

MPC7450 RISC Microproce
Family User’s Ma

Devices Supported: M
M
M
M
M
M
M
M

 MPC7450UM
2/2004

Rev. 3.1

ssor
nual
PC7447A

PC7457
PC7455
PC7451
PC7450
PC7447
PC7445
PC7441

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-480-768-2130
(800) 521-6274

JAPAN:

Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre, 2 Dai King Street
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

(800) 521-6274

HOME PAGE:

www.motorola.com/semiconductors

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital
dna is a trademark of Motorola, Inc. The described product is a PowerPC microprocessor. The
PowerPC name is a trademark of IBM Corp. and used under license. ll other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2004

Information in this document is provided solely to enable system and software implementers to use

Motorola products. There are no express or implied copyright licenses granted hereunder to design

or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein.

Motorola makes no warranty, representation or guarantee regarding the suitability of its products

for any particular purpose, nor does Motorola assume any liability arising out of the application or

use of any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be provided in

Motorola data sheets and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals” must be validated

for each customer application by customer’s technical experts. Motorola does not convey any

license under its patent rights nor the rights of others. Motorola products are not designed,

intended, or authorized for use as components in systems intended for surgical implant into the

body, or other applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or death may

occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized

application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,

affiliates, and distributors harmless against all claims, costs, damages, and expenses, and

reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

associated with such unintended or unauthorized use, even if such claim alleges that Motorola was

negligent regarding the design or manufacture of the part.

MOTOROLA 3

4 BookTitle MOTOROLA

CONTENTS

Paragraph
Number Title Page

Number

MOTOROLA Contents v

About This Book

Audience .. xlv
Organization... xlv
Suggested Reading... xlvii
General Information .. xlvii
Related Documentation ... xlvii
Conventions .. xlviii
Acronyms and Abbreviations ... xlix
Terminology Conventions ... lii

Chapter 1
Overview

1.1 MPC7451 Microprocessor Overview ... 1-1
1.1.1 MPC7441 Microprocessor Overview ... 1-5
1.1.2 MPC7450 Microprocessor Overview ... 1-5
1.1.3 MPC7455 Microprocessor Overview ... 1-5
1.1.4 MPC7445 Microprocessor Overview ... 1-5
1.1.5 MPC7447 Microprocessor Overview ... 1-6
1.1.6 MPC7457 Microprocessor Overview ... 1-6
1.1.7 MPC7447A Microprocessor Overview .. 1-6
1.2 MPC7451 Microprocessor Features ... 1-6
1.2.1 Overview of the MPC7451 Microprocessor Features 1-7
1.2.2 Instruction Flow.. 1-13
1.2.2.1 Instruction Queue and Dispatch Unit ... 1-13
1.2.2.2 Branch Processing Unit (BPU)... 1-14
1.2.2.3 Completion Unit ... 1-15
1.2.2.4 Independent Execution Units.. 1-15
1.2.2.4.1 AltiVec Vector Permute Unit (VPU).. 1-15
1.2.2.4.2 AltiVec Vector Integer Unit 1 (VIU1) ... 1-16
1.2.2.4.3 AltiVec Vector Integer Unit 2 (VIU2) ... 1-16
1.2.2.4.4 AltiVec Vector Floating-point Unit (VFPU).. 1-16
1.2.2.4.5 Integer Units (IUs).. 1-16
1.2.2.4.6 Floating-Point Unit (FPU) .. 1-16

CONTENTS
Paragraph
Number Title Page

Number

vi MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

1.2.2.4.7 Load/Store Unit (LSU) ... 1-17
1.2.3 Memory Management Units (MMUs).. 1-17
1.2.4 On-Chip L1 Instruction and Data Caches... 1-18
1.2.5 L2 Cache Implementation... 1-20
1.2.6 L3 Cache Implementation... 1-22
1.2.7 System Interface ... 1-23
1.2.8 MPC7451 Bus Operation Features ... 1-23
1.2.8.1 MPX Bus Features.. 1-24
1.2.8.2 60x Bus Features... 1-25
1.2.9 Overview of System Interface Accesses... 1-25
1.2.9.1 System Interface Operation .. 1-26
1.2.9.2 Signal Groupings .. 1-27
1.2.9.3 MPX Bus Mode Functional Groupings .. 1-28
1.2.9.3.1 Clocking.. 1-30
1.2.10 Power Management .. 1-30
1.2.11 Thermal Management ... 1-31
1.2.12 Performance Monitor.. 1-31
1.3 MPC7451 Microprocessor: Architectural Implementation 1-32
1.3.1 PowerPC Registers and Programming Model .. 1-33
1.3.2 Instruction Set ... 1-44
1.3.2.1 PowerPC Instruction Set... 1-44
1.3.2.2 AltiVec Instruction Set ... 1-45
1.3.2.3 MPC7451 Microprocessor Instruction Set ... 1-46
1.3.3 On-Chip Cache Implementation ... 1-47
1.3.3.1 PowerPC Cache Model... 1-47
1.3.3.2 MPC7451 Microprocessor Cache Implementation 1-47
1.3.4 Exception Model... 1-48
1.3.4.1 PowerPC Exception Model... 1-48
1.3.4.2 MPC7451 Microprocessor Exceptions ... 1-49
1.3.5 Memory Management... 1-51
1.3.5.1 PowerPC Memory Management Model ... 1-51
1.3.5.2 MPC7451 Microprocessor Memory Management Implementation......... 1-52
1.3.6 Instruction Timing .. 1-53
1.3.7 AltiVec Implementation ... 1-57
1.4 Differences between MPC7451 and MPC7400/ MPC7410 1-58
1.5 Differences Between MPC7441/MPC7451 and MPC7445/MPC7455 1-61
1.6 Differences Between MPC7441/MPC7451 and MPC7447/MPC7457 1-62
1.7 Differences Between MPC7447 and the MPC7447A 1-63
1.8 User’s Manual Revision History... 1-65

CONTENTS
Paragraph
Number Title Page

Number

MOTOROLA Contents vii

Chapter 2
Programming Model

2.1 MPC7451 Processor Register Set ... 2-1
2.1.1 Register Set Overview .. 2-2
2.1.2 MPC7451 Register Set ... 2-5
2.1.3 PowerPC Supervisor-Level Registers (OEA) .. 2-11
2.1.3.1 Processor Version Register (PVR) ... 2-11
2.1.3.2 Processor Identification Register (PIR) .. 2-11
2.1.3.3 Machine State Register (MSR)... 2-12
2.1.3.4 Machine status save/restore registers (SRR0, SRR1)............................... 2-14
2.1.3.5 SDR1 Register .. 2-15
2.1.4 PowerPC User-Level Registers (VEA).. 2-16
2.1.4.1 Time Base Registers (TBL, TBU) .. 2-16
2.1.5 MPC7451-Specific Register Descriptions .. 2-17
2.1.5.1 Hardware Implementation-Dependent Register 0 (HID0) 2-17
2.1.5.2 Hardware Implementation-Dependent Register 1 (HID1) 2-23
2.1.5.2.1 MPC7447A-Specific HID1 PLL Configuration Field.......................... 2-25
2.1.5.3 Memory Subsystem Control Register (MSSCR0).................................... 2-26
2.1.5.4 Memory Subsystem Status Register (MSSSR0)....................................... 2-28
2.1.5.5 Instruction and Data Cache Registers... 2-29
2.1.5.5.1 L2 Cache Control Register (L2CR).. 2-29
2.1.5.5.2 L3 Cache Control Register (L3CR).. 2-31
2.1.5.5.3 L3 Cache Output Hold Control Register (L3OHCR)—

MPC7457-Specific 2-36
2.1.5.5.4 L3 Cache Input Timing Control (L3ITCR0) .. 2-37
2.1.5.5.5 L3 Cache Input Timing Control (L3ITCR1) .. 2-39
2.1.5.5.6 L3 Cache Input Timing Control (L3ITCR2) .. 2-40
2.1.5.5.7 L3 Cache Input Timing Control (L3ITCR3) .. 2-41
2.1.5.5.8 Instruction Cache and Interrupt Control Register (ICTRL) 2-42
2.1.5.5.9 Load/Store Control Register (LDSTCR).. 2-43
2.1.5.5.10 L3 Private Memory Address Register (L3PM) 2-44
2.1.5.6 Instruction Address Breakpoint Register (IABR)..................................... 2-45
2.1.5.7 Memory Management Registers Used for Software Table Searching 2-45
2.1.5.7.1 TLB Miss Register (TLBMISS) ... 2-45
2.1.5.7.2 Page Table Entry Registers (PTEHI and PTELO) 2-46
2.1.5.8 Thermal Management Register... 2-47
2.1.5.8.1 Instruction Cache Throttling Control Register (ICTC) 2-48
2.1.5.9 Performance Monitor Registers .. 2-48
2.1.5.9.1 Monitor Mode Control Register 0 (MMCR0) 2-49
2.1.5.9.2 User Monitor Mode Control Register 0 (UMMCR0)........................... 2-51
2.1.5.9.3 Monitor Mode Control Register 1 (MMCR1) 2-52
2.1.5.9.4 User Monitor Mode Control Register 1 (UMMCR1)........................... 2-52

CONTENTS
Paragraph
Number Title Page

Number

viii MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

2.1.5.9.5 Monitor Mode Control Register 2 (MMCR2) 2-52
2.1.5.9.6 User Monitor Mode Control Register 2 (UMMCR2)........................... 2-53
2.1.5.9.7 Breakpoint Address Mask Register (BAMR)....................................... 2-53
2.1.5.9.8 Performance Monitor Counter Registers (PMC1–PMC6) 2-54
2.1.5.9.9 User Performance Monitor Counter Registers (UPMC1–UPMC6) 2-55
2.1.5.9.10 Sampled Instruction Address Register (SIAR)..................................... 2-55
2.1.5.9.11 User-Sampled Instruction Address Register (USIAR)......................... 2-56
2.1.5.9.12 Sampled Data Address Register (SDAR) and User-Sampled Data Address

Register (USDAR) 2-56
2.1.6 Reset Settings.. 2-56
2.2 Operand Conventions ... 2-58
2.2.1 Floating-Point Execution Models—UISA.. 2-58
2.2.2 Data Organization in Memory and Data Transfers....................................... 2-59
2.2.3 Alignment and Misaligned Accesses.. 2-59
2.2.4 Floating-Point Operands ... 2-59
2.3 Instruction Set Summary .. 2-60
2.3.1 Classes of Instructions .. 2-61
2.3.1.1 Definition of Boundedly Undefined ... 2-62
2.3.1.2 Defined Instruction Class ... 2-62
2.3.1.3 Illegal Instruction Class .. 2-62
2.3.1.4 Reserved Instruction Class ... 2-63
2.3.2 Addressing Modes .. 2-64
2.3.2.1 Memory Addressing ... 2-64
2.3.2.2 Memory Operands .. 2-64
2.3.2.3 Effective Address Calculation .. 2-64
2.3.2.4 Synchronization .. 2-65
2.3.2.4.1 Context Synchronization .. 2-65
2.3.2.4.2 Execution Synchronization... 2-68
2.3.2.4.3 Instruction-Related Exceptions... 2-69
2.3.3 Instruction Set Overview .. 2-69
2.3.4 PowerPC UISA Instructions ... 2-70
2.3.4.1 Integer Instructions ... 2-70
2.3.4.1.1 Integer Arithmetic Instructions... 2-70
2.3.4.1.2 Integer Compare Instructions ... 2-71
2.3.4.1.3 Integer Logical Instructions.. 2-72
2.3.4.1.4 Integer Rotate and Shift Instructions .. 2-73
2.3.4.2 Floating-Point Instructions ... 2-73
2.3.4.2.1 Floating-Point Arithmetic Instructions... 2-74
2.3.4.2.2 Floating-Point Multiply-Add Instructions .. 2-74
2.3.4.2.3 Floating-Point Rounding and Conversion Instructions 2-75
2.3.4.2.4 Floating-Point Compare Instructions.. 2-75
2.3.4.2.5 Floating-Point Status and Control Register Instructions 2-76
2.3.4.2.6 Floating-Point Move Instructions... 2-76

CONTENTS
Paragraph
Number Title Page

Number

MOTOROLA Contents ix

2.3.4.3 Load and Store Instructions .. 2-76
2.3.4.3.1 Self-Modifying Code.. 2-77
2.3.4.3.2 Integer Load and Store Address Generation... 2-78
2.3.4.3.3 Register Indirect Integer Load Instructions .. 2-78
2.3.4.3.4 Integer Store Instructions.. 2-79
2.3.4.3.5 Integer Store Gathering .. 2-80
2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions....................... 2-80
2.3.4.3.7 Integer Load and Store Multiple Instructions....................................... 2-81
2.3.4.3.8 Integer Load and Store String Instructions... 2-81
2.3.4.3.9 Floating-Point Load and Store Address Generation............................. 2-82
2.3.4.3.10 Floating-Point Store Instructions.. 2-83
2.3.4.4 Branch and Flow Control Instructions.. 2-84
2.3.4.4.1 Branch Instruction Address Calculation... 2-85
2.3.4.4.2 Branch Instructions... 2-85
2.3.4.4.3 Condition Register Logical Instructions... 2-86
2.3.4.4.4 Trap Instructions... 2-86
2.3.4.5 System Linkage Instruction—UISA... 2-86
2.3.4.6 Processor Control Instructions—UISA .. 2-87
2.3.4.6.1 Move to/from Condition Register Instructions..................................... 2-87
2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA).............. 2-87
2.3.4.7 Memory Synchronization Instructions—UISA .. 2-89
2.3.5 PowerPC VEA Instructions .. 2-89
2.3.5.1 Processor Control Instructions—VEA ... 2-90
2.3.5.2 Memory Synchronization Instructions—VEA ... 2-90
2.3.5.3 Memory Control Instructions—VEA ... 2-91
2.3.5.3.1 User-Level Cache Instructions—VEA ... 2-91
2.3.5.4 Optional External Control Instructions... 2-94
2.3.6 PowerPC OEA Instructions .. 2-95
2.3.6.1 System Linkage Instructions—OEA .. 2-95
2.3.6.2 Processor Control Instructions—OEA ... 2-95
2.3.6.3 Memory Control Instructions—OEA ... 2-99
2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA) 2-100
2.3.6.3.2 Translation Lookaside Buffer Management Instructions—OEA....... 2-100
2.3.7 Recommended Simplified Mnemonics... 2-101
2.3.8 Implementation-Specific Instructions... 2-101
2.4 AltiVec Instructions .. 2-104
2.5 AltiVec UISA Instructions.. 2-105
2.5.1 Vector Integer Instructions ... 2-105
2.5.1.1 Vector Integer Arithmetic Instructions... 2-105
2.5.1.2 Vector Integer Compare Instructions.. 2-107
2.5.1.3 Vector Integer Logical Instructions .. 2-108
2.5.1.4 Vector Integer Rotate and Shift Instructions .. 2-108
2.5.2 Vector Floating-Point Instructions.. 2-109

CONTENTS
Paragraph
Number Title Page

Number

x MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

2.5.2.1 Vector Floating-Point Arithmetic Instructions 2-109
2.5.2.2 Vector Floating-Point Multiply-Add Instructions 2-110
2.5.2.3 Vector Floating-Point Rounding and Conversion Instructions 2-110
2.5.2.4 Vector Floating-Point Compare Instructions.. 2-111
2.5.2.5 Vector Floating-Point Estimate Instructions .. 2-111
2.5.3 Vector Load and Store Instructions .. 2-111
2.5.3.1 Vector Load Instructions .. 2-112
2.5.3.2 Vector Load Instructions Supporting Alignment 2-112
2.5.3.3 Vector Store Instructions .. 2-112
2.5.4 Control Flow... 2-113
2.5.5 Vector Permutation and Formatting Instructions.. 2-113
2.5.5.1 Vector Pack Instructions... 2-113
2.5.5.2 Vector Unpack Instructions .. 2-114
2.5.5.3 Vector Merge Instructions .. 2-114
2.5.5.4 Vector Splat Instructions .. 2-115
2.5.5.5 Vector Permute Instructions ... 2-115
2.5.5.6 Vector Select Instruction .. 2-116
2.5.5.7 Vector Shift Instructions... 2-116
2.5.5.8 Vector Status and Control Register Instructions 2-116
2.6 AltiVec VEA Instructions... 2-117
2.6.1 AltiVec Vector Memory Control Instructions—VEA................................ 2-117
2.6.2 AltiVec Instructions with Specific Implementations for the MPC7451..... 2-118

Chapter 3
L1, L2, and L3 Cache Operation

3.1 Overview... 3-2
3.1.1 Block Diagram.. 3-5
3.1.2 Load/Store Unit (LSU) ... 3-7
3.1.2.1 Cacheable Loads and LSU.. 3-7
3.1.2.2 LSU Store Queues .. 3-7
3.1.2.3 Store Gathering/Merging .. 3-8
3.1.2.4 LSU Load Miss, Castout, and Push Queues ... 3-8
3.1.3 Memory Subsystem Blocks .. 3-9
3.1.3.1 L1 Service Queues.. 3-9
3.1.3.2 L2 Cache Block .. 3-10
3.1.3.3 System Interface Block... 3-11
3.1.4 L3 Cache Controller Block ... 3-11
3.2 L1 Cache Organizations.. 3-12
3.2.1 L1 Data Cache Organization... 3-12
3.2.2 L1 Instruction Cache Organization... 3-13
3.3 Memory and Cache Coherency... 3-15

CONTENTS
Paragraph
Number Title Page

Number

MOTOROLA Contents xi

3.3.1 Memory/Cache Access Attributes (WIMG Bits).. 3-15
3.3.1.1 Coherency Paradoxes and WIMG .. 3-16
3.3.1.2 Out-of-Order Accesses to Guarded Memory.. 3-17
3.3.2 Coherency Support ... 3-18
3.3.2.1 Coherency Between L1, L2, and L3 Caches .. 3-18
3.3.2.1.1 Cache Closer to Core with Modified Data ... 3-19
3.3.2.1.2 Transient Data and Different Coherency States 3-19
3.3.2.2 Snoop Response.. 3-19
3.3.2.3 Intervention... 3-20
3.3.2.4 Simplified Transaction Types... 3-21
3.3.2.5 MESI State Transitions... 3-21
3.3.2.5.1 MESI Protocol in MPX Bus Mode with Data Intervention Enabled ... 3-22
3.3.2.5.2 MESI Protocol in 60x Bus Mode and MPX Bus Mode (with Intervention

Disabled) 3-24
3.3.2.6 Reservation Snooping... 3-27
3.3.3 Load/Store Operations and Architecture Implications 3-27
3.3.3.1 Performed Loads and Store .. 3-28
3.3.3.2 Sequential Consistency of Memory Accesses .. 3-29
3.3.3.3 Load Ordering with Respect to Other Loads.. 3-29
3.3.3.4 Store Ordering with Respect to Other Stores ... 3-30
3.3.3.5 Enforcing Store Ordering with Respect to Loads..................................... 3-30
3.3.3.6 Atomic Memory References... 3-30
3.4 L1 Cache Control.. 3-31
3.4.1 Cache Control Parameters in HID0 .. 3-32
3.4.1.1 Enabling and Disabling the Data Cache ... 3-32
3.4.1.2 Data Cache Locking with DLOCK... 3-33
3.4.1.3 Enabling and Disabling the Instruction Cache ... 3-33
3.4.1.4 Instruction Cache Locking with ILOCK .. 3-34
3.4.1.5 L1 Instruction and Data Cache Flash Invalidation 3-34
3.4.2 Data Cache Way Locking Setting in LDSTCR .. 3-35
3.4.3 Cache Control Parameters in ICTRL.. 3-35
3.4.3.1 Instruction Cache Way Locking ... 3-35
3.4.3.2 Enabling Instruction Cache Parity Checking.. 3-35
3.4.3.3 Instruction and Data Cache Parity Error Reporting.................................. 3-35
3.4.4 Cache Control Instructions ... 3-36
3.4.4.1 Data Cache Block Touch (dcbt)... 3-36
3.4.4.2 Data Cache Block Touch for Store (dcbtst)... 3-37
3.4.4.3 Data Cache Block Zero (dcbz) ... 3-38
3.4.4.4 Data Cache Block Store (dcbst) ... 3-39
3.4.4.5 Data Cache Block Flush (dcbf) .. 3-39
3.4.4.6 Data Cache Block Allocate (dcba)... 3-40
3.4.4.7 Data Cache Block Invalidate (dcbi) ... 3-40
3.4.4.8 Instruction Cache Block Invalidate (icbi)... 3-40

CONTENTS
Paragraph
Number Title Page

Number

xii MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

3.5 L1 Cache Operation .. 3-41
3.5.1 Cache Miss and Reload Operations .. 3-41
3.5.1.1 Data Cache Fills.. 3-41
3.5.1.2 Instruction Cache Fills .. 3-42
3.5.2 Cache Allocation on Misses ... 3-43
3.5.2.1 Instruction Access Allocation in L1 Cache .. 3-43
3.5.2.2 Data Access Allocation in L1Cache ... 3-43
3.5.3 Store Miss Merging .. 3-43
3.5.4 Store Hit to a Data Cache Block Marked Shared ... 3-44
3.5.5 Data Cache Block Push Operation.. 3-44
3.5.6 L1 Cache Block Replacement Selection... 3-44
3.5.6.1 PLRU Replacement .. 3-44
3.5.6.2 PLRU Bit Updates .. 3-45
3.5.6.3 AltiVec LRU Instruction Support... 3-46
3.5.6.4 Cache Locking and PLRU .. 3-47
3.5.7 L1 Cache Invalidation and Flushing... 3-47
3.5.8 L1 Cache Operation Summary ... 3-48
3.6 L2 Cache ... 3-52
3.6.1 L2 Cache Organization ... 3-52
3.6.2 L2 Cache and Memory Coherency ... 3-53
3.6.3 L2 Cache Control.. 3-54
3.6.3.1 L2CR Parameters.. 3-54
3.6.3.1.1 Enabling the L2 Cache and L2 Initialization.. 3-54
3.6.3.1.2 Enabling L2 Parity Checking ... 3-54
3.6.3.1.3 L2 Instruction-Only and Data-Only Modes.. 3-55
3.6.3.1.4 L2 Cache Invalidation .. 3-55
3.6.3.1.5 Flushing of L1, L2, and L3 Caches .. 3-55
3.6.3.1.6 L2 Replacement Algorithm Selection .. 3-57
3.6.3.2 L2 Prefetch Engines and MSSCR0... 3-57
3.6.3.3 L2 Parity Error Reporting and MSSSR0 .. 3-57
3.6.3.4 Instruction Interactions with L2.. 3-57
3.6.4 L2 Cache Operation .. 3-58
3.6.4.1 L2 Cache Miss and Reload Operations .. 3-59
3.6.4.2 L2 Cache Allocation ... 3-59
3.6.4.3 Store Data Merging and L2 .. 3-60
3.6.4.4 L2 Cache Line Replacement Algorithms ... 3-60
3.6.4.5 L2 and L3 Operations Caused by L1 Requests .. 3-61
3.7 L3 Cache Interface.. 3-67
3.7.1 L3 Cache Interface Overview... 3-67
3.7.2 L3 Cache Organization ... 3-68
3.7.3 L3 Cache Control Register (L3CR) .. 3-68
3.7.3.1 Enabling the L3 Cache and L3 Initialization.. 3-68
3.7.3.2 L3 Cache Size ... 3-69

CONTENTS
Paragraph
Number Title Page

Number

MOTOROLA Contents xiii

3.7.3.3 L3 Cache SRAM Types.. 3-70
3.7.3.4 L3 Cache Data-Only and Instruction-Only Modes................................... 3-70
3.7.3.4.1 L3 Instruction-Only and Data-Only Operation 3-70
3.7.3.4.2 L3 Cache Locking Using L3CR[L3DO] and L3CR[L3IO] 3-70
3.7.3.5 L3 Cache Parity Checking and Generation .. 3-71
3.7.3.6 L3 Cache Invalidation... 3-72
3.7.3.7 L3 Cache Flushing.. 3-72
3.7.3.8 L3 Cache Clock and Timing Controls .. 3-73
3.7.3.9 L3 Sample Point Configuration .. 3-74
3.7.3.9.1 Pipeline Burst and Late-Write SRAM.. 3-74
3.7.3.9.2 MSUG2 DDR SRAM... 3-75
3.7.4 L3 Private Memory Address Register (L3PM)... 3-76
3.7.5 L3 Parity Error Reporting and MSSSR0 .. 3-77
3.7.6 Instruction Interactions with L3.. 3-77
3.7.7 L3 Cache Operation .. 3-78
3.7.7.1 L3 Cache Miss and Reload Operations .. 3-78
3.7.7.2 L3 Cache Allocation ... 3-79
3.7.7.3 CI and WT Accesses and L3 .. 3-79
3.7.7.4 L3 Cache Replacement Selection ... 3-79
3.7.8 L3 Private Memory Operation.. 3-80
3.7.8.1 Enabling and Initializing L3 Private Memory .. 3-81
3.7.8.1.1 Initializing the L3 Private Memory when Parity is Enabled 3-82
3.7.8.2 CI and WT Accesses Not Supported for Private Memory 3-83
3.7.8.3 Castouts and Private Memory... 3-83
3.7.8.4 Snoop Hits and Private Memory... 3-83
3.7.8.5 Private Memory and Instruction Interactions ... 3-84
3.7.9 L3 Cache SRAM Timing Examples ... 3-84
3.7.9.1 MSUG2 DDR Interface Timing ... 3-85
3.7.9.2 Late-Write SRAM Timing.. 3-87
3.7.9.3 Pipelined Burst SRAM ... 3-89
3.8 System Bus Interface .. 3-90
3.8.1 MPC7451 Caches and System Bus Transactions ... 3-90
3.8.2 Bus Operations Caused by Cache Control Instructions................................ 3-92
3.8.3 Transfer Attributes.. 3-94
3.8.4 Snooping of External Transactions... 3-96
3.8.4.1 Types of Transactions Snooped by MPC7451 ... 3-97
3.8.4.2 L1 Cache State Transitions and Bus Operations Due to Snoops.............. 3-98
3.8.4.3 L2 and L3 Operations Caused by External Snoops 3-100

CONTENTS
Paragraph
Number Title Page

Number

xiv MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Chapter 4
Exceptions

4.1 MPC7451 Microprocessor Exceptions ... 4-3
4.2 MPC7451 Exception Recognition and Priorities.. 4-5
4.3 Exception Processing .. 4-9
4.3.1 Enabling and Disabling Exceptions.. 4-13
4.3.2 Steps for Exception Processing... 4-13
4.3.3 Setting MSR[RI] ... 4-14
4.3.4 Returning from an Exception Handler.. 4-14
4.4 Process Switching ... 4-15
4.5 Data Stream Prefetching and Exceptions.. 4-15
4.6 Exception Definitions ... 4-15
4.6.1 System Reset Exception (0x00100).. 4-17
4.6.2 Machine Check Exception (0x00200) .. 4-18
4.6.2.1 Machine Check Exception Enabled (MSR[ME] = 1)............................... 4-21
4.6.2.2 Checkstop State (MSR[ME] = 0) ... 4-22
4.6.3 DSI Exception (0x00300) ... 4-22
4.6.3.1 DSI Exception—Page Fault.. 4-22
4.6.3.2 DSI Exception—Data Address Breakpoint Facility 4-23
4.6.4 ISI Exception (0x00400)... 4-23
4.6.5 External Interrupt Exception (0x00500) ... 4-24
4.6.6 Alignment Exception (0x00600) .. 4-25
4.6.7 Program Exception (0x00700).. 4-26
4.6.8 Floating-Point Unavailable Exception (0x00800) .. 4-27
4.6.9 Decrementer Exception (0x00900)... 4-27
4.6.10 System Call Exception (0x00C00) ... 4-27
4.6.11 Trace Exception (0x00D00).. 4-27
4.6.12 Floating-Point Assist Exception (0x00E00) ... 4-28
4.6.13 Performance Monitor Exception (0x00F00)... 4-28
4.6.14 AltiVec Unavailable Exception (0x00F20) .. 4-29
4.6.15 TLB Miss Exceptions ... 4-30
4.6.15.1 Instruction Table Miss Exception—ITLB Miss (0x01000)...................... 4-31
4.6.15.2 Data Table Miss-On-Load Exception—DTLB Miss-On-Load (0x01100)

4-31
4.6.15.3 Data Table Miss-On-Store Exception—DTLB Miss-On-Store (0x01200).....

4-31
4.6.16 Instruction Address Breakpoint Exception (0x01300) 4-32
4.6.17 System Management Interrupt Exception (0x01400)................................... 4-33
4.6.18 AltiVec Assist Exception (0x01600) .. 4-34

CONTENTS
Paragraph
Number Title Page

Number

MOTOROLA Contents xv

Chapter 5
Memory Management

5.1 MMU Overview.. 5-2
5.1.1 Memory Addressing ... 5-5
5.1.2 MMU Organization... 5-5
5.1.3 Address Translation Mechanisms... 5-11
5.1.4 Memory Protection Facilities.. 5-14
5.1.5 Page History Information.. 5-14
5.1.6 General Flow of MMU Address Translation.. 5-15
5.1.6.1 Real Addressing Mode and Block Address Translation Selection........... 5-15
5.1.6.2 Page Address Translation Selection ... 5-16
5.1.7 MMU Exceptions Summary ... 5-19
5.1.8 MMU Instructions and Register Summary... 5-22
5.2 Real Addressing Mode.. 5-24
5.2.1 Real Addressing Mode—32-Bit Addressing .. 5-25
5.2.2 Real Addressing Mode—Extended Addressing ... 5-25
5.3 Block Address Translation.. 5-25
5.3.1 BAT Register Implementation of BAT Array—Extended Addressing........ 5-26
5.3.2 Block Physical Address Generation—Extended Addressing 5-30
5.3.2.1 Block Physical Address Generation with an Extended BAT Block Size. 5-31
5.3.3 Block Address Translation Summary—Extended Addressing..................... 5-33
5.4 Memory Segment Model .. 5-35
5.4.1 Page Address Translation Overview... 5-36
5.4.1.1 Segment Descriptor Definitions ... 5-37
5.4.1.2 Page Table Entry (PTE) Definition—Extended Addressing 5-38
5.4.2 Page History Recording .. 5-39
5.4.2.1 Referenced Bit .. 5-40
5.4.2.2 Changed Bit .. 5-40
5.4.2.3 Scenarios for Referenced and Changed Bit Recording 5-41
5.4.3 Page Memory Protection .. 5-42
5.4.4 TLB Description ... 5-43
5.4.4.1 TLB Organization and Operation ... 5-43
5.4.4.2 TLB Invalidation .. 5-45
5.4.4.2.1 tlbie Instruction .. 5-45
5.4.4.2.2 tlbsync Instruction.. 5-47
5.4.4.2.3 Synchronization Requirements for tlbie and tlbsync............................ 5-48
5.4.5 Page Address Translation Summary—Extended Addressing 5-49
5.5 Hashed Page Tables—Extended Addressing.. 5-51
5.5.1 SDR1 Register Definition—Extended Addressing....................................... 5-51
5.5.1.1 Page Table Size... 5-53
5.5.1.2 Page Table Hashing Functions ... 5-54
5.5.1.3 Page Table Address Generation.. 5-55

CONTENTS
Paragraph
Number Title Page

Number

xvi MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

5.5.1.4 Page Table Structure Example—Extended Addressing 5-58
5.5.1.5 PTEG Address Mapping Examples—Extended Addressing.................... 5-59
5.5.2 Page Table Search Operations—Implementation... 5-61
5.5.2.1 Conditions for a Page Table Search Operation... 5-62
5.5.2.2 AltiVec Line Fetch Skipping .. 5-62
5.5.2.3 Page Table Search Operation—Conceptual Flow 5-63
5.5.3 Page Table Updates .. 5-66
5.5.4 Segment Register Updates .. 5-67
5.5.5 Implementation-Specific Software Table Search Operation 5-67
5.5.5.1 Resources for Table Search Operations.. 5-68
5.5.5.1.1 TLB Miss Register (TLBMISS) ... 5-70
5.5.5.1.2 Page Table Entry Registers (PTEHI and PTELO) 5-71
5.5.5.1.3 Special Purpose Registers (4–7) ... 5-72
5.5.5.2 Example Software Table Search Operation.. 5-72
5.5.5.2.1 Flow for Example Exception Handlers .. 5-73
5.5.5.2.2 Code for Example Exception Handlers .. 5-79

Chapter 6
Instruction Timing

6.1 Terminology and Conventions.. 6-2
6.2 Instruction Timing Overview.. 6-4
6.3 Timing Considerations.. 6-11
6.3.1 General Instruction Flow .. 6-12
6.3.2 Instruction Fetch Timing .. 6-17
6.3.2.1 Cache Arbitration.. 6-17
6.3.2.2 Cache Hit .. 6-17
6.3.2.3 Cache Miss.. 6-21
6.3.2.4 L2 Cache Access Timing Considerations .. 6-23
6.3.2.4.1 Instruction Cache and L2 Cache Hit... 6-23
6.3.2.4.2 Instruction Cache Miss/L3 Cache Hit .. 6-25
6.3.3 Dispatch, Issue, and Completion Considerations ... 6-27
6.3.3.1 Rename Register Operation.. 6-28
6.3.3.2 Instruction Serialization.. 6-28
6.4 Execution Unit Timings.. 6-29
6.4.1 Branch Processing Unit Execution Timing .. 6-29
6.4.1.1 Branch Folding and Removal of Fall-Through Branch Instructions 6-29
6.4.1.2 Branch Instructions and Completion .. 6-31
6.4.1.3 Branch Prediction and Resolution .. 6-32
6.4.1.3.1 Static Branch Prediction ... 6-33
6.4.1.3.2 Predicted Branch Timing Examples ... 6-34
6.4.2 Integer Unit Execution Timing ... 6-36

CONTENTS
Paragraph
Number Title Page

Number

MOTOROLA Contents xvii

6.4.3 FPU Execution Timing ... 6-37
6.4.3.1 Effect of Floating-Point Exceptions on Performance............................... 6-37
6.4.4 Load/Store Unit Execution Timing... 6-37
6.4.4.1 Effect of Operand Placement on Performance ... 6-37
6.4.4.2 Store Gathering... 6-39
6.4.4.3 AltiVec Instructions Executed by the LSU .. 6-39
6.4.4.3.1 LRU Instructions .. 6-39
6.4.4.3.2 Transient Instructions ... 6-39
6.4.5 AltiVec Instructions.. 6-40
6.4.5.1 AltiVec Unit Execution Timing.. 6-40
6.4.5.1.1 AltiVec Permute Unit (VPU) Execution Timing 6-40
6.4.5.1.2 Vector Simple Integer Unit (VIU1) Execution Timing........................ 6-40
6.4.5.1.3 Vector Complex Integer Unit (VIU2) Execution Timing 6-41
6.4.5.1.4 Vector Floating-Point Unit (VFPU) Execution Timing 6-41
6.5 Memory Performance Considerations .. 6-44
6.5.1 Caching and Memory Coherency ... 6-44
6.6 Instruction Latency Summary... 6-44
6.7 Instruction Scheduling Guidelines.. 6-57
6.7.1 Fetch/Branch Considerations.. 6-58
6.7.1.1 Fetching Examples.. 6-58
6.7.1.1.1 Fetch Alignment Example .. 6-58
6.7.1.1.2 Branch-Taken Bubble Example.. 6-60
6.7.1.2 Branch Conditionals ... 6-61
6.7.1.2.1 Branch Mispredict Example ... 6-61
6.7.1.2.2 Branch Loop Example .. 6-61
6.7.1.3 Static versus Dynamic Prediction... 6-63
6.7.1.4 Using the Link Stack for Branch Indirect... 6-64
6.7.1.4.1 Link Stack Example.. 6-64
6.7.1.4.2 Position-Independent Code Example ... 6-65
6.7.1.5 Branch Folding ... 6-66
6.7.2 Dispatch Unit Resource Requirements ... 6-67
6.7.2.1 Dispatch Groupings .. 6-67
6.7.2.1.1 Dispatch Stall due to Rename Availability... 6-67
6.7.2.2 Dispatching Load/Store Strings and Multiples... 6-68
6.7.2.2.1 Example of Load/Store Multiple Micro Operation Generation............ 6-68
6.7.3 Issue Queue Resource Requirements.. 6-69
6.7.3.1 GPR Issue Queue (GIQ) ... 6-69
6.7.3.2 Vector Issue Queue (VIQ) .. 6-70
6.7.3.3 Floating-Point Issue Queue (FIQ) .. 6-71
6.7.4 Completion Unit Resource Requirements .. 6-71
6.7.4.1 Completion Groupings.. 6-72
6.7.5 Serialization Effects.. 6-72
6.7.6 Execution Unit Considerations ... 6-72

CONTENTS
Paragraph
Number Title Page

Number

xviii MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

6.7.6.1 IU1 Considerations ... 6-72
6.7.6.2 IU2 Considerations ... 6-73
6.7.6.3 FPU Considerations .. 6-74
6.7.6.4 Vector Unit Considerations .. 6-76
6.7.6.5 Load/Store Unit (LSU) ... 6-76
6.7.6.5.1 Load Hit Pipeline.. 6-78
6.7.6.5.2 Store Hit Pipeline.. 6-78
6.7.6.5.3 Load/Store Interaction .. 6-80
6.7.6.5.4 Misalignment Effects.. 6-80
6.7.6.5.5 Load Miss Pipeline ... 6-81
6.7.6.5.6 Store Miss Pipeline ... 6-84
6.7.6.5.7 DST Instructions and the Vector Touch Engine (VTE) 6-86
6.7.7 Memory Subsystem Considerations ... 6-86
6.7.7.1 L2 Cache Effects... 6-86
6.7.7.2 L3 Cache Effects... 6-87
6.7.7.3 Hardware Prefetching ... 6-87

Chapter 7
AltiVec Technology Implementation

7.1 AltiVec Technology and the Programming Model... 7-1
7.1.1 Register Set ... 7-2
7.1.1.1 Changes to the Condition Register ... 7-2
7.1.1.2 Addition to the Machine State Register.. 7-2
7.1.1.3 Vector Registers (VRs)... 7-2
7.1.1.4 Vector Status and Control Register (VSCR) .. 7-3
7.1.1.5 Vector Save/Restore Register (VRSAVE) ... 7-4
7.1.2 AltiVec Instruction Set ... 7-5
7.1.2.1 LRU Instructions .. 7-5
7.1.2.2 Transient Instructions and Caches .. 7-5
7.1.2.3 Data Stream Touch Instructions ... 7-6
7.1.2.3.1 Stream Engine Tags.. 7-8
7.1.2.3.2 Speculative Execution and Pipeline Stalls

for Data Stream Instructions 7-8
7.1.2.3.3 Static/Transient Data Stream Touch Instructions 7-9
7.1.2.3.4 Relationship with the sync/tblsync Instructions 7-9
7.1.2.3.5 Data Stream Termination.. 7-9
7.1.2.3.6 Line Fetch Skipping.. 7-10
7.1.2.3.7 Context Awareness and Stream Pausing .. 7-10
7.1.2.3.8 Differences Between dst/dstt and dstst/dststt Instructions 7-11
7.1.2.4 dss and dssall Instructions .. 7-11
7.1.2.5 Java Mode, NaNs, Denormalized Numbers, and Zeros............................ 7-11

CONTENTS
Paragraph
Number Title Page

Number

MOTOROLA Contents xix

7.1.3 Differences between the MPC7400/MPC7410 and the MPC7451 7-15
7.1.3.1 Java and Non-Java Mode.. 7-15
7.1.3.2 AltiVec Instructions.. 7-15
7.1.3.3 AltiVec Instruction Sequencing.. 7-16
7.2 AltiVec Technology and the Cache Model... 7-17
7.3 AltiVec and the Exception Model .. 7-18
7.4 AltiVec and the Memory Management Model ... 7-19
7.5 AltiVec Technology and Instruction Timing.. 7-19

Chapter 8
Signal Descriptions

8.1 Signal Groupings .. 8-1
8.1.1 Signal Summary.. 8-2
8.1.2 Output Signal States During Reset ... 8-4
8.2 MPX Bus Signal Configuration .. 8-5
8.2.1 MPX/60x Bus Protocol Signal Compatibility .. 8-6
8.2.2 MPX Bus Mode Signals ... 8-6
8.2.3 60x Bus Signals Not in the MPC7451.. 8-7
8.2.3.1 Address Bus Busy and Data Bus Busy (ABB and DBB) 8-7
8.2.3.2 Data Bus Write Only (DBWO)... 8-7
8.2.3.3 Data Retry (DRTRY).. 8-7
8.2.3.4 Extended Transfer Protocol (XATS) .. 8-7
8.2.3.5 Transfer Code (TC[0:1])... 8-7
8.2.3.6 Cache Set Element (CSE[0:1]) ... 8-7
8.2.3.7 Address Parity Error and Data Parity Error (APE, DPE) 8-7
8.2.4 MPX Bus Mode Functional Groupings .. 8-8
8.2.5 Address Bus Arbitration Signals... 8-10
8.2.5.1 Bus Request (BR)—Output .. 8-10
8.2.5.2 Bus Grant (BG)—Input .. 8-10
8.2.6 Address Bus and Parity in MPX Bus Mode ... 8-11
8.2.6.1 Address Bus (A[0:35]).. 8-11
8.2.6.1.1 Address Bus (A[0:35])—Output .. 8-11
8.2.6.1.2 Address Bus (A[0:35])—Input ... 8-13
8.2.6.2 Address Bus Parity (AP[0:4]) ... 8-13
8.2.6.2.1 Address Bus Parity (AP[0:4])—Output.. 8-13
8.2.6.2.2 Address Bus Parity (AP[0:4])—Input .. 8-14
8.2.7 Address Transfer Attribute Signals in MPX Bus Mode 8-14
8.2.7.1 Transfer Start (TS).. 8-15
8.2.7.1.1 Transfer Start (TS)—Output... 8-15
8.2.7.1.2 Transfer Start (TS)—Input ... 8-15
8.2.7.2 Transfer Type (TT[0:4]) ... 8-15

CONTENTS
Paragraph
Number Title Page

Number

xx MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

8.2.7.2.1 Transfer Type (TT[0:4])—Output .. 8-16
8.2.7.2.2 Transfer Type (TT[0:4])—Input... 8-16
8.2.7.3 Transfer Burst (TBST)—Output .. 8-16
8.2.7.4 Transfer Size (TSIZ[0:2])—Output.. 8-16
8.2.7.5 Global (GBL).. 8-17
8.2.7.5.1 Global (GBL)—Output .. 8-17
8.2.7.5.2 Global (GBL)—Input ... 8-17
8.2.7.6 Write-Through (WT)—Output ... 8-17
8.2.7.7 Cache Inhibit (CI)—Output .. 8-18
8.2.8 MPX Address Transfer Termination Signals.. 8-18
8.2.8.1 Address Acknowledge (AACK)—Input .. 8-18
8.2.8.2 Address Retry (ARTRY) .. 8-19
8.2.8.2.1 Address Retry (ARTRY)—Output ... 8-19
8.2.8.2.2 Address Retry (ARTRY)—Input.. 8-20
8.2.8.3 Shared (SHD0, SHD1) Signals... 8-20
8.2.8.3.1 Shared (SHD0, SHD1)—Output .. 8-21
8.2.8.3.2 Shared (SHD0, SHD1)—Input ... 8-22
8.2.8.4 Snoop Hit (HIT)—Output... 8-22
8.2.9 Data Bus Arbitration Signals .. 8-23
8.2.9.1 Data Bus Grant (DBG)—Input... 8-23
8.2.9.2 Data Transaction Index (DTI[0:3])—Input .. 8-24
8.2.9.3 Data Ready (DRDY)—Output ... 8-24
8.2.10 Data Transfer Signals.. 8-25
8.2.10.1 Data Bus (D[0:63]) ... 8-25
8.2.10.1.1 Data Bus (D[0:63])—Output .. 8-26
8.2.10.1.2 Data Bus (D[0:63])—Input... 8-26
8.2.10.2 Data Bus Parity (DP[0:7]) .. 8-26
8.2.10.2.1 Data Bus Parity (DP[0:7])—Output ... 8-26
8.2.10.2.2 Data Bus Parity (DP[0:7])—Input.. 8-27
8.2.11 Data Transfer Termination Signals... 8-27
8.2.11.1 Transfer Acknowledge (TA)—Input .. 8-27
8.2.11.2 Transfer Error Acknowledge (TEA)—Input .. 8-28
8.3 60x Bus Signal Configuration... 8-29
8.3.1 60x Bus Mode Functional Groupings... 8-29
8.3.2 60x Address Bus Arbitration Signals.. 8-30
8.3.2.1 Bus Request (BR)—Output .. 8-31
8.3.2.2 Bus Grant (BG)—Input .. 8-31
8.3.3 Address Bus and Parity in 60x Bus Mode .. 8-31
8.3.3.1 Address Bus (A[0:35])—Output... 8-32
8.3.3.2 Address Bus (A[0:35])—Input ... 8-32
8.3.3.3 Address Parity (AP[0:4])—Output ... 8-32
8.3.3.4 Address Parity (AP[0:4])—Input.. 8-32
8.3.4 Address Transfer Attribute Signals in 60x Bus Mode.................................. 8-32

CONTENTS
Paragraph
Number Title Page

Number

MOTOROLA Contents xxi

8.3.4.1 Transfer Start (TS).. 8-32
8.3.4.1.1 Transfer Start (TS)—Output... 8-33
8.3.4.1.2 Transfer Start (TS)—Input ... 8-33
8.3.4.2 Transfer Type (TT[0:4]) ... 8-33
8.3.4.2.1 Transfer Type (TT[0:4])—Output .. 8-33
8.3.4.2.2 Transfer Type (TT[0:4])—Input... 8-33
8.3.4.3 Transfer Burst (TBST)—Output .. 8-34
8.3.4.4 Transfer Size (TSIZ[0:2])—Output.. 8-34
8.3.4.5 Global (GBL).. 8-34
8.3.4.5.1 Global (GBL)—Output... 8-34
8.3.4.5.2 Global (GBL)—Input ... 8-34
8.3.4.6 Write-Through (WT)—Output ... 8-35
8.3.4.7 Cache Inhibit (CI)—Output .. 8-35
8.3.5 60x Address Transfer Termination Signals .. 8-35
8.3.5.1 Address Acknowledge (AACK)—Input... 8-35
8.3.5.2 Address Retry (ARTRY) .. 8-36
8.3.5.2.1 Address Retry (ARTRY)—Output... 8-36
8.3.5.2.2 Address Retry (ARTRY)—Input.. 8-36
8.3.5.3 Shared (SHD0) ... 8-37
8.3.5.3.1 Shared (SHD0)—Output .. 8-37
8.3.5.3.2 Shared (SHD0)—Input... 8-37
8.3.6 Data Bus Arbitration Signals .. 8-37
8.3.6.1 Data Bus Grant (DBG)—Input ... 8-37
8.3.6.2 Data Transaction Index (DTI[0:3])—Input .. 8-38
8.3.7 Data Transfer Signals in 60x Bus Mode... 8-38
8.3.7.1 Data Bus (D[0:63]) ... 8-38
8.3.7.1.1 Data Bus (D[0:63])—Output .. 8-38
8.3.7.1.2 Data Bus (D[0:63])—Input... 8-38
8.3.7.2 Data Bus Parity (DP[0:7]) .. 8-39
8.3.7.2.1 Data Bus Parity (DP[0:7])—Output ... 8-39
8.3.7.2.2 Data Bus Parity (DP[0:7])—Input.. 8-39
8.3.8 Data Transfer Termination Signals in 60x Bus Mode 8-39
8.3.8.1 Transfer Acknowledge (TA)—Input .. 8-39
8.3.8.2 Transfer Error Acknowledge (TEA)—Input .. 8-40
8.4 Non-Protocol Signal Descriptions .. 8-40
8.4.1 L3 Cache Address/Data .. 8-40
8.4.1.1 L3 Address (L3_ADDR[17:0])—Output ... 8-40
8.4.1.2 L3 Data (L3_DATA[0:63]) .. 8-41
8.4.1.2.1 L3 Data (L3_DATA[0:63])—Output ... 8-41
8.4.1.2.2 L3 Data (L3_DATA[0:63])—Input.. 8-41
8.4.1.3 L3 Data Parity (L3_DP[0:7]).. 8-41
8.4.1.3.1 L3 Data Parity (L3_DP[0:7])—Output... 8-42
8.4.1.3.2 L3 Data Parity (L3_DP[0:7])—Input ... 8-42

CONTENTS
Paragraph
Number Title Page

Number

xxii MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

8.4.2 L3 Cache Clock/Control ... 8-42
8.4.2.1 L3 Clock (L3_CLK[0:1])—Output .. 8-42
8.4.2.2 L3 Clock Synchronization (L3_ECHO_CLK[0:3]) 8-42
8.4.2.2.1 L3 Clock Synchronization (L3_ECHO_CLK[1,3])—Output 8-42
8.4.2.2.2 L3 Clock Synchronization (L3_ECHO_CLK[0:3])—Input................. 8-43
8.4.2.3 L3 Control (L3_CNTRL[0:1]).. 8-43
8.4.2.3.1 L3 Control (L3_CNTL0)—Output... 8-43
8.4.2.3.2 L3 Control (L3_CNTL1)—Output... 8-44
8.4.2.4 L3 Voltage Select (L3_VSEL)—Input... 8-44
8.4.3 Interrupts/Reset Signals .. 8-45
8.4.3.1 Interrupt (INT)—Input.. 8-45
8.4.3.2 System Management Interrupt (SMI)—Input .. 8-45
8.4.3.3 Machine Check (MCP)—Input... 8-45
8.4.3.4 Reset Signals... 8-46
8.4.3.4.1 Soft Reset (SRESET)—Input... 8-46
8.4.3.4.2 Hard Reset (HRESET)—Input... 8-46
8.4.3.5 Checkstop Input (CKSTP_IN)—Input... 8-47
8.4.3.6 Checkstop Output (CKSTP_OUT)—Output ... 8-47
8.4.4 Processor Status/Control Signals .. 8-47
8.4.4.1 Timebase Enable (TBEN)—Input .. 8-48
8.4.4.2 Quiescent Request (QREQ)—Output... 8-48
8.4.4.3 Quiescent Acknowledge (QACK)—Input.. 8-48
8.4.4.4 Bus Voltage Select (BVSEL)—Input... 8-49
8.4.4.5 Bus Mode Select (BMODE[0:1]) ... 8-50
8.4.4.5.1 Bus Selection Mode (BMODE0)—Input During HRESET................. 8-50
8.4.4.5.2 Address Bus Driven Mode (BMODE0)—Input After HRESET 8-51
8.4.4.5.3 Bus Selection Mode (BMODE1)—Input During HRESET................. 8-52
8.4.4.5.4 Bus Selection Mode (BMODE1)—Input After HRESET.................... 8-52
8.4.4.6 Performance Monitor In (PMON_IN)—Input.. 8-53
8.4.4.7 Performance Monitor Out (PMON_OUT)—Output 8-53
8.4.5 Clock Control Signals... 8-53
8.4.5.1 System Clock (SYSCLK)—Input... 8-53
8.4.5.2 PLL Configuration (PLL_CFG[0:4])—Input ... 8-54
8.4.5.3 Extension Qualifier (EXT_QUAL)—Input.. 8-54
8.4.5.4 Clock Out (CLK_OUT)—Output... 8-55
8.4.6 IEEE 1149.1a-1993 (JTAG) Interface Description 8-55
8.4.6.1 JTAG Test Clock (TCK)—Input .. 8-56
8.4.6.2 JTAG Test Data Input (TDI)—Input.. 8-56
8.4.6.3 JTAG Test Data Output (TDO)—Output ... 8-56
8.4.6.4 JTAG Test Mode Select (TMS)—Input ... 8-56
8.4.6.5 JTAG Test Reset (TRST)—Input... 8-56
8.4.7 Configuration Signals Sampled at Reset .. 8-57
8.4.8 Power and Ground Signals ... 8-58

CONTENTS
Paragraph
Number Title Page

Number

MOTOROLA Contents xxiii

Chapter 9
System Interface Operation

9.1 MPC7451 System Interface Overview ... 9-1
9.1.1 MPC7451 Bus Operation Features ... 9-1
9.1.1.1 MPX Bus Features.. 9-2
9.1.1.2 60x Bus Features... 9-2
9.1.2 Overview of System Interface Accesses... 9-2
9.1.3 Summary of L1 Instruction and Data Cache Operation 9-5
9.1.4 L2 Cache Overview .. 9-6
9.1.5 L3 Cache Overview .. 9-6
9.1.6 Operation of the System Interface .. 9-7
9.1.7 Memory Subsystem Control Register (MSSCR0).. 9-7
9.1.8 Memory Subsystem Status Register (MSSSR0)... 9-8
9.1.9 Direct-Store Accesses Not Supported... 9-8
9.1.10 Common Timing Diagram Symbols... 9-8
9.2 MPX Bus Protocol .. 9-9
9.2.1 MPX Bus Pipelining ... 9-10
9.3 MPX Bus Address Tenure .. 9-11
9.3.1 MPX Bus Address Bus Arbitration .. 9-11
9.3.1.1 Qualified Bus Grant in MPX Bus Mode... 9-12
9.3.1.2 MPX Address Bus Parking... 9-13
9.3.2 MPX Bus Address Transfer.. 9-15
9.3.2.1 Address Bus Driven Mode.. 9-16
9.3.2.2 Address Bus Streaming... 9-16
9.3.2.3 Address Bus Parity ... 9-16
9.3.2.4 Address Transfer Attributes.. 9-17
9.3.2.4.1 Transfer Type (TT[0:4]) Signals .. 9-17
9.3.2.4.2 Transfer Size (TSIZ[0:2]) and Transfer Burst TBST Signals 9-19
9.3.2.4.3 Write-Through (WT), Cache Inhibit (CI), and Global (GBL) Signals. 9-20
9.3.2.5 Burst Ordering During Data Transfers ... 9-21
9.3.2.6 Effect of Alignment in Data Transfers ... 9-21
9.3.2.6.1 Misalignment Example... 9-22
9.3.2.6.2 Alignment of External Control Instructions ... 9-23
9.3.3 MPX Bus Address Tenure Termination ... 9-23
9.3.3.1 Address Retry Window and Qualified ARTRY 9-24
9.3.3.2 Snoop Copybacks and the Window-of-Opportunity 9-27
9.3.3.3 Shared (SHD0, SHD1) Signals in MPX Bus Mode................................. 9-28
9.3.3.4 Hit (HIT) Signal and Data Intervention.. 9-29
9.4 MPX Bus Data Tenure.. 9-30
9.4.1 MPX Bus Data Bus Arbitration .. 9-30
9.4.1.1 Qualified Data Bus Grant in MPX Bus Mode .. 9-30
9.4.2 MPX Bus Data Transfer ... 9-31

CONTENTS
Paragraph
Number Title Page

Number

xxiv MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

9.4.2.1 Data Bus Parity ... 9-32
9.4.2.2 Earliest Transfer of Data... 9-33
9.4.2.2.1 Data Streaming in MPX Bus Mode.. 9-33
9.4.2.3 Data Tenure Reordering ... 9-33
9.4.2.4 MPX Bus Data Intervention ... 9-34
9.4.2.4.1 Data-Only Transaction Protocol ... 9-35
9.4.2.4.2 DRDY Timing .. 9-36
9.4.2.4.3 Pipelining of Data-Only Transactions .. 9-37
9.4.2.4.4 Retrying Data-Only Transactions ... 9-37
9.4.2.4.5 Ordering of Data-Only Transactions .. 9-38
9.4.2.4.6 Snarfing .. 9-39
9.4.3 MPX Bus Data Tenure Termination... 9-39
9.4.3.1 Normal Single-Beat Transfer Termination... 9-40
9.4.3.2 Normal Burst Transfer Termination ... 9-40
9.4.3.3 Data Transfer Termination Due to a Bus Error .. 9-41
9.5 60x Bus Protocol... 9-42
9.5.1 60x Bus Pipelining.. 9-42
9.6 60x Bus Address Tenure... 9-43
9.6.1 60x Bus Address Bus Arbitration ... 9-43
9.6.1.1 Qualified Bus Grant in 60x Bus Mode ... 9-43
9.6.1.2 60x Address Bus Parking.. 9-44
9.6.2 60x Bus Address Transfer... 9-44
9.6.2.1 60x Address Bus Driven Mode... 9-45
9.6.2.2 60x Address Bus Parity .. 9-45
9.6.2.3 60x Address Transfer Attributes... 9-45
9.6.2.3.1 60x Transfer Size (TSIZ[0:2]) and Transfer Burst (TBST) Signals..... 9-45
9.6.2.4 Aligned and Misaligned Transfers.. 9-46
9.6.3 60x Bus Address Transfer Termination.. 9-46
9.6.3.1 Snoop Response and SHD Signal... 9-47
9.7 60x Bus Data Tenure .. 9-47
9.7.1 60x Bus Data Bus Arbitration... 9-47
9.7.1.1 Qualified Data Bus Grant in 60x Bus Mode... 9-47
9.7.2 60x Bus Data Transfers... 9-48
9.7.3 60x Bus Data Tenure Termination.. 9-48
9.8 60x Bus Timing Examples.. 9-49
9.9 Reset, Interrupt, Checkstop, and Power Management Signal Interactions....... 9-54
9.9.1 Reset Inputs... 9-54
9.9.2 External Interrupts .. 9-55
9.9.3 Checkstops .. 9-55
9.9.4 Power Management Signals.. 9-55
9.10 IEEE 1149.1a-1993 Compliant Interface.. 9-56
9.10.1 JTAG/COP Interface... 9-56

CONTENTS
Paragraph
Number Title Page

Number

MOTOROLA Contents xxv

Chapter 10
Power and Thermal Management

10.1 Dynamic Power Management... 10-1
10.2 Programmable Power Mode ... 10-1
10.2.1 Full-Power Mode .. 10-3
10.2.2 Nap Mode ... 10-3
10.2.2.1 Entering NAP Mode ... 10-3
10.2.2.2 Exiting Nap Mode... 10-4
10.2.2.3 Snooping In Nap Mode (Doze)... 10-4
10.2.3 Sleep Mode ... 10-4
10.2.3.1 Entering Sleep Mode .. 10-4
10.2.3.2 Exiting Sleep Mode .. 10-4
10.2.3.3 Deep Sleep Mode.. 10-5
10.2.4 Power Management Software Considerations.. 10-5
10.2.5 Dynamic Frequency Switching (DFS) in the MPC7447A 10-6
10.2.5.1 Available Processor-to-Bus Ratios ... 10-6
10.2.5.2 Snooping restrictions .. 10-7
10.2.5.3 Using the HID1[DFS1] bit to Set DFS Mode in

Conjunction Voltage Set Point 10-7
10.3 Instruction Cache Throttling ... 10-8
10.4 MPC7447A Temperature Diode ... 10-9

Chapter 11
Performance Monitor

11.1 Overview... 11-2
11.2 Performance Monitor Exception... 11-3
11.2.1 Performance Monitor Signals ... 11-3
11.2.2 Using Timebase Event to Trigger or Freeze a Counter

or Generate an Exception 11-4
11.3 Performance Monitor Registers .. 11-4
11.3.1 Performance Monitor Special-Purpose Registers ... 11-4
11.3.2 Monitor Mode Control Register 0 (MMCR0) .. 11-5
11.3.2.1 User Monitor Mode Control Register 0 (UMMCR0)............................... 11-8
11.3.3 Monitor Mode Control Register 1 (MMCR1) .. 11-9
11.3.3.1 User Monitor Mode Control Register 1 (UMMCR1)............................... 11-9
11.3.4 Monitor Mode Control Register 2 (MMCR2) .. 11-9
11.3.4.1 User Monitor Mode Control Register 2 (UMMCR2)............................. 11-10
11.3.5 Breakpoint Address Mask Register (BAMR)... 11-10
11.3.6 Performance Monitor Counter Registers (PMC1–PMC6).......................... 11-11
11.3.6.1 User Performance Monitor Counter Registers (UPMC1–UPMC6) 11-12

CONTENTS
Paragraph
Number Title Page

Number

xxvi MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

11.3.7 Sampled Instruction Address Register (SIAR)... 11-12
11.3.7.1 User Sampled Instruction Address Register (USIAR) 11-13
11.4 Event Counting ... 11-13
11.5 Event Selection ... 11-14
11.5.1 PMC1 Events .. 11-14
11.5.2 PMC2 Events .. 11-20
11.5.3 PMC3 Events .. 11-25
11.5.4 PMC4 Events .. 11-27
11.5.5 PMC5 Events .. 11-29
11.5.6 PMC6 Events .. 11-30

Appendix A
MPC7451 Instruction Set Listings

A.1 Instructions Sorted by Mnemonic
(Decimal and Hexadecimal) .. A-1

A.2 Instructions Sorted by Primary and Secondary Opcodes (Decimal and Hexadeci-
mal) A-12

A.3 Instructions Sorted by Mnemonic (Binary) ... A-24
A.4 Instructions Sorted by Opcode (Binary) .. A-35
A.5 Instructions Grouped by Functional Categories .. A-46
A.6 Instructions Sorted by Form .. A-61
A.7 Instruction Set Legend ... A-77

Appendix B
Instructions Not Implemented

Appendix C
Special-Purpose Registers

Appendix D
User’s Manual Revision History

FIGURES

Figure
Number Title Page

 Number

MOTOROLA Figures xxvii

1-1 MPC7451 Microprocessor Block Diagram .. 1-5
1-2 L1 Cache Organization ... 1-19
1-3 Alignment of Target Instructions in the BTIC.. 1-20
1-4 L2 Cache Organization for MPC7451 .. 1-21
1-5 L2 Cache Organization for the MPC7447, MPC7457, and MPC7447A.................... 1-21
1-6 MPX Bus Signal Groups... 1-29
1-7 Programming Model—MPC7441/MPC7451 Microprocessor Registers 1-36
1-8 Programming Model—MPC7445, MPC7447, MPC7455, MPC7457,

and MPC7447A Microprocessor Registers .. 1-37
1-9 Pipelined Execution Unit .. 1-54
1-10 Superscalar/Pipeline Diagram... 1-55
2-1 Programming Model— MPC7441/MPC7451 Microprocessor Registers 2-3
2-2 Programming Model—MPC7445, MPC7447, MPC7455,

and MPC7457 Microprocessor Registers ... 2-4
2-3 Machine State Register (MSR) ... 2-12
2-4 Machine Status Save/Restore Register 0 (SRR0) ... 2-15
2-5 Machine Status Save/Restore Register 1 (SRR1) ... 2-15
2-6 SDR1 Register Format—Extended Addressing ... 2-16
2-7 Hardware Implementation-Dependent Register 0 (HID0)

for the MPC7441 and the MPC7451 .. 2-17
2-8 Hardware Implementation-Dependent Register 0 (HID0) for the

MPC7445 and the MPC7455.. 2-18
2-9 Hardware Implementation-Dependent Register 1 (HID1).. 2-23
2-10 Memory Subsystem Control Register (MSSCR0).. 2-26
2-11 Memory Subsystem Status Register (MSSSR0)... 2-28
2-12 L2 Cache Control Register (L2CR) .. 2-30
2-13 L3 Cache Control Register (L3CR) for the MPC7457 ... 2-31
2-14 L3 Cache Output Hold Control Register (L3OHCR) for the MPC7457 2-36
2-15 L3 Cache Control Register (L3ITCR0) for the MPC7451 and MPC7455 2-38
2-16 L3 Cache Control Register (L3ITCR0) for the MPC7457 ... 2-38
2-17 L3 Cache Control Register (L3ITCR1) for the MPC7457 ... 2-39
2-18 L3 Cache Control Register (L3ITCR2) for the MPC7457 ... 2-40
2-19 L3 Cache Control Register (L3ITCR3) for the MPC7457 ... 2-41
2-20 Instruction Cache and Interrupt Control Register (ICTRL).. 2-42
2-21 Load/Store Control Register (LDSTCR) .. 2-43
2-22 L3 Private Memory Address Register (L3PM)... 2-44

ILLUSTRATIONS
Figure
Number Title Page

Number

xxviii MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

2-23 Instruction Address Breakpoint Register .. 2-45
2-24 TLBMISS Register for MPC7451 .. 2-46
2-25 PTEHI and PTELO Registers—Extended Addressing... 2-46
2-26 Instruction Cache Throttling Control Register (ICTC)... 2-48
2-27 Monitor Mode Control Register 0 (MMCR0) .. 2-49
2-28 Monitor Mode Control Register 1 (MMCR1) .. 2-52
2-29 Monitor Mode Control Register 2 (MMCR2) .. 2-53
2-30 Breakpoint Address Mask Register (BAMR)... 2-53
2-31 Performance Monitor Counter Registers (PMC1–PMC6).. 2-54
2-32 Sampled Instruction Address Registers (SIAR) ... 2-55
3-1 Cache/Memory Subsystem Integration... 3-6
3-2 L1 Data Cache Organization... 3-12
3-3 L1 Instruction Cache Organization... 3-14
3-4 Read Transaction—MPX Bus Mode, MSSCR0[EIDIS] = 0...................................... 3-22
3-5 RWITM and Flush Transactions—MPX Bus Mode, MSSCR0[EIDIS] = 0.............. 3-22
3-6 Write Transaction—MPX Bus Mode, MSSCR0[EIDIS] = 0..................................... 3-23
3-7 Clean Transaction—MPX Bus Mode, MSSCR0[EIDIS] = 0..................................... 3-23
3-8 Kill Transaction—MPX Bus Mode, MSSCR0[EIDIS] = 0.. 3-24
3-9 Read Transaction—60x and MPX Bus Modes, MSSCR0[EIDIS] = 1 3-25
3-10 RWITM, Write, and Flush Transactions—60x and MPX Bus

Modes, MSSCR0[EIDIS] = 1 ... 3-25
3-11 Clean Transaction—60x and MPX Bus Modes, MSSCR0[EIDIS] = 1 3-26
3-12 Kill Transaction—60x and MPX Bus Modes, MSSCR0[EIDIS] = 1 3-26
3-13 Read Transaction Snoop Hit on the Reservation Address Register............................ 3-27
3-14 Reskill Transaction Snoop Hit on the Reservation Address Register 3-27
3-15 Other Transaction Snoop Hit on the Reservation Address Register........................... 3-27
3-16 PLRU Replacement Algorithm... 3-45
3-17 L2 Cache Organization for MPC7451 .. 3-52
3-18 L2 Cache Organization for the MPC7447 and MPC7457.. 3-53
3-19 Random Number Generator for L2 (and L3) Replacement Selection 3-61
3-20 Example L3 Accumulator Sample Point Configuration for

PB2 and Late-write SRAM... 3-75
3-21 Example L3 Accumulator Sample Point Configuration for MSUG2 DDR SRAM ... 3-76
3-22 Typical 1-Mbyte L3 Cache using MSUG2 DDR ... 3-86
3-23 MSUG2 DDR Memory Access Example ... 3-87
3-24 L3 Cache Configuration for Late-Write or PB2 SRAMs ... 3-88
3-25 Late-Write SRAM Timing.. 3-89
3-26 Pipeline Burst SRAM Timing... 3-90
3-27 Double-Word Address Ordering—Critical Double Word First 3-92
4-1 Machine Status Save/Restore Register 0 (SRR0) ... 4-9
4-2 Machine Status Save/Restore Register 1 (SRR1) ... 4-10
4-3 Machine State Register (MSR) ... 4-10
5-1 MMU Conceptual Block Diagram for a 32-bit Physical

ILLUSTRATIONS
Figure
Number Title Page

Number

MOTOROLA Figures xxix

Address (Not the MPC7451) .. 5-7
5-2 MPC7451 Microprocessor IMMU Block Diagram,

36-Bit Physical Addressing .. 5-8
5-3 MPC7451 Microprocessor DMMU Block Diagram,

36-Bit Physical Addressing .. 5-9
5-4 MPC7445, MPC7447, MPC7455, and the MPC7457 Microprocessor DMMU Block

Diagram with Extended Block Size and Additional BATs .. 5-10
5-5 Address Translation Types for 32-Bit Physical Addressing....................................... 5-12
5-6 Address Translation Types for 36-Bit Physical Addressing....................................... 5-13
5-7 General Flow in Selection of which Address Translation to Use............................... 5-16
5-8 General Flow of Page Translation .. 5-18
5-9 Format of Upper BAT Register (BATU)—Extended Addressing for the

MPC7441 and the MPC7451.. 5-26
5-10 Format of Upper BAT Register (BATU)—Extended Block Size for the

MPC7445, MPC7447, MPC7455, or the MPC7457 .. 5-27
5-11 Format of Lower BAT Register (BATL)—Extended Addressing 5-27
5-12 Block Physical Address Generation—Extended Addressing 5-31
5-13 Block Physical Address Generation—Extended Block Size

for a 36-bit Physical Address.. 5-33
5-14 Block Address Translation Flow—Extended Addressing .. 5-34
5-15 Block Address Translation Flow—Extended Block Size for a 36-bit

Physical Address... 5-35
5-16 Generation of Extended 36-bit Physical Address

for Page Address Translation.. 5-37
5-17 Page Table Entry Format—Extended Addressing.. 5-38
5-18 Segment Register and DTLB Organization .. 5-44
5-19 tlbie Instruction Execution and Bus Snooping Flow.. 5-46
5-20 tlbsync Instruction Execution and Bus Snooping Flow ... 5-48
5-21 Page Address Translation Flow—TLB Hit—Extended Addressing 5-50
5-22 SDR1 Register Format—Extended Addressing ... 5-52
5-23 Hashing Functions for Page Table Entry Group Address... 5-55
5-24 PTEG Address Generation for a Page Table Search—Ext. Addressing..................... 5-57
5-25 Example Page Table Structure—Extended Addressing ... 5-58
5-26 Example Primary PTEG Address Generation .. 5-60
5-27 Example Secondary PTEG Address Generation .. 5-61
5-28 Primary Page Table Search—Conceptual Flow ... 5-65
5-29 Secondary Page Table Search Flow—Conceptual Flow .. 5-66
5-30 Derivation of Key Bit for SRR1 ... 5-69
5-31 TLBMISS Register ... 5-70
5-32 PTEHI and PTELO Registers—Extended Addressing... 5-71
5-33 Flow for Example Software Table Search Operation ... 5-74
5-34 Flow for Generation of PTEG Address .. 5-75
5-35 Check and Set R and C Bit Flow .. 5-76

ILLUSTRATIONS
Figure
Number Title Page

Number

xxx MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

5-36 Page Fault Setup Flow .. 5-77
5-37 Setup for Protection Violation Exceptions ... 5-78
6-1 Pipelined Execution Unit .. 6-5
6-2 Superscalar/Pipeline Diagram... 6-6
6-3 Stages and Events ... 6-10
6-4 MPC7451 Microprocessor Pipeline Stages .. 6-11
6-5 BTIC Organization ... 6-13
6-6 Alignment of Target Instructions in the BTIC.. 6-14
6-7 Instruction Flow Diagram... 6-16
6-8 Instruction Timing—Cache Hit .. 6-19
6-9 Instruction Timing—Cache Miss.. 6-22
6-10 Instruction Timing—Instruction Cache Miss/L2 Cache Hit....................................... 6-24
6-11 Instruction Timing—Instruction Cache Miss/L3 Cache Hit....................................... 6-26
6-12 Branch Folding ... 6-30
6-13 Removal of Fall-Through Branch Instruction .. 6-30
6-14 Branch Completion (LR/CTR Write-Back).. 6-31
6-15 Branch Instruction Timing.. 6-35
6-16 Vector Floating-Point Compare Bypass Non-Blocking ... 6-42
6-17 Vector Float Compare Bypass Blocking .. 6-43
6-18 LSU Block Diagram ... 6-77
7-1 Vector Registers (VRs) ... 7-2
7-2 Vector Status and Control Register (VSCR) .. 7-3
7-3 Vector Save/Restore Register (VRSAVE) ... 7-4
8-1 MPX Bus Signal Groups... 8-9
8-2 60x Bus Signal Groups ... 8-30
9-1 MPC7451 Microprocessor Block Diagram .. 9-4
9-2 Timing Diagram Legend... 9-8
9-3 Overlapping Tenures on the MPC7451 Bus for Transfers ... 9-9
9-4 MPX Address Bus Arbitration—Non-Parked Case.. 9-13
9-5 MPX Address Bus Arbitration—Parked Case.. 9-13
9-6 Address Parking in MPX Bus Multiprocessor Systems ... 9-14
9-7 Address Bus Transfer.. 9-16
9-8 Overlapped ARTRY and TS (with a Delayed AACK) in MPX Bus Mode 9-26
9-9 Snooped Address Cycle with ARTRY ... 9-28
9-10 SHD0 and SHD1 Negation Timing .. 9-29
9-11 Data Intervention for Read (Atomic) and RWITM (Atomic)

Using Data-Only Transfer Protocol .. 9-35
9-12 Data-Only Transaction for a Flush Operation .. 9-36
9-13 Pipelined Data-Only Transactions .. 9-37
9-14 Retry Examples of Data-Only Transactions ... 9-38
9-15 Normal Single-Beat Read Termination .. 9-40
9-16 Normal Single-Beat Write Termination ... 9-40
9-17 Normal Burst Transaction... 9-41

ILLUSTRATIONS
Figure
Number Title Page

Number

MOTOROLA Figures xxxi

9-18 Read Burst with TA Wait States ... 9-41
9-19 60x Address Bus Arbitration–Non-Parked Case .. 9-44
9-20 60x Address Bus Arbitration–Parked-Case .. 9-44
9-21 Fastest Single-Beat Reads... 9-49
9-22 Fastest Single-Beat Writes.. 9-50
9-23 Single-Beat Reads Showing Data-Delay Controls ... 9-51
9-24 Single-Beat Writes Showing Data Delay Controls... 9-52
9-25 Burst Transfers with Data Delay Controls.. 9-53
9-26 Use of Transfer Error Acknowledge (TEA) ... 9-54
9-27 IEEE 1149.1a-1993 Compliant Boundary-Scan Interface.. 9-56
10-1 Power Management State Diagram .. 10-2
10-2 Instruction Cache Throttling Control Register (ICTC)... 10-8
11-1 Monitor Mode Control Register 0 (MMCR0) .. 11-5
11-2 Monitor Mode Control Register 1 (MMCR1) .. 11-9
11-3 Monitor Mode Control Register 2 (MMCR2) .. 11-10
11-4 Breakpoint Address Mask Register (BAMR)... 11-10
11-5 Performance Monitor Counter Registers (PMC1–PMC6).. 11-11
11-6 Sampled Instruction Address Register (SIAR)... 11-12
0-1 Format of Upper BAT Register (BATU)—Extended Addressing for the

MPC7441 and the MPC7451... D-2
0-2 Format of Upper BAT Register (BATU)—Extended Block Size for the

MPC7445, MPC7447, MPC7455, or the MPC7457 ... D-2
0-3 Format of Lower BAT Register (BATL)—Extended Addressing D-2

ILLUSTRATIONS
Figure
Number Title Page

Number

xxxii MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

TABLES

Table
Number Title Page

Number

MOTOROLA Tables xxxiii

i Acronyms and Abbreviated Terms .. xlix
ii Terminology Conventions ... liii
iii Instruction Field Conventions.. liii
1-1 Register Summary for MPC7451 ... 1-38
1-2 MPC7451 Microprocessor Exception Classifications ... 1-49
1-3 Exceptions and Conditions .. 1-50
1-4 MPC7451 and MPC7400/MPC7410 Feature Comparison... 1-58
1-5 MPC7451 and MPC7455 Differences .. 1-61
1-6 MPC7451 and MPC7457 Differences .. 1-62
7 Microarchitecture Comparison ... 1-63
2-1 Register Summary for the MPC7451.. 2-5
2-2 Additional PVR Bits .. 2-11
2-3 MSR Bit Settings ... 2-12
2-4 IEEE Floating-Point Exception Mode Bits... 2-14
2-5 SDR1 Register Bit Settings—Extended Addressing .. 2-16
2-6 HID0 Field Descriptions ... 2-18
2-7 HID1 Field Descriptions .. 2-23
2-8 HID1[BCLK] and HID1[ECLK] CLK_OUT Configuration 2-25
2-9 MPC7447A HID1[15–19] Decode during Dynamic Frequency Switching 2-26
2-10 MSSCR0 Field Descriptions... 2-27
2-11 MSSSR0 Field Descriptions ... 2-29
2-12 L2CR Field Descriptions .. 2-30
2-13 L3CR Field Descriptions .. 2-32
2-14 L3OHCR Field Descriptions .. 2-36
2-15 L3ITCR0 Field Descriptions for the MPC7451 and MPC7455 2-38
2-16 L3ITCR0 Field Descriptions for the MPC7457 ... 2-39
2-17 L3ITCR1 Field Descriptions for the MPC7457 ... 2-39
2-18 L3ITCR2 Field Descriptions for the MPC7457 ... 2-40
2-19 L3ITCR3 Field Descriptions for the MPC7457 ... 2-41
2-20 ICTRL Field Descriptions .. 2-42
2-21 LDSTCR Field Descriptions... 2-44
2-22 L3PM Field Descriptions.. 2-44
2-23 Instruction Address Breakpoint Register Field Descriptions 2-45
2-24 TLBMISS Register—Field and Bit Descriptions for the MPC7451 2-46
2-25 PTEHI and PTELO Bit Definitions .. 2-47
2-26 ICTC Field Descriptions ... 2-48

TABLES
Table
Number Title Page

Number

xxxiv MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

2-27 MMCR0 Field Descriptions.. 2-49
2-28 MMCR1 Field Descriptions.. 2-52
2-29 MMCR2 Field Descriptions.. 2-53
2-30 BAMR Field Descriptions .. 2-54
2-31 PMCn Field Descriptions.. 2-54
2-32 Settings Caused by Hard Reset (Used at Power-On).. 2-56
2-33 Control Registers Synchronization Requirements .. 2-66
2-34 Integer Arithmetic Instructions ... 2-70
2-35 Integer Compare Instructions.. 2-71
2-36 Integer Logical Instructions .. 2-72
2-37 Integer Rotate Instructions.. 2-73
2-38 Integer Shift Instructions .. 2-73
2-39 Floating-Point Arithmetic Instructions ... 2-74
2-40 Floating-Point Multiply-Add Instructions .. 2-75
2-41 Floating-Point Rounding and Conversion Instructions .. 2-75
2-42 Floating-Point Compare Instructions.. 2-75
2-43 Floating-Point Status and Control Register Instructions .. 2-76
2-44 Floating-Point Move Instructions ... 2-76
2-45 Integer Load Instructions .. 2-79
2-46 Integer Store Instructions.. 2-80
2-47 Integer Load and Store with Byte-Reverse Instructions ... 2-81
2-48 Integer Load and Store Multiple Instructions ... 2-81
2-49 Integer Load and Store String Instructions ... 2-81
2-50 Floating-Point Load Instructions .. 2-82
2-51 Floating-Point Store Instructions .. 2-83
2-52 Store Floating-Point Single Behavior ... 2-83
2-53 Store Floating-Point Double Behavior ... 2-84
2-54 Branch Instructions ... 2-85
2-55 Condition Register Logical Instructions ... 2-86
2-56 Trap Instructions ... 2-86
2-57 System Linkage Instruction—UISA... 2-87
2-58 Move to/from Condition Register Instructions ... 2-87
2-59 Move to/from Special-Purpose Register Instructions (UISA).................................... 2-87
2-60 User-level PowerPC SPR Encodings.. 2-88
2-61 User-level SPR Encodings for MPC7451-Defined Registers..................................... 2-88
2-62 Memory Synchronization Instructions—UISA .. 2-89
2-63 Move from Time Base Instruction.. 2-90
2-64 Memory Synchronization Instructions—VEA ... 2-91
2-65 User-Level Cache Instructions.. 2-92
2-66 External Control Instructions.. 2-94
2-67 System Linkage Instructions—OEA .. 2-95
2-68 Segment Register Manipulation Instructions (OEA).. 2-95
2-69 Move to/from Machine State Register Instructions .. 2-96

TABLES
Table
Number Title Page

Number

xxxv MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

2-70 Move to/from Special-Purpose Register Instructions (OEA) 2-96
2-71 Supervisor-level PowerPC SPR Encodings .. 2-96
2-72 Supervisor-level SPR Encodings
for MPC7451-Defined Registers2-98
2-73 Supervisor-Level Cache Management Instruction ... 2-100
2-74 Translation Lookaside Buffer Management Instruction ... 2-100
2-75 Vector Integer Arithmetic Instructions ... 2-105
2-76 CR6 Field Bit Settings for Vector Integer Compare Instructions............................. 2-107
2-77 Vector Integer Compare Instructions.. 2-108
2-78 Vector Integer Logical Instructions .. 2-108
2-79 Vector Integer Rotate Instructions .. 2-108
2-80 Vector Integer Shift Instructions... 2-109
2-81 Vector Floating-Point Arithmetic Instructions ... 2-109
2-82 Vector Floating-Point Multiply-Add Instructions .. 2-110
2-83 Vector Floating-Point Rounding and Conversion Instructions................................. 2-110
2-84 Vector Floating-Point Compare Instructions .. 2-111
2-85 Vector Floating-Point Estimate Instructions... 2-111
2-86 Vector Integer Load Instructions .. 2-112
2-87 Vector Load Instructions Supporting Alignment.. 2-112
2-88 Vector Integer Store Instructions .. 2-113
2-89 Vector Pack Instructions ... 2-113
2-90 Vector Unpack Instructions .. 2-114
2-91 Vector Merge Instructions .. 2-115
2-92 Vector Splat Instructions .. 2-115
2-93 Vector Permute Instruction ... 2-115
2-94 Vector Select Instruction .. 2-116
2-95 Vector Shift Instructions ... 2-116
2-96 Move to/from VSCR Register Instructions .. 2-117
2-97 AltiVec User-Level Cache Instructions .. 2-118
3-1 Data Cache Status Bits.. 3-18
3-2 Snoop Response Summary ... 3-19
3-3 Snoop Intervention Summary ... 3-20
3-4 Simplified Transaction Types ... 3-21
3-5 Load and Store Ordering with WIMG Bit Settings .. 3-28
3-6 L1 PLRU Replacement Way Selection .. 3-45
3-7 PLRU Bit Update Rules.. 3-46
3-8 PLRU Bit Update Rules for AltiVec LRU Instructions ... 3-46
3-9 Definitions for L1 Cache-State Summary .. 3-48
3-10 L1 Cache-State Transitions and MSS Requests ... 3-49
3-11 L2 Cache Access Priorities ... 3-59
3-12 Definitions for L2 and L3 Cache-State Summary .. 3-62
3-13 L2/L3 Cache State Transitions for Load, lwarx,
Touch, and IFetches3-62

TABLES
Table
Number Title Page

Number

xxxvi MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

3-14 L2/L3 Cache State Transitions for Store Touch Operations....................................... 3-63
3-15 L2/L3 Cache State Transitions for Store (and stwcx.) Operations 3-63
3-16 L2/L3 Cache State Transitions for Castout Operations .. 3-64
3-17 L2/L3 Cache State Transitions for L2 Castout Operations... 3-65
3-18 L2/L3 Cache State Transitions for L3 Castout Operations... 3-65
3-19 L2/L3 Cache State Transitions for dcbf Operations ... 3-65
3-20 L2/L3 Cache State Transitions for dcbz Operations... 3-65
3-21 L2/L3 Cache State Transitions for dcbst Operations.. 3-66
3-22 L2/L3 Cache State Transitions for Write with Clean Operations............................... 3-66
3-23 L2/L3 Cache State Transitions for Remaining Instructions 3-67
3-24 L3 Cache Sizes and Data RAM Organizations for the MPC7451.............................. 3-70
3-25 L3 Data Parity Signal Assignments .. 3-71
3-26 L3 Cache Access Priorities ... 3-78
3-27 L3 Cache/Private Memory Configurations... 3-80
3-28 Signal Function Changes for Late-Write and PB2 SRAMs 3-88
3-29 Bus Operations Caused by Cache Control Instructions (WIM = xx1) 3-93
3-30 Bus Operations Caused by Cache Control Instructions (WIM = xx0) 3-94
3-31 Address/Transfer Attributes Generated by the MPC7451.. 3-95
3-32 Snooped Bus Transaction Summary .. 3-97
3-33 Definitions of Snoop Type for L1 Cache/Snoop Summary.. 3-98
3-34 Definitions of Other Terms for L1 Cache/Snoop Summary....................................... 3-99
3-35 L1 Cache State Transitions Due to Snoops .. 3-99
3-36 Definitions for L2/L3 Cache/Snoop Summary... 3-100
3-37 External Snoop Responses and L1, L2, and L3 Actions .. 3-101
4-1 MPC7451 Microprocessor Exception Classifications .. 4-3
4-2 Exceptions and Conditions ... 4-3
4-3 MPC7451 Exception Priorities ... 4-7
4-4 MSR Bit Settings .. 4-10
4-5 IEEE Floating-Point Exception Mode Bits... 4-12
4-6 MSR Setting Due to Exception... 4-16
4-7 System Reset Exception—Register Settings .. 4-18
4-8 Machine Check Enable Bits.. 4-19
4-9 Machine Check Exception—Register Settings... 4-21
4-10 DSI Exception—Register Settings.. 4-23
4-11 External Interrupt Exception—Register Settings ... 4-25
4-12 Alignment Interrupt—Register Settings ... 4-26
4-13 Performance Monitor Exception—Register Settings ... 4-29
4-14 TLB Miss Exceptions—Register Settings .. 4-30
4-15 Instruction Address Breakpoint Exception—Register Settings.................................. 4-32
4-16 System Management Interrupt Exception—Register Settings 4-33
4-17 AltiVec Assist Exception—Register Settings... 4-34
5-1 MMU Features Summary ... 5-4
5-2 Access Protection Options for Pages .. 5-14

TABLES
Table
Number Title Page

Number

xxxvii MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

5-3 Translation Exception Conditions .. 5-20
5-4 Other MMU Exception Conditions... 5-21
5-5 MPC7451 Microprocessor Instruction Summary—Control MMUs 5-22
5-6 MPC7451 Microprocessor MMU Registers ... 5-24
5-7 BAT Registers—Field and Bit Descriptions for Extended Addressing 5-28
5-8 Upper BAT Register Block Size Mask Encoding .. 5-29
5-9 Upper BAT Register Block Size Mask Encoding when the Extended Block Size is En-
abled (HID0[XBBSEN] = 1)5-32
5-10 PTE Bit Definitions .. 5-38
5-11 Table Search Operations to Update History Bits—TLB Hit Case 5-39
5-12 Model for Guaranteed R and C Bit Settings ... 5-42
5-13 SDR1 Register Bit Settings—Extended Addressing .. 5-52
5-14 Minimum Recommended Page Table Sizes—Extended Addressing......................... 5-53
5-15 Implementation-Specific Resources for Software Table Search Operations.............. 5-68
5-16 Implementation-Specific SRR1 Bits... 5-69
5-17 TLBMISS Register—Field and Bit Descriptions ... 5-70
5-18 PTEHI and PTELO Bit Definitions .. 5-71
6-1 Performance Effects of Memory Operand Placement .. 6-38
6-2 Branch Operation Execution Latencies .. 6-45
6-3 System Operation Instruction Execution Latencies.. 6-45
6-4 Condition Register Logical Execution Latencies ... 6-46
6-5 Integer Unit Execution Latencies ... 6-46
6-6 Floating-Point Unit (FPU) Execution Latencies... 6-48
6-7 Load/Store Unit (LSU) Instruction Latencies... 6-50
6-8 AltiVec Instruction Latencies ... 6-52
6-9 Fetch Alignment Example .. 6-59
6-10 Loop Example—Three Iterations ... 6-60
6-11 Branch-Taken Bubble Example.. 6-60
6-12 Eliminating the Branch-Taken Bubble ... 6-61
6-13 Misprediction Example... 6-61
6-14 Three Iterations of Code Loop.. 6-62
6-15 Code Loop Example Using CTR .. 6-63
6-16 Link Stack Example.. 6-65
6-17 Position-Independent Code Example.. 6-66
6-18 Dispatch Stall Due to Rename Availability .. 6-68
6-19 Load/Store Multiple Micro Operation Generation Example 6-69
6-20 GIQ Timing Example ... 6-70
6-21 VIQ Timing Example ... 6-71
6-22 Serialization Example ... 6-72
6-23 IU1 Timing Example .. 6-73
6-24 FPU Timing Example ... 6-74
6-25 FPSCR Rename Timing Example .. 6-75
6-26 Vector Execution Latencies .. 6-76

TABLES
Table
Number Title Page

Number

xxxviii MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

6-27 Vector Unit Example .. 6-76
6-28 Load Hit Pipeline Example... 6-78
6-29 Store Hit Pipeline Example... 6-79
6-30 Execution of Four stfd Instructions .. 6-79
6-31 Load/Store Interaction (Assuming Full Alias).. 6-80
6-32 Misaligned Load/Store Detection ... 6-81
6-33 Data Cache Miss, L2 Cache Hit Timing... 6-81
6-34 Data Cache Miss, L2 Cache Miss, L3 Cache Hit Timing... 6-82
6-35 Load Miss Line Alias Example .. 6-82
6-36 Load Miss Line Alias Example With Reordered Code .. 6-83
6-37 Store Miss Pipeline Example .. 6-84
6-38 Timing for Load Miss Line Alias Example .. 6-88
6-39 Hardware Prefetching Enable Example .. 6-88
7-1 VSCR Field Descriptions.. 7-3
7-2 VRSAVE Bit Settings... 7-4
7-3 AltiVec User-Level Cache Instructions .. 7-6
7-4 Opcodes for dstx Instructions ... 7-8
7-5 DST[STRM] Description.. 7-8
7-6 The dstx Stream Termination Conditions ... 7-10
7-7 Denormalization for AltiVec Instructions .. 7-12
7-8 Vector Floating-Point Compare, Min, and Max
in Non-Java Mode7-12
7-9 Vector Floating-Point Compare, Min, and Max in Java Mode 7-13
7-10 Round-to-Integer Instructions in Non-Java Mode .. 7-14
7-11 Round-to-Integer Instructions in Java Mode .. 7-15
7-12 AltiVec Implementation-specific Differences between the MPC7400/MPC7410 and the
MPC74517-16
7-13 MPC7400/MPC7410 and MPC7451 AltiVec Instructions
Using a Different Execution Unit7-17
8-1 MPC7451 Signal Cross Reference ... 8-3
8-2 Output Signal States During System Reset... 8-5
8-3 Signal Compatibility Summary .. 8-6
8-4 Address Parity Bit Assignments ... 8-14
8-5 Data Bus Lane Assignments ... 8-25
8-6 DP[0:7] Signal Assignments... 8-27
8-7 Function of L3_CNTL[0:1] Signal ... 8-43
8-8 Signal Voltage Selections ... 8-44
8-9 Signal Voltage Selections ... 8-49
8-10 BMODE Configuration... 8-50
8-11 IEEE Interface Pin Descriptions ... 8-55
8-12 MPC7451 Reset Configuration Signals .. 8-57
9-1 Transfer Type Encodings for MPX Bus Mode... 9-18
9-2 TBST and TSIZ[0:2] Encodings in MPX Bus Mode ... 9-19

TABLES
Table
Number Title Page

Number

xxxix MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

9-3 Burst Ordering .. 9-21
9-4 Aligned Data Transfers ... 9-22
9-5 Misaligned Data Transfers (Four-Byte Examples) ... 9-23
9-6 Correspondence of Data Parity Signals with Data Signals... 9-32
9-7 TBST and TSIZ[0:2] Encodings in 60x Bus Mode .. 9-46
10-1 Power Management State Transitions .. 10-2
10-2 Required System AACK delay for Ratios < 5:1... 10-6
10-3 ICTC Field Descriptions ... 10-8
11-1 Performance Monitor SPRs—Supervisor Level... 11-4
11-2 Performance Monitor SPRs—User Level (Read-Only) ... 11-5
11-3 MMCR0 Field Descriptions.. 11-6
11-4 MMCR1 Field Descriptions.. 11-9
11-5 MMCR2 Field Descriptions.. 11-10
11-6 BAMR Field Descriptions .. 11-11
11-7 PMCn Field Descriptions.. 11-11
11-8 Monitorable States .. 11-13
11-9 PMC1 Events—MMCR0[PMC1SEL] Select Encodings... 11-15
11-10 PMC2 Events—MMCR0[PMC2SEL] Select Encodings... 11-20
11-11 PMC3 Events—MMCR1[PMC3SEL] Select Encodings... 11-25
11-12 PMC4 Events—MMCR1[PMC4SEL] Select Encodings... 11-27
11-13 PMC5 Events—MMCR1[PMC5SEL] Select Encodings... 11-29
11-14 PMC6 Events—MMCR1[PMC6SEL] Select Encodings... 11-30
A-1 Instructions by Mnemonic (Dec, Hex) .. A-1
A-2 Instructions by Primary and Secondary Opcodes (Dec, Hex) A-12
A-3 Instructions by Mnemonic (Bin).. A-24
A-4 Instructions by Primary and Secondary Opcode (Bin) .. A-35
A-5 Integer Arithmetic Instructions .. A-46
A-6 Integer Compare Instructions... A-46
A-7 Integer Logical Instructions ... A-47
A-8 Integer Rotate Instructions... A-47
A-9 Integer Shift Instruction ... A-48
A-10 Floating-Point Arithmetic Instructions .. A-48
A-11 Floating-Point Multiply-Add Instructions ... A-48
A-12 ... Floating-Point Rounding and Conversion InstructionsA-49
A-13 Floating-Point Compare Instructions... A-49
A-14 Floating-Point Status and Control Register Instructions ... A-50
A-15 Integer Load Instructions ... A-50
A-16 Integer Store Instructions... A-51
A-17 Integer Load and Store with Byte Reverse Instructions .. A-51
A-18 Integer Load and Store Multiple Instructions .. A-51
A-19 Integer Load and Store String Instructions .. A-51
A-20 Memory Synchronization Instructions... A-52
A-21 Floating-Point Load Instructions ... A-52

TABLES
Table
Number Title Page

Number

xl MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

A-22 Floating-Point Store Instructions ... A-52
A-25 Condition Register Logical Instructions .. A-53
A-26 System Linkage Instructions.. A-53
A-23 Floating-Point Move Instructions .. A-53
A-24 Branch Instructions .. A-53
A-27 Trap Instructions .. A-54
A-28 Processor Control Instructions... A-54
A-29 Cache Management Instructions.. A-54
A-30 Segment Register Manipulation Instructions... A-54
A-31 Lookaside Buffer Management Instructions.. A-55
A-32 External Control Instructions... A-55
A-33 Vector Integer Arithmetic Instructions .. A-55
A-34 Floating-Point Compare Instructions... A-58
A-35 Floating-Point Estimate Instructions ... A-58
A-36 Vector Load Instructions Supporting Alignment... A-58
A-37 Integer Store Instructions... A-58
A-38 Vector Pack Instructions .. A-59
A-39 Vector Unpack Instructions ... A-59
A-40 Vector Splat Instructions ... A-59
A-41 Vector Permute Instruction .. A-60
A-42 Vector Select Instruction ... A-60
A-43 Vector Shift Instructions .. A-60
A-44 Move to/from Condition Register Instructions .. A-60
A-45 User-Level Cache Instructions... A-60
A-46 I-Form .. A-61
A-47 B-Form... A-61
A-48 SC-Form... A-61
A-49 D-Form... A-61
A-50 X-Form... A-63
A-51 XL-Form .. A-67
A-52 XFX-Form ... A-68
A-53 XFL-Form.. A-68
A-54 XO-Form.. A-68
A-55 A-Form... A-69
A-56 M-Form.. A-70
A-57 VA-Form.. A-70
A-58 VX-Form.. A-71
A-59 VXR-Form .. A-76
A-60 PowerPC Instruction Set Legend... A-77
B-1 32-Bit Instructions Not Implemented by the MPC7451...B-1
C-1 User-level PowerPC SPR Encodings

Ordered by Decimal Value..C-1

TABLES
Table
Number Title Page

Number

MOTOROLA Tables xli

C-2 User-level PowerPC SPR Encodings
Ordered by Register Name ..C-4

D-1 Load and Store Ordering with WIMG Bit Settings ... D-4
D-2 TAU References .. D-6
D-3 Bus Operations Caused by Cache Control Instructions (WIM = xx0) D-10

TABLES
Table
Number Title Page

Number

xlii MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MOTOROLA About This Book xliii

About This Book

The primary objective of this user’s manual is to describe the functionality of the MPC7451
for software and hardware developers. In addition, this manual supports the MPC7441,
MPC7445, MPC7455, MPC7447, MPC7457, and the MPC7447A. This book is written
from the perspective of the MPC7451, and unless otherwise noted, the information applies
also to the MPC7441, MPC7445, MPC7447, MPC7450, MPC7455, MPC7457, and the
MPC7447A. The MPC7451 has the same functionality as the MPC7450 and any
differences in data regarding bus timing, signal behavior, and AC, DC, and thermal
characteristics are in the hardware specifications. The differences between the various
processors are summarized in Section 1.5, “Differences Between MPC7441/MPC7451 and

MPC7445/MPC7455,” Section 1.6, “Differences Between MPC7441/MPC7451 and
MPC7447/MPC7457,” and Section 1.7, “Differences Between MPC7447 and the
MPC7447A.” The MPC7451 is a PowerPC™ microprocessor.

This book is intended as a companion to the Programming Environments Manual for 32-Bit
Implementations of the PowerPC Architecture (referred to as the Programming
Environments Manual).

NOTE: About the Companion Programming Environments Manual
The MPC7450 RISC Microprocessor Family User’s Manual,
which describes MPC7451 features not defined by the
architecture, is to be used with the Programming Environments
Manual.

Because the PowerPC architecture definition is flexible to
support a broad range of processors, the Programming
Environments Manual describes generally those features
common to these processors and indicates which features are
optional or may be implemented differently in the design of
each processor.

Note that the Programming Environments Manual describes
features of the PowerPC architecture only for 32-bit
implementations.

Contact your sales representative for a copy of the
Programming Environments Manual.

xliv MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

This document and the Programming Environments Manual distinguish between the three
levels, or programming environments, of the PowerPC architecture, which are as follows:

• PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

• PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices
can access external memory and defines aspects of the cache model and cache
control instructions from a user-level perspective. VEA resources are particularly
useful for optimizing memory accesses and for managing resources in an
environment in which other processors and other devices can access external
memory.

Implementations that conform to the VEA also conform to the UISA but may not
necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)—The OEA defines
supervisor-level resources typically required by an operating system. It defines the
memory management model, supervisor-level registers, and the exception model.

Implementations that conform to the OEA also conform to the UISA and VEA.

Note that some resources are defined more generally at one level in the architecture and
more specifically at another. For example, conditions that cause a floating-point exception
are defined by the UISA, but the exception mechanism itself is defined by the OEA.

Because it is important to distinguish between the levels of the architecture to ensure
compatibility across multiple platforms, those distinctions are shown clearly throughout
this book.

For ease in reference, topics in this book are presented in the same order as the
Programming Environments Manual. Topics build upon one another, beginning with a
description and complete summary of the MPC7451 programming model (registers and
instructions) and progressing to more specific, architecture-based topics regarding the
cache, exception, and memory management models. As such, chapters may include
information from multiple levels of the architecture. For example, the discussion of the
cache model uses information from both the VEA and the OEA.

Additionally, the MPC7451 implements the AltiVec technology resources. There are two
books that describe the AltiVec technology:

• AltiVec Technology Programming Environments Manual (AltiVec PEM) is a
reference guide for programmers. The AltiVec PEM uses a standardized format
instruction to describe each instruction, showing syntax, instruction format, register

MOTOROLA About This Book xlv

translation language (RTL) code that describes how the instruction works, and a
listing of which, if any, registers are affected. At the bottom of each instruction entry
is a figure that shows the operations on elements within source operands and where
the results of those operations are placed in the destination operand.

• AltiVec Technology Programming Interface Manual (AltiVec PIM) describes how
programmers can access AltiVec functionality from programming languages such as
C and C++. The AltiVec PIM describes the high-level language interface and
application binary interface for System V and embedded applications for use with
the AltiVec instruction set extension to the PowerPC architecture.

The PowerPC Architecture: A Specification for a New Family of RISC Processors defines
the architecture from the perspective of the three programming environments and remains
the defining document for the PowerPC architecture. For information on ordering Motorola
documentation, see “Related Documentation,” on page xlvii.

Information in this book is subject to change without notice, as described in the disclaimers
on the title page of this book. As with any technical documentation, it is the readers’
responsibility to be sure they are using the most recent version of the documentation.

To locate any published errata or updates for this document, refer to the world-wide web at
http://www.motorola.com/semiconductors.

A list of the major differences between the MPC7450 RISC Microprocessor Family User’s
Manual Revision 1 and Revision 2 is provided in Appendix D, “User’s Manual Revision
History.”

Audience
This manual is intended for system software and hardware developers and applications
programmers who want to develop products for the MPC7441, MPC7445, MPC7447,
MPC7450, MPC7451, MPC7455, MPC7457, and the MPC7447A. It is assumed that the
reader understands operating systems, microprocessor system design, basic principles of
RISC processing, and details of the PowerPC architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

• Chapter 1, “Overview,” is useful for readers who want a general understanding of
the features and functions of the PowerPC architecture and the MPC7451. This
chapter describes the flexible nature of the PowerPC architecture definition and
provides an overview of how the PowerPC architecture defines the register set,
operand conventions, addressing modes, instruction set, cache model, exception
model, and memory management model. The major differences between the

xlvi MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 and the MPC7455 are listed in Section 1.5, “Differences Between
MPC7441/MPC7451 and MPC7445/MPC7455.”

• Chapter 2, “Programming Model,” is useful for software engineers who need to
understand the MPC7451-specific registers, operand conventions, and details
regarding how PowerPC instructions are implemented on the MPC7451.
Instructions are organized by function.

• Chapter 3, “L1, L2, and L3 Cache Operation,” discusses the cache and memory
model as implemented on the MPC7451.

• Chapter 4, “Exceptions,” describes the exception model defined in the OEA and the
specific exception model implemented on the MPC7451.

• Chapter 5, “Memory Management,” describes the MPC7451’s implementation of
the memory management unit specified by the OEA.

• Chapter 6, “Instruction Timing,” provides information about latencies, interlocks,
special situations, and various conditions to help make programming more efficient.
This chapter is of special interest to software engineers and system designers.

• Chapter 7, “AltiVec Technology Implementation,” summarizes the features and
functionality provided by the implementation of the AltiVec technology.

• Chapter 8, “Signal Descriptions,” provides descriptions of individual signals of the
MPC7451.

• Chapter 9, “System Interface Operation,” describes signal timings for various
operations. It also provides information for interfacing to the MPC7451.

• Chapter 10, “Power and Thermal Management,” provides information about power
saving and thermal management for the MPC7451.

• Chapter 11, “Performance Monitor,” describes the operation of the performance
monitor diagnostic tool incorporated in the MPC7451.

• Appendix A, “MPC7451 Instruction Set Listings,” lists all PowerPC instructions
while indicating those instructions that are not implemented by the MPC7451; it also
includes the instructions that are specific to the MPC7451. Instructions are grouped
according to mnemonic, opcode, function, and form. Also included is a quick
reference table that contains general information, such as the architecture level,
privilege level, and form, and indicates if the instruction is 64-bit and optional.

• Appendix B, “Instructions Not Implemented,” provides a list of the 32- and 64-bit
PowerPC instructions not implemented in the MPC7451.

• Appendix C, “Special-Purpose Registers,” lists all MPC7451 SPRs.

• Appendix D, “User’s Manual Revision History,” lists the major differences between
Revision 0, Revision 1, and Revision 2 of the MPC7450 RISC Microprocessor
User’s Manual.

• This manual also includes a glossary and an index.

MOTOROLA About This Book xlvii

Suggested Reading
This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

General Information

The following documentation, available through Morgan-Kaufmann Publishers, 340 Pine
Street, Sixth Floor, San Francisco, CA, provides useful information about the PowerPC
architecture and computer architecture in general:

• The PowerPC Architecture: A Specification for a New Family of RISC Processors,
Second Edition, by International Business Machines, Inc.

For updates to the specification, see http://www.austin.ibm.com/tech/ppc-chg.html.

• PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., International Business Machines, Inc., and
Motorola, Inc.

• Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson

• Computer Organization and Design: The Hardware/Software Interface, Second
Edition, David A. Patterson and John L. Hennessy

Related Documentation

Motorola documentation is available from the sources listed on the back cover of this
manual; the document order numbers are included in parentheses for ease in ordering:

• Programming Environments Manual for 32-Bit Implementations of the PowerPC
Architecture (MPCFPE32B/AD)—Describes resources defined by the PowerPC
architecture.

• User’s manuals—These books provide details about individual implementations and
are intended for use with the Programming Environments Manual.

• Addenda/errata to user’s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and functionality
changes. These addenda are intended for use with the corresponding user’s manuals.

• Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations. Separate hardware specifications are provided for each
part (MPC7441, MPC7445, MPC7447, MPC7450, MPC7451, MPC7455,
MPC7457, and MPC7447A) described in this book (MPC7450 RISC
Microprocessor Family User’s Manual). Note that when referring to the MPC7451
RISC Microprocessor Hardware Specifications throughout this book, make sure to
refer to the appropriate hardware specifications for the part being used.

xlviii MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

• Technical summaries—Each device has a technical summary that provides an
overview of its features. This document is roughly the equivalent to the overview
(Chapter 1) of an implementation’s user’s manual.

• The Programmer’s Reference Guide for the PowerPC Architecture:
MPCPRG/D—This concise reference includes the register summary, memory
control model, exception vectors, and the PowerPC instruction set.

• The Programmer’s Pocket Reference Guide for the PowerPC Architecture:
MPCPRGREF/D—This foldout card provides an overview of PowerPC registers,
instructions, and exceptions for 32-bit implementations.

• Application notes—These short documents address specific design issues useful to
programmers and engineers working with Motorola processors.

Additional literature is published as new processors become available. For a current list of
documentation, refer to http://www.motorola.com/semiconductors.

Conventions
This document uses the following notational conventions:

cleared/set When a bit takes the value zero, it is said to be cleared; when it takes
a value of one, it is said to be set.

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.

Book titles in text are set in italics

Internal signals are set in italics, for example, qual BG

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source FPR

frD Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations for registers are shown in uppercase text. Specific
bits, fields, or ranges appear in brackets. For example, MSR[LE]
refers to the little-endian mode enable bit in the machine state
register.

x In some contexts, such as signal encodings, an unitalicized x
indicates a don’t care.

x An italicized x indicates an alphanumeric variable.

MOTOROLA About This Book xlix

n An italicized n indicates an numeric variable.

¬ NOT logical operator

& AND logical operator

| OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits
can be written to as ones or zeros, they are always read as zeros.

Indicates functionality defined by the AltiVec technology.

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document.

Table i. . Acronyms and Abbreviated Terms

Term Meaning

ALU Arithmetic logic unit

BAT Block address translation

BHT Branch history table

BIST Built-in self test

BIU Bus interface unit

BPU Branch processing unit

BSDL Boundary-scan description language

BTIC Branch target instruction cache

CMOS Complementary metal-oxide semiconductor

COP Common on-chip processor

CQ Completion queue

CR Condition register

CTR Count register

DABR Data address breakpoint register

DAR Data address register

DBAT Data BAT

DCMP Data TLB compare

DEC Decrementer register

DLL Delay-locked loop

DMISS Data TLB miss address

DMMU Data MMU

DPM Dynamic power management

0 0 0 0

l MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

DSISR Register used for determining the source of a DSI exception

DTLB Data translation lookaside buffer

EA Effective address

EAR External access register

ECC Error checking and correction

FIFO First-in-first-out

FIQ Floating-point register issue queue

FPR Floating-point register

FPSCR Floating-point status and control register

FPU Floating-point unit

GIQ General-purpose register issue queue

GPR General-purpose register

HIDn Hardware implementation-dependent register

IABR Instruction address breakpoint register

IBAT Instruction BAT

ICTC Instruction cache throttling control register

IEEE Institute for Electrical and Electronics Engineers

IMMU Instruction MMU

IQ Instruction queue

ITLB Instruction translation lookaside buffer

IU Integer unit

JTAG Joint Test Action Group

L2 Secondary cache (level 2 cache)

L2CR L2 cache control register

L3 Level 3 cache

LIFO Last-in-first-out

LR Link register

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

LSQ Least-significant quad word

lsq Least-significant quad word

LSU Load/store unit

Table i. . Acronyms and Abbreviated Terms (continued)

Term Meaning

MOTOROLA About This Book li

MESI Modified/exclusive/shared/invalid—cache coherency protocol

MMCRn Monitor mode control registers

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSQ Most-significant quad word

msq Most-significant quad word

MSR Machine state register

NaN Not a number

No-op No operation

OEA Operating environment architecture

PEM The Programming Environments Manual

PID Processor identification tag

PIM The Programming Interface Manual

PLL Phase-locked loop

PLRU Pseudo least recently used

PMCn Performance monitor counter registers

POR Power-on reset

POWER Performance Optimized with Enhanced RISC architecture

PTE Page table entry

PTEG Page table entry group

PVR Processor version register

RAW Read-after-write

RISC Reduced instruction set computing

RTL Register transfer language

RWITM Read with intent to modify

RWNITM Read with no intent to modify

SDA Sampled data address register

SDR1 Register that specifies the page table base address for virtual-to-physical address translation

SIA Sampled instruction address register

SPR Special-purpose register

SRn Segment register

SRR0 Machine status save/restore register 0

Table i. . Acronyms and Abbreviated Terms (continued)

Term Meaning

lii MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Terminology Conventions
Table ii describes terminology conventions used in this manual and the equivalent
terminology used in the PowerPC architecture specification.

SRR1 Machine status save/restore register 1

SRU System register unit

TB Time base facility

TBL Time base lower register

TBU Time base upper register

TLB Translation lookaside buffer

TTL Transistor-to-transistor logic

UIMM Unsigned immediate value

UISA User instruction set architecture

UMMCRn User monitor mode control registers

UPMCn User performance monitor counter registers

USIA User sampled instruction address register

VEA Virtual environment architecture

VFPU Vector floating-point unit

VIQ Vector issue queue

VIU1 Vector instruction unit 1

VIU2 Vector instruction unit 2

VPN Virtual page number

VPU Vector permute unit

VSID Virtual segment identification

VTQ Vector touch queue

WAR Write-after-read

WAW Write-after-write

WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits

XATC Extended address transfer code

XER Register used for indicating conditions such as carries and overflows for integer operations

Table i. . Acronyms and Abbreviated Terms (continued)

Term Meaning

MOTOROLA About This Book liii

Table iii describes instruction field notation used in this manual.

Table ii. . Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics Simplified mnemonics

Fixed-point unit (FXU) Integer unit (IU)

Instruction storage interrupt (ISI) ISI exception

Interrupt Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

Store in Write back

Store through Write through

Table iii. . Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)

liv MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MOTOROLA Chapter 1. Overview 1-1

Chapter 1
Overview
This chapter provides an overview of the MPC7451 microprocessor features, including a
block diagram showing the major functional components. It also provides information
about how the MPC7451 implementation complies with the PowerPC and AltiVec™
architecture definitions. In addition, this manual supports the MPC7441, MPC7445,
MPC7447, MPC7455, MPV7457, and the MPC7447A. Any differences between the other
microprocessors, including the MPC7450, are noted in the user’s manual. The MPC7451
has the same functionality as the MPC7450 and any differences in data regarding bus
timing, signal behavior, and AC, DC, and thermal characteristics are detailed in the
hardware specifications. The MPC7451 is a PowerPC™ microprocessor.

1.1 MPC7451 Microprocessor Overview
This section describes the features and general operation of the MPC7451 and provides a
block diagram showing major functional units. The MPC7451 implements the PowerPC
architecture and is a reduced instruction set computer (RISC) microprocessor. The
MPC7451 consists of a processor core, 32-Kbyte separate L1 instruction and data caches,
a 256-Kbyte L2 cache for the MPC7451 (512-Kbyte for MPC7457), and an internal L3
controller with tags that support a glueless backside L3 cache through a dedicated
high-bandwidth interface. The core is a high-performance superscalar design supporting
multiple execution units, including four independent units that execute AltiVec
instructions.

The MPC7451 implements the 32-bit portion of the PowerPC architecture, which provides
32-bit effective addresses, integer data types of 8, 16, and 32 bits, and floating-point data
types of 32 and 64 bits. The MPC7451 provides virtual memory support for up to
4 Petabytes (252) of virtual memory and real memory support for up to 64 Gigabytes (236)
of physical memory.

The MPC7451 also implements the AltiVec instruction set architectural extension. The
MPC7451 is a superscalar processor that can dispatch and complete three instructions
simultaneously. It incorporates the following execution units:

• 64-bit floating-point unit (FPU)

• Branch processing unit (BPU)

1-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Overview

• Load/store unit (LSU)

• Four integer units (IUs):

— Three shorter latency IUs (IU1a–IU1c)—execute all integer instructions except
multiply, divide, and move to/from special-purpose register (SPR) instructions.

— Longer latency IU (IU2)—executes miscellaneous instructions including
condition register (CR) logical operations, integer multiplication and division
instructions, and move to/from SPR instructions.

• Four vector units that support AltiVec instructions:

— Vector permute unit (VPU)

— Vector integer unit 1 (VIU1)—performs shorter latency integer calculations

— Vector integer unit 2 (VIU2)—performs longer latency integer calculations

— Vector floating-point unit (VFPU)

The ability to execute several instructions in parallel and the use of simple instructions with
rapid execution times yield high efficiency and throughput for MPC7451-based systems.
Most integer instructions (including VIU1 instructions) have a one-clock cycle execution
latency.

Several execution units feature multiple-stage pipelines; that is, the tasks they perform are
broken into subtasks executed in successive stages. Typically, instructions follow one
another through the stages, so a four-stage unit can work on four instructions when its
pipeline is full. So, although an instruction may have to pass through several stages, the
execution unit can achieve a throughput of one instruction per clock cycle.

AltiVec computational instructions are executed in the four independent, pipelined AltiVec
execution units. A maximum of two AltiVec instructions can be issued in order to any
combination of AltiVec execution units per clock cycle. Moreover, the VIU2, VFPU, and
VPU are pipelined, so they can operate on multiple instructions. The VPU has a two-stage
pipeline; the VIU2 and VFPU each have four-stage pipelines. As many as 10 AltiVec
instructions can be executing concurrently.

Note that for the MPC7451, double- and single-precision versions of floating-point
instructions have the same latency. For example, a floating-point multiply-add instruction
takes five cycles to execute, regardless of whether it is single- (fmadds) or
double-precision (fmadd).

The MPC7451 has independent on-chip, 32-Kbyte, eight-way set-associative, physically
addressed L1 (level-one) caches for instructions and data, and independent instruction and
data memory management units (MMUs). Each MMU has a 128-entry, two-way
set-associative translation lookaside buffer (DTLB and ITLB) that saves recently used page
address translations. Block address translation is implemented with the four-entry
instruction and data block address translation (IBAT and DBAT) arrays defined by the
PowerPC architecture. During block translation, effective addresses are compared

MOTOROLA Chapter 1. Overview 1-3

MPC7451 Microprocessor Overview

simultaneously with all four BAT entries, as described in Chapter 5, “Memory
Management.” For information about the L1 caches, see Chapter 3, “L1, L2, and L3 Cache
Operation.”

The MPC7451’s L2 cache is implemented with an on-chip, 256-Kbyte, eight-way
set-associative physically addressed memory available for storing data, instructions, or
both. For the MPC7447, MPC7457, and MPC7447A the L2 cache is 512-Kbyte. The L2
cache supports parity generation and checking for both tags and data. It responds with a
nine-cycle load latency for an L1 miss that hits in L2. The L2 cache is fully pipelined for
single-cycle throughput. For information about the L2 cache implementation, see
Chapter 3, “L1, L2, and L3 Cache Operation.”

The L3 cache is implemented with an on-chip, eight-way set-associative tag memory, and
with external, synchronous SRAMs for storing data, instructions, or both. The external
SRAMs are accessed through a dedicated L3 cache port that supports a single bank of 1 or
2 Mbytes of synchronous SRAMs for L3 cache data. The L3 data bus is 64-bits wide and
provides multiple SRAM options as well as quick quad-word forwarding to reduce latency.
Alternately, the L3 interface can be configured to use half or all of the SRAM area as a
direct-mapped, private memory space. For information about the L3 cache implementation,
see Chapter 3, “L1, L2, and L3 Cache Operation.”

The MPC7451 has three power-saving modes, nap, sleep, and deep sleep, which
progressively reduce power dissipation. When functional units are idle, a dynamic power
management mode causes those units to enter a low-power mode automatically without
affecting operational performance, software execution, or external hardware.
Section 1.2.10, “Power Management,” describes how the power management can be used
to reduce power consumption when the processor, or portions of it, are idle. Section 1.2.11,
“Thermal Management,” describes how the instruction cache throttling mechanism reduces
the instruction dispatch rate.The information in this section is described more fully in
Chapter 10, “Power and Thermal Management.”

The performance monitor facility provides the ability to monitor and count predefined
events such as processor clocks, misses in the instruction cache, data cache, or L2 cache,
types of instructions dispatched, mispredicted branches, and other occurrences. The count
of such events (that may be an approximation) can be used to trigger the performance
monitor exception. Section 1.2.12, “Performance Monitor,” describes the operation of the
performance monitor diagnostic tool. This functionality is fully described in Chapter 11,
“Performance Monitor.”

Figure 1-1 shows the parallel organization of the execution units (shaded in the diagram)
and the instruction unit fetches, dispatches, and predicts branch instructions. Note that this
is a conceptual model showing basic features rather than attempting to show how features
are implemented physically.

1-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Overview

+

In
te

g
er

R
es

er
va

tio
n

S
ta

tio
n

U
n

it
 2

+

In
te

g
er

R
es

er
va

tio
n

S
ta

tio
n

U
n

it
 2

A
d

d
it

io
n

al
 F

ea
tu

re
s

•
T

im
e

B
as

e
C

ou
nt

er
/D

ec
re

m
en

te
r

•
C

lo
ck

 M
ul

tip
lie

r
•

JT
A

G
/C

O
P

 In
te

rf
ac

e
•

T
he

rm
al

/P
ow

er
 M

an
ag

em
en

t
•

P
er

fo
rm

an
ce

 M
on

ito
r

+

+

 x
 ÷

F
P

S
C

R
F

P
S

C
R

P
A

+
 x

 ÷

In
st

ru
ct

io
n

 U
n

it
In

st
ru

ct
io

n
Q

ue
ue

(1
2-

W
or

d)

96
-B

it
(3

 In
st

ru
ct

io
ns

)

R
es

er
va

tio
n

 In
te

g
er

12
8-

B
it

(4
 In

st
ru

ct
io

ns
)

32
-B

it

F
lo

at
in

g
-

P
o

in
t

U
n

it

64
-B

it

R
es

er
va

tio
n

L
o

ad
/S

to
re

 U
n

it

(E
A

 C
al

cu
la

tio
n)

F
in

is
he

d

32
-B

it

C
o

m
p

le
ti

o
n

 U
n

it

C
om

pl
et

io
n

Q
ue

ue
(1

6-
E

nt
ry

)

Ta
gs

32
-K

by
te

D
 C

ac
he

36
-B

it
64

-B
it

In
te

g
er

S
ta

tio
ns

 (
2)

R
es

er
va

tio
n

S
ta

tio
n

R
es

er
va

tio
n

S
ta

tio
ns

 (
2)

F
P

R
 F

ile

16
 R

en
am

e
B

uf
fe

rs

S
ta

tio
ns

 (
2-

E
nt

ry
)

G
P

R
 F

ile

16
 R

en
am

e
B

uf
fe

rs
R

es
er

va
tio

n
S

ta
tio

n

V
R

 F
ile

16
 R

en
am

e
B

uf
fe

rs

64
-B

it

12
8-

B
it

12
8-

B
it

C
om

pl
et

es
 u

p

C
om

pl
et

ed

In
st

ru
ct

io
n

 M
M

U

S
R

s
(S

ha
do

w
)

12
8-

E
nt

ry

IB
A

T
 A

rr
ayIT

LB
Ta

gs
32

-K
by

te
I C

ac
he

S

to
re

s

S
to

re
s

Lo
ad

 M
is

s

V
ec

to
r

To
uc

h
Q

ue
ue

(3
)

V
R

 Is
su

e
F

P
R

 Is
su

e

B
ra

n
ch

 P
ro

ce
ss

in
g

 U
n

it

C
T

R

LR

B
T

IC
 (

12
8-

E
nt

ry
)

B
H

T
 (

20
48

-E
nt

ry
)

F
et

ch
er

G
P

R
 Is

su
e

(6
-E

nt
ry

/3
-I

ss
ue

)
(4

-E
nt

ry
/2

-I
ss

ue
)

(2
-E

nt
ry

/1
-I

ss
ue

)

D
is

pa
tc

h
U

ni
t

D
at

a
M

M
U

S
R

s
(O

rig
in

al
)

12
8-

E
nt

ry

D
B

A
T

 A
rr

ayD
T

LB

V
ec

to
r

To
uc

h
E

ng
in

e

32
-B

it

E
A

L1
 C

as
to

ut

S
ta

tu
s L
2

S
to

re
 Q

u
eu

e
 (

L
2S

Q
)

V
ec

to
r

F
P

U

R
es

er
va

tio
n

S
ta

tio
n

R
es

er
va

tio
n

S
ta

tio
n

R
es

er
va

tio
n

S
ta

tio
n

V
ec

to
r

In
te

g
er

U

n
it

 1

V
ec

to
r

In
te

g
er

U

n
it

 2

V
ec

to
r

P
er

m
u

te

U
n

it

Li
ne

Ta
gs

B
lo

ck
 0

 (
32

-B
yt

e)

S
ta

tu
s

B
lo

ck
 1

 (
32

-B
yt

e)

M
em

o
ry

 S
u

b
sy

st
em

S
no

op
 P

us
h/

In
te

rv
en

tio
ns

L1
 C

as
to

ut
s

B
us

 A
cc

um
ul

at
or

 L
1

P
us

h

(4
)

U
n

it
 2

U
n

it
 1

to
 th

re
e

pe
r

cl
oc

k

in
st

ru
ct

io
ns

L1
 L

oa
d

Q
ue

ue
 (

LL
Q

)

L1
 L

oa
d

M
is

s
(5

)

C
ac

he
ab

le
 S

to
re

 R
eq

ue
st

(1
)

In
st

ru
ct

io
n

F
et

ch
 (

2)

L
1

S
er

vi
ce

L1

 S
to

re
 Q

ue
ue

(L

S
Q

)
L

3
C

ac
h

e
C

o
n

tr
o

lle
r1 L3

C
R

S
ta

tu
s

Ta
gs

B
us

 A
cc

um
ul

at
or

B
lo

ck
 0

/1

Li
ne

S
y
s
te

m
 B

u
s
 I
n

te
rf

a
c
e

L2
 P

re
fe

tc
h

(3
)

64
-B

it
D

at
a

(8
-B

it
P

ar
ity

)

E
xt

er
na

l S
R

A
M

A

dd
re

ss
 B

us
D

at
a

B
us

Q
u

eu
es

C
a
st

o
u
t

B
u
s

S
to

re
 Q

u
e
u
e

P
u
sh

L
o
a
d

Q
u
e
u
e
 (

11
)

Q
u
e
u
e
 (

9
)

/

Q
u
e
u
e
 (

1
0
)2

N
o

te
s
:

1
.
T

h
e
 L

3
 c

a
ch

e
 in

te
rf

a
ce

 is
 n

o
t
im

p
le

m
e
n
te

d
 o

n
 t
h
e
 M

P
C

7
4
4
5
.

2
.
T

h
e
 C

a
st

o
u
t
Q

u
e
u
e
 a

n
d
 P

u
sh

 Q
u
e
u
e
 s

h
a
re

 r
e
so

u
rc

e
s

su
ch

 f
o
r

a
 c

o
m

b
in

e
d
 t
o
ta

l o
f
1
0
 e

n
tr

ie
s.

T

h
e
 C

a
st

o
u
t
Q

u
e
u
e
 it

se
lf

is
 li

m
ite

d
 t
o
 9

 e
n
tr

ie
s,

 e
n
su

ri
n
g
 1

 e
n
tr

y
w

ill
 b

e
 a

va
ila

b
le

 f
o
r

a
 p

u
sh

.

25
6-

K
b

yt
e

U
n

if
ie

d
 L

2
C

ac
h

e
C

o
n

tr
o

lle
r

(5
12

-K
b

yt
e

in
 M

P
C

74
47

, M
P

C
74

57
, a

n
d

 M
P

C
74

47
A

)

18
-B

it
A

dd
re

ss
(1

9-
B

it
A

dd
re

ss
 in

 M
P

C
74

47
, M

P
C

74
57

, a
nd

 M
P

C
74

47
A

)

(1
 0

r
2

M
by

te
s)

MOTOROLA Chapter 1. Overview 1-5

MPC7451 Microprocessor Overview

Figure 1-1. MPC7451 Microprocessor Block Diagram

1.1.1 MPC7441 Microprocessor Overview

The MPC7441 is a lower-pin-count device that operates identically to the MPC7451,
except that it does not support the L3 cache and the L3 cache interface. In the same way
that the MPC7450 RISC Microprocessor Family User’s Manual describes the functionality
of the MPC7451, this document also describes the functionality of the MPC7441. All
information herein applies to the MPC7441, except where otherwise noted (in particular,
the L3 cache information does not apply to the MPC7441).

1.1.2 MPC7450 Microprocessor Overview

The functionality between the MPC7450 and the MPC7451 is the same. This document
(MPC7450 RISC Microprocessor Family User’s Manual) describes the functionality of the
MPC7450 and any differences in data regarding bus timing, signal behavior, and AC, DC,
and thermal characteristics are in the MPC7450 RISC Microprocessor Hardware
Specification.

1.1.3 MPC7455 Microprocessor Overview

The MPC7455 operates similarly to the MPC7451. However, the following changes are
visible to the programmer or system designer. These changes include:

• 4 IBAT and 4 DBAT additional registers

• Additional HID0 bits (HID0[HIGH_BAT_EN] and HID0[XBSEN]

• 4 more SPRG registers

The additional IBATs and DBATs provide mapping for more regions of memory. For more
information on the new features see Section 5.3, “Block Address Translation.”

The SPRGs provide additional registers to be used by system software for table software
searching. If the SPRGs are not used for software table searches, they can be used by other
supervisor programs.

1.1.4 MPC7445 Microprocessor Overview

The MPC7445 is a lower-pin-count device that operates identically to the MPC7455,
except that it does not support the L3 cache and the L3 cache interface. In the same way
that the MPC7450 RISC Microprocessor Family User’s Manual describes the functionality
of the MPC7455, this document also describes the functionality of the MPC7445. All
information herein applies to the MPC7445, except where otherwise noted (in particular,
the L3 cache information does not apply to the MPC7445).

1-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

1.1.5 MPC7447 Microprocessor Overview

The MPC7447 is a lower-pin-count device that operates identically to the MPC7457,
except that it does not support the L3 cache and the L3 cache interface. In the same way
that the MPC7450 RISC Microprocessor Family User’s Manual describes the functionality
of the MPC7457, this document also describes the functionality of the MPC7447. All
information herein applies to the MPC7447, except where otherwise noted (in particular,
the L3 cache information does not apply to the MPC7447).

1.1.6 MPC7457 Microprocessor Overview

The MPC7457 operates similarly to the MPC7455. However, the following changes are
visible to the programmer or system designer. These changes include:

• Larger L2 Cache (512 Kbyte)

• Additional support for L3 Private Memory Size (4 Mbyte)

• An additional PLL Configuration Signal (PLL_CFG[4])

• An additional L3_ADDR Signal (L3_ADDR[18])

• Modifications to bits in the L3 Control Register (L3CR)

All information that applies to the MPC7455 also complies for the MPC7457, except where
otherwise noted (in particular, the increased L2 cache and the additional L3 cache support
is new for the MPC7457).

1.1.7 MPC7447A Microprocessor Overview

There are no microarchitectural differences between the MPC7447A and the MPC7447.
The MPC7447A provides new functionality to reduce the power consumption on the
microprocessor. The MPC7447A also added:

• Additional bits to the HID1 register for Dynamic Frequency Switching (DFS),

• Power

• Power sensing, and

• An internal temperature diode.

Except for the new features in the MPC7447A, the same functionality as the MPC7447 is
provided.

1.2 MPC7451 Microprocessor Features
This section describes the features of the MPC7451. The interrelationships of these features
are shown in Figure 1-1.

MOTOROLA Chapter 1. Overview 1-7

MPC7451 Microprocessor Features

1.2.1 Overview of the MPC7451 Microprocessor Features

Major features of the MPC7451 are as follows:

• High-performance, superscalar microprocessor

— As many as 4 instructions can be fetched from the instruction cache at a time

— As many as 3 instructions can be dispatched to the issue queues at a time

— As many as 12 instructions can be in the instruction queue (IQ)

— As many as 16 instructions can be at some stage of execution simultaneously

— Single-cycle execution for most instructions

— One instruction per clock cycle throughput for most instructions

— Seven-stage pipeline control

• Eleven independent execution units and three register files

— Branch processing unit (BPU) features static and dynamic branch prediction

– 128-entry (32-set, four-way set-associative) branch target instruction cache
(BTIC), a cache of branch instructions that have been encountered in
branch/loop code sequences. If a target instruction is in the BTIC, it is fetched
into the instruction queue a cycle sooner than it can be made available from
the instruction cache. Typically, a fetch that hits the BTIC provides the first
four instructions in the target stream.

– 2048-entry branch history table (BHT) with two bits per entry for four levels
of prediction—not-taken, strongly not-taken, taken, strongly taken

– Up to three outstanding speculative branches

– Branch instructions that do not update the count register (CTR) or link register
(LR) are often removed from the instruction stream.

– 8-entry link register stack to predict the target address of Branch Conditional
to Link Register (bclr) instructions.

— Four integer units (IUs) that share 32 GPRs for integer operands

– Three identical IUs (IU1a, IU1b, and IU1c) can execute all integer
instructions except multiply, divide, and move to/from special-purpose
register instructions.

– IU2 executes miscellaneous instructions including the CR logical operations,
integer multiplication and division instructions, and move to/from
special-purpose register instructions.

— 64-bit floating-point unit (FPU)

– Five-stage FPU

– Fully IEEE 754-1985-compliant FPU for both single- and double-precision
operations

1-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

– Supports non-IEEE mode for time-critical operations

– Hardware support for denormalized numbers

– Thirty-two 64-bit FPRs for single- or double-precision operands

— Four vector units and 32-entry vector register file (VRs)

– Vector permute unit (VPU)

– Vector integer unit 1 (VIU1) handles short-latency AltiVec integer
instructions, such as vector add instructions (vaddsbs, vaddshs, and
vaddsws, for example)

– Vector integer unit 2 (VIU2) handles longer-latency AltiVec integer
instructions, such as vector multiply add instructions (vmhaddshs,
vmhraddshs, and vmladduhm, for example).

– Vector floating-point unit (VFPU)

— Three-stage load/store unit (LSU)

– Supports integer, floating-point and vector instruction load/store traffic

– Four-entry vector touch queue (VTQ) supports all four architected AltiVec
data stream operations

– Three-cycle GPR and AltiVec load latency (byte, half-word, word, vector)
with 1 cycle throughput

– Four-cycle FPR load latency (single, double) with 1 cycle throughput

– No additional delay for misaligned access within double-word boundary

– Dedicated adder calculates effective addresses (EAs)

– Supports store gathering

– Performs alignment, normalization, and precision conversion for
floating-point data

– Executes cache control and TLB instructions

– Performs alignment, zero padding, and sign extension for integer data

– Supports hits under misses (multiple outstanding misses)

– Supports both big- and little-endian modes, including misaligned little-endian
accesses

• Three issue queues FIQ, VIQ, and GIQ can accept as many as one, two, and three
instructions, respectively, in a cycle. Instruction dispatch requires the following:

— Instructions can be dispatched only from the three lowest IQ entries—IQ0, IQ1,
and IQ2.

— A maximum of three instructions can be dispatched to the issue queues per clock
cycle.

MOTOROLA Chapter 1. Overview 1-9

MPC7451 Microprocessor Features

— Space must be available in the CQ for an instruction to dispatch (this includes
instructions that are assigned a space in the CQ but not in an issue queue).

• Rename buffers

— 16 GPR rename buffers

— 16 FPR rename buffers

— 16 VR rename buffers

• Dispatch unit

— The decode/dispatch stage fully decodes each instruction.

• Completion unit

— The completion unit retires an instruction from the 16-entry completion queue
(CQ) when all instructions ahead of it have been completed, the instruction has
finished execution, and no exceptions are pending.

— Guarantees sequential programming model (precise exception model)

— Monitors all dispatched instructions and retires them in order

— Tracks unresolved branches and flushes instructions after a mispredicted branch

— Retires as many as three instructions per clock cycle

• L1 cache had the following characteristics:

— Two separate 32-Kbyte instruction and data caches (Harvard architecture).

— Instruction and data caches are eight-way set-associative.

— Instruction and data caches have 32-byte cache blocks. A cache block is the
block of memory that a coherency state describes—corresponds to a cache line
for the L1 data cache.

— Cache directories are physically addressed. The physical (real) address tag is
stored in the cache directory.

— The caches implement a pseudo least-recently-used (PLRU) replacement
algorithm within each way.

— Cache write-back or write-through operation programmable on a per-page or
per-block basis

— Instruction cache can provide four instructions per clock cycle; data cache can
provide four words per clock cycle

– Two-cycle latency and single-cycle throughput for instruction or data cache
accesses.

— Caches can be disabled in software

— Caches can be locked in software

— Supports a four-state modified/exclusive/shared/invalid (MESI) coherency
protocol.

1-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

– A single coherency status bit for each instruction cache block allows encoding
for the following two possible states:

Invalid (INV)

Valid (VAL)

– Two status bits (MESI[0–1]) for each data cache block allow encoding for
coherency, as follows:

00 = invalid (I)

01 = shared (S)

10 = exclusive (E)

11 = modified (M)

— Separate copy of data cache tags for efficient snooping

— Both the L1 caches support parity generation and checking (enabled through bits
in the ICTRL register) as follows:

– Instruction cache—one parity bit per instruction

– Data cache—one parity bit per byte of data

— No snooping of instruction cache except for icbi instruction

— The caches implement a pseudo least-recently-used (PLRU) replacement
algorithm within each way.

— Data cache supports AltiVec LRU and transient instructions, as described in
Section 1.3.2.2, “AltiVec Instruction Set.”

— Critical double- and/or quad-word forwarding is performed as needed. Critical
quad-word forwarding is used for AltiVec loads and instruction fetches. Other
accesses use critical double-word forwarding.

• On-chip Level 2 (L2) cache has the following features:

— Integrated 256-Kbyte, eight-way set-associative unified instruction and data
cache for the MPC7451 (512-Kbyte for the MPC7447, MPC7457, and
MPC7447A).

— Fully pipelined to provide 32 bytes per clock cycle to the L1 caches.

— Total latency of nine processor cycles for L1 data cache miss that hits in the L2.

— Uses one of two random replacement algorithms (selectable through L2CR).

— Cache write-back or write-through operation programmable on a per-page or
per-block basis

— Organized as 32 bytes/block and 2 blocks (sectors)/line (a cache block is the
block of memory that a coherency state describes).

— Supports parity generation and checking for both tags and data (enabled through
L2CR).

MOTOROLA Chapter 1. Overview 1-11

MPC7451 Microprocessor Features

• Level 3 (L3) cache interface (not supported on the MPC7441, MPC7445, MPC7447,
and MPC7447A)

— Provides critical double-word forwarding to the requesting unit

— On-chip tags support 1Mbyte or 2 Mbytes of external SRAM that is eight-way
set-associative

— Maintains instructions, data, or both instructions and data (selectable through
L3CR)

— Cache write-back or write-through operation programmable on a per-page or
per-block basis

— Organized as 64 bytes/line configured as 2 blocks (sectors) with separate status
bits per line for 1-Mbyte configuration.

— Organized as 128 bytes/line configured as 4 blocks (sectors) with separate status
bits per line for 2-Mbyte configuration.

— 1 Mbyte, 2 Mbytes, or 4Mbytes (4 Mbytes is only for the MPC7457) of the L3
SRAM can be designated as private memory.

— Supports same four-state (MESI) coherency protocol as L1 and L2 caches.

— Supports parity generation and checking for both tags and data (enabled through
L3CR).

— Same choice of two random replacement algorithms used by L2 cache
(selectable through L3CR).

— Configurable core-to-L3 frequency divisors

— 64-bit external L3 data bus sustains 64 bits per L3 clock cycle

— Supports MSUG2 dual data rate (DDR) synchronous burst SRAMs, PB2
pipelined synchronous burst SRAMs, and pipelined (register-register) late-write
synchronous burst SRAMs

• Separate memory management units (MMUs) for instructions and data

— 52-bit virtual address; 32- or 36-bit physical address

— Address translation for 4-Kbyte pages, variable-sized blocks, and 256-Mbyte
segments

— Memory programmable as write-back/write-through,
caching-inhibited/caching-allowed, and memory coherency enforced/memory
coherency not enforced on a page or block basis

— Separate IBATs and DBATs (four each) also defined as SPRs

— Separate instruction and data translation lookaside buffers (TLBs)

– Both TLBs are 128-entry, two-way set-associative, and use LRU replacement
algorithm

1-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

– TLBs are hardware- or software-reloadable (that is, on a TLB miss a page
table search is performed in hardware or by system software)

• Efficient data flow

— Although the VR/LSU interface is 128 bits, the L1/L2/L3 bus interface allows
up to 256 bits.

— The L1 data cache is fully pipelined to provide 128 bits/cycle to or from the VRs

— L2 cache is fully pipelined to provide 256 bits per processor clock cycle to the
L1 cache.

— As many as eight outstanding, out-of-order cache misses are allowed between
the L1 data cache and L2/L3 bus.

— As many as 16 out-of-order transactions can be present on the MPX bus

— Store merging for multiple store misses to the same line. Only coherency action
taken (address-only) for store misses merged to all 32 bytes of a cache block (no
data tenure needed).

— Three-entry finished store queue and five-entry completed store queue between
the LSU and the L1 data cache

— Separate additional queues for efficient buffering of outbound data (such as
castouts and write-through stores) from the L1 data cache and L2 cache

• Multiprocessing support features include the following:

— Hardware-enforced, MESI cache coherency protocols for data cache

— Load/store with reservation instruction pair for atomic memory references,
semaphores, and other multiprocessor operations

• Power and thermal management

— The following three power-saving modes are available to the system:

– Nap—Instruction fetching is halted. Only those clocks for the time base,
decrementer, and JTAG logic remain running. The part goes into the doze
state to snoop memory operations on the bus and then back to nap using a
QREQ/QACK processor-system handshake protocol.

– Sleep—Power consumption is further reduced by disabling bus snooping,
leaving only the PLL in a locked and running state. All internal functional
units are disabled.

– Deep sleep—When the part is in the sleep state, the system can disable the
PLL. The system can then disable the SYSCLK source for greater system
power savings. Power-on reset procedures for restarting and relocking the
PLL must be followed upon exiting the deep sleep state.

— Instruction cache throttling provides control of instruction fetching to limit
device temperature.

MOTOROLA Chapter 1. Overview 1-13

MPC7451 Microprocessor Features

• Performance monitor can be used to help debug system designs and improve
software efficiency.

• In-system testability and debugging features through JTAG boundary-scan
capability

• Reliability and serviceability

— Parity checking on system bus and L3 cache bus

— Parity checking on L1, L2, and L3 cache arrays

1.2.2 Instruction Flow

As shown in Figure 1-1, the MPC7451 instruction unit provides centralized control of
instruction flow to the execution units. The instruction unit contains a sequential fetcher,
12-entry instruction queue (IQ), dispatch unit, and branch processing unit (BPU). It
determines the address of the next instruction to be fetched based on information from the
sequential fetcher and from the BPU.

See Chapter 6, “Instruction Timing,” for a detailed discussion of instruction timing.

The sequential fetcher loads instructions from the instruction cache into the instruction
queue. The BPU extracts branch instructions from the sequential fetcher. Branch
instructions that cannot be resolved immediately are predicted using either the
MPC7451-specific dynamic branch prediction or the architecture-defined static branch
prediction.

Branch instructions that do not affect the LR or CTR are often removed from the instruction
stream. Section 6.4.1.1, “Branch Folding and Removal of Fall-Through Branch
Instructions,” describes when a branch can be removed from the instruction stream.

Instructions dispatched beyond a predicted branch do not complete execution until the
branch is resolved, preserving the programming model of sequential execution. If branch
prediction is incorrect, the instruction unit flushes all predicted path instructions, and
instructions are fetched from the correct path.

1.2.2.1 Instruction Queue and Dispatch Unit

The instruction queue (IQ), shown in Figure 1-1, holds as many as 12 instructions and loads
as many as 4 instructions from the instruction cache during a single processor clock cycle.

The fetcher attempts to initiate a new fetch every cycle. The two fetch stages are pipelined,
so as many as four instructions can arrive to the IQ every cycle. All instructions except
branch (bx), Return from Exception (rfi), System Call (sc), Instruction Synchronize
(isync), and no-op instructions are dispatched to their respective issue queues from the
bottom three positions in the instruction queue (IQ0–IQ2) at a maximum rate of three
instructions per clock cycle. Reservation stations are provided for the three IU1s, IU2, FPU,

1-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

LSU, VPU, VIU2, VIU1, and VFPU. The dispatch unit checks for source and destination
register dependencies, determines whether a position is available in the CQ, and inhibits
subsequent instruction dispatching as required.

Branch instruction can be detected, decoded, and predicted from entries IQ0–IQ7. See
Section 6.3.3, “Dispatch, Issue, and Completion Considerations.”

1.2.2.2 Branch Processing Unit (BPU)

The BPU receives branch instructions from the IQ and executes them early in the pipeline,
achieving the effect of a zero-cycle branch in some cases.

Branches with no outstanding dependencies (CR, LR, or CTR unresolved) can be processed
and resolved immediately. For branches in which only the direction is unresolved due to a
CR or CTR dependency, the branch path is predicted using either architecture-defined static
branch prediction or MPC7451-specific dynamic branch prediction. Dynamic branch
prediction is enabled if HID0[BHT] is set. For bclr branches where the target address is
unresolved due to a LR dependency, the branch target can be predicted using the hardware
link stack. Link stack prediction is enabled if HID0[LRSTK] is set.

When a prediction is made, instruction fetching, dispatching, and execution continue from
the predicted path, but instructions cannot complete and write back results to architected
registers until the prediction is determined to be correct (resolved). When a prediction is
incorrect, the instructions from the incorrect path are flushed from the processor and
processing begins from the correct path.

Dynamic prediction is implemented using a 2048-entry branch history table (BHT), a cache
that provides two bits per entry that together indicate four levels of prediction for a branch
instruction—not-taken, strongly not-taken, taken, strongly taken. When dynamic branch
prediction is disabled, the BPU uses a bit in the instruction encoding to predict the direction
of the conditional branch. Therefore, when an unresolved conditional branch instruction is
encountered, the MPC7451 executes instructions from the predicted target stream although
the results are not committed to architected registers until the conditional branch is
resolved. Unresolved branches are held in a three-entry branch queue. When the branch
queue is full, no further conditional branches can be processed until one of the conditions
in the branch queue is resolved.

When a branch is taken or predicted as taken, instructions from the untaken path must be
flushed and the target instruction stream must be fetched into the IQ. The BTIC is a
128-entry, four-way set associative cache that contains the most recently used branch target
instructions (up to four instructions per entry) for b and bc branches. When a taken branch
instruction of this type hits in the BTIC, the instructions arrive in the IQ two clock cycles
later, a clock cycle sooner than they would arrive from the instruction cache. Additional
instructions arrive from the instruction cache in the next clock cycle. The BTIC reduces the

MOTOROLA Chapter 1. Overview 1-15

MPC7451 Microprocessor Features

number of missed opportunities to dispatch instructions and gives the processor a one-cycle
head start on processing the target stream.

The BPU contains an adder to compute branch target addresses and three user-accessible
registers—the link register (LR), the count register (CTR), and the condition register (CR).
The BPU calculates the return pointer for subroutine calls and saves it in the LR for certain
types of branch instructions. The LR also contains the branch target address for Branch
Conditional to Link Register (bclrx) instructions. The CTR contains the branch target
address for Branch Conditional to Count Register (bcctrx) instructions. Because the LR
and CTR are SPRs, their contents can be copied to or from any GPR. Also, because the
BPU uses dedicated registers rather than GPRs or FPRs, execution of branch instructions
is largely independent from execution of integer and floating-point instructions.

1.2.2.3 Completion Unit

The completion unit operates closely with the instruction unit. Instructions are fetched and
dispatched in program order. At the point of dispatch, the program order is maintained by
assigning each dispatched instruction a successive entry in the 16-entry CQ. The
completion unit tracks instructions from dispatch through execution and retires them in
program order from the three bottom CQ entries (CQ0–CQ2).

Instructions cannot be dispatched to an execution unit unless there is a CQ vacancy.

Branch instructions that do not update the CTR or LR are often removed from the
instruction stream. Those that are removed do not take a CQ entry. Branches that are not
removed from the instruction stream follow the same dispatch and completion procedures
as non-branch instructions but are not dispatched to an issue queue.

Completing an instruction commits execution results to architected registers (GPRs, FPRs,
VRs, LR, and CTR). In-order completion ensures the correct architectural state when the
MPC7451 must recover from a mispredicted branch or any exception. An instruction is
retired as it is removed from the CQ.

For a more detailed discussion of instruction completion, see Section 6.3.3, “Dispatch,
Issue, and Completion Considerations.”

1.2.2.4 Independent Execution Units

In addition to the BPU, the MPC7451 provides the ten execution units described in the
following sections.

1.2.2.4.1 AltiVec Vector Permute Unit (VPU)

The VPU execute permutation instructions such as pack, unpack, merge, splat, and permute
on vector operands.

1-16 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

1.2.2.4.2 AltiVec Vector Integer Unit 1 (VIU1)

The VIU1 executes simple vector integer computational instructions, such as addition,
subtraction, maximum and minimum comparisons, averaging, rotation, shifting,
comparisons, and Boolean operations.

1.2.2.4.3 AltiVec Vector Integer Unit 2 (VIU2)

The VIU2 executes longer-latency vector integer instructions, such as multiplication,
multiplication/addition, and sum-across with saturation.

1.2.2.4.4 AltiVec Vector Floating-point Unit (VFPU)

The VFPU executes all vector floating-point instructions.

A maximum of two AltiVec instructions can be issued in order to any combination of
AltiVec execution units per clock cycle. Moreover, the VIU2, VFPU, and VPU are
pipelined, so they can operate on multiple instructions.

1.2.2.4.5 Integer Units (IUs)

The integer units (three IU1s and IU2) are shown in Figure 1-1. The IU1s execute shorter
latency integer instructions, that is, all integer instructions except multiply, divide, and
move to/from special-purpose register instructions. IU2 executes integer instructions with
latencies of 3 cycles or more.

IU2 has a 32-bit integer multiplier/divider and a unit for executing CR logical operations
and move to/from SPR instructions. The multiplier supports early exit for operations that
do not require full 32 * 32-bit multiplication.

1.2.2.4.6 Floating-Point Unit (FPU)

The FPU, shown in Figure 1-1, is designed such that double-precision operations require
only a single pass, with a latency of five cycles. As instructions are dispatched to the FPUs
reservation station, source operand data can be accessed from the FPRs or from the FPR
rename buffers. Results in turn are written to the rename buffers and are made available to
subsequent instructions. Instructions start execution from the bottom reservation station
only and execute in program order.

The FPU contains a single-precision multiply-add array and the floating-point status and
control register (FPSCR). The multiply-add array allows the MPC7451 to efficiently
implement multiply and multiply-add operations. The FPU is pipelined so that one single-
or double-precision instruction can be issued per clock cycle.

Note that an execution bubble occurs after four consecutive, independent floating-point
arithmetic instructions execute to allow for a normalization special case. Thirty-two 64-bit
floating-point registers are provided to support floating-point operations. Stalls due to

MOTOROLA Chapter 1. Overview 1-17

MPC7451 Microprocessor Features

contention for FPRs are minimized by automatic allocation of the 16 floating-point rename
registers. The MPC7451 writes the contents of the rename registers to the appropriate FPR
when floating-point instructions are retired by the completion unit.

The MPC7451 supports all IEEE 754 floating-point data types (normalized, denormalized,
NaN, zero, and infinity) in hardware, eliminating the latency incurred by software
exception routines.

1.2.2.4.7 Load/Store Unit (LSU)

The LSU executes all load and store instructions as well as the AltiVec LRU and transient
instructions and provides the data transfer interface between the GPRs, FPRs, VRs, and the
cache/memory subsystem. The LSU also calculates effective addresses and aligns data.

Load and store instructions are issued and translated in program order; however, some
memory accesses can occur out of order. Synchronizing instructions can be used to enforce
strict ordering. When there are no data dependencies and the guarded bit for the page or
block is cleared, a maximum of one out-of-order cacheable load operation can execute per
clock cycle from the perspective of the LSU. Loads to FPRs require a four-cycle total
latency. Data returned from the cache is held in a rename register until the completion logic
commits the value to a GPR, FPR, or VR. Stores cannot be executed out of order and are
held in the store queue until the completion logic signals that the store operation is to be
completed to memory. The MPC7451 executes store instructions with a maximum
throughput of one per clock cycle and a three-cycle total latency to the data cache. The time
required to perform the load or store operation depends on the processor:bus clock ratio and
whether the operation involves the on-chip caches, the L3 cache, system memory, or an I/O
device.

1.2.3 Memory Management Units (MMUs)

The MPC7451’s MMUs support up to 4 Petabytes (252) of virtual memory and
64 Gigabytes (236) of physical memory for instructions and data. The MMUs control access
privileges for these spaces on block and page granularities. Referenced and changed status
is maintained by the processor for each page to support demand-paged virtual memory
systems. The memory management units are contained within the load/store unit.

The LSU calculates effective addresses for data loads and stores; the instruction unit
calculates effective addresses for instruction fetching. The MMU translates the effective
address to determine the correct physical address for the memory access.

The MPC7451 supports the following types of memory translation:

• Real addressing mode—In this mode, translation is disabled by clearing bits in the
machine state register (MSR): MSR[IR] for instruction fetching or MSR[DR] for
data accesses. When address translation is disabled, the physical address is identical
to the effective address. When extended addressing is disabled (HID0[XAEN] = 0)

1-18 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

a 32-bit physical address is used, PA[4–35]. For more details see Section 5.1.3,
“Address Translation Mechanisms.”

• Page address translation—translates the page frame address for a 4-Kbyte page size

• Block address translation—translates the base address for blocks (128 Kbytes to 256
Mbytes) (MPC7441, MPC7451) or 4 GBytes (MPC7445, MPC7447, MPC7455,
MPC7457, MPC7447A).

If translation is enabled, the appropriate MMU translates the higher-order bits of the
effective address into physical address bits. Lower-order address bits are untranslated and
so are the same for both logical and physical addresses. These bits are directed to the
on-chip caches where they form the index into the eight-way set-associative tag array. After
translating the address, the MMU passes the higher-order physical address bits to the cache
and the cache lookup completes. For caching-inhibited accesses or accesses that miss in the
cache, the untranslated lower-order address bits are concatenated with the translated
higher-order address bits; the resulting 32- or 36-bit physical address is used by the memory
subsystem and the bus interface unit, which accesses external memory.

The TLBs store page address translations for recent memory accesses. For each access, an
effective address is presented for page and block translation simultaneously. If a translation
is found in both the TLB and the BAT array, the block address translation in the BAT array
is used. Usually the translation is in a TLB and the physical address is readily available to
the on-chip cache. When a page address translation is not in a TLB, hardware or system
software searches for one in the page table following the model defined by the PowerPC
architecture.

Instruction and data TLBs provide address translation in parallel with the on-chip cache
access, incurring no additional time penalty in the event of a TLB hit. The MPC7451
instruction and data TLBs are 128-entry, two-way set-associative caches that contain
address translations. The MPC7451 can initiate a hardware or system software search of the
page tables in memory on a TLB miss.

1.2.4 On-Chip L1 Instruction and Data Caches

The MPC7451 implements separate L1 instruction and data caches. Each cache is 32-Kbyte
eight-way set-associative. As defined by the PowerPC architecture, they are physically
indexed. Each cache block contains eight contiguous words from memory that are loaded
from an eight-word boundary (that is, bits EA[27–31] are zeros); thus, a cache block never
crosses a page boundary. An entire cache block can be updated by a four-beat burst load
across a 64-bit system bus. Misaligned accesses across a page boundary can incur a
performance penalty. The data cache is a nonblocking, write-back cache with hardware
support for reloading on cache misses. The critical double word is transferred on the first
beat and is forwarded to the requesting unit, minimizing stalls due to load delays. For vector
loads, the critical quad word is handled similarly but is transferred on the second beat. The
cache being loaded is not blocked to internal accesses while the load completes.

MOTOROLA Chapter 1. Overview 1-19

MPC7451 Microprocessor Features

The MPC7451 L1 cache organization is shown in Figure 1-2.

Figure 1-2. L1 Cache Organization

The instruction cache provides up to four instructions per clock cycle to the instruction
queue. The instruction cache can be invalidated entirely or on a cache-block basis. It is
invalidated and disabled by setting HID0[ICFI] and then clearing HID0[ICE]. The
instruction cache can be locked by setting HID0[ILOCK]. The instruction cache supports
only the valid/invalid states.

The data cache provides four words per clock cycle to the LSU. Like the instruction cache,
the data cache can be invalidated all at once or on a per-cache-block basis. The data cache
can be invalidated and disabled by setting HID0[DCFI] and then clearing HID0[DCE]. The
data cache can be locked by setting HID0[DLOCK]. The data cache tags are dual-ported,
so a load or store can occur simultaneously with a snoop.

The MPC7451 also implements a 128-entry (32-set, four-way set-associative) branch target
instruction cache (BTIC). The BTIC is a cache of branch instructions that have been
encountered in branch/loop code sequences. If the target instruction is in the BTIC, it is
fetched into the instruction queue a cycle sooner than it can be made available from the
instruction cache. Typically, the BTIC contains the first four instructions in the target
stream.

The BTIC can be disabled and invalidated through software. As with other aspects of
MPC7451 instruction timing, BTIC operation is optimized for cache-line alignment. If the

128 Sets

Block 5

Block 6

Block 7

Block 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Block 1

Block 2

Block 3

Block 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

Status

Status

Status

Words [0–7]

Status

Words [0–7]

Words [0–7]

Words [0–7]

Status

Status

Status

Words [0–7]

Status

Words [0–7]

Words [0–7]

Words [0–7]

8 Words/Block

1-20 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

first target instruction is one of the first five instructions in the cache block, the BTIC entry
holds four instructions. If the first target instruction is the last instruction before the cache
block boundary, it is the only instruction in the corresponding BTIC entry. If the next-to-last
instruction in a cache block is the target, the BTIC entry holds two valid target instructions,
as shown in Figure 1-3.

Figure 1-3. Alignment of Target Instructions in the BTIC

BTIC ways are updated using a FIFO algorithm.

For more information and timing examples showing cache hit and cache miss latencies, see
Section 6.3.2, “Instruction Fetch Timing.”

1.2.5 L2 Cache Implementation

The L2 cache is a unified cache that receives memory requests from both the L1 instruction
and data caches independently. The integrated L2 cache on the MPC7451 is a unified
(containing both instructions and data) 256 Kbyte on-chip cache. For the MPC7447,
MPC7457, and the MPC7447A, the L2 cache has been increased to 512-Kbyte on-chip
cache. It is eight-way set-associative and organized with 32-byte blocks and two
blocks/line.

Each line consists of 64 bytes of data organized as two blocks (also called sectors).
Although all 16 words in a cache line share the same address tag, each block maintains the
three separate status bits for the 8 words of the cache block, the unit of memory at which
coherency is maintained. Thus, each cache line can contain 16 contiguous words from
memory that are read or written as 8-word operations.

The MPC7451 integrated L2 cache organization is shown in Figure 1-4.

T0 T2 T4 T5 T6 T7T1 T3

BTIC Entry

Instruction Cache Block

T2 T4 T5T3

Branch Target

T0 T2 T4 T5 T6 T7T1 T3

BTIC Entry

Instruction Cache Block

T6 — —T7

Branch Target

MOTOROLA Chapter 1. Overview 1-21

MPC7451 Microprocessor Features

Figure 1-4. L2 Cache Organization for MPC7451

Figure 1-5. L2 Cache Organization for the MPC7447, MPC7457, and MPC7447A

The L2 cache controller contains the L2 cache control register (L2CR), which:

• includes bits for enabling parity checking on the L2

512 Sets

Line 5

Line 6

Line 7

Line 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Line 1

Line 2

Line 3

Line 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

Status

Status

Status

Status

Status

Status

Status

Status

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Status

Status

Status

Status

Status

Status

Status

Status

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Block 0 Block 1

1024 Sets

Line 5

Line 6

Line 7

Line 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Line 1

Line 2

Line 3

Line 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

Status

Status

Status

Status

Status

Status

Status

Status

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Status

Status

Status

Status

Status

Status

Status

Status

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Block 0 Block 1

1-22 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

• provides for instruction-only and data-only modes

• provides hardware flushing for the L2

• selects between two available replacement algorithms for the L2 cache.

The L2 implements the MESI cache coherency protocol using three status bits per sector.

Requests from the L1 cache generally result from instruction misses, data load or store
misses, write-through operations, or cache management instructions. Requests from the L1
cache are compared against the L2 tags and serviced by the L2 cache if they hit; if they miss
in the L2 cache, they are forwarded to the L3 cache.

The L2 cache tags are fully pipelined and non-blocking for efficient operation. Thus the L2
cache can be accessed internally while a load for a miss is pending (allowing hits under
misses). A reload for a cache miss is treated as a normal access and blocks other accesses
for only one cycle.

For more information, see Chapter 3, “L1, L2, and L3 Cache Operation.”

1.2.6 L3 Cache Implementation

The unified L3 cache receives memory requests from L1 and L2 instruction and data caches
independently. The L3 cache interface is implemented with an on-chip, two-way set
associative tag memory with 2,048 (2K) tags per way and a dedicated interface with support
for up to 2 Mbyte of external synchronous SRAMs. Note that the L3 cache is not supported
on the MPC7441 and the MPC7445.

Tags are sectored to support either two or four cache blocks per tag entry, depending on the
L2 cache size. Each sector (32-byte cache block) in the L3 cache has three status bits that
are used to implement the MESI cache coherency protocol. Accesses to the L3 cache can
be designated as write-back or write-through and the L3 maintains cache coherency
through snooping.

The L3 interface can be configured to use 1 or 2 Mbytes of the SRAM area as a private
memory space. The MPC7457 can support 1,2, or 4 Mbytes of private memory. Accesses
to private memory does not propagate to the system bus. The MPC7451 can also be
configured to use 1 Mbyte of SRAM as L3 cache and a second Mbyte as private memory.
Also, in this case, private memory accesses do not propagate to the L3 cache or to the
external system bus.

The private memory space provides a low-latency, high-bandwidth area for critical data or
instructions. Accesses to the private memory space do not propagate to the L3 cache nor
are they visible to the external system bus. The private memory space is also not snooped,
so the coherency of its contents must be maintained by software or not at all. For more
information, see Chapter 3, “L1, L2, and L3 Cache Operation.”

MOTOROLA Chapter 1. Overview 1-23

MPC7451 Microprocessor Features

The L3 cache control register (L3CR) provides control of L3 cache configuration and
interface timing. The L3 private memory control register (L3PM) configures the private
memory feature.

The L3 cache interface provides two clock outputs that allow the clock inputs of the
SRAMs to be driven at select frequency divisions of the processor core frequency. For the
MPC7457, the L3 cache interface provides two sets of two differential clock outputs.

Requests from the L3 cache generally result from instruction misses, data load or store
misses, write-through operations, or cache management instructions. Requests from the L1
and L2 cache are compared against the L3 tags and serviced by the L3 cache if they hit; if
they miss in the L3 cache, they are forwarded to the bus interface.

1.2.7 System Interface

The MPC7451 supports two interface protocols—MPX bus protocol and a subset of the
60x bus protocol. Note that although this protocol is implemented by the MPC603e,
MPC604e, MPC740, and MPC750 processors, it is referred to as the 60x bus interface. The
MPX bus protocol is derived from the 60x bus protocol. The MPX bus interface includes
several additional features that provide higher memory bandwidth than the 60x bus and
more efficient use of the system bus in a multiprocessing environment. Because the
MPC7451’s performance is optimized for the MPX bus, its use is recommended over the
60x bus.

The MPC7451 bus interface includes a 64-bit data bus with 8 bits of data parity, a 36-bit
address bus with 5 bits of address parity, and additional control signals to allow for unique
system level optimizations.

The bus interface protocol is configured using the BMODE0 configuration signal at reset.
If BMODE0 is asserted at the negation of HRESET, the MPC7451 uses the MPX bus
protocol; if BMODE0 is negated during the negation of HRESET, the MPC7451 uses a
limited subset of the 60x bus protocol. Note that the inverse state of BMODE[0:1] at the
negation of HRESET is saved in MSSCR0[BMODE].

1.2.8 MPC7451 Bus Operation Features

The MPC7451 has a separate address and data bus, each with its own set of arbitration and
control signals. This allows for decoupling the data tenure from the address tenure of a
transaction and provides for a wide range of system-bus implementations including:

• Nonpipelined bus operation

• Pipelined bus operation

• Split transaction operation

1-24 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

The MPC7451 supports only the normal memory-mapped address segments defined in the
PowerPC architecture. Access to direct store segments results in a DSI exception.

1.2.8.1 MPX Bus Features

The MPX bus has the following features:

• Extended 36-bit address bus plus 5 bits of odd parity (41 bits total)

• 64-bit data bus plus 8 bits of odd parity (72 bits total); a 32-bit data bus mode is not
supported

• Support for a four-state (MESI) cache coherence protocol

• On-chip snooping to maintain L1 data cache, L2, and L3 cache coherency for
multiprocessing applications and DMA environments

• Support for address-only transfers (useful for a variety of broadcast operations in
multiprocessor applications)

• Address pipelining

• Support for up to 16 out-of-order transactions using 4 data transaction index
(DTI[0:3]) signals

• Full data streaming

• Support for data intervention in multiprocessor systems

MOTOROLA Chapter 1. Overview 1-25

MPC7451 Microprocessor Features

1.2.8.2 60x Bus Features

The following list summarizes the 60x bus interface features:

• Extended 36-bit address bus plus 5 bits of odd parity (41 bits total)
• 64-bit data bus plus 8 bits of odd parity (72 bits total); a 32-bit data bus mode is not

supported
• Support for a four-state (MESI) cache coherence protocol

• On-chip snooping to maintain L1 data cache, L2, and L3 cache coherency for
multiprocessing applications and DMA environments

• Support for address-only transfers (useful for a variety of broadcast operations in
multiprocessor applications)

• Address pipelining

• Support for up to 16 outstanding transactions. No reordering is supported.

1.2.9 Overview of System Interface Accesses

The system interface includes address register queues, prioritization logic, and a bus control
unit. The system interface latches snoop addresses for snooping in the L1 data, L2, and L3
caches, the memory hierarchy address register queues, and the reservation controlled by the
Load Word and Reserve Indexed (lwarx) and Store Word Conditional Indexed (stwcx.)
instructions. Accesses are prioritized with load operations preceding store operations. Note
that the L3 cache interface is not supported on the MPC7441 and the MPC7445.

Instructions are automatically fetched from the memory system into the instruction unit
where they are issued to the execution units at a peak rate of three instructions per clock
cycle. Conversely, load and store instructions explicitly specify the movement of operands
to and from the integer, floating-point, and AltiVec register files and the memory system.

When the MPC7451 encounters an instruction or data access, it calculates the effective
address and uses the lower-order address bits to check for a hit in the on-chip, 32-Kbyte L1
instruction and data caches. During L1 cache lookup, the instruction and data memory
management units (MMUs) use the higher-order address bits to calculate the virtual
address, from which they calculate the physical (real) address. The physical address bits are
then compared with the corresponding cache tag bits to determine if a cache hit occurred in
the L1 instruction or data cache. If the access misses in the corresponding cache, the
transaction is sent to L1 load miss queue or the L1 store miss queue. L1 load miss queue
transactions are sent to the internal 256-Kbyte L2 cache (512-Kbyte for MPC7447,
MPC7457, and MPC7447A) and L3 cache controller simultaneously. Store miss queue
transactions are queued up in the L2 cache controller and sent to the L3 cache if necessary.
If no match is found in the L2 or L3 cache tags, the physical address is used to access system
memory.

1-26 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

In addition to loads, stores, and instruction fetches, the MPC7451 performs hardware table
search operations following TLB misses; L1, L2, and L3 cache castout operations; and
cache-line snoop push operations when a modified cache line detects a snoop hit from
another bus master.

1.2.9.1 System Interface Operation

The primary activity of the MPC7451 system interface is transferring data and instructions
between the processor and system memory. There are three types of transfer accesses:

• Single-beat transfers—These memory accesses allow transfer sizes of 1, 2, 3, 4, or
8 bytes in one bus clock cycle. Single-beat transactions are caused by uncacheable
read and write operations that access memory directly (that is, when caching is
disabled), cache-inhibited accesses, and stores in write-through mode.

• Two-beat burst (16-byte) data transfers—Generated to support caching-inhibited or
write-through AltiVec loads and stores (only generated in MPX bus mode) and for
caching-inhibited instruction fetches in MPX mode.

• Four-beat burst (32-byte) data transfers—Initiated when an entire cache block is
transferred into or out of the internal caches. Because the first-level caches on the
MPC7451 are write-back caches, burst-read memory operations are the most
common memory accesses, followed by burst-write memory operations, and
single-beat (caching-inhibited or write-through) memory read and write operations.

Memory accesses can occur in single-beat (1, 2, 3, 4, and 8 bytes), double-beat (16 bytes),
and four-beat (32 bytes) burst data transfers. For memory accesses, the address and data
buses are independent to support pipelining and split transactions. The bus interface can
pipeline as many as 16 transactions and, in MPX bus mode, supports full out-of-order
split-bus transactions. The MPC7451 bursts out of reset in MPX bus mode, fetching eight
instructions on the MPX bus at a time.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the MPC7451 to be integrated into systems that implement various fairness and
bus-parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered to maximize the efficiency of the bus
without sacrificing coherency of the data. The MPC7451 allows load operations to bypass
store operations (except when a dependency exists). Because the processor can
dynamically optimize run-time ordering of load/store traffic, overall performance is
improved.

Note that the synchronize (sync) and enforce in-order execution of I/O (eieio) instructions
can be used to enforce strong ordering.

The system interface is synchronous. All MPC7451 inputs are sampled and all outputs are
driven on the rising edge of the bus clock cycle. The MPC7451 RISC Microprocessor

MOTOROLA Chapter 1. Overview 1-27

MPC7451 Microprocessor Features

Hardware Specifications gives timing information. The system interface is specific for each
microprocessor that implements the PowerPC architecture.

1.2.9.2 Signal Groupings

Signals are provided for implementing the bus protocol, clocking, and control of the L3
caches, as well as separate L3 address and data buses. Test and control signals provide
diagnostics for selected internal circuits.

The MPC7451 MPX and 60x bus interface protocol signals are grouped as follows:

• Address arbitration—The MPC7451 uses these signals to arbitrate for address bus
mastership.

• Address transfer start—These signals indicate that a bus master has begun a
transaction on the address bus.

• Address transfer—These signals include the address bus and address parity signals.
They are used to transfer the address and to ensure the integrity of the transfer.

• Transfer attribute—These signals provide information about the type of transfer,
such as the transfer size and whether the transaction is bursted, write-through, or
cache-inhibited.

• Address transfer termination—These signals are used to acknowledge the end of the
address phase of the transaction. They also indicate whether a condition exists that
requires the address phase to be repeated.

• Data arbitration—The MPC7451 uses these signals to arbitrate for data bus
mastership.

• Data transfer—These signals, which consist of the data bus and data parity signals,
are used to transfer the data and to ensure the integrity of the transfer.

• Data transfer termination—Data termination signals are required after each data beat
in a data transfer. In a single-beat transaction, data termination signals also indicate
the end of the tenure. In burst accesses, data termination signals apply to individual
beats and indicate the end of the tenure only after the final data beat. Data
termination signals also indicate whether a condition exists that requires the data
phase to be repeated.

Many other MPC7451 signals control and affect other aspects of the device, aside from the
bus protocol. They are as follows:

• L3 cache address/data—The MPC7451 has separate address and data buses for
accessing the L3 cache. Note that the L3 cache interface is not supported by the
MPC7441 and the MPC7445.

• L3 cache clock/control—These signals provide clocking and control for the L3
cache. Note that the L3 cache interface is not supported by the MPC7441 and the
MPC7445.

1-28 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

• Interrupts/resets—These signals include the external interrupt signal, checkstop
signals, and both soft reset and hard reset signals. They are used to interrupt and,
under various conditions, to reset the processor.

• Processor status and control—These signals enable the time-base facility and are
used to select the bus mode and control sleep mode.

• Clock control—These signals determine the system clock frequency. They are also
used to synchronize multiprocessor systems.

• Test interface—The JTAG (IEEE 1149.1a-1993) interface and the common on-chip
processor (COP) unit provide a serial interface to the system for performing
board-level boundary-scan interconnect tests.

• Voltage selection—These signal control the electrical characteristics of the I/O
circuitry of the device as appropriate to support various signalling levels.

NOTE
Active-low signals are shown with overbars. For example,
ARTRY (address retry) and TS (transfer start). Active-low
signals are referred to as asserted (active) when they are low
and negated when they are high. Signals that are not active low,
such as AP[0:4] (address bus parity signals) and TT[0:4]
(transfer type signals) are referred to as asserted when they are
high and negated when they are low.

1.2.9.3 MPX Bus Mode Functional Groupings

Figure 1-6 illustrates the MPC7451’s signal configuration in MPX bus mode, showing how
the signals are grouped. A pinout diagram and tables showing pin numbers are included in
the MPC7451 RISC Microprocessor Hardware Specifications. Note that the left side of the
figure depicts the signals that implement the MPX bus protocol and the right side of the
figure shows the remaining signals on the MPC7451 (not part of the bus protocol).

MOTOROLA Chapter 1. Overview 1-29

MPC7451 Microprocessor Features

Figure 1-6. MPX Bus Signal Groups

BR

BG

TS

AP[0:4]

GBL

TSIZ[0:2]

AACK

ARTRY

DBG

DTI[0:3]

DP[0:7]

TA

TEA

TBST

WT

TT[0:4]

CI

A[0:35]

SHD0/SHD1

TCK

TDI

MCP

SRESET

SMI

HRESET

QACK

BVSEL

CKSTP_IN

CKSTP_OUT

TBEN

BMODE[0:1]

D[0:63]

Address
Arbitration

Data
Arbitration

Data
Transfer

Processor
Status/
Control

Interrupts/
Resets

Data
Transfer

Termination

Address
Transfer

Termination

QREQ

PMON_IN

PMON_OUT

TDO

TMS

TRST

Test
Interface
(JTAG)

HIT

DRDY

Address
Transfer

Attributes

Address
Transfer

1

1

1

5

5

1

3

1

1

4

1

1

1

8

1

1

1

36

2

1

1

1

1

1

1

1

1

1

1

1

1

1

2

64

MPC7451

1

1

1

1

1

1

1

(MPX)

SYSCLK

PLL_CFG[0:3]

CLK_OUT

Clock
ControlEXT_QUAL

1

4

1

1

PLL_EXT
1

INT

L3_ECHO_CLK[0:3]

L3_CNTL[0:1]
L3 Cache
Clock/
Control2

4

1 L3_VSEL

L3_ADDR[17:0]

L3_DATA[0:63]

L3_DP[0:7]

L3 Cache
Address/
Data

18

64

8 Note: L3 cache
interface is not
supported in the
MPC7441, MPC7445,
or the MPC7447)

2

1 For the MPC7457, there are 19 L3_ADDR signals, (L3_ADDR[0:18])

1

2 For the MPC7447 and MPC7457, there are 5 PLL_CFG signals, (PLL_CFG[0:4])

L3_CLK[0:1]
2

VDD

OVDD

GVDD

AVDD

GND
GND_SENSE

VDD_SENSE

3

3

3OVDD_SENSE

3 MPC7447A-specific

1-30 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Features

Signal functionality is described in detail in Chapter 8, “Signal Descriptions,” and
Chapter 9, “System Interface Operation.”

1.2.9.3.1 Clocking

For functional operation, the MPC7451 uses a single clock input signal, SYSCLK, from
which clocking is derived for the processor core, the L3 interface, and the MPX bus
interface. Additionally, internal clock information is made available at the pins to support
debug and development.

The MPC7451’s clocking structure supports a wide range of processor-to-bus clock ratios.
The internal processor core clock is synchronized to SYSCLK with the aid of a VCO-based
PLL. The PLL_CFG[0:3] signals (for the MPC7447, MPC7457, and MPC7447A,
PLL_CFG[0:4]) are used to program the internal clock rate to a multiple of SYSCLK as
defined in the MPC7451 RISC Microprocessor Hardware Specifications. The bus clock is
maintained at the same frequency as SYSCLK. SYSCLK does not need to be a 50%
duty-cycle signal.

The MPC7451 generates the clock for the external L3 synchronous data RAMs. The clock
frequency for the RAMs is divided down from (and phase-locked to) the MPC7451 core
clock frequency using a divisor selected through L3CR[L3CLK].

1.2.10 Power Management

The MPC7451 is designed for low-power operation. It provides both automatic and
program-controlled power reduction modes. If an MPC7451 functional unit is idle, it
automatically goes into a low-power mode. This mode does not affect operational
performance. Dynamic power management automatically supplies or withholds power to
execution units individually, based upon the contents of the instruction stream. The
operation of dynamic power management is transparent to software or any external
hardware.

The following three programmable power modes are available to the system:

• Nap—Instruction fetching is halted. Only those clocks for time base, decrementer,
and JTAG logic remain running. The MPC7451 goes into the doze state to snoop
memory operations on the bus and then back to nap using a QREQ/QACK
processor-system handshake protocol.

• Sleep—Power consumption is further reduced by disabling bus snooping, leaving
only the PLL in a locked and running state. All internal functional units are disabled.

• Deep sleep—When the MPC7451 is in sleep mode, the system can disable the PLL.
The system can then disable the SYSCLK source for greater system power savings.
Power-on reset procedures for restarting and relocking the PLL must be followed
upon exiting deep sleep.

MOTOROLA Chapter 1. Overview 1-31

MPC7451 Microprocessor Features

Chapter 10, “Power and Thermal Management,” describes power saving modes for the
MPC7451.

1.2.11 Thermal Management

The MPC7451 provides an instruction cache throttling mechanism to effectively reduce the
instruction execution rate without the complexity and overhead of dynamic clock control.
When used with the dynamic power management, instruction cache throttling provides the
system designer with a flexible way to control device temperature while allowing the
processor to continue operating. For thermal management, the MPC7451 provides a
supervisor-level instruction cache throttling control register (ICTC). Chapter 10, “Power
and Thermal Management,” provides information about how to configure the ICTC register
for the MPC7451.

1.2.12 Performance Monitor

The MPC7451 incorporates a performance monitor facility that system designers can use
to help bring up, debug, and optimize software performance. The performance monitor
counts events during execution of instructions related to dispatch, execution, completion,
and memory accesses.

The performance monitor incorporates several registers that can be read and written to by
supervisor-level software. User-level versions of these registers provide read-only access
for user-level applications. These registers are described in Section 1.3.1, “PowerPC
Registers and Programming Model.” Performance monitor control registers, MMCR0,
MMCR1, and MMCR2 can be used to specify which events are to be counted and the
conditions for which a performance monitoring exception is taken. Additionally, the
sampled instruction address register, SIAR (USIAR), holds the address of the first
instruction to complete after the counter overflowed.

Attempting to write to a user-level read-only performance monitor register causes a
program exception, regardless of the MSR[PR] setting.

When a performance monitor exception occurs, program execution continues from vector
offset 0x00F00.

Chapter 11, “Performance Monitor,” describes the operation of the performance monitor
diagnostic tool incorporated in the MPC7451.

1-32 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

1.3 MPC7451 Microprocessor: Architectural
Implementation

The PowerPC architecture consists of three layers. Adherence to the PowerPC architecture
can be described in terms of which of the following levels of the architecture is
implemented:

• PowerPC user instruction set architecture (UISA)—Defines the base user-level
instruction set, user-level registers, data types, floating-point exception model,
memory models for a uniprocessor environment, and programming model for a
uniprocessor environment.

• PowerPC virtual environment architecture (VEA)—Describes the memory model
for a multiprocessor environment, defines cache control instructions, and describes
other aspects of virtual environments. Implementations that conform to the VEA
also adhere to the UISA, but may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)—Defines the memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. Implementations that conform to the OEA also adhere to the
UISA and the VEA.

The MPC7451 implementation supports the three levels of the architecture described
above. For more information about the PowerPC architecture, see PowerPC
Microprocessor Family: The Programming Environments. Specific MPC7451 features are
listed in Section 1.2, “MPC7451 Microprocessor Features.”

This section describes the PowerPC architecture in general, and specific details about the
implementation of the MPC7451 as a low-power, 32-bit device that implements this
architecture. The structure of this section follows the user’s manual organization; each
subsection provides an overview of that chapter.

• Registers and programming model—Section 1.3.1, “PowerPC Registers and
Programming Model,” describes the registers for the operating environment
architecture common among processors of this family and describes the
programming model. It also describes the registers that are unique to the MPC7451.

Instruction set and addressing modes—Section 1.3.2, “Instruction Set,” describes
the PowerPC instruction set and addressing modes for the PowerPC operating
environment architecture, and defines and describes the PowerPC instructions
implemented in the MPC7451. The information in this section is described more
fully in Chapter 2, “Programming Model.”

• Cache implementation—Section 1.3.3, “On-Chip Cache Implementation,”
describes the cache model that is defined generally by the virtual environment
architecture. It also provides specific details about the MPC7451 cache
implementation. The information in this section is described more fully in
Chapter 3, “L1, L2, and L3 Cache Operation.”

MOTOROLA Chapter 1. Overview 1-33

MPC7451 Microprocessor: Architectural Implementation

• Exception model—Section 1.3.4, “Exception Model,” describes the exception
model of the PowerPC operating environment architecture and the differences in the
MPC7451 exception model. The information in this section is described more fully
in Chapter 4, “Exceptions.”

• Memory management—Section 1.3.5, “Memory Management,” describes generally
the conventions for memory management. This section also describes the
MPC7451’s implementation of the 32-bit PowerPC memory management
specification. The information in this section is described more fully in Chapter 5,
“Memory Management.”

• Instruction timing—Section 1.3.6, “Instruction Timing,” provides a general
description of the instruction timing provided by the superscalar, parallel execution
supported by the PowerPC architecture and the MPC7451. The information in this
section is described more fully in Chapter 6, “Instruction Timing.”

• AltiVec implementation—Section 1.3.7, “AltiVec Implementation,” points out that
the MPC7451 implements AltiVec registers, instructions, and exceptions as
described in the AltiVec Technology Programming Environments Manual.
Chapter 7, “AltiVec Technology Implementation,” provides complete details.

1.3.1 PowerPC Registers and Programming Model

The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

The PowerPC architecture also defines two levels of privilege—supervisor mode of
operation (typically used by the operating system) and user mode of operation (used by the
application software). The programming models incorporate 32 GPRs, 32 FPRs, SPRs, and
several miscellaneous registers. The AltiVec extensions to the PowerPC architecture
augment the programming model with 32 VRs, one status and control register, and one save
and restore register. Each processor that implements the PowerPC architecture also has a
unique set of implementation-specific registers to support functionality that may not be
defined by the PowerPC architecture.

Having access to privileged instructions, registers, and other resources allows the operating
system to control the application environment (providing virtual memory and protecting
operating-system and critical machine resources). Instructions that control the state of the
processor, the address translation mechanism, and supervisor registers can be executed only
when the processor is operating in supervisor mode.

Figure 1-7 shows all the MPC7451 registers available at the user and supervisor level. The
numbers to the right of the SPRs indicate the number that is used in the syntax of the

1-34 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

instruction operands to access the register. For more information, see Chapter 2,
“Programming Model.”

MOTOROLA Chapter 1. Overview 1-35

MPC7451 Microprocessor: Architectural Implementation

The OEA defines numerous SPRs that serve a variety of functions, such as providing
controls, indicating status, configuring the processor, and performing special operations.
During normal execution, a program can access the registers shown in Figure 1-7,
depending on the program’s access privilege (supervisor or user, determined by the
privilege-level bit, MSR[PR]). GPRs, FPRs, and VRs are accessed through operands that
are part of the instructions. Access to registers can be explicit (that is, through the use of
specific instructions for that purpose such as Move to Special-Purpose Register (mtspr)
and Move from Special-Purpose Register (mfspr) instructions) or implicit, as the part of
the execution of an instruction.

Figure 1-7 shows the MPC7441 and MPC7451 register set.

1-36 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

Figure 1-7. Programming Model—MPC7441/MPC7451 Microprocessor Registers

Performance Counters 2

Sampled Instruction
Address Register 4

DSISR

Data Address
Register

SPRGs

Exception Handling Registers

Save and Restore
Registers

Instruction BAT
Registers

Data BAT
Registers

Memory Management Registers

Machine State RegisterProcessor Version
Register

Configuration Registers

Hardware
Implementation
Registers 1

USER MODEL—UISA

Floating-Point
Status and

Control Register

Condition
Register

General-Purpose
Registers

XER

Link Register

SUPERVISOR MODEL—OEA

Decrementer

SDR1

Count Register

Miscellaneous Registers

Segment Registers

Vector Registers 3

Performance
Monitor Registers

Performance Counters1

Monitor Control1

Sampled Instruction
Address1

Performance Monitor Registers

Monitor Control
Registers

Time Base
(For Writing)

USER MODEL—VEA

Time Base Facility (For Reading)

Data Address
Breakpoint Register 2

L2 Cache
Control Register 1

Instruction Address
Breakpoint Register1

Breakpoint Address
Mask Register 1

Vector Status and
Control Register 3

Processor ID Register 2

Memory Subsystem
Status Control Registers 1

AltiVec Registers
Vector Save/Restore
Register 3

Thermal Management Register
Instruction Cache Throttling
Control Register 1

Floating-Point
Registers

1 MPC7441/ MPC7451-specific register may not be supported
on other processors that implement the PowerPC architecture.

2 Register defined as optional in the PowerPC architecture.
3 Register defined by the AltiVec technology.
4 L2CR2 is not implemented on the MPC7451.
5 MPC7451-specific only register, not supported on the

MPC7441
6 MPC7451-specific only register

Instruction Cache/
Interrupt Control Register1

CTR

XER

LR

VSCR

UPMC1

UPMC4
UPMC3
UPMC2

USIAR

VRSAVE

UMMCR0

UMMCR2
UMMCR1

CR

FPSCR

DABR

BAMR

SIAR

DSISR

DAR

IABR

DEC

ICTC

MSSCR0

TBL
TBU

MMCR0 2

MMCR2 1
MMCR1 2

SPRG0

SPRG3
SPRG2
SPRG1 SRR0

SRR1

SDR1

ICTRL

FPR0
FPR1

FPR31

VR0
VR1

VR31

PMC1

PMC4
PMC3
PMC2

SR0
SR1

SR15

PIR

PVRTBL TBU

GPR0
GPR1

GPR31

HID0
HID1

L2CR

MSR

IBAT0U
IBAT0L
IBAT1U
IBAT1L
IBAT2U
IBAT2L
IBAT3U
IBAT3L

SPR 528
SPR 529
SPR 530
SPR 531
SPR 532
SPR 533
SPR 534
SPR 535

SPR 536
SPR 537
SPR 538
SPR 539
SPR 540
SPR 541
SPR 542
SPR 543

SPR 272

SPR 275
SPR 274
SPR 273 SPR 19

SPR 18

SPR 287
SPR 1008
SPR 1009 SPR 1023

SPR 25

SPR 26
SPR 27

SPR 951

SPR 955

SPR 953

SPR 958
SPR 957
SPR 954 SPR 952

SPR 956
SPR 944

SPR 1010
SPR 1013

SPR 1017

SPR 1011

SPR 22

SPR 285
SPR 284

SPR 1019

SPR 1014

SPR 256

SPR 928
SPR 940
SPR 936

SPR 939

SPR 942
SPR 941
SPR 938
SPR 937

SPR 8

SPR 1

SPR 9

TBR 268 TBR 269

UPMC6
UPMC5

SPR 930
SPR 929

PMC5
PMC6

SPR 945
SPR 946

DBAT0U
DBAT0L
DBAT1U
DBAT1L
DBAT2U
DBAT2L
DBAT3U
DBAT3L

TLB Miss Register 1

TLBMISS SPR 980

PTE High/Low
Registers 1

PTEHI
PTELO

SPR 981
SPR 982

MSSSR0 SPR 1015

Cache / Memory Subsystem Registers 1

Load/Store
Control Register 1

LDSTCR SPR 1016

L3 Private
Memory Register 5

L3PM

L3CR SPR 1018

SPR 983

External Access
Register 2

EAR SPR 282

L3 Cache Control Register 5

L3ITCR0 SPR 984

L3 Cache Input Timing
Control Registers 6

MOTOROLA Chapter 1. Overview 1-37

MPC7451 Microprocessor: Architectural Implementation

Figure 1-8 shows the MPC7445, MPC7455, MPC7447, MPC7457, and MPC7447A register set.

Figure 1-8. Programming Model—MPC7445, MPC7447, MPC7455, MPC7457, and
MPC7447A Microprocessor Registers

Performance Counters 2

Sampled Instruction
Address Register 2

DSISR

Data Address
Register

SPRGs
Exception Handling Registers

Save and Restore
Registers

Instruction BAT
Registers

Data BAT
Registers

Memory Management Registers

Machine State RegisterProcessor Version
Register

Configuration Registers
Hardware
Implementation
Registers 1

USER MODEL—UISA

Floating-Point
Status and

Control Register

Condition
Register

General-Purpose
Registers

XER

Link Register

SUPERVISOR MODEL—OEA

Decrementer

SDR1

Count Register

Miscellaneous Registers

Segment Registers

Vector Registers 3

Performance Monitor
Registers

Monitor Control1

Sampled Instruction
Address1

Performance Monitor Registers

Monitor Control
Registers

Time Base
(For Writing)

USER MODEL—UISA
Time Base Facility (For Reading)

Data Address
Breakpoint Register 2

L2 Cache
Control Register1

Instruction Address
Breakpoint Register 1

Breakpoint Address
Mask Register1

Vector Status and
Control Register 3

Processor ID Register 2

Memory Subsystem
Status Control Registers 1

AltiVec Registers

Vector Save/Restore
Register 3

Thermal Management Register
Instruction Cache Throttling
Control Register 1

Floating-Point
Registers

1 MPC7445-, MPC7447-, MPC7455-, MPC7457-, and
MPC7447A-specific register may not be supported on other
processors that implement the PowerPC architecture.

2 Register defined as optional in the PowerPC architecture.
3 Register defined by the AltiVec technology.
4 MPC7455- and MPC7457-specific register, not supported on

the MPC7445, MPC7447, and MPC7447A
.5 MPC7457-specific register, not supported on the MPC7441,

MPC7445, MPC7447,MPC7447A, MPC7451, and MPC7455

Instruction Cache/
Interrupt Control Register 1

CTR

XER

LR

VSCR

UPMC1

UPMC4
UPMC3
UPMC2

USIAR

VRSAVE

UMMCR0

UMMCR2
UMMCR1

CR

FPSCR

DABR

BAMR

SIAR

DSISR

DAR

IABR

DEC

ICTC

MSSCR0

TBL
TBU

MMCR02

MMCR21
MMCR12

SPRG0

SPRG3
SPRG2
SPRG1

SRR0
SRR1

SDR1

ICTRL

FPR0
FPR1

FPR31

VR0
VR1

VR31

PMC1

PMC4
PMC3
PMC2

SR0
SR1

SR15

PIR

PVRTBL TBU

GPR0
GPR1

GPR31

HID0
HID1

L2CR

MSR

IBAT0U
IBAT0L
IBAT1U
IBAT1L
IBAT2U
IBAT2L
IBAT3U
IBAT3L

SPR 528
SPR 529
SPR 530
SPR 531
SPR 532
SPR 533
SPR 534
SPR 535

SPR 536
SPR 537
SPR 538
SPR 539
SPR 540
SPR 541
SPR 542
SPR 543

SPR 272

SPR 275
SPR 274
SPR 273 SPR 19

SPR 18

SPR 287
SPR 1008
SPR 1009 SPR 1023

SPR 25

SPR 26
SPR 27

SPR 951

SPR 955

SPR 953

SPR 958
SPR 957
SPR 954

SPR 952
SPR 956
SPR 944

SPR 1010 SPR 1013

SPR 1017

SPR 1011

SPR 22

SPR 284

SPR 1019

SPR 1014

SPR 256

SPR 928
SPR 940
SPR 936

SPR 939

SPR 942
SPR 941
SPR 938
SPR 937

SPR 8

SPR 1

SPR 9

TBR 268 TBR 269

UPMC6
UPMC5

SPR 930
SPR 929

PMC5
PMC6

SPR 945
SPR 946

SPRG4 1

SPRG7 1
SPRG6 1
SPRG5 1

SPR 276

SPR 279
SPR 278
SPR 277

DBAT0U
DBAT0L
DBAT1U
DBAT1L
DBAT2U
DBAT2L
DBAT3U
DBAT3L

TLB Miss Register1

TLBMISS SPR 980

PTE High/Low
Registers 1

PTEHI
PTELO

SPR 981
SPR 982

MSSSR0 SPR 1015

Cache/Memory
Subsystem Registers

Load/Store
Control Register 1

LDSTCR SPR 1016

L3 Cache
Control Register 4

L3 Private Memory
Address Register 4

L3PM

L3CR SPR 1018

SPR 983

IBAT4U 1

IBAT4L 1

IBAT5U 1

IBAT5L 1

IBAT6U 1

IBAT6L 1

IBAT7U 1

IBAT7L 1

SPR 560

SPR 561

SPR 562

SPR 563

SPR 564

SPR 565

SPR 566

SPR 567

SPR 568

SPR 569

SPR 570

SPR 571

SPR 572

SPR 573

SPR 574

SPR 575

DBAT4U 1

DBAT4L 1

DBAT5U 1

DBAT5L 1

DBAT6U 1

DBAT6L 1

DBAT7U 1

DBAT7L 1

External Access Register 2

EAR SPR 282

Performance Counters1

SPR 285

L3ITCR0 4 SPR 984

L3 Cache Input Timing
Control Registers

L3ITCR1 5 SPR 1001
L3ITCR2 5 SPR 1002
L3ITCR3 5 SPR 1003

L3OHCR SPR 1000

L3 Cache Output Hold
Control Register 5

1-38 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

Some registers can be accessed both explicitly and implicitly. In the MPC7451, all SPRs
are 32 bits wide. Table 1-1 describes registers implemented by the MPC7451.

Table 1-1. Register Summary for MPC7451

Name SPR Description
Reference /

Section

UISA Registers

CR — Condition register. The 32-bit CR consists of eight 4-bit fields,
CR0–CR7, that reflect results of certain arithmetic operations and
provide a mechanism for testing and branching.

PEM

CTR 9 Count register. Holds a loop count that can be decremented
during execution of appropriately coded branch instructions. The
CTR can also provide the branch target address for the Branch
Conditional to Count Register (bcctrx) instruction.

PEM

FPR0–
FPR31

— Floating-point registers (FPRn). The 32 FPRs serve as the data
source or destination for all floating-point instructions.

PEM

FPSCR — Floating-point status and control register. Contains floating-point
exception signal bits, exception summary bits, exception enable
bits, and rounding control bits for compliance with the IEEE 754
standard.

PEM

GPR0–
GPR31

— General-purpose registers (GPRn). The thirty-two GPRs serve as
data source or destination registers for integer instructions and
provide data for generating addresses.

PEM

LR 8 Link register. Provides the branch target address for the Branch
Conditional to Link Register (bclrx) instruction, and can be used
to hold the logical address of the instruction that follows a branch
and link instruction, typically used for linking to subroutines.

PEM

UMMCR0 1

UMMCR1 1

UMMCR2 1

936,
940,
928

User monitor mode control registers (UMMCRn). Used to enable
various performance monitor exception functions. UMMCRs
provide user-level read access to MMCR registers.

2.1.5.9 &
11.3.2.1,

2.1.5.9.4 &
11.3.3.1,

2.1.5.9.6 &
11.3.4.1

UPMC1–
UPMC6 1

937, 938
941, 942
929, 930

User performance monitor counter registers (UPMCn). Used to
record the number of times a certain event has occurred. UPMCs
provide user-level read access to PMC registers.

2.1.5.9.9,
11.3.6.1

USIAR 1 939 User sampled instruction address register. Contains the effective
address of an instruction executing at or around the time that the
processor signals the performance monitor exception condition.
USIAR provides user-level read access to the SIAR.

2.1.5.9.11,
11.3.7.1

VR0–VR31 2 — Vector registers (VRn). Data source and destination registers for
all AltiVec instructions.

7.1.1.4

VRSAVE 2 256 Vector save/restore register. Defined by the AltiVec technology to
assist application and operating system software in saving and
restoring the architectural state across process context-switched
events. The register is maintained only by software to track live or
dead information on each AltiVec register.

7.1.1.5

MOTOROLA Chapter 1. Overview 1-39

MPC7451 Microprocessor: Architectural Implementation

VSCR 2 — Vector status and control register. A 32-bit vector register that is
read and written in a manner similar to the FPSCR.

7.1.1.4

XER 1 Indicates overflows and carries for integer operations.
Implementation Note—To emulate the POWER architecture
lscbx instruction, XER[16–23] are be read with mfspr[XER] and
written with mtspr[XER].

PEM

VEA

TBL,
TBU

(For Reading)

TBR 268,
TBR 269

Time base facility. Consists of two 32-bit registers, time base
lower and upper registers (TBL/TBU). TBL (TBR 268) and TBU
(TBR 269) can only be read from and not written to.TBU and TBL
can be read with the move from time base register (mftb)
instruction.
Implementation Note—Reading from SPR 284 or 285 using the
mftb instruction causes an illegal instruction exception.

PEM
2.1.4.1
2.3.5.1

OEA

BAMR 1, 3 951 Breakpoint address mask register. Used in conjunction with the
events that monitor IABR hits.

2.1.5.9.7,
11.3.5

DABR 4, 5 1013 Data address breakpoint register. Optional register implemented
in the MPC7451 and is used to cause a breakpoint exception if a
specified data address is encountered.

PEM

DAR 19 Data address register. After a DSI or alignment exception, DAR is
set to the effective address (EA) generated by the faulting
instruction.

PEM

DEC 22 Decrementer register. A 32-bit decrementer counter used with the
decrementer exception.
Implementation Note—In the MPC7451, DEC is decremented
and the time base increments at 1/4 of the system bus clock
frequency.

PEM

DSISR 18 DSI source register. Defines the cause of DSI and alignment
exceptions.

PEM

EAR 6, 7 282 External access register. Used with eciwx and ecowx. Note that
the EAR and the eciwx and ecowx instructions are optional in the
PowerPC architecture.

PEM

HID0 1, 7

HID1 1, 8
1008, 1009 Hardware implementation-dependent registers. Control various

functions, such as the power management features, and locking,
enabling, and invalidating the instruction and data caches. The
HID1 includes bits that reflects the state of PLL_CFG[0:3] (for the
MPC7447, MPC7457, and MPC7447A, PLL_CFG[0:4]) clock
signals and control other bus-related functions.

2.1.5.1,
2.1.5.2

IABR 1, 9 1010 Instruction address breakpoint register. Used to cause a
breakpoint exception if a specified instruction address is
encountered.

2.1.5.6

Table 1-1. Register Summary for MPC7451 (continued)

Name SPR Description
Reference /

Section

1-40 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

IBAT0U/L 10

IBAT1U/L 10

IBAT2U/L 10

IBAT3U/L 10

IBAT4U/L 10, 11

IBAT5U/L 10, 11

IBAT6U/L 10, 11

IBAT7U/L 10, 11

DBAT0U/L 12

DBAT1U/L 12

DBAT2U/L 12

DBAT3U/L 12

DBAT4U/L 11, 12

DBAT5U/L 11, 12

DBAT6U/L 11, 12

DBAT7U/L 11, 12

528, 529
530, 531
532, 533
534, 535
560, 561
562, 563
564, 565
566, 567

536, 537
538, 539
540, 541
542, 543
568, 569,
570, 571
572, 573
574, 575

Block-address translation (BAT) registers. The PowerPC OEA
includes an array of block address translation registers that can
be used to specify four blocks of instruction space and four blocks
of data space. The BAT registers are implemented in pairs: four
pairs of instruction BATs (IBAT0U–IBAT3U and IBAT0L–IBAT3L)
and four pairs of data BATs (DBAT0U–DBAT3U and
DBAT0L–DBAT3L).
Sixteen additional BAT registers have been added for the
MPC7455. These registers are enabled by setting
HID0[HIGH_BAT_EN]. When HID0[HIGH_BAT_EN] = 1, the 16
additional BAT registers, organized as four pairs of instruction
BAT registers(IBAT4U–IBAT7U paired with IBAT4L–IBAT7L) and
four pairs of data BAT registers (DBAT4U–DBAT7U paired with
DBAT4L–DBAT7L) are available. Thus, the MPC7455 can define
a total of 16 blocks implemented as 32 BAT registers.
Because BAT upper and lower words are loaded separately,
software must ensure that BAT translations are correct during the
time that both BAT entries are being loaded.
The MPC7451 implements IBAT[G]; however, attempting to
execute code from an IBAT area with G = 1 causes an ISI
exception.

PEM,
5.1.3

ICTC 1 1019 Instruction cache throttling control register. Has bits for enabling
instruction cache throttling and for controlling the interval at which
instructions are fetched. This controls overall junction
temperature.

2.1.5.8,
10.3

ICTRL 1, 7 1011 Instruction cache and interrupt control register. Used in
configuring interrupts and error reporting for the instruction and
data caches.

2.1.5.5.8

L2CR 1 1017 L2 cache control register. Includes bits for enabling parity
checking, setting the L2 cache size, and flushing and invalidating
the L2 cache.

2.1.5.5.1

L3CR 13 1018 L3 cache control register. Includes bits for enabling parity
checking, setting the L3-to-processor clock ratio, and identifying
the type of RAM used for the L3 cache implementation.

2.1.5.5.2

L3ITCR0 13

L3ITCR1 14

L3ITCR2 14

L3ITCR3 14

984
1001
1002
1003

L3 cache input timing control register. Includes bits for controlling
the input AC timing of the L3 cache interface.

2.1.5.5.4
2.1.5.5.5
2.1.5.5.6
2.1.5.5.7

L3OHCR 14 1000 L3 cache output hold control register. Includes bits for controlling
the output AC timing of the L3 cache interface of the MPC7457.

2.1.5.5.3

L3PM 13, 15 983 The L3 private memory register. Configures the base address of
the range of addresses that the L3 uses as private memory (not
cache).

2.1.5.5.10

LDSTCR 1, 16 1016 Load/store control register. Controls data L1 cache way-locking. 2.1.5.5.9

MMCR0 4,
MMCR1 4,
MMCR2 1

952,
956,
944

Monitor mode control registers (MMCRn). Enable various
performance monitor exception functions. UMMCR0–UMMCR2
provide user-level read access to these registers.

2.1.5.9.1, 11.3.2
2.1.5.9.3, 11.3.3
2.1.5.9.5, 11.3.4

Table 1-1. Register Summary for MPC7451 (continued)

Name SPR Description
Reference /

Section

MOTOROLA Chapter 1. Overview 1-41

MPC7451 Microprocessor: Architectural Implementation

MSR 7 — Machine state register. Defines the processor state. The MSR
can be modified by the mtmsr, sc, and rfi instructions. It can be
read by the mfmsr instruction. When an exception is taken, MSR
contents are saved to SRR1. See Section 4.2, “MPC7451
Exception Recognition and Priorities.” The following bits are
optional in the PowerPC architecture.
Note that setting MSR[EE] masks decrementer and external
interrupt exceptions and MPC7451-specific system
management, and performance monitor exceptions.

PEM,
2.1.3.3,

4.3

Bit Name Description

6 VEC AltiVec available. MPC7451 and AltiVec
technology specific; optional to the PowerPC
architecture.
0 AltiVec technology is disabled.
1 AltiVec technology is enabled.
Note: When a non-stream AltiVec instruction
accesses VRs or the VSCR when VEC = 0 an
AltiVec unavailable exception is generated. This
does not occur for data streaming instructions
(dst(t), dstst(t), and dss); the VRs and the
VSCR are available to data streaming
instructions even if VEC = 0. VRSAVE can be
accessed even if VECþ = 0.

13 POW Power management enable. MPC7451-specific
and optional to the PowerPC architecture.
0 Power management is disabled.
1 Power management is enabled. The

processor can enter a power-saving mode
determined by HID0[NAP,SLEEP] when
additional conditions are met. See Table 2-6.

29 PMM Performance monitor marked mode.
MPC7451-specific and optional to the PowerPC
architecture. See Chapter 11, “Performance
Monitor.”
0 Process is not a marked process.
1 Process is a marked process.

MSSCR0 1, 17 1014 Memory subsystem control register. Used to configure and
operate many aspects of the memory subsystem.

2.1.5.3

MSSSR0 1 1015 Memory subsystem status register. Used to configure and
operate the parity functions in the L2 and L3 caches for the
MPC7451.

2.1.5.4

PIR 1023 Processor identification register. Provided for system use.
MPC7451 does not change PIR contents.

PEM

PMC1–
PMC6 4

953, 954
957, 958
945, 946

Performance monitor counter registers (PMCn). Used to record
the number of times a certain event has occurred. UPMCs
provide user-level read access to these registers.

2.1.5.9.8,
11.3.6

Table 1-1. Register Summary for MPC7451 (continued)

Name SPR Description
Reference /

Section

1-42 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

PTEHI,
PTELO

981,
982

The PTEHI and PTELO registers are used by the tlbld and tlbli
instructions to create a TLB entry. When software table searching
is enabled (HID0[STEN] = 1), and a TLB miss exception occurs,
the bits of the page table entry (PTE) for this access are located
by software and saved in the PTE registers.

2.1.5.7.2,
5.5.5.1.2

PVR 287 Processor version register. Read-only register that identifies the
version (model) and revision level of the processor.

PEM,
2.1.4.1

SDAR,
USDAR

— Sampled data address register. The MPC7451 does not
implement the optional registers (SDAR or the user-level,
read-only USDAR register) defined by the PowerPC architecture.
Note that in previous processors the SDA and USDA registers
could be written to by boot code without causing an exception,
this is not the case in the MPC7451. A mtspr or mfspr SDAR or
USDAR instruction causes a program exception.

2.1.5.9.12

SDR1 18 25 Sample data register. Specifies the base address of the page
table entry group (PTEG) address used in virtual-to-physical
address translation.
Implementation Note—The SDR1 register has been modified
(with the SDR1[HTABEXT] and SDR1[HTMEXT] fields) for the
MPC7451 to support the extended 36-bit physical address (when
HID0[XAEN] = 1]).

PEM,
2.1.3.5,

5.5.1

SIAR 4 955 Sampled instruction address register. Contains the effective
address of an instruction executing at or around the time that the
processor signals the performance monitor exception condition.
USIAR provides user-level read access to the SIAR.

2.1.5.9.11
11.3.7

SPRG0–
SPRG3

SPRG4–
SPRG7 11

272–275

276-279

SPRGn. Provided for operating system use.

The SPRG4–7 provide additional registers to be used by system
software for software table searching.

PEM,

5.5.5.1.3

SR0–

SR15 19

— Segment registers (SRn). Note that the MPC7451 implements
separate instruction and data MMUs. It associates
architecture-defined SRs with the data MMU. It reflects SRs
values in separate, shadow SRs in the instruction MMU.

PEM

SRR0,
SRR1

26,
27

Machine status save/restore registers (SRRn). Used to save the
address of the instruction at which execution continues when rfi
executes at the end of an exception handler routine. SRR1 is
used to save machine status on exceptions and to restore
machine status when rfi executes.
Implementation Note—When a machine check exception
occurs, the MPC7451 sets one or more error bits in SRR1. Refer
to the individual exceptions for individual SRR1 bit settings.

PEM,
2.1.3.4

4.3

Table 1-1. Register Summary for MPC7451 (continued)

Name SPR Description
Reference /

Section

MOTOROLA Chapter 1. Overview 1-43

MPC7451 Microprocessor: Architectural Implementation

TBL,
TBU

(For Writing)

284,
285

Time base. A 64-bit structure (two 32-bit registers) that maintains
the time of day and operating interval timers. The TB consists of
two registers—time base upper (TBU) and time base lower (TBL).
The time base registers can be written to only by supervisor-level
software.
TBL (SPR 284) and TBU (SPR 285) can only be written to and not
read from. TBL and TBU can be written to, with the move to
special purpose register (mtspr) instruction.

Implementation Note—Reading from SPR 284 or 285 causes
an illegal instruction exception.

PEM
2.1.4.1
2.3.4.7

TLBMISS 1 980 The TLBMISS register is automatically loaded when software
searching is enabled (HID0[STEN] = 1) and a TLB miss exception
occurs. Its contents are used by the TLB miss exception handlers
(the software table search routines) to start the search process.

2.1.5.7.1
5.5.5.1.1

1 MPC7441-, MPC7445-, MPC7451-, MPC7455-specific register may not be supported on other processors that
implement the PowerPC architecture.

2 Register is defined by the AltiVec technology.
3 A context synchronizing instruction must follow the mtspr.
4 Defined as optional register in the PowerPC architecture.
5 A dssall and sync must precede the mtspr and then a sync and a context synchronizing instruction must follow. Note

that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
the register.

6 A dssall and sync must precede the mtspr and then a sync and a context synchronizing instruction must follow. Note
that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
register.

7 For specific synchronization requirements on the register see Table 2-33.
8 A sync and context synchronizing instruction must follow a mtspr.
9 A context synchronizing instruction must follow a mtspr.
10 A context synchronizing instruction must follow a mtspr.
11 MPC7445- and MPC7455-specific register.
12 A dssall and sync must precede a mtspr and then a sync and context synchronizing instruction must follow.Note that

if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing the
register.

13 MPC7451- and MPC7455-specific, not supported on the MPC7441 and MPC7445
14 MPC7457-specific, not supported on the MPC7441, MPC7445, MPC7447, MPC7447A, MPC7451, and MPC7455
15 A sync must precede a mtspr instruction and then a sync and context synchronizing instruction must follow. Note

that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
the register.

16 A dssall and sync must precede a mtspr and then a sync and context synchronizing instruction must follow.Note that
if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing the
register.

17 A dssall and sync must precede a mtspr instruction and then a sync and context synchronizing instruction must
follow. Note that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to
accessing the register.

18 A dssall and sync must precede a mtspr and then a sync and context synchronizing instruction must follow. Note
that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
the register.

Table 1-1. Register Summary for MPC7451 (continued)

Name SPR Description
Reference /

Section

1-44 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

1.3.2 Instruction Set

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly
simplifies instruction pipelining.

For more information, see Chapter 2, “Programming Model.”

1.3.2.1 PowerPC Instruction Set

The PowerPC instructions are divided into the following categories:

• Integer instructions—These include computational and logical instructions.

— Integer arithmetic instructions

— Integer compare instructions

— Integer logical instructions

— Integer rotate and shift instructions

• Floating-point instructions—These include floating-point computational
instructions, as well as instructions that affect the FPSCR.

— Floating-point arithmetic instructions

— Floating-point multiply/add instructions

— Floating-point rounding and conversion instructions

— Floating-point compare instructions

— Floating-point status and control instructions

• Load and store instructions—These include integer and floating-point load and store
instructions.

— Integer load and store instructions

— Integer load and store multiple instructions

— Floating-point load and store

— Primitives used to construct atomic memory operations (lwarx and stwcx.
instructions)

• Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— Branch and trap instructions

19 A dssall and sync must precede a mtsr or mtsrin instruction and then a sync and context synchronizing instruction
must follow. Note that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary
prior to accessing the register.

MOTOROLA Chapter 1. Overview 1-45

MPC7451 Microprocessor: Architectural Implementation

— Condition register logical instructions

• Processor control instructions—These instructions are used for synchronizing
memory accesses and management of caches, TLBs, and the segment registers.

— Move to/from SPR instructions

— Move to/from MSR

— Synchronize

— Instruction synchronize

— Order loads and stores

• Memory control instructions—These instructions provide control of caches, TLBs,
and SRs.

— Supervisor-level cache management instructions

— User-level cache instructions

— Segment register manipulation instructions

— Translation lookaside buffer management instructions

This grouping does not indicate the execution unit that executes a particular instruction or
group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision (one word) and double-precision (one double
word) floating-point operands. The PowerPC architecture uses instructions that are four
bytes long and word-aligned. It provides for byte, half-word, and word operand loads and
stores between memory and a set of 32 GPRs. It also provides for word and double-word
operand loads and stores between memory and a set of 32 floating-point registers (FPRs).

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
distinct instructions.

Processors that implement the PowerPC architecture follow the program flow when they
are in the normal execution state. However, the flow of instructions can be interrupted
directly by the execution of an instruction or by an asynchronous event. Either kind of
exception may cause one of several components of the system software to be invoked.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored in 32-bit implementations.

1.3.2.2 AltiVec Instruction Set

The AltiVec instructions are divided into the following categories:

1-46 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

• Vector integer arithmetic instructions—These include arithmetic, logical, compare,
rotate, and shift instructions.

• Vector floating-point arithmetic instructions—These include floating-point
arithmetic instructions, as well as a discussion on floating-point modes.

• Vector load and store instructions—These include load and store instructions for
vector registers. The AltiVec technology defines LRU and transient type instructions
that can be used to optimize memory accesses.

— LRU instructions. The AltiVec architecture specifies that the lvxl and stvxl
instructions differ from other AltiVec load and store instructions in that they
leave cache entries in a least-recently-used (LRU) state instead of a
most-recently-used state.

— Transient instructions. The AltiVec architecture describes a difference between
static and transient memory accesses. A static memory access should have some
reasonable degree of locality and be referenced several times or reused over
some reasonably long period of time. A transient memory reference has poor
locality and is likely to be referenced a very few times or over a very short period
of time.

The following instructions are interpreted to be transient:

– dstt and dststt (transient forms of the two data stream touch instructions)

– lvxl and stvxl

• Vector permutation and formatting instructions—These include pack, unpack,
merge, splat, permute, select, and shift instructions, described in Section 2.5.5,
“Vector Permutation and Formatting Instructions.”

• Processor control instructions—These instructions are used to read and write from
the AltiVec Status and Control Register., described in Section 2.3.4.6, “Processor
Control Instructions—UISA.”

• Memory control instructions—These instructions are used for managing of caches
(user level and supervisor level), described in Section 2.3.5.3, “Memory Control
Instructions—VEA.”

1.3.2.3 MPC7451 Microprocessor Instruction Set

The MPC7451 instruction set is defined as follows:

• The MPC7451 provides hardware support for all 32-bit PowerPC instructions.

• The MPC7451 implements the following instructions optional to the PowerPC
architecture:

— External Control In Word Indexed (eciwx)

— External Control Out Word Indexed (ecowx)

— Data Cache Block Allocate (dcba)

MOTOROLA Chapter 1. Overview 1-47

MPC7451 Microprocessor: Architectural Implementation

— Floating Select (fsel)

— Floating Reciprocal Estimate Single-Precision (fres)

— Floating Reciprocal Square Root Estimate (frsqrte)

— Store Floating-Point as Integer Word (stfiwx)

— Load Data TLB Entry (tlbld)

— Load Instruction TLB Entry (tlbli)

1.3.3 On-Chip Cache Implementation

The following subsections describe the PowerPC architecture’s treatment of cache in
general, and the MPC7451-specific implementation, respectively. A detailed description of
the MPC7451 cache implementation is provided in Chapter 3, “L1, L2, and L3 Cache
Operation.”

1.3.3.1 PowerPC Cache Model

The PowerPC architecture does not define hardware aspects of cache implementations. For
example, processors that implement the PowerPC architecture can have unified caches,
separate L1 instruction and data caches (Harvard architecture), or no cache at all. These
microprocessors control the following memory access modes on a page or block basis:

• Write-back/write-through mode

• Caching-inhibited/caching-allowed mode

• Memory coherency required/memory coherency not required mode

The caches are physically addressed, and the data cache can operate in either write-back or
write-through mode as specified by the PowerPC architecture.

The PowerPC architecture defines the term ‘cache block’ as the cacheable unit. The VEA
and OEA define cache management instructions a programmer can use to affect cache
contents.

1.3.3.2 MPC7451 Microprocessor Cache Implementation

The MPC7451 cache implementation is described in Section 1.2.4, “On-Chip L1
Instruction and Data Caches,” Section 1.2.5, “L2 Cache Implementation,” and
Section 1.2.6, “L3 Cache Implementation.” The BPU also contains a 128-entry BTIC that
provides immediate access to cached target instructions. For more information, see
Section 1.2.2.2, “Branch Processing Unit (BPU).”

1-48 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

1.3.4 Exception Model

The following sections describe the PowerPC exception model and the MPC7451
implementation. A detailed description of the MPC7451 exception model is provided in
Chapter 4, “Exceptions.”

1.3.4.1 PowerPC Exception Model

The OEA portion of the PowerPC architecture defines the mechanism by which processors
that implement the PowerPC architecture invoke exceptions. Exception conditions may be
defined at other levels of the architecture. For example, the UISA defines conditions that
may cause floating-point exceptions; the OEA defines the mechanism by which the
exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of unusual conditions arising in the execution of instructions and from external
signals, bus errors, or various internal conditions. When exceptions occur, information
about the state of the processor is saved to certain registers and the processor begins
execution at an address (exception vector) predetermined for each exception. Processing of
exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, often a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the floating-point status and control register
(FPSCR). Also, software can explicitly enable or disable some exception conditions.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an
instruction-caused exception is recognized, any unexecuted instructions that appear earlier
in the instruction stream, including any that have not yet entered the execute state, are
required to complete before the exception is taken. In addition, if a single instruction
encounters multiple exception conditions, those exceptions are taken and handled
sequentially. Likewise, exceptions that are asynchronous and precise are recognized when
they occur, but are not handled until all instructions currently in the execute stage
successfully complete execution and report their results.

To prevent loss of state information, exception handlers must save the information stored
in the machine status save/restore registers, SRR0 and SRR1, soon after the exception is
taken to prevent this information from being lost due to another exception event. Because
exceptions can occur while an exception handler routine is executing, multiple exceptions
can become nested. It is the exception handler’s responsibility to save the necessary state
information if control is to return to the excepting program.

In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the

MOTOROLA Chapter 1. Overview 1-49

MPC7451 Microprocessor: Architectural Implementation

next exception condition is encountered. Recognizing and handling exception conditions
sequentially guarantees that the machine state is recoverable and processing can resume
without losing instruction results.

The following terms are used to describe the stages of exception processing: recognition,
taken, and handling.

• Recognition—Exception recognition occurs when the condition that can cause an
exception is identified by the processor.

• Taken—An exception is said to be taken when control of instruction execution is
passed to the exception handler; that is, the context is saved and the instruction at the
appropriate vector offset is fetched and the exception handler routine begins
executing in supervisor mode.

• Handling—Exception handling is performed by the software at the appropriate
vector offset. Exception handling is begun in supervisor mode.

The term ‘interrupt’ is used to describe the external interrupt, the system management
interrupt, and sometimes the asynchronous exceptions. Note that the PowerPC architecture
uses the word ‘exception’ to refer to IEEE-defined floating-point exception conditions that
may cause a program exception to be taken; see Section 4.6.7, “Program Exception
(0x00700).” The occurrence of these IEEE exceptions may or may not cause an exception
to be taken. IEEE-defined exceptions are referred to as IEEE floating-point exceptions or
floating-point exceptions.

1.3.4.2 MPC7451 Microprocessor Exceptions

As specified by the PowerPC architecture, exceptions can be either precise or imprecise and
either synchronous or asynchronous. Asynchronous exceptions are caused by events
external to the processor’s execution; synchronous exceptions are caused by instructions.

The types of exceptions are shown in Table 1-2. Note that all exceptions except for the
performance monitor, AltiVec unavailable, instruction address breakpoint, system
management, AltiVec assist, and the three software table search exceptions are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual.

The exception classifications are discussed in greater detail in Section 4.2, “MPC7451
Exception Recognition and Priorities.” For a better understanding of how the MPC7451

Table 1-2. MPC7451 Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/Imprecise Exception Types

Asynchronous, nonmaskable Imprecise System reset, machine check

Asynchronous, maskable Precise External interrupt, system management interrupt,
decrementer exception, performance monitor exception

Synchronous Precise Instruction-caused exceptions

1-50 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

implements precise exceptions, see Chapter 6, “Instruction Timing.” Table 1-3 lists the
exceptions implemented in the MPC7451, and conditions that cause them. Table 1-3 also
notes the MPC7451-specific exceptions.

The three software table search exceptions support software page table searching and are
enabled by setting HID0[STEN]. See Section 4.6.15, “TLB Miss Exceptions,” and
Chapter 5, “Memory Management.”

Table 1-3. Exceptions and Conditions

Exception Type Vector Offset Causing Conditions

Reserved 0x00000 —

System reset 0x00100 Assertion of either HRESET or SRESET or at power-on reset

Machine check 0x00200 Assertion of TEA during a data bus transaction, assertion of MCP, an address
bus parity error on MPX bus, a data bus parity error on MPXbus, an L1
instruction cache error, and L1 data cache error, a memory subsystem detected
error including the following:
 • L2 data parity error
 • L2 cache tag parity error
 • L3 SRAM error
 • L3 tag parity errors.
MSR[ME] must be set.

DSI 0x00300 As specified in the PowerPC architecture. Also includes the following:
 • A hardware table search due to a TLB miss on load, store, or cache

operations results in a page fault.
 • Any load or store to a direct-store segment (SR[T] = 1).
 • A lwarx or stwcx. instruction to memory with cache-inhibited or

write-through memory/cache access attributes.

ISI 0x00400 As specified in the PowerPC architecture

External interrupt 0x00500 MSR[EE] = 1 and INT is asserted

Alignment 0x00600 • A floating-point load/store, stmw, stwcx., lmw, lwarx, eciwx, or ecowx
instruction operand is not word-aligned.

 • A multiple/string load/store operation is attempted in little-endian mode
 • An operand of a dcbz instruction is on a page that is write-through or

cache-inhibited for a virtual mode access.
 • An attempt to execute a dcbz instruction occurs when the cache is disabled

or locked.

Program 0x00700 As specified in the PowerPC architecture

Floating-point
unavailable

0x00800 As specified in the PowerPC architecture

Decrementer 0x00900 As defined by the PowerPC architecture, when the msb of the DEC register
changes from 0 to 1 and MSR[EE] = 1.

Reserved 0x00A00–00BFF —

System call 0x00C00 Execution of the System Call (sc) instruction

Trace 0x00D00 MSR[SE] =1 or a branch instruction is completing and MSR[BE] =1. The
MPC7451 operates as specified in the OEA by taking this exception on an
isync.

MOTOROLA Chapter 1. Overview 1-51

MPC7451 Microprocessor: Architectural Implementation

1.3.5 Memory Management

The following subsections describe the memory management features of the PowerPC
architecture, and the MPC7451 implementation, respectively.

1.3.5.1 PowerPC Memory Management Model

The primary function of the MMU in a processor that implement the PowerPC architecture
is the translation of logical (effective) addresses to physical addresses (referred to as real
addresses in the architecture specification) for memory accesses and I/O accesses (I/O
accesses are assumed to be memory-mapped). In addition, the MMU provides access

Reserved 0x00E00 The MPC7451 does not generate an exception to this vector. Other processors
that implement the PowerPC architecture may use this vector for floating-point
assist exceptions.

Reserved 0x00E10–00EFF —

Performance
monitor

0x00F00 The limit specified in PMCn is met and MMCR0[ENINT] = 1 (MPC7451-specific)

AltiVec
unavailable

0x00F20 Occurs due to an attempt to execute any non-streaming AltiVec instruction
when MSR[VEC] = 0. This exception is not taken for data streaming instructions
(dstx, dss, or dssall). (MPC7451-specific)

ITLB miss 0x01000 An instruction translation miss exception is caused when HID0[STEN] = 1 and
the effective address for an instruction fetch cannot be translated by the ITLB
(MPC7451-specific).

DTLB
miss-on-load

0x01100 A data load translation miss exception is caused when HID0[STEN] = 1 and the
effective address for a data load operation cannot be translated by the DTLB
(MPC7451-specific).

DTLB
miss-on-store

0x01200 A data store translation miss exception is caused when HID0[STEN] = 1 and
the effective address for a data store operation cannot be translated by the
DTLB, or when a DTLB hit occurs, and the changed bit in the PTE must be set
due to a data store operation (MPC7451-specific).

Instruction
address

breakpoint

0x01300 IABR[0–29] matches EA[0–29] of the next instruction to complete and
IABR[BE] = 1 (MPC7451-specific).

System
management

interrupt

0x01400 MSR[EE] = 1 and SMI is asserted (MPC7451-specific).

Reserved 0x01500–015FF —

AltiVec assist 0x01600 This MPC7451-specific exception supports denormalization detection in Java
mode as specified in the AltiVec Technology Programming Environments
Manual.

Reserved 0x01700–02FFF —

Table 1-3. Exceptions and Conditions (continued)

Exception Type Vector Offset Causing Conditions

1-52 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

protection on a segment, block, or page basis. Note that the MPC7451 does not implement
the optional direct-store facility.

Two general types of memory accesses generated by processors that implement the
PowerPC architecture require address translation—instruction accesses and data accesses
generated by load and store instructions. In addition, the addresses specified by cache
instructions and the optional external control instructions also require translation.
Generally, the address translation mechanism is defined in terms of the segment descriptors
and page tables that the processors use to locate the effective-to-physical address mapping
for memory accesses. The segment information translates the effective address to an
interim virtual address, and the page table information translates the virtual address to a
physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as
on-chip segment registers on 32-bit implementations (such as the MPC7451). In addition,
two translation lookaside buffers (TLBs) are implemented on the MPC7451 to keep
recently used page address translations on-chip. Although the PowerPC OEA describes one
MMU (conceptually), the MPC7451 hardware maintains separate TLBs and table search
resources for instruction and data accesses that can be performed independently (and
simultaneously). Therefore, the MPC7451 is described as having two MMUs, one for
instruction accesses (IMMU) and one for data accesses (DMMU).

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as
pairs of BAT registers that are accessible as supervisor special-purpose registers (SPRs).
There are separate instruction and data BAT mechanisms. In the MPC7451, they reside in
the instruction and data MMUs, respectively.

The MMUs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Section 4.3, “Exception Processing,”
describes how the MSR controls critical MMU functionality.

1.3.5.2 MPC7451 Microprocessor Memory Management
Implementation

The MPC7451 implements separate MMUs for instructions and data. It maintains a copy
of the segment registers in the instruction MMU; however, read and write accesses to the
segment registers (mfsr and mtsr) are handled through the segment registers in the data
MMU. The MPC7451 MMU is described in Section 1.2.3, “Memory Management Units
(MMUs).”

The MPC7451 implements the memory management specification of the PowerPC OEA
for 32-bit implementations but adds capability for supporting 36-bit physical addressing.
Thus, it provides 4 Gbytes of physical address space accessible to supervisor and user

MOTOROLA Chapter 1. Overview 1-53

MPC7451 Microprocessor: Architectural Implementation

programs, with a 4-Kbyte page size and 256-Mbyte segment size. In addition, the
MPC7451 MMUs use an interim virtual address (52 bits) and hashed page tables in the
generation of 32- or 36-bit physical addresses (depending on the setting of HID0[XAEN]).
Processors that implement the PowerPC architecture also have a BAT mechanism for
mapping large blocks of memory. Block range from 128 Kbytes to 256 Mbytes and are
software programmable.

The MPC7451 provides table search operations performed in hardware. The 52-bit virtual
address is formed and the MMU attempts to fetch the PTE that contains the physical address
from the appropriate TLB on-chip. If the translation is not found in either the BAT array or
in a TLB (that is, a TLB miss occurs), the hardware performs a table search operation (using
a hashing function) to search for the PTE. Hardware table searching is the default mode for
the MPC7451; however, if HID0[STEN] = 1, a software table search is performed.

The MPC7451 also provides support for table search operations performed in software (if
HID0[STEN] is set). In this case, the TLBMISS register saves the effective address of the
access that requires a software table search. The PTEHI and PTELO registers and the tlbli
and tlbld instructions are used in reloading the TLBs during a software table search
operation. The following exceptions support software table searching if HID0[STEN] is set
and a TLB miss occurs:

• For an instruction fetch, an ITLB miss exception.

• For a data load, an DTLB miss-on-load exception.

• For a data store, an DTLB miss-on-store exception.

The MPC7451 implements the optional TLB invalidate entry (tlbie) and TLB synchronize
(tlbsync) instructions that can be used to invalidate TLB entries. For more information on
the tlbie and tlbsync instructions, see Section 5.4.4.2, “TLB Invalidation.”

1.3.6 Instruction Timing

This section describes how the MPC7451 microprocessor performs operations defined by
instructions and how it reports the results of instruction execution. The MPC7451 design
minimizes average instruction execution latency, which is the number of clock cycles it
takes to fetch, decode, dispatch, issue, and execute instructions and make results available
for subsequent instructions. Some instructions, such as loads and stores, access memory
and require additional clock cycles between the execute phase and the write-back phase.
Latencies depend on whether an access is to cacheable or noncacheable memory, whether
it hits in the L1, L2, or L3 cache, whether a cache access generates a write back to memory,
whether the access causes a snoop hit from another device that generates additional activity,
and other conditions that affect memory accesses.

To improve throughput, the MPC7451 implements pipelining, superscalar instruction issue,
branch folding, removal of fall-through branches, three-level speculative branch handling,
and multiple execution units that operate independently and in parallel.

1-54 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

As an instruction passes from stage to stage, the subsequent instruction can follow through
the stages as the preceding instruction vacates them, allowing several instructions to be
processed simultaneously. Although it may take several cycles for an instruction to pass
through all the stages, when the pipeline is full, one instruction can complete its work on
every clock cycle. Figure 1-9 represents a generic four-stage pipelined execution unit,
which when filled has a throughput of one instruction per clock cycle.

Figure 1-9. Pipelined Execution Unit

Figure 1-10 shows the entire path that instructions take through the fetch1, fetch2,
decode/dispatch, execute, issue, complete, and write-back stages, which is considered the
MPC7451’s master pipeline. The FPU, LSU, IU2, VIU2, VFPU, and VPU are
multiple-stage pipelines.

The MPC7451 contains the following execution units:

• Branch processing unit (BPU)

• Three integer unit 1s (IU1a, IU1b, and IU1c)—execute all integer instructions
except multiply, divide, and move to/from SPR instructions.

• Integer unit 2 (IU2)—executes miscellaneous instructions including the CR logical
operations, integer multiplication and division instructions, and move to/from
special-purpose register instructions

• 64-bit floating-point unit (FPU)

• Load/store unit (LSU)

• The AltiVec unit contains the following four independent execution units for vector
computations; the latencies are shown in Table 7-12

— AltiVec permute unit (VPU)

— AltiVec integer unit 1 (VIU1)

— Vector integer unit 2 (VIU2)

Clock 0

Clock 1

Clock 2

Clock 3

Instruction A — —

Instruction B

Instruction C

Instruction D

Instruction A

Instruction B

Instruction C

—

Instruction A

Instruction B

E0 E1 E2

—

E3

—

—

Instruction A

Instruction E Instruction D Instruction C Instruction B

Full pipeline

Clock 4
Full pipeline

MOTOROLA Chapter 1. Overview 1-55

MPC7451 Microprocessor: Architectural Implementation

— Vector floating-point unit (VFPU)

A maximum of two AltiVec instructions can be issued in order to any combination
of AltiVec execution units per clock cycle. Moreover, the VIU2, VFPU, and VPU
are pipelined, so they can operate on multiple instructions.

The MPC7451 can complete as many as three instructions on each clock cycle. In general,
the MPC7451 processes instructions in seven stages—fetch1, fetch2, decode/dispatch,
issue, execute, complete, and writeback as shown in Figure 1-10. Note that the pipeline
example in Figure 6-1 is similar to the four-stage VFPU pipeline in Figure 1-10.

Figure 1-10. Superscalar/Pipeline Diagram

The instruction pipeline stages are described as follows:

Complete

Decode/Dispatch

Execute Stage

Maximum three-instruction dispatch
per clock cycle

Maximum three-instruction completion
per clock cycle

Maximum four-instruction fetch
per clock cycle

BPU

FPU-E2 LSU-E0

LSU-E1

VFPU-E3VIU1 VIU2-E3

VFPU-E2

VFPU-E1

VPU-E0

AltiVec Units

VFPU-E0

VIU2-E2

VIU2-E1

FPU-E3

FPU-E4 IU1

FPU-E1

FPU-E0

LSU-E2VPU-E1 IU2-E2

IU2-E1

IU2-E0

VIU2-E0

VR Issue GPR Issue
Queue

FPR Issue
QueueQueue

Fetch1

Fetch2

(VIQ) (FIQ) (GIQ)

Write-Back

FinishFinish Finish

1-56 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor: Architectural Implementation

• Instruction fetch—Includes the clock cycles necessary to request an instruction and
the time the memory system takes to respond to the request. Instructions retrieved
are latched into the instruction queue (IQ) for subsequent consideration by the
dispatcher.

Instruction fetch timing depends on many variables, such as whether an instruction
is in the branch target instruction cache (BTIC), the on-chip instruction cache, or the
L2 or L3 cache. Those factors increase when it is necessary to fetch instructions
from system memory and include the processor-to-bus clock ratio, the amount of bus
traffic, and whether any cache coherency operations are required.

• The decode/dispatch stage fully decodes each instruction; most instructions are
dispatched to the issue queues (branch, isync, rfi, and sc instructions do not go to
issue queues).

• The three issue queues, FIQ, VIQ, and GIQ, can accept as many as one, two, and
three instructions, respectively, in a cycle. Instruction dispatch requires the
following:

— Instructions are dispatched only from the three lowest IQ entries—IQ0, IQ1, and
IQ2.

— A maximum of three instructions can be dispatched to the issue queues per clock
cycle.

— Space must be available in the CQ for an instruction to dispatch (this includes
instructions that are assigned a space in the CQ but not an issue queue).

• The issue stage reads source operands from rename registers and register files and
determines when instructions are latched into the execution unit reservation stations.
The GIQ, FIQ, and VIQ (AltiVec) issue queues have the following similarities:

– Operand lookup in the GPRs, FPRs, and VRs, and their rename registers.

– Issue queues issue instructions to the proper execution units.

– Each issue queue holds twice as many instructions as can be dispatched to it
in one cycle; the GIQ has six entries, the VIQ has four, and the FIQ has two.

The three issue queues are described as follows:

— The GIQ accepts as many as three instructions from the dispatch unit each cycle.
IU1, IU2, and all LSU instructions (including floating-point and AltiVec loads
and stores) are dispatched to the GIQ.

— Instructions can be issued out-of-order from the bottom three GIQ entries
(GIQ2–GIQ0). An instruction in GIQ1 destined for an IU1 does not have to wait
for an instruction in GIQ0 that is stalled behind a long-latency integer divide
instruction in the IU2.

— The VIQ accepts as many as two instructions from the dispatch unit each cycle.
All AltiVec instructions (other than load, store, and vector touch instructions) are
dispatched to the VIQ. As many as two instructions can be issued to the four

MOTOROLA Chapter 1. Overview 1-57

MPC7451 Microprocessor: Architectural Implementation

AltiVec execution units, but unlike the GIQ, instructions in the VIQ cannot be
issued out of order.

— The FIQ can accept one instruction from the dispatch unit per clock cycle. It
looks at the first instruction in its queue and determines if the instruction can be
issued to the FPU in this cycle.

• The execute stage accepts instructions from its issue queue when the appropriate
reservation stations are not busy. In this stage, the operands assigned to the execution
stage from the issue stage are latched.

The execution unit executes the instruction (perhaps over multiple cycles), writes
results on its result bus, and notifies the CQ when the instruction finishes. The
execution unit reports any exceptions to the completion stage. Instruction-generated
exceptions are not taken until the excepting instruction is next to retire.

Most integer instructions have a 1-cycle latency, so results of these instructions are
available 1 clock cycle after an instruction enters the execution unit. The FPU, LSU,
IU2, VIU2, VFPU, and VPU units are pipelined, as shown in Figure 7-3.

Note that AltiVec computational instructions are executed in the four independent,
pipelined AltiVec execution units. The VPU has a two-stage pipeline, the VIU1 has
a one-stage pipeline, and the VIU2 and VFPU have four-stage pipelines. As many
as 10 AltiVec instructions can be executing concurrently.

• The complete and write-back stages maintain the correct architectural machine state
and commit results to the architected registers in the proper order. If completion
logic detects an instruction containing an exception status, all following instructions
are cancelled, their execution results in rename buffers are discarded, and the correct
instruction stream is fetched.

The complete stage ends when the instruction is retired. Three instructions can be
retired per clock cycle. If no dependencies exist, as many as three instructions are
retired in program order. Section 6.7.4, “Completion Unit Resource Requirements,”
describes completion dependencies.

The write-back stage occurs in the clock cycle after the instruction is retired.

1.3.7 AltiVec Implementation

The MPC7451 implements the AltiVec registers and instruction set as they are described
by the AltiVec Technology Programming Environments Manual. Two additional
implementation specific exceptions have been added; they are as follows:

• The AltiVec assist exception which is used in handling denormalized numbers in
Java mode.

• An alignment exception for cache-inhibited AltiVec loads and stores and
write-through stores that execute when in 60x bus mode

1-58 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Differences between MPC7451 and MPC7400/ MPC7410

Both exceptions are described fully in Chapter 4, “Exceptions.” Also, the default setting for
VSCR[NJ] bit has changed from being non-Java compliant (VSCR[NJ] = 1) in the
MPC7400/7410 to having a default setting of Java–compliant (VSCR[NJ] = 0) in the
MPC7451. The AltiVec implementation is described fully in Chapter 7, “AltiVec
Technology Implementation.”

1.4 Differences between MPC7451 and MPC7400/
MPC7410

Table 1-4 compares the key features of the MPC7451 with the earlier MPC7400/MPC7410.
To achieve a higher frequency, the number of logic levels per clock cycle is reduced. In
addition, the pipeline of the MPC7451 is extended (compared to the MPC7400), while
maintaining the same level of performance (in terms of number of instructions executed per
clock cycle. Table 1-4 shows these differences.

Table 1-4. MPC7451 and MPC7400/MPC7410 Feature Comparison

Microarchitectural Feature MPC7451 MPC7400/MPC7410

Basic Pipeline Functions

Logic inversions per cycle 18 28

Pipeline stages up to execute 5 3

Total pipeline stages (minimum) 7 4

Pipeline maximum instruction throughput 3 + branch 2 + branch

Pipeline Resources

Instruction queue size 12 6

Completion queue size 16 8

Renames (GPR, FPR, VR) 16, 16, 16 6, 6, 6

Maximum Execution Throughput

Short-latency integer units (IU1s) 3 2

Vector units 2 (any 2 of 4 units) 2 (permute/integer)

Floating-point unit 1 1

Out-of-Order Window Size in Execution Queues

Short-latency integer units 1 entry * 3 queues 1 entry * 2 queues

Vector units In order, 4 queues In order, 2 queues

Floating-point unit In order In order

MOTOROLA Chapter 1. Overview 1-59

Differences between MPC7451 and MPC7400/ MPC7410

Branch Processing Resources

Prediction structures BTIC, BHT, link stack BTIC, BHT

BTIC size, associativity 128-entry, 4-way 64-entry, 4-way

BHT size 2K-entry 512-entry

Link stack depth 8 none

Unresolved branches supported 3 2

Branch taken penalty (BTIC hit) 1 0

Minimum misprediction penalty 6 4

Execution Unit Timings (Latency-Throughput)

Aligned load (integer, float, vector) 3-1, 4-1, 3-1 2-1, 2-1, 2-1

Misaligned load (integer, float, vector) 4-2, 5-2, 4-2 3-2, 3-2, 3-2

L1 miss, L2 hit latency 9—data access
13—instruction access

9 (11) 1

IU1s (adds, subs, shifts, rotates, compares, logicals) 1-1 1-1

Integer multiply (32 * 8, 32 * 16, 32 * 32) 3-1, 3-1, 4-2 2-1, 3-2, 5-4

Scalar floating-point 5-1 3-1

VIU1 (vector integer unit 1—shorter latency vector integer) 1-1 1-1

VIU2 (vector integer unit 2—longer latency vector integer) 4-1 3-1

VFPU (vector floating-point) 4-1 4-1

VPU (vector permute) 2-1 1-1

MMUs

MMUs (instruction and data) 128-entry, 2-way 128-entry, 2-way

Table search mechanism Hardware and software Hardware

L1 Instruction Cache/Date Cache Features

Size 32K/32K 32K/32K

Associativity 8-way 8-way

Locking granularity/style 4-Kbyte/way Full cache

Parity on instruction cache Word None

Parity on data cache Byte None

Number of data cache misses (load/store) 5/1 8 (any combination)

Data stream touch engines 4 streams 4 streams

Table 1-4. MPC7451 and MPC7400/MPC7410 Feature Comparison (continued)

Microarchitectural Feature MPC7451 MPC7400/MPC7410

1-60 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Differences between MPC7451 and MPC7400/ MPC7410

On-Chip L2 Cache Features

Cache level L2 Tags and controller only
(see off-chip cache
support below)Size/associativity 256-Kbytes/8-way

Access width 256 bits

Number of 32-byte sectors/line 2

Parity Byte

Off-Chip Cache Support

Cache level L3 L2

On-chip tag logical size 1 Mbyte, 2 Mbytes 512 Kbytes, 1 Mbyte, 2
Mbytes

Associativity 8-way 2-way

Number of 32-byte sectors/line 2, 4 1, 2, 4

Off-chip data SRAM support MSUG2 DDR, LW, PB2 LW, PB2, PB3

Data path width 64 64

Private memory SRAM sizes 1 Mbyte, 2 Mbytes 512 Kbyte, 1 Mbyte, 2
Mbytes

Parity Byte Byte

1 Numbers in parentheses are for 2:1 SRAM.

Table 1-4. MPC7451 and MPC7400/MPC7410 Feature Comparison (continued)

Microarchitectural Feature MPC7451 MPC7400/MPC7410

MOTOROLA Chapter 1. Overview 1-61

Differences Between MPC7441/MPC7451 and MPC7445/MPC7455

1.5 Differences Between MPC7441/MPC7451 and
MPC7445/MPC7455

Table 1-4 compares the key differences between the MPC7451 and the MPC7455. The
table provides the section number where the details of the differences are discussed.
Differences between the two processors are defined through-out the manual. Table 1-4
provides a high-level overview to the differences. Table 1-4 shows these differences.

Table 1-5. MPC7451 and MPC7455 Differences

Microarchitectural
Feature

MPC7441/MPC7451 MPC7445/MPC7455 Section

MMU

Block address
translation (BAT)
registers
—Maps regions of

memory

16 BAT registers 32 BATs
—8 additional instruction and

8 data BAT registers
IBAT4U
IBAT4L
IBAT5U
IBAT5L
IBAT6U
IBAT6L
IBAT7U
IBAT7L
DBAT4U
DBAT4L
DBAT5U
DBAT5L
DBAT6U
DBAT6L
DBAT7U
DBAT7L

1.1.3
5.3.1

SPRGs
—Used by system

software for
software table
searches

4 SPRs 8 SPRs
—4 additional SPRs registers

SPRG4–SPRG7

5.5.5.1.3

Additional HID0 bits HID0[HIGH_BAT_EN] = 1,
enables additional BATs

5.3.1

Block size range =
128 Kbytes to 256 Mbytes

HID0[XBSEN] = 1,
increases block size,
Block size range =

128 Kbytes to 4 Gbytes

5.3.2.1

1-62 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Differences Between MPC7441/MPC7451 and MPC7447/MPC7457

1.6 Differences Between MPC7441/MPC7451 and
MPC7447/MPC7457

Table 1-4 compares the key differences between the MPC7451 and the MPC7455. The
table provides the section number where the details of the differences are discussed.
Differences between the two processors are defined through-out the manual. Table 1-4
provides a high-level overview of the differences. Table 1-4 shows these differences.

Table 1-6. MPC7451 and MPC7457 Differences

Microarchitectural
Feature

MPC7441/MPC7451 MPC7447/MPC7457 Section

L2 Cache

Cache level L2 L2 3.6

Size/associativity 256-Kbyte/8-way 512-Kbyte/8-way 3.6.1

Access width 256 bits 256 bits 3.6

Number of 32-byte
sectors/ line

2 2 3.6

Parity Byte Byte 3.6.3.1.2

Off-Chip Cache Support 1

Cache level L3 L3 3.7

On-chip tag logical size 1 Mbyte, 2 Mbytes 1 Mbyte, 2 Mbytes, 4Mbytes 3.7.3.2

Associativity 8-way 8-way 3.7

Number of 32 byte
sectors/line

2 2 3.7

Off-chip data SRAM
support

MSUG2 DDR, LW, PB2 MSUG2 DDR, LW, PB2 3.7.3.9

Data path width 64 bits 64 bits

Private memory SRAM
sizes

1 Mbyte, 2 Mbyte 1 Mbyte, 2 Mbyte, 4 Mbyte 3.7.3.2

Parity Byte Byte 3.7.3.5

L3 Bus Ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1,
6:1

2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1,
6:1, 6.5:1, 7:1, 7.5:1, 8:1

2.1.5.5.2

Signals

L3 Address Signals L3_ADDR[0:17] L3_ADDR[0:18] 8.4.1.1

PLL Configuration
Signals

PLL_CFG[0:3] PLL_CFG[0:4] 2.1.5.2

MOTOROLA Chapter 1. Overview 1-63

Differences Between MPC7447 and the MPC7447A

1.7 Differences Between MPC7447 and the
MPC7447A

Table 7 compares the key features of the MPC7447A with the key features of the earlier
MPC7445 and MPC7447. All are based on the MPC7450 RISC microprocessor and are
very similar architecturally. The MPC7447A is identical to the MPC7447 but includes the
DFS and temperature diode features.

System Interface

System Bus Multipliers 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6,
6.5, 7, 7.5, 8

2, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5,
9, 9.5, 10, 10.5, 11, 11.5, 12,
12.5, 13, 13.5, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25,
28, 32

2.1.5.2

1 L3 cache interface is not supported on the MPC7441 and MPC7447

Table 7. Microarchitecture Comparison

Microarchitectural Specs MPC7447A MPC7447 Section

Basic Pipeline Functions 6.2

Logic inversions per cycle 18

Pipeline stages up to execute 5

Total pipeline stages (minimum) 7

Pipeline maximum instruction throughput 3 + branch

Pipeline Resources 6.3

Instruction buffer size 12

Completion buffer size 16

Renames (integer, float, vector) 16, 16, 16

Maximum Execution Throughput 6.4

SFX 3

Vector 2 (any 2 of 4 units)

Scalar floating-point 1

Out-of-Order Window Size in Execution Queues 6.4

SFX integer units 1 entry × 3 queues

Vector units In order, 4 queues

Scalar floating-point unit In order

Table 1-6. MPC7451 and MPC7457 Differences

Microarchitectural
Feature

MPC7441/MPC7451 MPC7447/MPC7457 Section

1-64 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Differences Between MPC7447 and the MPC7447A

Branch Processing Resources 6.6

Prediction structures BTIC, BHT, link stack

BTIC size, associativity 128-entry, 4-way

BHT size 2K-entry

Link stack depth 8

Unresolved branches supported 3

Branch taken penalty (BTIC hit) 1

Minimum misprediction penalty 6

Execution Unit Timings (Latency-Throughput) 6.4

Aligned load (integer, float, vector) 3-1, 4-1, 3-1

Misaligned load (integer, float, vector) 4-2, 5-2, 4-2

L1 miss, L2 hit latency 9 data/13 instruction

SFX (aDd Sub, Shift, Rot, Cmp, logicals) 1-1

Integer multiply (32 × 8, 32 × 16, 32 × 32) 3-1, 3-1, 4-2

Scalar float 5-1

VSFX (vector simple) 1-1

VCFX (vector complex) 4-1

VFPU (vector float) 4-1

VPER (vector permute) 2-1

MMUs

TLBs (instruction and data) 128-entry, 2-way 5.1

Tablewalk mechanism Hardware + software 5.5.2

Instruction BATs/Data BATs 8/8 8/8 5.3

L1 I Cache/D Cache Features 3.2

Size 32K/32K

Associativity 8-way

Locking granularity Way

Parity on I cache Word

Parity on D cache Byte

Number of D cache misses (load/store) 5/1

Data stream touch engines 4 streams

On-Chip Cache Features

Table 7. Microarchitecture Comparison (continued)

Microarchitectural Specs MPC7447A MPC7447 Section

MOTOROLA Chapter 1. Overview 1-65

User’s Manual Revision History

1.8 User’s Manual Revision History
A list of the major differences between revisions of the MPC7450 RISC Microprocessor
Family User’s Manual, is provided in Appendix D, “User’s Manual Revision History.”

Cache level L2 3.6

Size/associativity 512-Kbyte/8-way

Access width 256 bits

Number of 32-byte sectors/line 2

Parity Byte

Thermal Control

Dynamic frequency switching (DFS) Yes No 10.2.5

Thermal diode Yes No 10.4

Table 7. Microarchitecture Comparison (continued)

Microarchitectural Specs MPC7447A MPC7447 Section

1-66 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

User’s Manual Revision History

MOTOROLA Chapter 2. Programming Model 2-1

Chapter 2
Programming Model
This chapter describes the MPC7451 programming model, emphasizing those features
specific to the MPC7451 processor and summarizing those that are common to processors
that implement the PowerPC architecture. It consists of three major sections, which
describe the following:

• Registers implemented in the MPC7451

• Operand conventions

• The MPC7451 instruction set

For detailed information about architecture-defined features, see the Programming
Environments Manual and the AltiVec Technology Programming Environments Manual.

AltiVec Technology and the Programming Model

AltiVec programming model features are described as follows:

• Thirty-four additional registers—32 VRs, VRSAVE, and VSCR. See Section 7.1,
“AltiVec Technology and the Programming Model.”

2.1 MPC7451 Processor Register Set
This section describes the registers implemented in the MPC7451. It includes an overview
of registers defined by the PowerPC architecture and the AltiVec technology, highlighting
differences in how these registers are implemented in the MPC7451, and a detailed
description of MPC7451-specific registers. Full descriptions of the architecture-defined
register set are provided in Chapter 2, “PowerPC Register Set,” in The Programming
Environments Manual and Chapter 2, “AltiVec Register Set,” in the AltiVec Technology
Programming Environments Manual (PEM).

Registers are defined at all three levels of the PowerPC architecture—user instruction set
architecture (UISA), virtual environment architecture (VEA), and operating environment
architecture (OEA). The PowerPC architecture defines register-to-register operations for
all computational instructions. Source data for these instructions is accessed from the
on-chip registers or is provided as immediate values embedded in the opcode. The
three-register instruction format allows specification of a target register distinct from the
two source registers, thus preserving the original data for use by other instructions and

2-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

reducing the number of instructions required for certain operations. Data is transferred
between memory and registers with explicit load and store instructions only.

2.1.1 Register Set Overview

Figure 2-1 shows the MPC7441 and MPC7451 register set.

MOTOROLA Chapter 2. Programming Model 2-3

MPC7451 Processor Register Set

Figure 2-1. Programming Model— MPC7441/MPC7451 Microprocessor Registers

Performance Counters 2

Sampled Instruction
Address Register 4

DSISR

Data Address
Register

SPRGs

Exception Handling Registers

Save and Restore
Registers

Instruction BAT
Registers

Data BAT
Registers

Memory Management Registers

Machine State RegisterProcessor Version
Register

Configuration Registers

Hardware
Implementation
Registers 1

USER MODEL—UISA

Floating-Point
Status and

Control Register

Condition
Register

General-Purpose
Registers

XER

Link Register

SUPERVISOR MODEL—OEA

Decrementer

SDR1

Count Register

Miscellaneous Registers

Segment Registers

Vector Registers 3

Performance
Monitor Registers

Performance Counters1

Monitor Control1

Sampled Instruction
Address1

Performance Monitor Registers

Monitor Control
Registers

Time Base
(For Writing)

USER MODEL—VEA

Time Base Facility (For Reading)

Data Address
Breakpoint Register 2

L2 Cache
Control Register 1

Instruction Address
Breakpoint Register1

Breakpoint Address
Mask Register 1

Vector Status and
Control Register 3

Processor ID Register 2

Memory Subsystem
Status Control Registers 1

AltiVec Registers
Vector Save/Restore
Register 3

Thermal Management Register
Instruction Cache Throttling
Control Register 1

Floating-Point
Registers

1 MPC7441/ MPC7451-specific register may not be supported
on other processors that implement the PowerPC architecture.

2 Register defined as optional in the PowerPC architecture.
3 Register defined by the AltiVec technology.
4 L2CR2 is not implemented on the MPC7451.
5 MPC7451-specific only register, not supported on the

MPC7441
6 MPC7451-specific only register

Instruction Cache/
Interrupt Control Register1

CTR

XER

LR

VSCR

UPMC1

UPMC4
UPMC3
UPMC2

USIAR

VRSAVE

UMMCR0

UMMCR2
UMMCR1

CR

FPSCR

DABR

BAMR

SIAR

DSISR

DAR

IABR

DEC

ICTC

MSSCR0

TBL
TBU

MMCR0 2

MMCR2 1
MMCR1 2

SPRG0

SPRG3
SPRG2
SPRG1 SRR0

SRR1

SDR1

ICTRL

FPR0
FPR1

FPR31

VR0
VR1

VR31

PMC1

PMC4
PMC3
PMC2

SR0
SR1

SR15

PIR

PVRTBL TBU

GPR0
GPR1

GPR31

HID0
HID1

L2CR

MSR

IBAT0U
IBAT0L
IBAT1U
IBAT1L
IBAT2U
IBAT2L
IBAT3U
IBAT3L

SPR 528
SPR 529
SPR 530
SPR 531
SPR 532
SPR 533
SPR 534
SPR 535

SPR 536
SPR 537
SPR 538
SPR 539
SPR 540
SPR 541
SPR 542
SPR 543

SPR 272

SPR 275
SPR 274
SPR 273 SPR 19

SPR 18

SPR 287
SPR 1008
SPR 1009 SPR 1023

SPR 25

SPR 26
SPR 27

SPR 951

SPR 955

SPR 953

SPR 958
SPR 957
SPR 954 SPR 952

SPR 956
SPR 944

SPR 1010
SPR 1013

SPR 1017

SPR 1011

SPR 22

SPR 285
SPR 284

SPR 1019

SPR 1014

SPR 256

SPR 928
SPR 940
SPR 936

SPR 939

SPR 942
SPR 941
SPR 938
SPR 937

SPR 8

SPR 1

SPR 9

TBR 268 TBR 269

UPMC6
UPMC5

SPR 930
SPR 929

PMC5
PMC6

SPR 945
SPR 946

DBAT0U
DBAT0L
DBAT1U
DBAT1L
DBAT2U
DBAT2L
DBAT3U
DBAT3L

TLB Miss Register 1

TLBMISS SPR 980

PTE High/Low
Registers 1

PTEHI
PTELO

SPR 981
SPR 982

MSSSR0 SPR 1015

Cache / Memory Subsystem Registers 1

Load/Store
Control Register 1

LDSTCR SPR 1016

L3 Private
Memory Register 5

L3PM

L3CR SPR 1018

SPR 983

External Access
Register 2

EAR SPR 282

L3 Cache Control Register 5

L3ITCR0 SPR 984

L3 Cache Input Timing
Control Registers 6

2-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Figure 2-6 shows the MPC7445, MPC7447, MPC7455, and MPC7457 register set.

Figure 2-2. Programming Model—MPC7445, MPC7447, MPC7455, and MPC7457
Microprocessor Registers

Performance Counters 2

Sampled Instruction
Address Register 2

DSISR

Data Address
Register

SPRGs
Exception Handling Registers

Save and Restore
Registers

Instruction BAT
Registers

Data BAT
Registers

Memory Management Registers

Machine State RegisterProcessor Version
Register

Configuration Registers
Hardware
Implementation
Registers 1

USER MODEL—UISA

Floating-Point
Status and

Control Register

Condition
Register

General-Purpose
Registers

XER

Link Register

SUPERVISOR MODEL—OEA

Decrementer

SDR1

Count Register

Miscellaneous Registers

Segment Registers

Vector Registers 3

Performance Monitor
Registers

Monitor Control1

Sampled Instruction
Address1

Performance Monitor Registers

Monitor Control
Registers

Time Base
(For Writing)

USER MODEL—UISA
Time Base Facility (For Reading)

Data Address
Breakpoint Register 2

L2 Cache
Control Register1

Instruction Address
Breakpoint Register 1

Breakpoint Address
Mask Register1

Vector Status and
Control Register 3

Processor ID Register 2

Memory Subsystem
Status Control Registers 1

AltiVec Registers

Vector Save/Restore
Register 3

Thermal Management Register
Instruction Cache Throttling
Control Register 1

Floating-Point
Registers

1 MPC7445-, MPC7447-, MPC7455-, and MPC7457-specific
register may not be supported on other processors that
implement the PowerPC architecture.

2 Register defined as optional in the PowerPC architecture.
3 Register defined by the AltiVec technology.
4 MPC7455- and MPC7457-specific register, not supported on

the MPC7445 and MPC7447
.5 MPC7457-specific register

Instruction Cache/
Interrupt Control Register 1

CTR

XER

LR

VSCR

UPMC1

UPMC4
UPMC3
UPMC2

USIAR

VRSAVE

UMMCR0

UMMCR2
UMMCR1

CR

FPSCR

DABR

BAMR

SIAR

DSISR

DAR

IABR

DEC

ICTC

MSSCR0

TBL
TBU

MMCR02

MMCR21
MMCR12

SPRG0

SPRG3
SPRG2
SPRG1

SRR0
SRR1

SDR1

ICTRL

FPR0
FPR1

FPR31

VR0
VR1

VR31

PMC1

PMC4
PMC3
PMC2

SR0
SR1

SR15

PIR

PVRTBL TBU

GPR0
GPR1

GPR31

HID0
HID1

L2CR

MSR

IBAT0U
IBAT0L
IBAT1U
IBAT1L
IBAT2U
IBAT2L
IBAT3U
IBAT3L

SPR 528
SPR 529
SPR 530
SPR 531
SPR 532
SPR 533
SPR 534
SPR 535

SPR 536
SPR 537
SPR 538
SPR 539
SPR 540
SPR 541
SPR 542
SPR 543

SPR 272

SPR 275
SPR 274
SPR 273 SPR 19

SPR 18

SPR 287
SPR 1008
SPR 1009 SPR 1023

SPR 25

SPR 26
SPR 27

SPR 951

SPR 955

SPR 953

SPR 958
SPR 957
SPR 954

SPR 952
SPR 956
SPR 944

SPR 1010 SPR 1013

SPR 1017

SPR 1011

SPR 22

SPR 284

SPR 1019

SPR 1014

SPR 256

SPR 928
SPR 940
SPR 936

SPR 939

SPR 942
SPR 941
SPR 938
SPR 937

SPR 8

SPR 1

SPR 9

TBR 268 TBR 269

UPMC6
UPMC5

SPR 930
SPR 929

PMC5
PMC6

SPR 945
SPR 946

SPRG4 1

SPRG7 1
SPRG6 1
SPRG5 1

SPR 276

SPR 279
SPR 278
SPR 277

DBAT0U
DBAT0L
DBAT1U
DBAT1L
DBAT2U
DBAT2L
DBAT3U
DBAT3L

TLB Miss Register1

TLBMISS SPR 980

PTE High/Low
Registers 1

PTEHI
PTELO

SPR 981
SPR 982

MSSSR0 SPR 1015

Cache/Memory
Subsystem Registers

Load/Store
Control Register 1

LDSTCR SPR 1016

L3 Cache
Control Register 4

L3 Private Memory
Address Register 4

L3PM

L3CR SPR 1018

SPR 983

IBAT4U 1

IBAT4L 1

IBAT5U 1

IBAT5L 1

IBAT6U 1

IBAT6L 1

IBAT7U 1

IBAT7L 1

SPR 560

SPR 561

SPR 562

SPR 563

SPR 564

SPR 565

SPR 566

SPR 567

SPR 568

SPR 569

SPR 570

SPR 571

SPR 572

SPR 573

SPR 574

SPR 575

DBAT4U 1

DBAT4L 1

DBAT5U 1

DBAT5L 1

DBAT6U 1

DBAT6L 1

DBAT7U 1

DBAT7L 1

External Access Register 2

EAR SPR 282

Performance Counters1

SPR 285

L3ITCR0 4 SPR 984

L3 Cache Input Timing
Control Registers

L3ITCR1 5 SPR 1001
L3ITCR2 5 SPR 1002
L3ITCR3 5 SPR 1003

L3OHCR SPR 1000

L3 Cache Output Hold
Control Register 5

MOTOROLA Chapter 2. Programming Model 2-5

MPC7451 Processor Register Set

The number to the right of the special-purpose registers (SPRs) is the number used in the
syntax of the instruction operands to access the register (for example, the number used to
access the XER register is SPR 1). These registers can be accessed using mtspr and mfspr.
Note that not all registers in Figure 2-1 are SPRs, for example VSCR and VRs are AltiVec
registers and do not have an SPR number.

2.1.2 MPC7451 Register Set

Table 2-1 summarizes the registers implemented in the MPC7451.

Table 2-1. Register Summary for the MPC7451

Name SPR Description
Reference /

Section

UISA Registers

CR — Condition register. The 32-bit CR consists of eight 4-bit fields,
CR0–CR7, that reflect results of certain arithmetic operations and
provide a mechanism for testing and branching.

PEM

CTR 9 Count register. Holds a loop count that can be decremented
during execution of appropriately coded branch instructions. The
CTR can also provide the branch target address for the Branch
Conditional to Count Register (bcctrx) instruction.

PEM

FPR0–
FPR31

— Floating-point registers (FPRn). The 32 FPRs serve as the data
source or destination for all floating-point instructions.

PEM

FPSCR — Floating-point status and control register. Contains floating-point
exception signal bits, exception summary bits, exception enable
bits, and rounding control bits for compliance with the IEEE 754
standard.

PEM

GPR0–
GPR31

— General-purpose registers (GPRn). The thirty-two GPRs serve as
data source or destination registers for integer instructions and
provide data for generating addresses.

PEM

LR 8 Link register. Provides the branch target address for the Branch
Conditional to Link Register (bclrx) instruction, and can be used
to hold the logical address of the instruction that follows a branch
and link instruction, typically used for linking to subroutines.

PEM

UMMCR0 1
UMMCR1 1

UMMCR2 1

936
940
928

User monitor mode control registers (UMMCRn). Used to enable
various performance monitor exception functions. UMMCRs
provide user-level read access to MMCR registers.

2.1.5.9 &
11.3.2.1,

2.1.5.9.4 &
11.3.3.1,

2.1.5.9.6 &
11.3.4.1

UPMC1–
UPMC6 1

937, 938
941, 942
929, 930

User performance monitor counter registers (UPMCn). Used to
record the number of times a certain event has occurred. UPMCs
provide user-level read access to PMC registers.

2.1.5.9.9,
11.3.6.1

USIAR 1 939 User sampled instruction address register. Contains the effective
address of an instruction executing at or around the time that the
processor signals the performance monitor exception condition.
USIAR provides user-level read access to the SIAR.

2.1.5.9.11,
11.3.7.1

2-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

VR0–VR31 2 — Vector registers (VRn). Data source and destination registers for
all AltiVec instructions.

7.1.1.4

VRSAVE 2 256 Vector save/restore register. Defined by the AltiVec technology to
assist application and operating system software in saving and
restoring the architectural state across process context-switched
events. The register is maintained only by software to track live or
dead information on each AltiVec register.

7.1.1.5

VSCR 2 — Vector status and control register. A 32-bit vector register that is
read and written in a manner similar to the FPSCR.

7.1.1.4

XER 1 Indicates overflows and carries for integer operations.
Implementation Note—To emulate the POWER architecture
lscbx instruction, XER[16–23] are be read with mfspr[XER] and
written with mtspr[XER].

PEM

VEA

TBL,
TBU

(For Reading)

TBR 268
TBR 269

Time base facility. Consists of two 32-bit registers, time base
lower and upper registers (TBL/TBU). TBL (TBR 268) and TBU
(TBR 269) can only be read from and not written to.TBU and TBL
can be read with the move from time base register (mftb)
instruction.
Implementation Note—Reading from SPR 284 or 285 using the
mftb instruction causes an illegal instruction exception.

PEM
2.1.4.1
2.3.5.1

OEA

BAMR 1, 3 951 Breakpoint address mask register. Used in conjunction with the
events that monitor IABR hits.

2.1.5.9.7,
11.3.5

DABR 4, 5 1013 Data address breakpoint register. Optional register implemented
in the MPC7451 and is used to cause a breakpoint exception if a
specified data address is encountered.

PEM

DAR 19 Data address register. After a DSI or alignment exception, DAR is
set to the effective address (EA) generated by the faulting
instruction.

PEM

DEC 22 Decrementer register. A 32-bit decrementer counter used with the
decrementer exception.
Implementation Note—In the MPC7451, DEC is decremented
and the time base increments at 1/4 of the system bus clock
frequency.

PEM

DSISR 18 DSI source register. Defines the cause of DSI and alignment
exceptions.

PEM

EAR 6, 7 282 External access register. Used with eciwx and ecowx. Note that
the EAR and the eciwx and ecowx instructions are optional in the
PowerPC architecture.

PEM

HID0 1, 7

HID1 1, 8
1008, 1009 Hardware implementation-dependent registers. Control various

functions, such as the power management features, and locking,
enabling, and invalidating the instruction and data caches. The
HID1 includes bits that reflects the state of PLL_CFG[0:4] clock
signals and control other bus-related functions.

2.1.5.1,
2.1.5.2

Table 2-1. Register Summary for the MPC7451 (continued)

Name SPR Description
Reference /

Section

MOTOROLA Chapter 2. Programming Model 2-7

MPC7451 Processor Register Set

IABR 1, 9 1010 Instruction address breakpoint register. Used to cause a
breakpoint exception if a specified instruction address is
encountered.

2.1.5.6

IBAT0U/L 10

IBAT1U/L 10

IBAT2U/L 10

IBAT3U/L 10

IBAT4U/L 10, 11

IBAT5U/L 10, 11

IBAT6U/L 10, 11

IBAT7U/L 10, 11

DBAT0U/L 12

DBAT1U/L 12

DBAT2U/L 12

DBAT3U/L 12

DBAT4U/L 11, 12

DBAT5U/L 11, 12

DBAT6U/L 11, 12

DBAT7U/L 11, 12

528, 529
530, 531
532, 533
534, 535
560, 561
562, 563
564, 565
566, 567

536, 537
538, 539
540, 541
542, 543
568, 569
570, 571
572, 573
574, 575

Block-address translation (BAT) registers. The PowerPC OEA
includes an array of block address translation registers that can
be used to specify four blocks of instruction space and four blocks
of data space. The BAT registers are implemented in pairs: four
pairs of instruction BATs (IBAT0U–IBAT3U and IBAT0L–IBAT3L)
and four pairs of data BATs (DBAT0U–DBAT3U and
DBAT0L–DBAT3L).
Sixteen additional BAT registers have been added for the
MPC7455. These registers are enabled by setting
HID0[HIGH_BAT_EN]. When HID0[HIGH_BAT_EN] = 1, the 16
additional BAT registers, organized as four pairs of instruction
BAT registers(IBAT4U–IBAT7U paired with IBAT4L–IBAT7L) and
four pairs of data BAT registers (DBAT4U–DBAT7U paired with
DBAT4L–DBAT7L) are available. Thus, the MPC7455 can define
a total of 16 blocks implemented as 32 BAT registers.
Because BAT upper and lower words are loaded separately,
software must ensure that BAT translations are correct during the
time that both BAT entries are being loaded.
The MPC7451 implements IBAT[G]; however, attempting to
execute code from an IBAT area with G = 1 causes an ISI
exception.

PEM,
5.1.3

ICTC 1 1019 Instruction cache throttling control register. Has bits for enabling
instruction cache throttling and for controlling the interval at which
instructions are fetched. This controls overall junction
temperature.

2.1.5.8,
10.3

ICTRL 1, 7 1011 Instruction cache and interrupt control register. Used in
configuring interrupts and error reporting for the instruction and
data caches.

2.1.5.5.8

L2CR 1 1017 L2 cache control register. Includes bits for enabling parity
checking, setting the L2 cache size, and flushing and invalidating
the L2 cache.

2.1.5.5.1

L3CR 13 1018 L3 cache control register. Includes bits for enabling parity
checking, setting the L3-to-processor clock ratio, and identifying
the type of RAM used for the L3 cache implementation.

2.1.5.5.2

L3ITCR0 13

L3ITCR1 14

L3ITCR2 14

L3ITCR3 14

984
1001
1002
1003

L3 cache input timing control register. Includes bits for controlling
the input AC timing of the L3 cache interface.

2.1.5.5.4
2.1.5.5.5
2.1.5.5.6
2.1.5.5.7

L3OHCR 14 1000 L3 cache output hold control register. Includes bits for controlling
the output AC timing of the L3 cache interface of the MPC7457.

2.1.5.5.3

L3PM 13, 15 983 The L3 private memory register. Configures the base address of
the range of addresses that the L3 uses as private memory (not
cache).

2.1.5.5.10

LDSTCR 1, 16 1016 Load/store control register. Controls data L1 cache way-locking. 2.1.5.5.9

Table 2-1. Register Summary for the MPC7451 (continued)

Name SPR Description
Reference /

Section

2-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

MMCR0 4

MMCR1 4

MMCR2 1

952
956
944

Monitor mode control registers (MMCRn). Enable various
performance monitor exception functions. UMMCR0–UMMCR2
provide user-level read access to these registers.

2.1.5.9.1, 11.3.2
2.1.5.9.3, 11.3.3
2.1.5.9.5, 11.3.4

MSR 7 — Machine state register. Defines the processor state. The MSR
can be modified by the mtmsr, sc, and rfi instructions. It can be
read by the mfmsr instruction. When an exception is taken, MSR
contents are saved to SRR1. See Section 4.3, “Exception
Processing.” The following bits are optional in the PowerPC
architecture.
Note that setting MSR[EE] masks decrementer and external
interrupt exceptions and MPC7451-specific system
management, and performance monitor exceptions.

PEM,
2.1.3.3,

4.3

Bit Name Description

6 VEC AltiVec available. MPC7451 and AltiVec
technology specific; optional to the PowerPC
architecture.
0 AltiVec technology is disabled.
1 AltiVec technology is enabled.
Note: When a non-stream AltiVec instruction
accesses VRs or the VSCR when VEC = 0 an
AltiVec unavailable exception is generated. This
does not occur for data streaming instructions
(dst(t), dstst(t), and dss); the VRs and the
VSCR are available to data streaming
instructions even if VEC = 0. VRSAVE can be
accessed even if VECþ = 0.

13 POW Power management enable. MPC7451-specific
and optional to the PowerPC architecture.
0 Power management is disabled.
1 Power management is enabled. The processor
can enter a power-saving mode determined by
HID0[NAP,SLEEP] when additional conditions
are met. See Table 2-6.

29 PMM Performance monitor marked mode.
MPC7451-specific and optional to the PowerPC
architecture. See Chapter 11, “Performance
Monitor.”
0 Process is not a marked process.
1 Process is a marked process.

MSSCR0 1, 17 1014 Memory subsystem control register. Used to configure and
operate many aspects of the memory subsystem.

2.1.5.3

MSSSR0 1 1015 Memory subsystem status register. Used to configure and
operate the parity functions in the L2 and L3 caches for the
MPC7451.

2.1.5.4

PIR 1023 Processor identification register. Provided for system use. All 32
bits of the PIR can be written to with the mtspr instruction.

PEM
2.1.3.2

Table 2-1. Register Summary for the MPC7451 (continued)

Name SPR Description
Reference /

Section

MOTOROLA Chapter 2. Programming Model 2-9

MPC7451 Processor Register Set

PMC1–
PMC6 4

953, 954
957, 958
945, 946

Performance monitor counter registers (PMCn). Used to record
the number of times a certain event has occurred. UPMCs
provide user-level read access to these registers.

2.1.5.9.8,
11.3.6

PTEHI,
PTELO

981,
982

The PTEHI and PTELO registers are used by the tlbld and tlbli
instructions to create a TLB entry. When software table searching
is enabled (HID0[STEN] = 1), and a TLB miss exception occurs,
the bits of the page table entry (PTE) for this access are located
by software and saved in the PTE registers.

2.1.5.7.2,
5.5.5.1.2

PVR 287 Processor version register. Read-only register that identifies the
version (model) and revision level of the processor.

PEM,
2.1.3.1

SDAR,
USDAR

— Sampled data address register. The MPC7451 does not
implement the optional registers (SDAR or the user-level,
read-only USDAR register) defined by the PowerPC architecture.
Note that in previous processors the SDA and USDA registers
could be written to by boot code without causing an exception,
this is not the case in the MPC7451. A mtspr or mfspr SDAR or
USDAR instruction causes a program exception.

2.1.5.9.12

SDR1 18 25 Sample data register. Specifies the base address of the page
table entry group (PTEG) address used in virtual-to-physical
address translation. Implementation Note—The SDR1 register
has been modified (with the SDR1[HTABEXT] and
SDR1[HTMEXT] fields) for the MPC7451 to support the extended
36-bit physical address (when HID0[XAEN] = 1]).

PEM,
2.1.3.5,

5.5.1

SIAR 4 955 Sampled instruction address register. Contains the effective
address of an instruction executing at or around the time that the
processor signals the performance monitor exception condition.
USIAR provides user-level read access to the SIAR.

2.1.5.9.11
11.3.7

SPRG0–
SPRG3

SPRG4–
SPRG7 11

272–275

276-279

SPRGn. Provided for operating system use.

The SPRG4–7 provide additional registers to be used by system
software for software table searching.

PEM,

5.5.5.1.3

SR0–

SR15 19

— Segment registers (SRn). Note that the MPC7451 implements
separate instruction and data MMUs. It associates
architecture-defined SRs with the data MMU. It reflects SRs
values in separate, shadow SRs in the instruction MMU.

PEM

SRR0
SRR1

26
27

Machine status save/restore registers (SRRn). Used to save the
address of the instruction at which execution continues when rfi
executes at the end of an exception handler routine. SRR1 is
used to save machine status on exceptions and to restore
machine status when rfi executes.
Implementation Note—When a machine check exception
occurs, the MPC7451 sets one or more error bits in SRR1. Refer
to the individual exceptions for individual SRR1 bit settings.

PEM,
2.1.3.4,

4.3

Table 2-1. Register Summary for the MPC7451 (continued)

Name SPR Description
Reference /

Section

2-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

TBL
TBU

(For Writing)

284
285

Time base. A 64-bit structure (two 32-bit registers) that maintains
the time of day and operating interval timers. The TB consists of
two registers—time base upper (TBU) and time base lower (TBL).
The time base registers can be written to only by supervisor-level
software.
TBL (SPR 284) and TBU (SPR 285) can only be written to and not
read from. TBL and TBU can be written to, with the move to
special purpose register (mtspr) instruction.

Implementation Note—Reading from SPR 284 or 285 causes
an illegal instruction exception.

PEM
2.1.4.1
2.3.5.1

TLBMISS 1 980 The TLBMISS register is automatically loaded when software
searching is enabled (HID0[STEN] = 1) and a TLB miss exception
occurs. Its contents are used by the TLB miss exception handlers
(the software table search routines) to start the search process.

2.1.5.7.1
5.5.5.1.1

1 MPC7441-, MPC7445-, MPC7447- MPC7451-, MPC7455-MPC7457-specific register may not be supported on
other processors that implement the PowerPC architecture.

2 Register is defined by the AltiVec technology.
3 A context synchronizing instruction must follow the mtspr.
4 Defined as optional register in the PowerPC architecture.
5 A dssall and sync must precede the mtspr and then a sync and a context synchronizing instruction must follow. Note

that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
the register.

6 A dssall and sync must precede the mtspr and then a sync and a context synchronizing instruction must follow. Note
that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
register.

7 For specific synchronization requirements on the register see Table 2-33.
8 A sync and context synchronizing instruction must follow a mtspr.
9 A context synchronizing instruction must follow a mtspr.
10 A context synchronizing instruction must follow a mtspr.
11 MPC7445-, MPC7447-, MPC7455-, and MPC7457-specific register.
12 A dssall and sync must precede the mtspr and then a sync and a context synchronizing instruction must follow. Note

that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
the register.

13 MPC7451-, MPC7455-, MPC7457-specific, not supported on the MPC7441, MPC7445, and MPC7447
14 MPC7457-specific, not supported on the MPC7441, MPC7445, MPC7447, MPC7451, and MPC7455
15 A sync must precede a mtspr instruction and then a sync and context synchronizing instruction must follow. Note

that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
the register.

16 A dssall and sync must precede a mtspr and then a sync and context synchronizing instruction must follow.Note that
if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing the
register.

17 A dssall and sync must precede a mtspr instruction and then a sync and context synchronizing instruction must
follow. Note that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to
accessing the register.

18 A dssall and sync must precede a mtspr and then a sync and context synchronizing instruction must follow. Note
that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
the register.

Table 2-1. Register Summary for the MPC7451 (continued)

Name SPR Description
Reference /

Section

MOTOROLA Chapter 2. Programming Model 2-11

MPC7451 Processor Register Set

The PowerPC UISA registers are user-level. General-purpose registers (GPRs),
floating-point registers (FPRs) and vector registers (VRs) are accessed through instruction
operands. Access to registers can be explicit (by using instructions for that purpose such as
Move to Special-Purpose Register (mtspr) and Move from Special-Purpose Register
(mfspr) instructions) or implicit as part of the execution of an instruction. Some registers
are accessed both explicitly and implicitly.

– Implementation Note—The MPC7451 fully decodes the SPR field of the
instruction. If the SPR specified is undefined, an illegal instruction program
exception occurs.

2.1.3 PowerPC Supervisor-Level Registers (OEA)

The OEA defines the registers an operating system uses for memory management,
configuration, exception handling, and other operating system functions and they are
summarized in Table 2-1. The following supervisor-level register defined by the PowerPC
architecture contains additional implementation-specific information for the MPC7451.

2.1.3.1 Processor Version Register (PVR)

For more information, see “Processor Version Register (PVR),” in Chapter 2, “PowerPC
Register Set,” of The Programming Environments Manual.

Implementation Note—The processor version number is 0x8000,0x8001,
0x8002, 0x8003, for the MPC7451, MPC7455, MPC7457, and MPC7447A
respectively. The processor revision level starts at 0x0200 for the MPC7451
and 0x0100 for the MPC7455 and MPC7457. The revision level is updated for
each silicon revision. Table 2-2 describes the MPC7451 PVR bits that are not
required by the PowerPC architecture.

2.1.3.2 Processor Identification Register (PIR)

For more information, see “Processor Identification Register (PIR),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual.

19 A dssall and sync must precede a mtsr or mtsrin instruction and then a sync and context synchronizing instruction
must follow. Note that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary
prior to accessing the register.

Table 2-2. Additional PVR Bits

Bits Name Description

0–15 Type Processor type

16–19 Tech Processor technology

20–23 Major Major revision number

24–31 Minor Minor revision number

2-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Implementation Note—The MPC7451 provides write access to the PIR with
mtspr using SPR 1023.

2.1.3.3 Machine State Register (MSR)

The MSR defines the state of the processor. When an exception occurs, MSR bits, as
described in Table 2-3 are altered as determined by the exceptions. The MSR can also be
modified by the mtmsr, sc, and rfi instructions. It can be read by the mfmsr instruction.

The MPC7451’s MSR is shown in Figure 2-3.

The MSR bits are defined in Table 2-3.

Reserved

0000_0 VEC 00_0000 POW 0 ILE EE PR FP ME FE0 SE BE FE1 0 IP IR DR 0 PMM RI LE

0 5 6 7 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-3. Machine State Register (MSR)

Table 2-3. MSR Bit Settings

Bit(s) Name Description

0–5 — Reserved

6 VEC 1, 2 AltiVec vector unit available
0 The processor prevents dispatch of AltiVec instructions (excluding the data streaming

instructions—dst, dstt, dstst, dststt, dss, and dssall). The processor also prevents access
to the vector register file (VRF) and the vector status and control register (VSCR). Any attempt
to execute an AltiVec instruction that accesses the VRF or VSCR, excluding the data
streaming instructions generates the AltiVec unavailable exception. The data streaming
instructions are not affected by this bit; the VRF and VSCR registers are available to the data
streaming instructions even when the MSR[VEC] is cleared.

1 The processor can execute AltiVec instructions and the VRF and VSCR registers are
accessible to all AltiVec instructions.

Note that the VRSAVE register is not protected by MSR[VEC].

7–12 — Reserved

13 POW 1, 3 Power management enable
0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).
Power management functions are implementation-dependent. See Chapter 10, “Power and
Thermal Management.”

14 — Reserved. Implementation-specific

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to select
the endian mode for the context established by the exception.

16 EE External interrupt enable
0 The processor delays recognition of external interrupts and decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR 4 Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

MOTOROLA Chapter 2. Programming Model 2-13

MPC7451 Processor Register Set

18 FP 2 Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point loads,

stores, and moves.
1 The processor can execute floating-point instructions and can take floating-point enabled

program exceptions.

19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FE0 2 IEEE floating-point exception mode 0 (see Table 2-4)

21 SE Single-step trace enable
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of every

instruction except rfi and sc. Successful execution means that the instruction caused no other
exception.

22 BE Branch trace enable
0 The processor executes branch instructions normally.
1 The processor generates a branch type trace exception when a branch instruction executes

successfully.

23 FE1 2 IEEE floating-point exception mode 1 (see Table 2-4)

24 — Reserved. This bit corresponds to the AL bit of the POWER architecture.

25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended
with Fs or 0s. In the following description, nnnnn is the offset of the exception.
0 Exceptions are vectored to the physical address 0x000n_nnnn.
1 Exceptions are vectored to the physical address 0xFFFn_nnnn.

26 IR 5 Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 5, “Memory Management.”

27 DR 4 Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information see Chapter 5, “Memory Management.”

28 — Reserved

29 PMM 1 Performance monitor marked mode
0 Process is not a marked process.
1 Process is a marked process.
This bit can be set when statistics need to be gathered on a specific (marked) process. The
statistics will only be gathered when the marked process is executing.
MPC7451–specific; defined as optional by the PowerPC architecture. For more information about
the performance monitor marked mode bit, see Section 11.4, “Event Counting.”

30 RI Indicates whether system reset or machine check exception is recoverable.
0 Exception is not recoverable.
1 Exception is recoverable.
The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRR0 is valid), but it does not guarantee that the
interrupted process is recoverable.

Table 2-3. MSR Bit Settings (continued)

Bit(s) Name Description

2-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Note that setting MSR[EE] masks not only the architecture-defined external interrupt and
decrementer exceptions but also the MPC7451-specific system management, and
performance monitor exceptions.

The IEEE floating-point exception mode bits (FE0 and FE1) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
all. As shown in Table 2-4, if either FE0 or FE1 are set, the MPC7451 treats exceptions as
precise. MSR bits are guaranteed to be written to SRR1 when the first instruction of the
exception handler is encountered. For further details, see Chapter 2, “PowerPC Register
Set” and Chapter 6, “Exceptions,” of the Programming Environments Manual.

2.1.3.4 Machine status save/restore registers (SRR0, SRR1)

When an exception is taken, the processor uses SRR0 and SRR1 to save the contents of the
MSR for the current context and to identify where instruction execution should resume
after the exception is handled.

When an exception occurs, the address saved in SRR0 helps determine where instruction
processing should resume when the exception handler returns control to the interrupted
process. Depending on the exception, this may be the address in SRR0 or at the next address

31 LE 6 Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

1 Optional to the PowerPC architecture
2 A context synchronizing instruction must follow a mtmsr instruction.
3 A dssall and sync must precede a mtmsr instruction and then a context synchronizing instruction must follow.
4 A dssall and sync must precede a mtmsr and then a sync and context synchronizing instruction must follow. Note that

if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing the
MSR[DR] or MSR[PR] bit.

5 A context synchronizing instruction must follow a mtmsr. When changing the MSR[IR] bit the context synchronizing
instruction must reside at both the untranslated and the translated address following the mtmsr.

6 A dssall and sync must precede an rfi to guarantee a solid context boundary. Note that if a user is not using the AltiVec
data streaming instructions, then a dssall is not necessary prior to accessing the MSR[LE] bit.

Table 2-4. IEEE Floating-Point Exception Mode Bits

FE0 FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Imprecise nonrecoverable. For this setting, the MPC7451 operates in floating-point precise mode.

1 0 Imprecise recoverable. For this setting, the MPC7451 operates in floating-point precise mode.

1 1 Floating-point precise mode

Table 2-3. MSR Bit Settings (continued)

Bit(s) Name Description

MOTOROLA Chapter 2. Programming Model 2-15

MPC7451 Processor Register Set

in the program flow. All instructions in the program flow preceding this one will have
completed execution and no subsequent instruction will have begun execution. This may
be the address of the instruction that caused the exception or the next one (as in the case of
a system call or trace exception). The SRR0 register is shown in Figure 2-4.

SRR1 is used to save machine status (selected MSR bits and possibly other status bits) on
exceptions and to restore those values when an rfi instruction is executed. SRR1 is shown
in Figure 2-5.

Typically, when an exception occurs, SRR1[0–15] are loaded with exception-specific
information and MSR[16–31] are placed into the corresponding bit positions of SRR1. For
most exceptions, SRR1[0–5] and SRR1[7–15] are cleared, and MSR[6, 16–31] are placed
into the corresponding bit positions of SRR1. Table 2-3 provides a summary of the SRR1
bit settings when a machine check exception occurs. For a specific exception’s SRR1 bit
settings, see Section 4.6, “Exception Definitions.”

2.1.3.5 SDR1 Register

The SDR1 register specifies the page table entry group (PTEG) address used in
virtual-to-physical address translation. See “SDR1,” in Chapter 2, “PowerPC Register
Set,” of The Programming Environments Manual for the description with a 32-bit physical
address. The SDR1 register has been modified for the MPC7451 to support the extended
36-bit physical address (when HID0[XAEN] = 1]). See Section 5.5.1, “SDR1 Register
Definition—Extended Addressing,” for details on how SDR1 is modified to support a
36-bit physical address.

Implementation Note—SDR1[HTABEXT] and SDR1[HTMEXT] fields
have been added to support extended addressing. Section 5.5.1, “SDR1
Register Definition—Extended Addressing” describes in detail the
differences when generating a 36-bit PTEG address. Figure 2-6 shows the
format of the modified SDR1.

SRR0 (Holds EA for Instruction in Interrupted Program Flow)

0 31

Figure 2-4. Machine Status Save/Restore Register 0 (SRR0)

Exception-Specific Information and MSR Bit Values

0 31

Figure 2-5. Machine Status Save/Restore Register 1 (SRR1)

2-16 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Figure 2-6. SDR1 Register Format—Extended Addressing

Bit settings for the SDR1 register are described in Table 2-5.

SDR1 can be accessed with mtspr and mfspr using SPR 25. For synchronization
requirements on the register see Section 2.3.2.4, “Synchronization.”

2.1.4 PowerPC User-Level Registers (VEA)

The PowerPC VEA defines the time base facility (TB), which consists of two 32-bit
registers—time base upper (TBU) and time base lower (TBL).

2.1.4.1 Time Base Registers (TBL, TBU)

The time base registers can be written only by supervisor-level instructions but can be read
by both user- and supervisor-level software. The time base registers have two different
addresses. TBU and TBL can be read from the TBR 268 and 269 respectively with the
move from time base register (mftb) instruction. TBU and TBL can be written to TBR 284
and 285 respectively with the move to special purpose register (mtspr) instruction.
Reading from SPR 284 or 285 causes an illegal instruction exception. For more
information, see “PowerPC VEA Register Set—Time Base,” in Chapter 2, “PowerPC
Register Set,” of The Programming Environments Manual.

Table 2-5. SDR1 Register Bit Settings—Extended Addressing

Bits Name Description

0–15 HTABORG Physical base address of page table
þþþþIf HID0[XAEN] = 1, field contains physical address [4–19]
þþþþIf HID0[XAEN] = 0, field contains physical address [0–15]

16–18 HTABEXT Extension bits for physical base address of page table
þþþþIf HID0[XAEN] = 1, field contains physical address [1–3]
þþþþIf HID0[XAEN] = 0, field is reserved

19–22 HTMEXT Hash table mask extension bits
þþþþþIf HID0[XAEN] = 1, field contains hash table mask [0–3]
þþþþþIf HID0[XAEN] = 0, field is reserved

23–31 HTABMASK Mask for page table address
þþþþþþIf HID0[XAEN] = 1, field contains hash table mask
[4–12]
þþþþþþIf HID0[XAEN] = 0, field contains hash table mask [0–7]

0 15 16 18 19 22 23 31

HTABORG HTABEXT HTMEXT HTABMASK

MOTOROLA Chapter 2. Programming Model 2-17

MPC7451 Processor Register Set

2.1.5 MPC7451-Specific Register Descriptions

The PowerPC architecture allows for implementation-specific SPRs. This section describes
registers that are defined for the MPC7451 but are not included in the PowerPC
architecture. Note that in the MPC7451, these registers are all supervisor-level registers. All
the registers described in the AltiVec Technology Programming Environments Manual are
implemented in MPC7451. See Chapter 2, “AltiVec Register Set,” in the AltiVec
Technology Programming Environments Manual for details about these registers.

Note that while it is not guaranteed that the implementation of MPC7451-specific registers
is consistent among processors that implement the PowerPC architecture, other processors
can implement similar or identical registers.

The registers in the following subsections are presented in the order of the chapters in this
book. First, the processor control registers are described followed by the cache control
registers. Then the implementation-specific registers for exception processing and memory
management are presented, followed by the thermal management register. Finally the
performance monitor registers are presented.

2.1.5.1 Hardware Implementation-Dependent Register 0 (HID0)

The hardware implementation-dependent register 0 (HID0) controls the state of several
functions within the MPC7451. The HID0 register for the MPC7441 and the MPC7451 is
shown in Figure 2-7.

Figure 2-7. Hardware Implementation-Dependent Register 0 (HID0) for the MPC7441
and the MPC7451

The HID0 register for the MPC7445 and the MPC7455 is shown in Figure 2-8.

NAP DPM
NHR

ICE
DCE DCFISTEN

ILOCK

DLOCK

ICFI SPD
BTIC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

BHT
BHTCLR

SGE

NOPTI

0

NOPDST

TBEN

0 0 0

LRSTK

FOLDSLEEP

XAEN

1000_0 0

2-18 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Figure 2-8. Hardware Implementation-Dependent Register 0 (HID0) for the MPC7445
and the MPC7455

The HID0 bits are described in Table 2-6.

Table 2-6. HID0 Field Descriptions

Bits Name Description

0–4 — Reserved. Defined as HID0[0]: EMCP, HID0[2]: EBA, HID0[3]: EBD, HID0[4]: BCLK on
some earlier processors. Read as 0b1000_0.

5 TBEN 1 Time base enable. Note that this bit must be set and the TBEN signal must be asserted
to enable the time base and decrementer.

6 — Reserved. Defined as ECLK on some earlier processors.

7 STEN 2 Software table search enable. When a TLB miss occurs, the MPC7451 takes one of
three TLB miss exceptions so that software can search the page tables for the desired
PTE. See Section 4.6.15, “TLB Miss Exceptions,” for details on the MPC7451 facilities
for software table searching.
0 Hardware table search enabled
1 Software tables search enabled

8 — Reserved for the MPC7441 and the MPC7451. Defined as DOZE on some earlier
processors. The MPC7451 does not require a HID0 bit for DOZE mode, but rather is
supported through a QREQ/QACK processor-system handshake protocol. Refer to
Section 10.2, “Programmable Power Mode,” for further details.

HIGH_BAT_EN 3 Additional BATs enabled for the MPC7445, MPC7447, MPC7455, and the MPC7457.
0 Additional 4 IBATs (4–7) and 4 DBATs (4–7) disabled
1 Additional 4 IBATs (4–7) and 4 DBATs (4–7) enabled
The additional BATs provide for more mapping of memory with the block address
translation method.

9 NAP 1 Nap mode enable. Operates in conjunction with MSR[POW].
0 Nap mode disabled.
1 Nap mode enabled. Nap mode is invoked by setting MSR[POW] while this bit is set.

In nap mode, the PLL and the time base remain active.
Note that if both NAP and SLEEP are set, the MPC7451 ignores the SLEEP bit.

NAP DPM
NHR

ICE
DCE DCFISTEN

ILOCK

DLOCK

ICFI SPD
BTIC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

BHT

1000_0

BHTCLR

SGE

NOPTI

0

NOPDST

TBEN

0 0

LRSTK

FOLDSLEEP

XAEN

HIGH_BAT_EN XBSEN

MOTOROLA Chapter 2. Programming Model 2-19

MPC7451 Processor Register Set

10 SLEEP 1 Sleep mode enable. Operates in conjunction with MSR[POW].
0 Sleep mode disabled.
1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is

set. QREQ is asserted to indicate that the processor is ready to enter sleep mode. If
the system logic determines that the processor can enter sleep mode, the quiesce
acknowledge signal, QACK, is asserted back to the processor. When the QACK
signal assertion is detected, the processor enters sleep mode after several processor
clocks. At this point, the system logic can turn off the PLL by first configuring
PLL_CFG[0:3] (for the MPC7447 and MPC7457, PLL_CFG[0:4]) to PLL bypass
mode, and then disabling SYSCLK.

11 DPM 1 Dynamic power management enable
0 Dynamic power management is disabled.
1 Functional units enter a low-power mode automatically if the unit is idle. This does not

affect operational performance and is transparent to software or any external
hardware.

12 — Reserved. For test use; software should not set this bit.

13 BHTCLR 4 Clear branch history table
0 The MPC7451 clears this bit one cycle after it is set.
1 Setting BHTCLR bit initializes all entries in BHT to weakly, not taken whether or not

the BHT is enabled by HID0[BHT]. However, for correct results, the BHT should be
disabled (HID0[BHT] = 0) before setting BHTCLR. Setting BHTCLR causes the
branch unit to be busy for 64 cycles while the initialization process is completed.

14 XAEN 5 Extended addressing enabled
0 Extended addressing is disabled; the 4 most significant bits of the 36-bit physical

address are cleared and a 32-bit physical address is used.
1 Extended addressing is enabled;, the 32-bit effective address is translated to a 36-bit

physical address.
If HID0[XAEN] is changed (cleared or set), the BATs and TLBs must be invalidated first.

15 NHR 1 Not hard reset (software-use only). Helps software distinguish a hard reset from a soft
reset.
0 A hard reset occurred if software had previously set this bit.
1 A hard reset has not occurred. If software sets this bit after a hard reset, when a reset

occurs and this bit remains set, software knows it was a soft reset.
The MPC7451 never writes this bit unless executing an mtspr(HID0).

16 ICE 6 Instruction cache enable
0 The instruction cache is neither accessed nor updated. All pages are accessed as if

they were marked cache-inhibited (WIM = x1x). Potential cache accesses from the
bus (snoop and cache operations) are ignored. In the disabled state for the L1
caches, the cache tag state bits are ignored and all accesses are propagated to the
L2 cache, L3 cache, or bus as burst transactions. For those transactions, CI is
asserted regardless of address translation. ICE is zero at power-up.

1 The instruction cache is enabled. Note that HID0[ICFI] must be set at the same time
that this bit is set.

Table 2-6. HID0 Field Descriptions (continued)

Bits Name Description

2-20 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

17 DCE 2 Data cache enable
0 The data cache is neither accessed nor updated. All pages are accessed as if they

were marked cache-inhibited (WIM = x1x). Potential cache accesses from the bus
(snoop and cache operations) are ignored. In the disabled state for the L1 caches,
the cache tag state bits are ignored and all accesses are propagated to the L2 cache,
L3 cache, or bus as cache-inhibited. For those transactions, CI is asserted regardless
of address translation.DCE is zero at power-up.

1 The data cache is enabled.Note that HID0[DCFI] must be set at the same time that
this bit is set.

18 ILOCK 7 Instruction cache lock
0 Normal operation
1 All of the ways of the instruction cache are locked. A locked cache supplies data

normally on a read hit. On a miss, the access is treated the same as if the instruction
cache was disabled.Thus, the bus request is a 32-byte burst read, but the cache is
not loaded with data. The data is reloaded into the L2 and L3, unless the L2CR[L2DO]
and L3CR[L3DO] bits are set, respectively. Note that setting this bit has the same
effect as setting ICTRL[ICWL] to all ones. However, when this bit is set, ICTRL[ICWL]
is ignored. Chapter 3, “L1, L2, and L3 Cache Operation,” gives further details.

19 DLOCK 2 Data cache lock
0 Normal operation
1 All the ways of the data cache are locked. A locked cache supplies data normally on

a read hit but is treated as a cache-inhibited transaction on a miss. On a miss, a load
transaction still reads a full cache line from the L2, L3, or bus but does not reload that
line into the L1. Any store miss is treated like a write-through store and the transaction
occurs on the bus with the WT signal asserted. A snoop hit to a locked L1 data cache
operates as if the cache were not locked. A cache block invalidated by a snoop
remains invalid until the cache is unlocked. Note that setting this bit has the same
effect as setting LDSTCR[DCWL] to all ones. However, when this bit is set,
LDSTCR[DCWL] is ignored. Refer to Chapter 3, “L1, L2, and L3 Cache Operation,”
for further details.

To prevent locking during a cache access, a sync instruction must precede the setting
of DLOCK and a sync must follow.

20 ICFI 6 Instruction cache flash invalidate
0 The instruction cache is not invalidated. The bit is cleared when the invalidation

operation begins (the next cycle after the write operation to the register). The
instruction cache must be enabled for the invalidation to occur.

1 An invalidate operation is issued that marks the state of each instruction cache block
as invalid. Cache access is blocked during this time. Setting ICFI clears all the valid
bits of the blocks and sets the PLRU bits to point to way L0 of each set. When the L1
flash invalidate bits are set through an mtspr operation, the hardware automatically
clears these bits in the next cycle (provided that the corresponding cache enable bits
are set in HID0).

Note, in the MPC603 and MPC603e processors, the proper use of the ICFI and DCFI
bits was to set them and clear them in two consecutive mtspr operations. Software that
already has this sequence of operations does not need to be changed to run on the
MPC7451.

Table 2-6. HID0 Field Descriptions (continued)

Bits Name Description

MOTOROLA Chapter 2. Programming Model 2-21

MPC7451 Processor Register Set

21 DCFI 2 Data cache flash invalidate
0 The data cache is not invalidated. The bit is cleared when the invalidation operation

begins (the next cycle after the write operation to the register).
1 An invalidate operation is issued that marks the state of each data cache block as

invalid without writing back modified cache blocks to memory. Cache access is
blocked during this time. Bus accesses to the cache are signaled as a miss during
invalidate-all operations. Setting DCFI clears all the valid bits of the blocks and the
PLRU bits to point to way L0 of each set. When the L1 flash invalidate bits are set
through an mtspr operation, the hardware automatically clears these bits in the next
cycle. Note that setting DCFI invalidates the data cache regardless of whether it is
enabled.

Note, in the MPC603e processors, the proper use of the ICFI and DCFI bits was to set
them and clear them in two consecutive mtspr operations. Software that already has
this sequence of operations does not need to be changed to run on the MPC7451.

22 SPD 1 Speculative data cache and instruction cache access disable
0 Speculative bus accesses to nonguarded space (G = 0) from both the instruction and

data caches is enabled.
1 Speculative bus accesses to nonguarded space in both caches is disabled.
Thus, setting this bit prevents L1 data cache misses from going to the memory
subsystem until the instruction that caused the miss is next to complete. The HID0[SPD]
bit also prevents instruction cache misses from going to the memory subsystem until
there are no unresolved branches. For more information on this bit and its effect on
re-ordering of loads and stores, see Section 3.3.3.5, “Enforcing Store Ordering with
Respect to Loads.”

23 — Reserved. Defined as IFTT or IFEM on some earlier processors.

XBSEN Extended BAT Block Size Enable.
0 Disables IBATnU[XBL] & DBATnU[XBL] bits and clears these bits to zero.
1 Enables IBATnU[XBL] & DBATnU[XBL] bits BATnU[1518] become the 4 MSBs of the

extended 15 bit BL field (BATnU[15–29]). This allows for extended BAT block sizes of
512MB, 1 GB, 2GB, and 4 GB. If HID0[XBBSEN] is set at startup and then cleared
after startup, the XBL bits will not clear but stay the same as they were set at startup.

HID0[XBSEN] should be set once at startup and once set should not be cleared.
WhenHID0[XBSEN] is set at startup, and then HID0[XBSEN] is cleared, the
IBATnU[XBL] & DBATnU[XBL] bits are not cleared but stay the same as what was set at
startup.
If backwards compatibility with previous processors is a concern, then HID0[XBSEN]
should stay cleared so that the XBL bits are treated as 0’s. This allows the BAT
translation to have a maximum block length of 256MB.

24 SGE 8 Store gathering enable
0 Store gathering is disabled.
1 Integer store gathering is performed as described in 3.1.2.3, “Store

Gathering/Merging,” and Section 6.4.4.2, “Store Gathering.”

25 — Reserved. Defined as DCFA on some earlier processors.

26 BTIC 1 Branch target instruction cache enable. Used to enable use of the 128-entry branch
instruction cache.
0 The BTIC contents are invalidated and the BTIC behaves as if it were empty. New

entries cannot be added until the BTIC is enabled.
1 The BTIC is enabled and new entries can be added.
The BTIC is flushed by context synchronization, which is required after a move to HID0.
Thus if the synchronization rules are followed, modifying this BTIC bit implicitly flushes
the BTIC. See Chapter 6, “Instruction Timing,” for further details.

Table 2-6. HID0 Field Descriptions (continued)

Bits Name Description

2-22 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

27 LRSTK 1 Link register stack enable
0 Link register prediction is disabled.
1 Allows bclr and bclrl instructions to predict the branch target address using the link
register stack which can accelerate returns from subroutines. See Chapter 6,
“Instruction Timing,” for further details.

28 FOLD 1 Branch folding enable
0 Branch folding is disabled. All branches are dispatched to the completion buffer.
1 Branch folding is enabled, allowing branches to be folded out of the instruction

prefetch stream before dispatch. The MPC7451 attempts to fold branches that do not
modify the link and or count register.

Note that if a branch is one of the three instruction buffers that are candidates for
dispatch the cycle after it is processed, it cannot be folded it was not taken. See
Chapter 6, “Instruction Timing,” for further details.

29 BHT 1 Branch history table enable
0 BHT disabled. The MPC7451 uses static branch prediction as defined by the

PowerPC architecture (UISA) for those branch instructions the BHT would have
otherwise used to predict (that is, those that use the CR or CTR mechanism to
determine direction). For more information on static branch prediction, see
“Conditional Branch Control,” in Chapter 4 of the Programming Environments
Manual.

1 Allows the use of the dynamic prediction 2048-entry branch history table (BHT).
The BHT is disabled at power-on reset. All entries are set to weakly, not-taken.

30 NOPDST 2 No-op dst, dstt, dstst, and dststt instructions
0 The dst, dstt, dstst, and dststt instructions are enabled.
1 The dst, dstt, dstst, and dststt instructions are no-oped globally, and all previously

executed dst streams are cancelled.

31 NOPTI 8 No-op the data cache touch instructions
0 The dcbt and dcbtst instructions are enabled.
1 The dcbt and dcbtst instructions are no-oped globally.

1 A context synchronizing instruction must follow the mtspr.
2 A dssall and sync must precede a mtspr and then a sync and context synchronizing instruction must follow. Note

that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing
the HID0{DCE] or HID0[DCFI] bit.

3 MPC7445- and MPC7455-specific bit.
4 A context synchronizing instruction must precede a mtspr and a branch instruction should follow. The branch

instruction may be either conditional or unconditional. It ensures that all subsequent branch instructions see the
newly initialized BHT values. For correct results, the BHT should be disabled (HID0[BHT] = 0) before setting
BHTCLR.

5 A dssall and sync must precede a mtspr and then a sync and a context-synchronizing instruction must follow.
Alteration of HID0[XAEN] must be done with caches and translation disabled. The caches and TLBs must be flushed
before they are re-enabled after the XAEN bit is altered. Note that if a user is not using the AltiVec data streaming
instructions, then a dssall is not necessary prior to accessing the HID0[XAEN] bit.

6 A context synchronizing instruction must immediately follow a mtspr. A mtspr instruction for HID0 should not modify
either of these bits at the same time it modifies another bit that requires additional synchronization.

7 A context synchronizing instruction must precede and follow a mtspr.
8 A mtspr must follow a sync and a context synchronizing instruction.

Table 2-6. HID0 Field Descriptions (continued)

Bits Name Description

MOTOROLA Chapter 2. Programming Model 2-23

MPC7451 Processor Register Set

HID0 can be accessed with mtspr and mfspr using SPR 1008. All mtspr instructions
should be followed by a context synchronization instruction such as isync, for specific
details see Section 2.3.2.4, “Synchronization.”

2.1.5.2 Hardware Implementation-Dependent Register 1 (HID1)

The hardware implementation-dependent register 1 (HID1) reflects the state of the
PLL_CFG[0:4] signals and controls other functions. The HID1 bits are shown in
Figure 2-9.

Figure 2-9. Hardware Implementation-Dependent Register 1 (HID1)

The HID1 bits are described in Table 2-7.

Table 2-7. HID1 Field Descriptions (continued)

Bits 1 Name Description

0 EMCP Machine check signal enable
0 Machine check is disabled.
1 Machine check input signal (MCP) is enabled to cause machine check errors or

checkstops

1 — Reserved

2 EBA Enable/disable 60x/MPX bus address bus parity checking.
0 Address bus parity checking is disabled.
1 Allows an address bus parity error to cause a checkstop if MSR[ME] = 0 or a

machine check exception if MSR[ME] = 1.
Clearing EBA and EBD allows the processor to operate with memory subsystems
that do not generate parity. The MPC7451 always generates parity regardless of
whether checking is enable or disabled.

3 EBD Enable/disable MPX/60x bus data parity checking.
0 Data parity checking is disabled.
1 Allows a data bus parity error to cause a checkstop if MSR[ME] = 0 or a machine

check exception if MSR[ME] = 1.
Clearing EBA and EBD allows the processor to operate with memory subsystems
that do not generate parity.The MPC7451 always generates parity regardless of
whether checking is enable or disabled.

4 BCLK CLK_OUT output enable and clock type selection. Used in conjunction with
HID1[ECLK] and the HRESET signal to configure CLK_OUT. See Table 2-8.

5 — Reserved

PAR

ABE

0 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20 21 22 31

Reserved

00_000

BCLK

0

EMCP

0

EBA

EBD

ECLK PC2PC0

PC1 PC3

00_1000_0000

PC4
SYNCBEDFS11

1 MPC7447A-Specific, the bit is reserved in the MPC7447

0

2-24 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

6 ECLK CLK_OUT output enable and clock type selection. Used in conjunction with
HID1[BCLK] and the HRESET signal to configure CLK_OUT. See Table 2-8.

7 PAR Disable precharge for ARTRY, SHD0, and SHD1 pins.
0 ARTRY, SHD0, and SHD1 signals are driven high when negated.
1 ARTRY, SHD0, and SHD1 signals are not driven high when negated.
Thus, the system must restore these signals to the high state on negation.

8 — Reserved.

9 2 DFS1 Dynamic Frequency Switching (DFS) Divide-by-two mode.
0 DFS Divide-by-two mode is disabled.
1 DFS Divide-by-two mode is enabled.
When both DFS0 and DFS1 bits are set, divide by four mode is selected.

Note that the divisors are only applicable to the processor-to-system ratio chosen at
reset by the external PLL_CFG pins. If the HID1 settings select a ratio that is not
supported (see the MPC7447A Hardware Specification for supported ratios), then
the setting of the HID1[DFS1] bit is ignored.

10–14 — Reserved

15 PC0 PLL configuration bit 0 (read-only). Reflects the state of PLL_CFG[0].

16 PC1 PLL configuration bit 1 (read-only). Reflects the state of PLL_CFG[1].

17 PC2 PLL configuration bit 2 (read-only). Reflects the state of PLL_CFG[2].

18 PC3 PLL configuration bit 3 (read-only). Reflects the state of PLL_CFG[3].

19 PC4 PLL configuration bit 4 (read-only). Reflects the state of PLL_CFG[4].

20 SYNCBE Address broadcast enable for sync, eieio
0 Address broadcasting of sync, and eieio is disabled.
1 Address broadcasting of sync, and eieio is enabled. Note this bit must be set in

MP systems and systems that reorder stores.

21 ABE Address broadcast enable for dcbf, dcbst, dcbi, icbi, tlbie, and tlbsync.
0 Address broadcasting of dcbf, dcbst, dcbi, icbi, tlbie, and tlbsync is disabled.

Note that when HID1[ABE] is cleared this does not exclude all cache operations
from the bus, just icbi, tlbie, and tlbsync.

1 Address broadcasting for cache control operations (dcbf, dcbst, dcbi, icbi) and
TLB control operations (tlbie and tlbsync) is enabled. Note that whether the
broadcast occurs depends on the setting of the M bit of WIMG and whether the
access causes a hit to modified memory. See Section 3.8.2, “Bus Operations
Caused by Cache Control Instructions,” for more information on broadcast
operations.

The ABE bit must be set for MP systems.

22–31 — Reserved. Read as 0b00_1000_0000.

1 A sync and context synchronizing instruction must follow a mtspr.
2 MPC7447A-specific bit, reserved on MPC7451

Bits 1 Name Description

MOTOROLA Chapter 2. Programming Model 2-25

MPC7451 Processor Register Set

NOTE
The required software sequence for setting or clearing the
HID1[DFS1] bit is as follows:

sync

mtspr HID1

sync

isync

Table 2-8 shows how HID1[BCLK], HID1[ECLK], and HRESET are used to configure
CLK_OUT. See Section 8.4.6.3, “JTAG Test Data Output (TDO)—Output,” for more
information.

HID1 can be accessed with mtspr and mfspr using SPR 1009. All mtspr instructions
should be followed by a sync and context synchronization instruction for specific details
see Section 2.3.2.4, “Synchronization.”

2.1.5.2.1 MPC7447A-Specific HID1 PLL Configuration Field

The PLL configuration field (HID1[15–19] bits) will dynamically update upon the
selection of a DFS divisor mode to reflect the new ratio. The ratios:

• 2.5:1,

• 3.5:1, and

• 4.5:1,

that are not selectable on the MPC7447A at hard reset via the PLL_CFG pins, share PLL
configuration field encodings with

• 8.5:1

• 13.5:1

• 9.5:1 respectively.

These settings can be correctly decoded by including the HID1[DFS1] bit in the decode.
See Table 2-9 below for details on decoding the HID1[15–19] and the HID1[DFS1] setting.

Table 2-8. HID1[BCLK] and HID1[ECLK] CLK_OUT Configuration

HRESET HID1[ECLK] HID1[BCLK] CLK_OUT

Asserted x x High impedance

Negated 0 0 Zero

Negated 0 1 Bus/2

Negated 1 0 Core

Negated 1 1 Core/2

2-26 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

HID1 can be accessed with mtspr and mfspr using SPR 1009. All mtspr instructions
should be followed by a sync and context synchronization instruction.

2.1.5.3 Memory Subsystem Control Register (MSSCR0)

The memory subsystem control register (MSSCR0), shown in Figure 2-10, is used to
configure and operate the memory subsystem for the MPC7451. It is accessed as SPR 1014.
The MSSCR0 is initialized to all 0s except for the read-only bits.

Because MSSCR0 alters how the MPC7451 responds to snoop requests, it is important that
changes to the value of MSSCR0 are handled correctly.

Figure 2-10. Memory Subsystem Control Register (MSSCR0)

Table 2-10 describes MSSCR0 fields.

Table 2-9. MPC7447A HID1[15–19] Decode during Dynamic Frequency Switching

HID1[15–19]
PLL Configuration

Field Value
HID1[DFS1]

Original
Processor Core : System

Bus
Ratio

Current
Processor Core : System

Bus
Ratio

0b01100 0 8.5:1

1 5:1 2.5:1

0b11100 0 13.5:1

1 7:1 3.5:1

0b01110 0 9.5:1

1 9:1 4.5:1

Reserved

0 þ00_0000_00 þ000 DTQ

BMODEEIDIS

L3TCEN
L3TC L2PFE

 0_00 þ

0 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 25 26 27 29 30 31

ID

00 0

ABD

L3TCEXT

MOTOROLA Chapter 2. Programming Model 2-27

MPC7451 Processor Register Set

Table 2-10. MSSCR0 Field Descriptions

Bits Name Function

0–2 — Reserved

3–5 DTQ DTQ size. Determines the maximum number of outstanding data bus transactions that the
MPC7451 can support. See Chapter 9, “System Interface Operation,” for more
information.The DTQ bit values are as follows:
000 8 Entries
001 16 Entries
010 2 Entries
011 3 Entries
100 4 Entries
101 5 Entries
110 6 Entries
111 7 Entries

6 — Reserved

7 EIDIS Disable external intervention in MPX bus mode
0 External interventions occur.
1 The MPC7451 performs external pushes instead of external interventions. External
interventions are disabled.

8–9 — Reserved

10 L3TCEXT L3 turn around clockcount extension (MPC7457-Specific)
0 Used with MSSCR0[L3TC] to determine the L3 turnaround clock count. See L3CR[L3TC]
field description.
1 Used with MSSCR0[L3TC] to determine the L3 turnaround clock count. See
MSSCR0[L3TC] field description.
Note, that the MSSCR0[10] bit is reserved on the MPC7451 and is used as an L3
turnaround clock count only on the MPC7457.

11 ABD Address bus driven mode
0 Address bus driven mode disabled
1 Address bus driven mode enabled
The read-only bit reflects the state of the BMODE0 signal after HRSET negation and

indicates whether the processor is address bus driven mode. See Section 9.3.2.1,
“Address Bus Driven Mode,” for more information.

12 L3TCEN L3 turnaround clock enable
0 L3 turnaround clock disabled.
1 L3 turnaround clock is enabled.
See Chapter 3, “L1, L2, and L3 Cache Operation,” for more information.

13–14 L3TC L3 turnaround clock count. The following bit values determine the number of cycles the L3
waits between read and write transactions if L3TCEN is set.The following values are correct
for the MPC7451. Note that only for the MPC7457, the following values are correct when
MSSCR0[L3TCEXT] = 0:
00 2 L3CKn cycles
01 3 L3CKn cycles
10 4 L3CKn cycles
11 5 L3CKn cycles
Also note that only for the MPC7457, the following values are correct when
MSSCR0[L3TCEXT] = 1. These values are not used on the MPC7451.
00 6 L3CKn cycles
01 7 L3CKn cycles
10 8 L3CKn cycles
11 9 L3CKn cycles

2-28 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

2.1.5.4 Memory Subsystem Status Register (MSSSR0)

The memory subsystem status register (MSSSR0), shown in Figure 2-11, is used to report
parity in the L2 and L3 caches of the MPC7451. It is accessed as SPR 1015. The MSSSR0
is initialized to all 0s except for the read-only bits.

Figure 2-11. Memory Subsystem Status Register (MSSSR0)

Table 2-11 describes MSSSR0 fields.

15 — Reserved.

16–17 BMODE Bus mode (read-only). Reflects the inverse of the voltage levels on BMODE[0:1] while
HRESET is asserted. Indicates whether the system interface uses the 60x or MPX bus
protocol as described in Chapter 9, “System Interface Operation.”
00 60x bus mode
01 Reserved
10 MPX bus mode
11 Reserved
Note that the value on BMODE[0:1] after reset negates determines other values of
MSSCR0 as follows:

BMODE0 (post reset) → MSSCR0[ABD]
BMODE1 (post reset) → MSSCR0[ID]

18–25 — Reserved. Normally cleared, used in debug, writing nonzero values may cause boundedly
undefined results.

26 ID Processor identification. Sets the processor ID to either processor 0 or 1. Determined by
the inverse of the voltage levels on BMODE1 while HRESET is negated.
0 BMODE1 negated after HRESET negated
1 BMODE1 asserted after HRESET negated
In a multiprocessor system, one processor can be assigned by the BMODE1 as processor
0 and all other processor can be assigned as processor 1. Then software can find processor
0 and use it to re-identify the other processors by writing unique values to the PIR of the
other CPUs.

27–29 — Reserved. Read as zeroes.

30–31 L2PFE L2 prefetching enabled. The following values determine the number of L2 prefetch engines
enabled as follows:
00 L2 prefetching disabled, no prefetch engines
01One prefetch engine enabled
10 Two prefetch engines enabled
11 Three prefetch engines enabled
These bits enable alternate sector prefetching in the 2-sectored L2 cache; up to 3
outstanding prefetch engines may be active.

Table 2-10. MSSCR0 Field Descriptions (continued)

Bits Name Function

0 12 13 14 15 16 17 18 19 20 31

Reserved

 þ þþ0000_0000_þ0000

TEA
DPE

 þ þþ0000_þ0000_þ0000_0þ

L2TAG APE
L3DAT

L3TAG
L2DAT

MOTOROLA Chapter 2. Programming Model 2-29

MPC7451 Processor Register Set

2.1.5.5 Instruction and Data Cache Registers

There are several registers used for configuring and controlling the various L1, L2, and L3
caches. Along with the cache registers (L2CR, L3CR, ICTRL, LDSTCR, and L3PM),
HID0 is used in configuring the caches. Details of how the various cache registers are used
is discussed below. See the Chapter 3, “L1, L2, and L3 Cache Operation,” for further details
on configuring the cache.

2.1.5.5.1 L2 Cache Control Register (L2CR)

The L2 cache control register (L2CR), shown in Figure 2-12, is a supervisor-level,
implementation-specific SPR used to configure and operate the L2 cache. It is cleared by a
hard reset or power-on reset.

Table 2-11. MSSSR0 Field Descriptions

Bits Name Description

0–12 — Reserved. Normally cleared, used in debug, writing nonzero values may cause boundedly
undefined results.

13 L2TAG L2 tag parity error
0 L2 tag parity error not detected.
1 L2 tag parity error detected.

14 L2DAT L2 data parity error
0 L2 data parity error not detected.
1 L2 data parity error detected.

15 L3TAG L3 tag parity error
0 L3 tag parity error not detected.
1 L3 tag parity error detected.

16 L3DAT L3 data parity error
0 L3 data parity error not detected.
1 L3 data parity error detected.

17 APE Address bus parity error
0 Address bus parity error not detected.
1 Address bus parity error detected.

18 DPE Data bus parity error
0 Data bus parity error not detected.
1 Data bus parity error detected.

19 TEA Bus transfer error acknowledge
0 TEA not detected as asserted.
1 TEA detected as asserted.

20–31 — Reserved

2-30 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

Figure 2-12. L2 Cache Control Register (L2CR)

The L2 cache interface is described in Chapter 3, “L1, L2, and L3 Cache Operation.” The
L2CR bits are described in Table 2-12.

Table 2-12. L2CR Field Descriptions

Bits Name Description

0 L2E L2 cache enable
0 L2 cache operation (including snooping) disabled
1 L2 cache operation (including snooping) enabled
The L2 cache operation is enabled starting with the next transaction the L2 cache unit receives.
Before enabling the L2 cache, all other L2CR bits must be set appropriately. The L2 cache may
need to be invalidated globally.

1 L2PE L2 data parity checking enable
0 L2 tag and data parity disabled
1 L2 tag and data parity enabled
Enables or disables the checking of L2 tag and data parity.

2–3 — Reserved
Must be set by software during initialization to ob00.

4–9 — Reserved

10 L2I L2 global invalidate
0 L2 cache not invalidated globally
1 L2 cache invalidated globally
Invalidates the L2 cache globally by clearing the L2 status bits. This bit must not be set while
the L2 cache is enabled. Note that L2I is automatically cleared when the global invalidate
completes.

11 L2IO L2 instruction-only mode
0 Instruction-only operation in the L2 cache disabled
1 Instruction-only operation in the L2 cache enabled
Enables instruction-only operation in the L2 cache. For this operation, only instruction accesses
cause new entries to be allocated in the L2 cache. Data addresses already in the cache still hit
for the L1 data cache. When both L2CR[L2DO] and L2CR[L2IO] are set, the L2 cache is
effectively locked.

12 L3OH0 L3 output hold 0. These bits configure output hold time for address, data, and control signals
driven by the MPC7455 to the L3 data RAMs. They should generally be set according to the
SRAM’s input hold time requirements.
See the MPC7455 Hardware Specification for specific output hold times.

13–14 — Reserved

0 1 2 3 4 9 10 11 12 14 15 16 18 19 31

L2E
L2PE

L2I

L2IO

L2HWF

L2REP

20 21

Reserved

 þ þþ0000_0000_000 þþ00_0000_00þ 00 þþ

L2DO

0 0 0 þþ

L3OH0

MOTOROLA Chapter 2. Programming Model 2-31

MPC7451 Processor Register Set

The L2CR register can be accessed with the mtspr and mfspr instructions using SPR 1017.

2.1.5.5.2 L3 Cache Control Register (L3CR)

The L3 cache control register (L3CR), shown in Figure 2-20, is a supervisor-level,
implementation-specific SPR used to configure and operate the L3 cache. All L3CR bits
are cleared by a hard reset or power-on reset.

Figure 2-13. L3 Cache Control Register (L3CR) for the MPC7457

15 L2DO L2 data-only mode
0 Data-only operation in the L2 cache disabled
1 Data-only operation in the L2 cache enabled
Enables data-only operation in the L2 cache. When this bit is set, only data accesses can be
cached in the L2 cache. Instruction accesses are serviced for instruction addresses already in
the L2 cache; however, the L2 cache is not reloaded for L1 instruction cache misses. Note that
setting both L2CR[L2D] and L2CR[L2IO] effectively locks the L2 cache.

16–18 — Reserved

19 L2REP L2 replacement algorithm
0 When this bit is cleared, the default replacement algorithm is used
1 When this bit is set, the secondary replacement algorithm is used
See Section 3.6.4.4, “L2 Cache Line Replacement Algorithms,” for more information.

20 L2HWF L2 hardware flush.
0 L2 hardware flush disabled
1 L2 hardware flush enabled
When L2CR[L2HWF] is set, the L2 begins a flush by starting with way 0. Each modified block
(sector) is cast out as it is flushed. After the first line in the first way is flushed, the next way
(same index) is flushed. When all ways for a given index have been flushed, the index is
incremented and same process occurs for line 1, etc.
During a hardware flush, the L2 services both read hits and bus snooping.
The hardware flush completes when all blocks in the L2 have a status of invalid. At this time,
the processor automatically clears L2CR[L2HWF]. However, even though the hardware flush is
considered complete, there may still be outstanding castouts queued in the L2SQ that need to
be performed to the L3 and outstanding castouts in the BSQ waiting to be performed to the
system interface.
See Section 3.6.3.1.5, “Flushing of L1, L2, and L3 Caches,” for more information.

21–31 — Reserved

Table 2-12. L2CR Field Descriptions (continued)

Bits Name Description

L3APE

L3E

L3PE L3IO
L3HWF

L3REP

Reserved

 0þ þþ 000þ

L3SIZ
L3CLKEN

L3CLK

L3CKSP
L3SPO

L3PSP

0 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 18 19 20 21 22 23 24 25 26 28 29 30 31

L3I

L3RT

L3NIRCA
L3DO

PMEN PMSIZ

L3CKSPEXT

L3CLKEXT

1

1MPC7457-specific bit

1

L3OH1

2-32 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

The L3 cache interface is described in Chapter 3, “L1, L2, and L3 Cache Operation.” The
L3CR bits are described in Table 2-13.

Table 2-13. L3CR Field Descriptions

Bits Name Description

0 L3E L3 enable
0 L3 cache operation (including snooping) disabled
1 L3 cache operation (including snooping) enabled
Enables or disables L3 cache operation (including snooping) starting with the next transaction
the L3 cache unit receives. Before enabling the L3 cache, the L3 clock must be configured
through L3CR[L3CLK], and the L3CR[L3CLKEN] (see the MPC7451 Hardware Specifications
for further details). Also, all other L3CR bits must be set appropriately. The L3 cache may need
to be invalidated globally before the L3 cache is enabled.

1 L3PE L3 data parity checking enable
0 L3 odd data parity checking disabled
1 L3 odd data parity checking enabled
Enables odd parity checking for the L3 data RAM interface and on-chip tags. When L3PE is set,
it allows a data parity error on the L3 interface or a parity error in the on-chip L3 tags to cause
a checkstop if MSR[ME] = 0 or a machine check exception if MSR[ME] = 1. The MPC7451
always generates L3 data parity.

2 L3APE L3 address parity checking enable
0 L3 address parity checking disabled
1 L3 address parity checking enabled
If L3CR[L3PE] = 1. enables odd parity checking for the L3 address bus interface and on-chip
tags. The address parity is merged with the data parity on the L3 data parity interface pins. An
address parity error on the L3 address bus will cause a checkstop if MSR[ME] = 0 or a machine
check exception if MSR[ME] = 1. The MPC7451 only generates L3 address parity if
L3CR[L3APE] = 1 and L3CR[L3PE] = 1.

3 L3SIZ L3 size
Should be set according to the size of the L3 cache as follows:
0 1 Mbyte
1 2 Mbyte

4 L3CLKEN Enables the L3_CLK[0:1] signals
0 L3 clocks disabled
1 L3 clocks enabled
A minimum of 100 MPC7451 clock cycles must transpire between the clearing and setting of
this bit.

5 — Reserved. Must be set by software during initialization (see Section 3.7.3.1, “Enabling the L3
Cache and L3 Initialization,” for details on when to set this bit).

MOTOROLA Chapter 2. Programming Model 2-33

MPC7451 Processor Register Set

6–8 L3CLK L3 clock ratio (core-to-L3 frequency divider). Specifies the ratio between the core clock
frequency and the frequency at which the L3 SRAM interface operates. See the MPC7451
Hardware Specifications for further details. The resulting L3 clock frequency cannot be slower
than the clock frequency of the 60x/MPX bus interface.

The following ratios are correct for the MPC7451:
 Note that for the MPC7457, the following ratios are correct when L3CR[L3CLKEXT] = 0:
000 ÷ 6
001 Reserved
010 ÷ 2
011 ÷ 2.5
100 ÷ 3
101 ÷ 3.5
110 ÷ 4
111 ÷ 5
Also note that for the MPC7457, the following ratios are correct when L3CR[L3CLKEXT] = 1.
These ratios are not used on the MPC7451.
000 ÷ 7
001 ÷ 8
010 ÷ 4.5
011 ÷ 5.5
100 ÷ 6.5
101 ÷ 7.5
110 Reserved
111 Reserved

Note these bits should only be changed after at least 100 MPC7451 clock cycles have
transpired after L3CLKEN has been cleared.

9 L3IO L3 instruction-only mode
0 Instruction-only operation in the L3 cache disabled
1 Instruction-only operation in the L3 cache enabled
Enables instruction-only operation in the L3 cache. When this bit is set, only instruction
accesses can be cached in the L3 cache. Data addresses already in the cache will still hit for
the L3 data cache. When both L3CR[L3DO] and L3CR[L3IO] are set, the L3 cache is effectively
locked.

10 L3CLKEXT L3 Clock Ratio Extension (MPC7457-Specific)
0 Used with L3CR[L3CLK] to determine the clock ratio encodings. See L3CR[L3CLK] field
description.
1 Used with L3CR[L3CLK] to determine the other clock ratio encodings. See L3CR[L3CLK]
field description.
Note, that the L3CR[10] bit is reserved on the MPC7451 and is used as an L3 clock ratio
extension only on the MPC7457.

11 L3CKSPEXT L3 Clock Sample Point Extension (MPC7457-Specific)
0 Used with L3CR[L3CKSP] to determine the clock ratio encodings. See L3CR[L3CKSP] field
description.
1 Used with L3CR[L3CKSP] to determine the other clock ratio encodings. See L3CR[L3CKSP]
field description.
Note, that the L3CR[11] bit is reserved on the MPC7451 and is used as an L3 clock sample point
extension only on the MPC7457.

12 — Reserved

Table 2-13. L3CR Field Descriptions (continued)

Bits Name Description

2-34 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

12 L3OH1 MPC7455: L3 output hold 1. These bits configure output hold time for address, data, and control
signals driven by the MPC7455 to the L3 data RAMs. They should generally be set according
to the SRAM’s input hold time requirements.
See the MPC7455 Hardware Specification for specific output hold times.

All others: Reserved

13 L3SPO L3 sample point override
0 L3 sample point override disabled
1 L3 sample point override enabled
Adds one L3 clock of latency to a read operation, and may be required for future generation
SRAMs.

14–15 L3CKSP L3 clock sample point. Specifies in which L3 clock cycle the L3 accumulator samples data from
the receive latches. See Section 3.7.3.8, “L3 Cache Clock and Timing Controls,” and the
MPC7451 Hardware Specifications for further clarification.

The following values are correct for the MPC7451. Note that only for the MPC7457, the
following values are correct when L3CR[L3CKSPEXT] = 0:
00 2 clocks
01 3 clocks
10 4 clocks
11 5 clocks
Also note that only for the MPC7457, the following values are correct when L3CR[L3CKSPEXT]
= 1. These values are not used on the MPC7451.
00 6 clocks
01 7 clocks
10 8 clocks
11 9 clocks

16–18 L3PSP L3 P-clock sample point. Specify the processor clock cycle in which the L3 accumulator
samples data from the receive latches. See Section 3.7.3.8, “L3 Cache Clock and Timing
Controls,” and the MPC7451 Hardware Specifications for further clarification.
000 0 clocks
001 1 clock
010 2 clocks
011 3 clocks
100 4 clocks
101 5 clocks
110 Reserved on the MPC7451. For the MPC7457, it is 6 clocks.
111 Reserved on the MPC7451. For the MPC7457, it is 7 clocks.

19 L3REP L3 replacement algorithm
0 When this bit is cleared, the default replacement algorithm is used
1 When this bit is set, the secondary replacement algorithm (3-bit running free counter) is used.
For details on the replacement algorithm, see Section 3.7.7.4, “L3 Cache Replacement
Selection.”

Table 2-13. L3CR Field Descriptions (continued)

Bits Name Description

MOTOROLA Chapter 2. Programming Model 2-35

MPC7451 Processor Register Set

20 L3HWF L3 hardware flush
0 L3 hardware flush disabled
1 L3 hardware flush enabled

When L3CR[L3HWF] is set, the L3 begins a flush by starting with way 0. Each modified block
(sector) is cast out as it is flushed. After the first line in the first way is flushed, the next way
(same index) is flushed. When all ways for a given index have been flushed, the index is
incremented and same process occurs for line 1, etc.
During a hardware flush, the L3 services both read hits and bus snooping.
The hardware flush completes when all blocks in the L3 have a status of invalid. At this time,
the processor automatically clears L3CR[L3HWF]. However, even though the hardware flush is
considered complete, there may still be outstanding castouts queued in the BSQ waiting to be
performed to the system interface.

See Section 3.6.3.1.5, “Flushing of L1, L2, and L3 Caches,” for more information.

21 L3I L3 global invalidate
0 Do not globally invalidate the L3
1 Globally invalidate the L3
Invalidates the L3 cache globally by clearing the L3 status bits. This bit must not be set while
the L3 cache is enabled. Note that L3I is automatically cleared when the global invalidate
completes.

22–23 L3RT L3 SRAM type. Configures the L3 SRAM interface for the type of synchronous SRAMs used:
 • MSUG dual data rate SRAMs that provide data synchronous to the L3_ECHO_CLK input

signals to the MPC7451 and on each clock edge
 • Late-write SRAMs which are required by the MPC7451 to be of the pipelined

(register-register) configurations
 • Pipeline burst SRAMs, referred to as PB2-type SRAMs
For burst RAM selections, the MPC7451 does not use the burst feature of the SRAM; it
generates an address for each access.
00 MSUG2 DDR SRAM
01 Pipelined (register-register) synchronous late-write SRAM
10 Reserved
11 PB2 SRAM

24 L3NIRCA L3 non-integer ratios clock adjustment for the SRAM. When this bit is set, the AC timing of
L3_CLK[0:1] is changed.
0 L3 SRAM clock timing is unchanged (default).
1 The L3_CLK[0:1] signals occur earlier relative to the MPC7451 driving the L3 address,
control and data buses in non-integer L3 clock ratios. Because of the way that the L3_CLK[0:1]
signals are internally derived, these signals may be driven slightly later (one-eight of a core
clock) with non-integer clock ratios than they would normally be with an integer L3 clock ratio.
This can potentially cause AC hold timing problems on the L3 interface if the timing margins are
very small. This signal corrects for this phenomenon by causing the MPC7451 to drive the
L3_CLK[0:1] signals one-quarter of a core clock earlier at the expense of AC setup timing.
See the MPC7451 Hardware Specifications for further clarification.

25 L3DO L3 data-only mode
0 Data-only operation in the L3cache disabled
1 Data-only operation in the L3 cache enabled
Enables data-only operation in the L3 cache. When this bit is set, only data accesses can be
cached in the L3 cache. Instruction cache operations are serviced for instruction addresses
already in the L3 cache; however, the L3 cache is not reloaded for instruction cache misses.
Note that setting both L3CR[L3DO] and L3CR[L3IO] effectively locks the L3 cache.

26–28 — Reserved

Table 2-13. L3CR Field Descriptions (continued)

Bits Name Description

2-36 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

The L3CR register can be accessed with the mtspr and mfspr instructions using SPR 1018.

2.1.5.5.3 L3 Cache Output Hold Control Register
(L3OHCR)—MPC7457-Specific

The L3 cache output hold control register (L3OHCR), shown in Figure 2-20, is a
supervisor-level, implementation-specific SPR used to control the output AC timing of the
L3 cache interface of the MPC7457. All L3OHCR bits are cleared by a hard reset or
power-on reset. For more information, see the MPC7457 Hardware Specification.

Figure 2-14. L3 Cache Output Hold Control Register (L3OHCR) for the MPC7457

The L3 cache interface is described in Chapter 3, “L1, L2, and L3 Cache Operation.” The
L3OHCR bits are described in Table 2-14.

29 PMEN Private memory enable
0 Private memory disabled
1 Private memory enabled
When this bit is set, the MPC7451 does not manage the coherency of the contents of private
memory. Thus, the software must manage addresses mapped to this range very carefully.

30–31 PMSIZ Private memory size
For the MPC7451, L3CR[31] is used:
0 1 MB
1 2 MB
Note that L3CR[30] bit is reserved on the MPC7451 and MPC7455.
For the MPC7457, L3CR[30—31] is used:
00 1 MB
01 2 MB
10 4 MB
11 Reserved

Table 2-14. L3OHCR Field Descriptions

Bits Name Description

0-1 L3AOH L3 address output hold. These bits configure output hold time for address and control signals
driven by the MPC7457 to the L3 data RAMs. They should generally be set according to the
SRAM’s input hold time requirements.
See the MPC7457 Hardware Specification for specific output hold times.

2-4 L3CLK0_OH L3_CLK0 output hold. These bits configure output hold time for L3_CLK0 signal driven by the
MPC7457 to the L3 data RAMs. They should generally be set according to the SRAM’s input
hold time requirements.
See the MPC7457 Hardware Specification for specific output hold times.

Table 2-13. L3CR Field Descriptions (continued)

Bits Name Description

L3DOH0 þþ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L3CLK0_OHL3CLK1_OHL3AOH L3DOH8 L3DOH16 L3DOH24 L3DOH32 L3DOH40 L3DOH48 L3DOH56

MOTOROLA Chapter 2. Programming Model 2-37

MPC7451 Processor Register Set

The L3OHCR register is specific to the MPC7457 and can be accessed with the mtspr and
mfspr instructions using SPR 1000.

2.1.5.5.4 L3 Cache Input Timing Control (L3ITCR0)

The L3 cache input timing control register (L3ITCR0), shown in Figure 2-15, is a
supervisor-level, implementation-specific SPR used to control the input AC timing of the
L3 cache interface of the MPC7451. For the MPC7457, the L3ITCR0, shown in
Figure 2-16, is used to control the input AC timing of L3_DATA[0:15] and L3_DP[0:1]

5-7 L3CLK1_OH L3_CLK1 output hold. These bits configure output hold time for L3_CLK1 signal driven by the
MPC7457 to the L3 data RAMs. They should generally be set according to the SRAM’s input
hold time requirements.
See the MPC7457 Hardware Specification for specific output hold times.

8-10 L3DOH0 L3_DATA[00:07]/L3_DP[0] output hold. These bits configure output hold time for
L3_DATA[00:07] and L3_DP[0] signals driven by the MPC7457 to the L3 data RAMs. They
should generally be set according to the SRAM’s input hold time requirements.
See the MPC7457 Hardware Specification for specific output hold times.

11-13 L3DOH8 L3_DATA[08:15]/L3_DP[1] output hold. These bits configure output hold time for
L3_DATA[8:15] and L3_DP[1] signals driven by the MPC7457 to the L3 data RAMs. They
should generally be set according to the SRAM’s input hold time requirements.
See the MPC7457 Hardware Specification for specific output hold times.

14-16 L3DOH16 L3_DATA[16:23]/L3_DP[2] output hold. These bits configure output hold time for
L3_DATA[16:23] and L3_DP[2] signals driven by the MPC7457 to the L3 data RAMs. They
should generally be set according to the SRAM’s input hold time requirements.
See the MPC7457 Hardware Specification for specific output hold times.

17-19 L3DOH24 L3_DATA[24:31]/L3_DP[3] output hold. These bits configure output hold time for
L3_DATA[24:31] and L3_DP[3] signals driven by the MPC7457 to the L3 data RAMs. They
should generally be set according to the SRAM’s input hold time requirements.
See the MPC7457 Hardware Specification for specific output hold times.

20-22 L3DOH32 L3_DATA[32:39]/L3_DP[4] output hold. These bits configure output hold time for
L3_DATA[32:39] and L3_DP[4] signals driven by the MPC7457 to the L3 data RAMs. They
should generally be set according to the SRAM’s input hold time requirements.
See the MPC7457 Hardware Specification for specific output hold times.

23-25 L3DOH40 L3_DATA[40:47]/L3_DP[5] output hold. These bits configure output hold time for
L3_DATA[40:47] and L3_DP[5] signals driven by the MPC7457 to the L3 data RAMs. They
should generally be set according to the SRAM’s input hold time requirements.
See the MPC7457 Hardware Specification for specific output hold times.

26-28 L3DOH48 L3_DATA[48:55]/L3_DP[6] output hold. These bits configure output hold time for
L3_DATA[48:55] and L3_DP[6] signals driven by the MPC7457 to the L3 data RAMs. They
should generally be set according to the SRAM’s input hold time requirements.
See the MPC7457 Hardware Specification for specific output hold times.

29-31 L3DOH56 L3_DATA[56:63]/L3_DP[7] output hold. These bits configure output hold time for
L3_DATA[56:63] and L3_DP[7]signals driven by the MPC7457 to the L3 data RAMs. They
should generally be set according to the SRAM’s input hold time requirements.
See the MPC7457 Hardware Specification for specific output hold times.

Table 2-14. L3OHCR Field Descriptions (continued)

Bits Name Description

2-38 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

signals of the L3 cache interface. All L3ITCR0 bits are cleared by a hard reset or power-on
reset and configured when the L3 clock is enabled. Note: This register is intended for
factory use. Writing to this register will override the default input AC timing of the L3
cache interface and may cause improper operation of the L3 cache.

Figure 2-15. L3 Cache Control Register (L3ITCR0) for the MPC7451 and MPC7455

Figure 2-16. L3 Cache Control Register (L3ITCR0) for the MPC7457

The L3 cache interface is described in Chapter 3, “L1, L2, and L3 Cache Operation.” The
L3ITCR0 bits for the MPC7451 and MPC7455 are described in Table 2-15.

The L3ITCR0 bits for the MPC7457 are described in Table 2-16.

Table 2-15. L3ITCR0 Field Descriptions for the MPC7451 and MPC7455

Bits Name Description

0-22 L3DC0 L3 delay count. These bits contain a delay counter value used to internally align the
L3_ECHO_CLK inputs to data being returned from the SRAM.

23 L3DCDIS0 L3 delay counter disable. Setting this bit disables the automic delay count configuration. Always
read as 0.

24 L3DCO0 L3 delay counter override. Setting this bit overrides the automatic configuration value of the
delay count. Always read as 0.

25-31 Reserved.

L3DC0

Reserved

000_0000þ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L3DCDIS0
L3DCO0

L3DC0

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L3DCDIS0
L3DCO0

MOTOROLA Chapter 2. Programming Model 2-39

MPC7451 Processor Register Set

The L3ITCR0 register can be accessed with the mtspr and mfspr instructions using
SPR 984.

2.1.5.5.5 L3 Cache Input Timing Control (L3ITCR1)

The L3 cache input timing control register (L3ITCR1), shown in Figure 2-20, is a
supervisor-level, implementation-specific SPR used to control the input AC timing of
L3_DATA[16:31] and L3_DP[2:3] signals of the L3 cache interface of the MPC7457. All
L3ITCR1 bits are cleared by a hard reset or power-on reset and configured when the L3 is
enabled. Note: This register is intended for factory use. Writing to this register will override
the default input AC timing of the L3 cache interface and may cause improper operation of
the L3 cache.

Figure 2-17. L3 Cache Control Register (L3ITCR1) for the MPC7457

The L3 cache interface is described in Chapter 3, “L1, L2, and L3 Cache Operation.” The
L3ITCR0 bits for the MPC7457 are described in Table 2-17.

Table 2-16. L3ITCR0 Field Descriptions for the MPC7457

Bits Name Description

0-29 L3DC0 L3 delay count. These bits contain a delay counter value used to internally align the
L3_ECHO_CLK0 input to data being returned on L3_DATA[0:15] and L3_DP[0:1] from the
SRAM.

30 L3DCDIS0 L3 delay counter disable. Setting this bit disables the automic delay count configuration. Always
read as 0.

31 L3DCO0 L3 delay counter override. Setting this bit overrides the automatic configuration value of the
delay count. Always read as 0.

Table 2-17. L3ITCR1 Field Descriptions for the MPC7457

Bits Name Description

0-22 L3DC1 L3 delay count. These bits contain a delay counter value used to internally align the
L3_ECHO_CLK inputs to data being returned from the SRAM.

23 L3DCDIS1 L3 delay counter disable. Setting this bit disables the automic delay count configuration. Always
read as 0.

L3DC1

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L3DCDIS1
L3DCO1

2-40 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

The L3CR register can be accessed with the mtspr and mfspr instructions using SPR 1001.

2.1.5.5.6 L3 Cache Input Timing Control (L3ITCR2)

The L3 cache input timing control register (L3ITCR2), shown in Figure 2-18, is a
supervisor-level, implementation-specific SPR used to control the input AC timing of
L3_DATA[32:47] and L3_DP[4:5] signals of the L3 cache interface of the MPC7457. All
L3ITCR2 bits are cleared by a hard reset or power-on reset and configured when the L3 is
enabled. Note: This register is intended for factory use. Writing to this register will override
the default input AC timing of the L3 cache interface and may cause improper operation of
the L3 cache.

Figure 2-18. L3 Cache Control Register (L3ITCR2) for the MPC7457

The L3 cache interface is described in Chapter 3, “L1, L2, and L3 Cache Operation.” The
L3ITCR2 bits for the MPC7457 are described in Table 2-17.

The L3ITCR2 register can be accessed with the mtspr and mfspr instructions using
SPR 1002.

24 L3DCO1 L3 delay counter override. Setting this bit overrides the automatic configuration value of the
delay count. Always read as 0.

25-31 Reserved.

Table 2-18. L3ITCR2 Field Descriptions for the MPC7457

Bits Name Description

0-22 L3DC2 L3 delay count. These bits contain a delay counter value used to internally align the
L3_ECHO_CLK inputs to data being returned from the SRAM.

23 L3DCDIS2 L3 delay counter disable. Setting this bit disables the automic delay count configuration. Always
read as 0.

24 L3DCO2 L3 delay counter override. Setting this bit overrides the automatic configuration value of the
delay count. Always read as 0.

25-31 Reserved.

Table 2-17. L3ITCR1 Field Descriptions for the MPC7457 (continued)

Bits Name Description

L3DC2

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L3DCDIS2
L3DCO2

MOTOROLA Chapter 2. Programming Model 2-41

MPC7451 Processor Register Set

2.1.5.5.7 L3 Cache Input Timing Control (L3ITCR3)

The L3 cache input timing control register (L3ITCR3), shown in Figure 2-19, is a
supervisor-level, implementation-specific SPR used to control the input AC timing of
L3_DATA[48:63] and L3_DP[6:7] signals of the L3 cache interface of the MPC7457. All
L3ITCR3 bits are cleared by a hard reset or power-on reset and configured when the L3 is
enabled. Note: This register is intended for factory use. Writing to this register will override
the default input AC timing of the L3 cache interface and may cause improper operation of
the L3 cache.

Figure 2-19. L3 Cache Control Register (L3ITCR3) for the MPC7457

The L3 cache interface is described in Chapter 3, “L1, L2, and L3 Cache Operation.” The
L3ITCR3 bits for the MPC7457 are described in Table 2-19.

The L3CR register can be accessed with the mtspr and mfspr instructions using SPR 1003.

Table 2-19. L3ITCR3 Field Descriptions for the MPC7457

Bits Name Description

0-22 L3DC3 L3 delay count. These bits contain a delay counter value used to internally align the
L3_ECHO_CLK inputs to data being returned from the SRAM.

23 L3DCDIS3 L3 delay counter disable. Setting this bit disables the automic delay count configuration. Always
read as 0.

24 L3DCO3 L3 delay counter override. Setting this bit overrides the automatic configuration value of the
delay count. Always read as 0.

25-31 Reserved.

L3DC2

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L3DCDIS3
L3DCO3

2-42 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

2.1.5.5.8 Instruction Cache and Interrupt Control Register (ICTRL)

The instruction cache and interrupt control register (ICTRL), shown in Figure 2-20, is used
in configuring interrupts and error reporting for the instruction and data caches. It is
accessed as SPR 1011. Control and access to the ICTRL is through the privileged
mtspr/mfspr instructions.

Figure 2-20. Instruction Cache and Interrupt Control Register (ICTRL)

Table 2-20 describes the bit fields for the ICTRL register.

Table 2-20. ICTRL Field Descriptions

Bits Name Description

0 CIRQ CPU interrupt request
0 No processor interrupt request forwarded to exception handling. If software clears the CIRQ

bit, it does not cancel a previously sent interrupt request.
1 Processor interrupt request sent to the exception mechanism.
This interrupt request is combined with the external interrupt request (assertion of INT). When
external interrupts are enabled with the MSR[EE] bit and either this bit is set or INT is asserted,
the MPC7451 takes the external interrupt exception. If there is more than one interrupt request
pending (CIRQ and INT is asserted), only one interrupt is taken. When the external interrupt
exception is taken, the ICTRL[CIRQ] bit is automatically cleared.
Note that this mechanism allows a processor to interrupt itself. If software leaves CIRQ set
while waiting for the interrupt to be taken, it can poll CIRQ to determine when the interrupt has
been taken.

1–3 — Reserved

4 EIEC 1 Instruction cache parity error enable
0 When the bit is cleared, any parity error in the L1 instruction cache is masked and does not

cause machine checks or checkstop
1 Enables instruction cache parity errors. When an instruction cache parity error occurs, a

machine check exception is taken if MSR[ME] = 1. When this condition occurs, SRR1[1] is
set.

For details on the machine check exception see Section 4.6.2, “Machine Check Exception
(0x00200).”

5 EDCE 2 Data cache parity error enable
0 When the bit is cleared, any parity error in the L1 data cache is masked and does not cause

machine checks or checkstop
1 Enables data cache parity errors. When a data cache parity error occurs, a machine check

exception is taken if MSR[ME] = 1. When this condition occurs, SRR1[2] is set.
For details on the machine check exception see Section 4.6.2, “Machine Check Exception
(0x00200).”

6–8 — Reserved. Normally cleared, used in debug, writing nonzero values may cause boundedly
undefined results.

0 3 4 5 6 22 23 24 31

00_0000_0000_0000_000

EIECCIRQ

000

EDCE EICP

ICWL

Reserved

MOTOROLA Chapter 2. Programming Model 2-43

MPC7451 Processor Register Set

ICTRL can be accessed with the mtspr and mfspr instructions using SPR 1011.

2.1.5.5.9 Load/Store Control Register (LDSTCR)

The load/store control register (LDSTCR) provides a way to lock the ways for the L1 data
cache. The LDSTCR is shown in Figure 2-26.

Figure 2-21. Load/Store Control Register (LDSTCR)

Table 2-26 describes the bit fields for the LDSTCR register.

9–22 — Reserved. Read as zeroes and ignores writes.

23 EICP Enable instruction cache parity checking
0 Instruction cache parity disabled
1 When the EICP bit is set, the parity of any instructions fetched from the L1 instruction cache
is checked. Any errors found are reported as instruction cache parity errors in SRR1. If EICE
is also set, these instruction cache errors cause a machine check or checkstop. If either EICP
or EICE is cleared, instruction cache parity is ignored.
Note that when parity checking and error reporting are both enabled, errors are reported even
on speculative fetches that are never actually executed. Correct instruction cache parity is
always loaded into the L1 instruction cache regardless of whether checking is enabled or not.

24–31 ICWL1 Instruction cache way lock
0 Instruction cache way lock disabled.
1 Instruction cache way lock enabled.
Each bit in ICWL corresponds to a way of the L1 instruction cache. Setting a bit locks the
corresponding way in the instruction cache. Setting all 8 bits of ICWL is equivalent to locking
the entire instruction cache. When all 8 ICWL bits are set, MPC7451 behaves the same as
when HID0[ILOCK] is set. See Section 2.1.5.1, “Hardware Implementation-Dependent
Register 0 (HID0) for details. See Chapter 3, “L1, L2, and L3 Cache Operation,” for
suggestions on how to keep the PLRU replacement algorithm symmetrical, and for
synchronization requirements for modifying ICWL.

1 A context synchronizing instruction must precede and follow a mtspr.
2 A dssall and sync must precede a mtspr and then a sync and context synchronizing instruction must follow. Note that

if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing the
ICTRL[EDCE] bit.

Table 2-20. ICTRL Field Descriptions (continued)

Bits Name Description

0 2423 31

DCWL

Reserved

 þ 0000_0000_0000_0000_0000_0000þþ

2-44 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

The LDSTCR register can be accessed with the mtspr and mfspr instructions using
SPR 1016. For synchronization requirements on the register see Section 2.3.2.4,
“Synchronization.”

2.1.5.5.10 L3 Private Memory Address Register (L3PM)

The L3 private address register (L3PM), shown in Figure 2-22, is a supervisor-level,
implementation-specific SPR used to configure the base address of the range of addresses
that defines the L3 private memory space. It is cleared by a hard reset or power-on reset.

Note that the L3CR[PMEN] and L3CR[PMSIZ] bits control aspects of the MPC7451
private memory feature. Refer to Section 3.7.8, “L3 Private Memory Operation,” for more
details on the L3 private memory.

Figure 2-22. L3 Private Memory Address Register (L3PM)

The L3PM bits are described in Table 2-22.

The L3PM register can be accessed with the mtspr and mfspr instructions using SPR 983.
For synchronization requirements on the register see Section 2.3.2.4, “Synchronization.”

Table 2-21. LDSTCR Field Descriptions

Bits Name Description

0–23 — Reserved. Writing nonzero values may cause boundedly undefined results.

24–31 DCWL Data cache way lock
0 Each cleared bit corresponds to a way not being locked in the L1 data cache.
1 Each set bit locks the corresponding way in the L1data cache.

When DCWL[24–31] are all set, it is equivalent to locking the entire L1 data cache and the
MPC7451 behaves the same as if HID0[DLOCK] is set. “Chapter 3, “L1, L2, and L3 Cache
Operation,” describes how to keep the PLRU replacement algorithm symmetrical and for
more information on synchronization requirements with LDSTCR.

Table 2-22. L3PM Field Descriptions

Bits Name Description

0–15 L3PMADDR L3 base address of L3 private memory. L3PMADDR contain the base address of the
range of addresses used in the L3 private memory. Specific bits of the
L3PM[L3PMADDR] field are used based on the memory size as follows:
1MB L3PM[0–15]
2MB L3PM[0–14]

16–31 — Reserved

Reserved

0000_0000_0000_0000þ

0 15 16 31

L3PMADDR

MOTOROLA Chapter 2. Programming Model 2-45

MPC7451 Processor Register Set

2.1.5.6 Instruction Address Breakpoint Register (IABR)

The instruction address breakpoint register (IABR), shown in Table 2-23, supports the
instruction address breakpoint exception. When this exception is enabled, instruction fetch
addresses are compared with an effective address stored in the IABR. If the word specified
in the IABR is fetched, the instruction breakpoint handler is invoked. The instruction that
triggers the breakpoint does not execute before the handler is invoked. For more
information, see Section 4.6.16, “Instruction Address Breakpoint Exception (0x01300).”
The IABR can be accessed with mtspr and mfspr using the SPR 1010. The MPC7451
requires that an mtspr[IABR] be followed by a context synchronizing instruction. The
MPC7451 may not generate a breakpoint response for that context synchronizing
instruction if the breakpoint was enabled by mtspr[IABR] immediately preceding it. The
MPC7451 can not block a breakpoint response on the context synchronizing instruction if
the breakpoint was disabled by mtspr[IABR] immediately preceding it. For more
information on synchronization see Section 2.3.2.4.1, “Context Synchronization.”

Figure 2-23. Instruction Address Breakpoint Register

The IABR bits are described in Table 2-23.

2.1.5.7 Memory Management Registers Used for Software Table
Searching

This section describes the registers used by the MPC7451 when software searching is
enabled (HID0[STEN] = 1) and a TLB miss exception occurs. Software table searching is
described in detail in Chapter 5, “Memory Management.”

2.1.5.7.1 TLB Miss Register (TLBMISS)

The TLBMISS register is automatically loaded by the MPC7451 when software searching
is enabled (HID0[STEN] = 1) and a TLB miss exception occurs. Its contents are used by
the TLB miss exception handlers (the software table search routines) to start the search

Table 2-23. Instruction Address Breakpoint Register Field Descriptions

Bits 1

1 A context synchronizing instruction must follow a mtspr.

Name Description

0–29 Address Word instruction breakpoint address to be compared with EA[0–29] of the next
instruction.

30 BE Breakpoint enabled. Setting this bit enables breakpoint address checking.

31 TE Translation Enable
IABR[TE] must equal MSR[IR] in order for a match to be signalled. When IABR[TE]
and MSR[IR] = 0 or when IABR[TE] and MSR[IR] = 1, then a match is signalled.

0 29 30 31

Address BE TE

2-46 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

process. Note that the MPC7451 always loads a big-endian address into the TLBMISS
register. This register is read-only. The TLBMISS register has the format shown in
Figure 2-24 for the MPC7451.

Figure 2-24. TLBMISS Register for MPC7451

Table 2-24 described the bits in the TLBMISS register.

TLBMISS can be accessed with mtspr and mfspr using SPR 980.

2.1.5.7.2 Page Table Entry Registers (PTEHI and PTELO)

The PTEHI and PTELO registers are used by the tlbld and tlbli instructions to create a TLB
entry. When software table searching is enabled (HID0[STEN] = 1), and a TLB miss
exception occurs, the bits of the page table entry (PTE) for this access are located by
software and saved in the PTE registers. Figure 2-25 shows the format for two supervisor
registers, PTEHI and PTELO, respectively.

Figure 2-25. PTEHI and PTELO Registers—Extended Addressing

Note that the contents of PTEHI are automatically loaded when any of the three software
table search exceptions is taken. PTELO is loaded by the software table search routines (the

Table 2-24. TLBMISS Register—Field and Bit Descriptions for the MPC7451

Bits Name Description

0–30 PAGE Effective page address
Stores EA[0–30] of the access that caused the TLB Miss exception.

31 LRU Least recently used way of the addressed TLB set
The LRU bit can be loaded into bit 31 of rB, prior to execution of tlbli or tlbld to
select the way to be replaced for a TLB miss. However, this value should be inverted
in rB prior to execution of tlbli or tlbld for a TLB miss exception caused by the need
to update the C-bit.

PAGE LRU
0 30 31

0 19 20 22 23 24 25 28 29 30 31

V VSID API

0 1 24 25 26 31

RPN XPN 0 C WIMG X PP

PTELO

PTEHI Reserved

0

MOTOROLA Chapter 2. Programming Model 2-47

MPC7451 Processor Register Set

TLB miss exception handlers) based on the valid PTE located in the page tables prior to
execution of tlbli or tlbld instruction.

Table 2-25 lists the corresponding bit definitions for the PTEHI and PTELO registers.

Note that PTELO[23] corresponds to the reference bit in a PTE. The reference bit is not
stored in the page tables, so this bit is ignored in the PTELO register. All the other bits in
PTELO correspond to the bits in the low word of the PTE. When extended addressing is not
enabled, (HID0[XAEN] = 0), the software must clear the PTELO[XPI] and PTELO[X] bits;
otherwise whatever values are in the fields become the four most significant bits of the
physical address. Note: The PTEHI register is accessed with mtspr and mfspr as SPR 981
and PTELO is accessed as SPR 982.

2.1.5.8 Thermal Management Register

The MPC7451 provides an instruction cache throttling mechanism to effectively reduce the
instruction execution rate without the complexity and overhead of dynamic clock control.
When used with the dynamic power management, instruction cache throttling provides the
system designer with a flexible way to control device temperature while allowing the
processor to continue operating.

Table 2-25. PTEHI and PTELO Bit Definitions

Register Bit Name Description

PTEHI 0 V Entry valid (V = 1) or invalid (V = 0). Always set by the processor on a TLB miss
exception.

1–24 VSID Virtual segment ID. The corresponding SR[VSID] field is copied to this field.

25 — Reserved. Corresponds to the hash function identifier in PTE.

26–31 API Abbreviated page index. TLB miss exceptions will set this field with bits from
TLBMISS[4–9] which are bits from the effective address for the access that
caused the software table search operation. The tlbld and tlbli instructions will
ignore the API bits in PTEHI register and get the API from instruction’s
operand, rB. However, for future compatibility, the API in rB should match the
PTEHI[API].

PTELO 0–19 RPN Physical page number

20–22 XPN Extended page number
The XPN field provides the physical address bits, PA[0–2].

23 — Reserved

24 C Changed bit

25–28 WIMG Memory / cache control bits

29 X Extended page number
The X field provides the physical address bit 3, PA[3].

30–31 PP Page protection bits

2-48 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

2.1.5.8.1 Instruction Cache Throttling Control Register (ICTC)

Reducing the rate of instruction fetching can control junction temperature without the
complexity and overhead of dynamic clock control. System software can control
instruction forwarding by writing a nonzero value to the ICTC register, a supervisor-level
register shown in Figure 2-26. The overall junction temperature reduction comes from the
dynamic power management of each functional unit when the MPC7451 is idle in between
instruction fetches. Phase-locked loop (PLL) and delay-locked loop (DLL) configurations
are unchanged.

Figure 2-26. Instruction Cache Throttling Control Register (ICTC)

Table 2-26 describes the bit fields for the ICTC register.

Instruction cache throttling is enabled by setting ICTC[E] and writing the instruction
forwarding interval into ICTC[INTERVAL]. Note when instruction cache throttling is
enabled to reduce overall junction temperature, the performance does degrade. A context
synchronizing instruction should be executed after a move to the ICTC register to ensure
that it has taken effect. Enabling, disabling, and changing the instruction forwarding
interval affect instruction forwarding immediately.

The ICTC register can be accessed with the mtspr and mfspr instructions using SPR 1019.

2.1.5.9 Performance Monitor Registers

This section describes the registers used by the performance monitor, which is described in
Chapter 11, “Performance Monitor.”

Table 2-26. ICTC Field Descriptions

Bits Name Description

0–22 — Reserved. The bits should be cleared.

23–30 INTERVAL Instruction forwarding interval expressed in processor clocks. When throttling is enabled, the
interval field specifies the minimum number of cycles between instructions being dispatched.
(MPC7451 dispatches one instruction every INTERVAL cycle.) The minimum interval for
throttling control is two cycles.
0x00, 0x01, 0x02 One instruction dispatches every 2 processor clocks.1

0x03 One instruction dispatches every 3 processor clocks
...
0xFF One instruction dispatches every 255 processor clocks.

31 E Enable instruction throttling
0 Instructions dispatch normally.
1 Only one instruction dispatches every INTERVAL cycles.

0 22 23 30 31

EFI

Reserved

 þ 0000 _0000_0000_0000_0000_000 þþ

MOTOROLA Chapter 2. Programming Model 2-49

MPC7451 Processor Register Set

2.1.5.9.1 Monitor Mode Control Register 0 (MMCR0)

The monitor mode control register 0 (MMCR0), shown in Figure 2-27, is a 32-bit SPR
provided to specify events to be counted and recorded. If the state of MSR[PR] and
MSR[PMM] matches a state specified in MMCR0, then counting is enabled see
Section 11.4, “Event Counting,” for further details. The MMCR0 can be accessed only in
supervisor mode. User-level software can read the contents of MMCR0 by issuing an
mfspr instruction to UMMCR0, described in Section 2.1.5.9.2, “User Monitor Mode
Control Register 0 (UMMCR0).”

Figure 2-27. Monitor Mode Control Register 0 (MMCR0)

This register is automatically cleared at power-up. Reading this register does not change its
contents. Table 2-27 describes MMCR0 fields.

Table 2-27. MMCR0 Field Descriptions

Bits Name Description

0 FC Freeze counters
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented (performance monitor counting is disabled). The

processor sets this bit when an enabled condition or event occurs and
MMCR0[FCECE] = 1. Note that SIAR is not updated if performance monitor counting
is disabled.

1 FCS Freeze counters in supervisor mode
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PR] = 0.

2 FCP Freeze counters in user mode
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PR] = 1.

3 FCM1 Freeze counters while mark = 1
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PMM] = 1.

4 FCM0 Freeze counters while mark = 0
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PMM] = 0.

5 PMXE Performance monitor exception enable
0 Performance monitor exceptions are disabled.
1 Performance monitor exceptions are enabled until a performance monitor exception

occurs, at which time MMCR0[PMXE] is cleared.
Software can clear PMXE to prevent performance monitor exceptions. Software can
also set PMXE and then poll it to determine whether an enabled condition or event
occurred.

0 1 2 3 4 5 6 7 8 9 10 15 16 17 18 19 25 26 31

FCP

THRESHOLD

FCECE

FCM0

PMC1SEL

FCS

PMC2SEL

PMC1CEFCM1

PMCnCE

TRIGGER

TBSEL

TBEE

PMXE

FC

2-50 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

6 FCECE Freeze counters on enabled condition or event
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are incremented (if permitted by other MMCR bits) until an enabled

condition or event occurs when MMCR0[TRIGGER] = 0, at which time MMCR0[FC]
is set. If the enabled condition or event occurs when MMCR0[TRIGGER] = 1, FCECE
is treated as if it were 0.

The use of the trigger and freeze counter conditions depends on the enabled conditions
and events described in Section 11.2, “Performance Monitor Exception.”

7–8 TBSEL Time base selector. Selects the time base bit that can cause a time base transition event
(the event occurs when the selected bit changes from 0 to 1).
00 TBL[31]
01 TBL[23]
10 TBL[19]
11 TBL[15]
Time base transition events can be used to periodically collect information about
processor activity. In multiprocessor systems in which the TB registers are
synchronized among processors, time base transition events can be used to correlate
the performance monitor data obtained by the several processors. For this use,
software must specify the same TBSEL value for all the processors in the system.
Because the time-base frequency is implementation-dependent, software should
invoke a system service program to obtain the frequency before choosing a value for
TBSEL.

9 TBEE Time base event enable
0 Time-base transition events are disabled.
1 Time-base transition events are enabled. A time-base transition is signaled to the

performance monitor if the TB bit specified in MMCR0[TBSEL] changes from 0 to 1.
Time-base transition events can be used to freeze the counters (MMCR0[FCECE]),
trigger the counters (MMCR0[TRIGGER]), or signal an exception (MMCR0[PMXE]).

Changing the bits specified in MMCR0[TBSEL] while MMCR0[TBEE] is enabled may
cause a false 0 to 1 transition that signals the specified action (freeze, trigger, or
exception) to occur immediately.

10–15 THRESHOLD Threshold. Contains a threshold value between 0 to 63. Two types of thresholds can be
counted. The first type counts any event that lasts longer than the threshold value and
uses MMCR2[THRESHMULT] to scale the threshold value by 2 or 32.
The second type counts only the events that exceed the threshold value. This type does
not use MMCR2[THRESHMULT] to scale the threshold value.
By varying the threshold value, software can obtain a profile of the characteristics of the
events subject to the threshold. For example, if PMC1 counts cache misses for which
the duration exceeds the threshold value, software can obtain the distribution of cache
miss durations for a given program by monitoring the program repeatedly using a
different threshold value each time.

16 PMC1CE PMC1 condition enable. Controls whether counter negative conditions due to a negative
value in PMC1 are enabled.
0 Counter negative conditions for PMC1 are disabled.
1 Counter negative conditions for PMC1 are enabled. These events can be used to

freeze the counters (MMCR0[FCECE]), trigger the counters (MMCR0[TRIGGER]), or
signal an exception (MMCR0[PMXE]).

Table 2-27. MMCR0 Field Descriptions (continued)

Bits Name Description

MOTOROLA Chapter 2. Programming Model 2-51

MPC7451 Processor Register Set

MMCR0 can be accessed with mtspr and mfspr using SPR 952.

2.1.5.9.2 User Monitor Mode Control Register 0 (UMMCR0)

The contents of MMCR0 are reflected to UMMCR0, which can be read by user-level
software. MMCR0 can be accessed with mfspr using SPR 936.

17 PMCnCE PMCn condition enable. Controls whether counter negative conditions due to a negative
value in any PMCn (that is, in any PMC except PMC1) are enabled.
0 Counter negative conditions for all PMCns are disabled.
1 Counter negative conditions for all PMCns are enabled. These events can be used

to freeze the counters (MMCR0[FCECE]), trigger the counters (MMCR0[TRIGGER]),
or signal an exception (MMCR0[PMXE]).

18 TRIGGER Trigger
0 The PMCs are incremented (if permitted by other MMCR bits).
1 PMC1 is incremented (if permitted by other MMCR bits). The PMCns are not

incremented until PMC1 is negative or an enabled timebase or event occurs, at which
time the PMCns resume incrementing (if permitted by other MMCR bits) and
MMCR0[TRIGGER] is cleared. The description of FCECE explains the interaction
between TRIGGER and FCECE.

Uses of TRIGGER include the following:
• Resume counting in the PMCns when PMC1 becomes negative without causing a

performance monitor exception. Then freeze all PMCs (and optionally cause a
performance monitor exception) when a PMCn becomes negative. The PMCns then
reflect the events that occurred after PMC1 became negative and before PMCn
becomes negative. This use requires the following MMCR0 bit settings.
–TRIGGER = 1
–PMC1CE = 0
–PMCnCE = 1
–TBEE = 0
–FCECE = 1
–PMXE = 1 (if a performance monitor exception is desired)

• Resume counting in the PMCns when PMC1 becomes negative, and cause a
performance monitor exception without freezing any PMCs. The PMCns then reflect
the events that occurred between the time PMC1 became negative and the time the
interrupt handler reads them. This use requires the following MMCR0 bit settings.
–TRIGGER = 1
–PMC1CE = 1
–TBEE = 0
–FCECE = 0
–PMXE = 1

The use of the trigger and freeze counter conditions depends on the enabled conditions
and events described in Section 11.2, “Performance Monitor Exception.”

19–25 PMC1SEL PMC1 selector. Contains a code (one of at most 128 values) that identifies the event to
be counted in PMC1. See Table 11-9.

26–31 PMC2SEL PMC2 selector. Contains a code (one of at most 64 values) that identifies the event to
be counted in PMC2. See Table 11-10.

Table 2-27. MMCR0 Field Descriptions (continued)

Bits Name Description

2-52 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

2.1.5.9.3 Monitor Mode Control Register 1 (MMCR1)

The monitor mode control register 1 (MMCR1) functions as an event selector for
performance monitor counter registers 3, 4, 5, and 6 (PMC3, PMC4, PMC5, PMC6). The
MMCR1 register is shown in Figure 2-28.

Figure 2-28. Monitor Mode Control Register 1 (MMCR1)

Bit settings for MMCR1 are shown in Table 2-28. The corresponding events are described
in Section 2.1.5.9.8, “Performance Monitor Counter Registers (PMC1–PMC6).”

MMCR1 can be accessed with mtspr and mfspr using SPR 956. User-level software can
read the contents of MMCR1 by issuing an mfspr instruction to UMMCR1, described in
Section 2.1.5.9.4, “User Monitor Mode Control Register 1 (UMMCR1).”

2.1.5.9.4 User Monitor Mode Control Register 1 (UMMCR1)

The contents of MMCR1 are reflected to UMMCR1, which can be read by user-level
software. MMCR1 can be accessed with mfspr using SPR 940.

2.1.5.9.5 Monitor Mode Control Register 2 (MMCR2)

The monitor mode control register 2 (MMCR2) functions as an event selector for
performance monitor counter registers 3 and 4 (PMC3 and PMC4). The MMCR2 register
is shown in Figure 2-29.

Table 2-28. MMCR1 Field Descriptions

Bits Name Description

0–4 PMC3SELECT PMC3 selector. Contains a code (one of at most 32 values) that identifies the event to
be counted in PMC3. See Table 11-11.

5–9 PMC4SELECT PMC4 selector. Contains a code (one of at most 32 values) that identifies the event to
be counted in PMC4. See Table 11-12.

10–14 PMC5SELECT PMC5 selector. Contains a code (one of at most 32 values) that identifies the event to
be counted in PMC5. See Table 11-13.

15–20 PMC6SELECT PMC6 selector. Contains a code (one of at most 64 values) that identifies the event to
be counted in PMC6. See Table 11-14.

21–31 — Reserved

0 4 5 9 10 14 15 20 21 31

Reserved

PMC3SELECT PMC4SELECT PMC5SELECT PMC6SELECT 000_0000_0000 þ

MOTOROLA Chapter 2. Programming Model 2-53

MPC7451 Processor Register Set

Figure 2-29. Monitor Mode Control Register 2 (MMCR2)

Table 2-29 describes MMCR2 fields.

MMCR2 can be accessed with mtspr and mfspr using SPR 944. User-level software can
read the contents of MMCR2 by issuing an mfspr instruction to UMMCR2, described in
Section 2.1.5.9.6, “User Monitor Mode Control Register 2 (UMMCR2).”

2.1.5.9.6 User Monitor Mode Control Register 2 (UMMCR2)

The contents of MMCR2 are reflected to UMMCR2, which can be read by user-level
software. UMMCR2 can be accessed with the mfspr instruction using SPR 928.

2.1.5.9.7 Breakpoint Address Mask Register (BAMR)

The breakpoint address mask register (BAMR), shown in Figure 2-30, is used in
conjunction with the events that monitor IABR hits.

Figure 2-30. Breakpoint Address Mask Register (BAMR)

Table 2-30 describes BAMR fields.

Table 2-29. MMCR2 Field Descriptions

Bits Name Description

0 THRESHMULT Threshold multiplier
Used to extend the range of the THRESHOLD field, MMCR0[10–15].
0 Threshold field is multiplied by 2.
1 Threshold field is multiplied by 32.

1–31 — Reserved

0 1 31

THRESHMULT

 þ 000_0000_0000_0000_ 0000_0000_0000_0000 þþ

MASK 00

Reserved

0 29 30 31

2-54 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

BAMR can be accessed with mtspr and mfspr using SPR 951. For synchronization
requirements on the register see Section 2.3.2.4, “Synchronization.”

2.1.5.9.8 Performance Monitor Counter Registers (PMC1–PMC6)

PMC1–PMC6, shown in Figure 2-31, are 32-bit counters that can be programmed to
generate a performance monitor exception when they overflow.

Figure 2-31. Performance Monitor Counter Registers (PMC1–PMC6)

The bits contained in the PMC registers are described in Table 2-31.

Counters overflow when the high-order (sign) bit becomes set; that is, they reach the value
2,147,483,648 (0x8000_0000). However, an exception is not generated unless both
MMCR0[PMXE] and either MMCR0[PMC1CE] or MMCR0[PMCcCE] are also set as
appropriate.

Note that the exception can be masked by clearing MSR[EE]; the performance monitor
condition may occur with MSR[EE] cleared, but the exception is not taken until MSR[EE]
is set. Setting MMCR0[FCECE] forces counters to stop counting when a counter exception
or any enabled condition or event occurs. Setting MMCR0[TRIGGER] forces counters

Table 2-30. BAMR Field Descriptions

Bit Name Description

0–29 MASK 1

1 A context synchronizing instruction must follow the mtspr.

Used with PMC1 event (PMC1 event 42) that monitor IABR hits. The addresses to be
compared for an IABR match are affected by the value in BAMR:
 • IABR hit (PMC1, event 42) occurs if IABR_CMP (that is, IABR AND BAMR) =

instruction_address_compare (that is, EA AND BAMR)
IABR_CMP[0–29] = IABR[0–29] AND BAMR[0–29]
instruction_addr_cmp[0–29] = instruction_addr[0–29] AND BAMR[0–29]

Be aware that breakpoint event 42 of PMC1 can be used to trigger performance
monitor exceptions when the performance monitor detects an enabled overflow. This
feature supports debug purposes and occurs only when IABR[30] is set. To avoid
taking one of the above interrupts, make sure that IABR[30] is cleared.

30–31 — Reserved

Table 2-31. PMCn Field Descriptions

Bits Name Description

0 OV Overflow
When this bit is set, it indicates that this counter has overflowed and reached its maximum
value so that PMCn[OV] = 1.

1–31 Counter value Counter value
Indicates the number of occurrences of the specified event.

0 1 31

OV Counter Value

MOTOROLA Chapter 2. Programming Model 2-55

MPC7451 Processor Register Set

PMCn (n > 1), to begin counting when PMC1 goes negative or an enabled condition or
event occurs.

Software is expected to use the mtspr instruction to explicitly set PMC to non-overflowed
values. Setting an overflowed value may cause an erroneous exception. For example, if
both MMCR0[PMXE] and either MMCR0[PMC1CE] or MMCR0[PMCnCE] are set and
the mtspr instruction loads an overflow value, an exception may be taken without an event
counting having taken place.

The PMC registers can be accessed with the mtspr and mfspr instructions using the
following SPR numbers:

• PMC1 is SPR 953

• PMC2 is SPR 954

• PMC3 is SPR 957

• PMC4 is SPR 958

• PMC5 is SPR 945

• PMC6 is SPR 946

2.1.5.9.9 User Performance Monitor Counter Registers (UPMC1–UPMC6)

The contents of the PMC1–PMC6 are reflected to UPMC1–UPMC6, which can be read by
user-level software. The UPMC registers can be read with mfspr using the following SPR
numbers:

• UPMC1 is SPR 937

• UPMC2 is SPR 938

• UPMC3 is SPR 941

• UPMC4 is SPR 942

• UPMC5 is SPR 929

• UPMC6 is SPR 930

2.1.5.9.10 Sampled Instruction Address Register (SIAR)

The sampled instruction address register (SIAR) is a supervisor-level register that contains
the effective address of the last instruction to complete before the performance monitor
exception is signaled. The SIAR is shown in Figure 2-32.

Figure 2-32. Sampled Instruction Address Registers (SIAR)

Note that SIAR is not updated:

0 31

Instruction Address

2-56 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Processor Register Set

• if performance monitor counting has been disabled by setting MMCR0[FC] or

• if the performance monitor exception has been disabled by clearing
MMCR0[PMXE].

SIAR can be accessed with the mtspr and mfspr instructions using SPR 955.

2.1.5.9.11 User-Sampled Instruction Address Register (USIAR)

The contents of SIAR are reflected to USIAR, which can be read by user-level software.
USIAR can be accessed with the mfspr instructions using SPR 939.

2.1.5.9.12 Sampled Data Address Register (SDAR) and User-Sampled Data
Address Register (USDAR)

The MPC7451 does not implement the sampled data address register (SDAR) or the
user-level, read-only USDA registers.Note that in previous processors the SDAR and
USDAR registers could be written to by boot code without causing an exception, this is not
the case in the MPC7451. A mtspr or mfspr SDAR or USDAR instruction causes a
program exception.

2.1.6 Reset Settings

Table 2-32 shows the state of the registers and other resources after a hard reset and before
the first instruction is fetched from address 0xFFF0_0100 (the system reset exception
vector). When a register is not initialized at hard reset. the setting is undefined.

Table 2-32. Settings Caused by Hard Reset (Used at Power-On)

Resource Setting

BAMR 0x0000_0000

BATs Undefined

Caches (L1/L2) Disabled. The caches are not invalidated and must be invalidated in software before they
are enabled.

CR 0x0000_0000

CTR 0x0000_0000

DABR Breakpoint is disabled. Address is undefined.

DAR 0x0000_0000

DEC 0xFFFF_FFFF

DSISR 0x0000_0000

EAR 0x0000_0000

FPRs Undefined

FPSCR 0x0000_0000

GPRs Undefined

MOTOROLA Chapter 2. Programming Model 2-57

MPC7451 Processor Register Set

HID0 0x8000_0000

HID1 0x0000_0080 (note that bits 15–18 are set to match the settings of PLL_CFG[0:4] at reset)

IABR 0x0000_0000 (Breakpoint is disabled.)

ICTC 0x0000_0000

ICTRL 0x0000_0000

L2CR 0x0000_0000

L3CR 0x0000_0000

L3PM 0x0000_0000

LDSTCR 0x0000_0000

LR 0x0000_0000

MMCRn 0x0000_0000

MSSCR0 0x0040_0000 0x0000_0000 (except that the ABD (bit 11) and BMODE (bits 16–17) are set
depending on setting of BMODE[0:1] at reset)

MSSSR0 0x0000_0000

MSR 0x0000_0040 (only IP set)

PIR 0x0000_0000

PMCn Undefined

PTEHI 0x0000_0000

PTELO 0x0000_0000

PVR For the MPC7441, 0x8000_xxxx, where xxxx depends on the revision level, starting at 0200.
For the MPC7445, 0x8001_xxxx, where xxxx depends on the revision level, starting at 0100.
For the MPC7447, 0x8002_xxxx, where xxxx depends on the revision level, starting at 0100.
For the MPC7451, 0x8000_xxxx, where xxxx depends on the revision level, starting at 0200.
For the MPC7455, 0x8001_xxxx, where xxxx depends on the revision level, starting at 0100.
For the MPC7457, 0x8002_xxxx, where xxxx depends on the revision level, starting at 0100.

Reservation address Undefined

Reservation flag Cleared

SDR1 0x0000_0000

SIAR 0x0000_0000

SPRG0–SPGR7 0x0000_0000

SRs Undefined

SRR0 0x0000_0000

SRR1 0x0000_0000

TBU and TBL 0x0000_0000

TLBs Undefined

TLBMISS 0x0000_0000

Table 2-32. Settings Caused by Hard Reset (Used at Power-On) (continued)

Resource Setting

2-58 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Operand Conventions

2.2 Operand Conventions
This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture—UISA and VEA. Detailed descriptions are provided of conventions
used for storing values in registers and memory, accessing PowerPC registers, and
representation of data in these registers.

2.2.1 Floating-Point Execution Models—UISA

The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard
requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both)
single-precision or double-precision operands, but states that single-precision arithmetic
instructions should not accept double-precision operands.

The PowerPC UISA follows these guidelines:

• Double-precision arithmetic instructions can have single-precision operands but
always produce double-precision results.

• Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision is done implicitly
by the processor.

All implementations of the PowerPC architecture provide the equivalent of the following
execution models to ensure that identical results are obtained. The definition of the
arithmetic instructions for infinities, denormalized numbers, and NaNs follow conventions
described in the following sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second

UMMCRn 0x0000_0000

UPMCn 0x0000_0000

USIAR 0x0000_0000

VRs Undefined

VRSAVE 0x0000_0000

VSCR 0x0001_0000

XER 0x0000_0000

Table 2-32. Settings Caused by Hard Reset (Used at Power-On) (continued)

Resource Setting

MOTOROLA Chapter 2. Programming Model 2-59

Operand Conventions

bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is one:

• Underflow during multiplication using a denormalized operand

• Overflow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands can be bytes, half words, words, double words, quad words, or, for the
load/store multiple and load/store string instructions, a sequence of bytes or words. The
address of a memory operand is the address of its first byte (that is, of its lowest-numbered
byte). Operand length is implicit for each instruction.

2.2.3 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has an alignment boundary
equal to its length. An operand’s address is misaligned if it is not a multiple of its width.

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment can affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

The MPC7451 does not provide hardware support for floating-point memory that is not
word-aligned. If a floating-point operand is not word-aligned, the MPC7451 invokes an
alignment exception, and it is left up to software to break up the offending memory access
operation appropriately. In addition, some non-double-word–aligned memory accesses
suffer performance degradation as compared to an aligned access of the same type.

In general, floating-point word accesses should always be word-aligned and floating-point
double-word accesses should always be double-word–aligned. Frequent use of misaligned
accesses is discouraged because they can degrade overall performance.

2.2.4 Floating-Point Operands

The MPC7451 provides hardware support for all single- and double-precision
floating-point operations for most value representations and all rounding modes. This
architecture provides for hardware to implement a floating-point system as defined in
ANSI/IEEE standard 754-1985, IEEE Standard for Binary Floating Point Arithmetic.

2-60 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Detailed information about the floating-point execution model can be found in Chapter 3,
“Operand Conventions,” in The Programming Environments Manual.

The MPC7451 supports non-IEEE mode when FPSCR[29] is set. In this mode,
denormalized numbers are treated in a non-IEEE conforming manner. This is accomplished
by delivering results that are forced to the value zero.

2.3 Instruction Set Summary
This chapter describes instructions and addressing modes defined for the MPC7451. These
instructions are divided into the following functional categories:

• Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, “Integer Instructions.”

• Floating-point instructions—These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, “Floating-Point Instructions.”

• Load and store instructions—These include integer and floating-point load and store
instructions. For more information, see Section 2.3.4.3, “Load and Store
Instructions.”

• Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, “Branch and Flow
Control Instructions.”

• Processor control instructions—These instructions are used for synchronizing
memory accesses and managing segment registers. For more information, see
Section 2.3.4.6, “Processor Control Instructions—UISA,” Section 2.3.5.1,
“Processor Control Instructions—VEA,” and Section 2.3.6.2, “Processor Control
Instructions—OEA.”

• Memory synchronization instructions—These instructions are used for memory
synchronizing. See Section 2.3.4.7, “Memory Synchronization
Instructions—UISA,” and Section 2.3.5.2, “Memory Synchronization
Instructions—VEA,” for more information.

• Memory control instructions—These instructions provide control of caches and
TLBs. For more information, see Section 2.3.5.3, “Memory Control
Instructions—VEA,” and Section 2.3.6.3, “Memory Control Instructions—OEA.”

• External control instructions—These include instructions for use with special
input/output devices. For more information, see Section 2.3.5.4, “Optional External
Control Instructions.”

• AltiVec instructions–AltiVec technology does not have optional instructions
defined, so all instructions listed in the AltiVec Technology Programming
Environments Manual are implemented for MPC7451. Instructions that are

MOTOROLA Chapter 2. Programming Model 2-61

Instruction Set Summary

implementation specific are described in Section 2.6.2, “AltiVec Instructions with
Specific Implementations for the MPC7451.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. This information, which is useful
for scheduling instructions most effectively, is provided in Chapter 6, “Instruction Timing.”

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. AltiVec instructions operate
on byte, half-word, word, and quad-word operands. The PowerPC architecture uses
instructions that are four bytes long and word-aligned. It provides for byte, half-word, and
word operand loads and stores between memory and a set of 32 general-purpose registers
(GPRs). It provides for word and double-word operand loads and stores between memory
and a set of 32 floating-point registers (FPRs). It also provides for byte, half-word, word,
and quad-word operand loads and stores between memory and a set of 32 vector registers
(VRs).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for some of the frequently-used instructions; see Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual for a complete list of simplified
mnemonics. Programs written to be portable across the various assemblers for the PowerPC
architecture should not assume the existence of mnemonics not described in that document.

2.3.1 Classes of Instructions

The MPC7451 instructions belong to one of the following three classes:

• Defined

• Illegal

• Reserved

Note that while the definitions of these terms are consistent among the processors that
implement the PowerPC architecture, the assignment of these classifications is not. For
example, PowerPC instructions defined for 64-bit implementations are treated as illegal by
32-bit implementations such as the MPC7451.

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

2-62 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Instruction encodings that are now illegal can become assigned to instructions in the
architecture or can be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction can vary between implementations and
between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in all implementations of the PowerPC
architecture, except as stated in the instruction descriptions in Chapter 8, “Instruction Set,”
of The Programming Environments Manual. The MPC7451 provides hardware support for
all instructions defined for 32-bit implementations. It does not support the optional fsqrt,
fsqrts, and tlbia instructions.

A processor invokes the illegal instruction error handler (part of the program exception)
when it encounters a PowerPC instruction that has not been implemented. The instruction
can be emulated in software, as required.

A defined instruction can have invalid forms. The MPC7451 provides limited support for
instructions represented in an invalid form.

2.3.1.3 Illegal Instruction Class

Illegal instructions can be grouped into the following categories:

• Instructions not defined in the PowerPC architecture.The following primary
opcodes are defined as illegal, but can be used in future extensions to the
architecture:

1, 5, 6, 9, 22, 56, 57, 60, 61

Future versions of the PowerPC architecture can define any of these instructions to
perform new functions.

• Instructions defined in the PowerPC architecture but not implemented in a specific
implementation. For example, instructions that can be executed on 64-bit processors
that implement the PowerPC architecture are considered illegal by 32-bit processors
such as the MPC7451.

The following primary opcodes are defined for 64-bit implementations only and are
illegal on the MPC7451:

MOTOROLA Chapter 2. Programming Model 2-63

Instruction Set Summary

2, 30, 58, 62

• All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.4, “Instructions Sorted by Opcode
(Binary),” and Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended
opcodes for instructions defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes:

17, 19, 31, 59, 63 (Primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes, they have some unused extended opcodes.)

• An instruction consisting of only zeros is guaranteed to be an illegal instruction. This
increases the probability that an attempt to execute data or memory that was not
initialized invokes the system illegal instruction error handler (a program
exception). Note that if only the primary opcode consists of all zeros, the instruction
is considered a reserved instruction, as described in Section 2.3.1.4, “Reserved
Instruction Class.”

The MPC7451 invokes the system illegal instruction error handler (a program exception)
when it detects any instruction from this class or any instructions defined only for 64-bit
implementations.

See Section 4.6.7, “Program Exception (0x00700),” for additional information about
illegal and invalid instruction exceptions. Except for an instruction consisting of binary
zeros, illegal instructions are available for additions to the PowerPC architecture.

2.3.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. Attempting to execute a reserved instruction that has
not been implemented invokes the illegal instruction error handler (a program exception).
See “Program Exception (0x0_0700),” in Chapter 6, “Exceptions,” in The Programming
Environments Manual for information about illegal and invalid instruction exceptions.

The PowerPC architecture defines four types of reserved instructions:

• Instructions in the POWER architecture not part of the PowerPC UISA. For details
on POWER architecture incompatibilities and how they are handled by processors
that implement the PowerPC architecture, see Appendix B, “POWER Architecture
Cross Reference,” in The Programming Environments Manual.

• Implementation-specific instructions required for the processor to conform to the
PowerPC architecture (none of these are implemented in the MPC7451)

• All other implementation-specific instructions

• Architecturally allowed extended opcodes

2-64 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-bit
implementations. For more detailed information, see “Conventions,” in Chapter 4,
“Addressing Modes and Instruction Set Summary,” of The Programming Environments
Manual.

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

2.3.2.2 Memory Operands

Memory operands can be bytes, half words, words, double words, quad words or, for the
load/store multiple and load/store string instructions, a sequence of bytes or words. The
address of a memory operand is the address of its first byte (that is, of its lowest-numbered
byte). Operand length is implicit for each instruction. The PowerPC architecture supports
both big-endian and little-endian byte ordering. The default byte and bit ordering is
big-endian. See “Byte Ordering,” in Chapter 3, “Operand Conventions,” of The
Programming Environments Manual for more information about big- and little-endian byte
ordering.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length; that is, the natural address of an operand is an integral
multiple of its length. A memory operand is said to be aligned if it is aligned at its natural
boundary; otherwise it is misaligned. For a detailed discussion about memory operands, see
Chapter 3, “Operand Conventions,” of The Programming Environments Manual.

2.3.2.3 Effective Address Calculation

An effective address is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

MOTOROLA Chapter 2. Programming Model 2-65

Instruction Set Summary

Load and store operations have the following modes of effective address generation:

• EA = (rA|0) + offset (including offset = 0) (register indirect with immediate index)

• EA = (rA|0) + rB (register indirect with index)

Refer to Section 2.3.4.3.2, “Integer Load and Store Address Generation,” for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

• Immediate

• Link register indirect

• Count register indirect

2.3.2.4 Synchronization

The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

2.3.2.4.1 Context Synchronization

The System Call (sc) and Return from Interrupt (rfi) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
a change in context. Execution of one of these instructions ensures the following:

• No higher priority exception exists (sc).

• All previous instructions have completed to a point where they can no longer cause
an exception. If a prior memory access instruction causes direct-store error
exceptions, the results are guaranteed to be determined before this instruction is
executed.

• Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

• The instructions following the sc or rfi instruction execute in the context established
by these instructions.

Modifying certain registers requires software synchronization to follow certain register
dependencies. Table 2-33 defines specific synchronization procedures that are required
when using various SPRs and specific bits within SPRs. Context synchronizing instructions
that can be used are: isync, sc, rfi, and any exception other than system reset and machine
check. If multiple bits are being modified that have different synchronization requirements,
the most restrictive requirements can be used. However, a mtspr instruction to modify
either HID0[ICE] or HID0[ICFI] should not also modify other HID0 bits that requires
synchronization.

2-66 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Table 2-33. Control Registers Synchronization Requirements

Register Bits Synchronization Requirements

BAMR Any A context synchronizing instruction must follow the mtspr.

DABR Any A dssall and sync must precede the mtspr and then a sync and a context synchronizing
instruction must follow. Note that if a user is not using the AltiVec data streaming instructions,
then a dssall is not necessary prior to accessing the register.

DBATs Any A dssall and sync must precede the mtspr and then a sync and a context synchronizing
instruction must follow. Note that if a user is not using the AltiVec data streaming instructions,
then a dssall is not necessary prior to accessing the register.

EAR Any A dssall and sync must precede the mtspr and then a sync and a context synchronizing
instruction must follow. Note that if a user is not using the AltiVec data streaming instructions,
then a dssall is not necessary prior to accessing register.

MOTOROLA Chapter 2. Programming Model 2-67

Instruction Set Summary

HID0 BHTCLR A context synchronizing instruction must precede a mtspr and a branch instruction should
follow. The branch instruction may be either conditional or unconditional. It ensures that all
subsequent branch instructions see the newly initialized BHT values. For correct results, the
BHT should be disabled (HID0[BHT] = 0) before setting BHTCLR.

 BHT A context synchronizing instruction must follow the mtspr.

BTIC

DPM

FOLD

LRSTK

NAP

NHR

SLEEP

SPD

TBEN

DCE A dssall and sync must precede a mtspr and then a sync and context synchronizing
instruction must follow. Note that if a user is not using the AltiVec data streaming instructions,
then a dssall is not necessary prior to accessing the HID0{DCE] or HID0[DCFI] bit.DCFI

DLOCK

NOPDST

STEN

ICE A context synchronizing instruction must immediately follow a mtspr. A mtspr instruction for
HID0 should not modify either of these bits at the same time it modifies another bit that
requires additional synchronization. ICFI

ILOCK A context synchronizing instruction must precede and follow a mtspr.

NOPTI A mtspr must follow a sync and a context synchronizing instruction.

SGE

XAEN A dssall and sync must precede a mtspr and then a sync and a context-synchronizing
instruction must follow. Alteration of HID0[XAEN] must be done with caches and translation
disabled. The caches and TLBs must be flushed before they are re-enabled after the XAEN
bit is altered. Note that if a user is not using the AltiVec data streaming instructions, then a
dssall is not necessary prior to accessing the HID0[XAEN] bit.

HID1 Any A sync and context synchronizing instruction must follow a mtspr.

IABR Any A context synchronizing instruction must follow a mtspr.

IBATs Any A context synchronizing instruction must follow a mtspr.

ICTRL EDCE A dssall and sync must precede a mtspr and then a sync and context synchronizing
instruction must follow. Note that if a user is not using the AltiVec data streaming instructions,
then a dssall is not necessary prior to accessing the ICTRL[EDCE] bit.

ICWL A context synchronizing instruction must precede and follow a mtspr.

EICE

Table 2-33. Control Registers Synchronization Requirements (continued)

Register Bits Synchronization Requirements

2-68 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the case of sync and isync, before
the instruction completes. For example, the Move to Machine State Register (mtmsr)
instruction is execution synchronizing. It ensures that all preceding instructions have
completed execution and cannot cause an exception before the instruction executes, but

LDSTCR Any A dssall and sync must precede a mtspr and then a sync and context synchronizing
instruction must follow.Note that if a user is not using the AltiVec data streaming instructions,
then a dssall is not necessary prior to accessing the register.

MSR BE A context synchronizing instruction must follow a mtmsr instruction.

VEC

FE0

FE1

FP

SE

 IR A context synchronizing instruction must follow a mtmsr. When changing the MSR[IR] bit
the context synchronizing instruction must reside at both the untranslated and the translated
address following the mtmsr.

DR A dssall and sync must precede a mtmsr and then a sync and context synchronizing
instruction must follow. Note that if a user is not using the AltiVec data streaming instructions,
then a dssall is not necessary prior to accessing the MSR[DR] or MSR[PR] bit.PR

LE A dssall and sync must precede an rfi to guarantee a solid context boundary. Note that if a
user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior
to accessing the MSR[LE] bit.

POW A dssall and sync must precede a mtmsr instruction and then a context synchronizing
instruction must follow.

MSSCR0 Any A dssall and sync must precede a mtspr instruction and then a sync and context
synchronizing instruction must follow. Note that if a user is not using the AltiVec data
streaming instructions, then a dssall is not necessary prior to accessing the register.

SDR1 Any A dssall and sync must precede a mtspr and then a sync and context synchronizing
instruction must follow. Note that if a user is not using the AltiVec data streaming instructions,
then a dssall is not necessary prior to accessing the register.

L3PM Any A sync must precede a mtspr instruction and then a sync and context synchronizing
instruction must follow. Note that if a user is not using the AltiVec data streaming
instructions, then a dssall is not necessary prior to accessing the register.

SR0 –
SR15

Any A dssall and sync must precede a mtsr or mtsrin instruction and then a sync and context
synchronizing instruction must follow. Note that if a user is not using the AltiVec data
streaming instructions, then a dssall is not necessary prior to accessing the register.

Other
registers

or bits

— No special synchronization requirements.

Table 2-33. Control Registers Synchronization Requirements (continued)

Register Bits Synchronization Requirements

MOTOROLA Chapter 2. Programming Model 2-69

Instruction Set Summary

does not ensure subsequent instructions execute in the newly established environment. For
example, if the mtmsr sets the MSR[PR] bit, unless an isync immediately follows the
mtmsr instruction, a privileged instruction could be executed or privileged access could be
performed without causing an exception even though the MSR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions

There are two kinds of exceptions in the MPC7451—those caused directly by the execution
of an instruction and those caused by an asynchronous event (or interrupts). Either can
cause components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

• An attempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructions listed below causes the privileged instruction (program
exception) handler to be invoked. The MPC7451 provides the following
supervisor-level instructions—dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr,
mtsr, mtsrin, rfi, tlbie, and tlbsync. Note that the privilege level of the mfspr and
mtspr instructions depends on the SPR encoding.

• Any mtspr, mfspr, or mftb instruction with an invalid SPR (or TBR) field causes
an illegal type program exception. Likewise, a program exception is taken if
user-level software tries to access a supervisor-level SPR. An mtspr instruction
executing in supervisor mode (MSR[PR] = 0) with the SPR field specifying PVR
(read-only register) executes as a no-op.

• An attempt to access memory that is not available (page fault) causes the ISI or DSI
exception handler to be invoked.

• The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

• The execution of a trap instruction invokes the program exception trap handler.
• The execution of an instruction that causes a floating-point exception while

exceptions are enabled in the MSR invokes the program exception handler.

A detailed description of exception conditions is provided in Chapter 4, “Exceptions.”

2.3.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in the
MPC7451 and highlights any special information with respect to how the MPC7451
implements a particular instruction. Note that the categories used in this section correspond
to those used in Chapter 4, “Addressing Modes and Instruction Set Summary,” in The
Programming Environments Manual. These categorizations are somewhat arbitrary, are
provided for the convenience of the programmer, and do not necessarily reflect the
PowerPC architecture specification.

Note that some instructions have the following optional features:

2-70 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

• CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.

• Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding a few user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions

This section describes the integer instructions. These consist of the following:

• Integer arithmetic instructions

• Integer compare instructions

• Integer logical instructions

• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, the XER register, and condition register (CR) fields.

2.3.4.1.1 Integer Arithmetic Instructions

Table 2-34 lists the integer arithmetic instructions for the processors that implement the
PowerPC architecture.

Table 2-34. Integer Arithmetic Instructions

Name Mnemonic Syntax

Add Immediate addi rD,rA,SIMM

Add Immediate Shifted addis rD,rA,SIMM

Add add (add. addo addo.) rD,rA,rB

Subtract From subf (subf. subfo subfo.) rD,rA,rB

Add Immediate Carrying addic rD,rA,SIMM

Add Immediate Carrying and Record addic. rD,rA,SIMM

Subtract from Immediate Carrying subfic rD,rA,SIMM

Add Carrying addc (addc. addco addco.) rD,rA,rB

Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB

Add Extended adde (adde. addeo addeo.) rD,rA,rB

Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB

Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA

MOTOROLA Chapter 2. Programming Model 2-71

Instruction Set Summary

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (rA) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for examples.

The UISA states that an implementation that executes instructions that set the overflow
enable bit (OE) or the carry bit (CA) can either execute these instructions slowly or prevent
execution of the subsequent instruction until the operation completes. Chapter 6,
“Instruction Timing,” describes how the MPC7451 handles CR dependencies. The
summary overflow bit (SO) and overflow bit (OV) in the XER register are set to reflect an
overflow condition of a 32-bit result. This can happen only when OE = 1.

2.3.4.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register
rA with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of rB. The comparison is signed for the cmpi and cmp
instructions, and unsigned for the cmpli and cmpl instructions. Table 2-35 summarizes the
integer compare instructions.

Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA

Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA

Negate neg (neg. nego nego.) rD,rA

Multiply Low Immediate mulli rD,rA,SIMM

Multiply Low Word mullw (mullw. mullwo mullwo.) rD,rA,rB

Multiply High Word mulhw (mulhw.) rD,rA,rB

Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB

Divide Word divw (divw. divwo divwo.) rD,rA,rB

Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,rB

Table 2-35. Integer Compare Instructions

Name Mnemonic Syntax

Compare Immediate cmpi crfD,L,rA,SIMM

Compare cmp crfD,L,rA,rB

Compare Logical Immediate cmpli crfD,L,rA,UIMM

Compare Logical cmpl crfD,L,rA,rB

Table 2-34. Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax

2-72 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

The crfD operand can be omitted if the result of the comparison is to be placed in CR0.
Otherwise the target CR field must be specified in crfD, using an explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual.

2.3.4.1.3 Integer Logical Instructions

The logical instructions shown in Table 2-36 perform bit-parallel operations on the
specified operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CR0 to characterize the result of the logical
operation. Logical instructions do not affect XER[SO], XER[OV], or XER[CA].

See Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples for integer logical operations.

Table 2-36. Integer Logical Instructions

Name Mnemonic Syntax Implementation Notes

AND Immediate andi. rA,rS,UIMM —

AND Immediate Shifted andis. rA,rS,UIMM —

OR Immediate ori rA,rS,UIMM The PowerPC architecture defines ori r0,r0,0 as the
preferred form for the no-op instruction. The
dispatcher discards this instruction and only
dispatches it to the completion queue, but not to any
execution unit.

OR Immediate Shifted oris rA,rS,UIMM —

XOR Immediate xori rA,rS,UIMM —

XOR Immediate Shifted xoris rA,rS,UIMM —

AND and (and.) rA,rS,rB —

OR or (or.) rA,rS,rB —

XOR xor (xor.) rA,rS,rB —

NAND nand (nand.) rA,rS,rB —

NOR nor (nor.) rA,rS,rB —

Equivalent eqv (eqv.) rA,rS,rB —

AND with Complement andc (andc.) rA,rS,rB —

OR with Complement orc (orc.) rA,rS,rB —

Extend Sign Byte extsb (extsb.) rA,rS —

Extend Sign Half Word extsh (extsh.) rA,rS —

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS —

MOTOROLA Chapter 2. Programming Model 2-73

Instruction Set Summary

2.3.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

The integer rotate instructions are summarized in Table 2-37.

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual) are provided to make coding of
such shifts simpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts,” in The Programming Environments Manual. The integer shift instructions are
summarized in Table 2-38.

2.3.4.2 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:

• Floating-point arithmetic instructions
• Floating-point multiply-add instructions

Table 2-37. Integer Rotate Instructions

Name Mnemonic Syntax

Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

Table 2-38. Integer Shift Instructions

Name Mnemonic Syntax

Shift Left Word slw (slw.) rA,rS,rB

Shift Right Word srw (srw.) rA,rS,rB

Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH

Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

2-74 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

• Floating-point rounding and conversion instructions

• Floating-point compare instructions
• Floating-point status and control register instructions
• Floating-point move instructions

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode
bit (FPSCR[NI]).

2.3.4.2.1 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are summarized in Table 2-39.

All single-precision arithmetic instructions are performed using a double-precision format.
The floating-point architecture is a single-pass implementation for double-precision
products. In most cases, a single-precision instruction using only single-precision operands,
in double-precision format, has the same latency as its double-precision equivalent.

2.3.4.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The floating-point multiply-add instructions are summarized in Table 2-40.

Table 2-39. Floating-Point Arithmetic Instructions

Name Mnemonic Syntax

Floating Add (Double-Precision) fadd fadd.) frD,frA,frB

Floating Add Single fadds fadds.) frD,frA,frB

Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB

Floating Subtract Single fsubs (fsubs.) frD,frA,frB

Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC

Floating Multiply Single fmuls (fmuls.) frD,frA,frC

Floating Divide (Double-Precision) fdiv fdiv.) frD,frA,frB

Floating Divide Single fdivs (fdivs.) frD,frA,frB

Floating Reciprocal Estimate Single 1

1 These instructions are optional in the PowerPC architecture.

fres (fres.) frD,frB

Floating Reciprocal Square Root Estimate1 frsqrte (frsqrte.) frD,frB

Floating Select1 fsel frD,frA,frC,frB

MOTOROLA Chapter 2. Programming Model 2-75

Instruction Set Summary

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The
floating-point convert instructions convert a 64-bit double-precision floating-point number
to a 32-bit signed integer number.

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models,” in The Programming Environments Manual.

2.3.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = –0). The floating-point compare
instructions are summarized in Table 2-42.

Table 2-40. Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB

Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB

Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB

Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB

Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB

Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB

Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB

Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB

Table 2-41. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax

Floating Round to Single frsp (frsp.) frD,frB

Floating Convert to Integer Word fctiw (fctiw.) frD,frB

Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB

Table 2-42. Floating-Point Compare Instructions

Name Mnemonic Syntax

Floating Compare Unordered fcmpu crfD,frA,frB

Floating Compare Ordered fcmpo crfD,frA,frB

2-76 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

2.3.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that
all floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. The FPSCR instructions are summarized in Table 2-43.

Implementation Note—The PowerPC architecture states that in some implementations,
the Move to FPSCR Fields (mtfsf) instruction can perform more slowly when only some
of the fields are updated as opposed to all of the fields. In the MPC7451, there is no
degradation of performance.

2.3.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another. The floating-point
move instructions do not modify the FPSCR. The CR update option in these instructions
controls the placing of result status into CR1. Table 2-44 summarizes the floating-point
move instructions.

2.3.4.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

Table 2-43. Floating-Point Status and Control Register Instructions

Name Mnemonic Syntax

Move from FPSCR mffs (mffs.) frD

Move to Condition Register from FPSCR mcrfs crfD,crfS

Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM

Move to FPSCR Fields mtfsf (mtfsf.) FM,frB

Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) crbD

Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) crbD

Table 2-44. Floating-Point Move Instructions

Name Mnemonic Syntax

Floating Move Register fmr (fmr.) frD,frB

Floating Negate fneg (fneg.) frD,frB

Floating Absolute Value fabs (fabs.) frD,frB

Floating Negative Absolute Value fnabs (fnabs.) frD,frB

MOTOROLA Chapter 2. Programming Model 2-77

Instruction Set Summary

• Integer load instructions

• Integer store instructions

• Integer load and store with byte-reverse instructions

• Integer load and store multiple instructions

• Floating-point load instructions

• Floating-point store instructions

• Memory synchronization instructions

Implementation Note—The following describes how the MPC7451 handles
misalignment:

The MPC7451 provides hardware support for misaligned memory accesses. It performs
those accesses within a single cycle if the operand lies within a double-word boundary.
Misaligned memory accesses that cross a double-word boundary degrade performance.

Although many misaligned memory accesses are supported in hardware, the frequent use
of them is discouraged because they can compromise the overall performance of the
processor. Only one outstanding misalignment at a time is supported which means it is
non-pipelined.

Accesses that cross a translation boundary can be restarted. That is, a misaligned access that
crosses a page boundary is completely restarted if the second portion of the access causes
a page fault. This can cause the first access to be repeated.

On some processors, such as the MPC603e, a TLB reload operation causes an instruction
restart. On the MPC7451, TLB reloads are performed transparently (if hardware table
search operations are enabled—HID0[STEN] = 0) and only a page fault causes a restart. If
software table searching is enabled (HID0[STEN] = 1) on the MPC7451, a TLB miss
causes an instruction restart (as it causes a TLB miss exception)

2.3.4.3.1 Self-Modifying Code

When a processor modifies a memory location that can be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by executing the following instruction sequence (using
either dcbst or dcbf):

dcbst (or dcbf)|update memory
sync |wait for update
icbi |remove (invalidate) copy in instruction cache
sync |ensure that ICBI invalidate at the icache has completed
isync |remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Because
instruction fetching bypasses the data cache, changes to items in the data cache can not be

2-78 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

reflected in memory until the fetch operations complete. The sync after the icbi is required
to ensure that the icbi invalidation has completed in the instruction cache.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches (like the MPC7451), and designers should carefully follow the guidelines
for maintaining cache coherency that are provided in the VEA, and discussed in Chapter 5,
“Cache Model and Memory Coherency,” in The Programming Environments Manual.

2.3.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, “Effective Address Calculation,” for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
aligned can suffer performance degradation. Refer to Section 4.6.6, “Alignment Exception
(0x00600),” for additional information about load and store address alignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, in which rA is updated with the generated effective address. For these forms, if
rA ≠ 0 and rA ≠ rD (otherwise invalid), the EA is placed into rA and the memory element
(byte, half word, word, or double word) addressed by the EA is loaded into rD. Note that
the PowerPC architecture defines load with update instructions with operand rA = 0 or
rA = rD as invalid forms.

Implementation Notes—The following notes describe the MPC7451 implementation of
integer load instructions:

• The PowerPC architecture cautions programmers that some implementations of the
architecture can execute the load half algebraic (lha, lhax) instructions with greater
latency than other types of load instructions. This is not the case for the MPC7451;
these instructions operate with the same latency as other load instructions.

• The PowerPC architecture cautions programmers that some implementations of the
architecture can run the load/store byte-reverse (lhbrx, lbrx, sthbrx, stwbrx)
instructions with greater latency than other types of load/store instructions. This is
not the case for the MPC7451. These instructions operate with the same latency as
the other load/store instructions.

• The PowerPC architecture describes some preferred instruction forms for load and
store multiple instructions and integer move assist instructions that can perform
better than other forms in some implementations. None of these preferred forms
affect instruction performance on the MPC7451. Usage of load/store string
instruction is discouraged.

MOTOROLA Chapter 2. Programming Model 2-79

Instruction Set Summary

• The PowerPC architecture defines the lwarx and stwcx. as a way to update memory
atomically. In the MPC7451, reservations are made on behalf of aligned 32-byte
sections of the memory address space. Executing lwarx and stwcx. to a page marked
write-through does cause a DSI exception if the page is marked cacheable
write-through (WIM = 10x) or caching-inhibited (WIM = x1x), but as with other
memory accesses, DSI exceptions can result for other reasons such as a protection
violations or page faults.

Table 2-45 summarizes the integer load instructions.

2.3.4.3.4 Integer Store Instructions

For integer store instructions, the contents of rS are stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which rA is updated with the EA. For these forms, the following
rules apply:

• If rA ≠ 0, the effective address is placed into rA.

• If rS = rA, the contents of register rS are copied to the target memory element, then
the generated EA is placed into rA (rS).

The PowerPC architecture defines store with update instructions with rA = 0 as an invalid
form. In addition, it defines integer store instructions with the CR update option enabled

Table 2-45. Integer Load Instructions

Name Mnemonic Syntax

Load Byte and Zero lbz rD,d(rA)

Load Byte and Zero Indexed lbzx rD,rA,rB

Load Byte and Zero with Update lbzu rD,d(rA)

Load Byte and Zero with Update Indexed lbzux rD,rA,rB

Load Half Word and Zero lhz rD,d(rA)

Load Half Word and Zero Indexed lhzx rD,rA,rB

Load Half Word and Zero with Update lhzu rD,d(rA)

Load Half Word and Zero with Update Indexed lhzux rD,rA,rB

Load Half Word Algebraic lha rD,d(rA)

Load Half Word Algebraic Indexed lhax rD,rA,rB

Load Half Word Algebraic with Update lhau rD,d(rA)

Load Half Word Algebraic with Update Indexed lhaux rD,rA,rB

Load Word and Zero lwz rD,d(rA)

Load Word and Zero Indexed lwzx rD,rA,rB

Load Word and Zero with Update lwzu rD,d(rA)

Load Word and Zero with Update Indexed lwzux rD,rA,rB

2-80 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2-46
summarizes the integer store instructions.

2.3.4.3.5 Integer Store Gathering

The MPC7451 performs store gathering for write-through accesses to nonguarded space or
to cache-inhibited stores to nonguarded space if the requirements described in
Section 3.1.2.3, “Store Gathering/Merging,” are met. These stores are combined in the
load/store unit (LSU) to form a double word or quad word and are sent out on the system
bus as a single operation. However, stores can be gathered only if the successive stores that
meet the criteria are queued and pending. The MPC7451 also performs store merging as
described in Section 3.1.2.3, “Store Gathering/Merging.”

Store gathering takes place regardless of the address order of the stores. The store gathering
and merging feature is enabled by setting HID0[SGE].

If store gathering is enabled and the stores do not fall under the above categories, an eieio
or sync instruction must be used to prevent two stores from being gathered.

2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions

Table 2-47 describes integer load and store with byte-reverse instructions. When used in a
system operating with the default big-endian byte order, these instructions have the effect
of loading and storing data in little-endian order. Likewise, when used in a system operating
with little-endian byte order, these instructions have the effect of loading and storing data
in big-endian order. For more information about big-endian and little-endian byte ordering,
see “Byte Ordering,” in Chapter 3, “Operand Conventions,” in the Programming
Environments Manual.

Table 2-46. Integer Store Instructions

Name Mnemonic Syntax

Store Byte stb rS,d(rA)

Store Byte Indexed stbx rS,rA,rB

Store Byte with Update stbu rS,d(rA)

Store Byte with Update Indexed stbux rS,rA,rB

Store Half Word sth rS,d(rA)

Store Half Word Indexed sthx rS,rA,rB

Store Half Word with Update sthu rS,d(rA)

Store Half Word with Update Indexed sthux rS,rA,rB

Store Word stw rS,d(rA)

Store Word Indexed stwx rS,rA,rB

Store Word with Update stwu rS,d(rA)

Store Word with Update Indexed stwux rS,rA,rB

MOTOROLA Chapter 2. Programming Model 2-81

Instruction Set Summary

2.3.4.3.7 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions can have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions can be
interrupted by a DSI exception associated with the address translation of the second page.

The PowerPC architecture defines the Load Multiple Word (lmw) instruction with rA in
the range of registers to be loaded as an invalid form.

2.3.4.3.8 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 2-49
summarizes the integer load and store string instructions.

In the MPC7451 implementation operating with little-endian byte order, execution of a load
or string instruction will take an alignment exception.

Table 2-47. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Syntax

Load Half Word Byte-Reverse Indexed lhbrx rD,rA,rB

Load Word Byte-Reverse Indexed lwbrx rD,rA,rB

Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

Table 2-48. Integer Load and Store Multiple Instructions

Name Mnemonic Syntax

Load Multiple Word lmw rD,d(rA)

Store Multiple Word stmw rS,d(rA)

Table 2-49. Integer Load and Store String Instructions

Name Mnemonic Syntax

Load String Word Immediate lswi rD,rA,NB

Load String Word Indexed lswx rD,rA,rB

Store String Word Immediate stswi rS,rA,NB

Store String Word Indexed stswx rS,rA,rB

2-82 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Load string and store string instructions can involve operands that are not word-aligned.

For load/store string operations, the MPC7451 does not combine register values to reduce
the number of discrete accesses. However, if store gathering is enabled and the accesses fall
under the criteria for store gathering the stores can be combined to enhance performance.
At a minimum, additional cache access cycles are required. Usage of load/store string
instructions is discouraged.

2.3.4.3.9 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads and stores are not supported for direct-store accesses. The use
of floating-point loads and stores for direct-store access results in an alignment exception.

There are two forms of the floating-point load instruction—single-precision and
double-precision operand formats. Because the FPRs support only the floating-point
double-precision format, single-precision floating-point load instructions convert
single-precision data to double-precision format before loading an operand into an FPR.

Implementation Note—The MPC7451 treats exceptions as follows:

• The FPU can be run in two different modes—Ignore exceptions mode (MSR[FE0] =
MSR[FE1] = 0) and precise mode (any other settings for MSR[FE0,FE1]). For the
MPC7451, ignore exceptions mode allows floating-point instructions to complete
earlier and thus can provide better performance than precise mode.

The floating-point load and store indexed instructions (lfsx, lfsux, lfdx, lfdux, stfsx, stfsux,
stfdx, stfdux) are invalid when the Rc bit is one. The PowerPC architecture defines a load
with update instruction with rA = 0 as an invalid form. Table 2-50 summarizes the
floating-point load instructions.

Table 2-50. Floating-Point Load Instructions

Name Mnemonic Syntax

Load Floating-Point Single lfs frD,d(rA)

Load Floating-Point Single Indexed lfsx frD,rA,rB

Load Floating-Point Single with Update lfsu frD,d(rA)

Load Floating-Point Single with Update Indexed lfsux frD,rA,rB

Load Floating-Point Double lfd frD,d(rA)

Load Floating-Point Double Indexed lfdx frD,rA,rB

Load Floating-Point Double with Update lfdu frD,d(rA)

Load Floating-Point Double with Update Indexed lfdux frD,rA,rB

MOTOROLA Chapter 2. Programming Model 2-83

Instruction Set Summary

2.3.4.3.10 Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the
store instruction—single-precision, double-precision, and integer. The integer form is
supported by the optional stfiwx instruction. Because the FPRs support only floating-point,
double-precision format for floating-point data, single-precision floating-point store
instructions convert double-precision data to single-precision format before storing the
operands. Table 2-51 summarizes the floating-point store instructions.

Some floating-point store instructions require conversions in the LSU. Table 2-52 shows
conversions the LSU makes when executing a Store Floating-Point Single instruction.

Table 2-51. Floating-Point Store Instructions

Name Mnemonic Syntax

Store Floating-Point Single stfs frS,d(rA)

Store Floating-Point Single Indexed stfsx frS,r B

Store Floating-Point Single with Update stfsu frS,d(rA)

Store Floating-Point Single with Update Indexed stfsux frS,r B

Store Floating-Point Double stfd frS,d(rA)

Store Floating-Point Double Indexed stfdx frS,rB

Store Floating-Point Double with Update stfdu frS,d(rA)

Store Floating-Point Double with Update Indexed stfdux frS,r B

Store Floating-Point as Integer Word Indexed 1

1 The stfiwx instruction is optional to the PowerPC architecture

stfiwx frS,rB

Table 2-52. Store Floating-Point Single Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Store

Single Zero, infinity, QNaN Store

Single SNaN Store

Double Normalized If (exp ≤ 896)
then

Denormalize and Store
else

Store

Double Denormalized Store zero

Double Zero, infinity, QNaN Store

Double SNaN Store

2-84 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Table 2-53 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the floating-point value is simply stored.
Only in a few cases are any other actions taken.

Architecturally, all floating-point numbers are represented in double-precision format
within the MPC7451. Execution of a store floating-point single (stfs, stfsu, stfsx, stfsux)
instruction requires conversion from double- to single-precision format. If the exponent is
not greater than 896, this conversion requires denormalization. The MPC7451 supports this
denormalization by shifting the mantissa one bit at a time. Anywhere from 1 to 23 clock
cycles are required to complete the denormalization, depending upon the value to be stored.

Because of how floating-point numbers are implemented in the MPC7451, there is also a
case when execution of a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction
can require internal shifting of the mantissa. This case occurs when the operand of a store
floating-point double instruction is a denormalized single-precision value. The value could
be the result of a load floating-point single instruction, a single-precision arithmetic
instruction, or a floating round to single-precision instruction. In these cases, shifting the
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored. These
cycles are incurred during the store.

2.3.4.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress can affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

Table 2-53. Store Floating-Point Double Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Normalize and Store

Single Zero, infinity, QNaN Store

Single SNaN Store

Double Normalized Store

Double Denormalized Store

Double Zero, infinity, QNaN Store

Double SNaN Store

MOTOROLA Chapter 2. Programming Model 2-85

Instruction Set Summary

2.3.4.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the processors that ignore the two low-order bits
of the generated branch target address.

Branch instructions compute the EA of the next instruction address using the following
addressing modes:

• Branch relative

• Branch conditional to relative address

• Branch to absolute address

• Branch conditional to absolute address

• Branch conditional to link register

• Branch conditional to count register

Note that in the MPC7451, all branch instructions (b, ba, bl, bla, bc, bca, bcl, bcla, bclr,
bclrl, bcctr, bcctrl) are executed in the BPU and condition register logical instructions
(crand, cror, crxor, crnand, crnor, crandc, creqv, crorc, and mcrf) are executed by the
IU2. Some of these instructions can redirect instruction execution conditionally on the
value of CR, CTR, or LR bits. When the CR bits resolve, the branch instruction is either
marked as correct or mispredicted. Correcting a mispredicted branch requires that the
MPC7451 flush speculatively executed instructions and restore the machine state to
immediately after the branch. This correction can be done when all non-speculative
instructions older than the mispredicting branch have completed.

2.3.4.4.2 Branch Instructions

Table 2-54 lists the branch instructions provided by the processors that implement the
PowerPC architecture. To simplify assembly language programming, a set of simplified
mnemonics and symbols is provided for the most frequently used forms of branch
conditional, compare, trap, rotate and shift, and certain other instructions. See Appendix F,
“Simplified Mnemonics,” in the Programming Environments Manual for a list of
simplified mnemonic examples.

Table 2-54. Branch Instructions

Name Mnemonic Syntax

Branch b (ba bl bla) target_addr

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr

Branch Conditional to Link Register bclr (bclrl) BO,BI

Branch Conditional to Count Register bcctr (bcctrl) BO,BI

2-86 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

2.3.4.4.3 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 2-55, and the Move Condition
Register Field (mcrf) instruction are also defined as flow control instructions.

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these forms of the instructions as invalid.

2.3.4.4.4 Trap Instructions

The trap instructions shown in Table 2-56 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap type
program exception is taken. For more information, see Section 4.6.7, “Program Exception
(0x00700).” If the tested conditions are not met, instruction execution continues normally.

See Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
a complete set of simplified mnemonics.

2.3.4.5 System Linkage Instruction—UISA

The System Call (sc) instruction permits a program to call on the system to perform a
service; see Table 2-57 and also Section 2.3.6.1, “System Linkage Instructions—OEA,” for
additional information.

Table 2-55. Condition Register Logical Instructions

Name Mnemonic Syntax

Condition Register AND crand crbD,crbA,crbB

Condition Register OR cror crbD,crbA,crbB

Condition Register XOR crxor crbD,crbA,crbB

Condition Register NAND crnand crbD,crbA,crbB

Condition Register NOR crnor crbD,crbA,crbB

Condition Register Equivalent creqv crbD,crbA, crbB

Condition Register AND with Complement crandc crbD,crbA, crbB

Condition Register OR with Complement crorc crbD,crbA, crbB

Move Condition Register Field mcrf crfD,crfS

Table 2-56. Trap Instructions

Name Mnemonic Syntax

Trap Word Immediate twi TO,rA,SIMM

Trap Word tw TO,rA,rB

MOTOROLA Chapter 2. Programming Model 2-87

Instruction Set Summary

Executing this instruction causes the system call exception handler to be evoked. For more
information, see Section 4.6.10, “System Call Exception (0x00C00).”

2.3.4.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register (CR),
machine state register (MSR), and special-purpose registers (SPRs). See Section 2.3.5.1,
“Processor Control Instructions—VEA,” for the mftb instruction and Section 2.3.6.2,
“Processor Control Instructions—OEA,” for information about the instructions used for
reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions

Table 2-58 summarizes the instructions for reading from or writing to the condition register.

Implementation Note—The PowerPC architecture indicates that in some implementations
the Move to Condition Register Fields (mtcrf) instruction can perform more slowly when
only a portion of the fields are updated as opposed to all of the fields. The condition register
access latency for the MPC7451 is the same in both cases, if multiple fields are affected.
Note that mtcrf single field is handled in the IU1s and latency may be lower if a mtcrf multi
is split into its component single field pieces by the compiler.

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)

Table 2-59 lists the mtspr and mfspr instructions.

Table 2-60 lists the SPR numbers for user-level PowerPC SPR accesses.

Table 2-57. System Linkage Instruction—UISA

Name Mnemonic Syntax

System Call sc —

Table 2-58. Move to/from Condition Register Instructions

Name Mnemonic Syntax

Move to Condition Register Fields mtcrf CRM,rS

Move to Condition Register from XER mcrxr crfD

Move from Condition Register mfcr rD

Table 2-59. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Syntax

Move to Special-Purpose Register mtspr SPR,rS

Move from Special-Purpose Register mfspr rD,SPR

2-88 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Encodings for the MPC7451-specific user-level SPRs are listed in Table 2-61.

Table 2-60. User-level PowerPC SPR Encodings

Register Name
SPR

 1

1 Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding. For mtspr
and mfspr instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five bits
appearing in bits 16–20 of the instruction and the low-order five bits in bits 11–15.

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

CTR 9 00000 01001 User (UISA) Both

LR 8 00000 01000 User (UISA) Both

TBL 2

2 The TB registers are referred to as TBRs rather than SPRs and can be written to using the mtspr instruction in supervisor mode
and the TBR numbers here. The TB registers can be read in user mode using either the mftb instruction and specifying TBR 268
for TBL and TBR 269 for TBU.

268 01000 01100 User (VEA) mftb

TBU 2 269 01000 01101 User (VEA) mftb

VRSAVE 3

3 Register defined by the AltiVec Technology

256 01000 00000 User (AltiVec/UISA) Both

XER 1 00000 00001 User (UISA) Both

Table 2-61. User-level SPR Encodings for MPC7451-Defined Registers

Register
Name

SPR 1

1 Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding. For mtspr and
mfspr instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order 5 bits appearing
in bits 16–20 of the instruction and the low-order 5 bits in bits 11–15.

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

UMMCR0 936 11101 01000 User mfspr

UMMCR1 940 11101 01100 User mfspr

UMMCR2 928 11101 00000 User mfspr

UPMC1 937 11101 01001 User mfspr

UPMC2 938 11101 01010 User mfspr

UPMC3 941 11101 01101 User mfspr

UPMC4 942 11101 01110 User mfspr

UPMC5 929 11101 00001 User mfspr

UPMC6 930 11101 00010 User mfspr

USIAR 939 11101 01011 User mfspr

MOTOROLA Chapter 2. Programming Model 2-89

Instruction Set Summary

2.3.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. SeeSection 3.3.3.6, “Atomic
Memory References,” for additional information about these instructions and about related
aspects of memory synchronization. See Table 2-62 for a summary.

System designs with an external cache should take special care to recognize the hardware
signaling caused by a SYNC bus operation and perform the appropriate actions to
guarantee that memory references that can be queued internally to the external cache have
been performed globally.

See Section 2.3.5.2, “Memory Synchronization Instructions—VEA,” for details about
additional memory synchronization (eieio) instructions.

In the PowerPC architecture, the Rc bit must be zero for most load and store instructions.
If Rc is set, the instruction form is invalid for sync and lwarx instructions. If the MPC7451
encounters one of these invalid instruction forms, it sets CR0 to an undefined value.

2.3.5 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the

Table 2-62. Memory Synchronization Instructions—UISA

Name Mnemonic Syntax Implementation Notes

Load Word
and Reserve

Indexed

lwarx 1 rD,rA,rB Programmers can use lwarx with stwcx. to emulate common semaphore
operations such as test and set, compare and swap, exchange memory, and
fetch and add. Both instructions must use the same EA. Reservation granularity
is implementation-dependent. The MPC7451 makes reservations on behalf of
aligned 32-byte sections of the memory address space. Executing lwarx and
stwcx. to a page marked write-through (WIMG = 10xx) or caching-inhibited
(WIMG = x1xx) or when the data cache is disabled or locked causes a DSI
exception. If the location is not word-aligned, an alignment exception occurs.
The stwcx. instruction is the only load/store instruction with a valid form if Rc is
set. If Rc is zero, executing stwcx. sets CR0 to an undefined value.

Store Word
Conditional

Indexed

stwcx.1 rS,rA,rB

Synchronize sync — Because it delays execution of subsequent instructions until all previous
instructions complete to where they cannot cause an exception, sync is a
barrier against store gathering. Additionally, all load/store cache/bus activities
initiated by prior instructions are completed. Touch load operations (dcbt,
dcbtst) must complete address translation, but need not complete on the bus.
The sync completes after a successful broadcast on the system bus.
The latency of sync depends on the processor state when it is dispatched and
on various system-level situations. Note that, frequent use of sync will degrade
performance.

1 Note that the MPC7451 implements the lwarx and stwcx. as defined in the PowerPC architecture version 1.10. The
execution of an lwarx or stwcx. instructions to memory marked write-through or cache-inhibited will cause a DSI
exception.

2-90 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

cache model, cache control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but do not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

2.3.5.1 Processor Control Instructions—VEA

In addition to the move to condition register instructions (specified by the UISA), the VEA
defines the mftb instruction (user-level instruction) for reading the contents of the time
base register; see Chapter 3, “L1, L2, and L3 Cache Operation,” for more information.
Table 2-63 shows the mftb instruction.

Simplified mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. See
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples and for simplified mnemonics for Move from Time Base
(mftb) and Move from Time Base Upper (mftbu), which are variants of the mftb
instruction rather than of mfspr. The mftb instruction serves as both a basic and simplified
mnemonic. Assemblers recognize an mftb mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the simplified form.

Implementation Note—In the MPC7451, note the following:

• The MPC7451 allows user-mode read access to the time base counter through the
use of the Move from Time Base (mftb) instruction. As a 32-bit implementation of
the PowerPC architecture, the MPC7451 can access TBU and TBL separately only.

• The time base counter is clocked at a frequency that is one-fourth that of the bus
clock. Counting is enabled by assertion of the time base enable (TBEN) input signal.

2.3.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “L1, L2, and
L3 Cache Operation,” for more information about these instructions and about related
aspects of memory synchronization.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce
In-Order Execution of I/O (eieio) and Instruction Synchronize (isync) instructions. The
number of cycles required to complete an eieio instruction depends on system parameters
and on the processor's state when the instruction is issued. As a result, frequent use of this

Table 2-63. Move from Time Base Instruction

Name Mnemonic Syntax

Move from Time Base mftb rD, TBR

MOTOROLA Chapter 2. Programming Model 2-91

Instruction Set Summary

instruction can degrade performance. Note that the broadcast of these instructions on the
bus is controlled by the HID1[SYNCBE] bit.

Table 2-64 describes the memory synchronization instructions defined by the VEA.

2.3.5.3 Memory Control Instructions—VEA

Memory control instructions can be classified as follows:

• Cache management instructions (user-level and supervisor-level)

• Translation lookaside buffer management instructions (OEA)

This section describes the user-level cache management instructions defined by the VEA.
See Section 2.3.6.3, “Memory Control Instructions—OEA,” for information about
supervisor-level cache, segment register manipulation, and translation lookaside buffer
management instructions. For a complete description of the bus operations caused by cache
control instructions, see Section 3.8.2, “Bus Operations Caused by Cache Control
Instructions.”

2.3.5.3.1 User-Level Cache Instructions—VEA

The instructions summarized in this section help user-level programs manage on-chip
caches if they are implemented. See Chapter 3, “L1, L2, and L3 Cache Operation,” for
more information about cache topics. The following sections describe how these operations
are treated with respect to the MPC7451’s caches.

As with other memory-related instructions, the effects of cache management instructions
on memory are weakly-ordered. If the programmer must ensure that cache or other

Table 2-64. Memory Synchronization Instructions—VEA

Name Mnemonic Syntax Implementation Notes

Enforce
In-Order

Execution of
I/O

eieio — The eieio instruction is dispatched to the LSU and executes after all previous
cache-inhibited or write-through accesses are performed; all subsequent
instructions that generate such accesses execute after eieio. As the eieio
operation doesn’t affect the caches, it bypasses the L2 and L3 caches and is
forwarded to the bus. An EIEIO operation is broadcast on the external bus to
enforce ordering in the external memory system. Because the MPC7451 does
reorder noncacheable accesses, eieio may be needed to force ordering.
However, if store gathering is enabled and an eieio is detected in a store queue,
stores are not gathered. Broadcasting eieio prevents external devices, such as
a bus bridge chip, from gathering stores.

Instruction
Synchronize

isync — The isync instruction is refetch serializing; that is, it causes the MPC7451 to wait
for all prior instructions to complete first then executes which purges all
instructions from the processor and then refetches the next instruction. The
isync instruction is not executed until all previous instructions complete to the
point where they cannot cause an exception. The isync instruction does not wait
for all pending stores in the store queue to complete. Any instruction after an
isync sees all effects of prior instructions occurring before the isync.

2-92 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed after those instructions.

Note that the MPC7451 interprets cache control instructions (icbi, dcbi, dcbf, dcbz, and
dcbst) as if they pertain only to the local L1, and L2, and L3 caches. A dcbz (with M set)
is always broadcast on the bus interface if it does not hit as modified in any on-chip cache.

All cache control instructions to direct-store space are no-ops. For information how cache
control instructions affect the L2 cache, see 3.6.4, “L2 Cache Operation.”

Table 2-65 summarizes the cache instructions defined by the VEA. Note that these
instructions are accessible to user-level programs.

Table 2-65. User-Level Cache Instructions

Name Mnemonic Syntax Implementation Notes

Data Cache Block
Touch 1

dcbt rA,rB The VEA defines this instruction to allow for potential system performance
enhancements through the use of software-initiated prefetch hints.
Implementations are not required to take any action based on execution
of this instruction, but they can prefetch the cache block corresponding to
the EA into their cache. When dcbt executes, the MPC7451 checks for
protection violations (as for a load instruction). This instruction is treated
as a no-op for the following cases:
 • The access causes a protection violation.
 • The page is mapped cache-inhibited or direct-store (T = 1).
 • The cache is locked or disabled
 • HID0[NOPTI] = 1
Otherwise, if no data is in the cache location, the MPC7451 requests a
cache line fill. Data brought into the cache is validated as if it were a load
instruction. The memory reference of a dcbt sets the reference bit.

Data Cache Block
Touch for Store 1

dcbtst rA,rB This instruction dcbtst can be noped by setting HID0[NOPTI].
The dcbtst instruction behaves similarly to a dcbt instruction, except that
the line fill request on the bus is signaled as read or read-claim, and the
data is marked as exclusive in the L1 data cache if there is no shared
response on the bus. More specifically, the following cases occur
depending on where the line currently exists or does not exist in the
MPC7451.
 • dcbtst hits in the L1 data cache. In this case, the dcbtst does nothing

and the state of the line in the cache is not changed. Thus, if the line
was in the shared state, a subsequent store hits on this shared line and
incur the associated latency penalties.

 • dcbtst misses in the L1 data cache and hits in the L2 or L3 cache. In
this case, the dcbtst will reload the L1 data cache with the state found
in the L2 cache. Again, if the line was in the shared state in the L2, a
subsequent store will hit on this shared line and incur the associated
latency penalties.

 • dcbtst misses in L1 data cache, L2, and L3 caches. In this case,
MPC7451 will request the line from memory with read or read-claim and
reload the L1 data cache in the exclusive state. As subsequent store will
hit on exclusive and can perform the store to the L1 data cache
immediately.

In addition, a dcbtst instruction will be no-oped if the target address of the
dcbtst is mapped as write-through.

MOTOROLA Chapter 2. Programming Model 2-93

Instruction Set Summary

Data Cache Block
Set to Zero

dcbz rA,rB The EA is computed, translated, and checked for protection violations. For
cache hits, 32 bytes of zeros are written to the cache block and the tag is
marked modified. For cache misses with the replacement block marked
not modified, the zero reload is performed and the cache block is marked
modified. However, if the replacement block is marked modified, the
contents are written back to memory first. The instruction takes an
alignment exception if the cache is locked or disabled or if the cache is
marked WT or CI. If WIMG = xx1x (coherency enforced), the address is
broadcast to the bus before the zero reload fill.
The exception priorities (from highest to lowest) are as follows:
1 Cache disabled—Alignment exception
2 Cache is locked—Alignment exception
3 Page marked write-through or cache-inhibited—alignment exception
4 BAT protection violation—DSI exception
5 TLB protection violation—DSI exception
dcbz is broadcast if WIMG = xx1x (coherency enforced).

Data Cache Block
Allocate

dcba rA,rB The EA is computed, translated, and checked for protection violations. For
cache hits, 32 bytes of zeros are written to the cache block and the tag is
marked modified. For cache misses with the replacement block marked
non-dirty, the zero reload is performed and the cache block is marked
modified. However, if the replacement block is marked modified, the
contents are written back to memory first. The instruction performs a no-op
if the cache is locked or disabled or if the cache is marked WT or CI. If
WIMG =xx1x (coherency enforced), the address is broadcast to the bus
before the zero reload fill.
A no-op occurs for the following:
 • Cache is disabled
 • Cache is locked
 • Page marked write-through or cache-inhibited
 • BAT protection violation
 • TLB protection violation
dcba is broadcast if WIMG = xx1x (coherency enforced).

Data Cache Block
Store

dcbst rA,rB The EA is computed, translated, and checked for protection violations.
 • For cache hits with the tag marked not modified, no further action is

taken.
 • For cache hits with the tag marked modified, the cache block is written

back to memory and marked exclusive.
If WIMG = xx1x (coherency enforced) dcbst is broadcast. The instruction
acts like a load with respect to address translation and memory protection.
It executes regardless of whether the cache is disabled or locked.
The exception priorities (from highest to lowest) for dcbst are as follows:
1 BAT protection violation—DSI exception
2 TLB protection violation—DSI exception

Table 2-65. User-Level Cache Instructions (continued)

Name Mnemonic Syntax Implementation Notes

2-94 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

2.3.5.4 Optional External Control Instructions

The PowerPC architecture defines an optional external control feature that, if implemented,
is supported by the two external control instructions, eciwx and ecowx. These instructions
allow a user-level program to communicate with a special-purpose device. These
instructions are provided in the MPC7451 and are summarized in Table 2-66.

The eciwx/ecowx instructions let a system designer map special devices in an alternative
way. The MMU translation of the EA is not used to select the special device, since it is used
in most instructions such as loads and stores. Rather, the EA is used as an address operand
that is passed to the device over the address bus. Four other signals (the burst and size
signals on the system bus) are used to select the device; these four signals output the 4-bit
resource ID (RID) field located in the EAR. The eciwx instruction also loads a word from
the data bus that is output by the special device. For more information about the relationship
between these instructions and the system interface, refer to Chapter 8, “Signal
Descriptions.”

Data Cache Block
Flush

dcbf rA,rB The EA is computed, translated, and checked for protection violations:
 • For cache hits with the tag marked modified, the cache block is written

back to memory and the cache entry is invalidated.
 • For cache hits with the tag marked not modified, the entry is invalidated.
 • For cache misses, no further action is taken.
A dcbf is broadcast if WIMG = xx1x (coherency enforced).The instruction
acts like a load with respect to address translation and memory protection.
It executes regardless of whether the cache is disabled or locked.
The exception priorities (from highest to lowest) for dcbf are as follows:
1 BAT protection violation—DSI exception
2 TLB protection violation—DSI exception

Instruction Cache
Block Invalidate

icbi rA,rB This instruction is broadcast on the bus if WIMG = xx1x. icbi should
always be followed by a sync and an isync to make sure that the effects
of the icbi are seen by the instruction fetches following the icbi itself.

1 A program that uses dcbt and dcbtst instructions improperly performs less efficiently. To improve performance, HID0[NOPTI] can be
set, which causes dcbt and dcbtst to be no-oped at the cache. They do not cause bus activity and cause only a 1-clock execution
latency. The default state of this bit is zero which enables the use of these instructions.

Table 2-66. External Control Instructions

Name Mnemonic Syntax Implementation Note

External
Control In

Word Indexed

eciwx rD,rA,rB A transfer size of 4 bytes is implied; the TBST and TSIZ[0:2] signals are
redefined to specify the resource ID (RID), copied from bits EAR[28–31]. For
these operations, TBST carries the EAR[28] data. Misaligned operands for
these instructions cause an alignment exception. Addressing a location
where SR[T] = 1 causes a DSI exception. If MSR[DR] = 0 a programming
error occurs and the physical address on the bus is undefined.
Note: These instructions are optional to the PowerPC architecture.

External
Control Out

Word Indexed

ecowx rS,rA,rB

Table 2-65. User-Level Cache Instructions (continued)

Name Mnemonic Syntax Implementation Notes

MOTOROLA Chapter 2. Programming Model 2-95

Instruction Set Summary

2.3.6 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA also adhere to the UISA and the VEA. This
section describes the instructions provided by the OEA.

2.3.6.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 2-67). The user-level sc
instruction lets a user program call on the system to perform a service and causes the
processor to take a system call exception. The supervisor-level rfi instruction is used for
returning from an exception handler.

2.3.6.2 Processor Control Instructions—OEA

The instructions listed in Table 2-68 provide access to the segment registers for 32-bit
implementations. These instructions operate completely independently of the MSR[IR] and
MSR[DR] bit settings. Refer to “Synchronization Requirements for Special Registers and
for Lookaside Buffers,” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for serialization requirements and other recommended precautions
to observe when manipulating the segment registers.

The processor control instructions used to access the MSR and the SPRs is discussed in this
section. Table 2-69 lists instructions for accessing the MSR.

Table 2-67. System Linkage Instructions—OEA

Name Mnemonic Syntax Implementation Notes

System Call sc — The sc instruction is context-synchronizing.

Return from
Interrupt

rfi — The rfi instruction is context-synchronizing. For the MPC7451, this means the
rfi instruction works its way to the final stage of the execution pipeline,
updates architected registers, and redirects the instruction flow.

Table 2-68. Segment Register Manipulation Instructions (OEA)

Name Mnemonic Syntax Implementation Notes

Move to Segment Register mtsr SR,rS —

Move to Segment Register Indirect mtsrin rS,rB —

Move from Segment Register mfsr rD,SR —

Move from Segment Register Indirect mfsrin rD,rB —

2-96 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

The OEA defines encodings of mtspr and mfspr to provide access to supervisor-level
registers. The instructions are listed in Table 2-70.

Encodings for the architecture-defined SPRs are listed in Table 2-60. Encodings for
MPC7451-specific, supervisor-level SPRs are listed in Table 2-61. Simplified mnemonics
are provided for mtspr and mfspr in Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual.

Table lists the SPR numbers for supervisor-level PowerPC SPR accesses.

Table 2-69. Move to/from Machine State Register Instructions

Name Mnemonic Syntax

Move to Machine State Register mtmsr rS

Move from Machine State Register mfmsr rD

Table 2-70. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Syntax

Move to Special-Purpose Register mtspr SPR,rS

Move from Special-Purpose Register mfspr rD,SPR

Table 2-71. Supervisor-level PowerPC SPR Encodings

Register Name
SPR

 1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

DABR 2 1013 11111 10101 Supervisor (OEA) Both

DAR 19 00000 10011 Supervisor (OEA) Both

DBAT0L 537 10000 11001 Supervisor (OEA) Both

DBAT0U 536 10000 11000 Supervisor (OEA) Both

DBAT1L 539 10000 11011 Supervisor (OEA) Both

DBAT1U 538 10000 11010 Supervisor (OEA) Both

DBAT2L 541 10000 11101 Supervisor (OEA) Both

DBAT2U 540 10000 11100 Supervisor (OEA) Both

DBAT3L 543 10000 11111 Supervisor (OEA) Both

DBAT3U 542 10000 11110 Supervisor (OEA) Both

DEC 22 00000 10110 Supervisor (OEA) Both

DSISR 18 00000 10010 Supervisor (OEA) Both

EAR 2 282 01000 11010 Supervisor (OEA) Both

IBAT0L 529 10000 10001 Supervisor (OEA) Both

IBAT0U 528 10000 10000 Supervisor (OEA) Both

IBAT1L 531 10000 10011 Supervisor (OEA) Both

MOTOROLA Chapter 2. Programming Model 2-97

Instruction Set Summary

Encodings for the supervisor-level MPC7451-specific SPRs are listed in Table 2-61.

IBAT1U 530 10000 10010 Supervisor (OEA) Both

IBAT2L 533 10000 10101 Supervisor (OEA) Both

IBAT2U 532 10000 10100 Supervisor (OEA) Both

IBAT3L 535 10000 10111 Supervisor (OEA) Both

IBAT3U 534 10000 10110 Supervisor (OEA) Both

MMCR0 2 952 11101 11000 Supervisor Both

MMCR1 2 956 11101 11100 Supervisor Both

PIR 2 1023 11111 11111 Supervisor (OEA) Both

PMC1 2 953 11101 11001 Supervisor Both

PMC2 2 954 11101 11010 Supervisor Both

PMC3 2 957 11101 11101 Supervisor Both

PMC4 2 958 11101 11110 Supervisor Both

PMC5 2 945 11101 10001 Supervisor Both

PMC6 2 946 11101 10010 Supervisor Both

PVR 287 01000 11111 Supervisor (OEA) mfspr

SDR1 25 00000 11001 Supervisor (OEA) Both

SIAR 2 955 11101 11011 Supervisor Both

SPRG0 272 01000 10000 Supervisor (OEA) Both

SPRG1 273 01000 10001 Supervisor (OEA) Both

SPRG2 274 01000 10010 Supervisor (OEA) Both

SPRG3 275 01000 10011 Supervisor (OEA) Both

SRR0 26 00000 11010 Supervisor (OEA) Both

SRR1 27 00000 11011 Supervisor (OEA) Both

TBL 3 284 01000 11100 Supervisor (OEA) mtspr

TBU 3 285 01000 11101 Supervisor (OEA) mtspr

1 Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding. For mtspr and
mfspr instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order 5 bits appearing
in bits 16–20 of the instruction and the low-order 5 bits in bits 11–15.

2 Optional register defined by the PowerPC architecture
3 The TB registers are referred to as TBRs rather than SPRs and can be written to using the mtspr instruction in supervisor mode

and the TBR numbers here. The TB registers can be read in user mode using the mftb instruction and specifying TBR 268 for
TBL and TBR 269 for TBU.

Table 2-71. Supervisor-level PowerPC SPR Encodings (continued)

Register Name
SPR

 1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

2-98 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

Table 2-72. Supervisor-level SPR Encodings
for MPC7451-Defined Registers

Register
Name

SPR 1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

BAMR 951 11101 10111 Supervisor Both

DBAT4L 2 569 10001 11001 Supervisor
(OEA)

Both

DBAT4U 2 568 10001 11000 Supervisor
(OEA)

Both

DBAT5L 2 571 10001 11011 Supervisor
(OEA)

Both

DBAT5U 2 570 10001 11010 Supervisor
(OEA)

Both

DBAT6L 2 573 10001 11101 Supervisor
(OEA)

Both

DBAT6U 2 572 10001 11100 Supervisor
(OEA)

Both

DBAT7L 2 575 10001 11111 Supervisor
(OEA)

Both

DBAT7U 2 574 10001 11110 Supervisor
(OEA)

Both

HID0 1008 11111 10000 Supervisor Both

HID1 1009 11111 10001 Supervisor Both

IABR 1010 11111 10010 Supervisor Both

IBAT4L 2 561 10001 10001 Supervisor
(OEA)

Both

IBAT4U 2 560 10001 10000 Supervisor
(OEA)

Both

IBAT5L 2 563 10001 10011 Supervisor
(OEA)

Both

IBAT5U 2 562 10001 10010 Supervisor
(OEA)

Both

IBAT6L 2 565 10001 10101 Supervisor
(OEA)

Both

IBAT6U 2 564 10001 10100 Supervisor
(OEA)

Both

IBAT7L 2 567 10001 10111 Supervisor
(OEA)

Both

IBAT7U 2 566 10001 10110 Supervisor
(OEA)

Both

ICTC 1019 11111 11011 Supervisor Both

ICTRL 1011 11111 10011 Supervisor Both

MOTOROLA Chapter 2. Programming Model 2-99

Instruction Set Summary

2.3.6.3 Memory Control Instructions—OEA

Memory control instructions include the following:

• Cache management instructions (supervisor-level and user-level)
• Translation lookaside buffer management instructions

L2CR 1017 11111 11001 Supervisor Both

L3CR 3 1018 11111 11010 Supervisor Both

L3ITCR0 3 984 11111 11010 Supervisor Both

L3ITCR1 4 1001 11111 11010 Supervisor Both

L3ITCR2 4 1002 11111 11010 Supervisor Both

L3ITCR3 4 1003 11111 11010 Supervisor Both

L3OHCR 4 1000 11111 11010 Supervisor Both

L3PM 3 983 11110 10111 Supervisor Both

LDSTCR 1016 11111 11000 Supervisor Both

MMCR2 944 11101 10000 Supervisor Both

MSSCR0 1014 11111 10110 Supervisor Both

MSSSR0 1015 11111 10111 Supervisor Both

PTEHI 981 11110 10101 Supervisor Both

PTELO 982 11110 10110 Supervisor Both

SPRG4 2 276 01000 10100 Supervisor
(OEA)

Both

SPRG5 2 277 01000 10101 Supervisor
(OEA)

Both

SPRG6 2 278 01000 100110 Supervisor
(OEA)

Both

SPRG7 2 279 01000 10111 Supervisor
(OEA)

Both

TLBMISS 980 11110 10100 Supervisor Both

1 Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding.
For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as a 10-bit
binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in the instruction,
with the high-order 5 bits appearing in bits 16–20 of the instruction and the low-order 5 bits in bits 11–15.

2 MPC7445-, MPC7447-, MPC7455-, and MPC7457-specific only, register may not be supported on other processors
that implement the PowerPC architecture

3 MPC7451-, MPC7455-, MPC7457-specific register, not supported on the MPC7441, MPC7445, and MPC7447
4 MPC7457-specific register, not supported on the MPC7441, MPC7445, MPC7447, MPC7451,and MPC7455

Table 2-72. Supervisor-level SPR Encodings
for MPC7451-Defined Registers (continued)

Register
Name

SPR 1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

2-100 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

This section describes supervisor-level memory control instructions. Section 2.3.5.3,
“Memory Control Instructions—VEA,” describes user-level memory control instructions.

2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)

Table 2-73 lists the only supervisor-level cache management instruction.

See Section 2.3.5.3.1, “User-Level Cache Instructions—VEA,” for cache instructions that
provide user-level programs the ability to manage the on-chip caches. If the effective
address references a direct-store segment, the instruction is treated as a no-op.

2.3.6.3.2 Translation Lookaside Buffer Management Instructions—OEA

The address translation mechanism is defined in terms of the segment descriptors and page
table entries (PTEs) that processors use to locate the logical-to-physical address mapping
for a particular access. These segment descriptors and PTEs reside in on-chip segment
registers and page tables in memory, respectively.

Implementation Note—The MPC7451 provides two implementation-specific instructions
(tlbld and tlbli) that are used by software table search operations following TLB misses to
load TLB entries on-chip when HID0[STEN] = 1.

For more information on tlbld and tlbli refer to Section 2.3.8, “Implementation-Specific
Instructions.”

See Chapter 7, “Memory Management,” for more information about TLB operations.
Table 2-74 summarizes the operation of the TLB instructions in the MPC7451. Note that
the broadcast of tlbie and tlbsync instructions is enabled by the setting of HID1[SYNCBE].

Table 2-73. Supervisor-Level Cache Management Instruction

Name Mnemonic Syntax Implementation Notes

Data Cache
Block
Invalidate

dcbi rA,rB The dcbi instruction is executed identically to the dcbf instruction except that it
is privileged (supervisor-only). See Section 2.3.5.3.1, “User-Level Cache
Instructions—VEA.”

Table 2-74. Translation Lookaside Buffer Management Instruction

Name Mnemonic Syntax Implementation Notes

TLB Invalidate
Entry

tlbie rB Invalidates both ways in both instruction and data TLB entries at the
index provided by EA[14–19]. It executes regardless of the MSR[DR]
and MSR[IR] settings. To invalidate all entries in both TLBs, the
programmer should issue 64 tlbie instructions that each successively
increment this field.

Load Data TLB
Entry

tlbld rB Load Data TLB Entry
Loads fields from the PTEHI and PTELO and the EA in rB to the way
defined in rB[31].

MOTOROLA Chapter 2. Programming Model 2-101

Instruction Set Summary

Implementation Note—The tlbia instruction is optional for an implementation if its
effects can be achieved through some other mechanism. Therefore, it is not implemented
on the MPC7451. As described above, tlbie can be used to invalidate a particular index of
the TLB based on EA[14–19]—a sequence of 64 tlbie instructions followed by a tlbsync
instruction invalidates all the TLB structures (for EA[14–19] = 0, 1, 2, . . . , 63). Attempting
to execute tlbia causes an illegal instruction program exception.

The presence and exact semantics of the TLB management instructions are
implementation-dependent. To minimize compatibility problems, system software should
incorporate uses of these instructions into subroutines.

2.3.7 Recommended Simplified Mnemonics

The description of each instruction includes the mnemonic and a formatted list of operands.
PowerPC-architecture-compliant assemblers support the mnemonics and operand lists. To
simplify assembly language programming, a set of simplified mnemonics and symbols is
provided for some of the most frequently-used instructions; refer to Appendix F,
“Simplified Mnemonics,” in the The Programming Environments Manual for a complete
list. Programs written to be portable across the various assemblers for the PowerPC
architecture should not assume the existence of mnemonics not described in this document.

2.3.8 Implementation-Specific Instructions

This section provides the details for the two MPC7451 implementation-specific
instructions—tlbld and tlbli.

Load Instruction
TLB Entry

tlbli rB Load Instruction TLB Entry
Loads fields from the PTEHI and PTELO and the EA in rB to the way
defined in rB[31].

TLB Synchronize tlbsync — TLBSYNC is broadcast.

Table 2-74. Translation Lookaside Buffer Management Instruction

Name Mnemonic Syntax Implementation Notes

2-102 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Summary

tlbld tlbld
Load Data TLB Entry Integer Unit

tlbld rB

EA ← (rB)
TLB entry created from PTEHI and PTELO
DTLB entry selected by EA[14–19] and rB[31] ← created TLB entry

The EA is the contents of rB. The tlbld instruction loads the contents of the PTEHI special
purpose register and PTELO special purpose register into the selected data TLB entry. The
set of the data TLB to be loaded is determined by EA[14–19]. The way to be loaded is
determined by rB[31]. EA[10–13] are stored in the tag portion of the TLB and are used to
match a new EA when a new EA is being translated.

The tlbld instruction should only be executed when address translation is disabled
(MSR[IR] = 0 and MSR[DR] = 0).

Note that it is possible to execute the tlbld instruction when address translation is enabled;
however, extreme caution should be used in doing so. If data address translation is enabled
(MSR[DR] = 1), tlbld must be preceded by a sync instruction and succeeded by a context
synchronizing instruction.

Note that if extended addressing is not enabled (HID0[XAEN] = 0), then PTELO[20–22]
and PTELO[29] should be cleared (zero) by software when executing a tlbld instruction.

This is a supervisor-level instruction; it is also a MPC7451-specific instruction, and not part
of the PowerPC instruction set.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 B 978 0

MOTOROLA Chapter 2. Programming Model 2-103

Instruction Set Summary

tlbli tlbli
Load Instruction TLB Entry Integer Unit

tlbli rB

EA ← (rB)
TLB entry created from PTEHI and PTELO
ITLB entry selected by EA[14–19] and rB[31] ← created TLB entry

The EA is the contents of rB. The tlbli instruction loads an instruction TLB entry. The tlbli
instruction loads the contents of the PTEHI special purpose register and PTELO special
purpose register into a selected instruction TLB entry. The set of the instruction TLB to be
loaded is determined by EA[14–19]. The way to be loaded is determined by rB[31].
EA[10–13] are stored in the tag portion of the TLB and are used to match a new EA when
a new EA is being translated.

The tlbli instruction should only be executed when address translation is disabled
(MSR[IR] = 0 and MSR[DR] = 0).

Note that it is possible to execute the tlbli instruction when address translation is enabled;
however, extreme caution should be used in doing so. If instruction address translation is
enabled (MSR[IR] = 1), tlbli must be followed by a context synchronizing instruction such
as isync or rfi.

Note that if extended addressing is not enabled (HID0[XAEN]=0) then PTELO[20–22] and
PTELO[29] should be cleared (set to zero) by software when executing a tlbli instruction.

Note also that care should be taken to avoid modification of the instruction TLB entries that
translate current instruction prefetch addresses.

This is a supervisor-level instruction; it is also a MPC7451-specific instruction, and not part
of the PowerPC instruction set.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 B 1010 0

2-104 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec Instructions

2.4 AltiVec Instructions
The following sections provide a general summary of the instructions and addressing
modes defined by the AltiVec Instruction Set Architecture (ISA). For specific details on the
AltiVec instructions see the AltiVec Technology Programming Environments Manual and
Chapter 7, “AltiVec Technology Implementation.” AltiVec instructions belong primarily to
the UISA, unless otherwise noted. AltiVec instructions are divided into the following
categories:

• Vector integer arithmetic instructions—These include arithmetic, logical, compare,
rotate and shift instructions, described in Section 2.3.4.1, “Integer Instructions.”

• Vector floating-point arithmetic instructions—These floating-point arithmetic
instructions and floating-point modes are described in Section 2.3.4.2,
“Floating-Point Instructions.”

• Vector load and store instructions—These load and store instructions for vector
registers are described in Section 2.5.3, “Vector Load and Store Instructions.”

• Vector permutation and formatting instructions—These include pack, unpack,
merge, splat, permute, select and shift instructions, and are described in
Section 2.5.5, “Vector Permutation and Formatting Instructions.”

• Processor control instructions—These instructions are used to read and write from
the AltiVec Status and Control Register, and are described in Section 2.3.4.6,
“Processor Control Instructions—UISA.”

• Memory control instructions—These instructions are used for managing caches
(user level and supervisor level), and are described in Section 2.6.1, “AltiVec Vector
Memory Control Instructions—VEA.”

This grouping of instructions does not necessarily indicate the execution unit that processes
a particular instruction or group of instructions within a processor implementation.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision operands. The AltiVec ISA uses instructions that
are four bytes long and word-aligned. It provides for byte, half-word, word, and quad-word
operand fetches and stores between memory and the vector registers (VRs).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The AltiVec ISA supports both big-endian and little-endian byte ordering. The default byte
and bit ordering is big-endian; see “Byte Ordering,” in Chapter 3, “Operand Conventions,”
of the AltiVec Technology Programming Environments Manual for more information.

MOTOROLA Chapter 2. Programming Model 2-105

AltiVec UISA Instructions

2.5 AltiVec UISA Instructions
This section describes the instructions defined in the AltiVec user instruction set
architecture (UISA).

2.5.1 Vector Integer Instructions

The following are categories for vector integer instructions:

• Vector integer arithmetic instructions

• Vector integer compare instructions

• Vector integer logical instructions

• Vector integer rotate and shift instructions

Integer instructions use the content of VRs as source operands and also place results into
VRs. Setting the Rc bit of a vector compare instruction causes the CR6 field of the
PowerPC condition register (CR) to be updated; refer to Section 2.5.1.2, “Vector Integer
Compare Instructions” for more details.

The AltiVec integer instructions treat source operands as signed integers unless the
instruction is explicitly identified as performing an unsigned operation. For example, both
the Vector Add Unsigned Word Modulo (vadduwm) and Vector Multiply Odd Unsigned
Byte (vmuloub) instructions interpret the operands as unsigned integers.

2.5.1.1 Vector Integer Arithmetic Instructions

Table 2-75 lists the integer arithmetic instructions for the processors that implement the
PowerPC architecture.

Table 2-75. Vector Integer Arithmetic Instructions

Name Mnemonic Syntax

Vector Add Unsigned Integer [b,h,w] Modulo1 vaddubm
vadduhm
vadduwm

vD,vA,vB

Vector Add Unsigned Integer [b,h,w] Saturate vaddubs
vadduhs
vadduws

vD,vA,vB

Vector Add Signed Integer [b.h.w] Saturate vaddsbs
vaddshs
vaddsws

vD,vA,vB

Vector Add and Write Carry-out Unsigned Word vaddcuw vD,vA,vB

Vector Subtract Unsigned Integer Modulo vsububm
vsubuhm
vsubuwm

vD,vA,vB

2-106 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec UISA Instructions

Vector Subtract Unsigned Integer Saturate vsububs
vsubuhs
vsubuws

vD,vA,vB

Vector Subtract Signed Integer Saturate vsubsbs
vsubshs
vsubsws

vD,vA,vB

Vector Subtract and Write Carry-out Unsigned Word vsubcuw vD,vA,vB

Vector Multiply Odd Unsigned Integer [b,h] Modulo vmuloub
vmulouh

vD,vA,vB

Vector Multiply Odd Signed Integer [b,h] Modulo vmulosb
vmulosh

vD,vA,vB

Vector Multiply Even Unsigned Integer [b,h] Modulo vmuleub
vmuleuh

vD,vA,vB

Vector Multiply Even Signed Integer [b,h] Modulo vmulesb
vmulesh

vD,vA,vB

Vector Multiply-High and Add Signed Half-Word Saturate vmhaddshs vD,vA,vB, vC

Vector Multiply-High Round and Add Signed Half-Word Saturate vmhraddshs vD,vA,vB,vC

Vector Multiply-Low and Add Unsigned Half-Word Modulo vmladduhm vD,vA,vB,vC

Vector Multiply-Sum Unsigned Integer [b,h] Modulo vmsumubm
vmsumuhm

vD,vA,vB,vC

Vector Multiply-Sum Signed Half-Word Saturate vmsumshs vD,vA,vB,vC

Vector Multiply-Sum Unsigned Half-Word Saturate vmsumuhs vD,vA,vB,vC

Vector Multiply-Sum Mixed Byte Modulo vmsummbm vD,vA,vB,vC

Vector Multiply-Sum Signed Half-Word Modulo vmsumshm vD,vA,vB,vC

Vector Sum Across Signed Word Saturate vsumsws vD,vA,vB

Vector Sum Across Partial (1/2) Signed Word Saturate vsum2sws vD,vA,vB

Vector Sum Across Partial (1/4) Unsigned Byte Saturate vsum4ubs vD,vA,vB

Vector Sum Across Partial (1/4) Signed Integer Saturate vsum4sbs
vsum4shs

vD,vA,vB

Vector Average Unsigned Integer vavgub
vavguh
vavguw

vD,vA,vB

Vector Average Signed Integer vavgsb
vavgsh
vavgsw

vD,vA,vB

Vector Maximum Unsigned Integer vmaxub
vmaxuh
vmaxuw

vD,vA,vB

Table 2-75. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax

MOTOROLA Chapter 2. Programming Model 2-107

AltiVec UISA Instructions

2.5.1.2 Vector Integer Compare Instructions

The vector integer compare instructions algebraically or logically compare the contents of
the elements in vector register vA with the contents of the elements in vB. Each compare
result vector is comprised of TRUE (0xFF, 0xFFFF, 0xFFFF_FFFF) or FALSE (0x00,
0x0000, 0x0000_0000) elements of the size specified by the compare source operand
element (byte, half word, or word). The result vector can be directed to any VR and can be
manipulated with any of the instructions as normal data (for example, combining condition
results).

Vector compares provide equal-to and greater-than predicates. Others are synthesized from
these by logically combining or inverting result vectors.

The integer compare instructions (shown in Table 2-77) can optionally set the CR6 field of
the PowerPC condition register. If Rc = 1 in the vector integer compare instruction, then
CR6 is set to reflect the result of the comparison, as follows in Table 2-76.

Table 2-77 summarizes the vector integer compare instructions.

Vector Maximum Signed Integer vmaxsb
vmaxsh
vmaxsw

vD,vA,vB

Vector Minimum Unsigned Integer vminub
vminuh
vminuw

vD,vA,vB

Vector Minimum Signed Integer vminsb
vminsh
vminsw

vD,vA,vB

Table 2-76. CR6 Field Bit Settings for Vector Integer Compare Instructions

CR Bit CR6 Bit Vector Compare

24 0 1 Relation is true for all element pairs (that is, vD is set to all ones)

25 1 0

26 2 1 Relation is false for all element pairs (that is, register vD is cleared)

27 3 0

Table 2-75. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax

2-108 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec UISA Instructions

2.5.1.3 Vector Integer Logical Instructions

The vector integer logical instructions shown in Table 2-78 perform bit-parallel operations
on the operands.

2.5.1.4 Vector Integer Rotate and Shift Instructions

The vector integer rotate instructions are summarized in Table 2-79.

The vector integer shift instructions are summarized in Table 2-80.

Table 2-77. Vector Integer Compare Instructions

Name Mnemonic Syntax

Vector Compare Greater than Unsigned Integer vcmpgtub[.]
vcmpgtuh[.]
vcmpgtuw[.]

vD,vA,vB

Vector Compare Greater than Signed Integer vcmpgtsb[.]
vcmpgtsh[.]
vcmpgtsw[.]

vD,vA,vB

Vector Compare Equal to Unsigned Integer vcmpequb[.]
vcmpequh[.]
vcmpequw[.]

vD,vA,vB

Table 2-78. Vector Integer Logical Instructions

Name Mnemonic Syntax

Vector Logical AND vand vD,vA,vB

Vector Logical OR vor vD,vA,vB

Vector Logical XOR vxor vD,vA,vB

Vector Logical AND with Complement vandc vD,vA,vB

Vector Logical NOR vnor vD,vA,vB

Table 2-79. Vector Integer Rotate Instructions

Name Mnemonic Syntax

Vector Rotate Left Integer vrlb
vrlh
vrlw

vD,vA,vB

MOTOROLA Chapter 2. Programming Model 2-109

AltiVec UISA Instructions

2.5.2 Vector Floating-Point Instructions

This section describes the vector floating-point instructions that include the following:

• Vector floating-point arithmetic instructions

• Vector floating-point rounding and conversion instructions

• Vector floating-point compare instructions

• Vector floating-point estimate instructions

The AltiVec floating-point data format complies with the ANSI/IEEE-754 standard as
defined for single precision. A quantity in this format represents a signed normalized
number, a signed denormalized number, a signed zero, a signed infinity, a quiet not a
number (QNaN), or a signaling NaN (SNaN). Operations conform to the description in the
section “AltiVec Floating-Point Instructions-UISA,” in Chapter 3, “Operand Conventions,”
of the AltiVec Technology Programming Environments Manual.

The AltiVec ISA does not report IEEE exceptions but rather produces default results as
specified by the Java/IEEE/C9X Standard; for further details on exceptions see
“Floating-Point Exceptions,” in Chapter 3, “Operand Conventions,” of the AltiVec
Technology Programming Environments Manual.

2.5.2.1 Vector Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are summarized in Table 2-81.

Table 2-80. Vector Integer Shift Instructions

Name Mnemonic Syntax

Vector Shift Left Integer vslb
vslh
vslw

vD,vA,vB

Vector Shift Right Integer vsrb
vsrh
vsrw

vD,vA,vB

Vector Shift Right Algebraic
Integer

vsrab
vsrah
vsraw

vD,vA,vB

Table 2-81. Vector Floating-Point Arithmetic Instructions

Name Mnemonic Syntax

Vector Add Floating-Point vaddfp vD,vA,vB

Vector Subtract Floating-Point vsubfp vD,vA,vB

Vector Maximum Floating-Point vmaxfp vD,vA,vB

Vector Minimum Floating-Point vminfp vD,vA,vB

2-110 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec UISA Instructions

2.5.2.2 Vector Floating-Point Multiply-Add Instructions

Vector multiply-add instructions are critically important to performance because a multiply
followed by a data dependent addition is the most common idiom in DSP algorithms. In
most implementations, floating-point multiply-add instructions perform with the same
latency as either a multiply or add alone, thus doubling performance in comparing to the
otherwise serial multiply and adds.

AltiVec floating-point multiply-add instructions fuse (a multiply-add fuse implies that the
full product participates in the add operation without rounding, only the final result rounds).
This not only simplifies the implementation and reduces latency (by eliminating the
intermediate rounding) but also increases the accuracy compared to separate multiply and
adds.

The floating-point multiply-add instructions are summarized in Table 2-82.

2.5.2.3 Vector Floating-Point Rounding and Conversion Instructions

All AltiVec floating-point arithmetic instructions use the IEEE default rounding mode
round-to-nearest. The AltiVec ISA does not provide the IEEE directed rounding modes.

The AltiVec ISA provides separate instructions for converting floating-point numbers to
integral floating-point values for all IEEE rounding modes as follows:

• Round-to-nearest (vrfin) (round)

• Round-toward-zero (vrfiz) (truncate)

• Round-toward-minus-infinity (vrfim) (floor)

• Round-toward-positive-infinity (vrfip) (ceiling)

Floating-point conversions to integers (vctuxs, vctsxs) use round-toward-zero (truncate)
rounding. The floating-point rounding instructions are shown in Table 2-83.

Table 2-82. Vector Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax

Vector Multiply-Add Floating-Point vmaddfp vD,vA,vC,vB

Vector Negative Multiply-Subtract Floating-Point vnmsubfp vD,vA,vC,vB

Table 2-83. Vector Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax

Vector Round to Floating-Point Integer Nearest vrfin vD,vB

Vector Round to Floating-Point Integer toward Zero vrfiz vD,vB

Vector Round to Floating-Point Integer toward Positive Infinity vrfip vD,vB

Vector Round to Floating-Point Integer toward Minus Infinity vrfim vD,vB

Vector Convert from Unsigned Fixed-Point Word vcfux vD,vB,UIMM

MOTOROLA Chapter 2. Programming Model 2-111

AltiVec UISA Instructions

2.5.2.4 Vector Floating-Point Compare Instructions

The floating-point compare instructions are summarized in Table 2-84.

2.5.2.5 Vector Floating-Point Estimate Instructions

The floating-point estimate instructions are summarized in Table 2-85.

2.5.3 Vector Load and Store Instructions

Only very basic load and store operations are provided in the AltiVec ISA. This keeps the
circuitry in the memory path fast so the latency of memory operations is minimized.
Instead, a powerful set of field manipulation instructions are provided to manipulate data
into the desired alignment and arrangement after the data has been brought into the VRs.

Load vector indexed (lvx, lvxl) and store vector indexed (stvx, stvxl) instructions transfer
an aligned quad-word vector between memory and VRs. Load vector element indexed
(lvebx, lvehx, lvewx) and store vector element indexed instructions (stvebx, stvehx,
stvewx) transfer byte, half-word, and word scalar elements between memory and VRs.

Vector Convert from Signed Fixed-Point Word vcfsx vD,vB,UIMM

Vector Convert to Unsigned Fixed-Point Word Saturate vctuxs vD,vB,UIMM

Vector Convert to Signed Fixed-Point Word Saturate vctsxs vD,vB,UIMM

Table 2-84. Vector Floating-Point Compare Instructions

Name Mnemonic Syntax

Vector Compare Greater Than Floating-Point [Record] vcmpgtfp[.] vD,vA,vB

Vector Compare Equal to Floating-Point [Record] vcmpeqfp[.] vD,vA,vB

Vector Compare Greater Than or Equal to Floating-Point [Record] vcmpgeqfp[.] vD,vA,vB

Vector Compare Bounds Floating-Point [Record] vcmpbfp[.] vD,vA,vB

Table 2-85. Vector Floating-Point Estimate Instructions

Name Mnemonic Syntax

Vector Reciprocal Estimate Floating-Point vrefp vD,vB

Vector Reciprocal Square Root Estimate Floating-Point vrsqrtefp vD,vB

Vector Log2 Estimate Floating-Point vlogefp vD,vB

Vector 2 Raised to the Exponent Estimate Floating-Point vexptefp vD,vB

Table 2-83. Vector Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax

2-112 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec UISA Instructions

2.5.3.1 Vector Load Instructions

For vector load instructions, the byte, half word, word, or quad word addressed by the EA
(effective address) is loaded into vD.

The default byte and bit ordering is big-endian as in the PowerPC architecture; see “Byte
Ordering,” in Chapter 3, “Operand Conventions,” of the AltiVec Technology Programming
Environments Manual for information about little-endian byte ordering.

Table 2-86 summarizes the vector load instructions.

2.5.3.2 Vector Load Instructions Supporting Alignment

The lvsl and lvsr instructions can be used to create the permute control vector to be used
by a subsequent vperm instruction. Let X and Y be the contents of vA and vB specified by
vperm. The control vector created by lvsl causes the vperm to select the high-order 16
bytes of the result of shifting the 32-byte value X || Y left by sh bytes (sh = the value in
EA[60–63]). The control vector created by lvsr causes the vperm to select the low-order
16 bytes of the result of shifting X || Y right by sh bytes.

Table 2-87 summarizes the vector alignment instructions.

2.5.3.3 Vector Store Instructions

For vector store instructions, the contents of the VR used as a source (vS) are stored into
the byte, half word, word or quad word in memory addressed by the effective address (EA).
Table 2-88 provides a summary of the vector store instructions.

Table 2-86. Vector Integer Load Instructions

Name Mnemonic Syntax

Load Vector Element Integer Indexed lvebx
lvehx
lvewx

vD,rA,rB

Load Vector Element Indexed lvx vD,rA,rB

Load Vector Element Indexed LRU 1

1 On the MPC7451, lvxl and stvxl are interpreted to be transient. See Section 7.1.2.3, “Data Stream
Touch Instructions.”

lvxl vD,rA,rB

Table 2-87. Vector Load Instructions Supporting Alignment

Name Mnemonic Syntax

Load Vector for Shift Left lvsl vD,rA,rB

Load Vector for Shift Right lvsr vD,rA,rB

MOTOROLA Chapter 2. Programming Model 2-113

AltiVec UISA Instructions

2.5.4 Control Flow

AltiVec instructions can be freely intermixed with existing PowerPC instructions to form a
complete program. AltiVec instructions provide a vector compare and select mechanism to
implement conditional execution as the preferred mechanism to control data flow in
AltiVec programs. In addition, AltiVec vector compare instructions can update the
condition register thus providing the communication from AltiVec execution units to
PowerPC branch instructions necessary to modify program flow based on vector data.

2.5.5 Vector Permutation and Formatting Instructions

Vector pack, unpack, merge, splat, permute, and select can be used to accelerate various
vector math operations and vector formatting. Details of these instructions follow.

2.5.5.1 Vector Pack Instructions

Half-word vector pack instructions (vpkuhum, vpkuhus, vpkshus, vpkshss) truncate the
sixteen half words from two concatenated source operands producing a single result of
sixteen bytes (quad word) using either modulo (28), 8-bit signed-saturation, or 8-bit
unsigned-saturation to perform the truncation. Similarly, word vector pack instructions
(vpkuwum, vpkuwus, vpkswus, vpksws) truncate the eight words from two concatenated
source operands producing a single result of eight half words using modulo (216), 16-bit
signed-saturation, or 16-bit unsigned-saturation to perform the truncation.

Table 2-89 describes the vector pack instructions.

Table 2-88. Vector Integer Store Instructions

Name Mnemonic Syntax

Store Vector Element Integer Indexed svetbx
svethx
svetwx

vS,rA,rB

Store Vector Element Indexed stvx vS,rA,rB

Store Vector Element Indexed LRU 1

1 On the MPC7451, lvxl, stvxl are interpreted to be transient. See Section 7.1.2.3, “Data Stream Touch
Instructions.”

stvxl vS,rA,rB

Table 2-89. Vector Pack Instructions

Name Mnemonic Syntax

Vector Pack Unsigned Integer [h,w]
Unsigned Modulo

vpkuhum
vpkuwum

vD, vA, vB

Vector Pack Unsigned Integer [h,w]
Unsigned Saturate

vpkuhus
vpkuwus

vD, vA, vB

Vector Pack Signed Integer [h,w]
Unsigned Saturate

vpkshus
vpkswus

vD, vA, vB

2-114 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec UISA Instructions

2.5.5.2 Vector Unpack Instructions

Byte vector unpack instructions unpack the 8 low bytes (or 8 high bytes) of one source
operand into 8 half words using sign extension to fill the most-significant bytes (MSBs).
Half word vector unpack instructions unpack the 4 low half words (or 4 high half words)
of one source operand into 4 words using sign extension to fill the MSBs.

Two special purpose forms of vector unpack are provided—the Vector Unpack Low Pixel
(vupklpx) and the Vector Unpack High Pixel (vupkhpx) instructions for 1/5/5/5 αRGB
pixels. The 1/5/5/5 pixel vector unpack, unpacks the four low 1/5/5/5 pixels (or four 1/5/5/5
high pixels) into four 32-bit (8/8/8/8) pixels. The 1-bit α element in each pixel is sign
extended to 8 bits, and the 5-bit R, G, and B elements are each zero extended to 8 bits.

Table 2-90 describes the unpack instructions.

2.5.5.3 Vector Merge Instructions

Byte vector merge instructions interleave the 8 low bytes or 8 high bytes from two source
operands producing a result of 16 bytes. Similarly, half-word vector merge instructions
interleave the 4 low half words (or 4 high half words) of two source operands producing a
result of 8 half words, and word vector merge instructions interleave the 2 low words or 2
high words from two source operands producing a result of 4 words. The vector merge
instruction has many uses. For example, it can be used to efficiently transpose SIMD
vectors. Table 2-91 describes the merge instructions.

Vector Pack Signed Integer [h,w] signed
Saturate

vpkshss
vpkswss

vD, vA, vB

Vector Pack Pixel vpkpx vD, vA, vB

Table 2-90. Vector Unpack Instructions

Name Mnemonic Syntax

Vector Unpack High Signed Integer vupkhsb
vupkhsh

vD, vB

Vector Unpack High Pixel vupkhpx vD, vB

Vector Unpack Low Signed Integer vupklsb
vupklsh

vD, vB

Vector Unpack Low Pixel vupklpx vD, vB

Table 2-89. Vector Pack Instructions (continued)

Name Mnemonic Syntax

MOTOROLA Chapter 2. Programming Model 2-115

AltiVec UISA Instructions

2.5.5.4 Vector Splat Instructions

When a program needs to perform arithmetic vector operations, the vector splat instructions
can be used in preparation for performing arithmetic for which one source vector is to
consist of elements that all have the same value. Vector splat instructions can be used to
move data where it is required. For example to multiply all elements of a vector register
(VR) by a constant, the vector splat instructions can be used to splat the scalar into the VR.
Likewise, when storing a scalar into an arbitrary memory location, it must be splatted into
a VR, and that VR must be specified as the source of the store. This guarantees that the data
appears in all possible positions of that scalar size for the store.

2.5.5.5 Vector Permute Instructions

Permute instructions allow any byte in any two source VRs to be directed to any byte in the
destination vector. The fields in a third source operand specify from which field in the
source operands the corresponding destination field is taken. The Vector Permute (vperm)
instruction is a very powerful one that provides many useful functions. For example, it
provides a way to perform table-lookups and data alignment operations. An example of
how to use the vperm instruction in aligning data is described in “Quad-Word Data
Alignment” in Chapter 3, “Operand Conventions,” of the AltiVec Technology Programming
Environments Manual. Table 2-89 describes the vector permute instruction.

Table 2-91. Vector Merge Instructions

Name Mnemonic Syntax

Vector Merge High Integer vmrghb
vmrghh
vmrghw

vD, vA, vB

Vector Merge Low Integer vmrglb
vmrglh
vmrglw

vD, vA, vB

Table 2-92. Vector Splat Instructions

Name Mnemonic Syntax

Vector Splat Integer vspltb
vsplth
vspltw

vD, vB, UIMM

Vector Splat Immediate Signed Integer vspltisb
vspltish
vspltisw

vD, SIMM

Table 2-93. Vector Permute Instruction

Name Mnemonic Syntax

Vector Permute vperm vD, vA,vB,vC

2-116 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec UISA Instructions

2.5.5.6 Vector Select Instruction

Data flow in the vector unit can be controlled without branching by using a vector compare
and the Vector Select (vsel) instructions. In this use, the compare result vector is used
directly as a mask operand to vector select instructions.The vsel instruction selects one field
from one or the other of two source operands under control of its mask operand. Use of the
TRUE/FALSE compare result vector with select in this manner produces a two instruction
equivalent of conditional execution on a per-field basis. Table 2-94 describes the vsel
instruction.

2.5.5.7 Vector Shift Instructions

The vector shift instructions shift the contents of one or of two VRs left or right by a
specified number of bytes (vslo, vsro, vsldoi) or bits (vsl, vsr). Depending on the
instruction, this shift count is specified either by low-order bits of a VR or by an immediate
field in the instruction. In the former case the low-order 7 bits of the shift count register give
the shift count in bits (0 ≤ count ≤ 127). Of these 7 bits, the high-order 4 bits give the
number of complete bytes by which to shift and are used by vslo and vsro; the low-order 3
bits give the number of remaining bits by which to shift and are used by vsl and vsr.

Table 2-95 describes the vector shift instructions.

2.5.5.8 Vector Status and Control Register Instructions

Table 2-96 summarizes the instructions for reading from or writing to the AltiVec status
and control register (VSCR), described in Section 7.1.1.5, “Vector Save/Restore Register
(VRSAVE).”

Table 2-94. Vector Select Instruction

Name Mnemonic Syntax

Vector Select vsel vD,vA,vB,vC

Table 2-95. Vector Shift Instructions

Name Mnemonic Syntax

Vector Shift Left vsl vD,vA,vB

Vector Shift Right vsr vD,vA,vB

Vector Shift Left Double by Octet Immediate vsldoi vD,vA,vB,SH

Vector Shift Left by Octet vslo vD,vA,vB

Vector Shift Right by Octet vsro vD,vA,vB

MOTOROLA Chapter 2. Programming Model 2-117

AltiVec VEA Instructions

2.6 AltiVec VEA Instructions
The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache-control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA. For further details, see Chapter 4, “Addressing Mode and Instruction
Set Summary,” in The Programming Environments Manual.

This section describes the additional instructions that are provided by the AltiVec ISA for
the VEA.

2.6.1 AltiVec Vector Memory Control Instructions—VEA

Memory control instructions include the following types:

• Cache management instructions (user-level and supervisor-level)

• Translation lookaside buffer (TLB) management instructions

This section briefly summarizes the user-level cache management instructions defined by
the AltiVec VEA. See Chapter 3, “L1, L2, and L3 Cache Operation” for more information
about supervisor-level cache, segment register manipulation, and TLB management
instructions.

The AltiVec architecture specifies the data stream touch instructions dst(t), dstst(t), and it
specifies two data stream stop (dss(all)) instructions. The MPC7451 implements all of
them. The term dstx used below refers to all of the stream touch instructions.

The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches, see Chapter 3, “L1, L2, and L3 Cache Operation” for more
information about cache topics.

Bandwidth between the processor and memory is managed explicitly by the programmer
through the use of cache management instructions. These instructions provide a way for
software to communicate to the cache hardware how it should prefetch and prioritize the
writeback of data. The principal instruction for this purpose is a software directed cache
prefetch instruction called data stream touch (dst). Other related instructions are provided
for complete control of the software directed cache prefetch mechanism.

Table 2-96. Move to/from VSCR Register Instructions

Name Mnemonic Syntax

Move to AltiVec Status and Control Register mtvscr vB

Move from AltiVec Status and Control Register mfvscr vB

2-118 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec VEA Instructions

Table 2-97 summarizes the directed prefetch cache instructions defined by the AltiVec
VEA. Note that these instructions are accessible to user-level programs.

For detailed information for how to use these instruction, see Section 7.1.2.3, “Data Stream Touch

Instructions.”

2.6.2 AltiVec Instructions with Specific Implementations for
the MPC7451

The AltiVec architecture specifies Load Vector Indexed LRU (lvxl) and Store Vector
Indexed LRU (stvxl) instructions. The architecture suggests that these instructions differ
from regular AltiVec load and store instructions in that they leave cache entries in a least
recently used (LRU) state instead of a most recently used (MRU) state. This supports
efficient processing of data which is known to have little reuse and poor caching
characteristics. The MPC7451 implements these instructions as suggested. They follow all
the cache allocation and replacement policies described in Section 3.5, “L1 Cache
Operation,” but they leave their addressed cache entries in the LRU state. In addition, all
LRU instructions are also interpreted to be transient and are also treated as described in
Section 7.1.2.2, “Transient Instructions and Caches.”

Table 2-97. AltiVec User-Level Cache Instructions

Name Mnemonic Syntax Implementation Notes

Data Stream Touch (non-transient) dst rA,rB,STRM —

Data Stream Touch Transient dstt rA,rB,STRM Used for last access

Data Stream Touch for Store dstst rA,rB,STRM Not recommended for use in MPC7451

Data Stream Touch for Store Transient dststt rA,rB,STRM Not recommended for use in MPC7451

Data Stream Stop (one stream) dss STRM —

Data Stream Stop All dssall STRM —

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-1

Chapter 3
L1, L2, and L3 Cache Operation
The MPC7451 microprocessor contains separate 32-Kbyte, eight-way set-associative
level 1 (L1) instruction and data caches to allow the execution units and registers rapid
access to instructions and data. In addition, the MPC7451 microprocessor features an
integrated 256-Kbyte level 2 (L2) cache (512-Kbyte L2 for MPC7447 and MPC7457) and
the address tags and status bits for a level 3 (L3) cache that supports either 1 or 2 Mbytes
of cache. Note that the L3 cache is not supported by the MPC7441, MPC7445, and
MPC7447.

This chapter describes the organization of the on-chip L1 instruction and data caches, cache
coherency protocols, cache control instructions, various cache operations, the organization
and features of the L2 cache, and a description of the L3 cache controller. It describes the
interaction between the caches, the load/store unit (LSU), the instruction unit, and the
memory subsystem. This chapter also describes the replacement algorithms used for each
of the caches and the L3 private memory feature of the MPC7451.

Note that in this chapter, the term ‘multiprocessor’ is used in the context of maintaining
cache coherency. These multiprocessor devices could be actual processors or other devices
that can access system memory, maintain their own caches, and function as bus masters
requiring cache coherency.

AltiVec Technology and the Cache Implementation

The implementation of AltiVec technology in the MPC7451 has implications that affect the
cache model. They are as follows:

• AltiVec transient instructions (dstt, dststt, lvxl, and stvxl), described in
Section 7.1.2.2, “Transient Instructions and Caches”

• AltiVec LRU instructions (lvxl, stvxl), described in Section 3.5.6.3, “AltiVec LRU
Instruction Support”

• External system bus transactions caused by caching-inhibited AltiVec loads and
stores or write-through AltiVec stores, as described in Section 3.8.1, “MPC7451
Caches and System Bus Transactions”

3-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Overview

3.1 Overview
The MPC7451 L1 cache implementation has the following characteristics:

• Two separate 32-Kbyte instruction and data caches (Harvard architecture).

• Instruction and data caches are eight-way set-associative.

• Instruction and data caches have 32-byte cache blocks. A cache block is the block
of memory that a coherency state describes—corresponds to a cache line for the L1
data cache.

• Cache directories are physically addressed. The physical (real) address tag is stored
in the cache directory.

• The caches implement a pseudo least-recently-used (PLRU) replacement algorithm
within each way.

• Cache write-back or write-through operation programmable on a per-page or
per-block basis

• Instruction cache can provide four instructions per clock cycle; data cache can
provide four words per clock cycle

— Two-cycle latency and single-cycle throughput for instruction or data cache
accesses.

• Caches can be disabled in software

• Caches can be locked in software

• Supports a four-state modified/exclusive/shared/invalid (MESI) coherency
protocol.

— A single coherency status bit for each instruction cache block allows encoding
for the following two possible states:

– Invalid (INV)

– Valid (VAL)

— Two status bits (MESI[0–1]) for each data cache block allow encoding for
coherency, as follows:

– 00 = invalid (I)

– 01 = shared (S)

– 10 = exclusive (E)

– 11 = modified (M)

• Separate copy of data cache tags for efficient snooping

• Both the L1 caches support parity generation and checking (enabled through bits in
the ICTRL register) as follows:

— Instruction cache—one parity bit per instruction

— Data cache—one parity bit per byte of data

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-3

Overview

• No snooping of instruction cache except for icbi instruction

• The caches implement a pseudo least-recently-used (PLRU) replacement algorithm
within each way.

• Data cache supports AltiVec LRU and transient instructions, as described in
Section 1.3.2.2, “AltiVec Instruction Set.”

• Critical double- and/or quad-word forwarding is performed as needed. Critical
quad-word forwarding is used for AltiVec loads and instruction fetches. Other
accesses use critical double-word forwarding.

• Each cache can be invalidated or locked by setting the appropriate bits in the
hardware implementation-dependent register 0 (HID0), a special-purpose register
(SPR) that is implementation-specific.

The MPC7451 supports a fully-coherent 64-Gbyte physical memory address space (when
extended addressing is enabled with HID0[XAEN] = 1). Bus snooping is used to ensure the
coherency of global memory with respect to the data cache.

On an L1 data cache miss, cache blocks are filled in one 32-byte beat from the L2 cache,
L3 cache, or the system bus, and the critical data is forwarded immediately to the requesting
execution unit (and register file). Load misses are processed as described in Section 3.1.2.4,
“LSU Load Miss, Castout, and Push Queues,” providing for hits under misses.

The instruction cache is also filled in one 32-byte beat from the L2 cache, L3 cache, or the
system bus, and the critical quad word is simultaneously forwarded to the instruction
queue, thus minimizing stalls due to cache fill latency. Note that if the instruction fetch is
from cache-inhibited memory and the bus is operating in 60x bus mode, the bus access is
still a 32-byte transaction, even though only the required 16 bytes are transmitted to the
instruction queue. However, in MPX bus mode, a cache-inhibited instruction fetch
performs a 16-byte transaction on the bus. The instruction cache is also not blocked to
internal accesses while a cancelled instruction cache miss is outstanding, providing for hits
under misses.

The instruction cache provides a 128-bit interface to the instruction unit, so up to four
instructions can be made available to the instruction unit in a single clock cycle on an L1
instruction cache hit. The instruction unit accesses the instruction cache frequently in order
to sustain the high throughput provided by the twelve-entry instruction queue.

Additionally, the on-chip L2 cache has the following features:

• Integrated 256-Kbyte, eight-way set-associative unified instruction and data cache
for the MPC7451 (512-Kbyte for the MPC7447 and MPC7457)

• Maintains instructions, data, or both instructions and data (selectable through
L2CR).

• Fully pipelined to provide 32 bytes per clock cycle to the L1 caches

• Total latency of nine processor cycles for L1 data cache miss that hits in the L2.

3-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Overview

• Uses one of two random replacement algorithms (selectable through L2CR).

• Cache write-back or write-through operation programmable on a per-page or
per-block basis

• Organized as 32 bytes/block and two blocks (sectors) /line (a cache block is the
block of memory that a coherency state describes).

• Supports parity generation and checking for both tags and data (enabled through
L2CR).

• Two status bits (MESI[0–1]) for each L2 cache block allow encoding for coherency,
as follows:

— 00 = invalid (I)

— 01 = shared (S)

— 10 = exclusive (E)

— 11 = modified (M)

• Prefetching of the second (unrequired) block through up to three L2 prefetch engines
enabled through MSSCR0.

Finally, the L3 cache controller on the MPC7451 has the following features:

• Provides critical double-word forwarding to the requesting unit

• On-chip tags support 1Mbyte or 2 Mbytes of external SRAM that is 8-way
set-associative

• Maintains instructions, data, or both instructions and data (selectable through
L3CR).

• Cache write-back or write-through operation programmable on a per-page or
per-block basis

• Organized as 64 bytes/line configured as two blocks (sectors) with separate status
bits per line for 1-Mbyte configuration.

• Organized as 128 bytes/line configured as four blocks (sectors) with separate status
bits per line for 2-Mbyte configuration.

• 1 Mbyte or 2 Mbytes of the L3 SRAM can be designated as private memory.

• Supports same four-state (MESI) coherency protocol as L1 and L2 caches.

• Supports parity generation and checking for both tags and data (enabled through
L3CR).

• Same choice of two random replacement algorithms used by L2 cache (selectable
through L3CR).

• Configurable core-to-L3 frequency divisors.

• 64-bit external L3 data bus sustains 64 bits per L3 clock cycle.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-5

Overview

• Supports MSUG2 dual data rate (DDR) synchronous burst SRAMs, PB2 pipelined
synchronous burst SRAMs, and pipelined (register-register) late-write synchronous
burst SRAMs

3.1.1 Block Diagram

The instruction and data caches, L2 cache, and L3 cache controller are integrated in the
MPC7451 as shown in Figure 3-1.

Both L1 caches are tightly coupled to the MPC7451 L2 cache, L3 cache controller, and the
memory subsystem to allow efficient access to the L2 cache, L3 cache, or the system
interface and other bus masters. The memory subsystem receives requests for memory
operations from the LSU (on behalf of the instruction and data caches) and provides queues
for loading and storing from the caches.

The system interface performs external bus operations per the 60x or MPX bus protocol.
Depending on the transaction type, the critical 8 bytes (for double words) or 16 bytes (for
quad words) are forwarded to the requesting unit. Note that for instruction fetches, the
critical quad word is always forwarded. Also, the system interface accumulates 64-bit data
beats from the bus into a 32-byte entity before loading it into the L1, L2, and L3 caches.
The system interface also captures snoop addresses for the L1 data cache, the L2 and L3
caches, and the memory reservation (lwarx and stwcx.) operations.

3-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Overview

Figure 3-1. Cache/Memory Subsystem Integration

L3
Status

L3
Tags

L3 Controller

Instruction
MMU

I-Cache
Tags

I-Cache
Status

I-Cache—32-Kbyte
8-Way, Set-associative

Memory Subsystem

L1 Load Queue (LLQ)L1 Store Queue

L2 Store Queue

L3 Address Bus

Instruction
Unit

7 Bits
PA[24:30]

24 Bits
PA[0:23]

128 Bits
4 Instructions

D-Cache
Tags

D-Cache
Status

D-Cache—32-Kbyte
8-Way, Set-associative

Load Miss
Queue (LMQ)

Load/Store Unit

Data
MMU

7 Bits
PA[24:30]

24 Bits
PA[0:23]

18 Bits 64 Bits

L3 Data Bus

36 Bits 64 Bits
System Address Bus

System Data Bus

256 Bits

Internal Bus

PA: Physical Address

L1 Castout
Queue

L1 Finished
Store Queue

Bus Store Queue

L1 Completed
Store Queue

256 Bits

L1 Push
Buffer

L2-Cache
Tags

L2-Cache
Status

L2-Cache—
8-Way, 2-Sectored

L2 Prefetch Engines

System Interface

Bus Accumulator

Bus Accumulator

L3RAQ

L3WAQ

Note: L3 not supported in the
MPC7441, MPC7445, and MPC7447

256Kbyte
(MPC7447 & MPC7457,
512-Kbyte)

(19 Bits for
MPC7447/57,

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-7

Overview

3.1.2 Load/Store Unit (LSU)

The data cache supplies data to the general-purpose registers (GPRs), floating-point
registers (FPRs), and vector registers (VRs) by means of the load/store unit (LSU). The
MPC7451 LSU is directly coupled to the data cache with a 32-byte interface (a cache line)
to allow efficient movement of data to and from the GPRs, FPRs, and VRs. The LSU
provides all the logic required to calculate effective addresses, handles data alignment to
and from the data cache, and provides sequencing for load/store string and load/store
multiple operations. Write operations to the data cache can be performed on a byte,
half-word, word, double-word, or quad-word basis.

This section describes the LSU queues that support the L1 caches. See Section 3.3.3,
“Load/Store Operations and Architecture Implications,” for more information on
architectural coherency implications of load/store operations and the LSU on the
MPC7451. Also, see Chapter 6, “Instruction Timing,” for more information on other
aspects of the LSU and instruction scheduling considerations.

The vector touch engine (VTE) generates cache line fetch requests based on the contents of
the dst, dsts, dss, and dssall instructions that are part of the AltiVec specification. These
instructions are not disabled by the AltiVec enable bit in the MSR. See Chapter 7, “AltiVec
Technology Implementation,” for more information on the VTE.

3.1.2.1 Cacheable Loads and LSU

When free of data dependencies cacheable loads execute in the LSU in a speculative
manner with a maximum throughput of one per cycle and a three-cycle latency for integer
and vector loads. Note that floating-point loads have a four-cycle latency through the LSU.
Data returned from the cache is held in a rename buffer until the completion logic commits
the value to the processor state.

3.1.2.2 LSU Store Queues

Stores cannot be executed speculatively. Stores must be held in the 3-entry finished store
queue (FSQ), as shown in Figure 3-1, until the completion logic signals that the store
instruction is to be committed. When the store is committed, it moves to the 5-entry
committed store queue (CSQ). A store remains in the CSQ until the data cache is updated
if the access is cacheable. If a store is cache-inhibited, the operation moves through the
CSQ on to the rest of the memory subsystem.

To reduce the latency of loads dependent on stores, the MPC7451 supports data forwarding
from any entry in the CSQ before the data is actually written to the cache. The addresses of
subsequent loads are compared to all entries in the CSQ and, on a hit, use the data from the
newest matching entry. If a load aliases to both a CSQ entry and an FSQ entry, the LSU
pipeline stalls. The load needs the newest data from the FSQ and the data is not available
until it is completed and moves to the CSQ. Note that no forwarding occurs from a stwcx.
operation but forwarding does occur from store operations caused by dcbz instructions.

3-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Overview

3.1.2.3 Store Gathering/Merging

To increase external bandwidth to frame buffers and I/O devices, the MPC7451 performs
store gathering of unguarded write-through stores or cache-inhibited stores. Two of these
store operations are gathered in the CSQ if the following requirements are met:

• Entry CSQ0 is currently accessing the memory subsystem (i.e. it missed in the data
cache).

• The stores are bytes, half-words, words, double words or quad words (and are the
same size).

• The stores are adjacent or overlapping in address (words in the same double word,
double words in the same quad word, or quad words in the same cache line).

• The stores are adjacent in the CSQ.

• Both stores are aligned.

• The system bus is operating in MPX bus mode, or the stores are words or smaller.

The same store-gathering mechanism is used to gather cacheable write-back stores. In this
case, these stores can be gathered anywhere within the same cache line if they have not yet
accessed the cache. Also, these stores do not need to be of the same size.

Not all stores are gathered. In particular, when there is a series of stores, the first store often
appears to the memory subsystem as ungathered.

Store gathering and store merging is enabled through HID0[SGE]. Note that in addition to
the clearing of SGE, the eieio instruction may also be used to keep stores from being
gathered. If an eieio instruction is detected in the store queues, store gathering is not
performed. If HID1[SYNCBE] = 1, the eieio instruction also causes a system bus broadcast
operation, which may be used to prevent external devices, such as a bus bridge chip, from
gathering stores. See Section 3.3.3.3, “Load Ordering with Respect to Other Loads,” for
more information on the effects of eieio

If multiple cacheable stores are gathered such that the result is one 32-byte store, then the
processor issues a single line kill block transfer instead of the store.

3.1.2.4 LSU Load Miss, Castout, and Push Queues

The LSU requests cache blocks that miss in the L1 data cache from the next levels of
memory. In the case of a cache miss for a load, the load is placed in the 5-entry load miss
queue (LMQ) until it can be serviced to allow for subsequent loads to continue to propagate
through the LSU.

The LSU also maintains a 6-entry L1 castout queue (LCQ) as a place-holder for data cache
castouts caused by the PLRU replacement algorithm until they can be serviced. Note that
castouts are only selected (by the replacement algorithm) when the new cache line is ready
to be loaded into the L1. Because all L1 data cache misses can potentially require a castout,

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-9

Overview

misses do not access the L2, L3, or system bus until a slot is available in the LCQ for the
potential castout operation.

Finally, the LSU also maintains a one-entry push buffer (LPB) for holding a cache push
operation caused by a snoop hit of modified data in the L1 data cache until it can complete.
Note that all entries in the LCQ and LPB are snooped when other masters are accessing the
MPC7451 bus.

3.1.3 Memory Subsystem Blocks

As shown in Figure 3-1, the memory subsystem interfaces to the L1 instruction and data
caches and the LSU with a 256-bit internal bus. The four major logic blocks are described
in the following subsections. Conceptually, the general flow for transactions through the
memory subsystem can be considered to be from the L1 service queues, to the L2 cache, to
the L3 interface, to the bus service queues, noting that data from the bus can flow directly
from the bus accumulator at the external system interface to the 256-bit internal bus
(loading the L2 and L3 caches in parallel). Exceptions to this are noted in the following
subsections.

Note that transactions on the external bus performed by alternate masters are snooped by
all relevant entities in the MPC7451. Thus the L1 data cache, the LSU queues, memory
subsystem queues, and the L2 and L3 caches are all checked for a snoop hit. When a snoop
hit occurs and a push is required, the MPC7451 retries the bus transaction and performs the
push operation or performs data intervention (if the bus is operating in MPX bus mode and
MSSCR0[EIDIS] = 0).

3.1.3.1 L1 Service Queues

Separate from the LMQ and the two store queues of the LSU, the memory subsystem block
maintains two additional queues for handling L1 misses. The L1 load queue (LLQ) of the
memory subsystem contains a total of eight entries. They are as follows:

• Five for load misses, including those generated by dcbt, dcbtst, dst, dsts, and eciwx
instructions

• Two for instruction fetches

• One for a cacheable store request that is marked as write-back (W = 0), which
requires a read-with-intent-to-modify load transaction on the bus, or for loads
generated by dcba and dcbz

For efficiency, these accesses are simultaneously sent to the L2 and L3 caches from the
LLQ and they reside in the LLQ until the data has been loaded. If the access requires a
system interface transaction (based on the L2 and L3 responses), the LLQ causes that bus
transaction to occur. If the access is non-transient and misses in all three caches, all three
caches (if enabled) are loaded with the missed data when it is read from the bus.

3-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Overview

Also, separate from the L1 store queues of the LSU, the memory subsystem has an L1 store
queue (LSQ) that maintains three entries waiting to be written to the L2 cache (if enabled).
The three entries are dedicated as follows:

• One for

— stores, including caching-inhibited and write-through stores

— memory management instructions

— sync, cache control, and memory synchronization instructions

• One for castouts

• One for snoop pushes

All entries that go through the LSQ also propagate to the L3 cache and the system bus
except for L1 castouts that are caused by a replacement operation due to a reload that result
in a hit in the L2.

Thus, note that castouts caused by the dcbf instruction do propagate to the L3 cache and
the system bus.

3.1.3.2 L2 Cache Block

The integrated L2 cache on the MPC7451 is a unified (possibly containing instructions and
data), 256-Kbyte on-chip cache. For the MPC7447 and MPC7457, the L2 cache is a unified
512-Kbyte on-chip cache. It is 8-way set-associative and organized with 32-byte blocks and
two blocks per line as shown in Figure 3-17. Thus each line shares the same tag, but the
MESI bits are independently maintained for each block.

When the L2 and corresponding L1 cache are enabled, load and store entries from the LLQ
and LSQ propagate to the L2 cache, provided caching is allowed (the I bit of WIMG for
that particular access is cleared). The L2 services accesses from the LLQ and LSQ with a
three-cycle total latency and a maximum throughput of one L2 access per clock.

As described in Section 3.1.3.1, “L1 Service Queues,” LLQ accesses are simultaneously
sent to the L2 and L3 caches. LSQ accesses serviced by the L2 that need service by the L3
propagate to the L2 store queue (L2SQ) for service by the L3 cache. The L2SQ has a total
of 5 entries as follows:

• Four entries for L2 castouts (or stores)

• One entry for pushes and interventions caused by snoop hits

For more detailed information about the functions of the L2 cache, see Section 3.6, “L2
Cache.”

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-11

Overview

3.1.3.3 System Interface Block

As described in Section 3.1.3.1, “L1 Service Queues,” the LLQ can cause bus transactions
to occur. In addition, the system interface block of the memory subsystem maintains the
following two entities that can cause external bus transactions:

• Bus store queue (BSQ)—After the L2 and L3 caches respond to an access and the
access generates a castout (or write-through store) or a push operation, it is sent to
the BSQ for service by the system interface. The BSQ maintains up to nine
outstanding castout operations and one push operation.

• L2 prefetch engines—When only one block of an L2 cache line is valid (due to an
L2 reload caused by a read miss in the L1, L2, and L3 caches), the L2 prefetch
engines can initiate an external bus transaction to fill the second block of that L2
cache line. Up to 3 separate outstanding L2 prefetches can be enabled. See
Section 3.6.3.2, “L2 Prefetch Engines and MSSCR0,” for more detailed information
about the L2 prefetch engines. Note that these prefetch engines only fetch from the
system bus and do not fetch from the L3 cache.

Also, the system interface block maintains a bus accumulator that collects four double
words (instructions or data) from the system interface for forwarding to the internal bus on
reads.

3.1.4 L3 Cache Controller Block

The L3 cache controller maintains the tags and status for the 1- or 2-Mbyte L3 cache. The
L3 cache is also a unified (possibly containing instructions and data) cache that is 8-way
set-associative and organized with 32-byte blocks and two blocks per line (1 Mbyte) or four
blocks per line (2 Mbyte). Each line shares the same tag, but the MESI bits are
independently maintained for each block. Note that the L3 cache is not supported by the
MPC7441, MPC7445, and MPC7447.

The L3 cache controller also has queues that serve as staging areas for pending SRAM read
and write transactions. There is an L3RAQ that has a total of ten entries that are dedicated
as follows:

• Nine entries for pending SRAM reads, including loads and castouts

• One entry for pending snoop pushes

Note that if the L3RAQ is full, the LLQ may stall.

Also, there is an L3WAQ that has a total of 4 entries that are dedicated as follows:

• Three entries for pending SRAM writes, including L2 castouts

• One entry for L3 reloads

Note that if the L3WAQ is full, the L2SQ may stall and L3 reloads may be dropped.

3-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L1 Cache Organizations

In the same way that LSQ entries, after they having been serviced by the L2 cache,
propagate to the L2 store queue (L2SQ) for service by the L3 cache, the BSQ serves as a
staging area for data being transferred between the L3 cache and the system interface. Also,
the L3 cache controller block maintains a bus accumulator that collects four double words
(instructions or data) from the L3 interface for forwarding to the memory subsystem block.
Note that the L3 cache can also be configured to be used as private memory. For more
detailed information about the functions of the L3 cache controller, see Section 3.7, “L3
Cache Interface.”

3.2 L1 Cache Organizations
The L1 instruction and data caches of the MPC7451 are both organized as 128 sets of eight
blocks with 32 bytes in each cache line. The following subsections describe the differences
in the organization of the instruction and data caches. For information on L2 and L3 cache
operation, see Section 3.6, “L2 Cache,” and Section 3.7, “L3 Cache Interface.”

3.2.1 L1 Data Cache Organization

The L1 data cache is organized as shown in Figure 3-2.

Figure 3-2. L1 Data Cache Organization

Each block consists of 32 bytes of data, three status bits, and an address tag. Note that in
the PowerPC architecture, the term ‘cache block,’ or simply ‘block,’ when used in the
context of cache implementations, refers to the unit of memory at which coherency is

128 Sets

Block 5

Block 6

Block 7

Block 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Block 1

Block 2

Block 3

Block 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

Status

Status

Status

Words [0–7]

Status

Words [0–7]

Words [0–7]

Words [0–7]

Status

Status

Status

Words [0–7]

Status

Words [0–7]

Words [0–7]

Words [0–7]

8 Words/Block

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-13

L1 Cache Organizations

maintained. For the MPC7451 L1 data cache, this is the 32-byte cache line. This value may
be different for other implementations using the PowerPC architecture. Also, although it is
not shown in Figure 3-2, the data cache has one parity bit/byte (four parity bits/word).

Each cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits PA[31:35] of the physical addresses are zero); as a result,
cache blocks are aligned with page boundaries. Address bits PA[24:30] provide the index
to select a cache set. The tags consist of physical address bits PA[0:23]. Address translation
occurs in parallel with set selection (from PA[24:30]). Lower address bits PA[31:35] locate
a byte within the selected block. All of these address ranges are shown for 36-bit physical
addressing (enabled when HID0[XAEN] = 1). When 32-bit addressing is used
(HID0[XAEN] = 0), all of these physical address bits are shifted down by 4, and the tags
consist of physical address bits PA[0:19].

The data cache tags are dual-ported and non-blocking for efficient load/store and snooping
operations. Thus the data cache can be accessed internally while a load for a miss is pending
(allowing hits under misses). When the load miss is actually updating the cache, subsequent
loads are blocked for two cycles and stores are blocked for one cycle (but the data for the
load miss can be forwarded to the execution unit simultaneously). The LMQ allows misses
under misses to occur.

There are three status bits associated with each cache block. These bits are used to
implement the modified/exclusive/shared/invalid (MESI) cache coherency protocol. The
coherency protocols are described in Section 3.3, “Memory and Cache Coherency.”

3.2.2 L1 Instruction Cache Organization

The L1 instruction cache is organized as shown in Figure 3-3.

3-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L1 Cache Organizations

Figure 3-3. L1 Instruction Cache Organization

Each block consists of 8 instructions, a single status bit, and an address tag. As with the data
cache, each instruction cache block is loaded from an eight-word boundary (that is, bits
PA[31:35] of the physical addresses are zero); as a result, cache blocks are aligned with
page boundaries. Also, address bits PA[24:30] provide the index to select a set, and bits
PA[31:33] select an instruction within a block. The tags consist of physical address bits
PA[0:23]. Address translation occurs in parallel with set selection (from PA[24:30]). All of
these address ranges are shown for 36-bit physical addressing (enabled when
HID0[XAEN] = 1). When 32-bit addressing is used (HID0[XAEN] = 0), all of these
physical address bits are shifted down by 4, and the tags consist of physical address bits
PA[0:19].

The instruction cache is also non-blocking in that it can be accessed internally while a fill
for a miss is pending (allowing hits under misses). In addition, subsequent misses can also
be sent to the memory subsystem before the original miss is serviced (allowing misses
under misses). When a miss is actually updating the cache, subsequent accesses are blocked
for one cycle (but the instruction that missed can be forwarded to the instruction unit
simultaneously).

The instruction cache differs from the data cache in that it does not implement a multiple
state cache coherency protocol. A single status bit indicates whether a cache block is valid
or invalid. The instruction cache is not snooped, so if a processor modifies a memory
location that may be contained in the instruction cache, software must ensure that such
memory updates are visible to the instruction fetching mechanism. This can be
achieved with the following instruction sequence (using either dcbst or dcbf):

128 Sets

Block 5

Block 6

Block 7

Block 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Block 1

Block 2

Block 3

Block 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

Status

Status

Status

Instructions [0–7]

Status

Instructions [0–7]

Instructions [0–7]

Instructions [0–7]

Status

Status

Status

Instructions [0–7]

Status

Instructions [0–7]

Instructions [0–7]

Instructions [0–7]

8 Instructions/Block

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-15

Memory and Cache Coherency

dcbst (or dcbf)|update memory
sync |wait for update
icbi |remove (invalidate) copy in instruction cache
sync |ensure that ICBI invalidate at the instruction cache has completed
isync |remove copy in own instruction buffer

These operations are necessary because the processor does not maintain instruction
memory coherent with data memory. Software is responsible for enforcing coherency of
instruction caches and data memory. Since instruction fetching may bypass the data cache,
changes made to items in the data cache may not be reflected in memory until after the
instruction fetch completes.

Although it is not shown in Figure 3-3, the instruction cache has one parity bit/word.

3.3 Memory and Cache Coherency
The primary objective of a coherent memory system is to provide the same image of
memory to all devices using the system. Coherency allows synchronization and cooperative
use of shared resources. Otherwise, multiple copies of a memory location, some containing
stale values, could exist in a system resulting in errors when the stale values are used. Each
potential bus master must follow rules for managing the state of its cache. This section
describes the coherency mechanisms of the PowerPC architecture and the cache coherency
protocols that the MPC7451 caches support.

Unless specifically noted, the discussion of coherency in this section applies to the L1 data
cache and the L2 and L3 caches. The instruction cache is not snooped. Instruction cache
coherency must be maintained by software. However, the MPC7451 does support a fast
instruction cache invalidate capability as described in Section 3.4.1.5, “L1 Instruction and
Data Cache Flash Invalidation.” Also, the flushing of self-modifying code from the data
cache (and L2 and L3) is described in Section 3.4.4.8, “Instruction Cache Block Invalidate
(icbi).”

3.3.1 Memory/Cache Access Attributes (WIMG Bits)

Some memory characteristics can be set on either a memory management block or page
basis by using the WIMG bits in the BAT registers or page table entries (PTE), respectively.
These bits allow both uniprocessor and multiprocessor system designs to exploit numerous
system-level performance optimizations. The WIMG attributes control the following
functionalities:

• Write-through (W bit)

• Caching-inhibited (I bit)

• Memory-coherency-required (M bit)

• Guarded (G bit)

3-16 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory and Cache Coherency

The WIMG attributes are programmed by the operating system for each page and block.
The W and I attributes control how the processor performing an access uses its own cache.
The M attribute ensures that coherency is maintained for all copies of the addressed
memory location. The G attribute prevents loads and instruction fetches from being
performed until they are guaranteed to be required by the sequential execution model.

The WIMG attributes occupy four bits in the BAT registers for block address translation
and in the PTEs for page address translation. The WIMG bits are programmed as follows:

• The operating system uses the mtspr instruction to program the WIMG bits in the
BAT registers for block address translation. The IBAT register pairs do not have a
G bit and all accesses that use the IBAT register pairs are considered not guarded.

• The operating system writes the WIMG bits for each page into the PTEs in system
memory as it sets up the page tables.

When an access requires coherency, the processor performing the access must inform the
coherency mechanisms throughout the system that the access requires memory coherency.
The M attribute determines the kind of access performed on the bus (global or non-global).

3.3.1.1 Coherency Paradoxes and WIMG

Care must be taken with respect to the use of the WIMG bits if coherent memory support
is desired. Careless specification of these bits may create situations that present coherency
paradoxes to the processor. These coherency paradoxes can occur within a single processor
or across several processors. It is important to note that, in the presence of a paradox, the
operating system software is responsible for correctness.

In particular, a coherency paradox can occur when the state of these bits is changed without
appropriate precautions (such as flushing the pages that correspond to the changed bits
from the caches of all processors in the system) or when the address translations of aliased
real addresses specify different values for certain WIMG bit values. The MPC7451
supports aliasing for WIMG = 100x and WIMG = 000x; however, the MPC7451 does not
support aliasing WIMG = 101x and WIMG = 001x. Specifically, this means that for a given
physical address, the MPC7451 only supports simultaneous memory/cache access
attributes for that physical address of write-through, caching-allowed,
memory-coherency-not-required (WIMG = 100x) and write-back, caching-allowed,
memory-coherency-not-required (WIMG = 000x).

For real addressing mode (that is, for accesses performed with address translation
disabled—MSR[IR] = 0 or MSR[DR] = 0 for instruction or data access, respectively), the
WIMG bits are automatically generated as 0b0011 (all memory is write-back,
caching-allowed, memory-coherency-required, and guarded).

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-17

Memory and Cache Coherency

3.3.1.2 Out-of-Order Accesses to Guarded Memory

On the MPC7451, instructions are not fetched from guarded memory when instruction
translation is enabled (MSR[IR] = 1). If an attempt is made to fetch instructions from
guarded memory when MSR[IR] = 1, an ISI exception is taken.

The MPC7451 only fetches instructions out-of-order with respect to other instructions
fetches from guarded memory when MSR[IR] = 0 and one of the following conditions
applies:

• The instruction is in the instruction cache.

• The instruction resides in the same physical page as an instruction that is required
by the execution model.

• The instruction resides in the next sequential physical page as an instruction that is
required by the execution model.

Note that the MPC7451 can have two instruction fetches outstanding at any time.

The MPC7451 does not perform stores until they are required by the sequential execution
model, independent of the setting of the G bit. The only effect of the G bit on stores is that
the MPC7451 guarantees that stores to guarded (G = 1) and caching-inhibited (I = 1)
memory are not store-gathered. (See Section 3.1.2.3, “Store Gathering/Merging,” for more
information on store gathering.)

However, setting the G bit prevents a load from accessing the system interface until it is
guaranteed to be required by the sequential execution model. Loads from guarded memory
may be accessed out-of-order with respect to other loads from guarded memory if one of
the following applies:

• The target location is valid in the data cache.

• The load is guaranteed to be executed. In this case, the entire cache block containing
the referenced data may be loaded into the cache.

Note that instruction fetches and loads may also be prevented from accessing the system
interface until they are guaranteed to be required by the sequential execution model by
setting the speculative access disable bit, HID0[SPD]. Also note that setting HID0[SPD]
does not prevent loads from bypassing stores. See Section 3.3.3.5, “Enforcing Store
Ordering with Respect to Loads,” for more information.

For the MPC7451, a guarded load is not allowed to access the system interface until that
load is at the bottom of the completion buffer. This means that all prior load accesses to the
system interface must have already returned data to the processor before the subsequent
guarded load is allowed to access the system address bus. This prevents the MPC7451 from
pipelining a guarded load with any other type of load on the system interface. Note that this
has a large negative effect on load miss bandwidth performance. For this reason, it is not
recommended to have guarded loads in code streams that require high system bandwidth
utilization.

3-18 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory and Cache Coherency

3.3.2 Coherency Support

The MPC7451 provides full hardware support for PowerPC cache coherency and ordering
instructions (dcbz, dcbi, dcbf, sync, icbi, and eieio) and full hardware implementation of
the TLB management instructions (tlbie, and tlbsync). Snooping, described in
Section 3.8.4, “Snooping of External Transactions,” is integral to the memory subsystem
design and operation. The MPC7451 is self-snooping and can ARTRY its own stwcx.
broadcasts.

Each 32-byte cache block in the data cache contains two status bits. The MPC7451 uses
these bits to support the coherency protocols and to direct reload operations. The L1 data
cache status bits and the conditions that cause them to be set or cleared are defined in
Table 3-1. Note that analogous status bits are also used in the L2 and L3 caches.

Every data cache block state is defined by its MESI status bits. Note that in a multiprocessor
system, a cache line can exist in the exclusive state in at most one L1 data cache at any one
time.

3.3.2.1 Coherency Between L1, L2, and L3 Caches

The MPC7451 allows for the L1 data, L2, and L3 caches to have different coherency status
for the same cache block. A cache block in the L2 and/or L3 cache is allowed to be shared
when the same block in the L1 is exclusive or modified. Additionally, an L2 block can be
shared when the corresponding L3 block is exclusive or modified (or vice-versa). The true

Table 3-1. Data Cache Status Bits

MESI
[0–1]

Name Meaning Set Conditions Clear Conditions

11 Modified (M) The cache block is
modified with respect to the
external system interface

• Store miss reload from
bus, L2 or L3 cache

• Write-back store hit on ¬S

Snoop hit

10 Exclusive (E) The cache block is valid Reload from bus, L2 or L3
cache

• dcbi, dcbf, and dcbst hit
• Write-back store hit to S

(see Section 3.5.4, “Store Hit
to a Data Cache Block Marked
Shared,”)

• Snoop clean hit
• Snoop invalidate hit

01 Shared (S) The cache block is shared
with other processors and
is read-only

• Load miss reload from bus
with SHD response

• Load miss reload from L2
cache with L2 cache
status = S

• Load miss reload from L3
cache with L3 cache
status = S

None

00 Invalid (I) — — —

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-19

Memory and Cache Coherency

coherency state of a cache block within the MPC7451 is determined by analyzing all three
levels of the cache hierarchy.

3.3.2.1.1 Cache Closer to Core with Modified Data

A cache block can be in the shared, exclusive, or modified state in the L2 or L3, while a
cache closer to the processor core has the block in the modified state. In this case the cache
closer to the core may have newer data. So by definition, if a cache block is in the shared,
exclusive, or modified state in the L1, L2, or L3, it has the newest data if no cache closer
to the processor core has the block in the modified state.

If a cache block is in the modified state in the L2 or L3 and that block is modified in a cache
closer to the processor core, the L2 and L3 may castout out-of-date data to memory. In this
case, the newest data still exists in the cache closer to the processor core.

3.3.2.1.2 Transient Data and Different Coherency States

The allowance of different cache states between the L1, L2, and L3 caches eliminates the
need to allocate or update the state in the L2 or L3 when a transient (dststt or stvxl) store
occurs to a block that is marked shared in the L2 or L3. In this case, the LLQ treats the L2
block as invalid for stores if it is shared and the L3 is marked exclusive or modified. If the
L2 state is exclusive or modified, the L3 state is ignored.

3.3.2.2 Snoop Response

Table 3-2 describes the snoop responses used by the MPC7451 and defines the symbols
used in Section 3.3.2.5, “MESI State Transitions.” See Chapter 8, “Signal Descriptions,”
and Chapter 9, “System Interface Operation,” for detailed signal timing and bus protocol
information.

Table 3-2. Snoop Response Summary

Snoop Response

State
Transition
Diagram
Symbol

Description

No response —
(No symbol)

The processor does not contain any memory at the snooped address or the
coherency protocol does not require a response. The snoop has been fully
serviced and no internal pipeline collisions occurred that would require a
busy response.

SHD asserted S The processor contains data from the snooped address or a reservation on
the snooped address.

ARTRY asserted A The processor cannot service the snoop due to an internal pipeline collision
(busy). The same address tenure must be rerun at a later time.

3-20 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory and Cache Coherency

3.3.2.3 Intervention

Table 3-3 briefly describes the intervention types used by the MPC7451. See Chapter 9,
“System Interface Operation,” for signaling protocol information for each intervention
type.

ARTRY followed by BR
asserted

AS The processor contains a modified copy of data from the snooped address
and is prepared to perform a window-of-opportunity (W) snoop push. The
same address tenure must be rerun at a later time.

HIT asserted for one cycle H1
(MPX bus
mode only)

The processor contains a modified copy of data from the snooped address
and is prepared to perform cache-to-cache or window-of-opportunity (C or
W) intervention.

Table 3-3. Snoop Intervention Summary

Intervention Type

State
Transition
Diagram
Symbol

Description

No intervention —
(No symbol)

The processor does not contain any memory at the snooped address or the
coherency protocol does not require intervention.

Window-of-opportunity W Window-of-opportunity snoop push for hits on modified data. The processor
performs a write-with-kill, snoop-push transaction in the next address tenure. The
MPC7451 asserts BR in the window of opportunity to initiate the snoop push
operation. The window of opportunity is defined as the second cycle after an AACK
that has been ARTRYed. Only the intervening master can assert BR in the window
of opportunity.

When a master asserts BR in the window of opportunity, it uses it to perform a
snoop push (write-with-kill) to the most previous snoop address (unless the master
still has a write-with-kill pending due to a previous window-of-opportunity request
that is not yet satisfied). The MPC7451 always presents a cache-block aligned
address (that is, A[31:35] = 0b0_0000) for every window-of-opportunity snoop
push.

Cache-to-cache C
(MPX bus
mode only)

Cache-to-cache intervention for hits on modified data. The processor has queued
up a data-only write transaction to provide data to the snooping master
(cache-to-cache intervention). If another master asserts ARTRY coincident with the
assertion of HIT, the MPC7451 cancels the queued-up data-only transaction but
does not attempt to perform a window-of-opportunity snoop push. The cache block
state is already changed to the new state due to the snoop. Thus, the intervening
processor (the one that asserted HIT) does not contain the cache block in a state
suitable for intervention when the retried snoop transaction is rerun on the bus.
However, it can perform a window-of-opportunity snoop push when the retried
snoop transaction is rerun.

Table 3-2. Snoop Response Summary (continued)

Snoop Response

State
Transition
Diagram
Symbol

Description

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-21

Memory and Cache Coherency

3.3.2.4 Simplified Transaction Types

For the purposes of snooping bus transactions, the MPC7451 treats related (but distinct)
transaction types as a single simplified transaction type. Table 3-4 defines the mapping of
simplified transaction types to actual transaction types.

In the following state transition diagrams, RWNITC is not explicitly shown. For state
transitions (for example, modified to exclusive), the MPC7451 treats RWNITC like a clean
operation. For intervention purposes (for example a W or C intervention as defined in
Table 3-3), the MPC7451 treats RWNITC like a read operation.

3.3.2.5 MESI State Transitions

The state diagrams in this section use symbols on the transition lines for snoop response
and intervention type. For example, H1-C denotes a HIT-asserted snoop response and a
cache-to-cache intervention type. See Table 3-2 and Table 3-3 for the symbols used in the
state diagrams.

Table 3-4. Simplified Transaction Types

Simplified Transaction Type Actual Transaction Type

Read Read
Read-atomic

RWITM RWITM (read-with-intent-to-modify)
RWITM-atomic
RCLAIM (read-claim)

RWNITC RWNITC (read-with-no-intent-to-cache)—Acts like a read
transaction for snoop response purposes; acts like a clean
transaction for MESI state change purposes.

Write Write-with-flush
Write-with-flush-atomic

Flush Flush

Clean Clean

Kill Kill
Write-with-kill

Reskill
(Used for reservation
snooping only)

RWITM
RWITM-atomic
RCLAIM
Write-with-flush
Write-with-flush-atomic
Kill
Write-with-kill

3-22 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory and Cache Coherency

3.3.2.5.1 MESI Protocol in MPX Bus Mode with Data Intervention Enabled

The following state diagrams (Figure 3-4, Figure 3-5, Figure 3-6, Figure 3-7, and
Figure 3-8) show the MESI state transitions when the MPC7451 is configured for MPX bus
mode with modified data intervention enabled (MSSCR0[EIDIS] = 0).

Figure 3-4. Read Transaction—MPX Bus Mode, MSSCR0[EIDIS] = 0

Figure 3-5. RWITM and Flush Transactions—MPX Bus Mode, MSSCR0[EIDIS] = 0

Invalid Shared

ExclusiveModified

S

H1-C

S

Invalid Shared

ExclusiveModified

H1-C

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-23

Memory and Cache Coherency

Figure 3-6. Write Transaction—MPX Bus Mode, MSSCR0[EIDIS] = 0

Figure 3-7. Clean Transaction—MPX Bus Mode, MSSCR0[EIDIS] = 0

Invalid Shared

ExclusiveModified

AS-W

Invalid Shared

ExclusiveModified H1-C

3-24 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory and Cache Coherency

Figure 3-8. Kill Transaction—MPX Bus Mode, MSSCR0[EIDIS] = 0

3.3.2.5.2 MESI Protocol in 60x Bus Mode and MPX Bus Mode (with
Intervention Disabled)

The following state diagrams (Figure 3-9, Figure 3-10, Figure 3-11, and Figure 3-12) show
the MESI state transitions when the MPC7451 is configured for 60x bus mode and for MPX
bus mode when hit intervention is disabled (MSSCR0[EIDIS] = 1).

Invalid Shared

ExclusiveModified

See note

Note: If another master asserts ARTRY, the MPC7451 performs a
window-of-opportunity style push. Otherwise, there is no intervention.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-25

Memory and Cache Coherency

Figure 3-9. Read Transaction—60x and MPX Bus Modes, MSSCR0[EIDIS] = 1

Figure 3-10. RWITM, Write, and Flush Transactions—60x and MPX Bus Modes,
MSSCR0[EIDIS] = 1

Invalid Shared

ExclusiveModified

S

AS-W

S

Invalid Shared

ExclusiveModified

AS-W

3-26 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory and Cache Coherency

Figure 3-11. Clean Transaction—60x and MPX Bus Modes, MSSCR0[EIDIS] = 1

Figure 3-12. Kill Transaction—60x and MPX Bus Modes, MSSCR0[EIDIS] = 1

Invalid Shared

ExclusiveModified AS-W

Invalid Shared

ExclusiveModified

See note

Note: If another master asserts ARTRY, the MPC7451 performs a
window-of-opportunity style push. Otherwise, there is no intervention.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-27

Memory and Cache Coherency

3.3.2.6 Reservation Snooping

The MPC7451 snoops all transactions against the contents of the reservation address
register independent of the cache snooping. The following state diagrams (Figure 3-13,
Figure 3-14, and Figure 3-15) show the response to those snoops.

Figure 3-13. Read Transaction Snoop Hit on the Reservation Address Register

Figure 3-14. Reskill Transaction Snoop Hit on the Reservation Address Register

Figure 3-15. Other Transaction Snoop Hit on the Reservation Address Register

3.3.3 Load/Store Operations and Architecture Implications

Load and store operations are assumed to be weakly ordered on the MPC7451. The
load/store unit (LSU) can perform load operations that occur later in the program ahead of
store operations, even when the data cache is disabled (see Section 3.3.3.2, “Sequential
Consistency of Memory Accesses”).

No Reservation Reservation

S

ReservationNo Reservation
Reservation released

No Reservation Reservation

3-28 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory and Cache Coherency

The MPC7451 does not provide support for direct-store segments. Operations attempting
to access a direct-store segment cause a DSI exception. For additional information about
DSI exceptions, refer to Section 4.6.3, “DSI Exception (0x00300).”

3.3.3.1 Performed Loads and Store

The PowerPC architecture defines a performed load operation as one that has the addressed
memory location bound to the target register of the load instruction. The architecture
defines a performed store operation as one where the stored value is the value that any other
processor will receive when executing a load operation (that is, of course, until it is changed
again). With respect to the MPC7451, caching-allowed (WIMG = x0xx) loads and
caching-allowed, write-back (WIMG = 00xx) stores are performed when they have
arbitrated to address the cache block in the L1 data cache, the L2 cache, the L3 cache, or
the system interface. Note that loads are considered performed at the L1 data cache, L2
cache, or L3 cache only if the respective cache contains a valid copy of that address.
Write-back stores are considered performed at the L1 data cache, L2 cache, or L3 cache
only if the respective cache contains a valid, non-shared copy of that address.
Caching-inhibited (WIMG = x1xx) loads and stores, and write-through (WIMG = 10xx)
stores are considered performed when they have been successfully presented to the external
system bus. A set of rules for load and store ordering using the WIMG bits in the BAT
registers or page table entries (PTE) in the MPC7451 is listed in Table 3-5.

Table 3-5. Load and Store Ordering with WIMG Bit Settings

W I M G Order 1, 2

n 1 n 1 Stores are ordered with respect to other stores.
Loads are ordered with respect to other loads.
A store followed by a load requires an eieio.instruction in between the store and
load.

1 0 n 1 Stores are ordered with respect to other stores.
Loads are ordered with respect to other loads.
A store followed by a load requires a sync.instruction in between the store and
load.

1 n n 0 Stores are ordered with respect to other stores.
A load followed by a load requires a sync.instruction in between the loads.
A store followed by a load requires a sync.instruction in between the store and
load.

0 0 1 n A store followed by a store requires an eieio.instruction in between the stores.
A load followed by a load requires a sync.instruction in between the loads.
A store followed by a load requires a sync.instruction in between the store and
load.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-29

Memory and Cache Coherency

3.3.3.2 Sequential Consistency of Memory Accesses

The PowerPC architecture requires that all memory operations executed by a single
processor be sequentially consistent with respect to that processor. This means that all
memory accesses appear to be executed in program order with respect to exceptions and
data dependencies.

The MPC7451 achieves sequential consistency by operating a single data pipeline to the
cache/MMU. All memory accesses are presented to the MMU in exact program order and
therefore exceptions are determined in order. Loads are allowed to bypass stores after
exception checking has been performed for the store, but data dependency checking is
handled in the load/store unit so that a load does not bypass a store with an address match.
Newer caching-allowed loads can bypass older caching-allowed loads only if the two loads
are to different 32-byte address granules. Newer caching-allowed write-back stores can
bypass older caching-allowed write-back stores if they do not store to overlapping bytes of
data.

Note that although memory accesses that miss in the L1 cache are forwarded to the
load/store unit load queue for future arbitration for the L2 cache (and possibly the L3 cache
and external bus), all potential synchronous exceptions have been resolved before the L1
cache access. In addition, although subsequent memory accesses can address the L1 cache,
full coherency checking between the L1 cache and the load/store unit load and store queues
is provided to avoid dependency conflicts.

3.3.3.3 Load Ordering with Respect to Other Loads

The PowerPC architecture guarantees that the following loads are not re-ordered with
respect to other similar loads:

• Caching-inhibited (I = 1) and guarded (G = 1) loads

The MPC7451 guarantees that the following loads are not re-ordered with respect to other
similar loads:

0 0 0 n A store followed by a store requires an eieio.instruction in between the stores.
A load followed by a load requires a sync.instruction in between the loads.
A store followed by a load requires a sync.instruction in between the store and
load.

0 1 n 0 A store followed by a store requires an eieio.instruction in between the stores.
A load followed by a load requires a sync.instruction in between the loads.
A store followed by a load requires a sync.instruction in between the store and
load.

1 Any load followed by any store is always ordered for the MPC7451.
2 A sync instruction will cover the synchronization cases that require an eieio instruction. However, an eieio

instruction will not cover all the synchronization cases that require a sync instruction.

Table 3-5. Load and Store Ordering with WIMG Bit Settings

W I M G Order 1, 2

3-30 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory and Cache Coherency

• Caching-inhibited (I = 1) loads when HID0[SPD] = 1

Note that when address translation is disabled (real addressing mode), the default WIMG
bits cause the I bit to be cleared (accesses are assumed to be caching-allowed), and thus the
load accesses are weakly ordered with respect to each other. Refer to Section 5.2, “Real
Addressing Mode,” for a description of the WIMG bits when address translation is
disabled.

3.3.3.4 Store Ordering with Respect to Other Stores

The PowerPC architecture also guarantees that the following stores are not re-ordered with
respect to other similar stores:

• Caching-inhibited (I = 1) stores

Additionally, the MPC7451 also guarantees that the following stores are not re-ordered
with respect to other similar stores:

• Write-through (W = 1) stores

Otherwise, stores on the MPC7451 are weakly ordered with respect to other stores.

3.3.3.5 Enforcing Store Ordering with Respect to Loads

The PowerPC architecture specifies that an eieio instruction must be used to ensure
sequential ordering of loads with stores.

The MPC7451 guarantees that any load followed by any store is performed in order (with
respect to each other). The reverse, however, is not guaranteed. An eieio instruction must
be inserted between a store followed by a load to ensure sequential ordering between that
store and that load. Also note that setting HID0[SPD] does not prevent loads from
bypassing stores.

If store gathering is enabled (through HID0[SGE]), the eieio instruction may also be used
to keep stores from being gathered. If an eieio instruction is detected in the store queues,
store gathering is not performed. If HID1[SYNCBE] = 1, the eieio instruction also causes
a system bus broadcast operation, which may be used to prevent external devices, such as
a bus bridge chip, from gathering stores. See Section 3.1.2.3, “Store Gathering/Merging,”
for more information on store gathering.

3.3.3.6 Atomic Memory References

The PowerPC architecture defines the Load Word and Reserve Indexed (lwarx) and the
Store Word Conditional Indexed (stwcx.) instructions to provide an atomic update function
for a single, aligned word of memory. These instructions can be used to develop a rich set
of multiprocessor synchronization primitives. Note that atomic memory references
constructed using lwarx/stwcx. instructions depend on the presence of a coherent memory
system for correct operation. These instructions should not be expected to provide atomic

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-31

L1 Cache Control

access to noncoherent memory. For detailed information on these instructions, refer to
Chapter 2, “Programming Model,” in this book and Chapter 8, “Instruction Set,” in The
Programming Environments Manual.

The lwarx instruction performs a load word from memory operation and creates a
reservation for the 32-byte section of memory that contains the accessed word. The
reservation granularity is 32 bytes. The lwarx instruction makes a non-specific reservation
with respect to the executing processor and a specific reservation with respect to other
masters. This means that any subsequent stwcx. executed by the same processor, regardless
of address, cancels the reservation. Also, any bus write or invalidate operation from another
processor to an address that matches the reservation address cancels the reservation.

The stwcx. instruction does not check the reservation for a matching address. The stwcx.
instruction is only required to determine whether a reservation exists. The stwcx.
instruction performs a store word operation only if the reservation exists. If the reservation
has been cancelled for any reason, then the stwcx. instruction fails and clears the CR0[EQ]
bit in the condition register. The architectural intent is to follow the lwarx/stwcx.
instruction pair with a conditional branch which checks to see whether the stwcx.
instruction failed.

Executing an lwarx or stwcx. instruction to areas marked write-through or cache-inhibited
causes a DSI exception. Additionally, executing an lwarx or stwcx. instruction when the
L1 data cache is disabled or it is enabled and locked causes a DSI exception.

If the page table entry is marked caching-allowed (WIMG = x0xx) and an lwarx access
misses in the cache, the MPC7451 performs a cache block fill. All bus operations that are
a direct result of either an lwarx instruction or an stwcx. instruction are placed on the bus
with a special encoding. Note that this does not force all lwarx instructions to generate bus
transactions, but rather provides a means for identifying when an lwarx instruction does
generate a bus transaction.

The MPC7451 snoops its own RWITM-atomic transactions to check the state of the
reservation bit. If the reservation is set, the RWITM-atomic transaction succeeds.
Otherwise, the MPC7451 internally retries it (as if it had asserted ARTRY) and the
transaction is re-sent as a read transaction.

3.4 L1 Cache Control
The MPC7451 L1 caches are controlled by programming specific bits in the HID0, ICTRL,
and LDSTCR special-purpose registers and by issuing dedicated cache control instructions.
Section 3.4.1, “Cache Control Parameters in HID0,” describes the HID0 cache control bits,
Section 3.4.2, “Data Cache Way Locking Setting in LDSTCR,” describes the data cache
way locking feature and Section 3.4.3, “Cache Control Parameters in ICTRL,” describes
the L1 cache parity checking features and the instruction cache way locking. Note that the
ICTC register also affects the instruction cache operation and it is described in
Section 10.3, “Instruction Cache Throttling.”

3-32 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L1 Cache Control

Also, Section 2.1.5.1, “Hardware Implementation-Dependent Register 0 (HID0),”
Section 2.1.5.3, “Memory Subsystem Control Register (MSSCR0),” and Section 2.1.5.5.9,
“Load/Store Control Register (LDSTCR),” provide detailed information on the bit settings
for these registers.

Finally, Section 3.4.4, “Cache Control Instructions,” describes the cache control
instructions.

See Section 3.6.3, “L2 Cache Control” for information on the L2 cache control functions
and Section 3.7, “L3 Cache Interface,” for more information on the L3 cache.

3.4.1 Cache Control Parameters in HID0

The HID0 special-purpose register contains several bits that invalidate, disable, and lock
the instruction and data caches. The following sections describe these L1 cache control
facilities.

3.4.1.1 Enabling and Disabling the Data Cache

The data cache is enabled or disabled with the data cache enable bit, HID0[DCE].
HID0[DCE] is cleared on power-up, disabling the data cache. Snooping is not performed
when the data cache is disabled.

When the data cache is in the disabled state (HID0[DCE] = 0), the cache tag status bits are
ignored, and all data accesses are propagated to the system bus as single- or double-beat
cache-inhibited (CI asserted) transactions, depending on the size of the access. Thus, they
are ignored by the L2 and L3 caches, independent of the state of the L2 and L3. Note that
disabling the data cache does not affect the translation logic; translation for data accesses
is controlled by MSR[DR].

The setting of the DCE bit must be preceded by a sync instruction to prevent the cache from
being enabled or disabled in the middle of a data access. In addition, the cache must be
globally flushed before it is disabled to prevent coherency problems when it is re-enabled.
See Section 3.5.7, “L1 Cache Invalidation and Flushing,” for more information on the
flushing of the data cache.

The dcbz instruction causes an alignment exception when the access is to a cache-inhibited
or write-through area of memory. Thus a dcbz causes an alignment exception for the cases
when the data cache is disabled (HID0[DCE] = 0), or when the data cache is completely
locked (LDSTCR[DCWL] = 0xFF or HID0[DLOCK] = 1). The touch load (dcbt and
dcbtst) instructions are no-ops when the data cache is disabled; however, address
translation is still performed for these instructions. Other cache instructions (dcbf, dcbst,
and dcbi) do not affect the data cache when it is disabled.

Note that if the L1 data cache is disabled, the L2 and the L3 caches may be enabled, but
they ignore all data accesses. The L2 cache is enabled or disabled with L2CR[L2E], and the
L3 cache is enabled or disabled with L3CR[L3E].

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-33

L1 Cache Control

3.4.1.2 Data Cache Locking with DLOCK

The entire contents of the data cache can be locked by setting the data cache lock bit,
HID0[DLOCK]. No new tags are allocated for a locked data cache. Snoop hits, store hits
(to mark the line modified), and dcbf, dcbi, and dcbst instructions are the only operations
that can cause a tag state change in a locked data cache. If all ways of the data cache are
locked, all stores are sent to the memory subsystem as cacheable but write-through (as if
W = 1). Accesses caused by the dcbz instruction when the data cache is completely locked
take an alignment exception as described in Section 3.4.1.1, “Enabling and Disabling the
Data Cache.” However, accesses caused by the dcba instruction when the data cache is
completely locked are treated as a no-op.

The setting of the DLOCK bit must be preceded by a dssall/sync instruction pair and
followed by a sync instruction to prevent the data cache from being locked during a data
access. Also, the data cache should be already enabled when setting DLOCK.

The MPC7451 treats a load hit to a locked data cache the same as a load hit to an unlocked
data cache. That is, the data cache services the load with the requested data. However, a
load that misses in a locked data cache is passed to the LMQ and propagates to the L2, L3
cache or system bus as a caching-allowed, 32-byte burst read. In this case, the data is
forwarded to the requesting execution unit when it returns, but it is not loaded into the data
cache.

The MPC7451 treats snoop hits to a locked data cache the same as snoop hits to an unlocked
data cache. However, any cache block invalidated by a snoop hit remains invalid and is not
reallocated until the cache is unlocked.

One to eight ways of the data cache can be locked by setting bits in LDSTCR. See
Section 3.4.2, “Data Cache Way Locking Setting in LDSTCR,” for more information on
way locking of the data cache.

3.4.1.3 Enabling and Disabling the Instruction Cache

The instruction cache may be enabled or disabled through the use of the instruction cache
enable bit, HID0[ICE]. HID0[ICE] is cleared on power-up, disabling the instruction cache.
The setting of the ICE bit must be preceded by an isync instruction to prevent the cache
from being enabled or disabled in the middle of an instruction fetch. Furthermore, the
setting of the ICE bit must be followed by an isync instruction in order for the setting to
take effect. The icbi instruction is not affected by disabling the instruction cache. For
further details on synchronization see Section 2.3.2.4.1, “Context Synchronization.”

When the instruction cache is in the disabled state (HID[ICE] = 0), the cache tag status bits
are ignored, and all instruction fetches are forwarded to the L2 and L3 caches and the
memory subsystem with the cacheability attribute determined by the WIMG bits. When the
instructions are returned, they are forwarded to the instruction unit, but are not loaded into
the instruction cache. Note that the CI signal always reflects the state of the

3-34 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L1 Cache Control

caching-inhibited memory/cache access attribute (the I bit) for instruction accesses
independent of the state of HID0[ICE]. Also note that disabling the instruction cache does
not affect the translation logic; translation for instruction accesses is controlled by
MSR[IR].

3.4.1.4 Instruction Cache Locking with ILOCK

The contents of the instruction cache can be locked by setting the instruction cache lock bit,
HID0[ILOCK]. A completely locked instruction cache has no new tag allocations. icbi
instructions are the only operations that can cause a tag state change in a locked instruction
cache. The setting of the ILOCK bit must be preceded by an isync instruction to prevent
the instruction cache from being locked during an instruction fetch.

An instruction fetch that hits in a locked instruction cache is serviced by the cache. An
instruction fetch that misses in a completely locked instruction cache is propagated to the
L2, L3, and system bus as a 32-byte burst read. When the instructions are returned, they are
forwarded to the instruction unit but are not loaded into the instruction cache.

Note that the CI signal always reflects the state of the caching-inhibited memory/cache
access attribute (the I bit) for instruction accesses independent of the state of
HID0[ILOCK]. See Section 3.4.3.1, “Instruction Cache Way Locking,” for information on
the locking of one to 8 ways of the instruction cache.

3.4.1.5 L1 Instruction and Data Cache Flash Invalidation

The HID0[ICFI] and HID0[DCFI] bits of the MPC7451 cause a flash invalidation of the
instruction and data caches, respectively. Each cache can be flash invalidated
independently. Note that HID0[ICFI] and HID0[DCFI] must not both be set with the same
mtspr instruction, due to the synchronization requirements described in Section 2.3.2.4.1,
“Context Synchronization.”

A reset operation does not invalidate the caches. Therefore, software must flash invalidate
the instruction cache with the same mtspr to HID0 instruction that enables the instruction
cache, and it must flash invalidate the data cache with the same mtspr to HID0 instruction
that enables the data cache. When either HID0[ICFI] or HID0[DCFI] is set by software, the
corresponding cache invalidate bit is cleared automatically in the following clock cycle.
Note that there is no broadcast of a flash invalidate operation. An isync must precede the
setting of the HID0[ICFI] in order for the setting to take effect.

Individual instruction cache blocks can be invalidated using the icbi instruction and
individual data cache blocks can be invalidated using the dcbi instruction. See
Section 3.4.4.8, “Instruction Cache Block Invalidate (icbi),” and Section 3.4.4.7, “Data
Cache Block Invalidate (dcbi),” for more information about the icbi and dcbi instructions,
respectively.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-35

L1 Cache Control

3.4.2 Data Cache Way Locking Setting in LDSTCR

The 8-bit DCWL parameter in LDSTCR controls the locking of from one to 8 ways of the
data cache. Each bit in DCWL corresponds to a way of the data cache. Setting a bit in
DCWL locks the corresponding way in the cache. The MPC7451 treats a load hit to a
locked way in the data cache the same as a load hit to an unlocked data cache. That is, the
data cache services the load with the requested data. Also, snoop hits and store hits to
locked way in the data cache also operate the same as a hit to an unlocked cache. However,
locked ways are never selected for replacement.

Setting all 8 bits is equivalent to setting the HID0[DLOCK] bit. See Section 3.4.1.2, “Data
Cache Locking with DLOCK,” for more information. See Section 3.5.6.4, “Cache Locking
and PLRU,” for more information on PLRU precautions with way locking.

3.4.3 Cache Control Parameters in ICTRL

The ICTRL controls instruction and data cache parity checking and error reporting and
enables instruction cache way locking

3.4.3.1 Instruction Cache Way Locking

Similar to the DCWL parameter in LDSTCR, the 8-bit ICWL parameter in ICTRL controls
the locking of from one to 8 ways of the instruction cache. Each bit in ICWL corresponds
to a way of the instruction cache. Setting a bit in ICWL locks the corresponding way in the
cache. The MPC7451 treats a hit to a locked way in the instruction cache the same as a hit
to an unlocked instruction cache. That is, the cache services the fetch with the requested
instructions. However, on a miss, locked ways are never selected for replacement.

Setting all 8 bits in ICWL is equivalent to setting the HID0[ILOCK] bit. See
Section 3.4.1.4, “Instruction Cache Locking with ILOCK,” for more information. See
Section 3.5.6.4, “Cache Locking and PLRU,” for more information on PLRU precautions
with way locking.

3.4.3.2 Enabling Instruction Cache Parity Checking

Instruction cache parity checking is enabled with ICTRL[EICP]. When this bit is set, the
parity of all instructions fetched from the L1 cache is checked. See Section 3.4.3.3,
“Instruction and Data Cache Parity Error Reporting,” for information on the reporting of
L1 cache parity errors.

3.4.3.3 Instruction and Data Cache Parity Error Reporting

Instruction and data cache parity errors are reported through the machine check exception
mechanism if ICTRL[EICE] and ICTRL[EDCE] are set, respectively. In order for an
instruction cache parity error to be reported, ICTRL[EICP] must also be set. Note that data

3-36 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L1 Cache Control

parity checking is always enabled. When ICTRL[EICE] and ICTRL[EDCE] are cleared,
instruction and data cache parity errors are masked. Note that when parity checking and
reporting is enabled, parity errors can be reported (causing a machine check) for speculative
fetches that result in a parity error, even if the access is never required.

3.4.4 Cache Control Instructions

The PowerPC architecture defines instructions for controlling both the instruction and data
caches (when they exist). The cache control instructions: dcbt, dcbtst, dcbz, dcbst, dcbf,
dcba, dcbi, and icbi—are intended for the management of the L1 caches. The MPC7451
interprets the cache control instructions as if they pertain only to its own L1 caches. These
instructions are not intended for managing other caches in the system (except to the extent
necessary to maintain coherency).

The MPC7451 snoops all global (GBL asserted) cache control instruction broadcasts. The
dcbst, dcbf, and dcbi instructions cause a broadcast on the system bus (when M = 1) to
maintain coherency. When M = 0, the broadcast of those instructions (and icbi, tlbie, and
tlbsync) is controlled by the HID1[ABE] parameter. Therefore, HID1[ABE] must be set in
multiprocessor systems.

The MPC7451 treats any cache control instruction directed to a direct-store segment
(SR[T] = 1) as a no-op.

3.4.4.1 Data Cache Block Touch (dcbt)

The Data Cache Block Touch (dcbt) instruction provides potential system performance
improvement through the use of a software-initiated prefetch hint. Note that
implementations that support the PowerPC architecture are not required to take any action
based on the execution of these instructions, but they may choose to prefetch the cache
block corresponding to the effective address into their cache.

If the effective address of a dcbt instruction is directed to a direct-store segment
(SR[T] = 1)x, or if HID0[NOPTI] = 1, the MPC7451 treats the instruction as a no-op
without translation.

If the effective address of a dcbt instruction is not directed to a direct-store segment [T = 0]
and HID0[NOPTI] = 0, the effective address is computed, translated, and checked for
protection violations as defined in the PowerPC architecture. The dcbt instruction is treated
as a load to the addressed byte with respect to address translation and protection. Note,
however that a table search operation is never initiated for a dcbt instruction.

Additionally, the MPC7451 treats the dcbt instruction as a no-op if any of the following
occur:

• A valid address translation is not found in the BAT or TLB

• Load accesses are not permitted to the addressed page (protection violation)

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-37

L1 Cache Control

• The BAT or PTE is marked caching-inhibited (I = 1)

• The BAT or PTE is marked guarded (G = 1) and the dcbt instruction is not at the
bottom of the completion queue

• The data cache is locked or disabled

If none of the conditions for a no-op are met, the MPC7451 checks if the addressed cache
block is in the L1 data cache. If the cache block is not in the L1 data cache, the MPC7451
checks if the addressed cache block is in the L2 or L3 caches. If the cache block is not in
the L2 or L3 cache, the MPC7451 initiates a burst read (with no intent to modify) on the
system bus.

The data brought into the cache as a result of this instruction is validated in the same manner
that a load instruction would be (that is, it is marked as exclusive or shared). Note that the
successful execution of the dcbt instruction affects the state of the TLB and cache LRU bits
as defined by the PLRU algorithm (see Section 3.5.6, “L1 Cache Block Replacement
Selection”).

3.4.4.2 Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Touch for Store (dcbtst) instruction behaves similarly to the dcbt
instruction except that it attempts to gain ownership of the line by sending a request on the
system bus if the data is not found in the L1, L2, or L3 caches in the exclusive or
exclusive-modified state. Additionally, there are the following differences from dcbt:

• If the target address of a dcbtst instruction is marked write-through (W = 1), the
instruction is treated as a no-op.

• If the dcbtst hits in the L1 data cache, the state of the block is not changed.

• If the dcbtst misses in the L1 data cache, but hits in the L2 or L3 cache as exclusive
modified, the data is brought into the L1 data cache and is marked as exclusive.

• If the dcbtst misses in the L1 data cache, but hits in the L2 or L3 cache as shared, it
is treated as a miss.

• If the dcbtst misses in both the L1 data cache and the L2 and L3 caches, the cache
block fill request is signaled on the bus as a read (60x-bus mode) or as a read-claim
(MPX bus mode) and the data is marked exclusive when it is brought into the L1
data cache from the system bus if the system response is not SHD.

From a programming point of view, it can be advantageous to dcbtst instructions on the
MPC7451 if multiple line misses otherwise be caused by store instructions. This is because
the MPC7451 supports only one outstanding store miss (from CSQ0), but dcbtst line
misses are handled in the five-entry LMQ (so up to five dcbtst misses could be handled
simultaneously).

If dcbtst (or dstst) is being used to prefetch a 32-byte coherency granule that will
eventually be fully consumed by 32-byte’s worth of stores (that is, two back-to-back
AltiVec stvx instructions), the inclusion of touch-for-store may reduce performance if the

3-38 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L1 Cache Control

system is bandwidth-limited. This is because a touch-for-store must perform both a 32-byte
coherency operation on the address bus (two or more bus cycles) and a 32-byte data transfer
(four or more bus cycles). On the other hand, caching-allowed, write-back stores that merge
to 32-bytes only require a 32-byte coherency operation (two or more bus cycles) because
of the store-merging mechanism. In this scenario, using a dcbz to initialize the line
sometime before the stores occur may also improve performance. See Section 3.1.2.3,
“Store Gathering/Merging,” for more information.

3.4.4.3 Data Cache Block Zero (dcbz)

The effective address (EA) is computed, translated, and checked for protection violations
as defined in the PowerPC architecture. The dcbz instruction is treated as a store to the
addressed byte with respect to address translation, protection, and pipelining.

If the data is not found in the L1, L2, or L3 caches as exclusive or exclusive-modified, the
physical address is broadcast on the system bus prior to the zero line fill if M = 1. Note the
following:

• If the address hits in the L1 as exclusive or exclusive modified, zeros are written to
the cache and the tag is marked as exclusive modified.

• If the address hits in the L1 as shared or misses in the L1, a lookup is performed in
the L2 and L3 caches.

• If the address hits in the L1 as shared and M = 0, the lookup in the L2 and L3 caches
is ignored, zeroes are written into the L1 cache, and the L1 tag is marked exclusive
modified.

• If M = 1 and the L2 or L3 cache hits as exclusive or exclusive modified, zeros are
written into the L1 and the L1 tag is marked exclusive modified.

Note that L1 cache misses for dcbz instructions follow the same line replacement algorithm
as load misses to the L1 cache.

Executing a dcbz instruction can cause the following exceptions (noted in order of
priority):

• Executing a dcbz instruction to a disabled or locked data cache generates an
alignment exception.

• Executing a dcbz instruction to an EA with caching-inhibited or write-through
attributes also generates an alignment exception.

• BAT and TLB protection violations for a dcbz instruction generate DSI exceptions.

• A dcbz instruction can also cause a data TLB miss on store exception if
HID0[STEN] = 1 and either no translation is found in the BAT or TLB, or the
change bit in a matching TLB entry is cleared.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-39

L1 Cache Control

3.4.4.4 Data Cache Block Store (dcbst)

The effective address is computed, translated, and checked for protection violations as
defined in the PowerPC architecture. This instruction is treated as a load with respect to
address translation and memory protection.

If the address hits in the cache and the cache block is in the modified state, the modified
block is written back to memory and the cache block is placed in the invalid state in the L1.
If the address hits in the data cache and the cache block is in any state other than modified,
an address-only broadcast (clean) is performed and the cache block is placed in the invalid
state in the data cache.If the address additionally hits in the L2 or L3 cache, the line is
written back to memory and placed in the exclusive state in the L2 or L3 that hit.

The function of this instruction is independent of the WIMG bit settings of the block or PTE
containing the effective address. However, if the address is marked memory-coherency-
required (M = 1), the execution of dcbst causes an address broadcast on the system bus (if
HID1[ABE] = 1). If HID1[ABE] = 0, execution of dcbst only causes an address broadcast
on the system bus if the data is modified. Execution of a dcbst instruction occurs whether
or not the L1, L2, or L2 caches are disabled or locked. However, it has no effect on a
disabled L1, L2, or L3 cache.

A BAT or TLB protection violation for a dcbst generates a DSI exception. Additionally, a
dcbst instruction can also cause a data TLB miss on load exception if HID0[STEN] = 1 and
no translation is found in the BAT or TLB.

3.4.4.5 Data Cache Block Flush (dcbf)

The effective address is computed, translated, and checked for protection violations as
defined in the PowerPC architecture. This instruction is treated as a load with respect to
address translation and memory protection.

Note the following:

• If the address hits in the L1, L2, or L3 cache, and the block is in the exclusive
modified state, the modified block is written back to memory and the cache block is
invalidated.

• If the address hits in the L1, L2, or L3 cache, and the cache block is in the exclusive
unmodified or shared state, the cache block is invalidated.

• If the address misses in the L1, L2, or L3 cache, no action is taken.

The function of this instruction is independent of the WIMG bit settings of the block or PTE
containing the effective address. However, if the address is marked memory-coherency-
required, the execution of dcbf broadcasts an address-only FLUSH transaction on the
system bus if HID1[ABE] = 1. Execution of a dcbf instruction occurs whether or not the
L1, L2, or L3 caches are disabled or locked. However, it has no effect on a disabled L1, L2,
or L3 cache.

3-40 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L1 Cache Control

A BAT or TLB protection violation for dcbf generates a DSI exception. Additionally, a
dcbf instruction can also cause a data TLB miss on load exception if HID0[STEN] = 1 and
no translation is found in the BAT or TLB. See Section 3.5.7, “L1 Cache Invalidation and
Flushing,” for more information.

3.4.4.6 Data Cache Block Allocate (dcba)

The MPC7451 implements the Data Cache Block Allocate (dcba) instruction. This is
currently an optional instruction in the PowerPC virtual environment architecture (VEA);
however, it may become required in future versions of the architecture. The dcba
instruction provides potential system performance improvement through the use of a
software-initiated pre-store hit. This allows software to establish a block in the data cache
in anticipation of a store into that block, without loading the block from memory.

The MPC7451 executes the dcba instruction the same as a dcbz instruction, with one
exception. In cases when dcbz causes an exception, a dcba will no-op unless the exception
is DSI for a data breakpoint match or to generate a software table search operation (with
HID0[STEN] = 1). Note that the dcba instruction has no effect when the L1 cache is
disabled or locked.

3.4.4.7 Data Cache Block Invalidate (dcbi)

When a dcbi instruction is executed, the effective address is computed, translated, and
checked for protection violations as defined in the PowerPC architecture. This instruction
is treated as a store with respect to address translation and memory protection.

This instruction is treated the same as a dcbf in the caches. The only difference between
dcbi and dcbf on the MPC7451 is that the dcbi instruction is privileged.

A BAT or TLB protection violation for a dcbi translation generates a DSI exception.

3.4.4.8 Instruction Cache Block Invalidate (icbi)

The icbi instruction invalidates a matching entry in the instruction cache. During execution,
the effective address for the instruction is translated through the data MMU and broadcasts
on the system bus using the memory-coherency attribute from translation if
HID1[ABE] = 1. This instruction is treated as a load with respect to address translation and
memory protection.

The MPC7451 always sends the icbi to the instruction cache for cache block address
comparison and invalidation. The icbi instruction invalidates a matching cache entry
regardless of whether the instruction cache is disabled or locked. The L2 and L3 caches are
not affected by the icbi instruction.

An icbi instruction should always be followed by a sync and an isync instruction. This
ensures that the effects of the icbi are seen by the instruction fetches following the icbi

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-41

L1 Cache Operation

itself. For self-modifying code, the following sequence should be used to synchronize the
instruction stream:

1. dcbst or dcbf (push new code from L1 data cache, L2, and L3 cache out to memory)

2. sync (wait for the dcbst or dcbf to complete)

3. icbi (invalidate the old instruction cache entry in this processor and, by
broadcasting the icbi to the bus, invalidate the entry in all snooping processors)

4. sync (wait for the icbi to complete its bus operation)

5. isync (re-sync this processor’s instruction fetch)

The second sync instruction ensures completion of all prior icbi instructions. Note that the
second sync instruction is not shown in Section 5.1.5.2, “Instruction Cache Instructions,”
in The Programming Environments Manual. This sync is required on the MPC7451.

Since the sync instruction strongly serializes the MPC7451’s memory subsystem,
performance of code containing several icbi instructions can be improved by batching the
icbi instructions together such that only one sync instruction is used to synchronize all the
icbi instructions in the batch.

3.5 L1 Cache Operation
This section describes the MPC7451 cache operations performed by the L1 instruction and
data caches.

3.5.1 Cache Miss and Reload Operations

This section describes the actions taken by the L1 caches on misses for cacheable accesses.
Also, it describes what happens on cache misses for cache-inhibited accesses as well as
disabled and locked L1 cache conditions.

3.5.1.1 Data Cache Fills

The MPC7451 data cache blocks are filled (sometimes referred to as a cache reload) from
the L2 or L3 cache or the memory subsystem when cache misses occur for cacheable
accesses, as described in Section 3.1.2, “Load/Store Unit (LSU),” and Section 3.1.3,
“Memory Subsystem Blocks.”

When the data cache is disabled (HID0[DCE] = 0]), the MPC7451 treats all data accesses
as cache-inhibited (as if the memory coherency bit I = 1). Thus, even if the access would
have hit in the cache, it proceeds to the memory subsystem as cache-inhibited. When the
data is returned, it is forwarded to the requesting execution unit, but it is not loaded into any
of the caches.

From 0 to 8 ways of the data cache can be locked, as described in Section 2.1.5.5.9,
“Load/Store Control Register (LDSTCR),” and all 8 ways can also be locked by setting

3-42 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L1 Cache Operation

HID0[DLOCK]. When at least one way is unlocked, misses are treated normally and they
allocate in one of the unlocked ways on a reload. If all 8 ways are locked, load misses
proceed to the memory subsystem as normal cacheable accesses. In this case, the data is
forwarded to the requesting execution unit when it returns, but it is not loaded into the data
cache. If all 8 ways are locked, stores are sent to the memory subsystem as cacheable but
write-through (as if W = 1).

The accesses caused by the following instructions cause the MPC7451 to take a DSI
exception when the data cache is disabled or completely locked:

• lwarx or stwcx.

• dcbz

Note that cache-inhibited stores do not access any of the caches. See Section 3.5.3, “Store
Miss Merging.” for more information on the handling of cacheable store misses. Also, see
Section 3.6.4.1, “L2 Cache Miss and Reload Operations,” and Section 3.7.7.1, “L3 Cache
Miss and Reload Operations,” for more information on L2 and L3 cache fills, respectively.

3.5.1.2 Instruction Cache Fills

The instruction cache provides a 128-bit interface to the instruction unit, so four
instructions can be made available to the instruction unit in a single clock cycle on an L1
instruction cache hit. On a miss, the MPC7451 instruction cache blocks are loaded in one
32-byte beat from the L2 cache; the instruction cache is nonblocking, providing for hits
under misses.

The instruction cache operates similarly to the data cache when all eight ways are locked.
When the instruction cache is disabled (HID0[ICE = 0]), the instruction accesses bypass
the instruction cache. However, unlike the data cache, these accesses are forwarded to the
memory subsystem as cacheable and proceed to the L2 and L3 caches. When the
instructions are returned, they are forwarded to the instruction unit but are not loaded into
the instruction cache.

The instruction unit fetches a total of eight instructions at a time directly from the memory
subsystem for the following cases of cacheable instruction fetches:

• The instruction cache is disabled.

• The instruction cache is enabled, all 8 ways are locked, and the access misses in the
L1 cache.

Note that the MPC7451 bursts out of reset in MPX or 60x bus mode.

The MPC7451 always uses burst transactions for instruction fetches. If the instruction
cache is disabled (HID0[ICE]=0), the MPC7451 will do a four-beat burst for instruction
fetches and discard the last two beats. If the instruction cache is enabled (HID0[ICE]=1),
the MPC7451 will do a four-beat burst for instruction fetches and use all four beats.
Externally, at the next I-fetch, the address will increment by 16 bytes if the instruction cache

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-43

L1 Cache Operation

is disabled or the address will increment by 32 bytes if the instruction cache is enabled. For
more details about disabling the instruction and data cache see Section 2.1.5.1, “Hardware
Implementation-Dependent Register 0 (HID0),” Section 9.3.2.4.3, “Write-Through (WT),
Cache Inhibit (CI), and Global (GBL) Signals,” and Section 9.6.2.3.1, “60x Transfer Size
(TSIZ[0:2]) and Transfer Burst (TBST) Signals.”

Note that although the L1 instruction cache is physically addressed, the branch target
instruction cache (BTIC) is virtually addressed. However, it is automatically flushed when
the instruction cache is invalidated, when an exception occurs, or when a tlbie, icbi, rfi, or
isync instruction is executed. Because the BTIC is automatically flushed any time the
address mappings might change, aliases do not occur in the BTIC. See Section 6.3.1,
“General Instruction Flow,” for more information on the BTIC.

3.5.2 Cache Allocation on Misses

This section describes the allocation of cache lines for both instruction and data cache
misses. See Section 3.5.6, “L1 Cache Block Replacement Selection,” for more information
on L1 cache block replacement. See Section 3.6.4.2, “L2 Cache Allocation,” and
Section 3.7.7.2, “L3 Cache Allocation,” for more information on the allocation and
replacement algorithms used by the L2 and L3 caches of the MPC7451, respectively.

3.5.2.1 Instruction Access Allocation in L1 Cache

Instruction cache misses cause a new line to be allocated into the instruction cache on a
pseudo LRU basis, provided the cache is not completely locked or disabled.

3.5.2.2 Data Access Allocation in L1Cache

Data load or write-back store accesses that miss in the L1 data cache function similarly to
L1 instruction cache misses. They cause a new line to be allocated on a pseudo LRU basis,
provided the cache is not completely locked or disabled.

Note that modified data in the replacement line of any of the caches can cause a castout to
occur. In all of these cases, the castout is not initiated until the new data is ready to be
loaded. Note that one data access can cause multiple castout operations to be initiated (from
the various MPC7451 caches).

3.5.3 Store Miss Merging

Write-back stores that miss in the L1 data cache cause a data cache fill operation to occur
using the load queues of the LSU. The store data is preserved internally, and when the
remainder of the cache line has been loaded from the memory subsystem, the store data is
merged in to the appropriate bytes of the cache line as it is loaded into the data cache. See
Section 3.1.2.3, “Store Gathering/Merging,” for more information on store merging and

3-44 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L1 Cache Operation

Section 3.6.4.3, “Store Data Merging and L2,” for more information on store misses and
the L2 cache.

3.5.4 Store Hit to a Data Cache Block Marked Shared

When a write-back store hits in the L1 data cache and the block is shared, the target block
is invalidated in the data cache. The current data from the target block is then treated as a
store miss.

3.5.5 Data Cache Block Push Operation

When an L1 cache block in the MPC7451 is snooped (by another bus master) and the data
hits and is modified, the cache block must be written to memory and made available to the
snooping device. The push operation propagates out to the L2 and L3 caches, as well as the
system bus. The cache block that hits is said to be pushed out onto the system bus.

3.5.6 L1 Cache Block Replacement Selection

Both the instruction and data cache use a pseudo least-recently-used (PLRU) replacement
algorithm described in this section when a new block needs to be placed in the cache. Note
that data cache replacement selection is performed at reload time, not when a miss occurs.
Instruction cache replacement selection occurs when an instruction cache miss is first
recognized.

3.5.6.1 PLRU Replacement

Each L1 cache is organized as eight blocks (ways) per set by 128 sets. There is a identifying
bit for each way in the cache, L[0–7]. The PLRU algorithm is used to select the replacement
target. There are seven PLRU bits, B[0–6] for each set in the cache.

This algorithm does not prioritize replacing invalid entries over valid ones; a way is
selected for replacement according to the PLRU bit encodings shown in Table 3-6.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-45

L1 Cache Operation

The PLRU algorithm is shown graphically in Figure 3-16.

Figure 3-16. PLRU Replacement Algorithm

During power-up or hard reset, the valid bits of the L1 caches are not necessarily cleared
and they must be explicitly cleared by setting the respective flash invalidate bits
(HID0[DCFI] or HID0[ICFI]) before each cache is enabled. Subsequently, the PLRU bits
are cleared to point to way L0 of each set.

3.5.6.2 PLRU Bit Updates

Except for snoop accesses, each time a cache block is accessed, it is tagged as the most
recently used way of the set (unless accessed by the AltiVec LRU instructions; refer to
Section 7.1.2.1, “LRU Instructions”). For every hit in the cache or when a new block is

Table 3-6. L1 PLRU Replacement Way Selection

If the PLRU bits are:
Then the way selected for

replacement is:

B0

0

B1

0
B3

0 L0

0 0 1 L1

0 1
B4

0 L2

0 1 1 L3

1

B2

0
B5

0 L4

1 0 1 L5

1 1
B6

0 L6

1 1 1 L7

Replace
L0

Replace
L1

Replace
L2

Replace
L3

Replace
L4

Replace
L5

Replace
L6

Replace
L7

B0 = 0

B4 = 0

B1 = 0 B1 = 1 B2 = 1B2 = 0

B0 = 1

B3 = 0 B3 = 1 B4 = 1 B5 = 0 B5 = 1 B6 = 0 B6 = 1

3-46 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L1 Cache Operation

reloaded, the PLRU bits for the set are updated using the rules specified in Table 3-7. Note
that only three PLRU bits are updated for any given access.

3.5.6.3 AltiVec LRU Instruction Support

The data cache fully supports the AltiVec LRU instructions (lvxl, stvxl). If one of these
instructions causes a hit in the data cache, the PLRU bits are updated such that the way
which hit is marked as least-recently-used by using the PLRU update rules shown in
Table 3-8. If no other hit to the cache index occurs, this way is selected for replacement
upon the next data cache reload. Similarly, if an lvxl or stvxl instruction misses in the cache,
the PLRU bits are updated, as shown in Table 3-8, when that cache block reloads the data
cache. Note that the instruction cache is not subject to any AltiVec LRU accesses.

Table 3-7. PLRU Bit Update Rules

If the current
access is to:

Then the PLRU bits in the set are changed to the following 1:

1 x = Does not change

B0 B1 B2 B3 B4 B5 B6

L0 1 1 x 1 x x x

L1 1 1 x 0 x x x

L2 1 0 x x 1 x x

L3 1 0 x x 0 x x

L4 0 x 1 x x 1 x

L5 0 x 1 x x 0 x

L6 0 x 0 x x x 1

L7 0 x 0 x x x 0

Table 3-8. PLRU Bit Update Rules for AltiVec LRU Instructions

If the current AltiVec
LRU access is to:

Then the PLRU bits in the set are changed to the following 1:

1 x = Does not change

B0 B1 B2 B3 B4 B5 B6

L0 0 0 x 0 x x x

L1 0 0 x 1 x x x

L2 0 1 x x 0 x x

L3 0 1 x x 1 x x

L4 1 x 0 x x 0 x

L5 1 x 0 x x 1 x

L6 1 x 1 x x x 0

L7 1 x 1 x x x 1

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-47

L1 Cache Operation

Note that an AltiVec LRU access simply inverts the update value of the three PLRU bits
when compared to the normal (most-recently-used) update rules.

3.5.6.4 Cache Locking and PLRU

Care should be taken when locking between 1 and 8 ways in either of the L1 caches. For
the best performance, there should be an equal number of locked ways on each side of each
decision point of the binary tree shown in Figure 3-16, or all ways should be locked.
Otherwise, the PLRU replacement algorithm will be biased to replace certain ways.

3.5.7 L1 Cache Invalidation and Flushing

When software guarantees that memory is not shared, the data cache can be invalidated by
executing a series of loads followed by dcbf (or dcbi) instructions or by setting
HID0[DCFI]. The instruction cache can be invalidated by setting HID0[ICFI].

When coherency is required to be maintained and data is shared among caches in a system,
and the cache is going to be disabled or reconfigured, all the modified data in the data cache
can be flushed by executing the following instructions in this order:

1. Way n:

— a. Start with a base offset of zero. Perform a load followed by a dcbf instruction
to that same address.

— b. Increment the base offset by 32 bytes and perform the load/dcbf pair to the
new address.

— c. Repeat step b126 more times so that each load/dcbf pair addresses a different
cache line in a way (progressing through all 128 combinations of PA[24:30]),
assuming 36-bit physical addressing).

2. Way n + 1: Repeat the process shown in step 1 for the next way in the cache. This is
started by incrementing the base offset used for the last set in way n by 32 bytes.
Now PA[20:23] is incremented by one. Then repeat the remainder of step 1.

3. Way n + 2 to way n + 7: Repeat the process described in step 2 six more times
(effectively progressing through all 8 combinations of PA[20:23]).

The dcbf instructions described above are not required if the loads in the sequence can be
guaranteed to replace (flush) all the modified data in the cache and the loads can be from
known addresses that will not be modified. This can be accomplished by loading from a
memory range that will not be modified.

Exceptions and other events that can access the L1 cache should be disabled during this
time so that the PLRU algorithm can function undisturbed. However, if it is impossible to
disable exceptions and other events that can affect the PLRU, the sequence shown above
can be modified as follows:

3-48 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L1 Cache Operation

• Lock all ways in the data cache except way n. Then perform the process in step 1
above.

• Lock all ways in the data cache except way n + 1 and perform step 2, continuing
with step 3 by unlocking way n + 2 through way n + 7 and performing the load/dcbf
pairs for each unlocked way, one way at a time.

To minimize the time required to flush all the caches in the MPC7451, the L1 data cache
can be flushed before flushing either the L2 or L3 caches, thus eliminating the flushing of
the same line multiple times if it is modified in both the L1 and the L2 and/or L3 caches.
Note that if cache flushing is performed without using the dcbf instruction and the L2
and/or L3 are flushed before the L1, the L2 and L3 should be disabled before flushing the
L1 cache. This avoids loading of modified data into the L2 and L3. See 3.6.3.1.5, “Flushing
of L1, L2, and L3 Caches,” and Section 3.7.3.7, “L3 Cache Flushing,” for more information
on flushing the L2 and L3 caches, respectively.

3.5.8 L1 Cache Operation Summary

Table 3-10 summarizes all L1 cache activities caused by internal conditions. Table 3-9
defines some of the abbreviations used in Table 3-10. Note that the WIM bits are passed on
to the memory subsystem unless explicitly shown as overridden in the MSS request type
column of Table 3-10. See Section 3.8.4.2, “L1 Cache State Transitions and Bus Operations
Due to Snoops,” for a detailed description of L1 cache state transitions caused by external
bus snooping.

Table 3-9. Definitions for L1 Cache-State Summary

Term Definition

Load One of the following instructions: lbz, lbzx, lbzu, lbzux, lhz, lhzx, lhzu, lhzux, lha, lhax, lhau,
lhaux, lwz, lwzx, lwzu, lwzux, lhbrx, lwbrx, lmw, lswi, lswx, lvebx, lvehx, lvewx, lvx, lvxl,
lvsl,and lvsr. A load reads cache memory and returns a data value of between 1 and 16 bytes. If
the data is not in the L1 cache, the access causes a request to lower cache/memory to reload the
L1 cache with the 32-byte cache line containing the requested data. If the 8/16 bytes of data
(depending on size) containing the requested data are available before the rest of the cache line,
this critical double-word is forwarded to the requesting execution unit before the line is reloaded.
Note that misaligned loads and load string or load multiple may cause multiple memory accesses.

Store One of the following instructions: stb, stbx, stbu, stbux, sth, sthx, sthu, sthux, stw, stwx, stwu,
stwux, sthbrx, stwbrx, stmw, stswi, stswx, stvebx, stvehx, stvewx, stvx, stvxl. Stores cause
an update of cache and/or memory of 1–16 bytes of data, depending on the WIM settings. Stores
may cause a reload similar to loads above. Stores do not cause forwarding of data. Note that
misaligned stores and store string or store multiple may cause multiple memory accesses.

Touch One of the following instructions: dcbt or dst. Touches may cause a reload similar to loads above.
Touches do not cause forwarding of data. Note that data stream touch (dst) may cause multiple
memory accesses.

Store Touch One of the following instructions: dcbtst or dstst. Store touches may cause a reload similar to
loads above. Store touches do not cause forwarding of data. Note that data stream touch for store
(dstst) may cause multiple memory accesses

dss Data stream stop. It causes the tagged stream to stop prefetching. It is not sent to the MSS, and
has no effect on prefetch requests already sent to the MSS.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-49

L1 Cache Operation

lwarx The same as loads above, but also causes the setting of the reservation bit in the processor.

stwcx. The same as stores above, but the store is not performed unless the reservation is set, and the
reservation is cleared once the store passes the coherency point.

dcbst, dcbf Push modified data from any processor out to memory, and change valid lines to invalid.

dcbz, dcba Claims ownership of a line without reloading the data and zeroes out the line.

L1 Deallocate Caused by the allocation of a line in the L1 for a reload or dcbz. A deallocation casts out modified
data and invalidates the line.

MSS request and
MSS response

Memory subsystem request and memory subsystem response.

same The state is unchanged.

x Do not care.

n/a Does not apply.

Table 3-10. L1 Cache-State Transitions and MSS Requests

Internal
Operation

WIM
Setting

Initial L1
State

MSS
Request

MSS
Response

Final L1
State

Comments

Load I = 0 I Load S S Load miss. Deallocate a line in the
cache and reload the missing one from
the MSS.E E

S/E/M none n/a same Load hit—return data from L1.

I = 1 n/a Load n/a n/a Cache-inhibited load

dcbt/dst I = 0 I Touch S S Touch miss. Deallocate a line in the
cache and reload the missing one from
the MSSE E

S/E/M none n/a same No-op

I = 1 n/a none n/a n/a No-op

dcbtst/dsts I = 0 I/S Store Touch S S Store touch miss. Reload the
missing/shared one from the MSS If
missing; deallocate a line.E E

E/M none n/a same No-op

I = 1 n/a none n/a n/a No-op

dss x n/a none n/a n/a Stops a dst or dsts.

Table 3-9. Definitions for L1 Cache-State Summary (continued)

Term Definition

3-50 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L1 Cache Operation

lwarx I = 0 I LWARX S S Same as load, but atomic bit is set on
MSS access and reservation is set.

E E

S/E/M none n/a same Same as load hit, but set reservation

I = 1 n/a none n/a n/a Cache-inhibited lwarx causes DSI
exception.

W = 1 n/a none n/a n/a Write-through lwarx causes DSI
exception.

Store W = 0
I = 0

I Store n/a M If L1 = I, deallocate a cache line and
reload data from MSS. If L1 = S,
invalidate and allocate line before
initiating RWITM. Store data is merged
with reload data.

M = 0
W = 0
I = 0

S none n/a M

M = 1
W = 0
I = 0

S Store n/a M

W = 0
I = 0

E/M none n/a M Merge store data into L1.

I = 1 n/a Store n/a n/a Initiate a store request to the MSS
without changing cache state.

W = 1 I/S/E/M Store n/a same If line is valid, merge store data into L1.
Initiate a store request to MSS.

stwcx. W = 0
I = 0

I STWCX E M Same as stores, but do not store data if
reservation is not set. Reset
reservation when past coherency
point. Return whether successful.
Note: a stwcx. which loses its
reservation while pending in the MSS is
converted into a load and possibly
returns a shared response.

S S

M = 0
W = 0
I = 0

S none n/a M

M = 1
W = 0
I = 0

S STWCX E M

S S

W = 0
I = 0

E/M none n/a M

I = 1 n/a none n/a n/a Cache-inhibited stwcx. causes a DSI
exception.

W = 1 n/a none n/a n/a Write-through stwcx. causes DSI
exception.

dcbst x I/S/E DCBST n/a I Push any modified data out to memory.
Change cache line to invalid if it was
valid.M Write

w/Clean
n/a I

dcbf x I/S/E DCBF n/a I Push any modified data out to memory
and leave cache line invalid.

M Castout
(W = 1)

n/a I

Table 3-10. L1 Cache-State Transitions and MSS Requests (continued)

Internal
Operation

WIM
Setting

Initial L1
State

MSS
Request

MSS
Response

Final L1
State

Comments

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-51

L1 Cache Operation

dcbz I = 0
W = 0

I DCBZ n/a M Zero out data

M = 0
I = 0
W = 0

S none n/a M

M = 1
I = 0
W = 0

S DCBZ n/a M Claim ownership of line without
reloading data. Write all 0’s to cache.

I = 0
W = 0

E/M none n/a M Zero out data.

W = 1 I/S/E/M none n/a same Write-through or cache-inhibited dcbz
causes alignment exception.

I = 1 n/a none n/a n/a

dcba I = 0
W = 0

I DCBZ n/a M Same as dcbz for I = 0,W = 0.

M = 0
I = 0
W = 0

S none n/a M —

M = 1
I = 0
W = 0

S DCBZ n/a M Claim ownership of line without
reloading data. Write all 0’s to cache.

I = 0
W = 0

E/M none n/a M —

W = 1 n/a none n/a n/a Write-through or cache-inhibited dcba
is a no-op.

I = 1 n/a none n/a n/a

L1
Deallocate

x I/S/E none n/a I Deallocate is caused by an operation to
another address (e.g. load) requiring
an allocation of a cache line.
Cast out modified data and invalidate
line.

x M Castout
(W = 0)

n/a I

icbi x n/a ICBI n/a n/a No effect on D cache.

tlbie x n/a TLBIE n/a n/a No effect on L1 caches.

tlbsync x n/a TLBSYNC n/a n/a

sync x n/a SYNC n/a n/a

eieio x n/a EIEIO n/a n/a

eciwx x n/a ECIWX n/a n/a

ecowx x n/a ECOWX n/a n/a

Table 3-10. L1 Cache-State Transitions and MSS Requests (continued)

Internal
Operation

WIM
Setting

Initial L1
State

MSS
Request

MSS
Response

Final L1
State

Comments

3-52 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L2 Cache

3.6 L2 Cache
This section provides information about the on-chip L2 cache on the MPC7451. It describes
the L2 cache organization, the L2 features and how they are controlled, L2 cache operation,
and provides a summary of all actions of the L2 and L3 caused by internal operations in a
summary table. See Section 3.8.4.3, “L2 and L3 Operations Caused by External Snoops,”
for more information about the L2 cache and bus snooping.

3.6.1 L2 Cache Organization

The integrated L2 cache is organized as shown in Figure 3-17.

Figure 3-17. L2 Cache Organization for MPC7451

512 Sets

Line 5

Line 6

Line 7

Line 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Line 1

Line 2

Line 3

Line 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

Status

Status

Status

Status

Status

Status

Status

Status

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Status

Status

Status

Status

Status

Status

Status

Status

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Block 0 Block 1

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-53

L2 Cache

Figure 3-18. L2 Cache Organization for the MPC7447 and MPC7457

Each line consists of 64 bytes of data, organized as two blocks (also called sectors) that are
selected by one address bit. Although all 16 words in a cache line share the same address
tag, each block maintains the two separate status bits for the 8 words of the cache block, the
unit of memory at which coherency is maintained. Thus, each cache line can contain 16
contiguous words from memory that are read or written as 8-word operations. Note that the
line replacement information for the L2 cache is maintained on a line basis.

The L2 cache tags are fully pipelined and non-blocking for efficient operation. Thus, the
L2 cache can be accessed internally while a load for a miss is pending (allowing hits under
misses). A reload for a cache miss is treated as a normal access and blocks other accesses
for only a single cycle.

Similar to the L1 data cache, there are two status bits associated with each cache block of
the L2 cache. These bits are used to implement the modified/exclusive/shared/invalid
(MESI) cache coherency protocol. The coherency protocols are described in Section 3.3,
“Memory and Cache Coherency.”

3.6.2 L2 Cache and Memory Coherency

The MPC7451 models for memory and cache coherency described in Section 3.3,
“Memory and Cache Coherency,” for the L1 caches all apply for the L2 cache. Specifically,
the WIMG bit model, the MESI cache coherency protocol, and the architectural
implications of the ordering of loads and stores are as described in that section.

1024 Sets

Line 5

Line 6

Line 7

Line 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Line 1

Line 2

Line 3

Line 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

Status

Status

Status

Status

Status

Status

Status

Status

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Words [0–7]

Status

Status

Status

Status

Status

Status

Status

Status

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Words [8–15]

Block 0 Block 1

3-54 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L2 Cache

3.6.3 L2 Cache Control

The parameters for the L2 cache are controlled by L2CR, MSSCR0, and MSSSR0.

3.6.3.1 L2CR Parameters

The L2CR enables the L2 cache, enables parity checking on the L2, provides for
instruction-only and data-only modes, provides hardware flushing for the L2, and selects
between two available replacement algorithms for the L2 cache. L2CR is a supervisor-level
read/write, implementation-specific register that is accessed as SPR 1017. The contents of
L2CR are cleared during power-on reset. Refer to Section 2.1.5.5.1, “L2 Cache Control
Register (L2CR),” for the bit descriptions of L2CR.

3.6.3.1.1 Enabling the L2 Cache and L2 Initialization

When the L2 cache is disabled, all accesses bypass the L2. Before the L2 cache is enabled,
all L2 cache configurations must be set appropriately in L2CR and the L2 tags must be
invalidated in the following sequence:

1. Verify that L2CR[L2E] = 0.

2. Invalidate the entire L2 cache by setting L2CR[L2I]. See Section 3.6.3.1.4, “L2
Cache Invalidation.”

3. Poll L2CR[L2I] until it is cleared.

4. Set remaining desired bits in L2CR and then set L2CR[L2E].

The L2 cache is disabled out of reset, so L2CR[L2E] = 0. Note that out of reset, the
sequence above must obviously be preceded by the assertion and negation of HRESET per
the timing requirements in the MPC7451 Hardware Specifications.

Setting L2CR[L2E] enables operation of the L2 cache, including snooping of the L2. Note
that the dcbf, dcbst, and dcbi instructions have no effect on the L2 cache when it is
disabled.

3.6.3.1.2 Enabling L2 Parity Checking

The L2 cache maintains one parity bit per byte of data and an additional parity bit for each
tag (one tag parity bit per line).

L2 cache parity checking is enabled by setting L2CR[L2PE]. When L2CR[L2PE] = 1, L2
tag and data parity bits are independently generated and checked. When a parity error
occurs for either the L2 address or data buses, a machine check exception is generated if
MSR[ME] = 1. If MSR[ME] = 0, a checkstop occurs. Note that in the case of a machine
check exception caused by an L2 or L3 parity error, SRR1[11] is set and enabled L2 tag and
data parity errors are reported in the L2TAG and L2DAT bits of MSSSR0. See
Section 3.6.3.3, “L2 Parity Error Reporting and MSSSR0,” and Section 2.1.5.4, “Memory
Subsystem Status Register (MSSSR0),” for the detailed bit settings of MSSSR0.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-55

L2 Cache

3.6.3.1.3 L2 Instruction-Only and Data-Only Modes

The L2CR also maintains the L2IO and L2DO bits for limiting the types of new accesses
that are allocated into the L2. When L2CR[L2IO] is set, only instruction accesses that miss
in the L2 allocate new entries in the L2. Data accesses that hit (loads and stores) operate
normally (except for the case of store hits to blocks marked shared that actually function as
misses). When L2CR[L2DO] is set, only data accesses that miss in the L2 allocate new
entries in the L2. Instruction accesses that are already resident in the L2 (allocated before
L2DO was set) provide instructions normally.

If both L2IO and L2DO are set, the L2 is effectively locked, and no new entries are
allocated.

3.6.3.1.4 L2 Cache Invalidation

The L2 cache can be globally invalidated by setting L2CR[L2I]. This causes all valid bits
in the L2 cache to be cleared. When the MPC7451 completes the invalidation, L2CR[L2I]
is automatically cleared. See Section 3.6.3.1.4, “L2 Cache Invalidation,” for more
information.

When software sets L2CR[L2I], the L2 cycles through all the tags and invalidates every
entry in the cache without regard to the state of the line. The processor clears L2CR[L2I]
upon completing the invalidation of the entire cache. Software can poll L2CR[L2I] to know
when the invalidation is complete.

The sequence for performing a global invalidation of the L2 cache is as follows:

1. Execute a dssall instruction to cancel any pending data stream touch instructions.

2. Execute a sync instruction to finish any pending store operations in the load/store
unit, disable the L2 cache by clearing L2CR[L2E], and execute an additional sync
instruction after disabling the L2 cache to ensure that any pending operations in the
L2 cache unit have completed.

3. Initiate the global invalidation operation by setting the L2CR[L2I] bit.

4. Monitor the L2CR[L2I] bit to determine when the global invalidation operation is
completed (indicated by the clearing of L2CR[L2I]). The global invalidation
requires approximately 8K core clock cycles to complete.

5. After detecting the clearing of L2CR[L2I], re-enable the L2 cache for normal
operation by setting L2CR[L2E].

3.6.3.1.5 Flushing of L1, L2, and L3 Caches

The MPC7451 provides a hardware flushing mechanism for the L2 through the
L2CR[L2HWF] bit. Note that prior to flushing the caches, L2 prefetching must be disabled
(MSSCR0[L2PFE] = 0). When L2CR[L2HWF] is set, the L2 begins a flush by starting with
the first cache index. Each modified block (sector) is cast out as it is flushed. After the first
line in the first way is flushed (one block and then the other), then the next way (same

3-56 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L2 Cache

index) is flushed. When all ways for a given index have been flushed, the index is
incremented and same process occurs for line 1, etc.

During a hardware flush, the L2 services both read hits and bus snooping.

The hardware flush completes when all blocks in the L2 have a status of invalid. At this
time, the processor automatically clears L2CR[L2HWF]. However, even though the
hardware flush is considered complete, there may still be outstanding castouts queued in
the L2SQ that need to be performed to the L3 and outstanding castouts in the or BSQ
waiting to be performed to the system interface.

Note that if the L2 must be guaranteed to be completely invalid when flushing is complete,
software must ensure that the L2 does not allocate new entries while the L2 is being flushed
by locking the L2 cache by setting L2CR[L2IO] and L2CR[L2DO].

The L2CR[L2I] invalidation is a subset of the L2CR[L2HWF] flushing mechanism. Note
that some hardware resources are shared between the L2 and the L3 cache for supporting
the hardware assisted flushing/invalidation features. This means that the MPC7451 can not
support simultaneous flushing/invalidation of both caches. Thus these must be done
serially. The following sequence of steps is recommended for flushing the L1, L2 and L3
caches in the MPC7451:

1. Disable external interrupts (clear MSR[EE] to guarantee that the PLRU for the L1
is undisturbed by an interrupt handler).

2. Disable the L2 prefetching (clear MSSCR0[L2PFE]).

3. Flush the L1 data cache as described in Section 3.5.7, “L1 Cache Invalidation and
Flushing.”

4. Set the L2CR[L2IO] and L2CR[L2DO] bits to completely lock the L2 cache.

5. Perform an mtspr L2CR to set L2HWF.

6. Poll the L2CR[L2HWF] bit using mfspr L2CR until L2CR[L2HWF] is cleared.
When the bit is cleared, issue a sync. Although not necessary, the sync helps to
clear the store queues in the memory subsystem before getting started with the L3
flushing. At this point the L2CR[L2IO] and L2CR[L2DO] bits can be cleared.

7. Set the L3CR[L3IO] and L3CR[L3DO] bits to completely lock the L3 cache

8. Perform an mtspr L3CR to set L3HWF. See Section 3.7.3.7, “L3 Cache Flushing.”

9. Poll L3CR[L3HWF] using mfspr L3CR until it is cleared. When the bit is cleared,
issue a sync. Although not necessary, the sync helps to clear the store queues in the
memory subsystem. At this point the L3CR[L3IO] and L3CR[L3DO] bits can be
cleared.

Also note that because the MPC7451 shares the invalidation and flushing logic internally,
it is a programming error to set more than one of the following fields in the L2CR and L3CR
at a time: L2I, L2HWF, L3I, or L3HWF. Setting more than one of these bits at any one time
can cause one or both caches to not fully invalidate.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-57

L2 Cache

3.6.3.1.6 L2 Replacement Algorithm Selection

The L2 cache supports two pseudo-random modes of line replacement, selected by
L2CR[L2REP]: 3-bit counter mode, and pseudo-random number generator mode. See
Section 3.6.4.4, “L2 Cache Line Replacement Algorithms,” for a detailed description of the
two L2 replacement algorithms.

3.6.3.2 L2 Prefetch Engines and MSSCR0

Depending on the application, it may enhance performance to prefetch the second block of
an L2 cache line on a cache line miss, even if no data in the second block is currently
required. In this case, from one to 3 prefetch engines can be enabled to fill invalid blocks
(that share a line with a valid block) in the L2 cache.

The L2 prefetch engines are enabled through the MSSCR0[L2PFE] field. Note that it is an
error to enable the prefetch engines when the L2 cache is disabled. When prefetching is
enabled, a prefetch is initiated when a load, instruction fetch, or write-back store misses in
all the caches and the transaction must be performed to the external system interface for the
required block. In this case, a prefetch is initiated to fill the second (unrequired) block,
provided an enabled prefetch engine is available.

However, prefetches are not initiated if:

• The access is a data cache miss and the L2 cache is set up to cache instructions only
(L2CR[L2IO] = 1) or

• The access is an instruction cache miss and the L2 cache is set up to cache data only
(L2CR[L2DO] = 1).

Note that the L2 prefetches are also loaded into the L3 cache if it is enabled. Also note that
prior to flushing the caches MSSCR0[L2PFE] must be cleared, see Section 3.6.3.1.5,
“Flushing of L1, L2, and L3 Caches” for further details on how to flush the caches.

3.6.3.3 L2 Parity Error Reporting and MSSSR0

When L2 cache parity checking is enabled (L2CR[L2PE] = 1), L2 tag and data parity bits
are independently generated and checked. Enabled L2 tag and data parity errors are
reported in the L2TAG and L2DAT bits of MSSSR0. See Section 3.6.3.1.2, “Enabling L2
Parity Checking,” for more information.

3.6.3.4 Instruction Interactions with L2

The following instructions have effects on the L2 cache as listed:

• dcbz and dcba instructions that miss or hit as shared cause L2 allocation to reserve
the line and a kill is sent to the L3 and external bus interface. When the kill
completes, the L2 line is marked exclusive. dcbz instructions that hit as modified or
exclusive cause no L2 state change.

3-58 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L2 Cache

• On the MPC7451, dcba differs from dcbz only in its exception generation. As such,
it is identical to dcbz from an L2 perspective.

• Line pushes from the L1 data cache as the result of dcbf/dcbst instructions write
through to the L3 and external bus interface. dcbf invalidates the L2 cache block in
case of hit. A dcbst hit does not affect the block if it hits as either shared or
exclusive; it is changed to exclusive if it hits as modified.

• dcbf/dcbst instructions that do not require a castout from the L1 data cache are
issued to the L2 cache and perform an invalidate and/or castout from the L2 cache
to the L3 as required. If they do not require a castout from the L2 cache, they are also
issued to the L3.

• dcbf and dcbi instructions that address an area of memory marked with M = 1 cause
a global transaction on the system bus if the line is modified or if HID1[ABE] is set.

• icbi instructions bypass the L2 cache and are forwarded to the L3.

• sync and eieio instructions bypass the L2 cache, and are forwarded to the L3 for
further processing. Also, all sync and eieio instructions are broadcast on the system
bus if HID1[SYNCBE] = 1.

• eciwx, ecowx, tlbie, and tlbsync instructions bypass the L2 cache, and are
forwarded to the system interface for further processing.

• dcbf, dcbst, dcbi, icbi, tlbie, and tlbsync instructions are broadcast on the system
bus if HID1[ABE] = 1.

3.6.4 L2 Cache Operation

This section describes the MPC7451 L2 cache operations.

All accesses to the L2 cache that are marked cache-inhibited by address translation (by
MMU, or by default WIMG) bypass the L2 cache (even if they would have normally hit),
and do not cause any L2 state changes. Note that all data accesses performed while the L1
data cache is disabled are considered cache-inhibited by the L2 cache and the rest of the
memory subsystem. Therefore, all read accesses from the L2 cache are burst accesses
(32-byte reads).

Single-beat writes occur to the L2 cache for the following:

• Write-through (W = 1) accesses that hit in the L2

• Stores that hit if all ways of the L1 cache are locked with LDSTCR[DCWL]

• Stores that hit if the L1 data cache is completely locked with HID0[DLOCK] = 1

In these cases, the writes also propagate to the L3 cache and the system interface. If the L2
cache state for the block is not modified, the cache is updated, but the status bits for the
block are not changed.

In case of multiple pending requests to the L2 cache, the priorities are as shown in
Table 3-11.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-59

L2 Cache

This section contains a detailed description of L2 and L3 actions caused by L1 requests. For
more information on L2 and L3 actions caused by bus snooping, see Section 3.8.4.3, “L2
and L3 Operations Caused by External Snoops.”

3.6.4.1 L2 Cache Miss and Reload Operations

The MPC7451 L2 cache blocks are filled (sometimes referred to as a cache reload) from
the L3 cache or the memory subsystem when cache misses occur for cacheable accesses, as
described in Section 3.1.2, “Load/Store Unit (LSU),” and Section 3.1.3, “Memory
Subsystem Blocks.”

As an L2 cache line is received from the bus (or L3) it is loaded into the L2 cache and
marked according to the snoop response. If the reload requires a new line to be allocated in
the L2 cache and the current line is modified, the modified line is castout from the L2 cache
to the L3 cache at the time of the miss (not at the time of the reload).

Note that the L2 prefetch engines can be selected to fetch the second block of an L2 cache
line, even if it is not required by the program. See Section 3.6.3.2, “L2 Prefetch Engines
and MSSCR0,” for more information.

3.6.4.2 L2 Cache Allocation

Instruction cache misses in the L2 cache cause an L2 cache line to be allocated, provided
the L2 cache is enabled and not marked as data-only (with the L2CR[L2DO] bit). Similarly,
instruction cache misses in the L3 cache also cause an L3 cache line to be allocated,
provided the L3 cache is enabled and not marked as data-only (with the L3CR[L3DO] bit).

Also, data accesses cause an L2 cache line to be allocated if the L2 misses and the L2 is
enabled and not marked as instruction-only (with the L2CR[L2IO] bit). Also, data accesses
cause an L3 cache line to be allocated if the L3 misses and the L3 is enabled and not marked
as instruction-only (with the L3CR[L3IO] bit).

Table 3-11. L2 Cache Access Priorities

Priority Type of Access

1 Snoop request

2 Reload into L2 or L1

3 L2 castout

4 Snoop push or data intervention

5 In the following order:
a. Cacheable store miss in the L1 data cache
b. Load miss in the L1 data cache
c. Instruction miss in the L1 instruction cache

6 L1 castout

3-60 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L2 Cache

Write-back stores that miss in the L1 data cache but hit on an L2 cache block that is in the
shared state are treated as store misses, causing a RWITM transaction to the L3 and the bus.
In this case, the line is not deallocated, but it is reloaded as it is read from the L3 or the bus.

When the L1 data cache causes a castout and the L2 cache is enabled, the L2 cache does
not allocate a new line for the castout if it misses. If the castout hits in the L2, the new
castout data is written into the L2.

Transient accesses (caused by the dstt, dststt, lvxl, and stvxl instructions) are treated
similarly to non-transient accesses, except that transient accesses do not cause entries to be
allocated in either the L2 or L3 caches on a miss. However, when an L1 data cache miss
occurs for a transient operation, and the L2 or L3 cache hits, the L2 and L3 cache states are
updated appropriately.

3.6.4.3 Store Data Merging and L2

Write-through stores use byte enables in the L1 and L2 caches to merge the write data with
the current cache contents (if it hits). If the L2 hits, the entire block is written to the L2 and
the L2SQ (similar to a castout) for consumption by the L3 cache. If the L3 cache hits, the
entire line is consumed in the L3. If the L2 misses and the write is for fewer than 32 bytes,
the L3 block is flushed before the store is performed. In both cases, only the write data (and
not the complete, merged L2 block) is written to the bus.

3.6.4.4 L2 Cache Line Replacement Algorithms

The two pseudo-random modes of line replacement for the L2 cache (selected by
L2CR[L2REP]) are three-bit counter mode and pseudo-random number generator mode.
The three-bit counter mode (when L2CR[L2REP] = 1) is based on a simple three-bit
counter that is incremented on every clock cycle. When a miss occurs, the line in the way
pointed to by the counter is chosen for replacement.

The pseudo-random number generator mode (when L2CR[L2REP] = 0) uses 16 latches
that are clocked on every clock cycle as shown in Figure 3-19 with 3 XOR functions. The
L2 cache uses the value in latches 4, 9, and 15 as the 3-bit value that selects the way for
replacement.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-61

L2 Cache

Figure 3-19. Random Number Generator for L2 (and L3) Replacement Selection

Due to the latency of the L2 cache look-up, there are three clock cycles between a read miss
and the allocation of the replacement line. Thus, it would be possible that the same way can
be chosen for replacement for two, or even three consecutive read misses with the algorithm
as described above. In order to avoid this, the actual algorithm compares a selected
replacement line with the 3 previous replacement lines. If the selected line matches with
one of the 3 previous ones, the value of one, two, or three is automatically added to the
value that selects the way for replacement.

Note that the L3 cache uses the same pseudo-random number generator logic for selecting
replacement cache lines, but the L3 cache uses the values of three different latches for
selecting the way for L3 replacement. See Section 3.7.7.4, “L3 Cache Replacement
Selection,” for more information.

3.6.4.5 L2 and L3 Operations Caused by L1 Requests

This section contains a series of tables that define the actions of the L2 and L3 caches to
service the L1 caches. See Section 3.8.4.3, “L2 and L3 Operations Caused by External
Snoops,” for a description of L2 and L3 actions to service snoop requests.

Table 3-13 through Table summarize all L2 and L3 cache activities and the internal
conditions that cause them. Table 3-12 defines some of the abbreviations used in Table 3-13
through Table . Note the following:

• The WIM bits plus A (for atomic) are passed on to the memory subsystem unless
they are overridden.

• The t (transient) indicator is also passed on to the memory subsystem.

• Any operation that requires an allocate in the L2 or L3 may fail to perform the
allocate (whether due to a collision with a snoop, or due to the reload coming back
faster than the allocate can arbitrate). In this case, the final state of the L2 or L3

OR

XOR

XOR

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14 15

To L2

To L2

To L2

To L3

To L3

To L3

3-62 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L2 Cache

cache will be the same as the initial state (I if invalid before, or S for
store-hit_shared). For simplicity, the tables are written as if the allocate always
succeeds.

• A stwcx. operation pending in the MSS that has not yet arbitrated or gone out on the
bus may lose its reservation while it is pending. If this occurs, the RWITM atomic
transaction on the bus is self-retried, and the operation is turned into a load
operation. The MSS response to the L1 may be shared or exclusive depending on the
bus response. For simplicity, these tables do not include that scenario, since it
includes multiple transactions.

Table 3-12. Definitions for L2 and L3 Cache-State Summary

Term Definition

L1 Snoop The type of L1 snoop operation (if any) triggered by this MSS request.

MPX Bus Request The MPX bus request (if any) triggered by this operation and its initial state. Any WIM setting in
the MPX bus request type is a forced value (MMU WIM values are ignored).

Bus Response The value of the shared snoop response (if applicable) to the MPX bus request.

Final L2 State The MESI state of this address in the L2 cache after the operation completes. A represents the
allocated state for retry conditions.

Final L3 State The MESI state of this address in the L3 cache after the operation completes. A represents the
allocated state for retry conditions.

MSS Response to
L1

If reloading the L1, whether the reload data is exclusive or shared.

SMC Store miss complex. The series of queues that handle store misses.

Table 3-13. L2/L3 Cache State Transitions for Load, lwarx,
Touch, and IFetches

WIM
Initial L2

State
Initial L3

State
MPX Bus

Req
Bus

Resp
Final L2

State
Final L3

State
MSS Resp

to L1
Comments

I = 0
t = 0

I I Read
W = 0

S S S S Forward the critical data to L1
(except touch). Reload L1, L2
and L3 from bus.E E E E

S none n/a S same S Reload L1 and L2 from L3.

E/M none n/a E same E

S I/S/E/M none n/a same same S Reload L1 from L2.

E/M I/S/E/M none n/a same same E

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-63

L2 Cache

I = 0
t = 1

I I Read
W = 0

S same same S Read or touch transient. Return
reload data to L1, but don’t
allocate or reload L2 or L3.E same same E

S none n/a same same S

E/M same same E

S I/S/E/M none n/a same same S

E/M I/S/E/M none n/a same same E

I = 1 n/a n/a Read
W = 0

n/a n/a n/a n/a Bypass caches and perform
cache-inhibited bus read.

Table 3-14. L2/L3 Cache State Transitions for Store Touch Operations

WIM
Initial L2

State
Initial L3

State
MPX Bus

Req
Bus

Resp
Final L2

State
Final L3

State
MSS Resp

to L1
Comments

I = 0
t = 0

I/S I/S RClaim S S S S Reload L1, L2 and L3 from bus.

E E E E

E/M none n/a E same E Reload L1 and L2 from L3.

E/M I/S/E/M none n/a same same E Reload L1 from L2.

I = 0
t = 1

I/S I/S RClaim S same same S Store touch transient. Return
reload data to L1, but don’t
allocate or reload L2 or L3.E same same E

E/M none n/a same same E

E/M I/S/E/M none n/a same same E

Table 3-15. L2/L3 Cache State Transitions for Store (and stwcx.) Operations

WIM
Initial L2

State
Initial

L3 State
MPX Bus

Req
Bus

Resp
Final L2

State
Final L3

State
MSS Resp

to L1
Comments

W = 0
I = 0
t = 0

I I/S RWITM n/a E E E Reload L1, L2, and L3 from bus.
Allocate in L3 over shared state.

E/M none n/a E same E Reload L1 and L2 from L3.

S I/S RWITM n/a E E E Reload L1/L2/L3 from bus.

E/M none n/a E same E Reload L1/L2 from L3.

E/M I/S/E/M none n/a same same E Reload L1 from L2.

Table 3-13. L2/L3 Cache State Transitions for Load, lwarx,
Touch, and IFetches (continued)

WIM
Initial L2

State
Initial L3

State
MPX Bus

Req
Bus

Resp
Final L2

State
Final L3

State
MSS Resp

to L1
Comments

3-64 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L2 Cache

W = 0
I = 0
t = 1

I I RWITM n/a same same E Transient stores do not
allocate/reload the L2/L3
caches.

S RWITM n/a same same E If the L3 cache line gets flushed
before the data comes back,
then the line stays invalid.

E/M none n/a same same E —

S I RWITM n/a same same E If the L2/L3 cache state gets
flushed before reload, then the
line stays invalid.S RWITM n/a same same E

E/M none n/a same same E —

E/M I/S/E/M none n/a same same E —

W = 1 I I/S/E Write
w/Flush

n/a same same/I n/a Flush L3 if <32 bytes of
write-through data. If 32 bytes of
write-through data, data is
merged in L3 and tag state
remains the same. Do
write-through store on bus.

M Write
w/Kill
(W = 0,
M = 0),
Write
w/Flush

n/a same same/I n/a

S/E/M I Write
w/Flush

n/a same I n/a Merge data into L2. Put L2 data
into L2SQ. Do write-through
store of unmerged data on bus.

S/E/M Write
w/Flush

n/a same same n/a Merge data into L2. Put L2 data
into L2SQ. Write data into L3.
Do write-through store of
unmerged data on bus.

I = 1 n/a n/a Write
w/Flush

n/a n/a n/a n/a Bypass L2 and L3 caches and
do cache-inhibited store on bus.

Table 3-16. L2/L3 Cache State Transitions for Castout Operations

WIM
Initial L2

State
Initial L3

State
MPX Bus

Req
Bus
Resp

Final L2
State

Final L3
State

MSS Resp
to L1

Comments

W = 0
M = 0

I I Write
w/Kill
(W = 0,
M = 0)

n/a same same n/a Cast out L1 data to bus.

S/E/M none n/a same M n/a Cast out L1 data to L3.

S/E/M I/S/E/M none n/a M same n/a Cast out L1 data to L2.

W = 1 I/S/E/M I/S/E/M Write
w/Kill
(W = 1,
M = 0)

n/a I I n/a Push data from L1 for dcbf.

Table 3-15. L2/L3 Cache State Transitions for Store (and stwcx.) Operations

WIM
Initial L2

State
Initial

L3 State
MPX Bus

Req
Bus

Resp
Final L2

State
Final L3

State
MSS Resp

to L1
Comments

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-65

L2 Cache

Table 3-17. L2/L3 Cache State Transitions for L2 Castout Operations

WIM
Initial L2

State
Initial L3

State
MPX Bus

Req
Bus

Resp
Final L2

State
Final L3

State
MSS Resp

to L1
Comments

x M I Write
w/Kill
(W = 0,
M = 0)

n/a I same n/a Cast out L2 data to bus.

S/E/M none n/a I M n/a Cast out L2 data to L3.

Table 3-18. L2/L3 Cache State Transitions for L3 Castout Operations

WIM
Initial L2

State
Initial L3

State
MPX Bus

Req
Bus

Resp
Final L2

State
Final L3

State
MSS Resp

to L1
Comments

x n/a M Write w/Kill
(W = 0
M = 0)

n/a n/a I n/a Cast out L3 data to bus.

Table 3-19. L2/L3 Cache State Transitions for dcbf Operations

WIM
Initial L2

State
Initial L3

State
MPX Bus

Req
Bus

Resp
Final L2

State
Final L3

State
MSS Resp

to L1
Comments

x I I/S/E Flush n/a same I n/a Invalidate L3.

M Write
w/Kill
(W = 1,
M = 0)

n/a I I n/a Push data from L3 to bus.

S/E I/S/E Flush n/a I I n/a Invalidate L2 and L3.

M Write
w/Kill
(W = 1,
M = 0)

n/a I I n/a Push data from L3 to bus.

M I/S/E/M Write
w/Kill
(W = 1,
M = 0)

n/a I I n/a Push data from L2 to bus

Table 3-20. L2/L3 Cache State Transitions for dcbz Operations

WIM
Initial L2

State
Initial L3

State
MPX Bus

Req
Bus

Resp
Final L2

State
Final L3

State
MSS Resp

to L1
Comments

M = 0 I/S/E/M I/S/E/M none n/a same same E No need to claim
ownership. Synthesize L2
hit.

3-66 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L2 Cache

M = 1 I I/S Kill n/a E E E Claim ownership for line.

E/M none n/a E same E

S I/S Kill n/a E E E

E/M none n/a E same E

E/M I/S/E/M none n/a same same E —

Table 3-21. L2/L3 Cache State Transitions for dcbst Operations

WIM
Initial L2

State
Initial L3

State
MPX Bus

Req
Bus

Resp
Final L2

State
Final L3

State
MSS Resp

L1
Comments

x I/S/E I/S/E Clean n/a same same n/a —

M Write
w/Kill
(W = 1)

n/a same E n/a Push data from L3 to bus.

M I Write
w/Kill
(W = 1,
M = 0)

n/a E same n/a Push data from L2 to bus.

S/E/M Write
w/Kill
(W = 1)

n/a E E n/a Push data from L2 to bus,
capturing it in L3.

Table 3-22. L2/L3 Cache State Transitions for Write with Clean Operations

WIM
Initial L2

State
Initial L3

State
MPX Bus

Req
Bus

Resp
Final L2

State
Final L3

State
MSS Resp

to L1
Comments

x I I Write w/Kill
(W = 1,
M = 0)

n/a same same n/a Push data from L1 to bus.

S/E/M Write w/Kill
(W = 1,
M = 0)

n/a same E n/a Push data from L1 to bus,
capturing it in L3.

S/E/M I Write w/Kill
(W = 1,
M = 0)

n/a E same n/a Push data from L1 to bus,
capturing it in L2.

S/E/M Write w/Kill
(W = 1,
M = 0)

n/a E E n/a Push data from L1 to bus,
capturing it in L2 and L3.

Table 3-20. L2/L3 Cache State Transitions for dcbz Operations (continued)

WIM
Initial L2

State
Initial L3

State
MPX Bus

Req
Bus

Resp
Final L2

State
Final L3

State
MSS Resp

to L1
Comments

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-67

L3 Cache Interface

3.7 L3 Cache Interface
This section describes the MPC7451 microprocessor L3 cache interface, and its
configuration and operation. It describes how the MPC7451 signals, defined in Chapter 8,
“Signal Descriptions,” interact to perform address and data transfers to and from the L3
cache. Note that the L3 cache is not supported by the MPC7441, MPC7445, and MPC7447.
F

3.7.1 L3 Cache Interface Overview

The MPC7451’s L3 cache interface is implemented with an on-chip, eight-way
set-associative tag memory with 2K tags per set, and a dedicated interface with support for
up to 2 Mbyte of external synchronous SRAMs.

The tags are sectored to support either two or four cache blocks per tag entry, depending on
the L3 cache size. Each sector (32-byte cache block) in the L3 cache has two status bits that
are used to implement the MESI cache coherency protocol. Accesses to the L3 cache can
be designated as write-back or write-through and the L3 maintains cache coherency
through snooping.

The L3 interface can be configured to use 1 Mbyte or 2 Mbytes (or 4 M bytes only for the
MPC7457) of the SRAM area as a private memory space. Accesses to private memory do
not propagate to the system bus. The MPC7451 can also be configured to use the first 1
Mbyte of SRAM as L3 cache and the second 1 Mbyte as private memory. In this case,
accesses to the private memory space do not propagate to the L3 cache (or the external

Table 3-23. L2/L3 Cache State Transitions for Remaining Instructions

MSS Op
Initial L2

State
Initial L3

State
MPX Bus

Req
Bus

Resp
Final L2

State
Final L3

State
MSS Resp

to L1
Comments

icbi n/a n/a ICBI n/a n/a n/a n/a No action in L2/L3 cache.

tlbie n/a n/a TLBIE n/a n/a n/a n/a No action in L2/L3 cache.

tlbsync n/a n/a TLBSYNC n/a n/a n/a n/a No action in L2/L3 cache

sync n/a n/a SYNC n/a n/a n/a n/a sync causes ordering of
previous and subsequent
loads/stores from the same
processor.

eieio n/a n/a EIEIO n/a n/a n/a n/a eieio causes ordering of
certain loads and stores.

eciwx n/a n/a xferdata n/a n/a n/a n/a eciwx bypasses L2 and L3
and performs a graphics
read operation on the bus.

ecowx n/a n/a xferdata n/a n/a n/a n/a ecowx bypasses L2 and L3
caches and performs a
graphics write operation on
the bus.

3-68 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L3 Cache Interface

system bus). For the MPC7457, the L3 can be configured to use the first 2 Mbyte of SRAM
as L3 cache and the second 2 Mbyte as private memory.

The L3 cache control register (L3CR) provides control of L3 cache configuration, private
memory control, and interface timing. The L3 private memory control register (L3PM)
configures the private memory address range.

The L3 cache interface provides two clock outputs that allow the clock inputs of the
SRAMs to be driven at select frequency divisions of the processor core frequency.

3.7.2 L3 Cache Organization

The L3 cache tags address four blocks (128 bytes) with each tag entry (line) when 2 Mbyte
of external SRAM is used; they address two blocks (64 bytes) with each tag entry when
1 Mbyte of external SRAM is used. Each block maintains distinct coherency status bits and
coherency is maintained in the same way as in the L2 cache. Also similar to the L2 cache,
L3 entries are replaced on a line basis. Thus the organization is similar to that of the L2
cache (shown in Figure 3-17) when the L3 is configured for 1 Mbyte of SRAM, except that
there are 2,048 sets. Additionally, when configured for 2 Mbytes of SRAM, there are twice
as many blocks per line.

3.7.3 L3 Cache Control Register (L3CR)

The L3 cache control register (L3CR) controls the L3 cache configuration, timing, and
operation. The following sections describe the L3 cache control parameters in the L3CR.

The L3CR is a supervisor-level read/write, implementation-specific register that is
accessed as SPR 1018. The contents of L3CR are cleared during power-on reset. See
Section 2.1.5.5.2, “L3 Cache Control Register (L3CR),” for additional information about
the configuration of the L3CR.

The private memory feature of the MPC7451 is enabled with the L3CR[PMEN] and the
size is determined by L3CR[PMSIZ]. These fields are described further in Section 3.7.8,
“L3 Private Memory Operation.”

3.7.3.1 Enabling the L3 Cache and L3 Initialization

The L3 cache is enabled or disabled by programming the L3CR[L3E] parameter. This
parameter enables or disables the operation of the L3 cache (including snooping) starting
with the next transaction that the L3 cache unit receives. When the L3 cache is disabled, the
cache tag status bits are ignored and all accesses are propagated to the system bus.

Following a power-on or hard reset, the L3 cache and the L3 clocks are disabled initially.
Before enabling the L3 cache, the L3 clock must first be configured through the
L3CR[L3CLK] and L3CR[CLKEN] bits, and a period of time must elapse. Also before

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-69

L3 Cache Interface

enabling the L3 cache, all other bits in the L3CR must be set appropriately, and the L3 cache
must be globally invalidated.

The sequence for initializing the L3 cache is as follows:

Verify that L3CR[L3E] = 0.

1. Set the L3CR[L3CLK] bits to the desired clock divider setting. All other L3 cache
configuration bits should be set to properly configure the L3 cache interface for the
SRAM type, size, and interface timing required, except do not set L3E, L3I, L3PE,
or L3CLKEN.

2. Set L3CR[5] (otherwise reserved bit) to 1.

3. Set L3CR[L3CLKEN] to 1.

4. Wait for the L3 cache clocks to stabilize (100 processor cycles). This can be timed
by setting the decrementer for a time period equal to the correct number of L3
cache clocks, or by performing an L3 cache global invalidate.

5. Perform an L3 cache global invalidate. The global invalidate could be performed
before enabling the L3 clocks, or in parallel with waiting for the L3 clocks to
stabilize. Refer to Section 3.7.3.6, “L3 Cache Invalidation,” for more information
about L3 cache global invalidation. Note that a global invalidate always takes much
longer than it takes for the L3 clocks to stabilize.

6. Clear L3CR[L3CLKEN] to zero.

7. Perform a sync instruction and wait 100 processor cycles.

8. Set the L3E and L3CLKEN bits of L3CR.

9. Perform a sync instruction and wait 100 processor cycles.

After the L3 clocks stabilize, an L3 cache global invalidate has been performed, and the
other L3 cache configuration bits have been set, enable the L3 cache for normal operation
by setting the L3CR[L3E] bit to 1.

Before the L3 cache is disabled it must be flushed to prevent coherency problems. The
cache management instructions dcbf, dcbst, and dcbi do not affect the L1 data, L2 or L3
caches when the caches are disabled.

3.7.3.2 L3 Cache Size

The L3CR[L3SIZ] bit configures the size of the L3 cache and it should be set according to
the organization of the L3 data RAMs that are present. Table 3-24 lists the data RAM
organizations for the two L3 cache sizes noting that a 64/72-bit data bus size is always used.
Table 3-24 also indicates typical SRAM sizes that might be used to construct such a cache

3-70 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L3 Cache Interface

3.7.3.3 L3 Cache SRAM Types

The L3CR[L3RT] bits configure the L3 interface for the type of synchronous SRAMs that
are used. The MPC7451 supports:

• MSUG2 dual data rate SRAMs that provide data synchronous to the
L3_ECHO_CLK input signals to the MPC7451 and on each clock edge

• Late-write SRAMs which are required by the MPC7451 to be of the pipelined
(register-register) configurations

• Pipeline burst SRAMs, referred to as PB2-type SRAMs

Note that the burst feature built into standard burst SRAMs and late-write SRAMs is not
used by the MPC7451.

3.7.3.4 L3 Cache Data-Only and Instruction-Only Modes

Similar to the L2 cache, the L3 cache can be configured so that subsequent instruction
accesses are not allocated into the L3 cache. Also, it can be configured so that subsequent
data accesses are not allocated into the L3 cache. These instruction-and data-only features
can be used together to effectively lock the contents of the L3 cache.

3.7.3.4.1 L3 Instruction-Only and Data-Only Operation

The L3CR maintains the L3IO and L3DO bits for limiting the types of new accesses that
are allocated into the L3. When L3CR[L3IO] is set, only instruction accesses that miss in
the L3 allocate new entries in the L3. Data accesses that hit (loads and stores) operate
normally (except for the case of store hits to blocks marked shared that actually function as
misses). When L3CR[L3DO] is set, only data accesses that miss in the L3 allocate new
entries in the L3. Instruction accesses that are already resident in the L3 (allocated before
L3DO was set) provide instructions normally.

3.7.3.4.2 L3 Cache Locking Using L3CR[L3DO] and L3CR[L3IO]

The MPC7451 L3 cache can be locked by setting both the L3DO and L3IO bits of the
L3CR. This prevents instruction cache misses from reloading the L3 cache and prevents
data cache misses (or store hits that are marked as shared) from allocating entries in the L3

Table 3-24. L3 Cache Sizes and Data RAM Organizations for the MPC7451

L3 Cache
Size

L3 Data RAM
Organization

Example SRAM Sizes
That Might Be Used

1 Mbyte (L3CR[L3SIZ] = 0) 128K x 64/72 (2) 128K x 32/36

2 Mbyte (L3CR[L3SIZ] = 1) 256K x 64/72 (2) 256K x 32/36

Notes:
The MPC7451 supports only one bank of SRAMs.
For very high speed operation, no more than two SRAMs should be used.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-71

L3 Cache Interface

cache. Note that locking the L3 cache using this mechanism is completely independent of
L1 data or instruction cache and L2 cache locking.

3.7.3.5 L3 Cache Parity Checking and Generation

The L3CR[L3PE] parameter enables parity checking for the L3 data RAM interface.
Additionally setting L3CR[APE] enables parity checking for the L3 address bus;
L3CR[L3PE] and L3CR[APE] must both be set to enable L3 address bus parity checking.
When L3PE is cleared, all L3 parity checking is disabled.

Note that the L3 interface always generates and drives parity on the L3DP[0:7] signals for
writes to the SRAM array. The parity assignments for the L3DP[0:7] signals are as shown
in Table 3-25.

L3CR[L3PE] also enables parity checking of the on-chip L3 tags and status bits. When
L3CR[L3SIZ] = 0 (1 Mbyte of L3 cache), the 19 bits of L3 tag and one set of 3 status bits
(22 bits total) are checked by one internal parity bit. Additionally, a second set of 3 status
bits (for the second block) is checked by a second parity bit. When the L3 is configured for
2 Mbytes of cache, (L3CR[L3SIZ] = 1), the status bits for the third and fourth block are
checked by two additional parity bits. All of these internal parity bits are set so that the bits
being checked, plus the parity bit, contain an odd number of 1’s.

When a parity error occurs for either the L3 address or data buses, or the internal tags and
status bits, a machine check exception is generated if MSR[ME] = 1. If MSR[ME] = 0, a
checkstop occurs. In the case of a machine check exception caused by an L2 or L3 parity
error, SRR1[11] is set and MSSSR0 is set appropriately, to indicate which parity error
caused the exception. Note that the MSSSR0 bits are set for parity errors even if
MSR[ME] = 0 and no exception occurs. See Section 2.1.5.4, “Memory Subsystem Status
Register (MSSSR0),” for more information on MSSSR0.

Table 3-25. L3 Data Parity Signal Assignments

L3DP[0:7] Signal L3[L3APE], L3[L3PE] = 01 L3[L3APE], L3[L3PE] = 11

L3DP[0] L3DATA[00:07] L3DATA[00:07], L3ADDR[16:18]

L3DP[1] L3DATA[08:15] L3DATA[08:15], L3ADDR[14:15]

L3DP[2] L3DATA[16:23] L3DATA[16:23], L3ADDR[12:13]

L3DP[3] L3DATA[24:31] L3DATA[24:31], L3ADDR[10:11]

L3DP[4] L3DATA[32:39] L3DATA[32:39], L3ADDR[08:09]

L3DP[5] L3DATA[40:47] L3DATA[40:47], L3ADDR[05:07]

L3DP[6] L3DATA[48:55] L3DATA[48:55], L3ADDR[02:04]

L3DP[7] L3DATA[56:63] L3DATA[56:63], L3ADDR[00:01]

3-72 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L3 Cache Interface

3.7.3.6 L3 Cache Invalidation

The MPC7451 supports invalidation of the L3 cache through the L3CR[L3I] parameter.
Setting L3I causes a global invalidation of the L3 cache. The MPC7451 performs an
invalidation by automatically sequencing through the L3 cache tags and clearing all the
status bits for each tag. The global invalidation function must be performed only while the
L3 cache is disabled. L3I must never be set while the L3 cache is enabled.

The L3 cache tags must be explicitly invalidated by software after a power-on or hard reset
by setting the L3I bit.

L3CR[L3I] is automatically cleared when an L3 global invalidate is complete. It should be
monitored after an L3 global invalidate has been initiated to determine when the global L3
invalidation has completed.

The sequence for performing a global invalidation of the L3 cache is as follows:

1. Execute a dssall instruction to cancel any pending data stream touch instructions.

2. Execute a sync instruction to finish any pending store operations in the load/store
unit, disable the L3 cache by clearing L3CR[L3E], and execute an additional sync
instruction after disabling the L3 cache to ensure that any pending operations in the
L3 cache unit have completed.

3. Initiate the global invalidation operation by setting the L3CR[L3I] bit.

4. Monitor the L3CR[L3I] bit to determine when the global invalidation operation is
completed (indicated by the clearing of L3CR[L3I]). The global invalidation
requires approximately 8K core clock cycles to complete.

5. After detecting the clearing of L3CR[L3I], re-enable the L3 cache for normal
operation by following the L3 initialization procedure described in Section 3.7.3.1,
“Enabling the L3 Cache and L3 Initialization.”

3.7.3.7 L3 Cache Flushing

The MPC7451 provides a hardware flush mechanism for the L3 cache through
L3CR[L3HWF]. This hardware flush method is the recommended method for flushing the
L3 cache. When the processor detects a state transition from 0 to 1 in L3HWF, the
MPC7451 initiates a hardware flush of the L3 cache.

The flush is performed by starting with the lowest cache index and flushing all cache entries
with that index through all the ways of the cache one way at a time until all ways are
flushed. Thus, the next index is selected and the same process is repeated for all ways with
that index. For each index and way of the cache, the processor generates a castout operation
to the system bus for all modified cache blocks. At the end of the hardware flush, all lines
in the L3 cache tags are in the invalid state. During the flush, read hits and snoops are fully
serviced by the L3 cache.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-73

L3 Cache Interface

When the L3 cache tags have been fully flushed of all valid entries, the L3CR[L3HWF] bit
is automatically cleared. Note that when L3HWF is cleared, it does not guarantee that all
lines from the L3 have been written completely to the system interface. L3 castouts may
still be queued up in the bus interface unit. A final sync instruction is required to guarantee
that all data from the L3 cache has been written to the system address bus.

Note that if the L3 must be guaranteed to be completely invalid when flushing is complete,
software must ensure that the L3 does not allocate new entries while the L3 is being flushed
by locking the L3 cache by setting L3CR[L3IO] and L3CR[L3DO].

Section 3.6.3.1.5, “Flushing of L1, L2, and L3 Caches,” contains procedures for flushing
all of these caches and describes the serial requirements for flushing and invalidation of the
L2 and L3 caches, as much of this logic is shared.

3.7.3.8 L3 Cache Clock and Timing Controls

The L3CR[L3CLK] parameter specifies the operating frequency for the L3 data RAM
interface. This is expressed as a clock divider ratio relative to the MPC7451 core clock
frequency. When L3CR[L3CLKEN] = 0, the L3 data signals are not driven or latched and
the L3 clock outputs (L3_CLK[0:1]) are turned off. After setting the L3 clock ratio, a period
of at least 100 processor clock cycles must elapse before enabling the L3 interface. Note
that L3CR[L3CLK] should only be changed after L3CR[L3CLKEN] has been cleared for
at least 100 processor clocks.

The SRAMS use the L3_CLK[0:1] signals to synchronously sample the address, control
and write data signals. If DDR SRAMs are used, they drive a skewed version of the
L3_CLK signals into the L3_ECHO_CLK[0:3] inputs of the MPC7451. The
L3_ECHO_CLK[0:3] inputs are synchronous to the SRAM outputs. If PB2 or late-write
SRAM are used, a feedback loop on the L3_ECHO_CLK signals is employed for
synchronization; see the MPC7451 Hardware Specifications for more information. As the
MPC7451 latches read data relative to L3_ECHO_CLK signals, it is synchronized to the
processor clock using a first-in-first-out structure (FIFO) to eliminate metastability. When
a beat of data is latched by the L3 interface, it is stored in the receive FIFO so that additional
beats can be received even if the processor has not yet sampled the data and forwarded it to
the L3 accumulator.

The L3CR[L3NIRCA] specifies the timing of L3_CLK[0:1] relative to the L3 address,
data, and control buses. When L3CR[L3NIRCA] = 1, L3_CLK[0:1] is driven earlier
relative to the L3 address, data, and control buses only when using non-integer frequency
divider ratios. Setting L3CR[L3NIRCA] may be useful in a system requiring extra hold
time on the L3 output signals. Note that MSSCR0[L3TCEN] (L3 turnaround clock enable)
and MSSCR0[L3TC] (L3 turnaround clock count) allow a delay to be added between L3
reads and writes to allow the read/write mode switch to settle. This may be useful for
troubleshooting systems when additional dead cycles between read and write transactions
are desirable. In most cases, these bits should be cleared.

3-74 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L3 Cache Interface

3.7.3.9 L3 Sample Point Configuration

The L3CR[L3CKSP], L3CR[L3CKSPEXT], L3CR[L3PSP] bits specify the L3 and
processor clock cycles in which the MPC7451 samples data from the receive FIFO on a
read and loads the data into the L3 bus accumulator. In order to calculate the correct values
of L3CR[L3CKSP] and L3CR[L3PSP] for internal sampling, the expected delays of
L3_ECHO_CLK[0:3] must be estimated. Since these settings determine when the
processor will forward data from the FIFO of the L3 data signals, incorrect settings may
cause unpredictable and unrepeatable results, including data corruption and system
instability. All of the following must be taken into account:

• Signal delays of the board

• For DDR, any delays between the reception of an L3_CLK edge by the SRAM and
the generation of the corresponding L3_ECHO_CLK edge

• Offset of the external L3_CLK[n] pins with respect to the internal L3 clock

• Internal delays associated with the L3_CLK[n] and L3_ECHO_CLK[n] pins

• Access time of the L3 SRAM

• Number of data beats that must be valid before sampling can occur

For details on the L3_CLK offset and internal delays of L3_CLK[n] and
L3_ECHO_CLK[n], see the MPC7451 Hardware Specifications.

Finally, L3CR[SPO] affects the L3 interface signal timing by adding one L3 clock cycle of
latency on read operations when it is set. The L3CR[SPO] bit is reserved for future SRAM
devices that may require the additional latency.

3.7.3.9.1 Pipeline Burst and Late-Write SRAM

One beat of data is sampled from the L3 accumulator in each L3 clock cycle for PB2 and
late-write SRAM, so the FIFO must not be sampled until after the first data beat is valid. A
core-to-L3 clock ratio of 4:1 is shown in this example. Since the first beat of data is valid
in the FIFO on the third core clock within the second L3 clock period, the minimum sample
point setting is L3CKSP = 2 and L3PSP = 3. In many systems, it may be necessary to allow
additional time for the data to be valid. In these instances, sampling can be delayed by
adding one or more core clocks to the sample point settings. Because of the critical nature
of these settings, it is strongly recommended to use conservative sample point settings. The
earliest recommended sample point is at least one core cycle after the earliest possible
sample (L3CKSP = 3 and L3PSP = 0) as shown in Figure 3-20.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-75

L3 Cache Interface

Figure 3-20. Example L3 Accumulator Sample Point Configuration for PB2 and
Late-write SRAM

3.7.3.9.2 MSUG2 DDR SRAM

Two beats of data are forwarded into the L3 accumulator in each L3 clock cycle for DDR
SRAM. Because of this, the FIFO must not be sampled until after the second data beat is
valid. A core-to-L3 clock ratio of 4:1 is shown in this example. Since the second beat of
data is valid in the FIFO on the second core clock within the third L3 clock period, the
minimum sample point setting is L3CKSP = 3 and L3PSP = 2. In many systems, it may be
necessary to allow additional time for the data to be valid. In these instances, sampling can
be delayed by adding one or more core clocks to the sample point settings. Because of the
critical nature of these settings, it is strongly recommended to use conservative sample
point settings The earliest recommended sample point is at least one core cycle after the
earliest possible sample (L3CKSP = 3 and L3PSP = 3) as shown in Figure 3-21.

Read 0

1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

L3_CLK
Reference

Reference

L3_ADDR,
L3_CNTL

L3_CLK[n]

L3_DATA

L3 Receive

L3 Return
Data

CLK
Processor

CLK
Processor

0 1 2 3 4 5

0

Internal
L3_CLK

L3_ECHO_
CLK[n]

FIFO entries

Read 1

Earliest recommended L3 accumulator
sample point: L3CKSP = 3 and L3PSP = 0.

Read 2 Read 3

Data 0 Data 1 Data 2

Data 0

Data 2

Data 0 Data 1 Data 2

Data 1

3-76 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L3 Cache Interface

Figure 3-21. Example L3 Accumulator Sample Point Configuration for MSUG2 DDR
SRAM

3.7.4 L3 Private Memory Address Register (L3PM)

The 16-bit L3PM[PMBA] parameter specifies the starting base address of the private
memory of the L3 cache interface of the MPC7451 when it is enabled. The address is
aligned to the appropriate block size. If the upper 16 bits of physical address (with extended
addressing enabled (HID0[XAEN] = 1)) of a load, store or cache operation match the value
in PMBA, the data is read or written from the external SRAMs. If extended addressing is
disabled, the upper four bits of PMBA must be zero in order to be able to match the internal
value of A0–A3 (which are zero). Note that transactions that hit in the private memory
space are not visible on the external system bus.

Note also that either 1, 2, or 4 Mbytes of private memory can be specified. If 2 Mbytes of
private memory are specified, only the upper 15 bits of the physical address are compared
with [PMBA[0–14]. For 4 Mbytes of private memory, only the upper 14 bits of the physical
address are compared with [PMBA[0–13].

The L3PM is a supervisor-level read/write, implementation-specific register that is
accessed as SPR 983. The contents of the L3PM are cleared during power-on reset. See
Section 2.1.5.5.10, “L3 Private Memory Address Register (L3PM),” for information about

Read 0

1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

L3_CLK
Reference

Reference

L3_ADDR,
L3_CNTL

L3_CLK[n]

Data 0 Data 1

Data 3

Data 0 & 1

L3_DATA

L3 Receive

L3 Return
Data

CLK
Processor

CLK
Processor

0 1 2 3 4 5

0

Internal
L3_CLK

L3_ECHO_
CLK[n]

FIFO entries

Data 0

Data 2
Data 1

Read 2

Data 2 Data 3

Data 2 & 3

Earliest recommended L3 accumulator sample
point: L3CKSP = 3 and L3PSP = 3

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-77

L3 Cache Interface

programming the L3PM and see Section 3.7.8, “L3 Private Memory Operation,” for more
information about enabling L3 private memory and the operation of this feature.

3.7.5 L3 Parity Error Reporting and MSSSR0

When L3 cache parity checking is enabled (L3CR[L3PE] = 1), L3 tag and data parity bits
are independently generated and checked. Enabled L3 tag and data parity errors are
reported in the L3TAG and L3DAT bits of MSSSR0. See Section 3.7.3.5, “L3 Cache Parity
Checking and Generation,” and Section 2.1.5.4, “Memory Subsystem Status Register
(MSSSR0),” for more information.

3.7.6 Instruction Interactions with L3

The following instructions have effects on the L3 cache as follows:

• dcbz and dcba instructions that miss or hit as shared cause L3 allocation to reserve
the line and a kill is sent to the external bus interface. When the kill completes, the
L3 line is marked exclusive. dcbz instructions that hit as modified or exclusive cause
no L3 state change.

• On the MPC7451, dcba differs from dcbz only in its exception generation. As such,
it is identical to dcbz from an L3 perspective.

• Line pushes from the L1 data cache as the result of dcbf/dcbst instructions write
through to the external bus interface. dcbf invalidates the L3 cache block in case of
hit. A dcbst hit does not affect the block if it hits as exclusive. If it hits as modified
in the L3, then it is changed to exclusive. If it hits as shared in the L3 but it is
modified in the L1 or L2, it is changed to exclusive.)

• dcbf/dcbst instructions that do not require a line push from the L1 data cache or L2
cache are issued to the L3 cache and perform an invalidate and/or castout from the
L3 cache to the system bus as required. If they do not require a castout from the L3
cache, they are issued to the system bus as a flush (for dcbf) or clean (for dcbst).

• dcbf and dcbi instructions that address an area of memory marked with M = 1 cause
a global transaction on the system bus if HID1[ABE] = 1.

• icbi instructions bypass the L3 cache and are forwarded to the system bus.

• sync and eieio instructions bypass the L3 cache, and are forwarded to the L3 for
further processing. Also, all sync and eieio instructions are broadcast on the system
bus if HID1[SYNCBE] = 1.

• eciwx, ecowx, tlbie, and tlbsync instructions bypass the L3 cache, and are
forwarded to the system interface for further processing.

• dcbf, dcbst, dcbi, icbi, tlbie, and tlbsync instructions are broadcast on the system
bus if HID1[ABE] = 1.

3-78 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L3 Cache Interface

3.7.7 L3 Cache Operation

The MPC7451’s L3 cache is a combined instruction and data cache that receives memory
requests from both L1 instruction and data caches and the L2 cache. The L1 requests are
generally the result of instruction fetch misses, data load or store misses, L1 data cache
castouts, write-through operations, or cache management instructions. Those requests are
processed by the L2 cache and L3 cache in parallel. If the L2 cache misses, or requires
further action from the memory subsystem, the L3 interface can service the request.

Each L1 miss request generates an address lookup in the L3 cache tags. If a hit occurs, the
instructions or data are forwarded to the L2 cache and the appropriate L1 cache. A miss in
the L3 cache tags causes the request to be forwarded to the system bus interface. The L3
cache also services snoop requests from the system bus.

See Section 3.6.4.5, “L2 and L3 Operations Caused by L1 Requests,” and Section 3.8.4.3,
“L2 and L3 Operations Caused by External Snoops,” for more detailed information about
the actions of the L3 caused by internal operations and snoops, respectively.

In case of multiple pending requests to the L3 cache, the priorities are as shown in
Table 3-26.

Note that a load, an instruction fetch or a cacheable store could gain access to the L2 cache
based on the priorities shown in Table 3-11 but not gain access to the L3 cache based on the
priorities of Table 3-26.

3.7.7.1 L3 Cache Miss and Reload Operations

Burst read requests from the L1 caches that miss in the L2 and L3 caches initiate a burst
read operation from the system interface for the cache block that missed. If the L3 allocate
requires a new tag entry and the current tag is modified, any modified sectors of the tag to
be replaced are castout from the L3 cache to the system interface at the time of the miss.
The cache block that is received from the bus is loaded into the L3 and forwarded to the L2
(and the appropriate L1 cache). L2 cache misses are also allocated into the L3.

Table 3-26. L3 Cache Access Priorities

Priority Type of Access

1 Snoop request

2 Reload into L3

3 L3 castout

4 Snoop push or data intervention

5 L1 miss (data or instruction)

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-79

L3 Cache Interface

3.7.7.2 L3 Cache Allocation

The L3 cache uses the same allocation principles as the L2 cache (as described in
Section 3.6.4.2, “L2 Cache Allocation”). Thus, instruction cache misses in the L3 cache
cause an L3 cache line to be allocated, provided the L3 cache is enabled and not marked as
data-only (with the L3CR[L3DO] bit). Also, data accesses cause an L3 cache line to be
allocated if the L3 misses and the L3 is enabled and not marked as instruction-only (with
the L3CR[L3IO] bit).

Write-back stores that miss in the L1 data cache or L2 cache but hit on an L3 cache block
that is in the shared state are treated as store misses, causing a RWITM transaction to the
bus. In this case, the line is not deallocated, but it is reloaded as it is read from the bus.

L3 cache entries are not allocated for writes that miss in the L3. When the L1 data cache
causes a castout, the L2 cache does not allocate a new line for the castout if it misses. If the
L3 cache is disabled, then a block replaced from the L1 data cache or L2 cache is cast out
to the system interface if the cache block is marked modified.

Transient accesses (caused by the dstt, dststt, lvxl, and stvxl instructions) are treated
similarly to non-transient accesses, except that transient accesses do not cause entries to be
allocated in either the L2 or L3 caches on a miss. However, when an L1 data cache miss
occurs for a transient operation, and the L2 or L3 cache hits, the L2 and L3 cache states are
updated appropriately.

3.7.7.3 CI and WT Accesses and L3

All requests to the L3 cache that are marked caching-inhibited bypass the L3 cache (even
if they would have normally hit), and do not cause any L3 tag state changes.

Write-through stores that hit in the L2 cause the cache block from the L2 to be written to
the L3 cache. If the block hits in the L3, the updates occur and the original store data is
passed to the system bus.

If the write-through store misses in the L2 but hits in the L3, the block is flushed from the
L3 as a castout if the line had been modified in the L3. If the write-through store misses in
the L3, a new line is not allocated in the L3 and only the original store data is passed on to
the system bus.

3.7.7.4 L3 Cache Replacement Selection

The L3 cache uses the same two pseudo-random modes of line replacement used by the L2
cache. For the L3 cache L3CR[L3REP] selects either the three-bit counter mode or the
pseudo-random number generator mode. The three-bit counter mode (when
L3CR[L3REP] = 1) is based on a simple three-bit counter that is incremented on every
clock cycle. When a miss occurs, the line in the way pointed to by the counter is chosen for
replacement.

3-80 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L3 Cache Interface

The pseudo-random number generator mode (when L3CR[L3REP] = 0) uses the same 16
latches used by the L2 cache described in Section 3.6.4.4, “L2 Cache Line Replacement
Algorithms”. These latches are clocked on every clock cycle as shown in Figure 3-19 with
3 XOR functions. However, while the L2 cache uses the value in latches 4, 9, and 15 as the
3-bit value that selects the way for replacement, the L3 cache uses the value in latches 0, 5,
and 10 as the 3-bit value for way selection.

3.7.8 L3 Private Memory Operation

The private memory feature allows the MPC7451 to have access to a low latency, high
bandwidth private memory space. The private memory space is not snooped and therefore
is not coherent with other processors in a system. The private memory space can contain
instructions and data and its contents can be cached in the L1 instruction and data caches
and the L2 cache, provided that accesses are marked as caching-allowed. Note that
instructions in the L3 private memory space should not be marked as caching-inhibited, as
caching-inhibited accesses completely bypass the L3 interface.

The private memory feature of the MPC7451 is enabled with the L3CR[PMEN] bit and the
size is determined by L3CR[PMSIZ]. The L3 private memory logic can be configured such
that all of the L3 cache space is used as private memory, or half of the space can be used as
L3 cache, and half can be used as private memory. All possible combinations are shown in
Table 3-27.

Note that when all of the L3 space is used as private memory, the L3CR[L3E] must be
cleared.

Table 3-27. L3 Cache/Private Memory Configurations

Total SRAM
Space

All L3 Cache
Half L3 Cache and

Half Private Memory
All Private Memory

1 Mbyte L3CR
L3E = 0b1
L3SIZ = 0b0 (1
Mbyte)
PMEN = 0b0
PMSIZ = n/a

n/a L3CR
L3E = 0b0
L3SIZ =n/a
PMEN = 0b1
PMSIZ = 0b0 (1 Mbyte)

2 Mbytes L3CR
L3E = 0b1
L3SIZ = 0b1 (2
Mbyte)
PMEN = 0b0
PMSIZ = n/a

L3CR
L3E = 0b1
L3SIZ = 0b0 (1 Mbyte)
PMEN = 0b1
PMSIZ = 0b0 (1 Mbyte)
For MPC7457,
PMSIZ = 0b00 (1 Mbyte)

L3CR
L3E = 0b0
L3SIZ = n/a
PMEN = 0b1
PMSIZ = 0b1 (2 Mbyte)
For MPC7457,
PMSIZ = 0b01 (2 Mbyte)

4 Mbytes
(MPC7457-

specific)

L3CR
L3E = 0b1
L3SIZ = 0b1 (2
Mbyte)
PMEN = 0b0
PMSIZ = n/a

L3CR
L3E = 0b1
L3SIZ = 0b1 (2 Mbyte)
PMEN = 0b1
PMSIZ = 0b01 (2 Mbyte)

L3CR
L3E = 0b0
L3SIZ = n/a
PMEN = 0b1
PMSIZ = 0b10 (4 Mbyte)

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-81

L3 Cache Interface

The private memory logic receives requests from both the L1 instruction cache and the L1
data cache as well as the L2 cache. The L1 and L2 requests are looked-up in the L3 tags and
compared with the proper bits in L3PM[PMBA]. If a match with PMBA is determined, the
result of the L3 tag lookup is ignored and the request is forwarded to the external SRAM
interface.

The private memory space can be initialized by a sequence of program load instructions
from system memory and program store instructions to the private memory space.

The private memory space does not maintain coherency state information. When the L2
cache is reloaded on a miss from private memory for a caching-allowed load or store, the
resulting L2 cache state is exclusive, without being broadcast to the system bus.

If the L3 cache is enabled, it must be invalidated or flushed before enabling the L3 private
memory. To ensure no livelock scenarios occur in a multiprocessor system, the addresses
within the private memory range must be private addresses and not be accessed by any
other part of the system.

Note that the L3DO (data-only) and L3IO (instruction-only) L3CR bits have no effect on
accesses to private memory. Also, performance monitor events related to the L3 cache may
not produce expected results when private memory is enabled. Specifically, hits to the
private memory space are treated as L3 cache misses by the performance monitor. There
are no new performance monitor events that specifically support the private memory
feature.

3.7.8.1 Enabling and Initializing L3 Private Memory

The private memory feature of the MPC7451 is enabled with the L3CR[PMEN] bit and the
size is determined by L3CR[PMSIZ]. If configured as one half L3 cache and one half L3
private memory, the half that is L3 cache is enabled or disabled by programming the
L3CR[L3E] parameter.

Following a power-on or hard reset, the L3 interface and the L3 clocks are disabled initially.
Before enabling the L3 private memory or cache, the L3 clock must first be configured
through the L3CR[L3CLK] and L3CR[CLKEN] bits, and a period of time must elapse.
Also before enabling the L3 private memory, all other bits in the L3CR must be set
appropriately. If configured as one half private memory and one half cache, the L3 cache
must be globally invalidated.

The sequence for initializing the L3 cache as private memory is as follows:

1. Set the L3CR[L3CLK] bits to the desired clock divider setting. All other L3 cache
configuration bits should be set to properly configure the L3 cache interface for the
SRAM type, size, and interface timing required, except do not set L3E, L3I, L3PE,
or L3CLKEN.

2. Set L3CR[5] (otherwise reserved bit) to 1.

3. Set L3CR[L3CLKEN] to 1.

3-82 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L3 Cache Interface

4. Wait for the L3 cache clocks to stabilize (100 processor cycles). This can be timed
by setting the decrementer for a time period equal to the correct number of L3
cache clocks, or by performing an L3 cache global invalidate.

5. If configured as one half cache and one half private memory, perform an L3 cache
global invalidate. The global invalidate could be performed before enabling the L3
clocks, or in parallel with waiting for the L3 clocks to stabilize. Refer to
Section 3.7.3.6, “L3 Cache Invalidation,” for more information about L3 cache
global invalidation. Note that a global invalidate always takes much longer than it
takes for the L3 clocks to stabilize.

6. Clear L3CR[L3CLKEN] to zero.

7. Perform a sync instruction and wait 100 processor cycles.

8. Set the base address of the private memory space using L3PM[L3PMADDR].
(This step may also be performed at any time prior to this point.)

9. Set L3CR[PMEN] and configure the private memory size in L3CR[PMSIZ] and set
L3CR[L3CLKEN]. If configured as one half cache and one half private memory,
also set the L3E and L3SIZ bits of L3CR at this time.

10. Perform a sync instruction and wait 100 processor cycles.

11. I If parity is enabled, initialize the SRAM; refer to Section 3.7.8.1.1, “Initializing
the L3 Private Memory when Parity is Enabled,” for details.

Note: A sync instruction must be performed before writing to L3CR and L3PM; sync and
isync instructions must also be performed after writing to these registers. See
Section 2.3.2.4, “Synchronization,” for more details.

3.7.8.1.1 Initializing the L3 Private Memory when Parity is Enabled

In private memory mode, there is no mechanism for the processor to determine if it has
already modified data stored in the SRAM. Therefore, if a store to an address in private
memory space occurs, the MPC7451 will load the entire cache line from the SRAM and
move it into the L1 cache so that is can write the data in question while preserving the rest
of the line. Because the SRAM at first contains uninitialized data, including the parity bits,
the MPC7451 will take a parity exception if a store occurs and parity checking is enabled.
A way to prevent the parity exception is by initializing the SRAM using a series of dcbz
instructions to zero out the entire private memory as described in the following steps:

1. Enable private memory mode (L3CR[PMEN] = 0b1). L3 data parity checking
(L3CR[L3PE] = 0b1) and L3 address parity checking may be enabled
(L3CR[L3APE] = 0b1) at this time.

2. Execute a series of dcbz instructions across the entire private memory space. This
causes the MPC7451 to allocate a cache line and zero it without initiating a load on
the L3 interface.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-83

L3 Cache Interface

3. Flush the L1 data cache. This step is not required but is recommended because it
will ensure that the last 32K of private memory space is written to the SRAM. For
this reason, it is recommended that the L2 cache also be flushed if it is enabled
during initialization. Alternatively, the L2 cache can be disabled during private
memory initialization and then enabled after it has completed.

3.7.8.2 CI and WT Accesses Not Supported for Private Memory

Cache-inhibited stores that map to the L3 private memory space are not written to the
SRAM but they are passed to the system bus. Cache-inhibited loads that map to the L3
private memory space do not access the SRAM. Instead, a system bus transaction is
generated and the data is read from the system bus.

Write-through stores (regardless of size) that map to the L3 private memory space are not
written to the SRAM but they are passed on to the system bus. Loads from write-through
memory (W = 1) that map to the L3 private memory space access the SRAM and the data
is returned from the SRAM.

3.7.8.3 Castouts and Private Memory

L1 and L2 castout operations that map to the L3 private memory space are written only to
the SRAM and not to the system bus. This is true for all castouts including those generated
by dcbf and dcbst instructions.

3.7.8.4 Snoop Hits and Private Memory

When a snoop hit occurs in the L1 data cache or the L2 cache, and a push (or data
intervention) is required, the data is written to private memory if the address is within the
private memory range in addition to being written to the system bus. Note that this occurs
even for cache flush operations. However, snooping is not supported to areas of private
memory if data intervention is disabled (MSSCR0[EIDIS] = 1). Also, snoop pushes and
castouts to the private memory space can cause a system livelock as shown in the following
sequence for multiple MPC7451s:

1. Processor 1 attempts a write-through (W = 1) write with flush operation.

2. Processor 0 retries processor 1 and generates a snoop push

3. Processor 1 again attempts the write with flush operation

4. Processor 0 again retries processor 1 and generates a snoop push, and so on...

The state of memory in the entire private memory range is assumed to be exclusive
modified. Thus an MPC7451 responds to any transaction on the system bus that hits in the
private memory range as if the data was resident in one of the on-chip caches as exclusive
modified (and no other device should cache data that corresponds to this memory range).
Snoop pushes and data intervention transactions occur from the private memory as needed.

3-84 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L3 Cache Interface

Note that in a multiprocessing system, the exclusive modified response in this case may
cause a livelock if another master on the bus generates a transaction that claims it has
ownership of an address in the private memory range. For example, the following situations
can also cause a livelock:

• A multi-MPC7451 system with two overlapping private memory spaces

• Any bus transaction considered exclusive by an alternate master on the bus (not an
MPC7451 device)

It is the responsibility of the system software to prevent these scenarios; it is recommended
that only the processor using private memory access that private memory address space.

3.7.8.5 Private Memory and Instruction Interactions

All cacheable (I = 0) transactions that read or write data except eciwx and ecowx are
allowed to hit in the private memory space, regardless of the other W, M, and G bit settings
of WIMG. The icbi, sync, tlbie, tlbsync, eieio, eciwx, and ecowx instructions never hit in
the private memory space and are forwarded to the system interface. Any dcbi instructions
that hit in the private memory space are discarded (after appropriately invalidating the L1
data and L2 caches).

Also, operations caused by dcbf, dcbt, dcbst, dcbz, and dcbi instructions that map to the
L3 private memory space are not broadcast onto the system bus. However, execution of an
icbi instruction that maps to the L3 private memory space is broadcast on the system bus
(even though it has no effect on the L3 private memory).

• Caching-allowed stwcx. operations are handled by the L1 data cache and L2 cache
similarly to normal caching-allowed stores. The L3 interface does not treat stwcx.
differently than a normal caching-allowed store. However, caching-inhibited stwcx.
operations are not supported.

• dcbz operations that hit in the private memory space are treated as a 32-byte
write-back store operations.

• dcbf and dcbi operations are issued to the L3 interface after being processed by the
L1 data cache and L2 cache. If a cache block push due to a dcbf or dcbi that hits
modified data in the L1 data cache or L2 cache hits in the private memory space, the
cache block is written to the L3 SRAMs.

• dcbst instructions are issued to the L3 interface after being processed by the L1 data
cache and L2 cache. If a cache block push due to a dcbst that hits modified data in
the L1 data cache or L2 cache hits in the private memory space, the cache block is
written to the L3 SRAMs.

3.7.9 L3 Cache SRAM Timing Examples

This section describes the signal timing for the following three types of SRAM supported
by the MPC7451 L3 cache interface:

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-85

L3 Cache Interface

• MSUG2 dual data rate SRAMs that provide data synchronous to the
L3_ECHO_CLK input signals to the MPC7451 and on each clock edge

• Late-write SRAMs which are required by the MPC7451 to be of the pipelined
(register-register) configurations

• Pipeline burst SRAMs, referred to as PB2-type SRAMs

The timing diagrams illustrate the best case logical interface operations and are not AC
timing accurate. For proper interface operation, the designer must select SRAMs that
support the signal sequencing illustrated in the timing diagrams, particularly in regards to
those cycles when the data bus may be driven, is required to be driven, and must not be
driven by the SRAM.

The SRAM selected for a system design is usually a function of desired system
performance, L3 cache bus frequency, and SRAM unit cost. The following sections
describe the operation of the three SRAM types supported by the MPC7451, and some of
the design trade-offs associated with each.

3.7.9.1 MSUG2 DDR Interface Timing

MSUG2 DDR SRAMs are a new type of high performance RAM. The following three
major differences exist between this RAM and other synchronous RAMs:

• Data is returned by the target SRAM asynchronously to the input clock on the
SRAM.

• An additional clock is provided as an output by the SRAM that is synchronous with
its returning data (echo_clock input to the L3_ECHO_CLK[0:3] signals of the
MPC7451).

• Data is returned on each edge of the returned data clock.

The MPC7451 does not use the continue-burst feature of this SRAM and instead supplies
two addresses for each cache line transfer. Double transfers are always selected, forcing
data to transfer on each edge of the clock.Figure 3-20 shows the MPC7451 configured with
a 1-Mbyte L3 cache using MSUG2 DDR.

3-86 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L3 Cache Interface

Figure 3-22. Typical 1-Mbyte L3 Cache using MSUG2 DDR

Figure 3-23 shows an example timing diagram of the MPC7451 L3 interface with an
MSUG2 DDR SRAM shown in Figure 3-20. This type of device uses a skew-based source
synchronous design instead of a delay-based synchronous model. This allows the interface
to run at much higher data rates. Although in reality there are multiple clocks involved that
operate asynchronously with each other, the timing in Figure 3-23 shows echo_clk (the
SRAMs returned data clock) as synchronous with the processor clock signals
(L3_CLK[0:1]).

L3ADDR[16:0]
L3DATA[0:31]

L3DP[0:3]
L3_CNTL0
L3_CNTL1

L3_ECHO_CLK[0:1]

L3_CLK0

L3DATA[32:63]
L3DP[4:7]

L3_ECHO_CLK[2:3]

L3_CLK1

SA[16:0]
D[0:15]
D[16:17]
B1
B2
CQ
D[18:33]
D[34:35]
CQ
CK

MPC7451
SA[16:0]
D[0:15]
D[16:17]
B1
B2
CQ
D[18:33]
D[34:35]
CQ
CK

Notes:
For a 2-Mbyte L3 cache, use address bits 17–0 (bit 0 is LSB. For the MPC7457, the L3 cache

uses address bits 18–0 (bit 0 is LSB).
The routing for the point-to-point signals (L3_CLK[0:1], L3DATA[0:63], L3_DP[0:7] and

L3_ECHO_CLK[0:3] to a particular SRAM device must be delay matched.
No pull-up resistors are normally required for the L3 cache interface.

The MPC7451 supports only one bank of SRAMs.
For high-speed operation, no more than two loads should be presented on each L3 address

and control signal. All other L3 signals should have no more than one load.

128K x 36
SRAM

128K x 36
SRAM

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-87

L3 Cache Interface

Figure 3-23. MSUG2 DDR Memory Access Example

3.7.9.2 Late-Write SRAM Timing

Late-write SRAMs offer improved performance when compared to pipelined burst SRAMs
by not requiring an extra read cycle during read operations, and requiring one cycle less
when transitioning from a read to a write operation. Late-write SRAMs implement an
internal write queue, allowing write data to be provided one cycle after the write operation
is signaled on the address and control buses. In this manner, write operations are queued on
the address and data bus in the same manner as read operations, allowing transitions
between read and write operations to occur more efficiently.

Note that during burst transfers into and out of the SRAM array, the MPC7451 generates
an address for each data beat. That is, the MPC7451 does not use the burst feature (one
address, many data beats) of the late-write SRAMs.

Figure 3-24 shows the signal connections between an MPC7451 and either late-write or
PB2 SRAMS.

L3_ADDRn

L3_DATAn

L3_CLKn

L3_CNTL0

L3_CNTL1

- indicates which edges are used to determine the data sampling points

L3_ECHO_CLKn

R0 R2

R0 R1 R2 R3

W4 W6 R8 R10

W4 W5 W6 W7 R8 R9 R10

burst rd burst wr burst rd

hiZ

idle

3-88 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

L3 Cache Interface

Figure 3-24. L3 Cache Configuration for Late-Write or PB2 SRAMs

Figure 3-25 shows memory access timings when the L3 cache interface is configured for
late-write SRAM.

Table 3-28. Signal Function Changes for Late-Write and PB2 SRAMs

Signal Name
of
Pins

Changed Function for Late-Write and PB2

Active I/O Meaning Comments

L3_CNTL1 1 Low Output Write operation (L3WE) Synchronous

L3_CNTL0 1 Low Output Chip enable (L3CE) Synchronous

L3_ECHO_CLK[0,2] 2 High Input Clock input to MPC7451 for
read data synchronization.

Provides compatibility with the DDR
SRAM interface

L3_ECHO_CLK[1,3] 2 High Output Clock output from MPC7451
to be wrapped back to clock
input.

To be routed back to the clock
inputs for compatibility with the
DDR SRAM interface.

L3ADDR[16:0]
L3DATA[0:31]

L3DP[0:3]
L3_CNTL0
L3_CNTL1

L3_ECHO_CLK0

L3_ECHO_CLK1

L3_CLK0

L3DATA[32:63]
L3DP[4:7]

L3_ECHO_CLK2

L3_ECHO_CLK3

L3_CLK1

SA[16:0]
D[0:15]
D[16:17]
B1
B2

D[18:33]
D[34:35]

CK

MPC7451
SA[16:0]
D[0:15]
D[16:17]
B1
B2

D[18:33]
D[34:35]

CK

Notes:
For a 2-Mbyte L3 cache on the MPC7451, the L3 cache uses address bits 17–0 with bit 0 being

the LSB. For the MPC7457, the L3 cache uses address bits 18-0 with bit 0 being the LSB.

The routing for the point-to-point signals (L3_CLK[0:1], L3DATA[0:63], L3_DP[0:7] and
L3_ECHO_CLK[0:3] to a particular SRAM device must be delay matched.

No pull-up resistors are normally required for the L3 cache interface.
The MPC7450 supports only one bank of SRAMs.
For high-speed operation, no more than two loads should be presented on each L3 address

and control signal. All other L3 signals should have no more than one load.

128K x 36
SRAM

128K x 36
SRAM

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-89

L3 Cache Interface

Figure 3-25. Late-Write SRAM Timing

3.7.9.3 Pipelined Burst SRAM

Pipelined burst SRAMs are sometimes referred to as PB2 (pipelined burst, 2nd generation)
SRAMs. Pipelined burst SRAMs operate by clocking read data from the memory array into
a buffer before driving the data onto the data bus. This causes an extra clock cycle of latency
for initial read accesses, but the L3 cache bus frequencies supported can be higher. Note
that the MPC7451’s L3 cache interface requires the use of single-cycle deselect pipelined
burst SRAM for proper operation.

Note that during burst transfers into and out of the SRAM array, the MPC7451 generates
an address for each data beat. That is, the MPC7451 does not use the burst feature (one
address, many data beats) of the pipelined burst SRAMs.

Figure 3-26 shows memory access timings when the L3 cache interface is configured for
pipelined burst SRAM.

L3_ADDRn

Data in SRAM

L3_DATAn

L3_CLKn

R0 R1 R2 R3

R0 R1 R2 R3

R0 R1 R2 R3 W4 W5 W6 W7

W4 W5 W6 W7

(WQ) W4 W5 W6

R8 R9 R10 R11

R8 R9 R10 R11

R8 R9 R10 R11hiZhiZ

idle

idle

burst rd burst wr burst rd

L3CE

L3WE

L3_ADDRn

Data in SRAM

L3_DATAn

L3_CLKn

R0 R1 R2 R3

R0 R1 R2 R3

R0 R1 R2 R3 R4 R5 R6 R7

R4 R5 R6 R7

R4 R5 R6 R7

L3WE

burst rd burst rd

L3CE

idle

idle

Note: WQ is the last previous write that was queued in the late-write RAM.

(see W7 note, below)

W7 Note: W7 is queued in the late-write device and won’t appear in SRAM Memory until the next write.

3-90 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

System Bus Interface

Figure 3-26. Pipeline Burst SRAM Timing

3.8 System Bus Interface
The system bus interface buffers bus requests from the L1 instruction cache, the L1 data
cache, the L2 cache, and the L3 cache, and executes the requests per the system bus
protocol. It includes address register queues, prioritizing logic, and bus control logic. The
bus interface unit includes a sixteen-entry (default value is eight-entry) data transaction
queue to support pipelining of multiple transactions. The bus interface also captures snoop
addresses for snooping in the caches, the address register queues, and the reservation
address. For additional information about the MPC7451 bus interface and the bus
protocols, refer to Chapter 9, “System Interface Operation.”

3.8.1 MPC7451 Caches and System Bus Transactions

The MPC7451 transfers data to and from the caches on the system bus in single-beat
transactions of up to eight bytes, in two-beat burst transfers of 16 bytes for
caching-inhibited (WIMG = x1xx) or caching-allowed, write-through (WIMG = 10xx)
AltiVec loads and stores (in MPX bus mode), or in four-beat transactions of 32 bytes for

L3_ADDRn

Data in SRAM

L3_DATAn

L3_CLKn

R0 R1 R2 R3 Rxtr

R0 R1 R2 R3 Rxtr

R0 R1 R2 R3Rdrv W4 W5 W6 W7

W4 W5 W6 W7

W4 W5 W6 W7

R8 R9 R10 R11 Rxtr

R8 R9 R10 R11 Rxtr

R8 R9 R10 R11RdrvhiZhiZ

idle idle

idle idle

burst rd burst wr burst rd

L3CE

L3WE

Notes: Rdrv indicates where some burst RAMs may begin driving the data bus.
Rxtr indicates where an extra read cycle is signaled to keep the burst RAM driving the data bus for the last
read. The MPC7451 does not support aborted reads

L3_ADDRn

Data in SRAM

L3_DATAn

L3_CLKn

R0 R1 R2 R3

R0 R1 R2 R3

R0 R1 R2 R3 R4 R5 R6 R7

R4 R5 R6 R7

R4 R5 R6 R7

L3WE

burst rd burst rd

L3CE

Rxtr

Rxtr

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-91

System Bus Interface

cache block fills. The MPC7451 transfer burst (TBST) output signal indicates to the system
whether the current transaction is a single-beat transaction or burst (two- or four-beat)
transfer.

Single-beat bus transactions can transfer from one to eight bytes to or from the MPC7451,
and can be misaligned. Single-beat transactions can be caused by caching-allowed,
write-through accesses (WIMG = 10xx), caching-inhibited accesses (WIMG = x1xx),
accesses when the data cache is disabled (HID0[DCE] is cleared), or accesses when the data
cache is locked (HID0[DLOCK] is set).

In MPX bus mode, two-beat burst transactions are caused by quad-word (128-bit) AltiVec
loads and stores that are marked write-through or caching-inhibited. These two-beat burst
transactions are always aligned to a quad-word boundary. In 60x bus mode, quad-word
AltiVec loads and stores cause an alignment exception if write-through or
caching-inhibited.

Instruction fetches are always treated as quad-word (16-byte) entities internally. For
cacheable instruction fetches, the system bus always requests a full L1 cache line (32
bytes). For noncacheable fetches in MPX bus mode, a cache-inhibited quad word (two-beat
burst) request occurs. Because the 60x bus mode does not support quad-word accesses a
cache-inhibited access in 60x mode is converted to a cache-line (32-byte, four-beat burst)
access on the bus. When this occurs, the portion of the cache line that was not internally
requested is discarded.

Cache block burst transactions on the MPC7451 always transfer 32-bytes of data in four
beats of 8-bytes each, and are aligned to a double- or quad-word boundary as they are
requested. Burst transactions have an assumed address order. For caching-allowed read
operations, instruction fetches, or caching-allowed, write-back write operations that miss
in the cache, the MPC7451 presents the double- or quad-word-aligned address associated
with the load/store instruction or instruction fetch that initiated the transaction.

As shown in Figure 3-27, the first double word contains the address of the load/store or
instruction fetch that missed the cache. This minimizes latency by allowing the critical code
or data to be forwarded to the requesting execution unit before the rest of the block is filled.
For all other burst operations, however, the entire block is transferred in order (cache-block
aligned). Similar to the principles described for double-word fetches, quad-word fetches
(for vector load operations and instruction fetches) are also forwarded to the requesting unit
as they are requested and in critical quad-word order.

3-92 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

System Bus Interface

Figure 3-27. Double-Word Address Ordering—Critical Double Word First

3.8.2 Bus Operations Caused by Cache Control Instructions

The cache control, TLB management, and synchronization instructions supported by the
MPC7451 may affect or be affected by the operation of the system bus. The operation of
the instructions may also indirectly cause bus transactions to be performed, or their
completion may be linked to the bus.

Table 3-29 provides an overview of the bus operations initiated by cache control
instructions. Note that Table 3-29 assumes that the WIM bits are set to 001; that is, the
cache is operating in write-back mode, caching is allowed, and memory coherency is
enforced.

When memory coherency is required (WIMG = xx1x) and HID1[ABE] = 1, the dcbst,
dcbf, dcbi, and icbi instructions are broadcast on the system bus (for both MPX bus and
60x bus mode) as described in Table 3-29 to maintain coherency. A dcbi or dcbf can create
an address-only flush and a dcbst can create an address-only clean. When M = 0, dcbst,
dcbf, and dcbi instructions are only broadcast on the bus when the cache state hits as
modified in either the L1, L2, or L3 cache. Note that dcbst, dcbf, and dcbi instructions
would create castout operations to the bus if they hit modified within the caches even when
M = 0. The icbi instruction is never broadcast when M = 0. A dcbz or dcba will never
result in a bus operation even if the internal cache state is modified when M = 0. For
detailed information on the cache control instructions, refer to Chapter 2, “Programming
Model,” in this book and Chapter 8, “Instruction Set,” in The Programming Environments
Manual.

If the address requested is in double word A, the address placed on the bus is that of double word A, and
the four data beats are ordered in the following manner:

If the address requested is in double word C, the address placed on the bus will be that of double word C,
and the four data beats are ordered in the following manner:

A B C D

111000 01

A B C D

320 1
Beat

MPC7451 Cache Address
Bits (27– 28)

C D A B

320 1
Beat

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-93

System Bus Interface

When memory coherency is not required (WIMG = xx0x), the dcbz, dcba, dcbf, dcbi, and
dcbtst instructions are broadcast on the system bus (for both MPX bus and 60x bus mode)
as described in Table 3-30.

Table 3-29. Bus Operations Caused by Cache Control Instructions (WIM = xx1)

Instruction

Current State
Next Cache

State
Bus Operation Comment

Cache
Coherency

HID1 Setting

sync Do not care SYNCBE = 0 No change None Waits for memory queues to
complete bus activity

SYNCBE = 1 SYNC

tlbie Do not care ABE = 0 No change None —

ABE = 1 TLBIE Address-only bus operation

tlbsync Do not care ABE = 0 No change None —

ABE = 1 TLBSYNC Address-only bus operation

eieio Do not care SYNCBE = 0 No change None —

SYNCBE = 1 EIEIO Address-only bus operation

dcbt M, E, S No change None —

dcbt I E, S Read Fetched cache block is
stored in the cache

dcbtst M, E, S No change None —

dcbtst I E, S Read (60x mode)
RCLAIM (MPX mode)

Fetched cache block is
stored in the cache

dcbz M, E M None Writes over modified data

dcbz S, I M Kill —

dcbst M E, S, I Write with kill —

dcbst E, S, I ABE = 0 No change or I None —

ABE = 1 Clean —

dcbf, dcbi M — I Write with kill Block is pushed

dcbf, dcbi E, S, I ABE = 0 I None —

ABE = 1 Flush Address-only bus operation

dcba M, E M None Writes over modified data

dcba S, I M Kill —

icbi V, I ABE = 0 I None Instruction cache only

ABE = 1 ICBI Instruction cache only

3-94 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

System Bus Interface

For additional details about the specific bus operations performed by the MPC7451, see
Chapter 9, “System Interface Operation.”

3.8.3 Transfer Attributes

In addition to the address and transfer type signals, the MPC7451 supports the transfer
attribute signals TBST, TSIZ[0:2], WT, CI, and GBL. The TBST and TSIZ[0:2] signals
indicate the data transfer size for the bus transaction.

The WT signal reflects the write-through/write-back status (the complement of the W bit)
for the transaction as determined by the MMU address translation during write operations.
WT is also asserted when the data cache is locked (with HID0[DLOCK] or
LDSTCR[DCWL] = 0xFF) and for burst writes due to dcbf (flush) and dcbst (clean)
instructions, snoop pushes, and eciwx transactions; WT is negated for ecowx transactions.

For read transactions, the WT signal reflects whether the access is an instruction or data
access as follows:

• WT is asserted for data reads

• WT is negated for instruction reads

The CI signal reflects the caching-inhibited/caching-allowed status (the complement of the
I bit) of the transaction as determined by the MMU address translation. The CI signal is
asserted for data loads or stores if the L1 data cache is disabled. The CI signal is also always
asserted for eciwx/ecowx bus transactions independent of the address translation.

Table 3-30. Bus Operations Caused by Cache Control Instructions (WIM = xx0)

Instruction

Current State
Next Cache

State
Bus Operation Comment

Cache
Coherency

HID1 Setting

dcbt M, E, S — No change None —

dcbt I — E, S Read Fetched cache block is
stored in the cache

dcbtst M, E, S — No change None —

dcbtst I — E, S Read (60x mode)
RCLAIM (MPX mode)

Fetched cache block is
stored in the cache

dcbz M, E, S, I — M None

dcba M, E, S, I — M None

dcbf, dcbi M — I Write with kill Block is pushed

dcbf, dcbi E, S, I — I None —

dcbst M — E, S, I Write with kill Block is pushed

dcbst E, S, I — I None —

icbi V, I — I None Instruction cache only

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-95

System Bus Interface

The GBL signal reflects the memory coherency requirements (the complement of the M
bit) of the transaction as determined by the MMU address translation. Address bus masters
assert GBL to indicate that the current transaction is a global access (that is, an access to
memory shared by more than one device). Because cache block castouts and snoop pushes
do not require snooping, the GBL signal is not asserted for these operations. Note that GBL
is asserted for all data read or write operations when using real addressing mode (that is,
address translation is disabled).

Table 3-31 summarizes the address and transfer attribute information presented on the bus
by the MPC7451 for various master or snoop-related transactions. Note that the address
ranges shown in the table apply when 36-bit physical addressing is used
(HID0[XAEN] = 1).

Table 3-31. Address/Transfer Attributes Generated by the MPC7451

Bus Transaction Addr [0:35] TT[0:4] TBST TSIZ[0:2] WT CI GBL

Instruction fetch operations

Burst PA[0:32] || 0b000 0 1 0 1 0 0 0 1 0 1 1 ¬ M

Data cache operations

Cache block fill (due to load miss) PA[0:32] || 0b000 A 1 0 1 0 0 0 1 0 0 1 ¬ M

Cache block fill (due to store miss) PA[0:32] || 0b000 A 1 1 1 0 0 0 1 0 1 1 ¬ M

Store merged to 32 bytes PA[0:30] || 0b00000 0 1 1 0 0 0 0 1 0 1 1 ¬ M

Castout
(normal replacement)

CA[0:30] || 0b00000 0 0 1 1 0 0 0 1 0 1 1 1

Cache block clean due to dcbst hit
to modified

PA[0:30] || 0b00000 0 0 1 1 0 0 0 1 0 0 1 1

Cache block flush due to dcbf hit to
modified

PA[0:30] || 0b00000 0 0 1 1 0 0 0 1 0 0 1 1

Snoop copyback CA[0:30] || 0b00000 0 0 1 1 0 0 0 1 0 0 1 1

dcbt, dst, dstt PA[0:30] || 0b00000 0 1 0 1 0 0 0 1 0 0 1 ¬ M

dcbtst, dstst, dststt (60x bus mode) PA[0:30] || 0b00000 0 1 0 1 0 0 0 1 0 0 1 ¬ M

dcbtst, dstst, dststt (MPX bus
mode)

PA[0:30] || 0b00000 0 1 1 1 1 0 0 1 0 0 1 ¬ M

Data cache bypass operations

Single-beat read (caching-inhibited
or cache disabled)

PA[0:35] 0 1 0 1 0 1 S S S 0 ¬ I ¬ M

AltiVec load (caching-inhibited,
write-through, or cache disabled) in
MPX bus mode

PA[0:32] || 0b000 0 1 0 1 0 0 0 0 1 0 ¬ I ¬ M

Single-beat write (caching-inhibited,
write-through, cache disabled, or
cache completely locked)

PA[0:35] 0 0 0 1 0 1 S S S ¬ W ¬ I ¬ M

3-96 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

System Bus Interface

3.8.4 Snooping of External Transactions

The MPC7451 maintains data cache coherency in hardware by coordinating activity
between the data cache, the L2 cache, the L3 cache, the memory subsystem, and the bus.
The MPC7451 has a write-back caching capability that relies on bus snooping to maintain
cache coherency with other caches in the system. For the MPC7451, the coherency size of
the bus is 32 bytes, the size of a cache block. This means that any bus transactions that cross
an aligned 32-byte boundary must present a new address onto the bus at that boundary for
proper snoop operation by the MPC7451, or they must operate noncoherently with respect
to the MPC7451.

As bus operations are performed on the bus by other bus masters, the MPC7451 bus
snooping logic monitors the addresses and transfer attributes that are referenced. The
MPC7451 must see all system coherency snoops to function properly in a symmetric
multiprocessing (SMP) environment. The MPC7451 cannot support external devices that
filter out snoop traffic on the bus (for example, an external, in-line cache).

The MPC7451 snoops bus transactions during the cycle that TS is asserted for all global
transactions (GBL asserted).

Special instructions

icbi (addr-only) PA[0:30] || 0b00000 0 1 1 0 1 0 0 1 0 ¬ W ¬ I ¬ M

dcba (addr-only) PA[0:30] || 0b00000 0 1 1 0 0 0 0 1 0 1 1 0

dcbz (addr-only) PA[0:30] || 0b00000 0 1 1 0 0 0 0 1 0 1 1 0

dcbf, dcbi (addr-only) PA[0:30] || 0b00000 0 0 1 0 0 0 0 1 0 ¬ W ¬ I ¬ M

dcbst (addr-only) PA[0:30] || 0b00000 0 0 0 0 0 0 0 1 0 ¬ W ¬ I ¬ M

sync (addr-only) 0x0_0000_0000 0 1 0 0 0 0 0 1 0 1 1 0

tlbsync (addr-only) 0x0_0000_0000 0 1 0 0 1 0 0 1 0 1 1 0

tlbie (addr-only) 0b0000 || EA[0:31] 1 1 0 0 0 0 0 1 0 1 1 0

eieio (addr-only) 0x0_0000_0000 1 0 0 0 0 0 0 1 0 1 1 0

eciwx PA[0:33] || 0b00 1 1 1 0 0 EAR[28:31] 0 0 1

ecowx PA[0:33] || 0b00 1 0 1 0 0 EAR[28:31] 1 0 1

Notes: PA = Physical address, CA = Cache address, EA = Effective address.

W,I,M = WIM state from address translation; ¬ = complement; 0 or 1 = WIM state implied by transaction type in table.
A = Atomic; high if stwcx. or lwarx, low otherwise
S = Transfer size

Special instructions listed may not generate bus transactions depending on cache state.
TT[0:4] = 0b01011 (RWNITC) is snooped by the MPC7451, but is not generated by the MPC7451.
TT[0:4] = 0b00001 (lwarx reservation set) is neither snooped nor generated by the MPC7451.

Table 3-31. Address/Transfer Attributes Generated by the MPC7451

Bus Transaction Addr [0:35] TT[0:4] TBST TSIZ[0:2] WT CI GBL

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-97

System Bus Interface

Every assertion of TS detected by the MPC7451 (whether snooped or not) must be followed
by an accompanying assertion of AACK.

3.8.4.1 Types of Transactions Snooped by MPC7451

There are several bus transaction types defined for the system bus. As shown in Table 3-32,
the MPC7451 snoops many, but not all, system transactions. The transactions in Table 3-32
correspond to the transfer type signals TT[0:4], which are described in Section 8.3.4.2,
“Transfer Type (TT[0:4]).”

Table 3-32. Snooped Bus Transaction Summary

Transaction TT[0:4]
Snooped by

MPC7451

Clean 00000 Yes

Flush 00100 Yes

sync 01000 Yes

Kill 01100 Yes

eieio 10000 No

External control word write 10100 No

TLB invalidate 11000 Yes

External control word read 11100 No

lwarx reservation set 00001 No

Reserved 00101 No

tlbsync 01001 Yes

icbi 01101 Yes

Reserved 1XX01 No

Write-with-flush 00010 Yes

Write-with-kill 00110 Yes

Read 01010 Yes

Read-with-intent-to-modify (RWITM) 01110 Yes

Write-with-flush-atomic 10010 Yes

Reserved 10110 No

Read-atomic 11010 Yes

Read-with-intent-to-modify-atomic 11110 Yes

Reserved 00011 No

Reserved 00111 No

Read-with-no-intent-to-cache (RWNITC) 01011 Yes

3-98 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

System Bus Interface

Once a qualified snoop condition is detected on the bus, the snooped address associated
with TS is compared against the data cache tags, the LSU and memory subsystem queues,
reservation address, and/or other storage elements as appropriate. The L1 data cache tags,
L2 cache tags, and L3 cache tags are snooped for standard data cache coherency support.
No snooping is done in the instruction cache for coherency (except that the icbi instruction
can cause matching entries to be invalidated).

The LSU and memory subsystem queues are snooped for pipeline collisions and memory
coherency collisions. A pipeline collision is detected when another bus master addresses
any portion of a line that this MPC7451 is currently processing in its caches. A memory
coherency collision occurs when another bus master addresses any portion of a line that the
MPC7451 has currently queued to write to memory from the data cache (castout or push),
but has not yet been granted bus access to perform.

If the snooped address does not hit in the cache, snooping finishes with no action taken. If,
however, the address hits in the cache, the MPC7451 reacts according to the coherency
protocol diagrams shown in Section 3.3.2.5, “MESI State Transitions.”

3.8.4.2 L1 Cache State Transitions and Bus Operations Due to
Snoops

Table 3-35 shows the state transitions in the L1 caches for each snoop type. For each snoop,
the L1 responds with valid if the line was shared, exclusive, or modified, and modified if
the line was modified. The snoop types in Table 3-35 are listed in Table 3-33.

Read-claim (RCLAIM) (MPX bus mode only) 01111 Yes

Reserved 1XX11 No

Table 3-33. Definitions of Snoop Type for L1 Cache/Snoop Summary

Snoop Type Definition

Snoop Kill
Reservation

If the snoop address matches a valid reservation in the core, kill the reservation after the response
window if there is no retry. This operation is caused by RWITM, RWITM ATOMIC, RCLAIM, KILL
external snoops.

Snoop Flush-Kill Push any modified data to the L1 push buffer and invalidate the line. Return the initial MESI state
of the line. This operation is caused by stores with I = 0 and W = 0, stwcx with W = 0 and I = 0,
dcbtst, dstst, dcbz, or dcba instructions on-chip.

Snoop Flush Push any modified data to the L1 push buffer and invalidate the line. Return the initial MESI state
of the line. This operation is caused by dcbf instruction on-chip, RWITM, RWITM ATOMIC,
RCLAIM, KILL, WRITE W/FLUSH, WRITE W/FLUSH ATOMIC, or FLUSH external snoop

Snoop Read Push any modified data to the L1 push buffer. If the line was valid, leave it shared. Return the initial
MESI state of the line. This operation is caused by dcbst, load, lwarx or touch instructions on-chip
or CLEAN, RWNITC, READ, READ ATOMIC external snoops.

Table 3-32. Snooped Bus Transaction Summary (continued)

Transaction TT[0:4]
Snooped by

MPC7451

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-99

System Bus Interface

Table 3-34 defines some terms used in Table 3-35.

Snoop icbi Invalidate the line in the instruction cache. This operation is caused by an icbi instruction on-chip
or ICBI external snoop.

Snoop tlbie Invalidate all matching PTEs in the Instruction and Data TLBs. Mark all outstanding memory
accesses that used old translations. This operation is caused by an TLBIE external snoop.

Table 3-34. Definitions of Other Terms for L1 Cache/Snoop Summary

Term Definition

Snoop Type The local snoop type. See Section 3.6.4.5, “L2 and L3 Operations Caused by L1 Requests,” and
Section 3.8.4.3, “L2 and L3 Operations Caused by External Snoops,” for a list of the operations
and states that cause the various L1 snoop types

Initial L1 State The MESI state of the cache before the snoop begins.

Final L1 State If the L1 MESI state is unchanged, then the entry is marked as same; otherwise, the MESI state
at the end of the snoop operations

Table 3-35. L1 Cache State Transitions Due to Snoops

Snoop Type
Initial

L1
State

Final
L1

State
 Action Comments

Kill Reservation n/a same Kill Reservation after response window
if the address matches and no core
retried the operation.

—

Flush-Kill I same If L1 = M, data is moved to push buffer.
MSS will request it.

Kill Reservation after response window
if the address matches and no core
retried the operation.

Cache line is invalidated.

S/E/M I

Flush I same If L1=M, data is moved to push buffer.
MSS will request it.

Cache line is invalidated.

S/E/M I

Read I/S same If L1 = M, data is moved to push buffer.
MSS will request it.

If cache line was valid, leave it shared.

Note: if the reservation address
matched but the cache line was invalid,
the L1 Snoop Logic will synthesize a
shared response to the LMQ or the bus.

E/M S

icbi n/a n/a Invalidate matching line in the
instruction cache.

—

tlbie n/a n/a Invalidate matching TLB entries in the
ITLB and DTLB.

—

Table 3-33. Definitions of Snoop Type for L1 Cache/Snoop Summary (continued)

Snoop Type Definition

3-100 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

System Bus Interface

3.8.4.3 L2 and L3 Operations Caused by External Snoops

The L1, L2, and L3 cache states affect the response to external snoops. Some snoop types
do not affect the caches. Table 3-37 shows the response to all snooped bus operations,
depending on the initial cache state. See Section 3.5.8, “L1 Cache Operation Summary,”
for a description of the L1 snoop responses.

Table 3-37 shows the state transitions in the L1, L2, and L3 caches for each external snoop
operation. The table lists only legal state combinations. The columns are defined in
Table 3-36. Note that the L3 cache is not supported by the MPC7441, MPC7445, and the
MPC7447.

Note the following:

• Snoop kill reservation is performed only if a matching reservation exists in the L1
(part of the L1 snoop response).

• For write-with-kill and kill external snoops, a flush operation is sent to the L1’s. If
the L1 is modified, a push is generated in the SMC. The external snoop logic and
SMC contain circuitry to drop this push if the snoop is not retried on the bus. The
MPC7451 does not respond retry if there is modified data in the L1, L2 or L3.

• The atomic bus operations have the same snoop responses as the non-atomic ones.

• Because the MPC7451 only snoops global accesses (GBL asserted), that is assumed
for all of the tables. The MPC7451 will not issue a snoop response (ARTRY and
HIT) for transactions in which GBL is not asserted.

Table 3-36. Definitions for L2/L3 Cache/Snoop Summary

Term Definition

Snoop Type The bus transfer type as described in Table 3-35.

L1 Snoop Type The L1 snoop operation (if any) triggered by this operation.

L1 Response The invalid/valid/modified response of the core. If the L1 response is retry, the external bus
response is always retry.

Initial L2 State The MESI state of this address in the L2 cache before the snoop operation.

Initial L3 State The MESI state of this address in the L3 cache before the snoop operation.

Final L2 State: The MESI state of this address in the L2 cache when all operations triggered by this snoop are
complete.

Final L3 State The MESI state of this address in the L2 cache when all operations triggered by this snoop are
complete.

Bus Response Shared indicates there is a valid copy of the data and the data stays valid (if the bus operation
supports shared response). Modified indicates there is a modified copy of the data and the cache
will provide intervention data. Retry indicates the master must try the operation again to get the
most up-to-date data and a clean response. Shared and retry together indicates the this device
must perform a push. Shared and modified together indicates this device will provide intervention
data and retain a valid copy of the line.

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-101

System Bus Interface

Table 3-37. External Snoop Responses and L1, L2, and L3 Actions

Snoop Type
L1 Snoop

Type
L1 Resp

Initial
L2

State

Initial
L3

State

Final
L2

State

Final
L3

State

Response
to Snoop

Comments

Flush Flush I/V I//S/E I/S/E I I None Invalidate L1/L2/L3.

M I I GBL Intervene from L3 and
invalidate L1/L2/L3.

M I/S/E I I GBL Intervene from L2 and
invalidate L1/L2/L3.

M I I GBL

M I/S/E I/S/E I I GBL Intervene from L1 and
invalidate L1/L2/L3.

M I I GBL

M I/S/E I I GBL

M I I GBL

Write
W/flush

Flush 1 I/V I/S/E I/S/E I I None Invalidate L1.

M I I Retry Cache paradox:
Push block from L3.
Invalidate L1/L2/L3.

M I/S/E/M I I Retry Cache paradox:
Push block from L2.
Invalidate L1/L2/L3.

M I/S/E/M I/S/E/M I I Retry Cache paradox: Push
block from L1.
Invalidate L1.

Kill Flush

Kill
Reservation

I/V/M I/S/E I/S/E I I None Invalidate L1/L2/L3.
Kill reservation (if
necessary.) after
ARTRY window.

If L1 response is M,
the push in SMC is
killed if bus response
is not ARTRY.

M I I None

M I/S/E I I None

M I I None

Write W/kill Flush I/V/M I/S/E I/S/E I I None Invalidate L1/L2/L3.

If L1 response is M,
the push in SMC is
killed if bus response
is not ARTRY.

M I I None

M I/S/E I I None

M I I None

3-102 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

System Bus Interface

Read Read I/V I I same same None —

S/E same S SHDx 2 Set L1/L3 shared.

M same S SHDx +
GBL

Intervene from L3 and
set L1/L3 shared.

S/E I S same SHDx2 Set L1/L2 shared.

S/E S S Set L1/L2/L3 shared.

M S S SHDx +
GBL

Intervene from L3 and
set L1/L2/L3 shared.

M I S same SHDx +
GBL

Intervene from L2,
consume data in L3 if
valid, and set
L1/L2/L3 shared.

S/E S S

M S S SHDx +
GBL

M I I same same SHDx +
GBL

Intervene from L1,
consume data in L2
and L3 if valid, and set
L1/L2/L3 shared.

S/E same S

M same S

S/E I S same

S/E S S

M S S

M I S same

S/E S S

M S S

Table 3-37. External Snoop Responses and L1, L2, and L3 Actions (continued)

Snoop Type
L1 Snoop

Type
L1 Resp

Initial
L2

State

Initial
L3

State

Final
L2

State

Final
L3

State

Response
to Snoop

Comments

MOTOROLA Chapter 3. L1, L2, and L3 Cache Operation 3-103

System Bus Interface

Clean
RWNITC

Read I/V I I/S/E same same None —

M same E GBL Intervene from L3 and
clean L1/L3.

S/E I/S/E same same None Clean L1/L2.

M same E GBL Intervene from L3 and
clean L1/L2/L3.

M I/S/E E same GBL Intervene from L2 and
clean L1/L2/L3.
Consume intervention
data in L3 if valid.

M E E

M I I/S/E I same GBL Intervene from L1 and
clean L1/L2/L3.
Consume intervention
data in L2/L3 if valid.

M I E

S/E I/S/E S same

M S E

M I/S/E S same

M S E

RWITM

RCLAIM

Flush

Kill
Reservation

I/S/E I/S/E I/S/E I I None Invalidate L1. Kill
reservations (if
necessary.) after
ARTRY window.

M I I GBL Intervene from L3.
Invalidate L2/L2/L3.
Kill reservation (if
necessary.) after
ARTRY window.

M I/S/E I I GBL Intervene from L2.
Invalidate L2/L2/L3.
Kill reservation (if
necessary.) after
ARTRY window.

M I I GBL

M I/S/E I/S/E I I GBL Intervene from L1.
Invalidate L2/L2/L3.
Kill reservation (if
necessary.) after
ARTRY window.

M I I GBL

M I/S/E I I GBL

M I I GBL

TLBIE tlbie n/a n/a n/a n/a n/a None Snoop core only, no
L2/L3 action.

ICBI icbi n/a n/a n/a n/a n/a None

SYNC None n/a n/a n/a n/a n/a None The sync instruction
does not need to
query.

Table 3-37. External Snoop Responses and L1, L2, and L3 Actions (continued)

Snoop Type
L1 Snoop

Type
L1 Resp

Initial
L2

State

Initial
L3

State

Final
L2

State

Final
L3

State

Response
to Snoop

Comments

3-104 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

System Bus Interface

TLBSYNC None n/a n/a n/a n/a n/a None The tlbsync
instruction does not
need to query. It
asserts a retry if and
only if there is a
pending marked
transaction from a
previous tlbie.

EIEIO n/a n/a n/a n/a n/a n/a None MPC7451 does not
snoop eieio.

LWARX
RESERVE

n/a n/a n/a n/a n/a n/a None MPC7451 does not
snoop lwarx Reserve.

xferdata n/a n/a n/a n/a n/a n/a None MPC7451 does not
snoop xferdata in or
out.

1 Snoop W = 1 or I = 1 Write w/Flush need not kill reservations because lwarx is not supported in W = 1 or I = 1
space, and aliasing W = 1 and W = 0 or I = 1 and I = 0 across processors is illegal.

2 It is possible to get a shared response to a read snoop for a transient condition. For example, if a previous flush
found the data modified in the L1 or L2, the intervention that changes the L3 state to invalid may not have been
performed in the L3 when the read is snooped. Since the address tenure is complete for the flush, a hit against an
intervention operation in the queues is not retried. The memory system ensures ordering of the data.

Table 3-37. External Snoop Responses and L1, L2, and L3 Actions (continued)

Snoop Type
L1 Snoop

Type
L1 Resp

Initial
L2

State

Initial
L3

State

Final
L2

State

Final
L3

State

Response
to Snoop

Comments

MOTOROLA Chapter 4. Exceptions 4-1

Chapter 4
Exceptions
The OEA portion of the PowerPC architecture defines the mechanism by which processors
implement exceptions. Exception conditions may be defined at other levels of the
architecture. For example, the UISA defines conditions that may cause floating-point
exceptions; the OEA defines the mechanism by which the exception is taken.

The exception mechanism allows the processor that implements the PowerPC architecture
to change to supervisor state as a result of unusual conditions arising in the execution of
instructions and from external signals, bus errors, or various internal conditions. When
exceptions occur, information about the state of the processor is saved to certain registers
and the processor begins execution at an address (exception vector) predetermined for each
exception. Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, often a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the floating-point status and control register
(FPSCR). Also, software can explicitly enable or disable some exception conditions.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an
instruction-caused exception is recognized, any unexecuted instructions that appear earlier
in the instruction stream, including any that have not yet entered the execute state, are
required to complete before the exception is taken. In addition, if a single instruction
encounters multiple exception conditions, those exceptions are taken and handled
sequentially. Likewise, exceptions that are asynchronous and precise are recognized when
they occur, but are not handled until all instructions currently in the execute stage
successfully complete execution and report their results. To prevent loss of state
information, exception handlers must save the information stored in the machine status
save/restore registers, SRR0 and SRR1, soon after the exception is taken to prevent this
information from being lost due to another exception being taken. Because exceptions can
occur while an exception handler routine is executing, multiple exceptions can become
nested. It is up to the exception handler to save the necessary state information if control is
to return to the excepting program.

In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the

4-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

next exception condition is encountered. Recognizing and handling exception conditions
sequentially guarantees that the machine state is recoverable and processing can resume
without losing instruction results.

In this book, the following terms are used to describe the stages of exception processing:

Recognition Exception recognition occurs when the condition that can cause an
exception is identified by the processor.

Taken An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine begins executing in supervisor
mode.

Handling Exception handling is performed by the software at the appropriate
vector offset. Exception handling is begun in supervisor mode.

In this book, the term ‘interrupt’ is used to describe the external interrupt, the system
management interrupt, and sometimes the asynchronous exceptions, in general. Note that
the PowerPC architecture uses the word ‘exception’ to refer to IEEE-defined floating-point
exception conditions that may cause a program exception to be taken; see Section 4.6.7,
“Program Exception (0x00700).” The occurrence of these IEEE exceptions may or may not
cause an exception to be taken. IEEE-defined exceptions are referred to as IEEE
floating-point exceptions or floating-point exceptions in this book.

AltiVec Technology and the Exception Model

Only the four following exceptions may result from execution of an AltiVec instruction:

• An AltiVec unavailable exception occurs with an attempt to execute any non-stream
AltiVec instruction with MSR[VEC] = 0. After this exception occurs, execution
resumes at offset 0x00F20 from the physical base address indicated by MSR[IP].
This exception does not occur for data streaming instructions (dst[t], dstst[t] dss,
and dssall). Also note that the VRSAVE register is not protected by this exception;
this is consistent with the AltiVec Programming Environments Manual.

• A DSI exception occurs for an AltiVec load or store only if the load or store
operation encounters a page fault (does not find a valid PTE during a table search
operation) or a protection violation. Also a DSI exception occurs if an AltiVec load
or store attempts to access a SR[T] = 1 (direct-store) memory location.

• An AltiVec assist exception may occur if an AltiVec floating-point instruction
detects denormalized data as an input or output in Java mode. After this exception
occurs, execution resumes at offset 0x01600 from the physical base address
indicated by MSR[IP].

MOTOROLA Chapter 4. Exceptions 4-3

MPC7451 Microprocessor Exceptions

• AltiVec loads and stores

NOTE
The 60x bus protocol does not support a 16-byte bus
transaction. Therefore, cache-inhibited AltiVec loads and
stores and write-through stores take an alignment exception.
This requires a re-write of the alignment exception routines in
software that supports AltiVec quad word access in 60x bus
mode on the MPC7451.

4.1 MPC7451 Microprocessor Exceptions
As specified by the PowerPC architecture, exceptions can be either precise or imprecise and
either synchronous or asynchronous. Asynchronous exceptions are caused by events
external to the processor’s execution; synchronous exceptions are caused by instructions.

The types of exceptions are shown in Table 4-1. Note that all exceptions except for the
performance monitor, AltiVec unavailable, instruction address breakpoint, system
management, AltiVec assist, and the 3 software table search exceptions are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual.

The exception classifications are discussed in greater detail in Section 4.2, “MPC7451
Exception Recognition and Priorities.” For a better understanding of how the MPC7451
implements precise exceptions, see Chapter 6, “Instruction Timing.” Exceptions
implemented in the MPC7451, and conditions that cause them, are listed in Table 4-2.
Table 4-2 notes when an exception is implementation-specific to the MPC7451. The three
software table search exceptions are used by the MPC7451 when HID0[STEN] = 1, to
support the software page table searching. Refer to Section 4.6.15, “TLB Miss
Exceptions,” and Chapter 5, “Memory Management” for more information about the
software table search operations.

Table 4-1. MPC7451 Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/Imprecise Exception Types

Asynchronous, nonmaskable Imprecise System reset, machine check

Asynchronous, maskable Precise External interrupt, system management interrupt,
decrementer exception, performance monitor exception

Synchronous Precise Instruction-caused exceptions

Table 4-2. Exceptions and Conditions

Exception Type Vector Offset Causing Conditions

Reserved 0x00000 —

System reset 0x00100 Assertion of either HRESET or SRESET or at power-on reset

4-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Microprocessor Exceptions

Machine check 0x00200 Assertion of TEA during a data bus transaction, assertion of MCP, an address
bus parity error on MPX bus, a data bus parity error on MPXbus, an L1
instruction cache error, and L1 data cache error, a memory subsystem detected
error including the following:
 • L2 data parity error
 • L2 cache tag parity error
 • L3 SRAM error
 • L3 tag parity errors.
MSR[ME] must be set. Note that the L3 cache is not supported on the
MPC7441and MPC7445.

DSI 0x00300 As specified in the PowerPC architecture. Also includes the following:
 • A hardware table search due to a TLB miss on load, store, or cache

operations results in a page fault.
 • Any load or store to a direct-store segment (SR[T] = 1).
 • A lwarx or stwcx. instruction to memory with cache-inhibited or

write-through memory/cache access attributes.

ISI 0x00400 As specified in the PowerPC architecture

External
interrupt

0x00500 MSR[EE] = 1 and INT is asserted

Alignment 0x00600 • A floating-point load/store, stmw, stwcx., lmw, lwarx, eciwx, or ecowx
instruction operand is not word-aligned.

 • A multiple/string load/store operation is attempted in little-endian mode
 • An operand of a dcbz instruction is on a page that is write-through or

cache-inhibited for a virtual mode access.
 • An attempt to execute a dcbz instruction occurs when the cache is disabled

or locked.

Program 0x00700 As specified in the PowerPC architecture

Floating-point
unavailable

0x00800 As specified in the PowerPC architecture

Decrementer 0x00900 As defined by the PowerPC architecture, when the msb of the DEC register
changes from 0 to 1 and MSR[EE] = 1.

Reserved 0x00A00–00BFF —

System call 0x00C00 Execution of the System Call (sc) instruction

Trace 0x00D00 MSR[SE] =1 or a branch instruction is completing and MSR[BE] =1. The
MPC7451 operates as specified in the OEA by taking this exception on an
isync.

Reserved 0x00E00 The MPC7451 does not generate an exception to this vector. Other processors
that implement the PowerPC architecture may use this vector for floating-point
assist exceptions.

Reserved 0x00E10–00EFF —

Performance
monitor

0x00F00 The limit specified in PMCn is met and MMCR0[ENINT] = 1
(MPC7451-specific).

AltiVec
unavailable

0x00F20 Occurs due to an attempt to execute any non-streaming AltiVec instruction
when MSR[VEC] = 0. This exception is not taken for data streaming instructions
(dstx, dss, or dssall) (MPC7451-specific).

Table 4-2. Exceptions and Conditions (continued)

Exception Type Vector Offset Causing Conditions

MOTOROLA Chapter 4. Exceptions 4-5

MPC7451 Exception Recognition and Priorities

4.2 MPC7451 Exception Recognition and Priorities
Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions such as system reset and machine check
exceptions, have priority over all other exceptions although the machine check
exception condition can be disabled so the condition causes the processor to go
directly into the checkstop state. These exceptions cannot be delayed and do not wait
for completion of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

3. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are
caused by instructions and they are delayed until higher priority exceptions are
taken. Note that the MPC7451 does not implement an exception of this type.

4. Maskable asynchronous exceptions (external interrupt, decrementer, system
management interrupt, and performance monitor exceptions) are delayed until
higher priority exceptions are taken.

The following list of categories describes how the MPC7451 handles exception conditions
up to the point that the exception is taken. Note that a recoverable state is reached if the
completed store queue is empty and any instruction that is next in program order, and has

ITLB miss 0x01000 An instruction translation miss exception is caused when HID0[STEN] = 1 and
the effective address for an instruction fetch cannot be translated by the ITLB
(MPC7451-specific).

DTLB
miss-on-load

0x01100 A data load translation miss exception is caused when HID0[STEN] = 1 and the
effective address for a data load operation cannot be translated by the DTLB
(MPC7451-specific).

DTLB
miss-on-store

0x01200 A data store translation miss exception is caused when HID0[STEN] = 1 and
the effective address for a data store operation cannot be translated by the
DTLB, or when a DTLB hit occurs, and the changed bit in the PTE must be set
due to a data store operation (MPC7451-specific).

Instruction
address

breakpoint

0x01300 IABR[0–29] matches EA[0–29] of the next instruction to complete and
IABR[BE] = 1 (MPC7451-specific).

System
management

interrupt

0x01400 MSR[EE] = 1 and SMI is asserted (MPC7451-specific).

Reserved 0x01500–015FF —

AltiVec assist 0x01600 This MPC7451-specific exception supports denormalization detection in Java
mode as specified in the AltiVec Technology Programming Environments
Manual.

Reserved 0x01700–02FFF —

Table 4-2. Exceptions and Conditions (continued)

Exception Type Vector Offset Causing Conditions

4-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Exception Recognition and Priorities

been signaled to complete, has completed. If MSR[RI] = 0, the MPC7451 is in a
nonrecoverable state. Also, instruction completion is defined as updating all architectural
registers associated with that instruction, and then removing that instruction from the
completion buffer. When all the pending store instructions have been committed to
memory, the completed store queue is empty.

• Exceptions caused by asynchronous events (interrupts). These exceptions are further
distinguished by whether they are maskable and recoverable.

— Asynchronous, nonmaskable, nonrecoverable

System reset for assertion of HRESET—Has highest priority and is taken
immediately regardless of other pending exceptions or recoverability (includes
power-on reset).

— Asynchronous, maskable, nonrecoverable

Machine check exception—Has priority over any other pending exception
except system reset for assertion of HRESET (or power-on reset). Taken
immediately regardless of recoverability.

— Asynchronous, nonmaskable, recoverable

System reset for SRESET—Has priority over any other pending exception
except system reset for HRESET (or power-on reset), or machine check. Taken
immediately when a recoverable state is reached.

— Asynchronous, maskable, recoverable

System management interrupt, performance monitor, external interrupt, and
decrementer exceptions—Before handling this type of exception, the next
instruction in program order must complete. If that instruction causes another
type of exception, that exception is taken and the asynchronous, maskable
recoverable exception remains pending until the instruction completes. Further
instruction completion is halted. The asynchronous, maskable recoverable
exception is taken when a recoverable state is reached.

• Instruction-related exceptions. These exceptions are further organized into the point
in instruction processing at which they generate an exception.

— Instruction fetch and ITLB miss

– ISI exceptions—Once this type of exception is detected, fetching stops and
the current instruction stream is allowed to drain out of the machine. If
completing any of the instructions in this stream causes an exception, that
exception is taken and the instruction fetch exception is discarded, but may be
encountered again when instruction processing resumes. Otherwise, once all
pending instructions have executed and a recoverable state is reached, the ISI
or ITLB miss exception is taken.

— Instruction dispatch/execution

– Program, DSI, alignment, floating-point unavailable, AltiVec unavailable,
AltiVec assist, system call, instruction address breakpoint, data address

MOTOROLA Chapter 4. Exceptions 4-7

MPC7451 Exception Recognition and Priorities

breakpoint, and DTLB miss (if HID0[STEN] = 1)—This type of exception is
determined during dispatch or execution of an instruction. The exception
remains pending until all instructions before the exception-causing instruction
in program order complete. The exception is then taken without completing
the exception-causing instruction. If completing these previous instructions
causes an exception, that exception takes priority over the pending instruction
dispatch/execution exception, which is discarded, but may be encountered
again when instruction processing resumes.

— Post-instruction execution

– Trace—Trace exceptions are generated following execution and completion
of an instruction while trace mode is enabled. If executing the instruction
produces conditions for another type of exception, that exception is taken and
the post-instruction exception is ignored for that instruction.

Note that these exception classifications correspond to how exceptions are prioritized, as
described in Table 4-3.

Table 4-3. MPC7451 Exception Priorities

Priority Exception Cause

Asynchronous Exceptions (Interrupts)

0 System reset Power-on reset, assertion of HRESET and TRST (hard reset)

1 Machine check Any enabled machine check condition (assertion of TEA or MCP, or memory
subsystem error as defined in MSSSR0 (see Section 2.1.5.4, “Memory Subsystem
Status Register (MSSSR0) for further details), address or data parity error, L1
address or data parity error, data cache error, instruction cache error, L2 data parity
error, L2 tag error)

2 System reset Assertion of SRESET (soft reset)

3 System
management

interrupt

Assertion of SMI

4 External interrupt Assertion of INT

5 Performance
monitor

Any programmer-specified performance monitor condition

6 Decrementer Decrementer passes through zero.

Instruction Fetch Exceptions

0 ISI ISI exception conditions due to:
1. No-execute segment
2. Direct-store (T=1) segment

1 ITLB Miss Instruction table miss exception due to miss in ITLB with HID0[STEN] = 1

2 ISI ISI exception conditions due to:
1. Effective address can not be translated (page fault)
2. Instruction fetch from guarded memory
3. Protection violation

4-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 Exception Recognition and Priorities

Instruction Dispatch/Execution Exceptions

0 Instruction address
breakpoint

Any instruction address breakpoint exception condition

1 Program Illegal instruction, privileged instruction, or trap exception condition. Note that
floating-point enabled program exceptions have lower priority.

2 System call System call (sc) instruction

3 Floating-point
unavailable

Any floating-point unavailable exception condition

4 AltiVec unavailable Any unavailable AltiVec exception condition

5 Program A floating-point enabled exception condition (lowest-priority program exception)

6 Alignment Any alignment exception condition, prioritized as follows:
1. Floating-point access not word-aligned
2. lmw, stmw, lwarx, or stwcx. not word-aligned
3. eciwx or ecowx not word-aligned
4. Multiple or string access with MSR[LE] set
5. dcbz to a locked or disabled L1 data cache, WT, or CI page
6. stvx, stvxl, lvx, or lvxl to a disabled L1 cache, or all ways locked when in 60x

bus mode

7 DSI DSI exception due to execution of stvx, stvxl, lvx, or lvxl with all of the following
conditions:
• SR[T] =0 (with BAT miss)
• cache-inhibited or write-through space
• 60x bus mode.

8 Alignment Alignment exception due to execution of stvx, stvxl, lvx, or lvxl with all of the
following conditions:
• SR[T]=1(with BAT miss)
• cache-inhibited or write-through space
• 60x bus mode.
exception due to stvx, stvxl, lvx, or lvxl to cache-inhibited or write-through page
when in 60x bus mode on a BAT hit or to SR[T] = 0 space.

9 DSI DSI exception due to eciwx or ecowx with EAR[E] = 0 (DSISR[11]).

10 DSI DSI exception due to lwarx/stwcx. with caching disabled or if all ways are locked.

11 DSI DSI exception due to the following:
 • BAT/page protection violation (DSISR[4]), or
 • lwarx/stwcx. to BAT entry with write-through attributes (W = 1), or to a page table

entry (or BAT entry) with caching disallowed attributes (I = 1), or to a page table
entry (or BAT entry) with caching-allowed attributes (I = 0), but with a locked L1
data cache (DSISR[5])

Note that if both occur simultaneously, both bits 4 and 5 of the DSISR are set.

12 DSI DSI exception due to any access except cache operations to a segment where SR[T]
= 1 (DSISR[5]) or an access crosses from a T = 0 segment to one where T = 1
(DSISR[5])

13 DTLB miss on store Data table miss on store exception due to store miss in DTLB with HID0[STEN] = 1

14 DTLB miss-on-load Data table miss-on-load exception due to load miss in DTLB with HID0[STEN] = 1

Table 4-3. MPC7451 Exception Priorities (continued)

Priority Exception Cause

MOTOROLA Chapter 4. Exceptions 4-9

Exception Processing

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception is being handled. As a result, state information for an interrupted exception
may be lost; therefore, these exceptions are typically nonrecoverable. An exception may or
may not be taken immediately when it is recognized.

4.3 Exception Processing
When an exception is taken, the processor uses SRR0 and SRR1 to save the contents of the
MSR for the current context and to identify where instruction execution should resume after
the exception is handled.

When an exception occurs, the address saved in SRR0 helps determine where instruction
processing should resume when the exception handler returns control to the interrupted
process. Depending on the exception, this may be the address in SRR0 or at the next address
in the program flow. All instructions in the program flow preceding this one will have
completed execution and no subsequent instruction will have begun execution. This may be
the address of the instruction that caused the exception or the next one (as in the case of a
system call or trace exception). The SRR0 register is shown in Figure 4-1.

15 DSI DSI exception due to:
 • TLB translation detects page protection violation (DSISR[4])
 • TLB translation detects lwarx/stwcx. to a page table entry with write-through

attributes (W = 1), or to a page table entry (or BAT entry) with caching disallowed
attributes (I = 1), or to a page table entry (or BAT entry) with caching-allowed
attributes (I = 0), but with a locked L1 data cache (DSISR[5]).

 • Hardware table search page fault (DSISR[1])
Note that if both 1 and 2 occur simultaneously, both bits 4 and 5 of the DSISR are set.

16 DTLB miss on store
(data store access

and C bit = 0)

Data TLB miss on store exception when HID0[STEN] = 1 and the PTE changed bit
is not set (C = 0) for a store operation.

17 DSI DSI exception due to DABR address match (DSISR[9]). Note that even though
DSISR[5] and DSISR[9] are set by exceptions with different priorities, they can be set
simultaneously.

18 AltiVec assist Denormalized data detected as input or output in the AltiVec vector floating-point unit
(VFPU) while in Java mode (VSCR[NJ] = 0)

Post-Instruction Execution Exceptions

19 Trace MSR[SE] = 1 (or MSR[BE] = 1 for branches)

SRR0 (Holds EA for Instruction in Interrupted Program Flow)

0 31

Figure 4-1. Machine Status Save/Restore Register 0 (SRR0)

Table 4-3. MPC7451 Exception Priorities (continued)

Priority Exception Cause

4-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Exception Processing

SRR1 is used to save machine status (selected MSR bits and possibly other status bits) on
exceptions and to restore those values when an rfi instruction is executed. SRR1 is shown
in Figure 4-2.

Typically, when an exception occurs, SRR1[0–15] are loaded with exception-specific
information and MSR[16–31] are placed into the corresponding bit positions of SRR1. For
most exceptions, SRR1[0–5] and SRR1[7–15] are cleared, and MSR[6, 16–31] are placed
into the corresponding bit positions of SRR1. Table 4-4 provides a summary of the SRR1
bit settings when a machine check exception occurs. For a specific exception’s SRR1 bit
settings, see Section 4.6, “Exception Definitions.”

The MPC7451’s MSR is shown in Figure 4-3.

The MSR bits are defined in Table 4-4.

Exception-Specific Information and MSR Bit Values

0 31

Figure 4-2. Machine Status Save/Restore Register 1 (SRR1)

Reserved

0000_0 VEC 00_0000 POW 0 ILE EE PR FP ME FE0 SE BE FE1 0 IP IR DR 0 PMM RI LE

0 5 6 7 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 4-3. Machine State Register (MSR)

Table 4-4. MSR Bit Settings

Bit(s) Name Description

0–5 — Reserved

6 VEC 1, 2 AltiVec vector unit available
0 The processor prevents dispatch of AltiVec instructions (excluding the data streaming

instructions—dst, dstt, dstst, dststt, dss, and dssall). The processor also prevents access
to the vector register file (VRF) and the vector status and control register (VSCR). Any attempt
to execute an AltiVec instruction that accesses the VRF or VSCR, excluding the data streaming
instructions generates the AltiVec unavailable exception. The data streaming instructions are
not affected by this bit; the VRF and VSCR registers are available to the data streaming
instructions even when the MSR[VEC] is cleared.

1 The processor can execute AltiVec instructions and the VRF and VSCR registers are
accessible to all AltiVec instructions.

Note that the VRSAVE register is not protected by MSR[VEC].

7–12 — Reserved

13 POW 1, 3 Power management enable
0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).
Power management functions are implementation-dependent. See Chapter 10, “Power and
Thermal Management.”

MOTOROLA Chapter 4. Exceptions 4-11

Exception Processing

14 — Reserved. Implementation-specific

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to select
the endian mode for the context established by the exception.

16 EE External interrupt enable
0 The processor delays recognition of external interrupts and decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR 4 Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP 2 Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point loads,

stores, and moves.
1 The processor can execute floating-point instructions and can take floating-point enabled

program exceptions.

19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FE0 2 IEEE floating-point exception mode 0 (see Table 4-5)

21 SE Single-step trace enable
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of every

instruction except rfi and sc. Successful execution means that the instruction caused no other
exception.

22 BE Branch trace enable
0 The processor executes branch instructions normally.
1 The processor generates a branch type trace exception when a branch instruction executes

successfully.

23 FE1 2 IEEE floating-point exception mode 1 (see Table 4-5)

24 — Reserved. This bit corresponds to the AL bit of the POWER architecture.

25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended
with Fs or 0s. In the following description, nnnnn is the offset of the exception.
0 Exceptions are vectored to the physical address 0x000n_nnnn.
1 Exceptions are vectored to the physical address 0xFFFn_nnnn.

26 IR 5 Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 5, “Memory Management.”

27 DR 4 Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information see Chapter 5, “Memory Management.”

28 — Reserved

Table 4-4. MSR Bit Settings (continued)

Bit(s) Name Description

4-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Exception Processing

Note that setting MSR[EE] masks not only the architecture-defined external interrupt and
decrementer exceptions but also the MPC7451-specific system management, and
performance monitor exceptions.

The IEEE floating-point exception mode bits (FE0 and FE1) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
all. As shown in Table 4-5, if either FE0 or FE1 are set, the MPC7451 treats exceptions as
precise. MSR bits are guaranteed to be written to SRR1 when the first instruction of the
exception handler is encountered. For further details, see Chapter 2, “PowerPC Register
Set” and Chapter 6, “Exceptions,” of The Programming Environments Manual.

29 PMM 1 Performance monitor marked mode
0 Process is not a marked process.
1 Process is a marked process.
This bit can be set when statistics need to be gathered on a specific (marked) process. The
statistics will only be gathered when the marked process is executing.
MPC7451–specific; defined as optional by the PowerPC architecture. For more information about
the performance monitor marked mode bit, see Section 11.4, “Event Counting.”

30 RI Indicates whether system reset or machine check exception is recoverable.
0 Exception is not recoverable.
1 Exception is recoverable.
The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRR0 is valid), but it does not guarantee that the
interrupted process is recoverable.

31 LE 6 Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

1 Optional to the PowerPC architecture
2 A context synchronizing instruction must follow a mtmsr instruction.
3 A dssall and sync must precede a mtmsr instruction and then a context synchronizing instruction must follow.
4 A dssall and sync must precede a mtmsr and then a sync and context synchronizing instruction must follow. Note that

if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing the
MSR[DR] or MSR[PR] bit.

5 A context synchronizing instruction must follow a mtmsr. When changing the MSR[IR] bit the context synchronizing
instruction must reside at both the untranslated and the translated address following the mtmsr.

6 A dssall and sync must precede an rfi to guarantee a solid context boundary. Note that if a user is not using the AltiVec
data streaming instructions, then a dssall is not necessary prior to accessing the MSR[LE] bit.

Table 4-5. IEEE Floating-Point Exception Mode Bits

FE0 FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Imprecise nonrecoverable. For this setting, the MPC7451 operates in floating-point precise mode.

1 0 Imprecise recoverable. For this setting, the MPC7451 operates in floating-point precise mode.

1 1 Floating-point precise mode

Table 4-4. MSR Bit Settings (continued)

Bit(s) Name Description

MOTOROLA Chapter 4. Exceptions 4-13

Exception Processing

4.3.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition as follows:

• System reset exceptions cannot be masked.

• A machine check exception can occur only if the machine check enable bit,
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through the following bits: HID1[EMCP],
HID1[EBA], HID1[EBD], ICTRL[EIEC], ICTRL[EDCE], L2CR[L2PE],
L3CR[L3PE] and L3CR[L3APE], which are described in Table 4-8. Note that the
the L3 cache is not supported on the MPC7441and MPC7445.

• Asynchronous, maskable exceptions (such as the external interrupt and
decrementer) are enabled by setting MSR[EE]. When MSR[EE] = 0, recognition of
these exception conditions is delayed. MSR[EE] is cleared automatically when an
exception is taken to delay recognition of conditions causing those exceptions.

• The performance monitor exception is enabled for a specific process by setting
MSR[PMM].

• The floating-point unavailable exception can be masked by setting MSR[FP].

• The AltiVec unavailable exception can be masked by setting MSR[VEC].

• IEEE floating-point enabled exceptions (a type of program exception) are ignored
when both MSR[FE0] and MSR[FE1] are cleared. If either bit is set, all IEEE
enabled floating-point exceptions are taken and cause a program exception.

• The trace exception is enabled by setting either MSR[SE] or MSR[BE].

• The software tablewalk exceptions can be prevented by clearing HID0[STEN]. Note
that this forces hardware tablewalks to be performed. See Section 4.6.15, “TLB
Miss Exceptions,” for more information.

4.3.2 Steps for Exception Processing

After it is determined that the exception can be taken (all instruction-caused exceptions
occurring earlier in the instruction stream have been handled, the instruction that caused the
exception is next to be retired, and by confirming that the exception is enabled for the
exception condition), the processor does the following:

1. SRR0 is loaded with an instruction address that depends on the type of exception.
See the individual exception description for details about how this register is used
for specific exceptions.

2. SRR1[0, 7–9] are cleared;
SRR1[1–5, 10–15] are loaded with information specific to the exception type;
and SRR1[6, 16–31] are loaded with a copy of the corresponding MSR bits.

4-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Exception Processing

3. The MSR is set as described in Table 4-6. The new values take effect as the first
instruction of the exception-handler routine is fetched.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

4. Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector (see Table 4-2) to the base address determined by MSR[IP]. If IP is cleared,
exceptions are vectored to the physical address 0x000n_nnnn. If IP is set,
exceptions are vectored to the physical address 0xFFFn_nnnn. For a machine check
exception that occurs when MSR[ME] = 0 (machine check exceptions are
disabled), the checkstop state is entered (the machine stops executing instructions).
See Section 4.6.2, “Machine Check Exception (0x00200).”

4.3.3 Setting MSR[RI]

An operating system may handle MSR[RI] as follows:

• In the machine check and system reset exceptions—If MSR[RI] is cleared, the
exception is not recoverable. If it is set, the exception is recoverable with respect to
the processor.

• In each exception handler—When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

• In each exception handler—Clear MSR[RI], set SRR0 and SRR1 appropriately, and
then execute rfi.

• Note that the RI bit being set indicates that, with respect to the processor, enough
processor state data remains valid for the processor to continue, but it does not
guarantee that the interrupted process can resume.

4.3.4 Returning from an Exception Handler

The Return from Interrupt (rfi) instruction performs context synchronization by allowing
previously issued instructions to complete before returning to the interrupted process. In
general, execution of the rfi instruction ensures the following:

• All previous instructions have completed to a point where they can no longer cause
an exception.

• Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

• The rfi instruction copies SRR1 bits back into the MSR.
• Instructions fetched after this instruction execute in the context established by this

instruction.
• Program execution resumes at the instruction indicated by SRR0.

MOTOROLA Chapter 4. Exceptions 4-15

Process Switching

For a complete description of context synchronization, refer to Chapter 6, “Exceptions,” of
The Programming Environments Manual.

4.4 Process Switching
The following instructions are useful for restoring proper context during process switching:

• The sync instruction orders the effects of instruction execution. All instructions
previously initiated appear to have completed before the sync instruction completes,
and no subsequent instructions appear to be initiated until the sync instruction
completes. For an example showing use of sync, see Chapter 2, “PowerPC Register
Set,” of The Programming Environments Manual.

• The isync instruction waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation, and
protection) established by the previous instructions.

• The stwcx. instruction clears any outstanding reservations, ensuring that an lwarx
instruction in an old process is not paired with an stwcx. instruction in a new one.

The operating system should set MSR[RI] as described in Section 4.3.3, “Setting
MSR[RI].”

4.5 Data Stream Prefetching and Exceptions
As described in Chapter 5, “Cache, Exceptions, and Memory Management,” of the AltiVec
Technology Programming Environments Manual, exceptions do not automatically cancel
data stream prefetching. The operating system must stop streams explicitly when
warranted—for example, when switching processes or changing virtual memory context.
Care must be taken if data stream prefetching is used while in supervisor mode
(MSR[PR] = 0).

4.6 Exception Definitions
Table 4-6 shows all the types of exceptions that can occur with the MPC7451 and the MSR
settings when the processor goes into supervisor mode due to an exception. Depending on
the exception, certain of these bits are stored in SRR1 when an exception is taken.

4-16 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Exception Definitions

Table 4-6. MSR Setting Due to Exception

Exception Type

MSR Bit Name
MSR Bit Number

VEC
6

POW
13

ILE
15

EE
16

PR
17

FP
18

ME
19

FE0
20

SE
21

BE
22

FE1
23

IP
25

IR
26

DR
27

PM
29

RI
30

LE
31

System reset 0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Machine check 0 0 — 0 0 0 0 0 0 0 0 — 0 0 0 0 ILE

DSI 0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

ISI 0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

External interrupt 0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Alignment 0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Program 0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Floating-point
unavailable

0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Decrementer 0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

System call 0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Trace exception 0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Performance
monitor

0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

AltiVec unavailable 0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

ITLB miss 0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

DTLB miss on load 0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

DTLB miss on
store

0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Instruction
Address
Breakpoint

0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

System
management

0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

MOTOROLA Chapter 4. Exceptions 4-17

Exception Definitions

The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the
bit is cleared, exceptions are vectored to the physical address 0x000n_nnnn (where n_nnnn
is the vector offset); if IP is set, exceptions are vectored to physical address 0xFFFn_nnnn.
Table 4-2 shows the exception vector offset of the first instruction of the exception handler
routine for each exception type.

4.6.1 System Reset Exception (0x00100)

The MPC7451 implements the system reset exception as defined in the PowerPC
architecture (OEA). The system reset exception is a nonmaskable, asynchronous exception
signaled to the processor through the assertion of system-defined signals. In the MPC7451,
the exception is signaled by the assertion of either the HRESET or SRESET input signals,
described more fully in Chapter 8, “Signal Descriptions.”

A hard reset is initiated by asserting HRESET. A hard reset is used primarily for power-on
reset (POR) (in which case TRST must also be asserted), but can also be used to restart a
running processor. The HRESET signal must be asserted during power up and must remain
asserted for a period that allows the PLL to achieve lock and the internal logic to be reset.
This period is specified in the MPC7451 Hardware Specifications. If HRESET is asserted
for less than the required interval, the results are not predictable.

If a hard reset request occurs (HRESET asserted), the processor immediately branches to
the system reset exception vector (0xFFF0_0100) without attempting to reach a recoverable
state. If HRESET is asserted during normal operation, all operations cease and the machine
state is lost. The MPC7451 internal state after a hard reset is defined in Table 2-28.

A soft reset is initiated by asserting SRESET. If SRESET is asserted, the processor is first
put in a recoverable state. To do this, the MPC7451 allows any instruction at the point of
completion to either complete or take an exception (note that load/store string or multiple
accesses are not split), blocks completion of any following instructions and allows the
completion queue to empty. If the soft reset request is made while the MPC7451 is in trace
mode (MSR[SE] = 1 or MSR[BE] = 1), the exception is set as nonrecoverable and
SRR1[30] is cleared (SRR1[30] = 0). The state before the exception occurred is then saved
as specified in the PowerPC architecture and instruction fetching begins at the system reset

AltiVec assist 0 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Key: 0 Bit is cleared
ILE Bit is copied from the MSR[ILE]
— Bit is not altered
Reserved bits are read as if written as 0

Table 4-6. MSR Setting Due to Exception (continued)

Exception Type

MSR Bit Name
MSR Bit Number

VEC
6

POW
13

ILE
15

EE
16

PR
17

FP
18

ME
19

FE0
20

SE
21

BE
22

FE1
23

IP
25

IR
26

DR
27

PM
29

RI
30

LE
31

4-18 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Exception Definitions

exception vector offset, 0x00100. The vector base address for a soft reset depends on the
setting of MSR[IP] (either 0x0000_0100 or 0xFFF0_0100). Soft resets are third in priority,
after hard reset and machine check. Except for the trace mode condition, this exception is
recoverable provided attaining a recoverable state does not generate a machine check.

SRESET is an edge-sensitive signal that can be asserted and negated asynchronously,
provided there are two bus cycles in between, see Section 8.4.3.4.1, “Soft Reset
(SRESET)—Input,” for more details. The system reset exception modifies the MSR,
SRR0, and SRR1, as described in The Programming Environments Manual. Unlike hard
reset, soft reset does not directly affect the states of output signals. Attempts to use SRESET
during a hard reset sequence or while the JTAG logic is non-idle can cause unpredictable
results.

The MPC7451 implements HID0[NHR], which helps software distinguish a hard reset
from a soft reset. Because this bit is cleared by a hard reset, but not by a soft reset, software
can set this bit after a hard reset and determine whether a subsequent reset is a hard or soft
reset (by examining whether this bit is still set). See Section 2.1.5.1, “Hardware
Implementation-Dependent Register 0 (HID0).”

Table 4-7 lists register settings when a system reset exception is taken.

4.6.2 Machine Check Exception (0x00200)

The MPC7451 implements the machine check exception as defined in the PowerPC
architecture (OEA). The MPC7451 conditionally initiates a machine check exception if
MSR[ME] = 1 and a system bus error (TEA assertion on data bus), assertion of the machine
check (MCP) signal, address bus parity error on MPXbus, data bus parity error on MPXbus,

Table 4-7. System Reset Exception—Register Settings

Register Setting Description

SRR0 Cleared to zero by a hard reset
On a soft reset, set to the effective address of the instruction that the processor would have attempted to
execute next if no exception conditions were present.

SRR1 0–5 Cleared
6 Loaded with equivalent MSR bit
7–15 Cleared
16–31 Loaded with equivalent MSR bits
Note that if the processor state is corrupted to the extent that execution cannot resume reliably, MSR[RI]
(SRR1[30]) is cleared.

MSR VEC 0
POW 0
ILE —
EE 0
LE ILE

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0
IP —

IR 0
DR 0
PM 0
RI 0

Key: 0 Bit is cleared
ILE Bit is copied from the MSR[ILE]
— Bit is not altered

MOTOROLA Chapter 4. Exceptions 4-19

Exception Definitions

L1 data cache error, L1 instruction cache error, or a memory subsystem error is detected
including:

• L2 data parity error

• L2 cache tag parity error

• L3 SRAM error

• L3 tag parity errors.

Note that the L3 cache is not supported on the MPC7441and the MPC7445.

As defined in the PowerPC architecture, the exception is not taken if MSR[ME] is cleared,
in which case the processor enters a checkstop state.

Certain machine check conditions can be enabled and disabled using HID1, ICTRL, L2CR,
and L3CR bits, as described in Table 4-8.

Table 4-8. Machine Check Enable Bits

Bit Name Function

HID1[0] EMCP Enable MCP. The primary purpose of this bit is to mask further machine check exceptions
caused by assertion of MCP, similar to how MSR[EE] can mask external interrupts.
0 Masks MCP. Assertion of MCP does not generate a machine check exception or a

checkstop.
1 Assertion of MCP causes a checkstop if MSR[ME] = 0 or a machine check exception

if MSR[ME] = 1.

HID1[2] EBA Enable/disable 60x/MPX bus address parity checking.
0 Prevents address parity checking.
1 Allows an address parity error to cause a checkstop if MSR[ME] = 0 or a machine check

exception if MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate
parity.

HID1[3] EBD Enable 60x/MPX bus data parity checking
0 Parity checking is disabled.
1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check

exception if MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate
parity.

ICTRL[4] EIEC Instruction cache parity error enable
0 When the bit is cleared, any parity error in the L1 instruction cache is masked and does

not cause machine checks or checkstop
1 Enables instruction cache parity errors. When an instruction cache parity error occurs, a

machine check exception is taken if MSR[ME] = 1. When this condition occurs, SRR1[1]
is set.

For details on the machine check exception see Section 4.6.2, “Machine Check Exception
(0x00200).”

ICTRL[5] EDCE Data cache parity error enable
0 When the bit is cleared, any parity error in the L1 data cache is masked and does not

cause machine checks or checkstop
1 Enables data cache parity errors. When a data cache parity error occurs, a machine

check exception is taken if MSR[ME] = 1. When this condition occurs, SRR1[2] is set.
For details on the machine check exception see Section 4.6.2, “Machine Check Exception
(0x00200).”

4-20 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Exception Definitions

A TEA indication on the bus can result from any load or store operation initiated by the
processor. In general, TEA is expected to be used by a memory controller to indicate that a
memory parity error or an uncorrectable memory ECC error has occurred. Note that the
resulting machine check exception is imprecise and unordered with respect to the
instruction that originated the bus operation.

For other memory subsystem errors, if MSR[ME] and the appropriate HID1, ICTRL,
L2CR, and L3CR bits are set, the exception is recognized and handled; otherwise, in most
cases, the processor generates an internal checkstop condition (an example of an exception
to this rule is if MSR[ME] = 1, HID1[EMCP] = 0, and MCP is asserted, then MCP is
ignored and neither a machine check exception nor checkstop occur). When a processor is
in checkstop state, instruction processing is suspended and generally cannot continue
without restarting the processor. Note that many conditions may lead to the checkstop
condition; the disabled machine check exception is only one of these. Note that the L3
cache is not supported on the MPC7441and the MPC7445.

A machine check exception may result from referencing a nonexistent physical address,
either directly (with MSR[DR] = 0) or through an invalid translation. If a dcbz instruction
introduces a block into the cache associated with a nonexistent physical address, a machine
check exception can be delayed until an attempt is made to store that block to main memory.
Not all processors that implement the PowerPC architecture provide the same level of error
checking. Checkstop sources are implementation-dependent.

Machine check exceptions are enabled when MSR[ME] = 1; this is described in
Section 4.6.2.1, “Machine Check Exception Enabled (MSR[ME] = 1).” If MSR[ME] = 0
and a machine check occurs, the processor enters the checkstop state. The checkstop state
is described in Section 4.6.2.2, “Checkstop State (MSR[ME] = 0).”

L2CR[1] L2PE L2 data parity checking enable
0 L2 tag and data parity disabled
1 L2 tag and data parity enabled
Enables or disables the checking of L2 tag and data parity

L3CR[1] 1 L3PE L3 data parity checking enable
0 L3 odd data parity checking disabled
1 L3 odd data parity checking enabled
Enables odd parity checking for the L3 data RAM interface. When L3PE is set, it allows a data
parity error on the L3 interface to cause a checkstop if MSR[ME] = 0 or a machine check
exception if MSR[ME] = 1. The MPC7451 always generates L3 data parity.

L3CR[2] 1 L3APE L3 address parity checking enable
0 L3 address parity checking disabled
1 L3 address parity checking enabled
Enables odd parity checking for the L3 address bus interface. When L3APE is set, it allows
an address parity error on either the on-chip tags or the L3 address bus to cause a checkstop
if MSR[ME] = 0 or a machine check exception if MSR[ME] = 1. The MPC7451 always
generates L3 address parity.

1 Note that the L3 cache is not supported on the MPC7441 and MPC7445.

Table 4-8. Machine Check Enable Bits

Bit Name Function

MOTOROLA Chapter 4. Exceptions 4-21

Exception Definitions

4.6.2.1 Machine Check Exception Enabled (MSR[ME] = 1)

Machine check exceptions are enabled when MSR[ME] = 1. When a machine check
condition occurs, the MPC7451 waits for the processor to quiesce (defined in the “Glossary
of Terms and Abbreviations”) and the memory subsystem to empty all its queues and
terminate all pending data tenures. Then the vector touch engine (VTE) stops all streams
when a machine check is detected. Once the processor and the memory subsystem have
quiesced, a machine check exception is taken. When a machine check exception is taken,
registers are updated as shown in Table 4-9.

When the MPC7451 takes the machine check exception, it sets one or more error bits in
SRR1. The MPC7451 has multiple data parity error sources that can cause a machine check
exception. The MSS error indicates one of many possible L2 or L3 parity errors as
described more completely in Section 2.1.5.4, “Memory Subsystem Status Register
(MSSSR0).” Memory subsystem errors in an ICTRL field need to be enabled to cause an
error, see Section 2.1.5.5, “Instruction and Data Cache Registers,” for details. The

Table 4-9. Machine Check Exception—Register Settings

Register Setting Description

SRR0 On a best-effort basis the MPC7451 sets this to an EA of some instruction that was executing or about
to be executing when the machine check condition occurred.

SRR1 0 Cleared
1 L1 instruction cache error
2 L1 data cache error
3–5 Normally cleared, used in debug.
6 Loaded with equivalent MSR bit
7–9 Cleared
10 Normally cleared, used in debug.
11 MSS error. Set for an L2 cache tag parity or L2 data parity error. Also set for an L3 SRAM or L3

tag parity error; otherwise zero. Refer to Section 2.1.5.4, “Memory Subsystem Status Register
(MSSSR0),” for more information.
Note that the L3 cache is not supported on the MPC7441and the MPC7445.

12 MCP. Set when MCP signal is asserted; otherwise 0
13 TEA. Set when TEA signal is asserted; otherwise 0
14 DP. Set when a data bus parity error is detected on MPXbus; otherwise 0
15 AP. Set when a address bus parity error is detected on MPXbus; otherwise 0
16–29 Loaded with equivalent MSR bits
30 Set in case of a recoverable exception
31 Loaded with equivalent MSR bits

MSR VEC 0
POW 0
ILE —
EE 0
PR 0

FP 0
ME 0
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
PM 0
RI 0
LE ILE

Key: 0 Bit is cleared
ILE Bit is copied from the MSR[ILE]
— Bit is not altered

Note that to handle another machine check exception, the exception handler should set MSR[ME] as soon as it is
practical after a machine check exception is taken. Otherwise, subsequent machine check exceptions cause the
processor to enter the checkstop state.

4-22 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Exception Definitions

SRR1[MCP] bit (SRR1[12]) indicates that the machine check signal was asserted. The
TEA bit (SRR1[13]) indicates that the machine check was caused by a TEA assertion on
the system bus. Note that the L3 cache is not supported on the MPC7441and the MPC7445.

The machine check exception is usually unrecoverable in the sense that execution cannot
resume in the context that existed before the exception. If the condition that caused the
machine check does not otherwise prevent continued execution, MSR[ME] is set by
software to allow the processor to continue execution at the machine check exception vector
address. Typically, earlier processes cannot resume; however, operating systems can use the
machine check exception handler to try to identify and log the cause of the machine check
condition.

When a machine check exception is taken, instruction fetching resumes at offset 0x00200
from the physical base address indicated by MSR[IP].

4.6.2.2 Checkstop State (MSR[ME] = 0)

If MSR[ME] = 0 and a machine check condition occurs, the processor enters the checkstop
state.

When a processor is in checkstop state, instruction processing is suspended and generally
cannot resume without the processor being reset. The contents of all latches are frozen
within six cycles upon entering checkstop state.

Note that the MPC7451 has a CKSTP_OUT signal (open-drain) that is asserted when the
MPC7451 enters the checkstop state. Also, external logic can cause the MPC7451 to enter
the checkstop state by asserting CKSTP_IN. See Section 8.4.3.5, “Checkstop Input
(CKSTP_IN)—Input” and Section 8.4.3.6, “Checkstop Output (CKSTP_OUT)—Output”
for more information on these checkstop signals.

4.6.3 DSI Exception (0x00300)

A DSI exception occurs when no higher priority exception exists and an error condition
related to a data memory access occurs. The DSI exception is implemented as it is defined
in the PowerPC architecture (OEA). For details on the DSI exception, see “DSI Exception
(0x00300),” in The Programming Environments Manual. For example, a lwarx or stwcx.
instruction that addresses memory to be mapped with the write-through (W = 1) or
caching-inhibited (I = 1) attribute causes a DSI exception.

4.6.3.1 DSI Exception—Page Fault

When hardware table searching is enabled, HID0[STEN] = 0, and there is a TLB miss for
a load, store, or cache operation, a DSI exception is taken if the resulting hardware table
search causes a page fault. When software table searching is enabled, HID0[STEN] = 1, the
TLB miss handlers configure SRR1 and DSISR appropriately for a page fault in this case

MOTOROLA Chapter 4. Exceptions 4-23

Exception Definitions

and branch to the DSI exception handlers as described in Section 5.5.5.2, “Example
Software Table Search Operation.”

The condition that caused the exception is defined in the DSISR. These conditions also use
the data address register (DAR) as shown in Table 4-10.

4.6.3.2 DSI Exception—Data Address Breakpoint Facility

The MPC7451 also implements the data address breakpoint facility, which is defined as
optional in the PowerPC architecture and is supported by the optional data address
breakpoint register (DABR) and the DSI exception. Although the architecture does not
strictly prescribe how this facility must be implemented, the MPC7451 follows the
recommendations provided by the architecture and described in Chapter 2, “Programming
Model,” and Chapter 6 “Exceptions,” in The Programming Environments Manual. The
granularity of the data address breakpoint compare is a double word for all accesses except
AltiVec quad-word loads and stores. For AltiVec accesses, the least significant bit of the
DAB field (DABR[28]) is ignored, thus providing quad-word granularity. For these
quad-word DAB matches, the DAR register is loaded with a quad-word-aligned address.

When a DSI exception is taken, instruction fetching resumes at offset 0x00300 from the
physical base address indicated by MSR[IP].

4.6.4 ISI Exception (0x00400)

An ISI exception occurs when no higher priority exception exists and an attempt to fetch
the next instruction fails. This exception is implemented as it is defined by the PowerPC
architecture (OEA), and is taken for the following conditions:

Table 4-10. DSI Exception—Register Settings

Register Setting Description

DSISR 0 Cleared
1 Set by the hardware (if HID0[STEN]=0) or the DTLB miss exception handler if the translation of

an attempted access is not found in the primary page table entry group (PTEG), or in the
rehashed secondary PTEG, or in the range of a DBAT register; otherwise cleared.

2–3 Cleared
4 Set if a memory access is not permitted by the page or BAT protection mechanism; otherwise

cleared.
5 Set if the lwarx or stwcx. instruction is attempted to write-through (W =1) or caching-inhibited

(I = 1) memory.
6 Set for a store operation and cleared for a load operation.
7–8 Cleared
9 Set if DABR match occurs, otherwise cleared.
10 Cleared
11 Set if eciwx or ecowx instruction is executed when EAR[E] = 0; otherwise cleared.
12-31 Cleared

DAR Set to the effective address of a memory element that caused the DSI, as described in The Programming
Environments Manual.

4-24 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Exception Definitions

• The effective address cannot be translated.
• The fetch access is to a no-execute segment (SR[N] = 1).
• The fetch access is to guarded storage and MSR[IR] = 1.
• The fetch access violates memory protection.

When an ISI exception is taken, instruction fetching resumes at offset 0x00400 from the
physical base address indicated by MSR[IP].

4.6.5 External Interrupt Exception (0x00500)

An external interrupt is signaled to the processor by the assertion of the external interrupt
signal (INT) when MSR[EE] = 1. The INT signal is expected to remain asserted until the
MPC7451 takes the external interrupt exception. If INT is negated early, recognition of the
interrupt request is not guaranteed. After the MPC7451 begins execution of the external
interrupt handler, the system can safely negate INT. When the MPC7451 detects assertion
of INT, it stops dispatching and waits for all pending instructions to complete, including
string and multiple instructions. This allows any instructions in progress that need to take
an exception to do so before the external interrupt is taken. After all instructions have
vacated the completion buffer, the MPC7451 takes the external interrupt exception as
defined in the PowerPC architecture (OEA).

The MPC7451 also allows supervisor software to cause an external interrupt exception
through the ICTRL[CIRQ] bit. When ICTRL[CIRQ] is set (and MSR[EE] = 1), the
MPC7451 functions as if INT has been asserted, and it stop dispatching and waits for all
pending instructions to complete. After all instructions have vacated the completion buffer,
the MPC7451 takes the external interrupt exception. Note that if both ICTRL[CIRQ] is set
and INT is asserted, only one interrupt is taken. Refer to Section 2.1.5.5.8, “Instruction
Cache and Interrupt Control Register (ICTRL),” for more information on the setting and
clearing of the ICTRL[CIRQ] bit.

An external interrupt may be delayed by other higher priority exceptions or if MSR[EE] is
cleared when the exception occurs.

When an external interrupt exception is taken, instruction fetching resumes at offset
0x00500 from the physical base address indicated by MSR[IP].

Table 4-11 lists register settings when an external interrupt exception is taken.

MOTOROLA Chapter 4. Exceptions 4-25

Exception Definitions

4.6.6 Alignment Exception (0x00600)

The MPC7451 implements the alignment exception as defined by the PowerPC architecture
(OEA). An alignment exception is initiated when any of the following occurs:

• The operand of a floating-point load or store is not word-aligned.
• The operand of lmw, stmw, lwarx, or stwcx. is not word-aligned.
• The operand of dcbz is in a page that is write-through or cache-inhibited.
• An attempt is made to execute dcbz when the data cache is disabled or locked.
• An eciwx or ecowx is not word-aligned
• A multiple or string access is attempted with MSR[LE] set
• In 60x bus mode, an access caused by stvx, stvxl, lvx, or lvxl instruction to a

cache-inhibited page, write-through page, disabled L1 cache, or if all ways of the
cache are locked.

• In 60x bus mode, an access caused by cache-inhibited AltiVec loads, stores, and
write-through stores. The 60x bus mode does not support 16-byte bus transactions.
Note this requires a re-write of the alignment exception routines in software that
supports AltiVec quad-word access in 60x bus mode on the MPC7451.

Note that the MPC7451 does not take an alignment exception for load/store string accesses
that cross a protection boundary or for a load/store multiplex access that crosses a segment
or BAT boundary.

When an alignment exception is taken, instruction fetching resumes at offset 0x00600 from
the physical base address indicated by MSR[IP].

Table 4-11. External Interrupt Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if
no exception conditions were present.

SRR1 0 Cleared
1 Set when an external interrupt exception is caused by the ICTRL[CIRQ] bit
2–5 Cleared
6 Loaded with equivalent MSR bits
7–9 Cleared
10 Set when an external interrupt exception is caused by INT assertion
11–15 Cleared
16–31 Loaded with equivalent MSR bits

MSR VEC 0
POW 0
ILE —
EE 0
LE ILE

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0
IP —

IR 0
DR 0
PM 0
RI 0

Key: 0 Bit is cleared
ILE Bit is copied from the MSR[ILE]
— Bit is not altered

4-26 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Exception Definitions

The register settings for alignment exceptions are shown in Table 4-12.

4.6.7 Program Exception (0x00700)

The MPC7451 implements the program exception as it is defined by the PowerPC
architecture (OEA). A program exception occurs when no higher priority exception exists
and one or more of the exception conditions defined in the OEA occur.

The MPC7451 invokes the system illegal instruction program exception when it detects any
instruction from the illegal instruction class. The MPC7451 fully decodes the SPR field of
the instruction. If an undefined SPR is specified, a program exception is taken.

The UISA defines mtspr and mfspr with the record bit (Rc) set as causing a program
exception or giving a boundedly undefined result. In the MPC7451, the appropriate
condition register (CR) should be treated as undefined. Likewise, the PowerPC architecture
states that the Floating Compared Unordered (fcmpu) or Floating Compared Ordered
(fcmpo) instructions with the record bit set can either cause a program exception or provide
a boundedly undefined result. In the MPC7451, the BF field in an instruction encoding for
these cases is considered undefined.

The MPC7451 does not support either of the two floating-point imprecise modes supported
by the PowerPC architecture. Unless exceptions are disabled (MSR[FE0] = MSR[FE1] =
0), all floating-point exceptions are treated as precise.

When a program exception is taken, instruction fetching resumes at offset 0x00700 from
the physical base address indicated by MSR[IP]. Chapter 6, “Exceptions,” in The
Programming Environments Manual describes register settings for this exception.

Table 4-12. Alignment Interrupt—Register Settings

Register Setting

DSISR 0—14 Cleared
15–16 For instructions that use register indirect with index addressing—set to bits 29–30 of the

instruction.
For instructions that use register indirect with immediate index addressing—cleared.

17 For instructions that use register indirect with index addressing—set to bit 25 of the
instruction.
For instructions that use register indirect with immediate index addressing— Set to bit 5 of
the instruction

18–21 For instructions that use register indirect with index addressing—set to bits 21–24 of the
instruction.
For instructions that use register indirect with immediate index addressing—set to bits 1–4 of
the instruction.

22–26 Set to bits 6–10 (identifying either the source or destination) of the instruction. Undefined for
dcbz.

27–31 Set to bits 11–15 of the instruction (rA) for instructions that use the update form.
For lmw, lswi, and lswx instructions, set to either bits 11–15 of the instruction or to any
register number not in the range of registers loaded by a valid form instruction. Otherwise
undefined.

DAR Set to the EA of the data access as computed by the instruction causing the alignment exception.

MOTOROLA Chapter 4. Exceptions 4-27

Exception Definitions

4.6.8 Floating-Point Unavailable Exception (0x00800)

The floating-point unavailable exception is implemented as defined in the PowerPC
architecture. A floating-point unavailable exception occurs when no higher priority
exception exists, an attempt is made to execute a floating-point instruction (including
floating-point load, store, or move instructions), and the floating-point available bit in the
MSR is disabled, (MSR[FP] = 0). Register settings for this exception are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual.

When a floating-point unavailable exception is taken, instruction fetching resumes at offset
0x00800 from the physical base address indicated by MSR[IP].

4.6.9 Decrementer Exception (0x00900)

The decrementer exception is implemented in the MPC7451 as it is defined by the PowerPC
architecture. The decrementer exception occurs when no higher priority exception exists, a
decrementer exception condition occurs (for example, the decrementer register has
completed decrementing), and MSR[EE] = 1. In the MPC7451, the decrementer register is
decremented at one fourth the bus clock rate. Register settings for this exception are
described in Chapter 6, “Exceptions,” in The Programming Environments Manual.

When a decrementer exception is taken, instruction fetching resumes at offset 0x00900
from the physical base address indicated by MSR[IP].

4.6.10 System Call Exception (0x00C00)

A system call exception occurs when a System Call (sc) instruction is executed. In the
MPC7451, the system call exception is implemented as it is defined in the PowerPC
architecture. Register settings for this exception are described in Chapter 6, “Exceptions,”
in The Programming Environments Manual.

When a system call exception is taken, instruction fetching resumes at offset 0x00C00 from
the physical base address indicated by MSR[IP].

4.6.11 Trace Exception (0x00D00)

The trace exception is taken if MSR[SE] = 1 or if MSR[BE] = 1 and the currently
completing instruction is a branch. Each instruction considered during trace mode
completes before a trace exception is taken. When a mtmsr instruction is executed and the
MSR[SE] transitions from 0 to 1, following the completion of that mtmsr, a trace exception
is taken.

When a trace exception is taken, instruction fetching resumes at offset 0x00D00 from the
base address indicated by MSR[IP].

4-28 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Exception Definitions

4.6.12 Floating-Point Assist Exception (0x00E00)

The optional floating-point assist exception defined by the PowerPC architecture is not
implemented in the MPC7451.

4.6.13 Performance Monitor Exception (0x00F00)

The MPC7451 microprocessor provides a performance monitor facility to monitor and
count predefined events such as processor clocks, misses in either the instruction cache or
the data cache, instructions dispatched to a particular execution unit, mispredicted
branches, and other occurrences. An overflow of the counter in such events can be used to
trigger the performance monitor exception. The performance monitor facility is not defined
by the PowerPC architecture.

The performance monitor provides the ability to generate a performance monitor exception
triggered by an enabled condition or event. This exception is triggered by an enabled
condition or event defined as follows:

• A PMCx register overflow condition occurs

— MMCR0[PMC1CE] and PMC1[OV] are both set

— MMCR0[PMCnCE] and PMCn[OV] are both set (n > 1)

• A time base event—MMCR0[TBEE] = 1 and the TBL bit specified in
MMCR0[TBSEL] changes from 0 to 1

MMCR0[PMXE] must be set for any of these conditions to signal a performance monitor
exception.

Although the performance monitor exception may occur with MSR[EE] = 0, the exception
is not taken until MSR[EE] = 1.

As a result of a performance monitor exception being generated, the performance monitor
saves in the SIAR the effective address of the last instruction completed before the
exception is generated. Note that SIAR is not updated if performance monitor counting has
been disabled by setting MMCR0[0].

The performance monitor can be used for the following:

• To increase system performance with efficient software, especially in a
multiprocessing system. Memory hierarchy behavior must be monitored and studied
to develop algorithms that schedule tasks (and perhaps partition them) and that
structure and distribute data optimally.

• To help system developers bring up and debug their systems.

The performance monitor uses the following SPRs:

MOTOROLA Chapter 4. Exceptions 4-29

Exception Definitions

• The performance monitor counter registers (PMC1–PMC6) are used to record the
number of times a certain event has occurred. UPMC1–UPMC6 provide user-level
read access to these registers.

• The monitor mode control registers (MMCR0–MMCR2) are used to enable various
performance monitor exception functions. UMMCR0–UMMCR2 provide
user-level read access to these registers.

• The sampled instruction address register (SIAR) contains the effective address of an
instruction executing at or around the time that the processor signals the
performance monitor exception condition. The USIAR register provides user-level
read access to the SIAR.

Table 4-13 lists register settings when a performance monitor exception is taken.

As with other exceptions, the performance monitor exception follows the normal PowerPC
exception model with a defined exception vector offset (0x00F00). The priority of the
performance monitor exception lies between the external exception and the decrementer
exception (see Table 4-3). The contents of the SIAR are described in Section 2.1.5.9,
“Performance Monitor Registers.” The performance monitor is described in Chapter 11,
“Performance Monitor.”

4.6.14 AltiVec Unavailable Exception (0x00F20)

The AltiVec facility includes another instruction-caused, precise exception in addition to
the exceptions defined by the PowerPC architecture (OEA). An AltiVec unavailable
exception occurs when no higher priority exception exists (see Table 4-3), and an attempt
is made to execute an AltiVec instruction that accesses the vector register (VR) or the vector
status and control register (VSCR) when MSR[VEC] = 0.

Table 4-13. Performance Monitor Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if
no exception conditions were present.

SRR1 0–5 Cleared
6 Loaded with equivalent MSR bit
7–15 Cleared
16–31 Loaded with equivalent MSR bits

MSR VEC 0
POW 0
ILE —
EE 0
LE ILE

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0
IP —

IR 0
DR 0
PM 0
RI 0

Key: 0 Bit is cleared
ILE Bit is copied from the MSR[ILE]
— Bit is not altered

4-30 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Exception Definitions

Note that the data streaming instructions, dss, dst, and dstst do not cause an AltiVec
unavailable exception: the VR and VSCR registers are available to the data streaming
instructions even when MSR[VEC] = 0.

4.6.15 TLB Miss Exceptions

When software table searching is enabled (HID0[STEN] = 1), and the effective address for
a fetch can not be translated by the BATs or on-chip TLBs, one of three TLB miss
exceptions is generated:

• ITLB miss exception

• DTLB miss-on-load

• DTLB miss-on-store

When the exception occurs, the effective address of the access that requires the software
table search is saved in the TLBMISS register. Also, when the exception occurs, the fields
of the PTEHI register are loaded automatically with the corresponding SR[VSID]
information and the API of the missed page address. These registers are set to facilitate the
searching of the page tables in software and their settings are shown in this section.

As described in the example code (Section 5.5.5.2.2, “Code for Example Exception
Handlers”), if a TLB miss exception handler fails to find the desired PTE, then a page fault
must be synthesized.

An example code sequence for a software table search operation (including a handler for
these exceptions) is provided in Section 5.5.5.2, “Example Software Table Search
Operation.”

Table 4-14 details the register settings when one of the TLB miss exceptions occurs.

Table 4-14. TLB Miss Exceptions—Register Settings

Register Setting Description

TLBMISS 0–30 Effective page address for the access that caused the TLB miss exception
31 LRU Way

PTEHI 0 Set to1
1–24 The virtual segment ID (VSID) of the missed page address, SR[VSID] is copied to this field.
25 Set to 0
26–31 The effective address’s abbreviated page index (EA[API]).

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

MOTOROLA Chapter 4. Exceptions 4-31

Exception Definitions

4.6.15.1 Instruction Table Miss Exception—ITLB Miss (0x01000)

When software table searching is enabled (HID0[STEN] = 1), and the effective address for
an instruction fetch cannot be translated by the IBATs or ITLB, an ITLB miss exception is
generated. Table 4-14 details the register settings for TLBMISS and PTEHI when an ITLB
miss exception occurs

When an instruction TLB miss exception is taken, instruction execution for the handler
begins at offset 0x01000 from the physical base address indicated by MSR[IP].

4.6.15.2 Data Table Miss-On-Load Exception—DTLB Miss-On-Load
(0x01100)

When software table searching is enabled (HID0[STEN] = 1), and the effective address for
a load or cache load operation cannot be translated by the DBATs or DTLB, a DTLB miss
on load exception is generated. If a TLB miss occurs in the middle of a load string or
multiple access, the MPC7451 takes the DTLB miss-on-load exception when it occurs;
after the exception is handled, the instruction is restarted. Table 4-14 details the register
settings for the TLBMISS and PTEHI when a DTLB miss-on-load exception occurs.

When a DTLB miss on load exception is taken, instruction execution for the handler begins
at offset 0x01100 from the physical base address indicated by MSR[IP].

4.6.15.3 Data Table Miss-On-Store Exception—DTLB Miss-On-Store
(0x01200)

When the effective address for a data store or cache store operation can not be translated by
the DBAT or DTLB, a DTLB miss-on-store exception is generated. The data TLB
miss-on-store exception is also taken when the changed bit for a matching DTLB entry

SRR1 0–5 Cleared
6 Loaded with equivalent MSR bits
7–11 Cleared except when DTLB miss on store exception occurs with Cþ= 0, then SRR1[11] = 1. Refer

to Section 4.6.15.3, “Data Table Miss-On-Store Exception—DTLB Miss-On-Store (0x01200)” for
details.

12 Key for TLB Miss
When the access is a user access (MSR[PR] = 0), this bit is set equal to SR[Ks].
When access is a supervisor access (MSR[PR] = 1), this bit is set equal to SR[Kp].

13–15 Cleared
16–31 Loaded with equivalent MSR bits

MSR VEC 0
POW 0
ILE —
EE 0
LE ILE

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0
IP —

IR 0
DR 0
PM 0
RI 0

Key: 0 Bit is cleared
ILE Bit is copied from the MSR[ILE]
— Bit is not altered

Table 4-14. TLB Miss Exceptions—Register Settings (continued)

4-32 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Exception Definitions

needs to be updated in memory for a store operation (C = 0). If a TLB miss occurs in the
middle of a store string or multiple access, the MPC7451 takes the DTLB miss-on-store
exception.

Table 4-14 details the register settings for TLBMISS and PTEHI when a TLB miss
exception occurs. Note that SRR1[11] is set when a DTLB hit occurs and the matching
entry must have its changed bit in the PTE set due to a data store operation (PTE C bit = 0,
and must be set to 1).

When a data TLB miss-on-store exception is taken, instruction execution for the handler
begins at offset 0x01200 from the physical base address indicated by MSR[IP].

4.6.16 Instruction Address Breakpoint Exception (0x01300)

An instruction address breakpoint exception occurs when all of the following conditions are
met:

• The instruction breakpoint address IABR[0–29] matches EA[0–29] of the next
instruction to complete in program order. The instruction that triggers the instruction
address breakpoint exception is not executed before the exception handler is
invoked.

• The IABR[TE] bit matches the MSR[IR] bit.

• The breakpoint enable bit (IABR[BE]) is set.

 The instruction tagged with the match does not complete before the breakpoint exception
is taken.

Table 4-15 lists register settings when an instruction address breakpoint exception is taken.

The MPC7451 requires that an mtspr to the IABR be followed by a context-synchronizing
instruction. The MPC7451 cannot generate a breakpoint response for that

Table 4-15. Instruction Address Breakpoint Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if
no exception conditions were present.

SRR1 0–5 Cleared
6 Loaded with equivalent MSR bit
7–15 Cleared
16–31 Loaded with equivalent MSR bits

MSR VEC 0
POW 0
ILE —
EE 0
LE Set to value of ILE

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0
IP —

IR 0
DR 0
PM 0
RI 0

Key: 0 Bit is cleared
ILE Bit is copied from the MSR[ILE]
— Bit is not altered

MOTOROLA Chapter 4. Exceptions 4-33

Exception Definitions

context-synchronizing instruction if the breakpoint is enabled by the mtspr[IABR]
immediately preceding it. The MPC7451 also cannot block a breakpoint response on the
context-synchronizing instruction if the breakpoint was disabled by the mtspr[IABR]
instruction immediately preceding it. The format of the IABR register is shown in
Section 2.1.5.6, “Instruction Address Breakpoint Register (IABR).”

When an instruction address breakpoint exception is taken, instruction fetching resumes at
offset 0x01300 from the base address indicated by MSR[IP].

4.6.17 System Management Interrupt Exception (0x01400)

The MPC7451 implements a system management interrupt, which is not defined by the
PowerPC architecture. The system management interrupt is very similar to the external
interrupt and it must be enabled with MSR[EE] = 1. It is particularly useful in
implementing the nap mode. It has priority over an external interrupt (see Table 4-3) and
uses a different vector in the exception table (offset 0x01400).

Table 4-16 lists register settings when a system management interrupt is taken.

Like the external interrupt, a system management interrupt is signaled to the MPC7451 by
the assertion of an input signal. The system management interrupt signal (SMI) is expected
to remain asserted until the exception is taken. If SMI is negated early, recognition of the
interrupt request is not guaranteed. After the MPC7451 begins execution of the system
management interrupt handler, the system can safely negate SMI. After the assertion of
SMI is detected, the MPC7451 stops dispatching instructions and waits for all pending
instructions to complete. This allows any instructions in progress that need to take an
exception to do so before the system management interrupt exception is taken. Note that
the MPC7451 waits for any load/store string or multiple instructions that have begun to be
complete before taking the system management interrupt exception.

Table 4-16. System Management Interrupt Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if
no exception conditions were present.

SRR1 0–5 Cleared
6 Loaded with equivalent MSR bit
7–15 Cleared
16–31 Loaded with equivalent MSR bits

MSR VEC 0
POW 0
ILE —
EE 0
LE Set to value of ILE

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0
IP —

IR 0
DR 0
PM 0
RI 0

Key: 0 Bit is cleared
ILE Bit is copied from the MSR[ILE]
— Bit is not altered

4-34 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Exception Definitions

When a system management interrupt exception is taken, instruction fetching resumes as
offset 0x01400 from the base address indicated by MSR[IP].

4.6.18 AltiVec Assist Exception (0x01600)

The MPC7451 implements an AltiVec assist exception to handle denormalized numbers in
Java mode (VSCR[NJ] = 0). An AltiVec assist exception occurs when no higher priority
exception exists and an instruction causes a trap condition as defined in Section 7.1.2.5,
“Java Mode, NaNs, Denormalized Numbers, and Zeros.” Note that the MPC7451 handles
most denormalized numbers in Java mode by taking a trap to the AltiVec assist exception,
but for some instructions, the MPC7451 can produce the exact result without trapping.

Table 4-16 lists register settings when an AltiVec assist exception is taken.

When an AltiVec assist exception is taken, instruction fetching resumes at offset 0x01600
from the base address indicated by MSR[IP].

Table 4-17. AltiVec Assist Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1 0–5 Cleared
6 Loaded with equivalent MSR bit
7–15 Cleared
16–31 Loaded with equivalent MSR bits

MSR VEC 0
POW 0
ILE —
EE 0
LE Set to value of ILE

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0
IP —

IR 0
DR 0
PM 0
RI 0

Key: 0 Bit is cleared
ILE Bit is copied from the MSR[ILE]
— Bit is not altered

MOTOROLA Chapter 5. Memory Management 5-1

Chapter 5
Memory Management
This chapter describes the MPC7451 microprocessor’s implementation of the memory
management unit (MMU) specifications provided by the operating environment
architecture (OEA) for processors that implement the PowerPC architecture. The primary
function of the MMU in a processor is the translation of logical (effective) addresses to
physical addresses (referred to as real addresses in the architecture specification) for
memory accesses and I/O accesses (I/O accesses are assumed to be memory-mapped). In
addition, the MMU provides access protection on a segment, block, or page basis. This
chapter describes the specific hardware used to implement the MMU model of the OEA and
the implementation-specific changes in the MPC7451 MMU model to support 36-bit
physical addressing. Refer to Chapter 7, “Memory Management,” in the Programming
Environments Manual for a complete description of the conceptual model used for 32-bit
physical addressing. Note that the MPC7451 does not implement the optional direct-store
facility.

Two general types of memory accesses generated by processors that implement the
PowerPC architecture require address translation—instruction accesses and data accesses
generated by load and store instructions. In addition, the addresses specified by cache
instructions and the optional external control instructions also require translation.
Generally, the address translation mechanism is defined in terms of the segment descriptors
and page tables that the processors use to locate the effective-to-physical address mapping
for memory accesses. The segment information translates the effective address (EA) to an
interim virtual address, and the page table information translates the virtual address (VA)
to a physical address (PA).

The segment descriptors, used to generate the interim virtual addresses, are stored as
on-chip segment registers on 32-bit implementations (such as the MPC7451). In addition,
two translation lookaside buffers (TLBs) are implemented on the MPC7451 to keep
recently used page address translations on-chip. Although the PowerPC OEA describes one
MMU (conceptually), the MPC7451 hardware maintains separate TLBs and table search
resources for instruction and data accesses that can be performed independently (and
simultaneously). Therefore, the MPC7451 is described as having two MMUs, one for
instruction accesses (IMMU) and one for data accesses (DMMU).

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as

5-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MMU Overview

pairs of BAT registers that are accessible as supervisor special-purpose registers (SPRs).
There are separate instruction and data BAT mechanisms. In the MPC7451, they reside in
the instruction and data MMUs, respectively.

The MMUs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 4, “Exceptions.” Section 4.3, “Exception Processing,” describes the MSR that
controls some of the critical functionality of the MMUs.

AltiVec Technology and the MMU Implementation

The AltiVec functionality in the MPC7451 affects the MMU model in the following ways:

• A data stream instruction (dst[t] or dstst[t]) can cause table search operations to
occur after the instruction is retired.

• MMU exception conditions can cause a data stream operation to abort.

• Aborted VTQ-initiated table search operations can cause a line fetch skip.

• Execution of a tlbsync instruction can cancel an outstanding table search operation
for a VTQ.

5.1 MMU Overview
The MPC7451 implements the memory management specification of the PowerPC OEA
for 32-bit implementations but adds capability for supporting 36-bit physical addressing.
Thus, it provides 4 Gbytes of effective address space accessible to supervisor and user
programs, with a 4-Kbyte page size and 256-Mbyte segment size. In addition, the
MPC7451 MMUs use an interim virtual address (52 bits) and hashed page tables in the
generation of 32-bit or 36-bit physical addresses (depending on the setting of
HID0[XAEN]). Processors that implement the PowerPC architecture also have a BAT
mechanism for mapping large blocks of memory. For the MPC7441 and MPC7451, block
sizes range from 128 Kbyte to 256 Mbyte and are software-programmable. For the
MPC7445, MPC7447, MPC7455, and MPC7457, block sizes range from 128 Kbyte to
4 Gbyte and are also software-programmable.

Basic features of the MPC7451 MMU implementation defined by the OEA are as follows:

• Support for real addressing mode—Effective-to-physical address translation can be
disabled separately for data and instruction accesses.

• Block address translation—Each of the BAT array entries (four IBAT entries and
four DBAT entries) provides a mechanism for translating blocks as large as:

— 256 Mbytes for the MPC7441 and the MPC7451

— 4Gbyte for the MPC7445, MPC7447,MPC7455, and MPC7457

from the 32-bit effective address space into the physical memory space. This can be
used for translating large address ranges whose mappings do not change frequently.

MOTOROLA Chapter 5. Memory Management 5-3

MMU Overview

Four additional IBAT and DBAT entries are provided for the MPC7445, MPC7447,
MPC7455, and MPC7457 that can be enabled by setting HID0[HIGH_BAT_EN],
for a total of eight IBAT entries and eight DBAT entries.

• Segmented address translation—The 32-bit effective address is extended to a 52-bit
virtual address by substituting 24 bits of upper address bits from the segment
register. The 4 upper bits of the EA are used as an index into the segment register
file. This 52-bit virtual address space is divided into 4-Kbyte pages, each of which
can be mapped to a physical page.

The MPC7451 processor also provides the following features that are not required by the
PowerPC architecture:

• Separate translation lookaside buffers (TLBs)—The 128-entry, two-way
set-associative ITLBs and DTLBs keep recently used page address translations
on-chip.

• Table search operations performed in hardware—The 52-bit virtual address is
formed and the MMU attempts to fetch the PTE that contains the physical address
from the appropriate TLB on-chip. If the translation is not found in either the BAT
array or in a TLB (that is, a TLB miss occurs), the hardware performs a table search
operation (using a hashing function) to search for the PTE. Hardware table searching
is the default mode for the MPC7451; however, if HID0[STEN] = 1, software table
searching is performed.

• Table search operations performed in software—The MPC7451 also supports
software table searching (when HID0[STEN] is set) for TLB misses. In this case, the
TLBMISS register saves the effective address of the access that requires a software
table search. The PTEHI and PTELO registers, as well as the tlbli and tlbld
instructions are resources used in reloading the TLBs during a software table search
operation. Also there are three exceptions used to support software table searching
when HID0[STEN] = 1 and a TLB miss occurs. They are as follows:

– for an instruction fetch, an ITLB miss exception,

– for a data load, an DTLB miss-on-load exception,

– for a data store, an DTLB miss-on-store exception.

• TLB invalidation—The MPC7451 implements the optional TLB invalidate entry
(tlbie) and TLB synchronize (tlbsync) instructions that can be used to invalidate
TLB entries. For more information on the tlbie and tlbsync instructions, see
Section 5.4.4.2, “TLB Invalidation.”

• Extended 36-bit physical addresses provide for 64 Gbytes of physical memory when
HID0[XAEN] is set.

Table 5-1 summarizes the MPC7451 MMU features, including those defined by the
PowerPC architecture (OEA) for 32-bit processors and those specific to the MPC7451.

5-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MMU Overview

Table 5-1. MMU Features Summary

Feature Category
Architecturally Defined/

MPC7451-Specific
Feature

Address ranges Architecturally defined 232 bytes of effective address

252 bytes of virtual address

232 bytes of physical address

MPC7451-specific optional 236 bytes of physical address

Page size Architecturally defined 4 Kbytes

Segment size Architecturally defined 256 Mbytes

Block address
translation

Architecturally defined Range of 128 Kbyte–256 Mbyte sizes for the MPC7441 and the
MPC7451

Four IBAT and four DBAT entries in the BAT array for the
MPC7441 and the MPC7451

MPC7445-, MPC7447-,
MPC7455-, and
MPC7457-specific

Range of 128 Kbyte–4 Gbyte block sizes for the MPC7445,
MPC7447, MPC7455, and MPC7457

Eight IBAT and eight DBAT entries in BAT array for the
MPC7445, MPC7447, MPC7455, and MPC7457

Memory protection Architecturally defined Segments selectable as no-execute

Pages selectable as user/supervisor and read-only or guarded

Blocks selectable as user/supervisor and read-only or guarded

Page history Architecturally defined Referenced and changed bits defined and maintained

Page address
translation

Architecturally defined Translations stored as PTEs in hashed page tables in memory

Page table size determined by mask in SDR1 register

TLBs Architecturally defined Instructions for maintaining TLBs (tlbie and tlbsync instructions
in MPC7451)

MPC7451-specific 128-entry, two-way set associative ITLB
128-entry, two-way set associative DTLB
LRU replacement algorithm

Segment descriptors Architecturally defined Stored as segment registers on-chip (two identical copies
maintained)

Page table search
support—Hardware

MPC7451-specific The MPC7451 can perform the table search operation in
hardware (or software, as listed below).

Page table search
support—Software

MPC7451-specific TLBMISS register (missed effective address)
PTEHI and PTELO registers (contents of corresponding PTE)

Three MMU exceptions, defined: ITLB miss exception, DTLB
miss on load exception, and DTLB miss on store (or store and
C = 0) exception; MMU-related bits are set in SRR1 for these
exceptions

tlbli rB instruction for loading ITLB entries
tlbld rB instruction for loading DTLB entries

MOTOROLA Chapter 5. Memory Management 5-5

MMU Overview

5.1.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches
the next instruction. The effective address is translated to a physical address according to
the procedures described in Chapter 7, “Memory Management,” in The Programming
Environments Manual, augmented with information in this chapter. The memory
subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, “Effective
Address Calculation.”

5.1.2 MMU Organization

Figure 5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit
implementation that generates 32-bit physical addresses. Note that it does not describe the
specific hardware used to implement the memory management function for a particular
processor. Processors may optionally implement on-chip TLBs, hardware support for the
automatic search of the page tables for PTEs, and other hardware features (invisible to the
system software) not shown. Also, the MPC7451 generates a 36-bit physical address which
is not represented by the 32-bit physical address in Figure 5-1.

The instruction addresses are generated by the processor for sequential instruction fetches
and addresses that correspond to a change of program flow. Data addresses are generated
by load, store, and cache instructions.

As shown in Figure 5-1, when the default 32-bit physical addresses are generated, the
high-order bits of the effective address, EA[0–19] (or a smaller set of address bits, EA[0–n],
in the cases of blocks), are translated into physical address bits PA[0–19]. The low-order
address bits, EA[20–31], are untranslated and are therefore identical for both effective and
physical addresses. After translating the address, the MMU passes the resulting 32-bit
physical address to the memory subsystem.

The MMUs record whether the translation is for an instruction or data access, whether the
processor is in user or supervisor mode and, for data accesses, whether the access is a load
or a store operation. The MMUs use this information to appropriately direct the address
translation and to enforce the protection hierarchy programmed by the operating system.
Section 4.3, “Exception Processing,” describes the MSR that controls some of the critical
functionality of the MMUs.

Figure 5-2 and Figure 5-3 contain the block diagrams of the IMMU and DMMU of the
MPC7451 and shows how a 36-bit physical address is generated. Address bits EA[20–26]
index into the on-chip instruction and data caches to select a cache set. The remaining
physical address bits are then compared with the tag fields (comprised of bits PA[0–23]) of
the two selected cache blocks to determine if a cache hit has occurred. In the case of a cache
miss on the MPC7451, the instruction or data access is then forwarded to the L2 cache tags

5-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MMU Overview

to check for an L2 cache hit. In case of a miss, the access is forwarded to the L3 interface
tags to check for an L3 cache hit. In the case of an L3 cache miss, the access is forwarded
to the bus interface unit.

Figure 5-2 and Figure 5-3 also show the two on-chip TLBs maintained by the MPC7451
that have the following characteristics:

• 128 entries, two-way set associative (64 x 2), LRU replacement
• Hardware or software table search operations and TLB reloads
• Hardware or software update of referenced (R) and changed (C) bits in the

translation table

• 36-bit physical addresses

In the event of a TLB miss, the TLB entry must be loaded. The TLB is loaded automatically
by the hardware or by the software table search algorithm, depending on the HID0[STEN]
setting.

Figure 5-2 and Figure 5-3 show the detailed routing of addresses that are generated by the
IMMU and DMMU respectively when 36-bit addressing (extended addressing) is used. In
this case, EA[0–19] (or a smaller subset EA[0–n], in the case of blocks) are translated into
physical address bits PA[0–23] and the low-order address bits, EA[20–31] are untranslated,
but shifted down to comprise PA[24–35]. Also, in this case, EA[20–26] index into the
on-chip caches so that PA[0–23] from the MMU can be compared with the tag fields
(comprised of PA[0–23]) to determine if a cache hit has occurred.

Figure 5-3 shows the detailed routing of addresses for the MPC7445, MPC7447,
MPC7455, and the MPC7457 that are generated by the DMMU when 36-bit addressing
(extended addressing) is used. Also the extended block size is enabled so that the EA[0–19]
is translated into physical address bits PA[0–23] and the low-order address bits, EA[20–31]
are untranslated, but shifted down to comprise PA[24–35]. Also, in this case, additional
BATs are available (DBAT4U to DBAT7L) for use. The same features, extended block size
and additional BATs would be generated by the IMMU as well.

MOTOROLA Chapter 5. Memory Management 5-7

MMU Overview

Figure 5-1. MMU Conceptual Block Diagram for a 32-bit Physical Address
(Not the MPC7451)

Optional

Instruction
Accesses

Data
Accesses

EA[0–19]

Segment Registers

•
•
•

On-Chip
TLBs

(Optional)

SDR1 SPR 25

PA[0–14]

X

PA[0–19]

PA[15–19]

PA[0–31]

PA[20–31]

IBAT0U
IBAT0L

IBAT3U
IBAT3L

•
•

DBAT0U
DBAT0L

DBAT3U
DBAT3L

•
•

EA[0–14]

EA[15–19]

EA[0–14]

EA[15–19]

EA[20–31]

BAT
Hit

Upper 24-Bits
of Virtual Address

0

15

MMU
(32-Bit)

EA[0–3]

EA[4–19]

EA[0–19]

X

X

X

Page Table
Search Logic
(Optional)

5-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MMU Overview

Figure 5-2. MPC7451 Microprocessor IMMU Block Diagram,
36-Bit Physical Addressing

BPU

ITLB

IBAT Array

0

63

127

Tag

PA[0–23]

I Cache

Select

I Cache

Compare

CompareCompare
0

7

Instruction
Unit PA[24–35]←EA[20–31]

Hit/Miss

Segment Registers

•
•
•

0

15

IBAT0U
IBAT0L

IBAT3U
IBAT3L

•
•

X

PA[0–35]

SDR1 SPR 25

EA[0–14]

EA[0–3]

Select

EA[4–19]

E
A

[0
–1

9]

E
A

[0
–1

9]

EA[20–26]

PA[0–23]

IMMU

7

0

Use
Page Table
Search Logic
or
Use Software
Table Search
Resources

MOTOROLA Chapter 5. Memory Management 5-9

MMU Overview

Figure 5-3. MPC7451 Microprocessor DMMU Block Diagram,
36-Bit Physical Addressing

DTLB

DBAT Array

0

63

127

Tag

PA[0–23]

D Cache

Select

D Cache

Compare

CompareCompare
0

7

PA[24–35]←EA[20–31]

Hit/Miss

Segment Registers

•
•
•

0

15

DBAT0U
DBAT0L

DBAT3U
DBAT3L

•
•

X

PA[0–35]

SDR1 SPR 25

EA[0–14]

EA[0–3]

Select

EA[4–19]

E
A

[0
–1

9]

E
A

[0
–1

9]

EA[20–26]

PA[0–23]

DMMU

Load/Store
Unit

7

0

Use
Page Table
Search Logic
or
Use Software
Table Search
Resources

5-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MMU Overview

Figure 5-4. MPC7445, MPC7447, MPC7455, and the MPC7457 Microprocessor
DMMU Block Diagram

with Extended Block Size and Additional BATs

DTLB

DBAT Array

0

63

127

Tag

PA[0–23]

D Cache

Select

D Cache

Compare

CompareCompare
0

7

PA[24–35]←EA[20–31]

Hit/Miss

Segment Registers

•
•
•

0

15

DBAT0U
DBAT0L

DBAT7U
DBAT7L

•
•

X

PA[0–35]

SDR1 SPR 25

EA[0–14]

EA[0–3]

Select

EA[4–19]

E
A

[0
–1

9]

E
A

[0
–1

9]

EA[20–26]

PA[0–23]

DMMU

Load/Store
Unit

7

0

Use
Page Table
Search Logic
or
Use Software
Table Search
Resources

MOTOROLA Chapter 5. Memory Management 5-11

MMU Overview

5.1.3 Address Translation Mechanisms

Processors that implement the PowerPC architecture support the following types of address
translation:

• Page address translation—Translates the page frame address for a 4-Kbyte page size

• Block address translation—Translates the block number for blocks that range in size
from 128 Kbytes to 256 Mbytes (MPC7441, MPC7451) or 128 Kbytes to 4 GBytes
(MPC7445, MPC7447, MPC7455, and the MPC7457).

• Real addressing mode—When address translation is disabled, therefore no
translation is done and the physical address is identical to the effective address.

Figure 5-5 shows the three address translation mechanisms provided by the MMUs for
32-bit physical addressing and Figure 5-6 shows the same mechanism for 36-bit physical
addressing. The segment descriptors shown in the figures control the page address
translation mechanism. When an access uses page address translation, the appropriate
segment descriptor is required. The appropriate segment descriptor is selected from the 16
on-chip segment registers by the four highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (memory-mapped) or to the direct-store interface space (SRn[T]). Note that the
direct-store interface was present in the architecture only for compatibility with existing I/O
devices that used this interface. The MPC7451 does not support the direct-store interface
(SRn[T] = 1). When an access is determined to be to the direct-store interface space, the
MPC7451 takes a DSI exception if it is a data access (see Section 4.6.3, “DSI Exception
(0x00300)”), and takes an ISI exception if it is an instruction access (see Section 4.6.4, “ISI
Exception (0x00400)”).

For memory accesses translated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address translation
corresponds to the conversion of this virtual address into the 32-bit or 36-bit physical
address used by the memory subsystem. In most cases, the physical address for the page
resides in an on-chip TLB and is available for quick access. However, if the page address
translation misses in the on-chip TLB, the MMU causes a search of the page tables in
memory. Page tables can be searched by hardware using the virtual address information and
a hashing function to locate the required physical address or the MPC7451 vectors to
exception handlers that use software to search the page tables (if HID0[STEN] = 1).

Because blocks are larger than pages, there are fewer higher-order effective address bits to
be translated into physical address bits (more low-order address bits (at least 17) are
untranslated to form the offset into a block) for block address translation. Also, instead of
segment descriptors and a TLB, block address translations use the on-chip BAT registers as
a BAT array. If an effective address matches the corresponding field of a BAT register, the
information in the BAT register is used to generate the physical address; in this case, the
results of the page translation (occurring in parallel) are ignored.

5-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MMU Overview

Figure 5-5. Address Translation Types for 32-Bit Physical Addressing

(T = 1)

4 35

Physical Address

4 35

Physical

4 35

Physical Address

(T = 0)

0 31

Effective Address

0 51

Virtual Address

Segment
Descriptor
Located

Match with
BAT

Registers

Look Up in
Page Table

Address Translation Disabled

Page
Address Translation

Direct Store
Interface

Translation

(MSR[IR] = 0, or MSR[DR] = 0)

Real Addressing Mode
(No Translation)

Effective Address = Physical
Address

(See Section 5.2, “Real
Addressing Mode.”)

Block
Address Translation

(See Section 5.3, “Block
Address Translation.”)

DSI/ISI Exception

MOTOROLA Chapter 5. Memory Management 5-13

MMU Overview

Figure 5-6. Address Translation Types for 36-Bit Physical Addressing

When the processor generates an access, and the corresponding address translation enable
bit in MSR is cleared (MSR[IR] = 0 or MSR[DR] = 0), the resulting physical address is
identical to the effective address and all other translation mechanisms are ignored.
Instruction address translation and data address translation are enabled by setting MSR[IR]
and MSR[DR], respectively.

When extended addressing is enabled, HID0[XAEN] = 1, and the corresponding address
translation bit in MSR is cleared (MSR[IR] = 0 or MSR[DR] = 0), the 36-bit physical
address is formed by concatenating 4 leading zeros to the 32-bit effective address.

(T = 1)

0 3 4 35

Physical Address

0 35

Physical Address

0 35

Physical Address

(T = 0)

0 31

Effective Address

0 51

Virtual Address

Segment
Descriptor
Located

Match with
BAT

Registers

Look Up in
Page Table

Address Translation Disabled

Page
Address Translation

Direct-Store
Interface

Translation

(MSR[IR] = 0, or MSR[DR] = 0)

Real Addressing Mode
(No Translation)

PA[0–35] ← [0000] II EA[0–31]
(See Section 5.2, “Real

Addressing Mode.”)

Block
Address Translation

(See Section 5.3, “Block
Address Translation.”)

DSI/ISI Exception

0000

5-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MMU Overview

5.1.4 Memory Protection Facilities

In addition to the translation of effective addresses to physical addresses, the MMUs
provide access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute or guarded. Table 5-2 shows the protection
options supported by the MMUs for pages.

The no-execute option provided in the segment register lets the operating system program
determine whether instructions can be fetched from an area of memory. The remaining
options are enforced based on a combination of information in the segment descriptor and
the page table entry. Thus, the supervisor-only option allows only read and write operations
generated while the processor is operating in supervisor mode (MSR[PR] = 0) to access the
page. User accesses that map into a supervisor-only page cause an exception.

Finally, a facility in the VEA and OEA allows pages or blocks to be designated as guarded,
preventing out-of-order accesses that may cause undesired side effects. For example, areas
of the memory map used to control I/O devices can be marked as guarded so accesses do
not occur unless they are explicitly required by the program.

For more information on memory protection, see the section, “Memory Protection
Facilities” in Chapter 7, “Memory Management,” in the The Programming Environments
Manual.

5.1.5 Page History Information

The MMUs of processors that support the PowerPC architecture also define referenced (R)
and changed (C) bits in the page address translation mechanism that can be used as history
information relevant to the page. The operating system can use these bits to determine
which areas of memory to write back to disk when new pages must be allocated in main

Table 5-2. Access Protection Options for Pages

Option
User Read

User Write
Supervisor Read

Supervisor
Write

I-Fetch Data I-Fetch Data

Supervisor-only — — — √ √ √

Supervisor-only-no-execute — — — — √ √

Supervisor-write-only √ √ — √ √ √

Supervisor-write-only-no-execute — √ — — √ √

Both (user/supervisor) √ √ √ √ √ √

Both (user-/supervisor) no-execute — √ √ — √ √

Both (user-/supervisor) read-only √ √ — √ √ —

Both (user/supervisor) read-only-no-execute — √ — — √ —

√ Access permitted
 — Protection violation

MOTOROLA Chapter 5. Memory Management 5-15

MMU Overview

memory. While these bits are initially programmed by the operating system into the page
table, the architecture specifies that they can be maintained either by the processor
hardware (automatically) or by some software-assist mechanism.

When loading the TLBs in hardware, the MPC7451 checks the state of the changed and
referenced bits for the matched PTE. If the referenced bit is not set and the table search
operation is initially caused by a load operation or by an instruction fetch, the MPC7451
automatically sets the referenced bit in the translation table. Similarly, if the table search
operation is caused by a store operation and either the referenced bit or the changed bit is
not set, the hardware automatically sets both bits in the translation table. In addition, when
the address translation of a store operation hits in the DTLB, the MPC7451 checks the state
of the changed bit. If the bit is not already set, the hardware automatically updates the
DTLB and the translation table in memory to set the changed bit. For more information, see
Section 5.4.2, “Page History Recording.”

When software table searching is enabled (HID0[STEN] = 1), the software table search
routines used by the MPC7451 can set the R bit when a PTE is accessed. Also, the
MPC7451 causes an exception (to vector to the software table search routines) when the C
bit in the TLB is cleared but a store occurs, allowing the corresponding PTE to be updated
by software.

5.1.6 General Flow of MMU Address Translation

The following sections describe the general flow used by processors that implement the
PowerPC architecture, to translate effective addresses to physical addresses. There are three
types of addressing translations used by the PowerPC architecture, page address, block
address, and real addressing mode. Two sizes of physical addresses, 32-bit or 36-bit, can be
generated depending on whether extended addressing is enabled (HID0[XAEN] = 1).
Details for how an effective address is translated to a 32-bit physical address is described
in Chapter 7, “Memory Management,” in the The Programming Environments Manual.
The following sections describe the differences in address translation for an extended
physical address (36-bits).

5.1.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data
translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode is used
(physical address equals effective address) and the access continues to the memory
subsystem as described in Section 5.2, “Real Addressing Mode.”

Figure 5-7 shows the flow the MMUs use in determining which translation to select: real
addressing mode, block address, or page address.

5-16 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MMU Overview

Figure 5-7. General Flow in Selection of which Address Translation to Use

Note that if the BAT array search results in a hit, the access is qualified with the appropriate
protection bits. If the access violates the protection mechanism, an exception (ISI or DSI
exception) is generated.

5.1.6.2 Page Address Translation Selection

If address translation is enabled and the effective address information does not match a
BAT array entry, the segment descriptor must be located. When the segment descriptor is
located, the T bit in the segment descriptor selects whether the translation is to a page or to
a direct-store segment as shown in Figure 5-8. The segment descriptor for an access is
contained in one of 16 on-chip segment registers; effective address bits EA[0–3] select one
of the 16 segment registers.

Perform
Page

Address Translation
with segment descriptor

Access faulted

Perform
Block

Address Translation
by comparing address

with
instruction or data BAT
array (as appropriate)

Translate address

Perform
Real Addressing Mode

(No Address Translation)

Effective address
generated

Continue access
to memory
subsystem

(See The Programming
Environments Manual.)

(See Figure 5-8)

Instruction
translation disabled

(MSR[IR] = 0)

BAT array
miss

I-Access

Access
protected

Access
permitted

Instruction
translation enabled

(MSR[IR] = 1)

Data
translation enabled

(MSR[DR] = 1)

Data
translation disabled

(MSR[DR] = 0)

D-Access

BAT array
hit

Perform
Real Addressing Mode

(No Address Translation)

MOTOROLA Chapter 5. Memory Management 5-17

MMU Overview

Note that the MPC7451 does not implement the direct-store interface, and accesses to these
segments cause a DSI or ISI exception. In addition, Figure 5-8 also shows the way in which
the no-execute protection is enforced; if the N bit in the segment descriptor is set and the
access is an instruction fetch, the access is faulted as described in Section 5.4.3, “Page
Memory Protection.” Note that the figure shows the flow for these cases as described by
the PowerPC OEA, and so the TLB references are shown as optional. Because the
MPC7451 implements TLBs, these branches are valid and are described in more detail
throughout this chapter.

5-18 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MMU Overview

Figure 5-8. General Flow of Page Translation

Page address translation
with segment descriptor

Page fault

Access faulted

Perform page table
search operation

in h/w or s/w

Continue access to
memory subsystem

Translate address

* In the case of instruction accesses, causes ISI exception.

Load TLB entry

(See Figure 5-21.)

(See Figure 5-28.)

otherwise

Check T-Bit in
segment descriptor

Use EA[0–3] to
select one of 16 on-chip
segment registers (SRs)

I-Fetch with N-Bit set
in segment descriptor

 (no-execute)

 Not
found PTE found

Access
protectedAccess

permitted

Optional to the PowerPC architecture. Implemented in the MPC7451.

DSI/ISI exception

Compare virtual address
with TLB entries

Generate 52-Bit virtual
address from segment

descriptor

TLB
hit

TLB
miss

Page address
translation
(SRn[T] = 0)

Direct-store
segment
address

(SRn[T] = 1)*

MOTOROLA Chapter 5. Memory Management 5-19

MMU Overview

If SR[T] = 0, page address translation is selected. The information in the segment descriptor
is then used to generate the 52-bit virtual address. The virtual address is then used to
identify the page address translation information (stored as page table entries (PTEs) in a
page table in memory). For increased performance, the MPC7451 has two on-chip TLBs to
cache recently used translations on-chip.

If an access hits in the appropriate TLB, page translation succeeds and the physical address
bits are forwarded to the memory subsystem. If the required translation is not resident, the
MMU performs a search of the page table. In this case, the MPC7451 either initiates a
search of the page table in hardware or the MPC7451 traps to one of three exception
handlers for the system software to perform the page table search (if HID0[STEN] = 1). If
the required PTE is found, a TLB entry is allocated and the page translation is attempted
again. This time, the TLB is guaranteed to hit. When the translation is located, the access
is qualified with the appropriate protection bits. If the access causes a protection violation,
either an ISI or DSI exception is generated.

If the PTE is not found by the table search operation, a page fault condition exists and an
ISI or DSI exception occurs so software can handle the page fault.

5.1.7 MMU Exceptions Summary

To complete any memory access, the effective address must be translated to a physical
address. As specified by the architecture, an MMU exception condition occurs if this
translation fails for one of the following reasons:

• Page fault—There is no valid entry in the page table for the page specified by the
effective address (and segment descriptor) and there is no valid BAT translation.

• An address translation is found but the access is not allowed by the memory
protection mechanism.

Additionally, because the MPC7451 can use software to perform table search operations,
the processor also takes an exception when HID0[STEN] = 1 and:

• There is a miss in the corresponding (instruction or data) TLB, or

• The page table requires an update to the changed (C) bit.

The state saved by the processor for each of these exceptions contains information that
identifies the address of the failing instruction. Refer to Chapter 4, “Exceptions,” for a more
detailed description of exception processing.

When software table searching is selected, a page fault condition (PTE not found in the
page tables in memory) is detected by the software that performs the table search operation
(and not the MPC7451 hardware). Therefore, it does not cause a MPC7451 exception in the
strictest sense in that exception processing as described in Chapter 4, “Exceptions,” does
not occur. However, in order to maintain architectural compatibility with software written
for other devices that implement the PowerPC architecture, the software that detects this
condition should synthesize an exception by setting the appropriate bits in the DSISR or

5-20 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MMU Overview

SRR1 and branching to the ISI or DSI exception handler. Refer to Section 5.5.5,
“Implementation-Specific Software Table Search Operation,” for more information and
examples of this exception software. The remainder of this chapter assumes that the table
search software emulates this exception and refers to this condition as an exception.

The translation exception conditions defined by the OEA for 32-bit implementations cause
either the ISI or the DSI exception to be taken as shown in Table 5-3.

In addition to the translation exceptions, there are other MMU-related conditions (some of
them defined as implementation-specific, and therefore not required by the architecture)
that can cause an exception to occur in the MPC7451. These exception conditions map to
processor exceptions as shown in Table 5-4. For example, the MPC7451 also defines three
exception conditions to support software table searching. The only exception conditions
that occur when MSR[DR] = 0 are the conditions that cause an alignment exception for data
accesses.

Table 5-3. Translation Exception Conditions

Condition Description Exception

Page fault (no PTE found) No matching PTE found in page tables (and no
matching BAT array entry)

I access: ISI exception 1

SRR1[1] = 1

1 The MPC7451 hardware vectors to these exceptions automatically when HID0[STEN] = 0. When HID0[STEN] = 1,
it is assumed that the software that performs the table search operations vectors to these exceptions and sets the
appropriate bits when a page fault condition occurs.

D access: DSI exception1
DSISR[1] =1

Block protection violation Conditions described for block in “Block Memory
Protection” in Chapter 7, “Memory
Management,” in The Programming
Environments Manual.“

I access: ISI exception
SRR1[4] = 1

D access: DSI exception
DSISR[4] =1

Page protection violation Conditions described for page in “Page Memory
Protection” in Chapter 7, “Memory
Management,” in The Programming
Environments Manual.

I access: ISI exception 2

SRR1[4] = 1

2 The table search software can also vector to these exception conditions.

D access: DSI exception2

DSISR[4] =1

No-execute protection violation Attempt to fetch instruction when SR[N] = 1 ISI exception
SRR1[3] = 1

Instruction fetch from direct-store
segment

Attempt to fetch instruction when SR[T] = 1 ISI exception
SRR1[3] =1

Data access to direct-store
segment (including floating-point
accesses)

Attempt to perform load or store (including FP
load or store) when SR[T] = 1

DSI exception
DSISR[5] =1

Instruction fetch from guarded
memory

Attempt to fetch instruction when MSR[IR] = 1
and either matching xBAT[G] = 1, or no matching
BAT entry and PTE[G] = 1

ISI exception
SRR1[3] =1

MOTOROLA Chapter 5. Memory Management 5-21

MMU Overview

For more detailed information about the conditions that cause an alignment exception (in
particular for string/multiple instructions), see Section 4.6.6, “Alignment Exception
(0x00600).”

Note that some exception conditions depend upon whether the memory area is set up as
write-though (W = 1) or cache-inhibited (I = 1). These bits are described fully in
“Memory/Cache Access Attributes,” in Chapter 5, “Cache Model and Memory
Coherency,” of The Programming Environments Manual. Refer to Chapter 4,
“Exceptions,” in this book and to Chapter 6, “Exceptions,” in The Programming
Environments Manual for a complete description of the SRR1 and DSISR bit settings for
these exceptions.

Even though for data accesses, the MPC7451 LSU initiates out-of-order accesses, the
MMU prevents the changed bit in the PTE from being updated erroneously in these cases,
but the LRU algorithm is updated. The MMU does not initiate exception processing for any
exception conditions until the instruction that caused the exception is the next instruction
to be retired. Also, the MPC7451 MMU does not initiate a search operation due to a TLB
miss (including misses for dcbt, dst, and dstst) until the request is required by the program
flow.

Table 5-4. Other MMU Exception Conditions

Condition Description Exception

TLB miss for an instruction fetch
(HID0[STEN] = 1)

No matching entry found in IBAT or
ITLB

ITLB miss exception.
For details on other bits set for this
exception, see Section 4.6.15, “TLB Miss
Exceptions.”

TLB miss for a data load access
(HID0[STEN] = 1)

No matching entry found in DBAT or
DTLB for data load access

DTLB miss on load exception
For details on other bits set for this
exception, see Section 4.6.15, “TLB Miss
Exceptions.”

TLB miss for a data store access, or
data store access and C = 0
(HID0[STEN] = 1)

No matching entry found in DBAT or
DTLB for data store access,
or matching DLTB entry has C = 0
and the PTE’s C bit must be set due
to a data store operation

DTLB miss on store exception
SRR1[11] =0

For details on the bits set for this
exception, see Section 4.6.15, “TLB Miss
Exceptions.”

DTLB hit on store exception with data
store access and Cþ= 0

SRR1[11] =1
For details on the bits sets during the
exception, see Section 4.6.15, “TLB Miss
Exceptions.”

dcbz with W = 1 or I = 1 dcbz instruction to write-through or
cache-inhibited segment or block

Alignment exception (not required by
architecture for this condition)

lwarx, stwcx., eciwx, or ecowx
instruction to direct-store segment

Reservation instruction or external
control instruction when SR[T] =1

DSI exception
DSISR[5] =1

Floating-point load or store to
direct-store segment

FP memory access when SR[T] =1 See data access to direct-store segment
in Table 5-3.

5-22 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MMU Overview

5.1.8 MMU Instructions and Register Summary

The MMU instructions and registers allow the operating system to set up the block address
translation areas and the page tables in memory.

Note that because the implementation of TLBs is optional, the instructions that refer to
these structures are also optional in the architecture. However, as these structures serve as
caches of the page table, the architecture specifies a software protocol for maintaining
coherency between these caches and the tables in memory whenever the tables in memory
are modified. When the tables in memory are changed, the operating system purges these
caches of the corresponding entries, allowing the translation caching mechanism to refetch
from the tables when the corresponding entries are required.

Note that the MPC7451 implements all TLB-related instructions except tlbia, which is
treated as an illegal instruction.

Because the MMU specification for processors that implement the PowerPC architecture is
so flexible, it is recommended that the software using these instructions and registers be
encapsulated into subroutines to minimize the impact of migrating across the family of
implementations.

Table 5-5 summarizes MPC7451 instructions that specifically control the MMU. For more
detailed information about the instructions, refer to Chapter 2, “Programming Model,” in
this book and Chapter 8, “Instruction Set,” in The Programming Environments Manual.

Load or store that results in a
direct-store error

Does not occur in MPC7451 Does not apply

eciwx or ecowx attempted when
external control facility disabled

eciwx or ecowx attempted with
EAR[E] = 0

DSI exception
DSISR[11] = 1

lmw, stmw, lswi, lswx, stswi, or
stswx instruction attempted in
little-endian mode

lmw, stmw, lswi, lswx, stswi, or
stswx instruction attempted while
MSR[LE] = 1

Alignment exception

Operand misalignment Translation enabled and a
floating-point load/store, stmw,
stwcx., lmw, lwarx, eciwx, or
ecowx instruction operand is not
word-aligned

Alignment exception (some of these
cases are implementation-specific). See
Section 2.2.3, “Alignment and Misaligned
Accesses.”

Table 5-5. MPC7451 Microprocessor Instruction Summary—Control MMUs

Instruction Description

PowerPC Instructions

mtsr SR,rS Move to Segment Register
SR[SR#]← rS

Table 5-4. Other MMU Exception Conditions (continued)

Condition Description Exception

MOTOROLA Chapter 5. Memory Management 5-23

MMU Overview

Table 5-6 summarizes the registers that the operating system uses to program the MPC7451
MMUs. These registers are accessible to supervisor-level software only with the mtspr and
mfspr instructions. The PowerPC registers are described in Chapter 2, “Register Set,” in
The Programming Environments Manual. For MPC7451-specific registers, see Chapter 2,
“Programming Model,” of this book.

mtsrin rS,rB Move to Segment Register Indirect
SR[rB[0–3]]←rS

mfsr rD,SR Move from Segment Register
rD←SR[SR#]

mfsrin rD,rB Move from Segment Register Indirect
rD←SR[rB[0–3]]

PowerPC Optional Instructions

tlbie rB TLB Invalidate Entry
For effective address specified by rB, TLB[V]←0
The tlbie instruction invalidates all TLB entries indexed by the EA, and operates on both the
instruction and data TLBs simultaneously invalidating four TLB entries. The index corresponds
to EA[14–19].
In addition, execution of this instruction causes all entries in the congruence class
corresponding to the EA to be invalidated in the other processors attached to the same bus.
Software must ensure that instruction fetches or memory references to the virtual pages
specified by the tlbie instruction have been completed prior to executing the tlbie instruction.

tlbsync TLB Synchronize
Synchronizes the execution of all other tlbie instructions in the system. Specifically, this
instruction causes a global (M = 1) TLBSYNC address-only transaction (TT[0–4] = 01001) on
the bus. The TLBSYNC transaction terminates normally (without a retry) when all processors
on the bus have completed pending TLB invalidations. See Section 5.4.4.2, “TLB Invalidation,”
for more detailed information on the tlbsync instruction.

Implementation-Specific Instructions 1

tlbld Load Data TLB Entry
Loads the contents of the PTEHI and PTELO registers into the DTLB; used for software table
searching.

tlbli Load Instruction TLB Entry
Loads the contents of the PTEHI and PTELO registers into the ITLB; used for software table
searching.

1 These instructions are MPC7450-, MPC7441/MPC7451-, MPC7445/MPC7455-, MPC7447/MPC7457-specific.

Table 5-5. MPC7451 Microprocessor Instruction Summary—Control MMUs

Instruction Description

5-24 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Real Addressing Mode

5.2 Real Addressing Mode
Real addressing is used when either MSR[IR] = 0 or MSR[DR] = 0, and an instruction or
data access occurs, respectively. In this case, the default WIMG bits (0b0011) cause data
accesses to be considered cacheable (I = 0) and thus load and store accesses are weakly
ordered. This is the case even if the data cache is disabled in the HID0 register (as it is out
of hard reset). If I/O devices require load and store accesses to occur in strict program order

Table 5-6. MPC7451 Microprocessor MMU Registers

Register Description

PowerPC Registers

Segment registers
(SR0–SR15)

The sixteen 32-bit segment registers are present only in 32-bit implementations of the
PowerPC architecture. The fields in the segment register are interpreted differently
depending on the value of bit 0. The segment registers are accessed by the mtsr,
mtsrin, mfsr, and mfsrin instructions.

BAT registers
(IBAT0U–IBAT3U,
IBAT0L–IBAT3L,

DBAT0U–DBAT3U, and
DBAT0L–DBAT3L)

There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBAT0U–IBAT3U paired with IBAT0L–IBAT3L) and four pairs of data BAT registers
(DBAT0U–DBAT3U paired with DBAT0L–DBAT3L). These are special-purpose
registers that are accessed by the mtspr and mfspr instructions.

SDR1 The SDR1 register specifies the variables used in accessing the page tables in
memory. This special-purpose register is accessed by the mtspr and mfspr
instructions.

Implementation-Specific Registers

Only MPC7445-,
MPC7447, MPC7455-, and

MPC7457-specific:
additional BAT registers

(IBAT4U–IBAT7U,
IBAT4L–IBAT7L,

DBAT4U–DBAT7U, and
DBAT4L–DBAT7L) 1

1 Only MPC7445/MPC7455- and MPC7447/MPC7457-specific

There are 16 additional BAT registers for the MPC7445, MPC7447, MPC7455, and the
MPC7457, organized as four pairs of instruction BAT registers (IBAT4U–IBAT7U paired
with IBAT4L–IBAT7L) and four pairs of data BAT registers (DBAT4U–DBAT7U paired
with DBAT4L–DBAT7L). These are special-purpose registers that are accessed by the
mtspr and mfspr instructions.

SPRG4–SPRG7 The SPRG4–7 provide additional registers to be used by system software for software
table searching.

TLBMISS 2

2 These registers are MPC7441/MPC7451-, MPC7445/MPC7455-, MPC447/MPC7457-specific.

When software table searching is enabled (HID0[STEN] = 1), and a TLB miss
exception occurs, the effective address (EA[0–30]) of the instruction or data access
that requires the table search is saved in the TLBMISS register.

PTEHI2 When software table searching is enabled (HID0[STEN] = 1), and a TLB miss
exception occurs, the fields of the PTEHI register are loaded automatically with the
corresponding SR[VSID] information, and the API of the missed address. The PTEHI
register is also used by the tlbli and tlbld instructions.

PTELO2 When software table searching is enabled (HID0[STEN] = 1), and a TLB miss
exception occurs, software determines the lower 32 bits of the PTE and places those
bits in the PTELO register. The PTELO register is also used by the tlbli and tlbld
instructions.

MOTOROLA Chapter 5. Memory Management 5-25

Block Address Translation

(strongly ordered), translation must be enabled so that the corresponding I bit can be set.
Note also, that the G bit must be set to ensure that the accesses are strongly ordered. For
instruction accesses, the default memory access mode bits (WIMG) are also 0b0011. That
is, instruction accesses are considered cacheable (I = 0), and the memory is guarded. Again,
instruction accesses are considered cacheable even if the instruction cache is disabled in the
HID0 register (as it is out of hard reset). The W and M bits have no effect on the instruction
cache.

For information on the synchronization requirements for changes to MSR[IR] and
MSR[DR], refer to Section 2.3.2.4, “Synchronization,” in this book, and “Synchronization
Requirements for Special Registers and for Lookaside Buffers” in Chapter 2, “Register
Set,” in the Programming Environments Manual.

5.2.1 Real Addressing Mode—32-Bit Addressing

If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) and extended addressing
is disabled (HID0[XAEN] = 0), for a particular access, the effective address is treated as
the 32-bit physical address and is passed directly to the memory subsystem as described in
the “Real Addressing Mode” section in Chapter 7, “Memory Management,” of the
Programming Environments Manual. In this case only PA[4–35] bit are used and the
PA[0–3] bit are cleared.

5.2.2 Real Addressing Mode—Extended Addressing

When address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) and extended
addressing is enabled (HID0[XAEN] = 1), the 36-bit physical address is generated by
having the system software add 4 leading zeros to the 32-bit effective address. Figure 5-6
shows how an effective address is converted to a 36-bit physical address for real addressing
mode address translation.

5.3 Block Address Translation
The block address translation (BAT) mechanism in the OEA provides a way to map ranges
of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling
(paging), such as a memory-mapped display buffer or an extremely large array of numerical
data.

Block address translation in the MPC7451 is described in the “Block Address Translation”
section in Chapter 7, “Memory Management,” of the Programming Environments Manual
for a 32-bit physical address. However, the information that is modified to allow for 36-bit
physical addressing is described in the following sections.

The MPC7451 BAT registers are not initialized by the hardware after the power-up or reset
sequence. Consequently, all valid bits in both instruction and data BAT areas must be

5-26 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Block Address Translation

explicitly cleared before setting any BAT area for the first time and before enabling
translation. Also, note that software must avoid overlapping blocks while updating a BAT
area or areas. Even if translation is disabled, multiple BAT area hits (with the valid bits set)
can corrupt the remaining portion (any bits except the valid bits) of the BAT registers.

Thus, multiple BAT hits (with valid bits set) are considered a programming error whether
translation is enabled or disabled, and can lead to unpredictable results if translation is
enabled, (or if translation is disabled, when translation is eventually enabled). For the case
of unused BATs (if translation is to be enabled) it is sufficient precaution to simply clear the
valid bits of the unused BAT entries.

5.3.1 BAT Register Implementation of BAT Array—Extended
Addressing

The BAT array is comprised of four entries used for instruction accesses and four entries
used for data accesses. The BAT array maintains the address translation information for 8
blocks of memory. When using the MPC7445, MPC7447, MPC7455, or the MPC7457
because of the additional 8 BAT registers, the BAT array maintains address translation
information for 16 blocks of memory. Each BAT array entry consists of a pair of BAT
registers—an upper and a lower BAT register for each entry. The BAT registers are
accessed with the mtspr and mfspr instructions and are only accessible to supervisor-level
programs. See Appendix F, “Simplified Mnemonics,” in The Programming Environments
Manual for a list of simplified mnemonics for use with the BAT registers. The block is
defined by a pair of SPRs (upper and lower BAT registers) that contain the effective and
physical addresses for the block.

The format and bit definitions of the upper and lower BAT registers for extended addressing
are shown in Figure 5-10 and Figure 5-11, respectively. The upper BAT register format is
the same as that for 32-bit addressing as shown in Figure 5-9. When using the MPC7445,
MPC7447, MPC7455, or the MPC7457, the extended block length (XBL) for the BATs
replaces BATU[15–18] reserved field, as shown in Figure 5-10. When extended addressing
is used, the lower BAT contains the new BXPN and BX fields that comprise the extended
physical page number.

Figure 5-9. Format of Upper BAT Register (BATU)—Extended Addressing for the
MPC7441 and the MPC7451

BEPI 0_000 BL Vs Vp

Reserved

0 14 15 18 19 29 30 31

MOTOROLA Chapter 5. Memory Management 5-27

Block Address Translation

Figure 5-10. Format of Upper BAT Register (BATU)—Extended Block Size for the
MPC7445, MPC7447, MPC7455, or the MPC7457

Figure 5-11. Format of Lower BAT Register (BATL)—Extended Addressing

The BAT registers contain the effective-to-physical address mappings for blocks of
memory. This mapping information includes the effective address bits that are compared
with the effective address of the access, the memory/cache access mode bits (WIMG), and
the protection bits for the block. In addition, the size of the block and the starting address
of the block are defined by the block physical page number (BRPN) and block size mask
(BL) fields.

Table 5-7 describes the bits in the upper and lower BAT registers. Note that the W and G
bits are defined for BAT registers that translate data accesses (DBAT registers); attempting
to write to the W and G bits in IBAT registers causes boundedly undefined results.

BEPI XBL BL Vs Vp

Reserved

0 14 15 18 19 29 30 31

Reserved

0 14 15 19 20 22 23 24 25 28 29 30 31

BRPN 0_0000 BXPN 00 WIMG 1 BX PP

1 W and G bits are not defined for IBAT registers. Attempting to write to these bits causes boundedly undefined results.

5-28 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Block Address Translation

Table 5-7. BAT Registers—Field and Bit Descriptions for Extended Addressing

Upper/Lower
BAT 1 Bits Name Description

Upper BAT
Register
(BATnU)

0–14 BEPI Block effective page index. This field is compared with high-order bits of the
effective address to determine if there is a hit in that BAT array entry.

15–18 — Reserved on the MPC7441 and the MPC7451.

XBL 2 Extended block length. This XBL field is used only by the MPC7445,
MPC7447, MPC7455, and the MPC7557 to lengthen the block size.
0 When HID0[XBBSEN] is cleared at startup, BATnU[15–18] are always

cleared, (0b0000), and extended BAT block size translation does not
occur.

1 When HID0[XBBSEN] is set at startup, the extended BAT block size is
enabled and bits BATU[15–18] become the 4 MSBs of the extended
15-bit BL field (BATU[15–29]). This allows for extended BAT block sizes
of 512MB, 1 GB, 2GB, and 4 GB. If HID0[XBBSEN] is set at startup and
then cleared after startup, the XBL bits will not clear but stay the same as
they were set at startup.

Values for the extended block length mask are listed in Table 5-9.

19–29 BL Block length. BL is a mask that encodes the size of the block. Values for this
field are listed in Table 5-8

30 Vs Supervisor mode valid bit. This bit interacts with MSR[PR] to determine if
there is a match with the effective address. For more information, see the
section, “Recognition of Addresses in BAT Arrays,” in The Programming
Environments Manual.

31 Vp User mode valid bit. This bit also interacts with MSR[PR] to determine if
there is a match with the effective address. For more information, see the
section, “Recognition of Addresses in BAT Arrays,” in The Programming
Environments Manual.

MOTOROLA Chapter 5. Memory Management 5-29

Block Address Translation

BATn registers can be accessed with mtspr and mfspr. For synchronization requirements
on the BATn registers see Table 2-33.

The BL field in the upper BAT register is a mask that encodes the size of the block.
Table 5-8 defines the bit encoding for the BL field of the upper BAT register (the same as
for 32-bit physical addressing on the MPC7441 and the MPC7451).

Lower BAT
Register
(BATnL)

0–14 BRPN Block physical page number. This field is used in conjunction with the BL
field to generate high-order bits of the physical address of the block.

15–19 — Reserved

20–22 BXPN 3 Block extended physical page number (BXPN).
This field comprises bits 0–2 of the physical address.

23–24 — Reserved

25–28 WIMG Memory/cache access mode bits
W Write-through
I Caching-inhibited
MMemory coherence
G Guarded
Attempting to write to the W and G bits in IBAT registers causes
boundedly-undefined results. For detailed information about the WIMG bits,
see Section 3.3.1, “Memory/Cache Access Attributes (WIMG Bits).”

29 BX 3 Block extended physical page number (BX).
This field comprises bit 3 of the physical address.

30–31 PP Protection bits for block. This field determines the protection for the block as
described in the section, Block Memory Protection,” in The Programming
Environments Manual.

1 A context synchronizing instruction must follow a mtspr.
2 Specific bits are only for the MPC7445, MPC7447, MPC7455, and MPC7457
3 MPC7450, MPC7441/MPC7451, MPC7445/MPC7455-specific bits

Table 5-8. Upper BAT Register Block Size Mask Encoding

Block Size BATU[BL] Encoding

128 Kbytes 000 0000 0000

256 Kbytes 000 0000 0001

512 Kbytes 000 0000 0011

1 Mbyte 000 0000 0111

2 Mbytes 000 0000 1111

4 Mbytes 000 0001 1111

8 Mbytes 000 0011 1111

Table 5-7. BAT Registers—Field and Bit Descriptions for Extended Addressing

Upper/Lower
BAT 1 Bits Name Description

5-30 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Block Address Translation

Only the values shown in Table 5-8 are valid for BL. An effective address is determined to
be within a BAT area if the appropriate bits (determined by the BL field) of the effective
address match the value in the BEPI field of the upper BAT register and if the appropriate
valid bit (Vs or Vp) is set. Note that for an access to occur, the protection bits (PP bits) in
the lower BAT register must be set appropriately, as described and defined in Chapter 7,
“Memory Management,” in The Programming Environments Manual.

The number of zeros in the BL field determines the bits of the effective address that are used
in the comparison with the BEPI field to determine if there is a hit in that BAT array entry.
The right most bit of the BL field is aligned with bit 14 of the effective address; bits of the
effective address corresponding to ones in the BL field are then cleared to zero for the
comparison.

The value loaded into the BL field determines both the size of the block and the alignment
of the block in both effective address space and physical address space. The values loaded
into the BEPI and BRPN fields must have at least as many low-order zeros as there are ones
in BL. Otherwise, the results are undefined.

5.3.2 Block Physical Address Generation—Extended
Addressing

When extended addressing is enabled (HID0[XAEN] = 1) and the block protection
mechanism validates the access, then a 36-bit physical address is formed as shown in
Figure 5-12. Bits in the effective address corresponding to ones in the BL field, concatenate
with the 17 low-order bits of the effective address, and form the offset within the block of
memory defined by the BAT array entry. Bits in the effective address corresponding to
zeros in the BL field are then logically ORed with the corresponding bits in the BRPN field
to form the next high-order bits of the physical address. The highest-order four bits of the
BRPN field (BATL[0–3]) form bits 4–7 of the physical address (PA[4–7]). Finally, the four
extended address bits from BATL[BXPN] and BATL[BX] are concatenated to form the
highest-order four bits of the physical address (PA[0–2] and PA[3], respectively.

Figure 5-12 shows how a block physical address is generated for extended addressing.

16 Mbytes 000 0111 1111

32 Mbytes 000 1111 1111

64 Mbytes 001 1111 1111

128 Mbytes 011 1111 1111

256 Mbytes 111 1111 1111

Table 5-8. Upper BAT Register Block Size Mask Encoding (continued)

Block Size BATU[BL] Encoding

MOTOROLA Chapter 5. Memory Management 5-31

Block Address Translation

Figure 5-12. Block Physical Address Generation—Extended Addressing

5.3.2.1 Block Physical Address Generation with an Extended BAT
Block Size

On the MPC7445, MPC7447, MPC7455, and the MPC7457, when the extended BAT block
size is enabled (HID0[XBBSEN]=1) the BAT block size is increased through the XBL field
in the Upper BAT register, as shown in Figure 5-10. This allows for extended BAT block
sizes of 512MB, 1 GB, 2GB, and 4 GB. If HID0[XBBSEN] is set at startup and then cleared
after startup, the XBL bits do not clear but stay the same as they were set at startup. The BL
field is extended to 15 bits, with the XBL bits becoming the 4 most significant bits (MSBs)
for the block size. The encoding for the extended BL field are shown in Table 5-9.

Physical Address (PA)

4 Bits 11 Bits 17 Bits

3 Bits 1 4 Bits 11 Bits 17 Bits

OR
(Sets PA bits corre-
sponding to ones in

the BRPN)

11 Bits

19 29

0 2 3 4 7þ 8 18 þ19 35

AND
(Clears EAs bits

þcorresponding to
zeros in the mask)

BATU[BL]
Block size mask

0. 1

0 3 4 14 15 31

4 14BATL[4–14]
Block physical page
number (BRPN)

BRPN

20 22BATL[20–22]
Block extended
physical page number
(BXPN)

BXPN

29BATL[29]
Block extended
physical page number (BX)

BX

0 3

 BRPN

Effective Address (EA)

BATL[0–3]
Block physical page number
(BRPN)

5-32 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Block Address Translation

Only the values shown in Table 5-9 are valid for an extended 15-bit BL field. An effective
address is determined to be within a BAT area if the appropriate bits (determined by the
XBL and BL fields) of the effective address match the value in the 15-bit BEPI field of the
upper BAT register and if the appropriate valid bit (Vs or Vp) is set.

The number of zeros in the extended BL field determines the bits of the effective address
that are used in the comparison with the BEPI field to determine if there is a hit in that BAT
array entry. The right most bit of the BL field is still aligned with bit 14 of the effective
address; bits of the effective address corresponding to ones in the BL field are then cleared
to zero for the comparison.

The value loaded into the BL field determines both the size of the block and the alignment
of the block in both effective address space and physical address space. The values loaded
into the BEPI and BRPN fields must have at least as many low-order zeros as there are ones
in BL, otherwise the results are undefined.

Figure 5-13 shows how a block physical address is generated for an extended block size
with extended addressing (36-bit physical address).

Table 5-9. Upper BAT Register Block Size Mask Encoding when the Extended Block
Size is Enabled (HID0[XBBSEN] = 1)

Block Size BATU[XBL + BL] Encoding

128 Kbytes 000 0000 0000 0000

256 Kbytes 000 0000 0000 0001

512 Kbytes 000 0000 0000 0011

1 Mbyte 000 0000 0000 0111

2 Mbytes 000 0000 0000 1111

4 Mbytes 000 0000 0001 1111

8 Mbytes 000 0000 0011 1111

16 Mbytes 000 0000 0111 1111

32 Mbytes 000 0000 1111 1111

64 Mbytes 000 0001 1111 1111

128 Mbytes 000 0011 1111 1111

256 Mbytes 000 0111 1111 1111

512 Mbytes 000 1111 1111 1111

1 Gbytes 001 1111 1111 1111

2 Gbytes 011 1111 1111 1111

4 Gbytes 111 1111 1111 1111

MOTOROLA Chapter 5. Memory Management 5-33

Block Address Translation

Figure 5-13. Block Physical Address Generation—Extended Block Size
for a 36-bit Physical Address

5.3.3 Block Address Translation Summary—Extended
Addressing

Figure 5-14 is an expansion of the ‘BAT Array Hit’ branch of Figure 5-7 and shows the
translation of address bits when extended addressing is enabled (HID0[XAEN] = 1) so that
a 36-bit physical address is generated. Extended address bits from the lower BAT register
are concatenated to the highest order bits of the physical address. Note that the figure does
not show when many of the exceptions in Table 5-3 are detected or taken as this is
implementation-specific. For further details on memory protection violations see the
section, “Block Memory Protection,” of The Programming Environments Manual.

Physical Address (PA)

15 Bits 17 Bits

3 Bits 1 15 Bits 17 Bits

OR
(Sets PA bits corre-
sponding to ones in

the BRPN)

15 Bits

15 29

0 2 3 4 18 þ19 35

AND
(Clears EAs bits

þcorresponding to
zeros in the mask)

BATU[XBL] &
BATU[BL]
Block size mask

0 1

0 14 15 31

0 14BATL[0–14]
Block physical page
number (BRPN)

BRPN

20 22BATL[20–22]
Block extended
physical page number
(BXPN)

BXPN

29BATL[29]
Block extended
physical page number (BX)

BX

Effective Address (EA)

5-34 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Block Address Translation

Figure 5-14. Block Address Translation Flow—Extended Addressing

In the MPC7445, MPC7447, MPC7455, and the MPC7457, Figure 5-15 shows translation
of address bits when the extended block size in enabled (HID0[XBBSEN]=1) and extended
addressing is enabled (HID0[XAEN] = 1). In this case all 15 bits of the effective address
are compared with the BEPI field to determine if there is a hit in the BAT array. Once a
match has been found, the physical address is generated by using all the bits in the effective
address that correspond to zeros in the BL field. The result is then logically ORed with the
BRPN field to form bits 4–18 of the physical address.

Continue Access to Memory
Subsystem with WIMG in Lower-

BAT Register

Otherwise Read Access with
PP = 00

BAT Array Hit

Memory Protection
Violation Flow

(See Figure 7-9 in PEM.)

Write Access with
PP = any of

 00
 x1

PA[0–35] = BATL[BXPN] || BATL[BX] || BATL[0–3] ||
(BATL[4–14] OR (EA[4–14] & BATU[BL])) ||
EA[15–31]

MOTOROLA Chapter 5. Memory Management 5-35

Memory Segment Model

Figure 5-15. Block Address Translation Flow—Extended Block Size for a 36-bit
Physical Address

5.4 Memory Segment Model
The MPC7451 adheres to the memory segment model as defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual for 32-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address translation), while providing the programming
flexibility afforded by a large virtual address space (52 bits).

The segment/page address translation mechanism may be superseded by the block address
translation (BAT) mechanism described in Section 5.3, “Block Address Translation.” If
there is not a BAT hit, the page address translation proceeds in the following two steps:

1. From effective address to the virtual address (that never exists as a specific entity but
can be considered to be the concatenation of the virtual page number and the byte
offset within a page)

2. From virtual address to physical address

Continue Access to Memory
Subsystem with WIMG in Lower-

BAT Register

Otherwise Read Access with
PP = 00

BAT Array Hit

Memory Protection
Violation Flow

(See Figure 7-9 in PEM.)

Write Access with
PP = any of

 00
 x1

PA[0–35] = BATL[BXPN] || BATL[BX] ||
(BATL[BRPN] OR (EA[0–14] & BATU[XBL + BL])) ||
EA[15–31]

5-36 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory Segment Model

The following subsections highlight those areas of the memory segment model defined by
the OEA that are specific to the MPC7451 as well as modifications that apply for extended
36-bit physical addressing. The memory segment model for 32-bit physical addressing is
as described in Chapter 7, “Memory Management,” in The Programming Environments
Manual.

5.4.1 Page Address Translation Overview

A page address translation overview for 32-bit physical addresses is provided in the section,
“Page Address Translation Overview,” of The Programming Environments Manual. The
following sections highlight the differences for 36-bit physical addressing. The general
flow for page address translation is as shown in Figure 5-16. The effective address,
EA[0–3], is used to find the correct segment descriptor in the segment registers. The
segment descriptor is then used to generate the 52-bit virtual address (VA). The MMU then
fetches the page table entry (PTE) from the virtual address. If the PTE is not found in the
tables then a hardware or software page table search is performed. The following
subsections describe the details of how page address translation is performed for an
extended 36-bit physical address.

The translation of an effective address to an extended physical address is shown in
Figure 5-16. Note that in the process of translating the physical address, a 52-bit virtual
address is generated and that is used to find the PTE in the on-chip TLB or through a
hardware or software table search operation. The physical address translation is as follows:

• Bits 0–3 of the effective address comprise the segment register number used to select
a segment descriptor, from that the virtual segment ID (VSID) is extracted.

• Bits 4–19 of the effective address bits correspond to the page number within the
segment. EA[4–9] defines the abbreviated page index (API), and EA[10–13] define
the extended API (EAPI) bits in the PTE. EA[4–19] are concatenated with the VSID
from the segment descriptor to form the virtual page number (VPN). The VPN is
used to search for the PTE in either an on-chip TLB or the page table. The PTE then
provides the physical page number (RPN) and the extended page number bits (XPN
and X). The XPN and X fields of the page table entry (PTE) provide the extra bits
for the extended physical page number. These become the most significant bits of
the 36-bit physical address (PA[0–3]).

• Bits 20–31 of the effective address are the byte offset within the page; these are bits
24–35 of the physical address used to access memory.

MOTOROLA Chapter 5. Memory Management 5-37

Memory Segment Model

Figure 5-16. Generation of Extended 36-bit Physical Address
for Page Address Translation

5.4.1.1 Segment Descriptor Definitions

The segment registers are defined the same for both 32-and 36-bit physical addressing. See
the description of the segment register format in the “Segment Descriptor Format” section
of Chapter 7, “Memory Management,” in The Programming Environments Manual. The
segment descriptors are 32 bits long and reside in one of the 16 on-chip segment registers.
The fields in the segment register are interpreted differently depending on the value of the
T bit. When T=1 (SRn[T] = 1), the segment descriptor defines a direct-store segment;
however, the MPC7451 does not support the direct-store interface. When an access is
determined to be to the direct-store interface space, the MPC7451 takes a DSI exception if
it is a data access (see Section 4.6.3, “DSI Exception (0x00300)”), and takes an ISI
exception if it is an instruction access (see Section 4.6.4, “ISI Exception (0x00400)”).

52-Bit Virtual Address (VA)

32-Bit Effective Address (EA)

36-Bit Physical Address (PA)

SR# API EAPI Byte Offset
(4 Bits) (6 Bits) (4 bits) (12 Bits)

Virtual Segment ID (VSID) Page Index Byte Offset
(24 Bits) (16 Bits) (12 Bits)

XPN X Physical Page Number (RPN) Byte Offset
3 Bits (20 Bits) (12 Bits)

TLB Hit Case;
PTE information found in

on-chip TLBs or page TLB and
is used to generate the PA

Page Index (16-bit)

0 3 4 9 10 13 14 19 20 31

Segment
Registers

0 23 24 39 40 51

Virtual Page Number (VPN)

0 2 3 4 23 24 35

52-Bit Virtual Address (VA)

5-38 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory Segment Model

5.4.1.2 Page Table Entry (PTE) Definition—Extended Addressing
The definition of a page table entry for 32-bit physical addressing is as described in the
section, “PTE Format,” of Chapter 7, “Memory Management,” in The Programming
Environments Manual. The PowerPC OEA defines PTEs that are 64 bits in length. This
section highlights the aspects of page address translation that are unique for 36-bit physical
addresses.

Figure 5-17 shows the format of the two words that comprise a PTE for a 36-bit physical
address (HID0[XAEN] = 1).

Figure 5-17. Page Table Entry Format—Extended Addressing

Table 5-10 lists the corresponding bit definitions for each word in a PTE as defined above.

A PTE contains an abbreviated page index rather than the complete page index field
because at least ten of the low-order bits of the page index are used in the hash function to
select a PTEG address (PTEG addresses define the location of PTE). Therefore, these ten
low-order bits are not repeated in the 8 PTEs of that PTEG. The XPN and X fields have been
added to form the extended page number. When extended addressing is not enabled
(HID0[XAEN] = 0), the four most significant bits of the physical address are zeros,
regardless of the XPN and X values of a PTE.

Table 5-10. PTE Bit Definitions

Word Bit Name Description

0 0 V Entry valid (V = 1) or invalid (V = 0)

1–24 VSID Virtual segment ID

25 H Hash function identifier

26–31 API Abbreviated page index

1 0–19 RPN Physical page number

20–22 XPN Extended page number provides physical address bits 0-2.

23 R Referenced bit

24 C Changed bit

25–28 WIMG Memory/cache control bits

29 X Extended page number provides physical address bit 3

30–31 PP Page protection bits

0 19 20 22 23 24 25 28 29 30 31

V VSID H API

0 1 24 25 26 31

RPN XPN R C WIMG X PP

MOTOROLA Chapter 5. Memory Management 5-39

Memory Segment Model

5.4.2 Page History Recording

Referenced (R) and changed (C) bits in each PTE keep history information about the page.
When hardware table searching is enabled, the history bits are maintained by a combination
of the MPC7451 table search hardware and the system software. When software table
searching is enabled, the history bits are maintained by a combination of the following:

• Table search software provided by the exception

• Exception model

The operating system uses the information in each PTE to determine which areas of
memory to write back to disk when new pages must be allocated in main memory

Referenced and changed recording is performed only for accesses made with page address
translation and not for translations made with the BAT mechanism or for accesses that
correspond to direct-store (T = 1) segments. Furthermore, R and C bits are maintained only
for accesses made while address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1).

While these bits are initially programmed by the operating system into the page table, the
architecture specifies that the R and C bits may be maintained either by the processor
hardware (automatically) or by some software-assist mechanism that updates these bits
when required. Software table searching is optional in the MPC7451. When software table
searching is enabled (HID0[STEN] = 1), the software table search routines are responsible
for setting the R bit when a PTE is accessed. Additionally, the MPC7451 also causes an
exception (to vector to the software table search routines) when the C bit in the
corresponding TLB entry (and PTE entry) requires updating.

In the MPC7451, the referenced and changed bits are updated as follows:

• For TLB hits, the C bit is updated according to Table 5-11.

• For TLB misses, when a table search operation is in progress to locate a PTE. The R
and C bits are updated (set, if required) to reflect the status of the page based on this
access.

Table 5-11 shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is
what causes the processor to update the C bit in the PTE (the R bit is assumed to be set in
the page tables if there is a TLB hit). Therefore, when software clears the R and C bits in

Table 5-11. Table Search Operations to Update History Bits—TLB Hit Case

R and C bits in
TLB Entry

Processor Action

00 Combination does not occur

01 Combination does not occur

10 Read: No special action
Write: Table search operation required to update C.

Causes a data TLB miss on store exception.

11 No special action for read or write

5-40 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory Segment Model

the page tables in memory, it must invalidate the TLB entries associated with the pages
whose referenced and changed bits were cleared.

In some previous implementations, the dcbt and dcbtst instructions execute only if there is
a TLB/BAT hit or if the processor is in real addressing mode. In case of a TLB or BAT miss,
these instructions are treated as no-ops and do not initiate a table search operation, and do
not set either the R or C bits. In the MPC7451, the dcbt, dcbtst, and data stream touch
instructions (dst[t] and dstst[t]) do cause a table search operation in the case of a TLB miss.
However, they never cause the C bit to be set and a failed table search operation does not
cause an exception.

As defined by the PowerPC architecture, the referenced and changed bits are updated as if
address translation were disabled (real addressing mode). If these update accesses hit any
of the on-chip caches, they are not seen on the external bus. If they miss in the on-chip
caches, they are performed as typical cache line fill accesses on the bus (if the data cache
is enabled), or as discrete read and write accesses (if the data cache is disabled).

5.4.2.1 Referenced Bit

The referenced (R) bit of a page is located in the PTE in the page table. Every time a page
is referenced (with a read or write access) and the R bit is zero, the R bit is set in the page
table. The OEA specifies that the referenced bit may be set immediately, or the setting may
be delayed until the memory access is determined to be successful. Because the reference
to a page is what causes a PTE to be loaded into the TLB, the referenced bit in all MPC7451
TLB entries is effectively always set. The processor never automatically clears the
referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set although the access was not logically required by the
program or even if the access was prevented by memory protection. Examples of this in
systems include the following:

• Fetching of instructions not subsequently executed

• A memory reference caused by a speculatively executed instruction that is
mispredicted

• Accesses generated by an lswx or stswx instruction with a zero length

• Accesses generated by an stwcx. instruction when no store is performed because a
reservation does not exist

• Accesses that cause exceptions and are not completed

5.4.2.2 Changed Bit

The changed bit of a page is located both in the PTE in the page table and in the copy of the
PTE loaded into the TLB (if a TLB is implemented, as in the MPC7451). Whenever a data
store instruction is executed successfully, if the TLB search (for page address translation)

MOTOROLA Chapter 5. Memory Management 5-41

Memory Segment Model

results in a hit, the changed bit in the matching TLB entry is checked. If the C bit is already
set, it is not updated. If the TLB changed bit is 0, the MPC7451 initiates a table search
operation to set the C bit in the corresponding PTE in the page table. The MPC7451 then
reloads the TLB (with the C bit set). This occurs automatically when hardware table
searching is enabled. When software table searching is enabled, the MPC7451 takes a data
TLB miss on store exception for this case so that the software can perform the table search
operation to set the C bit. Refer to Section 5.5.5, “Implementation-Specific Software Table
Search Operation,” for an example code sequence that handles these conditions.

The changed bit (in both the TLB and the PTE in the page tables) is set only when a store
operation is allowed by the page memory protection mechanism and the store is guaranteed
to be in the execution path (unless an exception, other than those caused by the sc, rfi, or
trap instructions, occurs). Furthermore, the following conditions may cause the C bit to be
set:

• The execution of an stwcx. instruction is allowed by the memory protection
mechanism but a store operation is not performed.

• The execution of an stswx instruction is allowed by the memory protection
mechanism but a store operation is not performed because the specified length is
zero.

• The store operation is not performed because an exception occurs before the store is
performed.

Again, note that the execution of the dcbt, dcbtst and data stream touch instructions (dst[t]
and dstst[t]) never cause the C bit to be set.

5.4.2.3 Scenarios for Referenced and Changed Bit Recording

This section provides a summary of the model (defined by the PowerPC OEA) that is used
by processors for maintaining the referenced and changed bits. In some scenarios, the bits
are guaranteed to be set by the processor; in some scenarios, the architecture allows that the
bits may be set (not absolutely required), and in some scenarios, the bits are guaranteed to
not be set. Note that when the MPC7451 updates the R and C bits in memory, the accesses
are performed as if MSR[DR] = 0 and G = 0 (that is, as nonguarded cacheable operations
in that coherency is required—WIMG = 0010).

When software table searching is enabled, the MPC7451 does not maintain the R and C bits
in hardware, and software assistance is required. In this case, the information in this section
still applies, except that the software performing the updates is constrained to the rules
described (that is, the software must set bits shown as guaranteed to be set and it must not
set bits shown as guaranteed to not be set).

Table 5-12 defines a prioritized list of the R and C bit settings for all scenarios. The entries
in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to the top of the table takes precedence over a matching scenario closer to the bottom
of the table. For example, if an stwcx. instruction causes a protection violation and there is

5-42 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory Segment Model

no reservation, the C bit is not altered, as shown for the protection violation case. Note that
in the table, load operations include those generated by load instructions, by the eciwx
instruction, and by the cache management instructions that are treated as a load with respect
to address translation. Similarly, store operations include those operations generated by
store instructions, by the ecowx instruction, and by the cache management instructions that
are treated as a store with respect to address translation.

In the columns for the MPC7451, the combination of the MPC7451 itself and the software
used to search the page tables described in Section 5.5.5, “Implementation-Specific
Software Table Search Operation”) is assumed. For more information, see “Page History
Recording” of The Programming Environments Manual.

.

5.4.3 Page Memory Protection

The MPC7451 implements page memory protection as it is defined in the section, “Page
Memory Protection,” of The Programming Environments Manual.

Table 5-12. Model for Guaranteed R and C Bit Settings

Priority Scenario
Causes Setting of R Bit Causes Setting of C Bit

OEA MPC7451 OEA MPC7451

1 No-execute protection violation No No No No

2 Page protection violation Maybe Yes No No

3 Out-of-order instruction fetch or load operation Maybe No No No

4 Out-of-order store operation. Would be required by
the sequential execution model in the absence of
system-caused or imprecise exceptions, or of
floating-point assist exception for instructions that
would cause no other kind of precise exception.

Maybe 1

1 If C is set, R is guaranteed to be set also.

No No No

5 All other out-of-order store operations Maybe 1 No Maybe 1 No

6 Zero-length load (lswx) Maybe No No No

7 Zero-length store (stswx) Maybe 1 No Maybe 1 No

8 Store conditional (stwcx.) that does not store Maybe 1 Yes Maybe 1 Yes

9 In-order instruction fetch Yes 2

2 Includes the case in which the instruction is fetched out of order and R is not set (does not apply for MPC7451).

Yes No No

10 Load instruction or eciwx Yes Yes No No

11 Store instruction, ecowx or dcbz instruction Yes Yes Yes Yes

12 icbi, dcbt, or dcbtst instruction Maybe No No No

13 dcbst or dcbf instruction Maybe Yes No No

14 dcbi instruction Maybe 1 Yes Maybe 1 Yes

15 dst instruction n/a Yes n/a No

MOTOROLA Chapter 5. Memory Management 5-43

Memory Segment Model

5.4.4 TLB Description

The MPC7451 implements separate 128-entry data and instruction TLBs to maximize
performance. This section describes the hardware resources provided in the MPC7451 to
facilitate page address translation. Note that the hardware implementation of the MMU is
not specified by the architecture, and while this description applies to the MPC7451, it does
not necessarily apply to other processors that implement the PowerPC architecture.

5.4.4.1 TLB Organization and Operation

Because the MPC7451 has two MMUs (IMMU and DMMU) that operate in parallel, some
of the MMU resources are shared, and some are actually duplicated (shadowed) in each
MMU to maximize performance. For example, although the architecture defines a single
set of segment registers for the MMU, the MPC7451 maintains two identical sets of
segment registers, one for the IMMU and one for the DMMU; when an instruction that
updates the segment register executes, the MPC7451 automatically updates both sets.

The TLB entries contain on-chip copies of PTEs in the page tables in memory and are
similar in structure. To uniquely identify a TLB entry as the required PTE, the TLB entry
also contains four more bits of the page index, EA[10–13], called the extended API (EAPI)
in addition to the API bits in the PTE.

Each TLB contains 128 entries organized as a two-way set-associative array with 64 sets
as shown in Figure 5-18 for the DTLB (the ITLB organization is the same). When an
address is being translated, a set of two TLB entries is indexed in parallel with the access
to a segment register. If the address in one of the two TLB entries is valid and matches the
40-bit virtual page number, that TLB entry contains the translation. If no match is found, a
TLB miss occurs.

5-44 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory Segment Model

Figure 5-18. Segment Register and DTLB Organization

Unless the access is the result of an out-of-order access, when HID0[STEN] = 0, a hardware
table search operation begins if there is a TLB miss. If the access is out of order, the table
search operation is postponed until the access is required, at that point the access is no
longer out of order. When the matching PTE is found in memory, it is loaded into the TLB
entry selected by the least-recently-used (LRU) replacement algorithm, and the translation
process begins again, this time with a TLB hit.

A software table search is initiated when HID0[STEN] = 1 and a TLB miss occurs. In this
case, MPC7451 causes an exception when the TLB and BAT both miss for an access. There
are separate exception vectors for instruction fetches, data loads, and data stores. Refer to
Section 5.5.5, “Implementation-Specific Software Table Search Operation,” for more
information on the loading of the TLBs in this case.

T

0 7 8 31

0

15 T VSID

Segment Registers

V
DTLB

0

63

V

EA[0–31]

EA[0–3]

EA[14–19]

VSID

Select

Compare

Compare

EA[4–13]

Line 1

Line 0

MUX

RPN
Line1/Line 0 Hit

PA[0–23]

MOTOROLA Chapter 5. Memory Management 5-45

Memory Segment Model

Each set of TLB entries has one associated LRU bit. The LRU bit for a set is updated any
time either entry is used, even if the access is speculative. Invalid entries are always the first
to be replaced.

Although both MMUs can be accessed simultaneously (both sets of segment registers and
TLBs can be accessed in the same clock), only one exception condition is reported at a time.
Exceptions are processed in strict program order, and a particular exception is processed
when the instruction that caused it is the next instruction to be retired. When a particular
instruction causes an instruction MMU exception, that exception is processed before that
instruction can cause a data MMU exception.

ITLB miss conditions are reported when there are no more instructions to be dispatched or
retired (the pipeline is empty), and DTLB miss conditions are reported when the load or
store instruction is the next instruction to be retired. In the case that both an ITLB and
DTLB miss are reported in the same clock, the DTLB miss takes precedence and is handled
first. Refer to Chapter 6, “Instruction Timing,” for more detailed information about the
internal pipelines and the reporting of exceptions.

Although address translation is disabled on a soft or hard reset condition, the valid bits of
TLB entries are not automatically cleared. Thus, TLB entries must be explicitly cleared by
the system software (with a series of tlbie instructions) before address translation is
enabled. Also, note that the segment registers do not have a valid bit, and so they should
also be initialized before translation is enabled.

5.4.4.2 TLB Invalidation

The MPC7451 implements the optional tlbie and tlbsync instructions, that are used to
invalidate TLB entries.

The tlbia instruction is not implemented on the MPC7451 and when its opcode is
encountered, an illegal instruction program exception is generated. To invalidate all entries
of both TLBs, 64 tlbie instructions must be executed, incrementing the value in EA[14–19]
by one each time. See Chapter 8, “Instruction Set,” in The Programming Environments
Manual for architecture information about the tlbie instruction.

5.4.4.2.1 tlbie Instruction

The execution of the tlbie instruction always invalidates four entries—both the ITLB and
DTLB entries indexed by EA[14–19]. The tlbie instruction executes regardless of the
setting of the MSR[DR] and MSR[IR] bits.

The architecture allows tlbie to optionally enable a TLB invalidate signaling mechanism in
hardware so that other processors also invalidate their resident copies of the matching PTE.
When an MPC7451 processor executes a tlbie instruction it always broadcasts this
operation on the system bus as a global (M = 1) TLBIE address-only transaction
(TT[0–4] = 11000) with the 32-bit effective (not physical) address reflected on the address

5-46 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory Segment Model

bus. Figure 5-19 shows the flow of events caused by execution of the tlbie instruction as
well as the actions taken by the MPC7451 when a TLBIE transaction is detected on the
processor bus.

Figure 5-19. tlbie Instruction Execution and Bus Snooping Flow

The execution of the tlbie instruction is performed as if the TLBIE operation was snooped
from the system bus by loading a single-entry TLBIQ that contains EA[14–19] and a valid
bit. When the invalidation of the TLBs is complete, the TLBIQ is invalidated. Also, all
valid queues in the machine that contain a previously translated address (physical address)
are internally marked because these queues could contain references to addresses from the
just invalidated TLB entries. These references propagate through to completion, but are
marked for the purposes of synchronizing multiple TLB invalidations in multiple
processors. See Section 5.4.4.2.2, “tlbsync Instruction,” for more information on the use of
these internal marks.

When another processor on the system bus performs a TLBIE address-only transaction, the
MPC7451 snoops the transaction and checks the status of its internal TLBIQ. If the TLBIQ
is valid (that is, the processor is in the process of performing a TLB invalidation), it causes
a retry of the transaction until the TLBIQ empties. If the TLBIQ is invalid and the

TLBIE transaction
TT[0–4] ←11000

Initiate TLBIE transaction on bus
A[14–19] ¨ EA[14–19]

TT[0–4] ¨ 11000

Retry the transaction

MPC7451 Bus snoop-
ing logic

Otherwise

tlbie

end of tlbie flow

No other retry signaled;
transaction completes

Continue with bus
snooping and instruc-

tion execution

All pending accesses with previously
translated addresses ← Mark

Invalidate the
2 indexed ITLB entries and the

2 indexed DTLB entries

Pending accesses with
previously translated addresses

propagate through

As each access completes, its
associated mark is cleared.

Transaction is retried by
another processor.

Otherwise

Otherwise

TLBIQ[V] = 1

TLBIQ ← A[14–19]

TLBIQ[V] ← 1

TLBIQ[V] ← 0

MOTOROLA Chapter 5. Memory Management 5-47

Memory Segment Model

transaction is not retried by any other processor, the MPC7451 loads the TLBIQ with
EA[14–19] and sets the TLBIQ valid bit. This causes the MPC7451 to invalidate the four
TLB entries (both the ITLB and DTLB entries indexed by EA[14–19]), and internally mark
all accesses with previously translated addresses.

The tlbie instruction does not affect the instruction fetch operation—that is, the prefetch
buffer is not purged and the machine does not cause these instructions to be refetched.

5.4.4.2.2 tlbsync Instruction

The tlbsync instruction ensures that all previous tlbie instructions executed by the system
have completed. Specifically, tlbsync causes a global (M = 1) TLBSYNC address-only
transaction (TT[0–4] = 01001) on the bus if that processor has completed all previous tlbie
instructions and any memory operations based on the contents of those invalidated TLB
entries have propagated through to completion.

Execution of a tlbsync instruction affects outstanding VTQ operations in the same way as
a sync instruction, (see Chapter 7, “AltiVec Technology Implementation”) with the
following additional effect: an outstanding table search operation for a VTQ-initiated
access is cancelled when tlbsync is dispatched to the LSU, possibly causing a line fetch
skip as described in Section 5.5.2, “Page Table Search Operations—Implementation.”

The tlbsync instruction does not complete until it is the oldest instruction presented to the
on-chip memory subsystem. This occurs when all of the following conditions exist:

• The tlbsync instruction is the oldest instruction in the store queue

• The instruction and data cache reload tables are idle

• There are no outstanding table search operations (note that a table search operation
for a VTQ-initiated access may have been cancelled as described above)

Figure 5-20 shows the flow of events caused by execution of the tlbsync instruction as well
as the actions taken by the MPC7451 when a TLBSYNC transaction is detected on the
processor bus.

5-48 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory Segment Model

Figure 5-20. tlbsync Instruction Execution and Bus Snooping Flow

When an MPC7451 processor detects a TLBSYNC broadcast transaction, it causes a retry
of that transaction until all pending TLB invalidate operations have completed. In this
snoop process, the MPC7451 checks its TLBIQ and any pending marks for previously
translated addresses. If the queue is valid or if any marks exist, the TLBSYNC transaction
is retried, until the queue is invalid (idle) and no marks exist.

5.4.4.2.3 Synchronization Requirements for tlbie and tlbsync

In order to guarantee that a particular MPC7451 processor executing a tlbie instruction has
completed the operation, a sync instruction must be placed after the tlbie instruction. A
tlbsync instruction can also be used instead of the sync instruction for this purpose, but a
sync will suffice for that processor. However, in order to guarantee that all MPC7451
processors in a system have coherently invalidated their respective TLB entries due to a
tlbie instruction executing on any one of those processors, a tlbsync instruction is required.

The PowerPC architecture requires that when a tlbsync instruction has been executed by a
processor, a sync instruction must be executed by that processor before a tlbie or tlbsync
instruction is executed by another processor. If this requirement is not met, a livelock
situation may occur in a system with multiple MPC7451 processors. Specifically, if more
than one processor executes tlbie or tlbsync instructions simultaneously, it is likely that
these processors will cause a system livelock.

TLBSYNC transaction
TT[0–4] ← 01001 Initiate TLBSYNC transaction on bus

TT[0–4] ← 01001

Retry the transaction

MPC7451
Bus Snooping Logic

Otherwise

tlbsync

end of tlbsync flow
Continue with bus

snooping and
instruction execution

Otherwise

TLBIQ[V] = 1 or
marks exist

Allow transaction
to complete

tlbsync is the oldest instruction
presented to the memory subsystem

Otherwise

Retry

No retry

Other processors
snoop

Otherwise

TLBIQ[V] = 1 or
marks exist

Retry the transaction

MOTOROLA Chapter 5. Memory Management 5-49

Memory Segment Model

5.4.5 Page Address Translation Summary—Extended
Addressing

A detailed description of page address translation for a 32-bit physical address is provided
in the section, “Page Address Translation Summary,” of Chapter 7, “Memory
Management,” in the Programming Environments Manual. The following section
highlights the differences for 36-bit physical addressing.

Figure 5-21 provides the detailed flow for the page address translation mechanism when
using extended addressing.

When an instruction or data access occurs, the effective address is routed to the appropriate
MMU. EA0–EA3 select 1 of the 16 segment registers and the remaining effective address
bits and the VSID field from the segment register are passed to the TLB. EA[14–19] then
select two entries in the TLB; the valid bits are checked and the 40-bit virtual page number
(24-bit VSID concatenated with EA[4–19]) must match the VSID, EAPI, and API fields of
the TLB entries. If one of the entries hits, the PP bits are checked for a protection violation.
If these bits do not cause an exception, the C bit is checked. If the C bit must be updated, a
table search operation is initiated. If the C bit does not require updating, the RPN value with
the XPN and X extensions is passed to the memory subsystem and the WIMG bits are then
used as attributes for the access.

Figure 5-21 includes the checking of the N bit in the segment descriptor and then expands
on the ‘TLB Hit’ branch of Figure 5-8. The detailed flow for the ‘TLB Miss’ branch of
Figure 5-8 is described in Section 5.5.2, “Page Table Search
Operations—Implementation.” Note that as in the case of block address translation, if an
attempt is made to execute a dcbz instruction to a page marked either write-through or
caching-inhibited (W = 1 or I = 1), an alignment exception is generated. The checking of
memory protection violation conditions is described in Chapter 7, “Memory
Management,” in The Programming Environments Manual.

5-50 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory Segment Model

Figure 5-21. Page Address Translation Flow—TLB Hit—Extended Addressing

(See the section, “Flow for
Page Table Search Operation,”
in The Programming
Environments Manual.)

(See the section, “Page
Address Translation Over-
view,” in The Programming
Environments Manual.)

TLB Hit Case

Alignment exception

Effective address
generated

Continue access to memory sub-
system with WIMG-bits from PTE

Page table
search operation

PA[0–35]←XPN || X || RPN || EA[20–31]

Page address
translation

Check page memory
 protection violation conditions

Instruction fetch with N-Bit
set in segment descriptor

 (No-execute)

Page memory
protection
violation

Access permitted

otherwise
Store access with

PTE[C] = 0

otherwise
dcbz Instruction
with W or I = 1

Otherwise

(See Table 5-8)

Generate 52-Bit virtual
address

from segment descriptor

Compare virtual address
with TLB entries

Access prohibited

MOTOROLA Chapter 5. Memory Management 5-51

Hashed Page Tables—Extended Addressing

5.5 Hashed Page Tables—Extended Addressing
If a copy of the PTE corresponding to the VPN for an access is not resident in a TLB
(corresponding to a miss in the TLB, provided a TLB is implemented), the processor must
search (in hardware or software) for the PTE in the page tables set up by the operating
system in main memory.

The algorithm specified by the architecture for accessing the page tables in hardware
includes a hashing function on some of the virtual address bits. Thus, the addresses for
PTEs are allocated more evenly within the page tables and the hit rate of the page tables is
maximized. This algorithm must be synthesized by the operating system for it to correctly
place the page table entries in main memory.

When page table search operations are performed automatically by the hardware, they are
performed using physical addresses and as if the memory access attribute bit M = 1
(memory coherency enforced in hardware). If the software performs the page table search
operations, the accesses must be performed in real addressing mode (MSR[DR] = 0); this
additionally guarantees that M = 1.

The section, “Hashed Page Tables,” in The Programming Environments Manual describes
the format of the page tables and the algorithm used to access them for a 32-bit physical
address. Section 5.4.1.2, “Page Table Entry (PTE) Definition—Extended Addressing,”
describes the PTE format for extended addressing. The following subsections highlight the
differences when translating for 36-bit physical addresses. In addition, the constraints
imposed on the software in updating the page tables and the software table searching
exception handlers (and other MMU resources) are described.

5.5.1 SDR1 Register Definition—Extended Addressing

The SDR1 register definition for 32-bit physical addressing is as described in Chapter 7,
“Memory Management,” in The Programming Environments Manual. The SDR1 register
contains the control information for the page table structure in that it defines the high-order
bits for the physical base address of the page table and it defines the size of the table. Note
that there are certain synchronization requirements for writing to SDR1 that are described
in the section, “Synchronization Requirements for Special Registers and for Lookaside
Buffers,” in The Programming Environments Manual. The format of the SDR1 register for
extended addressing is described in the following sections. The SDR1 register has been
modified for the MPC7451 to support extended 36-bit physical addresses (for when
HID0[XAEN = 1]). Figure 5-22 shows the format of the SDR1 register in the bottom half
of the figure; the top half shows how the physical address generated corresponds to SDR1
fields.

5-52 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

.

Figure 5-22. SDR1 Register Format—Extended Addressing

Bit settings for the SDR1 register are described in Table 5-13.

SDR1 can be accessed with mtspr and mfspr using SPR 25. For synchronization
requirements on the register see Section 2.3.2.4, “Synchronization.”

When extended addressing is disabled (HID0[XAEN] = 0), then the SDR1[HTABORG]
field contains the high-order 16 bits of the 32-bit physical address of the page table. That
is, SDR1[0–15] comprise the physical base address of the page table. Therefore, the
beginning of the page table lies on a 216 byte (64 Kbyte) boundary at a minimum. If
extended addressing is enabled (HID0[XAEN] = 1), then a leading zero is concatenated
with the values in the SDR1[HTABEXT] and SDR1[HTABORG] fields to produce the
physical base address of the page table. In this case, the beginning of the page table lies on
a 219 (512 Kbyte) boundary at a minimum.

When extended addressing is enabled, a page table can be any size 2
n bytes where 16 ≤ n ≤

29. The HTMEXT field concatenated with the HTABMASK field in SDR1 contains a mask
value that determines how many bits from the output of the hashing function are used as the

Table 5-13. SDR1 Register Bit Settings—Extended Addressing

Bits Name Description

0–15 HTABORG Physical base address of page table
þþþþIf HID0[XAEN] = 1, field contains physical address [4–19]
þþþþIf HID0[XAEN] = 0, field contains physical address [0–15]

16–18 HTABEXT 1

1 MPC7441/MPC7451-,MPC7445/MPC7455-, MPC7447/MPC7457-specific bits

Extension bits for physical base address of page table
þþþþIf HID0[XAEN] = 1, field contains physical address [1–3]
þþþþþþþþ(and PA0 = 0)
þþþþIf HID0[XAEN] = 0, field is reserved

19–22 HTMEXT 1 Hash table mask extension bits
þþþþþIf HID0[XAEN] = 1, field contains hash table mask [0–3]
þþþþþIf HID0[XAEN] = 0, field is reserved

23–31 HTABMASK Mask for page table address
þþþþþþIf HID0[XAEN] = 1, field contains hash table mask
[4–12]
þþþþþþIf HID0[XAEN] = 0, field contains hash table mask [0–7]

0 2 3 15 16 18 19 31

PA[4–6] PA [7–19] PA[1–3] Hash Table Maskþ(13 bits)

Physical Address Generated:

0 15 16 18 19 22 23 31

HTABORG HTABEXT HTMEXT HTABMASK

SDR1 Register:

MOTOROLA Chapter 5. Memory Management 5-53

Hashed Page Tables—Extended Addressing

page table index. This mask must be of the form 0b00...011...1 (a string of 0 bits followed
by a string of 1 bits). As the table size increases, more bits are used from the output of the
hashing function to index into the table. The 1 bits in HTMEXT || HTABMASK determine
how many additional bits (beyond the minimum of 10) from the hash are used in the index;
the HTABORG field must have the same number of low-order bits equal to 0 as the
HTMEXT || HTABMASK fields have low-order bits equal to 1.

The SDR1[HTABEXT] field is ignored when extended addressing is disabled
(HID0[XAEN] = 0). If extended addressing is enabled (HID0[XAEN] = 1), then the
SDR1[HTABEXT] field contains bits 1-3 of the physical address of the page table. Note
that bit 0 of the physical address of the page table is always 0.

5.5.1.1 Page Table Size

The number of entries in the page table directly affects performance because it influences
the hit ratio in the page table and thus the rate of page fault exception conditions. If the table
is too small, not all virtual pages that have physical page frames assigned may be mapped
via the page table. This can happen if more than 16 entries map to the same
primary/secondary pair of PTEGs; in this case, many hash collisions may occur.

In a 32-bit implementation, the minimum size for a page table is 64 Kbytes (210 PTEGs of
64 bytes each). However, it is recommended that the total number of PTEGs in the page
table be at least half the number of physical page frames to be mapped. While avoidance of
hash collisions cannot be guaranteed for any size page table, making the page table larger
than the recommended minimum size reduces the frequency of such collisions by making
the primary PTEGs more sparsely populated, and further reducing the need to use the
secondary PTEGs.

Table 5-14 shows some example sizes for total main memory with the MPC7451 using
extended addressing. The recommended minimum page table size for these example
memory sizes are then outlined, along with their corresponding HTABORG, HTMEXT, and
HTABMASK settings in SDR1. Note that systems with less than 8 Mbytes of main memory
may be designed with 32-bit processors, but the minimum amount of memory that can be
used for the page tables in these cases is 64 Kbytes.

Table 5-14. Minimum Recommended Page Table Sizes—Extended Addressing

Total Main Memory

 Recommended Minimum Settings for Recommended Minimum

Memory for Page
Tables

Number
of

Mapped
Pages
(PTEs)

Number
of PTEGs

HTABORG
(Maskable Bits

3–15)

HTMEXT ||
HTABMASK
SDR1[19-31]

8 Mbytes (223) 64 Kbytes (216) 213 210 x xxxx xxxx xxxx þ0 0000 0000 0000

16 Mbytes (224) 128 Kbytes (217) 214 211 x xxxx xxxx xxx0 0 0000 0000 0001

32 Mbytes (225) 256 Kbytes (218) 215 212 x xxxx xxxx xx00 0 0000 0000 0011

5-54 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

As an example, if the physical memory size is 235 bytes (32 Gbyte), then there are 235 – 212

(4 Kbyte page size) = 223 (8 Mbyte) total page frames. If this number of page frames is
divided by 2, the resultant minimum recommended page table size is 222 PTEGs, or 228

bytes (256 Mbytes) of memory for the page tables.

5.5.1.2 Page Table Hashing Functions

The MMU uses two different hashing functions, a primary and a secondary, in the creation
of the physical addresses used in a page table search operation. These hashing functions
distribute the PTEs within the page table, in that there are two possible PTEGs where a
given PTE can reside. Additionally, there are eight possible PTE locations within a PTEG
where a given PTE can reside. If a PTE is not found using the primary hashing function, the
secondary hashing function is performed, and the secondary PTEG is searched. Note that
these two functions must also be used by the operating system to set up the page tables in
memory appropriately.

The address of a PTEG is derived from the HTABORG field of the SDR1 register, and the
output of the corresponding hashing function (primary hashing function for primary PTEG
and secondary hashing function for a secondary PTEG). The values in the HTMEXT and
HTABMASK fields determine how many of the high-order hash value bits are masked and
how many are used in the generation of the physical address of the PTEG.

Figure 5-23 depicts the hashing functions used by the MPC7451 to generate a 36-bit
physical table entry group address. The inputs to the primary hashing function are the

64 Mbytes (226) 512 Kbytes (219) 216 213 x xxxx xxxx x000 0 0000 0000 0111

128 Mbytes (227) 1 Mbyte (220) 217 214 x xxxx xxxx 0000 0 0000 0000 1111

256 Mbytes (228) 2 Mbytes (221) 218 215 x xxxx xxx0 0000 0 0000 0001 1111

512 Mbytes (229) 4 Mbytes (222) 219 216 x xxxx xx00 0000 0 0000 0011 1111

1 Gbytes (230) 8 Mbytes (223) 220 217 x xxxx x000 0000 0 0000 0111 1111

2 Gbytes (231) 16 Mbytes (224) 221 218 x xxxx 0000 0000 0 0000 1111 1111

4 Gbytes (232) 32 Mbytes (225) 222 219 x xxx0 0000 0000 0 0001 1111 1111

8 Gbytes (233) 64 Mbytes (226) 223 220 x xx00 0000 0000 0 0011 1111 1111

16 Gbytes (234) 128 Mbytes (227 224 221 x x000 0000 0000 0 0111 1111 1111

32 Gbytes (235) 256 Mbytes (228) 225 222 x 0000 0000 0000 0 1111 1111 1111

64 Gbytes (236) 512 Mbytes (229) 226 223 0 0000 0000 0000 1 1111 1111 1111

Table 5-14. Minimum Recommended Page Table Sizes—Extended Addressing

Total Main Memory

 Recommended Minimum Settings for Recommended Minimum

Memory for Page
Tables

Number
of

Mapped
Pages
(PTEs)

Number
of PTEGs

HTABORG
(Maskable Bits

3–15)

HTMEXT ||
HTABMASK
SDR1[19-31]

MOTOROLA Chapter 5. Memory Management 5-55

Hashed Page Tables—Extended Addressing

low-order 23 bits of the VSID field of the selected segment register (VA[1–23]), and the
page index field of the effective address (VA[24–39]) concatenated with seven zero
high-order bits. The XOR of these two values generates the output of the primary hashing
function (hash value 1).

When the secondary hashing function is required, the output of the primary hashing
function is complemented with one’s complement arithmetic, to provide hash value 2.

Figure 5-23. Hashing Functions for Page Table Entry Group Address

5.5.1.3 Page Table Address Generation

The following sections illustrate the generation of the addresses used for accessing the
hashed page tables. As stated earlier, the operating system must synthesize the table search
algorithm for setting up the tables. This process is as described in Chapter 7, “Memory
Management,” in The Programming Environments Manual.

For extended addressing, PTEG[0] is zero and PTEG[1–3] is defined by the HTABEXT
field of SDR1 (SDR1[16–18]) as shown in Figure 5-25. PTEG[4–6] is defined by the
highest order bits of the HTABORG field (SDR1[0–2]). PTEG[7–19] are derived from the

Low-Order 23 Bits of VSID (from Segment Register)

0 22

0 6 7 22

Primary Hash:

XOR

Output of Hashing Function 1

0 12 13 22

=

Secondary Hash:

Hash Value 1

0 22

Primary PTEG
Hash Value 1

Hash Value 2

One’s Complement Function

0000_000 Page Index from Effective Address [VA24-39]

Output of Hashing Function 2
Secondary PTEG

Hash Value 2
0 12 13 22

5-56 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

masking of the high-order bits of the hash value[0–12] with SDR1[HTABMASK] and
SDR1[HTMEXT]. The value from the AND function is then concatenated with
(implemented as an OR function) the high-order bits of the unmasked HTABORG bits
SDR1[3–15]. PTEG[20–29] are the 10 low-order bits of the hash value. PTEG[30–35] are
zeros. In the process of searching for a PTE, the processor checks up to eight PTEs located
in the primary PTEG and up to eight PTEs located in the secondary PTEG, if required,
searching for a match.

MOTOROLA Chapter 5. Memory Management 5-57

Hashed Page Tables—Extended Addressing

Figure 5-24. PTEG Address Generation for a Page Table Search—Ext. Addressing

Virtual Segment ID API Byte Offset
(23 Bit) (16 Bit) (12 Bit)

Virtual Page Number (VPN)

PAGE TABLE

0 1 23 24 29 30 39 40 51

SDR1

0 2 3 15 16 18 19 31 0 12 13 22

36-Bit Address of Page Table Entry Group (PTEG)

PTE0

64 Bytes

52-Bit Virtual Address

PTE7
8 Bytes

36-Bit Physical Address

V VSID H API
(24 Bit) (6 Bit)

Physical Page Number (RPN)
(20 Bit)

0 19 20 2223 24 25 28 29 31

WIMG

AND

OR

(13 Bit) (10 Bit)

RPN Byte Offset
(20 Bit) (12 Bit)

(16 Bit)

Hash Function

Hash Value
(23 Bit)

PTEG0

PTEGn

Page Index (16 Bit)

Mask

0 1 3 4 6 7 19 20 29 30 35

PTEG Select

PP

0 1 24 25 26 31

13 Bits 10 Bits

X

00_000
(6 Bit)

Base
Address

CR

þþxxx þþþ0_0000þ. . . þ0000xxx 0_0000þ. . . 1111
þ (3 Bit)þþþþþþþþ(13 Bit) (3 Bit) (13 Bit)

0

0 6 7 22

XPN

(3 Bit)

0000_000
(7 Bit)

PTEG

PTE Found from Search

(3) (3)

5-58 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

5.5.1.4 Page Table Structure Example—Extended Addressing
Figure 5-26 shows the structure of an example page table. The base address of the page
table is defined as shown in Figure 5-25. In this example, the address is identified by 0 ||
HTBEXT || HTABORG[0–13]; note that bits 14 and 15 of HTABORG must be zero
because the low-order two bits of HTABMASK are ones. The addresses for individual
PTEGs within this page table are then defined by bits 18–29 as an offset from bits 0–17 of
this base address. Thus, the size of the page table is defined as 4096 PTEGs.

Figure 5-25. Example Page Table Structure—Extended Addressing

Two example PTEG addresses are shown in the figure as PTEGaddr1 and PTEGaddr2. Bits
18–29 of each PTEG address in this example page table are derived from the output of the
hashing function (bits 30–35 are zero to start with PTE0 of the PTEG). In this example, the

PTEGaddr1

PTEGaddr2

Page Table

Example:

Given: SDR1 1010 0110 0000 0000 1100 0000 0000 0011

0 15 16 18 19 31

Base Address

0x6 A600 0000

PTEGaddr1 = 0110 1010 0110 0000 00mm aaaa aaaa aa00 0000

0 18 29 35

PTEGaddr2 = 0110 1010 0110 0000 00nn bbbb bbbb bb00 0000

0 18 29 35

HTABORG Hash Table MaskHTBEXT

PTE0 PTE1 PTE7 PTEG0

PTE0 PTE1 PTE7

PTE0 PTE1 PTE7

PTEG4095

MOTOROLA Chapter 5. Memory Management 5-59

Hashed Page Tables—Extended Addressing

‘b’ bits in PTEGaddr2 are the one’s complement of the ‘a’ bits in PTEGaddr1. The ‘n’ bits
are also the one’s complement of the ‘m’ bits, but these two bits are generated from bits
11–12 of the output of the hashing function, logically ORed with bits 14–15 of the
HTABORG field (that must be zero). If bits 18–29 of PTEGaddr1 were derived by using
the primary hashing function, then PTEGaddr2 corresponds to the secondary PTEG.

Note, however, that bits 18–29 in PTEGaddr2 can also be derived from a combination of
effective address bits, segment register bits, and the primary hashing function. In this case,
then PTEGaddr1 corresponds to the secondary PTEG. Thus, while a PTEG may be
considered a primary PTEG for some effective addresses (and segment register bits), it may
also correspond to the secondary PTEG for a different effective address (and segment
register value).

It is the value of the H bit in each of the individual PTEs that identifies a particular PTE as
either primary or secondary (there may be PTEs that correspond to a primary PTEG and
PTEs that correspond to a secondary PTEG, all within the same physical PTEG address
space). Thus, only the PTEs that have H = 0 are checked for a hit during a primary PTEG
search. Likewise, only PTEs with H = 1 are checked in the case of a secondary PTEG
search.

5.5.1.5 PTEG Address Mapping Examples—Extended Addressing
This section contains two examples of an effective address and how its address translation
(the PTE) maps into the primary PTEG in physical memory. The examples illustrate how
the processor generates PTEG addresses for a table search operation; this is also the
algorithm that must be used by the operating system in creating page tables.

Figure 5-27 shows an example of PTEG address generation for extended addressing. In the
example, the value in SDR1 defines a page table at address 0x4_0F98_0000 that contains
8192 PTEGs. The example effective address selects segment register 0 (SR0) with the
highest order four bits. The contents of SR0 are then used along with bits 4–31 of the
effective address to create the 52-bit virtual address.

To generate the address of the primary PTEG, bits1–23, and bits 24–39 of the virtual address
are then used as inputs into the primary hashing function (XOR) to generate hash value 1.
The low-order 13 bits of hash value 1 are then concatenated with the high-order 13 bits of
HTABORG and HTBEXT with an added leading zero. Finally the address is appended with
six low-order 0 bits, defining the address of the primary PTEG (0x4_0F9F_F980).

5-60 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

Figure 5-26. Example Primary PTEG Address Generation

Figure 5-27 shows the generation of the secondary PTEG address for this example. If the
secondary PTEG is required, the secondary hash function is performed and the low-order
13 bits of hash value 2 are then ORed with the high-order 16 bits of HTABORG (bits 13–15
should be zero), and HTBEXT with an added leading zero. Finally, the address is appended
with six low-order 0 bits, defining the address of the secondary PTEG (0x4_0F98_0640).

As described in Figure 5-24, the 10 low-order bits of the page index field are always used
in the generation of a PTEG address (through the hashing function) for a 32-bit
implementation. This is why only the abbreviated page index (API) is defined for a PTE
(the entire page index field does not need to be checked). For a given effective address, the
low-order 10 bits of the page index (at least) contribute to the PTEG address (both primary
and secondary) where the corresponding PTE may reside in memory. Therefore, if the
high-order 6 bits (the API field) of the page index match with the API field of a PTE within
the specified PTEG, the PTE mapping is guaranteed to be the unique PTE required.

Example:

Given: SDR1 0000 1111 1001 1000 1000 0000 0000 0111

0 15 19 31
HTABORG Hash Table Mask

0000 0000 1111 1111 1010 0000 0001 1011

0 4 19 20 31

EA =

SR0

Segment Register Select

0010 0000 1100 1010 0111 0000 0001 1100

0xC A 7 0 1 C

8 31

1100 1010 0111 0000 0001 1100 0000 1111 1111 1010 0000 0001 1011

1 4 5 23 24 39

Virtual Address:

Byte Offset

Page IndexVSID

Primary Hash: 100 1010 0111 0000 0001 1100

XOR

000 0000 0000 1111 1111 1010
Hash Value 1 100 1010 0111 1111 1110 0110

13-bits 10-bits

0000 1111 1001 1111 1111 1001 1000 0000

0 F 9 F F 9 8 0

Primary PTEG Address:

Start at PTE0HTABORG 16 20 29HTBEXT

0100

0x4

MOTOROLA Chapter 5. Memory Management 5-61

Hashed Page Tables—Extended Addressing

Figure 5-27. Example Secondary PTEG Address Generation

Note that a given PTEG address does not map back to a unique effective address. Not only
can a given PTEG be considered both a primary and a secondary PTEG (as described in
Section 5.5.1.4, “Page Table Structure Example—Extended Addressing”), but in this
example, bits 24–26 of the page index field of the virtual address are not used to generate
the PTEG address. Therefore, any of the eight combinations of these bits will map to the
same primary PTEG address. (However, these bits are part of the API and are therefore
compared for each PTE within the PTEG to determine if there is a hit.) Furthermore, an
effective address can select a different segment register with a different value such that the
output of the primary (or secondary) hashing function happens to equal the hash values
shown in the example. Thus, these effective addresses would also map to the same PTEG
addresses shown.

5.5.2 Page Table Search Operations—Implementation

If the translation is not found in the TLBs (a TLB miss), the MPC7451 initiates a hardware
or software table search operation as described in this section for 36-bit addressing.

Hash Value 2: 011 0101 1000 0000 0001 1001

Secondary PTEG Address:

100 0000 1111 1001 1000 0000 0110 0100 0000

0x 4 0 F 9 8 0 6 4 0

13 Bits 10 Bits

1) First compare 8 PTEs
at 0x4_0F9F_F980

2) Then compare 8 PTEs
at 0x4_0F98_0640,

 if necessary

HTABORG

0x4_0F98_0000

0x4_0F98_0640

0x4_0F9F_F980

PTEG0

PTEG25

PTEG8166

PTEG8191

100 1010 0111 1111 1110 0110

One’s Complement

Secondary Hash:

100 1010 0111 1111 1110 0110Hash Value 1:

Start at PTE0

PTE0 PTE7

PTE0 PTE7

16 20 29HTBEXT

0

5-62 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

Formats for the PTEs used in 32-bit addressing are described in “PTE Format for 32-Bit
Implementations,” in Chapter 7, “Memory Management,” of The Programming
Environments Manual.

5.5.2.1 Conditions for a Page Table Search Operation

For instruction accesses, the MPC7451 processor does not initiate a table search operation
for an ITLB miss until the completion buffer is empty and the completed store queue is
empty. Also, the instruction buffer must be empty, there must be no other exceptions
pending, there must be no branch processing in progress, and there must be no outstanding
instruction cache misses.

Also, the MMU does not perform a hardware table search due to DTLB misses (or to
modify the C bit) until the access is absolutely required by the program flow and there are
no other exceptions pending.

In the MPC7451, a TLB miss (and subsequent page table search operation) occurs
transparently to the program. Thus, if a TLB miss occurs when a misaligned access crosses
a translation boundary, the second portion of the misaligned access is completed
automatically once the table search operation completes successfully. If the table search
operation results in a page fault, an exception occurs and upon returning from the page fault
handling routine, the entire misaligned access is restarted beginning with the first portion
of the access.

Note that, as described in Chapter 6, “Instruction Timing,” store gathering does not occur
while a page table search operation is in progress.

The AltiVec data stream touch instructions (dst[t] and dstst[t]) provide the ability to
prefetch up to 128 Kbytes of data per instruction. As described in Chapter 6, “Instruction
Timing,” a dst[t] or dstst[t] instruction can be retired from the completion buffer as soon
as the instruction is loaded into the vector touch queue (VTQ). However, if a line fetch in
the VTQ requires a table search operation before the instruction is retired, then the table
search operation is delayed until the instruction is retired. If a line fetch in the VTQ requires
a table search operation after the instruction has been retired, the table search operation is
initiated immediately.

To further increase performance, the VTQ stream engines operate in parallel with the other
execution units. Also, the TLBs are non-blocking, and are available to the instruction unit
and LSU for both instruction and data address translation during a VTQ-initiated table
search operation.

5.5.2.2 AltiVec Line Fetch Skipping

As described in Chapter 7, “AltiVec Technology Implementation,” there are many
conditions (exceptions, etc.) that cause the stream fetch performed by a VTQ stream engine
to abort. In the case of a VTQ-initiated table search operation, when an exception or

MOTOROLA Chapter 5. Memory Management 5-63

Hashed Page Tables—Extended Addressing

interrupt condition occurs, the stream engine pauses, the line-fetch that caused the table
search operation is effectively dropped, and no MMU exceptions are reported for this
line-fetch. When the stream engine resumes operation, the next line fetch is attempted,
causing a skip of one line fetch in the stream engine.

Also, when a tlbsync instruction is executed while a VTQ-initiated table search operation
is in progress, that table search operation is aborted, potentially causing a line fetch skip.

5.5.2.3 Page Table Search Operation—Conceptual Flow

The following is a summary of the page table search process performed automatically by
the MPC7451 when hardware table searching is enabled. A very similar flow occurs when
the software table searching is enabled.

1. The 32-bit physical address of the primary PTEG is generated as described in
Chapter 7, “Memory Management,” of The Programming Environments Manual.
When extended addressing is enabled, the 36-bit address generation is described in
Section 5.5.1.3, “Page Table Address Generation”.

2. The first PTE (PTE0) in the primary PTEG is read from memory. PTE reads occur
with an implied WIM memory/cache mode control bit setting of 0b001. Therefore,
they are considered cacheable and read (burst) from memory and placed in the
cache. Because the table search operation is never speculative and is cacheable, the
G-bit has no effect

3. The PTE in the selected PTEG is tested for a match with the virtual page number
(VPN) of the access. The VPN is the VSID concatenated with the page index field
of the virtual address. For a match to occur, the following must be true:

— PTE[H] = 0
— PTE[V] = 1
— PTE[VSID] = VA[0–23]
— PTE[API] = VA[24–29]

4. If a match is not found, step 3 is repeated for each of the other seven PTEs in the
primary PTEG. If a match is found, the table search process continues as described
in step 8. If a match is not found within the 8 PTEs of the primary PTEG, the
address of the secondary PTEG is generated.

5. The first PTE (PTE0) in the secondary PTEG is read from memory. Again, because
PTE reads have a WIM bit combination of 0b001, an entire cache line is read into
the on-chip cache.

5-64 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

6. The PTE in the selected secondary PTEG is tested for a match with the virtual page
number (VPN) of the access. For a match to occur, the following must be true:

— PTE[H] = 1
— PTE[V] = 1
— PTE[VSID] = VA[0–23]
— PTE[API] = VA[24–29]

7. If a match is not found, step 6 is repeated for each of the other seven PTEs in the
secondary PTEG. If it is never found, an exception is taken (step 9).

8. If a match is found, the PTE is written into the on-chip TLB and the R bit is updated
in the PTE in memory (if necessary). If there is no memory protection violation, the
C bit is also updated in memory (if the access is a write operation) and the table
search is complete.

9. If a match is not found within the 8 PTEs of the secondary PTEG, the search fails,
and a page fault exception condition occurs (either an ISI exception or a DSI
exception). Note that the software routines that implement this algorithm for the
MPC7451 must synthesize this condition by appropriately setting the bits in SRR1
(or DSISR) and branching to the ISI or DSI handler routine.

Reads from memory for hardware table search operations are performed as global (but not
exclusive), cacheable operations, and can be loaded into the on-chip cache. These types of
transactions should be generated when software table searching is enabled.

Figure 5-28 and Figure 5-29 show how the conceptual flow diagrams for the primary and
secondary page table search operations, described in the section, “Page Table Search
Operation,” in The Programming Environments Manual, are realized in the MPC7451.
Recall that the architecture allows for implementations to perform the page table search
operations automatically (in hardware) or software assistance may be allowed, as is an
option with the MPC7451.

Figure 5-28 shows the case of a dcbz instruction that is executed with W = 1 or I = 1, and
that the R bit may be updated in memory (if required) before the operation is performed or
the alignment exception occurs. The R bit may also be updated if memory protection is
violated.

MOTOROLA Chapter 5. Memory Management 5-65

Hashed Page Tables—Extended Addressing

Figure 5-28. Primary Page Table Search—Conceptual Flow

(From Figure

Fetch PTE from PTEG

Otherwise

Perform Secondary
Page Table Search

Alignment Exception
TLB[PTE[C]] ← 1

Generate PA Using Primary Hash Function
PA ← Base PA of PTEG

PA ← PA+ 8
(Fetch Next PTE in PTEG)

Fetch PTE (64-Bits)
from PA

PTE [VSID, API, H, V] =
Segment Descriptor [VSID], EA[API], 0, 1

PTE[C] ← 1
(Update PTE[C] in

Memory)
Also Update PTE[R]

in Memory if R_Flag = 1

PTE[R] ← 1
(Update PTE[R]

in Memory)

Last PTE in PTEG PTE[R] = 0

R_Flag = 1

Store Operation
with PTE[C] = 0

Otherwise

R_Flag = 1

PTE[R] ←1 (Update
PTE[R] in Memory)

Primary Page
Table Search

Write PTE into
TLB

Otherwise

Secondary Page
Table Search Hit

PTE[R] = 1

dcbz Instruction
with W or I = 1

Check Memory
Protection

Violation Conditions
R_Flag = 1

PTE[R] ←1
(Update PTE[R]

in Memory)

Otherwise

PTE[R] ← 1
R_Flag ← 1

Memory Protection
Violation

Page Table
Search Complete

Page Table
Search Complete

OtherwiseOtherwise

Access Permitted
Access Prohibited

Otherwise

5-66 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

Figure 5-29. Secondary Page Table Search Flow—Conceptual Flow

5.5.3 Page Table Updates

When TLBs are implemented (as in the MPC7451) they are defined as noncoherent caches
of the page tables. TLB entries must be flushed explicitly with the TLB invalidate entry
instruction (tlbie) whenever the corresponding PTE is modified.

Chapter 7, “Memory Management,” in The Programming Environments Manual describes
some required sequences of instructions for modifying the page tables. In a multiprocessor
MPC7451 environment, PTEs can only be modified by adhering to the procedure for
deleting a PTE, followed by the procedure for adding a PTE. Thus, the following code
should be used:

Page (See Figure 5-9.)

Fetch PTE from PTEG

Otherwise

Generate PA Using Primary Hash Function
PA ← Base PA of PTEG

PA ← PA+ 8
(Fetch Next PTE in PTEG)

Fetch PTE (64-Bits)
from PA

PTE [VSID, API, H, V] =
Segment Descriptor [VSID], EA[API], 1, 1

Last PTE in PTEG

Secondary Page
Table Search

Otherwise

Secondary Page
Table Search Hit

ISI Exception DSI Exception

Set SRR1[1] = 1 Set DSISR[1] = 1

Instruction Access Data Access

MOTOROLA Chapter 5. Memory Management 5-67

Hashed Page Tables—Extended Addressing

/* Code for Modifying a Page Table Entry */
/* First delete the current page table entry */
PTEV <- 0/* (other fields don’t matter) */
sync /* ensure update completed */
tlbie(old_EA) /* invalidate old translation */
eieio /* order tlbie before tlbsync */
tlbsync /* ensure tlbie completed on all processors */
sync /* ensure tlbsync completed */

/* Then add new PTE over old */
PTERPN,R,C,WIMG,PP <- new values
eieio /* order 1st PTE update before 2nd */
PTEVSID,API,H,V <- new values (V=1)
sync /* ensure updates completed */

Processors may write referenced and changed bits with unsynchronized, atomic byte store
operations. Note that the V, R, and C bits each reside in a distinct byte of a PTE. Therefore,
extreme care must be taken to use byte writes when updating only one of these bits.

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly altering
PTEs, or certain system registers, may have the side effect of changing the effective or
physical addresses from that the current instruction stream is being fetched. This kind of
side effect is defined as an implicit branch. Implicit branches are not supported and an
attempt to perform one causes boundedly-undefined results. Therefore, PTEs must not be
changed in a manner that causes an implicit branch. Chapter 2, “PowerPC Register Set,” in
The Programming Environments Manual, lists the possible implicit branch conditions that
can occur when system registers and MSR bits are changed.

5.5.4 Segment Register Updates

Synchronization requirements for using the move to segment register instructions are
described in “Synchronization Requirements for Special Registers and for Lookaside
Buffers” in Chapter 2, “PowerPC Register Set,” in The Programming Environments
Manual.

5.5.5 Implementation-Specific Software Table Search
Operation

The MPC7540 has a set of implementation-specific registers, exceptions, and instructions
that facilitate very efficient software searching of the page tables in memory for when
software table searching is enabled (HID0[STEN] = 1). This section describes those
resources and provides three example code sequences that can be used in a MPC7540
system for an efficient search of the translation tables in software. These three code
sequences can be used as handlers for the three exceptions requiring access to the PTEs in
the page tables in memory in this case,—instruction TLB miss, data TLB miss on load, and
data TLB miss on store exceptions.

5-68 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

5.5.5.1 Resources for Table Search Operations

When software table searching is enabled, the system software must set up the translation
page tables in memory, and assist the processor in loading PTEs into the on-chip TLBs.
When a required TLB entry is not found in the appropriate TLB, the processor vectors to
one of the three TLB miss exception handlers so that the software can perform a table
search operation and load the TLB. When this occurs, the processor automatically saves
information about the access and the executing context. Table 5-15 provides a summary of
the implementation-specific exceptions, registers, and instructions, that can be used by the
TLB miss exception handler software in MPC7540 systems. Refer to Chapter 4,
“Exceptions,” for more information about exception processing.

Table 5-15. Implementation-Specific Resources for
Software Table Search Operations

Resource Name Description

Exceptions ITLB miss exception
(vector offset 0x1000)

No matching entry found in ITLB

DTLB miss on load exception
(vector offset 0x1100)

No matching entry found in DTLB for a load data
access

DTLB miss on store exception—also
caused when changed bit must be
updated
(vector offset 0x1200)

No matching entry found in DTLB for a store data
access or matching DLTB entry has C = 0 and access
is a store.

Registers TLBMISS When either an instruction TLB miss, data TLB miss
on load, and data TLB miss on store exception occurs,
the TLBMISS register contains part of the effective
address of the instruction or data access that caused
the miss exception.

PTEHI When software table searching is enabled
(HID0[STEN] = 1), and a TLB miss exception occurs,
the fields of the PTEHI register are loaded
automatically with the VSID information from the
corresponding SR, and the API of the miss address.
The PTEHI register is also used by the tlbli and tlbld
instructions.

PTELO When software table searching is enabled
(HID0[STEN] = 1), and a TLB miss exception occurs,
software determines the lower 32 bits of the PTE and
places those bits in the PTELO register. The PTELO
register is also used by the tlbli and tlbld instructions.

SPRG4–7 1 For the MPC7445, MPC7447, MPC7455, and the
MPC7457, when software table searching is enabled
(HID0[STEN] = 1), and a TLB miss exception occurs,
the SPRGs provide additional registers to be used by
system software for table software searching.

MOTOROLA Chapter 5. Memory Management 5-69

Hashed Page Tables—Extended Addressing

In addition, the MPC7540 contains the following features that do not specifically control
the MPC7540 MMU but that are implemented to increase performance and flexibility in
the software table search routines whenever one of the three TLB miss exceptions occurs:

• TLBMISS[31] identifies the associativity class of the TLB entry selected for
replacement by the LRU algorithm. The software can change this value, effectively
overriding the replacement algorithm. In the case of a store hit with C = 0,
TLBMISS[31] points to the way that missed on the store access (and not the entry
that hit with C = 0). Therefore, software must toggle this bit before placing it into
rB[31]. Then tlbld rB is executed by software, updating the entry that originally hit
with C = 0.

• The SRR1[KEY] bit is used by the table search software to determine if there is a
protection violation associated with the access (useful on data write misses for
determining if the C bit should be updated in the table). Table 5-16 summarizes the
SRR1 bits updated whenever one of the three TLB miss exceptions occurs.

The key bit saved in SRR1 is derived as shown in Figure 5-30.

Figure 5-30. Derivation of Key Bit for SRR1

The remainder of this section describes the format of the implementation-specific SPRs that
are not defined by the PowerPC architecture, but are used by the TLB miss exception

Instructions tlbli rB Loads the contents of the PTEHI and PTELO registers
into the ITLB entry selected by <EA> where
<EA> = bits 10–19 of rB. Way to be loaded is selected
by and rB[31] (LRU way bit).

tlbld rB Loads the contents of the PTEHI and PTELO registers
into the DTLB entry selected by <EA> where
<EA> = bits 10–19 of rB. Way to be loaded is selected
by and rB[31] (LRU way bit).

1 Specific only to the MPC7445/MPC7455 and MPC7447/MPC7457 registers

Table 5-16. Implementation-Specific SRR1 Bits

Bit Number Name Function

11 CEQ0 Set if the exception was caused by the a store to a page with PTE[C] = 0.

12 KEY Key for TLB miss (either SR[Ks] or SR[Kp] from the segment register,
depending on whether the access is a supervisor or user access)

Table 5-15. Implementation-Specific Resources for
Software Table Search Operations

Resource Name Description

Select KEY from segment register:
If MSR[PR] = 0, KEY = Ks
If MSR[PR] = 1, KEY = Kp

5-70 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

handlers. These registers can be accessed by supervisor-level instructions only. Any
attempt to access these SPRs with user-level instructions results in a privileged instruction
program exception. As TLBMISS, PTEHI, and PTELO are used to access the translation
tables for software table search operations, they should only be accessed when address
translation is disabled (that is, MSR[IR] = 0 and MSR[DR] = 0). Note that MSR[IR] and
MSR[DR] are cleared by the processor whenever an exception occurs.

Software must ensure that a TLB lookup never results in a match on both ways of the same
set. It is a programming error for multiple ways to match and it can produce unpredictable
results. Software is required to keep track of the current contents of the TLBs.

In a multiprocessing system, software must take steps to ensure coherency during a
software table search operation. If a processor executes a tlbie instruction while another
processor is handling a software table search exception, coherency can be lost and the TLB
could be corrupted. A semaphore mechanism should be used when performing a software
table search operation in a multiprocessing environment to ensure that coherency is
maintained.

5.5.5.1.1 TLB Miss Register (TLBMISS)

The TLBMISS register is automatically loaded by the MPC7451 when software searching
is enabled (HID0[XAEN] = 1) and a TLB miss exception occurs. Its contents are used by
the TLB miss exception handlers (the software table search routines) to start the search
process. Note that the MPC7451 always loads a big-endian address into the TLBMISS
register. This register is read-only. The TLBMISS register has the format shown in
Figure 5-31.

Figure 5-31. TLBMISS Register

Table 5-17 described the bits in the TLBMISS register.

Table 5-17. TLBMISS Register—Field and Bit Descriptions

Bit
Number

Name Function

0–30 PAGE Effective page address.
Stores EA[0–30] of the access that caused the TLB Miss exception.

31 LRU Least recently used way of the addressed TLB set.
The LRU bit can be loaded into bit 31 of rB, prior to execution of tlbli or tlbld to
select the way to be replaced for a TLB miss. However, this value should be inverted
in rB prior to execution of tlbli or tlbld for a TLB miss exception caused by the need
to update the C-bit.

0 30 31

PAGE LRU

MOTOROLA Chapter 5. Memory Management 5-71

Hashed Page Tables—Extended Addressing

5.5.5.1.2 Page Table Entry Registers (PTEHI and PTELO)

The PTEHI and PTELO registers are used by the tlbld and tlbli instructions to create a TLB
entry when extended addressing is enabled (HID0[XAEN] = 1). When software table
searching is enabled (HID0[STEN] = 1), and a TLB miss exception occurs, the bits of the
page table entry (PTE) for this access are located by software and saved in the PTE
registers. Figure 5-32 shows the format for two supervisor registers PTEHI and PTELO,
respectively.

Figure 5-32. PTEHI and PTELO Registers—Extended Addressing

Note that the contents of PTEHI are automatically loaded when any of the three software
table search exceptions is taken. PTELO is loaded by the software table search routines (the
TLB miss exception handlers) based on the valid PTE located in the page tables prior to
execution of tlbli or tlbld instruction.

Figure 5-19 lists the corresponding bit definitions for the PTEHI and PTELO registers.

Table 5-18. PTEHI and PTELO Bit Definitions

Word Bit Name Description

PTEHI 0 V Entry valid (V = 1) or invalid (V = 0).
Always set by the processor on a TLB miss exception.

1–24 VSID Virtual segment ID.
The corresponding SR[VSID] field is copied to this field.

25 — Reserved

26–31 API Abbreviated page index. TLB miss exceptions will set this field
with bits from TLBMISS[4–9] which are bits from the effective
address for the access that caused the software table search
operation. The tlbld and tlbli instructions will ignore the API bits
in PTEHI register and get the API from instruction’s operand, rB.
However, for future compatibility, the API in rB should match the
PTEHI[API].

0 19 20 22 23 24 25 28 29 30 31

V VSID API

0 1 24 25 26 31

RPN XPN 0 C WIMG X PP

PTELO:

PTEHI:

0

Reserved

5-72 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

Note that PTELO[23] corresponds to the reference bit in a PTE. The reference bit is not
stored in the page tables, so this bit is ignored in the PTELO register. All the other bits in
PTELO correspond to the bits in the low word of the PTE. When extended addressing is not
enabled, (HID0[XAEN] = 0), the PTELO[XPI] and PTELO[X] values should be zeros so
that the four most significant bits of the physical address are zeros.

5.5.5.1.3 Special Purpose Registers (4–7)

Four additional SPRGs are provided on the MPC7445, MPC7447, MPC7455, and the
MPC7457. The registers are provided to assist in a software table search. For example, in
the example code in Section 5.5.5.2.2, “Code for Example Exception Handlers,” the
register values are saved into the SPRGs to avoid any latency in storing the values out to
memory. Thus using the additional SPRGs made the code faster and simpler.

5.5.5.2 Example Software Table Search Operation
When a TLB miss occurs, the instruction or data MMU loads the TLBMISS register with
the effective address (EA[0–30]) of the access. The processor completes all instructions
dispatched prior to the exception, status information is saved in SRR1, and one of the three
TLB miss exceptions is taken.

The software uses whatever routine it implemented to generate the PTE. Then it places the
upper and lower portions of the PTE into PTEHI and PTELO, respectively. Then it uses the
tlbli or tlbld instructions to load the contents of the PTE into the selected TLB entry. The
TLB entry is selected by bits 10–19 of rB and the way is selected by bit 31 of rB.

Note that a miss caused by a dcbt, dst, or dstst instruction while HID0[STEN] = 1 does not
cause one of the software table searching exceptions; the dcbt in this case functions as a
no-op and dst/dstst cause the stream to terminate.

If the PTE search algorithm does not produce a desired PTE, a page fault exception must be
synthesized. Thus the appropriate bits must be set in SRR1 (or DSISR) and the TLB miss

PTELO 0–19 RPN Physical page number

20–22 XPN Extended page number.
The XPN field provides the physical address bits, PA[0–2].

23 — Reserved

24 C Changed bit

25–28 WIMG Memory/cache control bits

29 X Extended page number.
The X field provides the physical address bit 3, PA[3].

30–31 PP Page protection bits

Table 5-18. PTEHI and PTELO Bit Definitions (continued)

Word Bit Name Description

MOTOROLA Chapter 5. Memory Management 5-73

Hashed Page Tables—Extended Addressing

handler must branch to either the ISI or DSI exception handler, that handles the page fault
condition.

This section provides a flow diagram outlining an example software algorithm that mimics
the hardware table search procedure used by the MPC7451 (and other processors that
implement the PowerPC architecture). This software can be used to handle the three TLB
miss exceptions. Some example assembly language that implements that flow is also
provided. However, software can implement other types of page tables and PTE search
algorithms using the same resources.

5.5.5.2.1 Flow for Example Exception Handlers
Figure 5-33 shows the flow for the example TLB miss exception handlers. Figure 5-34
shows the flow for how a PTEG address is generated. The flow shown is common for the
three exception handlers. Also, in the cases of store instructions that cause either a TLB
miss or require a table search operation to update the C bit, the flow shows that the C bit is
set in both the TLB entry and the PTE in memory. Note that in the case of a page fault (no
PTE found in the table search operation), the setup for the ISI or DSI exception is slightly
different.

Figure 5-35 shows the flow for checking the R and C bits and setting them appropriately,
Figure 5-36 shows the flow for synthesizing a page fault exception when no PTE is found.
Figure 5-37 shows the flow for managing the cases of a TLB miss on an instruction access
to guarded memory, and a TLB miss when C = 0 and a protection violation exists. The setup
for these protection violation exceptions is very similar to that of page fault conditions (as
shown in Figure 5-36) except that different bits in SRR1 (and DSISR) are set.

5-74 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

Figure 5-33. Flow for Example Software Table Search Operation

(See Figure 5-35.)

Set counter:
cnt ← 8

ptr ← ptr – 8
compare_value ← PTEHI

Read lower word of next
PTE from memory:

ptr ← ptr + 8
temp ← (ptr)

Read upper word of PTE:
temp ← (ptr – 4)

otherwise

RPA ← temp

PTELO ← Low word of PTE
rB ← TLBMISS

Load TLB entry
tlbli rB (or tlbld rB)

otherwise

cnt ≠ 0

Save old counter,
CR0 bits and 4 GPRs

Restore old counter
and CR0 bits

otherwise

Gen. secondary
PTEG pointer (ptr):

ptr ← ptr – 8

compare_value [H]← 1

Set counter:
cnt ← 8

cnt ←cnt – 1

Set up for page
fault exception

Secondary hash
complete

Return to executing program:
rfi

compare_value [H] = 1

(See Figure 5-32.)

TLB Miss Exception

instruction access and
temp[G] = 1

otherwise

Set up for protection
violation exception

Check R, C bits
and set as needed

(See Figure 5-37.)

temp = compare_value

(See Figure 5-30
for

(See Figure 5-34
for

Gen. primary PTEG pointer (ptr)

MOTOROLA Chapter 5. Memory Management 5-75

Hashed Page Tables—Extended Addressing

Figure 5-34. Flow for Generation of PTEG Address

hash_out = HASH1(missVSID[8–31],
missEA[16–31])

page_table_index = SDR1[HTABORG](3–15) ||
((SDR1[HTMEXT] | SDR1[HTABMASK]) AND

hash_out[0–12])

ptr ← PTEG_addr

Return to TLB Miss
Exception Flow

TLB Miss exception:
missEA[0-30] ← TLBMISS

missVSID ← PTEHI

hash_out = HASH2(missVSID[8–31],
missEA[16–31])

Primary Hash Otherwise

PTEG_addr = 1b0 || SDR1[HTABEXT || SDR1[HTABORG[0–2] |
page_table_index || hash_out([13–22] || 6b00_0000)

5-76 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

Figure 5-35. Check and Set R and C Bit Flow

Store byte 7 of PTE to memory:
(ptr – 2) ← temp [byte7]

Set R bit:
temp ← temp OR 0x100

handler for data store op

Check R, C bits
and set as needed

Otherwise

pp = 00
01

Set up for
protection violation

Check
Protection pp = 10

11

Set up for
protection violation

pp = 11

pp = 10

Return to TLB Miss
Exception flow

(See Figure 5-31.)

(See Figure 5-37.)

(See Figure 5-37.)

temp[C] = 0

Otherwise

SRR1[KEY] = 1

Store bytes 6, 7 of PTE to memory:
(ptr – 2) ← temp [bytes 6, 7]

Return to TLB Miss
Exception flow

(See Figure 5-31.)

Set R, C bits:
temp ← temp OR 0x180

Otherwise

toggle rB[31]

MOTOROLA Chapter 5. Memory Management 5-77

Hashed Page Tables—Extended Addressing

Figure 5-36. Page Fault Setup Flow

Set up for page
fault exception

Data TLB miss handlers Instruction TLB
miss handlers

If store,
DSISR[6] ← 1[

DSISR[1] ← 1

DAR ← dtemp

Branch to DSI
exception handler

Branch to ISI exception
handler

Clear upper bits of SRR1 (except MSR[VEC])
SRR1 ← SRR1 AND 0x0200_FFFF

SRR1[1] ← 1

Clear upper bits of SRR1 (except MSR[VEC])
SRR1 ← SRR1 AND 0x0200_FFFF

SRR1[31] = 1
(little-endian mode)

dtemp ← TLBMISS[0–30] || 0

dtemp← dtemp XOR 0x07

otherwise

Restore CR0 bits
and GPRs

Restore CR0 bits
and GPRs

5-78 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

Figure 5-37. Setup for Protection Violation Exceptions

DSISR[6] ← SRR1[15]

DSISR[4] ← 1

Branch to DSI exception
handler

Branch to ISI exception
handler

Clear upper bits of SRR1 (except MSR[VEC])
SRR1 ← SRR1 AND 0x0200_FFFF

SRR1[4] ← 1

Clear upper bits of SRR1 (except MSR[VEC])
SRR1 ← SRR1 AND 0x0200_FFFFF

Data TLB miss handlers (Instruction access to
guarded memory)(Data access

to protected
memory; C=0)

Set up for protection
violation exceptions

DAR ← dtemp

SRR1[31] = 1
(little-endian mode)

dtemp ← TLBMISS[0–30] || 0

dtemp← dtemp XOR 0x07

otherwise

Instruction TLB
miss handler

Restore CR0 bits
and GPRs

Restore CR0 bits
and GPRs

MOTOROLA Chapter 5. Memory Management 5-79

Hashed Page Tables—Extended Addressing

5.5.5.2.2 Code for Example Exception Handlers
This section provides some assembly language examples that implement the flow diagrams
described above. Note that although these routines fit into a few cache lines, they are
supplied only as a functional example; they could be further optimized for faster
performance.

TLB software load for MPC7451

#
New Instructions:
tlbld - write the dtlb with the ptehi and ptelo values
tlbli - write the itlb with the ptehi and ptelo values
New SPRs
tlbmiss - address of access that missed. Also contains LRU information
ptehi - VSID of access that missed. Gets written to TLB on tlbld or
tlbli
ptelo - RPN value written to TLB on tlbld or tlbli
#
#
there are three flows.
tlbDataMiss - tlb miss on data load
tlbCeq0 - tlb miss on data store or store with tlb change bit == 0
tlbInstrMiss- tlb miss on instruction fetch
#+
place labels for rel branches
#-
#.machine PPC_7451
gpr r0..r3 are saved into SPR0-3
.set r0, 0
.set r1, 1
.set r2, 2
.set r3, 3
.set tlbmiss, 980
.set ptehi, 981
.set ptelo, 982
.set c0, 0
.set dar, 19
.set dsisr, 18
.set srr0, 26
.set srr1, 27
.set sprg0, 272
.set sprg1, 273
.set sprg2, 274
.set sprg3, 275
.
.csect tlbmiss[PR]
vec0:
.globl vec0

.org vec0+0x300
vec300:
.org vec0+0x400
vec400:
#+

5-80 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

Exception vector serves as jump table

Register usage:
Existing values of r0-r3 saved into sprg0-sprg3
Note: It is assumed that the OS uses r31 as a pointer to the current top of
stack.

.org vec0+0x1000
Instruction TLB Miss

stwur1,-4(r31) # store r1 to stack
mflrr1 # save link register
stwur1,-4(r31) # store link register to stack
bl tlbInstrMiss# handler routine
lwz r1, 0(r31) # link register from the stack
addir31,r31, 4 # pop stack
mtlrr1 # restore the link register
lwz r1, 0(r31) # r1 from the stack
addir31,r31, 4 # pop stack
rfi

.org vec0+0x1100
Data TLB Miss

stwur1,-4(r31) # store r1 to stack
mflrr1 # save link register
stwur1,-4(r31) # store link register to stack
bl tlbDataMiss # handler routine
lwz r1, 0(r31) # link register from the stack
addir31,r31, 4 # pop stack
mtlrr1 # restore the link register
lwz r1, 0(r31) # r1 from the stack
addir31,r31, 4 # pop stack
rfi

.org vec0+0x1200
Data TLB Miss for Store

stwur1,-4(r31) # store r1 to stack
mflrr1 # save link register
stwur1,-4(r31) # store link register to stack
bl tlbCeq0 # handler routine
lwz r1, 0(r31) # link register from the stack
addir31,r31, 4 # pop stack
mtlrr1 # restore the link register
lwz r1, 0(r31) # r1 from the stack
addir31,r31, 4 # pop stack
rfi

Instruction TB miss flow
Entry:
From Exception Vec = 1000
srr0-> address of instruction that missed
srr1-> 16:31 = saved MSR
tlbMiss-> ea that missed
tlbhi-> upper 32-bits of pte value

MOTOROLA Chapter 5. Memory Management 5-81

Hashed Page Tables—Extended Addressing

tlblo-> lower 32-bits of pte value
#
Register usage:
r0-r3 used in the exception handler as follows
r0 is scratch pad
r1 is scratch pad
r2 is pointer to pteg
r3 is current compare value

r31 pointer to top of stack
Note: It is assumed that the OS uses r31 as a pointer to the current top of
stack.
.orig 0x2000
tlbInstrMiss:

mtsprsprg0, r0 # save r0 into sprg0
mtsprsprg1, r1 # save r1 into sprg1
mtsprsprg2, r2 # save r2 into sprg2
mtsprsprg3, r3 # save r3 into sprg3

Save CTR and CR on stack.

mfctrr0 # save counter
stwur0,-4(r31) # store counter to stack
mfcrr0 # save CR
stwur0,-4(r31) # store CR to stack
mfsprr0, tlbMiss# EA of access that missed
rlwinmr0,r0,20,16,31# Mask out lower 16 bits of EA
mfsprr1, ptehi # VSID of access that missed
rlwinmr1,r1,25,8,31# Mask out uppder 23 bits of VSID
xor r1,r0,r1 # Primary HASH
mfsprr3,sdr1 # SDR1 value
rlwinmr0,r3,10,13,31# align HTMEXT and HTABMASK fields
ori r0,r0,0x3ff # Mask out HTMEXT and HTABMASK
and r1,r0,r1 # and result
rlwinmr0,r3,26,13,21
or r1,r0,r1 # or result

32-bit PTEG Address generation into r2
andis.r2,r3,0xfe00
rlwimir2,r1,6,7,25

xor r1,r1,r1 # zero out reg.
addir1, r0, 8 # load 8 for counter
mfctrr0 # save counter
mfsprr3, ptehi # get first compare value
addir2, r2, -8 # pre dec the pointer

im0:
mtctrr1 # load counter

im1:
lwzur1,8(r2) # get next pte
cmp c0,r1,r3 # see if found pte
bdnzfeq,im1 # dec count br if cmp ne and if count not zero
bne instrSecHash# if not found set up second hash or exit
lwz r1,4(r2) # load tlb entry lower-word
andi.r3,r1,8 # check G-bit
bne doISIp # if guarded, take an ISI
ori r1,r1,0x100 # set reference bit

5-82 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

mtsprptelo,r1 # put rpn into ptelo reg.
mfsprr0, tlbmiss
tlblir0 # load the itlb
srwir1,r1,8 # get byte 7 of pte
stb r1,6(r2) # update page table

Restore application values
lwz r0,0(r31) # get counter value
addir31,r31,4 # pop stack
mtctrr0 # restore counter
lwz r0,0(r31) # get CR value
addir31,r31,4 # pop stack
mtcrf0xff,r0 # restore CR
mfsprr0, sprg0 # restore old value of r0
mfsprr1, sprg1 # restore old value of r1
mfsprr2, sprg2 # restore old value of r2
mfsprr3, sprg3 # restore old value of r3
blr # return to jump table

#+

Register usage:
r0 is saved counter
r1 is junk
r2 is pointer to pteg
r3 is current compare value
#-

instrSecHash:
andi.r1,r3,0x0040# see if we have done second hash
bne doISI # if so, go to ISI exception
mfsprr0,tlbMiss # EA of access that missed
rlwinmr0,r0,20,16,31# Mask out lower 16 bits of EA
mfsprr1,ptehi # VSID of access that missed
rlwinmr1,r1,25,8,31# Mask out uppder 23 bits of VSID
xor r1,r0,r1 # Primary HASH
mfsprr3,sdr1 # SDR1 value
rlwinmr0,r3,10,13,31# align HTMEXT and HTABMASK fields
ori r0,r0,0x3ff # Mask out HTMEXT and HTABMASK
and r1,r0,r1 # and result
rlwinmr0,r3,26,13,21
or r1,r0,r1 # or result

32-bit PTEG Address generation into r2
andis.r2,r3,0xfe00
rlwimir2,r1,6,7,25

ori r3,r3,0x0040# change the compare value
addir1, r0, 8 # load 8 for counter
addir2, r2, -8 # pre dec for update on load
b im0 # try second hash

#+

entry Not Found: synthesize an ISI exception
guarded memory protection violation: synthesize an ISI exception
Entry:
r0 is saved counter

MOTOROLA Chapter 5. Memory Management 5-83

Hashed Page Tables—Extended Addressing

r1 is junk
r2 is pointer to pteg
r3 is current compare value
#

doISIp:
mfsprr3,srr1 # get srr1
andi.r2,r3,0xFFFF# clean upper srr1
addisr2,r2,0x0800# or in srr<4> = 1 to flag prot violation
b isi1

doISI:
mfsprr3,srr1 # get srr1
andir2,r3,0xFFFF# clean srr1
addisr2,r2,0x4000# or in srr1<1> = 1 to flag pte not found

isi1:
mtctrr0 # restore counter
mtsprsrr1,r2 # set srr1
mtcrf0x80,r3 # restore CR0
mfsprr0,sprg0 # restore old value of r0
mfsprr1,sprg1 # restore old value of r1
mfsprr2,sprg2 # restore old value of r2
mfsprr3,sprg3 # restore old value of r3
b isiExc # go to instr. access exception

+
Data TLB miss flow
Entry:
From Exception Vec = 1100
srr0-> address of instruction that caused data tlb miss
srr1-> store 16:31 = saved MSR
tlbMiss-> ea that missed
tlbhi-> upper 32-bits of pte value
tlblo-> lower 32-bits of pte value
#
Register usage:
r0 is scratch pad
r1 is scratch pad
r2 is pointer to pteg
r3 is current compare value

r31 pointer to top of stack
Note: It is assumed that the OS has a stack for saving and restoring
application variables. r31 serves as a pointer to the current top
of stack.
#-
.csect tlbmiss[PR]

tlbDataMiss:
mtsprsprg0,r0 # save r0 into sprg0
mtsprsprg1,r1 # save r1 into sprg1
mtsprsprg2,r2 # save r2 into sprg2
mtsprsprg3, r3 # save r3 into sprg3

Save CTR and CR on stack.
mfctrr0 # save counter
stwur0,-4(r31) # store counter to stack

5-84 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

mfcrr0 # save CR
stwur0,-4(r31) # store CR to stack
mfsprr0,tlbMiss # EA of access that missed
rlwinmr0,r0,20,16,31# Mask out lower 16 bits of EA
mfsprr1,ptehi # VSID of access that missed
rlwinmr1,r1,25,8,31# Mask out uppder 23 bits of VSID
xor r1,r0,r1 # Primary HASH
mfsprr3,sdr1 # SDR1 value
rlwinmr0,r3,10,13,31# align HTMEXT and HTABMASK fields
ori r0,r0,0x3ff # Mask out HTMEXT and HTABMASK
and r1,r0,r1 # and result
rlwinmr0,r3,26,13,21
or r1,r0,r1 # or result

32-bit PTEG Address generation into r2
andis.r2,r3,0xfe00
rlwimir2,r1,6,7,25

xor r1,r1,r1 # zero out reg.
addir1,r1,8 # load 8 for counter
mfsprr3,ptehi # get first compare value
addir2,r2,-8 # pre dec the pointer

dm0:
mtctrr1 # load counter

dm1:
lwzur1,8(r2) # get next pte
cmp c0,r1,r3 # see if found pte
bdnzfeq,dm1 # dec count br if cmp ne and if count not zero
bne dataSecHash # if not found set up second hash or exit
lwz r1,4(r2) # load tlb entry lower-word
ori r1,r1,0x100 # set reference bit
mtsprptelo,r1 # put rpn into ptelo reg.
mfsprr0,tlbmiss
tlbldr0 # load the dtlb
srwir1,r1,8 # get byte 7 of pte
stb r1,6(r2) # update page table

Restore application values
lwz r0,0(r31) # get counter value
addir31,r31,4 # pop stack
mtctrr0 # restore counter
lwz r0,0(r31) # get CR value
addir31,r31,4 # pop stack
mtcrf0xff,r0 # restore CR
mfsprr0,sprg0 # restore old value of r0
mfsprr1,sprg1 # restore old value of r1
mfsprr2,sprg2 # restore old value of r2
mfsprr3,sprg3 # restore old value of r3
blr # return to jump table

dataSecHash:
andi.r1,r3,0x0040# see if we have done second hash
bne doDSI # if so, go to DSI exception
mfsprr0,tlbMiss # EA of access that missed
rlwinmr0,r0,20,16,31# Mask out lower 16 bits of EA
mfsprr1,ptehi # VSID of access that missed

MOTOROLA Chapter 5. Memory Management 5-85

Hashed Page Tables—Extended Addressing

rlwinmr1,r1,25,8,31# Mask out uppder 23 bits of VSID
xor r1,r0,r1 # Primary HASH
mfsprr3,sdr1 # SDR1 value
rlwinmr0,r3,10,13,31# align HTMEXT and HTABMASK fields
ori r0,r0,0x3ff # Mask out HTMEXT and HTABMASK
and r1,r0,r1 # and result
rlwinmr0,r3,26,13,21
or r1,r0,r1 # or result

32-bit PTEG Address generation into r2
andisr2,r3,0xfe00
rlwimir2,r1,6,7,25
ori r3,r3,0x0040# change the compare value?
addir1,r0,8 # load 8 for counter
addir2,r2,-8 # pre dec for update on load
b dm0 # try second hash

C=0 in dtlb and dtlb miss on store flow
Entry:
From Exception Vec = 1200
srr0-> address of store that caused the exception
srr1-> 16:31 = saved MSR
tlbMiss-> ea that missed
tlbhi-> upper 32-bits of pte value
tlblo-> lower 32-bits of pte value
#
Register usage:
r0 is saved counter
r1 is junk
r2 is pointer to pteg
r3 is current compare value

r31 pointer to top of stack
Note: It is assumed that the OS has a stack for saving and restoring
application variables. r31 serves as a pointer to the current
top of stack.
#-

.csect tlbmiss[PR]

tlbCeq0:
mtspr sprg0,r0 # save r0 into sprg0
mtspr sprg1,r1 # save r1 into sprg1
mtspr sprg2,r2 # save r2 into sprg2
mtspr sprg3,r3 # save r3 into sprg3

Save CTR reg and CR on stack.

mfctr r0 # save counter
stwu r0,-4(r31)# store counter to stack
mfcr r0 # save CR
stwu r0,-4(r31)# store CR to stack
mfspr r0,tlbMiss# EA of access that missed
rlwinm r0,r0,20,16,31# Mask out lower 16 bits of EA
mfspr r1,ptehi # VSID of access that missed
rlwinm r1,r1,25,8,31# Mask out uppder 23 bits of VSID
xor r1,r0,r1 # Primary HASH

5-86 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

mfspr r3,sdr1 # SDR1 value
rlwinm r0,r3,10,13,31# align HTMEXT and HTABMASK fields
ori r0,r0,0x3ff# Mask out HTMEXT and HTABMASK
and r1,r0,r1 # and result
rlwinm r0,r3,26,13,21
or r1,r0,r1 # or result

32-bit PTEG Address generation into r2
andis. r2,r3,0xfe00
rlwimi r2,r1,6,7,25

xor r1,r1,r1 # zero out reg.
addi r1,r1,8 # load 8 for counter
mfspr r3,ptehi # get first compare value
addi r2,r2,-8 # pre dec the pointer

ceq0:
mtctr r1 # load counter

ceq1:
lwzu r1,8(r2) # get next pte
cmp c0,r1,r3 # see if found pte
bdnzf eq, ceq1 # dec count br if cmp ne and if count not zero
bne cEq0SecHash # if not found set up second hash or exit
lwz r1, 4(r2) # load tlb entry lower-word
andi. r3,r1,0x80 # check the C-bit
beq cEq0ChkProt # if (C==0) go check protection modes

ceq2:
mtspr ptelo,r1 # put rpn into ptelo reg.
mfspr r0,tlbmiss
xori r0,r0,0x01 # toggles lru bit
tlbld r0 # load the dtlb

Restore application values
lwz r0,0(r31) # get counter value
addi r31,r31,4 # pop stack
mtctr r0 # restore counter
lwz r0, 0(r31) # get CR value
addi r31,r31,4 # pop stack
mtcrf 0xff,r0 # restore CR
mfspr r0,sprg0 # restore old value of r0
mfspr r1,sprg1 # restore old value of r1
mfspr r2,sprg2 # restore old value of r2
mfspr r3,sprg3 # restore old value of r3
blr # return to jump table

#+

Register usage:

r0 is saved counter
r1 is junk
r2 is pointer to pteg
r3 is current compare value
#-

cEq0SecHash:
andi r1,r3,0x0040 # see if we have done second hash
bne doDSI # if so, go to DSI exception
andi r1,r3,0x004 # see if we have done second hash

MOTOROLA Chapter 5. Memory Management 5-87

Hashed Page Tables—Extended Addressing

bne doDSI # if so, go to DSI exception
mfspr r0,tlbMiss # EA of access that missed
rlwinm r0,r0,20,16,3# Mask out lower 16 bits of EA
mfspr r1,pteh # VSID of access that missed
rlwinm r1,r1,25,8,31# Mask out uppder 23 bits of VSID
xor r1,r0,r1 # Primary HASH
mfspr r3,sdr1 # SDR1 value
rlwinm r0,r3,10,13,3# align HTMEXT and HTABMASK fields
ori r0,r0,0x3f # Mask out HTMEXT and HTABMASK
and r1,r0,r1 # and result
rlwinm r0,r3,26,13,21
or r1,r0,r1 # or result

32-bit PTEG Address generation into r2
andis. r2,r3,0xfe00
rlwimi r2,r1,6,7,25

 ori r3,r3,0x004 # change the compare value
 addi r1,r0,8 # load 8 for counter
 addi r2,r2,-8 # pre dec for update on load
 b ceq0 # try second hash

#+

entry found and PTE(c-bit==0):
(check protection before setting PTE(c-bit)
Register usage:
r0 is saved counter
r1 is PTE entry
r2 is pointer to pteg
r3 is trashed
#-

cEq0ChkProt:
rlwinm r3,r1,30,0,1 # test PP
bge- chk0 # if (PP==00 or PP==01) goto chk0:
andi r3,r1,1 # test PP[0]
beq+ chk2 # return if PP[0]==0
b doDSIp # else DSIp

chk0:
mfspr r3,srr1 # get old msr
andis r3,r3,0x0008 # test the KEY bit (SRR0-bit 12)
b doDSIp # else DSIp

chk2:
ori r1,r1,0x180 # set reference and change bit
sth r1,6(r2) # update page table
b ceq2 # and back we go
#

#+

entry Not Found: synthesize a DSI exception
Entry:

r0 is saved counter
r1 is junk

5-88 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Hashed Page Tables—Extended Addressing

r2 is pointer to pteg
r3 is current compare value
#

doDSI:
mfspr r3,srr1 # get srr1
rlwinm r1,r3,9,6,6 # get srr1<flag> to bit 6 for load/store, zero rest
addis r1,r1,0x4000 # or in dsisr<1> = 1 to flag pte not found
b dsi1

doDSIp:
mfspr r3, srr1 # get srr1
rlwinm r1, r3,9,6,6 # get srr1<flag> to bit 6 for load/store, zero rest
addis r1, r1, 0x0800# or in dsisr<4> = 1 to flag prot violation

dsi1:
mtctr r0 # restore counter
andis. r2,r3, 0x0200# Keep the AltiVec Avail bit in r2
andi r3,r3,0xFFFF # Zero out the upper bits of SRR1
or r2, r2, r3 # OR back in the lower bits into r2
mtspr srr1, r2 # set srr1
mtspr dsisr, r1 # load the dsisr
mfspr r1, tlbmiss # get miss address
rlwinm r1,r1,0,0,30 # Clear the LRU bit
rlwinm. r2,r2,0,31,31# test LE bit
beq dsi2 # if little endian then:
xori r1,r1,0x07 # de-mung the data address

dsi2:
mtspr dar,r1 # put in dar
mtcrf 0x80,r3 # restore CR0?
mfspr r0,sprg0 # restore old value of r0
mfspr r1,sprg1 # restore old value of r1
mfspr r2,sprg2 # restore old value of r2
mfspr r3,sprg3 # restore old value of r3
b dsiExc # branch to DSI exception

MOTOROLA Chapter 6. Instruction Timing 6-1

Chapter 6
Instruction Timing
This chapter describes how the MPC7451 microprocessor performs operations defined by
instructions and how it reports the results of instruction execution. It gives detailed
descriptions of how the MPC7451 execution units work and how these units interact with
other parts of the processor, such as the instruction fetching mechanism, register files, and
caches. It gives examples of instruction sequences, showing potential bottlenecks and how
to minimize their effects. Finally, it includes tables that identify the unit that executes each
instruction implemented on the MPC7451, the latency for each instruction, and other
information useful to assembly language programmers.

AltiVec Technology and Instruction Timing

The AltiVec functionality in the MPC7451 affects instruction timing in the following ways:

• Execution units are provided for vector computations:

— Vector permute unit (VPU). See Section 6.4.5.1.1, “AltiVec Permute Unit
(VPU) Execution Timing.”

— Short-latency vector integer unit 1 (VIU1). See Section 6.4.5.1.2, “Vector
Simple Integer Unit (VIU1) Execution Timing.”

— Long-latency vector complex integer unit (VIU2). See Section 6.4.5.1.3, “Vector
Complex Integer Unit (VIU2) Execution Timing.”

— Vector floating-point unit (VFPU). See Section 6.4.5.1.4, “Vector Floating-Point
Unit (VFPU) Execution Timing.”

• The AltiVec technology defines data streaming instructions that allow automated
loading of data for non-speculative accesses. These instructions can be identified as
either static (likely to be reused) or transient (unlikely to be reused). See Chapter 7,
“AltiVec Technology Implementation.”

• The AltiVec technology defines the difference between the instructions lvxl and
stvxl with other AltiVec load and store instructions. See Section 6.4.4.3.1, “LRU
Instructions.”

6-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Terminology and Conventions

6.1 Terminology and Conventions
This section provides an alphabetical glossary of terms used in this chapter. These
definitions offer a review of commonly used terms and point out specific ways these terms
are used in this chapter.

NOTE
Many of these definitions differ slightly from those used to
describe previous processors that implement the PowerPC
architecture, in particular with respect to dispatch, issue,
finishing, retirement, and write back, so please read this
glossary carefully.

• Branch prediction—The process of guessing the direction or target of a branch.
Branch direction prediction involves guessing whether a branch will be taken. Target
prediction involves guessing the target address of a bclr branch. The PowerPC
architecture defines a means for static branch prediction as part of the instruction
encoding.

• Branch resolution—The determination of whether a branch prediction was correct
or not. If the prediction is correct, the instructions following the predicted branch
that may have been speculatively executed can complete (see completion). If the
prediction is incorrect, instructions on the mispredicted path and any results of
speculative execution are purged from the pipeline and fetching continues from the
correct path.

• Complete—An instruction is in the complete stage after it executes and makes its
results available for the next instruction (see finish). At the end of the complete stage,
the instruction is retired from the completion queue (CQ). When an instruction
completes, it is guaranteed that this instruction and all previous instructions can
cause no exceptions.

• Dispatch—The dispatch stage decodes instructions supplied by the instruction
queue, renames any source/target operands, determines to which issue queue each
non-branch instruction is dispatched, and determines whether the required space is
available in both that issue queue and the completion queue.

• Fall-through folding (branch fall-through)—Removal of a not-taken branch. On the
MPC7451, not-taken branch instructions that do not update LR or CTR can be
removed from the instruction stream if the branch instruction is in IQ3–IQ7 the cycle
after execution.

• Fetch—The process of bringing instructions from memory (such as a cache or
system memory) into the instruction queue.

• Finish—An executed instruction finishes by updating the completion queue that
execution is complete and results have been made available to subsequent
instructions. For most execution units, finishing occurs at the end of the last cycle of

MOTOROLA Chapter 6. Instruction Timing 6-3

Terminology and Conventions

execution; however, FPU, IU2, and VIU2 instructions finish at the end of a
single-cycle finish stage after the last cycle of execution.

• Folding (branch folding)—The replacement with target instructions of a branch
instruction and any instructions along the not-taken path when a branch is either
taken or predicted as taken.

• Issue—The pipeline stage responsible for reading source operands from rename
registers and register files. This stage also assigns and routes instructions to the
proper execution unit.

• Latency— The number of clock cycles necessary to execute an instruction and make
the results of that execution available to subsequent instructions.

• Pipeline—In the context of instruction timing, the term ‘pipeline’ refers to the
interconnection of the stages. The events necessary to process an instruction are
broken into several cycle-length tasks to allow work to be performed on several
instructions simultaneously—analogous to an assembly line. As an instruction is
processed, it passes from one stage to the next. When it does, the stage becomes
available for the next instruction.

Although an individual instruction can take many cycles to make results available
(see latency), pipelining makes it possible to overlap processing so that the
throughput (number of instructions processed per cycle) is greater than if pipelining
were not implemented.

• Program order—The order of instructions in an executing program. More
specifically, this term is used to refer to the original order in which program
instructions are fetched into the instruction queue from the cache.

• Rename registers—Temporary buffers for holding results of instructions that have
finished execution but have not completed.

• Reservation station—A buffer between the issue and execute stages that allows
instructions to be issued even though the results of other instructions on which the
issued instruction may depend are not available.

• Retirement—Removal of a completed instruction from the CQ.

• Speculative instruction—Any instruction which is currently behind an older branch
that has not been resolved yet.

• Stage—Used in two different senses, depending on whether the pipeline is being
discussed as a physical entity or a sequence of events. In the latter case, a stage is an
element in the pipeline during which certain actions are performed, such as decoding
the instruction, performing an arithmetic operation, or writing back the results.
Typically, the latency of a stage is one processor clock cycle. Some events, such as
dispatch, write-back, and completion, happen instantaneously and may be thought
to occur at the end of a stage.

6-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Timing Overview

An instruction can spend multiple cycles in one stage. An integer multiply, for
example, takes multiple cycles in the execute stage. When this occurs, subsequent
instructions may stall.

An instruction can also occupy more than one stage simultaneously, especially in the
sense that a stage can be seen as a physical resource—for example, when
instructions are dispatched they are assigned a place in the CQ at the same time they
are passed to the issue queues.

• Stall—An occurrence when an instruction cannot proceed to the next stage.

• Superscalar—A superscalar processor is one that can issue multiple instructions
concurrently from a conventional linear instruction stream. In a superscalar
implementation, multiple instructions can be in the execute stage at the same time.

• Throughput—The number of instructions that are processed per cycle. For example,
a series of mulli instructions have a throughput of one instruction per clock cycle.

• Write-back—Write-back (in the context of instruction handling) occurs when a
result is written into the architecture-defined registers (typically the GPRs, FPRs,
and VRs). On the MPC7451, write back occurs in the clock cycle after the
completion stage. Results in the write-back buffer cannot be flushed. If an exception
occurs, results from previous instructions must write back before the exception is
taken.

6.2 Instruction Timing Overview
The MPC7451 design minimizes the number of clock cycles it takes to fetch, decode,
dispatch, issue, and execute instructions and to make the results available for a subsequent
instruction. Some instructions, such as loads and stores, access memory and require
additional clock cycles between the execute phase and the write-back phase. These
latencies vary depending on whether the access is to cacheable or noncacheable memory,
whether it hits in the L1, L2, or L3 cache, whether the cache access generates a write-back
to memory, whether the access causes a snoop hit from another device that generates
additional activity, and other conditions that affect memory accesses. Note that L3 cache is
not supported on the MPC7441 and the MPC7445.

To improve throughput, the MPC7451 implements pipelining, superscalar instruction issue,
branch folding, removal of fall-through branches, three-level speculative branch handling,
and multiple execution units that operate independently and in parallel.

As an instruction passes from stage to stage, the subsequent instruction can follow through
the stages as the former instruction vacates them, allowing several instructions to be
processed simultaneously. Although it may take several cycles for an instruction to pass
through all the stages, when the pipeline is full, one instruction can be completed its work
on every clock cycle. Figure 6-1 represents a generic four-stage pipelined execution unit,
which when filled has a throughput of one instruction per clock cycle.

MOTOROLA Chapter 6. Instruction Timing 6-5

Instruction Timing Overview

Figure 6-1. Pipelined Execution Unit

Figure 6-2 shows the entire path that instructions take through the fetch1, fetch2,
decode/dispatch, execute, issue, complete, and write-back stages, which is considered the
MPC7451’s master pipeline. The FPU, LSU, IU2, VIU2, VFPU, and VPU are also
multiple-stage pipelines.

The MPC7451 contains the following execution units:

• Branch processing unit (BPU)
• Three Single-cycle IUs (IU1a, IU1b, IU1c)—executes all integer (fixed-point)

instructions except multiply, divide, and move to/from special-purpose register
instructions. Note that all IU1 instructions execute in 1 cycle, except for some
instructions like tw[i] and sraw[i][.], which take 2. See Table 6-5 for details.

• Multiple-cycle IU (IU2)—executes miscellaneous instructions including the CR
logical operations, integer multiplication and division instructions, and move
to/from special-purpose register instructions

• 64-bit floating-point unit (FPU)
• Load/store unit (LSU)
• The AltiVec unit contains the following four independent execution units for vector

computations and the latencies are shown in Table 6-8:

— Vector permute unit (VPU)

— Vector simple integer unit (VIU1)

— Vector complex integer unit (VIU2)

— Vector floating-point unit (VFPU)

A maximum of two AltiVec instructions can be issued in order to any combination
of AltiVec execution units per clock cycle. Moreover, the VIU2, VFPU, and VPU are
pipelined, so they can operate on multiple instructions.

Clock 0

Clock 1

Clock 2

Clock 3

Instruction A — —

Instruction B

Instruction C

Instruction D

Instruction A

Instruction B

Instruction C

—

Instruction A

Instruction B

E0 E1 E2

—

E3

—

—

Instruction A

Instruction E Instruction D Instruction C Instruction B

Full pipeline

Clock 4
Full pipeline

6-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Timing Overview

The MPC7451 can complete as many as three instructions on each clock cycle. In general,
the MPC7451 processes instructions in seven stages—fetch1, fetch2, decode/dispatch,
issue, execute, complete, and write-back as shown in Figure 6-2. Note that the pipeline
example in Figure 6-1 is similar to the four-stage VFPU pipeline in Figure 6-2.

Figure 6-2. Superscalar/Pipeline Diagram

The instruction pipeline stages are described as follows:

• Instruction fetch—Includes the clock cycles necessary to request an instruction and
the time the memory system takes to respond to the request. Instructions retrieved
are latched into the instruction queue (IQ) for subsequent consideration by the
dispatcher.

Complete

Decode/Dispatch

Execute Stage

Maximum three-instruction dispatch
per clock cycle

Maximum three-instruction com-
pletion per clock cycle

Maximum four-instruction fetch
per clock cycle

BPU

FPU-E2 LSU-E0

LSU-E1

VFPU-E3VIU1 VIU2-E3

VFPU-E2

VFPU-E1

VPU-E0

AltiVec Units

VFPU-E0

VIU2-E2

VIU2-E1

FPU-E3

FPU-E4 IU1

FPU-E1

FPU-E0

LSU-E2VPU-E1 IU2-E2

IU2-E1

IU2-E0

VIU2-E0

VR Issue GPR Issue
Queue

FPR Issue
QueueQueue

Fetch1

Fetch2

(VIQ) (FIQ) (GIQ)

Write-Back

FinishFinish Finish

MOTOROLA Chapter 6. Instruction Timing 6-7

Instruction Timing Overview

Instruction fetch timing depends on many variables, such as whether an instruction
is in the branch target instruction cache (BTIC), the on-chip instruction cache, or the
L2 or L3 cache. Those factors increase when it is necessary to fetch instructions
from system memory and include the processor-to-bus clock ratio, the amount of bus
traffic, and whether any cache coherency operations are required.

Because there are so many variables, unless otherwise specified, the instruction
timing examples in this chapter assume optimal performance and show the portion
of the fetch stage in which the instruction is in the instruction queue. The fetch1 and
fetch2 stages are primarily involved in retrieving instructions.

• The decode/dispatch stage fully decodes each instruction; most instructions are
dispatched to the issue queues (branch, isync, rfi, and sc instructions do not go to
issue queues).

• The three issue queues FIQ, VIQ, and GIQ can accept as many as one, two, and three
instructions, respectively, in a cycle. Instruction dispatch requires the following:

— Instructions can be dispatched only from the three lowest IQ entries—IQ0, IQ1,
and IQ2.

— A maximum of three instructions can be dispatched to the issue queues per clock
cycle.

— Space must be available in the CQ for an instruction to dispatch (this includes
instructions that are assigned a space in the CQ but not in an issue queue).

In this chapter, dispatch is treated as an event at the end of the fetch stage. Dispatch
dependencies are described in Section 6.7.2, “Dispatch Unit Resource
Requirements.”

The issue stage reads source operands from rename registers and register files and
determines when instructions are latched into the execution unit reservation stations.
The GIQ, FIQ, and VIQ (AltiVec) issue queues have the following similarities:

– Operand lookup in the GPRs, FPRs, and VRs, and their rename registers.

– Issue queues issue instructions to the proper execution units.

– Each issue queue holds twice as many instructions as can be dispatched to it
in 1 cycle; the GIQ has six entries, the VIQ has four, and the FIQ has two.

The three issue queues are described as follows:

— The GIQ accepts as many as three instructions from the dispatch unit each cycle.
IU1, IU2, and all LSU instructions (including floating-point and AltiVec loads
and stores) are dispatched to the GIQ.

— Instructions can be issued out-of-order from the bottom three GIQ entries
(GIQ2–GIQ0). An instruction in GIQ1 destined for an IU1 does not have to wait
for an instruction in GIQ0 that is stalled behind a long-latency integer divide
instruction in the IU2.

6-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Timing Overview

— The VIQ accepts as many as two instructions from the dispatch unit each cycle.
All AltiVec instructions (other than load, store, and vector touch instructions) are
dispatched to the VIQ. As many as two instructions can be issued to the four
AltiVec execution units, but unlike the GIQ, instructions in the VIQ cannot be
issued out of order.

— The FIQ can accept one instruction from the dispatch unit per cycle. It looks at
the first instruction in its queue and determines if the instruction can be issued to
the FPU in this cycle.

• The execute stage accepts instructions from its issue queue when the appropriate
reservation stations are not busy. In this stage, the operands assigned to the execution
stage from the issue stage are latched.
The execution unit executes the instruction (perhaps over multiple cycles), writes
results on its result bus, and notifies the CQ when the instruction finishes. The
execution unit reports any exceptions to the completion stage. Instruction-generated
exceptions are not taken until the excepting instruction is next to retire.
Most integer instructions have a 1-cycle latency, so results of these instructions are
available 1 clock cycle after an instruction enters the execution unit. The FPU, LSU,
IU2, VIU2, VFPU, and VPU units are pipelined, as shown in Figure 6-3.
Note that AltiVec computational instructions are executed in the four independent,
pipelined AltiVec execution units. The VPU has a two-stage pipeline, the VIU1 has
a one-stage pipeline, and the VIU2 and VFPU have four-stage pipelines. As many as
10 AltiVec instructions can execute concurrently.

• The complete and write-back stages maintain the correct architectural machine state
and commit results to the architecture-defined registers in the proper order. If
completion logic detects an instruction containing an exception status, all following
instructions are cancelled, their execution results in rename buffers are discarded,
and the correct instruction stream is fetched.
The complete stage ends when the instruction is retired. Three instructions can be
retired per clock cycle. If no dependencies exist, as many as three instructions are
retired in program order. Section 6.7.4, “Completion Unit Resource Requirements,”
describes completion dependencies.
The write-back stage occurs in the clock cycle after the instruction is retired.

Notation conventions used in the instruction timing examples in Figure 6-8 through
Figure 6-17 are as follows:

 Fetch—Instructions are fetched from memory and placed in the 12-entry IQ.
The latency associated with accessing an instruction depends on whether the
instruction is in the BTIC, the on-chip caches, the off-chip L3 cache, or
system memory (in which case latency is further affected by bus traffic, bus
clock speed, and address translation issues). Therefore, in the examples in
this chapter, the diagrams and fetch stage shown is for the common case of
instructions hitting in the instruction cache.

MOTOROLA Chapter 6. Instruction Timing 6-9

Instruction Timing Overview

Branch execute—The operations specified by a branch instruction are being
performed by the BPU. In some cases, the branch direction or target may be
predicted. The white stripe is a reminder that the branch instruction occupies
an entry in the IQ.

Dispatch—As many as three eligible instructions move, in order, from the
IQ0–IQ2 to the appropriate issue queue. Note that branch, isync, rfi, and sc
instructions do not go to issue queues. At the same time, the instruction is
assigned an entry in the completion queue.

Issue—Instructions are dispatched to issue queues from the instruction queue
entries. At the end of the issue stage, instructions and their operands are
latched into execution unit reservation stations. The black stripe is a reminder
that the instruction occupies an entry in the CQ, described in Figure 6-3.

 Execute—The operations specified by an instruction are being performed by
the appropriate execution unit. The black stripe is a reminder that the
instruction occupies an entry in the CQ, described in Figure 6-3.

 Finish (FPU, IU2, and VIU1 only)—The single-cycle finish stage is required
for all FPU, IU2, and VIU1 instructions to notify the completion logic that an
instruction has executed and its results have been made available to rename
registers.

 Complete—Execution has finished. When all completion requirements are
met, the instruction is retired from the CQ. The results are written back to
architecture-defined registers in the clock cycle after retirement.

 Write back—The instruction has retired and its results are written back to the
architecture-defined registers.

The following events are associated with the stages described above:

• Dispatch—An instruction is dispatched to the appropriate issue queue at the end of
the dispatch stage. At dispatch, the instruction passes to the issue pipeline stage by
taking a place in the completion queue and in one of the three issue queues.

• Issue—The issue stage ends when the instruction is issued to the appropriate
execution unit.

• Finish—An instruction finishes when the CQ is signalled that execution results are
available to subsequent instructions. Architecture-defined registers are not updated
until the instruction is retired. For FPU, IU2, and VIU2, finishing occurs at the end
of a separate, one-cycle stage after the final execution stage.

• Retire—An instruction is retired when it has updated architecture-defined registers
with its results and is removed from the completion queue.

• Write back—The results of a retired instruction are written back to the
architecture-defined register.

6-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Timing Overview

Figure 6-3 shows the relationships between stages and events.

Figure 6-3. Stages and Events

Fetch2 Dispatch Execute CompleteIssue

Dispatch Issue Finish Retire

Write back

Write Back

Execute FInishIssue

Dispatch Issue Finish Retire Write Back

Complete Write back

Stages and Events: IU1, LSU, VPU, VIU2, and VFPU)

Stages and Events: IU2, FPU, and VIU1
Fetch2 Dispatch

Fetch1

Fetch1

MOTOROLA Chapter 6. Instruction Timing 6-11

Timing Considerations

Figure 6-4 shows the stages of MPC7451 execution units.

Figure 6-4. MPC7451 Microprocessor Pipeline Stages

6.3 Timing Considerations
When the fetch pipeline is full, as many as four instructions can be fetched to the IQ during
each clock cycle. Three instructions can be dispatched to the issue queues per clock cycle.

Execute2 Finish

Complete

Complete

IU21/VIU1 Instructions

LSU Instructions1

FPU Instructions1

Execute

Execute

BPU Instructions

Branch
Execution

In Dispatch
Entry

VIU2 Instructions

Complete

VFPU Instructions Execute 4

Fetch2

E0 E1 E2Issue

E0–E4Issue

E0

E0 E1 E3E2

Fetch2 Dispatch Execute Complete

IU11/VPU Instructions

Issue

Complete

Finish

Fetch2 Dispatch Issue

Fetch2 Dispatch

Fetch2 Dispatch

IssueFetch2 Dispatch

IssueFetch2 Dispatch

1 Execution-serialized instructions require additional execution cycles (not shown).
2 Several integer instructions, such as multiply and divide instructions, require multiple cycles in the

execute stage.
3 Branches that are not folded take an entry in the completion queue.
4 Some VFPU instructions skip VFPU-E1 and VFPU-E2, which may increase the latency of other

VFPU instructions. See Section 6.4.5.1.4, “Vector Floating-Point Unit (VFPU) Execution Timing.”

Complete

Execute

E3E2E1

Fetch1

Fetch1

Fetch1

Fetch1

Fetch1

Fetch1

Fetch1

In Instruction Queue

Complete3

6-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Timing Considerations

The MPC7451 improves performance by executing multiple instructions at a time, using
hardware to manage dependencies. When an instruction is issued, the register file or rename
registers send the source data to the appropriate reservation station. Register files and
rename registers have sufficient bandwidth to allow dispatch of three instructions per clock
cycle under most conditions.

The BPU decodes and executes branches immediately after they reach the IQ. When a
branch cannot be resolved due to a CR, CTR, or LR dependency, the branch may be
predicted and that case execution continues from the predicted path. If the prediction is
incorrect, the following steps are taken:

1. The IQ is purged and fetching continues from the correct path.

2. If mispredicted instructions have entered the CQ, any instructions older than the
predicted branch are allowed to retire, after which remaining instructions are
purged from the CQ and execution units.

3. Dispatching resumes from the correct path.

After an instruction executes, results are made available to subsequent instructions in the
appropriate rename registers. The architecture-defined GPR, FPR, and VR registers are
updated during the write-back stage. Branch instructions that update the LR or CTR write
back their results in a similar fashion.

After instruction execution, results are made available to subsequent instructions in the
appropriate GPR, FPR, or VR rename registers. Results are then stored into the correct
GPR, FPR, or VR during the write-back stage. If a subsequent instruction needs the result
as a source operand, the result is simultaneously made available to the appropriate
execution unit, which allows a data-dependent instruction to be decoded and dispatched
without waiting to read the data from the register file. Branch instructions that update either
the LR or CTR write back their results in a similar fashion.

The following section describes this process.

6.3.1 General Instruction Flow

As many as four instructions can be fetched into the IQ during each clock cycle. An
instruction fetch consists of two single-cycle fetch stages—fetch1 and fetch2.

As many as three instructions can be dispatched per clock cycle, within the limitations of
individual issue queues—the GIQ can accept as many as three, the FIQ can accept one, and
the VIQ can accept as many as two instructions. Likewise, the GIQ can issue at most three
instructions, the FIQ can issue one instruction, and the VIQ can issue two instructions per
clock cycle. The MPC7451 tries to keep the IQ full at all times, unless instruction cache
throttling is enabled, as described in Chapter 10, “Power and Thermal Management.”

The number of instructions fetched in a clock cycle is determined by the number of vacant
spaces in the IQ during the previous clock cycle. This is shown in the examples in this

MOTOROLA Chapter 6. Instruction Timing 6-13

Timing Considerations

chapter. If IQ8–IQ11 are available, the fetcher tries to initiate a fetch every cycle. Because
the two fetch stages are pipelined, as many as four instructions can reach the IQ every cycle.
However, the fetcher normally initiates a fetch only if IQ8–IQ11 are empty.

Typically, instructions are fetched from the L1 instruction cache, but as many as four
instructions from a targeted stream can be fetched on a BTIC hit in 2 clock cycles, allowing
the next four instructions to be fetched from the instruction cache with no idle cycles.

Branch instructions in IQ0–IQ7 are identified and forwarded to the BPU directly for
immediate execution.

If a branch is predicted as taken, all instructions are flushed from the IQ in the next clock
cycle. If the branch is unconditional or if the specified conditions are already known, the
branch can be resolved immediately. That is, the branch direction and target address are
known and instruction fetching can continue from the correct location. Otherwise, the
branch direction or branch target address must be predicted. The MPC7451 offers several
resources to resolve branch instructions and to improve the accuracy of branch predictions.
These include the following:

• Branch target instruction cache (BTIC)—The 128-entry, four-way-associative
BTIC, shown in Figure 6-5, holds as many as four branch target instructions in each
entry, so when a branch is encountered in a repeated loop, usually the first four
instructions in the target stream can be fetched into the instruction queue on the next
two clock cycles. The BTIC can be disabled and invalidated through bits in HID0.

Figure 6-5. BTIC Organization

4 Instructions per Block

.

.

Entry 31

.

.

.

.

Entry 0

.

.

.

.

.

.

4 Ways

6-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Timing Considerations

BTIC entries are indexed not from the address of the first target instruction but from
the address of the branching instruction, so multiple branches sharing a target
generate duplicate BTIC entries. Each entry can hold as many as four instructions,
depending on where the first target instruction falls in the cache block.

As with other aspects of MPC7451 instruction timing, BTIC operation is optimized
for cache-line alignment. If the first target instruction is one of the first five
instructions in the cache block, the BTIC entry holds four instructions. If the first
target instruction is the last instruction before the cache block boundary, it is the only
instruction in the corresponding BTIC entry. If the next-to-last instruction in a cache
block is the target, the BTIC entry holds two valid target instructions, as shown in
Figure 6-6.

Figure 6-6. Alignment of Target Instructions in the BTIC

BTIC ways are updated using a FIFO algorithm.

Note that the entire BTIC is invalidated if translation changes (for example, a tlbie
instruction executes, a TLB or BAT is updated, or an exception puts the processor in
real mode) or if an icbi instruction invalidates an instruction cache block.

• Dynamic branch prediction—The 2048-entry branch history table (BHT) is
implemented with 2 bits per entry for four levels of prediction—not taken, strongly
not, and strongly taken. Whether a branch instruction is taken or not taken can
change the strength of the next prediction. Dynamic branch prediction is not defined
by the PowerPC architecture.

To reduce aliasing, only predicted branches update BHT entries. Dynamic branch
prediction is enabled by setting HID0[BHT]; otherwise, static branch prediction is
used.

• Static branch prediction—Static branch prediction is defined by the PowerPC
architecture and involves encoding the branch instructions. See 6.4.1.3.1, “Static
Branch Prediction.”

T0 T2 T4 T5 T6 T7T1 T3

BTIC Entry

Instruction Cache Block

T2 T4 T5T3

Branch Target

T0 T2 T4 T5 T6 T7T1 T3

BTIC Entry

Instruction Cache Block

T6 — —T7

Branch Target

MOTOROLA Chapter 6. Instruction Timing 6-15

Timing Considerations

• Link stack registers—The MPC7451 also avoid stalls by implementing an
eight-entry branch link stack. As many as eight levels of bclr/branch-and-link pairs
can be held and the bclr target address can be predicted from the link stack rather
than requiring a stall until the ld/mtlr subroutine restore sequence completes.

The link register and rules required for correct use are as described in the
Programming Environments Manual.

Correct use of the link stack requires that computed GOTO statements consist of the
mtctr/bcctr instruction pair rather than the mtlr/bclr pair, which lowers link stack
performance by requiring an expensive mispredict drain/flush as well as clearing the
link stack to its initial empty state.

Attempting link stack and conditional branch prediction on the same instruction can
affect performance. It may be necessary to avoid conditional bclr instructions
because the BPU stalls execution until either the directional condition or the target
address (LR) is resolved. Additionally, even if both are resolved when the
conditional bclr is presented to the BPU, the conditional bclr takes 2 cycles to
execute. Thus, except for code size, following a conditional branch (bc) with an
unconditional bclr may be preferable to a conditional bclr.

Branch instructions that do not update the LR or CTR can be removed from the instruction
stream, as described in Section 6.4.1.1, “Branch Folding and Removal of Fall-Through
Branch Instructions.” Branch instructions that update the LR or CTR are treated as if they
require dispatch, even though they are not dispatched to one of the issue queues. They must
be assigned CQ entries to ensure that the CTR and LR are updated sequentially. The
dispatch rate is affected by the serializing behavior of some instructions and on the
availability of issue queues, execution units, rename registers, and CQ entries. Instructions
are dispatched in program order; an instruction in IQ1 cannot be dispatched ahead of one
in IQ0.

Figure 6-7 shows instruction paths.

6-16 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Timing Considerations

Figure 6-7. Instruction Flow Diagram

Store Queues

IU2

Complete (last stage of complete is Retire)

Fetch

LSU-1

Branch

Instruction Queue

Completion Queue

Completion Queue

Processing Unit

(In program order)

Assignment

(In program order)

IQ9 IQ8–IQ3 IQ2 IQ1 IQ0

(Maximum four instruction per

AltiVec

Updates completion queue when execution is finished

VIU1

VFPU-1

CQ13CQ15 CQ14 CQ1CQ3 CQ2 CQ0CQ13 CQ12–CQ4

VPU-1

IU1

FPU-1

Issue Queue

IQ11 IQ10

IU2-1

FPR Issue
 Queue

VR Issue
 Queue

GPR Issue
 Queue

Reservation
Stations

Decode/Dispatch
3 instructions per clock cycle

Units

Finish FinishFinish

clock cycle throughput)

LSU-2

LSU-3 IU2-3

IU2-2

FPU-2

FPU-4

FPU-5

FPU-3

VPU-2 VIU2-4

VIU2-3

VIU2-2

VIU2-1

VFPU-2

VFPU-3

VFPU-4

MOTOROLA Chapter 6. Instruction Timing 6-17

Timing Considerations

6.3.2 Instruction Fetch Timing

Instruction fetch latency depends on whether the fetch hits the BTIC, the instruction MMU,
the L1 instruction cache, the on-chip L2-cache, or the off-chip L3 cache (if one is
implemented). If no cache hit occurs, a memory transaction is required in which fetch
latency is affected by bus traffic and bus clock speed. These issues are discussed further in
the following sections.

6.3.2.1 Cache Arbitration

When the instruction fetcher requests instructions from the instruction cache, two things
may happen. If the access hits the instruction cache and the cache is idle, the instructions
arrive two clock cycles later. However, if the cache or MMU is busy due to a higher priority
operation, such as a tlbie, icbi, or a cache line reload, instructions cannot be fetched until
that operation completes.

6.3.2.2 Cache Hit

If the instruction fetch hits the instruction cache, it takes only two clock cycles after the
request for as many as four instructions to enter the IQ. Note that the cache is not blocked
to internal accesses during a cache reload (hits under misses). The critical quad word is
written simultaneously to the cache and forwarded to the requesting unit, minimizing stalls
due to load delays. Note that the cache allows a hit under one miss and is only blocked by
a cache line reload for the cycle when the cache write happens. So, if a cache miss is
discarded by a misprediction and a new fetch hits, the cache allows instructions to come
back. As many as four instructions are pipelined from the cache per cycle until the original
miss comes back and a cache reload is performed, which blocks the cache for 1 cycle.

Figure 6-8 shows a simple example of instruction fetching that hits in the on-chip cache.
This example uses a series of integer add instructions and double-precision, floating-point
add instructions to show the following:

• How the number of instructions to be fetched is determined

• How program order is maintained by the IQ and CQ

• How instructions are dispatched, issued and completed

• How the FPU and IU2 pipelines function

6-18 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Timing Considerations

Note that for the following instruction sequence instruction 0 is assumed to be the first
instruction in the cache block. Also, there are no critical dependencies between instructions.

0 add
1 fadd
2 add
3 fadd
4 b 8
5 fsub
6 fadd
7 fadd
8 add
9 add
10 add
11 add
12 fadd
13 add
14 fadd
15 .
16 .
17 .

MOTOROLA Chapter 6. Instruction Timing 6-19

Timing Considerations

Figure 6-8. Instruction Timing—Cache Hit

1 fadd

0 add

1 2 3 4 5 6 7 80

3 fadd

9

•••

IQ11

IQ4

IQ3 3
IQ2 2
IQ1 1

IQ0 0

11

10
9
8

14

13
12
11 14

7
6

5
4
3

CQ15

CQ9
CQ8
CQ7

CQ6
CQ5
CQ4

CQ3
CQ2
CQ1

CQ0

3
2
1

0

3
2
1

0

10
9

8
3
2

1

13
12

11
10
9

8
3
2

1

14
13
12

11
10
9

8
3
2

1

14
13
12

11
10
9

8
3
2

1

14
13
12

11
10
9

8
3
2

1

14

13
12

11
10
9

8
3

2
1

0

Instruction Queue

Completion Queue

2 add2 add

Fetch (in IQ)

Dispatch (IQ0–IQ2)

Execute (also in CQ)

Completion Queue (CQ)

Only the portion of the fetch
stage during which the
instruction is in the IQ is
shown.

8 add

Issue Queue (also in CQ)

6 fadd

7 fadd

9 add

11 add

12 fadd

14 fadd

10 add

13 add

Retire entry (before exit
from CQ)

10

14
13
12

11
10

5 fsub

Finish (also in CQ)

4 b

6-20 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Timing Considerations

The instruction timing for this example is described cycle-by-cycle as follows:

0. In cycle 0, instructions 0–3 are fetched from the instruction cache and are available
in the IQ. These instructions are placed in IQ0–IQ3. Instructions 0–2 are dispatched
at the end of this cycle to the GIQ, FIQ, and GIQ, respectively. As they are
dispatched, they are also allocated in the bottom three entries of the CQ.

1. Instructions 0 and 2 are issued to two of the IU1s and instruction 1 is issued to the
FPU. Note that because these instructions were dispatched in the last cycle, they
have been assigned sequential positions in the CQ. In this case, instructions 0–2 are
in the bottom three entries of the CQ. Instruction 3 is in IQ0 from which it is
dispatched to the FIQ at the end of this cycle. Instructions 4–7 have arrived from
the instruction cache at the end of the last cycle, which are also allocated in the
IQ1–IQ4. The eight-instruction cache block boundary falls between instructions 7
and 8. Instruction 4 (the unconditional branch) is executed in this cycle and is
immediately resolved as taken and therefore can be folded from the IQ.

2. Instructions 0 and 2 execute in the single-stage IU1s. Instruction 1 proceeds to the
first of the five FPU stages. Instruction 3 is in the fourth entry of the CQ and is
issued from the FIQ to the FPU. Because instruction 4 was an unconditional taken
branch, it is folded from the IQ and instructions 5–7 are discarded. No new
instructions are available because of the latency of the BTIC and instruction cache
fetching.

3. Instruction 0 is retired at the end of this cycle. Instruction 1 proceeds to the second
FPU stage. Instruction 2 has finished executing but must remain in the CQ until
instruction 1 retires. Instruction 3 replaces instruction 1 in the first FPU stage.
Instructions 8–11 are arrived from the BTIC and are also allocated in the bottom
four entries of the IQ. Instructions 8-10 are dispatched to the GIQ at the end of this
cycle.

4. Instruction 0 is retired from the CQ, so the remaining instructions are shifted down
in the CQ. Instructions 1 and 3 are in the third and second FPU stages, respectively.
Instruction 2 is still waiting in the CQ for instruction 1 to retire. Instructions 8–10
take positions in CQ. Instructions 12–14, which arrived from the instruction cache
at the end of last cycle, are now in the IQ1–IQ3. Instructions 11–13 are dispatched
at the end of this cycle.

5. Instructions 1 and 3 occupy to the fourth and third FPU stages, respectively.
Instruction 2 waits in the CQ for instruction 1 to retire. Instructions 8–10 execute in
the IU1s. Instructions 11–13 are issued and occupy CQ6–CQ8. Instruction 14 is
dispatched at the end of this cycle.

6. Instruction 1 reaches the last FPU stage, while instruction 3 advances through the
FPU pipeline. Instructions 2, 8, 9, and 10 wait in the CQ. Instructions 11–13 begin
executing. Instruction 14 is issued to the FPU and occupies CQ9.

MOTOROLA Chapter 6. Instruction Timing 6-21

Timing Considerations

7. Instruction 1 occupies the FPU finish stage, while instruction 3 moves to the last
FPU stage. Instructions 2, 8–11, and 13 wait in the CQ. Instruction 12 advances
through the FPU pipeline, while instruction 14 moves to the first FPU stage.

8. Instructions 1 and 2 are retired at the end of this cycle. Instruction 3 moves to the
FPU finish stage. Instructions 8–11 and 13 wait in the CQ. Instructions 12 and 14
advance through the FPU.

9. Because instructions 1 and 2 were retired in the last clock cycle, the remaining
instructions shift down in the CQ and instructions 3, 8, and 9 are retired at the end
of this clock cycle. Instructions 10, 11, and 13 wait in the CQ. Instructions 12 and
14 continue through the FPU.

10. Instructions 3, 8, and 9 retired in the last clock cycle, so the remaining instructions
shift down in the CQ. Instructions 10 and 11 are retired at the end of this clock
cycle, while instruction 13 waits in the CQ. Instructions 12 and 14 continue through
the FPU.

6.3.2.3 Cache Miss

Figure 6-9 uses a similar instruction sequence as in Section 6.3.2.2, “Cache Hit,” but here
the fetch misses the caches and requires a bus access. Note that because the target
instruction is not in the L1 cache, it cannot be in the BTIC. A 5:1 processor:bus clock ratio
is used. The difference in the following code sample from that shown in Figure 6-8 is that
the branch instruction 4 jumps to instruction 6 instead of instruction 8, and also cache block
boundary lies between instructions 5 and 6. The following example assumes the minimum
possible cycles for a bus transaction to occur, but any real system is likely to see further
delays due to real DRAM latencies.

0 add
1 fadd
2 add
3 fadd
4 b 6
5 fsub
6 fadd
7 fadd
8 add
9 add
10 add
11 add
12 fadd
13 add
14 fadd
15 .
16 .
17 .

6-22 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Timing Considerations

Figure 6-9. Instruction Timing—Cache Miss

A cache miss extends the latency of the fetch stage, so the fetch stage represents the time
the instruction spends in the IQ and the time required for the instruction to be loaded from
system memory, beginning in clock cycle 2.

The first four instructions follow the same pattern as in the cache hit example. The cache
miss occurs in clock cycle 3, so the fetcher initiates a four-beat burst transaction to system
memory. The critical quad word, which contains instructions 6–9, arrives in the first two
beats and is forwarded to the IQ after the second beat. In clock cycle 52, these instructions
are forwarded both to the instruction cache and to the instruction fetcher. Instructions 10–13

1 2

53

0

3 fadd

52515049484746454443424140

Doubleword 2

6 fadd

7 fadd

8 add

9 add

Data Bus

Doubleword 3 Doubleword 4

54

65646362616059585756555453

39383736

Data Bus

Doubleword 4

Doubleword 1

10 add

11 add

12 fadd

13 add

0 add

1 fadd

2 add

5 fsub

4 b

MOTOROLA Chapter 6. Instruction Timing 6-23

Timing Considerations

arrive 11 cycles later in clock cycle 63. Assuming that instructions 14–17 are also not in any
of the caches, they are available to the IQ in cycle 102. The second half of this cache block
(instructions 18–21) arrive 11 cycles later (cycle 113).

6.3.2.4 L2 Cache Access Timing Considerations

If an instruction fetch misses the BTIC and the on-chip instruction cache, the MPC7451
next looks in the L2 cache. If the requested instructions are there, they are burst into the
MPC7451 in much the same way as shown in Figure 6-6.

The example shown is for the fastest possible L2 response. Other factors can effect this
latency, including whether the L2 cache is busy with other operations, like servicing a load
request from the LSU.

6.3.2.4.1 Instruction Cache and L2 Cache Hit

Full fetch latency (from fetch1 to arrival into IQ) for an instruction cache miss/L2 cache hit
is 13 cycles. Note that an L2 hit provides a full cache line, so the instructions are fetched
into the IQ back to back (see cycles 15 and 16 in Figure 6-10). This is the difference
between the L3 cache and main memory bus, which use quad-word forwarding.
Figure 6-10 shows the same code sequence as Figure 6-9.

6-24 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Timing Considerations

Figure 6-10. Instruction Timing—Instruction Cache Miss/L2 Cache Hit

1 fadd

0 add

1 2 3 15 16 170

3 fadd

•••

Instruction Queue

Completion Queue

2 add2 add

5 fsub

•••

7 fadd

8 add

6 fadd

9 add

10 add

13 add

11 add

12 fadd

••• 28 29

16 fadd

14 fadd

17 add

15 add

2

1
0

CQ15

CQ4
CQ3
CQ2

CQ1
CQ0

3
2

1
0

3
2

1
0

3

2
1 6

9
8

7
6

15
14

5
4

3

IQ11

IQ6
IQ5
IQ4

IQ3 3
IQ2 2
IQ1 1

IQ0 0

9
8
7

6

13
12
11

10
9
8

7

13
12
11

10

17
16
15

14

17

16

•••

Fetch (in IQ)

Dispatch (IQ0-IQ2)

Execute (also in CQ)

Completion Queue (CQ)

Only the portion of the fetch
stage during which the
instruction is in the IQ is
shown.

 ssue Queue (also in CQ)

Retirement entry (Before exit
from CQ)

Fetch (in IQ)

Dispatch (IQ0-IQ2)

Execute (also in CQ)

Completion Queue (CQ)

Only the portion of the fetch
stage during which the
instruction is in the IQ is
shown.

 Issue Queue (also in CQ)

Retire entry (before exit
from CQ)

10 add

13 add

11 add

12 fadd

4 b

MOTOROLA Chapter 6. Instruction Timing 6-25

Timing Considerations

6.3.2.4.2 Instruction Cache Miss/L3 Cache Hit

Figure 6-11 shows the same code sequence as Figure 6-9, except that there is an instruction
cache/L2 cache miss and an L3 cache hit. Note that L3 cache is not supported on the
MPC7441 and the MPC7445. This example assumes the following:

• Use of DDR SRAM

• 4:1 bus ratio

• 5-cycle L3 clock sample point

• 0-cycle L3 processor-clock sample point

For an L3 hit, full fetch latency (from fetch1 to the arrival into IQ) is 39 cycles. Note that
an L3 forwards a quad word at a time, followed by a full cache-line reload. The time for the
first beat is affected by three major parameters—miss time, SRAM time, and forwarding
time. Miss and forwarding times are constant and do not interfere with traffic. The SRAM
time takes 23 cycles; the formula for calculating the SRAM time is as follows:

synchronization to L3 clock + (SRAM_RATIO) x (L3 clock sample point) +
(L3 P-clock sample)

For the example shown in Figure 6-11, the synchronization to L3 clock is 3 cycles.

6-26 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Timing Considerations

Figure 6-11. Instruction Timing—Instruction Cache Miss/L3 Cache Hit

1 fadd

0 add

1 2 3 41 42 430

3 fadd

44

•••

CQ15

CQ6
CQ5
CQ4

CQ3
CQ2
CQ1

CQ0

Instruction Queue

Completion Queue

2 add2 add

5 fsub

45

5
4
3

46 81 82••• •••

7 fadd

8 add

6 fadd

9 add

10 add

13 add

11 add

12 fadd

14 fadd

17 add

15 add

16 fadd

IQ11

IQ3 3

IQ2 2
IQ1 1
IQ0 0

9

8
7
6

9
8
7

13

12
11
10 13

17

16
15
14

17
16

2
1
0

3

2
1
0

3

2
1
0

3
2
1 6

9

8
7
6

9

8
7
6

9

8
7
6

12

11
10
9

8
7
6

15
14

•••

Fetch (in IQ)

Dispatch (IQ0-IQ2)

Execute (also in CQ)

Completion Queue (CQ)

Only the portion of the fetch
stage during which the
instruction is in the IQ is
shown.

Issue Queue (also in CQ)

Retire entry (before exit
from CQ)

4 b

MOTOROLA Chapter 6. Instruction Timing 6-27

Timing Considerations

6.3.3 Dispatch, Issue, and Completion Considerations

Several factors affect the core's ability to dispatch instructions at a peak rate of three per
cycle—the mix of instructions and the availability of issue queues, destination rename
registers, and CQ entries. Several of these factors are shown in the previous instruction
timing examples.

Although as many as three instructions can be dispatched in parallel, they cannot be
dispatched out of order; for example, an instruction in IQ1 cannot be dispatched unless the
instruction in IQ0 can also dispatch.

To reduce issue unit stalls due to data dependencies, the LSU, IU2, and FPU have two-entry
reservation stations; the other execution units have single-entry reservation stations. If a
data dependency keeps an instruction from starting execution, that instruction is issued to
a reservation station and the rename registers are assigned, eliminating the issue queue
stalls. Execution begins during the same clock cycle that the rename buffer is updated with
the data the instruction is dependent on.

The issue queues allow the MPC7451 to dispatch decoded instructions even if execution
units are busy. The dispatcher also allocates rename registers, locates source operands, and
assigns rename registers for destination operands. The issue logic reads operands from
register files and rename registers and supplies rename tags for unavailable operands. The
issue stage routes instructions to the proper execution unit. Execution begins when all
operands are available, the instruction is in the bottom reservation station, and any
execution serialization requirements are met.

The CQ maintains program order after instructions are dispatched, guaranteeing in-order
completion and a precise exception model. In-order completion ensures the correct
architectural state when the MPC7451 must recover from a mispredicted branch or
exception.

Instruction state and other information required for completion are kept in the 16-entry,
FIFO completion queue. Instructions cannot be retired ahead of previous instructions, as
shown in Section 6.3.2.2, “Cache Hit,” and Section 6.3.2.3, “Cache Miss.”

Instructions are retired much as they are dispatched. As many as three instructions can be
retired simultaneously, but instructions cannot be retired out of order. Note the following:

• Instructions must be non-speculative to complete.

• As many as three rename registers can be updated in a given register file. For
example, a sequence of three lfdu instructions, which requires three GPR rename
registers and three FPR rename registers, can complete in one cycle. However, the
sequence lwzu, add, add requires four GPR rename registers, so only the first two
instructions can complete in a cycle.

Program-related exceptions are signaled when the instruction causing the exception reaches
CQ0. Previous instructions are allowed to complete before the exception is taken, which
ensures that any exceptions those instructions may cause are taken.

6-28 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Timing Considerations

6.3.3.1 Rename Register Operation

To avoid contention for a given register file location in the course of out-of-order execution,
the MPC7451 provides rename registers for holding instruction results before the
completion commits them to the architecture-defined register. The GPRs, FPRs, and VRs
each have 16 rename registers. The CR, LR, and CTR have 1 rename register.

When an instruction is dispatched, a rename register (or registers) are allocated for the
results of that instruction. If an instruction is issued to a reservation station because of a data
dependency, issue logic also provides a tag to the execution unit identifying the rename
register that forwards the required data at completion. Execution can begin when source
data reaches the rename register.

Results from rename registers are transferred to the architecture-defined registers in the
write back stage. Renames are also deallocated in the write-back stage.

If branch prediction is incorrect, instructions after the branch are flushed from the CQ and
any results of those instructions are flushed from the rename registers.

6.3.3.2 Instruction Serialization

Although the MPC7451 core can dispatch and complete three instructions per cycle,
serializing instructions limit dispatch and completion to one instruction per cycle. There are
three basic types of instruction serialization:

• Execution serialization—Execution-serialized instructions are issued and held in the
functional unit’s reservation station. They do not execute until all prior instructions
have completed. A functional unit holding an execution-serialized instruction does
not accept further instructions from the issue queues. For example, execution
serialization is used for instructions that modify non-renamed resources. Results
from these instructions are generally not available or forwarded to subsequent
instructions until the instruction completes.

• Refetch serialization—Refetch-serialized instructions force refetching of
subsequent instructions after completion. Refetch serialization is used when an
instruction has changed or may change a particular context needed by subsequent
instructions. Examples include isync, sc, rfi, mtspr[XER], and any instruction that
toggles the summary-overflow (SO) bit.

• Store serialization—(Applicable to stores and some LSU instructions that access the
data cache.) Store-serialized instructions are dispatched and held in the LSU’s
finished store queue. They are not committed to memory until all prior instructions
have completed. While a store serialized instruction waits in the finished store
queue, other load/store instructions can be freely executed. Store-serialized
instructions complete only from CQ0, so only one store-serialized instruction can
complete per cycle, although non-serialized instructions can complete in the same
cycle as a store-serialized instruction. In general, all stores and cache operation
instructions are store serialized.

MOTOROLA Chapter 6. Instruction Timing 6-29

Execution Unit Timings

6.4 Execution Unit Timings
The following sections describe instruction timing considerations within each of the
respective execution units in the MPC7451.

6.4.1 Branch Processing Unit Execution Timing

Flow control operations (conditional branches, unconditional branches, and traps) are
sometimes expensive to execute in most machines because they may disrupt normal
instruction flow. When program flow changes, the IQ must be reloaded with the target
instruction stream. Previously issued instructions continue executing while the new
instruction stream makes its way into the IQ, but depending on whether the target
instruction is in the BTIC, instruction cache, L2 cache, off-chip L3 cache, or in system
memory, opportunities may be missed to execute instructions, as the examples in
Section 6.3.2.3, “Cache Miss,” show. Note that L3 cache is not supported on the MPC7441
and the MPC7445.

The penalties associated with MPC7451 flow control operations are minimized by
performance features such as branch folding, removal of fall-through branch instructions,
BTIC, dynamic branch prediction (implemented in the BHT), three-level branch
prediction, an eight-entry link stack, and the implementation of nonblocking caches.
Timing for branch instruction execution is affected by whether the following occur:

• The branch is taken.

• Instructions in the target stream, typically the first four instructions in the target
stream, are in the BTIC.

• The target instruction stream is in the on-chip cache.

• The branch is predicted.

• The prediction is correct.

6.4.1.1 Branch Folding and Removal of Fall-Through Branch
Instructions

After a branch enters the IQ, the BPU immediately begins to decode it and tries to resolve
it. Except those that update the LR or CTR, most branch instructions are removed from the
instruction flow before they take a position in the CQ.

Branch folding occurs either when a branch is predicted taken or is resolved taken (as in the
case with unconditional branches). The cycle after branch execution, the BPU folds the
branch out of the instruction stream (removes the branch from the IQ) and also flushes
instructions in the IQ after the branch.

Figure 6-12 shows branch folding with a BTIC hit and with a BTIC miss/instruction cache
hit. Here a b instruction encountered in a series of add instructions is resolved as taken.

6-30 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Execution Unit Timings

What happens on the next clock cycle depends on whether the target instruction stream is
cached or if a bus transfer is required.

If there is a BTIC hit, on the next clock cycle the b instruction is folded and the instructions
after the branch (add4 and add5) are flushed. The cycle after that (clock2), instructions
xor1–xor4 have arrived from the BTIC, and xor1–xor3 are dispatched. In clock 3,
xor5–xor8 arrive.

If the target instructions are not in the BTIC, it takes 2 cycles (fetch1 and fetch2) to attempt
to fetch the first four instructions from the instruction cache. These instructions arrive and
are ready for dispatch in clock 3.

The effect of the taken branch on the instruction supply is known as the branch-taken
bubble. For the BTIC hit case, there is a 1-cycle bubble (clock1). For the BTIC miss case,
there is a 2-cycle bubble (clocks 1 and 2).

If the fetch misses all of the caches, a system memory access is required, the latency of
which depends on factors such as processor:bus clock ratio. In most cases, an L3 cache or
memory access indicates that execution units remain idle, as shown in Section 6.3.2.3,
“Cache Miss.”

Figure 6-12. Branch Folding

Figure 6-13 shows the attempted removal of fall-through branch instructions, which can
occur when a branch is not taken or is predicted as not taken.

Figure 6-13. Removal of Fall-Through Branch Instruction

IQ5 add5
IQ4 add4
IQ3 b
IQ2 add3
IQ1 add2
IQ0 add1

xor4
xor3
xor2
xor1

Branch Folding
(Taken Branch/BTIC Hit)

IQ5 add5
IQ4 add4
IQ3 b
IQ2 add3
IQ1 add2
IQ0 add1

Branch Folding
(Taken Branch/BTIC

Clock 0 Clock 1 Clock 2 Clock 0 Clock 1 Clock 2

xor8
xor7
xor6
xor5
xor4

Clock 3

xor4
xor3
xor2
xor1

Clock 3

IQ5 fadd5
IQ4 bc
IQ3 fcmp4
IQ2 fadd3
IQ1 fadd2
IQ0 fadd1

fadd5
bc

fcmp4
fadd3
fadd2

fadd5
fcmp4
fadd3

Branch Fall-Through
(Successful Folding)

Clock 0 Clock 1 Clock 2 Clock 3

fadd5
fcmp4

IQ5 fadd5
IQ4 fadd4
IQ3 bc
IQ2 fcmp3
IQ1 fadd2
IQ0 fadd1

fadd5
fadd4

bc
fcmp3
fadd2

fadd5
fadd4

bc
fcmp3

Branch Folding
(Unsuccessful Folding)

Clock 0 Clock 1 Clock 2 Clock3

fadd5
fadd4

MOTOROLA Chapter 6. Instruction Timing 6-31

Execution Unit Timings

A not-taken branch instruction stays in the IQ for at least the cycle after execution. If it does
not update the LR or CTR and is in IQ3–IQ7 in the cycle after execution, it can be removed
from the IQ. In Figure 6-13, the branch is predicted as not taken and executes in cycle 0 in
both cases. When the branch is in IQ3, it is removed from the IQ (clock 2). In the
unsuccessful case, it reaches IQ2 in clock 2, from which it cannot be removed and so must
be dispatched.

When a correctly predicted taken branch instruction is detected before reaching a dispatch
position, folding the branch instruction and flushing any instructions from the incorrect
path may eliminate any latency required for control flow. Execution proceeds as though the
branch were never there. However, in many cases the branch-taken bubble may waste a few
dispatch opportunities.

The advantage of removing not-taken branch instructions (fall-through) is slightly less than
that of branch folding. Although the branch may be removed from the instruction stream
and not require a dispatch slot, if the branch reaches IQ0–IQ2 it requires both a dispatch
slot and a CQ entry.

6.4.1.2 Branch Instructions and Completion

As described in the previous section, instructions that do not update the LR or CTR are
often removed from the instruction stream before they reach the CQ. However, branch
instructions that update the architecture-defined LR and CTR must write back in program
order like the instructions that update the FPRs, GPRs, and VRs.

Executed branch instructions that are not removed are not sent to an issue queue at dispatch
but are assigned a CQ slot, as shown in Figure 6-14.

Figure 6-14. Branch Completion (LR/CTR Write-Back)

In this example, the bc that executes in clock cycle 0 depends on cmp and is predicted as
not taken. Because the branch executes in clock cycle 0, it cannot be dispatched. Because

IQ5 add4
IQ4 add3
IQ3 add2
IQ2 add1
IQ1 bc
IQ0 cmp

add5
add4
add3
add2
add1

bc

CQ7
CQ6
CQ5
CQ4
CQ3
CQ2
CQ1
CQ0 cmp

Clock 0 Clock 1

add5
add4
add3

add2
add1

bc
cmp

Clock 2

add5
add4
add3
add2
add1

bc
cmp

Clock 3 Clock 4 Clock 5

add5
add4
add3
add2
add1

add5
add4

6-32 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Execution Unit Timings

the branch is in IQ0 in the cycle after execution, it cannot be folded and is dispatched with
add1 and add2. The cmp executes in clock cycle2 and the branch resolves as correctly
predicted in clock cycle 3.

Also at the end of clock cycle 3, cmp and bc retire. Even if add1 were finished, it could not
retire because the bc is resolving in this cycle. In the cycle after branch resolution, cycle 4,
add1–add5 are marked as non-speculative and add1–add3 are allowed to retire.

6.4.1.3 Branch Prediction and Resolution

The MPC7451 supports the following two types of branch direction prediction:

• Static branch prediction—This is defined by the PowerPC architecture as part of the
encoding of branch instructions.

• Dynamic branch prediction—This is a processor-specific mechanism implemented
in hardware (in particular the branch history table, or BHT) that monitors branch
instruction behavior and maintains a record from which the next occurrence of the
branch instruction is predicted.

When a conditional branch direction cannot be resolved due to a CR or CTR data
dependency, the BPU predicts whether it will be taken and instruction fetching proceeds
down the predicted path. If the prediction is wrong, subsequent instructions and their results
are purged. Instructions ahead of the predicted branch proceed normally, and instruction
fetching resumes along the correct path.

The MPC7451 executes through three prediction levels. Instructions from all three
unresolved branches are allowed to execute but cannot complete until all older branches are
resolved. If three predicted branches are outstanding, no further conditional branches can
be processed (although BPU processes any unconditional branch). When one or more of the
three previous conditional branches is resolved, the BPU can begin processing new
conditional branches.

The number of instructions that can be executed after the issue of a predicted branch
instruction is limited by the fact that no instruction executed after a predicted branch can
update the register files or memory until the branch is resolved. That is, instructions may be
issued and executed, but cannot reach the write-back stage. When an instruction a in
predicted branch stream finishes, it does not write back its results to the
architecture-defined registers until the branch is resolved, which may cause a stall in the
CQ.

In case of a misprediction, the MPC7451 can easily redirect its machine state because the
programming model has not been updated. If a branch is mispredicted, all instructions
dispatched after the predicted branch instruction are flushed from the CQ and any results
are flushed from the rename registers.

MOTOROLA Chapter 6. Instruction Timing 6-33

Execution Unit Timings

If the search for the branch target hits in the BTIC, one of the four target instructions is
available in the IQ 2 cycles later (shown in Figure 6-12). The BTIC is described in detail in
Section 6.3.1, “General Instruction Flow.”

In some situations, an instruction sequence creates dependencies that keep a branch
instruction from being resolved immediately, thereby delaying execution of the subsequent
instruction stream based on the prediction. The instruction sequences and the resulting
action of the branch instruction are as follows:

• An mtspr(LR) followed by a bclr—The link stack is used to predict the instruction
target address.

• An mtspr(LR) followed by a conditional bclr—The BPU stalls this branch until
either the LR becomes available or the required CR/CTR data becomes available.
The BPU can predict a branch either on a direction basis (CR/CTR) or an address
basis (LR) but not both simultaneously. Note that a conditional bclr also requires 2
cycles to execute in the BPU.

• An mtspr(CTR) followed by a bcctr—Fetching stops and the branch waits for the
mtspr to execute.

• A fourth conditional branch—A fourth conditional branch is encountered while
three branches are unresolved (based on CR and CTR direction predictions or LR
address predictions). The fourth bc is not executed and the BPU stalls. This normally
forces the fetcher to stall a cycle or two later when the IQ fills up behind the stalled
branch. This stall continues until at least one unresolved branch resolves. Note that
branch conditions can be a function of the CTR and the CR; if the CTR condition is
sufficient to resolve the branch, any CR dependency is ignored.

6.4.1.3.1 Static Branch Prediction

The PowerPC architecture provides a field in branch instructions (the BO field) to allow
software to hint whether a branch is likely to be taken. Rather than delaying instruction
processing until the condition is known, the MPC7451 begins fetching and executing along
the predicted path. When the branch condition is known, the prediction is evaluated. If the
prediction is correct, program flow continues along that path; otherwise, the processor
flushes any instructions and their results from the mispredicted path, and program flow
resumes along the correct path.

Static branch prediction is used when HID0[BHT] is cleared, which disables the branch
history table. For information about static branch prediction, see “Conditional Branch
Control,” in Chapter 4, “Addressing Modes and Instruction Set Summary,” in the
“Programming Environments Manual.”

6-34 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Execution Unit Timings

6.4.1.3.2 Predicted Branch Timing Examples

Figure 6-15 shows cases where branch instructions are predicted. It shows how both taken
and not-taken branches are handled and how the MPC7451 handles both correct and
incorrect predictions. The example shows the timing for the following instruction sequence:

0 add
1 add
2 bc
3 mulhw.
4 bc T0
5 fadd
6 add
7 add
T0 add
T1 add
T2 add
T3 add
T4 and
T5 add

MOTOROLA Chapter 6. Instruction Timing 6-35

Execution Unit Timings

Figure 6-15. Branch Instruction Timing

1 2 3 4 5 6 7 80 9 10

•••

IQ11

IQ5
IQ4

IQ3 3
IQ2 2
IQ1 1

IQ0 0

T3
T2
T1

T0

T4

T3

7
6

5

7
6

5
4
3

2

CQ15

CQ5

CQ4
CQ3
CQ2

CQ1
CQ0

3
2

1
0

3
2

1
0

T2
T1

T0
3

T4

T3
T2
T1

T0
3

T4

T3
T2
T1

T0
3

T4

T3
T2
T1

T0
3

1
0

Instruction Queue

Completion Queue

0 add

3 mulhw

* Instructions 5 and 6 are not in the IQ in clock cycle 5. Here, the fetch stage shows cache latency.

5 fadd

T4 and

T2 add

T1add

T0 add

1 add

Fetch (in IQ)

Dispatch (IQ0-IQ2)

Execute (also in CQ)

Completion Queue (In CQ)

Only the portion of the fetch
stage during which the
instruction is in the IQ is
shown.

Issue Queue (also in CQ)

6 add

T2 add

T3 add

7 add

5 fadd

6 add

7 add

Retire entry (before exit
from CQ)

11

8 fadd

9 add

10 add

11 add

11
10
9

8

7

6
5

Finish (also in CQ)

4 bc

2 bc

6-36 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Execution Unit Timings

Instruction timing for this example is described cycle-by-cycle as follows:

0. At the end of clock cycle 0, instructions 0 and 1 are dispatched. Instruction 2, a
branch instruction that updates the CTR, is predicted as not taken. Instruction 3 is in
IQ3.

1. Instructions 0 and 1 are in the GIQ. After the branch instruction is executed, it goes
into the CQ from which it updates the CTR when it retires. At the end of this cycle,
instruction 3 is dispatched to the GIQ. Because the second bc instruction
(instruction 4) is predicted as taken, it can be folded. Because it is a BTIC hit, the
target instruction stream can be fetched and available for dispatch at the end of
clock cycle 3. Although the second bc is predicted as taken it continues through the
IQ until the misprediction is detected. Instructions 5–7 are fetched. Because the
second branch (instruction 4) is predicted as taken, instructions 5–7 are removed
from the IQ at the end of this cycle.

2. Instructions 0 and 1 enter two IU1s. Instruction 2 must remain in the CQ until
instructions 0 and 1 complete. Instruction 3 is issued to the IU2.

3. Instructions 0–2 are retired. Instruction 3 continues through the IU2. The BTIC
provides instructions T0–T3 to the IQ as branch instruction 4 is executed, predicted
taken, and folded. T0–T2 are dispatched at the end of this cycle.

4. Instruction 3 recognizes an early-out condition and moves to the final IU2 stage.
Instructions T0–T2 are issued to the three IU1s, and T3 and T4 are dispatched at the
end of this clock cycle.

5. Instruction 3 moves to the final IU2 stage. T0–T2 are executed in the IU1s.
Instructions T3 and T4 are issued at the end of this clock cycle.

6. Instruction 3 enters the IU2 finish stage. T3 and T4 execute in two IU1s, and T0–T2
wait in the CQ.

7. Instruction 3 is retired and its results indicate that the branch (instruction 4) was
mispredicted, so instructions T0–T4 are flushed at the end of this cycle.

8. The mispredicted branch is resolved, so instructions 5–7 are refetched and are now
in the fetch1 stage.

9. Instructions 5–7 are in fetch2 and instructions 8–11 are in fetch1.
10. Instructions 5–7 are dispatched at the end of this cycle and instructions 8–11 are in

fetch2.
11. Instructions 5–7 are issued and instructions 8–11 are dispatched.

6.4.2 Integer Unit Execution Timing

The MPC7451 has three single-cycle integer (IU1s) and one multiple-cycle integer unit
(IU2). The three IU1s execute all integer instructions except multiplies and divides. The
IU2 executes multiplies, divides, and several miscellaneous instructions, including CR
logic and move to/from SPR instructions. Table 6-5 lists integer unit instruction latencies.
As Figure 6-5 shows, most integer instructions have a single-cycle execution latency.

MOTOROLA Chapter 6. Instruction Timing 6-37

Execution Unit Timings

6.4.3 FPU Execution Timing

The FPU executes single- and double-precision floating-point operations compliant with
the IEEE-754 floating-point standard. Single- and double-precision floating-point multiply,
add, and subtract execute in a five-stage pipeline. Most floating-point instructions execute
with 5-cycle latency and 1-cycle throughput; however, fdivs, fres, and fdiv have latencies
of 14 to 35 cycles. The fdivs, fdiv, fres, mcrfs, mtfsb0, mtfsb1, mtfsfi, mffs, and mtfsf
instructions block the FPU pipeline until they complete execution, inhibiting the issue of
additional floating-point instructions. Table 6-6 shows floating-point instruction execution
timing.

6.4.3.1 Effect of Floating-Point Exceptions on Performance

For the best, most predictable MPC7451 floating-point performance, IEEE floating-point
exceptions should be disabled in the FPSCR and MSR.

If an exception is enabled (through a combination of MSR[FE0, FE1] and one or more
FPSCR enable bits), the instruction traps to the program interrupt handler. Floating-point
operations that create an exception sticky bit in the FPSCR may degrade performance.

6.4.4 Load/Store Unit Execution Timing

The LSU executes load and store instructions, including AltiVec LRU and transient
instructions. The execution of most load instructions is pipelined in the three LSU stages,
during which the effective address is calculated, MMU translation are performed, the data
cache array and tags are read, and cache way selection and data alignment is performed. If
there are no data dependencies, cacheable GPR and vector register load instructions have a
3-cycle latency and a 1-cycle throughput. Cacheable FPR load instructions have a 4-cycle
latency and a 1-cycle throughput. The data cache array is updated after a store instruction
is retired.

If operands are misaligned, additional latency may be required either for an alignment
exception or for additional bus accesses. Load instructions that miss in the cache block
subsequent cache accesses during the cache line refill. Table 6-7 gives load and store
instruction execution latencies.

6.4.4.1 Effect of Operand Placement on Performance

The location and alignment of operands in memory may affect performance of memory
accesses, in some cases significantly, as shown in Table 6-1.

Alignment of memory operands on natural boundaries guarantees the best performance.
For the best performance across the widest range of implementations, the programmer
should assume the performance model described in Chapter 3, “Operand Conventions,” in
the “Programming Environments Manual.”

6-38 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Execution Unit Timings

The effect of alignment on memory operation performance is the same for big- and
little-endian addressing modes except for multiple and string operations, which cause an
alignment interrupt in little-endian mode.

In Table 6-1, optimal means that one effective address (EA) calculation occurs during the
memory operation. Fair means that multiple EA calculations occur during the operation,
which may cause additional bus activities with multiple bus transfers. Poor means that an
alignment interrupt is generated by the memory operation.

3

Note that the MPC7451 differs from the MPC750 in some aspects of little-endian
operation; in little-endian mode, the MPC7451 does not work with the MPC106.

Table 6-1. Performance Effects of Memory Operand Placement

Operand Boundary Crossing 1

1 Vector operands are not shown because they are always aligned.
Optimal: One EA calculation occurs.
Fair: Multiple EA calculations occur which may cause additional bus activities with multiple bus transfers.

Poor: Alignment exception occurs.

Size Byte Alignment None 8 Byte Cache Line Protection Boundary

Integer

4 byte 4
<4

Optimal
Optimal

—
Fair

—
Fair

—
Fair

2 byte 2
<2

Optimal
Optimal

—
Fair

—
Fair

—
Fair

1 byte 1 Optimal — — —

lmw, stmw 2

2 These operations are not supported in little-endian mode and would cause an alignment exception.

4
<4

Fair
Poor

Fair
Poor

Fair
Poor

Fair
Poor

String 2, 4 Fair Fair Fair Fair

Floating-Point

8 byte 8
4

<4

Optimal
—
—

—
Fair
Poor

—
Fair
Poor

—
Fair
Poor

4 byte 4
<4

Optimal
Poor

—
Poor

—
Poor

—
Poor

AltiVec 3

3 AltiVec memory operations are forced to align on a 16-byte boundary.
4 Usage of String instructions is strongly discouraged.

16 byte 16 Optimal — — —

MOTOROLA Chapter 6. Instruction Timing 6-39

Execution Unit Timings

6.4.4.2 Store Gathering

The MPC7451 performs store gathering for cache-inhibited and write-through operations
to nonguarded space as well as for cacheable write-back stores. However, stores are
gathered only if the successive stores meet the criteria and are queued and pending. Store
gathering occurs regardless of the address order of the stores and is enabled by setting
HID0[SGE]. Bytes can be gathered into half words, which can be gathered into words,
which can be gathered into double words, which can be gathered into quad words (MPX
bus mode only), and quad words can be gathered into cache lines. In addition, cacheable
write-back stores to the same cache line can be merged regardless of size or alignment.

Store gathering is not done for the following:

• Stores to guarded cache-inhibited or write-through space
• stwcx. instructions
• ecowx instructions
• Double word-to-quad word gathering if in 60x mode

• Cache-inhibited or write-through stores if the result would violate MPX bus
alignment

If store gathering is enabled and the stores do not fall under the above categories, an eieio
or sync instruction must be used to prevent two stores from being gathered.

6.4.4.3 AltiVec Instructions Executed by the LSU

The LSU executes the AltiVec LRU and transient instructions.

6.4.4.3.1 LRU Instructions

The AltiVec architecture specifies that the lvxl and stvxl instructions differ from other
AltiVec load and store instructions in that they leave cache entries in a least-recently-used
state instead of a most-recently-used state. This is used to identify data that is known to have
little reuse and poor caching characteristics.

On the MPC7451, these instructions follow the cache allocation and replacement policies
described in Chapter 3, “L1, L2, and L3 Cache Operation,” but they leave their addressed
cache entries in the LRU state. In addition, all LRU instructions are also interpreted to be
transient and are also treated as described in the next section. Additional discussion of LRU
effects can be found in Chapter 3, “L1, L2, and L3 Cache Operation.”

6.4.4.3.2 Transient Instructions

The AltiVec architecture describes a difference between static and transient memory
accesses. A static memory access should have some reasonable degree of locality and
should be referenced several times or reused over some reasonably long period of time. A

6-40 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Execution Unit Timings

transient memory reference has poor locality and is likely to be referenced a very few times
or over a very short period of time.

The MPC7451 supports both static and transient memory access behavior. If a memory
access is designated as transient, that cache block is not allocated into the L2 or L3. As L1
castouts are not consumed by the L2 or L3 caches unless the line is already resident in the
L2 or L3 cache, this forces the block to be written directly to main memory, bypassing the
L2 and L3 caches. Note that L3 cache is not supported on the MPC7441 and the MPC7445.

The following instructions are interpreted to be transient:

• dstt and dststt (transient forms of the two data stream touch instructions)

• lvxl and stvxl

Use of the dstst and dststt instructions is not recommended. Almost always, a dst or dstt,
or sometimes a series of dcbz instructions, is more appropriate.

6.4.5 AltiVec Instructions

The MPC7451 implements all instructions in the AltiVec specification. The AltiVec
instruction set has no optional instructions; however, a few instructions associated with the
load/store model are defined to allow significant differences between implementations. The
following sections describe the MPC7451 implementation of these options.

6.4.5.1 AltiVec Unit Execution Timing

The AltiVec unit contains the following four independent execution units:

• Vector permute unit (VPU)—All AltiVec permute instructions are executed in a two
cycles

• Vector simple integer unit (VIU1)

• Vector complex integer unit (VIU2)

• Vector floating-point unit (VFPU)

Execution timing for these unit is described in the following sections.

6.4.5.1.1 AltiVec Permute Unit (VPU) Execution Timing

The VPU executes all AltiVec permute instructions, which have a 2-cycle latency.

6.4.5.1.2 Vector Simple Integer Unit (VIU1) Execution Timing

The VIU1 executes all AltiVec simple integer instructions, all of which have a single-cycle
latency plus a separate finish stage.

The mtvscr, mfvscr, vcmpbpfp, vcmpeqfp, vcmpgtfp, vmaxfp, and vminfp instructions,
which were in the VIU1 (VALU(VSIU)) in the MPC7400 and MPC7410, have been moved

MOTOROLA Chapter 6. Instruction Timing 6-41

Execution Unit Timings

to the VFPU in MPC7451. The vsl are vsr instructions, which were also in the VIU1
(VALU(VSIU)) in the MPC7400, have been moved to the VPU in the MPC7451.

6.4.5.1.3 Vector Complex Integer Unit (VIU2) Execution Timing

The VIU2 executes all AltiVec complex integer instructions, which have a 4-cycle latency.

6.4.5.1.4 Vector Floating-Point Unit (VFPU) Execution Timing

Most AltiVec floating-point instructions (regardless of Java/non-Java mode) have a 4-cycle
latency on the MPC7451, unlike the MPC7400 or MPC7410 which has a 4- or 5-cycle
latency depending on non-Java or Java mode, respectively. However, the vcmpbfp,
vcmpeqfp, vcmpgtfp, vmaxfp, and vminfp instructions have 2-cycle latency. Under the
conditions shown in Figure 6-17, these instructions may increase the latency of other VFPU
instructions.

The following two examples show a VFPU pipelining special case for vector-float-compare
instructions.

In the following code sequence, vcmpbfp takes only two cycles. Note that the vcmpbfp
jumps from execution stage 0 in clock cycle 2 to execution stage 3 in clock cycle 3.
However, the bypass does not block other instructions.

0 vcmpbfp
1 vaddfp
2 vaddfp

6-42 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Execution Unit Timings

Figure 6-16. Vector Floating-Point Compare Bypass Non-Blocking

1 2 3 4 5 6 7 80

•••

IQ11

IQ2 2
IQ1 1

IQ0 0 2

CQ15

CQ4

CQ3
CQ2
CQ1

CQ0

2
1

0

2
1

0

2
1

0

2

1

2

1

2

1 2

1

0

Instruction Queue

Completion Queue

2vaddfp

E0 E3

E0

E0 E1 E2 E3

1vaddfp

0vcmpbfp

E3E2E1

Fetch (in IQ)

Execute (also in CQ)

Retire entry (before exit from CQ)

Dispatch (IQ0–IQ2)

Issue Queue (also in CQ)

E0–E3 Execution stages

In Issue Queue (also in CQ)

MOTOROLA Chapter 6. Instruction Timing 6-43

Execution Unit Timings

In next sequence, vcmpbfp has a 2-cycle latency and bypasses other instructions. Note that
in clock cycle 5, the bypass blocks all other instructions in the sequence. Because of the
bypass, the second and third vaddfp do not advance in that cycle. Effectively, the bypass
causes the second and third vaddfp to have a 5th cycle of latency.

0 vaddfp
1 vaddfp
2 vaddfp
3 vcmpbfp
4 vaddfp

Figure 6-17. Vector Float Compare Bypass Blocking

1 2 3 4 5 6 7 80

•••

IQ11

IQ3 3
IQ2 2
IQ1 1

IQ0 0

4
3

2

CQ15

CQ4
CQ3

CQ2
CQ1
CQ0

3

2
1
0

4
3

2
1
0

4
3

2
1
0

4
3

2
1
0

4
3

2
1
0

4

3
2
1

4

3
2
1

1
0

Instruction Queue

Completion Queue

1vaddfp

0vaddfp

2vaddfp

3vcmpbfp

4vaddfp

9 10

4
3
2 4

E0 E1 E2 E3

E0 E1 E2 E2 E3

E0 E1 E1 E2 E3

E0 E3

E0 E1 E2 E3

4

Fetch (in IQ) Execute (also in CQ)

Retire entry (before exit from CQ)

Dispatch (IQ0–IQ2)

Issue Queue (also in CQ) E0–E3 Execution stages

In Issue Queue (also in CQ)

Completion Queue (CQ)

6-44 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Memory Performance Considerations

6.5 Memory Performance Considerations
Because the MPC7451 has a maximum instruction throughput of three instructions per
clock cycle, lack of memory bandwidth can affect performance. To maximize performance,
the MPC7451 must be able to read and write data efficiently. If a system has multiple bus
devices, one device may experience long memory latencies while another device (for
example, a direct-memory access controller) is using the external bus.

6.5.1 Caching and Memory Coherency

To minimize the effect of bus contention, the PowerPC architecture defines WIM bits that
define caching characteristics for the corresponding page or block. Accesses to
caching-inhibited memory locations never update the L1, L2, or L3 caches. Note that L3
cache is not supported on the MPC7441 and the MPC7445. If a cache-inhibited access hits
in any of the caches, the cache block is invalidated. If the cache block is marked modified,
it is copied back to memory before being invalidated. Where caching is permitted, memory
is configured as either write-back or write-through, as described in the Chapter 3, “L1, L2,
and L3 Cache Operation.”

6.6 Instruction Latency Summary
Instruction timing is shown in Table 6-2 through Table 6-8. The latency tables use the
following conventions:

• Pipelined load/store and floating-point instructions are shown with cycles of total
latency and throughput cycles separated by a colon.

• Floating-point instructions with a single entry in the cycles column are not
pipelined.

• In addition, additional cycles due to serialization are indicated in the cycles column
with the following:
— e (execution serialization)
— r (refetch serialization)
— s (store serialization)

MOTOROLA Chapter 6. Instruction Timing 6-45

Instruction Latency Summary

Figure 6-2 through Figure 6-8 list latencies associated with instructions executed by each
execution unit. Figure 6-2 describes branch instruction latencies.

Figure 6-3 lists system operation instruction latencies.

Table 6-2. Branch Operation Execution Latencies

Mnemonic Primary Extend Form Unit Cycles

b[l][a] 18 — i BPU 11

bc[l][a] 16 — b BPU 1 1

1 Branches that do not modify the LR or CTR can be folded and not dispatched. Branches that
are dispatched go only to the CQ.

bcctr[l] 19 528 xl BPU 11

bclr[l] 19 016 xl BPU 1, 21

Table 6-3. System Operation Instruction Execution Latencies

Mnemonic Primary Extend Form Unit Cycles

eieio 31 854 X LSU 3:5 {s}

isync 19 150 XL — 1 0{r}

mfmsr 31 083 X IU2 3-2

mfspr (DBATs) 31 339 XFX IU2 4:3{e}

mfspr (IBATs) 31 339 XFX IU2 4:3

mfspr (MSS) 31 339 XFX IU2 5{e} 2

mfspr (other) 31 339 XFX IU2 3{e}

mfspr (Time Base) 31 339 XFX IU2 5{e}

mfspr (VRSAVE) 31 339 XFX IU2 3:2

mfsr 31 595 X IU2 4:3

mfsrin 31 659 X IU2 4:3

mftb 31 371 X IU2 5{e}

mtmsr 31 146 X IU2 2{e}

mtspr (DBATs) 31 467 XFX IU2 2{e}

mtspr (IBATs) 31 467 XFX IU2 2{e}

mtspr (MSS) 31 467 XFX IU2 5{e}

mtspr (other) 31 467 XFX IU2 2{e}

mtspr (XER) 31 467 XFX IU2 2{e,r}1

mtsr 31 210 X IU2 2{e}

mtsrin 31 242 X IU2 2{e}

mttb 31 467 XFX IU2 5{e}

rfi 19 050 XL —1 0{r}

6-46 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Latency Summary

Figure 6-4 lists condition register logical instruction latencies.

Table 6-5 lists integer unit instruction latencies.

sc 17 —1 SC —1 0{r}

sync 31 598 X LSU 35 3{e,s}

tlbsync 31 566 X LSU 3:5{s}

1 Refetch serialized instructions (if marked with a 0-cycle execution time) do not have an execute
stage, and all refetch serialized instructions have 1 cycle between the time they are completed and
the time the target/sequential instruction enters the fetch1 stage.

2 Memory subsystem SPRs are implementation specific and are described in Chapter 2,
“Programming Model.”

3 Assuming a 5:1 processor to clock ratio.

Table 6-4. Condition Register Logical Execution Latencies

Mnemonic Primary Extend Form Unit Cycles

crand 19 257 XL IU2 2{e}

crandc 19 129 XL IU2 2{e}

creqv 19 289 XL IU2 2{e}

crnand 19 225 XL IU2 2{e}

crnor 19 033 XL IU2 2{e}

cror 19 449 XL IU2 2{e}

crorc 19 417 XL IU2 2{e}

crxor 19 193 XL IU2 2{e}

mcrf 19 000 XL IU2 2{e}

mcrxr 31 512 X IU2 2{e}

mfcr 31 019 X IU2 2{e}

mtcrf 31 144 XFX IU2/IU1 2{e}/1 1

1 mtcrf of a single field is executed by an IU1 in a single cycle
and is not serialized.

Table 6-5. Integer Unit Execution Latencies

Mnemonic Primary Extend Form Unit Cycles

addc[o][.] 31 010 XO IU1 1

adde[o][.] 31 138 XO IU1 1{e}

addi 14 — D IU1 1

addic 12 — D IU1 1

addic. 13 — D IU1 1

Table 6-3. System Operation Instruction Execution Latencies (continued)

Mnemonic Primary Extend Form Unit Cycles

MOTOROLA Chapter 6. Instruction Timing 6-47

Instruction Latency Summary

addis 15 — D IU1 1

addme[o][.] 31 234 XO IU1 1{e}

addze[o][.] 31 202 XO IU1 1{e}

add[o][.] 31 266 XO IU1 1

andc[.] 31 060 X IU1 1

andi. 28 — D IU1 1

andis. 29 — D IU1 1

and[.] 31 028 X IU1 1

cmp 31 000 X IU1 1

cmpi 11 — D IU1 1

cmpl 31 032 X IU1 1

cmpli 10 — D IU1 1

cntlzw[.] 31 026 X IU1 1

divwu[o][.] 1 31 459 XO IU2 23

divw[o][.] 2 31 491 XO IU2 23

eqv[.] 31 284 X IU1 1

extsb[.] 31 954 X IU1 1 3

extsh[.] 31 922 X IU1 1 3

mulhwu[.] 31 011 XO IU2 4:2 4

mulhw[.] 31 075 XO IU2 4:2 4

mulli 07 — D IU2 3:1

mull[o][.] 31 235 XO IU2 4:2 4

nand[.] 31 476 X IU1 1

neg[o][.] 31 104 XO IU1 1

nor[.] 31 124 X IU1 1

orc[.] 31 412 X IU1 1

ori 24 — D IU1 1

oris 25 — D IU1 1

or[.] 31 444 X IU1 1

rlwimi[.] 20 — M IU1 1 3

rlwinm[.] 21 — M IU1 1 3

rlwnm[.] 23 — M IU1 1 3

slw[.] 31 024 X IU1 1 3

srawi[.] 31 824 X IU1 2 5

Table 6-5. Integer Unit Execution Latencies (continued)

Mnemonic Primary Extend Form Unit Cycles

6-48 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Latency Summary

Table 6-6 shows latencies for FPU instructions. Instructions with a single entry in the cycles
column are not pipelined; all FPU stages are busy for the full duration of instruction
execution and are unavailable to subsequent instructions. Floating-point arithmetic
instructions execute in the FPU; floating-point loads and stores execute in the LSU

For pipelined instructions, two numbers are shown separated by a colon. The first shows the
number of cycles required to fill the pipeline. The second is the throughput once the
pipeline is full. For example, fabs[.] passes through five stages with a 1-cycle throughput.

sraw[.] 31 792 X IU1 2 5

srw[.] 31 536 X IU1 1 1

subfc[o][.] 31 008 XO IU1 1

subfe[o][.] 31 136 XO IU1 1{e}

subfic 08 — D IU1 1

subfme[o][.] 31 232 XO IU1 1{e}

subfze[o][.] 31 200 XO IU1 1{e}

subf[.] 31 040 XO IU1 1

tw 31 004 X IU1 2

twi 03 — D IU1 2

xori 26 — D IU1 1

xoris 27 — D IU1 1

xor[.] 31 316 X IU1 1

1 For the special case of division by zero, the latency is 3 cycles.
2 For the special case of division by zero or 0x8000_0000 divided by 0xFFFF_FFFF, the latency

is 3 cycles
3 If the record bit is set, the result is available in 1 cycle and execution takes 2 cycles.
4 32*32-bit multiplication has an early exit condition. If the 15 msbs of the B operand are either

all set or all cleared, the multiply finishes with a latency of 3 and a throughput of 1.
5 srawi[.] and sraw[.] produce a GPR result in 1 cycle, but the full results, including the CA, OV,

CR results, are available in 2 cycles.

Table 6-6. Floating-Point Unit (FPU) Execution Latencies

Mnemonic Primary Extend Form Cycles

fabs[.] 63 264 X 5:1

fadds[.] 59 021 A 5:1

fadd[.] 63 021 A 5:1

fcmpo 63 032 X 5:1

fcmpu 63 000 X 5:1

Table 6-5. Integer Unit Execution Latencies (continued)

Mnemonic Primary Extend Form Unit Cycles

MOTOROLA Chapter 6. Instruction Timing 6-49

Instruction Latency Summary

Table 6-7 shows load and store instruction latencies. Load/store multiple and string
instruction cycles are represented as a fixed number of cycles plus a variable number of
cycles, where n = the number of words accessed by the instruction. Pipelined load/store
instructions are shown with total latency and throughput separated by a colon.

fctiwz[.] 63 015 X 5:1

fctiw[.] 63 014 X 5:1

fdivs[.] 59 018 A 21

fdiv[.] 63 018 A 35

fmadds[.] 59 029 A 5:1

fmadd[.] 63 029 A 5:1

fmr[.] 63 072 X 5:1

fmsubs[.] 59 028 A 5:1

fmsub[.] 63 028 A 5:1

fmuls[.] 59 025 A 5:1

fmul[.] 63 025 A 5:1

fnabs[.] 63 136 X 5:1

fneg[.] 63 040 X 5:1

fnmadds[.] 59 031 A 5:1

fnmadd[.] 63 031 A 5:1

fnmsubs[.] 59 030 A 5:1

fnmsub[.] 63 030 A 5:1

fres[.] 59 024 A 14

frsp[.] 63 012 X 5:1

frsqrte[.] 63 026 A 5:1

fsel[.] 63 023 A 5:1

fsubs[.] 59 020 A 5:1

fsub[.] 63 020 A 5:1

mcrfs 63 064 X 5{e}

mffs[.] 63 583 X 5{e}

mtfsb0[.] 63 070 X 5{e}

mtfsb1[.] 63 038 X 5{e}

mtfsfi[.] 63 134 X 5{e}

mtfsf[.] 63 711 XFL 5{e}

Table 6-6. Floating-Point Unit (FPU) Execution Latencies (continued)

Mnemonic Primary Extend Form Cycles

6-50 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Latency Summary

Table 6-7. Load/Store Unit (LSU) Instruction Latencies

Mnemonic Primary Extend Form Cycles 1

dcba 31 758 X 3:1{s}

dcbf 31 86 X 3:11{s}

dcbst 31 54 X 3:11{s}

dcbt 31 278 X 3:1

dcbtst 31 246 X 3:1

dcbz 31 1014 X 3:1{s}

dss 31 582 X 3:1

dssall 31 582 X 3:1

dsts[t] 31 550 X 3:1

dst[t] 31 518 X 3:1

eciwx 31 310 X 3:1

icbi 31 982 X 3:1{s}

lbz 34 — D 3:1

lbzu 35 — D 3:1

lbzux 31 119 X 3:1

lbzx 31 87 X 3:1

lfd 50 — D 4:1

lfdu 51 — D 4:1

lfdux 31 631 X 4:1

lfdx 31 599 X 4:1

lfs 48 — D 4:1

lfsu 49 — D 4:1

lfsux 31 567 X 4:1

lfsx 31 535 X 4:1

lha 42 — D 3:1

lhau 43 — D 3:1

lhaux 31 375 X 3:1

lhax 31 343 X 3:1

lhbrx 31 790 X 3:1

lhz 40 — D 3:1

lhzux 31 311 X 3:1

lhzx 31 279 X 3:1

lmw 46 — D 3 + n

lswi 31 597 X 3 + n

MOTOROLA Chapter 6. Instruction Timing 6-51

Instruction Latency Summary

lswx 31 533 X 3 + n

lvebx 31 7 X 3:1

lvehx 31 39 X 3:1

lvewx 31 71 X 3:1

lvsl 31 6 X 3:1

lvsr 31 38 X 3:1

lvx 31 103 X 3:1

lvxl 31 359 X 3:1

lwarx 31 20 X 3{e}

lwbrx 31 534 X 3:1

lwz 32 — D 3:1

lwzu 33 — D 3:1

lwzux 31 55 X 3:1

lwzx 31 23 X 3:1

stb 38 — D 3:1{s}

stbu 39 — D 3:1{s}

stbux 31 247 X 3:1{s}

stbx 31 215 X 3:1{s}

stfd 54 — D 3:3{s}2

stfdu 55 — D 3:3{s}2

stfdux 31 759 X 3:3{s}2

stfdx 31 727 X 3:3{s}2

stfiwx 31 983 X 3:1{s}

stfs 52 — D 3:3{s} 2

stfsu 53 — D 3:3{s}2

stfsux 31 695 X 3:3{s}2

stfsx 31 663 X 3:3{s}2

sth 44 — D 3:1{s}

sthbrx 31 918 X 3:1{s}

sthu 45 — D 3:1{s}

stmw 47 — D 3 + n{s}

stswi 31 725 X 3+ n{s}

stswx 31 661 X 3 + n{s}

stvebx 31 135 X 3:1{s}

Table 6-7. Load/Store Unit (LSU) Instruction Latencies (continued)

Mnemonic Primary Extend Form Cycles 1

6-52 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Latency Summary

Table 6-8 describes AltiVec instruction latencies.

stvehx 31 167 X 3:1{s}

stvewx 31 199 X 3:1{s}

stvx 31 231 X 3:1{s}

stvxl 31 487 X 3:1{s}

stw 36 — D 3:1{s}

stwbrx 31 662 X 3:1{s}

stwcx. 31 150 X 3:1{s}

stwu 37 — D 3:1{s}

stwux 31 183 X 3:1{s}

stwx 31 151 X 3:1{s}

tlbie 31 306 X 3:1{s}

tlbld 31 978 X 3{e}

tlbli 31 1010 X 3{e}

1 For cache operations, the first number indicates the latency for finishing a single instruction and the second
number indicates the throughput for a large number of back-to-back cache operations. The throughput cycle
may be larger than the initial latency because more cycles may be needed for the data to reach the cache. If
the cache remains busy, subsequent cache operations cannot execute.

2 Floating-point stores may take as many as 24 additional cycles if the value being stored is a denormalized
number.

Table 6-8. AltiVec Instruction Latencies

Mnemonic Primary Extend Form Unit Cycles 1

mfvscr 04 1540 VX VFPU 2{e}

mtvscr 04 1604 VX VFPU 2{e}

vaddcuw 04 384 VX VIU1 1

vaddfp 04 10 VX VFPU 4:1

vaddsbs 04 768 VX VIU1 1

vaddshs 04 832 VX VIU1 1

vaddsws 04 896 VX VIU1 1

vaddubm 04 0 VX VIU1 1

vaddubs 04 512 VX VIU1 1

vadduhm 04 64 VX VIU1 1

vadduhs 04 576 VX VIU1 1

vadduwm 04 128 VX VIU1 1

Table 6-7. Load/Store Unit (LSU) Instruction Latencies (continued)

Mnemonic Primary Extend Form Cycles 1

MOTOROLA Chapter 6. Instruction Timing 6-53

Instruction Latency Summary

vadduws 04 640 VX VIU1 1

vand 04 1028 VX VIU1 1

vandc 04 1092 VX VIU1 1

vavgsb 04 1282 VX VIU1 1

vavgsh 04 1346 VX VIU1 1

vavgsw 04 1410 VX VIU1 1

vavgub 04 1026 VX VIU1 1

vavguh 04 1090 VX VIU1 1

vavguw 04 1154 VX VIU1 1

vcfsx 04 842 VX VFPU 4:1

vcfux 04 778 VX VFPU 4:1

vcmpbfp[.] 04 966 [1990] VX VFPU 2:1

vcmpeqfp[.] 04 198 [1222] VX VFPU 2:1

vcmpequb[.] 04 6 [1030] VX VIU1 1

vcmpequh[.] 04 70 [1094] VX VIU1 1

vcmpequw[.] 04 134 [1158] VX VIU1 1

vcmpgefp[.] 04 454 [1478] VX VFPU 2:1

vcmpgtfp[.] 04 710 [1734] VX VFPU 2:1

vcmpgtsb[.] 04 774 [1798] VX VIU1 1

vcmpgtsh[.] 04 838 [1862] VX VIU1 1

vcmpgtsw[.] 04 902 [1926] VX VIU1 1

vcmpgtub[.] 04 518 [1542] VX VIU1 1

vcmpgtuh[.] 04 582 [1606] VX VIU1 1

vcmpgtuw[.] 04 646 [1670] VX VIU1 1

vctsxs 04 970 VX VFPU 4:1

vctuxs 04 906 VX VFPU 4:1

vexptefp 04 394 VX VFPU 4:1

vlogefp 04 458 VX VFPU 4:1

vmaddfp 04 46 VA VFPU 4:1

vmaxfp 04 1034 VX VFPU 2:1

vmaxsb 04 258 VX VIU1 1

vmaxsh 04 322 VX VIU1 1

vmaxsw 04 386 VX VIU1 1

vmaxub 04 2 VX VIU1 1

Table 6-8. AltiVec Instruction Latencies (continued)

Mnemonic Primary Extend Form Unit Cycles 1

6-54 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Latency Summary

vmaxuh 04 66 VX VIU1 1

vmaxuw 04 130 VX VIU1 1

vmhaddshs 04 32 VA VIU2 4:1

vmhraddshs 04 33 VA VIU2 4:1

vminfp 04 1098 VX VFPU 2:1

vminsb 04 770 VX VIU1 1

vminsh 04 834 VX VIU1 1

vminsw 04 898 VX VIU1 1

vminub 04 514 VX VIU1 1

vminuh 04 578 VX VIU1 1

vminuw 04 642 VX VIU1 1

vmladduhm 04 34 VA VIU2 4:1

vmrghb 04 12 VX VPU 2:1

vmrghh 04 76 VX VPU 2:1

vmrghw 04 140 VX VPU 2:1

vmrglb 04 268 VX VPU 2:1

vmrglh 04 332 VX VPU 2:1

vmrglw 04 396 VX VPU 2:1

vmsummbm 04 37 VA VIU2 4:1

vmsumshm 04 40 VA VIU2 4:1

vmsumshs 04 41 VA VIU2 4:1

vmsumubm 04 36 VA VIU2 4:1

vmsumuhm 04 38 VA VIU2 4:1

vmsumuhs 04 39 VA VIU2 4:1

vmulesb 04 776 VX VIU2 4:1

vmulesh 04 840 VX VIU2 4:1

vmuleub 04 520 VX VIU2 4:1

vmuleuh 04 584 VX VIU2 4:1

vmulosb 04 264 VX VIU2 4:1

vmulosh 04 328 VX VIU2 4:1

vmuloub 04 8 VX VIU2 4:1

vmulouh 04 72 VX VIU2 4:1

vnmsubfp 04 47 VA VFPU 4:1

vnor 04 1284 VX VIU1 1

Table 6-8. AltiVec Instruction Latencies (continued)

Mnemonic Primary Extend Form Unit Cycles 1

MOTOROLA Chapter 6. Instruction Timing 6-55

Instruction Latency Summary

vor 04 1156 VX VIU1 1

vperm 04 43 VA VPU 2:1

vpkpx 04 782 VX VPU 2:1

vpkshss 04 398 VX VPU 2:1

vpkshus 04 270 VX VPU 2:1

vpkswss 04 462 VX VPU 2:1

vpkswus 04 334 VX VPU 2:1

vpkuhum 04 14 VX VPU 2:1

vpkuhus 04 142 VX VPU 2:1

vpkuwum 04 78 VX VPU 2:1

vpkuwus 04 206 VX VPU 2:1

vrefp 04 266 VX VFPU 4:1

vrfim 04 714 VX VFPU 4:1

vrfin 04 522 VX VFPU 4:1

vrfip 04 650 VX VFPU 4:1

vrfiz 04 586 VX VFPU 4:1

vrlb 04 4 VX VIU1 1

vrlh 04 68 VX VIU1 1

vrlw 04 132 VX VIU1 1

vrsqrtefp 04 330 VX VFPU 4:1

vsel 04 42 VA VIU1 1

vsl 04 452 VX VPU 2:1

vslb 04 260 VX VIU1 1

vsldoi 04 44 VA VPU 2:1

vslh 04 324 VX VIU1 1

vslo 04 1036 VX VPU 2:1

vslw 04 388 VX VIU1 1

vspltb 04 524 VX VPU 2:1

vsplth 04 588 VX VPU 2:1

vspltisb 04 780 VX VPU 2:1

vspltish 04 844 VX VPU 2:1

vspltisw 04 908 VX VPU 2:1

vspltw 04 652 VX VPU 2:1

vsr 04 708 VX VPU 2:1

Table 6-8. AltiVec Instruction Latencies (continued)

Mnemonic Primary Extend Form Unit Cycles 1

6-56 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Latency Summary

vsrab 04 772 VX VIU1 1

vsrah 04 836 VX VIU1 1

vsraw 04 900 VX VIU1 1

vsrb 04 516 VX VIU1 1

vsrh 04 580 VX VIU1 1

vsro 04 1100 VX VPU 2:1

vsrw 04 644 VX VIU1 1

vsubcuw 04 1408 VX VIU1 1

vsubfp 04 74 VX VFPU 4:1

vsubsbs 04 1792 VX VIU1 1

vsubshs 04 1856 VX VIU1 1

vsubsws 04 1920 VX VIU1 1

vsububm 04 1024 VX VIU1 1

vsububs 04 1536 VX VIU1 1

vsubuhm 04 1088 VX VIU1 1

vsubuhs 04 1600 VX VIU1 1

vsubuwm 04 1152 VX VIU1 1

vsubuws 04 1664 VX VIU1 1

vsum2sws 04 1672 VX VIU2 4:1

vsum4sbs 04 1800 VX VIU2 4:1

vsum4shs 04 1608 VX VIU2 4:1

vsum4ubs 04 1544 VX VIU2 4:1

vsumsws 04 1928 VX VIU2 4:1

vupkhpx 04 846 VX VPU 2:1

vupkhsb 04 526 VX VPU 2:1

vupkhsh 04 590 VX VPU 2:1

vupklpx 04 974 VX VPU 2:1

vupklsb 04 654 VX VPU 2:1

vupklsh 04 718 VX VPU 2:1

vxor 04 1220 VX VIU1 1

1 Most AltiVec floating-point instructions on the MPC7451 (regardless of Java/non-Java
mode) have a 4-cycle latency, unlike the MPC7400 or the MPC7410. However, some VFPU
instructions have 2-cycle latency which under some conditions may cause other instructions
to have greater than 4-cycle latency (see Section 6.4.5.1.4, “Vector Floating-Point Unit
(VFPU) Execution Timing” for details).

Table 6-8. AltiVec Instruction Latencies (continued)

Mnemonic Primary Extend Form Unit Cycles 1

MOTOROLA Chapter 6. Instruction Timing 6-57

Instruction Scheduling Guidelines

6.7 Instruction Scheduling Guidelines
This section provides an overview of instruction scheduling guidelines, followed by
detailed examples showing how to optimize scheduling with respect to various pipeline
stages. Performance can be improved by avoiding resource conflicts and scheduling
instructions to take fullest advantage of the parallel execution units. Instruction scheduling
can be improved by observing the following guidelines:

• To reduce branch mispredictions, separate the instruction that sets CR bits from the
branch instruction that evaluates them. Because there can be no more than 24
instructions in the processor (with the instruction that sets CR in CQ0 and the
dependent branch instruction executing in IQ7), there is no advantage to having
more than 22 instructions between them.

The MPC7451 branch prediction table is four times larger than the MPC7400’s. This
helps prevent aliasing in the BHT, which often reduces prediction accuracy.

• Likewise, when branching to a location specified by the CTR or LR, separate the
mtspr instruction that initializes the CTR or LR from the dependent branch
instruction. This ensures the register values are immediately available to the branch
instruction.

• Schedule instructions so three can be dispatched at a time.

• Schedule instructions to minimize stalls due to busy execution units. To avoid
branch stalls, MPC7451 has added a third branch prediction buffer over MPC7400’s
two. This allows the branch prediction engine to go one level deeper before stalling.

• Avoid scheduling high-latency instructions close together. Interspersing
single-cycle latency instructions between longer-latency instructions minimizes the
effect that instructions such as integer divide and multiply can have on throughput.

• Avoid using serializing instructions.

• Schedule instructions to avoid dispatch stalls:

— Intersperse instructions to maximize the ability to dispatch three GPR
instructions, two VR instructions, and one FPR instruction.

— 16 instructions can be tracked in the CQ; therefore, 16 instructions can be in the
execute stages at any one time

— There are 16 GPR rename registers, so only 16 GPRs can be specified as
destination operands at any time. If no rename registers are available,
instructions cannot enter the execute stage and remain in the reservation station
or IQ until they become available.

Note that load with update address instructions use two destination registers

— Similarly, there are 16 FPR rename registers and 16 VR rename registers, so 16
FPR and 16 AltiVec rename registers destination operands can be in the execute
and complete stages at any time.

• Avoid branches where possible; favor fall-through branches over taken branches.

6-58 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

The following sections give detailed information regarding optimizing code for the
MPC7451 pipeline stages.

6.7.1 Fetch/Branch Considerations

The following is a list of branch instructions and the resources required to avoid stalling the
fetch unit in the course of branch resolution:

• The bclr instruction requires LR availability for resolution. However, it uses the link
stack to predict the target address in order to avoid stalling fetch.

• The bcctr instruction requires CTR availability.

• The branch conditional on counter decrement and the CR condition requires CTR
availability or the CR condition must be false.

• A fourth conditional branch instruction cannot be executed following three
unresolved predicted branch instructions.

6.7.1.1 Fetching Examples

Branches that target an instruction at or near the end of a cache block can cause instruction
supply problems. Consider a four-instruction loop branch (including the branch) where the
entry point is the last word of the cache block. The MPC7451 needs at least 2 cycles to
fetch the four instructions because the cache block boundary breaks the four instructions
into two accesses. Aligning this loop significantly increases the instruction supply.

Additionally, on the MPC7451 this tight loop encounters the branch-taken bubble problem.
That is, the BTIC supplies instructions 1 cycle after the branch executes. For the
instructions in the cache block crossing case, this leads to four instructions fetched every 3
cycles. Aligning instructions to be within a cache block increases the number of instructions
fetched to 4 every 2 cycles. For longer loops, the branch-taken bubble overhead can be
better amortized or in some cases can disappear (because the branch is executed early and
the bubble disappears at dispatch time). Software loop unrolling can increase the number
of instructions per branch.

NOTE
The BTIC contains targets for only b and bc branches. Indirect
branches (bcctr and bclr) must go to the instruction cache for
instructions, which incurs an additional cycle of fetch latency
(branch-taken bubble).

6.7.1.1.1 Fetch Alignment Example

The following code loop is a simple array accumulation operation.

xxxxxx18 loop: lwzu r10,0x4(r9)
xxxxxx1C add r11,r11,r10
xxxxxx20 bdnz loop

MOTOROLA Chapter 6. Instruction Timing 6-59

Instruction Scheduling Guidelines

The lwzu and add are the last two instructions in one cache block, and the bdnz is the first
instruction in the next. In this example, the fetch supply is the primary restriction.
Table 6-9 assumes instruction cache and BTIC hits. The lwzu/add of the second iteration
are available for dispatch in cycle 3, as a result of a BTIC hit for the bdnz executed in
cycle 1. The bdnz of the second iteration is available in the IQ one cycle later (cycle 4)
because the cache block break forced a fetch from the instruction cache. Overall, the loop
is limited to one iteration for every 3 cycles.

Performance can be increased if the loop is aligned so that all three instructions are in the
same cache block, as in the following example.

xxxxxx00 loop: lwzu r10,0x4(r9)
xxxxxx04 add r11,r11,r10
xxxxxx08 bdnz loop

The fact that the loop fits in the same cache block allows the BTIC entry to provide all
three instructions. Table 6-10 shows pipelined execution results (again assuming BTIC
and instruction cache hits). While fetch supply is still a bottleneck, it is improved by
proper alignment. The loop is now limited to one iteration every 2 cycles, increasing
performance by 50%.

Table 6-9. Fetch Alignment Example

Instruction 0 1 2 3 4 5 6 7 8 9 10 11

lwzu (1) D I E0 E1 E2 C

add (1) D I - - - E C

bdnz (1) F2 BE D - - - C

lwzu (2) D I E0 E1 E2 C

add (2) D I - - - E C

bdnz (2) F1 F2 BE D - - - C

lwzu (3) D I E0 E1 E2 C

add (3) D I - - - E

bdnz (3) F1 F2 BE D - - -

6-60 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

Loop unrolling and vectorization can further increase performance.

6.7.1.1.2 Branch-Taken Bubble Example

The following code shows how favoring taken branches affects fetch supply.

xxxxxx00 lwz r10,0x4(r9)
xxxxxx04 cmpi 4,r10,0x0
xxxxxx08 bne 4, targ
xxxxxx0C stw r11,0x4(r9)
xxxxxx10 targ add (next basic block)

This example assumes the bne is usually taken (that is, most of the data in the array is
non-zero). Table 6-11 assumes correct prediction of the bne, and cache and BTIC hits.

Rearranging the code as follows improves the fetch supply.

xxxxxx00 lwz r10,0x4(r9)
xxxxxx04 cmpi 4,r10,0x0
xxxxxx08 beq 4,targ
xxxxxx0C targ2 add (next basic block)
...
yyyyyy00 targ stw r11,0x4(r9)
yyyyyy04 b targ2

Using the same assumptions as before, Table 6-12 shows the performance improvement.
Note that the first instruction of the next basic block (add) completes in the same cycle as

Table 6-10. Loop Example—Three Iterations

Instruction 0 1 2 3 4 5 6 7 8 9

lwzu (1) D I E0 E1 E2 C

add (1) D I - - - E C

bdnz (1) BE D - - - - C

lwzu (2) D I E0 E1 E2 C

add (2) D I - - - E C

bdnz (2) BE D - - - - C

lwzu (3) D I E0 E1 E2 C

add (3) D I - - - E

bdnz (3) BE D - - - -

Table 6-11. Branch-Taken Bubble Example

Instruction 0 1 2 3 4 5 6

lwz D I E0 E1 E2 C

cmpi D I - - - E C

bne BE

add D I E - C

MOTOROLA Chapter 6. Instruction Timing 6-61

Instruction Scheduling Guidelines

before. However, by avoiding the branch-taken bubble (because the branch is usually not
taken), it also dispatches 1 cycle earlier, so that the next basic block begins executing 1
cycle sooner.

6.7.1.2 Branch Conditionals

The cost of mispredictions increases with pipeline length. The following section shows
common problems and suggests how to minimize them.

6.7.1.2.1 Branch Mispredict Example

Table 6-13 uses the same code as the two previous examples but assumes the bne
mispredicts. The compare executes in cycle 5, which means the branch mispredicts in
cycle 6 and the fetch pipeline restarts at that correct target for the add in cycle 7. This
particular mispredict effectively costs 7 cycles (add dispatches in cycle 2 in Table 6-11
and in cycle 9 in Table 6-13).

6.7.1.2.2 Branch Loop Example

Use CTR whenever possible for branch loops, especially for tight inner loops. After the
CTR is loaded (using mtctr), a branch dependent on the CTR requires no directional
prediction. Additionally, loop termination conditions are always handled correctly, which
is not so with the normal branch predictor.

xxxxxx18outer_loop:addi. r6,r6,#FFFF
xxxxxx1C cmpi 1,r6,#0
xxxxxx20inner_loop:addic. r7,r7,#FFFF
xxxxxx24 lwzu r10,0x4(r9)
xxxxxx28 add r11,r11,r10
xxxxxx2C bne inner_loop

Table 6-12. Eliminating the Branch-Taken Bubble

Instruction 0 1 2 3 4 5 6 7 8 9 10

lwz D I E0 E1 E2 C

cmpi D I - - - E C

beq BE D - - - - C

add D I E - - C

Table 6-13. Misprediction Example

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12

lwz D I E0 E1 E2 C

cmpi D I - - - E C

bne BE M

add F1 F2 D I E C

6-62 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

xxxxxx30 stwu r11,0x4(r8)
xxxxxx34 xor r11,r11,r11
xxxxxx38 ori r7,r0,#4
xxxxxx3C bne cr1,outer_loop

For this example, assume the inner loop executes four times per outer iteration. The inner
loop termination is always mispredicted because the branch predictor learns to predict the
inner bne as taken, which is wrong every fourth time. Table 6-14 shows that the
misprediction causes the outer loop code to be dispatched in cycle 13. If the branch had
been correctly predicted as not taken, these instructions would have dispatched 5 cycles
earlier in cycle 8.

The following code uses CTR, which shortens the loop because the compare test (done by
the addic. at xxxxxx20) is combined into the bdnz branch.

Table 6-14. Three Iterations of Code Loop

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

addi D I E C

cmp D I - E C

addic (1) F2 D I E C

lwzu (1) F2 D I E0 E1 E2 C

add (1) F2 D I - - - E C

bne (1) F2 BE

addic. (2) D I E - C

lwzu (2) D I E0 E1 E2 C

add (2) D I - - - E C

bne (2) BE

addic. (3) D I E - C

lwzu (3) D I E0 E1 E2 C

add (3) D I - - - E C

bne (3) BE

addic. (4) D I E - C

lwzu (4) D I E0 E1 E2 C

add (4) D I - - - E C

bne (4) BE M

stwu F1 F2 D I

xor F1 F2 D I

ori F1 F2 D I

bne F1 F2 BE

MOTOROLA Chapter 6. Instruction Timing 6-63

Instruction Scheduling Guidelines

xxxxxx1Couter_loop:addic. r6,r6,#FFFF
xxxxxx20inner_loop:lwzu r10,0x4(r9)
xxxxxx24 add r11,r11,r10
xxxxxx28 bdnz inner_loop
xxxxxx2C mtctr r7
xxxxxx30 stwu r11,0x4(r8)
xxxxxx34 xor r11,r11,r11
xxxxxx38 bne 0,outer_loop

As Table 6-15 shows, the inner loop termination branch does not need to be predicted and
is executed as a fall-through branch. Instructions in the outer loop start dispatching in cycle
8, saving 5 cycles over the code in Table 6-14. Note that because mtctr is execution
serialized, it does not complete until cycle 16; nevertheless, the CTR value is forwarded to
the BPU by cycle 11. This early forwarding starts for a mtctr/mtlr when the instruction
reaches reservation station 0 of the IU2 and the source register for the mtctr/mtlr is
available.

6.7.1.3 Static versus Dynamic Prediction

Using static prediction (HID0[BHT] = 0) means that the hint bit in the branch opcode
predicts the branch and the dynamic predictor (the BHT) is ignored. Sometimes static
prediction is superior, either through informed guessing or through available

Table 6-15. Code Loop Example Using CTR

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

addic D I E C

lwzu (1) F2 D I E0 E1 E2 C

add (1) F2 D I - - - E C

bdnz (1) F2 BE D - - - - C

lwzu (2) D I E0 E1 E2 C

add (2) D I - - - E C

bdnz (2) BE D - - - - C

lwzu (3) D I E0 E1 E2 C

add (3) D I - - - E C

bdnz (3) BE D - - - - C

lwzu (4) D I E0 E1 E2 C

add (4) D I - - - E C

bdnz (4) BE D - - - - C

mtctr D I E C

stwu D I E0 - - - - - - C

xor - D I E - - - - - C

bne BE

6-64 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

profile-directed feedback. Run-time for code using static prediction is more nearly
deterministic, which can be useful in an embedded system.

6.7.1.4 Using the Link Stack for Branch Indirect

On the MPC7451, a bclr uses the link stack to predict the target. To use the link stack
correctly, each branch-and-link instruction must be paired with a branch-to-link instruction.
Using the architecture-defined LR for computed targets corrupts the link stack. In general,
the CTR should be used for computed target addresses and the LR should be used only for
call/return addresses. If using the CTR for a loop conflicts with a computed GOTO, the
computed GOTO should be used and the loop should be converted to a GPR form.

When generating position-independent code, many compilers use an instruction sequence
such as the following to obtain the current instruction address.

bcl 20,31,$+4
mflr r3

Note that this is not a true call and is not paired with a return. The link stack is optimized
to ignore position-independent code where the bcl 20,31,$+4 form is used. This
conditional call, which is used only for putting the instruction address in a program-visible
register, does not force a push on the link stack and is treated as a not-taken branch.

6.7.1.4.1 Link Stack Example

The following code sequence is a common code sequence for a subroutine call/return
sequence, where main calls foo, foo calls ack, and ack possibly calls additional functions
(not shown).

main: ...
mflr r5
stwu r5,-4(r1)
bl foo

5 add r3,r3,r20
....

foo: stwu r31,-4(r1)
stwu r30,-4(r1)
....
mflr r4
stwu r4,-4(r1)
bl ack
add r3,r3,r6
....

0 lwzu r30,4(r1)
1 lwzu r31,4(r1)
2 lwzu r5,4(r1)
3 mtlr r5
4 bclr

MOTOROLA Chapter 6. Instruction Timing 6-65

Instruction Scheduling Guidelines

ack:
(possible calls to other functions)
....
lwzu r4,4(r1)
mtlr r4
bclr

The bl in main pushes a value onto the hardware-managed link stack (and to the
architecturally-defined LR). Then, the bl in foo pushes a second value onto the stack.

When ack later returns through the bclr, the hardware link stack is used to predict the
value of the LR, if the actual value of the LR is not available when the branch is executed
(typically because the lwzu/mtlr pair has not finished executing). It also pops a value off
of the stack, leaving only the first value on the stack. This occurs again with the bclr in
foo, which returns to main, leaving the stack empty.

Table 6-16 shows the performance implications of the link stack. The following code
starts executing from the instruction 0 in procedure foo.

With link stack prediction, the BPU can successfully predict the target of the bclr
(instruction 4), which allows the instruction to be executed at the return address
(instruction 5) in cycle 8. The IU2 forwards the LR value to the BPU in cycle 9 (which
implies that the branch resolution occurs in cycle 10), even though it cannot execute from
a execution serialization viewpoint until cycle 11.

Without link stack prediction, the branch would stall on the LR dependency and not
execute until after the LR is forwarded (that is, branch execution would occur in cycle 10),
which allows instruction 5 not to execute until cycle 15 (seven cycles later than it executes
with link stack prediction).

6.7.1.4.2 Position-Independent Code Example

Position-independent code is used when not all addresses are known at compile time or link
time. Because performance is typically not good, position-independent code should be
avoided when possible. The following example expands on the code sequence, which is

Table 6-16. Link Stack Example

Inst# Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12

0 lwzu r30, 4(r1) F1 F2 D I E0 E1 E2 C

1 lwzu r31, 4(r1) F1 F2 - D I E0 E1 E2 C

2 lwzu r5, 4(r1) F1 F2 - - D I E0 E1 E2 C

3 mtlr F1 F2 - D I - - - * - E C

4 bclr F1 F2 BE D

...

5 add r3,r3,r20 F1 F2 D I E - - - C

6-66 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

described in Section 4.2.4.2, “Conditional Branch Control,” in the Programming
Environments Manuals.

Because a return (bclr) is never paired with this bcl (instruction 0), the MPC7451 takes two
special actions when it recognizes this special form (“bcl 20,31,$+4”):

• Although the bcl does update the link register as architecturally required, it does not
push the value onto the link stack. Not pairing a return with this bcl prevents the link
stack from being corrupted, which would likely require a later branch mispredict for
some later bclr.

• Because the branch has the same next instruction address whether it is taken or
fall-through, the branch is forced as a fall-through branch. This avoids a potential
branch-taken bubble and saves a cycle.

The instruction address is available for executing a subsequent operation (instruction 2,
addi) in cycle 10, primarily due to the long latency of the execution-serialized mflr.
However, the data must be transferred back to the BPU through the CTR, which prevents
the bcctr from executing until cycle 12, so its target instruction (5) cannot start execution
until cycle 17.

Note that instructions 3 and 4 must be a mtctr/bcctr pair rather than a mtlr/bclr pair. A
bclr would try to use the link stack to predict the target address, which would almost
certainly be an address mispredict, which would be even more costly than the 7-cycle
branch execution stall for instruction 4 in this example. In addition, an address mispredict
would require the link stack to be flushed, which would mean that bclr instructions later in
the program would stall rather than use link stack address prediction, further degrading
performance.

6.7.1.5 Branch Folding

Branches that do not set the LR or update the CTR are eligible for folding. Taken branches
are folded immediately. In the MPC7451, not-taken branches cannot be fall-through
folded if they are in IQ0–IQ2; however, branches are removed in the cycle after execution
if they are in IQ3–IQ7.

Table 6-17. Position-Independent Code Example

Inst# Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 bcl 20, 31, $+4 F1 F2 BE D C

1 mflr r2 F1 F2 - D I - E0 E1 E2 E3 F C

2 addi r2, r2,#constant F1 F2 - D I - - - - - E C

3 mtctr r2 F1 F2 - - D I - - - - - * - E C

4 bcctr F1 F2 - - - - - - - - - BE

...

5 add r3, r3, r20 F1 F2 D I E

MOTOROLA Chapter 6. Instruction Timing 6-67

Instruction Scheduling Guidelines

6.7.2 Dispatch Unit Resource Requirements

The following is a list of resources required to avoid stalls in the dispatch unit (IQ0–IQ2
are the three dispatch entries in the instruction queue):

• Appropriate issue queue is available.

• The CQ is not full.

• Previous instructions the IQ dispatch entries must dispatch.

• Needed rename registers are available.

The following sections describe how to optimize code for dispatch.

6.7.2.1 Dispatch Groupings

Maximum dispatch throughput is three instructions per cycle. The dispatch process
includes a CQ available check, an issue queue available check, a branch ready check, and
a rename check.

The dispatcher can send three instructions to the various issues queues, with a maximum
of three to the GIQ, two to the VIQ, and one to the FIQ. Thus only two instructions can be
be dispatched per cycle to the AltiVec units (VIU1, VIU2, VPU, and VFPU). Only one
FPU instruction can be dispatched per cycle, so three fadds would take three cycles to
dispatch.

Only one load/store instruction can dispatch per cycle.

The dispatcher can rename as many as four GPRs, three VRs, and two FPRs per cycle, so
a three-instruction dispatch window composed of vaddfp, vaddfp, and lvewx could be
dispatched in one cycle.

Note that an load/store update form (for example, lwzu), requires a GPR rename for the
update. This means that an lwzu needs two GPR renames and an lfdu needs one FPU
rename and one GPR rename. The possibility that one instruction may need two GPR
renames means that even though the MPC7451 has a 16-entry CQ and 16 GPR renames,
GPR renames could run out even though there is space in the CQ, as when eight lwzu
instructions are in the CQ. Eight CQ entries are available, but because all 16 GPR renames
are in use, no instruction needing a GPR target can be dispatched.

The restriction to four GPR renames in a dispatch group means that the sequence lwzu,
add, add can be dispatched in one cycle. The instruction pair lwzu, lwzu also uses four
GPR renames and passes this rule but is disallowed by the rule that enforces a dispatch of
only one load/store per cycle.

6.7.2.1.1 Dispatch Stall due to Rename Availability

Table 6-18 shows the code example which allows dispatch stall due to rename availability:

6-68 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

Instruction 8 stalls in cycle 9 because it needs 2 renames, and 15 renames are in use (1 for
the divw, and 2 each for instructions 1 through 7). Since only 16 GPR renames are allowed,
instruction 8 cannot be dispatched until at least one rename is released.

When the div later completes (cycle 27 in example above), renames are released during the
write-back stage and instruction 8 can thus dispatch in cycle 29.

6.7.2.2 Dispatching Load/Store Strings and Multiples

The MPC7451 splits multiples (lmw and stmw) and strings (lsw* and stsw*) into
micro-operations at the dispatch point. The processor can dispatch only one
micro-operation per cycle, which does not use the dispatcher to its full advantage.

Using load/store multiple instructions is best restricted to cases where minimizing code
size is critical or where there is no other available instructions to be scheduled, such that
the under-utilization of the dispatcher is not a consideration.

6.7.2.2.1 Example of Load/Store Multiple Micro Operation Generation

Consider the following assembly instructions code:

0 lmw r25,0x00(r1)
1 addi r25,r25,0x01
2 addi r26,r26,0x01
3 addi r27,r27,0x01
4 addi r28,r28,0x01
5 addi r29,r29,0x01
6 addi r30,r30,0x01
7 addi r31,r31,0x01

The load multiple specified with value 25 loads registers 25–31. The MPC7451 splits this
instruction into seven micro-operations at dispatch, after which the lmw executes as
multiple operations, as Table 6-19 shows.

Table 6-18. Dispatch Stall Due to Rename Availability

Inst# Instruction 0 1 2 3 4 5 6 7 8 9 ... 25 26 27 28 29 30

0 divw r4,r3,r2 F1 F2 D I E0 E1 E2 E3 E4 E5 ... E21 E22 C WB

1 lwzu r22,0x04(r1) F1 F2 D I E0 E1 E2 - - - ... - - C WB

2 lwzu r23,0x04(r1) F1 F2 - D I E0 E1 E2 - - ... - - - C WB

3 lwzu r24,0x04(r1) F1 F2 - - D I E0 E1 E2 - ... - - - - C WB

4 lwzu r25,0x04(r1) F1 F2 - - D I E0 E1 E2 ... - - - - - C

5 lwzu r26,0x04(r1) F1 F2 - - - D I E0 E1 ... - - - - -

6 lwzu r27,0x04(r1) F1 F2 - - - - D I E0 ... - - - - -

7 lwzu r28,0x04(r1) F1 F2 - - - - - D I ... - - - - -

8 lwzu r29,0x04(r1) F1 F2 - - - - - - ... - - - - D I

MOTOROLA Chapter 6. Instruction Timing 6-69

Instruction Scheduling Guidelines

Because the MPC7451 can dispatch only one LSU operation per cycle, the lmw is
micro-oped at a rate of 1 per cycle and so in this example takes 7 cycles to dispatch all the
operations. However, when the last operation in the multiple is dispatched (cycle 8),
instructions 1 and 2 can dispatch along with it.

The use of load/store string instructions is strongly discouraged.

6.7.3 Issue Queue Resource Requirements

Instructions cannot be issued unless the specified execution unit is available. The following
sections describe how to optimize use of the three issue queues.

6.7.3.1 GPR Issue Queue (GIQ)

As many as three instructions can be dispatched to the six-entry GPR issue queue (GIQ)
per cycle. As many as three instructions can be issued in any order to the LSU, IU2, and
IU1 reservation stations from the bottom three GIQ entries.

Issuing instructions out-of-order can help in a number of situations. For example, if the
IU2 is busy and a multiply is stalled at the bottom GIQ entry, instructions in the next two
GIQ entries can be issued to LSU or IU1s, bypassing that multiply.

The following sequence is not well scheduled, but effectively the MPC7451
micro-architecture dynamically reschedules around the potential multiply bottleneck.

Table 6-19. Load/Store Multiple Micro Operation Generation Example

Inst# Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0–0 lmw r25,0x00(r1) F1 F2 D I E0 E1 E2 C

0–1 lmw r26,0x04(r1) F1 F2 - D I E0 E1 E2 C

0–2 lmw r27,0x08(r1) F1 F2 - - D I E0 E1 E2 C

0–3 lmw r28,0x0C(r1) F1 F2 - - - D I E0 E1 E2 C

0–4 lmw r29,0x10(r1) F1 F2 - - - - D I E0 E1 E2 C

0–5 lmw r30,0x14(r1) F1 F2 - - - - - D I E0 E1 E2 C

0–6 lmw r31,0x1C(r1) F1 F2 - - - - - - D I E0 E1 E2 C

1 addi r25,r25,0x01 F1 F2 - - - - - - D I E - - C

2 addi r26,r26,0x01 F1 F2 - - - - - - D I E - - C

3 addi r27,r27,0x01 F1 F2 - - - - - - - D I E - - C

4 addi r28,r28,0x01 F1 F2 - - - - - - D I E - - C

5 addi r29,r29,0x01 F1 F2 - - - - - - D I E - - C

6 addi r30,r30,0x01 F1 F2 - - - - - - - D I E - - C

7 addi r31,r31,0x01 F1 F2 - - - - - - - D I - E - C

6-70 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

0 xxxxxx00 mulhw r10,r20,r21
1 xxxxxx04 mulhw r11,r22,r23
2 xxxxxx08 mulhw r12,r24,r25
3 xxxxxx0C lwzu r13,0x4(r9)
4 xxxxxx10 add r10,r10,r11
5 xxxxxx14 add r13,r13,r25
6 xxxxxx18 add r14,r5,r4
7 xxxxxx20 subf r15,r6,r4

The timing for this sequence (Table 6-20) shows which instructions are in which GIQ
entries. Instruction 3 issues out-of-order in cycle 2; instructions 4 and 5 issue out-of-order
in cycle 3.

Note that instruction 7 (subf) does not issue in cycle 4 because all three IU1 reservation
stations have an instruction (4, 5, and 6). Instructions 4 and 5 are waiting in the reservation
station for their source registers to be forwarded from the IU2 and LSU, respectively.
Because instruction 6 executes immediately after issue (in cycle 5), instruction 7 can issue
in that cycle.

Similar examples could also be given for load bypassing adds, multiply bypassing loads.

6.7.3.2 Vector Issue Queue (VIQ)

The four-entry vector issue queue (VIQ) handles all AltiVec computational instructions.
Two instructions can dispatch to it per cycle, and it can issue two instructions in-order per
cycle from its bottom two entries if reservation stations are available.

Table 6-20. GIQ Timing Example

Inst# Instruction 0 1 2 3 4 5 6 7 8 9 10 11

0 mulhw D I E0 E0 E1 F C

1 mulhw D - I - E0 E0 E1 F C

2 mulhw D - - - I - E0 E0 E1 F C

3 lwzu - D I E0 E1 E2 - - - - C

4 add F2 D - I - - - E - - C

5 add F2 D - I - - E - - - - C

6 add F2 - D - I E - - - - - C

7 subf F2 - - D - I E - - - - C

GIQ5

GIQ4 5

GIQ3 4 6

GIQ2 2 3 5 7

GIQ1 1 2 4 6

GIQ0 0 1 2 2 7

MOTOROLA Chapter 6. Instruction Timing 6-71

Instruction Scheduling Guidelines

Table 6-21 shows two cases where a vector add and a vector multiply-add (vmsummbm)
start execution simultaneously (cycles 2 and 3). Note that the load-vector instructions go
to the GIQ because its address source operands (rA and rB) are GPRs. This example also
shows the MPC7451’s ability to dispatch three instructions with vector targets in a cycle
(cycles 0 and 1) as well as to retire three instructions with vector targets (cycle 7).

6.7.3.3 Floating-Point Issue Queue (FIQ)

The two-entry floating-point issue queue (FIQ) can accept one dispatched instruction per
cycle, and if an FPU reservation station is available, it can also issue one instruction from
the bottom FIQ entry.

6.7.4 Completion Unit Resource Requirements

The MPC7451 completion queue has 16 entries, so as many as 16 instructions can be in
the execution window, not counting branches, which execute from the IQ. The following
resources are required to avoid stalls in the completion unit; note that the three completion
entries are described as CQ–CQ2, where CQ0 is located at the end of the CQ (see
Figure 6-4). Requirements for retiring instructions from CQ0–CQ2 are as follows:

• Instruction must have finished execution.

• Previous instructions that must be retired by the CQ retirement entries.

• Instructions in the CQ must not follow an unresolved predicted branch.

• Instructions in CQ1 and CQ2 must not cause an exception.

• Instructions in CQ1 and CQ2 must be integer (IU1 only), floating-point, load, dcbt,
data streaming, non-folded resolved branches, or AltiVec instructions.

• Number of CR updates from CQ0–CQ2 must not exceed three.

• Number of GPR updates from CQ0–CQ2 must not exceed three.

• Number of FPR updates from CQ0–CQ2 must not exceed three.

• Number of VR updates from CQ0–CQ2 must not exceed three.

Table 6-21. VIQ Timing Example

Instruction 0 1 2 3 4 5 6 7

vaddshs V20,V24,V25 D I E F C

vmsummbm V10,V11,V12,V13 D I E0 E1 E2 E3 C

lvewx V5,r5,r9 D I E0 E1 E2 - C

vmsummbm V11,V11,V14,V15 - D I E0 E1 E2 E3 C

vaddshs V21,V26,V27 D I E F - - C

lvewx V5,r6,r9 D I E0 E1 E2 - C

6-72 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

6.7.4.1 Completion Groupings

The MPC7451 can retire as many as three instructions per cycle. Only three renames of a
given type can be retired per cycle. For example, an lwzu, add, subf sequence has four
GPR rename targets and all cannot retire in the same cycle. The lwzu and add retire first
and subf retires one cycle later.

6.7.5 Serialization Effects

The MPC7451 supports refetch, execution, and store serialization. Store serialization is
described in Section 6.7.6.5.2, “Store Hit Pipeline.”

Refetch serialized instructions include isync, rfi, sc, mtspr[XER], and any instruction
that toggles XER[SO]. Refetch serialization forces a pipeline flush when the instruction is
the oldest in the machine. Avoid these instructions in performance critical code.

Note that XER[SO] is a sticky bit for XER[OV] updates, so avoiding toggling XER[SO]
often means avoiding these instructions (overflow-record, O form).

Execution-serialized instructions wait until the instruction is the oldest in the machine to
begin executing. Tables in Section 6.6, “Instruction Latency Summary,” list
execution-serialized instructions, which include mtspr, mfspr, CR logical instructions,
and carry consuming instructions (such as adde).

Table 6-22 shows the execution of a carry chain. The addc executes normally and
generates a carry. As an execution-serialized instruction, adde must become the oldest
instruction (cycle 4) before it can execute (cycle 5). A long chain of carry generation/carry
consumption can execute at a rate of one instruction every 3 cycles.

6.7.6 Execution Unit Considerations

The following sections describes how to optimize use of the execution units.

6.7.6.1 IU1 Considerations

Each of the three IU1s has one reservation station in which instructions are held until
operands are available. The IU1s allow a potentially large window for out-of-order
execution. IU1 instructions can progress until three IU1 instructions are stuck in the three
reservation stations, requiring operands (or until the GIQ or dispatcher stalls for other
reasons).

Table 6-22. Serialization Example

Code 0 1 2 3 4 5 6

addc r11,r21,r23 D I E C

adde r10,r20,r22 D I - - - E C

MOTOROLA Chapter 6. Instruction Timing 6-73

Instruction Scheduling Guidelines

Table 6-20 shows a case where although two IU1s are blocked and the third makes
progress.

Also note that some IU1 instructions take more than one cycle and that some are not fully
pipelined. The most common 2-cycle instructions are sraw and srawi.

The following instructions are not fully pipelined when their record bit is set: extsb, extsh,
rlwimi, rlwinm, rlwnm, slw, and srw. These instructions return GPR data after the first
cycle but continue executing into a second cycle to generate the CR result.

Table 6-23 shows sraw, extsh, and extsh. latency effects. The two sraw instructions both
take 2 cycles of execution, blocking the extsh/extsh. pair from issuing until cycle 3 but
allowing the dependent add to execute in cycle 3 (See Table 6-5, footnote 3). Note that
extsh. takes 2 cycles to execute, but that the dependent subf can pick up the forwarded
GPR value after the first cycle of execution (cycle 4) and execute in cycle 5.

6.7.6.2 IU2 Considerations

The IU2 has two reservation station entries. Instruction execution is allowed only from the
bottom station. Although mtctr/mtlr instructions are execution serialized, if data is
available, their values are forwarded to the BPU as soon as they are in the bottom
reservation station.

Divides, mulhwu, mulhw, and mull are not fully pipelined; they iterate in execution stage
0 and block other instructions from entering reservation station 0. For example, in
Table 6-20, the second multiply issues to IU2 in cycle 2. Because the first multiply still
occupies reservation station 0, the second is issued to reservation station 1. When the first
multiply enters E1, the second moves down to reservation station 0 and begins execution.

Note that the IU2 takes an extra cycle beyond the latencies listed in Table 6-5 to return CR
data and finish. This implies that, as the example in Section 6.7.3.1, “GPR Issue Queue
(GIQ),” shows, a 3-cycle instruction such as mulhw requires a separate finish stage, even
though GPR data is still forwarded and used after 3 execution cycles. In the previous
example, instruction 4 executes in cycle 7, the cycle after the dependent instruction 2 had
gone through its third execution stage.

Table 6-23. IU1 Timing Example

Code 0 1 2 3 4 5 6

sraw r1,r20,r21 D I E E C

sraw r2,r20,r22 D I E E C

add r4,r2,r3 D I - E C

extsh r5,r25, F2 D - I E C

extsh. r6,r26 F2 D - I E E C

subf r7,r5,r6 F2 D - I - E C

6-74 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

6.7.6.3 FPU Considerations

The FPU has two reservation station entries. Instruction execution is allowed from only
the bottom reservation station (reservation station 0).

Like the IU2, the FPU requires a separate finish stage to return CR and FPSCR data, as
shown in Table 6-24. However, FPR data produced in E4 (the fifth stage) is ready and can
be forwarded directly (if needed) to an instruction entering E0 in the next cycle.

The five-stage scalar FPU pipeline has a 5-cycle latency. However, when the pipeline
contains instructions in stages E0–E3, the pipeline stalls and does not allow a new
instruction to start in E0 on the following cycle. This bubble limits maximum FPU
throughput to four instructions every 5 cycles, as the following code example shows:

xxxxxx00 fadd f10,f20,f21
xxxxxx04 fadd f11,f20,f22
xxxxxx08 fadd f12,f20,f23
xxxxxx0c fadd f13,f20,f24
xxxxxx10 fadd f14,f20,f25
xxxxxx14 fadd f15,f20,f26
xxxxxx18 fadd f16,f20,f27
xxxxxx1c fadd f17,f20,f28
xxxxxx20 fadd f18,f20,f29

Table 6-24 shows the timing for this sequence.

Table 6-24. FPU Timing Example

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

fadd D I E0 E1 E2 E3 E4 F C

fadd - D I E0 E1 E2 E3 E4 F C

fadd - - D I E0 E1 E2 E3 E4 F C

fadd - - - D I E0 E1 E2 E3 E4 F C

fadd F2 - - - D I - E0 E1 E2 E3 E4 F C

fadd F2 - - - - D - I E0 E1 E2 E3 E4 F C

fadd F2 - - - - - D - I E0 E1 E2 E3 E4 F C

fadd F2 - - - - - - - D I E0 E1 E2 E3 E4 F C

fadd F1 F2 - - - - - - - D I - E0 E1 E2 E3 E4

MOTOROLA Chapter 6. Instruction Timing 6-75

Instruction Scheduling Guidelines

The FPU is also constrained by the number of FPSCR renames. The MPC7451 supports
four outstanding FPSCR updates. An FPSCR is allocated in the E3 FPU stage and is
deallocated at completion. If no FPSCR rename is available, the FPU pipeline stalls. A
fully pipelined case such as that in Table 6-24 is not affected, but if something blocks
completion it can become a bottleneck. Consider the following code example:

xxxxxx00lfdu f3,0x8(r9)
xxxxxx04fadd f11,f20,f22
xxxxxx08fadd f12,f20,f23
xxxxxx0cfadd f13,f20,f24
xxxxxx10fadd f14,f20,f25
xxxxxx14fadd f15,f20,f26
xxxxxx18fadd f16,f20,f27
xxxxxx1cfadd f17,f20,f28
xxxxxx20fadd f18,f20,f29

The timing for this sequence in Table 6-25 assumes that the load misses in the data cache.
Here, after the first four fadds, the MPC7451 runs out of FPSCR renames and the pipeline
stalls. When the load completes, the pipeline restarts after an additional 2-cycle lag.

Note that denormalized numbers can cause problems for the FPU pipeline, so the normal
latencies in Table 6-6 may not apply. Output denormalization in the very unlikely worst
case can add as many as 4 cycles of latency. Input denormalization takes 4–6 additional
cycles, depending on whether 1, 2, or 3 input source operands are denormalized.

Table 6-25. FPSCR Rename Timing Example

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lfdu D I E0 E1 C

fadd D I E0 E1 E2 E3 E4 F - - - - C

fadd - D I E0 E1 E2 E3 E4 F - - - C

fadd - - D I E0 E1 E2 E3 E4 F - - - C

fadd F2 - - D I E0 E1 E2 E3 E4 F - - C

fadd F2 - - - D I - E0 E1 E2 E3 E4 E4 E4 E4 F

fadd F2 - - - - D - I E0 E1 E2 E3 E3 E3 E3 E4

fadd F2 - - - - - D - I E0 E1 E2 E2 E2 E2 E3

fadd F1 F2 - - - - - - D I E0 E1 E1 E1 E1 E2

6-76 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

6.7.6.4 Vector Unit Considerations

On the MPC7451, the four vector execution units are fully independent and fully
pipelined. Latencies are given in Table 6-26.

VFPU latency is usually 4 cycles, but some instructions, particularly the vector float
compares and vector float min/max (see Table 6-8 for a list) have only a 2-cycle latency.
This can create competition for the VFPU register forwarding bus. This is solved by
forcing a partial stall when a bypass is needed. Consider the following code example:

xxxxxx20 vaddfp v10,v11,v12
xxxxxx24 vsubfp v11,v14,v13
xxxxxx28 vaddfp v12,v13,v14
xxxxxx2c vcmpbfp. v13,v18,v19
xxxxxx30 vmaddfp v14,v20,v21,v14

Table 6-27 shows the timing for this vector compare bypass/stall situation. In cycle 6 the
vcmp bypasses from E0 to E3, stalling the vsubfp and vlogefp for a cycle in stages E1 and
E2. Note that an instruction in E1 stalls in E1 under a bypass scenario even if no instruction
is in E2.

6.7.6.5 Load/Store Unit (LSU)

The LSU controls the 32 Kbyte L1 data cache and contains a variety of queues and latches,
as shown in Figure 6-18. The memory subsystem interconnect referred to on the diagram
is an interface point to the L2 cache, L3 cache, and system bus. Note that L3 cache is not
supported on the MPC7441 and the MPC7445. Note that this is a simplified block diagram,
and does not contain the fully detailed LSU microarchitecture.

Instruction execution is allowed only from the lower of the two reservation stations.

Table 6-26. Vector Execution Latencies

Unit Latency

VIU1 1

VIU2 4

VFPU 4

VPU 2

Table 6-27. Vector Unit Example

Instruction 0 1 2 3 4 5 6 7 8 9 10

vaddfp D I E0 E1 E2 E3 C

vsubfp D - I E0 E1 E2 E2 E3 C

vlogefp - D - I E0 E1 E1 E2 E3 C

vcmpbfp. - D - - I E0 E3 - - C

vmaddfp F2 - D - - I E0 E1 E2 E3 C

MOTOROLA Chapter 6. Instruction Timing 6-77

Instruction Scheduling Guidelines

Figure 6-18. LSU Block Diagram

Loads that have all required available source operands can start execution. If the load hits
in the data cache, data is forwarded to one of the three register rename types. A
floating-point load has one additional cycle of latency (4 cycles) beyond that of an integer
or vector load (3 cycles). If a stall or hazard occurs, the instruction is typically held in the
required address (rA) latch.

Loads that miss go to the 5-entry load miss queue (LMQ), where they are held while the
line transaction proceeds to the L2 cache, the L3 cache, and/or the system bus. Critical data
forwarding can occur from the L3 cache or system bus to directly update the required
rename. A load that receives critical data can finish.

However (for a cacheable load), the LMQ entry can be deallocated only when the full line
returns. As the full line is available, the L1 data cache is updated. If a L1 data cache update
requires that a line currently in the cache be evicted, that line is cast out and placed into the
6-entry L1 castout queue.

VTE

MMU

EA

Required

rA Latch

Address

Reservation
Stations

Load Miss
Queue

Completed Store Queue

Finished Store Queue

L1 Tags/
Data Arrays

Castout
Queue

32-Kbyte/8 way

Address Bus

Data Bus

From GPR Issue Queue

Register
Renames

Store Queue
Data

6-78 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

Stores that have required address source operands (rA and possibly rB) available start
execution similar to loads. However, they are transferred to the three entry finished store
queue (FSQ). The FSQ holds stores until they have been retired by the completion unit.
Once retired, the stores travel through wb0 and wb1 two write-back stages (not shown in
Figure 6-18) while acquiring data (rS, frS, or vS) from the appropriate register file, and are
written into the 5-entry committed store queue (CSQ). Stores in the CSQ arbitrate into the
L1 data cache. When arbitration is successful, the data is written and the store is removed
from the CSQ.

The vector touch engine (VTE) contains the control logic execution of the dst instructions.

6.7.6.5.1 Load Hit Pipeline

The following code sequence shows the various normal load latencies:

xxxxxx00lfdu f3,0x8(r10)
xxxxxx04fadd f1,f3,f4
xxxxxx08lwzu r3,0x4(r11)
xxxxxx0cadd r1,r3,r4
xxxxxx10subf r5,r11,r6
xxxxxx14lvewx v3,r12,r13
xxxxxx18vaddsws v1,v3,v4

As Table 6-28 shows, the load-floating-point latency is 4 and the load-integer and
load-vector latency are each 3. Although the load has a 4-cycle latency, it also completes
on that fourth cycle. The update has an effective latency of 1. The lwzu forwards its update
target R11 from E0 in cycle 3 to the subf instruction, such that it executes in cycle 4.

6.7.6.5.2 Store Hit Pipeline

The pipeline for stores before the data is written to the cache includes several different
queues. A store must go through E0 and E1 to handle address generation and translation. It
is then placed in the three-entry finished store queue (FSQ). When the store is the oldest
instruction, it can access the store data and update architecture-defined resources (store
serialization). From this point on, the store is considered part of architectural state.

Table 6-28. Load Hit Pipeline Example

Inst# Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 lfdu D I E0 E1 E2 E3/C

1 fadd D I - - - - E0 E1 E2 E3 E4 F C

2 lwzu - D I E0 E1 E2 - - - - - - C

3 add - D I - - - E - - - - - C

4 subf F2 D I - E - - - - - - - - C

5 lvewx F2 - D I E0 E1 E2 - - - - - - C

6 vaddsws F2 - D I - - - E F - - - - C

MOTOROLA Chapter 6. Instruction Timing 6-79

Instruction Scheduling Guidelines

However, before the data reaches the data cache, two write-back stages (WB0 and WB1)
are needed to acquire the store data and transfer it from the FSQ to the 5-entry committed
store queue (CSQ). Arbitration into the data cache from the CSQ is pipelined so a one store
per cycle throughput can be maintained. During this arbitration and cache write, stores
arbitrate into the data cache from the CSQ and stay there for at least 4 cycles. Table 6-29
shows pipelining of four stw instructions to the data cache.

Floating-point stores are not fully pipelined. The bottleneck is at the FSQ point, where only
one floating-point store can be done every 3 cycles. See Table 6-30 for an example
execution of four stfd instructions. Vector stores do not suffer from this problem and are
fully pipelined (similar to the integer stores as shown in Table 6-29).

To avoid floating-point store throughput bottlenecks, avoid strings of back to back floating
point stores (like that shown in Table 6-30). Instead, intermix floating-point stores with
other instructions wherever possible. For maximum store throughput, use vector stores.

Table 6-29. Store Hit Pipeline Example

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13

stw D I E0 E1 FSQ0/C WB0 WB1 CSQ0 CSQ0 CSQ0 CSQ0

stw - D I E0 E1 FSQ0/C WB0 WB1 CSQ1 CSQ1 CSQ1 CSQ0

stw - - D I E0 E1 FSQ0/C WB0 WB1 CSQ2 CSQ2 CSQ1 CSQ0

stw - - - D I E0 E1 FSQ0/C WB0 WB1 CSQ3 CSQ2 CSQ1 CSQ0

Table 6-30. Execution of Four stfd Instructions

Inst# Instruction Cycle Number

0 1 2 3 4 5 6 7 8 9

0 stfd D I E0 E1 FSQ0/
C

WB0 WB1 CSQ0 CSQ0 CSQ0

1 stfd - D I E0 E1 FSQ0 FSQ0 FSQ0/
C

WB0 WB1

2 stfd - - D I E0 E1 FSQ1 FSQ1 FSQ0 FSQ0

3 stfd - - - D I E0 E1 FSQ2 FSQ1 FSQ1

10 11 12 13 14 15 16 17 18 19

0 stfd CSQ0

1 stfd CSQ1 CSQ0 CSQ0 CSQ0

2 stfd FSQ0/
C

WB0 WB1 CSQ1 CSQ0 CSQ0 CSQ0

3 stfd FSQ1 FSQ0 FSQ0 FSQ0/
C

WB0 WB1 CSQ1 CSQ0 CSQ0 CSQ0

6-80 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

6.7.6.5.3 Load/Store Interaction

When loads and stores are intermixed, the stores normally lose arbitration to the cache. A
store that repeatedly loses arbitration can stay in the CSQ much longer than 4 cycles, which
is not normally a performance problem because a store in the CSQ is effectively part of the
architecture-defined state. However, sometimes—including if the CSQ fills up or if a store
causes a pipeline stall (as in a partial address alias case of store to load)—the arbiter gives
higher priority to the store, guaranteeing forward progress.

Also, accesses to the data cache are pipelined (two stages) such that back-to-back loads and
back-to-back stores are fully pipelined (single-cycle throughput). However, a store
followed by a load cannot be performed in subsequent clock cycles. Loads have higher
priority than stores and the LSU store queues stage store operations until a cache cycle is
available. When the LSU store queues become full, stores take priority over subsequent
loads.

From an architectural perspective, when a load address aliases to a store address the load
needs to read the store data rather than the data in the cache. A store can forward only after
acquiring its data, which means forwarding happens only from the CSQ. Additionally, the
load address and size must be contained within the store address and size for store
forwarding to occur. If the alias is only a partial alias (for example a stb and a lwz) the load
stalls. Table 6-31 shows a forwardable load/store alias, where the load stalls in E1 for 3
cycles until the store arrives in CSQ0 and can forward its data.

6.7.6.5.4 Misalignment Effects

Misalignment, particularly the back-to-back misalignment of loads, can cause strange
performance effects. The MPC7451 splits misaligned transactions into two transactions,
so misaligned load latency is at least 1 cycle greater than the default latency. On the
MPC7451, misalignment typically occurs when an access crosses a double-word
boundary. Table 6-32 shows what is considered misaligned based on the EA of the access.
Note that vector transactions ignore non-size-aligned low-order address bits and so are not
considered misaligned.

Table 6-31. Load/Store Interaction (Assuming Full Alias)

Instruction 0 1 2 3 4 5 6 7 8

stw r3,0x0(r9) E0 E1 FSQ0/C WB0 WB1 CSQ0 CSQ0 CSQ0 CSQ0

lwz r4,0x0(r9) I E0 E1 E1 E1 E1 E2 C

MOTOROLA Chapter 6. Instruction Timing 6-81

Instruction Scheduling Guidelines

Future generations of high-performance microprocessors that implement the PowerPC
architecture may experience greater misalignment penalties.

6.7.6.5.5 Load Miss Pipeline

The MPC7451 supports as many as five outstanding load misses in the load miss queue
(LMQ). Table 6-33 shows a load followed by a dependent add. Here, the load misses in the
data cache and the full line is reloaded from the L2 cache back into the data cache. The load
L2 cache hit latency is effectively 9 cycles.

If a load misses in the L1 data cache and in the L2 data cache, critical data forwarding
occurs, followed shortly by the rest of the line. The following example shows that the load
L3 cache hit latency is effectively 33 cycles. Note that L3 cache is not supported on the
MPC7441 and the MPC7445.

The following L3 parameters are assumed for the example in Table 6-34:

• DDR SRAM at 4:1 L3 bus ratio

• L3 Clock sample point is 5 Clocks

• L3 P-Clock sample point is 0 Clocks

Table 6-32. Misaligned Load/Store Detection

EA[29:31] Byte Halfword Word Double Word

Quad-Word
Bus
(Not

supported in
60x bus mode)

000 — — — — —

001 — — Multi/floating-point exception Floating-point exception Align to QW

010 — — Multi/floating-point exception Floating-point exception Align to QW

011 — — Multi/floating-point exception Floating-point exception Align to QW

100 — — Misaligned Align to QW

101 — — Misaligned or multi/floating-point
exception

Floating-point exception Align to QW

110 — — Misaligned or multi/floating-point
exception

Floating-point exception Align to QW

111 — Misaligned Misaligned or multi/floating-point
exception

Floating-point exception Align to QW

Table 6-33. Data Cache Miss, L2 Cache Hit Timing

Instruction 0 1 2 3-7 8 9 10

lwz r4,0x0(r9) E0 E1 Miss LMQ0 LMQ0/E2 C

add r5,r4,r3 — — — — — E C

6-82 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

Note that the LMQ0 entry for the load remained allocated for 4 cycles after the critical data
arrived in cycle 32. This is because with a 4:1 DDR SRAM, there is a 4 cycle gap between
critical data and full line data, and the LMQ entry is only deallocated when the full line has
returned.

If a load/store miss aliases to the same line as a previously outstanding miss, the LSU halts
new access until this stall condition is resolved. The example in Table 6-35 contains a
series of loads, where the data starts in the L3 cache, with the L3 cache configured
similarly to the example in Table 6-34.

Note that instruction 2 stalls in stage E1 (in the rA latch in Table 6-35). This stall is due to
the fact that the line miss caused by instruction 0 is the same line that instruction 2
requires. Instruction 2 does not finish execution until cycle 40—8 cycles after instruction
0. This delay is due to 2 major components. The first delay component is that instruction 0
finished by using critical forwarded data, whereas instruction 2 must wait for the full
cache line to appear before it can start execution (a 4 cycle delay, in this example). The
second delay component is also due to the cache being updated and a pipeline restart.

Table 6-34. Data Cache Miss, L2 Cache Miss, L3 Cache Hit Timing

Instruction 0 1 2 3–31 32 33 34 35–36

 lwz r4,0x0(r9) E0 E1 Miss LMQ0 LMQ0/E2 LMQ0/C LMQ0 LMQ0

 add r5,r4,r3 — — — — — E C —

Table 6-35. Load Miss Line Alias Example

Inst# Instruction Cycle Number

0 1 2 3–31 32 33 34 35–36

0 lwz r3,0x0(r9) E0 E1 Miss LMQ0 LMQ0/E2 LMQ0/C LMQ0 LMQ0

1 add r4,r3,r20 E C

2 lwz r5,0x4(r9) I E0 E1 E1 E1 E1 E1 E1

3 add r6,r5,r4 I

4 lwz r7,0x20(r9) D I E0 E0 E0 E0 E0 E0

5 add r8,r7,r6 D I

37–39 40 41 42 43–61 62 63 64

0 lwz r3,0x0(r9)

1 add r4,r3,r20

2 lwz r5,0x4(r9) E1 E2 C

3 add r6,r5,r4 E C

4 lwz r7,0x20(r9) E0 E1 Miss LMQ0 LMQ0 LMQ0/E2 LMQ0/C LMQ0

5 add r8,r7,r6 E C

MOTOROLA Chapter 6. Instruction Timing 6-83

Instruction Scheduling Guidelines

The second problem that this example shows is that the misses are not fully pipelined.
Instructions 0 and 4 miss in the data cache and L2 cache but hit in the L3 cache. The stall
caused by the line miss alias between instructions 0 and 2 has caused the miss for
instruction 4 to delay its access start by many cycles. A simple reordering of the code, as
the example in Table 6-36 allows the two load misses to pipeline to the L3 cache,
improving performance by nearly 50%.

This type of stall is common in some specific kinds of code, including simple data
streaming or striding array accesses. For example, a long stream of vector loads with
addresses incrementing by 16 bytes (a quad word) per load stalls every other load stalled
in this manner, and no miss pipelining occur.s This stall causes an even larger performance
bottleneck when cache misses are required to go to the system bus and when missed
opportunities to pipeline system bus misses occur. This performance problem can be
solved by code reordering as shown in Table 6-36 or by the use of prefetch instructions
(dcbt or dst).

The MPC7451 does back-end allocation of the L1 data cache, which means that it selects
the line replacement (and pushes to the six-entry castout queue as needed) only when a
reload returns. Because any new miss transaction may later require a castout, a new miss is
not released to the memory subsystem until a castout queue slot is guaranteed.

Table 6-36. Load Miss Line Alias Example With Reordered Code

Inst# Instruction Cycle Number

0 1 2 3 4–31 32 33

0 lwz r3,0x0(r9) E0 E1 Miss LMQ0 LMQ0 LMQ0/E2 LMQ0/C

1 add r4,r3,r20 E

2 lwz r7,0x20(r9) I E0 E1 Miss LMQ1 LMQ1 LMQ1

3 lwz r5,0x4(r9) D I E0 E1 E1 E1 E1

4 add r6,r5,r4 D I

5 add r8,r7,r6 D I

34 35–36 37–39 40 41 42 43

0 lwz r3,0x0(r9) LMQ0 LMQ0

1 add r4,r3,r20 C

2 lwz r7,0x20(r9) LMQ1 LMQ1 LMQ1 LMQ1 LMQ1/E2 LMQ1/C LMQ1

3 lwz r5,0x4(r9) E1 E1 E1 E2 C

4 add r6,r5,r4 E C

5 add r8,r7,r6 E C

6-84 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

6.7.6.5.6 Store Miss Pipeline

The MPC7451 supports only one outstanding store miss, which uses the committed store
queue entry 0 (CSQ0). Having only one outstanding store miss allows no store miss
pipelining; this can be a bottleneck. For applications needing considerable store-miss
bandwidth to a cacheable memory region and doing read/modify/write operations, consider
using dst or dcbtst instructions to prefetch needed lines. This allows the use of the
five-entry LMQ to provide miss pipelining.

However, using dcbz instruction is strongly encouraged for storing to a new cache block,
when the entire block will be written (and not be read before being written). The dcbz
creates an address-only transaction that avoids waiting for data to be read from the L2/L3
or the bus and then updating the data cache only to be immediately overwritten by the store.
Using dstst instruction is discouraged (either the operation is read/modify/write, in which
case dcbt or dst instructions should be used; or the operation is write-only, in which case
prefetching the data is a bad idea and a dcbz should instead be used).

Table 6-37 shows a series of cacheable stores, where the stores miss in the data cache, L2
cache, and L3 cache and take an arbitrarily long time (N cycles) to return from the main
system bus. Instructions 0–7 are all storing data to the same cache line, while instructions
8–9 are storing data to the next adjacent cache line. Instruction 0 data cache access occurs
in cycle 7 and the miss is transferred to the lower levels of the cache hierarchy starting in
cycle 9.

Table 6-37. Store Miss Pipeline Example

Inst# Instruction Cycle Number

0 1 2 3 4 5 6

0 stw r10,0x0(r8) E0 E1 FSQ0/C WB0 WB1 CSQ0 CSQ0

1 stwu r11,0x4(r8) I E0 E1 FSQ0/C WB0 WB1 CSQ1

2 stwu r12,0x4(r8) D I E0 E1 FSQ0/C WB0 WB1

3 stwu r13,0x4(r8) D I E0 E1 FSQ0/C WB0

4 stwu r14,0x4(r8) D I E0 E1 FSQ0/C

5 stwu r15,0x4(r8) D I E0 E1

6 stwu r16,0x4(r8) D I E0

7 stwu r17,0x4(r8) D I

8 stwu r18,0x4(r8) D

9 stwu r19,0x4(r8)

7 8 9 10 11 12 13

0 stw r10,0x0(r8) CSQ0 CSQ0 CSQ0 CSQ0 CSQ0 CSQ0 CSQ0

1 stwu r11,0x4(r8) CSQ1 CSQ1 CSQ1 CSQ1 CSQ1 CSQ1 CSQ1

2 stwu r12,0x4(r8) CSQ2 CSQ2 CSQ2 CSQ2 CSQ2 CSQ1 CSQ1

MOTOROLA Chapter 6. Instruction Timing 6-85

Instruction Scheduling Guidelines

In this example a store gathering opportunity occurs as a store miss has happened. See
Section 6.4.4.2, “Store Gathering” and Section 3.1.2.3 “Store Gathering/Merging” for rules
about how and when a store gathering opportunity can be taken advantage of. To maximize
the potential for store gathering, stores to adjacent datum should not be interleaved with
other stores.

3 stwu r13,0x4(r8) WB1 CSQ3 CSQ3 CSQ3 CSQ3 CSQ2 CSQ2

4 stwu r14,0x4(r8) WB0 WB1 CSQ4 CSQ4 CSQ4 CSQ3 CSQ3

5 stwu r15,0x4(r8) FSQ0/C WB0 WB1 WB1 WB1 CSQ4 CSQ4

6 stwu r16,0x4(r8) E1 FSQ0 FSQ0 FSQ0 FSQ0 FSQ0/C WB0

7 stwu r17,0x4(r8) E0 E1 FSQ1 FSQ1 FSQ1 FSQ1 FSQ0

8 stwu r18,0x4(r8) I E0 E1 FSQ2 FSQ2 FSQ2 FSQ1

9 stwu r19,0x4(r8) D I E0 E1 E1 E1 E1

14 15 16 17 18 19 20

0 stw r10,0x0(r8) CSQ0 CSQ0 CSQ0 CSQ0 CSQ0 CSQ0 CSQ0

1 stwu r11,0x4(r8) CSQ1 CSQ1 CSQ1 CSQ1 CSQ1 CSQ1 CSQ1

2 stwu r12,0x4(r8) CSQ1 CSQ1 CSQ1 CSQ1 CSQ1 CSQ1 CSQ1

3 stwu r13,0x4(r8) CSQ2 CSQ2 CSQ1 CSQ1 CSQ1 CSQ1 CSQ1

4 stwu r14,0x4(r8) CSQ2 CSQ2 CSQ1 CSQ1 CSQ1 CSQ1 CSQ1

5 stwu r15,0x4(r8) CSQ3 CSQ3 CSQ2 CSQ2 CSQ2 CSQ2 CSQ1

6 stwu r16,0x4(r8) WB1 CSQ4 CSQ3 CSQ3 CSQ2 CSQ2 CSQ1

7 stwu r17,0x4(r8) FSQ0/C WB0 WB1 CSQ4 CSQ3 CSQ3 CSQ2

8 stwu r18,0x4(r8) FSQ1 FSQ0 FSQ0/C WB0 WB1 CSQ4 CSQ3

9 stwu r19,0x4(r8) FSQ2 FSQ1 FSQ1 FSQ0 FSQ0/C WB0 WB1

21 22 23–24 25 26–N N+1–N+4 N+5

0 stw r10,0x0(r8) CSQ0 CSQ0 CSQ0 CSQ0 CSQ0

1 stwu r11,0x4(r8) CSQ1 CSQ1 CSQ1 CSQ1 CSQ1 CSQ0

2 stwu r12,0x4(r8) CSQ1 CSQ1 CSQ1 CSQ1 CSQ1 CSQ0

3 stwu r13,0x4(r8) CSQ1 CSQ1 CSQ1 CSQ1 CSQ1 CSQ0

4 stwu r14,0x4(r8) CSQ1 CSQ1 CSQ1 CSQ1 CSQ1 CSQ0

5 stwu r15,0x4(r8) CSQ1 CSQ1 CSQ1 CSQ1 CSQ1 CSQ0

6 stwu r16,0x4(r8) CSQ1 CSQ1 CSQ1 CSQ1 CSQ1 CSQ0

7 stwu r17,0x4(r8) CSQ2 CSQ1 CSQ1 CSQ1 CSQ1 CSQ0

8 stwu r18,0x4(r8) CSQ3 CSQ2 CSQ2 CSQ2 CSQ2 CSQ1 CSQ0

9 stwu r19,0x4(r8) CSQ4 CSQ3 CSQ3 CSQ2 CSQ2 CSQ1 CSQ0

Table 6-37. Store Miss Pipeline Example (continued)

Inst# Instruction Cycle Number

6-86 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

The first store gathering occurs in cycle 12, where adjacent stores instructions 1 and 2 are
gathered to the same CSQ entry (1). The gathering also occurs in cycles 14, 16, 18, 20, and
22. In cycle 22, an entire cache line has gathered except for the first access that caused the
miss. The second cache line (for instructions 8 and 9) access gathers in cycle 25. Given a
sufficiently long miss latency for instruction 0, a full line could have been gathered into
entry CSQ2, if instructions 10–15 had been shown and also were storing to the same line
as instructions 8–9.

As the data reload occurs in cycle N, instruction 0 is removed from the CSQ. It takes
another 4 cycles for the next store access (the gathered access of instructions 1–7) to restart
and write into the cache.

6.7.6.5.7 DST Instructions and the Vector Touch Engine (VTE)

The MPC7451 VTE engine is similar to that on the MPC7400 but can only initiate an
access every 3 cycles rather than 2. However, due to miss-handling differences described
in Section 6.7.6.5.5, “Load Miss Pipeline,” the engine may fall behind and conflict with
the processor work. Therefore, retuning the dst may be necessary to optimize MPC7451
performance.

Also, note the information on hardware prefetching in Section 6.7.7.3, “Hardware
Prefetching.” Although hardware prefetching is useful for many general-purpose
applications, it may not be the best choice for when active prefetch control through
software is attempted. Hardware prefetching can sometimes interfere with the dst engine’s
attempt to keep the bus busy with specific prefetch transactions, especially for dst strides
larger than one cache block or transient dst operations. Experimentation is encouraged,
but in this instance the best solution may be to disable hardware prefetching.

6.7.7 Memory Subsystem Considerations

The three-level cache implementation affects instruction fetching, the loading and storing
source, and destination operands, as described in the following sections.

6.7.7.1 L2 Cache Effects

For the MPC7451, the unified 256-Kbyte on-board L2 cache has 8-way set associativity
and 64-byte lines (with two sectors/lines). This implies 4096 lines (256 K/64) and 512 sets
(256 Kbyte/64/8). The MPC7457 has 512-Kbyte of unified cache, with 8192 lines
(512 K/64) and 1024 sets (512 Kbyte/64/8). Each line has two sectors with one tag per line
but separate valid and dirty bits for each sector. Because of the sectoring, code uses more
of the L2 storage if spatial locality is characterized by use of the adjacent 32-byte line.

A load that misses the L1 but hits the L2 causes a full line reload. Its latency is ideally
9 cycles (6 more than for an L1 hit) assuming higher priority L2 traffic. See Table 6-33.

MOTOROLA Chapter 6. Instruction Timing 6-87

Instruction Scheduling Guidelines

An access missing the L2 goes to the L3 or main memory bus to fetch the needed 32-byte
sector.

The L2 cache uses a pseudo-random replacement algorithm. With 8-way set associativity,
a miss randomly replaces 1 of 8 ways. This works well for smaller working set sizes, but
for working set sizes close to the size of the cache, the hit rate is not quite as good.
Imagine a 64-Kbyte array structure and a byte striding access pattern that loops over the
array several times. The access of the first 32 Kbytes (256 Kbyte/8 ways) misses and loads
correctly, but the second 32 Kbytes has a 1 in 8 chance per set of knocking out an index of
the first 32 Kbytes. This means that the first pass is likely to leave 93.75% of the 64-Kbyte
structure in the L2 cache; a second pass is likely to leave 99.8% of the structure in the L2
cache.

For a 128-Kbyte object, 82.8% is left in the L2 cache after one pass, but a 256-Kbyte
object only slightly less than 2/3 of the structure is left in the L2 cache. However, in both
cases the percentages improve with subsequent passes.

6.7.7.2 L3 Cache Effects

The L3 cache is an off-chip SRAM with on-chip cache tags. The MPC7451 supports 1- and
2-Mbyte L3 caches. A 1-Mbyte cache is two-sectored (64-byte lines) and a 2-Mbyte cache
is 4-sectored (128-byte lines). The L3 is 8-way set associative, implying 16,384 lines (1
Mbyte/64 or 2 Mbyte/128) or 2,048 sets (1 Mbyte/64/8 or 2 Mbyte/128/8).

An access missing in the L3 fetches the required 32-byte sector regardless of the L3 line
size. Like the L2, the L3 uses a random replacement algorithm, the implications of which
are described in Section 6.7.7.1, “L2 Cache Effects.” Note that L3 cache is not supported
on the MPC7441 and the MPC7445.

6.7.7.3 Hardware Prefetching

The MPC7451 supports alternate sector prefetching from the L2 cache. Because the L2
cache is two-sectored, an access requesting a 32-byte line from the L1 that also misses in
the L2 and the L3, can generate a prefetch (if enabled) for the alternate sector as needed.
As many as three outstanding prefetches are allowed.

The example shown in Table 6-35 can also be used to illustrate the benefits of hardware
prefetching for code when other software techniques are not applied.

The example in Table 6-38 shows timing when the loads miss all levels of the cache
hierarchy and go to the system bus. Hardware prefetching is disabled. The load misses to
the bus are serialized by the load miss line alias stall (instruction 2 on instruction 0).

6-88 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

However, if hardware prefetching is enabled, hardware starts prefetching the line desired
by instruction 4 before instruction 4 accesses (and misses) in the L1 data cache, thus
parallelizing some serialized bus accesses. In the example shown in Table 6-39, with
prefetching enabled, performance improves by about 40%. In this case, the prefetch was
not finished when instruction 4 went to the L2 cache, so the load is forced to stall while the
prefetch bus access completes. However, in other cases, the hardware prefetch is entirely
finished, allowing subsequent loads to have the access time of a L2 cache hit. In general,
hardware prefetch benefits are very dependent on what type of applications are run and
how the system is configured.

Table 6-38. Timing for Load Miss Line Alias Example

Inst# Instruction Cycle Number

0 1 2 3–81 82 83 84 85–99

0 lwz r3,0x0(r9) E0 E1 Miss LMQ0 LMQ0/E2 LMQ0/C LMQ0 LMQ0

1 add r4,r3,r20 E C

2 lwz r5,0x4(r9) I E0 E1 E1 E1 E1 E1 E1

3 add r6,r5,r4 I

4 lwz r7,0x20(r9) D I E0 E0 E0 E0 E0 E0

5 add r8,r7,r6 D I

100–102 103 104 105 106–184 185 186 187

0 lwz r3,0x0(r9)

1 add r4,r3,r20

2 lwz r5,0x4(r9) E1 E2 C

3 add r6,r5,r4 E C

4 lwz r7,0x20(r9) E0 E1 Miss LMQ0 LMQ0 LMQ0/E2 LMQ0/C LMQ0

5 add r8,r7,r6 E C

Table 6-39. Hardware Prefetching Enable Example

Inst# Instruction Cycle Number

0 1 2 3–81 82 83 84 85–99

0 lwz r3,0x0(r9) E0 E1 Miss LMQ0 LMQ0 LMQ0/E2 LMQ0/C LMQ0

1 add r4,r3,r20 E C

2 lwz r5,0x4(r9) I E0 E1 E1 E1 E1 E1 E1

3 add r6,r5,r4 I

4 lwz r7,0x20(r9) D I E0 E0 E0 E0 E0 E0

5 add r8,r7,r6 D I

100–102 103 104 105 106–133 134 135 136

MOTOROLA Chapter 6. Instruction Timing 6-89

Instruction Scheduling Guidelines

Hardware prefetching is often preferable. However, sometimes an unnecessary prefetch
transaction can delay a later-arriving demand transaction and slow down the processor.
Also, as described in Section 6.7.6.5.7, “DST Instructions and the Vector Touch Engine
(VTE),” if software prefetching is used, hardware prefetching may sometimes provide
more interference than benefit.

0 lwz r3,0x0(r9)

1 add r4,r3,r20

2 lwz r5,0x4(r9) E1 E2 C

3 add r6,r5,r4 E C

4 lwz r7,0x20(r9) E0 E1 Miss LMQ0 LMQ0 LMQ0/E2 LMQ0/C LMQ0

5 add r8,r7,r6 E C

Table 6-39. Hardware Prefetching Enable Example (continued)

Inst# Instruction Cycle Number

6-90 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Scheduling Guidelines

MOTOROLA Chapter 7. AltiVec Technology Implementation 7-1

Chapter 7
AltiVec Technology Implementation
The AltiVec technology, a short vector parallel architecture, extends the instruction set
architecture (ISA) of the PowerPC architecture. The AltiVec ISA is based on separate
vector/SIMD-style (single instruction stream, multiple data streams) execution units that
have high-data parallelism. That is, the AltiVec technology operations can perform on
multiple data elements in a single instruction. The term ‘vector’ in this document refers to
the spatial parallel processing of short, fixed-length, one-dimensional matrices performed
by an execution unit. It should not be confused with the temporal parallel (pipelined)
processing of long, variable-length vectors performed by classical vector machines. High
degrees of parallelism are achievable with simple, in-order instruction dispatch and low
instruction bandwidth. However, the ISA is designed to not impede additional parallelism
through superscalar dispatch in multiple execution units or multithreaded execution unit
pipelines. Note that the L3 cache is not supported by the MPC7441 or the MPC7445.

The AltiVec specification is defined in the AltiVec Technology Programming Environments
Manual. That document describes but does not require many aspects of a preferred
implementation. The MPC7451 implements the following key features of preferred
implementation:

• All data paths and execution units are 128 bits wide.

• There are four independent AltiVec subunits for executing AltiVec instructions:
permute, complex, simple, and float .

• The memory subsystem is redesigned to provide high bandwidth.

• The data stream touch instructions, dst(t) (for loads) and dstst(t) (for stores) are
implemented in their full, four-tag form.

The AltiVec instruction set both defines entirely new resources and extends the
functionality of the PowerPC architecture. These changes are described in the following
sections.

7.1 AltiVec Technology and the Programming Model
The following sections describe how the AltiVec technology affects features of the
programming model as described in Chapter 2, “Programming Model.” Although the
AltiVec specification describes four optional user-mode SPRs for thread management, the
MPC7451 does not implement these registers.

7-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec Technology and the Programming Model

7.1.1 Register Set

The incorporation of AltiVec technology affects the register set in the MPC7451 as
described in the following sections. These features are detailed in the AltiVec Programming
Environments Manual.

7.1.1.1 Changes to the Condition Register

AltiVec vector-compare operations with Rc set can update condition register field 6 (CR[6])
in user mode.

7.1.1.2 Addition to the Machine State Register

The AltiVec available bit, MSR[VEC], indicates the availability of the AltiVec instruction
set. Its default state for the MPC7451 is a zero (not available). It can be set by the
supervisor-level mtmsr instruction.

7.1.1.3 Vector Registers (VRs)

The AltiVec programming model defines vector registers (VRs) that are used as source and
destination operands for AltiVec load, store, and computational instructions.

Figure 7-1 shows the 32 registers of the vector register file (VRF). Each is 128 bits wide
and can hold sixteen 8-bit elements, eight 16-bit elements, or four 32-bit elements.

Figure 7-1. Vector Registers (VRs)

Vector Registers (VRs)

VR0

VR1

VR2

VR30

VR31

VR3

32 Bits

16 Bits

8 Bits

128 Bits

32
Vector

Registers

1 9 10 11 12 13 14 15 16

1

1

2

2

2

3

3

3

4

4

4

5

5

6

6

7

7

8

8

MOTOROLA Chapter 7. AltiVec Technology Implementation 7-3

AltiVec Technology and the Programming Model

7.1.1.4 Vector Status and Control Register (VSCR)

The vector status and control register (VSCR) is a 32-bit vector register (not an SPR) that
functions similarly to the FPSCR and is accessed by AltiVec instructions. The Move from
Vector Status and Control Register (mfvscr) and Move to Vector Status and Control
Register (mtvscr) instructions are provided to move the contents of the VSCR from and to
the least-significant bits of a vector register. The VSCR is shown in Figure 7-2.

Figure 7-2. Vector Status and Control Register (VSCR)

The VSCR has two defined bits, the AltiVec non-Java mode bit (VSCR[NJ]) and the AltiVec
saturation bit (VSCR[SAT]). The remaining bits are reserved.

VSCR bits are described in Table 7-1.

Table 7-1. VSCR Field Descriptions

Bits Name Description

0–14 — Reserved. The handling of reserved bits is the same as that for other PowerPC registers.
Software is permitted to write any value to such a bit. A subsequent reading of the bit returns 0
if the value last written to the bit was 0 and returns an undefined value (0 or 1) otherwise.

15 NJ Non-Java. This bit determines whether AltiVec floating-point operations are performed in a
Java-compliant mode or a possibly faster non-Java mode.
0 Java–compliant mode (default). In this mode, the AltiVec assist exception is enabled. The

AltiVec assist exception allows software to handle denormalized values as specified in the
Java standard.

1 Non-Java mode. If an element in a source vector register contains a denormalized value, the
value 0 is used instead. If an instruction causes an underflow condition, the corresponding
element in the target VR is cleared to 0. In both cases the 0 has the same sign as the
denormalized or underflowing value.

SAT0000_0000_0000_000NJ

31301615140

Reserved

0000_0000_0000_000

7-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec Technology and the Programming Model

7.1.1.5 Vector Save/Restore Register (VRSAVE)

The vector save/restore register (VRSAVE) is a user-mode register used to assist
application and operating system software in saving and restoring the architectural state
across process context-switched events. Shown in Figure 7-3, VRSAVE is a 32-bit
special-purpose register (SPR 256) entirely maintained and managed by software.

Figure 7-3. Vector Save/Restore Register (VRSAVE)

VRSAVE bit settings are shown in Table 7-2.

16–30 — Reserved. The handling of reserved bits is the same as that for other PowerPC registers.
Software is permitted to write any value to such a bit. A subsequent reading of the bit returns 0
if the value last written to the bit was 0 and returns an undefined value (0 or 1) otherwise.

31 SAT Saturation. This sticky status bit indicates that a field in a saturating instruction saturated since
the last time SAT was cleared. It is sticky in that when SAT = 1, it remains set to 1 until it is cleared
to 0 by an mtvscr instruction.
0 Indicates no saturation occurred; mtvscr can explicitly clear this bit.
1 The AltiVec saturate instruction is set when saturation occurs for the results

 of one of the AltiVec instructions having ‘saturation’ in its name, as follows:
Move To VSCR (mtvscr)
Vector Add Integer with Saturation (vaddubs, vadduhs, vadduws, vaddsbs, vaddshs,
vaddsws)
Vector Subtract Integer with Saturation (vsububs, vsubuhs, vsubuws, vsubsbs, vsubshs,
vsubsws)
Vector Multiply-Add Integer with Saturation (vmhaddshs, vmhraddshs)
Vector Multiply-Sum with Saturation (vmsumuhs, vmsumshs, vsumsws)
Vector Sum-Across with Saturation (vsumsws, vsum2sws, vsum4sbs, vsum4shs,
vsum4ubs)
Vector Pack with Saturation (vpkuhus, vpkuwus, vpkshus, vpkswus, vpkshss, vpkswss)
Vector Convert to Fixed-Point with Saturation (vctuxs, vctsxs)

Table 7-2. VRSAVE Bit Settings

Bits Name Description

0–31 VR Determine which VRs are used in the current process.
0 Not being used for the current process
1 Used for the current process

Table 7-1. VSCR Field Descriptions (continued)

Bits Name Description

VR31VR2VR1VR0

275 313029282625242322212019181716151413121110987643210

VR3 VR4 VR5 VR6 VR7 VR8 VR9VR10 VR12VR11 VR13 VR14 VR15 VR18 VR19 VR20VR16 VR17 VR22VR21 VR23 VR24 VR25 VR28 VR29 VR30VR26 VR27

MOTOROLA Chapter 7. AltiVec Technology Implementation 7-5

AltiVec Technology and the Programming Model

7.1.2 AltiVec Instruction Set

The MPC7451 implements all of the defined AltiVec instructions. The AltiVec instruction
set has no optional instructions; however, a few instructions associated with the load/store
model are defined to allow significant differences between implementations. The following
sections describe the MPC7451’s implementation of these options.

AltiVec instructions are primarily user-level and are divided into the following categories:

• Vector integer arithmetic instructions—These include arithmetic, logical, compare,
rotate, and shift instructions.

• Vector floating-point arithmetic instructions

• Vector load and store instructions

• Vector permutation and formatting instructions—These include pack, unpack,
merge, splat, permute, select, and shift instructions.

• Processor control instructions—These instructions are used to read and write from
the VSCR.

• Memory control instructions—These instructions are used for managing caches
(user- and supervisor-level).

7.1.2.1 LRU Instructions

The AltiVec architecture suggests that the lvxl and stvxl instructions differ from other
AltiVec load and store instructions in that they leave data cache entries in a least recently
used (LRU) state instead of a most recently used state (MRU). This is used to identify data
known to have little reuse and poor caching characteristics.

On the MPC7451, these instructions follow the cache allocation and replacement policies
described in Section 3.5, “L1 Cache Operation,” but they leave their addressed data cache
entries in the LRU state. In addition, all LRU instructions are also interpreted to be transient
and are treated as described in Section 7.1.2.2, “Transient Instructions and Caches.”

7.1.2.2 Transient Instructions and Caches

The MPC7451 supports both static and transient memory access behavior as defined by the
AltiVec technology.

A static memory access assumes a reasonable degree of locality and that the data will be
needed several times over a relatively long period. A transient memory reference has poor
locality and is likely to be referenced few times or over a short period of time.

For transient memory accesses that miss in the L1 cache, the MPC7451 allocates (and
loads) the line in the L1 cache and marks it as LRU. The MPC7451 does not allocate entries
in the L2 or L3 cache for transient accesses that miss. If the L1 cache line is modified and
the line is the next candidate for replacement, a castout occurs to system memory. Note that

7-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec Technology and the Programming Model

the MPC7451 writes back to memory in this case and does not allocate the L1 castout in
the L2 or L3 cache.

The following instructions are interpreted to be transient:

• lvxl and stvxl

• dstt and dststt (transient forms of the two data stream touch instructions). These are
described in detail in the following section.

The AltiVec architecture specifies the data stream touch instructions dst(t) and dstst(t), and
it specifies two data stream stop (dss(all)) instructions. The MPC7451 implements all of
them. The term dstx used below refers to all of the data stream touch instructions. The T
field in the dstx instruction is used as the transient hint bit indicator.

The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches; see Chapter 5, “Cache Model and Memory Coherency,” in The
Programming Environments Manual for more information about cache topics.

Bandwidth between the processor and memory is managed explicitly through the use of
cache management instructions that provide a way to indicate to the cache hardware how it
should prefetch and prioritize the writeback of data. The principal instruction for this
purpose is the software-directed cache prefetch Data Stream Touch (dst). Other related
instructions are provided for complete control of the software-directed cache prefetch
mechanism.

Table 7-3 summarizes the directed prefetch cache instructions defined by the AltiVec VEA.
Note that these instructions are accessible to user-level programs.

7.1.2.3 Data Stream Touch Instructions

Note that, in general, prefetching data to which the program is performing only store
instructions does not help and can sometimes hinder performance. User-level programs
should not use the touch-for-store prefetches (dstt, dstst, and dststt) unless the program is
performing loads and stores to the data that is being prefetched. If the user is performing
only stores to the data, then performance is almost certainly better if the data is not

Table 7-3. AltiVec User-Level Cache Instructions

Name Mnemonic Syntax Implementation Notes

Data Stream Touch (non-transient) dst rA,rB,STRM —

Data Stream Touch (transient) dstt rA,rB,STRM Used for last access

Data Stream Touch for Store (non-transient) dstst rA,rB,STRM Not recommended for use in the
MPC7451

Data Stream Touch for Store (transient) dststt rA,rB,STRM Not recommended for use in the
MPC7451

Data Stream Stop (one stream) dss STRM —

Data Stream Stop (all streams) dssall STRM —

MOTOROLA Chapter 7. AltiVec Technology Implementation 7-7

AltiVec Technology and the Programming Model

prefetched and the stores are performed independently. In this case, a dcbz instruction is
often the best method to initialize the cache block without creating an external memory
access request.

So, in general, touch-for-store instructions (dstt, dstst, and dststt) should not be used. The
only exception in using touch-for-store instructions is when prefetching data that is going
to be both loaded from and then stored to. Otherwise, a programmer should use the normal
touch-for-load instruction (dst) to prefetch data that the program is loading.

If HID0[NOPDST] = 1, all subsequent dstx instructions are treated as no-ops, and all
previously executed dst streams are canceled. This no-op means that the touch does not
cause a load operation and cannot perform address translation. Therefore, no table search
operations are initiated, and no page table entry (PTE) referenced bits are set.

The dstx instructions are broken into one or more self-initiated dcbt-like touch line fetches
by the memory subsystem. When the dstx instruction is dispatched to the LSU and all of
its operands are available, the dstx is queued in a vector-touch queue (VTQ) in the next
cycle. There are four data stream engines within the VTQ—data stream 0 uses engine VT0
within the VTQ, data stream 1 uses VT1, and so forth.

The operation of a VT data stream engine does not consume any dispatch or completion
resources. A VT is an asynchronous line-fetch or line-touch engine that can prefetch data
in units of 32-byte cache blocks by inserting touch requests into the normal load/store
pipeline.

After the dstx is queued in the VTQ, the VTQ begins to unroll the stream into 32-byte line
touches. As early as the third cycle after the LSU sends its request to the VTQ, the VTQ
could make its first line-fetch touch request to the data cache.

Note that a data stream engine bases its accesses on effective addresses. This means that
each line fetch within a stream accesses the data MMU simultaneously with the L1 data
cache and performs a normal translation. There are no arbitrary address boundaries that
affect the progress of a given stream.

In addition, if a VTQ line touch accesses a page whose translation does not reside in the
data MMU, a table search operation is performed to load that PTE into the data TLB. The
TLB is non-blocking during a VTQ-initiated table search operation, meaning that normal
loads and stores can hit in the TLB (and in the data cache) during the table search. For
details on a table search operation see Section 5.5.2.1, “Conditions for a Page Table Search
Operation.”

7-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec Technology and the Programming Model

7.1.2.3.1 Stream Engine Tags

The opcodes for the dstx instructions is shown in Table 7-4.

The STRM field in the dstx instruction designates which of the four data stream engines
(VT0, VT1, VT2, or VT3) is used by a given instruction, as described in Table 7-5.

Bits 7 and 8 of the dstx opcode are reserved. If bit 7 is set, it is ignored. If bit 8 is set, the
VTQ does not queue up the stream and that dstx instruction is ignored.

7.1.2.3.2 Speculative Execution and Pipeline Stalls
for Data Stream Instructions

Like a load miss instruction or a dcbt/dcbtst instruction, a dstx instruction is executed
speculatively. If the target of a particular dstx line fetch is mapped with G = 1 (guarded),
any reload for that line fetch is under the same constraints as a guarded load. If any of the
four data stream engines encounter a TLB miss, all four pause until the dstx access that
caused the TLB miss is retired from the completion queue or is the oldest instruction in the
queue. The dstx then initiates a table search operation and completes its current cache
access.

If a dstx instruction to a given data stream is dispatched and the VTQ is processing a
previous dstx to the same data stream, the second dst to that tag supersedes the first one,
but only after the second dstx becomes non-branch-speculative; it can still be speculative
with respect to exceptions. If a third dstx is ready for dispatch while the second is waiting
for branch speculation to resolve, instruction dispatch stalls.

Table 7-4. Opcodes for dstx Instructions

Name 0 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dst 0111_11 0 00 STRM A B 01_0101_0110 0

dstst 0111_11 0 00 STRM A B 01_0111_0110 0

dststt 0111_11 1 00 STRM A B 010_111_0110 0

dstt 0111_11 1 00 STRM A B 01_0101_0110 0

Table 7-5. DST[STRM] Description

Value of STRM Field in dstx Instruction Data Stream Engines (VTs)

00 VT0

01 VT1

10 VT2

11 VT3

MOTOROLA Chapter 7. AltiVec Technology Implementation 7-9

AltiVec Technology and the Programming Model

7.1.2.3.3 Static/Transient Data Stream Touch Instructions

The AltiVec ISA defines two of the dstx instructions as static (dst and dstst) and two as
transient (dstt and dststt). Static data is likely to have a reasonable degree of locality and
is referenced several times or over a reasonably long period of time. Transient data is
assumed to have poor locality and is likely to be referenced only a few times over a short
period of time.

The MPC7451 supports both static and transient memory-access behavior. The lvxl and
stvxl instructions are interpreted as transient data accesses.

7.1.2.3.4 Relationship with the sync/tblsync Instructions

If a sync instruction is executed while a dstx is in progress, the following happens for each
of the four VTs:

• Any cache line fetch in progress continues until that single cache line refill has
completed.

• The VTQ pauses and does not continue to its next line-fetch location.

• When all other necessary conditions are met in the machine, the sync instruction is
completed.

• The dstx resumes with cache accesses/reloads to the next line-fetch location.

The effect of the sync is a short pause in dstx operation. Code sequences that are truly
intended to quiet the machine, like those used to enter reduced-power states, must use
dss/dssall followed by a sync instruction to kill outstanding transactions initiated by dstx
instructions. Refer to Section 7.1.2.3.8, “Differences Between dst/dstt and dstst/dststt
Instructions,” for more details on the dstx and dss/dssall instructions.

Note that a tlbsync instruction affects the VTQ identically to a sync instruction with the
additional effect that an outstanding VTQ-initiated table search operation is canceled when
a tlbsync is dispatched to the LSU.

7.1.2.3.5 Data Stream Termination

If one of the conditions in Table 7-6 is determined to be true when a given line fetch of a
dstx stream is translated, the entire dstx stream is terminated. Note that this can occur in the
middle of many line fetches for a dstx stream.

If the condition involves address translation and the dstx stream specifies an access that
would cross into another page, the processor does not attempt to continue the dstx stream
at those new pages if it had an opportunity to fully translate the access.

7-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec Technology and the Programming Model

Note that asserting SRESET does not terminate a dstx stream.

7.1.2.3.6 Line Fetch Skipping

When an exception condition occurs, the MPC7451 terminates any dstx-initiated table
search operations and pauses the stream engine that initiated the table search. In this
situation, the line fetch of the dst that caused the table search is effectively dropped and any
translation exception that would have terminated the stream had the table search operation
completed does not occur. Instead, the engine attempts the next line fetch when the stream
resumes. This, in effect, causes a skip of one line fetch in the stream engine.

Also note that the execution of a tlbsync instruction cancels any dstx-initiated table search
operations in progress, which can cause a line fetch skip.

7.1.2.3.7 Context Awareness and Stream Pausing

Stream accesses can take place only when data translation is enabled (MSR[DR] = 1), and
when the processor is in the same privilege state as it was when the dstx instruction was
executed.

If the privilege level setting changes or if data translation is disabled, the stream engine
suspends generation of new accesses. Any outstanding transactions initiated before the
pause (like cache refills and bus activity) finish normally. The stream engine resumes when
translation is again enabled and the privilege level again matches the level in place when
the dstx instruction for that stream was executed.

Table 7-6. The dstx Stream Termination Conditions

 Conditions

Successfully reached end of stream

The dstx stream is still speculative with respect to program flow, and the control unit issues a cancel due to a
mispredicted branch or exception.

Another dstx instruction to this stream tag is executed, and this new dstx is non-speculative with respect to branch
prediction.

A dss instruction to this stream tag is completed.

Current line fetch caused a table search operation that did not find a matching entry in the page table.

Current line fetch is translated as cache-inhibited.

Current line fetch is translated as write-through and the stream is a touch-for-store.

Current line fetch is translated to direct-store space (SR[T] = 1).

Current line fetch is to a protected page.

L1 data cache is locked or disabled.

The processor has encountered a condition that causes a machine check exception.

MOTOROLA Chapter 7. AltiVec Technology Implementation 7-11

AltiVec Technology and the Programming Model

7.1.2.3.8 Differences Between dst/dstt and dstst/dststt Instructions

The only difference between touch-for-load (dst/dstt) and touch-for-store (dstst/dststt)
streams is that touch-for-load streams are subdivided into line fetches that are treated
identically to individual dcbt fetches, while touch-for-store streams are subdivided into line
fetches that are treated identically to individual dcbtst fetches.

Note that if a touch-for-store stream instruction is mapped to a write-through page, that
stream is terminated. The use of the touch-for-store streams is not recommended when
store-miss merging is enabled, which is the default case. See Section 3.4.4.4, “Data Cache
Block Store (dcbst),” for further details on store-miss merging.

Although the MPC7451 implements touch-for-store stream instructions, use of these
instructions is not recommended because it can degrade performance.

7.1.2.4 dss and dssall Instructions

The Data Stream Stop instruction (dss) is never executed speculatively. Instead, dss
instructions flow into a four-entry dss queue (DSSQ) in which one entry is dedicated to
each possible tag. If another dss is dispatched with a tag that matches a non-completed but
valid DSSQ entry, that new dss remains in a hold queue and waits for the previous dss in
the DSSQ to be completed.

If a subsequent dstx is queued in the VTQ, it cancels an older dss entry in the DSSQ (for
the same tag). When a given DSSQ entry completes, the valid bit for the VTQ entry
corresponding to that tag is immediately cleared.

If a dssall instruction is executed, the DSSQ queues all four queue entries in order to
terminate all four VT streams when the dssall instruction is the oldest. The dssall opcode
differs from dss in that bit 6 (the A field) is set and bits 7–10 are ignored.

Note that line fetches in progress for a given dstx stream are not canceled by the dss
instruction. Only subsequent line fetches are prevented. To ensure that all line fetches from
a dstx are completed, a sync instruction must be issued after the dss instruction.

7.1.2.5 Java Mode, NaNs, Denormalized Numbers, and Zeros

This section describes the MPC7451 floating-point behavior for various special-case data
types. The descriptions cover both Java and non-Java modes (see Section 7.1.1.4, “Vector
Status and Control Register (VSCR)” for setting Java/non-Java mode), including the
following:

• Denormalization for all instructions

• NaNs, denormalized numbers, and zeros for compare, min, and max MPC7451
operations

• Zero and NaN data for round-to-float integral operations

7-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec Technology and the Programming Model

Note the following:

• The MPC7451 defaults to Java mode.

• The MPC7451 handles NaNs the same way regardless of Java or non-Java mode.

• The MPC7451 handles most denormalized numbers in Java mode by taking a trap
to exception 0x01600 (AltiVec assist exception) but, for some instructions the
MPC7451 can produce the exact result without trapping.

Table 7-7 describes denormalization instructions.

Table 7-8 describes the behavior of the vector floating-point compare, min, and max
instructions in non-Java mode.

Table 7-7. Denormalization for AltiVec Instructions

Instruction
Input Denormalization Detected Output Denormalization Detected

Java Non-Java Java Non–Java

vaddfp, vsubfp,
vmaddfp, vnmsubfp

Trap (unless result is
a NaN) 1

1 May change in the future to produce an IEEE default result in hardware instead of trapping. If the instruction has a
denorm operand that would produce a NaN result, the MPC7451 returns the NaN result and does not cause an
AltiVec assist exception.

Input treated as correctly
signed zero

Trap Result squashed to
correctly signed zero

vrefp Trap Denormalized number
squashed to zero,
returning +/-∞

Trap Result squashed to
zero

vrsqrtefp Trap Denormalized number
squashed to zero,
returning +/-∞

Never produces a
denormalized
number

Never produces a
denormalized
number

vlogefp Trap Denormalized number
squashed to zero,
returning -∞

Never produces a
denormalized
number

Never produces a
denormalized
number

vexptefp Result is +1.0 Input squashed to zero,
output result is +1.0

Trap Result squashed to
zero

vcfux, vcfsx Never detects denormalized numbers

vctsxs, vctuxs Trap 1 Output result is 0x0 Never produces a
denormalized
number

Never produces a
denormalized
number

Table 7-8. Vector Floating-Point Compare, Min, and Max
in Non-Java Mode

vA vB vminfp vmaxfp vcmpgtfp vcmpgefp vcmpeqfp
vcmpbfp

LE GE

NaN_A — QNaN_A QNaN_A False False False 0 0

— NaN_B QNaN_B QNaN_B False False False 0 0

+Den_A -B -B +Zero True True False 0 0

MOTOROLA Chapter 7. AltiVec Technology Implementation 7-13

AltiVec Technology and the Programming Model

Table 7-9 describes the behavior of the same instructions in Java mode.

-Den_A -B -B -Zero True True False 0 0

+Den_A +B +Zero +B False False False 1 1

-Den_A +B -Zero +B False False False 1 1

-A +Den_B -A +Zero False False False 1 0

-A -Den_B -A -Zero False False False 1 0

+A +Den_B +Zero +A True True False 0 1

+A -Den_B -Zero +A True True False 0 1

+Den_A/+Zero +Den_B/+Zero +Zero +Zero False True True 1 1

+Den_A/+Zero -Den_B/-Zero -Zero +Zero False True True 1 1

-Den_A/-Zero +Den_B/+Zero -Zero +Zero False True True 1 1

-Den_A/-Zero -Den_B/-Zero -Zero -Zero False True True 1 1

Table 7-9. Vector Floating-Point Compare, Min, and Max in Java Mode

vA vB vminfp vmaxfp vcmpgtfp vcmpgefp vcmpeqfp
vcmpbfp

LE GE

NaN_A — QNaN_A QNaN_A False False False 0 0

— NaN_B QNaN_B QNaN_B False False False 0 0

+Den_A -B -B +Den_A True True False 0 0

-Den_A -B -B -Den_A True True False 0 0

+Den_A +B +Den_A +B False False False 1 1

-Den_A +B -Den_A +B False False False 1 1

-A +Den_B -A +Den_B False False False 1 0

-A -Den_B -A -Den_B False False False 1 0

+A +Den_B +Den_B +A True True False 0 1

+A -Den_B -Den_B +A True True False 0 1

+Den_A ±Zero ±Zero +Den_A True True False 0 1

-Den_A ±Zero -Den_A ±Zero False False False 1 0

±Zero +Den_B ±Zero +Den_B False False False 1 1

±Zero -Den_B -Den_B ±Zero True True False 0 0

Table 7-8. Vector Floating-Point Compare, Min, and Max
in Non-Java Mode (continued)

vA vB vminfp vmaxfp vcmpgtfp vcmpgefp vcmpeqfp
vcmpbfp

LE GE

7-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec Technology and the Programming Model

Table 7-10 describes the behavior of round-to-integer instructions in non-Java mode.

Table 7-11 describes round-to-integer instructions in Java mode. Note that round-to-integer
instructions never produce denormalized numbers.

-Den_A +Den_B -Den_A +Den_B False False False 1 Result depends on
input operands

+Den_A -Den_B -Den_B +Den_A True True False 0

-Den_A -Den_B
Result depends on input operands

0

+Den_A +Den_B 1

Table 7-10. Round-to-Integer Instructions in Non-Java Mode

 vB Sign vB exponent
Instruction

vrfin vrfiz vrfip vrfim

neg 127 > exp > 24 vB vB vB vB

23 > exp > 0 Round towards nearest Truncate fraction Round towards +∞ Round towards -∞

Exp = -1 Round to nearest -Zero -Zero -1.0

-2 > exp > -126 -Zero -Zero -Zero -1.0

Input is
denormalized

-Zero -Zero -Zero -Zero

Input is zero -Zero -Zero -Zero -Zero

pos input is zero +Zero +Zero +Zero +Zero

Input is
denormalized

+Zero +Zero +Zero +Zero

-126 < exp < -2 +Zero +Zero +1.0 +Zero

exp = -1 Round towards nearest +Zero +1.0 +Zero

0 < exp < 23 Round towards nearest Truncate fraction Round towards +∞ Round towards -∞

24 < exp < 126 vB vB vB vB

Table 7-9. Vector Floating-Point Compare, Min, and Max in Java Mode (continued)

vA vB vminfp vmaxfp vcmpgtfp vcmpgefp vcmpeqfp
vcmpbfp

LE GE

MOTOROLA Chapter 7. AltiVec Technology Implementation 7-15

AltiVec Technology and the Programming Model

The MPC7451 detects underflows and production of denormalized numbers on vector float
results before rounding, not after. Future versions of the AltiVec Technology Programming
Environments Manual may reflect this ordering.

7.1.3 Differences between the MPC7400/MPC7410 and the
MPC7451

There exist a few differences in the AltiVec implementation between the
MPC7400/MPC7410 and the MPC7451. These differences are within the bounds outlined
in the AltiVec Technology Programming Environments Manual. The AltiVec technology
implementation differences between the processors are described below.

7.1.3.1 Java and Non-Java Mode

The floating-point behavior for special case types is described in Section 7.1.2.5, “Java
Mode, NaNs, Denormalized Numbers, and Zeros.” In the MPC7400/MPC7410, the default
setting for floating point behavior is non-Java mode (VSCR[NJ] = 1), and for the MPC7451
it is Java mode (VSCR[NJ] = 0).

7.1.3.2 AltiVec Instructions

The vrefp instruction on the MPC7451 returns a different result from the
MPC7400/MPC7410 for exact powers of two. The MPC7451 reciprocal estimate for

Table 7-11. Round-to-Integer Instructions in Java Mode

vB Sign vB Exponent
Instruction

vrfin vrfiz vrfip vrfim

neg 127 > exp > 24 vB vB vB vB

23 > exp > 0 Round towards nearest Truncate fraction Round towards +∞ Round towards -∞

Exp = -1 Round to nearest -Zero -Zero -1.0

-2 > exp > -126 -Zero -Zero -Zero -1.0

Input is
denormalized

Trap Trap Trap Trap

Input is zero -Zero -Zero -Zero -Zero

pos Input is zero +Zero +Zero +Zero +Zero

Input is
denormalized

Trap Trap Trap Trap

-126 < exp < -2 +Zero +Zero +1.0 +Zero

Exp = -1 Round towards nearest +Zero +1.0 +Zero

0 < exp < 23 Round to nearest Truncate fraction Round To +∞ Round To -∞

24 < exp < 126 vB vB vB vB

7-16 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec Technology and the Programming Model

powers of two is exact. For example, in the MPC7451 vrefp(+2.0) = +0.50 and in the
MPC7400/MPC7410 vrefp(+2.0) = +0.499939.

Also, unlike the MPC7400/MPC7410, for the 1/sqrt(x) estimate instruction vrsqrtefp, the
MPC7451 does not round the least significant bit of the mantissa.

The vsr and vsl instructions are executed by the vector permute unit on MPC7451. In the
MPC7400/MPC7410, these instructions are executed by the vector simple fixed point unit.

7.1.3.3 AltiVec Instruction Sequencing

The MPC7451 implements the AltiVec execution unit as four subunits: simple, complex,
permute, and float. In the MPC7400/MPC7410, the AltiVec execution unit has two
subunits: the permute and the vector arithmetic logic unit (ALU), which contains the
simple, complex, and float subunits. Because of this difference, the MPC7451 has more
Altivec unit parallelism than the MPC7400/MPC7410. The four-entry AltiVec issue queue
can issue up to two instructions to two of the four AltiVec subunits (simple, complex,
permute, and floating-point). For example, the MPC7451 can issue both a vector simple and
a vector complex instruction simultaneously.

The MPC7451 implements the AltiVec execution unit as four subunits: simple (VIU1),
complex (VIU2), float (VFPU), and permute (VPU). In the MPC7400/MPC7410, the
AltiVec execution unit has two subunits: the permute (VPU) and the vector arithmetic logic
unit (VALU), which contains the simple, complex, and float subunits. Because of this
difference, the MPC7451 has more AltiVec unit parallelism than the MPC7400/MPC7410.
The four-entry AltiVec issue queue (VIQ) can issue up to two instructions to two of the four
AltiVec subunits (VIU1, VIU2, VFPU, and VPU). For example, the MPC7451 can issue
both a vector simple and a vector complex instruction simultaneously, unlike the
MPC7400/MPC7410, which only allows pairing between VPU and one of the other three
VALU subunits. Some of the high-level AltiVec implementation specific differences
between the MPC7400/MPC7410 and the MPC7451 are listed in Table 7-12. To determine
the specific differences for an AltiVec instruction, a comparison can be made between the
execution latencies listed in the “Instruction Timing” chapters for the MPC7400/MPC7410
and the MPC7451.

Table 7-12. AltiVec Implementation-specific Differences between the
MPC7400/MPC7410 and the MPC7451

Microarchitectural Feature MPC7400/MPC7410 MPC7451

Available vector execution units Vector execution units 2-issue to VPU
and VALU (VALU has VIU1, VIU2,
VFPU subunits) v

2-issue to any 2 vector units
(VIU1, VPU, VIU2, VFPU)

VIU1 Execution Unit Timings
(Latency-Throughput)

1-1 1-1

VIU2 Execution Unit Timings
(Latency-Throughput)

3-1 4-1

MOTOROLA Chapter 7. AltiVec Technology Implementation 7-17

AltiVec Technology and the Cache Model

Because the MPC7451 contains more execution units, some of the instructions are executed
from different execution units. The instructions that execute in different execution units
from the MPC7400/MPC7410 to the MPC7451 are listed in Table 7-13.

7.2 AltiVec Technology and the Cache Model
The MPC7451 uses a unified LSU to load and store operands into the GPRs, FPRs, and
VRs. The MPC7451’s high-bandwidth memory subsystem supports anticipated AltiVec
workloads.

The memory subsystem features summarized in the following sections combine to provide
high bandwidth while maintaining latencies and cache capacities similar to the MPC7410.

The following list summarizes features of the MPC7451 cache implementation that affect
the AltiVec implementation:

• The 32-Kbyte, 8-way set associative L1 data cache is fully non-blocking.

— The 128-bit interface is designed to support AltiVec load/store operations.

— It supports both MRU (most recently used) and LRU (least recently used) vector
loads.

VFPU Execution Unit Timings
(Latency-Throughput)

4-1 4-1

VPU Execution Unit Timings
(Latency-Throughput)

1-1 2-1

Table 7-13. MPC7400/MPC7410 and MPC7451 AltiVec Instructions
Using a Different Execution Unit

Mnemonic Where instruction executed in
MPC7400/MPC7410

Where instruction executed in
MPC7451

mfvscr VALU (VIU1) VFPU

mtvscr VALU (VIU1) VFPU

vcmpbfp[.] VALU (VIU1) VFPU

vcmpeqfp[.] VALU (VIU1) VFPU

vcmpgefp[.] VALU (VIU1) VFPU

vcmpgtfp[.] VALU (VIU1) VFPU

vmaxfp VALU (VIU1) VFPU

vminfp VALU (VIU1) VFPU

vsl VALU (VIU1) VPU

vsr VALU (VIU1) VPU

Table 7-12. AltiVec Implementation-specific Differences between the
MPC7400/MPC7410 and the MPC7451

Microarchitectural Feature MPC7400/MPC7410 MPC7451

7-18 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec and the Exception Model

— New castout and modified bits support lvx/stvx LRU operations

• The L2 and L3 cache can be shared when the L1 is exclusive or modified, and the
L2 can be shared when the L3 is exclusive or modified or vice-versa. By allowing
this, it eliminates the need to allocate or update states in the L2 or L3 when a
transient (AltiVec) store is performed to a line shared in the L2 or L3. The true
coherency state of the MPC7451 requires all three levels of the cache hierarchy. The
LMQ treats the L2 as invalid for stores if it is shared and the L3 is exclusive or
modified. The L3 state is ignored for LMQ operations if the L2 is exclusive or
modified. Refer to Chapter 3, “L1, L2, and L3 Cache Operation” for more
information.

• Pseudo LRU (PLRU) replacement algorithm for L1 cache

• Random replacement for L2 and L3 cache

• Support for AltiVec LRU instructions. LRU instructions are described in
Section 7.1.2.1, “LRU Instructions.”

• Support for AltiVec transient instructions. Transient instructions are described in
Section 7.1.2.2, “Transient Instructions and Caches.”

7.3 AltiVec and the Exception Model
Only the four following exceptions can result from execution of an AltiVec instruction:

• An AltiVec unavailable exception occurs when executing any non-stream AltiVec
instruction with MSR[VEC] = 0. After this exception occurs, execution resumes at
offset 0x00F20 from the base physical address indicated by MSR[IP]. This
exception does not occur for data streaming instructions (dst(t), dstst(t), and dss).
Also note that VRSAVE is not protected by this exception which is consistent with
the AltiVec Programming Environments Manual. Thus, any access to the VRSAVE
register does not cause an exception when MSR[VEC] = 0.

• A DSI exception occurs only if an AltiVec load or store operation encounters a
protection violation or a page fault (does not find a valid PTE during a table search
operation).

• An AltiVec assist exception may occur if an AltiVec floating-point instruction
detects denormalized data as an input or output in Java mode.

• AltiVec loads and stores—The 60x bus protocol does not support a 16-byte bus
transaction. Therefore, cache-inhibited AltiVec loads, stores, and write-through
stores take an alignment exception. This requires a re-write of the alignment
exception routines in software that supports AltiVec quad word access in 60x bus
mode on the MPC7451.

MOTOROLA Chapter 7. AltiVec Technology Implementation 7-19

AltiVec and the Memory Management Model

7.4 AltiVec and the Memory Management Model
The AltiVec functionality in the MPC7451 affects the MMU model in the following ways:

• A data stream instruction (dst(t) or dstst(t)) can cause table search operations to
occur after the instruction is retired.

• MMU exception conditions can cause a data stream operation to abort.

• Aborted VTQ-initiated table search operations can cause a line fetch skip.

• Execution of a tlbsync instruction can cancel an outstanding table search operation
for a VTQ.

Data stream touch instructions may use either of the two translation mechanisms as
specified by the PowerPC architecture—segment/page or BAT. For more information, see
Chapter 5, “Memory Management.”

7.5 AltiVec Technology and Instruction Timing
AltiVec computational instructions are executed in the four independent pipelined AltiVec
execution units. The VPU has a two-stage pipeline, the VIU1 has a one-stage pipeline, and
the VIU2 and VFPU have four-stage pipelines. As many as 10 AltiVec instructions can be
executing concurrently.

The AltiVec technology defines additional data streaming instructions to help improve
throughput. Those instructions are described in Section 7.1.2.3, “Data Stream Touch Instructions.” A
complete description of the AltiVec instruction timing is provided in Chapter 6,
“Instruction Timing.”

7-20 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

AltiVec Technology and Instruction Timing

MOTOROLA Chapter 8. Signal Descriptions 8-1

Chapter 8
Signal Descriptions
This chapter describes the MPC7451 microprocessor’s external signals. It contains a
concise description of individual signals, showing behavior when the signal is an input or
an output and when the signal is asserted, negated, or tristated.

The MPC7451 provides a mode switch via the BMODE0 signal that, when sampled
asserted at HRESET negation, enables the MPX bus protocol operation, and when sampled
negated at HRESET negation, enables a limited subset of the 60x bus protocol. The MPX
bus is derived from the 60x bus interface and includes a 72-bit data bus (including 8 parity
bits) and a 44-bit address bus (including 5 parity bits) along with sufficient control signals
to allow for unique system level optimizations.

The 60x bus protocol signals described in the second part of this chapter provides the
MPC7451 with compatibility to earlier devices that implement the PowerPC architecture.

Refer to the MPC7451 RISC Microprocessor Hardware Specifications for detailed
electrical and mechanical information for each signal.

8.1 Signal Groupings
The MPC7451 MPX and 60x bus interface protocol signals are grouped as follows:

• Address arbitration—The MPC7451 uses these signals to arbitrate for address bus
mastership.

• Address transfer start—These signals indicate that a bus master has begun a
transaction on the address bus.

• Address transfer—These signals include the address bus and address parity signals.
They are used to transfer the address and to ensure the integrity of the transfer.

• Transfer attribute—These signals provide information about the type of transfer,
such as the transfer size and whether the transaction is bursted, write-through, or
cache-inhibited.

• Address transfer termination—These signals are used to acknowledge the end of the
address phase of the transaction. They also indicate whether a condition exists that
requires the address phase to be repeated.

• Data arbitration—The MPC7451 uses these signals to arbitrate for data bus
mastership.

8-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Signal Groupings

• Data transfer—These signals, which consist of the data bus and data parity signals,
are used to transfer the data and to ensure the integrity of the transfer.

• Data transfer termination—Data termination signals are required after each data beat
in a data transfer. In a single-beat transaction, data termination signals also indicate
the end of the tenure. In burst accesses, data termination signals apply to individual
beats and indicate the end of the tenure only after the final data beat. Data
termination signals also indicate whether a condition exists that requires the data
phase to be repeated.

In addition there are many other signals on the MPC7451 that control and affect other
aspects of the device, aside from the bus protocol. They are as follows:

• L3 cache address/data—The MPC7451 has separate address and data buses for
accessing the L3 cache. Note that the L3 cache is not supported on the MPC7441
and the MPC7445.

• L3 cache clock/control—These signals provide clocking and control for the L3
cache.

• Interrupts/resets—These signals include the external interrupt signal, checkstop
signals, and both soft reset and hard reset signals. They are used to interrupt and,
under various conditions, to reset the processor.

• Processor status and control—These signals enable the time-base facility and are
used to select the bus mode and control sleep mode.

• Clock control—These signals determine the system clock frequency. They are also
used to synchronize multiprocessor systems.

• Test interface—The JTAG (IEEE 1149.1a-1993) interface and the common on-chip
processor (COP) unit provide a serial interface to the system for performing
board-level boundary-scan interconnect tests.

• Voltage selection—These signal control the electrical characteristics of the I/O
circuitry of the device as appropriate to support various signalling levels.

8.1.1 Signal Summary

Table 8-1 lists in alphabetical order all the MPC7451 signals and provides a cross-reference
to the section of this chapter that contains the detailed description for each.The table also
shows which signals provide multiple functions and are multiplexed on the MPC7451.

A bar over a signal name indicates that the signal is active low—for example, ARTRY
(address retry) and TS (transfer start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that are not active low, such as
AP[0:4] (address bus parity signals) and TT[0:4] (transfer type signals) are referred to as
asserted when they are high and negated when they are low.

MOTOROLA Chapter 8. Signal Descriptions 8-3

Signal Groupings

Table 8-1. MPC7451 Signal Cross Reference

Signal Signal Name Interface Pins I/O Section No.

A[0:35] Address 60x, MPX 36 I/O 8.2.6.1

AACK Address acknowledge 60x, MPX 1 I 8.3.5.1

AP[0:4] Address parity 60x, MPX 5 I/O 8.3.3.3

ARTRY Address retry 60x, MPX 1 I/O 8.2.8.2

BG Bus grant 60x, MPX 1 I 8.2.5.2

BMODE0 Bus mode select 0 60x, MPX 1 I 8.4.4.5

BMODE1 Bus mode select 1 60x, MPX 1 I 8.4.4.5

BR Bus request 60x, MPX 1 O 8.2.5.1

BVSEL Bus voltage select 60x, MPX 1 I 8.4.4.4

CI Cache-inhibited 60x, MPX 1 O 8.3.4.7

CKSTP_IN Checkstop in 60x, MPX 1 I 8.4.3.5

CKSTP_OUT Checkstop out 60x, MPX 1 O 8.4.3.6

CLK_OUT Clock out 60x, MPX 1 O 8.4.5.4

DBG Data bus grant 60x, MPX 1 I 8.3.6.1

D[0:63] Data bus 60x, MPX 64 I/O 8.3.7.1

DP[0:7] Data parity 60x, MPX 8 I/O 8.3.7.2

DRDY Data ready MPX 1 O 8.2.3.3

DTI[0:3] Data transaction index MPX 4 I 8.2.9.2

EXT_QUAL PLL bypass clock 60x, MPX 1 I 8.4.5.3

GBL Global 60x, MPX 1 I/O 8.3.4.5

HIT Snoop hit MPX 1 O 8.2.8.4

HRESET Hard reset 60x, MPX 1 I 8.4.3.4

INT Interrupt request 60x, MPX 1 I 8.4.3.1

L3_ADDR[17:0] 1

(For MPC7457,
L3_ADDR[18:0]) 2

L3 address

L3

18 O 8.4.1.1

L3_CLK[0:1]1 L3 clock 2 O 8.4.2.1

L3_CNTL01 L3 load 1 O 8.4.2.3.1

L3_CNTL11 L3 write 1 O 8.4.2.3.2

L3_DATA[0:63]1 L3 data 64 I/O 8.4.1.2

L3_DP[0:7]1 L3 data parity 8 I/O 8.4.1.3

L3_ECHO_CLK[0:3]1 L3 synchronizing clock 4 I/O 3 8.4.2.2

L3_VSEL1 L3 voltage select 1 I 8.4.2.4

MCP Machine check 60x, MPX 1 I 8.4.3.3

8-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Signal Groupings

8.1.2 Output Signal States During Reset

The assertion of HRESET causes all bi-directional signals to be in the input state. Table 8-2
shows the state of MPC7451 output signals during HRESET assertion.

PLL_CFG[0:4] PLL configuration 60x, MPX 4 I 8.4.5.2

PMON_IN Performance monitor in 60x, MPX 1 I 8.4.4.6

PMON_OUT Performance monitor out 60x, MPX 1 O 8.4.4.7

QACK Quiescent acknowledge 60x, MPX 1 I 8.4.4.3

QREQ Quiescent request 60x, MPX 1 O 8.4.4.2

SRESET Soft reset 60x, MPX 1 I 8.4.3.4

SHD[0] Shared 0 60x, MPX 1 I/O 8.3.5.3

SHD[1] Shared 1 MPX 1 I/O 8.2.8.3

SMI System management
interrupt

60x, MPX 1 I 8.4.3.2

SYSCLK System clock 60x, MPX 1 I 8.4.5.1

TA Transfer acknowledge 60x, MPX 1 I 8.2.11.1

TBEN Time base enable 60x, MPX 1 I 8.4.4.1

TBST Transfer burst 60x, MPX 1 O 8.3.4.3

TCK Scan clock

JTAG

1 I 8.4.6.1

TDI Serial scan input 1 I 8.4.6.2

TDO Serial scan output 1 O 8.4.6.3

TEA Transfer error acknowledge 60x, MPX 1 I 8.2.11.2

TMS Test mode select JTAG 1 I 8.4.6.4

TS Transfer start 60x, MPX 1 I/O 8.3.4.1

TRST Test reset JTAG 1 I 8.4.6.5

TSIZ[0:2] Transfer size 60x, MPX 3 O 8.3.4.4

TT[0:4] Transfer type 60x, MPX 5 I/O 8.3.4.2

WT Write-through 60x, MPX 1 O 8.3.4.6

1 Note that L3 cache interface is not supported on the MPC7441 and the MPC7445.
2 MPC7457 supports an additional signal (L3_ADDR[18].
3 These are either input or output signals depending on the type of SRAM used.

Table 8-1. MPC7451 Signal Cross Reference (continued)

Signal Signal Name Interface Pins I/O Section No.

MOTOROLA Chapter 8. Signal Descriptions 8-5

MPX Bus Signal Configuration

8.2 MPX Bus Signal Configuration
The MPC7451 has an advanced bus interface that is derived from the 60x bus. This
interface, the MPX bus, includes several additional features that provide higher memory
bandwidth than the 60x bus and more efficient use of the system bus in a multiprocessing
environment.

The value of the BMODE0 signal during HRESET negation determines whether the
MPC7451 operates with the 60x bus or the MPX bus. The inverse of this value is stored in
bit 16 of the BMODE field in MSSCR0. The state of MSSCR0[BMODE] is active high,
meaning that if BMODE0 is detected as asserted at the negation of HRESET,
MSSCR0[16] = 1 and MPX bus mode is selected; if negated at the negation of HRESET,
MSSCR0[16] = 0 and 60x bus mode is selected.

Table 8-2. Output Signal States During System Reset

Signal Group Signals State During System Reset

Address arbitration BR High impedance

Address bus A[0:35]
AP[0:4]

High impedance

Address transfer
Attributes

TS
TT[0:4]
TBST
TSIZ[0:2]
GBL
WT
CI

High impedance

Address termination HIT
ARTRY
SHD0
SHD1

High impedance

Data D[0:63] High impedance

Data arbitration DRDY High impedance

L3 cache address/data 1

1 Note that L3 cache interface is not supported on the MPC7441 and the MPC7445.

L3_ADDR[17:0] 2

L3_DATA[0:63]

2 MPC7457 supports an extra signal (L3_ADDR[18:0].

High impedance

L3 cache clock/control 1 L3_CNTL[0] L3_CNTL[0] = 1

L3_CNTL[1] L3_CNTL[1] = 0

L3_CLK[0:1] L3_CLK[0:1] = 0

L3_ECHO_CLK[0:3] High impedance

Interrupts/resets CKSTP_OUT High impedance

Processor
status/control

QREQ High impedance

Clock control CLK_OUT High impedance

8-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Signal Configuration

Note that the BMODE1 signal must be held negated during HRESET negation or no bus
mode will be selected.

8.2.1 MPX/60x Bus Protocol Signal Compatibility

The MPX bus mode protocol defines several signals not present in the 60x bus protocol.
Additionally, there are 60x signals not supported by the MPC7451. These signal differences
are summarized in Table 8-3. Note that a few 60x signals have expanded or modified
functionality in the MPX bus mode.

The two types of signals in Table 8-3 (shown in the column headings) are described in
Section 8.2, “MPX Bus Signal Configuration,” and Section 8.3, “60x Bus Signal
Configuration.”

8.2.2 MPX Bus Mode Signals

The MPX bus mode’s support for data intervention and full data streaming for burst reads
and writes is realized through the addition of two new signals—HIT and DRDY. See
Section 9.4, “MPX Bus Data Tenure,” for a complete description of these functions.

The HIT signal is a point-to-point signal output from the processor or local bus slave to the
system arbiter. This signal indicates a valid snoop response in the address retry (ARTRY)
window (the cycle after an address acknowledge (AACK) that indicates that the MPC7451
will supply intervention data). That is, the MPC7451 has found the data that has been
requested by another master’s bus transaction in its L1, L2, or L3 cache. Instead of asserting
ARTRY and flushing the data to memory, the MPC7451 may assert HIT to indicate that it
can supply the data directly to the other master. This external intervention functionality is
disabled by MSSCR0[EIDIS].

The DRDY signal is also used by the MPX bus protocol to implement data intervention in
the case of a cache hit. See Section 8.2.9.3, “Data Ready (DRDY)—Output.”

The SHD1 signal operates in conjunction with the SHD0 signal to indicate that a cached
item is shared. See Section 8.2.8.3, “Shared (SHD0, SHD1) Signals.”

Table 8-3. Signal Compatibility Summary

 MPX Bus Mode Signals 60x Bus Signals Not in MPC7451

Hit HIT
Data ready DRDY
Shared SHD1

Address bus busy ABB
Data bus busy DBB
Data bus write only DBWO
Data retry DRTRY
Extended transfer protocol XATS
Transfer code TC[0:1]
Cache set element CSE[0:1]
Address parity error APE
Data parity error DPE

MOTOROLA Chapter 8. Signal Descriptions 8-7

MPX Bus Signal Configuration

8.2.3 60x Bus Signals Not in the MPC7451

Several signals defined in the 60x bus protocol are not implemented in the MPC7451;
however, new signals provide similar functionality for compatibility reasons.

8.2.3.1 Address Bus Busy and Data Bus Busy (ABB and DBB)

The MPC7451 does not use or provide the ABB or DBB signals. The MPC7451 tracks its
own outstanding transactions and relies on the system arbiter to provide grants for the
address and data buses only when the bus is available and the grant may be accepted. Bus
arbiters must not rely upon an ABB or DBB signal to properly arbitrate for the address or
data bus.

8.2.3.2 Data Bus Write Only (DBWO)

The DBWO signal is not implemented on the MPC7451. This functionality is replaced for
MPX mode with the DTI[0:3] signals, which implement more extensive data reordering
functionality. DTI support is not functional in 60x mode, leaving this mode with no data
reordering capability. See Section 8.2.9.2, “Data Transaction Index (DTI[0:3])—Input.”

8.2.3.3 Data Retry (DRTRY)

The data retry input signal is not implemented on the MPC7451. Only the no-DRTRY mode
defined in the 60x bus protocol is supported.

8.2.3.4 Extended Transfer Protocol (XATS)

The extended transfer protocol signal, used for accesses to direct-store segments, is not
supported by the MPC7451 processor interface. The MPC7451 does not generate extended
transfer protocol (XATS) transactions.

8.2.3.5 Transfer Code (TC[0:1])

The transfer code signals are not implemented on the MPC7451. The information provided
by these pins for code versus data during read operations is provided on the WT signal.

8.2.3.6 Cache Set Element (CSE[0:1])

These signals are not implemented as the MPC7451 does not support snoop-filtering
devices.

8.2.3.7 Address Parity Error and Data Parity Error (APE, DPE)

The address parity and data parity error signals are not implemented in the MPC7451.

8-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Signal Configuration

8.2.4 MPX Bus Mode Functional Groupings

Figure 8-1 illustrates the MPC7451’s signal configuration in MPX bus mode, showing how
the signals are grouped. A pinout showing pin numbers is included in the MPC7451 RISC
Microprocessor Hardware Specifications. Note that the left side of the figure depicts the
signals that implement the MPX bus protocol and the right side of the figure shows the
remaining signals on the MPC7451 (not part of the bus protocol)

MOTOROLA Chapter 8. Signal Descriptions 8-9

MPX Bus Signal Configuration

Figure 8-1. MPX Bus Signal Groups

BR

BG

TS

AP[0:4]

GBL

TSIZ[0:2]

AACK

ARTRY

DBG

DTI[0:3]

DP[0:7]

TA

TEA

TBST

WT

TT[0:4]

CI

A[0:35]

SHD0/SHD1

TCK

TDI

MCP

SRESET

SMI

HRESET

QACK

BVSEL

CKSTP_IN

CKSTP_OUT

TBEN

BMODE[0:1]

D[0:63]

Address
Arbitration

Data
Arbitration

Data
Transfer

Processor
Status/
Control

Interrupts/
Resets

Data
Transfer

Termination

Address
Transfer

Termination

QREQ

PMON_IN

PMON_OUT

TDO

TMS

TRST

Test
Interface
(JTAG)

HIT

DRDY

Address
Transfer

Attributes

Address
Transfer

1

1

1

5

5

1

3

1

1

4

1

1

1

8

1

1

1

36

2

1

1

1

1

1

1

1

1

1

1

1

1

1

2

64

MPC7451

1

1

1

1

1

1

1

(MPX)

SYSCLK

PLL_CFG[0:3]

CLK_OUT

Clock
ControlEXT_QUAL

1

4

1

1

PLL_EXT
1

INT

L3_ECHO_CLK[0:3]

L3_CNTL[0:1]
L3 Cache
Clock/
Control2

4

1 L3_VSEL

L3_ADDR[17:0]

L3_DATA[0:63]

L3_DP[0:7]

L3 Cache
Address/
Data

18

64

8 Note: L3 cache
interface is not
supported in th
MPC7441, MP
or the MPC744

2

1 For the MPC7457, there are 19 L3_ADDR signals, (L3_ADDR[0:18])

1

2 For the MPC7447 and MPC7457, there are 5 PLL_CFG signals, (PLL_CFG[0:4])

L3_CLK[0:1]
2

VDD

OVDD

GVDD

AVDD

GND
GND_SENSE

VDD_SENSE

3

3

3OVDD_SENSE

3 MPC7447A-specific

8-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Signal Configuration

Note that the following sections summarize MPX signal functions. Chapter 9, “System
Interface Operation,” describes many of these signals in greater detail, both with respect to
how individual signals function and how groups of signals interact. The 60x bus protocol
signals start in Section 8.3, “60x Bus Signal Configuration.”

8.2.5 Address Bus Arbitration Signals

The address arbitration signals are the input and output signals the MPC7451 uses to
request the address bus, recognize when the request is granted, and indicate to other devices
when mastership is granted. For a detailed description of how these signals interact, see
Section 9.3.1, “MPX Bus Address Bus Arbitration.”

8.2.5.1 Bus Request (BR)—Output

Following are the state meaning and timing comments for the BR output signal on the
MPC7451 in MPX bus mode.

State Meaning Asserted—Indicates that the MPC7451 is requesting mastership of
the address bus, that its pipeline depth allows it to start the
transaction, and that it is waiting for a qualified BG to begin the
address tenure. Note that BR may be asserted for one or more cycles,
and then negated due to an internal cancellation of the bus request.
See Section 9.3.1, “MPX Bus Address Bus Arbitration,” for more
information.

Negated—Indicates that the MPC7451 is not requesting the address
bus. The MPC7451 may have no bus operation pending, the address
bus may be parked, or the ARTRY input may have been asserted on
the previous bus clock cycle.

Timing Comments Assertion—Occurs when the MPC7451 is not parked, it does not
have a qualified bus grant, and a bus transaction is needed

Negation—Occurs the cycle after a qualified ARTRY on the bus
unless the MPC7451 asserted the ARTRY and is required to perform
a snoop copyback; may also occur on any cycle if the request is
internally cancelled before a qualified BG.

High Impedance—Occurs during a hard reset or checkstop
condition.

8.2.5.2 Bus Grant (BG)—Input

Following are the state meaning and timing comments for the BG output signal on the
MPC7451 in MPX bus mode.

MOTOROLA Chapter 8. Signal Descriptions 8-11

MPX Bus Signal Configuration

State Meaning Asserted—Indicates that the MPC7451 may, with the proper
qualification, begin a bus transaction. A qualified bus grant is
determined from the bus state as follows:

QBG = BG • ¬ARTRY • ¬TS • ¬(latched state variables)

Note that the assertion of BR is not required for a qualified bus grant.
Because AACK is not in the qualified bus grant equation, the bus
arbiter must negate BG in every cycle the arbiter is delaying AACK.

Negated—Indicates that the MPC7451 is not granted next address
bus ownership.

Timing Comments Assertion—May occur on any cycle. Because AACK is not in the
qualified bus grant equation, the bus arbiter must negate BG in every
cycle the arbiter is delaying AACK to prevent a qualified bus grant.

Negation—May occur whenever the MPC7451 must be prevented
from starting a bus transaction. The MPC7451 may still assume
address bus ownership on the cycle BG is negated if BG was asserted
in the previous cycle with the other bus grant qualifications.
Negation must occur in every cycle the arbiter delays AACK.

8.2.6 Address Bus and Parity in MPX Bus Mode

The following sections describe the address bus and parity signals used to transmit the
address and to generate and monitor parity for the address transfer. The address bus driven
mode is enabled with the assertion of BMODE0 after HRESET negation (assertion of
BMODE0 during HRESET negation sets the MPC7451’s bus mode). Note that this
selection is reflected in the read-only ABD bit in MSSCR0. See Section 2.1.5.3, “Memory
Subsystem Control Register (MSSCR0).”

8.2.6.1 Address Bus (A[0:35])

The address bus (A[0:35]) consists of 36 signals that are both input and output signals.
A[0:3] are always driven as a zero when extended addressing is disabled through
HID0[XAEN] (extended addressing is not enabled, HID0[XAEN] = 0). See Section 9.3.2,
“MPX Bus Address Transfer” for more information on extended addressing.

8.2.6.1.1 Address Bus (A[0:35])—Output

Following are the state meaning and timing comments for the address bus A[0:35] as output
signals on the MPC7451 in MPX bus mode.

State Meaning Asserted/Negated—Represents the physical address of the data to be
transferred. On burst transfers, the address bus presents the
double-word-aligned address containing the critical code/data that
missed the cache on a read operation, or the first double word of the

8-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Signal Configuration

cache line on a write operation. Note that the address output during
burst operations is not incremented. See Section 9.3.2, “MPX Bus
Address Transfer.”

Timing Comments Assertion/Negation—Occurs on the bus clock cycle that TS is
asserted; remains asserted for the duration of the address tenure.

High Impedance—Occurs one bus clock cycle following the
assertion of AACK unless address bus streaming is occurring and the
MPC7451 qualified a BG on the previous cycle.

MOTOROLA Chapter 8. Signal Descriptions 8-13

MPX Bus Signal Configuration

Note that if MSSCR0[ABD] is set the address bus is always driven
on the bus clock cycle after a qualified bus grant is asserted to the
processor, regardless of whether the MPC7451 has a queued
transaction.

8.2.6.1.2 Address Bus (A[0:35])—Input

Following are the state meaning and timing comments for the address bus A[0:35] as input
signals on the MPC7451 in MPX bus mode.

State Meaning Asserted/Negated—Represents the physical address of a snoop
operation.

Timing Comments Assertion/Negation—Must be valid on the same bus clock cycle as
the assertion of TS; it is sampled by MPC7451 only on this cycle.

Note that unused address signals cannot be left floating. If any
address signals are unused by the system, they must be driven by the
system during the address tenure of the transaction to be snooped, or
tied low with a pull-down resistor.

High Impedance—Occurs on the bus clock cycle after the assertion
of AACK unless address bus streaming is occurring and the
MPC7451 qualified a BG on the previous cycle.

8.2.6.2 Address Bus Parity (AP[0:4])

The address bus parity (AP[0:4]) signals, both input and output, reflect one bit of odd-byte
parity for each of the 4 bytes and the one extra nibble of address when a valid address is on
the bus.

8.2.6.2.1 Address Bus Parity (AP[0:4])—Output

Following are the state meaning and timing comments for AP[0:4] as output signals on the
MPC7451.

State Meaning Asserted/Negated—Represents odd parity for each of the 4 bytes and
the one extra nibble of the physical address for a transaction. Odd
parity means that an odd number of bits, including the parity bit, are
driven high. Address parity is generated by the MPC7451 when it is
the address bus master.

Table 8-4 shows the address parity signal assignments. For more
information, see Section 9.3.2.3, “Address Bus Parity.”

8-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Signal Configuration

Timing Comments Assertion/Negation—The same as A[0:35].

High Impedance—The same as A[0:35].

8.2.6.2.2 Address Bus Parity (AP[0:4])—Input

Following are the state meaning and timing comments for AP[0:4] as input signals on the
MPC7451.

State Meaning Asserted/Negated—Represents odd parity for each of the 4 bytes and
one nibble of the physical address for snooping operations (if
enabled through HID1). Detected even parity causes the processor to
take a machine check exception or enter the checkstop state if
address parity checking is enabled (HID1[EBA] = 1); see
Section 2.1.5.2, “Hardware Implementation-Dependent Register 1
(HID1).”

Timing Comments Assertion/Negation—The same as A[0:35].

Note that unused address parity signals cannot be left floating. If the
address bits corresponding to an address parity bit are always driven
to a 0, then the parity bit must be driven to a 1. If the address bits are
connected to pull-down resistors, then the corresponding address
parity bit should be attached to a pull-up resistor.

8.2.7 Address Transfer Attribute Signals in MPX Bus Mode

The transfer attribute signals are a set of signals that characterize the following:

• Size of the transfer

• Whether it is a read or write operation

• Whether it is a burst or single-beat transfer

For a detailed description of how these signals interact, see Section 9.3.2, “MPX Bus
Address Transfer.”

Table 8-4. Address Parity Bit Assignments

Address Parity Bit
Corresponding

Address Bus Signals

AP0 A[0:3]

AP1 A[4:11]

AP2 A[12:19]

AP3 A[20:27]

AP4 A[28:35]

MOTOROLA Chapter 8. Signal Descriptions 8-15

MPX Bus Signal Configuration

8.2.7.1 Transfer Start (TS)

The address transfer start (TS) signal indicates that an address bus transfer has begun and
is both an input and an output signal on the MPC7451.

8.2.7.1.1 Transfer Start (TS)—Output

Following are the state meaning and timing comments for TS as an output signal.

State Meaning Asserted—Indicates that the MPC7451 has begun a bus transaction
and that the address bus and transfer attribute signals are valid. When
asserted with the appropriate TT[0:4] signals, it is also an implied
data bus request for a memory transaction (unless it is an
address-only operation).

Negated—Indicates that no bus transaction is occurring during
normal operation.

Timing Comments Assertion—May occur on any cycle following a qualified BG.
Remains asserted for one clock only.

Negation—Occurs one bus clock cycle after TS is asserted and
continues negated through the cycle of AACK.

High Impedance—Occurs the cycle after AACK, unless address bus
streaming is occurring and the MPC7451 qualified a BG on the
previous cycle.

8.2.7.1.2 Transfer Start (TS)—Input

Following are the MPC7451’s state meaning and timing comments for TS as an input
signal.

State Meaning Asserted—Indicates that another master has begun a bus transaction
and that the address bus and transfer attribute signals are valid for
snooping; see Section 8.2.7.5, “Global (GBL).”

Negated—Indicates that no bus transaction is occurring.

Timing Comments Assertion—Must be asserted for one cycle only. Can occur on any
bus clock cycle following a qualified BG that is accepted by the
processor.

Negation—Must occur one bus clock cycle after TS is asserted.

8.2.7.2 Transfer Type (TT[0:4])

The transfer type (TT[0:4]) signals consist of five input/output signals on the MPC7451.
For a complete description of the TT[0:4] signals for MPX bus mode, see Section 9.3.2.4,
“Address Transfer Attributes.”

8-16 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Signal Configuration

8.2.7.2.1 Transfer Type (TT[0:4])—Output

Following are the state meaning and timing comments for TT[0:4] as output signals on the
MPC7451 in MPX bus mode. Note that there is a new transfer type called read claim
(RCLAIM; TT[0:4] = 0b0111) defined for MPX bus mode that is used for accesses
generated by touch-for-store instructions.

State Meaning Asserted/Negated—Indicates the type of transfer in progress.

Timing Comments Assertion/Negation—The same as A[0:35].

8.2.7.2.2 Transfer Type (TT[0:4])—Input

Following are the state meaning and timing comments for TT[0:4] as input signals on the
MPC7451 in MPX bus mode.

State Meaning Asserted/Negated—Indicates the type of transfer in progress.

Timing Comments Assertion/Negation—The same as A[0:35].

8.2.7.3 Transfer Burst (TBST)—Output

The transfer burst (TBST) signal is an output signal on the MPC7451 that indicates a burst
transfer is in progress. Following are the state meaning and timing comments for the TBST
output signal on the MPC7451 in MPX bus mode.

State Meaning Asserted—Indicates that a burst transfer is in progress.

For transactions initiated by external control instructions (eciwx and
ecowx), TBST forms part of the 4-bit Resource ID field on the bus
as follows:

TBST || TSIZ[0:2] ← EAR[28–31]

Negated—Indicates that a burst transfer is not in progress.

Timing Comments Assertion/Negation—The same as A[0:35].

High Impedance—The same as A[0:35].

8.2.7.4 Transfer Size (TSIZ[0:2])—Output

The TSIZ[0:2] signals specify the data transfer size of a transaction. For memory accesses,
these signals along with TBST, indicate the data transfer size for the current bus operation.
See Section 9.3.2.4.1, “Transfer Type (TT[0:4]) Signals.” Also, Section 9.3.2.6, “Effect of
Alignment in Data Transfers,” shows how the transfer size signals are used with the address
signals for aligned and misaligned transfers. Note that the MPC7451 does not generate all
possible TSIZ[0:2] encodings.

Following are the state meaning and timing comments for the transfer size (TSIZ[0:2])
output signals on the MPC7451 in MPX bus mode.

State Meaning Asserted—Indicates the size of the transfer in progress.

MOTOROLA Chapter 8. Signal Descriptions 8-17

MPX Bus Signal Configuration

Asserted/Negated—For transactions initiated by external control
instructions (eciwx and ecowx), the TSIZ[0:2] signals form part of
the 4-bit resource ID field (they are used to output bits 29–31 of the
external access register (EAR)) on the bus as follows:

TBST || TSIZ[0:2] ← EAR[28–31]

Timing Comments Assertion/Negation—The same as A[0:35].

High Impedance—The same as A[0:35].

8.2.7.5 Global (GBL)

The global (GBL) signal is an input and output signal on the MPC7451.

8.2.7.5.1 Global (GBL)—Output

Following are the state meaning and timing comments for GBL as an output signal in MPX
bus mode.

State Meaning Asserted—Indicates that a transaction is global, reflecting the setting
of the M bit for the block or page that contains the address of the
current transaction (except during certain data cache, memory
synchronization, TLB management, and external control operations
as described in Table 3-27). Thus, this transaction must be snooped.

Negated—Indicates that a transaction is not global and does not need
to be snooped by other masters.

Timing Comments Assertion/Negation—The same as A[0:35].

8.2.7.5.2 Global (GBL)—Input

Following are the state meaning and timing comments for GBL as an input signal in MPX
bus mode.

State Meaning Asserted—Indicates that a transaction must be snooped by the
MPC7451.

Negated—Indicates that a transaction must not be snooped by the
MPC7451.

Timing Comments Assertion/Negation—The same as A[0:35].

8.2.7.6 Write-Through (WT)—Output

The WT signal is an output signal on the MPC7451. Following are the state meaning and
timing comments for the WT signal.

State Meaning Asserted—Indicates that a single-beat write transaction is
write-through, reflecting the value of the W bit for the block or page

8-18 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Signal Configuration

that contains the address of the current transaction (except during
certain data cache, memory synchronization, TLB management, and
external control operations as described in Table 3-27).

Negated—Indicates that a write transaction is not write-through. The
MPC7451 negates WT for instruction fetches. Note that this is
different from previous processors.

Timing Comments Assertion/Negation—The same as A[0:35].

8.2.7.7 Cache Inhibit (CI)—Output

The CI signal is an output signal on the MPC7451. Following are the state meaning and
timing comments for the CI signal as an output.

State Meaning Asserted—Indicates that a single-beat transfer is not cached,
reflecting the setting of the I bit for the block or page that contains
the address of the current transaction (except during certain data
cache, memory synchronization, TLB management, and external
control operations as described in Table 3-27).

CI is also asserted for reads and writes if the L1 cache is disabled.

Negated—Indicates that a burst transfer allocates an MPC7451 data
cache block.

Timing Comments Assertion/Negation—The same as A[0:35].

8.2.8 MPX Address Transfer Termination Signals

The address transfer termination signals are used to indicate either that the address phase
of the transaction has completed successfully or must be repeated, and when it must be
terminated. For detailed information about how these signals interact, see Section 9.3.3,
“MPX Bus Address Tenure Termination.”

8.2.8.1 Address Acknowledge (AACK)—Input

The address acknowledge (AACK) signal is an input signal on the MPC7451. Following
are the state meaning and timing comments for the AACK signal in MPX bus mode.

State Meaning Asserted—Indicates that the address tenure of a transaction should
be terminated. On the following bus clock cycle, the MPC7451, as
address bus master, releases the address and attribute signals to high
impedance (unless the MPC7451 received another qualified bus
grant and is in address streaming mode), and samples ARTRY to
determine a qualified ARTRY condition. As a snooping device, the
MPC7451 requires an assertion of AACK for every assertion of TS
that it detects.

MOTOROLA Chapter 8. Signal Descriptions 8-19

MPX Bus Signal Configuration

Negated—(During an address tenure) indicates that the address bus
and the transfer attributes must remain driven.

Timing Comments Assertion—May occur as early as the bus clock cycle after TS is
asserted; assertion can be delayed to allow adequate address access
time for slow devices. For example, if an implementation supports
slow snooping devices, an external arbiter can postpone the assertion
of AACK. Because AACK is not in the qualified bus grant equation,
the bus arbiter must negate BG in every cycle the arbiter is delaying
AACK to prevent a qualified bus grant when a delayed AACK is
desired.

Negation—Must occur one bus clock cycle after the assertion of
AACK.

8.2.8.2 Address Retry (ARTRY)

The address retry (ARTRY) signal is both an input and output signal on the MPC7451.

8.2.8.2.1 Address Retry (ARTRY)—Output

Following are the state meaning and timing comments for ARTRY as an output signal in
MPX bus mode.

State Meaning Asserted—Indicates that the MPC7451, as a snooping device,
detects a condition in which a snooped address tenure must be
retried. If the MPC7451 needs to update memory as a result of the
snoop that caused the retry, the MPC7451 asserts BR in the bus clock
cycle following the assertion of ARTRY.

High Impedance—Indicates that the MPC7451 does not need the
snooped address tenure to be retried.

Timing Comments Assertion—Asserted as early as the second bus cycle following the
assertion of TS if a retry is required. ARTRY will remain asserted
until the cycle following the assertion of AACK. Note that the
MPC7451 requires a minimum of five core cycles to process a snoop
and generate a response after latching TS and associated transfer
attributes. As a result, if the processor core frequency is less than five
times the system bus frequency, ARTRY is asserted later than the
second bus cycle following the assertion of TS.

Negation/High Impedance—Driven asserted until the bus clock
cycle following the assertion of AACK. Because this signal may be
simultaneously driven by multiple devices, it negates in a unique
fashion. First the output buffer goes to high impedance for a fraction
of a bus clock cycle (dependent on the clock mode—minimum of

8-20 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Signal Configuration

one-half of a bus clock cycle), then it is driven negated for one bus
clock cycle before returning to high impedance.

This special method of negation may be disabled by setting the
precharge disable bit (HID1[PAR]).

8.2.8.2.2 Address Retry (ARTRY)—Input

Following are the state meaning and timing comments for the ARTRY input signal in MPX
bus mode.

State Meaning Asserted—If the MPC7451 is the address bus master, ARTRY
indicates that the MPC7451 must retry and rerun the entire
transaction (address and data tenure). The MPC7451 does not
support transfer of data before the ARTRY window. If the MPC7451
is in address streaming mode and has started the next transaction, it
will also be aborted.

If the MPC7451 is not the address bus master, this input indicates
that the MPC7451 must immediately negate BR to allow an
opportunity for a copyback operation to main memory after a
snooping bus master asserts ARTRY. Note that the subsequent
address presented on the address bus may not be the same one
associated with the assertion of the ARTRY signal.

Note that the MPC7451 ignores the BG signal on the cycle in which
ARTRY is detected and the cycle following the assertion of ARTRY.

Negated/High Impedance—Indicates that the MPC7451 does not
need to retry the last address tenure.

Timing Comments Assertion—May occur as early as the second cycle following the
assertion of TS and must remain asserted until the clock cycle
following the assertion of AACK.

Negation/High Impedance—Must occur two bus clock cycles after
the assertion of AACK.

Note that during the second bus clock cycle after the assertion of
AACK, masters release ARTRY to high impedance and then negate
it. Thus, care must be taken when sampling ARTRY during this clock
period as it could be sampled in an indeterminate state.

8.2.8.3 Shared (SHD0, SHD1) Signals

The SHD0 and SHD1 signals act together to indicate a shared snoop response. The MPX
bus mode interface allows a given master to drive a new address tenure every other cycle,
so the shared signal must be able to be driven every other cycle. But, because it must be
actively negated and might be driven by multiple masters at any given time, electrical

MOTOROLA Chapter 8. Signal Descriptions 8-21

MPX Bus Signal Configuration

requirements dictate that two shared signals be implemented. When signaling a snoop
response of shared, the MPC7451 must assert SHD0 unless SHD0 was asserted in any of
the three cycles prior to the snoop response window for the current transaction. In that case,
the MPC7451 asserts SHD1. Thus, both SHD0 and SHD1 can be released to
high-impedance, driven negated, then released to high-impedance again before they need
to be reasserted. When the MPC7451 is a bus master, the MPC7451 considers the snoop
response to be shared if either SHD0 or SHD1 is asserted. Note that the SHD1 signal is only
provided in MPX bus mode.

8.2.8.3.1 Shared (SHD0, SHD1)—Output

If SHD0 was not asserted the cycle before or the cycle of TS, SHD0 should be asserted to
indicate a shared response. But if SHD0 was asserted in any of the three cycles before the
snoop response window for the current transaction then SHD1 is used to indicate a shared
response in this cycle. Following are the state meaning and timing comments for SHD0 and
SHD1 as output signals in MPX bus mode.

State Meaning Asserted—If ARTRY is negated, SHD0 and SHD1 indicate that the
MPC7451 had a cache hit on a shared block or the reservation
address.

If ARTRY is asserted, the SHD0 and SHD1 are don’t care.

Negated/High Impedance—Indicates that the processor did not
contain the data or has invalidated the snooped address.

Timing Comments Assertion/Negation—If the MPC7451 needs to assert a shared snoop
response and SHD0 was not asserted in the cycle before or the cycle
of TS, it should be asserted in the snoop response window to indicate
a shared response. If SHD0 was asserted the cycle before or the cycle
of TS, then SHD1 must be used to indicate a shared response.A
master observing the snoop response must consider the shared
response asserted if either SHD0 or SHD1 is asserted.

High Impedance—The timing of SHD0 and SHD1 for the release to
high-impedance, negating, and re-release to high-impedance, may
vary. To ensure compatibility with the standard 60x interface in
which SHDn might need to be asserted up to every three bus cycles,
the MPC7451 implements the 60x-style timing for both SHD0 and
SHD1; that is SHD0 and SHD1 have the same timing as ARTRY, in
which the signal is released to high-impedance for a fraction of a
cycle, then negated for up to an entire cycle (crossing a bus cycle
boundary) before being released to high-impedance again. Note that
future implementations with the MPX bus protocol may define this
timing differently. The MPC7451 does not assert either SHD0 or
SHD1 any more often than every fourth bus clock cycle.

8-22 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Signal Configuration

8.2.8.3.2 Shared (SHD0, SHD1)—Input

Following are the state meaning and timing comments for SHD0 and SHD1 as input signals
in MPX bus mode.

State Meaning Asserted—If ARTRY is negated, the MPC7451 uses SHD0 and
SHD1 to allocate the incoming cache block as shared (S) for a
self-generated transaction. Applies only to rclaim, read, and read
atomic transactions.

If ARTRY is asserted, SHD0 and SHD1 are ignored as an input.

Negated—If ARTRY is negated and SHD0 and SHD1 are negated,
the MPC7451 allocates the incoming cache block as exclusive (E)
for a self-generated read or read-atomic transaction or for an rclaim
transaction.

Timing Comments Assertion/Negation—The same as ARTRY.

8.2.8.4 Snoop Hit (HIT)—Output

The snoop response of the MPC7451 (or local bus slave) uses the HIT output signal to
communicate to the system arbiter whether or not data intervention occurs for the current
transaction. See Section 9.3, “MPX Bus Address Tenure,” and Section 9.4, “MPX Bus
Data Tenure,” for more detailed information about the data-only transactions used by the
MPC7451 in MPX bus mode for data intervention.

This signal is a snoop response, valid in the ARTRY window (the cycle after AACK) that
indicates that the MPC7451 as a snooper will supply intervention data. That is, the
MPC7451 has found the data in its cache that has been requested by another master’s bus
transaction. Instead of asserting ARTRY and flushing the data to memory, the MPC7451
asserts HIT the cycle after AACK to indicate that it can supply the data directly to the other
master.

The MPC7451 does not implement the optional protocol of the MPX bus to communicate
to the system whether or not the intervention data needs to be forwarded to memory. The
system needs to identify which transactions it is required to snarf and which transactions it
is not required to snarf.

It is possible for the MPC7451 to assert simultaneously both ARTRY and HIT for the same
snoop response. When simultaneously asserted, ARTRY supersedes HIT and HIT should
be ignored by the system.

Following are the state meaning and timing comments for the HIT signal.

State Meaning Asserted—The MPC7451 has the requested data in its cache and will
supply it through a data-only transaction.

Negated—The MPC7451 cannot provide data for a snoop request
through the HIT intervention protocol.

MOTOROLA Chapter 8. Signal Descriptions 8-23

MPX Bus Signal Configuration

Timing Comments Asserted— HIT is driven the cycle after AACK.

HIT is held asserted for one cycle beyond the assertion of AACK if
the snoop hit data is modified and must be forwarded to memory.

Negated—HIT is negated two cycles after AACK.

8.2.9 Data Bus Arbitration Signals

Like the address bus arbitration signals, data bus arbitration signals maintain an orderly
process for determining data bus mastership. Note that there is no data bus arbitration signal
equivalent to the address bus arbitration signal BR (bus request), because, except for
address-only transactions, TS implies data bus requests. For a detailed description on how
these signals interact, see Section 9.4.1, “MPX Bus Data Bus Arbitration.”

8.2.9.1 Data Bus Grant (DBG)—Input

The data bus grant (DBG) signal is an input-only signal on the MPC7451. Following are
the state meaning and timing comments for the DBG signal.

State Meaning Asserted—Indicates that the MPC7451 may assume ownership of
the data bus with the proper qualification:

QDBG = DBG & ¬(ARTRY & retriable) & ¬(state_variables)

where:

• ARTRY is only for the address bus tenure associated with the data
bus tenure about to be granted (that is, not from another address
tenure due to address pipelining).

•Retriable indicates whether the current transaction can still be retried.

•State variables include whether or not:

—The data bus is being used by this master.

—The master has back-to-back burst accesses in progress.

—The processor is currently receiving the last TA for the
current burst.

Thus, a qualified data bus grant occurs when:

•DBG is asserted

•ARTRY was negated in the address retry window for the address
phase of this transaction

•The MPC7451 is ready to begin a data transaction

Note that data streaming is allowed in MPX bus mode.

Negated—Indicates that the MPC7451 must hold off its data tenures.

8-24 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Signal Configuration

Timing Comments Assertion—May occur any time to indicate the MPC7451 is free to
take data bus mastership. It is not sampled until TS is asserted.

Negation—May occur at any time to indicate the MPC7451 cannot
assume data bus mastership.

8.2.9.2 Data Transaction Index (DTI[0:3])—Input

The MPC7451 can be configured to support a generalized reordering scheme using the new
4-bit data transfer index (DTI[0:3]) input signals.

The DTI signals can be bused or point-to-point. They must be driven valid by the system
arbiter on the cycle before a data bus grant (DBG). They are sampled on each bus clock
cycle by the MPC7451 and are qualified by the assertion of DBG on the following cycle.

The data transfer index is a pointer into the MPC7451’s queue of outstanding transactions,
indicating which transaction is to be serviced by the subsequent data tenure. The number of
outstanding transactions is configurable to 2–8 or 16. The default is 8 outstanding
transactions.

Data tenure reordering can be disabled by clearing DTI[0:3] to 0b0000. This setting causes
the MPC7451 to always select the oldest transaction in the outstanding transaction queue.
See Section 9.4.2.4.5, “Ordering of Data-Only Transactions.”

Following are the state meaning and timing comments for the DTI[0:3] signals.

State Meaning Asserted—The DTI[0:3] signals act as a pointer into the queue of
outstanding transactions for the MPC7451, indicating which
transaction is to be served by the subsequent data tenure. For
example, DTI = 0b0000 means that the oldest transaction is to be
serviced, DTI = 0b0001 means the second oldest transaction is to be
serviced up to DTI = 0b1111 meaning the 16th oldest transaction is
to be serviced.

Negated—DTI = 0b0000 indicates that the MPC7451 must run the
data bus tenures in the same order as the address tenures. DTI[0–3]
must be driven negated in 60x mode.

Timing Comments Assertion/Negation—Sampled each cycle and qualified by a
qualified DBG in the following cycle.

8.2.9.3 Data Ready (DRDY)—Output

The data ready (DRDY) signal is a point-to-point output signal from the MPC7451 to the
system arbiter. It functions as a data bus request indicating to the arbiter that data for an
outstanding data intervention transaction previously signaled with a HIT is ready. The
arbiter responds by granting the data bus. Note that the EIDIS bit of MSSCR0 disables data
intervention for the MPC7451 caches. See Section 2.1.5.3, “Memory Subsystem Control

MOTOROLA Chapter 8. Signal Descriptions 8-25

MPX Bus Signal Configuration

Register (MSSCR0).” Also, see Section 9.4, “MPX Bus Data Tenure,” for more
information about the data intervention functionality. Following are the state meaning and
timing comments for the DRDY signal.

State Meaning Asserted—The MPC7451 has data ready for a pending bus operation
initiated elsewhere in the system (for which the MPC7451 has
previously signaled HIT during the snoop response window), and the
MPC7451 is requesting the data bus in order to service that bus
operation.

Negated—The MPC7451 is not requesting the data bus to service an
outstanding bus request.

Timing Comments Asserted—DRDY is asserted no earlier than HIT and no earlier than
two cycles before the MPC7451 is able to drive the data (because
DRDY may be followed immediately by DBG and then TA).

Negated—DRDY is negated on the cycle after it is asserted unless
another DRDY is asserted for the next transaction. DRDY may be
fully pipelined on back-to-back cycles when multiple hits are
outstanding.

8.2.10 Data Transfer Signals

Like the address transfer signals, the data transfer signals are used to transmit data and to
generate and monitor parity for the data transfer. They are also used for data-only
transactions. For a detailed description of how the data transfer signals interact, see
Section 9.4.2.4.1, “Data-Only Transaction Protocol.”

8.2.10.1 Data Bus (D[0:63])

The data bus (D[0:63]) consists of 64 signals that are both inputs and outputs on the
MPC7451. The data bus is driven once for cache-inhibited or write-through transactions of
64 bits or less, two times for CI or WT AltiVec quad-word loads and stores, and four times
for cache-line burst transactions. See Table 8-5 for the data bus lane assignments.

Table 8-5. Data Bus Lane Assignments

Data Bus Signals Byte Lane

D[0:7] 0

D[8:15] 1

D[16:23] 2

D[24:31] 3

D[32:39] 4

D[40:47] 5

8-26 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Signal Configuration

8.2.10.1.1 Data Bus (D[0:63])—Output

Following are the state meaning and timing comments for D[0:63] as output signals.

State Meaning Asserted/Negated—Represent the state of data during data-write
(including data-only [data intervention]) transactions. Byte lanes not
selected for data transfer do not supply valid data.

Timing Comments Assertion/Negation—Initial beat occurs one cycle after a qualified
DBG is sampled, and, for bursts, changes one bus cycle following
each assertion of TA.

High Impedance—Occurs on the bus clock cycle after the final
assertion of TA, following the assertion of TEA, or in certain
ARTRY cases

8.2.10.1.2 Data Bus (D[0:63])—Input

Following are the state meaning and timing comments for D[0:63] as input signals.

State Meaning Asserted/Negated—Represent the state of data during a data read
transaction.

Timing Comments Assertion/Negation—Data must be valid on the same bus clock
cycle that TA is asserted.

8.2.10.2 Data Bus Parity (DP[0:7])

The eight data bus parity (DP[0:7]) signals on the MPC7451 are both input and output.
They can also be used for data-only transactions.

8.2.10.2.1 Data Bus Parity (DP[0:7])—Output

Following are the state meaning and timing comments for DP[0:7] as output signals.

State Meaning Asserted/Negated—Represents odd parity for each of the eight bytes
during data write transactions. Odd parity means that an odd number
of bits, including the parity bit, are driven high. All eight parity bits
are driven with valid parity on all bus operations. HID1[EBA] and
HID1[EBD] control whether control whether the processor will
check address and data parity respectively. The MPC7451 always
generates parity regardless of whether checking is enabled or
disabled. The signal assignments are listed in Table 8-6.

D[48:55] 6

D[56:63] 7

Table 8-5. Data Bus Lane Assignments (continued)

Data Bus Signals Byte Lane

MOTOROLA Chapter 8. Signal Descriptions 8-27

MPX Bus Signal Configuration

Timing Comments Assertion/Negation—The same as (D[0:63])
High Impedance—The same as (D[0:63])

]

8.2.10.2.2 Data Bus Parity (DP[0:7])—Input

Following are the state meaning and timing comments for DP[0:7] as input signals.

State Meaning Asserted/Negated—Represents odd parity for each byte of read data.
Parity is checked on all data byte lanes, regardless of the size of the
transfer. Detected even parity causes a machine check exception if
data parity errors are enabled in the machine-specific HID1 register.

Timing Comments Assertion/Negation—The same as (D[0:63])

8.2.11 Data Transfer Termination Signals

Data termination signals are required after each data beat in a data transfer. Note that, in a
single-beat transaction, the data termination signals also indicate the end of the tenure,
while in burst accesses, the data termination signals apply to individual beats and indicate
the end of the tenure only after the final data beat.

For a detailed description of how these signals interact, see Section 9.4.3, “MPX Bus Data
Tenure Termination.”

8.2.11.1 Transfer Acknowledge (TA)—Input

Following are the state meaning and timing comments for the TA signal.

State Meaning Asserted—Indicates that a single-beat data transfer or a data beat in
a burst transfer completed successfully. On the following cycle, the
MPC7451 terminates the data beat, or if a burst, advances to the next
data beat. If it is the last or only data beat, MPC7451 also terminates
the data tenure. Note that TA must be asserted for each data beat in
a burst transaction.

Table 8-6. DP[0:7] Signal Assignments

Signal Name Signal Assignments

DP0 D[0:7]

DP1 D[8:15]

DP2 D[16:23]

DP3 D[24:31]

DP4 D[32:39]

DP5 D[40:47]

DP6 D[48:55]

DP7 D[56:63]

8-28 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Signal Configuration

Negated—(During a data tenure) indicates that, until TA is asserted,
the MPC7451 must continue to drive the data (insert wait states) for
the current write or must wait to sample the data for reads. Note that
it is the responsibility of the system to ensure that TA is negated by
the start of the next data bus tenure.

Timing Comments Assertion—Must not occur before ARTRY for the current
transaction (if the address retry mechanism is to be used to prevent
invalid data from being used by the processor); otherwise, assertion
may occur at any time during a data tenure. The system can withhold
assertion of TA to indicate that the MPC7451 should insert wait
states to extend the duration of the data beat, for details see
Section 9.4.2.2.1, “Data Streaming in MPX Bus Mode.”

Negation—Must occur after the bus clock cycle of the final (or only)
data beat of the transfer. For a burst transfer, the system can assert TA
for one bus clock cycle and then negate it to advance the burst
transfer to the next beat and insert wait states during the next beat.

8.2.11.2 Transfer Error Acknowledge (TEA)—Input

Following are the state meaning and timing comments for the TEA signal.

State Meaning Asserted—Indicates that a data bus error occurred. On the following
cycle, the MPC7451 must terminate the current data tenure
(assertion of TA is ignored). Causes a machine check exception (and
possibly causes the processor to enter checkstop state if machine
check enable bit is cleared (MSR[ME] = 0)). For more information,
see Section 4.6.2.2, “Checkstop State (MSR[ME] = 0).” For reads,
assertion of TEA does not invalidate data entering the GPRs or the
caches.

Negated—Indicates that no bus error was detected.

Timing Comments Assertion—May be asserted on any bus clock cycle during a normal
data tenure, from the cycle following a qualified data bus grant to the
cycle of the final TA. TEA should be asserted for one cycle only. If
TEA is asserted at the same time as ARTRY, then ARTRY takes
precedence and the address tenure will be rerun. It is the
responsibility of the system to ensure that this scenario does not
recur (causing a deadlock).

Negation—TEA must be negated one cycle after it is asserted. Note
that it is the responsibility of the system to ensure that TEA is
negated by the start of the next data bus tenure.

MOTOROLA Chapter 8. Signal Descriptions 8-29

60x Bus Signal Configuration

8.3 60x Bus Signal Configuration
The signals that implement the 60x bus protocol on the MPC7451 are very similar to those
of MPX bus mode, with the exceptions noted in the following subsections.

8.3.1 60x Bus Mode Functional Groupings
Figure 8-2 shows how the signals are grouped in the MPC7451’s 60x bus mode. A pinout
showing pin numbers is included in the MPC7451 RISC Microprocessor Hardware
Specifications. Note that the left side of the figure depicts the signals that implement the
60x bus protocol and the right side of the figure shows the remaining signals on the
MPC7451 (not part of the bus protocol).

8-30 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

60x Bus Signal Configuration

Figure 8-2. 60x Bus Signal Groups

8.3.2 60x Address Bus Arbitration Signals

The address arbitration signals are the input and output signals the MPC7451 uses to
request the address bus, recognize when the request is granted, and indicate to other devices

BR

BG

TS

AP[0:4]

GBL

TSIZ[0:2]

AACK

ARTRY

DBG

DP[0:7]

TA

TEA

TBST

WT

TT[0:4]

CI

A[0:35]

SHD0

SYSCLK

TCK

TDI

PLL_CFG[0:4]

CLK_OUT

L3_ADDR[17:0]

L3_DATA[0:63]

L3_DP[0:7]

INT

MCP

SRESET

SMI

HRESET

QACK

BVSEL

CKSTP_IN

CKSTP_OUT

TBEN

BMODE[0:1]

D[0:63]

Address
Arbitration

Data
Arbitration1

Data
Transfer

L3 Cache
Address/
Data

Processor
Status/
Control

Interrupts/
Resets

Clock
Control

Data
Transfer

Termination

Address
Transfer

Termination

QREQ

PMON_IN

PMON_OUT

EXT_QUAL

TDO

TMS

TRST

Test
Interface
(JTAG)

Address
Transfer

Attributes

Address
Transfer

VDD
OVDD

GVDD

AVDD

GND

1

1

1

5

5

1

3

1

1

1

1

1

8

1

1

1

36

1

1

1

1

4

1

18

64

8

1

1

1

1

1

1

1

1

1

1

1

2

64

MPC7451

1

1

1

1

1

1

(60x)

1 The DTI[0:3] signal is not functional in 60x mode.

L3_CLK[0:1]

L3_ECHO_CLK[0:3]

L3_CNTL[0:1]

L3 Cache
Clock/
Control

2

2

4

1 L3_VSEL

Not supported in the
MPC7441 or the
MPC7445

MOTOROLA Chapter 8. Signal Descriptions 8-31

60x Bus Signal Configuration

when mastership is granted. For a detailed description of how these signals interact, see
Section 9.6.1, “60x Bus Address Bus Arbitration.”

8.3.2.1 Bus Request (BR)—Output

Following are the state meaning and timing comments for the BR output signal on the
MPC7451 in 60x bus mode.

State Meaning Asserted—Same as MPX bus interface.

Negated—Same as MPX bus interface.

Timing Comments Assertion—Same as MPX bus interface.

Negation—Same as MPX bus interface, except that the BR signal is
negated during TS.

High Impedance—Same as MPX bus interface.

8.3.2.2 Bus Grant (BG)—Input

Following are the state meaning and timing comments for the BG input signal.

State Meaning Asserted—Indicates that the MPC7451 may, with proper
qualification, assume mastership of the address bus. The conditions
for a qualified bus grant are described in Section 9.6.1, “60x Bus
Address Bus Arbitration.”

Negated— Indicates that the MPC7451 is not the next potential
address bus master.

Timing Comments Assertion—May occur at any time to indicate the MPC7451 can use
the address bus. In 60x bus mode, the MPC7451 does not accept a
BG in the cycles between the assertion of any TS and AACK.

Negation—May occur at any time to indicate the MPC7451 cannot
use the bus. The MPC7451 may still assume bus mastership on the
bus clock cycle of the negation of BG because during the previous
cycle BG indicated to the MPC7451 that it could take mastership (if
qualified).

8.3.3 Address Bus and Parity in 60x Bus Mode

The address bus (A[0:35]) consists of 36 signals that are both input and output signals. The
following sections describe the address bus and parity signals in 60x bus mode. For a
detailed description of how these signals interact, refer to Section 9.6.2, “60x Bus Address
Transfer.”

8-32 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

60x Bus Signal Configuration

8.3.3.1 Address Bus (A[0:35])—Output

Following are the state meaning and timing comments for the address bus A[0:35] as output
signals on the MPC7451 in 60x bus mode.

State Meaning Asserted/Negated—Same as MPX bus interface.

Timing Comments Assertion/Negation—Same as MPX bus interface.

High Impedance—Occurs one bus clock cycle after AACK is
asserted.

8.3.3.2 Address Bus (A[0:35])—Input

Following are the state meaning and timing comments for the address bus A[0:35] as input
signals on the MPC7451 in 60x bus mode.

State Meaning Asserted/Negated—Same as MPX bus interface.

Timing Comments Assertion/Negation—Same as MPX bus interface.

8.3.3.3 Address Parity (AP[0:4])—Output

Following are the state meaning and timing comments for AP[0:4] as output signals on the
MPC7451. See Table 8-4.

State Meaning Asserted/Negated—Same as A[0:35].

Timing Comments Assertion/Negation—Same as A[0:35].

8.3.3.4 Address Parity (AP[0:4])—Input

Following are the state meaning and timing comments for AP[0:4] as input signals on the
MPC7451.

State Meaning Asserted/Negated—Same as A[0:35].

Timing Comments Assertion/Negation—Same as A[0:35].

8.3.4 Address Transfer Attribute Signals in 60x Bus Mode

The transfer attribute signal functions in 60x bus mode are very similar to that of MPX bus
mode, with the exceptions noted in the following subsections.

8.3.4.1 Transfer Start (TS)

The transfer start (TS) signal is both an input and output signal on the MPC7451.

MOTOROLA Chapter 8. Signal Descriptions 8-33

60x Bus Signal Configuration

8.3.4.1.1 Transfer Start (TS)—Output

Following are the state meaning and timing comments for TS an output signal on the
MPC7451.

State Meaning Asserted—Same as MPX bus interface.

Negated—Same as MPX bus interface.

Timing Comments Assertion—Same as MPX bus interface.

Negation—Same as MPX bus interface.

High Impedance—Same as MPX bus interface.

8.3.4.1.2 Transfer Start (TS)—Input

Following are the state meaning and timing comments for TS as an input signal on the
MPC7451.

State Meaning Asserted—Same as MPX bus interface.

Negated—Same as MPX bus interface.

Timing Comments Assertion—May occur on any cycle following a qualified BG.

Negation— Same as MPX bus interface.

8.3.4.2 Transfer Type (TT[0:4])

The transfer type (TT[0:4]) signals consist of five input/output signals on the MPC7451.
For a complete description of the TT[0:4] signals for 60x bus mode, see Section 9.3.2.4,
“Address Transfer Attributes.”

8.3.4.2.1 Transfer Type (TT[0:4])—Output

Following are the state meaning and timing comments for TT[0:4] as output signals on the
MPC7451 in 60x bus mode.

State Meaning Asserted/Negated—Indicates the type of transfer in progress.

Timing Comments Assertion/Negation—Same as A[0:35].

High Impedance—Same as A[0:35].

For details on timing for the TT[0:4] signals for 60x bus mode see
Section 9.8, “60x Bus Timing Examples.”

8.3.4.2.2 Transfer Type (TT[0:4])—Input

Following are the state meaning and timing comments for TT[0:4] as input signals on the
MPC7451 in 60x bus mode.

State Meaning Asserted/Negated–Indicates the type of transfer in progress.

8-34 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

60x Bus Signal Configuration

Timing Comments Assertion/Negation—Same as A[0:35].

For details on timing for the TT[0:4] signals for 60x bus mode see
Section 9.8, “60x Bus Timing Examples.”

8.3.4.3 Transfer Burst (TBST)—Output

The transfer burst (TBST) signal is an output-only signal on the MPC7451. Following are
the state meaning and timing comments for the transfer burst TBST output signal in 60x
bus mode.

State Meaning Asserted—Same as MPX bus interface.

Negated—Same as MPX bus interface.

Timing Comments Assertion/Negation—Same as A[0:35].

High Impedance—Same as A[0:35].

8.3.4.4 Transfer Size (TSIZ[0:2])—Output

Following are the state meaning and timing comments for the transfer size TSIZ[0:2]
output signals on the MPC7451 in 60x bus mode.

State Meaning Asserted/Negated—Same as MPX bus interface.

Timing Comments Assertion/Negation—Same as A[0:35].

High Impedance—Same as A[0:35].

8.3.4.5 Global (GBL)

The global (GBL) signal is an input/output signal on the MPC7451.

8.3.4.5.1 Global (GBL)—Output

Following are the state meaning and timing comments for GBL as an output signal on the
MPC7451 in 60x bus mode.

State Meaning Asserted—Same as MPX bus interface.

Negated—Same as MPX bus interface.

Timing Comments Assertion/Negation—Same as A[0:35].

High Impedance—The same as A[0:35].

8.3.4.5.2 Global (GBL)—Input

Following are the state meaning and timing comments for GBL as an input signal on the
MPC7451 in 60x bus mode.

MOTOROLA Chapter 8. Signal Descriptions 8-35

60x Bus Signal Configuration

State Meaning Asserted—Same as MPX bus interface.

Negated—Same as MPX bus interface.

Timing Comments Assertion/Negation—Same as A[0:35].

8.3.4.6 Write-Through (WT)—Output

Following are the state meaning and timing comments for the write-through WT output
signal on the MPC7451 in 60x bus mode.

State Meaning Asserted/Negated—Same as MPX bus interface.

Timing Comments Assertion/Negation—Same as A[0:35].

High Impedance—Same as A[0:35].

8.3.4.7 Cache Inhibit (CI)—Output

The cache inhibit (CI) signal is an output signal on the MPC7451 in 60x bus mode and
following are its state meaning and timing comments.

State Meaning Asserted—Same as MPX bus interface.

Negated—Same as MPX bus interface.

Timing Comments Assertion/Negation—The same as A[0:35].

High Impedance—The same as A[0:35].

8.3.5 60x Address Transfer Termination Signals

The address transfer termination signal functions in 60x bus mode are very similar to that
of MPX bus mode, with the exceptions noted in the following subsections. For detailed
information about how these signals interact, see Section 9.6.3, “60x Bus Address Transfer
Termination.”

8.3.5.1 Address Acknowledge (AACK)—Input

The address acknowledge (AACK) signal is an input-only signal on the MPC7451.
Following are the state meaning and timing comments for the AACK signal.

State Meaning Asserted—Indicates that the address phase of a transaction is
complete; the address bus is released to high-impedance on the next
bus clock cycle.

Note that the address tenure does not terminate until the assertion of
AACK. As a snooping device, the MPC7451 requires that AACK be
asserted for every assertion of TS that it detects.

Negated—Same as MPX bus interface.

8-36 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

60x Bus Signal Configuration

Timing Comments Assertion—May occur as early as the bus clock cycle after TS is
asserted; assertion can be delayed to allow adequate address access
time for slow devices. For example, if an implementation supports
slow snooping devices, an external arbiter can postpone the assertion
of AACK.

Negation—Same as MPX bus interface.

8.3.5.2 Address Retry (ARTRY)

The address retry (ARTRY) signal is both an input and output signal on the MPC7451 in
60x bus mode.

8.3.5.2.1 Address Retry (ARTRY)—Output

Following are the state meaning and timing comments for ARTRY as an output signal in
60x bus mode.

State Meaning Asserted—Same as MPX bus interface.

Negation/High Impedance—Same as MPX bus interface.

Timing Comments Assertion—Same as MPX bus interface.

8.3.5.2.2 Address Retry (ARTRY)—Input

Following are the state meaning and timing comments for ARTRY as an input signal in 60x
bus mode.

State Meaning Asserted—If the MPC7451 is the address bus master, ARTRY
indicates that the MPC7451 must retry the preceding address tenure
and immediately negate BR (if asserted). If the associated data
tenure has already started, the MPC7451 also aborts the data tenure
immediately, even if data has been received.

If the MPC7451 is not the address bus master, this input indicates
that the MPC7451 must immediately negate BR to allow an
opportunity for a copyback operation to main memory after a
snooping bus master asserts ARTRY. Note that the subsequent
address presented on the address bus may not be the same one
associated with the assertion of the ARTRY signal.

Note that the MPC7451 ignores the BG signal on the cycle in which
ARTRY is detected and the cycle following the assertion of ARTRY.

Negated—Same as MPX bus interface.

Timing Comments Assertion—Same as MPX bus interface.

Negation/High Impedance—Same as MPX bus interface.

MOTOROLA Chapter 8. Signal Descriptions 8-37

60x Bus Signal Configuration

8.3.5.3 Shared (SHD0)

The shared SHD0 signal is both an input and an output on the MPC7451 in 60x bus mode
and functions similarly to SHD0 and SHD1 in MPX bus mode. Because the 60x protocol
does not allow a given master to drive a new address tenure every other cycle as does the
MPX protocol, only one snoop response signal, SHD0, is necessary.

8.3.5.3.1 Shared (SHD0)—Output

Following are state and timing descriptions for shared (SHD0) as an output signal.

State Meaning Asserted—If ARTRY is negated, SHD0 indicates that after this
transaction completes successfully, the MPC7451 will keep a valid
shared copy of the address or that a reservation exists on this address.
If SHD0 and ARTRY are asserted for a snooping master, the snoop
hit modified data is pushed as the master’s next address transaction.

Negated/High Impedance—After this address is transferred, the
processor no longer has a valid copy of the snooped address.

Timing Comments Assertion/Negation—Same as ARTRY.

High Impedance—Same as ARTRY.

8.3.5.3.2 Shared (SHD0)—Input

Following are state and timing descriptions for (SHD0) as an input signal.

State Meaning Asserted—If ARTRY is negated, the MPC7451 allocates the
incoming cache block as shared (S) for a self-generated transaction.
Applies only to read and read atomic transactions.

If ARTRY is asserted, SHD0 is ignored as an input.

Negated—If ARTRY is negated and SHD0 is negated, the MPC7451
allocates the incoming cache block as exclusive (E) for a
self-generated read or read-atomic transaction.

Timing Comments Assertion/Negation—Same as ARTRY

8.3.6 Data Bus Arbitration Signals

The data bus arbitration signals for 60x bus mode operate similarly to MPX bus mode
except as noted in the following subsections. See Section 9.7.1, “60x Bus Data Bus
Arbitration,” for more information about data bus arbitration in 60x bus mode.

8.3.6.1 Data Bus Grant (DBG)—Input

The data bus grant (DBG) signal is an input signal on the MPC7451. Following are the state
meaning and timing comments for the DBG signal in 60x bus mode.

8-38 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

60x Bus Signal Configuration

State Meaning Asserted—Same as MPX bus interface, except that data streaming is
not allowed in 60x bus mode.

Negated—Same as MPX bus interface.

Timing Comments Assertion—Same as MPX bus interface.

Negation—Same as MPX bus interface.

8.3.6.2 Data Transaction Index (DTI[0:3])—Input

In the MPC7451’s implementation of 60x bus protocol, out-of-order transactions are not
supported. Therefore DTI[0:3] signals have no functionality in 60x mode and must be
pulled low.

8.3.7 Data Transfer Signals in 60x Bus Mode

The data transfer signals in 60x bus mode transmit data and generate and monitor parity for
the data transfer similarly to those in MPX bus mode, except that they are not used for
data-only (intervention) transactions. For a detailed description of how the data transfer
signals interact in 60x bus mode, see Section 9.7.2, “60x Bus Data Transfers.”

8.3.7.1 Data Bus (D[0:63])

The following subsections describe the operation of the data bus signals as inputs and
outputs in 60x bus mode.

8.3.7.1.1 Data Bus (D[0:63])—Output

Following are the state meaning and timing comments for the D[0:63] signals as outputs in
60x bus mode.

State Meaning Asserted/Negated—Represent the state of data during a data write
transaction (excluding data-only transactions that are unsupported in
60x mode). Byte lanes not selected for data transfer do not supply
valid data.

Timing Comments Assertion/Negation—Initial beat occurs one bus clock cycle after a
qualified DBG is sampled, and, for bursts, transitions on the bus in
the clock cycle following each assertion of TA.

High Impedance—Same as MPX bus interface.

8.3.7.1.2 Data Bus (D[0:63])—Input

Following are the state meaning and timing comments for the D[0:63] signals as inputs in
60x bus mode.

MOTOROLA Chapter 8. Signal Descriptions 8-39

60x Bus Signal Configuration

State Meaning Asserted/Negated—Same as MPX bus interface, except that
data-only transactions are not supported in 60x mode.

Timing Comments Assertion/Negation—Same as MPX bus interface.

8.3.7.2 Data Bus Parity (DP[0:7])

The following subsections describe the operation of the data bus parity signals (DP[0:7]) as
inputs and outputs in 60x bus mode.

8.3.7.2.1 Data Bus Parity (DP[0:7])—Output

Following are the state meaning and timing comments for the DP[0:7] signals as outputs in
60x bus mode.

State Meaning Asserted/Negated—Same as MPX bus interface, except that
data-only transactions are not supported in 60x mode.

High Impedance—Same as MPX bus interface.

Timing Comments Assertion/Negation—Same as D[0:63].

High Impedance—Same as D[0:63].

8.3.7.2.2 Data Bus Parity (DP[0:7])—Input

Following are the state meaning and timing comments for the DP[0:7] signals as inputs in
60x bus mode.

State Meaning Asserted/Negated—Same as MPX bus interface, except that
data-only transactions are not supported in 60x mode.

Timing Comments Assertion/Negation—Same as D[0:63].

8.3.8 Data Transfer Termination Signals in 60x Bus Mode

The function of the data termination signals in 60x bus mode is similar to that in MPX bus
mode. The differences are described in the following subsections. For a detailed description
of how these signals interact in 60x bus mode, see Section 9.7.3, “60x Bus Data Tenure
Termination.”

8.3.8.1 Transfer Acknowledge (TA)—Input

Following are the state meaning and timing comments for the TA signal.

State Meaning Asserted—Same as MPX bus interface.

Negated—Same as MPX bus interface.

Timing Comments Assertion—Same as MPX bus interface.

Negation—Same as MPX bus interface.

8-40 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Non-Protocol Signal Descriptions

8.3.8.2 Transfer Error Acknowledge (TEA)—Input

Following are the state meaning and timing comments for the TEA signal.

State Meaning Asserted—Same as the MPX bus interface.

Negated—Same as MPX bus interface.

Timing Comments Assertion—May be asserted on any bus clock cycle during a normal
data tenure, from the cycle following a qualified data bus grant to the
cycle of the final TA. TEA should be asserted for one cycle only. If
TEA is asserted at the same time as ARTRY, then ARTRY takes
precedence and the address tenure will be rerun. It is the
responsibility of the system to ensure that this scenario does not
recur (causing a deadlock).

Negation—Same as MPX bus interface.

8.4 Non-Protocol Signal Descriptions
The following sections describe the signals on the MPC7451 that do not specifically
implement the MPX or 60x bus protocols. These signals include the L3 interface signals,
the interrupt and reset signals, processor status and control signals, clock control signals,
and JTAG test signals. Note that the L3 interface signals are not present on the MPC7441
and the MPC7445.

8.4.1 L3 Cache Address/Data

The MPC7451’s dedicated L3 cache interface provides all the signals required for the
support of up to 2 Mbytes of DDR, late write, and PB2 SRAM for data storage as L3 cache
or as private memory. The use of the L3 data parity (L3_DP[0:7]) signals is optional and
depends on the SRAMs selected for use with the MPC7451. Note that the least-significant
bit of the L3 address (L3_ADDR[17:0]) is identified as bit 0 and that the most-significant
bit is identified as bit 17. Note that for the MPC7457, there is an additional signal
(L3_ADDR[18:0]), so the most-significant bit is identified as bit 18. See Section 3.7, “L3
Cache Interface,” for more information on the operation of the L3 interface and the
interactions of these signals. These L3 cache signals are not present on the MPC7441 or the
MPC7445.

8.4.1.1 L3 Address (L3_ADDR[17:0])—Output

Following are the state meaning and timing comments for the L3 address output signals.
For the MPC7457 there is one more output signal (L3_ADDR[18:0]).

State Meaning Asserted/Negated—Represents the address of the data to be
transferred to the L3 cache. The L3 address bus is configured with
bit 0 as the least-significant bit.

MOTOROLA Chapter 8. Signal Descriptions 8-41

Non-Protocol Signal Descriptions

Timing Comments Assertion/Negation—Driven valid by the MPC7451 during read and
write operations; driven with static data when the L3 cache memory
is not being accessed.

8.4.1.2 L3 Data (L3_DATA[0:63])

The L3 data bus (L3_DATA[0:63]) consists of 64 signals that are both input and output on
the MPC7451. The L3_DATA[0:63] are tristated during system reset. These L3 cache
signals are not present on the MPC7441 or the MPC7445.

8.4.1.2.1 L3 Data (L3_DATA[0:63])—Output

Following are the state meaning and timing comments for the L3 data output signals.

State Meaning Asserted/Negated—Represents the state of data during a data write
transaction. Data is always transferred in full double words.

Timing Comments Assertion/Negation—Driven valid by MPC7451 during write
operations; driven with static data when the L3 cache memory is not
being accessed by a read operation.

High Impedance—Occurs for at least one cycle when the MPC7451
transitions between read and write operations to the L3 cache
memory.

8.4.1.2.2 L3 Data (L3_DATA[0:63])—Input

Following are the state meaning and timing comments for the L3 data input signals.

State Meaning Asserted/Negated—Represents the state of data during a data read
transaction. Data is always transferred in full double words.

Each transaction is split up into four 2-byte data lanes. For DDR
SRAM, each data lane is synchronized to the SRAM-supplied clock
connected to the corresponding L3_ECHO_CLK signal. For PB2
and late-write SRAM (which do not provide a return clock), the
external SRAM supplies data in 4-byte groups synchronized to a
feedback loop. Two data lanes are synchronized by a loop from
L3_ECHO_CLK[1] to L3_ECHO_CLK[0], and the other two data
lanes are synchronized by a loop from L3_ECHO_CLK[3] to
L3_ECHO_CLK[2].

Timing Comments Assertion/Negation—Driven valid by L3 cache memory during read
operations.

8.4.1.3 L3 Data Parity (L3_DP[0:7])

The eight data bus parity (L3_DP[0:7]) signals on the MPC7451 are both output and input
signals.These L3 cache signals are not present on the MPC7441 or the MPC7445.

8-42 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Non-Protocol Signal Descriptions

8.4.1.3.1 L3 Data Parity (L3_DP[0:7])—Output

Following are the state meaning and timing comments for the L3 data parity signals as
outputs.

State Meaning Asserted/Negated—Represents odd parity for each of the 8 bytes of
L3 cache data during write transactions. Odd parity means that an
odd number of bits, including the parity bit, are driven high. L3_DP0
is associated with bits 0–7 (byte lane 0) of the L3_DATA bus.

Timing Comments Assertion/Negation—The same as L3_DATA[0:63].
High Impedance—The same as L3_DATA[0:63].

8.4.1.3.2 L3 Data Parity (L3_DP[0:7])—Input

Following are the state meaning and timing comments for the L3 data parity signals as
inputs.

State Meaning Asserted/Negated—Represents odd parity for each byte of L3 cache
read data.

Timing Comments Assertion/Negation—Same as L3_DATA[0:63].

8.4.2 L3 Cache Clock/Control

The following sections describe the L3 clock and control signals. These L3 cache signals
are not present on the MPC7441 or the MPC7445.

8.4.2.1 L3 Clock (L3_CLK[0:1])—Output

Following are the state meaning and timing comments for the L3_CLK[0:1] signals.

State Meaning Asserted/Negated—Clock output for L3 cache memory devices.

Timing Comments Assertion/Negation—Refer to the MPC7451 RISC Microprocessor
Hardware Specifications for timing comments.

8.4.2.2 L3 Clock Synchronization (L3_ECHO_CLK[0:3])

The four L3 clock synchronization (L3_ECHO_CLK[0:3]) signals on the MPC7451 are
both input and output signals depending on the type of SRAM used.

8.4.2.2.1 L3 Clock Synchronization (L3_ECHO_CLK[1,3])—Output

With PB2 and late-write SRAM, L3_ECHO_CLK[1] and L3_ECHO_CLK[3] are used
as output signals. Following are the state meaning and timing comments for the
L3_ECHO_CLK[1,3] signals. Note that L3_ECHO_CLK[0,2] are inputs only and never
outputs.

MOTOROLA Chapter 8. Signal Descriptions 8-43

Non-Protocol Signal Descriptions

State Meaning Asserted/Negated—Clock outputs for read data synchronization.
One signal is provided for each external SRAM.

Timing Comments Assertion/Negation—Occur synchronously with the L3_CLK[0:1].
Refer to the MPC7451 RISC Microprocessor Hardware
Specifications.

8.4.2.2.2 L3 Clock Synchronization (L3_ECHO_CLK[0:3])—Input

All four (L3_ECHO_CLK[0:3]) signals are used as inputs with MSUG2 DDR SRAM. For
MSUG2 DDR, L3_ECHO_CLK[0:1] must be paired with the SRAM providing
L3_DATA[0:31]/L3_DP[0:3], and L3_ECHO_CLK[2:3] is connected to the to SRAM
providing L3_DATA[32:63]/L3_DP[4:7]. With PB2 and late-write SRAM,
L3_ECHO_CLK[0] and L3_ECHO_CLK[2] are used as input signals. Following are the
state meaning and timing comments for the L3_ECHO_CLK[0:3] signals.

State Meaning Asserted/Negated—Clock inputs for read data synchronization. One
pair of signals is provided for each external SRAM with MSUG2
DDR SRAM, one signal is provided for external SRAM with PB2
and late-write SRAM.

Timing Comments Assertion/Negation—Occurs asynchronously with the
L3_CLK[0:1] and with each SRAM. Refer to the MPC7451 RISC
Microprocessor Hardware Specifications.

8.4.2.3 L3 Control (L3_CNTRL[0:1])

The L3_CNTRL[0:1] signals can have various functionality depending on the type of
SRAM. Table 8-7 provides a summary of how the L3_CNTRL[0:1] signals function.

For further details on timing for: DDR SRAM refer to Section 3.7.9.1, “MSUG2 DDR
Interface Timing,” late-write SRAM refer to Section 3.7.9.2, “Late-Write SRAM Timing,”
and PB2 SRAM refer to Section 3.7.9.3, “Pipelined Burst SRAM.”

8.4.2.3.1 L3 Control (L3_CNTL0)—Output

Following are the state meaning and timing comments for the L3_CNTL0 signal.

Table 8-7. Function of L3_CNTL[0:1] Signal

L3CR[L3RT]
setting

L3 SRAM Type L3_CNTRL0 L3_CNTRL1

00 MUGS2 DDR SRAM Load new address (L3ADS) Write operation (L3WE)

01 Late-write SRAM Chip enable (L3CE) Write operation (L3WE)

10 Reserved — —

11 PB2 SRAM Chip enable (L3CE) Write operation (L3WE)

8-44 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Non-Protocol Signal Descriptions

State Meaning Asserted/Negated—For DDR SRAM, this indicates to load a new
address. For PB2 and late-write SRAM, this indicates to enable the
SRAM.

Timing Comments Assertion/Negation—Occurs synchronously with L3_CLK[0:1].

8.4.2.3.2 L3 Control (L3_CNTL1)—Output

Following are the state meaning and timing comments for the L3_CNTL1 signal.

State Meaning Asserted/Negated—For DDR SRAM, PB2, and late-write SRAM
this indicates that a write operation is occurring.

Timing Comments Assertion/Negation—Occurs synchronously with L3_CLK[0:1].

8.4.2.4 L3 Voltage Select (L3_VSEL)—Input

The MPC7451 provides several I/O voltages to support both compatibility with existing
systems and migration to future systems. The voltage values on L3VSEL before and after
HRESET negation represent a 2-bit value that is stored for internal use only in a register
called l3vsel. The L3VSEL signal is sampled during HRESET assertion and the value is
written to l3vsel[0]. When the L3VSEL signal is sampled after HRESET negation, the
L3VSEL value is written to l3vsel[1].

The bus voltage is selected as shown in Table 8-8 for all main bus and utility signals:

State Meaning Assertion/Negation—Selects the high voltage level for all L3
interface signals. See the MPC7451 RISC Microprocessor
Hardware Specifications for more information.

Note that this input contains an internal pull-up resistor to ensure that
an unterminated input appears as a high signal level to the test logic.

Timing Comments Assertion/Negation—Must remain asserted or negated during
normal operation.

Table 8-8. Signal Voltage Selections

l3vsel[0–1]
Value

Signal Voltage

 00 1.8V

01 2.5V

10 1.5V

11 2.5V

MOTOROLA Chapter 8. Signal Descriptions 8-45

Non-Protocol Signal Descriptions

8.4.3 Interrupts/Reset Signals

Most system status signals are input signals that indicate when exceptions are received,
when checkstop conditions have occurred, and when the MPC7451 must be reset. The
MPC7451 generates the output signal CKSTP_OUT when it detects a checkstop condition.
For a detailed description of these signals, see Section 9.9, “Reset, Interrupt, Checkstop,
and Power Management Signal Interactions.”

8.4.3.1 Interrupt (INT)—Input

The interrupt (INT) signal is an input signal on the MPC7451. Following are the state
meaning and timing comments for the INT signal.

State Meaning Asserted—Indicates that the MPC7451 should take an external
interrupt if enabled in the MSR. Refer to Chapter 4, “Exceptions,”
for more information on interrupt operation and interrupt vector
assignments.

Negated—Indicates that the interrupt is not being requested.

Timing Comments Assertion—May occur at any time asynchronously to SYSCLK; the
INT input is level-sensitive.

Negation—Must not occur until after the interrupt is taken.

8.4.3.2 System Management Interrupt (SMI)—Input

The system management interrupt (SMI) signal is an input signal on the MPC7451.
Following are the state meaning and timing comments for the SMI signal.

State Meaning Asserted—Indicates that the MPC7451 should take a system
management interrupt if enabled in the MSR. Refer to Chapter 4,
“Exceptions,” for more information on interrupt operation and
interrupt vector assignments.

Negated—Indicates that the interrupt is not being requested.

Timing Comments Assertion—May occur at any time asynchronously to SYSCLK; The
SMI input is level-sensitive.

Negation—Must not occur until after the interrupt is taken.

8.4.3.3 Machine Check (MCP)—Input

The machine check (MCP) signal is an input signal on the MPC7451. Following are the
state meaning and timing comments for the MCP signal.

State Meaning Asserted—Indicates that the MPC7451 should initiate a machine
check interrupt or enter the checkstop state as directed by the MSR.

8-46 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Non-Protocol Signal Descriptions

Negated—Indicates that machine check handling is not being
requested.

Timing Comments Assertion—May occur at any time asynchronously to SYSCLK; the
MCP input is negative edge sensitive.

Negation—May occur any time after the minimum MCP pulse width
of two bus clocks has been met; see the MPC7451 RISC
Microprocessor Hardware Specifications.

8.4.3.4 Reset Signals

There are two reset signals on the MPC7451—hard reset (HRESET) and soft reset
(SRESET) and they are described in the following subsections.

8.4.3.4.1 Soft Reset (SRESET)—Input

The soft reset input provides a “warm” reset capability. It functions as a non-maskable
interrupt. Following are the state meaning and timing comments for the SRESET signal.

State Meaning Asserted—Initiates processing for a reset exception as described in
Section 4.6.1, “System Reset Exception (0x00100).”

Negated—Indicates that normal operation should proceed. See
Section 9.9.1, “Reset Inputs.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the MPC7451 input clock SYSCLK. The
SRESET input is negative edge sensitive.

Negation—May be negated two bus cycles after assertion.

8.4.3.4.2 Hard Reset (HRESET)—Input

The hard reset (HRESET) signal must be used at power-on to properly reset the processor.
The hard reset sequence includes the hardware initialization of the MPC7451’s circuitry.
Following are the state meaning and timing comments for the HRESET signal.

State Meaning Asserted—Initiates a complete hard reset operation when this input
transitions from negated to asserted. Causes a reset exception as
described in Section 4.6.1, “System Reset Exception (0x00100).”
During assertion output drivers are released to high impedance and
the MPC7451 is held in an initialized state.

Negated—Indicates that normal operation should proceed as defined
by Section 4.6.1, “System Reset Exception (0x00100).”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the MPC7451 input clock SYSCLK; must be held
asserted for a minimum of 255 clock cycles after the PLL lock time

MOTOROLA Chapter 8. Signal Descriptions 8-47

Non-Protocol Signal Descriptions

has been met. Refer to the MPC7451 RISC Microprocessor
Hardware Specifications for further timing comments.

Negation—May occur any time after the minimum reset pulse width
has been met.

8.4.3.5 Checkstop Input (CKSTP_IN)—Input

Following are the state meaning and timing comments for the CKSTP_IN signal.

State Meaning Asserted—Indicates that the MPC7451 must terminate operation by
internally gating off all clocks and releasing all outputs (except
CKSTP_OUT) to the high-impedance state. Once CKSTP_IN has
been asserted, it must remain asserted until the system has been reset.
CKSTP_IN is not maskable.

Negated—Indicates that normal operation should proceed. See
Section 9.9.3, “Checkstops.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks.

Negation—May occur any time after the CKSTP_OUT output signal
has been asserted.

8.4.3.6 Checkstop Output (CKSTP_OUT)—Output

Note that the CKSTP_OUT signal is an open-drain type output and requires an external
pull-up resistor (for example, 10 kΩ to VDD) to assure proper negation. Following are the
state meaning and timing comments for the CKSTP_OUT signal.

State Meaning Asserted—Indicates that the MPC7451 has detected a checkstop
condition and has ceased operation.

Negated—Indicates that the MPC7451 is operating normally.
See Section 9.9.3, “Checkstops.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the MPC7451 input clocks.

High Impedance— Occurs upon assertion of HRESET.

8.4.4 Processor Status/Control Signals

Processor status signals indicate the state of the processor. This includes the time base
enable signal and machine quiesce control signals.

8-48 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Non-Protocol Signal Descriptions

8.4.4.1 Timebase Enable (TBEN)—Input

The timebase enable (TBEN) signal is an input signal on the MPC7451. Following are the
state meaning and timing comments for the TBEN signal. Note that in addition to the
assertion of the TBEN signal, HID0[TBEN] must also be set in order for the time base and
decrementer to operate.

State Meaning Asserted—Indicates that the timebase and decrementer should
continue clocking. This signal functions as a count enable control for
the timebase and decrementer counter.

Negated—Indicates that the timebase and decrementer should stop
clocking.

Timing Comments Assertion/Negation—May occur at any time asynchronously to
SYSCLK

8.4.4.2 Quiescent Request (QREQ)—Output

The quiescent request (QREQ) signal is an output signal on the MPC7451. See Chapter 10,
“Power and Thermal Management,” for more information about the power management
modes of the MPC7451. Following are the state meaning and timing comments for the
QREQ signal.

State Meaning Asserted—Indicates that the MPC7451 is requesting all bus activity
to terminate or pause so that it may enter a quiescent (low-power nap
or sleep) state. Once in this state, the MPC7451 stops snooping
further bus activity.

Negated—Indicates that the MPC7451 is not requesting to enter nap
or sleep mode.

Timing Comments Assertion/Negation—May occur on any cycle. QREQ remains
asserted for the duration of the nap or sleep mode.

8.4.4.3 Quiescent Acknowledge (QACK)—Input

The quiescent acknowledge (QACK) signal is an input signal on the MPC7451. See
Chapter 10, “Power and Thermal Management,” for more information about the power
management modes of the MPC7451. Following are the state meaning and timing
comments for the QACK signal.

State Meaning Asserted—Indicates that all bus activity has terminated or paused
and that the MPC7451 may enter nap or sleep mode.

Negated—Indicates that the MPC7451 may not enter nap or sleep
mode or that it must return to doze mode from nap mode in order to
snoop.

MOTOROLA Chapter 8. Signal Descriptions 8-49

Non-Protocol Signal Descriptions

Timing Comments Assertion/Negation—May occur on any cycle following the
assertion of QREQ; 20 processor cycles after QACK assertion, a
QACK negation for at least eight cycles ensures that the MPC7451
has returned to doze mode from nap mode. Refer to Figure 10-1 for
a state diagram of the power states.

8.4.4.4 Bus Voltage Select (BVSEL)—Input

The MPC7451 provides several I/O voltages to support both compatibility with existing
systems and migration to future systems. The voltage values on BVSEL before and after
HRESET negation represent a 2-bit value. The BVSEL signal is sampled during HRESET
assertion and the value is written to vsel[0]. When the BVSEL signal is sampled after
HRESET negation, the BVSEL value is written to vsel[1].

The bus voltage is selected as follows for all main bus and utility signals (for all signals
except L3 interface signals):

See the MPC7451 RISC Microprocessor Hardware Specifications for more information on
the BVSEL signal, which controls these I/O voltage options. Following are the state
meaning and timing comments for the BVSEL signal.

State Meaning Asserted—Sampled at HRESET negation to select bit 0 of bus
voltage select.

Negated—Sampled after HRESET negation to select bit 1 of bus
voltage select.

Timing Comments

Assertion/Negation—Must remain asserted or negated during
normal operation. The following selections are available:

Note that this input contains an internal pull-up resistor to ensure that
an unterminated input appears as a high signal level to the test logic.

Table 8-9. Signal Voltage Selections

vsel[0:1] Value Signal Voltage

 00 1.8V

01 2.5V

10 N/A 1

1 Not applicable; 1.5V is not supported
for the system bus

11 2.5V

8-50 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Non-Protocol Signal Descriptions

8.4.4.5 Bus Mode Select (BMODE[0:1])

The BMODE[0:1] signals are used during HRESET assertion to select the bus interface
mode. They are also sampled after HRESET negation to configure the MPC7451’s address
bus driven mode and processor identification.

Table 8-10 shows the configuration settings for BMODE[0:1].

8.4.4.5.1 Bus Selection Mode (BMODE0)—Input During HRESET

If the BMODE0 input signal is sampled asserted at HRESET negation, the MPX bus mode
will be selected. However if the BMODE0 input signal is negated at HRESET negation, the
60x bus mode is selected.

Following are the state meaning and timing comments for the BMODE0 signals during
HRESET.

State Meaning Asserted—Sampled at HRESET negation to select the bus mode. If
BMODE0 is asserted at HRESET negation, MPX bus mode is

Table 8-10. BMODE Configuration

Signals
At HRESET Negation

(Bit Values)
Bus Mode

After HRESET Negation

BMODE0 BMODE1 BMODE0 BMODE1
ABD Mode
Selected?

Processor ID

0 0 1 1 Reserved Y 1

HRESET 0 1 1 Reserved N 1

¬HRESET 1

1 ¬HRESET is the inverse of HRESET.

0 0 1 Reserved Y 1

1 0 0 1 Reserved N 1

0 HRESET 1 1 Reserved Y 0

HRESET HRESET 1 1 Reserved N 0

¬HRESET HRESET 0 1 Reserved Y 0

1 HRESET 0 1 Reserved N 0

0 ¬HRESET 1 0 MPX Y 1

HRESET ¬HRESET 1 0 MPX N 1

¬HRESET ¬HRESET 0 0 60x Y 1

1 ¬HRESET 0 0 60x N 1

0 1 1 0 MPX Y 0

HRESET 1 1 0 MPX N 0

¬HRESET 1 0 0 60x Y 0

1 1 0 0 60x N 0

MOTOROLA Chapter 8. Signal Descriptions 8-51

Non-Protocol Signal Descriptions

selected. The state of BMODE0 sampled at HRESET negation is
stored and readable from the BMODE0 bit in MSSCR0. The state of
MSSCR0[BMODE] is active high, meaning that if BMODE0 is
detected as asserted at the negation of HRESET,
MSSCR0[BMODE] = 1. Section 9.2, “MPX Bus Protocol,”
describes the MPX bus mode operation on the MPC7451.

Negated—If BMODE0 is detected as negated at the negation of
HRESET, 60x bus mode is selected. Additionally, if BMODE0
remains negated after HRESET negation (in MPX bus mode), then
the address bus driven mode is not selected.

Timing Comments Assertion/Negation—May be tied high to select 60x bus interface
operation; may be tied to HRESET to select MPX bus interface
operation (without address bus driven mode); may be tied low to
select MPX bus plus address bus driven mode.

8.4.4.5.2 Address Bus Driven Mode (BMODE0)—Input After HRESET

When the BMODE0 input signal is sampled asserted after HRESET is negated, then
address bus driven mode is selected. If BMODE0 is detected negated after HRESET is
negated, then normal address bus driving mode (address bus not always driven) is selected.

This mode modifies the time that the address and attributes signals are actively driven. The
address bus driven mode is stored and readable from the MSSCR0[ABD] bit. For MPX bus
mode, see Section 9.3.2.1, “Address Bus Driven Mode,” for more information and for 60x
bus mode see Section 9.6.2.1, “60x Address Bus Driven Mode.”

Following are the state meaning and timing comments for the BMODE0 signal.

State Meaning Asserted—Sampled after HRESET negation, the assertion of
BMODE0 selects address bus driven mode. Address bus grant driven
mode causes the MPC7451 to drive the address bus during every
cycle after a qualified bus grant is sampled, and is independent of
whether the MPC7451 has a bus transaction to run or not.

Negated—If BMODE0 is negated after the negation of HRESET,
then the address bus driven mode is not selected. The MPC7451
drives the address bus from TS through AACK.

Timing Comments Assertion/Negation—

–May be tied low to indicate a value of 1 on bit 0 (most significant
bit) of the bus mode and address bus driven mode.

–May be tied to HRESET to indicate a value of 1 on bit 0 of the bus
mode and normal address drive mode.

–May be tied to the inverse of HRESET to indicate a value of 0 on
bit 0 of the bus mode and address bus driven mode.

8-52 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Non-Protocol Signal Descriptions

–May be tied high to indicate a value of 0 on bit 0 of the bus mode
and normal address drive mode.

8.4.4.5.3 Bus Selection Mode (BMODE1)—Input During HRESET

The BMODE1 signal is an input signal on the MPC7451. It must be sampled negated
during HRESET negation for a bus mode to be selected.

State Meaning Asserted—If BMODE1 is detected as asserted at the negation of
HRESET, reserved bus mode is selected. This is for factory use only.

Negated—If BMODE1 is detected as negated at the negation of
HRESET, bus selection is enabled. Depending on the setting of
BMODE0, the MPC7451 will function in either MPX bus or 60x bus
mode.

Timing Comments Assertion/Negation—

–May not be tied low.

–May not be tied to HRESET.

–May be tied to the inverse of HRESET to indicate a value of 0 on
bit 1 of the bus mode and that this MPC7451 ID is 1.

–May be tied high to indicate a value of 0 on bit 1 of the bus mode
and that this MPC7451 ID is 0.

8.4.4.5.4 Bus Selection Mode (BMODE1)—Input After HRESET

When the BMODE1 input signal is sampled asserted after HRESET is negated, the ID bit
in the MSSCR0 can be used to denote one processor as the master in a multiprocessor
system. Most multiprocessor systems accomplish this through software and do not need the
ID bit.

State Meaning Asserted—If BMODE1 is detected as asserted after HRESET
negation, MSSCR0[ID] (bit 26) will be set.

Negated—If BMODE1 is detected as negated after HRESET
negation, MSSCR0[ID] (bit 26) will not be set.

Timing Comments Assertion/Negation—

–May not be tied low.

–May be tied high to indicate a value of 0 on bit 1 of the bus mode
and that this MPC7451 ID is 0.

–May not be tied to HRESET.

–May be tied to the inverse of HRESET to indicate a value of 0 on
bit 1 of the bus mode and that this MPC7451 ID is 1.

MOTOROLA Chapter 8. Signal Descriptions 8-53

Non-Protocol Signal Descriptions

8.4.4.6 Performance Monitor In (PMON_IN)—Input

The enhanced mode (PMON_IN) signal is an input signal on the MPC7451. Following are
the state meaning and timing comments for the PMON_IN signal.

State Meaning Asserted—Indicates that the performance monitor will log a
performance monitor pin event, as described in PMC1, bit 7 in
Table 11-9 (an event will only be logged if this event is enabled in
the performance monitor control registers).

Negated— Indicates that the performance monitor will not log a
performance monitor pin event.

Timing Comments Assertion— May occur at any time asynchronously to SYSCLK; it
is falling-edge activated.

Negation— May occur at any time after the minimum PMON_IN
pulse width of two bus clocks has been met.

8.4.4.7 Performance Monitor Out (PMON_OUT)—Output

The enhanced mode (PMON_OUT) signal is an output signal on the MPC7451. Following
are the state meaning and timing comments for the PMON_OUT signal.

State Meaning Asserted—Indicates that the performance monitor threshold or
negative counter condition has been reached.

Negated—Indicates that the performance monitor is either not active
or the programmed threshold or negative counter condition has not
been reached.

Timing Comments Assertion— May occur at any time. Note that this pin is not affected
by MMCR0[5].

8.4.5 Clock Control Signals
The MPC7451 clock signal inputs determine the system clock frequency and provide a
flexible clocking scheme that allows the processor to operate at an integer multiple of the
system clock frequency.

Refer to the MPC7451 RISC Microprocessor Hardware Specifications for the exact timing
relationships of the clock signals and other signals.

8.4.5.1 System Clock (SYSCLK)—Input
The MPC7451 requires a single system clock (SYSCLK) input. This input sets the
frequency of operation for the bus interface. Internally, the MPC7451 uses a phase-locked
loop (PLL) circuit to generate a master clock for all the CPU circuitry (including the bus
interface circuitry) which is phase-locked to the SYSCLK input. The master clock may be
set to an integer or half-integer multiple of the SYSCLK frequency as defined in the

8-54 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Non-Protocol Signal Descriptions

MPC7451 hardware specification, allowing the CPU core to operate at an equal or greater
frequency than the bus interface.

Following are the state meaning and timing comments for the SYSCLK signals.

State Meaning Asserted/Negated—The SYSCLK input is the primary clock input
for the MPC7451 and represents the bus clock frequency for
MPC7451 bus operation. Internally, the MPC7451 may be operating
at an integer or half-integer multiple of the bus clock frequency.

Timing Comments Duty cycle—Refer to the MPC7451 RISC Microprocessor
Hardware Specifications for timing comments and supported ratios.
Loose duty cycle is allowed.

SYSCLK is used as the frequency reference for the internal PLL
clock generator and must not be suspended or varied during normal
operation to ensure proper PLL operation.

8.4.5.2 PLL Configuration (PLL_CFG[0:4])—Input

The PLL (phase-locked loop) is configured by the PLL_CFG[0:4] signals. For a given
SYSCLK (bus) frequency, the PLL configuration signals set the internal CPU frequency of
operation. See the MPC7451 RISC Microprocessor Hardware Specifications for PLL
configuration information.

Following are the state meaning and timing comments for the PLL_CFG[0:4] signals.

State Meaning Asserted/Negated—Configure the operation of the PLL and the
internal processor clock frequency. Settings are based on the desired
bus frequency and internal frequency of operation.

Timing Comments Assertion/Negation—Must remain stable during operation; should
only be changed during the assertion of HRESET or during sleep
mode. These bits may be read through the PC[0:4] bits in the HID1
register.

8.4.5.3 Extension Qualifier (EXT_QUAL)—Input

The extension qualifier (EXT_QUAL) signal is an input signal on the MPC7451.
Following are the state meaning and timing comments for the EXT_QUAL signal.

State Meaning Asserted/Negated—Provides a PLL bypass mode for the system
clock. Refer to the MPC7451 RISC Microprocessor Hardware
Specifications for more information.

Timing Comments Assertion/Negation—Must be set low by the system during reset and
normal operation.

MOTOROLA Chapter 8. Signal Descriptions 8-55

Non-Protocol Signal Descriptions

8.4.5.4 Clock Out (CLK_OUT)—Output

The clock out (CLK_OUT) signal is an output signal (output-only) on the MPC7451.
Following are the state meaning and timing comments for the CLK_OUT signal.

State Meaning Asserted/Negated—Provides a PLL clock output for PLL testing and
monitoring. The configuration of the HID1[ECLK] and
HID1[BCLK] bits determines whether the CLK_OUT signal clocks
at the processor clock frequency, the bus clock frequency, or half of
the bus clock frequency. See Table 2-7 for the HID1 register
configuration of the CLK_OUT signal. The CLK_OUT signal
defaults to a high-impedance state following the assertion of
HRESET. The CLK_OUT signal is provided for testing only.

Timing Comments Assertion/Negation—During normal operation, CLK_OUT is
driven as specified by HID1(BCLK) and HID1(ECLK).

8.4.6 IEEE 1149.1a-1993 (JTAG) Interface Description

The MPC7451 has five dedicated JTAG signals which are described in Table 8-11. The test
data input (TDI) and test data output (TDO) scan ports are used to scan instructions as well
as data into the various scan registers for JTAG operations. The scan operation is controlled
by the test access port (TAP) controller which in turn is controlled by the test mode select
(TMS) input sequence. The scan data is latched in at the rising edge of test clock (TCK).

Test reset (TRST) is an optional JTAG signal which is used in the MPC7451 to reset the
TAP controller asynchronously. The TRST signal assures that the JTAG logic does not
interfere with the normal operation of the device. It is recommended that TRST be asserted
and negated coincident with the assertion of the HRESET signal.

These signals are not used during normal operation. TMS, TDI, and TRST have internal
pull-up resistors provided; TCK does not. For normal operation, TMS and TDI may be left
unconnected, and TCK must be set high or low. TRST must be asserted sometime during
power-up for JTAG logic initialization. Note that if TRST is tied low, unnecessary power
is consumed.

Table 8-11. IEEE Interface Pin Descriptions

Signal Name Input/Output
Weak Pull-up

Provided
IEEE 1149.1a Function

TCK Input No Scan clock

TDI Input Yes Serial scan input signal

TDO Output No Serial scan output signal

TMS Input Yes TAP controller mode signal

TRST Input Yes TAP controller reset

8-56 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Non-Protocol Signal Descriptions

8.4.6.1 JTAG Test Clock (TCK)—Input

The JTAG test clock (TCK) signal is an input on the MPC7451. Following is the state
meaning for the TCK input signal.

State Meaning Asserted/Negated—This input should be driven by a free-running
clock signal. Input signals to the test access port are clocked-in on the
rising edge of TCK. Changes to the test access port output signals
occur on the falling edge of TCK. The test logic allows TCK to be
stopped.

8.4.6.2 JTAG Test Data Input (TDI)—Input

Following is the state meaning for the TDI input signal.

State Meaning Asserted/Negated—The value presented on this signal on the rising
edge of TCK is clocked into the selected JTAG test instruction or
data register.

Note that this input contains an internal pull-up resistor to ensure that
an unterminated input appears as a high signal level to the test logic.

8.4.6.3 JTAG Test Data Output (TDO)—Output

The JTAG test data output signal is an output on the MPC7451. Following is the state
meaning for the TDO output signal.

State Meaning Asserted/Negated—The contents of the selected internal instruction
or data register are shifted out onto this signal on the falling edge of
TCK. The TDO signal remains in a high-impedance state except
when scanning of data is in progress.

8.4.6.4 JTAG Test Mode Select (TMS)—Input

The test mode select (TMS) signal is an input on the MPC7451. Following is the state
meaning for the TMS input signal.

State Meaning Asserted/Negated—This signal is decoded by the internal JTAG
TAP controller to distinguish the primary operation of the test
support circuitry.

Note that this input contains an internal pull-up resistor to ensure that
an unterminated input appears as a high signal level to the test logic.

8.4.6.5 JTAG Test Reset (TRST)—Input

The test reset (TRST) signal is an input on the MPC7451. Following is the state meaning
for the TRST input signal.

MOTOROLA Chapter 8. Signal Descriptions 8-57

Non-Protocol Signal Descriptions

State Meaning Asserted—This input causes asynchronous initialization of the
internal JTAG test access port controller. Note that the signal must be
asserted during the assertion of HRESET in order to properly
initialize the JTAG test access port. The TRST signal must be
asserted to properly initialize the boundary scan chain. This may be
accomplished by connecting it to HRESET, using logic to OR any
external JTAG TRST drivers.

Negated—Indicates normal operation.

Note that this input contains an internal pull-up resistor to ensure that
an unterminated input appears as a high signal level (negated) to the
test logic.

8.4.7 Configuration Signals Sampled at Reset

Table 8-12 contains a description of the signals sampled for configuration at the negation
of HRESET. Note that throughout this manual, the reset configuration signals are described
as being sampled at the negation of reset. However, the reset configuration signals are
actually sampled 3 clock cycles before the negation of HRESET. For more information
about the timing requirements of these configuration signals relative to the negation of the
reset signals, refer to the MPC7451 RISC Microprocessor Hardware Specifications.

The values on these signals during reset are interpreted to be logic one or zero, regardless
of whether the signal name is defined as active-low. The BVSEL and L3_VSEL signals
have internal pull-up resistors so that if the signals are not driven, the default value is high
(a one), as shown in the table. Please refer to the MPC7451 RISC Microprocessor
Hardware Specifications for information about the required drive strength to override these
internal resistors. The PLL_CFG[0:4], and BMODE[0:1] signals do not have pull-up
resistors and must be driven high or low during the reset period.

Table 8-12. MPC7451 Reset Configuration Signals

Signal Name(s) Default State Meaning

BMODE[0:1] Must be
driven

These two signals select the bus mode, and configure address bus driven mode and the
processor identification. See Table 8-10 for BMODE configuration settings.

PLL_CFG[0:4] Must be
driven

These four signals select the clock frequency ratios used by the PLL of the MPC7451.
The MPC7451 RISC Microprocessor Hardware Specifications lists the supported
settings and provides more detailed information on the clock frequencies.

BVSEL 1 This signal configures the bus voltage.

L3_VSEL 1

1 Note that the L3 cache is not supported on the MPC7441 and the MPC7445.

1 This signal configures the L3 cache bus voltage.

8-58 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Non-Protocol Signal Descriptions

8.4.8 Power and Ground Signals

The MPC7451 provides the following signal connections for power and ground:

• VDD—Supply voltage connection for the processor core
• VDD_SENSE—On the MPC7447A, these are internally connected to VDD and are

intended to allow an external device to detect the processor core voltage level
present inside the device package. If unused, they must be connected directly to VDD
or left unconnected.

• OVDD—Supply voltage connection for the system interface drivers
• OVDD_SENSE—On the MPC7447A, these are internally connected to VDD and

are intended to allow an external device to detect the processor core voltage level
present inside the device package. If unused, they must be connected directly to VDD
or left unconnected.

• GVDD—Supply voltage connection for the L3 cache interface drivers. These power
supply signals are isolated from the VDD and OVDD power supply signals.

• AVDD—Power signal provides power to the clock generation phase-locked loop.
See the MPC7451 RISC Microprocessor Hardware Specifications for information
on how to use this signal.

• GND—Connection for grounding the MPC7451
• GND_SENSE—On the MPC7447A, these are internally connected to GND and are

intended to allow an external device to detect the processor ground voltage level
present inside the device package. If unused, they must be connected directly to
GND or left unconnected.

See the MPC7451 RISC Microprocessor Hardware Specifications for detailed electrical
and mechanical information for each signal.

MOTOROLA Chapter 9. System Interface Operation 9-1

Chapter 9
System Interface Operation
This chapter describes the MPC7451 microprocessor bus interface and its operation. It
shows how the MPC7451 signals, defined in Chapter 8, “Signal Descriptions,” interact to
perform address and data transfers.

9.1 MPC7451 System Interface Overview
The MPC7451 supports two interface protocols—MPX bus protocol and a subset of the
60x bus protocol. Note that although the 60x bus protocol is implemented by the MPC603e,
MPC604e, MPC740, and MPC750 processors, it is referred to as the 60x bus interface. The
MPX bus protocol is derived from the 60x bus protocol. The MPX bus interface includes
several additional features that provide higher memory bandwidth than the 60x bus and
more efficient use of the system bus in a multiprocessing environment.

The MPC7451 bus interface includes a 64-bit data bus with 8 bits of data parity, a 36-bit
address bus with 5 bits of address parity, and additional control signals to allow for unique
system level optimizations.

The bus interface protocol is configured using the BMODE0 configuration signal at reset.
If BMODE0 is asserted at the negation of HRESET, the MPC7451 uses the MPX bus
protocol; if BMODE0 is negated during the negation of HRESET, the MPC7451 uses a
limited subset of the 60x bus protocol. Note that the inverse state of BMODE[0:1] at the
negation of HRESET is saved in MSSCR0[BMODE].

9.1.1 MPC7451 Bus Operation Features

The MPC7451 has a separate address and data bus, each with its own set of arbitration and
control signals. This allows for decoupling the data tenure from the address tenure of a
transaction and provides for a wide range of system-bus implementations including:

• Nonpipelined bus operation
• Pipelined bus operation
• Split transaction operation

The MPC7451 supports only the normal memory-mapped address segments defined in the
PowerPC architecture. Access to direct store segments results in a DSI exception.

9-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 System Interface Overview

9.1.1.1 MPX Bus Features

The MPX bus has the following features:

• Extended 36-bit address bus plus 5 bits of odd parity (41 bits total)

• 64-bit data bus plus 8 bits of odd parity (72 bits total); a 32-bit data bus mode is not
supported

• Support for a four-state (MESI) cache coherence protocol

• On-chip snooping to maintain L1 data cache, L2, and L3 cache coherency for
multiprocessing applications and DMA environments

• Support for address-only transfers (useful for a variety of broadcast operations in
multiprocessor applications)

• Address pipelining

• Support for up to 16 out-of-order transactions using four data transaction index
(DTI[0:3]) signals

• Full data streaming

• Support for data intervention in multiprocessor systems

9.1.1.2 60x Bus Features

The following list summarizes the 60x bus interface features:

• Extended 36-bit address bus plus 5 bits of odd parity (41 bits total)

• 64-bit data bus plus 8 bits of odd parity (72 bits total); a 32-bit data bus mode is not
supported

• Support for a four-state (MESI) cache coherence protocol

• On-chip snooping to maintain L1 data cache, L2, and L3 cache coherency for
multiprocessing applications and DMA environments

• Support for address-only transfers (useful for a variety of broadcast operations in
multiprocessor applications)

• Address pipelining

• Support for up to 16 outstanding transactions. No re-ordering is supported.

9.1.2 Overview of System Interface Accesses

The system interface includes address register queues, prioritization logic, and a bus control
unit. The system interface latches snoop addresses for snooping in the L1 data, L2, and L3
caches, the memory hierarchy address register queues, and the reservation controlled by the
Load Word and Reserve Indexed (lwarx) and Store Word Conditional Indexed (stwcx.)
instructions. Accesses are prioritized with load operations preceding store operations. Note
that the L3 cache is not supported on the MPC7441and the MPC7445.

MOTOROLA Chapter 9. System Interface Operation 9-3

MPC7451 System Interface Overview

Instructions are automatically fetched from the memory system into the instruction unit
where they are dispatched to the execution units at a peak rate of three instructions per
clock. Conversely, load and store instructions explicitly specify the movement of operands
to and from the integer, floating-point, and AltiVec register files and the memory system.

When the MPC7451 encounters an instruction or data access, it calculates the effective
address and uses the lower-order address bits to check for a hit in the on-chip, 32-Kbyte L1
instruction and data caches. During L1 cache lookup, the instruction and data memory
management units (MMUs) use the higher-order address bits to calculate the virtual
address, from which they calculate the physical address (real address). The physical address
bits are then compared with the corresponding cache tag bits to determine if a cache hit
occurred in the L1 instruction or data cache. If the access misses in the corresponding
cache, the transaction is sent to L1 load miss queue or the L1 store miss queue. L1 load miss
queue transactions are sent to the internal 256-Kbyte L2 cache (512-Kbyte L2 cache for
MPC7457) and L3 cache controller simultaneously. Store miss queue transactions are
queued up in the L2 cache controller and sent to the L3 cache if necessary. If no match is
found in the L2 or L3 cache tags, the physical address is used to access system memory.

In addition to the loads, stores, and instruction fetches, the MPC7451 performs hardware
table search operations following TLB misses, L1, L2, and L3 cache castout operations, and
cache-line snoop push operations when a modified cache line detects a snoop hit from
another bus master.

Figure 9-1 shows a block diagram of the MPC7451, including the address path from the
execution units and instruction fetcher through the translation logic to the caches and
system interface logic.

9-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 System Interface Overview

Figure 9-1. MPC7451 Microprocessor Block Diagram

+

In
te

g
er

R
es

er
va

tio
n

S
ta

tio
n

U
n

it
 2

+

In
te

g
er

R
es

er
va

tio
n

S
ta

tio
n

U
n

it
 2

A
d

d
it

io
n

al
 F

ea
tu

re
s

•
T

im
e

B
as

e
C

ou
nt

er
/D

ec
re

m
en

te
r

•
C

lo
ck

 M
ul

tip
lie

r
•

JT
A

G
/C

O
P

 In
te

rf
ac

e
•

T
he

rm
al

/P
ow

er
 M

an
ag

em
en

t
•

P
er

fo
rm

an
ce

 M
on

ito
r

+

+

 x
 ÷

F
P

S
C

R
F

P
S

C
R

P
A

+
 x

 ÷

In
st

ru
ct

io
n

 U
n

it
In

st
ru

ct
io

n
Q

ue
ue

(1
2-

W
or

d)

96
-B

it
(3

 In
st

ru
ct

io
ns

)

R
es

er
va

tio
n

 In
te

g
er

12
8-

B
it

(4
 In

st
ru

ct
io

ns
)

32
-B

it

F
lo

at
in

g
-

P
o

in
t

U
n

it

64
-B

it

R
es

er
va

tio
n

L
o

ad
/S

to
re

 U
n

it

(E
A

 C
al

cu
la

tio
n)

F
in

is
he

d

32
-B

it

C
o

m
p

le
ti

o
n

 U
n

it

C
om

pl
et

io
n

Q
ue

ue
(1

6-
E

nt
ry

)

Ta
gs

32
-K

by
te

D
 C

ac
he

36
-B

it
64

-B
it

In
te

g
er

S
ta

tio
ns

 (
2)

R
es

er
va

tio
n

S
ta

tio
n

R
es

er
va

tio
n

S
ta

tio
ns

 (
2)

F
P

R
 F

ile

16
 R

en
am

e
B

uf
fe

rs

S
ta

tio
ns

 (
2-

E
nt

ry
)

G
P

R
 F

ile

16
 R

en
am

e
B

uf
fe

rs
R

es
er

va
tio

n
S

ta
tio

n

V
R

 F
ile

16
 R

en
am

e
B

uf
fe

rs

64
-B

it

12
8-

B
it

12
8-

B
it

C
om

pl
et

es
 u

p

C
om

pl
et

ed

In
st

ru
ct

io
n

 M
M

U

S
R

s
(S

ha
do

w
)

12
8-

E
nt

ry

IB
A

T
 A

rr
ayIT

LB
Ta

gs
32

-K
by

te
I C

ac
he

S

to
re

s

S
to

re
s

Lo
ad

 M
is

s

V
ec

to
r

To
uc

h
Q

ue
ue

(3
)

V
R

 Is
su

e
F

P
R

 Is
su

e

B
ra

n
ch

 P
ro

ce
ss

in
g

 U
n

it

C
T

R

LR

B
T

IC
 (

12
8-

E
nt

ry
)

B
H

T
 (

20
48

-E
nt

ry
)

F
et

ch
er

G
P

R
 Is

su
e

(6
-E

nt
ry

/3
-I

ss
ue

)
(4

-E
nt

ry
/2

-I
ss

ue
)

(2
-E

nt
ry

/1
-I

ss
ue

)

D
is

pa
tc

h
U

ni
t

D
at

a
M

M
U

S
R

s
(O

rig
in

al
)

12
8-

E
nt

ry

D
B

A
T

 A
rr

ayD
T

LB

V
ec

to
r

To
uc

h
E

ng
in

e

32
-B

it

E
A

L1
 C

as
to

ut

S
ta

tu
s L
2

S
to

re
 Q

u
eu

e
 (

L
2S

Q
)

V
ec

to
r

F
P

U

R
es

er
va

tio
n

S
ta

tio
n

R
es

er
va

tio
n

S
ta

tio
n

R
es

er
va

tio
n

S
ta

tio
n

V
ec

to
r

In
te

g
er

U

n
it

 1

V
ec

to
r

In
te

g
er

U

n
it

 2

V
ec

to
r

P
er

m
u

te

U
n

it

Li
ne

Ta
gs

B
lo

ck
 0

 (
32

-B
yt

e)

S
ta

tu
s

B
lo

ck
 1

 (
32

-B
yt

e)

M
em

o
ry

 S
u

b
sy

st
em

S
no

op
 P

us
h/

In
te

rv
en

tio
ns

L1
 C

as
to

ut
s

B
us

 A
cc

um
ul

at
or

 L
1

P
us

h

(4
)

U
n

it
 2

U
n

it
 1

to
 th

re
e

pe
r

cl
oc

k

in
st

ru
ct

io
ns

L1
 L

oa
d

Q
ue

ue
 (

LL
Q

)

L1
 L

oa
d

M
is

s
(5

)

C
ac

he
ab

le
 S

to
re

 R
eq

ue
st

(1
)

In
st

ru
ct

io
n

F
et

ch
 (

2)

L
1

S
er

vi
ce

L1

 S
to

re
 Q

ue
ue

(L

S
Q

)
L

3
C

ac
h

e
C

o
n

tr
o

lle
r1 L3

C
R

S
ta

tu
s

Ta
gs

B
us

 A
cc

um
ul

at
or

B
lo

ck
 0

/1

Li
ne

S
y
s
te

m
 B

u
s
 I
n

te
rf

a
c
e

L2
 P

re
fe

tc
h

(3
)

64
-B

it
D

at
a

(8
-B

it
P

ar
ity

)

E
xt

er
na

l S
R

A
M

A

dd
re

ss
 B

us
D

at
a

B
us

Q
u

eu
es

C
a
st

o
u
t

B
u
s

S
to

re
 Q

u
e
u
e

P
u
sh

L
o
a
d

Q
u
e
u
e
 (

11
)

Q
u
e
u
e
 (

9
)

/

Q
u
e
u
e
 (

1
0
)2

N
o

te
s
:

1
.
T

h
e
 L

3
 c

a
ch

e
 in

te
rf

a
ce

 is
 n

o
t
im

p
le

m
e
n
te

d
 o

n
 t
h
e
 M

P
C

7
4
4
5
.

2
.
T

h
e
 C

a
st

o
u
t
Q

u
e
u
e
 a

n
d
 P

u
sh

 Q
u
e
u
e
 s

h
a
re

 r
e
so

u
rc

e
s

su
ch

 f
o
r

a
 c

o
m

b
in

e
d
 t
o
ta

l o
f
1
0
 e

n
tr

ie
s.

T

h
e
 C

a
st

o
u
t
Q

u
e
u
e
 it

se
lf

is
 li

m
ite

d
 t
o
 9

 e
n
tr

ie
s,

 e
n
su

ri
n
g
 1

 e
n
tr

y
w

ill
 b

e
 a

va
ila

b
le

 f
o
r

a
 p

u
sh

.

25
6-

K
b

yt
e

U
n

if
ie

d
 L

2
C

ac
h

e
C

o
n

tr
o

lle
r

(5
12

-K
b

yt
e

in
 M

P
C

74
47

 a
n

d
 M

P
C

74
57

)

18
-B

it
A

dd
re

ss
(1

9-
B

it
A

dd
re

ss
 in

 M
P

C
74

47
 a

nd
 M

P
C

74
57

)

(1
 0

r
2

M
by

te
s)

MOTOROLA Chapter 9. System Interface Operation 9-5

MPC7451 System Interface Overview

The MPC7451 uses separate address and data buses and a variety of control and status
signals for performing external reads and writes. The address bus is 36 bits wide and the
data bus is 64 bits wide. The interface is synchronous—all MPC7451 inputs are sampled at
and all outputs are driven from the rising edge of the bus clock. The processor runs at a
multiple of the bus clock speed.

9.1.3 Summary of L1 Instruction and Data Cache Operation

The MPC7451 provides independent L1 instruction and data caches. Each cache is a
physically-addressed, 32-Kbyte cache with 8-way set associativity. Both caches consist of
128 sets of 8 cache lines, with 32 consecutive bytes in each cache line. The MPC7451 data
cache tags are dual-ported and non-blocking, allowing efficient load/store and snoop
operations. The MPC7451 supports a four-state cache coherency protocol that includes
Modified (M), Exclusive (E), Shared (S), and Invalid (I) data cache states.

The cache control instructions, dcbt, dcbtst, dcbz, dcbst, dcbf, dcba, dcbi, and icbi, are
intended for the management of the local L1, L2, and L3 caches. The MPC7451 interprets
the cache control instructions as if they pertain only to its own caches. These instructions
are not intended for managing other caches in the system (except to the extent necessary to
maintain coherency). The MPC7451 snoops all global (GBL asserted) cache control
instruction broadcasts. Execution of the dcbz and dcba instructions cause a broadcast on
the system bus (when M = 1) unless the address cache block is found in the exclusive state
in the L1, L2, or L3 cache. The dcbst, dcbf, dcbi, and icbi instructions cause a broadcast
on the system bus (when M = 1) only if HID1[ABE] is set. Note that the L3 cache is not
supported on the MPC7441and the MPC7445.

Because the data cache on the MPC7451 is an on-chip, write-back primary cache, the
predominant type of transaction for most applications is burst-read memory operations,
followed by burst-write memory operations and single-beat (caching-inhibited or
write-through) memory read and write operations. Additionally, there can be address-only
operations, variants of the burst and single-beat operations (for example, global memory
operations that are snooped and atomic memory operations), and address retry activity (for
example, when a snooped read access hits a modified line in the cache).

On a cache miss, cache blocks are filled in one beat of 32 bytes. The burst fill is performed
as a critical-double-word-first operation. For the instruction cache, the critical double word
is forwarded to the instruction queue as soon as it is available, thus minimizing stalls due
to cache fill latency. The instruction cache is not blocked to internal accesses while a load
completes, providing for hits under misses. For the data cache, an entire cache block is
collected in an accumulator latch before being loaded into the cache. The critical double
word is forwarded to the execution units as soon as it is available.

Cache lines are selected for replacement based on a pseudo least-recently-used (PLRU)
algorithm. Each time a cache block is accessed, it is tagged as the most recently used way
of the set (unless accessed by the AltiVec LRU instructions, see Section 7.1.2.1, “LRU

9-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 System Interface Overview

Instructions”). For every hit in the cache or when a new block is reloaded, the PLRU bits
for the set are updated. Data cache replacement selection is performed at reload time, not
when a miss occurs. However, instruction cache replacement selection occurs when an
instruction cache miss is first recognized—that is, the instruction cache replacement target
is selected upon a miss and not at reload.

A data cache block fill is caused by a load miss or write-back store miss in the cache. The
cache block that corresponds to the missed address is updated by a burst transfer of the data
from the L2 cache, L3 cache, or system memory after any necessary coherency actions have
completed.

For more information about the interactions of the instruction and data caches and the
system interface, see Section 3.8, “System Bus Interface.”

9.1.4 L2 Cache Overview

The MPC7451 features an integrated L2 cache that is a unified (containing instruction and
data) 256 Kbyte on-chip cache. The MPC7457 has a 512 Kbyte on-chip L2 cache. It is
8-way set associative and organized with 32-byte blocks and two blocks per line. Thus each
block shares the same tag, but the valid, modified, and shared bits are independently
maintained for each block.

9.1.5 L3 Cache Overview

Similar in architecture to the L2 cache, the MPC7451 provides an on-chip, eight-way set
associative tag memory, and a dedicated L3 cache port with support for up to 2 Mbyte of
external SRAM. The L3 cache is organized with 2 or 4 blocks (sectors) per line, usually
operates in write-back mode, and supports system cache coherency through snooping. Note
that the L3 cache is not supported on the MPC7441and the MPC7445.

The L3 cache receives memory access requests from both the L1 and L2 caches. The L3
accesses are compared to the L3 cache tags and the data or instructions are forwarded from
the L3 to the L1 and L2 caches if there is an L3 cache hit, or are forwarded on to the bus
interface unit if there is an L3 cache miss or if the address being accessed is from a page
marked as caching-inhibited. Burst read accesses that miss in the L3 cache initiate a load
operation from the bus interface.

An L1 load or store operation can cause an L3 cache block allocation resulting in the
castout of an L3 cache block marked modified to the bus interface. For additional
information about the operation of the L3 cache, refer to Section 3.7, “L3 Cache Interface.”

MOTOROLA Chapter 9. System Interface Operation 9-7

MPC7451 System Interface Overview

9.1.6 Operation of the System Interface

Memory accesses can occur in single-beat (1, 2, 3, 4, and 8 bytes), double-beat (16 bytes),
and four-beat (32 bytes) burst data transfers. For memory accesses, the address and data
buses are independent to support pipelining and split transactions. The bus interface can
pipeline as many as 16 transactions and, in MPX bus mode, supports full out-of-order
split-bus transactions. The MPC7451 bursts out of reset in MPX bus mode, fetching eight
instructions on the MPX bus at a time.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the MPC7451 to be integrated into systems that implement various fairness and
bus-parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered to maximize the efficiency of the bus
without sacrificing coherency of the data. The MPC7451 allows load operations to bypass
store operations (except when a dependency exists). Because the processor can
dynamically optimize run-time ordering of load/store traffic, overall performance is
improved.

Note that the synchronize (sync) and enforce in-order execution of I/O (eieio) instructions
can be used to enforce strong ordering.

This is a synchronous interface—all MPC7451 input signals are sampled and output signals
are driven on the rising edge of the bus clock cycle (see the MPC7451 Hardware
Specifications for exact timing information).

9.1.7 Memory Subsystem Control Register (MSSCR0)

The MSSCR0 control register is used to configure many aspects of the memory subsystem
and bus protocols for the MPC7451. At power on reset, functions are set to a default; thus
the MSSCR0 should be changed if non-default functionality is required. It is a
supervisor-only read/write, implementation-specific register accessed as SPR 1014.

MSSCR0 includes parameters that set the maximum number of transactions that a
MPC7451 can carry in its data transaction queue, alter how the MPC7451 responds to
snoop requests, enable or disable data intervention, indicate when the MPC7451 is
operating in the address bus drive mode, and indicate the state of the BMODE[0:1] signals
during power-on reset. There are other parameters in MSSCR0 that control L2 cache
prefetching and the external L3 cache interface behavior. See Section 2.1.5.3, “Memory
Subsystem Control Register (MSSCR0),” for more detailed information about the bits of
MSSCR0.

9-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7451 System Interface Overview

9.1.8 Memory Subsystem Status Register (MSSSR0)

The memory subsystem status register (MSSSR0) acknowledges bus transfer errors and
indicates when parity errors are detected in the L2 and L3 caches and the data or address
buses. See Section 2.1.5.4, “Memory Subsystem Status Register (MSSSR0),” for more
detailed information about the bits of MSSSR0.

9.1.9 Direct-Store Accesses Not Supported

The MPC7451 does not support the extended transfer protocol for accesses to the
direct-store storage space. The transfer protocol used for any given access is selected by the
T bit in the MMU segment registers; if the T bit is set, the memory access is a direct-store
access. Any attempt to access instructions or data in a direct-store segment causes the
MPC7451 to take an ISI or DSI exception.

9.1.10 Common Timing Diagram Symbols

The following sections describe how the MPC7451 interfaces operate, providing detailed
timing diagrams that illustrate how the signals interact. In the following sections, timing
diagrams are used to illustrate the bus protocols. Figure 9-2 provides a legend for symbols
and typographic conventions used in the timing diagrams throughout this chapter.

Figure 9-2. Timing Diagram Legend

MPC7451 input (while MPC7451 is a bus master)

MPC7451 output (while MPC7451 is a bus master)

MPC7451 output (grouped: here, address plus
attributes)

MPC7451 internal signal (inaccessible to the user, but
used in diagrams to clarify operations)

Compelling dependency—event will occur on the next
clock cycle. Prerequisite dependency—event will occur
on an undetermined subsequent clock cycle

MPC7451 three-state output or input

MPC7451 nonsampled input. Signal with sample point

A sampled condition (dot on high or low state) with
multiple dependencies

Timing for a signal had it been asserted (it is not
actually asserted).

Bar over signal name indicates active low.

BG

BR

ADDR+

qual BG

MOTOROLA Chapter 9. System Interface Operation 9-9

MPX Bus Protocol

9.2 MPX Bus Protocol
The MPX bus protocol is based on the 60x bus protocol. It also includes several additional
features that allow it to provide higher memory bandwidth than the 60x bus and more
efficient utilization of the system bus in a multiprocessing environment.

Memory accesses that use the MPX bus protocol are divided into address and data tenures.
Each tenure has three phases—bus arbitration, transfer, and termination. The MPX bus
protocol also supports address-only transactions. Note that address and data tenures can
overlap, as shown in Figure 9-3.

Figure 9-3 shows that the address and data tenures in the MPX bus protocol are distinct
from one another and each tenure consists of three phases—arbitration, transfer, and
termination. The separation of the address and data tenures allows advanced bus
techniques—such as split-bus transactions, enveloped transactions, and pipelining—to be
implemented at the system level in multiprocessor systems (see Section 9.2.1). Figure 9-3
shows a data transfer that consists of 1-, 2-, or 4-beat transfers. Two- and 4-beat burst
transfers of 32-byte cache lines require data transfer termination signals for each beat of
data.

Figure 9-3. Overlapping Tenures on the MPC7451 Bus for Transfers

The basic functions of the address and data tenures are as follows:

• Address tenure

— Arbitration: During arbitration, address bus arbitration signals are used to gain
mastership of the address bus.

— Transfer: After the MPC7451 is the address bus master, it transfers the address
on the address bus. The address signals and the transfer-attribute signals control
the address transfer. The address parity signals ensure the integrity of the address
transfer.

— Termination: After the address transfer, the system signals that the address tenure
is complete or that it must be repeated.

Arbitration Transfer Termination

Arbitration Termination1-, 2-, or 4-Beat Transfer

Data Tenure

Address Tenure

Independent Address and Data

9-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Protocol

• Data tenure

— Arbitration: To begin the data tenure, the MPC7451 arbitrates for mastership of
the data bus.

— Transfer: After the MPC7451 is the data bus master, it samples the data bus for
read operations or drives the data bus for write operations. The data parity signals
ensure the integrity of the data transfer.

— Termination: Data termination signals are required after each data beat in a data
transfer. Note that in a single-beat transaction, the data termination signals also
indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the
final data beat.

Note that most transactions require both an address tenure followed by a data tenure.
However, the MPC7451 also supports some address-only and, in the case of data
intervention, data-only transactions.

Arbitration for both address and data bus mastership is performed by an external arbiter
using the address arbitration signals BR, and BG, and the data arbitration signal DBG. Most
arbiter implementations require additional signals to coordinate bus master, slave, and
snooping activities.

For more detailed information on the arbitration signals, refer to Section 8.2.5, “Address
Bus Arbitration Signals,” and Section 8.3.6, “Data Bus Arbitration Signals.”

9.2.1 MPX Bus Pipelining

The MPX bus protocol allows the separation of address and data tenures and provides the
following types of bus pipelining:

• Address pipelining

— Enveloped transactions

— Split-bus transactions

• Address-only transactions

• Data-only transfers

Address pipelining allows the address tenure of a new bus transaction to begin before the
data tenure of the current transaction has finished. An enveloped transaction occurs when
both a new address tenure and its data tenure are allowed to begin before the data tenure of
a previous transaction has completed.

Split-bus transaction capability allows the data tenure for a transaction to be arbitrated for
and granted independently from the address tenure. The data tenure may be granted during
the address tenure or after the address tenure has completed. Additionally, the bus activity
in a split transaction can be either from the same master or from different masters.

MOTOROLA Chapter 9. System Interface Operation 9-11

MPX Bus Address Tenure

MPX also provides for address-only transactions, or transactions that utilize the address bus
only (address tenure), with no data transfer involved (no data tenure). This capability is
generally useful in systems where the ability to issue or receive synchronization, cache
control, or TLB control commands between devices may be desirable.

The MPX protocol supports a data-only transfer in order to support cache-to-cache
transfers (data intervention) and local bus slave. The HIT and DRDY signals exist in MPX
to support this type of transfer.

While these capabilities do not inherently reduce memory latency, supporting them can
greatly improve effective bus and memory throughput. For this reason, these techniques are
most effective in shared-memory multimaster implementations where bus bandwidth is an
important measurement of system performance.

External arbitration is required in systems in which multiple devices must compete for the
system bus. The external arbiter must control the pipeline depth and synchronization
between masters and slaves.

The design of the external arbiter affects pipelining by regulating address bus grant (BG),
data bus grant (DBG), and address acknowledge (AACK) signals. For example, a one-level
pipeline is enabled by asserting AACK to the current address bus master and granting
mastership of the address bus to the next requesting master before the current data bus
tenure has completed. The MPC7451 can pipeline up to 16 address tenures before starting
a data tenure.

9.3 MPX Bus Address Tenure
This section describes the three phases of the address tenure used in the MPX bus
protocol—address bus arbitration, address transfer, and address transfer termination.

An address retry capability, similar to 60x bus mode, is provided to support the snoop
coherency protocol. In MPX bus mode, the MPC7451 additionally supports data
intervention for more efficient coherency management. Address retry is used only when the
MPC7451 cannot service the snoop, HIT-style data intervention is not enabled, or in cases
where HIT-style data intervention is not allowed. An address retry response is issued by a
snooping master in order to interrupt another master’s transaction on the bus, usually to
write back modified data to memory that is in its cache. The address retry causes the
original master to abort the current transaction and rerun the transaction at a later time.

9.3.1 MPX Bus Address Bus Arbitration

MPX address bus arbitration differs from arbitration in the 60x bus protocol in two regards.
First, the MPC7451 does not use any address bus busy (external ABB or internal abb) signal
in generating a qualified bus grant. Second, the MPC7451 can drive consecutive address
tenures without a dead cycle on the address bus if those address tenures are from the same
processor. This means that to end an address tenure from a master, the system must not

9-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Address Tenure

assert BG to a subsequent master until a cycle after the AACK for the first tenure is asserted.
The transfer start (TS) signal is still used to qualify bus grant in order to optimize
speculative bus parking.

The elimination of ABB from the interface removes logic from critical timing paths in the
processor interface, allowing higher frequency bus operation. Removal of ABB does,
however, put more responsibility on the system arbiter; now it is the arbiter that must track
whether the address bus is busy and not issue an address bus grant (BG) to a processor when
it would cause a collision on the address bus with an address tenure from another bus
master.

Arbiter designs must ensure that no more than one address bus master can be granted the
bus at one time (that is, bus grants must be mutually exclusive). In single-master
applications, BG can effectively be tied asserted, always granting the bus to the only
potential master (see Section 9.3.1.2, “MPX Address Bus Parking”). However, as
explained above, BG must be negated in every cycle that the arbiter delays AACK.

Note that the MPC7451 may assert BR but not use the bus even if it receives the qualified
bus grant. Or it may negate BR (that is, cancel the request) before accepting a qualified bus
grant. For example, if an internal data transaction queue fills up due to a HIT and there is
no room for a new TS, the MPC7451 will withdraw the bus request.

9.3.1.1 Qualified Bus Grant in MPX Bus Mode

When the MPC7451 needs access to the external bus and it is not parked (BG is negated),
(see Section 9.3.1.2), the following occurs:

• The processor asserts bus request (BR) to the arbiter and holds it asserted until

• A qualified bus grant is detected. The equation for a qualified MPX bus grant is as
follows:

Qualified Bus Grant = BG & ¬ARTRY & ¬TS & ¬ (latched state variables)

where latched state variables include latched ARTRY that is not asserted in the
current or in the preceding cycle, and regardless of whether the master or any other
processor is currently driving TS. Figure 9-4 shows the non-parked case; the X’s
mark the values of the signals that allow a qualified bus grant. Note that ABB (as
well as the internal abb) is no longer in this equation and neither is address
acknowledge (AACK).

• The processor is granted mastership of the bus and the bus is available.

MOTOROLA Chapter 9. System Interface Operation 9-13

MPX Bus Address Tenure

Figure 9-4. MPX Address Bus Arbitration—Non-Parked Case

9.3.1.2 MPX Address Bus Parking

External arbiters must allow only one device at a time to be the address bus master. In
systems with only a single master, BG can be grounded (always asserted) to continually
grant mastership of the address bus to the MPC7451. This continual granting of mastership
is called bus parking.

If the MPC7451 asserts BR before the external arbiter asserts BG, the MPC7451 is
considered unparked, as shown in Figure 9-4. Figure 9-5 shows the parked case, where a
qualified bus grant exists on the clock edge following a need_bus condition.

Figure 9-5. MPX Address Bus Arbitration—Parked Case

Whereas a non-parked processor must continually reassert BR to the arbiter in order to
receive a bus grant, bus parking allows the arbiter to hold BG asserted. Parking permits the
processor to skip the bus request (note its inactivity in Figure 9-5) and on the next cycle
assume address bus ownership. Address bus tenures can be driven every other cycle by the
same master.

SYSCLK

1 2 30

need_bus

BR

BG

ARTRY

TS

Arbitrate Assume control of bus

SYSCLK

1 2 30

need_bus

BR

BG

ARTRY

TS

Arbitrate Assume control of bus

4

9-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Address Tenure

The overall access latency for the memory transaction is shortened by one cycle: the system
gains back not only the arbitration latency, but also the dead cycle that is between each
tenure in the MPX bus interface.

Typically, bus parking is provided to the device that was the most recent bus master;
however, system designers may choose other schemes such as providing unrequested bus
grants in situations where it is easy to predict correctly the next device requesting bus
mastership.

From the system arbiter’s perspective, address bus parking must be implemented more
carefully in MPX bus systems than in 60x bus systems because the qualified bus grant
equation no longer includes the ABB signal.

As shown in Figure 9-6, optimal address parking can be implemented in a multimaster
system because TS is still in the qualified bus grant equation for MPX bus masters.

Figure 9-6. Address Parking in MPX Bus Multiprocessor Systems

SYSCLK

BG0

BR1

1 2 3 4 5 6 7 8

BG1

TS

AACK

ADDR

Cycle 1: Master 0 has a parked address bus grant. Master 0 has an address tenure ready and a
qualified bus grant, so it queues an address tenure for the next cycle. Also in cycle 1, the arbiter
samples a bus request from master 1, so the arbiter queues a switch of the bus grants from master
0 to master 1. The arbiter can safely do this because the qualified bus grant equation for MPX bus
masters includes ¬TS.

Cycle 2: Master 0 begins an address tenure, and master 1 does NOT get a qualified bus grant.
Cycle 3: The arbiter MUST negate the bus grant to master 1 because, without an address bus busy

indication or AACK in the qualified bus grant equation, nothing would prevent master 1 from
beginning an address tenure in cycle 4 and colliding with the end of master 0’s address tenure.
Because it would introduce a difficult timing path to require the arbiter to sample TS in cycle 2 and
negate BG1 in cycle 3, it is suggested that arbiters always pulse BGx high a cycle after swapping
BGx and BGy, only reasserting BGx after AACK has been driven.

Cycle 4: The arbiter reasserts BG1 because it asserted AACK in the previous cycle. (If the arbiter does
not know in advance when AACK is to be asserted, this timing might be difficult, and the reassertion
of bus grant may have to be delayed a cycle, but most systems should be able to do this.)

Cycle 5: Master 1 gets to start its address tenure. Note that this is the optimal timing for a new master
to drive the address bus.

Cycles 5 and 6: The arbiter speculatively parks BG1 enabling master 1 to begin another address tenure
immediately in cycle 7.

Cycle

MOTOROLA Chapter 9. System Interface Operation 9-15

MPX Bus Address Tenure

9.3.2 MPX Bus Address Transfer

During the address transfer, the physical address and all attributes of the transaction are
transferred from the bus master to the slave device(s).

Snooping logic may monitor the transfer to enforce cache coherency; see the description of
bus snooping in Section 9.3.3, “MPX Bus Address Tenure Termination.” The signals used
in this phase are transfer start (TS), and the address and attributes signals listed in the signal
tables.

The MPC7451 supports a little-endian mode in which the low-order address bits are
operated on (or munged) based on the program-requested data transfer size. This munging
is performed internally before the address reaches the internal caches and bus units. When
little-endian mode is selected, the MPX bus interface still operates in big-endian mode.
That is, byte address 0 of a double word—as selected by A[33:35] on the bus—still selects
the most significant (left-most) byte of the double word on data bus byte D[0:7]. Byte lane
swapping or other operations may have to be performed externally by the system if the
MPC7451 is interfaced to a true little-endian environment.

Note that the MPC7451 does not work with the MPC106 bridge device in little-endian
mode if misaligned data is accessed.

The signals used in the address transfer include the following signal groups:

• Address transfer start signal—transfer start (TS)

• Address transfer signals—address bus (A[0:35]) and address parity (AP[0:4])

• Address transfer attribute signals—transfer type (TT[0:4]), transfer size
(TSIZ[0:2]), transfer burst (TBST), cache inhibit (CI), write-through (WT), and
global (GBL)

The MPC7451 can be configured to use an extended, 36-bit address bus using
HID0[XAEN]. When extended physical addressing is disabled and when functioning as an
output, the four most significant bits (A[0:3]) are zeroes. Note that unused address pins
cannot be left floating. If any address pins are unused by the system, they should be driven
by the system during the address tenure of the transaction to be snooped or tied low with a
pulldown resistor. When extended physical addressing is enabled, the address bus contains
a 36 bit physical address.

Figure 9-7 shows that the timing for all of these signals, except TS, is identical. All of the
address transfer and address transfer attribute signals are combined into the ADDR+
grouping in Figure 9-7. The TS signal indicates that the MPC7451 has begun an address
transfer and the address and transfer attributes are valid (within the context of a
synchronous bus).

In Figure 9-7, the address transfer occurs during bus clock cycles 1 and 2 (arbitration occurs
in bus clock cycle 0, and the address transfer is terminated in bus clock 3). In this diagram,
the address bus termination input, AACK, is asserted to the MPC7451 on the bus clock

9-16 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Address Tenure

following assertion of TS (as shown by the dependency line). This is the minimum duration
of the address transfer for the MPC7451; the duration can be extended by delaying the
assertion of AACK for one or more bus clock cycles.

Figure 9-7. Address Bus Transfer

9.3.2.1 Address Bus Driven Mode

In addition to selecting MPX bus mode at the negation of HRESET, the BMODE0 signal
is used to select address bus driven mode after HRESET is negated. In this mode, the
address bus is actively driven by the MPC7451 on every cycle after a qualified bus grant is
sampled, independent of whether the MPC7451 has a bus transaction to run or not. When
the MPC7451 is driving the address bus but not running an address transaction, the address
bus is not driven to any specific value. This mode provides for improved electrical
characteristics on the address and attributes signals by reducing the time that these signals
are not actively driven.

If BMODE0 is asserted after HRESET is negated, address bus driven mode is selected; if
BMODE0 is negated after HRESET is negated, normal address bus driving mode (address
bus not always driven) is selected. The read-only ABD bit in MSSCR0 indicates whether
the MPC7451 is in address bus driven mode.

9.3.2.2 Address Bus Streaming

In MPX bus mode, the MPC7451 can perform address bus streaming, driving consecutive
address tenures from the same master without a dead cycle in between. Two-cycle address
tenures are possible if AACK is not delayed and the same master receives a qualified bus
grant to drive another address tenure.

9.3.2.3 Address Bus Parity

When the MPC7451 is the address bus master and a valid address is on the bus, the
MPC7451 always generates one bit of correct odd-byte parity for each of the four bytes of
address plus one additional bit of parity for A[0:3]. AP[0] contains odd parity for A[0:3];

0 1 2

SYSCLK

ADDR+

ARTRY_IN

TS

3 4

qual BG

AACK

MOTOROLA Chapter 9. System Interface Operation 9-17

MPX Bus Address Tenure

AP[1] contains odd parity for A[4:11]; AP[2] contains odd parity for A[12:19]; AP[3]
contains odd parity for A[20:27]; and AP[4] contains odd parity for A[28:35]. For
pull-up/pull-down requirements, see the MPC7451 Hardware Specification.

If the MPC7451 is not the master and TS is asserted, the MPC7451 calculates parity values
for the address bus and the calculated values are compared with the AP[0:4] inputs even if
extended addressing is disabled. If there is an error and address parity checking is enabled
(HID1[EBA] = 1), a machine check exception is generated. An address bus parity error
causes a checkstop condition if MSR[ME] is cleared to 0. For more information about
checkstop conditions, see Chapter 4, “Exceptions.”

The MPC7451 does not implement an address parity error (APE) signal as found on
previous microprocessors that implement the PowerPC architecture.

Note that unused address parity pins cannot be left floating. If the address bits
corresponding to an address parity bit are always driven to a 0, the parity bit must be driven
to a 1. If the address bits are attached to pull-down resistors, the corresponding address
parity bit should be attached to a pull-up resistor.

9.3.2.4 Address Transfer Attributes

The transfer attributes include the transfer type (TT[0:4]), transfer burst (TBST), transfer
size (TSIZ[0:2]), write-through (WT), cache inhibit (CI), and global (GBL) signals.
Attribute differences from the 60x bus are as follows:

• The definition of the TSIZ signals is expanded. See Section 9.3.2.4.2, “Transfer Size
(TSIZ[0:2]) and Transfer Burst TBST Signals.”

• The read claim (RCLAIM) transfer type is added to the MPX bus mode for accesses
generated by touch-for-store instructions.

9.3.2.4.1 Transfer Type (TT[0:4]) Signals

The transfer type signals (TT[0:4]) indicate the type of transaction to be performed.
Snooping logic should fully decode the transfer type signals if the GBL signal is asserted.
Slave devices can sometimes use the individual transfer type signals without fully decoding
the group. Table 9-1 describes the MPX bus specification transfer encodings and the
behavior of the MPC7451 as a bus master. The MPX bus transfer type encodings are the
same as those for the 60x bus with the addition of the RCLAIM command. RCLAIM is
used to identify touch-for-store instructions on the MPX bus. The effect of the RCLAIM
transaction is to establish exclusive ownership of a cache line without marking that cache
line as modified in the requesting processor’s cache.

9-18 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Address Tenure

Table 9-1. Transfer Type Encodings for MPX Bus Mode

Generated by MPC7451
as Bus Master

TT0 TT1 1 TT2 TT3 TT4
MPX Bus Specification

Type Source Command Type

Address only dcbst 0 0 0 0 0 Clean block Address only

Address only dcbf 0 0 1 0 0 Flush block Address only

Address only sync 0 1 0 0 0 sync Address only

Address only dcba, dcbz 2 0 1 1 0 0 Kill block Address only

Address only eieio 1 0 0 0 0 eieio Address only

Single-beat write
(nonGBL)

ecowx 1 0 1 0 0 External control word
write

Single-beat
write

Address only tlbie 1 1 0 0 0 TLB invalidate Address only

Single-beat read
(nonGBL)

eciwx 1 1 1 0 0 External control word
read

Single-beat
read

N/A N/A 0 0 0 0 1 lwarx reservation set Address only

N/A N/A 0 0 1 0 1 Reserved —

Address only tlbsync 0 1 0 0 1 tlbsync Address only

Address only icbi 0 1 1 0 1 icbi Address only

N/A N/A 1 X X 0 1 Reserved —

Single-beat write
or burst

Caching-inhibited or
write-through store

0 0 0 1 0 Write-with-flush Single-beat
write or burst

Burst (nonGBL) Cast-out, dcbf,
dcbi, dcbst push, or

snoop copyback

0 0 1 1 0 Write-with-kill Burst

Single-beat read
or burst

Data load or
instruction fetch

0 3 1 0 1 0 Read Single-beat
read or burst

N/A N/A 1 0 0 1 0 Write-with-flush-
atomic 4, 5

Single-beat
write

N/A N/A 1 0 1 1 0 Reserved N/A

Burst lwarx 5 11 1 0 1 0 Read-atomic Single-beat
read or burst

Burst stwcx. 5 1 1 1 1 0 Read-with-intent-to-m
odify-atomic

Burst

Burst Store miss 0 1 1 1 0 Read-with-intent-to-m
odify

Burst

N/A N/A 0 0 0 1 1 Reserved —

N/A N/A 0 0 1 1 1 Reserved —

N/A N/A 0 1 0 1 1 Read-with-no-intent-
to-cache

Single-beat
read or burst

MOTOROLA Chapter 9. System Interface Operation 9-19

MPX Bus Address Tenure

9.3.2.4.2 Transfer Size (TSIZ[0:2]) and Transfer Burst TBST Signals

The TSIZ[0:2] signals indicate the size of the requested data transfer and may be used along
with TBST and A[32:35] to determine which portion of the data bus contains valid data for
a write transaction or which portion of the bus should contain valid data for a read
transaction.

The MPC7451 allows for two burst sizes in order to support both cache block transfers (of
32 bytes) and caching-inhibited or write-through AltiVec loads and stores (of 16 bytes).
Thus the definition of the TSIZ[0:2] bits when TBST is asserted is expanded from that in
60x bus mode. Table 9-2 defines the TBST and TSIZ[0:2] encodings used by the MPC7451
in MPX bus mode.

Burst dstst, dststt, or
dcbtst

0 1 1 1 1 Read claim (RCLAIM) Burst

N/A N/A 1 X X 1 1 Reserved —

1 TT1 can generally be interpreted as a read/write indicator for the bus.

2 The processor can also issue a kill block if a series of stores results in an entire cache line being modified, see
Section 3.1.2.3, “Store Gathering/Merging,” for details.

3 TT0 differentiates between a Read-atomic (lwarx) operation—TT0 high, and a Read (cache-inhibiting load or
instruction fetch) operation—TT0 low.

4 Not generated by MPC7451, but snooped
5 Caching-inhibited lwarx and caching-inhibited or write-through stwcx. cause DSI exceptions on the MO7451.

Table 9-2. TBST and TSIZ[0:2] Encodings in MPX Bus Mode

TBST TSIZ0 TSIZ1 TSIZ2 Transfer Size 1

Asserted 0 0 0 Not supported 2

Asserted 0 0 1 Quad-word (16-byte) burst

Asserted 0 1 0 32-byte burst

Asserted 0 1 1 undefined

Asserted 1 0 0 Not supported2

Asserted 1 0 1 undefined

Asserted 1 1 0 undefined

Asserted 1 1 1 undefined

Negated 0 0 0 8 bytes

Table 9-1. Transfer Type Encodings for MPX Bus Mode (continued)

Generated by MPC7451
as Bus Master

TT0 TT1 1 TT2 TT3 TT4
MPX Bus Specification

Type Source Command Type

9-20 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Address Tenure

The basic coherency size of the bus is defined to be 32 bytes corresponding to one cache
line. Data transfers that cross an aligned, 32-byte boundary either must present a new
address onto the bus at that boundary (for coherency consideration) or must operate as
noncoherent data with respect to the MPC7451. The MPC7451 never generates a bus
transaction with a transfer size of 5 bytes, 6 bytes, or 7 bytes.

For eciwx/ecowx operations, a transfer size of 4 bytes is implied, and the TBST and
TSIZ(0:2) signals are redefined to specify the resource identifier (RID). The RID is copied
from the three low-order bits of the external address register (EAR[28-31]). For these
operations, the TBST signal indicates the state of EAR[28] without inversion (active high).

9.3.2.4.3 Write-Through (WT), Cache Inhibit (CI), and Global (GBL) Signals

In general, the MPC7451 provides the WT, CI, and GBL signals to indicate the status of a
transaction target as determined by the WIM bit settings during address translation by the
MMU. There are exceptions, as described in Section 3.8.3, “Transfer Attributes.”

During write operations, the WT signal reflects the write-through status for the transaction
as determined by the MMU address translation. It is also asserted for burst writes due to
dcbf (flush) and dcbst (clean) instructions and for snoop pushes. The WT signal is negated
for accesses caused by the execution of ecowx instructions. Because write-through status
is not meaningful for read operations, the MPC7451 uses the WT signal during read
transactions to indicate that the transaction is an instruction fetch (WT = 1) or a data load
(WT = 0) operation.

Negated 0 0 1 1 byte

Negated 0 1 0 2 bytes

Negated 0 1 1 3 bytes

Negated 1 0 0 4 bytes

Negated 1 0 1 5 bytes 3

Negated 1 1 0 6 Bytes 3

Negated 1 1 1 7 Bytes 3

1 3-byte transfers may be requested by the MPC7451 starting at any byte
address within the double word from byte address 0 to byte address 5.

4-byte transfers may be requested by MPC7451 starting at any byte
address within the double word from byte address 0 to byte address 4.

2 Not supported means the transfer size is defined by the MPX bus, but is not
supported by the MPC7451.

3 Although defined, the MPC7451 never generates a transaction of this size.

Table 9-2. TBST and TSIZ[0:2] Encodings in MPX Bus Mode (continued)

TBST TSIZ0 TSIZ1 TSIZ2 Transfer Size 1

MOTOROLA Chapter 9. System Interface Operation 9-21

MPX Bus Address Tenure

The MPC7451 also provides the CI transfer attribute. This signal reflects the
caching-inhibited status of the transaction as determined by the MMU address translation
(WIM bits). Note that if the L1 data cache is disabled, all data accesses are treated as
caching-inhibited and CI is asserted regardless of the WIM bit settings. CI is always
asserted for eciwx/ecowx bus transactions independent of the address translation.

The MPC7451 provides the additional transfer attribute GBL. This signal indicates the
coherency requirements (global or non-global) for the transaction as determined by the
MMU address translation.

9.3.2.5 Burst Ordering During Data Transfers

During burst data transfer operations, 32 bytes of data (one cache line) are transferred to or
from the cache in order. However, since burst reads are performed critical double word first,
a burst read transfer may not start with the first double word of the cache line, and the cache
line fill may wrap around the end of the cache line. Non-intervention burst write transfers
are always performed zero double word first. Intervention burst writes (see Section 9.4.2.4,
“MPX Bus Data Intervention,”) are performed critical double word first.

Table 9-3 describes the order of the double words (DW) transferred during burst operations.

9.3.2.6 Effect of Alignment in Data Transfers
Table 9-4 lists the aligned transfers that can occur on the MPX bus. These are transfers in
which the data is aligned to an address that is an integral multiple of the size of the data.
For example, Table 9-4 shows that 1-byte data is always aligned; however, for a 4-byte
word to be aligned, it must be oriented on an address that is a multiple of 4.

Table 9-3. Burst Ordering

Data Transfer
For Starting Address:

A[31:32] = 00 A[31:32] = 01 A[31:32] = 10 A[31:32] = 11

First data beat DW0 DW1 DW2 DW3

Second data beat DW1 DW2 DW3 DW0

Third data beat DW2 DW3 DW0 DW1

Fourth data beat DW3 DW0 DW1 DW2

Notes: A[31:32] specifies the 1st double word of the 32-byte block being transferred; the remaining double
words to transfer must wrap around the block.

A[33:35] are always 0b000 for burst transfers performed by the MPC7451.
DWn represents the double word addressed by A[31:32]=n if a nonburst transfer were performed.
Each data beat is terminated with one valid assertion of TA.

9-22 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Address Tenure

Because the processor has an on-chip, copyback cache, most bus transactions issued to the
MPX bus are burst reads and burst writes that are aligned to double-word boundaries. The
only transfers that may have alignment considerations on the bus are single beat
transactions that bypass the cache (cache-disabled, caching-inhibited, and write-through
store transactions). The MPC7451 allows the transfer of any block of contiguous bytes
within a doubleword. No single beat bus transactions may cross a double-word boundary.
Transfers of strings or data that are aligned in such a way that they cross a double-word
boundary are broken down into multiple bus transactions. Two-beat transactions generated
by caching-inhibited or write-through AltiVec loads and stores or by store-gathered,
non-burst writes must be aligned to a natural quad-word boundary.

9.3.2.6.1 Misalignment Example

Although most operations hit in the primary cache (or generate burst memory operations if
they miss), the MPC7451 interface supports misaligned transfers within a double-word
(64-bit aligned) boundary, as shown in Table 9-5. Note that the 4-byte transfer in Table 9-5
is only one example of misalignment. As long as the attempted transfer does not cross a
double-word boundary, the MPC7451 can transfer the data on the misaligned address (for

Table 9-4. Aligned Data Transfers

Transfer Size TSIZ[0:2] A[33:35]
Data Bus Byte Lane(s) 1

1 These indicate the byte portions of the requested operand that are read or written during that bus transaction. Entries
marked with ‘—’ are not required and are ignored during read transactions; they are driven with undefined data during
all write transactions. Entries marked within ‘A’ means that byte lane is used.

0 1 2 3 4 5 6 7

Byte 0 0 1 0 0 0 A — — — — — — —

0 0 1 0 0 1 — A — — — — — —

0 0 1 0 1 0 — — A — — — — —

0 0 1 0 1 1 — — — A — — — —

0 0 1 1 0 0 — — — — A — — —

0 0 1 1 0 1 — — — — — A — —

0 0 1 1 1 0 — — — — — — A —

0 0 1 1 1 1 — — — — — — — A

Half word 0 1 0 0 0 0 A A — — — — — —

0 1 0 0 1 0 — — A A — — — —

0 1 0 1 0 0 — — — — A A — —

0 1 0 1 1 0 — — — — — — A A

Word 1 0 0 0 0 0 A A A A — — — —

1 0 0 1 0 0 — — — — A A A A

Double word 0 0 0 0 0 0 A A A A A A A A

MOTOROLA Chapter 9. System Interface Operation 9-23

MPX Bus Address Tenure

example, a half-word read from an odd byte-aligned address). Any attempt to address data
that crosses a double-word boundary requires two bus transfers to access the data.

Due to the performance degradations, misaligned memory operations should be avoided. In
addition to the double-word straddle boundary condition, the address translation logic can
generate substantial exception overhead when the load/store multiple and load/store string
instructions access misaligned data. It is strongly recommended that software attempt to
align data where possible.

9.3.2.6.2 Alignment of External Control Instructions

The size of the data transfer associated with eciwx and ecowx instructions is always four
bytes. If an operand for an eciwx or ecowx instruction is misaligned and crosses any word
boundary, the MPC7451 generates an alignment exception.

9.3.3 MPX Bus Address Tenure Termination
The address tenure of a bus operation is terminated when completed with the assertion of
AACK (address acknowledge).

The assertion of AACK can be as early as one bus clock cycle following TS (see
Figure 9-9), which allows a minimum address tenure of two bus cycles. Thus, using address
bus streaming, two-cycle address tenures are possible if AACK is not delayed and the same
master receives a qualified bus grant to drive another address tenure. Note that AACK must
be asserted for only one bus clock cycle.

Table 9-5. Misaligned Data Transfers (Four-Byte Examples)

Transfer Size
(Four Bytes)

TSIZ[0:2] A[33:35]
Data Bus Byte Lanes 1

1 A = Byte lane used
— = Byte lane not used

0 1 2 3 4 5 6 7

Aligned 1 0 0 0 0 0 A A A A — — — —

Misaligned 1 0 0 0 0 1 — A A A A — — —

Misaligned 1 0 0 0 1 0 — — A A A A — —

Misaligned 1 0 0 0 1 1 — — — A A A A —

Aligned 1 0 0 1 0 0 — — — — A A A A

Misaligned—first access
—second access

0 1 1 1 0 1 — — — — — A A A

0 0 1 0 0 0 A — — — — — — —

Misaligned—first access
—second access

0 1 0 1 1 0 — — — — — — A A

0 1 0 0 0 0 A A — — — — — —

Misaligned—first access
—second access

0 0 1 1 1 1 — — — — — — — A

0 1 1 0 0 0 A A A — — — — —

9-24 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Address Tenure

Because the MPC7451 does not terminate an address transfer until the AACK input is
asserted, the system can extend or pace the address transfer phase by delaying the assertion
of AACK to the MPC7451. Note that the MPC7451 requires a minimum of five core cycles
to process a snoop and generate a response after latching TS and associated transfer
attributes. As a result, if the processor core frequency is less than five times the system bus
frequency, the system must extend the address tenure of all transactions that are snooped
by the MPC7451 by delaying assertion of AACK. For core:bus frequency ratios of 2:1 and
2.5:1, AACK must be delayed a minimum of two bus cycles; for core:bus frequency ratios
of 3:1, 3.5:1, 4:1, and 4.5:1, AACK must be delayed a minimum of one bus cycle.

The address transfer can be terminated with the requirement to retry if ARTRY is asserted
anytime during the address tenure and through the cycle following AACK. The assertion of
ARTRY causes the entire transaction (address and data tenure) to be rerun. ARTRY is
asserted during the address tenure for the following reasons:

• No device on the bus has the required buffer space to handle the transaction.
• A device has a transient pipeline collision.
• A snooping device must push modified data to maintain coherency.

As a snooping device, the MPC7451 asserts ARTRY if a snooped transaction hits modified
data in the data cache and data intervention is disabled (MSSCR0[EIDIS] = 0b1) or data
intervention is enabled but intervention is not possible. The MPC7451 also asserts ARTRY
if the cache line is in an internal castout queue or if the snooped transaction could not be
serviced.

As a bus master, the MPC7451 responds to the assertion of ARTRY by aborting the bus
transaction and re-requesting the bus. Note that after recognizing the assertion of ARTRY
and aborting the transaction in progress, the MPC7451 is not guaranteed to run the same
transaction the next time it is granted the bus due to internal reordering of load and store
operations. Internally, the address queue that was retried is continually re-arbitrated with
the other internal queues until the next qualified bus grant is recognized.

9.3.3.1 Address Retry Window and Qualified ARTRY

If an address retry is required, ARTRY is asserted by a bus snooping device as early as the
second cycle after the assertion of TS. Once asserted, ARTRY must remain asserted through
the cycle after the assertion of AACK; the bus clock cycle starting two clock cycles after
TS and ending with the cycle after the assertion of AACK is referred to as the address retry
window.

The assertion of ARTRY during the cycle after the assertion of AACK is referred to as a
qualified ARTRY. An earlier assertion of ARTRY during the address tenure is referred to as
an early ARTRY.

MOTOROLA Chapter 9. System Interface Operation 9-25

MPX Bus Address Tenure

As a bus master, the MPC7451 does not recognize an early ARTRY but only recognizes
ARTRY the cycle after AACK (the qualified ARTRY). If the assertion of ARTRY is
received up to or on the bus cycle of the first (or only) assertion of TA for the data tenure,
the MPC7451 ignores the first data beat, and if it is a load operation, does not forward data
internally to the cache and execution units. If ARTRY is asserted after the first (or only)
assertion of TA, improper operation of the bus interface may result.

ARTRY assertions can have additional implications because the MPC7451 allows new
address tenures to begin without a dead cycle in between. The MPC7451 allows a new
address tenure from the same master to begin the cycle after AACK, which overlaps the
address retry window of the previous address tenure. If this happens, the system and all bus
devices must recognize that the second TS is implicitly retried as well. As with the 60x
interface, however, ARTRY does not affect the termination of an address tenure—address
tenures are only terminated by AACK. Therefore, even if an address tenure is to be retried
by ARTRY for the previous address tenure, AACK is asserted to terminate the second
address tenure (shown in Figure 9-8).

9-26 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Address Tenure

)

Figure 9-8. Overlapped ARTRY and TS (with a Delayed AACK) in MPX Bus Mode

Note that in Figure 9-8, the AACK for the second address tenure is delayed by a clock
cycle. This is to demonstrate how a system must handle a delayed AACK overlapping the
window of opportunity after a retry. In this case the address bus grant for the snoop push
requested in the window of opportunity must be delayed until at least the cycle after AACK.
This may be required to avoid critical timing conflicts between ARTRY and AACK. Note
that the grant could be delayed further to avoid any critical timing conflicts between AACK

Cycle 1: The master has requested the bus and receives a qualified bus grant.

Cycle 2: The master begins the address tenure by driving TS and the address.
Cycle 3: The system responds with AACK, ending the address tenure. The master receives another

(parked) address bus grant.
Cycle 4: The master begins a new address tenure by driving TS and a new address. Some snooping

device, however, asserts ARTRY for the first transaction. Bus grant remains parked to processor 0.
Cycle 5: The system delays AACK for the second transaction for some reason. BG0 is negated to allow

the retrying processor to request the bus. Processor 1 takes advantage of this window of
opportunity and requests the bus to perform a push of the data that caused the retry.

Cycle 6: The system asserts AACK to terminate the second address tenure. Because the window of
opportunity has passed, processor 0 requests the address bus again to retry its transaction. But the
arbiter may NOT rearbitrate and grant the address bus to processor 0 before the push requested in
the window of opportunity.

Cycle 7: Even though this cycle would be the address retry window for the second address tenure, no
processor may assert ARTRY because that transaction was implicitly canceled by the ARTRY. (If
AACK had not been delayed, an assertion of ARTRY here could cause contention with the snooper
that would be driving ARTRY negated from the address retry window of the first address tenure.) A
bus grant is given to processor 1 to perform its push.

Cycle 8: Processor 1 begins its snoop push.
Cycle 9: The snoop push address tenure is acknowledged and terminated.

Cycle 10: The arbiter now grants processor 0 the address bus to retry its transaction.

SYSCLK

BR0

BG0

BR1

9 10

BG1

TS

AACK

ARTRY1

ADDR

1 2 3 4 5 6 7 8Cycle

MOTOROLA Chapter 9. System Interface Operation 9-27

MPX Bus Address Tenure

and the bus grant, if necessary. In any case, if the address tenure of the second transaction
extends past the window of opportunity after the assertion of ARTRY, the arbiter must not
rearbitrate and grant the address bus to any device that may have requested the bus after the
window of opportunity but before the address tenure for the snoop push.

9.3.3.2 Snoop Copybacks and the Window-of-Opportunity

During the clock cycle of a qualified ARTRY, the MPC7451 also determines if it should
negate BR and ignore BG on the following cycle. On the following cycle, all other bus
devices negate address bus requests, and they do not qualify address bus grants. This cycle
is the window of opportunity for the snooping master that asserted ARTRY and needs to
perform a snoop copyback operation. Thus, the snooping master that asserted ARTRY is
the only device allowed to assert BR. Note that a nonclocked bus arbiter may detect the
assertion of address bus request by the bus master that asserted ARTRY and return a
qualified bus grant one cycle earlier than shown in Figure 9-9.

When the MPC7451 asserts ARTRY due to a snoop operation and is ready to perform the
snoop push, it always asserts BR in the window of opportunity to obtain bus mastership for
the copyback cycle. (A copyback operation due to a snoop hit to a modified block is
sometimes referred to as a snoop push.) Note that the copyback is a non-global (GBL
negated) transaction. External devices on the MPX and 60x bus must not assert ARTRY for
non-global transactions.

Note that even if the MPC7451 asserts BR in the window of opportunity for a snoop push,
it may be several bus cycles later before the MPC7451 is able to perform the necessary
transaction. The timing of TS may be dependent on resource constraints. The bus arbiter
should keep BG asserted until it detects that BR is negated or TS is asserted from the
MPC7451 indicating that the snoop copyback has begun. The system should ensure that no
other address tenures occur until the current snoop push from the MPC7451 is completed.

It may occur in some systems that the MPC7451 was unable to perform a pending snoop
copyback when a new snoop operation is performed. In this case, the MPC7451 requests
the bus in the window of opportunity if it hits on the new snooped address, and it performs
the snoop copyback operation for the earlier snooped address rather than for the current
snooped address in order to clear its internal snoop queue. The MPC7451 may require up
to three pending snoop copybacks to service a current snoop. In such cases, system arbiters
may need to ensure that the MPC7451 does not respond with ARTRY before proceeding
with another transaction (loop snooping).

9-28 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Address Tenure

Figure 9-9. Snooped Address Cycle with ARTRY

Both ARTRY and SHD[0:1] go through a precharge cycle unless this is disabled by setting
the precharge disable bit (HID1[PAR]). As shown in Figure 9-9, these signals are asserted
for one bus clock cycle, released to high-impedance for half the next clock cycle, driven
high for one clock cycle, and finally released to high-impedance for the remaining half
clock cycle.

9.3.3.3 Shared (SHD0, SHD1) Signals in MPX Bus Mode
The shared response for the MPC7451 in MPX bus mode is divided into two separate
output signals, SHD0 and SHD1. The MPX bus mode requires two signals because address
tenures may occur every other cycle. Because the shared response must be driven negated
between assertions and because multiple devices may drive a shared response in a given
snoop response window, it is necessary to release the shared signal to high-impedance after
asserting it, drive it negated, and release it to high-impedance again. Timing requirements
make this very difficult for a single signal that may need to be asserted on the second cycle
after a previous assertion.

If the MPC7451 needs to assert a shared snoop response and SHD0 was not asserted in the
cycle before or the cycle of TS, it should be asserted in the snoop response window to indi-
cate a shared response. If SHD0 was asserted the cycle before or the cycle of TS, SHD1
must be used to indicate a shared response. A master observing the snoop response must
consider the shared response asserted if either SHD0 or SHD1 is asserted.

The timing may vary for the release to high-impedance, negating, and re-release to
high-impedance of SHD0 and SHD1. To ensure compatibility with the standard 60x
interface in which SHDx might need to be asserted up to every three bus cycles, the
MPC7451 implements the 60x-style timing for both SHD0 and SHD1; that is, SHD0 and
SHD1 have the same timing as ARTRY, in which the signal is released to high-impedance
for a fraction of a cycle, negated for up to an entire cycle (crossing a bus cycle boundary)
before being released to high-impedance again. Note that future implementations with the
MPX bus protocol may define this timing differently. The MPC7451 does not assert either
SHD0 or SHD1 any more often than every fourth bus clock cycle (see Figure 9-10).

5 6 7 8

SYSCLK

ADDR

ARTRY

AACK

TS

BR

qual BG

4321

MOTOROLA Chapter 9. System Interface Operation 9-29

MPX Bus Address Tenure

_

Figure 9-10. SHD0 and SHD1 Negation Timing

To ease timing requirements, devices detecting SHD0 or SHD1 should not sample these
signals beyond the second cycle after AACK, because the signals can either be released to
high-impedance or fractionally precharged in those cycles.

9.3.3.4 Hit (HIT) Signal and Data Intervention

The HIT signal allows the MPX bus to support cache-to-cache transfers and local bus
slaves. A device that asserts HIT in the address retry window indicates to the system that it
owns the data for the requested load, and that it can supply the data by performing a
data-only transaction; this is known as data intervention. Note that the HIT signal is a
point-to-point signal between the MPC7451 and the central arbiter/memory controller. The
master that requested the load does not sample the HIT signal and does not know that the
data is coming from a master or local bus slave rather than from memory.

When data intervention is enabled (MSSCR0[EIDIS] = 0b0), the MPC7451 attempts to
intervene to service a load when it detects a snoop hit to modified data (see Section 3.3.2,
“Coherency Support”). Unless ARTRY is asserted simultaneously by another bus device,
the MPC7451 requests a data-only transaction by using the DRDY protocol described in
Section 9.4.2.4, “MPX Bus Data Intervention.”

Normally, if a snooping processor asserts ARTRY and has modified data for that request, it
asserts BR during the window-of-opportunity to perform a snoop push. If the MPC7451
asserts HIT and another device asserts ARTRY, the MPC7451 does not assert BR in the
window-of-opportunity to perform the push. The system must perform fair arbitration to
ensure that the push is allowed to make progress, or let the retried master attempt the
transaction again at which point the MPC7451 will assert ARTRY and assert BR in the
window-of-opportunity to perform the snoop push. Note that in some instances, a single
master may assert both ARTRY and HIT in response to a snooped transaction. In this case,
the ARTRY has precedence and the HIT signal is ignored.

When the MPC7451 performs data intervention, it always provides 32-bytes of intervention
data in critical-double-word-first ordering, regardless of the TSIZ[0:2] encoding or the state
of the TBST signal for the snooped transaction. Thus, if a system implementation provides

SYSCLK

SHD0

1 2 3 4

SHD0 or SHD1

(60x bus mode)

(MPX bus mode)

0Cycle

9-30 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Data Tenure

global snoop traffic to the MPC7451 that could result in data intervention from the
MPC7451 and does not consist of 32-byte transfers, the system must either sink the entire
32-bytes of intervention data from the MPC7451 or else disable all types data intervention
in the MPC7451 by setting MSSCR0[EIDIS].

9.4 MPX Bus Data Tenure
This section describes the three phases of the data tenure used in the MPX bus
protocol—data bus arbitration, data transfer, and data transfer termination. In addition, the
MPX bus implements several features to improve both bandwidth and utilization of the data
bus compared with the 60x bus mode. These include the following:

• Support for data-only transactions used for cache-to-cache data transfers (data
intervention) and data transfers from local bus slaves

• Support for data tenure reordering

• Simplification of signals and modes to optimize the most timing-critical logic paths

• Support for data streaming which eliminates the requirement for a dead cycle
between burst data tenures from a single source

9.4.1 MPX Bus Data Bus Arbitration

The TS signal is an implied data bus request from the MPC7451; the arbiter must qualify
TS with the transfer type (TT[0:4]) signals to determine if the current address transfer is an
address-only operation, which does not require a data bus transfer. If the data bus is needed,
the arbiter grants data bus mastership by asserting the DBG input to the MPC7451.
Additionally, TSIZ[0:2], and TBST signals provide information about the requested data
transfer to external logic.

9.4.1.1 Qualified Data Bus Grant in MPX Bus Mode

As with the address bus arbitration phase, the MPC7451 must qualify the DBG input with
a number of input signals before assuming bus mastership. In MPX bus mode, the qualified
data bus grant equation is as follows:

Qualified Data Bus Grant = DBG & ¬(ARTRY& retriable) & ¬(latched state variables)

In MPX bus mode, a qualified data bus grant occurs when the following conditions are
satisfied:

• DBG is asserted

• ARTRY is not asserted in the address retry window for the address phase of this
transaction; in other words, if the address tenure is currently in progress, then the
ARTRY signal has not been asserted anytime from the beginning of the retry
window up to this point; or if the address tenure has already completed, then the
ARTRY was not asserted anytime during the retry window.

MOTOROLA Chapter 9. System Interface Operation 9-31

MPX Bus Data Tenure

• The MPC7451 is ready to begin a transaction, meaning the following:

— The processor is not already using the data bus, or

— The processor has a burst access in progress, the processor has already received
the next-to-last TA for the current burst access, and the source of the next access
is the same as the source of the current access.

These conditions mean that the system arbiter must never assert DBG to a processor when
the data bus is busy with a transaction for another processor. The system arbiter must
synthesize its own data bus busy state. However, note that if a transaction for device A is
currently receiving its last TA for a multi-beat transaction and the same device is ready to
source data to processor B, DBG to processor B may be asserted, and the data source can
continue to stream another data tenure.

The negation of ARTRY for that address tenure indicates that the address tenure associated
with the data tenure about to be granted was not retried by a snooping device. Because of
address pipelining, an assertion of ARTRY may not be for the data tenure about to be
granted; therefore, it may not affect its data bus grant qualification.

One bus clock cycle after accepting a qualified data bus grant, the MPC7451 begins driving
or sampling the data bus and sampling the transfer acknowledge signals.

9.4.2 MPX Bus Data Transfer

The data transfer signals of the MPC7451 include D[0:63] and DP[0:7]. For memory
accesses, the D[0:63] signals form a 64-bit data path for read and write operations. The
MPC7451 does not directly support dynamic interfacing to subsystems with less than a
64-bit wide data path, and it does not support a static 32-bit data bus mode. See
Section 9.3.2, “MPX Bus Address Transfer” for more information.

The MPC7451 transfers data in either four-beat burst, two-beat burst, or single-beat
transfers. The type of transaction initiated by the MPC7451 depends on whether the code
or data is caching-inhibited or caching-allowed and, for store operations, whether the cache
is in write-back or write-through mode which is controlled by software on either a page or
block basis. Memory structures must be marked as caching-allowed (and write-back for
data store operations) in the respective page or block descriptor to take advantage of burst
transfers as they can achieve significantly higher bus throughput than single-beat
operations.

Four-beat burst transfers are used to transfer 32-byte cache blocks into or out of the internal
caches. Two-beat burst transfers are used for caching-inhibited or write-through 128-bit
AltiVec loads or stores. Four-beat or two-beat stores can be created by gathering multiple
smaller stores. Single-beat transfers (one to eight bytes) are performed for non-AltiVec
caching-inhibited or write-through operations.

Single-beat transactions may be either aligned or misaligned depending on the load or store
instruction addressing (see Section 9.3.2.6, “Effect of Alignment in Data Transfers”).

9-32 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Data Tenure

Two-beat no-cacheable or write-through AltiVec loads or stores are always aligned on quad
word boundaries. Four-beat burst operations are always aligned on cache line address
boundaries. A burst transfer has an assumed address order. For load or store operations that
miss in the cache (and are marked as caching-allowed and, for stores, write-back in the
MMU), the MPC7451 uses the double-word-aligned address associated with the critical
code or data that initiated the transaction. This minimizes latency by allowing the critical
code or data to be forwarded to the processor before the rest of the cache line is filled. For
all other burst operations, however, the cache line is transferred beginning with the
eight-word-aligned data.

9.4.2.1 Data Bus Parity

The MPC7451 generates one bit of odd parity for each byte of the data bus when it is
driving data for a write transaction. The MPC7451 checks for correct odd parity across the
entire data bus when it is receiving data for a read transaction if data parity checking is
enabled in HID1[EBD].

The data bus parity (DP[0:7]) signals are assigned to the corresponding data signals as
shown in Table 9-6.

For pull-up/pull-down requirements, see the MPC7451 RISC Microprocessor Hardware
Specifications.

If a data parity error is detected, the processor may conditionally take a machine check
interrupt or enter the checkstop state as directed by MSR[ME]. Note that the MPC7451
does not implement a data parity error (DPE) signal as found on previous microprocessors
that implement the PowerPC architecture.

Table 9-6. Correspondence of Data Parity Signals with Data Signals

Data Parity
Signals

Data Signals

DP[0] D[0:7]

DP[1] D[8:15]

DP[2] D[16:23]

DP[3] D[24:31]

DP[4] D[32:39]

DP[5] D[40:47]

DP[6] D[48:55]

DP[7] D[56:63]

MOTOROLA Chapter 9. System Interface Operation 9-33

MPX Bus Data Tenure

9.4.2.2 Earliest Transfer of Data

Because the MPC7451 has no means to retry a data tenure, data must never be transferred
before the last cycle of the snoop response window. That is, valid data must never precede
a possible ARTRY for that transaction.

An additional requirement in systems that support data intervention or local bus slaves that
use the HIT/DRDY protocol is that data must only be driven or sampled after the
completion of the snoop response window, so that the HIT signal can be sampled.

9.4.2.2.1 Data Streaming in MPX Bus Mode

The MPX bus mode supports a streaming mode of data transfer that allows burst data
tenures from a single source to be driven back-to-back without requiring a dead cycle
between the tenures.

Data streaming in MPX bus mode is supported only if the following conditions are
satisfied:

• Data source is the same.

• First transfer is a multiple-beat transfer.

The first condition for data streaming is to prevent contention on the data bus. Streaming
must not be allowed if data is driven by two different devices.A dead cycle must be placed
between the two adjacent data tenures to allow the first device to stop driving the bus before
the second device starts driving the bus. For example, if the first data transfer is a processor
read from memory and the second data transfer is a processor write to memory, data
streaming is not supported; a minimum of one dead cycle must be inserted between the final
TA of the read and the first TA of the write. In this example, the earliest cycle that the
processor accepts DBG as a qualified DBG is the cycle after the final TA of the read.

The second condition for data to stream from one data transfer to a second is that the first
transfer be a multiple-beat transfer (requiring at least two TAs). If the first data transfer is a
single-beat transfer (only one TA), the earliest that the processor will accept a DBG as a
qualified DBG is the cycle after the single TA assertion.

Note that with these two constraints, it is possible to stream from a multiple-beat
transaction into a single-beat transaction. While this may not affect overall system
performance, it may simplify the design of the data bus arbiter and memory controller.

9.4.2.3 Data Tenure Reordering

The MPC7451 allows data tenures to be executed out of order with respect to their
corresponding address tenures in MPX bus mode. The system must supply an index with
each data bus grant to indicate which of the master’s outstanding data tenures is being
serviced. The data transfer index inputs, DTI[0:3], provide this function. The DTI[0:3]
signals act as a pointer into the MPC7451’s queue of outstanding transactions, and it

9-34 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Data Tenure

indicates which transaction is to be serviced by the subsequent data tenure. The MPC7451
supports up to sixteen outstanding transactions. The depth of the data transaction queue is
programmable in MSSCR0[DTQ].

The DTI[0:3] signals are connected to the system arbiter and to other potential masters
(either bussed or point-to-point, depending on the system implementation). DTI[0:3] for a
given data bus tenure is driven by the system arbiter on the cycle prior to the associated
DBG. The MPC7451 continually samples DTI[0:3] and qualifies the pointer on the
subsequent cycle if the data bus grant is qualified.

A DTI[0:3] value of 0b0000 indicates that the data tenure for the oldest remaining
transaction is to be serviced; a value of 0b0001 indicates that the second oldest remaining
transaction is to be serviced, and so forth. A value of 0b1111 selects the sixteenth and oldest
MPC7451 transaction. The system tracks the status of the MPC7451 queues by monitoring
TS and DBG. The MPC7451 adds a new transaction to the tail of its queue with each
assertion of TS for an address and data transaction and each assertion of HIT for data-only
transactions. It removes an entry if the transaction is retried with ARTRY or when it
receives a qualified DBG. When a transaction is removed from the queue, all transactions
newer than the transaction removed shift forward.

The system must not provide an illegal DTI[0:3] value in the cycle before any qualified data
bus grant when the processor has one or more valid data transactions queued. An illegal
DTI[0:3] value is one that does not have any valid corresponding data transaction unless the
DTI[0:3] value is 0b0000. For instance, if only two data transactions are queued, a DTI[0:3]
value of 0b0010 or greater is illegal. The processor’s behavior is boundedly undefined if an
illegal DTI[0:3] value is detected at this time.

Data tenure reordering can be disabled by pulling all DTI[0:3] signals down. This causes
the MPC7451 to always select the oldest transaction in the outstanding transaction queue.

9.4.2.4 MPX Bus Data Intervention

If the MPC7451 performs a read, a RWITM, or an RCLAIM of data that exists modified in
another processor’s cache, the 60x bus requires that the transaction be retried and data
pushed to memory before the transaction is begun a second time. A more efficient approach,
used by the MPC7451 in MPX bus mode, is to allow the data to be forwarded directly to
the requesting master from the processor that has it cached. This is called data intervention.
The MPC7451 performs this function through the HIT/DRDY protocol and data-only
transactions. Data intervention may be disabled by setting MSSCR0[EIDIS].

Note that data intervention is only allowed for full cache-line transfers; however the
MPC7451 does not sample WT or CI and can assert HIT for any read type snoop. A
snooping MPC7451 does not assert HIT for write-with-flush transactions.

An important implication of data intervention is that data must always be pushed with the
critical data first, and the full double-word address must always be placed on the address
bus. Otherwise, data could be received in the wrong order by the requesting master.

MOTOROLA Chapter 9. System Interface Operation 9-35

MPX Bus Data Tenure

Intervention allows the latency for data that exists in another processor’s cache to be
reduced from over 20 bus cycles to as low as 5 or 6 cycles, as shown in Figure 9-11.
Figure 9-11 shows transfer involving different DTI indices occurring in 6 cycles. Note that
this could be reduced in some systems to 5 cycles if the DTI index provided to both
processors is the same for this transfer and the DTI is able to be presented in clock cycle 3.

Figure 9-11 shows a timing diagram of the best case scenario for the activation of HIT and
DRDY for the MPX bus protocol. However, note that the MPC7451 is not able to assert
DRDY in the same cycle as HIT; it asserts DRDY sometime after HIT. See
Section 9.4.2.4.2, “DRDY Timing,” for more information.

Figure 9-11. Data Intervention for Read (Atomic) and RWITM (Atomic) Using
Data-Only Transfer Protocol

9.4.2.4.1 Data-Only Transaction Protocol

A data-only transaction in MPX bus mode is differentiated from a typical address and data
transaction in the 60x protocol in that the data bus is explicitly requested by the snooper or
slave involved in the transaction, and no new address is specified by the snooper or slave.
Data-only transactions are responses by snoopers or slaves to a transaction already initiated
by a master with an address tenure, so the address is already known to the system.

SYSCLK

TS

ADDR

AACK

HIT

DRDY

(master 0)

(master 1)

(master 1)

DBG
(master 0)

DBG
(master 1)

DATA

TA

1 2 3 4 5 6 7 8Cycle 9 10

DTI[0:3]
(master 1)

DTI[0:3]
(master 0)

11 12 13 14

9-36 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Data Tenure

Data-only transactions can be issued in response to address-only transactions (for example,
flush or clean), or address and data transactions (for example, read or RWITM) to which
the MPC7451 asserted the HIT response in the snoop response window.

Figure 9-12 shows an example of a data-only transaction for a flush.

Figure 9-12. Data-Only Transaction for a Flush Operation

Address and data transactions do not need to explicitly request the data bus because the
request is implicit in the transaction’s address tenure. Processors that perform data-only
transactions, however, request the data bus by asserting DRDY when they have the data
available. The DRDY causes the arbiter to assert DBG to all devices participating in the
transaction. Whichever device in the system is responsible for asserting TA then does so to
complete the transaction.

9.4.2.4.2 DRDY Timing

Although MPX bus protocol allows for HIT and DRDY to be asserted simultaneously, the
MPC7451 does not assert DRDY simultaneously with HIT. The MPC7451 asserts DRDY
sometime after HIT because the MPC7451 requires more cycles to get the data into the
intervention queue. DRDY is a pulsed signal and must be negated on the cycle after it is
asserted unless pipelining of data-only intervention requests naturally requires consecutive
assertions of DRDY.

SYSCLK

TS

ADDR

AACK

HIT

DRDY

(master 0)

(master 1)

(master 1)

DBG
(master 0)

DBG
(master 1)

DATA

TA

1 2 3 4 5 6 7 8Cycle 9 10

DTI[0:3]
(master 1)

DTI[0:3]
(master 0)

MOTOROLA Chapter 9. System Interface Operation 9-37

MPX Bus Data Tenure

9.4.2.4.3 Pipelining of Data-Only Transactions

The MPC7451 may pipeline multiple data-only transactions. That is, it may assert HIT for
additional transactions, even if it has not been able to complete pending data-only
transactions for prior snoop hits. The MPC7451 may do this until its internal buffers fill up.
Similarly, a device may assert DRDY for additional data-only transactions before previous
data-only transactions have completed their data tenures. There is no restriction on the
number of outstanding DRDY assertions. The MPC7451 can assert DRDY the same
number of times as the number of outstanding HIT assertions. The MPC7451 supports 16
outstanding transactions if no DBGs have been issued for any of the queued data
transactions.

Because DRDY is a pulsed signal, if DRDY is held low for multiple cycles, the system
interprets this as multiple assertions of DRDY. If a device asserts DRDY when the system
is not expecting a DRDY (no pending data-only transaction has been indicated), the system
ignores the DRDY signal. An important example of this would be the cycle after an ARTRY.
See Section 9.4.2.4.4, “Retrying Data-Only Transactions.” An example of pipelined
data-only transactions is shown in Figure 9-13. (Note that Figure 9-13 assumes that data is
all driven from the same source, so that data streaming is possible.)

Figure 9-13. Pipelined Data-Only Transactions

9.4.2.4.4 Retrying Data-Only Transactions

As described in Section 9.3.3.4, “Hit (HIT) Signal and Data Intervention,” it is possible for
the MPC7451 to signal a data-only transaction with the HIT signal while another device
asserts ARTRY. In this case, the data-only transaction must be considered retried, and the
system does not expect a corresponding DRDY. In general, if DRDY is asserted by an
intervening master when the system is not expecting a DRDY, it is considered spurious and
is ignored. However, if the system is expecting a DRDY for another transaction from that
device, the MPC7451 does not assert DRDY after the transaction has been retried. That is,

A

SYSCLK

Cycles 0, 2: The device asserts HIT for transactions, A and B.
Cycles 3 and 5: The device asserts DRDY for the first A and B respectively.
Cycle 6: DBG for transaction A issued.
Cycle 7: Data for transaction A is driven.
Cycle 8: DBG for transaction B issued.
Cycle 9: Data for transaction C is driven.

B

9 10 111 2 3 4 5 6 7 8Cycle

A B

A B

B C

HIT

DRDY

DBG

TA

9-38 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Data Tenure

there is no ambiguity between a spurious DRDY from a retried transaction and a valid
DRDY for a later transaction.

DRDY would never be asserted the cycle after HIT to avoid the spurious DRDY problem
if HIT is ARTRYed. Neither the MPC7400/7410 nor the MPC7451 will ever assert a
spurious DRDY because they will never assert DRDY the cycle after HIT.

Note that if data-only tenures are being pipelined, and the DRDY for a previous HIT is
asserted at the same time as a new HIT and ARTRY, the DRDY must not be ignored.

Examples of retrying data-only transactions, including pipelined HITs and DRDYs, are
shown in Figure 9-14.

Figure 9-14. Retry Examples of Data-Only Transactions

9.4.2.4.5 Ordering of Data-Only Transactions

All data-only transactions for a given MPC7451 processor must be handled in order. This
does not mean that other data tenures must be handled in order with respect to data-only
transactions, or that data-only transactions from different devices must maintain order
relative to one another. See Section 9.4.2.3, “Data Tenure Reordering.” However, if the
MPC7451 has asserted HIT for more than one transaction, the corresponding data-only
transactions must be serviced in the same order because there is no defined way for the
arbiter to distinguish between them except to expect them in order.

B C DA

SYSCLK

AACK

TS
(device 0)

HIT
(device 1)

ARTRY
(device 2)

DRDY
(device 1)

B C DA

B C DA

CA

B C

9 10 111 2 3 4 5 6 7 8Cycle

Cycle 2: Transaction A receives an ARTRY so the HIT signal is ignored by the system.
Cycle 5: Transaction B starts. This is the earliest possible TS after an ARTRY.

Cycle 7: Transaction B receives a HIT response. DRDY is delayed.
Cycle 9: Transaction C receives a HIT and an ARTRY. The system understands that the DRDY

is for transaction B and considers it valid.
Cycle 10: The MPC7451 will never assert DRDY for transaction C the cycle after HIT,

regardless of ARTRY.
Cycle 11: HIT for transaction D is asserted. The bus master must not assert DRDY for

transaction C at this point since the system would interpret it as the DRDY for transaction D.

MOTOROLA Chapter 9. System Interface Operation 9-39

MPX Bus Data Tenure

9.4.2.4.6 Snarfing

Snarfing is a term used to describe a situation where one device provides data to another
target device and a third device (typically a memory or cache controller) samples the data
for its own purposes. The third device is said to have snarfed the data transaction.

Snarfing is necessary when a processor uses data intervention to forward modified data to
another processor because the processor performing the read operation will mark the data
shared or exclusive even though the data is modified with respect to memory. The
MPC7451 does not perform exclusive or shared intervention, so any data intervention will
occur with modified data.

The system must snarf for interventions due to READ, RCLAIM, CLEAN, or FLUSH
transactions and update memory and caches accordingly. Snarfing is not necessary for
RWITM transactions serviced with data intervention because the data will be marked
modified in the requesting processor’s cache.

9.4.3 MPX Bus Data Tenure Termination

Three signals are used to terminate the individual data beats of the data tenure and the data
tenure itself—TA (transfer acknowledge), TEA (transfer error acknowledge), and ARTRY
(address retry).

TA is used to signal normal termination of a data beat or transaction (last data beat of burst).
It must always be asserted on the bus cycle coincident with the data that it is qualifying. It
may be withheld by a slave for any number of clocks until valid data is ready to be supplied
or accepted.

TEA is used to signal a non-recoverable error during the data transaction. It may be asserted
as early as the last cycle of the snoop response window or as late as the cycle of the last or
only TA. The assertion of TEA terminates the data tenure immediately even if in the middle
of a burst; however, it will not prevent incorrect data from being written into the
MPC7451’s caches or registers. The assertion of TEA initiates either a machine check
exception or a checkstop condition based on the setting of MSR[ME].

An assertion of ARTRY causes the data tenure to be terminated immediately if the ARTRY
is for the address tenure associated with the data tenure in operation. (It may not be due to
address pipelining.) If ARTRY is used, the earliest allowable assertion of TA to the
processor is directly dependent on the latest possible assertion of ARTRY to MPC7451. See
Section 9.3.3, “MPX Bus Address Tenure Termination,” for more information.

If the ARTRY and TEA signals are asserted in the same clock, the ARTRY signal takes
precedence and the TEA signal is ignored. This means that the transaction is repeated until
the ARTRY condition is resolved.

9-40 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPX Bus Data Tenure

9.4.3.1 Normal Single-Beat Transfer Termination

Normal termination of a single-beat data read operation occurs when TA is asserted by a
responding slave. The TEA signal must remain negated during the transfer (see
Figure 9-15).

Figure 9-15. Normal Single-Beat Read Termination

Figure 9-16 shows a single-beat write operation with a normal termination.

Figure 9-16. Normal Single-Beat Write Termination

9.4.3.2 Normal Burst Transfer Termination

Normal termination of a burst transfer occurs when TA is asserted for four bus clock cycles,
as shown in Figure 9-17. The bus clock cycles in which TA is asserted need not be
consecutive, thus allowing pacing of the data transfer beats. For read bursts to terminate
successfully, TEA must remain negated during the transfer. For write bursts, TEA must
remain negated for a successful transfer.

0 1 2

SYSCLK

DATA

qual DBG

3 4

TS

TA

AACK

0 1 2 3 4

SYSCLK

DATA

qual DBG

TS

TA

AACK

MOTOROLA Chapter 9. System Interface Operation 9-41

MPX Bus Data Tenure

Figure 9-17. Normal Burst Transaction

Figure 9-18 shows the effect of using TA to pace the data transfer rate. Notice that in bus
clock cycle 5 of Figure 9-18, TA is negated for the second data beat. The MPC7451 data
pipeline does not proceed until bus clock cycle 6 when TA is reasserted.

Figure 9-18. Read Burst with TA Wait States

9.4.3.3 Data Transfer Termination Due to a Bus Error
The TEA signal indicates that a bus error has occurred during a data tenure. Asserting TEA
to the MPC7451 terminates the transaction (that is, subsequent assertions of TA are
ignored).

Assertion of the TEA signal causes a machine check exception (or a checkstop condition
within the MPC7451). For more information, see Section 4.6.2, “Machine Check
Exception (0x00200).” Note that the MPC7451 does not implement a synchronous error
capability for memory accesses. This means that the exception instruction pointer saved
into the SRR0 register does not point to the memory operation that caused the assertion of
TEA but to the instruction about to be executed (perhaps several instructions later). Also
note that assertion of TEA does not invalidate data entering the registers or the cache. Also,
the address corresponding to the access that caused TEA to be asserted is not latched by the
MPC7451. To recover, the exception handler must remedy the cause of the TEA, or the

1 2 3 4 5 6 7 8

SYSCLK

qual DBG

TA

DATA

TS

TEA

1 2 3 4 5 6 7

SYSCLK

qual DBG

TA

DATA

TS

8 9

9-42 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

60x Bus Protocol

MPC7451 must be reset; therefore, this function should only be used to indicate fatal
system conditions to the processor (such as parity or uncorrectable ECC errors).

After the MPC7451 has committed to run a transaction, that transaction must eventually
complete. Address retry causes the transaction to be restarted; TA wait states delay
termination of individual data beats. Eventually, however, the system must either terminate
the transaction or assert the TEA signal. For this reason, care must be taken to check for the
end of physical memory and the location of certain system facilities to avoid memory
accesses that result in the assertion of TEA.

9.5 60x Bus Protocol
The MPC7451 implements a subset of the 60x bus protocol. Note that although this
protocol is implemented by the MPC603-, MPC604-, MPC750-, and MPC7400-families of
processors, it is referenced as the 60x bus interface.

As described in Section 9.1, “MPC7451 System Interface Overview,” the MPC7451
samples the BMODE0 signal at the negation of HRESET to determine which bus protocol
to use. If BMODE0 is negated at the negation of HRESET, then the MPC7451 uses the 60x
bus protocol subset.

The MPC7451 will burst out of reset in the 60x bus protocol.

9.5.1 60x Bus Pipelining

The 60x bus protocol provides independent address and data bus capability to support
pipelined and split-bus transaction system organizations. Address pipelining allows the
address tenure of a new bus transaction to begin before the data tenure of the current
transaction has finished. In a pipelined implementation, data bus tenures are kept in strict
order with respect to address tenures.

Split-bus transaction capability allows other bus activity to occur (either from the same
master or from different masters) between the address and data tenures of a transaction.

While this capability does not inherently reduce memory latency, support for address
pipelining and split-bus transactions can greatly improve effective bus/memory throughput.
For this reason, these techniques are most effective in shared-memory multimaster
implementations where bus bandwidth is an important measurement of system
performance.

External arbitration is required in systems in which multiple devices must compete for the
system bus. The external arbiter must control the pipeline depth and synchronization
between masters and slaves. The design of the external arbiter affects pipelining by
regulating address bus grant (BG), data bus grant (DBG), and address acknowledge
(AACK) signals. For example, a one-level pipeline is enabled by asserting AACK to the
current address bus master and granting mastership of the address bus to the next requesting

MOTOROLA Chapter 9. System Interface Operation 9-43

60x Bus Address Tenure

master before the current data bus tenure has completed. The MPC7451 can pipeline up to
16 address tenures before starting a data tenure.

In a pipelined implementation of the 60x bus protocol, data bus tenures are kept in strict
order with respect to address tenures; there is no provision for data tenure reordering as in
MPX bus mode.

9.6 60x Bus Address Tenure
As with the MPX bus protocol, the 60x bus protocol uses a three phase address tenure,
consisting of address bus arbitration, address transfer, and address transfer termination.
However, the 60x bus protocol requires a turn-around cycle between each address tenure.
Therefore, in 60x bus mode, the MPC7451 does not support MPX bus style address
streaming and requires a dead cycle between address tenures (even if those address tenures
are from the same processor).

9.6.1 60x Bus Address Bus Arbitration

The elimination of ABB from the interface puts more responsibility on the system arbiter.
Arbiter designs must ensure that no more than one address bus master can be granted the
bus at one time (that is, bus grants must be mutually exclusive).

In 60x bus mode, when the MPC7451 needs access to the external bus and it is not parked
(BG is negated), it asserts bus request (BR) until it is granted mastership of the bus and the
bus is available; see Figure 9-19. The external arbiter must grant master-elect status to the
potential master by asserting the bus grant (BG) signal when the bus is idle.

9.6.1.1 Qualified Bus Grant in 60x Bus Mode

The qualified bus grant equation for 60x bus mode is as follows:

Qualified Bus Grant = BG & ¬ARTRY & ¬TS & ¬(latched state variables)

where “latched state variables” include latched ARTRY. Thus, a qualified bus grant occurs
when BG is asserted, ARTRY is not asserted in the current or in the preceding cycle, and
TS is not asserted by this or any other processor.

9-44 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

60x Bus Address Tenure

Figure 9-19. 60x Address Bus Arbitration–Non-Parked Case

9.6.1.2 60x Address Bus Parking

From the bus master’s perspective, bus parking for the 60x interface is the same as for the
MPX interface. If a master needs the bus and receives a bus grant and all qualifying
conditions are met, the master may immediately assume control of the address bus.

Figure 9-20. 60x Address Bus Arbitration–Parked-Case

9.6.2 60x Bus Address Transfer

The 60x bus protocol requires a turn-around cycle between each address tenure. This
implies that 60x address tenures must take at least three bus clock cycles (because the
system can provide AACK no earlier than the cycle following the assertions of TS).

–1 0 1

need_bus

BG

ARTRY

qual BG

BR

SYSCLK

TS

–1 0 1

need_bus

BG

ARTRY

qual BG

BR

SYSCLK

TS

MOTOROLA Chapter 9. System Interface Operation 9-45

60x Bus Address Tenure

9.6.2.1 60x Address Bus Driven Mode

Address bus driven mode provides for improved electrical characteristics on the address
and attributes signals by reducing the time that these signals are not actively driven. The
BMODE0 signal is used to select address bus driven mode after HRESET is negated. If
BMODE0 is asserted after HRESET is negated, address bus driven mode is selected; if
BMODE0 is negated after HRESET is negated, normal address bus driving mode (address
bus not always driven) is selected. The read-only ABD bit in MSSCR0 indicates whether
the MPC7451 is in address bus driven mode.

9.6.2.2 60x Address Bus Parity

In 60x bus mode, the MPC7451 supports 36-bit address bus and five parity signals. Address
parity generation and reporting in 60x bus mode operates identically to that in MPX bus
mode.

9.6.2.3 60x Address Transfer Attributes

Transfer attribute signals such as TT[0:4], TSIZ[0:2], (TBST), (WT), (CI), and (GBL) used
by the 60x bus are the same as are used by the MPX bus with the following exceptions:

• The MPX bus read claim (RCLAIM) transfer type (TT[0:4] = 0b01111) is not
supported in 60x bus mode. Therefore, there is no distinct transaction type to
identify the touch-for-store instructions (dcbtst, dstst, and dststt). In 60x bus mode,
the touch-for-store instructions use the read transfer type (TT[0:4] = 0b01010), the
same as a load miss.

• There are fewer defined encodings for the TBST and TSIZ[0:2] signals in 60x bus
mode.

9.6.2.3.1 60x Transfer Size (TSIZ[0:2]) and Transfer Burst (TBST) Signals

In 60x bus mode, the MPC7451 only supports bursting for cache block transfers (4 double
words). Unlike the 60x bus mode of the MPC7400 and MPC7410, the MPC7451 does not
automatically break caching-inhibited or write-though AltiVec loads and stores of 16-bytes
into two 8-byte transfers. For the MPC7451, caching-inhibited AltiVec loads or stores and
write-through AltiVec stores cause alignment exceptions in 60x bus mode.

The 60x bus protocol does not support a 16-byte transaction, but caching-inhibited
instruction fetches are internally 16-bytes. In 60x bus mode, all caching-inhibited
instruction fetches are performed on the bus as caching-allowed, 32-byte burst transactions.
No forwarding of the critical 16 bytes is done, and the data is not reloaded into any
MPC7451 cache.

Table 9-7 defines the TBST and TSIZ[0:2] encodings used by the MPC7451 in 60x bus
mode.

9-46 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

60x Bus Address Tenure

9.6.2.4 Aligned and Misaligned Transfers

Performance on misaligned transfers may be substantially less than on aligned transfers,
and it is recommended that software attempt to align code and data if possible. See
Section 9.3.2.6, “Effect of Alignment in Data Transfers,” for a detailed description of
alignment considerations for transactions in 60x and MPX bus modes. Note that the
MPC7451 is not compatible with the MPC107 bridge device in little-endian mode if
misaligned data is accessed.

9.6.3 60x Bus Address Transfer Termination

In 60x bus mode, addresses are terminated as they are in MPX bus mode, except that the
60x bus protocol requires a turn-around cycle on the bus before a new address tenure may
begin. This implies that 60x address tenures must take at least three bus clock cycles

Table 9-7. TBST and TSIZ[0:2] Encodings in 60x Bus Mode

TBST TSIZ0 TSIZ1 TSIZ2 Transfer Size 1

1 3-byte transfers may be requested by the MPC7451 starting at any byte
address within the double word from byte address 0 to byte address 5.

4-byte transfers may be requested by MPC7451 starting at any byte
address within the double word from byte address 0 to byte address 4.

Asserted 0 0 0 undefined

Asserted 0 0 1 undefined

Asserted 0 1 0 4 double-word burst

Asserted 0 1 1 undefined

Asserted 1 0 0 undefined

Asserted 1 0 1 undefined

Asserted 1 1 0 undefined

Asserted 1 1 1 undefined

Negated 0 0 0 8 bytes

Negated 0 0 1 1 byte

Negated 0 1 0 2 bytes

Negated 0 1 1 3 bytes

Negated 1 0 0 4 bytes

Negated 1 0 1 5 bytes 2

2 Although defined, the MPC7451 never generates a transaction of this size.

Negated 1 1 0 6 bytes2

Negated 1 1 1 7 bytes2

MOTOROLA Chapter 9. System Interface Operation 9-47

60x Bus Data Tenure

(because the system can provide AACK no earlier than the cycle following the assertions
of TS).

9.6.3.1 Snoop Response and SHD Signal

The MPC7451 asserts the SHD0 signal as an output coincident with the ARTRY output
signal if the cache block that caused a snoop hit is pushed as the processor’s next address
transaction.

The shared SHD0 signal functions similarly to SHD0 and SHD1 in MPX bus mode.
Because the 60x bus protocol does not allow a master to drive a new address tenure every
other cycle as does the MPX protocol, only one snoop response signal, SHD0, is necessary.

9.7 60x Bus Data Tenure
This section describes the data bus arbitration, transfer, and termination phases defined by
the 60x bus protocol used by the MPC7451.

9.7.1 60x Bus Data Bus Arbitration

The MPC7451 data bus uses the DBG signal and arbiter logic in data arbitration.
Additionally, the combination of TS and TT[0:4] provides information about the data bus
request to external logic.

As a result of address pipelining, the MPC7451 may have up to 16 data tenures queued to
be performed when it receives a qualified DBG. The data tenures must be performed in the
same order in which their address tenures were performed. The DBWO input signal is not
implemented on the MPC7451, so the limited out-of-order capability available in the 60x
bus protocol is not supported.

If the MPC7451 has any data tenures to perform, it always accepts data bus mastership to
perform a data tenure when it recognizes a qualified DBG.

9.7.1.1 Qualified Data Bus Grant in 60x Bus Mode

When the MPC7451 is operating in 60x bus mode, a qualified data bus grant occurs when
the following conditions are satisfied:

• DBG is asserted.

• ARTRY is not asserted in the address retry window for the address phase of this
transaction.

• The processor is ready to begin a data transaction.

• The processor is not already using the data bus.

Note that in some systems, it may be possible to have a qualified data bus grant as early as
the clock cycle when TS is asserted.

9-48 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

60x Bus Data Tenure

When a data tenure overlaps with its associated address tenure, a qualified ARTRY
assertion coincident with a data bus grant signal does not result in data bus mastership.
Because the MPC7451 can pipeline transactions, there may be an outstanding data bus
transaction when a new address transaction is retried. In this case, the MPC7451 becomes
the data bus master to complete the previous transaction and the ARTRY does not affect the
data tenure.

The DBB signal is not implemented on the MPC7451. As is the case with ABB, the
elimination of DBB from the MPC7451 interface puts more responsibility on the data bus
arbiter as it must synthesize an internal version of dbb to assist it in tracking the start and
end of the data tenure. Because DBB is not used to signal the end of a data tenure, DBG is
only asserted to the next bus master the cycle before the cycle that the next bus master may
actually begin its data tenure.

9.7.2 60x Bus Data Transfers

Data and data parity signals operate the same in 60x bus mode as they do in MPX bus mode
except for the following exceptions:

• The MPC7451 does not support data tenure reordering in 60x bus mode; therefore,
DTI[0:3] must be pulled down in 60x bus mode.

• The MPC7451 does not support data streaming from one data tenure to the next in
60x bus mode.

• The MPC7451 does not support data intervention in 60x bus mode.
Non-intervention burst write transfers are the only burst writes performed in 60x bus
mode and are always performed zero double word first.

As with MPX bus mode, data must never be transferred before the last cycle of the address
retry window (that is, valid data must never precede a possible ARTRY for that transaction).

9.7.3 60x Bus Data Tenure Termination

The 60x bus protocol defines four signals to terminate data bus transactions—TA, DRTRY
(data retry), TEA (transfer error acknowledge), and ARTRY. The MPC7451 does not
implement the DRTRY signal; therefore, the 60x interface on the MPC7451 is always
operating in the higher-performance, no-DRTRY mode. TA, TEA, and ARTRY function
the same in 60x bus mode as they do in MPX bus mode.

If the ARTRY and TEA signals are asserted in the same clock, the ARTRY signal takes
precedence and the TEA signal is ignored. This means that the transaction is repeated until
the ARTRY condition is resolved.

Because the MPC7451 has no DRTRY, the assertion of ARTRY by a snooping device must
occur prior to or coincident with the first assertion of TA to the MPC7451; assertion of
ARTRY must never occur on the cycle after the first assertion of TA.

MOTOROLA Chapter 9. System Interface Operation 9-49

60x Bus Timing Examples

9.8 60x Bus Timing Examples
This section shows timing diagrams for various scenarios using the 60x bus interface.
Figure 9-21 illustrates the fastest single-beat reads possible for the MPC7451 and shows
both minimal latency and maximum single-beat throughput. By delaying the data bus
tenure, the latency increases, but, because of split-transaction pipelining, the overall
throughput is not affected unless the data bus latency delays the third address tenure.

Note that all bidirectional signals are released to high-impedance between bus tenures.

Figure 9-21. Fastest Single-Beat Reads

1 2 3 4 5 6 7 8 9 10 11 12

BR

BG

TS

A[0:35]

TT[0:4]

TBST

GBL

AACK

ARTRY

DBG

D[0:63]

TA

TEA

SYSCLK

Read

1 2 3 4 5 6 7 8 9 10 11 12

SYSCLK

CPU A CPU A

Read

CPU A

Read

In InIn

9-50 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

60x Bus Timing Examples

Figure 9-22 illustrates the fastest single-beat writes supported by the MPC7451. All
bidirectional signals are released to high-impedance between bus tenures.

Figure 9-22. Fastest Single-Beat Writes

Figure 9-23 shows two ways that single-beat reads are delayed:

• The TA signal is negated to insert wait states in clock cycles 4 and 5.
• For the second access, DBG is delayed until clock cycle 8 (could have been asserted

in clock cycle 7).

1 2 3 4 5 6 7 8 9 10 11 12

BR

BG

TS

A[0:35]

TT[0:4]

TBST

GBL

AACK

ARTRY

DBG

D[0:63]

TA

TEA

SYSCLK

SBW

1 2 3 4 5 6 7 8 9 10 11 12

SYSCLK

CPU A CPU A

SBW

CPU A

SBW

Out OutOut

MOTOROLA Chapter 9. System Interface Operation 9-51

60x Bus Timing Examples

Figure 9-23. Single-Beat Reads Showing Data-Delay Controls

Figure 9-24 shows data-delay controls in a single-beat write operation. Note that all
bidirectional signals are released to high-impedance between bus tenures. Data transfers are
delayed in the following ways:

• The TA signal is held negated to insert wait states in clocks 4 and 5.
• In clock 7, DBG is held negated, which delays the start of the data tenure.

1 2 3 4 5 6 7 8 9 10 11 12

BR

BG

TS

A[0:35]

TT[0:4]

TBST

GBL

AACK

ARTRY

DBG

D[0:63]

TA

TEA

SYSCLK

Read

1 2 3 4 5 6 7 8 9 10 11 12

SYSCLK

CPU A CPU A

Read

CPU A

Read

In InIn

9-52 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

60x Bus Timing Examples

Figure 9-24. Single-Beat Writes Showing Data Delay Controls

Figure 9-25 shows the use of data-delay controls with burst transfers. Note that all
bidirectional signals are released to high-impedance between bus tenures. Burst transfers
are delayed in the following ways:

• The first data beat of bursted read data (clock 4) is the critical double word.

• The write burst shows the use of TA signal negation to delay the third data beat.

1 2 3 4 5 6 7 8 9 10 11 12

BR

BG

TS

A[0:35]

TT[0:4]

TBST

GBL

AACK

ARTRY

DBG

D[0:63]

TA

TEA

SYSCLK

SBW

1 2 3 4 5 6 7 8 9 10 11 12

SYSCLK

CPU A CPU A

SBW

CPU A

SBW

Out OutOut

MOTOROLA Chapter 9. System Interface Operation 9-53

60x Bus Timing Examples

Figure 9-25. Burst Transfers with Data Delay Controls

Figure 9-26 shows the use of the TEA signal. Note that all bidirectional signals are released
to high-impedance between bus tenures. Note the following:

• The first data beat of the read burst (in clock 4) is the critical quad word.

• The TEA signal truncates the burst write transfer on the third data beat.

• The TEA eventually causes the MPC7451 to take an exception.

1 2 3 4 5 6 7 8 9 10 11 12

BR

BG

TS

A[0:35]

TT[0:4]

TBST

GBL

AACK

ARTRY

DBG

D[0:63]

TA

TEA

SYSCLK

Read

1 2 3 4 5 6 7 8 9 10 11 12

SYSCLK

CPU A CPU A

Write

CPU A

Read

13

13

In 0 In 3In 1 In 2 Out 0 Out 1 Out 3Out 2

14

14

9-54 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Reset, Interrupt, Checkstop, and Power Management Signal Interactions

Figure 9-26. Use of Transfer Error Acknowledge (TEA)

9.9 Reset, Interrupt, Checkstop, and Power
Management Signal Interactions

This section describes the hard and soft reset input signals, external interrupts, checkstop
operations, and power management signal interactions. See Chapter 4, “Exceptions,” and
Chapter 8, “Signal Descriptions,” for more information on the exceptions caused by these
signals and for signal descriptions, respectively.

9.9.1 Reset Inputs

The MPC7451 has two reset inputs, described as follows:

• HRESET (hard reset)—The HRESET signal is used for power-on reset sequences,
or for situations in which the MPC7451 must go through the entire cold start
sequence of internal hardware initialization. The MPC7451 will initiate burst
transactions after power-on reset in 60x bus mode.

• SRESET (soft reset)—The soft reset input provides warm reset capability. This
input can be used to avoid forcing the MPC7451 to complete the cold start sequence.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Out 0 Out 2

BR

BG

TS

A[0:35]

TT[0:4]

TBST

GBL

AACK

ARTRY

DBG

D[0:63]

TA

TEA

SYSCLK

SYSCLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CPU A

Write

CPU A

Read

CPU A

Read

In 0 In 1 In 2 In 3 Out 1 In 0 In 1 In 2 In 3

17

17

MOTOROLA Chapter 9. System Interface Operation 9-55

Reset, Interrupt, Checkstop, and Power Management Signal Interactions

When either reset input negates, the processor attempts to fetch code from the system reset
exception vector. The vector is located at offset 0x00100 from the exception prefix
(MSR[IP]). The MSR[IP] bit is set when HRESET negates.

9.9.2 External Interrupts

The external interrupt input signals (INT, SMI and MCP) of the MPC7451 force the
processor to take the external interrupt vector or the system management interrupt vector if
the MSR[EE] is set, or the machine check interrupt if the MSR[ME] and the HID1[EMCP]
bits are set.

9.9.3 Checkstops

The MPC7451 has two checkstop input signals—CKSTP_IN (nonmaskable) and MCP
(enabled when MSR[ME] is cleared and HID1[EMCP] is set)—and a checkstop output
(CKSTP_OUT) signal. If CKSTP_IN or MCP is asserted, the MPC7451 halts operations
by gating off all internal clocks. The MPC7451 asserts CKSTP_OUT if CKSTP_IN is
asserted.

If CKSTP_OUT is asserted by the MPC7451, it has entered the checkstop state, and
processing has halted internally. The CKSTP_OUT signal can be asserted for various
reasons including receiving a TEA signal and detection of external parity errors. For more
information about checkstop state, see Section 4.6.2.2, “Checkstop State (MSR[ME] = 0).”

All non-test output signals are disabled during a checkstop.

9.9.4 Power Management Signals

This section describes the MPC7451's support for power management. The system
quiescence control signals (QREQ and QACK) allow the processor to enter the nap or sleep
low-power states and bring bus activity to a quiescent state in an orderly fashion.

Prior to entering the nap or sleep-power state, the MPC7451 asserts the QREQ signal. This
signal allows the system to terminate or pause any bus activities that are normally snooped.
When the system is ready to enter the system quiesce state, it asserts the QACK signal. At
this time the MPC7451 may enter the nap or sleep power-saving state. When the MPC7451
is in the quiescent state, it stops snooping bus activity.

While the MPC7451 is in the nap state, the system power controller can enable snooping
by the MPC7451 by negating the QACK signal for at least eight bus clock cycles, after
which the MPC7451 is capable of snooping bus transactions. The reassertion of QACK
following the snoop transactions causes the MPC7451 to reenter the nap power state. See
Chapter 10, “Power and Thermal Management,” for more information on the power-saving
modes of the MPC7451.

Once the MPC7451 has made a request to enter the nap power-saving state, the QREQ
signal may be negated on any clock cycle to service an internal interrupt (such as a

9-56 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

IEEE 1149.1a-1993 Compliant Interface

decrementer or time base exception). The TS for the exception vector fetch can occur as
early as the clock cycle that QREQ is negated.

9.10 IEEE 1149.1a-1993 Compliant Interface
The MPC7451 boundary-scan interface is a fully-compliant implementation of the IEEE
1149.1a-1993 standard. This section briefly describes the MPC7451’s IEEE 1149.1a-1993
(JTAG) interface. See Section 8.4.6, “IEEE 1149.1a-1993 (JTAG) Interface Description,”
for more information on the function of the JTAG signals.

9.10.1 JTAG/COP Interface

The MPC7451 has extensive on-chip test capability including the following:

• Debug control/observation (COP)
• Boundary scan (standard IEEE 1149.1a-1993 (JTAG) compliant interface)
• Support for manufacturing test

• Support for the following standard JTAG instructions:

— BYPASS

— EXTEST

— SAMPLE/PRELOAD

— CLAMP

— HIGHZ

The COP and boundary-scan logic are not used under typical operating conditions. Detailed
discussion of the MPC7451 test functions is beyond the scope of this document; however,
sufficient information has been provided to allow the system designer to disable the test
functions that would impede normal operation.

The JTAG/COP interface is shown in Figure 9-27. For more information, refer to IEEE
Standard Test Access Port and Boundary Scan Architecture IEEE STD 1149-1a-1993.

Figure 9-27. IEEE 1149.1a-1993 Compliant Boundary-Scan Interface

TDI (Test Data Input)

TMS (Test Mode Select)

TCK (Test Clock Input)

TDO (Test Data Output)

TRST (Test Reset)

MOTOROLA Chapter 10. Power and Thermal Management 10-1

Chapter 10
Power and Thermal Management
The MPC7451 is designed for low-power operation. It provides both automatic and
program-controlled power reduction modes. The instruction cache throttling mechanism
allows on-chip thermal measurement by reducing the instruction dispatch rate. When used
with dynamic power management, instruction cache throttling provides the system
designer with a flexible way to control device temperature while allowing the processor to
continue operating.

10.1 Dynamic Power Management
If an MPC7451 functional unit is idle, it automatically goes into a low-power mode. This
mode does not affect operational performance. Dynamic power management automatically
supplies or withholds power to execution units individually, based upon the contents of the
instruction stream.

CMOS circuits consume negligible power when they are not switching, so stopping the
clock to an execution unit effectively eliminates its power consumption. Each MPC7451
execution unit has an independent clock input that is controlled automatically on a
clock-by-clock basis; for example, clocking is withheld from the floating-point unit if no
floating-point instructions are being executed. The operation of dynamic power
management is transparent to software or any external hardware.

Dynamic power management is enabled by setting HID0[DPM], as described in
Section 2.1.5.1, “Hardware Implementation-Dependent Register 0 (HID0).”

10.2 Programmable Power Mode
The following three power saving modes are available to the system:

• Nap—Instruction fetching is halted. Only those clocks for time base, decrementer,
and JTAG logic remain running. The MPC7451 goes into the doze state to snoop
memory operations on the bus and then back to nap using a QREQ/QACK
processor-system handshake protocol.

• Sleep—Power consumption is further reduced by disabling bus snooping, leaving
only the PLL in a locked and running state. All internal functional units are disabled.

10-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Programmable Power Mode

• Deep sleep—When the MPC7451 is in sleep mode, the system can disable the PLL.
The system can then disable the SYSCLK source for greater system power savings.
Power-on reset procedures for restarting and relocking the PLL must be followed
upon exiting deep sleep.

Figure 10-1 shows the four power management stages and the seven state transitions
(T1–T7).

Figure 10-1. Power Management State Diagram

The states are described as follows:

• Full-power—Normal operation. All clocks are on, instructions are fetched and
executed.

• Doze—All clocks are on, instruction dispatch is halted. Snoops are serviced by all
caches. QREQ is asserted. Note that this is not a user-definable state; it is an
intermediate state between full-power and either nap or sleep.

• Nap—The timebase and COP clocks run, all other clocks are off. Instruction
dispatch is halted and QREQ remains asserted.

• Sleep—All clocks are off except COP/JTAG clocks. Instruction dispatch is halted.
QREQ remains asserted.

The transitions are described in Table 10-1.

Table 10-1. Power Management State Transitions

Transition Cause

T1 HID0[NAP] or HID0[SLEEP] and MSR[POW] set and core is idle.

T2 External interrupt, SMI interrupt, SRESET, HRESET, Machine check, Decrementer interrupt

T3 HID0[NAP] and MSR[POW] are set, the system asserts QACK, bus and SRAM are idle.

T4 The system negates QACK, signaling a pending snoop operation.

T5 External interrupt, SMI interrupt, SRESET, HRESET, Machine check, Decrementer interrupt

Nap Sleep

Doze

Full-

T1 T2

T3

T4

T5

T6

T7

Power

MOTOROLA Chapter 10. Power and Thermal Management 10-3

Programmable Power Mode

The definition of the five external interrupts are explained in Table 4.2 in Chapter 4.

The MPC7451 has two software-controllable power-saving modes, nap and sleep, which
progressively reduce power dissipation. Nap mode also implements a doze state in which
the processor can snoop transactions on the MPX/60x bus and then return to nap.

Software controls the HID0[NAP,SLEEP] and MSR[POW] bits and can move the
MPC7451 into a power savings mode at any time. To wake from a power-saving mode by
using an external interrupt, the user should take care that MSR[EE] is set.

10.2.1 Full-Power Mode

The full-power mode is the default power state. As the MPC7451 is fully powered, the
internal functional units are operating at the full processor clock speed. If dynamic power
management mode (DPM) is enabled, any idle functional units automatically enter a
low-power state without affecting performance, software execution, or external hardware.

10.2.2 Nap Mode

Nap mode disables clocking in the MPC7451 core but maintains the lock on the PLL. The
time base/decrementer and the COP/JTAG logic remain operational.

Nap mode reduces power consumption by halting instruction fetch and dispatch, disabling
bus snooping. Only the decrementer/time base registers, the PLL, and JTAG logic remain
in a powered state. The MPC7451 returns to the full-power state after receiving an external
asynchronous interrupt, a system management interrupt, a hard or soft reset, or a machine
check input (MCP), or decrementer exception. Return to full-power state from a nap state
takes only a few processor clock cycles. Because the processor is in nap mode, the system
causes the processor to enter doze state by negating QACK. The processor snoops bus
operations and performs appropriate memory coherency operations while in the doze
mode. When the system reasserts QACK, the processor returns to the nap mode after
completing any memory operations.

10.2.2.1 Entering NAP Mode

In full-power state, software can set HID0[NAP] and MSR[POW]. Because the core is idle,
the MPC7451 transitions to doze state and asserts QREQ. The system should then assert
QACK if no snoop operations are pending. Because all bus activity is halted, the MPC7451
enters nap mode.

T6 HID0[SLEEP] and MSR[POW] are set, the system asserts QACK, the bus and SRAM are idle.

T7 External interrupt, SMI interrupt, SRESET, HRESET, or Machine check

Table 10-1. Power Management State Transitions (continued)

Transition Cause

10-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Programmable Power Mode

10.2.2.2 Exiting Nap Mode

Any External interrupt, SMI interrupt, SRESET, HRESET, or Machine check wakes
MPC7451 from nap and puts it into full-power state within a few processor cycles.
Additionally the Decrementer interrupt wakes the machine from nap.

10.2.2.3 Snooping In Nap Mode (Doze)

If the MPC7451 is in nap mode, it enters the doze state to service a snoop while the system
negates QACK. The MPC7451 requires 4 bus cycles to transit from nap to doze before the
snoop operation appears on the bus. Once the snoop operation has completed its tenure on
the bus the system may reassert QACK if no other snoop operations are pending. The
MPC7451 continues to service the snoop if necessary, as in the case of a data cache push
as a result of the snoop, and then return to nap when it is complete.

10.2.3 Sleep Mode

The sleep mode disables all clocking in the MPC7451. The PLL remains locked for fast
wake response. The JTAG logic remains operational. Note that the MPC7451 does not enter
doze state to snoop if it is in sleep mode. Caches must be flushed to guarantee cache
coherency if other system components access memory while the MPC7451 is sleeping.

Sleep mode minimizes power consumption by disabling all internal functional units. The
PLL remains locked and running but no clocks propagate to functional units. Note that the
time base is not operational in sleep mode. It must be reset by an external source upon
exiting sleep mode. The MPC7451 returns to the full-power state upon receipt of an
external asynchronous interrupt, a system management interrupt, a hard or soft reset, or a
machine check input (MCP). Return to full-power state from a sleep mode takes only a few
processor clock cycles.

10.2.3.1 Entering Sleep Mode

In the full-power state, software can set HID0[SLEEP] and MSR[POW]. Because the core
is idle, the MPC7451 enters doze state and asserts QREQ. The system should then assert
QACK if no snoop operations are pending. The MPC7451 enters sleep mode as long as
there is no bus activity.

10.2.3.2 Exiting Sleep Mode

Any external interrupt (External interrupt, SMI interrupt, SRESET, HRESET, and Machine
check) wakes the MPC7451 from sleep mode and places it into full-power state within a
few processor cycles. The Decrementer interrupt does not wake the machine from sleep.
Because the time base has been inactive during the sleep mode it is necessary to update
from an external reference upon exiting sleep.

MOTOROLA Chapter 10. Power and Thermal Management 10-5

Programmable Power Mode

10.2.3.3 Deep Sleep Mode
In sleep mode, the MPC7451 can achieve further power savings by disabling the PLL. To
put the MPC7451 into deep sleep from the sleep mode, the system can configure the
PLL_CFG to the off state (0xF). Therefore, the system can achieve further power savings
by disabling the SYSCLK source. Waking the MPC7451 from deep sleep can be achieved
only with HRESET. SYSCLK should be resumed before asserting HRESET and
reconfiguring PLL_CFG to an active state. Refer to the power-on reset instructions for time
required for PLL to achieve lock.

Power-on reset procedures for restarting and relocking the PLL must be followed upon
exiting this deep sleep state. Returning the MPC7451 to full-power state requires the
enabling of the PLL and SYSCLK, followed by the assertion of an external asynchronous
interrupt, a system management interrupt, a hard or soft reset, or a machine check input
(MCP) signal after the time required to relock the PLL.

10.2.4 Power Management Software Considerations

Because the MPC7451 is a three-issue processor with out-of-order execution capability,
care must be taken in how the power management mode is entered. Furthermore, nap and
sleep modes require all outstanding bus operations to be completed before these modes are
entered. Normally, during system configuration time, one of these power management
modes would be selected by setting the appropriate HID0 bit. Later on, the mode is invoked
by setting MSR[POW]. To ensure a clean transition into and out of a power-management
mode, the mtmsr which sets the POW bit must be preceded by the proper cache flushes,
instruction cache disable followed by isync, TLB invalidates, and then dssall and sync
instructions. The sleep mode entry sequence is as follows:

mtHIDO (NAP | SLEEP)
...
...
dssall
... cache flushes... (1)
... instruction cache disable ... (2)
isync (3)
... TLB invalidates ... (4)

loop sync
mtmsr[POW = 1]
isync
b loop

The dssall instruction is needed to kill any outstanding stream touch instructions not killed
by a sync.

10-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Programmable Power Mode

10.2.5 Dynamic Frequency Switching (DFS) in the MPC7447A

The new dynamic frequency switching (DFS) feature in the MPC7447A adds the ability to
divide the processor-to-system bus ratio by two during normal functional operation by
setting the HID1[DFS1] bit. The frequency change occurs in one clock cycle and no idle
waiting period is required to switch between modes. For example, an MPC7447A
microprocessor operating at 1 Gigahertz internal frequency, configured to an 8:1
processor-to-system ratio at power-on-reset, can dynamically change the
processor-to-system ratio to 2:1 by setting the HID1[DFS1] bit. The processor frequency
would be reduced to 500 MHz or 250 MHz without ever cycling the processor through hard
reset. The applied system clock frequency also does not need to change for this power
reduction step.

10.2.5.1 Available Processor-to-Bus Ratios

DFS is not available for all processor-to-system ratios configurable during hard reset. That
is, if the ratio is not divisible by two it can not be used. See the MPC7447A RISC
Microprocessor Hardware Specifications for the valid divide ratio configurations. Since the
MPC7447A does not support quarter clock ratios or the 1:1 ratio, the DFS feature is limited
to integer PLL ratios of 2:1 and higher.

Note that the MPC7447A requires a minimum of five core cycles to process a snoop and
generate a response after latching TS and associated transfer attributes. As a result, if the
processor core frequency is less than five times the system bus frequency, the system must
extend the address tenure of all transactions that are snooped by the MPC7447A by
delaying assertion of AACK. For core to bus frequency ratios of 2:1 and 2.5:1, AACK must
be delayed a minimum of two bus cycles; for core:bus frequency ratios of 3:1, 3.5:1, 4:1,
and 4.5:1, AACK must be delayed a minimum of one bus cycle. Table 10-2 summarizes the
required system AACK delay for ratios less than 5:1.

Since the processor requires five internal clock cycles to provide the correct response to a
snoop on the external bus, delaying address acknowledge assures that the correct snoop
response will be asserted by the processor.

Table 10-2. Required System AACK delay for Ratios < 5:1

Dynamic PLL Ratio Required AACK Delay

2:1 2 cycles

2.5:1

3:1 1 cycle

3.5:1

4:1

4.5:1

MOTOROLA Chapter 10. Power and Thermal Management 10-7

Programmable Power Mode

The proper sequencing for changing AACK delay is to:

1. Modify the system to delay AACK,

2. Alter the HID1[DFS1] bit to choose the ratio < 5:1,

3. Operate at the lower frequency,

4. Clear the DFS bit, and

5. Modify the system to remove AACK delay.

10.2.5.2 Snooping restrictions

During the processor cycles in which dynamic frequency switching occurs, the address
tenure of an external snoop must not be in progress on the external bus if the selected DFS
ratio is less than 5:1.

If a snoop address tenure is in progress during the transition of the HID1[DFS1] bits, then
the processor may:

• Respond with either the incorrect snoop response for the snooped transaction,

• Respond with the incorrect snoop response for the next transaction, or

• Cause contention on the ARTRY or SHD pins.

10.2.5.3 Using the HID1[DFS1] bit to Set DFS Mode in Conjunction
Voltage Set Point

Using the new dynamic frequency switching (DFS) feature in the MPC7447A conserves
power. This is done by lowering the processor operating frequency.

As noted in the MPC7447A RISC Microprocessor Hardware Specifications, some PLL
ratios selected at reset are limited strictly to divide-by-two mode. The software is
responsible to provide the correct PLL ratios so that an unavailable mode is not selected.

10-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Cache Throttling

10.3 Instruction Cache Throttling
The MPC7451 provides an instruction cache throttling mechanism to effectively reduce the
instruction execution rate without the complexity and overhead of dynamic clock control.
When used with dynamic power management, instruction cache throttling provides the
system designer with a flexible way to control device temperature while allowing the
processor to continue operating.

The instruction cache throttling mechanism simply reduces the instruction dispatch rate.
Normally, as many as three instructions are dispatched each cycle. For thermal
management, the MPC7451 provides a supervisor-level instruction cache throttling control
register (ICTC). The instruction dispatch rate is reduced by writing a nonzero value into
ICTC[INTERVAL] and enabling instruction cache throttling by setting ICTC[E]. When
this bit is clear, MPC7451 dispatches instructions normally. The overall junction
temperature reduction results from dynamic power management of execution units when
the MPC7451 is idle between the instruction dispatches; thus, instruction cache throttling
does not provide thermal reduction unless HID0[DPM] = 1. Note that during instruction
cache throttling, the PLL configuration remains unchanged. System software can control
instruction forwarding by writing a nonzero value to the ICTC register, a supervisor-level
register shown in Figure 10-2. Note also when instruction cache throttling is enabled, to
reduce overall junction temperature, the performance does degrade.

Figure 10-2. Instruction Cache Throttling Control Register (ICTC)

Table 10-3 describes ICTC fields.

Table 10-3. ICTC Field Descriptions

Bits Name Description

0–22 — Reserved, should be cleared.

23–30 INTERVAL Instruction forwarding interval expressed in processor clocks. When throttling is enabled, the
interval field specifies the minimum number of cycles between instructions being dispatched.
(MPC7451 dispatches one instruction every INTERVAL cycle.) The minimum interval for
throttling control is two cycles.
0x00, 0x01, 0x02 One instruction dispatches every 2 processor clocks
0x03 One instruction dispatches every 3 processor clocks
...
0xFF One instruction dispatches every 255 processor clocks

31 E Enable instruction throttling.
0 Instructions dispatch normally.
1 Only one instruction dispatches every INTERVAL cycles.

0 22 23 30 31

EINTERVAL

Reserved

 þ 0000 _0000_0000_0000_0000_000 þþ

MOTOROLA Chapter 10. Power and Thermal Management 10-9

MPC7447A Temperature Diode

10.4 MPC7447A Temperature Diode
The MPC7447A has a temperature diode on the microprocessor that can be used in
conjunction with other system temperature monitoring devices (such as Analog Devices,
ADT7461TM). These devices use the negative temperature coefficient of a diode operated
at a constant current to determine the temperature of the microprocessor and its
environment. For specifications of the MPC7447A on-board temperature diode see the
MPC7447A RISC Microprocessor Hardware Specifications.

10-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MPC7447A Temperature Diode

MOTOROLA Chapter 11. Performance Monitor 11-1

Chapter 11
Performance Monitor
The PowerPC architecture defines an optional performance monitor facility that provides
the ability to monitor and count predefined events such as processor clocks, misses in the
instruction cache, data cache, or L2 cache, types of instructions dispatched, mispredicted
branches, and other occurrences. The count of such events (that may be an approximation)
can be used to trigger the performance monitor exception. Note that some earlier processors
implemented the performance monitor facility before it was defined by the PowerPC
architecture.

The performance monitor can be used for the following:

• To increase system performance with efficient software, especially in a
multiprocessing system—Memory hierarchy behavior can be monitored and studied
in order to develop algorithms that schedule tasks (and perhaps partition them) and
that structure and distribute data optimally.

• To characterize processors—Some environments may not be easily characterized by
a benchmark or trace.

• To help system developers bring up and debug their systems

AltiVec Technology and the Performance Monitor

The AltiVec technology features do not affect the basic implementation of the performance
monitor. However, the performance monitor provides the ability to monitor the following
AltiVec operations:

• Individual counts of instructions executed by the AltiVec execution units

• Completed AltiVec load instructions counts

• Individual counts of cycles during which the VIU1, VIU2, VFPU, and VPU had a
valid dispatch but invalid operands

• VFPU trap counts that can be generated in Java mode

• mtvscr and mtvrsave instruction counts

• Setting counts of the VSCR saturate bit

• Completion counts of dss and dssall instructions

11-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Overview

• dstx instruction event counts—dispatches, misses, refreshes, suspensions,
premature cancellations, and resumptions

• Cycle counts when the VALU has a valid mfvscr dispatch but cannot execute it
because it is not at the bottom of the completion queue (CQ)

11.1 Overview
The performance monitor uses the following resources defined by the PowerPC
architecture:

• The performance monitor mark bit in the MSR (MSR[PMM]). This bit identifies
programs to be monitored.

• The privilege level bit in the MSR (MSR[PR]). This bit identifies the mode the
processor is in (supervisor or user).

• Special-purpose registers (SPRs):

— The performance monitor counter registers (PMC1–PMC6) are 32-bit counters
used to count the times a software-selectable event has occurred. PMC5 and
PMC6 are used to count events generated by the memory subsystem.
UPMC1–UPMC6 provide user-level read access to these registers.

— The monitor mode control registers (MMCR0–MMCR2). Control fields in the
MMCRn registers select events to be counted, determine whether performance
monitor exceptions are caused by a time-base register transition, maintain
counter overflow, and specify the conditions under which counting is enabled.
UMMCR0–UMMCR2 provide user-level read access to these registers.

— The sampled instruction address register (SIAR) contains the effective address
of the last instruction that completes before the performance monitor exception
is generated. USIAR provides user-level read access to the SIAR.

— Note that in previous processors the optional SDAR and USDAR registers could
be written to by boot code without causing an exception, this is not the case in
the MPC7451. A mtspr or mfspr SDAR or USDAR instruction causes a
program exception.

• The performance monitor exception follows the normal PowerPC exception model
and has a defined exception vector offset (0x00F00). Its priority is below the trace
exception and above the AltiVec unavailable exception.

MOTOROLA Chapter 11. Performance Monitor 11-3

Performance Monitor Exception

11.2 Performance Monitor Exception
The performance monitor provides the ability to generate a performance monitor exception
triggered by an enabled condition or event. This exception is triggered by an enabled
condition or event defined as follows:

• A PMCn register overflow condition occurs:

— MMCR0[PMC1CE] and PMC1[OV] are both set

— MMCR0[PMCnCE] and PMCn[OV] are both set (n > 1)

• A time-base event—MMCR0[TBEE] = 1 and the TBL bit specified in
MMCR0[TBSEL] changes from 0 to 1

MMCR0[PMXE] must be set for any of these conditions to signal a performance monitor
exception.

Although the performance monitor exception may occur with MSR[EE] = 0, the exception
is not taken until MSR[EE] = 1.

As a result of a performance monitor exception being generated, the performance monitor
saves in the SIAR the effective address of the last instruction completed before the
exception is taken. Note that SIAR is not updated if performance monitor counting has been
disabled by setting MMCR0[0].

The priority of the performance monitor exception is below the trace exception and above
the AltiVec unavailable exception. See Section 4.2, “MPC7451 Exception Recognition and
Priorities,” for a list of exception priorities.

Exception handling for the performance monitor exception is described in Section 4.6.13,
“Performance Monitor Exception (0x00F00).”

11.2.1 Performance Monitor Signals

The PMON_IN signal is used by the performance monitor event MMCR0[PMC1SEL] = 7
(0b000_0111) to count the number of times the PMON_IN signal transitions from negated
to asserted. Note that this event is enabled in the performance monitor control registers
(MMCR0, or MMCR1, PMCn) and must be enabled in order for this event to be monitored.

The PMON_OUT signal is asserted by the performance monitor when a performance
monitor threshold or negative counter condition has been reached whether or not
performance monitor exceptions are enabled; that is, the setting of MMSR0[PMXE] does
not affect the function of this signal.

11-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Performance Monitor Registers

11.2.2 Using Timebase Event to Trigger or Freeze a Counter
or Generate an Exception

The use of the trigger and freeze counter conditions depends on these enabled conditions
and events. When MMCR0[TBEE] (timebase enable event) is 1, a timebase transition is
generated to the performance monitor if the TBL bit specified in MMCR0[TBSEL]
changes from 0 to 1. Timebase transition events can be used to freeze the counters
(MMCR0[FCECE]), trigger the counters (MMCR0[TRIGGER]), or generate an exception
(MMCR0[PMXE]).

Changing the bits specified in MMCR0[TBSEL] while MMCR0[TBEE] is set may cause
a false 0 to 1 transition that signals the specified action (freeze, trigger, or exception) to
occur immediately.

11.3 Performance Monitor Registers
The following sections describe the registers used by the performance monitor. Note that
reading and writing to the performance monitor SPRs do not synchronize the processor.

An explicit synchronization instruction, such as sync, should be placed before and after an
mfspr or mtspr of one of these registers to guarantee an accurate count.

11.3.1 Performance Monitor Special-Purpose Registers

The performance monitor incorporates the SPRs listed in Table 11-1 and Table 11-2. The
supervisor-level registers in Table 11-1 are accessed through the mtspr and mfspr
instructions.

Table 11-1. Performance Monitor SPRs—Supervisor Level

SPR Number spr[5–9] || spr[0–4] Register Name

944 0b11101 10000 Monitor mode control register 2—MMCR2

945 0b11101 10001 Performance monitor counter register 5—PMC5

946 0b11101 10010 Performance monitor counter register 6—PMC6

951 0b11101 10111 Breakpoint address mask register—BAMR

952 0b11101 11000 Monitor mode control register 0—MMCR0

953 0b11101 11001 Performance monitor counter register 1—PMC1

954 0b11101 11010 Performance monitor counter register 2—PMC2

955 0b11101 11011 Sampled instruction address register—SIAR

956 0b11101 11100 Monitor mode control register 1—MMCR1

957 0b11101 11101 Performance monitor counter register 3—PMC3

958 0b11101 11110 Performance monitor counter register 4—PMC4

MOTOROLA Chapter 11. Performance Monitor 11-5

Performance Monitor Registers

The user-level registers in Table 11-2 are read-only and are accessed with the mfspr
instruction. Attempting to write to one of these registers in either supervisor or user mode
causes a program exception.

11.3.2 Monitor Mode Control Register 0 (MMCR0)

The monitor mode control register 0 (MMCR0), shown in Figure 11-1 is a 32-bit SPR
provided to specify events to be counted and recorded. If the state of MSR[PR] and
MSR[PMM] matches a state specified in MMCR0, then counting is enabled; see
Section 11.4, “Event Counting,” for further details. The MMCR0 can be accessed only in
supervisor mode. User-level software can read the contents of MMCR0 by issuing an
mfspr instruction to UMMCR0, described in Section 11.3.2.1, “User Monitor Mode
Control Register 0 (UMMCR0).”

Figure 11-1. Monitor Mode Control Register 0 (MMCR0)

This register is automatically cleared at power-up. Reading this register does not change its
contents. Table 11-3 describes the fields of MMCR0.

Table 11-2. Performance Monitor SPRs—User Level (Read-Only)

SPR Number spr[5–9] || spr[0–4] Register Name

928 0b11101 00000 User monitor mode control register 2—UMMCR2

929 0b11101 00001 User performance monitor counter register 5—UPMC5

930 0b11101 00010 User performance monitor counter register 6—UPMC6

936 0b11101 01000 User monitor mode control register 0—UMMCR0

937 0b11101 01001 User performance monitor counter register 1—UPMC1

938 0b11101 01010 User performance monitor counter register 2—UPMC2

939 0b11101 01011 User sampled instruction address register—USIAR

940 0b11101 01100 User monitor mode control register 1—UMMCR1

941 0b11101 01101 User performance monitor counter register 3—UPMC3

942 0b11101 01110 User performance monitor counter register 4—UPMC4

0 1 2 3 4 5 6 7 8 9 10 15 16 17 18 19 25 26 31

FCP

THRESHOLD

FCECE

FCM0

PMC1SEL

FCS

PMC2SEL

PMC1CEFCM1

PMCnCE

TRIGGER

TBSEL

TBEE

PMXE

FC

11-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Performance Monitor Registers

Table 11-3. MMCR0 Field Descriptions

Bits Name Description

0 FC Freeze counters
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented (performance monitor counting is disabled). The

processor automatically sets this bit when an enabled condition or event occurs and
MMCR0[FCECE] = 1. Note that SIAR is not updated if performance monitor counting is
disabled.

1 FCS Freeze counters in supervisor mode
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PR] = 0.

2 FCP Freeze counters in user mode
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PR] = 1.

3 FCM1 Freeze counters while mark = 1
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PMM] = 1.

4 FCM0 Freeze counters while mark = 0
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PMM] = 0.

5 PMXE Performance monitor exception enable
0 Performance monitor exceptions are disabled.
1 Performance monitor exceptions are enabled until a performance monitor exception

occurs; at that time, MMCR0[PMXE] is automatically cleared.
Software can clear PMXE to prevent performance monitor exceptions. Software can also
set PMXE and then poll it to determine whether an enabled condition or event occurred.

6 FCECE Freeze counters on enabled condition or event
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are incremented (if permitted by other MMCR bits) until an enabled condition

or event occurs when MMCR0[TRIGGER] = 0, at that time MMCR0[FC] is set. If the
enabled condition or event occurs when MMCR0[TRIGGER] = 1, FCECE is treated as if
it were 0.

The use of the trigger and freeze counter conditions depends on the enabled conditions and
events described in Section 11.2, “Performance Monitor Exception.”

7–8 TBSEL Time-base selector. Selects the time-base bit that can cause a time-base transition event
(the event occurs when the selected bit changes from 0 to 1).
00 TBL[31]
01 TBL[23]
10 TBL[19]
11 TBL[15]
Time-base transition events can be used to periodically collect information about processor
activity. In multiprocessor systems in that the TB registers are synchronized among
processors, time-base transition events can be used to correlate the performance monitor
data obtained by the several processors. For this use, software must specify the same
TBSEL value for all the processors in the system. Because the time-base frequency is
implementation-dependent, software should invoke a system service program to obtain the
frequency before choosing a value for TBSEL.

MOTOROLA Chapter 11. Performance Monitor 11-7

Performance Monitor Registers

9 TBEE Time-base event enable
0 Time-base transition events are disabled.
1 Time-base transition events are enabled. A time-base transition is generated to the

performance monitor if the TB bit specified in MMCR0[TBSEL] changes from 0 to 1.
Time-base transition events can be used to freeze the counters (MMCR0[FCECE]),
trigger the counters (MMCR0[TRIGGER]), or signal an exception (MMCR0[PMXE]).

Changing the bits specified in MMCR0[TBSEL] while MMCR0[TBEE] is enabled may cause
a false 0 to 1 transition that signals the specified action (freeze, trigger, or exception) to
occur immediately.

10–15 THRESHOLD Threshold. Contains a threshold value between 0 to 63. Two types of thresholds can be
counted.
 • The first type counts any event that lasts longer than the threshold value and uses

MMCR2[THRESHMULT] to scale the threshold value by 2 or 32.
 • The second type counts only the events that exceed the threshold value. This type does

not use MMCR2[THRESHMULT] to scale the threshold value (MMCR2[THRESHMULT]
= 0).

By varying the threshold value, software can obtain a profile of the characteristics of the
events subject to the threshold. For example, if PMC1 counts cache misses that the
duration exceeds the threshold value, software can obtain the distribution of cache miss
durations for a given program by monitoring the program repeatedly using a different
threshold value each time.

16 PMC1CE PMC1 condition enable. Controls whether counter negative conditions due to a negative
value in PMC1 are enabled.
0 Counter negative conditions for PMC1 are disabled.
1 Counter negative conditions for PMC1 are enabled. These events can be used to freeze

the counters (MMCR0[FCECE]), trigger the counters (MMCR0[TRIGGER]), or signal an
exception (MMCR0[PMXE]).

17 PMCnCE PMCn condition enable. Controls whether the counter negative conditions due to a negative
value in any PMCn (that is, in any PMC except PMC1) are enabled.
0 Counter negative conditions for all PMCns are disabled.
1 Counter negative conditions for all PMCns are enabled. These events can be used to

freeze the counters (MMCR0[FCECE]), trigger the counters (MMCR0[TRIGGER]), or
signal an exception (MMCR0[PMXE]).

Table 11-3. MMCR0 Field Descriptions (continued)

Bits Name Description

11-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Performance Monitor Registers

MMCR0 can be accessed with the mtspr and mfspr instructions using SPR 952.

11.3.2.1 User Monitor Mode Control Register 0 (UMMCR0)

The contents of MMCR0 are reflected to UMMCR0, that can be read by user-level
software. UMMCR0 can be accessed with the mfspr instructions using SPR 936.

18 TRIGGER Trigger
0 The PMCs are incremented (if permitted by other MMCR bits).
1 PMC1 is incremented (if permitted by other MMCR bits). The PMCns are not

incremented until PMC1 is negative or an enabled condition or event occurs, at that time
the PMCns resume incrementing (if permitted by other MMCR bits) and
MMCR0[TRIGGER] is cleared. The description of FCECE explains the interaction
between TRIGGER and FCECE.

Uses of TRIGGER include the following:
• Resume counting in the PMCns when PMC1 becomes negative without causing a

performance monitor exception. Then freeze all PMCs (and optionally cause a
performance monitor exception) when a PMCn becomes negative. The PMCns then
reflect the events that occurred after PMC1 became negative and before PMCn becomes
negative. This use requires the following MMCR0 bit settings:
–TRIGGER = 1
–PMC1CE = 0
–PMCnCE = 1
–TBEE = 0
–FCECE = 1
–PMXE = 1 (if a performance monitor exception is desired)

• Resume counting in the PMCns when PMC1 becomes negative and cause a
performance monitor exception without freezing any PMCs. The PMCns then reflect the
events that occurred between the time PMC1 became negative and the time the
exception handler reads them. This use requires the following MMCR0 bit settings:
–TRIGGER = 1
–PMC1CE = 1
–TBEE = 0
–FCECE = 0
–PMXE = 1

The use of the trigger and freeze counter conditions depends on the enabled conditions and
events described in Section 11.2, “Performance Monitor Exception.”

19–25 PMC1SEL PMC1 selector. Contains a code (one of at most 128 values) that identifies the event to be
counted in PMC1. See Table 11-9.

26–31 PMC2SEL PMC2 selector. Contains a code (one of at most 64 values) that identifies the event to be
counted in PMC2. See Table 11-10.

Table 11-3. MMCR0 Field Descriptions (continued)

Bits Name Description

MOTOROLA Chapter 11. Performance Monitor 11-9

Performance Monitor Registers

11.3.3 Monitor Mode Control Register 1 (MMCR1)

The monitor mode control register 1 (MMCR1) functions as an event selector for
performance monitor counter registers 3, 4, 5, and 6 (PMC3, PMC4, PMC5, PMC6). The
MMCR1 register is shown in Figure 11-2.

Figure 11-2. Monitor Mode Control Register 1 (MMCR1)

Bit settings for MMCR1 are shown in Table 11-4. The corresponding events are described
in Section 11.3.6, “Performance Monitor Counter Registers (PMC1–PMC6)..”

MMCR1 can be accessed with the mtspr and mfspr instructions using SPR 956. User-level
software can read the contents of MMCR1 by issuing an mfspr instruction to UMMCR1,
described in Section 11.3.4.1, “User Monitor Mode Control Register 2 (UMMCR2).”

11.3.3.1 User Monitor Mode Control Register 1 (UMMCR1)

The contents of MMCR1 are reflected to UMMCR1, which can be read by user-level
software. MMCR1 can be accessed with mfspr using SPR 940.

11.3.4 Monitor Mode Control Register 2 (MMCR2)

The monitor mode control register 2 (MMCR2) contains only one bit. This bit is used to
scale the value in the MMCR0[THRESHOLD] field for certain threshold events. If
MMCR2[THRESMULT] = 0, it scales the value by two times. If MMCR2[THRESMULT]
= 1, it scales the value by 32 times.The MMCR2 register is shown in Figure 11-3.

Table 11-4. MMCR1 Field Descriptions

Bits Name Description

0–4 PMC3SEL PMC3 selector. Contains a code (one of at most 32 values) that identifies the event to
be counted in PMC3. See Table 11-11.

5–9 PMC4SEL PMC4 selector. Contains a code (one of at most 32 values) that identifies the event to
be counted in PMC4. See Table 11-12.

10–14 PMC5SEL PMC5 selector. Contains a code (one of at most 32 values) that identifies the event to
be counted in PMC5. See Table 11-13.

15–20 PMC6SEL PMC6 selector. Contains a code (one of at most 32 values) that identifies the event to
be counted in PMC6. See Table 11-14.

21–31 — Reserved

0 4 5 9 10 14 15 20 21 31

Reserved

PMC3SEL PMC4SEL PMC5SEL PMC6SEL 000_0000_0000 þ

11-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Performance Monitor Registers

Figure 11-3. Monitor Mode Control Register 2 (MMCR2)

Table 11-5 describes MMCR2 fields.

MMCR2 can be accessed with mtspr and mfspr using SPR 944. User-level software can
read the contents of MMCR2 by issuing an mfspr instruction to UMMCR2, described in
Section 11.3.4.1, “User Monitor Mode Control Register 2 (UMMCR2).”

11.3.4.1 User Monitor Mode Control Register 2 (UMMCR2)

The contents of MMCR2 are reflected to UMMCR2, that can be read by user-level
software. UMMCR2 can be accessed with the mfspr instructions using SPR 928.

11.3.5 Breakpoint Address Mask Register (BAMR)

The breakpoint address mask register (BAMR), shown in Figure 11-4, is used in
conjunction with the events that monitor IABR hits.

Figure 11-4. Breakpoint Address Mask Register (BAMR)

Table 11-6 describes BAMR fields.

Table 11-5. MMCR2 Field Descriptions

Bits Name Description

0 THRESHMULT Threshold multiplier. Used to extend the range of the THRESHOLD field, MMCR0[10–15].
0 Threshold field is multiplied by 2.
1 Threshold field is multiplied by 32.

1–31 — Reserved

0 1 31

THRESHMULT

 þ 000_0000_0000_0000_ 0000_0000_0000_0000 þþ

0 29 30 31

MASK 00

Reserved

MOTOROLA Chapter 11. Performance Monitor 11-11

Performance Monitor Registers

BAMR can be accessed with mtspr and mfspr using SPR 951. For synchronization
requirements on the BAMR register see Table 2-33.

11.3.6 Performance Monitor Counter
Registers (PMC1–PMC6).

PMC1–PMC6, shown in Figure 11-5, are 32-bit counters that can be programmed to
generate a performance monitor exception when they overflow.

Figure 11-5. Performance Monitor Counter Registers (PMC1–PMC6)

The bits contained in the PMC registers are described in Table 11-7.

Counters overflow when the high-order (sign) bit becomes set; that is, they reach the value
2,147,483,648 (0x8000_0000). However, an exception is not generated unless both
MMCR0[PMXE] and either MMCR0[PMC1CE] or MMCR0[PMCcCE] are also set as
appropriate.

Note that the exception can be masked by clearing MSR[EE]; the performance monitor
condition may occur with MSR[EE] cleared, but the exception is not taken until MSR[EE]
is set. Setting MMCR0[FCECE] forces counters to stop counting when a counter exception
or any enabled condition or event occurs. Setting MMCR0[TRIGGER] forces counters

Table 11-6. BAMR Field Descriptions

Bit Name Description

0–29 MASK Used with PMC1 event (PMC1 event 42) that monitor IABR hits
The addresses to be compared for an IABR match are affected by the value in BAMR:
 • IABR hit (PMC1, event 42) occurs if IABR_CMP (that is, IABR AND BAMR) =

instruction_address_compare (that is, EA AND BAMR)
 • IABR_CMP[0–29] = IABR[0–29] AND BAMR[0–29]

instruction_addr_cmp[0–29] = instruction_addr[0–29] AND BAMR[0–29]
Be aware that breakpoint event 42 of PMC1 can be used to trigger ISI exceptions
when the performance monitor detects an enabled overflow. This feature supports
debug purposes and occurs only when IABR[30] is set. To avoid taking one of the
above exceptions, IABR[30] should be cleared.

30–31 — Reserved

Table 11-7. PMCn Field Descriptions

Bits Name Description

0 OV Overflow. When this bit is set, it indicates that this counter has overflowed and reached its
maximum value so that PMCn[OV] = 1.

1–31 Counter value Counter value. Indicates the number of occurrences of the specified event.

0 1 31

OV Counter Value

11-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Performance Monitor Registers

PMCn (n > 1), to begin counting when PMC1 goes negative or an enabled condition or
event occurs.

Software is expected to use the mtspr instruction to explicitly set PMC to non-overflowed
values. Setting an overflowed value may cause an erroneous exception. For example, if both
MMCR0[PMXE] and either MMCR0[PMC1CE] or MMCR0[PMCnCE] are set and the
mtspr instruction loads an overflow value, an exception may be taken without an event
counting having taken place.

The PMC registers can be accessed with the mtspr and mfspr instructions using the
following SPR numbers:

• PMC1 is SPR 953
• PMC2 is SPR 954
• PMC3 is SPR 957
• PMC4 is SPR 958

• PMC5 is SPR 945

• PMC6 is SPR 946

11.3.6.1 User Performance Monitor Counter Registers
(UPMC1–UPMC6)

The contents of the PMC1–PMC6 are reflected to UPMC1–UPMC6, which can be read by
user-level software. The UPMC registers can be read with the mfspr instructions using the
following SPR numbers:

• UPMC1 is SPR 937
• UPMC2 is SPR 938
• UPMC3 is SPR 941
• UPMC4 is SPR 942

• UPMC5 is SPR 929

• UPMC6 is SPR 930

11.3.7 Sampled Instruction Address Register (SIAR)

The sampled instruction address register (SIAR) is a supervisor-level register that contains
the effective address of the last instruction to complete before the performance monitor
exception is generated. The SIAR is shown in Figure 11-6.

Figure 11-6. Sampled Instruction Address Register (SIAR)

0 31

Instruction Address

MOTOROLA Chapter 11. Performance Monitor 11-13

Event Counting

Note that SIAR is not updated:

• if performance monitor counting has been disabled by setting MMCR0[FC] or
• if the performance monitor exception has been disabled by clearing

MMCR0[PMXE].

SIAR can be accessed with the mtspr and mfspr instructions using SPR 955.

11.3.7.1 User Sampled Instruction Address Register (USIAR)

The contents of SIAR are reflected to USIAR, which can be read by user-level software.
USIAR can be accessed with the mfspr instructions using SPR 939.

11.4 Event Counting
Counting can be enabled if conditions in the processor state match a software-specified
condition. Because a software task scheduler may switch a processor’s execution among
multiple processes and because statistics only on a particular process may be of interest, a
facility is provided to mark a process. The performance monitor bit, MSR[PMM], is used
for this purpose. System software may set this bit when a marked process is running. This
enables statistics to be gathered only during the execution of the marked process. The states
of MSR[PR] and MSR[PMM] together define a state that the processor (supervisor or user)
and the process (marked or unmarked) may be in at any time. If this state matches a state
specified in the MMCR (the state in which monitoring is enabled), counting is enabled.
Table 11-8 lists the states that can be monitored.

In addition, one of two unconditional counting modes may be specified:

• Counting is unconditionally enabled regardless of the states of MSR[PMM] and
MSR[PR]. This can be accomplished by clearing MMCR0[0–4].

• Counting is unconditionally disabled regardless of the states of MSR[PMM] and
MSR[PR]. This is done by setting MMCR0[0] = 1. Note that SIAR is not updated if
MMCR0[0] = 1.

Table 11-8. Monitorable States

MSR[PR] MSR[PMM] Process Marked
Process

UnMarked
User Mode Supervisor Mode

0 — — — √ √

1 — — — √ —

— 1 √ — — —

— 0 — √ — —

0 0 — √ √ √

0 1 √ — √ √

1 0 — √ √ —

1 1 √ — √ —

11-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Event Selection

11.5 Event Selection
Event selection is handled through the MMCRn registers, described in subsequent tables.

• The six event-select fields in MMCR0 and MMCR1 are as follows:

— MMCR0[PMC1SEL]—PMC1 input selector, 128 events selectable. See
Table 11-9.

— MMCR0[PMC2SEL]—PMC2 input selector, 64 events selectable. See
Table 11-10.

— MMCR1[PMC3SEL]—PMC3 input selector, 32 events selectable. See
Table 11-11.

— MMCR1[PMC4SEL]—PMC4 input selector, 32 events selectable. See
Table 11-12.

— MMCR1[PMC5SEL]—PMC5 input selector, 32 events selectable. See
Table 11-13.

— MMCR1[PMC6SEL]—PMC6 input selector, 64 events selectable. See
Table 11-14.

• In Table 11-9 through Table 11-14, a correlation is established between each
counter, events to be traced, and the pattern required for the desired selection.

• As shown in Table 11-9 through Table 11-12, the first five events are common to all
six counters and are considered to be reference events. These are as follows:

— 00000—Register holds current value

— 00001—Number of processor cycles

— 00010—Number of completed instructions, not including folded branches

— 00011—Number of times the TBL bit transitions from 0 to 1. The TBL bit is
specified through MMCR0[TBSEL]

– 00 = uses the TBL[31] bit to count

– 01 = uses the TBL[23] bit to count

– 10 = uses the TBL[19] bit to count

– 11 = uses the TBL[15] bit to count

— 00100—Number of instructions dispatched: 0, 1, 2, or 3 per cycle

11.5.1 PMC1 Events

The event to be monitored can be chosen by setting MMCR0[PMC1SEL]. The selected
events are counted beginning when MMCR0 is set until either MMCR0 is reset or a
performance monitor exception is generated. Table 11-9 lists the selectable events and their
encodings.

MOTOROLA Chapter 11. Performance Monitor 11-15

Event Selection

Table 11-9. PMC1 Events—MMCR0[PMC1SEL] Select Encodings

Number Event Description

0 (000_0000) Nothing Register counter holds current value

1 (000_0001) Processor cycles Counts every processor cycle

2 (000_0010) Instructions completed Counts all completed PowerPC and AltiVec instructions. Load/store
multiple instructions (lmw, stmw) and load/store string instructions
(lswl, lswx, stswl, stswx) are only counted once. Does not include
folded branches. The counter can increment by 0, 1, 2, or 3, depending
on the number of completed instructions per cycle. Branch folding must
be disabled (HID0[FOLD] = 0) in order to count all the instructions.

3 (000_0011) TBL bit transitions Counts transitions from 0 to 1 of TBL bits specified through
MMCR0[TBSEL].

00 = uses the TBL[31] bit to count
01 = uses the TBL[23] bit to count
10 = uses the TBL[19] bit to count
11 = uses the TBL[15] bit to count

4 (000_0100) Instructions dispatched Counts dispatched instructions.The counter can increment by 0, 1, 2, or
3, depending on the number of dispatched instructions per cycle.
Load/store multiple instructions (lmw, stmw) and load/store string
instructions (lswl, lswx, stswl, stswx) are only counted once. This event
includes instructions dispatched directly to the completion queue,

5 (000_0101) Processor performance
monitor exception

Counts times the processor begins to generate its performance monitor
exception condition. The performance monitor exception condition is set
when the processor performance monitor counter is negative and its
exception signaling is enabled via MMCR0[PMC1CE] or MMCR0[PMC-
nCE]. The MPC7451 does not require MMCR0[PMXE] to be set to allow
the exception to occur.

6 (000_0110) — Reserved

7 (000_0111) External performance
monitor signal

Counts times the external performance monitor signal (PMON_IN)
transitions from negated to asserted.

8 (000_1000) VPU instructions
completed

Counts VPU instructions completed.

9 (000_1001) VFPU instructions
completed

Counts VFPU instruction completed.

10 (000_1010) VIU1 instructions
completed

Counts VIU1 instructions completed.

11 (000_1011) VIU2 instructions
completed

Counts VIU2 instructions completed.

12 (000_1100) mtvscr instructions
completed

Counts completed AltiVec mtvscr instructions.

13 (000_1101) mtvrsave instructions
completed

Counts completed AltiVec mtvrsave instructions.

14 (000_1110) Cycles a VPU instruction Counts the cycles an AltiVec instruction in the VPU reservation station is
waiting for an operand.

15 (000_1111) Cycles a VFPU
instruction

Counts the cycles an AltiVec instruction in the VFPU reservation station
is waiting for an operand.

11-16 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Event Selection

16 (001_0000) Cycles a VIU1 instruction Counts the cycles an AltiVec instruction in the VIU1 reservation station
is waiting for an operand.

17 (001_0001) Cycles an instruction in
VIU2 reservation station

waits for operand

Counts the cycles an AltiVec instruction in the VIU2 reservation station
is waiting for an operand.

18 (001_0010) mfvscr synchronization Counts cycles when the VFPU has a valid mfvscr instruction issued, but
the instruction cannot start execution because it is not at the bottom of
the CQ.

19 (001_0011) VSCR[SAT] set Counts whenever VSCR[SAT] goes from 0 to 1.

20 (001_0100) Store instructions Counts completed store instructions. Store string and multiples count as
single instructions. This count does not include the following instructions,
which do not perform a load or store: sync, eciwx, ecowx, eieio, dcbf,
dcbi, dcbst, dcbt, dcbtst, dcbz, icbi, tlbie, tlbld, tlbli, tlbsync, dcba,
dst, dstt, dstst, dststt, dss, and dssall.

21 (001_0101) L1 instruction cache
misses

Counts L1 instruction cache misses. This does not include
cache-inhibited or cache-disabled accesses.

22 (001_0110) L1 data snoops Counts the snoop accesses to the L1 data cache.

23 (001_0111) Unresolved branches Counts branches that are unresolved when processed. This includes
branches in a speculative path that might later be thrown away due to
another previously predicted branch that mispredicts.

24 (001_1000) Cycles first speculation
buffer active

Counts cycles that a predicted branch is active in the first speculation
buffer.

25 (001_1001) Branch unit stall Counts cycles the branch unit cannot process new branches This
includes waiting on speculative branches that are not resolved.

26 (001_1010) True branch target
instruction hits

Counts the true branch target instruction hits for taken branches. Note
that this count includes speculative branches that have been taken.

27 (001_1011) Branch link stack
predicted

Counts the branches that use link stack prediction. This count includes
branches that are in speculative paths. This count may be greater than
the sum of link-stack-correctly-resolved and link-stack-mispredicted
because another branch may mispredict and cause this branch to be
thrown off the link stack before the resolution occurs.

28 (001_1100) Dispatches to GPR issue
queue

Counts instructions dispatched to the GPR issue queue. This includes
instructions of speculative paths. Instructions that are executed by the
IUs or LSU are dispatched to the GPR issue queue.

29 (001_1.101) Cycles where 3
instructions are

dispatched

Counts cycles where three instructions are dispatched from the dispatch
unit.

30 (001_1110) Counts instruction queue
entries over

MMCR0[THRESHOLD]

Counts the cycles when the number of valid instruction queue entries is
greater than or equal to the MMCR0[THRESHOLD] value. This event
does not scale the MMCR0[THRESHOLD] value.

31 (001_1111) Counts AltiVec issue
queue entries over

MMCR0[THRESHOLD]

Counts the cycles when the number of valid AltiVec issue queue entries
is greater than or equal to the MMCR0[THRESHOLD] value. This event
does not scale the MMCR0[THRESHOLD] value.

32 (010_0000) Cycles where no
instructions completed

Counts the cycles where no instructions are completed.

Table 11-9. PMC1 Events—MMCR0[PMC1SEL] Select Encodings (continued)

Number Event Description

MOTOROLA Chapter 11. Performance Monitor 11-17

Event Selection

33 (010_0001) Completed IU2
instructions

Counts IU2 instructions completed.

34 (010_0010) Completed branch
instructions

Counts branches completed, but it does not include folded branches. To
count all branches, branch folding must be disabled by clearing
HID0[FOLD].

35 (010_0011) eieio instructions
completed

Counts completed eieio instructions.

36 (010_0100) mtspr instructions
completed

Counts completed mtspr instructions. This count does not include
mtvscr instructions.

37 (010_0101) sc instructions
completed

Counts completed system call (sc) instructions.

38 (010_0110) Load string and load
multiple instructions

completed

Counts completed load string (lswl, lswx) and load multiple (lm)
instructions. Load strings and load multiples are only counted once
regardless of how many pieces into which they are broken. A lswx
instruction of length zero is counted once if MSR[SE] is set; otherwise, it
is not counted.

39 (010_0111) ITLB hardware table
search cycles

Counts cycles spent performing a hardware table search operation for
the instruction TLB. A hardware table search begins when the ITLB
determines that it has missed and all instructions ahead of the ITLB miss
have completed. A hardware table search ends when the page table
entry (PTE) or a page fault signal is returned by the table search. Note
that the cycles do not include the time it takes the MPC7451 to drain
before the hardware table search operation begins.

40 (010_1000) DTLB hardware table
search cycles over

MMCR0[THRESHOLD]
value

Counts cycles beyond MMCR0[THRESHOLD] value that are required to
perform a hardware data TLB search operation for a data access. This
includes table search operations that do not find a matching PTE entry
in the page table. This also includes table search operations caused by
dst, dstt, dstst, and dststt instructions. This event scales the
MMCR0[THRESHOLD] value as specified by MMCR2[THRESHMULT].

41 (010_1001) L1 instruction cache
accesses

Counts the L1 instruction cache accesses. This does not include
cache-inhibited or cache-disabled accesses.

42 (010_1010) Instruction breakpoint
matches

Counts when the address of an instruction being completed matches the
instruction address breakpoint register (IABR). A match is determined by
the following equation:
Match = ((IABR[0–29] & BAMR[0–29]) ==
(completion_address[0–29] & BAMR[0–29]))
The counter can increment by 0, 1, 2, or 3 depending on the number of
completed instructions per cycle

43 (010_1011) L1 data cache load miss
cycles over

MMCR0[THRESHOLD]
value

Counts the cycles an L1 data cache load miss requires beyond the
MMCR0[THRESHOLD] value to write back to the rename registers. The
cycle count compared to the threshold value represents the number of
cycles starting with allocation in the L1 Miss Queue. This event scales
the MMCR0[THRESHOLD] value as specified by
MMCR2[THRESHMULT]. The miss latency threshold is measured per
dispatched operation, not per instruction. Load strings and multiples may
have multiple dispatches per instruction. Misaligned loads have multiple
accesses, but only one dispatch. The measurement for a misaligned
load is from the first piece that misses until the entire load finishes. Note
that only the oldest entry of the LMQ is counted.

Table 11-9. PMC1 Events—MMCR0[PMC1SEL] Select Encodings (continued)

Number Event Description

11-18 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Event Selection

44 (010_1100) L1 data snoop hit on
modified

Counts snoop accesses to the L1 data cache that hit in a modified cache
line.

45 (010_1101) Load miss alias Counts loads that alias against an entry already in the L1 miss queue
and stalled.

46 (010_1110) Load miss alias on touch Counts loads that alias against a touch in the L1 miss queue.

47 (010_1111) Touch alias Counts touches that alias against an entry already in the L1 miss queue.

48 (011_0000) L1 data snoop hit in L1
castout queue

Counts snoop accesses to the L1 data cache that hit in the L1 castout
queue and create a push.

49 (011_0001) L1 data snoop hit castout Counts snoop accesses to the L1 data cache that hit in a castout and
were retried (pre-L1 castout queue or bottom of L1 castout queue).

50 (11_0010) L1 data snoop hits Counts snoop accesses to the L1 data cache that hit regardless of the
cache state (shared, exclusive, or modified).

51 (11_0011) Write-through stores Counts write-through stores sent to the memory subsystem after
gathering.

52 (11_0100) Cache-inhibited stores Counts cache-inhibited stores sent to the memory subsystem after
gathering.

53 (11_0101) L1 data load hit Counts each L1 data cache load hit. It does not include MMU table
search lookups or touches.

54 (11_0110) L1 data touch hit Counts once per dcbt or dcbtst instruction or dstx cache line fetch that
hits in the L1 data cache.

55 (11_0111) L1 data store hit Counts write-back store hit attempts that successfully hit in the L1 data
cache. Does not count if a store hits on a shared cache line. A gathered
stores is considered a hit.

56 (11_1000) L1 data total hits Counts L1 data cache load, store, or touch hits.

57 (11_1001) dst instructions
dispatched

Counts dst instructions dispatched to VTQ. Includes speculative dst
instructions that are canceled.

58 (11_1010) Refreshed dsts Counts dst operations issued to already active streams.

59 (11_1011) Successful dst, dstt,
dstst, and dststt table

search operations

Counts non-faulting table search operations caused by data stream
touch instructions (dst, dstt, dstst, and dststt).

60 (11_1100) dss instructions
completed

Counts dss instructions completed.

61(011_1101) dst stream 0 cache line
fetches

Counts dst stream 0 cache line fetches from the data stream engine
(VT0) within the vector-touch queue (VTQ). This includes accesses that
hit or miss in the L1 data cache.

62 (011_1110) VTQ suspends due to
change of context

Counts any number of VTQ streams that pause due to a change in
MSR[PR] or MSR[DR].

63 (011_1111) VTQ line fetch hit Number of VTQ generated accesses that hit in the L1 data cache.

64 (100_0000 AltiVec load instructions
completed

Counts completed AltiVec load instructions.

Table 11-9. PMC1 Events—MMCR0[PMC1SEL] Select Encodings (continued)

Number Event Description

MOTOROLA Chapter 11. Performance Monitor 11-19

Event Selection

65 (100_0001) Floating-point store
instructions completed in

LSU

Counts aligned floating-point store instructions completed. All
misaligned floating-point store instructions completed are counted under
PMC1, event number 88 (0x101_1000).

66 (100_0010) Floating-point
renormalization

Counts times a floating-point store single requires renormalization.

67 (100_0011) Floating-point
denormalization

Counts times a floating-point store double requires denormalization.

68 (100_0100) Floating-Point store
causes stall in LSU

Counts cycles a floating-point store in the FSQ results in a store not
being able to complete.

69 (100_0101) — Reserved

70 (100_0110) Load/Store true alias stall Counts times the load or store is stalled due to a true alias.

71 (100_0111) Load/Store indexed alias
stall

Counts times the load/store RA latch is stalled due to a true or indexed
alias.

72 (100_1000) Load/Store alias versus
FSQ/WB0/WB1

Counts times an alias occurs in LSU for a load versus the finished store
queue or write-back stages.

73 (100_1001) Load/Store alias versus
CSQ

Counts times alias occurs in LSU for a load versus the completed store
queue (CSQ).

74 100_1010) Load/Store load-hit line
alias versus CSQ0

Counts times line alias occurs in a LSU for a load hit versus a completed
store in CSQ0.

75 100_1011) Load/Store load-miss
line alias versus CSQ0

Counts times line alias occurs in LSU for a load miss versus completed
store in CSQ0.

76 (100_1100) Load/Store touch alias
versus FSQ/WB0/WB1

Counts times alias occurs in load/store unit for a touch versus the
finished store queue or write-back stages.

77 (100_1101) Load/Store touch alias
versus CSQ

Counts times alias occurs in the LSU for a touch versus the completed
store queue.

78 (100_1110) Load/Store LMQ full stall Counts times the LSU RA latch is stalled while L1 miss queue (LMQ) is
full.

79 (100_1111) Floating-point load
instruction completed in

LSU

Counts times a floating-point load instruction is completed in the LSU.

80 (101_0000) Floating-point load single
instruction completed in

LSU

Counts times a floating-point load single instruction is completed in the
LSU.

81 (101_0001) Floating-point load
double completed in LSU

Counts times a floating-point load double instruction is finished in the
LSU.

82 (101_0010) LSU RA latch stall Counts times the LSU RA latch is stalled for any reason.

83 (101_0011) Load/Store load versus
store queue alias stall

Counts times a load/store stall exists due to a true alias between a load
or touch and the store queue (both Finished store queue(FSQ) and
completed store queue (CSQ)).

84 (101_0100) Load/Store LMQ index
alias

Counts times a load/store stall exists due to an index alias against the
LMQ.

Table 11-9. PMC1 Events—MMCR0[PMC1SEL] Select Encodings (continued)

Number Event Description

11-20 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Event Selection

11.5.2 PMC2 Events

MMCR0[PMC2SEL] specify the events associated with PMC2, as shown in Table 11-10.

85 (101_0101) Load/store store queue
index alias

Counts times a load/store stall exists due to an index alias against the
store queue.

86 (101_0110) Load/store CSQ
forwarding

Counts times the completed store queue forwards to a load in the LSU.

87 (101_0111) Load/store misalign load
finish

Counts times a misaligned load finishes in the LSU.

88 (101_1000) Load/store misalign store
complete

Counts times a misaligned store completes in the LSU.

89 (101_1001) Load/store misalign stall Counts times reservation station 0 (RS0) is misaligned and pending a
misalign stall.

90 (101_1010) Floating-point 1/4
FPSCR renames busy

Counts times the FPSCR rename is 1/4 busy.

91 (101_1011) Floating-point 1/2
FPSCR renames busy

Counts times the FPSCR rename is 1/2 busy.

92 (101_1100) Floating-point 3/4
FPSCR renames busy

Counts times the FPSCR rename is 3/4 busy.

93 (101_1101) Floating-point all FPSCR
renames busy

Counts times the FPSCR renames are completely busy.

94 (101_1110) Floating-point
denormalized result

Counts times when a floating-point calculation results in a denormalized
result.

95-127 — Reserved

Table 11-10. PMC2 Events—MMCR0[PMC2SEL] Select Encodings

Number Event Description

0 (00_0000) Nothing Register counter holds current value.

1 (00_0001) Processor cycles Counts every processor cycle.

2 (00_0010) Instructions
completed

Counts all completed PowerPC and AltiVec instructions. Load/store multiple
instructions (lmw, stmw) and load/store string instructions (lswl, lswx, stswl,
stswx) are counted only once. Does not include folded branches. The counter
can increment by 0, 1, 2, or 3, depending on the number of completed
instructions per cycle. Branch folding must be disabled (HID0[FOLD] = 0) in
order to count all the instructions.

3 (00_0011) TBL bit transitions Counts transitions from 0 to 1 of TBL bits specified through MMCR0[TBSEL]
00 = uses the TBL[31] bit to count
01 = uses the TBL[23] bit to count
10 = uses the TBL[19] bit to count
11 = uses the TBL[15] bit to count

Table 11-9. PMC1 Events—MMCR0[PMC1SEL] Select Encodings (continued)

Number Event Description

MOTOROLA Chapter 11. Performance Monitor 11-21

Event Selection

4 (00_0100) Instructions
dispatched

Counts dispatched instructions.The counter can increment by 0, 1, 2, or 3,
depending on the number of completed instructions per cycle. Load/store
multiple instructions (lmw, stmw) and load/store string instructions (lswl,
lswx, stswl, stswx) are counted only once. This event includes instructions
that are dispatched directly to the completion queue.

5 (00_0101) Processor
performance

monitor exception

Counts the times the processor begins to generate its performance monitor
exception condition. The performance monitor exception condition is set
when the processor performance monitor counter is negative and the excep-
tion signaling is enabled via MMCR0[PMC1CE] or MMCR0[PMCnCE]. The
MPC7451 does not require MMCR0[PMXE] to be set to allow the exception
to occur.

6 (00_0110) — Reserved. Read as zero.

7 (00_0111) External
performance

monitor signal

Counts times the external performance monitor signal (PMON_IN) transitions
from negated to asserted.

8 (00_1000) VPU instructions
completed

Counts VPU instructions completed.

9 (00_1001) VFPU instructions
completed

Counts VFPU instructions completed.

10 (00_1010) VIU1 instructions
completed

Counts VIU1 instructions completed.

11 (00_1011) VIU2 instructions
completed

Counts VIU2 instructions completed.

12 (00_1100) mtvscr instructions
completed

Counts completed mtvscr instructions.

13 (00_1101) mtvrsave
instructions
completed

Counts completed mtvrsave instructions.

14 (00_1110) Cycles a VPU
instruction in the

reservation station
is waiting for an

operand

Counts cycles an AltiVec instruction in the vector permute unit reservation
station is waiting for an operand.

15 (00_1111) Cycles a VFPU
instruction in the

reservation station
is waiting for

operand

Counts the cycles an AltiVec instruction in the VFPU reservation station is
waiting for an operand.

16 (01_0000) Cycles a VIU1
instruction in the

reservation station
is waiting for

operand

Counts the cycles an AltiVec instruction in the VIU1 reservation station is
waiting for an operand.

Table 11-10. PMC2 Events—MMCR0[PMC2SEL] Select Encodings (continued)

Number Event Description

11-22 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Event Selection

17 (01_0001) Cycles a VIU2
instruction in the

reservation station
is waiting for

operand

Counts the cycles an AltiVec instruction in the VIU2 reservation station is
waiting for an operand.

18 (01_0010) mfvscr
synchronization

Counts cycles when the VFPU has a valid mfvscr instruction dispatched, but
the instruction cannot be completed because it is not at the bottom of the
completion queue.

19 (01_0011) VSCR[SAT] set Counts whenever VSCR[SAT] goes from 0 to 1.

20 (01_0100) Store instructions Counts store instructions completed. Store strings and store multiples count
only once. This count does not include instructions like cache operations that
do not actually perform a load or store. Instructions not counted in the store
instructions event are: sync, eciwx, ecowx, eieio, dcbf, dcbi, dcbst, dcbt,
dcbtst, dcbz, icbi, tlbie, tlbld, tlbli, tlbsync, dcba, dst, dstt, dstst, dststt,
dss, and dssall.

21 (01_0101) L1 instruction cache
misses

Counts the L1 instruction cache misses. This does not include cache inhibited
or cache-disabled accesses.

22 (01_0110) L1 data snoops Counts snoop accesses to the L1 data cache.

23 (01_0111) L1 data total misses Counts L1 data cache load, store, or touch misses.

24 (01_1000) Dispatches to FPR
issue queue

Counts the instructions dispatched to the FPR issue queue. This includes
instructions in the speculative paths. Instructions executed by the FPU are
dispatched to the FPR issue queue.

25 (01_1001) LSU instructions
completed

Counts LSU instructions completed

26 (01_1010) Load instructions Counts the load instructions completed. Load strings and load multiples only
count once. This count does not include instructions like cache operations
that do not actually perform a load or store. Instructions not counted in the
load instructions event are: sync, eciwx, ecowx, eieio, dcbf, dcbi, dcbst,
dcbt, dcbtst, dcbz, icbi, tlbie, tlbld, tlbli, tlbsync, dcba, dst, dstt, dstst,
dststt, dss, dssall, and lswx with length zero (XER[25–31] = 0).

27 (01_1011) Store string and
store multiple
instructions

Counts store string and store multiple instructions completed. Store strings
and store multiples are counted only once. A stswx instruction with length
zero (XER[25–31] = 0) is counted once.

28 (01_1100) tlbie instructions
completed

Counts tlbie instructions completed.

29 (01_1101) lwarx instructions
completed

Counts lwarx instructions completed.

30 (01_1110) mfspr instructions
completed

Counts mfspr instructions completed.This count does not include mfvscr
instructions.

Table 11-10. PMC2 Events—MMCR0[PMC2SEL] Select Encodings (continued)

Number Event Description

MOTOROLA Chapter 11. Performance Monitor 11-23

Event Selection

31 (01_1111) Refetch serialization Counts when a refetch serialization occurs for the following cases:
 • isync completes
 • sc completes
 • rfi completes
 • When an instruction that sets the XER[SO] bit completes (Changes

XER[S0] from zero to one.) and when XER[SO] is cleared by a mtspr
instruction

 • Exceptions taken
 • Tracing is enabled (MSR[SE] = 1 or MSR[BE] = 1) and a branch is

speculative at branch processing time
 • Floating-point exception cases where the The Programming Environments

Manual specifies that the target FPR is unchanged.
 • dcba to a page marked as write-through or cache-inhibited.

32 (10_0000) Completion queue
entries over

MMCR0[THRESHO
LD] value

Counts the cycles when the valid completion queue entries is greater than or
equal to the MMCR0[THRESHOLD] value. This event does not scale the
MMCR0[THRESHOLD] value.

33 (10_0001) Completing one
instruction

Counts cycles in which exactly one instruction is completed.

34 (10_0010) Two instructions
dispatched

Counts cycles in which exactly two instructions are dispatched.

35 (10_0011) ITLB
non-speculative

misses

Counts times that a requested non-speculative address translation was not in
the instruction TLB.

36 (10_0100) Cycles waiting from
L1 instruction cache

miss

Counts cycles spent waiting for L1 instruction cache miss. This includes all
instruction fetches, both cacheable and cache-inhibited. It counts from when
the miss is detected until either the data is returned or the request is
cancelled.

37 (10_0101) L1 data load access
miss

Counts L1 data cache load access misses. This does not include MMU table
search lookups or touches.

38 (10_0110) L1 data touch miss Counts once for every dstx cache line fetch, dcbt, or dcbtst L1 data cache
miss that causes a L1 data cache reload

39 (10_0111) L1 data store miss Counts write-back store attempts that missed in the L1 data cache. This
counts only once on gathered stores, if gathered before the cache access.

40 (10_1000) L1 data touch miss
cycles

Counts cycles spent waiting for L1 data cache touch misses from when the
miss is detected until either the data is returned or the request is cancelled.

41 (10_1001) L1 data cycles used Counts cycles when the L1 data cache is used for any reason but does not
include snoop accesses. The count value indicates the L1 data cache
bandwidth consumed when compared to the number of processor cycles
elapsed.

42 (10_1010) dst stream 1 cache
line fetches

Counts dst stream 1 cache line fetches from the data stream engine (VT1)
within the vector touch queue (VTQ). This includes accesses that hit or miss
in the L1 data cache.

43 (10_1011) VTQ stream
cancelled

prematurely

Counts times when a VTQ streams is cancelled due to branch speculation
cancel, inappropriate translation protection, or WIMG. This does not include
cases where the VTQ stream is cancelled by reaching the end of a stream,
refresh, or dss. This counter can increment by 0,1, 2, 3 or 4 at a time.

Table 11-10. PMC2 Events—MMCR0[PMC2SEL] Select Encodings (continued)

Number Event Description

11-24 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Event Selection

44 (10_1100) VTQ resumes due
to change of context

Counts any time the VTQ streams resume due to change in MSR[PR] or
MSR[DR].

45 (10_1101) VTQ line fetch miss Counts VTQ generated accesses that miss in the L1 data cache.

46 (10_1110) VTQ line fetch Counts all VTQ fetch attempts. This includes all VTQ generated accesses that
hit or miss in the L1 data cache.

47 (10_1111) TLBIE snoops Counts the TLB invalidations performed due to another master’s TLBIE
broadcast.

48 (11_0000) L1 instruction cache
reloads

Counts times that the L1 instruction cache is reloaded with a new cache line.
This does not include cache-inhibited accesses. It does include accesses
with the cache disabled and accesses that miss in the data cache when all
ways are locked.

49 (11_0001) L1 data cache
reloads

Counts times that the L1 data cache is reloaded with a new cache line. This
does not include cache-inhibited accesses, accesses with the cache
disabled, or accesses that miss in the data cache when all ways are locked.

50 (011_0010) L1 data cache
castouts to L2

Counts L1 data cache castouts to the L2 cache.

51 (011_0011) Store merge/gather Counts store operations that are merged with other store operations in the
completed store queue (CSQ).

52 (011_0100) Cacheable store
merge to 32 bytes

Counts times all 32 bytes have been merged in the completed store queue
(CSQ) to allow a full cache line write operation.

53 (011_0101) Data breakpoint
matches

Counts times a data address breakpoint exception is signalled.

54 (011_0110) Fall-through
branches processed

Counts branches that were either predicted or resolved as not-taken. This
includes branches that are in a speculative path that might later be thrown
away due to a another previously predicted branch that mispredicts.

55 (011_0111) First speculative
branch buffer

resolved correctly

Counts branches in the first prediction buffer that resolve correctly.
Out-of-order branch resolution means that some parts of this count may be
due to branches in a speculative path that resolve correctly, but the
speculative path is later mispredicted.

56 (011_1000) Second speculation
buffer active

Counts the cycles that a predicted branch is active in the second speculation
buffer.

57 (011_1001) BPU Stall on LR
dependency

Counts the cycles the branch processing unit (BPU) is stalls due to the link
register (LR) being unresolved. If the link stack is enabled, a stall on LR
dependency occurs only when the LR is unavailable and the link stack is
empty. The count includes stalls down speculative paths.

58 (011_1010) BTIC miss Counts branch target instruction cache (BTIC) misses for taken branches.
Note that this count includes taken branches that are in speculative paths.

59 (011_1011) Branch link stack
correctly resolved

Counts branches that use link stack prediction and resolve correctly. This
count includes branches that are in speculative paths.

60 (011_1100) FPR issue stalled Counts times an instruction in the FPR issue queue could not be issued. This
should only occur if the FPU is busy when an instruction is ready to issue.

61(011_1101) Switches between
Privileged and User

Counts times the MSR[PR] bit gets set and cleared.

Table 11-10. PMC2 Events—MMCR0[PMC2SEL] Select Encodings (continued)

Number Event Description

MOTOROLA Chapter 11. Performance Monitor 11-25

Event Selection

11.5.3 PMC3 Events

Bits MMCR1[PMC3SEL] specify events associated with PMC3, as shown in Table 11-11.

62 (011_1110) LSU completes
floating-point store

single

Counts aligned floating-point store single instructions completed.
All misaligned floating-point store instructions completed are counted
under PMC1, event number 88 (0x101_1000).

63 (11_1111) — Reserved

Table 11-11. PMC3 Events—MMCR1[PMC3SEL] Select Encodings

Number Event Description

0 (0_0000) Nothing Register counter holds current value.

1 (0_0001) Processor cycles Counts every processor clock cycle.

2 (0_0010) Instructions
completed

Counts all completed PowerPC and AltiVec instructions. Load/store multiple
instructions (lmw, stmw) and load/store string instructions (lswl, lswx, stswl,
stswx) are only counted once. Does not include folded branches. The counter can
increment by 0, 1, 2, or 3, depending on the number of completed instructions per
cycle. Branch folding must be disabled (HID0[FOLD] = 0) in order to count all the
instructions.

3 (0_0011) TBL bit transitions Counts transitions from 0 to 1 of TBL bits specified through MMCR0[TBSEL]
00 = uses the TBL[31] bit to count
01 = uses the TBL[23] bit to count
10 = uses the TBL[19] bit to count
11 = uses the TBL[15] bit to count

4 (0_0100) Instructions
dispatched

Counts dispatched instructions.The counter can increment by 0, 1, 2, or 3,
depending on the number of completed instructions per cycle. Load/store multiple
instructions (lmw, stmw) and load/store string instructions (lswl, lswx, stswl,
stswx) are counted only once. This event includes instructions that are dispatched
directly to the completion queue.

5 (0_0101) Processor
performance

monitor exception

Counts times the processor begins to generate its performance monitor excep-
tion condition. The performance monitor exception condition is set when the pro-
cessor performance monitor counter is negative and its exception signaling is
enabled via MMCR0[PMC1CE] or MMCR0[PMCnCE]. The MPC7451 does not
require MMCR0[PMXE] to be set to allow the exception to occur.

6 (0_0110) — Reserved
Read as zero.

7 (0_0111) External
performance

monitor signal

Counts times the external performance monitor signal (PMON_IN) transitions from
negated to asserted.

8 (0_1000) Completing two
instruction

Counts cycles where exactly two instruction are completed.

9 (0_1001) One instruction
dispatched

Counts cycles when exactly one instruction is dispatched.

Table 11-10. PMC2 Events—MMCR0[PMC2SEL] Select Encodings (continued)

Number Event Description

11-26 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Event Selection

10 (0_1010) Dispatches to VR
issue queue

Counts the instructions dispatched to the vector register (VR) issue queue. This
includes instructions in speculative paths. AltiVec instructions are executed by the
VPU, VIU1, VIU2, and VFPU are dispatched to the VR issue queue.

11 (0_1011) VR Stalls Counts when an instruction in the vector register (VR) issue queue could not be
issued. This counter can be incremented by 0, 1, or 2. An AltiVec instruction
cannot be issued when its vector execution unit is busy or the AltiVec instruction
ahead in the AltiVec issue queue could not be issued.

12 (0_1100) GPR rename buffer
entries over

MMCR0[THRESHO
LD]

Counts the cycles when the number of valid GPR rename buffers is greater than
or equal to the MMCR0[THRESHOLD] value. This event does not scale the
MMCR0[THRESHOLD] value.

13 (0_1101) FPR issue queue
entries

Counts the number of valid FPR issue queue entries each cycle.

14 (0_1110) FPU instructions Counts FPU instructions completed.

15 (0_1111) stwcx. instructions Counts stwcx. instructions completed.

16 (1_0000) Load string and
multiple instruction

pieces

Counts pieces of load string and load multiple instructions that are completed. A
lswx instruction of length zero is counted once if MSR[SE] is set; otherwise it is
not counted.

17 (1_0001) ITLB hardware table
search cycles over

threshold

Counts times an instruction TBL hardware search operation for an instruction fetch
requires more than the threshold number of cycles to complete. This includes table
search operations that do not find any matching PTE entry in the page table. This
event scales the MMCR0 threshold value as specified by
MMCR2[THRESHMULT].

18 (1_0010) DTLB misses Counts times a needed non-speculative data address translation was not in the
DTLB.

19 (1_0011) Cancelled L1
instruction cache

misses

Counts cacheable instruction accesses that miss in the instruction cache, but are
cancelled before they are accepted by the memory subsystem.

20 (1_0100) L1 data cache
operation hit

Counts cache operations that hit in the L1 data cache (dcbf, dcbst).

21 (1_0101) L1 data load miss
cycles

Counts cycles spent waiting for L1 data cache misses in the LMQ. It counts from
when the miss is detected until either the data is returned or the request is
cancelled. Misses in the LMQ include all load and touch operations. Note that a
load miss is only counted if it is the oldest entry of the LMQ.

22 (1_0110) L1 data Pushes Counts L1 data pushes caused by snoops to modified cache lines.

23 (1_0111) L1 data total miss Counts L1 data cache load, store, or touch misses.

24 (1_1000) VT2 fetches Counts fetch attempts from the data stream engine 2 (VT2) within the vector-touch
queue (VTQ). This includes accesses that hit or miss in the L1 data cache.

25 (1_1001) Taken branches that
are processed

Counts branches that were either predicted or resolved taken. This includes
branches that are in a speculative path. This also includes branches that are in a
speculative path that might later be thrown away due to a another previously
predicted branch that mispredicts.

26 (1_1010) Branch flushes Counts flushes for clearing mispredicted instructions out of the completion queue.

Table 11-11. PMC3 Events—MMCR1[PMC3SEL] Select Encodings (continued)

Number Event Description

MOTOROLA Chapter 11. Performance Monitor 11-27

Event Selection

11.5.4 PMC4 Events

Bits MMCR1PMC4SEL] specify events associated with PMC4, as shown in Table 11-12.

27 (1_1011) Second speculative
branch buffer

resolved correctly

Counts branches in the second prediction buffer that resolve correctly.
Out-of-order branch resolution means that some parts of this count may be due to
branches in a speculative path that resolve correctly, but the speculative path is
later mispredicted.

28 (1_1100) Third speculation
buffer active

Counts cycles that a third predicted branch is active.

29 (1_1101) Branch unit stall on
CTR dependency

Counts cycles the branch unit is stalled due to the counter register (CTR) being
unresolved. Includes stalls down speculative paths.

30 (1_1110) Fast BTIC hit Counts FBTIC hits for taken branches. This number should be greater than or
equal to the BTIC hit count. The difference between this count and the BTIC hit
count provides the number of aliased BTIC hits. Aliased BTIC hits force a hiccup
in the fetch pipe, delaying when the instructions at the branch target address are
available for dispatch. Note that this count includes taken branches that are in
speculative paths.

31 (1_1111) Branch Link Stack
Mispredicted

Counts branches that use Link Stack Prediction and resolve incorrectly. This count
includes branches that are in speculative paths.

Table 11-12. PMC4 Events—MMCR1[PMC4SEL] Select Encodings

Number Event Description

0 (0_0000) Nothing Register counter holds current value.

1 (0_0001) Processor cycles Counts every processor cycle.

2 (0_0010) Instructions
completed

Counts all completed PowerPC and AltiVec instructions. Load/store multiple/string
instructions are only counted once even though they are broken up into pieces.
Does not include folded branches. To count all instructions, HID0[FOLD] must be
cleared to disable branch folding.

3 (0_0011) TBL bit transitions Counts transitions from 0 to 1 of TBL bits specified through MMCR0[TBSEL]
00 = uses the TBL[31] bit to count
01 = uses the TBL[23] bit to count
10 = uses the TBL[19] bit to count
11 = uses the TBL[15] bit to count

4 (0_0100) Instructions
dispatched

Counts dispatched instructions.The counter can increment by 0, 1, 2, or 3,
depending on the number of completed instructions per cycle. Load/store multiple
instructions (lmw, stmw) and load/store string instructions (lswl, lswx, stswl,
stswx) are only counted once. This event includes instructions that are dispatched
directly to the completion queue.

5 (0_0101) Processor
performance

monitor exception

Counts the times the processor begins to generate its performance monitor
exception condition. The performance monitor exception condition is set when the
processor performance monitor counter is negative and its exception signaling is
enabled via MMCR0[PMC1CE] or MMCR0[PMCnCE]. The MPC7451 does not
require MMCR0[PMXE] to be set to allow the exception to occur.

6 (0_0110) — Reserved. Read as zero.

Table 11-11. PMC3 Events—MMCR1[PMC3SEL] Select Encodings (continued)

Number Event Description

11-28 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Event Selection

7 (0_0111) External
performance

monitor signal

Counts times the external performance monitor signal (PMON_IN) transitions from
negated to asserted.

8 (0_1000) Instructions
completed in VPU

Counts completed VPU instructions.

9 (0_1001) Instructions
completed in VFPU

Counts completed vector VFPU instructions.

10 (0_1010) VIU1 instructions
completed

Counts completed VIU1 instructions.

11 (0_1011) VIU2 Instructions
completed

Counts completed VIU2 instructions.

12 (0_1100) mtvscr
Instructions
completed

Counts completed mtvscr instructions.

13 (0_1101) mtvrsave
Instructions
completed

Counts completed mtvrsave instructions.

14 (0_1110) Completing 3
instructions

Counts cycles where three instructions are completed.

15 (0_1111) Dispatching 0
instructions

Counts cycles where zero instructions are dispatched.

16 (1_0000) GPR issue queue
entries over

threshold

Counts cycles when the valid GPR issue queue entries is greater than or equal to
the MMCR0[THRESHOLD] value. This event cannot scale the
MMCR0[THRESHOLD] value.

17 (1_0001) GPR issue queue
stalled

Counts cycles that instructions in the GPR issue queue are not issued. This value
only increments by 1 on any given cycle. A GPR instruction is not issued when its
unit is busy, or when an instruction ahead of it in the GPR issue queue could not
issue. An IU1 instruction goes to any non-busy IU1 so it only stalls if more IU1
instructions are trying to issue than there are non-busy IU1 units.

18 (1_0010) IU1 instructions Counts completed IU1 instructions.

19 (1_0011) dssall instructions Counts completed dssall instructions.

20 (1_0100) tlbsync
instructions

Counts completed tlbsync instructions.

21 (1_0101) sync instructions Counts completed sync instructions.

22 (1_0110) Store string and
multiple instruction

pieces

Counts completed pieces of store string and store multiple instructions. A stswx
instruction of length zero is counted once.

23 (1_0111) DTLB hardware
table search cycles

Counts cycles spent performing hardware table search operations for DTLB
misses. A hardware table search begins when the DTLB determines that it has
missed and all instructions ahead of the DTLB miss have completed. A hardware
table search ends when the page table entry (PTE) or a page fault signal is returned
by the table search engine. The number of cycles does NOT include the time it takes
the machine to drain before the hardware table search begins.

Table 11-12. PMC4 Events—MMCR1[PMC4SEL] Select Encodings (continued)

Number Event Description

MOTOROLA Chapter 11. Performance Monitor 11-29

Event Selection

11.5.5 PMC5 Events

Bits MMCR1[PMC5SEL] specify events associated with PMC5, as shown in Table 11-13.

24 (1_1000) Snoop retries Counts the number of load-store snoops that are retried by the load-store. This
includes external snoops which are retried because of a load-store collision, as well
as internal load-store self-snoop retries. It does not include snoops which are
retried because of an MSS collision or busy condition. An example of an internal
self-snoop collision is a load L1 miss which collides with a castout in the L1 castout
queue. This type of collision is handled through internal snoop retry instead of
load-store pipeline stall.

25 (1_1001) Successful stwcx. Counts stwcx. instructions that completed with reservation intact.

26 (1_1010) dst stream 3 cache
line fetches

Counts dst stream 3 cache line fetches from the data stream engine (VT3) within
the vector-touch queue (VTQ). This includes accesses that hit or miss in the L1 data
cache.

27 (1_1011) Third speculative
branch buffer

resolved correctly

Counts branches in the third prediction buffer that resolve correctly. Out-of-order
branch resolution means that some parts of this count may be due to branches in
a speculative path that resolve correctly, but the speculative path is later
mispredicted.

28 (1_1100) Mispredicted
branches

Counts mispredicted branches. Due to out-of-order branch resolution, this count
includes mispredicted branches down speculative paths that may later be
mispredicted themselves.

29 (1_1101) Folded branches Counts branches actually folded in the instruction queue. Note that this count
includes branches that are on speculative paths.

30 (1_1110) Floating-point store
double completes

in LSU

Counts aligned floating-point store double instructions completed. All misaligned
floating-point store instructions completed are counted under PMC1, event number
88 (0x101_1000).

31 (1_1111) — Reserved

Table 11-13. PMC5 Events—MMCR1[PMC5SEL] Select Encodings

Number Event Description

0 (0_0000) Nothing Register counter holds current value.

1 (0_0001) Processor cycles Counts every processor clock cycle.

2 (0_0010) L2 cache hits Counts accesses from the processor that hit in the L2 for loads,
caching-allowed write-back stores, dcbz, instruction fetches, and touches.

3 (0_0011) 1 L3 cache hits Counts accesses from the processor that hit in the L3 for loads,
caching-allowed write-back stores, dcbz, instruction fetches, and touches.

4 (0_0100) 1 L2 instruction cache
misses

Counts instruction accesses from the processor that miss in the L2 cache.

5 (0_0101) 1 L3 instruction cache
misses

Counts instruction accesses from the processor that miss in the L3 cache.

6 (0_0110) L2 data cache
misses

Counts data accesses from the processor that miss in the L2 cache (loads,
caching-allowed write-back stores, dcbz, and touches).

Table 11-12. PMC4 Events—MMCR1[PMC4SEL] Select Encodings (continued)

Number Event Description

11-30 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Event Selection

11.5.6 PMC6 Events

The event to be monitored can be chosen by setting MMCR1[15–20]. The selected events
are counted beginning when MMCR1 is set until either MMCR1 is reset or a performance
monitor exception is generated. Table 11-14 lists the selectable events and their encodings.

7 (0_0111) 1 L3 data cache
misses

Counts data accesses from the processor that miss in the L3 cache (loads,
caching-allowed write-back stores, dcbz, and touches).

8 (0_1000) L2 Load hits Counts load accesses from the processor that hit in the L2 cache.

9 (0_1001) L2 Store hits Counts caching-allowed write-back store accesses from the processor that hit
in the L2 cache.

10 (0_1010) 1 L3 Load hits Counts load accesses from the processor that hit in the L3 cache.

11 (0_1011) 1 L3 Store hits Counts caching-allowed write-back store accesses from the processor that hit
in the L3 cache.

12 (0_1100) — Reserved

13 (0_1101) L2 touch hits Counts touch accesses (dcbt, dcbtst, and VTQ) from the processor that hit
in the L2 cache.

14 (0_1110) 1 L3 touch hits Counts touch accesses (dcbt, dcbtst, and VTQ) from the processor that hit
in the L3 cache.

15 (0_1111) Snoop retries Counts counts the number of internal requests that are internally retried. This
includes load-store retries as well as some MSS collision cases (that would
prevent an L2 hit from being considered good).

16 (1_0000) Snoop modified Counts times a snoop response to an access made by the processor is
modified (internal snooping).

17 (1_0001) Snoop valid Counts times a snoop response to an access made by the processor is valid
(internal snooping).

18 (1_0010) Intervention Counts local interventions serviced by the processor (internal snooping).

19 (1_0011) L2 cache misses Counts accesses from the processor that miss in the L2 for loads,
caching-allowed write-back stores, dcbz, instruction fetches, and touches.

20 (1_0100)1 L3 cache misses Counts accesses from the processor that miss in the L3 for loads,
caching-allowed write-back stores, dcbz, instruction fetches, and touches.

21–31 — Reserved

1 Note that the L3 cache is not supported on the MPC7441 and MPC7445.

Table 11-14. PMC6 Events—MMCR1[PMC6SEL] Select Encodings

Number Event Description

0 (00_0000) Nothing Register counter holds current value.

1 (00_0001) Processor cycles Counts every processor cycle.

Table 11-13. PMC5 Events—MMCR1[PMC5SEL] Select Encodings (continued)

Number Event Description

MOTOROLA Chapter 11. Performance Monitor 11-31

Event Selection

2 (00_0010) L2 cache hits Counts accesses from the processor that hit in the L2 for loads,
caching-allowed write-back stores, dcbz, instruction fetches, and touches.

3 (00_0011) 1 L3 cache hits Counts accesses from the processor that hit in the L3 for loads,
caching-allowed write-back stores, dcbz, instruction fetches, and touches.

4 (00_0100) L2 instruction cache
misses

Counts instruction accesses from the processor that miss in the L2 cache.

5 (00_0101) 1 L3 instruction cache
misses

Counts instruction accesses from the processor that miss in the L3 cache.

6 (00_0110) L2 data cache misses Counts data accesses from the processor that miss in the L2 cache (loads,
caching-allowed write-back stores, dcbz, and touches).

7 (00_0111) 1 L3 Data cache misses Counts data accesses from the processor that miss in the L3 (loads,
caching-allowed write-back stores, dcbz, and touches).

8 (00_1000) L2 cache castouts Counts L2 cache castouts.

9 (00_1001) 1 L3 castouts Counts L3 cache castouts.

10 (00_1010) L2SQ full cycles Counts cycles the L2 castout queue (L2SQ) is full (not counting the
reserved push slot).

11 (00_1011) 1 L3SQ full cycles Counts cycles the L3 castout queue (L3SQ) is full (not counting the
reserved push slot).

12 (00_1100) — Reserved

13 (00_1101) L2 touch hits Counts touch accesses (dcbt, dcbtst, and VTQ) from the processor that hit
in the L2 cache.

14 (00_1110) 1 L3 touch hits Counts touch accesses (dcbt, dcbtst, and VTQ) from the processor that hit
in the L3 cache.

15 (00_1111) Snoop retries Counts times a snoop response to any access is “retry.”

16 (01_0000) 1 RAQ full cycles Counts cycles the L3 read queue is full.

17 (01_0001) 1 WAQ full cycles Counts cycles the L3 write queue is full.

18 (01_0010) Intervention Counts local interventions serviced by the processor (internal snooping).

19 (01_0011) L1 external
Interventions

Counts L1 external interventions (External snoop hits modified in the L1
data cache).

20 (01_0100) L2 external
Interventions

Counts L2 interventions caused by external snoops to modified blocks.

21 (01_0101) 1 L3 external
Interventions

Counts L3 interventions caused by external snoops to modified blocks.

22 (01_0110) 1 External interventions Counts external interventions serviced. This is the sum of the L1, L2, and
L3 external interventions.

23 (01_0111) External pushes Counts times an external snoop causes a push or upgraded castout.

24 (01_1000) External snoop retry Counts the number of external snoops that get a retry response.

25 (01_1001) DTQ full cycles Counts cycles the DTQ is full (not counting reserved push slot).

26 (01_1010) Bus retry Counts transactions that were initiated by this processor that were retried
on the system interface.

Table 11-14. PMC6 Events—MMCR1[PMC6SEL] Select Encodings (continued)

Number Event Description

11-32 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Event Selection

27 (01_1011) L2 valid request Counts requests serviced by the L2 cache.

28 (01_1100) BORDQ full Counts cycles the BORDQ (bus outstanding read queue) is full. The entries
in BORDQ correspond directly to the addresses of entries in the LLQ.

29 (01_1101) L2 cache misses Counts accesses from the processor that miss in the L2 for loads,
caching-allowed write-back stores, dcbz, instruction fetches, and touches.

30 (01_1110) 1 L3 cache misses Counts accesses from the processor that miss in the L3 for loads,
caching-allowed write-back stores, dcbz, instruction fetches, and touches.

31 (01_1111) 1 L3 cache hits Counts accesses from the processor that hit in the L3 for loads,
caching-allowed write-back stores, dcbz, instruction fetches, and touches.

32 (10_0000) 1 L3 cache misses Counts accesses from the processor that miss in the L3 for loads,
caching-allowed write-back stores, dcbz, instruction fetches, and touches.

33 (10_0001) 1 L3 instruction cache
misses

Counts instruction accesses from the processor that miss in the L3 cache.

34 (10_0010) 1 L3 data cache misses Counts data accesses from the processor that miss in the L3 cache (loads,
caching-allowed write-back stores, dcbz, and touches).

35 (10_0011) 1 L3 load hits Counts load accesses from the processor that hit in the L3 cache.

36 (10_0100) 1 L3 store hits Counts caching-allowed store accesses from the processor that hit in the L3
cache.

37 (10_0101) 1 L3 touch hits Counts touch accesses (dcbt, dcbtst, and VTQ) from the processor that hit
in the L3 cache.

38 (10_0110) — Reserved

39 (10_0111) — Reserved

40 (10_1000) — Reserved

41 (10_1001) — Reserved

42 (10_1010) Bus TAs for reads Counts external TAs received on the bus for all read operations initiated by
the processor.

43 (10_1011) Bus TAs for writes Counts external TAs received on the bus for all write operations initiated by
the processor. This includes TAs to which the processor is providing
intervention data.

44 (10_1100) Bus reads not retried Counts load-type operations initiated by the processor on the external bus
that complete with a non-retry response.

45 (10_1101) Bus writes not retried Counts store-type operations initiated by the processor on the external bus
that complete with a non-retry response. This event does not include
external push operations that are counted in another event.

46 (10_1110) Bus reads/writes not
retries

Counts the total load-type, store-type, and external push operations
initiated by the processor on the external bus that complete with a non-retry
response.

47 (10_1111) Bus retry due to L1
retry

Counts times retry is asserted on the external bus due to an internal L1 retry
condition.

48 (11_0000) Bus retry due to
previous adjacent

Counts times retry is asserted on the external bus due to an internal
previous adjacent retry condition.

Table 11-14. PMC6 Events—MMCR1[PMC6SEL] Select Encodings (continued)

Number Event Description

MOTOROLA Chapter 11. Performance Monitor 11-33

Event Selection

49 (11_0001) Bus retry due to
collision

Counts times retry is asserted on the external bus due to an internal
collision.

50 (11_0010) Bus retry due to
intervention ordering

Counts times retry is asserted on the external bus due to an intervention
ordering condition.

51 (11_0011) Snoop requests Counts qualified snoop requests processed by the snooper.

52 (11_0100) Prefetch engine
request

Counts new prefetches allocated in the prefetch unit.

53 (11_0101) Prefetch engine
collision vs. load

Counts times a load collides with an outstanding prefetch request from the
L2 prefetch engine while accessing L2 or L31.

54 (11_0110) Prefetch engine
collision vs. store

Counts times a store collides with an outstanding prefetch request from the
L2 prefetch engine while accessing L2 or L31.

55 (11_0111) Prefetch engine
collision vs. i

instruction fetch

Counts times an instruction fetch collides against an outstanding request
from the L2 prefetch engine while accessing L2 or L31.

56 (11_1000) Prefetch engine
collision vs.

load/store/instruction
fetch

Counts times the L2 prefetch engine collides against an outstanding load,
store, or instruction fetch in the load miss queue while accessing L2 or L31.

57 (11_1001) Prefetch engine full Counts times an L2 prefetch is not initiated because the prefetch engine is
full while accessing L2 or L31.

58–63 — Reserved

1 Note that the L3 cache is not supported on the MPC7441 and the MPC7445.

Table 11-14. PMC6 Events—MMCR1[PMC6SEL] Select Encodings (continued)

Number Event Description

11-34 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Event Selection

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-1

Appendix A
MPC7451 Instruction Set Listings
This appendix lists the MPC7451 microprocessor’s instruction set as well as the additional
PowerPC instructions not implemented in the MPC7451. Instructions are sorted by
mnemonic, opcode, function, and form. Also included in this appendix is a quick reference
table that contains general information, such as the architecture level, privilege level, and
form, and indicates if the instruction is 64-bit and optional. Note that the MPC7451 is a
32-bit microprocessor, and doesn’t implement any 64-bit instructions.

Note that split fields, that represent the concatenation of sequences from left to right, are
shown in lowercase. For more information refer to Chapter 8, “Instruction Set,” in The
Programming Environments Manual.

A.1 Instructions Sorted by Mnemonic
(Decimal and Hexadecimal)

Table A-1 shows the instructions implemented in the MPC7451. The instructions are listed
in alphabetical order by their mnemonic name. The primary opcode (0–5) and secondary
opcode (21-31) are decimal and hexadecimal values.

Table A-1. Instructions by Mnemonic (Dec, Hex)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 (0x1F) D A B OE 0266 (0x10A) Rc

addcx 31 (0x1F) D A B OE 0010 (0x00A) Rc

addex 31 (0x1F) D A B OE 0138 (0x08A) Rc

addi 14 (0xE) D A SIMM

addic 12 (0xC) D A SIMM

addic. 13 (0xD) D A SIMM

addis 15 (0xF) D A SIMM

addmex 31 (0x1F) D A 0_0000 OE 0234 (0x0EA) Rc

addzex 31 (0x1F) D A 0_0000 OE 0202 (0x0CA) Rc

Reserved bits

Key:

A-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Mnemonic (Decimal and Hexadecimal)

andx 31 (0x1F) S A B 0028 (0x01C) Rc

andcx 31 (0x1F) S A B 0060 (0x03C) Rc

andi. 28 (0x1C) S A UIMM

andis. 29 (0x1D) S A UIMM

bx 18 (0x12) LI AA LK

bcx 16 (0x10) BO BI BD AA LK

bcctrx 19 (0x13) BO BI 0_0000 00528 (0x210) LK

bclrx 19 (0x13) BO BI 0_0000 0016 (0x010) LK

cmp 31 (0x1F) crfD 0 L A B 0000 (0x000) 0

cmpi 11 (0x0B) crfD 0 L A SIMM

cmpl 31 (0x1F) crfD 0 L A B 0032 (0x020) 0

cmpli 10 (0x0A) crfD 0 L A UIMM

cntlzwx 31 (0x1F) S A 0_0000 0026 (0x01A) Rc

crand 19 (0x13) crbD crbA crbB 0257 (0x101) 0

crandc 19 (0x13) crbD crbA crbB 0129 (0x081) 0

creqv 19 (0x13) crbD crbA crbB 0289 (0x121) 0

crnand 19 (0x13) crbD crbA crbB 0225 (0x0E1) 0

crnor 19 (0x13) crbD crbA crbB 0033 (0x21) 0

cror 19 (0x13) crbD crbA crbB 0449 (0x1C1) 0

crorc 19 (0x13) crbD crbA crbB 0417 (0x1A1) 0

crxor 19 (0x13) crbD crbA crbB 0193 (0C1) 0

dcba 1 31 (0x1F) 000_00 A B 0758 (0x2F6) 0

dcbf 31 (0x1F) 000_00 A B 0086 (0x056) 0

dcbi 2 31 (0x1F) 000_00 A B 0470 (0x1D6) 0

dcbst 31 (0x1F) 000_00 A B 0054 (0x036) 0

dcbt 31 (0x1F) 000_00 A B 0278 (0x116) 0

dcbtst 31 (0x1F) 000_00 A B 0246 (0x0F6) 0

dcbz 31 (0x1F) 000_00 A B 1014 (0x3F6) 0

divwx 31 (0x1F) D A B OE 0491 (0x1EB) Rc

divwux 31 (0x1F) D A B OE 0459 (0x1CB) Rc

dss 3 31 (0x1F) 0 00 STRM 00_000 0_0000 0822 (0x336) 0

dssall3 31 (0x1F) 1 00 STRM 00_000 0_0000 0822 (0x336) 0

dst3 31 (0x1F) 0 00 STRM A B 0342 (0x156) 0

Table A-1. Instructions by Mnemonic (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-3

Instructions Sorted by Mnemonic (Decimal and Hexadecimal)

dstst3 31 (0x1F) 0 00 STRM A B 0374 (0x09C) 0

dststt3 31 (0x1F) 1 00 STRM A B 0374 (0x176) 0

dstt3 31 (0x1F) 1 00 STRM A B 0342 (0x0B0) 0

eciwx1 31 (0x1F) D A B 0310 (0x136) 0

ecowx1 31 (0x1F) S A B 0438 (0x1B6) 0

eieio 31 (0x1F) 000_00 00_000 0_0000 0854 (0x356) 0

eqvx 31 (0x1F) S A B 0284 (0x11C) Rc

extsbx 31 (0x1F) S A 0_0000 0954 (0x3BA) Rc

extshx 31 (0x1F) S A 0_0000 0922 (0x39A) Rc

fabsx 63 (0x3F) D 00_000 B 0264 (0x108) Rc

faddx 63 (0x3F) D A B 0000_0 0021 (0x015) Rc

faddsx 59 (0x3B) D A B 0000_0 0021 (0x015) Rc

fcmpo 63 (0x3F) crfD 00 A B 0032 (0x020) 0

fcmpu 63 (0x3F) crfD 00 A B 0000 (0x000) 0

fctiwx 63 (0x3F) D 00_000 B 0014 (0x00E) Rc

fctiwzx 63 (0x3F) D 00_000 B 0015 (0x00F) Rc

fdivx 63 (0x3F) D A B 0000_0 0018 (0x012) Rc

fdivsx 59 (0x3B) D A B 0000_0 0018 (0x012) Rc

fmaddx 63 (0x3F) D A B C 0029 (0x01D) Rc

fmaddsx 59 (0x3B) D A B C 0029 (0x01D) Rc

fmrx 63 (0x3F) D 00_000 B 0072 (0x48) Rc

fmsubx 63 (0x3F) D A B C 0028 (0x01C) Rc

fmsubsx 59 (0x3B) D A B C 0028 (0x01C) Rc

fmulx 63 (0x3F) D A 0_0000 C 0025 (0x019) Rc

fmulsx 59 (0x3B) D A 0_0000 C 0025 (0x019) Rc

fnabsx 63 (0x3F) D 00_000 B 0136 (0x88) Rc

fnegx 63 (0x3F) D 00_000 B 0040 (0x28) Rc

fnmaddx 63 (0x3F) D A B C 0031 (0x01F) Rc

fnmaddsx 59 (0x3B) D A B C 0031 (0x01F) Rc

fnmsubx 63 (0x3F) D A B C 0030 (0x01E) Rc

fnmsubsx 59 (0x3B) D A B C 0030 (0x01E) Rc

fresx 1 59 (0x3B) D 00_000 B 0000_0 0024 (0x018) Rc

frspx 63 (0x3F) D 00_000 B 0012 (0xC) Rc

Table A-1. Instructions by Mnemonic (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Mnemonic (Decimal and Hexadecimal)

frsqrtex 1 63 (0x3F) D 00_000 B 0000_0 0026 (0x01A) Rc

fselx 1 63 (0x3F) D A B C 0023 (0x017) Rc

fsqrtx 4 63 (0x3F) D 00_000 B 0000_0 0022 (0x016) Rc

fsqrtsx 4 59 (0x3B) D 00_000 B 0000_0 0022 (0x016) Rc

fsubx 63 (0x3F) D A B 0000_0 0020 (0x014) Rc

fsubsx 59 (0x3B) D A B 0000_0 0020 (0x014) Rc

icbi 31 (0x1F) 000_00 A B 0982 (0x3D6) 0

isync 19 (0x13) 000_00 00_000 0_0000 0150 (0x096) 0

lbz 34 (0x22) D A d

lbzu 35 (0x23) D A d

lbzux 31 (0x1F) D A B 0119 (0x077) 0

lbzx 31 (0x1F) D A B 087 (0x057) 0

lfd 50 (0x32) D A d

lfdu 51 (0x33) D A d

lfdux 31 (0x1F) D A B 0631 (0x277) 0

lfdx 31 (0x1F) D A B 0599 (0x257) 0

lfs 48 (0x30) D A d

lfsu 49 (0x31) D A d

lfsux 31 (0x1F) D A B 0567 (0x237) 0

lfsx 31 (0x1F) D A B 0535 (0x217) 0

lha 42 (0x2A) D A d

lhau 43 (0x2B) D A d

lhaux 31 (0x1F) D A B 0375 (0x177) 0

lhax 31 (0x1F) D A B 0343 (0x157) 0

lhbrx 31 (0x1F) D A B 0790 (0x316) 0

lhz 40 (0x28) D A d

lhzu 41 (0x29) D A d

lhzux 31 (0x1F) D A B 0311 (0x137) 0

lhzx 31 (0x1F) D A B 0279 (0x117) 0

lmw 5 46 (0x2E) D A d

lswi5 31 (0x1F) D A NB 0597 (0x255) 0

lswx5 31 (0x1F) D A B 0533 (0x215) 0

lvebx3 31 (0x1F) vD A B 0007 (0x007) 0

Table A-1. Instructions by Mnemonic (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-5

Instructions Sorted by Mnemonic (Decimal and Hexadecimal)

lvehx3 31 (0x1F) vD A B 0039 (0x027) 0

lvewx3 31 (0x1F) vD A B 0071 (0x047) 0

lvsl3 31 (0x1F) vD A B 0006 (0x006) 0

lvsr3 31 (0x1F) vD A B 0038 (0x026) 0

lvx3 31 (0x1F) vD A B 0103 (0x067) 0

lvxl3 31 (0x1F) vD A B 0359 (0x167) 0

lwarx 31 (0x1F) D A B 0020 (0x014) 0

lwbrx 31 (0x1F) D A B 0534 (0x216) 0

lwz 32 (0x20) D A d

lwzu 33 (0x21) D A d

lwzux 31 (0x1F) D A B 0055 (0x037) 0

lwzx 31 (0x1F) D A B 0023 (0x017) 0

mcrf 19 (0x13) crfD 00 crfS 00 0_0000 0000 (0x000) 0

mcrfs 63 (0x3F) crfD 00 crfS 00 0_0000 0064 (0x040) 0

 mcrxr 31 (0x1F) crfD 00 00_000 0_0000 0512 (0x200) 0

mfcr 31 (0x1F) D 00_000 0_0000 0019 (0x013) 0

mffsx 63 (0x3F) D 00_000 0_0000 0583 (0x247) Rc

mfmsr2 31 (0x1F) D 00_000 0_0000 0083 (0x053) 0

mfspr 6 31 (0x1F) D spr 0339 (0x153) 0

mfsr2 31 (0x1F) D 0 SR 0_0000 0595 (0x099) 0

mfsrin2 31 (0x1F) D 00_000 B 0659 (0x293) 0

mftb 31 (0x1F) D tbr 0371 (0x173) 0

mfvscr3 04 (0x04) vD 00_000 0_0000 1540 (0x604) 0

mtcrf 31 (0x1F) S 0 CRM 0 0144 (0x090) 0

mtfsb0x 63 (0x3F) crbD 00_000 0_0000 0070 (0x046) Rc

mtfsb1x 63 (0x3F) crbD 00_000 0_0000 0038 (0x026) Rc

mtfsfx 63 (0x3F) 0 FM 0 B 0711 (0x2C7) Rc

mtfsfix 63 (0x3F) crfD 00 00_000 IMM 0 0134 (0x086) Rc

mtmsr2 31 (0x1F) S 00_000 0_0000 0146 (0x092) 0

mtspr6 31 (0x1F) S spr 0467 (0x1D3) 0

mtsr2 31 (0x1F) S 0 SR 0_0000 0210 (0x001) 0

mtsrin2 31 (0x1F) S 00_000 B 0242 (0x0F2) 0

mtvscr3 04 (0x04) 000_00 00_000 vB 1604 (0x644) 0

Table A-1. Instructions by Mnemonic (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Mnemonic (Decimal and Hexadecimal)

mulhwx 31(0x1F) D A B 0 0075 (0x04B) Rc

mulhwux 31 (0x1F) D A B 0 0011 (0x00B) Rc

mulli 07 (0x07) D A SIMM

mullwx 31 (0x1F) D A B OE 0235 (0x0EB) Rc

nandx 31 (0x1F) S A B 0476 (0x1DC) Rc

negx 31 (0x1F) D A 0_0000 OE 0104 (0x068) Rc

norx 31 (0x1F) S A B 0124 (0x07C) Rc

orx 31 (0x1F) S A B 0444 (0x1BC) Rc

orcx 31 (0x1F) S A B 0412 (0x19C) Rc

ori 24 (0x18) S A UIMM

oris 25 (0x19) S A UIMM

rfi2 19 (0x13) 000_00 00_000 0_0000 0050 (0x032) 0

rlwimix 20 (0x14) S A SH MB ME Rc

rlwinmx 21 (0x15) S A SH MB ME Rc

rlwnmx 23 (0x17) S A B MB ME Rc

sc 17 (0x11) 000_0000_0000_0000_0000_0000_00 1 0

slwx 31 (0x1F) S A B 0024 (0x018) Rc

srawx 31 (0x1F) S A B 0792 (0x318) Rc

srawix 31 (0x1F) S A SH 0824 (0x338) Rc

srwx 31 (0x1F) S A B 0536 (0x218) Rc

stb 38 (0x26) S A d

stbu 39 (0x27) S A d

stbux 31 (0x1F) S A B 0247 (0x0F7) 0

stbx 31 (0x1F) S A B 0215 (0x0D7) 0

stfd 54 (0x36) S A d

stfdu 55 (0x37) S A d

stfdux 31 (0x1F) S A B 0759 (0x2F7) 0

stfdx 31 (0x1F) S A B 0727 (0x2D7) 0

stfiwx1 31 (0x1F) S A B 0983 (0x3D7) 0

 stfs 52 (0x34) S A d

stfsu 53 (0x35) S A d

stfsux 31 (0x1F) S A B 0695 (0x2B7) 0

stfsx 31 (0x1F) S A B 0663 (0x297) 0

Table A-1. Instructions by Mnemonic (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-7

Instructions Sorted by Mnemonic (Decimal and Hexadecimal)

sth 44 (0x2C) S A d

sthbrx 31 (0x1F) S A B 0918 (0x396) 0

sthu 45 (0x2D) S A d

sthux 31 (0x1F) S A B 0439 (0x1B7) 0

sthx 31 (0x1F) S A B 0407 (0x197) 0

stmw5 47 (0x2F) S A d

stswi5 31 (0x1F) S A NB 0725 (0x2D5) 0

stswx5 31 (0x1F) S A B 0661 (0x295) 0

stvebx3 31 (0x1F) vS A B 0135 (0x127) 0

stvehx3 31 (0x1F) vS A B 0167 (0x0A7) 0

stvewx3 31 (0x1F) vS A B 0199 (0x0C7) 0

stvx3 31 (0x1F) vS A B 0231 (0x01F) 0

stvxl3 31 (0x1F) vS A B 0487 (0x1E7) 0

stw 36 (0x24) S A d

stwbrx 31 (0x1F) S A B 0662 (0x296) 0

stwcx. 31 (0x1F) S A B 0150 (0x096) 1

stwu 37 (0x25) S A d

stwux 31 (0x1F) S A B 0183 (0x0B7) 0

stwx 31 (0x1F) S A B 0151 (0x097) 0

subfx 31 (0x1F) D A B OE 0040 (0x028) Rc

subfcx 31 (0x1F) D A B OE 0008 (0x008) Rc

subfex 31 (0x1F) D A B OE 0136 (0x088) Rc

subfic 08 (0x08) D A SIMM

subfmex 31 (0x1F) D A 0_0000 OE 0232 (0x0E8) Rc

subfzex 31 (0x1F) D A 0_0000 OE 0200 (0x0C8) Rc

sync 31 (0x1F) 000_00 00_000 0_0000 0598 (0x256) 0

tlbia4 31 (0x1F) 000_00 00_000 0_0000 0370 (0x172) 0

tlbie1, 2 31 (0x1F) 000_00 00_000 B 0306 (0x132) 0

tlbld1, 2 31 (0x1F) 000_00 00_000 B 0978 (0x3D2) 0

tlbli1, 2 31 (0x1F) 000_00 00_000 B 1010 (0x3F2) 0

tlbsync1, 2 31 (0x1F) 000_00 00_000 0_0000 0566 (0x236) 0

tw 31 (0x1F) TO A B 0004 (0x004) 0

twi 03 (0x03) TO A SIMM

Table A-1. Instructions by Mnemonic (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Mnemonic (Decimal and Hexadecimal)

vaddcuw3 04 (0x04) vD vA vB 084 (0x180) 0

vaddfp3 04 (0x04) vD vA vB 0010 (0x0B4) 0

vaddsbs3 04 (0x04) vD vA vB 0768 (0x300) 0

vaddshs3 04 (0x04) vD vA vB 0832 (0x340) 0

vaddsws3 04 (0x04) vD vA vB 0896 (0x154) 0

vaddubm3 04 (0x04) vD vA vB 0000 (0x000) 0

vaddubs3 04 (0x04) vD vA vB 0512 (0x200) 0

vadduhm3 04 (0x04) vD vA vB 0064 (0x040) 0

vadduhs3 04 (0x04) vD vA vB 0576 (0x240) 0

vadduwm3 04 (0x04) vD vA vB 0128 (0x0F0) 0

vadduws3 04 (0x04) vD vA vB 0640 (0x280) 0

vand3 04 (0x04) vD vA vB 1028 (0x118) 0

vandc3 04 (0x04) vD vA vB 1092 (0x444) 0

vavgsb3 04 (0x04) vD vA vB 1282 (0x502) 0

vavgsh3 04 (0x04) vD vA vB 1346 (0x542) 0

vavgsw3 04 (0x04) vD vA vB 1410 (0x582) 0

vavgub3 04 (0x04) vD vA vB 1026 (0x402) 0

vavguh3 04 (0x04) vD vA vB 1090 (0x442) 0

vavguw3 04 (0x04) vD vA vB 1154 (0x482) 0

vcfsx3 04 (0x04) vD UIMM vB 0842 (0x1E2)

vcfux3 04 (0x04) vD UIMM vB 0778 (0x30A) 0

vcmpbfpx3 04 (0x04) vD vA vB Rc 0966 (0x3C6)

vcmpeqfpx3 04 (0x04) vD vA vB Rc 0198 (0x0C6)

vcmpequbx3 04 (0x04) vD vA vB Rc 0006 (0x006)

vcmpequhx3 04 (0x04) vD vA vB Rc 0070 (0x046)

vcmpequwx3 04 (0x04) vD vA vB Rc 0134 (0x086)

vcmpgefpx3 04 (0x04) vD vA vB Rc 0454 (0x1C6)

vcmpgtfpx3 04 (0x04) vD vA vB Rc 0710 (0x2C6)

vcmpgtsbx3 04 (0x04) vD vA vB Rc 0774 (0x306)

vcmpgtshx3 04 (0x04) vD vA vB Rc 0838 (0x346)

vcmpgtswx3 04 (0x04) vD vA vB Rc 0902 (0x386)

vcmpgtubx3 04 (0x04) vD vA vB Rc 0518 (0x206)

vcmpgtuhx3 04 (0x04) vD vA vB Rc 0582 (0x246)

Table A-1. Instructions by Mnemonic (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-9

Instructions Sorted by Mnemonic (Decimal and Hexadecimal)

vcmpgtuwx3 04 (0x04) vD vA vB Rc 0646 (0x286)

vctsxs3 04 (0x04) vD UIMM vB 0970 (0x3CA)

vctuxs3 04 (0x04) vD UIMM vB 0906 (0x38A)

vexptefp3 04 (0x04) vD 00_000 vB 0394 (0x18A)

vlogefp3 04 (0x04) vD 00_000 vB 0458 (0x1CA)

vmaddfp3 04 (0x04) vD vA vB vC 0046 (0x002E)

vmaxfp3 04 (0x04) vD vA vB 1034 (0x040A)

vmaxsb3 04 (0x04) vD vA vB 0258 (0x028)

vmaxsh3 04 (0x04) vD vA vB 0322 (0x01C)

vmaxsw3 04 (0x04) vD vA vB 0386 (0x182)

vmaxub3 04 (0x04) vD vA vB 0002 (0x002)

vmaxuh3 04 (0x04) vD vA vB 0066 (0x042)

vmaxuw3 04 (0x04) vD vA vB 0130 (0x082)

vmhaddshs3 04 (0x04) vD vA vB vC 0032 (0x020)

vmhraddshs3 04 (0x04) vD vA vB vC 0033 (0x021)

vminfp3 04 (0x04) vD vA vB 1098 (0x44A)

vminsb3 04 (0x04) vD vA vB 0770 (0x302)

vminsh3 04 (0x04) vD vA vB 0834 (0x342)

vminsw3 04 (0x04) vD vA vB 0898 (0x382)

vminub3 04 (0x04) vD vA vB 0514 (0x202)

vminuh3 04 (0x04) vD vA vB 0578 (0x242)

vminuw3 04 (0x04) vD vA vB 0642 (0x282)

vmladduhm3 04 (0x04) vD vA vB vC 0034 (0x022)

vmrghb3 04 (0x04) vD vA vB 0012 (0x00C)

vmrghh3 04 (0x04) vD vA vB 0076 (0x04C)

vmrghw3 04 (0x04) vD vA vB 0140 (0x08C)

vmrglb3 04 (0x04) vD vA vB 0268 (0x008)

vmrglh3 04 (0x04) vD vA vB 0332 (0x14C)

vmrglw3 04 (0x04) vD vA vB 0396 (0x18C)

vmsummbm3 04 (0x04) vD vA vB vC 0037 (0x025)

vmsumshm3 04 (0x04) vD vA vB vC 0040 (0x028)

vmsumshs3 04 (0x04) vD vA vB vC 0041 (0x029)

vmsumubm3 04 (0x04) vD vA vB vC 0036 (0x024)

Table A-1. Instructions by Mnemonic (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Mnemonic (Decimal and Hexadecimal)

vmsumuhm3 04 (0x04) vD vA vB vC 0038 (0x026)

vmsumuhs3 04 (0x04) vD vA vB vC 0039 (0x027)

vmulesb3 04 (0x04) vD vA vB 0776 (0x308)

vmulesh3 04 (0x04) vD vA vB 0840 (0x348)

vmuleub3 04 (0x04) vD vA vB 0520 (0x208)

vmuleuh3 04 (0x04) vD vA vB 0584 (0x248)

vmulosb3 04 (0x04) vD vA vB 0264 (0x108)

vmulosh3 04 (0x04) vD vA vB 0328 (0x148)

vmuloub3 04 (0x04) vD vA vB 0008 (0x008)

vmulouh3 04 (0x04) vD vA vB 0072 (0x048)

vnmsubfp3 04 (0x04) vD vA vB vC 0047 (0x02F)

vnor3 04 (0x04) vD vA vB 1284 (0x504)

vor3 04 (0x04) vD vA vB 1156 (0x484)

vperm3 04 (0x04) vD vA vB vC 0043 (0x02B)

vpkpx3 04 (0x04) vD vA vB 0782 (0x30E)

vpkshss3 04 (0x04) vD vA vB 0398 (0x18E)

vpkshus3 04 (0x04) vD vA vB 0270 (0x012)

vpkswss3 04 (0x04) vD vA vB 0462 (0x00C)

vpkswus3 04 (0x04) vD vA vB 0334 (0x14E)

vpkuhum3 04 (0x04) vD vA vB 0014 (0x00E)

vpkuhus3 04 (0x04) vD vA vB 0142 (0x08E)

vpkuwum3 04 (0x04) vD vA vB 0078 (0x04E)

vpkuwus3 04 (0x04) vD vA vB 0206 (0x0CE)

vrefp3 04 (0x04) vD 00_000 vB 0266 (0x10A)

vrfim3 04 (0x04) vD 00_000 vB 0714 (0x2CA)

vrfin3 04 (0x04) vD 00_000 vB 0522 (0x20A)

vrfip3 04 (0x04) vD 00_000 vB 0650 (0x28A)

vrfiz3 04 (0x04) vD 00_000 vB 0586 (0x24A)

vrlb3 04 (0x04) vD vA vB 0004 (0x004)

vrlh3 04 (0x04) vD vA vB 0068 (0x044)

vrlw3 04 (0x04) vD vA vB 0132 (0x084)

vrsqrtefp3 04 (0x04) vD 00_000 vB 0330 (0x14A)

vsel3 04 (0x04) vD vA vB vC 0042 (0x02A)

Table A-1. Instructions by Mnemonic (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-11

Instructions Sorted by Mnemonic (Decimal and Hexadecimal)

vsl3 04 (0x04) vD vA vB 0452 (0x1C4)

vslb3 04 (0x04) vD vA vB 0260 (0x104)

vsldoi3 04 (0x04) vD vA vB 0 SH 0044 (0x02C)

vslh3 04 (0x04) vD vA vB 0324 (0x144)

vslo3 04 (0x04) vD vA vB 1036 (0x40C)

vslw3 04 (0x04) vD vA vB 0388 (0x184)

vspltb3 04 (0x04) vD UIMM vB 0524 (0x20C)

vsplth3 04 (0x04) vD UIMM vB 0588 (0x24C)

vspltisb3 04 (0x04) vD SIMM 0_0000 0780 (0x30C)

vspltish3 04 (0x04) vD SIMM 0_0000 0844 (0x34C)

vspltisw3 04 (0x04) vD SIMM 0_0000 0908 (0x38C)

vspltw3 04 (0x04) vD UIMM vB 0652 (0x28C)

vsr3 04 (0x04) vD vA vB 0708 (0x2C4)

vsrab3 04 (0x04) vD vA vB 0772 (0x304)

vsrah3 04 (0x04) vD vA vB 0836 (0x344)

vsraw3 04 (0x04) vD vA vB 0900 (0x384)

vsrb3 04 (0x04) vD vA vB 0516 (0x204)

vsrh3 04 (0x04) vD vA vB 0580 (0x244)

vsro3 04 (0x04) vD vA vB 1100 (0x44C)

vsrw3 04 (0x04) vD vA vB 0644 (0x284)

vsubcuw3 04 (0x04) vD vA vB 1408 (0x580)

vsubfp3 04 (0x04) vD vA vB 0074 (0x4A)

vsubsbs3 04 (0x04) vD vA vB 1792 (0x700)

vsubshs3 04 (0x04) vD vA vB 1856 (0x740)

vsubsws3 04 (0x04) vD vA vB 1920 (0x780)

vsububm3 04 (0x04) vD vA vB 1024 (0x400)

vsububs3 04 (0x04) vD vA vB 1536 (0x600)

vsubuhm3 04 (0x04) vD vA vB 1088 (0x440)

vsubuhs3 04 (0x04) vD vA vB 1600 (0x640)

vsubuwm3 04 (0x04) vD vA vB 1152 (0x480)

vsubuws3 04 (0x04) vD vA vB 1664 (0x680)

vsumsws3 04 (0x04) vD vA vB 1928 (0x788)

vsum2sws3 04 (0x04) vD vA vB 1672 (0x688)

vsum4sbs3 04 (0x04) vD vA vB 1800 (0x708)

Table A-1. Instructions by Mnemonic (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Primary and Secondary Opcodes (Decimal and Hexadecimal)

A.2 Instructions Sorted by Primary and Secondary
Opcodes (Decimal and Hexadecimal)

Table A-2 shows the instructions implemented in the MPC7451. The instructions are listed
by their primary (0–5) and secondary (21-31) opcodes in decimal and hexadecimal format.

vsum4shs3 04 (0x04) vD vA vB 1608 (0x648)

vsum4ubs3 04 (0x04) vD vA vB 1544 (0x608)

vupkhpx3 04 (0x04) vD 00_000 vB 0846 (0x34E)

vupkhsb3 04 (0x04) vD 00_000 vB 0526 (0x20E)

vupkhsh3 04 (0x04) vD 00_000 vB 0590 (0x24E)

vupklpx3 04 (0x04) vD 00_000 vB 0974 (0x3CE)

vupklsb3 04 (0x04) vD 00_000 vB 0654 (0x28E)

vupklsh3 04 (0x04) vD 00_000 vB 0718 (0x2CE)

vxor3 04 (0x04) vD vA vB 1220 (0x4C4)

xorx 31 (0x1F) S A B 0316 (0x13C) Rc

xori 26 (0x1A) S A UIMM

xoris 27 (0x1B) S A UIMM

1Optional to the PowerPC architecture but implemented by the MPC7451
2Supervisor-level instruction
3AltiVec technology-specific instruction
4Optional instruction not implemented by the MPC7451
5Load/store string/multiple instruction
6Supervisor- and user-level instruction

Table A-2. Instructions by Primary and Secondary Opcodes (Dec, Hex)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

twi 03 (0x03) TO A SIMM

vaddubm 1 04 (0x04) vD vA vB 0000 (0x000) 0

vmaxub1 04 (0x04) vD vA vB 0002 (0x002)

vrlb1 04 (0x04) vD vA vB 0004 (0x004)

vcmpequbx1 04 (0x04) vD vA vB Rc 0006 (0x006)

vmuloub1 04 (0x04) vD vA vB 0008 (0x008)

vaddfp1 04 (0x04) vD vA vB 0010 (0x0B4) 0

vmrghb1 04 (0x04) vD vA vB 0012 (0x00C)

Table A-1. Instructions by Mnemonic (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved bits

Key:

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-13

Instructions Sorted by Primary and Secondary Opcodes (Decimal and Hexadecimal)

vpkuhum1 04 (0x04) vD vA vB 0014 (0x00E)

vmhaddshs1 04 (0x04) vD vA vB vC 0032 (0x020)

vmhraddshs1 04 (0x04) vD vA vB vC 0033 (0x021)

vmladduhm1 04 (0x04) vD vA vB vC 0034 (0x022)

vmsumubm1 04 (0x04) vD vA vB vC 0036 (0x024)

vmsummbm1 04 (0x04) vD vA vB vC 0037 (0x025)

vmsumuhm1 04 (0x04) vD vA vB vC 0038 (0x026)

vmsumuhs1 04 (0x04) vD vA vB vC 0039 (0x027)

vmsumshm1 04 (0x04) vD vA vB vC 0040 (0x028)

vmsumshs1 04 (0x04) vD vA vB vC 0041 (0x029)

vsel1 04 (0x04) vD vA vB vC 0042 (0x02A)

vperm1 04 (0x04) vD vA vB vC 0043 (0x02B)

vsldoi1 04 (0x04) vD vA vB 0 SH 0044 (0x02C)

vmaddfp1 04 (0x04) vD vA vB vC 0046 (0x002E)

vnmsubfp1 04 (0x04) vD vA vB vC 0047 (0x02F)

vadduhm1 04 (0x04) vD vA vB 0064 (0x040) 0

vmaxuh1 04 (0x04) vD vA vB 0066 (0x042)

vrlh1 04 (0x04) vD vA vB 0068 (0x044)

vcmpequhx1 04 (0x04) vD vA vB Rc 0070 (0x046)

vmulouh1 04 (0x04) vD vA vB 0072 (0x048)

vsubfp1 04 (0x04) vD vA vB 0074 (0x4A)

vmrghh1 04 (0x04) vD vA vB 0076 (0x04C)

vpkuwum1 04 (0x04) vD vA vB 0078 (0x04E)

vadduwm1 04 (0x04) vD vA vB 0128 (0x0F0) 0

vmaxuw1 04 (0x04) vD vA vB 0130 (0x082)

vrlw1 04 (0x04) vD vA vB 0132 (0x084)

vcmpequwx1 04 (0x04) vD vA vB Rc 0134 (0x086)

vmrghw1 04 (0x04) vD vA vB 0140 (0x08C)

vpkuhus1 04 (0x04) vD vA vB 0142 (0x08E)

vcmpeqfpx1 04 (0x04) vD vA vB Rc 0198 (0x0C6)

vpkuwus1 04 (0x04) vD vA vB 0206 (0x0CE)

vmaxsb1 04 (0x04) vD vA vB 0258 (0x028)

vslb1 04 (0x04) vD vA vB 0260 (0x104)

vmulosb1 04 (0x04) vD vA vB 0264 (0x108)

Table A-2. Instructions by Primary and Secondary Opcodes (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Primary and Secondary Opcodes (Decimal and Hexadecimal)

vrefp1 04 (0x04) vD 00_000 vB 0266 (0x10A)

vmrglb1 04 (0x04) vD vA vB 0268 (0x008)

vpkshus1 04 (0x04) vD vA vB 0270 (0x012)

vmaxsh1 04 (0x04) vD vA vB 0322 (0x01C)

vslh1 04 (0x04) vD vA vB 0324 (0x144)

vmulosh1 04 (0x04) vD vA vB 0328 (0x148)

vrsqrtefp1 04 (0x04) vD 00_000 vB 0330 (0x14A)

vmrglh1 04 (0x04) vD vA vB 0332 (0x14C)

vpkswus1 04 (0x04) vD vA vB 0334 (0x14E)

vaddcuw1 04 (0x04) vD vA vB 0384 (0x180) 0

vmaxsw1 04 (0x04) vD vA vB 0386 (0x182)

vslw1 04 (0x04) vD vA vB 0388 (0x184)

vexptefp1 04 (0x04) vD 00_000 vB 0394 (0x18A)

vmrglw1 04 (0x04) vD vA vB 0396 (0x18C)

vpkshss1 04 (0x04) vD vA vB 0398 (0x18E)

vsl1 04 (0x04) vD vA vB 0452 (0x1C4)

vcmpgefpx1 04 (0x04) vD vA vB Rc 0454 (0x1C6)

vlogefp1 04 (0x04) vD 00_000 vB 0458 (0x1CA)

vpkswss1 04 (0x04) vD vA vB 0462 (0x00C)

vaddubs1 04 (0x04) vD vA vB 0512 (0x200) 0

vminub1 04 (0x04) vD vA vB 0514 (0x202)

vsrb1 04 (0x04) vD vA vB 0516 (0x204)

vcmpgtubx1 04 (0x04) vD vA vB Rc 0518 (0x206)

vmuleub1 04 (0x04) vD vA vB 0520 (0x208)

vrfin1 04 (0x04) vD 00_000 vB 0522 (0x20A)

vspltb1 04 (0x04) vD UIMM vB 0524 (0x20C)

vupkhsb1 04 (0x04) vD 00_000 vB 0526 (0x20E)

vadduhs1 04 (0x04) vD vA vB 0576 (0x240) 0

vminuh1 04 (0x04) vD vA vB 0578 (0x242)

vsrh1 04 (0x04) vD vA vB 0580 (0x244)

vcmpgtuhx1 04 (0x04) vD vA vB Rc 0582 (0x246)

vmuleuh1 04 (0x04) vD vA vB 0584 (0x248)

vrfiz1 04 (0x04) vD 00_000 vB 0586 (0x24A)

vsplth1 04 (0x04) vD UIMM vB 0588 (0x24C)

Table A-2. Instructions by Primary and Secondary Opcodes (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-15

Instructions Sorted by Primary and Secondary Opcodes (Decimal and Hexadecimal)

vupkhsh1 04 (0x04) vD 00_000 vB 0590 (0x24E)

vadduws1 04 (0x04) vD vA vB 0640 (0x280) 0

vminuw1 04 (0x04) vD vA vB 0642 (0x282)

vsrw1 04 (0x04) vD vA vB 0644 (0x284)

vcmpgtuwx1 04 (0x04) vD vA vB Rc 0646 (0x286)

vrfip1 04 (0x04) vD 00_000 vB 0650 (0x28A)

vspltw1 04 (0x04) vD UIMM vB 0652 (0x28C)

vupklsb1 04 (0x04) vD 00_000 vB 0654 (0x28E)

vsr1 04 (0x04) vD vA vB 0708 (0x2C4)

vcmpgtfpx1 04 (0x04) vD vA vB Rc 0710 (0x2C6)

vrfim1 04 (0x04) vD 00_000 vB 0714 (0x2CA)

vupklsh1 04 (0x04) vD 00_000 vB 0718 (0x2CE)

vaddsbs1 04 (0x04) vD vA vB 0768 (0x300) 0

vminsb1 04 (0x04) vD vA vB 0770 (0x302)

vsrab1 04 (0x04) vD vA vB 0772 (0x304)

vcmpgtsbx1 04 (0x04) vD vA vB Rc 0774 (0x306)

vmulesb1 04 (0x04) vD vA vB 0776 (0x308)

vcfux1 04 (0x04) vD UIMM vB 0778 (0x30A) 0

vspltisb1 04 (0x04) vD SIMM 0_0000 0780 (0x30C)

vpkpx1 04 (0x04) vD vA vB 0782 (0x30E)

vaddshs1 04 (0x04) vD vA vB 0832 (0x340) 0

vminsh1 04 (0x04) vD vA vB 0834 (0x342)

vsrah1 04 (0x04) vD vA vB 0836 (0x344)

vcmpgtshx1 04 (0x04) vD vA vB Rc 0838 (0x346)

vmulesh1 04 (0x04) vD vA vB 0840 (0x348)

vcfsx1 04 (0x04) vD UIMM vB 0842 (0x1E2)

vspltish1 04 (0x04) vD SIMM 0_0000 0844 (0x34C)

vupkhpx1 04 (0x04) vD 00_000 vB 0846 (0x34E)

vaddsws1 04 (0x04) vD vA vB 0896 (0x154) 0

vminsw1 04 (0x04) vD vA vB 0898 (0x382)

vsraw1 04 (0x04) vD vA vB 0900 (0x384)

vcmpgtswx1 04 (0x04) vD vA vB Rc 0902 (0x386)

vctuxs1 04 (0x04) vD UIMM vB 0906 (0x38A)

vspltisw1 04 (0x04) vD SIMM 0_0000 0908 (0x38C)

Table A-2. Instructions by Primary and Secondary Opcodes (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-16 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Primary and Secondary Opcodes (Decimal and Hexadecimal)

vcmpbfpx1 04 (0x04) vD vA vB Rc 0966 (0x3C6)

vctsxs1 04 (0x04) vD UIMM vB 0970 (0x3CA)

vupklpx1 04 (0x04) vD 00_000 vB 0974 (0x3CE)

vsububm1 04 (0x04) vD vA vB 1024 (0x400)

vavgub1 04 (0x04) vD vA vB 1026 (0x402) 0

vand1 04 (0x04) vD vA vB 1028 (0x118) 0

vmaxfp1 04 (0x04) vD vA vB 1034 (0x040A)

vslo1 04 (0x04) vD vA vB 1036 (0x40C)

vsubuhm1 04 (0x04) vD vA vB 1088 (0x440)

vavguh1 04 (0x04) vD vA vB 1090 (0x442) 0

vandc1 04 (0x04) vD vA vB 1092 (0x444) 0

vminfp1 04 (0x04) vD vA vB 1098 (0x44A)

vsro1 04 (0x04) vD vA vB 1100 (0x44C)

vsubuwm1 04 (0x04) vD vA vB 1152 (0x480)

vavguw1 04 (0x04) vD vA vB 1154 (0x482) 0

vor1 04 (0x04) vD vA vB 1156 (0x484)

vxor1 04 (0x04) vD vA vB 1220 (0x4C4)

vavgsb1 04 (0x04) vD vA vB 1282 (0x502) 0

vnor1 04 (0x04) vD vA vB 1284 (0x504)

vavgsh1 04 (0x04) vD vA vB 1346 (0x542) 0

vsubcuw1 04 (0x04) vD vA vB 1408 (0x580)

vavgsw1 04 (0x04) vD vA vB 1410 (0x582) 0

vsububs1 04 (0x04) vD vA vB 1536 (0x600)

mfvscr1 04 (0x04) vD 00_000 0_0000 1540 (0x604) 0

vsum4ubs1 04 (0x04) vD vA vB 1544 (0x608)

vsubuhs1 04 (0x04) vD vA vB 1600 (0x640)

mtvscr1 04 (0x04) 000_00 00_000 vB 1604 (0x644) 0

vsum4shs1 04 (0x04) vD vA vB 1608 (0x648)

vsubuws1 04 (0x04) vD vA vB 1664 (0x680)

vsum2sws1 04 (0x04) vD vA vB 1672 (0x688)

vsubsbs1 04 (0x04) vD vA vB 1792 (0x700)

vsum4sbs1 04 (0x04) vD vA vB 1800 (0x708)

vsubshs1 04 (0x04) vD vA vB 1856 (0x740)

vsubsws1 04 (0x04) vD vA vB 1920 (0x780)

Table A-2. Instructions by Primary and Secondary Opcodes (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-17

Instructions Sorted by Primary and Secondary Opcodes (Decimal and Hexadecimal)

vsumsws1 04 (0x04) vD vA vB 1928 (0x788)

mulli 07 (0x07) D A SIMM

subfic 08 (0x08) D A SIMM

cmpli 10 (0x0A) crfD 0 L A UIMM

cmpi 11 (0x0B) crfD 0 L A SIMM

addic 12 (0xC) D A SIMM

addic. 13 (0xD) D A SIMM

addi 14 (0xE) D A SIMM

addis 15 (0xF) D A SIMM

bcx 16 (0x10) BO BI BD AA LK

sc 17 (0x11) 000_0000_0000_0000_0000_0000_00 1 0

bx 18 (0x12) LI AA LK

mcrf 19 (0x13) crfD 00 crfS 00 0_0000 0000 (0x000) 0

bclrx 19 (0x13) BO BI 0_0000 0016 (0x010) LK

crnor 19 (0x13) crbD crbA crbB 0033 (0x21) 0

rfi 2 19 (0x13) 000_00 00_000 0_0000 0050 (0x032) 0

crandc 19 (0x13) crbD crbA crbB 0129 (0x081) 0

isync 19 (0x13) 000_00 00_000 0_0000 0150 (0x096) 0

crxor 19 (0x13) crbD crbA crbB 0193 (0C1) 0

crnand 19 (0x13) crbD crbA crbB 0225 (0x0E1) 0

crand 19 (0x13) crbD crbA crbB 0257 (0x101) 0

creqv 19 (0x13) crbD crbA crbB 0289 (0x121) 0

crorc 19 (0x13) crbD crbA crbB 0417 (0x1A1) 0

cror 19 (0x13) crbD crbA crbB 0449 (0x1C1) 0

bcctrx 19 (0x13) BO BI 0_0000 0528 (0x210) LK

rlwimix 20 (0x14) S A SH MB ME Rc

rlwinmx 21 (0x15) S A SH MB ME Rc

rlwnmx 23 (0x17) S A B MB ME Rc

ori 24 (0x18) S A UIMM

oris 25 (0x19) S A UIMM

xori 26 (0x1A) S A UIMM

xoris 27 (0x1B) S A UIMM

andi. 28 (0x1C) S A UIMM

andis. 29 (0x1D) S A UIMM

Table A-2. Instructions by Primary and Secondary Opcodes (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-18 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Primary and Secondary Opcodes (Decimal and Hexadecimal)

cmp 31 (0x1F) crfD 0 L A B 0000 (0x000) 0

tw 31 (0x1F) TO A B 0004 (0x004) 0

lvsl1 31 (0x1F) vD A B 0006 (0x006) 0

lvebx1 31 (0x1F) vD A B 0007 (0x007) 0

subfcx 31 (0x1F) D A B OE 0008 (0x008) Rc

addcx 31 (0x1F) D A B OE 0010 (0x00A) Rc

mulhwux 31 (0x1F) D A B 0 0011 (0x00B) Rc

mfcr 31 (0x1F) D 00_000 0_0000 0019 (0x013) 0

lwarx 31 (0x1F) D A B 0020 (0x014) 0

lwzx 31 (0x1F) D A B 0023 (0x017) 0

slwx 31 (0x1F) S A B 0024 (0x018) Rc

cntlzwx 31 (0x1F) S A 0_0000 0026 (0x01A) Rc

andx 31 (0x1F) S A B 0028 (0x01C) Rc

cmpl 31 (0x1F) crfD 0 L A B 0032 (0x020) 0

lvsr1 31 (0x1F) vD A B 0038 (0x026) 0

lvehx1 31 (0x1F) vD A B 0039 (0x027) 0

subfx 31 (0x1F) D A B OE 0040 (0x028) Rc

dcbst 31 (0x1F) 000_00 A B 0054 (0x036) 0

lwzux 31 (0x1F) D A B 0055 (0x037) 0

andcx 31 (0x1F) S A B 0060 (0x03C) Rc

lvewx1 31 (0x1F) vD A B 0071 (0x047) 0

mulhwx 31(0x1F) D A B 0 0075 (0x04B) Rc

mfmsr2 31 (0x1F) D 00_000 0_0000 0083 (0x053) 0

dcbf 31 (0x1F) 000_00 A B 0086 (0x056) 0

lbzx 31 (0x1F) D A B 0087 (0x057) 0

lvx1 31 (0x1F) vD A B 0103 (0x067) 0

negx 31 (0x1F) D A 0_0000 OE 0104 (0x068) Rc

lbzux 31 (0x1F) D A B 0119 (0x077) 0

norx 31 (0x1F) S A B 0124 (0x07C) Rc

stvebx1 31 (0x1F) vS A B 0135 (0x127) 0

subfex 31 (0x1F) D A B OE 0136 (0x088) Rc

addex 31 (0x1F) D A B OE 0138 (0x08A) Rc

mtcrf 31 (0x1F) S 0 CRM 0 0144 (0x090) 0

mtmsr2 31 (0x1F) S 00_000 0_0000 0146 (0x092) 0

Table A-2. Instructions by Primary and Secondary Opcodes (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-19

Instructions Sorted by Primary and Secondary Opcodes (Decimal and Hexadecimal)

stwcx. 31 (0x1F) S A B 0150 (0x096) 1

stwx 31 (0x1F) S A B 0151 (0x097) 0

stvehx1 31 (0x1F) vS A B 0167 (0x0A7) 0

stwux 31 (0x1F) S A B 0183 (0x0B7) 0

stvewx1 31 (0x1F) vS A B 0199 (0x0C7) 0

subfzex 31 (0x1F) D A 0_0000 OE 0200 (0x0C8) Rc

addzex 31 (0x1F) D A 0_0000 OE 0202 (0x0CA) Rc

mtsr2 31 (0x1F) S 0 SR 0_0000 0210 (0x001) 0

stbx 31 (0x1F) S A B 0215 (0x0D7) 0

stvx1 31 (0x1F) vS A B 0231 (0x01F) 0

subfmex 31 (0x1F) D A 0_0000 OE 0232 (0x0E8) Rc

addmex 31 (0x1F) D A 0_0000 OE 0234 (0x0EA) Rc

mullwx 31 (0x1F) D A B OE 0235 (0x0EB) Rc

mtsrin2 31 (0x1F) S 00_000 B 0242 (0x0F2) 0

dcbtst 31 (0x1F) 000_00 A B 0246 (0x0F6) 0

stbux 31 (0x1F) S A B 0247 (0x0F7) 0

addx 31 (0x1F) D A B OE 0266 (0x10A) Rc

dcbt 31 (0x1F) 000_00 A B 0278 (0x116) 0

lhzx 31 (0x1F) D A B 0279 (0x117) 0

eqvx 31 (0x1F) S A B 0284 (0x11C) Rc

tlbie2, 3 31 (0x1F) 000_00 00_000 B 0306 (0x132) 0

eciwx3 31 (0x1F) D A B 0310 (0x136) 0

lhzux 31 (0x1F) D A B 0311 (0x137) 0

xorx 31 (0x1F) S A B 0316 (0x13C) Rc

mfspr 4 31 (0x1F) D spr 0339 (0x153) 0

dst1 31 (0x1F) 0 00 STRM A B 0342 (0x156) 0

dstt1 31 (0x1F) 1 00 STRM A B 0342 (0x156) 0

lhax 31 (0x1F) D A B 0343 (0x157) 0

lvxl1 31 (0x1F) vD A B 0359 (0x167) 0

tlbia 5 31 (0x1F) 000_00 00_000 0_0000 0370 (0x172) 0

mftb 31 (0x1F) D tbr 0371 (0x173) 0

dstst1 31 (0x1F) 0 00 STRM A B 0374 (0x176) 0

dststt1 31 (0x1F) 1 00 STRM A B 0374 (0x176) 0

lhaux 31 (0x1F) D A B 0375 (0x177) 0

Table A-2. Instructions by Primary and Secondary Opcodes (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-20 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Primary and Secondary Opcodes (Decimal and Hexadecimal)

sthx 31 (0x1F) S A B 0407 (0x197) 0

orcx 31 (0x1F) S A B 0412 (0x19C) Rc

ecowx3 31 (0x1F) S A B 0438 (0x1B6) 0

sthux 31 (0x1F) S A B 0439 (0x1B7) 0

orx 31 (0x1F) S A B 0444 (0x1BC) Rc

divwux 31 (0x1F) D A B OE 0459 (0x1CB) Rc

mtspr4 31 (0x1F) S spr 0467 (0x1D3) 0

dcbi2 31 (0x1F) 000_00 A B 0470 (0x1D6) 0

nandx 31 (0x1F) S A B 0476 (0x1DC) Rc

stvxl1 31 (0x1F) vS A B 0487 (0x1E7) 0

divwx 31 (0x1F) D A B OE 0491 (0x1EB) Rc

 mcrxr 31 (0x1F) crfD 00 00_000 0_0000 0512 (0x200) 0

lswx 6 31 (0x1F) D A B 0533 (0x215) 0

lwbrx 31 (0x1F) D A B 0534 (0x216) 0

lfsx 31 (0x1F) D A B 0535 (0x217) 0

srwx 31 (0x1F) S A B 0536 (0x218) Rc

tlbsync2, 3 31 (0x1F) 000_00 00_000 0_0000 0566 (0x236) 0

lfsux 31 (0x1F) D A B 0567 (0x237) 0

mfsr2 31 (0x1F) D 0 SR 0_0000 0595 (0x099) 0

lswi6 31 (0x1F) D A NB 0597 (0x255) 0

sync 31 (0x1F) 000_00 00_000 0_0000 0598 (0x256) 0

lfdx 31 (0x1F) D A B 0599 (0x257) 0

lfdux 31 (0x1F) D A B 0631 (0x277) 0

mfsrin 2 31 (0x1F) D 00_000 B 0659 (0x293) 0

stswx6 31 (0x1F) S A B 0661 (0x295) 0

stwbrx 31 (0x1F) S A B 0662 (0x296) 0

stfsx 31 (0x1F) S A B 0663 (0x297) 0

stfsux 31 (0x1F) S A B 0695 (0x2B7) 0

stswi6 31 (0x1F) S A NB 0725 (0x2D5) 0

stfdx 31 (0x1F) S A B 0727 (0x2D7) 0

dcba3 31 (0x1F) 000_00 A B 0758 (0x2F6) 0

stfdux 31 (0x1F) S A B 0759 (0x2F7) 0

lhbrx 31 (0x1F) D A B 0790 (0x316) 0

srawx 31 (0x1F) S A B 0792 (0x318) Rc

Table A-2. Instructions by Primary and Secondary Opcodes (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-21

Instructions Sorted by Primary and Secondary Opcodes (Decimal and Hexadecimal)

dss1 31 (0x1F) 0 00 STRM 00_000 0_0000 0822 (0x336) 0

dssall1 31 (0x1F) 1 00 STRM 00_000 0_0000 0822 (0x336) 0

srawix 31 (0x1F) S A SH 0824 (0x338) Rc

eieio 31 (0x1F) 000_00 00_000 0_0000 0854 (0x356) 0

sthbrx 31 (0x1F) S A B 0918 (0x396) 0

extshx 31 (0x1F) S A 0_0000 0922 (0x39A) Rc

extsbx 31 (0x1F) S A 0_0000 0954 (0x3BA) Rc

tlbld2, 3 31 (0x1F) 000_00 00_000 B 0978 (0x3D2) 0

icbi 31 (0x1F) 000_00 A B 0982 (0x3D6) 0

stfiwx3 31 (0x1F) S A B 0983 (0x3D7) 0

tlbli2, 3 31 (0x1F) 000_00 00_000 B 1010 (0x3F2) 0

dcbz 31 (0x1F) 000_00 A B 1014 (0x3F6) 0

lwz 32 (0x20) D A d

lwzu 33 (0x21) D A d

lbz 34 (0x22) D A d

lbzu 35 (0x23) D A d

stw 36 (0x24) S A d

stwu 37 (0x25) S A d

stb 38 (0x26) S A d

stbu 39 (0x27) S A d

lhz 40 (0x28) D A d

lhzu 41 (0x29) D A d

lha 42 (0x2A) D A d

lhau 43 (0x2B) D A d

sth 44 (0x2C) S A d

sthu 45 (0x2D) S A d

lmw6 46 (0x2E) D A d

stmw6 47 (0x2F) S A d

lfs 48 (0x30) D A d

lfsu 49 (0x31) D A d

lfd 50 (0x32) D A d

lfdu 51 (0x33) D A d

 stfs 52 (0x34) S A d

stfsu 53 (0x35) S A d

Table A-2. Instructions by Primary and Secondary Opcodes (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-22 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Primary and Secondary Opcodes (Decimal and Hexadecimal)

stfd 54 (0x36) S A d

stfdu 55 (0x37) S A d

fdivsx 59 (0x3B) D A B 0000_0 0018 (0x012) Rc

fsubsx 59 (0x3B) D A B 0000_0 0020 (0x014) Rc

faddsx 59 (0x3B) D A B 0000_0 0021 (0x015) Rc

fsqrtsx 5 59 (0x3B) D 00_000 B 0000_0 0022 (0x016) Rc

fresx 3 59 (0x3B) D 00_000 B 0000_0 0024 (0x018) Rc

fmulsx 59 (0x3B) D A 0_0000 C 0025 (0x019) Rc

fmsubsx 59 (0x3B) D A B C 0028 (0x01C) Rc

fmaddsx 59 (0x3B) D A B C 0029 (0x01D) Rc

fnmsubsx 59 (0x3B) D A B C 0030 (0x01E) Rc

fnmaddsx 59 (0x3B) D A B C 0031 (0x01F) Rc

fcmpu 63 (0x3F) crfD 00 A B 0000 (0x000) 0

frspx 63 (0x3F) D 00_000 B 0012 (0xC) Rc

fctiwx 63 (0x3F) D 00_000 B 0014 (0x00E) Rc

fctiwzx 63 (0x3F) D 00_000 B 0015 (0x00F) Rc

fdivx 63 (0x3F) D A B 0000_0 0018 (0x012) Rc

fsubx 63 (0x3F) D A B 0000_0 0020 (0x014) Rc

faddx 63 (0x3F) D A B 0000_0 0021 (0x015) Rc

fsqrtx 5 63 (0x3F) D 00_000 B 0000_0 0022 (0x016) Rc

fselx 3 63 (0x3F) D A B C 0023 (0x017) Rc

fmulx 63 (0x3F) D A 0_0000 C 0025 (0x019) Rc

frsqrtex 3 63 (0x3F) D 00_000 B 0000_0 0026 (0x01A) Rc

fmsubx 63 (0x3F) D A B C 0028 (0x01C) Rc

fmaddx 63 (0x3F) D A B C 0029 (0x01D) Rc

fnmsubx 63 (0x3F) D A B C 0030 (0x01E) Rc

fnmaddx 63 (0x3F) D A B C 0031 (0x01F) Rc

fcmpo 63 (0x3F) crfD 00 A B 0032 (0x020) 0

mtfsb1x 63 (0x3F) crbD 00_000 0_0000 0038 (0x026) Rc

fnegx 63 (0x3F) D 00_000 B 0040 (0x28) Rc

mcrfs 63 (0x3F) crfD 00 crfS 00 0_0000 0064 (0x040) 0

mtfsb0x 63 (0x3F) crbD 00_000 0_0000 0070 (0x046) Rc

fmrx 63 (0x3F) D 00_000 B 0072 (0x48) Rc

mtfsfix 63 (0x3F) crfD 00 00_000 IMM 0 0134 (0x086) Rc

Table A-2. Instructions by Primary and Secondary Opcodes (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-23

Instructions Sorted by Primary and Secondary Opcodes (Decimal and Hexadecimal)

fnabsx 63 (0x3F) D 00_000 B 0136 (0x88) Rc

fabsx 63 (0x3F) D 00_000 B 0264 (0x108) Rc

mffsx 63 (0x3F) D 00_000 0_0000 0583 (0x247) Rc

mtfsfx 63 (0x3F) 0 FM 0 B 0711 (0x2C7) Rc

1 AltiVec technology-specific instruction
2 Supervisor-level instruction
3 Optional to the PowerPC architecture but implemented by the MPC7451
4 Supervisor- and user-level instructions
5 Optional instruction not implemented by the MPC7451
6 Load/store string/multiple instruction

Table A-2. Instructions by Primary and Secondary Opcodes (Dec, Hex) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-24 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Mnemonic (Binary)

A.3 Instructions Sorted by Mnemonic (Binary)
Table A-3 shows instructions listed in alphabetical order by mnemonic with binary values.

Table A-3. Instructions by Mnemonic (Bin)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 011111 D A B OE 100001 010 Rc

addcx 011111 D A B OE 000001010 Rc

addex 011111 D A B OE 010001010 Rc

addi 001110 D A SIMM

addic 001100 D A SIMM

addic. 001101 D A SIMM

addis 001111 D A SIMM

addmex 011111 D A 0_0000 OE 11101010 Rc

addzex 011111 D A 0_0000 OE 11001010 Rc

andx 011111 S A B 000011100 Rc

andcx 011111 S A B 000111100 Rc

andi. 011100 S A UIMM

andis. 011101 S A UIMM

bx 010010 LI AA LK

bcx 010000 BO BI BD AA LK

bcctrx 010011 BO BI 0_0000 1000010000 LK

bclrx 010011 BO BI 0_0000 0000010000 LK

cmp 011111 crfD 0 L A B 0000000000 0

cmpi 001011 crfD 0 L A SIMM

cmpl 011111 crfD 0 L A B 0000100000 0

cmpli 001010 crfD 0 L A UIMM

cntlzwx 011111 S A 0_0000 0000011010 Rc

crand 010011 crbD crbA crbB 0100000001 0

crandc 010011 crbD crbA crbB 0010000001 0

creqv 010011 crbD crbA crbB 0100100001 0

crnand 010011 crbD crbA crbB 0011100001 0

crnor 010011 crbD crbA crbB 0000100001 0

Reserved bits

Key:

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-25

Instructions Sorted by Mnemonic (Binary)

cror 010011 crbD crbA crbB 0111000001 0

crorc 010011 crbD crbA crbB 0110100001 0

crxor 010011 crbD crbA crbB 0011000001 0

dcba 1 011111 000_00 A B 1011110110 0

dcbf 011111 000_00 A B 0001010110 0

dcbi 2 011111 000_00 A B 0111010110 0

dcbst 011111 000_00 A B 0000110110 0

dcbt 011111 000_00 A B 0100010110 0

dcbtst 011111 000_00 A B 0011110110 0

dcbz 011111 000_00 A B 1111110110 0

divwx 011111 D A B OE 11110 1011 Rc

divwx 011111 D A B OE 11100 1011 Rc

dss 3 011111 A 00 STRM 00_000 0_0000 1100110110 0

dssall3 011111 A 00 STRM 00_000 0_0000 1100110110 0

dst3 011111 T 00 STRM A B 0101010110 0

dstst3 011111 T 00 STRM A B 0101110110 0

dststt3 011111 1 00 STRM A B 0101110110 0

dstt3 011111 1 00 STRM A B 0101010110 0

eciwx1 011111 D A B 0100110110 0

ecowx1 011111 S A B 0110110110 0

eieio 011111 000_00 00_000 0_0000 1101010110 0

eqvx 011111 S A B 0100011100 Rc

extsbx 011111 S A 0_0000 1110111010 Rc

extshx 011111 S A 0_0000 1110011010 Rc

fabsx 111111 D 00_000 B 0100001000 Rc

faddx 111111 D A B 0000_0 1 0101 Rc

faddsx 111011 D A B 0000_0 1 0101 Rc

fcmpo 111111 crfD 00 A B 0000100000 0

fcmpu 111111 crfD 00 A B 0000000000 0

fctiwx 111111 D 00_000 B 0000001110 Rc

fctiwzx 111111 D 00_000 B 0000001111 Rc

fdivx 111111 D A B 0000_0 1 0010 Rc

fdivsx 111011 D A B 0000_0 1 0010 Rc

Table A-3. Instructions by Mnemonic (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-26 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Mnemonic (Binary)

fmaddx 111111 D A B C 1 1101 Rc

fmaddsx 111011 D A B C 1 1101 Rc

fmrx 111111 D 00_000 B 0001001000 Rc

fmsubx 111111 D A B C 1 1100 Rc

fmsubsx 111011 D A B C 1 1100 Rc

fmulx 111111 D A 0_0000 C 1 1001 Rc

fmulsx 111011 D A 0_0000 C 1 1001 Rc

fnabsx 111111 D 00_000 B 0010001000 Rc

fnegx 111111 D 00_000 B 0000101000 Rc

fnmaddx 111111 D A B C 1 1111 Rc

fnmaddsx 111011 D A B C 1 1111 Rc

fnmsubx 111111 D A B C 1 1110 Rc

fnmsubsx 111011 D A B C 1 1110 Rc

fresx1 111011 D 00_000 B 0000_0 1 1000 Rc

frspx 111111 D 00_000 B 0000001100 Rc

frsqrtex 1 111111 D 00_000 B 0000_0 1 1010 Rc

fselx 1 111111 D A B C 1 0111 Rc

fsqrtx 4 111111 D 00_000 B 0000_0 1 0110 Rc

fsqrtsx 4 111011 D 00_000 B 0000_0 1 0110 Rc

fsubx 111111 D A B 0000_0 1 0100 Rc

fsubsx 111011 D A B 0000_0 1 0100 Rc

icbi 011111 000_00 A B 1111010110 0

isync 010011 000_00 00_000 0_0000 0010010110 0

lbz 100010 D A d

lbzu 100011 D A d

lbzux 011111 D A B 0001110111 0

lbzx 011111 D A B 0001010111 0

lfd 110010 D A d

lfdu 110011 D A d

lfdux 011111 D A B 1001110111 0

lfdx 011111 D A B 1001010111 0

lfs 110000 D A d

lfsu 110001 D A d

lfsux 011111 D A B 1000110111 0

Table A-3. Instructions by Mnemonic (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-27

Instructions Sorted by Mnemonic (Binary)

lfsx 011111 D A B 1000010111 0

lha 101010 D A d

lhau 101011 D A d

lhaux 011111 D A B 0101110111 0

lhax 011111 D A B 0101010111 0

lhbrx 011111 D A B 1100010110 0

lhz 101000 D A d

lhzu 101001 D A d

lhzux 011111 D A B 0100110111 0

lhzx 011111 D A B 0100010111 0

lmw 5 101110 D A d

lswi5 011111 D A NB 1001010101 0

lswx5 011111 D A B 1000010101 0

lvebx3 011111 vD A B 0000000111 0

lvehx3 011111 vD A B 0000100111 0

lvewx3 011111 vD A B 0001000111 0

lvsl3 011111 vD A B 0000000110 0

lvsr3 011111 vD A B 0000100110 0

lvx3 011111 vD A B 0001100111 0

lvxl3 011111 vD A B 0101100111 0

lwarx 011111 D A B 0000010100 0

lwbrx 011111 D A B 1000010110 0

lwz 100000 D A d

lwzu 100001 D A d

lwzux 011111 D A B 0000110111 0

lwzx 011111 D A B 0000010111 0

mcrf 010011 crfD 00 crfS 00 0_0000 000000000 0

mcrfs 111111 crfD 00 crfS 00 0_0000 001000000 0

mcrxr 011111 crfD 00 00_000 0_0000 1000000000 0

mfcr 011111 D 00_000 0_0000 0000010011 0

mffsx 111111 D 00_000 0_0000 1001000111 Rc

mfmsr2 011111 D 00_000 0_0000 0001010011 0

mfspr 6 011111 D spr 0101010011 0

mfsr2 011111 D 0 SR 0_0000 1001010011 0

Table A-3. Instructions by Mnemonic (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-28 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Mnemonic (Binary)

mfsrin2 011111 D 00_000 B 1010010011 0

mftb 011111 D tbr 0101110011 0

mfvscr3 000100 vD 00_000 0_0000 11000000100 0

mtcrf 011111 S 0 CRM 0 0010010000 0

mtfsb0x 111111 crbD 00_000 0_0000 0001000110 Rc

mtfsb1x 111111 crbD 00_000 0_0000 0000100110 Rc

mtfsfx 111111 0 FM 0 B 1011000111 Rc

mtfsfix 111111 crfD 00 00_000 IMM 0 0010000110 Rc

mtmsr2 011111 S 00_000 0_0000 0010010010 0

mtspr6 011111 S spr 0111010011 0

mtsr2 011111 S 0 SR 0_0000 0011010010 0

mtsrin 2 011111 S 00_000 B 0011110010 0

mtvscr3 000100 000_00 00_000 vB 11001000100 0

mulhwx 011111 D A B 0 001001011 Rc

mulhwux 011111 D A B 0 000001011 Rc

mulli 000111 D A SIMM

mullwx 011111 D A B OE 011101011 Rc

nandx 011111 S A B 0111011100 Rc

negx 011111 D A 0_0000 OE 001101000 Rc

norx 011111 S A B 0001111100 Rc

orx 011111 S A B 0110111100 Rc

orcx 011111 S A B 0110011100 Rc

ori 011000 S A UIMM

oris 011001 S A UIMM

rfi2 010011 000_00 00_000 0_0000 0000110010 0

rlwimix 010100 S A SH MB ME Rc

rlwinmx 010101 S A SH MB ME Rc

rlwnmx 010111 S A B MB ME Rc

sc 010001 000_0000_0000_0000_0000_0000_00 1 0

slwx 011111 S A B 0000011000 Rc

srawx 011111 S A B 1100011000 Rc

srawix 011111 S A SH 1100011000 Rc

srwx 011111 S A B 1000011000 Rc

stb 100110 S A d

Table A-3. Instructions by Mnemonic (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-29

Instructions Sorted by Mnemonic (Binary)

stbu 100111 S A d

stbux 011111 S A B 0011110111 0

stbx 011111 S A B 0011010111 0

stfd 110110 S A d

stfdu 110111 S A d

stfdux 011111 S A B 1011110111 0

stfdx 011111 S A B 1011010111 0

stfiwx1 011111 S A B 1111010111 0

stfs 110100 S A d

stfsu 110101 S A d

stfsux 011111 S A B 1010110111 0

stfsx 011111 S A B 1010010111 0

sth 101100 S A d

sthbrx 011111 S A B 1110010110 0

sthu 101101 S A d

sthux 011111 S A B 110110111 0

sthx 011111 S A B 110010111 0

stmw5 101111 S A d

stswi5 011111 S A NB 1011010101 0

stswx5 011111 S A B 1010010101 0

stvebx3 011111 vS A B 0010000111 0

stvehx3 011111 vS A B 0010100111 0

stvewx3 011111 vS A B 0011000111 0

stvx3 011111 vS A B 0011100111 0

stvxl3 011111 vS A B 0111100111 0

stw 100100 S A d

stwbrx 011111 S A B 1010010110 0

stwcx. 011111 S A B 10010110 1

stwu 100101 S A d

stwux 011111 S A B 10110111 0

stwx 011111 S A B 10010111 0

subfx 011111 D A B OE 000101000 Rc

subfcx 011111 D A B OE 000001000 Rc

subfex 011111 D A B OE 010001000 Rc

Table A-3. Instructions by Mnemonic (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-30 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Mnemonic (Binary)

subfic 001000 D A SIMM

subfmex 011111 D A 0_0000 OE 011101000 Rc

subfzex 011111 D A 0_0000 OE 011001000 Rc

sync 011111 000_00 00_000 0_0000 1001010110 0

tlbia 4 011111 000_00 00_000 0_0000 0101110010 0

tlbie1, 2 011111 000_00 00_000 B 0100110010 0

tlbld1, 2 011111 000_00 00_000 B 1111010010 0

tlbli1, 2 011111 000_00 00_000 B 1111110010 0

tlbsync1, 2 011111 000_00 00_000 0_0000 1000110110 0

tw 011111 TO A B 0000000100 0

twi 000011 TO A SIMM

vaddcuw3 000100 vD vA vB 0110000000 0

vaddfp3 000100 vD vA vB 0000001010 0

vaddsbs3 000100 vD vA vB 1100000000 0

vaddshs3 000100 vD vA vB 1101000000 0

vaddsws3 000100 vD vA vB 1110000000 0

vaddubm3 000100 vD vA vB 0000000000 0

vaddubs3 000100 vD vA vB 1000000000 0

vadduhm3 000100 vD vA vB 001000000 0

vadduhs3 000100 vD vA vB 1001000000 0

vadduwm3 000100 vD vA vB 0010000000 0

vadduws3 000100 vD vA vB 1010000000 0

vand3 000100 vD vA vB 10000000100 0

vandc3 000100 vD vA vB 10001000100 0

vavgsb3 000100 vD vA vB 10100000010 0

vavgsh3 000100 vD vA vB 10101000010 0

vavgsw3 000100 vD vA vB 10110000010 0

vavgub3 000100 vD vA vB 10000000010 0

vavguh3 000100 vD vA vB 10001000010 0

vavguw3 000100 vD vA vB 10010000010 0

vcfsx3 000100 vD UIMM vB 01101001010

vcfux3 000100 vD UIMM vB 1100001010 0

vcmpbfpx3 000100 vD vA vB Rc 1111000110

vcmpeqfpx3 000100 vD vA vB Rc 0011000110

Table A-3. Instructions by Mnemonic (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-31

Instructions Sorted by Mnemonic (Binary)

vcmpequbx3 000100 vD vA vB Rc 0000000110

vcmpequhx3 000100 vD vA vB Rc 0001000110

vcmpequwx3 000100 vD vA vB Rc 0010000110

vcmpgefpx3 000100 vD vA vB Rc 0111000110

vcmpgtfpx3 000100 vD vA vB Rc 1011000110

vcmpgtsbx3 000100 vD vA vB Rc 1100000110

vcmpgtshx3 000100 vD vA vB Rc 1101000110

vcmpgtswx3 000100 vD vA vB Rc 1110000110

vcmpgtubx3 000100 vD vA vB Rc 1000000110

vcmpgtuhx3 000100 vD vA vB Rc 1001000110

vcmpgtuwx3 000100 vD vA vB Rc 1010000110

vctsxs3 000100 vD UIMM vB 1111001010

vctuxs3 000100 vD UIMM vB 1110001010

vexptefp3 000100 vD 00_000 vB 110001010

vlogefp3 000100 vD 00_000 vB 111001010

vmaddfp3 000100 vD vA vB vC 101110

vmaxfp3 000100 vD vA vB 10000001010

vmaxsb3 000100 vD vA vB 0100000010

vmaxsh3 000100 vD vA vB 0101000010

vmaxsw3 000100 vD vA vB 0110000010

vmaxub3 000100 vD vA vB 0000000010

vmaxuh3 000100 vD vA vB 0001000010

vmaxuw3 000100 vD vA vB 0010000010

vmhaddshs3 000100 vD vA vB vC 100000

vmhraddshs3 000100 vD vA vB vC 100001

vminfp3 000100 vD vA vB 10001001010

vminsb3 000100 vD vA vB 1100000010

vminsh3 000100 vD vA vB 1101000010

vminsw3 000100 vD vA vB 1110000010

vminub3 000100 vD vA vB 1000000010

vminuh3 000100 vD vA vB 1001000010

vminuw3 000100 vD vA vB 1010000010

vmladduhm3 000100 vD vA vB vC 100010

vmrghb3 000100 vD vA vB 0000001100

Table A-3. Instructions by Mnemonic (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-32 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Mnemonic (Binary)

vmrghh3 000100 vD vA vB 0001001100

vmrghw3 000100 vD vA vB 0010001100

vmrglb3 000100 vD vA vB 0100001100

vmrglh3 000100 vD vA vB 0101001100

vmrglw3 000100 vD vA vB 0110001100

vmsummbm3 000100 vD vA vB vC 100101

vmsumshm3 000100 vD vA vB vC 101000

vmsumshs3 000100 vD vA vB vC 101001

vmsumubm3 000100 vD vA vB vC 100100

vmsumuhm3 000100 vD vA vB vC 100110

vmsumuhs3 000100 vD vA vB vC 100111

vmulesb3 000100 vD vA vB 0100001000

vmulesh3 000100 vD vA vB 1101001000

vmuleub3 000100 vD vA vB 1000001000

vmuleuh3 000100 vD vA vB 1001001000

vmulosb3 000100 vD vA vB 0100001000

vmulosh3 000100 vD vA vB 0101001000

vmuloub3 000100 vD vA vB 0000001000

vmulouh3 000100 vD vA vB 0001001000

vnmsubfp3 000100 vD vA vB vC 101111

vnor3 000100 vD vA vB 10100000100

vor3 000100 vD vA vB 10010000100

vperm3 000100 vD vA vB vC 101011

vpkpx3 000100 vD vA vB 1100001110

vpkshss3 000100 vD vA vB 0110001110

vpkshus3 000100 vD vA vB 0100001110

vpkswss3 000100 vD vA vB 0111001110

vpkswus3 000100 vD vA vB 0101001110

vpkuhum3 000100 vD vA vB 0000001110

vpkuhus3 000100 vD vA vB 0010001110

vpkuwum3 000100 vD vA vB 0001001110

vpkuwus3 000100 vD vA vB 0011001110

vrefp3 000100 vD 00_000 vB 0100001010

vrfim3 000100 vD 00_000 vB 1011001010

Table A-3. Instructions by Mnemonic (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-33

Instructions Sorted by Mnemonic (Binary)

vrfin3 000100 vD 00_000 vB 1000001010

vrfip3 000100 vD 00_000 vB 1010001010

vrfiz3 000100 vD 00_000 vB 1001001010

vrlb3 000100 vD vA vB 0000000100

vrlh3 000100 vD vA vB 0001000100

vrlw3 000100 vD vA vB 0010000100

vrsqrtefp3 000100 vD 00_000 vB 0101001010

vsel3 000100 vD vA vB vC 101010

vsl3 000100 vD vA vB 0111000100

vslb3 000100 vD vA vB 0100000100

vsldoi3 000100 vD vA vB 0 SH 101100

vslh3 000100 vD vA vB 0101000100

vslo3 000100 vD vA vB 10000001100

vslw3 000100 vD vA vB 0110000100

vspltb3 000100 vD UIMM vB 1000001100

vsplth3 000100 vD UIMM vB 1001001100

vspltisb3 000100 vD SIMM 0_0000 1100001100

vspltish3 000100 vD SIMM 0_0000 1101001100

vspltisw3 000100 vD SIMM 0_0000 1110001100

vspltw3 000100 vD UIMM vB 1010001100

vsr3 000100 vD vA vB 1011000100

vsrab3 000100 vD vA vB 1100000100

vsrah3 000100 vD vA vB 1101000100

vsraw3 000100 vD vA vB 1110000100

vsrb3 000100 vD vA vB 1000000100

vsrh3 000100 vD vA vB 1001000100

vsro3 000100 vD vA vB 10001001100

vsrw3 000100 vD vA vB 1010000100

vsubcuw3 000100 vD vA vB 10110000000

vsubfp3 000100 vD vA vB 0001001010

vsubsbs3 000100 vD vA vB 11100000000

vsubshs3 000100 vD vA vB 11101000000

vsubsws3 000100 vD vA vB 11110000000

vsububm3 000100 vD vA vB 10000000000

Table A-3. Instructions by Mnemonic (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-34 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Mnemonic (Binary)

vsububs3 000100 vD vA vB 11000000000

vsubuhm3 000100 vD vA vB 10001000000

vsubuhs3 000100 vD vA vB 11001000000

vsubuwm3 000100 vD vA vB 10010000000

vsubuws3 000100 vD vA vB 11010000000

vsumsws3 000100 vD vA vB 11110001000

vsum2sws3 000100 vD vA vB 11010001000

vsum4sbs3 000100 vD vA vB 11100001000

vsum4shs3 000100 vD vA vB 11001001000

vsum4ubs3 000100 vD vA vB 11000001000

vupkhpx3 000100 vD 00_000 vB 1101001110

vupkhsb3 000100 vD 00_000 vB 1000001110

vupkhsh3 000100 vD 00_000 vB 1001001110

vupklpx3 000100 vD 00_000 vB 1111001110

vupklsb3 000100 vD 00_000 vB 1010001110

vupklsh3 000100 vD 00_000 vB 1011001110

vxor3 000100 vD vA vB 10011000100

xorx 011111 S A B 0100111100 Rc

xori 011010 S A UIMM

xoris 011011 S A UIMM

1Optional to the PowerPC architecture but implemented by the MPC7451
2Supervisor-level instruction
3AltiVec technology-specific instruction
4Optional instruction not implemented by the MPC7451
5Load/store string/multiple instruction
6Supervisor- and user-level instruction

Table A-3. Instructions by Mnemonic (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-35

Instructions Sorted by Opcode (Binary)

A.4 Instructions Sorted by Opcode (Binary)
Table A-4 lists the instructions implemented in the MPC7451 in binary numerical order by
opcode.

Table A-4. Instructions by Primary and Secondary Opcode (Bin)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

twi 000011 TO A SIMM

vaddubm 1 000100 vD vA vB 0000000000 0

vmaxub1 000100 vD vA vB 0000000010

vrlb1 000100 vD vA vB 0000000100

vcmpequbx1 000100 vD vA vB Rc 0000000110

vmuloub1 000100 vD vA vB 0000001000

vaddfp1 000100 vD vA vB 0000001010 0

vmrghb1 000100 vD vA vB 0000001100

vpkuhum1 000100 vD vA vB 0000001110

vmhaddshs1 000100 vD vA vB vC 100000

vmhraddshs1 000100 vD vA vB vC 100001

vmladduhm1 000100 vD vA vB vC 100010

vmsumubm1 000100 vD vA vB vC 100100

vmsummbm1 000100 vD vA vB vC 100101

vmsumuhm1 000100 vD vA vB vC 100110

vmsumuhs1 000100 vD vA vB vC 100111

vmsumshm1 000100 vD vA vB vC 101000

vmsumshs1 000100 vD vA vB vC 101001

vsel1 000100 vD vA vB vC 101010

vperm1 000100 vD vA vB vC 101011

vsldoi1 000100 vD vA vB 0 SH 101100

vmaddfp1 000100 vD vA vB vC 101110

vnmsubfp1 000100 vD vA vB vC 101111

vadduhm1 000100 vD vA vB 001000000 0

vmaxuh1 000100 vD vA vB 0001000010

vrlh1 000100 vD vA vB 0001000100

vcmpequhx1 000100 vD vA vB Rc 0001000110

vmulouh1 000100 vD vA vB 0001001000

Reserved bits

Key:

A-36 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Opcode (Binary)

vsubfp1 000100 vD vA vB 0001001010

vmrghh1 000100 vD vA vB 0001001100

vpkuwum1 000100 vD vA vB 0001001110

vadduwm1 000100 vD vA vB 0010000000 0

vmaxuw1 000100 vD vA vB 0010000010

vrlw1 000100 vD vA vB 0010000100

vcmpequwx1 000100 vD vA vB Rc 0010000110

vmrghw1 000100 vD vA vB 0010001100

vpkuhus1 000100 vD vA vB 0010001110

vcmpeqfpx1 000100 vD vA vB Rc 0011000110

vpkuwus1 000100 vD vA vB 0011001110

vmaxsb1 000100 vD vA vB 0100000010

vslb1 000100 vD vA vB 0100000100

vmulosb1 000100 vD vA vB 0100001000

vrefp1 000100 vD 00_000 vB 0100001010

vmrglb1 000100 vD vA vB 0100001100

vpkshus1 000100 vD vA vB 0100001110

vmaxsh1 000100 vD vA vB 0101000010

vslh1 000100 vD vA vB 0101000100

vmulosh1 000100 vD vA vB 0101001000

vrsqrtefp1 000100 vD 00_000 vB 0101001010

vmrglh1 000100 vD vA vB 0101001100

vpkswus1 000100 vD vA vB 0101001110

vaddcuw1 000100 vD vA vB 0110000000 0

vmaxsw1 000100 vD vA vB 0110000010

vslw1 000100 vD vA vB 0110000100

vexptefp1 000100 vD 00_000 vB 110001010

vmrglw1 000100 vD vA vB 0110001100

vpkshss1 000100 vD vA vB 0110001110

vsl1 000100 vD vA vB 0111000100

vcmpgefpx1 000100 vD vA vB Rc 0111000110

vlogefp1 000100 vD 00_000 vB 111001010

vpkswss1 000100 vD vA vB 0111001110

vaddubs1 000100 vD vA vB 1000000000 0

Table A-4. Instructions by Primary and Secondary Opcode (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-37

Instructions Sorted by Opcode (Binary)

vminub1 000100 vD vA vB 1000000010

vsrb1 000100 vD vA vB 1000000100

vcmpgtubx1 000100 vD vA vB Rc 1000000110

vmuleub1 000100 vD vA vB 1000001000

vrfin1 000100 vD 00_000 vB 1000001010

vspltb1 000100 vD UIMM vB 1000001100

vupkhsb1 000100 D 00_000 B 1000001110

vadduhs1 000100 vD vA vB 1001000000 0

vminuh1 000100 vD vA vB 1001000010

vsrh1 000100 vD vA vB 1001000100

vcmpgtuhx 1 000100 vD vA vB Rc 1001000110

vmuleuh1 000100 vD vA vB 1001001000

vrfiz1 000100 vD 00_000 vB 1001001010

vsplth1 000100 vD UIMM vB 1001001100

vupkhsh1 000100 D 00_000 B 1001001110

vadduws1 000100 vD vA vB 1010000000 0

vminuw1 000100 vD vA vB 1010000010

vsrw1 000100 vD vA vB 1010000100

vcmpgtuwx1 000100 vD vA vB Rc 1010000110

vrfip1 000100 vD 00_000 vB 1010001010

vspltw1 000100 vD UIMM vB 1010001100

vupklsb1 000100 D 00_000 B 1010001110

vsr1 000100 vD vA vB 1011000100

vcmpgtfpx1 000100 vD vA vB Rc 1011000110

vrfim1 000100 vD 00_000 vB 1011001010

vupklsh1 000100 D 00_000 B 1011001110

vaddsbs1 000100 vD vA vB 1100000000 0

vminsb1 000100 vD vA vB 1100000010

vsrab1 000100 vD vA vB 1100000100

vcmpgtsbx1 000100 vD vA vB Rc 1100000110

vmulesb1 000100 vD vA vB 1100001000

vcfux1 000100 vD UIMM vB 1100001010 0

vspltisb1 000100 vD SIMM 0_0000 1100001100

vpkpx1 000100 vD vA vB 1100001110

Table A-4. Instructions by Primary and Secondary Opcode (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-38 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Opcode (Binary)

vaddshs1 000100 vD vA vB 1101000000 0

vminsh1 000100 vD vA vB 1101000010

vsrah1 000100 vD vA vB 1101000100

vcmpgtshx1 000100 vD vA vB Rc 1101000110

vmulesh1 000100 vD vA vB 1101001000

vcfsx1 000100 vD UIMM vB 01101001010

vspltish1 000100 vD SIMM 0_0000 1101001100

vupkhpx1 000100 vD 00_000 vB 1101001110

vaddsws1 000100 vD vA vB 1110000000 0

vminsw1 000100 vD vA vB 1110000010

vsraw1 000100 vD vA vB 1110000100

vcmpgtswx1 000100 vD vA vB Rc 1110000110

vctuxs1 000100 vD UIMM vB 1110001010

vspltisw1 000100 vD SIMM 0_0000 1110001100

vcmpbfpx1 000100 vD vA vB Rc 1111000110

vctsxs1 000100 vD UIMM vB 1111001010

vupklpx1 000100 vD 00_000 vB 1111001110

vsububm1 000100 vD vA vB 10000000000

vavgub1 000100 vD vA vB 10000000010 0

vand1 000100 vD vA vB 10000000100 0

vmaxfp1 000100 vD vA vB 10000001010

vslo1 000100 vD vA vB 10000001100

vsubuhm1 000100 vD vA vB 10001000000

vavguh1 000100 vD vA vB 10001000010 0

vandc1 000100 vD vA vB 10001000100 0

vminfp1 000100 vD vA vB 10001001010

vsro1 000100 vD vA vB 10001001100

vsubuwm1 000100 vD vA vB 10010000000

vavguw1 000100 vD vA vB 10010000010 0

vor1 000100 vD vA vB 10010000100

vxor1 000100 vD vA vB 10011000100

vavgsb1 000100 vD vA vB 10100000010 0

vnor1 000100 vD vA vB 10100000100

vavgsh1 000100 vD vA vB 10101000010 0

Table A-4. Instructions by Primary and Secondary Opcode (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-39

Instructions Sorted by Opcode (Binary)

vsubcuw1 000100 vD vA vB 10110000000

vavgsw1 000100 vD vA vB 10110000010 0

vsububs1 000100 vD vA vB 11000000000

mfvscr1 000100 vD 00_000 0_0000 11000000100 0

vsum4ubs1 000100 vD vA vB 11000001000

vsubuhs1 000100 vD vA vB 11001000000

mtvscr1 000100 000_00 00_000 vB 11001000100 0

vsum4shs1 000100 vD vA vB 11001001000

vsubuws1 000100 vD vA vB 11010000000

vsum2sws1 000100 vD vA vB 11010001000

vsubsbs1 000100 vD vA vB 11100000000

vsum4sbs1 000100 vD vA vB 11100001000

vsubshs1 000100 vD vA vB 11101000000

vsubsws1 000100 vD vA vB 11110000000

vsumsws1 000100 vD vA vB 11110001000

mulli 000111 D A SIMM

subfic 001000 D A SIMM

cmpli 001010 crfD 0 L A UIMM

cmpi 001011 crfD 0 L A SIMM

addic 001100 D A SIMM

addic. 001101 D A SIMM

addi 001110 D A SIMM

addis 001111 D A SIMM

bcx 010000 BO BI BD AA LK

sc 010001 000_0000_0000_0000_0000_0000_00 1 0

bx 010010 LI AA LK

mcrf 010011 crfD 00 crfS 00 0_0000 000000000 0

bclrx 010011 BO BI 0_0000 0000010000 LK

crnor 010011 crbD crbA crbB 0000100001 0

rfi 2 010011 000_00 00_000 0_0000 0000110010 0

crandc 010011 crbD crbA crbB 0010000001 0

isync 010011 000_00 00_000 0_0000 0010010110 0

crxor 010011 crbD crbA crbB 0011000001 0

crnand 010011 crbD crbA crbB 0011100001 0

Table A-4. Instructions by Primary and Secondary Opcode (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-40 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Opcode (Binary)

crand 010011 crbD crbA crbB 0100000001 0

creqv 010011 crbD crbA crbB 0100100001 0

crorc 010011 crbD crbA crbB 0110100001 0

cror 010011 crbD crbA crbB 0111000001 0

bcctrx 010011 BO BI 0_0000 1000010000 LK

rlwimix 010100 S A SH MB ME Rc

rlwinmx 010101 S A SH MB ME Rc

rlwnmx 010111 S A B MB ME Rc

ori 011000 S A UIMM

oris 011001 S A UIMM

xori 011010 S A UIMM

xoris 011011 S A UIMM

andi. 011100 S A UIMM

andis. 011101 S A UIMM

cmp 011111 crfD 0 L A B 0000000000 0

tw 011111 TO A B 0000000100 0

lvsl1 011111 vD A B 0000000110 0

lvebx1 011111 vD A B 0000000111 0

subfcx 011111 D A B OE 000001000 Rc

addcx 011111 D A B OE 000001010 Rc

mulhwux 011111 D A B 0 000001011 Rc

mfcr 011111 D 00_000 0_0000 0000010011 0

lwarx 011111 D A B 0000010100 0

lwzx 011111 D A B 0000010111 0

slwx 011111 S A B 0000011000 Rc

cntlzwx 011111 S A 0_0000 0000011010 Rc

andx 011111 S A B 000011100 Rc

cmpl 011111 crfD 0 L A B 0000100000 0

lvsr1 011111 vD A B 0000100110 0

lvehx1 011111 vD A B 0000100111 0

subfx 011111 D A B OE 000101000 Rc

dcbst 011111 000_00 A B 0000110110 0

lwzux 011111 D A B 0000110111 0

andcx 011111 S A B 000111100 Rc

Table A-4. Instructions by Primary and Secondary Opcode (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-41

Instructions Sorted by Opcode (Binary)

lvewx1 011111 vD A B 0001000111 0

mulhwx 011111 D A B 0 001001011 Rc

mfmsr 2 011111 D 00_000 0_0000 0001010011 0

dcbf 011111 000_00 A B 0001010110 0

lbzx 011111 D A B 0001010111 0

lvx1 011111 vD A B 0001100111 0

negx 011111 D A 0_0000 OE 001101000 Rc

lbzux 011111 D A B 0001110111 0

norx 011111 S A B 0001111100 Rc

stvebx 1 011111 vS A B 0010000111 0

subfex 011111 D A B OE 010001000 Rc

addex 011111 D A B OE 010001010 Rc

mtcrf 011111 S 0 CRM 0 0010010000 0

mtmsr 2 011111 S 00_000 0_0000 0010010010 0

stwcx. 011111 S A B 10010110 1

stwx 011111 S A B 10010111 0

stvehx 1 011111 vS A B 0010100111 0

stwux 011111 S A B 10110111 0

stvewx 1 011111 vS A B 0011000111 0

subfzex 011111 D A 0_0000 OE 011001000 Rc

addzex 011111 D A 0_0000 OE 11001010 Rc

mtsr 2 011111 S 0 SR 0_0000 0011010010 0

stbx 011111 S A B 0011010111 0

stvx 1 011111 vS A B 0011100111 0

subfmex 011111 D A 0_0000 OE 011101000 Rc

addmex 011111 D A 0_0000 OE 11101010 Rc

mullwx 011111 D A B OE 011101011 Rc

mtsrin 2 011111 S 00_000 B 0011110010 0

dcbtst 011111 000_00 A B 0011110110 0

stbux 011111 S A B 0011110111 0

addx 011111 D A B OE 100 001 010 Rc

dcbt 011111 000_00 A B 0100010110 0

lhzx 011111 D A B 0100010111 0

eqvx 011111 S A B 0100011100 Rc

Table A-4. Instructions by Primary and Secondary Opcode (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-42 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Opcode (Binary)

tlbie 2, 3 011111 000_00 00_000 B 0100110010 0

eciwx 3 011111 D A B 0100110110 0

lhzux 011111 D A B 0100110111 0

xorx 011111 S A B 0100111100 Rc

mfspr 4 011111 D spr 0101010011 0

dst 1 011111 T 00 STRM A B 0101010110 0

dstt 1 011111 1 00 STRM A B 0101010110 0

lhax 011111 D A B 0101010111 0

lvxl1 011111 vD A B 0101100111 0

tlbia 5 011111 000_00 00_000 0_0000 0101110010 0

mftb 011111 D tbr 0101110011 0

dstst1 011111 T 00 STRM A B 0101110110 0

dststt1 011111 1 00 STRM A B 0101110110 0

lhaux 011111 D A B 0101110111 0

sthx 011111 S A B 110010111 0

orcx 011111 S A B 0110011100 Rc

ecowx 3 011111 S A B 0110110110 0

sthux 011111 S A B 110110111 0

orx 011111 S A B 0110111100 Rc

divwux 011111 D A B OE 1 1100 1011 Rc

mtspr4 011111 S spr 0111010011 0

dcbi 2 011111 000_00 A B 0111010110 0

nandx 011111 S A B 0111011100 Rc

stvxl 1 011111 vS A B 0111100111 0

divwx 011111 D A B OE 1 1110 1011 Rc

 mcrxr 011111 crfD 00 00_000 0_0000 1000000000 0

lswx 6 011111 D A B 1000010101 0

lwbrx 011111 D A B 1000010110 0

lfsx 011111 D A B 1000010111 0

srwx 011111 S A B 1000011000 Rc

tlbsync 2, 3 011111 000_00 00_000 0_0000 1000110110 0

lfsux 011111 D A B 1000110111 0

mfsr2 011111 D 0 SR 0_0000 1001010011 0

lswi 6 011111 D A NB 1001010101 0

Table A-4. Instructions by Primary and Secondary Opcode (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-43

Instructions Sorted by Opcode (Binary)

sync 011111 000_00 00_000 0_0000 1001010110 0

lfdx 011111 D A B 1001010111 0

lfdux 011111 D A B 1001110111 0

mfsrin 2 011111 D 00_000 B 1010010011 0

stswx 6 011111 S A B 1010010101 0

stwbrx 011111 S A B 1010010110 0

stfsx 011111 S A B 1010010111 0

stfsux 011111 S A B 1010110111 0

stswi 6 011111 S A NB 1011010101 0

stfdx 011111 S A B 1011010111 0

dcba 3 011111 000_00 A B 1011110110 0

stfdux 011111 S A B 1011110111 0

lhbrx 011111 D A B 1100010110 0

srawx 011111 S A B 1100011000 Rc

dss 1 011111 A 00 STRM 00_000 0_0000 1100110110 0

dssall 1 011111 A 00 STRM 00_000 0_0000 1100110110 0

srawix 011111 S A SH 1100011000 Rc

eieio 011111 000_00 00_000 0_0000 1101010110 0

sthbrx 011111 S A B 1110010110 0

extshx 011111 S A 0_0000 1110011010 Rc

extsbx 011111 S A 0_0000 1110111010 Rc

tlbld 2, 3 011111 000_00 00_000 B 1111010010 0

icbi 011111 000_00 A B 1111010110 0

stfiwx 3 011111 S A B 1111010111 0

tlbli 2, 3 011111 000_00 00_000 B 1111110010 0

dcbz 011111 000_00 A B 1111110110 0

lwz 100000 D A d

lwzu 100001 D A d

lbz 100010 D A d

lbzu 100011 D A d

stw 100100 S A d

stwu 100101 S A d

stb 100110 S A d

stbu 100111 S A d

Table A-4. Instructions by Primary and Secondary Opcode (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-44 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Opcode (Binary)

lhz 101000 D A d

lhzu 101001 D A d

lha 101010 D A d

lhau 101011 D A d

sth 101100 S A d

sthu 101101 S A d

lmw 6 101110 D A d

stmw 6 101111 S A d

lfs 110000 D A d

lfsu 110001 D A d

lfd 110010 D A d

lfdu 110011 D A d

 stfs 110100 S A d

stfsu 110101 S A d

stfd 110110 S A d

stfdu 110111 S A d

fdivsx 111011 D A B 0000_0 1 0010 Rc

fsubsx 111011 D A B 0000_0 1 0100 Rc

faddsx 111011 D A B 0000_0 1 0101 Rc

fsqrtsx 5 111011 D 00_000 B 0000_0 1 0110 Rc

fresx 3 111011 D 00_000 B 0000_0 1 1000 Rc

fmulsx 111011 D A 0_0000 C 1 1001 Rc

fmsubsx 111011 D A B C 1 1100 Rc

fmaddsx 111011 D A B C 1 1101 Rc

fnmsubsx 111011 D A B C 1 1110 Rc

fnmaddsx 111011 D A B C 1 1111 Rc

fcmpu 111111 crfD 00 A B 0000000000 0

frspx 111111 D 00_000 B 0000001100 Rc

fctiwx 111111 D 00_000 B 0000001110 Rc

fctiwzx 111111 D 00_000 B 0000001111 Rc

fdivx 111111 D A B 0000_0 1 0010 Rc

fsubx 111111 D A B 0000_0 1 0100 Rc

faddx 111111 D A B 0000_0 1 0101 Rc

fsqrtx 5 111111 D 00_000 B 0000_0 1 0110 Rc

Table A-4. Instructions by Primary and Secondary Opcode (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-45

Instructions Sorted by Opcode (Binary)

fselx 3 111111 D A B C 1 0111 Rc

fmulx 111111 D A 0_0000 C 1 1001 Rc

frsqrtex 3 111111 D 00_000 B 0000_0 1 1010 Rc

fmsubx 111111 D A B C 1 1100 Rc

fmaddx 111111 D A B C 1 1101 Rc

fnmsubx 111111 D A B C 1 1110 Rc

fnmaddx 111111 D A B C 1 1111 Rc

fcmpo 111111 crfD 00 A B 0000100000 0

mtfsb1x 111111 crbD 00_000 0_0000 0000100110 Rc

fnegx 111111 D 00_000 B 0000101000 Rc

mcrfs 111111 crfD 00 crfS 00 0_0000 001000000 0

mtfsb0x 111111 crbD 00_000 0_0000 0001000110 Rc

fmrx 111111 D 00_000 B 0001001000 Rc

mtfsfix 111111 crfD 00 00_000 IMM 0 0010000110 Rc

fnabsx 111111 D 00_000 B 0010001000 Rc

fabsx 111111 D 00_000 B 0100001000 Rc

mffsx 111111 D 00_000 0_0000 1001000111 Rc

mtfsfx 111111 0 FM 0 B 1011000111 Rc

1AltiVec technology-specific instruction
2Supervisor-level instruction
3Optional to the PowerPC architecture but implemented by the MPC7451
4Supervisor- and user-level instruction
5Optional instruction not implemented by the MPC7451
6Load/store string/multiple instruction

Table A-4. Instructions by Primary and Secondary Opcode (Bin) (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-46 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Grouped by Functional Categories

A.5 Instructions Grouped by Functional Categories
Table A-5 through Table A-45 list the MPC7451 instructions grouped by function.

Table A-5. Integer Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulli 07 D A SIMM

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subfic 08 D A SIMM

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

Table A-6. Integer Compare Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmp 31 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

Reserved bitsKey:

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-47

Instructions Grouped by Functional Categories

Table A-7. Integer Logical Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

cntlzwx 31 S A 0 0 0 0 0 26 Rc

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

vand 1

1AltiVec technology-specific instruction

04 vD vA vB 1028 0

vandc 1 04 vD vA vB 1092 0

vnor 1 04 vD vA vB 1284

vor 1 04 vD vA vB 1156

vxor 1 04 D A B 1220

xorx 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

Table A-8. Integer Rotate Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rlwimix 22 S A SH MB ME Rc

rlwinmx 20 S A SH MB ME Rc

rlwnmx 21 S A SH MB ME Rc

A-48 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Grouped by Functional Categories

Table A-9. Integer Shift Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

slwx 31 S A B 24 Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srwx 31 S A B 536 Rc

Table A-10. Floating-Point Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fresx 1

1Optional to the PowerPC architecture but implemented by the MPC7451

59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 1 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

fselx 63 D A B C 23 Rc

fsqrtx 2

2Optional instruction not implemented by the MPC7451

63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 2 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

vaddfp 3

3AltiVec technology-specific instruction

04 vD vA vB 10 0

vmaxfp 3 04 vD vA vB 1034

vminfp 3 04 vD vA vB 1098

vsubfp 3 04 vD vA vB 74

Table A-11. Floating-Point Multiply-Add Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-49

Instructions Grouped by Functional Categories

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

vmaddfp 1 04 vD vA vB vC 46

vnmsubfp 1 04 vD vA vB vC 47

1AltiVec technology-specific instruction

Table A-12. Floating-Point Rounding and Conversion Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

vcfsx 1

1AltiVec technology-specific instruction

04 vD UIMM vB 842

vcfux 1 04 vD UIMM vB 778 0

vctsxs 1 04 vD UIMM vB 970

vctuxs 1 04 vD UIMM vB 906

vrfim 1 04 vD 0 0 0 0 0 vB 714

vrfin 1 04 vD 0 0 0 0 0 vB 522

vrfip 1 04 vD 0 0 0 0 0 vB 650

vrfiz 1 04 vD 0 0 0 0 0 vB 586

Table A-13. Floating-Point Compare Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

vcmpbfpx 1

1AltiVec technology-specific instruction

04 vD vA vB Rc 966

vcmpeqfpx 1 04 vD vA vB Rc 198

vcmpgefpx 1 04 vD vA vB Rc 454

vcmpgtfpx 1 04 vD vA vB Rc 710

Table A-11. Floating-Point Multiply-Add Instructions (continued)

A-50 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Grouped by Functional Categories

Table A-14. Floating-Point Status and Control Register Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfx 31 0 FM 0 B 711 Rc

mtfsfix 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

Table A-15. Integer Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lvebx 1

1AltiVec technology-specific instruction

31 vD A B 7 0

lvehx 1 31 vD A B 39 0

lvewx 1 31 vD A B 71 0

lvx 1 31 vD A B 103 0

lvxl 1 31 vD A B 359 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-51

Instructions Grouped by Functional Categories

Table A-16. Integer Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

sth 44 S A d

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stw 36 S A d

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

Table A-17. Integer Load and Store with Byte Reverse Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lhbrx 31 D A B 790 0

lwbrx 31 D A B 534 0

sthbrx 31 S A B 918 0

stwbrx 31 S A B 662 0

Table A-18. Integer Load and Store Multiple Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lmw 1

1Load/store string/multiple instruction

46 D A d

stmw1 47 S A d

Table A-19. Integer Load and Store String Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lswi 1

1Load/store string/multiple instruction

31 D A NB 597 0

lswx1 31 D A B 533 0

stswi1 31 S A NB 725 0

stswx1 31 S A B 661 0

A-52 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Grouped by Functional Categories

Table A-20. Memory Synchronization Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lwarx 31 D A B 20 0

stwcx. 31 S A B 150 1

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

Table A-21. Floating-Point Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

Table A-22. Floating-Point Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 1

1Optional to the PowerPC architecture but implemented by the MPC7451

31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-53

Instructions Grouped by Functional Categories

Table A-25. Condition Register Logical Instructions

Table A-26. System Linkage Instructions

Table A-23. Floating-Point Move Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fabsx 63 D 0 0 0 0 0 B 264 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

Table A-24. Branch Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rfi 1

1Supervisor-level instruction

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

sc 17 0 1 0

A-54 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Grouped by Functional Categories

Table A-27. Trap Instructions

Table A-28. Processor Control Instructions

Table A-29. Cache Management Instructions

Table A-30. Segment Register Manipulation Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tw 31 TO A B 4 0

twi 03 TO A SIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 mcrxr 31 crfS 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfmsr 1

1Supervisor-level instruction

31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 2

2Supervisor- and user-level instruction

31 D spr 339 0

mftb 31 D tpr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr 2 31 D spr 467 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcba 1

1Optional to the PowerPC but implemented by the MPC7451

31 0 0 0 0 0 A B 758 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 2

2Supervisor-level instruction

31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

icbi 31 0 0 0 0 0 A B 982 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfsr 1 31 D 0 SR 0 0 0 0 0 595 0

mfsrin1 31 D 0 0 0 0 0 B 659 0

mtsr1 31 S 0 SR 0 0 0 0 0 210 0

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-55

Instructions Grouped by Functional Categories

Table A-31. Lookaside Buffer Management Instructions

Table A-32. External Control Instructions

Table A-33. Vector Integer Arithmetic Instructions

mtsrin1 31 S 0 0 0 0 0 B 242 0

1Supervisor-level instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tlbia 1

1Optional instruction not implemented by the MPC7451

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 2, 3

2Optional to the PowerPC architecture but implemented by the MPC7451
3Supervisor-level instruction

31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbld 2, 3 31 0 0 0 0 0 0 0 0 0 0 B 978 0

tlbli 2, 3 31 0 0 0 0 0 0 0 0 0 0 B 1010 0

tlbsync 2, 3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eciwx 1

1Optional to the PowerPC architecture but implemented by the MPC7451

31 D A B 310 0

ecowx 1 31 S A B 438 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vaddcuw 1 04 vD vA vB 384 0

vaddsbs 1 04 vD vA vB 768 0

vaddshs 1 04 vD vA vB 832 0

vaddsws 1 04 vD vA vB 896 0

vaddubm 1 04 vD vA vB 0 0

vaddubs 1 04 vD vA vB 512 0

vadduhm 1 04 vD vA vB 64 0

vadduhs 1 04 vD vA vB 576 0

vadduwm 1 04 vD vA vB 128 0

vadduws 1 04 vD vA vB 640 0

vavgsb 1 04 vD vA vB 1282 0

vavgsh 1 04 vD vA vB 1346 0

vavgsw 1 04 vD vA vB 1410 0

A-56 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Grouped by Functional Categories

vavgub 1 04 vD vA vB 1026 0

vavguh 1 04 vD vA vB 1090 0

vavguw 1 04 vD vA vB 1154 0

vmaxsb 1 04 vD vA vB 258

vmaxsh 1 04 vD vA vB 322

vmaxsw 1 04 vD vA vB 386

vmaxub 1 04 vD vA vB 2

vmaxuh 1 04 vD vA vB 66

vmaxuw 1 04 vD vA vB 130

vmhaddshs 1 04 vD vA vB vC 32

vmhraddshs 1 04 vD vA vB vC 33

vminsb 1 04 vD vA vB 770

vminsh 1 04 vD vA vB 834

vminsw 1 04 vD vA vB 898

vminub 1 04 vD vA vB 514

vminuh 1 04 vD vA vB 578

vminuw 1 04 vD vA vB 642

vmladduhm 1 04 vD vA vB vC 34

vmsummbm 1 04 vD vA vB vC 37

vmsumshm 1 04 vD vA vB vC 40

vmsumshs 1 04 vD vA vB vC 41

vmsumubm 1 04 vD vA vB vC 36

vmsumuhm 1 04 vD vA vB vC 38

vmsumuhs 1 04 vD vA vB vC 39

vmulesb 1 04 vD vA vB 776

vmulesh 1 04 vD vA vB 840

vmuleub 1 04 vD vA vB 520

vmuleuh 1 04 vD vA vB 584

vmulosb 1 04 vD vA vB 264

vmulosh 1 04 vD vA vB 328

vmuloub 1 04 vD vA vB 8

vmulouh 1 04 vD vA vB 72

vsubcuw 1 04 vD vA vB 1408

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-57

Instructions Grouped by Functional Categories

vsubsbs 1 04 vD vA vB 1792

vsubshs 1 04 vD vA vB 1856

vsubsws 1 04 vD vA vB 1920

vsububm 1 04 vD vA vB 1024

vsububs 1 04 vD vA vB 1536

vsubuhm 1 04 vD vA vB 1088

vsubuhs 1 04 vD vA vB 1600

vsubuwm 1 04 vD vA vB 1152

vsubuws 1 04 vD vA vB 1664

vsumsws 1 04 vD vA vB 1928

vsum2sws 1 04 D A B 1672

vsum4sbs 1 04 D A B 1800

vsum4shs 1 04 D A B 1608

vsum4ubs 1 04 D A B 1544

1AltiVec technology-specific instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-58 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Grouped by Functional Categories

Table A-34. Floating-Point Compare Instructions

Table A-35. Floating-Point Estimate Instructions

Table A-36. Vector Load Instructions Supporting Alignment

Table A-37. Integer Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vcmpbfpx 04 vD vA vB Rc 966

vcmpeqfpx 04 vD vA vB Rc 198

vcmpgefpx 04 vD vA vB Rc 454

vcmpgtfpx 04 vD vA vB Rc 710

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vexptefp 04 vD 0 0 0 0 0 vB 394

vlogefp 04 vD 0 0 0 0 0 vB 458

vrefp 04 vD 0 0 0 0 0 vB 266

vrsqrtefp 04 vD 0 0 0 0 0 vB 330

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lvsl 31 vD A B 6 0

lvsr 31 vD A B 38 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stvebx 31 S A B 135 0

stvehx 31 S A B 167 0

stvewx 31 S A B 199 0

stvx 31 S A B 231 0

stvxl 31 S A B 487 0

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-59

Instructions Grouped by Functional Categories

Table A-38. Vector Pack Instructions

Table A-39. Vector Unpack Instructions

Table A-40. Vector Splat Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vpkpx 04 vD vA vB 782

vpkshss 04 vD vA vB 398

vpkshus 04 vD vA vB 270

vpkswss 04 vD vA vB 462

vpkswus 04 vD vA vB 334

vpkuhum 04 vD vA vB 14

vpkuhus 04 vD vA vB 142

vpkuwum 04 vD vA vB 78

vpkuwus 04 vD vA vB 206

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vmrghb 04 vD vA vB 12

vmrghh 04 vD vA vB 76

vmrghw 04 vD vA vB 140

vmrglb 04 vD vA vB 268

vmrglh 04 vD vA vB 332

vupkhpx 04 D 0 0 0 0 0 B 846

vupkhsb 04 D 0 0 0 0 0 B 526

vupkhsh 04 D 0 0 0 0 0 B 590

vupklpx 04 D 0 0 0 0 0 B 974

vupklsb 04 D 0 0 0 0 0 B 654

vupklsh 04 D 0 0 0 0 0 B 718

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vspltb 04 vD UIMM vB 524

vsplth 04 vD UIMM vB 588

vspltisb 04 vD SIMM 0 0 0 0 0 780

vspltish 04 vD SIMM 0 0 0 0 0 844

vspltisw 04 vD SIMM 0 0 0 0 0 908

vspltw 04 vD UIMM vB 652

A-60 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Grouped by Functional Categories

Table A-41. Vector Permute Instruction

Table A-42. Vector Select Instruction

Table A-43. Vector Shift Instructions

Table A-44. Move to/from Condition Register Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vperm 04 vD vA vB vC 43

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vsel 04 vD vA vB vC 42

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vsl 04 vD vA vB 452

vsldoi 04 vD vA vB 0 SH 44

vslo 04 vD vA vB 1036

vsro 04 vD vA vB 1100

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfvscr 04 vD 0 0 0 0 0 0 0 0 0 0 1540 0

mtvscr 04 0 0 0 0 0 0 0 0 0 0 vB 1604

Table A-45. User-Level Cache Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dss 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

dssall 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

dst 31 T 0 0 STRM A B 342 0

dstst 31 T 0 0 STRM A B 374 0

dststt 31 1 0 0 STRM A B 374 0

dstt 31 1 0 0 STRM A B 342 0

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-61

Instructions Sorted by Form

A.6 Instructions Sorted by Form
Table A-46 through Table A-59 list the MPC7451 instructions grouped by form.

Table A-46. I-Form

Table A-47. B-Form

Table A-48. SC-Form

Table A-49. D-Form

OPCD LI AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

OPCD BO BI BD AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcx 16 BO BI BD AA LK

OPCD 0 1 0

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sc 17 0 1 0

OPCD D A d

OPCD D A SIMM

OPCD S A d

OPCD S A UIMM

OPCD crfD 0 L A SIMM

OPCD crfD 0 L A UIMM

OPCD TO A SIMM

Reserved bits

Key:

A-62 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Form

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

andi. 28 S A UIMM

andis. 29 S A UIMM

cmpi 11 crfD 0 L A SIMM

cmpli 10 crfD 0 L A UIMM

lbz 34 D A d

lbzu 35 D A d

lfd 50 D A d

lfdu 51 D A d

lfs 48 D A d

lfsu 49 D A d

lha 42 D A d

lhau 43 D A d

lhz 40 D A d

lhzu 41 D A d

lmw 1 46 D A d

lwz 32 D A d

lwzu 33 D A d

mulli 7 D A SIMM

ori 24 S A UIMM

oris 25 S A UIMM

stb 38 S A d

stbu 39 S A d

stfd 54 S A d

stfdu 55 S A d

 stfs 52 S A d

stfsu 53 S A d

sth 44 S A d

sthu 45 S A d

stmw1 47 S A d

stw 36 S A d

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-63

Instructions Sorted by Form

Table A-50. X-Form

stwu 37 S A d

subfic 08 D A SIMM

twi 03 TO A SIMM

xori 26 S A UIMM

xoris 27 S A UIMM

1 Load/store string/multiple instruction

OPCD D A B XO 0

OPCD D A NB XO 0

OPCD D 0 0 0 0 0 B XO 0

OPCD D 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD D 0 SR 0 0 0 0 0 XO 0

OPCD S A B XO Rc

OPCD S A B XO 1

OPCD S A B XO 0

OPCD S A NB XO 0

OPCD S A 0 0 0 0 0 XO Rc

OPCD S 0 0 0 0 0 B XO 0

OPCD S 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD S 0 SR 0 0 0 0 0 XO 0

OPCD S A SH XO Rc

OPCD crfD 0 L A B XO 0

OPCD crfD 0 0 A B XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 IMM 0 XO Rc

OPCD TO A B XO 0

OPCD D 0 0 0 0 0 B XO Rc

OPCD D 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD crbD 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD 0 0 0 0 0 A B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-64 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Form

OPCD vD vA vB XO 0

OPCD vS vA vB XO 0

OPCD T 0 0 STRM A B XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

cmp 31 crfD 0 L A B 0 0

cmpl 31 crfD 0 L A B 32 0

cntlzwx 31 S A 0 0 0 0 0 26 Rc

dcba 1 31 0 0 0 0 0 A B 758 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 2 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

dst 31 T 0 0 STRM A B 342 0

dstt 3 31 1 0 0 STRM A B 342 0

dstst 3 31 T 0 0 STRM A B 374 0

dststt 3 31 1 0 0 STRM A B 374 0

dss 3 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

dssall 3 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

eciwx 1 31 D A B 310 0

ecowx 1 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

fabsx 63 D 0 0 0 0 0 B 264 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-65

Instructions Sorted by Form

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

icbi 31 0 0 0 0 0 A B 982 0

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lsw i 4 31 D A NB 597 0

lswx 4 31 D A B 533 0

lvebx 3 31 vD vA vB 7 0

lvehx 3 31 vD A B 39 0

lvewx 3 31 vD A B 71 0

lvsl 3 31 vD A B 6 0

lvsr 3 31 vD A B 38 0

lvx 3 31 vD A B 103 0

lvxl 3 31 vD A B 359 0

lwarx 31 D A B 20 0

lwbrx 31 D A B 534 0

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 2 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfsr 2 31 D 0 SR 0 0 0 0 0 595 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-66 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Form

mfsrin 2 31 D 0 0 0 0 0 B 659 0

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crfD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfix 63 crbD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 2 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtsr2 31 S 0 SR 0 0 0 0 0 210 0

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

slwx 31 S A B 24 Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srwx 31 S A B 536 Rc

stbux 31 S A B 247 0

stbx 31 S A B 215 0

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 1 31 S A B 983 0

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sthbrx 31 S A B 918 0

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stswi4 31 S A NB 725 0

stswx 4 31 S A B 661 0

stvebx 3 31 vS A B 135 0

stvehx 3 31 vS A B 167 0

stvewx 3 31 vS A B 199 0

stvx 3 31 vS A B 231 0

stvxl 3 31 vS A B 487 0

stwbrx 3 31 S A B 662 0

stwcx. 31 S A B 150 1

stwux 31 S A B 183 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-67

Instructions Sorted by Form

Table A-51. XL-Form

stwx 31 S A B 151 0

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

tlbia 5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 2 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbld 1, 2 31 0 0 0 0 0 0 0 0 0 0 B 978 0

tlbli 1, 2 31 0 0 0 0 0 0 0 0 0 0 B 1010 0

tlbsync 2 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

xorx 31 S A B 316 Rc

1Optional to the PowerPC architecture but implemented by the MPC7450
2Supervisor-level instruction
3Altivec technology-specific instruction
4Load/store string/multiple instruction
5Optional instruction not implemented by the MPC7450

OPCD BO BI 0 0 0 0 0 XO LK

OPCD crbD crbA crbB XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-68 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Form

Table A-52. XFX-Form

Table A-53. XFL-Form

Table A-54. XO-Form

crxor 19 crbD crbA crbB 193 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

1Supervisor-level instruction

OPCD D spr XO 0

OPCD D 0 CRM 0 XO 0

OPCD S spr XO 0

OPCD D tbr XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfspr 1

1Supervisor- and user-level instruction

31 D spr 339 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtspr1 31 D spr 467 0

OPCD 0 FM 0 B XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mtfsfx 63 0 FM 0 B 711 Rc

OPCD D A B OE XO Rc

OPCD D A B 0 XO Rc

OPCD D A 0 0 0 0 0 OE XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-69

Instructions Sorted by Form

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

Table A-55. A-Form

OPCD D A B 0 0 0 0 0 XO Rc

OPCD D A B C XO Rc

OPCD D A 0 0 0 0 0 C XO Rc

OPCD D 0 0 0 0 0 B 0 0 0 0 0 XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

A-70 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Form

Table A-56. M-Form

Table A-57. VA-Form

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

fresx 1 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 1 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fselx 1 63 D A B C 23 Rc

fsqrtx 2 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 2 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

1Optional to the PowerPC architecture but implemented by the MPC7450
2Optional instruction not implemented by the MPC7450

OPCD S A SH MB ME Rc

OPCD S A B MB ME Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

OPCD vD vA vB vC XO

OPCD vD vA vB 0 SH XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vmhaddshs 1 04 vD vA vB vC 32

vmhraddshs 1 04 vD vA vB vC 33

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-71

Instructions Sorted by Form

Table A-58. VX-Form

vmladduhm 1 04 vD vA vB vC 34

vmsumubm 1 04 vD vA vB vC 36

vmsummbm 1 04 vD vA vB vC 37

vmsumuhm 1 04 vD vA vB vC 38

vmsumuhs 1 04 vD vA vB vC 39

vmsumshm 1 04 vD vA vB vC 40

vmsumshs 1 04 vD vA vB vC 41

vsel 1 04 vD vA vB vC 42

vperm 1 04 vD vA vB vC 43

vsldoi 1 04 vD vA vB 0 SH 44

vmaddfp 1 04 vD vA vB vC 46

vnmsubfp 1 04 vD vA vB vC 47

1 AltiVec technology-specific instruction

OPCD vD vA vB XO

OPCD vD 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 vB XO 0

OPCD vD 0 0 0 0 0 vB XO

OPCD vD UIMM vB XO

OPCD vD SIMM 0 0 0 0 0 XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vaddubm 1 04 vD vA vB 0

vadduhm 1 04 vD vA vB 64

vadduwm 1 04 vD vA vB 128

vaddcuw 1 04 vD vA vB 384

vaddubs 1 04 vD vA vB 512

vadduhs 1 04 vD vA vB 576

vadduws 1 04 vD vA vB 640

vaddsbs 1 04 vD vA vB 768

vaddshs 1 04 vD vA vB 832

vaddsws 1 04 vD vA vB 896

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-72 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Form

vsububm 1 04 vD vA vB 1024

vsubuhm 1 04 vD vA vB 1088

vsubuwm 1 04 vD vA vB 1152

vsubcuw 1 04 vD vA vB 1408

vsububs 1 04 vD vA vB 1536

vsubuhs 1 04 vD vA vB 1600

vsubuws 1 04 vD vA vB 1664

vsubsbs 1 04 vD vA vB 1792

vsubshs 1 04 vD vA vB 1856

vsubsws 1 04 vD vA vB 1920

vmaxub 1 04 vD vA vB 2

vmaxuh 1 04 vD vA vB 66

vmaxuw 1 04 vD vA vB 130

vmaxsb 1 04 vD vA vB 258

vmaxsh 1 04 vD vA vB 322

vmaxsw 1 04 vD vA vB 386

vminub 1 04 vD vA vB 514

vminuh 1 04 vD vA vB 578

vminuw 1 04 vD vA vB 642

vminsb 1 04 vD vA vB 770

vminsh 1 04 vD vA vB 834

vminsw 1 04 vD vA vB 898

vavgub 1 04 vD vA vB 1026

vavguh 1 04 vD vA vB 1090

vavguw 1 04 vD vA vB 1154

vavgsb 1 04 vD vA vB 1282

vavgsh 1 04 vD vA vB 1346

vavgsw 1 04 vD vA vB 1410

vrlb 1 04 vD vA vB 4

vrlh 1 04 vD vA vB 68

vrlw 1 04 vD vA vB 132

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-73

Instructions Sorted by Form

vslb 1 04 vD vA vB 260

vslh 1 04 vD vA vB 324

vslw 1 04 vD vA vB 388

vsl 1 04 vD vA vB 452

vsrb 1 04 vD vA vB 516

vsrh 1 04 vD vA vB 580

vsrw 1 04 vD vA vB 644

vsr 1 04 vD vA vB 708

vsrab 1 04 vD vA vB 772

vsrah 1 04 vD vA vB 836

vsraw 1 04 vD vA vB 900

vand 1 04 vD vA vB 1028

vandc 1 04 vD vA vB 1092

vor 1 04 vD vA vB 1156

vnor 1 04 vD vA vB 1284

mfvscr 1 04 vD 0 0 0 0 0 0 0 0 0 0 1540 0

mtvscr 1 04 0 0 0 0 0 0 0 0 0 0 vB 1604 0

vmuloub 1 04 vD vA vB 8

vmulouh 1 04 vD vA vB 72

vmulosb 1 04 vD vA vB 264

vmulosh 1 04 vD vA vB 328

vmuleub 1 04 vD vA vB 520

vmuleuh 1 04 vD vA vB 584

vmulesb 1 04 vD vA vB 776

vmulesh 1 04 vD vA vB 840

vsum4ubs 1 04 vD vA vB 1544

vsum4sbs 1 04 vD vA vB 1800

vsum4shs 1 04 vD vA vB 1608

vsum2sws 1 04 vD vA vB 1672

vsumsws 1 04 vD vA vB 1928

vaddfp 1 04 vD vA vB 10

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-74 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Form

vsubfp 1 04 vD vA vB 74

vrefp 1 04 vD 0 0 0 0 0 vB 266

vrsqrtefp 1 04 vD 0 0 0 0 0 vB 330

vexptefp 1 04 vD 0 0 0 0 0 vB 394

vlogefp 1 04 vD 0 0 0 0 0 vB 458

vrfin 1 04 vD 0 0 0 0 0 vB 522

vrfiz 1 04 vD 0 0 0 0 0 vB 586

vrfip 1 04 vD 0 0 0 0 0 vB 650

vrfim 1 04 vD 0 0 0 0 0 vB 714

vcfux 1 04 vD UIMM vB 778

vcfsx 1 04 vD UIMM vB 842

vctuxs 1 04 vD UIMM vB 906

vctsxs 1 04 vD UIMM vB 970

vmaxf p1 04 vD vA vB 1034

vminfp 1 04 vD vA vB 1098

vmrghb 1 04 vD vA vB 12

vmrghh 1 04 vD vA vB 76

vmrghw 1 04 vD vA vB 140

vmrglb 1 04 vD vA vB 268

vmrglh 1 04 vD vA vB 332

vmrglw 1 04 vD vA vB 396

vspltb 1 04 vD UIMM vB 524

vsplth 1 04 vD UIMM vB 588

vspltw 1 04 vD UIMM vB 652

vspltisb 1 04 vD SIMM 0 0 0 0 0 780

vspltish 1 04 vD SIMM 0 0 0 0 0 844

vspltisw 1 04 vD SIMM 0 0 0 0 0 908

vslo 1 04 vD vA vB 1036

vsro 1 04 vD vA vB 1100

vpkuhum 1 04 vD vA vB 14

vpkuwum 1 04 vD vA vB 78

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-75

Instructions Sorted by Form

vpkuhus 1 04 vD vA vB 142

vpkuwus 1 04 vD vA vB 206

vpkshus 1 04 vD vA vB 270

vpkswus 1 04 vD vA vB 334

vpkshs s1 04 vD vA vB 398

vpkswss 1 04 vD vA vB 462

vpkswus 1 04 vD vA vB 334

vupkhsb 1 04 vD 0 0 0 0 0 vB 526

vupkhsh 1 04 vD 0 0 0 0 0 vB 590

vupklsb 1 04 vD 0 0 0 0 0 vB 654

vupklsh 1 04 vD 0 0 0 0 0 vB 718

vpkpx 1 04 vD vA vB 12 782

vupkhpx 1 04 vD 0 0 0 0 0 vB 846

vupklpx 1 04 vD 0 0 0 0 0 vB 974

vxor 1 04 vD vA vB 1220

1AltiVec technology-specific instruction

OPCD vD vA vB Rc XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-76 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instructions Sorted by Form

Table A-59. VXR-Form

Specific Instructions

Name 05 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vcmpbfpx 1

1 AltiVec technology-specific instruction

04 vD vA vB Rc 966

vcmpeqfpx1 04 vD vA vB Rc 198

vcmpequbx1 04 vD vA vB Rc 6

vcmpequhx1 04 vD vA vB Rc 70

vcmpequwx1 04 vD vA vB Rc 134

vcmpgefpx1 04 vD vA vB Rc 454

vcmpgtfpx1 04 vD vA vB Rc 710

vcmpgtsbx1 04 vD vA vB Rc 774

vcmpgtshx1 04 vD vA vB Rc 838

vcmpgtswx1 04 vD vA vB Rc 902

vcmpgtubx1 04 vD vA vB Rc 518

vcmpgtuhx1 04 vD vA vB Rc 582

vcmpgtuwx1 04 vD vA vB Rc 646

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-77

Instruction Set Legend

A.7 Instruction Set Legend
Table A-60 provides general information on the PowerPC instruction set (such as the
architectural level, privilege level, and form).

Table A-60. PowerPC Instruction Set Legend

Name UISA VEA OEA Supervisor Level Optional Form

addx √ XO

addcx √ XO

addex √ XO

addi √ D

addic √ D

addic. √ D

addis √ D

addmex √ XO

addzex √ XO

andx √ X

andcx √ X

andi. √ D

andis. √ D

bx √ I

bcx √ B

bcctrx √ XL

bclrx √ XL

cmp √ X

cmpi √ D

cmpl √ X

cmpli √ D

cntlzwx √ X

crand √ XL

crandc √ XL

creqv √ XL

crnand √ XL

crnor √ XL

cror √ XL

A-78 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Legend

crorc √ XL

crxor √ XL

dcba √ √ X

dcbf √ X

dcbi √ √ X

dcbst √ X

dcbt √ X

dcbtst √ X

dcbz √ X

divwx √ XO

divwux √ XO

eciwx √ √ X

ecowx √ √ X

eieio √ X

eqvx √ X

extsbx √ X

extshx √ X

fabsx √ X

faddx √ A

faddsx √ A

fcmpo √ X

fcmpu √ X

fctiwx √ X

fctiwzx √ X

fdivx √ A

fdivsx √ A

fmaddx √ A

fmaddsx √ A

fmrx √ X

fmsubx √ A

fmsubsx √ A

fmulx √ A

Table A-60. PowerPC Instruction Set Legend (continued)

Name UISA VEA OEA Supervisor Level Optional Form

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-79

Instruction Set Legend

fmulsx √ A

fnabsx √ X

fnegx √ X

fnmaddx √ A

fnmaddsx √ A

fnmsubx √ A

fnmsubsx √ A

fresx √ √ A

frspx √ X

frsqrtex √ √ A

fselx √ √ A

fsqrtx √ √ A

fsqrtsx √ √ A

fsubx √ A

fsubsx √ A

icbi √ X

isync √ XL

lbz √ D

lbzu √ D

lbzux √ X

lbzx √ X

lfd √ D

lfdu √ D

lfdux √ X

lfdx √ X

lfs √ D

lfsu √ D

lfsux √ X

lfsx √ X

lha √ D

lhau √ D

lhaux √ X

Table A-60. PowerPC Instruction Set Legend (continued)

Name UISA VEA OEA Supervisor Level Optional Form

A-80 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Legend

lhax √ X

lhbrx √ X

lhz √ D

lhzu √ D

lhzux √ X

lhzx √ X

lmw 2 √ D

lswi 2 √ X

lswx 2 √ X

lwarx √ X

lwbrx √ X

lwz √ D

lwzu √ D

lwzux √ X

lwzx √ X

mcrf √ XL

mcrfs √ X

 mcrxr √ X

mfcr √ X

mffsx √ X

mfmsr √ √ X

mfspr 1 √ √ √ XFX

mfsr √ √ X

mfsrin √ √ X

mftb √ XFX

mtcrf √ XFX

mtfsb0x √ X

mtfsb1x √ X

mtfsfx √ XFL

mtfsfix √ X

mtmsr √ √ X

mtspr 1 √ √ √ XFX

Table A-60. PowerPC Instruction Set Legend (continued)

Name UISA VEA OEA Supervisor Level Optional Form

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-81

Instruction Set Legend

mtsr √ √ X

mtsrin √ √ X

mulhwx √ XO

mulhwux √ XO

mulli √ D

mullwx √ XO

nandx √ X

negx √ XO

norx √ X

orx √ X

orcx √ X

ori √ D

oris √ D

rfi √ √ XL

rlwimix √ M

rlwinmx √ M

rlwnmx √ M

sc √ √ SC

slwx √ X

srawx √ X

srawix √ X

srwx √ X

stb √ D

stbu √ D

stbux √ X

stbx √ X

stfd √ D

stfdu √ D

stfdux √ X

stfdx √ X

stfiwx √ X

 stfs √ D

Table A-60. PowerPC Instruction Set Legend (continued)

Name UISA VEA OEA Supervisor Level Optional Form

A-82 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Legend

stfsu √ D

stfsux √ X

stfsx √ X

sth √ D

sthbrx √ X

sthu √ D

sthux √ X

sthx √ X

stmw 2 √ D

stswi 2 √ X

stswx 2 √ X

stw √ D

stwbrx √ X

stwcx. √ X

stwu √ D

stwux √ X

stwx √ X

subfx √ XO

subfcx √ XO

subfex √ XO

subfic √ D

subfmex √ XO

subfzex √ XO

sync √ X

tlbia √ √ √ X

tlbie √ √ √ X

tlbsync √ √ X

tw √ X

twi √ D

xorx √ X

Table A-60. PowerPC Instruction Set Legend (continued)

Name UISA VEA OEA Supervisor Level Optional Form

MOTOROLA Appendix A. MPC7451 Instruction Set Listings A-83

Instruction Set Legend

xori √ D

xoris √ D

Notes:
1 Supervisor- and user-level instruction
2 Load/store string or multiple instruction
3 Optional instruction provided to support temporary 64-bit bridge
4 Defined for the 32-bit architecture and by the temporary 64-bit bridge

Table A-60. PowerPC Instruction Set Legend (continued)

Name UISA VEA OEA Supervisor Level Optional Form

A-84 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Instruction Set Legend

MOTOROLA Appendix B. Instructions Not Implemented B-1

Appendix B
Instructions Not Implemented
This appendix provides a list of the 32-bit instructions that are not implemented in the
MPC7451 microprocessor. Note that an attempt to execute instructions that are not
implemented on the MPC7451 generates an illegal instruction exception. Note that
exceptions are referred to as interrupts in the architecture specification.

Table B-1 provides the 32-bit PowerPC instructions that are optional to the PowerPC
architecture and not implemented by the MPC7451.

Table B-1. 32-Bit Instructions Not Implemented by the MPC7451

Mnemonic Instruction

fsqrtx Floating Square Root (Double-Precision)

fsqrtsx Floating Square Root Single

tlbia Translation Lookaside Buffer Invalidate All

B-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MOTOROLA Appendix C. Special-Purpose Registers C-1

Appendix C
Special-Purpose Registers

Table C-1. User-level PowerPC SPR Encodings
Ordered by Decimal Value

Register Name
SPR

 1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

XER 1 00000 00001 User (UISA) Both

LR 8 00000 01000 User (UISA) Both

CTR 9 00000 01001 User (UISA) Both

DSISR 18 00000 10010 Supervisor (OEA) Both

DAR 19 00000 10011 Supervisor (OEA) Both

DEC 22 00000 10110 Supervisor (OEA) Both

SDR1 25 00000 11001 Supervisor (OEA) Both

SRR0 26 00000 11010 Supervisor (OEA) Both

SRR1 27 00000 11011 Supervisor (OEA) Both

VRSAVE 2 256 01000 00000 User (AltiVec/UISA) Both

TBL 3 268 01000 01100 User (VEA) mfspr, mftb

TBU 3 269 01000 01101 User (VEA) mfspr, mftb

SPRG0 272 01000 10000 Supervisor (OEA) Both

SPRG1 273 01000 10001 Supervisor (OEA) Both

SPRG2 274 01000 10010 Supervisor (OEA) Both

SPRG3 275 01000 10011 Supervisor (OEA) Both

SPRG4 4 276 01000 10100 Supervisor (OEA) Both

SPRG5 4 277 01000 10101 Supervisor (OEA) Both

SPRG6 4 278 01000 100110 Supervisor (OEA) Both

SPRG7 4 279 01000 10111 Supervisor (OEA) Both

EAR 5 282 01000 11010 Supervisor (OEA) Both

TBL 3 284 01000 11100 Supervisor (OEA) mtspr

TBU 3 285 01000 11101 Supervisor (OEA) mtspr

PVR 287 01000 11111 Supervisor (OEA) mfspr

C-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

IBAT0U 528 10000 10000 Supervisor (OEA) Both

IBAT0L 529 10000 10001 Supervisor (OEA) Both

IBAT1U 530 10000 10010 Supervisor (OEA) Both

IBAT1L 531 10000 10011 Supervisor (OEA) Both

IBAT2U 532 10000 10100 Supervisor (OEA) Both

IBAT2L 533 10000 10101 Supervisor (OEA) Both

IBAT3U 534 10000 10110 Supervisor (OEA) Both

IBAT3L 535 10000 10111 Supervisor (OEA) Both

DBAT0U 536 10000 11000 Supervisor (OEA) Both

DBAT0L 537 10000 11001 Supervisor (OEA) Both

DBAT1U 538 10000 11010 Supervisor (OEA) Both

DBAT1L 539 10000 11011 Supervisor (OEA) Both

DBAT2U 540 10000 11100 Supervisor (OEA) Both

DBAT2L 541 10000 11101 Supervisor (OEA) Both

DBAT3U 542 10000 11110 Supervisor (OEA) Both

DBAT3L 543 10000 11111 Supervisor (OEA) Both

IBAT4U 4 560 10001 10000 Supervisor (OEA) Both

IBAT4L 4 561 10001 10001 Supervisor (OEA) Both

IBAT5U 4 562 10001 10010 Supervisor (OEA) Both

IBAT5L 4 563 10001 10011 Supervisor (OEA) Both

IBAT6U 4 564 10001 10100 Supervisor (OEA) Both

IBAT6L 4 565 10001 10101 Supervisor (OEA) Both

IBAT7U 4 566 10001 10110 Supervisor (OEA) Both

IBAT7L 4 567 10001 10111 Supervisor (OEA) Both

DBAT4U 4 568 10001 11000 Supervisor (OEA) Both

DBAT4L 4 569 10001 11001 Supervisor (OEA) Both

DBAT5U 4 570 10001 11010 Supervisor (OEA) Both

DBAT5L 4 571 10001 11011 Supervisor (OEA) Both

DBAT6U 4 572 10001 11100 Supervisor (OEA) Both

DBAT6L 4 573 10001 11101 Supervisor (OEA) Both

DBAT7U 4 574 10001 11110 Supervisor (OEA) Both

DBAT7L 4 575 10001 11111 Supervisor (OEA) Both

Table C-1. User-level PowerPC SPR Encodings
Ordered by Decimal Value (continued)

Register Name
SPR

 1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

MOTOROLA Appendix C. Special-Purpose Registers C-3

UMMCR2 6 928 11101 00000 User mfspr

UPMC5 6 929 11101 00001 User mfspr

UPMC6 6 930 11101 00010 User mfspr

UMMCR0 6 936 11101 01000 User mfspr

UPMC1 6 937 11101 01001 User mfspr

UPMC2 6 938 11101 01010 User mfspr

USIAR 6 939 11101 01011 User mfspr

UMMCR1 6 940 11101 01100 User mfspr

UPMC3 6 941 11101 01101 User mfspr

UPMC4 6 942 11101 01110 User mfspr

MMCR2 6 944 11101 10000 Supervisor Both

PMC5 5 945 11101 10001 Supervisor Both

PMC6 5 946 11101 10010 Supervisor Both

BAMR 6 951 11101 10111 Supervisor Both

MMCR0 5 952 11101 11000 Supervisor Both

PMC1 5 953 11101 11001 Supervisor Both

PMC2 5 954 11101 11010 Supervisor Both

SIAR 5 955 11101 11011 Supervisor Both

MMCR1 5 956 11101 11100 Supervisor Both

PMC3 5 957 11101 11101 Supervisor Both

PMC4 5 958 11101 11110 Supervisor Both

TLBMISS 3 980 11110 10100 Supervisor Both

PTEHI 6 981 11110 10101 Supervisor Both

PTELO 6 982 11110 10110 Supervisor Both

L3PM 7 983 11110 10111 Supervisor Both

L3OHCR 8 1000 11110 11000 Supervisor Both

L3ITCR0 7 984 11111 01000 Supervisor Both

L3ITCR1 8 1001 11111 01001 Supervisor Both

L3ITCR2 8 1002 11111 01010 Supervisor Both

L3ITCR3 8 1003 11111 01011 Supervisor Both

HID0 6 1008 11111 10000 Supervisor Both

HID1 6 1009 11111 10001 Supervisor Both

Table C-1. User-level PowerPC SPR Encodings
Ordered by Decimal Value (continued)

Register Name
SPR

 1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

C-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

IABR 6 1010 11111 10010 Supervisor Both

ICTRL 6 1011 11111 10011 Supervisor Both

DABR 5 1013 11111 10101 Supervisor (OEA) Both

MSSCR0 6 1014 11111 10110 Supervisor Both

MSSSR0 6 1015 11111 10111 Supervisor Both

LDSTCR 6 1016 11111 11000 Supervisor Both

L2CR 6 1017 11111 11001 Supervisor Both

L3CR 7 1018 11111 11010 Supervisor Both

ICTC 6 1019 11111 11011 Supervisor Both

PIR 5 1023 11111 11111 Supervisor (OEA) Both

1 Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding.
For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as a
10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in the
instruction, with the high-order five bits appearing in bits 16–20 of the instruction and the low-order five bits in bits
11–15.

2 Register defined by the AltiVec technology.
3 The TB registers are referred to as TBRs rather than SPRs and can be written to using the mtspr instruction in

supervisor mode and the TBR numbers here. The TB registers can be read in user mode using either the mftb or
mtspr instruction and specifying TBR 268 for TBL and TBR 269 for TBU.

4 MPC7445-, MPC7447-, MPC7455- and MPC7457-specific only, register may not be supported on other processors
that implement the PowerPC architecture.

5 Register defined as optional in the PowerPC architecture.
6 MPC7441-, MPC7445-, MPC7447-, MPC7451-, MPC7455-, and MPC7457-specific register may not be supported

on other processors that implement the PowerPC architecture.
7 MPC7451-, MPC7455-, and MPC7457-specific register, not supported on the MPC7441, MPC7445, and

MPC7457.
8 MPC7457-specific register, not supported on the MPC7441, MPC7445, MPC7447, MPC7451, and MPC7455

Table C-2. User-level PowerPC SPR Encodings
Ordered by Register Name

Register Name
SPR

 1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

BAMR 2 951 11101 10111 Supervisor Both

CTR 9 00000 01001 User (UISA) Both

DABR 3 1013 11111 10101 Supervisor (OEA) Both

DAR 19 00000 10011 Supervisor (OEA) Both

Table C-1. User-level PowerPC SPR Encodings
Ordered by Decimal Value (continued)

Register Name
SPR

 1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

MOTOROLA Appendix C. Special-Purpose Registers C-5

DBAT0L 537 10000 11001 Supervisor (OEA) Both

DBAT0U 536 10000 11000 Supervisor (OEA) Both

DBAT1L 539 10000 11011 Supervisor (OEA) Both

DBAT1U 538 10000 11010 Supervisor (OEA) Both

DBAT2L 541 10000 11101 Supervisor (OEA) Both

DBAT2U 540 10000 11100 Supervisor (OEA) Both

DBAT3L 543 10000 11111 Supervisor (OEA) Both

DBAT3U 542 10000 11110 Supervisor (OEA) Both

DBAT4L 4 569 10001 11001 Supervisor (OEA) Both

DBAT4U 4 568 10001 11000 Supervisor (OEA) Both

DBAT5L 4 571 10001 11011 Supervisor (OEA) Both

DBAT5U 4 570 10001 11010 Supervisor (OEA) Both

DBAT6L 4 573 10001 11101 Supervisor (OEA) Both

DBAT6U 4 572 10001 11100 Supervisor (OEA) Both

DBAT7L 4 575 10001 11111 Supervisor (OEA) Both

DBAT7U 4 574 10001 11110 Supervisor (OEA) Both

DEC 22 00000 10110 Supervisor (OEA) Both

DSISR 18 00000 10010 Supervisor (OEA) Both

EAR 3 282 01000 11010 Supervisor (OEA) Both

HID0 2 1008 11111 10000 Supervisor Both

HID1 2 1009 11111 10001 Supervisor Both

IABR 2 1010 11111 10010 Supervisor Both

IBAT0L 529 10000 10001 Supervisor (OEA) Both

IBAT0U 528 10000 10000 Supervisor (OEA) Both

IBAT1L 531 10000 10011 Supervisor (OEA) Both

IBAT1U 530 10000 10010 Supervisor (OEA) Both

IBAT2L 533 10000 10101 Supervisor (OEA) Both

IBAT2U 532 10000 10100 Supervisor (OEA) Both

IBAT3L 535 10000 10111 Supervisor (OEA) Both

IBAT3U 534 10000 10110 Supervisor (OEA) Both

IBAT4L 4 561 10001 10001 Supervisor (OEA) Both

IBAT4U 4 560 10001 10000 Supervisor (OEA) Both

Table C-2. User-level PowerPC SPR Encodings
Ordered by Register Name (continued)

Register Name
SPR

 1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

C-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

IBAT5L 4 563 10001 10011 Supervisor (OEA) Both

IBAT5U v 562 10001 10010 Supervisor (OEA) Both

IBAT6L 4 565 10001 10101 Supervisor (OEA) Both

IBAT6U 4 564 10001 10100 Supervisor (OEA) Both

IBAT7L 4 567 10001 10111 Supervisor (OEA) Both

IBAT7U 4 566 10001 10110 Supervisor (OEA) Both

ICTC 2 1019 11111 11011 Supervisor Both

ICTRL 2 1011 11111 10011 Supervisor Both

L2CR 2 1017 11111 11001 Supervisor Both

L3CR 5 1018 11111 11010 Supervisor Both

L3ITCR0 5 1000 11111 01000 Supervisor Both

L3ITCR1 5 1001 11111 01001 Supervisor Both

L3ITCR2 5 1002 11111 01010 Supervisor Both

L3ITCR3 5 1003 11111 01011 Supervisor Both

L3OHCR 6 984 11110 11000 Supervisor Both

L3PM 5 983 11110 10111 Supervisor Both

LDSTCR 2 1016 11111 11000 Supervisor Both

LR 8 00000 01000 User (UISA) Both

MMCR0 3 952 11101 11000 Supervisor Both

MMCR1 3 956 11101 11100 Supervisor Both

MMCR2 2 944 11101 10000 Supervisor Both

MSSCR0 2 1014 11111 10110 Supervisor Both

MSSSR0 2 1015 11111 10111 Supervisor Both

PIR 3 1023 11111 11111 Supervisor (OEA) Both

PMC1 3 953 11101 11001 Supervisor Both

PMC2 3 954 11101 11010 Supervisor Both

PMC3 3 957 11101 11101 Supervisor Both

PMC4 3 958 11101 11110 Supervisor Both

PMC5 3 945 11101 10001 Supervisor Both

PMC6 3 946 11101 10010 Supervisor Both

PTEHI 2 981 11110 10101 Supervisor Both

PTELO 2 982 11110 10110 Supervisor Both

Table C-2. User-level PowerPC SPR Encodings
Ordered by Register Name (continued)

Register Name
SPR

 1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

MOTOROLA Appendix C. Special-Purpose Registers C-7

PVR 287 01000 11111 Supervisor (OEA) mfspr

SDR1 25 00000 11001 Supervisor (OEA) Both

SIAR 3 955 11101 11011 Supervisor Both

SPRG0 272 01000 10000 Supervisor (OEA) Both

SPRG1 273 01000 10001 Supervisor (OEA) Both

SPRG2 274 01000 10010 Supervisor (OEA) Both

SPRG3 275 01000 10011 Supervisor (OEA) Both

SPRG4 4 276 01000 10100 Supervisor (OEA) Both

SPRG5 4 277 01000 10101 Supervisor (OEA) Both

SPRG6 4 278 01000 100110 Supervisor (OEA) Both

SPRG7 4 279 01000 10111 Supervisor (OEA) Both

SRR0 26 00000 11010 Supervisor (OEA) Both

SRR1 27 00000 11011 Supervisor (OEA) Both

TBL 7 284 01000 11100 Supervisor (OEA) mtspr

TBL 7 268 01000 01100 User (VEA) mfspr, mftb

TBU 7 285 01000 11101 Supervisor (OEA) mtspr

TBU 7 269 01000 01101 User (VEA) mfspr, mftb

TLBMISS 2 980 11110 10100 Supervisor Both

UMMCR0 2 936 11101 01000 User mfspr

UMMCR1 2 940 11101 01100 User mfspr

UMMCR2 2 928 11101 00000 User mfspr

UPMC1 2 937 11101 01001 User mfspr

UPMC2 2 938 11101 01010 User mfspr

UPMC3 2 941 11101 01101 User mfspr

UPMC4 2 942 11101 01110 User mfspr

UPMC5 2 929 11101 00001 User mfspr

UPMC6 2 930 11101 00010 User mfspr

USIAR 2 939 11101 01011 User mfspr

VRSAVE 8 256 01000 00000 User (AltiVec/UISA) Both

XER 1 00000 00001 User (UISA) Both

Table C-2. User-level PowerPC SPR Encodings
Ordered by Register Name (continued)

Register Name
SPR

 1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

C-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

1 Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding.
For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as a
10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in the
instruction, with the high-order five bits appearing in bits 16–20 of the instruction and the low-order five bits in bits
11–15.

2 MPC7441-, MPC7445-, MPC7447-, MPC7451-, MPC7455-, and MPC7457-specific register may not be supported
on other processors that implement the PowerPC architecture.

3 Register defined as optional in the PowerPC architecture.
4 MPC7445-, MPC7447-, MPC7455-, and MPC7457-specific only, register may not be supported on other

processors that implement the PowerPC architecture.
5 MPC7451-, MPC7455-, and MPC7457-specific register, not supported on the MPC7441, MPC7445, and

MPC7457.
6 MPC7457-specific register, not supported on the MPC7441, MPC7445, MPC7447, MPC7451, and MPC7455
7 The TB registers are referred to as TBRs rather than SPRs and can be written to using the mtspr instruction in

supervisor mode and the TBR numbers here. The TB registers can be read in user mode using either the mftb or
mtspr instruction and specifying TBR 268 for TBL and TBR 269 for TBU.

8 Register defined by the AltiVec technology.

MOTOROLA Appendix D. User’s Manual Revision History D-1

Appendix D
User’s Manual Revision History
for the MPC7450 RISC Microprocessor Family
This appendix provides a list of the major differences between revisions. Note that the list
only covers the major changes to the user’s manual.

The major change from Revison 3 to Revision 3.1 were to include the MPC7447A
microprocessor in the MPC7450 family.There are no microarchitectural differences
between the MPC7447A and the MPC7447. The MPC7447A provides new functionality to
reduce the power consumption on the microprocessor which includes:

• An additional bit to the HID1 register for Dynamic Frequency Switching (DFS),

• Power

• Power sensing, and

• An internal temperature diode.

Other changes to the MPC7450 RISC Microprocessor Family User’s Manual from
Revision 3 to Revision 3.1 are as follows:

Section, Page Change

5.3.1, 5-26 The last paragraph describing the extended addressing for BAT
registers has been reworded. Also, the figures were reversed and are
updates as follows:

The format and bit definitions of the upper and lower BAT registers for extended addressing
are shown in Figure 0-2 and Figure 0-3, respectively. The upper BAT register format is the
same as that for 32-bit addressing as shown in Figure 0-1. When using the MPC7445,
MPC7447, MPC7455, or the MPC7457, the extended block length (XBL) for the BATs
replaces BATU[15–18] reserved field, as shown in Figure 0-2. When extended addressing
is used, the lower BAT contains the new BXPN and BX fields that comprise the extended
physical page number.

D-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Figure 0-1. Format of Upper BAT Register (BATU)—Extended Addressing for the
MPC7441 and the MPC7451

Figure 0-2. Format of Upper BAT Register (BATU)—Extended Block Size for the
MPC7445, MPC7447, MPC7455, or the MPC7457

Figure 0-3. Format of Lower BAT Register (BATL)—Extended Addressing

Major changes to the MPC7450 RISC Microprocessor Family User’s Manual from
Revision 2 to Revision 3 are as follows:

Section, Page Change

Through out the UM Two new processor are described in Revision 3 of the MPC7450
RISC Microprocessor Family User’s Manual, they are the MPC7447
and the MPC7457. Any differences from the MPC7451 are noted
through-out the user’s manual. Section 1.6, “Differences Between
MPC7441/MPC7451 and MPC7447/MPC7457” describes the major
differences.

1.1, 1-4 The MPC7451 Block Diagram was updated.

1.4, 1-56 In Table 1-4, MPC7451 and and MPC7400/MPC7410 Feature
Comparison, the following entry under Execution Unit Timings
(Latency Throughput) was updated to:

L1 miss, L2 hit latency 9—data access
13—instruction access

9 (11) 1

1 Numbers in parentheses are for 2:1 SRAM.

BEPI 0_000 BL Vs Vp

Reserved

0 14 15 18 19 29 30 31

BEPI XBL BL Vs Vp

Reserved

0 14 15 18 19 29 30 31

Reserved

0 14 15 19 20 22 23 24 25 28 29 30 31

BRPN 0_0000 BXPN 00 WIMG 1 BX PP

1 W and G bits are not defined for IBAT registers. Attempting to write to these bits causes boundedly undefined results.

MOTOROLA Appendix D. User’s Manual Revision History D-3

2.1.5.3, 2-25 MSSCR0[ABD] bit description has been added. Table 2-12 shows the
updated bit description:

2.1.5.5.2, 2-32 The L3CR[L3NIRCA] bit description has been reworded. Table 2-9
shows the updated bit description:

2.1.5.5.2, 2-29 Two new sections were added following the L3CR regisier description
that describes the L3OHCR and L3ITCR registers.

2.3.2.4.1, 2-59 In Table 2-26, MSR[BE} and MSR[SE] bit synchronization requirements
were added to the table.

3.1.2.3, 3-8 The following line is added to the end of the section:

If a cache line is full, it does not load, it just issues a kill block type
transfer.

3.3.3.1, 3-28 The following table was added at the end of the end of the
“Performed Loads and Store,” section:

11 ABD Address bus driven mode
0 Address bus driven mode disabled
1 Address bus driven mode enabled
The read-only bit reflects the state of the BMODE0 signal after HRSET negation and

indicates whether the processor is address bus driven mode. See Section 9.3.2.1,
“Address Bus Driven Mode,” for more information.

24 L3NIRCA L3 non-integer ratios clock adjustment for the SRAM. When this bit is set, the AC timing of
L3_CLK[0:1] is changed.
0 L3 SRAM clock timing is unchanged (default).
1 The L3_CLK[0:1] signals occur earlier relative to the MPC7451 driving the L3 address,
control and data buses in non-integer L3 clock ratios. Because of the way that the L3_CLK[0:1]
signals are internally derived, these signals may be driven slightly later (one-eight of a core
clock) with non-integer clock ratios than they would normally be with an integer L3 clock ratio.
This can potentially cause AC timing problems on the L3 interface if the timing margins are very
small. This signal corrects for this phemomenon by causing the MPC7451 to drive the
L3_CLK[0:1] signals one-quarter of a core clock earlier.
See the MPC7451 Hardware Specifications for further clarification.

D-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

3.7.1., 3-66 Figure 3-19 has been updated and moved under the section,
“MSUG2 DDR Interface Timing.”

3.7.3.5, 3-69 Table 3-24 was updated.

3.7.8, 3-78 A section on how to initialize the L3 cache for private memory has
been added.

3.7.8, 3-79 In the second paragraph , L2PM[PMBA] should actually be
L3PM[PMBA].

3.7.9.2, 3-83 Figure 3-23, “L3 Cache Configuration for Late-Write or PB2
SRAMs,” has been updated.

4.6.1, 4-18 The first line of the second paragraph has been changed to:

SRESET is an edge-sensitive signal that can be asserted and negated
asynchronously, provided there are two bus cycles in between, see
Section 8.4.3.4.1, “Soft Reset (SRESET)—Input,” for more details.

Table D-1. Load and Store Ordering with WIMG Bit Settings

W I M G Order 1, 2

1 Any load followed by any store is always ordered for the MPC7451.
2 A sync instruction will cover the synchronization cases that require an eieio instruction. However, an eieio

instruction will not cover all the synchronization cases that require a sync instruction.

n 1 n 1 Stores are ordered with respect to other stores.
Loads are ordered with respect to other loads.
A store followed by a load requires an eieio.instruction in between the store and
load.

1 0 n 1 Stores are ordered with respect to other stores.
Loads are ordered with respect to other loads.
A store followed by a load requires a sync.instruction in between the store and
load.

1 n n 0 Stores are ordered with respect to other stores.
A load followed by a load requires a sync.instruction in betweenthe loads.
A store followed by a load requires a sync.instruction in between the store and
load.

0 0 1 n A store followed by a store requires an eieio.instruction in between the stores.
A load followed by a load requires a sync.instruction in betweenthe loads.
A store followed by a load requires a sync.instruction in between the store and
load.

0 0 0 n A store followed by a store requires an eieio.instruction in between the stores.
A load followed by a load requires a sync.instruction in betweenthe loads.
A store followed by a load requires a sync.instruction in between the store and
load.

0 1 n 0 A store followed by a store requires an eieio.instruction in between the stores.
A load followed by a load requires a sync.instruction in betweenthe loads.
A store followed by a load requires a sync.instruction in between the store and
load.

MOTOROLA Appendix D. User’s Manual Revision History D-5

4.6.15 The TLBMISS entry in Table 4-14 was corrected to the following:

8.2.6.1, 8-12 The following sentence was added after the second sentence.

When driving A[0:3] as outputs they are driven as zero.

8.2.10.2.1, 8-25 State Meaning has changed to the following:

State Meaning Asserted/Negated—Represents odd parity for each of the eight bytes
during data write transactions. Odd parity means that an odd number
of bits, including the parity bit, are driven high. All eight parity bits
are driven with valid parity on all bus operations. HID1[EBA] and
HID1[EBD] control whether control whether the processor will
check address and data parity respectively. The MPC7451 always
generates parity regardless of whether checking is enable or
disabled. The signal assignments are listed in Table 8-6.

Changes to the MPC7450 RISC Microprocessor Family User’s Manual from Revision 2.0
to Revision 2.2 are as follows:

Section, Page Change

2.1.5.2, 2-22 PLL_CFG[0:3] signals were changed to reflect the the additional
PLL_CFG[4] signal. The name of the PLL signal was changed from
PLL_EXT to PLL_CFG[4].

2.1.5.5.1, 2-27 L2CR[12] is updated from reserved to the L2CR[L3OH0]
description.

2.1.5.5.2, 2-29 L3CR[12] is updated from reserved to the L3CR[L3OH1]
description.

3.7.3.5,3-69 Table 3-25 signal assignments were updated.

Chapter 8, Signal Descriptions

The PLL_EXT signal was renamed to PLL_CFG[4]. Section 8.4.5.3
“PLL Extension (PLL_EXT)—Input,” was deleted. The information

TLBMISS 0–30 Effective page address for the access that caused the TLB miss exception
31 LRU Way

D-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

was migrated to Section 8.4.5.2 “PLL Configuration
(PLL_CFG[0:4])—Input.”

Major changes to the MPC7450 RISC Microprocessor Family User’s Manual from
Revision 1 to Revision 2 are as follows:

Section, Page Change

Through out the UM Two new processor are described in Revision 2 of the MPC7450
RISC Microprocessor Family User’s Manual, they are the MPC7445
and the MPC7455. Any differences from the MPC7451 are noted
through-out the user’s manual. Section 1.5, “Differences Between
MPC7441/MPC7451 and MPC7445/MPC7455” describes the
major differences.

Listed in Table D-2 The thermal assist unit (TAU) is no longer supported on the
MPC7441, MPC7450, or MPC7451. The TAU is not supported on
the MPC7445 and MPC7455 either. All references in the MPC7450
RISC Microprocessor Family User’s Manual Revision 1 for the TAU
are listed in Table D-2 and should be ignored.

Table D-2. TAU References

Section Page No.

1.1 1-3

1.2.1 1-10—1-11

1.2.10 1-27

1.2.11 1-28

1.3.1 1-32 (Figure 1-6),
1-38 (Table 1-1)

1.3.4.2 1-44,
1-46 (Table 1-3)

2.1.1 2-3 (Figure 2-1)

2.1.2 2-7 (Table 2-1),
2-9 (Table 2-1)

2.1.3.3 2-13

2.1.5.8 2-38—2-42

4.1 4-3

4.6.19 4-34—4-35

MOTOROLA Appendix D. User’s Manual Revision History D-7

2.1.5.5.2, 2-28 & The name for bit 24 of L3CR has changed from L3CYA to
2.1.5.5.2, 2-31 & L3NIRCA.
3.7.3.8, 3-73

The major changes to the MPC7450 RISC Microprocessor Family User’s Manual, from
Revision 0 to Revision 1, are as follows:

Section, Page Change

1.2.1, 1-5 Under the bullet:

Separate on-chip L1 instruction and data caches (Harvard
architecture), deleted the following:

“Parity support on cache and tags”

Feature lists for L1, L2, L3 cache were updated.

2.1.2, 2-7 In Table 2-1, replaced the SDA register description with the
following:

Also, deleted Section 2.1.5.9.12, “User-Sampled Instruction Address Register (USIAR)”
on Page 2-40 as this is not relevant to the MPC7450.

10.2 10-1—10-5

10.3 10-5—10-10

10.4 10-10

Appendix D D-5

SDAR,
USDAR

— Sampled data address register. The MPC7450 does not
implement the optional registers (SDAR or the user-level,
read-only USDAR register) defined by the PowerPC architecture.
Note that in previous processors the SDA and USDA registers
could be written to by boot code without causing an exception, this
is not the case in the MPC7450. A mtspr or mfspr SDAR or
USDAR instruction causes a program exception.

—

Table D-2. TAU References (continued)

Section Page No.

D-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Section, Page Change

2.1.5.1, 2-11 In Table 2-4, modified the following entries to:

2.1.5.2, 2-14 In Table 2-5, the last sentence of bit 7’s description should be
modified. That is, delete the sentence:

“In some bus modes this bit is ignored.”

2.1.5.3, 2-16 In Table 2-7, replaced the DTQ bit value for “7 entries” to “111.”

2.1.5.5.2, 2-21 In Table 2-10, replaced the L3CR[5] description with the following:

16 ICE 6 Instruction cache enable
0 The instruction cache is neither accessed nor updated. All pages are accessed as if

they were marked cache-inhibited (WIM = x1x). Potential cache accesses from the
bus (snoop and cache operations) are ignored. In the disabled state for the L1
caches, the cache tag state bits are ignored and all accesses are propagated to the
L2 cache, L3 cache, or bus as burst transactions. For those transactions, CI is
asserted regardless of address translation. ICE is zero at power-up.

1 The instruction cache is enabled. Note that HID0[ICFI] must be set at the same time
that this bit is set.

17 DCE 2 Data cache enable
0 The data cache is neither accessed nor updated. All pages are accessed as if they

were marked cache-inhibited (WIM = x1x). Potential cache accesses from the bus
(snoop and cache operations) are ignored. In the disabled state for the L1 caches,
the cache tag state bits are ignored and all accesses are propagated to the L2 cache,
L3 cache, or bus as cache-inhibited. For those transactions, CI is asserted regardless
of address translation.DCE is zero at power-up.

1 The data cache is enabled.Note that HID0[DCFI] must be set at the same time that
this bit is set.

6 A context synchronizing instruction must immediately follow a mtspr. A mtspr instruction for HID0 should not modify
either of these bits at the same time it modifies another bit that requires additional synchronization.
2 A dssall and sync must precede a mtspr and then a sync and context synchronizing instruction must follow. Note
that if a user is not using the AltiVec data streaming instructions, then a dssall is not necessary prior to accessing the
HID0{DCE] or HID0[DCFI] bit.

5 — Reserved. Must be set by software during initialization. See Section 3.7.3.1, “Enabling the L3
Cache and L3 Initialization,” for details on when to set this bit.

MOTOROLA Appendix D. User’s Manual Revision History D-9

Section, Page Change

2.1.5.5.5, 2-26 In Table 2-13, replaced the L3PMADDR field description with the
following:

2.1.5.7.1, 2-27 In Table 2-15, and in Section 5.5.5.1.1, Page 5-64, Table 5-16,
replaced the PAGE field description with the following:

2.3.2.4.1, 2-49 In Table 2-26, note that if a user is not using the AltiVec data
streaming instructions, a dssall is not necessary prior to accessing
the register.

3.3.3.3, 3-28 Added more information on load and store ordering in new User’s
Manual, the new sections are:

– Section 3.3.3.3, “Load Ordering with Respect to Other Loads,”

– Section 3.3.3.4, “Store Ordering with Respect to Other Stores

– Section 3.3.3.5, “Enforcing Store Ordering with Respect to Loads

0–15 L3PMADDR L3 base address of L3 private memory
L3PMADDR contain the base address of the range of addresses used in the L3 private
memory. Specific bits of the L3PM[L3PMADDR] field are used based on the memory
size as follows:
1MB L3PM[0–15]
2MB L3PM[0–14]

0–30 PAGE Effective page address
Stores EA[0–30] of the access that caused the TLB Miss exception.

D-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Section, Page Change

3.8.2, 3-84 Added Table 3-30:

3.8.3, 3-86 Updated Table 3-29, and deleted the following entry:

3.8.4.3, 3-92 Following the fourth bullet item:

Because the MPC7450 only snoops global accesses (GBL asserted),
that is assumed for all of the tables.

Added the following sentence:

“The MPC7450 will not issue a snoop response (ARTRY and HIT)
for transactions in which GBL is not asserted.”

Table D-3. Bus Operations Caused by Cache Control Instructions (WIM = xx0)

Instruction

Current State
Next Cache

State
Bus Operation Comment

Cache
Coherency

HID1 Setting

dcbt M, E, S — No change None —

dcbt I — E, S Read Fetched cache block is
stored in the cache

dcbtst M, E, S — No change None —

dcbtst I — E, S Read (60x mode)
RCLAIM (MPX mode)

Fetched cache block is
stored in the cache

dcbz M, E, S, I — M None

dcba M, E, S, I — M None

dcbf, dcbi M — I Write with kill Block is pushed

dcbf, dcbi E, S, I — I None —

dcbst M — E, S, I Write with kill Block is pushed

dcbst E, S, I — I None —

icbi V, I — I None Instruction cache only

Double-beat read (caching-inhibited
or cache disabled)

PA[0:32] || 0b000 0 1 0 1 0 0 0 0 1 1 0 ¬ M

MOTOROLA Appendix D. User’s Manual Revision History D-11

Section, Page Change

8.2.7.6, 8-17 In the “State Meaning: Asserted” section it states:

Note that on the MPC750, WT assertion during a read operation
indicates an instruction fetch. The MPC7450 also uses WT to
indicate instruction fetches.

This is incorrect; replaced the sentence with the following:

“The MPC7450 negates WT for instruction fetches. Note that this is
different from previous processors.”

8.4.4.4, 8-46 Modified entry in Table 8-7 to:

9.3.2.4.1, 9-18 In Table 9-1, the description of dcba and dcbz states:

“store miss merge to 32 bytes”

This is incorrect and should be deleted.

In Table 9-1, added the following row:

10.3.1, 10-7 In Table 10-3, replaced the description of SITV with the following:

“Sample interval timer value. Number of elapsed system bus clock
cycles before a junction temperature vs. threshold comparison result
is sampled in order for TIN to be set and an interrupt to be generated.
The value should be greater than 20 µs. This is necessary due to the
thermal sensor, DAC, and the analog comparator settling time being
greater than the bus cycle time.”

10 N/A 1

1 Not applicable; 1.5V is not supported
for the system bus

Burst Store miss 0 1 1 1 0 Read-with-intent-to-
modify

Burst

D-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Section, Page Change

11.1, 11–2 Deleted the following text:

Note that the MPC7450 does not implement the sampled data
address register (SDAR) or the user-level, read-only USDAR
defined by the architecture. However, for compatibility with
processors that do, those registers can be written to by boot code
without causing an exception.

Replaced the text with the following:

Note that in previous processors the optional SDAR and USDAR
registers could be written to by boot code without causing an
exception, this is not the case in the MPC7450. A mtspr or mfspr
SDAR or USDAR instruction causes a program exception

11.5.1, 11-18 In Table 11-9 replaced the PMC1 events 65 and 68 with the
following respectively:

.

11.5.2, 11-18 In Table 11-10 replaced the PMC2 event 62 with the following:

11.5.4, 11-28 In Table 11-12 replaced the PMC4 events 24 and 30 with the
following respectively:

65 (100_0001) Floating-point store
instructions completed in

LSU

Counts aligned floating-point store instructions completed. All
misaligned floating-point store instructions completed are counted under
PMC1, event number 88 (0x101_1000).

68 (100_0100) Floating-Point store
causes stall in LSU

Counts cycles a floating-point store in the FSQ results in a store not
being able to complete.

62 (011_1110) LSU completes
floating-point store

single

Counts aligned floating-point store single instructions completed.
All misaligned floating-point store instructions completed are counted
under PMC1, event number 88 (0x101_1000).

24 (1_1000) Snoop retries Counts the number of load-store snoops that are retried by the load-store. This
includes external snoops which are retried because of a load-store collision, as well
as internal load-store self-snoop retries. It does not include snoops which are
retried because of an MSS collision or busy condition. An example of an internal
self-snoop collision is a load L1 miss which collides with a castout in the L1 castout
queue. This type of collision is handled through internal snoop retry instead of
load-store pipeline stall.

30 (1_1110) Floating-point store
double completes

in LSU

Counts aligned floating-point store double instructions completed. All misaligned
floating-point store instructions completed are counted under PMC1, event number
88 (0x101_1000).

MOTOROLA Appendix D. User’s Manual Revision History D-13

Section, Page Change

11.5.5, 11-30 In Table 11-13 replaced the PMC5 event 15 with the following:

11.5.6, 11-31 In Table 11-14 replaced the PMC6 event 24 with the following:

Appendix, A-35 In Table A-9, the instructions fsqrtx and fsqrtsx have footnotes 1
and 2. They now only have footnote 2 “Optional instruction not
implemented by the MPC7450.”

15 (0_1111) Snoop retries Counts counts the number of internal requests that are internally retried. This
includes load-store retries as well as some MSS collision cases (that would
prevent an L2 hit from being considered good).

24 (01_1000) External snoop retry Counts the number of external snoops that get a retry response.

D-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

MOTOROLA Glossary Glossary-1

Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and definitions included in the glossary are reprinted from IEEE
Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc., with the permission of the IEEE.

Architecture. A detailed specification of requirements for a processor or
computer system. It does not specify details of how the processor or
computer system must be implemented; instead it provides a
template for a family of compatible implementations.

Asynchronous exception. Exceptions that are caused by events external to
the processor’s execution. In this document, the term ‘asynchronous
exception’ is used interchangeably with the word interrupt.

Atomic access. A bus access that attempts to be part of a read-write operation
to the same address uninterrupted by any other access to that address
(the term refers to the fact that the transactions are indivisible). The
PowerPC architecture implements atomic accesses through the
lwarx/stwcx. instruction pair.

BAT (block address translation) mechanism. A software-controlled array
that stores the available block address translations on-chip.

Biased exponent. An exponent whose range of values is shifted by a constant
(bias). Typically a bias is provided to allow a range of positive values
to express a range that includes both positive and negative values.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most-significant byte. See Little-endian.

Block. An area of memory that ranges from 128 Kbyte to 256 Mbyte whose
size, translation, and protection attributes are controlled by the BAT
mechanism.

A

B

Glossary-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Boundedly undefined. A characteristic of certain operation results that are
not rigidly prescribed by the PowerPC architecture. Boundedly-
undefined results for a given operation may vary among
implementations and between execution attempts in the same
implementation.

Although the architecture does not prescribe the exact behavior for
when results are allowed to be boundedly undefined, the results of
executing instructions in contexts where results are allowed to be
boundedly undefined are constrained to ones that could have been
achieved by executing an arbitrary sequence of defined instructions,
in valid form, starting in the state the machine was in before
attempting to execute the given instruction.

Branch folding. The replacement with target instructions of a branch
instruction and any instructions along the not-taken path when a
branch is either taken or predicted as taken.

Branch prediction—The process of guessing whether a branch will be
taken. Such predictions can be correct or incorrect; the term
‘predicted’ as it is used here does not imply that the prediction is
correct (successful). The PowerPC architecture defines a means for
static branch prediction as part of the instruction encoding.

Branch resolution—The determination of whether a branch is taken or not
taken. A branch is said to be resolved when the processor can
determine which instruction path to take. If the branch is resolved as
predicted, the instructions following the predicted branch that may
have been speculatively executed can complete (see completion). If
the branch is not resolved as predicted, instructions on the
mispredicted path, and any results of speculative execution, are
purged from the pipeline and fetching continues from the
nonpredicted path.

Burst. A multiple-beat data transfer whose total size is typically equal to a
cache block.

Cache. High-speed memory containing recently accessed data and/or
instructions (subset of main memory).

Cache block. A small region of contiguous memory that is copied from
memory into a cache. The size of a cache block may vary among
processors; the maximum block size is one page. In PowerPC
processors, cache coherency is maintained on a cache-block basis.

C

MOTOROLA Glossary Glossary-3

Note that the term ‘cache block’ is often used interchangeably with
‘cache line’.

Cache coherency. An attribute wherein an accurate and common view of
memory is provided to all devices that share the same memory
system. Caches are coherent if a processor performing a read from
its cache is supplied with data corresponding to the most recent value
written to memory or to another processor’s cache.

Cache flush. An operation that removes from a cache any data from a
specified address range. This operation ensures that any modified
data within the specified address range is written back to main
memory. This operation is generated typically by a Data Cache
Block Flush (dcbf) instruction.

Caching-inhibited. A memory update policy in which the cache is bypassed
and the load or store is performed to or from main memory.

Cast-outs. Cache blocks that must be written to memory when a cache miss
causes a cache block to be replaced.

Changed bit. One of two page history bits found in each page table entry
(PTE). The processor sets the changed bit if any store is performed
into the page. See also Page access history bits and Referenced bit.

Clean. An operation that causes a cache block to be written to memory, if
modified, and then left in a valid, unmodified state in the cache.

Clear. To cause a bit or bit field to register a value of zero. See also Set.

Completion. Completion occurs when an instruction has finished executing,
written back any results, and is removed from the completion queue.
When an instruction completes, it is guaranteed that this instruction
and all previous instructions can cause no exceptions.

Context synchronization. An operation that ensures that all instructions in
execution complete past the point where they can produce an
exception, that all instructions in execution complete in the context
in which they began execution, and that all subsequent instructions
are fetched and executed in the new context. Context synchronization
may result from executing specific instructions (such as isync or rfi)
or when certain events occur (such as an exception).

Copy-back. An operation in which modified data in a cache block is copied
back to memory.

Glossary-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Data intervention. An approach used in MPX bus mode to allow data to be
forwarded directly to the requesting master from the processor that
has it cached. A cache-to-cache data transfer.

Denormalized number. A nonzero floating-point number whose exponent
has a reserved value, usually the format's minimum, and whose
explicit or implicit leading significand bit is zero.

Direct-mapped cache. A cache in which each main memory address can
appear in only one location within the cache, operates more quickly
when the memory request is a cache hit.

Effective address (EA). The 32- or 64-bit address specified for a load, store,
or an instruction fetch. This address is then submitted to the MMU
for translation to either a physical memory address or an I/O address.

Exception. A condition encountered by the processor that requires special,
supervisor-level processing.

Exception handler. A software routine that executes when an exception is
taken. Normally, the exception handler corrects the condition that
caused the exception, or performs some other meaningful task (that
may include aborting the program that caused the exception). The
address for each exception handler is identified by an exception
vector offset defined by the architecture and a prefix selected via the
MSR.

Execution synchronization. A mechanism by which all instructions in
execution are architecturally complete before beginning execution
(appearing to begin execution) of the next instruction. Similar to
context synchronization but doesn't force the contents of the
instruction buffers to be deleted and refetched.

Exponent. In the binary representation of a floating-point number, the
exponent is the component that normally signifies the integer power
to which the value two is raised in determining the value of the
represented number. See also Biased exponent.

Fall-through (branch fall-through)—Removal of a not-taken branch.

Fetch. Retrieving instructions from either the cache or main memory and
placing them into the instruction queue.

D

E

F

MOTOROLA Glossary Glossary-5

Finish. Finishing occurs in the last cycle of execution. In this cycle, the CQ
entry is updated to indicate that the instruction has finished
executing.

Floating-point register (FPR). Any of the 32 registers in the floating-point
register file. These registers provide the source operands and
destination results for floating-point instructions. Load instructions
move data from memory to FPRs and store instructions move data
from FPRs to memory. The FPRs are 64 bits wide and store
floating-point values in double-precision format

Flush. An operation that causes a cache block to be invalidated and the data,
if modified, to be written to memory.

Fraction. In the binary representation of a floating-point number, the field of
the significand that lies to the right of its implied binary point.

General-purpose register (GPR). Any of the 32 registers in the
general-purpose register file. These registers provide the source
operands and destination results for all integer data manipulation
instructions. Integer load instructions move data from memory to
GPRs and store instructions move data from GPRs to memory.

Guarded. The guarded attribute pertains to out-of-order execution. When a
page is designated as guarded, instructions and data cannot be
accessed out-of-order.

Harvard architecture. An architectural model featuring separate caches for
instructions and data.

Hashing. An algorithm used in the page table search process.

IEEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that defines operations and representations of binary
floating-point numbers.

Illegal instructions. A class of instructions that are not implemented for a
particular PowerPC processor. These include instructions not defined
by the PowerPC architecture. In addition, for 32-bit
implementations, instructions that are defined only for 64-bit
implementations are considered to be illegal instructions. For 64-bit
implementations instructions that are defined only for 32-bit
implementations are considered to be illegal instructions.

G

H

HI

Glossary-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Implementation. A particular processor that conforms to the PowerPC
architecture, but may differ from other architecture-compliant
implementations for example in design, feature set, and
implementation of optional features. The PowerPC architecture has
many different implementations.

Imprecise exception. A type of synchronous exception that is allowed not to
adhere to the precise exception model (see Precise exception). The
PowerPC architecture allows only floating-point exceptions to be
handled imprecisely.

Instruction queue. A holding place for instructions fetched from the current
instruction stream.

Integer unit. A functional unit in the MPC750 responsible for executing
integer instructions.

In-order. An aspect of an operation that adheres to a sequential model. An
operation is said to be performed in-order if, at the time that it is
performed, it is known to be required by the sequential execution
model. See Out-of-order.

Instruction latency. The total number of clock cycles necessary to execute
an instruction and make ready the results of that instruction.

Interrupt. An asynchronous exception. On PowerPC processors, interrupts
are a special case of exceptions. See also asynchronous exception.

Key bits. A set of key bits referred to as Ks and Kp in each segment register
and each BAT register. The key bits determine whether supervisor or
user programs can access a page within that segment or block.

Kill. An operation that causes a cache block to be invalidated without writing
any modified data to memory.

Latency. The number of clock cycles necessary to execute an instruction and
make ready the results of that execution for a subsequent instruction.

L2 cache. See Secondary cache.

Least-significant bit (lsb). The bit of least value in an address, register, data
element, or instruction encoding.

Least-significant byte (LSB). The byte of least value in an address, register,
data element, or instruction encoding.

K

L
L

MOTOROLA Glossary Glossary-7

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most-significant byte. See Big-endian.

Memory access ordering. The specific order in which the processor
performs load and store memory accesses and the order in which
those accesses complete.

Memory-mapped accesses. Accesses whose addresses use the page or block
address translation mechanisms provided by the MMU and that
occur externally with the bus protocol defined for memory.

Memory coherency. An aspect of caching in which it is ensured that an
accurate view of memory is provided to all devices that share system
memory.

Memory consistency. Refers to agreement of levels of memory with respect
to a single processor and system memory (for example, on-chip
cache, secondary cache, and system memory).

Memory management unit (MMU). The functional unit that is capable of
translating an effective (logical) address to a physical address,
providing protection mechanisms, and defining caching methods.

MESI (modified/exclusive/shared/invalid). Cache coherency protocol used
to manage caches on different devices that share a memory system.
Note that the PowerPC architecture does not specify the
implementation of a MESI protocol to ensure cache coherency.

Most-significant bit (msb). The highest-order bit in an address, registers,
data element, or instruction encoding.

Most-significant byte (MSB). The highest-order byte in an address,
registers, data element, or instruction encoding.

NaN. An abbreviation for not a number; a symbolic entity encoded in
floating-point format. There are two types of NaNs—signaling NaNs
and quiet NaNs.

No-op. No-operation. A single-cycle operation that does not affect registers
or generate bus activity.

M

N

Glossary-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Normalization. A process by which a floating-point value is manipulated
such that it can be represented in the format for the appropriate
precision (single- or double-precision). For a floating-point value to
be representable in the single- or double-precision format, the
leading implied bit must be a 1.

OEA (operating environment architecture). The level of the architecture
that describes PowerPC memory management model,
supervisor-level registers, synchronization requirements, and the
exception model. It also defines the time-base feature from a
supervisor-level perspective. Implementations that conform to the
PowerPC OEA also conform to the PowerPC UISA and VEA.

Optional. A feature, such as an instruction, a register, or an exception, that is
defined by the PowerPC architecture but not required to be
implemented.

Out-of-order. An aspect of an operation that allows it to be performed ahead
of one that may have preceded it in the sequential model, for
example, speculative operations. An operation is said to be
performed out-of-order if, at the time that it is performed, it is not
known to be required by the sequential execution model. See
In-order.

Out-of-order execution. A technique that allows instructions to be issued
and completed in an order that differs from their sequence in the
instruction stream.

Overflow. An condition that occurs during arithmetic operations when the
result cannot be stored accurately in the destination register(s). For
example, if two 32-bit numbers are multiplied, the result may not be
representable in 32 bits.

Page. A region in memory. The OEA defines a page as a 4-Kbyte area of
memory, aligned on a 4-Kbyte boundary.

Page access history bits. The changed and referenced bits in the PTE keep
track of the access history within the page. The referenced bit is set
by the MMU whenever the page is accessed for a read or write
operation. The changed bit is set when the page is stored into. See
Changed bit and Referenced bit.

Page fault. A page fault is a condition that occurs when the processor
attempts to access a memory location that does not reside within a
page not currently resident in physical memory. On PowerPC

O

P

MOTOROLA Glossary Glossary-9

processors, a page fault exception condition occurs when a
matching, valid page table entry (PTE[V] = 1) cannot be located.

Page table. A table in memory is comprised of page table entries, or PTEs.
It is further organized into eight PTEs per PTEG (page table entry
group). The number of PTEGs in the page table depends on the size
of the page table (as specified in the SDR1 register).

Page table entry (PTE). Data structures containing information used to
translate effective address to physical address on a 4-Kbyte page
basis. A PTE consists of 8 bytes of information in a 32-bit processor
and 16 bytes of information in a 64-bit processor.

Physical memory. The actual memory that can be accessed through the
system’s memory bus.

Pipelining. A technique that breaks operations, such as instruction
processing or bus transactions, into smaller distinct stages or tenures
(respectively) so that a subsequent operation can begin before the
previous one has completed.

Precise exceptions. A category of exception for which the pipeline can be
stopped so instructions that preceded the faulting instruction can
complete, and subsequent instructions can be flushed and
redispatched after exception handling has completed. See Imprecise
exceptions.

Primary opcode. The most-significant 6 bits (bits 0–5) of the instruction
encoding that identifies the type of instruction.

Program order. The order of instructions in an executing program. More
specifically, this term is used to refer to the original order in which
program instructions are fetched into the instruction queue from the
cache

Protection boundary. A boundary between protection domains.

Protection domain. A protection domain is a segment, a virtual page, a BAT
area, or a range of unmapped effective addresses. It is defined only
when the appropriate relocate bit in the MSR (IR or DR) is 1.

Quiesce. To come to rest. The processor is said to quiesce when an exception
is taken or a sync instruction is executed. The instruction stream is
stopped at the decode stage and executing instructions are allowed to
complete to create a controlled context for instructions that may be

Q

Glossary-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

affected by out-of-order, parallel execution. See Context
synchronization.

Quiet NaN. A type of NaN that can propagate through most arithmetic
operations without signaling exceptions. A quiet NaN is used to
represent the results of certain invalid operations, such as invalid
arithmetic operations on infinities or on NaNs, when invalid. See
Signaling NaN.

rA. The rA instruction field is used to specify a GPR to be used as a source
or destination.

rB. The rB instruction field is used to specify a GPR to be used as a source.

rD. The rD instruction field is used to specify a GPR to be used as a
destination.

rS. The rS instruction field is used to specify a GPR to be used as a source.

Real address mode. An MMU mode when no address translation is
performed and the effective address specified is the same as the
physical address. The processor’s MMU is operating in real address
mode if its ability to perform address translation has been disabled
through the MSR registers IR and/or DR bits.

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set,
updates the condition register (CR) to reflect the result of the
operation.

Referenced bit. One of two page history bits found in each page table entry
(PTE). The processor sets the referenced bit whenever the page is
accessed for a read or write. See also Page access history bits.

Register indirect addressing. A form of addressing that specifies one GPR
that contains the address for the load or store.

Register indirect with immediate index addressing. A form of addressing
that specifies an immediate value to be added to the contents of a
specified GPR to form the target address for the load or store.

Register indirect with index addressing. A form of addressing that specifies
that the contents of two GPRs be added together to yield the target
address for the load or store.

Rename register. Temporary buffers used by instructions that have finished
execution but have not completed.

R

MOTOROLA Glossary Glossary-11

Reservation. The processor establishes a reservation on a cache block of
memory space when it executes an lwarx instruction to read a
memory semaphore into a GPR.

Reservation station. A buffer between the dispatch and execute stages that
allows instructions to be dispatched even though the results of
instructions on which the dispatched instruction may depend are not
available.

Retirement. Removal of the completed instruction from the CQ

RISC (reduced instruction set computing). An architecture characterized
by fixed-length instructions with nonoverlapping functionality and
by a separate set of load and store instructions that perform memory
accesses.

Secondary cache. A cache memory that is typically larger and has a longer
access time than the primary cache. A secondary cache may be
shared by multiple devices. Also referred to as L2, or level-2, cache.

Sector. A 32-byte cache block.

Set (v). To write a nonzero value to a bit or bit field; the opposite of clear. The
term ‘set’ may also be used to generally describe the updating of a
bit or bit field.

Set (n). A subdivision of a cache. Cacheable data can be stored in a given
location in any one of the sets, typically corresponding to its
lower-order address bits. Because several memory locations can map
to the same location, cached data is typically placed in the set whose
cache block corresponding to that address was used least recently.
See Set-associative.

Set-associative. Aspect of cache organization in which the cache space is
divided into sections, called sets. The cache controller associates a
particular main memory address with the contents of a particular set,
or region, within the cache.

Signaling NaN. A type of NaN that generates an invalid operation program
exception when it is specified as arithmetic operands. See Quiet
NaN.

Significand. The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of its implied binary
point and a fraction field to the right.

S

Glossary-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Simplified mnemonics. Assembler mnemonics that represent a more
complex form of a common operation.

Slave. The device addressed by a master device. The slave is identified in the
address tenure and is responsible for supplying or latching the
requested data for the master during the data tenure.

Snarfing. When one device provides data specifically for another device and
a third device samples the data for its own purposes.

Snooping. Monitoring addresses driven by a bus master to detect the need for
coherency actions.

Snoop push. Response to a snooped transaction that hits a modified cache
block. The cache block is written to memory and made available to
the snooping device.

Split-transaction. A transaction with independent request and response
tenures.

Split-transaction bus. A bus that allows address and data transactions from
different processors to occur independently.

Stage. The term ‘stage’ is used in two different senses, depending on whether
the pipeline is being discussed as a physical entity or a sequence of
events. In the latter case, a stage is an element in the pipeline during
which certain actions are performed, such as decoding the
instruction, performing an arithmetic operation, or writing back the
results. Typically, the latency of a stage is one processor clock cycle.
Some events, such as dispatch, write-back, and completion, happen
instantaneously and may be thought to occur at the end of a stage. An
instruction can spend multiple cycles in one stage. An integer
multiply, for example, takes multiple cycles in the execute stage.
When this occurs, subsequent instructions may stall. An instruction
may also occupy more than one stage simultaneously, especially in
the sense that a stage can be seen as a physical resource—for
example, when instructions are dispatched they are assigned a place
in the CQ at the same time they are passed to the execute stage. They
can be said to occupy both the complete and execute stages in the
same clock cycle.

Stall. An occurrence when an instruction cannot proceed to the next stage.

Static branch prediction. Mechanism by which software (for example,
compilers) can hint to the machine hardware about the direction a
branch is likely to take.

MOTOROLA Glossary Glossary-13

Static memory. Memory that assumes a reasonable degree of locality and
that the data is needed several times over a relatively long period.

Superscalar machine. A machine that can issue multiple instructions
concurrently from a conventional linear instruction stream.

Supervisor mode. The privileged operation state of a processor. In
supervisor mode, software, typically the operating system, can
access all control registers and can access the supervisor memory
space, among other privileged operations.

Synchronization. A process to ensure that operations occur strictly in order.
See Context synchronization and Execution synchronization.

Synchronous exception. An exception that is generated by the execution of
a particular instruction or instruction sequence. There are two types
of synchronous exceptions, precise and imprecise.

System memory. The physical memory available to a processor.

Tenure. A tenure consists of three phases: arbitration, transfer, termination.
There can be separate address bus tenures and data bus tenures.

TLB (translation lookaside buffer) A cache that holds recently-used page
table entries.

Throughput. The measure of the number of instructions that are processed
per clock cycle.

Transaction. A complete exchange between two bus devices. A transaction
is typically comprised of an address tenure and one or more data
tenures, which may overlap or occur separately from the address
tenure. A transaction may be minimally comprised of an address
tenure only.

Transfer termination. Signal that refers to both signals that acknowledge the
transfer of individual beats (of both single-beat transfer and
individual beats of a burst transfer) and to signals that mark the end
of the tenure.

Transient memory. Memory that has poor locality and is likely to be
referenced very few times or over a very short period of time.

UISA (user instruction set architecture). The level of the architecture to
which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types,

T

U

Glossary-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

floating-point memory conventions and exception model as seen by
user programs, and the memory and programming models.

Underflow. A condition that occurs during arithmetic operations when the
result cannot be represented accurately in the destination register.
For example, underflow can happen if two floating-point fractions
are multiplied and the result requires a smaller exponent and/or
mantissa than the single-precision format can provide. In other
words, the result is too small to be represented accurately.

User mode. The operating state of a processor used typically by application
software. In user mode, software can access only certain control
registers and can access only user memory space. No privileged
operations can be performed. Also referred to as problem state.

VEA (virtual environment architecture). The level of the architecture that
describes the memory model for an environment in which multiple
devices can access memory, defines aspects of the cache model,
defines cache control instructions, and defines the time-base facility
from a user-level perspective. Implementations that conform to the
PowerPC VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

Virtual address. An intermediate address used in the translation of an
effective address to a physical address.

Vector. The spatial parallel processing of short, fixed-length,
one-dimensional matrices performed by an execution unit.

Virtual memory. The address space created using the memory management
facilities of the processor. Program access to virtual memory is
possible only when it coincides with physical memory.

Way. A location in the cache that holds a cache block, its tags and status bits.

Word. A 32-bit data element.

Write-back. A cache memory update policy in which processor write cycles
are directly written only to the cache. External memory is updated
only indirectly, for example, when a modified cache block is cast out
to make room for newer data.

Write-through. A cache memory update policy in which all processor write
cycles are written to both the cache and memory.

V

VW

INDEX

MOTOROLA Index Index-1

Numerics
60x bus mode

address bus arbitration, 9-43
address tenure, 9-43
address transfer, 9-44

driven mode, 9-45
parity, 9-45

data bus tenure, 9-47–9-48
protocol overview, 9-42
qualified address bus grant, 9-43
qualified data bus grant, 9-47
timing examples, 9-49

A
A0–A35

60x address bus signals, 8-32
MPX address bus signals, 8-11

AACK (address acknowledge)
input, 8-35
signal, 8-18

Address
mapping examples, PTEG, 5-59
pipelining types, 9-10
translation, 5-1

Address bus
60x bus mode

address transfer signals, 8-32, 8-33
arbitration signals, 8-30
pipelining, 9-42
split-bus transactions, 9-42
transfer, 9-44
transfer start signals, 8-33

MPX bus mode
address transfer signals, 8-11
arbitration, 9-11
arbitration signals, 8-10
driven mode, 9-16
parking, 9-13
qualified bus grant, 9-12
streaming, 9-16
tenure, 9-9
transfer attribute signals, 8-15, 8-16, 9-17
transfer signals, 8-11, 9-15
transfer start signals, 8-15
transfer termination, 8-18, 9-23
transfer timing diagrams, 9-15

Address translation

32-bit physical address, 5-12
36-bit physical address, 5-13

Address translation, see also Memory management
unit

Addressing
extended block physical address, 36-bit physical

address, 5-30
extended, 36-bit physical address, 5-6
modes, 2-64

Alignment
data transfers, 9-21, 9-23
exception, 4-25
misaligned accesses, 2-59

AltiVec technology
addition to machine state register, 7-2
cache

LRU instruction support, 3-46
overview, 7-17

denormalized numbers, 7-11
differences between MPC7400/7410 and

MPC7451, 7-15
exceptions

assist, 4-2, 4-34
DSI, 4-2, 4-22
overview, 7-18
unavailable, 4-2

general, 7-15
instruction timing

data stream
termination, 7-9
touch instructions and sync, 7-9
touch instructions and tlbsync, 7-9

dss and dssall instructions, 7-11
dst vs. dstt (differences), 7-11
dstst vs. dststt (differences), 7-11
execution latency, 6-52, 7-17
general, 7-19
LRU instructions, 7-5
overview, 6-1, 7-1
pipeline stalls (data stream instructions), 7-8
speculative execution (data stream

instructions), 7-8
static data stream touch instructions, 7-9
stream engine tags, 7-8
transient data stream touch instructions, 7-9
VALU execution timing, 6-40
vector FP compare, min, max

in Java mode, 7-13

INDEX

Index-2 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

in non-Java mode, 7-12
VFPU execution timing, 6-41
VIU1 execution timing, 6-40
VIU2 execution timing, 6-41
VPU execution timing, 6-40

instructions, 6-40
denormalization, 7-12
instruction set, 2-104, 6-40, 7-5
round-to-integer in Java mode, 7-15
round-to-integer in non-Java mode, 7-14

Java mode, 7-3, 7-11
memory management unit, 5-2, 7-19
memory operations, 11-18
NaNs, 7-11
performance monitor, 11-1
permute unit (VPU), 6-5
programming model, 7-1
register file structure, 7-2
simple integer unit (VIU1, VIU2), 6-5
transient instructions, 7-5
unavailable exception, 4-29
zeros, 7-11

APE (address parity error) signal, 8-7, 9-16
APn

60x address parity signals, 8-31
MPX address parity signals, 8-13

Arbitration, system bus, 9-30, 9-47
Architectural implementation, 1-32
Arithmetic instructions

floating-point, A-48
integer, 2-104, A-46
vector floating-point, 2-109
vector integer, 2-105

ARTRY (address retry) signal, 8-19, 8-36

B
BAMR (breakpoint address mask

register), 2-53, 11-10
BATLn registers, 5-27, D-2
BATn (block address translation registers)

extended addressing
additional BAT registers (MPC7455 and

MPC7445), 5-26
BATLn, 5-27, D-2
BATUn, 5-26, D-2
extended block size, 5-31
implementation of BAT array, 5-26
initialization, 5-25
summary, 5-33
WIMG bits, 5-29

BATUn registers, 5-26, D-2
BG (bus grant) signal, 8-10, 8-31
Block - see cache block
Block address translation

flow, 5-15
generation of physical addresses, 5-30
selection, 5-11
size options, 5-29
summary, 5-33

Block diagram, 9-2, 9-4
Block size, 5-2
BMODE0 (bus select mode) signal, 9-16
BMODEn (bus select mode) signal, 8-50
BO field, branch instruction, 6-33
Boundedly undefined, definition, 2-62
BR (bus request) signal, 8-10, 8-31
Branch

considerations, 6-61
execute, 6-9
fall-through, 6-29
folding, 6-29, 6-66
link stack, 11-16, 11-24, 11-27
loop example, 6-61
prediction, 11-29
processing, 11-24, 11-26
resolution, 11-24, 11-27, 11-29
resolution definition, 6-2

Branch instructions
address calculation, 2-85
condition register logical, 2-86, A-53
description, A-53
list, 2-85
list of instructions, A-53
system linkage, 2-86, 2-95, A-53
trap, 2-86, A-54

Branch prediction
definition, 6-2
mispredict example, 6-61
static, 6-33

Branch processing unit (BPU)
branch instruction timing, 6-35
execution timing, 6-29
general, 1-14

Branch target instruction cache (BTIC), 3-43
Branch-taken bubble, example, 6-60
BTIC, 3-43
BTIC (branch target instruction

cache), 6-13, 11-24, 11-27
Burst data transfers

burst ordering, 9-21
transfers with data delays, timing, 9-53

Bus arbitration, see Data bus
Bus operation features, 1-23
BVSEL (bus voltage select) signal, 8-49
Byte ordering

default, 2-104
support, 2-64

INDEX

MOTOROLA Index Index-3

C
Cache

AltiVec technology
LRU instruction support, 3-46
overview, 7-17

arbitration, 6-17
atomic memory references, 3-30
block, definition, 3-12
bus transactions, 3-90
castout, 3-8
coherency

general, 3-15
support, 3-18

committed store queue (CSQ), definition, 3-7
control

bus operations, 3-92
dcbi, 2-100
dcbt, 2-92
instructions, 3-31, 3-36
overview, 3-31

data cache
block fill operations, 3-41
block push operation, 3-44
cache block replacement selection, 3-44
configuration, 1-21, 1-21, 3-12, 3-52, 3-52, 3-53
configuration diagram, 3-12
dcba, 3-40
dcbf, 3-39
dcbi, 3-40
dcbst, 3-39
dcbt, 3-36
dcbtst, 3-37
dcbz, 3-38
locking using HID0, 3-33
operation, 9-5
snooping, 3-96
status bits, 3-18
store hit, 3-44

data intervention, 3-20
data way locking, 2-43
enforcing store ordering, 3-30
finished store queue (FSQ), definition, 3-7
flushing, 3-55
guarded memory bit (G bit), 3-15
inhibited accesses (I bit), 3-15
instruction cache

block fill operations, 3-42
cache block replacement selection, 3-44
enabling/disabling with HID0, 3-33
icbi instruction, 3-40
locking using HID0, 3-34
organization, diagram, 3-14

L1 cache
castout queue (LCQ), 3-8

features list, 3-2
flushing, 3-47
invalidation, 3-47
misses, 3-9
operation, 9-5
organization, 3-12
service queues, 3-9

L2 cache
allocation, 3-59
block, 3-10
cache line replacement algorithms, 3-60
cache miss and reload operations, 3-59
considerations, 6-23
control, 3-54
features list, 3-3
instruction interactions, 3-57
invalidation, 3-55
L2CR parameters, 3-54
memory configuration, 3-53
operation, 3-58, 9-6
operations caused by L1 requests, 3-61
parity error reporting, 3-57
prefetch engines, 3-57
replacement algorithm, 3-57
store data merging, 3-60

L3 cache
32-bit data bus, 3-71
clock and timing controls, 3-73
configuration, 3-86, 3-88, 3-88, D-4
enabling/disabling, 3-68, 3-81
features list, 3-4
flushing, 3-72
global invalidation, 3-72
initialization, 3-68, 3-81
interface signals, 8-40
L3PMCR, 3-76
locking using L3DO and L3IO, 3-70
miss allocation, 3-79
MPC7441, 9-6
MPC7445, 9-6
operation, 3-78
operations caused by L1 requests, 3-61
organization, 3-68
overview, 3-67
parity

checking, 3-71
generation, 3-71

private memory, 3-76, 3-80
size, 3-69
SRAM

timing examples, 3-84
types, 3-70

system interface operation, 9-6
load and store operations, 3-28
load miss, 3-8

INDEX

Index-4 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

load miss queue (LMQ), 3-8
load ordering, 3-29
load/store operations, processor initiated, 3-27
load/store unit (LSU), 3-7

store queues, 3-7
loads and LSU, 3-7
LSU load miss, castout, and push queues, 3-8
management instructions, 2-118, 7-6, A-54
memory

access and sequential consistency, 3-29
coherency, 3-15, 6-44
subsystem, 3-9

memory/cache access attributes, 3-15, 3-15
miss allocation, 3-43, 3-59, 3-79
model timing coherency, 6-44
MPX bus mode

HIT signal, 8-22, 9-29
SHDn signals, 8-20

operations
data cache block

fill, 3-41
push, 3-44

instruction cache block fill, 3-42
load/store, processor initiated, 3-27

out-of-order accesses to guarded memory, 3-17
overview, 3-2
PLRU replacement, 3-45
push queues, 3-8
reservation snooping, 3-27
snoop response, 3-19
store

gathering/merging, 3-8
miss merging, 3-43

store data merging, 3-60
store ordering, 3-30
system bus interface, 3-90
timing

data cache hit, 6-17
data cache miss, 6-21
instruction cache

and L2 cache hit, 6-23
miss/L3 cache hit, 6-25
throttling, 2-47, 10-8, 10-9

transaction types, 3-21
transfer attribute signals, 3-94
transient data and different coherency states

different cache states, 3-19
WIMG bits, 3-15, 3-15
write-through mode (W bit), 3-15

Cache management instructions, 2-118, 7-6, A-54
Cache/memory subsystem block diagram, 3-6
Care, 3-16
Castout queue (LCQ), 3-8
Changed (C) bit maintenance recording, 5-14–5-42

Checkstop
operation, 9-54
signal, 8-47, 9-55
state exception, 4-22

CI (cache inhibit), 8-18, 9-20, 9-20
CI (cache inhibit), 8-35
CKSTP_IN/CKSTP_OUT (checkstop input/output)

signals, 8-47, 9-55
Classes of instructions, 2-61
CLK_OUT signal, 8-55
Clocks

CLK_OUT, 8-55
signals, 8-53

Committed store queue (CSQ), 6-78
Committed store queue (CSQ), definition, 3-7
Compare instructions

floating-point, A-49
integer, A-46
vector floating-point, 2-111
vector integer, 2-107

Completion
considerations, 6-27
definition, 6-2
of instruction, 6-9
resource requirements, 6-71

Configuration signals sampled at reset, 8-57
Context synchronization, 2-65
Control flow, 2-113
Control registers synchronization requirements, 2-66
Conventions, xlviii, lii, 6-2
CR (condition register)

CR6 bit settings for vector integer compare
instructions, 2-107

execution latencies, 6-46
logical instructions, 2-86, A-53

CSEn (cache set element) signal, 8-7
CSQ (committed store queue)

5-entry, 6-78
definition, 3-7

D
D0–D63

60x data bus signals, 8-38
MPX data bus signals, 8-25

Data address breakpoint and exceptions, 4-23
Data bus

arbitration, 9-30
arbitration signals, 8-23–8-25, 8-37
bus arbitration, 9-47
data

transfer, 8-38
data bus transfers, 9-48
data tenure

functions, 9-10

INDEX

MOTOROLA Index Index-5

reordering, 9-33
data transfer, 8-25–8-27
data transfer termination, 8-27, 8-39, 9-48
MPX bus mode

intervention, 2-27, 9-29, 9-34
parity, 9-32
transactions, 3-90

qualified data bus grant, 9-30
tenure termination, 9-48

Data cache
block fill operations, 3-41
block push operation, 3-44
configuration, 3-12, 3-52
locking, 3-33
operation, 9-5
organization diagram, 1-21, 1-21, 3-12, 3-52, 3-53

Data intervention
MPX bus mode, 9-35

ordering, 9-38
pipelining, 9-37
retrying, 9-37

Data organization in memory, 2-59
Data stream

prefetching and exceptions, 4-15
touch instructions

overview, 7-6
sync, 7-9
termination, 7-9
tlbsync, 7-9

Data streaming in MPX mode, 9-33
Data tenure

60x bus mode, 9-47–9-48
MPX bus mode, 9-33, 9-39

Data TLB miss-
on-load, 4-31
on-store, 4-31

Data transfers
alignment, 9-21
burst ordering, 9-21
eciwx and ecowx, alignment, 9-23
MPX bus mode, 9-31
operand conventions, 2-59

DBG (data bus grant) signal, 8-23, 8-37
dcba, 3-40
dcbf, 3-39
dcbi, 2-100, 3-40
dcbst, 3-39
dcbt, 2-92, 3-36
dcbtst, 3-37
dcbz, 3-38
Decrementer exception, 4-27
Defined instruction class, 2-62
Differences between

MPC7400/7410 and MPC7451, 7-15
MPC7451 and MPC7400/7410, 1-58, 1-61, 1-62

Direct-store accesses, 9-8
Dispatch

considerations, 6-27
definition, 6-2
notation, 6-9
unit resource requirements, 6-67

DPE signal, 8-7
DPn

60x data bus parity signals, 8-39
MPX data bus parity signals, 8-26

DRDY (data ready)
MPX bus mode timing, 9-36
signal, 8-24

DRTRY (data retry) signal, 8-7, 9-48
DSI exception, 4-22
DTIn (data transaction index), 8-38
DTLB organization, 5-43
Dynamic branch prediction, 6-14

E
Earliest transfer of data, 9-33
Effective address (EA), 5-1, 6-38
Effective address calculation

branches, 2-64
loads and stores, 2-64, 2-78, 2-82
translation, 5-5

eieio, 2-91
Error termination, 9-41
Events

counting, 11-13
MMCRn registers, 11-14
PMC1, 11-14
PMC2, 11-20
PMC3, 11-25
PMC4, 11-27
PMC5, 11-29
PMC6, 11-30
PMCn registers selection, 11-14–11-30

Exception handlers code for MMU page table search
software example, 5-79

Exception model, 1-48
Exceptions

alignment, 4-25
AltiVec

assist, 4-2, 4-34
disabled, 4-2
DSI, 4-2
technology overview, 7-18
unavailable, 4-29

checkstop state, 4-22
classification, 4-3
conditions causing, 4-3
data address breakpoint facility, 4-23
data stream prefetching, 4-15

INDEX

Index-6 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

data TLB miss-
on-load, 4-31
on-store DTLB, 4-31

decrementer, 4-27
definitions, 4-15
DSI, 4-22
enabling and disabling, 4-13
external interrupt, 4-24
floating point

assist, 4-28
unavailable, 4-27

instruction address breakpoint, 4-32
instruction TLB miss, 4-30, 4-31
instruction-related exceptions, 2-69
ISI, 4-23
machine check, 4-18
microprocessor, 4-3
MMU

conditions, 5-21
summary, 5-19

mode, 4-2
MSR settings, 4-15
overview, 4-3
performance monitor, 4-28, 11-3
prefix (IP) bit, 4-17
priorities, 4-5
processing

general, 4-9
steps, 4-13

program, 4-26
recognition, 4-5
register settings

MSR, 2-12, 4-10, 4-15
SRRn, 2-14, 4-9

reset, 4-17
returning from handler, 4-14
system call, 4-27
system management interrupt, 4-33
terminology, 4-2
trace, 4-27
translation conditions, 5-20

Execution
instructions, 6-9
synchronization, 2-68

Execution timing, FPU, 6-37
Execution units

Altivec
permute unit (VPU), 6-5
simple integer unit (VIU1), 6-5
vector complex integer unit (VIU2), 6-5
vector floating-point unit (VFPU), 6-5

independent, 1-15
multiple-cycle IU (IU2), 6-5
timing

examples, 6-29
LSU, 6-37

EXT_QUAL (extension qualifier), 8-54
External control instructions, 2-94, 9-23, A-55, A-58
External interrupt exception, 4-24

F
Fall-through folding, definition, 6-2
Fetch

alignment example, 6-58
definition, 6-2
examples, 6-58
instruction timing, 6-8

Fetch/branch considerations, 6-58
Finish definition, 6-2
Finished store queue (FSQ)

general, 6-78
Finished store queue (FSQ), definition, 3-7
FIQ (floating-point issue queue), 6-71
Floating-point model

arithmetic instructions, 2-74, A-48
assist exceptions, 4-28
compare instructions, 2-75, A-49
FE0/FE1 bits, 2-14, 4-12
FP move instructions, A-53
FPSCR instructions, 2-76
IEEE-754 compatibility, 2-58
instructions, A-50
load instructions, A-52
multiply-add instructions, 2-74, A-48
operands, 2-59
rounding/conversion instructions, 2-75, A-49
store instructions, 2-83, A-52
unavailable exception, 4-27
vector

compare instructions, 2-111
FP arithmetic instructions, 2-109
FP multiply-add, 2-110
FP rounding/conversion instructions, 2-110

Flushing L1, L2, and L3 caches, 3-55
Folding definition, 6-3
FPSCR (floating-point status and control register)

instructions, 2-76, A-50
NI bit, 2-60

FPU (floating-point unit)
performance exceptions, 6-37

FPU (floating-point unit) execution
latencies, 6-48
timing, 6-37

FSQ (finished store queue)
definition, 3-7
transfers, 6-78

INDEX

MOTOROLA Index Index-7

G
GBL (global) signal, 8-17, 8-34
GIQ (GPR issue queue), 6-69
GPR issue queue (GIQ), 6-69

H
Hashed page tables, 5-51
Hashing functions

page table
primary PTEG, 5-54, 5-60
secondary PTEG, 5-54, 5-61

HIDn (hardware implementation-dependent) registers
HID0

bit descriptions, 2-17
cache control parameters, 3-32
data cache locking, 3-33
instruction cache

locking, 3-34
instruction cache enabling/disabling, 3-33
XAEN (Extended addressing) bit, 2-19

HID1
bit descriptions, 2-23
PLL configuration, 2-24, 8-54

HIT (snoop hit) signal, 8-22, 9-29
HRESET (hard reset) signal, 8-46, 9-54

I
IABR (instruction address breakpoint

register), 2-45, 11-17
icbi instruction, 3-40
ICTC (instruction cache throttling control)

register, 2-48
ICTRL (instruction cache and interrupt control)

register, 2-42
IEEE 1149.1-compliant interface, 9-56
Illegal instruction class, 2-62
Implementation-specific instructions, 2-101
Instruction address breakpoint exception, 4-32
Instruction and data cache registers, 2-29
Instruction cache

block fill operations, 3-42
enabling/disabling, 3-33
locking, 3-34
organization diagram, 3-14
throttling, 2-47, 10-8, 10-9

Instruction fetch
stages, 6-6
timing, 6-17

Instruction pipeline stages
complete, 6-8
decode/dispatch, 6-7
execute, 6-8
general, 6-6

instruction fetch, 6-6
issue queues (FIQ, VIQ, GIQ), 1-8, 6-7
write-back, 6-8

Instruction timing
AltiVec technology

execution latency, 6-52, 7-17
instructions, 6-40
overview, 6-1, 6-40
timing, 7-19
VFPU execution timing, 6-41
VIU1 execution timing, 6-40
VIU2 execution timing, 6-41
VPU execution timing, 6-40

branch execute, 6-9
completion of instruction, 6-9
CR execution latencies, 6-46
dispatch, 6-9
examples

cache hit, 6-19
cache miss, 6-22

execute, 6-9
execution unit, 6-29
fetch, 6-8
FPU execution latencies, 6-48
instruction flow, 6-12
issue, 6-9
LSU execution latencies, 6-50
memory coherency and the cache, 6-44
memory performance considerations, 6-44
overview, 6-4
terminology, 6-2
write-back, 6-9

Instructions
addressing modes, 2-64
AltiVec

cache management, 2-118
execution latency, 6-52, 7-17
general, 6-40
instruction set, 7-5
transient instructions, 7-5
user-level instructions, 2-118

boundedly undefined, 2-62
branch, 6-29, 6-31, A-53

address calculation, 2-85
BO field, 6-33
fetch/branch considerations, 6-58
predicting and resolution, 6-32

cache
management instructions, 2-118, 3-36, 7-6, A-54

cache throttling, 2-47, 10-8, 10-9
classes of instructions, 2-61
condition register logical, 2-86, A-53
context synchronization, 2-65
defined instruction class, 2-62
effective address calculation, 2-64

INDEX

Index-8 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

exceptions, 2-69
execution

serialization, 6-28
synchronization, 2-68

execution latencies, 6-46
external control, 2-94, A-55, A-58
floating-point

arithmetic, 2-74, A-48
compare, 2-75, A-49
estimate instructions, A-58
FPSCR instructions, A-50
instructions execution latencies, 6-48
load instructions, A-52
move, 2-76
move instructions, A-53
multiply-add, 2-74, A-48
rounding and conversion, 2-75, A-49
status and control register, 2-76
store instructions, A-52

flow
control, 2-113
diagram, 6-16
general, 1-13

illegal instruction class, 2-62
implementation-specific, 1-46, 2-101
instructions not implemented, B-1
integer

arithmetic, 2-70, 2-104, A-46
compare, 2-71, A-46
load, A-50
load/store multiple, 2-81, A-51
load/store string, A-51
load/store with byte reverse, A-51
logical, 2-72, 2-104, A-47
rotate and shift, 2-73, A-47
store, 2-79, A-51

isync, 4-15
latency summary, 6-44
load and store

address generation
floating-point, 2-82
integer, 2-78

byte reverse instructions, 2-80, A-51
execution latencies, 6-50
floating-point load, A-52
floating-point move, 2-76, A-53
floating-point store, 2-83, A-52
indirect integer load, 2-78
integer

load, A-50
multiple, 2-81
store, 2-79, A-51

memory synchronization, 2-89, 2-90, A-52
misalignment handling, 2-77

multiple instructions, A-51
string instructions, 2-81, A-51
vector load, 2-112

LRU, 2-118
memory control instructions, 2-91, 2-99
memory synchronization

instructions, 2-89, 2-90, A-52
move to/from VSCR register, 2-116
pipelining

DST instructions and the vector touch engine
(VTE), 6-86

load hit, 6-78
load/store, 6-80
misalignment effects, 6-80
store hit, 6-78
store miss, 6-84

PowerPC
instruction list by functional categories, A-46
instruction list softed by mnemonic, A-1
instruction list sorted by opcode, A-35
OEA instructions, 2-95
overview, 1-44
UISA instructions, 2-70

processor control, 2-87, 2-90, 2-95, A-54
queue and dispatch unit, 1-13
refetch serialization, 6-28
reserved instruction class, 2-63
rfi, 4-14
segment register manipulation instructions, A-54
serialization, 6-28, 6-72
set summary, 2-60
store serialization, 6-28
stwcx., 4-15
sync, 4-15
synchronization, 2-65
system linkage, 2-86
system linkage instructions, A-53
system register instruction latencies, 6-45
timing, 6-40
TLB

management, A-55
miss exception, 4-31

tlbld, 2-101
tlbli, 2-101
trap

general, 2-86
instructions, A-54

vector
floating-point

arithmetic, 2-109
compare, 2-111
multiply-add, 2-110
rounding/conversion, 2-110

integer

INDEX

MOTOROLA Index Index-9

arithmetic, 2-105, A-55
compare, 2-107
logical, 2-108
rotate/shift, 2-108

load (alignment support), 2-112
memory control, 2-117
merge, 2-114
pack, 2-113, A-59
permute, 2-115, A-60
select, 2-116, A-60
shift, A-60
splat, 2-115, A-59
status and control register, 2-116
store, 2-112

vector load, A-58
vrefp, 7-15

INT (interrupt) signal, 8-45, 9-55
Integer

arithmetic instructions, 2-70, 2-104, A-46
compare instructions, 2-71, A-46
indirect load instructions, 2-78
integer unit execution timing, 6-36
load instructions, A-50
logical instructions, 2-72, 2-104, A-47
rotate/shift instructions, 2-73, A-47
store gathering, 6-39
store instructions, 2-79, A-51

Interrupt, external, 4-24
ISI exception, 4-23
Issue

definition, 6-3
illustration, 6-9

isync, 2-91, 4-15
ITLB organization, 5-43
IU1 considerations, 6-72
IU2 considerations, 6-73

J
Java and non-Java mode, 7-15
JTAG interface, 8-55

L
L1

castout queue (LCQ), 3-8
service queues, 3-9

L1 data cache organization, 3-12
L2 cache

allocation, 3-59
block, 3-10
control, 3-54
implementation, 1-20
instruction interactions, 3-57
invalidation, 3-55

L2CR parameters, 3-54
line replacement algorithms, 3-60
memory coherency, 3-53
miss and reload operations, 3-59
operation, 3-58, 9-6
operations caused by L1 requests, 3-61
parity error reporting, 3-57
prefetch engines, 3-57
replacement algorithm, 3-57
store data merging, 3-60

L2CR (L2 cache control register)
general, 2-29
parameters, 3-54

L3 cache
implementation, 1-22
operations caused by L1 requests, 3-61

L3 interface operation, see Cache
L3_CNTLn (L3 control), 8-43
L3_ECHO_CLK (L3 echo clock) signal, 8-43
L3ADDRn (L3 address) signals, 8-40
L3CLKn (L3 clock) signals, 8-42
L3CR (L3 cache control

register), 2-31, 2-36, 3-68, 3-68
L3DATAn (L3 data) signals, 8-41
L3DPn (L3 data parity) signals, 8-41
L3PM (L3 private memory address control

register), 2-44
L3PM (L3 private memory control register), 3-68
L3PMCR (L3 private memory control register), 3-76
L3VSELn (L3 voltage select), 8-44
Latency definition, 6-3
LCQ (L1 castout queue), 3-8
LDSTCR (load/store control register), 2-43
Link stack

example, 6-64
for branch indirect, 6-64
registers, 6-15

LMQ (load miss queue), 6-77
Load miss queue (LMQ), 3-8
Load/store

address generation, 2-78
byte reverse instructions, 2-80, A-51
floating-point

load instructions, 2-82, A-52
move instructions, 2-76, A-53
store instructions, 2-83

floating-point store instructions, A-52
integer

load instructions, A-50
store instructions, 2-79, A-51

integer load instructions, 2-78
load/store multiple instructions, 2-81, A-51
memory synchronization instructions, A-52
misalignment handling, 2-77
string instructions, 2-81, A-51

INDEX

Index-10 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

vector load instructions
alignment support, 2-112
general, 2-112

vector load/store instructions, 2-111
vector store instructions, 2-112

Load/store unit (LSU)
from cache, 3-7
general, 6-76

Logical address translation, 5-1
Logical instructions

integer, 2-104, A-47
vector integer, 2-108

Lookaside buffer management instructions, A-55
Loop example, 6-60
LRU (least recently used)

instructions, 2-118, 6-39, 7-5
LSU

execution latencies, 6-50
execution timing, 6-37
load miss, castout, and push queues, 3-8
store queues, 3-7

M
Machine check exception, 4-18
MCP (machine check) signal, 8-45
Memory

accesses, MPX bus mode, 9-7, 9-9
cache interface, 3-9
coherency, 3-15, 6-44
control instructions

description, 2-91, 2-99
segment register manipulation, A-54
user-level cache, 2-117, 7-6

Memory management unit
access protection, 5-1
address translation

flow, 5-15
mechanisms, 5-11, 5-15

address translation types, 32-bit physical
addressing, 5-12

AltiVec technology overview, 5-2, 7-19
block address translation, 5-11, 5-15, 5-25
block diagram

32-bit implementation, 5-7
DMMU (36-bit physical addressing), 5-9
DMMU (Extended Block Size and Additional

BATs), 5-10
block size, 5-2
data stream touch instructions, 5-40, 5-41
effective address calculation, 5-5
exceptions

conditions, 5-20, 5-21
implementation-specific, 5-21
summary, 5-19

extended addressing, 2-47
extended BAT block size, 5-31
features summary, 5-4
hashing functions, 5-54
implementation-specific features, 5-3
instruction summary, 5-22
memory protection, 5-14
memory segment model, 5-35
no-execute protection, 5-17
organization, 5-5
overview, 5-2
page address translation, 5-11, 5-15, 5-49
page history status, 5-14, 5-39–5-42
PTEHI, PTELO registers, 2-46
real addressing mode

block address translation selection, 5-15
mechanisms, 5-15
support for real, 5-2
translation disabled, 5-25

referenced and changed bit scenarios, 5-41
register summary, 5-24
software table search operation, 5-72, 5-74
software table search registers, 2-45
table search operation

conditions, 5-61
example, 5-72
hardware, 5-3
TLB miss, 5-44
updating history bits, 5-39

tlbie, 5-45
tlbsync, 5-47
translation exception conditions, 5-20

Memory segment model, page address translation
overview, 5-36
PTE definitions, 5-38
segment descriptor definitions, 5-37

Memory synchronization
instructions, 2-89, 2-90, A-52

MESI protocol and state transition, 3-21
Misalignment

in accesses, 2-59
in data transfers, 9-23

MMCR0 (monitor mode control register 0), 2-49
MMCR1 (monitor mode control register 1), 2-52
MMCR2 (monitor mode control register 2), 2-52
MMCRn (monitor mode control

registers), 2-49, 4-29, 11-5–11-10, 11-14
MPC7400/MPC7410

comparison with MPC7451, 1-58, 1-61, 1-62
MPC7441 overview, 1-5
MPC7445

additional BATn registers, 5-26
overview, 1-5, 1-6

MPC7450 overview, 1-5

INDEX

MOTOROLA Index Index-11

MPC7451
block diagram, overview, 9-2
comparison with

MPC7400/MPC7410, 1-58, 1-61, 1-62
features overview, 1-6
register set summary, 2-5

MPC7451 overview, xliii, 1-1
MPC7455

additional BATn registers, 5-26
overview, 1-5

MPX bus mode
address bus

arbitration, 9-11
driven, 9-16
parking, 9-13
pipelining, 9-10
tenure, 9-9
termination, address transfer, 9-23

address tenure, 9-11–9-30
data bus parity, 9-32
data streaming, 9-33
data tenure

features, 9-10
general, 9-30–9-42
reordering, 9-33
termination, 9-39

data transfer, 9-31
data-only transactions

ordering of, 9-38
pipelining of, 9-37
protocol, 9-35
retrying, 9-37

DRDY timing, 9-36
functional groupings, 1-28
memory accesses, 9-9
normal burst transfer termination, 9-40
normal single-beat transfer termination, 9-40
qualified address bus grant, 9-12
qualified data bus grant, 9-30
signal configuration, 8-5
snarfing, 9-39
transfer type encodings, 9-17

MPX bus protocol overview, 9-9
MSR (machine state register)

bit settings, 2-12, 4-10
FE0/FE1 bits, 2-14, 4-12
IP bit, 4-17
RI bit setting, 4-14
settings due to exception, 4-15

MSSCR0 (memory subsystem control register
0), 2-26, 3-57, 3-57, 9-7

MSSSR0 (memory subsystem status register
0), 2-28, 9-8

Multiple-cycle IU (IU2), 6-5
Multiple-precision shifts, 2-73

Multiply-add instructions, 2-74, 2-110, A-48

N
Normal burst transfer termination, 9-40
Normal single-beat transfer termination, 9-40

O
OEA instructions, 2-95
On-chip L1 instruction and data caches, 1-18
Operand conventions, 2-58
Operand placement, performance effects, 6-37
Operating environment architecture (OEA)

exception mechanism, 1-48, 4-1
memory management unit, 5-1
overview, 1-32
registers, 2-11

Operating environment architecture (OEA), xliv
Operations

bus operations caused by cache control instructions
general, 3-92
modified, 3-93
not modified, 3-94, D-10

data cache block
fill, 3-41
push, 3-44

instruction cache block fill, 3-42
response to snooped bus transactions, 3-97
single-beat write, 9-50
table search

hardware, 5-3
TLB miss, 5-44
updating history bits, 5-39

Optional instructions, A-77

P
Page address translation

extended addressing
extended block size, 5-35
flow, 5-49
physical address generation, 5-37
PTE definitions, 5-38

overview, 5-36
selection, 5-11, 5-16, 5-19
TLB organization, 5-44

Page history
recording, 5-39
status

dcbt and dcbtst misses, 5-40
R and C bit recording, 5-14, 5-39–5-42

Page table
example structures, 5-59
hashed, 5-51

INDEX

Index-12 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

hashing functions, 5-54, 5-60
PTE registers (PTEHI and PTELO), 2-46
PTEG

address generation examples, 5-59, 5-60
addresses, 5-55, 5-59
general, 5-59

search operation
software, 5-72

search operations
conditions, 5-62
hardware, 5-63
reads, 5-64
resources, 5-68

size, 5-53
updates, 5-66

Parity error reporting, L2 cache, 3-57
Performance monitor, 1-31

AltiVec technology, 11-1
counter registers, 11-11
event counting, 11-13
events, 11-14
exception, 4-28, 11-3
overview, 11-1
registers, 11-4
TBEE (timebase enable event) usage, 11-4
uses for the performance monitor, 11-1

Performance monitor registers, 2-48
Physical address (PA)

generation of PTEG addresses, 5-55, 5-59
overview, 5-1

Physical address generation
blocks, 5-30

Pipeline
execution unit, 6-5
instruction timing definition, 6-3
stages, 6-11
stages diagram, 6-11
superscalar diagram, 6-6

PMCn (performance monitor counter
registers), 2-54, 4-29, 11-11, 11-14–11-30

PMON_IN (performance monitor in) signal, 8-53
PMON_OUT (performance monitor out) signal, 8-53
Position-independent code example, 6-65
Power and ground signals, 8-58
Power management, 1-30

dynamic power management, 10-1
software considerations, 10-5

Power modes
full-power, 10-3
general, 10-1
nap, 10-3
sleep, 10-4

Power-on reset settings, 2-56
PowerPC architecture

byte ordering support, 2-64
instruction list, A-1, A-35, A-46
instruction set, 1-44
memory accesses and sequential consistency, 3-29
operating environment architecture (OEA), 1-32
operating environment architecture (OEA), xliv
programming model, 2-2
register summary, 2-2
user instruction set architecture (UISA), 1-32
user instruction set architecture (UISA), xliv
virtual environment architecture (VEA), 1-32
virtual environment architecture (VEA), xliv

Process switching, 4-15
Processor control instructions, 2-87, 2-90, 2-95, A-54
Program exception, 4-26
Program order definition, 6-3
Protection of memory areas

no-execute protection, 5-17
options available, 5-14
violations, 5-19

PTEGs (PTE groups)
examples primary and secondary, 5-59
generation of addresses, 5-55
hashing, 5-54

PTEHI (page table entry high register), 2-46, 5-71
PTELO (page table entry low register), 2-46, 5-71
PTEs (page table entries)

bit definitions, 2-47, 5-38, 5-71
extended addressing, 2-47
page history recording (PTE(R) and PTE(C)), 5-39

PVR (processor version register), 2-11

Q
QACK (quiescent acknowledge)

signal, 8-48, 9-55, 10-1
QREQ (quiescent request) signal, 8-48, 9-55, 10-2
Qualified address bus grant

60x mode, 9-43
MPX mode, 9-12

Qualified data bus grant
60x mode, 9-47
MPX mode, 9-30

R
Real addressing mode, 5-24
Real addressing mode (translation disabled)

32-bit, 5-25
36-bit, 5-25
data accesses, 5-15, 5-25
extended addressing, 5-25
instruction accesses, 5-15, 5-25
support, 5-2

Referenced (R) bit maintenance

INDEX

MOTOROLA Index Index-13

recording, 5-14–5-42, 5-64
Registers

addition to AltiVec machine state register, 7-2
AltiVec technology, 7-2
BATLn, 5-27, D-2
BATUn, 5-26, D-2
data cache, 2-29
implementation-specific

BAMR, 2-53, 11-10, 11-10
HID0, 2-17
HID1, 2-23
IABR, 2-45
ICTC, 2-48
ICTRL, 2-42
L2CR, 2-29
L3CR, 2-31, 2-36, 3-68
L3PM, 2-44
LDSTCR, 2-43
MMCRn, 2-49, 4-29, 11-5–11-10, 11-14
MSSCR0, 2-26, 9-7
MSSSR0, 2-28
PMCn, 2-54, 4-29, 11-14–11-30
SIAR, 2-55, 4-29, 11-12
UMMCRn, 2-51–2-53, 11-8–11-10
UPMCn, 2-55, 11-12
USIAR, 2-56, 11-13

instruction, 2-29
L3CR, 3-68
L3PMCR, 3-68, 3-76
MPC7441 overview, 2-3
MPC7445 overview, 2-4
MPC7451 overview, 2-3
MPC7451-specific, 2-17–2-56
MSSSR0, 9-8, 9-8
not implemented

SDARn, D-7
overview, 2-4
page table entry, 2-46
performance monitor

counter, 11-11
overview, 2-48, 11-4

reset settings, 2-56
segment, 5-37
segment updates, 5-67
software table search, 2-45
SPR encodings, 2-98
SPR encodings (MPC7451-defined registers), 2-88
supervisor-level

BAMR, 2-53, 11-10
BATs, 5-27
DMISS and IMISS, 5-70
HID0, 2-17
HID1, 2-23
IABR, 2-45
ICTC, 2-48

ICTRL, 2-42
L2CR, 2-29
L3CR, 2-31, 2-36, 3-68
L3PM, 2-44
LDSTCR, 2-43
MMCRn, 2-49, 4-29, 11-5–11-10, 11-14
MSSCR0, 2-26, 9-7
MSSSR0, 2-28
performance monitor SPRs, 11-4
PMCn, 2-54, 4-29, 11-14–11-30
PVR, 2-11, 2-11
SDR1, 2-15
SIAR, 2-55, 4-29, 11-12
TLBMISS, 2-45

user performance monitor counter, 11-12
user-level

performance monitor SPRs, 11-5
UMMCRn, 2-51–2-53, 11-8–11-10
UPMCn, 2-55, 11-12
USIAR, 2-56, 11-13
VRSAVE, 7-4
VSCR, 7-3

VRn, 7-2
Rename buffer, definition, 6-3
Rename register operation, 6-28, 6-28
Reservation station, definition, 6-3
Reserved instruction class, 2-63
Reset

hard, 2-56
HRESET signal, 8-46, 9-54
settings, 8-5
settings at power-on, 2-56
SRESET signal, 8-46, 9-54

Retirement, definition, 6-3
rfi, 4-14
Rotate/shift instructions, 2-73, 2-108, A-47
Rounding/conversion instructions, vector FP, 2-110

S
SDR1 register

bit description for extended addressing, 2-15
definition, 5-51
format, 5-51
generation of PTEG addresses, 5-55, 5-59

Segment register
descriptor definitions, 5-37
updates, 5-67

Segmented memory model, see Memory management
unit

Serialization instructions, 6-28, 6-72
SHD0n (shared) signal, 8-37
SHDn (shared) signal, 8-20
Shift/rotate instructions, 2-73, A-47
SIAR (sampled instruction address

INDEX

Index-14 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

register), 2-55, 4-29, 11-12
Signals

60x bus mode
A0–A3, 8-32
AACK, 8-35
address

arbitration, 8-30
bus and parity, 8-31
transfer attribute, 8-32
transfer termination, 8-35

APE, 8-7
APn, 8-31
ARTRY, 8-36, 9-48, 9-48
BG, 8-31
BR, 8-31
CI, 8-35
CSEn, 8-7
data

bus arbitration, 8-37, 9-47
transfer termination, 8-39

data transfer, 8-38
data transfer termination, 9-48
DBG, 8-37
DPE, 8-7
DPn, 8-38, 8-39
DRTRY, 8-7, 9-48
DTIn, 8-38
GBL, 8-34
L3_CNTLn, 8-43
L3VSELn, 8-44
MPX bus mode compatibility, 8-6
multiplexed with MPX bus mode, 8-7
overview, 8-29
SHD0n, 8-37
signals not implemented in MPC7451, 8-7
state at hard reset, 8-4
TA, 8-39
TBST, 8-34
TCn, 8-7
TEA, 8-40, 9-48
TS, 8-33
TSIZn, 8-34
TTn, 8-33
WT, 8-35
XATS, 8-7

address transfer attribute, 9-17
CI (cache inhibit), 9-20
configuration sampled at reset, 8-57
definition of groupings, 8-1
GBL (global), 9-20
groupings

60x bus, 8-30
features, 1-27
MPX bus mode, 8-8

L3 cache interface, 8-40
MPX bus mode

60x not supported, 8-6
A0–A35, 8-11
AACK, 8-18
address arbitration, 8-10
address transfer, 8-11–8-14, 9-15
address transfer attribute, 8-14–8-18
APn, 8-13
ARTRY, 8-19
BG, 8-10
BR, 8-10
CI, 8-18, 9-20
CI (cache inhibit), 9-20
D0–D63, 8-25
data bus arbitration, 8-23–8-25, 9-30
data transfer, 8-25–8-27
data transfer termination, 8-27
DBG, 8-23
DPn, 8-26
DRDY, 8-24
functional groupings, 8-8
GBL (global), 8-17
GBL (global), 9-20
HIT, 8-22, 9-29
multiplexed with 60x bus mode, 8-7
newly added in MPC7451, 8-6
overview, 8-5
SHDn, 8-20
state at hard reset, 8-4
TA, 8-27
TBST, 8-16
TEA, 8-28, 9-41
transfer encoding, 9-18
TS, 8-15
TSIZn, 8-16, 9-19
TTn, 8-15, 9-17
WT (write-through), 8-17, 9-20

non-protocol specific
BMODE0, 9-45
BMODEn, 8-50, 9-16
BVSEL, 8-49
CKSTP_IN/CKSTP_OUT, 8-47, 9-55
CLK_OUT, 8-55
clock control, 8-53
EXT_QUAL, 8-54
HRESET, 8-46, 9-54
INT, 8-45, 9-55
interrupts/reset, 8-45
JTAG interface, 8-55, 9-56
L3 cache clock/control, 8-42
L3_ECHO_CLKn, 8-43
L3ADDRn, 8-40
L3CLK, 8-42

INDEX

MOTOROLA Index Index-15

L3DATAn, 8-41
L3DP, 8-41
MCP, 8-45
overview, 8-40
PLL_CFGn, 8-54
PMON_IN, 8-53
PMON_OUT, 8-53
power and ground, 8-58
processor status/control, 8-47
QACK, 8-48, 9-55
QREQ, 8-48, 9-55
SMI, 4-33
SMI, 8-45
SRESET, 8-46, 9-54
SYSCLK, 8-53
TBEN, 8-48
TCK (JTAG test clock), 8-56
TDI (JTAG test data input), 8-56
TDO (JTAG test data output), 8-56
TMS (JTAG test mode select), 8-56
TRST (JTAG test reset), 8-56
WT (write-through), 9-20

output signal states at power-on reset, 8-5
summary, 8-2

Simplified mnemonics, 2-101
Single-beat transfer

reads with data delays, timing, 9-51
reads, timing, 9-49
termination, 9-40
writes, timing, 9-50

SMI (system management interrupt) signal, 4-33, 8-45
Snarfing, MPX bus mode, 9-39
Snooping, 3-96, 9-2, 9-15
Software table search

exception handlers code example, 5-79
operation, 5-67
operation example, 5-72

Special, 5-72
Split-bus transaction, 9-42
SPR encodings

MPC7451-defined, 2-98
supervisor-level (PowerPC), 2-96
user-level, 2-88

SRAM
late-write, 3-74
MSUG2 DDR, 3-75

SRESET (soft reset) signal, 8-46, 9-54
SRn (segment registers)

manipulation instructions, A-54
SRRn (status save/restore registers)

key bit derivation, 5-69
processing, 2-14, 4-9

SRU (system register unit) execution latencies, 6-45
Stage, definition, 6-3
Stall, definition, 6-4

Static branch prediction, 6-14, 6-33
Static versus dynamic prediction, 6-63
Store gathering/merging, 3-8
stwcx., 4-15
Superscalar, definition, 6-4
Switching process, 4-15
Symbols, timing diagram, 9-8
sync, 4-15
Synchronization

context/execution synchronization, 2-65
control registers requirements, 2-66
execution of rfi, 4-14
memory synchronization

instructions, 2-89, 2-90, A-52
SYSCLK (system clock) signal, 8-53
System

call exception, 4-27
interface

accesses overview, 1-25
general, 1-23
operation, 1-26

linkage instructions, 2-86, 2-95
management interrupt, 4-33
reset exception, 4-17

System bus interface
60x bus mode

address bus arbitration
general, 9-43

address bus arbitration qualified bus grant, 9-43
address tenure, 9-43
address transfer, 9-44

driven mode, 9-45
parity, 9-45

bus snooping, 3-3
data bus tenure termination, 9-48
data bus transfers, 9-48
data tenure, 9-47–9-48
features, 9-2
overview, 9-42
pipelining, 9-42
split-bus transactions, 9-42
timing examples, 9-49

bus transactions and caches, 3-90
cache operation, 3-90
caches and bus snooping, 3-98, 3-100
checkstop operation, 9-54
direct-store accesses, 9-8
eciwx/ecowx alignment, 9-23
features, 9-1
general, 9-1–9-56
memory accesses, MPX bus mode, 9-7
MPX bus mode

address
driven, 9-16
parity, 9-16

INDEX

Index-16 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

pipeling, 9-10
address bus streaming, 9-16
address tenure, 9-9, 9-11–9-30
address transfer

attributes, 9-17
timing diagrams, 9-15

aligned data transfers, 9-21
data intervention, 9-29, 9-34
data tenure, 9-10, 9-30–9-42
data tenure termination, 9-39
data-only transaction protocol, 9-35
error termination, 9-41
features, 9-2
HIT, 9-29
memory accesses, 9-9
misaligned data transfers, 9-23
overview, 9-9
qualified data bus grant, 9-30
single-beat transfer termination, 9-40
snoop copyback, 9-27
tenure reordering, 9-33
transfer type

encodings, 9-18
signals, 9-17

TSIZn, 9-19
window of opportunity, 9-27

MSSCR0, 9-7
MSSSR0, 9-8
reset signal interactions, 9-54

System linkage instructions, A-53

T
TA (transfer acknowledge) signal, 8-27, 8-39
Table, 5-3
Table search

flow (primary and secondary), 5-64
operations

example, 5-72
hashing functions, 5-54
SDR1 register, 5-51
software, 5-67, 5-72

TBEN (time base enable) signal, 2-90, 8-48
TBST (transfer burst) signal, 8-16, 8-34
TCK (JTAG test clock) signal, 8-56
TCn (transfer code) signal, 8-7
TDI (JTAG test data input) signal, 8-56
TDO (JTAG test data output) signal, 8-56
TEA (transfer error acknowledge)

signal, 8-28, 8-40, 9-41
TEA, timing, 9-53
Thermal management

overview, 1-31
Throughput, definition, 6-4
Timing diagrams

address transfer signals, 9-15
interface

burst transfers with data delays, 9-53
L3 cache SRAM timing, 3-84
single-beat reads, 9-49
single-beat reads with data delays, 9-51
single-beat writes, 9-50
single-beat writes with data delays, 9-52
using TEA, 9-53

symbols, 9-8
Timing, instruction

BPU execution timing, 6-29
branch timing example, 6-35
cache hit, 6-19
cache miss, 6-22
execution unit, 6-29
instruction dispatch, 6-27
instruction flow, 6-12
instruction scheduling guidelines, 6-57
IU execution timing, 6-36
latency summary, 6-44
overview, 6-4
rename register operation, 6-28
stage definition, 6-3

TLB
description, 5-43
invalidation

description, 5-3, 5-45
tlbie instruction, 5-45, 5-66

LRU replacement, 5-45
management instructions, 2-101, 3-18, A-55
miss and table search operation, 5-44, 5-61
miss exceptions, 4-30
organization for ITLB and DTLB, 5-43

TLB miss exception
DTLB miss-on-load, 4-31
DTLB miss-on-store, 4-31
ITLB miss, 4-31

tlbld, 2-102
tlbli, 2-103
TLBMISS (table miss register), 2-45, 5-70
TMS (JTAG test mode select) signal, 8-56
Trace exception, 4-27
Transfer type encodings, MPX bus mode, 9-17
Transient caches, 7-5
Transient instructions, 3-1, 6-39, 7-5
Translation exception conditions, 5-20
Trap instructions, 2-86
TRST (JTAG test reset) signal, 8-56
TS (transfer start) signal, 8-15, 8-33
TSIZn (transfer size) signals, 8-16, 8-34, 9-19
TTn (transfer type) signals, 8-15, 8-33, 9-17

INDEX

MOTOROLA Index Index-17

U
UISA (user instruction set architecture)

overview, 1-32
registers, 2-11

UISA instructions, 2-70
UMMCRn (user monitor mode control

registers), 2-51–2-53, 11-8–11-10
UPMCn (user performance monitor counter)

registers, 2-55, 11-12
USDAR, D-7
User performance monitor counter registers, 11-12
User instruction set architecture (UISA)

description, xliv
USIAR (user sampled instruction address

register), 2-56, 11-13

V
VALU (vector arithmetic logical unit), 6-40
Vector complex integer unit (VIU2), 6-5
Vector floating-point unit (VFPU), 6-5
Vector instructions

integer
arithmetic, 2-105, A-55
compare, 2-107
logical, 2-108
rotate/shift, 2-108

load, 2-112, A-58
load alignment support, 2-112, A-58
memory control, 2-117
merge, 2-114
pack, 2-113, A-59
permutation and formatting, 2-113
permute, 2-115, A-60
select, 2-116, A-60
shift, 2-116, A-60
splat, 2-115, A-59
status and control register, 2-116
store, 2-112
unpack, 2-114

Vector issue queue (VIQ), 6-70
Vector touch queue (VTE), 6-78
Vector unit considerations, 6-76
VFPU (vector floating-point unit), 6-41
VIQ (vector issue queue), 6-70
Virtual environment architecture (VEA),

overview, 1-32
Virtual environment architecture (VEA), xliv
VIU1 (vector integer unit 1), 6-40
VIU2 (vector integer unit 2), 6-41
VPU (vector permute unit), 6-40
VRn (vector registers), 7-2
VRSAVE (vector save/restore register), 7-4
VSCR (vector status and control register), 7-3

VTE (vector touch queue), 6-78

W
When, 5-26, D-1
WIMG bits

default, 5-24
general, 3-15, 3-15
in BAT register, 5-29

Window of opportunity, 9-27
Write-back

definition, 6-4
general, 6-9

WT (write-through), 3-94, 8-17, 8-35, 9-20

X
XATS (extended transfer protocol) signal, 8-7

INDEX

Index-18 MPC7450 RISC Microprocessor Family User’s Manual MOTOROLA

Overview

Programming Model

Cache

Exceptions

Altivec Technology Implementation

Signals

System Interface

Power Management

Performance Monitor

Instruction Set Listings

Glossary of Terms and Abbreviations

Index

Memory Management Unit

Instruction Timing

Invalid Instructions

Special-Purpose Registers

1

2

3

4

5

6

7

8

9

10

11

A

GLO

IND

B

C

User’s Manual Revision History D

Overview

Programming Model

Cache

Exceptions

Altivec Technology Implementation

Signals

System Interface

Power Management

Performance Monitor

Instruction Set Listings

Glossary of Terms and Abbreviations

Index

1

2

3

4

5

6

7

8

9

10

11

A

GLO

IND

B

C

Memory Management Unit

Instruction Timing

Invalid Instructions

Special-Purpose Registers

D User’s Manual Revision History

	About This Book
	Audience
	Organization
	Suggested Reading
	General Information
	Related Documentation

	Conventions
	Acronyms and Abbreviations
	Terminology Conventions

	Chapter�1 Overview
	1.1 MPC7451 Microprocessor Overview
	1.1.1 MPC7441 Microprocessor Overview
	1.1.2 MPC7450 Microprocessor Overview
	1.1.3 MPC7455 Microprocessor Overview
	1.1.4 MPC7445 Microprocessor Overview
	1.1.5 MPC7447 Microprocessor Overview
	1.1.6 MPC7457 Microprocessor Overview
	1.1.7 MPC7447A Microprocessor Overview

	1.2 MPC7451 Microprocessor Features
	1.2.1 Overview of the MPC7451 Microprocessor Features
	1.2.2 Instruction Flow
	1.2.2.1 Instruction Queue and Dispatch Unit
	1.2.2.2 Branch Processing Unit (BPU)
	1.2.2.3 Completion Unit
	1.2.2.4 Independent Execution Units
	1.2.2.4.1 AltiVec Vector Permute Unit (VPU)
	1.2.2.4.2 AltiVec Vector Integer Unit 1 (VIU1)
	1.2.2.4.3 AltiVec Vector Integer Unit 2 (VIU2)
	1.2.2.4.4 AltiVec Vector Floating-point Unit (VFPU)
	1.2.2.4.5 Integer Units (IUs)
	1.2.2.4.6 Floating-Point Unit (FPU)
	1.2.2.4.7 Load/Store Unit (LSU)

	1.2.3 Memory Management Units (MMUs)
	1.2.4 On-Chip L1 Instruction and Data Caches
	1.2.5 L2 Cache Implementation
	1.2.6 L3 Cache Implementation
	1.2.7 System Interface
	1.2.8 MPC7451 Bus Operation Features
	1.2.8.1 MPX Bus Features
	1.2.8.2 60x Bus Features

	1.2.9 Overview of System Interface Accesses
	1.2.9.1 System Interface Operation
	1.2.9.2 Signal Groupings
	1.2.9.3 MPX Bus Mode Functional Groupings
	1.2.9.3.1 Clocking

	1.2.10 Power Management
	1.2.11 Thermal Management
	1.2.12 Performance Monitor

	1.3 MPC7451 Microprocessor: Architectural Implementation
	1.3.1 PowerPC Registers and Programming Model
	1.3.2 Instruction Set
	1.3.2.1 PowerPC Instruction Set
	1.3.2.2 AltiVec Instruction Set
	1.3.2.3 MPC7451 Microprocessor Instruction Set

	1.3.3 On-Chip Cache Implementation
	1.3.3.1 PowerPC Cache Model
	1.3.3.2 MPC7451 Microprocessor Cache Implementation

	1.3.4 Exception Model
	1.3.4.1 PowerPC Exception Model
	1.3.4.2 MPC7451 Microprocessor Exceptions

	1.3.5 Memory Management
	1.3.5.1 PowerPC Memory Management Model
	1.3.5.2 MPC7451 Microprocessor Memory Management Implementation

	1.3.6 Instruction Timing
	1.3.7 AltiVec Implementation

	1.4 Differences between MPC7451 and MPC7400/ ��MPC7410
	1.5 Differences Between MPC7441/MPC7451 and ��MPC7445/MPC7455
	1.6 Differences Between MPC7441/MPC7451 and MPC7447/MPC7457
	1.7 Differences Between MPC7447 and the MPC7447A
	1.8 User’s Manual Revision History

	Chapter�2 Programming Model
	2.1 MPC7451 Processor Register Set
	2.1.1 Register Set Overview
	2.1.2 MPC7451 Register Set
	2.1.3 PowerPC Supervisor-Level Registers (OEA)
	2.1.3.1 Processor Version Register (PVR)
	2.1.3.2 Processor Identification Register (PIR)
	2.1.3.3 Machine State Register (MSR)
	2.1.3.4 Machine status save/restore registers (SRR0, SRR1)
	2.1.3.5 SDR1 Register

	2.1.4 PowerPC User-Level Registers (VEA)
	2.1.4.1 Time Base Registers (TBL, TBU)

	2.1.5 MPC7451-Specific Register Descriptions
	2.1.5.1 Hardware Implementation-Dependent Register 0 (HID0)
	2.1.5.2 Hardware Implementation-Dependent Register 1 (HID1)
	2.1.5.2.1 MPC7447A-Specific HID1 PLL Configuration Field

	2.1.5.3 Memory Subsystem Control Register (MSSCR0)
	2.1.5.4 Memory Subsystem Status Register (MSSSR0)
	2.1.5.5 Instruction and Data Cache Registers
	2.1.5.5.1 L2 Cache Control Register (L2CR)
	2.1.5.5.2 L3 Cache Control Register (L3CR)
	2.1.5.5.3 L3 Cache Output Hold Control Register (L3OHCR)—MPC7457-Specific
	2.1.5.5.4 L3 Cache Input Timing Control (L3ITCR0)
	2.1.5.5.5 L3 Cache Input Timing Control (L3ITCR1)
	2.1.5.5.6 L3 Cache Input Timing Control (L3ITCR2)
	2.1.5.5.7 L3 Cache Input Timing Control (L3ITCR3)
	2.1.5.5.8 Instruction Cache and Interrupt Control Register (ICTRL)
	2.1.5.5.9 Load/Store Control Register (LDSTCR)
	2.1.5.5.10 L3 Private Memory Address Register (L3PM)

	2.1.5.6 Instruction Address Breakpoint Register (IABR)
	2.1.5.7 Memory Management Registers Used for Software Table Searching
	2.1.5.7.1 TLB Miss Register (TLBMISS)
	2.1.5.7.2 Page Table Entry Registers (PTEHI and PTELO)

	2.1.5.8 Thermal Management Register
	2.1.5.8.1 Instruction Cache Throttling Control Register (ICTC)

	2.1.5.9 Performance Monitor Registers
	2.1.5.9.1 Monitor Mode Control Register 0 (MMCR0)
	2.1.5.9.2 User Monitor Mode Control Register 0 (UMMCR0)
	2.1.5.9.3 Monitor Mode Control Register 1 (MMCR1)
	2.1.5.9.4 User Monitor Mode Control Register 1 (UMMCR1)
	2.1.5.9.5 Monitor Mode Control Register 2 (MMCR2)
	2.1.5.9.6 User Monitor Mode Control Register 2 (UMMCR2)
	2.1.5.9.7 Breakpoint Address Mask Register (BAMR)
	2.1.5.9.8 Performance Monitor Counter Registers (PMC1–PMC6)
	2.1.5.9.9 User Performance Monitor Counter Registers (UPMC1–UPMC6)
	2.1.5.9.10 Sampled Instruction Address Register (SIAR)
	2.1.5.9.11 User-Sampled Instruction Address Register (USIAR)
	2.1.5.9.12 Sampled Data Address Register (SDAR) and User-Sampled Data Address Register (USDAR)

	2.1.6 Reset Settings

	2.2 Operand Conventions
	2.2.1 Floating-Point Execution Models—UISA
	2.2.2 Data Organization in Memory and Data Transfers
	2.2.3 Alignment and Misaligned Accesses
	2.2.4 Floating-Point Operands

	2.3 Instruction Set Summary
	2.3.1 Classes of Instructions
	2.3.1.1 Definition of Boundedly Undefined
	2.3.1.2 Defined Instruction Class
	2.3.1.3 Illegal Instruction Class
	2.3.1.4 Reserved Instruction Class

	2.3.2 Addressing Modes
	2.3.2.1 Memory Addressing
	2.3.2.2 Memory Operands
	2.3.2.3 Effective Address Calculation
	2.3.2.4 Synchronization
	2.3.2.4.1 Context Synchronization
	2.3.2.4.2 Execution Synchronization
	2.3.2.4.3 Instruction-Related Exceptions

	2.3.3 Instruction Set Overview
	2.3.4 PowerPC UISA Instructions
	2.3.4.1 Integer Instructions
	2.3.4.1.1 Integer Arithmetic Instructions
	2.3.4.1.2 Integer Compare Instructions
	2.3.4.1.3 Integer Logical Instructions
	2.3.4.1.4 Integer Rotate and Shift Instructions

	2.3.4.2 Floating-Point Instructions
	2.3.4.2.1 Floating-Point Arithmetic Instructions
	2.3.4.2.2 Floating-Point Multiply-Add Instructions
	2.3.4.2.3 Floating-Point Rounding and Conversion Instructions
	2.3.4.2.4 Floating-Point Compare Instructions
	2.3.4.2.5 Floating-Point Status and Control Register Instructions
	2.3.4.2.6 Floating-Point Move Instructions

	2.3.4.3 Load and Store Instructions
	2.3.4.3.1 Self-Modifying Code
	2.3.4.3.2 Integer Load and Store Address Generation
	2.3.4.3.3 Register Indirect Integer Load Instructions
	2.3.4.3.4 Integer Store Instructions
	2.3.4.3.5 Integer Store Gathering
	2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions
	2.3.4.3.7 Integer Load and Store Multiple Instructions
	2.3.4.3.8 Integer Load and Store String Instructions
	2.3.4.3.9 Floating-Point Load and Store Address Generation
	2.3.4.3.10 Floating-Point Store Instructions

	2.3.4.4 Branch and Flow Control Instructions
	2.3.4.4.1 Branch Instruction Address Calculation
	2.3.4.4.2 Branch Instructions
	2.3.4.4.3 Condition Register Logical Instructions
	2.3.4.4.4 Trap Instructions

	2.3.4.5 System Linkage Instruction—UISA
	2.3.4.6 Processor Control Instructions—UISA
	2.3.4.6.1 Move to/from Condition Register Instructions
	2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)

	2.3.4.7 Memory Synchronization Instructions—UISA

	2.3.5 PowerPC VEA Instructions
	2.3.5.1 Processor Control Instructions—VEA
	2.3.5.2 Memory Synchronization Instructions—VEA
	2.3.5.3 Memory Control Instructions—VEA
	2.3.5.3.1 User-Level Cache Instructions—VEA

	2.3.5.4 Optional External Control Instructions

	2.3.6 PowerPC OEA Instructions
	2.3.6.1 System Linkage Instructions—OEA
	2.3.6.2 Processor Control Instructions—OEA
	2.3.6.3 Memory Control Instructions—OEA
	2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
	2.3.6.3.2 Translation Lookaside Buffer Management Instructions—OEA

	2.3.7 Recommended Simplified Mnemonics
	2.3.8 Implementation-Specific Instructions

	2.4 AltiVec Instructions
	2.5 AltiVec UISA Instructions
	2.5.1 Vector Integer Instructions
	2.5.1.1 Vector Integer Arithmetic Instructions
	2.5.1.2 Vector Integer Compare Instructions
	2.5.1.3 Vector Integer Logical Instructions
	2.5.1.4 Vector Integer Rotate and Shift Instructions

	2.5.2 Vector Floating-Point Instructions
	2.5.2.1 Vector Floating-Point Arithmetic Instructions
	2.5.2.2 Vector Floating-Point Multiply-Add Instructions
	2.5.2.3 Vector Floating-Point Rounding and Conversion Instructions
	2.5.2.4 Vector Floating-Point Compare Instructions
	2.5.2.5 Vector Floating-Point Estimate Instructions

	2.5.3 Vector Load and Store Instructions
	2.5.3.1 Vector Load Instructions
	2.5.3.2 Vector Load Instructions Supporting Alignment
	2.5.3.3 Vector Store Instructions

	2.5.4 Control Flow
	2.5.5 Vector Permutation and Formatting Instructions
	2.5.5.1 Vector Pack Instructions
	2.5.5.2 Vector Unpack Instructions
	2.5.5.3 Vector Merge Instructions
	2.5.5.4 Vector Splat Instructions
	2.5.5.5 Vector Permute Instructions
	2.5.5.6 Vector Select Instruction
	2.5.5.7 Vector Shift Instructions
	2.5.5.8 Vector Status and Control Register Instructions

	2.6 AltiVec VEA Instructions
	2.6.1 AltiVec Vector Memory Control Instructions—VEA
	2.6.2 AltiVec Instructions with Specific Implementations for the MPC7451

	Chapter�3 L1, L2, and L3 Cache Operation
	3.1 Overview
	3.1.1 Block Diagram
	3.1.2 Load/Store Unit (LSU)
	3.1.2.1 Cacheable Loads and LSU
	3.1.2.2 LSU Store Queues
	3.1.2.3 Store Gathering/Merging
	3.1.2.4 LSU Load Miss, Castout, and Push Queues

	3.1.3 Memory Subsystem Blocks
	3.1.3.1 L1 Service Queues
	3.1.3.2 L2 Cache Block
	3.1.3.3 System Interface Block

	3.1.4 L3 Cache Controller Block

	3.2 L1 Cache Organizations
	3.2.1 L1 Data Cache Organization
	3.2.2 L1 Instruction Cache Organization

	3.3 Memory and Cache Coherency
	3.3.1 Memory/Cache Access Attributes (WIMG Bits)
	3.3.1.1 Coherency Paradoxes and WIMG
	3.3.1.2 Out-of-Order Accesses to Guarded Memory

	3.3.2 Coherency Support
	3.3.2.1 Coherency Between L1, L2, and L3 Caches
	3.3.2.1.1 Cache Closer to Core with Modified Data
	3.3.2.1.2 Transient Data and Different Coherency States

	3.3.2.2 Snoop Response
	3.3.2.3 Intervention
	3.3.2.4 Simplified Transaction Types
	3.3.2.5 MESI State Transitions
	3.3.2.5.1 MESI Protocol in MPX Bus Mode with Data Intervention Enabled
	3.3.2.5.2 MESI Protocol in 60x Bus Mode and MPX Bus Mode (with Intervention Disabled)

	3.3.2.6 Reservation Snooping

	3.3.3 Load/Store Operations and Architecture Implications
	3.3.3.1 Performed Loads and Store
	3.3.3.2 Sequential Consistency of Memory Accesses
	3.3.3.3 Load Ordering with Respect to Other Loads
	3.3.3.4 Store Ordering with Respect to Other Stores
	3.3.3.5 Enforcing Store Ordering with Respect to Loads
	3.3.3.6 Atomic Memory References

	3.4 L1 Cache Control
	3.4.1 Cache Control Parameters in HID0
	3.4.1.1 Enabling and Disabling the Data Cache
	3.4.1.2 Data Cache Locking with DLOCK
	3.4.1.3 Enabling and Disabling the Instruction Cache
	3.4.1.4 Instruction Cache Locking with ILOCK
	3.4.1.5 L1 Instruction and Data Cache Flash Invalidation

	3.4.2 Data Cache Way Locking Setting in LDSTCR
	3.4.3 Cache Control Parameters in ICTRL
	3.4.3.1 Instruction Cache Way Locking
	3.4.3.2 Enabling Instruction Cache Parity Checking
	3.4.3.3 Instruction and Data Cache Parity Error Reporting

	3.4.4 Cache Control Instructions
	3.4.4.1 Data Cache Block Touch (dcbt)
	3.4.4.2 Data Cache Block Touch for Store (dcbtst)
	3.4.4.3 Data Cache Block Zero (dcbz)
	3.4.4.4 Data Cache Block Store (dcbst)
	3.4.4.5 Data Cache Block Flush (dcbf)
	3.4.4.6 Data Cache Block Allocate (dcba)
	3.4.4.7 Data Cache Block Invalidate (dcbi)
	3.4.4.8 Instruction Cache Block Invalidate (icbi)

	3.5 L1 Cache Operation
	3.5.1 Cache Miss and Reload Operations
	3.5.1.1 Data Cache Fills
	3.5.1.2 Instruction Cache Fills

	3.5.2 Cache Allocation on Misses
	3.5.2.1 Instruction Access Allocation in L1 Cache
	3.5.2.2 Data Access Allocation in L1Cache

	3.5.3 Store Miss Merging
	3.5.4 Store Hit to a Data Cache Block Marked Shared
	3.5.5 Data Cache Block Push Operation
	3.5.6 L1 Cache Block Replacement Selection
	3.5.6.1 PLRU Replacement
	3.5.6.2 PLRU Bit Updates
	3.5.6.3 AltiVec LRU Instruction Support
	3.5.6.4 Cache Locking and PLRU

	3.5.7 L1 Cache Invalidation and Flushing
	3.5.8 L1 Cache Operation Summary

	3.6 L2 Cache
	3.6.1 L2 Cache Organization
	3.6.2 L2 Cache and Memory Coherency
	3.6.3 L2 Cache Control
	3.6.3.1 L2CR Parameters
	3.6.3.1.1 Enabling the L2 Cache and L2 Initialization
	3.6.3.1.2 Enabling L2 Parity Checking
	3.6.3.1.3 L2 Instruction-Only and Data-Only Modes
	3.6.3.1.4 L2 Cache Invalidation
	3.6.3.1.5 Flushing of L1, L2, and L3 Caches
	3.6.3.1.6 L2 Replacement Algorithm Selection

	3.6.3.2 L2 Prefetch Engines and MSSCR0
	3.6.3.3 L2 Parity Error Reporting and MSSSR0
	3.6.3.4 Instruction Interactions with L2

	3.6.4 L2 Cache Operation
	3.6.4.1 L2 Cache Miss and Reload Operations
	3.6.4.2 L2 Cache Allocation
	3.6.4.3 Store Data Merging and L2
	3.6.4.4 L2 Cache Line Replacement Algorithms
	3.6.4.5 L2 and L3 Operations Caused by L1 Requests

	3.7 L3 Cache Interface
	3.7.1 L3 Cache Interface Overview
	3.7.2 L3 Cache Organization
	3.7.3 L3 Cache Control Register (L3CR)
	3.7.3.1 Enabling the L3 Cache and L3 Initialization
	3.7.3.2 L3 Cache Size
	3.7.3.3 L3 Cache SRAM Types
	3.7.3.4 L3 Cache Data-Only and Instruction-Only Modes
	3.7.3.4.1 L3 Instruction-Only and Data-Only Operation
	3.7.3.4.2 L3 Cache Locking Using L3CR[L3DO] and L3CR[L3IO]

	3.7.3.5 L3 Cache Parity Checking and Generation
	3.7.3.6 L3 Cache Invalidation
	3.7.3.7 L3 Cache Flushing
	3.7.3.8 L3 Cache Clock and Timing Controls
	3.7.3.9 L3 Sample Point Configuration
	3.7.3.9.1 Pipeline Burst and Late-Write SRAM
	3.7.3.9.2 MSUG2 DDR SRAM

	3.7.4 L3 Private Memory Address Register (L3PM)
	3.7.5 L3 Parity Error Reporting and MSSSR0
	3.7.6 Instruction Interactions with L3
	3.7.7 L3 Cache Operation
	3.7.7.1 L3 Cache Miss and Reload Operations
	3.7.7.2 L3 Cache Allocation
	3.7.7.3 CI and WT Accesses and L3
	3.7.7.4 L3 Cache Replacement Selection

	3.7.8 L3 Private Memory Operation
	3.7.8.1 Enabling and Initializing L3 Private Memory
	3.7.8.1.1 Initializing the L3 Private Memory when Parity is Enabled

	3.7.8.2 CI and WT Accesses Not Supported for Private Memory
	3.7.8.3 Castouts and Private Memory
	3.7.8.4 Snoop Hits and Private Memory
	3.7.8.5 Private Memory and Instruction Interactions

	3.7.9 L3 Cache SRAM Timing Examples
	3.7.9.1 MSUG2 DDR Interface Timing
	3.7.9.2 Late-Write SRAM Timing
	3.7.9.3 Pipelined Burst SRAM

	3.8 System Bus Interface
	3.8.1 MPC7451 Caches and System Bus Transactions
	3.8.2 Bus Operations Caused by Cache Control Instructions
	3.8.3 Transfer Attributes
	3.8.4 Snooping of External Transactions
	3.8.4.1 Types of Transactions Snooped by MPC7451
	3.8.4.2 L1 Cache State Transitions and Bus Operations Due to Snoops
	3.8.4.3 L2 and L3 Operations Caused by External Snoops

	Chapter�4 Exceptions
	4.1 MPC7451 Microprocessor Exceptions
	4.2 MPC7451 Exception Recognition and Priorities
	4.3 Exception Processing
	4.3.1 Enabling and Disabling Exceptions
	4.3.2 Steps for Exception Processing
	4.3.3 Setting MSR[RI]
	4.3.4 Returning from an Exception Handler

	4.4 Process Switching
	4.5 Data Stream Prefetching and Exceptions
	4.6 Exception Definitions
	4.6.1 System Reset Exception (0x00100)
	4.6.2 Machine Check Exception (0x00200)
	4.6.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
	4.6.2.2 Checkstop State (MSR[ME] = 0)

	4.6.3 DSI Exception (0x00300)
	4.6.3.1 DSI Exception—Page Fault
	4.6.3.2 DSI Exception—Data Address Breakpoint Facility

	4.6.4 ISI Exception (0x00400)
	4.6.5 External Interrupt Exception (0x00500)
	4.6.6 Alignment Exception (0x00600)
	4.6.7 Program Exception (0x00700)
	4.6.8 Floating-Point Unavailable Exception (0x00800)
	4.6.9 Decrementer Exception (0x00900)
	4.6.10 System Call Exception (0x00C00)
	4.6.11 Trace Exception (0x00D00)
	4.6.12 Floating-Point Assist Exception (0x00E00)
	4.6.13 Performance Monitor Exception (0x00F00)
	4.6.14 AltiVec Unavailable Exception (0x00F20)
	4.6.15 TLB Miss Exceptions
	4.6.15.1 Instruction Table Miss Exception—ITLB Miss (0x01000)
	4.6.15.2 Data Table Miss-On-Load Exception—DTLB Miss-On-Load ��(0x01100)
	4.6.15.3 Data Table Miss-On-Store Exception—DTLB Miss-On-Store ��(0x01200)

	4.6.16 Instruction Address Breakpoint Exception (0x01300)
	4.6.17 System Management Interrupt Exception (0x01400)
	4.6.18 AltiVec Assist Exception (0x01600)

	Chapter�5 Memory Management
	5.1 MMU Overview
	5.1.1 Memory Addressing
	5.1.2 MMU Organization
	5.1.3 Address Translation Mechanisms
	5.1.4 Memory Protection Facilities
	5.1.5 Page History Information
	5.1.6 General Flow of MMU Address Translation
	5.1.6.1 Real Addressing Mode and Block Address Translation Selection
	5.1.6.2 Page Address Translation Selection

	5.1.7 MMU Exceptions Summary
	5.1.8 MMU Instructions and Register Summary

	5.2 Real Addressing Mode
	5.2.1 Real Addressing Mode—32-Bit Addressing
	5.2.2 Real Addressing Mode—Extended Addressing

	5.3 Block Address Translation
	5.3.1 BAT Register Implementation of BAT Array—Extended Addressing
	5.3.2 Block Physical Address Generation—Extended Addressing
	5.3.2.1 Block Physical Address Generation with an Extended BAT Block Size

	5.3.3 Block Address Translation Summary—Extended Addressing

	5.4 Memory Segment Model
	5.4.1 Page Address Translation Overview
	5.4.1.1 Segment Descriptor Definitions
	5.4.1.2 Page Table Entry (PTE) Definition—Extended Addressing

	5.4.2 Page History Recording
	5.4.2.1 Referenced Bit
	5.4.2.2 Changed Bit
	5.4.2.3 Scenarios for Referenced and Changed Bit Recording

	5.4.3 Page Memory Protection
	5.4.4 TLB Description
	5.4.4.1 TLB Organization and Operation
	5.4.4.2 TLB Invalidation
	5.4.4.2.1 tlbie Instruction
	5.4.4.2.2 tlbsync Instruction
	5.4.4.2.3 Synchronization Requirements for tlbie and tlbsync

	5.4.5 Page Address Translation Summary—Extended Addressing

	5.5 Hashed Page Tables—Extended Addressing
	5.5.1 SDR1 Register Definition—Extended Addressing
	5.5.1.1 Page Table Size
	5.5.1.2 Page Table Hashing Functions
	5.5.1.3 Page Table Address Generation
	5.5.1.4 Page Table Structure Example—Extended Addressing
	5.5.1.5 PTEG Address Mapping Examples—Extended Addressing

	5.5.2 Page Table Search Operations—Implementation
	5.5.2.1 Conditions for a Page Table Search Operation
	5.5.2.2 AltiVec Line Fetch Skipping
	5.5.2.3 Page Table Search Operation—Conceptual Flow

	5.5.3 Page Table Updates
	5.5.4 Segment Register Updates
	5.5.5 Implementation-Specific Software Table Search �Operation
	5.5.5.1 Resources for Table Search Operations
	5.5.5.1.1 TLB Miss Register (TLBMISS)
	5.5.5.1.2 Page Table Entry Registers (PTEHI and PTELO)
	5.5.5.1.3 Special Purpose Registers (4–7)

	5.5.5.2 Example Software Table Search Operation
	5.5.5.2.1 Flow for Example Exception Handlers
	5.5.5.2.2 Code for Example Exception Handlers

	Chapter�6 Instruction Timing
	6.1 Terminology and Conventions
	6.2 Instruction Timing Overview
	6.3 Timing Considerations
	6.3.1 General Instruction Flow
	6.3.2 Instruction Fetch Timing
	6.3.2.1 Cache Arbitration
	6.3.2.2 Cache Hit
	6.3.2.3 Cache Miss
	6.3.2.4 L2 Cache Access Timing Considerations
	6.3.2.4.1 Instruction Cache and L2 Cache Hit
	6.3.2.4.2 Instruction Cache Miss/L3 Cache Hit

	6.3.3 Dispatch, Issue, and Completion Considerations
	6.3.3.1 Rename Register Operation
	6.3.3.2 Instruction Serialization

	6.4 Execution Unit Timings
	6.4.1 Branch Processing Unit Execution Timing
	6.4.1.1 Branch Folding and Removal of Fall-Through Branch Instructions
	6.4.1.2 Branch Instructions and Completion
	6.4.1.3 Branch Prediction and Resolution
	6.4.1.3.1 Static Branch Prediction
	6.4.1.3.2 Predicted Branch Timing Examples

	6.4.2 Integer Unit Execution Timing
	6.4.3 FPU Execution Timing
	6.4.3.1 Effect of Floating-Point Exceptions on Performance

	6.4.4 Load/Store Unit Execution Timing
	6.4.4.1 Effect of Operand Placement on Performance
	6.4.4.2 Store Gathering
	6.4.4.3 AltiVec Instructions Executed by the LSU
	6.4.4.3.1 LRU Instructions
	6.4.4.3.2 Transient Instructions

	6.4.5 AltiVec Instructions
	6.4.5.1 AltiVec Unit Execution Timing
	6.4.5.1.1 AltiVec Permute Unit (VPU) Execution Timing
	6.4.5.1.2 Vector Simple Integer Unit (VIU1) Execution Timing
	6.4.5.1.3 Vector Complex Integer Unit (VIU2) Execution Timing
	6.4.5.1.4 Vector Floating-Point Unit (VFPU) Execution Timing

	6.5 Memory Performance Considerations
	6.5.1 Caching and Memory Coherency

	6.6 Instruction Latency Summary
	6.7 Instruction Scheduling Guidelines
	6.7.1 Fetch/Branch Considerations
	6.7.1.1 Fetching Examples
	6.7.1.1.1 Fetch Alignment Example
	6.7.1.1.2 Branch-Taken Bubble Example

	6.7.1.2 Branch Conditionals
	6.7.1.2.1 Branch Mispredict Example
	6.7.1.2.2 Branch Loop Example

	6.7.1.3 Static versus Dynamic Prediction
	6.7.1.4 Using the Link Stack for Branch Indirect
	6.7.1.4.1 Link Stack Example
	6.7.1.4.2 Position-Independent Code Example

	6.7.1.5 Branch Folding

	6.7.2 Dispatch Unit Resource Requirements
	6.7.2.1 Dispatch Groupings
	6.7.2.1.1 Dispatch Stall due to Rename Availability

	6.7.2.2 Dispatching Load/Store Strings and Multiples
	6.7.2.2.1 Example of Load/Store Multiple Micro Operation Generation

	6.7.3 Issue Queue Resource Requirements
	6.7.3.1 GPR Issue Queue (GIQ)
	6.7.3.2 Vector Issue Queue (VIQ)
	6.7.3.3 Floating-Point Issue Queue (FIQ)

	6.7.4 Completion Unit Resource Requirements
	6.7.4.1 Completion Groupings

	6.7.5 Serialization Effects
	6.7.6 Execution Unit Considerations
	6.7.6.1 IU1 Considerations
	6.7.6.2 IU2 Considerations
	6.7.6.3 FPU Considerations
	6.7.6.4 Vector Unit Considerations
	6.7.6.5 Load/Store Unit (LSU)
	6.7.6.5.1 Load Hit Pipeline
	6.7.6.5.2 Store Hit Pipeline
	6.7.6.5.3 Load/Store Interaction
	6.7.6.5.4 Misalignment Effects
	6.7.6.5.5 Load Miss Pipeline
	6.7.6.5.6 Store Miss Pipeline
	6.7.6.5.7 DST Instructions and the Vector Touch Engine (VTE)

	6.7.7 Memory Subsystem Considerations
	6.7.7.1 L2 Cache Effects
	6.7.7.2 L3 Cache Effects
	6.7.7.3 Hardware Prefetching

	Chapter�7 AltiVec Technology Implementation
	7.1 AltiVec Technology and the Programming Model
	7.1.1 Register Set
	7.1.1.1 Changes to the Condition Register
	7.1.1.2 Addition to the Machine State Register
	7.1.1.3 Vector Registers (VRs)
	7.1.1.4 Vector Status and Control Register (VSCR)
	7.1.1.5 Vector Save/Restore Register (VRSAVE)

	7.1.2 AltiVec Instruction Set
	7.1.2.1 LRU Instructions
	7.1.2.2 Transient Instructions and Caches
	7.1.2.3 Data Stream Touch Instructions
	7.1.2.3.1 Stream Engine Tags
	7.1.2.3.2 Speculative Execution and Pipeline Stalls �for Data Stream Instructions
	7.1.2.3.3 Static/Transient Data Stream Touch Instructions
	7.1.2.3.4 Relationship with the sync/tblsync Instructions
	7.1.2.3.5 Data Stream Termination
	7.1.2.3.6 Line Fetch Skipping
	7.1.2.3.7 Context Awareness and Stream Pausing
	7.1.2.3.8 Differences Between dst/dstt and dstst/dststt Instructions

	7.1.2.4 dss and dssall Instructions
	7.1.2.5 Java Mode, NaNs, Denormalized Numbers, and Zeros

	7.1.3 Differences between the MPC7400/MPC7410 and the �MPC7451
	7.1.3.1 Java and Non-Java Mode
	7.1.3.2 AltiVec Instructions
	7.1.3.3 AltiVec Instruction Sequencing

	7.2 AltiVec Technology and the Cache Model
	7.3 AltiVec and the Exception Model
	7.4 AltiVec and the Memory Management Model
	7.5 AltiVec Technology and Instruction Timing

	Chapter�8 Signal Descriptions
	8.1 Signal Groupings
	8.1.1 Signal Summary
	8.1.2 Output Signal States During Reset

	8.2 MPX Bus Signal Configuration
	8.2.1 MPX/60x Bus Protocol Signal Compatibility
	8.2.2 MPX Bus Mode Signals
	8.2.3 60x Bus Signals Not in the MPC7451
	8.2.3.1 Address Bus Busy and Data Bus Busy (ABB and DBB)
	8.2.3.2 Data Bus Write Only (DBWO)
	8.2.3.3 Data Retry (DRTRY)
	8.2.3.4 Extended Transfer Protocol (XATS)
	8.2.3.5 Transfer Code (TC[0:1])
	8.2.3.6 Cache Set Element (CSE[0:1])
	8.2.3.7 Address Parity Error and Data Parity Error (APE, DPE)

	8.2.4 MPX Bus Mode Functional Groupings
	8.2.5 Address Bus Arbitration Signals
	8.2.5.1 Bus Request (BR)—Output
	8.2.5.2 Bus Grant (BG)—Input

	8.2.6 Address Bus and Parity in MPX Bus Mode
	8.2.6.1 Address Bus (A[0:35])
	8.2.6.1.1 Address Bus (A[0:35])—Output
	8.2.6.1.2 Address Bus (A[0:35])—Input

	8.2.6.2 Address Bus Parity (AP[0:4])
	8.2.6.2.1 Address Bus Parity (AP[0:4])—Output
	8.2.6.2.2 Address Bus Parity (AP[0:4])—Input

	8.2.7 Address Transfer Attribute Signals in MPX Bus Mode
	8.2.7.1 Transfer Start (TS)
	8.2.7.1.1 Transfer Start (TS)—Output
	8.2.7.1.2 Transfer Start (TS)—Input

	8.2.7.2 Transfer Type (TT[0:4])
	8.2.7.2.1 Transfer Type (TT[0:4])—Output
	8.2.7.2.2 Transfer Type (TT[0:4])—Input

	8.2.7.3 Transfer Burst (TBST)—Output
	8.2.7.4 Transfer Size (TSIZ[0:2])—Output
	8.2.7.5 Global (GBL)
	8.2.7.5.1 Global (GBL)—Output
	8.2.7.5.2 Global (GBL)—Input

	8.2.7.6 Write-Through (WT)—Output
	8.2.7.7 Cache Inhibit (CI)—Output

	8.2.8 MPX Address Transfer Termination Signals
	8.2.8.1 Address �Acknowledge (AACK)—Input
	8.2.8.2 Address Retry (ARTRY)
	8.2.8.2.1 Address Retry (ARTRY)—Output
	8.2.8.2.2 Address Retry (ARTRY)—Input

	8.2.8.3 Shared (SHD0, SHD1) Signals
	8.2.8.3.1 Shared (SHD0, SHD1)—Output
	8.2.8.3.2 Shared (SHD0, SHD1)—Input

	8.2.8.4 Snoop Hit (HIT)—Output

	8.2.9 Data Bus Arbitration Signals
	8.2.9.1 Data Bus Grant (DBG)—Input
	8.2.9.2 Data Transaction Index (DTI[0:3])—Input
	8.2.9.3 Data Ready (DRDY)—Output

	8.2.10 Data Transfer Signals
	8.2.10.1 Data Bus (D[0:63])
	8.2.10.1.1 Data Bus (D[0:63])—Output
	8.2.10.1.2 Data Bus (D[0:63])—Input

	8.2.10.2 Data Bus Parity (DP[0:7])
	8.2.10.2.1 Data Bus Parity (DP[0:7])—Output
	8.2.10.2.2 Data Bus Parity (DP[0:7])—Input

	8.2.11 Data Transfer Termination Signals
	8.2.11.1 Transfer �Acknowledge (TA)—Input
	8.2.11.2 Transfer Error Acknowledge (TEA)—Input

	8.3 60x Bus Signal Configuration
	8.3.1 60x Bus Mode Functional Groupings
	8.3.2 60x Address Bus Arbitration Signals
	8.3.2.1 Bus Request (BR)—Output
	8.3.2.2 Bus Grant (BG)—Input

	8.3.3 Address Bus and Parity in 60x Bus Mode
	8.3.3.1 Address Bus (A[0:35])—Output
	8.3.3.2 Address Bus (A[0:35])—Input
	8.3.3.3 Address Parity (AP[0:4])—Output
	8.3.3.4 Address Parity (AP[0:4])—Input

	8.3.4 Address Transfer Attribute Signals in 60x Bus Mode
	8.3.4.1 Transfer Start (TS)
	8.3.4.1.1 Transfer Start (TS)—Output
	8.3.4.1.2 Transfer Start (TS)—Input

	8.3.4.2 Transfer Type (TT[0:4])
	8.3.4.2.1 Transfer Type (TT[0:4])—Output
	8.3.4.2.2 Transfer Type (TT[0:4])—Input

	8.3.4.3 Transfer Burst (TBST)—Output
	8.3.4.4 Transfer Size (TSIZ[0:2])—Output
	8.3.4.5 Global (GBL)
	8.3.4.5.1 Global (GBL)—Output
	8.3.4.5.2 Global (GBL)—Input

	8.3.4.6 Write-Through (WT)—Output
	8.3.4.7 Cache Inhibit (CI)—Output

	8.3.5 60x Address Transfer Termination Signals
	8.3.5.1 Address Acknowledge (AACK)—Input
	8.3.5.2 Address Retry (ARTRY)
	8.3.5.2.1 Address Retry (ARTRY)—Output
	8.3.5.2.2 Address Retry (ARTRY)—Input

	8.3.5.3 Shared (SHD0)
	8.3.5.3.1 Shared (SHD0)—Output
	8.3.5.3.2 Shared (SHD0)—Input

	8.3.6 Data Bus Arbitration Signals
	8.3.6.1 Data Bus Grant (DBG)—Input
	8.3.6.2 Data Transaction Index (DTI[0:3])—Input

	8.3.7 Data Transfer Signals in 60x Bus Mode
	8.3.7.1 Data Bus (D[0:63])
	8.3.7.1.1 Data Bus (D[0:63])—Output
	8.3.7.1.2 Data Bus (D[0:63])—Input

	8.3.7.2 Data Bus Parity (DP[0:7])
	8.3.7.2.1 Data Bus Parity (DP[0:7])—Output
	8.3.7.2.2 Data Bus Parity (DP[0:7])—Input

	8.3.8 Data Transfer Termination Signals in 60x Bus Mode
	8.3.8.1 Transfer �Acknowledge (TA)—Input
	8.3.8.2 Transfer Error Acknowledge (TEA)—Input

	8.4 Non-Protocol Signal Descriptions
	8.4.1 L3 Cache Address/Data
	8.4.1.1 L3 Address (L3_ADDR[17:0])—Output
	8.4.1.2 L3 Data (L3_DATA[0:63])
	8.4.1.2.1 L3 Data (L3_DATA[0:63])—Output
	8.4.1.2.2 L3 Data (L3_DATA[0:63])—Input

	8.4.1.3 L3 Data Parity (L3_DP[0:7])
	8.4.1.3.1 L3 Data Parity (L3_DP[0:7])—Output
	8.4.1.3.2 L3 Data Parity (L3_DP[0:7])—Input

	8.4.2 L3 Cache Clock/Control
	8.4.2.1 L3 Clock (L3_CLK[0:1])—Output
	8.4.2.2 L3 Clock Synchronization (L3_ECHO_CLK[0:3])
	8.4.2.2.1 L3 Clock Synchronization (L3_ECHO_CLK[1,3])—Output
	8.4.2.2.2 L3 Clock Synchronization (L3_ECHO_CLK[0:3])—Input

	8.4.2.3 L3 Control (L3_CNTRL[0:1])
	8.4.2.3.1 L3 Control (L3_CNTL0)—Output
	8.4.2.3.2 L3 Control (L3_CNTL1)—Output

	8.4.2.4 L3 Voltage Select (L3_VSEL)—Input

	8.4.3 Interrupts/Reset Signals
	8.4.3.1 Interrupt (INT)—Input
	8.4.3.2 System Management Interrupt (SMI)—Input
	8.4.3.3 Machine Check (MCP)—Input
	8.4.3.4 Reset Signals
	8.4.3.4.1 Soft Reset (SRESET)—Input
	8.4.3.4.2 Hard Reset (HRESET)—Input

	8.4.3.5 Checkstop Input (CKSTP_IN)—Input
	8.4.3.6 Checkstop Output (CKSTP_OUT)—Output

	8.4.4 Processor Status/Control Signals
	8.4.4.1 Timebase Enable (TBEN)—Input
	8.4.4.2 Quiescent Request (QREQ)—Output
	8.4.4.3 Quiescent Acknowledge (QACK)—Input
	8.4.4.4 Bus Voltage Select (BVSEL)—Input
	8.4.4.5 Bus Mode Select (BMODE[0:1])
	8.4.4.5.1 Bus Selection Mode (BMODE0)—Input During HRESET
	8.4.4.5.2 Address Bus Driven Mode (BMODE0)—Input After HRESET
	8.4.4.5.3 Bus Selection Mode (BMODE1)—Input During HRESET
	8.4.4.5.4 Bus Selection Mode (BMODE1)—Input After HRESET

	8.4.4.6 Performance Monitor In (PMON_IN)—Input
	8.4.4.7 Performance Monitor Out (PMON_OUT)—Output

	8.4.5 Clock Control Signals
	8.4.5.1 System Clock (SYSCLK)—Input
	8.4.5.2 PLL Configuration (PLL_CFG[0:4])—Input
	8.4.5.3 Extension Qualifier (EXT_QUAL)—Input
	8.4.5.4 Clock Out (CLK_OUT)—Output

	8.4.6 IEEE 1149.1a-1993 (JTAG) Interface Description
	8.4.6.1 JTAG Test Clock (TCK)—Input
	8.4.6.2 JTAG Test Data Input (TDI)—Input
	8.4.6.3 JTAG Test Data Output (TDO)—Output
	8.4.6.4 JTAG Test Mode Select (TMS)—Input
	8.4.6.5 JTAG Test Reset (TRST)—Input

	8.4.7 Configuration Signals Sampled at Reset
	8.4.8 Power and Ground Signals

	Chapter�9 System Interface Operation
	9.1 MPC7451 System Interface Overview
	9.1.1 MPC7451 Bus Operation Features
	9.1.1.1 MPX Bus Features
	9.1.1.2 60x Bus Features

	9.1.2 Overview of System Interface Accesses
	9.1.3 Summary of L1 Instruction and Data Cache Operation
	9.1.4 L2 Cache Overview
	9.1.5 L3 Cache Overview
	9.1.6 Operation of the System Interface
	9.1.7 Memory Subsystem Control Register (MSSCR0)
	9.1.8 Memory Subsystem Status Register (MSSSR0)
	9.1.9 Direct-Store Accesses Not Supported
	9.1.10 Common Timing Diagram Symbols

	9.2 MPX Bus Protocol
	9.2.1 MPX Bus Pipelining

	9.3 MPX Bus Address Tenure
	9.3.1 MPX Bus Address Bus Arbitration
	9.3.1.1 Qualified Bus Grant in MPX Bus Mode
	9.3.1.2 MPX Address Bus Parking

	9.3.2 MPX Bus Address Transfer
	9.3.2.1 Address Bus Driven Mode
	9.3.2.2 Address Bus Streaming
	9.3.2.3 Address Bus Parity
	9.3.2.4 Address Transfer Attributes
	9.3.2.4.1 Transfer Type (TT[0:4]) Signals
	9.3.2.4.2 Transfer Size (TSIZ[0:2]) and Transfer Burst TBST Signals
	9.3.2.4.3 Write-Through (WT), Cache Inhibit (CI), and Global (GBL) Signals

	9.3.2.5 Burst Ordering During Data Transfers
	9.3.2.6 Effect of Alignment in Data Transfers
	9.3.2.6.1 Misalignment Example
	9.3.2.6.2 Alignment of External Control Instructions

	9.3.3 MPX Bus Address Tenure Termination
	9.3.3.1 Address Retry Window and Qualified ARTRY
	9.3.3.2 Snoop Copybacks and the Window-of-Opportunity
	9.3.3.3 Shared (SHD0, SHD1) Signals in MPX Bus Mode
	9.3.3.4 Hit (HIT) Signal and Data Intervention

	9.4 MPX Bus Data Tenure
	9.4.1 MPX Bus Data Bus Arbitration
	9.4.1.1 Qualified Data Bus Grant in MPX Bus Mode

	9.4.2 MPX Bus Data Transfer
	9.4.2.1 Data Bus Parity
	9.4.2.2 Earliest Transfer of Data
	9.4.2.2.1 Data Streaming in MPX Bus Mode

	9.4.2.3 Data Tenure Reordering
	9.4.2.4 MPX Bus Data Intervention
	9.4.2.4.1 Data-Only Transaction Protocol
	9.4.2.4.2 DRDY Timing
	9.4.2.4.3 Pipelining of Data-Only Transactions
	9.4.2.4.4 Retrying Data-Only Transactions
	9.4.2.4.5 Ordering of Data-Only Transactions
	9.4.2.4.6 Snarfing

	9.4.3 MPX Bus Data Tenure Termination
	9.4.3.1 Normal Single-Beat Transfer Termination
	9.4.3.2 Normal Burst Transfer Termination
	9.4.3.3 Data Transfer Termination Due to a Bus Error

	9.5 60x Bus Protocol
	9.5.1 60x Bus Pipelining

	9.6 60x Bus Address Tenure
	9.6.1 60x Bus Address Bus Arbitration
	9.6.1.1 Qualified Bus Grant in 60x Bus Mode
	9.6.1.2 60x Address Bus Parking

	9.6.2 60x Bus Address Transfer
	9.6.2.1 60x Address Bus Driven Mode
	9.6.2.2 60x Address Bus Parity
	9.6.2.3 60x Address Transfer Attributes
	9.6.2.3.1 60x Transfer Size (TSIZ[0:2]) and Transfer Burst (TBST) Signals

	9.6.2.4 Aligned and Misaligned Transfers

	9.6.3 60x Bus Address Transfer Termination
	9.6.3.1 Snoop Response and SHD Signal

	9.7 60x Bus Data Tenure
	9.7.1 60x Bus Data Bus Arbitration
	9.7.1.1 Qualified Data Bus Grant in 60x Bus Mode

	9.7.2 60x Bus Data Transfers
	9.7.3 60x Bus Data Tenure Termination

	9.8 60x Bus Timing Examples
	9.9 Reset, Interrupt, Checkstop, and Power Management Signal Interactions
	9.9.1 Reset Inputs
	9.9.2 External Interrupts
	9.9.3 Checkstops
	9.9.4 Power Management Signals

	9.10 IEEE 1149.1a-1993 Compliant Interface
	9.10.1 JTAG/COP Interface

	Chapter�10 Power and Thermal Management
	10.1 Dynamic Power Management
	10.2 Programmable Power Mode
	10.2.1 Full-Power Mode
	10.2.2 Nap Mode
	10.2.2.1 Entering NAP Mode
	10.2.2.2 Exiting Nap Mode
	10.2.2.3 Snooping In Nap Mode (Doze)

	10.2.3 Sleep Mode
	10.2.3.1 Entering Sleep Mode
	10.2.3.2 Exiting Sleep Mode
	10.2.3.3 Deep Sleep Mode

	10.2.4 Power Management Software Considerations
	10.2.5 Dynamic Frequency Switching (DFS) in the MPC7447A
	10.2.5.1 Available Processor-to-Bus Ratios
	10.2.5.2 Snooping restrictions
	10.2.5.3 Using the HID1[DFS1] bit to Set DFS Mode in Conjunction Voltage Set Point

	10.3 Instruction Cache Throttling
	10.4 MPC7447A Temperature Diode

	Chapter�11 Performance Monitor
	11.1 Overview
	11.2 Performance Monitor Exception
	11.2.1 Performance Monitor Signals
	11.2.2 Using Timebase Event to Trigger or Freeze a Counter ���or Generate an Exception

	11.3 Performance Monitor Registers
	11.3.1 Performance Monitor Special-Purpose Registers
	11.3.2 Monitor Mode Control Register 0 (MMCR0)
	11.3.2.1 User Monitor Mode Control Register 0 (UMMCR0)

	11.3.3 Monitor Mode Control Register 1 (MMCR1)
	11.3.3.1 User Monitor Mode Control Register 1 (UMMCR1)

	11.3.4 Monitor Mode Control Register 2 (MMCR2)
	11.3.4.1 User Monitor Mode Control Register 2 (UMMCR2)

	11.3.5 Breakpoint Address Mask Register (BAMR)
	11.3.6 Performance Monitor Counter Registers�(PMC1–PMC6).
	11.3.6.1 User Performance Monitor Counter Registers ��(UPMC1–UPMC6)

	11.3.7 Sampled Instruction Address Register (SIAR)
	11.3.7.1 User Sampled Instruction Address Register (USIAR)

	11.4 Event Counting
	11.5 Event Selection
	11.5.1 PMC1 Events
	11.5.2 PMC2 Events
	11.5.3 PMC3 Events
	11.5.4 PMC4 Events
	11.5.5 PMC5 Events
	11.5.6 PMC6 Events

	Appendix�A MPC7451 Instruction Set Listings
	A.1 Instructions Sorted by Mnemonic (Decimal and Hexadecimal)
	A.2 Instructions Sorted by Primary and Secondary Opcodes (Decimal and Hexadecimal)
	A.3 Instructions Sorted by Mnemonic (Binary)
	A.4 Instructions Sorted by Opcode (Binary)
	A.5 Instructions Grouped by Functional Categories
	A.6 Instructions Sorted by Form
	A.7 Instruction Set Legend

	Appendix�B Instructions Not Implemented
	Appendix�C Special-Purpose Registers
	Appendix�D User’s Manual Revision History

