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RISC: Fundamentals and Future
by Roger D. Ross, President and CEO of Ross Technology, Inc.

RISC is the future of computing. Over the next 5 years, a totally new computing standard will emerge based upon RISC
(Reduced Instruction Set Computer) architectures. RISC will completely redefine the computer industry’s existing price/
performance curve, which is based on Complex Instruction Set Computers (CISC), and will be the industrial computing
standard that leads us into the 21st century.

Analyzing RISC’s potential is much more than simply discussing how many MIPS and MFLOPS will be offered over the
next two decades. The technical future of reduced instruction set computers is but one facet of a much bigger drama
that is unfolding. First one must understand the technical fundamentals and benefits of RISC as they relate to the more
general trends of the entire computer industry, trends that tend to complement RISC. This introduction briefly explains
the technical fundamentals of RISC architecture and reviews the broader trends of the computer industry. It will show
that RISC architecture has been designed to exploit the computer industry trends and reveal why the future of RISC
architecture is fundamentally the future of the entire computer industry.

RISC Described (and CISC exposed)

Today, a tremendous amount of misinformation exists surrounding the fundamentals of RISC architecture. Obviously,
the promoters of this misinformation are those who stand to lose the most from its impact: the established manufacturers
of proprietary CISC architectures. These manufacturers tell their prospective customers that they can use RISC design
techniques on their CISC architectures to get close to RISC’s single clock cycle execution feature while maintaining com-
patibility with their existing binary application software base. There are two subtle but totally misleading concepts in the
previous statement. The phrase “RISC design techniques” is blatantly misused, and the phrase “RISC’s single clock cycle
execution feature” is misleading as well because it falls far short of RISC’s true goal. Both of these concepts will be ex-
plained and corrected in the ensuing paragraphs.

RISC is quite simply not a set of design techniques. RISC is a new instruction set architecture technique that is distinct
and completely different from CISC. It is not backwardly adaptable to CISC, which is now defined by, and indeed captive
to, its “prior art” forms. Instruction sets are, after all, the fundamental form of computer architecture. RISC evolved
as a solution to the problem of how to derive more power; that is, how to derive more instruction set power out of a com-
puter and its associated compilers. The goal of RISC is not simply to reduce the system’s instruction set, it is to intelligent-
ly select a set of streamlined instructions that yield maximal data-processing performance within the context of compiled
programming techniques. RISC is a way to significantly enhance a system’s performance while keeping costs on or below
par with CISC. These new instruction set techniques are described below. CISC instruction sets were selected over 20
years ago, and cannot now be changed if CISCs are to maintain compatibility with their existing binary application software
base. Consequently, the fallacy of CISC using “so called” RISC technology at the instruction set levelis readily apparent.
In fact, these instruction set techniques are the real and only difference between RISC and CISC.

RISC has three major instruction set features that distinguish it from CISC. RISC’s instruction set attributes include
a load/store model of execution, a non-destructive triadic register file that provides a distinct and highly efficient data
preservation model, and, lastly, normalized fixed-length instructions. Conversely, CISC uses a memory/register model
of execution, an accumulator/register file that engenders a destructive data environment, and variable-length, contextual-
field instructions.

RISC’s load/store model of execution means that the only instructions that can access main memory are load and store
instructions. All other CPU instructions operate on internal registers. By using this model it is possible to decouple
loading and storing traffic from data processing operations such as arithmetic or logical instructions, and thereby raise
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the opérational concurrency of the entire CPU. It also'makes it possible to schedule code to fill stall slots that naturally
occur due to the latency between the time when a load instruction is issued and the time, typically 2 to 3 clocks later, when
the data is returned from memory and is actually ready for use.

However, the true uniqueness in RISC’s load/store instruction set philosophy is the recognition that the register file is
in actuality a computer’s highest-level data cache. This register file data cache differs from other, lower-level data caches
in that its use is deterministic and not stochastic. Load instructions are simply a way to fill this cache, and store instructions
are merely a way to write back updated data to the lower memory hierarchy. With this in mind, one can argue that load/
store operations are not even instructions at all, they are just mechanisms available to software that allow it to administer
the register data-cache. Consequently, the optimization and direction of this register file data cache can be determined
solely by the compiler or assembly language programmer. All of the leading RISC architectures (SPARC, MIPS, Motoro-
la 88K, and Intel 860) have a larger register file than any of the pre-existing commercial CISC architectures. In addition,
SPARC has even further evolved beyond the large register file concept by providing a register file extension that is com-
prised of overlapped register windows. SPARC’s overlapped register windows are primarily used to pass parameters dur-
ing subroutine accesses, thereby further cutting down on load and store traffic and more completely acknowledging the
fact that the modern computer’s register file has now fully evolved into a deterministic cache subsystem. There is now
no way for CISC architectures to directly apply large flat register files to their instruction sets. They could have done
so at one time, but now their binary instruction sets are frozen and it is too late. The decision is irrevocable.

RISC’s non-destructive, three-register (triadic) architecture model means that information in the CPU is preserved (i.e.,
maintained in the register data cache) during ongoing data processing. For example, a RISC add instruction would be
verbalized as “register A is equal to the result of register B plus register C.” All information that was contained in registers
B and C is preserved (it is interesting to note that this more natural model is also the one that we use to teach algebra
to our children). Data preservation within the register file (i.e., data cache) is a fundamental and obvious requirement
to minimize load/store traffic. In contrast the CISC machine’s fundamental model is simply stated as “add the contents
of register A and register B and place the result in register A.” Obviously, the original contents of register A are de-
stroyed, and consequently the name “destructive.”

It is also necessary to allow an optimizing compiler to effectively reschedule code to fill pipeline stalls that frequently
occur in computational engines. In a computer one can reschedule code so longas it is determined that no data dependen-
cies occur and the original semantic content of the program is maintained. Therefore, a non-destructive register model
taken together with a load/store architecture provides a dramatic boost in instruction set architectural performance due
to its ability to minimize load/store traffic as well as decouple operations and thereby allow optimizing compilers to effi-
ciently fill stall slots. )

Alternatively, CISC machines have a memory/register instruction set architecture. This means that in a CISC architec-
ture one can do an add instruction with an addressing mode that appears to obtain an operand directly from main memory
and add itinto a register. In reality, this add instruction is forced to do an operand load before it can complete the instruc-
tion. However, this load is coupled to the add operation and so the unavoidable stall slot between the load and the add
cannot be filled with useful work. Typically 40% to 50% of all instructions dynamically executed in a CISC machine’s
existing software base utilize and therefore mandate this hidden load of operands.

CISC machines evolved from the accumulator model of execution. In this model the programmer “accumulates” results
in a register, thereby destroying the data already existing in that register. The problem with a destructive register model
is that it keeps the compiler from performing efficient algorithmic code rescheduling operations that could lead to higher
throughput. Data and condition codes in CISC machines is location sensitive because it is constantly being destroyed
by new instructions. In addition, this model simultaneously increases a machine’s load/store activity when registers must
either be saved or restored from main memory by the compiler in its struggle to preserve critical data. Again historically
speaking, CISC could have adapted a large triadic register model, but once again it did not, and now it is too late. CISC
is a captive of its installed binary software base and established instruction sets.

All true RISC machines utilize fixed-length instructions. Fixed-length instruction sets make possible normalized instruc-
tion encoding (i.e., minimize the use of contextual fields) with greatly simplified addressing modes. In addition, operand
accesses only occur between registers (i.e., cached data). By making each instruction 32 bits long, instruction decode is
much easier and can occur much faster than in CISC architectures. RISC CPUs exploit fine-grain parallelism by decoding
all parts of the instruction in parallel. In CISC machines, instruction decode occurs sequentially as the instructions are
of variable length and contextual in nature. Hence final instruction decode cannot usually occur until all parts of the in-
struction are fully analyzed. In CISC machines, depending on the addressing mode and particular instruction used, this
can take from 2 to 11 clocks. In RISC machines with 32-bit, fixed-length instructions, this always takes exactly 1 clock.

There are three major effects of RISC’s streamlined, or reduced, instruction set architecture techniques. First, due to
its instruction set normality, RISC machines have no need for microcode. That is, all instructions can be hardwired in
a very efficient manner. )
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Second, RISC’s streamlined instruction set allows for single clock cycle execution. But this is just the tip of the iceburg
in that the true goal of RISC is the concurrent execution of many instructions at once. Itis in this “superscalar” execution
form that RISC’s full potential ultimately lies. Although by using of millions of extra transistors CISC could eventually
come close to one instruction per clock, superscalability is effectively beyond CISC’s practical scope.

Third, because of the concurrency made possible by the instruction set as described previously, RISCs can more aggres-
sively and efficiently exploit the design technique of pipelining. These distinctions explain why RISC can provide a 2 to
5 times performance advantage over CISC given equal technologies of implementation.

Key Historical Trends of the Computer Industry

This section will not attempt to distill the entire history of the computer industry in just a few pages. Rather, it isintended
to take a step back and look at some of the more important trends in the industry.

There have been three defacto architectural computing standards in the history of the computer industry: the IBM
360/370, the DEC VAX, and systems based on the Intel 80x86. Most professionals in our industry do not remember that
the IBM 360/370 mainframe architecture, originally released in 1964, was in fact the first system to be cloned! This clon-
ing, by companies such as Amdahl and NAS, was a direct realization that the application software was the standard to
which the hardware had to comply. This cloning also led to the IBM 370 and PCMs (plug-compatible mainframes) that
have held between 50% to 70% of the entire computer industry market for nearly 20 years.

The DEC VAX, a minicomputer or mid-range system, was in reality a way to bring a better level of price/performance
to the end user than that offered by mainframes. In the final analysis, price and performance are the drummers to which
the entire computer industry marches. By offering a significant advantage in price/performance (i.e., two times the per-
formance or more) over the IBM and PCM mainframes, DEC was able to establish a beachhead in the systems industry
that enabled it to become second to only IBM in size.

Computers based upon the 80x86 microprocessor architecture from Intel also offered significantly enhanced price/perfor-
mance over the mainframe and minicomputer systems that were in existence at the time. Asis well known, IBM adopted
the 8088 in its original personal computer. This product was brought to market several years after the first personal com-
puters emerged from companies such as Apple. However, distinguishing it from the other market entrants was the fact
that the IBM PC was clonable. Cloning again led to the marketshare dominance of this particular computer architecture.
Today it is estimated by leading market researchers that approximately 85% of the installed worldwide personal computer
base is comprised of IBM and IBM-compatible personal computers. As a result of its use in the IBM personal computer
architecture, Intel’s 80x86 family today exceeds the sales of all other 16- and 32-bit general-purpose microprocessors com-
bined.

The historical trend toward enhanced system price/performance is to obtain greater performance for absolutely lower
costs. In 1990, systems that sell for under $10,000 dominate the entire computer industry, amounting to over 95% of all
units shipped and 40% of the total sales dollars of the computer systems industry. In the next ten years this trend should
accelerate with systems priced under $7,500 amounting to over 99% of all units shipped and 75% of the total sales dollars
of the entire computer systems industry.

With the dramatic increase in the use of low-cost, typically desktop computers, there has been a parallel increase in the
use of computer networks. Distributed data processing, also known as networked computing, in which desktop systems
are tied to server computers, is now much more common than massive mainframes with several hundred terminals. Inter-
estingly, yesterday’s minicomputers and mainframes have become today’s servers. However, even these ECL server sys-
tems are increasingly giving way to CMOS microprocessor-based systems. These new servers also use industry standard
microprocessors, as opposed to designing their own high-cost proprietary CPUs, as a way to offer enhanced price/perfor-
mance.

Enhanced price/performance has another facet to it: enhanced productivity for the user. Also known as user friendliness,
these are quite simply the use of graphics instead of text, and the use of windows and user interfaces rather than simple
command lines. These features have made computers much more accessible. However, this user friendliness has not
been easy to achieve. First of all, the software behind the user friendliness is large and complex. To run windows and
graphics interfaces requires much higher CPU performance than has, until recently, been available in the microprocessor
market. Writing software of this complexity has necessitated the use of high-level languages, of which the overwhelming
language of choice hasbeen C. Of course each line of C, as with any other high-level language, is comprised of multiple
lines of assembly code, so it requires more CPU horsepower to run effectively.

The Future of RISC

The first generation of RISC machines have been what is termed single-instruction launch microarchitectures. Through
pipelining it has been possible to significantly overlap the various stages of an instruction’s lifecycle, and hence the current
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generation of RISC implementations have asymptotically approached a performance rate of 1 clock per instruction (1
CPI). This overlap is required to provide continued execution opportunities instead of suffering through the delays which
would otherwise arise due to multiple clock cycle instructions and memory accesses. This does not always work perfectly,
however, and consequently the first generation of RISC implementations have an aggregate throughput that is on the
order of 1.25 to 1.5 CPIL.

The next step in microarchitecture for RISC machines will be the ability to execute two or more instructions simultaneous-
ly. This feature is sometimes referred to as “superscalability.” RISC implementations will be able to fetch, decode, ex-
ecute, and finish two or more instructions at the same time. Multiple-instruction launching requires the ability to internal-
ly schedule the instructions while simultaneously checking for data dependencies and the availability of computing
resources before the instructions are launched. For instance, the ability to launch four integer instructions in the same
clock cycle should yield an instruction execution theoretical peak CPI rate of 0.25. The bus bandwidth required to feed
both instructions and data into the machine and a high-performance cache architecture and cache refill capability to keep
these high-speed channels fully utilized will be very important in multi-launch implementations.

RISC microarchitecture will follow the path of increasing the number of simultaneous execution units and will inevitably
evolve into a dataflow type of architecture whereby multiple data operands flow through the machine being used by avail-
able execution units. Research on dataflow architectures is currently in advanced stages at leading universities. However,
whereas CISC instruction sets have been obsoleted by RISC in the search for higher architectural performance, this will
not happen to RISC. RISC instruction sets can and will be preserved in the evolution to dataflow architectures. It will
be possible to obtain dramatic performance enhancements in RISC, first through multi-launching, then through dataflow,
without making any changes to the fundamental instruction set. These performance improvements will occur under the
surface of the instruction set, and will enable a complete continuum of the application software investment. This continu-
um could last for at least 25 to 30 years, and it will be a truly remarkable period of software base stability.

The performance capability and growth path of RISC architectures have not gone unnoticed. At this point, RISC architec-
tures have clearly hit the mainstream of computing. As of this writing, every major manufacturer of computer systems
in the world has somehow endorsed RISC architectures. This list includes IBM, DEC, ICL, Sun, Unisys, NCR, Toshiba,
AT&T, Olivetti, and many more. These manufacturers have moved to RISC not because it is a fad, but because they
realize that RISC offers fundamentally better price/performance than does CISC. Coincidentally, every major manufac-
turer of semiconductors has also aligned itself with a RISC architecture in some form or fashion.

RISC architectures are already used in desktop systems from companies such as Sun and HP, in servers from companies
such as Solbourne, and in mainframes from companies like ICL. RISC architectures have already proven that they pro-
vide from 2 to 5 times the performance of CISC architectures given equal implementation technology (i.e., cost).

Owing to their streamlined, efficient instruction set, RISC architectures result in a fundamentally shorter design cycle
for RISC chips as compared to CISC. It is also due to this simplicity that we have seen RISC architectures already fan
out into custom CMOS, ECL, gate arrays, and GaAs. The significance of these events is that it is now possible to have
a binary software-compatible range of RISC-based computers from the desktop to the mainframe. This has never been
achieved in the industry, and this capability is obviously very synergistic with the trend toward networked computing.

Neither of the previous defacto computing standards (IBM 370 and the Intel 80x86) had the benefit of being able to use
the application software base available from its competitive predecessors. RISC, however, is able to make use of the
existing computing standard software base. That is, by using advanced binary emulation techniques, the entire $15 billion
MS-DOS applications software market is now accessible to RISC architectures. So we have the scenario where RISC
is able to run its native software several times faster than CISC can run software, and at the same time it can run existing
CISC software nearly as fast as the CISC machines can!

The RISC Contenders

There are currently four RISC architectures that are the mainstream contenders in the RISC marketshare race. These
architectures are the SPARC architecture from SPARC International, the MIPS Rx000 from MIPS Inc., the MC88000
from Motorola, and the i860 from Intel.

Marketshare for the competing RISC architectures arises from several key factors. These factors are the alliances with
key systems manufacturers, the availability of low-cost (under $10,000) desktop systems, a large base of shrinkwrap appli-
cation software, a wide range of system price options (from under $10,000 to over $1,000,000), competitive semiconductor
implementations of the CPUs, multiple sources of the CPUs, and state-of-the-art technology.

At this point in time only SPARC is openly owned and controlled, has independent multiple sources for its chip sets, and
has multiple microarchitecture implementations available that all execute the same binary software. Motorola’s
MC88000 is sole-sourced for commercial applications and second-sourced strictly for military applications by Thomp-
son-CSF. However, Motorola owns and controls the MC88000 microarchitecture. MIPS’ architecture is also second-
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sourced, but the microarchitecture is solely controlled by MIPS Inc. And Intel’s i860 is completely proprietary. Unless
MIPS, the MC88000, and the i860 become openly owned and independently second-sourced, it is very unlikely that they
will continue to be contenders in the RISC race against SPARC. Hewlett-Packard now realizes the significance of open
ownership and its relationship to market success. As a result, they also are now attempting to move their architecture
away from a proprietary basis and into the open market.

To date, low-cost systems priced under $10,000 are available that use the SPARC, MIPS and MC88000 architectures. The
differentiating factor between these systems is the software base. SPARC’s software base is much larger than that for
all other RISC architectures combined, and is usable in shrinkwrap form on multiple platforms based on multiple vendor’s
SPARC chips. This capability was proven by Solbourne Computer in Longmont, Colorado when they created the world’s
first SPARC-compatible system, thereby making SPARC the only RISC architecture with proven system-level clonability.
Motorola is attempting to create a similar capability for the MC88000 through a committee-generated document called
the MC88000 BCS (Binary Compatibility Standard). MIPS has no such plans in the works, and has actually seen its base
fragment between its own systems, Stardent, DEC, and those of Silicon Graphics. As stated previously, shrinkwrap soft-
ware led the Intel 80x86 architecture to an overwhelming marketshare lead. Likewise, shrinkwrap software will also be
the biggest differentiator in the RISC marketplace and it favors SPARC both from its present large base and also from
its growth rate as well.

Summary

The general trends of the computer industry are very complementary to the capabilities of RISC architectures. The com-
puter industry market always thirsts for higher performance at lower prices, and is structuring itself to allow this to hap-
pen. RISC, a set of instruction set architecture techniques, offers significant performance advantages over CISC, and
requires less transistors to do so. Because of its transistor count frugality, RISC has scaled quickly into very high perform-
ance technologies such as ECL and GaAs, and hence is ideally suited to fitting in at all price/performance points existing
within the entire computer industry. Most importantly, RISC is affordable on the desktop and is able to efficiently run
the huge PC software base that already exists there. In addition, RISC’s performance growth path is assured, and is formi-
dable when compared to that for CISC. For all of these reasons, RISC architectures will come to dominate 32-/64-bit
computing over the ensuing years.
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1.1 SPARC Overview

SPARC, an acronym for Scalable Processor ARChitecture, is an open RISC architecture with multiple semiconductor
implementations from a number of vendors. SPARC is an architecturally driven standard, with binary compatibility of
software between processor versions ensured by enforcing compliance to the architecture standard. The open architec-
ture approach offered by SPARC allows all its participants to make creative contributions in developing their versions
of SPARC processor. This results in a vastly greater number of technical contributions than would be possible for a closed
architecture held and defined by only one group. This architectural freedom has allowed the SPARC architecture to
expand into CMOS gate arrays, full-custom CMOS, bipolar ECL, and GaAs faster than any other RISC architecture.
This same freedom allows SPARC vendors to make microarchitectural enhancements to their SPARC implementations
while maintaining absolute binary compatibility. The final result of this open architecture approach is that it provides
the customer with a wider range of price/performance and technology options that cannot be matched by less innovative
and restricted licensing policies. In addition, the various SPARC vendors also participate in standard second-sourcing
agreements.

The inclusion of the word “scalable” in the acronym for SPARC emphasizes its importance in the philosophy of the archi-
tecture. “Enforced compatibility” hasbeen embraced to ensure migration of the architecture as semiconductor technolo-
gy improves. Scalability allows SPARC to be re-implemented without complication as semiconductor process technology
evolves. This allows SPARC to continually be offered in higher clock speeds and technologies than other RISC architec-
tures, providing rapid performance improvements as process technology continues to be refined. Other RISC processors
have complicated their microarchitectures with features that create an unnecessary burden for the hardware designer.
These features provide only a minimal performance improvement, but greatly complicate hardware design and cost. The
CY7C601 microprocessor does not require multiple-phase clocks, demultiplexing of the processor’s address or data buses
or many of the other problems that affect hardware complexity and cost. This provides CY7C601 SPARC-based designs
with the advantages of excellent performance, low design costs, a high degree of manufacturability, and increased reliabil-
ity due to its simplicity of design.

The CY7C600 chip set is a 32-bit custom CMOS implementation of the SPARC architecture. Designed by Ross Technolo-
gy, Inc., a Cypress Semiconductor subsidiary, the chip set is implemented in Cypress’s state of the art 0.8-um CMOS tech-
nology. The chip set is in production and is available in clock speeds of 25, 33, and 40 MHz. The CY7C600 family includes
the CY7C601 Integer Unit (IU), the CY7C602 Floating-Point Unit (FPU), the CY7C604 Cache controller and MMU
(CMU), the CY7C605 Cache controller and MMU for MultiProcessing (CMU-MP), and the CY7C157 Cache RAM
(CRAM). The CY7C601, CY7C602, CY7C604 or CY7C605, and two CY7C157s comprise a five-chip CPU, providing
up to 29 MIPS of sustained integer performance and over 6 MFLOPS of double-precision floating-point performance
at40 MHz. This CPU includes a SPARC Reference MMU and a 64-kbyte cache, and directly interfaces to a 64-bit physical
bus capable of a bandwidth approaching 320 Mbytes per second at 40 MHz. The five-chip CY7C600 CPU requires no
glue logic, and provides maximum computing performance with minimal design effort.

1.1.1 Partitioning

The CY7C600 family has been designed to offer a complete solution for high-performance computer and controller appli-
cations. The CY7C601IU and the CY7C602 FPU together comprise the full SPARC instruction set architecture. The
CY7C602 replaces two chips that previously made up the FPU, the CY7C608 floating-point controller and the CY7C609
floating-point processor (Texas Instruments’ SN74ACT8847). Additional family members include the CY7C604 CMU
for uniprocessor applications, the CY7C605 CMU-MP, and the CY7C157 CRAM.

The CY7C611 is a specialized derivative of the CY7C601 integer unit that has been optimized for embedded control appli-
cations. It is in production in a cost-effective, 160-pin PQFP package, and is available at a speed of 25 MHz.
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Figure 1-1. Architectural Partitioning— Uniprocessor System

Figure 1-1 and Figure 1-2 illustrate how CY7C600 family devices connect to each other in both uniprocessor and multipro-
cessor applications. The CY7C601’s second coprocessor interface is not shown in these diagrams. The function of this
second coprocessor (CP) is defined by the system designer, but its interface to the CY7C601 is identical to that of the
CY7C602 FPU coprocessor.

Figure 1-3 illustrates an embedded control system utilizing the CY7C601 or CY7C611 with an optional CY7C602 FPU
and user-designed memory system.

1.12 The CY7C601 Integer Unit

The CY7C601 is the primary processing engine in the SPARC architecture, executing all instructions except for specific
floating-point and coprocessor operations. The CY7C602 FPU does its floating-point calculations concurrently with the
CY7C601IU. The architecture also allows for concurrent operation through the use of an optional second coprocessor.

Significant features of the CY7C601 include:

+ Full binary compatibility with entire SPARC application software base

* Architectural efficiency that sustains 1.25 to 1.5 clocks per instruction

» Large windowed register file

» Tightly coupled floating-point interface

« User/supervisor modes for multitasking

* Semaphore instructions and alternate address spaces for multiprocessing
» Tagged arithmetic instructions to support artificial intelligence software

1.1.2.1 Traps and Exceptions

The CY7C601 supports a full set of traps and exceptions. A table-based set of trap vectors supports 128 hardware and
128 software trap types, both synchronous (error conditions and instructions) and asynchronous (interrupts and reset).
The CY7C601 supports a very fast interrupt time of 4 to 7 clocks, depending upon the contents of the instruction pipeline.
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112.2 Multitasking

Multitasking is supported with user and supervisor modes. Certain privileged instructions can only be executed while
the CY7C601 is in supervisor mode, ensuring that user programs cannot accidentally alter the state of the machine. Su-
pervisor mode is only accessible by using a hardware interrupt or by executing a trap instruction.

1.1.2.3  Multiprocessing

The CY7C601 supports multiprocessing with two instructions for implementing semaphores in memory. Atomic Load/
Store Unsigned Byte loads a byte from memory, then sets the memory location to all ones. The SWAP instruction ex-
changes the contents of a register and a memory location. Both of these instructions are “atomic,” meaning uninterrupt-
able.

1.1.3  CY7C611 Integer Unit for Embedded Control

The CY7C611 Integer Unit is a subset of the CY7C601 Integer Unit intended for use in embedded control systems. It
is architecturally identical to the CY7C601, and all details concerning the CY7C601 described in Sections 2.1 through
2.8 of Chapter 2 apply to the CY7C611. The CY7C611 is available in a 160-pin plastic QFP and is in production at 25
MHz. The CY7C611 differs from the CY7C601 in that several of the signals available on the CY7C601 that are not re-
quired for embedded control systems have been deleted. In addition, the CY7C611 does not have a user-defined copro-
cessor interface. The CY7C611 does have a floating-point interface, which can also be used to interface to a user-defined
coprocessor. Please refer to Section 2.9 for detailed information on the CY7C611.

1.14 CY7C602 Floating-Point Unit

The CY7C602 FPU provides high-performance, IEEE STD-754-1985-compatible single- and double-precision
floating-point calculations for CY7C600 systems, and is designed to operate concurrently with the CY7C601. All address
and control signals for memory accesses by the CY7C602 are supplied by the CY7C601. Floating-point instructions are
addressed by the CY7C601, and are simultaneously latched from the data bus by both the CY7C601 and CY7C602. Floa-
ting-point instructions are concurrently decoded by the CY7C601 and the CY7C602, but do not begin execution in the
CY7C602 until after the instruction is enabled by a signal from the CY7C601. Pending and currently executing FP instruc-
tions are placed in an on-chip queue while the CY7C601 continues to execute non-floating-point instructions.

The CY7C602 has a 32 x 32-bit data register file for floating-point operations. The contents of these registers are trans-
ferred to and from external memory under control of the CY7C601 using floating-point load/store instructions. Address-
es and control signals for data accesses during a floating-point load or store are supplied by the CY7C601, while the
CY7C602 supplies or receives data. Although the CY7C602 operates concurrently with the CY7C601, a program contain-
ing floating-point computations generates results as if the instructions were being executed sequentially.

1.1.5 CY7C157 Cache Data RAM

The CY7C157 is a 16K x 16-bit high-performance CMOS static RAM designed specifically as a cache memory for
CY7C600 systems. It incorporates registered address and write-enable inputs, latched data inputs and outputs, and a
self-timed write mechanism—features that have greatly simplified the design of cache memories for the CY7C600 family.

1.1.6 CY7C604/CY7C605 Cache Controller and Memory Management Units

The CY7C604 and CY7C605 are combined cache controller and memory management units designed specifically to sup-
port the CY7C601. The CY7C604 and CY7C605 provide control for a 64-kbyte direct-mapped virtual cache and provide
a SPARC reference standard MMU for virtual to physical address translation. The CY7C604 and CY7C605 directly inter-
face with the CY7C600 family, requiring no glue logic for a 64-kbyte cache system. The CY7C604 and CY7C605 use two
CY7C157 Cache RAMs to implement a 64-kbyte cache system using only three chips. Cache tag memory is provided
as an on-chip feature of the CY7C604/CY7C605, thereby reducing hardware complexity for a CY7C604- or
CY7C605-based system.

The CY7C604 is optimized for uniprocessor systems, providing cache locking and cache expandability to 256 kilobytes
using additional CY7C604s. The cache locking feature of the CY7C604 allows deterministic response from the cache
system, an important feature for real-time systems. The SPARC reference MMU, supported on both the CY7C604 and
the CY7C605, provides translation of a 4-Gbyte virtual address space to a 64-Gbyte physical address space. Both the
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CY7C604 and the CY7C605 provide a 64-entry fully associative TLB (Translation Lookaside Buffer), used in translating
virtual addresses to physical addresses. TLB entries may be locked, excluding critical TLB entries from replacement and
thereby preventing unnecessary table walks. Table walking (required to obtain additional virtual to physical address trans-
lations not stored in the TLB) for the CY7C604 and CY7C605 is implemented in hardware, providing a substantial time
savings over software table walk routines.

The SPARC MMU section of the CY7C604/CY7C605 is designed for the efficient support of multitasking operating sys-
tems. CY7C604/CY7C605 TLB and cache tag entries allow a maximum of 4096 different context tags to identify tasks
within an operating system. The SPARC MMU implemented in the CY7C604/CY7C605 provides extensive memory
access level protection (user/supervisor and read/write/execute), including an execute-only memory access level. The
ability to mark memory accesses as execute-only provides a security feature that can be used to protect proprietary fea-
tures of a software system from unauthorized scrutiny. The CY7C604 and CY7C605 MMU also support multilevel ad-
dress mapping, allowing software to select a region of 4 kbytes, 256 kbytes, 16 Mbytes, or 4 Gbytes to be addressed by
a single TLB entry. This feature allows efficient utilization of TLB entries, which in turn reduces the number of table
walks caused by system software.

The CY7C605 is an extension of the CY7C604 designed for use in multiprocessor systems. The CY7C605 provides a dual
cache tag memory, which allows the CY7C605 to perform bus snooping while it simultaneously supports cache accesses
by the CY7C601. The CY7C605 implements a cache coherency protocol based on the IEEE Futurebus, which has been
recognized as a superior protocol for maintaining consistency of shared data in a multiprocessing system. The CY7C605
supports direct data intervention, which is the capability of a CY7C605-based cache to directly supply modified data to
another requesting cache without first requiring main memory to be updated. This feature providesa significant perform-
ance advantage over cache systems that must update main memory in order to supply modified data to another cache.
In addition to direct data intervention, the CY7C605 also supports memory reflection. Memory reflection allows a
memory system to automatically update itself during a direct data intervention operation. This feature allows a multipro-
cessing system to update both a requesting cache and main memory in a single bus operation.

Both the CY7C604 and the CY7C605 are specifically designed to support secondary cache systems. The use of common
secondary caching provides the advantage of increased cache performance for each processing node of a multiprocessor
system without the expense of large caches for each node. This approach also provides a direct upgrade path to the next
generation of high-integration SPARC processors. The CY7C605 is designed to be pin compatible with the CY7C604.
This feature allows a system to be upgraded from uniprocessor to multiprocessor by modifying the operating system and
replacing the CY7C604 with the CY7C605.

The CY7C604 and CY7C605 support the SPARC Mbus standard bus interface. The Mbus is a peer level, high-speed,
64-bit, multiplexed address and data bus which supports a full peer-level protocol (i.e., multiple bus masters). The
CY7C604/605 Mbus supports data transfers in transaction sizes of 1, 2, 4, 8, or 32 bytes. These data transfers are per-
formed in either burst or non-burst mode, depending upon size. Data transactions larger than eight bytes (one double-
word) are transferred in burst mode, which consists of an address phase followed by four data phases. Non-burst transac-
tions consist of an address phase followed by one data phase, and are used for data transactions of eight or less bytes.
Bus mastership is granted and controlled by an external bus arbiter. The bus arbiter sets bus priorities, and grants access
to a bus master.

Mbus is divided into two levels of implementation: level 1 and level 2. Level 1, implemented on the CY7C604, is the
uniprocessor version of Mbus. Level 1is a subset of level 2, which is the multiprocessor version of Mbus. The CY7C605
supports level 2 Mbus. Level 2 Mbus includes the IEEE Futurebus (MOSEI) cache coherency protocol, which has been
recognized in the industry as a superior method of supporting multiprocessing systems. Level 2 Mbus defines five cache
states for describing cache line status. Transactions on the Mbus are monitored or “snooped” by the CY7C605 and other
bus agents on the level 2 Mbus to maintain ownership and modified status for each cache line. Transactions on the level
2 Mbus are made with respect to the cache line ownership and modified status to ensure consistency for shared data
images.

The level 2 Mbus supports direct data intervention, which allows a cache system with the up-to-date version of a cache
line to directly supply the data to another cache system without having to first update main memory. Direct data interven-
tion provides a significant performance improvement over systems that do not support this feature. In addition, the
CY7C605 provides support for memory systems with reflective memory controllers. A memory system with reflective
memory control can recognize a cache-to-cache data transaction and automatically update itself without delaying the sys-
tem. Another system concept supported by the CY7C605 is secondary caching. Secondary caching provides a perform-
ance advantage over systems directly using main memory, and provides an economic advantage over systems using large
caches for each processing node.
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1.2 Register Windows

The CY7C601 contains a large, 32-bit-wide, triple-port register file that is divided into multiple windows which are con-
trolled by internal hardware. Each window contains 24 working registers and has access to 8 global registers. Combined
with the CY7C601’s register-to-register architecture, this file operates effectively as a compiler-directed, copy-back data
cache, considerably reducing data bus traffic. Load instructions enter data into this cache, and store instructions “copy
back” information when it needs to be replaced into main memory.

The register file is managed as a circular stack, with the first and last windows overlapping each other. Each window
overlaps the previous window and succeeding window by 8 registers, making the window mechanism ideal for passing pa-
rameters in procedure calls. Results left in the overlapping registers by a calling routine automatically become available
operands for the called routine as the window moves, and vice versa. This parameter passing technique eliminates the
need for the loads and stores to memory required by machines using a stack during procedure calls.

1.3 Instruction Set

SPARC defines 55 basic integer instructions, 14 basic floating-point instructions, and two coprocessor-operate instruction
formats. CY7C600 instructions fall into five basic categories: load/store, arithmetic/logical/shift, control transfer, read/
write control register, and floating-point-operate/coprocessor-operate.

1.3.1 Load and Store Instructions

Load and store instructions are the only way to access memory or external registers. Addresses are calculated using the
contents of two registers or one register and a constant. The destination may be either an integer unit, floating-point
unit, or coprocessor register, which either supplies or receives the data. In order to greatly speed up memory accesses,
halfword, word, and doubleword data must be aligned on their corresponding boundaries. If they are not, a trap is gener-
ated when an access is attempted.

1.3.1.1 Address Space Identifier

Whenever an address is sent to the address bus, the processor also generates 8 bits of address space identifier (ASI).
The ASI pins identify to the external system which of the 256 possible address spaces is to be accessed. For most CY7C601
operations, one of four standard ASI values are asserted. These four ASI values indicate whether the processor is in user
or supervisor mode, and whether the access is an instruction or data reference.

The address space identifier is intended for use by the system operating software. Consequently, the instructions that
specify a particular ASI value (load/store alternate) are privileged and can only be executed in the supervisor mode. Many
of the ASI bit patterns are assigned for accessing various features of the CY7C604/CY7C605. A large block of address
spaces are reserved for the designer to implement as desired.

132 Arithmetic/Logical/Shift Instructions

These instructions compute a result using two source operands and place the result in a destination register. In addition
to standard arithmetic operations, the CY7C601 includes tagged arithmetic operations. Tagged arithmetic instructions
assume that the least-significant two bits of the operands are tags, and set a condition code bit if they are not zero. Tagged
instructions are used with artificial intelligence languages such as LISP to indicate the data type of the operands. The
use of tagged arithmetic instructions allows languages such as LISP and Prolog to run significantly faster than on RISC
machines without this type of instruction.

1.3.3 Control Transfer Instructions

Control transfer instructions include jumps, calls, branches, and traps. Transfer of control to the new address is usually
delayed until after execution of the next instruction immediately following the jump, call or branch, etc., so that the trans-
fer doesn’t create a hole or bubble in the instruction pipeline. It is the compiler’s or the assembly language programmer’s
job to attempt to place a useful instruction in this delay slot.

1.3.4 Read/Write Control Register Instructions

These include instructions to read and write the contents of various CY7C601 control registers. The source (read) or
destination (write) is implied by the instruction name.
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1.3.5 Floating-Point-Operate and Coprocessor-Operate Instructions

This category includes floating-point calculations, floating-point register operations, and instructions involving computa-
tions or other operations in the second coprocessor.

Floating-point-operate instructions execute concurrently with CY7C601 instructions and possibly with other
floating-point instructions. Concurrent execution is also possible with the coprocessor-operate instructions if they are
so implemented.

Coprocessor-operate instructions are defined by the coprocessor itself. In the CY7C601, they are specified by the CPop
instruction. The SPARC architecture will accommodate 1024 coprocessor-operate instructions.

Floating-point and coprocessor loads and stores are not operate instructions; they belong to the “load and store” category
discussed in Section 1.4.1.
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Integer Unit

This section describes the workings of the CY7C601 Integer processing Unit (IU), the main computing engine in the
SPARC architecture. Descriptions and explanations given for the CY7C601 also apply to the CY7C611 integer unit, ex-
cept for those differences noted in Section 2.9.

The CY7C600-family IUs are based on the SPARC 32-bit RISC architecture, which defines a processor capable of execu-
tion at a rate approaching one instruction per clock cycle. The CY7C601/611 supports a tightly-coupled Floating-Point
coprocessor Unit (FPU) and a second, system-specific coprocessor, all three of which may operate concurrently. The
CY7C601/611 executes all instructions except floating-point-operate and coprocessor-operate instructions.

A block diagram of the CY7C601/611 is shown in Figure 2-1. The processor is organized around the ALU and the shift
unit. These are both two-operand units, accepting 32-bit information from either source 1 or source 2 of the register file,
the program counters, or the instruction decoder. ALU or shift unit results may be passed to the register file, address
bus, program counters, control registers, or back to themselves.

One of the characteristics of the SPARC load/store architecture is that neither the ALU nor the shift unit directly pass

results to the instruction/data bus. Memory data moves in and out of the register file through alignment units to and from
the instruction/data bus. Instructions are taken directly from the bus and fed to a four-stage instruction pipeline.

Destination

Register File
136 x 32-bits

Source 1 Source 2

—

Arithmetic
and Logic Shift Unit
Unit

W‘LW Y iv '

%h

Counters

Processor State
WlnduwBInvalld

Multiply Step

Instruction
Decode

Address Instruction/ Data

Figure 2-1. Integer Unit Block Diagram
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L MULTIPLY STEP (Y) I I FLOATING POINT STATUS (FSR)I rCOPFIOCESSOR STATUS (CSR)[
WORKING OUTS &)
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within set of LOCALS(8)
136 r Registers GLOBALS(8)

Figure 2-2. SPARC Register Model

The SPARC architecture uses a “windowed” register file model in which the file is divided up into groups of registers
called windows. This windowed register model simplifies compiler design, speeds procedure calls, and efficiently supports
A/I programming languages such as Prolog, LISP and Smalltalk.

A unique pair of coprocessor interfaces and a common connection to the system data and virtual address buses form the
physical interface between the IU, the FPU, and a coprocessor. The coprocessor interfaces provide the synchronization
and error handling that enable all three processors to operate concurrently. A common interface to the virtual address
bus and data bus permits the IU to provide all addresses for floating-point and coprocessor load and store instructions.

2.1 Description Of Parts

The standard version of the integer unit, the CY7C601, contains a 136 x 32 register file divided into eight overlapping
windows. It is supplied in 207-pin PGA and 208-pin QFP packages, which allows 32-bit address and data buses, an eight-bit
ASI bus, a number of control lines, and floating-point-coprocessor and second coprocessor interfaces.

The CY7C611 embedded control IU is internally the same as the CY7C601, but it is externally optimized for board-space-
sensitive controller applications. By eliminating some external pins, the CY7C611 fits into a 160-pin PQFP package. In
the smaller package, the address bus is modified to 24 bits, the ASIbus to 3 bits, and the second coprocessor interface
and five control lines are omitted. See Section 2.9 for further information.

2.2 Programming Model

This section describes the CY7C601/611’s register model, register window mechanism, processor states, supervisor/user
modes, control/status registers, and data types. The concepts and properties explained here are central to an understand-
ing of the CY7C601/611’s operation.

The register set shown in Figure 2-2 is a snapshot of the registers the CY7C601/611 sees at any given moment. The work-
ing registers constitute the current window on the register file. Registers within the shaded area are accessible only in
the supervisor mode.

Working registers are used for normal operations and are called 7 registers in the CY7C601/611, fregisters in the FPU,
and c registers in the coprocessor. The various control/status registers keep track of and/or control the state of each pro-
cessor. See Section 3.3.1 for an explanation of the FPU’s register set.

22.1 Register Windows

The 136 r registers of the CY7C601/611 are 32-bits wide and are divided into a set of 128 window registers and a set of
eight global registers. The 128 window registers are grouped into eight sets of 24 r registers called windows.
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Table 2-1. Register Addressing

Register numbers Name
r{24] to r[31] ins
1r[16] to r[23] locals
1[8] to r[15] outs
1[0] to r[7] globals

The SPARC architecture supports a maximum of 32 windows. The currently active window (the window visible to the
programmer) is identified by the Current Window Pointer (CWP), a 5-bit field in the Processor State Register (PSR) (see
Section 2.2.4.2).

Atany given time, a program can address 32 active registers: 24 window registers and the eight globals. By software conven-
tion, the window registers are divided into 8 ins, 8 locals, and 8 outs. Registers are addressed as shown in Table 2-1.

The current window pointer (CWP) acts as an index pointer within the stack of 128 window registers. Changing the cur-
rent window pointer by one offsetsr register addressing by 16. Since 24 r registers can be addressed by a single CWP value,
incrementing or decrementing the CWP results in an eight register overlap between windows. This overlap of window
registers is used to pass parameters from one window to the next.

2.2.1.1 Windowing

The register file is implemented as a circular stack, with the highest numbered window joined to the lowest. In the
CY7C601, window 7 adjoins window 0 (see Figure 2-3).

RESTORE

SAVE

w3 locals

Figure 2-3. Circular Stack of Overlapping Windows
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Previous Window (CWP + 1)

r31 &)
. INS
ra24 : Restore
r23 <
X LOCALS
r16 Current Window (CWP)
ris
. ouTs
r8

Next Window (CWP - 1)

r31
. INS
i ro4
ra23
. LOCALS
r16
ri15
: OouTsS
r8

Figure 2-4. Overlapping Windows

Note that each window shares its ins and outs with adjacent windows (refer to Figure 2-4 ). Outs from a previous window
(CWP + 1) are the ins of the current window, and the outs of the current window are the ins of the next window (CWP - 1).
While only adjacent windows share ins and outs, globals are shared by all windows. A window’s locals, on the other hand,
are not shared at all, belonging only to that window.

After power-on reset, the state of the current window pointer and the WIM register (see Section 2.2.4.3) are undefined.
The power-on reset trap routine must initialize the CWP and WIM register for correct operation.

2.2.1.1.1 Parameter Passing

Register window overlap provides an efficient means of passing parameters during procedure calls and returns. One
method of implementing a procedure call that takes advantage of the overlap is to have the calling procedure move the
parameters to be passed into its outs registers, then execute a CALL instruction. A SAVE instruction then decrements
the CWP to activate the next window. The calling procedure’s outs become the called procedure’s ins, making the passed
parameters directly accessible.

When a called procedure is ready to return results to the procedure that called it, those results are moved into its ins
registers and it then executes a return, usually with a JMPL instruction. A RESTORE instruction increments the CWP
to activate the previous window. The called procedure’s ins are still the calling procedure’s outs; thus the results are avail-
able to the calling procedure. Note that the terms ins and outs are defined relative to calling, not returning.

If the calling procedure must pass more parameters than can be accommodated by the outs and globals, the additional
parameters must be passed on the memory stack. One method of handling the stack pointer is to dedicate an out register
in the current window to hold the stack pointer (see Figure 2-5). After a call, this pointer (which is now in an ins register)
can be used as the frame pointer for the called procedure. The SAVE instruction, in addition to decrementing the CWP,
also performs an ADD using registers from the current window and placing the result in a register in the next window.
This feature can be used to set a new stack pointer for the called procedure from the old pointer in the calling procedure.
RESTORE also performs an ADD, using registers in the current window and placing the result in the previous window.
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r31 (i7) return address
r30 (FP) frame pointer
r29 (i5) incoming param reg 5
in r28 (i4) incoming param reg 4
r27 (i3) incoming param reg 3
r26 (i2) incoming param reg 2
r25 (i1) incoming param reg 1
r24 (i0) incoming param reg 0
re3 (17) local 7
re2 (16) local 6
r21 (15) local 5
local r20 (14) local 4
r9 (13) local 3
[ak:] (12) local 2
7 (1) local 1
r16 (10) local 0
r15 (07) temp
r4 (SP) stack pointer
r3 (05) outgoing param reg 5
out rn2 (04) outgoing param reg 4
r (03) outgoing param reg 3
o (02) outgoing param reg 2
9 (o1) outgoing param reg 1
8 (00) outgoing param reg 0
7 (g7) global 7
1] (g6) global 6
6} (g5) global 5
global 4 (g4) global 4
3 (g3) global 3
r2 (92) _global 2
] Q1) global 1
0 (g0) 0
31 floating-point value
floating :
point
f0 floating-point value

Figure 2-5. Registers as Seen by a Procedure

2.2.1.1.2 Window Overflow and Underflow

No matter how many windows a register file has, it is possible that at some point the program will try to use more than
are available. Since the register file is a circular stack, something must be done to prevent overwriting the oldest window
as the stack wraps around.

The CY7C601/611 handles this by allowing bits in the Window Invalid Mask (WIM) register to be set, which are used
to mark windows that will trigger an underflow or overflow trap (see Section 2.2.4.3). If a SAVE instruction points the
CWP to a marked window, a window overflow trap is generated. This means that in the CY7C601, only seven of the eight
windows are available for calls, because the last window must be saved for the trap handler. However, since a typical over-
flow trap handler would transparently save one or more of the oldest windows to memory, the program sees an apparently
infinite number of windows.

The CY7C601/611 automatically decrements the CWP upon encountering a trap. This happens without generating
another window overflow trap, regardless of the state of the WIM register. By setting at least one window as masked
by the WIM register, the system is assured of at least one window for use by the trap handler.
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ARESTORE instruction will cause a window underflow trap if it attempts to restore to a window invalidated by the WIM
register. Execution of a RETurn from Trap (RETT) instruction under the same circumstances will also generate an under-
flow trap. SAVE, RESTORE, and RETT always check the WIM register before completing their actions.

As an example, in Figure 2-3, if the procedure using the window labeled w0 executes a CALL and SAVE sequence, a
window overflow trap will occur (assuming WIM bit 7 is set). The overflow trap handler may safely use only the locals
of w7, because w7’s ins are w0’s outs and w7’s outs are w6’s ins.

Active window = 0 CWP =0

Previous window = 1 CWP+1 =1

Next window = 7 CWP-1 =7

Trap window = 7 WIM = 10000000(base 2)

The overflow trap handler is responsible for saving one or more of the least recently used windows to the memory stack.
Simulations of register file management methods show that saving and restoring one window at a time is the simplest
and most effective algorithm for handling overflow and underflow. The stack pointer to the window-save area must be
aligned to a word boundary in valid memory and, for efficiency, should be doubleword aligned. This is because it is faster
to load and store doublewords than to load and store words.

A linear sequence of doubleword loads and stores is also used to speed up context switches. In a context switch, only
the windows containing valid data are saved, and on average thisis about half the number of CY7C601/611 windows, minus
one for the reserved trap window.

2.2.1.1.3 Alternate Register Window Usage

Although the windowing layout is particularly well suited to procedure calls and returns, hardware does not force their
use for that purpose alone. Except for the eight-register overlap and the partial fixing of the function of several registers
by the instruction set (see Section 2.2.1.2), register windows can be viewed and manipulated as needed tofit the application
at hand.

For example, the register set canbe treated as a flat register file. Access to any particular register in any window is obtained
by writing its window value into the current window pointer located in the processor state register. Moreover, windows
naturally segment registers into blocks that could be dedicated to specific purposes and accessed through the CWP. Regis-
ter saving and parameter passing could be done with a standard push/pop stack in memory, although this would substan-
tially increase bus traffic.

For real-time and embedded controller systems, where fast context switching may be more important than procedure
calling, the register file can easily be divided into banks of registers separated by trap handling windows set up by the WIM
register (see Section 2.2.4.3). Switching from one register bank to another is accomplished by writing to the CWP field
of the processor state register. Figure 2—6 shows the CY7C601/611 register file divided into four banks, each with its own
trap handler window of eight local registers. Globals are accessible by all processes.

2.2.1.2  Special Registers

In general, the window registers seen at any given time can be used in any manner desired, while keeping in mind that
windows overlap at both ends. However, the instruction set does fix the use of 1[0] and partially fixes the use of r[15].

Global register r[0] always returns the value 0 when read, making the most frequently used constant easily available at
all times. In addition, when addressed as a destination operand, r{0] discards the value written to it.

The CALL instruction writes its own address into register r{15] (owt register 7) of the calling procedure’s window. If a
SAVE instruction then activates a new window, 1{15] of the old window becomes r[31] (in register 7) of the new window
and serves as the return address to the calling procedure. However, if the register is needed for some other purpose, the
return address can be saved to a stack or simply overwritten.
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Figure 2-6. Register Banks for Fast Context Switching
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Two other registers are also used by hardware to save information during a trap. Registers r[17] and r[18] (locals 1 and
2) of the trap window (not the trapping procedure’s window) are used to save the contents of the program counters (PC
and nPC) at the time the trap is taken. Because the trap window locals are all a trap handler is allowed to use (unless
it saves to the system stack), this limits the trap handler’s usable registers to six.

222  Processor States

The CY7C601/611 is always in one of three possible states: execute mode, reset mode, or error mode. Execute mode is
the normal operating mode.

The processor enters error mode (at which point it halts and asserts ERROR) if a synchronous trap is generated while
traps are disabled (see Section 2.7). The CY7C601/611 remains in error mode until the RESET signal is asserted, where-
upon it enters reset mode. The external system is responsible for asserting RESET whenever the error mode signal, ER-
ROR, is detected.

Reset mode is entered whenever the RESET signal is asserted (see Section 2.4). The processor remains in that mode
until RESET is deasserted. Upon deassertion, the processor enters execute mode, where the first instruction address
to be executed is address 0 in the supervisor instruction address space (see Sections 2.2.3 and 2.3.2.6).

The CY7C601/611 fetches instructions in the execute mode. If the instruction belongs to the floating-point unit or second
coprocessor, execution is directed to the appropriate coprocessor. Otherwise, the instruction is executed by the integer
unit.

2.2.3 Supervisor/User Modes

In support of multitasking, the CY7C601/611 employs a supervisor/user model of operation. The processor is in supervisor
mode when the S bit in the Processor State Register (PSR) is set, and in user mode when S is reset (see Section 2.2.4.2).
The state of this bit determines which address space is accessed with the ASI bits (see Section 2.3.2.6) and whether or
not privileged instructions may be used. Privileged instructions restrict control register access to supervisor software, pre-
venting user programs from accidentally altering the state of the machine.

In non-multitasking situations, such as embedded systems, user (application) code would probably run in supervisor mode
to gain access to the PSR’s CWP field and other control registers. The only way a program running in user mode may
enter supervisor mode is to encounter a software or hardware trap. A return to user mode is accomplished by executing
a Return from Trap (RETT) instruction, which restores the state of the S bit to what it was before the trap was taken.
A commonly used trap return is the JMPL, RETT delayed control transfer couple (refer to Section 2.3.3.4.4). This re-
stores both the PC and nPC (see Section 2.2.4.1) and the previous state of the S bit.

2.24 Control/Status Registers

CY7C601/611 control/status registers are all 32 bits wide. The two program counters can only be read to and written to
indirectly using such instructions as a CALL, JMPL, software trap (Ticc), and Return from Trap (RETT). The Processor
State Register (PSR), Window Invalid Mask (WIM), Trap Base Register (TBR), and multiply-step register (Y), are all
read/write registers. Read/write instructions that access the PSR, WIM, and TBR are privileged and thus may only be
used in supervisor mode.

Two of these registers, the PSR and TBR, have both read-only status fields and programmable read/write mode fields.
In Figure 2-7 and Figure 2-9, the read-only status fields appear in lower case italic (for example, impl) while the writable
mode fields appear in UPPER CASE (for example, PIL).

2.2.4.1 Program Counters (PC and nPC)

The Program Counter (PC) contains the address of the instruction currently being executed by the CY7C601/611, and
the next Program Counter (nPC) holds the address (PC + 4) of the next instruction to be executed (assuming there is
no control transfer and a trap does not occur). The nPC is necessary to implement delayed control transfers, wherein
the instruction that immediately follows a control transfer may be executed before control is transferred to the target
address (see Section 2.3.3.4). Having both the PC and nPC available to the trap handler allows a trap handler to choose
between retrying the instruction causing the trap (after the trap condition has been eliminated) or resuming program
execution after the trap causing instruction.
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2.2.4.2 Processor State Register (PSR)

Trap Enable (ET)
Previous Supervisoarp Mode (Pé)
Supervisor Mode (S)
Enable Floating-Point Unit (EF)
Enable Coprocessor (EC)*
U 1Y) Integer ~ “Forcedtozero on CY7C811. Processor Current
Implementation Version  Condition Interrupt Window
Number Number Codes Level Pointer
(impl) (ver) (ICC) Reserved (PIL) (CWP)
s 1 4 1 4 1 6 | KN K1 I K1 K1 K1 5 ]
31 28 27 24> T, 14 1371211 8 76 54 0

% ernrenn,
A,
e,
.

I e il
23 22 21 20

Figure 2-7. Processor State Register

This is the CY7C601/611’s key status and control register, containing fields that report the status of processor operations
or control processor operations. Instructions that modify its fields include SAVE, RESTORE, Ticc, RETT, and any in-
struction that modifies the condition code field (icc). Any hardware or software action that generates a trap will modify
the S, PS, and ET fields. The PSR may be read or written directly using the privileged instructions RDPSR and WRPSR.
The PSR is made up of the following fields:
impl—Implementation
Bits 28 through 31 contain the processor’s implementation number. The implementation number for the CY7C601
and CY7C611 is 0001. WRPSR does not modify this field. -
ver—Version
Bits 24 through 27 contain the CY7C601/611’s version number. WRPSR does not modify this field. The current ver-
sion number for the CY7C601 is 0001, and the current version number for the CY7C611 is 0011.
icc—Integer Condition Codes
Bits 20 through 23 hold the integer unit’s condition codes. These bits are modified by arithmetic and logical instructions
whose names end with the letters cc (for example, ANDcc), and can be overwritten by the WRPSR instruction. The
Bicc and Ticc instructions base their control transfer on these bits, which are defined as follows:
N—Negative
Bit 23 indicates whether the ALU result was negative for the last icc-modifying instruction.
0 = not negative
1 = negative
Z—Zero
Bit 22 indicates whether the ALU result was zero for the last icc-modifying instruction.
0 = result was nonzero
1 = result was zero
V—Overflow
Bit 21 indicates whether an arithmetic overflow occurred during the last icc-modifying instruction. The over-

flow bit is also set if a tagged operation (TADDcc, TSUBce, etc.) is performed on non-tagged operands (refer
to Section 2.3.3.2.3). Logical instructions that modify the icc field always set the overflow bit to 0.

0 = arithmetic overflow did not occur
1 = arithmetic overflow did occur
C—Carry
Bit 20 indicates whether an arithmetic carry out of result bit 31 occurred from the last icc-modifying addition

or if a borrow into bit 31 resulted from the last icc-modifying subtraction. Logical instructions that modify the
icc field always set the carry bit to 0.

= a carry/borrow did not occur
1 = a carry/borrow did occur
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Reserved

Bits 14 through 19 are reserved. A WRPSR should write only Os to this field.
EC—Coprocessor Enabled

This bit determines whether the optional second coprocessor is enabled or disabled.
0 = disabled
= enabled

If the coprocessor is either disabled or enabled but not present, a CPop, CBccc, or coprocessor load/store instruction
will cause a coprocessor-disabled trap. When the CP is disabled, it retains that state until it is re-enabled or reset.
Even when disabled, the coprocessor can continue to execute instructions if it contains a queue. Note that the
CY7C611 does not support a coprocessor interface, and on the CY7C611 the EC bit is permanently set to zero.

EF—Floating-Point Unit Enabled
Bit 12 determines whether the FPU is enabled or disabled.
0 = disabled
= enabled

If the FPU is either disabled or enabled but not present, an FPop, FBfcc, or floating-point load/store instruction will
cause a floating-point-disabled trap. When disabled, the FPU retains that state until it is re-enabled or reset. Even
when disabled, it can continue to execute any instructions in its queue.

PIL—Processor Interrupt Level
Bits 8 through 11identify the processor’s external interrupt priority level. The processor will only accept external inter-
rupts whose interrupt level is greater than the value in PIL. Bit 11 of the PIL is the MSB and bit 8 is the LSB.
S—Supervisor
Bit 7 determines whether the processor is in supervisor or user mode. Because WRPSR is privileged and only available
in the supervisor mode, supervisor mode can only be entered by a software or hardware trap.
0 = user mode
1 = supervisor mode
PS—Previous Supervisor

Bit 6 holds the value that was in the S bit at the time the most recent trap was taken.
ET—Enable Traps

Bit 5 determines whether traps are enabled. If traps are disabled, all asynchronous traps are ignored. If a synchronous
or floating-point/coprocessor trap occurs while traps are disabled, the CY7C601/611 halts and enters the error mode
(see Section 2.7 ).

0 = traps disabled
1 = traps enabled
CWP—Current Window Pointer

Bits 0 through 4 contain a pointer to the currently active register file window. CWP is decremented by traps and the
SAVE instruction, and is incremented by RESTORE and RETT instructions.

The Floating-Point Enabled (EF) bit can be used by the programmer to control FPU use when running multiple processes.
By disabling the EF bit while running a process that doesn’t require the FPU, software would not have to save and restore
the FPU’s registers across context switches. If the FPU is not present, as signaled by the input pin, FP, the EF bit can
be used to provoke floating-point instruction set emulation by generating a floating-point-disabled trap if execution of
a floating-point instruction is attempted. This technique may be used with the coprocessor as well.

If it is necessary for the software to manually disable traps, care must be taken when changing the ET bit from enabled
(ET=1) to disabled (ET=0), since the RDPSR, WRPSR instruction sequence is interruptible. One way to handle that
is to write all interrupt trap handlers so that before they return program control to the supervisor software that was inter-
rupted, they restore the PSR to the value it had before the interrupt was taken. This will guarantee a correct result when
the interrupted RDPSR, WRPSR sequence continues. The only PSR bit that cannot be restored is the PS bit, which is
overwritten when the trap is taken.

An alternative to the RDPSR-WRPSR sequence is to generate a “trap instruction” trap with a Ticc instruction. A taken
trap automatically sets ET to 0, disabling further traps.
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Figure 2-8. Window Invalid Mask

Trap Base Address (TBA) Trap Type (tt)

I 2 I s [e]ofo]o]

31 12 43210

Figure 2-9. Trap Base Register

2.2.4.3 Window Invalid Mask Register (WIM)

This register designates which window(s) will cause generation of an underflow or overflow trap when pointed to by the
CWP as the result of a SAVE, RESTORE, or RETT instruction.

Each bit in the WIM register (see Figure 2-8) corresponds to a window; if a bit is set to 1, the window corresponding to
that bit is marked as invalid. If a SAVE, RESTORE, or RETT instruction would cause the CWP to point to a window
whose WIM bit equals 1, a window overflow (SAVE) or window underflow (RESTORE, RETT) trap is generated. The
trap handler uses the local registers of the invalidated window.

AWIM bit is usually set by the operating system software to identify the boundary between the oldest and newest window.
The overflow or underflow trap prevents previous windows from being overwritten or restores previous windows from
memory. WIM can also be used to mark off register banks for fast context switching (see Section 2.2.1.1.3).

WIM is read by the RDWIM instruction, and written by the WRWIM instruction. Bits corresponding to unimplemented
windows read as zeros and are unaffected by writes.

NOTE: The WIM register is NOT cleared during reset. It must be initialized by software.

2.2.4.4 Trap Base Register (TBR)

When a trap occurs, the program counter (PC) is loaded with the contents of the trap base register. The TBR contains
two fields that together constitute a pointer into the trap table, which in turn contains the trap handler address (see
Figure 2-9). RDTBR can read the entire register; however, the WRTBR instruction can write only to the Trap Base Ad-
dress field. Only hardware can write to the Trap Type field, and bits 0 through 3 are zeros and are unaffected by a write.
The Trap Type field can be directly manipulated using the Ticc instruction. For more information on trap operation,
see Section 2.7.

TBA—Trap Base Address

Bits 12 through 31 contain the most-significant 20 bits of the trap table address. This field applies to all trap types except
reset, which forces address 0. The TBA is software controlled.

tt—Trap Type

Bits 4 through 11 comprise the Trap Type field, an eight-bit value that provides an offset into the trap table based on the
type of trap being taken (see Section 2.7.5.3). This field retains its value until the next trap is taken.

2.2.4.5 Y Register

The Y register is used by the multiply step instruction (MULScc) to create 64-bit products. This register is read and written
using the non-privileged RDY and WRY instructions.
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Table 2-2. Floating-Point Formats
Single-Precision Floating-Foint Format

s = sign (1)
e = biased exponent (8)
f = fraction (23)

normalized number (0 < e < 255): (-1)S * 2e-127 % 1 f

subnormal (e =0): f5#0 (-1)S*2-126%f

zero (e=0): f5£0 1S*0

signaling NaN: fs#£0 s=u; e=255 (max); f=.0uuu-uu
(at least one bit must be nonzero)

quiet NaN: f#£0 s=u; e=255 (max); f=.1luuu-uu

infinity: s=0 or 1, depending upon sign;

€=255 (max); f=.00-00 (all zeros)

Double-Precision Floating-Point Format

s = sign (1)
e = biased exponent (11)
f = fraction (52)

normalized number (0 < e < 2047): (-1)S % 2e-1023 % 1 f

subnormal (e =0): f5#£ 0 . (-1)S *2-1022 + o f

zero (e=0): f5£ 0 -1S*0

signaling NaN: f5£0 s=u; e=2047 (max); f=.0uuu-uu
(at least one bit must be nonzero)

quiet NaN: f5#0 : s=u; e=2047 (max); f=.1luuu-uu

infinity: s=0 or 1, depending upon sign;

e=2047 (max); =.00-00 (all zeros)

22.5 Data Types

The CY7C601/611 supports ten data types (eleven with extended-precision floating-point, see Section 2.2.5.3). Integer
types include byte, unsigned byte, halfword, unsigned halfword, word, unsigned word, doubleword, and tagged data.
ANSI/IEEE 754-1985 floating-point types include single- and double-precision. A byte is 8 bits wide, halfwords are 16
bits, words and single-precision floating-point are 32 bits, doublewords and double-precision floating-point are 64 bits.
Table 2-2 shows the formats for single-precision and double-precision floating-point numbers.
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Figure 2-10. Processor Data Types

2.2.5.1 Data Organization In Registers
The organization of the ten data types when loaded into registers is shown in Figure 2-10.

When moving memory data to or from the registers, byte operands are always loaded to or extracted from the lower eight
bits of a register. On a load, bits 8 through 31 are sign-extended for a byte or zero-extended for an unsigned byte. Half-
words are always loaded to or extracted from the lower 16 bits of a register. Bits 16 through 31 are sign-extended for a
halfword or zero-extended for an unsigned halfword during a load. All 32 bits of a signed or unsigned word are loaded
from or stored to memory. Stores of byte and halfword data are not sign-extended. Tagged data is handled as an unsigned
word. Doubleword operands load to and store from two contiguous registers, r[n] and r[n + 1], with r{n] containing the
most significant word. Figure 2-11 illustrates the relationship between the way data is stored in memory and the way it
is loaded into registers.

For single-precision, floating-point operands, bit 31 contains the sign bit, bits 23 through 30 contain the eight bits of expo-
nent, and bits 0 through 22 contain the 23-bit fraction. Double-precision operands require a register pair, with the up-
per-order register (r[n]) containing the sign bit, 11-bit exponent, and the high-order bits of the fraction. The lower-order
register (r[n+ 1]) contains the low-order bits of the fraction. Total fraction size is 52 bits.

When loading doublewords or double-precision operands from memory to the working registers (either r orf), the destina-
tion register must be at an even address or the hardware will force such an address. For example, an attempted load double
to register r{9] would be forced to 18], so that the most significant word would be loaded in r[8] and the least significant
word in r{9]. A load double to r{0] would result in the loss of the most significant word.
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Address N N+2 N+3
Memory location 8|7 0}

Destination Register {31 Zeroes or Sign Extension

Byte Load Example (From Address N + 1)

Address N N+1
DataBus [3! 24]23
Source Register |31 Don’t Care

Byte Store Example (To Address N+ 2)
Figure 2-11... Byte Operand Load and Store

63 Doubleword 0
31 Word 0] 31 Word 0
15 Halfword ol 15 Halfword ol 15 Halfword ol 15 Halfword 0
; Bye 0[7 Byte 4|, Byte 0J7 Byte of; Byie o|7 Bye o|; Bye |, Bye
N N+1 N+2 N+3 N+4 N+5 N+6 N+7

Figure 2-12. Data Organization in Memory

2.2.5.2 Data Organization In Memory

Organization and addressing of data in memory follows the “Big-Endian” convention wherein lower addresses contain
the higher-order bytes (see Figure 2-12). For a stored word, address N corresponds to the most significant byte of the word,
and address N + 3 corresponds to the least significant byte. The address of a halfword, word, or doubleword is also the
address of its most significant byte. A halfword datum must be located on a halfword boundary (address bit <0> = 0),
which is evenly divisible by 2. Similarly, a word must be located on a word boundary (address bits <1:0> = 0) evenly
divisible by 4, and a doubleword must be located on a doubleword boundary (address bits <2:0> = 0) evenly divisible
by 8. Attempting to access misaligned data will generate a memory_address_not_aligned trap.

22.5.3 Extended Precision

The SPARC architecture supports another data type, an ANSI/IEEE 754-1985 extended-precision floating-point type
with a width of 128 bits (see Table 2-3). For the present, however, the CY7C602 FPU does not implement extended-preci-
sion Floating-Point-operate (FPop) instructions, so they must be emulated in software. An extended-precision format
FPop will generate a floating-point-exception trap if execution is attempted.

‘When loaded to the working registers, extended-precision operands require a register quadruple (see Figure 2-13). The
upper-order register (r[N]) contains the sign bit, a 15-bit exponent, and a 16-bit reserved field. The next register (r[N + 1])
contains the one-bit integer part and 31 high-order bits of the fraction. The next register (r[ N + 2]) holds the 32 low-order
bits of the fraction. Total fraction size is 63 bits. The fourth extended-precision register (r[N + 3]) is reserved. As with
double-precision operands, when loading an extended-precision operand, the destination register must be at an even ad-
dress or the hardware will force an even address.

The memory address of an extended-precision datum is also the address of its most significant byte (see Figure 2-14). An
extended-precision datum must be located on an extended-precision boundary (address bits <3:0> = 0), which is evenly
divisible by 16.
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Table 2-3. Extended-Precision Floating-Point Format

s = sign (1)

e = biased exponent (15)

j = integer part (1)

f-msb f-1sb = f = fraction (63)

normalized number (0 < e < 32767;j = 1): (-1)s * 216383 x j f
subnormal number (e = 0;j = 0) (f 7% 0): (-1)s*2-16383 »jf
zero (s = 0;e = 0) (f# 0) (G5 0): (-1)s*0
signaling NaN: fs£0 s = u; e = 32767 (max); j = u;
f = .0 uuu uu (at least one bit
must be nonzero)
quiet NaN: f#£0 s = u; e = 32767 (max); j = u;
f=.uuuuu
infinity: s = 0 or 1, depending upon sign;
e = 32767 (max); j = u;
f = .000 00 (all zeroes)
EXTENDED PRECISION FP r[N] S EXPONENT | RESERVED
r[N + 1]]J HIGH-ORDER BITS OF FRACTION
r(N + 2] LOW-ORDER BITS OF FRACTION
r(N + 3] RESERVED
3130 16 15 0

Figure 2-13. Extended-Precision Data Organization in Registers

126 Extended - Precision Data o
Doubleword Doubleword
63 0§63 [y
Word Word Word r Word
31 0131 0]31 0]31
AddressN N+4 N+8 N+12

Figure 2-14. Extended-Precision Data Organization in Memory

2.3 Instruction Set

This section describes the CY7C601/611 instruction set as defined by the SPARC architecture. Included are subsections
on instruction formats, addressing, instruction types, and an op code summary. Chapter 6, SPARC Instruction Set, con-
tains a description of the assembly language syntax and a complete set of instruction definitions.

2.3.1 Instruction Formats

There are only three basic instruction formats plus three subformats. Format 1 is used for the CALL instruction, format
2 for the SETHI and Branch instructions, and format 3 for the remaining integer and floating-point/coprocessor instruc-
tions. Figure 2-15 shows each format with its fields, bit positions, and the instructions that use that format. Allinstructions
are one word long and aligned on word boundaries in memory. For most instructions, operands are located in source regis-
ters (represented by rsI and rs2). The remaining instructions use one source register plus a displacement or immediate
operand contained within the instruction itself.
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rd
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Iopoodel Destination (rd) | Fcode | Source 1 (rs1) E’; %F;‘é%%‘z ((%%2 Source 2 (rs2)

— 31 30 14 5 0

Figure 2-15. Instruction Format Summary

The a (annul) bit is used in branch instructions to control the execution of the delay instruction that immedi-
ately follows a control transfer instruction (see Section 2.3.3.4.3).

The address space identifier is an eight-bit field used in load/store alternate instructions. See Section 2.3.2.6.
This field identifies the condition code used for a branch instruction.

This field contains the 22-bit displacement value used for PC-relative addressing for a taken branch. It is sign
extended to full-word size when used.

This field contains the 30-bit displacement used for the PC-relative addressing of a CALL instruction.
Thei (immediate) bit determines whether the second ALU operand (for non-FPop instructions) will be r{rs2]
@i = 0), or a sign-extended simml3 (i = 1).

This field contains the 22-bit constant used by the SETHI instruction.

The op field selects the instruction format as shown in Table 2-4.

The op2 field (Table 2-5) contains the instruction opcode for format 2 instructions (op =0).

The 6-bit op3 field contains the instruction opcode for a format 3 instruction (op = 2 or 3).

The 9-bit opc identifies a coprocessor-operate (CPop) instruction. The relationship between the opc field and
CPop instructions is described in Section 2.3.3.6.

The 9-bit opfidentifies a floating-point-operate (FPop)instruction. The relationship between the opffield and
FPop instructions is described in Section 2.3.3.6.

The r register (or r register pair) or f register (or fregister pair) specified in the rd field serves as the source
during store instructions. For all other instructions, the identified register (register pair) serves as the destina-
tion. Note that rf0] as a source supplies the value 0, and as a destination causes the result to be discarded. Note
that rd must be a r register for integer instructions and must be a f register for floating-point instructions.

The 5-bit rs] field identifies the register containing the first source operand. The source is a r register for
integer instructions, a f register for floating-point instructions, or a ¢ register for coprocessor instructions.

The 5-bit rs2 field identifies the register containing the second source operand. The source is a r register for
integer instructions, a f register for floating-point instructions, or a ¢ register for coprocessor instructions.

Thisfield holds the 13-bit immediate value used as the second ALU operand when i = 1.Itis sign-extended to
full-word size when used.
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Table 2-4. op field Coding

op Value Instruction
00 Bicc, FBfce,CBcec, SETHI
01 Call
10 or 11 Other

Table 2-5. op2 Field Coding

op2 Value Instruction
000 UNIMPlemented
010 Bicc
100 SETHI
110 FBfcc
111 CBcce

Unused (reserved) bit patterns which are used in the op, op2, op3, or i (wrong bit used) fields of instructions will cause
an illegal_instruction trap. Fields that are not used for a particular instruction are ignored and so will not cause a trap,
regardless of the bit pattern placed in that field. Unused or reserved bit patterns used in the opf or opc fields of a floating-
point or coprocessor instruction cause an fp exception or a cp exception.

232 Addressing

Because it uses a load/store architecture, the CY7C601/611 needs only four address modes. Memory address generation
is done only for load and store instructions and is byte oriented. Program counter-relative addressing is generated only
for calls and branches and is word-boundary oriented because it is addressing instructions. Register-indirect addressing
applies to jumps, returns, and traps and is also word-boundary oriented. Address generation is illustrated in Figure 2-16.

2.3.2.1 Two Register

Two-register addressing uses the rsI and rs2 fields (instruction format 3) to specify two source registers whose 32-bit con-
tents are added together to create a memory address. This is a load/store (or register-indirect) addressing mode.

2.3.2.2  Register Plus 13-Bit Immediate

This addressing mode is used where an immediate value is required as one of the sources. The address is generated by
adding the 32-bit source register specified by rs1 (format 3) to a 13-bit, sign-extended immediate value contained in the
instruction. This is a load/store (or register-indirect) addressing mode.

2.3.2.3 13-Bit Immediate

Immediate addressing is a special case of register-plus-immediate addressing. In this case, the rsI-specified register is r{0]
(whose value is 0), which means the address is generated using only the 13-bit immediate value. Use of this special case
allows absolute addressing of the upper and lower 4 kbytes of a memory (or instruction) space with the 13-bit immediate
value. Immediate addressing is the simplest method of addressing because no registers need be set up beforehand.
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31 0
I Register Source 1
Memory Address
2l - 9 (Progr::\ym Counter)
r Register Source 2
31 0
l Register Source 1
Memory Address
2L 12 S (Progralym Counter)
I Sign Exension | 13-Bit Imediate
31 13 0
I Sign Extension l 13-Bit Inmediate I—————-» Memory Address
(Program Counter)
LOAD/STORE(JMPL, RETT)
31 0
I Program Counter + 4
31 - 10 Program Counter
| 30-Bit Displacement Jolo
CALL
31 0
I Program Counter + 4
31 2 5 4 0 Program Counter
I Sign Extension -I 22-Bit Displacement lolo
BRANCH

~ Figure 2-16. Address Generation

2324 CALL

Address generation for the CALL instruction is program counter-relative, that is, the target address is based on the pro-
gram counter. Because the CY7C601/611 is a delayed-control-transfer machine (see Section 2.3.3.4 ), before the address
is calculated, the PC is replaced by the nPC, so the calculation is actually done with PC + 4 (see Figure 2-16).

An address is generated by adding this PC + 4 value to the 30-bit word displacement contained in the CALL instruction.
The displacement is formed by appending two zeros to the 30-bit value from the instruction. This allows control transfers
to any word-boundary location in the virtual memory instruction space. The result of the address generation becomes
the new nPC.

2.3.2.5 Branch

Branch instructions also use PC-relative addressing, but in this case, the value added to PC + 4 is a sign-extended 22-bit
word displacement. Again, the displacement is formed by appending two zeros to the 22-bit value contained in the branch
instruction and then sign extending out to 32 bits. This allows a branching range of 8 Mbytes on word boundaries. The
generated address becomes the new nPC.
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Table 2-6. ASI Assignments

CY7C601 CY7C611
Address Space Identifier (ASI) | Address Space Identifier (ASY) Address Space
00001000 (08 H) 000 (0H) User Instruction
00001010 (0A H) 010 (2H) User Data
00001001 (09 H) 001 (1 H) Supervisor Instruction
00001011 (OB H) 011 3H) Supervisor Data

2326 ASI

In addition to the 32 bits of address output by the processor, an additional eight bits of Address Space Identifier (ASI)
is also sent to system memory during a memory access. These ASIbits control access to 256 32-bit address spaces, which
may or may not overlap depending upon the designer’s implementation. The SPARC architecture defines four ASIvalues
for user instructions, user data, supervisor instructions, and supervisor data (see Table 2-6). These four ASI values all
map to the same 32-bit address space, and are used to implement access-level protection. ASIvalues are commonly used
to identify user/supervisor accesses, to identify special protected memory accesses such as boot PROM, and to access
resources such as CY7C604/CY7C605 control registers, TLB entries, cache tag entries, etc..

The ASIvalue is supplied by the CY7C601/611 for each instruction fetch and each data access encountered. The CY7C600
family assigns a number of these ASI values to the CY7C604/ CY7C605 and a number are reserved for future assignment.
Nevertheless, nearly 80 are left unassigned for use by the system. Refer to Table 4-15 for ASI assignments reserved for
the CY7C604/CY7C605.

2.3.3 Instruction Types

CY7C601/611 instructions fall into six functional categories: load/store, arithmetic/logical/shift, control transfer, read/
write control register, floating-point-operate/coprocessor-operate, and miscellaneous. For complete information on each
instruction, see Chapter 6.

2.3.3.1 Load/Store

Load and store instructions (see Table 2-7) move bytes, halfwords, words, and doublewords between the byte-addressable
main memory and a register in either the IU, FPU, or CP. They are the only instructions that access data memory. For
floating-point and coprocessor loads and stores, the CY7C601/611 generates the memory address and the FPU or CP
receives or supplies the data.

The CY7C601/611 implements a hardware-interlocked delay when an instruction immediately following a load tries to
read the register being loaded. The data will be supplied, but only after a one-cycle delay.

Load and store instructions use two-register, register-plus-immediate, and immediate addressing modes. In addition to
the 32-bit address, the CY7C601/611 also generates an eight-bit address space identifier.

23311 ASI

The Address Space Identifier (ASI) is used by the external system to ascertain which of the 256 available address spaces
to access for the load or store being executed. Access to these alternate spaces can be gained directly by using the “load
from alternate space” and “store to alternate space” instructions. These instructions use two-register addressing and the
asi field in instruction format 3. The address space specified in the asi field overrides the automatic ASI assignment made
by the processor, giving access to such resources as system control registers that are invisible to the user. Because the
ASI is intended for use by the system operating software, the alternate space instructions are privileged and can only be
executed in supervisor mode.
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Table 2-7. Load/Store Instructions

Name Operation Cycles
LDSB (LDSBA*) Load Signed Byte (from Alternate Space) 2
LDSH (LDSHA?*) Load Signed Halfword (from Alternate Space) 2
LDUB (LDUBAY) Load Unsigned Byte (from Alternate Space) 2
ILDUH (LDUHA®) Load Unsigned Halfword (from Alternate Space) 2
LD (LDA?®) Load Word (from Alternate Space) 2
LDD (LDDA*) Load Doubleword (from Alternate Space) 3
LDF Load Floating-Point 2
LDDF Load Double Floating-Point 3
LDFSR Load Floating-Point Status 2
LDC Load Coprocessor 2
LDDC Load Double Coprocessor 3
LDCSR Load Coprocessor Status Register 2
STB (STBA®) Store Byte (into Alternate Space) 3
STH (STHAY) Store Halfword (into Alternate Space) 3
ST (STA*®) Store Word (into Alternate Space) 3
STD (STDA*) Store Doubleword (into Alternate Space) 4
STF Store Floating-Point 3
STDF Store Double Floating-Point 4
STFSR Store Floating-Point Status Register 3
STDFQ* Store Double Floating-Point Queue 4
STC Store Coprocessor 3
STDC Store Double Coprocessor 4
STCSR Store Coprocessor State Register 3
STDCQ* Store Double Coprocessor Queue 4
LDSTUB (LDSTUBA®*) | Atomic Load-Store Unsigned Byte (in Alternate Space) 4
SWAP (SWAPA*) Swap r Register with Memory (in Alternate Space) 4

* denotes supervisor instruction

2.3.3.1.2 Multiprocessing Instructions

In addition to alternate address spaces, the CY7C601/611 provides two uninterruptible mstructlons, SWAP and LDSTUB
(atomic load and store unsigned byte), to support tightly coupled multiprocessing.

The SWAP instruction exchanges the contents of an r register with a word from a memory location without allowing
asynchronous traps or other memory accesses during the exchange.

The LDSTUB instruction reads a byte from memory into an r register and then overwrites the memory byte to all ones.
As with SWAP, LDSTUB prevents asynchronous traps and other memory accesses during its execution. LDSTUB is used
to construct semaphores.

Multiple processors attempting to simultaneously execute SWAP or LDSTUB to the same memory location are guaran-
teed that the competing instructions will execute in serial order.

23.3.2 Arithmetic/Logical/Shift

This class of instructions performs a computation on two source operands and writes the result into a destination register
(t[rd]). One of the source operands is always a register, r[rs1], and the other depends on the state of the instruction’s
“” (immediate) bit. If i = 0, the second operand is register r{rs2]. If i = 1, the operand is the 13-bit, sign-extended constant
in the instruction’s simm13 field. SETHI is a special case because it is a single-operand instruction.
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Table 2-8. Arithmetic/Logical/Shift Instructions

Name Operation Cycles
ADD (ADDcc) Add (and modify icc) 1
ADDX  (ADDXcc) Add with Carry (and modify icc) 1
TADDcc (TADDccTV) | Tagged Add and modiify icc (and Trap on oVerflow) 1
SUB (SUBcc) Subtract (and modify icc) 1
SUBX (SUBXcc) Subtract with Carry (and modify icc) 1
TSUBcc  (TSUBccTV) | Tagged Subtract and modify icc (and Trap on oVerflow) 1
MULScc Multiply Step and modify icc 1
AND (ANDcc) And (and modify icc) 1
ANDN  (ANDNcc) And Not (and modify icc) 1
OR (ORcc) Inclusive Or (and modify icc) 1
ORN (ORNcc) Inclusive Or Not (and modify icc) 1
XOR (XORcc) Exclusive Or (and modify icc) 1
XNOR (XNORcc) Exclusive Nor (and modify icc) 1
SLL Shift Left Logical 1
SRL Shift Right Logical 1
SRA Shift Right Arithmetic 1
SETHI Set High 22 Bits of r Register 1

For most arithmetic and logical instructions, there is both a version that modifies the integer condition codes and one
that doesn’t (see Table 2-8).

Shift instructions shift left or right by a distance specified in either a register or an immediate value in the instruction.

The multiply step instruction, MULScc, is used to generate the signed or unsigned 64-bit product of two 32-bit integers.
For more information on MULScec, refer to its definition in Chapter 6.

2.3.3.2.1 Register r[0]

Because register r[0] reads as a 0 and discards any result written to it as a destination, it can be used with some instructions
to create syntactically familiar pseudoinstructions. For example, an integer COMPARE instruction is created using the
SUBcc (subtract and set condition codes) with r[0] as its destination. A TEST instruction uses SUBcc with r[0] as both
the destination and one of the sources. A register-to-register MOVE is accomplished using an ADD or OR instruction
with r{0] as one of the source registers. A negation is done with SUB and r[0] as one source. If the assembler being used
supports psuedoinstructions, it translates the psuedoinstruction into the equivalent instruction in the native assembly
language. Refer to your assembly language manual for details.

23322 SETHI

SETHLI is a special instruction that can be combined with another arithmetic instruction (such as an OR immediate) to
construct a 32-bit constant. SETHI loads a 22-bit immediate value into the upper 22 bits of the destination register and
clears the lower 10 bits. The arithmetic immediate instruction which follows is used to load the lower 10 bits. Note that
the 13-bit immediate value gives a 3 bit overlap with the 22-bit SETHI value. SETHI can also be combined with a load
or store instruction to construct a 32-bit memory address.
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TAGGED [ WORD [ o]
DATA 31 210

I xl X I At least one bit

OTHER [ WORD must be non-zero.

31 21
Figure 2-17. Tagged Data Example

2.3.32.3 Tagged Arithmetic

The tagged arithmetic instructions are useful for languages that employ tags, such as LISP, Smalltalk, or Prolog. For effi-
cient support of such languages, the SPARC architecture defines tagged data as a data type. Tagged data are assumed
to be 30 bits wide with the tag bits (the least two significant bits) set to zero (see Figure 2-17). A tagged add (TADDcc)
or subtract (TSUBcc) will set the overflow bit if either of the operands has a nonzero tag or if a normal overflow occurs.

Tagged add or subtract instructions are normally followed by a conditional branch. If the overflow bit is set during a tagged
add or subtract operation, control is commonly transferred to a routine that checks the operand types. In order to expedite
this software construct, the SPARC architecture provides two trap on overflow instructions: TADDccTV and TSUBccTV,
which automatically trap if the overflow bit is set during their execution.

2.3.3.3 Control Transfer

Control transfer instructions are those that change the values of the PC and nPC. These include conditional branches
(Bicc, FBfcc, CBccc), a call (CALL), a jump (JMPL), conditional traps (Ticc), and a return from trap (RETT). Also in-
cluded are the SAVE and RESTORE instructions, which don’t transfer control but are used to save or restore windows
during a call to a new procedure or a return to a calling procedure (see Table 2-9).

In the CY7C601, control transfer is usually delayed so that the instruction immediately following the control-transfer
instruction (called the delay instruction) can be executed before control transfers to the target address. The delay instruc-
tion is always fetched. However, the annul or a bit in conditional branch instructions can cause the instruction to be an-
nulled (i.e., prevent execution) if the branch is not taken (or always annulled in the case of BA, FBA, and CBA). Ifa
branch is taken, the delay instruction is always executed (except for BA, FBA, and CBA, see Section 2.3.3.4.3). Table 2-10
shows the characteristics of each control transfer type.

Program Counter Relative
gg-ztelative addressing computes the target address by adding a displacement to the program counter. See Section
Register-Indirect
Register-indirect addressing computes the target address as either r[rs1] + rfrs2]if i = 0, or r{rs1] + simmlI3ifi =
1. See Section 2.3.2.
Delayed
A control-transfer instruction is delayed if it transfers control to the target address after a one-instruction delay. See
Section 2.3.3.4.
Annul Bit
In an instruction with an annul bit, the delay instruction that follows may be annulled. See Section 2.3.3.4.3.

2.3.3.3.1 Branching and the Condition Codes

The condition code bits in the icc, fec, and ccc fields, are located (respectively) in the PSR (Processor State Register),
FSR (Floating-point State Register), and CSR (Coprocessor State Register). The integer condition code bits are modified
by arithmetic and logical instructions whose names end with the letters cc, or they may be written directly with WRPSR.
The floating-point condition codes are modified by the floating-point compare instructions, FCMP and FCMPE, or di-
rectly with the STFSR instruction. Modification of the coprocessor condition codes is done directly with STCSR or by
operations defined by the particular coprocessor implementation.

Except for BA (Branch Always) and BN (Branch Never), a Bicc instruction evaluates the integer condition codes as speci-
fied in the cond field. If the tested condition evaluates as true, the branch is taken, causing a PC-relative delayed transfer
to the address [(PC + 4) + sign extnd(disp22)]. If the evaluation result is false, the branch is not taken. For BA and BN,
there is no evaluation; the result is simply forced to true for BA and false for BN.
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Table 2-9. Control Transfer Instructions

Name Operation Cycles
SAVE SAVE caller’s window 1
RESTORE | RESTORE caller’s window 1
Bicc Branch on integer condition codes 1*
FBfcc Branch on floating-point condition codes 1*
CBcce Branch on coprocessor condition codes 1*
CALL Call 1*
JMPL JuMP and Link 2*
RETT RETurn from Trap 2*

Tice Trap on integer condition codes 1 (4 if taken)

* assumes delay slot is filled with a useful instruction

Table 2-10. Control Transfer Instruction Characteristics

Instructions Addressing Mode Delayed Annul Bit
Conditional Branch Program Counter Relative yes yes
Call Program Counter Relative yes yes
Jump Register Indirect yes no
Return Register Indirect yes no
Trap Register Indirect no no

If the branch is not taken, then the annul bit is checked. If the “a” bit is set, the delay instruction is annulled. If “a” is
not set, the delay instruction is executed. If the branch is taken, the annul bit is ignored and the delay instruction is ex-
ecuted. For more information on delayed control transfer and the annul bit, see Section 2.3.3.4.

BN, of course, never branches, and therefore executes like a NOP (but is not recommended as a NOP instruction). How-
ever, as far as the annul bit is concerned, BN acts like a normal branch instruction, annulling the delay instruction if a
= 1and executing itifa = 0.

BA, on the other hand, always branches, so the annul bit would normally be ignored. But for BA, FBA, and CBA, the
effect of the annul bit is changed. See Section 2.3.3.4.3 for details.

As illustrated in Table 2-11, Bicc and Ticc instructions test for the same conditions and use the same cond field codes
during their evaluations.

An FBfcc instruction operates in the same way as a Bicc, except it tests the FCC < 1:0 > signals output by the CY7C602
floating-point unit (see Table 2-12). The FCC < 1:0 > signals are floating-point condition codes which are set by executing
a floating-point compare instruction. A CBccc instruction behaves in the same manner as a FBfcc, except it tests the
CCC< 1:0> signals supplied by the coprocessor (see Table 2-13). Both FBN and CBN behave in the same way as BN.

2.3.3.3.2 Trap Instructions

The “Trap on integer condition codes” (Ticc) instruction evaluates the condition codes specified by its cond (condition)
field. If the result is true, a trap is immediately taken (no delay instruction). If the condition codes evaluate to false, Ticc
executes as a NOP. i

Once the Ticc is taken, it identifies which software trap type caused it by writing its trap number + 128 (the offset for
trap instructions) into the # field of the Trap Base Register (TBR), as illustrated in Figure 2-18. The trap number is the
least significant seven bits of either “r[rs1] + r[rs2]” if the i field is zero, or “r{rs1] + sign extnd(simm13)” if the i field
is one. The processor then disables traps (ET =0), saves the state of S into PS, decrements the CWP, saves PC and nPC
into the locals r[17] and 1[18] (respectively) of the new window, enters supervisor mode (S= 1), and writes the trap base
register to the PC and TBR + 4 to nPC.
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Table 2-11. Bicc and Ticc Condition Codes

Cond. Test Cond. Test
0000 Never 1000 Always
0001 Equal to 1001 | Not equal to
0010 Less than or equal 1010 Greater than
0011 Less than 1011 Greater than or equal to
0100 Less than or equal to, unsigned 1100 Greater than, unsigned
0101 Carry set (less than, unsigned) 1101 Carry clear (greater than or equal to, unsigned)
0110 Negative 1110 Positive
0111 Overflow set 1111 Overflow clear

Table 2-12. FBfcc Condition Codes

Cond. Test Cond. : Test

0000 Never 1000 Always

0001 Not equal to 1001 Equal to

0010 Less than or greater than 1010 Unordered or equal to

0011 Unordered or less than 1011 Greater than or equal to

0100 Less than 1100 .| Unordered or greater than or equal to
0101 Unordered or greater than 1101 Less than or equal to

0110 Greater than 1110 Unordered or less than or equal to
0111 Unordered 1111 Ordered

Table 2-13. CBccc Condition Codes

Opcode Cond. CCC[1:0] Test Opcode Cond. CCC[1:0] Test
CBN 0000 Never CBA 1000 Always
CB123 0001 lor2or3 CB0 1001 0
CB12 0010 lor2 CB03 1010 Oor3
CB13 0011 lor3 CB02 1011 OQor2
CB1 0100 1 CB023 1100 Qor2or3
CB23 0101 2o0r3 CBO01 1101 Oorl
CB2 0110 2 CB013 1110 Qorlor3
CB3 0111 3 CB012 1111 Oorlor2
Trap Base Register
| Trep Base Address (TBA) | TrapType 1y  Joo000]
31 12 1 4 3 0
128

7-Bit operand

2 it field of Trap Base Register

| Sign Extension T 13-Bit Immediate

i bit of Ticc instruction = 1
31

128

tt field of Trap Base Register

i bit of Tice instruction = 0
Figure 2-18. Ticc Trap Address Generation
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Ticc can be used to implement kernel calls, breakpointing, and tracing. It can also be used for run-time checks, such as
out-of-range array indices, integer overflow, etc.

Return from a trap is accomplished using the delayed control transfer couple, IMPL, RETT. RETT first increments the
CWP by one, calculates the return address (using register-indirect addressing), and then checks for a number of trap con-
ditions before it allows a return. An illegal_instruction trap is generated if traps are enabled (ET=1) when RETT is ex-
ecuted. If ET=0, RETT checks for other trap conditions and will generate a reset trap and enter error mode for the
following conditions: S=0, the new CWP would cause a window underflow, or the return address is not word aligned.
If none of these conditions exist, RETT enables traps (ET = 1), restores the previous supervisor state to the S bit, and
writes the target address into the nPC.

2.33.3.3 Calls and Returns

Calling a subroutine or procedure can be done in one of two ways. A CALL instruction computes its target address using
a PC-relative displacement of 30-bits. The JuMP and Link (JMPL) instruction uses register-indirect addressing (the sum
of two registers or the sum of a register and a 13-bit signed immediate value) to compute its target address. Either instruc-
tion allows control transfer to any arbitrary instruction address.

Control transfer to a procedure that requires its own register window is done with either a CALL or JMPL instruction
and a SAVE instruction. A procedure that does not need a new window, a so-called “leaf” routine, is invoked with only
the CALL or JMPL.

The CALL instruction stores its return address (the current PC) into outs register r{15]. When the new window is acti-
vated, this becomes ins register r[31] (see Figure 2-4). The JMPL instruction stores its return address (the contents of
PC, which is the Link) into the 7 register specified in the destination field, rd.

The primary purpose of the SAVE instruction is to “save” the caller’s window by decrementing the Current Window Point-
er (CWP) by one, thereby activating the next window and making the current window into the previous window. SAVE
also performs a normal ADD, using source registers from the caller’s window, but writing the result into a destination
register in the new window. This can be used to set a new stack pointer from the previous one (see Section 2.2.1.1.1).

Return from a procedure requiring its own window is done with a RESTORE and a JMPL instruction. A leaf procedure
returns by executing a JMPL only. The target address for the return is normally that of the instruction following the
CALL:s or JMPL:s delay instruction; that is, the return address + 8. The RESTORE instruction restores the caller’s win-
dow by incrementing the CWP by one, causing the previous window to become the current window. As with SAVE, RE-
STORE performs an ADD using source registers from the called (new) window and writing the result into the calling
(previous) window. :

Both SAVE and RESTORE compare the new CWP against the Window Invalid Mask (WIM) to check for window over-
flow or underflow. They may also be used to atomically change the CWP while establishing a new memory stack pointer
in an r register.

2.3.3.4 Delayed Control Transfer

Traditional architectures usually execute the target instruction of a control transfer immediately after the control transfer
instruction. However, in a pipelined RISC architecture, this type of transfer would require flushing the instruction that
follows the control transfer instruction. To avoid creating a hole or bubble in the pipeline, the CY7C601/611 delays execu-
tion of the target instruction until the instruction following the control transfer instruction is executed. The instruction
in this delay slot is called the delay instruction.

Table 2-14. Delayed Control Transfer Instruction Example

PC nPC Instruction
8 12 Non-control transfer
12 16 Control transfer (target = 40)
16 40 Non-control transfer (delay instruction)

(Transfers control to 40)
40 44
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Table 2-15. Effect of Annul Bit Reset (@ =0)

PC nPC Instruction Action
8 12 Non-control transfer Executed
12 16 Bicc (a=0) 40 Not Taken
16 20 Delay slot instruction Executed
20 24 Executed

Table 2-16. Effect of Annul Bit Set (a=1)

PC nPC Instruction Action
8 12 Non-control transfer Executed
12 16 Bicc (a=1) 40 Not Taken
16 20 Delay slot inst. (annulled) | Not Executed
20 24 Executed

2.334.1 PCandnPC

The Program Counter (PC) contains the address of the instruction currently being executed by the CY7C601/611, and
the next Program Counter (nPC) holds the address (PC + 4) of the next instruction to be executed (assuming a control
transfer or a trap does not occur).

Most instructions end by copying the contents of the nPC into the PC and then they either increment nPC by four or
write a computed control transfer target address into nPC. At this point, the PC points to the instruction that is about
to begin execution and the nPC points to the instruction that will be executed after that, i.e. the second instruction after
the currently executing instruction. It is the existence of the nPC that allows the execution of the delay instruction before
transfer of control to the target instruction.

2.3.3.4.2 Delay Instruction

The instruction pointed to by the nPC when the PC is pointing to a delayed-control-transfer instruction is called the delay
instruction. Normally, this is the next sequential instruction in the code stream. However, if the instruction that preceded
the delayed control transfer was itself a delayed control transfer, the target of the preceding control transfer becomes
the delay instruction (that’s where the nPC will point). For more on delayed control transfer couples, see Section 2.3.3.4.4.

Table 2-14 shows the order of execution for a simple (not back-to-back) delayed control transfer. The order of execution
is 8, 12, 16, 40. If the delayed-control-transfer instruction were not taken, the order would be 8, 12, 16, 20.

23343 Annul Bit

The a (annul) bit is only available on conditional branch instructions (Bicc, FBfcc, and CBccc), where it changes the behav-
ior of the delay instruction. If a is set on a conditional branch instruction (except BA, FBA, and CBA) and the branch
is not taken, the delay instruction is annulled (not executed). An annulled instruction has no effect on the state of the
CY7C601/611 nor can a trap occur during an annulled instruction. If the branch is taken, the a bit is ignored and the delay
instruction is executed. Table 2-15 and Table 2-16 show the effect of the annul bit when it is reset or set.

The “branch always” instructions (BA, FBA, and CBA) are a special case. If the a bit is set in these instructions, the delay
instruction is annulled, even though the branch is taken. Effectively, this gives a “traditional” non-delayed branch. When
a = 0in a “branch always” instruction, it behaves the same as any other conditional branch; the delay instruction is ex-
ecuted. Figure 2-19 displays the effect the a bit has on any branch for either the set or reset state. Table 2-17 summarizes
the effect the annul bit has on the execution of delay instructions.
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Table 2-17. Effect of Annul Bit on Delay Instruction

a bit Type of branch Delay instruction executed?
a=1 Always No
Conditional, taken Yes
Conditional, not taken No
a=0 Always Yes
Conditional, taken Yes
Conditional, not taken Yes
ANNUL = 0 ANNUL = 1
Code Code

Control Transfer Inst.

Control Transfer Inst. Branch Untaken
Always Conditional
Taken Delay Inst. Taken Delay Inst.
Conditional Conditional
B ——
Untaken

v Conditional r——'

Figure 2-19. Delayed Control Transfer

2.3.3.4.4 Delayed Control Transfer Couples

The occurrence of two back-to-back, delayed control transfer instructions is called a delayed control transfer couple,
which the processor handles differently from a simple control transfer. An instruction sequence containing a delayed
control transfer couple is shown in Table 2-18, and the order of execution for the six different cases of back-to-back,
delayed control transfer instructions is shown in Table 2-19.

The delay slot instruction for a delayed control transfer instruction is the instruction fetched after the delayed control
transfer instruction. For most cases, this instruction is located immediately in the code listing after the delayed control
transfer instruction. However, in the case of a delayed control transfer couple, the target instruction of the first delayed
control transfer instruction is the delay slot instruction for the second delayed control transfer instruction, since that tar-
get instruction is the next instruction to be fetched. The delay slot instruction for the second delayed control transfer
instruction is the next instruction loaded into the instruction pipeline after the second delayed control transfer instruc-
tion.

In the following tables, “delayed control transfer instruction” is abbreviated to “DCTI”. A “Non-DCTI” may be either
a non-control transfer instruction or a control transfer that is not delayed (i.e., a Ticc). Where the annul bit is not indi-
cated, it may be either 0 or 1.

Case 1 of Table 2-19 includes the “YMPL, RETT” couple, which is the normal method of returning from a trap handler.
The JIMPL, RETT couple ensures correct values of PC and nPC are restored upon exiting the trap routine, even in the
case of a trap caused by a delay slot instruction (see Section 2.3.3.4.2). The case of a trap caused by a delay slot instruction
is one where the nPC will not be PC + 4, thus requiring both PC and nPC to be restored. The JMPL, RETT couple
allows the choice of re-executing the trapped instruction or executing the instruction following the trap occurrence. Refer
to the RETT entry in Chapter 6 for further information.
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Table 2-18. Delayed Control Transfer Couple Instruction Sequence

Address Instruction | Target
8: Non DCTI
12: DCTI 40 -
16: DCTI 60
20: Non DCTI .
24:
40 I\ion DCTI
44:
60: Non DCTI
64:

Table 2-19. Execution of Delayed Control Transfer Couples

Case DCTI at Location 12 DCTI at Location 16 Order of Execution
1 DCTI Unconditional DCTI Taken 12,16,40,60,64,...
2 DCTI Unconditional B*cc(a=0) Untaken 12,16,40,44,...
3 DCTI Unconditional B*cc(a=1) Untaken 12,16,44,48,...(40 annulled)
4 DCTI Unconditional B*A(a=1) 12,16,60,64,...(40 annulled)
5 B*A(a=1) any CTI 12,40,44,...(16 annulled)
[3 B*cc DCTI Not Supported
Definitions:
B*A--———--————-—-BA FBA, or CBA
B*ce——mmmm—m ] Bicc,FBicc, or CBicc (except B*A)
DCTI Uncond.——-CALLJMPL,RETT, or B*A(a=0)
DCTI Taken———-CALL,JMPL,RETT,B*cc taken, or B*A(a=0)

Cases 1-5 described in Table 2-19 are illustrated in Figure 2-20. In case 1, the first DCTI is fetched at address 12 and
the target address is calculated while the delay slot instruction is fetched. The delay slot instruction for the first DCTI
(located at address 16) is another DCTI, which also has a delay slot. The target address of the first DCTI has been calcu-
lated by the time the first delay slot instruction has been fetched, and the target instruction is fetched at address 40. The
target instruction is the instruction located in the instruction pipeline after the second DCTI, and therefore it is the delay
slot instruction for the second DCTI. The target instruction for the second DCTI (address 60) is fetched after the delay
slot instruction for the second DCTI (which is also the target address for the first DCTI) has been fetched.

Case 2 differs from case 1 in that the second DCTI is conditional, and is not taken. In case 2, the instruction at address
40 (target for DCTI #1) is the delay slot instruction for the second DCTI. Since the second DCTIdoes not cause a branch,
the instruction fetch continues to address 44.

Case 3 is an interesting case in which the target instruction of the first DCTTI is annulled by the second DCTI. This causes
the instruction at address 40 to be annulled. Since the second DCTTI is an untaken conditional branch, instruction fetch
continues after the annulled target instruction (address 44). -

Case 4 illustrates a DCTI followed by a branch always instruction with the annul bit set. This causes the target instruction
of the first DCTI (address 40) to be annulled, and program control is transferred to the target of the second DCTI at
address 60.

Case 5 illustrates the case where the second DCTI is annulled by the annul bit of the first DCTIL The second DCTI,
since it is annulled, has no effect on instruction fetch. This case is identical to the case of any other annulled delay slot
instruction.

When the first instruction of a delayed control transfer couple is a conditional branch, control transfer is undefined (case
6). If such a couple is executed, the location where execution continues is within the same address space but is otherwise
undefined. Execution of this sequence does not change any other aspect of the processor state.
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Inst.
Address

12H

16H

40H

60H

64H

CY7C601/CY7C611 Integer Unit

Case 1 s, Case 2 Ao, Case 3
DCT Inst. 1 12H DCT Inst. 1 12H DCT Inst. 1
Delay Slot #1 y Delay Slot #1 y Delay Slot #1
DCT Inst. 2 16H B*cc (untaken) 16H B*cc (untaken)
a=0 a=1
Delay Siot #2) y Delay Slot #2] ~Delay-Slot #2
| DCT #1 Target| 40H || DCT #1 Target | 40H Target)-"

44H Next Inst.

annulled by DCTI #2
44H Next Inst.

o Case 4 o, Caseb
12H 12H
Delay Siot #1
16H 16H
annulled by DCTI #1
40H t] 40H | DCT #1 Target
lled by DCTI #2
ey 44H
3
60H | DCT #2 Target,
oo
Figure 2-20. Delayed Control Transfer Couples
Table 2-20. Read/Write Control Register Instructions
Name Operation Cycles
RDY Read Y Register 1
RDPSR* Read Processor State Register 1
RDWIM* Read Window Invalid Mask 1
RDTBR* Read Trap Base Register 1
WRY Write Y Register 1
WRPSR* Write Processor State Register 1
WRWIM* ‘Write Window Invalid Mask 1
WRTBR* * Write Trap Base Register 1

* denotes supervisor instruction
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Table 2-21. Floating-Point-Operate and Coprocessor-Operate Instructions

Name Operation Cycles
FPop Floating-Point Operations 1 to launch
CPop Coprocessor Operations 1 to launch

Table 2-22. Miscellaneaous Instructions

Name Operation Cycles
UNIMP Unimplemented Instruction 1
IFLUSH Instruction Cache Flush 1

2.3.3.5 Read/Write Control Registers

This class of instruction reads or writes the contents of the various control registers (see Table 2-20). The source (read)
or destination (write) is implied by the instruction name. Read/write instructions are provided for the PSR, WIM, TBR,
FSR, CSR, and the Y register. Reads and writes to the PSR, WIM, and TBR are privileged and are available in supervisor
mode only.

2.3.3.6  Floating-Point-Operate and Coprocessor-Operate

Floating-point calculations are accomplished with floating-point-operate instructions (FPops), which are register-to-reg-
ister instructions that compute some result as a function of one or two source operands (see Table 2-21). The result is
always placed in a destination register (i.e., source operands are not overwritten). The source and destination registers
are f registers from the CY7C602’s register file. See Section 3.3.1 for more information. If no CY7C602 is present, or
if the EF bit of the PSR is not set, executing a floating-point instruction will generate a fp disabled trap.

Coprocessor-operate instructions (CPops) are executed by the attached coprocessor. Coprocessor instructions use the
c registers located in the coprocessor’s register file as source and destination registers. If there is no attached coprocessor,
attempted execution of a coprocessor instruction generates a cp disabled trap.

Floating-point and coprocessor load/store instructions are not operate instructions; they fall under the CY7C601/611’s
load/store instruction category (see Section 2.3.3.1).

Except for op and op3, which specify the particular floating-point-operate or coprocessor-operate instruction to be ex-
ecuted, the instruction fields of an FPop or CPop are interpreted by the CY7C602 or coprocessor. Floating-point-operate
instructions execute concurrently with CY7C601/611 instructions. CPops can also execute concurrently with both
CY7C601 and FPop instructions if they are designed to do so.

Because the CY7C601/611 and CY7C602 can execute instructions concurrently, when a floating-point exception occurs,
the PC does contain the address of an FPop instruction, but not the one that caused the exception. However, the front
entry of the floating-point queue contains the offending instruction and its address.

If the coprocessor executes instructions concurrently with the CY7C601, the architecture will support a coprocessor
queue that functions in the same fashion as the floating-point queue.

2.3.3.7 Miscellaneous

Instructions in this category handle special circumstances within the integer unit (see Table 2-22). Execution of the
UNIMP instruction causes an illegal instruction trap, so its execution is normally avoided except as part of a checking
routine. Details of one possible use for UNIMP are given in its definition in Chapter 6.

The IFLUSH instruction is used to flush a word from an internal (to the CY7C601/611) instruction cache. Current integer
unit implementations (CY7C601/611) do not incorporate an internal instruction cache, so IFLUSH would normally ex-
ecute as a NOP. However, if there is an external instruction cache, IFLUSH causes an illegal instruction trap if the IFT
signal is LOW (see Section 2.4).
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This section contains tables that give a complete list of the instruction opcodes, both by functional groups and in ascending
numeric order.

2.3.4.1 Load/Store Instructions

Table 2-23. Load/Store Instruction Opcodes

Opcodes with Format
Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0
LD 11] o 000000 | w1 [i=0 asi [ =2
i=1] simm13
LDA 11 rd 010000 sl i=0 asi 52
LDC 11 rd 110000 sl i=0 ignored 1s2
i=1 simm13
LDCSR 11 rd 110001 sl i=0 ignored I s2
i=1 simm13
LDD 11 rd 000011 sl i=0 asi [ 152
i=1 simm13
LDDA 11 rd 010011 sl i=0 asi 152
LDDC 11 rd 110011 sl i=0 ignored 52
i=1 simm13
LDDF 11 rd 100011 sl i=0 ignored J 52
i=1 simm13
LDF 11 rd 100000 151 i=0 ignored [ 2
i=1 simm13
LDFSR 11 rd 100001 sl i=0 ignored l 152
i=1 simm13
LDSB 11 rd 001001 sl i=0 asi [ 152
i=1 simm13
LDSBA 11 rd 011001 sl i=0 asi 152
LDSH 11 rd 001010 sl i=0 asi 152
i=1 simm13
LDSHA 11 rd 011010 sl i=0 asi 152
LDSTUB 11 rd 001101 sl i=0 asi 152
i=1 simm13
LDSTUBA |1 1 rd 011101 sl i=0 asi 152
LDUB 11 rd 000001 sl i=0 asi 152
. i=1 simm13
LDUBA 11 rd 010001 sl i=0 asi rs2
LDUH 11 rd 000010 rsl i=0 asi 52
i=1 simm13
LDUHA 11 rd 010010 sl |i= asi | 2
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Table 2-23. Load/Store Instruction Opcodes (continued)

Opcodes with Format
Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0
ST 11 rd 000100 s1 |i=0 asi 152
i=1 simm13
STA 11 rd 010100 sl |i=0 asi 152
STB 11 rd 000101 s1 |i=0 asi rs2
e i=1 simm13
STBA 11 rd 010101 s1 [i=0 asi 52
STC 11 rd 110100 s1 |i=0 ignored 152
i=1 simm13
STCSR 11 rd 110101 s1 |i=0 ignored | m2
i=1 simm13
STD 11 000111 sl [i=0 asi [ m2
i=1 simm13
STDA 11 rd 010111 sl |i=0 asi 152
STDC 11 rd 110111 sl i=0 ignored rs2
i=1 simm13
STDCQ 11| 110110 sl |i=0 ignored [ =2
i=1 simm13
STDF 11| 100111 sl [i=0 ignored [ m2
i=1 simm13
STDFQ 11 rd 100110 s1 |i=0 ignored [ =2
i=1 simm13
STF 11 rd 100100 s1 |i=0 ignored ] w2
i=1 simm13
STFSR 11 o 100101 [ w1 [i=0 ignored [ =2
i=1 simm13
STH 11 rd 000110 rs1 i=0 asi [ m2
i=1 simm13
STHA 11 rd 010110 sl |i=0 asi 152
SWAP 11 rd 001111 sl [i=0 asi 152
i=1 simm13
SWAPA 11 rd 011111 s1 |i=0 asi ] =2
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2.3.4.2 Arithmetic/Logical IShift Instructions

Table 2-24. Arithmetic/Logical/Shift Instruction Opcodes

Opcodes with Format
Mnemonic | 3130 29 25 24 19 18 14 13 12 5 4 0
ADD 10 rd 000000 sl |i=0 ignored | m2
i=1 simm13
ADDcc 10 rd 010000 sl [i=0 ignored [ 2
i=1 simm13
ADDX 10 rd 001000 sl i=0 ignored L rs2
i=1 simm13
ADDXcc 10 rd 011000 1 |i=0 ignored | 2
i=1 simm13
AND 10 d 000001 sl [i=0 ignored [ m2
i=1 simm13
ANDcc 10 rd 010001 sl i=0 ignored I 152
i=1 simm13
ANDN 10 rd 000101 sl [i=0 ignored | 2
) i=1 simm13
ANDNcc 10 rd 010101 sl i=0 ignored | 152
i=1 simm13
MULScc 10 rd 100100 sl |i=0 ignored [ =2
i=1 simm13
OR 10| 000010 [ w1 [i=0 ignored | 2
i=1 simm13
ORcc 10 rd 010010 sl |i=0 ignored [ 2
i=1 simm13
ORN 10 rd 000110 sl |i=0 ignored [ m2
i=1 simm13
ORNce 10| 010110 sl [i=0 ignored [ 2
i=1 simm13
SLL 10 rd 100101 sl [i=0 ignored | 2
i=1 shent
SRA 10 rd 100111 sl i=0 ignored L rs2
i=1 shent
SRL 10 rd 100110 sl |i=0 ignored ] =2
i=1 shent
SUB 10 rd 000100 sl i=0 ignored L rs2
i=1 simm13
SUBcc 10 rd 010100 s1 |i=0 ignored [ =2
' i=1 simm13
SUBX 10 rd 001100 sl i=0 ignored [ s2
i=1 simm13
SUBXcc 10 rd 011100 s1 [i=0 ignored | m2
i=1 simm13
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Table 2-24. Arithmetic/Logical/Shift Instruction Opcodes (continued)

Opcodes with Format

Mnemonic | 3130 29 25 24 19 18 14 13 12 5 4

TADDcc 10 rd 100000 s [i=0 ignored | m2
i=1 simm13

TADDccTV | 1 0 rd 100010 sl [i=0 ignored ] m
i=1 simm13

TSUBcc 10 rd 100001 sl |i=0 ignored | 2
i=1 simm13

TSUBceTV [1 0] rd 100011 [ m1 [i=0 ignored | m2
i=1 simm13

XNOR 10 rd 000111 sl [i= ignored 1 ™

‘ i=1 simm13

XNORcc 10 rd 010111 sl i=0 ignored L 52
i=1 simm13

XOR 10| rd 000011 sl |i=0 ignored | 2
i=1 simm13

XORcc 10 rd 010011 sl [i=0 ignored | 2
i= simm13

3130 29 25 2422 21
SETHI 00[ rd J100] imm22
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2.3.4.3 Control Transfer Instructions

Table 2-25. Control Transfer Instruction Opcodes

Opcodes with Format
Mnemonic 3130 29 25 24 9 18 14 13 12 5 4 0
IMPL 10] o 111000 | w1 [i= ignored [ 2
i=1 simm13
RESTORE [1 0| 111101 | w1 [i=0