KD } \\ & \text { AD7521KD } \\ & \text { AD7531KD } \end{aligned}$	AD7520TD AD7521TD
0.05\% (10-Bit)	$\begin{aligned} & \text { AD7520LN } \\ & \text { AD7530LN } \\ & \text { AD7521LN } \\ & \text { AD7531LN } \end{aligned}$	$\begin{aligned} & \text { AD7520LD } \\ & \text { AD7530LD } \\ & \text { AD7521LD } \\ & \text { AD7531LD } \end{aligned}$	AD7520UD AD7521UD
TEMPERATURE RANGE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

AD7520/7530/7521/7531

ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Supply Voltage (V^{+})
$+17 \mathrm{~V}$
VREF
.$\pm 25 \mathrm{~V}$
Digital Input Voltage Range ${ }^{+}$to GND
Output Voltage Compliance-100mV to V^{+}
Power Dissipation (package)

```
up to +75*'C
.............
.450 mW
derate above \(+75^{\circ} \mathrm{C} @\)
\(6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)
```

Operating Temperature
$\mathrm{JN}, \mathrm{KN}, \mathrm{LN}$ Versions $\ldots \ldots \ldots \ldots . . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
JD, KD, LD Versions.................. $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
SD, TD, UD Versions $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature....................... $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)
$.300^{\circ} \mathrm{C}$

CAUTION:

1) The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2) Do not apply voltages higher than $V_{D D}$ or less than GND potential on any terminal except $V_{\text {REF }}$ and RFEEDBACK.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	TEST CONDITIONS		$\begin{gathered} \text { AD7520 } \\ \text { (AD7530) } \end{gathered}$	$\begin{gathered} \text { AD7521 } \\ \text { (AD7531) } \end{gathered}$	UNIT	LIMIT
DC ACCURACY (Note 1)						
Resolution			10	12	Bits	
Nonlinearity (Note ?)	S, T, U: over $-55^{\circ} \mathrm{C}$ to $=125^{\circ} \mathrm{C}$$-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq=10 \mathrm{~V}$	Fig. 3	0.2 (8-Bit)		\% of FSR	Max
		Fig. 3	0.1 (9-Bit)		\% of FSR	Max
		Fig. 3	0.05 (10-Bit)		\% of FSR	Max
Nonlinearity Tempco (Notes 2 and 3)	$-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V}$		2		ppm of FSR/ $/{ }^{\circ} \mathrm{C}$	Max
Gain Error (Note 2)			0.3		\% of FSR	Typ
Gain Error Tempco (Notes 2 and 3)			10		ppm of FSR/ $/{ }^{\circ} \mathrm{C}$	Max
Output Leakage Current (either output)	Over the specified temperature range		$\begin{aligned} & \hline 200 \\ & (300) \end{aligned}$		nA	Max
Power Supply Rejection (Note 2)		Fig. 4	± 0.005		\% of FSR/\%	Typ
AC ACCURACY (Note 3)						
Output Current Settling Time	To 0.05% of FSR (All digital inputs low to high and high to low)	Fig. 8	500		ns	Typ
Feedthrough Error	$\mathrm{V}_{\text {REF }}=20 \mathrm{~V} \mathrm{pp}, 100 \mathrm{kHz}$ (50 kHz) All digital inputs low	Fig. 7	10		mV pp	Max
REFERENCE INPUT						
Input Resistance	All digital inputs high louti at ground.		$\begin{gathered} 5 \mathrm{k} \\ 10 \mathrm{k} \\ 20 \mathrm{k} \end{gathered}$		Ω	$\begin{aligned} & \text { Min } \\ & \text { Typ } \\ & \text { Max } \end{aligned}$
ANALOG OUTPUT						
Voltage Compliance (both outputs)	(Note 3)		See absolute max. ratings			
Output Capacitance (Note 3)	All digital inputs high	Fig. 6	$\begin{aligned} & 120 \\ & 37 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { Typ } \\ & \text { Typ } \end{aligned}$
	All digital inputs low	Fig. 6	$\begin{gathered} 37 \\ 120 \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { Typ } \\ & \text { Typ } \end{aligned}$
Output Noise (both outputs) (Note 3)		Fig. 5	$\begin{aligned} & \text { Equivale } \\ & \text { Johns } \end{aligned}$	$\begin{aligned} & \text { to } 10 \mathrm{k} \Omega \\ & \text { noise } \end{aligned}$		Typ
DIGITAL INPUTS						
Low State Threshold	Over the specified temp range				V	Max
High State Threshold			2.4		V	Min
Input Current (low to high state)			1		$\mu \mathrm{A}$	Typ
Input Coding	See Tables 1 \& 2		Binary/Offset Binary			

ELECTRICAL CHARACTERISTICS (CONT.)

PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { AD7520 } \\ \text { (AD7530) } \end{gathered}$	$\begin{gathered} \text { AD7521 } \\ \text { (AD7531) } \end{gathered}$	UNIT	LIMIT
POWER REQUIREMENTS					
Power Supply Voltage Range		+5 to +15		V	
I^{+}	All digital inputs at OV or V^{+}	1		$\mu \mathrm{A}$	Typ
	All digital inputs high or low	2		mA	Max
Total Power Dissipation (Including the ladder network)		20		mW	Typ

NOTES: 1 . Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
2. Using internal feedback resistor, RFEEDBACK.
3. Guaranteed by design, not subject to test.
4. Accuracy not guaranteed unless outputs at GND potential.

TEST CIRCUITS NOTE: The following test circuits apply for the AD7520. Similar circuits are used for the AD7530, AD7521 and AD7531.

Figure 3: Nonlinearity

Figure 4: Power Supply Rejection

Figure 6: Output Capacitance

Figure 8: Output Current Settling Time

DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire $V_{\text {REF }}$ range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of $\left(2^{-n}\right)\left(V_{R E F}\right)$. A bipolar converter of n bits has a resolution of $\left[2^{-(n-1)}\right]$ [$V_{\text {REF }}$]. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.
GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.
FEEDTHROUGH ERROR: Error caused by capacitive coupling from VREF to output with all switches OFF.
OUTPUT CAPACITANCE: Capacitance from IOUT1 and IOUT2 terminals to ground.
OUTPUT LEAKAGE CURRENT: Current which appears on lout1 terminal with all digital inputs LOW or on lout2 terminal when all inputs are HIGH.

DETAILED DESCRIPTION

The AD7520 (AD7530) and AD7521 (AD7531) are monolithic, multiplying D/A converters. A highly stable thin film R2R resistor ladder network and NMOS SPDT switches form the basis of the converter circuit, CMOS level shifters permit low power TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.

A simplified equivalent circuit of the DAC is shown in Figure 9. The NMOS SPDT switches steer the ladder leg currents between IOUT1 and lOUT2 buses which must be held either at ground potential. This configuration maintains
a constant current in each ladder leg independent of the input code.

(Switches shown for Digital Inputs 'High')
Figure 9: 7520/7521 Functional Diagram

Converter errors are further reduced by using separate metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level.

The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 10). This configuration results in TTL/ CMOS compatible operation over the full military temperature range. With the ladder SPDT switches driven by the level shifter, each switch is binarily weighted for an ON resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the 2R ladder resistors and highly accurate leg currents.

Figure 10: CMOS Switch

Figure 11: Unipolar Binary Operation (2-Quadrant Multiplication)

TABLE 1
CODE TABLE - UNIPOLAR BINARY OPERATION

DIGITAL INPUT	ANALOG OUTPUT
1111111111	$-V_{\text {REF }}\left(1-2^{-n}\right)$
1000000001	$-V_{\text {REF }}\left(1 / 2+2^{-n}\right)$
1000000000	$-V_{\text {REF }} / 2$
0111111111	$-V_{\text {REF }}\left(1 / 2-2^{-n}\right)$
0000000001	$-V_{\text {REF }}\left(2^{-n}\right)$
0000000000	0

NOTE: 1. LSB $=2^{-n} V_{\text {REF }} \quad$ 2. $n=10$ for 7520,7530 $\mathrm{n}=12$ for 7521, 7531

APPLICATIONS

Unipolar Binary Operation

The circuit configuration for operating the AD7520 (AD7530) and AD7521 (AD7531) in unipolar mode is shown in Figure 11. With positive and negative $V_{\text {REF }}$ values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1.

ZERO OFFSET ADJUSTMENT

1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for $0 \mathrm{~V} \pm 1 \mathrm{mV}$ at $\mathrm{V}_{\text {OUT }}$.

GAIN ADJUSTMENT

1. Connect all AD7520 (AD7530) or AD7521 (AD7531) digital inputs to V^{+}.
2. Monitor VOUT for $a-V_{\text {REF }}\left(1-2^{-n}\right)$ reading. ($n=10$ for AD7520 (AD7530) and $n=12$ for AD7521 (AD7531)).
3. To decrease $V_{O U T}$, connect a series resistor (0 to 500Ω) between the reference voltage and the $\mathrm{V}_{\text {REF }}$ terminal.
4. To increase VOUT, connect a series resistor (0 to 500Ω) in the lout ${ }_{1}$ amplifier feedback loop.

Bipolar (Offset Binary) Operation

The circuit configuration for operating the AD7520 (AD7530) or AD7521 (AD7531) in the bipolar mode is given in Figure 12. Using offset binary digitai input codes and positive and negative reference voltage values, 4-Quadrant multiplication can be realized. The 'Digital Input Code/ Analog Output Value" table for bipolar mode is given in Table 2.

TABLE 2
CODE TABLE - BIPOLAR (OFFSET BINARY) OPERATION

DIGITAL INPUT	ANALOG OUTPUT
1111111111	$-V_{\text {REF }}\left(1-2^{-(n-1)}\right)$
1000000001	$-V_{\text {REF }}\left(2^{-(n-1)}\right)$
1000000000	0
0111111111	V REF $\left(2^{-(n-1)}\right)$
0000000001	V REF $^{\left(n-2^{-(n-1)}\right)}$
0000000000	V REF

NOTE: 1. LSB $=2^{-(n-1)} V_{\text {REF }}$
2. $n=10$ for 7520 and 7521
$\mathrm{n}=12$ for 7530 and 7531
A 'Logic 1' input at any digital input forces the corresponding ladder switch to steer the bit current to lOUT1 bus. A 'Logic 0 ' input forces the bit current to lOUT2 bus. For any code the louT1 and lout2 bus currents are complements of one another. The current amplifier at IOUT2 changes the polarity of lOUT2 current and the transconductance amplifier at lOUT1 output sums the two currents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code, (MSB = 'Logic 1'', All other bits = ''Logic 0 '), is corrected by using an external resistor, (10 Megohm), from VREF to IOUT2.

OFFSET ADJUSTMENT

1. Adjust $V_{\text {REF }}$ to approximately +10 V .
2. Connect all digital inputs to 'Logic 1'.
3. Adjust IOUT2 amplifier offset adjust trimpot for OV $\pm 1 \mathrm{mV}$ at IOUT2 amplifier output.
4. Connect MSB (Bit 1) to "Logic 1 ' and all other bits to "Logic 0".
5. Adjust louT1 amplifier offset adjust trimpot for $\mathrm{OV} \pm 1$ mV at Vout.

GAIN ADJUSTMENT

1. Connect all digital inputs to V^{+}.
2. Monitor VOUT for a - VREF $(1-2-(n-1)$) volts reading. ($\mathrm{n}=10$ for AD7520 and AD7530, and $\mathrm{n}=12$ for AD7521 and AD7531).
3. To increase $V_{\text {OUT }}$, connect a series resistor of up to 500Ω between Vout and RFEEDBACK.
4. To decrease $V_{\text {OUT }}$, connect a series resistor of up to 500Ω between the reference voltage and the $V_{\text {REF }}$ terminal.

Figure 13: Basic Power DAC

POWER DAC DESIGN USING AD7520

A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 13. An INTERSIL IH8510 power operational amplifier (1 Amp continuous output at up to $\pm 25 \mathrm{~V}$) is driven by the AD7520.

A summing amplifier between the AD7520 and the IH8510 is used to separate the gain block containing the AD7520 on-chip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise the AD7520 can be directly connected to the 1 H 8510 , by using a 25 V reference for the DAC.

An important note on the AD7520/101A interface concerns the connection of pin 1 of the DAC and pin 2 of the 101A. Since this point is the summing junction of an amplifier with an AC gain of 50,000 or better, stray capacitance should be minimized; otherwise instabilities and poor noise performance will result. Note that the output of the 101A is fed into an inverting amplifier with a gain of -3 , which can be easily changed to a non-inverting configuration. (For more information see: INTERSIL Application Bulletin A021: Power D/A Converters Using The IH8510 by Dick Wilenken.)

Analog/Digital Division

With the AD7520 connected in its normal multiplying configuration as shown in Figure 13, the transfer function is:

$$
V_{O}=-V_{I N}\left(\frac{A_{1}}{2^{1}}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\cdots \frac{A_{n}}{2^{n}}\right)
$$

where the coefficients A_{x} assume a value of 1 for an ON bit and 0 for an OFF bit.

By connecting the DAC in the feedback of an operational amplifier, as shown in Figure 14, the transfer function becomes:

$$
V_{O}=\left(\frac{-V_{I N}}{\frac{A_{1}}{2^{1}}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\ldots \frac{A_{n}}{2^{n}}}\right)
$$

This is division of an analog variable (V / N) by a digital word. With all bits off, the amplifier saturates to its bound, since division by zero isn't defined. With the LSB (Bit-10) ON, the gain is 1023 . With all bits ON, the gain is $1(\pm 1$ LSB).

Figure 14: Analog/Digital Divider

For further information on the use of this device, see the following Application Bulletins:

A016 "Selecting A/D Converters," by David Fullagar
A018 'Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood
A020 "'A Cookbook Approach to High-Speed Data Acquisition and Microprocessor Interfacing' by Ed Sliger
A021 'Power D/A Converters Using the IH8510,'" by Dick Wilenken

GENERAL DESCRIPTION

The AD7523 is a monolithic, low cost, high performance, 10 bit accurate, multiplying digital-to-analog converter (DAC), in a 16 -pin DIP.

Intersil's thin-film resistors on CMOS circuitry provide 8bit resolution (8, 9 and 10-bit accuracy), with TTL/CMOS compatible operation.
The AD7523's accurate four quadrant multiplication, full military temperature range operation, full input protection from damage due to static discharge by clamps to $\mathrm{V}+$ and GND, and very low power dissipation make it a very versatile converter.

Low noise audio gain controls, motor speed controls, digitally controlled gain and attenuators are a few of the wide range of applications of the 7523.

FEATURES

- 8, 9 and 10 Bit Linearity
- Low Gain and Linearity Temperature Coefficients
- Full Temperature Range Operation
- Static Discharge Input Protection
- DTL/TTL/CMOS Compatible
- +5 to +15 Volts Supply Range
- Fast Settling Time: 150 ns Max at $25^{\circ} \mathrm{C}$
- Four Quadrant Multiplication

ORDERING INFORMATION

NONLINEARITY	PART NUMBER/PACKAGE		
	PLASTIC DIP	CERDIP	CERDIP
	AD7523JN	AD7523AD	AD7523SD
0.1% $(9 \mathrm{Bit})$	AD7523KN	AD7523BD	AD7523TD
0.05% $(10 \mathrm{Bit})$	AD7523LN	AD7523CD	AD7523UD
TEMPERATURE RANGE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Figure 1: Functional Diagram (Switches shown for Digital Inputs "High')

CDO1330
Figure 2: Pin Configuration Outline Drawings DE, PE

ABSOLUTE MAXIMUM RATINGS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Supply Voltage (V^{+}) $+17 \mathrm{~V}$
VREF $\pm 25 \mathrm{~V}$
Digital Input Voltage Range V^{+}to GND
Output Voltage Compliance 100 mV to V^{+}
Power Dissipation:
Plastic Package -

$$
\text { up to }+70^{\circ} \mathrm{C}
$$

. .670 mW
derate above $+70^{\circ} \mathrm{C}$ by
$8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

CAUTION:

1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times
2. Do not apply voltages higher than VDD and lower than GND to any terminal except VREF + RFEEDBACK.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}\right.$ unless otherwise specified)

PARAMETER		TEST CONDITIONS	$\begin{gathered} T_{A} \\ +25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathbf{T A}_{A} \\ \text { MIN-MAX } \end{gathered}$	UNIT	LIMIT	
DC ACCURACY (Note 1)							
Resolution			8	8	Bits	Min	
Nonlinearity (Note 2)	($\pm 1 / 2$ LSB)	$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT1 }}=\mathrm{V}_{\text {OUT2 }}=0 \mathrm{~V} \end{aligned}$	± 0.2	± 0.2	\% of FSR	Max	
	($\pm 1 / 4$ LSB)		± 0.1	± 0.1	\% of FSR	Max	
	($\pm 1 / 8$ LSB)		± 0.05	± 0.05	\% of FSR	Max	
Monotonicity			Guaranteed				
Gain Error (Note 2)		Digital Inputs high.	± 1.5	± 1.8	\% of FSR	Max	
Nonlinearity Tempco (Notes 2 and 3)		-10V VREF +10 V	2		ppm of FSR $/{ }^{\circ} \mathrm{C}$	Max	
Gain Error Tempco (Notes 2 and 3)			10		ppm of FSR $/{ }^{\circ} \mathrm{C}$	Max	
Output Leakage Current (either output)		$\mathrm{V}_{\text {OUT1 }}=\mathrm{V}_{\text {OUT2 }}=0$	± 50	± 200	nA	Max	
AC ACCURACY							
Power Supply Rejection (Note 2)		$\mathrm{V}^{+}=14.0$ to 15.0 V	0.02	0.03	\% of FSR	Max	
Output Current Settling Time (Note 3)		To 0.2% of FSR, $\mathrm{R}_{\mathrm{L}}=100 \Omega$	150	200	ns	Max	
Feedthrough Error (Note 3)		$\mathrm{V}_{\mathrm{REF}}=20 \mathrm{~V}$ pp, 200 kHz sine wave. All digital inputs low.	$\pm 1 / 2$	± 1	LSB	Max	
REFERENCE INPUT							
Input Resistance (Pin 15)		All digital inputs high. lout1 at ground.		5K	Ω	Min	
			OK	Max			
Temperature Coefficient (Note 3)				500	ppm $/{ }^{\circ} \mathrm{C}$	Max	
ANALOG OUTPUT							
Output Capacitance (Note 3)	COUT1		All digital inputs high (VINH)	100		pF	Max
	COUT2			30	pF	Max	
	COUT1	All digital inputs low (VINL)		30	pF	Max	
	COUT2			00	pF	Max	
DIGITAL INPUTS							
Low State Threshold (VINL)				0.8	V	Max	
High State Threshold (VINH)				2.4	V	Min	
Input Current (Low or high)		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or +15 V		± 1	$\mu \mathrm{A}$	Max	
Input Coding		See Tables 1 \& 2	Binary/	ffset Binary			
Input Capacitance (Note 3)				4	pF	Max	
POWER REQUIREMENTS							
Power Supply Voltage Range		Accuracy is tested and guaranteed at $\mathrm{V}^{+}=+15 \mathrm{~V}$, only.		to +16	V		
1^{+}		All digital inputs low or high.		2	mA	Max	

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
2. Using internal feedback resistor, RfEEDBACK
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.

APPLICATIONS

UNIPOLAR OPERATION

LD006201
Figure 3: Unipolar Binary Operation

Table 1. Unipolar Binary Code Table

DIGITAL iNPUT MSB LSB	ANALOG OUTPUT
11111111	- V $_{\text {REF }}\left(\frac{255}{256}\right)$
10000001	$-V_{\text {REF }}\left(\frac{129}{256}\right)$
10000000	$-V_{\text {REF }}\left(\frac{128}{256}\right)=-\frac{V_{\text {REF }}}{2}$
01111111	$-V_{\text {REF }}\left(\frac{127}{256}\right)$
00000001	$-V_{\text {REF }}\left(\frac{1}{256}\right)$
00000000	$-V_{\text {REF }}\left(\frac{0}{256}\right)=0$

NOTE: $1 \mathrm{LSB}=\left(2^{-8}\right)\left(\mathrm{V}_{\text {REF }}\right)=\left(\frac{1}{256}\right)\left(\mathrm{V}_{\text {REF }}\right)$

BIPOLAR OPERATION

notes:

1. R3/R4 MATCH 0.1% OR BETTER.
2. R1, R2 USED ONLY IF GAIN R1, RU SMED ONL YEF GAIN.
ADUUSTMENT IS REQURED.
3. R5-RT USED TO ADJUST VOUT $=0 V$ AT INPUT CODE 10000000 .
4. CR1 $\&$ CR2 PROTECT AD7523 4. CR1 \& CR2 PROTECT AD7523
AGAINST NEGATIVE TRANSIENTS.

Figure 4: Bipolar Operation

Table 2. Bipolar (Offset Binary) Code Table

DIGITAL INPUT MSB LSB	ANALOG OUTPUT
11111111	- V REF $\left(\frac{127}{128}\right)$
10000001	- V REF $\left(\frac{1}{128}\right)$
10000000	0
01111111	+ V REF $\left(\frac{1}{128}\right)$
00000001	+ V REF $\left(\frac{127}{128}\right)$
00000000	$+V_{\text {REF }}\left(\frac{128}{128}\right)$

NOTE: $1 \mathrm{LSB}=\left(2^{-7}\right)\left(V_{\text {REF }}\right)=\left(\frac{1}{128}\right)\left(V_{\text {REF }}\right)$

A typical power DAC designed for 10 bit accuracy and 8 bit resolution is shown in Figure 5. The Intersil IH8510 power operational amplifier (1 Amp continuous output with up to +25 V) is driven by the AD7523.

A summing amplifier between the AD7523 and the IH8510 is used to separate the gain block containing the AD7520 on-chip resistors from the power amplifier gain stage, whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise AD7523 can be directiy connected to the $1 H 8510$, by using a 25 volt reference for the DAC.

POWER DAC DESIGN USING AD7523

Figure 6: Divider (Digitally Controlled Gain)

$V_{\text {OUT }}=V_{\text {REF }}\left[\left(\frac{R_{2}}{R_{1}+R_{2}}\right)-\left(\frac{R_{1} D}{R_{1}+R_{2}}\right)\right]$ WHERE: $D=\frac{\text { BIT } 1}{2^{1}}+\frac{\text { BIT } 2}{2^{2}}+\cdots \frac{\text { BIT } 8}{2^{8}}$

$$
\left(0 \leq \mathrm{D} \leq \frac{255}{256}\right)
$$

Figure 7: Modified Scale Factor and Offset

DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire $\mathrm{V}_{\text {REF }}$ range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of $\left(2^{-n}\right)\left(V_{\text {REF }}\right)$. A bipolar converter of n bits has a resolution of $\left[2^{-(n-1)}\right]$ [$V_{R E F}$]. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.
GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.
FEEDTHROUGH ERROR: Error caused by capacitive coupling from $V_{\text {REF }}$ to output with all switches OFF.
OUTPUT CAPACITANCE: Capacity from IOUT1 and IOUT2 terminals to ground.
OUTPUT LEAKAGE CURRENT: Current which appears on
IOUT1 terminal with all digital inputs LOW or on IOUT2 terminal when all inputs are HIGH.

For further information on the use of this device, see the following Application Notes:

A016 'Selecting A/D Converters," by David Fullagar
A018 "Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood
A020 ''A Cookbook Approach to High-Speed Data Acquisition and Microprocessor Interfacing" by Ed Sliger
A021 'Power D/A Converters Using the IH8510," by Dick Wilenken

AD7533

10-Bit Multiplying D/A Converter

GENERAL DESCRIPTION

The Intersil AD7533 is a low cost, monolithic 10-bit, fourquadrant multiplying digital-to-analog converter (DAC). Intersil's thin-film resistor on CMOS circuitry provide 10, 9 and 8 bit accuracy, full temperature range operation, +5 V to +15 V supply voltage range, full input protection from damage due to static discharge by clamps to V^{+}and ground and very low power dissipation.

Pin and function equivalent to the industry standard AD7520, the AD7533 is recommended as a lower cost alternative for old or new 10-bit DAC designs.

Applications for the AD7533 include programmable gain amplifiers, digitally controlled attenuators, function generators and control systems.

ORDERING INFORMATION

NONLINEARITY	TEMPERATURE RANGE		
	$0^{\circ} \mathrm{C} \text { to }$ $+70^{\circ} \mathrm{C}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$
$\begin{aligned} & \pm 0.2 \% \\ & \text { (8-bit) } \end{aligned}$	AD7533JN	AD7533AD	AD7533SD
$\begin{aligned} & \pm 0.1 \% \\ & \text { (9-bit) } \end{aligned}$	AD7533KN	AD7533BD	AD7533TD
$\begin{aligned} & \pm 0.05 \% \\ & \text { (10-bit) } \end{aligned}$	AD7533LN	AD7533CD	AD7533UD

FEATURES

- Lowest Cost 10-Bit DAC
- 8, 9 and 10 Bit Linearity
- Low Gain and Linearity Tempcos
- Full Temperature Range Operation
- Full Input Static Protection
- TTL/CMOS Direct Interface
- +5 to +15 Volts Supply Range
- Low Power Dissipation
- Fast Settling Time
- Four Quadrant Multiplication
- Direct AD7520 Equivalent
- 883B Processed Versions Available

PACKAGE IDENTIFICATION

Figure 1: Functional Diagram

CD013401
Figure 2: Pin Configuration

AD7533

ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

V^{+}
$+17 \mathrm{~V}$
VREF
$\pm 25 \mathrm{~V}$
Digital Input Voltage Range V^{+}to GND
Output Voltage Compliance V^{+}to GND
$-0.1 V$ to V^{+}
Power Dissipation
Ceramic Package:

$$
\begin{aligned}
& \text { up to }+75^{\circ} \mathrm{C} \text {. } \\
& .450 \mathrm{~mW} \\
& \text { derates above }+75^{\circ} \mathrm{C} \text { by.................. } 6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Plastic Package:
up to $70^{\circ} \mathrm{C} . \ldots \ldots \ldots \ldots .670 \mathrm{~mW}$
derates above $70^{\circ} \mathrm{C}$ by
$8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range:
$\mathrm{JN}, \mathrm{KN}, \mathrm{LN}$ Versions $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
AD, BD, CD Versions................. $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
SD, TD, UD Versions $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $. . . \ldots \ldots \ldots65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$

CAUTION:

1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages lower than ground or higher than V^{+}to any pin except $\mathrm{V}_{\text {REF }}$ and R_{FB}.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {OUT2 }}=0\right.$ unless otherwise specified. $)$

ELECTRICAL CHARACTERISTICS (CONT.)

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \mathrm{TA}_{A} \\ + & 25^{\circ} \mathrm{C} \end{aligned}$	$\underset{\text { MIN-MAX }}{\text { TA }_{\text {A }}}$	LIMIT	UNIT
POWER REQUIREMENTS					
VDD	Rated Accuracy	$+15 \pm 10 \%$			V
Power Supply Voltage Range		+5 to +16			V
1^{+}	Digital Inputs $=\mathrm{V}_{\text {INL }}$ to $\mathrm{V}_{\text {INH }}$	2		Max	mA
	Digital Inputs $=0 \mathrm{~V}$ or V^{+}	100	150	Max	$\mu \mathrm{A}$

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
Specifications subject to 2. Using internal feedback resistor, RFEEDBACK 3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.
5. Full scale (FS) $=-\left(V_{\text {REF }}\right) \bullet(1023 / 1024)$
6. Sample tested to ensure specification compliance.

DETAILED DESCRIPTION

The Intersil AD7533 is a 10 bit, monolithic, multiplying D/A converter. A highly stable thin film R-2R resistor ladder network and NMOS SPDT switches form the basis of the converter circuit. CMOS level shifters permit low power TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.

(Switches shown for Digital Inputs "High')
Figure 3

A simplified equivalent circuit of the DAC is shown in Figure 3. The NMOS SPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential. This configuration maintains a heid at ground potenial. This contguration maintain a
constant current in each ladder leg independent of the input code.

Figure 4
The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 4). This configuration results in TTL/CMOS compatible operation over the full military temperature range. With the ladder SPDT switches driven by the level shifter, each switch is binarily weighted for an 'ON"' resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the 2R ladder resistors resulting in accurate leg currents.

APPLICATIONS

UNIPOLAR OPERATION
 (2-QUADRANT MULTIPLICATION)

LC007001
NOTES: !ni1. R1 and R2 used only if gain adjustment is required.
2. Schottky diode CR1 (HP5082-2811 or equiv) protects OUT1 terminal against negative transients.
Figure 5: Unipolar Binary Operation (2-Quadrant Multiplication)

Table 1. Unipolar Binary Code

DIGITAL INPUT MSB LSB	NOMINAL ANALOG OUTPUT (VOUT as shown in Figure 3)
1111111111	- VREF $\left(\frac{1023}{1024}\right)$
1000000001	$-V_{\text {REF }} \quad\left(\frac{513}{1024}\right)$
1000000000	$-\mathrm{V}_{\text {REF }}\left(\frac{512}{1024}\right)=-\frac{V_{\text {REF }}}{2}$
0111111111	- $\mathrm{V}_{\text {REF }}\left(\frac{511}{1024}\right)$
0000000001	- $\mathrm{V}_{\text {REF }}\left(\frac{1}{1024}\right)$
0000000000	$-\mathrm{V}_{\text {REF }} \quad\left(\frac{0}{1024}\right)=0$

Notes: 1. . Nominal Ful scale tor the cricuit of figure 3 is suen by

$$
F S=-V_{R E F}\left(\frac{1023}{1024}\right)
$$

2. Nominal LSB magnitude for the circuit of Figure 3 is given by

$$
L S B=V_{\text {REF }}\left(\frac{1}{1024}\right)
$$

BIPOLAR OPERATION (4-QUADRANT MULTIPLICATION)

Table 2. Bipolar (Offset Binary) Code Table

DIGITAL INPUT MSB LSB	NOMINAL ANALOG OUTPUT $\left(V_{\text {OUT }}\right.$ as shown in Figure 4)
1111111111	- V REF $\left(\frac{511}{512}\right)$
1000000001	$-V_{\text {REF }}\left(\frac{1}{512}\right)$
1000000000	0
0111111111	$+V_{\text {REF }}\left(\frac{1}{512}\right)$
0000000001	$+V_{\text {REF }}\left(\frac{511}{512}\right)$
0000000000	$+V_{\text {REF }}\left(\frac{512}{512}\right)$

NOTES: 1. Nominal Full Scale for the circuit of Figure 4 is given by

$$
\mathrm{FSR}=\mathrm{V}_{\mathrm{REF}}\left(\frac{1023}{512}\right)
$$

2. Nominal LSB magnitude for the circuit of Figure 4 is given by

$$
\mathrm{LSB}=\mathrm{V}_{\mathrm{FEF}}\left(\frac{1}{512}\right)
$$

Figure 7: Basic Power DAC

A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 7. INTERSIL IH8510 power amplifier (1 Amp continuous output with up to $\pm 25 \mathrm{~V}$) is driven by the AD7533.

A summing amplifier between the AD7533 and the IH8510 is used to separate the gain block containing the AD7533 on-chip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise the AD7533 can be directly connected to the 1 H 8510 , by using a 25 volts reference for the DAC. Notice that the output of the LM101A is fed into an inverting amplifier with a gain of -3 , which can be easily changed to a non-inverting configuration. (For more information write for: INTERSIL Application Bulletin A021-Power D/A Converters Using The IH8510 by Dick Wilenken.)

Figure 8: 10-Bit and Sign Multiplying DAC

Figure 9: Programmable Function Generator

INPUT SIGNAL WARNING

Because of the input protection diodes on the logic inputs, it is important that no voltage greater than 4 V outside the logic supply rails be applied to these inputs at any time, including power-up and other transients. To do so could cause destructive SCR latch-up.

AD7541
12-Bit Multiplying D/A Converter

GENERAL DESCRIPTION

The Intersil AD7541 is a monolithic, low cost, high performance, 12-bit accurate, multiplying digital-to-analog converter (DAC).

Intersil's wafer level laser-trimmed thin-film resistors on CMOS circuitry provide true 12-bit linearity with TTL/CMOS compatible operation.

Special tabbed-resistor geometries (improving time stability), full input protection from damage due to static discharge by diode clamps to $\mathrm{V}+$ and ground, large lOUT1 and IOUT2 bus lines (improving superposition errors) are some of the features offered by Intersil AD7541.

Pin compatible with AD7521, this new DAC provides accurate four quadrant multiplication over the full military temperature range.

FEATURES

- 12 Bit Linearity (0.01%)
- Pretrimmed Gain
- Low Gain and Linearity Tempcos
- Full Temperature Range Operation
- Full Input Static Protection
- DTL/TTL/CMOS Compatible
- +5 to +15 Volts Suppiy Range
- Low Power Dissipation (20 mW)
- Current Settling Time: $1 \mu \mathrm{~s}$ to 0.01% of FSR
- Four Quadrant Multiplication
- 883B Processed Versions Available

ORDERING INFORMATION

NONLINEARITY	PART NUMBER/TEMPERATURE RANGE		
	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
$\begin{aligned} & 0.02 \% \\ & \text { (11-bit) } \end{aligned}$	AD7541JN	AD7541AD	AD7541SD
$\begin{aligned} & 0.01 \% \\ & \text { (12-bit) } \end{aligned}$	AD7541KN	AD7541BD	AD7541TD
$\begin{aligned} & 0.01 \% \\ & \text { (12-bit) } \end{aligned}$ Guaranteed Monotonic	AD7541LN	-	-

Figure 1: Functional Diagram (Switches shown for Digital Inputs 'High')

CD013501
Figure 2: Pin Configuration (Outline dwgs DN, PN)

AD7541

ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Abstract

V+ $V_{\text {REF }}$ $+17 \mathrm{~V}$

Digital Input Voltage Range $\pm 25 \mathrm{~V}$ 信 Output Voltage Compliance-100mV to V^{+} Power Dissipation (package): up to $+75^{\circ} \mathrm{C} \ldots . .450 \mathrm{~mW}$ derate above $+75^{\circ} \mathrm{C}$ by $\ldots \ldots \ldots \ldots \ldots . .6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

\section*{CAUTION} 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times. 2. Do not apply voltages higher than $V_{D D}$ or less than $G N D$ potential on any terminal except $V_{R E F}$ and $R_{f b}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended period may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER			TEST CONDITIONS	$\begin{gathered} \text { TA } \\ +25^{\circ} \mathrm{C} \end{gathered}$	TA MIN-MAX	LIMIT	FIG.	UNIT	
DC ACCURACY (Note 1)									
Resolution				12	12	Min		Bits	
Nonlinearity (Note 2)	S	J	$\left\{\begin{array}{l} -10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT } 1}=\mathrm{V}_{\text {OUT } 2}=\mathrm{OV} \end{array}\right.$	± 0.024	± 0.024	Max	1	\% of FSR	
	T	K		± 0.012	± 0.012	Max		\% of FSR	
		L		± 0.012 ± 0.012 Guaranteed Monotonic		Max		\% of FSR	
Gain Error (Note 2)			$-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V}$	± 0.3	± 0.4	Max		\% of FSR	
Output Leakage Current (either output)			$\mathrm{V}_{\text {OUT1 }}=\mathrm{V}_{\text {OUT2 }}=0$	± 50	± 200	Max		nA	
AC ACCURACY (Note 3)									
Power Supply Rejection (Note 2)			$\mathrm{V}^{+}=14.5$ to 15.5 V	± 0.01	± 0.02	Max	2	\% of FSR/\%	
Output Current Settling Time			To 0.01\% of FSR		1	Max	6	$\mu \mathrm{s}$	
Feedthrough Error			$\mathrm{V}_{\text {REF }}=20 \mathrm{~V} \mathrm{pp}, 10 \mathrm{kHz}$. All digital inputs low.		1	Max	5	mV pp	
REFERENCE INPUT									
Input Resistance			All digital inputs high. lout1 at ground.	5K		Min			
			10K	Typ		Ω			
			20 K	Max					
ANALOG OUTPUT									
Voltage Compliance (Note 4)				Both outputs. See maximum ratings.	-100 mV to V^{+}				
Output Capacitance (Note 3)				All digital inputs high (V/NH)	$\begin{gathered} 200 \\ 60 \end{gathered}$		$\begin{aligned} & \text { Max } \\ & \text { Max } \end{aligned}$	4	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
	$\stackrel{C}{C O}$		All digital inputs low ($\mathrm{V}_{1} \mathrm{LL}$)	$\begin{aligned} & 60 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { Max } \\ & \text { Max } \end{aligned}$	4	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	
Output Noise (both outputs)				Equivalent to $10 \mathrm{~K} \Omega$ Johnson noise		Typ	3		
DIGITAL INPUTS									
Low State Threshold ($\mathrm{V}_{\text {INL }}$)					0.8	Max		V	
High State Threshold ($\mathrm{V}_{\text {INH }}$)					2.4	Min		V	
Input Current			$\mathrm{V}_{\mathrm{IN}}=0$ or V^{+}		± 1	Max		$\mu \mathrm{A}$	
Input Coding			See Tables 1 \& 2	Binary/O	ffset Binary				
Input Capacitance (Note 3)					8	Max		pF	
POWER REQUIREMENTS									
Power Supply Voltage Range			Accuracy is not guaranteed over this range	+5	to +16			V	
1^{+}			All digital inputs high or low		/2.5	Max		mA	
Total Power Dissipation (Including the ladder)					20	Typ		mW	

3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.

TCO23001
Figure 3: Nonlinearity Test Circuit

TC02310
Figure 4: Power Supply Rejection Test Circuit

TC023201
Figure 5: Noise Test Circuit

TC02330
Figure 6: Output Capacitance Test Circuit

TC02340
Figure 7: Feedthrough Error Test Circuit

Figure 8: Output Current Settling Time Test Circuit

DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of $\left(2^{-n}\right)\left(V_{\text {REF }}\right)$. A bipolar converter of n bits has a resolution of $[2-(n-1)]$ [$V_{\text {REF }}$]. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.
GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.
FEEDTHROUGH ERROR: Error caused by capacitive coupling from VREF to output with all switches OFF.

AD7541

OUTPUT CAPACITANCE: Capacity from IOUT1 and IOUT2 terminals to ground.
OUTPUT LEAKAGE CURRENT: Current which appears on IOUT1 terminal with all digital inputs LOW or on IOUT2 terminal when all inputs are HIGH.

DETAILED DESCRIPTION

The Intersil AD7541 is a 12 bit, monolithic, multiplying D/A converter. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters provide low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.

(Switches shown for Digital Inputs 'High')
Figure 9: AD7541 Functional Diagram

A simplified equivalent circuit of the DAC is shown in Figure 9. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 buses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code. Converter errors are further eliminated by using wider metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level.

Each circuit is laser-trimmed, at the wafer level, to better than 12 bits linearity. For the first four bits of the ladder, special trim-tabbed geometries are used to keep the body of the resistors, carrying the majority of the output current, undisturbed. The resultant time stability of the trimmed circuits is comparable to that of untrimmed units.

The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first (Figure 10). This configuration results in DTL/TTL/ CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the $2 R$ ladder resistors, resulting in accurate leg currents.

LC006701
Figure 10: CMOS Switch

APPLICATIONS

General Recommendations

Static performance of the AD7541 depends on IOUT1 and IOUT2 (pin 1 and pin 2) potentials being exactly equal to GND (pin 3).

The output amplifier should be selected to have a low input bias current (typically less than 75 nA), and a low drift (depending on the temperature range). The voltage offset of the amplifier should be nulled (typically less than $\pm 200 \mu \mathrm{~V}$).

The bias current compensation resistor in the amplifier's non-inverting input can cause a variable offset. Noninverting input should be connected to GND with a low resistance wire.

Ground-loops must be avoided by taking all pins going to GND to a common point, using separate connections.

The V^{+}(pin 18) power supply should have a low noise level and should not have any transients exceeding +17 volts.

Unused digital inputs must be connected to GND or $V_{D D}$ for proper operation.

A high value resistor ($\sim 1 \mathrm{M} \Omega$) can be used to prevent static charge accumulation, when the inputs are opencircuited for any reason.

When gain adjustment is required, low tempco (approximately $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) resistors or trim-pots should be selected.

UNIPOLAR BINARY OPERATION

The circuit configuration for operating the AD7541 in unipolar mode is shown in Figure 11. With positive and negative VREF values the circuit is capable of 2-Quadrant multiplication. The 'Digital Input Code/Analog Output Value' table for unipolar mode is given in Table 1. A Schottky diode (HP5082-2811 or equivalent) prevents lOUT1 from negative excursions which could damage the device. This precaution is only necessary with certain high speed amplifiers.

Figure 11: Unipolar Binary Operation (2-Quadrant Multiplication)

Zero Offset Adjustment

1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for $0 \mathrm{~V} \pm 0.5 \mathrm{mV}$ (max) at VOUT.

Gain Adjustment

1. Connect all digital inputs to VDD.
2. Monitor VOUT for a -VREF $\left(1-1 / 2^{12}\right)$ reading.
3. To increase VOUT, connect 'a series resistor, $(0$ to 500 ohms), in the IOUT1 amplifier feedback loop.
4. To decrease VOUT, connect a series resistor, (0 to 500 ohms), between the reference voltage and the VREF terminal.
Table 1: Code Table - Unipolar Binary Operation

DIGITAL INPUT	ANALOG OUTPUT
111111111111	$-\mathrm{V}_{\text {REF }}\left(1-1 / 2^{12}\right)$
100000000001	$-\mathrm{V}_{\text {REF }}\left(1 / 2+1 / 2^{12}\right)$
100000000000	$-\mathrm{V}_{\text {REF }} / 2$
011111111111	$-\mathrm{V}_{\text {REF }}\left(1 / 2-1 / 2^{12}\right)$
000000000001	$-\mathrm{V}_{\text {REF }}\left(1 / 2^{12}\right)$
000000000000	0

DS015601
Note: R1 and R2 should be 0.01%, low-TCR resistors.
Figure 12: Bipolar Operation (4-Quadrant Multiplication)

BIPOLAR (OFFSET BINARY) OPERATION

The circuit configuration for operating the AD7541 in the bipolar mode is given in Figure 12. Using offset binary digital input codes and positive and negative reference voltage values Four-Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value' table for bipolar mode is given in Table 2.

A 'Logic 1' input at any digital input forces the corresponding ladder switch to steer the bit current to IOUT1 bus. A ''Logic 0' input forces the bit current to IOUT2 bus. For any code the IOUT1 and IOUT2 bus currents are complements of one another. The current amplifier at IOUT2 changes the polarity of IOUT2 current and the transconductance amplifier at IOUT1 output sums the two currents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code, (MSB = 'Logic 1'", All other bits = 'Logic 0 '), is corrected by using an external resistive divider, from VREF to IOUT2.

Offset Adjustment

1. Adjust $V_{\text {REF }}$ to approximately +10 V .
2. Set R4 to zero.
3. Connect all digital inputs to 'Logic 1'.
4. Adjust IOUT2 amplifier offset zero adjust trimpot for $\mathrm{OV} \pm 0.1 \mathrm{mV}$ at IOUT2 amplifier output.
5. Connect a short circuit across R2.
6. Connect all digital inputs to 'Logic 0 '.
7. Adjust IOUT2 amplifier offset zero adjust trimpot for OV $\pm 0.1 \mathrm{mV}$ at lOUT1 amplifier output.
8. Remove short circuit across R2.
9. Connect MSB (Bit 1) to "Logic 1" and all other bits to 'Logic 0'.
10. Adjust R4 for $0 \mathrm{~V} \pm 0.2 \mathrm{mV}$ at $\mathrm{V}_{\mathrm{OUT}}$.

Gain Adjustment

1. Connect all digital inputs to VDD.
2. Monitor VOUT for a -VREF $\left(1-1 / 2^{11}\right)$ volts reading.
3. To increase VOUT, connect a series resistor, (0 to 500 ohms), in the IOUT1 amplifier feedback loop.
4. To decrease VOUT, connect a series resistor, (0 to 500 ohms), between the reference voltage and the VREF terminal.

Table 2: Code Table Bipolar (Offset Binary) Operation

DIGITAL INPUT	ANALOG OUTPUT
111111111111	$-V_{\text {REF }}\left(1-1 / 2^{11}\right)$
100000000001	$-V_{\text {REF }}\left(1 / 2^{11}\right)$
100000000000	0
011111111111	V REF $\left(1 / 2^{11}\right)$
000000000001	V $_{\text {REF }}\left(1-1 / 2^{11}\right)$
000000000000	V REF

AD7541

Figure 13: General DAC Circuit with Compensation Capacitor, Cc

DYNAMIC PERFORMANCE

The dynamic performance of the DAC, also depends on the output amplifier selection. For low speed or static applications, AC specifications of the amplifier are not very critical. For high-speed applications slew-rate, settling-time, openloop gain and gain/phase-margin specifications of the amplifier should be selected for the desired performance.

The output impedance of the AD7541 looking into IOUT1 varies between $10 \mathrm{k} \Omega$ ($\mathrm{R}_{\text {Feedback }}$ alone) and $5 \mathrm{~K} \Omega$ ($\mathrm{R}_{\text {Feedback }}$) in parallel with the ladder resistance).

Similarly the output capacitance varies between the minimum and the maximum values depending on the input code. These variations necessitate the use of compensation capacitors, when high speed amplifiers are used.

A capacitor in parallel with the feedback resistor (as shown in Figure 13) provides the necessary phase compensation to critically damp the output.

A small capacitor connected to the compensation pin of the amplifier may be required for unstable situations causing oscillations. Careful PC board layout, minimizing parasitic capacitances, is also vital.

INPUT SIGNAL WARNING

Because of the input protection diodes on the logic inputs, it is important that no voltage greater than 4 V outside the logic supply rails be applied to these inputs at any time, including power-up and other transients. To do so could cause destructive SCR latch-up.

ADC0802-ADC0804 8-Bit μ P-Compatible A/D Converters

GENERAL DESCRIPTION

The ADC0802 family are CMOS 8-bit successive approximation A/D converters which use a modified potentiometric ladder, and are designed to operate with the 8080A control bus via three-state outputs. These converters appear to the processor as memory locations or I/O ports, and hence no interfacing logic is required.

The differential analog voltage input has good common-mode-rejection, and permits offsetting the analog zero-input-voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

FEATURES

- 80C48 and 80C80/85 Bus Compatible - No Interfacing Logic Required
- Conversion Time < 100μ s
- Easy Interface to Most Microprocessors
- Will Operate in a 'Stand Alone" Mode
- Differential Analog Voltage Inputs
- Works With Bandgap Voltage References
- TTL Compatible Inputs and Outputs
- On-Chip Clock Generator
- OV to 5V Analog Voltage Input Range (Single +5V Supply)
- No Zero-Adjust Required

ORDERING INFORMATION

PART NUMBER	ERROR	TEMPERATURE RANGE	PACKAGE
ADC0802LCN ADC0802LCD ADC0802LD	$\pm 1 / 2$ bit no adjust	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	20 pin Plastic DIP 20 pin CERDIP 20 pin CERDIP
ADC0803LCN ADC0803LCD ADC0803LD	$\pm 1 / 2$ bit adjusted full-scale	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	20 pin Plastic DIP 20 pin CERDIP 20 pin CERDIP
ADC0804LCN	± 1 bit no adjust	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	20 pin Plastic DIP 20 pin CERDIP

BD003201

CD00631I
(Outline dwg. CD, CN)
Figure 2: Pin Configuration

BD00330
Figure 3: Functional Diagram of ADC0802-ADC0804

ABSOLUTE MAXIMUM RATINGS

Supply Voltage \qquad Voltage at Any Input \qquad 6.5 V

Storage Temperatur
Package Dissipation at $T_{A}=+25^{\circ} \mathrm{C} \ldots \ldots875 \mathrm{~mW}$
Lead Temperature（Soldering，10sec） \qquad

OPERATING RATINGS

Temperature Range

ADC0802／03LD．	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ADC0802／03／04LCD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ADC0802／03／04LCN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Voltage R	4．5V to 6.3 V

Supply Voltage Range．．．．．．．．．．．．．．．．．．．．．．．．．．．．4．5V to 6.3 V

Stresses above those listed under＂Absolute Maximum Ratings＂may cause permanent damage to the device．These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

ELECTRICAL CHARACTERISTICS（Notes 1 and 7）
Converter Specifications： $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }} / 2=2.500 \mathrm{~V}, \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ unless otherwise stated．

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ADC0802： Total Unadjusted Error	Completely Unadjusted			$\pm 1 / 2$	LSB
$\begin{aligned} & \text { ADC0803: } \\ & \text { Total Adjusted Error } \end{aligned}$	With Full Scale Adjust			$\pm 1 / 2$	LSB
ADC0804： Total Unadjusted Error	Completely Unadjusted			± 1	LSB
$\mathrm{V}_{\text {REF }} / 2$ Input Resistance	Input Resistance at Pin 9	1.0	1.3		k Ω
Analog Input Voltage Range	（Note 2）	GND－ 0.05		$\mathrm{V}^{+}+0.05$	V
DC Common－Mode Rejection	Over Analog Input Voltage Range		$\pm 1 / 16$	$\pm 1 / 8$	LSB
Power Supply Sensitivity	$\mathrm{V}^{+}=5 \mathrm{~V} \pm 10 \%$ Over Allowed Input Voltage Range		$\pm 1 / 16$	$\pm 1 / 8$	LSB

DC ELECTRICAL CHARACTERISTICS

Digital Levels and DC Specifications： $\mathrm{V}^{+}=5 \mathrm{~V}$ and $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ ，unless otherwise noted．

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CONTROL INPUTS（Note 6）						
VINH	Logical＂1＂Input Voltage （Except Pin 4 CLK IN）	$\mathrm{V}^{+}=5.25 \mathrm{~V}$	2.0		v^{+}	V
VINL	Logical＇ 0 ＂Input Voltage （Except Pin 4 CLK IN）	$V^{+}=4.75 \mathrm{~V}$			0.8	V
V^{+}CLK	CLK IN（Pin 4）Positive Going Threshold Voltage		2.7	3.1	3.5	V
V^{-}CLK	CLK IN（Pin 4）Negative Going Threshold Voltage		1.5	1.8	2.1	V
V_{H}	CLK IN（Pin 4）Hysteresis $\left(V_{C}^{C} L K\right)-(V \bar{C} L K)$	，	0.6	1.3	2.0	V
IINHI	Logical＂1＂Input Current （All Inputs）	$\mathrm{V}_{1 \mathrm{~N}}=5 \mathrm{~V}$		0.005	1	$\mu \mathrm{A}$
IINLO	Logical＂ 0 ＂Input Current （All Inputs）	$V_{\text {IN }}=0 \mathrm{~V}$	－1	－0．005		$\mu \mathrm{A}$
1^{+}	Supply Current（Includes Ladder Current）	$\begin{gathered} \mathrm{f} C \mathrm{~K}=640 \mathrm{kHz}, \\ \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { and } \overline{\mathrm{CS}}=\mathrm{HI} \end{gathered}$		1.3	2.5	mA
DATA OUTPUTS AND INTR						
VOL	Logical＇ 0 ＇＇Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA} \\ & \mathrm{~V}^{+}=4.75 \mathrm{~V} \end{aligned}$			0.4	V
VOH	Logical＇1＇Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & \mathrm{~V}^{+}=4.75 \mathrm{~V} \end{aligned}$	2.4			V
lo	3－State Disabled Output Leakage（All Data Buffers）	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	－3		3	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

DC ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ISOURCE	Output Short Circuit Current	VOUT Short to $G_{n d} T_{A}=+25^{\circ} \mathrm{C}$	4.5	6		mA
$I_{\text {SINK }}$	Output Short Circuit Current	VOUT Short to $\mathrm{V}^{+} \mathrm{T}_{A}=+25^{\circ} \mathrm{C}$	9.0	16		mA

NOTES: 1. All voltages are measured with respect to GND, unless otherwise specified. The separate AGND point should always be wired to the DGND, being careful to avoid ground loops.
2. For $V_{I N(-)} \geq V_{I N}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V^{+}supply. Be careful, during testing at low V^{+}levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for anaiog inputs near full-scale. As long as the analog $V_{\mathbb{N}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute 0 V to 5 V input voltage range will therefore require a minimum supply voltage of 4.950 V over temperature variations, initial tolerance and loading.
3. With $\mathrm{V}^{+}=6 \mathrm{~V}$, the digital logic interfaces are no longer TTL compatible.
4. With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process.
5. The $\overline{\mathrm{CS}}$ input is assumed to bracket the $\overline{\mathrm{WR}}$ strobe input so that timing is dependent on the $\overline{\mathrm{WR}}$ pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the WR pulse (see Timing Diagrams).
6. CLK \mathbb{N} (pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately.
7. None of these A/Ds requires a zero-adjust. However, if an all zero code is desired for an analog input other than 0.0 V , or if a narrow full-scale span exists (for example: 0.5 V to 4.0 V full-scale) the $\mathrm{V}_{\mathbb{N}}(-)$ input can be adjusted to achieve this. See Zero Error on page 10 of this data sheet.

AC ELECTRICAL CHARACTERISTICS

Timing Specifications: $\mathrm{V}^{+}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {f CLK }}$	Clock Frequency	$\begin{aligned} & \left.\mathrm{V}^{+}=6 \mathrm{~V} \text { (Note } 3\right) \\ & \mathrm{V}^{+}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \hline 640 \\ & 640 \end{aligned}$	$\begin{gathered} 1280 \\ 800 \end{gathered}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
$\mathrm{t}_{\text {conv }}$	Clock Periods per Conversion (Note 4)		62		73	
CR	Conversion Rate In Free-Running Mode	INTR tied to $\overline{\text { WR }}$ with $\overline{C S}=0 \mathrm{~V}, \mathrm{fCLK}=640 \mathrm{kHz}$			8888	conv/s
tW($\overline{W R}$) 1	Width of $\overline{\text { WR }}$ Input (Start Pulse Width)	$\overline{\mathrm{CS}}=0 \mathrm{~V}$ (Note 5)	100			ns
tacc	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Data Valid)	$\begin{aligned} & C_{L}=100 \mathrm{pF} \text { (Use Bus Driver IC } \\ & \text { for Larger } C_{L} \text {) } \end{aligned}$		135	200	ns
$t_{17}, t_{0 h}$	3-State Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to HI-Z State)	$C_{L}=10 \mathrm{pF}, R_{L}=10 \mathrm{k}$ (See 3-State Test Circuits)		125	250	ns
$t_{\text {WI }}, t_{\text {PI }}$	Delay from Falling Edge of $\overline{W R}$ to Reset of $\overline{\text { NTR }}$			300	450	ns
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance of Logic Control Inputs			5	7.5	pF
COUT	3-State Output Capacitance (Data Buffers)			5	7.5	pF

$t_{1 n}$

WF01070
ton

$t_{\text {on }}, C_{L}=10 \mathrm{pF}$

WF01080

Figure 4: 3-State Test Circuits and Waveforms

TYPICAL PERFORMANCE CHARACTERISTICS

Logic Input Threshold Voltage vs Supply Voltage

OP01440
CLK IN Schmitt Trip Levels vs Supply Voltage

Full-Scale Error vs Fclk

Output Current vs Temperature vs $\mathbf{V}_{\text {REF }} / 2$ Voltage

Delay From Falling Edge of RD to Output Data Valid vs Load Capacitance

fclK vs Clock Capacitor

Effect of Unadjusted Offset Error

Power Supply Current vs Temperature

ADC0802－ADC0804

Start Conversion

WF010901
Output Enable and Reset $\overline{\text { INTR }}$

WF011011
Figure 5：Timing Diagrams
Note：All timing is measured from the 50% voltage points．

UNDERSTANDING A／D ERROR SPECS

A perfect A／D transfer characteristic（staircase wave－ form）is shown in Figure 6a．The horizontal scale is analog input voltage and the particular points labeled are in steps of 1 LSB （ 19.53 mV with 2.5 V tied to the $\mathrm{V}_{\text {REF }} / 2 \mathrm{pin}$ ）．The digital output codes which correspond to these inputs are shown as $D-1, D$ ，and $D+1$ ．For the perfect A / D ，not only will center－value（ $A-1, A, A+1$ ，．．．）analog inputs produce the correct output digital codes，but also each riser（the transitions between adjacent output codes）will be located $\pm 1 / 2$ LSB away from each center－value．As shown，the risers are ideal and have no width．Correct digital output codes will be provided for a range of analog input voltages which extend $\pm 1 / 2$ LSB from the ideal center－values．Each tread （the range of analog input voltage which provides the same digital output code）is therefore 1LSB wide．

The error curve of Figure $\mathbf{6 b}$ shows the worst case transfer function for the ADC0802．Here the specification guarantees that if we apply an analog input equal to the LSB analog voltage center－value，the A／D will produce the correct digital code．

Next to each transfer function is shown the correspond－ ing error plot．Notice that the error includes the quantization uncertainty of the A／D．For example，the error at point 1 of Figure $6 a$ is $+1 / 2$ LSB because the digital code appeared $1 / 2$ LSB in advance of the center－value of the tread．The error plots always have a constant negative slope and the abrupt upside steps are always 1LSB in magnitude，unless the device has missing codes．

FUNCTIONAL DESCRIPTION

A functional diagram of the ADC0802 series of A／D converters is shown in Figure 3．All of the package pinouts

ADC0802-ADC0804

are shown and the major logic control paths are drawn in heavier-weight lines. The device operates on the successive approximation principle (see APPLICATION NOTE A016 and A020 for a more detailed description of this principle). Analog switches are closed sequentially by successive-approximation logic until the analog differential input voltage $\left[\mathrm{V}_{\mathrm{IN}(+)}-\mathrm{V}_{\mathrm{IN}(-)}\right]$ matches a voltage derived from a tapped resistor string across the reference voltage. The most significant bit is tested first and after 8 comparisons (64 clock cycles), an 8-bit binary code (1111 $1111=$ full-scale) is transferred to an output latch.

The normal operation proceeds as follows. On the high-to-low transition of the $\overline{W R}$ input, the internal SAR latches and the shift-register stages are reset, and the INTR output will be set high. As long as the $\overline{\mathrm{CS}}$ input and $\overline{\mathrm{WR}}$ input remain low, the A/D will remain in a reset state. Conversion will start from 1 to 8 clock periods after at least one of these inputs makes a low-to-high transition. After the requisite number of clock pulses to complete the conversion, the INTR pin will make a high-to-low transition. This can be used to interrupt a processor, or otherwise signal the availability of a new conversion. A $\overline{R D}$ operation (with $\overline{\mathrm{CS}}$ low) will clear the INTR line high again. The device may be operated in the free-running mode by connecting $\overline{\mathbb{N T R}}$ to the $\overline{\mathrm{WR}}$ input with $\overline{\mathrm{CS}}=0$. To ensure start-up under all possible conditions, an external $\overline{W R}$ pulse is required during the first power-up cycle. A conversion-in-process can be interrupted by issuing a second start command.

Digital Details

The converter is started by having $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ simultaneously low. This sets the start flip-flop (F/F) and the resulting ' 1 " level resets the 8 -bit shift register, resets the Interrupt (INTR) F/F and inputs a " 1 " to the D flip-flop, DFF1, which is at the input end of the 8-bit shift register. Internal clock signals then transfer this " 1 " to the Q output of DFF1. The AND gate, G1, combines this ' 1 " output with a clock signal to provide a reset signal to the start F/F. If the set signal is no longer present (either $\overline{W R}$ or $\overline{C S}$ is a " 1 "), the start F/F is reset and the 8 -bit shift register then can have the " 1 " clocked in, which starts the conversion process. If the set signal were to still be present, this reset pulse would have no effect (both outputs of the start F/F would be at a " 1 " levei) and the 8 -bit shift register would continue to be held in the reset mode. This allows for asynchronous or wide $\overline{C S}$ and $\overline{W R}$ signals.

After the " 1 " is clocked through the 8 -bit shift register (which completes the SAR operation) it appears as the input to DFF2. As soon as this " 1 " is output from the shift register, the AND gate, G2, causes the new digital word to transfer to the 3 -state output latches. When DFF2 is subsequently clocked, the $\overline{\mathrm{Q}}$ output makes a high-to-low transition which causes the INTR F/F to set. An inverting buffer then supplies the INTR output signal.

When data is to be read, the combination of both $\overline{\mathrm{CS}}$ and $\overline{R D}$ being low will cause the ! NTR F/F to be reset and the 3 state output latches will be enabled to provide the 8 -bit digital outputs.

Figure 6: Clarifying the Error Specs of an A/D Converter

ADC0802－ADC0804

Digital Control Inputs

The digital control inputs（ $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$ ，and $\overline{\mathrm{WR}}$ ）meet standard TTL logic voltage levels．These signals are essentially equivalent to the standard A／D Start and Output Enable control signals，and are active low to allow an easy interface to microprocessor control busses．For non－micro－ processor based applications，the $\overline{\mathrm{CS}}$ input（pin 1）can be grounded and the standard A／D Start function obtained by an active low pulse at the $\overline{\mathrm{WR}}$ input（pin 3）．The Output Enable function is achieved by an active low pulse at the $\overline{\mathrm{RD}}$ input（pin 2）．

Analog Operation

The analog comparisons are performed by a capacitive charge summing circuit．Three capacitors（with precise ratioed values）share a common node with the input to an auto－zeroed comparator．The input capacitor is switched between $\mathrm{V}_{\mathbb{N}(+)}$ and $\mathrm{V}_{\mathbb{I}(-)}$ ，while two ratioed reference capacitors are switched between taps on the reference voltage divider string．The net charge corresponds to the weighted difference between the input and the current total value set by the successive approximation register．A correction is made to offset the comparison by $1 / 2$ LSB（see Figure 6a）．

Analog Differential Voltage Inputs and Common－Mode Rejection

This A／D gains considerable applications flexibility from the analog differential voltage input．The $\mathrm{V}_{\text {IN }}(-)$ input（pin 7） can be used to automatically subtract a fixed voltage value from the input reading（tare correction）．This is also useful in $4 \mathrm{~mA}-20 \mathrm{~mA}$ current loop conversion．In addition，common－ mode noise can be reduced by use of the differential input．

The time interval between sampling $\mathrm{V}_{\mathrm{IN}(+)}$ and $\mathrm{V}_{\mathrm{IN}(-)}$ is $4 \frac{1}{2}$ clock periods．The maximum error voltage due to this slight time difference between the input voltage samples is given by：

$$
\Delta \mathrm{V}_{\mathrm{e}}(\mathrm{MAX})=\left(\mathrm{V}_{\mathrm{p}}\right)\left(2 \pi \mathrm{f}_{\mathrm{cm}}\right)\left\lfloor\frac{4.5}{\mathrm{f}_{\mathrm{CLK}}}\right\rfloor
$$

where：
$\Delta \mathrm{V}_{\mathrm{e}}$ is the error voltage due to sampling delay
V_{P} is the peak value of the common－mode voltage
$f_{c m}$ is the common－mode frequency
For example，with a 60 Hz common－mode frequency， f_{cm} ， and a 640 kHz A／D clock，fCLK，keeping this error to $1 / 4 \mathrm{LSB}$ $(\sim 5 \mathrm{mV})$ would allow a common－mode voltage，V_{P} ，given by：

$$
V_{p}=\frac{\left[\Delta V_{e}(M A X)\left(f_{C L K}\right)\right]}{\left(2 \pi f_{\mathrm{cm}}\right)(4.5)}
$$

or

$$
V_{p}=\frac{\left(5 \times 10^{-3}\right)\left(640 \times 10^{3}\right)}{(6.28)(60)(4.5)} \simeq 1.9 \mathrm{~V}
$$

The allowed range of analog input voltage usually places more severe restrictions on input common－mode voltage levels than this．

An analog input voltage with a reduced span and a relatively large zero offset can be easily handled by making use of the differential input（see Reference Voltage Span Adjust）．

Analog Input Current

The internal switching action causes displacement cur－ rents to flow at the analog inputs．The voltage on the on－ chip capacitance to ground is switched through the analog differential input voltage，resulting in proportional currents entering the $\mathrm{V}_{I N(+)}$ input and leaving the $\mathrm{V}_{\mathrm{I}}(-)$ input． These current transients occur at the leading edge of the internal clocks．They rapidly decay and do not inherently cause errors as the on－chip comparator is strobed at the end of the clock period．

Input Bypass Capacitors

Bypass capacitors at the inputs will average these charges and cause a DC current to flow through the output resistances of the analog signal sources．This charge pumping action is worse for continuous conversions with the $\mathrm{V}_{\mathrm{IN}}(+)$ input voltage at full－scale．For a 640 kHz clock frequency with the $V_{I N(+)}$ input at 5 V ，this DC current is at a maximum of approximately $5 \mu \mathrm{~A}$ ．Therefore，bypass capac－ itors should not be used at the analog inputs or the $\mathbf{V}_{\text {REF }} / 2$ pin for high resistance sources（ $>1 \mathrm{k} \Omega$ ）．If input bypass capacitors are necessary for noise filtering and high source resistance is desirable to minimize capacitor size， the effects of the voltage drop across this input resistance， due to the average value of the input current，can be compensated by a full－scale adjustment while the given source resistor and input bypass capacitor are both in place．This is possible because the average value of the input current is a precise linear function of the differential input voltage at a constant conversion rate．

Input Source Resistance

Large values of source resistance where an input bypass capacitor is not used，will not cause errors since the input currents settle out prior to the comparison time．If a low－ pass filter is required in the system，use a low－value series resistor（ $\leq 1 \mathrm{k} \Omega$ ）for a passive RC section or add an op amp RC active low－pass filter．For low－source－resistance appli－ cations，（ $\leq 1 \mathrm{k} \Omega$ ），a $0.1 \mu \mathrm{~F}$ bypass capacitor at the inputs will minimize EMI due to the series lead inductance of a long wire．A 100Ω series resistor can be used to isolate this capacitor（both the R and C are placed outside the feedback loop）from the output of an op amp，if used．

Stray Pickup

The leads to the analog inputs（pins 6 and 7）should be kept as short as possible to minimize stray signal pickup （EMI）．Both EMI and undesired digital－clock coupling to these inputs can cause system errors．The source resis－ tance for these inputs should，in general，be kept below $5 \mathrm{k} \Omega$ ．Larger values of source resistance can cause unde－ sired signal pickup．Input bypass capacitors，placed from the analog inputs to ground，will eliminate this pickup but can create analog scale errors as these capcitors will average the transient input switching currents of the A／D （see Analog Input Current）．This scale error depends on both a large source resistance and the use of an input bypass capacitor．This error can be compensated by a full－ scale adjustment of the A／D（see Full－Scale Adjustment） with the source resistance and input bypass capacitor in place，and the desired conversion rate．

Reference Voltage Span Adjust

For maximum application flexibility，these A／Ds have been designed to accommodate a $5 \mathrm{~V}, 2.5 \mathrm{~V}$ or an adjusted

ADC0802-ADC0804

voltage reference. This has been achieved in the design of the IC as shown in Figure 7.

TC021001
Figure 7: The VREFERENCE Design on the IC

Notice that the reference voltage for the IC is either $1 / 2$ of the voltage which is applied to the V^{+}supply pin, or is equal to the voltage which is externally forced at the $\mathrm{V}_{\mathrm{REF}} / 2$ pin. This allows for a pseudo-ratiometric voltage reference using, for the V^{+}supply, a 5 V reference voltage. Alternatively, a voltage less than 2.5 V can be applied to the $V_{\text {REF }} / 2$ input. The internal gain to the $V_{\text {REF }} / 2$ input is 2 to allow this factor of 2 reduction in the reference voltage.

Such an adjusted reference voltage can accommodate a reduced span or dynamic voltage range of the analog input voltage. If the analog input voltage were to range from 0.5 V to 3.5 V , instead of 0 V to 5 V , the span would be 3 V . With 0.5 V applied to the $\mathrm{V}_{\mathrm{I}} \mathrm{N}(-)$ pin to absorb the offset, the reference voltage can be made equal to $1 / 2$ of the 3 V span or 1.5 V . The A/D now will encode the $\mathrm{V}_{I N(+)}$ signal from 0.5 V to 3.5 V with the 0.5 V input corresponding to zero and the 3.5 V input corresponding to full-scale. The full 8 bits of resolution are therefore applied over this reduced analog input voltage range. The requisite connections are shown in Figure 8. For expanded scale inputs, the circuits of Figures 9 and 10 can be used.

Figure 8: Offsetting the Zero of the ADC0802 and Performing an Input Range (Span) Adjustment

TC036201
Figure 9: Handling $\pm 10 \mathrm{~V}$ Analog Input Range

TC036301
Figure 10: Handling $\pm 5 \mathrm{~V}$ Analog Input Range

Reference Accuracy Requirements

The converter can be operated in a pseudo-ratiometric mode or an absolute mode. In ratiometric converter applications, the magnitude of the reference voltage is a factor in both the output of the source transducer and the output of the A/D converter and therefore cancels out in the final digital output code. In absolute conversion applications, both the initial value and the temperature stability of the

ADC0802－ADC0804

reference voltage are important accuracy factors in the operation of the A／D converter．For $\mathrm{V}_{\mathrm{REF}} / 2$ voltages of 2.5 V nominal value，initial errors of $\pm 10 \mathrm{mV}$ will cause conversion errors of ± 1 LSB due to the gain of 2 of the $V_{\text {REF }} / 2$ input．In reduced span applications，the initial value and the stability of the $\mathrm{V}_{\text {REF }} / 2$ input voltage become even more important．For example，if the span is reduced to 2.5 V ， the analog input LSB voltage value is correspondingly reduced from 20 mV （ 5 V span）to 10 mV and 1 LSB at the $\mathrm{V}_{\mathrm{REF}} / 2$ input becomes 5 mV ．As can be seen，this reduces the allowed initial tolerance of the reference voltage and requires correspondingly less absolute change with temper－ ature variations．Note that spans smaller than 2.5 V place even tighter requirements on the initial accuracy and stability of the reference source．

In general，the reference voltage will require an initial adjustment．Errors due to an improper value of reference voltage appear as full－scale errors in the A／D transfer function．IC voltage regulators may be used for references if the ambient temperature changes are not excessive．

Zero Error

The zero of the A／D does not require adjustment．If the minimum analog input voltage value， $\mathrm{V} \operatorname{IN}(\mathrm{MIN})$ ，is not ground，a zero offset can be done．The converter can be made to output 00000000 digital code for this minimum input voltage by biasing the $A / D V_{I N(-)}$ input at this $\mathrm{V}_{\text {IN }}(\mathrm{MIN})$ value（see Applications section）．This utilizes the differential mode operation of the A／D．

The zero error of the A／D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\operatorname{VIN(-)}$ input and applying a small magnitude positive voltage to the $V_{I N(+)}$ input．Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value（ $1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}$ for $\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}$ ）．

Full－Scale Adjust

The full－scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full－scale voltage range and then adjusting
the magnitude of the $\mathrm{V}_{\text {REF }} / 2$ input（pin 9）for a digital output code which is just changing from 11111110 to 11111111. When offsetting the zero and using a span－adjusted $\mathrm{V}_{\text {REF }} /$ 2 voltage，the full－scale adjustment is made by inputting $\mathrm{V}_{\text {MIN }}$ to the $\mathrm{V}_{\text {IN }}(-)$ input of the A／D and applying a voltage to the $V_{I N(+)}$ input which is given by：

$$
\mathrm{V}_{\mathrm{IN}(+)^{f s a d j}}=\mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right]
$$

where：
$V_{\text {MAX }}=$ the high end of the analog input range and
$\mathrm{V}_{\text {MIN }}=$ the low end（the offset zero）of the analog
range．（Both are ground referenced．）

Clocking Option

The clock for the A／D can be derived from an external source such as the CPU clock or an external RC network can be added to provide self－clocking．The CLK IN（pin 4） makes use of a Schmitt trigger as shown in Figure 11.

Heavy capacitive or DC loading of the CLocK R pin should be avoided as this will disturb normal converter operation．Loads less than 50 pF ，such as driving up to 7 A／D converter clock inputs from a single CLK R pin of 1 converter，are allowed．For larger clock line loading，a CMOS or low power TTL buffer or PNP input logic should be used to minimize the loading on the CLK R pin（do not use a standard TTL buffer）．

Restart During a Conversion

If the A / D is restarted（ $\overline{C S}$ and $\overline{W R}$ go low and return high）during a conversion，the converter is reset and a new conversion is started．The output data latch is not updated if the conversion in progress is not completed．The data from the previous conversion remain in this latch．

Continuous Conversions

In this application，the $\overline{\mathrm{CS}}$ input is grounded and the $\overline{\mathrm{WR}}$ input is tied to the $\overline{\text { NTR }}$ output．This $\overline{W R}$ and INTR node should be momentarily forced to logic low following a power－up cycle to insure circuit operation．See Figure 12 for details．

Figure 11：Self－Clocking the A／D

CD006411
Figure 12: Free-Running Connection

Driving the Data Bus

This CMOS A/D, like MOS microprocessors and memories, will require a bus driver when the total capacitance of the data bus gets large. Other circuitry, which is tied to the data bus, will add to the total capacitive loading, even in 3state (high-impedance mode). Backplane bussing also greatly adds to the stray capacitance of the data bus.

There are some alternatives available to the designer to handle this problem. Basically, the capacitive loading of the data bus slows down the response time, even though DC specifications are still met. For systems operating with a relatively slow CPU clock frequency, more time is available in which to establish proper logic levels on the bus and therefore higher capacitive loads can be driven (see Typical Performance Characteristics).

At higher CPU clock frequencies time can be extended for I/O reads (and/or writes) by inserting wait states (8080) or using clock-extending circuits (6800).

Finally, if time is short and capacitive loading is high, external bus drivers must be used. These can be 3 -state buffers (low power Schottky is recommended, such as the 74LS240 series) or special higher-drive-current products which are designed as bus drivers. High-current bipolar bus drivers with PNP inputs are recommended.

Power Supplies

Noise spikes on the V^{+}supply line can cause conversion errors as the comparator will respond to this noise. A low-
inductance tantalum filter capacitor should be used close to the converter V^{+}pin, and values of $1 \mu \mathrm{~F}$ or greater are recommended. If an unregulated voltage is available in the system, a separate 5 V voltage regulator for the converter (and other analog circuitry) will greatly reduce digital noise on the V^{+}supply. An ICL7663 can be used to regulate such a supply from an input as low as 5.2 V .

Wiring and Hook-Up Precautions

Standard digital wire-wrap sockets are not satisfactory for breadboarding with this A/D converter. Sockets on PC boards can be used. All logic signal wires and leads should be grouped and kept as far away as possible from the analog signal leads. Exposed leads to the analog inputs can cause undesired digital noise and hum pickup; therefore, shielded leads may be necessary in many applications.

A single-point analog ground should be used which is separate from the logic ground points. The power supply bypass capacitor and the self-clocking capacitor (if used) should both be returned to digital ground. Any $\mathrm{V}_{\text {REF }} / 2$ bypass capacitors, analog input filter capacitors, or input signal shielding should be returned to the analog ground point. A test for proper grounding is to measure the zero error of the A/D converter. Zero errors in excess of $1 / 4$ LSB can usually be traced to improper board layout and wiring (see Zero Error for measurement). Further information can be found in A018.

ADC0802-ADC0804

TESTING THE A/D CONVERTER

There are many degrees of complexity associated with testing an A/D converter. One of the simplest tests is to apply a known analog input voltage to the converter and use LEDs to display the resulting digital output code as shown in Figure 13.

For ease of testing, the $\mathrm{V}_{\mathrm{REF}} / 2$ (pin 9) should be supplied with 2.560 V and a V^{+}supply voltage of 5.12 V should be used. This provides an LSB value of 20 mV .

If a full-scale adjustment is to be made, an anaiog input voltage of $5.090 \mathrm{~V}\left(5.120-1^{1 / 2} \mathrm{LSB}\right)$ should be applied to the $V_{I N(+)}$ pin with the $V_{I N(-)}$ pin grounded. The value of the $\mathrm{V}_{\text {REF }} / 2$ input voltage should be adjusted until the digital output code is just changing from 11111110 to 11111111. This value of $\mathrm{V}_{\text {REF }} / 2$ should then be used for all the tests.

LD003411
Figure 13: Basic Tester for the A / D

The digital-output LED display can be decoded by dividing the 8 bits into 2 hex characters, one with the 4 most-significant bits (MS) and one with the 4 least-significant bits (LS). The output is then interpreted as a sum of fractions times the full-scale voltage:

$$
V_{\text {OUT }}=\left(\frac{M S}{16}+\frac{L S}{256}\right)(5.12) \mathrm{V}
$$

For example, for an output LED display of 10110110 , the MS character is hex B (decimal 11) and the LS character is hex (and decimal) 6, so

$$
V_{\mathrm{OUT}}=\left(\frac{11}{16}+\frac{6}{256}\right)(5.12)=3.64 \mathrm{~V}
$$

Figures 14 and 15 show more sophisticated test circuits.

Figure 14: A/D Tester with Analog Error Output. This circuit can be used to generate "error plots" of Figure 6.

Figure 15: Basic 'Digital' A/D Tester

APPLICATIONS

Interfacing 8080/85 or Z-80 Microprocessors

This converter has been designed to directly interface with 8080/85 or Z-80 Microprocessors. The 3-state output capability of the A/D eliminates the need for a peripheral interface device, although address decoding is still required to generate the appropriate $\overline{\mathrm{CS}}$ for the converter. The A/D can be mapped into memory space (using standard memo-ry-address decoding for $\overline{\mathrm{CS}}$ and the $\overline{M E M R}$ and $\overline{M E M W}$ strobes) or it can be controlled as an I/O device by using the $\overline{/ / O R}$ and $\overline{I / O W}$ strobes and decoding the address bits $A 0 \rightarrow A 7$ (or address bits A8 $\rightarrow A 15$, since they will contain the same 8 -bit address information) to obtain the $\overline{C S}$ input. Using the I/O space provides 256 additional addresses and may allow a simpler 8 -bit address decoder, but the data can only be input to the accumulator. To make use of the additional memory reference instructions, the A/D should be mapped into memory space. See A020 for more discussion of memory-mapped vs 1/O-mapped interfaces. An example of an A/D in I/O space is shown in Figure 16.

CD006511
Note: Pin numbers for 8228 system controller: others are 8080 A
Figure 16: ADC0802 to 8080A CPU Interface

The standard control-bus signals of the 8080 ($\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$ and WR) can be directly wired to the digital control inputs of the A / D, since the bus timing requirements, to allow both starting the converter, and outputting the data onto the data bus, are met. A bus driver should be used for larger microprocessor systems where the data bus leaves the PC board and/or must drive capacitive loads larger than 100pF.
It is useful to note that in systems where the A/D converter is 1 of 8 or fewer I/O-mapped devices, no address-decoding circuitry is necessary. Each of the 8 address bits (AO to A7) can be directly used as $\overline{\mathrm{CS}}$ inputs, one for each I/O device.

Interfacing the Z-80 and 8085

The Z-80 and 8085 control buses are slightly different from that of the 8080. General $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobes are provided and separate memory request, $\overline{M R E Q}$, and I/O request, $\overline{I O R Q}$, signals have to be combined with the
generalized strobes to provide the appropriate signals. An advantage of operating the A/D in I/O space with the Z-80 is that the CPU will automatically insert one wait state (the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobes are extended one clock period) to allow more time for the I/O devices to respond. Logic to map the A/D in I/O space is shown in Figure 17. By using MREQ in place of IORQ, a memory-mapped configuration results.
Additional I/O advantages exist as software DMA routines are available and use can be made of the output data transfer which exists on the upper 8 address lines (A8 to A15) during I/O input instructions. For example, MUX channel selection for the A/D can be accomplished with this operating mode.
The 8085 also provides a generalized $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobe, with an $10 / \overline{\mathrm{M}}$ line to distinguish I / O and memory requests. The circuit of Figure 17 can again be used, with $10 / \bar{M}$ in place of $\overline{\mathrm{ORQ}}$ for a memory-mapped interface, and an extra inverter (or the logic equivalent) to provide $\overline{\overline{1} / \mathrm{M}}$ for an I/O-mapped connection.

ADC0802-ADC0804

Interfacing 6800 Microprocessor Derivatives (6502, etc.)

The control bus for the 6800 microprocessor derivatives does not use the $\overline{R D}$ and $\overline{W R}$ strobe signals. Instead it employs a single R / \bar{W} line and additional timing, if needed, can be derived from the $\phi 2$ clock. All $1 / O$ devices are memory-mapped in the 6800 system, and a special signal, VMA, indicates that the current address is valid. Figure 16 shows an interface schematic where the A/D is memorymapped in the 6800 system. For simplicity, the $\overline{\mathrm{CS}}$ decoding is shown using $1 / 2$ DM8092. Note that in many 6800 systems, an already decoded $\overline{4 / 5}$ line is brought out to the common bus at pin 21. This can be tied directly to the $\overline{\mathrm{CS}}$ pin of the A/D, provided that no other devices are addressed at HEX ADDR: $4 \times X X$ or $5 X X X$.

In Figure 19 the ADC0802 series is interfaced to the MC6800 microprocessor through (the arbitrarily chosen) Port B of the MC6820 or MC6821 Peripheral Interface Adapter (PIA). Here the $\overline{\mathrm{CS}}$ pin of the A/D is grounded since the PIA is already memory-mapped in the MC6800 system and no $\overline{\mathrm{CS}}$ decoding is necessary. Also notice that the A/D output data lines are connected to the microprocessor bus under program control through the PIA and therefore the A/D RD pin can be grounded.

APPLICATION NOTES

Some applications bulletins that may be found useful are listed here:
A016 '"Selecting A/D Converters,' by Dave Fullagar.
A018 'Do's and Dont's of Applying A/D Converters,'" by Peter Bradshaw and Skip Osgood.
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing,' by Ed Sliger.
A030 "The ICL7104 - A Binary Output A/D Converter for Microprocessors,' by Peter Bradshaw.
R005 'Interfacing Data Converters \& Microprocessors,' by Peter Bradshaw et al, Electronics, Dec. 9, 1976.

Figure 17: Mapping the A / D as an I/O device for use with the Z-80 CPU

*Note 1: Numbers in parentheses refer to MC6800 CPU pinout.
**Note 2: Numbers or letters in brackets refer to standard MC6800 system common bus code.
Figure 18: ADC0802 to MC6800 CPU Interface

Figure 19: ADC0802 to MC6820 PIA Interface

ICL7106/ICL7107 31/2-Digit LCD/LED Single-Chip A/D Converter

GENERAL DESCRIPTION

The Intersil ICL7106 and 7107 are high performance, low power $3^{1 / 2}$-digit A/D converters containing all the necessary active devices on a single CMOS I.C. Included are sevensegment decoders, display drivers, a reference, and a clock. The 7106 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive; the 7107 will directly drive an instrument-size light emitting diode (LED) display.

The 7106 and 7107 bring together an unprecedented combination of high accuracy, versatility, and true economy. It features auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover error of less than one count. True differential inputs and reference are useful in all systems, but give the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. Finally, the true economy of single power supply operation (7106), enables a high performance panel meter to be built with the addition of only 10 passive components and a display.

FEATURES

- Guaranteed Zero Reading for 0 Volts Input on All Scales
- True Polarity at Zero for Precise Null Detection
- 1pA Typical Input Current
- True Differential Input and Reference
- Direct Display Drive - No External Components Required - LCD ICL7106
- LED ICL7107
- Low Noise-Less Than $15 \mu \mathrm{~V}$ p-p
- On-Chip Clock and Reference
- Low Power Dissipation-Typically Less Than 10mW
- No Additional Active Circuits Required
- New Small Outline Surface Mount Package Available
- Evaluation Kit Available

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7106CDL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin ceramic DIP
ICL7106CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin plastic DIP
ICL7106CJL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin CERDIP
ICL7106CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 pin Surface Mount
ICL7107CJL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin CERDIP
ICL7107CDL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin ceramic DIP
ICL7107CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin plastic DIP
ICL7106EV/Kit	Evaluation kits contain IC, display, circuit	
ICL7107EV/Kit	board, passive components and hardware.	

Figure 1: Pin Configurations

ICL7106/ICL7107

absolute maximum ratings

Supply Voltage

ICL7106, V^{+}to V^{-}................................... 15V
ICL7107, V^{+}to GND $+6 \mathrm{~V}$
ICL7107, V^{-}to GND-9V
Analog Input Voltage (either input)(Note 1).... V^{+}to V^{-} Reference Input Voltage (either input) \qquad V^{+} to V^{-} Clock Input
ICL7106
TEST to V^{+}
ICL7107
GND to V^{+}

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
ELECTRICAL CHARACTERISTICS (Note 3)

CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Zero Input Reading	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+ 000.0	Digital Reading
Ratiometric Reading	$\begin{aligned} & V_{\text {IN }}=V_{\text {REF }} \\ & V_{\text {REF }}=100 \mathrm{mV} \end{aligned}$	999	999/1000	1000	Digital Reading
Rollover Error (Difference in reading for equal positive and negative inputs near Full Scale)	$-\mathrm{V}_{\mathrm{IN}}=+\mathrm{V}_{\mathrm{IN}} \simeq 200.0 \mathrm{mV}$	-1	$\pm .2$	+1	Counts
Linearity (Max. deviation from best straight line fit)	Full scale $=200.0 \mathrm{mV}$ or full scale $=2.000 \mathrm{~V}$ (Note 6)	-1	$\pm .2$	+1	Counts
Common Mode Rejection Ratio (Note 4)	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, V_{I N}=0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		50		$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk-Pk value not exceeded 95\% of time)	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ \text { Full Scale }=200.0 \mathrm{mV} \\ \hline \end{array}$		15		$\mu \mathrm{V}$
Leakage Current Input	$\mathrm{V}_{\text {IN }}=0$ (Note 6)		1	10	pA
Zero Reading Drift	$\begin{aligned} & V_{I N}=0 \\ & 0^{\circ}<T_{A}<70^{\circ} \mathrm{C} \text { (Note 6) } \end{aligned}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{I}}=199.0 \mathrm{mV} \\ 0^{\circ}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ \text { (Ext. Ref. Oppm/ }{ }^{\circ} \mathrm{C} \text {) (Note 6) } \\ \hline \end{array}$		1	5	ppm/ $/{ }^{\circ} \mathrm{C}$
V^{+}Supply Current (Does not include LED current for 7107)	$V_{\text {IN }}=0$		0.8	1.8	mA
V^{-}Supply Current (7107 only)			0.6	1.8	mA
Analog Common Voltage (With respect to Pos. Supply)	25k Ω between Common \& Pos. Supply	2.4	2.8	3.2	V
Temp. Coeff. of Analog Common (With respect to Pos. Supply)	$25 \mathrm{k} \Omega$ between Common \& Pos. Supply		80		ppm $/{ }^{\circ} \mathrm{C}$
7106 ONLY Pk-Pk Segment Drive Voltage Pk-Pk Backplane Drive Voltage (Note 5)	V^{+}to $V^{-}=9 \mathrm{~V}$	4	5	6	V
7107 ONLY Segment Sinking Current (Except Pin 19 \& 20) (Pin 19 only) (Pin 20 only)	$\begin{aligned} & V^{+}=5.0 \mathrm{~V} \\ & \text { Segment voltage }=3 \mathrm{~V} \end{aligned}$	5 10 4	$\begin{array}{r} 8.0 \\ \\ 16 \\ 7 \\ \hline \end{array}$	\because	mA mA

NOTES: 3. Unless otherwise noted, specifications apply to both the 7106 and 7107 at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {clock }}=48 \mathrm{kHz}$. 7106 is tested in the circuit of Figure 4. 7107 is tested in the circuit of Figure 5.
4. Refer to '"Differential input' discussion.
5. Back plane drive is in phase with segment drive for 'off' segment, 180° out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
6. Not tested, guaranteed by design.

TEST CIRCUITS

AF022201
Figure 3: ICL7107 Test Circuit and Typical Application With LED Display

DETAILED DESCRIPTION

Analog Section

Figure 4 shows the Analog Section for the ICL7106 and 7107. Each measurement cycle is divided into three phases. They are (1) auto-zero (A/Z), (2) signal integrate (INT) and (3) de-integrate (DE).

Figure 4: Analog Section of 7106/7107

ㅇ ICL7106/ICL7107

Auto-zero phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A/Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

Signal Integrate phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between $\mathbb{N ~ H I}$ and \mathbb{N} LO for a fixed time. This differential voltage can be within a wide common mode range: up to one volt from either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

De-integrate phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is
$1000\left(\frac{V_{\text {IN }}}{V_{\text {REF }}}\right)$.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier, or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range, the system has a CMRR of 86 dB typical. However, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator output swing can be reduced to less than the recommended 2 V full scale swing with little loss of accuracy. The integrator output can swing to within 0.3 volts of either supply without loss of linearity. See A032 for a discussion of the effects of stray capacitance.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for positive or negative input voltage will give a roll-over
error. However, by selecting the reference capacitor such that it is large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count worst case. (See Component Value Selection.)

Analog COMMON

This pin is included primarily to set the common mode voltage for battery operation (7106) or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 volts more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V . However, the analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate $(>7 \mathrm{~V})$, the COMMON voltage will have a low voltage coefficient $(0.001 \% / \mathrm{V})$, low output impedance ($\sim 15 \Omega$), and a temperature coefficient typically less than $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

The limitations of the on-chip reference should also be recognized, however. With the 7107, the internal heating which results from the LED drivers can cause some degradation in performance. Due to their higher thermal resistance, plastic parts are poorer in this respect than ceramic. The combination of reference Temperature Coefficient (TC), internal chip dissipation, and package thermal resistance can increase noise near full scale from $25 \mu \mathrm{~V}$ to $80 \mu \mathrm{Vp}-\mathrm{p}$. Also the linearity in going from a high dissipation count such as 1000 (20 segments on) to a low dissipation count such as 1111(8 segments on) can suffer by a count or more. Devices with a positive TC reference may require several counts to pull out of an overrange condition. This is because overrange is a low dissipation mode, with the three least significant digits blanked. Similarly, units with a negative TC may cycle between overrange and a nonoverrange count as the die alternately heats and cools. All these problems are of course eliminated if an external reference is used.

The 7106, with its negligible dissipation, suffers from none of these problems. In either case, an external reference can easily be added, as shown in Figure 5.

Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for

ICL7106/ICL7107

instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter. The same holds true for the reference voltage. If reference can be conveniently tied to analog COMMON, it should be since this removes the common mode voltage from the reference system.

Within the IC, analog COMMON is tied to an N channel FET that can sink approximately 30 mA of current to hold the voltage 2.8 volts below the positive supply (when a load is trying to pull the common line positive). However, there is only $10 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage thus over-riding the internal reference.

TEST

The TEST pin serves two functions. On the 7106 it is coupled to the internally generated digital supply through a 500Ω resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 8 and 9 show such an application. No more than a 1 mA load should be applied.

DS012701
Figure 6: Simple Inverter for Fixed Decimal Point

DS01280I
Figure 7: Exclusive 'OR' Gate for Decimal Point Drive

The second function is a 'lamp test'. When TEST is pulled high (to V^{+}) all segments will be turned on and the display should read - 1888. The TEST pin will sink about 10 mA under these conditions.

Caution: on the 7106, in the lamp test mode, the segments have a constant DC voltage (no square-wave) and may burn the LCD display if left in this mode for several minutes.

DIGITAL SECTION

Figures 8 and 9 show the digital section for the 7106 and 7107, respectively. In the 7106, an internal digital ground is generated from a 6 volt Zener diode and a large P channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 volts. The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments.

Figure 9 is the Digital Section of the 7107. It is identical to the 7106 except that the regulated supply and back plane drive have been eliminated and the segment drive has been increased from 2 to 8 mA , typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA .

In both devices, the polarity indication is "on' for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.

Figure 8：Digital Section 7106

Figure 9：Digital Section 7107

System Timing
Figure 10 shows the clocking arrangement used in the 7106 and 7107 . Three basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An R-C oscillator using all three pins.

Figure 10: Clock Circuits

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts) and auto-zero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 counts (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48 kHz would be used.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}, 48 \mathrm{kHz}$, $40 \mathrm{kHz}, 33^{1 / 3 \mathrm{kHz}}$, etc. should be selected. For 50 Hz rejection, Oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{kHz}, 66^{2} 3 \mathrm{kHz}$, $50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that 40 kHz (2.5 readings/second) will reject both 50 and 60 Hz (also 400 and 440 Hz).

COMPONENT VALUE SELECTION

Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 volt full scale, $470 \mathrm{k} \Omega$ is near optimum and similarly a $47 \mathrm{k} \Omega$ for a 200.0 mV scale.

Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 volt from either supply). In the 7106 or the 7107, when the analog COMMON is used as a reference, a nominal ± 2 volt full scale integrator swing is fine. For the 7107 with ± 5 volt supplies and analog COMMON tied to supply ground, a ± 3.5 to ± 4 volt swing is nominal. For three readings/second (48 kHz clock) nominal values for $\mathrm{C}_{\mathrm{INT}}$ are $0.22 \mu \mathrm{~F}$ and
$0.10 \mu \mathrm{~F}$, respectively. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.

An additional requirement of the integrating capacitor is that it must have a low dielectric absorption to prevent rollover errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full scale where noise is very important, a $0.47 \mu \mathrm{~F}$ capacitor is recommended. On the 2 volt scale, a $0.047 \mu \mathrm{~F}$ capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e. the REF LO pin is not at analog COMMON) and a 200 mV scale is used, a larger value is required to prevent roll-over error. Generally $1.0 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance.

Oscillator Components

For all ranges of frequency a $100 \mathrm{k} \Omega$ resistor is recommended and the capacitor is selected from the equation $f=\frac{0.45}{R C}$. For 48 kHz clock (3 readings/second), $C=100 \mathrm{pF}$.

Reference Voltage

The analog input required to generate full-scale output (2000 counts) is: $\mathrm{V}_{I N}=2 \mathrm{~V}_{\text {REF }}$. Thus, for the 200.0 mV and 2.000 volt scale, Vref should equal 100.0 mV and 1.000 volt, respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select $V_{\text {REF }}=0.341 \mathrm{~V}$. Suitable values for integrating resistor and capacitor would be $120 \mathrm{k} \Omega$ and $0.22 \mu \mathrm{~F}$. This makes the system slightly quieter and also avoids a divider network on the input. The 7107 with $\pm 5 \mathrm{~V}$ supplies can accept input signals up to $\pm 4 \mathrm{~V}$. Another advantage of this system occurs when a digital reading of zero is desired for $\mathrm{V}_{I N} \neq 0$. Temperature and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

7107 Power Supplies

The 7107 is designed to work from $\pm 5 \mathrm{~V}$ supplies. However, if a negative supply is not available, it can be generated from the clock output with 2 diodes, 2 capacitors, and an inexpensive I.C. Figure 11 shows this application. See ICL7660 data sheet for an alternative.

Figure 11: Generating Negative Supply from +5V

In fact, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:

1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than ± 1.5 volts.
3. An external reference is used.

TYPICAL APPLICATIONS

The 7106 and 7107 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A/D converters.

C000690
Figure 12: $\mathbf{7 1 0 6}$ using the internal reference. Values shown are for $\mathbf{2 0 0 . 0} \mathbf{~ m V}$ full scale, 3 readings per second, floating supply voltage (9V battery).

CD00700
Figure 13: $\mathbf{7 1 0 7}$ using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second. IN LO may be tied to either COMMON for inputs floating with respect to supplies, or GND for single ended inputs. (See discussion under Analog COMMON.)

CD00710I
Figure 14: 7107 with an external band-gap reference (1.2 V type). IN LO is tied to COMMON, thus establishing the correct common mode voltage. If COMMON is not shorted to GND, the input voltage may float with respect to the power supply and COMMON acts as a pre-regulator for the reference. If COMMON is shorted to GND, the input is single ended (referred to supply ground) and the pre-regulator is over-ridden.

TYPICAL APPLICATIONS (CONT.)

CD007201
Figure 15: 7107 with Zener diode reference. Since low T.C. zeners have breakdown voltages $\sim 6.8 \mathrm{~V}$, diode must be placed across the total supply (10V). As in the case of Figure 15, IN LO may be tied to either COMMON or GND.

c0007301
Figure 16: 7106/7107: Recommended component values for $\mathbf{2 . 0 0 0}$ full scale.

CD007401
Figure 17: 7107 operated from single +5 V supply. An external reference must be used in this application, since the voltage between \mathbf{V}^{+}and \mathbf{V}^{-}is insufficient for correct operation of the internal reference.

CD007501
Figure 18: 7107 measuring ratiometric values of Quad Load Cell. The resistor values within the bridge are determined by the desired sensitivity.

TYPICAL APPLICATIONS (CONT.)

CD00760
Figure 19: 7106 used as a digital centigrade thermometer. A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for $\mathbf{1 0 0 . 0}$ reading.

Figure 20: Circuit for developing Underrange and Overrange signals from 7106 outputs.

Figure 21: Circuit for developing Underrange and Overrange signals from 7107 outputs. The LM339 is required to ensure logic compatibility with heavy display loading.

7106/7107 EVALUATION KITS

After purchasing a sample of the 7106 or the 7107, the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application. However, locating and purchasing even the small number of additional components required, then wiring a breadboard, can often cause delays of days or sometimes weeks. To avoid this problem and facilitate evaluation of these unique circuits, intersil is offering a kit which contains all the necessary components to build a $3^{1 / 2}$-digit panel meter. With the help of this kit, an engineer or technician can have the system "up and running" in about half an hour.
Two kits are offered, the ICL7106EV/KIT and the ICL7107EV/KIT. Both contain the appropriate IC, a circuit board, a display (LCD for 7106EV/KIT, LEDs for 7107EV/ KIT), passive components, and miscellaneous hardware.

APPLICATION NOTES

A016 'Selecting A/D Converters', by David Fullagar.
A017 "The Integrating A/D Converter', By Lee Evans.
A018 'Do's and Don'ts of Applying A/D Converters', by Peter Bradshaw and Skip Osgood.
A019 ' $41 / 2$-Digit Panel Meter Demonstrator/ Instrumentation Boards', by Michael Dufort.
A023 "Low Cost Digital Panel Meter Designs", by David Fullagar and Michael Dufort.
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106/7/9 Family', by Peter Bradshaw.
A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7106', by Larry Goff.
A052 "Tips for Using Single-Chip $31 / 2$-Digit A/D Converters', by Dan Watson.

CD00790I
Figure 22: AC to DC Converter with 7106. TEST is used as a common mode reference level to ensure compatibility with most op-amps.

DS012901
Figure 23: Display Buffering for increased drive current. Requires four DM7407 Hex Buffers. Each buffer is capable of sinking 40 mA .

GENERAL DESCRIPTION

The ICL7109 is a high performance, CMOS, low power integrating A/D converter designed to easily interface with microprocessors.

The output data (12 bits, polarity and overrange) may be directly accessed under control of two byte enable inputs and a chip select input for a simple parallel bus interface. A UART handshake mode is provided to allow the ICL7109 to work with industry-standard UARTs in providing serial data transmission, ideal for remote data logging applications. The RUN/HOLD input and STATUS output allow monitoring and control of conversion timing.

The ICL7109 provides the user with the high accuracy, low noise, low drift, versatility and economy of the dualslope integrating A/D converter. Features like true differential input and reference, drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, maximum input bias current of 10 pA , and typical power consumption of 20 mW make the ICL7109 an attractive per-channel alternative to analog multiplexing for many data acquisition applications.

FEATURES

- 12 Bit Binary (Plus Polarity and Overrange) Dual Slope Integrating Analog-to-Digital Converter
- Byte-Organized TTL-Compatible Three-State Outputs and UART Handshake Mode for Simple Parallel or Serial Interfacing to Microprocessor Systems
- RUN/HOLD Input and STATUS Output Can Be Used to Monitor and Control Conversion Timing
- True Differential Input and Differential Reference
- Low Noise - Typically $15 \mu \mathrm{~V}$ p-p
- 1pA Typical Input Current
- Operates At Up to 30 Conversions Per Second
- On-Chip Oscillator Operates With Inexpensive 3.58MHz TV Crystal Giving 7.5 Conversions Per Second for 60 Hz Rejection May Also Be Used With An RC Network Oscillator for Other Clock Frequencies

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ICL7109MDL	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40-Pin Ceramic DIP
ICL7109IDL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40-Pin Ceramic DIP
ICL7109IJL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40-Pin CERDIP
ICL7109CPL	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40-Pin Plastic DIP

(See Figure 2 for typical connection to a UART or Microcomputer)
Figure 1: Pin Configuration and Test Circuit

ABSOLUTE MAXIMUM RATINGS

ference Input Voltage (Lo or Hi) (Note 1).. V^{+}to V^{-} igital input Voltage$V^{+}+0.3 V$

Power Dissipation (Note 3)
Ceramic Package1W @ $+85^{\circ} \mathrm{C}$
Plastic Package500mW @ $+70^{\circ} \mathrm{C}$
Operating Temperature (MDL) $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ceramic Package (MDL
Ceramic Package (IDL) $\ldots \ldots \ldots . .25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Plastic Package (CPL) $\ldots \ldots \ldots \ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature.................65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise indicated.) Test circuit as shown on first page of this data sheet.

ANALOG SECTION

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Zero Input Reading	$\begin{aligned} & \mathrm{VIN}=0.0 \mathrm{~V} \\ & \text { Full Scale }=409.6 \mathrm{mV} \end{aligned}$	-00008	$\pm 0000_{8}$	$+00008$	Octal Reading
	Ratiometric Reading	$\begin{aligned} & V_{I N}=V_{\text {REF }} \\ & V_{\text {REF }}=204.8 \mathrm{mV} \end{aligned}$	37778	$\begin{aligned} & 37778 \\ & 4000_{8} \end{aligned}$	40008	Octal Reading
	Non-Linearity (Max deviation from best straight line fit)	Full Scale $=409.6 \mathrm{mV}$ to 2.048 V Over full operating temperature range. (Note 4), (Note 6)	-1	$\pm .2$	+1	Counts
	Roll-over Error (difference in reading for equal pos. and neg. inputs near full scale)	Full Scale $=409.6 \mathrm{mV}$ to 2.048 V (Note 5), (Note 6)	-1	$\pm .2$	+1	Counts
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M} \pm 1 V V_{I N}=0 V \\ & \text { Full Scale }=409.6 \mathrm{mV} \end{aligned}$		50		$\mu \mathrm{V} / \mathrm{V}$
VCMR	Input Common Mode Range	Input Hi, Input Lo, Common (Note 4)	$\mathrm{V}^{-}+1.5$		$\mathrm{V}^{+}-1.0$	V
e_{n}	Noise ($p-\mathrm{p}$ value not exceeded 95% of time)	$\begin{aligned} & V_{I N}=O V \\ & \text { Full Scale }=409.6 \mathrm{mV} \end{aligned}$		15		$\mu \mathrm{V}$
IILK	Leakage current at Input	$\begin{aligned} & V_{I N}=0 \text { All devices at } 25^{\circ} \mathrm{C} \\ & \text { ICL7109CPL } 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \text { (Note 4) } \\ & \text { ICL7109IDL }-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C} \text { (Note 4) } \\ & \text { ICL7109MDL }-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 1 \\ 20 \\ 100 \\ 2 \end{gathered}$	$\begin{gathered} 10 \\ 100 \\ 250 \\ 5 \end{gathered}$	pA pA pA nA
	Zero Reading Drift	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} \mathrm{R}_{1}=0 \Omega$ (Note 4)		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Scale Factor Temperature Coefficient	$\mathrm{V}_{\mathrm{IN}}=408.9 \mathrm{mV}=>7770_{8}$ reading Ext. Ref. $0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (Note 4)		1	5	ppm $/{ }^{\circ} \mathrm{C}$
1^{+}	Supply Current V^{+}to GND	$\mathrm{V}_{\mathrm{IN}}=0$, Crystal Osc 3.58 MHz test circuit Pins 2-21, 25, 26, 27, 29; open		700	1500	$\mu \mathrm{A}$
ISUPP	Supply Current V^{+}to V^{-}			700	1500	$\mu \mathrm{A}$
$V_{\text {REF }}$	Ref Out Voltage	Referred to $\mathrm{V}^{+}, 25 \mathrm{k} \Omega$ between V^{+}and REF OUT	-2.4	-2.8	-3.2	V
	Ref Out Temp. Coefficient	$25 \mathrm{k} \Omega$ between V^{+}and REF OUT		80		ppm $/{ }^{\circ} \mathrm{C}$

DIGITAL SECTION

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OH}	Output High Voltage	$\begin{aligned} & \text { lout }=100 \mu \mathrm{~A} \\ & \text { Pins } 2-16,18,19,20 \end{aligned}$	3.5	4.3		V
V OL	Output Low Voltage	$\mathrm{l} \mathrm{OUT}=1.6 \mathrm{~mA}$		0.2	0.4	V
	Output Leakage Current	Pins 3-16 high impedance		$\pm .01$	± 1	$\mu \mathrm{A}$
	Control I/O Pullup Current	Pins $18,19,20$ VOUT $=V^{+}-3 V$ MODE input at GND		5		$\mu \mathrm{A}$
	Control 1/O Loading	$\overline{\text { HBEN }}$ Pin 19 LBEN Pin 18			50	pF
$\mathrm{V}_{\text {IH }}$	Input High Voltage	Pins 18-21, 26, 27 referred to GND	2.5			V
$V_{\text {IL }}$	Input Low Voltage	Pins 18-21, 26, 27 referred to GND			1	V

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input Pull-up Current		Pins 26, $27 \mathrm{~V}_{\text {OUT }}=\mathrm{V}^{+}-3 \mathrm{~V}$		5		$\mu \mathrm{A}$
	Input Pull-up Current		Pins 17, $24 \mathrm{~V}_{\text {OUT }}=\mathrm{V}^{+}-3 \mathrm{~V}$		25		$\mu \mathrm{A}$
	Input Pull-down Current		Pin $21 \mathrm{~V}_{\text {OUT }}=\mathrm{GND}+3 \mathrm{~V}$		5		$\mu \mathrm{A}$
OOH	Octillator Output Current	High	$V_{\text {OUT }}=2.5 \mathrm{~V}$		1		mA
OOL		Low	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		1.5		mA
BO OH	Buffered Oscillator Output Current	High	$V_{\text {OUT }}=2.5 \mathrm{~V}$		2		mA
BO OL		Low	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		5		mA
tw	MODE Input Pulse Width		(Note 4)	50			ns

NOTES: 1. Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$
2. Due to the SCR structure inherent in the process used to fabricate these devices, connecting any digital inputs or outputs to voltages greater than V^{+}or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources other than the same power supply be applied to the ICL7109 before its power supply is established, and that in multiple supply systems the supply to the ICL7109 be activated first.
3. This limit refers to that of the package and will not be obtained during normal operation.
4. This parameter is not production tested, but is guaranteed by design.
5. Roll-over error for $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ is ± 3 counts maximum.
6. A full scale voltage of 2.048 V is used because a full scale voltage of 4.096 V exceeds the devices Common Mode Voltage Range.

TABLE 1: - Pin Assignment and Function Description

PIN	SYMBOL	DESCRIPTION
1	GND	Digital Ground, OV. Ground return for all digital logic.
2	STATUS	Output High during integrate and deintegrate until data is latched. Output Low when analog section is in Auto-Zero configuration.
3	POL	Polarity - HI for Positive input.
4	OR	Overrange - HI if Overranged.
5	B12	Bit 12 (Most Significant Bit)
6	B11	Bit 11
7	B10	Bit 10 All
8	B9	Bit 9 three
9	B8	Bit 8
10	B7	Bit $7 \quad \mathrm{HI}=$ true $\quad \therefore$ output
11	B6	Bit 6 data
12	B5	Bit 5 bits
13	B4	Bit 4
14	B3	Bit 3
15	B2	Bit 2
16	B1	Bit 1 (Least Significant Bit)
17	TEST	Input High - Normal Operation. Input Low - Forces all bit outputs high. Note: This input is used for test purposes only. Tie high if not used.
18	LBEN	Low Byte Enable - With Mode (Pin 21) low, and CE/LOAD (Pin 20) low, taking this pin low activates low order byte outputs B1 B8. —With Mode (Pin 21) high, this pin serves as a low byte flag output used in handshake mode. See Figures 8, 9, 10.
19	HBEN	High Byte Enable - With Mode (Pin 21) low, and $\overline{C E / L O A D}$ (Pin 20) low, taking this pin low activates high order byte outputs B9 B12, POL, OR. - With Mode (Pin 21) high, this pin serves as a high byte flag output used in handshake mode. See Figures 8, 9, 10.

PIN	SYMBOL	DESCRIPTION
20	CE/LOAD	$\begin{array}{l}\text { Chip Enable Load - With Mode (Pin 21) low. } \\ \text { CE/LOAD serves as a master output enable. } \\ \text { When high, B1 - B12, POL, OR outputs are } \\ \text { disabled. } \\ \text { - With Mode (Pin 21) high, this pin serves } \\ \text { as a load strobe used in handshake mode. } \\ \text { See Figures 8, 9, 10. }\end{array}$
21	MODE	$\begin{array}{l}\text { Input Low - Direct output mode where CE/ } \\ \text { LOAD (Pin 20), "BEN (Pin 19) and LBEN } \\ \text { (Pin 18) act as inputs directly controlling byte } \\ \text { outputs. } \\ \text { Input Pulsed High - Causes immediate entry } \\ \text { into handshake mode and output of data as } \\ \text { in Figure 10. } \\ \text { Input High Enables CE/LOAD (Pin 20), } \\ \text { InBEN (Pin 19), and LBEN (Pin 18) as }\end{array}$
outputs, handshake mode will be entered and		
data output as in Figures 8 and 9 at		
conversion completion.		

CD008 121
Figure 2A: Typical Connection Diagram UART Interface- To transmit latest result, send any word to UART

CD00821

Figure 2B: Typical Connection Diagram Parallel Interface With 8048 Microcomputer

DETAILED DESCRIPTION

Analog Section

Figure 3 shows the equivalent circuit of the Analog Section of the ICL7109. When the RUN/HOLD input is left open or connected to V^{+}, the circuit will perform conversions at a rate determined by the clock frequency (8192 clock periods per cycle). Each measurement cycle is divided into three phases as shown in Figure 4. They are (1) Auto-Zero (AZ), (2) Signal Integrate (INT) and (3) Deintegrate (DE).

Auto-Zero Phase

During auto-zero three things happen. First, input high and low are disconnected from their pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $C_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the AZ accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

LC00490I
Figure 3: Analog Section

Figure 4: Conversion Timing (RUN/ $\overline{\text { HOLD }}$ Pin High)

Signal Integrate Phase

During signal integrate the auto-zero loop is opened, the internal short is removed and the internal high and low inputs are connected to the external pins. The converter then integrates the differential voltage between IN.HI and IN LO for a fixed time of 2048 clock periods. Note that this differential voltage must be within the common mode range of the inputs. At the end of this phase, the polarity of the integrated signal is determined.

De-Integrate Phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged
(during auto-zero) reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero crossing (established in Auto Zero) with a fixed slope. Thus the time for the output to return to zero (represented by the number of clock periods counted) is proportional to the input signal.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 1.0 volts below the positive supply to 1.5 volts above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator
also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 4 V full scale with some loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity.

The ICL7109 has, however, been optimized for operation with analog common near digital ground. With power supplies of +5 V and -5 V , this allows a 4 V full scale integrator swing positive or negative thus maximizing the performance of the analog section.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to deintegrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for $(+)$ or (-) input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition (see Component Values Selection below).

The roll-over error from these sources is minimized by having the reference common mode voltage near or at analog COMMON.

Component Value Selection

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

The most important consideration is that the integrator output swing (for full-scale input) be as large as possible. For example, with $\pm 5 \mathrm{~V}$ supplies and COMMON connected to GND, the nominal integrator output swing at full scale is $\pm 4 \mathrm{~V}$. Since the integrator output can go to 0.3 V from either supply without significantly affecting linearity, a 4 V integrator output swing allows 0.7 V for variations in output swing due to component value and oscillator tolerances. With $\pm 5 \mathrm{~V}$ supplies and a common mode range of $\pm 1 \mathrm{~V}$ required, the component values should be selected to provide $\pm 3 \mathrm{~V}$ integrator output swing. Noise and rollover errors will be slightly worse than in the $\pm 4 \mathrm{~V}$ case. For larger common mode voltage ranges, the integrator output swing must be reduced further. This will increase both noise and roilover errors. To improve the performance, supplies of $\pm 6 \mathrm{~V}$ may be used.

Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small
enough that undue leakage requirements are not placed on the PC board. For 4.096 volt full scale, $200 \mathrm{k} \Omega$ is near optimum and similarly a $20 \mathrm{k} \Omega$ for a 409.6 mV scale. For other values of full scale voltage, RINT should be chosen by the relation

$$
\mathrm{R}_{\text {INT }}=\frac{\text { full scale voltage }}{20 \mu \mathrm{~A}}
$$

Integrating Capacitor

The integrating capacitor $\mathrm{C}_{\mathrm{INT}}$ should be selected to give the maximum integrator output voltage swing without saturating the integrator (approximately 0.3 volt from either supply). For the ICL7109 with ± 5 volt supplies and analog common connected to GND, a ± 3.5 to ± 4 volt integrator output swing is nominal. For 7-1/2 conversions per second (61.72 kHz clock frequency) as provided by the crystal oscillator, nominal values for $\mathrm{C}_{I N T}$ and $\mathrm{C}_{A Z}$ are $0.15 \mu \mathrm{~F}$ and $0.33 \mu \mathrm{~F}$, respectively. If different clock frequencies are used, these values should be changed to maintain the integrator output voltage swing. In general, the value of $\mathrm{C}_{\mathbb{I N T}}$ is given by

$$
\mathrm{C}_{\mathrm{INT}}=\frac{(2048 \times \text { clock period })(20 \mu \mathrm{~A})}{\text { integrator output voltage swing }}
$$

An additional requirement of the integrating capacitor is that it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost up to $85^{\circ} \mathrm{C}$. For the military temperature range, Teflon ${ }^{\circledR}$ capacitors are recommended. While their dielectric absorption characteristics vary somewhat from unit to unit, selected devices should give less than 0.5 count of error due to dielectric absorption.

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system: the smaller the capacitor the lower the overall system noise. However, CAZ cannot be increased without limits since it, in parallel with the integrating capacitor forms an R-C time constant that determines the speed of recovery from overloads and more important the error that exists at the end of an auto-zero cycle. For 409.6 mV full scale where noise is very important and the integrating resistor small, a value of $\mathrm{C}_{A Z}$ twice $\mathrm{C}_{\text {INT }}$ is optimum. Similarly for 4.096 V full scale where recovery is more important than noise, a value of $C_{A Z}$ equal to half of $\mathrm{C}_{\mathrm{INT}}$ is recommended.

For optimal rejection of stray pickup, the outer foil of $C_{A Z}$ should be connected to the R-C summing junction and the inner foil to pin 31. Similarly the outer foil of CINT should be connected to pin 32 and the inner foil to the R-C summing junction. Teflon®®, or equivalent, capacitors are recommended above $85^{\circ} \mathrm{C}$ for their low leakage characteristics.

Reference Capacitor

A $1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large reference common mode voltage exists (i.e. the reference low is not at analog common) and a 409.6 mV scale is used, a larger value is required to prevent roll-over error. Generally $10 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance. Again, Teflon®®, or equivalent capacitors should be used for temperatures above $85^{\circ} \mathrm{C}$ for their low leakage characteristics.

Reference Voltage

The analog input required to generate a full scale output of 4096 counts is $V_{I N}=2 V_{\text {REF }}$. Thus for a normalized scale, a reference of 2.048 V should be used for a 4.096 V full scale, and 204.8 mV should be used for a 0.4096 V full scale. However, in many applications where the A/D is sensing the output of a transducer, there will exist a scale factor other than unity between the absolute output voltage to be measured and a desired digital output. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 409.6 mV , the input voltage should be measured directly and a reference voltage of 0.341 V should be used. Suitable values for integrating resistor and capacitor are $34 \mathrm{k} \Omega$ and $0.15 \mu \mathrm{~F}$. This avoids a divider on the input. Another advantage of this system occurs when a zero reading is desired for non-zero input. Temperature and weight measurements with an offset or tare are examples. The offset may be introduced by connecting the voltage output of the transducer between common and analog high, and the offset voltage between common and analog low, observing polarities carefully. However, in processor-based systems using the ICL7109, it may be more efficient to perform this type of scaling or tare subtraction digitally using software.

Reference Sources

The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the ICL7109 at 12 bits is one part in 4096, or 244 ppm . Thus if the reference has a temperature coefficient of $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (onboard reference) a temperature difference of $3^{\circ} \mathrm{C}$ will introduce a one-bit absolute error.

For this reason, it is recommended that an external highquality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.

The ICL7109 provides a REFerence OUTput (pin 29) which may be used with a resistive divider to generate a suitable reference voltage. This output will sink up to about 20 mA without significant variation in output voltage, and is provided with a pullup bias device which sources about $10 \mu \mathrm{~A}$. The output voltage is nominally 2.8 V below V^{+}, and has a temperature coefficient of $\pm 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ. When using the onboard reference, REF OUT (Pin 29) should be connected to REF - (pin 39), and REF + should be connected to the wiper of a precision potentiometer between REF OUT and V^{+}. The circuit for a 204.8 mV reference is shown in the test circuit. For a 2.048 mV reference, the fixed resistor should be removed, and a $25 \mathrm{k} \Omega$ precision potentiometer between REF OUT and V^{+}should be used.

Note that if pins 29 and 39 are tied together and pins 39 and 40 accidentally shorted (e.g.; during testing), the reference supply will sink enough current to destroy the device. This can be avoided by placing a $1 \mathrm{k} \Omega$ resistor in series with pin 39.

DETAILED DESCRIPTION

Digital Selection

The digital section includes the clock oscillator and scaling circuit, a 12-bit binary counter with output latches and TTL-compatible three-state output drivers, polarity, over-range and control logic, and UART handshake logic, as shown in Figure 5.

Throughout this description, logic levels will be referred to as 'low' or 'high'". The actual logic levels are defined in the Electrical Characteristics Table. For minimum power consumption, all inputs should swing from GND (low) to V^{+} (high). Inputs driven from TTL gates should have $3-5 \mathrm{k} \Omega$ pullup resistors added for maximum noise immunity.

MODE Input

The MODE input is used to control the output mode of the converter. When the MODE pin is low or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open), the converter is in its 'Direct" output mode, where the output data is directly accessible under the control of the chip and byte enable inputs. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in two bytes, then returns to 'direct' mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled 'Handshake Mode' for further details).

STATUS Output

During a conversion cycle, the STATUS output goes high at the beginning of Signal Integrate (Phase II), and goes low one-half clock period after new data from the conversion has been stored in the output latches. See Figure 4 for details of this timing. This signal may be used as a 'data valid' ${ }^{\text {' flag (}}$ (data never changes while STATUS is low) to drive interrupts, or for monitoring the status of the converter.

RUN/HOLD Input

When the RUN/FOLD input is high, or left open, the circuit will continuously perform conversion cycles, updating the output latches after zero crossing during the Deintegrate (Phase III) portion of the conversion cycle (See Figure 4). In this mode of operation, the conversion cycle will be performed in 8192 clock periods, regardless of the resulting value.

If RUN/ $\overline{H O L D}$ goes low at any time during Deintegrate (Phase III) after the zero crossing has occurred, the circuit will immediately terminate Deintegrate and jump to AutoZero. This feature can be used to eliminate the time spent in Deintegrate after the zero-crossing. If RUN/HOLD stays or goes low, the converter will ensure minimum Auto-Zero time, and then wait in Auto-Zero until the RUN/ $\overline{H O L D}$ input goes high. The converter will begin the Integrate (Phase II) portion of the next conversion (and the STATUS output will go high) seven clock periods after the high level is detected at RUN/HOLD. See Figure 6 for details.

Using the RUN/ $\overline{H O L D}$ input in this manner allows an easy "convert on demand" interface to be used. The converter may be held at idle in auto-zero with RUN/ $\overline{H O L D}$ low. When RUN/HOLD goes high the conversion is started, and when the STATUS output goes low the new data is valid (or transferred to the UART - see Handshake Mode). RUN/ $\overline{H O L D}$ may now be taken low which terminates deintegrate and ensures a minimum Auto-Zero time before the next conversion.

Alternately, RUN/ $\overline{H O L D}$ can be used to minimize conversion time by ensuring that it goes low during Deintegrate, after zero crossing, and goes high after the hold point is reached. The required activity on the RUN/ $\overline{H O L D}$ input can be provided by connecting it to the Buffered Oscillator Output. In this mode the conversion time is dependent on the input value measured. Also refer to Intersil Application Bulletin A032 for a discussion of the effects this will have on Auto-Zero performance.

If the RUN/ $\overline{H O L D}$ input goes low and stays low during Auto-Zero (Phase I), the converter will simply stop at the end of Auto-Zero and wait for RUN/ $\overline{H O L D}$ to go high. As above, Integrate (Phase II) begins seven clock periods after the high level is detected.

Direct Mode

When the MODE pin is left at a low level, the data outputs (bits 1 through 8 low order byte, bits 9 through 12, polarity and over-range high order byte) are accessible under control of the byte and chip enable terminals as inputs. These three inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip enable input is low, taking a byte enable input low will allow the outputs of that byte to become active (three-stated on). This allows a variety of parallel data accessing techniques to be used, as shown in the section entitled 'Interfacing.' The timing requirements for these outputs are shown in Figure 7 and Table 2.

Table 2 - Direct Mode Timing Requirements
 (See Note 4 of Electrical Characteristics)

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNIT
t $_{\text {BEA }}$	Byte Enable Width	350	220		ns
t DAB	Data Access Time from Byte Enable		210	350	ns
tDHB	Data Hold Time from Byte Enable		150	300	ns
tCEA	Chip Enable Width	400	260		ns
tDAC	Data Access Time from Chip Enable		260	400	ns
tDHC	Data Hold Time from Chip Enable		240	400	ns

Figure 7: Direct Mode Output Timing

It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the latches while they are being updated, which could lead to erroneous data. Synchronizing the access of the latches with the conversion cycle by monitoring the STATUS output will prevent this. Data is never updated while STATUS is low.

Handshake Mode

The handshake output mode is provided as an alternative means of interfacing the ICL7109 to digital systems, where the A/D converter becomes active in controlling the flow of data instead of passively responding to chip and byte enable inputs. This mode is specifically designed to allow a direct interface between the ICL7109 and industry-standard UARTs (such as the Intersil IM6402/3) with no external logic required. When triggered into the handshake mode the ICL7109 provides all the control and flag signals necessary to sequentially transfer two bytes of data into the UART and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission.

Entry into the handshake mode is controlled by the MODE pin. When the MODE terminal is held high, the

CL7109 will enter the handshake mode after new data has been stored in the output latches at the end of a conversion (See Figures 8 and 9). The MODE terminal may also be used to trigger entry into the handshake mode on demand. At any time during the conversion cycle, the low to high transition of a short pulse at the MODE input will cause immediate entry into the handshake mode. If this pulse occurs while new data is being stored, the entry into handshake mode is delayed until the data is stable. While the converter is in the handshake mode, the MODE input is ignored, and although conversions will still be performed, data updating will be inhibited (See Figure 10) until the converter completes the output cycle and clears the handshake mode.

When the converter enters the handshake mode, or when the MODE input is high, the chip and byte enable terminals become TTL-compatible outputs which provide the control signals for the output cycle (See Figures 8, 9, and 10).
In handshake mode, the SEND input is used by the converter as an indication of the ability of the receiving device (such as a UART) to accept data.
Figure 8 shows the sequence of the output cycle with SEND held high. The handshake mode (Internal MODE high) is entered after the data latch pulse, and since MODE remains high the CE/LOAD, LBEN and HBEN terminals are active as outputs. The high level at the SEND input is sensed on the same high to low internal clock edge that terminates the data latch pulse. On the next low to high internal clock edge the $\overline{C E / L O A D}$ and the HBEN outputs assume a low level, and the high-order byte (bits 9 through $12, \mathrm{POL}$, and OR) outputs are enabled. The CE/LOAD output remains low for one full internal clock period only, the data outputs remain active for 1-1/2 internal clock periods, and the high byte enable remains low for two clock periods. Thus the $\overline{C E} / L O A D$ output low level or low to high edge may be used as a synchronizing signal to ensure valid data, and the byte enable as an output may be used as a byte identification flag. With SEND remaining high the converter completes the output cycle using CE/LOAD and LBEN while the low order byte outputs (bits 1 through 8) are activated. The handshake mode is terminated when both bytes are sent.

Figure 9 shows an output sequence where the SEND input is used to delay portions of the sequence, or handshake to ensure correct data transfer. This timing diagram shows the relationships that occur using an indus-try-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEND input to the ICL7109 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the CE/LOAD terminal of the ICL7109 drives the TBRL (Transmitter Buffer Register Load) input to the UART. The data outputs are paralleled into the eight Transmitter Buffer Register inputs.

Figure 8: Handshake With Send Held Positive

Figure 9: Handshake - Typical UART Interface Timing

ICL7109

Assuming the UART Transmitter Buffer Register is empty, the SEND input will be high when the handshake mode is entered after new data is stored. The CE/LOAD and HBEN terminals will go low after SEND is sensed, and the high order byte outputs become active. When CE/LOAD goes high at the end of one clock period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART TBRE output will now go low, which halts the output cycle with the HBEN output low, and the high order byte outputs active. When the UART has transferred the data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next ICL7109 internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the HBEN output returns high. At the same time, the $\overline{C E / L O A D}$ and LBEN outputs go low, and the low order byte outputs become active. Similarly, when the CE/LOAD returns high at the end of one clock period, the low order data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ICL7109 internal clock high to low edge, disabling the data outputs. One-half internal clock later, the handshake mode will be cleared, and the CE/LOAD, $\overline{H B E N}$, and LBEN terminals return high and stay active (as long as MODE stays high).

With the MODE input remaining high as in these examples, the converter will output the results of every conversion except those completed during a handshake operation. By triggering the converter into handshake mode with a low
to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 9 shows a handshake output sequence triggered by such an edge. In addition, the SEND input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is controlled by the SEND input, and the sequence for the first (high order) byte is similar to the sequence for the second byte. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STATUS output and RUN/FOLD input functioning normally. The only difference is that new data will not be latched when in handshake mode, and is therefore lost.

Oscillator

The ICL7109 is provided with a versatile three terminal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated with an RC network or crystal. The OSCILLATOR SELECT input changes the internal configuration of the oscillator to optimize it for RC or crystal operation.

When the OSCILLATOR SELECT input is high or left open (the input is provided with a pullup resistor), the oscillator is configured for RC operation, and the internal clock will be of the same frequency and phase as the signal at the BUFFERED OSCILLATOR OUTPUT. The resistor and capacitor should be connected as in Figure 11. The circuit will oscillate at a frequency given by $f=0.45 / R C$. A $100 \mathrm{k} \Omega$ resistor is recommended for useful ranges of
frequency. For optimum 60 Hz line rejection, the capacitor value should be chosen such that 2048 clock periods is close to an integral multiple of the 60 Hz period (but should not be less than 50pF).

LC00510
Figure 11: RC Oscillator

When the OSCILLATOR SELECT input is low a feedback device and output and input capacitors are added to the oscillator. In this configuration, as shown in Figure 11, the oscillator will operate with most crystais in the 1 to 5 MHz range with no external components. Taking the OSCILLATOR SELECT input low also inserts a fixed $\div 58$ divider circuit between the BUFFERED OSCILLATOR OUTPUT and the internal clock. Using an inexpensive 3.58 MHz TV crystal, this division ratio provides an integration time given by:

$$
T=(2048 \text { clock periods }) \times\left[\frac{58}{3.58 \mathrm{MHz}}\right]=33.18 \mathrm{~ms}
$$

This time is very close to two 60 Hz periods or 33.33 ms . The error is less than one percent, which will give better than 40 dB 60 Hz rejection. The converter will operate reliably at conversion rates of up to 30 per second, which corresponds to a clock frequency of 245.8 kHz .

If at any time the oscillator is to be overdriven, the overdriving signal should be applied at the OSCILLATOR INPUT, and the OSCILLATOR OUTPUT should be left open. The internal clock will be of the same frequency, duty cycle, and phase as the input signal when OSCILLATOR SELECT is left open. When OSCILLATOR SELECT is at GND, the clock will be a factor of 58 below the input frequency.

When using the ICL7109 with the IM6403 UART, it is possible to use one 3.58 MHz crystal for both devices. The

BUFFERED OSCILLATOR OUTPUT of the ICL7109 may be used to drive the OSCILLATOR INPUT of the UART, saving the need for a second crystal. However, the BUFFERED OSCILLATOR OUTPUT does not have a great deal of drive capability, and when driving more than one slave device, external buffering should be used.

Test Input

When the TEST input is taken to a level halfway between V^{+}and GND, the counter output latches are enabled, allowing the counter contents to be examined anytime.

When the TEST input is connected to GND, the counter outputs are all forced into the high state, and the internal clock is disabled. When the input returns to the $1 / 2\left(\mathrm{~V}^{+}\right.$ -GND) voltage (or to V^{+}) and one clock is applied, all the counter outputs will be clocked to the low state. This allows easy testing of the counter and its outputs.

INTERFACING Direct Mode

Figure 13 shows some of the combinations of chip enable and byte enable control signals which may be used when interfacing the ICL7109 to parallel data lines. The CE/ $\overline{L O A D}$ input may be tied low, allowing either byte to be controlled by its own enable as in Figure 13A. Figure 13B shows a configuration where the two byte enables are connected together. In this configuration, the $\overline{C E / L O A D}$ serves as a chip enable, and the $\overline{\mathrm{HBEN}}$ and $\overline{\mathrm{LBEN}}$ may be connected to GND or serve as a second chip enable. The 14 data outputs will all be enabled simultaneously. Figure 13C shows the HBEN and LBEN as flag inputs, and CE/ LOAD as a master enable, which could be the READ strobe available from most microprocessors.

Figure 13: Direct Mode Chip and Byte Enable Combinations

Figure 14 shows an approach to interfacing several ICL7109s to a bus, ganging the $\overline{H B E N}$ and $\overline{\mathrm{LBEN}}$ signals to several converters together, and using the $\overline{C E / L O A D}$ inputs (perhaps decoded from an address) to select the desired converter.

Some practical circuits utilizing the parallel three-state output capabilities of the ICL7109 are shown in Figures 15 through 20. Figure 15 shows a straightforward application to the Intel 8048/80/85 microprocessors via an 8255PPI, where the ICL7109 data outputs are active at all times. The I/O ports of an 8155 may be used in the same way. This interface can be used in a read-anytime mode, although a read performed while the data latches are being updated
will lead to scrambled data. This will occur very rarely, in the proportion of setup-skew times to conversion time. One way to overcome this is to read the STATUS output as well, and if it is high, read the data again after a delay of more than $1 / 2$ converter clock period. If STATUS is now low, the second reading is correct, and if it is still high, the first reading is correct. Alternatively, this timing problem is completely avoided by using a read-after-update sequence, as shown in Figure 16. Here the high to low transition of the STATUS output drives an interrupt to the microprocessor causing it to access the data latches. This application also shows the RUN/ $\overline{H O L D}$ input being used to initiate conversions under software control.

Figure 15: Full-time Parallel Interface to 8048/80/85 Microprocessors

Figure 16: Full-time Parallel Interface to 8048/80/85 Microprocessors With Interrupt

A similar interface to Motorola MC6800 or MOS Technology MCS650X systems is shown in Figure 17. The high to low transition of the STATUS output generates an interrupt via the Control Register B CB1 line. Note that CB2 controls the RUN/ $\overline{\mathrm{HOLD}}$ pin through Control Register B, allowing software-controlled initiation of conversions in this system as well.

The three-state output capability of the ICL7109 allows direct interfacing to most microprocessor busses. Examples
of this are shown in Figures 18 and 19. It is necessary to carefully consider the system timing in this type of interface, to be sure that requirements for setup and hold times, and minimum pulse widths are met. Note also the drive limitations on long buses. Generally this type of interface is only favored if the memory peripheral address density is low so that simple address decoding can be used. Interrupt handling can also require many additional components, and using an interface device will usually simplify the system in this case.

LD003901
Figure 17: Full-time Parallel Interface to MC680X or MCS650X Microprocessors

Figure 18: Direct Interface - ICL7109 to 8080/8085

Figure 19: Direct ICL7109 - MC680X Bus Interface

Handshake Mode

The handshake mode allows ready interface with a wide variety of external devices. For instance, external latches may be clocked by the rising edge of $\overline{C E / L O A D}$, and the byte enables may be used as byte identification flags or as load enables.

Figure 20 shows a handshake interface to Intel microprocessors again using an 8255PPI. The handshake operation with the 8255 is controlled by inverting its Input Buffer Full (IBF) flag to drive the SEND input to the ICL7109, and using the CE/LOAD to drive the 8255 strobe. The internal control register of the PPI should be set in MODE 1 for the port used. If the 7109 is in handshake mode and the 8255 IBF flag is low, the next word will be strobed into the port. The strobe will cause IBF to go high (SEND goes low), which will keep the enabled byte outputs active. The PPI will generate an interrupt which when executed will result in the data being read. When the byte is read, the IBF will be reset low, which causes the ICL7109 to sequence into the next byte. This figure shows the MODE input to the ICL7109 connected to a control line on the PPI. If this output is left high, or tied high separately, the data from every conversion (provided the data access takes less time than a conversion) will be sequenced in two bytes into the system.

If this output is made to go from low to high, the output sequence can be obtained on demand, and the interrupt may be used to reset the MODE bit. Note that the RUN/ $\overline{\text { HOLD }}$ input to the ICL7109 may also be driven by a bit of the 8255 so that conversions may be obtained on command
under software control. Note that one port of the 8255 is not used, and can service another peripheral device. The same arrangement can also be used with the 8155.

Figure 21 shows a similar arrangement with the MC6800 or MCS650X microprocessors, except that both MODE and RUN/ $\overline{H O L D}$ are tied high to save port outputs.

The handshake mode is particularly convenient for directly interfacing to industry standard UARTs (such as the Intersil IM6402/6403 or Western Digital TR1602) providing a minimum component count means of serially transmitting converted data. A typical UART connection is shown in Figure 2A. In this circuit, any word received by the UART causes the UART DR (Data Ready) output to go high. This drives the MODE input to the ICL7109 high, triggering the ICL7109 into handshake mode. The high order byte is output to the UART first, and when the UART has transferred the data to the Transmitter Register, TBRE (SEND) goes high and the second byte is output. When TBRE (SEND) goes high again, $\overline{\mathrm{LBEN}}$ will go high, driving the UART DRR (Data Ready Reset) which will signal the end of the transfer of data from the ICL7109 to the UART.

Figure 22 shows an extension of the one converter one UART scheme to several ICL7109s with one UART. In this circuit, the word received by the UART (available at the RBR outputs when DR is high) is used to select which converter will handshake with the UART. With no external components, this scheme will allow up to eight ICL7109s to interface with one UART. Using a few more components to decode the received word will allow up to 256 converters to be accessed on one serial line.

Figure 21: Handshake Interface - ICL7109 to MC6800, MCS650X

Figure 22: Multiplexing Converters with Mode Input

The applications of the ICL7109 are not limited to those shown here. The purpose of these examples is to provide a starting point for users to develop useful systems, and to show some of the variety of interfaces and uses of the ICL7109. Many of the ideas suggested here may be used in combination; in particular the uses of the STATUS, RUN/ HOLD, and MODE signals may be mixed.

APPLICATION NOTES

A016 "Selecting A/D Converters," by David Fullagar
A017 'The Integrating A/D Converters,' by Lee Evans
A018 ''Do's and Don'ts of Applying A/D Converters,'" by Peter Bradshaw and Skip Osgood
A030 "The ICL7104 - A Binary Output A/D Converter for Microprocessors," by Peter Bradshaw
A032 'Understanding the Auto-Zero and Common Mode Performance of the ICL7106 Family,' by Peter Bradshaw
R005 'Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al, Electronics, Dec. 9, 1976.

GENERAL DESCRIPTION

The ICL7115 is the first monolithic 14-bit resolution, fast successive approximation A/D converter. It uses thin film resistors and CMOS circuitry combined with an on-chip PROM calibration table to achieve 13 -bit linearity without laser trimming. Special design techniques used in the DAC and comparator result in high speed operation, while the fully static silicon-gate CMOS circuitry keeps the power dissipation very low.

Microprocessor bus interfacing is made easy by the use of standard WRite and $\overline{R e a D}$ cycle timing and control signals, combined with Chip Select and Address pins. The digital output pins are byte-organized and three-state gated for bus interface to 8 and 16-bit systems.

The ICL7115 provides separate Analog and Digital grounds. Analog ground, voltage reference and input voltage pins are separated into force and sense lines for increased system accuracy. Operating with $\pm 5 \mathrm{~V}$ supplies, the ICL7115 accepts 0 V to +5 V input with a -5 V reference or 0 V to -5 V input with a +5 V reference.

FEATURES

- 14-Bit Resolution (LSB $=305 \mu \mathrm{~V}$)
- No Missing Codes
- Microprocessor Compatible Byte-Organized Buffered Outputs
- Fast Conversion ($40 \mu \mathrm{~s}$)
- Auto-Zeroed Comparator for Low Offset Voltage
- Low Linearity and Gain Tempco (1.5ppm/ ${ }^{\circ} \mathrm{C}, 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
- Low Power Consumption (60 mW)
- No Gain or Offset Adjustment Necessary
- Provides 3\% Useable Overrange
- FORCE/SENSE and Separate Digital and Analog Ground Pins for Increased System Accuracy

ORDERING INFORMATION

PART NUMBER	RESOLUTION WITH NO MISSING CODES	TEMP. RANGE	PACKAGE
ICL7115JCDL	12 Bits	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Pin Ceramic
ICL7115KCDL	13 Bits	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Pin Ceramic
ICL7115JIDL	12 Bits,	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	40 Pin Ceramic
ICL7115KIDL	13 Bits	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin Ceramic
ICL7115JMDL	12 Bits	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 Pin Ceramic
ICL7115KMDL	13 Bits	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 Pin Ceramic
ICL7115JMLL	12 Bits	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 Pin LCC
ICL7115KMLL	13 Bits	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 Pin LCC

(Outline DWG LL)

(Outline DWG DL)

Figure 1: Pin Configuration

ABSOLUTE MAXIMUM RATINGS
(Note 1)

Operating Temperature Range
ICL7115XCXX $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL7115XIXX $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CL7115XMXX.................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..500mW
derate above $70^{\circ} \mathrm{C}$ @ $100 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)
$300^{\circ} \mathrm{C}$

NOTE 1: All voltages with respect to DGND, unless otherwise noted
Stresses above those listed under "Absolute Maximum Ratings' may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 2: ICL7115 Functional Block Diagram

ELECTRICAL CHARACTERISTICS

DC ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~V}_{\text {REFs }}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}$ unless otherwise noted.

NOTES: 1. Full-scale range (FSR) is 5 V (reference adjusted).
2. Assume all leads soldered or welded to printed circuit board.
3. Assume all leads soldered or welded to printed circuit board.

Figure 3: Read Cycle Timing with BUS $=\mathbf{V}_{\mathbf{I L}}$

AC ELECTRICAL CHARACTERISTICS $\mathrm{v}^{+}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{clk}}=500 \mathrm{kHz}$ unles otherwise noted. Data derived from extensive characterization testing. Parameters are not 100% production tested.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
READ CYCLE TIMING						
$t_{c d}$	Prop. Delay $\overline{\mathrm{CS}}$ to Data	$\overline{\mathrm{RD}}$ Low, A_{0} Valid			200	ns
$\mathrm{tad}_{\text {ad }}$	Prop. Delay A_{0} to Data	$\overline{\mathrm{CS}}$ Low, $\overline{\mathrm{RD}}$ Low			200	
t_{rd}	Prop. Delay $\overline{\mathrm{RD}}$ to Data	$\overline{\mathrm{CS}}$ Low, A_{0} Valid			200	
$t_{1 \times}$	Prop. Delay Data to Three State				100	
$t_{\text {ed }}$	Prop. Delay EDC High to Data				200	
WRITE CYCLE TIMING						
$t_{\text {wr }}$	WR Low Time		100			ns
$t_{\text {we }}$	Prop. Delay $\overline{\mathrm{WR}}$ Low to EDC Low	Wait Mode	1		2	1/fclk
$t_{\text {eo }}$	EOC High Time	Free-Run Mode	0.5		1.5	
$t_{\text {conv }}$	Conversion Time	$\overline{\mathrm{SC}}=\mathrm{V}_{\text {IH }}$			20	
		$\overline{\mathrm{SC}}=\mathrm{V}_{\text {IL }}$			18	

TABLE 1: PIN DESCRIPTIONS

PIN	NAME	FUNCTION
1	$\mathrm{V}_{\text {REFf }}$	FORCE line for reference input.
2	$\mathrm{AGND}_{\mathrm{f}}$	FORCE input for analog ground
3	$\overline{\mathrm{CS}}$	Chip Select enables reading and writing (active low)
4	$\overline{\mathrm{RD}}$	$\overline{\text { ReaD }}$ (active low)
5	A_{0}	$\begin{aligned} & \text { Byte select (low }=D_{0}-D_{7} \text {, } \\ & \text { high }=D_{8}-D_{13}, O V R \text {) } \end{aligned}$
6	BUS	Bus select (low $=$ outputs enabled by A_{0}, high $=$ all outputs enabled together)
7	DGND	Digital GrouND return
8	D_{13}	Bit 13 (most significant)
9	D_{12}	Bit 12
10	D_{11}	Bit 11
11	D_{10}	Bit 10
12	D_{9}	Bit 9 Output
13	D_{8}	Bit 8 Data
14	D_{7}	Bit 7 Bits
15	D_{6}	Bit $6 \quad($ High $=$ True $)$
16	D_{5}	Bit 5
17	D_{4}	Bit 4. Low Byte
18	D_{3}	Bit 3
19	D_{2}	Bit 2
20	D_{1}	Bit 1
21	D_{0}	Bit 0 (least significant)
22	B_{15}	
23	B_{16}	Used for programming only (leave open)
24	B_{17}	
25	EOC	End Of Conversion flag (low = busy, high = conversion complete)
26	OVR	OVerRange flag (valid at end of conversion when output code exceeds full-scale, threestate output enabled with high byte)
27	V^{+}	Positive power supply input
28	PROG	Used for programming only. Tie to V^{+}for normal operation
29	TEST	Used for programming only. Tie to V^{+}for normal operation
30	OSC1	Oscillator inverter input
31	OSC2	Oscillator inverter output
32	$\overline{\mathrm{SC}}$	Short cycle input (high $=14$-bit, low $=12$-bit operation)
33	$\overline{\mathrm{WR}}$	WRite pulse input (low starts new conversion)
34	$\mathrm{C}_{\text {AZ }}$	Auto-zero capacitor connection
35	V^{-}	Negative power supply input
36	COMP	Used in test, tie to V^{-}
37	$V_{\text {INs }}$	SENSE line for input voltage
38	$\mathrm{V}_{\text {REFS }}$	SENSE line for reference input
39	$\mathrm{AGND}_{\text {S }}$	SENSE line for analog ground
40	$\mathrm{V}_{\mathrm{INf}}$	FORCE line for input voltage

TABLE 2: I/O CONTROL

$\overline{\mathbf{C S}}$	$\overline{\mathrm{WR}}$	$\overline{R D}$	$\mathbf{A}_{\mathbf{0}}$	BUS	FUNCTION
0	0	x	x	x	Initiates a Conversion
1	x	x	x	x	Disables all Chip Commands
0	x	0	0	0	Low Byte is Enabled
0	x	0	1	0	High Byte is Enabled
0	x	0	x	1	Low and High Bytes Enabled Together
x	x	1	x	x	Disables Outputs (High-Impedance)

TABLE 3: TRANSFER FUNCTION

INPUT VOLTAGE	EXPECTED OUTPUT CODE			
$\mathrm{V}_{\text {REF }}=-5.0 \mathrm{~V}$	OVR	MSB		LSB
$\begin{gathered} 0 \\ +0.0003 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{lllllllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} 0$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
$+0.150$	0	0	000011110101	1
$\begin{aligned} & +2.4997 \\ & +2.500 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{array}{llllllllllll} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$
$\begin{gathered} +4.9994 \\ +4.9997 \\ +5.000 \\ +5.0003 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{llllllllllll} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$
$+5.150$	1	0	000011110101	1

DETAILED DESCRIPTION

The ICL7115 is basically a successive approximation A/D converter with an internal structure much more complex than a standard SAR-type converter. Figure 2 shows the functional diagram of the ICL7115 14-bit A/D converter. The additional circuitry incorporated into the ICL7115 is used to perform error correction and to maintain the operating speed in the $40 \mu \mathrm{~s}$ range.

The internal 17-bit DAC of the ICL7115 is designed around a radix of 1.85 rather than the traditional 2.00. This radix gives each bit of the DAC a weight of approximately 54% of the previous bit. The result is a useable range that extends to 3% beyond the full-scale input of the A/D. The actual value of each bit is measured and stored in the onchip PROM. The absolute value of each bit weight then becomes relatively unimportant because of the error correction action of the ICL7115.

The output of the high-speed auto-zeroed comparator is fed to the data input of a 17-bit successive approximation register (SAR). This register is uniquely designed for the ICL7115 in that it tests bit pairs instead of individual bits in the manner of a standard SAR. At the beginning of the conversion cycle, the SAR turns on the MSB (B_{16}) and the MSB-4 bit (B_{12}). The sequence continues for each bit pair, B_{x} and B_{x-4}, until only the four LSBs remain. The sequence concludes by testing the four LSBs individually.

The SAR output is fed to the DAC register and to the preprogrammed 17 -word by 17 -bit PROM where it acts as PROM address. PROM data is fed to a 17 -bit full-adder/ accumulator where the decoded results from each successive phase of the conversion are summed with the previous results. After 20 clock cycles, the accumulator contains the
final binary data which is latched and sent to the three-state output buffers. The accuracy of the A/D converter depends primarily upon the accuracy of the data that has been programmed into the PROM during the final test portion of the manufacturing process.
The error correcting algorithm built into the ICL7115 reduces the initial accuracy requirements of the DAC. The overlap in the testing of bit pairs reduces the accuracy requirements on the comparator which has been optimized for speed. Since the comparator is auto-zeroed, no external adjustment is required to get ZERO code for ZERO input voltage.

Twenty clock cycles are required for the complete 14-bit conversion. The auto-zero circuitry associated with the comparator is employed during the last three clock cycles of the conversion to cancel the effect of offset voltage. Also during this time, the SAR and accumulator are reset in preparation for the start of the next conversion. When the Short Cycle ($\overline{\mathrm{SC}}$) input is low, 18 clock cycles are required to complete a 12 -bit conversion.

The overflow output of the 17 -bit full-adder is also the OVerRange (OVR) output of the ICL7115. Unlike standard SAR-type A/D converters, the ICL7115 has the capability of providing valid useable data for inputs that exceed the fullscale range by as much as 3%.

OPTIMIZING SYSTEM PERFORMANCE

The FORCE and SENSE inputs for $\mathrm{V}_{\text {IN }}$ and VREF are also shown driven by external op-amps. This technique eliminates the effect of small voltage drops which can appear between the input pin of the IC package and the actual resistor on the chip. If the small gauge wire and the bonds that connect the chip to its package have more than $300 \mathrm{~m} \Omega$ of total series resistance, the result can be a voltage error equivalent to 1LSB. If no op-amps are used for $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {REF }}$, connections should be made directly to the SENSE lines. The external op-amps also serve to transform the relatively low impedance at the $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {REF }}$ pins into a high impedance. The input offset voltages of these amplifiers should be kept low in order to maintain the overall A/D converter system accuracy.

When using A/D converters with more than 12 bits of resolution, special attention must be paid to grounding and the elimination of potential ground loops. A ground loop can be formed by allowing the return current from the ICL7115's DAC to flow through traces that are common to other analog circuitry. If care is not taken, this current can generate small unwanted voltages that add to or detract from the reference or input voltages of the A/D converter.
Ground loops can be eliminated by the use of the analog ground FORCE and SENSE lines provided on the ICL7115 as shown in Figures 5 and 6. In Figure 5 the FORCE line is the only point that is connected to system analog ground. In Figure 6, the op-amp A_{3} forces the voltage at AGND to be equal to analog system ground. The addition of this op-amp overcomes the main deficiency of the arrangement in Figure 5: the V_{IN} and $\mathrm{V}_{\text {REF }}$ sources are not referenced to true analog system ground.
The clamp diodes in Figure 6 are required because spurious op-amp output on AGNDf during power-on can exceed the absolute max rating of $\pm 1.0 \mathrm{~V}$ between AGDf and DGND. The two inverse-parallel diodes clamp the voltage between AGNDs and DGND to $\pm 0.7 \mathrm{~V}$.

INPUT WARNING

As with any CMOS integrated circuit, no input voltages should be applied to the ICL7115 until the $\pm 5 \mathrm{~V}$ power supplies have stabilized.

INTERFACING TO DIGITAL SYSTEMS

The ICL7115 provides three-state data output buffers, $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and bus select inputs (A_{0} and BUS) for interfacing to a wide variety of microcomputers and digital systems. The I/O Control Truth Table shows the functions of the digital control lines. The BUS select and A_{0} lines are provided to enable the output data onto either 8 -bit or 16 -bit data buses. A conversion is initiated by a WR pulse (pin 33) when $\overline{\mathrm{CS}}$ (pin 3) is low. Data is enabled on the bus when the chip is selected and $\overline{R D}$ (pin 4) is low.

Figure 5: V_{IN} and $\mathrm{V}_{\text {REF }}$ Input Buffers

Figure 7 illustrates a typical interface to an 8-bit microcomputer. The 'Start and Wait' operation requires the fewest external components and is initiated by a low level on the $\overline{W R}$ input to the ICL7115 after the I/O or memorymapped address decoder has brought the $\overline{\mathrm{CS}}$ input low. After executing a delay or utility routine for a period of time greater than the conversion time of the ICL7115, the processor issues two consecutive bus addresses to read output data into two bytes of memory. A low level on A_{0} enables the LSBs and a high level enables the MSBs.

Figure 7: 'Start and Wait' Operation

By adding a three-state buffer and two control gates, the End-of-Conversion (EOC) output can be used to control a 'Start and Poll'' interface (Figure 8). In this mode, the A_{0} and $\overline{\mathrm{CS}}$ lines connect the EOC output to the data bus along with the most significant byte of data. After pulsing the WR line to initiate a conversion, the microprocessor continually
reads the most significant byte until it detects a high level on the EOC bit. The "Start and Poll" interface increases data throughput compared with the "Start and Wait" method by eliminating delays between the conversion termination and the microprocessor read operation.

Figure 8: 'Start and Poll' Operation

Other interface configurations can be used to increase data throughput without monopolizing the microprocessor during waiting or polling operations by using the EOC line as an interrupt generator as shown in Figure 9. After the conversion cycle is initiated, the microprocessor can continue to execute routines that are independent of the A / D
converter until the converter's output register actually holds valid data. For fastest data throughput, the ICL7115 can be connected directly to the data bus but controlled by way of a Direct Memory Access (DMA) controller as shown in Figure 9.

Figure 9: Using EOC as an Interrupt

Figure 10: Data to Memory via DMA Controller

Figure 11: Typical Application with Bipolar Input Range, Forced Ground, and 5 Volt Ultra-Stable Reference

APPLICATIONS

Figure 11 shows a typical application of the ICL7115 14bit A/D converter. A bipolar input voltage range of +5 V to -5 V is the result of using the current through R_{2} to force a $1 / 2$ scale offset on the input amplifier (A_{2}). The output of A_{2} swings from 0 V to -5 V . The overall gain of the A / D is varied by adjusting the $100 \mathrm{k} \Omega$ trim resistor, R_{5}. Since the ICL7115 is automatically zeroed every conversion, the system gain and offset stability will be superb as long as a reference with a tempco of $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and stable external resistors are used.

In Figure 11, note that the $0.22 \mu \mathrm{~F}$ auto-zero capacitor is connected directly between the $\mathrm{C}_{A Z}$ pin and analog ground SENSE. A_{3} forces the analog ground of the ICL7115 to be the zero reference for the input signal. Its offset voltage is not important in this example because the voltage to be digitized is referred to the analog ground SENSE line rather than system analog ground. It is important to note that since the 7115's DAC current flows in A_{1}, A_{2} and A_{3} these amplifiers should be wideband (GBW $>20 \mathrm{MHz}$) types to minimize errors.

The clock for the ICL7115 is taken from whatever system clock is available and divided down to the 500 kHz level for a conversion time of $40 \mu \mathrm{~s}$. Output data is controlled by the BUS and A_{0} inputs. Here they are set for 8 -bit bus operation with BUS grounded and A_{0} under the control of the address decode section of the external system.

Because the ICL7115's internal accumulator generates accurate output data for input signals as much as 3%
greater than full-scale, and because the converter's OVR output flags overrange inputs, a simple microprocessor routine can be employed to precisely measure and correct for system gain and offset errors. Figure 12 shows a typical data acquisition system that uses a 5.0 V reference, input signal multiplexer, and input signal Track/Hold amplifier. Two of the multiplexer's input channels are dedicated to sampling the system analog ground and reference voltage. Here, as in Figure 11, bipolar operation is accommodated by an offset resistor between the reference voltage and the summing junction of A_{1}. A flip-flop in IC_{3} sets IC_{2} 's Track/ Hold input after the microprocessor has initiated a WR command, and resets when EOC goes high at the end of the conversion.

The first step in the system calibration routine is to select the multiplexer channel that is connected to system analog ground and initiate a conversion cycle for the ICL7115. The results represent the system offset error which comes from the sum of the offsets from $I C_{1}, I C_{2}$, and A_{1}. Next the channel connected to the reference voltage is selected and measured. These results, minus the system offset error, represent the system full-scale range. A gain error correction factor can be derived from this data. Since the ICL7115 provides valid data for inputs that exceed full-scale by as much as 3%, the OVR output can be thought of as a valid 15 th data bit. Whenever the OVR bit is high, however, the total 14-bit result should be checked to insure that it falls within 100% and 103% of full-scale. Data beyond 103% of full-scale should be discarded.

Figure 12: Multi-Channel Data Acquisition System with Zero and Reference Lines Brought to Multiplexer for System Gain and Offset Error Correction

The ICL7115 provides an internal inverter which is brought out to pins OSC1 and OSC2, for crystal or ceramic resonator oscillator operation. The clock frequency is calculated from:

$$
f_{C L K}=\frac{20}{t_{\text {conv }}} \text { for } 14 \text {-bit operation }
$$

and

$$
\mathrm{f}_{\mathrm{CLK}}=\frac{18}{\mathrm{t}_{\text {conv }}} \text { for } 12 \text {-bit operation }
$$

GENERAL DESCRIPTION

The Intersil ICL7116 and 7117 are high performance, low power $3-1 / 2$ digit A/D converters. All the necessary active devices are contained on a single CMOS I.C., including seven segment decoders, display drivers, reference, and a clock. The 7116 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive; the 7117 will directly drive an instrument-size light emitting diode (LED) display.

The 7116 and 7117 have almost all of the features of the 7106 and 7107 with the addition of a HoLD Reading input. With this input, it is possible to make a measurement and then retain the value on the display indefinitely. To make room for this feature the reference input has been referenced to Common rather than being fully differential. These circuits retain the accuracy, versatility, and true economy of the 7106 and 7107 . They feature auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10pA maximum, and roll over error of less than one count. The versatility of true differential input is of particular advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally, the true economy of single power supply operation (7116) enables a high performance panel meter to be built with the addition of only eleven passive components and a display.

FEATURES

- HoLD Reading Input Allows Indefinite Display Hold
- Guaranteed Zero Reading for 0 Volts Input
- True Polarity at Zero for Precise Null Detection
- 1pA Input Current Typical
- True Differential Input
- Direct Display Drive - No External Components Required - LCD ICL7116
- LED ICL7117
- Low Noise - Less Than $15 \mu \mathrm{~V}$ pk-pk Typical
- On-Chip Clock and Reference
- Low Power Dissipation - Typically Less Than 10 mW
- No Additional Active Circuits Required
- New Small Outline Surface Mount Package Available

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7116CDL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Ceramic DIP
ICL7116CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic DIP
ICL7116CJL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin CERDIP
ICL7116CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 -Pin Surface Mount
ICL7117CDL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Ceramic DIP
ICL7117CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic DIP
ICL7117CJL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin CERDIP

CD008401

CD03251I

Figure 1: Pin Configurations

ABSOLUTE MAXIMUM RATINGS

ICL7116

ICL7117

Supply Voltage V^{+} $+6 \mathrm{~V}$Analog Input Voltage (either input) (Note 1) .. V^{+}to V^{-}Reference Input Voltage (either input) $\ldots \ldots . . . \mathrm{V}^{+}$to V^{-}HLDR, Clock Input...................................... Gnd to V^{+}Power Dissipation (Note 2)
Ceramic Package1000 mW
Plastic Package 800 mW
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 1: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS
 (Note 3)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Zero Input Reading	$\begin{aligned} & V_{\text {IN }}=0.0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+ 000.0	Digital Reading
Ratiometric Reading	$\begin{aligned} & V_{\text {IN }}=V_{\text {REF }} \\ & V_{\text {REF }}=100 \mathrm{mV} \end{aligned}$	999	999/1000	1000	Digital Reading
Rollover Error (Difference in reading for equal positive and negative reading near Full Scale)	$\left\|\mathrm{V}_{\mathrm{IN}}\right\| \simeq 200.0 \mathrm{mV}$	-1	± 0.2	+1	Counts
Linearity (Max. deviation from best straight line fit)	$\begin{aligned} & \text { Full Scale }=200 \mathrm{mV} \\ & \text { or Full Scale }=2.000 \mathrm{~V} \text { (} \text { Note 7) } \end{aligned}$	-1	± 0.2	+1	Counts
Common Mode Rejection Ratio (Note 4)	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { Full } \text { Scale }=200.0 \mathrm{mV} \end{aligned}$		50	.	$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk - Pk value not exceeded 95\% of time)	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ \text { Full Scale }=200.0 \mathrm{mV} \\ \hline \end{array}$		15		$\mu \mathrm{V}$
Leakage Current @ Input	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ (Note 7)		1	10	pA
Zero Reading Drift	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~N}}=0 \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \text { (Note 7) } \\ & \hline \end{aligned}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & V_{I N}=199.0 \mathrm{mV} \\ & 0^{\circ} \mathrm{C}<T_{A}<70^{\circ} \mathrm{C} \\ & \text { (Ext. Ref. Oppm } /{ }^{\circ} \mathrm{C} \text {) (Note } 7 \text {) } \end{aligned}$	'	1	5	ppm $/{ }^{\circ} \mathrm{C}$
V^{+}Supply Current (Does not include LED current for 7117)	$V_{1 N}=0$		0.8	1.8	mA
V^{-}Supply Current (7117 only)			0.6	1.8	mA
Analog Common Voltage (With respect to pos. supply)	25k Ω between COMMON \& pos. Supply	2.4	2.8	3.2	V
Temp. Coeff. of Analog Common (with respect to pos. Supply)	$25 \mathrm{k} \Omega$ between COMMON \& pos. Supply		80		ppm $/{ }^{\circ} \mathrm{C}$
Input Resistance, Pin 1 (Note 6)		30	70		k Ω
$\mathrm{V}_{\text {IL }}$, Pin 1 (7116 only)				TEST + 1.5	V
$\mathrm{V}_{\text {IL }}$, Pin 1 (7117 only)				GND + 1.5	V
$\mathrm{V}_{\text {IH }}$, Pin 1 (Both)		$\mathrm{V}^{+}-1.5$			V
7116 ONLY Pk-Pk Segment Drive Voltage Pk-Pk Backplane Drive Voltage (Note 5)	$\mathrm{V}^{+}-\mathrm{V}^{-}=9 \mathrm{~V}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	V

ELECTRICAL CHARACTERISTICS (CONT.)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	
7117 ONLY	UNIT				
Segment Sinking Current (Except Pin 19 and 20) (Pin 19 only) (Pin 20 only)	$\mathrm{V}^{+}=5.0 \mathrm{~V}$				

NOTES: 3. Unless otherwise noted, specifications apply to both the 7116 and 7117 at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {clock }}=48 \mathrm{kHz}$. 7116 is tested in the circuit of Figure 4. 7117 is tested in the circuit of Figure 5.
4. Refer to 'Differential Input'" discussion.
5. Back plane drive is in phase with segment drive for 'off' segment, 180° out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
6. The 7116 logic input has an internal pull-down resistor connected from HLDR, pin 1, to TEST, pin 37. The 7117 logic input has an internal pull-down resistor connected from HLDR, pin 1 to GROUND, pin 21.
7. Not tested, guaranteed by design.

TEST CIRCUITS

AF02360
Figure 2: ICL7116 Test Circuit and Typical Application With Liquid Crystal Display

AF02370i
Figure 3: ICL7117 Test Circuit and Typical Application With LED Display

DETAILED DESCRIPTION

Analog Section

Figure 4 shows the Analog Section for the ICL7116 and 7117. Each measurement cycle is divided into three phases. They are (1) auto-zero (A/Z), (2) signal integrate (INT) and (3) de-integrate (DE).

Auto-zero phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $C_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

Signal Integrate phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common mode range; within one volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

De-integrate phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is $1000\left(\frac{V_{\text {in }}}{V_{\text {ref }}}\right)$.

Figure 4: Analog Section of 7116/7117

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of typically 86 dB . However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worse case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2V full scale swing with little loss of accuracy. The integrator output can swing to within 0.3 volts of either supply without loss of linearity. See A032 for a discussion of the effects of stray capacitance.

Reference

The reference input must be generated as a positive voltage with respect to COMMON. Note that current flowing in the COMMON pins' internal resistance causes a slight shift in the effective reference voltage, disturbing ratiometric readings at low reference inputs. If possible, do not let this current vary.

Analog COMMON

This pin is included primarily to set the common mode voltage for battery operation (7116) or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 volts less than the positive supply. This is selected to provide proper operation with a minimum end-of-life battery voltage of about 6 V . However, the analog COMMON does have some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ($>7 \mathrm{~V}$), the COMMON voltage will have a low voltage coefficient $(.001 \% / \mathrm{V})$, low output
impedance ($\sim 15 \Omega$), and a temperature coefficient typically. less than $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

The limitations of the on-chip reference should also be recognized, however. With the 7117, the internal heating which results from the LED drivers can cause some degradation in performance. Due to their higher thermal resistance, plastic parts are poorer in this respect than ceramic. The combination of reference Temperature Coefficient (TC), internal chip dissipation, and package thermal resistance can increase noise near full scale from $25 \mu \mathrm{~V}$ to $80 \mu \mathrm{Vpk}$-pk. Also the linearity in going from a high dissipation count such as 1000 (20 segments on) to a low dissipation count such as 1111 (8 segments on) can suffer by a count or more. Devices with a positive TC reference may require several counts to pull out of an overload condition. This is because overload is a low dissipation mode, with the three least significant digits blanked. Similarly, units with a negative TC may cycle between overload and a nonoverload count as the die alternately heats and cools. All these problems are of course eliminated if an external reference is used.

The 7116, with its negligible dissipation, suffers from none of these problems. In either case, an external reference can easily be added, as shown in Figure 5.

Analog COMMON is also the voltage that input low returns to during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter.

Figure 5: Using an External Reference

Within the IC, analog COMMON is tied to an N channel FET that can sink 30 mA or more of current to hold the voltage 2.8 volts below the positive supply (when a load is trying to pull the common line positive). However, there is only $10 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage thus over-riding the internal reference.

TEST

The TEST pin serves two functions. On the 7116 it is coupled to the internally generated digital supply through a 500Ω resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 6 and 7 show such an application. No more than a 1 mA load should be applied.

Figure 6: Simple Inverter for Fixed Decimal Point

AF02410I
Figure 7: Exclusive 'OR' Gate for Decimal Point Drive

The second function is a 'lamp test'. When TEST is pulled to high (to V^{+}) all segments will be turned on and the display should read - 1888. [Caution: on the 7116, in the lamp test mode, the segments have a constant DC voltage (no square-wave) and will burn the LCD display if left in this mode for several minutes.]
DIGITAL SECTION
Figures 8 and 9 show the digital section for the 7116 and 7117, respectively. In the 7116, an internal digital ground is generated from a 6 volt Zener diode and a large P channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 volts. The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments.

Figure 9 is the Digital Section of the 7117 . It is identical to that of the 7116 except the regulated supply and back plane drive have been eliminated and the segment drive has been increased from 2 to 8 mA , typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA .

In both devices the polarity indicator is ON for negative analog inputs. This can be reversed by simply reversing IN LO and IN HI.

HOLD Reading Input

The HLDR input will prevent the latch from being updated when this input is at a logic " 1 '. The chip will continue to make A/D conversions, however, the results will not be updated to the internal latches until this input goes low. This input can be left open or connected to TEST (7116) or GROUND (7117) to continuously update the display. This input is CMOS compatible, and has a $70 \mathrm{k} \Omega$ typical resistance to either TEST (7116) or GROUND (7117).

ICL7116/7117

DISPLAY FONT

DISPLAY FONT (CONT.)

Figure 9: Digital Section 7117

System Timing

Figure 10 shows the clocking arrangement used in the 7116 and 7117. Three basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An R-C oscillator using all three pins.

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts)
and auto-zero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48 kHz would be used.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}, 48 \mathrm{kHz}$, $40 \mathrm{kHz}, 33^{1} / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, Oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{kHz}, 6643 \mathrm{kHz}$, $50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that $40 \mathrm{kHz}(2.5$ readings/second) will reject both 50 and 60 Hz (also 400 and 440 Hz).

COMPONENT VALUE SELECTION

Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 volts full scaie, $470 \mathrm{k} \Omega$ is near optimum and similarly a $47 \mathrm{k} \Omega$ resistor is optimum for a 200.0 mV scale.

Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 volt from either supply). In the 7116 or the 7117 , when the analog COMMON is used as a reference, a nominal ± 2 volt full scale integrator swing is fine. For the 7117 with ± 5 volt supplies and analog common tied to supply ground, a ± 3.5 to ± 4 volt swing is nominal. For three readings/second (48 kHz clock), nominal values for $\mathrm{C}_{\text {INT }}$ are $0.22 \mu \mathrm{~F}$ and $0.10 \mu \mathrm{~F}$, respectively. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.

An additional requirement of the integrating capacitor is it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full scale where noise is very important, a $0.47 \mu \mathrm{~F}$ capacitor is recommended. On the 2 volt scale, a $0.047 \mu \mathrm{~F}$ capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. If rollover errors occur a larger value, up to $1.0 \mu \mathrm{~F}$ may be required.

Oscillator Components

For all ranges of frequency a $100 \mathrm{k} \Omega$ resistor is recommended and the capacitor is selected from the equation $f \simeq \frac{0.45}{\mathrm{RC}}$. For 48 kHz clock (3 readings/second), $\mathrm{C}=100 \mathrm{pF}$.

Reference Voltage

The analog input required to generate full-scale output (2000 counts) is: $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{REF}}$. Thus, for the 200.0 mV and 2.000 volt scale, $V_{\text {REF }}$ should equal 100.0 mV and 1.000 volt, respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select $\mathrm{V}_{\mathrm{REF}}=0.341 \mathrm{~V}$. Suitable values for integrating resistor and capacitor would be $120 \mathrm{k} \Omega$ and $0.22 \mu \mathrm{~F}$. This makes the system slightly quieter and also avoids a divider network on the input. The 7117 with ± 5 volts supplies can accept input signals up to ± 4 volts. Another advantage of this system occurs when a digital reading of zero is desired for $\mathrm{V}_{\mathrm{IN}} \neq 0$. Temperature and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

7117 Power Supplies

The 7117 is designed to work from ± 5 volt supplies. However, if a negative supply is not available, it can be generated from the clock output with 2 diodes, 2 capacitors,
and an inexpensive I.C. Figure 11 shows this application. See ICL7660 data sheet for an alternative.

In fact, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:

1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than ± 1.5 volts in magnitude.
3. An external reference is used.

TYPICAL APPLICATIONS

The 7116 and 7117 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A/D converters.

cD00850I
Figure 12: 7116 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second, floating supply voltage (9V battery).

TYPICAL APPLICATIONS (CONT.)

CD008601
Figure 13: 7117 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second. IN LO may be tied to either COMMON for inputs floating with respect to supplies, or GND for single ended inputs. (See discussion under Analog Common.)

Figure 14: 7116/7117: Recommended component values for 2.000 V full scale.

CD00880
Figure 15: 7117 operated from single +5 V supply. An external reference must be used in this application, since the voltage between \mathbf{V}^{+}and \mathbf{V}^{-}is insufficient for correct operation of the internal reference.

CD00890I
Figure 16: 7117 measuring ratiometric values of Quad Load Cell. The resistor values within the bridge are determined by the desired sensitivity.

Figure 17: 7116 used as a digital centigrade thermometer. A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for 100.0 reading.

APPLICATION NOTES

A016 ''Selecting A/D Converters,'" by David Fullagar.
A017 ''The Integrating A/D Converter,' by Lee Evans.
A018 'Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood.
A019 ' $\quad 41 / 2$-Digit Panel Meter Demonstrator/ Instrumentation Boards," by Michael Dufort.
A023 ''Low Cost Digital Panel Meter Designs,' by David Fullagar and Michael Dufort.
A032 'Understanding the Auto-Zero and Common-Mode Behavior of the ICL7106/7/9 Family,' by Peter Bradshaw.
A046 'Building a Battery-Operated Auto Ranging DVM with the ICL7106,'" by Larry Goff.
A047 ''Games People Play with Intersil's A/D Converters," edited by Peter Bradshaw.
A052 'Tips for Using Single-Chip 3½-Digit A/D Converters," by Dan Watson.

GENERAL DESCRIPTION

The Intersil ICL7126 is a high performance, very low power $3^{1 / 2}$-digit A/D converter. All the necessary active devices are contained on a single CMOS IC, including seven segment decoders, display drivers, reference, and clock. The 7126 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive. The supply current is $100 \mu \mathrm{~A}$, ideally suited for 9 V battery operation.

The 7126 brings together an unprecedented combination of high accuracy, versatility, and true economy. It features auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover error of less than one count. The versatility of true differential input and reference is useful in all systems, but gives the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally the true economy of single power supply operation allows a high performance panel meter to be built with the addition of only 10 passive components and a display.

The ICL7126 can be used as a plug-in replacement for the ICL7106 in a wide variety of applications, changing only the passive components.

FEATURES

- 8,000 Hours Typical 9 Volt Battery Life
- Guaranteed Zero Reading for 0 Volts Input On All Scales
- True Polarity at Zero for Precise Null Detection
- 1pA Typical Input Current
- True Differential Input and Reference
- Direct LCD Display Drive - No External

Components Required

- Pin Compatible With The ICL7106
- Low Noise - Less Than $15 \mu \mathrm{Vp}$-p
- On-Chip Clock and Reference
- Low Power Dissipation Guaranteed Less Than 1 mW
- No Additional Active Circuits Required
- Evaluation Kit Available (ICL7126EV/KIT)

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7126CDL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Ceramic DIP
ICL7126CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic DIP
ICL7126CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Surface Mount
ICL7126RCPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic DIP
ICL7126CJL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CERDIP
ICL7126EV/KIT		EVALUATION KIT

CD032411

Figure 1: Pin Configurations

ICL7126

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 2)	
Ceramic Package	1000 mW
Plastic Package	800 mW
Operating Temperatur	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature.	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Solder	$.300^{\circ} \mathrm{C}$

NOTE 1: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
NOTE 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
*COMMENT: Stresses above those listed under ''Absolute Maximum Ratings' may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Note 3)

CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Zero Input Reading	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~N}}=0.0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+ 000.0	Digital Reading
Ratiometric Reading	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{REF}} \\ & \mathrm{~V}_{\mathrm{REF}}=100 \mathrm{mV} \end{aligned}$	999	999/1000	1000	Digital Reading
Rollover Error (Difference in reading for equal positive and negative reading near Full Scale)	$\left\|-V_{I N}\right\|=+V_{I N} \simeq 200.0 \mathrm{mV}$	-1	± 0.2	+1	Counts
Linearity (Max. deviation from best straight line fit)	Full scale $=200 \mathrm{mV}$ or full scale $=2.000 \mathrm{~V}$	-1	± 0.2	+1	Counts
Common Mode Rejection Ratio (Note 4)	$V_{C M}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ Full Scale $=200.0 \mathrm{mV}$		50		$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk - Pk value not exceeded 95\% of time)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		15		$\mu \mathrm{V}$
Leakage Current @ Input	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		1	10	pA
Zero Reading Drift	$\begin{aligned} & V_{I N}=0 \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \end{aligned}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=199.0 \mathrm{mV} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & \text { (Ext. Ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) } \\ & \hline \end{aligned}$		1	5	ppm $/{ }^{\circ} \mathrm{C}$
Supply Current (Does not include COMMON current)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \\ & \text { (Note 6) } \\ & \hline \end{aligned}$		70	100	$\mu \mathrm{A}$
Analog COMMON Voltage (With respect to pos. supply)	250k Ω between Common \& pos. Supply	2.4	2.8	3.2	V
Temp. Coeff. of Analog COMMON (with respect to pos. Supply)	$250 \mathrm{k} \Omega$ between Common \& pos. Supply		150		ppm/ ${ }^{\circ} \mathrm{C}$
Pk-Pk Segment Drive Voltage (Note 5)	V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$	4	5	6	V
Pk-Pk Backplane Drive Voltage (Note 5)	V^{+}to $V^{-}=9 \mathrm{~V}$	4	5	6	V
Power Dissipation Capacitance	vs. Clock Freq.		40		pF

NOTES: 3. Unless otherwise noted, specifications apply at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {clock }}=16 \mathrm{kHz}$ and are tested in the circuit of Figure 4.
4. Refer to "Differential Input" discussion.
5. Back plane drive is in phase with segment drive for 'off' segment, 180° out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
6. During auto zero phase, current is $10-20 \mu \mathrm{~A}$ higher. 48 kHz oscillator, Figure 5 , increases current by $8 \mu \mathrm{~A}$ (typ).
7. Extra capacitance of CERDIP package changes oscillator resistor value to $470 \mathrm{k} \Omega$ or $150 \mathrm{k} \Omega$ (1 reading $/ \mathrm{sec}$ or 3 readings $/ \mathrm{sec}$).

TEST CIRCUITS

Figure 3: ICL7126 with Liquid Crystal Display

AF024401
Figure 5：Clock Frequency $\mathbf{4 8 k H z}$ ． （3 readings／sec）

DETAILED DESCRIPTION

Analog Section

Figure 2 shows the Functional Diagram of the Analog Section for the ICL7126．Each measurement cycle is divided into three phases．They are（1）auto－zero（A－Z），（2） signal integrate（INT）and（3）de－integrate（DE）．

Auto－zero phase

During auto－zero three things happen．First，input high and low are disconnected from the pins and internally shorted to analog COMMON．Second，the reference capac－ itor is charged to the reference voltage．Third，a feedback loop is closed around the system to charge the auto－zero capacitor $C_{A Z}$ to compensate for offset voltages in the buffer amplifier，integrator，and comparator．Since the comparator is included in the loop，the A－Z accuracy is limited only by the noise of the system．In any case，the offset referred to the input is less then $10 \mu \mathrm{~V}$ ．

Signal Integrate phase

During signal integrate，the auto－zero loop is opened，the internal short is removed，and the internal input high and low are connected to the external pins．The converter then integrates the differential voltage between IN HI and IN LO for a fixed time．This differential voltage can be within a wide common mode range；within one Volt of either supply．If，on the other hand，the input signal has no return with respect to the converter power supply，IN LO can be tied to analog COMMON to establish the correct common－mode voltage． At the end of this phase，the polarity of the integrated signal is determined．

De－integrate phase

The final phase is de－integrate，or reference integrate． Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor．Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero．The time required for the output to return to zero is proportional to the
input signal．Specifically the digital reading displayed is $1000\left(\frac{V_{\text {IN }}}{V_{\text {REF }}}\right)$ ．

Differential Input

The input can accept differential voltages anywhere within the common mode rante of the input amplifier；or specifically from 0.5 Volts below the positive supply to 1.0 Volt above the negative supply．In this range the system has a CMRR of 86 db typical．However，since the integrator also swings with the common mode voltage，care must be exercised to assure the integrator output does not saturate． A worst case condition would be a large positive common－ mode voltage with a near full－scale negative differential input voltage．The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage．For these critical applica－ tions the integrator swing can be reduced to less than the recommended 2 V full scale swing with little loss of accura－ cy．The integrator output can swing within 0.3 Volts of either supply without loss of linearity．

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter．The main source of common mode error is a roll－over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes．If there is a large common mode voltage，the reference capacitor can gain charge（increase voltage）when called up to de－integrate a positive signal but lose charge（decrease voltage）when called up to deinte－ grate a negative input signal．This difference in reference for $(+)$ or（ - ）input voltage will give a roll－over error． However，by selecting the reference capacitor large enough in comparison to the stray capacitance，this error can be held to less than 0.5 count for the worst case condition． （See Component Value Selection．）

Analog COMMON

This pin is included primarily to set the common mode voltage for battery operation or for any system where the input signals are floating with respect to the power supply． The COMMON pin sets a voltage that is approximately 2.8 Volts more negative than the positive supply．This is selected to give a minimum end－of－life battery voltage of about 6 V ．However，the analog COMMON has some of the attributes of a reference voltage．When the total supply voltage is large enough to cause the zener to regulate （ $<7 \mathrm{~V}$ ），the COMMON voltage will have a low voltage coefficient（ $0.001 \% / \%$ ），low output impedance（ $\sim 15 \Omega$ ）， and a temperature coefficient typically less than $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．

The limitations of the on－chip reference should also be recognized，however．The reference temperature coeffi－ cient（TC）can cause some degradation in performance． Temperature changes of 2 to $8^{\circ} \mathrm{C}$ ，typical for instruments， can give a scale factor error of a count or more．Also the common voltage will have a poor voltage coefficient when the total supply voltage is less than that which will cause the zener to regulate（ $<7 \mathrm{~V}$ ）．These problems are eliminated if an external reference is used，as shown in Figure 6.

Figure 6: Using an External Reference

Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter. The same holds true for the reference voltage. If reference can be conveniently referenced to analog COMMON, it should be since this removes the common mode voltage from the reference system.

Within the IC, analog COMMON is tied to an N channel FET that can sink 3mA or more of current to hold the voltage 2.8 Volts below the positive supply (when a load is trying to pull the common line positive). However, there is only $1 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage thus over-riding the internal reference.

TEST

The TEST pin serves two functions. It is coupled to the internally generated digital supply through a 500Ω resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 7 and 8 show such an application. No more than a 1 mA load should be applied.

AF024501
Figure 7: Simple Inverter for Fixed Decimal Point

Figure 8: Exclusive 'OR' Gate for Decimal Point Drive

The second function is a 'lamp test.' When TEST is pulled high (to V^{+}) all segments will be turned on and the display should read - 1888. The TEST pin will sink about 10 mA under these conditions.
Caution: In the lamp test mode, the segments have a constant D-C voltage (no square-wave) and may burn the LCD display if left in this mode for extended periods.

DIGITAL SECTION

Figure 9 shows the digital section for the 7126. An internal digital ground is generated from a 6 Volt Zener diode and a large P channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 Volts. The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments. The polarity indication is 'ON' for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.

Figure 9: Digital Section

System Timing

Figure 10 shows the clocking arrangement used in the 7126. Three basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An R-C oscillator using all three pins.

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts) and auto-zero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48 kHz would be used.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $60 \mathrm{kHz}, 48 \mathrm{kHz}, 40 \mathrm{kHz}, 33-1 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of $66-2 / 3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that 40 kHz (2.5 readings/second) will reject bott, 50 and 60 Hz (also 400 and 440 Hz).

COMPONENT VALUE SELECTION Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $6 \mu \mathrm{~A}$ of quiescent current. They can supply $\sim 1 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 Volt full scale, $1.8 \mathrm{~m} \Omega$ is near optimum and similarly $180 \mathrm{k} \Omega$ for a 200.0 mV scale.

Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 Volt from either supply). When the analog COMMON is used as a reference, a nominal ± 2 Volt full scale integrator swing is fine. For three readings/second (48 kHz clock) nominal values for $\mathrm{C}_{\mathrm{INT}}$ are $0.047 \mu \mathrm{~F}$, for $1 / \mathrm{sec}(16 \mathrm{kHz}) 0.15 \mu \mathrm{~F}$. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.

The integrating capacitor should have low dielectric absorption to prevent roll-over errors. While other types may be adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

At three readings/sec., a 750Ω resistor should be placed in series with the integrating capacitor, to compensate for comparator delay. See App. Note A017 for a description of the need and effects of this resistor.

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full scale where noise is very important, a $0.32 \mu \mathrm{~F}$ capacitor is recommended. On the 2 Volt scale, a $0.033 \mu \mathrm{~F}$ capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e., the REF LO pin is not analog COMMON) and a 200 mV scale is used, a larger value is required to prevent roll-over error. Generally $1.0 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance.

Oscillator Components

For all ranges of frequency a 50 pF capacitor is recommended and the resistor is selected from the approximate equation $f \sim \frac{0.45}{R C}$. For 48 kHz clock (3 readings/second), $R=180 \mathrm{k} \Omega$.

Reference Voltage

The analog input required to generate full-scale output (2000 counts) is: $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\text {REF }}$. Thus, for the 200.0 mV and 2.000 Volt scale, $V_{\text {REF }}$ should equal 100.0 mV and 1.000 Volt, respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select $\mathrm{V}_{\text {REF }}=0.341 \mathrm{~V}$. A suitable value for integrating resistor would be $330 \mathrm{k} \Omega$. This makes
the system slightly quieter and also avoids the necessity of a divider network on the input. Another advantage of this system occurs when a digital reading of zero is desired for $\mathrm{V}_{\mathbb{I N}} \neq 0$. Temperature and weighting systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

TYPICAL APPLICATIONS

The 7126 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A/D converters.

coooser
Figure 11: 7126 using the internal reference.

Values shown are for 200.0 mV full scale, 3 readings per second, floating supply voltage (9V battery).

Figure 12: 7126 with an external band-gap reference (1.2V type).

IN LO is tied to COMMON, thus establishing the correct common mode voltage. COMMON acts as a pre-regulator for the reference. Values shown are for 1 reading per second.

CD00940I
Figure 13: Recommended component values for 2.000 V full scale, 3 readings per second.

For 1 reading per second, delete 750Ω resistor, change $\mathrm{C}_{\operatorname{INT}}$, ROSC to values of Figure 12.

CD00950
Figure 14: 7126 with Zener diode reference.

Since low T.C. zeners have breakdown voltages $\sim 6.8 \mathrm{~V}$, diode must be placed across the total supply (10 V). As in the case of Figure 13, IN LO may be tied to COMMON.

CD00960
Figure 15: 7126 operated from single +5 V supply.

An external reference must be used in this application, since the voltage between V^{+} and V^{-}is insufficient for correct operation of the internal reference.

Figure 16: 7126 measuring ratiometric values of Quad Load Cell.

The resistor values within the bridge are determined by the desired sensitivity.

Figure 18: Circuit for developing Underrange and Overrange signals from 7126 outputs.
*Values depend on clock frequency. See Figure 11, 12, 13.

Figure 17: 7126 used as a digital centigrade thermometer.

A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for 100.0 reading.

Figure 19：AC to DC Converter with 7126．Test is used as a common mode reference level to ensure compatibility with most op－amps．

APPLICATION NOTES

A016＇＇Selecting A／D Converters＇＂，by David Fullagar．
A017＇＇The Integrating A／D Converter＇，by Lee Evans．
A018＇Do＇s and Don＇ts of Applying A／D Converters＇，by Peter Bradshaw and Skip Osgood．
A019＇ $41 / 2$－Digit Panel Meter Demonstrator／ Instrumentation Boards＇＇，by Michael Dufort．
A023＂Low Cost Digital Panel Meter Designs＇＂，by David Fullagar and Michael Dufort．
A032＇Understanding the Auto－Zero and Common Mode Performance of the ICL7106／7／9 Family＇${ }^{\prime \prime}$ ，by Peter Bradshaw．
A046＂Building a Battery－Operated Auto Ranging DVM with the ICL7106＇＇，by Larry Goff．
A052＂Tips for Using Single－Chip 3½－Digit A／D Converters＇＇，by Dan Watson．

7126 EVALUATION KIT

After purchasing a sample of the 7126，the majority of users will want to build a simple voltmeter．The parts can then be evaluated against the data sheet specifications， and tried out in the intended application．

To facilitate evaluation of this unique circuit，Intersil is offering a kit which contains all the necessary components to build a $3^{1 / 2}$－digit panel meter．With the ICL7126EV／KIT and the small number of additional components required， an engineer or technician can have the system＇up and running＂＇in about half an hour．The kit contains a circuit board，a display（LCD），passive components，and miscella－ neous hardware．

GENERAL DESCRIPTION

The Intersil ICL7129 is a very high-performance $4 \frac{1}{1} 2$-digit analog-to-digital converter that directly drives a multiplexed liquid crystal display. This single-chip CMOS integrated circuit requires only a few passive components and a reference to operate. It is ideal for high-resolution hand-held digital multimeter applications.

The performance of the ICL7129 has not been equaled before in a single-chip A/D converter. The successive integration technique used in the ICL7129 results in accuracy better than 0.005% of full-scale and resolution down to $10 \mu \mathrm{~V} /$ count.

The ICL7129, drawing only 1 mA from a 9V battery, is well suited for battery powered instruments. Provision has been made for the detection and indication of a 'LOW/BATTERY" condition. Autoranging instruments can be made with the ICL7129 which provides overrange and underrange outputs and 10:1 range changing input. The ICL7129 instantly checks for continuity, giving both a visual indication and a logic level output which can enable an external audible transducer. These features and the high performance of the ICL7129 make it an extremely versatile and accurate instrument-on-a-chip.

FEATURES

- $\pm 19,999$ Count A/D Converter Accurate to ± 3 Count
- $10 \mu \mathrm{~V}$ Resolution On 200mV Scale
- 110dB CMRR
- Direct LCD Display Drive
- True Differential Input and Reference
- Low Power Consumption
- Decimal Point Drive Outputs
- Overrange and Underrange Outputs
- Low Battery Detection and Indication
- 10:1 Range Change Input

ORDERING INFORMATION

PART NUMBER	TEMPERATURE	PACKAGE
ICL 7129 CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic

Figure 1: Functional Diagram

CDO1010

Figure 2: Pin Configuration (outline dwg PL)

ABSOLUTE MAXIMUM RATINGS

Supply Voltages (V^{+}to V^{-}) \qquad

Reference Voltage (REF HI or REF LO) \qquad V^{+}to V^{-} Input Voltage (Note 1) (IN HI or IN LO) V^{+}to V^{-}
VIISP.
 DGND -0.3 V to V^{+}
Digital Input Pins
$1,2,19,20,21,22,27$, 37, 38, 39, 40 \qquad DGND to V^{+}

Power Dissipation (Note 2)
Plastic package \qquad .800 mW
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) $.300^{\circ} \mathrm{C}$

Note 1: Input voltages may exceed the supply voltages provided that input current is limited to $\pm 400 \mu \mathrm{~A}$. Currents above this value may result in invalid display readings but will not destroy the device if limited to $\pm 1 \mathrm{~mA}$.
Note 2: Dissipation ratings assume device is mounted with all leads soldered to printed circuit board.
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

V^{-}to $\mathrm{V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1.00 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CL}} \mathrm{K}=120 \mathrm{kHz}$, unless otherwise noted.

CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Zero Input Reading	$\begin{aligned} & V_{I N}=0 V \\ & 200 \mathrm{mV} \text { Scale } \end{aligned}$	-0000	0000	+ 0000	Counts
Zero Reading Drift	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \end{aligned}$		± 0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ratiometric Reading	$\begin{aligned} & V_{I N}=V_{\text {REF }}=1000 \mathrm{mV} \\ & \text { RANGE }=2 \mathrm{~V} \end{aligned}$	9996	9999	10000	Counts
Range Change Accuracy	$\mathrm{V}_{\mathrm{IN}}=0.10000 \mathrm{~V}$ on Low Range \div $V_{\text {IN }}=1.0000 \mathrm{~V}$ on High Range	0.9999	1.0000	1.0001	Ratio
Rollover Error	$-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }}=199 \mathrm{mV}$		1.5	3.0	Counts
Linearity Error	200 mV Scale		1.0		
input Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}}=0 \mathrm{~V} \\ & 200 \mathrm{mV} \text { Scale } \end{aligned}$		110		dB
Input Common-Mode Voltage Range	$\begin{aligned} & V_{I N}=0 V \\ & 200 \mathrm{mV} \text { Scale } \end{aligned}$		$\begin{aligned} & \left(V^{-}\right)+1.5 \\ & \left(V^{+}\right)-1.0 \end{aligned}$		V
Noise (p-p Value not Exceeding 95\% of Time)	$\begin{aligned} & V_{I N}=0 V \\ & 200 \mathrm{mV} \text { Scale } \end{aligned}$		14		$\mu \mathrm{V}$
Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \operatorname{Pin} 32,33$		1	10	pA
Scale Factor Tempco	$\begin{aligned} & V_{I N}=199 \mathrm{mV} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & \text { External } \mathrm{V}_{\text {REF }}=0 \mathrm{Opm} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		2	7	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
COMMON Voltage	V^{+}to Pin 28	2.8	3.2	3.5	V
COMMON Sink Current	Δ Common $=+0.1 \mathrm{~V}$		0.6		mA
COMMON Source Current	Δ Common $=-0.1 \mathrm{~V}$		10		$\mu \mathrm{A}$
DGND Voltage	$\begin{aligned} & V^{+} \text {to } \operatorname{Pin} 36 \\ & V^{+} \text {to } V^{-}=9 V \end{aligned}$	4.5	5.3	5.8	V
DGND Sink Current	$\Delta \mathrm{DGND}=+0.5 \mathrm{~V}$		1.2		mA
Supply Voltage Range	V^{+}to V^{-}(Note 1)	6	9	12	V
Supply Current Excluding COMMON Current	V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$		1.0	1.5	mA
Clock Frequency	(Note 1)		120	360	kHz
$V_{\text {DISP }}$ Resistance	$\mathrm{V}_{\text {DISP }}$ to V^{+}		50		$\mathrm{k} \Omega$
Low 'Battery Flag Activation Voltage	V^{+}to V^{-}	6.3	7.2	7.7	V
CONTINUITY Comparator Threshold Voltages	Vout Pin $27=\mathrm{HI}$ VOUT Pin $27=$ LO	100	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	400	mV
Pull-Down Current	Pins 37, 38, 39		2	10	$\mu \mathrm{A}$ $\mu \mathrm{A}$
'Weak Output" Current Sink/Source	Pin 20, 21 Sink/Source		3/3		$\mu \mathrm{A}$
	Pin 27 Sink/Source		3/9		
Pin 22 Source Current Pin 22 Sink Current			40 3		$\mu \mathrm{A}$

NOTES: 1. Device functionality is guaranteed at the stated Min/Max limits. However, accuracy can degrade under these conditions.

ICL7129
.

Figure 3: Typical Application

Table 1. Pin Descriptions

PIN	NAME	FUNCTION
1	OSC1	Input to first clock inverter.
2	OSC3	Output of second clock inverter.
3	ANNUNCIATOR DRIVE	Backplane squarewave output for driving annunciators.
4	$\mathrm{B}_{1}, \mathrm{C}_{1}, \mathrm{CONT}$	Output to display segments.
5	$\mathrm{A}_{1}, \mathrm{G}_{1}, \mathrm{D}_{1}$	Output to display segments.
6	F_{1}, E_{1}, D_{1}	Output to display segments.
7	$\begin{aligned} & \mathrm{B}_{2}, \mathrm{C}_{2}, \mathrm{LO} \\ & \text { BATT } \end{aligned}$	Output to display segments.
8	A_{2}, G_{2}, D_{2}	Output to display segments.
9	$F_{2}, E_{2}, D P_{2}$	Output to display segments.
10	B_{3}, C_{3}, MINUS	Output to display segments.
11	A_{3}, G_{3}, D_{3}	Output to dispiay segments.
12	$F_{3}, E_{3}, D P_{3}$	Output to display segments.
13	$\mathrm{B}_{4}, \mathrm{C}_{4}, \mathrm{BC}_{5}$	Output to display segments.
14	$\mathrm{A}_{4}, \mathrm{D}_{4}, \mathrm{G}_{4}$	Output to display segments.
15	F_{4}, E_{4}, D_{4}	Output to display segments.
16	BP3	Backplane \#3 output to display.
17	BP2	Backplane \#2 output to display.
18	BP1	Backplane \#1 output to display.
19	$V_{\text {DISP }}$	Negative rail for display drivers.
20	$\mathrm{DP}_{4} / \mathrm{OR}$	INPUT: When HI, turns on most significant decimal point. OUTPUT: Pulled Hi when result count exceeds $\pm 19,999$.

PIN	NAME	FUNCTION		
21	$\mathrm{DP}_{3} /$ UR	INPUT: Second most significant decimal point on when HI. OUTPUT: Pulled HI when result count is less than $\pm 1,000$.		
22	$\overline{\text { LATCH/HOLD }}$	INPUT: When floating, A/D converter operates in the free-run mode. When pulled HI, the last displayed reading is held. When pulled LO, the result counter contents are shown incrementing during the de-integrate phase of cycle. OUTPUT: Negative going edge occurs when the data latches are updated. Can be used for converter status signal.		
23	$\mathrm{~V}^{-}$	Negative power supply terminal.		
24	$\mathrm{~V}^{+}$	Positive power supply terminal, and positive rail for display drivers.		
25	INT IN 26	INT OUT		Input to integrator amplifier.
:---				
27				
CONTINUITY				
Output of integrator amplifier.				
INPUT: When LO, continuity flag on the display is off. When HI, continuity flag is on. OUTPUT: HI when voltage between inputs is less than + 200mV. LO when voltage between inputs is more than $+200 m V$.				

PIN	NAME	FUNCTION
28	COMMON	Sets common-mode voltage of 3.2V below V^{+}for DE, 10X, etc. Can be used as pre-regulator for external reference.
29	CREF $^{+}$	Positive side of external reference capacitor.
30	CREF $^{-}$	Negative side of external reference capacitor.
31	BUFFER	Output of buffer amplifier.
32	IN LO	Negative input voltage terminal.
33	IN HI	Positive input voltage terminal.
34	REF HI	Positive reference voltage input terminal.
35	REF LO	Negative reference voltage input terminal.
36	DGND	Ground reference for digital section.
37	RANGE	$3 \mu \mathrm{~A}$ pull-down for 200mV scale. Pulled HIGH externally for 2V scale.
38	DP 2	Internal 3 $\mu \mathrm{A}$ pull-down. When HI, decimal point 2 will be on.
39	DP1	Internal 3 $\mu \mathrm{A}$ pull-down. When HI, decimal point 1 will be on.
40	OSC2	Output of first clock inverter. Input of second clock inverter.

DETAILED DESCRIPTION

Intersil's ICL7129 is a uniquely designed single-chip A/D converter. It features a new 'successive integration' technique to achieve $10 \mu \mathrm{~V}$ resolution on a 200 mV full-scale range. To achieve this resolution a 10:1 improvement in noise performance over previous monolithic CMOS A/D
converters was accomplished. Previous integrating converters used an external capacitor to store an offset correction voltage. This technique worked well but greatly increased the equivalent noise bandwidth of the converter. The ICL7129 removes this source of error (noise) by not using an auto-zero capacitor. Offsets are cancelled using digital techniques instead. Savings in external parts cost are realized as well as improved noise performance and elimination of a source of electromagnetic and electrostatic pick-up.

The overall functional diagram of the ICL7129 is shown in Figure 1. The heart of this A/D converter is the sequence counter/decoder which drives the control logic and keeps track of the many separate phases required for each conversion cycle. The sequence counter is constantly running and is a separate counter from the up/down results counter which is activated only when the integrator is deintegrating. At the end of a conversion the data remaining in the results counter is latched, decoded and multiplexed to the liquid crystal display.

The analog section block diagram shown in Figure 4 includes all of the analog switches used to configure the voltage sources and amplifiers in the different phases of the cycle. The input and reference switching schemes are very similar to those in other less accurate integrating A/D converters. There are 5 basic configurations used in the full conversion cycle. Figure 5 illustrates a typical waveform on the integiator output. INT, INT ${ }_{1}$, and INT_{2} all refer to the signal integrate phase where the input voltage is applied to the integrator amplifier via the buffer amplifier. In this phase, the integrator ramps over a fixed period of time in a direction opposite to the polarity of the input voltage.

DS027911
Figure 4: ICL7129 Analog Block Diagram

Figure 5: Integrator Waveform for Negative Input Voltage Showing Successive Integration Phases and Residue Voltage

Figure 6: Biasing Structure for COMMON and DGND
$D E_{1}, D E_{2}$, and $D E_{3}$ are the de-integrate phases where the reference capacitor is switched in series with the buffer amplifier and the integrator ramps back down to the level it started from before integrating. However, since the deintegrate phase can terminate only at a clock pulse transition, there is always a small overshoot of the integrator past the starting point. The ICL7129 amplifies this overshoot by 10 and $D E_{2}$ begins. Similarly $D E_{2}$'s overshoot is amplified by 10 and $D E_{3}$ begins. At the end of $D E_{3}$ the results counter holds a number with $51 / 2$ digits of resolution. This was obtained by feeding counts into the results counter at the $3^{1 / 2}$ digit level during $D E_{1}$, into the $41 / 2$ digit level during $D E_{2}$ and the $51 / 2$ digit level for $D E_{3}$. The effects of offset in the buffer, integrator, and comparator can now be cancelled by repeating this entire sequence with the inputs shorted and subtracting the results from the original reading. For this phase INT_{2} switch is closed to give the same common-mode voltage as the measurement cycle. This assures excellent CMRR. At the end of the cycle the data in the up/down results counter is accurate to 0.005% of full-scale and is sent to the display driver for decoding and multiplexing.

COMMON, DGND, AND 'LOW BATTERY'

The COMMON and DGND (Digital GrouND) outputs of the ICL7129 are generated from internal zener diodes
(Figure 6). COMMON is included primarily to set the common-mode voltage for battery operation or for any system where the input signals float with respect to the power supplies. It also functions as a pre-regulator for an external precision reference voltage source. The voltage between DGND and V^{+}is the supply voltage for the logic section of the ICL7129 including the display multiplexer and drivers. Both COMMON and DGND are capable of sinking current from external loads, but caution should be taken to ensure that these outputs are not overloaded. Figure 7 shows the connection of external logic circuitry to the ICL7129. This connection will work providing that the supply current requirements of the logic do not exceed the current sink capability of the DGND pin. If more supply current is required, the buffer in Figure 8 can be used to keep the loading on DGND to a minimum. COMMON can source approximately $12 \mu \mathrm{~A}$ while DGND has no source capability.

The 'LOW BATTERY"' annunciator of the display is turned on when the voltage between V^{+}and V^{-}drops below 7.2 V typically. The exact point at which this occurs is determined by the 6.3 V zener diode and the threshold voltage of the n-channel transistor connected to the V^{-}rail in Figure 6. As the supply voltage decreases, the n-channel transistor connected to the V-rail eventually turns off and
the＇LOW BATTERY＇input to the logic section is pulled HIGH，turning on the＂LOW BATTERY＂annunciator．

I／O PORTS

Four pins of the ICL7129 can be used as either inputs or outputs．The specific pin numbers and functions are de－ scribed in the Pin Description table（Table 1）．If the output function of the pin is not desired in an application it can easily be overridden by connecting the pin to $\mathrm{V}^{+}(\mathrm{HI})$ or DGND（LO）．This connection will not damage the device because the output impedance of these pins is quite high．A simplified schematic of these input／output pins is shown in Figure 9．Since there is approximately $500 \mathrm{k} \Omega$ in series with
the output driver，the pin（when used as an output）can only drive very light loads such as 4000 series，74CXX type CMOS logic，or other high input impedance devices．The output drive capability of these four pins is limited to $3 \mu \mathrm{~A}$ ， nominally，and the input switching threshold is typically DGND ${ }^{+} 2 \mathrm{~V}$ ．

LATCH／HOLD，OVERRANGE，AND UNDERRANGE TIMING

The $\overline{\mathrm{LATCH}} / \mathrm{HOLD}$ output（pin 22）will be pulled low during the last 100 clock cycles of each full conversion cycle．During this time the final data from the ICL7129 counter is latched and transferred to the display decoder and multiplexer．The conversion cycle and $\overline{\text { LATCH／HOLD }}$ timing are directly related to the clock frequency．A full conversion cycle takes 30,000 clock cycles which is equiva－ lent to 60,000 oscillator cycles．OverRange（OR pin 20）an UnderRange（UR pin 21）outputs are latched on the falling edge of $\overline{L A T C H} / H O L D$ and remain in that state until the end of the next conversion cycle．In addition，digits 1 through 4 are blanked during overrange．All three of these pins are ＇weak outputs＇and can be overridden with external drivers or pull－up resistors to enable their input functions as described in the Pin Description table．

INSTANT CONTINUITY

A comparator with a built－in 200 mV offset is connected directly between INPUT HI and INPUT LO of the ICL7129 （Figure 10）．The CONTINUITY output（pin 27）will be pulled high whenever the voltage between the analog inputs is less than 200 mV ．This will also turn on the＂CONTINUITY＂＇ annunciator on the display．The CONTINUITY output may be used to enable an external alarm or buzzer，thereby giving the ICL7129 an audible continuity checking capabili－ ty．Since the CONTINUITY output is one of the four＇weak outputs＇of the ICL7129，the＇continuity＂annunciator on the display can be driven by an external source if desired． The continuity function can be overridden with a pull－down resistor connected between CONTINUITY pin and DGND （pin 36）．

BD004001
Figure 10: 'Instant Continuity' Comparator and Output Structure
LOW BATTERY CONFINUTY

BACKPLANE CONNECTIONS
LOW BATFEAK CONFFINHTY

F_{4}, E_{4}, D_{4}

A_{4}, G_{4}, D_{4}
$\mathrm{B}_{4}, \mathrm{C}_{4}, \mathrm{BC}_{5}$
$\mathrm{F}_{3}, \mathrm{E}_{3}, \mathrm{DP}_{3}$
\qquad
A_{3}, G_{3}, D_{3}
B_{3}, C_{3}, minus

Figure 11: Triplexed Liquid Crystal Display Layout for ICL7129

Figure 12: Typical Backplane and Annunciator Drive Waveforms

LD00510I
Figure 13: Multimeter Example Showing Use of Annunciator Drive Output

DISPLAY CONFIGURATION

The ICL7129 is designed to drive a triplexed liquid crystal display. This type of display has three backplanes and is driven in a multiplexed format similar to the ICM7231 display driver family. The specific display format is shown in Figure 11. Notice that the polarity sign, decimal points, 'LOW BATTERY', and 'CONTINUITY'' annunciators are directly driven by the ICL7129. The individual segments and annunciators are addressed in a manner similar to rowcolumn addressing. Each backplane (row) is connected to one-third of the total number of segments. BP1 has all F, A, and B segments of the four least significant digits. BP2 has all of the C, E, and G segments. BP3 has all D segments, decimal points, and annunciators. The segment lines (columns) are connected in groups of three bringing all segments of the display out on just 12 lines.

ANNUNCIATOR DRIVE

A special display driver output is provided on the ICL7129 which is intended to drive various kinds of annunciators on custom multiplexed liquid crystal displays. The ANNUNCIATOR DRIVE output (pin 3) is a squarewave signal running at the backplane frequency, approximately 100 Hz . This signal swings from $\mathrm{V}_{\text {DISP }}$ to V^{+}and is in sync with the three backplane outputs BP1, BP2, and BP3. Figure 12 shows these four outputs on the same time and voltage scales.

Any annunciator associated with any of the three backplanes can be turned on simply by connecting it to the ANNUNCIATOR DRIVE pin. To turn an annunciator off connect it to its backplane. An example of a display and annunciator drive scheme is shown in Figure 13.

Figure 14: Two Methods for Temperature Compensating the Liquid Crystal Display

DISPLAY TEMPERATURE COMPENSATION

For most applications an adequate display can be obtained by connecting VDISP (pin 19) to DGND (pin 36). In applications where a wide temperature range is encountered, the voltage drive levels for some triplexed liquid crystal displays may need to vary with temperature in order to maintain good display contrast and viewing angle. The amount of temperature compensation will depend upon the type of liquid crystal used. Display manufacturers can supply the temperature compensation requirements for their displays. Figure 14 shows two circuits that can be adjusted to give a temperature compensation of $\approx+10 \mathrm{mV} /$ ${ }^{\circ} \mathrm{C}$ between V^{+}and $\mathrm{V}_{\text {DISP. }}$. The diode between DGND and $\mathrm{V}_{\text {DISP }}$ should have a low turn-on voltage to assure that no forward current is injected into the chip if $V_{\text {DISP }}$ is more negative than DGND.

COMPONENT SELECTION

There are only three passive components around the ICL7129 that need special consideration in selection. They are the reference capacitor, integrator resistor, and integrator capacitor. There is no auto-zero capacitor like that found in earlier integrating A/D converter designs.

The integrating resistor is selected to be high enough to assure good current linearity from the buffer amplifier and integrator and low enough that PC board leakage is not a problem. A value of $150 \mathrm{k} \Omega$ should be optimum for most applications. The integrator capacitor is selected to give an optimum integrator swing at full-scale. A large integrator swing will reduce the effect of noise sources in the comparator but will affect rollover error if the swing gets too close to the positive rail ($\approx 0.7 \mathrm{~V}$). This gives an optimum swing of $\approx 2.5 \mathrm{~V}$ at full-scale. For a $150 \mathrm{k} \Omega$ integrating resistor and 2 conversions per second the value is $0.10 \mu \mathrm{~F}$.

For different conversion rates, the value will change in inverse proportion. A second requirement for good linearity is that the capacitor have low dielectric absorption. Polypropylene caps give good performance at a reasonable price. Finally the foil side of the cap should be connected to the integrator output to shield against pick-up.

The only requirement for the reference cap is that it be low leakage. In order to reduce the effects of stray capacitance, a $1.0 \mu \mathrm{~F}$ value is recommended.

CLOCK OSCILLATOR

The ICL7129 achieves its digital range changing by integrating the input signal for 1000 clock pulses (2,000 oscillator cycles) on the 2 V scale and 10,000 clock pulses on the 200 mV scale. To achieve complete rejection of 60 Hz on both scales, an oscillator frequency of 120 kHz is required, giving two conversions per second.

In low resolution applications, where the converter uses only $31 / 2$ digits and $100 \mu \mathrm{~V}$ resolution, an R-C type oscillator is adequate. In this application a C of 51 pF is recommended and the resistor value selected from fosc $=0.45 /$ RC. However, when the converter is used to its full potential ($4 \frac{1}{1} 2$ digits and $10 \mu \mathrm{~V}$ resolution) a crystal oscillator is recommended to prevent the noise from increasing as the input signal is increased due to frequency jitter of the R-C oscillator. Both R-C and crystal oscillator circuits are shown in Figure 15.

Figure 15: RC and Crystal Oscillator Circuits

POWERING THE ICL7129

The ICL7129 may be operated as a battery powered hand-held instrument or integrated into larger systems that have more sophisticated power supplies. Figures 16, 17, and 18 show various powering modes that may be used with the ICL7129.

The standard supply connection using a 9 V battery is shown in Figure 3.

The power connection for systems with +5 V and -5 V supplies available is shown in Figure 16. Notice that measurements are with respect to ground. COMMON is not connected to INPUT LO but is used only as a pre-regulator for the external voltage reference.

It is important to notice that in Figure 16, digital ground of the ICL7129 (DGND pin 36) is not directly connected to power supply ground. DGND is set internally to approximately 5 V less than the V^{+}terminal and is not intended to be used as a power input pin. It may be used as the ground reference for external logic, as shown in Figure 7 and 8. In Figure 7, DGND is used as the negative supply rail for external logic provided that the supply current for the external logic does not cause excessive loading on DGND. The DGND output can be buffered as shown in Figure 8. Here, the logic supply current is shunted away from the ICL7129 keeping the load on DGND low. This treatment of the DGND output is necessary to insure compatibility when the external logic is used to interface directly with the logic inputs and outputs of the ICL7129.
Figure 16: Powering the ICL7129 from +5V

When a battery voltage between 3.8 V and 7 V is desired for operation, a voltage doubling circuit should be used to bring the voltage on the ICL7129 up to a level within the power supply voltage range. This operating mode is shown in Figure 17.

TC02150।
Figure 17: Powering the ICL7129 from a 3.8 V to 6 V Battery

Again measurements are made with respect to COMMON since the entire system is floating. Voltage doubling is accomplished by using an ICL7660 CMOS voltage converter and two inexpensive electrolytic capacitors. The same principle applies in Figure 18 where the ICL7129 is being used in a system with only a single +5 V power supply. Here measurements are made with respect to power supply ground.

A single polarity power supply can be used to power the ICL7129 in applications where battery operation is not appropriate or convenient only if the power supply is isolated from system ground. Measurements must be made with respect to COMMON or some other voltage within its input common-mode range.

VOLTAGE REFERENCES

The COMMON output of the ICL7129 has a temperature coefficient of $\pm 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typically. This voltage is only suitable as a reference voltage for applications where ambient temperature variations are expected to be minimal. When the ICL7129 is used in most environments, other voltage references should be considered. The diagram in Figures 3 and 18 show the ICL8069 1.2V band-gap voltage source used as the reference for the ICL7129, and the COMMON output as its pre-regulator. The reference voltage for the ICL7129 is set to 1.000 V for both 2 V and 200 mV full-scale operation.

DS013601
Figure 18: Powering the ICL7129 from a Single Polarity Power Supply

ICL7134

14-Bit Multiplying μ P-Compatible D/A Converter

GENERAL DESCRIPTION

The ICL7134 combines a four-quadrant multiplying DAC using thin film resistor and CMOS circuitry with an on-chip PROM-controlled correction circuit to achieve true 14-bit linearity without laser trimming.

Microprocessor bus interfacing is eased by standard memory WRite cycle timing and control signal use. Two input buffer registers are separately loaded with the 8 least significant bits (LS register) and the 6 most significant bits (MS register). Their contents are then transferred to the 14bit DAC register, which controls the output switches. The DAC register can also be loaded directly from the data inputs, in which case the registers are transparent.

The ICL7134 is supplied in two versions. The ICL7134U is programmed for unipolar operation while the ICL7134B is programmed for bipolar applications. The VREF input to the most significant bit of the DAC is separated from the reference input to the remainder of the ladder. For unipolar use, the two reference inputs are tied together, while for bipolar operation, the polarity of the MSB reference is reversed, giving the DAC a true 2's complement input transfer function. Two resistors which facilitate the reference inversion are included on the chip, so only an external op-amp is needed. The PROM is coded to correct for errors in these resistors as well as the inversion of the MSB.

FEATURES

- 14-Bit Linearity (0.003\% FSR)
- No Gain Adjustment Necessary
- Microprocessor-Compatible With Double Buffered Inputs
- Bipolar Application Requires No Extra Adjustments or External Resistors
- Low Linearity and Gain Temperature Coefficients
- Low Power Dissipation
- Full Four-Quadrant Multiplication

CD01020
Figure 1: Pin Configuration (Outline dwg JI)

ORDERING INFORMATION

NON-LIMEARITY	TEMPERATURE RANGE		
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Bipolar Versions			
$\left.\begin{array}{l} \hline 0.01 \% \text { (12-bit) } \\ 0.006 \% \text { (13-bit) } \\ 0.003 \% \\ \hline \end{array} 14 \text {-bit) }\right)$	ICL7134BJCJI ICL7134BKCJI ICL7134BLCJI	ICL.7134BJIJI ICL7134BKIJI ICL7134BLIJI	ICL7134BJMJI ICL7134BKMJI ICL7134BLMJI
Unipolar Versions			
$\begin{aligned} & 0.01 \% \text { (12-bit) } \\ & 0.006 \% \text { (13-bit) } \\ & 0.003 \% \text { (14-bit) } \end{aligned}$	ICL7134UJCJI ICL7134UKCJI ICL7134ULCJI	ICL7134UJIJJ ICL7134UKIJI ICL7134ULIJI	ICL7134UJMJI ICL7134UKMJI ICL7134ULMJI

PACKAGE: 28-pin CERDIP only

ICL7134

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (V^{+}to DGND) $\ldots-0.3 \mathrm{~V}$ to 7.5 V
$V_{\text {RFL }}, V_{\text {RFM }}, R_{\text {INV, }}$ RFB to DGND...................... $\pm 15 \mathrm{~V}$

Current in AGNDS, AGNDF 25 mA
$\mathrm{An}, \mathrm{Dn}, \overline{\mathrm{WR}}, \overline{\mathrm{CS}}, \mathrm{PROG} \ldots$.
Operating Temperature Range
ICL7134XXC $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL7134XXI $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICL7134XXM....................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (Note 2)

\qquad 500 mWDerate Linearly Above $70^{\circ} \mathrm{C}$ @ $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec)$300^{\circ} \mathrm{C}$

Note 1: All voltages with respect to DGND.
Note 2: Assumes all leads soldered or welded to printed circuit board.
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 2: ICL7134 Functional Diagram

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified.)

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
			MIN	TYP	MAX			
	Resolution				14			Bits
	Non-Linearity	J	Test Figure 4 (Notes 1 and 2)			0.012	\% FSR	
		K				0.006	\% FSR	
		L				0.003	\% FSR	
	Non-Linearity Temperature Coefficient (Note 3)		Operating Temperature Range		1	2	ppm/ ${ }^{\circ} \mathrm{C}$	

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER		TEST CONDITIONS		IMITS		UNIT	
			MIN	TYP	MAX			
	Gain Error	J		Test Figure 4 (Notes 1 and 2)			0.024	\% FSR
		K				0.012	\% FSR	
		L				0.006	\% FSR	
	Gain Error Temperature Coefficient (Note 3)				2	8	ppm/ ${ }^{\circ} \mathrm{C}$	
	Monotonicity (Note 3)	J		12			Bits	
		K		13			Bits	
		L		14			Bits	
lolk	IOUT Leakage Current		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			10	nA	
			Operating Temperature Range		50			
PSRR	Power Supply Rejection		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \Delta \mathrm{V}^{+}= \pm 10 \%$		10	100	ppm/V	
			Operating Temperature Range			150		
	Output Current Settling Time				1		$\mu \mathrm{s}$	
	Feedthrough Error	ICL7134U	$\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}, 2 \mathrm{kHz}$ Sinewave		250		$\mu \vee p$-p	
		ICL7134B			500			
$\mathrm{Z}_{\text {REF }}$	Reference Input Resistance		$\mathrm{V}_{\text {RFL }}=\mathrm{V}_{\text {RFM }}$ (Unipolar Mode)	4.0		10	$\mathrm{k} \Omega$	
COUT	Output Capacitance		DAC Register = All 0's		160		pF	
			DAC Register = All 1's		235			
	Output Noise		Equivalent Johnson Res.		7		$\mathrm{k} \Omega$	
$\mathrm{V}_{\text {INL }}$	Low State Input		Operating Temperature Range			0.8	V	
$\mathrm{V}_{\text {INH }}$	High State Input		Operating Temperature Range	2.4			V	
1 lin	Logic Input Current		$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}^{+}$			1.0	$\mu \mathrm{A}$	
$\mathrm{Clin}^{\text {lin }}$	Logic Input Capacitance		(Note 3)		15		pF	
V^{+}	Supply Voltage Range (Note 4)		Functional Operation	3.5		6.0	V	
1^{+}	Supply Current		(Excluding Ladder)		1.0	2.5	mA	
	Long Term Stability		1000 Hours, $+125^{\circ} \mathrm{C}$ (Note 3)		10		ppm/month	

NOTES: 1. Full-Scale Range (FSR) is 10 V for unipolar mode, $20 \mathrm{~V}(\pm 10 \mathrm{~V})$ for bipolar mode.
2. Using internal feedback and reference inverting resistors.
3. Guaranteed by design, not production tested.
4. Full scale tested to 0.040% FSR.

AC CHARACTERISTICS $\left(\mathrm{V}^{+}=5 \mathrm{~V}\right.$, see Timing Diagram $)$

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$t_{\text {AWs }}$	Address-W/Rite Set-Up Time (Min)				100	ns
$t_{\text {AWh }}$	Address-WRite Hold Time (Min)	(Note 3)			0	
tcWs	$\overline{\text { Cuip }}$ Select-WRite Set-Up Time (Min)	(Note 3)			0	
tewh	$\overline{\text { Chip }}$ Select- $\bar{W} R \mathrm{R}$ ite Hold Time (Min)	(Note 3)			0	
tWR	$\overline{\text { WRite Pulse Width Low (Min) }}$				200	
tows	Data-WRite Set-Up Time (Min)				200	
tDWh	Data-WRite Hold Time (Min)	(Note 3)			0	

DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a straight line function between endpoints. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire $V_{\text {REF }}$ range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of $\left(2^{-n}\right)\left(V_{R E F}\right)$. A bipolar converter of n bits has a resolution of $\left[2^{-(n-1)}\right]$ [$V_{\text {REF }}$]. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to full-scale.
GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from $V_{\text {REF }}$ to output with all switches OFF.

Table 1: Pin Descriptions

PIN	SYMBOL	DESCRIPTION
17	PROG	Used for programming only. Tie to +5 V for normal operation.
18	$V_{\text {RFL }}$	$V_{\text {REF }}$ for lower bits.
19	RINV	Summing node for reference inverting amplifier.
20	$V_{\text {RFM }}$	$V_{\text {REF }}$ for MSB only (bipolar).
21	RFB	Feedback resistor for voltage output applications.
22	DGND	Digital GrouND return.
23	AGNDF	Analog GrouND force lines. Use to carry current from internal Analog GrouND connections. Tied internally to $A G N D_{S}$.
24	$\mathrm{AGND}_{\text {S }}$	Analog GrouND sense line. Reference point for external circuitry. Pin should carry minimal current; tied internally to AGND $_{F}$.
25	IOUT	Current output pin.
26	V^{+}	Positive voltage.
27	A_{1}	Address 1
28	A_{0}	Address 0 Control register

Figure 4: Non-Linearity Test Circuit

Figure 5: Power Supply Rejection Test Circuit

TC021801
Figure 6: Feedthrough Error Test Circuit

Figure 7: Output Current Settling Time Test Circuit

DETAILED DESCRIPTION

The ICL7134 consists of a 14-bit primary DAC, two PROM controlled correction DACs, input buffer registers, and microprocessor interface logic (Figure 2). The 14-bit primary DAC is an R-2R thin film resistor ladder with N channel MOS SPDT current steering switches. Precise balancing of the switch resistances, and all other resistances in the ladder, results in excellent temperature stability.

True 14 -bit linearity is achieved by programming a floating polysilicon gate PROM array which controls two correction DAC circuits. A 6 -bit gain correction DAC, or GDAC, diverts up to 2% of the feedback resistor's current to Analog GounND and reduces the gain error to less than 1 LSB, or 0.006%. The 5 most significant outputs of the DAC register address a 31 -word PROM array that controls a 12bit linearity correction DAC, or C-DAC. For every combination of the primary DAC's 5 most significant bits, a different C-DAC code is selected. This allows correction of superposition errors, caused by bit interaction on the primary resistor ladder's current output bus and by voltage nonlinearity in the feedback resistor. Superposition errors cannot be corrected by any method which corrects individual bits only, such as laser trimming. Since the PROM programming occurs in packaged form, it corrects for resistor shifts caused by the thermal stresses of packaging. These packaging shifts limit the accuracy that can be achieved using wafer level correction methods such as laser trimming, which has also been found to degrade the time stability of thin film resistors at the 14 -bit level.

Analog Section

The ICL7134 inherently provides both unipolar and bipolar operation. The bipolar application circuit (Figure 8) requires one additional op-amp but no external resistors. The two on-chip resistors, RINV1 and RINV2, together with the op-amp, form a voltage inverter which drives the MSB reference terminal, $\mathrm{V}_{\mathrm{RFM}}$, to $-\mathrm{V}_{\text {REF }}$, where $\mathrm{V}_{\text {REF }}$ is the voltage applied at the less significant bits' reference terminal, VRFL. This reverses the weight of the MSB, and gives the DAC a 2's complement transfer function. The op-amp and reference connection to $\mathrm{V}_{\text {RFM }}$ and $\mathrm{V}_{\text {RFL }}$ can be reversed, without affecting linearity, but a small gain error will be introduced. For unipolar operation the VRFM and $\mathrm{V}_{\text {RFL }}$ terminals are both tied to $\mathrm{V}_{\text {REF }}$, and the RINV pin is left unconnected.

Since the PROM correction codes required are different for bipolar and unipolar operation, the ICL7134 is available in two different versions; the ICL7134U, which is corrected for unipolar operation, and the ICL7134B, which is programmed for bipolar application. The feedback resistance is also different in the two versions, and is switched under PROM control from 'R' in the unipolar device to '2R' in the
bipolar part. These feedback resistors have a dummy (always ON) switch in series to compensate for the effect of the ladder switches. This greatly improves the gain temperature coefficient and the power supply rejection of the device.

Digital Section

Two levels of input buffer registers allow loading of data from an 8 -bit or 16 -bit data bus. The A_{0} and A_{1} pins select one of four operations: 1) load the LS-buffer register with the data at inputs D_{0} to D_{7}; 2) load the MS-buffer register with the data at inputs D_{8} to $D_{13} ; 3$) load the DAC register with the contents of the MS and LS-buffer registers and 4) load the DAC register directly from the data input pins (see Table 2). The $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ pins must be low to allow data transfers to occur. When direct loading is selected ($\overline{\mathrm{CS}}, \overline{\mathrm{WR}}$, A_{0} and A_{1} low) the registers are transparent, and the data input pins control the DAC output directly. The other modes of operation allow double buffered loading of the DAC from an 8 -bit bus.

These input data pins are also used to program the PROM under control of the PROG pin. This is done in manufacturing, and for normal read-only use the PROG pin should be tied to $\mathrm{V}^{+}(+5 \mathrm{~V})$.

Table 2: Data Loading Controls

CONTROL I/P				ICL7134 OPERATION
A_{0}	A_{1}	CS	$\overline{W R}$	
x	X	X	1	No operation, device not selected.
X	X	1	X	
0	0	0	0	Load all registers from data bus.
0	1	0	0	Load LS register from data bus.
1	0	0	0	Load MS register from data bus.
1	1	0	0	Load DAC register from MS and LS register.

Note: Data is latched on LO-HI transition of either $\overline{\mathrm{WR}}$ or $\overline{\mathrm{CS}}$.

Figure 8: Bipolar Operation, with Inverted VREF to MSB

APPLICATIONS

General Recommendations GROUND LOOPS

Careful consideration must be given to ground loops in any 14 -bit accuracy system. The current into the analog ground point inside the chip varies significantly with the input code value, and the inevitable resistances between this point and any external connection point can lead to significant voltage drop errors. For this reason, two separate leads are brought out from this point on the IC, the $A G N D_{F}$ and $A G N D_{S}$ pins. The varying current should be absorbed through the AGNDF pin, and the AGNDS pin will then accurately reflect the voltage on the internal current summing point, as shown in Figure 9. Thus output signals should be referenced to the sense pin AGNDs, as shown in the various application circuits.

OPERATIONAL AMPLIFIER SELECTION

To maintain static accuracy, the lOUT potential must be exactly equal to the AGNDS potential. Thus output amplifier selection is critical, in particular low input bias current (less than 2 nA), low offset voltage drift (depending on the temperature range) and low offset voltage (less than $25 \mu \mathrm{~V}$) are advisable if the highest accuracy is needed. Maintaining a low input offset over a 0 V to 10 V range also requires that the output amplifier has a high open loop gain (AvOL $>400 \mathrm{k}$ for effective input offset less than $25 \mu \mathrm{~V}$).

The reference inverting amplifier used in the bipolar mode circuit must also be selected carefully. If 14-bit accuracy is desired without adjustment, low input bias current (less than 1nA), low offset voltage (less than $50 \mu \mathrm{~V}$), and high gain (greater than 400k) are recommended. If a fixed reference voltage is used, the gain requirement can be relaxed. For highest accuracy (better than 13 bits), an additional op-amp may be needed to correct for IR drop on the Analog GrouND line (op-amp A_{2} in Figure 11). This opamp should be selected for low bias current (less than 2nA) and low offset voltage (less than $50 \mu \mathrm{~V}$).

The op-amp requirements can be readily met by use of an ICL7650 chopper stabilized device. For faster settling time, an HA26XX can be used with an ICL7650 providing automatic offset null (see A053 for details).

The output amplifier's non-inverting input should be tied directly to AGNDs. A bias current compensation resistor is of limited use since the output impedance at the summing node depends on the code being converted in an unpredictable way. If gain adjustment is required, low tempco (approximately $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) resistors or trim-pots should be selected.

POWER SUPPLIES

The V^{+}(pin 25) power supply should have a low noise level, and no transients exceeding 7 volts. Note that the absolute maximum digital input voltage allowed is V^{+}, which therefore must be applied before digital inputs are allowed to go high. Unused digital inputs must be connected to GND or V^{+}for proper operation.

Unipolar Binary Operation (ICL7134U)

The circuit configuration for unipolar mode operation (ICL7134U) is shown in Figure 10. With positive and negative $V_{\text {REF }}$ values the circuit is capable of two-quadrant multiplication. The 'digital input code/analog output value"' table for unipolar mode is given in Table 3. The Schottky diode (HP5082-2811 or equivalent) protects lOUT from negative excursions which could damage the device, and is only necessary with certain high speed amplifiers. For applications where the output reference ground point is established somewhere other than at the DAC, the circuit of Figure 10 can be used. Here, op-amp A_{2}. removes the slight error due to IR voltage drop between the internal Analog GrouND node and the external ground connection. For 13bit or lower accuracy, omit A_{2} and connect $A G N D_{F}$ and AGNDs directly to ground through as low a resistance as possible.

DS013901
Figure 10: Unipolar Binary, Two-Quadrant Multiplying Circuit

DS01400|
Figure 11: Unipolar Binary Operation with Forced Ground

Table 3: Code Table - Unipolar Binary Operation

| DIGITAL INPUT | | | | | | | ANALOG OUTPUT | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | $-V_{R E F}\left(1-1 / 2^{14}\right)$ |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $-V_{R E F}\left(1 / 2+1 / 2^{14}\right)$ | |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | $-V_{R E F} / 2$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $-V_{R E F}\left(1 / 2-1 / 2^{14}\right)$ |

ZERO OFFSET ADJUSTMENT

1. Connect all data inputs and $\overline{W R}, \overline{C S}, A_{0}$ and A_{1} to DGND.
2. Adjust offset zero-adjust trim-pot of the operational amplifier A_{2}, if used, for a maximum of $0 \mathrm{~V} \pm 50 \mu \mathrm{~V}$ at AGNDs.
3. Adjust the offset zero-adjust trim-pot of the output op-amp, A_{1}, for a maximum of $0 \mathrm{~V} \pm 50 \mu \mathrm{~V}$ at $\mathrm{V}_{\text {OUT }}$.

GAIN ADJUSTMENT (OPTIONAL)

1. Connect all data inputs to V^{+}, connect $\overline{W R}, \overline{C S}, A_{0}$ and A_{1} to DGND.
2. Monitor $V_{\text {OUT }}$ for $a-V_{\text {REF }}\left(1-1 / 2^{14}\right)$ reading.
3. To decrease $V_{\text {OUT }}$, connect a series resistor of 100Ω or less between the reference voltage and the $V_{\text {RFM }}$ and $V_{\text {RFL }}$ terminals (pins 20 and 18).
4. To increase VOUT, connect a series resistor of 100Ω or less between A_{1} output and the RFB terminal (pin 21).

DS014101
Figure 12: Bipolar (2's Complement), Four-Quadrant Multiplying Circuit

Bipolar (2's Complement) Operation (ICL7134B)

The circuit configuration for bipolar mode operation (ICL7134B) is shown in Figure 12. Using 2 's complement digital input codes and positive and negative reference voltage values, four-quadrant multiplication is obtained. The 'digital input code/analog output value" table for bipolar mode is given in Table 4. Amplifier A_{3}, together with internal resistors $R_{I N V 1}$ and $R_{I N V 2}$, forms a simple voltage inverter circuit. The MSB ladder leg sees a reference input of approximately $-V_{\text {REF }}$, so the MSB's weight is reversed from the polarity of the other bits. In addition, the ICL7134B's feedback resistance is switched to 2R under PROM control, so that the bipolar output range is $+V_{\text {REF }}$ to $-V_{\text {REF }}\left(1-1 / 2^{13}\right)$. Again, the grounding arrangement of Figure 11 can be used, if necessary.

Table 4: Code Table - Bipolar
 (2's Complement) Operation

DIGITAL INPUT	ANALOG OUTPUT
	$-V_{\text {REF }}\left(1-1 / 2^{13}\right)$
00000000000001	$-V_{\text {REF }}\left(1 / 2^{13}\right)$
00000000000000	0
	$V_{\text {REF }}\left(1 / 2^{13}\right)$
10000000000001	$V_{\text {REF }}\left(1-1 / 2^{13}\right)$
10000000000000	$V_{\text {REF }}$

OFFSET ADJUSTMENT

1. Connect all data inputs and $\overline{W R}, \overline{C S}, A_{0}$ and A_{1} to DGND.
2. Adjust the offset zero-adjust trim-pot of the operational amplifier A_{2}, if used, for a maximum of OV $\pm 50 \mu \mathrm{~V}$ at AGND .
3. Set data to $00000 \ldots .00$. Adjust the offset zeroadjust trim-pot of the output op-amp A_{1}, for a maximum of $0 \mathrm{~V} \pm 50 \mu \mathrm{~V}$ at V OUT.
4. Connect D_{13} (MSB) data input to V^{+}.
5. Adjust the offset zero-adjust trim-pot of op-amp A_{3} for a maximum of $0 \mathrm{~V} \pm 50 \mu \mathrm{~V}$ at the RINV terminal (pin 19).

GAIN ADJUSTMENT (OPTIONAL)

1. Connect $\overline{W R}, \overline{C S}, A_{0}$ and A_{1} to DGND.
2. Connect $D_{0}, D_{1} \ldots D_{12}$ to $V^{+}, D_{13}(M S B)$ to DGND.
3. Monitor VOUT for $a-V_{\text {REF }}\left(1-1 / 2^{13}\right)$ reading.
4. To increase VOUT, connect a series resistor of 200Ω or less between the A_{1} output and the $R_{F B}$ terminal (pin 21).
5. To decrease VOUT, connect a series resistor of 100Ω or less between the reference voltage and the $V_{\text {RFL }}$ terminal (pin 18).

Processor Interfacing

The ease of interfacing to a processor can be seen from Figure 14, which shows the ICL7134 connected to an 8035 or any other processor such as an 8049. The data bus feeds into both register inputs; three port lines, in combination with the $\overline{W R}$ line, control the byte-wide loading into these registers and then the DAC register. A complete DAC set-up requires 4 write instructions to the port, to set up the address and $\overline{\mathrm{CS}}$ lines, and 3 external data transfers, one a dummy for the final transfer to the DAC register.

LD00530
Figure 13：ICL7134 Interface to 8048 Sysiem
Figure 13：ICL7134 Interface to 8048 Sysiem

Figure 14：Interface to $\mathbf{8 0 8 0}$ System

Figure 15： 8085 System Interface

A similar arrangement can be used with an 8080A， 8228 and 8224 chip set．Figure 14 shows the circuit，which can be arranged as a memory－mapped interface（using $\overline{\mathrm{MEMW}}$ ） or as an I／O－mapped interface（using I／O WRITE）．See A020 and R005 for discussions of the relative merits of memory－mapped versus I／O－mapped interfacing，as well as some other ideas on interfacing with 8080 processors．The 8085 processor has a very similar interface，except that the control lines available are slightly different，as shown in

Figure 15．The decoding of the IO／M line，which controls memory－mapped or I／O－mapped operation，is arbitràry，and can be omitted if not necessary．Neither the MC680X nor R650X processor families offer specific I／O operations． Figure 16 shows a suitable interface to either of these systems，using a direct connection．Several other decoding options can be used，depending on the other control signals generated in the system．Note that the R650X family does not require VMA to be decoded with the address lines．

LD005801
Figure 17: Avoiding Digital Feedthrough ure 17: Avoiding Digital Feedthro
in an 8048 to ICL7134 Interface

Figure 18: ICL7134 to 8048/80/85 Interface with Low Feedthrough

Digital Feedthrough

All of the direct interfaces shown above can suffer from a capacitive coupling problem. The 14 data pins, and 4 control pins, all tied to active lines on a microprocessor bus, and in close proximity to the sensitive DAC circuitry, can couple pseudo-random spikes into the analog output. Careful board layout and shielding can minimize the problems (see PC layout), and clearly wire-wrap type sockets should never be used. Nevertheless, the inherent capacitance of the package alone can lead to unacceptable digital feedthrough in many cases. The only solution is to keep the digital input lines as inactive as possible. One easy way to do this is to use the peripheral interface circuitry available with all the systems previously discussed. These generally
allow only 8 bits to be updated at any one time, but a little ingenuity will avoid difficulties with DAC steps that would result from partial updates. The problem can be solved for the 8048 family by tying the 14 port lines to the data input lines, with CS, A_{0} and A_{1} held low, and using only the WR line to enter the data into the DAC (as shown in Figure 17). $\overline{W R}$ is well separated from the analog lines on the ICL7134, and is usually not a very active line in 8048 systems. Additional 'protection' can be achieved by gating the processor WR line with another port line. The heavy use of port lines can be alleviated by use of the IM82C43 port expander. The same type of technique can be employed in the 8080/85 systems by using an 8255 PIA (peripheral Interface adapter) (Figure 18) and in the MC680X and R650X systems by using an MC6820 (R6520) PIA.

Figure 19: Successive Approximation A/D Converter

Successive Approximation A/D Converters

Figure 19 shows an ICL7134B-based circuit for a bipolar input high speed A/D converter, using two AM25L03s to form a 14-bit successive approximation register. The comparator is a two-stage circuit with an HA2605 front-end amplifier, used to reduce settling time problems at the summing node (see A020). Careful offset-nulling of this amplifier is needed, and if wide temperature range operation is desired, an auto-null circuit using an ICL7650 is probably advisable (see A053). The clock, using two Schmitt trigger TTL gates, runs at a slower rate for the first 8
bits, where settling-time is most critical, than for the last 6 bits. The short-cycle line is shown tied to the 15th bit; if fewer bits are required, it can be moved up accordingly. The circuit will free-run if the HOLD/ $\overline{\operatorname{RUN}}$ input is held low, but will stop after completing a conversion if the pin is high at that time. A low-going pulse will restart it. The STATUS output indicates when the device is operating, and the falling edge indicates the availability of new data. A unipolar version may be constructed by tying the MSB $\left(D_{13}\right)$ on an ICL7134U to pin 14 on the first AM25L03, deleting the reference inversion amplifier A_{4}, and tying $V_{\text {RFM }}$ to $V_{\text {RFL }}$.

Figure 20: Printed Circuit Board Layout (Bipolar Circuit, see Figure 12)

PC BOARD LAYOUT

Great care should be taken in the board layout to minimize ground loop and similar 'hidden resistor' problems, as well as to minimize digital signal feedthrough. A suitable layout for the immediate vicinity of the ICL7134 is shown in Figure 20, and may be used as a guide.

APPLICATION NOTES

Some applications bulletins that may be found useful are listed here:
A016 "Selecting A/D Converters," by Dave Fullagar.
A017 'The Integrating A/D Converter,' by Lee Evans.

A018 'Do's and Dont's of Applying A/D Converters," by Peter Bradshaw and Skip Osgood.
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing,' by Ed Sliger.
A021 "Power A/D Converters Using the ICH8510," by Dick Wilenken.
A030 "The ICL7104 - A Binary Output A/D Converter for Microprocessors,'" by Peter Bradshaw.
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al, Electronics, Dec. 9, 1976.
Most of these are available in the Intersil Data Acquisition Handbook, together with other material.

ICL7135
 $4 \frac{1}{2}$-Digit BCD Output A/D Converter

GENERAL DESCRIPTION

The Intersil ICL7135 precision A/D converter, with its multiplexed BCD output and digit drivers, combines dualslope conversion reliability with ± 1 in 20,000 count accuracy and is ideally suited for the visual display DVM/DPM market. The 2.0000 V full scale capability, auto-zero and auto-polarity are combined with true ratiometric operation, almost ideal differential linearity and true differential input. All necessary active devices are contained on a single CMOS I.C., with the exception of display drivers, reference, and a clock.

The intersil ICL7135 brings together an unprecedented combination of high accuracy, versatility, and true economy. It features auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover error of less than one count. The versatility of multiplexed BCD outputs is increased by the addition of several pins which allow it to operate in more sophisticated systems. These include STROBE, OVERRANGE, UNDER-RANGE, RUN/HOLD and BUSY lines, making it possible to interface the circuit to a microprocessor or UART.

FEATURES

- Accuracy Guaranteed to ± 1 Count Over Entire $\pm 20,000$ Counts (2.0000 Volts Full Scale)
- Guaranteed Zero Reading for 0 Volts Input
- 1pA Typical Input Current
- True Differential Input
- True Polarity at Zero Count for Precise Null Detection
- Single Reference Voltage Required
- Over-Range and Under-Range Signals Available for Auto-Range Capability
- All Outputs TTL Compatible
- Blinking Outputs Gives Visual Indication of Overrange
- Six Auxiliary Inputs/Outputs Are Available for Interfacing to UARTs, Microprocessors or Other Circuitry
- Multiplexed BCD Outputs

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ICL7135CJI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 -Pin CERDIP
ICL7135CPI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 -Pin Plastic DIP
ICL7135EV/KIT	(Pc Board, active, passive components)	

Figure 1: ICL7135 Connection Diagram

CD01030
Figure 2: Pin Configuration
(Outline dwgs JI, PI)

ABSOLUTE MAXIMUM RATINGS

Note 1: Input voltages may exceed the supply voltages provided the input current is limited to $+100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Note 1)

$\left(\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Clock Frequency Set for 3 Reading/Sec)

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG (Note 1) (Note 2)						
	Zero Input Reading	$\begin{gathered} V_{\text {IN }}=0.0 \mathrm{~V} \\ \text { Full Scale }=2.000 \mathrm{~V} \end{gathered}$	-0.0000	± 0.0000	+0.0000	Digital Reading
	Ratiometric Reading (2)	$\begin{gathered} V_{I N} \equiv V_{R E F} \\ \text { Full } \text { Scale }=2.000 \mathrm{~V} \end{gathered}$	+0.9998	+0.9999	+1.0000	Digital Reading
	Linearity over \pm Full Scale (error of reading from best straight line)	$-2 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~N}} \leq+2 \mathrm{~V}$		0.5	1	Digital Count Error
	Differential Linearity (difference between worse case step of adjacent counts and ideal step)	$-2 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~N}} \leq+2 \mathrm{~V}$. 01		LSB
	Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-V_{I N} \equiv+V_{I N} \approx 2 \mathrm{~V}$		0.5	1	Digital Count Error
e_{n}	Noise (P-P value not exceeded 95% of time)	$\begin{gathered} V_{I N}=0 \mathrm{~V} \\ \text { Full scale }=2.000 \mathrm{~V} \end{gathered}$		15		$\mu \mathrm{V}$
IILK	Leakage Current at Input	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$		1	10	pA
	Zero Reading Drift	$\begin{gathered} V_{I N}=0 V \\ 0^{\circ} \leq T_{A} \leq 70^{\circ} \mathrm{C} \end{gathered}$		0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
TC	Scale Factor Temperature Coefficient (3)	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=+2 \mathrm{~V} \\ 0 \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ \text { (ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) } \\ \hline \end{gathered}$		2	5	ppm $/{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL						
INPUTS						
VINH VINL IINL IINH	Clock in, Run/ $\overline{\text { Hold }}$, See Figure 4	$\begin{gathered} V_{\mathbb{I N}}=0 \\ V_{I N}=+5 \mathrm{~V} \end{gathered}$	2.8	$\begin{gathered} 2.2 \\ 1.6 \\ 0.02 \\ 0.1 \end{gathered}$	$\begin{aligned} & 0.8 \\ & 0.1 \\ & 10 \\ & \hline \end{aligned}$	V mA $\mu \mathrm{A}$
OUTPUTS						
V_{OL} VOH V_{OH}	All Outputs $B_{1}, B_{2}, B_{4}, B_{8}$ $D_{1}, D_{2}, D_{3}, D_{4}, D_{5}$ BUSY, STROBE, OVER-RANGE, UNDER-RANGE POLARITY	$\begin{aligned} & \mathrm{IOL}=1.6 \mathrm{~mA} \\ & \mathrm{IOH}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.9 \end{aligned}$	$\begin{gathered} 0.25 \\ 4.2 \\ 4.99 \end{gathered}$	0.40	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
SUPPLY						
V^{+}	+5V Supply Range		+4	+ 5	+6	V
V^{-}	-5V Supply Range		-3	-5	-8	V
1^{+}	+5V Supply Current	$f_{C}=0$		1.1	3.0	mA
1^{-}	-5V Supply Current	$\mathrm{f}_{\mathrm{C}}=0$		0.8	3.0	
CPD	Power Dissipation Capacitance	vs. Clock Freq		40		pF
CLOCK						
	Clock Freq. (Note 4)		DC	2000	1200	kHz

NOTES: 1. Tested in 4-1/2 digit (20,000 count) circuit shown in Figure 3, clock frequency 120 kHz .
2. Tested with a low dielectric absorption integrating capacitor. See Component Selection Section.
3. The temperature range can be extended to $+70^{\circ} \mathrm{C}$ and beyond as long as the auto-zero and reference capacitors are increased to absorb the higher leakage of the ICL7135.
4. This specification relates to the clock frequency range over which the ICL7135 will correctly perform its various functions. See 'Max Clock Frequency" below for limitations on the clock frequency range in a system.

Figure 3: 7135 Test Circuit

Figure 4: 7135 Digital Logic Input

Figure 5: Analog Section of ICL7135

DETAILED DESCRIPTION

Analog Section

Figure 5 shows the Block Diagram of the Analog Section for the ICL7135. Each measurement cycle is divided into four phases. They are (1) auto-zero (A-Z), (2) signalintegrate (INT), (3) deintegrate (DE) and (4) zero-integrator (ZI).

AUTO-ZERO PHASE

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

SIGNAL INTEGRATE PHASE

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common mode range; within one volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, \mathbb{N} LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is latched into the polarity F/F.

DE-INTEGRATE PHASE

The Third phase is de-integrate, or reference integrate. Input LOW is internally connected to analog COMMON and input high is connected across the previously charged
reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is $10,000\left(\frac{V_{I N}}{V_{\text {REF }}}\right)$.

ZERO INTEGRATOR PHASE

The final phase is zero integrator. First, input low is shorted to analog COMMON. Second, a feedback loop is closed around the system to input high to cause the integrator output to return to zero. Under normal condition, this phase lasts from 100 to 200 clock pulses, but after an overrange conversion, it is extended to 6200 clock pulses.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 4 V full scale swing with some loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity.

Analog Common

Analog COMMON is used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in most applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter. The reference voltage is referenced to analog COMMON.

Reference

The reference input must be generated as a positive voltage with respect to COMMON, as shown in Figure 6.

DETAILED DESCRIPTION
 Digital Section

Figure 7 shows the Digital Section of the 7135. The 7135 includes several pins which allow it to operate conveniently in more sophisticated systems. These include:
Run/HOLD (Pin 25). When high (or open) the A/D will freerun with equally spaced measurement cycles every 40,002 clock pulses. It taken low, the converter will continue the full measurement cycle that it is doing and then hold this reading as long as R / \bar{H} is held low. A short positive pulse (greater than 300 ns) will now initiate a new measurement cycle, beginning with between 1 and 10,001 counts of auto zero. If the pulse occurs before the full measurement cycle (40,002 counts) is completed, it will not be recognized and the converter will simply complete the measurement it is doing. An external indication that a full measurement cycle has been completed is that the first strobe pulse (see below) will occur 101 counts after the end of this cycle. Thus, if Run/HOLD is low and has been low for at least 101 counts, the converter is holding and ready to start a new measurement when pulsed high.
STROBE (Pin 26). This is a negative going output pulse that aids in transferring the BCD data to external latches,

UARTs or microprocessors. There are 5 negative going STROBE pulses that occur in the center of each of the digit drive pulses and occur once and only once for each measurement cycle starting 101 pulses after the end of the full measurement cycle. Digit 5 (MSD) goes high at the end of the measurement cycle and stays on for 201 counts. In the center of this digit pulse (to avoid race conditions between changing BCD and digit drives) the first STROBE pulse goes negative for $1 / 2$ clock pulse width. Similarly, after digit 5, digit 4 goes high (for 200 clock pulses) and 100 pulses later the STROBE goes negative for the second time. This continues through digit 1 (LSD) when the fifth and last STROBE pulse is sent. The digit drive will continue to scan (unless the previous signal was overrange) but no additional STROBE pulses will be sent until a new measurement is available.

AFO2510
Figure 7: Digital Section of the 7135

BUSY (Pin 21). BUSY goes high at the beginning of signal integrate and stays high until the first clock pulse after zerocrossing (or after end of measurement in the case of an
overrange). The internal latches are enabled (i.e., loaded) during the first clock pulse after busy and are latched at the end of this clock pulse. The circuit automatically reverts to auto-zero when not BUSY, so it may also be considered a $(\mathrm{ZI}+\mathrm{AZ})$ signal. A very simple means for transmitting the data down a single wire pair from a remote location would be to AND BUSY with clock and subtract 10,001 counts from the number of pulses received - as mentioned previously there is one 'NO-count' pulse in each reference integrate cycle.
OVER-RANGE (Pin 27). This pin goes positive when the input signal exceeds the range $(20,000)$ of the converter. The output F/F is set at the end of BUSY and is reset to zero at the beginning of Reference integrate in the next measurement cycle.
UNDER-RANGE (Pin 28). This pin goes positive when the reading is 9% of range or less. The output F/F is set at the end of BUSY (if the new reading is 1800 or less) and is reset at the beginning of signal integrate of the next reading.
POLARITY (Pin 23). This pin is positive for a positive input signal. It is valid even for a zero reading. In other words, +0000 means the signal is positive but less than the least significant bit. The converter can be, used as a null detector by forcing equal frequency of (+) and (-) readings. The null at this point should be less than 0.1 LSB. This output becomes valid at the beginning of reference integrate and remains correct until it is re-validated for the next measurement.
Digit Drives (Pins 12, 17, 18, 19 and 20). Each digit drive is a positive going signal that lasts for 200 clock pulses. The scan sequence is D_{5} (MSD), D_{4}, D_{3}, D_{2} and D_{1} (LSD). All five digits are scanned and this scan is continuous unless an over-range occurs. Then all digit drives are blanked from the end of the strobe sequence until the beginning of Reference Integrate when D_{5} will start the scan again. This can give a blinking display as a visual indication of overrange.
BCD (Pins 13, 14, 15 and 16). The Binary coded Decimal bits B_{8}, B_{4}, B_{2} and B_{1} are positive logic signals that go on simultaneously with the digit driver signal.

COMPONENT VALUE SELECTION

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

Integrating Resistor

The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. Values of 5 to $40 \mu \mathrm{~A}$ give good results, with a nominal of $20 \mu \mathrm{~A}$, and the exact value of integrating resistor may be chosen by

$$
\mathrm{R}_{\text {INT }}=\frac{\text { full scale voltage }}{20 \mu \mathrm{~A}}
$$

Integrating Capacitor

The product of integrating resistor and capacitor should be selected to give the maximum voltage swing which
ensures that the tolerance built-up will not saturate the integrator swing (approx. 0.3 volt from either supply). For ± 5 volt supplies and analog COMMON tied to supply ground, a ± 3.5 to ± 4 volt full scale integrator swing is fine, and $0.47 \mu \mathrm{~F}$ is nominal. In general, the value of $\mathrm{C}_{\text {INT }}$ is given by

$$
\begin{aligned}
\mathrm{C}_{\mathrm{INT}} & =\left(\frac{[10,000 \times \text { clock period }] \times l_{\mathrm{INT}}}{\text { integrator output voltage swing }}\right) \\
& =\frac{(10,000)(\text { clock period })(20 \mu \mathrm{~A})}{\text { integrator output voltage swing }}
\end{aligned}
$$

A very important characteristic of the integrating capacitor is that it has low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference.

This ratiometric condition should read half scale 0.9999 , and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

Figure 8: Timing Diagram for Outputs

Auto-Zero and Reference Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system, a large capacitor giving less noise. The reference capacitor should be large enough
such that stray capacitance to ground from its nodes is negligible.

The dielectric absorption of the reference cap and autozero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.

Reference Voltage

The analog input required to generate a full-scale output is $V_{I N}=2 V_{R E F}$.

The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. For this reason, it is recommended that a high quality reference be used where high-accuracy absolute measurements are being made.

Rollover Resistor and Diode

A small rollover error occurs in the 7135, but this can be easily corrected by adding a diode and resistor in series between the INTegrator OUTput and analog COMMON or ground. The value shown in the schematics is optimum for the recommended conditions, but if integrator swing or clock frequency is modified, adjustment may be needed. The diode can be any silicon diode, such as 1N914. These components can be eliminated if rollover error is not important, and may be altered in value to correct other (small) sources of rollover as needed.

Max Clock Frequency

The maximum conversion rate of most dual-slope A/D converters is limited by the frequency response of the comparator. The comparator in this circuit follows the integrator ramp with a 3μ s delay, and at a clock frequency of 160 kHz ($6 \mu \mathrm{~s}$ period) half of the first reference integrate clock period is lost in delay. This means that the meter reading will change from 0 to 1 with a $50 \mu \mathrm{~V}$ input, 1 to 2 with $150 \mu \mathrm{~V}$, 2 to 3 at $250 \mu \mathrm{~V}$, etc. This transition at mid-point is considered desirable by most users; however, if the clock frequency is increased appreciably above 160 kHz , the instrument will flash " 1 '" on noise peaks even when the input is shorted.

For many-dedicated applications where the input signal is always of one polarity, the delay of the comparator need not be a limitation. Since the non-linearity and noise do not increase substantially with frequency, clock rates of up to $\sim 1 \mathrm{MHz}$ may be used. For a fixed clock frequency, the extra count or counts caused by comparator delay will be constant and can be subtracted out digitally.

The clock frequency may be extended above 160 kHz without this error, however, by using a low value resistor in series with the integrating capacitor. The effect of the resistor is to introduce a small pedestal voltage on to the integrator output at the beginning of the reference integrate phase. By careful selection of the ratio between this resistor and the integrating resistor (a few tens of ohms in the recommended circuit), the comparator delay can be compensated and the maximum clock frequency extended by approximately a factor of 3 . At higher frequencies, ringing and second order breaks will cause significant nonlinearities in the first few counts of the instrument - see Application Note A017.

The minimum clock frequency is established by leakage on the auto-zero and reference caps. With most devices,
measurement cycles as long as 10 seconds give no measurable leakage error.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $300 \mathrm{kHz}, 200 \mathrm{kHz}, 150 \mathrm{kHz}, 120 \mathrm{kHz}, 100 \mathrm{kHz}$, $40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of $250 \mathrm{kHz}, 16643 \mathrm{kHz}, 125 \mathrm{kHz}$, 100 kHz , etc. would be suitable. Note that 100 kHz (2.5 readings/second) will reject both 50 and 60 Hz .

The clock used should be free from significant phase or frequency jitter. Several suitable low-cost oscillators are shown in the Applications section. The multiplexed output means that if the display takes significant current from the logic supply, the clock should have good PSRR.

Zero-Crossing Flip-Flop

The flip-flop interrogates the data once every clock pulse after the transients of the previous clock pulse and halfclock pulse have died down. False zero-crossings caused by clock pulses are not recognized. Of course, the flip-flop delays the true zero-crossing by up to one count in every instance, and if a correction were not made, the display would always be one count too high. Therefore, the counter is disabled for one clock pulse at the beginning of phase 3. This one-count delay compensates for the delay of the zero-crossing flip-flop, and allows the correct number to be latched into the display. Similarly, a one-count delay at the beginning of phase 1 gives an overload display of 0000 instead of 0001. No delay occurs during phase 2, so that true ratiometric readings result.

EVALUATING THE ERROR SOURCES

Errors from the 'ideal' cycle are caused by:

1. Capacitor droop due to leakage.
2. Capacitor voltage change due to charge 'suck-out" (the reverse of charge injection) when the switches turn off.
3. Non-linearity of buffer and integrator.
4. High-frequency limitations of buffer, integrator and comparator.
5. Integrating capacitor non-linearity (dielectric absorption.)
6. Charge lost by $C_{\text {REF }}$ in charging $\mathrm{C}_{\text {Stray }}$.
7. Charge lost by $C_{A Z}$ and $C_{I N T}$ to charge $C_{\text {stray }}$.

Each of these errors is analyzed for its error contribution to the converter in application notes listed on the back page, specifically A017 and A032.

NOISE

The peak-to-peak noise around zero is approximately $15 \mu \mathrm{~V}$ (pk-to-pk value not exceeded 95% of the time). Near full scale, this value increases to approximately $30 \mu \mathrm{~V}$. Much of the noise originates in the auto-zero loop, and is proportional to the ratio of the input signal to the reference.

ANALOG AND DIGITAL GROUNDS

Extreme care must be taken to avoid ground loops in the layout of ICL7135 circuits, especially in high-sensitivity circuits. It is most important that return currents from digital loads are not fed into the analog ground line.

POWER SUPPLIES

The 7135 is designed to work from $\pm 5 \mathrm{~V}$ supplies. However, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:

1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than ± 1.5 volts.

See 'differential input' for a discussion of the effects this will have on the integrator swing without loss of linearity.

TYPICAL APPLICATIONS

The circuits which follow show some of the wide variety of possibilities, and serve to illustrate the exceptional versatility of this A/D converter.

Figure 9 shows the complete circuit for a $4-\frac{1}{2}$ digit $(\pm 2.000 \mathrm{~V})$ full scale) A/D with LED readout using the ICL8069 as a 1.2 V temperature compensated voltage reference. It uses the band-gap principal to achieve excellent stability and low noise at reverse currents down to $50 \mu \mathrm{~A}$. The circuit also shows a typical R-C input filter. Depending on the application, the time-constant of this filter can be made faster, slower, or the filter deleted completely. The $1 / 2$ digit LED is driven from the 7 segment decoder, with a zero reading blanked by connecting a D5 signal to RBI input of the decoder. The 2-gate clock circuit should use CMOS gates to maintain good power supply rejection.

Figure 10 is similar except the output drives a multiplexed common cathode LED Display with the 7-Common Emitter

Transistor Array, for the digit driver transistors, making a lower component count possible. Both versions of the complete circuit will give a blinking display as a visual indication of overrange. A clock oscillator circuit using the ICM7555 CMOS timer is shown.

A suitable circuit for driving a plasma-type display is shown in Figure 11. The high voltage anode driver buffer is made by Dionics. The 3 AND gates and caps driving ' Bl ' are needed for interdigit blanking of multiple-digit display elements, and can be omitted if not needed. The $2.5 \mathrm{k} \Omega$ \& $3 \mathrm{k} \Omega$ resistors set the current levels in the display. A similar arrangement can be used with Nixie® tubes.

The popular LCD displays can be interfaced to the O/P of the ICL7135 with suitable display drivers, such as the ICM7211A as shown in Figure 13. A standard CMOS 4030 QUAD XOR gate is used for displaying the $1 / 2$ digit, the polarity, and an 'overrange' flag. A similar circuit can be used with the ICL7212A LED driver and the ICM7235A vacuum fluorescent driver with appropriate arrangements made for the 'extra' outputs. Of course, another full driver circuit could be ganged to the one shown if required. This would be useful if additional annunciators were needed. The Figure shows the complete circuit for a $4-1 / 2$ digit ($\pm 2,000 \mathrm{~V}$) A/D.

Figure 12 shows a more complicated circuit for driving LCD displays. Here the data is latched into the ICM7211 by the STROBE signal and 'Overrange' is indicated by blanking the 4 full digits.

Figure 10: Driving Multiplexed Common Cathode LED Displays

LC00560
Figure 11: ICL7135 Plasma Display Circuit

Figure 12: LCD Display with Digit Blanking on Overrange

Figure 13: Driving LCD Displays

A problem sometimes encountered with both LED \& plasma-type display driving is that of clock source supply line variations. Since the supply is shared with the display, any variation in voltage due to the display reading may cause clock supply voltage modulation. When in overrange the display alternates between a blank display and the 0000 overrange indication. This shift occurs during the reference integrate phase of conversion causing a low display reading just after overrange recovery. Both of the above circuits have considerable current flowing in the digital supply from drivers, etc. A clock source using an LM311 voltage comparator with positive feedback (Figure 14) could minimize any clock frequency shift problem.

The 7135 is designed to work from ± 5 volt supplies. However, if a negative supply is not available, it can be generated with an ICL7660 and two capacitors (Figure 15).

Figure 14: LM311 Clock Source

Figure 15: Generating a Negative Supply from +5 V

INTERFACING WITH UARTS AND MICROPROCESSORS

Figure 16 shows a very simple interface between a freerunning ICL7135 and a UART. The five STROBE pulses start the transmission of the five data words. The digit 5 word is $0000 \times X X X$, digit 4 is $1000 \times X X X$, digit 3 is 0100 XXXX , etc. Also the polarity is transmitted indirectly by using it to drive the Even Parity Enable Pin (EPE). If EPE of the receiver is held low, a parity flag at the receiver can be decoded as a positive signal, no flag as negative. A complex arrangement is shown in Figure 17. Here the UART can instruct the A/D to begin a measurement sequence by a word on RRI. The BUSY signal resets the Data Ready Reset (DRR). Again STROBE starts the transmit sequence. A quad 2 input multiplexer is used to superimpose polarity, over-range, and under-range onto the D_{5} word since in this instance it is known that $B_{2}=B_{4}=B_{8}=0$.

Figure 16: ICL7135 to UART Interface

Figure 17: Complex ICL7135 to UART Interface

For correct operation it is important that the UART clock be fast enough that each word is transmitted before the next STROBE pulse arrives. Parity is locked into the UART at load time but does not change in this connection during an output stream.

Circuits to interface the ICL7135 directly with three popular microprocessors are shown in Figures 18 and 19. The 8080/8048 and the MC6800 groups with 8 bit buses need to have polarity, over-range and under-range multiplexed onto the Digit 5 word - as in the UART circuit. In each case the microprocessor can instruct the A/D when to begin a measurement and when to hold this measurement.

LC006101
Figure 18: ICL7135 to MC6800, MCS650X Interface

6

APPLICATION NOTES

A016 ''Selecting A/D Converters," by David Fullagar
A017 'The Integrating A/D Converters,'" by Lee Evans
A018 'Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood
A019 ' $4-1 / 2$ Digit Plan Meter Demonstrator/ Instrumentation Boards," by Michael Dufor:
A023 'Low Cost Digital Panel Meter Designs," by Davit Fullager and Michael Dufort
A028 "Building an Auto-Ranging DMM Using the 8052A.' 7103A A/D Converter Pair,' by Larry Goff
A030 "The ICL7104 - A Binary Output A/D Converter for Microprocessors' ${ }^{\prime}$, by Peter Bradshaw
A032 "Understanding the Auto-Zero and Common Moce Performance of the ICL7106 Family' ', by Peter Bradshaw
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al, Electronics, Dec. 9, 1976

ICL7136 $3^{1 ⁄ 2} 2-$ Digit LCD Low Power A/D Converter

GENERAL DESCRIPTION

The Intersil ICL7136 is a high performance, very low power $3^{1 / 2}$-digit A/D converter. All the necessary active devices are contained on a single CMOS IC, including seven-segment decoders, display drivers, reference, and clock. The 7136 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive. The supply current is under $100 \mu \mathrm{~A}$, ideally suited for 9 V battery operation.

The 7136 brings together an unprecedented combination of high accuracy, versatility, and true economy. High accuracy, like auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover error of less than one count. The versatility of true differential input and reference is useful in all systems, but gives the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally the true economy of single power supply operation allows a high performance panel meter to be built with the addition of only 7 passive components and a display.

The ICL7136 is an improved version of the ICL7126, eliminating the overrange hangover and hysteresis effects, and should be used in its place in all applications. It can also be used as a plug-in replacement for the ICL7106 in a wide variety of applications, changing only the passive components.

FEATURES

- First-Reading Recovery From Overrange Gives Immediate "OHMS" Measurement
- Guaranteed Zero Reading for OV Input
- True Polarity at Zero for Precise Null Detection
- 1pA Typical Input Current
- True Differential input and Reference
- Direct LCD Display Drive - No External Components Required
- Pin Compatible With The ICL7106, ICL7126
- Low Noise - $15 \mu \mathrm{Vp}-\mathrm{p}$ Without Hysteresis or Overrange Hangover
- On-Chip Clock and Reference
- Low Power Dissipation, Guaranteed Less Than 1 mW - Gives 8,000 Hours Typical 9V Battery Life
- No Additional Active Circuits Required
- Evaluation Kit Available (ICL7136EV/Kit)

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7136CJL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40-Pin CERDIP
ICL7136CDL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40-Pin Ceramic DIP
ICL7136CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44-Pin Surface Mount
ICL7136CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic DIP
ICL7136RCPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40-Pin Plastic DIP
ICL7136EV/ KIT		EVALUATION KIT

CD032411
Figure 1: Pin Configurations

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V^{+}to V^{-}).................................. 15 V
Analog Input Voltage (either input)(Note 1) $\ldots . \mathrm{V}^{+}$to V^{-}
Reference Input Voltage (either input) $\ldots \ldots . . . \mathrm{V}^{+}$to V^{-}
Clock Input
TEST to V^{+}

Power Dissipation (Note 2)	
Ceramic Package	1000 mW
Plastic Package	800 mw
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ead Temperature (So	$300^{\circ} \mathrm{C}$

Note 1 : Input voltages may exceed the supply voltages, provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 2: Functional Diagram

ELECTRICAL CHARACTERISTICS (Notes 3, 7)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Zero Input Reading	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ & \text { Full-Scale }=200.0 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+000.0	Digital Reading
Ratiometric Reading	$V_{\text {IN }}=V_{\text {REF }}, V_{\text {REF }}=100 \mathrm{mV}$	999	999/1000	1000	Digital Reading
Roll-Over Error (Difference in reading for equal positive and negative reading near full-scale)	$-\mathrm{V}_{\mathrm{IN}}=+\mathrm{V}_{\mathrm{IN}} \simeq 200.0 \mathrm{mV}$	-1	± 0.2	+1	Counts
Linearity (Max. deviation from best straight line fit)	Full-scale $=200 \mathrm{mV}$ or Full-Scale $=2.000 \mathrm{~V}$	-1	± 0.02	+1	Counts
Common-Mode Rejection Ratio (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V} \\ & \text { Full-Scale }=200.0 \mathrm{mV} \end{aligned}$		50		$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk-Pk value not exceeded 95\% of time)	$\mathrm{V}_{1} \mathrm{~N}=0 \mathrm{~V}$, Full Scale $=200.0 \mathrm{mV}$		15		$\mu \mathrm{V}$
Leakage Current @ Input	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		1	10	pA
Zero Reading Drift	$\mathrm{V}_{1 /}=0 \mathrm{~V}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\mathrm{V}_{\mathrm{IN}}=199.0 \mathrm{mV}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$ (Ext. Ref. Oppm $/{ }^{\circ} \mathrm{C}$)		1	5	ppm/ $/{ }^{\circ} \mathrm{C}$
Supply Current (Does not include COMMON current)	$\mathrm{V}_{1 N}=0 \mathrm{~V}$ (Note 6)		70	100	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (CONT.)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Analog COMMON Voltage (With respect to positive supply)	$250 \mathrm{k} \Omega$ between Common and Positive Supply	2.4	2.8	3.2	
Temp. Coeff. of Analog COMMON (With respect to positive supply)	$250 \mathrm{k} \Omega$ between Common and Positive Supply		150		V
Pk-Pk Segment Drive Voltage (Note 5)	V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$	4	5	6	
Pk-Pk Backplane Drive Voltage (Note 5)	V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$	V			
Power Dissipation Capacitance	vs Clock Frequency	4	5	6	

NOTES: 3. Unless otherwise noted, specifications apply at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {clock }}=16 \mathrm{kHz}$ and are tested in the circuit of Figure 3.
4. Refer to "Differential input" discussion.
5. Backplane drive is in phase with segment drive for 'off' segment, 180° out of phase for "on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
6. 48 kHz oscillator, Figure 4, increases current by $20 \mu \mathrm{~A}$ (typ).
7. Extra capacitance of CERDIP package changes oscillator resistor value to $470 \mathrm{k} \Omega$ or $150 \mathrm{k} \Omega$ (1 reading/sec or $3 \mathrm{readings} / \mathrm{sec}$).

TEST CIRCUITS

CDO1100
Figure 3: ICL7136 with Liquid Crystal Display

Figure 4: $\mathbf{7 1 3 6}$ Clock Frequency $\mathbf{1 6 k H z}$ (1 reading/sec)

Figure 5: Clock Frequency 48 kHz (3 readings/sec)

DETAILED DESCRIPTION (Analog Section)

Figure 1 shows the Functional Diagram of the Analog Section for the ICL7136. Each measurement cycle is divided into four phases. They are 1) auto-zero (A-Z), 2) signal integrate (INT), 3) de-integrate (DE) and 4) zero integrator (ZI).

AUTO-ZERO PHASE

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor, $\mathrm{C}_{A Z}$, to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

SIGNAL INTEGRATE PHASE

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common-mode range; within IV of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

DE-INTEGRATE PHASE

The next phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that
the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically, the digital reading displayed is 1000 ($\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {REF }}$).

ZERO INTEGRATOR PHASE

The final phase is zero integrator. First, input low is shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Finally, a feedback loop is closed around the system to input high to cause the integrator output to return to zero. Under normal conditions, this phase lasts for between 11 to 140 clock pulses, but after a 'heavy' overrange conversion, it is extended to 740 clock pulses.

Differential Input

The input can accept differential voltages anywhere within the common-mode range of the input amplifier; or specifically from 0.5 V below the positive supply to 1.0 V above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common-mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common-mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2 V full-scale swing with little loss of accuracy. The integrator output can swing within 0.3 V of either supply without loss of linearity.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common-mode error is a roll-over voltage caused by the reference capacitance losing or gaining charge to stray capacity on its nodes. If there is a large common-mode voltage, the reference capacitor can gain charge fincrease voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for $(+)$ or (-) input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition (see Component Values Selection).

Analog Common

This pin is included primarily to set the common-mode voltage for battery operation or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 3.0 V more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V . However, analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ($>7 \mathrm{~V}$), the COMMON voltage will have a low voltage coefficient ($0.001 \% / \%$), low output impedance ($\sim 35 \Omega$), and a temperature coefficient typically less than $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

The limitations of the on-chip reference should also be recognized, however. The reference temperature coefficient (TC) can cause some degradation in performance. Temperature changes of $2^{\circ} \mathrm{C}$ to $8^{\circ} \mathrm{C}$, typical for instruments, can give a scale factor error of a count or more. Also, the COMMON voltage will have a poor voltage coefficient when the total supply voltage is less than that which will cause the zener to regulate ($<7 \mathrm{~V}$). These problems are eliminated if an external reference is used, as shown in Figure 6.

Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common-mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common-mode voltage from the converter. The same holds true for the reference voltage. If the reference can be conveniently referred to analog COMMON, it should be since this removes the common-mode voltage from the reference system.

Within the IC, analog COMMON is tied to an N channel FET which can sink 3 mA or more of current to hold the voltage 3.0V below the positive supply (when a load is trying to pull the common line positive). However, there is only $1 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage, thus overriding the internal reference.

DS014701
Figure 7: Simple Inverter for Fixed Decimal Point

TEST

The TEST pin serves two functions. It is coupled to the internally generated digital supply through a 500Ω resistor. Thus, it can be used as the negative supply for external segment drivers such as for decimal points or any other presentation the user may want to include on the LCD display. Figures 7 and 8 show such an application. No more than a 1 mA load should be applied.

The second function is a 'lamp test.' When TEST is pulled high (to V^{+}) all segments will be turned on and the display should read -1888 . The TEST pin will sink about 10 mA under these conditions.
Caution: In the lamp test mode, the segments have a constant DC voltage (no square-wave). This may burn the LCD display if maintained for extended periods.

Figure 8: Exclusive "OR" Gate for Decimal Point Drive

DETAILED DESCRIPTION (Digital Section)

Figure 9 shows the digital section for the 7136. An internal digital ground is generated from a 6 V Zener diode and a large P channel source follower. This supply is made stiff to absorb the relatively large capacitive currents when the backplane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/ second this is a 60 Hz square-wave with a nominal amplitude of 5 V . The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments. The polarity indication is 'ON' for
indication can be reversed also, if desired.
DISPLAY FONT

System Timing

Figure 10 shows the clock oscillator provided in the 7136. Three basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An RC oscillator using all three pins.

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the four convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 counts to 2000 counts), zero integrator (11 counts to 140 counts*) and auto-zero (910 counts to 2900 counts). For signals less than fullscale, auto-zero gets the unused portion of reference deintegrate and zero integrator. This makes a complete measure cycle of 4000 (16,000 clock pulses) independent

[^21]of input voltage. For three readings/second, an oscillator frequency of 48 kHz would be used.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of the 60 Hz period. Oscillator frequencies of $60 \mathrm{kHz}, 48 \mathrm{kHz}, 40 \mathrm{kHz}, 33^{1} / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of $6643 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that 40 KHz (2.5 readings/second) will reject both 50 Hz and 60 Hz (also 400 Hz and 440 Hz). See also A052.

COMPONENT VALUE SELECTION

(See also A052)

Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $6 \mu \mathrm{~A}$ of quiescent current. They can supply $\sim 1 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 V full-scale, $1.8 \mathrm{M} \Omega$ is near optimum, and similarly $180 \mathrm{k} \Omega$ for a 200.0 mV scale.

Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 V from either supply). When the analog COMMON is used as a reference, a nominal $\pm 2 \mathrm{~V}$ full-scale integrator swing is fine. For three readings/ second (48 kHz clock) nominal values for CINT are $0.047 \mu \mathrm{~F}$, for 1 reading $/$ second (16 kHz) $0.15 \mu \mathrm{~F}$. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.

The integrating capacitor should have low dielectric absorption to prevent roll-over errors. While other types may be adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full-scale where noise is very important, a $0.47 \mu \mathrm{~F}$ capacitor is recommended. The ZI phase allows a large auto-zero capacitor to be used without causing the hysteresis or overrange hangover problems that can occur with the ICL7126 or ICL7106 (see A032).

Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large common-mode voltage exists (i.e., the REF LO pin is not at analog COMMON) and a 200 mV scale is used, a larger value is required to prevent roll-over error. Generally, $1.0 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance.

Oscillator Components

For all ranges of frequency a 50 pF capacitor is recoinmended and the resistor is selected from the approximate equation $f \sim 0.45 / R C$. For 48 kHz clock (3 readings/second), $R=180 \mathrm{k} \Omega$, for $16 \mathrm{kHz}, \mathrm{R}=560 \mathrm{k} \Omega$.

Reference Voltage

The analog input required to generate full-scale output (2000 counts) is $\mathrm{V}_{\text {IN }}=2 \mathrm{~V}_{\text {REF }}$. Thus, for the 200.0 mV and 2.000 V scale, $\mathrm{V}_{\text {REF }}$ should equal 100.0 mV and 1.000 V ,
respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full-scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select $\mathrm{V}_{\text {REF }}=0.341 \mathrm{~V}$. A suitable value for the integrating resistor would be $330 \mathrm{k} \Omega$. This makes the system slightly quieter and also avoids the necessity of a divider network on the input. Another advantage of this system occurs when a digital reading of zero is desired for $\mathrm{V}_{\mathbb{N}} \neq 0$. Temperature and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

TYPICAL APPLICATIONS

The 7136 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A / D converters.

CD011301
Figure 11: 7136 Using the Internal Reference

Values shown are for 200.0mV full-scale, 3 readings/sec, floating supply voltage (9V battery).

Figure 12: 7136 with an External Band-Gap Reference (1.2V Type)

IN LO is tied to COMMON, thus establishing the correct common-mode voltage. COMMON acts as a pre-regulator for the reference. Values shown are for 1 reading/ sec.

CD011501
Figure 13: Recommended Component Values for $\mathbf{2 . 0 0 0}$ V Full-Scale, 3 Readings/Sec

For 1 reading/sec, change $\mathrm{C}_{\mathrm{INT}}$, Rosc to values of Figure 12.

CD011601
Figure 14: 7136 with Zener Diode Reference

Since low TC zeners have breakdown voltages $\sim 6.8 \mathrm{~V}$, diode must be placed across the total supply (10V). As in the case of Figure 13, IN LO may be tied to COMMON.

> CD01170

Figure 15: 7136 Operated from Single +5 V Supply
An external reference must be used in this application, since the voltage between V^{+} and \mathbf{V}^{-}is insufficient for correct operation of the internal reference.

[^22]

Figure 16: $\mathbf{7 1 3 6}$ Measuring Ratiometric Values of Quad Load Cell
The resistor values within the bridge are determined by the desired sensitivity.

cD011901
Figure 17: 7136 used as a Digital Centigrade Thermometer
A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for a 100.0 reading. See ICL8073/4 and AD590 data sheets for alternative circuits.

Figure 18: Circuit for Developing Underrange and Overrange ${ }^{\text {CDO } 12001}$ Signals from 7136 Outputs

Figure 19: AC to DC Converter with 7136
Test is used as a common-mode reference level to ensure compatibility with most op amps.

APPLICATION NOTES

A016 "Selecting A/D Converters," by David Fullagar.
A017 "The Integrating A/D Converter," by Lee Evans.
A018 "Do's and Dont's of Applying A/D Converters," by Peter Bradshaw and Skip Osgood.
A019 " $41 / 2$-Digit Panel Meter Demonstrator/ Instrumentation Boards," by Michael Dufort.
A023 "Low Cost Digital Panel Meter Designs," by David Fullagar and Michael Dufort.
A032 "Understanding the Auto-Zero and Common-Mode Behavior of the ICL7106/7/9 Family," by Peter Bradshaw.
A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7106," by Larry Goff.
A047 ''Games People Play with Intersil's A/D Converters," edited by Peter Bradshaw.

A052 "Tips for Using Single-Chip $31 / 2$-Digit A/D Converters," by Dan Watson.

7136 EVALUATION KIT

After purchasing a sample of the 7136, the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application.
To facilitate evaluation of this unique circuit, Intersil is offering a kit which contains all the necessary components to build a $3^{1 / 2}$-digit panel meter. With the ICL7136EV/Kit and the small number of additional components required, an engineer or technician can have the system "up and running" in about half an hour. The kit contains a circuit board, a display (LCD), passive components, and miscellaneous hardware.

GENERAL DESCRIPTION

The Intersil ICL7137 is a high performance, very low power $3^{1 / 2} 2$-digit A/D converter. All the necessary active devices are contained on a single CMOS IC, including seven-segment decoders, display drivers, reference, and clock. The 7137 is designed to interface with a light emitting diode (LED) display. The supply current (exclusive of display) is under $200 \mu \mathrm{~A}$, ideally suited for battery operation.

The 7137 brings together an unprecedented combination of high accuracy, versatility, and true economy. The device features auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover error of less than one count. The versatility of true differential input and reference is useful in all systems, but gives the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally the true economy of the ICL7137 allows a high performance panel meter to be built with the addition of only 10 passive components and a display.

The ICL7137 is an improved version of the ICL7107, eliminating the overrange hangover and hysteresis effects, and should be used in its place in all applications, changing only the passive component values.

FEATURES

- First-Reading Recovery From Overrange allows Immediate 'OHMS' Measurement
- Guaranteed Zero Reading for OV Input
- True Polarity at Zero for Precise Null Detection
- 1pA Typical Input Current
- True Differential Input and Reference
- Direct LED Display Drive - No External Components Required
- Pin Compatible With The ICL7107
- Low Noise - $15 \mu \mathrm{Vp}$-p Without Hysteresis or Overrange Hangover
- On-Chip Clock and Reference
- Improved Rejection of Voltage On COMMON Pin
- No Additional Active Circuits Required
- Evaluation Kit Available ICL7137EV/Kit

ORDERING INFORMATION*

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7137CJL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CERDIP
ICL7137CDL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Ceramic
ICL7137CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic
ICL7137RCPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic
ICL7137EV/KIT		EVALUATION KIT

Figure 1: Functional Diagram

BD004401
Figure 2: Pin Configuration* (Outline dwgs PL, JL, DL)

ABSOLUTE MAXIMUM RATINGS

Analog Input Voltage (either input)(Note 1) $\ldots . \mathrm{V}^{+}$to V^{-}
Reference Input Voltage (either input) $\ldots \ldots . . . \mathrm{V}^{+}$to V^{-}
Clock Input GND to V^{+}

Power Dissipation (Note 2)		
	Ceramic Package	1000 mW
	Plastic Package	800 mW
Operating Temperature $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		
Storage Temperature.................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
Lead Te	emperature (Solderin	

Power Dissipation (Note 2)
Ceramic Package
1000 mW
800 mW
Operating Temperature $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature..................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

Note 1: Input voltages may exceed the supply voltages, provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
Stresses above those listed under 'Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Note 3)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Zero Input Reading	$\begin{aligned} & V_{I N}=0.0 \mathrm{~V} \\ & \text { Full-Scale }=200.0 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+ 000.0	Digital Reading
Ratiometric Reading	$V_{\text {IN }}=V_{\text {REF }}, V_{\text {REF }}=100 \mathrm{mV}$	998	999/1000	1000	Digital Reading
Roll-Over Error (Difference in reading for equal positive and negative reading near full-scale)	$-\mathrm{V}_{\mathrm{iN}}=+\mathrm{V}_{\mathrm{IN}} \simeq 200.0 \mathrm{mV}$	-1	± 0.2	+1	Counts
Linearity (Max. deviation from best straight line fit)	Full-scale $=200 \mathrm{mV}$ or Full-Scale $=2.000 \mathrm{~V}$	-1	± 0.02	+ 1	Counts
Common-Mode Rejection Ratio (Note 4)	$V_{C M}= \pm 1 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$ Full-Scale $=200.0 \mathrm{mV}$		30		$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk-Pk value not exceeded 95\% of time)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, Full-Scale $=200.0 \mathrm{mV}$		15		$\mu \mathrm{V}$
Leakage Current @ Input	$V_{\text {IN }}=0 \mathrm{~V}$		1	10	pA
Zero Reading Drift	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\mathrm{V}_{\mathrm{IN}}=199.0 \mathrm{mV}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$ (Ext. Ref. Oppm $/{ }^{\circ} \mathrm{C}$)		1	5	ppm $/{ }^{\circ} \mathrm{C}$
V^{+}Supply Current (Does not Include LED current)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ (Note 5)		70	200	$\mu \mathrm{A}$
V^{-}Supply current			40		
Analog COMMON Voltage (With respect to positive supply)	$250 \mathrm{k} \Omega$ between Common and Positive Supply	2.4	2.8	3.2	V
Temp. Coeff. of Analog COMMON (With respect to positive supply)	$250 \mathrm{k} \Omega$ between Common and Positive Supply		150		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Segment Sinking Current (Except Pins 19 \& 20) (Pin 19 only) (Pin 20 only)	$\begin{aligned} & \mathrm{V}^{+}=5.0 \mathrm{~V} \\ & \text { Segment Voltage }=3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 4 \end{gathered}$	$\begin{gathered} 8.0 \\ 16 \\ 7 \end{gathered}$		mA
Power Dissipation Capacitance	vs. Clock Frequency		40		pF

NOTES: 3. Unless otherwise noted, specifications apply at $T_{A}=25^{\circ} \mathrm{C}, f_{\text {clock }}=16 \mathrm{kHz}$ and are tested in the circuit of Figure 4.
4. Refer to "Differential Input" discussion.
5. 48 kHz oscillator, Figure 5 , increases current by $35 \mu \mathrm{~A}$ (typ).
6. Extra capacitance of CERDIP package changes oscillator resistor value to $470 \mathrm{k} \Omega$ or $150 \mathrm{k} \Omega$ (1 reading $/ \mathrm{sec}$ or $3 \mathrm{readings} / \mathrm{sec}$).

CD01220I
Figure 3: ICL7137 with LED Display

TEST CIRCUITS

Figure 4: $\mathbf{7 1 3 7}$ Clock Frequency 16 kHz (1 reading/sec)

DETAILED DESCRIPTION (Analog Section)

Figure 1 shows the Functional Diagram of the Analog Section for the ICL7137. Each measurement cycle is divided into four phases. They are 1) auto-zero (A-Z), 2) signal integrate (INT), 3) de-integrate (DE) and 4) zerointegrator (ZI).

AUTO-ZERO PHASE

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to. charge the auto-zero capacitor, $C_{A Z}$, to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

SIGNAL INTEGRATE PHASE

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common-mode range; within IV of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

DE-INTEGRATE PHASE

The next phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically; the digital reading displayed is 1000(VIN/VREF).

ZERO INTEGRATOR PHASE

The final phase is zero integrator. First, input low is shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Finally, a feedback loop is closed around the system to input high to cause the integrator output to return to zero. Under normal conditions, this phase lasts for between 11 to 140 clock pulses, but after a 'heavy' overrange conversion, it is extended to 740 clock pulses.

Differential Input

The input can accept differential voltages anywhere within the common-mode range of the input amplifier; or specifically from 0.5 V below the positive supply to 1.0 V above the negative supply. In this range the system has a CMRR of 90 dB typical. However, since the integrator also swings with the common-mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common-mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2 V full-scale swing with little loss of accuracy. The integrator output can swing within 0.3 V of either supply without loss of linearity.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common-mode error is a roll-over voltage caused by the reference capacitance losing or gaining charge to stray capacity on its nodes. If there is a large common-mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for (+) or (-) input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition (see Component Value Selection).

Analog Common

This pin is included primarily to set the common-mode voltage for battery operation or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 3.0 V more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V .

However, analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ($>7 \mathrm{~V}$), the COMMON voltage will have a low voltage coefficient ($0.001 \% / \%$), low output impedance $(\sim 35 \Omega$), and a temperature coefficient typically less than $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

The limitations of the on-chip reference should also be recognized, however. The reference temperature coefficient (TC) can cause some degradation in performance. Temperature changes of $2^{\circ} \mathrm{C}$ to $8^{\circ} \mathrm{C}$, typical for instruments, can give a scale factor error of a count or more. Also, the COMMON voltage will have a poor voltage coefficient when the total supply voltage is less than that which will cause the zener to regulate ($<7 \mathrm{~V}$). These problems are eliminated if an external reference is used, as shown in Figure 6.

Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common-mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common-mode voltage from the converter. The same holds true for the reference voltage. If the reference can be conveniently referred to analog COMMON, it should be since this removes the common-mode voltage from the reference system.

Within the IC, analog COMMON is tied to an N channel FET which can sink $100 \mu \mathrm{~A}$ or more of current to hold the voltage 3.0 V below the positive supply (when a load is trying to pull the common line positive). However, there is only $1 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage, thus overriding the internal reference.

TEST

The TEST pin is coupled to the internal digital supply through a 500Ω resistor, and functions as a "lamp test." When TEST is pulled high (to V^{+}) all segments will be turned on and the display should read - 1888. The TEST pin will sink about 10 mA under these conditions.

DETAILED DESCRIPTION (Digital Section)

Figure 7 shows the digital section for the 7137. The segments are driven at 8 mA , suitable for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA . The polarity indication is ' ON ' for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.

Figure 8 shows a method of increasing the output drive current, using four DM7407 Hex Buffers. Each buffer is capable of sinking 40 mA .

System Timing

Figure 9 shows the clock oscillator provided in the 7137. Three basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An RC oscillator using all three pins.

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the four convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 counts to 2000 counts),
zero integrator (11 counts to 140 counts*) and auto-zero (910 counts to 2900 counts). For signals less than fullscale, auto-zero gets the unused portion of reference deintegrate and zero integrator. This makes a complete measure cycle of 4000 (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48 kHz would be used.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of the 60 Hz period. Oscillator frequencies of $60 \mathrm{kHz}, 48 \mathrm{kHz}, 40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of $6643 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that 40 kHz (2.5 readings/second) will reject both 50 Hz and 60 Hz (also 400 Hz and 440 Hz .) See also A052.
*After an overranged conversion of more than 2060 counts, the zero integrator phase will last 740 counts, and auto-zero will last 260 counts.

COMPONENT VALUE SELECTION

(See Application Note A052)

Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $6 \mu \mathrm{~A}$ of quiescent current. They can supply $\sim 1 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 V full-scale, $1.8 \mathrm{M} \Omega$ is near optimum, and similarly $180 \mathrm{k} \Omega$ for a 200.0 mV scale.

Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 V from either supply). When the analog COMMON is used as a reference, a nominal $\pm 2 \mathrm{~V}$ full-scale integrator swing is fine. For three readings/second (48 kHz clock) nominal values for CINT are $0.047 \mu \mathrm{~F}$, for 1 reading/second (16 kHz) $0.15 \mu \mathrm{~F}$. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.

The integrating capacitor should have low dielectric absorption to prevent roll-over errors. While other types may be adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full-scale where noise is very important, a $0.47 \mu \mathrm{~F}$ capacitor is recommended. The Zl phase allows a large auto-zero capacitor to be used without causing the hysteresis or overrange hangover problems that can occur with the ICL7107 or ICL7117 (See Application Note A032).

Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large common-mode voltage exists (i.e., the REF LO pin is not at analog COMMON) and a 200 mV scale is used, a larger value is required to prevent roll-over error. Generally, $1.0 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance.

Oscillator Components

For all ranges of frequency a 50 pF capacitor is recommended and the resistor is selected from the approximate equation $f \simeq 0.45 / R C$. For 48 kHz clock (3 readings/ second), $R=180 \mathrm{k} \Omega$, while for 16 kHz (1 reading $/ \mathrm{sec}$), $R=560 \mathrm{k} \Omega$.

Reference Voltage

The analog input required to generate full-scale output (2000 counts) is: $\mathrm{V}_{I N}=2 \mathrm{~V}_{\text {REF }}$. Thus, for the 200.0 mV and $2,000 \mathrm{~V}$ scale, $\mathrm{V}_{\text {REF }}$ should equal 100.0 mV and 1.000 V , respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full-scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select $V_{\text {REF }}=0.341 \mathrm{~V}$. A suitable value for the integrating resistor would be $330 \mathrm{k} \Omega$. This makes the system slightly quieter and also avoids the necessity of a divider network on the input. Another advantage of this system occurs when a digital reading of zero is desired for $V_{I N} \neq 0$. Temperature and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

TYPICAL APPLICATIONS

The 7137 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A/D converters.

CD01230
Figure 10: 7137 Using the Internal Reference.

Values shown are for 200.0 mV full-scale, 3 readings/sec. IN LO may be tied to either COMMON for inputs floating with respect to supplies, or GND for single ended inputs. (See discussion under Analog COMMON.)

CD01240I
Figure 11: 7137 with an External BandGap Reference (1.2V Type).

IN LO is tied to COMMON, thus establishing the correct common-mode voltage. COMMON acts as a pre-regulator for the reference. Values shown are for 1 reading/ sec.

CD01250
Figure 12: Recommended Component Values for $\mathbf{2 . 0 0 0 V}$ Full-Scale, 3 Readings/Sec.

For 1 reading/sec, change $C_{\text {INT }}$, ROSC to values of Figure 11.

CD012601
Figure 13: 7137 with Zener Diode Reference.

Since low TC zeners have breakdown voltages $\sim 6.8 \mathrm{~V}$, diode must be placed across the total supply (10V). As in the case of Figure 11, IN LO may be tied to COMMON.

Figure 14: 7137 Operated from Single +5 V Supply.

An external reference must be used in this application, since the voltage between V^{+} and \mathbf{V}^{-}is insufficient for correct operation of the internal reference.

CD01280
Figure 15: Measuring Ratiometric Values of Quad Load Cell.

The resistor values within the bridge are determined by the desired sensitivity.

Figure 16: Circuit for developing Underrange and Overrange signals from outputs.

The LM339 is required to ensure logic compatibility with heavy display loading.

Figure 17: AC to DC Converter with 7137

APPLICATION NOTES

A016 ''Selecting A/D converters," by David Fullagar.
A017 "The Integrating A/D Converter," by Lee Evans.
A018 'Do's and Dont's of Applying A/D Converters,' by Peter Bradshaw and Skip Osgood.
A019 ' $41 / 2 / 2$-Digit Panel Meter Demonstrator/ Instrumentation Boards," by Michael Dufort.
A023 'Low Cost Digital Panel Meter Designs,' by David Fullagar and Michael Dufort.
A032 "Understanding the Auto-Zero and Common-Mode Behavior of the ICL7106/7/9 Family," by Peter Bradshaw.
A046 'Building a Battery-Operated Auto Ranging DVM with the ICL7106,' by Larry Goff.
A047 'Games People Play with Intersil's A/D Converters' edited by Peter Bradshaw.

A052 ''Tips for Using Single-Chip $3 ½$-Digit A/D Converters,' by Dan Watson.

ICL7137 EVALUATION KITS

After purchasing a sample of the 7137, the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application.

To facilitate evaluation of this unique circuit, Intersil is offering a kit which contains all the necessary components to build a $3^{1 / 2} 2$-digit panel meter. With the ICL7137EV/Kit, an engineer or technician can have the system 'up and running' in about half an hour. The kit contains a circuit board, LED display, passive components, and miscellaneous hardware.

ICL8018A／8019A／8020A 4－Bit Expandable Current－Switch

GENERAL DESCRIPTION

The Intersil ICL8018A family are high speed precision current switches for use in current summing digital－to－ analog converters．They consist of four logically controlled current switches and a reference device on a single monolithic silicon chip．The reference transistor，combined with precision resistors and an external source，determines the magnitude of the currents to be summed．By weighting the currents in proportion to the binary bit which controls them，the total output current will be proportional to the binary number represented by the input logic levels．

The performance and economy of this family make them ideal for use in digital－to－analog converters for industrial process control and instrumentation systems．

ORDERING INFORMATION

ACCURACY	MILITARY TEMP RANGE CERDIP	COMMERCIAL TEMP RANGE PLASTIC DIP
Individual Devices	ICL8018AMJD	ICL8018ACPD
$.01 \%$	ICL8019AMJD	ICL8019ACPD
0.1%	ICL8020AMJD	ICL8020ACPD
1.0%		
Matched Sets＊	ICL8018AMXJD	ICL8018ACXPD
$.01 \%$	ICL8019AMXJD	ICL8019ACXPD
0.1%	ICL8020AMXJD	ICL8020ACXPD

FEATURES

－TTL Compatible
－ 12 Bit Accuracy
－40ns，Switching Speed
－Wide Power Supply Range
－Low Temperature Coefficient

APPLICATIONS：

－D／A and A／D Converters
－Digital Threshold Control
－Programmable Voltage Source
－Meter Drive
－X－Y Plotters
＊NOTE：Units ordered in equal quantities will be matched such that the V $\mathrm{VE}_{\mathrm{BE}}$＇s of the 8019 will be within $\pm 10 \mathrm{mV}$ of the 8018 compensating transistor，and the V_{BE}＇s of the 8020 will be within $\pm 50 \mathrm{mV}$ ．The ICL8018－X matched sets consist of one 8018，one 8019，and one 8020．The 8019－X contains one 8019 and one 8020，while the 8020－X contains two 8020＇s．Units shipped as matched sets will be marked with a unique set number．

ABSOLUTE MAXIMUM RATINGS
Supply Voltage \qquad $\pm 20 \mathrm{~V}$
Logic Input Voltage......................................2V to V^{+}

Output Voltage \qquad V BASELINE to +20 V
Storage Temperature
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS $\left(4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 20 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Voltage @ pin $6=-5 \mathrm{~V}$)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\begin{gathered} \text { Absolute Error } \\ \text { ICL8018A } \\ \text { ICL8019A } \\ \text { ICL8020A } \end{gathered}$	$\begin{aligned} & V_{I N H I}=5.0 \mathrm{~V} \\ & V_{I N L O}=0.0 \mathrm{~V} \end{aligned}$			$\begin{gathered} \pm .01 \\ \pm 0.1 \\ \pm 1 \\ \hline \end{gathered}$	\%
Error Temperature Coefficient ICL8018A ICL8019A ICL8020A			$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 2 \end{aligned}$	$\begin{gathered} \pm 5 \\ \pm 25 \\ \pm 50 \end{gathered}$	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
```Settling Time To }\pm1/2 LSB, RL= 1k 8 BIT 1 2 ~ B I T ~```			$\begin{aligned} & 100 \\ & 200 \end{aligned}$		ns
Switching Time To Turn On LSB			40		ns
Output Current (Nominal)   BIT 1 (MSB)   BIT 2   BIT 3   BIT 4 (LSB)			$\begin{gathered} 1.0 \\ 0.5 \\ 0.25 \\ 0.125 \end{gathered}$		mA
Zero Output Current	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$		10	50	nA
Output Voltage Range		$\mathrm{V}_{\text {BASELINE }}+1 \mathrm{~V}$		+ 10	V
```Input Coding-Complementary Binary (See Truth Table) Logic Input Voltage "0' (Switch ON) "1'" (Switch OFF)```	$\Delta \mathrm{I}_{\text {OUT }}<400 \mathrm{nA}$	2.0		0.8	V
Logic Input Current " 0 " "1" (into device)	$\begin{aligned} & V_{I N}=0 V \\ & V_{I N}=5 V \end{aligned}$		$\begin{aligned} & -1.0 \\ & 0.01 \end{aligned}$	$\begin{aligned} & -2 \\ & 0.1 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mu \mathrm{~A} \\ \hline \end{gathered}$
Power Supply Rejection v^{+} V^{-}			$\begin{gathered} .005 \\ .0005 \end{gathered}$		\%/V
Supply Voltage Range V^{+} V^{-}		$\begin{gathered} 4.5 \\ -10 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ -15 \end{gathered}$	$\begin{gathered} 20 \\ -20 \\ \hline \end{gathered}$	V
Supply Current ($\mathrm{V}_{\text {SUPP }}= \pm 20 \mathrm{~V}$) ${ }^{+}$			7 1	$\begin{gathered} 10 \\ 3 \\ \hline \end{gathered}$	mA

BASIC D／A THEORY

The majority of digital to analog converters contain the elements shown in Figure 3．The heart of the D／A converter is the logic controlled switching network，whose output is an analog current or voltage proportional to the digital number on the logic inputs．The magnitude of the analog output is determined by the reference supply and the array of precision resistors，see Figure 4．If the switching network has a current output，often a transconductance amplifier is used to provide a voltage output．

LD00630
Figure 3：Elements of a D／A Converter

DEFINITION OF TERMS

The resolution of a D／A converter refers to the number of logic inputs used to control the analog output．For example，a D／A converter using two quad current sources would be an 8 bit converter．If three quads were used，a 12 bit converter would be formed．Resolution is often stated in terms of one part in，e．g．， 256 since the number of controlling bits is related to total number of identifiable levels by the power of 2．The four bit quad has sixteen different levels（see Table 1）each output corresponding to a particular logic input word．

Table 1：ICL8018／19／20 Truth Table

LOGIC INPUT	```NOMINAL OUTPUT CURRENT（mA）```
0000	1.875
0001	1.750
0010	1.625
0011	1.500
0100	1.375
0101	1.250
0110	1.125
0111	1.000
1000	0.825
1001	0.750
1010	0.625
1011	0.500
1100	0.375
1101	0.250
1110	0.125
1111	0.000

Note that maximum output of the quad switch is $1+1$／ $2+1 / 4+1 / 8=1-7 / 8=1.875 \mathrm{~mA}$ ．If this series of bits were continued as $1 / 16+1 / 32+1 / 64 \ldots 1 / 2^{(n-1)}$ ， the maximum output limit would approach 2.0 mA ．This
limiting value is called full scale output．The maximum output is always less than the full scale output by one least significant bit，LSB．For a twelve bit system（resolution 1 part in 4096）with a full scale output of 10.0 volts the maximum output would be $4095 / 4096 \times 10 \mathrm{~V}$ ．Since the numbers are extremely close for high resolution systems， the terms are often used interchangeably．

The accuracy of a D／A converter is generally taken to mean the largest error of any output level from its nominal value．The accuracy or absolute error is often expressed as a percentage of the full scale output．

Linearity relates the maximum error in terms of the deviation from the best straight line drawn through all the possible output levels．Linearity is related to accuracy by the scale factor and output offset．If the scale factor is exactly the nominal value and offset is adjusted to zero，then accuracy and linearity are identical．Linearity is usually specified as being within $\pm 1 / 2$ LSB of the best straight line．

Another desirable property of D／A converter is that it be monotonic．This simply implies that each successive output level is greater than the preceding one．A possible worst case condition would be when the output changes from most significant bit（MSB）OFF，all other bits ON to the next level which has the MSB ON and all other bits OFF， e．g．， 10000 ．．to 01111.

In applications where a quad current switch drives a transconductance amplifier（current to voltage converter）， transient response is almost exclusively determined by the output amplifier itself．Where the quad output current drives a resistor to ground，switching time and settling time are useful parameters．

Switching time is the familiar 10% to 90% rise time type of measurement．Low capacitance scope probes must be used to avoid masking the high speeds that current source switching affords．The settling time is the elapsed time between the application of a fast input pulse and the time at which the output voltage has settled to or approached its final value within a specified limit of accuracy．This limit of accuracy should be commensurate with the resolution of the DAC to be used．

Typically，the settling time specification describes how soon after an input pulse the output can be relied upon as accurate to within $\pm 1 / 2$ LSB of an N bit converter．Since the 8018A family has been designed with all the collectors of the current switching transistors tied together，the output capacitance is constant．The transient response is，there－ fore，a simple exponential relationship，and from this the settling time can be calculated and related to the measured rise time as shown in Table 2.
Table 2：Settling Time vs．Rise Time Resistor Load

BITS OF RESOLUTION	$\pm 1 / 2$ LSB ERROR \％FULL SCALE	NUMBER OF TIME CONSTANTS	NUMBER OF RISE TIMES
8	$.2 \%$	6.2	2.8
10	$.05 \%$	7.6	3.4
12	$.01 \%$	9.2	4.2

Rise Time $(10 \%-90 \%)=2.2 R_{L} C_{\text {eff }}$

ICL8018A/8019A/8020A

DETAILED DESCRIPTION

An example of a practical circuit for the ICL8018A quad current switch is shown in Figure 4. The circuit can be analyzed in two sections; the first generates very accurate currents and the second causes these currents to be switched according to input logic signals. A reference current of $125 \mu \mathrm{~A}$ is generated by a stable reference supply and a precision resistor. An op-amp with low offset voltage and low input bias current, such as the ICL8008, is used in conjunction with the internal reference transistor, Q_{6}, to force the voltage on the common base line, so that the collector current of Q_{6} is equal to the reference current. The emitter current of Q_{6} will be the sum of the reference current and a small base current causing a drop of slightly greater than 10 volts across the $80 \mathrm{k} \Omega$ resistor in the emitter of Q_{6}. Since this resistor is connected to -15 V , this puts the emitter of Q_{6} at nearly -5 V and the common base line at one V_{BE} more positive at -4.35 V typically.

Also connected to the common base line are the switched current source transistors Q_{7} through Q_{10}. The emitters of these transistors are also connected through weighted precision resistors to -15 V and their collector currents summed at pin 8. Since all these transistors, Q_{6} through Q_{10}, are designed to have equal emitter-base voltages, it follows that all the emitter resistors will have equal voltage drops across them. It is this constant voltage
and the precision resistors at the emitter that determine the exact value of switched output current. The emitter resistor of Q_{7} is equal to that of Q_{6}, therefore, Q_{7} 's collector current will be IREF or $125 \mu \mathrm{~A}$. Q_{8} has $40 \mathrm{k} \Omega$ in the emitter so that its collector current will be twice IREF or $250 \mu \mathrm{~A}$. In the same way, the $20 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ in the emitters of Q_{9} and Q_{10} contribute 0.5 mA and 1 mA to the total collector current.

The reference transistor and four current switching transistors are designed for equal emitter current density by making the number of emitters proportional to the current switched.

The remaining circuitry provides switching signals from the logic inputs. In the switch ON mode, zener diodes D_{5} through D_{8}, connected to the emitter of each current switch transistor Q_{7} thru Q_{10}, are reverse biased allowing the transistors to operate, producing precision currents summed in the collectors. The transistors are turned off by raising the voltage on the zeners high enough to turn on the zeners and raise the emitters of the switching transistor. This reverse biases the emitter base diode thereby shutting off that transistor's collector, current.

The analog output current can be used to drive one load directly, ($1 \mathrm{k} \Omega$ to ground for $\mathrm{FS}=1.875 \mathrm{~V}$ for example) or can be used to drive a transconductance amplifier to give larger output voltages.

Figure 4: Typical Circuit

Figure 5: Expanding the Quad Switch

EXPANDING THE QUAD SWITCH

While there are few requirements for only 4 bit D to A converters, the 8018 A is readily expanded to 8 and 12 bits with the addition of other quads and resistor dividers as shown in Figure 5.

To maintain the progression of binary weighted bit currents, the current output of the first quad drives the input of the transconductance amplifier directly, while a resistor divider network divides the output current of the second quad by 16 and the output current of the third by 256.

$$
\begin{aligned}
\text { e.g., ITotal }= & 1 \times(1+1 / 2+1 / 1+1 / 8)+1 / 16(1+1 / 2+1 / 4+1 / 8) \\
& +1 / 256(1+1 / 2+1 / 8+1 / 8) \\
& 1+1 / 2+1 / 4+1 / 8+1 / 16+1 / 32+1 / 64+1 / 128 . \\
& +1 / 256+1 / 512+1 / 1024+1 / 2048 .
\end{aligned}
$$

Note that each current switch is operating at the same high speed current levels so that standard 10k, 20k, 40k and $80 \mathrm{k} \Omega$ resistor networks can be used. Another advantage of this technique is that since the current outputs of the second and third quad are attenuated, so are the errors they contribute. This allows the use of less accurate switches and resistor networks in these positions; hence, the three accuracy grades of $.01 \%, 0.1 \%$, and 1% for the 8018A, 8019A and 8020A, respectively. It should be noted that only the reference transistor on the most significant quad is required to set up the voltage on the common base line joining the three sets of switching transistors (Pin 9).

generating reference currents ZENER REFERENCE

As mentioned above, the 8018A switches currents determined by a constant voltage across the external precision resistors in the emitter of each switch. There are several ways of generating this constant voltage. One of the simplest is shown in Figure 6. Here an external zener diode is driven by the same current source line used to bias internal Zener D_{11}.

DS015801
Figure 6: Simple Zener Reference

The zener current will be typically 1 mA per quad. The compensation transistor Q_{6} is connected as a diode in series with the external zener. The V_{BE} of this transistor will approximately match the $V_{B E}$'s of the current switching transistors, thereby forcing the external zener voltage across each of the external resistors. The temperature coefficient of the external zener will dominate the temperature dependence of this scheme, however using a temperature compensated zener minimizes this problem. Since Q_{6} is operating at a higher current density than the other switching transistors, the temperature matching of $V_{B E}$'s is not optimum, but should be adequate for a simple 8 or 10 bit converter.

Figure 7: PNP Reference

The 8018A series is tested for accuracy with 10 V reference voltage across the precision resistors, implying use of a 10 volt zener. Using a different external zener voltage will only slightly degrade accuracy if the zener voltage is above 5 or 6 volts.

When using other than 10 volt reference, the effects on logic thresholds should also be noted (see logic levels below). Full scale adjustment can be made at the output amplifier.

PNP REFERENCE

Another simple reference scheme is shown in Figure 7. Here an external PNP transistor is used to buffer a resistor divider. In this case, the -15 volt supply is used as a reference. Holding the V^{-}supply constant is not too difficult since the 8018A is essentially a constant current load. In this scheme, the internal compensation transistor is not necessary, since the $V_{B E}$ matching is provided by the emitter-base junction of the external transistor. A small pot in series with the divider facilitates full scale output adjustment. A capacitor from base to collector of the external PNP will lower output impedance and minimize transient effects.

FULL COMPENSATION REFERENCE

For high accuracy, low drift applications, the reference scheme of Figure 4, offers excellent performance. In this circuit, a high gain op-amp compares two currents. The first is a reference current generated in Rs by the temperature compensated zener and the virtual ground at the noninverting op-amp input. The second is the collector current of the reference transistor Q_{6}, provided on the quad switch. The output of the op-amp drives the base of Q_{6} keeping its collector current exactly equal to the reference current. Since the switching transistor's emitter current densities are equal and since the precision resistors are proportional, all of the switched collector currents will have the proper value.

The op-amp feedback loop using the internal reference transistor will maintain proper currents in spite of V_{BE} drift, beta drift, resistor drift and changes in V^{-}. Using this circuit, temperature drifts of $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ are typical. A discrete diode connected as shown will keep Q_{6} from saturating and prevent latch up if V^{-}is disconnected.

In any reference scheme, it is advisable to capacitively decouple the common base line to minimize transient effects. A capacitor, $.001 \mu \mathrm{~F}$ to $.1 \mu \mathrm{~F}$ from Pin 9 to analog ground is usually sufficient.

IMPROVED ACCURACY

As a final note on the subject of setting up reference levels, it should be pointed out that the largest contributor of error is the mismatch of $V_{B E}$'s of the current switching transistors. That is, if all the V_{BE} 's were identical, then all precision resistors would have exactly the same reference voltage across them. A one millivolt mismatch compared with ten volt reference across the precision resistors will cause a $.01 \%$ error. While decreasing the reference voltage will decrease the accuracy, the voltage can be increased to achieve better than $.01 \%$ accuracies. The voltage across the emitter resistors can be doubled or tripled with a proportional increase in resistor values resulting in improved absolute accuracy as well as improved temperature drift performance. This technique has been used successfully to implement up to 16 bit D/A converters.

For further information see the following Applications Bulletins.
A016 'Selecting A/D Converters'' by Dave Fullagar.
A018 'Do's and Don'ts of Applying A/D Converters' by Peter Bradshaw and Skip Osgood.
A020 ''A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing' by Ed Sliger.

ICL8052/ICL7104 and ICL8068/ICL7104 14/16-Bit μ P-Compatible 2-Chip A/D Converter

GENERAL DESCRIPTION

The ICL.7104, combined with the ICL8052 or ICL8068, forms a member of Intersil's high performance A/D converter family. The ICL7104-16, performs the analog switching and digital function for a 16-bit binary A/D converter, with fuli three-state output, UART handshake capability, and other outputs for easy interfacing. The ICL7014-14 is a 14-bit version. The analog section, as with all Intersil's integrating converters, provides fully precise Auto-Zero, Auto-Polarity (including ± 0 null indication), single reference operation, very high input impedance, true input integration over a constant period for maximum EMI rejection, fully ratiometric operation, over-range indication, and a medium quality built-in reference. The chip pair also offers optional input buffer gain for high sensitivity applications, a built-in clock oscillator, and output signals for providing an external Auto-Zero capability in preconditioning circuitry, synchronizing external multiplexers, etc.

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ICL8052CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Pin Plastic DIP
ICL8052CDD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Pin Ceramic DIP
ICL8052ACPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Pin Plastic DIP
ICL8052ACDD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Pin Ceramic DIP
ICL8068CJD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Pin CERDIP
ICL8068ACJD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Pin CERDIP

FEATURES

- 16/14 Bit Binary Three-State Latched Outputs Plus Polarity and Overrange
- Ideally Suited for Interface to UARTs and Microprocessors
- Conversion On Demand or Continuously
- Guaranteed Zero Reading for Zero Volts Input
- True Polarity at Zero Count for Precise Null Detection
- Single Reference Voltage for True Ratiometric Operation
- Onboard Clock and Reference
- Auto-Zero; Auto-Polarity
- Accuracy Guaranteed to 1 Count
- All Outputs TTL Compatible
- $\pm 4 V$ Analog Input Range
- Status Signal Available for External Sync, A/Z in Preamp, etc

PART NUMBER	TEMP. RANGE	PACKAGE
ICL7104-14CJL	$0^{\circ} \mathrm{C}$ to $-70^{\circ} \mathrm{C}$	40 -Pin CERDIP
ICL7104-14CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic DIP
ICL7104-14CDL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Ceramic DIP
ICL7104-16CJL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin CERDIP
ICL7104-16CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic DIP
ICL7104-16CDL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Ceramic DIP

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (1) All Devices

\qquad 500 mW
Storage Temperature ..

\qquad
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$ICL8052, 8068
Supply Voltage. $\pm 18 \mathrm{~V}$
Differential Input Voltage (8068) $\pm 30 \mathrm{~V}$
(8052) $\pm 6 \mathrm{~V}$
Input Voltage (2) $\pm 15 \mathrm{~V}$
Output Short Circuit Duration,
All Outputs (3)
\qquad Indefinite

ICL7104

$V+$ Supply (GND to $V+$) 12V
V ++ to V- 32 V
Positive Supply Voltage (GND to $\mathrm{V}++$) 17V
Negative Supply Voltage (GND to $V-$) 17V
Analog Input Voltage (Pins 32-39) (4)
(Pins 2-30) (5) \qquad (GND-0.3V) to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$

Notes:

1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $+70^{\circ} \mathrm{C}$. For higher temperatures, derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3: Short circuit may be to ground or either supply. Rating applies to $+70^{\circ} \mathrm{C}$ ambient temperature.
4: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
5: Connecting any digital inputs or outputs to voltages greater than $V+$ or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources not on the same power supply be applied to the ICL.7104 before its power supply is established.
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CD013711

C0013811
(OUTLINE DWGS DL, JL, PL)
Figure 2: Pin Configurations

ICL7104 ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}++=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

SYMBOL	CHARACTERISTICS		TEST CONDITIONS	MIN	TYP	MAX	UNIT
In	Clock Input	CLOCK 1	$\mathrm{V}_{\text {in }}=+5 \mathrm{~V}$ to 0 V	± 2	± 7	± 30	$\mu \mathrm{A}$
IN	Comparator I/P	COMP IN (Note 1)	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$ to +5 V	-10	± 0.001	+10	$\mu \mathrm{A}$
IIH	inputs with Pulldown	MODE	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$	+1	+5	+30	$\mu \mathrm{A}$
ILL			$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$	-10	± 0.01	+10	$\mu \mathrm{A}$
IIH	Inputs with Pullups	SEN, R/ \bar{H} LBEN, $\overline{\text { MBEN, }}$ HBEN $\overline{C E} / L D$ (Note 2)	$V_{\text {in }}=+5 \mathrm{~V}$	-10	± 0.01	+10	$\mu \mathrm{A}$
IIL			$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$	-30	-5	-1	$\mu \mathrm{A}$
V_{H}	Input High Voltage	All Digital Inputs		2.5	2.0	-	V

ICL7104 ELECTRICAL CHARACTERISTICS（CONT．）

SYMBOL	CHARACTERISTICS		TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	All Digital Inputs			1.5	1.0	V
V OL	Digital Outputs Three－Stated On	$\left.\begin{array}{l}\overline{\text { LBEN }} \\ \overline{\text { MBEN }} \text {（16－only）} \\ \overline{\text { HBEN }} \\ \overline{\text { CE／LD }} \\ \text { BIT n，POL，OR }\end{array}\right\}$	$\mathrm{IOL}=1.6 \mathrm{~mA}$	－	0.27	． 4	V
V_{OH}			$\mathrm{IOH}=-10 \mu \mathrm{~A}$		4.5	－	V
V_{OH}			$\mathrm{I}_{\mathrm{OH}}=-240 \mu \mathrm{~A}$	2.4	3.5	－	V
＇OL	Digital Outputs Three－Stated Off	BIT n，POL，OR	$0 \leq \mathrm{V}_{\text {out }} \leq \mathrm{V}+$	－10	$\pm .001$	＋10	$\mu \mathrm{A}$
VOL	Non－Three State Digital Output	STTS	$\mathrm{IOL}=3.2 \mathrm{~mA}$	－	0.3	． 4	V
V_{OH}			$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4	3.3	－	V
VOL		CLOCK 2	$\mathrm{I}^{\mathrm{OL}}=320 \mu \mathrm{~A}$		0.5		V
V_{OH}			$\mathrm{I}_{\mathrm{OH}}=-320 \mu \mathrm{~A}$		4.5		V
VOL		CLOCK 3 （－14 ONLY）	$\mathrm{I}^{\mathrm{OL}}=1.6 \mathrm{~mA}$		0.27	． 4	V
V_{OH}			$\mathrm{I}^{\mathrm{OH}}=-320 \mu \mathrm{~A}$	2.4	3.5		V
$\mathrm{R}_{\mathrm{DS} \text {（on）}}$	Switch	Switch 1		－	25k		Ω
$\mathrm{R}_{\mathrm{DS} \text {（on）}}$		Switches 2，3		－	4k	20k	Ω
$\mathrm{R}_{\mathrm{DS} \text {（on）}}$		Switches 4，5，6，7，8，9		－	2k	10k	Ω
$I_{\text {d（off）}}$		Switch Leakage		－	15		pA
	Clock	Clock Freq．（Note 4）		DC	200	400	kHz
$1+$	Supply Currents	+5 V Supply Current All outputs high impedance	Freq．$=200 \mathrm{kHz}$		200	600	$\mu \mathrm{A}$
$1++$		+15 V Supply Current	Freq．$=200 \mathrm{kHz}$		． 3	1.0	mA
1－		－15V Supply Current	Freq．$=200 \mathrm{kHz}$		25	200	$\mu \mathrm{A}$
V＋	Supply Voltage Range	Logic Supply	Note 5	4.0		＋11．0	V
V＋＋		Positive Supply		＋10．0		＋ 16.0	V
V －		Negative Supply		－16．0		－10．0	V

NOTES：1．This spec applies when not in Auto－Zero phase．
2．Apply only when these pins are inputs，i．e．，the mode pin is low，and the 7104 is not in handshake mode．
3．Apply only when these pins are outputs，i．e．，the mode pin is high or the 7104 is in handshake mode．
4．Clock circuit shown in Figs． 15 and 16.
5．$V+$ must not be more positive than $V++$ ．
ICL8068 ELECTRICAL CHARACTERISTICS（VSUPPLY $= \pm 15 \mathrm{~V}$ unless otherwise specified）

SYMBOL	CHARACTERISTICS	$\begin{gathered} \text { TEST } \\ \text { CONDITIONS } \end{gathered}$	8068			8068A			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
EACH OPERATIONAL AMPLIFIER									
V ${ }_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$		20	65		20	65	mV
IIN	Input Current（either input）（Note 1）	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		175	250		80	150	pA
CMRR	Common－Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	70	90		70	90		dB
	Non－Linear Component of Common－ Mode Rejection Ratio（Note 2）	$\mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}$		110			110		dB
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega$	20，000			20，000			V／V
SR	Slew Rate			6			6		$\mathrm{V} / \mu \mathrm{s}$
GBW	Unity Gain Bandwidth			2			2		MHz
ISC	Output Short－Circuit Current			5	10		5	10	mA
COMPARATOR AMPLIFIER									
AVOL	Small－signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega$		4000					V／V
$+\mathrm{V}_{\mathrm{O}}$	Positive Output Voltage Swing		＋12	＋13		$+12$	＋13		V
$-\mathrm{V}_{\mathrm{O}}$	Negative Output Voltage Swing		－2．0	－2．6		－2．0	－2．6		V
VOLTAGE REFERENCE									
Vo	Output Voltage		1.5	1.75	2.0	1.60	1.75	1.90	V
R_{O}	Output Resistance			5			5		ohms
TC	Temperature Coefficient			50			40		ppm $/{ }^{\circ} \mathrm{C}$

ICL8052/ICL7104

ICL8068 ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	8068			8068A			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {SUPPLY }}$	Supply Voltage Range		± 10		± 16	± 10		± 16	V
ISUPPLY	Supply Current Total				14		8	14	mA

ICL8052 ELECTRICAL CHARACTERISTICS (VSUPPLY $= \pm 15 \mathrm{~V}$ unless otherwise specified)

SYMBOL	CHARACTERISTICS	TEST	8068			8068A			UNIT
		CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	
EACH OPERATIONAL AMPLIFIER									
Vos	Input Offset Voltage	$V_{C M}=0 V$		20	75		20	75	mV
IIN	Input Current (either input) (Note 1)	$V_{C M}=0 \mathrm{~V}$		5	50		2	10	pA
CMRR	Common-Mode Rejection Ratio	$V_{C M}= \pm 10 \mathrm{~V}$	70	90		70	90		dB
	Non-Linear Component of CommonMode Rejection Ratio (Note 2)	$V_{C M}= \pm 2 \mathrm{~V}$		110			110		dB
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega$	20,000			20,000			V/V
SR	Slew Rate	-		6			6		$\mathrm{V} / \mu \mathrm{s}$
GBW	Unity Gain Bandwidth			1			1		MHz
ISC	Output Short-Circuit Current			20	100		20	100	mA
COMPARATOR AMPLIFIER									
AVOL	Small-signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega$		4000					V/V
$+\mathrm{V}_{\mathrm{O}}$	Positive Output Voltage Swing		$+12$	$+13$		$+12$	$+13$		V
$-\mathrm{V}_{0}$	Negative Output Voltage Swing		-2.0	-2.6		-2.0	-2.6		V
VOLTAGE REFERENCE									
V_{0}	Output Voltage		1.5	1.75	2.0	1.60	1.75	1.90	V
RO_{0}	Output Resistance			5			5		ohms
TC	Temperature Coefficient			50			40		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
VSUPPLY	Supply Voltage Range		± 10		± 16	± 10		± 16	V
ISUPPLY	Supply Current Total			6	12		6	12.	mA

NOTES: 1. The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{J}. Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal
operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd} . \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\mathrm{R}_{\theta J A} \mathrm{Pd}_{\mathrm{d}}$ where $R_{\theta J A}$ is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.
2. This is the only component that causes error in dual-slope converter.

SYSTEM ELECTRICAL CHARACTERISTICS: ICL8068/7104 ($\mathrm{V}++=+15 \mathrm{~V}, \mathrm{~V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$,
Clock Frequency $=200 \mathrm{kHz}$)

CHARACTERISTICS	TEST CONDITIONS	8068A/7104-14			8068A/7104-16			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Zero Input Reading	$\begin{aligned} & V_{\text {in }}=0.0 \mathrm{~V} \\ & \text { Full Scale }=4.000 \mathrm{~V} \end{aligned}$	-0.0000	± 0.0000	$+0.0000$	-0.0000	-0.0000	$+0.0000$	Hexadecimal Reading
Ratiometric Reading (1)	$\begin{aligned} & V_{\text {in }}=V_{\text {Ref. }} \\ & \text { Full Scale }=4.000 \mathrm{~V} \end{aligned}$	1FFF	2000	2001	7FFF	8000	8001	Hexadecimal Reading
Linearity over \pm Full Scale (error of reading from best straight line)	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}$		0.5	1		0.5	1	LSB
Differential Linearity (difference between worst case step of adjacent counts and ideal step)	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}$. 01			. 01		LSB
Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-V_{\text {in }}=+V_{\text {in }} \simeq 4 \mathrm{~V}$		0.5	1		0.5	1	LSB
Noise (P-P value not exceeded 95% of time)	$\begin{aligned} & \mathrm{V}_{\text {in }}=0 \mathrm{~V} \\ & \text { Full scale }=4.000 \mathrm{~V} \end{aligned}$		2			2		$\mu \mathrm{V}$
Leakage Current at Input (2)	$V_{\text {in }}=0 \mathrm{~V}$		100	165		100	165	pA
Zero Reading Drift	$\begin{aligned} & V_{\text {in }}=0 V \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \end{aligned}$		0.5	2		0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

SYSTEM ELECTRICAL CHARACTERISTICS：ICL8068／7104（CONT．）

CHARACTERISTICS	TEST CONDITIONS	8068A／7104－14			8068A／7104－16			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Scale Factor Temperature（3）Coefficient	$\begin{aligned} & \mathrm{V}_{\text {in }}=+4 \mathrm{~V} \\ & 0 \leq \mathrm{T}_{A} \leq 50^{\circ} \mathrm{C} \\ & \text { (ext. ref. } \mathrm{Oppm} /{ }^{\circ} \mathrm{C} \end{aligned}$		2	5		2	5	ppm $/{ }^{\circ} \mathrm{C}$

SYSTEM ELECTRICAL CHARACTERISTICS：ICL8052／7104（ $\mathrm{V}++=+15 \mathrm{~V}, \mathrm{~V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$ ，
Clock Frequency $=200 \mathrm{kHz}$ ）

CHARACTERISTICS	TEST CONDITIONS	8052A／7104－14			8052A／7104－16			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Zero Input Reading	$\begin{aligned} & \mathrm{V}_{\text {in }}=0.0 \mathrm{~V} \\ & \text { Full Scale }=4.000 \mathrm{~V} \end{aligned}$	－0．0000	± 0.0000	＋0．0000	－0．0000	± 0.0000	$+0.0000$	Hexadecimal Reading
Ratiometric Reading（3）	$\begin{aligned} & V_{\text {in }}=V_{\text {Ref. }} \\ & \text { Full Scale }=4.000 \mathrm{~V} \end{aligned}$	1FFF	2000	2001	7FFF	8000	8001	Hexadecimal Reading
Linearity over \pm Full Scale（error of reading from best straight line）	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}$		0.5	1		0.5	1	LSB
Differential Linearity（difference between worst case step of adjacent counts and ideal step）	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}$		． 01			． 01		LSB
Rollover error（Difference in reading for equal positive \＆negative voltage near full scale）	$-\mathrm{V}_{\text {in }}=+\mathrm{V}_{\text {in }} \approx 4 \mathrm{~V}$		0.5	1		0.5	1	LSB
Noise（P－P value not exceeded 95\％of time）	$\begin{aligned} & \mathrm{V}_{\text {in }}=0 \mathrm{~V} \\ & \text { Full scale }=4.000 \mathrm{~V} \end{aligned}$		30			30		$\mu \mathrm{V}$
Leakage Current at Input（2）	$V_{\text {in }}=0 \mathrm{~V}$		20	30		20	30	pA
Zero Reading Drift	$\begin{aligned} & V_{\text {in }}=O V \\ & 0^{\circ} \leq T_{A} \leq 70^{\circ} \mathrm{C} \end{aligned}$		0.5	2		0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\text {in }}=+4 \mathrm{~V} \\ & 0 \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & \text { (ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$		2	5		2	5	ppm $/{ }^{\circ} \mathrm{C}$

NOTES：1．Tested with low dielectric absorption integrating capacitor．
2．the input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature， T_{J} ．Due to limited production test time，the input bias currents are measured with junctions at ambient temperature．In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation， $\mathrm{Pd}_{\mathrm{d}} . \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{A}+\mathrm{R}_{\theta \mathrm{JA}} \mathrm{Pd}_{\mathrm{d}}$ where $R_{\theta J A}$ is the thermal resistance from junction to ambient．A heat sink can be used to reduce temperature rise．
3．The temperature range can be extended to $70^{\circ} \mathrm{C}$ and beyond if the Auto－Zero and Reference capacitors are increased to absorb the high temperature leakage of the 8068 ．See note 2 above．

ICL8052/ICL7104

AC CHARACTERISTICS $(\mathrm{V}++=+15 \mathrm{~V}, \mathrm{~V}+=+5 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V})$

SYMBOL	DESCRIPTION	MIN	TYP	MAX
$t_{\text {bea }}$	$\overline{\text { XBEN Min. Pulse Width }}$	UNIT		
$t_{\text {dab }}$	Data Access Time from XBEN		300	
$t_{\text {dhb }}$	Data Hold Time from $\overline{\text { XBEN }}$		300	
$t_{\text {cea }}$	$\overline{\text { CE/LD Min. Pulse Width }}$			
$t_{\text {dac }}$	Data Access Time from $\overline{\text { CE/LD }}$		200	
$t_{\text {dhc }}$	Data Hold Time from CE/LD		350	
$t_{\text {cwh }}$	CLOCK 1 High Time		350	

Table 2: Handshake Timing Requirements

NAME	DESCRIPTION	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {mw }}$	MODE Pulse (minimum)		20		ns
t_{sm}	MODE pin set-up time		-150		
$\mathrm{t}_{\text {me }}$	MODE pin high to low $Z \overline{C E / L D}$ high delay		200		
$t_{\text {mb }}$	MODE pin high to XBEN low Z (high) delay		200		
$\mathrm{t}_{\mathrm{cel}}$	CLOCK 1 high to $\overline{C E / L D}$ low delay		700		
$\mathrm{t}_{\text {ceh }}$	CLOCK 1 high to $\overline{C E / L D}$ high delay		600		
$\mathrm{t}_{\mathrm{cbl}}$	CLOCK 1 high to XBEN low delay		900		
$\mathrm{t}_{\mathrm{cbh}}$	CLOCK 1 high to XBEN high delay		700		
$\mathrm{t}_{\mathrm{cdh}}$	CLOCK 1 high to data enabled delay		1100		
$\mathrm{t}_{\mathrm{cdi}}$	CLOCK 1 low to data disabled delay		1100		
$\mathrm{t}_{\text {ss }}$	Send ENable set-up time		-350		
$\mathrm{t}_{\mathrm{cbz}}$	CLOCK 1 high to XBEN disabled delay		2000		
$\mathrm{t}_{\text {cez }}$	CLOCK 1 high to $\overline{C E / L D}$ disabled delay		2000		
$\mathrm{t}_{\mathrm{cwh}}$	CLOCK 1 High Time	1250	1000		

WF013411
Figure 6: Handshake Mode Timing Diagram

Table 3: Pin Descriptions

PIN	SYMBOL	OPTION	DESCRIPTION
1	V(+ +)		Positive Supply Voltage Nominally +15 V
2	GND		Digital Ground . OV , ground return
3	STTS		STaTuS output. HI during Integrate and Deintegrate until data is latched. LO when analog section is in Auto-Zero configuration.
4	POL		POLarity. Three-state output. HI for positive input.
5	OR		OverRange. Three-state output.
6	$\begin{array}{\|ll} \hline \text { BIT } & 16 \\ \text { BIT } & 14 \end{array}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	(Most significant bit)
7	$\begin{array}{\|ll} \hline \text { BIT } & 15 \\ \text { BIT } & 13 \end{array}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	Data Bits, Three-state outputs. See Table 4 for format of ENables and bytes. HIGH = true
8	$\begin{array}{\|ll} \hline \text { BIT } & 14 \\ \text { BIT } & 12 \end{array}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
9	$\begin{array}{\|ll} \hline \text { BIT } & 13 \\ \text { BIT } & 11 \end{array}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
10	$\begin{array}{\|l\|l\|} \text { BIT } & 12 \\ \text { BIT } 10 \end{array}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
11	$\begin{array}{\|ll} \hline \text { BIT } 11 \\ \text { BIT } 9 \end{array}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
12	$\begin{aligned} & \text { BIT } 10 \\ & \text { nc } \end{aligned}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
13	$\begin{aligned} & \text { BIT } 9 \\ & \text { nc } \end{aligned}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
14	BIT 8		
15	BIT 7		
16	BIT 6		
17	BIT 5		
18	BIT 4		
19	BIT 3		
20	BIT 2		
21	BIT 1		Least significant bit.
22	LBEN		Low B̄yte ENable. If not in handshake mode (see pin 27) when LO (with $\overline{C E} / \overline{L D}$, pin 30) activates low-order byte outputs, BITS 1-8 When in handshake mode (see pin 27), serves as a low-byte flag output. See Figures 12, 13, 14.

PIN	SYMBOL	OPTION	DESCRIPTION
23	MBEN HBEN	-16 -14	Mid $\bar{B} y t e \overline{E N a b l e . ~}$ Activates BITS 9-16, see LBEN (pin 22) High B̄yte ENable. Activates BITS 9-14, POL, OR, see LBEN (pin 22)
24	HBEN CLOCK3	-16 -14	High Byyte ENable. Activates POL, OR, see LBEN (pin 22). RC oscillator pin. Can be used as clock output.
PIN	SYMBOL	DESCRIPTION	
25	CLOCK1	Clock input. External clock or ocsillator.	
26	CLOCK2	Clock output. Crystal or RC oscillator.	
27	MODE	Input LO; Direct output mode where $\overline{C E} / \overline{L D}$, HBEN, MBEN and LBEN act as inputs directly controlling byte outputs. If pulsed HI causes immediate entry into handshake mode (see Figure 14). If HI, enables CE/LD, HBEN, MBEN, and LBEN as outputs. Handshake mode will be entered and data output as in Figures 12 \& 13 at conversion completion.	
28	R/F	Run/Hold: Input HI-conversions coptinously performed every $2^{17}(-16)$ or $2^{15}(-14)$ clock pulses. Input LOconversion in progress completed, converter will stop in Auto-Zero 7 counts before input integrate.	
29	SEN	Send-ENable: Input controls timing of byte transmission in handshake mode. HI indicates 'send'.	
30	$\overline{C E} / \overline{L D}$	C̄hip-Enable/[oā. With MODE (pin 27) LO, $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ serves as a master output enable; when HI , the bit outputs and POL, OR are disabled. With MODE HI, pin serves as a LoaD strobe (-ve going) used in handshake mode. See Figures 12 \& 13.	
31	$V(+)$	Positive Logic Supply Voltage. Nominally +5 V .	
32	AN, IN	ANalog INput. High side.	
33	BUF IN	BUFfer INput to analog chip (ICL8052 or ICL8068)	
34	REFCAP2	REFerence CAPacitor (negative side)	
35	AN.GND.	ANalog GrouND. Input low side and reference low side.	
36	A-Z	Auto-Zero node.	
37	VREF	Voltage REFerence input (positive side).	
38	REFCAP1	REFerence CAPacitor (positive side).	
39	COMP-IN	COMParator INput from 8052/8068	
40	$\mathrm{V}(-)$	Negative Supply Voltage. Nominally -15V.	

Table 4: Three-State Byte Formats and ENable Pins

7104-16	CE/LD																	
	HBEN		MBEN								LBEN							
	POL	$0 /$ R	B16	815	814	813	B12 81		B10	B9	88	B7	B6	B5	B4	B3	B2	B1
			HBEN								LBEN							
7104-14			POL	O/	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1

Figure 1 shows the functional block diagram of the operating system. For a detailed explanation, refer to Figure 7 below.

Figure 7A: Phase I Auto-Zero

DETAILED DESCRIPTION

Analog Section

Figure 7 shows the equivalent Circuit of the Analog Section of both the ICL7104/8052 and the ICL7104/8068 in the 3 different phases of operation. If the Run/Hold pin is left open or tied to $\mathrm{V}+$, the system will perform conversions at a rate determined by the clock frequency: 131,072
for - 16 and 32,368 for -14 clock periods per cycle (see Figure 9 conversion timing).
Auto-Zero Phase I Figure 7A
During Auto-Zero, the input of the buffer is shorted to analog ground thru switch 2, and switch 1 closes a loop around the integrator and comparator. The purpose of the loop is to charge the Auto-Zero capacitor until the integrator output no longer changes with time. Also, switches 4 and 9 recharge the reference capacitor to $\mathrm{V}_{\text {REF }}$.

Figure 7C: Phase III + Deintegrate

Figure 7D: Phase III - Deintegrate

Input Integrate Phase II Figure 7B

During input integrate the Auto-Zero loop is opened and the analog input is connected to the buffer input thru switch 3. (The reference capacitor is still being charged to $V_{\text {REF }}$ during this time.) If the input signal is zero, the buffer, integrator and comparator will see the same voltage that existed in the previous state (Auto-Zero). Thus the integrator output will not change but will remain stationary during the entire Input integrate cycle. If V_{IN} is not equal to zero, an unbalanced condition exists compared to the Auto-Zero phase, and the integrator will generate a ramp whose slope is proportional to $\mathrm{V}_{\text {IN }}$. At the end of this phase, the sign of the ramp is latched into the polarity F/F.

Deintegrate Phase III Figure 7C \& D

During the Deintegrate phase, the switch drive logic uses the output of the polarity F/F in determining whether to close switches 6 and 9 or 7 and 8 . If the input signal was positive, switches 7 and 8 are closed and a voltage which is $\mathrm{V}_{\text {REF }}$ more negative than during Auto-Zero is impressed on the buffer input. Negative inputs will cause $+\mathrm{V}_{\text {REF }}$ to be applied to the buffer input via switches 6 and 9 . Thus, the reference capacitor generates the equivalent of a (+) reference or a (-) reference from the single reference voltage with negligible error. The reference voltage returns the output of the integrator to the zero-crossing point
established in Phase I. The time, or number of counts, required to do this is proportional to the input voltage. Since the Deintegrate phase can be twice as long as the Input integrate phase, the input voltage required to give a full scale reading $=2 V_{\text {REF }}$.
Note: Once a zero crossing is detected, the system automatically reverts to Auto-Zero phase for the leftover Deintegrate time (unless Run/Hold is manipulated, see Run/Hold Input in detailed description, digital section).

Buffer Gain

At the end of the auto-zero interval, the instantaneous noise voltage on the auto-zero capacitor is stored, and subtracts from the input voltage while adding to the reference voltage during the next cycle. The result is that this noise voltage effectively is somewhat greater than the input noise voltage of the buffer itself during integration. By introducing some voltage gain into the buffer, the effect of the auto-zero noise (referred to the input) can be reduced to the level of the inherent buffer noise. This generally occurs with a buffer gain of between 3 and 10. Further increase in buffer gain merely increases the total offset to be handled by the auto-zero loop, and reduces the available buffer and integrator swings, without improving the noise performance of the system. The circuit recommended for doing this with the ICL8068/ICL7104 is shown in Figure 8. With careful layout, the circuit shown can achieve effective input noise voltages on the order of 1 to $2 \mu \mathrm{~V}$, allowing full 16 -bit use
with full scale inputs of as low as 150 mV . Note that at this level, thermoelectric EMFs between PC boards, IC pins, etc., due to local temperature changes can be very troublesome. For further discussion, see App. Note A030.

Figure 8: Adding Buffer Gain to ICL8068
Table 5: Typical Component Values ($\mathrm{V}++=+15 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$, Clock Freq $=200 \mathrm{kHz}$)

ICL8052/8068 WITH	ICL7104-16			ICL7104-14		UNIT
Full scale $\mathrm{V}_{\text {IN }}$	200	800	4000	100	4000	mV
Buffer Gain	10	1	1	10	1	V/V
RINT	100	43	200	47	180	$\mathrm{k} \Omega$
$\mathrm{C}_{\text {INT }}$. 33	. 33	. 33	0.1	0.1	$\mu \mathrm{F}$
$\mathrm{C}_{\text {AZ }}$	1.0	1.0	1.0	1.0	1.0	$\mu \mathrm{F}$
$\mathrm{Cref}^{\text {r }}$	10	1.0	1.0	10	1.0	$\mu \mathrm{F}$
$V_{\text {REF }}$	100	400	2000	50	2000	mV
Resolution	3.1	12	61	6.1	244	$\mu \mathrm{V}$

Figure 9: Conversion Timing

ICL8052 vs ICL8068

The ICL8052 offers significantly lower input leakage currents than the ICL8068, and may be found preferable in systems with high input impedances. However, the ICL8068 has substantially lower noise voltage, and for systems where system noise is a limiting factor, particularly in low signal level conditions, will give better performance.

COMPONENT VALUE SELECTION

For optimum performance of the anaiog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

Integrating Resistor

The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. This current should be small compared to the output short circuit current such that thermal effects are kept to a minimum and linearity is not affected. Values of 5 to $40 \mu \mathrm{~A}$ give good results with a nominal of $20 \mu \mathrm{~A}$. The exact value may be chosen by

$$
R_{I N T}=\frac{\text { full scale voltage }}{}{ }^{*}
$$

*Note: If gain is used in the buffer amplifier then -

$$
R_{I N T}=\frac{\text { (Buffer gain) (full scale voltage) }}{20 \mu \mathrm{~A}}
$$

Integrating Capacitor

The product of integrating resistor and capacitor is selected to give 9 volt swing for full scale inputs. This is a compromise between possibly saturating the integrator (at +14 volts) due to tolerance build-up between the resistor, capacitor and clock and the errors a lower voltage swing could induce due to offsets referred to the output of the comparator. In general, the value of $\mathrm{C}_{\mathrm{INT}}$ is given by

A very important characteristic of the integrating capacitor is that it have low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference.

This ratiometric condition should read half scale (100 . . 000) and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

Auto-Zero and Reference Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system, a large capacitor giving less noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible.

Note: When gain is used in the buffer amplifier the reference capacitor should be substantially larger than the auto-zero capacitor. As a rule of thumb, the reference capacitor should be approximately the gain times the value of the auto-zero capacitor. The dielectric absorption of the reference cap and auto-zero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.

Reference Voltage

The analog input required to generate a full scale output is $V_{I N}=2 V_{\text {REF }}$.

The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the ICL7104 at 16 bits is one part in 65536, or 15.26 ppm . Thus, if the reference has a temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (on board reference) a temperature change of $1 / 3^{\circ} \mathrm{C}$ will introduce a one-bit absolute error. For this reason, it is recommended that an external high quality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.

DETAILED DESCRIPTION Digital Section

The digital section includes the clock oscillator circuit, a 16 or 14 bit binary counter with output latches and TTLcompatible three-state output drivers, polarity, over-range and control logic and UART handshake logic, as shown in the Block Diagram Figure 10 (16 bit version shown).

Throughout this description, logic levels will be referred to as 'low' or 'high'. The actual logic levels are defined under "ICL7104 Electrical Characteristics'. For minimum power consumption, all inputs should swing from GND (low) to V^{+}(high). Inputs driven from TTL gates should have $3-5 \mathrm{k} \Omega$ pullup resistors added for maximum noise immunity.

MODE Input

The MODE input is used to control the output mode of the converter. When the MODE pin is connected to GND or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open), the converter is in its 'Direct' output mode, where the output data is directly accessible under the control of the chip and byte enable inputs. When the MODE input is puised high, the converter enters the UART handshake mode and outputs the data in three bytes for the 7104-16 or two bytes for the 7104-14 then returns to 'direct' mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled 'Handshake Mode' for further details).

STaTuS Output

During a conversion cycle, the STaTuS output goes high at the beginning of Input Integrate (Phase II), and goes low one-half clock period after new data from the conversion has been stored in the output latches. See Figure 9 for details of this timing. This signal may be used as a 'data valid' flag (data never changes while STaTuS is low) to drive interrupts, or for monitoring the status of the converter.

Figure 11：Run／Hold Operation

Run／Hold Input

When the Run／Fold input is connected to V^{+}or left open（this input has a pullup resistor to ensure a high level when the pin is left open），the circuit will continuously perform conversion cycles，updating the output latches at the end of every Deintegrate（Phase III）portion of the conversion cycle（See Figure 9）．（See under＇Handshake Mode＂for exception．）In this mode of operation，the conversion cycle will be performed in 131，072 for 7104－16 and 32768 for 7104－14 clock periods，regardless of the resulting value．

If Run／Hold goes low at any time during Deintegrate （Phase III）after the zero crossing has occurred，the circuit will immediately terminate Deintegrate and jump to Auto－ Zero．This feature can be used to eliminate the time spent in Deintegrate after the zero－crossing．If Run／Hold stays or goes low，the converter will ensure a minimum Auto－Zero time，and then wait in Auto－Zero until the Run／Hold input goes high．The converter will begin the Integrate（Phase II） portion of the next conversion（and the STaTuS output will go high）seven clock periods after the high level is detected at Run／Hold．See Figure 11 for details．

Using the Run/Fold input in this manner allows an easy "'convert on demand"' interface to be used. The converter may be held at idle in Auto-Zero with Run/Hold low. When Run/Fold goes high the conversion is started, and when the STaTuS output goes low the new data is valid (or transferred) to the UART - see Handshake Mode). Run/ Hold may now go low terminating Deintegrate and ensuring a minimum Auto-Zero time before stopping to wait for the next conversion. Alternately, Run/Hold can be used to minimize conversion time by ensuring that it goes low during Deintegrate, after zero crossing, and goes high after the hold point is reached. The required activity on the Run/Hold input can be provided by connecting it to the CLOCK3 (-14), CLOCK2 (-16) Output. In this mode the conversion time is dependent on the input value measured. Also refer to Intersil Application Bulletin A030 for a discussion of the effects this will have on Auto-Zero performance.
If the Run/ \bar{H} old input goes low and stays low during AutoZero (Phase I), the converter will simply stop at the end of Auto-Zero and wait for Run/Hold to go high. As above, Integrate (Phase II) begins seven clock periods after the high level is detected.

Direct Mode

When the MODE pin is left at a low level, the data outputs [bits 1 through 8 low order byte, see Table 4 for format of middle (-16) and high order bytes] are accessible under control of the byte and chip ENable terminals as inputs. These ENable inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip ENable input is low, taking a byte ENable input low will allow the outputs of that byte to become active (three-stated on). This allows a variety of parallel data accessing techniques to be used. The timing requirements for these outputs are shown under AC Characteristics and Table 1.

It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the data while it is being updated, which could lead to scrambled data. Synchronizing the access of data with the conversion cycle by monitoring the STaTuS output will prevent this. Data is never updated while STaTuS is low. Also note the potential bus conflict described under '.Initial Clear Circuitry'.

Handshake Mode

The handshake output mode is provided as an alternative means of interfacing the ICL7104 to digital systems, where the A/D converter becomes active in controlling the flow of data instead of passively responding to chip and byte ENable inputs. This mode is specifically designed to allow a direct interface between the ICL7104 and industry-standard UARTs (such as the Intersil CMOS UARTs, IM6402/3) with no external logic required. When triggered into the handshake mode, the ICL7104 provides all the control and flag signals necessary to sequence the three (ICL7106-16) or two (ICL7104-14) bytes of data into the UART and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission to minimize the number of lines to the central controlling processor.

Entry into the handshake mode will occur if either of two conditions are fulfilled; first, if new data is latched (i.e. a
conversion is completed) while MODE pin (pin 27) is high, in which case entry occurs at the end of the latch cycle; or secondly, if the MODE pin goes from low to high, when entry will occur immediately (if new data is being latched, entry is delayed to the end of the latch cycle). While in the handshake mode, data latching is inhibited, and the MODE pin is ignored. (Note that conversion cycles will continue in the normal manner). This allows versatile initiation of handshake operation without danger of false data generation; if the MODE pin is held high, every conversion (other than those completed during handshake operations) will start a new handshake operation, while if the MODE pin is pulsed high, handshake operations can be obtained 'on demand.'

When the converter enters the handshake mode, or when the MODE input is high, the chip and byte ENable terminals become TTL-compatible outputs which provide the control signals for the output cycle. The Send ENable pin (SEN) (pin 29) is used as an indication of the ability of the external device to receive data. The condition of the line is sensed once every clock puise, and if it is high, the next (or first) byte is enabled on the next rising CLOCK 1 (pin 25) clock edge, the corresponding byte ENable line goes low, and the Chip ENable/LoaD pin (pin 30) (CE/LD) goes low for one full clock pulse only, returning high.

On the next falling CLOCK 1 clock pulse edge, if SEN remains high, or after it goes high again, the byte output lines will be put in the high impedance state (or three-stated off). One half pulse later, the byte $\overline{E N}$ able pin will be cleared high, and (unless finished) the $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and the next byte ENable pin will go low. This will continue until all three (2 in the case of the 14 bit device) bytes have been sent. The bytes are individually put into the low impedance state i.e.: three-stated on during most of the time that their byte ENable pin is (active) low. When receipt of the last byte has been acknowledged by a high SEN, the handshake mode will be cleared, re-enabling data latching from conversions, and recognizing the condition of the MODE pin again. The byte and chip ENable will be three-stated off, if MODE is low, but held high by their (weak) pullups. These timing relationships are illustrated in Figure 12, 13, and 14, and Table 2.

Figure 12 shows the sequence of the output cycle with SEN held high. The handshake mode (Internal MODE high) is entered after the data latch pulse (since MODE remains high the $\overline{C E} / \overline{L D}, \overline{L B E N}, \overline{M B E N}$ and $\overline{\text { HBEN }}$ terminals are active as outputs). The high level at the SEN input is sensed on the same high to low internal clock edge. On the next to high internal clock edge, the $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and the $\overline{\mathrm{HBEN}}$ outputs assume a low level and the high-order byte (POL and OR, and except for -16 , Bits $9-14$) outputs are enabled. The $\overline{C E} / \overline{L D}$ output remains low for one full internal clock period only, the data outputs remain active for 1-1/2 internal clock periods, and the high byte ENable remains low for two clock periods. Thus the $\overline{C E} / \overline{\mathrm{LD}}$ output low level or low to high edge may be used as a synchronizing signal to ensure valid data, and the byte ENable as an output may be used as a byte identification flag. With SEN remaining high the converter completes the output cycle using $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}, \overline{\mathrm{MBEN}}$ and LBEN while the remaining byte outputs (see Table 4) are activated. The handshake mode is terminated when all bytes are sent (3 for $-16,2$ for -14).

Figure 13 shows an output sequence where the SEN input is used to delay portions of the sequence, or handshake, to ensure correct data transfer. This timing diagram shows the relationships that occur using an indus-try-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEN input to the ICL7104 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the $\overline{C E} / \overline{L D}$ terminal of the ICL7104 drives the TBRL (Transmitter Buffer Register Load) input to the UART. The data outputs are paralleled into the eight Transmitter Buffer Register inputs.

Assuming the UART Transmitter Buffer Register is empty, the SEN input will be high when the handshake mode is entered after new data is stored. The $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and $\overline{\mathrm{HBEN}}$ terminals will go low after SEN is sensed, and the high order byte outputs become active. When $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ goes high at the end of one clock period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART

TBRE output will now go low, which halts the output cycle with the HBEN output low, and the high order byte outputs active. When the UART has transferred the data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next ICL7104 internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the HBEN output returns high. At the same time, the $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and MBEN (-16) or LBEN outputs go low, and the corresponding byte outputs become active. Similarly, when the $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ returns high at the end of one clock period, the enabled data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ICL7104 internal clock high to low edge, disabling the data outputs. For the 16 bit device, the sequence is repeated for LBEN. One-half internal clock later, the handshake mode will be cleared, and the chip and byte ENable terminals return high and stay active (as long as MODE stays high).

With the MODE input remaining high as in these examples, the converter will output the results of every conversion except those completed during a handshake operation. By triggering the converter into handshake mode with a low to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 14 shows a handshake output sequence triggered by such an edge. In addition, the SEN input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is controlled by the SEN input, and the sequence for the first (high order) byte is similar to the sequence for the other bytes. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STaTuS output and Run/Hold input functioning normally. The only difference is that new data will not be latched when in handshake mode, and is therefore lost.

Initial Clear Circuitry

The internal logic of the 7104 is supplied by an internal regulator between V ++ and Digital Ground. The regulator includes a low-voltage detector that will clear various registers. This is intended to ensure that on initial power-up, the control logic comes up in Auto-Zero, with the 2nd, 3rd, and 4th MSB bits cleared, and the 'mode' F/F cleared (i.e. in "'direct' mode). This, however, will also clear these
registers if the supply voltage 'glitches' to a low enough value. Additionally, if the supply voltage comes up too fast, this clear pulse may be too narrow for reliable clearing. In general, this is not a problem, but if the UART internal "MODE" F/F should come up set, the byte and chip ENable lines will become active outputs. In many systems this could lead to bus conflicts, especially in non-handshake systems. In any case, SEN should be high (held high for non-handshake systems) to ensure that the MODE F/F will be cleared as fast as possible (see Figure 12 for timing). For these and other reasons, adequate supply bypass is recommended.

Oscillator

The ICL7104-14 is provided with a versatile three terminal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated as an RC or crystal oscillator.

Figure 15 shows the oscillator configured for RC operation. The internal clock will be of the same frequency and phase as the voltage on the CLOCK 3 pin. The resistor and capacitor should be connected as shown. The circuit will oscillate at a frequency given by $f=.45 / R C$. A $50-100 \mathrm{k} \Omega$ resistor is recommended for useful ranges of frequency. For optimum 60 Hz line rejection, the capacitor value should be
chosen such that $32768(-16), 8192(-14)$ clock periods is close to an integral multiple of the 60 Hz period.

Note that CLOCK 3 has the same output drive as the bit outputs.
As a result of pin count limitations, the ICL7104-16 has only CLOCK 1 and CLOCK 2 available, and cannot be used as an RC oscillator. The internal clock will correspond to the inverse of the signal on CLOCK 2. Figure 16 shows a crystal oscillator circuit, which can be used with both 7104 versions. If an external clock is to be used, it should be applied to CLOCK 1. The internal clock will correspond to the signal applied to this pin.

POWER SUPPLY SEQUENCING

Because of the nature of the CMOS process used to fabricate the ICL7104, and the multiple power supplies used, there are certain conditions of these supplies under which a disabling and potentially damaging SCR action can occur. All of these conditions involve the $\mathrm{V}+$ supply (nom. +5 V) being more positive than the $\mathrm{V}++$ supply. If there is any possibility of this occuring during start-up, shut down, under transient conditions during operation, or when inserting a PC board into a 'hot' socket, etc., a diode should be placed between V^{+}and $\mathrm{V}++$ to prevent it. A germanium or Schottky rectifier diode would be best, but in most cases a silicon rectifier diode is adequate.

ANALOG AND DIGITAL GROUNDS

Extreme care must be taken to avoid ground loops in the layout of ICL8068 or ICL8052/7104 circuits, especially in 16 -bit and high sensitivity circuits. It is most important that return currents from digital loads are not fed into the analog ground line. A recommended connection sequence for the ground lines is shown in Figure 17.

APPLICATIONS INFORMATION

Some applications bulletins that may be found useful are listed here:
A016 'Selecting A/D Converters', by Dave Fullagar
A017 "The Integrating A/D Converter', by Lee Evans
A018 'Do's and Dont's of Applying A/D Converters'", by Peter Bradshaw and Skip Osgood
A025 'Building a Remote Data Logging Station', by Peter Bradshaw
A030 "The ICL7104 - A Binary Output A/D Converter for Microprocessors'", by Peter Bradshaw
R005 'Interfacing Data Converter \& Microprocessors'', by Peter Bradshaw et al, Electronics, Dec. 9, 1976.

Figure 17: Grounding Sequence

6-175

Section 7 - Timer/Counter Circuits

ICM7206
 CMOS Touch-Tone Encoder

GENERAL DESCRIPTION

The Intersil ICM7206/A/B/C/D are 2-of-8 sine wave tone encoders for use in telephone dialing systems. Each circuit contains a high frequency oscillator, two separate programmable dividers, a D/A converter, and a high level output driver.

FEATURES

- Low Cost
- Oscillator Uses 3.58 MHz Color TV Crystal
- High Current Bipolar Output Driver
- Low Output Harmonic Distortion
- Wide Operating Supply Voltage Range: 3 to 6 Volts
- Uses 3×4 or 4×4 Single Contact Keypad
- Low Power ($\leq 5.5 \mathrm{~mW}$ With A 5.5V Supply)
- Single and Dual Tone Capabilities
- Multiple Key Lockout
- Disable Output: Provides Output Switch Function Whenever A Key Is Pressed
- Custom Options Available

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7206IPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Pin PLASTIC DIP
ICM7206AIPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Pin PLASTIC DIP
ICM7206BIPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Pin PLASTIC DIP
ICM7206CIPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Pin PLASTIC DIP
ICM7206DIPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Pin PLASTIC DIP
ICM7206/D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7206A/D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7206B/D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7206C/D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7206D/D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE

Figure 1: Functional Diagram

Figure 2: Pin
Configuration (Outline Dwg PE)

Supply Voltage $V_{D D}-V_{S S}$ (Note 2)6.0V
Supply Current VSS (terminal 8) 25mA
Supply Current VDD (terminal 16) 40mA
Disable Output Voltage (term. 7) (VDD-6V) to $V_{D D}$ Output Voltage (term 15)(VSS-1.0V) to (VDD +5.0 V) Input Voltage $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$

Output Current (terminal 15)	25
Power Dissipation	W
Operating Temperature Ran	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	${ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Solderin	30

Operating Temperature Range $\ldots \ldots40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

NOTE 1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. The ICM7206 family has a zener diode connected between $V_{D D}$ and $V_{S S}$ having a breakdown voltage between 6.2 and 7.0 volts. If the currents into terminals 8 and 16 are limited to 25 and 40 mA maximum respectively, the supply voltage may be increased above 6 volts to zener voltage. With no such current limiting, the supply voltage must not exceed 6 volts.

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$, Test Circuit, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
IDD	Supply Current	R_{L} disconnected			450	1000	$\mu \mathrm{A}$
V SUPPLY	Guaranteed Operating Supply Voltage Range (Note 3)	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		3.0		6.0	V
VOUT	Peak to Peak Output Voltage	$\mathrm{C}_{1}, \mathrm{C}_{2}$ disconnected - Low Band		0.90	1.15	1.45	
		$R_{L}=1 \mathrm{k} \Omega$, no filtering - High Band		1.10	1.40	1.70	
	RMS Output Voltage	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, fout $=697 \mathrm{~Hz}$	C_{2} Only		480		mV
			C_{1} to C_{2}		480		
			No filtering		490		
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, fout $=1633 \mathrm{~Hz}$	C_{1}		490		
			C_{1} to C_{2}		580		
			No filtering		655		
	Skew Between High and Low Band Output Voltages	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{1}, \mathrm{C}_{2}$ disconnected			2.5	3.0	dB
ZO	Output Impedance	$R_{L}=1 \mathrm{k} \Omega$	Operating		90	200	Ω
			Quiescent		25		k Ω
THD1	Total Output Harmonic Distortion	Either Hi or Low Bands			20	25	\%
		No Low Pass Filtering					
THD2	Total Output Harmonic Distortion	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{1}=.002 \mu \mathrm{~F}$	fout $=697 \mathrm{~Hz}$		2.3	10	
		$\mathrm{C}_{2}=0.02 \mu \mathrm{~F}$	$\mathrm{fOUT}=1633 \mathrm{~Hz}$		1.0	10	
VOH	Maximum Output Voltage Level	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$				4.6	V
V_{OL}	Minimum Output Voltage Level	$R_{L}=1 \mathrm{k} \Omega$		0.5			
RIN	Keyboard Input Pullup Resistors	Terminals 3,4,5,6,11,12,13,14		35	100	150	$\mathrm{k} \Omega$
C_{IN}	Keyboard Input Capacitance	Terminals 3,4,5,6,11,12,13,14				5	pF
fosc	Guaranteed Oscillator Fequency Range (Note 4)	$3 \leq\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) \leq 6 \mathrm{~V}$		2.0		4.5	MHz
	Guaranteed Oscillator Frequency Range	$4 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) \leq 6 \mathrm{~V}$		2.0		7	
ton	System Startup Time on Application of Power	ICM7206, ICM7206A			10		
	System Startup Time on Application of Power and Key Depressed Simultaneously	ICM7206B, ICM7206C, ICM7206D				7	ms
R_{D}	DISABLE Output Saturation Resistance (ON STATE)	See Logic Table for Input Conditions Current $=4 \mathrm{~mA}$			330	700	Ω
IOLK	DISABLE Output Leakage (OFF STATE)	See Logic Table for Input Conditions				10	$\mu \mathrm{A}$
Cosc	Oscillator Load Capacitance	Measured between terminals 9 \& 10, no supply voltage applied to circuit $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$			7		pF

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fo	Guaranteed Output Frequency Tolerance	Any output frequency Crystal tolerance $\pm 60 \mathrm{ppm}$ Crystal ioad capacitance $\mathrm{CL}=30 \mathrm{pF}$			± 0.75	\%
$t_{\text {start }}$	Oscillator Startup Time ICM7206B,C,D	$V_{\text {DD }}-V_{S S}=3 V$ (Note 5)			7	ms

NOTES: 3. Operation above 6 volts must employ supply current limiting. Refer to 'ABSOLUTE MAXIMUM RATINGS' and the Application Notes for further information
4. The ICM7206 family uses dynamic high frequency circuitry in the initial 2^{3} divider resulting in low power dissipation and excelient performance over a restricted frequency range. Thus, for reliable operation with a 6 volt supply an oscillator frequency of not less than 2 MHz must be used.
5. After row input is enabled.

TRUTH TABLE

LINE	$\begin{aligned} & \text { ROWS }{ }^{(1)} \\ & \text { ACTIVATED } \end{aligned}$	COLS ${ }^{(2)}$ ACTIVATED	OUTPUT (TERMINAL \# 15)	$\begin{gathered} \text { DISABLE } \\ \text { (TERMINAL \#7) } \end{gathered}$	COMMENTS
1	0	0	Off	Off	Quiescent State
2	1	1	$\mathrm{frow}+\mathrm{f}_{\mathrm{col}}$	On	Dual Tone
3	1	2 or 3 (incl. col \#4)	frow	On	Single Tone
4	2 or 3	1	$\mathrm{f}_{\mathrm{col}}$	On	Single Tone
5	2 or 3	2 or 3 (excl. col \#3)	D.C. L.evel	On	No Tone
6	1	4 or 3 (must excl. col \#4)	frow, 50\% Duty Cycie	frow, 50\% Duty Cycle	frow Test
7	4	1	$\mathrm{f}_{\text {coi }}$, 50\% Duty Cycle	$\mathrm{f}_{\text {col }}$, 50\% Duty Cycle	$\mathrm{f}_{\mathrm{col}}$ Test
8	0	1 or 2 or 3 or 4	Off	Off	$\mathrm{n} / \mathrm{a}^{*}$
9	1	0	$902 \mathrm{~Hz}+\mathrm{f}_{\text {row }}$	On	n/a*
10	2 or 3	0	902 Hz	On	n/a*
11	4	0	$902 \mathrm{~Hz}, 50 \%$ Duty Cycle	902Hz, 50\% Duty Cycle	$\mathrm{n} / \mathrm{a}^{*}$
12	2 or 3 or 4	4	D.C. Level	Indeterminate	Multiple Key Lockout
13	4	2 or 3 or 4	D.C. Level	Indeterminate	Multiple Key Lockout

*n/a - not applicable to telephone calling.
NOTES: 1. Rows are activated for the ICM7206/C by connecting to a negative supply voltage with respect to VDD (terminal 16) at least 33% of the value of the supply voltage ($V_{D D}-V_{S S}$). For the ICM7206A rows (and columns) are activated by connecting to a positive supply voltage with respect to $V_{S S}$ (terminal 8) at least 33% of the value of the supply voltage ($V_{D D}-V_{S S}$). The rows and columns of the ICM7206B are activated by connecting to a negative supply voltage.
2. Columns (ICM7206) are activated by being connected to a positive supply voltage with respect to V_{SS} (terminal 8) at least 33% of the value of the supply voltage $\left(V_{D D}-V_{S S}\right)$.

OPTIONS

(For additional information consult the factory)

Options can be achieved using metal mask additions to provide the following.

1) The sequence or position of either the row or column terminals can be interchanged i.e., row 1 terminal 3 could become terminal 11, etc.
2) Any frequency oscillator from approximately 0.5 MHz to 7 MHz can be chosen. Note that the accuracy of the output frequencies will depend on the exact oscillator frequency. For instance, a 1 MHz crystal could be used with worst case output frequency error of 0.8%. Or, if high accuracy is required, $\pm 0.25 \%$, oscillator frequencies of $5,117,376 \mathrm{~Hz}$ or $2,558,688 \mathrm{~Hz}$ could be selected. ROM's are used to program the dividers.
3) The 'DISABLE' output may be changed to an inverter or an uncommitted drain n-channel transistor.
4) The oscillator may be disabled until a key is depressed.

COMMENTS

All combinations of row and column activations are given in the truth table. Lines 1 through 7 and 12, 13 represent conditions obtainable with a matrix keyboard. Lines 8 thru 11 are given only for completeness and are not pertinent to telephone dialing.

Lines 6 and 7 show conditions for generating 50\% duty cycle full amplitude signals useful for rapid testing of the row and column frequencies on automatic test equipment. In all other cases, output frequencies on terminal 15 are single or dual 4 level synthesized sine waves.

A 'DC LEVEL' on terminal 15 may be any voltage level between approximately 1.2 and 4.3 volts with respect to VSS (terminal 8) for a 5.5 volt supply voltage.

The impedance of the OUTPUT (terminal 15) is approximately 20 k ohms in the OFF state. The 'DISABLE OUTOUT' ON and OFF conditions are defined in the TYPICAL PERFORMANCE CHARACTERISTICS.

Figure 3: Test Circuit (single contact keyboard devices shown)

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

TOTAL HARMONIC DISTORTION AS A FUNCTION OF LOAD RESISTANCE

OP04860

OSCILLATOR FREQUENCY DEVIATION AS A FUNCTION OF SUPPLY VOLTAGE

OP04850

PEAK TO PEAK OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE

Figure 4: Keyboard Frequencies

DETAILED DESCRIPTION

The reference frequency is generated from a fully integrated oscillator requiring only a 3.58 MHz color TV crystal. This frequency is divided by 8 and is then gated into two divide by N counters (possible division ratios 1 through 128) which provide the correct division ratios for the upper and lower band of frequencies. The outputs from these two divide by N counters are further divided by 8 to provide the time sequencing for a 4 voltage level synthesis of each sinewave. Both sinewaves are added and buffered to a high current output driver, with provisions made for up to two external capacitors for low pass filtering, if desired. Typically, the total output harmonic distortion is 20% with no L.P. filtering and it may be reduced to typically less than 5% with filtering. The output drive level of the tone pairs will be
approximately -3 dBV into a 900 ohm termination. The skew between the high and low groups is typically 2.5 dB without low pass filtering.

The 7206 uses either a 3×4 or 4×4 single contact keyboard; the oscillator will run whenever the power is applied, and the DISABLE output consists of a p-channel open drain FET whose source is connected to V_{DD}.

The 7206A can also use a 3×4 or 4×4 keyboard, but requires a double contact type with the common line tied to $V_{D D}$. The oscillator will be on whenever power is applied; the DISABLE output consists of a p-channel open drain FET ; its source is connected to V_{DD}.

The 7206 B requires a $4+4$ double contact keyboard with the common line tied to $\mathrm{V}_{\text {SS }}$. The oscillator will be on only during the time that a ROW is enabled, and the DISABLE

ICM7206

output consists of an n-channel open drain FET with its source tied to V_{SS}.

The 7206C uses either a 3×4 or 4×4 single contact keyboard; the oscillator will be on only during the time that a key is depressed. The DISABLE output consists of an nchannel open drain FET with its source tied to $V_{\text {SS }}$.
The 7206D uses a single contact 3×4 or 4×4 keyboard. The oscillator will be on only during the time that a key is depressed. DISABLE output consists of a p-channel open drain FET with its source tied to $V_{D D}$.

SS024701
Figure 5: Schematic Diagram ICM7206 Oscillator

Figure 6 shows individual currents of a low band and high band frequency pair into the summing node A (see Figure 7) and the resultant voltage waveform.

DESIRED FREQUENCY Hz	ACTUAL FREQUENCY Hz	FREQUENCY DEVIATION $\%$	DIVIDE BY N RATIO
697	699.13	+0.30	80
770	766.17	-0.50	73
852	847.43	-0.54	66
941	947.97	+0.74	59
1209	1215.88	+0.57	46
1336	1331.68	-0.32	42
1477	1471.85	-0.35	38
1633	1645.01	+0.74	34

Figure 6

APPLICATION NOTES

Device Description

The ICM7206 family is manufactured with a standard metal gate CMOS technology having proven reliability and excellent reproducability resulting in extremely high yields. The techniques used in the design have been developed over many years and are characterized by wide operating supply voltage ranges and low power dissipation.

To minimize chip size, all diffusions used to define source-drain regions and field regions are butted up together. This results in approximately 6.3 volt zener breakdown between the supply terminals, and between all components on chip. As a consequence, the usual CMOS static charge problems and handling problems are not experienced with the ICM7206.

The oscillator consists of a medium size CMOS inverter having on chip a feedback resistor and two capacitors of 14 pF each, one at the oscillator input and the other at the oscillator output. The oscillator is followed by a dynamic \div 2^{3} circuit which divides the oscillator frequency to 447 , 443 Hz . This is applied to two programmable dividers each capable of division ratios of any integer between 1 and 128, and each counter is controlled by a ROM. The outputs from the programmable counters drive sequencers (divide by 8) which generate the eight time slots necessary to synthesize the 4-level sine waves.

The control logic block recognizes signals on the row and column inputs that are only a small fraction of the supply voltage, thereby permitting the use of a simple matrix single contact per key keyboard, rather than the more usual two contacts per key type having a common line. The row and column pullup resistors are equal in value and connected to the opposite supply terminals (ICM7206/C only; for the ICM7206A all pullup resistors are connected to the V_{SS} terminal and for the ICM7206B they are tied to the VDD. Therefore, connecting a row input to a column input generates a voltage on those inputs which is one half of the supply voltage.

The ICM7206 family employs a unique but extremely simple digital to analog (D to A) converter. This D to A converter produces a 4 level synthesized sine wave having an intrinsic total harmonic distortion level of approximately 20%. Figure 8 shows a single channel D to A converter. The current sources Q_{2} and Q_{3} are proportioned in the ratio of $1: 1.414$. During time slots 1 and 8 both S_{1} and S_{2} are off, during time slots 2 and 7 only S_{1} is on, during time slots 3 and 6 only S_{2} is on, and during time slots 4 and 5 both S_{1} and S_{2} are on. The resultant currents are summed at node A, buffered by Q_{4} and further buffered by R_{3}, R_{4} and Q_{5}. Switch S_{3} allows the output to go into a high impedance mode under quiescent conditions.

Node A is the common summing point for both the high and low band frequencies although this is not shown in Figure 8.

The synthesized sine wave has negligible even harmonic distortion and very low values of third and fifth harmonic distortion thereby minimizing the filtering problems necessary to reduce the total harmonic distortion to well below the 10% level required for touch tone telephone encoding. Figure 9 shows the low pass filter characteristic of the output buffer for $\mathrm{C}_{1}=0.0022 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=0.022 \mu \mathrm{~F}$. A small
peak of 0.4 dB occurs at 1100 Hz with sharp attention (12dB per octave) above 2500 Hz . This type of active filter produces a sharper and more desirable knee characteristic than would two simple cascaded RC networks.

Figure 8: D to A Converter and Output Buffer

Figure 9: Frequency Attentuation Characteristics of the Output Buffer

Latchup Considerations

Most junction isolated CMOS integrated circuits, especially those of moderate or high complexity, exhibit latchup phenomena whereby they can be triggered into an uncontrollable low impedance mode between the supply terminals. This can be due to gross forward biasing of inputs or outputs (with respect to the supply terminals), high voltage supply transients, or more rarely by exceptional fast rate of rise of supply voltages.

The ICM7206 family is no exception, and precautions must be taken to limit the supply current to those values shown in the ABSOLUTE MAXIMUM RATINGS. For an example, do not use a 6 volt very low impedance supply source in an extremely electrically noisy environment unless a 5000hm current limiting resistor is included in series with the V_{SS} terminal. For normal telephone encoding applications no problems are envisioned, even with low impedance transients of 100 volts or more, if circuitry similar to that shown in the next section is used.

Telephone Handset

A typical encoder for telephone handsets is shown in Figure 10. This encoder uses a single contact per key keyboard and provides all other switching functions electronically. The diode connected between terminals 8 and 15
prevents the output going more than 1 volt negative with respect to the negative supply V_{SS} and the circuit operates over the supply voltage range from 3.5 volts to 15 volts on the device side of the bridge rectifier. Transients as high as 100 volts will not cause system failure, although the encoder will not operate correctly under these conditions. Correct operation will resume immediately after the transient is removed.

The output voltage of the synthesized sine wave is almost directly proportional to the supply voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$) and will increase with increase of supply voltage until zener breakdown occurs (approximately 6.3 volts between terminals 8 and 16) after which the output voltage remains constant.

Portable Tone Generator

The ICM7206A/B require a two contact key keyboard with the common line connected to the positive supply (neg for ICM7206B) (terminal 16). A simple diode matrix may be used with this keyboard to provide power to the system whenever a key is depressed, thus avoiding the need for an on/off switch. In Figure 11 the tone generator is shown using a 9 volt battery. However, if instead, a 6 volt battery is used, the diode D_{4} is not required. It is recommended that a 470ohm resistor still be included in series with a negative (positive) supply to prevent accidental triggering of latchup.

CD02830
Figure 10: Telephone Handset Touch Tone Encoder
NOTE: If dual contact keyboard is used, common should be left floating.

Figure 11: Portable Tone Generator

GENERAL DESCRIPTION

The ICM7207/A consist of a high stability oscillator and frequency divider providing 4 control outputs suitable for frequency counter timebases. Specifically, when used as a frequency counter timebase in conjunction with the ICM7208 frequency counter, the four outputs provide the gating signals for the count window, store function, reset function and multiplex frequency reference. Additionally, the duration of the count window may be changed by a factor of 10 to provide a 2 decade range counting system.

The normal operating voltage of the ICM7207/A is 5 volts. The typical power dissipation is less than 2 mW when using an oscillator frequency of 6.5536 MHz with the 7207 and 5.24288 mHz with the 7207 A .

In the 7207/A the GATING OUTput, $\overline{\mathrm{ReSeT}}$, and the MULTIPLEX output provide both pull up and pull down, eliminating the need for 3 external resistors; although, buffering must be provided if interfacing with TTL is required.

ORDERING INFORMATION

ORDER NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7207IJD	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-Pin CERDIP
ICM7207IPD	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-Pin PLASTIC DIP
ICM7207/D	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7207EV/Kit	-	EV $/$ Kit *
ICM7207AIJD	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-Pin CERDIP
ICM7207AIPD	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-Pin PLASTIC DIP
ICM7207A/D	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7207AEV/Kit	-	EV/Kit ${ }^{\star}$

*These EV/Kits contain just the IC and the corresponding crystal. The ICM7207A is also used in the $4 \frac{1}{2} 2$-Digit Counter/Driver kits, the ICM7224 EV/Kit, ICM7225 EV/Kit, and ICM7236 EV/Kit, which include several ICs, a crystal, PC board, and some passive components.

FEATURES

- Stable HF Oscillator
- Low Power Dissipation $\leq 2 \mathrm{~mW}$ With 5 Volt Supply
- Counter Chain Has Outputs at $\div 2^{12}$ and $\div 2^{n}$ or $\div\left(2^{n} \times 10\right) ; n=17$ for 7207, and 20 for 7207A
- Low Impedance Output Drivers ≤ 100 Ohms
- Count Windows of $10 / 100 \mathrm{~ms}$ (7207 With 6.5536MHz Crystal) or $0.1 / 1$ Sec. (7207A With 5.24288MHz Crystal)

APPLICATIONS

- System Timebases
- Oscilloscope Calibration Generators
- Marker Generator Strobes
- Frequency Counter Controllers

Figure 1: Pin Configuration (Outline dwg PD)

Figure 2: Functional Diagram

ICM7207/A

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD $-V_{S S}$)6.0V
Input Voltages $V_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ Output Voltages:

$$
\begin{aligned}
& 7207 \\
& V_{S S} \text { to }+6 \mathrm{~V}
\end{aligned}
$$

Output Currents
25 mA
Power Dissipation @ $25^{\circ} \mathrm{C}$ Note $1 \ldots200 \mathrm{~mW}$
Operating Temperature Range $\ldots \ldots \ldots . .20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)
$.300^{\circ} \mathrm{C}$

NOTE 1: Derate by $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
Absolute maximum ratings refer to values which if exceeded may permanently change or destroy the device. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\mathrm{f}_{\mathrm{OSC}}=6.5536 \mathrm{MHz}(7207), 5.24288 \mathrm{MHz}(7207 \mathrm{~A}), \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$, test circuit unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {DD }}$	Operating Voltage Range	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4		5.5	V
IDD	Supply Current	All outputs open circuit		260	1000	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ds }}(\mathrm{on})$	Output on Resistances	Output current $=5 \mathrm{~mA}$ All outputs		50	120	Ω
IOLK	Output Leakage Currents	All outputs (STORE only)			50	$\mu \mathrm{A}$
(ROUT)	(Output Resistance Terminals $12,13,14$)	Output current $=50 \mu \mathrm{~A}, 7207 \mathrm{~A}$ only			33K	Ω
$l_{\text {pd }}$	Input Pulldown Current	Terminal 11 connected to $V_{\text {DD }}$		50	200	$\mu \mathrm{A}$
	Input Noise immunity		25			\% supply voitage
$\mathrm{f}_{\text {OSC }}$	Oscillator Frequency Range	Note 2	2		10	MHz
$\mathrm{f}_{\text {STAB }}$	Oscillator Stability	$\mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\text {OUT }}=22 \mathrm{pF}$		0.2	1.0	ppm/V
rosc	Oscillator Feedback Resistance	Quartz crystal open circuit Note 3	3			$\mathrm{M} \Omega$

NOTES: 2. Dynamic dividers are used in the initial stages of the divider chain. These dividers have a lower frequency of operation determined by transistor sizes, threshold voltages and leakage currents.
3. The feedback resistor has a non-linear value determined by the oscillator instantaneous input and output voltage voltages and the supply voltage.

TC027401
SWITCHES $S_{1}, S_{2}, S_{3}, S_{4}$ OPEN CIRCUIT FOR SUPPLY CURRENT MEASUREMENT.
SWITCH S_{5} OPEN CIRCUIT FOR SLOW GATING PERIOD.
\dagger SWITCHES $\mathrm{S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$ and 50k RESISTORS ARE NOT NEEDED WHEN USING THE ICM7207A.
Figure 3: Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT AS A FUNCTION OF OSCILLATOR FREQUENCY

OUTPUT SATURATION RESISTANCES AS A FUNCTION OF SUPPLY VOLTAGE

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

OSCILLATOR STABILITY AS A FUNCTION OF SUPPLY VOLTAGE

OP03900

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT TIMING WAVEFORMS 7207 (7207A)
Crystal Frequency $=6.5536(5.24288) \mathrm{MHz}$

DETAILED DESCRIPTION

Referring to the Test Circuit, Figure 3, the crystal oscillator frequency is divided by 2^{12} to provide both the multiplex frequency and generate the output pulse widths. The GATING OUTPUT provides a 50% duty cycle signal whose period depends upon whether the RANGE CONTROL terminal is connected to $\mathrm{V}_{D D}$ or $\mathrm{V}_{S S}$ (open circuit).

OSCILLATOR CONSIDERATIONS

The oscillator consists of a CMOS inverter with a nonlinear resistor connected between the input and output terminals to provide biasing. Oscillator stabilities of approximately 0.1 ppm per 0.1 volt change are achievable at a supply voltage of 5 volts, using low cost crystals. The crystal specifications are shown in the TEST CIRCUIT.

It is recommended that the crystal load capacitance (C_{L}) be no greater than 15 pF for a crystal having a series resistance equal to or less than 75Ω, otherwise the output amplitude of the oscillator may be too low to drive the divider reliably.

If a very high quality oscillator is desired, it is recommended that a quartz crystal be used having a tight tuning tolerance $\pm 10 \mathrm{ppm}$, a low series resistance (less than 25Ω), a low motional capacitance of 5 mpF and a load capacitance of 20 pF . The fixed capacitor C_{IN} should be 39 pF and the oscillator tuning capacitor should range between approximately 8 and 60 pF .

Use of a high quality crystal will result in typical oscillator stabilities of 0.05 ppm per 0.1 volt change of supply voltage.

FREQUENCY LIMITATIONS

The ICM7207/A uses dynamic frequency counters in the initial divider sections. Dynamic frequency counters are faster and consume less power than static dividers but suffer from the disadvantage that there is a minimum operating frequency at a given supply voltage.

SC00930
Figure 5

For example, if instead of 6.5 MHz , a 1 MHz oscillator is required, it is recommended that the supply voltage be reduced to between 2 and 2.5 volts. This may be realized by using a series resistor in series with the 5 V positive supply line plus a decoupling capacitor. The quartz crystal parameters, etc., will determine the value of this resistor. NOTE: Except for the output open drain n-channel transistors no other terminal is permitted to exceed the supply voltage limits.

APPLICATION
 A PRACTICAL FREQUENCY COUNTER

A complete frequency counter using the ICM7207/A together with the ICM7208 Frequency Counter is described in the ICM7208 data sheet. Other frequency counters using the ICM7207/A can be constructed using the ICM7224, ICM7225, and ICM7236, for LCD, LED and VF displays. The latter are available as EV/Kits also.

QUARTZ CRYSTAL MANUFACTURERS

The following list of possible suppliers is intended to be of assistance in putting a design into production. It should not be interpreted as a comprehensive list of suppliers, nor does it constitute an endorsement by Intersil.
a) CTS Knights, Sandwich, Illinois, (815) 786-8411
b) Motorola Inc., Franklin Park, Illinois (312) 451-1000
c) Sentry Manufacturing Co., Chickasaw, Oklahoma (405) 224-6780
d) Tyco Filters Division, Phoenix, Arizona (602) 2727945
e) M-Tron Inds., Yankton, South Dakota (605) 6659321
f) Saronix, Palo Alto, California (415) 856-6900

ICM7208

7-Digit LED Display Counter

GENERAL DESCRIPTION

The ICM7208 is a fully integrated seven decade counter-decoder-driver and is manufactured using Intersil's low voltage metal gate C-MOS process.

Specifically the ICM7208 provides the following on chip functions: a 7 decade counter, multiplexer, 7 segment decoder, digit \& segment driver, plus additional logic for display blanking, reset, input inhibit, and display on/off.

For unit counter applications the only additional components are a 7 digit common cathode display, 3 resistors and a capacitor to generate the multiplex frequency reference, and the control switches.

The ICM7208 is intended to operate over a supply voltage of 2 to 6 volts as a medium speed counter, or over a more restricted voltage range for high frequency applications.

As a frequency counter it is recommended that the ICM7208 be used in conjunction with the ICM7207 Oscillator Controller, which provides a stable HF oscillator, and output signal gating.

FEATURES

- Low Operating Power Dissipation < 10mW
- Low Quiescent Power Dissipation $<5 \mathrm{~mW}$
- Counts and Displays 7 Decades
- Wide Operating Supply Voltage Range $2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6 \mathrm{~V}$
- Drives Directly 7 Decade Multiplexed Common Cathode LED Display
- Internal Store Capability
- Internal Innibit to Counter Input
- Test Speedup Point

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7208IPI	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP
ICM7208IJI	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead CERDIP
ICM7208/D	-	DICE

BD006221
Figure 1: Functional Diagram

Figure 2: Pin Configuration
(Outline Drawing PI)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (Note 2) ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}$)........................6V
Input Voltage Range (any input terminal)
(Note 2) $V_{S S}-0.3 V$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Output Digit Drive Current (Note 3).....................150mA
Output Segment Drive Current 30 mA

Power Dissipation (Note 1)..................................... 1W
Operating Temperature Range $\ldots \ldots-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, display off, unless otherwise specified)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
'Q1	Quiescent Current	All controls plus terminal 19 connected to VDD No multiplex oscillator		30	300	$\mu \mathrm{A}$
lQ2	Quiescent Current	All control inputs plus terminal 19 connected to VDD except STORE which is connected to $V_{S S}$		70	350	
IDD1	Operating Supply Current	All inputs connected to $V_{D D}$, RC multiplexer osc operating $\mathrm{f}_{\mathrm{in}}<25 \mathrm{kHz}$		210	500	
IDD2	Operating Supply Current	$\mathrm{f}_{\mathrm{in}}=2 \mathrm{MHz}$			700	
$V_{\text {SUPPLY }}$	Supply Voltage Range	$\mathrm{fin}_{\text {in }} \leq 2 \mathrm{MHz}$	3.5		5.5	V
$\mathrm{R}_{\text {DIG }}$	Digit Driver On Resistance			4	12	Ω
IDIG	Digit Driver Leakage Current	.			500	$\mu \mathrm{A}$
rSEG	Segment Driver On Resistance			40		Ω)
ISLK	Segment Driver Leakage Current				500	$\mu \mathrm{A}$
R_{p}	Pullup Resistance of RESET or STORE Inputs	*	100	400		k Ω
R_{IN}	COUNTER INPUT Resistance	Terminal 12 either at $V_{D D}$ or $V_{S S}$			100	
$\mathrm{V}_{\mathrm{HIN}}$	COUNTER INPUT Hysteresis Voltage			25	50	mV

NOTES: 1. This value of power dissipation refers to that of the package and will not be obtained under normal operating conditions.
2. The supply voltage must be applied before or at the same time as any input voltage. This poses no problems with a single power supply system. If a multiple power supply system is used, it is mandatory that the supply for the ICM7208 is switched on before the other supplies otherwise the device may be permanently damaged.
3. The output digit drive current must be limited to 150 mA or less under steady state conditions. (Short term transients up to 250 mA will not damage the device.) Therefore, depending upon the LED display and the supply voltage to be used it may be necessary to include additional segment series resistors to limit the digit currents.

TC027521
Figure 3: Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

MAXIMUM COUNTER INPUT FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

SEGMENT OUTPUT CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLtAGE

OP039411

TEST PROCEDURES

The ICM7208 is provided with three input terminals 7, 23, 27 which may be used to accelerate testing. The least two significant decade counters may be tested by applying an input to the 'COUNTER INPUT' terminal 12. 'TEST POINT' terminal 23 provides an input which bypasses the 2 least significant decade counters and permits an injection of a signal into the third decade counter. Similarly terminals 7 and 27 permit rapid counter advancing at two points further along the string of decade counters.
CONTROL INPUT DEFINITIONS

INPUT	TERMINAL	VOLTAGE	FUNCTION
1. DISPLAY	9	$V_{D D}$ $V_{S S}$	Display On Display Off
2. STORE	11	$V_{D D}$	Counter Information Latched Counter Information Transferring
3. ENABLE	13	$V_{\text {SS }}$	Input to Counter Blocked Normal Operation
4. RESET	14	$V_{\text {DS }}$ $V_{S S}$	Normal Operation Counters Reset

COUNTER INPUT DEFINITION

The internal counters of the ICM7208 index on the negative edge of the input signal at terminal \#12.

DETAILED DESCRIPTION

Format of Signal to be Counted

The noise immunity of the COUNTER INPUT Terminal is approximately $1 / 3$ the supply voltage. Consequently, the input signal should be at least 50% of the supply in peak to peak amplitude and preferably equal to the supply.

The optimum input signal is a 50% duty cycle square wave equal in amplitude to the supply. However, as long as the rate of change of voltage is not less than approximately $10^{-4} \mathrm{~V} / \mu \mathrm{s}$ at 50% of the power supply voltage, the input waveshape can be sinusoidal, triangular, etc.

OP03951I
When driving the input of the ICM7208 from TTL, a $1 \mathrm{k}-5 \mathrm{k} \Omega$ pull-up resistor to the positive supply must be used to increase peak to peak input signal amplitude.

Display Considerations

Any common cathode muitiplexable LED display may be used. However, if the peak digit current exceeds 150 mA for any prolonged time, it is recommended that resistors be included in series with the segment outputs to limit digit current to 150 mA .

The ICM7208 is specified with $500 \mu \mathrm{~A}$ of possible digit leakage current. With certain new LED displays that are extremely efficient at low currents, it may be necessary to include resistors between the cathode outputs and the positive supply to bleed off this leakage current.

Display Multiplex Rate

The ICM7208 has approximately 0.5μ s overlap between output drive signals. Therefore, if the multiplex rate is very fast, digit ghosting will occur. The ghosting determines the upper limit for the multipiex frequency. At very low multiplex rates flicker becomes visible.

It is recommended that the display multiplex rate be within the range of 50 Hz to 200 Hz , which corresponds to 400 Hz to 1600 Hz for the multiplex frequency input. For stand alone systems, two inverters are provided so that a simple but stable RC oscillator may be built using only 2 resistors and a capacitor.

The multiplex oscillator is eight times the multipiex rate. The frequency is given using the following formulii:

$$
f=\frac{1}{2.2 R_{x} C_{x}}
$$

R_{S} should always be $\leq 1 \mathrm{M} \Omega$ and $\mathrm{R}_{\mathrm{S}}=k \mathrm{R}_{\mathrm{X}}$ where k is in the range 2-10.

An external generator may be used to provide the multiplex frequency input. This signal, applied to terminal 19 (terminals 16 and 20 open circuit), should be approximately equal to the supply voltage, and should be a square wave for minimum of power dissipation.

Figure 4: Schematic Unit Counter

Unit Counter

Figure 4 shows the schematic of an extremely simple unit counter that can be used for remote traffic counting, to name one application. The power cell stack should consist of 3 or 4 nickel cadmium rechargeable cells (nominal 3.6 or 4.8 volts). If 4×1.5 volt cells are used it is recommended that a diode be placed in series with the stack to guarantee that the supply voltage does not exceed 6 volts.

The input switch is shown to be a single pole double throw switch (SPDT). A single pole single throw switch (SPST) could also be used (with a pullup resistor), however, anti-bounce circuitry must be included in series with the counter input. In order to avoid contact bounce problems due to the SPDT switch the ICM7208 contains an input latch on chip.

The unit counter updates the display for each negative transition of the input signal. The information on the display will count, after reset, from 00 to $9,999,999$ and then reset to 0000000 and begin to count up again. To blank leading zeros, actuate reset at the beginning of a count. Leading zero blanking affects two digits at a time.

For battery operated systems the display may be switched off to conserve power.

Frequency Counter

The ICM7208 may be used as a frequency counter when used with an external frequency reference and gating logic. This can be achieved using the ICM7207 Oscillator Controller (Figure 5). The ICM7207 uses a crystal controlled oscillator to provide the store and reset pulses together with
the counting window. Figure 6 shows the recommended input gating waveforms to the ICM7208. At the end of a counting period (50% duty cycle) the counter input is inhibited. The counter information is then transferred and stored in latches, and can be displayed. Immediately after this information is stored, the counters are cleared and are ready to start a new count when the counter input is enabled.

Using a 6.5536 MHz quartz crystal and the ICM7207 driving the $1 C M 7208$, two ranges of counting may be obtained, using either 0.01 sec or 0.1 sec counter enable windows.

Previous comments on leading zero blanking, etc., apply as per the unit counter.

The ICM7207 provides the multiplex frequency reference of 1.6 kHz .

Period Counter

For this application, as opposed to the frequency counter, the gating and the input signal to be measured are reversed to the frequency counter. The input period is multiplied by two to produce a single polarity signal (50\% duty cycle) equal to the input period, which is used to gate into the counter the frequency reference $(1 \mathrm{MHz}$ in this case). Figure 8 shows a block schematic of the input waveform generator. The 1 MHz frequency reference is generated by the ICM7209 Clock Generator using an 8 MHz oscillator frequency and internally dividing this frequency by 8. Alternatively, a 1 MHz signal could be applied directly to COUNTER INPUT. Waveforms are shown in Figure 7.

Note: For a 1 sec count window which allows all 7 digits to be used with a resolution of 1 Hz , the ICM7207 can be replaced with the ICM7207A. Circuit details are given on the 7207A data sheet.

Figure 6: Frequency Counter Input Waveforms

Figure 7: Period Counter Input Waveforms

Figure 8: Period Counter Input Generator

ICM7209
 Timebase Generator

GENERAL DESCRIPTION

The Intersil ICM7209 is a versatile CMOS clock generator capable of driving a number of 5 volt systems with a variety. of input requirements. When used to drive up to 5 TTL gates, the typical rise and fall times are 10 ns .

The ICM7209 consists of an oscillator, a buffered output equal to the oscillator frequency and a second buffered output having an output frequency one-eighth that of the oscillator. The guaranteed maximum oscillator frequency is 10 MHz . Connecting the DISABLE terminal to the negative supply forces the $\div 8$ output into the ' 0 ' state and the output 1 into the '1' state.

FEATURES

- High Frequency Operation - 10MHz Guaranteed
- Requires Only A Quartz Crystal and Two Capacitors
- Bipolar, CMOS Compatibility
- High Output Drive Capability - $5 \times$ TTL Fanout With 10ns Rise and Fall Times
- Low Power - 50 mW at 10 MHz
- Choice of Two Output Frequencies - Osc., and Osc. $\div 8$ Frequencies
- Disable Control for Both Outputs
- Wide Industrial Temperature Range $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7209IJA	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 pin CERDIP
ICM7209IPA	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 pin PLASTIC
ICM7209/D	-	DICE

Figure 1: Functional Diagram
*Zener Voltage is Typically 6.3 Volts

Figure 2: Pin Configuration
(Outline dwg PA)
Pin 1 is designated by either a dot or a notch

ABSOLUTE MAXIMUM RATINGS

Power Dissipation $\left(25^{\circ} \mathrm{C}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .300 \mathrm{~mW}$
Storage Temperature $\ldots \ldots \ldots \ldots \ldots .55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots \ldots .20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $\ldots \ldots \ldots \ldots \ldots .300^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $.300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affeci device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V} \pm 10 \%$, test circuit, $\mathrm{f}_{\mathrm{OSC}}=10 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
100	Supply Current	Note 1 No Load		11	20	mA
C_{D}	Disable Input Capacitance			5		pF
ILLK	Disabie Input Leakage	Either ' 1 ' or ' 0 ' state			± 10	$\mu \mathrm{A}$
VOL	Output Low State	Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads			0.4	V
V_{OH}	Output High State	Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads	4.0	4.9		
$t_{\text {f }}$	Output Rise Time (Note 3)	Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads		10		ns
t_{F}	Output Fali Time (Note 3)	Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads		10		
fosc	Minimum OSC Frequency for $\div 8$ Output	Note 2	2	.		MHz
	Output $\div 8$ duty cycle	Any operating frequency Low state : High state		7:9		
GM	Oscillator Transconductance		80	200		$\mu \mathrm{s}$

NOTES: 1. The power dissipation is a function of the oscillator frequency (1st ORDER EFFECT see curve) but is also effected to a small extent by the oscillator tank components.
2. The $\div 8$ circuitry uses a dynamic scheme. As with any dynamic system, information or data is stored on very small nodal capacitances instead of latches (static systems) and there is a lower cutoff frequency of operation. Dynamic dividers are used in the iCM7209 to significantly improve high frequency performance and to decrease power consumption.
3. Rise and fall times are defined between the output levels of 0.5 and 2.4 volts.

CRYSTAL PARAMETERS:
$C_{M}=5 \mathrm{mpF}$
$R_{S}=15$ ohms
$C_{O}=3 p F$
$C_{L}=10 p F$
$f=10 \mathrm{MHz}$

Figure 3: Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS $\left(V_{D D}-V_{S S}=5 \mathrm{~V}\right)$

SUPPLY CURRENT AS A FUNCTION OF OSCILLATOR FREQUENCY

TYPICAL OUT 1 RISE AND FALL TIMES

OP049001

SUPPLY VOLTAGE RANGE FOR CORRECT OPERATION OF -8 COUNTER AS A FUNCTION OF OSCILLATOR FREQUENCY.

10 KHz 100 MHz 1 MHz 10 MHz 100 MHz OSCILLATOR FREQUENCY

OP049111

DETAILED DESCRIPTION

OSCILLATOR CONSIDERATIONS

The oscillator consists of a CMOS inverter with a nonlinear resistor connected between the oscillator input and output to provide D.C. biasing. Using commercially obtainable quartz crystals the oscillator will operate from low frequencies (10 kHz) to 10 MHz .

The oscillator circuit consumes about $500 \mu \mathrm{~A}$ of current using a 10 MHz crystal with a 5 volt supply, and is designed to operate with a high impedance tank circuit. It is therefore necessary that the quartz crystal be specified with a load capacitance $\left(C_{L}\right)$ of 10 pF instead of the standard 30 pF . To maximize the stability of the oscillator as a function of supply voltage and temperature, the motional capacitance of the crystal should be low (5 mpF or less). Using a fixed input capacitor of 18 pF and a variable capacitor of nominal value of 18 pF on the output will result in oscillator stabilities of typically 1 ppm per volt change in supply voltage.

THE $\div 8$ OUTPUT

A dynamic divider is used to divide the oscillator frequency by 8. Dynamic dividers use small nodal capacitances to
store voltage levels instead of latches (which are used in static dividers). The dynamic divider has advantages in high speed operation and low power but suffers from limited low frequency operation. This results in a window of operation for any oscillator frequency (see TYPICAL PERFORMANCE CHARACTERISTICS).

OUTPUT DRIVERS

The output drivers consist of CMOS inverters having active pullups and pulldowns. Thus the outputs can be used to directly drive TTL gates, other CMOS gates operating with a 5 volt supply, or TTL compatible MOS gates. The guaranteed fanout is 5 TTL loads although typical fanout capability is at least 10 TTL loads with slightly increased output rise and fall times.

DEVICE POWER CONSUMPTION

At low frequencies the principal component of the power consumption is the oscillator. At high oscillator frequencies the major portion of the power is consumed by the output drivers, thus by disabling the outputs (activating the DISABLE INPUT) the device power consumption can be dramatically reduced.

ICM7213
 One Second/One Minute Timebase Generator

GENERAL DESCRIPTION

The ICM7213 is a fully integrated micropower oscillator and frequency divider with four buffered outputs suitable for interfacing with most logic families. The power supply may be either a two battery stack (Ni-cad, alkaline, etc.) or a regular power supply greater than 2 volts. Depending upon the state of the WIDTH, INHIBIT, and TEST inputs, using a 4.194304 MHz crystal will produce a variety of output frequencies including $2048 \mathrm{~Hz}, 1024 \mathrm{~Hz}, 34.133 \mathrm{~Hz}, 16 \mathrm{~Hz}$, 1 Hz , and $1 / 60 \mathrm{~Hz}$ (plus composites).

The ICM7213 utilizes a very high speed low power metal gate CMOS technology which uses 6.4 volt zeners between the drains and sources of each transistor and also across the supply terminals. Consequently, the ICM7213 is limited to a 6 volt maximum supply voltage, although a simple dropping network can be used to extend the supply voltage range well above 6 volts (See Figure 7).

FEATURES

- Guaranteed 2 Volts Operation
- Very Low Current Consumption: Typ. $100 \mu \mathrm{~A}$ @ 3V
- All Outputs TTL Compatible
- On Chip Oscillator Feedback Resistor
- Oscillator Requires Only 3 External Components: Fixed Capacitor, Trim Capacitor, and A Quartz Crystal
- Output Inhibit Function
- 4 Simultaneous Outputs: One Pulse/Sec, One Pulse/Min, 16 Hz and Composite $1024+16+2 \mathrm{~Hz}$ Outputs
- Test Speed-Up Provides Other Frequency Outputs

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7213IJD	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 pin CERDIP
ICM7213IPD	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 pin PLASTIC DIP
ICM $7213 / \mathrm{D}$	-	DICE

ABSOLUTE MAXIMUM RATINGS

Supply Voltage（VDD－VSS）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．6． V
Output Current（Any output）． 20 mA
All Input and Oscillator Voltages（Note 1） \qquad $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
All Output Voltages（Note 1） \qquad VSS to 6.0 V
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．
NOTE 1：The ICM7213 like most CMOS devices，may enter a destructive latchup mode if an input or output voltage is applied in excess of those defined and there is no supply current limiting．
NOTE 2：Derate linearly power rating of 200 mW at $25^{\circ} \mathrm{C}$ to 50 mW at $70^{\circ} \mathrm{C}$ ．

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}-V_{S S}=3.0 V, f_{O S C}=4.194304 \mathrm{MHz}\right.$ ，Test Circuit，$T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified）

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IDD	Supply Current			100	140	$\mu \mathrm{A}$
V SUPPLY	Guaranteed Operating Supply Voltage Range（ $V_{D D}-V_{S S}$ ）	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$	2		4	V
lolk	Output Leakage Current	Any output，VOUT $=6$ Volts			10	$\mu \mathrm{A}$
ROUT	Output Sat．Resistance	Any output，${ }_{\text {OLK }}=2.5 \mathrm{~mA}$		120	200	Ω
1	Inhibit Input Current	Inhibit terminal connected to $V_{D D}$		10	40	$\mu \mathrm{A}$
ITP	Test Point Input Current	Test point terminal connected to $V_{D D}$		10	40	
IW	Width Input Current	Width terminal connected to $V_{\text {DD }}$		10	40	
gm	Oscillator gm_{m}	$\mathrm{V}_{\mathrm{DD}}=2 \mathrm{~V}$	100			$\mu \mathrm{s}$
fosc	Oscillator Frequency Range（Note 3）		1		10	MHz
fstab	Oscillator Stability	$2 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<4 \mathrm{~V}$		1.0		ppm
$\mathrm{t}_{\text {S }}$	Oscillator Start Time		，	0.1	：	sec
		$V_{D D}=2.0$ volts		0.2		

NOTE：3．The ICM7213 uses dynamic dividers for high frequency division．As with any dynamic system，information is stored on very small nodal capacitances instead of latches（static system），therefore there is a lower frequency of operation．Dynamic dividers are used to improve the high frequency performance while at the same time significantly decreasing power consumption．At low supply voltages，operation at less than 1 MHz is possible．See application notes．

Figure 3：Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

OP049201

OSCILLATOR STABILITY AS A' FUNCTION OF DEVICE TEMPERATURE

OP049501

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OP049311

OUTPUT CURRENT AS A FUNCTION OF OUTPUT SATURATION VOLTAGE

OSCILLATOR STABILITY AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT DEFINITIONS

InPut states*			PIN 12 OUT 1	PIN 13 OUT 2	PIN 2 OUT 3	PIN 14 OUT 4
TEST	INHIBIT	WIDTH				
L	L	L	$\begin{aligned} & 16 \mathrm{~Hz} \\ & \div 2^{18} \end{aligned}$	$\begin{aligned} & 1024+16+2 \mathrm{~Hz} \\ & \left(\div 2^{12} \div 2^{18} \div 2^{21}\right) \text { composite } \end{aligned}$	$\begin{aligned} & 1 \mathrm{~Hz}, 7.8 \mathrm{~ms} \\ & \div 2^{222} \end{aligned}$	$1 / 60 \mathrm{~Hz}, 1 \mathrm{Sec}$. $\div\left(2^{24} \times 3 \times 5\right)$
L	L	H	$\begin{aligned} & 16 \mathrm{~Hz} \\ & \div 2^{18} \end{aligned}$	$\begin{aligned} & 1024+16+2 \mathrm{~Hz} \\ & \left(\div 2^{12} \div 2^{18} \div 2^{21}\right) \text { composite } \end{aligned}$	$\begin{aligned} & 1 \mathrm{~Hz}, 7.8 \mathrm{~ms} \\ & \div 2^{22} \end{aligned}$	$1 / 60 \mathrm{~Hz}, 125 \mathrm{~ms}$
L	H	L	$\begin{aligned} & 16 \mathrm{~Hz} \\ & \div 2^{18} \end{aligned}$	$\begin{aligned} & \hline 1024+16 \mathrm{~Hz} \\ & \left(\div 2^{12} \div 2^{18}\right) \text { composite } \end{aligned}$	OFF	OFF
L	H	H	$\begin{aligned} & 16 \mathrm{~Hz} \\ & \div 2^{18} \end{aligned}$	$\begin{aligned} & \overline{1024+16} \mathrm{~Hz} \\ & \left(\div 2^{12} \div 2^{18}\right) \text { composite } \end{aligned}$	OFF	SEE WAVEFORMS
H	L	L	ON	$\begin{aligned} & \overline{4096+1024} \mathrm{~Hz} \\ & \left(\div 2^{10} \div 2^{12}\right) \text { composite } \end{aligned}$	$\begin{aligned} & 2048 \mathrm{~Hz} \\ & \div 2^{11} \end{aligned}$	$34.133 \mathrm{~Hz}, 50 \%$ D.C. $\div\left(2^{13} \times 5 \times 3\right)$
H	L	H	ON	$\overline{4096+1024} \mathrm{~Hz}$ $\left(\div 2^{10} \div 2^{12}\right)$ composite	$\begin{aligned} & 2048 \mathrm{~Hz} \\ & \div 2^{11} \end{aligned}$	$\begin{aligned} & 34.133 \mathrm{~Hz}, 50 \% \text { D.C. } \\ & \div\left(2^{13} \times 5 \times 3\right) \\ & \hline \end{aligned}$
H	H	L	ON	$\begin{aligned} & 1024 \mathrm{~Hz} \\ & \div 2^{12} \end{aligned}$	ON	OFF
H	H	H	ON	$\begin{aligned} & 1024 \mathrm{~Hz} \\ & \div 2^{12} \end{aligned}$	ON	OFF

NOTE: When TEST and RESET are connected to ground, or left open, all outputs except for OUT 3 and OUT 4 have a 50% duty cycle.

Figure 4: Output Waveforms

WF02170
Figure 5: Effect of Input Inhibit (Test Connected to $\mathbf{V}_{\text {SS }}$ or Left Open)

All time scales are arbitrary, and in the case of OUT 3 only the pulses coinciding with the negative edge of OUT 4 are shown. Where time intervals are relevant they are clearly shown.

APPLICATIONS

Supply Voltage Considerations

The ICM7213 may be used to provide various precision outputs with frequencies from 2048 Hz to $1 / 60 \mathrm{~Hz}$ using a $4,194,304 \mathrm{~Hz}$ quartz oscillator, and other output frequencies may be obtained using other quartz crystal frequencies. Since the ICM7213 uses dynamic high frequency dividers for the initial frequency division there are limitations on the supply voltage range depending on the oscillator frequency. If, for example, a low frequency quartz crystal is selected, the supply voltage should be selected in the center of the operating window, or approximately 1.7 volts.

Figure 6: Window of Correct Operation

The supply voltage to the ICM7213 may be derived from a high voltage supply by using a simple resistor divider (if power is of no concern), by using a series resistor for minimum current consumption, or by means of a regulator.

Oscillator Considerations

The oscillator consists of a CMOS inverter and a feedback resistor whose value is dependent on the voltage at the oscillator input and output terminals and the supply voltage. Oscillator stabilities of approximately 0.1 ppm per 0.1 volt variation are achievable with a nominal supply voltage of 5 volts and a single voltage dropping resistor. The crystal specifications are shown in the TEST CIRCUIT.

It is recommended that the crystal load capacitance (CL) be no greater than 22 pF for a crystal having a series resistance equal to or less than 75 ohms, otherwise the output amplitude of the oscillator may be too low to drive the divider reliably.

If a very high quality oscillator is desired, it is recommended that a quartz crystal be used having a tight tuning tolerance $\pm 10 \mathrm{ppm}$, a low series resistance (less than 25 ohms), a low motional capacitance of 5 mpF and a load capacitance of 20 pF . The fixed capacitor C_{IN} should be 30 pF and the oscillator tuning capacitor should range between approximately 16 and 60 pF .

Use of a high quality crystal will result in typical stabilities of 0.05 ppm per 0.1 volt change of supply voltage.

Control Inputs

The TEST input inhibits the 2^{18} output and applies the 2^{9} output to the 2^{21} divider, thereby permitting a speedup of the testing of the $\div 60$ section by a factor of 2048 times. This also results in alternative output frequencies (see table).

The WIDTH input may be used to change the pulse width of OUT 4 from 125 ms to 1 sec , or to change the state of OUT 4 from ON to OFF during INHIBIT.

EXAMPLE:
$f=4.2 \mathrm{MHz}$
$8 \mathrm{~V} \leqslant \mathrm{~V} \leqslant 12 \mathrm{~V}$ (10 nom.)
$l_{1} \approx 100 \mu \mathrm{~A}$
$1_{2} \approx 1 \mathrm{~mA}$
$\mathrm{R}_{2} \approx 3 \mathrm{~K}$ OHMS
$R_{1} \approx 6.8 \mathrm{~K}$ OHMS

EXAMPLE:
${ }^{\mathrm{f}} \mathrm{OSC}=4.2 \mathrm{MHz}$
$8 \mathrm{~V} \leqslant \mathrm{~V} \leqslant 12 \mathrm{~V}$ (10V nom)
$\mathrm{I}_{1} \approx 100 \mu \mathrm{~A}$
$R_{3}=\left(10^{-3}\right) \mathrm{KOHMS}$
$\approx 68 \mathrm{~K}$ OHMS

DS02520I
Figure 7: Biasing Schemes with High Voltage Supplies

Logic Family Compatibility

Pull up resistors will generally be required to interface with other logic families. These resistors must be connected between the various outputs and the positive power supply.

GENERAL DESCRIPTION

The ICM7215 is a fully integrated six digit LED stopwatch circuit fabricated with Intersil's low threshold metal gate CMOS process. The circuit interfaces directly with a six digit/seven segment common cathode LED display. The low battery indicator can be connected to the decimal point anode or to a separate LED. The only components required for a complete stopwatch are the display, three SPST switches, a 3.2768 MHz crystal, a trimming capacitor, three AA batteries and an ON-OFF switch. For a two function stopwatch, or to add a display off feature, one additional slide switch is required. The circuit divides the oscillator frequency by 2^{15} to obtain 100 Hz , which is fed to the fractional seconds, seconds and minutes counters, while an intermediate frequency is used to obtain the $1 / 6$ duty cycle 1.07 kHz multiplex waveforms. The blanking logic provides leading zero blanking for seconds and minutes independently of the clock. The ICM7215 is packaged in a 24 -lead plastic DIP.

FEATURES

- Four Functions: Start/Stop/Reset, Split, Taylor, Time Out
- Six Digit Display: Ranges Up to 59 Minutes 59.99 Seconds
- High LED Drive Current: 13mA Peak Per Segment at 16.7% Duty Cycle With 4.0 Volt Supply
- Requires Only Three Low Cost SPST Switches Without Loss of Accuracy: Start/Stop, Reset, Display Unlock
- Chip Enable Pin Turns Off Both Segment and Digit Outputs; Can Be Used for Multiple Circuits Driving One Display
- Low Battery Indicator
- Digit Blanking On Seconds and Minutes
- Wide Operating Range: 2.0 to 5.0 Volts
- 1 kHz Multiplex Rate Prevents Flickering Display
- Can Be Used Easily In Four Different Single Function Stopwatches or Two Two-Function Stopwatches: Start/Stop/Reset With Time-out, Split With Taylor. The Component Count for A Three- or Four-Function Stopwatch Will Be Slightly Greater
- Retrofit to !CM7205 for Split and/or Taylor Applications

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ICM $7215 I P G$	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24-Pin PLASTIC DIP
ICM $7215 / D$	-	DICE

Figure 1: Functional Diagram

C0028721
Figure 2: Pin Configuration (Outline dwg PG)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V_{DD} to V_{SS})................................5.5V
Power Dissipation (Note 1).................................0.75W
Operating Temperature $\ldots \ldots \ldots \ldots \ldots \ldots-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature $\ldots \ldots \ldots \ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 Output Voltage.. $V_{S S}$ to $V_{D D}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, stopwatch circuit, $\mathrm{V}_{\mathrm{DD}}=4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$V_{\text {SUPPLY }}$	Supply Voltage (VD $\mathrm{V}_{\text {SS }}$)	$-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	2.0		5.0	V
IDD	Supply Current	Display off		0.6	1.5	mA
ISEG	Segment Current Peak Average	5 segments lit 1.8 Volts across display	9.0	$\begin{gathered} 13.2 \\ 2.2 \end{gathered}$		
ISW	Switch Actuation Current	All inputs except CHIP ENABLE		20	50	$\mu \mathrm{A}$
	Switch Actuation Current	Chip enable		50	200	
IDLK	Digit Leakage Current	$\mathrm{V}_{\text {DIG }}=2.0 \mathrm{~V}$			50	
ISLK	Segment Leakage Current	$\mathrm{V}_{\text {SEG }}=2.0 \mathrm{~V}$			100	
$V_{\text {LBI }}$	Low Battery Indicator Trigger Voltage		2.2		2.8	V
ILBI	LBI Output Current	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LBI}}=1.6 \mathrm{~V}$		2.0		mA
$\mathrm{f}_{\text {STAB }}$	Oscillator Stability	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		6		ppm
g_{m}	Oscillator Transconductance	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$	120			$\mu \mathrm{s}$
$\mathrm{C}_{\mathrm{OSCl}}$	Oscillator Input Capacitance			30	,	pF

NOTE: 1. The output devices on the ICM7215 have very low impedence characteristics, especially the digit cathode drivers. If these devices are shorted to a low impedance power supply, the current could be as high as 300 mA .

Figure 3: Stopwatch Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT VS VOLTAGE

OP049701

OSC. STABILITY VS SUPPLY VOLTAGE

OP049911

SEGMENT CURRENT VS SUPPLY VOLTAGE

OP049811
LOW BATTERY INDICATOR (LBI) TRIGGER VOLTAGE VS TEMPERATURE

LD008711
Figure 4: Start/Stop/Reset Mode

DETAILED DESCRIPTION

FUNCTIONAL OPERATION

Turning on the stopwatch will bring up the reset state with the fractional seconds displaying 00 and the other digits blanked. This display always indicates that the stopwatch is ready to go.

The display can be turned off in any mode by connecting the CHIP ENABLE input to $V_{D D}$.

START/STOP/RESET MODE

When the MODE input is floating and the DISPLAY input is floating or connected to $V_{D D}$ the circuit is in the Start/ Stop/Reset mode. (Figure 4).

The Start/Stop/Reset mode can be used for single event timing in a one-button stopwatch; an additional switch can be used to provide an instant reset. To time another event, the display must be reset before the start of the event. Seconds will be displayed after one second, minutes after one minute. The range of the stopwatch is 59 minutes 59.99 seconds, and if an event exceeds one hour, the number of hours must be remembered by the user. Leading zeroes are not blanked after one hour.

PRESS
START/STOP
ONCE
PRESS
RESET

Figure 6: Split Mode

TAYLOR OR SEQUENTIAL MODE

When the MODE input is connected to $V_{S S}$, the stopwatch is in the Taylor or Sequential mode. (Figure 5).

Each split time is measured from zero in the Taylor mode; i.e., after stopping the watch, the counters reset momentari-
ly and start counting the next interval. The time displayed is that elapsed since the last activation of START/STOP. The display is stationary after the first interval unless the display unlock is used, by connecting the DISPLAY input to V_{SS}, to show the running clock. RESET can be used at any time.

LD00B80
Figure 7: Time-Out Mode

SPLIT MODE

When the MODE input is connected to $V_{D D}$ the stopwatch is in the Split mode. (Figure 6).

The Split mode differs from the Taylor in that the lap times are cumulative in the Split mode. The counters do not reset or stop after the first start until RESET is activated. Time displayed is the cumulative time elapsed since the first start after reset. Display unlock can be used, by connecting the DISPLAY input to $V_{S S}$, to let the display 'catch up' with the clock, and RESET can be used at any time.

TIME OUT MODE

When the MODE input is floating and the DISPLAY input is tied to $V_{S S}$, the stopwatch is in the Time-out mode. (Figure 7).

In the Time-out mode the clock and display alternately start and stop with activations of the START/STOP switch. RESET can be used at any time. The display unlock button is bypassed in this mode.

APPLICATION NOTES

LOW BATTERY INDICATOR

The on-chip low battery indicator is intended for use with a small LED or the decimal points on a standard LED display. The output is the drain of a p-channel transistor two-thirds the size of the segment drivers which will typically source 2 mA of current. The threshold voltage is approximately 2.5 volts at room temperature. Normal AA type batteries will provide many hours of accurate timekeeping after the indicator comes on, however the wide voltage spread between the LBI threshold voltage and minimum operating voltage is required to guarantee low battery indication under worst case conditions.

CHIP ENABLE

The CHIP ENABLE input is used to disable both segment and digit drivers without affecting any of the functions of the device. When the CHIP ENABLE input is floating or connected to $V_{\text {SS }}$, the display is enabled, and when the tied to $V_{D D}$ the display is turned off. One example of the many possible uses of this feature is driving one display from two ICM7215 devices, one in the split mode and the other in the

Taylor mode. The circuit, Figure 8, shows how the user can obtain lap and cumulative readings of the same event.

SWITCH CHARACTERISTICS

The ICM7215 is designed for use with SPST switches throughout. On the DISPLAY and RESET inputs the characteristics of the switches are unimportant, since the circuit responds to a logic level held for any length of time however short. Switch bounce on these inputs does not need to be specified. The START/STOP input, however, responds to an edge and so requires a switch with less than 15 ms of switch bounce. The bounce protection circuitry has been specifically designed to let the circuit respond to the first edge of the signal, so as to preserve the full accuracy of the system.

ALL OTHER SWITCHES COMMON TO BOTH DEVICES
LD008911
Figure 8

LATCHUP CONSIDERATIONS

Due to the inherent structure of junction isolated CMOS devices, the circuit can be put in a latchup mode if large currents are injected into device inputs or outputs. For this reason special care should be taken in a system with multiple power supplies to prevent voltages being applied to inputs and/or outputs before power is applied to the 7215. If only inputs are affected, latchup can also be prevented by limiting the current into the input terminal to less than 1 mA .

ICM7215

OSCILLATOR DESIGN

The oscillator of the ICM7215 includes all components on chip except the 3.2768 MHz crystal and the trimming capacitor. The oscillator input capacitance has a nominal value of 30 pF , and the circuit is designed to work with a crystal with a load capacitance of approximately $15 p F$. If the crystal has characteristics as shown in the Typical Performance Characteristics, an $8-40 \mathrm{pF}$ trimming capacitor will be adequate for a tuning tolerance of ± 30 PPM on the crystal. If the crystal's static capacitance is significantly lower, a narrower trimming range may be selected.

After deciding on a crystal and a nominal load capacitance, take the worst case values of $\mathrm{C}_{\mathrm{in}}, \mathrm{C}_{\text {out }}$ and Rs_{S} and calculate the g_{m} required by:
$g_{m}=\omega^{2} C_{\text {in }} C_{\text {out }} R_{S}\left[1+\frac{C_{o}\left(C_{\text {in }}+C_{\text {out }}\right)}{C_{\text {in }} C_{\text {out }}}\right]^{2}$
$C_{0}=$ static capacitance
$\mathrm{R}_{\mathrm{S}}=$ series resistance
$\mathrm{C}_{\text {in }}=$ input capacitance
$\mathrm{C}_{\text {out }}=$ output capacitance
$\omega=2 \pi \times$ crystal frequency
The resulting gm should be less than half the gm_{m} specified for the device. If it is not, a lower value of crystal
series resistance and/or load capacitance should be specified.

OSCILLATOR TUNING

Tuning can be accomplished by using the 10th or 100th seconds with the device reset. The frequency on the cathode should be tuned to 1066.667 Hz , which is equivalent to a period of 937.5 microseconds. Note that a frequency counter cannot be connected directly to the oscillator because of possible loading.

TEST

The TEST input is used for high speed testing of the device. When the input is pulsed low, a latch is set which speeds up counting by a factor of 32 ; each pulse on the TEST input rapidly advances both minutes and seconds in a parallel mode. To accurately rapid advance the signal applied to the TEST input must be free of switch bounce. The circuit is taken out of the test mode by using either RESET or START/STOP.

REPLACING THE ICM7205 WITH THE ICM7215

The ICM7215 is designed to be compatible with circuits using the ICM7205. If the 7205 is used only in the Split mode no changes are required. If the 7205 is used in the Taylor mode and the Split-Taylor input (pin 21) is left open, a jumper from pin 21 to $V_{S S}$ must be added when converting to the 7215. A jumper may also be needed if the 7205 is used with a Split/Taylor switch. Once the jumper has been added the board can be used with either device.

GENERAL DESCRIPTION

The ICM7216A and B are fully integrated Timer Counters with LED display drivers．They combine a high frequency oscillator，a decade timebase counter，an 8－decade data counter and latches，a 7－segment decoder，digit multiplex－ ers and 8 segment and 8 digit drivers which directly drive large multiplexed LED displays．The counter inputs have a maximum frequency of 10 MHz in frequency and unit counter modes and 2 MHz in the other modes．Both inputs are digital inputs．In many applications，amplification and level shifting will be required to obtain proper digital signals for these inputs．

The ICM7216A and B can function as a frequency counter，period counter，frequency ratio（ $\mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}$ ）counter， time interval counter or as a totalizing counter．The counter uses either a 10 MHz or 1 MHz quartz crystal timebase．For period and time interval，the 10 MHz timebase gives a $0.1 \mu \mathrm{~s}$ resolution．In period average and time interval average，the resolution can be in the nanosecond range．In the frequen－ cy mode，the user can select accumulation times of 0.01 $\mathrm{sec}, 0.1 \mathrm{sec}, 1 \mathrm{sec}$ and 10 sec ．With a 10 sec accumulation time，the frequency can be displayed to a resolution of 0.1 Hz in the least significant digit．There is 0.2 seconds between measurements in all ranges．

The ICM7216C and D function as frequency counters only，as described above．

All versions of the ICM7216 incorporate leading zero blanking．Frequency is displayed in kHz ．In the ICM7216A and B ，time is displayed in $\mu \mathrm{s}$ ．The display is multiplexed at 500 Hz with a 12.2% duty cycle for each digit．The ICM7216A and C are designed for common anode display with typical peak segment currents of 25 mA ．The ICM7216B and D are designed for common cathode displays with typical peak segment currents of 12 mA ．In the display off mode，both digit and segment drivers are turned off，enabling the display to be used for other functions．
ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7216A／D	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7216AIJL	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 pin CERDIP
ICM7216B／D	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7216BIPI	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 pin PLASTIC DIP
ICM7216BIJL	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 pin CERDIP
ICM7216C／D	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7216CIJL	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 pin CERDIP
ICM7216D／D	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7216DIPI	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 pin PLASTIC DIP
ICM7216DIJL	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 pin CERDIP

FEATURES

ALL VERSIONS：

－Functions as a Frequency Counter（DC to 10MHz）
－Four Internal Gate Times： 0.01 Sec，0．1 Sec， $1 \mathrm{Sec}, 10 \mathrm{Sec}$ in Frequency Counter Mode
－Directly Drives Digits and Segments of Large Multiplexed LED Displays（Common Anode and Common Cathode Versions）
－Single Nominal 5V Supply Required
－Highly Stable Oscillator，Uses 1 MHz or 10 MHz Crystal
－Internally Generated Decimal Points，Interdigit Blanking，Leading Zero Blanking and Overflow Indication
－Display Off Mode Turns Off Display and Puts Chip Into Low Power Mode
－Hold and Reset Inputs for Additional Flexibility ICM7216A AND ICM7216B
－Functions Also as a Period Counter，Unit Counter，Frequency Ratio Counter or Time Interval Counter
－ 1 Cycle， 10 Cycles， 100 Cycles， 1000 Cycles in Period，Frequency Ratio and Time Interval Modes
－Measures Period From $0.5 \mu \mathrm{~s}$ to $\mathbf{1 0 s}$
ICM7216C AND ICM7216D
－Decimal Point and Leading Zero Blanking May Be Externally Selected

Figure 1：Functional Diagram

ABSOLUTE MAXIMUM RATINGS

Maximum Supply Voltage ($V_{D D}-V_{S S}$) 6.5 V
Maximum Digit Output Current 400mA
Maximum Segment Output Current 60 mA
Voltage On Any Input orOutput Terminal[1]....... $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$

Maximum Power Dissipation at

0.5 W (ICM7216B \& D)

Operating Temperature Range $\ldots \ldots \ldots . .-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

Note: 1. The ICM7216 may be triggered into a destructive latchup mode if either input signals are applied before the power supply is applied or if input or outputs are forced to voltages exceeding $V_{D D}$ to $V_{S S}$ by more than 0.3 volts.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 2: Pin Configurations

EVALUATION KIT

The ICM7226 Universal Counter System has all of the features of the ICM7216 plus a number of additional features. The ICM7226 Evaluation Kit consists of the

ICM7226AIJL (Common Anode LED Display), a 10 MHz quartz crystal, eight 7 segment $0.3^{\prime \prime}$ LED's, P.C. board, resistors, capacitors, diodes, switches, socket: everything needed to quickly assemble a functioning ICM7226 Universal Counter System.

ELECTRICAL CHARACTERISTICS (ICM7216A/B)
($V_{D D}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified:)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	ICM7216A/B		
IDD	Operating Supply Current	Display Off, Unused Inputs to VSS		2	5	mA
VSUPPLY	Supply Voltage Range ($\left.\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$, INPUT A, INPUT B Frequency at $f_{\text {max }}$	4.75		6.0	V
${ }^{\text {f }}$ (max)	Maximum Frequency INPUT A, Pin 28	$-20^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C}$ $4.75<\mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$, Figure 3, Function $=$ Frequency, Ratio, Unit Counter Function $=$ Period, Time Interval	$\begin{aligned} & 10 \\ & 2.5 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
${ }^{\mathrm{f}}(\mathrm{max})$	Maximum Frequency INPUT B, Pin 2	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & 4.75<\mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V} \end{aligned}$ Figure 4	2.5			MHz
	Minimum Separation INPUT A to INPUT B Time Interval Function	$-20^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C}$ $4.75<\mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$, Figure 5	250			ns
$f_{\text {osc }}$	Maximurn Osc. Freq. and Ext. Osc. Frequency	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C} \\ & 4.75<V_{D D} \leq 6.0 \mathrm{~V} \end{aligned}$	10			MHz
$\mathrm{f}_{\text {osc }}$	Minimum Ext. Osc. Freq.				100	kHz
gm_{m}	Oscillator Transconductance	$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	2000			$\mu \mathrm{s}$
$f_{\text {mux }}$	Multiplex Frequency	$\mathrm{f}_{\text {OSC }}=10 \mathrm{MHz}$		500		Hz
	Time Between Measurements	$\mathrm{f}_{\text {OSC }}=10 \mathrm{MHz}$		200		ms
VINL VINH	Input Voltages: Pins 2,13,25,27,28 Input Low Voltage Input High Voltage	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$	3.5	:	1.0	$\begin{aligned} & V \\ & v \end{aligned}$
RIN	Input Resistance to $V_{D D}$ Pins 13,24	$V_{1 N}=V_{D D}-1.0 V$	100	400	-	$k \Omega$
IILK	Input Leakage Pin 27,28,2				20	$\mu \mathrm{A}$
$\mathrm{dV}_{\text {IN }} / \mathrm{dt}$	Input Range of Change	Supplies Well Bypassed		15		$\mathrm{mV} / \mu \mathrm{s}$
	ICM7216A					
$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOL} \\ & \hline \end{aligned}$	Digit Driver: Pins $15,16,17,19,20,21,22,23$ High Output Current Low Output Current	$\begin{aligned} & V_{O U T}=V_{D D}-2.0 \mathrm{~V} \\ & V_{O U T}=V_{S S}+1.0 \mathrm{~V} \end{aligned}$	-140	$\begin{aligned} & -180 \\ & +0.3 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \end{aligned}$	SEGment Driver: Pins 4,5,6,7,9,10,11,12 Low Output Current High Output Current	$\begin{aligned} & V_{\text {OUT }}=V_{S S}+1.5 \mathrm{~V} \\ & V_{\text {OUT }}=V_{\text {DD }}-2.5 \mathrm{~V} \end{aligned}$	20	$\begin{gathered} 35 \\ -100 \end{gathered}$		$\begin{aligned} & m A \\ & \mu \mathrm{~A} \end{aligned}$
VINL V inh $\mathrm{R}_{\text {IN }}$	Multiplex Inputs: Pins 1,3,14 Input Low Voltage Input High Voitage Input Resistance to V_{SS}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}+1.0 \mathrm{~V}$	$\begin{aligned} & 2.0 \\ & 50 \\ & \hline \end{aligned}$	100	0.8	$\begin{gathered} v \\ v \\ k \Omega \end{gathered}$
	ICM7216B					
$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \end{aligned}$	Digit Driver: Pins 4,5,6,7,9,10,11,12 Low Output Current High Output Current	$\begin{aligned} & V_{\text {OUT }}=V_{S S}+1.3 V \\ & V_{\text {OUT }}=V_{D D}-2.5 \mathrm{~V} \end{aligned}$	50	$\begin{gathered} 75 \\ -100 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{I} \text { SLK } \end{aligned}$	SEGment Driver: Pins 15,16,17,19,20,21,22,23 High Output Current Leakage Current	$\begin{aligned} & V_{O U T}=V_{D D}-2.0 \mathrm{~V} \\ & V_{O U T}=V_{D D}-2.5 \mathrm{~V} \end{aligned}$	-10		10	$\begin{gathered} \mathrm{mA} \\ \mu \mathrm{~A} \end{gathered}$
$V_{\text {INL }}$ $\mathrm{V}_{\mathrm{INH}}$ $\mathrm{R}_{\text {IN }}$	Multiplex Inputs: Pins $1,3,14$ Input Low Voltage Input High Voltage Input Resistance to $V_{D O}$	$V_{i N}=V_{D D}-2.5 V$	$\begin{gathered} V_{D D}-0.8 \\ 100 \end{gathered}$	360	$V_{D D}-2.0$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{k} \Omega \end{gathered}$

ELECTRICAL CHARACTERISTICS（ICM7216C／D）
$\left(V_{D D}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=25^{\circ} \mathrm{C}\right.$ ，unless otherwise specified．）

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	ICM7216C／D					
IDD	Operating Supply Current	Display Off，Unused Inputs to $\mathrm{V}_{\text {SS }}$		2	5	mA
VSUPPLY	Supply Voltage Range（ $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}$ ）	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \text {, INPUT } \mathrm{A}$ Frequency at $f_{\text {max }}$	4.75		6.0	V
${ }^{1}{ }_{\text {（ }}($ max $)$	Maximum Frequency INPUT A，Pin 28	$\begin{aligned} & -20^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C} \\ & 4.75<V_{D D}<6.0 \mathrm{~V} \text {, Figure 3 } \\ & \hline \end{aligned}$	10			MHz
$\mathrm{f}_{\text {osc }}$	Maximum Osc．Freq．and Ext． Osc．Frequency	$\begin{aligned} & -20^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C} \\ & 4.75<V_{D D}<6.0 \mathrm{~V} \end{aligned}$	10			MHz
$f_{\text {osc }}$	Minimum Ext．Osc．Freq．				100	kHz
g_{m}	Oscillator Transconductance	$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	2000			$\mu \mathrm{s}$
${ }_{\text {fmux }}$	Multiplex Frequency	$\mathrm{f}_{\text {osc }}=10 \mathrm{MHz}$		500		Hz
	Time Between Measurements	$\mathrm{f}_{\text {osc }}=10 \mathrm{MHz}$		200		ms
$V_{\text {INL }}$ VinH	Input Voltages： Pins 12，27，28 Input Low Voltage Input High Voltage	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$	3.5		1.0	$\stackrel{v}{v}$
RIN	Input Resistance to $V_{D D}$ Pins 12，24	$\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$	100	400		$k \Omega$
IILK	Input Leakage Pin 27，Pin 28				20	$\mu \mathrm{A}$
lOL	Output Current Pin 2	$\mathrm{V}_{\mathrm{OL}}=+.4 \mathrm{~V}$	0.36			mA
${ }^{\mathrm{IOH}}$		$\mathrm{V}_{O H}=\mathrm{V}_{\text {DD }}-0.8 \mathrm{~V}$	265			$\mu \mathrm{A}$
$\mathrm{dV}_{1 /} / \mathrm{dt}$	Input Rate of Change	Supplies Well Bypassed		15		$\mathrm{mV} / \mu \mathrm{s}$
	ICM7216C					
$\begin{aligned} & \mathrm{lOH} \\ & \mathrm{OH} \\ & \hline \mathrm{OL} \\ & \hline \end{aligned}$	Digit Driver： Pins 15，16，17，19，20，21，22，23 High Output Current Low Output Current	$\begin{aligned} & V_{\text {OUT }}=V_{\text {DD }}-2.0 \mathrm{~V} \\ & V_{O U T}=V_{S S}+1.0 \mathrm{~V} \end{aligned}$	－140	$\begin{gathered} -180 \\ 0.3 \end{gathered}$		$\mathrm{mA}_{\mathrm{mA}}$
$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{OL} \\ & \hline \end{aligned}$	SEGment Driver： Pins $3,4,5,6,8,9,10,11$ Low Output Current High Output Current	$\begin{aligned} & V_{\text {OUT }}=V_{S S}+1.5 \mathrm{~V} \\ & V_{\text {OUT }}=V_{\text {DD }}-2.5 \mathrm{~V} \end{aligned}$	20	$\begin{gathered} 30 \\ -100 \end{gathered}$		$\mathrm{mA}_{\mu \mathrm{A}}$
VINL VINH RIN	Multiplex Inputs： Pins 1，13，14 Input Low Voltage Input High Voltage Input Resistance to $V_{S S}$	$\mathrm{V}_{\mathrm{IN}}=+1.0 \mathrm{~V}$	$\begin{aligned} & 2.0 \\ & 50 \\ & \hline \end{aligned}$	100	0.8	$\begin{gathered} v \\ v \\ k \Omega \\ \hline \end{gathered}$
	ICM7216D					
$\begin{aligned} & \mathrm{loL} \\ & \mathrm{OOH} \\ & \hline \end{aligned}$	Digit Driver： Pins 3，4，5，6，8，9，10，11 Low Output Current High Output Current	$\begin{aligned} & V_{\text {OUT }}=+1.3 \mathrm{~V} \\ & V_{\text {OUT }}=V_{\text {DD }}-2.5 \mathrm{~V} \end{aligned}$	50	$\begin{array}{r} 75 \\ 100 \end{array}$		$\mathrm{mA}_{\mu \mathrm{A}}$
$\begin{aligned} & \mathrm{IOH} \\ & \text { ISLK } \end{aligned}$	SEGment Driver： Pins 15，16，17，19，20，21，22，23 High Output Current Leakage Current	$\begin{aligned} & V_{\text {OUT }}=V_{D D}-2.0 V \\ & V_{\text {OUT }}=V_{D D}-2.5 \mathrm{~V} \end{aligned}$	10	15	10	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$\mathrm{V}_{\mathrm{INL}}$ Vinh RIN	Multiplex Inputs： Pins 1，13，14 Input Low Voltage Input High Voltage Input Resistance to $V_{D D}$	$V_{1 N}=V_{D D}-1.0 \mathrm{~V}$	$\left.\begin{gathered} V_{D D}-0.8 \\ 100 \end{gathered} \right\rvert\,$	360	$V_{D D}-2.0$	$\begin{gathered} v \\ v \\ \mathrm{k} \Omega \end{gathered}$

TYPICAL PERFORMANCE CHARACTERISTICS

ICM7216A \& C Typical IDIG vs. VDD - Vout, $4.5 \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$

ICM7216A \& C Typical Iseg vs. Vout

ICM7216B \& D Typical ISEG vs. VDD - Vout, $4.5 \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$

ICM7216B \& D Typical IDIGIT vs. Vout

(a)

(b)

OP040411

Figure 3：Waveform for Guaranteed Minimum $f_{A}(\max)$ Function $=$ Frequency， Frequency Ratio，Unit Counter．

TIME INTERVAL MEASUREMENT

The ICM7216A／B can be used to accurately measure the time interval between two events．With a 10 MHz time－base crystal，the time between the two events can be as long as ten seconds．Accurate resolution in time interval measure－ ment is 100 ns ．

The feature operates with Channel A going low at the start of the event to be measured，followed by Channel B going low at the end of the event．

When in the time interval mode and measuring a single event，the ICM7216A／B must first be＂＇primed＂prior to measuring the event of interest．This is done by first generating a negative going edge on Channel A followed by a negative going edge on Channel B to start the＂measure－ ment interval．＇＂The inputs are then primed ready for the measurement．Positive going edges on A and B ，before or after the priming，will be needed to restore the original condition．

This can be easily accomplished with the following circuit： （Figure 5）．

Figure 5：Priming Circuit，Signal A\＆B High or Low．

Following the priming procedure（when in single event or 1 cycle range input）the device is ready to measure one （only）event．
When timing repetitive signals，it is not necessary to ＂prime＂the ICM7216A／B as the first alternating signal states automatically prime the device．See Figure 5.

During any time interval measurement cycle，the ICM7216A／B requires 200 ms following B going low to update all internal logic．A new measurement cycle will not take place until completion of this internal update time．

WF017601
NOTE: IF RANGE IS SET TO 1 EVENT, FIRST AND LAST MEASURED INTERVAL WILL COINCIDE.
Figure 6: Waveforms for Time Interval Measurement (Others are similar, but without priming phase).

LC02960
Figure 7: Test Circuit (7216A shown; others similar)

Figure 8: Segment Identification and Display Font

DETAILED DESCRIPTION

INPUTS A and B

INPUTS A and B are digital inputs with a typical switching threshold of 2.0 V at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$. For optimum performance the peak-to-peak input signal should be at least 50% of the supply voltage and centered about the switching voltage. When these inputs are being driven from TTL logic, it is desirable to use a pullup resistor. The circuit counts high to low transitions at both inputs. (INPUT B is available only on ICM7216A/B).
Note: The amplitude of the input should not exceed the supply, otherwise, the circuit may be damaged.

Multiplexed Inputs

The FUNCTION, RANGE, CONTROL and EXTERNAL DECIMAL POINT inputs are time multiplexed to select the input function desired. This is achieved by connecting the appropriate Digit driver output to the inputs. The input function, range and control inputs must be stable during the last half of each digit output, (typically $125 \mu \mathrm{~s}$). The multiplex inputs are active high for the common anode ICM7216A and C and active low for the common cathode ICM7216B and D.

Noise on the multiplex inputs can cause improper operation. This is particularly true when the unit counter mode of operation is selected, since changes in voltage on the digit drivers can be capacitively coupled through the LED diodes to the multiplex inputs. For maximum noise immunity, a $10 \mathrm{k} \Omega$ resistor should be placed in series with the multiplex inputs as shown in the application circuits.

Table 1 shows the functions selected by each digit for these inputs.

CONTROL INPUT Functions

Display Test - All segments are enabled continuously, giving a display of all 8's with decimal points. The display will be blanked if Blank Display is selected at the same time.

Display Off - To disable the drivers, it is necessary to tie D_{4} to the CONTROL INPUT and have the HOLD input at

VDD. The chip will remain in this "Display Off" mode until HOLD is switched back to $V_{\text {SS. }}$. While in the 'Display Off' mode, the segment and digit driver outputs are open, the oscillator continues to run with a typical supply current of 1.5 mA with a 10 MHz crystal, and no measurements are made. In addition, inputs to the multiplexed inputs will have no effect. A new measurement is initiated when the HOLD input is switched to $V_{S S}$. Segment and Digit Drive outputs may thus be bussed to drive a common display (up to 6 circuits).

1MHz Select - The 1 MHz select mode allows use of a 1 MHz crystal with the same digit multiplex rate and time between measurements as with a 10 MHz crystal. The decimal point is also shifted one digit to the right in Period and Time Interval, since the least significant digit will be in $\mu \mathrm{s}$ increments rather than $0.1 \mu \mathrm{~s}$ increments.

External Oscillator Enable - In this mode the EXTERNAL OSCILLATOR INPUT is used instead of the on-chip oscillator for Timebase input and Main Counter input in period and time interval modes. The on-chip oscillator will continue to function when the external oscillator is selected. The external oscillator input frequency must be greater than 100 kHz or the chip will reset itself to enable the on-chip oscillator. OSCillator INPUT (pin 25) must also be connected to EXT.OSC. input when using EXT.OSC. input.

External Decimal Point Enable - When external decimal point is enabled a decimal point will be displayed whenever the digit driver connected to EXTERNAL DECIMAL POINT input is active. Leading Zero Blanking will be disabled for all digits following the decimal point (7216C/D only).

RANGE INPUT

The RANGE INPUT selects whether the measurement is made for $1,10,100,1000$ counts of the reference counter. In all functional modes except unit counter a change in the RANGE INPUT will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the RANGE INPUT is changed.

Table 1：Multiplexed Input Functions

	FUNCTION	DIGIT
FUNCTION INPUT Pin 3 （ICM7216A \＆B Only）	Frequency Period Frequency Ratio Time Interval Unit Counter Oscillator Frequency	$\begin{aligned} & D_{1} \\ & D_{8} \\ & D_{2} \\ & \\ & D_{5} \\ & D_{4} \\ & D_{3} \end{aligned}$
RANGE INPUT Pin 14	$.01 \mathrm{sec} / 1$ Cycle $.1 \mathrm{sec} / 10$ Cycles $1 \mathrm{sec} / 100$ Cycles $10 \mathrm{sec} / 1 \mathrm{~K}$ Cycles	$\begin{aligned} & \mathrm{D}_{1} \\ & \mathrm{D}_{2} \\ & \mathrm{D}_{3} \\ & \mathrm{D}_{4} \end{aligned}$
CONTROL INPUT Pin 1	Blank Display Display Test 1 MHz Select External Oscillator Enable External Decimal Point Enable	$\begin{gathered} \hline D_{4} \text { and Hold } \\ D_{8} \\ D_{2} \\ D_{1} \\ D_{3} \end{gathered}$
EXT．D．P．INPUT Pin 13，ICM7216C \＆D Only	Decimal point is output for same digit that is connected to this input	

FUNCTION INPUT

The six functions that can be selected are：Frequency， Period，Time Interval，Unit Counter，Frequency Ratio and Oscillator Frequency．This input is available on the ICM7216A and B only．

These functions select which signal is counted into the Main Counter and which signal is counted by the Reference Counter，as shown in Table 2．In all cases，only $1 \rightarrow 0$ transitions are counted or timed．In time interval，a flip－flop is toggled first by a $1 \rightarrow 0$ transition of INPUT A and then by a $1 \rightarrow 0$ transition of INPUT B．The oscillator is gated into the Main Counter from the time INPUT A toggles the flip－flop until INPUT B toggles it．In unit counter mode，the main counter contents are continuously displayed．A change in the FUNCTION INPUT will stop the measurement in prog－ ress without updating the display and then initiate a new measurement．This prevents an erroneous first reading after the FUNCTION INPUT is changed．

Table 2：7216A／B Input Routing

DESCRIPTION	MAIN COUNTER	REFERENCE COUNTER
Frequency（ f_{A} ）	Input A	$100 \mathrm{~Hz} \mathrm{(Oscillator}$ $\div 10^{5}$ or $\left.10^{4}\right)$
Period $\left(\mathrm{t}_{\mathrm{A}}\right)$	Oscillator	Input A
Ratio $\left(\mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}\right)$	Input A	Input B
Time Interval $(\mathrm{A} \rightarrow \mathrm{B})$	Osc•（Time Interval FF）	Time Interval FF
Unit Counter （Count A$)$	Input A	Not Applicable
Osc．Freq． $\left(\mathrm{f}_{\text {osc }}\right)$	Oscillator	$100 \mathrm{~Hz}($ Oscillator $\div 10^{5}$ or $\left.10^{4}\right)$

EXTernal DECimal Point INput

When the external decimal point is selected this input is active．Any of the digits，except D_{8} ，can be connected to this point．D_{8} should not be used since it will override the overflow output and leading zeros will remain unblanked
after the decimal point．This input is available on the ICM7216C and D only．

HOLD Input－Except in the unit counter mode，when the HOLD Input is at $V_{D D}$ ，any measurement in progress （before STORE goes low）is stopped，the main counter is reset and the chip is held ready to initiate a new measure－ ment as soon as HOLD goes low．The latches which hold the main counter data are not updated，so the last complete measurement is displayed．In unit counter mode when HOLD input is at $V_{D D}$ ，the counter is not stopped or reset， but the display is frozen at that instantaneous value．When HOLD goes low the count continues from the new value in the counter．

RESET Input－The RESET input resets the main count－ er，stops any measurement in progress，and enables the main counter latches，resulting in an all zero output．A capacitor to ground will prevent any hang－ups on power－up．

DISPLAY CONSIDERATIONS

The display is multiplexed at a 500 Hz rate with a digit time of $244 \mu \mathrm{~s}$ ．An interdigit blanking time of $6 \mu \mathrm{~s}$ is used to prevent ghosting between digits．The decimal point and leading zero blanking assume right hand decimal point displays，and zeros following the decimal point will not be blanked．Also，the leading zero blanking will be disabled when the Main Counter overflows．Overflow is indicated by the decimal point on digit 7 turning on．

The ICM7216A and C are designed to drive common anode LED displays at peak current of 25 mA ／segment， using displays with $V_{F}=1.8 \mathrm{~V}$ at 25 mA ．The average DC current will be over 3 mA under these conditions．The ICM7216B and D are designed to drive common cathode displays at peak current of $15 \mathrm{~mA} /$ segment using displays with $V_{F}=1.8 \mathrm{~V}$ at 15 mA ．Resistors can be added in series with the segment drivers to limit the display current in very efficient displays，if required．The Typical Performance Characteristics curves show the digit and segment currents as a function of output voltage．

To get additional brightness out of the displays， V_{DD} may be increased up to 6.0 V ．However，care should be taken to see that maximum power and current ratings are not exceeded．

The segment and digit outputs in ICM7216＇s are not directly compatible with either TTL or CMOS logic when driving LEDs．Therefore，level shifting with discrete transis－ tors may be required to use these outputs as logic signals．

ACCURACY

In a Universal Counter crystal drift and quantization effects cause errors．In frequency，period and time interval modes，a signal derived from the oscillator is used in either the Reference Counter or Main Counter．Therefore， in these modes an error in the oscillator frequency will cause an identical error in the measurement．For instance， an oscillator temperature coefficient of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will cause a measurement error of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．

In addition，there is a quantization error inherent in any digital measurement of ± 1 count．Clearly this error is reduced by displaying more digits．In the frequency mode the maximum accuracy is obtained with high frequency inputs and in period mode maximum accuracy is obtained with low frequency inputs．As can be seen in Figure 9，the least accuracy will be obtained at 10 kHz ．In time interval
measurements there can be an error of 1 count per interval. As a result there is the same inherent accuracy in all ranges as shown in Figure 10. In frequency ratio measurement can be more accurately obtained by averaging over more cycles of INPUT B as shown in Figure 11.

frequency (Hz^{\prime})
OP040601
Figure 9: Maximum Accuracy of Frequency and Period Measurements Due to Limitations of Quantization Errors

OP040701
Figure 10: Maximum Accuracy of Time Interval Measurement Due to Limitations of Quantization Errors

OP04080
Figure 11: Maximum Accuracy for Frequency Ratio Measurement Due to Limitation of Quantization Errors

Figure 12: 10 MHz Universal Counter

CIRCUIT APPLICATIONS

The ICM7216 has been designed for use in a wide range of Universal and Frequency counters. In many cases, prescalers will be required to reduce the input frequencies to under 10 MHz . Because INPUT A and INPUT B are digital inputs, additional circuitry is often required for input buffering, amplification, hysterisis, and level shifting to obtain a good digital signal.

The ICM7216A or B can be used as a minimum component complete Universal Counter as shown in Figure 12. This circuit can use input frequencies up to 10 MHz at INPUT A and 2 MHz at INPUT B. If the signal at INPUT A has a very low duty cycle it may be necessary to use a 74121 monostable multivibrator or similar circuit to stretch the input pulse width to be able to guarantee that it is at least 50 ns in duration.

To measure frequencies up to 40 MHz the circuit of Figure 13 can be used．To obtain the correct measured value，it is necessary to divide the oscillator frequency by four as well
as the input frequency．In doing this the time between measurements is also lengthened to 800 ms and the display multiplex rate is decreased to 125 Hz ．

LC018211
Figure 14: 100MHz Frequency Counter

If the input frequency is prescaled by ten, then the oscillator can remain at 10 or 1 MHz , but the decimal point must be moved one digit to the right. Figure 14 shows a frequency counter with a $\div 10$ prescaler and an ICM7216C. Since there is no external decimal point control with the ICM7216A/B; the decimal point may be controlled externally with additional drivers as shown in Figure 15. Alternatively, if separate anodes are available for the decimal points,
they can be wired up to the adjacent digit anodes. Note that there can be one zero to the left of the decimal point since the internal leading zero blanking cannot be changed. In Figure 16 additional logic has been added to count the input directly in period mode for maximum accuracy. In Figures 14 through 16, INPUT A comes from Q_{C} of the prescaler rather than Q_{D} to obtain an input duty cycle of 40%.

Figure 15: 100 MHz Multifunction Counter

OSCILLATOR CONSIDERATIONS

The oscillator is a high gain complementary FET inverter. An external resistor of $10 \mathrm{M} \Omega$ to $22 \mathrm{M} \Omega$ should be connected between the OSCillator INPUT and OUTPUT to provide biasing. The oscillator is designed to work with a parallel resonant 10 MHz quartz crystal with a static capacitance of 22 pF and a series resistance of less than 35 ohms.

For a specific crystal and load capacitance, the required g_{m} can be calculated as follows:
$g_{m}=\omega^{2} C_{\text {in }} C_{\text {out }} R\left(1+\frac{C_{O}}{C_{L}}\right)^{2}$
where $C_{L}=\left(\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{\text {out }}}\right)$
$\mathrm{C}_{\mathrm{O}}=$ Crystal Static Capacitance
$R_{S}=$ Crystal Series Resistance
$\mathrm{C}_{\text {in }}=$ Input Capacitance
Cout $=$ Output Capacitance
$\omega=2 \pi \mathrm{f}$

The required gm_{m} should not exceed 50% of the gm_{m} specified for the ICM7216 to insure reliable startup. The OSCillator INPUT and OUTPUT pins each contribute about 5 pF to C_{in} and $\mathrm{C}_{\text {out }}$. For maximum stability of frequency, C_{in} and $\mathrm{C}_{\text {out }}$ should be approximately twice the specified crystal static capacitance.

In cases where non decade prescalers are used it may be desirable to use a crystal which is neither 10 MHz or 1 MHz . In that case both the multiplex rate and time between measurements will be different. The multiplex rate isf $_{\text {mux }}=\frac{f_{\text {OSC }}}{2 \times 10^{4}}$ for 10 MHz mode and $f_{\text {mux }}=\frac{f_{\text {OSC }}}{2 \times 10^{3}}$ for the 1 MHz mode. The time between measurements is $\frac{2 \times 10^{6}}{f_{\text {osc }}}$ in the 10 MHz mode and $\frac{2 \times 10^{5}}{\mathrm{f}_{\text {osc }}}$ in the 1 MHz mode.

The crystal and oscillator components should be located as close to the chip as practical to minimize pickup from other signals. Coupling from the EXTERNAL OSCILLATOR INPUT to the OSCILLATOR OUTPUT or INPUT can cause undesirable shifts in oscillator frequency.

Figure 16: $\mathbf{1 0 0 M H z}$ Frequency, 2 MHz Period Counter

$f_{A}(\max), f_{B}($ max $)$ as a Function of $V_{D D}$
Figure 17: Typical Operating Characteristics

ICM7217/ICM7227 4-Digit LED Display Programmable Up/Down Counter

GENERAL DESCRIPTION

The ICM7217 and ICM7227 are four digit, presettable up/ down counters, each with an onboard presettable register continuously compared to the counter. The ICM7217 versions are intended for use in hardwired applications where thumbwheel switches are used for loading data, and simple SPDT switches are used for chip control. The ICM7227 versions are for use in processor-based systems, where presetting and control functions are performed under processor control.
These circuits provide multiplexed 7 segment LED display outputs, with common anode or common cathode configurations available. Digit and segment drivers are provided to directly drive displays of up to $0.8^{\prime \prime}$ character height (common anode) at a 25% duty cycle. The frequency of the onboard multiplex oscillator may be controlled with a single capacitor, or the oscillator may be allowed to free run. Leading zeros can be blanked. The data appearing at the 7 segment and BCD outputs is latched; the content of the counter is transferred into the latches under external control by means of the Store pin.
The ICM7217/7227 (common anode) and ICM7217A/ 7227A (common cathode) versions are decade counters, providing a maximum count of 9999, while the ICM7217B, 7227B (common anode) and ICM7217C/7227C (common cathode) are intended for timing purposes, providing a maximum count of 5959 .
These circuits provide 3 main outputs; a CARRY/BORROW output, which allows for direct cascading of counters, a ZERO output, which indicates when the count is zero, and an EQUAL output, which indicates when the count is equal to the value contained in the register. Data is multiplexed to and from the device by means of a three-state BCD I/O port. The CARRY/BORROW, EQUAL, ZERO outputs, and the BCD port will each drive one standard TTL load.
To permit operation in noisy environments and to prevent multiple triggering with slowly changing inputs, the count input is provided with a Schmitt trigger.

Input frequency is guaranteed to 2 MHz , although the device will typically run with f_{in} as high as 5 MHz . Counting and comparing (EQUAL output) will typically run 750 kHz maximum.

FEATURES

- Four Decade, Presettable Up-Down Counter With Parallel Zero Detect
- Settable Register With Contents Continuously Compared to Counter
- Directly Drives Multiplexed 7 Segment Common Anode or Common Cathode LED Displays
- On-Board Multiplex Scan Oscillator
- Schmitt Trigger On Count Input
- TTL Compatible BCD I/O Port, Carry/Borrow, Equal, and Zero Outputs
- Display Blank Control for Lower Power Operation; Quiescent Power Dissipation < 5mW
- All Terminals Fully Protected Against Static Discharge
- Single 5V Supply Operation

ORDERING INFORMATION

PART NUMBER	PACKAGE	DISPLAY OPTION	COUNT OPTION MAX COUNT
ICM7217IJI	28 Lead CERDIP	Common Anode	Decade/9999
ICM7217AIPI	28 Lead PLASTIC	Common Cathode	Decade/9999
ICM7217BIJI	28 Lead CERDIP	Common Anode	Timer/5959
ICM7217CIPI	28 Lead PLASTIC	Common Cathode	Timer/5959
ICM7227IJI	28 Lead CERDIP	Common Anode	Decade/9999
ICM7227AIPI	28 Lead PLASTIC	Common Cathode	Decade/9999
ICM7227BIJI	28 Lead CERDIP	Common Anode	Timer/5959
ICM7227CIPI	28 Lead PLASTIC	Common Cathode	Timer/5959
ICM7217/D	DICE	Common Anode	Decade/9999
ICM7217A/D	DICE	Common Cathode	Decade/9999
ICM7217B/D	DICE	Common Anode	Timer/5959
ICM7217C/D	DICE	Common Cathode	Timer/5959
ICM7227/D	DICE	Common Anode	Decade/9999
ICM7227A/D	DICE	Common Cathode	Decade/9999
ICM7227B/D	DICE	Common Anode	Timer/5959
ICM7227C/D	DICE	Common Cathode	Timer/5959

Figure 1: ICM7217 Functional Diagram

Figure 2: ICM7227 Functional Diagram

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD - V_{SS})
Input Voltage (any terminal)....................... $\mathrm{V}_{\mathrm{SS}}+0.3 \mathrm{~V}$, $V_{\text {SS }}-0.3 \mathrm{~V}$ Note 2
Power Dissipation (common anode/Cerdip) ... 1W Note 1

Power Dissipation (common cathode/Plastic)0.5W
Note 1
Operating Temperature Range $\ldots \ldots \ldots . .-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Display Diode Drop 1.7 V , unless otherwise specified)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\begin{aligned} & \operatorname{IDD} \\ & (7217) \end{aligned}$	Supply Current (Lowest power mode)	Display Off, LC, DC, UP/DN, ST, RS, BCD I/O Floating or at $V_{D D}$ (Note 3)	,	350	500	$\mu \mathrm{A}$
$\begin{aligned} & \mathrm{IDD} \\ & (7227) \end{aligned}$	Supply current (Lowest power mode)	Display off (Note 3)		300	500	$\mu \mathrm{A}$
! OP	Supply Current OPERATING	Common Anode, Display On, all ' 8 's'	140	200		mA
		Common Cathode, Display On, all ' 8 's'	50	100		mA
$V_{\text {DD }}$	Supply Voltage		4.5	5	5.5	V
${ }^{\text {I DIG }}$	Digit Driver output current	Common anode, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$	140	200		mA peak
ISEG	SEGment driver output current	Common anode, VOUT $=+1.5 \mathrm{~V}$	-20	-35		$\begin{gathered} \mathrm{mA} \\ \text { peak } \end{gathered}$
${ }^{\text {I DIG }}$	Digit Driver output current	Common cathode, $\mathrm{V}_{\text {OUT }}=+1.0 \mathrm{~V}$	-50	-75		mA peak
ISEG	SEGment driver output current	Common cathode $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}-2 \mathrm{~V}$	9	12.5		mA peak
Ip	$\overline{\mathrm{ST}}, \overline{\mathrm{RS}}, \mathrm{UP} / \overline{\mathrm{DN}}$ input pullup current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}-2 \mathrm{~V}$ (See Note 3)	5	25		$\mu \mathrm{A}$
Z_{IN}	3 level input impedance		40		75	$k \Omega$
$V_{\text {BIH }}$	BCD I/O input high voltage	ICM7217 common anode (Note 4) (VDD $=5.0 \mathrm{~V}$)	1.5			V
		ICM7217 common cathode (Note 4)	4.40			V
		ICM7227 with 50pF effective load	3			V
V BIL	BCD I/O input low voltage	ICM7217 common anode (Note 4) ($\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$)			0.60	V
		ICM7217 common cathode (Note 4)			3.2 V	V
		ICM7227 with 50pF effective load			1.5	V

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IBPU	BCD I/O input pullup current	ICM7217 common cathode $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ (Note 3)	5	25		$\mu \mathrm{A}$
IBPD	BCD I/O input pulldown current	ICM7217 common anode $\mathrm{V}_{\mathrm{IN}}=+2 \mathrm{~V}$ (Note 3)	5	25		$\mu \mathrm{A}$
VOH	BCD I/O, Z्ZERO, EQUAL Outputs output high current	$\mathrm{lOH}=100 \mu \mathrm{~A}$	3.5			V
VOL	BCD I/O, CARRY/BORROW ZERO, EQUAL Outputs output low current	$\mathrm{IOL}=-1.6 \mathrm{~mA}$			0.4	V
fin	Count input frequency (Guaranteed)	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%,-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$	0	5	2	MHz
$\mathrm{V}_{\text {TH }}$	Count input threshold	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ (Note 5)		2		V
$\mathrm{V}_{\text {HYS }}$	Count input hysteresis	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ (Note 5)		0.5		V
$\mathrm{V}_{\text {CIL }}$	Count input LO	$V_{D D}=5 \mathrm{~V}$	0.40			V
$\mathrm{V}_{\text {CIH }}$	Count Input HI	$V_{D D}=5 \mathrm{~V}$			3.5	V
f_{ds}	Display scan oscillator frequency	Free-running (SCAN terminal open circuit)			10	kHz
$\mathrm{T}_{\text {A }}$	Operating Temperature Range	Industrial temperature range	-25		+85	${ }^{\circ} \mathrm{C}$

NOTES: 1. These limits refer to the package and will not be obtained during normal operation.
2. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latchup. For this reason it is recommended that the power supply to the device be established before any inputs are applied and that in multiple systems the supply to the ICM7217/7227 be turned on first.
3. In the ICM 7217 the UP/DOWN, STORE, $\overline{\operatorname{RESET}}$ and the BCD $/ / O$ as inputs have pullup or puldown devices which consume power when connected to the opposite supply. Under these conditions, with the display off, the device will consume typically $750 \mu \mathrm{~A}$. The ICM7227 devices do not have these pullups or pulldowns and thus are not subject to this condition.
4. These voltages are adjusted to allow the use of thumbwheel switches for the ICM7217 versions. Note that a positive level is taken as an input logic zero for ICM7217 common-cathode versions.
5. Parameters not tested (Guaranteed by Design).

TYPICAL PERFORMANCE CHARACTERISTICS (DIGIT AND SEGMENT DRIVERS)

DETAILED DESCRIPTION

OUTPUTS

The CARRY/BORROW output is a positive going pulse occurring typically 500ns after the positive going edge of the COUNT INPUT. It occurs when the counter is clocked from 9999 to 0000 when counting up and from 0000 to 9999 when counting down. This output allows direct cascading of counters.

The EQUAL output assumes a negative level when the contents of the counter and register are equal.

The $\overline{\text { ZERO }}$ output assumes a negative level when the content of the counter is 0000 .

The CARRY/BORROW, EQUAL and ZERO outputs will drive a single TTL load over the full range of supply voltage and ambient temperature; for a logic zero, these outputs will sink $1.6 \mathrm{~mA} @ 0.4 \mathrm{~V}$ (on resistance 250Ω), and for a logic one, the outputs will source $>60 \mu \mathrm{~A}$. A $10 \mathrm{k} \Omega$ pull-up resistor to $V_{D D}$ on the EQUAL or ZERO outputs is recommended
for highest speed operation, and on the CARRY/BORROW output when it is being used for cascading.

The Digit and SEGment drivers provide a decoded 7 segment display system, capable of directly driving common anode LED displays at typical peak currents of $40 \mathrm{~mA} /$ seg. This corresponds to average currents of $10 \mathrm{~mA} / \mathrm{seg}$ at a 25% multiplex duty cycle. For the common cathode versions, peak segment currents are 12.5 mA , corresponding to average segment currents of 3.1 mA . Figure 5 shows the multiplex timing, while Figure 6 shows the Output Timing. The DISPLAY pin controls the display output using three level logic. The pin is self-biased to a voltage approximately $1 / 2\left(V_{D D}\right)$; this corresponds to normal operation. When this pin is connected to V_{DD}, the segments are inhibited, and when connected to V_{SS}, the leading zero blanking feature is inhibited. For normal operation (display on with leading zero blanking) the pin may be left open. The display may be controlled with a 3 position SPDT switch; see Figure 4.

Figure 5: Multiplex Timing

Figure 6: ICM7217/27 COUNT and Output Timing

Multiplex SCAN Oscillator

The on-board multiplex scan oscillator has a nominal free-running frequency of 2.5 kHz . This may be reduced by the addition of a single capacitor between the SCAN pin and the positive supply. Capacitor values and corresponding nominal oscillator frequencies, digit repetition rates, and loading times (for ICM7217 versions) are shown in Table 1 below.

The internal oscillator output has a duty cycle of approximately 25:1, providing a short pulse occurring at the oscillator frequency. This pulse clocks the four-state counter which provides the four multiplex phases. The short pulse
width is used to delay the digit driver outputs, thereby providing inter-digit blanking which prevents ghosting. The digits are scanned from MSD (D4) to LSD (D1). See Figure 4 for the display digit multiplex timing.

Table 1: ICM7217 Multiplexed Rate Control

SCAN CAPACITOR	NOMINAL OSCILLATOR FREQUENCY	DIGIT REPETITION RATE	SCAN CYCLE TIME (4 digits)
None	2.5 kHz	625 Hz	1.6 ms
20 pF	1.25 kHz	300 Hz	3.2 ms
90 pF	600 Hz	150 Hz	8 ms

During load counter and load register operations, the multiplex oscillator is disconnected from the SCAN input and is allowed to free-run. In all other conditions, the oscillator may be directly overdriven to about 20 kHz , however the internal oscillator signal will be of the same duty cycle and phase as the overdriving signal, and the digits are blanked during the time the external signal is at a positive level. To insure proper leading zero blanking, the interdigit blanking time should not be less than about $2 \mu \mathrm{~s}$. Overdriving the oscillator at less than 200 Hz may cause display flickering.

The display brightness may be altered by varying the duty cycle. Figure 7 shows several variable-duty-cycle oscillators suitable for brightness control at the ICM7217 SCAN input. The inverters should be CMOS CD4000 series and the diodes may be any inexpensive device such as IN914.

Counting Control

As shown in Figure 6, the counter is incremented by the rising edge of the COUNT INPUT signal when UP/DOWN is high. It is decremented when UP/DOWN is low. A Schmitt trigger on the COUNT INPUT provides hysteresis to prevent double triggering on slow rising edges and permits operation in noisy environments. The COUNT INPUT is inhibited during reset and load counter operations.

The STORE pin controls the internal latches and consequently the signals appearing at the 7 -segment and $B C D$ outputs. Bringing the STORE pin low transfers the contents of the counter into the latches.

The counter is asynchronously reset to 0000 by bringing the RESET pin low. The circuit performs the reset operation by forcing the BCD input lines to zero, and 'presetting" all four decades of counter in parallel. This affects register loading; if LOAD REGISTER is activated when the RESET input is low, the register will also be set to zero. The $\overline{\text { STORE, }} \overline{\text { RESET }}$ and UP/DOWN pins are provided with pullup resistors of approximately $75 \mathrm{k} \Omega$.

BCD I/O Pins

The BCD I/O port provides a means of transferring data to and from the device. The ICM7217 versions can multiplex data into the counter or register via thumbwheel switches, depending on inputs to the LOAD COUNTER or LOAD REGISTER pins; (see below). When functioning as outputs, the BCD I/O pins will drive one standard TTL load. Common anode versions have internal pull down resistors and common cathode versions have internal pull up resistors on the four BCD I/O lines as inputs.

LOADing the COUNTER and REGISTER

The BCD I/O pins, the LOAD COUNTER (LC), and LOAD REGISTER (LR) pins combine to provide presetting and compare functions. LC and LR are three-level inputs, being self-biased at approximately $1 / 2 V_{D D}$ for normal operation. With both LC and LR open, the BCD I/O pins provide a multiplexed BCD output of the latch contents, scanned from MSD to LSD by the display multiplex.

When either the LOAD COUNTER (Pin 12) or LOAD REGISTER (Pin 11) is taken high, the drivers are turned off and the $B C D$ pins become high-impedance inputs. When LC is connected to $V_{D D}$, the count input is inhibited and the levels at the BCD pins are multiplexed into the counter. When LR is connected to $V_{D D}$, the levels at the BCD pins are multiplexed into the register without disturbing the counter. When both are connected to V_{DD}, the count is inhibited and both register and counter will be loaded.

The LOAD COUNTER and LOAD REGISTER inputs are edge-triggered, and pulsing them high for 500 ns at room temperature will initiate a full sequence of data entry cycle operations (see Figure 7). When the circuit recognizes that either or both of the LC or LR pins input is high, the multiplex oscillator and counter are reset (to D4). The internal oscillator is then disconnected from the SCAN pin and the preset circuitry is enabled. The oscillator starts and runs with a frequency determined by its internal capacitor, (which may vary from chip to chip). When the chip finishes a full 4 digit multiplex cycle (loading each digit from D4 to D3 to D2 to D1 in turn), it again samples the LOAD REGISTER and LOAD COUNTER inputs. If either or both is still high, it repeats the load cycle, if both are floating or low, the oscillator is reconnected to the SCAN pin and the chip returns to normal operation. Total load time is digit "on" time multiplied by 4 . If the Digit outputs are used to strobe the BCD data into the BCD I/O inputs, the input will be automatically synchronized to the appropriate digit (Figure 8). Input data must be valid at the trailing edge of the digit output.
When LR is connected to GROUND, the oscillator is inhibited, the BCD I/O pins go to the high impedance state, and the segment and digit drivers are turned off. This allows the display to be used for other purposes and minimizes power consumption. In this display off condition, the circuit will continue to count, and the CARRY/BORROW, EQUAL, ZERO, UP/DOWN, RESET and STORE functions operate as normal. When LC is connected to ground, the BCD I/O pins are forced to the high impedance state without disturbing the counter or register. See "Control Input

Definitions' (Table 2) for a list of the pins that function as three-state self-biased inputs and their respective operations.

Note that the ICM7217 and 7217B have been designed to drive common anode displays. The BCD inputs are high true, as are the BCD outputs.
The ICM7217A and the 7217C are used to drive common cathode displays, and the BCD inputs are low true. BCD outputs are high true.

Notes on Thumbwheel Switches \& Multiplexing

The thumbwheel switches used with these circuits (both common anode and common cathode) are TRUE BCD coded; i.e. all switches open corresponds to 0000. Since the thumbwheel switches are connected in parallel, diodes must be provided to prevent crosstalk between digits. See Figure 8. In order to maintain reasonable noise margins, these diodes should be specified with low forward voltage drops (IN914). Similarly, if the BCD outputs are to be used, resistors should be inserted in the Digit lines to avoid loading problems.

Output and Input Restrictions

The CARRY/BORROW output is not valid during load counter and reset operations.

The EQUAL output is not valid during load counter or load register operations.

The $\overline{\text { ZERO }}$ output is not valid during a load counter operation.

The $\overline{\text { RESET }}$ input may be susceptible to noise if its input rise time (coming out of reset) is greater than about $500 \mu \mathrm{~s}$. This will present no problems when this input is driven by active devices (i.e., TTL or CMOS logic) but in hardwired systems adding virtually any capacitance to the RESET input can cause trouble. A simple circuit which provides a
reliable power-up reset and a fast rise time on the RESET input is shown below.

Figure 8
When using the circuit as a programmable divider (\div by n with equal outputs) a short time delay (about $1 \mu \mathrm{~s}$) is needed from the EQUAL output to the RESET input to establish a pulse of adequate duration. (See Figure 9)

When the circuit is configured to reload the counter or register with a new value from the BCD lines (upon reaching EQUAL), loading time will be digit 'on' time multiplied by four. If this load time is longer than one period of the input count, a count can be lost. Since the circuit will retain data in the register, the register need only be updated when a new value is to be entered. RESET will not clear the register.

Figure 10: ICM7217 BCD I/O and Loading Timing

Note: If the BCD pins are to be used for outputs a $10 \mathrm{k} \Omega$ resistor should be placed in series with each digit line to avoid loading problems through the switches.

Figure 11: Thumbwheel Switch/Diode Connections

Table 2: Control Input Definitions ICM7217

INPUT	TERMINAL	VOLTAGE	FUNCTION
STORE	9	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \text { (or floating) } \\ \mathrm{V}_{\mathrm{SS}} \end{gathered}$	Output latches not updated Output latches updated
UP/ $\overline{\text { DOWN }}$	10	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \text { (or floating) } \\ \mathrm{V}_{\mathrm{SS}} \end{gathered}$	Counter counts up Counter counts down
$\overline{\text { RESET }}$	14	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \text { (or floating) } \\ \mathrm{V}_{\mathrm{SS}} \\ \hline \end{gathered}$	Normal Operation Counter Reset
$\frac{\text { LOAD COUNTER/ }}{\text { I/O OFF }}$	12	Unconnected $V_{D D}$ $V_{S S}$	Normal operation Counter loaded with BCD data BCD port forced to Hi Z condition
LOAD REGISTER/ $\overline{\text { OFF }}$	11	Unconnected $V_{D D}$ $V_{S S}$	Normal operation Register loaded with BCD data Display drivers disabled; BCD port forced to Hi Z condition, mpx counter reset to D4; mpx oscillator inhibited
DISPLAY CONTrol (DC)	23 Common Anode 20 Common Cathode	Unconnected $V_{D D}$ $V_{S S}$	Normal Operation Segment drivers disabled Leading zero blanking inhibited

Table 3: Control Input Definitions ICM7227

	INPUT	TERMINAL	VOLTAGE	FUNCTION
$\overline{\overline{D A T A}}$ TRANSFER		13	$V_{D D}$ $V_{S S}$	Normal Operation Causes transfer of data as directed by select code
Control Word Port	STORE	9	VDD (During CWS Pulse) $V_{S S}$	Output latches updated Output latches not updated
	UP/DOWN	10	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \text { (During } \overline{\mathrm{CWS}} \text { Pulse) } \\ & \mathrm{V}_{\mathrm{SS}} \end{aligned}$	Counter counts up Counter counts down
2'	Select Code Bit 1 (SC1) Select Code Bit 2 (SC2)	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & V_{D D}=" 1 ' " \\ & V_{S S}={ }^{\prime} 0^{\prime \prime} \end{aligned}$	SC1, SC2 control:00 Change store and up/down latches. No data transfer. 01 Output latch data active 10 Counter to be preset 11 Register to be preset
Control Word Strobe (CWS)		14	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{SS}} \end{aligned}$	Normal operation Causes control word to be written into control latches
	DISPLAY CONTrol (DC)	23 Common Anode 20 Common Cathode	Unconnected $V_{D D}$ VSS	Normal operation Display drivers disabled Leading zero blanking inhibited

Figure 12: ICM7227 I/O Timing (see Table 4)

CONTROL OF ICM7227 VERSIONS

The ICM7227 series has been designed to permit microprocessor control of the inputs. BCD inputs and outputs are active high.

In these versions, the STORE, UP/ $\overline{\mathrm{DOWN}}, \mathrm{SC} 1$ and SC2 (Select Code bits 1 and 2) pins form a four-bit control word input. A negative-going pulse on the CWS (Control Word Strobe) pin writes the data on these pins into four internal control latches, and resets the multiplex counter in preparation for sequencing a data transfer operation. The select code 00 is reserved for changing the state of the Store and/ or Up/ $\overline{\text { Down }}$ latches without initiating a data transfer. Writing a one into the Store latch sets the latch and causes the data in the counter to be transferred into the output latches, while writing a zero resets the latches causing them to retain data and not be updated. Similarly, writing a one into the Up/ $\overline{\text { Down }}$ latch causes the counter to count up and writing a zero causes the counter to count down. The state of the Store and Up/ $\overline{\text { Down }}$ latches may also be changed with a non-zero select code.

Writing a nonzero select code initiates a data transfer operation. Writing select code of 01 (SC1, SC2) indicates that the data in the output latches will be active and enables the BCD I/O port to output the data. Writing a select code of 11 indicates that the register will be preset, and a 10 indicates that the counter will be preset.

When a nonzero select code is read, the clock of the four-state multiplex counter is switched to the $\overline{\text { DATA }}$ TRANSFER pin. Negative-going pulses at this pin then sequence a digit-by-digit data transfer, either outputting data or presetting the counter or register as determined by the select code. The output drivers of the BCD I/O port will be enabled only while $\overline{D T}$ is low during a data transfer initiated with a 01 select code.

The sequence of digits will be D4-D3-D2-D1, i.e. when outputting, the data from D4 will be valid during the first $\overline{\mathrm{DT}}$ pulse, then D3 will be valid during the second pulse, etc. When presetting, the data for D4 must be valid at the positive-going transition (trailing edge) of the first DT pulse, the data for D3 must be valid during the second DT pulse, etc.

At the end of a data transfer operation, on the positive going transition of the fourth $\overline{\text { TT pulse, the SC1 and SC2 }}$ control latches will automatically reset, terminating the data transfer and reconnecting the multiplex counter clock to the oscillator. In the ICM7227 versions, the multiplex oscillator is always free-running, except during a data transfer operation when it is disabled.

Figure 12 shows the timing of data transfers initiated with a 11 select code (writing into the register) and a 01 select code (reading out of the output latches). Typical times during which data must be valid at the control word and BCD I/O ports are indicated in Table 4.

Table 4: ICM7227 I/O Timing Requirements

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNIT
t $\overline{\text { CWS }}$	Control Word Strobe Width (min)		275		ns
tICs	Internal Control Set-up (min)		2.5	3	$\mu \mathrm{~s}$
tDTw	DATA TRANSFER pulse width		300		ns
	(min)		300		ns
tSCs	Control to Strobe setup (min)		300		ns
tSCh	Control to Strobe hold (min)		300		ns
tIDs	Input Data setup (min)		300		ns
tIDh	Input Data Hold (min)		300		ns
tTDacc	Output Data access				
tTDf	Output Transfer to Data float		300		ns

ICM7217/ICM7227

APPLICATIONS

FIXED DECIMAL POINT

In the common anode versions, a fixed decimal point may be activated by connecting the D.P. segment lead from the appropriate digit (with separate digit displays) through a 39Ω series resistor to Ground. With common cathode devices, the D.P. segment lead should be connected through a 75Ω series resistor to $V_{D D}$.

To force the device to display leading zeroes after a fixed decimal point, use a bipolar transistor and base resistor in a configuration like that shown below with the resistor connected to the digit output driving the D.P. for left hand D.P. displays, and to the next least significant digit output for right hand D.P. display. See Performance Characteristics for a similarly operating multi-digit connection.

Figure 13: Forcing Leading Zero Display

DRIVING LARGER DISPLAYS

For displays requiring more current than the ICL7217/ 7227 can provide, the circuits of Figure 14 can be used.

Figure 14: Driving High Current Displays

LCD DISPLAY INTERFACE

The low-power operation of the ICM7217 makes an LCD interface desirable. The Intersil ICM7211 4 digit BCD to LCD display driver easily interfaces to the ICM7217 as shown in Figure 15. Total system power consumption is less than 5 mW . System timing margins can be improved by using capacitance to ground to slow down the BCD lines. A similar circuit can be used to drive Vacuum Fluorescent displays, with the ICM7235.

The $10-20 \mathrm{k} \Omega$ resistors on the switch BCD lines serve to isolate the switches during $B C D$ output.

Figure 15: LCD Display Interface (with Thumbwheel Switches)

LC018811
Figure 16: Unit Counter

Figure 17: Inexpensive Frequency Counter

UNIT COUNTER WITH BCD OUTPUT

The simplest application of the ICM7217 is a 4 digit unit counter (Figure 16). All that is required is an ICM7217, a power supply and a 4 digit display. Add a momentary switch for reset, an SPDT center-off switch to blank the display or view leading zeroes, and one more SPDT switch for up/ down control. Using an ICM7217A with a common-cathode calculator-type display results in the least expensive digital counter/display system available.

INEXPENSIVE FREQUENCY COUNTER/ TACHOMETER

This circuit uses the low power ICM7555 (CMOS 555) to generate the gating, STORE and RESET signals as shown
in Figure 17. To provide the gating signal, the timer is configured as an astable multivibrator, using $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$ and C to provide an output that is positive for approximately one second and negative for approximately $300-500 \mu \mathrm{~s}$. The positive waveform time is given by $t_{w p}=0.693\left(R_{A}+R_{B}\right) C$ while the negative waveform is given by $t_{w n}=0.693 R_{B} C$. The system is calibrated by using a $5 \mathrm{M} \Omega$ potentiometer for R_{A} as a 'coarse' control and a $1 \mathrm{k} \Omega$ potentiometer for R_{B} as a 'fine' control. CD40106B's are used as a monostable multivibrator and reset time delay.

LD01290।
Figure 18: Tape Recorder Position Indicator

Figure 19: Precision Timer

TAPE RECORDER POSITION INDICATOR/ CONTROLLER

The circuit in Figure 18 shows an application which uses the up/down counting feature of the ICM7217 to keep track of tape position. This circuit is representative of the many applications of up/down counting in monitoring dimensional position. For example, an ICM7227 as a peripheral to a processor can monitor the position of a lathe bed or digitizing head, transfer the data to the processor, drive interrupts to the processor using the EQUAL or ZERO outputs, and serve as a numerical display for the processor.

In the tape recorder application, the LOAD REGISTER, EQUAL and ZERO outputs are used to control the recorder. To make the recorder stop at a particular point on the tape, the register can be set with the stop point and the EQUAL output used to stop the recorder either on fast forward, play or rewind.

To make the recorder stop before the tape comes free of the reel on rewind, a leader should be used. Resetting the counter at the starting point of the tape, a few feet from the end of the leader, allows the ZERO output to be used to stop the recorder on rewind, leaving the leader on the reel.

The $1 \mathrm{M} \Omega$ resistor and $.0047 \mu \mathrm{~F}$ capacitor on the COUNT INPUT provide a time constant of about 5 ms to debounce the reel switch. The Schmitt trigger on the COUNT INPUT of the ICM7217 squares up the signal before applying it to the counter. This technique may be used to debounce switchclosure inputs in other applications.

PRECISION ELAPSED TIME/COUNTDOWN TIMER

The circuit in Figure 19 uses an ICM7213 precision one minute/one second timebase generator using a 4.1943 MHz crystal for generating pulses counted by an ICM7217B. The thumbwheel switches allow a starting time to be entered into the counter for a preset-countdown type timer, and allow the register to be set for compare functions. For instance, to make a 24 -hour clock with BCD output the register can be preset with 2400 and the EQUAL output used to reset the counter. Note the 10k resistor connected between the LOAD COUNTER terminal and Ground. This resistor pulls the LOAD COUNTER input low when not loading, thereby inhibiting the BCD output drivers. This resistor should be eliminated and SW4 replaced with an SPDT center-off switch if the BCD outputs are to be used.

Figure 21：Precision Frequency Counter（MHz Maximum）

This technique may be used on any 3 －level input．The $100 \mathrm{k} \Omega$ pullup resistor on the count input is used to ensure proper logic voltage swing from the ICM7213．For a less expensive（and less accurate）timebase，an ICM7555 timer may be used in a configuration like that shown in Figure 17 to generate a 1 Hz reference．

8－DIGIT UP／DOWN COUNTER

This circuit（Figure 20）shows how to cascade counters and retain correct leading zero blanking．The NAND gate detects whether a digit is active since one of the two segments \bar{a} or \bar{b} is active on any unblanked number．The flip flop is clocked by the least significant digit of the high order counter，and if this digit is not blanked，the Q output of the flip flop goes high and turns on the NPN transistor，thereby inhibiting leading zero blanking on the low order counter．

It is possible to use separate thumbwheel switches for presetting，but since the devices load data with the oscilla－ tor free－running，the multiplexing of the two devices is difficult to synchronize．This presents no problems with the

ICM7227 devices，since the two devices are operated as peripherals to a processor．

PRECISION FREQUENCY COUNTER／ TACHOMETER

The circuit shown in Figure 21 is a simple implementation of a four digit frequency counter，using an ICM7207A to provide the one second gating window and the STORE and RESET signals．In this configuration，the display reads hertz directly．With Pin 11 of the ICM7027A connected to VDD， the gating time will be 0.1 second；this will display tens of hertz as the least significant digit．For shorter gating times， an ICM 7207 may be used（with a 6.5536 MHz crystal），giving a 0.01 second gating with Pin 11 connected to $V_{D D}$ ，and a 0.1 second gating with Pin 11 open．

To implement a four digit tachometer，the ICM7207A with one second gating should be used．To get the display to read directly in RPM，the rotational frequency of the object to be measured must be multiplied by 60 ．This can be done electronically using a phase－locked loop，or mechanically by
using a disc rotating with the object with the appropriate number of holes drilled around its edge to interrupt the light from an LED to a photo－dector．For faster updating，use 0.1 second gating，and multiply the rotational frequency by 600.

For more＇＇intelligent＇＂instrumentation，the ICM7227 interfaced to a microprocessor may be more convenient （see Figure 21）．For example，an ICM7207A can be used with two ICM7227＇s to provide an 8 digit， 2 MHz frequency counter．Since the ICM7207A gating output has a 50% duty cycle，there is 1 second for the processor to respond to an interrupt，generated by the negative going edge of this signal while it inhibits the count．The processor can respond to the interrupt using ROM based subroutines，to store the data，reset the counter，and read the data into main memory．To add simultaneous period display，the processor
inverts the data and an ICM7218 Universal Display Driver stores and displays it．

AUTO－TARE SYSTEM

This circuit uses the count－up and count－down functions of the ICM7217，controlled via the EQUAL and ZERO outputs，to count in SYNC with an ICL7109 A／D Converter as shown in Figure 22．By RESETing the ICM7217 on a ＇tare＇value conversion，and STORE－ing the result of a true value conversion，an automatic tare subtraction occurs in the result．

The ICM7217 stays in step with the ICL7019 by counting up and down between 0 and 4095，for 8192 total counts， the same number as the ICL7109 cycle．See A047 for more details．

CD02261।
Figure 22：Auto－Tare System for A／D Converter

ICM7224/ICM7225 4½-Digit LCD/LED Display Counter

GENERAL DESCRIPTION

The ICM7224 and ICM7225 devices constitute a family of high-performance CMOS 4 1/2-digit counters, including decoders, output latches, display drivers, count inhibit, leading zero blanking, and reset circuitry.

The counter section provides direct static counting, guaranteed from DC to 15 MHz , using a $5 \mathrm{~V} \pm 10 \%$ supply over the operating temperature range. At normal ambient temperatures, the devices will typically count up to 25 MHz . The COUNT input is provided with a Schmitt trigger to allow operation in noisy environments and correct counting with slowly changing inputs. The COUNT INHIBIT, STORE and RESET inputs allow a direct interface with the ICM7207/A to implement a low cost, low power frequency counter with a minimum component count.

These devices also incorporate several features intended to simplify cascading four-digit blocks. The CARRY output allows the counter to be cascaded, while the Leading Zero Blanking INput and OUTput allows correct Leading Zero Blanking between four-decade blocks. The BackPlane driver of the LCD devices may be disabled, allowing the segments to be slaved to another backplane signal, necessary when using an eight or twelve digit, single backplane display. In LED systems, the BRighTness input to several ICM7225 devices may be ganged to one potentiometer.

The ICM7224/ICM7225 family are packaged in a standard 40-pin dual-in-line plastic or CERDIP package, or in dice.

ORDERING INFORMATION

PART NUMBER	DISPLAY TYPE	COUNT OPTION
ICM7224IPL	LCD	19999
ICM7224AIPL	LCD	15959
ICM7224/D	LCD	19999
ICM7224A/D	LCD	15959
ICM7224AIJL	LCD	15959
ICM7224IJL	LED	19999
ICM7225IPL	LED	19999
ICM7225AIPL	LED	15959
ICM7225/D	LED	15959
ICM7225A/D	LED	15959
ICM7225AIJL	LED	19999

Evaluation Kits, order ICM7224 EV/Kit or ICM7225 EV/Kit

FEATURES

- High Frequency Counting - Guaranteed 15 MHz , Typically 25 MHz at 5 V
- Low Power Operation - Typically Less Than $100 \mu \mathrm{~W}$ Quiescent
- STORE and RESET Inputs Permit Operation as Frequency or Period Counter
- True COUNT INHIBIT Disables First Counter Stage
- CARRY Output for Cascading Four-Digit Blocks
- Schmitt-Trigger On The COUNT Input Allows Operation in Noisy Environments or With Slowly Changing Inputs
- Leading Zero Blanking INput and OUTput for Correct Leading Zero Blanking With Cascaded Devices
- LCD Devices Provide Complete Onboard Oscillator and Divider Chain to Generate Backplane Frequency, or Backplane Driver May Be Disabled Allowing Segments to be Slaved to A Master Backplane Signal
- LED Devices Provide BRighTness Input Which Can Function Digitally As A Display Enable or As A Continuous Display Brightness Control With A Single Potentiometer and Directly Drive Common Anode LED Displays

CD023411
Figure 1: Pin Configuration (Outline dwg PL)

Figure 2: Functional Diagrams

ICM7224/ICM7225

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }} \ldots .6 .5 \mathrm{~V}$
Input Voltage (Any Terminal) (Note 2) $\ldots \ldots . . \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$
Power Dissipation (Note 1).....................0.5W @ $70^{\circ} \mathrm{C}$

Operating Temperature Range $\ldots-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

NOTE 1: This limit refers to that of the package and will not be obtained during normal operation.
NOTE 2: Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than VDD or less than $V_{S S}$ may cause destructive device latchup. For this reason, it is recommended that no inputs from sources operating on a different power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7224/ICM7225 be turned on first.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Theses are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise indicated) ICM7224 CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IDD	Operating current	Test circuit, Display blank		10	50	$\mu \mathrm{A}$
V SUPPLY	Operating supply voltage range $\left(V_{D D}-V_{S S}\right)$		3		6	\checkmark
losCl	OSCILLATOR input current	Pin 36		± 2	± 10	$\mu \mathrm{A}$
t_{R}, t_{F}	Segment rise/fall time	$\mathrm{Cload}=200 \mathrm{pF}$		0.5		$\mu \mathrm{s}$
$t_{\text {R }}, t_{\text {c }}$	BackPlane rise/fall time	$\mathrm{C}_{\text {load }}=5000 \mathrm{pF}$		1.5		
fosc	Oscillator frequency	Pin 36 Floating		19		kHz
$f_{B P}$	Backplane frequency	Pin 36 Floating		150		Hz

ICM7225 CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IstBy	Operating current display off	Pin 5 (BRighTness) at V_{SS} Pins 29, 31-34 at $V_{D D}$		10	50	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SUPP }}$	Operating supply voltage range $\left(V_{D D}-V_{S S}\right)$		4		6	V
IDD	Operating current	Pin 5 at V_{DD}, Display 18888		200		mA
ISLK	Segment leakage current	Segment Off		± 0.01	± 1	$\mu \mathrm{A}$
ISEG	Segment on current	Segment On, Vout $=+3 \mathrm{~V}$	5	8		mA
I_{H}	Half-digit on current	Half-digit on, Vout $=+3 \mathrm{~V}$	10	16		

FAMILY CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IP	Input Pullup Currents	$\begin{aligned} & \text { Pins } 29,31,33,34 \\ & \text { Vout }=V_{D D}-3 V \end{aligned}$		10		$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Input High Voltage	Pins 29, 31, 33, 34	3			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Pins 29, 31, 33, 34			1	
V_{CT}	COUNT Input Threshold			2		
V_{CH}	$\overline{\text { COUNT }}$ Input Hysteresis			0.5		
I^{OH}	Output High Current	$\overline{\text { CARRY Pin } 28}$ Leading Zero Blanking OUT Pin 30 $\text { Vout }=V_{D D}-3 V$	350	500		$\mu \mathrm{A}$
1 OL	Output Low Current	$\begin{aligned} & \text { CARRY Pin } 28 \\ & \text { Leading Zero Blanking Out Pin } 30 \\ & \text { Vout }=+3 \mathrm{~V} \end{aligned}$	350	500		
fCOUNT	Count Frequency	$4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<6 \mathrm{~V}$	0		15	MHz
$\mathrm{t}_{\mathrm{S}, \mathrm{t}_{\mathrm{R}}}$	$\overline{\text { STORE, }} \overline{\text { RESET }}$ Minimum Pulse Width	.	3			$\mu \mathrm{s}$

TYPICAL PERFORMANCE CHARACTERISTICS

7224 OPERATING SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

7224 BACKPLANE FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

OP042411
7224 BACKPLANE FREQUENCY AS A FUNCTION OF OSCILLATOR CAPACITOR COSC

7225 LED SEGMENT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

7225 OPERATING POWER (LED DISPLAY) AS A FUNCTION OF SUPPLY VOLTAGE

OP04251I
7225 LED SEGMENT CURRENT AS A FUNCTION OF BRIGHTNESS CONTROL VOLTAGE

TYPICAL PERFORMANCE CHARACTERISTICS（CONT．）

MAXIMUM COUNT FREQUENCY（TYPICAL）AS A FUNCTION OF SUPPLY VOLTAGE

SUPPLY CURRENT AS A FUNCTION OF COUNT FREQUENCY

INPUT	TERMINAL	VOLTAGE	FUNCTION
Leading Zero Blanking INput	29	VD or Floating $V_{S S}$	Leading Zero Blanking Enabled Leading Zeroes Displayed
$\overline{\text { COUNT INHIBIT }}$	31	Counter Enabled Counter Disabled	
$\overline{\text { RESET }}$	33	or Floating $V_{S S}$	Inactive Counter Reset to 0 Floating $V_{S S}$
STORE	34	Output Latches not Updated Output Latches Updated	

CONTROL INPUT DEFINITIONS

In this table， V_{DD} and V_{SS} are considered to be normal operating input logic levels．Actual input low and high levels are specified in the Operating Characteristics．For lowest power consumption，input signals should swing over the full supply．

DETAILED DESCRIPTION

LCD Devices

The LCD devices in the family（ICM7224 and ICM7224A） provide outputs suitable for driving conventional $4^{1 / 2}$－digit by seven segment LCD displays，including 29 individual seg－ ment drivers，backplane driver，and a self－contained oscilla－ tor and divider chain to generate the backplane frequency．
The segment and backplane drivers each consist of a CMOS inverter，with the n－and p－channel devices ratioed to provide identical on resistances，and thus equal rise and fall times．This eliminates any D．C．component which could arise from differing rise and fall times，and ensures maxi－ mum display life．
The backplane output devices can be disabled by con－ necting the OSCILLATOR input（pin 36）to VSS．This synchronizes the 29 segment outputs directly with a signal input at the BP terminal（pin 5）and allows cascading of several slave devices to the backplane output of one master device．The backplane may also be derived from an external source．This allows the use of displays with characters in multiples of four and a single backplane．A slave device will represent a load of approximately 200 pF （comparable to one additional segment）．The limitation on
the number of devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits， and the effect of that load on the backplane rise and fall times．A good rule of thumb to observe in order to minimize power consumption is to keep the rise and fall times less than about 5 microseconds．The backplane driver devices of one device should handle the backplane to a display of 16 one－half－inch characters without the rise and fall times exceeding 5μ s（ie， 3 slave devices and the display back－ plane driven by a fourth master device）．It is recommended that if more than four devices are to be slaved together，that the backplane signal be derived externally and all the ICM7224 devices be slaved to it．

This external signal should be capable of driving very large capacitive loads with short $(1-2 \mu \mathrm{~s})$ rise and fall times． The maximum frequency for a backplane signal should be about 150 Hz ，although this may be too fast for optimum display response at lower display temperatures，depending on the display used．

The onboard oscillator is designed to free run at approxi－ mately 19 kHz ，at microampere power levels．The oscillator frequency is divided by 128 to provide the backplane frequency，which will be approximately 150 Hz with the oscillator free－running．The oscillator frequency may be reduced by connecting an external capacitor between the OSCillator terminal（pin 36）and V_{DD} ；see the plot of oscillator／backplane frequency in＂Typical Characteristics＂＇ for detailed information．

ICM7224/ICM7225

The oscillator may also be overdriven if desired, although care must be taken to insure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a D.C. component to the display). This can be done by driving the OSCILLATOR input between the positive supply and a level out of the range where the backplane disable is sensed, about one fifth of the supply voltage above the negative supply. Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

LED Devices

The LED devices in the family (ICM7225, ICM7225A) provide outputs suitable for directly driving $41 / 2$-digit by seven segment common-anode LED displays, including 28 individual segment drivers and one half-digit driver, each consisting of a low-leakage current-controlled open-drain nchannel transistor.

The drain current of these transistors can be controlled by varying the voltage at the BRighTness input (pin 5). The voltage at this pin is transferred to the gates of the output devices for 'on" segments, and thus directly modulates the transistor's "on" resistance. A brightness control can be easily implemented with a single potentiometer controlling the voltage at pin 5, connected as in Figure 3. The potentiometer should be a high value ($100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$) to minimize power consumption, which can be significant when the display is off.

The BRighTness input may also be operated digitally as a display enable; when a $V_{D D}$, the display is fully on, and at $V_{\text {SS }}$, fully off. The display brightness may also be controlled by varying the duty cycle of a signal swinging between the two supplies at the BRighTness input.

Note that the LED devices have two connections for V_{SS}; both should be connected. The double connection is necessary to minimize effects of bond wire resistance with the large total display currents possible.
When operating the LED devices at higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperatures. The maximum power dissipation is 1 watt at $25^{\circ} \mathrm{C}$, derated linearly above $35^{\circ} \mathrm{C}$ to 500 mW at $70^{\circ} \mathrm{C}\left(15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.$ above $35^{\circ} \mathrm{C}$). Power dissipation for the device is given by:

$$
P=\left(V_{D D}-V_{F L E D}\right) \times(I S E G) \times\left(n_{S E G}\right)
$$

where $V_{\text {FLED }}$ is the LED forward voltage drop, ISEG is segment current, and nSEG is the number of "ON" segments. It is recommended that if the device is to be operated at elevated temperatures the segment current be limited by use of the BRighTness input to keep power dissipation within the limits described above.

Figure 3: Brightness Control

COUNTER SECTION

The devices in the ICM7224/ICM7225 family implement a four-digit ripple carry resettable counter, including a Schmitt trigger on the COUNT input and a CARRY output. Also included is an extra D-type flip-flop, clocked by the $\overline{\text { CARRY signal and outputting to the half-digit segment }}$ driver, which can be used as either a true half-digit or as an overflow indicator. The counter will index on the negativegoing edge of the signal at the COUNT input, while the CARRY output provides a negative-going edge following the count which indexes the counter from 9999 (or 5959) to 10000. Once the half-digit flip-flop has been clocked, it can only be reset (with the rest of the counter) by a negative level at the RESET terminal, pin 33. However, the four decades will continue to count in a normal fashion after the half-digit is set, and subsequent CARRY outputs will not be affected.

A negative level at the COUNT INHIBIT input disables the first divide-by-two in the counter chain without affecting its clock. This provides a true inhibit, not sensitive to the state of the COUNT input, which prevents false counts that can result from using a normal logic gate to prevent counting.

Each decade of counter drives directly into a four-toseven decoder which develops the seven-segment output code. The output data is latched at the driver, when the STORE pin is low, these latches are updated, and when high or floating, the latches hold their contents.

The decoders also include zero detect and blanking logic to provide leading zero blanking. When the Leading Zero Blanking INput is floating or at a positive level, this circuitry is enabled and the device will blank leading zeroes; when low, or the half-digit is set, leading zero blanking is inhibited, and zeroes in the four digits will be displayed. The Leading Zero Blanking OUTput is provided to allow cascaded devices to blank leading zeroes correctly. This output will assume a positive level only when all four digits are blanked; this can only occur when the Leading Zero Blanking INput is at a positive level and the half-digit is not set.

For example, in an eight-decade counter with overflow using two ICM7224/ICM7225 devices, the Leading Zero Blanking OUTput of the high order digit would be connected to the Leading Zero Blanking INput of the low order digit device. This will assure correct leading zero blanking for all eight digits.

The $\overline{\text { STORE, }} \overline{\text { RESET, }} \overline{\text { COUNT INHIBIT, and Leading Zero }}$ Blanking INputs are provided with pullup devices, so that they may be left open when a positive level is desired. The CARRY and Leading Zero Blanking OUTputs are suitable for interfacing to CMOS logic in general, and are specifically designed to allow cascading of ICM7224 to ICM7225 devices in four-digit blocks.

Figure 4: Display Waveforms

Figure 5: Test Circuit

AF031511
Figure 7: Typical Application (Unit Counter)

APPLICATIONS

Figure 8: Two-Hour Precision Timer

ICM7226A／B 8－Digit Multi－Function Frequency Counter／Timer

GENERAL DESCRIPTION

The ICM7226 is a fully integrated Universal Counter and LED display driver．It combines a high frequency oscillator， a decade timebase counter，an 8 decade data counter and latches，a 7 segment decoder，digit multiplexer，and seg－ ment and digit drivers which can directly drive large LED displays．The counter inputs accept a maximum frequency of 10 MHz in frequency and unit counter modes and 2 MHz in the other modes．Both inputs are digital inputs．In many applications，amplification and level shifting will be required to obtain proper digital signals for these inputs．

The ICM7226 cain function as a frequency counter，period counter，frequency ratio（ $\mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}$ ）counter，time interval count－ er or a totalizing counter．The devices require either a 10 MHz or 1 MHz crystal timebase，or if desired an external timebase can also be used．For period and time interval， the 10 MHz timebase gives a $0.1 \mu \mathrm{~s}$ resolution．In period average and time interval average，the resolution can be in the nanosecond range．In the frequency mode，the user can select accumulation time of $10 \mathrm{~ms}, 100 \mathrm{~ms}, 1 \mathrm{~s}$ and 10 s ． With a 10 s accumulation time，the frequency can be displayed to a resolution of 0.1 Hz ．There is a 0.2 s interval between measurements in all ranges．Control signals are provided to enable gating and storing of prescaler data．

Leading zero blanking has been incorporated with fre－ quency display in kHz and time in $\mu \mathrm{s}$ ．The display is multiplexed at a 500 Hz rate with a 12.2% duty cycle for each digit．The ICM7226A is designed for common anode displays with typical peak segment currents of 25 mA ，and the ICM7226B is designed for common cathode displays with typical segment currents of 12 mA ．In the display off mode，both digit drivers \＆segment drivers are turned off， allowing the display to be used for other functions．

FEATURES

－CMOS Design for Very Low Power
－Output Drivers Directly Drive Both Digits and Segments of Large 8 Digit LED Displays．Both Common Anode and Common Cathode Versions Are Available
－Measures Frequencies From DC to 10 MHz ； Periods From $0.5 \mu \mathrm{~s}$ to 10 s
－Stable High Frequency Oscillator Uses Either 1 MHz or 10 MHz Crystal
－Control Signals Available for External Systems Operation
－Multiplexed BCD Outputs

APPLICATIONS

－Frequency Counter
－Period Counter
－Unit Counter
－Frequency Ratio Counter
－Time Interval Counter

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7226AIPL	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	40 pin PLASTIC DIP
ICM7226A／D	-	DICE
ICM7226BIJL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 pin CERDIP
ICM7226B／D	-	DICE
ICM7226AIJL	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	40 pin CERDIP
ICM7226BIPL	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	40 pin PLASTIC DIP

NOTE：An evaluation kit is available for these devices－ order ICM7226AEV／KIT．

＊For maximum frequency stability，connect to $V_{D D}$ or $V_{S S}$
Figure 1：Pin Configurations

ICM7226A/B

ABSOLUTE MAXIMUM RATINGS

Maximum Supply Voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$)6.5V
Maximum Digit Output Current 400 mA
Maximum Segment Output Current....................... 60mA
Voltage on any Input or Output Terminal (Note 1) 60mA $\left(\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
Maximum Power Dissipation at $70^{\circ} \mathrm{C}$ (Note 2)

ICM7226A

1.0W

ICM7226B ...0.5W
Operating Temperature Range $\ldots-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range..........$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec)

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
*Note 1: Destructive latchup may occur if input signals are applied before the power supply is established or if inputs or outputs are forced to voltages exceeding $V_{D D}$ or $V_{S S}$ by 0.3 V .

Note 2: Assumes all leads soldered or welded to PC board and free air flow.

Figure 2: Functional Diagram

ICM7226A/B

ELECTRICAL CHARACTERISTICS ($V_{D D}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IDD	Operating Supply Current	Display Off Unused inputs to V_{SS}		2	5	mA
V SUPPLY	Supply Voltage Range $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}$	$-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ Input A, Input B Frequency at $\mathrm{f}_{\mathrm{MAX}}$	4.75		6.0	V
$\mathrm{f}_{\mathrm{A}(\text { max })}$	Maximum Guaranteed Frequency Input A, Pin 40	$\begin{aligned} & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<6.0 \mathrm{~V} \text { Figure } 4 \\ & \text { Function = Frequency, } \\ & \text { Ratio, Unit Counter } \\ & \text { Function = Period, Time Interval } \end{aligned}$	$\begin{aligned} & 10 \\ & 2.5 \end{aligned}$	14		MHz
$\mathrm{f}_{\mathrm{B}(\text { max })}$	Maximum Frequency Input B, Pin 2	$\begin{aligned} & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<6.0 \mathrm{~V} \\ & \text { Figure } 5 \\ & \hline \end{aligned}$	2.5			
	Minimum Separation Input A to Input B Time Interval Function	$\begin{aligned} & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<6.0 \mathrm{~V} \\ & \text { Figure } 6 \end{aligned}$	250			ns
fosc	Osc. freq. and ext. osc. freq. (minimum ext. osc. freq.)	$\begin{aligned} & -25^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 10 \\ (0.1) \\ \hline \end{gathered}$			MHz
gm_{m}	Oscillator Transconductance	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	2000			$\mu \mathrm{s}$
$\mathrm{f}_{\text {mux }}$	Multiplex Frequency	$\mathrm{f}_{\mathrm{OSC}}=10 \mathrm{MHz}$		500		Hz
	Time Between Measurements	$\mathrm{f}_{\text {OSC }}=10 \mathrm{MHz}$		200		ms
$d V_{\text {in }} / \mathrm{dt}$	Input Rate of Charge	Inputs A, B		15		$\mathrm{mV} / \mu \mathrm{s}$
$V_{\text {IL }}$	INPUT VOLTAGES PINS 2, 19, 33, 39, 40, 35 input low voltage	$-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$.		1.0	V
V_{IH}	input high voltage		3.5			
IILK	PIN 2, 39, 40 INPUT LEAKAGE, A, B				20	$\mu \mathrm{A}$
$\mathrm{RIN}^{\text {I }}$	Input resistance to $V_{D D}$ PINS 19,33	$V_{I N}=V_{D D}-1.0 \mathrm{~V}$	100	400		k Ω
RIN	Input resistance to $V_{S S}$ PIN 31	$\mathrm{V}_{\mathrm{IN}}=+1.0 \mathrm{~V}$	50	100		
${ }^{\mathrm{OL}}$	Output Current PINS 3,5,6,7,17,18,32,38	$\mathrm{V}_{\mathrm{OL}}=+0.4 \mathrm{~V}$	400			$\mu \mathrm{A}$
IOH	PINS 5,6,7,17,18,32	$\mathrm{V}_{\mathrm{OH}}=+2.4 \mathrm{~V}$	100			$\mu \mathrm{A}$
IOH	PINS 3,38	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.8 \mathrm{~V}$	265			
IOH	ICM7226A PINS 22,23,24,26,27,28,29,30 DIGIT DRIVER high output current low output current	$V_{O}=V_{D D}-2.0 \mathrm{~V}$	150	180		mA
lOL		$\mathrm{V}_{\mathrm{O}}=+1.0 \mathrm{~V}$		-0.3		
lOL	SEGMENT DRIVER PINS 8,9,10,11,13,14,15,16 low output current	$V_{O}=+1.5 \mathrm{~V}$	25	35	-	mA
${ }^{\mathrm{IOH}}$	high output current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$		100		$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	MULTIPLEX INPUTS PINS 1,4,20,21 input low voltage input high voltage input resistance to $V_{S S}$				0.8	V
V_{IH}			2.0			
RIN		$\mathrm{V}_{\text {IN }}=+1.0 \mathrm{~V}$	50	100		k Ω

ELECTRICAL CHARACTERISTICS（CONT．）

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OL	ICM7226B DIGIT DRIVER PINS 8，9，10，11，13，14，15，16 low output current high output current	$\mathrm{V}_{\mathrm{O}}=+1.0 \mathrm{~V}$	50	75		mA
IOH		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-2.5 \mathrm{~V}$		100		$\mu \mathrm{A}$
IOH	SEGMENT DRIVER PINS 22，23，24，26，27，28，29，30 high output current leakage current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {DD }}-2.0 \mathrm{~V}$	10	15		mA
IL		$\mathrm{V}_{\mathrm{O}}=\mathrm{v}_{\text {SS }}$			10	$\mu \mathrm{A}$
VIL	MULTIPLEX INPUTS PINS 1，4，20，21 input low voltage input high voltage input resistance to $V_{D D}$				$V_{D D}-2.0$	\checkmark
V_{IH}			$\mathrm{V}_{\mathrm{DD}}-0.8$			
RIN		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}-1.0 \mathrm{~V}$	100	360		$\mathrm{k} \Omega$

NOTE：Typical values are not tested．

EVALUATION KIT

An evaluation kit is available for the ICM7226A．It includes all the components necessary to assemble and evaluate a universal frequency／period counter based on the ICM7226A．With the help of this kit，an engineer or technician can have the ICM7226A＇up－and－running＇in less than an hour．Specifically，the kit contains an ICM7226AIJL，a 10 MHz quartz crystal，eight each 7 － segment $0.3^{\prime \prime}$ LEDs，PC board，resistors，capacitors，diodes， switches and IC socket．Order Number ICM7226AEV／Kit．

TC028521
Figure 3：Test Circuit

LED overflow indicator connections:
Overflow will be indicated on the decimal point output of digit 8.

ICM7226A
 ICM7226B

CATHODE	ANODE
d.p.	D_{8}
D_{8}	d.p.

Figure 4: Segment Identification and Display Font

Figure 5: Waveform for Guaranteed Minimum $\mathbf{f}_{\mathrm{A}}(\mathbf{m a x})$ Function $=$ Frequency, Frequency Ratio, Unit Counter.

TIME INTERVAL MEASUREMENT

The ICM7226A/B can be used to accurately measure the time interval between two events. With a 10 MHz time-base crystal, the time between the two events can be as long as ten seconds. Accurate resolution in time interval measurement is 100 ns .

The feature operates with Channel A going low at the start of the event to be measured, followed by Channel B going low at the end of the event.

When in the time interval mode and measuring a single event, the ICM7226A/B must first be '"primed' prior to measuring the event of interest. This is done by first generating a negative going edge on Channel A followed by a negative going edge on Channel B to start the '"measurement interval." The inputs are then primed ready for the measurement. Positive going edges on A and B , before or after the priming, will be needed to restore the original condition.

Following the priming procedure (when in single event or 1 cycle range input) the device is ready to measure one (only) event.

When timing repetitive signals, it is not necessary to 'prime' the ICM7226A/B as the first alternating signal states automatically prime the device. See Figure 7.

LC01970

Figure 6: Waveform for Guaranteed Minimum $f_{B}(\max)$ and $f_{A}(\max)$ for Function = Period and Time Interval.

During any time interval measurement cycle, the ICM7226A/B requires 200 ms following B going low to update all internal logic. A new measurement cycle will not take place until completion of this internal update time.

DETAILED DESCRIPTION

INPUTS A \& B

The signal to be measured is applied to INPUT A in frequency period, unit counter, frequency ratio and time interval modes. The other input signal to be measured is applied to INPUT B in frequency ratio and time interval. f_{A} should be higher than f_{B} during frequency ratio.

Both inputs are digital inputs with a typical switching threshold of 2.0 V at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ and input impedance of $250 \mathrm{k} \Omega$. For optimum performance, the peak to peak input signal should be at least 50% of the supply voltage and centered about the switching voltage. When these inputs are being driven from TTL logic, it is desirable to use a pullup resistor. The circuit counts high to low transitions at both inputs.

[^23]

NOTE：IF RANGE IS SET TO 1 EVENT，FIRST AND LAST MEASURED INTERVAL WILL COINCIDE．
Figure 7：Waveforms for Time Interval Measurement （Others are similar，without priming phase）

This can be easily accomplished with the following circuit： （Figure 8）．

MULTIPLEXED INPUTS

The FUNCTION，RANGE，CONTROL and EXTERNAL DECIMAL POINT inputs are time multiplexed to select the input function desired．This is achieved by connecting the appropriate digit driver output to the inputs．The input function，range and control inputs must be stable during the last half of each digit output，（typically $125 \mu \mathrm{~s}$ ）．The multiplex inputs are active high for the common anode ICM7226A， and active low for the common cathode ICM7226B．

Noise on the multiplex inputs can cause improper opera－ tion．This is particularly true when the unit counter mode of operation is selected，since changes in voltage on the digit
drivers can be capacitively coupled through the LED diodes to the multiplex inputs．For maximum noise immunity，a $10 \mathrm{k} \Omega$ resistor should be placed in series with the multiplex inputs as shown in the application notes．
Table 1 shows the functions selected by each digit for these inputs．

Table 1：Multiple Input Control

	FUNCTION	DIGIT
FUNCTION INPUT Pin 4	Frequency Period Frequency Ratio Time Interval Unit Counter Oscillator Frequency	$\begin{aligned} & D_{1} \\ & D_{8} \\ & D_{2} \\ & D_{5} \\ & D_{4} \\ & D_{3} \end{aligned}$
RANGE INPUT PIN 21 PIN 31	$0.01 \mathrm{Sec} / 1 \mathrm{Cycle}$ $0.1 \mathrm{Sec} / 10$ cycles $1 \mathrm{Sec} / 100$ Cycles $10 \mathrm{Sec} / 1 \mathrm{k}$ Cycles Enable External Range Input	$\begin{aligned} & D_{1} \\ & D_{2} \\ & D_{3} \\ & D_{4} \\ & D_{5} \end{aligned}$
CONTROL INPUT PIN 1	Display Off Display Test 1 MHz Select External Oscillator Enable External Decimal Point Enable	$\begin{gathered} D_{4} \& \text { Hold } \\ D_{8} \\ D_{2} \\ D_{1} \\ D_{3} \end{gathered}$
EXTERNAL DECIMAL POINT INPUT，PIN 20	Decimal Point is Output for Same Digit That is Connected to This Input	

CONTROL INPUTS

Display Test－All segments are enabled continuously， giving a display of all 8＇s with decimal points．The display will be blanked if display off is selected at the same time．

ICM7226A／B

Display Off－To enable the display off mode it is necessary to tie D_{4} to the CONTROL input and have the HOLD input at $V_{D D}$ ．The chip will remain in this mode until HOLD is switched low．While in the display off mode，the segment and digit driver outputs are open and the oscillator continues to run（with a typical supply current of 1.5 mA with a 10 MHz crystal）but no measurements are made．In addition，signals applied to the multiplexed inputs have no effect．A new measurement is initiated after the HOLD input goes low．（This mode does not operate when functioning as a unit counter．）

1 MHz Select－The 1 MHz select mode allows use of a 1 MHz crystal with the same digit multiplex rate and time between measurements as a 10 MHz crystal．The internal decimal point is also shifted one digit to the right in period and time interval，since the least significant digit will be in $1 \mu \mathrm{~s}$ increments rather than $0.1 \mu \mathrm{~s}$ ．

External Oscillator Enable－In this mode，the EXTer－ nal OSCillator INput is used，rather than the on－chip oscillator，for the Timebase and Main Counter inputs in period and time interval modes．The on－chip oscillator will continue to function when the external oscillator is selected， but have no effect on circuit operation．The external oscillator input frequency must be greater than 100 kHz or the chip will reset itself and enable the on－chip oscillator． Connect external oscillator to both OSC IN（pin 35）and EXT OSC IN（pin 33），or provide crystal for＇default＇ oscillation，to avoid hang－up problems if an external OSC or TXCO will always be used，AC couple to OSC IN．

External Decimal Point Enable－When external deci－ mal point is enabled，a decimal point will be displayed whenever the digit driver connected to the EXTERNAL DECIMAL POINT pin is active．Leading Zero Blanking will be disabled for all digits following the decimal point．

RANGE INPUT

The range input selects whether the measurement is made for $1,10,100$ or 1000 counts of the reference counter，or if the EXTernal RANGE INput determines the measurement time．in all functional modes except unit counter，a change in the RANGE input will stop the measurement in progress，without updating the display，and initiate a new measurement．This prevents an erroneous first reading after the RANGE input is changed．

FUNCTION INPUT

Six functions can be selected．They are：Frequency， Period，Time Interval，Unit Counter，Frequency Ratio and Oscillator Frequency．

These functions select which signal is counted into the main counter and which signal is counted by the reference counter，as shown in Table 2．In time interval a flip flop is set first by a $1 \rightarrow 0$ transition at INPUT A and then reset by a $1 \rightarrow 0$ transition at INPUT B．The oscillator is gated into the Main Counter during the time the flip flop is set．A change in the FUNCTION input will stop the measurement in progress without updating the display and then initiate a new measurement．This prevents an erroneous first reading after the FUNCTION input is changed．If the main counter overflows，an overflow indication is output on the Decimal Point Output during D_{8} ．

Table 2：Input Routing

DESCRIPTION	MAIN COUNTER	REFERENCE COUNTER
Frequency（ f_{A} ）	Input A	$100 \mathrm{~Hz} \mathrm{(Oscillator}$ $\div 10^{5}$ or $\left.10^{4}\right)$
Period $\left(\mathrm{t}_{\mathrm{A}}\right)$	Oscillator	Input A
Ratio（ $\left.\mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}\right)$	Input A	Input B
Time Interval $(\mathrm{A} \rightarrow \mathrm{B})$	Osc ON Gate	Osc OFF Gate
Unit Counter $($ Count A$)$	Input A	Not Applicable
Osc．Freq． $\left(\mathrm{f}_{\text {osc }}\right)$	Oscillator	$100 \mathrm{~Hz} \mathrm{(Oscillator}$ $\div 10^{5}$ or $\left.10^{4}\right)$

EXTERNAL DECIMAL POINT INPUT

When the external decimal point is selected，this input is active．Any of the digits，except D_{8} ，can be connected to this point．D_{8} should not be used since it will override the overflow output and leading zeros will remain unblanked after the decimal point．

HOLD Input－Except in the unit counter mode，when the HOLD input is at $V_{D D}$ ，any measurement in progress （before STORE goes low）is stopped，the main counter is reset and the chip is held ready to initiate a new measure－ ment as soon as HOLD goes low．The latches which hold the main counter data are not updated，so the last complete measurement is displayed．In unit counter mode when HOLD input is at $V_{D D}$ ，the counter is not stopped or reset， but the display is frozen at that instantaneous value．When HOLD goes low the count continues from the new value in the counter．

RESET Input－The $\overline{\text { RESET }}$ Input resets the main count－ er，stops any measurement in progress，and enables the main counter latches，resulting in an all zero output．A capacitor to ground will prevent any hang－ups on power－up．

EXTernal RANGE Input－The EXTernal RANGE Input is used to select other ranges than those provided on the chip．Figure 9 shows the relationship between MEASure－ ment IN PROGRESS and EXTernal RANGE Input．

Figure 9：External Range Input to End of MEASUREMENT IN PROGRESS．

MEASUREMENT IN PROGRESS，STORE AND RESET Outputs－These Outputs are provided to facilitate exter－ nal interfacing．Figure 10 shows the relationship between these signals during the time between measurements．All three outputs can drive a low power Schottky TTL load．The MEASUREMENT IN PROGRESS output can directly drive one ECL load，if the ECL device is powered from the same power supply as the ICM7226．

BCD Outputs - The BCD representation of each digit output is available at the BCD outputs; see Table 3 for Truth Table. The positive going (ICM7226A-Common Anode) or negative going (ICM7226B - Common Cathode) digit drivers lag the BCD data by 2 to 6 microseconds; the leading edge of the digit drive signal should be used to externally latch the BCD data. Each BCD output will drive one low power Schottky TTL load. The display is multiplexed from MSD to LSD. Leading zero blanking has no effect on the BCD outputs.

Table 3: Truth Table BCD Outputs

| NUMBER | BCD 8
 PIN 7 | BCD 4
 PIN 6 | BCD 2 | PIN 17 |
| :---: | :---: | :---: | :---: | :---: | PIN 18 | PID |
| :---: |
| 0 |

BUFFered OSCillator OUTput - The BUFFered OSCillator OUTput has been provided to enable use of the on chip oscillator signal without loading the oscillator itself. This output will drive one low power Schottky TTL load. Care should be taken to minimize capacitive loading on this pin.

DISPLAY CONSIDERATIONS

The display is multiplexed at a 500 Hz rate with a digit time of $244 \mu \mathrm{~s}$, and an interdigit blanking time of $6 \mu \mathrm{~s}$ to prevent ghosting between digits. The decimal point and leading zero blanking have been implemented for right hand decimal point displays; zeros following the decimal point will not be blanked. Leading zero blanking will also be disabled if the Main Counter overflows. The internal decimal point control displays frequency in kHz and time in $\mu \mathrm{s}$.
The ICM7226A is designed to drive common anode LED displays at a peak current of $25 \mathrm{~mA} /$ segment, using displays with $V_{F}=1.8 \mathrm{~V}$ at 25 mA . The average DC current will be greater than 3 mA under these conditions. The ICM7226B is designed to drive common cathode displays at a peak current of $15 \mathrm{~mA} /$ segment, using displays with $V_{F}=1.8 \mathrm{~V}$ at 15 mA . Resistors can be added in series with the segment drivers to limit the display current, if required. Figures 11, 12,13 and 14 show the digit and segment currents as a
function of output voltage for common anode and common cathode drivers.

OP043011
Figure 11: ICM7226A Typical IDIG vs. $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{O}} 4.5 \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$

Figure 12: ICM7226A Typical ISEG vs. Vo

Figure 13: ICM7226B Typical IDIG vs. $\mathbf{V O}_{0}$

Figure 14：ICM7226B Typical ISEG vs． $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{O}}\right) 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$

To increase the light output from the displays， V_{DD} may be increased to 6.0 V ，however care should be taken to see that maximum power and current ratings are not exceeded．

The SEGment and Digit outputs in both the 7226A and B are not directly compatible with either TTL or CMOS logic． Therefore，level shifting with discrete transistors may be required to use these outputs as logic signals．External latching should be done on the leading edge of the digit signal．

ACCURACY

In a Universal Counter，crystal drift and quantization errors cause errors．In frequency，period and time inter－ val modes，a signal derived from the oscillator is used either in the Reference Counter or Main Counter，and in these modes，an error in the oscillator frequency will cause an identical error in the measurement．For instance，an oscilla－ tor temperature coefficient of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will cause a measurement error of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．

In addition，there is a quantization error inherent in any digital measurement of ± 1 count．Clearly this error is reduced by displaying more digits．In the frequency mode， maximum accuracy is obtained with high frequency inputs， and in period mode maximum accuracy is obtained with low frequency inputs．As can be seen in Figure 15，the least accuracy will be obtained at 10 kHz ．In time interval measurements there is a maximum error of 1 count per interval．As a result there is the same inherent accuracy in all ranges，as shown in Figure 16．In frequency ratio measurement more accuracy can be obtained by averaging over more cycles of INPUT B as shown in Figure 17.

OP043401
Figure 15：Maximum Accuracy of Frequency and Period Measurements Due to Limitations of Quantization Errors．

Figure 16：Maximum Accuracy of Time Interval Measurement Due to Limitations of Quantization Errors．

Figure 17：Maximum Accuracy for Frequency Ratio Measurement Due to Limitations of Quantization Errors．

CIRCUIT APPLICATIONS

The ICM7226 has been designed as a complete stand alone Universal Counter，or used with prescalers and other circuitry in a variety of applications．Since $A I N$ and BIN are digital inputs，additional circuitry will be required in many applications，for input buffering，amplification，hysteresis， and level shifting to obtain the required digital voltages．For many applications an FET source follower can be used for input buffering，and an ECL 10116 line receiver can be used for amplification and hysteresis to obtain high impedance
input，sensitivity and bandwidth．However，cost and com－ plexity of this circuitry can vary widely，depending upon the sensitivity and bandwidth required．When TTL prescalers or input buffers are used，pull up resistors to $V_{D D}$ should be used to obtain optimal voltage swing at $A \mathbb{I N}$ and $B \mathbb{I N}$ ．

If prescalers aren＇t required，the ICM7226 can be used to implement a minimum component Universal counter as shown in Figure 18.

For input frequencies up to 40 MHz ，the circuit shown in figure 14 can be used to implement a frequency and period counter．To obtain the correct value when measur－ ing frequency and period，it is necessary to divide the 10 MHz oscillator frequency down to 2.5 MHz ．In doing this
the time between measurements is lengthened to 800 ms and the display multiplex rate is decreased to 125 Hz ．
If the input frequency is prescaled by ten，the oscillator frequency can remain at either 10 MHz or 1 MHz ，but the decimal point must be moved．Figure 20 shows use of a \div 10 prescaler in frequency counter mode．Additional logic has been added to enable the 7226 to count the input directly in period mode for maximum accuracy．Note that A IN comes from Q_{C} rather than Q_{D} ，to obtain an input duty cycle of 40% ．If an output with a duty cycle not near 50% must be used then it may be necessary to use a 74LS121 monostable multivibrator or similar circuit to stretch the input pulse to guarantee a 50 ns minimum pulse width．

Figure 18： 10 MHz Universal Counter

CD023821
Notes: 1) If a 2.5 MHz crystal is used, diode D1 and I.C.'s 1 and 2 can be eliminated.
Figure 19: 40 MHz Frequency, Period Counter

Figure 20: $\mathbf{1 0 0 M H z}$ Multi Function Counter

Figure 21: 100 MHz Frequency, Period Counter

Figure 21 shows the use of a CD4016 analog multiplexer to multiplex the digital outputs back to the FUNCTION Input. Since the CD4016 is a digitally controlled analog transmission gate, no level shifting of the digit output is required. CD4051's or CD4052's could also be used to select the proper inputs for the multiplexed input on the ICM7226 from 2 or 3 bit digital inputs. These analog multiplexers may also be used in systems in which the mode of operation is controlled by a microprocessor rather than directly from front panel switches. TTL multiplexers such as the 74LS153 or 74LS251 may also be used, but some additional circuitry will be required to convert the digit output to TTL compatible logic levels.

The circuit shown in Figure 22 can be used in any of the circuit applications shown to implement a single measurement mode of operation. This circuit uses the STORE output to put the ICM7226 into a hold mode. The HOLD input can also be used to reduce the time between measurements. The circuit shown in Figure 23 puts a short pulse into the HOLD input a short time after STORE goes low. A new measurement will be initiated at the end of the pulse on the HOLD Input. This circuit reduces the time between measurements to less than 40 ms from 200 ms ; use of the circuit shown in Figure 23 on the circuit shown in Figure 19 will reduce the time between measurements from 1600 ms to 800 ms .

Figure 22: Single Measurement Circuit for Use With ICM7226

Figure 23: Circuit for Reducing Time Between Measurements

tamax. famax AS FUNCTION OF VDO
OP043711
Figure 24: Typical Operating Characteristics

Figure 25 shows the ICM7226 being interfaced to LCD displays, by using its BCD outputs and 8 digit lines to drive two ICM7211 display drivers. The ICM7226 EV/Kit may easily be interfaced to 2 ICM7211 EV/Kits in this way. A similar arrangement can be used for driving vacuum fluorescent displays with the ICM7235.

OSCILLATOR CONSIDERATIONS

The oscillator is a high gain complementary FET inverter. An external resistor of $10 \mathrm{M} \Omega$ or $22 \mathrm{M} \Omega$ should be connected between the oscillator input and output to provide biasing. The oscillator is designed to work with a parallel resonant 10 MHz quartz crystal with a load capacitance of 22 pF and a series resistance of less than 35Ω. Among suitable crystals is the 10 MHz CTS KNIGHTS ISI-002.

For a specific crystal and load capacitance, the required gm_{m} can be calculated as follows:

$$
g_{m}=\omega^{2} C_{\text {IN }} C_{\text {OUT }} R s\left(1+\frac{C_{O}}{C_{L}}\right)^{2}
$$

where

$$
C_{L}=\left(\frac{C_{I N} C_{\text {OUT }}}{C_{I N}+C_{\text {OUT }}}\right)
$$

CO $=$ Crystal static capacitance
RS $=$ Crystal Series Resistance
Cin $=$ Input Capacitance
Cout
ω Output Capacitance
ω

The required g_{m} should not exceed 50% of the g_{m} specified for the ICM7226 to insure reliable startup. The oscillator input and output pins each contribute about 4 pF to C_{IN} and COUT. For maximum frequency stability, C_{IN} and COUT should be approximately twice the specified crystal load capacitance.

In cases where nondecade prescalers are used, it may be desirable to use a crystal which is neither 10 MHz nor 1 MHz . In this case both the multiplex rate and the time between measurements will be different. The multiplex rate is $f_{\text {mux }}=\frac{f_{\text {osc }}}{2 \times 10^{4}}$ for 10 MHz mode and $f_{\text {mux }}=\frac{f_{\text {osc }}}{2 \times 10^{3}}$ for the 1 MHz mode. The time between measurements is $\frac{2 \times 10^{6}}{f_{\text {osc }}}$ in the 10 MHz mode and $\frac{2 \times 10^{5}}{f_{\text {osc }}}$ in the 1 MHz mode. The buffered oscillator output should be used as an oscillator test point or to drive additional logic; this output will drive one low power Schottky TTL load. When the buffered oscillator output is used to drive CMOS or the external oscillator input, a $10 \mathrm{k} \Omega$ resistor should be added from the buffered oscillator output to $V_{D D}$.

The crystal and oscillator components should be located as close to the chip as practical to minimize pickup from other signals. In particular, coupling from the BUFFfered OSCillator OUTput and EXTernal OSCillator INput to the OSCillator OUTput or OSCillator INput can cause undesirable shifts in oscillator frequency. To minimize this coupling, pins 34 and 37 should be connected to $V_{D D}$ or $V_{S S}$ and these two signals should be kept away from the oscillator circuit.

AF031801
Figure 25: 10MHz Universal Counter System with LCD Display

$4^{1 / 2}$-Digit Counter/Vacuum Fluorescent Display Driver

GENERAL DESCRIPTION

The ICM7236 and ICM7236A devices are high-performance CMOS $4 \frac{1}{1} 2$-digit counters. They include 7 -segment decoders, output latches, count inhibit, reset, and leading zero blanking circuitry, as well as twenty-nine high-voltage open drain P-channel transistor outputs suitable for driving non-multiplexed (static) vacuum fluorescent displays.

The ICM7236 is a decade counter, providing a maximum count of 19999, while the ICM7236A is intended for timing purposes, and provides a maximum count of 15959.

The counter section of the two devices in the ICM7236 family provides direct static counting from DC to 15 MHz guaranteed (with a $5 \mathrm{~V} \pm 10 \%$ supply) over the operating temperature range. At normal room temperatures, the device will typically count up to 25 MHz . The COUNT input is provided with a Schmitt trigger for operation in noisy environments and allows correct counting with slowly changing inputs. These devices also provide count inhibit, store and reset circuitry which allow a direct interface to the ICM7207 devices. This results in a low cost, low power frequency counter with minimum component count.

These devices also incorporate features intended to simplify cascading in four-digit blocks. The CARRY output allows the counter to be cascaded, while the Leading Zero Blanking INput and OUTput allow correct leading zero blanking between four-decade blocks.

The ICM7236 and ICM7236A are packaged in a standard 40-pin dual-in-line plastic and CERDIP packages.

ORDERING INFORMATION

ORDER PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7236IJL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 -PIN CERDIP
ICM7236AIJL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 -PIN CERDIP
ICM7236IPL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$40-$-IN PLASTIC DIP
ICM7236AIPL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$40-$ PIN PLASTIC DIP
ICM7236/D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7236A/D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7236EV/KIT		EVALUATION KIT

FEATURES

- High Frequency Counting - Guaranteed 15 MHz , Typically 25 MHz at $\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}$
- Low Power Operation - Less Than $100 \mu \mathrm{~W}$ Quiescent
- Direct $4^{1 ⁄ 2}$-Digit Seven-Segment Display Drive for Non-Multiplexed Vacuum Fluorescent Displays
- STORE and RESET Inputs Permit Operation As Frequency or Period Counter
- True COUNT INHIBIT Disables First Counter Stage
- CARRY Output for Cascading Four-Digit Blocks
- Schmitt-Trigger On COUNT Input Allows Operation in Noisy Environments or With Slowly Changing Inputs
- Leading Zero Blanking INput and OUTput for Correct Leading Zero Blanking With Cascaded Devices

Figure 1: Pin Configuration

ABSOLUTE MAXIMUM RATINGS

play Vo

> Operating Temperature Range $\ldots \ldots \ldots . .-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $\ldots \ldots \ldots . .55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots \ldots .300^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliabiity.

ELECTRICAL CHARACTERISTICS (All parameters measured with $V_{D D}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S S}=0 \mathrm{~V}$ unless otherwise indicated).

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V SUPPLY	Operating Supply Voltage Range ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$)		3	5	6	V
IDD	Operating Current	Test circuit, Display blank		10	50	$\mu \mathrm{A}$
$\mathrm{V}_{\text {DISP }}$	Display Voltage				30	V
IDLK	Display Output Leakage	Output OFF, $\mathrm{V}_{\text {DISP }}=\mathrm{V}_{\text {DD }}-30 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$
Ip	Input Pullup Currents	Pins 29, 31, 33, $34 \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {DD }}-3 \mathrm{~V}$		10		$\mu \mathrm{A}$
V_{IH}	Input High Voltage	Pins 29, 31, 33, 34	3			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Pins 29, 31, 33, 34			2	V
V_{CT}	COUNT Input Threshold			2		V
V_{CH}	COUNT Input Hysteresis			0.5		V
IOH	Output High Current	$\overline{\text { CARRY }}$ (Pin 28), LZB OUT (Pin 30) $V_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}}-3 \mathrm{~V}$.	350	500		$\mu \mathrm{A}$
'OL	Output Low Current	$\begin{aligned} & \overline{\text { CARRY }} \text { (Pin 28), LZB OUT (Pin 30) } \\ & \text { VOUT }^{=}+3 \mathrm{~V} . \end{aligned}$	350	500		$\mu \mathrm{A}$
$\mathrm{f}_{\text {count }}$	Count Frequency	$4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<6 \mathrm{~V}$	0	25	15	MHz
t_{s}, t_{w}	STORE, RESET Minimum Pulse Width		3			$\mu \mathrm{s}$

1. This limit refers to that of the package and will not occur during normal operation.
2. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages
greater than $V_{D D}$ or less than ground may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7236/7236A be turned on first.
3. This limit refers to the display output terminals only.

OPERATING CHARACTERISTICS

INPUT	TERMINAL	VOLTAGE	FUNCTION
Leading Zero Blanking Input (LZB IN)	29	$V_{D D}$ or Floating $V_{S S}$	Leading Zero Blanking Enabled Leading Zeroes Displayed
COUNT INHIBIT	31	$V_{D D}$ or Floating $V_{S S}$	Counter Enabled Counter Disabled
RESET	33	$V_{D D}$ or Floating $V_{S S}$	Inactive Counter Reset to 0000
STORE	34	$V_{D D}$ or Floating $V_{S S}$	Output Latches Not Updated Output Latches Updated
Display $\overline{O N} / O F F$	5	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V} \text { SS } \end{aligned}$	Display Outputs Disabled Display Outputs Enabled

Figure 3: Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

Output Characteristics
V_{0}

Maximum Count Frequency (Typical) as a Function of Supply Voltage

Supply Current as a Function of Count Frequency

ICM7236

DESCRIPTION OF OPERATION

Both devices in the ICM7236 family provide twenty－nine outputs suitable for directly driving the anode terminals of $41 / 2$ digit seven－segment non－multiplexed（static）vacuum－ fluorescent displays．Each display output is the drain of a high－voltage low－leakage P－channel transistor，capable of withstanding typically greater than -35 volts with respect to $V_{\text {DD }}$ ．The output characteristics are shown graphically under＂Typical Characteristics．＂

These chips also provide a display $\overline{O N} / O F F$ input which may be used to disable all the segment outputs and thus blank the display．This input may also be used to control the display brightness by varying the duty cycle of a signal at the input swinging between $V_{D D}$ and $V_{S S}$ ．

Note that these circuits have two terminals for $V_{D D}$ ；both of these pins shou＇d be connected to the power supply positive terminal．The double connection is necessary to minimize effects of bond wire resistance with the large total display currents possible．

These chips may also be used to directly drive non－ multiplexed common－cathode LED displays，where each segment of the display is driven by one ICM7236 output， and the common cathode is connected to ground．With a 5 V power supply and a 1.7 V LED diode forward voltage drop，the current in an＇ON＇segment will be typically 3 mA ． This should provide sufficient brightness in displays up to about $0.3^{\prime \prime}$ character height．

Figure 4：Segment Assignment

COUNTER SECTION

The devices in the ICM7236 family implement a four－digit ripple－carry resettable counter，including a Schmitt trigger

COUNT input and a CARRY output．Also included is an extra D－type flip－flop，clocked by the carry signal，which controls the half－digit segment driver．This can be used as either a true half－digit or as an overflow indicator．The counter will increment on the negative－going edge of the signal at the COUNT input，and the CARRY output will provide a negative－going edge following the count which increments the counter from 9999 （or 5959）to 10000．Once half－digit flip－flop has been clocked，it can only be reset （with the rest of the counter）by a negative level at the RESET terminal，pin 33．However，the four decades will continue to count in a normal fashion after the half－digit is set，and subsequent $\overline{\text { CARRY }}$ outputs will not be affected．

A negative level at the COUNT INHIBIT disables the first divide－by－two flip－flop in the counter chain without affecting its clock．This provides a true count inhibit which is not sensitive to the state of the COUNT input，and prevents false counts which can result from a normal logic gate forcing the state of the clock to prevent counting．

Each decade is fed directly into a four－to－seven line decoder which generates the seven－segment output code． Each decoder output corresponds to one－segment terminal of the device．The output data is latched at the driver．When the STORE pin is at a negative level，the latches are updated，and when the pin is left open or at a positive level， the latches hold their contents．

The decoders also include zero detect and blanking logic to provide leading zero blanking．When the Leading Zero Blanking INput is floating，or at a positive level，this circuitry is enabled and the device will blank leading zeroes．When the Leading Zero Blanking INput is at a negative level，or the half－digit is set，leading zero blanking is inhibited，and zeroes in the four digits will be displayed．The Leading Zero Blanking OUTput is provided to allow cascaded devices to blank leading zeroes correctly．This output will assume a positive level only when all four digits are blanked，and can only occur when the Leading Zero Blanking INput is at a positive level and the half－digit is not set．

For example，on an eight－decade counter with overflow using two ICM7236 devices，the Leading Zero Blanking OUTput of the high－order digit device would be connected to the Leading Zero Blanking INput of the low－order digit device．This will assure correct leading zero blanking for all eight digits．

The STORE，$\overline{R E S E T}, \overline{\text { COUNT INHIBIT，and Leading Zero }}$ Blanking INputs are provided with internal pullup devices， so that they may be left open when a positive level is desired．The CARRY and Leading Zero OUTputs are suitable for interfacing to CMOS logic in general，and are specifically designed to allow cascading of ICM7236 de－ vices in four－digit blocks．

CONTROL INPUT DEFINITIONS

In this table，$V_{D D}$ and $V_{S S}$ are considered to be normal operating input logic levels．Actual input low and high levels are specified under Operating Characteristics．For lowest power consumption，input signals should swing over the full supply．

Figure 6: Typical DC Vacuum Fluorescent Display Connection
VACUUM FLUORESCENT DISPLAYS (412-DIGIT):
N.E.C. Electronics, Inc.

Model FIP5F8S

ICM7240/ICM7250 ICM7260
 Programmable Timer

GENERAL DESCRIPTION

The ICM7240/50/60 is a family of CMOS Timer/Counter circuits intended to replace Intersil's ICM8240/50/60 and the 2240 in most applications. Together with the ICM7555/ 56 (CMOS versions of the SE/NE 555/6), they provide a complete line of RC oscillators/timers/counters offering lower supply currents, wider supply voltage ranges, higher operating frequencies, lower component counts and a wider range of timing components. They are intended to simplify the selection of various time delays or frequency outputs from a fixed RC oscillator circuit.

Each device consists of a counter section, control circuitry, and an RC oscillator requiring an external resistor and capacitor. For counter/divider applications, the oscillator may be inhibited and an input clock applied to the TB terminal. The ICM7240 is intended for straight binary counting or timing, whereas the ICM7250 is optimized for decimal counting or timing. The ICM7260 is specifically designed for the time delays in seconds, minutes and hours. All three devices use open drain output transistors, thereby allowing wire AND-ing. Manual programming is easily accomplished by the use of standard thumbwheel switches or hardwired connections. The ICM7240/50/60 are packaged in 16 pin CERDIP packages.

Applications include programmable timing, long delay generation, cascadeable counters, programmable counters, low frequency oscillators, and sequence timing.

FEATURES

- Replaces 8240/50/60, 2240 in Most Applications
- Timing From Microseconds to Days
- May Be Used As Fixed or Programmable Counter
- Programmable With Standard Thumbwheel Switches
- Select Output Count From
${ }^{1}$ RC to ${ }^{255}$ RC (ICM7240)
1RC to 99RC (ICM7250)
1RC to 59RC (ICM7260)
- Monostable or Astable Operation
- Low Supply Current: $115 \mu \mathrm{~A}$ @ 5 Volts
- Wide Supply Voltage Range: 2-16 Volts
- Cascadeable

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7240IJE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead CERDIP
ICM7250IJE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead CERDIP
ICM7260IJE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead CERDIP
ICM7240/D	-	DICE**
ICM7250/D	-	DICE**
ICM7260/D	-	DICE**

**Parameter Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

ICM7240／ICM7250／ICM7260

ABSOLUTE MAXIMUM RATINGS
Supply Voltage（ $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ）
Input Voltage ${ }^{[1]}$
Terminals $10,11,12,13,14 \ldots \ldots . V_{S S}-0.3 V$ to $V_{D D}+0.3 V$
Maximum continuous output current（each output）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 50 mA

Power Dissipation ${ }^{[2]}$
200 mW
Operating Temperature Range $\ldots \ldots-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range ．．．．．．．．．．．．$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature（Soldering，10sec）．．．．．．．．．．．．．．．．．． $300^{\circ} \mathrm{C}$

NOTES：1．Due to the SCR structure inherent in the CMOS process，connecting any terminal to voltages greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latchup．For this reason，it is recommended that no inputs from external sources not operating on the same supply be applied to the device before its supply is established，and that in multiple supply systems，the supply to the ICM7240／50／60 be turned on first．
2．Derate at $-2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ．
NOTE：Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied． Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

ELECTRICAL CHARACTERISTICS

（ $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V} \mathrm{C}=0.1 \mu \mathrm{~F}$ ，unless otherwise specified．）

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V SUPPLY	Guaranteed Supply Voltage （ $V_{D D}-V_{S S}$ ）		2		16	V
${ }^{\prime} \mathrm{DD}$	Supply Current	Reset Operating， $\mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$ Operating，$R=1 \mathrm{M} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$ TB Inhibited，RC Connected to GND		$\begin{aligned} & 125 \\ & 300 \\ & 120 \\ & 125 \end{aligned}$	$\begin{aligned} & 800 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
	Timing Accuracy			5		\％
$\Delta f / \Delta T$	RC Oscillator Frequency Temperature Drift	（Exclusive of RC Drift）		250	4	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$V_{\text {OtB }}$	Time Base Output Voltage	$\begin{aligned} & \text { ISOURCE }=100 \mu \mathrm{~A} \\ & \text { ISINK }=1.0 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{aligned} & 3.50 \\ & 0.40 \end{aligned}$		V
Itblk	Time Base Output Leakage Current	RC＝Ground			25	$\mu \mathrm{A}$
$\mathrm{V}_{\text {MOD }}$	Mod Voltage Level	$\begin{array}{\|l\|} \hline V_{D D}=5 V \\ V_{D D}=15 V \\ \hline \end{array}$		$\begin{gathered} 3.5 \\ 11.0 \\ \hline \end{gathered}$		V
$V_{\text {TRIG }}$	Trigger Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.6 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{RST}}$	Reset Input Voltage	$\begin{aligned} & V_{D D}=5 V \\ & V_{D D}=15 V \end{aligned}$		$\begin{aligned} & 1.3 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
f_{t}	Max Count Toggle Rate 7240	$\left.\begin{array}{l}V_{D D}=2 \mathrm{~V} \\ V_{D D}=5 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V}\end{array}\right]$ Counter／Divider Mode 50% Duty Cycle Input with Peak to Peak Voltages Equal to $V_{D D}$ and $V_{S S}$	2	$\begin{gathered} 1 \\ 6 \\ 13 \end{gathered}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
f_{t}	Max Counter Toggle Rate 7250， 7260	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \text { (Counter/Divider Mode) } \end{aligned}$	2	5		MHz
f_{t}	Max Count Toggle Rate 7240，7250， 7260	Programmed Timer－Divider Mode			100	kHz
$\mathrm{V}_{\text {SAT }}$	Output Saturation Voltage	All Outputs except TB Output $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ ，lout $=3.2 \mathrm{~mA}$		0.22	0.4	V
lolk	Output Leakage Current	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ ，per Output			1	$\mu \mathrm{A}$
C_{t}	MIN Timing Capacitor（Note 1）		10			pF
R_{t}	Timing Resistor Range（Note 1）	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}} \leq 16 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~K} \\ & 1 \mathrm{~K} \end{aligned}$		$\begin{aligned} & 12 \mathrm{M} \\ & 12 \mathrm{M} \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$

NOTE：1．For Design only，not 100% tested．

TC029611

S1-A = RC RUN S2-A = INACTIVE \quad S3-A = INACTIVE
$B=$ T.B. INPUT RUN $B=$ TRIGGER $B=$ RESET
NOTE: S1-B INHIBITS THE TIMEBASE SECTION, ALLOWING TERMINAL 14 TO BECOME THE COUNTER INPUT. ** TERMINAL 15 IS CARRY OUTPUT FOR $7250 / 60$ DEVICES.

* TERMINAL 8 IS OPEN CIRCUIT FOR 7260.

Figure 3: Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OP044401
TIMEBASE FREE RUNNING FREQUENCY AS A FUNCTION OF R AND C

RECOMMENDED RANGE OF TIMING COMPONENT VALUES FOR ACCURATE TIMING

MINIMUM TRIGGER PULSE WIDTH AS A FUNCTION OF TRIGGER AMPLITUDE

OP045811

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

MINIMUM RESET PULSE WIDTH AS A FUNCTION OF RESET AMPLITUDE

OP04461I
NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE

OP045011
dISCHARGE OUTPUT CURRENT AS A FUNCTION OF DISCHARGE OUTPUT VOLTAGE

NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF TEMPERATURE

MAXIMUM DIVIDER FREQUENCY vs. SUPPLY VOLTAGE*

OP045201
OUTPUT SATURATION CURRENT AS A FUNCTION OF OUTPUT SATURATION VOLTAGE

OP045111

ICM7240／ICM7250／ICM7260

CIRCUIT DESCRIPTION

The timing cycle is initiated by applying a positive－going trigger pulse to pin 11．This pulse enables the counter section，sets all counter outputs to the LOW or ON state， and starts the time base oscillator．Then，external C is charged through external R from 20% to 70% of $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ， generating a timing waveform with period t ，equal to $1_{\text {RC．}} A$ short negative clock or time base pulse occurs during the capacitor discharge portion of the waveform．These clock pulses are counted by the binary counter of the 7240 or by two cascaded Binary Coded Decimal（BCD）Counters in the 7250／60．The timing cycle terminates when a positive level is applied to RESET．When the circuit is at reset，both the time base and the counter sections are disabled and all the counter outputs are at a HIGH or OFF state．The carry－out is also HIGH．Each of the three devices utilizes an identical timebase，control flip－flops，and basic counters，with the outputs consisting of open drain n－channel transistors．Only the ICM7250／60 have CARRY outputs．

In most timing applications，one or more of the counter outputs are connected back to RESET the circuit will start timing when a TRIGGER is applied and will automatically reset itself to complete the timing cycle when a pro－ grammed count is completed．If none of the counter outputs are connected back to the RESET（switch S_{1} open），the circuit operates in its astable，or free－running mode，after initial triggering．

DESCRIPTION OF PIN FUNCTIONS

COUNTER OUTPUTS（PINS 1 THROUGH 8）

Each binary counter output is a buffered＇open－drain＇＂ type．At reset condition，all the counter outputs are at a high，or non－conducting state．After a trigger input or when using the internal timebase，the outputs change state（see timing diagram，Figure 4）．If an external clock input is used， the trigger input must overlap at least the first falling edge of the clock．The counter outputs can be used individually，or can be connected together in a wired－AND configuration，as described in the Programming section．

Figure 4：Timing Diagram for ICM7240／50／60

Vss（PIN 9）

This is the return or most negative supply pin．It should have a very low impedance as the capacitor discharge and other switched currents could create transients．

RESET AND TRIGGER INPUTS（PINS 10 AND 11）
The circuits are reset or triggered by a positive level applied to pins 10 and 11，and once triggered they ignore additional trigger inputs until either the timing cycle is completed or a reset signal is applied．If both reset and trigger are applied simultaneously trigger overrides reset． Minimum input pulse widths are shown in the typical performance characteristics．Note that all devices feature power ON reset．

MODULATION AND SYNC INPUT（PIN 12）

The period， t ，of the time base oscillator can be modulat－ ed by applying a DC voltage to this terminal．The time base oscillator can be synchronized to an external clock by applying a sync pulse to pin 12.

TIMEBASE INPUT／OUTPUT PIN（PIN 14）

While this pin can be used as either a time base input or output terminal，it should only be used as an input if the RC pin is connected to V_{SS} ．

If the counter is to be externally driven，care should be taken to ensure that fall times are fast（see Operating Limits section）．

Under no conditions is a 300 pF capacitor on this terminal useful and should be removed if a 7240／50／60 is used to replace an 8240／50／60 or 2240.

CARRY OUTPUT（PIN 15，ICM7250／60 ONLY）

This pin will go HI for the last 10 counts of a 59 or 99 count，and can be used to drive another 7250 or 7260 counter stage while still using all the counter outputs of the first．Thus，by cascading several 7250＇s a large BCD countdown can be achieved．

The basic timing diagrams for the ICM7240／50／60 are shown in Figure 4．Assuming that the device is in the RESET mode，which occurs on powerup or after a positive level on the RESET terminal（if TRIGGER is low），a positive level on the trigger input signal will initiate normal operation． The discharge transistor turns on，discharging the timing capacitor C ，and all the flip－flops in the counter chain change states．

Note that for straight binary counting the outputs are symmetrical；that is，a 50% duty cycle HI－LO．This is not the case when using BCD counting．（See Figure 6．）

PROGRAMMING CAPABILITY

The counter outputs，pins 1 through 8，are open－drain N － channel FETs，and can be shorted together to a common pull－up resistor to form a＇wired－AND＇connection．The combined output will be LOW as long as any one of the outputs is low．Each output is capable of sinking $\approx 5 \mathrm{~mA}$ ．In this manner，the time delays associated with each counter output can be summed by simply shorting them together to a common output．For example，if only pin 6 is connected to the output and the rest left open，the total duration of the timing cycle（monostable mode）to would be 32t for a 7240 and 20 t for a 7250／60．Similarly，if pins，1， 5 ，and 6 were shorted to the output bus，the total time delay would be $t_{0}=(1+16+32) t$ for the 7240 or $(1+10+20) t$ for the $7250 / 60$ ．Thus，by selecting the number of counter termi－ nals connected to the output bus，the timing cycle can be programmed from：

$$
\begin{aligned}
& 1 \mathrm{t} \leq \mathrm{t}_{0} \leq 255 \mathrm{t}(7240) \\
& 1 \mathrm{t} \leq \mathrm{t}_{0} \leq 99 \mathrm{t}(7250) \\
& 1 \mathrm{t} \leq \mathrm{t}_{\mathrm{o}} \leq 59 \mathrm{t}(7260)
\end{aligned}
$$

ICM7240/ICM7250/ICM7260

Note that for the 7250 and 7260, invalid count states ($B C D$ values ≥ 10) will not be recognized and the counter will not stop.

The 7240/50/60 can be configured to initiate a controlled timing cycle upon power up, and also reset internally; see Figure 5. Applications for this could include lawn watering sprinkler timing, pump operation, etc.

BINARY OR DECIMAL PATTERN GENERATION

In astable operation, as shown in Figure 5, the output of the $7240 / 50$ appears as a complex pulse pattern. The waveform of the output pulse train can be determined directly from the timing diagram of Figure 4, which shows the phase relations between the counter outputs. Figure 6 shows some of these complex pulse patterns. The pulse pattern repeats itself at a rate equal to the period of the highest counter bit connected to the common output bus. The minimum pulse width contained in the pulse train is determined by the lowest counter bit connected to the output.

THUMBWHEEL SWITCHES

While the ICM7240 is frequently hard wired for a particular function, the ICM7250 and ICM7260 can easily be programmed using thumbwheel switches. Standard BCD thumbwheel switches have one common and four inputs ($1,2,4$ and 8) which are connected according to the binary equivalent to the digits 0 through 9.

For a single ICM7250 two such switches would select a time of 1RC to 99RC. Cascading two ICM7250's (using the carry out gate) would expand selection to 9999 RC . For a

ICM7260, there are standard BCD thumbwheel switches for the 0 through 5 digit (twelve position 0 to 5 repeated).

NOTES ON THE COUNTER SECTION

Used as a straight binary counter (ICM7240), as a $\div 100$ (ICM7250), or $\div 60$ (ICM7260) all devices are significantly faster than their bipolar equivalents. However, when using these devices as programmable counters the maximum frequency of operation is reduced by more than an order of magnitude. For any division ratio other than 256 (ICM7240), 100 (ICM7250), or 60 (ICM7260) the maximum input frequency must be limited to approximately 100 kHz or less (with $V_{D D}$ equal to +5 volts). The reason for this is two-fold:
a. Since Ripple counters are used, there is a propagation delay between each individual $\div 2$ counter (8 counters for the ICM7240/50 and 7 for the ICM7260). Outputs from the individual $\div 2$ counters are AND'ed together to provide the output signal and the RESET/TRIGGER signal.
b. There must be a delay of the positive going output to RESET, (pin 10) and TRIGGER (pin 11). The RESET signal must therefore be generated first, and from this signal another signal is obtained through a delay network. The TRIGGER overrides RESET.
The delay between TRIGGER and RESET is generated by the signal RC network consisting of the $56 \mathrm{k} \Omega$ resistor and the 330 pF capacitor.

The delay caused by the counter ripple delays can be as long as $2 \mu \mathrm{~s}$ (5 volt supply), and the delay between RESET and TRIGGER should be at least $2 \mu \mathrm{~s}$. The sum of these two delays cannot be greater than one-half of the input clock period for reliable operation. See Figure 7 and 8.

Figure 5: Generalized Circuit for Timing Applications (Switch \mathbf{S}_{1} open for astable operation, closed for monostable operation)

B 3 PIN PATTERNS

C 4 PIN PATTERNS

PINS $1,3,5, \& 7$ SHORTED
WF02020
Figure 6: Pulse Patterns Obtained by Shorting Various Counter Outputs

Figure 7: Programming the Counter Section of the ICM7240/50/60

Figure 8: Waveforms for Programming the Counter Section

APPLICATIONS

GENERAL CONSIDERATIONS

Shorting the RC terminal or output terminals to $V_{D D}$ may exceed dissipation ratings and／or maximum DC current limits（especially at high supply voltages）．
There is a limit of 50 pF maximum loading on the TB I／O terminal if the timebase is being used to drive the counter section．If higher value loading is used，the counter sections may miscount．

For greatest accuracy，use timing component values shown in the graph under Typical Performance Characteris－ tics．For highest frequency operation it will be desirable to use very low values for the capacitor；accuracy will de－ crease for oscillator frequencies in excess of 200 kHz ．

When driving the counter section from an external clock， the optimum drive waveform is a square wave with an amplitude equal to supply voltage．If the clock is a very slow ramp triangular，sine wave，etc．，it will be necessary to ．＇square up＇the waveform（rise／fall time $\leq 1 \mu \mathrm{~s}$ ）；this can be done by using two CMOS inverters in series，operating from the same supply voltage as the ICM 7240／50／60．

By cascading devices，use of low cost CMOS AND／OR gates and appropriate RC delays between stages，numer－ ous sequential control variations can be obtained．Typical applications include injection molding machine controllers， phonograph record production machines，automatic se－ quencers（no metal contacts or moving parts），milling machine controllers，process timers，automatic lubrication systems，etc．

By selection of R and C ，a wide variety of sequence timing can be realized．A typical flow chart for a machine tool controller could be as follows：

Figure 9

Figure 10

CMOS PRECISION PROGRAMMABLE 0-99 SECONDS/MINUTES LABORATORY TIMER

The ICM7250 is well suited as a laboratory timer to alert personnel of the expiration of a preselected interval of time.

When connected as shown in Figure 10, the timer can accurately measure preselected time intervals of $0-99$ seconds or 0-99 minutes. A 5 volt buzzer alerts the operator when the preselected time interval is over.

The circuit operates as follows:
The time base is first selected with S1 (seconds or minutes), then units 0-99 are selected on the two thumbwheel switches S4 and S5. Finally, switch S2 is depressed to start the timer. Simultaneously the quartz crystal controlled divider circuits are reset, the ICM7250 is triggered and counting begins. The ICM7250 counts until the preprogrammed value is reached, whereupon it is reset, pin 10 of the CD4082B is enabled and the buzzer is turned on. Pressing S3 turns the buzzer off.

Figure 11

LOW POWER MICROPROCESSOR PROGRAMMABLE INTERVAL TIMER

The ICM7240 CMOS programmable binary timer can be configured as a low cost microprocessor controlled interval timer with the addition of a few inexpensive CD4000 series devices.

With the devices connected as shown in Figure 11, the sequence of operation is as follows:

The microprocessor sends out an 8 bit binary code on its 8 bit I/O bus (the binary value needed to program the ICM7240), followed by four WRITE pulses into the CD4017B decade counter. The first pulse resets the 8 bit latch, the second strobes the binary value into the 8 bit
latch, the third triggers the ICM7240 to begin its timing cycle and the fourth resets the decade counter.

The ICM7240 then counts the interval of time determined by the R-C value on pin 13, and the programmed binary count on pins 1 through 8. At the end of the programmed time interval, the interrupt one-shot is triggered, informing the microprocessor that the programmed time interval is over.

With a resistor of approximately $10 \mathrm{M} \Omega$ and capacitor of $0.1 \mu \mathrm{~F}$, the time base of the ICM7240 is one second. Thus, a time of $1-255$ seconds can be programmed by the microprocessor, and by varying R or C, longer or shorter time bases can be selected.

ICM7241
 Timebase Generator

GENERAL DESCRIPTION

The ICM7241 is a fully integrated oscillator, 2 divider and output driver which efficiency converts 4.194304 MHz to 32.768 kHz using a minimum of power. Only three external components are necessary for complete oscillator operation; a 4.194304MHz crystal, a fixed input capacitor, and an output trimmer capacitor. The output has a low enough impedance to satisfy most drive requirements.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM 7241 IPA	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Lead Plastic

FEATURES

- Single Battery Operation (1.2-1.8V)
- Low Power Consumption - Typ. 40 A @ 1.5 V
- Oscillator Biasing Resistor Included On-Chip

CD02921
Figure 2: Pin Configuration
(Outline dwg PA)
PIN 1 IS DESIGNATED BY EITHER A DOT OR A NOTCH.

CD029111
Figure 3: Typical Connection

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD-VSS) \qquad Output Voltage ${ }^{[1]}$ \qquad $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{D D}+0.3 \mathrm{~V}$ Input Voltage ${ }^{[1]}$

Operating Temperature $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)
$.300^{\circ} \mathrm{C}$

NOTES:

1. All terminals may exceed the supply voltage ($2.0 \mathrm{~V} \max$) by ± 0.3 volt provided that the currents in these terminals are limited to 2 mA each.
2. This value of power dissipation refers to that of the package and will not be obtained under normal operating conditions.

ELECTRICAL CHARACTERISTICS

$\left(V_{S S}=1.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=4,194,304 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IDD	Supply Current			40	70	$\mu \mathrm{A}$
V SUPPLY	Guaranteed Operating Voltage Range	$-20^{\circ} \mathrm{C} \leq$ to $\leq 70^{\circ} \mathrm{C}$	1.2		1.8	V
RSAT	P-Ch Output Saturation Resistance	lout $=.5 \mathrm{~mA}$		680	2	$k \Omega$
RSAT	N-Ch Output Saturation Resistance	lout $=.5 \mathrm{~mA}$		240	1	$k \Omega$
${ }^{\text {f }}$ Stab	Oscillator Stability	$\begin{aligned} & 1.2 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<1.6 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\mathrm{OUT}}=15 \mathrm{pF} \end{aligned}$		1		ppm
tstart	Oscillator Start-Up Time	$\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}$			1.0	s

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT vs. SUPPLY VOLTAGE

OP051301

OSCILLATOR STABILITY vs. SUPPLY VOLTAGE

P051401

CURRENT (SOURCE) vs. OUTPUT SATURATION VOLTAGE

GENERAL DESCRIPTION

The ICM7242 is a CMOS timer/counter circuit consisting of an RC oscillator followed by an 8 -bit binary counter. It will replace the 2242 in most applications, with a significant reduction in the number of external components.

Three outputs are provided. They are the oscillator output, and buffered outputs from the first and eighth counters.
The ICM7242 is packaged in an 8-pin CERDIP.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7242D	-	DICE**
ICM7242IPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 pin MINI-DIP
ICM7242IJA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 pin CERDIP
ICM7242CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 pin S.O.I.C.

FEATURES

- Replaces The 2242 in Most Applications
- Timing From Microseconds to Days
- Cascadeable
- Monostable or Astable Operation
- Wide Supply Voltage Range: 2-16 volts
- Low Supply Current: $115 \mu \mathrm{~A}$ @ 5 volts
**Parameter Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

Figure 2: Functional Diagram

ABSOLUTE MAXIMUM RATINGS

Supply Voltage（VDD to $V_{S S}$ ）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．18V
Input Voltage ${ }^{[1]}$
Terminals（Pins 5，6，7，8）（ $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ ）to（ $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ ）
Maximum continuous output current （each output）
\qquad
\qquad 50 mA

NOTES：1．Due to the SCR structure inherent in the CMOS process，connecting any terminal to voltages greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latchup．For this reason，it is recommended that no inputs from external sources not operating on the same supply be applied to the device before its supply is established and，that in multiple supply systems，the supply to the ICM7242 be turned on first．
2．Derate at $-2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ．
Stresses above those listed under＂Absolute Maximum Ratings＂may cause permanent device failure．These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied．Exposure to absolute maximum rating conditions for extended periods may cause device failures．

ELECTRICAL CHARACTERISTICS

（ $V_{D D}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified．）

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V ${ }_{\text {D }}$	Guaranteed Supply Voltage		2		16	V
IDD	Supply Current	Reset Operating， $\mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$ Operating，$R=1 \mathrm{M} \Omega, C=0.1 \mu \mathrm{~F}$ TB Inhibited，RC Connected to V_{SS}		$\begin{aligned} & 125 \\ & 340 \\ & 220 \\ & 225 \end{aligned}$	$\begin{aligned} & 800 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
	Timing Accuracy			5		\％
$\Delta f / \Delta T$	RC Oscillator Frequency Temperature Drift	Independent of RC Components		250		ppm $/{ }^{\circ} \mathrm{C}$
$V_{\text {OTB }}$	Time Base Output Voltage	$\begin{aligned} & \text { ISOURCE }=100 \mu \mathrm{~A} \\ & \text { ISINK }=1.0 \mathrm{~mA} \end{aligned}$		$\begin{gathered} \hline 3.5 \\ 0.40 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Itblk	Time Base Output Leakage Current	RC＝Ground			25	$\mu \mathrm{A}$
$V_{\text {TRIG }}$	Trigger Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 1.6 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$V_{\text {RST }}$	Reset Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.3 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
ITRIG, IRST	Trigger／Reset Input Current			10		$\mu \mathrm{A}$
f_{t}	Max Count Toggle Rate	$\left.\begin{array}{l}V_{D D}=2 \mathrm{~V} \\ V_{D D}=5 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V}\end{array}\right]$ Counter／Divider Mode 50% Duty Cycle Input with Peak to Peak Voltages Equal to $V_{D D}$ and vSS	2	$\begin{gathered} 1 \\ 6 \\ 13 \end{gathered}$		MHz MHz MHz
$V_{\text {SAT }}$	Output Saturation Voltage	All Outputs except TB Output $V_{D D}=5 \mathrm{~V}$ ， IOUT $=3.2 \mathrm{~mA}$		0.22	0.4	V
ISOURCE	Output Sourcing Current 7242	$\begin{aligned} & \mathrm{VDD}=5 \mathrm{~V} \\ & \text { Terminals } 2 \& 3, V_{\text {OUT }}=1 \mathrm{~V} \end{aligned}$		300		$\mu \mathrm{A}$
C_{t}	MIN Timing Capacitor（Note 1）		10			pF
R_{t}	Timing Resistor Range（Note 1）	$\mathrm{V}_{\mathrm{DD}}=2-16 \mathrm{~V}$	1 K		22M	Ω

NOTE：1．For Design only，not 100% tested．

TC029711
NOTE：OUTPUTS $\div 2^{1}$ AND $\div 2^{8}$ ARE INVERTERS AND HAVE ACTIVE PULLUPS．
Figure 3：Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OP045401

TIMEBASE FREE RUNNING FREQUENCY AS A FUNCTION OF R AND C

OP045511

RECOMMENDED RANGE OF TIMING COMPONENT VALUES FOR ACCURATE TIMING

DIMENSIONS IN INCHES AND MILLIMETERS

MINIMUM TRIGGER PULSE WIDTH AS A

 FUNCTION OF TRIGGER AMPLITUDE

OP045811

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

MINIMUM RESET PULSE WIDTH AS A FUNCTION OF RESET AMPLITUDE

NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF TEMPERATURE

OP046011
DISCHARGE OUTPUT CURRENT AS A FUNCTION OF DISCHARGE OUTPUT VOLTAGE

NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE

MAXIMUM DIVIDER FREQUENCY vs. SUPPLY VOLTAGE

OP046201
OUTPUT SATURATION CURRENT AS A FUNCTION OF OUTPUT SATURATION VOLTAGE

OP046311

OPERATING CONSIDERATIONS

Shorting the RC terminal or output terminals to $V_{D D}$ may exceed dissipation ratings and／or maximum DC current limits（especially at high supply voltages）．

There is a limitation of 50 pF maximum loading on the TB I／O terminal if the timebase is being used to drive the counter section．If higher value loading is used，the counter sections may miscount．

For greatest accuracy，use timing component values shown in the graph under typical performance characteris－ tics．For highest frequency operation it will be desirable to use very low values for the capacitor；accuracy will de－ crease for oscillator frequencies in excess of 200 KHz ．

When driving the counter section from an external clock， the optimum drive waveform is a square wave with an amplitude equal to supply voltage．If the clock is a very slow ramp triangular，sine wave，etc．，it will be necessary to ＇square up＂the waveform；this can be done by using two CMOS inverters in series，operating from the same supply voltage as the ICM7242．

The ICM7242 is a non－programmable timer whose princi－ pal applications will be very low frequency oscillators and long range timers；it makes a much better low frequency oscillator／timer than a 555 or ICM7555，because of the on－ chip 8－bit counter．Also，devices can be cascaded to produce extremely low frequency signals．

Because outputs will not be AND＇d，output inverters are used instead of open drain N－channel transistors，and the external resistors used for the 2242 will not be required for the ICM7242．The ICM7242 will，however，plug into a socket for the 2242 having these resistors．

The timing diagram for the ICM7242 is shown in Figure 4. Assuming that the device is in the RESET mode，which occurs on powerup or after a positive signal on the RESET terminal（if TRIGGER is low），a positive edge on the trigger input signal will initiate normal operation．The discharge transistor turns on，discharging the timing capacitor C ，and all the flip－flops in the counter chain change states．Thus， the outputs on terminals 2 and 3 change from high to low states．After 128 negative timebase edges，the $\div 2^{8}$ output returns to the high state．

To use the 8－bit counter without the timebase，terminal 7 （RC）should be connected to ground and the outputs taken from terminals 2 and 3 ．

Figure 4：Timing Diagrams of Output Waveforms for the ICM7242． （Compare with Figure 8）

CDO25811
Figure 5：Using the ICM7242 as a Ripple Counter（Divider）

The ICM7242 may be used for a very low frequency square wave reference．For this application the timing components are more convenient than those that would be required by a 555 timer．For very low frequencies，devices may be cascaded（see Figure 6）．

For monostable operation the $\div 2^{8}$ output is connected to the RESET terminal．A positive edge on TRIGGER initiates the cycle（NOTE：TRIGGER overrides RESET）．

THE ICM7242 is superior in all respects to the 2242 except for initial accuracy and oscillator stability．This is primarily due to the fact that high value p^{-}resistors have been used on the ICM7242 to provide the comparator timing points．

COMPARING THE ICM7242 WITH THE 2242

By selection of R and C, a wide variety of sequence timing can be realized. A typical flow chart for a machine tool controller could be as follows:

Figure 8
By cascading devices, use of low cost CMOS AND/OR gates and appropriate RC delays between stages, numerous sequential control variations can be obtained. Typical applications include injection molding machine controllers, phonograph record production machines, autornatic sequencers (no metal contacts or moving parts), milling machine controllers, process timers, automatic lubrication systems, etc.

SEQUENCE TIMING

GENERAL DESCRIPTION

The ICM7245 is a very low current，low voltage microcir－ cuit for use in analog watches．It consists of an oscillator， dividers，logic and drivers necessary to provide either bipolar or unipolar stepper motor drive for minimum－compo－ nent count watches．The oscillator is extremely stable over wide ranges of voltage and temperature，and thus combines high accuracy with low system power．The ICM7245 is fabricated using Intersil＇s low threshold metal－gate CMOS process．

The inverter oscillator contains all components on－chip except for the tuning capacitor and quartz crystal．The binary divider consists of 15 stages，the last 5 of which may be reset．If a reset（stop）occurs during an output pulse，the duration of the pulse is not affected．When the reset is released，the first output occurs approximately 1 second later．For the bipolar version，memory reset logic is included to make sure the first pulse after a＂stop＂occurs on the opposite output from the one just before the＂stop＂．

The bipolar bridge output consists of two large inverters， normally high．The output ON resistance of the P and N channel devices in series is 200Ω maximum＠ 1 mA ．In unipolar operation，the output is made up of a single normally high inverter．The ON resistance of the N －channel device is 50Ω maximum＠ 3 mA ．

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7245AIPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 pin Plastic DIP
ICM7245BIPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 pin Plastic DIP
ICM7245DIPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 pin Plastic DIP
ICM7245EIPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 pin Plastic DIP
ICM 7245 FIPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 pin Plastic DIP
ICM7245UIPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 pin Plastic DIP

FEATURES

－Very Low Current Consumption： $0.4 \mu \mathrm{~A}$ at 1.55 Volt Typical
－32kHz Oscillator Requires Only Quartz Crystal and Trimming Capacitor
－Bipolar Stepper Drive With Low Output On Resistance：2000hms Maximum（ 7245 A／B／D／E／F）
－Unipolar Stepper Drive With Very Low Output On Resistance：500hms Maximum（7245U）
－Extremely Accurate：Oscillator Stability Typically 0．1ppm
－STOP Function for Easy Time Synchronization
－Wide Temperature Range：$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
－On Chip Fixed Oscillator Capacitor：20pF $\pm 20 \%$

TABLE 1

DEVICE NUMBER	BIPOLAR／ UNIPOLAR	PULSE WIDTH （ms）	PULSE FREQUENCY	OSCILLATOR CAPACITOR
ICM7245A	B	9.7	1 Hz	COUT
ICM7245B	B	7.8	1 Hz	$\mathrm{Cl}_{\mathrm{IN}}$
ICM7245D	B	7.8	0.1 Hz （1 pulse／ 10 seconds）	COUT
ICM7245E	B	7.8	$\begin{gathered} 0.0833 \mathrm{~Hz} \\ \text { (1 pulse/ } \\ 12 \text { seconds) } \end{gathered}$	$\mathrm{Cl}_{\mathrm{IN}}$
ICM7245F	8	7.8	0.05 Hz $(1$ pulse／ 20 seconds）	$\mathrm{Cl}_{\mathrm{IN}}$
ICM7245U	U	3.9	1 Hz	$\mathrm{Cl}_{\mathrm{IN}}$

CD029311
Figure 1：Pin Configuration（Outline dwg PA）

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) \ldots \ldots .3 .0 \mathrm{~V}$
Input Voltages $\ldots \ldots \mathrm{V}_{\mathrm{SS}}-0.3<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{DD}}+0.3$
Storage Temperature $\ldots \ldots \ldots \ldots \ldots \ldots . .60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $\ldots \ldots \ldots \ldots \ldots .25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature（Soldering， 10 sec ）$\ldots \ldots \ldots \ldots \ldots .300^{\circ} \mathrm{C}$

Operating Temperature
.$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Power Dissipation（Note 1） \qquad
25 mW
NOTE：Stresses above those listed under＂Absolute Maximum Ratings＇may cause permanent device failure．These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied．Exposure to absolute maximum rating conditions for extended periods may cause device failures．
Note 1：This value of power dissipation refers to that of the package and will not normally be obtained under normal operating conditions．
ELECTRICAL CHARACTERISTICS $\left(V_{D D}=1.55 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=32,768 \mathrm{~Hz}\right.$ ，circuit in Figure $2, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，
unless otherwise stated．Numbers are in absolute values．）

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IDD	Supply Current	No Load		0.4	0.8	$\mu \mathrm{A}$
VSUPPLY	Operating Voltage（ $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}$ ）	$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<50^{\circ} \mathrm{C}$	1.2		1.8	V
gm	Oscillator Transconductance	Start－up（Note 1）	15			$\mu \mathrm{s}$
Cosc	Oscillator Capacitance	（Note 1）	16	20	24	pF
Istop	STOP Input Current				0.3	$\mu \mathrm{A}$
${ }_{\text {ITEST }}$	TEST Input Current				10	$\mu \mathrm{A}$
$\mathrm{f}_{\text {Stab }}$	Oscillator Stability	$\Delta(\mathrm{V}$ SUPPLY $)=0.6 \mathrm{~V}$		0.1		ppm
IDD	Supply Current During Stop	＇STOP＇Connected to V_{DD}			1.0	$\mu \mathrm{A}$
Ro	Output Saturation Resistance	Bipolar（N－CH．＋P－CH） $\mathrm{L}=1 \mathrm{~mA}$			200	$\stackrel{\sim}{\Omega}$
Ro－P	Output Saturation Resistance P－CH	Unipolar $\mathrm{I}_{\mathrm{L}}=3 \mathrm{~mA}$			200	Ω
Ro－N	Output Saturation Resistance N－CH	Unipolar $\mathrm{IL}=3 \mathrm{~mA}$			50	Ω

NOTE 1：For design reference only，not 100% tested．

CRYSTAL
PARAMETERS
$f=32768 \mathrm{~Hz}$
$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$
$\mathrm{C}_{\mathrm{M}}=2.5 \mathrm{mpF}$
$R_{S}=20 \mathrm{k} \Omega$

Figure 2：Typical Watch Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

BRIDGE OUTPUT CURRENT AS A

 FUNCTION OF LOAD VOLTAGE
(ICM7245B)

Figure 3: Timing Waveforms

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

APPLICATION NOTES

OSCILLATOR

The oscillator of the ICM7245 is designed for low frequency operation at very low current from a 1.55 volt supply. The oscillator is of the inverter type, using a nonlinear feedback resistor having maximum resistance under start-up conditions. The nominal load capacitance of the crystal should be less than 12 pF , with a preferred range of $7-10 \mathrm{pF}$. In specifying the crystal, the motional capacitance, series resistance and tuning tolerance must be compatible with the characteristics of the circuit to insure start-up and operation over a wide voltage range under worst case conditions.

The following expressions can be used to arrive at a crystal specification:

Tuning Range
$\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{O}+C_{L}\right)} ; C_{L}=\frac{C_{\text {IN }} C_{\text {OUT }}}{C_{\text {IN }}+C_{\text {OUT }}}$
g_{m} required for start-up
$g_{m}=4 \pi 2 f 2 C_{I N} C_{O U T} R_{S}\left(1+\frac{C_{O}}{C_{L}}\right)^{2}$

OSCILLATOR STABILITY AS A FUNCTION OF SUPPLY VOLTAGE

where
$R_{\mathrm{S}}=$ Series Resistance of Crystal
$f=$ Frequency of the Crystal
$\Delta f=$ Frequency Shift from Series Resonance Frequency
$\mathrm{C}_{\mathrm{O}}=$ Static Capacitance of Crystal
$\mathrm{C}_{\mathrm{IN}}=$ Input Capacitance
Cout $=$ Output Capacitance
$C_{L}=$ Load Capacitance
$C_{m}=$ Motional Capacitance of Crystal
The gm_{m} required for start-up calculated should not exceed 50% of the g_{m} guaranteed for the device.

TEST POINT

The TEST input, when connected to V^{-}, causes the ICM7245B/U to speed-up the outputs by 16 times. On long
period output versions $(12,20,60 \mathrm{sec})$ the speed－up factor will be larger．This allows easy testing of the finished watch module．The pulse width is not affected by the speed－up of the pulse frequency．

CUSTOM VERSIONS

The ICM7245 may be modified with alternative metal masks to provide different number of dividers，various pulse widths，and different output configurations．

In addition，MOS capacitors on－chip up to a total of 50 pF may be connected to either the input and／or the output of the oscillator．Consult your Intersil representative or the factory for further information．

ICM7249
 $51 / 2$ Digit LCD μ-Power Event/Hour Meter

GENERAL DESCRIPTION

The ICM7249 Timer/Counter is intended for long-term battery-supported industrial applications. The ICM7249 typically draws $1 \mu \mathrm{~A}$ during active timing or counting, due to Intersil's special low-power design techniques. This allows more than 10 years of continuous operation without battery replacement. The chip offers four timing modes, eight counting modes and four test modes.

The ICM7249 is a 48 -lead device, powered by a single DC voltage source and controlled by a 32.768 kHz quartz crystal. No other external components are required. Inputs to the chip are TTL-compatible and outputs drive standard LCD segments. The chip is available in dice and in ceramic side-brazed packages.

Figure 1: Pin Configuration

FEATURES

- Hour Meter Requires Only 4 Parts Total
- Micropower Operation: $<1 \mu \mathrm{~A}$ at 2.8 V Typical
- 10 Year Operation On One Lithium Cell $21 / 2$ Year Battery Life With Display Connected
- Directly drives $5^{1 / 2}$ Digit LCD
- 14 Programmable Modes of Operation
- Times Hrs., 0.1 Hrs., . 01 Hrs., . 1 Mins.
- Counts 1's, 10's, 100's, 1000's
- Dual Funtion Input Circuit:
- Selectable Debounce for Counter
- High-Pass Filter for Timer
- Direct AC Line Triggering With Input Resistor
- Winking 'Timer Active" Display Output
- Display Test Feature

APPLICATIONS

- AC or DC Hour Meters
- AC or DC Totalizers
- Portable Battery Powered Equipment
- Long Range Service Meters

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7249IDM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 -Pin Ceramic
ICM7249/D	$25^{\circ} \mathrm{C}$	Die

Figure 2: Functional Diagram

ABSOLUTE MAXIMUM RATINGS
Supply Voltage
Input Voltage
Pins 43-48 (Note 1)(VSS -0.3 V) to ($\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$)
Power Dissipation (Note 2)..............................200mW
Operating Temperature Range $\ldots \ldots \ldots \ldots .-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots . .65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS Temperature $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.2 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted. Typical specifications measured at temperature $=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
$V_{D D}$	Operating Voltage	Note 3	2.2		5.5	V
${ }^{\text {ID }}$	Operating Current	$\begin{aligned} & \text { Note 4, All inputs }=V_{D D} \text { or GND } \\ & V_{D D}=2.8 \mathrm{~V} \\ & V_{D D}=5.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 3.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\begin{aligned} & \text { IN } \\ & \text { Iss } \\ & \text { ID } \end{aligned}$	Input Current: $\mathrm{C}_{0}-\mathrm{C}_{3}$, S/S DT	All inputs $V_{D D}$ or GND Note 5		1.5	$\begin{gathered} 1 \\ 3.0 \\ 90 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	Input Voltage: $\mathrm{C}_{0}-\mathrm{C}_{3}, \mathrm{DT}, \mathrm{S} / \mathrm{S}$		0.7 V_{DD}		$0.3 \mathrm{~V}_{\mathrm{DD}}$	v
$\begin{aligned} & \mathrm{V} \mathrm{OL} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Segment Output Voltage	$\begin{aligned} & \mathrm{TOL}=1 \mu \mathrm{~A} \\ & \mathrm{IOH}=1 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} V_{D D}- \\ 0.8 \end{gathered}$		0.8	V
$\begin{aligned} & \mathrm{VOL} \\ & \mathrm{VOH}_{\mathrm{OH}} \end{aligned}$	Backplane Output Voltage	$\begin{aligned} & \mathrm{IOL}=10 \mu \mathrm{~A} \\ & \mathrm{IOH}=10 \mu \mathrm{~A} \end{aligned}$	$\begin{array}{r} V_{D D}- \\ 0.8 \end{array}$	v	0.8	v
-	$\begin{aligned} & \text { Oscillator Stability: } \\ & \text { Temp. }=25^{\circ} \mathrm{C}, \mathrm{~V}_{D D}=2.2 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \text { Temp. }=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{D D}=2.2 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0.1 \\ 5 \end{gathered}$		$\begin{aligned} & \text { ppm } \\ & \text { ppm } \end{aligned}$
$\begin{aligned} & \mathrm{T}_{\mathrm{HP}} \\ & \mathrm{~T}_{\mathrm{DE}} \end{aligned}$	S/S Puise Width: High-pass Filter (Modes 0-3) Debounce (Modes 4, 6, 8, 10) w/o Debounce (Modes 5, 7, 9, 11)	.	$\begin{gathered} 5 \\ 10,000 \\ 5 \\ \hline \end{gathered}$		10,000	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$

[^24]| PIN | NAME | dESCRIPTION |
| :---: | :---: | :---: |
| 1 | $\mathrm{B}_{6} / \mathrm{C}_{6}$ | Half-digit LCD segment output. |
| 2 | F_{5} | Seven-segment LCD outputs. |
| 3 | G_{5} | |
| 4 | E5 | |
| 5 | D_{5} | |
| 6 | C_{5} | |
| 7 | B5 | |
| 8 | A_{5} | |
| 9 | F_{4} | |
| 10 | G_{4} | |
| 11 | E_{4} | |
| 12 | D_{4} | |
| 13 | C_{4} | |
| 14 | B_{4} | |
| 15 | A_{4} | |
| 16 | F_{3} | |
| 17 | G_{3} | |
| 18 | E_{3} | |
| 19 | D_{3} | |
| 20 | C_{3} | |
| 21 | B_{3} | |
| 22 | A_{3} | |
| 23 | F_{2} | |
| 24 | G_{2} | |
| 25 | E_{2} | |
| 26 | D_{2} | |
| 27 | C_{2} | |
| 28 | B_{2} | |
| 29 | A_{2} | |
| 30 | F_{1} | |
| 31 | G_{1} | |
| 32 | E_{1} | |
| 33 | D_{1} | |
| 34 | C_{1} | |
| 35 | B_{1} | |
| 36 | A_{1} | |

PIN	NAME	DESCRIPTION
37	W	Wink-segment output.
38	BP	Backplane for LCD reference.
39	V+	Positive supply voltage.
40	OSC_{1}	Quartz Crystal connections
41	OSCO_{0}	
42	GND	Chip GRouND.
43	C_{0}	Mode-select control inputs.
44	C_{1}	
45	C_{2}	
46	C_{3}	
47	S/S	Start / Stop
48	DT	Display Test

Table 2. Mode Select Table

Mode	Control Pin Inputs				Function
	\mathbf{C}_{3}	\mathbf{C}_{2}	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	
0	0	0	0	0	1 hour interval timer
1	0	0	0	1	0.1 hour interval timer
2	0	0	1	0	0.01 hour interval timer
3	0	0	1	1	0.1 minute interval timer
4	0	1	0	0	1 's counter with debounce
5	0	1	0	1	1 's counter
6	0	1	1	0	$10 ' s$ counter with debounce
7	0	1	1	1	$10 ' s$ counter
8	1	0	0	0	$100 ' s$ counter with debounce
9	1	0	0	1	$100 ' s$ counter
10	1	0	1	0	$1000 ' s$ counter with debounce
11	1	0	1	1	$1000 ' s$ counter
12	1	1	0	0	Test display digits
13	1	1	0	1	Internal test
14	1	1	1	0	Internal test
15	1	1	1	1	Reset

DETAILED DESCRIPTION

After power is applied, the ICM7249 requires a rise time of t_{R} to become active and for oscillation to begin, as seen in Figure 3. Initially the backplane output BP is a logic '1' level, but then changes after every 512 crystal oscillation cycles, giving BP a square-wave frequency of 32 Hz . Segments are turned off when the voltage levels of the segment drive pins are the same as and in phase with BP. Segments are turned on by having the drive pin voltages out of phase with BP.

The 16 modes are selected by placing the binary equivalent of the mode number on inputs $\mathrm{C}_{0}-\mathrm{C}_{3}$ (Table 2). In the four timer modes, timing is controlled by the Start/ Stop input S/S. Because of internal high-pass filtering, timing is active when either S / S is held high for more than 25 ms , or the input signal has a frequency of at least 50 Hz and less than 120 kHz as shown in Figure 4. Driving S/S
with an input frequency between 40 Hz and 50 Hz has an indeterminate effect on the timing.

The timing intervals are different for each mode. For example, in Mode 0 the display is incremented every hour, while in Mode 3 the display is incremented every tenth of a minute.
While timing is active, the wink-segment output W will flash, as seen in Figure 1. On the upward transistion of S / S, the wink output turns off. It remains off for 16 backplane cycles and turns back on for another 16 cycles. If timing is still active, the wink segment repeats this process, giving it a flash rate of 1 Hz : otherwise the wink output remains on until timing begins again. In counting modes 4-11, the count is registered and latched on each positive transition of S / S. The display is keyed to the specific counting mode. In the 1 's counter mode, the display is incremented for each count; in the 10's counter mode, the display is incremented after every count.

Figure 3：Power On／Reset Waveforms

Figure 4：Start／Stop Input High－Pass Filtering in Timing Modes

During counting, the display will wink off at each count input regardless of whether the display is incremented. When a count occurs, the wink segment output turns off at the end of the 16th BP cycle and turns back on at the end of the 32nd BP cycle, creating a half-second wink, as shown in Figure 6. If counting occurs more frequently than once a second, the wink output will default to a constant 1 Hz flash rate.

In counter modes 4, 6, 8 and 10, the count pulse is subject to debounce filtering. Figure 7 shows that only pulses with a frequency of less than 40 Hz are valid. Pulses with a frequency between 50 Hz and 120 kHz are ignored, while those with a frequency between 40 Hz and 50 Hz have an indeterminate effect on the count.

Figure 7: Start/Stop Input Debounce Filtering in Counting Modes

The display may be tested at any time without disturbing operation by pulsing DT high, as seen in Figure 8. On the next positive transition of BP, all the segments turn on and remain on until the end of the 16th BP cycle. This takes a half-second or less. All the segments then turn off for an additional 48 BP cycles (the end of the 64th cycle), after which valid data returns to the display. As long as DT is held high, the segments will remain on.

Additional display testing is provided by using mode 12. In this mode each displayed decade is incremented on each positive transition of S/S. Modes 13 and 14 are for manufacturer testing only.

Mode 15 resets all the decades and internal counters to zero, essentially bringing everything back to power-up status.

APPLICATION NOTES

A typical use of the ICM7249 is seen in Figure 9, the Motor Hour Meter. In this application the ICM7249 is configured as an hours-in-use meter and shows how many whole hours of line voltage have been applied. The $20 \mathrm{M} \Omega$ resistor and high-pass filtering allow AC line activation of the S/S input. This configuration, which is powered by a 3 V
lithium cell, will operate continuously for $2^{1 / 2}$ years. Without the display, which only needs to be connected when a reading is required, the span of operation is extended to 10 years.

When the ICM7249 is configured as an attendance counter, as shown in Figure 10, the display shows each increment. By using mode 2, external debouncing of the gate switch is unnecessary, provided the switch bounce is less than 35 ms .

The 3V lithium battery can be replaced without disturbing operation if a suitable capacitor is connected in parallel with it. The display should be disconnected, if possible, during the procedure to minimize current drain. The capacitor should be large enough to store charge for the amount of time needed to physically replace the battery ($\Delta \mathrm{t}=\Delta \mathrm{VC} /$ I). A $10 \mu \mathrm{~F}$ capacitor initially charged to 3 V will supply a current of $1.0 \mu \mathrm{~A}$ for 8 seconds before its voltage drops to 2.2 V , which is the minimum operating voltage for the ICM7249.

Before the battery is removed, the capacitor should be placed in parallel, across the VDD and GND terminals. After the battery is replaced, the capacitor can be removed and the display reconnected.

Figure 9: Motor Hour Meter

Figure 10: Attendance Counter

ICM7555/ICM7556 General Purpose Timer

GENERAL DESCRIPTION

The ICM7555/6 are CMOS RC timers providing significantly improved performance over the standard SE/NE555/6 and 355 timers, while at the same time being direct replacements for those devices in most applications. Improved parameters include low supply current, wide operating supply voltage range, low THRESHOLD, TRIG$\overline{G E R}$ and $\overline{\text { RESET currents, no crowbarring of the supply }}$ current during output transitions, higher frequency performance and no requirement to decouple CONTROL VOLTAGE for stable operation.

Specifically, the ICM7555/6 are stable controllers capable of producing accurate time delays or frequencies. The ICM7556 is a dual ICM7555, with the two timers operating independently of each other, sharing only V^{+}and GND. In the one shot mode, the pulse width of each circuit is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled by two external resistors and one capacitor. Unlike the regular bipolar 555/6 devices, the CONTROL VOLTAGE terminal need not be decoupled with a capacitor. The circuits are triggered and reset on falling (negative) waveforms, and the output inverter can source or sink currents large enough to drive TTL loads, or provide minimal offsets to drive CMOS loads.
ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7555CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead S.O.I.C.
ICM7555IPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead MiniDip
ICM7555ITV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-99 Can
ICM7555MTV*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 Can
ICM7556IPD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead Plastic DIP
ICM7556MJD*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead CERD!P
ICM7555/D	-	DICE ${ }^{* *}$
ICM7556/D	-	DICE $^{* *}$

FEATURES

- Exact Equivalent in Most Cases for SE/NE555/ 556 or TLC555/556
- Low Supply Current - 60 4 A Typ. (ICM7555) 120μ A Typ. (ICM7556)
- Extremely Low Trigger, Threshold and Reset Currents - 20pA Typical
- High Speed Operation - 1 MHz Typical
- Wide Operation Supply Voltage Range Guaranteed 2 to 18 Volts
- Normal Reset Function - No Crowbarring of Supply During Output Transition
- Can Be Used With Higher Impedance Timing Elements Than Regular 555/6 for Longer RC Time Constants
- Timing From Microseconds Through Hours
- Operates in Both Astable and Monostable Modes
- Adjustable Duty Cycle
- High Output Source/Sink Driver Can Drive TTL/ CMOS
- Typical Temperature Stability of $\mathbf{0 . 0 0 5 \%}$ Per ${ }^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$
- Outputs Have Very Low Offsets, HI and LO

APPLICATIONS

- Precision Timing
- Pulse Generation
- Sequential Timing
- Time Delay Generation
- Pulse Width Modulation
- Pulse Position Modulation
- Missing Pulse Detector
*Add /883B to part number if 883 B processing is desired.
**Parameter Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

This Functional Diagram reduces the circuitry down to its simplest equivalent components. Tie down unused inputs. $R=100 \mathrm{k} \Omega, \pm 20 \%$ typ.
Figure 1: Functional Diagram

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range ${ }^{[2]}$
ICM7555IPA $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICM7555ITV $\ldots \ldots \ldots \ldots \ldots \ldots .-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICM7556IPD $\ldots \ldots \ldots \ldots \ldots \ldots . .25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICM7555MMV $\ldots \ldots \ldots \ldots \ldots \ldots .55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ICM7556MJD $\ldots \ldots \ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

(OUTLINE DRAWING TV)

(OUTLINE DRAWING PA)

(OUTLINE DRAWING BA)

Figure 2: Pin Configuration (Top View)

ICM7555/ICM7556

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
1^{+}	Static Supply Current	$\begin{aligned} & \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	$\overline{\mu \mathrm{A}}$
	Monostable Timing Accuracy	$\begin{aligned} & \mathrm{RA}=10 \mathrm{k}, \mathrm{C}=0.1 \mu \mathrm{~F} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$		2		\%
	Drift with Temp*	$\begin{aligned} & T_{A}=-55 \text { to } 125^{\circ} \mathrm{C} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 150 \\ & 200 \\ & 250 \end{aligned}$		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Drift with Supply*	$V_{D D}=5$ to 15 V		0.5		\%/V
	Astable Timing Accuracy	$\mathrm{RA}=\mathrm{RB}=10 \mathrm{k}, \mathrm{C}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$		2		\%
	Drift with Temp*	$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Drift with Supply*	$V_{D D}=5$ to 15 V		0.5		\%/V
$\mathrm{V}_{\text {TH }}$	Threshold Voltage	$V_{D D}=15 \mathrm{~V}$		67		$\% \mathrm{~V}_{\mathrm{DD}}$
$\mathrm{V}_{\text {TRIG }}$	Trigger Voltage	$V_{D D}=15 \mathrm{~V}$		32		$\% V_{D D}$
$I_{\text {TRIG }}$	Trigger Current	$V_{D D}=15 \mathrm{~V}$			10	nA
$I_{\text {TH }}$	Threshold Current	$V_{D D}=15 \mathrm{~V}$			10	nA
V_{CV}	Control Voltage	$V_{D D}=15 \mathrm{~V}$		67		\% V ${ }_{\text {DD }}$
$\mathrm{V}_{\text {RST }}$	Reset Voltage	$V_{D D}=2$ to 15 V	0.4		1.0	V
IRST	Reset Current	$V_{D D}=15 \mathrm{~V}$			10	nA
IDIS	Discharge Leakage	$V_{D D}=15 \mathrm{~V}$			10	nA
V_{OL}	Output Voltage Drop	$\begin{aligned} & V_{D D}=15 \mathrm{~V} \\ & I_{\text {sink }}=20 \mathrm{~mA} \\ & V_{D D}=5 \mathrm{~V} \\ & I_{\text {sink }}=3.2 \mathrm{~mA} \end{aligned}$			1.0 0.4	V
V OH	Output Voltage Drop	$\begin{aligned} & V_{D D}=15 \mathrm{~V} \\ & I_{\text {source }}=0.8 \mathrm{~mA} \\ & V_{D D}=5 \mathrm{~V} \\ & I_{\text {source }}=0.8 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 14.3 \\ 4.0 \end{gathered}$	$\begin{gathered} 14.6 \\ 4.3 \end{gathered}$		v v
$V_{\text {DIS }}$	Discharge Output Voltage Drop	$\begin{aligned} & V_{D D}=5 \text { to } 15 \mathrm{~V} \\ & I_{\text {sink }}=15 \mathrm{~mA} \end{aligned}$		0.2	0.4	V
v^{+}	Supply Voltage*	Functional Oper.	2.0		18.0	V
$t_{\text {R }}$	Output Rise Time*	$\begin{aligned} & \mathrm{RL}=10 \mathrm{M}, \mathrm{CL}=10 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$		75		ns
$\mathrm{t}_{\text {F }}$	Output Fall Time*	$\begin{aligned} & \mathrm{RL}=10 \mathrm{M}, \mathrm{CL}=10 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$		75		ns
$f_{\text {MAX }}$	Oscillator Frequency*	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ RA $=4700 \mathrm{hm}, \mathrm{RB}=270 \mathrm{ohm} \mathrm{C}=200 \mathrm{pF}$		1		MHz

* This parameter not tested. The majority of all parts meet this specification.

ELECTRICAL CHARACTERISTICS ICM7556 $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
1^{+}	Static Supply Current	$\begin{aligned} & T=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 80 \\ 120 \end{gathered}$	$\begin{aligned} & 400 \\ & 600 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	Monostable Timing Accuracy	$\begin{aligned} & \mathrm{RA}=10 \mathrm{k}, \mathrm{C}=0.1 \mu \mathrm{~F} \\ & \mathrm{VDD}=5 \mathrm{~V} \end{aligned}$		2		\%
	Drift with Temp*	$\begin{aligned} & T=-55 \text { to } 125^{\circ} \mathrm{C} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$		ppm $/{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$
	Drift with Supply*	$V_{D D}=5$ to 15 V		0.5		\%/V
	Astable Timing Accuracy	$R A=R B=10 \mathrm{k}, \mathrm{C}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$		2		\%
	Drift with Temp*	$\begin{aligned} & \mathrm{T}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 150 \\ & 200 \\ & 250 \end{aligned}$		$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
	Drift with Supply*	$V_{D D}=5$ to 15 V		0.5		\% V
$V_{\text {TH }}$	Threshold Voltage	$V_{D D}=15 \mathrm{~V}$		67		$\% V_{D D}$
$V_{\text {TRIG }}$	Trigger Voltage	$V_{D D}=15 \mathrm{~V}$		32		$\% V_{D D}$
ITRIG	Trigger Current	$V_{D D}=15 \mathrm{~V}$			10	nA
$I_{\text {TH }}$	Threshold Current	$V_{D D}=15 \mathrm{~V}$			10	nA
V_{CV}	Control Voltage	$V_{D D}=15 \mathrm{~V}$		67		$\% V_{D D}$
$\mathrm{V}_{\text {RST }}$	Reset Voltage	$V_{D D}=2$ to 15 V	0.4		1.0	V
IRST	Reset Current	$V_{D D}=15 \mathrm{~V}$			10	nA
IDIS	Discharge Leakage	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$			10	nA
VOL	Output Voltage Drop	$\begin{aligned} & V_{D D}=15 \mathrm{~V} \\ & I_{\text {sink }}=20 \mathrm{~mA} \\ & V_{D D}=5 \mathrm{~V} \\ & I_{\text {sink }}=3.2 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	Output Voltage Drop	$\begin{aligned} & V_{D D}=15 \mathrm{~V} \\ & I_{\text {source }}=0.8 \mathrm{~mA} \\ & V_{D D}=5 \mathrm{~V} \\ & I_{\text {source }}=0.8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 14.3 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 14.6 \\ & 4.3 \end{aligned}$		V V
VDIS	Discharge Output Voltage Drop	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \text { to } 15 \mathrm{~V} \\ & \mathrm{I}_{\text {sink }}=15 \mathrm{~mA} \end{aligned}$		0.2	0.4	V
V^{+}	Supply Voltage*	Functional Oper.	2.0		18.0	V
t_{8}	Output Rise Time*	$\begin{aligned} & R L=10 \mathrm{M}, \mathrm{CL}=10 \mathrm{pF}, \\ & V_{D D}=5 \mathrm{~V} \end{aligned}$		75		ns
t_{F}	Output Fall Time*	$\begin{aligned} & \mathrm{RL}=10 \mathrm{M}, \mathrm{CL}=10 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$	'	75		ns
fmax	Oscillator Frequency*	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ RA $=470 \mathrm{ohm}, \mathrm{RB}=270 \mathrm{hm} \mathrm{C}=200 \mathrm{pF}$		1		MHz

* This parameter not tested. The majority of all parts meet this specification.

TYPICAL PERFORMANCE CHARACTERISTICS

MINIMUM PULSE WIDTH REQUIRED FOR TRIGGERING

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OP05500

OUTPUT SOURCE CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

OUTPUT SINK CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

NORMALIZED FREQUENCY
STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE

OP05550
NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF TEMPERATURE

OUTPUT SINK CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

OP05530)

DISCHARGE OUTPUT CURRENT AS A FUNCTION OF DISCHARGE OUTPUT VOLTAGE

OP055601

FREE RUNNING FREQUENCY AS A FUNCTION OF R_{A}, R_{B} and C

OUTPUT SINK CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

OP055401

PROPAGATION DELAY AS A FUNCTION OF VOLTAGE LEVEL OF TRIGGER PULSE

OP05570|
time delay in the monostable MODE AS A FUNCTION OF RA AND C

APPLICATION NOTES

GENERAL

The ICM7555/6 devices are, in most instances, direct replacements for the NE/SE 555/6 devices. However, it is possible to effect economies in the external component count using the ICM7555/6. Because the bipolar 555/6 devices produce large crowbar currents in the output driver, it is necessary to decouple the power supply lines with a good capacitor close to the device. The 7555/6 devices produce no such transients. See Figure 3.

The ICM7555/6 produces supply current spikes of only $2-3 \mathrm{~mA}$ instead of $300-400 \mathrm{~mA}$ and supply decoupling is normally not necessary. Secondly, in most instances, the CONTROL VOLTAGE decoupling capacitors are not required since the input impedance of the CMOS comparators on chip are very high. Thus, for many applications 2 capacitors can be saved using an ICM7555, and 3 capacitors with an ICM7556.

POWER SUPPLY CONSIDERATIONS

Although the supply current consumed by the ICM7555/6 devices is very low, the total system supply can be high unless the timing components are high impedance. There-
fore, use high values for R and low values for C in Figures 4 and 5.

OUTPUT DRIVE CAPABILITY

The output driver consists of a CMOS inverter capable of driving most logic families including CMOS and TTL. As such, if driving CMOS, the output swing at all supply voltages will equal the supply voltage. At a supply voltage of 4.5 volts or more the ICM7555/6 will drive at least 2 standard TTL loads.

ASTABLE OPERATION

The circuit can be connected to trigger itself and free run as a multivibrator, see Figure 4. The output swings from rail to rail, and is a true 50% duty cycle square wave. (Trip points and output swings are symmetrical). Less than a 1% frequency variation is observed, over a voltage range of +5 to +15 V .

$$
\mathrm{f}=\frac{1}{1.4 \mathrm{RC}}
$$

MONOSTABLE OPERATION

In this mode of operation, the timer functions as a oneshot. Initially the external capacitor (C) is held discharged by a transistor inside the timer. Upon application of a negative TRIGGER pulse to pin 2, the internal flip flop is set which releases the short circuit across the external capacitor and drives the OUTPUT high. The voltage across the capacitor now increases exponentially with a time constant $t=R_{A} C$. When the voltage across the capacitor equals $2 / 3 \mathrm{~V}^{+}$, the comparator resets the flip flop, which in turn discharges the capacitor rapidly and also drives the OUTPUT to its low state. TRIGGER must return to a high state before the OUTPUT can return to a low state.

CONTROL VOLTAGE

The CONTROL VOLTAGE terminal permits the two trip voltages for the THRESHOLD and TRIGGER internal comparators to be controiled. This provides the possibility of oscillation frequency modulation in the astable mode or even inhibition of oscillation, depending on the applied voltage. In the monostable mode, delay times can be changed by varying the applied voltage to the CONTROL VOLTAGE pin.

RESET

The RESET terminal is designed to have essentially the same trip voltage as the standard bipolar 555/6, i.e. 0.6 to 0.7 volts. At all supply voltages it represents an extremely high input impedance. The mode of operation of the RESET

ICM7555/ICM7556

function is, however, much improved over the standard bipolar 555/6 in that it controls only the internal flip flop, which in turn controls simultaneously the state of the OUTPUT and DISCHARGE pins. This avoids the multiple threshold problems sometimes encountered with slow falling edges in the bipolar devices.

TRUTH TABLE

THRESHOLD VOLTAGE	TRIGGER VOLTAGE	RESET	OUTPUT	DISCHARGE SWITCH
DON'T CARE	DON'T CARE	LOW	LOW	ON
$>2 / 3\left(\mathrm{~V}^{+}\right)$	$>1 / 3\left(\mathrm{~V}^{+}\right)$	HIGH	LOW	ON
$\mathrm{V}_{\text {TH }}<2 / 3$	$\mathrm{~V}_{\text {TR }}>1 / 3$	HIGH	STABLE	STABLE
DON'T CARE	$<1 / 3\left(\mathrm{~V}^{+}\right)$	HIGH	HIGH	OFF

NOTE: $\overline{\operatorname{RESET}}$ will dominate all other inputs: $\overline{\text { TRIGGER }}$ will dominate over THRESHOLD.

Section 8 - Display Drivers

ICM7211／12 4－Digit LCD／LED Display Driver

ICM7211（LCD）FEATURES

－Four Digit Non－Multiplexed 7 Segment LCD Display Outputs With Backplane Driver
－Complete Onboard RC Oscillator to Generate Backplane Frequency
－Backplane Input／Output Allows Simple Synchronization of Slave－Devices to a Master
－ICM7211 Devices Provide Separate Digit Select Inputs to Accept Multiplexed BCD Input（Pinout and Functionally Compatible With Siliconix DF411）
－ICM7211M Devices Provide Data and Digit Address Latches Controlled by Chip Select Inputs to Provide a Direct High Speed Processor Interface
－ICM7211 Decodes Binary Hexadecimal；ICM7211A Decodes Binary to Code B（0－9，Dash，E，H，L， P，Blank）

ICM7212（LED）FEATURES

－ 28 Current－Limited Segment Outputs Provide 4－ Digit Non－Multiplexed Direct LED Drive at $>5 \mathrm{~mA}$ Per Segment
－Brightness Input Allows Direct Control of LED Segment Current With a Single Potentiometer or Digitally as a Display Enable
－ICM7212M and ICM7212A Devices Provide Same Input Configuration and Output Decoding Options as the ICM7211

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7212A／D	-	DICE
ICM7212AIJL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin CERDIP
ICM7212AIPL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin PLASTIC
ICM7212AM／D	-	DICE
ICM7212AMIJL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin CERDIP
ICM7212IJL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin CERDIP
ICM7212IPL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin PLASTIC
ICM7212MIJL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin CERDIP
ICM7212MIPL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin PLASTIC
ICM7212AMIPL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin PLASTIC
ICM7212AEV／KIT	-	EVALUATION KIT

Figure 1：Functional Diagrams（Cont．）

ABSOLUTE MAXIMUM RATINGS

Power Dissipation（Note 1）

）．

）．
）（Note 2
$V_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$

Operating Temperature Range $\ldots \ldots \ldots . .40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range..........$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature（Soldering， 10 sec ） \qquad

NOTE 1：This limit refers to that of the package and will not be realized during normal operation．
NOTE 2：Due to the SCR structure inherent in the CMOS process，connecting any terminal to voltages greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latchup．For this reason，it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established，and that in multiple supply systems，the supply to the ICM7211／ICM7212 be turned on first． Stresses above those listed under＇Absolute Maximum Ratings＇may cause permanent damage to the device．These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

ELECTRICAL CHARACTERISTICS

ICM7211 CHARACTERISTICS（LCD）$V_{D D}=5 \mathrm{~V} \pm 10 \%, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified．

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V SUPPLY	Operating Supply Voltage Range $\left(V_{D D}-V_{S S}\right)$		3	5	6	V
IDD	Operating Current	Test circuit，Display blank		10	50	$\mu \mathrm{A}$
losCl	Oscillator Input Current	Pin 36		± 2	± 10	
t_{R}, t_{F}	Segment Rise／Fall Time	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$		0.5		$\mu \mathrm{s}$
t_{R}, t_{F}	Backplane Rise／Fall Time	$\mathrm{C}_{\mathrm{L}}=5000 \mathrm{pF}$		1.5		
fosc	Oscillator Frequency	Pin 36 Floating		19		kHz
f_{BP}	Backplane Frequency	Pin 36 Floating		150		Hz

ICM7212 CHARACTERISTICS（COMMON ANODE LED）

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V SUPPLY	Operating Supply Voltage Range $\left(V_{D D}-V_{S S}\right)$		4	5	6	V
IstBy	Operating Current Display Off	Pin 5 （Brightness）， Pins $27-34-V_{S S}$		10	50	$\mu \mathrm{A}$
IDD	Operating Current	Pin 5 at V_{DD} ，Display all 8＇s		200		mA
ISLK	Segment Leakage Current	Segment Off		± 0.01	± 1	$\mu \mathrm{A}$
ISEG	Segment On Current	Segment On， $\mathrm{V}_{\mathrm{O}}=+3 \mathrm{~V}$	5	8		mA

，
INPUT CHARACTERISTICS（ICM7211 AND ICM7212）

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	Logical＂ 1 ＂input voltage		4			V
$V_{\text {IL }}$	Logical＇0＂input voltage				1	
IILK	Input leakage current	Pins 27－34		$\pm .01$	± 1	$\mu \mathrm{A}$
$\mathrm{CIN}^{\text {I }}$	Input capacitance	Pins 27－34		5		pF
IBPLK	BP／Brightness input leakage	Measured at Pin 5 with Pin 36 at $\mathrm{V}_{\text {SS }}$		$\pm .01$	± 1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {BPI }}$	BP／Brightness input capacitance	All Devices		200		pF
AC CHARACTERISTICS－MULTIPLEXED INPUT CONFIGURATION						
tWH	Digit Select Active Pulse Width	Refer to Timing Diagrams	1			$\mu \mathrm{s}$
tos	Data Setup Time		500			ns
${ }_{\text {t }}$ D	Data Hold Time		200			
tids	Inter－Digit Select Time		2			$\mu \mathrm{s}$
AC CHARACTERISTICS－MICROPROCESSOR INTERFACE						
${ }^{\text {tWL }}$	Chip Select Active Pulse Width	other Chip Select either held active，or both driven together	200			ns
tos	Data Setup Time		100			
t_{DH}	Data Hold Time		10	0		
tics	Inter－Chip Select Time		2			$\mu \mathrm{s}$

TYPICAL PERFORMANCE CHARACTERISTICS

ICM7211 OPERATING SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

ICM7211 BACKPLANE FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

ICM7212 LED SEGMENT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

ICM7212 LED SEGMENT CURRENT AS A FUNCTION OF BRIGHTNESS CONTROL VOLTAGE

ICM7212 OPERATING POWER (LED DISPLAY) AS A FUNCTION OF SUPPLY VOLTAGE

INPUT DEFINITIONS

In this table, $V_{D D}$ and $V_{S S}$ are considered to be normal operating input logic levels. Actual input low and high levels are specified under Operating Characteristics. For lowest power consumption, input signals should swing over the full supply.

INPUT	TERMINAL	TEST CONDITIONS	FUNCTION	
B0	27	$\begin{aligned} & V_{\mathrm{DD}}=\text { Logical One } \\ & \mathrm{V}_{\mathrm{SS}}=\text { Logical Zero } \end{aligned}$	Ones (Least Significant)	Data Input Bits
B1	28	$\begin{aligned} & V_{D D}=\text { Logical One } \\ & V_{S S}=\text { Logical Zero } \end{aligned}$	Twos	
B2	29	$\begin{array}{\|l\|l} \hline V_{D D}=\text { Logical One } \\ V_{S S}=\text { Logical Zero } \end{array}$	Fours	
B3	30	$\begin{aligned} & V_{D D}=\text { Logical One } \\ & V_{S S}=\text { Logical Zero } \end{aligned}$	Eights (Most significant)	
OSC Devices Only)	36	Floating or with external capacitor to $V_{D D}$ $V_{S S}$	Oscillator input Disables BP output devi synchronized to an exte	ts to be he BP terminal (Pin 5)

ICM7211／12

ICM7211／ICM7212 MULTIPLEXED－BINARY INPUT CONFIGURATION

INPUT	TERMINAL	TEST CONDITIONS	
D1	31	FUNCTION	
D2	32		D1 Digit Select（Least significant）
	D2 Digit Select		
D3	33		Inactive

ICM7211M／ICM7212M MICROPROCESSOR INTERFACE INPUT CONFIGURATION

INPUT	DESCRIPTION	TERMINAL	TEST CONDITIONS	FUNCTION
DA1	Digit Address Bit 1 （LSB）	31	$V_{D D}=$ Logical One $\mathrm{V}_{\mathrm{SS}}=$ Logical Zero	DA1 \＆DA2 serve as a two bit Digit Address Input DA2，DA1 $=00$ selects D4
DA2	Digit Address Bit 2 （MSB）	32		DA2，DA1 $=01$ selects D3 DA2，DA1 $=10$ selects D2 DA2，DA1 $=11$ selects D1
$\overline{\text { CS1 }}$	Chip Select 1	33	$\begin{aligned} & V_{D D}=\text { Inactive } \\ & V_{S S}=\text { Active } \end{aligned}$	When both $\overline{\mathrm{CS} 1}$ and $\overline{\mathrm{CS} 2}$ are taken low，the data at the Data and Digit Select code inputs are written into the input latches． On the rising edge of either Chip Select，the data is decoded and written into the output latches．
CS2	Chip Select 2	34		

Figure 4：Multiplexed Input Timing Diagram

WF030001
Figure 5：Microprocessor Interface Input Timing Diagram

DESCRIPTION OF OPERATION LCD DEVICES

The LCD devices in the family（ICM7211，7211A， 7211 M ， 7211 AM ）provide outputs suitable for driving conventional four－digit，seven－segment LCD displays．These devices include 28 individual segment drivers，backplane driver，and a self－contained oscillator and divider chain to generate the backplane frequency．

The segment and backplane drivers each consist of a CMOS inverter，with the n－and p－channel devices ratioed to provide identical on resistances，and thus equal rise and fall times．This eliminates any DC component，which could arise from differing rise and fall times，and ensures maximum display life．

The backplane output devices can be disabled by con－ necting the OSCillator input（pin 36）to $V_{\text {SS }}$ ．This allows the 28 segment outputs to be synchronized directly to a signal input at the BP terminal（pin 5）．In this manner，several slave devices may be cascaded to the backplane output of one master device，or the backplane may be derived from an external source．This allows the use of displays with characters in multiples of four and a single backplane．A slave device represents a load of approximately 200pF （comparable to one additional segment）．Thus the limitation of the number of devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits． A good rule of thumb to observe in order to minimize power consumption is to keep the backplane rise and fall times less than about 5 microseconds．The backplane output driver should handle the backplane to a display of 16 one－ half－inch characters．It is recommended that if more than four devices are to be slaved together，that the backplane signal be derived externally and all the ICM7211 devices be slaved to it．This external signal should be capable of driving very large capacitive loads with short（ $1-2 \mu \mathrm{~s}$ ）rise and fall times．The maximum frequency for a backplane signal should be about 150 Hz although this may be too fast for optimum display response at lower display temperatures， depending on the display used．

The onboard oscillator is designed to free run at approxi－ mately 19 kHz at microampere power levels．The oscillator
frequency is divided by 128 to provide the backplane frequency, which will be approximately 150 Hz with the oscillator free-running; the oscillator frequency may be reduced by connecting an external capacitor between the OSCillator terminal and VDD.

The oscillator may also be overdriven if desired, although care must be taken to ensure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a D.C. component to the display). This can be done by driving the OSCillator input between the positive supply and a level out of the range where the backplane disable is sensed (about one fifth of the supply voltage above V_{SS}). Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

LED DEVICES

The LED devices in the family (ICM7212, 7212A, 7212M, 7212AM) provide outputs suitable for directly driving fourdigit, seven-segment common-anode LED displays. These devices include 28 individual segment drivers, each consisting of a low-leakage, current-controlled, open-drain, n channel transistor.

The drain current of these transistors can be controlled by varying the voltage at the BRighTness input (pin 5). The voltage at this pin is transferred to the gates of the output devices for 'on"' segments, and thus directly modulates the transistor's 'on'" resistance. A brightness control can be easily implemented with a single potentiometer controlling the voltage at pin 5, connected as in Figure 7. The potentiometer should be a high value ($100 \mathrm{~K} \Omega$ to $1 \mathrm{M} \Omega$) to minimize power consumption, which can be significant when the display is off.

The BRighTness input may also be operated digitally as a display enable; when high, the display is fully on, and low fully off. The display brightness may also be controlled by varying the duty cycle of a signal swinging between the two voltages at the BRighTness input.

Note that the LED devices have two connections for $V_{S S}$; both of these pins should be connected. The double connection is necessary to minimize effects of bond wire resistance with the large total display currents possible.

When operating LED devices at higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperatures. The maximum power dissipation is 1 watt at $25^{\circ} \mathrm{C}$, derated linearly above $35^{\circ} \mathrm{C}$ to 500 mW at $70^{\circ} \mathrm{C}(-15 \mathrm{~mW} /$ ${ }^{\circ} \mathrm{C}$ above $35^{\circ} \mathrm{C}$). Power dissipation for the device is given by:

$$
P=\left(V_{S U P P}-V_{F L E D}\right)(I S E G)\left(n_{S E G}\right)
$$

where $V_{\text {FLED }}$ is the LED forward voltage drop, ISEG is segment current, and nSEG is the number of "on'" segments. It is recommended that if the device is to be operated at elevated temperatures the segment current be limited by use of the BRighTness input to keep power dissipation within the limits described above.

TC038301
Figure 7: Brightness control

INPUT CONFIGURATIONS AND OUTPUT CODES

The standard devices in the ICM7211/12 family accept a four-bit true binary (ie, positive level = logical one) input at pins 27 thru 30, least significant bit at pin 27 ascending to the most significant bit at pin 30. The ICM7211, ICM7211M, ICM7212, and ICM7212M devices decode this binary input into a seven-segment alphanumeric hexadecimal output, while the ICM7211A, ICM7211AM, ICM7212A, and ICM7212AM decode the binary input into the same sevensegment output as in the ICM7218 'Code B'', ie 0-9, dash, E. H, L, P, blank. These codes are shown explicitly in Table 1. Either decoder option will correctly decode true BCD to a seven-segment decimal output.

TABLE 1: Output Codes

BINARY				$\begin{aligned} & \text { HEXADECIMAL } \\ & \text { ICM7235 } \\ & \text { ICM7235M } \end{aligned}$	CODE B ICM7235A ICM7235AM
B3	B2	B1	B0		
0	0	0	0	i-1	-1
0	0	0	1	i	i
0	0	1	0	こ	\because
0	0	1	1	シ	$\underline{\square}$
0	1	0	0	-1	4
0	1	0	1	5	5
0	1	1	0	E	E
0	1	1	1	-1	7
1	0	0	0	-1	A
1	0	0	1	110	9
1	0	1	0	F	-
1	0	1	1	6	E
1	1	0	0	:	H
1	1	0	1	-1	i
1	1	1	0	E	\%
1	1	1	1	:-	(BLANK)

TB00070
These devices are actually mask-programmable to provide any 16 combinations of the seven segment outputs decoded from the four input bits. For large quantity orders custom decoder options can be arranged. Contact the factory for details.

The ICM7211, ICM7211A, ICM7212, and ICM7212A devices are designed to accept multiplexed binary or BCD input. These devices provide four separate digit lines (leas significant digit at pin 31 ascending to most significant digit at pin 34), each of which when taken to a positive leve
decodes and stores in the output latches of its respective digit the character corresponding to the data at the input port，pins 27 through 30 ．

The ICM7211M，ICM7211AM，ICM7212M，and ICM7212AM devices are intended to accept data from a data bus under processor control．

In these devices，the four data input bits and the two－bit digit address（DA1 pin 31，DA2 pin 32）are written into input buffer latches when both chip select inputs（ $\overline{\mathrm{CS} 1}$ pin 33， $\overline{\mathrm{CS} 2}$ pin 34）are taken low．On the rising edge of either chip select input，the content of the data input latches is decoded and stored in the output latches of the digit selected by the contents of the digit address latches．

An address of 00 writes into D4，DA2 $=0$, DA1 $=1$ writes into D3，DA2 $=1$, DA1 $=0$ writes into D2，and 11 writes into D1．The timing relationships for inputting data are shown in Figure 5，and the chip select pulse widths and data setup and hold times are specified under Operating Characteris－ tics．

Figure 8：Segment Assignment

APPLICATIONS

Figure 9：Ganged ICM7211＇s Driving 8－Digit LCD Display

GENERAL DESCRIPTION

The ICM7218 series of universal LED driver systems provide, in a single package, all the circuitry necessary to interface most common microprocessors or digital systems to an LED display. Included on chip are an 8-byte static display memory, 2 types of 7 -segment decoders, multiplex scan circuitry, and high current digit and segment drivers for either common-cathode or common-anode displays.

The ICM7218A and ICM7218B feature 2 control lines (WRITE and MODE) which write either 4 bits of control information (DATA COMING, SHUTDOWN, DECODE, and HEXA/ $\overline{\mathrm{CODE}} \mathrm{B}$) or 8 bits of display input data. Display data is automatically sequenced into the 8 -byte internal memory on successive positive going WRITE pulses. Data may be displayed either directly or decoded in Hexadecimal or Code B formats.

The ICM7218C and ICM7218D feature 2 control lines (WRITE and HEXA/CODE B/SHUTDOWN), 4 separate display data input lines, and 3 digit address lines. Display data is written into the internal memory by setting up a digit address and strobing the WRITE line low. Only Hexadecimal and Code B formats are available for display outputs.

The ICM7218E provides 4 input lines for control information (WRITE, $\overline{H E X A} / C O D E B, \overline{D E C O D E}$ and SHUTDOWN), 8 separate display data input lines, and 3 digit address lines. Display data is written into the internal memory by setting up a digit address and strobing the WRITE line. Data may be displayed either directly or decoded in Hexadecimal or Code B formats.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7218AIJI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -PIN CERDIP
ICM7218A/D	-	DICE
ICM7218B/D	-	DICE
ICM7218BIJI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -PIN CERDIP
ICM7218CIJI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -PIN CERDIP
ICM7218C/D	-	DICE
ICM7218DIJI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -PIN CERDIP
ICM7218D/D	-	DICE
ICM7218EIJL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$40-$-PIN CERDIP
ICM7218E/D	-	DICE

FEATURES

- Microprocessor Compatible - C, D, E Versions
- Total Circuit Integration On Chip Includes:
a) Digit and Segment Drivers
b) All Multiplex Scan Circuitry
c) 8 Byte Static Display Memory
d) 7 Segment Hexadecimal and Code B Decoders (Pin Selectable)
- Output Drive Suitable for Large LED Displays
- Common Anode and Common Cathode Versions
- Single 5 Volt Supply Required
- Data Retention to 2 Volts Supply
- Shutdown Feature - Turns Off Display and Puts Chip Into Low Power Dissipation Mode
- Sequential and Random Access Versions
- Decimal Point Drive On Each Digit

ABSOLUTE MAXIMUM RATINGS

wer Dissipation (40 Pin CERDIP)............. 1 W (Note 2) erating Temperature Range $\ldots \ldots-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ rage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Power Dissipation (28 Pin CERDIP)............ 1 W (Note 2)
Power Dissipation (40 Pin CERDIP)............ 1 W (Note 2)
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$
(Note 1)
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
NOTE 1: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than VDD or less than $V_{S S}$ may cause destructive device latchup. For this reason it is recommended that no inputs from sources operating on a different power supply be applied to the device before its own supply is established, and when using multiple supply systems the supply to the ICM7218 should be turned on first.
NOTE 2: These limits refer to the package and will not be obtained during normal operation. Derate above $50^{\circ} \mathrm{C}$ by 25 mW per ${ }^{\circ} \mathrm{C}$.

* Note: Pins 5,6,7,10 are under control of Mode pin 9.

Figure 2: Pin Configurations

ELECTRICAL CHARACTERISTICS $V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Display Diode drop $=1.7 \mathrm{~V}$

SYMBOL	二. PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
V SUPPLY	Supply Voltage Range	Operating Power Down Mode		$\begin{aligned} & 4 \\ & 2 \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
IQ	Quiescent Supply Current	Shutdown (Note 3)		6	10	300	$\mu \mathrm{A}$
IDD	Operating Supply Current	Common AnodeSEGS On SEGS Off Common Cathode SEGS On SEGS Off Note 4	Outputs Open Circuit			$\begin{aligned} & 2.5 \\ & 500 \\ & 700 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
IDIG	Digit Drive Current	Common Anode $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$ Common Cathode $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{SS}}+1.0 \mathrm{~V}$		$\begin{gathered} 140 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
IDLK	Digit Leakage Current	Shutdown Mode Common Anode $\mathrm{V}_{\text {out }}=2 \mathrm{~V}$ Common Cathode $V_{\text {out }}=5 \mathrm{~V}$				$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
ISEG	Peak Segment Drive Current	Common Anode $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{SS}}+1.0 \mathrm{~V}$ Common Cathode $V_{\text {out }}=V_{D D}-2.0 \mathrm{~V}$		$\begin{gathered} 20 \\ -10 \end{gathered}$	$\begin{gathered} 40 \\ -20 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
ISLK	Segment Leakage Current	Shutdown Mode Common Anode $V_{\text {out }}=V_{D D}$ Common Cathode $V_{\text {out }}=V_{S S}$				$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$\mathrm{f}_{\text {MUX }}$	Display Scan Rate	Per Digit			250		Hz

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\begin{aligned} & \mathrm{V}_{\text {IH }} \\ & \mathrm{V}_{\text {IF }} \\ & \mathrm{V}_{\text {II }} \\ & \mathrm{ZII}^{2} \end{aligned}$	Three Level Input: Pin 9 ICM7218C/D Logical " 1 " Input Voltage Floating Input Logical " 0 " Input Voltage Three Level input Impedance	Hexadecimal Code B Shutdown Note 3	$\begin{aligned} & 4.5 \\ & 2.0 \end{aligned}$	100	$\begin{aligned} & 3.0 \\ & 0.4 \end{aligned}$	$\begin{gathered} V \\ V \\ V \\ k \Omega \end{gathered}$
$\begin{aligned} & V_{I H} \\ & V_{I L} \end{aligned}$	Logical "1" input Voltage Logical " 0 "' Input Voltage		3.5		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
tWL	Write Pulse Width (Low)	7218A, B	550	400		ns
$t_{\text {WL }}$	Write Pulse Width (Low)	7218C, D, E	400	250		ns
t_{MH}	Mode Hold Time	7218A, B	150			ns
$\mathrm{t}_{\text {MS }}$	Mode Set Up Time	7218A, B	500			ns
t_{DS}	Data Set Up Time		500			ns
t_{DH}	Data Hold Time	$\begin{aligned} & 7218 \mathrm{~A}, \mathrm{~B} \\ & 7218 \mathrm{C}, \mathrm{D}, \mathrm{E} \end{aligned}$	$\begin{gathered} 50 \\ 125 \end{gathered}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{\mathrm{AS}} \\ & t_{\mathrm{AH}} \\ & \hline \end{aligned}$	Digit Address Set Up Time Digital Address Hold Time	$\begin{aligned} & \text { ICM7218C, D, E } \\ & \text { ICM7218C, D, E } \end{aligned}$	$\begin{gathered} 500 \\ 0 \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$Z_{\text {IN }}$	Data Input Impedance	5-10 pF Gate Capacitance		10^{10}		Ohms

TABLE 1: INPUT DEFINITIONS ICM7218A and B

INPUT		TERMINAL	LOGIC LEVEL	FUNCTION
WRITE		8	High Low	Input Not Loaded Into Memory Input Loaded Into Memory
MODE		9	High Low	Load Control bits on Write Pulse Load Input Data on Write Pulse
ID4 SHUTDOWN	MODE High	10	High Low	Normal Operation Shutdown (Oscillator, Decoder and Display Disabled)
ID5 ($\overline{\mathrm{DECODE}})$		6	High Low	No Decode Decode
ID6 (HEXA/ $\overline{\text { CODE B }}$)		5	High Low	Hexadecimal Decoding Code B Decoding
ID7 (DATA COMING)		7	High Low	Data Coming No Data Coming Control Word
ID0-ID7	MODE Low	$\begin{gathered} 11,12,13,14 \\ 5,6,10,7 \end{gathered}$		Display Data Inputs (Notes 4, 5)

TABLE 2: INPUT DEFINITIONS ICM7218C and D

INPUT	TERMINAL	LOGIC LEVEL	FUNCTION
$\overline{\text { WRITE }}$	8	High Low	Input Not Loaded Into Memory Input Loaded Into Memory
HEXA/CODE B/SHUTDOWN	9	High Floating Low	Hexadecimal Decoding Code B Decoding Shutdown (Oscillator, Decoder and Display Disabled)
DAO -DA2	(Note 3)	$10,6,5$	
IDO -ID3 ID (INPUT D.P.)	$14,13,11,12$ 7		Digit Address Inputs Display Data Inputs Decimal Point Input

NOTE 3: In the ICM7218C and D (random access versions) the HEXA/CODE B/SHUTDOWN Input (Pin 9) has internal biasing resistors to hold it at $V_{D D} / 2$ when Pin 9 is open circuited. These resistors consume power and result in a quiescent supply current (IQ) of typically $50 \mu \mathrm{~A}$. The ICM7218A, B, and E devices do not have these biasing resistors and thus are not subject to this condition.
NOTE 4: IDO-ID3 = Don't care when writing control data
ID4-ID6 = Don't care when writing Hex/Code B data
(The display blanks on ICM7218A/B versions when writing in data)
NOTE 5: In the No Decode format, "Ones" represents "on" segments for all inputs except for the Decimal Point, where "Zero' represents an "'on" segment, (i.e. segments are positive true, decimal point is negative true).
NOTE 6: Common Anode segment drivers and Common Cathode Digit Drivers have $20 \mathrm{k} \Omega$ pullup resistors.

TABLE 3: INPUT DEFINITIONS ICM7218E

INPUT	TERMINAL	LOGIC LEVEL	FUNCTION
WRITE	9	High Low	Input Latches Not Updated Input Latches Updated
SHUTDOWN	10	High Low	Normal Operation Shutdown (Oscillator, Decoder and Displays Disabled)
DECODE	33	High Low	No Decode Decode
$\overline{\text { HEXA } / C O D E ~ B ~}$	32	High Low	Code B Decoding Hexadecimal Decoding
DAO - DA2 Digit Address $(0,1,2)$	13,14,12		Digit Address Inputs
$\begin{aligned} & \text { ID0 - ID6 } \\ & \text { ID7 (INPUT D.P.) } \end{aligned}$	$\begin{gathered} 17,16,18,19,11,7,6 \\ 8 \\ \hline \end{gathered}$		Display Data Inputs (Note 5) Display Data/Decimal Point input

Figure 3: Multiplex Timing
WF01850I

LCO19101
Figure 4: Segment Assignments

DETAILED DESCRIPTION

DECODE Operation

For the ICM7218A/B/E products, there are 3 input data. formats possible; either direct segment and decimal point information (8 bits per digit) or two Binary code plus decimal point information (Hexadecimal/Code B formats with 5 bits per digit).

The 7 segment decoder on chip is disabled when direct segment information is to be written. In this format, the inputs directly control the outputs as follows:

> Input Data: ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

Output Segments: $\overline{D . P}$. a b c e g f d
Here, "Ones" represent "on" segments for ail inputs except the Decimal Point. For the Decimal Point "zero' represents an 'on'' segment.

HEXAdecimal/CODE B Decoding

For all products, a choice of either HEXA or Code B decoding may be made, HEXA decoding provides 7 segment numeric plus six alpha characters while Code B provides a negative sign (-), a blank (for leading zero blanking), certain useful alpha characters and all numeric formats.

The four bit binary code is set up on inputs ID3-ID0.

Decimal	$\begin{array}{llllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 101112131415\end{array}$
$\begin{aligned} & \text { HEXA } \\ & \text { CODE } \end{aligned}$	0123456789 AbCdE
$\begin{aligned} & \text { CODE } \\ & \text { B } \end{aligned}$	0123456789 - EHLP (BLANK)

SHUTDOWN

SHUTDOWN performs several functions: it puts the device into a very low dissipation mode (typically $10 \mu \mathrm{~A}$ at $V_{D D}=5 \mathrm{~V}$), turns off both the digit and segment drivers, and stops the multiplex scan oscillator (this is the only way the scan oscillator can be disabled). However, it is still possible to input data to the memory during shutdown - only the display output sections of the device are disabled in this mode.

Powerdown

In the Shutdown Mode, the supply voltage may be reduced to 2 volts without data in memory being lost. However, data should not be written into memory if the supply voltage is less than 4 volts.

Output Drive

The common anode output drive is approximately 200 mA per digit at a 12% duty cycle. With segment peak drive current of 40 mA typically, this results in 5 mA average drive. The common cathode drive capability is approximately one half that of the common anode drive. If high impedance LED displays are used, the drive current will be correspondingly less.

Inter Digit Blanking

A blanking time of approximateiy 10μ s occurs between digit strobes. This ensures that the segment information is correct before the next digit drive, thereby avoiding display ghosting.

Driving Larger Displays

If a higher average drive current per digit is required, it is possible to connect digit drive outputs together. For example, by paralleling pairs of digit drives together to drive a 4 digit display, 5 mA average segment drive current can be obtained.

Power Dissipation Considerations

Assuming common anode drive at $\mathrm{V}_{\mathrm{DD}}=5$ volts and all digits on with an average of 5 segments driven per digit, the average current would be approximately 200 mA . Assuming a 1.8 volt drop across the LED display, there will be a 3.2 volt drop across the ICM7218. The device power dissipation will therefore be 640 mW , rising to about 900 mW , for all '8' 's displayed. Caution: Position device in system such that air can flow freely to provide maximum cooling. The common cathode dissipation is approximately one half that of the common anode dissipation.

Sequential Addressing Considerations (ICM7218A/B)

The control instructions are read from the input bus lines if MODE is high and WRITE low. The instructions occur on 4 lines and are - $\overline{\mathrm{DECODE}} / \mathrm{no}$ Decode, type of Decode (if desired), SHUTDOWN/no Shutdown and DATA COMING/ not Coming. After the control word has been written (with the Data Coming instruction), display data can be written into memory with each successive negative going WRITE pulse. After all 8 digit memory locations have been written to, additional transitions of the WRITE input are ignored until a new control word is written. It is not possible to change one individual digit without refreshing the data for all the other digits.

Random Access Input Drive Considerations (ICM7218C/D/E)

Control instructions are provided to the ICM7218C/D by a single three level input terminal (Pin 9), which operates independently of the WRITE pulse. The ICM7218E control instructions are also independent but are on three separate pins (10, 32, 33).

Data can be written into memory on the ICM7218C/D/E by setting up a 3 bit binary code (one of eight) on the digit address inputs and applying a low level to the WRITE pin. For example, it is possible to change only digit 7 without altering the data for the other digits. (See Figure 7).

Supply Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor is recommended between V_{DD} and $V_{S S}$ to bypass multiplex noise.

WF018121
Figure 5: Timing Diagram for ICM7218A/B

Figure 6: Load Sequence ICM7218A/B

Figure 8: Test Circuits (\#1)

Figure 9: Test Circuits (\#2)

TYPICAL PERFORMANCE CHARACTERISTICS

COMMON ANODE SEG. DRIVER ISEG vs. VOUT AT $25^{\circ} \mathrm{C}$

COMMON CATHODE DIGIT DRIVER IDIG vs. VOUT AT $25^{\circ} \mathrm{C}$

COMMON ANODE SEG. DRIVER
ISEG. vs. VOUT

COMMON CATHODE SEG. DRIVER ISEG vs. (VD-VOUT)
(20)

COMMON ANODE DIGIT DRIVER IDIG vs. (VDD-VOUT)

COMMON CATHODE DIGIT DRIVER IDIG vs. VOUT

3

Figure 10: 8 Digit Microprocessor Display

APPLICATION EXAMPLES

8 DIGIT MICROPROCESSOR DISPLAY APPLICATION

Figure 10 shows a display interface using the ICM7218A/ B with an 8048 family microcontroller. The 8 bit data bus (DB0/DB7-ID0/ID7) transiers control and data information to the 7218 display interface on successive WRITE pulses. The MODE input to the 7218 is connected to one of the I/O port pins on the microcontroller. When MODE is high a control word is transferred; when MODE is low data is transfered. Sequential locations in the 8-byte static memory are automatically loaded on each successive WRITE pulse. After eight WRITE pulses have occurred, further pulses are ignored until a new control word is transferred. (See Figure 6). This also allows writing to other peripheral devices without disturbing the ICM7218A/B.

16 DIGIT MICROPROCESSOR DISPLAY

In this application (see Figure 11), both ICM7218's are addressed simultaneously with a 3 bit word, DA2-DA0.

Display data from the 8048 I/O bus (DB7-DB0) is transferred to both ICM7218's simultaneously.

The display digits from both ICM7218's are interleaved to allow adjacent pairs of digits to be loaded simultaneously from a single 8 bit data bus.

Decimal point information is supplied to the ICM7218's from the processor on port lines P26 and P27.

NO DECODE APPLICATION

The ICM7218 can also be used as a microprocessor based LED status panel driver. The microprocessor selected control word must include 'No Decode' and 'Data Coming'. The processor writes "Ones" and "Zeroes" into the ICM7218 which in turn directly drives appropriate discrete LEDs. LED indicators can be red or green (8 segments $\times 8$ digits $=64$ dots $\div 2$ per red or green $=32$ channels).
Figure 11: 16 Digit Display
\qquad

ICM7231-ICM7234
 Numeric/Alphanumeric Triplexed LCD Display Driver

GENERAL DESCRIPTION

The ICM7231-7234 family of integrated circuits are designed to generate the voltage levels and switching waveforms required to drive triplexed liquid-crystal displays. These chips also include input buffer and digit address decoding circuitry and contain a mask-programmed ROM allowing six bits of input data to be decoded into 64 independent combinations of the output segments of the selected digit.

The family is designed to interface to modern high performance microprocessors and microcomputers and ease system requirements for ROM space and CPU time needed to service a display.

FEATURES

- ICM7231: Drives 8 Digits of 7 Segments With Two Independent Annunciators Per Digit Address and Data Input in Parallel Format
- ICM7232: Drives 10 Digits of 7 Segments With Two Independent Annunciators Per Digit Address and Data Input in Serial Format
- ICM7233: Drives 4 Characters of 18 Segments Address and Data Input in Parallel Format
- ICM7234: Drives 5 Characters of 18 Segments Address and Data Input in Serial Format
- All Signals Required to Drive Rows and Columns of Triplexed LCD Display Are Provided
- Display Voltage Independent of Power Supply
- On-Chip Oscillator Provides All Display Timing
- Total Power Consumption Typically 200μ W, Maximum $500 \mu \mathrm{~W}$ at 5 V
- Low-Power Shutdown Mode Retains Data With $5 \mu \mathrm{~W}$ Typical Power Consumption at $5 \mathrm{~V}, 1 \mu \mathrm{~W}$ at 2V
- Direct Interface to High-Speed Microprocessors

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7232CR/D	-	DICE
ICM7232CRIJL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 pin CERDIP
ICM7232CRIPL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 pin PLASTIC Dip
ICM7233AEV/KIT		Evaluiation Kit.
ICM7233AF/D	-	DICE
ICM7233AFIJL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 pin CERDIP
ICM7233AFIPL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 pin PLASTIC Dip
ICM7233AF/D	-	DICE
ICM7234AFIJL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 pin CERDIP
ICM7234AFIPL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 pin PLASTIC Dip

Figure 1：ICM7231 Functional Diagram

Figure 2：ICM7232 Functional Diagram

Figure 3: ICM7233 Functional Diagram

Figure 4: ICM7234 Functional Diagram

Supply Voltage (V	5 V
Input Voltage ${ }^{[2]}$	$\mathrm{V}_{\text {SS }}-0.3 \leq \mathrm{V}_{\text {IN }} \leq 6.5$
Display Voltage ${ }^{[2]}$	$-0.3 \leq \mathrm{V}_{\text {DISP }} \leq+0.3$

Power Dissipation ${ }^{[1]} \ldots \ldots \ldots \ldots \ldots \ldots \ldots .0 .5 \mathrm{~W}$ @ $70^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots \ldots .25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots \ldots .300^{\circ} \mathrm{C}$
use permanent damage to the device. These are stress ratings only, and
eindicated in the operational sections of the specifications is not implied.
affect device reliability. functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes: 1. This limit refers to that of the package and will not be obtained during normal operation.
2. Due to the SCR structure inherent in these devices, connecting any display terminal or the display voltage terminal to a voltage outside the power supply to the chip may cause destructive device latchup. The digital inputs should never be connected to a voltage less than -0.3 volts below ground, but may be connected to voltages above $V_{D D}$ but not more than 6.5 volts above $V_{S S}$.

DATA CLOCK
INPUT
VOISP
CON1

Figure 5: Pin Configuration (Outline dwg PL)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

SYMBOL	PARAMETER	TEST CONDITIONS/DESCRIPTION	MIN	TYP	MAX	UNIT
$V_{\text {DD }}$	Power Supply Voltage		4.5	>4	5.5	V
$V_{D D}$	Data Retention Supply Voltage	Guaranteed Retention at 2V	2	1.6		V
IDD	Logic Supply Current	Current from V_{DD} to Ground excluding Display. $\mathrm{V}_{\text {DISP }}=2 \mathrm{~V}$		30	100	$\mu \mathrm{A}$
Is	Shutdown Total Current	$\mathrm{V}_{\text {DISP }}$ Pin 2 Open		1	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {DISP }}$	Display Voltage Range	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {DISP }} \leq \mathrm{V}_{\text {DD }}$	0		V_{DD}	V
IDISP	Display Voltage Setup Current	$V_{\text {DISP }}=2 V$ Current from $V_{D D}$ to VIISP On-Chip		15	30	$\mu \mathrm{A}$
R DISP	Display Voltage Setup Resistor Value	One of Three Identical Resistors in String	40	75		$k \Omega$
	DC Component of Display Signals	(Sample Test only)		$1 / 4$	1	$\%\left(V_{D D}-V_{\text {DISP }}\right)$
$\mathrm{f}_{\text {DISP }}$	Display Frame Rate	See Figure 7	60	90	120	Hz
V_{IL}	Input Low Level	ICM7231, ICM7233 Pins 30-35, 37-39, 1 ICM7232, ICM7234 Pins 1, 38, 39 (Note 1)			0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Level		2.0			V
IILK	Input Leakage			0.1	1	$\mu \mathrm{A}$
$\mathrm{ClN}_{\text {IN }}$	input Capacitance			5		pF
V_{OL}	Output Low Level	Pin 37, ICM7232, ICM7234, $\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$,$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$			0.4	V
VOH	Output High Level		4.1			V
TOP	Operating Temperature Range	Industrial Range	-25		+85	${ }^{\circ} \mathrm{C}$

AC CHARACTERISTICS
$\left(V_{D D}=5 \mathrm{~V} \pm 10 \% V_{S S}=0 \mathrm{~V},-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)$
PARALLEL INPUT（ICM7231，ICM7233）See Figure 13

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {cs }}$	Chip Select Pulse Width	（Note 1）	500	350		ns
t_{ds}	（Note 1）	200			ns	
t_{dh}	Address／Data Setup Time	（Note 1）	0	-20		ns
$\mathrm{t}_{\mathrm{ics}}$	Address／Data Hold Time	（Note 1）	3			$\mu \mathrm{~s}$

SERIAL INPUT（ICM7232，ICM7234）See Figures 16，17， 18

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{c}	Data Clock Low Time	（Note 1）	350			ns
t_{cl}	Data Clock High Time	（Note 1）	350			ns
$t_{\text {ds }}$	Data Setup Time	（Note 1）	200			ns
$t_{\text {dh }}$	Data Hold Time	（Note 1）	0	－20		ns
$t_{\text {wp }}$	$\overline{\text { Write Pulse Width }}$	（Note 1）	500	350		ns
$t_{\text {will }}$	$\overline{\text { Write Pulse to Clock at Initialization }}$	（Note 1）	1.5			$\mu \mathrm{s}$
$t_{\text {odl }}$	Data Accepted Low Output Delay	（Note 1）		200	400	ns
$t_{\text {odh }}$	Data Accepted High Output Delay	（Note 1）		1.5	3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {cws }}$	Write Delay After Last Clock	（Note 1）	350			ns

NOTE 1：For design reference only，not 100% tested．
TABLE OF FEATURES

TYPE NUMBER	OUTPUT CODE	ANNUNCIATOR LOCATIONS	INPUT	OUTPUT
ICM7231AF	Hexadecimal	Both Annunciators on COM3	Parallel Entry 4 bit Data 2 bit Annunciators 3 bit Address	8 Digits plus 16 Annunciators
ICM7231BF	Code B			
ICM7231CF	Code B	1 Annunciator COM1 1 Annunciator COM3		
ICM7232AF	Hexadecimal	Both Annunciators on COM3	Serial Entry 4 bit Data 2 bit Annunciators 4 bit Address	10 Digits plus 20 Annunciators
ICM7232B	Code B			
ICM7232CR	Code B	1 Annunciator COM1 1 Annunciator COM3		
ICM7233AF	64 Character （ASCII） 18 Segment （Half width numbers）	No Independent Annunciators	Parallel Entry 6 bit（ASCII）Data 2 bit Address	Four Characters
ICM7233BF	64 Character （ASCII） 18 Segment （Full width numbers）	No Independent Annunciators	Parallel Entry 6 bit（ASCII）Data 2 bit Address	Four Characters
ICM7234AF	64 Character （ASCII） 18 Segment （Half width numbers）	No Independent Annunciators	Serial Entry 6 bit（ASCII）Data 3 bit Address	Five Characters
ICM7234BF	64 Character （ASCII） 18 Segment （Full width numbers）	No Independent Annunciators	Serial Entry 6 bit（ASCII）Data 3 bit Address	Five Characters

TERMINAL DEFINITIONS

ICM7231 PARALLEL INPUT NUMERIC DISPLAY

TERMINAL	PIN NO.	DESCRIPTION	FUNCTION
AN1 AN2	$\begin{aligned} & 30 \\ & 31 \end{aligned}$	Annunciator 1 Control Bit Annunciator 2 Control Bit	High $=$ ON Low $=$ OFF
$\begin{aligned} & \mathrm{BDO} \\ & \mathrm{BD1} \\ & \mathrm{BD} 2 \\ & \mathrm{BD} 3 \end{aligned}$	$\begin{aligned} & 32 \\ & 33 \\ & 34 \\ & 35 \end{aligned}$	$\left.\begin{array}{l}\text { Least Significant } \\ \text { Most Significant }\end{array}\right] \quad$4 Bit Binary Data Inputs	Input Data (See Table 1) HIGH = Logical One (1)
$\begin{aligned} & \text { A0 } \\ & \text { A1 } \\ & \text { A2 } \end{aligned}$	$\begin{aligned} & 37 \\ & 38 \\ & 39 \end{aligned}$	$\left.\begin{array}{ll}\text { Least Significant } \\ \text { Most Significant }\end{array}\right] \quad$3 Bit Digit Address Inputs	Input Address (See Table 2)
$\overline{\mathrm{CS}}$	1	Data Input Strobe/Chip Select (Note 3)	Trailing (Positive going) edge latches data, causes data input to be decoded and sent out to addressed digit

NOTE: 3. $\overline{\mathrm{CS}}$ has a special" mid-level" sense ci rcuit that establishes a test mode if it is held near $3 V$ for several msec. Inadvertent triggering of this mode can be avoided by pulling it high when inactive, or ensuring frequent activity.

ICM7233 PARALLEL INPUT ALPHA DISPLAY

TERMINAL	PIN NO.	DESCRIPTION	FUNCTION
D0 D1 D2 D3 D4 D5	$\begin{aligned} & 30 \\ & 31 \\ & 32 \\ & 33 \\ & 34 \\ & 35 \end{aligned}$	$\left.\begin{array}{c}\text { Least Significant } \\ \text { Most Significant }\end{array}\right]-$6 Bit (ASCII) Data Inputs	Input Data See Table 4 HIGH = Logical One (1) LOW = Logical Zero (0)
$\begin{aligned} & \text { A0 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 37 \\ & 38 \end{aligned}$	$\left.\begin{array}{l}\text { Least Significant } \\ \text { Most Significant }\end{array}\right] \quad$ Address Inputs	Input Add. See Table 5
$\overline{\overline{\mathrm{CS1}}}$	$\begin{gathered} 39 \\ 1 \end{gathered}$	Chip Select Inputs (Note 3)	Both inputs LOW load data into input latches. Rising edge of either input causes data to be latched, decoded and sent out to addressed character.

NOTE: $\overline{C S 1}$ has a special 'mid-level' sense circuit that establishes a test mode if it is held near $3 V$ for several msec. Inadvertent triggering of this mode can be avoided either by pulling it high when inactive, or ensuring frequent activity.

ICM7232 and ICM7234 SERIAL DATA AND ADDRESS INPUT

TERMINAL	PIN NO.	DESCRIPTION	
Data Input	38	Data + Address Shift Register Input	HIGH = Logical One (1) LOW = Logical Zero (0)
WRITE Input	39	Decode, Output, and Reset Strobe	When DATA ACCEPTED Output is LOW, positive going edge of WRITE causes data in shift register to be decoded and sent to addressed digit, then shift register and control logic to be reset. When DATA ACCEPTED Output is HIGH, positive going edge of WRITE triggers reset only.
Data Clock Input	1	Data Shift Register and Control Logic Clock	Positive going edge advances data in shift register. ICM7232: Eleventh edge resets shift register and control logic. ICM7234: Tenth edge resets shift register and control logic.
DATA ACCEPTED Output	37	Handshake Output	Output LOW when correct number of bits entered into shift register; ICM7232 8, 9 or 10 bits ICM7234 9 bits

ALL DEVICES

TERMINAL	PIN NO.	DESCRIPTION	
Display Voltage VDISP	2	Negative end of on-chip resistor string used to generate intermediate voltage levels for display. Shutdown Input.	Fisplay voltage control. When open (or less than 1 V from $V_{\text {DD }}$ chip is shutdown; oscillator stops, all display pins to VD.
Common Line Driver Outputs	$3,4,5$		Drive display commons, or rows.
Segment Line Driver Outputs	$6-29$	(On ICM7231/33) (On ICM7232/34)	Drive display segments, or columns.
$V_{\text {DD }}$	$6-35$	40	Chip Positive Supply
$V_{S S}$	36	Chip Negative Supply	

ICM7231 FAMILY DESCRIPTION

The ICM7231 drives displays with 8 seven-segment digits with two independent annunciators per digit, accepting six data bits and three digit address bits from parallel inputs controlled by a chip select input. The data bits are subdivided into four binary code bits and two annunciator control bits.

The ICM7232 drives 10 seven-segment digits with two independent annunciators per digit. To write into the display, six bits of data and four bits of digit address are clocked serially into a shift register, then decoded and written to the display.

The ICM7233 has a parallel input structure similar to the ICM7231, but the decoding and the outputs are organized to drive four 18 -segment alphanumeric characters. The six data bits represent a 6 -bit ASCII code.

The ICM7234 uses a serial input structure like that of the ICM7232, and drives five 18-segment characters. Again, the input bits represent a 6 -bit ASCII code.

Input levels are TTL compatible, and the DATA ACCEPTED output on the serial input devices will drive one LSTTL load. The intermediate voltage levels necessary to drive the display properly are generated by an on-chip resistor string, and the output of a totally self-contained on-chip oscillator is used to generate all display timing. All devices in this family have been fabricated using Intersil's MAXCMOS ${ }^{\circledR}$ process and all inputs are protected against static discharge.

TRIPLEXED ($1 / 3$ MULTIPLEXED) LIQUID CRYSTAL DISPLAYS

Figure 6 shows the connection diagram for a typical 7 segment display font with two annunciators such as would be used with an ICM7231 or ICM7232 numeric display driver. Figure 7 shows the voltage waveforms of the common lines and one segment line, chosen for this example to be the " Y ' ' segment line. This line intersects with COM1 to form the ' a ' segment, COM2 to form the ' g ' segment and COM3 to form the ' d '' segment. Figure 7 also shows the waveform of the " Y ' segment line for four different ON/OFF combinations of the ' a '", ' g ' and ' d "' segments. Each intersection (segment or annunciator) acts as a capacitance from segment line to common line, shown schematically in Figure 8. Figure 9 shows the voltage across the ' g ' ' segment for the same four combinations of ON/OFF segments in Figure 7.

The degree of polarization of the liquid crystal material and thus the contrast of any intersection depends on the RMS voltage across the intersection capacitance. Note from Figure 4 that the RMS OFF voltage is always $V_{p} / 3$ and that the RMS ON voltage is always $1.92 \mathrm{Vp} / 3$.

For a $1 / 3$ multiplexed LCD, the ratio of RMS ON to OFF voltages is fixed at 1.92, achieving adequate display contrast with this ratio of applied RMS voltage makes some demands on the liquid crystal material used.

Figure 10 shows the curve of contrast versus applied RMS voltage for a liquid crystal material tailored for $V_{P}=3.1 \mathrm{~V}$, a typical value for $1 / 3$-multiplexed displays in calculators. Note that the RMS OFF voltage $V_{p} / 3 \approx 1 \mathrm{~V}$ is just below the ''threshold' ' voltage where contrast begins to increase. This places the RMS ON voltage at 2.1 V , which provides about 85% contrast when viewed straight on.

All members of the ICM7231/ICM7234 family use an internal resistor string of three equal value resistors to generate the voltages used to drive the display. One end of the string is connected on the chip to V_{DD} and the other end (user input) is available at pin 2 (VISP) on each chip. This allows the display voltage input ($\mathrm{V}_{\mathrm{DISP}}$) to be optimized for the particular liquid crystal material used. Remember that $V_{P}=V_{D D}-V_{\text {DISP }}$ and should be three times the threshold voltage of the liquid crystal material used. Also it is very important that pin 2 never be driven below $V_{S S}$. This can cause device latchup and destruction of the chip.

WF019211
Figure 7：Display Voltage Waveforms
NOTE：$\phi_{1}, \phi_{2}, \phi_{3}$－COMMON HIGH WITH RESPECT TO SEGMENT．
$\phi_{1^{\prime}}, \phi_{2^{\prime}}, \phi_{3^{\prime}}-$ COMMON LOW WITH RESPECT TO SEGMENT．
COM 1 ACTIVE DURING ϕ_{1} AND ϕ_{1} ．
COM 2 ACTIVE DURING ϕ_{2} AND ϕ_{2}
COM 3 ACTIVE DURING ϕ_{3} AND ϕ_{3}＇

DS022301
Figure 8：Display Schematic

WF01930i
Figure 9：Voltage Waveforms on Segment $\mathbf{g}\left(\mathbf{V}_{\mathbf{g}}\right)$

VOLTAGE CONTRAST RATIO $=\frac{V_{\text {RMS }} \text { ON }}{V_{\text {RMSOFF }}}=\frac{\sqrt{11}}{\sqrt{3}}=1.92$
NOTE：$\phi_{1}, \phi_{2}, \phi_{3}$－COMMON HIGH WITH RESPECT TO SEGMENT．
$\phi_{1}{ }^{\prime}, \phi_{2^{\prime}}, \phi_{3^{\prime}}-$ COMMON LOW WITH RESPECT TO SEGMENT．

COM 1 ACTIVE DURING ϕ_{1} AND ϕ_{1}＇
COM 2 ACTIVE DURING ϕ_{2} AND $\phi_{2}{ }^{\prime}$
COM 3 ACTIVE DURING ϕ_{3} AND $\phi_{3}{ }^{\prime}$

Figure 10: Contrast vs. Applied RMS Voltage

Figure 11: Temperature Dependence of LC Threshold

TEMPERATURE EFFECTS AND TEMPERATURE COMPENSATION

The performance of the IC material is affected by temperature in two ways. The response time of the display to changes in applied RMS voltage gets longer as the display temperature drops. At very low temperatures $\left(-20^{\circ} \mathrm{C}\right)$ some displays may take several seconds to change a new character after the new information appears at the outputs. However, for most applications above $0^{\circ} \mathrm{C}$ this will not be a problem with available multiplexed LCD materials, and for low-temperature applications, high-speed liquid crystal materials are available. One high temperature effect to consider deals with plastic materials used to make the polarizer. Some polarizers become soft at high temperatures and permanently lose their polarizing ability, thereby
seriously degrading display contrast. Some displays also use sealing materials unsuitable for high temperature use. Thus, when specifying displays the following must be kept in mind: liquid crystal material, polarizer, and seal materials.

A more important effect of temperature is the variation of threshold voltage. For typical liquid crystal materials suitable for multiplexing, the peak voltage has a temperature coefficient of -7 to $-14 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. This means that as temperature rises, the threshold voltage goes down. Assuming a fixed value for V_{p}, when the threshold voltage drops below $V_{p} / 3$ OFF segments begin to be visible. Figure 11 shows the temperature dependence of peak voltage for the same liquid crystal material of Figure 10.

For applications where the display temperature does not vary widely, V_{P} may be set at a fixed voltage chosen to make the RMS OFF voltage, $\mathrm{V}_{\mathrm{p}} / 3$, just below the threshold voltage at the highest temperature expected. This will prevent OFF segments turning ON at high temperature (this at the cost of reduced contrast for ON segments at low temperatures).

For applications where the display temperature may vary to wider extremes, the display voltage $\mathrm{V}_{\text {DISP }}$ (and thus V_{P}) may require temperature compensation to maintain sufficient contrast without OFF segments becoming visible.

DISPLAY VOLTAGE AND TEMPERATURE COMPENSATION

These circuits allow control of the display peak voltage by bringing the bottom of the voltage divider resistor string out at pin 2. The simplest means for generating a display voltage suitable to a particular display is to connect a potentiometer from pin 2 to V_{SS} as shown in Figure 12. A potentiometer with a maximum value of $200 \mathrm{k} \Omega$ should give sufficient range of adjustment to suit most displays. This method for generating display voltage should be used only in applications where the temperature of the chip and display won't vary more than $\pm 5^{\circ} \mathrm{C}\left(\pm 9^{\circ} \mathrm{F}\right)$, as the resistors on the chip have a positive temperature coefficient, which will tend to increase the display peak voltage with an increase in temperature. The display voltage also depends on the power supply voltage, leading to tighter tolerances for wider temperature ranges.

TC029011
Figure 12: Simple Display Voltage Adjustment

Figure 13(a) shows another method of setting up a display voltage using five silicon diodes in series. These diodes, 1 N914 or equivalent, will each have a forward drop of approximately 0.65 V , with approximately $20 \mu \mathrm{~A}$ flowing
through them at room temperature. Thus, 5 diodes will give 3.25 V , suitable for a 3 V display using the material properties shown in Figures 10 and 11. For higher voltage displays, more diodes may be added. This circuit provides reasonable temperature compensation, as each diode has a negative temperature coefficient of $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$; five in series gives $-10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, not far from optimum for the material described.

The disadvantage of the diodes in series is that only integral multiples of the diode voltage can be achieved. The diode voltage multiplier circuit shown in Figure 13(b) allows fine-tuning the display voltage by means of the potentiometer; it likewise provides temperature compensation since the temperature coefficient of the transistor base-emitter junction (about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$) is also multipled. The transistor should have a beta of at least 100 with a collector current of $10 \mu \mathrm{~A}$. The inexpensive 2 N 2222 shown in the figure is a suitable device.

Figure 13(b): Transistor-Multiplier
Figure 13: Diode-based Temperature Compensation

Figure 14: Flexible Temperature Compensation

WF019601

Figure 16: ICM7232 One Digit Input Timing Diagram, Writing Both Annunciators

For battery operation, where the display voltage is generally the same as the battery voltage (usually $3-4.5 \mathrm{~V}$), the chip may be operated at the display voltage, with VDISP connected to V_{SS}. The inputs of the chip are designed such that they may be driven above $V_{D D}$ without damaging the chip. This allows, for example, the chip and display to operate at a regulated 3 V , and a microprocessor driving its inputs to operate with a less well controlled 5 V supply. (The inputs should not be driven more than 6.5 V above GND under any circumstances.) This also allows temperature compensation with the ICL7663, as shown in Figure 14. This circuit allows independent adjustment of both voltage and temperature compensation.

DESCRIPTION OF OPERATION
 PARALLEL INPUT OF DATA AND ADDRESS (ICM7231, ICM7233)

The parallel input structure of the ICM7231 and ICM7233 devices is organized to allow simple, direct interfacing to all microprocessors, (see functional diagrams Figures 1 and 3). In the ICM7231, address and data bits are written into the input latches on the rising edge of the Chip Select input. In the ICM7233, the two Chip Selects are equivalent; when both are low, the latches are transparent and the data is latched on the rising edge of either Chip Select.

The rising edge of the Chip Select also triggers an on－ chip pulse which enables the address decoder and latches the decoded data into the addressed digit／character out－ puts．The timing requirements for the parallel input devices are shown in Figure 15，with the values for setup，hold，and pulse width times shown in the AC Characteristics section． Note that there is a minimum time between Chip Select pulses；this is to allow sufficient time for the on－chip enable pulse to decay，and ensures that new data doesn＇t appear at the decoder inputs before the decoded data is written to the outputs．

SERIAL INPUT OF DATA AND ADDRESS（ICM7232， ICM7234）

The ICM7232 and ICM7234 trade six pins used as data inputs on the ICM7231 and ICM7233 for six more segment lines，allowing two more 9 －segment digits（ICM7232）or one more 18 －segment character（ICM7234）．This is done at the cost of ease in interfacing，and requires that data and address information be entered serially．Refer to functional diagrams，Figures 2 and 4 and timing diagrams，Figures 16， 17，and 18．The interface consists of four pins：DATA Input， DATA CLOCK input，WRITE Input and DATA ACCEPTED Output．The data present at the DATA Input is clocked into a shift register on the rising edge of the DATA CLOCK Input signal，and when the correct number of bits has been shifted into the shift register（ 8 in the ICM7232， 9 in the ICM7234），the DATA ACCEPTED Output goes low．Follow－ ing this，a low－going pulse at the WRITE input will trigger the chip to decode the data and store it in the output latches of the addressed digit／character．After the data is latched at the outputs，the shift register and the control logic are reset， returning the DATA ACCEPTED Output high．After this occurs，a pulse at the WRITE input will not change the
outputs，but will reset the control logic and shift register， assuring that each data bit will be entered into the correct position in the shift register depending on subsequent DATA CLOCK inputs．

The shift register and control logic will also be reset if too many DATA CLOCK INPUT edges are received；this prevents incorrect data from being decoded．In the ICM7232，the eleventh clock resets the shift register and control logic，while in the ICM7234 it is the tenth．

The recommended procedure for entering data is shown in the serial input timing diagram，Figure 16．First，when DATA ACCEPTED is high，send a WRITE pulse．This resets the shift register and control logic and initializes the chip for the data input sequence．Next clock in the appropriate number of correct data and address bits．The DATA ACCEPTED Output may be monitored if desired，to deter－ mine when the chip is ready to output the decoded data． When the correct number of bits has been entered，and the DATA ACCEPTED Output is low，a pulse at WRITE will cause the data to be decoded and stored in the latches of the addressed digit／character．The shift register and control logic are reset，causing DATA ACCEPTED to return high， and leaving the chip ready to accept data for the next digit／ character．

Note that for the ICM7232 the eleventh clock resets the shift register and control logic，but the DATA ACCEPTED Output goes low after the eighth clock．This allows the user to abbreviate the data to eight bits，which will write the correct character to the 7 －segment display，but will leave the annunciators off，as shown in Figure 17.

If only AN2 is to be turned on，nine bits are clocked in；if AN1 is to be turned on，all ten bits are used．

In the ICM7234, nine bits are always required; the control logic is similar, but allows only a WRITE (DATA ACCEPTED Low) with nine bits entered in the shift register, as shown in Figure 18.

The DATA ACCEPTED Output will drive one low-power Schottky TTL input, and has equal current drive capability pulling high or low.

Note that in the serial input devices, it is possible to address digits/characters which don't exist. As shown in Tables 2 and 5 , when an incorrect address is applied together with a WRITE pulse, none of the outputs will be changed.

DISPLAY FONTS AND OUTPUT CODES

The standard versions of the ICM7231 and ICM7232 chips are programmed to drive a 7 -segment display plus two annunciators per digit. See Table 3 for annunciator input controls.

The ' A " and ' B " suffix chips place both annunciators on COM3. The display connections for one digit of this display are shown in Figure 19. The " A " devices decode the input data into a hexadecimal 7 -segment output, while the ' B '" devices supply Code B outputs (see Table 1).

The ' C ' devices place the left hand annunciator on COM1 (AN2) and the right hand annunciator (usually a decimal point) on COM3 (AN1). (See Figure 20). The " C " devices provide only a 'Code B' output for the 7 -segments.

The ICM7233 and ICM7234 are supplied in " A ' and " B ' versions. Both versions decode an ASCII 6-bit subset to an 18-segment display, with 16 'flag' segments and two "dots". The " A " devices have numbers which are half width and the " B " devices have full width numbers. The layout for a single character is shown in Figure 21 with output decoding shown in Table 4.

TABLE 1. BINARY DATA DECODING (ICM7231/32)

CODE INPUT				DISPLAY OUTPUT	
$\begin{gathered} 80 \\ 3 \end{gathered}$	$\begin{array}{c\|} 8 D \\ 2 \end{array}$	$\begin{gathered} 8 D \\ 1 \end{gathered}$	$\begin{gathered} \text { BD } \\ 0 \end{gathered}$	HEX	$\mathrm{CODE}_{\mathrm{B}}$
0	0	0	0	I-1	I
0	0	0	1	1	!
0	0	1	0	8	-
0	0	1	1	-	
0	1	0	0	1	4
0	1	0	1	E	$1-$
0	1	1	0	E	E1
0	1	1	1	1	1
1	0	0	0	II	1
1	0	0	1	8	1
1	0	1	0	E1	
1	0	1	1	İ	E
1	1	0	0	1	1-1
1	1	0	1	I-1	I
1	1	1	0	E	F
1	1	1	1	F	BLANK

TABLE 2. ADDRESS DECODING (ICM7231/32)

CODE INPUT				DISPLAY OUTPUT
ICM7232 ONLY A3	A2	A1	A0	DIGIT SELECTED
0	0	0	0	D1
0	0	0	1	D2
0	0	1	0	D3
0	0	1	1	D4
0	1	0	0	D5
0	1	0	1	D6
0	1	1	0	D7
0	1	1	1	D8
1	0	0	0	D9
1	0	0	1	D10
1	0	1	0	NONE
1	0	1	1	NONE
1	1	0	0	NONE
1	1	0	1	NONE
1	1	1	0	NONE
1	1	1	1	NONE

TABLE 3. ANNUNCIATOR DECODING

		DISPLAY OUTPUT	
$\begin{gathered} \text { AN } \\ 2 \end{gathered}$	$\begin{gathered} A N \\ 1 \end{gathered}$	ICM7231 A/B ICM7232 A/B BOTH ANNUNCIATORS ON COM 3	ICM7231C ICM7232C LH ANNUNCIATOR COM 1 RH ANNUNCIATOR COM 3
0	0	E1	Ei
0	1	-1	F!
1	0	I!	I-1
1	1	EI	I!

TB000901

EVALUATION KITS

After purchasing a sample of the ICM7231/32/33/34, the majority of users will want to build a sample display. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application. However, locating and purchasing even the small number of additional components required, then wiring a breadboard, can often cause delays of days or sometimes weeks. To avoid this problem and facilitate evaluation of these unique circuits, Intersil is offering kits which contain all the necessary components to build 8 character displays. With the
help of such a kit, an engineer or technician can have the system 'up and running' in about half an hour.

The ICM7233EV/KIT contains the appropriate ICs, a circuit board, a Multiplexed LCD display 16/18 segment, passive components, and miscellaneous hardware.

LC019801
Figure 19: ICM7231 and ICM7232 Display Fonts (' A " and " B '" Suffix Versions)

segment line connertions

COMMON LINE CONNECTIONS
LH ANNUNCIATOR ON COMMON \# 1 (TOP) (AN 2) LH ANNUNCIATOR ON COMMON \#1 (TOP) (AN 2)
RH ANNUNCATOR ON COMMON $\# 3$ (BOTTOM) (AN 1$)$
"C" SUFFIX DEVICES

- ANNUNCIATORS CAN BE: STOP GO GO AROWS THAT POINT TO INFORMA OPENING. ETC., WHATEVER THE DE

LC01990I
Figure 20: ICM7231 and ICM7232 Display Fonts (' 'C' Suffix Versions)

SEGMENT LINE CONNECTIONS

COMMON LINE CONNECTIONS

Figure 21: ICM7233 and ICM7234 Display Font (18-Segment Alphanumeric)

COMPATIBLE DISPLAYS

Compatible displays are manufactured by:
G.E. Displays Inc., Beechwood, Ohio
(216)831-8100 (\#356E3R99HJ)

Epson America Inc., Torrance CA
(Model Numbers LDB726/7/8).
Seiko Instruments USA Inc., Torrance CA
(Custom Displays)
Crystaloid, Hudson, OH
TABLE 4. DATA DECODING 6-BIT ASCII $\rightarrow 18$ SEGMENT (ICM7233/34)

CODE INPUT				DISPLAY OUTPUT				
							A	8
D3	D2	D1	DO	0.0	0.1	1,0		
0	0	0	0	[Γ		\square	\square
0	0	0	1	F	\square	!	1	1
0	0	1	0	E	R	11	2	2
0	0	1	1		5	I	7	7
0	1	0	0	1	T	In	4	4
0	1	0	1	E	\square	\%	5	5
0	1	1	0	F	1	8	6	6
0	1	1	?	\square	W		7	7
1	0	0	0	H	X	<	θ	θ
1	0	0	1	I	Y	\rangle	9	9
1	0	1	0	J	Z	米		
1	0	1	1	K		+		
1	1	0	0	L	\backslash	,		6
1	1	0	1	M	J	-		二
1	1	1	0	N	π			5
1	1	1	1	\square	\leqslant	$/$		Γ

TB001001
TABLE 5. ADDRESS DECODING (ICM7233/34)

CODE INPUT			DIGIT SELECTED
ICM7234 ONLY			
A2	A1	A0	
0	0	0	D1
0	0	1	D2
0	1	0	D3
0	1	1	D4
1	0	0	D5
1	0	1	NONE
1	1	0	NONE
1	1	1	NONE

TYPICAL APPLICATIONS

Figure 22: 8048/IM80C48 Microcomputer with 8 Character 16 Segment ASCII Triplex Liquid Crystal Display.

The two bit character address is merged with the data and written to the display driver under the control of the WR line. Port lines are used to either select the target driver, or deselect all of them for other bus operations.

Figure 23：MC6802 Microprocessor with 16 Character 16 Segment ASCII Liquid Crystal Display．

The peripheral device provides ROM and Timer functions in addition to port line control of the display bank．Individual character locations are addressed via the address bus．Note that VMA is not decoded on these lines，which could cause problems with the TST instruction．

Figure 24: EPROM-Coded Message System.
This circuit cycles through a message coded in the EPROM, pausing at the end of each line, or whenever coded on \mathbf{Q}_{6}.

Figure 25: 10MHz Frequency/Period Pointer with LCD Display.
The annunciators show function and the decimal points indicate the range of the current operation. The system can be efficiently battery operated.

CDO2460
Figure 26: 'Forward' Pin Orientation and Display Connections

Figure 28：＇Forward＂Die Pad Orientation and Typical Triplex Alphanumeric Display Connections

GENERAL DESCRIPTION

The ICM7235 family of display driver circuits provides the user with a single chip interface between digital logic or microprocessors to non-multiplexed 7 -segment vacuum fluorescent displays.

The chips provide 28 high voltage open drain P-channel transistor outputs organized as four 7 -segment digits. The devices are available with two input configurations. The basic devices provide four data-bit inputs and four digit select inputs. This configuration is suitable for interfacing with multiplexed BCD or binary output devices, such as the Intersil ICM7217, ICM7226 and ICL7135. The microprocessor interface devices (suffix M) provide data input latches and digit address latches under control of high-speed chip select inputs. These devices simplify the task of implementing a cost-effective alphanumeric 7 -segment display for microprocessor systems, without requiring extensive ROM or CPU time for decoding and display updating.
The standard devices available will provide two different decoder configurations. The basic device will decode the four bit binary input into a seven-segment alphanumeric hexadecimal output ($0-9, A-F$). The ' A " versions provide the Code ' B ' output ($0-9$, dash, E, H, L, P, blank). Either device will correctly decode true $B C D$ to seven-segment decimal outputs.

FEATURES

- 28 High Voltage Outputs Drive Four 7-Segment Digits
- Multiplexed BCD Input (7235)
- High Speed Processor Interface (7235M)
- 7-Segment Hexadecimal or Code-B Output Versions Available
- Display Blanking Input
- Low Power Operation

ORDERING INFORMATION

ORDER PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7235IPL	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin CERDIP
ICM7235MIJL	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin CERDIP
ICM7235MIPL	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin PLASTIC
ICM7235AIJL	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin PLASTIC
ICM7235AIPL	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin PLASTIC
ICM7235AMIJL	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin CERDIP
ICM7235AMIPL	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin PLASTIC
ICM7235/D		DICE
ICM7235A/D		DICE
ICM7235AM/D		DICE
ICM7235M/D		DICE

CD03360

CD033711

Figure 1: Pin Configurations

ABSOLUTE MAXIMUM RATINGS
Power Dissipation (Note 1) $\ldots \ldots \ldots \ldots \ldots .0 .5 \mathrm{~W} @+70^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) \ldots \ldots \ldots \ldots \ldots \ldots . .6 .5 \mathrm{Volts}$
Input Voltage $($ Note 2$) \ldots \ldots \ldots \mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Output Voltage (Note 3) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \mathrm{V}_{\mathrm{DD}}-35 \mathrm{~V}$
Operating Temperature Range $\ldots \ldots \ldots .-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots .55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots \ldots .300^{\circ} \mathrm{C}$

Stresses above listed under "Absolute Maximum Ratings' may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 2: ICM7235/35A Functional Diagram

Figure 3: ICM7235M/35AM Functional Diagram

ELECTRICAL CHARACTERISTICS (All parameters measured with $V_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,
unless stated otherwise).

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$V_{\text {SUPP }}$	Operating Supply Voltage Range ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}$)		4		6	V
Istby	Supply Current	Measured $V_{D D}$ to $V_{S S}$ Test circuit; display blank or OFF		10	50	$\mu \mathrm{A}$
IDD	Supply Current	Measured $\mathrm{V}_{\text {DD }}$ to Display			100	mA
$\mathrm{V}_{\text {SEG }}$	Segment OFF Output Voltage	ISLK $=10 \mu \mathrm{~A}$	30			\checkmark
ILS	Segment OFF Leakage Current	$\mathrm{V}_{\text {SEG }}=\mathrm{V}_{\text {DD }}-30 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$
ISEG	Segment ON Current	$V_{\text {SEG }}=V_{\text {DD }}-2 \mathrm{~V}$	1.5	2.5		mA

INPUT CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage	Referred to $\mathrm{V}_{\text {SS }}$	3			V
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	Referred to V_{SS}			1.5	\checkmark
IILK	Input Leakage Current	Pins 27-34		± 0.1	± 1	$\mu \mathrm{A}$
$\mathrm{ClN}_{\mathrm{IN}}$	Input Capacitance	Pins 27-34		5		pF
IILK($\overline{O N} / \mathrm{OFF}$)	$\overline{\text { ON/OFF Input Leakage }}$	All Devices		± 0.1	± 1	$\mu \mathrm{A}$
$\mathrm{Cl}_{\text {IN }}(\overline{O N} / O F F)$	$\overline{\text { ON/OFF Input Capacitance }}$	All Devices		200		pF

AC CHARACTERISTICS - MULTIPLEXED INPUT CONFIGURATION

tWH	Digit Select Active Pulse Width		1			$\mu \mathrm{s}$
tDS	Data Setup Time		500			ns
${ }_{\text {t }}$ H	Data Hold Time		200			ns
tids	Inter-Digit Select Time		2			$\mu \mathrm{s}$

AC CHARACTERISTICS - MICROPROCESSOR INTERFACE

$t_{\text {WL }}$	Chip S̄elect Active Pulse Width	Other $\overline{\text { Chip Select either held active, }}$ or both driven together	200	
$t_{\text {DS }}$	Data Setup Time		100	
$t_{\text {DH }}$	Data Hold Time		ns	
$t_{\text {ICS }}$	Inter-C̄hip S̄elect Time		10	0

NOTES: 1. This limit refers to that of the package and will not be realized during normal operation.
2. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any input terminal to a voltage in excess of $V_{D D}$ or $V_{S S}$ may cause destructive device latch-up. For this reason, it is recommended that inputs from external sources operating on a different power supply be applied only after the device's own power supply has been established, and that on multiple supply systems the supply to the ICM7235 be turned on first.
3. This value refers to the display outputs only.

INPUT DEFINITIONS

In this table, $V_{D D}$ and $V_{S S}$ are considered to be normal operating input logic levels. Actual input low and high levels are specified under Operating Characteristics. For lowest power consumption, input signals should swing to either $V_{D D}$ or $V_{S S}$.

INPUT	TERMINAL	TEST CONDITIONS	FUNCTION	
B0	27	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Logical One } \\ & \mathrm{V}_{\mathrm{SS}}=\text { Logical Zero } \end{aligned}$	Ones (Least Significant)	Data Input Bits
B1	28	$\begin{array}{\|l} \hline V_{D D}=\text { Logical One } \\ V_{S S}=\text { Logical Zero } \end{array}$	Twos	
B2	29	$\begin{aligned} & V_{D D}=\text { Logical One } \\ & V_{S S}=\text { Logical Zero } \end{aligned}$	Fours	
B3	30	$\begin{array}{\|l\|} \hline V_{\mathrm{DD}}=\text { Logical One } \\ V_{\mathrm{SS}}=\text { Logical Zero } \\ \hline \end{array}$	Eights (Most Significant)	
ON/OFF	5	$\begin{aligned} & V_{D D}=O F F \\ & V_{S S}=O N \end{aligned}$	1	Display $\overline{O N} /$ OFF Input

ICM7235, ICM7235A MULTIPLEXED-BINARY INPUT CONFIGURATION

INPUT	TERMINAL	TEST CONDITIONS	FUNCTION
D1	31	-	D1 Digit Select (Least Significant)
D2	32	$V_{D D}=$ Active	D2 Digit Select
D3	33	$V_{S S}=$ Inactive	D3 Digit Select
D4	34		D4 Digit Select (Most Significant)

INPUT	DESCRIPTION	TERMINAL	TEST CONDITIONS	FUNCTION
DA1	Digit ADDRESS Bit 1 (LSB)	31	$V_{D D}=$ Logical One $V_{S S}=$ Logical Zero	DA2 \& DA1 serve as a two bit Digit Address Input DA2, DA1 $=00$ selects D4 DA2, DA1 $=01$ selects D3 DA2, DA1 $=10$ selects D2 DA2, DA1 $=11$ selects D1
DA2	Digit ADDRESS Bit 2 (MSB)	32		
$\overline{\mathrm{CS} 1}$	Chip Select 1	33	$V_{D D}=$ Inactive $\mathrm{V}_{\mathrm{SS}}=$ Active	When both $\overline{\mathrm{CS} 1}$ and $\overline{\mathrm{CS} 2}$ are taken to V_{SS} the data at the Data and Digit Address inputs are written into the input latches. On the rising edge of either Chip Select, the data is decoded and written into the output latches.
$\overline{\mathrm{CS} 2}$	Chip Select 2	34		

Figure 4: ICM7235 Typical DC Vacuum Fluorescent Display Connection

VACUUM FLUORESCENT DISPLAYS (4 DIGIT) AVAILABLE FROM:
N.E.C. Electronics, Inc.

Models FIP4F8S and FIP5F8S

CIRCUIT DESCRIPTION

Each device in the ICM7235 family provides signals for directly driving the anode terminals of a four-digit, 7segment non-multiplexed vacuum fluorescent display. The outputs are taken from the drains of high-voltage, lowleakage P-channel FETs. Each is capable of withstanding $>-35 \mathrm{~V}$ with respect to V_{DD}. In addition, the inclusion of an $\overline{\text { ON} / O F F ~ i n p u t ~ a l l o w s ~ t h e ~ u s e r ~ t o ~ d i s a b l e ~ a l l ~ s e g m e n t s ~ b y ~}$ connecting pin 5 to V_{DD}; this same input may also be used as a brightness control by applying a signal swinging between $V_{D D}$ and $V_{S S}$ and varying its duty cycle.

The ICM7235 may also be used to drive nonmultiplexed common cathode LED displays by connecting each segment output to its corresponding display input, and tying the common cathode to $\mathrm{V}_{\text {SS }}$. Using a power supply of 5 V and an LED with a forward drop of 1.7 V results in an 'ON" segment current of about 3 mA , enough to provide sufficient brightness for displays of up to $0.3^{\prime \prime}$ character height.
Note that these devices have two $V_{D D}$ terminals, and each should be connected to the positive supply voltage. This double connection is necessary to minimize the effects of bond wire resistance, which could be a problem due to the high display currents.

Input Configurations and Output Codes

The standard devices in the ICM7235 family accept a four-bit true binary (i.e., positive level = logical one) input at pins 27 through 30 , least significant bit at pin 27 ascending to the most significant bit at pin 30. The ICM7235 and ICM7235M decode this binary input into a 7 -segment alphanumeric hexadecimal output, while the ICM7235A and ICM7235AM decode the binary input into the same 7 segment output as the ICM7218 'Code B,' i.e., 0-9, dash, E, H, L, P, blank. These codes are shown explicitly in Table 1. Either decoder option will correctly decode true BCD to a 7 -segment decimal output.

These devices are actually mask-programmable to provide any 16 combinations of the 7 -segment outputs decoded from the four input bits. For larger quantity orders, (10K pcs. minimum) custom decoder options can be arranged. Contact your Intersil Sales Office for details.

The ICM7235 and ICM7235A devices are intended to accept multiplexed binary or BCD output. These devices provide four separate Digit select lines (least significant digit at pin 31 ascending to most significant digit at pin 34). Each Digit Select line when taken to a positive level decodes and stores in its respective output latches the character corresponding to the data at the input port, pins 27 through 30.

The ICM7235M and 7235AM devices are intended to accept data from a data bus under processor control.
In these devices, the four data input bits and the 2 -bit Digit Select code (DA1 pin 31, DA2 pin 32) are written into input buffer latches when both Chip Select inputs ($\overline{\mathrm{CS}}$ pin 33, CS2 pin 34) are taken to $\mathrm{V}_{\text {SS }}$. On the rising edge of either Chip Select input, the content of the data input latches is decoded and stored in the output latches of the digit selected by the contents of the select code latches. A select code of 00 writes into D4, 01 writes into D3, 10 writes into D2 and 11 writes into D1. The timing relationships for inputting data are shown in Figure 7, and the chip select pulse widths and data setup and hold times are specified under Operating Characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6: Multiplexed Input Timing Diagram

Figure 7: Microprocessor Interface Input Timing Diagram

TABLE 1: Output Codes

BINARY				$\begin{aligned} & \text { HEXADECIMAL } \\ & \text { ICM7235 } \\ & \text { ICM7235M } \end{aligned}$	$\begin{gathered} \text { CODE B } \\ \text { ICM7235A } \\ \text { ICM7235AM } \\ \hline \end{gathered}$
B3	B2	B1	B0		
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	2	2
0	0	1	1	3	3
0	1	0	0	4	4
0	1	0	1	5	5
0	1	1	0	6	6
0	1	1	1	7	7
1	0	0	0	8	8
1	0	0	1	9	9
1	0	1	0	A	-
1	0	1	1	b	E
1	1	0	0	C	H
1	' 1	0	1	d	L
1	1	1	0	E	P
1	1	1	1	F	(BLANK)

Figure 8: Segment Assignment

GENERAL DESCRIPTION

The ICM7243 is an 8－character alphanumeric display driver and controller which provides all the circuitry required to interface a microprocessor or digital system to a 14－or 16 －segment display．It is primarily intended for use in microprocessor systems，where it minimizes hardware and software overhead．Incorporated on－chip are a 64－character ASCII decoder， 8×6 memory，high power character and segment drivers，and the multiplex scan circuitry．

Six－bit ASCII data to be displayed is written into the memory directly from the microprocessor data bus．Data location depends upon the selection of either Serial （MODE $=1$ ）or Random（MODE $=0$ ）．In the Serial Access mode the first entry is stored in the lowest location and displayed in the＇left－most＇character position．Each subse－ quent entry is automatically stored in the next higher location and displayed to the immediate＂right＂of the previous entry．A DISPlay FULL signal is provided after 8 entries；this signal can be used for cascading．A CLeaR pin is provided to clear the memory and reset the location counter．The Random Access mode allows the processor to select the memory address and display digit for each input word．

The character multiplex scan runs whenever data is not being entered．It scans the memory and CHARacter drivers， and ensures that the decoding from memory to display is done in the proper sequence．Intercharacter blanking is provided to avoid display ghosting．

FEATURES

－14－and 16－Segment Fonts With Decimal Point
－Mask Programmable For Other Font－Sets Up to 64 Characters
－Microprocessor Compatible
－Directly Drives Small Common Cathode Displays
－Cascadable Without Additional Hardware
－Standby Feature Turns Display Off；Puts Chip in Low Power Mode
－Serial Entry or Random Entry of Data Into Display
－Single＋5V Operation
－Character and Segment Drivers，All MUX Scan Circuitry， 8×6 Static Memory and 64－Character ASCII Font Generator Included On－Chip
ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7243AIJL	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP
ICM7243BIJL	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP
ICM7243B EV／KIT		
ICM7243BIPL	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	PLASTIC
ICM7243B／D	-	DICE
ICM7243BCPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PLASTIC

CD026011
Figure 1：Pin Configurations

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD $-V_{S S}$)
CHARacter Output Current
............................. 300 mA
Input Voltage (Any Terminal) (VDD +0.3 V) to $\left(\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}\right)$ Power Dissipation
ny Terminal) $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}\right)$

Operating Temperature Range (I) $\ldots \ldots-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
(C) $\ldots \ldots \ldots \ldots .0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

BD01080
Figure 2: Functional Diagram
DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise stated)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
V SUPP	Supply Voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$)		4.75	5.0	5.25	V
IDD	Operating Supply Current	$V_{\text {SUPP }}=5.25 \mathrm{~V}$, 10 Segments ON, All 8 Characters		180		mA
ISTBY	Quiescent Supply Current	$V_{\text {SUPP }}=5.25 \mathrm{~V}$, OSC/ $\overline{\text { OFF }}$ Pin $<0.5 \mathrm{~V}, \mathrm{CS}=\mathrm{V}_{\text {SS }}$		30	250	$\mu \mathrm{A}$
V_{H}	Input High Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage				0.8	V
IIN	Input Current		-10		+10	$\mu \mathrm{A}$
ICHAR	CHARacter Drive Current	$V_{\text {SUPP }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}$	140	190		mA
ICHLK	CHARacter Leakage Current				100	$\mu \mathrm{A}$
ISEG	SEGment Drive Current	$\mathrm{V}_{\text {SUPP }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}$	14	19		mA

DC ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
ISLK	SEGment Leakage Current			0.01	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	DISPlay FULL Output Low	$\mathrm{l}^{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	V
V_{OH}	DISPlay FULL Output High	$\mathrm{l}_{1 \mathrm{H}}=100 \mu \mathrm{~A}$	2.4			V
$\mathrm{f}_{\text {ds }}$	Display Scan Rate			400		Hz

AC ELECTRICAL CHARACTERISTICS (Drive levels 0.4 V and 2.4 V , timing measured at 0.8 V and 2.0 V .
$V_{D D}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ unless otherwise stated).

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tWPI	$\overline{\text { WR, }}$ CLeaR Pulse Width Low		250			ns
tWPH	$\bar{W} \bar{R}$, $\overline{\text { CleaR }}$ Pulse Width High (Note 1)		250			
t_{DH}	Data Hold Time		0	-100		
tos	Data Setup Time		250	150		
$\mathrm{t}_{\text {AH }}$	Address Hold Time		125			
$t_{\text {AS }}$	Address Setup Time		40	15		
t_{CS}	CS, $\overline{\mathrm{CS}}$ Setup Time		0			
tT	Pulse Transition Time				100	
tsen	SEN Setup Time		0	-25		
twdF	Display Full Delay		600	480		

CAPACITANCE

SYMBOL	TEST	MIN	TYP	MAX	UNIT
C_{IN}	Input Capacitance (Note 2)		5		pF
C_{0}	Output Capacitance (Note 2)		5		pF

*Not tested. (Guaranteed)
NOTES: 1. in Serial mode $\overline{W R}$ high must be \geq TSEN $+T_{\text {WDF }}$.
2. For design reference only, not 100% tested.

TYPICAL PERFORMANCE CHARACTERISTICS

SEGment Current vs Output Voltage

CHARacter Current vs Output Voltage

ICM7243A/B DISPLAY FONT AND SEGMENT ASSIGNMENTS
Note: Some display manufacturers use different designations for some of the segments. Check data sheets carefully.

Figure 3: ICM7243A 16-Segment Character Font with Decimal Point

NOTE: Segments a and d appear as 2 segments each, but both halves are driven together.
Figure 4: ICM7243B 14-Segment Character Font with Decimal Point

DS022411
Figure 5: Segment and Character Drivers Output Circuit

WF020511
Figure 6: Random Access Timing

Figure 7: Serial Access Mode Timing (Mode = 1)
TABLE 1: PIN DESCRIPTIONS, ICM7243A(B)

SIGNAL	PIN	FUNCTION
$\mathrm{D}_{0}-\mathrm{D}_{5}$	$\begin{aligned} & 10-15 \\ & (8-13) \end{aligned}$	Six-Bit ASCII Data input pins (active high).
CS, $\overline{\mathrm{CS}}$	$\begin{gathered} 16 \\ (14-16) \\ \hline \end{gathered}$	Chip Select for decoding from $\mu \mathrm{P}$ address bus, etc.
$\overline{\text { WR }}$	17	WRite pulse input pin (active low). For an active high write pulse, CS can be used, and $\overline{\mathrm{WR}}$ can be used as $\overline{\mathrm{CS}}$.
MODE	31	Selects data entry MODE. High selects Serial Access (SA) mode where first entry is displayed in "leftmost" character and subsequent entries appear to the "right". Low selects the Random Access (RA) mode where data is displayed on the character addressed via $\mathrm{A}_{0}-\mathrm{A}_{2}$ Address pins.
$A_{0} /$ SEN	30	In RA mode it is the LSB of the character Address. In SA mode it is used for cascading display driver/controllers for displays of more than 8 characters (active high enables driver controller).
$\mathrm{A}_{1} / \overline{\text { CleaR }}$	29	In RA mode this is the second bit of the address. In SA mode, a low input will CLeaR the Serial Address Counter, the Data Memory and the display.
A $_{2} /$ DISPlay FULL	28	In RA mode this is the MSB of the Address. In SA mode, the output goes high after eight entries, indicating DISPlay FULL.
OSC/OFF	27	OSCillator input pin. Adding capacitance to V_{DD} will lower the internal oscillator frequency. An external oscillator is also applied to this pin. A low puts the display controller/driver into a quiescent mode, shutting OFF the display and oscillator but retaining data stored in memory.
SEG $_{\mathrm{a}}-\mathrm{SEG}_{\mathrm{m}}$, D.P.	$\begin{gathered} 2-9(7), \\ 32-40 \end{gathered}$	SEGment driver outputs.
CHARacter 1-8	$\begin{aligned} & 18-21, \\ & 23-26 \end{aligned}$	CHARacter driver outputs.

DETAILED DESCRIPTION

$\overline{\mathbf{W R}}, \overline{\mathbf{C S}}, \mathbf{C S}$. These pins are immediately functionally ANDed, so all actions described as occurring on an edge of $\overline{W R}$, with CS and $\overline{\mathrm{CS}}$ enabled, will occur on the equivalent (last) enabling or (first) disabling edge of any of these inputs. The delays from CS pins are slightly (about 5ns) greater than from $\overline{W R}$ or $\overline{\mathrm{CS}}$ due to the additional inverter required on the former.

MODE. The MODE pin input is latched on the falling edge of $\overline{W R}$ (or its equivalent, see above). The location in Data Memory where incoming data will be placed is determined either from the Address pins or the Serial Address Counter, under control of this latch, which also controls the function of $A_{0} / S E N, A_{1} / \overline{C L R}$, and $A_{2} / D I S P l a y ~ F U L L . ~$

Random Access Mode. When the internal mode latch is set for Random Access (RA) (MODE latched low), the Address input on A_{0}, A_{1} and A_{2} will be latched by the falling
edge of $\overline{W R}$ (or its equivalent). Subsequent changes on the Address lines will not affect device operation. This allows use of a multiplexed 6-bit bus controlling both address and data, with timing controlled by $\overline{W R}$.

Serial Access Mode. If the internal latch is set for Serial Access (SA), (MODE latched high), the Serial ENable input on SEN will be latched on the falling edge of $\overline{W R}$ (or its equivalent). The $\overline{C L R}$ input is asynchronous, and will forceclear the Serial Address Counter to address 000 (CHARacter 1), and set all Data Memory contents to 100000 (blank) at any time. The DISPlay FULL output is always active in SA mode also, and indicates the overflow status of the Serial Address Counter. If this output is low, and SEN is (latched as) high, the contents of the Counter will be used to establish the Data Memory location for the Data input. The Counter is then incremented on the rising edge of $\overline{W R}$. If SEN is low, or DISPlay FULL is high, no action will occur.

This allows easy 'daisy-chaining' of display drivers for multiple character displays in a Serial Access mode.

Changing Modes. Care must be exercised in any application involving changing from one mode to another. The change will occur only on a falling edge of $\overline{W R}$ (or its equivalent). When changing mode from Serial Access to Random Access, note that A_{2} /DISPlay FULL will be an output until $\overline{W R}$ has fallen low, and an Address drive here could cause a conflict. When changing from Random Access to Serial Access, $A_{1} / \overline{\mathrm{CLR}}$ should be high to avoid inadvertent clearing of the Data Memory and Serial Address Counter. DISPlay FULL will become active immediately after the falling edge of $\overline{W R}$.

Data Entry. The input Data is latched on the rising edge of WR (or its equivalent) and then stored in the Data Memory location determined as described above. The six Data bits can be multiplexed with the Address information on the same lines in Random Access mode. Timing is controlled by the $\overline{W R}$ input.

OSC/OFF. The device includes a one-pin relaxation oscillator with an internal capacitor and a nominal frequency of 200 kHz . By adding external capacitance to V_{DD} at the OSC/OFF pin, this frequency can be reduced as far as desired. Alternatively, an external signal can be injected on this pin. The oscillator (or exiernal) frequency is pre-divided by 64, and then further divided by 8 in the Multiplex Counter, to drive the CHARacter strobe lines (see Display Output). An intercharacter blanking signal is derived from the predivider. An additional comparator on the OSC/ $\overline{O F F}$ input
detects a level lower than the relaxation oscillator's range, and blanks the display, disables the DISPlay FULL output (if active), and clears the pre-divider and Mutliplex Counter. This puts the circuit in a low-power-dissipation mode in which all outputs are effectively open circuits, except for parasitic diodes to the supply lines. Thus a dispiay connected to the output may be driven by another circuit (including another ICM7243) without driver conflicts.
Display Output. The address output of the Multiplex Counter is multiplexed into the address input of the Data Memory, except during $\overline{W R}$ operations (in Serial Access mode, with SEN high and DISPlay FULL low), to control display operations. The address decoder also drives the CHARacter outputs, except during the inter-character blanking interval (nominally about $5 \mu \mathrm{~s}$). Each CHARacter output lasts nominally about $300 \mu \mathrm{~s}$, and is repeated nominally every 2.5 ms , i.e., at a 400 Hz rate (times are based on internal oscillator without external capacitor).

The 6 bits read from the Data Memory are decoded in the ROM to the 17 (15 for ICM7243B) segment signals, which drive the SEGment outputs. Both CHARacter and SEGment outputs are disabled during $\overline{W R}$ operations (with SEN high and DISPlay FULL Low for Serial Access mode). The outputs may also be disabled by pulling OSC/ $\overline{O F F}$ low.

The decode pattern from 6 bits to 17 (15) segments is done by a ROM pattern according to the ASCII font shown. Custom decode patterns can be arranged, within these limitations, by consultation with the factory.

APPLICATIONS

Figure 9: Multicharacter Display using Serial Access Mode

APPLICATIONS (CONT.)

AF032201
Figure 10: Driving Two Rows of Characters from a Serial Input.
UART converts data stream to parallel bytes. Bit 7 of each word sets which row data will be entered into. Bit 8 will blank and reset whole display if low. Each MODE pin should be tied high. ICM7243A can also be used, with inverter on RBR7 for one row.

COMPONENT SELECTION

Displays suitable for use with the ICM7243 may be obtained from the following manufacturers; among others:

Hewlett Packard Components, Palo Alto, California (415) 857-6620 (part \#HDSP6508, HDSP6300)

General Instruments Inc., Palo Alto, California (415) 4930400 (part \# MAN2815)

Texas Instruments Inc., Dallas, Texas (214) 995-6611 (part \#HDSP6508)
A.N.D., Burlingame, California (415) 347-9916 (part \# AND370R)

IEE Inc., Van Nuys, California (213) 787-0311 (part \# LR3784R)

Figure 11：Random Access 32－Character Display in IM80C48 system．
One port line controls A_{2} ，other two are CS lines．8－bit data bus drives 6 data and 2 address lines． MODE should be GrouNDed on each part．

DS02250

DS022601
（5a．）Common Cathode Displays Figure 12：Driving Large Displays．

The circuits of Figures 12 a and 12 b can be used to drive $0.5^{\prime \prime}$ or larger alphanumeric displays，either common cathode（12a）or common anode（12b）．

GENERAL DESCRIPTION

The ICM7280 is designed to provide a complete microprocessor interface for an 80-character alphanumeric LCD display system. It includes a character generator, display voltage generator and resistor string, row drivers, and control circuitry. Interface to a host microprocessor is achieved through either a multiplexed or non-multiplexed parallel bus.
The ICM7280 is designed to offload all display-related tasks from the host microprocessor and to provide an easy-to-program software interface. Since the internal circuitry operates at full microprocessor speeds, there is no waiting for completion of internal operations. Testing of a "Busy" flag, when characters or commands are written, is not required.

Character data can be loaded with an auto-incremented cursor or in a random-access mode. Versatile control functions allow all or selected portions of the display to be underlined, blinked, blanked, or displayed in reverse video. Display start offset and power-down features are provided, and both an underline and a blinking-box cursor are available.
The ICM7280 can display four user-defined characters in addition to the standard 96 ASCII upper and lower-case characters and 14 European and graphics characters.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7280AIPL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 -Pin Plastic DIP
ICM7280AIJL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 -Pin CERDIP
ICM7280A/D	-	DIE
ICM7280BIPL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 -Pin Plastic DIP
ICM7280BIJL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 -Pin CERDIP
ICM7280B/D	-	DIE

FEATURES

- 80 Character Wide Display Memory - Directly Drives 10 ICM7281 Column Drivers
- High Speed $\mu \mathrm{P}$ Interface
- ICM7280A: Intel, Zilog Compatible - ICM7280B: Motorola, Rockweil Compatible
- 120 Character Font With Multiple Attributes - Underline, Cursor, Blinking, Reverse
- 4 User Definable Characters
- Versatile Character Font Matrix - 5 or 6 Columns By 7 to 10 Rows
- High Speed Internal Architecture - No Busy Flag Needed

APPLICATIONS

- Battery Hand-Held Terminals
- Portable Computers
- Instrument Control Panels
- LCD Display Modules

Figure 1: Pin Configuration

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range $\ldots-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

Power Dissipation............................. 500 mW @ $70^{\circ} \mathrm{C}$
Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

AC CHARACTERISTICS
$\left(V_{D D}=5.0 \mathrm{~V} \pm 10 \%, T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DISP}}=\mathrm{V}_{\mathrm{DD}}-8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise specified. $)$

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IIL	Input Leakage	Address/Data pins high impedance $0<V_{\mathbb{N}}<V_{D D}$	-10		+ 10	$\mu \mathrm{A}$
Iss	Supply Current	Osc open ckt, $\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$			2.5	mA
Istay	Shutdown Current	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$			100	$\mu \mathrm{A}$
V SUPP	Operating Voltage Range		4.5		5.5	V
fosc	Osc. Frequency	Osc. open ckt.	0.2		1.0	MHz
Serial Outputs						
V_{OL}	Output Voltage, Low	$\mathrm{IOL}=1 \mathrm{~mA}$			1.0	V

® ICM7280

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VOH	Output Voltage, High	$1 \mathrm{OH}=1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-1.0$			V
Data I/O, μ P Interface Inputs						
VOL	Output Voltage, Low	$\mathrm{IOL}=1.6 \mathrm{~mA}$			0.4	V
V_{OH}	Output Voltage, High	$\mathrm{IOH}^{\prime}=400 \mu \mathrm{~A}$	2.4			V
$\mathrm{V}_{\text {IL }}$	Input Voltage, Low				0.8	V
V_{IH}	Input Voltage, High		3.0			V
Row Driver Outputs						
Ron	Output Resistance, ON	$\mathrm{D}_{\text {CONT }}$ high, $\mathrm{V}_{0}=\mathrm{V}_{\text {DISP }}+0.5 \mathrm{~V}$ DCONT low, $V_{0}=-0.5 \mathrm{~V}$			1	$k \Omega$
ROFF	Output Resistance, OFF	$\mathrm{D}_{\text {CONT }}$ high, $\mathrm{V}_{0}=\mathrm{V}_{4} \pm .5 \mathrm{~V}$ $\mathrm{D}_{\text {CONT }}$ low, $\mathrm{V}_{0}=\mathrm{V}_{1} \pm 0.5 \mathrm{~V}$			2.5	k Ω
V_{1}		DCONT high	-1.5	-1.0	0.5	V
$\mathrm{V}_{2}, \mathrm{~V}_{3}$			0.5	1.0	1.0	V
V_{4}		DCONT low	2.5	3.0	3.5	V

AC CHARACTERISTICS (See Timing Diagram)

$\left(V_{D D}=5.0 \mathrm{~V} \pm 10 \%, V_{D I S P}=0 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$, unless otherwise specified. $)$

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Serial Output Timing						
$\mathrm{T}_{\text {scdl }}$	Prop. Delay SclK to DLAT				200	ns
$\mathrm{T}_{\text {scdo }}$	Prop Delay Sclk to DOUT				400	ns
Microprocessor Interface						
TLL	ALE/AS Pulse Width, High	,	55			ns
$\mathrm{T}_{\text {AL }}$	Address to ALE Setup time		30			ns
Tla	Address to ALE Hold Time	;	30			ns
Intel/Zilog Option (ICM7280A)						
T_{ad}	Address Setup Time		50			ns
$\mathrm{T}_{\text {ah }}$	Address Hold Time		30			ns
T_{wl}	WRITE Pulse Width, Low	.	100			ns
$T_{d w}$	Data to WRITE Setup Time		150			ns
$T_{\text {wd }}$	Data to WRITE Hold Time		30			ns
$\mathrm{T}_{\text {rd }}$	READ to Valid Data				550	ns
$T_{\text {rx }}$	READ to Data Hold Time				150	ns
Tasd	ALE Setup Time		60			ns
Motorola/Rockwell Option (ICM7280B)						
Tad	Address to E Setup Time		50			ns
$\mathrm{T}_{\text {ah }}$	Address to E Hold Time		30			ns

AC CHARACTERISTICS (See Timing Diagram) (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$T_{e e}$	E Pulse Width, High		200			ns
$T_{d w}$	Data to E Setup Time		100			ns
$T_{w d}$	Data to E Hold Time		30			ns
$T_{r d}$	E to Valid Data	$T_{e e}=400 \mathrm{~ns}$			550	ns
$T_{r x}$	E to Data Hold Time				150	ns
$T_{\text {asd }}$	E to AS Setup Time		60			ns

WRITE CYCLE TIMING ($\overline{\mathrm{RD}}=\mathbf{" 1}$ ")

D0-D7, A0-A6

WF031501
READ CYCLE TIMING ($\overline{W R}=$ " 1 ')

Figure 3: ICM7280A Timing Diagrams (Multiplexed Operation)

Figure 4: ICM7280A Timing Diagrams (Non-Multiplexed Operation)

WRITE CYCLE TIMING (AS = "1")

READ CYCLE TIMING (AS = " 1 ")

Figure 5: ICM7280B Timing Diagrams (Non-Multiplexed Operation)

WRITE CYCLE TIMING

READ CYCLE TIMING

Figure 6: ICM7280B Timing Diagrams (Multiplexed Operation)

Figure 7: ICM7280 Serial Output Timing Diagram

Table 1: Pin Descriptions

SIGNAL	PIN	DESCRIPTION
ROW10-1	1-10	LCD row drivers
Dout	11	Serial data
V DISP	12	Negative LCD supply voltage
V2, V3	13, 14	LCD column voltage
DCONT	15	Column driver control output
$\mathrm{S}_{\text {CLK }}$	16	Serial data clock output
DLAT	17	Row data latch output
Vinv	18	Negative voltage generator clock
OSC	19	Oscillator input
$V_{S S}$	20	Digital ground
D0-D7	28-21	Data I/O
$\begin{array}{\|l} \hline \overline{\mathrm{RD}}(7280 \mathrm{~A}) \\ \mathrm{E}(7280 \mathrm{~B}) \end{array}$	$\begin{aligned} & 29 \\ & 29 \end{aligned}$	Read input Enable input
$\begin{array}{\|l} \hline \overline{\mathrm{WR}}(7280 \mathrm{~A}) \\ \mathrm{R} / \overline{\mathrm{WR}}(7280 \mathrm{~B}) \end{array}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	Write input Read/write input
$\begin{array}{\|l} \text { ALE(7280A) } \\ \text { AS(7280B) } \end{array}$	$\begin{aligned} & 31 \\ & 31 \end{aligned}$	Address latch enable Address strobe
$\overline{\mathrm{CS}}$	32	Chip select input
A0-A6	39-33	Address inputs
$V_{D D}$	40	Positive digital and LCD supply voltage

DETAILED DESCRIPTION

Hardware Interface

Figure 1 is a simplified block diagram of the ICM7280. It is a dedicated hardware IC and the speed of data entry and command processing is limited only by gate delays. Unlike other display controllers, the ICM7280 will not "go busy" for milliseconds at a time while processing data or commands.

Microprocessor Bus Interface

There are two versions of the ICM7280. The ICM7280A has $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pins, as well as ALE and $\overline{\mathrm{CS}}$. This version can be interfaced to standard multiplexed or non-multiplexed data buses of parts such as the $8085, \mathrm{Z80}, 8088$ and other microprocessors. The ICM7280B has R/W, E and AS pins instead of $\overline{W R}$ and $\overline{R D}$ and ALE. The ICM7280B is intended for use on 6800 and 6500 family buses.

To use the ICM7280 on a multiplexed bus, tie the AO-A6 lines to the DO-D6 lines and ALE/AS driven with the system address latch enable or strobe signal. For a non-multiplexed bus, AO-A6 should be connected to the least significant address lines, D0-D7 connected to the data bus and ALE/ AS tied high. The only external circuitry needed is a chip select or address decoder. The ICM7280 uses an address space of 128 bytes.

ICM7281 Data Interface

The ICM7280 Row Drivers require ICM7281 Column Drivers to operate an LCD display. Three lines are used to load data serially into the ICM7281 column drivers, DOUT, SCLK, and DLAT. The data is latched and shifted with each negative going edge of SCLK, and the data is transferred from the ICM7281 shift register to its latches with the negative going edge of $D_{\text {LAT }}$. The frequency of the $\mathrm{S}_{\text {CLK }}$ is set by the oscillator frequency of the ICM7280 and is normally about 600 kHz .

Oscillator

The ICM7280 oscillator will free run at 600 kHz in die form, when not loaded with any capacitance. With 15pF of external capacitance at pin 19, the frequency will be about 250 kHz . Figure 8 shows the relationship between oscillator period and the value of $\mathrm{C}_{\text {external }}$. Table 1 shows the relationship between the oscillator frequency and various display system signals and features. Standard CMOS logic gates can be used to overdrive the oscillator to control frequency. A suitable frequency can also be derived by dividing down the host processor's clock.

Table 2: ICM7280 Display System Frequencies

SIGNAL NAME	FREQUENCY	COMMENTS
SCLK	OSC	Sets data transfer rate to ICM7281 column drivers
DLAT $^{\text {Display Control }}$	OSC/M	Once per row multiples period.
LCD Multiplex Freq.	OSC/M	
Blink Rate	OSC/(N×M×2)	Should be above 30Hz to avoid flicker.
$V_{\text {INV }}$	OSC/(N×M×64)	Blink rate for blinking cursor and blinking characters

NOTES: Where $\mathrm{N}=$ number of rows $-7,8,9$, or 10 .
$M=80 \times$ number of columns (5 or 6) per character. Add 14 if annunciators enabled.
Table 3: ICM7280 Memory Map

ADDRESS		FUNCTION
DECIMAL	HEX	
$0-79$	$00 \mathrm{H}-4 \mathrm{FH}$	Character RAM. Loaded with ASCII data characters to be displayed. Address 0 is the leftmost character (assuming the Preset Display Position Register is 0.)
$80-119$	$50 \mathrm{H}-77 \mathrm{H}$	Font RAM. Holds bit pattern for four user-definable characters. See Table 4.
120	78 H	Instruction register 0 (IR0)
121	79 H	Instruction register 1 (IR1)
122	7 AH	Instruction register 2 (IR2)
123	7 BH	Cursor Register (IR3)
124	7 CH	Preset Display Position Register (IR4)
125	7 DH	Annunciator Register 1 (AR1)
126	7 EH	Annunciator Register 2 (AR2)
127	7 FH	Cursor-Addressed Entry Register

NOTE: See Table 6 for more detail about addresses 120-127 (78H-7FH).

Display Interface

The ICM7280 will support a dot matrix LCD display which has $7,8,9$, or 10 rows, and either evenly-spaced columns or a space after every fifth column. If the display has evenlyspaced columns, then 6 columns per character should be selected and the sixth column is always blank. If the display provides a blank after every fifth column, then 5 columns per character should be selected. The character font is automatically changed to take advantage of all rows. The ICM7280 will automatically use one of the 6 evenly-spaced columns for a space.

The ICM7280 can drive LCD displays with threshold voitages up to 2.5 volts. There is no minimum display threshold voltage since $V_{\text {DISP }}$ can be above $V_{\text {SS }}$.

The ICM7280 also has 10 onboard row drivers designed to handle large dot matrix displays. These drivers provide fast slew rates, and have a minimum offset voltage.

Figure 9: ICM7280 VDISP Temperature Compensation Circuit

Display Voltage Generator

The ICM7280 not only has an onboard resistor string to generate the required $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$, and V_{4}, but also has an output that assists in generating a negative voltage for $V_{\text {DISP. }}$ The VINV pin is a low-impedance output that swings from $V_{D D}$ to $V_{S S}$ at the oscillator frequency. The circuit of Figure 9 connected to the VINV pin generates a tempera-ture-compensated $V_{\text {DISP. }}$. Diodes D_{1} and D_{2}, with capacitors C_{1} and C_{2} form a charge-pump negative voltage generator. The ICL7611 CMOS op-amp and its associated circuitry form an adjustable temperature compensated voltage source that provides $V_{\text {DISP }}$ to the ICM7280, as well as the ICM7281 column drivers. Temperature compensation for $V_{\text {DISP }}$ is necessary because the threshold voltage of LCD fluids have a pronounced negative tempco.

SOFTWARE INTERFACE

Table 3 provides a memory map of the ICM7280. The ICM7280 uses 128 bytes of memory space: 80 bytes for character data storage, 2 bytes for 14 independent annunci-
ators or flags, 40 bytes for storing 4 user-programmable characters, 5 bytes for control registers, and one dummy address to identify cursor-addressed character entry.

Character RAM

Data may be entered in a random-access mode by simply writing to the desired character address. Address 0 corresponds to the leftmost character of the display, and address 79 corresponds to the rightmost character (assuming the Preset Display Position register has been loaded with a 0). Block moves or other high-speed data transfers can be used to move data from the host system's RAM or ROM to the ICM7280's character RAM. Character data format is standard ASCII for the 96 upper and lower case characters, with the eighth data bit ignored. As shown in Figure 10, the ICM7280 Character Font Table, the display controller also recognizes three special control characters and 14 additional European and graphics characters. The characters 08 through 17 are alternate lower case characters that are used with 8,9 , and 10 row displays.

Figure 10: ICM7280 Character Font

Table 4: Font RAM for User-Definable Characters

ROW	ASCII CHARACTER 0 FONT ADDRESS		ASCII CHARACTER 1 FONT ADDRESS		ASCII CHARACTER 2 FONT ADDRESS		ASCII CHARACTER 3 FONT ADDRESS	
	Decimal	Hex	Decimal	Hex	Decimal	Hex	Decimal	Hex
Row 1 (top row)	80	50 H	90	5AH	100	64H	110	6EH
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
Row 7	86	56 H	96	60 H	106	6AH	116	74 H
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
Row 10 (bottom row)	89	59 H	99	63 H	109	6DH	119	77H

Font RAM

In addition to the 120 characters available in the built-in character ROM, 4 characters may be user-defined. Table 4 shows the mapping between the Font RAM and the userdefined character font. An example of an additional character is provided in Figure 11. Note that addresses 80-119 ($50 \mathrm{H}-77 \mathrm{H}$) hold 5 bit words that correspond to the bit pattern of the four user-definable characters, such that each 5 bit word defines the pattern for one row of the character. The LSB corresponds to the right-hand dot. Each character uses 10 words, with the lowest address representing the top row. Once defined, these characters are treated the same as the predefined characters from the Font ROM. Enter ASCII data 0, 1, 2, or 3 into Character RAM to call up one of those characters.

Instruction and Annunciator Registers

Table 5 details the bit assignments of the control registers. All registers are write-only registers.

Attributes are enabled by bit 5 of Instruction Register IR2, at address 122 (7AH). Blinking, underlined, and reverse video characters are controlled by attribute characters in the character RAM. These attribute characters are displayed as blanks, but signal the ICM7280 that the characters to the right of the attribute character are to be displayed with one of the three attributes ($5=$ underline, $6=$ reverse video, and $7=$ blinking). Each attribute is cancelled by a second occurence of the attribute character. The entire display can be blinked or blanked by setting the appropriate bits in IRO.

Table 5: ASCII Character 0 Example

	Font Address		Data	
Row	Decimal	Hex	Decimal	Hex
1	80	50 H	5	05 H
2	81	51 H	14	0 EH
3	82	52 H	21	15 H
4	83	53 H	14	0 EH
5	84	54 H	21	15 H
6	85	55 H	14	0 EH
7	86	56 H	21	15 H
8	87	57 H	4	04 H
9	88	58 H	4	04 H
10	89	59 H	14	0 EH

The starting point of the display can be offset by changing the value stored in IR4, the Preset Display Position Register, at address 124 (7 CH). The number in this register (usually 0) specifies the address of the character in character RAM that will appear at the leftmost position on the display. For example, a 5 in this register causes the sixth character in the RAM to be displayed at the left end of the display. The Preset Display Position Register can be loaded with a value, or it can be incremented and decremented by writing to bits 2 and 3 of IR2, address 122 (7AH). The Preset Display Position Register will automatically wrap around from 79 to 0 when incremented, and wrap around from 0 to 79 when decremented past 0 .

CAUTION: If a number greater than 79 is loaded into the Preset Display Position Register, display multiplexing stops. The LCD can be damaged if left in this condition for an extended period of time.

The Cursor Register determines the location of the cursor on the display, depending upon value in the Preset Display Position Register. If for example, the Cursor Register is set to 5 and the Preset Display Register is set to 0 , the cursor will then be displayed in the 6th character of the display. If, however, the Cursor Register is set to 14 and the Preset Display Position Register is also set to 14, then the cursor will be displayed in the leftmost character position. If data is written to address 127 (7FH), the data is entered at the current location of the cursor and the cursor position is incremented. The cursor position may be directly set by writing to Cursor Register address 123 (7BH). The cursor
may also be incremented or decremented by writing the appropriate instructions to IR2 at address 122 (7AH). The cursor location will wrap around from 79 to 0 or vice versa when incremented or decremented. A number greater than 79 written to the Cursor Register causes no cursor to be displayed, but the ICM7280 will otherwise function normally. If bit 4 of IR1 at address $121(79 \mathrm{H})$ is at " 1 ", then all characters to the right of the cursor are blanked but the data in the character RAM is retained.

The IRO register is a bit set/reset register. The MSB selects either set (1) or reset (0) operation. A ' 1 ' in any other bit position selects that bit to be set/reset. For example, a bit pattern of 10011001 will set bits 0,3 and 4 , while a bit pattern of 00010000 will clear bit 4 . Unselected bits are not affected.

The Annunciator Registers are bit set/reset registers that operate similarly to IRO. When used with the ICM7281 column drivers, bit 0 of Annunciator Register 1 will be the last bit shifted out, and will appear at the column 1 output of the ICM7281. Bit 6 of Annunciator Register 2 is the first annunciator bit to be shifted out, and will appear on column 14 of the ICM7281. The annunciator outputs, if enabled, appear on all rows in columns 1-14. Annunciators are enabled by bit 7 at IR1.

Bit 6 of instruction register 2 resets all instruction registers and annunciator registers, as well as the Cursor Register and Preset Display Position Register. Bit 6 of Instruction Register 2 also resets and stops the display multiplex and blink counters.

All register bits except bit 6 of IR2 are reset upon powerup. Since bit 6 of IR2 is indeterminate at power-up, and the instruction registers cannot be written to while bit 6 is set, the initialization routine should first clear bit 6 before the other registers of the ICM7280 display controller, are accessed. When normal operation resumes after bit 6 of IR2 is cleared, the attributes will be off, the cursor will be present at 0 , and the 5×7 character format will be engaged.

CAUTION: The ICM7280 should not be left in the reset mode for extended periods, because in this condition there is a DC bias on the liquid crystal display which can permanently damage it.

80 CHARACTER LIQUID CRYSTAL DISPLAY SYSTEM

Figure 10 shows a complete 80 character Intel/Zilog compatible display system without annunciators. The ICM7280A receives ASCII character data from the host microprocessor, converts it to a serial data stream for the ICM7281 column drivers, and provides the row drive voltages and overall display system timing and control. The power consumption of this display system is typically 6 milliwatts during normal operation and 5 microwatts when shutdown (but retaining data and control setup).

If less than 80 characters are desired, the ICM7281's that would normally drive the right-hand characters of the display may be left out. This means that an 80 character display module and a module with fewer characters can have exactly the same hardware and software interface, except that extra ICM7281's are missing from the module with fewer characters.

The Preset Display Position Register is most useful when the LCD system has fewer than 80 characters. For example, if the display has only 16 characters, all 80 characters stored in RAM can be displayed by first setting the Preset Display Position Register to 0 , waiting 2 seconds, setting it to 16, waiting 2 seconds, and so forth, on up through a character preset of 64 . The host processor would need to do just one write of the data and then use one command to write to the Preset Display Position Register. This requires much less time than shifting all of the data around byte by byte. Another use of the preset display feature is to implement a character-by-character scroll. Each time the Preset Display Position Register is incremented by one, the displayed characters will shift left one character position.

Table 6: Instruction and Annunciator Registers

120 Decimal 78 Hex	Instruction Register 0 IRO
$\begin{aligned} & \text { D7 } \\ & \text { D6 } \\ & \text { D5 } \\ & \text { D4 } \\ & \text { D3 } \\ & \text { D2 } \\ & \text { D1 } \\ & \text { D0 } \end{aligned}$	1 = SET 0 = RESET 1 = Blank Display $1=$ Blink Display 1 = Cursor Enabled 1 = Power Down Mode unassigned, set to 0 SET to 0 $0=$ Normal Operation, $1=$ Test Mode
121 Decimal 79 Hex	Instruction Register 1 IR1
$\begin{gathered} \text { D7 } \\ \text { D6 } \\ \text { D5 } \\ \text { D4 } \\ \text { D3 } \\ \text { D2 } \\ \text { D1, D0 } \end{gathered}$	1 = Enable Annunciators $1=$ Blinking Box Cursor $0=$ Underline Cursor $1=$ Blank characters to the right of the cursor $1=6$ columns per character $0=5$ columns per character $1=$ All on test mode. All dots and annunciators turned on. unassigned, set to 0 Controls number of rows per character, according to the following table:
122 Decimal 7A Hex	Instruction Register 2 IR2
$\begin{gathered} \text { D7 } \\ \text { D6 } \\ \text { D5 } \\ \text { D4 } \\ \text { D3, D2 } \\ \\ \\ \\ \text { D1, D0 } \end{gathered}$	Production test mode only. Must be set to 0 . $1=$ Resets all registers. See test on previous page. 1 = Enable Attributes unassigned, set to 0 Preset Display Position Increment/Decrement $\mathrm{D}_{3} \mathrm{D}_{2}$ Control Bit Designators $0 \quad 0$ No operation 01 Decrement Preset Display Position Register $1 \quad 0$ Increment Preset Display Position Register 11 Increment Preset Display Position Register See the following table: $\frac{\mathrm{D}_{1}}{}$ D_{0} Control Bit Designators 0 0 0 1 No operation 1 0 Decrement Cursor Register 1 1 Increment Cursor Register 1 Increment Cursor Register
123 Decimal 7B Hex	Cursor Register IR3
This register specifies the address of the cursor using a 7 bit value in the range of $0-79$ decimal, $0-4 \mathrm{~F}$ hexadecimal. The location of the cursor on the display is determined by both the Cursor Register and the Preset Display Position Register. The eighth bit is ignored.	
124 Decimal 7C Hex	Preset Display Position Register IR4
The Preset Display Position Register is normally set to 0 . If set in the range of 0 to 79 , the character at that address appears in the leftmost location on the display.	
125 Decimal 7D Hex	Annunciator Register 1 AR1
126 Decimal	Annunciator Register 2 AR2
The 7 LSBs of each annunciator register (D0-D6) each control one annunciator. To set, write a 1 to the MSB and a 1 to the bits to be set. To clear, write a 0 to the MSB and a 1 to the bits to be cleared. The annunciators will appear left to right AR1:D0 to D6 then AR2:D0 to D6.	
127 Decimal 7F Hex	Cursor-Addressed Entry
When character data is written to this address, the data is loaded into the character RAM using the Cursor Register as a pointer and the Cursor Register is incremented.	

ICM7281
 40-Column LCD Dot Matrix Display Driver

GENERAL DESCRIPTION

The ICM7281 LCD Dot Matrix Column Driver is designed to convert a serial data stream into drive signals for a multiplexed dot matrix LCD. Easily cascadable, up to 16 ICM7281's can be driven by one ICM7280 Intelligent Row Driver to make an 80 character dot matrix display. The ICM7281 also serves as both a Row Driver and Column Driver in LCD dot matrix graphics displays. The low output resistance and the 15 V drive capability make it well suited for graphics displays with up to 256×256 dots (with 10 pF / dot capacitance).
The ICM7281 consists of a 40 bit shift register, a 40 bit latch and 40 level-shifters/drivers. The 4 display drive voltages are generated externally, usually by a Row Driver. A serial data interface is used to minimize the number of pins needed for digital interfacing. A data Carry Output is included for cascading several ICM7281's to drive large LCD displays.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7281IPL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 -Pin PLASTIC DIP
ICM7281IJL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40-Pin CERDIP
ICM7281/D	-	DICE

FEATURES

- 40 High Voltage LCD Column Drive Outputs
- Easy Interface -Serial Input Shift Register with Parallel Latch and Carry Outputs
- Directly Compatible with ICM7280 Row Driver - Up to 16 ICM7281's can be Driven by an ICM7280 with No External Components
- Low Resistance Outputs
- Can Drive Both Columns and Rows of LCD Graphics Displays
- Will Drive 1.5V Threshold LCDs with Only Single 5V Supply
- Can Drive Up to 4.5V Threshold LCDs with 15 V VISP

APPLICATIONS

- Column Drivers For Dot Matrix Alphanumeric Displays Using ICM7280 Row Driver
- Row and Column Drivers For LCD Dot Matrix Graphics Displays
- Segment Driver For LCD Bargraphs and Annunciators
- Serial Input I/O Expander

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD $-\mathrm{V}_{\mathrm{SS}}$) 6 V
Display Voltage (VDD - VDISP)
V_{2}, V_{3} \qquad
\qquad
\qquad $V_{\text {DISP }}$ to $V_{D D}$ Input Voltage (Note 1) $\ldots .$. ($\mathrm{V}_{\text {SS }}-0.3 \mathrm{~V}$) to ($\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$)

Power Dissipation (Note 2)0.3W @ $+85^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots \ldots . .40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 1: Due to the SCR structure inherent in any junction isolated CMOS device, connecting an input to any voltage greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latch-up. If the input voltage can exceed the recommended range, the input should be limited to less than 1 mA to avoid latch-up.

NOTE 2: This limit refers to that of the package and will not occur during normal operation.
ELECTRICAL CHARACTERISTICS $\left(V_{D D}=5 V, V_{D I S P}=-10 V, V_{2}=1 / 3\left(V_{D D}-V_{D I S P}\right) . V_{3}=2 / 3\left(V_{D D}-V_{D I S P}\right)\right.$, $V_{S S}=0 V, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Unless otherwise specified.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY CHARACTERISTICS						
V SUPP	Operating Supply Range		4.5	5.0	5.5	V
$\mathrm{V}_{\text {DISP }}$	Display Voltage		-10		VDD	V
ISTBY IDD	Supply Current Quiescent Dynamic	$\begin{aligned} & \mathrm{F}_{\text {CLK }}=0 \\ & \mathrm{~F}_{\text {CLK }}=500 \mathrm{kHz} \end{aligned}$		$\begin{gathered} .1 \\ 500 \end{gathered}$	$\begin{gathered} 10 \\ 1000 \end{gathered}$	$\mu \mathrm{A}$
INPUT CHARACTERISTICS						
V_{iH}	Logic 1 Input Range	DATA INPUT, DATA LATCH, CLOCK and DISPLAY CONTROL	$0.7 V_{D D}$			V
$\mathrm{V}_{\text {IL }}$	Logic 0 Input Voltage	DATA INPUT, DATA LATCH, CLOCK and DISPLAY CONTROL			$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
IN	Input Current	DATA INPUT, DATA LATCH, CLOCK and DISPLAY CONTROL $0<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{DD}}$	-10	0.01	$+10$	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	DATA INPUT, DATA LATCH, CLOCK and DISPLAY CONTROL Dice Plastic Packaged Parts		$\begin{aligned} & 3 \\ & 5 \end{aligned}$		pF
OUTPUT CHARACTERISTICS, CARRY OUTPUTS						
V_{OH}	Output High Voltage	$\mathrm{IOH}=400 \mu \mathrm{~A}$	2.4			V
V_{OL}	Output Low Voltage	$1 \mathrm{OL}=1.6 \mathrm{~mA}$			0.4	V
OUTPUT CHARACTERISTICS, COLUMN OUTPUTS						
ROUT1	Output Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{DISP}}=10 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OUT}}=0.1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{COL}}=0 \mathrm{~V}, 1 \text { Column } \mathrm{ON} \\ & \hline \end{aligned}$		1.5	3	$\mathrm{k} \Omega$
Rout2	Output Resistance	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{DISP}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=0 \mathrm{~V}$ IOUT $=0.05 \mathrm{~mA}$ per Column All Columns ON		200	400	Ω
T_{R}	Column Rise Time	$V_{D D}-V_{D I S P}=10 \mathrm{~V}, C_{L}=150 \mathrm{pF}$ per Column, $0-63 \%$ V3 to $V_{D D}$ or $0-63 \%$ V2 to $V_{\text {DIS }}$ One Column ON All Columns ON		$\begin{aligned} & 0.3 \\ & 1.5 \end{aligned}$		$\mu \mathrm{s}$
TF	Column Fall Time	$\begin{aligned} & V_{D D}-V_{D I S P}=10 \mathrm{~V}, C_{L}=150 \mathrm{pF} \\ & \text { per Column, } 0-63 \% V_{D D} \text { to } \mathrm{V} 3 \text { or } \\ & 0-63 \% \text { VDISP to } V 2 \\ & \text { One Column ON } \\ & \text { All Columns ON } \end{aligned}$		$\begin{aligned} & 0.3 \\ & 1.5 \\ & \hline \end{aligned}$		$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS (CONT.) $\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\text {DISP }}=-10 \mathrm{~V}, \mathrm{~V}_{2}=1 / 3\left(V_{D D}-V_{D I S P}\right) . V_{3}=2 / 3\right.$
$\left(V_{D D}-V_{\text {DISP }}\right), V_{S S}=0 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Unless otherwise specified.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
AC CHARACTERISTICS (See Timing Diagram)						
TDS	Data Setup		150	90		ns
TDH	Data Hold		10	-20		ns
TWH	Data Latch Width, High		250	100		ns
TWL	Data Latch Width, Low			500		
TLS	Data Latch Setup		400	250		ns
TLH	Data Latch Hold		0	-130		ns
FCLK	Clock Frequency		D.C.	2	1	MHz
TCH	Clock High Period		500	100		ns
TCL	Clock Low Period		500	150		ns
TPD	Carry Prop Delay	$C_{L}=15 \mathrm{pF}$		200	350	ns

Figure 3: Timing Diagram

TYPICAL PERFORMANCE CURVES, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.

Figure 4: Output Resistance vs. VDISPLAY

DETAILED DESCRIPTION

Data Interface
The data on DATA INPUT is shifted into the shift register with each falling edge of CLOCK. The data in the shift register is aiso shifted one bit with each falling edge of CLOCK. The data in the 20th and 40th registers is available as COL 20 OUTPUT and COL 40 OUTPUT on the ICM7281 dice. The packaged part has only one CARRY OUTPUT, which is the 30th column. These outputs are normaliy used as the DATA INPUT for an adjacent ICM7281.

The DATA LATCH input is used to transfer data from the shift register to the 40 bit latch, which consists of 40 negative edge-triggered D flip-flops. The data in the shift register is stored by the falling edge of DATA LATCH and this latched data will be held until the next falling edge of DATA LATCH.

The DISPLAY CONTROL pin is used to convey multiplex timing information to the Column Drivers. This input is used as one of the two control inputs to the 1 of 4 analog multiplexer that drives each column output.

LCD Interface

The ICM7281 uses a modified Alt and Pleshko multiplexing scheme, in which the Column Driver uses 4 voltages: $\mathrm{V}_{\mathrm{DD}}, \mathrm{V} 2, \mathrm{~V} 3$, and $\mathrm{V}_{\text {DISP }}$. These drive voltages are generated externally, usually by the ICM7280 Intelligent Row Driver. Each column output is driven by an analog multiplexer. The truth table and a schematic of this multiplexer are shown in Figure 7. The column data is the data that is serially loaded into the shift register, then parallel loaded into the data latch. The DISPL.AY CONTROL signal, generated by the ICM7280 Row Driver, tells the ICM7281 which half of the multiplex cycle is occuring.

80015201
Figure 5: Alphanumeric LCD Display System

Figure 6: ICM7281 Column Driver Used in a Graphics Application

Figure 7: Column Output Multiplexer and Truth Table

LCD MULTIPLEXING
 Multiplexing Schemes

The goal in LCD multiplexing is to increase the number of segments a given number of column lines can drive, while not unacceptably degrading the viewability of the LCD display. Increasing the number of rows driven by a column decreases the ratio between the voitage across an ON segment and the voltage across an OFF segment. This ON/OFF voltage ratio is critical since the contrast of an LCD segment is determined by the RMS voltage across that segment. Figure 8 shows a typical curve of contrast vs. RMS voltage. For an acceptable display, the RMS OFF voltage must be below the 10% contrast point and the RMS ON voltage must be above the 50% contrast point. The RMS on voltages for different multiplex ratios are also shown in Figure 8. Note that as the number of rows or backplanes goes up, the RMS ON voitage decreases.

The ICM7281 can drive either columns or rows using the modified Alt and Pleshko waveforms as shown in Figure 9. The ON/OFF voltage ratio formula and the calculated values for common multiplex ratios are shown in Table 1. Table II shows the optimum voltages for V1 to V5 for different multiplex ratios.

Temperature Effects and Temperature Compensation of VDISP

The performance of LCD fluids is affected by temperature in two ways. The response time of the display to changes in
applied RMS voltage gets longer as the display temperature drops. At very low temperatures some displays may take several seconds to change to a new character after the new information appears at the LCD driver outputs. However, for most applications above $0^{\circ} \mathrm{C}$ this will not be a problem, and for low temperature applications, high-speed liquid crystal materials are available. High temperature operation is generaliy limited by long term degradation of the polarizer and the sealing materials above $+70^{\circ} \mathrm{C}$ or $+85^{\circ} \mathrm{C}$.

The temperature effect most important in the $0-70^{\circ} \mathrm{C}$ range is the variation of threshold voltage with temperature. For typical liquid crystal materials, the threshold voltage, $V_{\text {THRESH }}$, has temperature coefficient of -7 to $-14 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Since the $V_{\text {DISP }}$ is 3.27 times $V_{\text {THRESH }}$ (for 7 row muitiplex, see Table 1), the $V_{\text {Disp }}$ has a tempco of about -25 to $-50 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, depending on LCD fluid tempco. As can be seen in Figure 8, for optimum viewability and contrast ratio, the driving voltage must be accurately matched to the LCD threshold voltage. If a significant variation in temperature is expected, a method of adjusting the VDISp must be provided. Figure 10 is a typical Temperature Compensation circuit using an ICL7660 negative voltage converter to give the required $V_{\text {DISP }}$ range, if necessary.

With the fluids now available for 32 and 64 multiplex operation it is quite common to have a ''Contrast' adjustment accessible to the user. This "Contrast" adjustment varies the VDISP to compensate for both temperature variations and for variations in the viewing angle.

Figure 8: Contrast Versus RMS Drive Voltage

Table 1：Optimum Multiplex Drive

ROWS	V ON／OFF	ALT AND PLESHKO $V_{\text {DD }}-V$ DISPLAY／VT	ICM／280／ICM／281 VOD $^{\prime}-V$ DISPLAY／V
4	1.73	4	3
7	1.488	4.74	3.27
8	1.447	4.97	3.37
9	1.414	5.20	3.46
10	1.387	5.41	3.56
12	1.346	5.81	3.74
14	1.315	6.18	3.917
16	1.290	6.532	4.08
32	1.196	8.817	5.19
64	1.134	12.01	6.804

Table 2：Optimum Drive Voitages

\mathbf{N}	$\mathbf{V 1}$	$\mathbf{V 2}$	$\mathbf{V 3}$	$\mathbf{V 4}$	$\mathbf{V 5}$	ON／OFF VOLTAGE RATIO
4	1.000	2.000	1.000	2.000	3.000	1.732
5	0.951	1.902	1.176	2.127	3.078	1.618
6	0.919	1.838	1.332	2.252	3.171	1.543
7	0.897	1.793	1.476	2.372	3.269	1.488
8	0.879	1.759	1.608	2.488	3.367	1.447
9	0.866	1.732	1.732	2.598	3.464	1.414
10	0.855	1.710	1.849	2.704	3.559	1.387
11	0.846	1.692	1.960	2.806	3.652	1.365
12	0.838	1.677	2.066	2.904	3.743	1.346
16	0.816	1.633	2.449	3.266	4.082	1.291
20	0.802	1.605	2.786	3.589	4.391	1.255
24	0.793	1.585	3.090	3.883	4.676	1.23
30	0.782	1.564	3.502	4.284	5.066	1.203
32	0.779	1.559	3.629	4.409	5.188	1.196
40	0.771	1.541	4.103	4.874	5.645	1.173
48	0.764	1.529	4.332	5.296	6.061	1.156
54	0.761	1.522	4.830	5.590	6.351	1.147
64	0.756	1.512	5.292	6.047	6.803	1.134

Figure 9: ICM7281 Display Multiplexing Scheme

$V_{D I S P}=I_{1} R_{4}+V_{D D}-V_{D F} \frac{R_{2}}{R_{1}}-\Delta V_{D F} \frac{R_{2}}{R_{1}}$

$$
\text { ASSUMING } \frac{\mathbf{R}_{4}}{\mathbf{R}_{3}}=\frac{\mathbf{R}_{1}}{\mathbf{R}_{2}}
$$

Figure 10: Temperature Compensated VDISP Generator

Multiplex Rate and Maximum Drive Capability

The minimum multiplex rate is determined by the response time of the LCD. To avoid flicker, the muitiplex rate should be above 30 Hz . The maximum multiplex rate is determined by power dissipation limits and the drive capability of the ICM7281.

The drive capability of the ICM7281 indirectly sets the upper limit of the multiplex rate. The absolute maximum limit of DC voltage across an LCD is usually specified as 50 mV . As the multiplex rate increases, any asymmetry in the rise and fall times will cause a DC offset, in addition to any offset caused by V2 and V3 not being exactly symmetrical with respect to $V_{\text {DISP }}$ and $V_{D D}$. The ICM7281 was designed to have equal rise and fall times, as well as low resistance drivers which make the rise and fall times short. This allows the ICM7281 to drive over 2000pF at multiplex rate of 100 Hz . Normally an LCD dot matrix display will have less
than 1000 pF capacitance per 40 columns (each ICM7281 drives 40 columns).

POWER DISSIPATION

The power dissipation of a display system driven by the ICM7281 has several components:

1) Quiescent or DC power dissipation of the ICM7281
2) Dynamic or AC power dissipation of the ICM7281
3) Power consumed in driving the LCD display.

ICM7281 Power Dissipation
The quiescent current of the ICM7281 is very low, typically less than $1 \mu \mathrm{~A}$, and can generally be ignored. The dynamic current is proportional to the clock frequency, with a typical value of 1.0 mA per MHz . This means that at a 500 kHz clock the dynamic current will be 0.5 mA .

LCD Display Drive Dissipation

Since the LCD has very low leakage currents, most of the power used to drive the LCD is used to charge and discharge the LCD capacitance. The power is

$$
P_{L C D}=C V^{2} f_{E F F}
$$

Where:
$P_{\text {LCD }}$ is the power dissipated in driving the display
C is the display capacitance
V is Voltage across the display
fEFF is the effective multiplex frequency
The effective multiplex frequency ranges from f $M U X$ to $N \times f_{M U X}$, where $f_{M U X}$ is the multiplex rate and N is the number of rows. The actual effective multiplex frequency is dependent on which characters or bit pattern is being displayed and is typically about $N / 3 \times f_{\text {MUX }}$

Low Power Shutdown

If the data clock is stopped and the voltages across the LCD are not changing, the power consumption will drop to the 5 to 50 microwatt range. Set $\mathrm{V}_{\text {DISP }}$ V2 and V3 equal to $V_{D D}$ to prevent permanent damage to the LCD display by a DC bias.

APPLICATIONS

Alphanumeric Display Using ICM7280 Intelligent Row Driver

The ICM7280 Intelligent Row Driver is specifically designed to drive multiple ICM7281 LCD Column Drivers. Figure 5 shows a typical 80 character display. The ICM7280 and ICM7281's will drive either 7, 8, 9 or 10 row displays, with the characters having either 5 or 6 columns. The Row Driver receives ASCII data, converts that data to bit-by-bit column data for the ICM7281's and serially shifts data into the ICM7281's. This process is repeated for each phase of the multiplex cycle.

Temperature compensation and generation of $\mathrm{V}_{\text {DISP }}$ for the ICM7280/81 system is shown in Figure 10. For further details refer to the ICM7280 Intelligent LCD Row Driver data sheet.

LCD Graphics Display

In this circuit, ICM7281's are used to drive both the rows and columns of the LCD dot matrix. An external controller is
used to generate the row and column data that is serially transferred into the ICM7281's. (See Figure 6).

The display drive voltages are generated in a resistor divider network. The optimum voltages for V1 through V5 can be calculated using the equations of Figure 9. Optimum voltages for common multiplex ratios are shown in Table 2.

The LCD shown in Figure 6 is a 32 row display, divided into two sections of 16 rows to increase the ON/OFF RMS voltage ratio, thereby improving the contrast of the display. As LCD fluids improve it will become practical to use 32 or 64 row multiplexing, reducing the number of column drivers by a factor of 2 or 4.

As the number of rows increases, the $V_{\text {DISP }}$ required by the ICM7281's modified Alt and Pleshko multiplex scheme increases less than the VDISP required by a classic Alt and Pleshiko multiplex scheme. For example: a 64 row display with a 1.45 V threshold would require +5 V and -12.4 V supplies using standard Alt and Pleshko multiplexing. The ICM7281 would require only +5 V and -4.9 V to drive this same display with 64 row multiplexing. The negative voltage could easily be generated using a charge pump such as the ICL7660. (See Figure 10).

Serial Input I/O Expander

In addition to driving LCD's, the ICM7281 can be used as an 1/O expander as shown in Figure 11. In this case, the data can be serially entered into the ICM7281 shift register using the 80C51 serial port. The 80C51 then transfers the data to the output latch by pulsing the DATA LATCH input with an I/O port line. Note that multiple ICM7281's can be cascaded to get more than 30 output lines. This cascading does not require any additional logic since the ICM7281 CARRY OUTPUTs are used.

DISPLAY CONTROL is tied to $V_{D D}$ so that the data on the column outputs is the same as the data that was entered. If DISPLAY CONTROL is grounded, the column outputs will be inverted data. with V_{3} grounded, the logic level at the column outputs will be CMOS compatible, swinging from ground to $V_{D D}$. The output resistance of the column outputs is about 2 k ohms.

ICM7283
 LCD Dot Matrix
 Controller/Row Driver

GENERAL DESCRIPTION

The ICM7283 is designed to provide a complete microprocessor interface for an 2 line by 40 -character alphanumeric LCD display system. It includes a character generator, display voltage generator and resistor string, row drivers, and control circuitry. Interface to a host microprocessor is achieved through either a multiplexed or nonmultiplexed parallel bus.

The ICM7283 is designed to offload all display-related tasks from the host microprocessor and to provide an easy-to-program software interface. Since the internal circuitry operates at full microprocessor speeds, there is no waiting for completion of internal operations. Testing of a "Busy" flag, when characters or commands are written, is not required.

Character data can be loaded with an auto-incremented cursor or in a random-access mode. Versatile control functions allow all or selected portions of the display to be underlined, blinked, blanked, or displayed in reverse video. Power-down features are provided, and both an underline and a blinking-box cursor are available.
The ICM7283 can display four user-defined characters in addition to the standard 96 ASCll upper and lower-case characters and 14 European and graphics characters.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7283AIDM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 -Pin Side Braze Ceramic
ICM $7283 A / D$	-	DIE
ICM $7283 B$ IDM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 -Pin Side Braze Ceramic
ICM7283B/D	-	DIE

FEATURES

- Two Lines by 40 Characters Wide Display Meniory
- Directly Drives up to 6 ICM7281 Column Drivers
- High Speed $\mu \mathbf{P}$ Interface
- ICM7283A: Intel, Zilog Compatible
- ICM7283B: Motorola, Rockwell Compatible
- 120 Character Font With Multiple Attributes - Underline, Cursor, Blinking, Reverse
- 4 User Definable Characters
- Versatile Character Font Matrix
- 5 or 6 Columns By 8 Rows
- High Speed Internal Architecture - No Busy Flag Needed

APPLICATIONS

- Battery Hand-Held Terminals
- Portable Computers
- Instrument Control Panels
- LCD Display Modules

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range $\ldots \ldots \ldots .-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range......... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots \ldots .300^{\circ} \mathrm{C}$

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

AC CHARACTERISTICS
$\left(V_{D D}=5.0 \mathrm{~V} \pm 10 \%, T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DISP}}=\mathrm{V}_{\mathrm{DD}}-8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise specified. $)$

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IIL	Input Leakage	Address/Data pins high impedance $0<V_{I N}<V_{D D}$	-10		+ 10	$\mu \mathrm{A}$
IDD	Supply Current	Osc open ckt, $\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$			2.5	mA
IstBy	Shutdown Current	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=\mathrm{V}_{\mathrm{DD}}$			100	$\mu \mathrm{A}$
V SUPP	Operating Voltage Range	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.4 \mathrm{~V}$	4.5		5.5	V
fosc	Osc. Frequency	Pin 23 open ckt.	0.2		1.0	MHz
Serial Outputs						
VOL	Output Voltage, Low	$\mathrm{OL}=1 \mathrm{~mA}$			1.0	V

ICM7283

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OH}	Output Voltage, High	$\mathrm{IOH}=1 \mathrm{~mA}$	$V_{D D}-1.0$			V
Data I/O, $\mu \mathrm{P}$ Interface Inputs						
VOL	Output Voitage, Low	$\mathrm{lOL}=1.6 \mathrm{~mA}$			0.4	V
V_{OH}	Output Voltage, High	$\mathrm{IOH}=400 \mu \mathrm{~A}$	2.4			V
$V_{\text {IL }}$	Input Voltage, Low				0.8	V
V_{1}	Input Voltage, High		3.0			V
Row Driver Outputs						
RON	Output Resistance, ON	$\mathrm{D}_{\text {CONT }}$ high, $\mathrm{V}_{0}=\mathrm{V}_{\text {DISP }}+0.5 \mathrm{~V}$ DCONT low, $V_{0}=-0.5 \mathrm{~V}$			1	$k \Omega$
Roff	Output Resistance, OFF	DCONT high, $\mathrm{V}_{0}=\mathrm{V}_{4} \pm .5 \mathrm{~V}$ DCONT low, $\mathrm{V}_{0}=\mathrm{V}_{1} \pm 0.5 \mathrm{~V}$			2.5	$k \Omega$
V_{1}		DCONT high		-1.0		V
$\mathrm{V}_{2}, \mathrm{~V}_{3}$				1.0		V
V_{4}		DCONT low		3.0		V

AC CHARACTERISTICS (See Timing Diagram)

$\left(V_{D D}=5.0 \mathrm{~V} \pm 10 \%, V_{D I S P}=0 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$, unless otherwise specified. $)$

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Serial Output Timing						
$\mathrm{T}_{\text {scdl }}$	Prop. Delay $\mathrm{S}_{\text {CLK }}$ to DLAT				200	ns
$\mathrm{T}_{\text {scdo }}$	Prop Delay Sclk to DOUT				400	ns
Microprocessor Interface						
TII	ALE/AS Pulse Width, High		55			ns
Tol	Address to ALE Setup time		30			ns
$T_{\text {ia }}$	Address to ALE Hold Time		30			ns
Intel/Zilog Option (ICM7280A)						
Tad	Address Setup Time		50			ns
$\mathrm{T}_{\text {ah }}$	Address Hold Time		30			ns
$T_{\text {wl }}$	WRITE Pulse Width, Low		100			ns
$T_{d w}$	Data to WRITE Setup Time		150			ns
Twd	Data to WRITE Hold Time		30			ns
Trd	READ to Valid Data				550	ns
$T_{1 \times}$	READ to Data Hold Time				150	ns
Tasd	ALE Setup Time		60			ns
Motorola/Rockwell Option (ICM7280B)						
Tad	Address to E Setup Time		50			ns
Tah	Address to E Hold Time		30			ns
$\mathrm{T}_{\text {ee }}$	E Pulse Width, High		200			ns

aC Characteristics (See Timing Diagram) (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$T_{d w}$	Data to E Setup Time		150			ns
$T_{w d}$	Data to E Hold Time		30			ns
$T_{r d}$	E to Valid Data	$T_{e e}=400 \mathrm{~ns}$			550	ns
$T_{r x}$	E to Data Hold Time				150	ns
$T_{\text {asd }}$	E to AS Setup Time		60			

WRITE CYCLE TIMING ($\overline{\mathrm{RD}}=\mathbf{= 1} 1$)

READ CYCLE TIMING ($\overline{W R}=\mathbf{" 1}$ ')

WF:030311
Figure 3: ICM7283A Timing Diagrams (Multiplexed Operation)

READ CYCLE TIMING ($\overline{W R}=" 1$ ") (ALE = "1")

Figure 4: ICM7283A Timing Diagrams (Non-Multiplexed Operation)

WRITE CYCLE TIMING

read cycle timing

Figure 6: ICM7283B Timing Diagrams (Multiplexed Operation)

Figure 7: ICM7283 Serial Output Timing Diagram

Table 1: Pin Descriptions

SIGNAL	PIN	DESCRIPTION
ROW1-16	$\begin{gathered} 10-1, \\ 48,47 \end{gathered}$	LCD row drivers
DOUT	15	Serial data
VDISP	16	Negative LCD supply voltage
V2, V3	17, 18	LCD column voltage
DCONT	19	Column driver control output
SCLK	20	Serial data clock output
DLAT	21	Row data latch output
VINV	22	Negative voltage generator clock
OSC	23	Oscillator input
VSS	24	Digital ground
D0-D7	$\begin{aligned} & 25-29 \\ & 32-34 \end{aligned}$	Data 1/O
$\begin{aligned} & \overline{\mathrm{RD}}(7280 \mathrm{~A}) \\ & \mathrm{E}(7280 \mathrm{~B}) \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & \hline \end{aligned}$	Read input Enable input
$\begin{aligned} & \hline \overline{\mathrm{WR}}(7280 \mathrm{~A}) \\ & \mathrm{R} / \overline{\mathrm{W}}(7280 \mathrm{~B}) \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	Write input Read/write input
$\begin{aligned} & \text { ALE(7280A) } \\ & \text { AS(7280B) } \end{aligned}$	$\begin{aligned} & 37 \\ & 37 \end{aligned}$	Address latch enable Address strobe
$\overline{\mathrm{CS}}$	38	Chip select input
AO-A6	39-45	Address inputs
$V_{D D}$	46	Positive digital and LCD supply voltage

DETAILED DESCRIPTION

Hardware Interface

Figure 1 is a simplified block diagram of the ICM7283. It is a dedicated hardware IC and the speed of data entry and command processing is limited only by gate delays. Unlike
other display controllers, the ICM7283 will not ''go busy' for milliseconds at a time while processing data or commands.

Microprocessor Bus Interface

There are two versions of the ICM7283. The ICM7283A has $\overline{W R}$ and $\overline{R D}$ pins, as well as ALE and $\overline{\mathrm{CS}}$. This version can be interfaced to standard multiplexed or non-multiplexed data buses of parts such as the 8085, $Z 80,8088$ and other microprocessors. The ICM7283B has R/W, E and AS pins instead of $\overline{W R}$ and $\overline{\text { AD }}$ and ALE. The ICM7283B is intended for use on 6800 and 6500 family buses.

To use the ICM7283 on a multiplexed bus, tie the A0-A6 lines to the DO-D6 lines and ALE/AS driven with the system address latch enable or strobe signal. For a non-multiplexed bus, A0-A6 should be connected to the least significant address lines, D0-D7 connected to the data bus and ALE/ AS tied high. The only external circuitry needed is a chip select or address decoder. The ICM7283 uses an address space of 128 bytes.

ICM7281 Data Interface

The ICM7283 Row Drivers require ICM7281 Column Drivers to operate an LCD display. Three lines are used to load data serially into the ICM7281 column drivers, DOUT, $S_{C L K}$, and DLAT. The data is latched and shifted with each negative going edge of SCLK, and the data is transferred from the ICM7281 shift register to its latches with the negative going edge of $D_{\text {LAT }}$. The frequency of the $S_{\text {CLK }}$ is set by the oscillator frequency of the ICM7283 and is normally about 600 kHz .

Oscillator

The ICM7283 oscillator will free run at 600 kHz in die form, when not loaded with any capacitance. With 15 pF of external capacitance, the frequency will be about 250 kHz . Figure 8 shows the relationship between oscillator period and the value of $\mathrm{C}_{\text {external }}$. Table 1 shows the relationship between the oscillator frequency and various display system signals and features. Standard CMOS logic gates can be used to overdrive the oscillator to control frequency. A
suitable frequency can also be derived by dividing down the host processor's clock.

Table 2: ICM7283 Display System Frequencies

SIGNAL NAME	FREQUENCY	COMMENTS
SCLK	OSC	Sets data transfer rate to ICM7281 column drivers
DLAT	OSC/M	Once per row multiples period.
Display Control	OSC/M	
LCD Multiplex Freq.	OSC/ $(N \times M \times 2)$	Should be above 30 Hz to avoid flicker.
Blink Rate	OSC/ $(N \times M \times 64)$	Blink rate for blinking cursor and blinking characters
VINV	OSC	AC waveform for generating a negative voltage for $V_{\text {DISP }}$

NOTES: Where $\mathrm{N}=$ number of rows - i.e. 16.
$M=40 \times$ number of columns (5 or 6) per character. Add 14 if annunciators enabled.
Table 3: ICM7283 Memory Map

ADDRESS		FUNCTION
DECIMAL	HEX	
$0-79$	$00 \mathrm{H}-4 \mathrm{FH}$	Character RAM. Loaded with ASCII data characters to be displayed. Address 0 is the upper leftmost character and Address 40 (28H) is the lower leftmost character.
$80-119$	$50 \mathrm{H}-77 \mathrm{H}$	Font RAM. Holds bit pattern for four user-definable characters. See Table 4.
120	78 H	Instruction register 0 (IR0)
121	79 H	Instruction register 1 (IR1)
122	7 AH	Instruction register 2 (IR2)
123	7 BH	Cursor Register (IR3)
124	7 CH	Unassigned
125	7 DH	Annunciator Register 1 (AR1)
126	7 EH	Annunciator Register 2 (AR2)
127	7 FH	Cursor-Addressed Entry Register

NOTE: See Table 6 for more detail about addresses 120-127 (78H-7FH).

Figure 8: The Relationship Between Oscillator Period and $\mathrm{C}_{\text {external }}$.

Display Interface

The ICM7283 will support a dot matrix LCD display which has 16 rows, and either evenly-spaced columns or a space after every fifth column. If the display has evenly-spaced columns, then 6 columns per character should be selected and the sixth column is always blank. If the display provides a biank after every fifth column, then 5 columns per character should be selected. The character font is automatically changed to take advantage of all rows. The ICM7283 will automatically use one of the 6 evenly-spaced columns for a space.
The ICM7283 can drive LCD displays with threshold voltages up to 2.5 volts. There is no minimum display threshold voltage since $V_{\text {DISP }}$ can be above $V_{S S}$.
The ICM7283 also has 16 onboard row drivers designed to handle large dot matrix displays. These drivers provide fast slew rates, and have a minimum offset voltage.

Figure 9: ICM7283 V DISP Temperature Compensation Circuit

Display Voltage Generator

The ICM7283 not only has an onboard resistor string to generate the required V_{1}, V_{2}, V_{3}, and V_{4}, but also has an output that assists in generating a negative voltage for $V_{\text {DISP. }}$ The VINV pin is a low-impedance output that swings from $V_{D D}$ to $V_{S S}$ at the oscillator frequency. The circuit of Figure 9 connected to the $V_{I N V}$ pin generates a tempera-ture-compensated $V_{\text {DISP. }}$ Diodes D_{1} and D_{2}, with capacitors C_{1} and C_{2} form a charge-pump negative voltage generator. The ICL7611 CMOS op-amp and its associated circuitry form an adjustable temperature compensated voltage source that provides V VISP to the ICM7283, as well as the ICM7281 column drivers. Temperature compensation for $V_{\text {DISP }}$ is necessary because the threshold voltage of LCD fluids have a pronounced negative tempco.

SOFTWARE INTERFACE

Table 3 provides a memory map of the ICM7283. The ICM7283 uses 128 bytes of memory space: 80 bytes for
character data storage, 2 bytes for 14 independent annunciators or flags, 32 bytes for storing 4 user-programmable characters, 4 bytes for control registers, and one dummy address to identify cursor-addressed character entry.

Character RAM

Data may be entered in a random-access mode by simply writing to the desired character address. Address 0 corresponds to the upper leftmost character of the display, and address 79 corresponds to the lower rightmost character. Block moves or other high-speed data transfers can be used to move data from the host system's RAM or ROM to the ICM7283's character RAM. Character data format is standard ASCII for the 96 upper and lower case characters, with the eighth data bit ignored. As shown in Figure 10, the ICM7283 Character Font Table, the display controller also recognizes three special control characters and 14 additional European and graphics characters. The characters 08 through 17 are alternate lower case characters.

Table 4: Font RAM for User-Definable Characters

ROW	ASCII CHARACTER 0 FONT ADDRESS		ASCII CHARACTER 1 FONT ADDRESS		ASCII CHARACTER 2 FONT ADDRESS		ASCII CHARACTER 3 FONT ADDRESS	
	Decimal	Hex	Decimal	Hex	Decimal	Hex	Decimal	Hex
Row 1 (top row)	80	50 H	90	5 AH	100	64H	110	6EH
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	--	-	-	-
-	-	-	-	-	-	-	-	-
Row 8 (bottom row)	87	57H	97	61 H	107	68H	117	75H

Font RAM

In addition to the 120 characters available in the built-in character ROM, 4 characters may be user-defined. Table 4 shows the mapping between the Font RAM and the userdefined character font. An example of an additional character is provided in Figure 11. Note that addresses 80-119 ($50 \mathrm{H}-77 \mathrm{H}$) hold 5 bit words that correspond to the bit pattern of the four user-definable characters, such that each 5 bit word defines the pattern for one row of the character. The LSB corresponds to the right-hand dot. Each character uses 8 words, with the lowest address representing the top row. Once defined, these characters are treated the same as the predefined characters from the Font ROM. Enter ASCII data 0, 1, 2, or 3 into Character RAM to call up one of those characters.

Instruction and Annunciator Registers

Table 5 details the bit assignments of the control registers. All registers are write-only registers.

Attributes are enabled by bit 5 of Instruction Register IR2, at address 122 (7AH). Blinking, underlined, and reverse video characters are controlled by attribute characters in the character RAM. These attribute characters are displayed as blanks, but signal the ICM7283 that the characters to the right of the attribute character are to be displayed with one of the three attributes ($5=$ underline, $6=$ reverse video, and $7=$ blinking). Each attribute is cancelled by a
second occurence of the attribute character. The entire display can be blinked or blanked by setting the appropriate bits in IRO.

Table 5: ASCII Character 0 Example

	Font Address		Data	
Row	Decimal	Hex	Decimal	Hex
1	80	50 H	5	05 H
2	81	51 H	14	0 EH
3	82	52 H	21	15 H
4	83	53 H	14	0 EH
5	84	54 H	21	15 H
6	85	55 H	14	0 EH
7	86	56 H	21	15 H
8	87	57 H	4	04 H

The Cursor Register determines the location of the cursor on the display. If data is written to address $127(7 \mathrm{FH})$, the data is entered at the current location of the cursor and the cursor position is incremented. The cursor position may be directly set by writing to Cursor Register address 123 (7BH). The cursor may also be incremented or decremented by writing the appropriate instructions to IR2 at address 122 (7AH). The cursor location will wrap around from 79 to 0 or vice versa when incremented or decremented. A number greater than 79 written to the Cursor Register causes no cursor to be displayed, but the ICM7283 will otherwise function normally. If bit 4 of IR1 at address $121(79 \mathrm{H})$ is at " 1 ", then all characters to the right of the cursor are blanked but the data in the character RAM is retained.

The IR0 register is a bit set/reset register. The MSB selects either set (1) or reset (0) operation. A " 1 " in any other bit position selects that bit to be set/reset. For example, a bit pattern of 10011001 will set bits 0,3 and 4 , while a bit pattern of 00010000 will clear bit 4 . Unselected bits are not affected.

The Annunciator Registers are bit set/reset registers that operate similarly to IRO. When used with the ICM7281 column drivers, bit 0 of Annunciator Register 1 will be the last bit shifted out, and will appear at the column 1 output of the ICM7281. Bit 6 of Annunciator Register 2 is the first annunciator bit to be shifted out, and will appear on column 14 of the ICM7281. The annunciator outputs, if enabled, appear on all rows in columns 1-14. Annunciators are enabled by bit 7 at IR1.

Bit 6 of instruction register 2 resets all instruction registers, annunciator registers, and the Cursor Register. Bit 6 of Instruction Register 2 also resets and stops the display multiplex and blink counters.

All register bits except bit 6 of IR2 are reset upon powerup. Since bit 6 of IR2 is indeterminate at power-up, and the instruction registers cannot be written to while bit 6 is set, the initialization routine should first clear bit 6 before the other registers of the ICM7283 display controller, are accessed. When normal operation resumes after bit 6 of IR2 is cleared, the attributes will be off and the cursor will be present at 0 .

CAUTION: The ICM7283 should not be left in the reset mode for extended periods, because in this condition there is a DC bias on the liquid crystal display which can permanently damage it.

2x40 CHARACTER LIQUID CRYSTAL. DISPLAY SYSTEM

Figure 10 shows a complete 2 line by 40 character Intel/ Zilog compatible display system without annunciators. The ICM7283A receives ASCII character data from the host microprocessor, converts it to a serial data stream for the ICM7281 column drivers, and provides the row drive voltages and overall display system timing and control. The power consumption of this display system is typically 6 milliwatts during normal operation and 5 microwatts when shutdown (but retaining data and control setup).

If less than 80 characters are desired, the ICM7281's that would normally drive the right-hand characters of the display may be left out. This means that an 80 character display module and a module with fewer characters can have exactiy the same hardware and software interface, except that extra ICM7281's are missing from the module with fewer characters.

Figure 12: 2 Line by 40-Character LCD Display System

Table 6: Instruction and Annunciator Registers

120 Decimal 78 Hex	Instruction Register 0 IRO
$\begin{aligned} & \text { D7 } \\ & \text { D6 } \\ & \text { D5 } \\ & \text { D4 } \\ & \text { D3 } \\ & \text { D2 } \\ & \text { D1 } \\ & \text { D0 } \end{aligned}$	```1 = SET 0 = RESET 1 = Blank Display 1= Blink Display 1=Cursor Enabled 1= Power Down Mode unassigned, set to 0. unassigned, set to 0. 0=Normai Operation, 1= Test Mode```
121 Decimal 79 Hex	Instruction Register 1 IR1
D7 D6 D5 D4 D3 D2, $D 1$, D0	1 = Enable Annunciators $1=$ Blinking Box Cursor $0=$ Underline Cursor $1=$ Blank characters to the right of the cursor $1=6$ columns per character $0=5$ columns per character $1=$ All on test mode. All dots and annunciators turned on, $0=$ Normal Operation unassigned, set to 0 .
122 Decimal 7A Hex	Instruction Register 2 IR2
$\begin{gathered} \text { D7 } \\ \text { D6 } \\ \text { D5 } \\ \text { D4, D3, D2 } \\ \text { D1, D0 } \end{gathered}$	Production test mode only. Must be set to 0. $1=$ Resets all registers. See test on previous page. 1 = Enable Attributes unassigned, set to 0 . See the following table: $\mathrm{D}_{1} \mathrm{D}_{0}$ Control Bit Designators 0 No operation 1 Decrement Cursor Register 0 Increment Cursor Register 1 Increment Cursor Register
123 Decimal 7B Hex	Cursor Register IR3
This register specifies the address of the cursor using a 7 bit value in the range of 0-79 decimal, 0-4F hexadecimal. The eighth bit is ignored.	
124 Decimal 7C Hex	Unassigned
125 Decimal 7D Hex	Annunciator Register 1 AR1
126 Decimal 7E Hex	Annunciator Register 2 AR2
The 7 LSBs of each annunciator register (D0-D6) each control one annunciator. To set, write a 1 to the MSB and a 1 to the bits to be set. To clear, write a 0 to the MSB and a 1 to the bits cleared. Then annunciator will appear left to right AR1:D0 to D6 then AR2:D0 to D6.	
127 Decimal 7F Hex	Cursor-Addressed Entry
When character data is written to this address, the data is loaded into the character RAM using the Cursor Register as a pointer and the Cursor Register is incremented.	

Section 9 - Microcontrollers, Microperipherals, Memory

ICM7170

 $\mu \mathrm{P}$-Compatible Real-Time Clock
GENERAL DESCRIPTION

The ICM7170 real time clock is a microprocessor bus compatible peripheral, fabricated using Intersil's silicon gate CMOS LSI process. An 8-bit bidirectional bus is used for the data I/O circuitry. The clock is set or read by accessing the 8 internal separately addressable and programmable counters from $1 / 100$ seconds to years. The counters are controlled by a pulse train divided down from a crystal oscillator circuit, and the frequency of the crystal is selectable with the on-chip command register. An extremely stable oscillator frequency is achieved through the use of an on-chip regulated power supply.

The device access time (t_{acc}) of 300 ns eliminates the need for any microprocessor wait states or software overhead. Furthermore, the ALE (Address Latch Enable) input is provided for interfacing to microprocessors with a multiplexed address/data bus. With these two special features, the ICM7170 can be easily interfaced to any available microprocessor.

The ICM7170 generates two types of interrupts. The first type is the periodic interrupt (i.e., $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, etc.) which can be programmed by the internal interrupt control register to provide 7 different output signals. The second type is the alarm interrupt. The alarm time is set by loading an on-chip 51-bit RAM that activates an interrupt output through a comparator. The alarm interrupt occurs when the real time counter and alarm RAM time are equal. A status register is available to indicate the interrupt source.

An on-chip Power-Down Detector eliminates the need for external components to support the battery back-up function. When a power-down or power failure occurs, internal logic switches the on-chip counters to battery back-up operation. Input/output and read/write functions become disabled and operation is limited to time-keeping and interrupt generation, resulting in low power consumption.

Internal latches prevent clock roll-over during a read cycle. Counter data is latched on the chip by reading the 100th-seconds counter and is held indefinitely until the counter is read again, assuring a stable and reliable time value.

FEATURES

- 8-Bit $\mu \mathrm{P}$ Bus Compatible
- Multiplexed or Direct Addressing
- Binary Time Data Format Lowers Software Overhead
- Time From 1/100 Seconds to 99 Years
- Software Selectable 12/24 Hour Format
- Latched Time Data Ensures No Roll-Over During Read
- Full Calendar With Automatic Leap Year Correction
- On-Chip Battery Backup Switchover Circuit
- Access Time Less Than 300ns
- 4 Programmable Crystal Oscillator Frequencies
- On-Chip Alarm Comparator and RAM
- Interrupts from Alarm and 6 Selectable Periodic Intervals
- Standby Micro-Power Operation: $2 \mu \mathrm{~A}$ Typ. at 3.0V and 32 kHz Crystal

APPLICATIONS

- Portable and Personal Computers
- Industrial Control Systems
- Data Logging
- Point Of Sale

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7170IPG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-PIN PLASTIC DIP
ICM 71701 JG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-PIN CERDIP

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
\qquad
\qquad

Power Dissipation (Note 1)................................. 500 mW Input Voltage (Any Terminal)
(Note 2)

$$
V_{D D}+0.3 V \text { to } V_{S S}-0.3 V
$$

Operating Temperature $\ldots \ldots \ldots \ldots \ldots \ldots .-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $\ldots \ldots \ldots \ldots \ldots . .300^{\circ} \mathrm{C}$

NOTE 1: $T_{A}=25^{\circ} \mathrm{C}$.
NOTE 2: Due to the SCR structure inherent in the CMOS process, connecting any terminal at voltages greater than V_{DD} or less than $\mathrm{V}_{\text {SS }}$ may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7170 be turned on first.
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operationai sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 2: Functional Diagram

ELECTRICAL CHARACTERISTICS

D.C. CHARACTERISTICS $\left(T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{D D}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{B A C K U P}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{S S}=0 \mathrm{~V}$ unless otherwise

SYMBOL	PARAMETER	TEST CONDITIONS	SPECIFICATION			UNIT
			MIN	TYP	MAX	
$V_{D D}$	$\mathrm{V}_{\text {DD }}$ Supply Range ($32 \mathrm{kHz} / 4 \mathrm{MHz}$)		2.6		5.5	V
IStBy(1)	Standby Current	$\begin{aligned} & \text { FXTAL }=32 \mathrm{kHz} \\ & \text { Pins }_{1}=8,15-22 \& 24=V_{D D} \\ & V_{D D}=V_{S S} ; V_{B A C K U P}=V_{D D}-3.0 \mathrm{~V} \end{aligned}$		2.0	20	$\mu \mathrm{A}$
IStBy(2)	Standby Current	$\begin{aligned} & \text { FXTAL }=4 \mathrm{MHz} \\ & \text { Pins } 1-8,15-22 \& 24=V_{D D} \\ & V_{D D}=V_{S S} ; V_{B A C K U P}=V_{D D}-3.0 \mathrm{~V} \end{aligned}$		20	150	$\mu \mathrm{A}$
$1 \mathrm{DD}(1)$	Operating Supply Current	$\begin{aligned} & \text { FXTAL }=32 \mathrm{kHz} \\ & \text { Read/Write Operation at } 100 \mathrm{~Hz} \end{aligned}$		0.3	1.2	mA
${ }^{\text {IDD(2) }}$	Operating Supply Current	$\begin{aligned} & \hline \text { FXTAL }=32 \mathrm{kHz} \\ & \text { Read/Write Operation at } 1 \mathrm{MHz} \\ & \hline \end{aligned}$		1.0	2.0	mA
$\mathrm{V}_{\text {IL }}$	Input low voltage	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$			0.8	V
$\mathrm{V}_{\text {IH }}$	Input high voltage	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	3.5			V
V_{OL}	Output low voltage except $\overline{\text { NTERRUPT }}$	$\mathrm{OL}=1.6 \mathrm{~mA}$			0.4	V

ICM7170
NNIER ${ }^{5}$ SIL

ELECTRICAL CHARACTERISTICS (CONT.)

SYMBOL	PARAMETER	TEST CONDITIONS		SPECIFICATION			UNIT
				MIN	TYP	MAX	
V_{OH}	Output high voltage except $\overline{\text { NTERRUPT }}$	$1 \mathrm{OH}=400 \mu \mathrm{~A}$		2.4			V
ILL	Inpuit leakage current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$		-10	0.5	+10	$\mu \mathrm{A}$
Iol	Tristate leakage current ($\mathrm{D}_{0}-\mathrm{D}_{7}$)	$V_{0}=V_{D D}$ or $V_{S S}$		-10	0.5	+10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {BATTERY }}$	Backup Battery Voltage	$\mathrm{F}_{\text {XTAL }}=1,2,4 \mathrm{MHz}$		2.6		3.2	V
V ${ }_{\text {batter }}$	Backup Battery Voltage	$\mathrm{FXTAL}=32 \mathrm{kHz}$			2.0	3.2	V
Vol	Output low voltage INTERRUPT	$\mathrm{I}^{\mathrm{OL}}=1.6 \mathrm{~mA}$	INT SOURCE connected to $V_{S S}$			0.4	V
1 la	Leakage current INTERRUPT	$V_{0}=V_{D D}$ or $V_{S S}$			10		$\mu \mathrm{A}$

AC CHARACTERISTICS $\left(T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% \mathrm{D}_{0}-\mathrm{D}_{7} \mathrm{~V}_{\mathrm{BACK}}{ }=\mathrm{V}_{\mathrm{DD}}$ Load
Capacitance $=150 \mathrm{pF}, \mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.5 \mathrm{~V}$ unless otherwise specified)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
READ CYCLE TIMING					
trd	READ to DATA valid		170	250	ns
tacc	ADDRESS valid to DATA valid		200	300	ns
$\mathrm{t}_{\text {cyc }}$	READ cycle time	400			ns
t_{x}	$\overline{\mathrm{RD}}$ high to bus tristate		85	100	ns
$\mathrm{tas}_{\text {a }}$	ADDRESS to READ set up time*.		100		ns
$\mathrm{tar}_{\text {ar }}$	ADDRESS HOLD time after READ*	0			ns
$\mathrm{trl}^{\text {l }}$	READ pulse width, low ${ }^{\text { }}$	0.25		9,000*	$\mu \mathrm{s}$
*Guaranteed Parameter by Design (Not 100\% Tested)					
WRITE CYCLE TIMING		MIN	TYP	MAX	UNIT
tad	ADDRESS valid to WRITE strobe	100			ns
$t_{\text {wa }}$	ADDRESS hold time for WRITE	0			ns
${ }_{\text {w }}$ l	WRITE pulse width, low	100			ns
${ }^{\text {d }} \mathbf{d}$ w	DATA IN to WRITE set up time	100			ns
$t_{w d}$	DATA IN hold time after WRITE	30	10		ns
$\mathrm{t}_{\text {cyc }}$	WRITE cycle time	400			ns
MULTIPLEXED MODE TIMING		MIN	TYP	MAX	UNIT
t_{11}	ALE Pulse Width, High	50			ns
tal	ADDRESS to ALE set up time	30			ns
$t_{l a}$	ADDRESS hold time after ALE	30			ns

READ CYCLE TIMING FOR MULTIPLEXED BUS ($\overline{\mathrm{WR}}=1$)

WF028001
WRITE CYCLE TIMING FOR MULTIPLEXED BUS ($\overline{\mathrm{RD}}=1$)

WFO28101
NOTE: The A0 to A4 address inputs may be connected to the D0 to D4 data lines when a multiplexed bus is used.
Figure 4: Timing Diagrams - Multiplexed Bus

Table 1

SIGNAL	PIN	DESCRIPTION
$\overline{W R}$	1	Write input
ALE	2	Address latch enable input
$\overline{C S}$	3	Chip select bar input
A4-A0	$4-8$	Address inputs
OSC OUT	9	Oscillator output
OSC IN	10	Oscillator input
INT SOURCE	11	Interrupt common
INTERRUPT	12	Interrupt output
VSS(GND)	13	Digital common
VBACKUP $^{\text {IN }}$	14	Battery negative side
D0-D7	$15-22$	Data I/O
$V_{\text {DD }}$	23	Positive digital supply
$\overline{\text { RD }}$	24	Read input

DETAILED DESCRIPTION
 Oscillator

This circuit uses a standard CMOS Pierce oscillator, for maximum accuracy, stability, and low-power consumption. Externally, one crystal and two capacitors are required. One of the capacitors is variable and is used to trim or tune the oscillator output. Typical values for these capacitors are $\mathrm{C}_{\mathrm{IN}}=18 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{OUT}}=10-35 \mathrm{pF}$, or approximately double the recommended C LOAD for the crystal being used. Both capacitors must be connected from the respective oscillator pins to $V_{D D}$ for maximum stability.

The oscillator output is divided down to 4000 Hz by one of four selected ratios, via a variable prescaler. The ICM7170 can use any one of four different low-cost crystals: $4.194304 \mathrm{MHz}, 2.097152 \mathrm{MHz}, 1.048576 \mathrm{MHz}$, or 32.768 kHz . The command register must be programmed for the frequency of the crystal chosen, and this in turn will determine the prescaler's divide ratio.

Command Register frequency selection is written to the D0 and D1 bits at address 11 H and the 12 or 24 hour format is determined by bit D2, as shown in Table 4.

The 4000 Hz signal is divided down further to 100 Hz , which is used as the clock for the counters. Time and calendar information is provided by 8 consecutive addressable, programmable counters: 100ths of seconds, seconds, minutes, hours, day of week, date, month, and year. The data is in binary format and is configured into 8 bits per digit. See Table 4 for address information. Any unused bits are held at logic " 0 ' during a read and ignored during a write operation.

Compare Interrupts

On the chip are 51 bits of Alarm Compare RAM grouped into words of different lengths. These are used to store the time, ranging from 100ths of seconds to years, for comparison to the real-time counters. Each counter has a corresponding RAM word. In the Alarm Mode an interrupt is generated when the current time is equal to the alarm time. The RAM contents are compared to the counters on a word by word basis. If a comparison to a particular counter is unnecessary, then the appropriate ' M ' bit in Compare RAM should be set to logic " 1 ".

The ' M ' bit, referring to Mask bit, causes a particular RAM word to be masked off or ignored during a compare. Table 4 shows addresses and Mask bit information.

Periodic Interrupts

The interrupt output can be programmed for 6 periodic signals: $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, once per second, once per minute, once per hour, or once per day. "The 100 Hz Interrupt, 10 Hz Interrupt and the hundreths of a second counter have instantaneous errors of $\pm 2.5 \%, \pm 0.15 \%$ and $\pm 2.5 \%$ respectively; the time average, however, is zero." These can occur concurrently and in addition to Alarm Interrupts. Both the Periodic and the Alarm Interrupts are controlled by the Interrupt Mask Register. The desired interrupt is enabled by writing a logic " 1 " to the appropriate bit, as shown in Table 5.

The Interrupt Status Register, when read, indicates the cause of the interrupt and resets itself on the trailing edge of the read pulse. Once one or more bits have been set in the Mask Register, a roll-over in a corresponding counter will strobe the appropriate bit in the Interrupt Status Register. The interrupt pin (\#12) is then pulled to the potential of the interrupt source pin (\#11) through an internal open-drain N channel MOSFET. This facilitates wire-ORing the ICM7170 with other interrupt generators that must be connected to the system MPU.

Table 2: Command Register Format

COMMAND REGISTER ADDRESS (10001b, 11h) WRITE-ONLY							
D7	D6	D5	D4	D3	D2	D1	
n / a	n / a	Test	Int.	Run	$12 / 24$	Freq	

Table 3: Command Register Bit Assignments

D1	D0	CRYSTAL FREQUENCY	D2	24/12 HOUR FORMAT	D3	RUN/STOP	D4	INTERRUPT ENABLE	D5	TEST BIT
0	0	32.768 kHz	0	12 hour mode	0	Stop	0	Interrupt disabled	0	Normal Mode
0	1	1.048576 MHz	1	24 hour mode	1	Run	1	Interrupt enable	1	Test Mode
1	0	2.097152 MHz								
1	1	4.194304 MHz								

ADDRESS						FUNCTION	DATA								VALUE
A4	A3	A2	A1	A0	HEX		D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	00	Counter-1/100 seconds	-	.	.	.	-	.	.	.	0-99
0	0	0	0	1	01	Counter-hours	-	-	-	0-23
						12 Hour Mode	*	-	-	\cdots	.	.			$1-12$
0	0	0	1	0	02	Counter-minutes	-	-	0-59
0	0	0	1	1	03	Counter-seconds	-	-		0.59
0	0	1	0	0	04	Counter-month	-	-	-	--	$1-12$
0	0	1	0	1	05	Counter-date	-	-	-	.	.	,	.	.	1-31
0	0	1	1	0	06	Counter-year	-				0.99
0	0	1	1	1	07	Counter-day of week	-	-	--	-	-	.	.	.	0-6
0	1	0	0	0	08	RAM-1/100 seconds	M		0.99
0	1	0	0	1	09	RAM-hours	-	M	-	0-23
						12 hour Mode	*	M	-	-	$1-12$
0	1	0	1	0	OA	RAM-minutes	M	-	0-59
0	1	0	1	1	OB	RAM-seconds	M	-	0-59
0	1	1	0	0	0 C	RAM-month	M	-	-	-	$1-12$
0	1	1	0	1	OD	RAM-date	M	-	-	1.31
0	1	1	1	0	OE	RAM-year	M	0-99
0	1	1	1	1	OF	RAM-day of week	M	-	-	-	-	.	.	.	0-6
1	0	0	0	0	10	Interrupt Status and Mask Register	+	-	.	,	
1	0	0	0	1	11	Command register	-	-	

NOTES: Address 10010 to 11111 (12 h to 1 Fh) are unused.
' +' Unused bit for Interrupt Mask Register, MSB bit for Interrupt Status Register.
'-' Indicates unused bits.
'*' AM/PM indicator bit in 12 hour format. Logic " 0 " indicates AM, logic " 1 " indicates PM.
'M' Alarm compare for particular counter will be enabled if bit is set to logic " 0 ".
Table 5: Interrupt and Status Registers Format

INTERRUPT MASK REGISTER ADDRESS (10000b, 10h) WRITE-ONLY							
D7	D6	D5	D4	D3	D2	D1	D0
n/a	Day	Hour	Min.	Sec.	1/10 sec.	$1 / 100 \mathrm{sec}$.	Alarm
INTERRUPT STATUS REGISTER ADDRESS (10000b, 10h) READ-ONLY							
D7	D6	D5	D4	D3	D2	D1	D0
Int.	Day	Hour	Min.	Sec.	1/10 sec.	1/100 sec.	Alarm

Interrupt Operation

The interrupt output N -channel MOSFET is active at all times when the Interrupt Enable bit is set (bit 4 of the Command Register), and operates in both the standby and battery backup modes.

Since system power is usually applied between $V_{D D}$ and $V_{S S}$, the user can connect the Interrupt Source (pin \# 11) to $V_{\text {SS }}$. This allows the Interrupt Output to turn on only while system power is applied and wiil not be pulled to $V_{S S}$ during standby operation. If interrupts are required only during standby operation, then the interrupt source pin should be connected to the battery's negative side (VBACKUP). In this configuration, for example, the interrupt could be used to turn on power for a cold boot.

Power-Down Detector

The ICM7170 contains an on-chip power-down detector that eliminates the need for external components for the battery back-up function. Whenever the voltage from the $V_{\text {BACKUP }}$ pin to the $V_{S S}$ pin is less than approximately 1.0Volt, the chip automatically switches to battery backup operation. Until power is restored, operation is limited to time counting and interrupt generation only. All other functions are disabled to achieve micropower standby power and to preserve time integrity.

If standby battery operation is not required the $V_{B A C K U P}$ should be connected to V_{DD}.

APPLICATION NOTES

Time Synchronization

Time synchronization is achieved through bit D3 of the Command Register, which is used to enable or disable the 100 Hz clock from the counters. A logic " 1 " allows the counters to function and a logic ' 0 ' disables the counters. To accurately set the time, a logic ' 0 '" should be written into D3 and then the desired times entered into the appropriate counters. The clock is then started at the proper time by writing a logic "1" into D3 of the Command Register.

Latched Data

To prevent ambiguity while the processor is gathering data from the registers, the ICM7170 incorporates data latches and a transparent transition delay circuit.

By accessing the 100ths of seconds counter an internal store signal is generated and data from all the counters is stored into a 36 -bit latch. A transition delay circuit will delay a 100 Hz transition during a READ cycle until the internal store operation is completed. The data stored by the latches is then available for further processing until the 100ths of seconds counter is read again.

Figure 5: Apple II Plus Board Schematic

Control Lines

The $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{CS}}$ signals are active low inputs. Data is placed on the bus from counters or registers when $\overline{R D}$ is a logic " 0 ". Data is transferred to counters or registers when $\overline{W R}$ is a logic " 0 ". $\overline{R D}$ and $\overline{W R}$ must be accompanied by a logical ' 0 ' $\overline{C S}$ as shown in Figures 3 and 4.

With the ALE (Address Latch Enable) input, the ICM7170 can be interfaced directly to microprocessors that use a multiplexed address/data bus by connecting the address lines AO-A4 to the data lines DO-D4. To address the chip, the address is placed on the bus and ALE is strobed. On the falling edge, the address and CS information is read into the address latch and buffer. $\overline{\text { RD }}$ and $\overline{W R}$ are used in the same way as on a non-multiplexed bus. If a non-multiplexed bus is used, ALE should be connected to $V_{D D}$.

Test Mode

The test mode is entered by setting D5 of the Command Register to a logic " 1 ". This connects the 100 Hz pulse train to the seconds counter, and speeds up the counting functions.

Oscillator Tuning

Oscillator tuning should not be attempted by direct monitoring of the oscillator pins, unless very specialized equipment is used. External connections to the oscillator pins cause capacitive loading of the crystal, and shift the oscillator frequency. As a result, the precision setting being attempted is corrupted. One indirect method of determining the oscillator frequency is to measure the period between interrupts on the Interrupt Output pin (\#12). This measurement must be relative to the falling edges of the INTERRUPT pin. The oscillator set-up and tuning can be performed as follows:

1) Select one of 4, readily-available oscillator frequencies and place the crystal between OSC IN (pin \#10) and OSC OUT (pin \#9).
2) Connect a fixed capacitor from OSC $\mathbb{I N}$ to $V_{D D}$.
3) Connect a variable capacitor from OSC OUT to $V_{D D}$. In cases where the crystal selected is a 32 kHz Statek type ($C_{L}=9 p F$), the typical value of $\mathrm{C}_{\text {IN }}=18 \mathrm{pF}$ and $\mathrm{C}_{\text {OUT }}=10-35 \mathrm{pF}$.
4) Place a $5 K \Omega$ resistor from the INTERRUPT pin to V_{DD}, and connect the INT SOURCE pin to V_{SS}.
5) Apply 5 V power and insure the clock is not in standby mode.
6) Write all O's to the Interrupt Mask Register, disabling all interrupts.
7) Write to the Command Register with the desired oscillator frequency, Hours mode (12 hour or 24 hour), Run = '1", Interrupt Enable = '1"', and Test = " 0 ".
8) Write to the Interrupt Mask Register, enabling onesecond interrupts only.
9) Monitor the INTERRUPT output pin with a precision period counter and trim the OSC OUT capacitor for a reading of 1.000000 seconds. The period counter must be triggered on the falling edge of the interrupt output for this measurement to be accurate.
10) Read the Interrupt Status Register. This action resets the interrupt output back to a logic "1" level.
11) Repeat steps 9 and 10 with a software loop. A suitable computer should be used.

CIRCUIT APPLICATIONS

Apple II Plus Real-Time Clock

Figure 5 shows the schematic of a board, using the ICM7170, that has been fabricated to plug into a slot in an Apple II Plus microcomputer. Very few external components are needed on the board to provide an interface to the Apple's 6502 MPU.

GENERAL DESCRIPTION

The IM4702/12 Baud Rate Generators provide necessary clock signals for digital data transmission systems, such as UARTs, using a 2.4576 MHz crystal oscillator as an input. They control up to 8 output channels and can be cascaded for output expansion.

Output rate is controlled by four digital input lines, and with the specified crystal, is selectable from 'zero' through 9600 Baud. In addition, 19200 Baud is possible via hardwiring.

Multi-channel operation is facilitated by making the clock frequency and the $\div 8$ prescaler outputs available externally. This allows up to eight simultaneous Baud rates to be generated.

The IM4712 is identical to the IM4702 with the exception that the IM4712 integrates the oscillator feedback resistor and two load capacitors on-chip.

ORDERING INFORMATION

ORDER NUMBER	TEMPERATURE RANGE	PACKAGE
$I M 4702 I \mathrm{JE}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -pin CERDIP
$I M 4702 I \mathrm{PE}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -pin PLASTIC
$I M 4712 I \mathrm{JE}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -pin CERDIP
$\mathrm{IM} 4712 I \mathrm{IPE}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -pin PLASTIC

FEATURES

- Provides 14 Most Commonly Used BAUD Rates
- On-Chip Oscillator Requires Only One External Part (IM4712)
- Controls Up to Eight Transmission Channels
- TTL Compatible Outputs Will Sink 1.6 mA
- Uses Standard 2.4576 MHz Crystal
- Low Power Consumption: 5.5mW Guaranteed Maximum Standby
- Pin and Function Compatible With 4702B and HD-4702
- Inputs Feature Active Pull-Ups

PIN DESCRIPTION

SIGNAL	PIN	DESCRIPTION
$Q_{0}-Q_{2}$	$1,2,3$	Prescaler Outputs
$\overline{\mathrm{ECP}}$	4	External Clock Enable Input
CP	5	External Clock Input
O_{X}	6	Crystal Output
I_{X}	7	Crystal Input
V_{SS}	8	Negative Supply
C_{0}	9	Clock Output
Z	10	Baud Rate Output
$\mathrm{S}_{0}-\mathrm{S}_{3}$	$14-11$	Baud Rate Select Inputs
I_{M}	15	Multiplexed Input
V_{DD}	16	Positive Supply

BD01510

Figure 1: Functional Diagram

CD033411

Figure 2: Pin
Configuration (Outline drawings JE, PE)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD $-V_{S S}$) +8.0 V Input or Output Voltage $V_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS		UNIT	
			MIN	MAX			
V_{IH}	Input Voltage High				70\% V CCC		V
$\mathrm{V}_{\text {IL }}$	Input Voltage Low				$30 \% \mathrm{~V}_{\mathrm{CC}}$		
IIH	Input Current High	Other Inputs	$V_{I N}=V_{D D}$ All other pins grounded		+1		
		1x 4712			+10		
IIL	Input Current Low	Ix 4702	Pin under test at ground All other Inputs at $V_{D D}$		-1	$\mu \mathrm{A}$	
		Ix 4712			+ 10		
		Other Inputs		-15	-100		
V_{OH}	Output Voltage High		$\mathrm{I}_{\mathrm{OH}}<-1 \mu \mathrm{~A}$; Inputs at V_{SS} or $V_{D D}$	$\mathrm{V}_{\mathrm{DD}}-.05$		V	
V_{OL}	Output Voltage Low		$\mathrm{l}_{\mathrm{OL}}<+1 \mu \mathrm{~A}$; Inputs at V_{SS} or VDD		0.05		
IOH	Output Current High	O_{x}	inputs at $V_{S S}$ or $V_{D D}$$V_{0}=V_{D D}-.5$	-0.1		mA	
		All other		-0.3			
			$\mathrm{V}_{0}=+2.5 \mathrm{~V}$	-1.0			
l OL	Output Current Low	O_{x}	$V_{0}=0.4$; Inputs at $V_{S S}$ or $V_{D D}$	-0.1			
		All other Outputs		1.6			
Istby	Quiescent Supply Current		$\begin{aligned} & \mathrm{E}_{\mathrm{CP}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{CP}=\mathrm{V}_{\mathrm{SS}} \\ & \text { All other Inputs }=\mathrm{V}_{\mathrm{SS}} \text { or } \mathrm{V}_{\mathrm{DD}}, \\ & \text { All outputs open } \end{aligned}$		1.0		

AC CHARACTERISTICS
$V_{D D}=+5 V V_{S S}=0 V, T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER		TEST CONDITIONS	

NOTES: 1. Propagation delays and output transition times will vary with output load capacitance.
2. For multichannel operation, propagation delay ($C O$ to Q_{n}) plus set-up time (Select to $C O$) is guaranteed to be less than 367 ns for the IM4702/12.
3. The first high level clock pulse after \bar{E}_{cp} goes low must be at least 200 ns wide to ensure reseting of all counters.
4. For design reference only, not 100% tested.

Figure 3：Switching Waveforms

FUNCTIONAL DESCRIPTION

Digital data transmission systems employ a wide range of standardized bit rates，ranging from 50 baud（for electrome－ chanical devices）to 9600 baud（for high speed modems）． Modern electronic systems commonly use Universal Asyn－ chronous Receiver and Transmitter circuits（UARTs）to convert parallel data inputs into a serial bit stream（transmit－ ter）and to reconvert the serial bit stream into parallel outputs（receiver）．In order to resynchronize the incoming serial data，the reciever requires a clock rate which is a multiple of the incoming bit rate．Popular MOSLSI UART circuits use a clock that is 16 times the transmitted bit rate． The IM4702／12 can generate 14 standard clock rates from one common high frequency input．

The IM4702／12 contains the following five function subsystems．

Oscillator－For conventional operation generating 16 output clock pulses per bit period，the input clock frequency must be 2.4576 MHz （i．e． 9600 baud $\times 16 \times 16$ ，since the scan counter and the first flip－flop of the counter chain act as an internal $\div 16$ prescaler）．A lower input frequency will result in a proportionally lower output frequency．

The IM4702／12 can be driven from two alternate clock sources：（1）When the $\bar{E}_{c p}$（External Clock Enabie）input is LOW，the CP input is the clock source．（2）When the $\bar{E}_{c p}$ input is HIGH，a crystal connected between I_{x} and O_{x} ，or a signal applied to the I_{x} input，is the clock source．

Prescaler（Scan Counter）－The clock frequency is made available on the CO（Clock Output）pin and is applied to the $\div 8$ prescaler with buffered outputs Q_{0}, Q_{1} ，and Q_{2} ．

Table 1：Clock Modes and Initialization

$\mathrm{I}_{\mathbf{x}}$	$\bar{E}_{C P}$	CP	OPERATION
	$\begin{aligned} & H \\ & L \\ & H \\ & H \end{aligned}$		Clocked from I_{x} Clocked from CP Continuous Reset Reset During First CP $=$ HIGH Time

$$
\begin{aligned}
& H=H I G H \text { Level } \\
& \text { L = LOW Level } \\
& X=\text { Don't Care } \\
& \Omega=1 \text { st HIGH Level Clock Pulse } \\
& \text { After } \bar{E}_{\mathrm{CP}} \text { Goes LOW } \\
& \text { 凹几 = Clock Pulses }
\end{aligned}
$$

Counter Network－The prescaler output Q_{2} is a square wave of $1 / 8$ the input frequency，and is used to drive the frequency counter network generating 13 standardized frequencies．Note that the frequencies are labeled in the block diagram and described in terms of the transmission bit rate．In a conventional system using a 2.4576 MHz clock input，the actual output frequencies are 16 times higher．

The output from the first frequency divider flip－flop is thus labeled 9600 ，since it is used to transmit or receive 9600 baud（bits per second）．The actual frequency at this node is $16 \times 9.6 \mathrm{kHz}=153.6 \mathrm{kHz}$ ．Seven more cascaded binaries generate the appropriate frequencies for bit rates 4800 ， $2400,1200,600,300,150$ ，and 75.

IM4702/4712

The other five bit rates are generated by individual counters:
bit rate 1200 is divided by 6 to generate bit rate 200,
bit rate 200 is divided by 4 to generate bit rate 50 , bit rate 2400 is divided by 18 to generate bit rate 134.5 with a frequency error of -0.87%, bit rate 2400 is also divided by 22 to generate bit rate 110 with a frequency error of -0.83%, and bit rate 9600 is divided by $16 / 3$ to generate bit rate 1800.

The $16 / 3$ division is accomplished by alternating the divide ratio between 5 (twice) and 6 (once). The result is an exact average output frequency with some frequency modulation. Taking advantage of the $\div 16$ feature of the UART, the resulting distortion is less than 0.78% regardless of the number of elements in a character, and therefore well within the timing accuracy specified for high speed communications equipment. All signals except 1800, have a 50% duty cycle.

Output Multiplexer - The outputs of the counter network are fed to a 16 -input multiplexer, which is controlled by the Rate Select inputs $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$. The multiplexer output is then resynchronized with the incoming clock in order to cancel ali cumuiative delays and to present an output signal at the buffered output (Z) that is synchronous with the prescaler outputs $\left(Q_{0}-Q_{2}\right)$. Table 2 lists the correspondance between select code and output bit rate. Two of the 16 codes do not select an internally generated frequency, but select an input into which the user can feed either a different, nonstandardized frequency, or a static level (HIGH or LOW) to generate 'zero baud'

The bit rates most commonly used in modern data terminals ($110,150,300,1200,2400$ baud) require that no more than one input be grounded, easily achieved with a single pole, 5 -position switch. 2400 baud is selected by two different codes, so that the whole spectrum of modern digital communication rates has a common HIGH on the S_{3} input.

Initialization (Reset) - The initialization circuit generates a common master reset signal for all flip-flops in the IM4702/12. This signal is derived from a digital differentiator that senses the first HIGH level on the CP input after the \bar{E}_{CP} input goes L.OW. Upon initialization, all counters are reset and all outputs will be in the LOW state. When $\bar{E}_{C P}$ is HIGH, selecting the Crystal input, CP must be LOW; a HIGH level on CP would apply a continuous reset.

All inputs to the 4702/12 except I_{x} have on-chip pull-up circuits; the I_{x} input of the 4712 has a high value resistor tied to O_{x}.

Table 2: Truth Table for Rate Select Inputs

S_{3}	\mathbf{S}_{2}	S_{1}	S_{0}	Output Rate (Z) Note 1
L	L	L	L	Multiplexed Input (I_{M})
L	L	L	H	Multiplexed Input (I_{M})
L	L	H	L	50 Baud
L	L	H	H	75 Baud
L	H	L	L	134.5 Baud
L	H	L	H	200 Baud
L	H	H	L	600 Baud
L	H	H	H	2400 Baud
H	L	L	L	9600 Baud
H	L	L	H	4800 Baud
H	L	H	L	1800 Baud
H	L	H	H	1200 Baud
H	H	L	L	2400 Baud
H	H	L	H	300 Baud
H	H	H	L	150 Baud
H	H	H	H	110 Baud

$L=$ LOW Level
$H=$ HIGH Level
Note 1: Actual output frequency is 16 times the indicated output rate, assuming a clock frequency of 2.4576 MHz .

Table 3: Crystal Specifications

PARAMETERS	TYPICAL CRYSTAL SPEC
Frequency	2.4576 MHz "AT'' Cut
Series Resistance	250Ω
(Max)	$-6 \mathrm{~dB}(\mathrm{Min})$
Unwanted Modes	Parallel
Type of Operation	$32 \mathrm{pF} \pm 0.5 \mathrm{pF}$

APPLICATIONS

Single Channel Bit Rate Generator

Figure 4 shows the simplest application of the IM4702/ 12. This circuit generates one of five possible bit rates as determined by the setting of a single pole, 5 -position switch. The Bit Rate Output (Z) drives one standard TTL load or four low power Schottky loads over the full temperature range. The possible output frequencies correspond to 100, $150,300,1200$, and 2400 or 3600 Baud. For many low cost terminals, these five bit rates are adequate.

This mode of operation is commonly chosen for applications using industry standard 1402/6402 UARTs.

SWITCH POSITION	BIT RATE
1	110 Baud
2	150 Baud
3	300 Baud
4	1200 Baud
5	2400 Baud

Figure 4: Switch Selectable Bit Rate Generator Configuration Providing Five Bit Rates

Simultaneous Generation of Several Bit Rates

Figure 5 shows a simple scheme that generates eight bit rates on eight output lines, using one IM4702/12 and one 93L34 Bit Addressable Latch. This and the following applications take advantage of the built-in scan counter (prescaler) outputs. As shown in the block diagram, these outputs $\left(Q_{0}\right.$ to $\left.Q_{2}\right)$ go through a complete sequence of eight states for every half-period of the highest output frequency (9600 Baud). Feeding these Scan Counter Outputs back to the Select inputs of the multiplexer causes the IM4702/12 to sequentially interrogate the state of eight different frequency signals. The 93L34 Bit Addressable Latch, addressed by the same Scan Counter Outputs, reconverts the multiplexed single Output (Z) into eight parallel output frequency signals. In the simple scheme of Figure 5, input S_{3} is left open (HIGH) and the following bit rates are generated:

$Q_{0}: 110$ Baud	$Q_{3}: 1800$ Baud	$Q_{6}: 300$ Baud
$Q_{1}: 9600$ Baud	$Q_{4}: 1200$ Baud	$Q_{7}: 150$ Baud
$Q_{2}: 4800$ Baud	$Q_{5}: 2400$ Baud	

Other bit rate combinations can be generated by changing the Scan Counter to Selector interconnection or by inserting logic gates into this path.

AF03900
Figure 5: Bit Rate Generator Configuration With Eight Simulataneous Frequencies

19200 Baud Operation

Though a 19200 Baud signal is not internally routed to the multiplexer, the IM4702/12 can be used to generate this bit rate by connecting the Q_{2} output to the I_{M} input and applying select code. An additional 2 -input NOR gate can be used to retain the "Zero Baud" feature on select code 1 for the IM4702/12. (See Figure 6).

AFOз8801
Figure 6: 19200 Baud Operation

[^25]

Figure 7: IM4712 Baud Rate Generator With IM6402 CMOS UART

IM6402/IM6403 Universal Asynchronous Receiver Transmitter (UART)

GENERAL DESCRIPTION

The IM6402 and IM6403 are CMOS/LSI UART's for interfacing computers or microprocessors to asynchronous serial data channels. The receiver converts serial start, data, parity and stop bits to parallel data verifying proper code transmission, parity, and stop bits. The transmitter converts paraliel data into serial form and automatically adds start, parity, and stop bits.

The data word length can be $5,6,7$ or 8 bits. Parity may be odd or even, and parity checking and generation can be inhibited. The stop bits may be one or two (or one and onehalf when transmitting 5 bit code). Serial data format is shown in Figure 8.

The IM6402 and IM6403 can be used in a wide range of applications including modems, printers, peripherals and remote data acquisition systems. CMOS/LSI technology permits clock frequencies up to 4.0 MHz (250 K Baud), an improvement of 10 to 1 over previous PMOS UART designs. Power requirements, by comparison, are reduced from 670 mW to 10 mW . Status logic increases flexibility and simplifies the user interface.
The IM6402 differs from the IM6403 in the use of five device pins as indicated in Table 1 and Figure 4.

FEATURES

- Low Power - Less Than 10 mW Typ. at 2 MHz
- Operation Up to 4 MHz Clock (IM6402A)
- Programmable Word Length, Stop Bits and Parity
- Automatic Data Formatting and Status Generation
- Compatible With Industry Standard UART's (IM6402)
- On-Chip Oscillator With External Crystal (IM6403)
- Operating Voitage -

IM6402-1/03-1: 5V
IM6402A/03A: 4-11V
IM6402/03: 5V

ORDERING INFORMATION

ORDER CODE	IM6402-1/03-1	IM6402A/03A	IM6402/03
PLASTIC PKG	IM6402-1/03-IPL	IM6402/03AIPL	IM6402/031PL
CERAMIC PKG	IM6402-1/03-1IJL	IM6402/03AIJL	IM6402/03IJL
MILITARY TEMP.	IM6042-1/03-1MJL	IM6402/03AMJL	-
MILITARY TEMP. WITH /Hi-Rel processing	IM6402-1/03-1MJL/HR	IM6402/03AMJL/HR	-

Figure 1: Functional Diagram

IM6402/IM6403

ABSOLUTE MAXIMUM RATINGS (IM6402/03)

Operating Temperature
IM6402/03 (I) \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Supply Voitage ($V_{D D}-V_{S S}$) +8.0 V
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximurn rating conditions for extended periods may cause device failures.

'See Table 1
CD005311

Figure 2: Pin Configuration

TABLE 1

PIN	IM6402	IM6403 w/XTAL	IM6403 w/EXT TTL CLOCK	IM6402 w/EXT CMOS CLOCK
2	N/C	Divide Control	Divide Control	Divide Control
17	RRC	XTAL	External Clock input	No Connection
19	Tri-State	Always Active	Always Active	Always Active
22	Tri-State	Always Active	Always Active	Always Active
40	TRC	XTAL	VSS	Externai Clock Input

DC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range)

SYMBOL.	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{2}$	MAX	UNIT
V_{IH}	Input Voltage High		$V_{D D}-2.0$			V
$\mathrm{V}_{\text {IL }}$	Input Voltage Low				0.8	V
IIL	Input Leakage [1]	$\mathrm{V}_{S S} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$	-5.0		5.0	$\mu \mathrm{A}$
VOH	Output Voitage High	$\mathrm{I}_{\mathrm{OH}}=-0.2 \mathrm{~mA}$	2.4			V
VOL	Output Voitage Low	$\mathrm{OLL}=1.6 \mathrm{~mA}$			0.45	V
lolk	Output Leakage	$\mathrm{V}_{S S} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {DD }}$	-5.0		5.0	$\mu \mathrm{A}$
ISTBY	Power Supply Current Standby	$V_{\text {IN }}=V_{S S}$ or $V_{D D}$		1.0	800	$\mu \mathrm{A}$
IDD	Power Supply Current IM6402	$\mathrm{f}_{\mathrm{C}}=500 \mathrm{kHz}$			1.2	mA
IDD	Power Supply Current IM6403	$\mathrm{f}_{\text {crystal }}=2.46 \mathrm{MHz}$			3.7	mA
$\mathrm{CiN}_{\text {in }}$	Input Capacitance [1] [3]	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.0	8.0	pF
Co_{0}	Output Capacitance [1] [3]	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8.0	10.0	pF

NOTE: 1. Except IM6403 XTAL input pins (i.e. pins 17 and 40).
2. $V_{D D}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. These parameters are guaranteed but not 100% tested.

AC ELECTRICAL CHARACTERISTICS $\left(V_{D D}=5.0 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=0\right.$ perating Temperature Range)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{2}$	MAX	UNIT
f_{c}	Clock Frequency IM6402	See Timing Diagrams (Figures 4,5,6)	D.C.		1.0	MHz
$\mathrm{f}_{\text {crystal }}$	Crystal Frequency IM6403				2.46	MHz
$t_{\text {pw }}$	Puise Widths CRL, $\overline{\text { DRR, }}$ TBRL		225	50		ns
t_{mr}	Pulse Width MR		600	200		ns
$t_{\text {ds }}$	Input Data Setup Time		75	20		ns
$t_{\text {dh }}$	Input Data Hold Time		90	40		ns
$t_{\text {en }}$	Output Enable Time			80	190	ns

Figure 3: Functional Difference Between IM6402 and IM6403 UART (IM6403 has On-Chip 4/11 Stage Divider)

The IM6403 differs from the IM6402 on three Inputs (RRC, TRC, pin 2) as shown in Figure 3. Two outputs (TBRE, DR) are not three-state as on the IM6402, but are always active. The on-chip divider and oscillator allow an inexpensive crystal to be used as a timing source rather than additional circuitry such as baud rate generators. For example, a color TV crystal at 3.579545 MHz results in a baud rate of 109.2 Hz for an easy teletype interface (Figure 12). A 9600 baud interface may be implemented using a 2.4576 MHz crystal with the divider set to divide by 16.

IM6402/IM6403

(IM6402AI/AM, IM6403AI/AM)
ABSOLUTE MAXIMUM RATINGS

Supply Voltage ($V_{D D}-V_{S S}$) \qquad $+12.0 \mathrm{~V}$
Voltage On Any Input or Output Pin

Operating Temperature Range

IM6402AM/03AM.................. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperaíure (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

DC ELECTRICAL CHARACTERISTICS $\left(V_{D D}=4.0 \mathrm{~V}\right.$ to $11.0 \mathrm{~V} \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{2}$	MAX	UNIT
V_{IH}	Input Voltage High		$70 \% V_{D D}$			V
$\mathrm{V}_{\text {IL }}$	Input Voltage Low				$10 \% V_{D D}$	V
IIL	Input Leakage [1] [3]	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {DD }}$	-1.0		1.0	$\mu \mathrm{A}$
VOH	Output Voltage High	$\mathrm{I}_{\mathrm{OH}}=0 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{DD}}-0.01$		V
V_{OL}	Output Voltage Low	$1 \mathrm{OL}=0 \mathrm{~mA}$		$\mathrm{V}_{\text {SS }}+0.01$		V
lolk	Output Leakage	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {DD }}$	-1.0		1.0	$\mu \mathrm{A}$
ICC	Power Supply Current Standby	$\mathrm{V}_{\text {iN }}=\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {DD }}$		5.0	500	$\mu \mathrm{A}$
ICC	Power Supply Current IM6402A	$\mathrm{f}_{\text {crystal }}=4 \mathrm{MHz}$			9.0	mA
Icc	Power Supply Current 1/M6403A	$\mathrm{f}_{\text {crystal }}=3.58 \mathrm{MHz}$			13.0	mA
$\mathrm{CiN}^{\mathrm{N}}$	input Capacitance [1] [3]	$T_{A}=25^{\circ} \mathrm{C}$		7.0	8.0	pF
CO_{0}	Output Capacitance [1] [3]	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8.0	10.0	pF

NOTE: 1. Except IM6403 XTAL input pins (i.e. pins 17 and 40).
2. $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. These parameters are guaranteed but not 100% tested.

AC ELECTRICAL CHARACTERISTICS $\left(V_{D D}=10.0 \mathrm{~V} \pm 5 \% \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\right.$ Operating Temperature Range)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{2}$	MAX	UNIT
f_{c}	Clock Frequency im6402A	Gee Timing Diagrams (Figures 4.5,6)	D.C.		4.0	MHz
$\mathrm{f}_{\text {crystal }}$	Crystal Frequency IM6403A				6.0	MHz
$t_{\text {pw }}$	Pulse Widths CRL, $\overline{\text { DRR, TBRL }}$		100	40		ns
$t_{\text {mr }}$	Pulse Width MR		400	200		ns
$t_{\text {ds }}$	Input Data Setup Time		40	0		ns
$t_{\text {dh }}$	Input Data Hold Time		30	30		ns
$t_{\text {en }}$	Output Enable Time			40	70	ns

(IM6402-1I/1M, IM6403-1I/1M)
ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD $-\mathrm{V}_{\mathrm{SS}}$) +8.0 V
Voltage On Any Input or Output Pin (VSS -0.3V)
to $\left(V_{D D}+0.3 V\right)$

Operating Temperature Range

$$
\text { IM6402-1//03-1I...................... } 40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

$$
\text { IM6402-1M/03-1M } \ldots \ldots-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$$
\text { Storage Temperature Range } \ldots \ldots \ldots . .-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$$
\text { Lead Temperature (Soldering, 10sec) } 300^{\circ} \mathrm{C}
$$

NOTE: Stresses above those listed under "Absolute Maximum Ratings' may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.
DC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=5.0 \pm 10 \% \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{2}$	MAX	UNIT
V_{IH}	Input Voltage High		$\mathrm{V}_{\mathrm{DD}}-2.0$			V
$\mathrm{V}_{\text {IL }}$	Input Voltage Low				0.8	V
IIL	Input Leakage [1] [3]	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$	-1.0		1.0	$\mu \mathrm{A}$
VOH	Output Voltage High	$\mathrm{l}_{\mathrm{OH}}=-0.2 \mathrm{~mA}$	2.4			V
V_{OL}	Output Voltage Low	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$			0.45	V
IOLK	Output Leakage	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {DD }}$	-1.0		1.0	$\mu \mathrm{A}$
I'c.	Power Supply Current Standby	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$ or V_{DD}		1.0	100	$\mu \mathrm{A}$
${ }^{\text {cce }}$	Power Supply Current IM6402 Dynamic	$\mathrm{f}_{\mathrm{C}}=2 \mathrm{MHz}$			1.9	mA
Icc	Power Supply Current IM6403 Dynamic	$\mathrm{f}_{\text {crystal }}=3.58 \mathrm{MHz}$			5.5	mA
$\mathrm{Cl}_{\mathrm{IN}}$	Input Capacitance [1] [3]	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.0	8.0	pF
Co_{0}	Output Capacitance [1] [3]	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8.0	10.0	pF

NOTE: 1. Except IM6403 XTAL input pins (i.e. pins 17 and 40).
2. $V_{D D}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. These parameters are guaranteed but not 100% tested.

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\right.$ Operaing Temperature Range)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{2}$	MAX	UNIT
f_{c}	Clock Frequency IM6402-1	See Timing Diagrams (Figures 4,5,6)	D.C.		2.0	MHz
${ }_{\text {crystal }}$	Crystal Frequency IM6403-1				3.58	MHz
$t_{\text {pw }}$	Pulse Widths CRL, $\overline{\text { DRR, }}$, TBRL		150	50		ns
t_{mr}	Pulse Width MR		400	200		ns
$t_{\text {ds }}$	Input Data Setup Time		50	20		ns
$t_{\text {dh }}$	Input Data Hold Time		60	40		ns
ten	Output Enable Time			80	160	ns

TIMING DIAGRAMS

WF009201
Figure 4: Data Input Cycle

wF00930
Figure 5: Control Register Load Cycle

Figure 6: Status Flag Enable Time or Data Output Enable Time

Table 1: IM6402/3 Pin Description

PIN	SYMBOL	DESCRIPTION
1	$V_{\text {DD }}$	Positive Power Supply
2	IM6402-N/C IM6403-Control	No Connection Divide Control High: 2^{4} (16) Divider Low: 2^{11} (2048) Divider
3	$\mathrm{V}_{\text {SS }}$	Negative Supply
4	RRD	A high level on RECEIVER REGISTER DISABLE forces the receiver holding register outputs RBR1-RBR8 to a high impedance state.
5	RBR8	The contents of the RECEIVER BUFFER REGISTER appear on these three-state outputs. Word formats less than 8 characters are right justified to RBR1.
6	RBR7	See Pin 5-RBR8
7	RBR6	See Pin 5-RBR8
8	RBR5	See Pin 5-RBR8
9	RBR4	See Pin 5-RBR8
10	RBR3	See Pin 5-RBR8
11	RBR2	See Pin 5-RBR8
12	RBR1	See Pin 5-RBR8
13	PE	A high level on PARITY ERROR indicates that the received parity does not match parity programmed by control bits. The output is active until parity matches on a succeeding character. When parity is inhibited, this output is low.
14	FE	A high level on FRAMING ERROR indicates the first stop bit was invalid. FE will stay active until the next valid character's stop bit is received.

Table 1: IM6402/3 Pin Description (CONT.)

PIN	SYMBOL	DESCRIPTION			
25	TRO	Character data, start data and stop bits appear serially at the TRANSMITTER REGISTER OUTPUT.			
26	TBR1	Character data is loaded into the TRANSMITTER BUFFER REGISTER via inputs TBR1- TBR8. For character formats less			
than 8-bits, the TBR8, 7, and 6					
Inputs are ignored corresponding					
to the programmed word length.			$	-$	See Pin 26-TBR1 -TB1
:---	:---				

*See Table 2 (Control Word Function)

TRANSMITTER OPERATION

The transmitter section accepts parallel data, formats it and transmits it in serial form (Figure 7) on the TROutput terminal.

Figure 7: Serial Data Format

Transmitter timing is shown in Figure 8. Data is loaded into the transmitter buffer register from the inputs TBR1 through TBR8 by a logic low on the TBRLoad input. Valid data must be present at least $t_{D S}$ prior to and $t_{D H}$ following the rising edge of TBRL. If words less than 8 bits are used, only the least significant bits are used. The character is right justified into the least significant bit, TBR1. The rising edge of TBRL clears TBREmpty. 0 to 1 clock cycles later, data is transferred to the transmitter register, TREmpty is cleared and transmission starts. TBREmpty is reset to a logic high. Output data is clocked by TRClock, which is 16 times the data rate. A second pulse on TBRLoad loads data into the transmitter buffer register. Data transfer to the transmitter register is delayed until transmission of the current character is complete. Data is automatically transferred to the transmitter register and transmission of that character begins.

Figure 8: Transmitter Timing (Not to Scale)

CONTROL WORD					DATA BITS	PARITY BIT	STOP BIT(S)
CLS 2	CLS1	PI	EPE	SBS			
L	L	L	L	L	5	ODD	1
L	L	L	L	H	5	ODD	1.5
L	L	L	H	L	5	EVEN	1
L	L	L	H	H	5	EVEN	1.5
L	L	H	X	L	5	DISABLED	1
L	L	H	X	H	5	DISABLED	1.5
L	H	L	L	L	6	ODD	1
L	H	L	L	H	6	ODD	2
L'	H	L	H	L	6	EVEN	1
L	H	L	H	H	6	EVEN	2
L	H	H	X	L	6	DISABLED	1
L	H	H	X	H	6	DISABLED	2
H	L	L	L	L	7	ODD	1
H	L	L	L	H	7	ODD	2
H	L	L.	H	L	7	EVEN	1
H	L	L	H	H	7	EVEN	2
H	L	H	X	L	7	DISABLED	1
H	L	H	X	H	7	DISABLED	2
H	H	L	L	L	8	ODD	1
H	H	L	L	H	8	ODD	2
H	H	L	H	L	8	EVEN	1
H	H	L	H	H	8	EVEN	2
H	H	H	X	L	8	DISABLED	1
H	H	H	X	H	8	DISABLED	2

$x=$ Don't Care

RECEIVER OPERATION

Data is received in serial form at the RI input. When no data is being received, RI input must remain high. The data is clocked by the RRClock, which is 16 times the data rate. Receiver timing is shown in Figure 9.

A low level on DRReset clears the DReady line. During the first stop bit, data is transferred from the receiver register to the RBRegister. If the word is less than 8 bits, the unused most significant bits will be a logic low. The output character is right justified to the least significant bit RBR1. A logic high on OError indicates an overrun which occurs when DReady has not been cleared before the present character was transferred to the RBRegister. A logic high on PError indicates a parity error. $1 / 2$ clock cycle later, DReady is set to a logic high and FError is evaluated. A
logic high on FError indicates an invalid stop bit was received. The receiver will not begin searching for the next start bit until a stop bit is received.

START BIT DETECTION

The receiver uses a 16 X clock for timing. (See Figure 10.) The start bit (A) could have occurred as much as one clock cycle before it was detected, as indicated by the shaded portion. The center of the start bit is defined as clock count $71 / 2$. If the receiver clock is a symmetrical square wave, the center of the start bit will be located within $\pm 1 / 2$ clock cycle, $\pm 1 / 32$ bit or $\pm 3.125 \%$. The receiver begins searching for the next start bit at the center of the first stop bit.

Figure 10: Start Bit Timing

TYPICAL APPLICATION

Microprocessor systems, which are inherently parallel in nature, often require an asynchronous serial interface. This function can be performed easily with the IM6402/03 UART. Figure 11 shows how the IM6402 can be interfaced to an IM80C48 microcomputer system.

IM6402/IM6403

In this example the characters to be received or transmitted will be eight bits long (CLS 1 and 2: both HIGH) and transmitted with no parity (PI:HIGH) and two stop bits (SBS:HIGH). Since these control bits will not be changed during operation, Control Register Load (CRL) can be tied high. Remember, since the IM6402/03 is a CMOS device, all unused inputs should be tied to either $V_{D D}$ or $V_{S S}$.

The baud rate at which the transmitter and receiver will operate is determined by the IM4702 Baud Rate Generator.

To ensure consistent and correct operation, the IM6402/ 03 must be reset after power-up. The Master Reset (MR) pin is active high, and can be driven reliably from a Schmitt trigger inverter and R-C delay. In this example, the IM80C48 is reset through still another inverter. The Schmitt trigger between the processor and R-C network is needed to
assure that a slow rising capacitor voltage does not retrigger RESET. A long reset pulse after power-up ($\sim 20 \mathrm{~ms}$) is required by the processor to assure that the on-board crystal oscillator has sufficient time to start.

If parity is not inhibited, a parity error will cause the PE pin to go high until the next valid character is received.

A framing error is generated when an expected stop bit is not received. FE will stay high after the error until the next complete character's stop bit is received.

The overrun error flag is set if a received character is transferred to the RECEIVER BUFFER REGISTER when the previous character has not been read. The OE pin will stay high until the next received stop bit after a DRR is performed.

IM6653/IM6654 4096-Bit CMOS UV EPROM

GENERAL DESCRIPTION

The Intersil IM6653 and IM6654 are fully decoded 4096 bit CMOS electrically programmable ROMs (EPROMs) fabricated with Intersil's advanced CMOS processing technology. In all static states these devices exhibit the microwatt power dissipation typical of CMOS. Inputs and threestate outputs are TTL compatible and allow for direct interface with common system bus structures. On-chip address registers and chip select functions simplify system interfacing requirements.

The IM6653 and IM6654 are specifically designed for program development applications where rapid turn-around for program changes is required. The devices may be erased by exposing their transparent lids to ultra-violet light, and then re-programmed.

FEATURES

- Organization - IM6653: 1024×4

IM6654: 512×8

- Low Power - 770μ W Maximum Standby
- High Speed
- 300ns 10V Access Time For IM6653/54 AI
- 450ns 5V Access Time For IM6653/54-1I
- Single $+5 V$ Supply Operation
- UV Erasable
- Synchronous Operation For Low Power Dissipation
- Three-State Outputs and Chip Select for Easy System Expansion

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IM6653/4IJG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Pin CERDIP
IM6653/4-1IJG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Pin CERDIP
IM6653/4AIJG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Pin CERDIP
IM6653/4MJG*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24-Pin CERDIP
IM6653/4AMJG*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24-Pin CERDIP

* Add /HR for HiRel processing

3D002411
Figure 1: Functional Diagram

Figure 2: Pin Configurations

IM6653/IM6654

ABSOLUTE MAXIMUM RATINGS (IM6653/54 I, -1I, M)

Supply Voltages

$$
\begin{aligned}
& V_{D D}-V_{S S} \\
& +8.0 \mathrm{~V} \\
& V_{c c}-V_{s s} \\
& +8.0 \mathrm{~V} \\
& \text { Input or Output Voltage }(\mathrm{VSS}-0.3 \mathrm{~V}) \text { to }\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)
\end{aligned}
$$

Operating Range Range (T_{A}) Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) \qquad

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\right.$ Operating Temperature Range)

SYMBOL	PARAMETER	TEST CONDITIONS	IM6653/54I, -11, M		UNIT
			MIN	MAX	
V_{IH}	Logical "1" Input Voltage	\bar{E}_{1}, \bar{s}	$\mathrm{V}_{\mathrm{DD}}-2.0$		V
$\mathrm{V}_{\text {IH }}$		Address Pins	2.7		
$\mathrm{V}_{\text {IL }}$	Logical '0' Input Voltage			0.8	
1	Input Leakage	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {DD }}$	-1.0	1.0	$\mu \mathrm{A}$
V_{OH}	Logical "1" Output Voltage	$1_{\mathrm{OH}}=-0.2 \mathrm{~mA}$	2.4		V
VOL	Logical "0' Output Voitage	$\mathrm{lOL}=2.0 \mathrm{~mA}$		0.45	
IOLK	Output Leakage	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$	-1.0	1.0	$\mu \mathrm{A}$
ISTBY	Standby Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$		100	
${ }^{\text {ICC }}$		$V_{\text {IN }}=V_{\text {DD }}$		40	
IDD	Operating Supply Current (1)	$\mathrm{f}=1 \mathrm{MHz}$		6	mA
Cl_{1}	Input Capacitance	Note 1		7.0	pF
Co_{0}	Output Capacitance	Note 1		10.0	

Note: 1. For design reference only, not 100% tested.

AC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pf}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range)

SYMBOL	PARAMETER	IM6653/54-1]		IM6653/54 I		IIM6653/54 M		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
TE ${ }_{1}$ LQV	Access 'Time From $\overline{\mathrm{E}}_{1}$		450		550		600	ns
TSLQV	Output Enable Time		110		140		150	
$\mathrm{TE}_{1} \mathrm{HQZ}$	Output Disable Time		110		140		150	
$\mathrm{TE}_{1} \mathrm{HE}_{1} \mathrm{~L}$	$\overline{\bar{E}}_{1}$ Pulse Width (Positive)	130		150		150		
TE $\mathrm{LE}_{1} \mathrm{H}$	\bar{E}_{1} Pulse Width (Negative)	450		550		600		
TAVE $_{1} \mathrm{~L}$	Address Setup Time	0		0		0		
TE E_{1} LAX	Address Hold Time	80		100		100		
$T E_{2} V E_{1} \mathrm{~L}$	Chip Enable Setup Time (6654)	0		0		0		
$T E_{1} L^{2} \mathrm{X} \times$	Chip Enable Hold Time (6654)	80		100		100		

IM6653/IM6654

ABSOLUTE MAXIMUM RATINGS (IM6653/54AI, AM)

Supply Voitages	
$V_{D D}-V_{S S}$	
$V_{C C}-V_{\text {SS }}$	+11.0V
put or Output V	+0.3V)

Operating Temperature Range Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
 Storage Temperature Range $\ldots \ldots \ldots . . .65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings oniy, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}\right.$ to $10.5 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=\mathrm{OV}, \mathrm{T}_{\mathrm{A}}=$ Operational Temperature Range)

SYMBOL	PARAMETER	TEST CONDITIONS	IM6653/54AI, AM		UNIT
			MIN	MAX	
V_{I}	Logical "1" Input Voltage	$\bar{E}_{1}, \overline{\bar{S}}$	$\mathrm{V}_{\text {DD }}-2.0$		V
V_{iH}		Address Pins	$\mathrm{V}_{\text {DD }}-2.0$		
$\mathrm{V}_{\text {IL }}$	Logical " 0 " Input Voltage			0.8	
$1 /$	Input Leakage	GND $\leq V_{\text {IN }} \leq V_{\text {DD }}$	-1.0	1.0	$\mu \mathrm{A}$
V_{OH}	Logical "1" Output Voltage	lout $=0($ Note 1$)$	$\mathrm{V}_{\text {CC }}-0.01$		v
V_{OL}	Logical "0" Output Voltage	lout $=0$ (Note 1)		$\mathrm{v}_{\text {SS }}+0.01$	
loLk	Output Leakage	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{CC}}$	-1.0	1.0	$\mu \mathrm{A}$
Istby	Standby Supply Current	$V_{\text {IN }}=V_{\text {DD }}$		100	
ICC		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$		40	
IDD	Operating Supply Current	$f=1 \mathrm{MHz}$		12	mA
Cl_{1}	Input Capacitance	Note 1		7.0	pF
Co_{0}	Output Capacitance	Note 1		10.0	

Note: 1. For design reference only, not 100% tested.

AC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=V_{D D}=10 \mathrm{~V} \pm 5 \% V_{S S}=0 \mathrm{~V}, C_{L}=50 \mathrm{pf}, T_{A}=\right.$ Operating Temperature Range $)$

SYMBOL.	PARAMETER	[M6653/54 AI		IM6653/54 AM		UNIT
		MIN	MAX	MIN	MAX	
TE 1 LQV	Access Time From \bar{E}_{1}		300		350	ns
TSLQV	Output Enable Time		60		70	
TE ${ }_{1} \mathrm{HQZ}$	Output Disable Time		60		70	
$T E_{1} \mathrm{HE}_{1} \mathrm{~L}$	\bar{E}_{1} Pulse Width (Positive)	125		125		
$T E_{1} L E_{1} H$	\bar{E}_{1} Pulse Width (Negative)	300		350		
TAVE ${ }_{\text {L }}$	Address Setup Time	0		0		
TE $\mathrm{LE}^{\text {LAX }}$	Address Hold Time	60		60		
$T E_{2} V E_{1} L$	Chip Enable Setup Time (6654)	0		0		
$T E_{1} L E_{2} X$	Chip Enable Hold Time (6654)	60		60		

PIN ASSIGNMENTS

PIN	SYMBOL	ACTIVE LEVEL	DESCRIPTION
1-8,23	$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~A}_{8}$	-	Address Lines
9-11, 13-17	$\begin{aligned} & Q_{0}-Q_{7} \\ & Q_{0}-Q_{3} \end{aligned}$	-	Data Out lines, 6654 Data Out lines, 6653
12	$\mathrm{V}_{\text {SS }}$	-	Negative Supply
18	Program	-	Programming pulse input
19	$V_{\text {DD }}$	-	Chip positive supply, normally tied to $\mathrm{V}_{\text {CC }}$
20	\bar{E}_{1}	L	Strobe line, latches both address lines and, for 6654, Chip enable \bar{E}_{2}
21	$\overline{\mathrm{S}}$	L	Chip select line, must be low for valid data out
22	$\stackrel{\mathrm{Ag}}{\mathrm{E}_{2}}$	$\overline{\mathrm{L}}$	Additional address line for 6653 Chip enable line, latched by Chip enable \bar{E}_{1} on 6654
24	V_{CC}	-	Output buffer positive supply

READ MODE OPERATION

In a typical READ operation address lines and chip enable $\bar{E}_{2}{ }^{*}$ are latched by the falling edge of chip enable \bar{E}_{1} ($\mathrm{T}=0$). Valid data appears at the outputs one access time (TELQV) later, provided level-sensitive chip select line $\overline{\mathrm{S}}$ is low ($T=3$). Data remains valid until either \bar{E}_{1} or $\overline{\mathrm{S}}$ returns to a high level $(T=4)$. Outputs are then forced to a high-Z state.

Address lines and \bar{E}_{2} must be valid one setup time before (TAVEL), and one hold time after (TELAX), the falling edge of \bar{E}_{1} starting the read cycle. Before becoming valid, Q output lines become active ($T=2$). The Q output lines return to a high-Z state one output disable time ($\mathrm{TE}_{1} \mathrm{HQZ}$) after any rising edge on \bar{E}_{1} or $\overline{\mathrm{S}}$.

The program line remains high throughout the READ cycle.
Chip enable line \bar{E}_{1} must remain high one minimum positive pulse width (TEHEL) before the next cycle can begin.

Figure 3: Read Cycle Timing

FUNCTION TABLE

TIME REF	INPUTS				OUTPUTS Q	NOTES
	\bar{E}_{1}	E2	$\overline{\mathbf{S}}$	A		
-1	H	X	X	X	Z	DEVICE INACTIVE
0	∇_{-}	L	X	V	Z	CYCLE BEGINS; ADDRESSES, E E_{2} LATCHED*
1	L	X	X	X	Z	INTERNAL OPERATIONS ONLY
2	L	X	L	X	A	OUTPUTS ACTIVE UNDER CONTROL OF $\bar{E}_{1}, \overline{\mathrm{~S}}$
3	L	X	L	X	V	OUTPUTS VALID AFTER ACCESS TIME
4	${ }_{-}^{-}$	X	L	X	V	READ COMPLETE
5	H	X	X	X	Z	CYCLE ENDS (SAME AS -1)

Figure 4: Read and Program Cycle Timing
DC CHARACTERISTICS FOR PROGRAMMING OPERATION
$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IPROG	Program Pin Load Current			80	100	mA
VPROG	Programming Pulse Amplitude		-38	-40	-42	V
ICC	V ${ }_{\text {CC }}$ Current			0.1	5	mA
IDD	VDD Current			40	100	
$\mathrm{V}_{\text {IHA }}$	Address Input High Voltage		$\mathrm{V}_{\mathrm{DD}}-2.0$			V
VILA	Address Input Low Voltage				0.8	
$\mathrm{V}_{\text {IH }}$	Data Input High Voltage		$\mathrm{V}_{\mathrm{DD}}-2.0$			
$\mathrm{V}_{\text {IL }}$	Data Input Low Voltage				0.8	

AC CHARACTERISTICS FOR PROGRAMMING OPERATION

$\left(V_{C C}=V_{D D}=5 \mathrm{~V} \pm 5 \% V_{S S}=0 V, T_{A}=25^{\circ}\right)$

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
TPLPH	Program Pulse Width	$\mathrm{t}_{\text {rise }}=\mathrm{t}_{\text {fall }}=5 \mu \mathrm{~s}$	18	20	22	ms
	Program Pulse Duty Cycle				75\%	
TDVPL	Data Setup Time		9			$\mu \mathrm{s}$
TPHDX	Data Hold Time		9			
$\mathrm{TE}_{1} \mathrm{HE}_{1} \mathrm{~L}$	Strobe Pulse Width		150			ns
TAVE ${ }_{1}$ L	Address Setup Time		0			
$\mathrm{TE}_{1} \mathrm{LE}_{1} \mathrm{X}$	Address Hold Time		100			
TE ${ }_{1}$ LQV	Access Time				1000	

PROGRAM MODE OPERATION

Initially, all 4096 bits of the EPROM are in the logic one (output high) state. Selective programming of proper bit locations to ' 0 ''s is performed electrically.

In the PROGRAM mode for all EPROMs, V_{CC} and $\mathrm{V}_{D D}$ are tied together to a +5 V operating supply. High logic levels at all of the appropriate chip inputs and outputs must
be set at $V_{D D}-2 V$ minimum. Low logic levels must be set at $\mathrm{V}_{\mathrm{SS}}+0.8 \mathrm{~V}$ maximum. Addressing of the desired location in PROGRAM mode is done as in the READ mode. Address and data lines are set at the desired logic levels, and PROGRAM and chip select ($\overline{\mathrm{S}}$) pins are set high. The address is latched by the downward edge on the strobe line $\left(\bar{E}_{1}\right)$. During valid DATA IN time, the PROGRAM pin is pulsed from $V_{D D}$ to -40 V . This pulse initiates the program-

IM6653/IM6654

ming of the device to the levels set on the data outputs. Duty cycle limitations are specified from chip heat dissipation considerations. PULSE RISE AND FALL. TIMES MUST NOT BE FASTER THAN $5 \mu \mathrm{~s}$.

Intelligent programmer equipment with successive READ/PROGRAM/VERIFY sequences is recommended.

PROGRAMMING SYSTEM CHARACTERISTICS

1. During programming the power supply should be capable of limiting peak instantaneous current to 100 mA .
2. The programming pin is driven from $V_{D D}$ to -40 volts ($\pm 2 \mathrm{~V}$) by pulses of 20 milliseconds duration. These pulses should be applied in the sequence shown in the flow chart. Pulse rise and fall times of 10 microseconds are recommended. Note that any individual location may be programmed at any time.
3. Addresses and data should be presented to the device within the recommended setup/hoid time and high/low logic level margins. Both ' A ' (10V) and non " A " EPROMs are programmed at V_{CC}, $V_{D D}$ of $5 \mathrm{~V} \pm 5 \%$.
4. Programming is to be done at room temperature.

ERASING PROCEDURE

The IM6653/54 are erased by exposure to high intensity short-wave ultraviolet light at a wavelength of $2537 \AA$. The recommended integrated dose (i.e., UV intensity x exposure time) is $10 \mathrm{~W} \mathrm{sec} / \mathrm{cm}^{2}$. The lamps should be used without short-wave filters, and the 1M6653/54 to be erased should be placed about one inch away from the lamp tubes. For best results it is recommended that the device remain inactive for 5 minutes after erasure, before reprogramming.

The erasing effect of UV light is cumulative. Care should be taken to protect EPROMs from exposure to direct sunlight or fluorescent lamps radiating UV light in the $2000 \AA$ to $4000 \AA$ range.

Figure 5: Programming Flow Chart

Figure 6: IM6653 CMOS EPROMS as External Program Memory with the IM80C35

Figure 7: Using IM6654 CMOS EPROM To Extend Program Memory

IM80C48/49/35/39 CMOS Microcontroller

GENERAL DESCRIPTION

The Intersil IM80C48 family of CMOS microcontrollers combines the speed of the industry standard NMOS8048 with the low power consumption of CMOS. In addition to the low operating current, the IM80C48 family has three versatile power-down modes that reduce power dissipation even further. The HALT mode, entered by software command, shuts down selected portions of the CPU to reduce power consumption while retaining rapid response time to an interrupt or reset. The STandBY and STOP modes shut down all but the onboard RAM, reducing the supply current to typically 1 microamp.

The IM80C48 family microcontrollers include 27 I/O lines, RAM, and an 8-bit timer/counter on-chip, and are well suited for control applications. The low power consumption of the IM80C48 makes it particularly desirable in applications that require battery operation or long term battery backup of on-chip RAM during AC power interruptions.

FEATURES

- Industry Standard NMOS 8048 Family Compatible
- Expanded Instruction Set Includes Software STandBY
- Ultra Low Power Consumption
- Operating Supply Current: 3 mA at 6 MHz
- IDLe Supply Current: $800 \mu \mathrm{~A}$ at 6 MHz
-STandBY and STOP Modes: $1 \mu A$
- Wide Operating Voltage Range - 3.5 V to 6 V
- Compatible with 8048/80/85 Peripherals
- 4 Standard ROM and ROM-Less Versions

APPLICATIONS

- Portable Instrumentation
- Telecom
- Industrial Control
- Battery Operated Equipment

ORDERING INFORMATION

BASIC PART NUMBER	SUFFIX				INTERNAL MEMORY	
	TEMP. RANGE: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		TEMP. RANGE: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		ROM	RAM
	$\begin{aligned} & \text { 40-PIN } \\ & \text { PLASTIC } \end{aligned}$	40-PIN CERDIP	$\begin{gathered} \text { 40-PIN } \\ \text { PLASTIC } \end{gathered}$	40-PIN CERDIP		
IM80C48	CPL	CJL	IPL	IJL	$1 \mathrm{~K} \times 8$	64×8
IM80C49	CPL	CJL	IPL	IJL	$2 \mathrm{~K} \times 8$	128×8
IM80C35	CPL	CJL	IPL	IJL	NONE	64×8
IM80C39	CPL	CJL	IPL	IJL	NONE	128×8

Figure 1: Functional Diagram

Figure 2: Pin Configuration

IM80C48/49/35/39

ABSOLUTE MAXIMUM RATINGS

Voltage on Any Pin \qquad $\left(\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Supply Voltage
Storage Temperature (Plastic)
$\ldots \ldots \ldots .\left(V_{C C}-V_{S S}\right)+8 V$

Operating Temperature Range:
IM80CXXCXL $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IM80CXXIXL $\ldots \ldots \ldots \ldots \ldots \ldots .40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Temperature (Soldering, 10 sec) $\ldots \ldots \ldots \ldots \ldots .300^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10 sec)
$300^{\circ} \mathrm{C}$
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS DC CHARACTERISTICS

Test Conditions: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (All Except XTAL1)		-0.3		0.8	V
$\mathrm{V}_{\mathrm{IL} 1}$	Input Low Voltage XTAL1				$\mathrm{V}_{\mathrm{CC}}-0.8$	V
V_{IH}	input High Voltage (All Except $\overline{\text { RESET, XTAL1, }}$ $\mathrm{V}_{\mathrm{DD}} / \mathrm{STOP}$)		Vcc-2V		Vcc	V
$\mathrm{V}_{1 \mathrm{H} 1}$	Input High Voltage RESET, XTAL1, XTAL2, VDD/STOP		$\mathrm{V}_{\mathrm{Cc}}-0.5 \mathrm{~V}$		$V_{C C}$	V
VOL	Output Low Voltage	$1 \mathrm{OL}=2 \mathrm{~mA}$			0.45	V
V_{OH}	Output High Voltage BUS, $\overline{R D}$, Wh, $\overline{P S E N}$, ALE	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$	2.4			V
VOH_{1}	Output High Voitage All Other Outputs	$\mathrm{IOH}=-50 \mu \mathrm{~A}$	2.4			V
IILP	Input Pullup Current Port 1, Port 2	$V_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$		-150	-300	$\mu \mathrm{A}$
ILL	Input Pullup Current SS, RESET	$V_{\text {IN }} \leq V_{\text {IL }}$		-20	-40	$\mu \mathrm{A}$
$1 / 2$	Input Leakage Current T1, EA, INT	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{CC}}$		0	± 1	$\mu \mathrm{A}$
lol	Output Leakage Current Bus, TO-High impedance	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		0	± 1	$\mu \mathrm{A}$
1 CC	Total Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 6 \mathrm{MHz}$		3	8	mA
ICC1	IDLE Power Supply Current	6 MHz		0.8	2.0	mA
ICC2	STandBY and STOP Modes Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$		1	20	$\mu \mathrm{A}$

AC CHARACTERISTICS

PORT 2 TIMING

Test Conditions: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=6 \mathrm{MHz}$

SYMBOL	PARAMETER	TEST CONDITIONS (Note 1)	LIMITS			UNIT
			MIN	TYP	MAX	
${ }_{t} \mathrm{CP}$	Port Control Setup Before Falling Edge of PROG		110			nS
tPC	Port Control Hold after Falling Edge of PROG		140		-	nS
tPR	PROG to Time Port 2 input Data must be valid				810	nS
tDP	Output Data Setup Time		220			ns
tpD	Output Data Hold Time		65			ns
tpF	Input Data Hold Time		0		150	ns
tpp	PROG Pulse Width		1200			ns
$t_{\text {PL }}$	Port 2 1/O Data Setup		350			ns
tLP	Port 2 I/O Data Hold		150			ns

Note 1: inputs are driven to 0.45 V and 2.4 V . Output timing measurements are made at 0.8 V and 2.0 V .

READ, WRITE AND INSTRUCTION FETCH - EXTERNAL DATA AND PROGRAM MEMORY
Test Conditions: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=6 \mathrm{MHz}$

SYMBOL	PARAMETER	TEST CONDITIONS (Note 1)	LIMITS			UNIT
			MIN	TYP	MAX	
tLL	ALE Pulse Width		400			ns
$t_{\text {AL }}$	Address Setup before ALE Falling		120			ns
tha	Address Hold from ALE Falling		80			ns
${ }^{\text {t }} \mathrm{C}$	Control Pulse Width ($\overline{\text { PSEN }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$)		700			ns
tow	Data Setup before $\overline{\text { WR Rising }}$		500			ns
twD	Data Hold after WR Rising	$C_{L}=20 \mathrm{pF}$	120			ns
tcy	Cycle Time		2.5		150	$\mu \mathrm{s}$
tbR	Data Hold		0		200	ns
$\mathrm{t}_{\text {RD }}$	$\overline{\text { PSEN, }}$, $\overline{\mathrm{RD}}$ to Data in Valid				500	ns
$t_{\text {AW }}$	Address Setup before $\overline{\mathrm{WR}}$		230			ns
$t_{A D}$	Address Setup before Data in				950	ns
$t_{\text {AFC }}$	Address Float to $\overline{\mathrm{RD}}, \overline{\mathrm{PSEN}}$		0			ns

Note 1: For Control Outputs $C_{L}=80 \mathrm{pF}$, for Bus Outputs $C_{L}=150 \mathrm{pF}$. Inputs are driven to 0.45 V and 2.4 V . Output timing measurements are made at 0.8 V and 2.0 V .

LS00070
Figure 3: Logic Symbol

ROM CODE DATA ENTRY

Intersil can accept customer ROM codes in a variety of media, including standard byte-wide EPROMs (2176, 2732, $2764,27 \mathrm{C} 16,27 \mathrm{C} 32$, etc.) or $(8048,8748,8049,8749)$ microcomputers.

Contact GE-Intersil sales office for other formats.

ROM CODE VERIFICATION (IM80C48/49)

The IM80C48/49 ROM code can be verified by applying negative 5 V to the EA pin while RESET is low. The address is then applied to DB0-DB7 and P20-P22. Bringing RESET high will internally latch the address and cause the ROM content for that address to appear on DB0-DB7. This verify cycle can then be repeated by returning RESET low and applying the next address to DB0-DB7 and P20-P22; then bringing RESET high to read the ROM content. To exit the verify mode first set $\overline{R E S E T}$ low then return EA to $O V$.

Figure 4: Port 2 Timing

Figure 5: Read From External Data Memory

Figure 6: Write to External Data Memory

Figure 7: Instruction Fetch From External Program Memory

RESET
WF023211
Figure 8: Verify Mode Timing

Table 1: Pin Description

PIN NAME	PIN	FUNCTION
TO	1	An input pin that is tested by the conditional jump instructions JTO and JNT0. This pin can be designated as a clock output using the ENTO CLK instruction.
XTAL1	2	Connected to one side of the crystal for internal oscillator operation. Also used as the external clock input when using an external oscillator.
XTAL2	3	Connected to one side of the crystal when using the internal oscillator. Leave open when using an external oscillator.
$\overline{\text { RESET }}$	4	Active low input used to reset the microcomputer. A capacitor from this pin to ground will automatically reset the device on power-up.
$\overline{\text { SS }}$	5	Single-Step input, active low, that can be used in conjunction with ALE to single-step the processor through each instruction.
$\overline{\text { NT }}$	6	lNTerrupt input, active low. Initiates an interrupt if external interrupt is enabled.
EA	7	External Access input, active high, is used to force all program memory accesses to reference external memory.
$\overline{\text { RD }}$	8	This output, active low, is used by external devices to place data onto the bus during a bus read operation.
$\overline{\text { PSEN }}$	9	Program Store ENable. This output, active low, occurs only during fetches to external program memory. The system uses this signal to strobe external program memory.

PIN NAME	PIN	FUNCTION
$\overline{W R}$	10	This output, active low, is used to strobe data into external devices during a bus write operation.
ALE	11	Address Latch Enable. This output, active high, occurs once during each cycle. The falling edge of this timing signal is used to strobe the address bits appearing on the data bus.
$\begin{aligned} & \text { DB0- } \\ & \text { DB7 } \\ & \text { (Bus) } \end{aligned}$	12-19	Data Bus. These eight lines form a true bidirectional port which can store data as a latched output port or serve as a non-latching input/output port.
$V_{S S}$	20	Circuit GND potential.
$\begin{aligned} & \text { P20 - } \\ & \text { P27 } \end{aligned}$	$\begin{aligned} & 21-24 \\ & 35-38 \end{aligned}$	Port 2. Identical to Port 1 except that P20-P23 contain the four high-order program counter bits during external program memory fetches. If IM82C43 I/O Expanders are being used in the system, they communicate with the IM80C48 through these four lines.
$\overline{\text { PROG }}$	25	Output strobe for IM82C43 1/O Expander.
$\frac{\mathrm{V}_{\mathrm{DD}} /}{\mathrm{STOP}}$	26	Used to select low power hardware STOP mode.
$\begin{aligned} & \text { P10- } \\ & \text { P17 } \end{aligned}$	27-34	Port 1. An 8-bit quasi-bidirectional port. The I/O structure on these eight lines allows each to be used separately as an input or output.
T1	39	An input pin tested by the conditional jump instructions, JT1 and JNT1. The pin can also be programmed as the input to the counter.
$V_{D D}$	40	Main power supply.

Table 2. Instruction Set by Mnemonic

Accumulator Mnemonic	Description	Bytes	Cycles
ADD A, R	Add register to A	1	1
ADD A, @R	Add data memory to A	1	1
ADD A, \# data	Add immediate to A	2	2
ADDC A, R	Add register with carry	1	1
ADDC A, @R	Add data memory with carry	1	1
ADDC A, \# data	Add immediate with carry	2	2
ANL A, R	And register to A	1	1
ANL A, @R	And data memory to A	1	1
ANL A, \# data	And immediate to A	2	2
ORL A, R	Or register to A	1	1
ORL A, @R	Or data memory to A	1	1
ORL A, \# data	Or immediate to A	2	2
XRL A, R	Exclusive or register to A	1	1
XRL A, @R	Exclusive or data memory to A	1	1
XRL, A, \# data	Exclusive or immediate to A	2	2
INC A	Increment A	1	1
DEC A	Decrement A	1	1
CLR A	Clear A	1	1
CPL A	Complement A	1	1
DA A	Decimal adjust A	1	1
SWAP A	Swap nibbles of A	1.	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1
Input/Output Mnemonic	Description	Bytes	Cycles
IN A, P	Input port to A	1	2
OUTL P, A	Output A to port	1	2
ANL P, \# data	And immediate to port	2	2
ORL P, \# data	Or immediate to port	2	2
INS A, BUS	Input BUS to A	1	2
OUTL BUS, A	Output A to BUS	1	2
ANL BUS, \# data	And immediate to BUS	2	2
ORL BUS, \# data	Or immediate to BUS	2	2
MOVD A, P	Input expander port to A	1	2
MOVD P, A	Output A to expander port	1	2
ANLD P, A	And A to expander port	1	2
ORLD P, A	Or A to expander port	1	2
Registers			
Mnemonic	Description	Bytes	Cycles
INC R	Increment register	1	1
INC @R	Increment data memory	1	1
DEC R	Decrement register	1	1
Branch			
Mnemonic	Description	Bytes	Cycles
JMP addr	Jump unconditional	2	2
JMPP @A	Jump indirect	1	2
DJNZ R, addr	Decrement register and skip	2	2
JC addr	Jump on carry $=1$	2	2
JNC addr	Jump on carry $=0$		2
JZ addr	Jump on Z zero	2	2
JNZ addr	Jump on A not zero	2	2
JTO addr	Jump on T0 $=1$	2	2
JNTO addr	Jump on T0 $=0$		2
JT1 addr	Jump on $\mathrm{T} 1=1$	2	2
JNT1 addr	Jump on T1 $=0$	2	2
JFO addr	Jump on FO = 1	2	2
JF1 addr	Jump on F1 $=1$	2	2
JTF addr	Jump on timer flag	2	2
JNI addr	Jump on $\operatorname{NT}=0$	2	2
JBb addr	Jump on accumulator bit	2	2

Table 2. Instruction Set by Mnemonic (Cont.)

Subroutine Mnemonic	Description	Bytes	Cycles
CALL addr	Jump to subroutine	2	2
RET	Return	1	2
RETR	Return and restore status	1	2
Flags			
Mnemonic	Description	Bytes	Cycles
CLR C	Clear carry	1	1
CPL C	Complement carry	1	1
CLR FO	Clear flag 0	1	1
CPL FO	Complement flag 0	1	1
CLR F1	1	1	
CPL F1	Complement flag 1	1	1
Data Moves			
Mnemonic	Description	Bytes	Cycles
MOV A, R	Move register to A	1	1
MOV A, @R	Move data memory to A	1	1
MOV A, \# data	Move immediate to A	2	2
MOV R, A	Move A to register	1	1
MOV @R, A	Move A to data memory	1	1
MOV R \# data	Move immediate to register	2	2
MOV @R, \# data	Move immediate to data memory	2	2
MOV A, PSW	Move PSW to A	1	1
MOV PSW, A	Move A to PSW	1	1
XCH A, R	Exchange A and register	1	1
XCH A, @R	Exchange A and data memory	1	1
XCHD A, @R	Exchange nibble of A and register	1	1
MOVX A, @R	Move external data memory to A	1	2
MOVX @R, A	Move A to external data memory	1	2
MOVP A, @A	Move to A from current page	1	2
MOVP3 A, @A	Move to A from page 3	1	2
Timer/Counter Mnemonic	Description	Bytes	Cycles
MOV A, T	Read timer/counter	1	1.
MOV T, A	Load timer/counter	1	1
STRT T	Start timer	1	1
STRT CNT	Start counter	1	1
STOP TCNT	Stop timer/counter	1	1
EN TCNTI	Enable timer/counter interrupt	1	1
DIS TCNTI	Disable timer/counter interrupt	1	1
Control Mnemonic	Description	Bytes	Cycles
EN I	Enable external interrupt	1	1
DIS 1	Disable external interrupt	1	1
SEL RBO	Select register bank 0	1	1
SEL RB1.	Select register bank 1	1	1
SEL. MB0	Select memory bank 0	1	1
SEL MB1	Select memory bank 1	1	1
ENTO CLK	Enable clock output on T0	1	1
Mnemonic	Description	Bytes	Cycles
NOP	No operation	1	1
IDL	Low power Mode, OSC. on	1	1
STBY	Low power Mode, OSC. off	1	1

LOW POWER MODES

The Intersil IM80C48 family incorporates IDLE and STandBY instructions as well as the hardware STOP mode． The IDLE instruction，opcode 01 H ，operates as shown in Figure 1．Execution of opcode 01 H disables the internal clock and timing circuits while leaving the oscillator running．

Power consumption drops to less than 1 mW ．Either a RESET or external $\overline{\text { NTTerrupt will terminate the IDLE mode．}}$ A RESET will start execution from address 00 H ．An external INTerrupt will start execution from 03 H if $\overline{\mathrm{NT}}$ errupt is enabled，or start execution from the next sequential instruc－ tion following the IDLE instruction if the INTerrupt is disabled．

Figure 9：IDLe Mode

Figure 10：IDLe Mode

Figure 11 illustrates the STOP mode．To enter the STOP mode，first take $\overline{\mathrm{RESET}}$ low，then pull $\mathrm{V}_{\mathrm{DD}} / \overline{\mathrm{STOP}}$ low．The STOP mode，like the STandBY mode，shuts down the oscillator and causes the device to draws less than $1 \mu \mathrm{~A}$ of current．To exit the STOP mode，take V_{DD}／STOP high，wait for the oscillator to stabilize，then pull RESET high．Execu－ tion starts at address 0000 H ．
Since the power consumption of the IM80C48 is directly proportional to the clock frequency，significant power sav－ ings can be achieved by selecting the lowest clock frequen－ cy that provides sufficient processing power for the specific application．For example，while operating with a 32.768 kHz
clock，the IM80C48 will typically draw less than $2 \mu \mathrm{~A}$ of current．

Figure 13 shows the operation of the STandBY instruc－ tion，opcode 63 H ．This instruction is similar to IDLE except that the oscillator is also turned off，reducing current drain to less than $1 \mu \mathrm{~A}$ ．A $\overline{\mathrm{RESET}}$ or INTerrupt will restart the oscillator and execution will resume after the oscillator start－ up time，plus a delay of 2－3 instruction cycles that allows the oscillator to stabilize．The start－up time of the oscillator， which depends on the operating voltage and the crystal parameters，is normally $5-50 \mathrm{msec}$ ．The address at which execution resumes is the same as for the IDLe instruction．

Figure 11：STOP Mode

Figure 13: STANDBY Mode

Figure 14: Stand Alone System

Figure 15: IM6653 CMOS EPROMSs As External Program Memory with The IM80C35
*Capacitance values dependent on package type

USING IM6654 CMOS EPROM TO EXTEND PROGRAM MEMORY

Figure 16: Using IM6654 CMOS EPROM to Extend Program Memory

Figure 17: Using IM82C43 I/O Expanders, This Five Chip System Has 80 I/O Lines

[^26]Table 3: Instruction Summary By Hexadecimal Opcode

HEX	MNEMONIC	HEX	MNEMONIC	HEX	MNEMONIC	HEX	MNEMONIC
00	NOP	30	XCHD A,@R0	70	ADDC A,@R0	AO	MOV @R0,A
01	IDL	31	XCHD A,@R1	71	ADDC A,@R1	A1	MOV @R1,A
02	OUTL BUS,A	32	JB1.	72	JB3	A2	undefined
03	ADD A, \# data	33	undefined	73	undefined	A3	MOVP A,@A
04	JMP (page 0)	34	CALL (page 1)	74	CALL (page 3)	A4	JMP (page 5)
05	EN I	35	DIS TCNTI	75	ENTO CLK	A5	CLR F1
06	undefined	36	JTO	76	JF1	A6	undefined
07	DEC A	37	CPL A	77	RR A	A7	CPL C
08	undefined	38	undefined	78	ADDC A,Ro	A8	MOV RO,A
09	IN A,P1	39	OUTL P1,A	79	ADDC A,R1	A9	MOV R1,A
OA	IN A,P2	3A	OUTL P2,A	7A	ADDC A,R2	AA	MOV R2,A
OB	undefined	3B	undefined	7 B	ADDC A,R3	AB	MOV R3,A
OC	MOVD A,P4	3 C	MOVD P4,A	7C	ADDC A,R4	AC	MOV R4,A
OD	MOVD A,P5	3D	MOVD P5,A	7D	ADDC A,R5	$A D$	MOV R5,A
OE	MOVD A,P6	3E	MOVD P6,A	7E	ADDC A,R6	$A E$	MOV R6,A
OF	MOVD A,P7	3F	MOVD P7,A	7F	ADDC A,R7	AF	MOV R7,A
10	INC @R0	40	ORL A,@R0	80	MOVX A,@RO	B0	MOV @R0,\# data
11	INC @R1	41	ORL A,@R1	81	MOVX A,@R1	B1	MOV @R1, \# data
12	JB0	42	MOV A,T	82	undefined	B2	JB5
13	ADDC A,\# data	43	ORL A, \# data	83	RET	B3	JMPP @A
14	CALL (page 0)	44	JMP (page 2)	84	JMP (page 4)	B4	CPL F1
15	DIS I	45	STRT CNT	85	CLR FO	B5	CPL F1
16	JFT	46	JNT1	86	JNI	B6	JF0
17	INC A	47	SWAP A	87	undefined	B7	undefined
18	INC RO	48	ORL A,RO	88	ORL BUS, \# data	B8	MOV R0, \# data
19	INC R1	49	ORL A,R1	89	ORL P1, \# data	B9	MOV R1, \# data
1 A	INC R2	4A	ORL A,R2	8A	ORL P2,\#data	BA	MOV R2, \# data
1B	INC R3	4B	ORL A,R3	8B	undefined	BB	MOV R3, \# data
1 C	INC R4	4C	ORL A,R4	8 C	ORLD P4,A	BC	MOV R4, \# data
1 D	INC R5	4D	ORL A,R5	8D	ORLD P5,A	BD	MOV R5, \# data
1E	INC R6	4E	ORL A,R6	8 E	ORLD P6,A	BE	MOV R6, \# data
1 F	INC R7	4F	ORL A,R7	8F	ORLD P7,A	BF	MOV R7, \# data
20	XCH A,@R0	50	ANL A,@RO	C0	undefined	E0	undefined
21	XCH A,@R1	51	ANL A,@R1	C1	undefined	E1	undefined
22	undefined	52	JB2	C2	undefined	E2	undefined
23	MOV A, \# data	53	ANL A, \# data	C3	undefined	E3	MOVP3 A,@A
24	JMP (page 1)	54	CALL (page 2)	C4	JMP (page 6)	E4	JMP (page 7)
25	EN TCNTI	55	STRT T	C5	SEL RBO	E5	SEL MBO
26	JNTO	56	JT 1	C6	JZ	E6	JNC
27	CLR A	57	DA A	C7	MOV A,PSW	E7	RL A
28	XCH A,R0	58	ANL A,RO	C8	DEC RO	E8	DJNZ R0,addr
29	XCH A,R1	59	ANL A,R1	C9	DEC R1	E9	DJNZ R1,addr
2A	XCH A,R2	5A	ANL A,R2	CA	DEC R2	EA	DJNZ R2,addr
2B	XCH A,R3	5B	ANL A,R3	CB	DEC R3	EB	DJNZ R3,addr
2C	XCH A,R4	5C	ANL A,R4	CC	DEC R4	EC	DJNZ R4,addr
2D	XCH A,R5	5D	ANL A,R5	CD	DEC R5	ED	DJNZ R5,addr
2E	XCH A,R6	5E	ANL A,R6	CE	DEC R6	EE	DJNZ R6,addr
2 F	XCH A,R7	5F	ANL. A,R7	CF	DEC R7	EF	DJNZ R7,addr
60	ADD A,@R0	90	MOVX @R0,A	D0	XRL A,@R0	F0	MOV A,@R0
61	ADD A,@R1	91	MOVX @R1,A	D1	XRL A,@R1	F1	MOV A,@R1
62	MOV T,A	92	JB4	D2	JB6	F2	JB7
63	STBY	93	RETR	D3	XRL A, \# data	F3	undefined
64	JMP (page 3)	94	CALL (page 4)	D4	CALL (page 6)	F4	CALL (page 7)
65	STOP TCNT	95	CPL FO	D5	SEL RB1	F5	SEL. MB1
66	undefined	96	JNZ	D6	undefined	F6	
67	RRC A	97	CLR C	D7	MOV PSW,A	F7	RLC A
68	ADD A,Ro	98	ANL BUS, \# data	D8	XRL A,RO	F8	MOV A,RO
69	ADD A,R1	99	ANL P1,\# data	D9	XRL A,R1	F9	MOV A,R1
6 A	ADD A,R2	9 A	ANL P2, \# data	DA	XRL A,R2	FA	MOV A,R2
6B	ADD A,R3	9 B	undefined	DB	XRL A,R3	FB	MOV A,R3
6 C	ADD A,R4	9 C	ANLD P4,A	DC	XRL A,R4	FC	MOV A,R4
6D	ADD A,R5	9 D	ANLD P5,A	DD	XRL A,R5	FD	MOV A,R5
6 E	ADD A,R6	9E	ANLD P6,A	DE	XRL A,R6	FE	MOV A,R6
6 F	ADD A,R7	9 F	ANLD P7,A	DF	XRL A,P7	FF	MOV A,R7

IM82C43
 CMOS I/O Expander

DESCRIPTION

The Intersil IM82C43 is a CMOS input/output expander equivalent to the NMOS 8243. It is designed to provide I/O expansion for the CMOS IM80C48 and NMOS 8048 families of single-chip microcomputers.

The 24-pin IM82C43 provides four 4-bit bidirectional I/O ports: 8048/41 instructions control bidirectional transfers between thelM82C43 and the 8048 family microcomputers, and can execute logical AND/OR operations directly on the data contained in the IM82C43 ports.

FEATURES

- 8048/41 Compatible I/O Expander
- CMOS Pin-For-Pin Replacement for Standard NMOS 8243
- Low Power Dissipation - Maximum 25mW Active
- Four 4-Bit I/O Ports in 24-Pin DIP
- Logical AND/OR Directly to Ports
- High Output Drive
- Single +5V Supply

ORDERING INFORMATION

PART NO.	TEMP. RANGE	PACKAGE
IM82C43CJG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 PIN CERDIP
IM82C43CPG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 PIN PLASTIC
IM82C43IJG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 PIN CERDIP
IM82C43IPG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 PIN PLASTIC

Figure 1: Functional Diagram
Figure 2: Pin Configuration (Outline dwgs JG, PG)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage（VDD－VSS）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．+8 V
Voltage on Any Pin $\ldots \ldots\left(V_{S S}-0.5 \mathrm{~V}\right)$ to（ $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$ ）
Power Dissipation ．．．1W
Operating Temperature（C）$\ldots \ldots \ldots \ldots \ldots \ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
（I）$\ldots \ldots \ldots \ldots \ldots-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature．．．．．．．．．．．．．．．．．．．．．$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature（Soldering，10sec）
$300^{\circ} \mathrm{C}$

IOTE：Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied． Exposure to absolute maximum rating conditions for extended periods may affect device reliability．
ELECTRICAL CHARACTERISTICS
DC ELECTRICAL CHARACTERISTICS（ $T_{A}=$ Operating Temperature Range， $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ ）

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		－0．5		0.8	V
V_{IH}	Input High Voltage	$V_{D D}=4.5$	2.0		0.40.80.4	
		$V_{D D}=5.5$	2.4			
VOL	Output Low Voltage Ports 4－7	$\mathrm{IOL}=10 \mathrm{~mA}$				
		$\mathrm{IOL}=20 \mathrm{~mA}$				
	Output Low Voltage Port 2	$\mathrm{IOL}=1.6 \mathrm{~mA}$				
VOH1	Output High Voltage Ports 4－7	$1 \mathrm{OH}=3.2 \mathrm{~mA}$	2.8			
$\mathrm{V}_{\mathrm{OH} 2}$	Output Voltage Port 2	$\mathrm{IOH}=1.6 \mathrm{~mA}$	2.8			
IILK	Input Leakage Ports 4－7，Port 2，$\overline{\mathrm{CS}}$ ，$\overline{\text { PROG }}$	$V_{I N}=V_{\text {DD }}$ to $V_{S S}$	－10		10	$\mu \mathrm{A}$
1 DD	Supply Current	WRITE mode， All outputs open， $\mathrm{t}_{\mathrm{k}}=700 \mathrm{~ns}$		1.6	5.0	mA
Istby	Standby Current	$\mathrm{V}_{\mathrm{IN}}=0 \text { or } \mathrm{V}_{\mathrm{DD}}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}},$ All outputs open			100	$\mu \mathrm{A}$
$\Sigma^{1} \mathrm{OL}$	Sum of all I_{CL} from 16 Outputs	5 mA each pin average			80	mA

AC ELECTRICAL CHARACTERISTICS（ $T_{A}=$ Operating Temperature Range，$V_{D D}=5 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}$ ）

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
ta_{a}	Code Valid Before $\overline{\text { PROG }}$	80pF Load	100		ns
t_{b}	Code Valid After PROG	20pF Load	60		
t_{c}	Data Valid Before $\overline{\text { PROG }}$	80pF Load	140		
t_{d}	Data Valid After PROG	20pF Load	20		
th	Floating After $\overline{\text { PROG }}$	20pF Load	0	150	
t_{k}	PROG Negative Pulse Width		700		
t_{cs}	$\overline{\text { CS }}$ Valid Before／After PROG		50		
tpo	Ports 4－7 Valid After PROG	100pF Load		700	
tip	Ports 4－7 Valid Before／After PROG		0		
tacc	Port 2 Valid After $\overline{\text { PROG }}$	80pF Load		650	

WF02950
AC TEST CONDITIONS
$\mathrm{V}_{\mathrm{IH}}=2.8 \mathrm{~V}$
INPUT RISE AND FALL TIMES: 5 ns (10% TO 90%)
INPUT AND OUTPUT TIMING VOLTAGE REFERENCE LEVELS: 0.8 V AND 2.0 V
Figure 3: Timing Diagram

PIN DESCRIPTIONS

Designator	Pin Number	Function
$\overline{\text { PROG }}$	7	Strobe input. The falling edge of PROG implies valid address and control information on P20-P23, while the rising edge implies valid data on P20-P23.
$\overline{\mathrm{CS}}$	6	Chip select input. When HIGH, it disables $\overline{\text { PROG, }}$, thus inhibiting change in output or internal status.
P20-P23	8-11	Four bit directional port carrying address and control bits on the falling edge of PROG and I/O data on the rising edge of PROG.
$\begin{aligned} & \text { P40-43 } \\ & \text { P50-P53 } \\ & \text { P60-P63 } \\ & \text { P70-P73 } \end{aligned}$	$\begin{gathered} 2-5 \\ 1,21-23 \\ 17-20 \\ 13-16 \end{gathered}$	Four bit bidirectional 1/O ports. May be configured for input, tri-state output (READ mode) or latched output. Data on pins P20-23 may be directly written. ANDed, or ORed with previous data.
$V_{S S}$	12	Circuit ground potential
$V_{\text {DD }}$	24	Positive supply.

DETAILED DESCRIPTION

The IM82C43 has four 4-bit I/O ports, which are addressed as. Ports 4 thru 7 by the processor. The following operations may be performed on these ports:

- Transfer accumulator to port (write)
- Transfer port to accumulator (read)
- AND accumulator to port
- OR accumulator to port

All communication between the microcomputer and the IM82C43 occurs over Port 2 (P20-P23) with timing provided by an output pulse on the PROG pin of the processor. Each data transfer consists of two 4-bit nibbles:

- The first contains the port address and command to the IM82C43. This is latched from Port 2 during the high-to-low transition of $\overline{\text { PROG }}$ and is encoded as shown in the table on page 3.
- The second contains the four bits of data associated with the instruction. The low-to-high transition of $\overline{\text { PROG }}$ indicates the presence of data.
Port Address And Command Format

P23	P22	INSTRUCTION CODE	P21	P20	ADDRESS CODE
0	0	Read	0	0	Port 4
0	1	Write	0	1	Port 5
1	0	ORLD	1	0	Port 6
1	1	ANLD	1	1	Port 7

Write Modes

The device has three modes. MOVD P,A directly writes new data into the selected port with old data being lost; ORLD P,A ORs the new data with the old data and writes it to the port; and ANLD P,A ANDs new data with old data and writes it to the selected port.

After the designated operation is performed, the data is latched and directed to the port. The old data remains latched until the new data is written by the rising edge of PROG.

Read Mode

The device has one read mode. The command and port address are latched from port 2 on the high-to-low transition of the PROG pin. As soon as the read operation and port address are decoded, the designated port output buffers are disabled and the input buffers enabled. The read operation is terminated by the low-to-high transition of the PROG pin. The port selected is switched to the high impedance state while port 2 is returned to the input mode.

Normally a port will be in an output mode (write) or input mode (read). The first read of a port, following a mode change from write to read should be ignored; all following reads are valid. This is to allow the external driver on the port to settle after the first read instruction removes the low impedance drive from the IM82C43 output. A read of any port will leave that port in a high impedance state.

I/O Expansion

The use of a single IM82C43 with an 8048 or 8021 is shown in Figure 4. If more ports are required, more IM82C43s can be added as shown in Figure 5. Here, the upper nibble of port 2 is used to select one of the IM82C43s. Two lines could have been decoded but that would require additional hardware. Assuming that the leftmost IM82C43 chip select is connected to P24, the instructions to select and de-select would be:

MOV A, \#0EFH	P24 = 0
OUTL P2, A	Enable IM82
\cdot	
\cdot	
MOV A, \#0FFH	Disable All
OUTL P2, A	Send it

Power On Initialization

Initial application of power to the device forces ports 4,5 , 6 , and 7 to the high impedance state. Port 2 will be in an input state if $\overline{\text { PROG }}$ or $\overline{\mathrm{CS}}$ are high when power is applied. The first high-to-low transition of $\overline{\text { PROG }}$ causes the device to exit the power-on mode. The power-on sequence is initiated if V_{DD} drops below one volt.

Figure 4：Expander Interface

Note：The IM82C43 does not have the same quasi－bidirectional port structure as P1／P2 of the 8048 ．When a＂ 1 ＂is written to P4－7 of the IM82C43 it is a ＇hard 1＂（low impedance to +5 V ）which cannot be pulled low by an external device．All 4 bits of any port can be switched from output mode to input mode by executing a dummy read which leaves the port in a high impedance（no pullup or pulldown）state．

Section 10 - High Reliability/ Military Products and Ordering Information

DIE \& WAFER ORDERING INFORMATION
 FET, MOSFET, AND DUAL TRANSISTOR CHIPS

INTRODUCTION

Intersil recognizes the increasing need for transistors and FETs in die form. To fulfill this need, Intersil offers a full line of JFETs, MOSFETs, and dual transistors in die form.

Die sales do, however, present some unique problems. In many cases the chips cannot be guaranteed to the same electrical specifications as the packaged part. This is due to the fact that leakage, noise, AC parameters and temperature testing cannot be tested to the same degree of accuracy for dice as it can for packaged devices. This is due to equipment limitations and handling problems.

PURCHASE OPTIONS

Intersil offers dice which are delivered in a number of forms:

- Chips which have been electrically probed, inked, visually inspected and diced.
- Wafers which have been electrically probed, inked, scribed, and mounted on rings with adhesive tape.
- Wafers which have been electrically probed, inked, and visually inspected only.

GENERAL PHYSICAL INFORMATION

- Consult individual product information sheets for dimensions. Except for the aluminum bonding pads, the chips are completely covered with vapox (silicon
dioxide). This minimizes damage to the chip caused by handling problems.
- Dice are 100% tested to D.C, $+25^{\circ} \mathrm{C}$ electrical specifications, then visually inspected. When wafers are ordered, dice which fail the electrical test are inked out.
- Generally the minimum size of the die-attaching pad metallization should be at least 5 mils larger (on every edge) than the chip dimensions. For example, a 15 mil chip should be attached on at least a 25 mil pad.

Small Signal Devices

- Chips are available with exact length X width dimensions plus tolerance (see individual data sheets). Chip height ranges from $.003^{\prime \prime}$ to $.006^{\prime \prime}$.
- To facilitate die attaching, chips are gold backed. Approximate thickness is 1000 angstroms. In general, dice should be attached to gold, platinum, or palladium metallization. Thin-film gold, moly-gold and most of the thick-film metallization materials are compatible.
- All chips have aluminum metallization and aluminum bonding pads. Typical aluminum thickness is 12,000 angstroms.

Figure 1: Chip and Wafer Processing Flow Chart

DIE \& WAFER ORDERING INFORMATION

RECOMMENDED DICE ASSEMBLY PROCEDURE

CLEANING

Dice supplied in die form do not require cleaning prior to assembly. Dice supplied in wafer form should be cleaned after scribing and breaking. Freon TF in a vapor degreaser is the preferred cleaning method. However, an alternative is to boil the die in TCE for five minutes with a rinse in isopropyl alcohol for 1-2 minutes.

DIE ATTACH:

The die attach operation should be done under a gaseous nitrogen ambient atmosphere to prevent oxidation. A preform should be used if the mounting surface has less than 50 microinches of gold and the die should be handled on the edges with tweezers. Die attach temperature should be between $385^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$ with eutectic visible on three sides of the die after attachment.

BONDING:

Thermocompression gold ball or aluminum ultrasonic bonding may be used. The gold ball should be about 3 times the diameter of the gold wire. The ball should cover the bonding pad, but not excessively, or it may short out surrounding metallization. 1-mil aluminum wire may be used on most dice, but should not be used if the assembied unit will be plastic encapsulated.

HANDLING OF DICE:

All dice shown in this catalog are passivated devices and Intersil warrants that they will meet or exceed published specifications when handled with the following precautions:

- Dice should be stored in a dry inert-gas atmosphere.
- Dice should be assembled using normal semiconductor techniques.
- Dice should be aitached in a gaseous nitrogen spray at a temperature less than $430^{\circ} \mathrm{C}$.

ELECTRICAL TEST LIMITATIONS

DUAL BIPOLAR TRANSISTORS

LV ${ }_{\text {ceo }}$	100 V max. @ $\leqslant 1 \mathrm{~mA}$
BVCBO	100 V max. @ $\geqslant 1 \mu \mathrm{~A}$
BVEbo	100 V max. @ $\leqslant 10 \mathrm{~mA}$
$h_{\text {FE }}$	$\leqslant 1000$ @ $\geqslant 10 \mu \mathrm{~A}$
$V_{\text {CE(sat) }}$	$\geqslant 10 \mathrm{mV}$ @ $\leqslant 10 \mathrm{~mA}$
ICBO	$\geqslant 100 \mathrm{pA} @ \leqslant 100 \mathrm{~V}$
$\mathrm{V}_{\mathrm{BE} 1} \mathrm{~V}_{\mathrm{BE} 2}$	$\geqslant 1 \mathrm{mV}$ (a) $\geqslant 10 \mu \mathrm{~A}$
${ }^{1}{ }_{81-1}{ }^{-1}$	$\geqslant 2 \mathrm{nA}$

FETS
Breakdown voltage $100 \mathrm{~V} \max$ @ $1 \mu \mathrm{~A}$
Pinch-off voltage $\quad 0-20 \mathrm{~V}$ @ $\geq 1 \mathrm{nA}$
$V_{G S}(t h)$ $0-5$ @ $\geq 10 \mu \mathrm{~A}$
rDS(on)
loss
gfs
$I_{D(\text { off })}$, IS(off), IGSS
$V_{G S 1}-V_{G S 2}$
$5 \Omega \mathrm{~min}$.@ $\mathrm{V}_{\mathrm{GS}}=0\left(\mathrm{~V}_{\mathrm{GS}}=30\right.$ MOSFETs)
100 mA max.
20,000 μ MHOS max.
100 pA min.

Electrical testing is guaranteed to a 10% LTPD. AC parameters such as capitance and switching time cannot be tested in wafer or dice form.

STANDARD DIE CARRIER PACKAGE

- Easy to handle, store and inventory.
- 100% electrically probed dice with electrical rejects removed.
- 100% visually sorted with mechanical and visual rejects removed.
- Easy visual inspection - dice in carriers, geometry side up.
- Individual compartment for each die.
- Carriers usable in customer production area.
- Carrier may be storage container for unused dice.
- Carriers hold 25,100, or 400 dice, depending on die size and quantity ordered.
- Part numbers shown in this catalog are for carrier packaging.

DIE \& WAFER ORDERING INFORMATION

OPTIONAL WAFER PACKAGE

- 100% electrically probed - rejects inked.
- 10% extra good dice included (no charge) to cover possible breakage and/or visual rejects.
- Preferred for production quantities.
- Lowest cost.
- Wafer is supplied unscribed.
- For wafer package - replace 'D' in catalog number with 'W', e.g.: 2N4416/D (2N4416 dice in carrier) becomes 2N4416/W (2N4416 dice in wafer).

CT00640I
NOTE:'Intersil reserves the right to improve device geornetries and manufacturing processes as required. These improvements may result in slight geometry changes. However, they will not affect the electrical limits, basic pad layouts or maximum die sizes in this catalog.

Figure 3

ELECTRICAL TEST CAPABILITY

As an example of how to use the capability chart to see what Intersil actually guarantees and tests for, on a 100% basis, compare the 2 N 4391 in a TO-18 package to the 2N4391 delivered as a chip.

ELECTRICAL TEST SPEC.	2N4391 IN A TO-18	2N4391 CHIP
IGSS @ 25C	100pA max.	100pA max.
BVGSS	40 V min.	40 V min.
ID(off) @ 25C	100pA max.	100pA max.
V_{GS} (forward)	See note 1	1 V max.
V_{GS} (off) or V_{P}	4 V to 10 V	4 V to 10 V
IDSS	50 to 150 mA	50 to 150 mA
$\mathrm{V}_{\text {DS }}(\mathrm{on})$	0.4 V max.	0.4 max.
ros(on)	30Ω max.	30Ω max.
$\mathrm{C}_{\text {iss }}$	14 pF max.	Guaranteed by Design
Crss	3.5 pF max.	Guaranteed by Design
t_{d}	15 ns max.	Guaranteed by Design
tr_{r}	5ns max.	Guaranteed by Design
toff	20ns max.	Guaranteed by Design
t_{f}	15 ns max.	Guaranteed by Design

[^27]
SUMMARY

Of the 14 items specified for the package part, only 8 can be tested and guaranteed in die form. It is to be noted that those specifications which cannot be tested in die form can be sample tested in package form as an indicator of lot performance. Many of the tests, however, such as capacitance tests, are design parameters.

The above electrical testing is guaranteed to a 10% LTPD. However, there are occasions where customer requirements cannot be satisfied by wafer sort testing alone. While the previously described tests will be done on a 100% basis, Intersil recognizes the need for additional testing to obtain confidence that a particular customer's needs can be met with a reasonably high yield. Toward this end Intersil has instituted a dice sampling plan which is twofold. First, random samples of the dice are packaged and tested to assure adherence to the electrical specification. When required, wafers are identified and wafer identity is tied to the samples. This tests both the electrical character of the die and its ability to perform electrically after going through the high temperature dice attachment stage. Second, more severe testing can be performed on the packaged devices per individual customer needs. When testing is required other than that called out in the data sheet, Intersil issues an ITS number to describe the part. Examples of tighter testing which can be performed on packaged samples is shown as follows:

FET \& DUAL FET PAIRS

1. Leakages to 1 pA ($\mathrm{I}_{\mathrm{GSS}}$)
2. R RS(on) to as low as 3 ohms
3. ID (off) to 10 pA
4. IDSS to 1 amp (pulsed)
5. g_{fs} to $20,000 \mu \mathrm{mho}$
6. Gos to $1 \mu \mathrm{mho}$
7. e_{n} noise to $5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at frequencies of 10 Hz to 100 Hz
8. CMRR to 100 dB
9. $\Delta\left(\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right) / \Delta \mathrm{T}$ down to $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ to an LTPD of 20%
10. g_{m} match to 3%
11. IDSS match to 3%

TRANSISTOR PAIRS

1. Leakages to as low as 1 pA
2. Beta with collector current up to 50 mA and as low as 100nA
3. f_{T} up to 500 MHz with collector currents in the range of $10 \mu \mathrm{~A}$ to 10 mA
4. Noise measurements as low as $5 n V / \sqrt{\mathrm{Hz}}$ from 10 Hz to 100 kHz
5. $\Delta\left(V_{B E 1}-V_{B E 2}\right) / \Delta T^{\circ \prime}$ to $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ to an LTPD of 20% VISUAL INSPECTION

Individual chips are 100% inspected to MIL-STD-750, Method 2072 or, as an option, MIL-STD-883, Level B. Inspection is done to an LTPD of 20%. As an option, Intersil offers S.E.M. capability on all wafers.

DIE \& WAFER ORDERING INFORMATION

CMOS INTEGRATED CIRCUIT CHIPS

INTRODUCTION

In addition to discrete device chips, Intersil also offers a full line of metal gate CMOS integrated circuits in die form. Die sales, however, present some unique problems. In many cases, chips cannot be guaranteed to the same electrical specifications as can the packaged parts. This is because leakage, noise, AC parameters and temperature testing cannot be guaranteed to the same degree of accuracy for dice as for packaged devices.

GENERAL PHYSICAL INFORMATION

- Chips are available with precise length and width dimensions, ± 2 mils in either dimension.
- Chip thickness is 9 to 20 mils, depending on device type.
- Bonding pad and interconnected material is aluminum, 10 K to 15 K A thick.
- Each die surface is protected by planar passivation and additional surface glassivation except for bonding pads and scribe lines. The surface passivation is removed from the bonding pad areas by an HF etchant; bonding pads may appear discolored at low magnification due to surface roughness of the aluminum caused by the etchant.
- Dice are 100\% tested to DC electrical specifications, at $25^{\circ} \mathrm{C}$ then visually inspected according to MIL-STD-883, Method 2010.2, condition B , with modifications reflecting CMOS requirements.
- Bonding pad dimensions are 4.0×4.0 mils minimum.
- Storage temperature is $-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
- Guaranteed AQL Levels:

Visual 2.0\%
Functional electrical testing 1.0%
Parametric DC testing 4.0%

Figure 4: CMOS Integrated Circuit Chip Processing Flow Chart

DIE \& WAFER ORDERING INFORMATION

RECOMMENDED DICE ASSEMBLY PROCEDURES
 CLEANING

Dice supplied in die form do not require cleaning prior to assembly. However, if cleaning is desired, dice should be subjected to freon TF in a vapor degreaser and then vapordried.

RECOMMENDED HANDLING

Intersil recommends that dice be stored in the vacuumsealed plastic bags which hold the dice carriers. Once removed from the sealed bags, the dice should be stored in a dry, inert-gas atmosphere.

Extreme care should be used when handling dice. Both electrical and visual damage can occur as the result of an unclean environment or harsh handling techniques.

DIE ATTACH

The die attach operation should be done under a gaseous nitrogen ambient atmosphere to prevent oxidization. If a eutectic die attach is used, it is recommended that a 98% gold $/ 2 \%$ silicon preform be used at a die attach temperature between $385^{\circ} \mathrm{C}$ and $435^{\circ} \mathrm{C}$. If an epoxy die attach is used, the epoxy cure temperature should not exceed $150^{\circ} \mathrm{C}$. If hermetic packages are used, epoxy die attach should be carried out with caution so that there will be no "outgassing" of the epoxy.

BONDING

Thermocompression gold ball or aluminum ultrasonic bonding may be used. The wire should be 99.99% pure gold and the aluminum wire should be 99% aluminum $/ 1 \%$ silicon. In either case, it is recommended that 1.0 mil wire be used for normal power circuits.

STANDARD DIE CARRIER PACKAGE

- Easy to handle, store and inventory.
- 100% electrically probed with electrical rejects removed.
- 100% visually sorted with mechanical and visual rejects removed.
- Easy visual inspection-dice are in carriers, geometry side up.
- Individual compartment for each die.
- Carriers usable in customer production area.
- Carrier may be used as storage contained for unused dice.
- Carriers hold 25,100 or 400 dice, depending on die size and quantity ordered.
- Packing of integrated circuit dice in carriers is identical to illustration shown earlier for discrete device, except that IC chips are not available in vial packs or in wafer form.

CHANGES

Intersil reserves the right in improve device geometries and manufacturing processes without prior notice. Although these improvements may result in slight geometry changes, they will not affect dice electrical limits, pad layouts, or maximum die sizes,

USER RESPONSIBILITY

Written notification of any non-conformance by Intersil of Intersil's dice specifications must be made within 75 days of the shipment date of the die to the user. Intersil assumes no responsibility for the dice after 75 days or after further user processing such as, but not limited to, chip mounting or wire bonding.

100\% INTEGRATED CIRCUIT PROCESSING

Intersil is committed to build and process integrated circuits for the Military/High-Rel market segments in conformance with MIL-STD-883 and MIL-M-38510. Any customer drawing which specifies testing as set forth in these documents will be automatically processed to the latest revisions of MIL-STD-883 and MIL-M-38510, unless specific requests are made to the contrary.

HI-REL PROCESS OFFERINGS

38510 PRODUCTS

Intersil holds QPL1 status on a number of JAN MIL-M38510 products as listed herein. As required by JAN specifications, these products are fabricated, assembled, and 100% processed within the United States and are fully compliant with all the requirements, procedures, and methods as given in MIL-M-38510 Revision F and MIL-STD-883 Revision C.

883B PRODUCTS

The 883B flow diagram represents product processed in accordance with Method 5004 and Method 5005 of MIL-STD-883 Rev. C, Class B. Most products listed as /883B herein are available as compliant to paragraph 1.2 of MIL-STD-883B Rev. C while others are available only as noncompliant at this time (Allowances for sale of non-compliant /883B products are covered in notice 3 of MIL-STD-883 Rev. C). Check with Intersil Customer Service as to the compliant status of individual product offerings at any point in time.

HR PRODUCTS

The HR flow diagram, newly offered by Intersil, represents high reliability hermetic product utilizing many, but not necessarily all, of the test methods and requirements of MIL-STD-883 Rev. C, to be used in high reliability applications where some deviations from Rev. C may be justified and economic advantages realized. Such product may not be branded /883B but may be branded /HR or a special brand as required as purchase order.

BR PRODUCTS

The BR flow diagram, newly offered by Intersil, represents hermetic or plastic encapsulated product intended for application in the computer, industrial, or hi-rel commercial marketplace. In addition to 100% burn-in, many other reliability processing steps are included to enhance quality levels on shipped parts and to improve long term reliability characteristics. Such product may be branded /BR or as required by purchase order.

Contact Product Marketing for availability and pricing on 883B, HR and BR products not listed here.

100\% DISCRETE DEVICE PROCESSING

Intersil also offers several QPL-approved discrete products carrying the JANTX designation, which are screened and qualified to the latest revisions of MIL-STD-750 and MIL-S-19500.

38510
Per MIL-M-38510 Slash Sheet

HR (1, 2, 4)
/883B $(1,2,4)$
Per MIL-STD-883
Rev. C, Class B Screening per Method 5004

In-House Hi Rel Processing Flows Performed 100\% Unless Otherwise Noted Applies to IC's and Hybrids

BR (1, 2)
Performed 100\% Unless Otherwise Noted APPLIES TO IC'S AND HYBRIDS

FOOTNOTES:

(1) Governing Document, Order of Precedence
A. Purchase Order Contract
B. Detail Specification
C. This Flow
(2) Where test methods are indicated, the test will be performed to MIL-STD-883.
(3) With exception of parameters guaranteed by basic design, not tested.
(4) Does not apply to plastic packages.
(5) May be performed any time after encapsulation.
(6) For Plastic $12 \mathrm{Hrs} @ 140^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$.
(7) Weekly Reliability Monitor.
(8) For Plastics-Thermal Shock Method 1011.

Standard Product (1, 2)

Performed 100\% Unless Otherwise Noted APPLIES TO IC'S AND HYBRIDS AND TRANSISTORS

FOOTNOTES:
(1) Governing Document, Order of Precedence
A. Purchase Order Contract
B. Detail Specification
C. This Flow
(2) Where test methods are indicated, the test will be performed to MIL-STD-883.
(3) With exception of parameters guaranteed by basic design, not tested.
(4) Does not apply to plastic packages.
(5) May be performed any time atter encapsulation.
(6) For Plastic $12 \mathrm{Hrs} @ 140^{\circ} \mathrm{C}+10^{\circ} \mathrm{C}$.
(7) Weekly Reliability Monitor.
(8) For Plastics-Thermal Shock Method 1011.

High-Reliability/Military Products

 Discrete Products JANTXV, JANTX and JAN Per MIL-S-19500 and MIL-STD-750Performed 100\% unless otherwise noted

HIGH RELIABILITY PROCESSING PROCESS FLOW SELECTION GUIDE -STANDARD IC PROCESS FLOWS -
$\left.\begin{array}{lccccccc} & \begin{array}{c}38510 \\ \text { JAN }\end{array} & \begin{array}{c}883 B \\ \text { REV. C. }\end{array} & \text { HR } & \text { BR } & \text { BI } & \text { COMMERCIAL } \\ \text { ON-SHORE BUILD } & X\end{array}\right]$

NOTES:

1. ONLY MAJOR IC PROCESSING DIFFERENCES ARE SHOWN HERE. SEE DETAIL FLOWS ON FOLLOWING PAGES FOR MORE SECIFIC DATA. CHART IS FOR HERMETIC PACKAGES. ONLY MINIMUM REQUIREMENTS ARE SHOWN. 38510 IS CLASS B.
WAFER LOT TRACEABILITY MAINTAINED AND AVAILABLE AT EXTRA CHARGE FOR OTHER PRODUCTS.
$\mathrm{S}=$ SAMPLE TEST ON REGULAR BASIS
$\mathrm{X}=$ PERFORMED $100 \% . \quad \mathrm{G}=\mathrm{GENERIC}$ DATA .
2. INTERSIL ALSO OFFERS 'SPECIALS'" TO SPECIFIC CUSTOMER SCD'S. SPECIALS ARE AVAILABLE WITH ANY OF THE ABOVE PROCESSING PLUS SEM, PIND, ETC.

HIGH RELIABILITY PROCESSING PROCESS FLOW SELECTION GUIDE - STANDARD TRANSISTOR PROCESS FLOWS -

	JANTXV	JANTX	JAN	BI	COMMERCIAL	NOTES
ON-SHORE BUILD	X					
INSPECTION LOT TRACEABILITY	x	x				2
PRE-CAP VISUAL	X	X	x			
STABILIZATION BAKE	X	X	X	X	X	
TEMPERATURE CYCLE	x	X	X	S	S	3
CENTRIFUGE	X	X		S	S	
HERMETICITY	X	X	X	S	S	
ELECTRICAL TEST	X	X		X		
BURN-IN	X	X		X		
ELECTRICAL TEST	x	X				
POST BURN-IN PDA	X	X				
D.C. ELECT. @ $25^{\circ} \mathrm{C}$	x	X	x	X	x	
A.C. ELECT. @ $25^{\circ} \mathrm{C}$	X	X	X	x	X	
GROUP A	x	X	x	X	X	
GROUP B EACH INSP. LOT	x	x	S	G	G	3
STRICT DOCUMENTATION	X	X	x			
GROUP C INSPECTION	S	S	S			

NOTES:

1. ONLY MAJOR TRANSISTOR PROCESSING DIFFERENCES ARE SHOWN HERE. SEE DETAIL FLOWS ON FOLLOWING PAGES FOR MORE SPECIFIC DATA. GHART IS FOR HERMETIC PACKAGES. ONLY MINIMUM REQUIREMENTS ARE SHOWN.
2. WAFER LOT TRACEABILITY MAINTAINED AND AVAILABLE AT EXTRA CHARGE FOR OTHER PRODUCTS.
3. $S=$ SAMPLE TEST ON REGULAR BASIS.
$\mathrm{X}=\mathrm{PERFORMED} 100 \% . \quad \mathrm{G}=\mathrm{GENERIC}$ DATA.
4. INTERSIL ALSO OFFERS "SPECIALS" TO SPECIFIC CUSTOMER SCD'S. SPECIALS ARE AVAILABLE WITH ANY OF THE ABOVE PROCESSING PLUS SEM, PIND, ETC.

MIL-STD-883 REV. C, CLASS B

[^28]

1. Required only if package contains a desiccant.
2. Where no LTPD is shown, QTY = sample size and $(\#)=$ maximum allowed rejects

Notes:

1. Applies if package has a Frit-Seal.
2. Where no LTPD is shown, QTY = sample size and (\#) = maximum allowed rejects.

Ordering Information for MIL-S-19500 Processed Devices

The following Intersil devices are available as a standard Processed to MIL-S-19500. To order, order by the part number as shown below:
Part Number

2N3821JAN
2N3821JTX
2N3821JTXV
2N3823JAN
2N3823JTX
2N3823JTXV
2N4091JAN
2N4091JTX
2N4091JTXV
2N4092JAN
2N4092JTX
2N4092JTXV
2N4093JAN
2N4093JTX
2N4093JTXV
2N4856JAN
2N4856JTX

MIL-S-19500
Slashsheet
MIL-S-19500/375
MIL-S-19500/375
MIL-S-19500/375
MIL-S-19500/375
MIL-S-19500/375
MIL-S-19500/375
MIL-S-19500/431
MIL-S-19500/431
MIL-S-19500/431
MIL-S-19500/431
MIL-S-19500/431
MIL-S-19500/431
MIL-S-19500/431
MIL-S-19500/431
MIL-S-19500/431
MIL-S-19500/385
MIL-S-19500/385

Part Number
2N4856JTXV 2N4857JAN 2N4857JTX 2N4857JTXV 2N4858JAN 2N4858.JTX 2N4858JTXV 2N5114JAN 2N5114JTX 2N5114JTXV 2N5115JAN 2N5115JTX 2N5115JTXV 2N5116JAN 2N5116JTX 2N5116JTXV

MiL_S-19500
Slashsheet
MIL-S-19500/385 MIL-S-19500/385 MIL-S-19500/385 MIL-S-19500/385 MIL-S-19500/385 MIL-S-19500/385 MIL-S-19500/385 MIL-S-19500/476 MIL-S-19500/476 MIL-S-19500/476 MIL-S-19500/476 MIL-S-19500/476 MIL-S-19500/476 MIL-S-19500/476 MIL-S-19500/476 MIL-S-19500/476

Ordering Information for MIL-M-38510 Slash Sheet Processed Devices

The following Intersil devices are available as a standard processed to the 38510 Slash Sheets. To order, use the part number as shown below:

Part Number

JM38510/11101BAC JM38510/11101BCC JM38510/11101BIC JM38510/11102BAC JM38510/11102BCC JM38510/11102BIC JM38510/11103BAC JM38510/11103BEC JM38510/11104BAC JM38510/11104BEC JM38510/11105BAC JM38510/11105BCC JM38510/11105BIC JM38510/11106BAC JM38510/11106BCC jM38510/11106BIC JM38510/11107BAC JM38510/11107BEC JM38510/11108BAC JM38510/11108BEC JM38510/12704BVC

Generic Number
(DG181AL)
(DG181AP)
(DG181AA)
(DG182AL)
(DG182AP)
(DG182AA)
(DG184AL)
(DG184AP)
(DG185AL)
(DG185AP)
(DG187AL)
(DG187AP)
(DG187AA)
(DG188AL)
(DG188AP)
(DG188AA)
(DG190AL)
(DG190AP)
(DG191AL)
(DG191AP)
(AD7541TD)

Ordering Information for DESC Drawing Processed Devices

The following Intersil devices are available as a standard processed to the DESC Drawings. To order, use the part number as shown below:

Part Number

DESC77052-01EB DESC77052-01EX DESC77053-01EB DESC77053-01EX DESC81006-01AC DESC81006-01AX DESC81006-01EB DESC81006-01EX DESC81006-02AC DESC81006-02AX DESC81006-02EB DESC81006-02EX DESC81006-02IC DESC81006-02IX DESC81006-03AC DESC81006-03AX DESC81006-03EB DESC81006-03EX DESC81006-04AC DESC81006-04AX DESC81006-04EB DESC81006-04EX

Generic Number
(IH6108MJE) (IH6108MJE) (DG201AK)
(DG201AK) (IH5040MFD) (IH5040MFD) (IH5040MJE) (IH5040MJE) (IH5041MFD) (IH5041MFD) (IH5041MJE) (IH5041MJE) (IH5041MTW) (IH5041MTW) (IH5042MFD) (IH5042MFD) (IH5042MJE) (IH5042MJE) (IH5043MFD) (IH5043MFD) (IH5043MJE) (IH5043MJE)

Part Number

DESC81006-05AC DESC81006-05AX DESC81006-05EB DESC81006-05EX DESC81006-06AC DESC81006-06AX DESC81006-06EB DESC81006-06EX DESC81006-07AC DESC81006-07AX DESC81006-07EB DESC81006-07EX DESC81006-08AC DESC81006-08AX DESC81006-08EB DESC81006-08EX

Generic Number
(IH5044MFD) (IH5044MFD) (IH5044MJE) (IH5044MJE) (IH5045MFD) (IH5045MFD) (IH5045MJE) (IH5045MJE) (IH5046MFD) (IH5046MFD) (IH5046MJE) (IH5046MJE) (IH5047MFD) (IH5047MFD) (IH5047MJE) (IH5047MJE)

HIGH RELIABILITY PROCESSING

GLOSSARY OF MILITARY/AEROSPACE HI-REL DEFINITIONS/TERMINOLOGY

ACCELERATED BURN-IN - Same as "Burn-In', except that testing is carried out at an increased temperature (nominally $150^{\circ} \mathrm{C}$) for reduced dwell time. Accelerated testing is not permissible for Class S devices.
ATTRIBUTES DATA - Go-No-Go data. Strictly pass/fail and number of rejects recorded. A typical requirement for post burn-in electrical tests on Class B devices.
BASELINE - Technique used to define manufacturing and test processes at time of order placement. Baselining usually involves development of a Program Plan and an Acceptance Test Plan which include flow charts, specification identification/revision letters, QA procedures, and actual specimens of certain important specifications. During subsequent manufacture and testing of parts, it is not permissible to make revisions or changes to any of the identified specifications, unless prior notification and possible customer approval occurs.
BURN-IN - A screening operation. Devices are subjected to high temperature (typically $125^{\circ} \mathrm{C}$) and normal power/ operation for 160 hours (Class B devices) or 240 hours (Class S devices).
CLASS S AND B INTEGRATED CIRCUITS - These classes set forth the screening, sampling and document control requirements for IC testing. Terminology is defined in MIL-M-38510 and in Test Methods 5004 and 5005 of MIL-STD883. Classes, S and B are sometimes referred to as "Levels S and B." The Classes cover:

CLASS S -For space and satellite programs. Includes Condition A Precap, SEM, 240 hour burn-in, PIND test and elaborate qualification and quality conformance testing. Normally requires extensive data, documentation, and program planning. Formerly referred to as Class A. Class S devices are quite expensive.
CLASS B - For manned flight, and includes most frequently-procured military integrated circuits. Used for all but highest reliability requirements. Class B uses burn-in, pre-cap visual, etc.
CORRECTIVE ACTION - Those actions which a given supplier (or user) agrees to perform so that a detected problem does not reoccur.
DESC - Defense Electronic Supply Center, located in Dayton, Ohio.
DESC LINE CERTIFICATION - The document which approves a supplier's facilities as an appropriate site to manufacture JAN parts.
DPA - Destructive Physical Analysis. Finished products are opened and analyzed, in accordance with customer or MIL Spec criteria.
GENERIC DATA - Data pertaining to a device family; not necessarily the specific part number ordered by the customer, but representative of parts in the family. Group B, C and D generic data is frequently requested in lieu of the performance of special qual tests on a given order.
GROUP A - Sample electrical test which are performed on each lot. Group A is defined in Test Method 5005 for integrated circuits and in MIL-S-19500 for diodes and transistors.

GROUP B - For Integrated Circuits, Package-Related Environmental Tests are performed for Class B Products per MIL-STD-883, Method 5005 (For Revision Products) or per the "HR" program. For Class S, Group B includes Additional Processing, including steady state life test.
For Diodes and Transistors, both enviromental and life test are performed per MIL-S-19500.
GROUP C - For Class B or "HR" program I.C.'s, DieRelated Tests are performed. Not required for Class S I.C.'s. Group C includes life testing temperature cycling and constant acceleration per MIL-M-38510. For diodes transistors, Group C includes both environmental and life tests per MIL-S-19500.
GROUP D - Additional Package-Related Environmental Test for I.C.'s for Class B or Class S products or per the "HR" program.
JAN - 'Joint Army Navy", a registered trademark of the U.S. Government. The JAN marking denotes a device which is in full compliance to MIL-M-38510 or MIL-S-19500.
JAN TX - A JAN-qualified diode or transistor which has been subjected to additional screening and burn-in tests. MIL-S-19500 only.
JAN TXV - A JAN-qualified diode or transistor which, in additional to burn-in testing, has been subjected to additional screening including pre-cap visual inspection, as witnessed by a government source inspector. Equivalent to Class B screening for integrated circuits. MIL-S-19500 only.
LTPD-Lot Tolerance Percent Defective is a sampling plan measurement criteria.
MIL-M-38510 - The general military specification for integrated circuits.
M38510/XXX — Detail specifications (or 'slash sheets') for integrated circuits. For example, the 101 specification covers Operational Amplifiers, with electrical requirements for the 741, LM101, 108, 747 types, etc.
MIL-S-19500 - The general military specifications for diodes and transistors.
MIL-S-19500/XXX - Detail specifications (or 'slash sheets' for diodes and transistors.

MIL-STD-750 - Specifies Test Methods for diodes and transistors, such as burn-in, pre-cap, temperature cycling, etc.

MIL-STD-883 - Specifies Test Methods for integrated circuits, such as pre-cap, burn-in, hermeticity, storage life, etc.
NPFC - Naval Publications and Forms Center, Philadelphia Printing and distribution source for military specifications.
NON-STANDARD PARTS - In government terminology, refers to non-JAN devices. Non-standard parts are typically covered by user Source Control Drawings (SCD).

NON-STANDARD PARTS APPROVAL - Approval by the government (frequently RADC) of non-JAN parts, typically on source control drawings, for use in a military system or program. This approval is essentially a waiver which permits non-JAN 38510 parts in a system which otherwise mandatorially requires JAN parts only.

HIGH RELIABILITY PROCESSING

OPERATING LIFE TEST - Same conditions as burn-in, but duration is usually 1000 hours. This is a sample test (Qualification and Quality Conformance).
PCA - Parts Configuration Analysis. A new term which has much the same meaning as 'Baseline'".
PDA - Percent Defective Allowable. Criteria sometimes applied to burn-in screening. MIL-STD-883 and MIL-M38510 typically require either a 5% or 10% PDA. A 10\% PDA means that if more than 10% of that lot fails as a result of burn-in (as determined by pre- and post-burn-in electrical tests) the entire lot is considered to have failed.

PDS - Parameter Drift Screening. Measures the changes ($\Delta \mathrm{s}$) in electrical parameters through burn-in. Common for Class S devices.
PIND - Particle Impact Noise Detection. This is an audio screening test to locate and eliminate those parts which have loose internal particles. The test can isolate a high percentage of defectives, even in otherwise good lots. Repeatability of the tests is questionable. This test is one of the screening items for Class S integrated circuits.
PREPARING ACTIVITY - The organizational element of the government which writes specifications, frequently RADC.
PRESEAL VISUAL - A screening inspection which involves observation of a die through a microscope.
PROCURING ACTIVITY - Per MIL-M-38510, this is the organizational element in the government which contracts for articles or services. The Procuring Activity can be a subcontractor (OEM); providing that the government delegates this responsibility. In such a case, the subcontractor does not have the power to grant waivers, unless this authority has been approved by the government.
PRODUCT RELIABILITY - Pertains to the level of quality of a product over a period of time. Reliability is usually measured or expressed in terms of Failure Rate (such as ' 0.002% per 1000 hours) or MTBF (mean time between failure in hours). MTBF is the reciprocal of Failure Rate. QPL - Qualified Products List. In the case of JAN products, QPLs are identified as QPL-38510 for integrated circuits and QPL-19500 for diodes and transistors. QPL38510 revisions occur approximately quarterly and QPL19500 revisions occur approximately annually. In the interim, the government will notify suppliers via letter of any new device qualifications which may have been granted. Two types of QPLs exist for MIL-M-38510:

PART II QPL - This is an interim or temporary QPL which is granted on the basis of having obtained line certification and approval of an Application to Conduct Qualification Testing. A PART II QPL is automatically voided after 90 days whenever any one supplier is granted a PART । QPL.
PART I QPL - A 'permanent' QPL, granted after all qualification testing is completed and test data is approved by the government.
QUALIFYING ACTIVITY - Per MIL-M-38510, the organizational element in the government which designates certification (i.e., DESC).

QUALIFICATION TESTING - Initial one-time sample tests which are performed to determine whether device types and processes are good. For integrated circuits, this usually means testing to Groups A, B, C and D per MIL-STD-883. For diodes and transistors, this usually means testing to Groups A, B and C per MIL-STD-750.

QUALITY CONFORMANCE TESTING - These are sample tests which must be performed at prescribed intervals per MIL-M-38510 or MIL-S-19500, assuring that processes remain in control and that individual lots are passed.

RADC - Rome Air Development Command, Griffiss AFB, New York. This is the government organization which created semiconductor specifications; MIL-M-38510 and MIL-STD-883 were developed at RADC. This Air Force unit develops specifications for all U.S. military services. RADC is frequently involved in granting waivers for non-standard parts for Air Force systems.
READ AND RECORD DATA - Same as variable data.
REWORK PROVISION - For semiconductor devices, permissible rework of parts is usually limited to re-testing (screening), re-marking, and cleaning.
SCREENING - Operations which are performed on devices on a 100% basis (not sampling). Examples include pre-cap visual, burn-in hermeticity, 100% electrical test, etc
SEM INSPECTION - Inspection by Scanning Electron Microscope. Die samples are examined at very high magnification for metallization defects.

SERIALIZATION - The marking of a unique part number on each part, with assigned numbers marked sequentially/ consecutively.

SCDs - Source Control Drawings. Typically user-generated drawings which require development of internal IC vendor sheets. Although each drawing may be slightly different, all will be modelled around MIL-M-38510, MIL-S19500, MIL-STD-883, or MIL-STD-750.

SOURCE INSPECTION - Can be either Customer Source Inspection (CSI) or Government Source Inspection (GSI). Source Inspection is initiated via purchase order, and can typically occur at one or more points:

- Pre-cap Visual. Expensive and adds to throughput time.
- Final Inspection.

TRACEABILITY - A production and manufacturing control system which includes:

- Wafer run identification number.
- Date pre-cap visual inspection was performed, identity of inspector, and specification number and revision.
- Lot number and inspection history.
- QA Group A electrical results.

VARIABLE DATA - Read and recorded electrical measurements (parametric values). Usually required for pre- and post-burn-in electrical tests. Also common for Group C and D testing.

PART NUMBERING SYSTEM

Examples of Intersil Part Numbers

BASIC	ELECTRICAL OPTION	TEMP	PKG	PIN	ORDER \#
ICH8500	A	C	T	V	ICH8500ACTV
ICL8038	C	C	P	D	ICL8038CCPD
IH5040		M	D	E	IH5040MDE

ON ALL INTERSIL IC PART NUMBERS. THE LAST THREE LETTERS ARE TEMPERATURE, PACKAGE, AND NUMBER OF PINS, RESPECTIVELY.

\begin{tabular}{|c|c|c|c|c|}
\hline PACKAGE: \& A
B
C
D
E
F
H
I
J
K
L
P
S
T
U
U
Z
IW
ID \& TO
Pla
TO
Cer
Sma
Cer
TO
16

Cer
TO
Lead
Pla
TO
TO
(als
TO
als
TO
TO
Wa \& flat
ic d
TO-
ic fla
(. 6
metic
dua
Ss,
dua
ype
O-7
typ

O-1 \& | pack |
| :--- |
| ual-in-line |
| t-pack |
| . 7 pin spacing) hybrid dip -in-line |
| eramic |
| -in-line |
| , TO-99, TO-100) |
| , TO-71) |

\hline \multirow[t]{14}{*}{NUMBER OF PINS:} \& A \& 8 \& P \& 20

\hline \& B \& 10 \& Q \& 2

\hline \& C \& 12 \& R \& 3

\hline \& D \& 14 \& S \& 4

\hline \& E \& 16 \& T \& 6

\hline \& F \& 22 \& U \& 7

\hline \& G \& 24 \& V \& 8 (0.200' pin circle, isolated case)

\hline \& $$
\begin{gathered}
\mathrm{H} \\
\mathbf{i}
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 42 \\
& 28
\end{aligned}
$$
\] \& W \& 10 ($0.230^{\prime \prime}$ pin circle,

\hline \& \& \& \& isolated case)

\hline \& J \& 32 \& \&

\hline \& K \& 35 \& Y \& 8 (0.200' pin circle, case to pin 4)

\hline \& L \& 40 \& \&

\hline \& M \& \& \& 10 ($0.230^{\prime \prime}$ pin circle, case to pin 5)

\hline \& \multicolumn{4}{|l|}{N 18}

\hline
\end{tabular}

APPLICATION NOTE SUMMARY

The following are brief descriptions of current Intersil Application notes.

A003 UNDERSTANDING AND APPLYING THE ANALOG SWITCH

Introduces analog switches and compares them to relays. Describes CMOS, hybrid (FET + driver), JFET ''virtual ground' and J-FET "positive signal" types. Application information included.
A004 IH5009 LOW COST ANALOG SWITCH SERIES Compares the members of the IH5009 'virtual ground" analog switches and provides suggested applications.
A005 THE 8007 - A HIGH PERFORMANCE FET INPUT OP AMP
Compares the 8007 with the 741 , which is pin compatible and suggests applications such as logantilog amplifier, sample and hold circuit, photometer, peak detector, 'etc.
A007 USING THE 8048/8049 MONOLITHIC LOGANTILOG AMPLIFIER
Describes in detail the operation of the 8048 logarithmetic amplifier, and its counterpart, the 8049 antilog amp.
A011 A PRECISION FOUR QUADRANT MULTIPLIER THE 8013
Describes, in detail, the operation of the 8013 analog multiplier. Included are multiplication, division, and square root applications.
A013 EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT THE 8038
This note includes 17 of the most asked questions regarding the use of the 8038 .
A015 DESIGN FOR A BATTERY OPERATED FREQUENCY COUNTER
Describes a low cost battery operated frequency/ period counter using the 7207A and 7208. Includes specifications, schematics, PC layout, etc.
A016 SELECTING A/D CONVERTERS
Describes the differences between integrating converters and successive approximation converters. Includes a checklist for decision making, and a note on multiplexed data systems.
A017 THE INTEGRATING A/D CONVERTER Provides an explanation of integrating A / D converters, together with a detailed error analysis.
A018 DO'S AND DONT'S OF APPLYING A/D CONVERTERS
An analysis of proper design techniques using D/A converters.
A019 $41 / 2$ DIGIT PANEL METER DEMONSTRATION/ INSTRUMENTATION BOARDS
Describes two typical PC board layouts using the 8052A/7103A $4 \frac{1}{2} / 2$ digit A/D pair. Includes schematics, parts layout, list of materials, etc. Also see A028.
A020 A COOKBOOK APPROACH TO HIGH SPEED DATA ACQUISITION AND MICROPROCESSOR INTERFACING
Uses the building block approach to design a complete 12 volt system. Explains the significance of each component and demonstrates methods for
microprocessor interfacing, including the use of control signals.
A021 POWER D/A CONVERTERS USING THE ICH 8510 Detailed analysis of the 8510. Included are a section describing the linearity of the device and application notes for driving servo motors, linear and rotary actuators, etc. Also see A026.
A022 A NEW J-FET STRUCTURE - THE VARAFET Describes in detail the operation of the varafet, a standard J-FET with the analog gate interfacing components monolithically built-in.
A023 LOW COST DIGITAL PANEL METER DESIGNS Provides a detailed explanation of the 7106 and $71073^{1 / 2}$ digit panel meter IC's, and describes two of the evaluation kits available from Intersil.
A026 DC SERVO MOTOR SYSTEMS USING THE ICH8510
This companion note to A021 explains the design techniques utilized in using the ICH8510 family to drive closed loop servo motor systems.
A027 POWER SUPPLY DESIGN USING THE ICL8211 AND ICL8212
Explains the operation of the ICL8211/12 and describes various power supply configurations. Included are positive and negative voltage regulators, constant current source, programmable current source, current limiting, voltage crowbarring, power supply window detector, etc.
A028 BUILDING AN AUTO RANGING DMM WITH THE ICL7103A/8052A CONVERTER PAIR
This companion app note to A019 explains the use of the 8052A/7103A converter pair to build a $\pm 4 \frac{1}{2} 2$ digit auto ranging digital multimeter. Included are schematics, circuit descriptions, tips and hints, etc.
A029 POWER OP AMP HEAT SINK KIT
Describes the heat sinks for the ICH8510 family. These heat sinks may be ordered from the factory.
A030 THE CONVERTER FOR MICROPROCESSORS Describes in detail the operation of the 7104. Includes in digital interfacing, handshake mode, buffer gain, auto-zero and external zero. Appendix includes detailed discussion of auto-zero loop residual errors in dual slope A/D conversion.
A031 COIL DRIVE ALARM DESIGN CONSIDERATIONS Explains the procedure used when using watch circuits to drive piezoelectric transducers.
A032 UNDERSTANDING THE AUTO-ZERO AND COMMON MODE PERFORMANCE OF THE ICL7106/7107/7109 FAMILY
Explains in detail the operation of the ICL7106/7/9 family of A/D Converters.
A046 BUILDING A BATTERY OPERATED AUTO RANGING DVM WITH THE ICL7106
Explains principles of auto ranging, problems and solutions. Includes clock circuits, power supply requirements, design hints, schematics, etc.
A047 GAMES PEOPLE PLAY WITH A/D CONVERTERS Describes 25 different integrating A/D converter applications. Input circuits, conversion modifications,
display and microprocessor interfaces are shown in detail.
A050 USING THE IT500 FAMILY TO IMPROVE THE INPUT BIAS CURRENT OF BIFET OP AMPS A brief description of a preamplifier for BIFET OP AMPS.
A051 PRINCIPLES AND APPLICATIONS OF THE ICL7660 CMOS VOLTAGE CONVERTER Describes internal operation of the ICL7660. Includes a wide range of possible applications.
A052 TIPS FOR USING SINGLE CHIP $31 / 2$ DIGIT A/D CONVERTERS
Answers frequently asked questions regarding the operation of $3^{1 / 2}$ digit single chip A/D converters. Included are sections on power supplies, displays, timing and component selection.

A053 THE ICL7650 A NEW ERA IN GLITCH-FREE CHOPPER STABILIZER AMPLIFIERS
A brief discussion of the internal operation of the ICL7650, followed by an extensive applications section including amplifiers, comparators, log-amps, pre-amps, etc.
A054 DISPLAY DRIVER FAMILY COMBINES CONVENIENCE OF USE WITH MICROPROCESSOR INTERFACABILITY Compares and describes the various display drivers. Includes design examples for 7 segment, Alphanumeric, and bargraph systems.
M011 AVOIDING PROBLEMS IN CMOS MEMORY OPERATION
Discusses input overvoltage and SCR latchup and the multiple address access problem in CMOS RAMs.

Device Family Prefixes

> AD - Analog Devices Alternate Source D - Driver/Level Translator IC DG - Siliconix Analog Switch Alternate Source DGM - Monolithic DG Analog Switch Replacement ICL - Linear IC ICM - Microperipheral IC ICH - Hybrid IC IM - Microcontroller IC LH - National Semiconductor Hybrid Alternate Source LM - National Semiconductor Alternate Source MM - High Voltage Analog Switch NE -Signetics Alternate Source SE -Signetics Alternate Source

Electrical Option/Variation of Basic Device Type Designators

These designators are datasheet dependent, and are not always used.

Temperature Range Designators

C -Commercial: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
1 -Industrial: Either $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Specified on Datasheet)
M -Military: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Package Type Designators

A	- TO-237
B	- Small Outline IC (SOIC)
C	- TO-220
D	- Ceramic Dual-In-Line
E	-Small TO-8
F	- Ceramic Flat Pack
H	- TO-66
1	-16 Pin ($6 \times .7$ Pin Spacing) Hermetic Hybrid Dip
J	- CERDIP Dual-In Line
K	- TO-3
L.	- Leadless, Ceramic
P	-Plastic Dual-In-Line
S	- TO-52
T	- TO-5 Type (Also TO-78, TO-99, TO-100)
U	$\begin{aligned} & \text { - TO-72 Type } \\ & \text { (Also TO-18, TO-71) } \end{aligned}$
\checkmark	-TO-39 .
Z	- TO-92
NW	- Wafer
ID	- Dice

Part Numbering System

All Intersil IC part numbers consist of a device family prefix, a basic numeric part number, and an option suffix, as follows

ORDERING INFORMATION

Pin Count Designator

A	8	p	20
B	10	Q	2
C	12	R	3
D	14	S	4
E	16	T	6
F	22	U	7
G	24	V	8 (0.200" pin circle, isolated case)
H	42		
1	28	W	$10\left(0.230^{\prime \prime}\right.$ pin circle isolated case)
J	32		
K	35	Y	8 (0.200" pin circle, case to pin 4)
L	40		
M	48	Z	10 ($0.230^{\prime \prime}$ pin circle case to pin 5)
N	18		

HIGH RELIABILITY DESIGNATOR

1883B - MIL-STD-883B Screened Device
/HR - High-Reliability Device
/BR - Cost Effective HighReliability Device
(BI - Burn-In Only Process

Example Part Numbers

2)

PRODUCT DESCRIPTION
PART NUMBER
CONTENTS

Power Amplifier Kits	ICH8510IEV/KIT ICH8510MEV/KIT ICH85201IEV/KIT ICH8520MEV/KIT ICH85301IEV/KIT ICH8530MEV/KIT	ICH8510i + Socket + Heat Sink ICH8510 + Socket + Heat Sink ICH8520i + Socket + Heat Sink ICH8520M + Socket + Heat Sink ICH8530i + Socket + Heat Sink ICH8530M + Socket + Heat Sink
31/2 Digit LCD Panel Meter Kit	ICL7106EV/KIT	ICL7106 + PC Card + All Passive Components
31⁄2 Digit LED Panel Meter Kit	ICL7107EV/KIT	ICL7107 + PC Card + All Passive Components
$31 / 2$ Digit Low Power LCD Panel Meter Kit	ICL7126EV/KIT	ICL7126 + PC Card + All Passive Components
41⁄2 Digit A/D Converter Kit	ICL7129EV/KIT	ICL7129 + $4^{1 ⁄ 2} / 2$ Digit LCD Display + ICL8069 + PC Card + Active, Passive Components
41⁄2 Digit A/D Converter Kit	ICL7135EV/KIT	ICL7135 + ICL7660 + ICL8069 + PC Card + Active, Passive Components
4½ Digit LCD Display Driver Kit	ICM7211EV/KIT	ICM7211 + $4 \frac{1}{2}$ 2 Digit LCD Display + PC Card + Active, Passive Components
8 Character Multiplexed LCD Display Driver Kit	ICM7233AEV/KIT	2 of ICM7233A + PC Card +8 Character Triplexed LCD Display
8 Character Multiplexed LED Display Driver Kit	ICM7243BEV/KIT	ICM7243B + PC Card + 8 Character LED
4½ Digit LCD Display Counter Kit	ICL7224EV/KIT	ICM7224 + ICM7207A +5.24288 MHz Crystal $+4^{1 ⁄ 2} 2$ Digit LCD Display + PC Card + Passive Components
41⁄2 Digit LED Display Counter Kit	ICM7225EV/KIT	ICM7225 + ICM7207A +5.24288 MHz Crystal $+4^{1 ⁄ 2} 2$ Digit LED Display + PC Card + Passive Components
4½ Digit VF Display Counter Kit	ICM7236EV/KIT	ICM7236 + ICM7207A +5.24288 MHz Crystal $+4^{11 / 2}$ Digit VF Display + PC Card + Passive Components
Touch Tone Encoder		
One contact per key	ICM7206EV/KIT	ICM7206 + 3.579545MHz Crystal
Two contacts per key, common to positive supply	ICM7206AEV/KIT	ICM7206A +3.579545 MHz Crystal
Common to negative supply, oscillator enabled when key depressed	ICM7206BEV/KIT	ICM7206B +3.579545 MHz Crystal
8 Digit Frequency/Period Counter 5 Function	ICM7226AEV/KIT	ICM7226A +10 MHz Crystal + PC Card + LEDs + All Passive Components
Oscillator Controller For Application as freq. counter with ICM7208	ICM7207EV/KIT ICM7207AEV/KIT	ICM7207 +6.5536 MHz Crystal ICM7207A +5.24288 MHz Crystal

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

P0002011
TO-71

TO-71 LOW PROFILE

SQ* denotes a two lead package; center lead missing.

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

TO-92

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

P0002711
TO-100 (TW, TX)
TO-237 JEDEC

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

PACKAGE OUTLINES All dimensions given in inches and (millimerters).

8 LEAD TO-3 METAL CAN

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

PACKAGE OUTLINES All dimensions given in inches and (millimetes).

14 LEAD FLATPACK

$0.065\left(\frac{0.198)}{(0.165)}\right.$
$0.007(0.177)$
$\frac{0.007}{0.004} \frac{(0.177)}{(0.101)}$
(FD)

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

16 LEAD FLATPACK (FE-1)

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

18 LEAD FLATPACK (FN-3)

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

18 LEAD PLASTIC (PN)

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

24 LEAD PLASTIC (PG)

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

Note 1: Finish: Gold plated 60 micro inches minimum thickness over nickel plated Note 2: Pin number 1 connected to die attach pad ground

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

44 LEAD PLASTIC FLATPACK

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

ALABAMA

3322 S. Memorial Parkway
Holiday Office Center
Suite 17
Huntsville, AL 35801
Tel: (205) 883-5713
FAX: (205) 883-8523

ARIZONA

5320 North 16 th St
Phoenix, AZ 85016
Tel: (602) $241-7224$
FAX: (602) $241-7266$

CALIFORNIA

21201 Victory Blvd
Suite 245
Canoga Park, CA 91303
Tel: (818)'884-4911
FAX: (818) 884-2283
4063 Birch St.
Suite 130
Newport Beach, CA 92660
Tel: (714) 852-9030
FAX: (714) 852-9035
1054 Saratoga-Sunnyvale Rd
Suite 100
San Jose, CA 95129
el: (408) 255-5800
FAX: (408) 255-4693

CONNECTICUT

270 Farmington Avenue
Suite 326
Farmington, CT 06032
Tel: (203) 677-7876
FAX: (203) 677-7.015

FLORIDA

700 W. Hillsboro Blvd
Suite 207, Bldg. 4
Deerfield Beach, FL 33441
Tel: (305) 429-0440
TWX: 510-953-7634
FAX: (305) 426-2696

GEORGIA

1835 Savoy Dr Suite 215
Atlanta, GA 30341
Tel: (404) 458-8401
TWX: 810-766-4593
FAX: (404) 458-5838

ILLINOIS

2860 South River Road Suite 400
Des Plaines, IL 60018
Tel: (312) 827-9100
FAX: (312) 827-9064

INDIANA

2200 Lake Ave
Lakeside 1 Office Bldg
Suite 225
Ft. Wayne, IN 46805
Tel: (219) 422-8551
FAX: (219) 380-3309
6321 La Pas Trai
P.O. Box 68543

Indianapolis, IN 46268
Tel: (317) 298-5317
FAX: (317) 298-5374

MASSACHUSETTS

5 Militia Dr
Lexington, MA 02173
Tel: (617) 861 -6220
TWX: 710-326-0887
FAX: (617) $861-7130$

MINNESOTA

4600 W. 77th St.
Suite 201
Minneapolis, MN 55435
Tel: (612) 835-2550
FAX: (612) 830-8297

NEW JERSEY

1600 St. Georges Ave
Rahway, NJ 07065
Tel: (201) 381-4210
FAX: (201) $381-0990$

NEW YORK

11 Computer Dr. W
Albany, NY 12205
Tel: (518) 454-2576
FAX: (518) 454-2580
5794 Widewaters Parkway
Dewitt, New York 13214
Tel: (315) 445-4780
FAX: (315) 445-4709

NORTH CAROLINA

2105 Enterprise Rd
P. Box 9476

Greensboro, NC 27408
Tel: (919) 379-8474
FAX: (919) 379-8478

OHIO

26250 Euclid Ave
Suite 521
Cleveland. OH 44132
Tel: (216) 266-2900
FAX: (216) 266-2951

TEXAS

4099 McEwen
Suite 360
Dallas, TX 75244
Tel: (214) 661-8582
TWX: 910-997-0742
FAX: (214) 661-8212

VIRGINIA

503 Faulconer Dr
Suite 9A
Charlottsville, VA 22901
Tel: (804) 978-5040
FAX: (804) 971-8350

FOR POWER MOS PRODUCT INFORMATION CONTACT:
General Electric Power Electronics Semiconductor Department
West Genessee Street, Mail Drop 44
Auburn, NY 13021
Tel: (315) 253-7321

FOR BOARD LEVEL PRODUCT INFORMATION CONTACT:

GE Datel

11 Cabot Boulevard
Mansfield, MA 02048
Tel: (617) 339-9341

REPRESENTATIVES

ALABAMA

CSR Electronics
303 Williams Ave., Suite 931
Huntsville, AL 35801
Tel: (205) 533-2444
TWX: 510-600-2831
FAX: (205) 536-4031

ARIZONA

Shefler-Kahn 2017 N. 7th St. Phoenix, AZ 85006 Tei: (602) 257-9015 TWX: 910-951-0659 FAX: (602) 252-3431

CALIFORNIA

ADDEM S.D
Suite D-3
1015 Chestnut Ave. Carlsbad, CA 92008
Tel: (619) 729-9216
Telex: 754078
H-Technical Sales, Inc
12453 Louis St., \#101
Garden Grove CA 92640
Tel: (714) 740-0161
(714) 740-2139

Ewing-Foley, Inc 895 Sherwood Ave. Los Altos, CA 94022
Tel: (415) 941-4525
TWX: 910-370-6000
Ewing-Foley, Inc 120 South Lincoln Roseville, CA 95678
Tel: (916) 969-2672

COLORADO

Thorson Rocky Mountain, Inc. 7076 S. Alton Way Bldg. D
Englewood, CO 80112
Tel: (303) 779-0666
TWX: 910-935-0117
FAX: (303) 773-2854

CONNECTICUT

Advanced Components Sales 1 Prestige Drive
Meriden, CT 06450
Tel: (203) 238-6891
FAX: (20.3) 634.3964

FLORIDA

EIR, Inc.
1057 Maitland Center Common
Maitland, Florida 32751
Tel: (305) 660-9600
FAX: (305) 660-9091

GEORGIA

CSR Electronics
1651 Mt. Vernon Road Suite 200
Atlanta, GA 30338
Tel: (404) 396-3720
TWX: (510) 600-2162 FAX: (404) 394-8387

ILLINOIS

D. Dolin Sales, Co. 609 Academy Drive Northbrook, IL. 60062 Tel: (312) 498-6770 TWX: 910-686-4909 FAX: (312) 498-4885

INDIANA

Giesting Associates 101 E. Carmel Drive
Suite 210
Carmel, IN 46032
Tel: (317) 844-5222
Giesting Associates 4407 DeRome Drive Ft. Wayne, IN 46815 Tel: (219) 486-1912

IOWA

J.R. Sales Engineering, Inc 1930 St. Andrews NE Cedar Rapids, IA 52402
Tel: (319) 393-2232
TWX: 910 525-1365

KANSAS

Kebco, Inc.
10111 Santa Fe Drive
Suite 13
Overland Park, KS 66212
Tel: (913) 541-8431
FAX: (913) 888-1036
Kebco, Inc
16047 East Kellog
Wichita, KS 67230
Tel: (316) 733-1301

MARYLAND

Robert Electronics 5525 Twin Knolls Road Suite 331
Columbia, MD 21045
Tel: Balt. (301) 995-1900 Wash. (301) 982-1177 TWX: 710-862-2879 FAX: (301) 964-3364

MASSACHUSETTS

Advanced Tech. Sales, Inc. 50 Mall Road, Suite 602 Burlington, MA 01803 Tel: (617) 272-0100 FAX: (617) 272-1515

MICHIGAN

Giesting \& Associates 5654 Wendzel Dr.
Coloma, MI 49038
Tel: (616) 468-4200
Giesting \& Associates
21999 Farmington Road
Farmington Hills, MI 48024
Tel: (313) 478-8106
FAX: (313) 477 -6908

MINNESOTA

PSI
7732 West 78th Street
Minneapolis, MN 55435
Tel: (612) 944-8545
TWX: 910-576-3483
FAX: (612) 944-6249

MISSOURI

Kebco, Inc
75 Worthington Drive
Suite 101
St. Louis, MO 63043
Tel: (314) 576-4111
TWX: 910-764-0826
FAX: (314) 576.4159

NEW JERSEY

Comtek, Inc
Plaza Office Center
Suite 404 East
Route 73 and Fellowship Rd
Mt. Laurel, NJ 08054
Tel: (609) $235-8505$
TWX: 710-897-0150
FAX: (609) 235-5805

NEW MEXICO

Shefler-Kann
2709-J Pan American Freeway, N.E.

Albuquerque, NM 87107
Tel: (505) 345:3591
FAX: (505) 345-3593

NEW YORK

Ossmann Component Sales Corp
280 Metro Park
Rochester, NY 14623
Tel: (716) 424-4460
TWX: 510-253-7685
FAX: (716) 427-2861
Ossmann Component Sales Corp
6666 Old Collamer Rd.
East Syracuse, NY 13057
Tel: (315) 437.7052
TWX: 710-541-1523
Ossmann Component Sales Corp.
300 Main Street
Vestal, NY 13850
Tel: (607) 754-3264
TWX: 510-252.1987

NEW YORK (cont.)

S.JAssociates

148-05 Archer Ave
Jamaica, NY 11435
Tel: (718) 29,1-3232
FAX: (718) 297-5885

NORTH CAROLINA

CSR Electronics.
5880 Faringdon Place
Suite 2
Raleigh, NC 27609
Tel: (919) $878-9200$
TWX: 510-600-2709
FAX: (919) 878-9117

OHIO

Giesting \& Associates P.O. Box 39398 2854 Blue Rock Road Cincinnati, OH 45239 Tel: (513) 385-1105 TLX:214-283
FAX: (513) 385-5069
Giesting \& Associates 26250 Euclid Avenue Suite 525
Cleveland, OH 44132
Tel: (216) 261-9705
FAX: (216) 266-2951
Giesting \& Associates 8843 Washington Colony Dr
Dayton, OH 45459
Tel: (513) 433-5832

OKLAHOMA

Bonser-Philhower Sales 4614 S Knoxville Avenue Tulsa, OK 74135 Tel: (918) 744-9964

OREGON

LD Electronics
P.O. Box 626

Beaverton, OR 97075
Tel: (503) 649-8556
(503) 649-6177

TWX: 910-467-8713
FAX: (503) 642-1518

PENNSYLVANIA

Giesting \& Associates
471 Wainut Street
Pittsburgh, PA 15238
Tel: (412) 963-0727

TEXAS

Bonser-Philhower Sales 8200 Mopac. Suite 120 Austin, TX 78759
Tel: (512) 346-9186
TWX: 910-997-8141

KiNIg!
 REPRESENTATIVES

TEXAS (cont.)
Bonser-Philhower Sates 11321 Richmond Avenue Suite 100A
Houston, TX 77082
Tel: (713) 531-4144
TWX: 910-350-3451
Bonser-Philhower Sales 689 West Renner Road Suite C
Richardson, TX 75080
Tei: (214) 234-8438
TWX: 910-867-4752
FAX: (214) 437-0897

UTAH

Thorson Rocky Mountain, Inc.
Bank of Utah, Suite A
2309 S. Redwood Rd
West Valley City, UT 84119
Tel: (801) $973-7969$
TWX: 910-925-5826

VIRGINIA

Robert Electronics
7641 Hull Street
Suite 101
Richmond, VA 23235
Tel: (804) 276-3979
FAX: (804) 745-5343

WASHINGTON

LD Electronics
741077 th Ave., S.E
Snohomish, WA 98290 Tel: (206) 568-0511
LD Electronics
East 12607 Guthrie Dr
Spokane, WA 99216 Tel: (509) 922-4883

WISCONSIN
D. Dolin Sales Co

131 W. Layton Ave. Milwaukee, WI 53207
Tel: (414) 482-1111
TWX: 910-262-1139
FAX: (414) 482-2033

CANADA

Access Electronics
Suite 101
3570 East Hastings St
Vancouver, B.C.
Canada V5K 2 AT
Tel: (604) 299-3556
FAX: (604) 299-4622
Gidden-Motron Assoc., Inc
7548 Bath Road
Mississauga, Ontario
Canada L.4T 1L2
Tel: (416) 671-2225 (416) 671.8111

CANADA (cont.)
Gidden-Morton Assoc., Inc. 3860 Cote Vertu Suite 221
St. Laurent, Quebec
Canada H4R IV4
Tel: (514) 335-9572
FAX: (514) 335-9573
Gidden-Morton Assoc
301 Moodie Drive
Suite 101
Nepean, Ontario
Canada K2H 9C4
Tel: (613) 726-0844
Gidden-Morton Assoc., Inc.
605 Rue Filiatault
St. Laurent, Quebec
Canada H4L 3V3
Tel: (514) 747-1770

MNIEREIL AUTHORIZED DISTRIBUTORS

ALABAMA
Arrow Electronics 1015 Henderson Road Huntsville, AL 35806 Tel: (205) 837-6955
Hamilton/Avnet Electronics
4940A Research Drive
Huntsville, AL 35805
Tel: (205) 837-7210
TWX: 810-726-2162
Kierulff Electronics
2225 Drake Ave.
Suite 14
Huntsville, AL 35805
Tel: (205) 883-6070
Schweber Electronics
2227 Drake Ave. SW Suite 19
Huntsville, AL:35805
Tel: (205) 882-2200

ARIZONA

Arrow Electronics 2127 West 5th Place
Tempe, AZ 85281
Tel: (602) 968-4800
Hamilton/Avnet Electronics
505 S. Madison Dr.
Tempe, AZ 85281
Tel: (602) 231-5100
Kierulff Electronics
4134 E. Wood St.
Phoenix, AZ 85040
Tel: (602) 437-0750
TWX: 910-951-1550
Schweber Electronics
11049 N. 23rd Drive
Suite 100
Phoenix, AZ 85029
Tel: (602) 997-4874
Wyle Distribution Group
17855 No. Black Canyon Hwy.
Phoenix, AZ 85023
Tel: (602) 866-2888
TWX: 910-951-4282

CALIFORNIA

Arrow Electronics
19748 Dearborn St.
Chatsworth, CA 91311
Tel: (818) 701-7500
TWX: 910-483-2086
Arrow Electronics
1502 Crocker Avenue
Hayward, CA 94544
Tel: (415) 487-4600
Arrow Electronics
1808 Tribute Road
Suite C
Sacramento, CA 95815
Tel: (916) 925-7456
Arrow Electronics 9511 Ridgehaven Ct .
San Diego, CA 92123
Tel: (619) 565-4800
TLX: 888064
Arrow Electronics
521 Weddell Ave.
Sunnyvale, CA 94086
Tel: (408) 745-6600
TWX: 910-338-0266

CALIFORNIA (cont.)

Arrow Electronics
2961 Dow Ave.
Tustin, CA 92680
Tel: (714) 838-5422
Avnet Electronics
20501 Plummer St
Chatsworth; CA 91311
Tel: (818) 700-2600
Avnet Electronics 350 McCormick Avenue Costa Mesa, CA 92626
Tel: (714) 754-6111
Hamilton Avnet
3002 E. "G" St
Ontario, CA 91764
Tel: (714) 989-9411
Hamilton Avnet
4103 Northgate Blvd.
Sacramento, CA 95834
Tel: (916) 925-2216
Hamilton Avnet
4545 Viewridge Ave.
San Diego, CA 92123
Tel: (619) 571-7500
Hamilton Avnet 1175 Bordeaux Dr. Sunnyvale, CA 94089
Tel: (408) 743-3355
Hamilton Electro Sales
9650 DeSoto Ave.
Chatsworth, CA 91311
Tel: (818) 700-6500
Hamilton Electro Sales
Orange County
3170 Pullman Street
Costa Mesa, CA 92626
Tel: (714) 641-4100
Hamilton Electro Sales 10950 Washington Blvd Culver City, CA 90230
Tel: (213) 558-2121
Kierulff Electronics
Corporate Marketing
10824 Hope Street
Cypress, CA 90630
Tel: (714) 220-6300
Kierulff Electronics
5650 Jillson
Los Angeles, CA 90040
Tel: (213) 725-0325
TWX: 910-580-3106
Kierulff Electronics
8797 Balboa Ave.
San Diego, CA 92123
Tel: (619) 278-2112
Kierulff Electronics
1180 Murphy Ave.
San Jose, CA 95131
Tel: (408) 971-2600
Kierulff Electronics
14101 Franklin Ave
Tustin, CA 92680
Tel: (714) 731-5711
TWX: 910-595-2599
Schweber Electronics
21139 Victory Blvd
Canoga Park, CA 91303
Tel: (213) 999-4702

CALIFORNIA (cont.)
Schweber Electronics 1225 West 190 Street Suite 360
Gardena, CA 90248
Tel: (213) 327-8409
Schweber Electronics
17822 Gillette Ave.
Irvine CA 92714
Tel: (714) 863-0200
TWX: 910-595-1720
Schweber Electronics
1771 Tribune Rd.
Suite B
Sacramento, CA 95815
Tel: (916) 929-9732
Schweber Electronics 6750 Nancy Ridge Drive Suites D and E
San Diego, CA 92121
Tel: (619) 450-0454
Schweber Electronics 90 East Tasman Drive San Jose, CA 95134 Tel: (408) 946-7171
TWX: 910-338-2043
Wyle Distribution Group 124 Maryland St.
EI Segundo, CA 90245
Tel: (213) 322-8100
TWX: 910-348-7140
Wyle Distribution Group 17872 Cowan Ave.
Irvine, CA 92714
Tel: (714) 863-9953
TLX: 3719599
Wyle Distribution Group
11151 Sun Center Dr.
Rancho Cordova, CA 95670
Tel: (916) 638-5282
Wyle Distribution Group
9525 Chesapeake Dr. San Diego, CA 92123
Tel: (619) 565-9171
TWX: 910-335-1590
Wyle Distribution Group
3000 Bowers Ave
Santa Clara, CA 95051
Tel: (408) 727-2500
TWX: 910-338-0296
Wyle Laboratories
26560 Agoura Rd

\#203

Calabasas, CA 91302
Tel: (818) 880-9001
Wyle Military
18910 Teller Ave.
Irvine. CA 92715
Tel: (714) 851-9953
TWX: 910-595-2642

COLORADO
Arrow Electronics 1390 South Potomac Street Suite 136
Aurora, CO 80012
Tel: (303) 696-1111
Hamilton Avnet Electronics
8765 E. Orchard Road
Suite \#708
Englewood, CO 80111
Admin: (303) 779-9998
Sales: (303) 740-1000
Kierulff Electronics
7060 S. Tucson Way
Englewood, CO 80112
Tel: (303) 790-4444
TWX: 910-931-2626
Schweber Electronics 8955 E. Nichols Ave., Suite 200 Englewood, CO 80112 Tel: (303) 799-0258
Wyle Laboratories
451 E. 124th Ave.
Thornton, CO 80241
Tel: (303) 457-9953
TWX: 910-936-0770

CONNECTICUT

Arrow Electronics
12 Beaumont Rd.
Wallingford, CT 06492
Tel: (203),265-774
TWX: 710-476-0162
Hamilton/Avnet Electronics
Commerce Industrial Park
Commerce Drive
Danbury, CT 06810
Tel: (203) 797-2800
Kierulff Electronics
10 Capital Drive
Wallingford, CT 06492
Tel: (203) 265-1115
Lionex Corporation
170 Research Parkway
Meriden, CT 06450
Tel: (203) 237-2282
Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury; CT 06810
Tel: (203) 748-7080
TWX: 710-456-9405

FLORIDA

Arrow Electronics
350 Fairway Drive
Deerfield Beach, FL 33441
Tel: (305) 429-8200
TWX: 510-955-9456
Arrow Electronics
1530 Bottle Brush
Palm Bay, FL 32905
Tel: (305) 725-1480
TWX: 510-959-6337
Hamilton/Avnet Electronics 6801 N.W. 15th Way
Ft. Lauderdale, FL 33309
Tel: (305) 971-2900
Hamilton/Avnet Electronics
3197 Tech Drive North
St. Petersburg, FL 33702
Tel: (813) 576-3930
Hamilton/Avnet Electronics
6947 University Blvd
Winter Park, FL 32792
Tel: (305) 628-3888

RaNnItrenl AUTHORIZED DISTRIBUTORS

FLORIDA (cont.)
Kierulff Electronics 5410 N.W. 33rd Ave Ft. Lauderdale, FL 33319 Tel: (305) 486-4004
Kierulff Electronics 3247 Tech Drive North St. Petersburg, FL 33702
Tel: (813) 576-1966
TWX: 810-863-5625
Schweber Electronics
181 Whooping Loop Altamonte Springs, FL 32701 Tel: (305) 331-7555

Schweber Electronics 2830 N. 28th Terrace Hollywood, FL 33020
Tel: (305) 921-0301
TWX: 510-954-0304

GEORGIA

Arrow Electronics 3155 Northwoods Parkway Suite A
Norcross, GA 3007.
Tel: (404) 449-8252
TWX: 810-757-4213
Hamilton/Avnet Electronics 5825 D. Peachtree Corners E Norcross, GA 30092 Tel: (404) 447-7500

Kierulff Electronics
5824 Peachtree Corners E Norcross, GA 30092
Tel: (404) 447-5252
Schweber Electronics
303 Research Drive
Suite 210
Norcross, GA 30092
Tel: (404) 449-9170

ILLINOIS

Arrow Electronics
2000 Algonquin
Schaumburg, IL 60195
Tel: (312) 397-3440
TWX: 910-291-3544
Hamilton/Avnet Electronics 1130 Throndale Ave. Bensonvilie, IL 60106
Tel: (312) 860-7700
Kierulff Electronics 1140 West Throndale Itasca, IL 60143
Tel: (312) 250-0500
Newark Electronics 4801 North Ravenswood
Chicago, IL 60640
Tel: (312) 784-5100
TWX: 910-221-0268
Newark Electronics
5308 West 124 th St
Alsip, IL 60658-3295
Tel: (312) $371-9000$

ILLINOIS (cont.)
Schweber Electronics
904 Cambridge Drive
Elk Grove Village, IL 60007
Tel: (312) 364-3774
TWX: 910-222-3453

INDIANA

Advent Electronics
8446 Moller Rd
Indianapolis, IN 46268
Tel: (317) 872-4910
TWX: 810-341-3228
Arrow Electronics
2495 Directors Row Suite H
Indianapolis, IN 46241
Tel: (317) 243-9353
Hamilton/Avnet Electronics
485 Gradle Dr.
Carmel, indianna 46032
Tel: (317) 844-9333

IOWA

Advent Electronics
682 58th Avenue
Court S.W
Cedar Rapids, IA 52404
Tel: (319) 363-0221
TWX: 910-525-1337
Arrow Electronics
375 Collins Road N.E.
Cedar Rapids, IA 52402 (319) 395-7230

Hamilton/Avnet Electronics 915 33rd Avenue S.W Cedar Rapids, IA 52404 Tel: (319) 362 -4757
TWX: 910-525-1316
Schweber Electronics 5720 N. Park Place N.E Cedar Rapids, IA 52402 Tel: (319) 373-14.17

KANSAS

Hamilton/Avnet Electronics
9219 Quivira Road
Overland Park, KS 66215
Tel: (913) 888-8900
Schweber Electronics
10300 W. 103rd
Suite \#103
Overland Park, KS 66214
Tel: (913) 492-2922

MARYLAND

Arrow Electronics 8300 Guilford Road Suite H
Columbia, MD 21046
Tel: (301) 995-0003
TWX: 710-236-9005

MARYLAND (cont.)
Hamilton/Avnet Electronics 6822 Oak Hall Lane
Columbia, MD 21045
Balt. Sales: (301) 995-3500 Wash. Sales: 301-621-5410
Kierulff Electronics
825 D. Hammonds Ferry Road
Linthicun, MD 21090
Tel: (301) 636-5800
TWX: 710-234-1971
Lionex Corp
9020 Mendell Hall Court Columbia, MD 21045 Tel: (301) 964-0040
Schweber Electronics 9330 Gaither Rd:
Gaithersburg, MD 20877
Tel: (301) $840-5900$
TWX: 710-828-9749

MASSACHUSETTS

Arrow Electronics Arrow Drive
Woburn MA 01801
Tel: (617) 933-8130
TWX: 710.393-6770
Gerber Electronics 128 Carnegie Row Norwood, MA 02062 Tel: (617) 769-6000
TWX: 710-336-1987
Hamilton/Avnet Electronics
50 Tower Office Park Woburn, MA 01801 Tel: (617) 273-7500
Kierulff Electronics 13 Forturn Dr.
Billerica, MA 01821
Tei: (617) 667-8331
TWX: 710-390-1449
Lionex Corporation 36 Jonspin Rd. Wilmington, MA 01887 Tel: (617) 657-5170
Schweber Electronics 25 Wiggins Ave
Bedford, MA 01730
Tel: (617) 275-5100 TWX: 710-326-0268

MICHIGAN

Arrow Electronics 755 Phoenix Drive Ann Arbor, Ml 48104 Tel: (313) $971-8220$ TWX: 810-223-6020
Arrow Electronics
3510 Roger Chaffee Bivd.. S.E.
Grand Rapids, Mil 49508
Tel: (616) 243-0912
Hamilton/Avnet Electronics 2215 29th St., S.E.
Space A-5
Grand Rapids, MI 49508
Tel: (616) 243-8805

MICHIGAN (cont.)
Hamilton/Avnet Electronics 32487 Schoolcraft Road
Livoria, M! 48150
Tel: (313) 522-4700
Schweber Electronics
12060 Hubbard Ave.
Livonia, MI 48150
Tel: (313) 525-8100
TWX: 810-242-2983
MINNESOTA
Arrow Electronics 5230 W. 73rd Street
Edina, MN 55435
Tel: (612) 830-1800
TWX: 910-576-3125
Hamilton/Avnet Electronics
10300 Bren Rd., East
Minnetonka, MN 55343
Tel: (612) 932-0600
Kierulff Electronics
7667 Cahill Road
Edina, MN 55435
Tel: (612) 941 -7500
TWX: 910-576-2721
Schweber Electronics
7424 W. 78th Street
Edina, MN 55435
Tel: (612) 941-5280
TWX: 910-576-3167

MISSOURI

Arrow Electronics
2380 Schuetz Rd
St. Louis, MO 634.16
Tel: (314) 567-6888
TWX: 910-764-0882
Harnilton/Avnet Electronics 13743 Shoreline Court East
Earth City, MO 63045
Tel: (314) 344-1200
Kierulff Electronics
2608 Metro Boulevard
Maryland Heights, MO 63043
Tel: (314) 739-0855
Schweber Electronics
502 Earth City Expwy.
Suite \#203
Earth City, MO 63045
Tel: (314) 739-0526

NEW HAMPSHIRE

Arrow Electronics
Three Perimeter Road
Manchester, NH 03103
Tel: (603) 668-6968
TWX: 710-220-1684
Hamilton/Avnet Electronics 444 E. Industrial Park Drive Manchester, NH 03104
Tel: (603) 624-9400
Schweber Electronics Bedford Farms, Bldg. 2 1st Floor
Kitton \& South River Rd Manchester, NH 03102
Tel: (603) 625-2250
TWX: 710-220-7572

Kinngesil AUTHORIZED DISTRIBUTORS

NEW JERSEY
Arrow Electronics
2 industrial Road
Fairfield, NJ 07006
Tel: (201) 575-5300
TWX: 710.734-4403
Arrow Electronics
6000 Lincoin Drive East
Marlton, NJ 08053
Tel: (609) 596-8000
TWX: 710-897-3829
Hamilton/Avnet Electronics
1 Keystone Ave.
Bldg. \#36
Cherry Hill, N.J. 08003
Tel: (609) 424-0110
Hamilton/Avnet Electronics
10 Industrial Rd.
Fairfield, N.J. 07006
Tel: (201) 575.3490
(201) 575-3390

Kierulff Electronics
37 Kulick Road
Fairfield, NJ 07006
Tel: (201) 575-6750
TWX: 710-734-4372
Kierulff Electronics 520 Fellowship Road
Suite A 106
Mt. Laural, NJ 08054
Tel: (609) 235-1444
Lionex
311 Rt. 46 West
Fairfield, NJ 07006
Tel: (201) 227-7960
Schweber Electronics
18 Madison Rd
Fairfield, NJ 07006
Tel: (201) 227-7880
TWX: 710-734-4305

NEW MEXICO

Arrow Electronics
2460 Alamo Avenue, S.E. Albuquerque, NM 87106 Tel: (505) 243-4566
TWX: 910-989-1679
Hamilton/Avnet Electronics
2524 Baylor S.E
Albuquerque, NM 87106
Tel: (505) 765-1500

NEW YORK

Arrow Electronics
155 Sherwood Ave
Farmingdale, NY 11735
Tel: (516) 293-6363
Arrow Electronics
20 Oser Ave.
Hauppauge, NY 11787
Tel: (516) 231-1000
TWX: 510-227-6623
Arrow Electronics
7705 Maltlage Dr.
Liverpool, NY 13088
Tel: (315) 652-1000
TWX: 710-545-0230

NEW YORK (cont.)
Arrow Electronics
25 Hub Drive
Melville, NY 11747
Tel: (516) 391-1300
TWX: 510-224-6126
Arrow Electronics
3375 Brighton Henrietta
Townline Road
Rochester, NY 14623
Tel: (716) 427-0300
TWX: 510-253-4766
Avnet, Inc.
767 Fifth Avenue
New York, NY 10153
Tel: (212) 644-1050
Hamilton Avnet
933 Motor Parkway
Hauppauge, NY 11787
Tel: (516) $231 \cdot 9800$
Hamilton/Avnet Electronics 103 Twin Oaks Drive Syracuse, NY 13214
Tel: (315) 437-2641
Hamilton/Avnet Electronics 333 Metro Park
Rochester, NY 14623
Tel: (716) 475-9130
Hamilton/Avnet Export 1065 Country Road
Suite 211A
Westbury, NY 11590
Tel: (516) 997-6868
Lionex Corporation
400 Oser Ave
Hauppauge, LI, NY 11787
Tel: (516) 273-1660
Rome Electronics
216 Erie Blva., E.
Rome, NY 13440
Tel: (315) 337-5400
Schweber Electronics
4 Townline Circle Rochester, NY 14623 Tel: (716) 424-2222
Schweber Electronics Jericho Turnpike
Westbury, NY 11590
Tel: (516) 334-7474
TWX: 510-222-3660

NORTH CAROLINA

Arrow Electronics
5240 Greens Dairy Rd.
Raleigh, NC 27604
Tel: (919) 876.3132
Arrow Electronics 938 Burke St
Winston-Salem, NC 27102
Tel: (919) 725-8711
TWX: 510-931-3169
Electronics Marketing
Corporation
1925 1-85 South
Charlotte, NC 28208
Tel: (704) 394-6195

NORTH CAROLINA (cont.)
Hamilton/Avnet Electronics
3510 Spring Forest Road
Raleigh, NC 27604
Tel: (919) 878-0810
Kierulff Electronics
1 North Commerce Center
5249 North Boulevard
Raliegh, NC 27604
Tel: (919). 872-8410
Schweber Electronics
1 Commerce Center
5285 North Blvd.
Raleigh, NC 27604
Tel: (919) 876.0000

OHIO

Arrow Electronics
7620 McEwen Road
Centerville, OH 45459
Tel: (513) 435-5563
TWX: 810-459-1611
Arrow Electronics
1040 Crupper Avenue
Columbus, OH 43229
Tel: (614) 885-8362
Arrow Electronics
6239 Cochran
Solon, OH 44139
Tel: (216) 248-3990
TWX: 810-427-9409
Electronics Marketing
Corporation
17 Alpha Park
Highland Heights, OH 44143
Tel: (216) 442-3441
Electronics Marketing
Corporation
1150 W. 3rd Ave
Columbus, OH 43212
Tel: (614) 299-4161
Electronics Marketing
Corporation
4660 Gateway Circle
Kettering, OH 45440
Tel: (513) 439-4711
Hamilton/Avnet Electronics 4588 Emery Industrial Parkway Cleveland OH 44128
Tel: (216) 831-3500
Hamilton/Avnet Electronics
954 Senate Drive
Dayton, OH 45459
Tel: (513) 433-0610
Hamilton/Avnet Electronics 777 Brooksedges Boulevard Westerville, OH 43081
Tel: (614) 882-7004
Kierulff Electronics
23060 Miles Rd.
Bedford Heights, OH 44128
Tel: (216) 587-6558
TWX: 810-427-2282
Kierufff Electronics
476 Windsor Park Drive
Dayton, OH 45459
Tel: (513) 439-0045
Schweber Electronics
23880 Commerce Park Rd
Beachwood, OH 44122
Tel: (216) 464-2970

OHIO (cont.)
Schweber Electronics
7865 Paragon Road
Suite 210
Dayton, OH 45459
Tel: (513) 439-1800
OKLAHOMA
Arrow Electronics 4719 S. Memorial
Tulsa, OK 74145
Tel: (918) 665-7700
Kierulff Electronics
12318 E. 60th St
Tulsa, OK 74145
Tel: (918) 252 -7537
TWX: 910-845-2150
Norvell Electronics
12210 E. 52nd St.
Suite 105L/B5
Tulsa. OK 74146
Tel: (918) 254-8606
Schweber Electronics
4815 S. Sheridan Road
Suite \#109
Tulsa, OK 74145
Tel: (918) 622-8000

OREGON

Arrow Electronics
10260 S.W. Nimbus Avenue
Suite M3
Tigard, OR 97223
Tel: (503) 684-1690
Hamilton/Avnet Electronics
6024 S.W. Jean Rd.
Bldg. C, Suite 10
Lake Oswego, OR 97034
Tel: (503) 635-8157
Kierulff Electronics
14273 N.W. Science Park Dr.
Portland, OR 97229
Tel: (503) 641-9150
TWX: 910-467-8753
Wyle Distribution
5289 N.E. Elam Young Pkwy.
Bldg. E100
Hillsboro, OR 97123
Tel: (503) 640-6000
TWX: 910-460-2203

PENNSYLVANIA

Arrow Electronics
650 Seco Rd.
Monroeville, PA 15146
Tel: (412) 856.7000
TWX: 710-797-3894
Hamilton/Avnet Electronics
2800 Liberty Avenue Building E
Pittsburgh, PA 15222
Tel: (412) 281-4150
TWX: 710-670-1127
Lionex Corp.
101 Rock Road
Horsham, PA 19044
Tel: (215) 443-5150

PENNSYLVANIA (cont.)
Schweber Electronics
Prudential Business Campus 231 Gibraltar Road
Horsham, PA 19044
Tel: (215) 441-0600
TWX: 510-665-6540
Schweber Electronics
1000 RIDC Plaza Suite \#203
Pittsburg. PA 15238
Tel: (412) 782-1600

TEXAS

Arrow Electronics 2227 West Braker Lane Austin, TX 78758
Tel: (512) 835-4180
TWX: 910-874-1348
Arrow Electronics 3220 Commander Drive
Carroliton, TX 75006
Tel: (214) 380-6464
TWX: 910-860-5377
Arrow Electronics 10899 Kinghurst Dr. Suite 100
Houston, TX 77099
Tel: (713) 530-4700
Hamilton/Avnet Electronics
2401 Rutland Dr
Austin, TX 78758
Tel: (512) 837-8911
Hamilton/Avnet Electronics 8750 Westpark Dr
Houston, TX 77063
Tel: (713) 780-1771
Hamilton/Avnet Electronics 2111 West Walnut Hill Lane Irving, TX 75062
Tel: (214) 659-4100
Kierulff Electronics 3007 Longhorn Blvd Suite 105
Austin, TX 78758
Tel: (512) 835-2090
TWX: 910-873-1359
Kierulff Electronics 9610 Skillman Ave. Dallas, TX 75243 Tel: (214) 343-2400 TWX: 910-861-2150

Kierulff Electronics 10415 Landsbury Dr Suite 210
Houston, TX 77099
Tel: (713) 530-7030
TWX: 910-880-4057
Norvell Electronics 8705 Shoal Creek Blvd
Suite 105
Austin, TX 78758
Tel: (512) 458-8106
Norvell Electronics
14410 Midway Rd.
P.O. Box 801207

Dallas, TX 75380
Tel: (214) 233.0020

TEXAS (cont.)
Norvell Electronics 5800 Corporate Dr. Suite C5
Houston, TX 77036
Tel: (713) 777-1666
Schweber Electronics
6300 La Calma Dr
Suite 240
Austin, TX 78752
Tel: (512) 458-8253
Schweber Electronics
4202 Beltway
Dallas, TX 75234
Tel: (214) $661-5010$
TWX: 910-860-5493
Schweber Electronics 10625 Richmond Ave.
Suite \#100
Houston, IX 77042
Tel: (713) 784-3600
TWX: 910-881-4036
Wyle Distribution Group 2120 W. Breaker Lane Suite F
Austin, TX 78758
Tel: (512) 834.9957
TWX: 710-378-7282
Wyle Distribution Group 11001 S. Wilcrest Suite 100
Houston, TX 77099
Tel: (713) 879-9953
Wyle Distribution Group 1810 N. Greenville Avenue Building A
Richardson, TX 75081
Tel: (214) 235-9953
TWX: 310-378-7663

UTAH

Arrow Electronics
1515 W. 2200 South Salt Lake City, UT 84116 Tel: (801) 972-0404

Hamilton/Avnet Electronics 1585 West 2100 South Salt Lake City, UT 84119 Tel: (801) 972-2800

Kierulff Electronics
2121 South 3600 West Salt Lake City, Utah 841.19 Tel: (801) 973-6913 TWX: 910-925-407.2
Wyle Distribution Group 1959 S. 4130 West, Unit B Salt Lake City, UT 84104 Tel: (801) 974-9953

VIRGINIA

Arrow Electronics
Kroger Executive Park 8002 Discovery Drive Campbell Bldg., Suite 214 Richmond, Virginia Tel: (804) 282-0413 TWX: 710-956-0169

WASHINGTON

Arrow Electronics
14320 Northeast 21st Street Bellevue, WA 98007
Tel: (206) 643-4800
Hamilton/Avnet Electronics 14212 N.E. 21st St. Belivue, WA 98007 Tel: (206) 643-3950

Kierulff Electronics
19450 68th Ave. S
Kent, WA 98032
Tel: (206) 575-4420
Wyle Distribution Group 1750 132nd Ave. NE Bellevue, WA 98005 Tel: (206) 453-8300
TWX: 910-443-2526

WISCONSIN

Arrow Electronics 200 North Patrick Blvd. Brookfield, WI 53005 Tel: (414) 792-0150

Hamilton/Avnet Electronics 2975 S. Moorland Rd New Berlin, WI 5315 Tel: (414) 784-4518

Kierulff Electronics 2236 W. Bluemound Rd. Waukesha, WI 53186 Tel: (414) 784-8160 TWX: 910-265-3653
Marsh Electronics 1563 S. 101 St. Milwaukee, WI 53214 Tel: (414) 475-6000

Schweber Electronics 150 Sunnyslope Road Suite 120
Brookfield, WI 53005
Tel: (414) 784-9020

CANADA

Canadian GE-ECO
189 Dufferin St Toronto, Ontario Canada M6K 1 Y9 Tel: (416) 530-2895 TLX: 06-23238
Canadian GE-ECO 203 Colonnade Rd. Nepean, Ontario Canada K2E 7K3 Tel: (613) 723-0336
Electro Sonic
1100 Gordon Baker Rd Willowdale, Ontario Canada M2H SB2 Tel: (416) 494-1555 TLX: 065-25295
Hamilton Avnet Electronics 2816 21st Street N.E.
Calgary, Alberta
Canada T2E 6Z2
Tel: (403) $230-3586$
TWX: 038-27642

CANADA (cont.)
Hamilton Avnet Electronics
6845 Redwood Road, Unit 3, 4, 5
Mississauga, Ontario
Canada L4V 1 R2
Tel: (416) 677-7432
TWX: 610-492-8867
Hamilton Avnet Electronics
190 Colonnade Road
Nepean, Ontario
Canada K2E 7L5
Tel: (613) 226-1700
TLX: 053-4971
Hamilton Avnet International
2795 Rue Halpern
Ville St. Laurent, Montrea
Canada H45 1P8
Tel: (514) 335-1000
Hamilton Avnet Electronics
2550 Boundary Rd
Suite 115
Burnaby, B.C
Canada V5M 3 Z3
Tel: (604) 437-6667
Zentronics
8 Tilbury Court
Brampton, Ontario
Canada L6T 3T4
el: (416) 451-9600
TLX: 06-97678
Zentronics
3300-14 Ave N.E
Calgary. Alberta
Canada T2A 6J4
Tel: (403) 272-1021

Zentronics

155 Colonnade Rd
Unit 17 \& 18
Nepean, Ontario
Canada K2E 7K1
Tel: (613) 226-8840
Zentronics
108-11400 Bridgeport Road
Richmond, BC
Canada V6X 1 T2
Tel: (604) 273-5575

Zentronics

505 Locke Street
St. Laurent, Quebec
Canada. H4T 1X7
Tel: (514) 735-5361
TLX: 05-827535
Zentronics
564 Weber St. N
Unit 10
Waterloo, Ontario
Canada N2L 5C6
Tel: (519) $884-5700$
Zentronics
590 Berry Street
Winnipeg. Manitoba
Canada R3H OS 1
Tel: (204) 775-8661

Zentronics

\#210-3501 8th St. East
Saskatoon, Saskatchewan
Canada, S7H OW5
Tel: (306) 955-2202

KiNIERESIL INTERNATIONAL SALES OFFICES

NTERNATIONAL

MARKETING
HEADQUARTERS
ntersil Inc
10600 Ridgeview Cour
Cupertino. CA 95014
U.SA

Tel (408) 996-5000
TWX: 910-338-0533
(INTRSLINT CPTO)

EUROPEAN

HEADQUARTERS

General Electric Internatronal

Operations

Semiconductor Business Division
Chaussee de la Hulpe. 150--Bte 5
1170 Brussels
Belgium
Tel (2) 67381 59/660 2016
T1 22004 GEIO B
Rapifax 660.10.55

BENELUX

General Electric International

Operations Co Inc

Semiconductor Division-Benelux
Chaussee de la Hulpe. 150 -Bte. 5
1170 Brussels
Belgium
Tel' (2) 67381 59/660 2016 TLX 22004 GEIO B
Rapifax: 66010.55

fRANCE

General Electric SemiconductorFrance
337 Bureaux de la Colline --D8
8 Etage
92213 Saint-Cloud Cedex
France
Tel' (1) 6025898
TLX INTEDAT 270039 A

ITALY

General Electric Semiconductor
Via Deı Missaglia. 113/A
20142 Milano
Ilaly
Tel: $8229709 / 10 / 11$ or 8264364 TLX: 331438 CGEHQ1

SPAIN

General Electric Technical Services Co. Inc.
Apartado 700
Juan Bravo 3C. 4th Floor
Madrid 6
Spain
Tel 276-7062
TLX 27650

SWEDEN

International GE AB
Semiconductoi Business Division
Kistagangen 19
Box 1203
S-163 13 Spanga
Sweden
Tel 8-7939500
TLX 10439 INGECO S

UNITED KINGDOM

Intersil Datel (UK) Ltd
Belgrave House
Basing View
Basingstoke. Hants RG21 2 YS
England 0256.57361
TLX: 858057 INTRSL G

WEST GERMANY

G.E. Semiconductor GmbH Bavariaring 8. Concordiahaus D. 8000 Muenchen 2

Vest Germany
Tel: 089.514900
TLX 5218295 GES M
FAX 0895149040
General Electric Technical Services
Co. Inc.
Praunheimer Landsirasse 50
6000 Frankfurt/Main 90
Nest Germany
LX: 411443

ASIA AND PACIFIC HEADQUARTERS

FAR EAST SEMICONDUCTOR MARKETING OPERATION GENERAL EL.ECTRIC (USA) SEMICONDUCTOR K.K
Mejı Sermeı Gotanda Bldg.. 3rd FI 2-27-4 Nishi Gotanda
Shinagawa-Ku. Tokyo 141
Japan
Tel' (03) 779.0401
FAX 03.779-1658
TLX 2468205 DACADC J

HONG KONG

ntersil Datel (Hong Kong) L_td Rm. 1603
Perfect Commercial BIdg
20 Austın Avenue. Tsımshatsu
Kowloon
Tel. 3-7214286.7
TLX 39979 INTDL HX

JAPAN
GENEFAL ELECTRIC (USA)
SEMICONDUCTOR KK
Mej! Sermel Gotanda Bidg.. 3rd FI
2-27-4 Nishi Gotanda
Shinagawa-Ku. Tokyo 141 Japan
Tel: (03) 779-0401
FAX 03-779-1658
TLX 2468205 DACADC J

KOREA

G.E (U S.A.) Korea Company

10th Floor Hanmi Bidg.
No. 1. Kongpyong-Dong. Chongro-Gu
Seoul 110
Korea
Tel. 744-7215 or 7252
TLX: K26381 GETSCO SEOUL

SINGAPORE

Electronic Components of $G E$
(US A.) Ple Lid
105 Boon Keng Road
No. 03-01
Singapore 1233
Tel 2983522
TLX, ECOGE RS35582

線 DISTRIBUTOR OFFICES

AUSTRALIA

R\&D Electronics Pty., Ltd
4 Florence Street P.O. Box 206 Burwood, Victoria 3125
Australia
Tel: 288-8911/8232/8262
TLX: RADET AA 33288
R\&D Electronics Pty., Ltd
133 Alexander St.
P.O. Box 57

Crows Nest NSW 2065
Sydney
Australia
Tel: 439-5488
TLX: SECCO AA25468

AUSTRIA

Transistor Vertriebsges m.b.H. \& Co. KG.
Auhofstrasse 41 A
A-1130 Vienna
Austria
Tel: (0222) 829401-0
TLX: 133738 TVGWN A

BELGIUM

Master Chips SPRL
Blvd. St. Lazare 4
1210 Brussels
Belgium
Tel: (02) 219.58 .62
(02) 219.14 .84

TLX: 62500 MASTER B

DENMARK

E.V. Johanssen Electronik A-S 15. Titangade

DK-2200 Copenhagen N Denmark
Tel: 45-1-839022
TLX: 16522 EVICAS DK

FINLAND

Nabla Elektroniikka Oy
P.O. Box 3

SF-02101 Espoo 10
Finland
Tel: 90462829 or 4552955
TLX: 124270 NABLA SF

FRANCE

C.C.I.

Zone Industrielle
5, Rue Marcelin Berthelot
92160 Antony
France
Tel: (1) 666.21 .82
TLX: 203881 F
C.C.I.
67. Rue Bataille

69008 Lyon
France
Tel: (78) 742375
TLX: 375456
Tekelec-Airtronic
B.P. No. 2

Cite des Bruyeres
Rue Carle-Vernet
92310 Sevres
France
Tel: (1) 534:75.35
TLX: TKLEC A 204552 F

HONG KONG

Conmos Products, Ltd 11th Fir. Hay-Nien Building

\#1 Tai Yip St.

Kwun Tong, Kowloon
Hong Kong
Tel: 3.7560103-8
TLX: 85448 CMOS HX
Electrocon Products, Ltd.
Rm 603, 6th Floor
Perfect Commercial Bidg
20 Austin Avenue, Tsimshatsui Kowloon
Hong Kong
Tel: 3-687214-6
TLX: 39916 EPLET HX

INDIA

Kaytronics Electronics Engineer
204, 2nd FI., Karan Centre
P.B. No. 45, Sarojini Revi Rd.

Seconuderabad 500003
India
Tel: 77924
TLX: 1556707
INDIA-U.S. OFFICE
Fegu Electronics
2584 Wyandotte St
Mountain View, California 94043 U.S.A

Tel: (415) 961-2380
TLX: 176572 FEGU ELEC MNTV

ISRAEL

Vectronics, Ltd.
60 Medinat Hayehudim St.
P.O. Box 2024

Herzlia B 46120
Israel
Tel: (052) 556070
TLX: 342579 VECO IL

ITALY

Eledra 3S S.P.A
Viale Elvezia, 18
20154 Miláno
Italy
Tel: (2) 349751
TLX: 332332
Eledra 3S S.P.A
Via Paolo Gaidano, 141/D
10137 Torino
Italy
Tel: (11) 3099111-2-3
TLX: 210632
Eledra 3S S.P.A
Via G. Valmarana, 63
00139 Roma
Italy
Tel: (6) 8110151
TLX: 612051
Eledra 3S S.P.A
Via Zaccherini Alvisi, 6
40138 Bologna
Italy
Tei: (51) 307781-340999
TLX: 213406

ITALY (cont.)
Eledra 3S S.P.A.
Via Turazza, 32/41
35100 Padova
Italy
Tel: (49) 655488-655749
TLX: 430444
Eurelletronica
Via Mascheroui, 19
20125 Milano
Italy
Tel: 4981851
TLX: 332102
Pantronic
Via Mattia Battistini, 212A
00167 Roma
Italy
Tel: 6273909
TLX: 612405

JAPAN

Internix, Inc.
Shinjuku Hamada Bldg
(7th Floor)
7.4-7 Nishi Shinjuku

Shinjuku-Ku
Tokyo 160.
Japan
Tel: (03) 369-1101
TLX: INTERNIX J26733
Internix, inc.
Arai Bldg
5-3-36 Tokiwag
Uedashi, Nagano 386
Japan
Tel: (0268) 25-1610
Internix, Inc.
Sobajima Daini Noritake Bldg. 1-9.9 Noritake
Nakamura-Ku, Nagoya 453
Japan
Tel: (052) 452-8841
Internix, Inc.
Takahashi Bidg. (Nishikan) 4-4-13 Nishi-Tenma, Kita-Ku
Osaka 530
Japan
Tel: (06) 364-5971
Internix, Inc.
Hachioji Technical Center
2.5.1 Ouwada-cho Hachioji 192

Japan

Tel: (0426) 44-8671
Internix, Inc
Sunlife Dai-san Bidg
2-5-19 Hakataeki-Higashi
Hakata-Ku, Fukuoka 812
Japan
Tel: (092) 472-7716

KOREA

Duksung Trading Co Room 301 Jinwon Bidg 507-30 Sinrim 4-Dong
Gwanak-Ku, Seoul
Republic of Korea
Tel: 856-9764
TLX: DUKSUNG K23459

MALAYSIA

NIE Electronics (M) SDB BHD
P.O.Box 12167 Lot 2.22 2nd Floor

Komplex Selangor Jalan Sultoan
Kuala Lumpur
Malaysia
Tel: 03-224344
TLX: NIE MA 31231
NIE Comptronics SDN BHD
14 Jalan Pahang. Penang
Malaysia
Tel: 362118362200362194
TLX: NIECOM MA 40608

NETHERLANDS

Auriema Nederland B.V.
Doornakkersweg 26
5642 MP Eindhoven
Netherlands
Tel: 040-816565
TLX: 51992 AURI NL

NEW ZEALAND

Delphi Industries, Ltd
27 Ben Lomond Crescent
Pakuranga, Auckland
New Zealand
Tel: 563-259
TLX: DELPHIC NZ21992

NORWAY

Hans H. Schive A/S
P.O. Box 15

Holmengt, 28
N - 1360 Nesbru
Norway
Tel: (02) 84-51-60
TLX: 19124 SKIVE N

PORTUGAL

Decada Espectral
Equipamentos de Electronica e
Cientificos, SARL
Av. Bombeiros Voluntarios, Lote 102B
Miraflores/Alges
1495 Lisboa
Portugal
Tel: 2-103420
TLX: 15515 ESPEC P
SOUTH AFRICA
Electronic Bldg. Elements Pty., Ltd
P.O. Box 4609

Pretoria 0001
Republic of South Africa
Tel: 46-9221/7
TLX: 20723 SA
22786 SA

SOUTH AMERICA -

U.S. OFFICE

Intectra
2629 Terminal Blvd
Mountain View, California 94043
U.S.A.

Tel: (415) 967-8818

TLX: 345-545 INTECTRA MNTV

TiNIERTELL INTERNATIONAL DISTRIBUTOR OFFICES

SPAIN

Amitron S.A.
Avenida Valladolid, 47-A
28008 Madrid
Spain
Tel: (01) 2479313/2479332
TLX: 45550 AMIT E

SWEDEN

Svensk Teleimport AB
Box 5071
S162. 05 Vallingby
Sweden
Tel: 08-890265
TLX: 15372 TIMP S

SWITZERLAND

Laser \& Electronic Equipment
Eierbrechtstrasse 47.
8053 Zurich
Switzerland
Tel: 01553330
TLX: 52124 LASEQ CH
Laser \& Electronic Equipment
Bureau Suisse Romande
1 Avenue Industrielle
1227 Carouge - Geneve
Switzerland
Tel: 022425677
TLX: 421343

TAIWAN

Galaxy Far East Corp. Room 4, 2nd FI., No. 312 Sec. 4 Chung Hsaio East Rd.
P.O. Box 36-12 Taipei

Taiwan, R.O.C.
Tel: (02) 7811895.7
Cable: GALAXYER
TLX: 26110 GALAXYER

THAILAND

Grawinner Company Limited 226/27 Phahonyothin Rd. Phyathai Bangkok 10400
Thailand
Tel: 278-3411
TLX: 87155 GWN TH

TURKEY

Turkelek Elektronik, Ltd.
Hatay Sokak \#8
Ankara
Turkey
TLX: 42120 TRKL TR
Turkelek Elektronik, Ltd.
Kemeralti Cad. Tophane Ishani 406
Istanbul
Turkey
Tel: 1-1431268/1434046
TLX: 22036

UNITED KINGDOM
Farnell Electronic Components, Ltd.
Canal Road
Leeds, LS12 2NE
England
Tel: (0532) 636311
TLX: 55147 FEC G
Hawke Elect., Ltd
Amotex House
45, Hanworth Rd.
Sunbury on Thames
Middx.
England
Tel: (01979) 7799
TLX: 923592
Jermyn Distribution, Ltd.
Vestry Estate
Seven Oaks
Kent
England
Tel: (0732) 450144
TLX: 95142
Macro-Marketing, Ltd.
Burnham Lane
Slough, Berks SL1 6LN
England
Tel: (06286) 4422.
TLX: 847945 MACRO G
The Radio Resistor Co.
Cambridge Road, St. Martin's Way
Bedford
England
Tel: (0234) 47211
TLX: 82651
Trident Microsystems, Ltd.
Trident House
53 Ormside Way
Redhill, Surrey RH1 2LS
England
Tel: (0737) 69217
TLX: 8953230 TRELEC G

WEST GERMANY

Bitronic GmbH
Dingolfinger Strasse 6
8000 Muenchen 80
West Germany
Tel: 0 89/49/60/01
TLX: 5212931 BIT D
Bitronic GmbH
Dieselstrasse 30
7016 Gerlingen
West Germany
Tel: $07156 / 24051$
TLX: 7266743 BIT D
Bitronic GmbH
Karl-Marx-Strasse 59
4600 Dortmund 1
West Germany
Tel: 02 31/52 8293
TLX: 822664 BIT D

WEST GERMANY (cont.)
Bitronic GribH
Sommerfieldring 35
1000 Berlin 39
West Germany
Tel: $030 / 8052526$
Bitronic GmbH
Hanauer Str. 39
6360 Friedberg
Frankfurt
West Germany
Tel: 06031/9047
TLX: 4184050 BIT D
Spezial-Electronic KG
Hermann-Linggstr. 16
8000 Muenchen 2
West Germany
Tel: 89/530387
TLX: 5212176 SPEZ D
Spezial-Electronic KG
Kreuzbreite 14
3062 Bueckeburg
West Germany
Tel: (05) 7222030
TLX: 971624 SPEZ D
Spezial-Electronic KG
Magdeburgerstrasse 15
7090 Ellwangen
West Germany
Tel: (07) 9614047
TLX: 74712 SPEZ D
Spezial-Electronic KG
Hanauer Str. 4
6360 Friedberg
West Germany
Tel: (06) 0314634
TLX: 4184025 SPEZ D

GE stands for Great Engineering

Intersil, Inc. 10600 Ridgeview Court Cupertino, CA 95014

[^0]: *Also available as JAN/JANTX \& JANTXV
 **Most TO-92's are available lead formed to a TO-18 or TO-5 configuration

[^1]: *Also available as JAN/JANTX \& JANTXV
 **Most TO-92's are available lead formed to a TO-18 or TO-5 configuration

[^2]: *Available as JAN/TX/TXV.
 **Most TO-92's are available lead formed to a TO-18 or TO-5 configuration.

[^3]: *Available as JAN/TXITXV.
 **Most TO-92's are available lead formed to a TO-18 or TO-5 configuration.

[^4]: *(@IDSS

[^5]: *@lDSS

[^6]: *New Product

[^7]: *New Product

[^8]: Notes:

 1. Oscillator/controller for frequency counter.
 2. Two buffered outputs-Crystal Frequency and -8 output. Drives up to 5 TL loads.
[^9]: *New Product

[^10]: *New Product

[^11]: NOTES: 1. These parameters are measured during a 2 ms interval 100 ms after DC power is applied. 2. For design reference only, not 100% tested.

[^12]: NOTES: 1. Pulse test; PW $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 3.0 \%$.
 2. For design reference only, not 100% tested.

[^13]: NOTE 1: For design reference only, not 100% tested.

[^14]:[^15]: NOTE: G115 Built-in 16-Pin DiP Only

[^16]: Note 1. Readings taken 400 ms after the overvoltage occurs.

[^17]: When the EN input is driven from CMOS logic, no pullup is necessary, see Fig. 7.

[^18]: **Parameter Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

[^19]: $\mathrm{C}=$ INTERNALLY COMPENSATED
 $\mathrm{E}=$ EXTERNALLY COMPENSATED
 $\mathrm{H}=$ HIGH QUIESCENT CURRENT (1mA)
 $1=$ INPUT PROTECTED TO $\pm 200 \mathrm{~V}$
 $\mathrm{L}=$ LOW QUIESCENT CURRENT $(10 \mu \mathrm{~A})$
 $\mathrm{M}=$ MEDIUM QUIESCENT CURRENT $(100 \mu \mathrm{~A})$
 $O=$ OFFSET NULL CAPABILITY
 $P=$ PROGRAMMABLE QUIESCENT CURRENT
 $V=$ EXTENDED CMVR

[^20]: **Parameter Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

[^21]: *After an overranged conversion of more than 2060 counts, the zero integrator phase will last 740 counts, and auto-zero will last 260 counts.

[^22]: *Values depend on clock frequency. See Figures 11, 12, 13.

[^23]: Note: The amplitude of the input should not exceed the supply by more than 0.3 V otherwise, the circuit may be damaged.

[^24]: NOTES: 1. Due to the SCR structure inherent in junction-isolated CMOS devices, the circuit can be put in a latchup mode if large currents are injected into device inputs or outputs. For this reason special care should be taken in a system with multiple power supplies to prevent voltages being applied to inputs or outputs before power is applied. If only inputs are affected, latchup also can be prevented by limiting the current into the input terminal to less than 1 mA .
 2. This limit refers to that of the package and will not occur during normal operation.
 3. Internal reset to 00000 requires a maximum $V_{D D}$ rise time of $1 \mu \mathrm{~s}$. Longer rise times at power-up may cause improper reset.
 4. Operating current is measured with the LCD disconnected and input current ISS supplied externally.
 5. Inputs $\mathrm{C}_{0}-\mathrm{C}_{3}$ are latched internally and draw no DC current after switching. During switching, a $90 \mu \mathrm{~A}$ peak current may be drawn for 10 nanoseconds.

[^25]: * The 4712 may replace the 4702 in the above applications with the standard 2.4576 MHz crystal. The two external capacitors and one resistor are not required when using the 4712 .

[^26]: *Capacitance values dependent on package type

[^27]: NOTE 1. This parameter is very dependent upon quality of metalization to which chip is attached.

[^28]: Notes:
 Notes:

 1. The specific parameters to be included for tests in each subgroup shall be specified in the applicable proThe specific parameters to be included for tests in each subgroup shall be specified in the applicabie pro-
 curement document. Where no parameters have been identified in a particular subgroup or test within a subgroup, no Group A testing is required for that subgroup or test
 A single sample may be used for all subgroup testing. Where required size exceeds the lot size, 100% inspec
 tion shall be allowed.
 2. Maximum accept number is 2 .
