
DSPS56SIMUM/D
Document Rev. 3.0, 07/1999

Suite56™ DSP Simulator
User’s Manual, Release 6.3

Suite56, OnCe, and MFAX are trademarks of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may
be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the
rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support life, or for any other application in
which the failure of the Motorola product could create a situation where personal injury or death may occur. Should
Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify
and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part.

Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative
Action Employer.

All other tradenames, trademarks, and registered trademarks are the property of their respective owners.

© Copyright Motorola, Inc., 1999. All rights reserved.

Motorola iii

Chapter 1
Introduction & Getting Started

1.1 Introduction to Motorola’s Suite56™ DSP Simulator. 1-1
1.2 DSP Simulator Features. 1-2
1.3 Entering Commands. 1-2
1.4 Getting Started with the DSP Simulator 1-3
1.5 Setting and Clearing the Path. 1-4
1.6 Loading Object Files. 1-6
1.7 Setting Up the Display Environment. 1-7
1.8 Using a Watch List.. 1-9
1.9 Setting and Modifying Breakpoints. 1-10
1.10 Starting the Execution of Instructions with GO. 1-13

Chapter 2
Controlling Execution

2.1 Starting the Execution of Instructions with GO. 2-1
2.2 STEP Through Instructions. 2-1
2.3 TRACE the Execution of Instructions. 2-2
2.4 Executing the NEXT Instruction. 2-3
2.5 Providing an UNTIL Condition. 2-4
2.6 Pausing Execution with WAIT. 2-5
2.7 Allowing the Current Function to FINISH

after an UNTIL Condition or a Breakpoint. 2-6
2.8 Stopping Program Execution. 2-7
2.9 Resetting the Device. 2-7

Chapter 3
Object Files and Data Files

3.1 Displaying the Current PATH. 3-1
3.2 Saving Object Files. 3-3

Table of Contents

iv Suite56 DSP Simulator User’s Manual Motorola

Chapter 4
Managing Memory and Registers

4.1 Displaying Register Values. 4-1
4.2 Changing Register Values. 4-3
4.3 Displaying Memory Values. 4-3
4.4 Changing Memory Values. 4-5
4.5 Copying Memory from One Block to Another. 4-6
4.6 Disassembling Code Stored in Memory 4-7
4.7 Displaying a History of Recent Instructions. 4-8

Chapter 5
Device I/O and Peripheral Simulation

5.1 Introduction to Device I/O (Input/Output) .. 5-1
5.2 How Are I/O Files Formatted?. 5-1
5.3 Repeat Punctuation. 5-2
5.4 Comments. 5-2
5.5 Timing Information. 5-3
5.6 Peripheral Data 5-3
5.7 Port Data. 5-4
5.8 Memory Data. 5-5
5.9 Pin or Pin Group Data. 5-6
5.10 Terminal Input of Data Values. 5-7
5.11 Assigning an Input File. 5-8
5.12 Assigning an Output File. .5-11

Chapter 6
Simulator and Device Configurations

6.1 Introduction to Simulator Configuration 6-1
6.2 Setting the Default DEVICE. 6-2
6.3 Changing the Radix. 6-2
6.4 Loading Simulator State Files. 6-4
6.5 Changing and Saving Window Preferences. 6-6

Motorola v

Chapter 7
Debugging C Source Code

7.1 Introduction to Debugging C Source Code .. 7-1
7.2 Displaying the Call Stack. 7-1
7.3 Moving Up and Down the Call Stack. 7-2
7.4 Dynamically Displaying C Function Calls .. 7-4
7.5 Enabling/Disabling I/O Streams. 7-5
7.6 Redirecting an I/O Stream. 7-5
7.7 Display the Type of a C Variable or Expression. 7-6

Chapter 8
Macros, Scripts and Log Files

8.1 Creating and Running a Command Macro .. 8-1
8.2 Logging Output from the Session Window .. 8-2

Chapter 9
Expressions

9.1 Introduction to Expressions. 9-1
9.2 Evaluate Expressions. 9-1
9.3 Using Memory Space Symbols. 9-2
9.4 Using Register Name Symbols. 9-2
9.5 Using Assembler Debug Symbols. 9-3
9.6 Using Constants 9-4
9.7 Numeric Constants.. 9-4
9.8 Operators in Expressions. 9-5
9.9 Operator Precedence. 9-7
9.10 Setting Up and Modifying a Watch List 9-8

Chapter 10
Simulator Tool Bar

10.1 Using the Tool Bar.. .10-1
10.2 Go Button. .10-2
10.3 Stop Button. .10-2
10.4 Step Button. .10-3
10.5 Next Button. .10-4
10.6 Finish Button. .10-5
10.7 Device Button. .10-6
10.8 Repeat Button. .10-7
10.9 Reset Button. .10-8

vi Suite56 DSP Simulator User’s Manual Motorola

Chapter 11
Displaying Information

11.1 Display the Current Breakpoints. .11-1
11.2 Displaying the Radix. .11-2
11.3 Command Window. .11-2
11.4 Session Window11-4
11.5 Assembly Window.. .11-5
11.6 Source Window11-6
11.7 Stack Window. .11-7

Chapter 12
Command Reference

12.1 Command Overview. .12-1
12.2 Command Syntax. .. .12-4
12.3 Command Parameters: List of Abbreviations. .12-5
12.4 asm - Single Line Interactive Assembler.12-7
12.5 break - Set, Modify, or Clear Breakpoint12-8
12.6 change - Change Register or Memory Value. .12-13
12.7 copy - Copy a Memory Block. .12-14
12.8 device - Multiple Device Simulation. .12-15
12.9 disassemble - Object Code Disassembler12-16
12.10 display - Display Register or Memory. .12-17
12.11 down - Move Down the C Function Call Stack. .12-19
12.12 evaluate - Evaluate an Expression. .12-20
12.13 finish - Execute Until End of Current Subroutine. .12-21
12.14 frame - Select C Function Call Stack Frame. .12-21
12.15 go - Execute DSP Program. .12-22
12.16 help - Simulator Help Text. .12-23
12.17 history -Disassemble Previously Executed Instruction.12-24
12.18 input - Assign Input File. .12-24
12.19 list - List Source File Lines. .12-27
12.20 load - Load DSP Files or Configuration12-28
12.21 log - Log Commands, Session, Profile. .12-30
12.22 more - Enable/Disable Session Paging Control. .12-31
12.23 next- Step Over Subroutine Calls or Macros. .12-32
12.24 output - Assign Output File. .12-33
12.25 path - Specify Default Pathname. .12-35
12.26 quit - Quit Simulator Session. .12-36
12.27 radix - Change Input or Display Radix. .12-36

Motorola vii

12.28 redirect - Redirect stdin/stdout/stderr for C Programs.12-38
12.29 reset - Reset Device or State. .12-39
12.30 save - Save Simulator File. .12-40
12.31 step - Step Through DSP Program. .12-41
12.32 streams - Enable/Disable Handling of I/O for C Programs.12-42
12.33 system - Execute System Command. .12-43
12.34 trace - Trace Through DSP Program. .12-44
12.35 type - Display the Result Type of C Expression. .12-45
12.36 unlock - Unlock Password Protected Device Type. .12-46
12.37 until - Execute Until Address. .12-46
12.38 up - Move Up the C Function Call Stack12-47
12.39 view - Select Display Mode. .12-47
12.40 wait - Wait Specified Time. .12-48
12.41 wasm - GUI Assembly window. .12-48
12.42 watch - Set, Modify, View, or Clear Watch item. .12-49
12.43 wbreakpoint - GUI Breakpoint Window12-50
12.44 wcalls - GUI C Calls Stack window. .12-50
12.45 wcommand - GUI Command window. .12-51
12.46 where - GUI C Calls Stack window. .12-51
12.47 winput - GUI File Input window. .12-52
12.48 wlist - GUI list window. .12-52
12.49 wmemory - GUI Memory window. .12-53
12.50 woutput - GUI File Output window. .12-54
12.51 wregister - GUI Register window. .12-54
12.52 wsession - GUI Session window. .12-55
12.53 wsource - GUI Source window. .12-55
12.54 wstack - GUI Stack window. .12-56
12.55 wwatch - GUI Watch window. .12-56

viii Suite56 DSP Simulator User’s Manual Motorola

Chapter 13
C Library Functions

13.1 C Object Libraries .. .13-2
13.2 Simulator Object Library Entry Points. .13-2
13.3 Simulator External Memory Functions. .13-21
13.4 Simulator Screen Management Functions13-26
13.5 Non-Display Simulator. .13-31
13.6 Multiple Device Simulation. .13-33
13.7 Reserved Function Names. .13-36
13.8 Simulator Global Variables. .13-36
13.9 Modification of Simulator Global Structures. .13-36
13.10 Modification of Device Global Structures. .. .13-37

Motorola ix

1-1 List of Operators. 1-11

1-2 Breakpoint Actions. 1-12

5-1 Repeat Punctuation Input Data. 5-2

5-2 Input Memory Data. 5-6

5-3 Pin or Pin Group Input Data. 5-7

5-4 Terminal Input Data. 5-8

9-1 Valid Forms of Symbol Names and Line Numbers. 9-3

12-1 Command Syntax Elements in Motorola DSP Documentation. 12-4

12-2 Command Parameter Abbreviations .. 12-5

12-3 asm Commands. 12-7

12-4 Breakpoint Operators. 12-9

12-6 Break_Action Parameters. .12-10

12-5 Flag Variables in a Breakpoint Expression. .12-10

12-7 BREAK Commands. .12-12

12-8 CHANGE Commands. .12-13

12-9 COPY Commands. .12-14

12-10 DEVICE Command. .12-15

12-11 DISASSEMBLE Commands. .12-16

12-12 DISPLAY Enable Keywords. .12-17

12-13 DISPLAY Commands. .12-18

12-14 DISPLAY Commands Without Enable Keywords.12-18

12-15 DOWN Commands. .12-19

12-16 EVALUATE Commands. .12-20

12-17 FRAME Commands. .12-21

12-18 GO Commands. .12-22

12-19 HELP Syntax. .12-23

12-20 List of Help Topic Keywords. .12-23

List of Tables

x Suite56 DSP Simulator User’s Manual Motorola

12-21 INPUT Commands. .12-25

12-22 LIST Commands. .12-27

12-23 LOAD Commands. .12-29

12-24 LOG Commands. .12-31

12-25 MORE Commands. .12-31

12-26 NEXT Commands. .12-32

12-27 OUTPUT Commands. .12-34

12-28 PATH Commands. .12-35

12-29 QUIT Commands. .12-36

12-30 RADIX Commands. .12-37

12-31 REDIRECT Commands. .12-38

12-32 RESET Commands. .12-39

12-33 SAVE Commands. .12-40

12-34 STEP Commands. .12-41

12-35 STREAMS Commands. .12-42

12-36 SYSTEM Commands. .12-43

12-37 TRACE Commands. .12-44

12-38 TYPE Commands. .12-45

12-40 UNTIL Commands. .12-46

12-39 UNLOCK Commands. .12-46

12-42 VIEW Commands. .12-47

12-41 UP Commands. .12-47

12-43 WASM Commands. .12-48

12-44 WATCH commands. .12-49

12-45 WBREAKPOINT Commands. .12-50

12-46 WCALLS Commands. .12-50

12-47 WCOMMAND Commands. .12-51

12-48 WHERE Commands. .12-51

12-50 WLIST Commands. .12-52

12-49 WINPUT Commands. .12-52

12-51 WMEMORY Command. .12-53

Motorola xi

12-52 WOUTPUT Commands. .12-54

12-53 WREGISTER Commands. .12-54

12-54 WSESSION Commands. .12-55

12-55 WSOURCE Commands. .12-55

12-56 WSTACK Commands. .12-56

12-57 WWATCH commands. .12-57

13-1 Higher Level Functions. .13-3

13-2 Integer Code. .13-4

13-3 External Memory Functions. .13-21

13-4 Screen Management Functions. .13-27

13-5 Lower Level Structures & Define Constants.13-38

xii Suite56 DSP Simulator User’s Manual Motorola

Motorola xiii

1-1 DSP Simulator Command Window .. 1-2

1-2 Setting the Working Directory Path .. 1-5

1-3 Setting Up the Display Environment. 1-8

1-4 Add Item to a Watch List. 1-9

1-5 Execution Instructions with Go. 1-14

2-1 Step through Program Instructions . .. 2-2

2-2 Trace Program Execution. 2-3

2-3 Providing an Until Condition. 2-5

2-4 Resetting the Device Registers. 2-8

3-1 Displaying Current Paths. 3-2

4-1 DSP Simulator Register Dialog Box.. 4-1

4-2 Displaying the Register Values. 4-2

4-3 Changing the Value of Register. 4-3

4-4 DSP Simulator Memory Dialog Box. 4-4

4-5 Displaying Memory Values. 4-4

4-6 Changing the Value in Memory. 4-5

4-7 Copying Memory from One Block to Another. 4-6

4-8 Disassembling Code Stored in Memory. 4-7

5-1 Providing Input Data. 5-9

5-2 Creating an Output File. 5-11

6-1 Set Default Device Dialog Box. 6-2

6-2 Set Default Radix Dialog Box. 6-3

6-3 Set Register or Memory Radix Dialog Box. 6-4

6-4 Window Preferences Dialog Box 6-6

7-1 Displaying the Call Stack. 7-1

7-2 Moving Up the Call Stack. 7-2

7-3 Moving Down the Call Stack. 7-3

List of Figures

xiv Suite56 DSP Simulator User’s Manual Motorola

7-4 Dynamic Display of C Function Calls. 7-4

7-5 Displaying the Type of a C Variable or Expression. 7-6

9-1 Evaluating an Expression. 9-1

9-2 Displaying a Value in a Watch List .. 9-8

10-1 Go Button10-2

10-2 Stop Button .. .10-2

10-3 Step Button .. .10-3

10-4 Next Button.. .10-4

10-5 Finish Button. .10-5

10-6 Device Button. .10-6

10-7 Repeat Button. .10-7

10-8 Reset Button. .10-8

11-1 Displaying the Current Breakpoints .. .11-1

11-2 Displaying the Command Window .. .11-3

11-3 Pausing Output to the Session Window. .11-5

11-4 Using the Assembly Window. .11-5

11-5 Displaying the Source Window. .11-6

Motorola xv

5-1 Comment Code. 5-2

13-1 dspt_masm_xxxxx. 13-5

13-2 dspt_unasm_xxxxx. 13-5

13-3 dsp_exec 13-6

13-4 dsp_findmem. 13-6

13-5 dsp_findpin .. 13-7

13-6 dsp_findport. 13-7

13-7 dsp_findrg . .. 13-8

13-8 dsp_free. 13-8

13-9 dsp_fmem . .. 13-9

13-10 dsp_init. .13-10

13-11 dsp_Idmem .. .13-10

13-12 dsp_load13-11

13-13 dsp_new13-11

13-14 dsp_path13-11

13-15 dsp_rapin.13-12

13-16 dsp_rmem13-13

13-17 dsp_rpin. .13-13

13-18 dsp_rport13-14

13-19 dsp_rreg. .13-14

13-20 dsp_save13-15

13-21 dsp_startup .. .13-15

13-22 dsp_unlock .. .13-16

13-23 dsp_wapin13-16

13-24 dsp_wmem .. .13-17

13-25 dsp_wpin13-17

13-26 dsp_wport13-18

13-27 dsp_wreg13-19

13-28 sim_docmd .. .13-19

List of Examples

xvi Suite56 DSP Simulator User’s Manual Motorola

13-29 sim_gmcmd. .13-20

13-30 sim_gtcmd .. .13-21

13-31 dsp_alloc13-22

13-32 dspl_xmfree. .13-23

13-33 dspl_xminit .. .13-23

13-34 dspl_xmload. .13-24

13-35 dspl_xmnew. .13-24

13-36 dsp_xmrd13-25

13-37 dspl_xmsave. .13-25

13-38 dspl_xmwr .. .13-26

13-39 Code to Create New Device. .13-32

Motorola Introduction & Getting Started 1-1

Chapter 1
Introduction & Getting Started

1.1 Introduction to Motorola’s Suite56™ DSP Simulator

The DSP Simulator is a software tool for developing programs and algorithms for
Motorola Digital Signal Processors (DSPs). The DSP Simulator duplicates the functions
of supported Motorola DSP chips:

• all on-chip peripheral operations

• all memory and register updates associated with program code execution

• all exception processing activity

The Simulator also simulates the device’s pipelined bus activity, enabling the Simulator to
provide you, the developer, an accurate measurement of code execution time—critical in
DSP applications.

The Simulator executes object code generated by the Suite56 DSP Assembler (see the
Suite56 DSP Assembler Reference Manual) or the Simulator’s internal single-line
assembler. The Simulator also executes object code generated by C compilers, such as
Motorola’s Star*Core 100 Family C/C++ Compiler, or Suite56 compilers for the 56000,
56300, 56600 and 56800 families. The object code is loaded into the simulated device’s
memory map. The entire internal and external memory space of the DSP is simulated.
During program debugging you can display and change any of the device’s registers or
memory locations.

Instruction execution can proceed until the program encounters a user-defined breakpoint,
or, in single-step mode, until it reaches a stopping point by executing a specified number
of instructions or cycles.

1-2 Suite56 DSP Simulator User’s Manual Motorola

DSP Simulator Features

1.2 DSP Simulator Features

Features of the Motorola DSP Simulator include the following:

• Multiple device simulation

• Source level symbolic debug of assembly and C source programs

• Conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Instruction and cycle timing counters

• Session and/or command logging for later reference

• Input/output from/to ASCII files for device peripherals

• Help file and help line display of Simulator commands

• Command macros (editable scripts for executing multiple Simulator commands)

• Display enable/disable of registers and memory

• Fractional/hexadecimal/decimal/binary calculator

1.3 Entering Commands

You will perform most of your work with the Simulator using the menu bar and the
toolbar. But, sometimes it is convenient to perform some commands from a command
line, and Motorola’s DSP Simulator provides you the option of entering commands at a
command line. The command line is a part of the Command window, shown in Figure 1-1.

Figure 1-1. DSP Simulator Command Window

Getting Started with the DSP Simulator

Motorola Introduction & Getting Started 1-3

The Command window displays several common commands on the help line. You can
display the remaining commands by pressing theSPACEbar when the cursor is at the
beginning of the command line.

You do not have to type the complete command. The Simulator recognizes each command
when you type the first one to three characters of the command. The help line highlights
the minimum number of required characters for each command. The help line displays the
syntax for a particular command when you type the required characters and then pressing
theSPACEbar.

The command line considers any text that follows a semicolon a user comment. You
might use comments to log output from the Session window or to create and run a
command macro.

The command line executes the command when you press theENTERkey or theCARRIAGE

RETURN key. If you enter a command that is not a valid Simulator command, the
Simulator interprets the command as the name of a command macro and executes the
macro, if it exists.

For more information about command syntax, see Section 12.1, "Command Overview,"
Section 12.2, "Command Syntax," and Section 12.3, "Command Parameters: List of
Abbreviations."

1.4 Getting Started with the DSP Simulator

The Motorola Suite 56 DSP Simulator gives you flexibility in debugging your object
code. You can take multiple approaches; there is no one “correct” way in which to go
about debugging your code. Whichever approach you choose, you will want to become
familiar with some fairly common windows and commands. Here are a few steps to help
you begin a typical session with the Simulator.

Typically, you will want to:

1. Set the path of the working directory.

2. Load an object file.

3. Set up the display environment: open windows to view the source code, assembler
code, register values, and memory values.

4. Use a watch list.

5. Set and modify break points.

6. Go or step through instructions.

1-4 Suite56 DSP Simulator User’s Manual Motorola

Setting and Clearing the Path

When you become familiar with the Simulator, you will not have to manually perform
each step described above. You can position your windows as you like them by saving the
windows settings usingWindow Preferences. Command macros can set the path, load
the program, and set up watch expressions.

Once you are comfortable with these basics, you can proceed to more complex debugging
using simulated device input and output (I/O). If you are using C code as your source
code, you use specific commands useful in debugging C source code.

Refer to the following sections of this manual to learn about more advanced techniques:

• Section 5.1, "Introduction to Device I/O (Input/Output)," on page 5-1

• Section 6.1, "Introduction to Simulator Configuration," on page 6-1

• Section 7.1, "Introduction to Debugging C Source Code," on page 7-1

• Section 9.1, "Introduction to Expressions," on page 9-1

• Section 10.1, "Using the Tool Bar," on page 10-1

• Section 12.1, "Command Overview," on page 12-1

1.5 Setting and Clearing the Path

The Suite 56 DSP Simulator uses two types of paths to save and access files:

• the working directory path

• alternate directory paths

The working directory is the primary path. The Simulator uses the working directory as
the default when searching for an input file (assuming no path is explicitly specified with
the input filename). The Simulator automatically searches alternate paths if it does not
find the requested input file in the working directory. This allows you to keep object files,
source files, and command macros in separate directories, but still access them without
constantly redefining the path.

To set the path of the working directory:

1. From theFile menu choosePath then selectSet. A dialog box similar to the
following appears:

Setting and Clearing the Path

Motorola Introduction & Getting Started 1-5

Figure 1-2. Setting the Working Directory Path

2. If appropriate, select another drive from theVolumesmenu.

3. Move up or down the directory tree until the directory you want is in the list of
subdirectories. There are a number of ways to do this. You can:

— move up and down the directory tree with the left arrow and right arrow
buttons;

— move down the tree by double clicking in the list of subdirectories;

— move up the tree by selecting a directory from the drop down box that displays
the parent directory;

— select a directory from theHistory menu, which shows recently selected
directories.

4. Click once on the desired directory from the list of subdirectories so that it is
highlighted.Notice that the highlighted directory appears in the area labeled
Directory.

1-6 Suite56 DSP Simulator User’s Manual Motorola

Loading Object Files

5. Click onSelect.The selected directory is now the working directory.Display the
Current PATH to see the absolute path of the working directory

To set an alternate path:

1. From theFile menu choosePath then selectAdd.

2. If appropriate, select another drive from theVolumesmenu.

3. Move up or down the directory tree until the directory you want is in the list of
subdirectories.

4. Highlight the desired directory by single clicking on it in the list of subdirectories.

5. Click onSelect. The selected directory is now added to the end of the list of
alternate paths.Display the Current PATH to see the list of alternate paths.

To clear the alternate paths:

1. From theFile menu, choosePath then selectClear Alternate Path List.The list of
alternate paths is cleared for all devices. The path of the working directory is not
cleared.

The Simulator maintains a separate working directory for each device. However, all
devices share the same alternate directory paths. To be safe, always check the path of the
working directory after adding a device or setting the default device.

Remember that in order to change the path of a device that is not currently the default
device, you must first change the default device, discussed in Section 6.2, "Setting the
Default DEVICE," and Section 12.25, "path - Specify Default Pathname," on page 12-35.
in Chapter 12, "Command Reference."

1.6 Loading Object Files

You can load DSP Object Module Format (OMF) files or DSP Common Object File
Format (COFF) files directly into the Simulator memory. OMF files are identified by the
.lod extension. COFF files are identified by the .cld extension. Motorola’s Suite56 DSP
Assembler generates the OMF file format. To generate COFF files with the Suite56
Assembler, you can use the cldlod utility to generate .lod files; the cldlod utility converts
files from COFF file format (.cld) to OMF file format (.lod). You can also generate both
of the file formats with the DSP Simulator when you save object files.

Setting Up the Display Environment

Motorola Introduction & Getting Started 1-7

To load a COFF (.cld) file:

1. From theFile menu, chooseLoad then selectMemory COFF.

2. UnderLoad selectmemory, debug symbolsor both.The Simulator will process
the symbol and line number information contained in a COFF format object file
(.cld file) only if the file was compiled or assembled with debugging enabled. (In
the Motorola DSP Assembler this is represented by the–g option.) If symbol
information has been loaded, the evaluator will accept symbol names or source file
line numbers and translate them into an associated memory address.

3. UnderFilenamespecify the filename of the object file to load or click on theFile
button to browse for the file.

4. Click OK . If the .cld file is not found in the selected directory, the Simulator will
try to load the file from the working directory. If the file does not exist in the
working directory, the Simulator will try to load the file from the alternate
directories. An error message is displayed if the file is not found in any of these
directories.

To load an OMF (.lod) file:

1. From theFile menu, chooseLoad then selectMemory OMF

2. Specify the filename in the dialog box. It is not necessary to type the extension with
the filename. The Simulator assumes the .lod extension.

3. Click Open.

Keep in mind that the object file is loaded into the memory of the current device. If you
want to load the file into another device, you must first select that device as the default
device.

Chapter 6, "Simulator and Device Configurations" provides more details and
Chapter 12, "Command Reference"provides a full command description.

1.7 Setting Up the Display Environment

The Simulator displays two windows when it first starts: the Session window and the
Command window. You might need to scroll around to get both windows into view at the
same time, but the screen should look something like this:

1-8 Suite56 DSP Simulator User’s Manual Motorola

Setting Up the Display Environment

Figure 1-3. Setting Up the Display Environment

When we talk about the display environment we are simply talking about the way you
arrange the windows of the Simulator on your monitor. There is no right or wrong way to
set up the display environment. However, there are some windows that you will
commonly want to have opened besides the Session and Command windows. These
include:

• the Assembly window

• the Source window (if a COFF file with debugging information is loaded)

• a window displaying register values

• a window displaying memory values, and perhaps

• a WATCH List

If you are debugging a program written in C, keep the Call Stack window open so that you
can see the call stack.

Depending on the size and resolution of your monitor, having all of these windows open at
once will mean that there will be some overlapping. Your own experience with the
Simulator will lead you to the best configuration of these windows

Using a Watch List

Motorola Introduction & Getting Started 1-9

1.8 Using a Watch List

You can watch the contents of a specific memory location, register, or expression by
setting up a Watch list. The Watch list is updated every time program execution is
stopped.

The expression that you watch can be valid even if it is not calculated during program
execution. You can use C expressions, but you must enclose them in curly brackets:
{ c_expression}. You can use symbolic references if you have loaded symbols from the
object module.

To add an item to a Watch list:

1. From theWindows menu chooseWatch. The following dialog box appears:

Figure 1-4. Add Item to a Watch List

2. UnderWindow select the window number that you want to assign to the Watch
window. This is useful when you have more than one Watch window open.

3. UnderExpression, type the expression that you want to appear in the Watch
window. If the expression is a C expression, enclose it in curly brackets:
{ c_expression}.

4. UnderRadix, select the radix format in which you want the variables displayed.

5. Click OK . The expression that you specified now appears in a Watch window: If
the expression you type is not valid, you get an error message explaining why the
expression is not valid.

1-10 Suite56 DSP Simulator User’s Manual Motorola

Setting and Modifying Breakpoints

Keep in mind that a C expression that refers to C variables can only be evaluated in the
context in which the watch is established. That is, the variables in the expression are only
valid while they are in scope. If one of the variables in an expression goes out of scope
(because of either a function call or a return from a function), the value is replaced with
the message Expression out of scope. When all elements of the expression are back in
scope, the Watch window displays the value again.

An expression that has gone out of scope because of a function call can be evaluated and
displayed by selecting the stack frame for the evaluation context. The stack frame
assignment remains in effect only until the next instruction is executed. An expression that
is out of scope because of a function exit cannot be evaluated until the function is again
invoked since the expression’s variables no longer exist.

Refer to the following sections of this manual to learn about more advanced topics:
Section 7.3, "Moving Up and Down the Call Stack," on page 7-2; Section 9.1,
"Introduction to Expressions," on page 9-1; and Section 11.2, "Displaying the Radix."
Section 12.42, "watch - Set, Modify, View, or Clear Watch item," on page 12-49, provides
a complete command description.

1.9 Setting and Modifying Breakpoints

You can use the Assembly window, (which is updated at each break in program
execution), and the Source window, (which displays the source code loaded into the
Simulator’s memory), to set halt breakpoints. To set a halt breakpoint in the Assembly
window, double click on an address or label field. To set or clear a halt breakpoint in the
Source window, double click on any source code line . The Assembly window and the
Source window indicate the breakpoints you have set. Enabled breakpoints appear in blue.
Disabled breakpoints appear in pink. Chapter 11, "Displaying Information" provides a
detailed discussion of the Simulator’s display capabilities, including the Assembly and
Source windows.

To set a breakpoint with conditions, you specify an action to take when the Simulator
encounters each breakpoint. You can set more than one breakpoint on the same location,
so that more than one action can be taken.

To set a breakpoint with conditions:

1. From theExecutemenu, chooseBreakpoints then selectSet.

2. UnderBreakpoint Number select the number you want to assign to this
breakpoint. The default number that is shown is the next available number.
Breakpoint numbers do not have to be consecutive; they can be assigned arbitrarily.

Setting and Modifying Breakpoints

Motorola Introduction & Getting Started 1-11

For example, it may be convenient to allocate breakpoints so that one function is
assigned breakpoints 1 to 10, another uses 11 to 20, and so on.

3. UnderType select whether you are setting a breakpoint at a particular memory
location, register, or expression.

4. If the breakpoint is being set for a memory location or a register, underAccess
specify what kind of access should be detected by the breakpoint. For example, if
you want the breakpoint to detect when a memory location is read but not written
to, selectRead. If you want either a read or a write to be detected, chose
Read/Write.

5. If the breakpoint is being set on a memory location, underMemory select the
memory space.If the memory address you want to break on is a single location (as
opposed to a memory block) type in the address underStart Addressand leave the
End Addressblank.If you want to set the breakpoint on a range of addresses, type
in theStart AddressandEnd Addressof the range. Setting a range means that the
breakpoint will be recognized if any address in the range is accessed.You can also
define a line number in the source program as a breakpoint. (The source program
must contain symbolic debug line number information.) Specify the line number
underStart Address in the form:filename@line_number.For example, to set a
breakpoint on line 22 of the source file named clrmem.cld, under theStart
Addressyou type:clrmem@22

6. If the breakpoint is being set on a register, underRegisterselect the register.

7. If the breakpoint is being set on an expression, underExpressiontype the
expression. Remember, if the expression is a C expression, enclose the expression
in curly bracket: {c_expression}. A breakpoint expression can be any logical
expression that is valid for the Motorola DSP Assembler. Table 1-1 provides a list
of operators that can be used in the breakpoint expression.

Table 1-1. List of Operators

Operator Function

< less than

&& logical “and”

<= less than or equal to

|| logical "or"

== equal to

! logical "negate"

1-12 Suite56 DSP Simulator User’s Manual Motorola

Setting and Modifying Breakpoints

8. The breakpoint expression usually involves comparison of register or memory
values. You can use any register name in the expression. There are also two special
flag variables that you may reference in the breakpoint expression:

eof Is TRUE if an end-of-file condition occurs in an input file assigned to a
peripheral or memory location.

jump Is TRUE if a "jump" change of flow occurs during code execution.

9. UnderAction select what action is taken when the breakpoint is encountered.
Table 1-2 provides a list of breakpoint actions.

>= greater than or equal to

& bitwise "and"

> greater than

| bitwise "or"

!= not equal to

~ bitwise one’s complement

+ addition

^ bitwise "exclusive or"

- subtraction

<< shift left

/ division

>> shift right

Table 1-2. Breakpoint Actions

Action Behavior

Halt Stops program execution when the breakpoint is encountered.

Note Displays the breakpoint expression in the Session window each time it is true.
Program execution continues. The display in the Session window is not updated until
program execution stops.

Show Displays the enabled register/memory set. Program execution continues.

Table 1-1. List of Operators (Continued)

Operator Function

Starting the Execution of Instructions with GO

Motorola Introduction & Getting Started 1-13

10. If the action specified executes a command, underCommand type the Simulator
command. For example, a common command to perform in conjunction with a
breakpoint is EVALUATE - evaluate an expression.

11. ClickOK .

To clear a breakpoint:

1. From theExecutemenu, chooseBreakpoints then selectClear. A dialog box
displays a list of all the current breakpoints.

2. Select the breakpoint you want removed so that it is highlighted. If you are clearing
consecutive breakpoints you can click and drag to highlight more than one
breakpoint. Or hold down theCTRL key while clicking on breakpoints to select
more than one.

3. Click OK to delete the breakpoints you selected. Breakpoints will not be
renumbered. For example, if you have set breakpoints #1, #2, and #3 and then clear
breakpoint #2, the Simulator will number the remaining breakpoints #1 and #3.
(The Simulator does not renumber the breakpoints; it retains the original number
you assigned to the breakpoints.)

.

For more detailed information, see Section 9.1, "Introduction to Expressions," on page
9-1, and Section 11.1, "Display the Current Breakpoints," on page 11-1. Section 12.5,
"break - Set, Modify, or Clear Breakpoint," on page 12-8 provides a complete command
description.

1.10 Starting the Execution of Instructions with GO

The most common way to initiate program execution is with GO. When you indicate GO
to the Simulator, it fetches, decodes, and executes instructions in the exact manner a
device would if you were debugging an actual device. The GO command executes the
program until one of the following occurs:

• the Simulator reaches a breakpoint

Command Executes a Simulator command at breakpoint. Device execution commands, such as

trace or go , will not execute.

Increment[n] Increments the counter n variable by one.

Table 1-2. Breakpoint Actions (Continued)

Action Behavior

1-14 Suite56 DSP Simulator User’s Manual Motorola

Starting the Execution of Instructions with GO

• you indicate STOP

• the Simulator encounters a debug instruction

To start executing instructions with GO:

1. From theExecutemenu choose GO. You will see the following dialog box:
2.

Figure 1-5. Execution Instructions with Go

3. UnderGo From, choose whether to GO from an address or RESET. If you choose
Reset, the Simulator simulates the reset sequence in the processor. The instruction
pipeline, instruction counter, and cycle counter will be cleared before program
simulation begins. The device registers are reset and execution begins at the reset
exception address.

4. If you chose to GO from an address, underAddress, type in the address from
which you want to begin executing instructions. If you leave the address blank,
execution will begin from the current program counter value. If you specify an
address, the instruction pipeline, instruction counter, and cycle counter will be
cleared before program simulation. Execution will begin from the address you
specify.

5. Select theGo to Breakpointscheckbox if you want to stop execution at a
particular breakpoint. If selected, all other stop breakpoints will be ignored.

Starting the Execution of Instructions with GO

Motorola Introduction & Getting Started 1-15

6. UnderBreak Number select the breakpoint where you want to stop execution. To
see where you have breakpoints set, display the current breakpoints in the Breakpoint
window.

7. UnderCount specify how many times the Simulator should encounter the breakpoint
before stopping. For example, if you set the count to 3, the program execution will
be stopped on the third time that the breakpoint is encountered. The last instruction
executed will be the breakpoint

8. When all conditions are set, ClickOK . Execution begins.

Notice that during execution, the status bar in the lower left corner of the Simulator
window shows the number of the device where execution is taking place, the PC (program
counter), and the cycle count (updated every 1,000 cycles).

As an alternative, you can start program execution using theGO Button located on the
toolbar.

Fore more details, see Section 2.9, "Resetting the Device," on page 2-7. Section 12.15, "go
- Execute DSP Program," on page 12-22, provides a complete command description.

1-16 Suite56 DSP Simulator User’s Manual Motorola

Starting the Execution of Instructions with GO

Motorola Controlling Execution 2-1

Chapter 2
Controlling Execution

2.1 Starting the Execution of Instructions with GO

The most common way to initiate program execution is with GO. When you indicate GO
to the Simulator, it fetches, decodes, and executes instructions in the exact manner a
device would if you were debugging an actual device. The GO command executes the
program until one of the following occurs:

• the Simulator reaches a breakpoint

• you indicate STOP

• the Simulator encounters a debug instruction

Section 1.10, "Starting the Execution of Instructions with GO," on page 1-13 provides a
step-by-step task description for executing with GO from the GUI interface.

2.2 STEP Through Instructions

You can specify the number of instructions, lines, or cycles the Suite56 Simulator
executes before stopping. Stepping through instructions is a quick way to specify the
execution of a number of instructions without setting a breakpoint. The STEP instruction
is similar to the TRACE instruction except that the display of the registers and memory
blocks occurs only after the specified number of cycles, lines, or instructions have been
executed.

If the next instruction to be executed calls a subroutine or begins execution of a macro, the
subroutine or macro is not executed. However, it is possible to allow the current function
to FINISH.

To step through program instructions:

1. From theExecutemenu chooseStep. You will see the following dialog box:

2-2 Suite56 DSP Simulator User’s Manual Motorola

TRACE the Execution of Instructions

Figure 2-1. Step through Program Instructions

2. UnderIncrement, select whether to step byCycles, Lines, or Instructions.

3. UnderCount specify the number of cycles, lines, or instructions to step.

4. Select the checkbox labeledHalt at Breakpoints if you want breakpoints to be
observed. If you do select the checkbox, the Simulator ignores breakpoints and
does not halt program execution.

5. Click OK .

Notice that the Simulator updates the values in the Register window, the Memory
window, and all other windows after it executes the last cycle, line, or instruction.

Alternatively, use theSTEP Button on the toolbar to step one instruction or line at a time.

Section 12.31, "step - Step Through DSP Program," on page 12-41 provides a complete
command description.

2.3 TRACE the Execution of Instructions

When you trace program execution, you can look at a snapshot of the enabled registers
and memory after the Simulator executes each instruction or clock cycle.

To trace program execution:

1. From theExecutemenu chooseTrace. The following dialog box appears:

Executing the NEXT Instruction

Motorola Controlling Execution 2-3

Figure 2-2. Trace Program Execution

2. UnderIncrement selectCycle, Line, or Instruction .

3. UnderCount specify the total number of cycles, lines, or instructions to trace.
Execution stops after this number of cycles/lines/instructions.

4. Select the checkbox labeledHalt at Breakpoints if you want to observe
breakpoints.

5. If you do not select the checkbox, the Simulator ignores breakpoints and does not
halt program execution.

6. Click OK .

Notice that the Simulator updates values in the register window, the memory window, and
all other windows after it executes each cycle, line, or instruction. It updates these values
at the speed of execution, so they will pass by very quickly. In order to review the values,
scroll back through the Session window once execution has stopped.

It is often useful to log output from the Session window Log.

Section 12.34, "trace - Trace Through DSP Program," on page 12-44, provides a complete
command description.

2.4 Executing the NEXT Instruction

You can specify the number of instructions or lines the Simulator executes before
stopping. When you execute the next specific number of instructions you can quickly
control execution without setting a breakpoint.

Executing instructions with NEXT is similar to performing a STEP through instructions,
except that you can only specify the number of lines or instructions, and not cycles. Like
stepping through instructions, the Simulator displays the registers and memory blocks
only after it executes the specified number of lines or instructions.

2-4 Suite56 DSP Simulator User’s Manual Motorola

Providing an UNTIL Condition

The important difference between NEXT and STEP is the way each instruction handles
subroutines. If the next instruction executed calls a subroutine or begins execution of a
macro, all the instructions of the subroutine or macro are executed before execution stops.
The Simulator then displays enabled registers, memory, and other updated values. In order
to recognize macros, the symbolic debug information for the program code must be
loaded. The debug information is included in the COFF format .cld files generated using
the Motorola Suite 56 DSP Assembler’s-g option. Motorola’s Suite56 C Compilers and
the Star*Core 100 C/C++ Compiler also provide debug information when you use the -g
option.

To execute the next program instruction:

1. From theExecutemenu chooseNext.

2. UnderIncrement, select to execute by lines or by instructions.

3. UnderCount, specify the number of lines or instructions to execute.

4. Select the checkbox labeledHalt at Breakpoints if you want to observe
breakpoints. If you do not select the checkbox, the instruction will ignore
breakpoints and will not halt program execution.

5. Click OK .

Notice that the Simulator updates the values in the Register window, the Memory
window, and all other windows after it executes the last line or instruction. Alternatively,
you can use theNext button on the toolbar to execute the next instruction or line

Section 10.5, "Next Button," on page 10-4 provides more advanced information.
Section 12.23, "next- Step Over Subroutine Calls or Macros," on page 12-32 provides a
complete command description.

2.5 Providing an UNTIL Condition

An UNTIL condition causes the Simulator to execute the currently loaded program until it
encounters a specified location. You can specify the location as a program line number, an
address, or a label. An UNTIL condition works essentially as a temporary breakpoint,
cleared when execution stops.

To provide an UNTIL condition:

1. From theExecutemenu, chooseUntil .

Pausing Execution with WAIT

Motorola Controlling Execution 2-5

Figure 2-3. Providing an Until Condition

2. Type the line address or label at which to stop execution. (You can only use line
numbers and labels if debug information has been loaded from a COFF file.) To
specify an address, include the memory space followed by a colon, followed by the
address. For example, to execute instructions until address$00c103 is reached,
type:

p:$00c103

To specify a line number in the currently loaded source file, just type in the line
number. Or to specify a line number of a particular source file, include the
filename. For example, to execute until line number 20 of a source file named
clrmem.cld located in the working directory, type:clrmem@20

3. Select the checkbox labeledHalt at Breakpoints if you want the instruction to
observe breakpoints. If you do not select the checkbox, the instruction ignores
breakpoints and does not halt program execution.

4. Click OK .

Section 12.37, "until - Execute Until Address," on page 12-46 provides a complete
command description.

2.6 Pausing Execution with WAIT

You can pause macro execution by specifying the number of seconds you want the
Simulator to wait. Execution resumes after the pause.

The WAIT instruction is particularly useful when you write a command macro. That is, if
you cause the simulation to WAIT while logging commands, you can then save the log
file. A command macro results. The pause that was recorded while logging commands
will be replayed when the macro is executed. The wait instruction provides a useful way
to pause execution so that you can examine certain values or windows.

2-6 Suite56 DSP Simulator User’s Manual Motorola

Allowing the Current Function to FINISH after an UNTIL Condition or a Breakpoint

To pause execution:

1. From theExecutemenu, chooseWait .

2. Select the number of seconds to pause or click on the checkboxForever to pause
indefinitely.

3. Click OK .

4. An information box appears to let you know that the Simulator is paused. If you
don’t want to wait for the pause to end automatically, you can resume program
execution by clickingCancel. Keep in mind that if you click cancel while
recording a command macro that the cancellation of the pause is not recorded. So,
for example, if you specify a WAIT of ten seconds and then cancel after three,
when the command macro executes, it will pause for the full ten seconds.

Section 8.1, "Creating and Running a Command Macro," on page 8-1 provides more
detailed information. Section 12.40, "wait - Wait Specified Time," on page 12-48 provides
a complete command description.

2.7 Allowing the Current Function to FINISH after an UNTIL
Condition or a Breakpoint

Sometimes a program execution stops while in the middle of executing a subroutine or
function. This might occur for several reasons. Execution may stop if you specify that a
certain number of steps be executed which happened to end in the middle of the
subroutine. Or, execution may stop if an UNTIL condition or breakpoint is reached while
in the middle of a subroutine. Section 1.9, "Setting and Modifying Breakpoints," provides
a detailed discussion of breakpoint funtions.

In any instance where the Simulator stops execution in the middle of a subroutine or
function, the subroutine or function can be made to finish execution.

To finish execution of the current function or subroutine:

1. From theExecutemenu, chooseFinish. The Simulator continues until it
encounters an RTS instruction. Execution continues only to the end of the current
function. If the Simulator encounters another function during a FINISH operation,
the execution of the encountered function does not complete.

Alternatively, you can use theFinish button on the toolbar.

Section 12.13, "finish - Execute Until End of Current Subroutine," on page 12-21 provides
a complete command description.

Resetting the Device

Motorola Controlling Execution 2-7

2.8 Stopping Program Execution

You can stop program execution or the execution of a command macro at any time.

To stop program or command macro execution:

1. From theExecutemenu, chooseStop: notice that this is the only menu item you
can choose while program or command macro execution is in progress. If you
began the execution by providing an UNTIL condition, the Simulator will clear this
temporary breakpoint. The Assembly window (and the Source window if
applicable) highlight the next instruction to be executed in red.

When program execution is stopped the Session window will displaySimulation
Aborted. Notice that the Simulator updates the values in the Session window, the Register
window, the Memory window, and all other windows to reflect the last instruction or line
executed.

Alternatively, you can use theStop button on the toolbar to stop program execution.

For more details about stopping program execution, see Section 2.9, "Resetting the
Device," and Section 10.8, "Repeat Button," on page 10-7.

2.9 Resetting the Device
You can reset the device or the entire Simulator state any time instruction execution is
halted. Resetting the device also allows you to select the operating mode that the device
will be set to in response to a simulated hardware reset sequence.

To reset the device:

1. Before you reset the device you will want to know which operating modes are
available to the device that you are simulating. To see the available operating
modes, open the Command window. At the command line, type:

help mode

2. View the Session window. It now contains a list of the operating modes available
for the device that you are simulating. Now that you know the operating modes
from which you can choose, proceed in resetting the registers.

3. From theExecutemenu chooseReset, then selectDevice. The following dialog
box appears:

2-8 Suite56 DSP Simulator User’s Manual Motorola

Resetting the Device

Figure 2-4. Resetting the Device Registers

4. Select the operating mode to which the device should be reset.

5. Click OK .

To reset the simulation memory:

1. From theExecutemenu chooseReset, then selectState. This resets the entire
Simulator state to the start-up condition. All breakpoints are cleared, the memory is
initialized, and all logging and I/O files are closed.

Section 12.29, "reset - Reset Device or State," on page 12-39 provides a complete
command description.

Motorola Object Files and Data Files 3-1

Chapter 3
Object Files and Data Files
To efficiently manage and use the object files and data files in your project, you will need
to understand how the Simulator sets and clears paths. For a complete discussion of the
working directory path and alternate directory paths, see Section 1.5, "Setting and
Clearing the Path."

3.1 Displaying the Current PATH

The DSP Simulator uses two types of paths to save and access files:

• the working directory

• alternate directories

The Simulator uses the working directory as the default directory when searching for an
input file (assuming no path is explicitly specified with the input filename). Alternate
directories are also searched, in turn, if an input file is not found in the working directory.

To display the current paths:

1. From theDisplay menu choosePath

2. Open the Session window if not already open. The Simulator displays the current
working directory and the alternate source paths.

3-2 Suite56 DSP Simulator User’s Manual Motorola

Displaying the Current PATH

s

Figure 3-1. Displaying Current Paths

Keep in mind that the Simulator displays a separate directory path for each device. This
means that as you switch from one device to another, the working directory also changes
according to the current device. The top left corner of the Session window indicates the
current path.

Section 12.25, "path - Specify Default Pathname," on page 12-35 provides a complete
command description.

Saving Object Files

Motorola Object Files and Data Files 3-3

3.2 Saving Object Files

You can save memory blocks in DSP COFF or ASCII OMF object files. The object files
can be reloaded in the Simulator or in any other environment where such files are used.
For a complete description of the steps required to load object files in either COFF or
OMF format, see Section 1.6, "Loading Object Files," on page 1-6.

To save a COFF (.cld) file:

1. From theFile menu chooseSavethen selectMemory COFF.

2. UnderMemory Space, select the memory to save.

3. UnderStart Address, type the beginning address of the memory block.

4. UnderEnd Address, type the last address of the memory block.

5. UnderFile Name, type in the filename of the file to save or click onFile to browse
the directories. The extension default is .cld.

6. Click OK . If no directory path is specified, the file will be saved in the working
directory. If the file already exists, you will be prompted to decide whether to
overwrite the file or to append it.

The Simulator does not store symbolic debug information.

To save an OMF (.lod) file:

1. From theFile menu, chooseSaveThen selectMemory OMF .

2. UnderMemory Space, select the memory to save.

3. UnderStart Address, type the beginning address of the memory block.

4. UnderEnd Address, type the last address of the memory block.

5. UnderFile Name, type in the filename of the file to save or click onFile to browse
the directories.The extension default is .lod.

6. Click OK . If no directory path is specified, the file will be saved in the working
directory. If the file already exists, you will be prompted to decide whether to
overwrite the file or to append it.

Section 12.30, "save - Save Simulator File," on page 12-40 provides a complete command
description.

3-4 Suite56 DSP Simulator User’s Manual Motorola

Saving Object Files

Motorola Managing Memory and Registers 4-1

Chapter 4
Managing Memory and Registers
To efficiently manage the memory and registers associated with your project, you will
need to know how to reset the device. For a complete discussion of the resetting the
device, see Section 2.9, "Resetting the Device."

4.1 Displaying Register Values

You can display the device registers and memory any time instruction execution is halted.
To display the value in a register:

1. From theWindows menu chooseRegister. The following dialog box appears:

Figure 4-1. DSP Simulator Register Dialog Box

2. Select the peripheral that you want to view.

3. Click OK .

The register values for the peripheral that you chose appear in a register window: For
example, if you choose to display the register values for the core, you see a window
similar to the following:

4-2 Suite56 DSP Simulator User’s Manual Motorola

Displaying Register Values

Figure 4-2. Displaying the Register Values

Notice that the title bar of the register window indicates:

• the device number where the peripheral resides,

• the number of the Register window. This number is shown because you can display
other Register windows for other peripherals.

• the type of peripheral. The peripheral type is shown for easy identification. Several
register windows can be open – each corresponding to a different peripheral.

Section 12.10, "display - Display Register or Memory," on page 12-17 provides a
complete command description.

Displaying Memory Values

Motorola Managing Memory and Registers 4-3

4.2 Changing Register Values

You can change the value of the device registers when instruction execution is halted.

To change the value of a specific register:

1. From theModify menu chooseChange Register. The following dialog box
appears:

Figure 4-3. Changing the Value of Register

2. Select the register whose value you want to change.

3. UnderValue, type in the value to which you want the register to be set

4. Click OK .

Section 12.6, "change - Change Register or Memory Value," on page 12-13 provides a
complete command description.

4.3 Displaying Memory Values

You can display the values in memory any time instruction execution is halted.

To display the value in memory:

1. From theWindows menu chooseMemory. The following dialog box appears:

4-4 Suite56 DSP Simulator User’s Manual Motorola

Displaying Memory Values

Figure 4-4. DSP Simulator Memory Dialog Box

2. From the drop-down list box, select the memory space whose values you want to
change.

3. Click OK .

The memory values for the memory space you choose appear in a memory window. For
example, if you display values in thep memory space, you see a window similar to the
following:

Figure 4-5. Displaying Memory Values

Notice that the title bar of the memory window indicates:

• the device number that you are viewing,

• the number of the memory window. This is shown because you can display other
memory windows simultaneously.

• the type of memory space. Again, you could have several memory windows open –
each corresponding to a different memory space.

Changing Memory Values

Motorola Managing Memory and Registers 4-5

Section 12.10, "display - Display Register or Memory," on page 12-17 provides a
complete command description.

4.4 Changing Memory Values

You can change the values in memory any time instruction execution is halted.

To change the value in memory:

1. From theModify menu chooseChange Memory. The following dialog box
appears:

Figure 4-6. Changing the Value in Memory

2. Select the memory space that you want to change.

3. UnderStart Address, type the value of the beginning address that you want to
change.

4. UnderEnd Address, type the value of the ending address that you want to change.

5. UnderValue, type the value to which the specified addresses should be changed.
Keep in mind that all values, including the starting and ending values will be
changed to the value that you specify.The format of this value (HEX, decimal, etc.)
will automatically be the same as the current default radix. If you want the format
of the value to differ from the default, you must use the appropriate radix specifier.

$ denotes value as hexadecimal

‘ denotes value as decimal

%denotes value as binary

6. Click OK .

4-6 Suite56 DSP Simulator User’s Manual Motorola

Copying Memory from One Block to Another

Section 12.6, "change - Change Register or Memory Value," on page 12-13 provides a
complete command description.

4.5 Copying Memory from One Block to Another

You can copy memory blocks from one location to another. The source and destination
memory maps may be different. This allows you to move data or program code from one
memory map to another or to a different address within the same memory map.

To copy memory from one block to another:

1. From theModify menu chooseCopy Memory The following dialog box appears:

Figure 4-7. Copying Memory from One Block to Another

2. In theFrom Memory Spacepane, select the memory space to copy from. Then in
the text boxes, type the starting address and the ending address of the block that
you want copied.

3. In theTo Memory Spacepane, select the memory space to copy to. Then type the
starting address to begin copying values.

4. Click OK .

Section 12.7, "copy - Copy a Memory Block," on page 12-14 provides a complete
command description.

Disassembling Code Stored in Memory

Motorola Managing Memory and Registers 4-7

4.6 Disassembling Code Stored in Memory

You can disassemble instructions that have been loaded so that you can review DSP object
code in its assembly language mnemonic format. Invalid opcodes are disassembled to a
define constant (DC) mnemonic.

To disassemble code stored in memory:

1. From theDisplay menu chooseDisassemblethen selectMemory Block. The
following dialog box appears:

Figure 4-8. Disassembling Code Stored in Memory

2. Select the memory space that you want to disassemble.

3. In theStartAddresstextbox, typetheaddresswhereyouwant tobegintodisassemble.

4. In theEnd Address text box, type the address where you want to stop
disassembling.

5. Click OK .

6. View the Session window to see the mnemonics of the memory block you
specified.

Section 12.9, "disassemble - Object Code Disassembler," on page 12-16 and
Section 12.27, "radix - Change Input or Display Radix," provide complete command
descriptions.

4-8 Suite56 DSP Simulator User’s Manual Motorola

Displaying a History of Recent Instructions

4.7 Displaying a History of Recent Instructions

You can disassemble and display a history of the most recent instructions executed by the
device.

A typical use for displaying the history would be to determine the sequence of instructions
that terminated in a user-defined breakpoint. You would set the breakpoint conditions,
then issue the GO command. When the break condition is met, instruction execution halts
and the currently enabled registers appear. You can then display the history to view the
last 32 instructions that executed prior to the breakpoint.

To display a history:

1. From theDisplay menu chooseHistory .

2. View the Session window to see the last 32 instructions executed by the device.

The instructions appear in the order executed, with the most recent instruction appearing
at the bottom of the list. The last instruction in the list has been fetched and decoded by the
device and enters the execute phase in the next device cycle. It is in the same state as
instructions that are disassembled and displayed at the end of each trace display.

The device execution history can also be logged continuously to an output file using the
Simulator output command.

The device execution history can also be logged continuously to a file by assigning an
output file. When you assign the output file, choose to output from extended history.
Remember to close the file before viewing its contents. Section 5.12, "Assigning an
Output File," on page 5-11provides more detailed information.

Section 12.17, "history -Disassemble Previously Executed Instruction," on page 12-24
provides a complete command description.

Motorola Device I/O and Peripheral Simulation 5-1

Chapter 5
Device I/O and Peripheral Simulation

5.1 Introduction to Device I/O (Input/Output)

The Suite 56 DSP Simulator provides you with the ability to simulate the data input and
output. If you were actually debugging a DSP device, you would need several pieces of
hardware. The hardware includes an actual device and peripheral devices that supply input
to the DSP device and recognize output from the DSP device.

In the Simulator environment, of course, you are not debugging an actual device, which
means that there is no communication with peripherals, ports, or pins. Instead, the
Simulator provides simulated input and output by using I/O files. These I/O files
communicate with the Simulator as if the input and output were coming from an actual
peripheral, port, pin, or memory location.

You can specify whether the input data is to come from a file or from the keyboard
(terminal). The Simulator simulates DSP on-chip peripherals on a cycle by cycle basis.

5.2 How Are I/O Files Formatted?

Simulated input and output is represented in ASCII format, which means that you can
conveniently edit and print I/O files from a text editor. An input file or output file can
contain:

• repeat punctuation

• comments

• timing information

• peripheral data

• port data

• pin data

• memory data

5-2 Suite56 DSP Simulator User’s Manual Motorola

Repeat Punctuation

5.3 Repeat Punctuation

The Simulator provides a way to specify repeated input or output data values and
sequences. A single data value can be repeated by adding the following syntax after a data
item:

#{ count }

Enclosing several data items in parentheses indicates that the data items are to be treated
as a group. The entire group can then be repeated by placing#{ count } immediately
following the closing parenthesis. The parentheses can be nested. A closing parenthesis
without a following repeat count causes the data sequence within the parentheses to repeat
forever. Timed values can appear within a repeat group, and in this case the relative time
mode (+time) should be used.

5.4 Comments

Any information following a semicolon, up to the end-of-line, is considered to be a user
comment and is not interpreted as input data or timing.

Example 5-1. Comment Code

FFC 333 972 ;next three p memory data words

In this example, the first three data values are applied to the device. The information
following the semicolon is a user comment.

Table 5-1. Repeat Punctuation Input Data

Data Sample Explanation

1FF#20 Repeats the untimed data item 1FF twenty times.

(+5 CC +10 33)#5 Repeats the sequence of timed data pairs +5 CC +10 33 five times.

(CC354 CC333 C7000) Repeats the untimed data sequence CC354 CC333 C7000 forever.

(1#5 0#5) Repeats the untimed data sequence 1 1 1 1 1 0 0 0 0 0 forever.

Peripheral Data

Motorola Device I/O and Peripheral Simulation 5-3

5.5 Timing Information

If the t key character is specified in the input or output command, then the assigned file
will contain cycle timing information preceding each piece of I/O data. The timing
information relates to the Simulator cycle counter value (cyc register) at the time when the
data transfer occurs. The timing information is always expressed in decimal. If the timing
information is preceded by a plus sign (+), it indicates a relative number of cycles from the
preceding specified timing value; otherwise it indicates the exact value of the Simulator
cycle register at the time of the transfer.

5.6 Peripheral Data

You can assign and input or output file to each DSP peripheral. The following general
information applies to all peripheral files.

The peripheral data value can be represented in hexadecimal, decimal, binary or floating
point. Specify the default input radix in the input command; specify the output radix in the
output command.

You can express floating point input in the usual methods.For example,

0.5

5e-1

5.0E-1

are all acceptable data input values. If a data value contains a decimal point, the data will
be input as a floating point value, overriding the input radix specification. The number
base of data values can also be denoted by preceding the data value with a dollar sign ($),
an apostrophe (‘), or a percent sign (%).

$ input as hexadecimal

‘ input as decimal

% input as binary

Untimed peripheral input data values are applied only during cycles when the peripheral
function is enabled. Some peripherals retrieve data from the input file when the peripheral
would normally receive new data; other peripherals retrieve the data each cycle. The final
specified data value remains applied to the peripheral indefinitely. The repeat punctuation
and repeat count can specify durations of longer than one cycle.

Timed peripheral input data values will be applied to the peripheral at the time intervals,
or at the exact Simulator cycles indicated by the timing information within the file. If the

5-4 Suite56 DSP Simulator User’s Manual Motorola

Port Data

first timing information in the file is a relative value, (timing preceded by +) the Simulator
will wait until the peripheral function is enabled before applying the data.

If a lower case lettert is placed in a data position of the input file, you will be prompted
for the next input data value as described below in Section 5.10, "Terminal Input of Data
Values."

Storage of data to the peripheral output file will begin when the peripheral is enabled. In
the timed output mode, the Simulator cycle count and a data value are stored each time the
peripheral output changes. In the untimed output mode, a data value and a following
repeat count are stored each time the data changes.

5.7 Port Data

When assigned to a DSP port, the input file data value represents the value applied to all
the pins of the port. The least significant port bit maps to the least significant bit of the
data value. The following general information applies to all port files.

A port is simply a convenient grouping of device pins. Untimed data applied to a port is
retrieved each clock cycle, with one exception: the data bus ports retrieve new data from
an assigned input file only once for each memory fetch.

The port data value can be represented in hexadecimal, decimal, binary or floating point.
The default input radix can be specified when assigning an input file; the output radix can
be specified when assigning an output file.

Floating point input can be expressed in the usual methods. For example,

0.5

5e-1

5.0E-1

are all acceptable data input values. If a data value contains a decimal point, the data will
be input as a floating point value, overriding the input radix specification. The number
base of data values can also be denoted by preceding the data value with a dollar sign ($),
an apostrophe (‘), or a percent sign (%).

$ input as hexadecimal

‘ input as decimal

% input as binary

Timed port input data values are applied to the port at the specified relative time intervals
(+time), or at the exact Simulator cycle indicated by the timing information within the
file.

Memory Data

Motorola Device I/O and Peripheral Simulation 5-5

If a lower case lettert is placed in a data position of the input file, you will be prompted
for the next input data value as described below in Section 5.10, "Terminal Input of Data
Values."

Storage of data to a port output file will occur any time a write operation occurs to the
port. In the timed output mode, the Simulator cycle count and a data value are stored each
time a word is written. In the untimed output mode, a single data value is stored each time
a word is written. No tristate information is stored in the port output data.

5.8 Memory Data

When assigned to a memory location, the input file data value supplies the value that is
read when the Simulator references that memory location. The least significant memory
bit maps to the least significant bit of the data value.

The input data value can be in decimal, binary, hexadecimal, or floating point form. The
Simulator interprets the data based on the input radix specified in the input command. The
default input radix is hexadecimal. If a data value contains a decimal point, the data will
be input as a floating point value, overriding the input radix specification. The number
base of data values can also be denoted by preceding the data value with a dollar sign ($),
an apostrophe (‘), or a percent sign (%).

$ input as hexadecimal

‘ input as decimal

% input as binary

The Simulator applies untimed memory input data values each time the device performs a
read operation on the memory location. In other words, the input file acts like a stack of
input data; each successive data value is retrieved from the “stack” file when a read
operation occurs.

The Simulator applies timed input data values to the memory location at the specified
relative time intervals (+time), or at the exact Simulator cycle indicated by the timing
information within the file. If the first timing information in the file is a relative value
(+time) the Simulator waits until the first read of that memory location before getting the
first data value. Otherwise the data application occurs at the exact specified cycle.

If a lower case lettert is placed in a data position of the input file, you will be prompted
for the next input data value as described below in Section 5.10, "Terminal Input of Data
Values."

Storage of data to a memory output file occurs any time a write operation occurs to the
memory location. In the timed output mode, the Simulator cycle count and a data value are

5-6 Suite56 DSP Simulator User’s Manual Motorola

Pin or Pin Group Data

stored each time a word is written. In the untimed output mode, a single data value is
stored each time a word is written.

The output data value can be in decimal, binary, hexadecimal, floating point or string
form. Specify the output radix in the output command. The default output radix is
hexadecimal. The string form of output data uses the value written to the memory location
as the starting address in the same memory space of a zero terminated ASCII character
string. The character string is written to the output file.

5.9 Pin or Pin Group Data

When assigned to a pin or pin group, the input file data value supplies the zero (0 or L),
one (1 or H), a negative pulse within a single cycle (N), a positive pulse within a single
cycle (P) , or a tristate (X) value to be applied to the pin or to each pin in the group, with
the first specified pin mapping to the least significant bit of the data value. Each data word
must contain as many characters (0, 1, L, H, N, P, or X) as there are pins in the group.

If an analog input file is assigned to a device analog pin, the input command must specify
the floating point radix with the-rf radix designator in the input command. Likewise, an
analog output pin file must be specified with the-rf radix designator in order to generate
floating point output for the pin rather than the digital pin values described in the
preceding paragraph. Floating point io files may only be assigned to a single analog pin.

The Simulator applies untimed pin input data values to the specified pin in each Simulator
clock cycle. Timed pin input data values will be applied to the specified pin at the
specified relative time intervals (+time), or at the exact Simulator cycle indicated by the
timing information within the file.

Table 5-2. Input Memory Data

Data Sample Explanation

7FFF 7F3F 5D3C 7FC3 The untimed memory input file causes the data sequence 7FFF 7F3F
5D3C 7FC3 to appear during consecutive reads of the specified memory
location.

(1FF 0) The untimed memory input file causes the data sequence 1FF 0 to
appear repeatedly during consecutive reads of the specified memory
location.

(+10 0.5 +10 0.3) The timed memory input file causes the data sequence 0.5 0.3 to
alternate in the specified memory location 10 cycle intervals.

2000 1C3 2005 1CF The timed memory input file causes 1C3 to appear in the specified
memory location at cycle 2000, and 1CF to appear at cycle 2005.

Terminal Input of Data Values

Motorola Device I/O and Peripheral Simulation 5-7

If a lower case lettert is placed in a data position of the input file, you will be prompted
for the next input data value as described in the section below titled, Terminal Input of
Data Values.

Storage of pin data to an output file will occur any time the pins data value changes,
including changes to tristate, 1, 0, H or L. In the timed output mode, the Simulator cycle
count and a data value are stored each time a word is written. In the untimed output mode,
a single data value is stored each time a word is written.

The Simulator also provides a special mode that allows pin data input reception from the
output of another pin without the necessity of an intermediate disk file.

5.10 Terminal Input of Data Values

The Simulator provides two levels of terminal data input. If the input command specifies
term as the input filename, the Simulator opens an editor, which allows creation of an
input data file without leaving the Simulator. The data file is given a temporary name,
termxxxx.io or termxxxx.tio (xxxx being a numeral between 0000-9999), and is saved on
the disk at the termination of the input command. You can specify the entire contents of
the input file in this manner.

A second level of terminal data input allows you to be prompted any time the next input
data value is needed. This method is triggered if the lower case lettert is encountered in
the data field of the input file. This is only valid for the data field, not for the time field.
Each time at is encountered, you will be prompted for a single data value from the
terminal. The Simulator will read the input data using the radix specified in the input
command. Hexadecimal is the default input radix. If you just type the return key at the
prompt, without entering a data value, the previous data value will be repeated. If you type
theESCkey at the prompt, an end-of-file status will be simulated and the previous data
value will repeat forever.

Table 5-3. Pin or Pin Group Input Data

Data Sample Explanations

0 0 1 This untimed Reset pin input file causes the Reset pin to go low for two
cycles, then back high.

12000 0 12010 1 This timed IRQA pin input causes the IRQA pin to go low at cycle 12000,
then back high at cycle 12010.

(+200 0 +20 1)#9 This timed IRQB pin input causes the IRQB pin to go low after 200 cycles
and stay low for 20 cycles. The sequence is repeated 9 times.

5-8 Suite56 DSP Simulator User’s Manual Motorola

Assigning an Input File

See Section 6.3, "Changing the Radix," on page 6-2, for more advanced information about
specifying your radix.

5.11 Assigning an Input File

By providing an input file, you can retrieve simulated peripheral, memory location, or
device pin data.

If you are not sure about the valid peripheral and port names for the device that you are
working on, use the Simulator’s“help periph” and“help port ” commands in the
Command window to obtain a list of the peripherals and ports.

To provide input data:

1. From theFile menu chooseInput then selectOpen. The following dialog box
appears:

Table 5-4. Terminal Input Data

Data Sample Explanations

(t#45) This untimed IRQA pin input file prompts you for
a new input value every 45 clock cycles.

ffcc c1000 t ab12 t 6444 This untimed memory file input data prompts you
for the third and fifth values that are read from the
specified memory location.

(+10 5555 +10 3333)#3 566 t 800 t This timed port input file prompts you for port
input data at cycle 566 and 800 after alternating
the input data sequence 5555 3333 three times
at ten cycle intervals.

Assigning an Input File

Motorola Device I/O and Peripheral Simulation 5-9

Figure 5-1. Providing Input Data

2. UnderInput Number select the number you want to assign to this input. The
default number shown is the next available number.Input numbers do not have to
be consecutive— they can be assigned arbitrarily, which means that you can assign
input numbers in any way that helps you organize the sources of the inputs.

3. Mark the checkbox labeledTimed if the data contains time-data pairs.

4. UnderFrom select the source of the input data. SelectFile if the input data comes
from an existing file. SelectTerminal if you will enter the input data directly from
the keyboard.

5. UnderTo select the data destination:Memory Space, Port, Pin, Register, or a
Peripheral

6. If the input data is being sent to a memory space, underMemory select the
memory space. Then type the desired address in theAddress text box. Assigning
data to a memory address causes all subsequent reads of that memory address to
reference the input source. You can use this method to simulate your unique

5-10 Suite56 DSP Simulator User’s Manual Motorola

Assigning an Input File

memory mapped peripherals, or to short-circuit the simulation of the on-chip
peripherals.

7. If the input data is being sent to a port, underPort select the name of the port. The
list of available ports will vary depending on the device that you are targeting. To
see a list of port names and their index and mask, typehelp port from the
command line of the Command window .

8. If the input data is being sent to a pin, underPin select the pin location. If the input
receiving pin is a single location (as opposed to a range of pins) select the name of
the pin underStart. If you want the input data to go to a range of pins, select the
names of theStart andEnd pins in the appropriate drop-down box. To see a list of
pin names and their indices, typehelp pin from the command line of the
Command Window.

9. If the input data is being sent to a register, underRegisterselect the register.

10. If the input data is being sent to a peripheral, underPeripheral select the name of
the peripheral. The list of available peripherals varies depending on the device that
you are targeting. To see a list of peripheral names with indices typehelp

periph , from the command line of the Command window .

11. UnderRadix select the input data’s number system (hexadecimal, decimal, etc.).

12. If the input data is coming from a file, underFile Nametype in the name of the
input file or click on theFile button to browse for the file. The default filename
extension is.io .The data file may contain only data, in which case each access to
the object returns the next value in the data file. Alternatively, the file may contain
time/data pairs. In this case, each pair specifies the value to input at or after the
specified cycle count. Repeated accesses will return the same value until the
simulated cycle count reaches the time specified in the next time/data pair.

13. ClickOK .If you are entering the data from the terminal (keyboard), the
Interactive Input dialog box appears, which prompts you for the first data value.
Type in the first data value and clickOK . After you enter a value and clickOK , the
Interactive Input dialog box appears, ready for the second data value. Continue to
enter values and clickOK until you have entered all values. When you have
entered all values, clickCancelin theInteractive Input dialog box. The Simulator
creates a file in the working directory that contains the data you entered from the
keyboard. The filename will be similar to term0000.io. You can reuse this file as
you would any other input file.

Section 12.18, "input - Assign Input File," on page 12-24 provides a complete command
description.

Assigning an Output File

Motorola Device I/O and Peripheral Simulation 5-11

5.12 Assigning an Output File

You can write a single data item from the default device to a file or to the session window
(terminal). The data item may be a single memory location, a port, a range of pins, a
peripheral, or execution history. You must establish a separate output file for each data
item written.

To create an output file:

1. From theFile menu chooseOutput then selectOpen. The following dialog box
appears:

Figure 5-2. Creating an Output File

2. UnderOutput Number select the number you want to assign to this output. The
default number shown is the next available number. Output numbers do not have to
be consecutive; they can be assigned arbitrarily, which means that you can assign
output numbers in any way that helps you organize the output files.

3. Mark the checkbox labeledTimed if the data contains time-data pairs

5-12 Suite56 DSP Simulator User’s Manual Motorola

Assigning an Output File

4. UnderTo select the destination of the output file SelectFile if the output data is to
be written to a file. SelectTerminal if you want to write the output data to the
Session Window.

5. UnderFrom select the source of the data: a memory space, port, pin, register, a
peripheral, history, or extended history.SelectingHistory writes a record to the file
for each instruction execution. The last record in the file is always the next
instruction to be executed. SelectingExtended History writes a record for each
execution cycle. The Simulator logs additional execution history information to the
output file, including device wait state cycles and bus arbitration cycles and
indication of other stall conditions. The extra information is preceded by double
asterisks in the log file.The output record contains a record number, the optional
timing field containing the cycle number, and the data value. For the history file,
the data is comprised of the pc (program counter), the instruction word(s) in
hexadecimal, and the disassembled instruction.

6. If the output data is being written from a memory space, underMemory select the
memory space. Then type in theAddressreferencing the output data. Assigning
output to a memory address causes all subsequent writes of that memory address to
write the data to the output file

7. If the output data is being sent from a port, underPort select the name of the port.
The list of available ports varies depending on the device that you are targeting.To
see a list of port names and their index and mask, typehelp port from the
command line of the Command window .

8. If the output data is being sent from a pin, underPin select the pin location.If the
pin that you want to send the data from is a single location (as opposed to a range of
pins) select the name of the pin underStart. If you want the output data to come
from a range of pins, select the name of theStart andEnd pin. To see a list of pin
names and their indices, typehelp pin from the command line of the Command
window .

9. If the output data is being sent from a register, underRegisterselect the register.

10. If the output data is being sent from a peripheral, underPeripheral select the name
of the peripheral.The list of available peripherals varie depending on the device that
you target. To see a list of peripheral names with indices, typehelp periph from
the command line of the Command window .

11. UnderRadixselectthenumbersystem(hexadecimal,decimal,etc.) inwhichtheoutput
data should be written.

12. If the output data is being sent to a file, underFile Nametype in the name of the output
file or click on theFile button to browse for the file. The default filename extension

Assigning an Output File

Motorola Device I/O and Peripheral Simulation 5-13

is .io .The Simulator can store data only or time-data pairs. The output time value
is always expressed in decimal. The output file is in ASCII format.

13. ClickOK .

Section 12.24, "output - Assign Output File," on page 12-33 provides a complete
command description.

5-14 Suite56 DSP Simulator User’s Manual Motorola

Assigning an Output File

Motorola Simulator and Device Configurations 6-1

Chapter 6
Simulator and Device Configurations

6.1 Introduction to Simulator Configuration

You can specify a specific DSP configuration for each device. The selected device
configuration determines the internal memory attributes and simulated peripherals. The
Simulator determines external memory access by the device configuration.

To set the configuration of a device:

1. From theModify menu selectDevice. Then chooseConfigure.

2. UnderDeviceselect the number of the device that you want to configure.

3. UnderConfigure selectType.

4. UnderDevice Typeselect the type of device that you want to simulate.

5. Click OK .

The Simulator contains the predefined memory map of the default device type as the
default memory configuration. You can configure the device to exit its reset state in a
pre-defined operating mode. Once the Simulator is active, you can change the operating
mode under program control by changing the value of the device Operating Mode
Register (OMR). The mode pins are automatically configured to the default operating
mode. You can set the operating mode that the device simulates following a simulated
hardware reset when resetting the device registers and memory

The full external memory map of the device is, by default, RAM memory. The large
external memory space is simulated using a virtual memory technique which
automatically pages memory blocks to disk if the operating environment fails to allocate
the required space in memory.

By changing memory values, you can change the on-chip bootstrap and data ROM areas.
You can specify the bootstrap ROM by usingPR: as the memory space designator.You
can specify the data ROMs byXR: or YR:. Loading an assembler output file with the
Simulator load can also modify the bootstrap ROM or data ROM areas. You can
reinitialize the ROM areas by selectingResetfrom theExecutemenu, then selecting
State.

6-2 Suite56 DSP Simulator User’s Manual Motorola

Setting the Default DEVICE

Section 2.9, "Resetting the Device," on page 2-7 provides more information.

6.2 Setting the Default DEVICE

You can specify a particular device as the default device.

To set the default device:

1. From theModify menu chooseDevicethen selectSet Default. The following
dialog box appears:

Figure 6-1. Set Default Device Dialog Box

2. UnderDeviceselect the number of the device that you are choosing as the default
device (the current device).

3. Click OK .

The Simulator applies commands to the default device. When you change the default
device the Session window and the Command window automatically change to reflect the
information for the new device. However, other windows such as the Assembly window,
Source window, etc. do not automatically update themselves to reflect the new device.
This allows you to display the information for separate devices in separate windows. To
see the information for the new default device, open another Assembly window, Source
window, etc.

Section 12.8, "device - Multiple Device Simulation," on page 12-15 provides a complete
command description.

6.3 Changing the Radix

You can change the default radix (number base) that the Simulator uses for command
parameters and other values that you input. You can also change the radix used to display
specific registers and memory locations.

As an alternative to changing the default radix, you can also denote the number base of a
value by preceding it with a dollar sign ($), an apostrophe (’), or a percent sign (%).

Changing the Radix

Motorola Simulator and Device Configurations 6-3

$ value is hexadecimal

’ value is decimal

% value is binary

The Simulator begins with the default radix set to decimal for input and hexadecimal for
most output. Changing the default input radix allows you to enter values without having to
type the radix specifiers before each value.

To change the radix of input:

1. From theModify menu chooseRadix then selectSet Default. The following
dialog box appears:

Figure 6-2. Set Default Radix Dialog Box

Note that the current default radix is automatically selected.

2. UnderRadix select the number system to use. This system will be the default for
values that you provide when performing commands.

3. Click OK .

6.3.1 Changing the radix in which to display a register or memory
locations:

1. From theModify menu chooseRadix then selectSet Display. The following
dialog box appears:

6-4 Suite56 DSP Simulator User’s Manual Motorola

Loading Simulator State Files

Figure 6-3. Set Register or Memory Radix Dialog Box

2. UnderRadix select the number system to use.

3. UnderRegistersselect the register that will be displayed with the new radix. To
select more than one register, hold down theCTRL key while clicking once on the
register names. This does not affect the default input radix.

4. UnderMemory select the memory space and addresses that will be displayed with
the new radix. This does not affect the default input radix.

5. Click OK .

Section 11.2, "Displaying the Radix," on page 11-2 provides more information about the
radix; Section 12.27, "radix - Change Input or Display Radix," on page 12-36 provides a
complete command description.

6.4 Loading Simulator State Files

You can load a previously saved simulation state file. The state file acts like an
initialization file which includes information about:

• the state of all DSP devices in the system, and their device type

• enabled registers, counters, status registers, peripheral registers, etc.

• the entire contents of memory

• the windows settings

• the command history buffer

• the Session window output buffer for each device

Loading Simulator State Files

Motorola Simulator and Device Configurations 6-5

Essentially, a state file contains all the information needed to exactly duplicate the
condition of the Simulator as it existed when it saved the state file.

You can use a state file in several ways. For example, if you are in a long development
session and want to take a break, save the Simulator state to a state file so as not to lose
your place. Or, if a particular part of a program is proving troublesome, you can save the
state just before the problem area, simplifying the setup for repeated attempts to isolate the
problem. There are, of course, many reasons for saving the state of the Simulator.

To load a Simulator state file:

1. From theFile menu, chooseLoad then selectState

2. Specify the name of the state file in the dialog box.

3. Click onOpen. The current state of the Simulator is replaced by the state
information in the .sim file.

6-6 Suite56 DSP Simulator User’s Manual Motorola

Changing and Saving Window Preferences

6.5 Changing and Saving Window Preferences

You can save the window positions when you exit the Simulator. Thus, when you restart
the Simulator, it restores all windows to their positions on exit.

To save window status on exit:

1. From theFile menu choosePreferences.

Figure 6-4. Window Preferences Dialog Box

2. Mark the checkbox labeledSave Window Status On Exit.

3. Click OK .

Motorola Debugging C Source Code 7-1

Chapter 7
Debugging C Source Code

7.1 Introduction to Debugging C Source Code

The Suite56 DSP Simulator provides several features specifically used in debugging C
source code. The following topics will help you understand how best to use the Simulator
for debugging C source code. (When you compile your source code, remember to include
debug information.)

Section 12.1, "Command Overview," on page 12-1 also provides complete description of
the commands discussed in this chapter.

7.2 Displaying the Call Stack

You can display the C function call stack beginning with the frame you specify.

To display the call stack:

1. From theDisplay menu chooseCall Stack.

2. The following dialog box appears:

Figure 7-1. Displaying the Call Stack

7-2 Suite56 DSP Simulator User’s Manual Motorola

Moving Up and Down the Call Stack

3. UnderFrames, select whether you want to display the innermost or outermost
frames.

4. UnderCount, specify the number of frames you want to display.

5. Click OK .

If you are writing a script, it can be useful to use the WHERE command to display the C
function call stack.

Section 11.7, "Stack Window," on page 11-7 provides more information about the stack
window. Section 12.46, "where - GUI C Calls Stack window," on page 12-51 provides a
complete command description.

7.3 Moving Up and Down the Call Stack

You can move the current frame up and down the call stack.

To move up the call stack:

1. From theModify menu chooseUp. The following dialog box appears:

Figure 7-2. Moving Up the Call Stack

2. UnderFramesselect the number of frames to move up in the stack.

3. Click OK . The frame to which you moved is now the current starting point for
evaluations.

Moving Up and Down the Call Stack

Motorola Debugging C Source Code 7-3

To move down the call stack:

1. From theModify menu chooseDown. The following dialog box appears:

Figure 7-3. Moving Down the Call Stack

2. UnderFramesselect the number of frames to move down the stack.

3. Click OK . The frame to which you moved is now the current starting point for
evaluations.

See Section 12.38, "up - Move Up the C Function Call Stack," on page 12-47 and
Section 12.11, "down - Move Down the C Function Call Stack," on page 12-19 for
complete command descriptions.

7-4 Suite56 DSP Simulator User’s Manual Motorola

Dynamically Displaying C Function Calls

7.4 Dynamically Displaying C Function Calls

You can monitor the calls that are made by C functions by displaying the Calls window.
The Calls window dynamically monitors the C function calls as they occur.

To monitor C function calls:

1. From theWindows menu chooseCalls.

Figure 7-4. Dynamic Display of C Function Calls

The Calls window updates as each instruction is executed. If the instruction
contains no function call, three question marks are shown “??? ” to indicate that no
function is recognized.

2. Double-click on a stack level to select it as the expression context to evaluate
expressions.

Each function call adds another stack frame, each return removes one. Entry#0 is the
most nested function, that is the top entry on the stack. The highest number is the main
function.

Each entry shows a number to indicate the level to which the call is nested, the PC return
address (i.e. the address after the function call), and the name of the function. The top
level represents the entry to the debug monitor, and so indicates the next instruction to be
executed.

The call stack also indicates the context to use for evaluating C expressions. As each
function may have its own copy of a named variable, it may be necessary to indicate
which instance is required.

Redirecting an I/O Stream

Motorola Debugging C Source Code 7-5

7.5 Enabling/Disabling I/O Streams

You can enable or disable stream I/O for C programs that are running on the current
device. The standard stream files are supported: stdin, stdout, and stderr. Any references
by C programs to these files may be redirected to files on the host.

Stream file handling may be configured independently for each device. Streams handling
is enabled by default. If a C program attempts to access a stream file while it is not
enabled and redirected, the access is ignored. Output is discarded, and a standard value is
supplied as input.

To enable or disable the stream I/O:

1. From theFile menu chooseIO Streams.

2. SelectEnable or Disable.

Section 12.32, "streams - Enable/Disable Handling of I/O for C Programs," on page 12-42
provides a complete command description.

7.6 Redirecting an I/O Stream

You can redirect an I/O stream from the current device to a file on the host. Each stream
file can be assigned individually; unwanted streams do not have to be redirected.

Streams can be redirected whether stream support is enabled or disabled; however, for the
redirection to be effective, stream operations must be enabled. Disabling stream support
while a stream is redirected does not terminate the redirection. It merely makes it
ineffective until streams are enabled again.

To redirect the stream I/O:

1. From theFile menu chooseIO Redirect then selectStreams.

2. UnderStreamsselect the type of stream that you want redirected:stdin , stdout ,
or stderr .

3. UnderFile Namespecify the filename to redirect the stream or click on theFile
button to browse for the file.

4. Click OK .

To stop redirecting the stream I/O:

1. From theFile menu chooseIO Streams, then selectOff .

2. Select the type of stream to stop redirecting.

3. Click OK .

7-6 Suite56 DSP Simulator User’s Manual Motorola

Display the Type of a C Variable or Expression

To display redirected stream I/O:

1. From theDisplay menu chooseRedirected IO Streams.

2. View the Session window. The redirected stream will be listed with the filename to
which the streams are being directed.

Section 12.28, "redirect - Redirect stdin/stdout/stderr for C Programs," on page 12-38
provides a complete command description.

7.7 Display the Type of a C Variable or Expression

You can display the type of a C variable or expression. Keep in mind that you might need
to move up or down the call stack to select the desired expression context. You can also
change the current context when monitoring C function calls.

To display the type of a C variable or expression:

1. From theDisplay menu chooseType. The following dialog box appears:

Figure 7-5. Displaying the Type of a C Variable or Expression

2. Type in the expression. Remember to enclose C expressions in curly brackets. For
example:

{gi * i}

3. Click OK .

4. The data type is displayed in the Session window. If the result of the expression is a
storage location (for example, a variable name or an element of an array), the
address of the storage location will be displayed in addition to its data type.

Section 9.1, "Introduction to Expressions," on page 9-1 provides more information about
expressions; Section 12.35, "type - Display the Result Type of C Expression," on page
12-45 provides a complete command description.

Another useful tool for debugging C source code is the watch list. See Section 1.8, "Using
a Watch List," on page 1-9 for step-by-step instructions on setting up a watch list.

Motorola Macros, Scripts and Log Files 8-1

Chapter 8
Macros, Scripts and Log Files

8.1 Creating and Running a Command Macro

The command macro is a useful tool for performing multiple Simulator commands. The
command macro is useful for performing commonly repeated tasks such as setting the
path, loading source programs, and setting up watch windows. However, a macro can
consist of almost any Simulator command.

The command macro is a standard ASCII text file; you can create or edit it with any text
editor. You can also create the macro by recording commands to a log file.

To record a command macro :

1. From theFile menu, chooseLog, then selectCommands.

2. Specify the filename and save.The default filename extension is .cmd. A different
extension can be used, for the sake of consistency we do not recommend this. If
you specify a filename that already exists, you can choose to overwrite the file or
append the new commands to the end of the existing file.

3. The log file is now recording all Simulator commands, whether issued from the
menu bar or from the command line in the Command window. Use the Simulator
commands just as you would during normal program execution. Note that there is
an exception. If you stop program execution while recording commands, the stop is
not recorded. The only way to pause execution from within a macro is to use STEP,
NEXT, TRACE, UNTIL, WAIT or use a breakpoint. If you have any question
about whether a command can be recorded, think of it this way: if it appears in the
command window it is recorded.

4. To stop recording, from theFile menu chooseLog, then selectClose.

5. From the dialog box selectCommands.

6. Click OK . The command macro is now saved and can be replayed or edited.

8-2 Suite56 DSP Simulator User’s Manual Motorola

Logging Output from the Session Window

To run a command macro:

1. From theFile menu, chooseMacro.

2. Specify the file to run and clickOpen.The command macro begins. The commands
are displayed in the Command window as they are executed. The commands are
also echoed in the Session window, along with any output that is generated.

You can stop the command macro by choosingStop from theExecutemenu or by
clicking on theStop Button on the tool bar.

Section 2.6, "Pausing Execution with WAIT," on page 2-5 and Section 2.8, "Stopping
Program Execution," on page 2-7 provide more information about stopping or pausing a
command. Section 12.21, "log - Log Commands, Session, Profile," on page 12-30
provides a complete command description.

8.2 Logging Output from the Session Window

You can log all output that the Simulator displays in the Session window. This is
especially useful if you are capturing information that spans several screens.

To log output displayed in the Session window:

1. From theFile menu chooseLog, then selectSession.

2. Specify the filename that you want to give the log file and clickOK . The Simulator
writes all output that is echoed in the Session window to the log file you specified.

Section 12.21, "log - Log Commands, Session, Profile," on page 12-30 provides a
complete command description.

Motorola Expressions 9-1

Chapter 9
Expressions

9.1 Introduction to Expressions

The Simulator allows you to use an expression in most places where a constant is valid.
For example, an expression can take the place of the start and stop location in the
specification of an address range. An expression comprises a combination of symbols,
constants, operators, and parentheses. Expressions follow the conventional rules of
algebra and boolean arithmetic.

Expressions may contain any combination of integers, floating-point numbers, memory
space symbols and register symbols.

9.2 Evaluate Expressions

You can evaluate DSP assembler expressions and C expressions and write the result to the
session window.

To evaluate an expression:

1. From theEvaluate menu chooseEvaluate. The following dialog box appears:

Figure 9-1. Evaluating an Expression

9-2 Suite56 DSP Simulator User’s Manual Motorola

Using Memory Space Symbols

2. UnderExpressiontype the expression that you want to evaluate If the expression is
a C expression, enclose it in curly braces:{ c_expression }

3. UnderRadix select the radix in which to display the result of the expression. C
expressions display the type of the expression and the value in normal format for
the expression type ifAll is selected.SelectingAll when evaluating a DSP
assembler expression displays select radices depending on the expression itself.

4. Click OK . The Session window displays the result of your evaluation.

C expressions are evaluated in the context of the current stack frame by default – that is,
the value displayed is that which would have been returned if the expression had been
included in the program at the current execution point. C expressions can be evaluated in
the context of any of the functions on the call path to the current function.

Section 12.12, "evaluate - Evaluate an Expression," on page 12-20 provides a complete
command description.

9.3 Using Memory Space Symbols

The Simulator evaluator interprets a memory space symbol followed by an expression as
the contents of a memory location. Use the Simulator’s “help mem” command to obtain a
list of the valid memory space prefixes and their corresponding address ranges. The
following expression is converted to an integer constant in the address range of the DSP.

Some memory space symbols, such asp: or x: , require the evaluator to first read the
device Operating Mode Register (OMR). Others, such asxi : or pr: , refer to an exact
memory location regardless of the chip operating mode.

9.4 Using Register Name Symbols

The Simulator evaluator interprets a register symbol as the contents of that register. To
obtain a list of valid register names use the Simulator “help reg ” command on the
command line in the Command window

Note that some hexadecimal constants, such asa0 or d1, may also be valid register names
for the selected DSP. It is usually best to precede such hexadecimal constants by a dollar
sign($) to distinguish them from registers of the same name.

Section 4.1, "Displaying Register Values," on page 4-1 provides more information on
register values.

Using Assembler Debug Symbols

Motorola Expressions 9-3

9.5 Using Assembler Debug Symbols

The Simulator load command processes the symbol and line number information present
in a COFF format object file (.cld file) which has been generated with the assembler’s–g

option. If symbol information has been loaded, the evaluator will accept symbol names or
source file line numbers and translate them into an associated memory address.

In general you can reference a symbol name in the Simulator just as it was defined in the
original source file, except that symbol names which conflict with a Simulator register
name must be preceded by the@character. A symbol name may be further delimited by
specifying a containing section name in the formsection_name@symbol_name , with
the@character being used as the separator. The section name global may be used for the
global section. If a symbol is specified without a preceding section name, the evaluator
assumes the section containing the current pc.

Line numbers may be expressed simply as a decimal integer preceded by the@character
when referring to a line in the current source file. If an address field is being specified in a
command, the line number’s preceding@character may be omitted. A line number in a
particular source file may be expressed in the formsource_filename@line_number .

Below are valid forms of symbol names and line numbers:

Table 9-1. Valid Forms of Symbol Names and Line Numbers

Name Form Explanation

symbol_name translates to the address associated with symbol_name

Example: change pc lab_d

@symbol_name translates to the address associated with symbol_name

Example: disassemble @start_1

section_name@symbol_name translates to the address associated withsymbol_name in
section section_name

Example: display sec3@xdata

@section_name@symbol_name translates to the address associated withsymbol_name in
section section_name

Example: display @sec3@xdata

line_number translates to the address associated with line_number in the
current source file.

Example: break 30

@line_number translates to the address associated with line_number in the
current source file.

Example: change pc @30

9-4 Suite56 DSP Simulator User’s Manual Motorola

Using Constants

9.6 Using Constants

Constants represent quantities of data that do not vary in value during the execution of a
program.

9.7 Numeric Constants

Numeric constants can be in one of three bases:

• Binary constants consist of a percent sign (%) followed by a string of binary digits
(0,1). For example:

%11010

%1001100

• Hexadecimal constants consist of a dollar sign ($) followed by a string of
hexadecimal digits (0-9,A-F or a-f). For example:

$FF

$12FF

$12ff

• Decimal constants can be either floating point or integer. Integer decimal constants
consist of a string of decimal (0-9) digits. Floating-point constants are indicated
either by a preceding, following, or included decimal point or by the presence of an
upper or lower case ’E’ followed by the exponent. The special constantsinf and
nan can be used in floating-point expressions to represent the IEEE floating-point
values of infinity and not-a-number for DSP devices which operate with IEEE
floating-point values. For example:

source_filename@line_number translates to the address associated with line_number in the
named source file.

Example: change pc test.asm@30

@source_filename@line_number translates to the address associated with line_number in the
named source file.

Example: change pc @test.asm@30

source_filename translates to the address associated with the first line in the
named source file.

Example: list test.asm

@source_filename translates to the address associated with the first line in the
named source file.

Example: list @test.asm

Table 9-1. Valid Forms of Symbol Names and Line Numbers

Name Form Explanation

Operators in Expressions

Motorola Expressions 9-5

12345 (integer)

6E10 (floating point)

.6 (floating point)

2.7e2 (floating point)

A constant can be written without a leading radix indicator by changing the radix. For
example, a hexadecimal constant can be written without the leading dollar sign ($) if the
input radix is set to hex. The input radix defaults to decimal.

Section 6.3, "Changing the Radix," on page 6-2 provides more information about setting
your radices.

9.8 Operators in Expressions

You can use some of the evaluator operators with both floating-point and integer values. If
one of the operands of the operator has a floating-point value and the other has an integer
value, the integer will be converted to a floating-point value before the operator is applied
and the result will be floating-point. If both operands of the operator are integers, the result
will be an integer value. Similarly, if both the operands are floating point, the result will be
a floating-point value.

Operators recognized by the Assembler include the following:

Unary operators:

minus (-)

negate (~) - integer only

logical negate (!) - integer only

The unary negate operator will return the one’s complement of the following operand. The
unary logical negation operator will return an integer1 if the operand following it is0 and
will return a0 otherwise. The operand must have an integer value.

Arithmetic operators:

addition (+)

subtraction (-)

multiplication (*)

division (/)

mod (%)

9-6 Suite56 DSP Simulator User’s Manual Motorola

Operators in Expressions

The divide operator applied to integer numbers produces a truncated integer result. The
mod operator applied to integers will yield the remainder from the division of the first
expression by the second. If the mod operator is used with floating-point operands, the
mod operator will apply the following rules:

Y % Z = Y if Z = 0

= X if Z <> 0

where X has the same sign as Y, is less than Z, and satisfies the relationship:

Y = i * Z + X

where i is an integer.

Bitwise operators (binary):

AND (&) - Integer only

inclusive OR (|) - Integer only

exclusive OR (̂) - Integer only

Bitwise operators cannot be applied to floating-point operands.

Shift operators (binary):

shift right (>>) - Integer only

shift left (<<) - Integer only

The shift right operator causes the left operand to be shifted to the right (and zero-filled)
by the number of bits specified by the right operand. The shift left operator causes the left
operand to be shifted to the left by the number of bits specified by the right operand. The
sign bit will be replicated. Shift operators cannot be applied to floating-point operands.

Relational operators:

less than (<)

greater than (>)

equal (= =) or (=)

less than or equal (<=)

greater than or equal (>=)

not equal (!=)

Relational operators all work the same way. If the indicated condition is true, the result of
the expression is an integer1. If it is false, the result of the expression is an integer0. For

Operator Precedence

Motorola Expressions 9-7

example, if D has a value of 3 and E has a value of 5, then the result of the expression D<E
is 1, and the result of the expression D>E is 0. Each operand of the conditional operators
can be either floating point or integer. Test for equality involving floating-point values
should be used with caution, since rounding errors could cause unexpected results.

Relational operators are primarily intended for use with the Simulator BREAK command.

Logical operators:

Logical AND (&&)

Logical OR (||)

The logical AND operator returns an integer 1 if both of its operands are non-zero;
otherwise, it returns an integer 0.

The logical OR operator returns an integer 1 if either of its operands is non-zero; otherwise
it returns an integer 0. The types of the operands may be either integer or floating point.

Logical operators are primarily intended for use with the Simulator BREAK command.

9.9 Operator Precedence

Expressions are evaluated with the following operator precedence:

1. parenthetical expression (innermost first)

2. unary minus, unary negate, unary logical negation

3. multiplication, division, mod

4. addition, subtraction

5. shift

6. less than, greater than, less or equal, greater or equal

7. equal, not equal

8. bitwise AND

9. bitwise EOR

10. bitwise OR

11. logical AND

12. logical OR

Operators of the same precedence are evaluated left to right. All integer results (including
intermediate) of expression evaluation are 32-bit, truncated integers. Valid operands
include numeric constants, memory addresses, or register symbols. The logical, bitwise,

9-8 Suite56 DSP Simulator User’s Manual Motorola

Setting Up and Modifying a Watch List

unary negate, unary logical negation, and shift operators cannot be applied to
floating-point operands. That is, if the evaluation of an expression (after operator
precedence has been applied) results in a floating-point number on either side of any of
these operators, an error will be generated.

9.10 Setting Up and Modifying a Watch List

You can watch the contents of a specific memory location, register, or any arbitrary value
or expression by setting up a Watch window. Watch items are kept on a watch list that gets
updated every time program execution is stopped.

The value or expression that you watch can be valid even if it is not calculated during
program execution. C expressions can be used, enclosed in braces:{c_expression} .
Symbolic references can be used if symbols have been loaded from the object module.
The values are re-calculated and output at each break in execution.

To display a value in a WATCH list:

1. From theWindows menu chooseWatch. The following dialog box appears:

2. Select the window number where you want the expression to appear. You will want
to do this when you have more than oneWatch window open.

Figure 9-2. Displaying a Value in a Watch List

Setting Up and Modifying a Watch List

Motorola Expressions 9-9

3. UnderExpression, type in the expression that you want to appear in the Watch
window.

4. UnderRadix, select the radix format in which you want the variables displayed.

5. Click OK . The expression that you specified now appears in a Watch window. If
the expression you type is not valid, you will get an error message explaining why
the expression is not valid.

A C expression which refers to C variables can only be evaluated in the context in which
the watch is established. That is, while all the variables used in the expression are in scope.
So if one (or more) of the variables in an expression goes out of scope (either because a
function call or return from a function), the value is replaced with the messageExpression
out of scope. When all elements of the expression are back in scope, the value is again
displayed.

An expression which has gone out of scope because of function a call may be evaluated
and displayed by selecting the stack frame for the evaluation context. The stack frame
assignment remains in effect only until the next instruction is executed. An expression that
is out of scope because of an exit from a function cannot be evaluated until the function is
called again as its variables no longer exist.

Section 12.42, "watch - Set, Modify, View, or Clear Watch item," on page 12-49 provides
a complete command description.

A WATCH list can also be used in conjunction with the EVALUATE command. See
Section 9.2, "Evaluate Expressions," on page 9-1 for more information.

9-10 Suite56 DSP Simulator User’s Manual Motorola

Setting Up and Modifying a Watch List

Motorola Simulator Tool Bar 10-1

Chapter 10
Simulator Tool Bar

10.1 Using the Tool Bar

You can use the toolbar to control program execution. The icons located on the toolbar
duplicate the same kind of control commands found under theExecutemenu.

The icons on the toolbar are:

Go button
Starts program execution from the next address. All breakpoints are
observed

Stop button
Stops program execution or a command macro, if running.

Step button
Executes next instruction or line.

Next button
Executes next instruction or line.

Finish button
Allows the current function to execute to completion.

Device button
Allows setting of the default device to which all commands will be
directed.

Repeat button
Repeats the last command in the history buffer.

Reset button
Resets the current device.

10-2 Suite56 DSP Simulator User’s Manual Motorola

Go Button

10.2 Go Button

TheGo button starts program execution from the next address.

Figure 10-1. Go Button

Section 1.10, "Starting the Execution of Instructions with GO," on page 1-13 provides
more information about starting program execution. Section 12.15, "go - Execute DSP
Program," on page 12-22 provides a complete command description.

10.3 Stop Button

TheStop button stops program execution, or if a command macro is running, stops the
macro.

Figure 10-2. Stop Button

Section 2.8, "Stopping Program Execution," on page 2-7 provides more information about
stopping program execution.

Step Button

Motorola Simulator Tool Bar 10-3

10.4 Step Button

TheStepbutton executes the next instruction or line.

Figure 10-3. Step Button

If the Source window is open, displaying the program source, theStepbutton executes
one line of code. Otherwise, theStepbutton executes one instruction. On encountering a
JSR instruction, the Simulator begins with the first instruction of the function, and steps
through it one instruction at a time.

To step one instruction at a time from the toolbar:

1. Make sure that program execution is halted and that the Source window isnot
open.

2. Click on theStepbutton on the toolbar.The Simulator executes the next assembly
instruction.

To step one line at a time from the toolbar:

1. Make sure that program execution is halted and that the Source window is open. If
the Source window is not open, the Simulator automatically executes the next
instruction in the Assembly window rather than then next line in the Source
window.

2. Click on theStepbutton on the toolbar. The Simulator executes the next executable
line of code in the Source window. (Comment lines in the source code are ignored.)

Notice that the values in the Register window, the Memory window, and all other
Simulator windows are updated each time you click onStep.

Section 2.2, "STEP Through Instructions," on page 2-1 and Section 2.4, "Executing the
NEXT Instruction," on page 2-3 provide more information about stepping through
instructions.

10-4 Suite56 DSP Simulator User’s Manual Motorola

Next Button

Section 12.31, "step - Step Through DSP Program," on page 12-41 provides a complete
command description.

10.5 Next Button

TheNext button executes the next instruction or line.

Figure 10-4. Next Button

If the next instruction to be executed calls a subroutine or begins execution of a function,
all the instructions of the subroutine or function are executed before stopping. The enabled
registers, memory, and other updated values are then displayed.

In order to recognize functions, the symbolic debug information for the program code
must be loaded.

To execute the next instruction from the toolbar:

1. Make sure that program execution is halted and that the Source window isnot
open.

2. Click on theNext button on the toolbar. The Simulator executes the next assembly
instruction.

Finish Button

Motorola Simulator Tool Bar 10-5

To execute the next line from the toolbar:

1. Make sure that program execution is halted and that theSource windowis open. If
the Source window is not open, the Simulator automatically executes the next
instruction in the Assembly window rather than then next line in the Source
window.

2. Click on theNext button on the toolbar. The Simulator executes the next
executable line of code in the Source window. (Comments lines in the source code
are ignored.)

Notice that the values in the Register window, the Memory window, and all other
Simulator windows are updated each time you click onNext.

Section 12.23, "next- Step Over Subroutine Calls or Macros," on page 12-32 provides a
complete command description.

10.6 Finish Button

TheFinish button allows the current function to execute to completion.

Figure 10-5. Finish Button

When stepping through a program, it is possible that execution will stop in the middle of a
function or subroutine. Clicking on theFinish button completes the execution of the
function or subroutine. The Simulator continues until encountering an RTS instruction. If
another function is encountered during a finish operation, execution continues to the end
of the current function.

Section 2.7, "Allowing the Current Function to FINISH after an UNTIL Condition or a
Breakpoint," on page 2-6 provides more information. Section 12.13, "finish - Execute

10-6 Suite56 DSP Simulator User’s Manual Motorola

Device Button

Until End of Current Subroutine," on page 12-21 provides a complete command
description.

10.7 Device Button

TheDevicebutton allows you to set the default device to which all commands will be
directed

Figure 10-6. Device Button

Notice that when you designate another device as the default device that the Session
window and Command window automatically reflect information for the new device.
However, other windows such as the Assembly window, Source window, Stack window,
etc. must be specifically opened to reflect the information for the new default device.

Section 6.2, "Setting the Default DEVICE," on page 6-2 provides more information about
setting default devices. Section 12.8, "device - Multiple Device Simulation," on page
12-15 provides a complete command description.

Repeat Button

Motorola Simulator Tool Bar 10-7

10.8 Repeat Button

TheRepeatbutton repeats the last command in the history buffer.

Figure 10-7. Repeat Button

TheRepeatbutton repeats the last command in the history buffer - that is, listed in the
Command window. Pressing this button is the same as clicking on the last command in the
history buffer in the Command window and pressing <ENTER>.

Section 11.3, "Command Window," on page 11-2 provides more details about the
Command window.

10-8 Suite56 DSP Simulator User’s Manual Motorola

Reset Button

10.9 Reset Button

TheResetbutton resets the current device.

Figure 10-8. Reset Button

TheResetbutton generates a RESET command for the current device. The device will be
reset in the same operating mode.

Section 2.9, "Resetting the Device," on page 2-7 provides more information about
resetting devices. Section 12.29, "reset - Reset Device or State," on page 12-39 provides a
complete command description.

Motorola Displaying Information 11-1

Chapter 11
Displaying Information

11.1 Display the Current Breakpoints

It is often useful to display the enabled and disabled breakpoints for the current device by
opening the Breakpoints window.

To display the current breakpoints:

1. From theWindows menu, chooseBreakpoints. A dialog box shows a list of the
breakpoints set for the current device. The following dialog box shows an example
of a list of six breakpoints.

Figure 11-1. Displaying the Current Breakpoints

Disabled breakpoints such as theBreak #2 , are indicated with the word
disabled .

2. Double click on a breakpoint from the list to toggle it from disabled to enabled, or
from enabled to disabled.

Breakpoints that were set by double clicking on the Source window, such asBreak #5

above, are identified by the line number.

Breakpoints that were set by double clicking on the Assembly window, such asBreak #6

above, are identified by the address.

11-2 Suite56 DSP Simulator User’s Manual Motorola

Displaying the Radix

11.2 Displaying the Radix

You can display the default radix (number base) that is currently used for command
parameters and other values that you input. That is, the radix that is used when you type a
value into a dialog box or at the command line. This is what is meant by the default radix.

To display the current default radix:

1. From theDisplay menu, chooseRadix.

2. The default radix is displayed in the Session window.

If the default radix for the Simulator is set to decimal, this means that values can be
entered in decimal without typing a preceding apostrophe (‘). If the default radix for the
Simulator is set to hexadecimal, this means that values can be entered in hexadecimal
without typing a preceding dollar ($). Similarly, if the default radix is unsigned or binary,
their respective specifiers do not need to be typed before the value.

Be careful to distinguish the input radix from the output radix. The default radix refers to
the input radix.

The output radix is the radix in which values are displayed. You can change the radix for a
particular register or for a particular memory location. So be careful to note when you
have changed the output radix of a particular register or memory location.

Section 6.3, "Changing the Radix," on page 6-2 provides more information about
changing the radix.

11.3 Command Window

The Command window permits you to enter Simulator commands on a command line. In
this way, the Command window provides an alternative to using the menu bar or the
toolbar; the command line also let you monitor the syntax of the Simulator commands.
The Command window is also a useful source of information in that it echoes the
commands from the menu bar and from the toolbar. It also provides a source of history.
The command history buffer holds the ten most recent commands. If the last command is
repeated exactly, the duplicate is not stored.

To display the Command window:

1. From theWindows menu, chooseCommand. The Command window appears:

Command Window

Motorola Displaying Information 11-3

Figure 11-2. Displaying the Command Window

2. Notice that the device number is indicated. This is the device to which the
commands are applied. In order to affect another device, the default device must be
changed.

The Command window also provides device specific information that is not available
elsewhere in the Simulator.

To display device specific information:

1. From the command line of the Command window, type:

help

2. A list of help topics is displayed in the Session window. Check the list for the device
specific information that you are wanting. You might have to scroll back up the
Session window to see the whole list.

3. From the command line of the Command window, type help followed by the name
of the help topic. For example, to list the on-chip I/O registers and their addresses,
type:

help io

The help information is displayed in the Session window. Some of this information
can be lengthy, so it might be useful to log the Session window output. See
Section 8.2, "Logging Output from the Session Window," on page 8-2 for
information about logging output.

11-4 Suite56 DSP Simulator User’s Manual Motorola

Session Window

11.4 Session Window

The Session window is the main output for the Simulator. The Session window displays:

• an echo of all commands input at the command line (from the Command window)

• output from commands

• information from the Display menu

• views of source code and assembly code

• registers and memory locations enabled for display at breakpoints and after
execution

• error messages

To display the Session window :

1. From theWindow menu, chooseSession.

2. The Session window opens. You will probably have to scroll and resize the
window to be suitably visible. Note that it is not possible to have more than one
Session window open at a time.

The Session window displays output for the current device only. However, each device
writes output to its own buffer. That is, each device retains its own session buffer. In order
to see the Session window for another device, you must specify the other device as the
current device. When another device is selected as the current device, the Session window
is refreshed with the buffer for that device.

The Session window buffers the last 100 lines of output. It might be necessary to scroll
through the Session window to see previous output. At times, you might have a command
that displays more than 100 lines of output to the Session window. In this case you will
want to pause the output to the Session window.

To pause output to the Session window:

1. From theDisplay menu, chooseMore. Then selectOn.

2. The Session window will now pause if more than 100 lines of information are
displayed at once. For example, if you perform a command such as typinghelp

io from the command line, it is likely that the resulting output to the Session
window will be greater than 100 lines. The following dialog box will appear:

Assembly Window

Motorola Displaying Information 11-5

Figure 11-3. Pausing Output to the Session Window

3. Click onOK to display the next 100 lines in the Session window.

11.5 Assembly Window

The Assembly window allows you to display and edit the contents of memory, set and
clear breakpoints, and follow program execution. As the program executes, the display is
updated at each break in execution. The next instruction to be executed is always
displayed, highlighted in red.

To use the Assembly window :

1. From theWindows menu, chooseAssembly. The Assembly window appears:

Figure 11-4. Using the Assembly Window

2. To scroll to a specific address, type the address in the box labeledScroll To
Addressand press ENTER.

11-6 Suite56 DSP Simulator User’s Manual Motorola

Source Window

3. To edit an instruction single click on the mnemonic. Notice that the mnemonic text
is now highlighted. Type the new assembly instruction and press ENTER.
Notice that the next instruction is highlighted. In order to avoid accidentally typing
over that instruction click on an area outside of the mnemonic.

4. Breakpoints can be set, disabled, or cleared by double clicking on an address or
label field.

Double click on the address or label to set the breakpoint. Double click again on the
address or label to disable the breakpoint. Double click again on the address or label to
remove the breakpoint.

Enabled breakpoints appear in blue. Disabled breakpoints appear in pink.

11.6 Source Window

The Source window displays the source code that has been loaded in memory. The source
code may reside in the directory containing the object module or any or the directories
specified in the path.

1. From theWindows menu, chooseSourceThe Source window indicates the current
program counter (PC) and highlights the corresponding source line red.

To display the Source window :

Figure 11-5. Displaying the Source Window

2. You can use the Source window to set halt breakpoints. To set or clear a breakpoint
double-click on any line in the Source window.The breakpoint is added to the
breakpoint list, displayed in the breakpoint window and highlighted in blue in the
Assembly window.

Stack Window

Motorola Displaying Information 11-7

11.7 Stack Window

You can watch the hardware stack by opening the Stack window.

To display the hardware stack:

1. From theWindows menu, chooseStack. The hardware stack will be displayed.

Section 7.1, "Introduction to Debugging C Source Code," on page 7-1 provides more
information about the Simulator’s hardware stack.

11-8 Suite56 DSP Simulator User’s Manual Motorola

Stack Window

Motorola Command Reference 12-1

Chapter 12
Command Reference
12.1 Command Overview
There are a total of fifty-two Suite56 DSP Simulator commands that you can perform from the command
line. (The command line is a part of the Command window.) These commands, and their syntax, are useful
to know if you are writing a command macro.

The Simulator commands can be grouped into six categories:

• memory/register modification
• file I/O
• simulation execution control
• C source code debug commands
• miscellaneous tasks
• windows controls (used especially in writing command macros)

12.1.1 Memory/Register Modification

The following commands relate to modifying memory andregisters. These allow you to:

• assemble(ASM) DSP instructions
• changeregister or memory locations
• copy a block of memory to a new location
• disassemblecode stored in the simulated DSP memory space
• display registers and memory values
• display the Simulator revision number or memory configuration
• resetthe device
• use thehistory command to disassemble and display the previous thirty-two instructions

executed by the device
• use awatch list to display a variable whenever single stepping or program execution is

halted

12-2 Suite56 DSP Simulator User’s Manual Motorola

Command Overview

12.1.2 File I/O
The following commands relate to file input and output. These allow you to:

• input peripheral or memory location values from a file
• output peripheral or memory location values to a file
• load DSP Assembler object module files or previous simulation state files
• log Simulator commands, session display output or DSP program execution profile
• saveSimulator memory to an object module file or the Simulator state to a state file

12.1.3 Simulation Execution Control

The following commands relate to control of program execution:

• specifybreak conditions
• gountil a break condition is met
• stepa specified number of instructions or cycles before displaying register and memory

changes
• trace a specified number of instructions or cycles displaying register and memory

changes at each step
• Thenext instruction operates essentially the same as theSTEPinstruction, except that if

the instruction being executed calls a subroutine or function, execution continues until
return from the subroutine or function.

• Theuntil instruction has the effect of setting a temporary breakpoint at a specified
address, executing until a breakpoint is encountered, then clearing the temporary
breakpoint.

• Thefinish instruction executes instructions until the current subroutine or function
completes.

12.1.4 C Source Code Debug Commands
The following commands relate to debugging C source code:

• where to display the C function call stack
• up, down andframe are used to traverse the call stack
• redirect is used to redirect data from stdin/stdout/stderr to files
• streamsenable the io streams
• type displays the data type of a variable, function or C expression

Command Overview

Motorola Command Reference 12-3

12.1.5 Miscellaneous Tasks

The following commands include miscellaneous tasks:
• devicespecifies a new device and its device type
• evaluateevaluates expressions in five different radices
• help displays device specific information in the Session window
• path defines the working directory and alternate directories
• quit ends a simulation session
• radix specifies the default number base (hex, decimal, etc.) used during expression

evaluation and data entry or data display
• systemexecutes an operating system command in two modes
• wait specifies a number of seconds to pause a macro before proceeding to the next

command
• list displays a specified source file when symbolic debug is in effect
• view allows selection of the Simulator display mode - Source, Assembly or Register
• unlock provides password enabling of unannounced device types

12.1.6 Windows Controls

The following commands control the display of windows and are particularly useful in writing command
macros:

• wasmopens an assembly window displaying addresses, labels, and mnemonics
• wbreakpoint opens a breakpoint window displaying current breakpoints
• wcalls opens a C call stack window
• wcommandopens a command window
• winput opens an input window
• wlist opens a list window displaying contents of a specified file
• wmemory opens a memory window
• woutput opens an output window
• wregister opens a register window
• wsessionopens the Session window
• wsourceopens a Source window
• wstack opens a hardware stack window
• wwatch opens a watch window displaying expressions that have been specified for the

watch list

For more information about macros, see section 8.1, “Creating and Running a Command Macro.”

12-4 Suite56 DSP Simulator User’s Manual Motorola

Command Syntax

12.2 Command Syntax
The command syntax line contains special punctuation to indicate command keywords, required or
optional fields, repeated fields, and implied actions. For example, the syntax of thedisplay, evaluate, wait
commands looks like this:

DISPLAY [ON/OFF/R/W/RW] [reg[_block/_group]/addr[_block]]...

EVALUATE [B(binary)/ D(dec)/ F(float)/ H(hex)/ U(unsigned)]
expression/ { c_expression }

WAIT [count(seconds)]

The punctuation of the syntax line includes:

Table 12-1. Command Syntax Elements in Motorola DSP Documentation

Syntax Syntax Description

CAPS Capitalized words indicate command keywords. The user must enter command keywords exactly as
shown (as opposed to variables or arguments that are provided by the user). Command keywords can
be entered in either uppercase or lowercase in the software tool.

BOLD In the command syntax line, boldface is only used in command keywords. The portion of the command
keyword shown in boldface represents the minimum portion of the keyword that must be typed in order
for the command to be valid. The portion of the keyword that is not in boldface can be typed if desired,
but is not required. For example, in the wait command, the user only needs to type the letter w for the
command to be recognized.

/ The slash is used to separate a list of mutually exclusive choices. The slash is not entered as a part of
the command. For example, in the evaluate command, the first parameter can be one, and only one,
of the following: B, D, F, H, or U.

() Parentheses surround a description of an implied action. This is included to help clarify some of the
abbreviations used in the command syntax line. Neither the parentheses nor the description within are
entered as part of the command. For example, when entering the evaluate command, the optional first
parameter consists of one letter. The words binary, dec, float, hex, and unsigned are only included in
the command syntax line for clarity.

... An ellipsis (three consecutive periods) indicates that a parameter can be repeated several times in a
command line. For example, the display command can specify multiple registers (or register blocks).

[] Square brackets indicate enclose command parameters that are optional. The brackets themselves
are not entered as a part of the command. For example, in the wait command the count parameter is
optional.

Command Parameters: List of Abbreviations

Motorola Command Reference 12-5

12.3 Command Parameters: List of Abbreviations
Many of the command parameters, such asaddr andreg , are abbreviations. The following is a list of
abbreviations used for parameters on the command syntax line:

Table 12-2. Command Parameter Abbreviations

Abbreviation Meaning

addr An address may be specified as a source file line number or as a symbol name if a
previously loaded COFF object file contains symbolic debug information.
Otherwise, a memory space designator must be used. Use thehelp mem command from the
command line of theCommand window to obtain a list of the valid memory space prefixes.

addr_block addr..location/addr#count

bn Break number. A decimal integer constant in the range 1 to 99.

break_action H(halt)/In(increment CNTn)/N(note)/S(show)/X [command]

count Positive integer expression in range 1 to $7fffffff.

dev_num Device number in the form DVn, where n represents the number of the device. Range
is dv0 to dv31 .

dev_type Device type.

expression Any arithmetic expression valid for the DSP Assembler. Register names can also be
used in the expression.

c_expression Any expression valid in the current C program. A c_expression must be enclosed in
curly braces: { }

file Any valid filename, including relative and absolute paths.

ioradix -RD(decimal)/-RF(float or fractional)/-RH(hexadecimal)/-RU(unsigned)

location Integer expression. It will be mapped into the device address range. For ex-ample, -1
translates to the maximum address.

mode Device operating mode in the formMn.

pathname Any valid pathname.

periph Valid peripheral names are displayed by the Simulatorhelp periph command.

pin Valid pin names are displayed by the Simulatorhelp pin command. A pin name may
optionally be preceded bypin: in order to resolve conflicts that may exist between pin and
register names or constants.

pin_block pin..pin

port Valid port names are displayed by the Simulatorhelp port command

12-6 Suite56 DSP Simulator User’s Manual Motorola

Command Parameters: List of Abbreviations

reg Valid register names are displayed by the Simulatordisplay all command. A register
name may optionally be preceded byreg: in order to resolve conflicts that may exist between
register and pin names or constants.

reg_block reg.. reg

reg_group An address may be specified as a source file line number or as a symbol name if a
previously loaded COFF object file contains symbolic debug information.
Otherwise, a memory space designator must be used. Use thehelp mem command from the
command line of theCommand window to obtain a list of the valid memory space prefixes.

topic addr..location/addr#count

Table 12-2. Command Parameter Abbreviations (Continued)

Abbreviation Meaning

asm - Single Line Interactive Assembler

Motorola Command Reference 12-7

12.4 asm - Single Line Interactive Assembler

ASM [B(byte wide)] [(beginning at)addr] [assembler_mnemonic]

Theasm command allows you to create or edit DSP object code in memory using assembly language
mnemonics. The assembler mnemonic is immediately converted into machine language code and stored in
memory. The line of assembly source code is not saved.

[B(byte wide)] Optional. When provided, this parameter causes the
assembler_mnemonic to be divided and stored as a sequence of
single bytes. This option is typically used to store a program as a
byte-wide program in the bootstrap ROM area of the target device. This
option could also be used to store a byte-wide program in external
memory, which might hold, for example, overlay program code.

[(beginning at)addr] Optional. The addr parameter specifies the beginning address to be
edited. The address can be in any of the memory maps (p, x, y, pr, etc.) of
the target device. (The Y memory is only valid for DSP56000 and
DSP96002 family members. Use the Simulator’shelp memcommand to
obtain a list of the valid memory space prefixes.)

If no address is specified, assembly begins in the p (program) memory
space using the current program counter value as the beginning address.
The pr memory designation specifies the special bootstrap ROM area of
the DSP.

[assembler_mnemonic] Optional. The mnemonic to be written to memory. If no
assembler_mnemonic is specified on the command line, an
interactive mode of theasmcommand will be initiated. Invoking the
intereactive mode causes the object code at the beginning address to be
disassembled and displayed on the screen. You can then edit the
instruction. If the new instruction cannot be assembled correctly an error
message is displayed on the error line of the command window and the
cursor is placed at the point of error. Pressing the ESC key causes the
interactiveasmcommand to terminate.

Table 12-3. asm Commands

Command Resulting Simulator Action

asm p:$50 Starts the interactive assembler at address 50 (hex) in p memory

asm x:0 move r0,r1 Writes the instruction move r0,r1 to address 0 in the x memory space.

asm Starts the interactive assembler at the current program counter value.

asm lab_d+5 Starts the interactive assembler at symbolic address lab_d+5.

asm myfile.asm@7 Starts the interactive assembler at the address corresponding to myfile.asm
line 7.

12-8 Suite56 DSP Simulator User’s Manual Motorola

break - Set, Modify, or Clear Breakpoint

12.5 break - Set, Modify, or Clear Breakpoint
BREAK [#bn] [expression] [break_action]

BREAK [#bn] R(read)/ W(write)/ RW(access) reg/addr[_block]
[break_action]

BREAK [#bn[,bn,...]] OFF/ E(enable)/ D(disable)

BREAK [#bn] DR(dma read)/ DW(write)/ DRW(access) addr[_block]
[break_action]

Thebreak command can be used to set, modify, or clear a breakpoint condition and to specify the action
that occurs if the breakpoint condition is true. Thebreak command has four possible forms as indicated by
the four command syntax lines above. The first form causes a break condition if the evaluated expression is
non-zero. The second form causes a break condition if a selected register or memory location is accessed
by the core. The third form permits a breakpoint, or list of breakpoints, to be selectively enabled, disabled
or deleted. The fourth form causes a break condition if a selected memory location is accessed by a DSP
DMA (Direct Memory Access) controller. It is valid only for devices with on-chip DMA controllers.

[#bn] Optional. Break number. The break number is used to assign a number to
a breakpoint definition or to specify an existing breakpoint. A break
number can be any positive decimal integer in the range 1 to 99. If you do
not specify a breakpoint number, the Simulator automatically assigns the
lowest unused number.

[expression] Optional. A breakpoint expression can be any logical expression that is
valid for the DSP Assembler. If the .cld file contains C symbolic debug
information, breakpoint expressions can include any valid C expression
for the program. (Remember to enclose C expressions in curly brackets.)

Another useful form of a breakpoint expression breaks at an address only
when the opcode from that memory location is being decoded for next
cycle execution. Other forms of the breakpoint expressions that check the
value of thepcregister or check for a read of ap memory location are
less definitive due to the pipelined prefetch of the device.This special
form of breakpoint is indicated by specifying the breakpoint expression
as a single address inp memory.

asm b y:$040100 Performs byte-wide assembly from address $40100 in the pr memory space.
Each byte of the instruction is stored in successive locations, so that two or
three locations are required to store each 16- or 24-bit instruction. If
assembled into program memory, this code cannot be executed directly; it is
intended for use with code similar to the byte-wide loader in the ROM
bootstrap code. Byte-wide assembly may be used interactively (as in this
example) or to assemble a single instruction.

Table 12-3. asm Commands

Command Resulting Simulator Action

break - Set, Modify, or Clear Breakpoint

Motorola Command Reference 12-9

The following is a list of operators that can be used in the breakpoint
expression:

Table 12-4. Breakpoint Operators

Operator Operator Function

< less than

&& logical "and"

<= less than or equal to

|| logical "or"

== equal to

! logical "negate"

>= greater than or equal to

& bitwise "and"

> greater than

| bitwise "or”

!= not equal to

~ bitwise one’s complement

+ addition

^ bitwise "exclusive or"

- subtraction

<< shift left

/ division

>> shift right

12-10 Suite56 DSP Simulator User’s Manual Motorola

break - Set, Modify, or Clear Breakpoint

See Chapter 5, "Device I/O and Peripheral Simulation," on page 5-1 for
more detailed information on expression evaluation.

The breakpoint expression usually involves comparison of register or
memory values. Any register name may be used in an expression. There
are also two special flag variables that may be referenced in the
breakpoint expression:

[break_action] Optional. The Simulator can take various actions when a breakpoint is
encountered during DSP program execution. If nobreak_action
parameter is entered, the default action is to halt program simulation and
to display all enabled registers and memory blocks. Alternative Simulator
actions can be specified by entering one of the following
break_action parameters:

Table 12-6. Break_Action Parameters

R(read)/ W(write)/ RW(access)

Used with the second form of thebreak command. Indicates the type of
access (read, write, or both) of a register or address that should be
detected in order for the breakpoint condition to be true.

reg/addr[_block] Register or address (or address block). A range of addresses can be
specified in two ways. One way is to type the beginning address followed
by two periods and the ending adress. For example:

Table 12-5. Flag Variables in a Breakpoint Expression

Variable Expression Returns

eof True if an end-of-file condition occurs in an input file assigned
to a peripheral or memory location.

jump True if a "jump" change of flow occurs during code execution.

Parameter Resulting Simulator Action

H Halts execution. This is the default when no break_action is specified.

I n Increments the n counter register (CNTn) , where n represents the
number of the counter to increment. There are four possible counters
(n=1..4).

N Note - displays the breakpoint expression in the Session window and
continues with execution.

S Show - displays the enabled register/memory set in the Session window
and continues with execution.

X Executes a Simulator command at the breakpoint. The command can be
any valid Simulator command, except for commands that are related to
device execution. Device execution commands, such as step, trace or
go, will not execute.

break - Set, Modify, or Clear Breakpoint

Motorola Command Reference 12-11

p:$101..p:$107 . Another way is to type the beginning address
followed by the pound sign and the size of the range. For example, to
specify a range from address p:$101 to p:$107 type:p:$100#7.

If the .cld file contains symbolic debug line number information,
breakpoint addresses may also be specified by using line numbers in
source code that correspond to an address in memory.

[#bn[,bn,...]] Optional. Break number(s). Used with the third form of thebreak
command to specify one or more break numbers. Each break number
should be separated by a comma. Consecutive numbers can be
represented by two periods. For example, to indicate break numbers 3
through 8, type:#3..8

OFF/ E(enable)/ D(disable)

Used with the third form of thebreak command. This form of the beak
command is used to indicate that the breakpoint should be removed
(OFF), enabled (E), or disabled (D).

DR(dma read)/ DW(write)/ DRW(access)

Used with the fourth form of thebreak command. Indicates the type of
access by a DSP DMA (Direct Memory Access) controller that should be
detected for the breakpoint condition to be true.

12-12 Suite56 DSP Simulator User’s Manual Motorola

break - Set, Modify, or Clear Breakpoint

Table 12-7. BREAK Commands

Command Resulting Simulator Action

break Display all currently enabled breakpoints.

break off Remove all breakpoints.

break #1,3,5..9 off Remove breakpoints numbers 1, 3 and 5 through 9.

break pc>=$500 Halt DSP program simulation and display enabled registers and
memory when the program counter register is greater than or
equal to hexadecimal 500.

break (lc<10)&&(pc>100) Halt if the loop counter is less than 10 and the program counter
is greater than 100.

break jump n Display breakpoint message if a jump change of flow occurs
during execution.

break eof||pc>$fff Halt if an end of file condition occurs in an assigned peripheral
input file or if the program counter is greater that hexadecimal
FFF.

break r0==r1 Halt when the value of register r0 equals the value of register r1.

break lc>0&&jump i1 Increment variable cnt1 if a jump occurs and the loop counter is
greater than 0.

break r r0 Halt if register r0 is accessed for a read operation.

break p:100 Halt if the execution address is p:100.

break w lc Halt if the loop counter register is written during code execution.

break 10 x evaluate h
r0

Set a breakpoint at the address corresponding to line 10 of the
current source file. Execute the Simulator command "evaluate h
r0" when the breakpoint occurs.

break myfile.asm@20 Set a breakpoint at the address corresponding to line 20 of
source file myfile.asm.

break r xdat..xdat+50 Halt if a read occurs from one of the 50 addresses beginning at
the address associated with the symbol xdat.

break rw p:30..40 s Display enabled registers and memory and continue program
simulation if any program memory location from decimal 30 to 40
is accessed.

break #1..10 d Disable breakpoints numbers 1 through 10.

break {j==2} Halt if the C expression "j==2" is true.

break e Enable all breakpoints.

change - Change Register or Memory Value

Motorola Command Reference 12-13

12.6 change - Change Register or Memory Value

CHANGE [register[_block]/addr[_block] [expression]]...

Thechangecommand can be used to change the value of a register, memory location, block of registers, or
block of memory.

[register[_block]/addr[_block]

Optional. The register(s) or adress(es) to be changed. A register block is
represented by two register names separated by two periods. For
example,r0..r3 means registers r0 through r3. A memory block can
be specified usingstart_addr #count, wherecount represents
the size of the block. An address block can also be specified with
start_addr..end_addr . For example:p:$5#20 indicates 20
locations beginning from program memory location 5;p:5..24
indicates program memory locations 5 through 24.

[expression]] Optional. The expression to write to the specified register or address. The
expression can be a simple constant value or a complex expression with
multiple operators and operands. A more extensive discussion of valid
expressions is presented in Chapter 5, "Device I/O and Peripheral
Simulation," on page 5-1.

Multiple register names, memory locations and expressions can be
specified on the same command line. Each specified destination must be
followed by the value or expression to be assigned to it.

An interactive mode of thechangecommand can be initiated by specifying a single register or memory
location without an associated expression. In this mode each register or memory location can be examined
and optionally modified. Typing theESCkey causes the interactive mode of thechangecommand to
terminate.

Table 12-8. CHANGE Commands

Command Resulting Simulator Action

change pc Displays register values individually starting with the
program counter and prompts you for new values.

change xi:$55 Displays internal x memory location hexadecimal 55 and
prompts you for a new value.

change p:$20 $123456 Changes the value at p memory address hexadecimal 20
to hexadecimal 123456.

change xdat $234 Changes the value at the x memory address that
corresponds to symbolic label xdat to hexadecimal 234.

change xdat..xdat+5 35 Changes the values in the memory block beginning at
the address corresponding to symbolic label xdat and
ending at xdat+5 to decimal value 35.

12-14 Suite56 DSP Simulator User’s Manual Motorola

copy - Copy a Memory Block

12.7 copy - Copy a Memory Block

COPY (from)addr[_block] (to)addr

Thecopy command copies memory blocks from one location to another. The source and destination
memory maps may be different.This allows you to move data or program code from one memory map to
another or to a different address within the same memory map.

(from)addr[_block] The memory address or memory address block from which to copy. A
memory block can be specified usingstart_addr #count, where
count represents the size of the block. An address block can also be
specified withstart_addr..end_addr . For example:
p:$5#20 indicates 20 locations beginning from program memory
location 5;p:5..24 indicates program memory locations 5 through 24.

(to)addr The memory address to which the data will be copied. If an
addr_block was specified, this address will be the beginning address
to which the data will be copied.

change r0..r3 0 pi:$30..$300 0
x:$fffe $55 pc 100

Changes the values in registers r0 through r3 to 0,
internal p memory addresses hexadecimal 30 through
300 to 0, x memory address hex fffe to hex 55 and the
program counter to decimal 100.

Table 12-9. COPY Commands

copy pi:$100..$500 x:$500 Copies the values located in internal program memory,
addresses hexadecimal 100 through hexadecimal 500 to x
memory starting at address hexadecimal 500.

copy x:0#100 p:0 Copies one hundred memory locations beginning at x memory
address 0 to p memory beginning at address 0.

copy lab_1#100 lab_2 Copies one hundred memory locations beginning at the
memory location corresponding to symbolic label lab_1 to
memory beginning at the address corresponding to symbolic
label lab_2.

copy xdat..xdat+40 ydat Copies 40 memory locations beginning at the address
corresponding to symbolic label xdat to the block beginning at
the address corresponding to symbolic label ydat.

copy p:0..20 p:40 Copies p memory addresses 0 through 20 to p memory
addresses 40 through 60.

Table 12-8. CHANGE Commands (Continued)

Command Resulting Simulator Action

device - Multiple Device Simulation

Motorola Command Reference 12-15

12.8 device - Multiple Device Simulation
DEVICE [DVn [dev_type/ ON/ OFF/ X]]

Thedevicecommand allows you to create and manage simulated target systems consisting of multiple
DSP devices. It allows you to add a simulated device on which commands can be executed, to disable or
enable existing devices, or to delete a device. If thedevicecommand is typed with no parameters, a list of
all the possible device numbers that you can assign will be displayed including each device’s status and
device type.

DVn Optional. Device munber. The device number is a number assigned to a
particular device. The number is in the formDVn, wheren is an integer
from 0 to 31. (A target system can be comprised of up to 32 devices.)

If the devicecommand is executed with a device number and no dev_
type, the device number specified will become the default device. If the
device does not yet exist, it will be created with the default device type
and made active.

[dev_type] Optional. Specifies the device structure to be simulated by deviceDVn.
Non-disclosed devices must be unlocked with theunlock command prior
to using thedevicecommand.

ON Optional. Enables the specified device (DVn). This means that the device
will respond to commands that cause device execution (go, stepor
trace). During execution cycles, each enabled device executes a single
clock cycle in turn. Device to device pin interconnections specified by the
input command are updated following each cycle for active devices.

OFF Optional. Disables the specified device (DVn). Disabling a device causes
the device to not respond to commands that cause device execution (go,
stepor trace).

X Optional. Deletes device DVn. If device DVn is the current device, it will
be deleted and another device will become the current device. The
Simulator requires at least one device to be allocated, which means that it
is not possible to delete the current device if it is the only device in the
target system.

Table 12-10. DEVICE Command

Command Resulting Simulator Action

device Displays a list of all devices and their current status. Also displays
the list of possible device types.

device dv9 Makes device dv9 the current device. If device dv9 does not exist,
creates device dv9. Because no device type is specified, it is
initialized with the default device type.

device dv1 on Enables device dv1 cycle execution. If device dv1 doesn’t exist,
creates it with the default device type.

device dv0 56116 Creates device dv0 and initializes it as device type 56116.

12-16 Suite56 DSP Simulator User’s Manual Motorola

disassemble - Object Code Disassembler

12.9 disassemble - Object Code Disassembler

DI SASSEMBLE [B(byte wide)] [addr[_block]]

Thedisassemblecommand allows you to review DSP object code in its machine language and assembly
language mnemonic format. Invalid opcodes are disassembled to a define constant (DC) mnemonic.

[B(byte-wide)] Optional. Constructs the instruction words by taking one byte from each
word of memory, starting from the specified address.

[addr[_block] Optional. Specifies the address or range of addresses to disassemble.
(Symbolic labels, and line numbers in source code that correspond to an
address in memory can also be used.)

A range of addresses can be specified by typing
start_addr #count, wherestart_addr is the first address of
the block andcount represents the size of the block. An address
block can also be specified by typingstart_addr..end_addr .
For example:p:5#20 indicates 20 locations beginning from program
memory location 5;p:5..24 indicates program memory locations 5
through 24.

If no address is specified, the next 20 instructions will be disassembled,
beginning with the address indicated by the value in the program counter.

Table 12-11. DISASSEMBLE Commands

Command Resulting Simulator Action

disassemble Disassemble the next 20 instructions beginning with instruction pointed to by the
program counter. Repeatedly entering this command will result in consecutive 20
instruction blocks being disassembled.

disassemble
pr:0..20

Disassembleprogram bootstrap ROM memory address block 0 to 20.

disassemble
lab_1..lab_2

Disassemble memory address block beginning at the address corresponding to
symbolic label lab_1 and ending at lab_2 .

disassemble
xdat#20

Disassemble10 instructions beginning at the address corresponding to symbolic
label xdat .

disassemble 7 Disassemble instructions beginning at the address corresponding to line 7 in the
current source file.

disassemble
test.asm@8

Disassemble instructions beginning at the address corresponding to line 8 in the
source file test.asm .

disassemble
x:$50#10

Disassemble10 instructions starting at x memory map hex 50.

disassemble b
y:$1000#$40

Disassemble40 instructions starting at address y:$1000. The instruction words are
constructed by taking one byte from each location; thus depending on the target
processor, two or three locations are required to hold each instruction word.

display - Display Register or Memory

Motorola Command Reference 12-17

12.10 display - Display Register or Memory

DISPLAY [ON/ OFF/ R/ W/ RW] [reg[_block/_group]/addr[_block]]...

DISPLAY V(version)

Thedisplay commandallows you to examine the contents of a specific register, a register group or a
memory block. It can also be used to enable, conditionally enable, or disable the particular registers or
memory locations that are displayd when a debug command such asstepor trace is executed. You can
also display the Simulator version number. Entering thedisplay command with no parameters willdisplay
all enabled registers and memory blocks in the Session window.

The default radix for the display of most registers and memory locations is hexadecimal. However, you can
specify the display radix of each register and memory location individually by using theradix command.

[ON/ OFF/ R/ W/ RW] Registers and memory locations can be enabled or disabled by entering
the command with one of these keywords:

TheR, W, andRWfunctions initiate the accumulation of a list of
accesses from display to display. All accesses to register locations can be
saved. The memory lists store a maximum of 16 memory accesses (for
each memory space). If more than 16 locations were accessed since the
previous display, only the last 16 will be stored. Register and memory
locations that have been accessed for a write operation are highlighted
when displayed.

Table 12-12. DISPLAY Enable Keywords

Enable Keyword Resulting Simulator Action

ON Enables the specified registers and memory locations so that
they are always automatically displayed when program
execution is stopped. If no registers or memory locations are
specified, all registers are enabled for display.

OFF Disables the specified registers and memory locations so that
they are not automatically displayed when program execution
is stopped. If no registers or memory locations are specified,
all registers and memory locations are disabled for display.

R Displays the following registers and memory locations if they
were accessed for a read operation since the last display.

W Displays the following register and memory locations if they
were accessed for a write operation since the last display.

RW Displays the following register and memory locations if they
were accessed for read or write operations since the last
display.

12-18 Suite56 DSP Simulator User’s Manual Motorola

display - Display Register or Memory

[reg[_block/_group]/addr[_block]]...

Optional. The register(s) or address(es) to display. Entering thedisplay
commandwith a register or address parameter, but without one of the
"enable" keywords, will cause immediate display of the
registers/addresses locations. This does not affect their "enable" status.

Peripheral names can be used in the place of register names to enable or
display all the registers associated with that peripheral. The valid
peripheral names for the selected device can be obtained by using the
Simulator’shelp periph command. The wordall can be used to enable
or display all of the device registers.

V(version) Entering thedisplay commandwith the single parameterv will display
the Simulator version number in the Session window.

Table 12-13. DISPLAY Commands

Command Resulting Simulator Action

display on Enables all registers for display

display on pi:0..20 xi:30..40 Enable internal p memory address block 0 to 20 and
internal x memory address block 30 to 40 for display.

display off
display on core ssi0

Disables display of all registers and addresses, then
enables display of the DSP core registers and the
SSI0 peripheral registers.

display w r0..r3 x:0..100 Displays registers r0 through r3 and x memory
locations 0 through 100 if they have been written to
since the last display.

Table 12-14. DISPLAY Commands Without Enable Keywords

Command Resulting Simulator Action

display Immediately displays all currently enabled registers and memory.

display p:0..300 Immediately displays p memory addresses 0 through 300.

display test.asm@7 Immediately displays memory location corresponding to line 7 of
source file test.asm.

display xdat Immediately displays memory location corresponding to symbolic
label xdat.

display all Immediately displays all registers plus the enabled memory
locations.

down - Move Down the C Function Call Stack

Motorola Command Reference 12-19

12.11 down - Move Down the C Function Call Stack

DOWN [n]

Thedown command is used to move down the call stack. It can be used in conjunction with thewhere,
frame, andup commands to display and traverse the C function call stack.

After entering a new call stack frame usingdown, that call stack frame becomes the current scope for
evaluation. This means that for C expressions, theevaluatecommandacts as though this new frame is
the proper place to start looking for variables.

[n] Optional. The number of frames to move down. If no number is specified,
the Simulator moves down one frame in the call stack.

Table 12-15. DOWN Commands

Command Resulting Simulator Action

down Moves down the call stack by one stack frame.

down 2 Moves down the call stack by two stack frames.

12-20 Suite56 DSP Simulator User’s Manual Motorola

evaluate - Evaluate an Expression

12.12 evaluate - Evaluate an Expression

EVALUATE [B(binary)/ D(dec)/ F(float)/ H(hex)/ U(unsigned)]
expression/ { c_expression }

Theevaluatecommand is used as a calculator for evaluating arithmetic expressions or for converting
values from one radix to another.

[B(binary)/ D(dec)/ F(float)/ H(hex)/ U(unsigned)]

Optional. Specifies the radix in which the result of theexpression
will be displayed. If a radix is not specified in theevaluatecommand
line, the current default radix (specified by theradix command) will be
used.

expression/ { c_expression }

An expression consists of an arithmetic combination of operators and
operands. An operand can be a register name, a memory location, or a
constant value.

The order of evaluation of an expression’s operators will be associated
from left to right. Parentheses can be used to force the order of evaluation
of the expression. A more extensive discussion of the expressions which
are valid for theevaluatecommand is presented in Chapter 5, "Device
I/O and Peripheral Simulation," on page 5-1.

When values held in the device’s registers or memory spaces are used in
an expression that involves a multiply operator, the display radix
(specified by theradix command) will determine whether the operation
executed is a floating point or integer multiply.

Table 12-16. EVALUATE Commands

Command Resulting Simulator Action

evaluate r0+p:$50 Adds the value in r0 register to the value in program
memory address hexadecimal 50 and displays the result
using the default radix.

evaluate b $345 Converts hexadecimal 345 to binary and displays the result.

evaluate lab_d Displays the address of the location associated with
symbolic label lab_d .

evaluate {count} Displays the value of the C variable count .

evaluate h %10101010&p:r0 Calculates the bitwise AND of the program memory address
specified by the value in r0 register and the binary value
10101010 and displays the result in hexadecimal.

frame - Select C Function Call Stack Frame

Motorola Command Reference 12-21

12.13 finish - Execute Until End of Current Subroutine

FINISH

Thefinish commandexecutes instructions until the current subroutine or function call is completed. This
is useful if execution has for some reason been halted in the middle of a subroutine or function.

12.14 frame - Select C Function Call Stack Frame

FRAME [#n]

The frame commandis used to select the current call stack frame. It can be used in conjunction with the
where, down, andup commands to display and traverse the C function call stack.

[#n] Optional. Specifies the number of the frame in the call stack which will
be selected as the current call stack frame.

After entering a new call stack frame using theframe command, that call stack frame becomes the
current scope for evaluation.

The frame command executes instructions until a return-from-subroutine (RTS) instruction is executed
within the current subroutine. The Simulator simply steps, checking if any instruction is an RTS. If so, that
RTS is executed, and instruction execution halts immediately afterward. While stepping, if a branch to
subroutine or jump to subroutine instruction is encountered, tests for the RTS instruction are suspended
until execution resumes at the address following the subroutine call..

Table 12-17. FRAME Commands

Command Resulting Simulator Action

frame #2 Selects call stack frame number two.

frame #0 Selects call stack frame number zero
(innermost frame).

12-22 Suite56 DSP Simulator User’s Manual Motorola

go - Execute DSP Program

12.15 go - Execute DSP Program

GO [(from)location/ R(reset)] [(to break number) #bn]
[(occurrence) : count]

Thego commandbegins execution of DSP code. The Simulator fetches, de-codes, and executes
instructions in the exact manner as the device that is being simulated. Thego commandwill pass control
to the Simulator until a breakpoint isreached, oruntil program execution is otherwise stopped.

Entering thegocommand with no parameters will start simulation from the current program counter value.

[(from)location/ R(reset)]

Optional. Thelocation parameter represents the address, symbolic
label or line number (if symbolic debug information has been loaded)
from which execution will begin.The reset (R) parameter causes a
simulation of the reset sequence in the processor. The device registers are
reset and execution begins at the reset exception address. If an address or
reset parameter is included, the instruction pipeline, instruction counter,
and cycle counter will be cleared before program execution begins.

[(to break number) #bn]

Optional. The optional#bn parameter may be used to cause execution
to halt if the breakpoint condition represented by break number#bn
occurs. All other breakpoint conditions are ignored.

[(occurrence) : count] Optional. The:count parameter causes execution to halt only if the
breakpoint has occurredcount times. If #bn is not specified,
simulation will stop ifcount number of breakpoint conditions have
occurred.

Table 12-18. GO Commands

Command Resulting Simulator Action

go Starts program simulation from the current instruction. Stops at the first
occurrence of any breakpoint.

go $100 Starts program simulation at program memory address hex 100 after clearing
the instruction pipeline. Stops at the first occurrence of any breakpoint.

go r Clears the Simulator pipeline and starts program execution at the reset vector.
The simulated machine state is also reset according to the processor reset
sequence.

go #5 Begins execution from the current instruction. Halts on the first occurrence of
breakpoint number 5.

go #5 :3 Begins execution from the current instruction. Halts on the third occurrence of
breakpoint number 5.

go lab_d #5 :3 Starts execution from symbolic address lab_d after clearing the Simulator
pipeline. Halts on the third occurrence of breakpoint number 5.

help - Simulator Help Text

Motorola Command Reference 12-23

12.16 help - Simulator Help Text

HELP [command/reg/topic]

Thehelp command provides syntax and examples of Simulator commands, descriptions of device register
bit fields, and help on other topics related to device or Simulator operation. If no keyword is entered the
Simulator displays a summary of the possible help topics.

[command/reg/topic] Optional. The command, register, or topic for which to display help. If
the keyword is a command name the Simulator displays a summary of
that command’s parameters along with a brief description and examples.
If the keyword is a register name the Simulator displays the specified
register’s contents along with the help text associated with the register.

Table 12-19. HELP Syntax

The topic keywords in Table 12-20 provide online help for the described topics.

Table 12-20. List of Help Topic Keywords

Command Resulting Simulator Action

help Displays a summary of all available commands and their parameters.

help asm Displays a summary of the assemble command and its parameters.

help omr Displays the contents of the DSP’s Operating Mode Register.

Keyword Help Topic

io list of on-chip io registers and their addresses

int list of interrupt vector addresses for the device

periph list of peripheral names

pin list of pin names and numbers, and the current pin states

port list of port names

mode initial chip operating mode summary

map memory map descriptions for various omr settings

mem memory names with block addresses

sym display program symbol table names and values

reg display register size, register and peripheral index

stack display of values on the device stack

12-24 Suite56 DSP Simulator User’s Manual Motorola

history -Disassemble Previously Executed Instruction

12.17 history -Disassemble Previously Executed Instruction

HI STORY

Thehistory command disassembles and displays the previous 32 instructions executed by the device. The
instructions are displayed in the order that they were executed, with the mostrecent instruction appearing
at the bottom of the list. The last instruction in the list has been fetched and decoded by the device and will
enter the execute phase in the next device cycle. It is in the same state as instructions that are disassembled
and displayed at the end of each trace display.

A typical use for this command would be to determine the sequence of instructions that terminated in a
user-defined breakpoint. You would set the breakpoint condition using thebreak command, then issue
thego command. When the break condition is met, instruction execution halts and the currently enabled
registers are displayed. You can then issue thehistory command to view the last 32 instructions that
executed prior to the breakpoint.

The device execution history can also be logged continuously to an output file using the Simulatoroutput
command.

12.18 input - Assign Input File

I NPUT [#n] [T(timed)] addr/port/periph/pin[_group] OFF/ TERM/file
[-RD/ -RF / -RH/ -RU]

I NPUT [#n] pin (from)[DVn:]pin

I NPUT [#n] addr (from)[DVn:]addr

The input command causes the retrieval of data from a source that you specify to a peripheral, memory
location, or device pin . The input data is in ASCII format. Valid port, peripheral and pin names for the
device can be listed with thehelp port, help periph andhelp pin commands.

There are three forms of theinput command. The first form allows input to a memory location, port,
peripheral, or pin from data provided either in a file or from the keyboard. The second form allows input to
a device pin from another device pin without having to store the data in a disk file. The third form of the
input command causes the Simulator to read the memory location of a specified source (specified by
(from)[dv n:]addr) each time the destination memory address is accessed for a read. This enables
simulation of a system consisting of multiple devices via dual-port memory.

Data values may be expressed in hexadecimal, decimal, or floating point for memory and peripheral name
assignments, as one of 5 input values (0,1,n,p or X) for assignment to individual digital pins, or as single
precision floating-point values for analog input pins.

[#n] Optional. The number that will be assigned to this input. Input numbers
do not have to be consecutive - they can be assigned arbitrarily, which
means that you can assign input numbers in any way that helps you
organize the sources of the inputs. If no number is provided, the
Simulator will automatically assign the next available number.

[T(timed)] Optional. When included with theinput command, this parameter
indicates that the source data is in the form of time-data pairs.

addr/port/periph/pin[_group]

input - Assign Input File

Motorola Command Reference 12-25

The destination of the input data. All subsequent reads of the destination
will reference the source of the input data.

OFF/ TERM/file The source of the input data. Providing theOFF parameter disables the
input specified by#n. Providing theTERMparameter indicates that the
input data will be typed from the keyboard. Providing a filename
indicates that the input data is contained infile . If a filename suffix is
not specified, the Simulator will assume ".io " for a non-timed input file
and ".tio " for a timed input file.

[-RD/ -RF / -RH/ -RU] Optional. The default input radix for the data may be specified by using
-RD for decimal,-RF for fractional,-RH for hexadecimal, or-RU for
unsigned. Hexadecimal input is the default for addr, port and peripheral
data values. Input analog pin data files must be assigned with the-RF
radix designator, and the file data must be single precision floating point
values. The time value is always expressed in decimal. Chapter 3, "Object
Files and Data Files," on page 3-1, contains an extensive description of
the input file format.

pin In the second form of theinput command, this parameter represents the
name of the pin that is the destination of the input data. The second form
of the input command allows input to a device pin from another device
pin without having to store the data in a disk file.

(from)[DVn:]pin In the second form of the input command, this parameter represents the
name of the pin that is the source of the input data. The source pin may
optionally be preceded by a device number to allow the simulation of pin
to pin connections in systems consisting of multiple devices.

addr Used with the third form of theinput command, this parameter
represents the destination address. All subsequent reads of this memory
address will reference the address specified as theinput source.

(from)[DVn:]addr Used with the third form of theinput command, this parameter
represents the address of the source of the input data. The address may
optionally be preceded by a device number (DVn). The third form of the
command causes the Simulator to read the memory location of a specified
source (specified bydv n:addr) each time the destination memory
address is accessed for a read. This enables simulation of a system
consisting of multiple devices via dual-port memory. The source device
must exist (new devices can be added with thedevicecommand) prior
to issuing this form of theinput command.

Table 12-21. INPUT Commands

Command Resulting Simulator Action

input xe:$800 xfile -rd Gets values for external memory location x:800 from input
file "xfile.io". The data values are stored in decimal form in
the input file.

input ssi0 hfile G ets values for the SSI0 peripheral from input file "hfile.io".

12-26 Suite56 DSP Simulator User’s Manual Motorola

input - Assign Input File

input d15..d0 dfile Gets values for pins D15 through D0 from input file "dfile.io".

input d15..d0 dfile Gets values for pins D15 through D0 from input file "dfile.io".

input irqb dv1:pb0 Inputs values for the current device’s irqb pin from device
dv1’s pb0 pin.

input t irqa term Inputs time and data pairs from the terminal for the device
IRQA pin.

input x:500 dv5:x:3000 Inputs data for memory reads of x:500 of the current device
from device number 5 address x:3000.

input #2 x:$800 xfile -rd Gets values for external memory location x:800 from input
file "xfile.io". The data values are stored in decimal form in
the input file. Input assignment number 2 is explicitly
replaced due to the #2 in this command form.

input #2 off Inputs assignment number 2 is explicitly deleted by index
number.

input mic micfile -rf Inputs untimed analog pin data for the mic analog pin from
the file "micfile.io".

Command Resulting Simulator Action

list - List Source File Lines

Motorola Command Reference 12-27

12.19 list - List Source File Lines

LI ST [+/-/./addr]

The list command displays source lines or disassembled instructions from the specified source file, or
beginning at the specified address.

The current display mode determines whether a source file or assembly mnemonics will be displayed. If
the Simulator is in the register display mode, this command will switch it to the source display mode and
display the source file lines associated with the specified address or line number. If the display mode is
already source or assembly, the display mode is not altered. The assembly display mode displays
disassembled instructions corresponding to the specified address or line number.

[+/-/./addr] Optional. The next or previous pages of the currently displayed source
file may be selected by specifying “+” or “-” . In addition, the source or
assembly associated with the current execution address may be selected
by specifying “.” (period) or by using thelist command without a
parameter.

If the addr parameter is used with thelist command, the disassembled
instructions from the specified address will be displayed. Alternatively, a
line number can be provided in place ofaddr (symbolic debug
information must be loaded).

Table 12-22. LIST Commands

Command Resulting Simulator Action

list 20 Lists source or assembly corresponding to line 20 of the current source file.

list test.asm@20 Lists source or assembly corresponding to line 20 of the source file test.asm.

list test.asm Lists source or assembly corresponding to line 1 of the source file test.asm.

list + Displays the next page of the current source file or assembly.

list . Displays source or assembly corresponding to the current execution address.

list- Displays the previous page of the current source file or assembly.

list test.asm Lists source or assembly corresponding to line 1 of the source file test.asm.

list lab_1 Lists source or assembly corresponding to symbolic address lab_1.

12-28 Suite56 DSP Simulator User’s Manual Motorola

load - Load DSP Files or Configuration

12.20 load - Load DSP Files or Configuration
LOAD [S(state)| M(memory-only)| D(debug symbols-only)] (from)file

The load commandcan be used to load DSP object module format (.lod) files or DSP COFF (.cld) files
into the Simulator memory or to load a previously saved simulation state file.

[S(state)| M(memory-only)| D(debug symbols-only)]

Optional. If the S key character is specified, the Simulator will load
filename as a Simulator state file. The Simulator state file can be created
using the Simulatorsave scommand. Loading the Simulator state
changes the entire setup of the Simulator to the previous definition saved
in the state file.

If the Mkey character is specified, the Simulator will load object file
without modifying the Simulator’ s symbolic debug information.

If the Dkeycharacter is specified, the Simulator will load only the
symbolic debug information from the object file. The device memory
contents are not altered. Only the COFF format files (.cld suffix) are
supported by this option.

(from)file If only a file parameter is specified, the Simulator assumes that the file is
an object file. The object file may be in either the special ASCII OMF
format Chapter 3, "Object Files and Data Files," on page 3-1, or in the
DSP COFF format generated by the DSP Assembler. The OMF format
file can be created using the Simulatorsavecommandor with a text
editor. A directory path may be specified with the filename. If no
filename suffix is specified, the Simulator will search first for an OMF
format ".lod" file, then for a COFF format ".cld" file. Loading a COFF
format file replaces the Simulator’s symbolic debug information unless
the Moption is specified.

If the S parameter is specified but no filename suffix is specified, the
".sim" file extension is assumed.

load - Load DSP Files or Configuration

Motorola Command Reference 12-29

Table 12-23. LOAD Commands

Command Resulting Simulator Action

load \source\testloop.obj Loads the OMF format "testloop.obj" file from directory "source".

load \source\testloop.cld Loads the COFF format "testloop.cld" file from directory "source",
including the memory contents and any symbolic debug
information contained in the file.

load lasttest Loads the OMF format "lasttest.lod" file from current directory.

load d test.cld Loads the symbolic debug information from the COFF format
"test.cld" file, ignoring the memory contents of the file.

load m test.cld Loads the COFF format "test.cld" file, ignoring any symbolic
debug information in it.

load s lunchbrk Loads "lunchbrk.sim", replacing the entire current Simulator
state.

12-30 Suite56 DSP Simulator User’s Manual Motorola

log - Log Commands, Session, Profile

12.21 log - Log Commands, Session, Profile

LOG [OFF] [C(commands)/ S(session)/ P(profile) [file [- A/- O/- C]]]

LOG [OFF] V(source display status line)

The log command allows you to record command entries, to record all session display output, or torecord
an analysis of DSP program execution. Record of commands is useful as a method of generating macro
command files. Recording all session display output provides a convenient way for you to review the
results of an extended sequence of commands. Since the output log files are in ASCII format, they can
easily be printed or reviewed using an editor program. Recording a program profile assists in the analysis
of program structure and execution characteristics.

Entering thelog command with no parameters will cause the Simulator to display the currently opened log
filenames.

[OFF] Optional. TheOFFparameter is used to terminate logging.

[C(commands)/ S(session)/ P(profile) [file [- A/- O/- C]]]

The CandS parameters are used to specify whether the logfile will
contain only commands (C), or all session output (S). A keycharacter
-A , -O , or -C may be specified to select append, overwrite, or cancel
if the filename already exists. If no append/overwrite option is included
with thelog command, you will be prompted during command execution.
If no suffix is specified forfile , the suffixes ".cmd" is automatically
added to the command log file; similarly ".log" is automatically added to
the session log file.

The P parameter specifies that a program execution profile is to be
created. The program to be profiled must be loaded before issuing the
’ log p ’ command. Both memory and symbols must be loaded.
Information is gathered as program execution is simulated, and the
profile output files are written when the profiling is terminated with the
commandlog off p . For profile logging, two suffixes are used, a
".log" file which contains plain text which may be printed on any
80-column printer, and a ".ps" file which is formatted for a postscript
printer.

V(source display status line)

Used with the second form of thelog command, theV parameter enables
logging of the source display status line to a session log file. It is
primarily intended for testing the Simulator display.

In multiple device simulations, there is a separate session log file associated with each simulated device,
but there is only a single command log associated with the entire multiple device simulation. If a device
type is changed using thedevicecommand, the user interface information associated with the discarded
device type, including the session log file name, is cleared; so it is best to specify thelog scommand
following thedevicecommand for a particular device.

more - Enable/Disable Session Paging Control

Motorola Command Reference 12-31

Table 12-24. LOG Commands

12.22 more - Enable/Disable Session Paging Control

MORE [OFF]

Themore commandallows you to enable or disable the paging of data in the Session window. This is
particularly useful when displaying large amounts of data and you wish to examine page by page.

[OFF] Optional. Turns off paging.

The paging feature is turned off by default. Data will scroll vertically across the screen when it is larger
than the size of the screen.

Command Resulting Simulator Action

log Displays currently opened log files.

log s \debugger\session1 Logs all display entries to session1.log in directory \debugger

log c macro1 -a Logs all commands to the file "macro1.cmd". Append if it
already exists.

log off c Terminates command logging.

log off Terminates all logging.

log v
log s session1

Logs source display status line and all display entries to
"session1.log"

load px41v17.cld
log p px41v17 -o

Loads memory and symbols for program px41v17 and log the
program profile in files px41v17.log and px41v17.ps.
Overwrites these files without warning if they already exist.
Note that the program(s) to be profiled must have been loaded
before this log command is issued.

Table 12-25. MORE Commands

Command Resulting Simulator Action

more Turns on session display paging control.

more off Disables session display paging control (reset or default
state).

12-32 Suite56 DSP Simulator User’s Manual Motorola

next- Step Over Subroutine Calls or Macros

12.23 next- Step Over Subroutine Calls or Macros

NEXT [count] [LI (lines)/ IN (instructions)] [H(halt at breakpoints)]

Thenext command functions the same as thestepcommand, except that if the next instruction to be
executed calls a subroutine or begins execution of a macro, all the instructions of the subroutine or macro
are executed before stopping to display the enabled registers. In order to recognize macros, the symbolic
debug information for the program code must be loaded.

[count] Optional. When included, thecount parameter indicates the number of
lines/instructions to execute before halting execution. If nocount is
specified, the defaultcount is 1.

[LI (lines)/ IN (instructions)]

Optional. As the default, thenext command executes the next instruction
if viewing the assembly or register screens, and the next line if viewing
the source screen. Theli andin parameters permit source line or
instruction increments to be specified explicitly.

[H(halt at breakpoints)]

Optional. As the default, all breakpoints are ignored while thenext
command is executing. Theh parameter enables halting at breakpoints.

Table 12-26. NEXT Commands

Command Resulting Simulator Action

next Steps over subroutine calls or macros; or otherwise just advances one instruction or source
line, depending on the display mode, and displays the enabled registers and memory blocks.

next li Steps over subroutine calls or macros; or otherwise just advances one source line and
displays the enabled registers and memory blocks.

next in Steps over subroutine calls or macros; or otherwise just advances one assembly instruction
and displays the enabled registers and memory blocks.

next 10 Executes the equivalent of the next 10 instructions, halting to display the enabled registers
and memory blocks only after the tenth instruction is completed.

next 10 li Executes the equivalent of the next 10 lines, halting to display the enabled registers and
memory blocks only after the tenth line is completed.

next 10 h Executes the equivalent of the next 10 instructions, halting to display the enabled registers
and memory blocks after the tenth instruction is complete, or when a breakpoint is
encountered.

output - Assign Output File

Motorola Command Reference 12-33

12.24 output - Assign Output File

OUTPUT [#n] [T] addr/port/periph/pin[_group] OFF/ TERM/file
[- RD/ -RF / -RH/ -RU/ -RS] [-A / -O / -C]

OUTPUT [#n] [T] history OFF / TERM/file [-A / -O / -C]

OUTPUT [#n] [T] ehistory OFF / TERM/file [-A / -O / -C]

Theoutput command stores data from a peripheral, memory location, or device pin to a specified
destination. The output data is in ASCII format. Valid port, peripheral and pin names for the device can be
listed with thehelp port, help periph andhelp pin commands.

There are three forms of the output command. The first form allows output from a memory location, port,
peripheral, or pin to either afile or to the Session window (TERM). The second form of theoutput
command creates a continuous log of the device execution addresses and disassembled opcodes. The
output format is similar to the output generated by the Simulatorhistory command.

The third form of the command, which specifiesehistory , is an extended version of theoutput
history command. Additional execution history information is logged to the output file. Only one of output
history or output ehistory may be active.

[#n] Optional. The number that will be assigned to this output. Output
numbers do not have ot be consecutive - they can be assigned arbitrarily,
which means that you can assign output numbers in any way that helps
you organize the outputs. If no number is provided, the Simulator will
automatically assign the next available number.

[T] Optional. When included with theoutput command, this parameter
indicates that the output data is in the form of time-data pairs.

addr/port/periph/pin[_group]

The source of the data. Assignment to a memory address causes all
subsequent writes of that memory address to store data in the output
file/Session window.

OFF/ TERM/file The destination of the output data. Providing theOFF parameter
disables the output specified by#n. Providing theTERMparameter
indicates that the output data will be typed to the Session window.
Providing a filename indicates that the output data will be written to
file . If a filename suffix is not specified, the Simulator will assume
".io " for a non-timed output file and ".tio " for a timed output file.

[- RD/ -RF / -RH/ -RU/ -RS]

Optional. The default output radix for the data may be specified by using
-RD for decimal,-RF for fractional,-RH for hexadecimal,-RU for
unsigned, or-RS for character string. The-RF radix, when specified
for a single output pin, will output the analog single precision floating
point value associated with the pins analog function. The-RS radix is
valid only for output memory locations. It interprets values written to the
specified memory location to be the address of a null terminated character
string in the same memory space.The character string will be displayed or

12-34 Suite56 DSP Simulator User’s Manual Motorola

output - Assign Output File

written to an output file. This string radix is provided primarily for use
when debugging programs created with the C Compiler. The output time
value is always expressed in decimal. Chapter 3 contains a thorough
description of the output file format.

[-A / -O / -C] Optional. The-A , -O , or -C parameter may be used to indicate
append, overwrite, or cancel if the filename already exists. If you do not
specify this parameter, and the filename already exists, you will be
prompted during command execution to make the decision to append,
overwrite, or cancel.

history Used with the second form of theoutput command. This usage creates a
continuous log of the device execution addresses and disassembled
opcodes. The output format is similar to the output generated by the
Simulatorhistory command.

ehistory Used with the third form of theoutput command. This usage is an
extended version of theoutput history command. Additional execution
history is included in the output, including device wait state cycles and
bus arbitration cycles and indication of other stall conditions. The extra
information is preceded bydouble asterisks in the log file.

Table 12-27. OUTPUT Commands

Command Resulting Simulator Action

output x:$0 xfile -rd Stores values written to memory location x:0 in output file "xfile.io". The data
values will be stored in decimal.

output ssi0 ssi0file -a Stores values from the SSI0 peripheral to output file "ssi0file.io". Appends to the
file if it already exists.

output a15..a0 afile Stores output values for address pins a15 through a0 to output file "afile.io".

output #2 t bg term Outputs time and data pairs from the device BG pin to the terminal. Output
number 2 is explicitly replaced by this command.

output #2 off Output number 2 is explicitly turned off by index number reference.

output spkp spfile -rf Outputs untimed single precision floating point values for the analog pin spkp to
the output file "spfile.io".

output xdat1 xfile Stores values written to memory location associated with the symbolic label xdat1
to the output file "xfile.io". The data values will be stored in the default
hexadecimal radix.

output history hisfile Stores device execution history to output file "hisfile.io".

output ehistory hisfile Stores extended device execution history to output file "hisfile.io".

path - Specify Default Pathname

Motorola Command Reference 12-35

12.25 path - Specify Default Pathname

PATH [pathname]

PATH +pathname[,pathname,...]

PATH -

Thepath command defines the default pathname that is used by the Simulator to store temporary files, log
files, macro command files, object files, and peripheral I/O files. If no parameters are specified, the current
default pathname is displayed in the Session window. The default pathname can be overridden by
explicitly specifying a pathname as a prefix to the filename in any of the commands which reference a file.

[pathname] Optional. Used in the first form of the path command, indicates the
directory to use as the pathname.

+pathname[,pathname,...]

Used in the second form of thepath command. Alternate source
pathnames may be specified using thepath + form of the command. Each
time the command is issued, the specified pathname, or comma-separated
list of pathnames, is added the current list. When searching for files, the
Simulator will first search the default pathname, then search in each of
the alternate source pathnames, in the order that they were specified.

- The third form of the command, "path -", deletes the entire list of
alternate source path-names.

Table 12-28. PATH Commands

Command Resulting Simulator Action

path \sim Defines the default working directory for Simulator files as "\sim".

path \sim\day2 Defines the default working directory for Simulator files as "\sim\day2".

path + ..\src Adds pathname "..\src" to the list of alternate source pathnames.

path + ..\src,..\src2 Adds pathnames "..\src" and "..\src2" to the list of alternate source
pathnames.

path – Clears the list of alternate source pathnames.

path Shows the default working directory and help file directory for the
current device, and the list of alternate source pathnames.

12-36 Suite56 DSP Simulator User’s Manual Motorola

quit - Quit Simulator Session

12.26 quit - Quit Simulator Session

QUIT [E(enable)/ D(disable)]

Thequit command passes control back to the operating system after closing all log files, input and output
files, and macro files.

[E(enable)/ D(disable)] Optional. Quit enable (E) and quit disable (D) control the action taken
by the Simulator if an error occurs during the execution of a macro
command. Thequit enable specifies that the macro command should be
aborted and the Simulator quit immediately with a non-zero exit status.
Thequit disable command specifies that the Simulator should not exit.

.

12.27 radix - Change Input or Display Radix

RADIX [B(binary)/ D(dec)/ F(float)/ H(hex)/ U(unsigned)]
[reg[_block]/addr[_block]]...

Theradix command allows you to change the default number base for command entry or for display of
registers and memory locations. The Simulator, by default, uses decimal input radix and hexadecimal
display radix when it is initially invoked. Changing the default input radix allows you to enter constants in
the chosen radix without typing a radix specifier before each constant.

If no parameters are used with the radix command, the current default radix isdisplayed in the Session
window.

[B(binary)/ D(dec)/ F(float)/ H(hex)/ U(unsigned)]

Optional. This parameter, when not followed by a register name or
memory location, specifies the radix to use as the default input radix.
When followed by a register name or memory location, the radix will be
applied as the default display radix when displaying the values conatined
in the register/memory location.

[reg[_block]/addr[_block]]...

Optional. Specifying a list of register and/or memory locations following
the radix specifier will set the display radix of the registers and memory
to the radix specified. This does not affect the default input radix.

A range of registers can be specified by typing
start_reg..end_reg , wherestart_reg is the beginning
register andend_reg is the last register of the block.

Table 12-29. QUIT Commands

Command Resulting Simulator Action

quit Closes all currently open files and returns to the Operating System.

quit e Specifies that errors in a macro command will cause the Simulator to exit with a
non-zero status.

radix - Change Input or Display Radix

Motorola Command Reference 12-37

A range of addresses can be specified by typing
start_addr #count, wherestart_addr is the first address of
the block andcount represents the size of the block. An address
block can also be specified by typingstart_addr..end_addr .
For example:p:5#20 indicates 20 locations beginning from program
memory location 5;p:5..24 indicates program memory locations 5
through 24.

The radix command is used to define the default number base. However, the default radix can be
overridden on a individual usage basis. Hexadecimal constants can always be specified by preceding the
constant with a dollar sign ($). Likewise, a decimal value can be specified by preceding the constant with
a grave accent (‘), and a binary value may be specified by preceding the constant with a percent sign (%).

Table 12-30. RADIX Commands

Command Resulting Simulator Action

radix Displays the default input radix currently enabled.

radix h Changes default input radix to hexadecimal. Hexadecimal
constant entries no longer require a preceding dollar sign, but
any decimal constants will require a preceding grave accent.

radix f x:0..10 x0 y0 a b Change the display radix for the specified registers and memory
blocks to floating point.

12-38 Suite56 DSP Simulator User’s Manual Motorola

redirect - Redirect stdin/stdout/stderr for C Programs

12.28 redirect - Redirect stdin/stdout/stderr for C Programs

REDIRECT STDIN OFF/file

REDIRECT STDOUT/ STDERR OFF/file [-A / -O / -C]

REDIRECT [OFF]

Theredirect command is used to redirect the stdin/stdout/stderr for C programs. It allows you to redirect
stdin from a file, and redirect stdout/stderr to files. Performing theredirect command with no parameters
will display the status of each I/O stream in the Session window.

Beware that no I/O processing or handling of redirection occurs if I/O streaming has been disabled with the
streamscommand.

STDIN Used with the first form of theredirect command. TheSTDIN
parameter indicates that the “standard input” is to be redirected.

OFF/file Used with the first and second forms of theredirect command. TheOFF
parameter indicates that the redirection of the specified input/output is to
be turned off. In the context of the first form of theredirect command,
the file parameter indicates the name of the file from which “standard
input” will be provided. In the context of the second form of theredirect
command, thefile parameter indicates the name of the file to which
“standard output” or “standard error” will be written.

In all cases, if no file extension is specified when specifyingfile with
theredirect command, the Simulator will assume the “.cio” file
extension.

STDOUT/ STDERR Used with the second form of theredirect command. The
STDOUT/STDERRparameter indicates that “standard out” or “standard
error” is to be redirected.

[-A / -O / -C] Optional. The-A , -O , or -C parameter may be used to indicate
append, overwrite, or cancel if the filenamefile already exists. If you
do not specify this parameter, and the filename already exists, you will be
prompted during command execution to make the decision to append,
overwrite, or cancel.

[OFF] Optional. Used with the third form of the redirect command. When used
as the only parameter, theOFFparameter turns off all redirected
STDIN, STDOUT, andSTDERR.

Table 12-31. REDIRECT Commands

Command Resulting Simulator Action

redirect Displays the redirect list, which shows each of the three
streams that can be redirected, along with where they are
being redirected to.

redirect stdin input Redirects the C stdin (standard input) stream from the file
input.cio (.cio is the default ex-tension).

reset - Reset Device or State

Motorola Command Reference 12-39

12.29 reset - Reset Device or State

RESET S(state)/ D(device) [mode]

Theresetcommand can be used to reset the device registers (D) or the entire Simulator state (S). It can
also be used to select the operating mode that the device will be set to in response to a simulated hardware
reset sequence.

S(state)/ D(device) TheS parameter indicates that the the entire Simulator state should be
reset to the start-up condition. All breakpoints are cleared, the memory is
initialized, and all logging and I/O files are closed.

TheDparameter indicates that the device should be reset to the start-up
condition. All device registers are reset to the defined reset conditions.

[mode] Optional. The mode parameter specifies the DSP operating mode in the
form Mn (n=decimal digit).

To see the Operating Modes that are available for a particular device:

1. At the command line, type:

help mode

2. View the Session window. It will contain a list of operating modes available to the
particular device that you are simulating.

redirect stdout output.txt Redirects the C stdout (standard output) stream to the file
output.txt.

redirect stderr errors Redirects the C stderr (standard error) stream to the file
errors.cio.

redirect stdout output -o Redirects the C stdout stream to the file output.cio,
overwriting the file if it already exists.

redirect stdout output -a Redirects the C stdout stream to the file output.cio,
appending to the end of the file if it already exists.

redirect stdout output -c Redirects the C stdout stream to the file output.cio, but
doesn’t redirect if the file already exists.

Table 12-32. RESET Commands

Command Resulting Simulator Action

reset d Resets all device registers to the defined reset conditions.

reset d m0 Resets the device registers and select operating mode 0 as the default operating
mode following subsequent hardware reset sequences.

reset s Resets the entire Simulator state to the start-up condition. All breakpoints are
cleared, the memory is initialized, and all logging and I/O files are closed.

Command Resulting Simulator Action

12-40 Suite56 DSP Simulator User’s Manual Motorola

save - Save Simulator File

12.30 save - Save Simulator File

SAVE S(state)/addr[_block]... filename [-A / -O / -C]

Thesavecommand allows creation of a Simulator state file from the current Simulator state, or creation of
an object module format file or a COFF format file from specified memory blocks.

S(state)/addr[_block]...

If S is specified as the second parameter, a Simulator state file is created.
It contains the entire simulation state, including memory contents,
breakpoint settings, and the current pointer position of any open files.
This file is in an internal format that is efficient for the Simulator to store
and load (see the load s command description). The default suffix for a
Simulator state filename is ".sim".

If the addr[_block] parameter is used, the memory areas specified
are stored in object format so the file can be reloaded with the Simulator
load command. The default object format is the OMF format described in
Chapter 6. If no file extension is explicitly specified, the extension for an
OMF file ".lod", will be appended tofilename . If the COFF file
extension, ".cld", is specified explicitly in the filename, the memory
contents will be stored in the DSP COFF object file format. The
Simulator does not store symbolic debug information in the output COFF
object file.

An address block can be specified by typingstart_addr #count,
wherestart_addr is the first address of the block andcount
represents the size of the block. An address block can also be specified
by typingstart_addr..end_addr . For example:p:5#20
indicates 20 locations beginning from program memory location 5;
p:5..24 indicates program memory locations 5 through 24.

filename The name of the file to be saved.

[-A / -O / -C] Optional. The-A , -O , or -C parameter may be used to indicate
append, overwrite, or cancel if the filefilename already exists. If you
do not specify this parameter, and the filename already exists, you will be
prompted during command execution to make the decision to append,
overwrite, or cancel. Appending is not a valid option for state files.

Table 12-33. SAVE Commands

Command Resulting Simulator Action

save p:0..$ff x:0..$20
session1 -a

Saves all three memory maps to OMF file "session1.lod". If
the file already exists, append to it.

save s lunchbrk Saves the Simulator state to filename "lunchbrk.sim".

save s lunchbrk.b -c Saves the Simulator state to filename "lunchbrk.b". If the file
already exists, cancel this command.

step - Step Through DSP Program

Motorola Command Reference 12-41

12.31 step - Step Through DSP Program
STEP [count] [CY(cycles)/ LI (lines)/ IN (instructions)] [H(halt at breakpoints)]

Thestepcommand allows you to executecount instructions or clock cycles before displaying the
enabled registers and memory blocks. This command gives you a quick way to specify execution of a
number of instructions without having to set a breakpoint. It is similar to thetrace command except that
display occurs only after the count number of cycles or instructions have occurred.

Unlike thenext command, if the next instruction to be executed calls a subroutine or begins execution of a
macro, the instructions of the subroutine or macro are counted towards the total number of instructions that
were specified to be executed with thestepcommand. If execution stops in the middle of a subroutine or
function, execution can continue to the end of the subroutine or function by using thefinish command.

[count] Optional. When included, thecount parameter indicates the number of
cycles/lines/instructions to execute before halting execution. If no
count is specified, the defaultcount is 1.

[CY(cycles)/ LI (lines)/ IN (instructions)]

Optional. As the default, thestepcommand steps in instruction
increments if viewing the assembly or register screens, and in source line
increments if viewing the source screen. TheCY, LI andIN options
permit cycles, source line or instruction increments to be specified
explicitly.

[H(halt at breakpoints)] Optional. The default is to ignore all breakpoints while thestepcommand
is executing. Theh parameter enables halting at breakpoints.

Table 12-34. STEP Commands

Command Resulting Simulator Action

step Steps one instruction or source line, depending on the display mode, and
displays the enabled registers and memory blocks.

step li Steps one source line, regardless of the display mode, and displays the enabled
registers and memory blocks.

step $50 Executes hex 50 instructions or source lines, depending on the display mode,
then stops and displays the enabled registers and memory blocks at the end of
the hex 50th instruction.

step $50 in h Executes hex 50 instructions, regardless of the display mode, then stops and
displays the enabled registers and memory blocks at the end of the hex 50th
instruction. Halts if a breakpoint is encountered during the execution.

step 20 cy Executes 20 clock cycles and displays the enabled registers and memory blocks
at the end of the 20th clock cycle.

12-42 Suite56 DSP Simulator User’s Manual Motorola

streams - Enable/Disable Handling of I/O for C Programs

12.32 streams - Enable/Disable Handling of I/O for C
Programs

STREAMS [ENABLE/DISABLE]

Thestreamscommand is used to enable and disable the handling of input and output on the host side for C
programs. By default, streaming is enabled. When enabled, all input and output that is done in the C
program running on the device is handled on the host side. For example, when an fopen() call is made in
the C program running on the DSP call, the host software intercepts the call and does the fopen() on the
host side.

If the streams command is performed with no parameters, the current status of streaming is displayed in the
Session window.

[ENABLE/DISABLE] Optional. Enables or disables streaming..

Table 12-35. STREAMS Commands

Command Resulting Simulator Action

streams e Enables handling of C input/output. All input/output calls done
in a C program running on the DSP will be handled by the host
software (e.g. fopen(), fwrite(), printf(), etc.).

streams d Disables handling of C input/output.

system - Execute System Command

Motorola Command Reference 12-43

12.33 system - Execute System Command

SYSTEM [-C (continue immediately)] [system_command [parameter_list]]

Thesystemcommand allows you to execute an operating system command from within the Simulator.
Operatingsystem commands invoked from within the Simulator are not logged to the Session window
for review.

[-C (continue immediately)]

Optional. The-C parameter causes control to return to the Simulator
after the operating system command is completed without prompting
you. This may be useful in macro commands, allowing system commands
to be used without requiring operator intervention. If the-C parameter is
not specified, before control returns to the Simulator you are prompted to
Hit return to continue. This allows you to inspect the
command output before it is destroyed.

[system_command [parameter_list]]

Optional. If asystem_command is included in thesystemcommand,
the specifiedsystem_command is executed, including any
parameters specified in theparameter_list . If the command line
does not contain asystem_command , then a mode is entered in
which multiplesystemcommands may be entered. Return to the
Simulator occurs when you enterexit on the operating system command
line.

Table 12-36. SYSTEM Commands

Command Resulting Simulator Action

system dir Executes the system "dir" command and immediately
returns to the Simulator.

system dir *.io Executes the system "dir *.io" command

system dir *.io del he.io exit Leaves the Simulator temporarily. Executes the system
"dir *.io" and "del he.io" commands. Returns to the
Simulator when the system "exit" command is
executed.

system -c del e:\temp*.lod Deletes the specified temporary files and continue
without issuing the continuation prompt.

12-44 Suite56 DSP Simulator User’s Manual Motorola

trace - Trace Through DSP Program

12.34 trace - Trace Through DSP Program

TRACE [count] [CY(cycles)/ LI (lines)/ IN (instructions)] [H(halt at

breakpoints)]

The trace command gives a snap shot of the enabled registers and memory after each instruction or clock
cycle is executed. Execution terminates aftercount number of cycles, lines, or instructions.

[count] Optional. When included, thecount parameter indicates the number of
cycles/lines/instructions to execute before halting execution. If no
count is specified, the defaultcount is 1.

[CY(cycles)/ LI (lines)/ IN (instructions)]

Optional. As the default, thetrace command steps in instruction
increments if viewing the assembly or register screens, and in source line
increments if viewing the source screen. TheCY, LI andIN options
permit cycles, source line or instruction increments to be specified
explicitly.

[H(halt at breakpoints)] Optional. The default is to ignore all breakpoints while thetrace
command is executing. Theh parameter enables halting at breakpoints.

Table 12-37. TRACE Commands

Command Resulting Simulator Action

trace Executes one instruction or source line, depending on the display mode, then stops
and displays the enabled registers and memory blocks.

trace li Executes one source line, regardless of the display mode, then stops and displays the
enabled registers and memory blocks.

trace 20 Executes 20 instructions or source lines, depending on the display mode, and displays
the enabled registers and memory blocks after each trace execution. Ignores
breakpoints.

trace 20 in Executes 20 instructions, regardless of the display mode, and displays the enabled
registers and memory blocks after each instruction. Ignores breakpoints.

trace 20 h Executes 20 instructions and displays the enabled registers and memory blocks after
each instruction. Halts if a breakpoint is encountered.

trace 10 cy Executes 10 clock cycles and displays the enabled registers and memory blocks after
each clock cycle. Ignores breakpoints.

type - Display the Result Type of C Expression

Motorola Command Reference 12-45

12.35 type - Display the Result Type of C Expression

TYPE { c_expression }

The type command is used to display the result type of a C expression in the Session window.

{ c_expression } The C expression to be examined (remember to enclose in curly
brackets). If the result of the expression is a storage location (e.g. just a
variable name, or an element of an array), the address of the storage
location, in addition to its data type will be displayed.

Table 12-38. TYPE Commands

Command Resulting Simulator Action

type { count } Displays the type and location of the variable count .

type { 0.5+i } Displays the type of the given expression: 0.5+i .

12-46 Suite56 DSP Simulator User’s Manual Motorola

unlock - Unlock Password Protected Device Type

12.36 unlock - Unlock Password Protected Device Type

UNLOCK dev_type password

Theunlock command provides unlocks unannounced device types. Once unlocked, the device type may
be selected for simulation usingdevicecommand.

dev_type The type of device that is to be unlocked.

password The password to unlock the device.

12.37 until - Execute Until Address
UNTIL addr [H(halt at breakpoints)]

Theuntil command sets a temporary breakpoint at the specified line or address, then begins execution
from the address indicated by the current program counter until that breakpoint is encountered. The
Simulator then clears the temporary breakpoint and displays the enabled registers and memory blocks in
the same manner as thestepcommand.

addr Theaddr parameter specifies the address in memory at which execution
will be halted. Theaddr parameter may also be expressed as a line
number in the program source file. Specification of a line number is valid
only if the symbolic debug information has been loaded from a COFF
format .cld file. (The debug information is generated at the time of
assembly using the assembler’s–g option.) Line numbers may be
specified asfilename@line_number for a line number in a
particular file or simply byline_number for line numbers in the
currently displayed file.

[H(halt at breakpoints)] Optional. The default is to ignore all breakpoints while theuntil
command is executing. Theh parameter enables halting at breakpoints.

Table 12-40. UNTIL Commands

Table 12-39. UNLOCK Commands

Command Resulting Simulator Action

unlock 56001 x51-234 Enables device type 56001 for simulation using the password x51-234.

Command Resulting Simulator Action

until 20 Executes until the instruction associated with line 20 in the current file is reached.

until p:$50 Executes until the instruction at hexadecimal address p:50 is reached. Ignores
breakpoints.

until p:$50 h Executes until the instruction at hexadecimal address p:50 is reached. Does not
ignore breakpoints.

until lab_2 Executes until the instruction at label lab_2 is reached.

view - Select Display Mode

Motorola Command Reference 12-47

12.38 up - Move Up the C Function Call Stack
UP [n]

Theup command is used to move up the call stack. It can be used in conjunction with thewhere, frame,
anddown commands to display and traverse the C function call stack.

After entering a new call stack frame usingup, that call stack frame becomes the current scope for
evaluation. This means that for C expressions, theevaulatecommand acts as though this new frame is the
proper place to start looking for variables.

[n] Optional. The number of frames to move up. If no number is specified,
the Simulator moves up one frame in the call stack.

12.39 view - Select Display Mode

VIEW [A(assembly)/ S(source)/ R(register)]

Theview command changes the Simulator display mode. There are three display modes: assembly, source
and register. section 1.7, “Setting Up the Display Environment,” describes the display environment. When
no parameter is entered, thedisplay mode cycles to the next display mode in the order: source - assembly -
register. The same results can be obtained by typingctrl-w .

[A(assembly)/ S(source)/ R(register)]

Optional. The mode that is to be displayed in the Session window. The
assembly and source views will indicate the next instruction to be
executed with a pointer to the left of the instruction. The register mode
will display the values of registers enabled for display (see thedisplay
command), including highlighted values for registers that were written to
in the last executed instruction.

Table 12-42. VIEW Commands

Table 12-41. UP Commands

Command Resulting Simulator Action

up Moves up the call stack by one stack frame.

up 3 Moves up the call stack by three stack frames

Command Resulting Simulator Action

view Selects the next display mode among source, assembly and register modes.

view s Selects source display mode.

view a Selects assembly display mode.

view r Selects register display mode.

12-48 Suite56 DSP Simulator User’s Manual Motorola

wait - Wait Specified Time

12.40 wait - Wait Specified Time

WAIT [count(seconds)]

Thewait command pauses forcount seconds or until you click onCancelbefore continuing to the next
command. This command is particularly useful in command macros. If thewait command is entered
without a count parameter, the pause will continue indefinitely and will only terminate if you click on
Cancel.

[count(seconds)] Optional. The number of seconds to pause.

12.41 wasm - GUI Assembly window
WASM [OFF]

Thewasm commandopens an assembly window. Multiple device windows may be opened for
debugging simulations with multiple DSPs.

[OFF] Optional. Closes the assembly window.

Table 12-43. WASM Commands

Command Resulting Simulator Action

wasm Opens the assembly window for the current device.

wasm off Closes the assembly window for the current device.

watch - Set, Modify, View, or Clear Watch item

Motorola Command Reference 12-49

12.42 watch - Set, Modify, View, or Clear Watch item

WATCH [#wn] [radix] reg/addr/expression/ { c_expression}

WATCH [#wn] OFF

Thewatch commandis used to add, modify, view, and clear items on the watch list. The watch list is a
list of registers, addresses, and expressions that gets updated every time execution is halted or a breakpoint
condition is met. If thewatch command is performedwithout any parameters, the current watch list is
displayed in the Session window.

[#wn] Optional. An arbitrary number assigned to each watch list. Multiple lists
can be defined, each being displayed in a separate window. If no number
is specified, the Simulator will automatically add the watch item to the
lowest numbered watch list.

[radix] Optional. Theradix parameter indicates the number base in which to
display the watch item. The radix may be specified by usingD for
decimal,F for fractional,H for hexadecimal, orU for unsigned. If no
radix is specified, the default radix of the specified item is used. The
default display radix of a watch item can be changed with theradix
command.

reg/addr/expression/{c_expression}

This parameter specifies the watch item to be added to the watch list. A
watch item can be a register, address, expression, or C expression.

OFF Used with the second form of the watch command. Turns off all watched
registers, addresses, and expressions.

Table 12-44. WATCH commands

Command Resulting Simulator Action

watch r0 Adds register r0 to the watch list.

watch x:0 Adds x:0 to the watch list.

watch {(count+1)%total} Adds the given C expression to the watch list.

watch h {count/2} Adds the given C expression to the watch list, in display radix hex.

watch b {flag} Adds the given C variable to the watch list, in display radix binary.

watch r0+x:0 Adds the expression r0+x:0 to the watch list.

watch Displays the watch list.

watch #3 off Removes item number three from the watch list.

watch off Removes all items from the watch list.

12-50 Suite56 DSP Simulator User’s Manual Motorola

wbreakpoint - GUI Breakpoint Window

12.43 wbreakpoint - GUI Breakpoint Window

WBREAKPOINT [OFF]

Thewbreakpoint commandopens a breakpoint window. Multiple device windows may be opened for
debugging simulations with multiple DSPs.

[OFF] Optional. Closes the wbreakpoint window.

12.44 wcalls - GUI C Calls Stack window

WCALLS [OFF]

Thewcalls command opens a C call stack window. Multiple device windows may be opened for
debugging simulations with multiple DSPs.

[OFF] Optional. Closes the stack window.

Table 12-45. WBREAKPOINT Commands

Command Resulting Simulator Action

wbreakpoint Opens a breakpoint window for the current device.

wbreakpoint off Closes the breakpoint window for the current device.

Table 12-46. WCALLS Commands

Command Resulting Simulator Action

wcalls Opens a C call stack window for the current device.

wcalls off Closes the C call stack window for the current device.

where - GUI C Calls Stack window

Motorola Command Reference 12-51

12.45 wcommand - GUI Command window

WCOMMAND [OFF]

Thewcommandcommandopens a Command window. Only one Command window may be open. The
current device is always the device that is related to the Command window. Use thedevicecommand to
change the current device.

[OFF] Optional. Closes the command window.

Table 12-47. WCOMMAND Commands

12.46 where - GUI C Calls Stack window

WHERE [[+/-]n]

Thewhere command displays the C function calls in the Session window. It can be used in conjunction
with the frame, down, andup commands to display and traverse the C function call stack.

[[+/ -]n] Optional. This parameter indicates the number of frames of the call stack
to display, wheren is the number of frames. Optional, the+ (plus) sign
and the- (minus) sign can be used to indicate the whether to display the
call stack beginning with the innermost or outermost frames. The+ (plus)
sign indicates innermost frames. The- (minus) sign indicates the
outermost frames. If no sign is specified, the Simulator will assume that
the innermost frames are intended for display.

Command Resulting Simulator Action

wcommand Opens a command window.

wcommand off Closes the command window for the current device.

Table 12-48. WHERE Commands

Command Resulting Simulator Action

where Display the call stack.

where 3 Display the three innermost frames in the call stack.

where -5 Display the five outermost frames in the call stack.

12-52 Suite56 DSP Simulator User’s Manual Motorola

winput - GUI File Input window

12.47 winput - GUI File Input window

WINPUT [OFF]

Thewinput command opens an input window, listing all of the assigned inputs. See theinput command
for more information. Multiple input windows may be opened for separate devices when debugging on
systems with multiple DSPs.

[OFF] Optional. Closes the winput window.

12.48 wlist - GUI list window
WLIST [OFF]

Thewlist commandopens a list window. Multiple device windows may be opened for debugging
simulations with multiple DSPs.

[OFF] Optional. Closes the list window.

Table 12-50. WLIST Commands

Table 12-49. WINPUT Commands

Command Resulting Simulator Action

winput Opens an input window for the current device.

winput off Closes the input window for the current device.

Commands Resulting Simulator Action

wlist lfile.1st Opens a list window with the text file lfile.1st displayed.

wlist win2
lfile.1st

Opens a list window with a window number of 2 with text lfile.txt displayed. If
list window 2 already exists, replaces the contents with lfile.1st.

wlist win2 off Closes list window number 2.

wlist off Closes all open list windows.

wlist win3 Opens a list window with a window number of 3 with no text file displayed.

wmemory - GUI Memory window

Motorola Command Reference 12-53

12.49 wmemory - GUI Memory window

WMemory [#wn] space [addr]

WMemory [#wn] [OFF]

Thewmemory commandopens a memory window. Multiple device windows may be opened for
debugging simulations with multiple DSPs.

[#wn] Optional. Window number. The window number is an arbitrarily
assigned number, used to keep track of possible multiple memory
windows. If no window number is specified when opening a new
window, the Simulator will automatically assign the next available
number.

space Thespace parameter indicates the memory space to display.

[addr] Optional. Used with the first form of thewmemory command. Indicates
the address in memory at which to begin displaying values.

[OFF] Optional. Closes the memory window. If no window number (#wn) is
specified when closing a window, all memory windows will be closed.

Table 12-51. WMEMORY Command

Command Resulting Simulator Action

wmemory pi Opens a memory window for the internal program (pi) memory space for
the current device.

wmemory xi 0 Opens a memory window for the xi memory space containing address 0
for the current device.

wmemory win3 x Opens a memory window for memory space x with a window number of 3
for the current device.

wmemory off Closes all memory windows for the current device.

wmemory win3 off Closes memory window 3 for the current device.

12-54 Suite56 DSP Simulator User’s Manual Motorola

woutput - GUI File Output window

12.50 woutput - GUI File Output window

WOUTPUT [OFF]

Thewoutput commandopens a file output window, listing all of the assigned outputs. See theoutput
command for more information. Multiple output windows may be opened for each separate device when
debugging on systems with multiple DSPs.

[OFF] Optional. Closes the output window.

12.51 wregister - GUI Register window
WREGISTER [win n] [periph/ OFF]

Thewregister commandopens a register window. Multiple register windows may be opened for each
peripheral or for separate devices when debugging on systems with multiple DSPs.

[win n] Optional. Window number. The window number is an arbitrarily
assigned number, used to keep track of multiple register windows. If no
window number is specified when opening a new window, the Simulator
will automatically assign the next available number.

[periph/ OFF] Optional. Theperiph parameter is the name of a peripheral and
indicates that only the registers of that particular peripheral should be
displayed. If no peripheral name is specified, the Simulator will display
the core registers.

TheOFFparameter closes the register window. If no window number
(win n) is specified when closing a window, all register windows will be
closed.

Table 12-52. WOUTPUT Commands

Command Resulting Simulator Action

woutput Opens an output window for the current device.

woutput off Closes the output window for the current device.

Table 12-53. WREGISTER Commands

Command Resulting Simulator Action

wregister Opens a register window for the current device.

wregister win3 host Opens a register window with a window number of 3, and displays only the
registers associated with the host peripheral for the current device.

wregister off Closes all register windows for the current device.

wsource - GUI Source window

Motorola Command Reference 12-55

12.52 wsession - GUI Session window

WSESSION [OFF]

Thewsessioncommandopens a Session window. Only one Session window may be open at a time. The
current device is always the device that is displayed in the Session window. Use thedevicecommand to
change the current device.

[OFF] Optional. Closes the Session window.

12.53 wsource - GUI Source window

WSOURCE [OFF]

Thewsourcecommandopens a source code window which list the source code of the currently loaded
program (.cld file). Source debug information must be included in the source file for source code to appear
in this window.

[OFF] Optional. Closes the source window.

Table 12-54. WSESSION Commands

Command Resulting Simulator Action

wsession Opens a session window for the current device

wsession off Closes the session window.

Table 12-55. WSOURCE Commands

Command Resulting Simulator Action

wsource Opens a source window for the current device.

wsource off Closes the source windows for the current device.

12-56 Suite56 DSP Simulator User’s Manual Motorola

wstack - GUI Stack window

12.54 wstack - GUI Stack window

WSTACK [OFF]

Thewstack commandopens a device stack window, which displays the current call stack. Multiple
stack windows may be opened for debugging on systems with multiple DSPs.

[OFF] Optional. Closes the stack window.

12.55 wwatch - GUI Watch window
WWATCH [win _num] [#n] [radix] reg/addr/expression/{c_expression}

WWATCH [win _num] [#n] [OFF]

Thewwatch commandopens a watch window. Multiple watch windows may be opened - one for each
watch list or for separate devices when debugging on systems with multiple DSPs.

[win _num] Optional. An arbitrary number assigned to each watch window. Multiple
lists can be defined, each being displayed in a separate window. If no
number is specified, the Simulator will automatically add the watch item
to the lowest numbered watch window.

[#n] Optional. Watch item number. If no number is specified, the Simulator
will assign the next available number to the watch item.

[radix] Optional. Theradix parameter indicates the number base in which to
display the watch item. The radix may be specified by usingd for
decimal,f for fractional,h for hexadecimal, oru for unsigned. If no
radix is specified, the default radix of the specified item is used. The
default display radix of a watch item can be changed with theradix
command.

reg/addr/expression/{c_expression}

This parameter specifies the watch item to be added to the watchlist. A
watch item can be a register, address, expression, or C expression.

[OFF] Optional. Closes the specified watch window. If no window number is
specified, closes all watch windows.

Table 12-56. WSTACK Commands

Command Resulting Simulator Action

wstack Opens a stack window for the current device.

wstack off Closes the stack window for the current device.

wwatch - GUI Watch window

Motorola Command Reference 12-57

Table 12-57. WWATCH commands

Command Resulting Simulator Action

wwatch r0 Opens a watch window for the current device with the register r0 displayed.
If the window already exists, adds r0 to the list of watched items.

wwatch x:$100 Opens a watch window for the current device with the memory location
x:$100 displayed. If the window already exists, adds x:$100 to the list of
watched items.

wwatch r2+3 Opens a watch window for the current device with the expression r2+3
displayed. If the window already exists, adds r2+3 to the list of watched
items.

wwatch win2 r0 Opens a watch window for the current device with a window number of 2
with the register r0 displayed. If the window already exists, adds r0 to the list
of watched items.

wwatch off Closes all watch windows for the current device.

wwatch win3 off Closes watch window 3 for the current device.

wwatch #2 off Removes watch element #2 from first watch window’s list of watched
elements.

wwatch win4 @2 off Removes watch element #2 from watch window 4’s list of watched
elements.

12-58 Suite56 DSP Simulator User’s Manual Motorola

wwatch - GUI Watch window

Motorola C Library Functions 13-1

Chapter 13
C Library Functions
The SIMDSP Simulator package includes several object code libraries of Simulator
functions that were used to create the Simulator. The libraries allow the user to build his
own customized Simulator and integrate it with your unique project.

The Simulator package includes the source code for many of the Simulator functions,
including the code that defines the dsp external memory accesses, the code for the main
entry point, the code for the terminal I/O functions, and example code for a non-display
version of the Simulator. The source code can be modified to create a Simulator
customized for a particular application.

Object libraries are supplied which support display or non-display versions of the
Simulator. The user may choose to eliminate the user interface functions altogether and
control the simulation directly through lower level function calls.

The rest of this chapter covers these aspects plus the following aspects of the specification
and use of the libraries:

• Section 13.2, "Simulator Object Library Entry Points," lists each Simulator entry
point that is available to you the user.

• Section 13.3, "Simulator External Memory Functions," provides a description of
the external memory access functions.

• Section 13.4, "Simulator Screen Management Functions," provides a description
of the terminal I/O functions.

• Section 13.5, "Non-Display Simulator," Topics concerning the non-display version
of the Simulator are discussed in section 13.5.

• Section 13.6, "Multiple Device Simulation," Simulation of multiple dsp devices is
fully supported by the dsp library functions.

• Section 13.6, "Multiple Device Simulation," discusses topics related to simulating
and interconnecting multiple dsp devices.

• Section 13.7, "Reserved Function Names," provides a description of the public
function names used by the Simulator.

13-2 Suite56 Simulator Reference Manual Motorola

C Object Libraries

• Section 13.8, "Simulator Global Variables," describes the global variables used by
the Simulator.

• Section 13.9, "Modification of Simulator Global Structures," describes
modifications that can be made to the Simulator global structures.

• Section 13.10, "Modification of Device Global Structures," describes
modifications that can be made to device global structures.

13.1 C Object Libraries

The Simulator software includes object libraries that enable you to rebuild the Simulator.
A separate set of display and non-display libraries are provided, so that you have the
option of generating a non-display version of the Simulator. The libraries with the prefix
“ww”, followed by the family device number, contain the display version of the object
modules. The libraries with the prefix “nw”, followed by the family device number,
contain the non-display versions of the same object modules. In addition, the libraries with
the prefix “cm”, followed by the family device number, contain object modules required
by both the display and non-display versions of the Simulator. As an example, relinking
the display version of the sim56100 Simulator requires libraries ww56100 and cm56100; a
non-display version of the Simulator requires the libraries nw56100 and cm56100.

13.2 Simulator Object Library Entry Points

The following is a quick reference list of the higher level Simulator entry points provided
in the Simulator object libraries. The prefix indicates whether or not the function is
available in the non-display version of the Simulator. Function names beginning with the
prefix dsp_ or dspt_ are available to both the display and non-display versions of the
Simulator, while function names beginning withsim_ are only available when using a
display version of the Simulator. Thedspt_ prefix indicates a device dependent function.
The _xxxxx suffix on these indicate a device family number. Lower level Simulator
functions, which have a prefix ofdspl_, siml_ or dsptl_, are not intended for direct
access by the user’s program. They are not described in this document. The higher level
functions listed below are described in detail in Section 13.2.1, "dspt_masm_xxxxx:
Assemble DSP Mnemonic," through Section 13.2.30, "sim_gtcmd: Get Command String
from Terminal," . Table 13-1 lists the higher level functions.

Simulator Object Library Entry Points

Motorola C Library Functions 13-3

Table 13-1. Higher Level Functions

Function Description

dspt_masm_xxxxx(mnemonic,ops,err); Assemble mnemonic string to ops

dspt_unasm_xxxxx(ops,sr,omr,sdbp); Disassemble dsp opcodes

dsp_exec(devn); Execute one clock cycle for dsp device

dsp_findmem(devn,memname,map); Get map index for memory prefix

dsp_findpin(devn,pinname,pinnum); Get pin number for pin name

dsp_findport(devn,portname,pnum,pmas
k);

Get port number and mask for port name

dsp_findreg(devn,regname,pval,rval); Get peripheral and register index for
register

dsp_fmem(devn,map,addr,blocksz,val); Fill memory block with a value

dsp_free(devn); Free memory allocated for a dsp device

dsp_init(devn,mode); Initialize selected device and mode

dsp_ldmem(devn,filename); Load device memory from filename

dsp_load(filename); Load all device states from filename

dsp_new(devn,device_type); Create new dsp device

dsp_path(path,base,suffix,new_name); Create filename from path, base and suffix

dsp_rapin(devn,pin_number,val); Read output analog pin state from device

dsp_rmem(devn,map,addr,mem_val); Read dsp memory map address to
mem_val

dsp_rpin(devn,pin_number); Read output pin state from device

dsp_rport(devn,port,data,force); Read output port state from device

dsp_rreg(devn,periphn,regn,regval); Read dsp peripheral register to regval

dsp_save(filename); Save the state of all devices to filename

dsp_startup(); Initialize Simulator structures

dsp_unlock(device_type,password); Unlock password protected device type

13-4 Suite56 Simulator Reference Manual Motorola

Simulator Object Library Entry Points

13.2.1 dspt_masm_xxxxx: Assemble DSP Mnemonic
int dspt_masm_xxxxx(mnemonic,ops,error_ptr)
char *mnemonic; /* Pointer to assembler mnemonic string */
unsigned long *ops; /* Where to put the words of assembled opcode */
char **error_ptr; /* Will point to error message if an error occurs */

This function invokes the single line assembler to assemble a DSP mnemonic. Table 13-2
list the different integer code it returns:

Note: Note that thexxxxx in the function name should be replaced by a device family
number. It should be 56k for the 56000 family devices, 56100 for the 56100
family devices, and 96k for the 96000 family devices.

dsp_wapin(devn,pin,value); Write device analog input pin with value

dsp_wmem(devn,map,addr,val); Write dsp memory map address with val

dsp_wpin(devn,pin,value); Write device input pin with value

dsp_wport(devn,port,mask,data,force)
;

Write device port with data and force value

dsp_wreg(devn,periphn,regn,regval); Write dsp peripheral register with regval

sim_docmd(devn,command_string); Perform Simulator command on dsp device

sim_gmcmd(devn,command_string); Get command string from macro file

sim_gtcmd(devn,command_string); Get command string from terminal

Table 13-2. Integer Code

Code Description

-1 An error occurred. The user supplied error pointer will point to a message
that explains the error.

0 The line mnemonic provided was a comment

1 The mnemonic assembled correctly and required 1 word of code. The code
will be in the ops[0] location.

2 The mnemonic assembled correctly and required 2 words of code. The first
word will be in placed in ops[0], the second in ops[1].

3 The mnemonic assembled correctly and required 3 words of code. The first
word will be in placed in ops[0], the second in ops[1], the third in ops[2].

Table 13-1. Higher Level Functions

Function Description

Simulator Object Library Entry Points

Motorola C Library Functions 13-5

Example 13-1 shows how to use thedspt_masm_xxxxx function.

Example 13-1. dspt_masm_xxxxx

/* Assemble the instruction "move r0,r1" */
unsigned long opcodes[3];
char *error_ptr;
int retval;
retval=dspt_masm_56k("move r0,r1",&opcodes[0],&error_ptr);

13.2.2 dspt_unasm_xxxxx: Disassemble DSP Mnemonics
int dspt_unasm_xxxxx(ops,return_string,sr,omr,gdbp)

unsigned long *ops; /* Pointer to opcodes to be disassembled */

unsigned long sr; /* Value of device status register */

unsigned long omr; /* Value of device operating mode register */

char *gdbp; /* Return value reserved for use by debugger*/

char *return_string; /* Pointer to return character buffer */

This function disassembles ops[0] (and possibly ops[1] and ops[2] if ops [0] requires a
second or third word) and places the disassembled mnemonic in thereturn_string buffer
supplied by the user. If correct disassembly requires a device status register and/or
operating mode register value, the values should be provided in thesr andomr parameters.
Thegdbp parameter is a pointer reserved for use by the symbolic debugger, and should be
NULL for other applications.

The mnemonic may require as many as 120 characters of return buffer. The function
returns the number (1 to 3) of words consumed by the disassembly. It returns 0 for illegal
opcodes and a return string containing a DC directive. See Example 13-2.

Note: Thexxxxx in the function name should be replaced by a device family number.
It should be 56k for the 56000 family devices, 56100 for the 56100 family
devices, and 96k for the 96000 family devices.

Example 13-2. dspt_unasm_xxxxx

/* Disassembly of the opcode representing NOP */
unsigned long ops[3]; /*Instruction words to be disassembled.*/
char return_string[120];/*The return mnemonic goes here.*/
int numwords; /*Number of operands used by disassembler.*/
ops[0]=0L;
ops[1]=0L;
ops[2]=0L;
numwords=dspt_unasm_56k(ops,return_string,0L,0L,NULL);
/* Now numwords==1, return_string=="nop"*/

13-6 Suite56 Simulator Reference Manual Motorola

Simulator Object Library Entry Points

13.2.3 dsp_exec: Execute Single Device Clock Cycle
dsp_exec(device_index)
int device_index; /* DSP device index to be affected by command */

This function executes a single dsp device cycle and updates the selected dsp device
structure. All device inputs, outputs and registers are updated as a result of this call. In
addition, it tests user-defined breakpoint conditions and clears the device’s executing
status flag if a breakpoint occurs. It also calls the functions which handle cycle by cycle
I/O from assigned input or output files. See Example 13-3.

Example 13-3. dsp_exec

/*Execute 1000 cycles on a device*/
int devn;
int cycles;
dsp_startup();
devn=0;
dsp_new(devn,"56116"; /* allocate new device */
for(cycles=0;cycles<1000;cycles++) dsp_exec(devn);

13.2.4 dsp_findmem: Get Map Index for Memory Prefix
dsp_findmem(device_index,memory_name,memory_map)
int device_index; /* DSP device index to be affected by command */
char *memory_name; /* memory space name */
enum memory_map *memory_map; /* return memory map type */

This function searches thedt_var.mem structure for a match to thememory_namestring
provided in the function call. If a match is found,dsp_findmem returns the memory map
maintype structure value through thememory_mapparameter and 1 as the function return
value; otherwise it just returns 0 as the function return value. See Example 13-4.

For a list of memory names use the Simulatorhelp memcommand.

Example 13-4. dsp_findmem
#include "coreaddr.h"
int devn;
enum memory_map map;
int ok;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
ok=dsp_findmem(devn,"p",&map) /* Get memory map index for "p" memory */

Simulator Object Library Entry Points

Motorola C Library Functions 13-7

13.2.5 dsp_findpin: Get Pin Number for Pin Name
dsp_findpin(device_index,pin_name,pin_number)
int device_index; /* DSP device index to be affected by command */
char *pin_name; /* pin name */
int *pin_number; /* return pin index */

This function searches thedt_var.xpin structures for a match to thepin_name string
provided in the function call. If a match is found,dsp_findpin returns the pin number
through thepin_number parameter and 1 as the function return value; otherwise it just
returns 0 as the function return value. See Example 13-5.

Use the Simulator’shelp pin command to produce a list of the valid pin names.

Example 13-5. dsp_findpin

int devn;
int pinnum;
int ok;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
ok=dsp_findpin(devn,"reset",&pinnum);/* Get index for "reset" pin */

13.2.6 dsp_findport: Get Port Number and Mask for Port Name
dsp_findport(device_index,port_name,port_number,mask_val)
int device_index; /* DSP device index to be affected by command */
char *port_name; /* port or peripheral name */
int *port_number; /* return memory map index */
unsigned long *mask_val;/* Pin mask for this port or peripheral name */

This function searches thedt_var.xport structure and thedt_var.periph structures for a
match to theport_name string provided in the function call. If a match is found,
dsp_findport returns the port number through theport_number parameter, the port mask
value through themask_val parameter, and 1 as the function return value; otherwise it just
returns 0 as the function return value.

The Simulator “help port ” andhelp periph commands may also be used to produce a list
of valid port and peripheral information. See Example 13-6.

Example 13-6. dsp_findport

int devn;
int pnum;
unsigned long pmask;
int ok;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
ok=dsp_findport(devn,"portb",&pnum,&pmask);/* Get info for "portb" */

13-8 Suite56 Simulator Reference Manual Motorola

Simulator Object Library Entry Points

13.2.7 dsp_findreg: Get Peripheral and Register Index for Register
Name

dsp_findreg(device_index,reg_name,periph_number,reg_number)
int device_index; /* DSP device index to be affected by
command*/

char *reg_name; /* register name */
int *periph_number; /* return peripheral index */
int *reg_number; /* return register index */

This function searches thedt_var.periph structures for a match to thereg_name string
provided in the function call. If a match is found,dsp_findreg returns the peripheral index
throughperiph_number, the register number through thereg_number parameter and 1 as
the function return value; otherwise it just returns 0 as the function return value.

You may also use the Simulatorhelp regcommand to obtain a list of the validperiph_num

andreg_num values, andreg_val size for each register. See Example 13-7.

Example 13-7. dsp_findrg

int devn;
int regnum;
int pnum;
int ok;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a
56116 */

ok=dsp_findreg(devn,"pc",&pnum,®num);/* Get index for "pc" register */

13.2.8 dsp_free: Free a Device Structure
dsp_free(device_index)
int device_index; /* DSP device index to be affected by command */

This function frees all allocated memory associated with a device structure and closes any
open files associated with the device structure. See Example 13-8.

Example 13-8. dsp_free

/* Create three new device structures, then get rid of device 2. */
dsp_startup();
dsp_new(0,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_new(1,"56116"); /* Allocate structure for device 1, a 56116 */
dsp_new(2,"56116"); /* Allocate structure for device 2, a 56116 */
dsp_free(1); /* Free structure previously allocated for
device 1 */

Simulator Object Library Entry Points

Motorola C Library Functions 13-9

13.2.9 dsp_fmem: Fill Memory Block with a Value
dsp_fmem(device_index,memory_map,address,block_size,value)
int device_index; /* DSP device index to be affected by command */
enum memory_map memory_map; /* memory designator */
unsigned long address; /* DSP memory start address to write */
unsigned long block_size; /* Number of locations to write */
unsigned long *value; /* Pointer to value to write to memory location
*/

This function writes a memory block of selected dsp memory.

Thememory_mapparameter is a memory type that selects the appropriatedt_memory

structure fromdt_var.mem for the selected device. These structures are describe in the
simdev.h file which is included with the Simulator. Thememory_mapparameter can be
obtained with the functiondsp_findmem by using the memory name as a key. Use the
Simulatorhelp memcommand for a list of valid memory names. Thememory_mapenum is
memory_map_concatenated with a valid memory name. As an example,memory_map_pa

refers to off chippa memory on the 96002 device.

If the selected memory map requires two word values, the least significant word should be
at thevalue location and the most significant word at thevalue+1 location.

If the memory address selects an external memory location, thedspl_xmwr function will be
called. Thedspl_xmwr function is provided in source form in the filesimvmem.c and can
be modified to simulate special external memory characteristics. See Example 13-9.

Example 13-9. dsp_fmem

/* Write 300 locations beginning at p:$200 with the value 4 */
int devn;
unsigned long address, memval, blocksize;
address=0x200L;
blocksize=300;
memval=4L;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_fmem(devn,memory_map_p,address,blocksize,&memval);

13.2.10 dsp_init: Initialize a Single DSP Device Structure
dsp_init(device_index)
int device_index; /* DSP device index to be affected by command */

This function initializes a device to the same state that existed following thedsp_new()

call which created it. It is equivalent to performing the Simulatorreset s command. All
memory spaces are cleared, the registers are reset, breakpoints and input/output file
assignments are cleared. See Example 13-10.

13-10 Suite56 Simulator Reference Manual Motorola

Simulator Object Library Entry Points

Example 13-10. dsp_init

dsp_startup();
dsp_new(0,"56116"); /* Create new dsp structure */
.
. /* Other Simulator commands */
.
dsp_init(0); /* Reinitialize device 0 */

13.2.11 dsp_ldmem: Load DSP Memory from OMF File
int dsp_ldmem(device_index,filename)
int device_index; /* DSP device index to be affected by command */
char *filename; /* Full pathname of OMF format file to be loaded */

This function loads the memory space of a specified dsp device from an object file. The
file may be created as the output from the DSP MACRO ASSEMBLER, or by using the
Simulatorsavecommand, and may be either COFF format or “. lod” format. In order to
specify a COFF format file, the filename suffix must be “. cld”. A filename with any other
suffix is assumed to be in “.lod” format.

This is a lower level function that does not invoke the user interface modules for pathname
and automatic .lod suffix extension. The entire pathname must be specified. The function
returns 1 if the load is successful, 0 if an error occurred loading the file. See
Example 13-11

Example 13-11. dsp_Idmem

/* Create DSP device structures for a three device simulation. */
int devn;
int err;
dsp_startup();
for (devn=0;devn<3;devn++)
dsp_new(devn,"56116"); /* Create new dsp structures */
/* Load device 1 with a program named filter2.lod .*/
err=dsp_ldmem(1,"filter2.lod");

13.2.12 dsp_load: Load All DSP Structures from State File
int dsp_load(filename)
char *filename; /* Full name of State File to be loaded */

This function loads the Simulator state of all devices from a specified Simulator state file.
It is not necessary to allocate the device structures prior to callingdsp_load . This function
does not invoke the user interface modules for pathname and automatic .sim suffix
extension; the entire filename must be specified. See Example 13-12.

Simulator Object Library Entry Points

Motorola C Library Functions 13-11

Example 13-12. dsp_load

int err;
dsp_startup();
err=dsp_load("lunchbrk.sim");

13.2.13 dsp_new: Create New DSP Device Structure
dsp_new(device_index,device_type)
int device_index; /* DSP device index to be affected by command */
char *device_type; /* Name corresponding to DSP device type */

This function creates a new dsp structure that represents a DSP device and initializes it. It
will be necessary to use thedsp_unlock() function call prior todsp_new() if the selected
device type is password protected. See Example 13-13.

Example 13-13. dsp_new

/* Create DSP device structures for a three device simulation. */
int devn;
dsp_startup();
for (devn=0;devn<3;devn++)
dsp_new(devn,"56116"); /* Create new dsp structures */

13.2.14 dsp_path: Construct Filename
dsp_path(path_name,base_name,suffix,new_name)
char *path_name; /* Directory pathname */
char *base_name; /* Base filename to be appended to path_name */
char *suffix; /* Suffix string to be appended to base_name */
char *new_name; /* Pointer to return buffer for constructed pathname
*/

This function concatenates the user-provided pathname, base name and suffix. If the
base_name begins with a pathname separator or with a device designator, thepath_name

will not be prepended to thebase_name. If the base_name already ends with ’.’ and some
suffix, the suffix will not be appended. See Example 13-14.

Example 13-14. dsp_path

/* Load a file named filter2.lod from the current working directory for device
0. */
#include "simcom.h"
#include "simdev.h"
extern struct dev_const dv_const;/* Simulator device structures */
char newfn[80];
dsp_startup();
dsp_new(0,"56116"); /* Create new dsp structure */
dsp_path(dv_const.sv[0]->pathwork,"filter2","lod",newfn);
dsp_ldmem(0,newfn); /* Load file into dsp device 0 */

13-12 Suite56 Simulator Reference Manual Motorola

Simulator Object Library Entry Points

13.2.15 dsp_rapin: Read DSP Analog Pin State
int dsp_rapin(device_index,pin,retvf)
int device_index; /* DSP device index to be affected by command */
int pin; /* Pin number to read */
float *retvf; /* Pointer to floating point (single precision) return
value */

This function reads a dsp analog device pin value. It is only valid for device pins which are
defined as having analog values, such as codec output pins; other pins will return 0.0 as
the analog value. The function return value will beDSP_PINVAL_Land a floating point
value returned in retvf if found; orDSP_ERRif there is an error condition. Use the
Simulator’shelp pin command to produce a list of the valid pin names and each pin’s
corresponding pin index. The device pin number can also be obtained by using the pin
name as a key and calling the functiondsp_findpin . TheDSP_PINVALreturn values are
defined in thesimdev.h file. See Example 13-15.

Example 13-15. dsp_rapin

int devn;
int pinnum;
int err;
float aval;
dsp_startup();
devn=0;
dsp_new(devn,"56156"); /* Allocate structure for device 0, a 56156 */
dsp_findpin(devn,"spkp",&pinnum); /* Get pin number for pin named spkp */
err=dsp_rapin(devn,pinnum,&aval); /* Read value of device 0 pin spkp*/

13.2.16 dsp_rmem: Read DSP Memory Location
int dsp_rmem(device_index,memory_map,address,return_value)
int device_index; /* DSP device index to be affected by command */
enum memory_map memory_map; /* memory designator */
unsigned long address; /* DSP memory address to read */
unsigned long *return_value; /* Memory value (or values) will be returned
here */

This function reads the contents of a selected dsp memory location and writes it to
return_value . If the memory_mapimplies a two word value, the least significant word will
be returned toreturn_value ; the most significant word will be returned to the
return_value+1 location. This function also returns a flag that indicates whether or not the
memory location exists. It returns 1 if the location exists, 0 otherwise.

Thememory_mapparameter selects the appropriatedt_memory structure fromdt_var.mem

for the selected device. These structures are describe in thesimdev.h file which is included
with the Simulator. Thememory_mapparameter can be obtained with the function
dsp_findmem by using the memory name as a key. Use the Simulatorhelp memcommand
for a list of valid memory names. Thememory_map enum ismemory_map_ concatenated

Simulator Object Library Entry Points

Motorola C Library Functions 13-13

with a valid memory name. As an example,memory_map_pa refers to off chip pa memory
on the 96002 device.

This function calls the functiondspl_xmrd() if the address indicates an external memory
location. Thedspl_xmrd() function is provided in source form in the filesimvmem.c and
can be modified to simulate special external memory characteristics. See Example 13-16.

Example 13-16. dsp_rmem

/* Read X memory location 100 from device 0. */
unsigned long address;
unsigned long memval;
int devn;
int ok;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
address=100L;
ok=dsp_rmem(devn,memory_map_x,address,&memval);

13.2.17 dsp_rpin: Read DSP Pin State
int dsp_rpin(device_index,pin)
int device_index; /* DSP device index to be affected by command */
int pin; /* Pin number to read */

This function reads a dsp device pin value. The return value may beDSP_PINVAL_L,
DSP_PINVAL_H, DSP_PINVAL_F, DSP_PINVAL_0, or DSP_PINVAL_1 indicating low output,
high output, floating, low input or high input pin state. Use the Simulator’shelp pin
command to produce a list of the valid pin names and each pin’s corresponding pin index.
The device pin number can also be obtained by using the pin name as a key and calling the
functiondsp_findpin . TheDSP_PINVALreturn values are defined in thesimdev.h file. See
Example 13-17.

Example 13-17. dsp_rpin

int devn;
int pinnum;
int pin_value;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_findpin(devn,"rw",&pinnum);/* Get pin number for pin named rw */
pin_value=dsp_rpin(devn,pinnum);/* Read value of device 0 pin rw */

13-14 Suite56 Simulator Reference Manual Motorola

Simulator Object Library Entry Points

13.2.18 dsp_rport: Read DSP Port State
dsp_rport(device_index,port,data,force)
int device_index; /* DSP device index to be affected by command */
int port; /* Port number to read */
unsigned long *data; /* Return port data value goes here */
unsigned long *force; /* Return port forcing state goes here */

This function reads a dsp device port state. It returns two values. The value returned in the
data parameter contains the current pin data state for all pins in the port. In the case of
input pins, this is the last value written to the input pin; in the case of output pins the data
state is the last data written to the port by the device. The value returned in theforce

parameter indicates which port bits are actually being driven as outputs by the device.

Theport parameter acts as the index to thedev_var.xportval array. A list of port names
and the corresponding port index can be obtained using the Simulator’shelp port and
help periph commands. The port index can also be determined by using the port name as
a key when callingdsp_findport . See Example 13-18.

Example 13-18. dsp_rport

int devn;
int portnum;
unsigned long portbdata, portbforce;
unsigned long portmask;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_findport(devn,"portb",&portnum,&portmask);
dsp_rport(devn,portnum,&portbdata,&portbforce);

13.2.19 dsp_rreg: Read a DSP Device Register
dsp_rreg(device_index,periph_num,reg_num,reg_val)
int device_index; /* DSP device index to be affected by command */
int periph_num; /* DSP peripheral number */
int reg_num; /* DSP register number */
unsigned long *reg_val; /* Return register value goes here */

This function reads a selected register from the regval array in a DSP dev_periph
structure. Registers which return more than one word as the register value will return the
least significant word in reg_val[0].

Use the Simulatorhelp regcommand to obtain a list of the validperiph_num andreg_num

values, andreg_val size for each register. Also,dsp_findreg can be used to obtain the
peripheral and register number by using the register name as a key. See Example 13-19.

Example 13-19. dsp_rreg

int devn;

Simulator Object Library Entry Points

Motorola C Library Functions 13-15

int periph_num, reg_num;
unsigned long regval;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
if (dsp_findreg(devn,"pc",&periph_num,®_num))
dsp_rreg(devn,periph_num,reg_num,®val);

13.2.20 dsp_save: Save All DSP Structures to State File
int dsp_save(filename)
char *filename; /* Full name of State File to be saved */

This function saves a dsp device structure to a simulation state file. This function does not
invoke the user interface functions which provide pathname and. sim suffix extension, so
the entire filename must be specified. The function returns 1 if the save is successful, 0 if
an error occurs when saving the file. This function will call the functiondspl_xmsave as
one of the steps of saving the dsp structure. See Example 13-20.

Example 13-20. dsp_save

int ok;
dsp_startup();
dsp_new(0,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_new(1,"56116"); /* Allocate structure for device 1, a 56116 */

/* Save device 0 and 1 to state file lunchbrk.sim . */
ok=dsp_save("lunchbrk.sim");

13.2.21 dsp_startup: Initialize DSP Structures
int dsp_startup();

This function initializes DSP structures. It should be called once (and only once) at the
first of your program prior to any calls todsp_new . See Example 13-21

Example 13-21. dsp_startup

dsp_startup();
dsp_new(0,"56116"); /* Allocate structure for device 0, a 56116 *
dsp_new(1,"56116"); /* Allocate structure for device 1, a 56116 *

13.2.22 dsp_unlock: Unlock Password Protected Device Type
dsp_unlock(device_type, password)
char *password; /* Pointer to string containing password */
char *device_type; /* Name corresponding to DSP device type */

This function provides the password for protected device types. It must be used prior to
thedsp_new function call if the device type is password protected. See Example 13-22.

13-16 Suite56 Simulator Reference Manual Motorola

Simulator Object Library Entry Points

Example 13-22. dsp_unlock

/* Create a device simulation of the password protected 56001 device */
int devn;
dsp_startup();
dsp_unlock("56001","x51-234"); /* provide password for device */
devn=0;
dsp_new(devn,"56001"); /* Create new dsp structures */

13.2.23 dsp_wapin: Write DSP Analog Pin State
int dsp_wapin(device_index,pin,value)
int device_index; /* DSP device index to be affected by command */
int pin; /* Pin number to write*/
float value; /* Input value for specified pin */

This function writes a selected dsp device pin with a single precision floating point input
value. Use the Simulator’shelp pin command to produce a list of the valid pin names and
each pin’s corresponding pin index. The device pin number can also be obtained by using
the pin name as a key and calling the functiondsp_findpin . See Example 13-23.

Example 13-23. dsp_wapin

#include "simcom.h"
#include "simdev.h"
/* Write the reset pin of device 0 with a high level. */
int devn;
int pinnum;
float pinval;
dsp_startup();
devn=0;
dsp_new(devn,"56156"); /* Allocate structure for device 0, a 56156 */
dsp_findpin(devn,"mic",&pinnum);/* Get pin number for pin named mic */
pinval=0.709;
dsp_wapin(devn,pinnum,pinval);

13.2.24 dsp_wmem: Write DSP Memory Location
dsp_wmem(device_index,memory_map,address,value)
int device_index; /* DSP device index to be affected by command */
enum memory_map memory_map; /* memory designator */
unsigned long address; /* DSP memory address to write */
unsigned long *value; /* Pointer to value to write to memory location
*/

This function writes a selected dsp memory location.

Thememory_mapparameter is selects the appropriatedt_memory structure fromdt_var.mem

for the selected device. These structures are describe in thesimdev.h file which is included
with the Simulator. Thememory_mapparameter can be obtained with the function
dsp_findmem by using the memory name as a key. Use the Simulatorhelp memcommand

Simulator Object Library Entry Points

Motorola C Library Functions 13-17

for a list of valid memory names. Thememory_map enum is
memory_map_ concatenated with a valid memory name. As an example,memory_map_pa

refers to off chip pa memory on the 96002 device.

If the selected memory map requires two word values, the least significant word should be
at thevalue location and the most significant word at thevalue+1 location.

If the memory address selects an external memory location, thedspl_xmwr function will be
called. Thedspl_xmwr function is provided in source form in the filesimvmem.c and can
be modified to simulate special external memory characteristics. See Example 13-24.

Example 13-24. dsp_wmem

int devn;
unsigned long address, memval;
address=200L;
memval=0L;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_wmem(devn,memory_map_p,address,&memval);

13.2.25 dsp_wpin: Write DSP Pin State
int dsp_wpin(device_index,pin,value)
int device_index; /* DSP device index to be affected by command */
int pin; /* Pin number to write*/
int value; /* Input value for specified pin */

This function writes a selected dsp device pin with a valueDSP_PINVAL_L, DSP_PINVAL_H,

DSP_PINVAL_F, DSP_PINVAL_N, or DSP_PINVAL_Pindicating low, high, floating, negative
pulse, or positive pulse. Use the Simulator’shelp pin command to produce a list of the
valid pin names and each pin’s corresponding pin index. The device pin number can also
be obtained by using the pin name as a key and calling the functiondsp_findpin . The
DSP_PINVALvalues are defined in thesimdev.h file. See Example 13-25.

Example 13-25. dsp_wpin

#include "simcom.h"
#include "simdev.h"
/* Write the reset pin of device 0 with a high level. */
int devn;
int pinnum;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_findpin(devn,"reset",&pinnum);/* Get pin number for pin named reset */
dsp_wpin(devn,pinnum,DSP_PINVAL_H);

13-18 Suite56 Simulator Reference Manual Motorola

Simulator Object Library Entry Points

13.2.26 dsp_wport: Write DSP Port State
dsp_wport(device_index,port,mask,data,force)
int device_index; /* DSP device index to be affected by command */
int port; /* Port number to write */
unsigned long mask; /* Pin mask for this port */
unsigned long data; /* Port data value */
unsigned long force; /* Port forcing state */

This function forces data on a dsp device port from outside the device. The value supplied
in thedata parameter contains the new input data to be written to the port. The value
supplied in theforce parameter indicates which port bits are actually being driven as
inputs to the device. The value supplied in themask parameter specifies which pins in the
port are to be affected by this write; the other pins in the port remain in their previous
state.

Theport parameter acts as the index to thedev_var.xportval array. A list of port names
and the corresponding port index can be obtained using the Simulator’shelp port and
help periph commands. The port index and mask value can also be obtained by using the
port name as a key when callingdsp_findport .

This function call can be paired with thedsp_rport function to simulate a port to port
connection between devices. See Example 13-26.

Example 13-26. dsp_wport

/* Write portb of device 1 from portb of device 0 */
int portnum;
unsigned long portbdata, portbforce;
unsigned long portmask;
dsp_startup();
dsp_new(0,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_new(1,"56116"); /* Allocate structure for device 1, a 56116 */
dsp_findport(0,"portb",&portnum,&portmask);
dsp_rport(0,portnum,&portbdata,&portbforce)
dsp_wport(1,portnum,portmask,portbdata,portbforce)

13.2.27 dsp_wreg: Write a DSP Device Register
dsp_wreg(device_index,periph_num,reg_num,reg_val)
int device_index; /* DSP device index to be affected by command */
int periph_num; /* DSP peripheral number */
int reg_num; /* DSP register number */
unsigned long *reg_val; /* Value to be written to register */

This function writes a selected register in the a dsp structure.

Use the Simulatorhelp regcommand to obtain a list of the validperiph_num andreg_num

values, andreg_val size for each register. Also, the functiondsp_findreg can be used to
obtain the peripheral and register number by using the register name as a key.

Simulator Object Library Entry Points

Motorola C Library Functions 13-19

If a register requires more than one word to represent the data value the least significant
word should be atreg_val , with more significant words atreg_val+1 , etc. See
Example 13-27.

Example 13-27. dsp_wreg

int devn;
int periph_num, reg_num;
unsigned long regval;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
regval=100L;
if (dsp_findreg(devn,"pc",&periph_num,®_num))
dsp_wreg(devn,periph_num,reg_num,®val);

13.2.28 sim_docmd: Execute Simulator User Interface Command
sim_docmd(device_index,command_string)
int device_index; /* DSP device index to be affected by command */
char *command_string; /* User interface command to be executed */

This function executes any Simulator command that the Simulator normally accepts from
the terminal.SIMDSPnormally callssim_gtcmd() to get a valid command string from the
terminal, then callssim_docmd to execute it. Thedevice_index determines which dsp
device (in a multiple dsp simulation) is affected by the command execution. The devices
are numbered 0,1,2...n-1 in an n-device system, so be very careful, for example, to use 0
for thedevice_index parameter in a single device system.

If the command_string begins macro execution the selected device structurein_macro flag
will be set bysim_docmd . SIMDSPretrieves valid commands from the macro file by calling
sim_gmcmd() as long as thein_macro flag is set. The commands are still executed by
sim_docmd , whether they come from the terminal or a macro file.

Commands which initiate device cycle execution (such asgo or trace) will set the device
structuresim_var.stat.executing flag. SIMDSPexecutes device cycles until the
executing flag is cleared by an execution breakpoint. See Example 13-28

Example 13-28. sim_docmd

int devn;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
sim_docmd(devn,"change pc $40");/* Change device 0 pc register to $40 */
sim_docmd(devn,"break r p:$80");/* Set a breakpoint for device 0 */
sim_docmd(devn,"go"); /* Begin execution of device 0 */

13-20 Suite56 Simulator Reference Manual Motorola

Simulator Object Library Entry Points

13.2.29 sim_gmcmd: Get Command String from Macro File
sim_gmcmd(device_index,command_string)
int device_index; /* DSP device index to be affected by command */
char *command_string; /* Pointer to return buffer for command line */

This function reads the next Simulator command string from a macro file. The
sim_docmd() function will normally determine that a command is a macro, open the macro
file and set the device structuresim_const.in_macro flag. Thesim_gmcmd() function
returns the next line from the open macro file each time it is called. It will clear the
in_macro flag at the end of macro execution or if an invalid macro command is processed.
The command_string buffer should be at least 80 characters. See Example 13-29.

Example 13-29. sim_gmcmd

/* Execute the macro command file startup.cmd on dsp device structure 0. */
#include "simcom.h"
#include "simusr.h"
extern struct sim_const sv_const; /* Simulator device structures */
char command_string[80];
int devn;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Create new dsp structure */
sim_docmd(devn,"startup"); /* Begin the startup macro */
while (sv_const.in_macro){
sim_gmcmd(devn,command_string); /* Get command string from macro file */
sim_docmd(devn,command_string); /* Execute command string */
}

13.2.30 sim_gtcmd: Get Command String from Terminal
sim_gtcmd(device_index,command_string)
int device_index; /* DSP device index to be affected by command */
char *command_string; /* Pointer to return buffer for command line */

This function gets the next command string from the terminal in an interactive mode. The
command line editing, command expansion and on-line help functions are invoked by this
terminal command input function. The command string is fully checked for errors prior to
returning. The command_string buffer should be at least 80 characters. See
Example 13-30.

Simulator External Memory Functions

Motorola C Library Functions 13-21

Example 13-30. sim_gtcmd

/* Get and execute Simulator commands for device 0 until a go type command is
*/
/* entered. */
#include "simcom.h"
#include "simusr.h"
extern struct sim_const sv_const; /* Simulator device structures */
char command_string[80];
int devn;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Create new dsp structure */
while (!sv_const.sv[devn]->stat.executing){/* Check for go */
sim_gtcmd(devn,command_string); /* Get command */
sim_docmd(devn,command_string); /* Execute command */
}

13.3 Simulator External Memory Functions

The following sections describe functions which are provided in source code form in the
Simulator package in the filesimvmem.c . These functions define all the operations
associated with reading, writing or storing dsp external memory locations. The Simulator
memory allocation function is also included in this module since the representation of
external memory is implemented with a virtual memory technique that is integrated with
the memory allocation service. The external memory functions, with the exception of
dsp_alloc , would not normally be called directly from the user’s code. They are
referenced from other Simulator functions, such asdsp_load or dsp_rmem, described in
Section 13.2. Table 13-3 is a reference list of the external memory functions:

Table 13-3. External Memory Functions

Function Description

dsp_alloc(num_bytes); Allocate Simulator Program Memory

dspl_xmend(devn,map); End DSP External Memory access

dspl_xmfree(devn); Free DSP Device External Memory

dspl_xminit(devn); Initialize DSP Device External Memory

dspl_xmload(devn,fp); Load DSP External Memory from State File

dspl_xmnew(devn); Create New External Memory Structure

dspl_xmrd(devn,map,add,val,fetch)
;

Read DSP External Memory Location to val

13-22 Suite56 Simulator Reference Manual Motorola

Simulator External Memory Functions

The external memory access functions are provided in source form so that the external
memory map attributes can be customized. This is especially useful for multiple dsp
simulations in which complex configurations such as dual-port memory may be required.
The functions insimvmem.c simulate the entire external memory space of up all dsp
devices.

13.3.1 dsp_alloc: Allocate Simulator Program Memory
void *dsp_alloc(numbytes)
unsigned int numbytes; /* Size of memory block needed in bytes */

This function must return a character pointer to the requested number of bytes of memory.
It is not necessary for the memory to be cleared. A simple version could just callmalloc() .
The Simulator will not recover if thedsp_alloc() call fails, so anexit() must occur
within dsp_alloc() if the requested memory cannot be allocated. See Example 13-31.

Example 13-31. dsp_alloc

/* Allocate memory for a new structure. */
void *dsp_alloc();
struct new_struct{
char buf[1000];
int bufindex;
} *newp;
newp=(struct new_struct *) dsp_alloc(sizeof(struct new_struct));

13.3.2 dspl_xmend: End DSP External Memory Access
dspl_xmend(device_index,memory_map)
int device_index; /* DSP device index to be affected by command */
enum memory_map memory_map; /* memory designator */

The core simulation calls this function during the last clock cycle of each external memory
access. Thememory_mapparameter will be a memory designator as returned by
dsp_findmem . Use the Simulatorhelp memcommand for a list of valid memory names.
Thememory_map enum ismemory_map_concatenated with a valid memory name. As an
example,memory_map_pa refers to off chip pa memory on the 96002 device.

dspl_xmsave(devn,fp); Save DSP External Memory to State File

dspl_xmstart(devn,map); Start DSP External Memory access

dspl_xmwr(devn,map,add,val,store)
;

Write DSP External Memory with val

Table 13-3. External Memory Functions (Continued)

Function Description

Simulator External Memory Functions

Motorola C Library Functions 13-23

13.3.3 dspl_xmfree: Free DSP Device External Memory
dspl_xmfree(device_index)
int device_index; /* DSP device index to be affected by command */

This function must free any memory that has been allocated to represent the external
memory space of a selected device. Note that this function should not be called directly by
the user’s code. It is called as one of the steps in freeing an entire device structure by
dsp_free() . See Example 13-32.

Example 13-32. dspl_xmfree

/* Free external memory of dsp device structure 0. */
int devn;
devn=0;
dspl_xmfree(devn);

13.3.4 dspl_xminit: Initialize DSP Device External Memory
dspl_xminit(device_index)
int device_index; /* DSP device index to be affected by command */

This function must initialize the values in any structures used to represent the external
memory of a dsp device. The Simulator commandsreset sandload swill call
dspl_xminit() in the processes of initializing or reloading the Simulator state. See
Example 13-33.

Example 13-33. dspl_xminit

/* Initializing external memory for device 1 */
int devn;
devn=1;
dspl_xminit(devn);

13.3.5 dspl_xmload: Load DSP External Memory from State File
int dspl_xmload(device_index,fp)
int device_index; /* DSP device index to be affected by command */
FILE *fp; /* Pointer to file opened in text read mode ("r") */

This function must restore external memory from a Simulator state file. Note that this
function should not be called directly by the user’s code. Thedspl_xmload() call is the
last step of thedsp_load() function which loads a Simulator state file. The file pointer
provided todspl_xmload will have been opened withfp=fopen (filename,“r”) and the
remainder of the Simulator state will have already been restored from the state file. The
steps used to restore the external memory should complement the steps used to save
external memory in thedspl_xmsave() function. The return value ofdspl_xmload()

should be 1 if successful, 0 if an error occurred. Thedsp_load() function will close the
file following the dspl_xmload() call. See Example 13-34.

13-24 Suite56 Simulator Reference Manual Motorola

Simulator External Memory Functions

Example 13-34. dspl_xmload

/* Call of dspl_xmload() from dsp_load() */
int status;
FILE *fp;
fp=fopen(filename,"r");
./* Loading of other Simulator state structures */
.
status=dspl_xmload(devn,fp);

13.3.6 dspl_xmnew: Create New External Memory Structure
dspl_xmnew(device_index)
int device_index; /* DSP device index to be affected by command */

This function must create and initialize the external memory for a device. Note that this
function should not be called directly by the user’s code. Thedsp_new() function calls
dspl_xmnew() as part of the process of creating a new dsp device structure. See
Example 13-35

Example 13-35. dspl_xmnew

/* Call to dspl_xmnew() from dsp_new() */
dspl_xmnew(devn);

13.3.7 dspl_xmrd: Read DSP External Memory Location
int dspl_xmrd(device_index,mem_map,address,return_value,fetch)
int device_index; /* DSP device index to be affected by command */
enum memory_map memory_map; /* memory designator */
unsigned long address; /* DSP memory address to read */
unsigned long *return_value; /* Memory value will be returned here */
int fetch; /* Flag indicating that a dsp fetch is in
progress */

This function must return the value of a dsp device’s external memory location. The
Simulator callsdspl_xmrd() when a dsp device reads an external memory location, or
when the Simulator user interface reads the location for display purposes. This function
also returns a flag value of 1 if the memory location exists, 0 if it doesn’t exist. Thefetch

parameter indicates todspl_xmrd () whether or not the read is being executed by the dsp
device. Iffetch=1 , the dsp device is fetching the memory location during execution of a
device cycle. Iffetch=0 , dspl_xmrd () is being called from some other source not
associated with device cycle execution (for example, from the memory display routines).
Although thefetch parameter is not used in the version ofdspl_xmrd () provided in the file
simvmem.c , it is provided to enable special processing that should only occur when the
device cycle simulation is taking place. Thememory_mapparameter will be a value
representing the memory space being accessed. Use the Simulatorhelp memcommand
for a list of valid memory names. Thememory_mapenum ismemory_map_concatenated with

Simulator External Memory Functions

Motorola C Library Functions 13-25

a valid memory name. As an example,memory_map_pa refers to off chip pa memory on the
96002 device. See Example 13-36.

Example 13-36. dsp_xmrd

/* Read "pe" memory location $5000 of device 2 */

unsigned long address;
int devindex;
unsigned long retval;
int ok;
int fetch;
address=0x5000L;
devindex=2;
fetch=0;
ok= dspl_xmrd(devindex,memory_map_pe,address,&retval,fetch);

13.3.8 dspl_xmsave: Save DSP External Memory to State File
int dspl_xmsave(device_index,fp)
int device_index; /* DSP device index to be affected by command */
FILE *fp; /* Pointer to file opened in write mode */

This function must save the external memory state to a Simulator state file. The
dspl_xmsave() call is the last step of thedsp_save() function which saves a Simulator
state file. The file pointer provided todspl_xmsave will have been opened with
fp=fopen (filename,“w+”) and the remainder of the Simulator state will have already been
saved to the state file. The return value ofdspl_xmsave() should be 1 if successful, 0 if an
error occurred. Thedsp_save() function will close the file following thedspl_xmsave()

call. See Example 13-37.

Example 13-37. dspl_xmsave

/* Call of dspl_xmsave() from dsp_save() */
int status;
FILE *fp;
fp=fopen(filename,"w+");
./* Saving of other Simulator state structures */
.
status=dspl_xmsave(devindex,fp);

13.3.9 dspl_xmstart: Start DSP External Memory Access
dspl_xmstart(device_index,memory_map)
int device_index; /* DSP device index to be affected by command */
enum memory_map memory_map; /* memory designator */

The core simulation calls this function during the first clock cycle of each external
memory access. Thememory_mapparameter will be a value as returned bydsp_findmem .
Use the Simulatorhelp memcommand for a list of valid memory names. Thememory_map

13-26 Suite56 Simulator Reference Manual Motorola

Simulator Screen Management Functions

enum ismemory_map_concatenated with a valid memory name. As an example,
memory_map_pa refers to off chip pa memory on the 96002 device.

13.3.10 dspl_xmwr: Write DSP External Memory Location
int dspl_xmwr(device_index,mem_map,address,value,store)
int device_index; /* DSP device index to be affected by command */
enum memory_map memory_map; /* memory designator */
unsigned long address; /* DSP memory address to write */
unsigned long value; /* Value to be written to memory location */
int store; /* Flag indicating that a device store is in
effect */

This function must store a value to a dsp device’s external memory location. The
Simulator callsdspl_xmwr() when a dsp device writes an external memory location, or
when the Simulator user interface alters the location. Thestore parameter will indicate if
the reference is from the dsp device (store=1) during simulation of device cycle
execution, or some other source (store=0) not related to device cycle execution. For
example, thechangememory Simulator command will set the parameter store to 0. The
store parameter is not used in thedspl_xmwr function provided in the filesimvmem.c , but
is available to the user if modifications are made to thesimvmem.c file for special external
memory processing. Thememory_mapparameter will be a value representing the memory
space being accessed. Use the Simulator’shelp memcommand to obtain a list of the valid
memory space prefixes. See Example 13-38.

Example 13-38. dspl_xmwr

/* Write value of 3 to "xe" memory location 5 of device 2 */

unsigned long address;
int devindex;
int ok;
unsigned long newval;
int store;
address=5L;
devindex=2;
newval=3L;
store=0;
ok= dspl_xmwr(devindex,memory_map_xe,address,newval,store);

13.4 Simulator Screen Management Functions

The following sections describe functions which are provided in source code form in the
Simulator package in the filescrmgr.c . These functions define all the operations
associated with Simulator terminal I/O. The code includes conditionally compiled sections
for MSDOS, UNIX, and VMS. The code is provided to allow customization of the
Simulator terminal I/O for a particular environment. The user may, for example, wish to

Simulator Screen Management Functions

Motorola C Library Functions 13-27

redefine the control characters used by the Simulator so that they map to some particular
terminal.

Table 13-4 is a quick reference list of the Simulator screen management functions:

13.4.1 simw_ceol: Clear to End of Line
simw_ceol()

This function must clear the display from the current column to the end of line, then return
the cursor to the previous position.

Table 13-4. Screen Management Functions

Function Description

simw_ceol(); Clear to end of line

simw_ctrlbr(); Check for CTRL-C signal

simw_cursor(line,column); Move cursor to specified line, column

simw_endwin(); End the Simulator display

simw_getch(); Non-translated keyboard input

simw_gkey(); Translated keyboard input

simw_putc(c); Output character to terminal

simw_puts(line,column,text,flag)
;

Output string to terminal at line and column

simw_redo(device); Repaint screen with output from device

simw_redraw(count); Redraw screen after scrolling count

simw_refresh(); Screen update after buffering output

simw_scrnest(); Nest output buffering another level

simw_unnest(); Pop output buffering one level

simw_winit(); Initialize window parameters

simw_wscr(string,commandflag); Write string and perform logging functions

13-28 Suite56 Simulator Reference Manual Motorola

Simulator Screen Management Functions

13.4.2 simw_ctrlbr: Check for CTRL-C Signal
simw_ctrlbr()

This function must check for the occurrence of a CTRL-C signal from the terminal. If the
CTRL-C signal occurs, it sets a flag for the active breakpoint dsp (defined by
sv_const.breakdev). It returns thesim_var.stat.CTRLBR flag for the current device. This
allows the program to select the device that will halt in response to the CTRL-C signal
from the keyboard in a multiple device simulation.

13.4.3 simw_cursor: Move Cursor to Specified Line and Column
simw_cursor(line,column)

This function must move the cursor to the specified line and column and update the
sim_const.curline and sim_const.curclm variables.

13.4.4 simw_endwin: End Simulator Window
simw_endwin()

This function is normally called when returning to the operating system level from the
Simulator. It must terminate any special processing associated with terminal I/O for the
Simulator and clear the display.

13.4.5 simw_getch: Non-translated Keyboard Input
simw_getch()

This function gets a single character in a non-translated mode from the terminal. It is not
used much by the Simulator - only when returning from the execution of thesystem
command prior to the time when the Simulator’s special terminal I/O processing is
reinitialized.

13.4.6 simw_gkey: Translated Keyboard Input
simw_gkey()

This function gets a keystroke from the terminal and maps it to one of the accepted
internal codes used by the Simulator. The internal codes are defined insimusr.h . This
function should not output the character to the terminal. This function is a good candidate
for modification if you want to change the set of input control characters used by the
Simulator.

Simulator Screen Management Functions

Motorola C Library Functions 13-29

13.4.7 simw_putc: Output Character to Terminal
simw_putc(c)
char c;

This function outputs the character in the variablec at the current cursor and column
position. It advances and updates thesim_const.curclm variable. This function is not used
often by the Simulator, and it is not very time critical when it is used, so the Simulator
implementation is just to callsimw_puts() after creating a temporary string from the
characterc.

13.4.8 simw_puts: Output String to Terminal
simw_puts(line,column,text,flag)
int line; /* Move cursor to this line for output */
int column; /* Move cursor to this column for output */
char *text; /* Text string to be output */
int flag; /* 0=non-bold, 1=bold on/off by {}, 2=all bold */

This function outputs a string to the terminal at the specified line and column.
Highlighting of output can be enabled either by setting theflag parameter to 2 or by
enclosing text in curly braces and setting theflag parameter to 1.

13.4.9 simw_redo: Repaint Screen With Output From Device
simw_redo(device)
int device; /* Use screen buffer from this device to repaint
screen */

This function repaints the screen from a device screen buffer. It is normally only called
when re-entering the Simulator following asystemcommand, after loading the device
state with theload s filenamecommand, or after switching devices in a multiple device
simulation with thedevicecommand.

13.4.10 simw_redraw: Redraw Screen After Scroll Count
simw_redraw(count)
int count; /* Number of lines to scroll before repainting the
screen */

This function scrolls up or downcount lines in the display buffer, then redisplays the text
in the buffer at that position. This function only displays the text that is in the scrolling
portion of the display.

13-30 Suite56 Simulator Reference Manual Motorola

Simulator Screen Management Functions

13.4.11 simw_refresh: Screen Update After Buffering Output
simw_refresh()

The Simulator buffers screen output in implementations other than MSDOS in order to
decrease the time spent repainting the screen. This provides a fixed display effect for
consecutivetrace commands. Thesimw_refresh() function will take care of refreshing
the screen following buffering of screen output. It also resets thesim_const.scrnest

variable to 0 to coincide with the non-buffered status of the screen following the refresh.

13.4.12 simw_scrnest: Increase Screen Buffering One Level
simw_scrnest()

This function increments a counter to signify the screen output buffering level. The
companionsimw_unnest () andsimw_refresh () functions provide the output buffering
operations for the Simulator. Thesim_const.scrnest variable is incremented each time
this function is called.

13.4.13 simw_unnest: Decrease Screen Buffering One Level
simw_unnest()

This function decrements thesim_const.scrnest variable each time it is called. If the
screen buffering level drops below one,simw_unnest() will call simw_refresh() to
update the screen.

13.4.14 simw_winit: Initialize Window Parameters

simw_winit()

This function initializes any screen or keyboard parameters that are required for the
Simulator terminal I/O environment. It is called whenever the Simulator is entered from
the operating system level, which includes the initial Simulator entry and re- entry
following thesystemcommand.

13.4.15 simw_wscr: Write String and Perform Logging
simw_wscr(text,command_flag)
char *text; /* Text string to write to screen */
int command_flag; /* Flag 1=string is a command, 0= not a command */

This function outputs the string to the terminal above the command line after scrolling the
display up one line. It also takes care of writing the text string to the proper log files
specified by the Simulatorlog sor log c commands.

Non-Display Simulator

Motorola C Library Functions 13-31

13.5 Non-Display Simulator

The Simulator package contains object libraries which support both display and non-
display versions of the Simulator. The librarynwsim contains functions available to the
non-display version of the Simulator. The librarywwsim contains functions that may only
be used in a display version of the Simulator. For each device type there are also display
and non-display device-specific libraries namedwwxxxxx andnwxxxxx where thexxxxx
is the device number.

The source code contained insnwdsp.c can be linked with the nwxxxxx and nwsim
libraries to create a non-display version of the Simulator. Elimination of the user interface
functions cuts the code size of the Simulator almost in half. However, all of the functions
listed in Section 13.4 andsim_docmd (), sim_gmcmd() andsim_gtcmd () described in Section
13.2, are sacrificed.

The remainder of the functions in Section 13.2 and all of the functions in Section 13.3 are
available in the non-display Simulator libraries.

Some major features of the Simulator are eliminated by the loss of thesim_docmd()

function. In particular, there are no low-level entry points provided to set a breakpoint or
to assign input or output files to DSP peripheral functions. However, the basic functions
required to create a device, load a program, execute the code, and test or modify device
registers are all still available. In addition, thedsp_save() function provides the capability
to save the state of the non-display version. The state file can later be reloaded by a display
version of the Simulator for visual examination of the registers and memory contents.

The following sections cover several topics that concern the non-display version of the
Simulator. Section 13.5.1 deals with creating a new device. Section 13.5.2 describes how
to load a program or state file. Section 13.5.3 describes how to execute device cycles.
Section 13.5.4 describes how to test breakpoint conditions.

13.5.1 Creating a New Device

Thesimcom.h file defines the maximum number of DSP devices in the constant
DSP_MAXDEVICES. A new device can be created and numbered from 0 toDSP_MAXDEVICES-1.
The structures are allocated by calls to thedsp_new() function described in
Section 13.2.13, "dsp_new: Create New DSP Device Structure," . See Example 13-39

13-32 Suite56 Simulator Reference Manual Motorola

Non-Display Simulator

Example 13-39. Code to Create New Device

The following C source code illustrates the steps necessary to create 3 DSP devices.

dsp_startup();
dsp_new(0,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_new(1,"56116"); /* Allocate structure for device 1, a 56116 */
dsp_new(2,"56116"); /* Allocate structure for device 2, a 56116 */

13.5.2 Loading Program Code or Device State

The display version of the Simulator provides the high levelsim_docmd() function
interface. It allows the user to simply execute the high levelload or load sSimulator
commands to load program code or a Simulator state file. The non-display version of the
Simulator makes use of the lower level function calls,dsp_ldmem () anddsp_load (), to
accomplish the same results. They are described in Section 13.2. The major difference
from their high-level counterparts is that no file-name expansion is provided in the lower
level calls.

The program code loaded by thedsp_ldmem () function may be any COFF format or OMF
format file. The OMF format is created as the output of versions of the macro assembler
prior to release 4.0 and of the Simulatorsavecommand.The COFF format files are the
output of the macro assembler beginning with release 4.0, or those saved by the Simulator
savecommand with the suffix “.cld”.

The Simulator state loaded by thedsp_load () function may have previously been saved by
a display or non-display version of the Simulator. The formats are the same.

Thedsp_save () function is provided as a low-level entry point that saves the Simulator
state for a non-display version of the Simulator. It is the same function that is called during
execution of the high levelsave scommand, which is only available in the display version.
The only limitation is that the full save filename must be specified. No automatic
expansion is done for the working path or filename suffix as in the higher level Simulator
calls. Thedsp_save () function is described in Section 13.2, "Simulator Object Library
Entry Points," .

13.5.3 Executing Device Cycles

After creating a new device - as described in Section 13.5.1, "Creating a New Device," -
and loading a program or state file - as described in Section 13.5.2, "Loading Program
Code or Device State," - the Simulator is ready to execute the program code.

Multiple Device Simulation

Motorola C Library Functions 13-33

Execution will begin at the start address specified in the load file, or continue from the
previous location in a Simulator state file. The user’s code may select a new execution
address by writing register “pc” using thedsp_wreg function.

The Simulator will advance the device state by one clock cycle each time thedsp_exec

function is called. The device pin states are updated each clock cycle, and can be
examined or changed using thedsp_rpin, dsp_wpin, dsp_rport, or dsp_wport functions.

13.5.4 Testing Breakpoint Conditions

The display version of the Simulator provides a way to specify breakpoint conditions that
are evaluated each timedsp_exec is called. If the breakpoint condition is met, the
Simulator displays the enabled registers and clears the device structure
sim_var.stat.executing flag (assuming the breakpoint action ishalt).

The non-display Simulator does not provide a way to specify breakpoint conditions. It is
up to the user’s code to examine device registers or memory conditions and decide
whether or not to continue cycle execution. The device registers and memory can be
examined using thedsp_rreg anddsp_rmem functions. The example programsnwdsp.c

simply checks the Simulator cycle counter for device 0 and terminates execution after
some number of cycles.

Another variable that may be particularly useful in breakpoint testing is
dev_var.flg_stat . It maintains bit flags which signal end-of-instruction (DSP_GEOI), end
of repeat cycle (DSP_GEOR), and illegal opcode(DSP_GILLEG). The bit flag definitions are
defined insimdev.h .

13.6 Multiple Device Simulation

The SIMDSP Simulator initially simulates a single dsp device; but additional devices can
be created using thedevice command. Device to device pin connections or device to
device memory map connections can be specified with the Simulatorinput command.
The following sections describe some details about the way the Simulator handles
multiple device simulation. Section 13.6.1 describes the required steps which allocate and
initialize multiple dsp structures. Section 13.6.2 describes the method of interleaving
device execution in order to maintain multiple device synchronization. Section 13.6.3
describes simulation of the external memory space of the dsp devices. Section 13.6.4
describes multiple device pin connections. Section 13.6.5 describes display of device
output in the multiple device environment.

13-34 Suite56 Simulator Reference Manual Motorola

Multiple Device Simulation

13.6.1 Allocation and Initialization of Multiple Devices

Most of the higher level Simulator functions require a device index as one of the
parameters. The Simulator uses the device index to select a previously allocated DSP
structure. The DSP structures are allocated dynamically by calling thedsp_new function
for each device. The device type is also selected in thedsp_new function call. In the
display version of the Simulator, thedevicecommand handles the details of calling
dsp_new . The proper sequence of instructions necessary to allocate three DSP devices is
shown below.

dsp_startup();
dsp_new(0,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_new(1,"56116"); /* Allocate structure for device 1, a 56116 */
dsp_new(2,"56116"); /* Allocate structure for device 2, a 56116 */

13.6.2 Interleaving Multiple DSP Simulations

Thedsp_exec function executes a single DSP clock cycle and updates the selected DSP
device structure. In order to simulate simultaneous multiple DSP execution,dsp_exec

should be called for every device before proceeding to the next clock cycle. Thesimdsp

Simulator executes a single clock cycle for each active dsp device, then halts if any active
device has cleared itssim_var.stat .executing flag. It allows Simulator commands, such
as register or memory modifications, on the viewed device until a command sets the
executing flag again. The device which causes a breakpoint becomes the viewed device by
default, but the viewed device can be changed with thedevicecommand without changing
the status of any device. A particular device can be halted by setting theCTRLBRflag in its
sim_var.stat structure. This has the same effect as typing CTRL-C at the keyboard while
a device is running. It breaks device execution at the end of the current instruction. Note
that it is not mandatory to wait for thesim_var.stat .executing flag to be set to begin
device execution, or to halt if the executing flag is clear. These are just convenience
features for the Simulator user interface. Device cycle execution can be advanced in single
cycle increments at any time by callingdsp_exec .

13.6.3 External Memory Definition

The Simulator package contains the C source filesimvmem.c which contains all the
external memory access functions used by the SIMDSP Simulator. These functions are
described in detail in Section 13.3. The functions, as written, will automatically simulate
the entire external memory space of all DSP devices, assuming that the operating system
can allocate enough memory to store the device structures for the devices.

The user may wish to modify thesimvmem.c functions in order to define special external
memory configurations. The functions can be modified, for example, to simulate the

Multiple Device Simulation

Motorola C Library Functions 13-35

response of dual-port RAM or special memory-mapped peripherals. Another good reason
to modify the external memory functions is to increase the speed of the simulation. If the
user’s simulation only requires some minimum amount of external memory, then the
virtual memory management functions provided with the Simulator are probably overkill.

13.6.4 Multiple DSP Pin Interconnections

Thedsp_exec function will automatically update the DSP device pin states by one clock
cycle change each time it is called. The display version of the Simulator will also retrieve
or send data to assigned I/O files as defined by theinput andoutput commands. The
input command supplies a method of connecting device pins back to other device pins on
the same device as well as to device pins on another device.

The device pin states for any device can be examined or written using thedsp_rpin and
dsp_wpin functions described in Section 13.2. Simulation of pin to pin connection simply
requires reading the state of the output pin each cycle withdsp_rpin and writing it to the
input pin withdsp_wpin . A bidirectional pin connection requires reading and writing both
pins. The Simulator maintains separate buffers for input and output data for each pin, so
there is no problem writing a pin, even if it is defined as an output. The input value will be
stored, but will only be used if the pin is subsequently reconfigured as an input.

An entire port state can be read or written using thedsp_rport anddsp_wport functions
described in Section 13.2. The port and pin states are derived from the same storage
variables in the device structure. Thedsp_rport, dsp_wport, dsp_rpin, and dsp_wpin

functions just provide a convenient method of retrieving the data from this structure.

13.6.5 Multiple DSP Simulator Display

The Simulator display functions are contained in the source filescrmgr.c in the Simulator
package. This code supports a virtual screen for each simulated dsp.

The supplied display code uses a single window. The lines above the command line form a
scrollable region in which session output is displayed. The command line, error line and
help line are the three bottom lines of the display. Each allocated device contains screen
buffer memory which saves the previous 100 lines of output which is written to a device’s
scroll region. The terminal screen update is inhibited unless thesim_const.viewdev value
matches the device index, but the output is always placed in the device’s screen buffer.
The screen can be completely refreshed from a selected device screen buffer by executing
thesimw_redo function.

Thedevicecommand allows the user to switch the displayed device. When it switches to a
new device, it refreshes the entire screen from the device’s display buffer.

13-36 Suite56 Simulator Reference Manual Motorola

Reserved Function Names

13.7 Reserved Function Names

The public function names used in the Simulator all begin with the prefixesdsp or sim .
Functions which begin withsim are only available when a display version of the Simulator
is created. Functions which begin withdsp are available to both display and non display
versions. The screen management functions all begin withsimw_. In general, functions
which begin withdsp_ or sim_ are higher level functions available for direct reference
from the user’s code; those beginning withdspl_ or siml_ are meant only for internal use
by the Simulator. The higher level functions and the screen management functions are
documented in Sections 13.2, 13.3, and 13.4. The public function names are listed in the
file namedglobal.sym which is included with the distribution.

13.8 Simulator Global Variables

In order to reduce conflicts with user variable names, the Simulator global variables have
been grouped together into several large structures. In general, the structure names
beginning withs are used defined insimusr.h and are only used in the display version of
the Simulator; while those beginning withd are defined insimdev.h and are used by both
the display and non-display versions of the Simulator. The prefixesst_ anddt_ are used
for structure names of device-type structures, that is structures which must be defined for
each device type. The prefixessim_ anddev_ are used for structure names of general
device or simulation structures.

Global variable names may have a prefixdx_, dv_, sx_, or sv_ . The prefixdx_ is used
for variables ofdt_ structures. The prefixdv_ is used for variables ofdev_ structures. The
prefix sx_ is used for variables ofst_ structures. The prefixsv_ is used for variables of
sev_ structures. A list of Simulator global variables is included in the distribution file
namedglobal.sym.

13.9 Modification of Simulator Global Structures

The source filesimglob.c , which is included in the Simulator package, contains the global
structuressv_const anddv_const . There are some useful modifications, described below,
that can be made to the constant definitions at the beginning ofsimglob.c . Thesimglob.c

module must then be recompiled and relinked using the make file provided with the
Simulator package. In addition to these, there may be device-specific modifications that
can be made to the Simulator.

DSP_MAXDEVICES This define constant determines the maximum number of
devices that can be allocated using the Simulator’sdevicecommand. As a
default it is set to 32.

Modification of Device Global Structures

Motorola C Library Functions 13-37

DSP_CMDSZ This define constant determines the size of the previous command
stack. The Simulator commands are stored in the stack and can be reviewed
using thectrl-f andctrl-b key entries. As a default the previous command
stack size is set to 10.

DSP_HISTSZ This define constant determines the size of the execution history
buffer, which stores device instructions as the Simulator executes. The
buffer is used by the Simulatorhistory command, and has a default size that
can save 32 instruction words.

DSP_WINSZ This define constant determines the size of the screen buffer that is
maintained and displayed by thescrmgr.c functions. It specifies the number
of display lines that will be allocated for each device as they are created with
the Simulatordevicecommand. The user can use thectrl-u , ctrl-t , ctrl-v ,
andctrl-d key sequences to review display lines that have scrolled off the
screen. This constant should not be set to a value smaller than the number of
lines in the display window.

13.10 Modification of Device Global Structures

The device types available to the simulation are defined in the source module named with
the prefixdsp followed by the device family name. As an example, the filedsp56100.c

contains the global structuresdx_56116 and sx_56116 , which define device-specific
information about the DSP56116 device in the 56100 family. You may wish to modify
this module to define a new device type that can then be created by the simulator’sdevice
command. The basic idea is to create a new device type and definition by modifying a
previous definition in thedsp file. As an example, using the 56116 device in the file
dsp56100.c , the procedure would be:

Make a copy ofdsp56100.c and name it something else. Modify the
makefile file to include this new module name for compilation and linking
in the same manner thatmakefile handles the dsp56116.

In the new file, rename thedx_56116 structure to some name other than
dx_56116 , and put a pointer to this new structure in thedx_all array in the
file simglob.c.

In the newdt_var structure, change the device type name to some name
other than 56116 - this is in the first member of thedt_var structure

In the new file, change thesx_56116 structure to some name other than
sx_56116 , and put a pointer to this new structure in thesx_all array in the
file simglob.c .

13-38 Suite56 Simulator Reference Manual Motorola

Modification of Device Global Structures

After the above steps are completed, lower level structures and define constants in the new
module can be modified to change such parameters as on-chip memory size, number of
peripherals, or number and names of pins. Continuing with the 56116 example,
Table 13-5 is a list of the lower level structures and define constants associated with the
56116 that may be changed in the new file:

Table 13-5. Lower Level Structures & Define Constants

Function Description

DSP_PI_SIZE_116 This define constant determines the size of the on-chip program memory.

DSP_PR_SIZE_116 This define constant determines the size of the on-chip bootstrap rom memory.

DSP_XI_SIZE_116 This define constant determines the size of the on-chip X data memory.

DSP_XP_SIZE_116 This define constant determines the size of the on-chip X memory-mapped peripheral
register space.

dx_periph_56116 This structure can be modified to add peripherals to or remove peripherals from the
newly defined device. If you modify this structure, you must also modify the

sx_periph_56116 structure in a similar manner. The file portb100.c is
provided in source form with the simulator package as a model to be used when
creating new peripheral structures.

bootrom This is the default initialization data for the on-chip bootstrap rom. It is loaded at
start-up and in response to the reset s command. You can also change the contents
of the bootstrap rom with the simulator asm , load , and change commands.

xpin This structure determines the names assigned to device pins, as well as the order in
which the pins are displayed in output pin lists. It also provides a cross-reference from
the pin name to the physical bit and storage port in which the simulator maintains the

pin data. The portindex cross-reference is an offset to the proper dev_xpval
structure from the xportval pointer in the dev_var structure. Each pin has a
primary name and a possible alternate peripheral function pin name. You may modify

the names or delete or add dt_xpin structures from this array, but do not change
the portindex and pinmask members of the dt_xpin structures.

mem_56116 This array of dt_memory structures can be modified to change parameters
associated with the DSP56116 memory attributes. The name member is the memory
name used by the simulator commands to reference the memory space. The memsize
member determines the size of arrays allocated for on-chip memory. The memattr
member determines whether the memory is located on or off chip and whether it is
ram or rom. The romval pointer can point to initialization data for the memory space. If
it is NULL, the memory space will be initialized to zero at start-up and in response to
the reset s command. Although you may change the memory names, memory size,
memory attributes, and initialization data, do not add or delete dt_memory structures
from the mem_56116 array.

pval This array of dt_xpidata structures is used by the simulator to initialize the input
pin data in the dev_var.xportval structures at simulator start-up and in response to the
reset s command.

Modification of Device Global Structures

Motorola C Library Functions 13-39

xports This array of dt_xpid structures determines port names that can be used in the
simulator input and output commands. These names are in addition to the peripheral
names that are specified in the individual peripheral modules. The port names are just
a convenient way to specify a subgroup of pins within a single physical port for input
and output operations.

dx_56116 This structure is mostly a conglomeration of the other substructures defined within the
module for this device type. The only member of this structure that should be modified

is devname, which will be used to specify the new device type in the simulator device
command

mem_dispfw56116 This structure provides display field width information for the different memory spaces

defined in the mem_56116defined previously.

hlp_56116 This structure provides the help pointers that will be used by the simulator when help
is requested for this device type.

sx_periph_56116 This structure points to display information for the registers of each peripheral; the
actual display information is defined locally in each peripheral module. The file

portb100.c is provided in source form with the simulator package as a model to be
used when creating new peripheral structures.

Table 13-5. Lower Level Structures & Define Constants

Function Description

13-40 Suite56 Simulator Reference Manual Motorola

Modification of Device Global Structures

Motorola I-i

A

alternate directory 3-1
ASM

examples 12-7, 12-8
ASM - Single Line Interactive Assembler 12-7
Assembly 11-5, 11-6
assign 5-11

output file 5-11, 5-12, 5-13

B

binary 6-3
break 2-4, 2-7, 12-8
breakpoint 1-15, 12-12

action 12-10
clear 13-9
examples 12-12
testing 13-6, 13-19, 13-33

Breakpoints 1-13, 11-1, 11-5, 11-6
byte wide 12-7

C

C 7-1
Call Stack 7-1, 7-2
Calls 7-4
CHANGE 13-26
change 12-13

examples 12-14
.cld 13-10
.cmd 13-20
COFF 3-3
command 8-1, 8-2, 11-2, 11-3, 12-5, 12-6

ASM 12-7
DEVICE 12-15
DISASSEMBLE 12-16
DISPLAY 12-18
DOWN 12-19
entering 1-2
FINISH 12-21
HISTORY 12-24
INPUT 12-24, 12-25
LIST 12-27

command entry
command line editing 13-20
expansion 13-20
from macro file 13-19, 13-20

from terminal 13-19, 13-20, 13-28
command execution

go mode 13-19
macros 13-19, 13-20
trace mode 13-19, 13-30

Command Overview 12-1
Command Syntax 12-4
commands

load 13-32
system 13-28, 13-29

comment
from dspt_masm 13-4

configuration
custom external memory 13-22, 13-34

Copy 12-14
examples 12-14

Copy Memory 4-6
create 8-1
CTRLBR 13-34
CTRL-C 13-28, 13-34

D

data 5-9, 5-10
debugging 7-1
decimal 6-3
default 6-2
Device 5-11, 5-12, 6-2, 11-3
Device Button 10-6
Device IO 5-1, 6-2

introduction 5-1
device type 12-15
directory 3-1, 3-2
disable 11-1, 11-6
Disassemble 4-7, 11-5
Display 6-6, 11-1, 11-2, 11-3, 11-5
Display menu 3-1

Path 3-1, 3-2
Down 7-2, 7-3, 12-19
down

examples 12-19
dsp_alloc 13-22
dsp_exec 13-6
dsp_findmem 13-6
dsp_findpin 13-7
dsp_findport 13-7
dsp_findreg 13-8
dsp_fmem 13-9

Index

I-ii Suite56 DSP Simulator User’s Manual Motorola

dsp_free 13-8
DSP_GEOI 13-33
DSP_GEOR 13-33
DSP_GILLEG 13-33
dsp_init 13-10
dsp_ldmem 13-10, 13-32
dsp_load 13-11, 13-32
dsp_new 13-11, 13-16, 13-31
dsp_path 13-11
dsp_rapin 13-12
dsp_rmem 13-13
dsp_rpin 13-13, 13-35
dsp_rport 13-14, 13-35
dsp_rreg 13-15
dsp_save 13-15, 13-32
dsp_startup 13-15
dsp_unlock 13-16
dsp_wapin 13-16
dsp_wmem 13-17
dsp_wpin 13-17, 13-35
dsp_wport 13-18, 13-35
dsp_wreg 13-19
dspl_xmend 13-22
dspl_xmfree 13-23
dspl_xminit 13-23
dspl_xmload 13-23
dspl_xmnew 13-24
dspl_xmrd 13-24
dspl_xmsave 13-25
dspl_xmstart 13-25
dspl_xmwr 13-26
dspt_masm_xxxxx 13-5
dspt_unasm_xxxxx 13-5
during 2-6

E

edit 11-5, 11-6
enable 11-1, 11-5
entering commands 1-2, 11-2
Evaluate 9-1, 9-2
execute 2-7

GO command 12-22
pause 2-6

Execute menu 2-7
Finish 2-6
GO 1-13, 1-15, 2-1
Reset 2-7, 2-8
Stop 2-7

executing 13-6, 13-19, 13-33
Exit 6-6
expression 12-20

EVALUATE 12-20
expressions 9-1

introduction 9-1

F

Features 1-2
file i/o

comands 13-20
commands 13-19
filename 13-11
initialization 13-9
memory 13-32
object module 13-10
state file 13-10, 13-15, 13-23, 13-25, 13-32

File menu 3-3
Load 6-4, 6-5
Macro 8-1, 8-2
Save 3-3

filename suffixes
.cld 13-10
.lod 13-10
.sim 13-10, 13-15

files 6-4
FINISH 2-6
Finish 2-6
FINISH Button 10-5
fonts 6-6
format 5-1

I/O files 5-1
Frame 7-2, 7-3
frame 12-21

examples 12-21
function 2-6

G

Getting Started 1-3
global variables 13-36
Go 12-22

H

Help 12-23
help 11-3
hexadecimal 6-3
History 4-8, 11-2

I

I/O files 5-1
formatting 5-1

in_macro 13-19, 13-20
Initialization

of a particular device 13-9
of external memory 13-23

initialization

Motorola I-iii

by dsp_new 13-11
dsp_init 13-9
of external memory 13-24
of window parameters 13-30

Input 5-8, 5-9, 5-10, 12-24, 12-25
examples 12-26

instruction 2-1, 2-2, 11-5, 11-6
interrupt 2-7
Introduction to the DSP Simulator 1-1
IO Redirect 7-5
IO Streams 7-5

L

line 1-2, 1-3, 2-2
List 11-1, 12-27

examples 12-27
Load 1-6, 6-4
.lod 13-10
Log 8-2
LOG - Log Commands

Profile 12-30
Session 12-30

Profile 12-31
Log Files 8-1

M

macro command file
execution 13-19, 13-20

macros 8-1
malloc 13-22
memory

access functions 13-1, 13-22, 13-24, 13-25, 13-26,
13-34

allocation 13-22
change values 12-13
change values in 4-5
display 4-3, 4-4
free 13-8, 13-23
initialization 13-23
initialize 13-9
load 13-10
load from state file 13-23
read 13-12
resetting 2-7
save to state file 13-25
write 13-9, 13-16

mnemonic 12-7
modify 4-3

memory 4-5
registers 4-3

Modify menu 6-3
Device 6-2

Radix 6-2
multiple dsp simulation

device index 13-19
halting 13-28
interleaving execution 13-34

N

Next 2-3, 11-5, 11-6
examples 12-32

next 12-32
Next Button 10-4, 10-5
non-display simulation

executing device cycles 13-33
library file 13-31
loading program code 13-32
testing breakpoint conditions 13-33

numbering system 6-2
nwsim 13-31
nwxxxxx 13-31

O

object code 1-6, 3-3, 11-5, 12-16
object module

loading 13-10
OMF 3-3
Output 5-11, 5-12, 5-13, 11-7, 12-33

P

parameters 12-5
Path 3-1, 12-35

examples 12-35
pause 2-7
peripheral 5-8, 5-9, 5-10
pins 5-10
preferences 6-4

Q

QUIT- Quit Simulator Session 12-36

R

Radix 6-3, 6-4, 11-2, 12-36
RADIX - Change Input or Display Radix 12-36
Redirect 12-38

examples 12-39
REDIRECT- Redirect stdin/stdout/stderr for C

Programs 12-38
register 4-1, 4-2, 12-17, 12-18

change values 12-13
program counter 13-33
read function 13-14

I-iv Suite56 DSP Simulator User’s Manual Motorola

write function 13-18
registers 2-7

change values of 4-3
resetting 2-7

REPEAT Button 10-7
Reset 2-7

examples 12-39
RESET Button 10-8
RESET- Reset Device or State 12-39
RTS 2-6
run 8-2

S

Save 3-3, 6-6, 12-40
examples 12-40

SAVE- Save Simulator File 12-40
screen buffer 13-30
scripts 8-1
scrmgr.c 13-26, 13-35
Session 11-4, 11-5
.sim 13-10, 13-15
sim_docmd 13-19
sim_gmcmd 13-20
sim_gtcmd 13-21
Simulator 1-1

Introduction 1-1
memory configuration 6-1
preferences 6-6
running 1-3

simvmem.c 13-22, 13-34
simw_ceol 13-27
simw_ctrlbr 13-28
simw_cursor 13-28
simw_endwin 13-28
simw_getch 13-28
simw_gkey 13-28
simw_putc 13-29
simw_puts 13-29
simw_redo 13-29, 13-35
simw_redraw 13-29
simw_refresh 13-30
simw_scrnest 13-30
simw_unnest 13-30
simw_winit 13-30
simw_wscr 13-30
Source 11-6
source code 1-6, 3-3, 7-1, 11-5
Stack 7-2, 7-3, 11-7
start execution 1-13
state 2-7, 2-8, 6-4, 6-5

resetting 2-7
state file

create 13-15, 13-25

load 13-23
Step 12-41

examples 12-41
step 12-32
STEP - Step Through DSP Program 12-41
STEP Button 10-3
stop 2-6, 2-7
STOP Button 10-2
Streams 12-42

examples 12-42
STREAMS - Enable/Disable Handling of I/O for C

Programs 12-42
subroutine 2-6
syntax 12-4

of commands 12-4
System

examples 12-43
SYSTEM - Execute System Command 12-43

T

terminal
i/o functions 13-1

Trace 2-3, 12-44
examples 12-44

TRACE - Trace Through DSP Program 12-44
Type 7-6

examples 12-45
TYPE - Display the Result Type of C Expression 12-45

U

unlock 12-15
UNLOCK - Unlock Password Protected Device

Type 12-46
Until 2-4

examples 12-46
UNTIL - Step Until Address 12-46
Up 7-2
UP - Move Up the C Function Call Stack 12-47
Using the Tool Bar 10-1

V

VIEW - Select Display Mode 12-47

W

Wait 12-48
WASM 12-48
Watch 9-8, 9-9

examples 12-49
WATCH - Set 12-49

Modify
View

Motorola I-v

or Clear Watch item12-49
WBREAKPOINT - GUI Breakpoint Window 12-50
WCALLS - GUI C Calls Stack window 12-50
WCOMMAND - GUI Command window 12-51
WHERE - GUI C Calls Stack window 12-51
windows 6-6, 11-2, 11-5
WINPUT - GUI File Input window 12-52
WLIST - GUI list window 12-52
working directory 3-1, 3-2
WREGISTER - GUI Register window 12-54
WSESSION - GUI Session window 12-55
WSOURCE - GUI Source window 12-55
WSTACK - GUI Stack window 7-2, 12-56
wwatch

examples 12-57
WWATCH - GUI Watch window 12-56
wwsim 13-31
wwxxxxx 13-31

Motorola Suite56 DSP Simulator User’s Manual vi

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	Chapter�1 Introduction & Getting Started
	1.1 Introduction to Motorola’s Suite56™ DSP Simulator
	1.2 DSP Simulator Features
	1.3 Entering Commands
	1.4 Getting Started with the DSP Simulator
	1.5 Setting and Clearing the Path
	1.6 Loading Object Files
	1.7 Setting Up the Display Environment
	1.8 Using a Watch List
	1.9 Setting and Modifying Breakpoints
	1.10 Starting the Execution of Instructions with GO

	Chapter�2 Controlling Execution
	2.1 Starting the Execution of Instructions with GO
	2.2 STEP Through Instructions
	2.3 TRACE the Execution of Instructions
	2.4 Executing the NEXT Instruction
	2.5 Providing an UNTIL Condition
	2.6 Pausing Execution with WAIT
	2.7 Allowing the Current Function to FINISH after an UNTIL Condition or a Breakpoint
	2.8 Stopping Program Execution
	2.9 Resetting the Device

	Chapter�3 Object Files and Data Files
	3.1 Displaying the Current PATH
	3.2 Saving Object Files

	Chapter�4 Managing Memory and Registers
	4.1 Displaying Register Values
	4.2 Changing Register Values
	4.3 Displaying Memory Values
	4.4 Changing Memory Values
	4.5 Copying Memory from One Block to Another
	4.6 Disassembling Code Stored in Memory
	4.7 Displaying a History of Recent Instructions

	Chapter�5 Device I/O and Peripheral Simulation
	5.1 Introduction to Device I/O (Input/Output)
	5.2 How Are I/O Files Formatted?
	5.3 Repeat Punctuation
	5.4 Comments
	5.5 Timing Information
	5.6 Peripheral Data
	5.7 Port Data
	5.8 Memory Data
	5.9 Pin or Pin Group Data
	5.10 Terminal Input of Data Values
	5.11 Assigning an Input File
	5.12 Assigning an Output File

	Chapter�6 Simulator and Device Configurations
	6.1 Introduction to Simulator Configuration
	6.2 Setting the Default DEVICE
	6.3 Changing the Radix
	6.3.1 Changing the radix in which to display a register or memory locations:

	6.4 Loading Simulator State Files
	6.5 Changing and Saving Window Preferences

	Chapter�7 Debugging C Source Code
	7.1 Introduction to Debugging C Source Code
	7.2 Displaying the Call Stack
	7.3 Moving Up and Down the Call Stack
	7.4 Dynamically Displaying C Function Calls
	7.5 Enabling/Disabling I/O Streams
	7.6 Redirecting an I/O Stream
	7.7 Display the Type of a C Variable or Expression

	Chapter�8 Macros, Scripts and Log Files
	8.1 Creating and Running a Command Macro
	8.2 Logging Output from the Session Window

	Chapter�9 Expressions
	9.1 Introduction to Expressions
	9.2 Evaluate Expressions
	9.3 Using Memory Space Symbols
	9.4 Using Register Name Symbols
	9.5 Using Assembler Debug Symbols
	9.6 Using Constants
	9.7 Numeric Constants
	9.8 Operators in Expressions
	9.9 Operator Precedence
	9.10 Setting Up and Modifying a Watch List

	Chapter�10 Simulator Tool Bar
	10.1 Using the Tool Bar
	10.2 Go Button
	10.3 Stop Button
	10.4 Step Button
	10.5 Next Button
	10.6 Finish Button
	10.7 Device Button
	10.8 Repeat Button
	10.9 Reset Button

	Chapter�11 Displaying Information
	11.1 Display the Current Breakpoints
	11.2 Displaying the Radix
	11.3 Command Window
	11.4 Session Window
	11.5 Assembly Window
	11.6 Source Window
	11.7 Stack Window

	Chapter�12 Command Reference
	12.1 Command Overview
	12.1.1 Memory/Register Modification
	12.1.2 File I/O
	12.1.3 Simulation Execution Control
	12.1.4 C Source Code Debug Commands
	12.1.5 Miscellaneous Tasks
	12.1.6 Windows Controls

	12.2 Command Syntax
	12.3 Command Parameters: List of Abbreviations
	12.4 asm - Single Line Interactive Assembler
	12.5 break - Set, Modify, or Clear Breakpoint
	12.6 change - Change Register or Memory Value
	12.7 copy - Copy a Memory Block
	12.8 device - Multiple Device Simulation
	12.9 disassemble - Object Code Disassembler
	12.10 display - Display Register or Memory
	12.11 down - Move Down the C Function Call Stack
	12.12 evaluate - Evaluate an Expression
	12.13 finish - Execute Until End of Current Subroutine
	12.14 frame - Select C Function Call Stack Frame
	12.15 go - Execute DSP Program
	12.16 help - Simulator Help Text
	12.17 history -Disassemble Previously Executed Instruction
	12.18 input - Assign Input File
	12.19 list - List Source File Lines
	12.20 load - Load DSP Files or Configuration
	12.21 log - Log Commands, Session, Profile
	12.22 more - Enable/Disable Session Paging Control
	12.23 next- Step Over Subroutine Calls or Macros
	12.24 output - Assign Output File
	12.25 path - Specify Default Pathname
	12.26 quit - Quit Simulator Session
	12.27 radix - Change Input or Display Radix
	12.28 redirect - Redirect stdin/stdout/stderr for C Programs
	12.29 reset - Reset Device or State
	12.30 save - Save Simulator File
	12.31 step - Step Through DSP Program
	12.32 streams - Enable/Disable Handling of I/O for C Programs
	12.33 system - Execute System Command
	12.34 trace - Trace Through DSP Program
	12.35 type - Display the Result Type of C Expression
	12.36 unlock - Unlock Password Protected Device Type
	12.37 until - Execute Until Address
	12.38 up - Move Up the C Function Call Stack
	12.39 view - Select Display Mode
	12.40 wait - Wait Specified Time
	12.41 wasm - GUI Assembly window
	12.42 watch - Set, Modify, View, or Clear Watch item
	12.43 wbreakpoint - GUI Breakpoint Window
	12.44 wcalls - GUI C Calls Stack window
	12.45 wcommand - GUI Command window
	12.46 where - GUI C Calls Stack window
	12.47 winput - GUI File Input window
	12.48 wlist - GUI list window
	12.49 wmemory - GUI Memory window
	12.50 woutput - GUI File Output window
	12.51 wregister - GUI Register window
	12.52 wsession - GUI Session window
	12.53 wsource - GUI Source window
	12.54 wstack - GUI Stack window
	12.55 wwatch - GUI Watch window

	Chapter�13 C Library Functions
	13.1 C Object Libraries
	13.2 Simulator Object Library Entry Points
	13.2.1 dspt_masm_xxxxx: Assemble DSP Mnemonic
	13.2.2 dspt_unasm_xxxxx: Disassemble DSP Mnemonics
	13.2.3 dsp_exec: Execute Single Device Clock Cycle
	13.2.4 dsp_findmem: Get Map Index for Memory Prefix
	13.2.5 dsp_findpin: Get Pin Number for Pin Name
	13.2.6 dsp_findport: Get Port Number and Mask for Port Name
	13.2.7 dsp_findreg: Get Peripheral and Register Index for Register Name
	13.2.8 dsp_free: Free a Device Structure
	13.2.9 dsp_fmem: Fill Memory Block with a Value
	13.2.10 dsp_init: Initialize a Single DSP Device Structure
	13.2.11 dsp_ldmem: Load DSP Memory from OMF File
	13.2.12 dsp_load: Load All DSP Structures from State File
	13.2.13 dsp_new: Create New DSP Device Structure
	13.2.14 dsp_path: Construct Filename
	13.2.15 dsp_rapin: Read DSP Analog Pin State
	13.2.16 dsp_rmem: Read DSP Memory Location
	13.2.17 dsp_rpin: Read DSP Pin State
	13.2.18 dsp_rport: Read DSP Port State
	13.2.19 dsp_rreg: Read a DSP Device Register
	13.2.20 dsp_save: Save All DSP Structures to State File
	13.2.21 dsp_startup: Initialize DSP Structures
	13.2.22 dsp_unlock: Unlock Password Protected Device Type
	13.2.23 dsp_wapin: Write DSP Analog Pin State
	13.2.24 dsp_wmem: Write DSP Memory Location
	13.2.25 dsp_wpin: Write DSP Pin State
	13.2.26 dsp_wport: Write DSP Port State
	13.2.27 dsp_wreg: Write a DSP Device Register
	13.2.28 sim_docmd: Execute Simulator User Interface Command
	13.2.29 sim_gmcmd: Get Command String from Macro File
	13.2.30 sim_gtcmd: Get Command String from Terminal

	13.3 Simulator External Memory Functions
	13.3.1 dsp_alloc: Allocate Simulator Program Memory
	13.3.2 dspl_xmend: End DSP External Memory Access
	13.3.3 dspl_xmfree: Free DSP Device External Memory
	13.3.4 dspl_xminit: Initialize DSP Device External Memory
	13.3.5 dspl_xmload: Load DSP External Memory from State File
	13.3.6 dspl_xmnew: Create New External Memory Structure
	13.3.7 dspl_xmrd: Read DSP External Memory Location
	13.3.8 dspl_xmsave: Save DSP External Memory to State File
	13.3.9 dspl_xmstart: Start DSP External Memory Access
	13.3.10 dspl_xmwr: Write DSP External Memory Location

	13.4 Simulator Screen Management Functions
	13.4.1 simw_ceol: Clear to End of Line
	13.4.2 simw_ctrlbr: Check for CTRL-C Signal
	13.4.3 simw_cursor: Move Cursor to Specified Line and Column
	13.4.4 simw_endwin: End Simulator Window
	13.4.5 simw_getch: Non-translated Keyboard Input
	13.4.6 simw_gkey: Translated Keyboard Input
	13.4.7 simw_putc: Output Character to Terminal
	13.4.8 simw_puts: Output String to Terminal
	13.4.9 simw_redo: Repaint Screen With Output From Device
	13.4.10 simw_redraw: Redraw Screen After Scroll Count
	13.4.11 simw_refresh: Screen Update After Buffering Output
	13.4.12 simw_scrnest: Increase Screen Buffering One Level
	13.4.13 simw_unnest: Decrease Screen Buffering One Level
	13.4.14 simw_winit: Initialize Window Parameters
	13.4.15 simw_wscr: Write String and Perform Logging

	13.5 Non-Display Simulator
	13.5.1 Creating a New Device
	13.5.2 Loading Program Code or Device State
	13.5.3 Executing Device Cycles
	13.5.4 Testing Breakpoint Conditions

	13.6 Multiple Device Simulation
	13.6.1 Allocation and Initialization of Multiple Devices
	13.6.2 Interleaving Multiple DSP Simulations
	13.6.3 External Memory Definition
	13.6.4 Multiple DSP Pin Interconnections
	13.6.5 Multiple DSP Simulator Display

	13.7 Reserved Function Names
	13.8 Simulator Global Variables
	13.9 Modification of Simulator Global Structures
	13.10 Modification of Device Global Structures

	Index

