
~TEXAS
INSTRUMENTS

MSP430 Family

1994 1994 ==-=---===========

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discon
tinue any semiconductor product or service without notice, and advises its customers
to obtain the latest version of relevant information to verify, before placing orders, that
the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the
specifications applicable at the time of sale in accordance with TI's standard warranty.
Testing and other quality control techniques are utilized to the extent TI deems neces
sary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of
death, personal injury, or severe property or environmental damage ("Critical Applica
tions").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED,
AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT
APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the
customer. Use of TI products in such applications requires the written approval of an
appropriate TI officer. Questions concerning potential risk applications should be
directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate
design and operating safeguards should be provided by the customer to minimize
inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI
warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of TI
covering or relating to any combination, machine, or process in which such semicon
ductor products or services might be or are used.

Copyright © 1994, Texas Instruments Incorporated

MSP430 Family

MSP430 Family
Software Users Guide

MSP430 Family

Topics

Introduction 1-1

2 Instruction Set 2-3

3 General Initialization 3-3

4 Integer Calculation 4-3

5 General Purpose Subroutines 5-3

6 I/O-Module Programming Examples 6-3

7 Timer Examples 7-3

8 LCD Display 8-3

9 The Analogue-to-Digital Converter 9-3

10 Hints and Recommendations 10-3

A Appendixes A-3

MSP430 Family

MSP430 Family Introduction

1 Introduction

This section discusses the features of the MSP430 family of controllers with special
capabilities for analog processing control. All family members are software compatible,
allowing easy migration within the MSP430 family by maintaining a software base,
design expertise and development tools.

The concept of a CPU designed for various applications with a 16-bit structure is
presented. It uses a "von-Neumann Architecture" and hence has RAM, ROM and all
peripherals in one address space.

1-1

Introduction MSP430 Family

1-2

MSP430 Family

2

2.1

2.2

2.3

2.4

2.5

2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7

Note

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

Instruction set

Instruction Set Overview

Instruction Formats

Topics

Instruction set description - alphabetical order

Macro instructions emulated with several instructions

Stack pointer addressing

Branch operation
Indirect Branch, CALL
Indirect indexed Branch, CALL
Indirect symbolic Branch, CALL
Indirect absolute Branch, CALL
Indirect indirect Branch, CALL
Indirect, indirect Branch, CALL with autoincrement
Direct Branch, direct Call

Notes

Title

Marked instructions are emulated instructions

Marked instructions

Operations using Status Register SR for destination

Conditional and unconditional Jumps

Emulation of the following instructions

Disable Interrupt

Enable Interrupt

Other instructions can be used to emulate no operation

The system Stack Pointer 1

The system Stack Pointer 2

The system Stack Pointer 3

The system Stack Pointer 4

RLA substitution

RLA.B substitution

RLC substitution

RLC.B substitution

Borrow is treated as a .NOT. carry 1

Instruction set

2-3

2-4

2-6

2-11

2-91

2-92

2-94
2-94
2-96
2-98

2-100
2-102
2-104
2-106

Page

2-5

2-5

2-6

2-8

2-9

2-43

2-44

2-61

2-62

2-63

2-64

2-65

2-68

2-69

2-70

2-71

2-76

2-1

Instruction set

2.18 Borrow is treated as a .NOT. carry 2

2.19 Borrow is treated as a .NOT. carry 3

2.20 Borrow is treated as a .NOT. carry 4

2.21 Borrow is treated as a .NOT. carry 5

2.22 Borrow is treated as a .NOT. carry 6

2-2

MSP430 Family

2-77

2-81

2-82

2-83

2-84

MSP430 Family Instruction set

2 Instruction set

The MSP430 Core CPU architecture evolved from the idea of using a reduced
instruction set and highly transparent instruction formats. There are instructions that are
implemented into hardware and instructions that use the present hardware construction
and emulate instructions with high efficiency. The emulated instructions use core
instructions with the additional built-in constant generators CG1 and CG2. Both the core
instructions (hardware implemented instructions) and the emulated instructions are
described in this part. The mnemonics of the emulated instructions are used with the
examples.

The words in programme memory used by an instruction vary from 1 to 3 words
depending on the combination of addressing modes.
Each instruction uses a minimum of one word (two bytes) in the programme memory.
The indexed, symbolic, absolute and immediate modes need in one additional word in
the programme memory. These four modes are available for the source operand. The
indexed, symbolic and absolute mode can be used for the destination operand.
The instruction combination for source and destination consumes one to three words of
code memory.

2.1 Instruction Set Overview

Status Bits

V N Z C
ADC[.w];ADC.B dst dst + C -> dst
ADD[.w];ADD.B src,dst src + dst -> dst
ADDC[.w];ADDC.B src,dst src + dst + C -> dst
AND[.w];AND.B src,dst src .and. dst -> dst 0
BIC[.w];BIC.B src,dst .not.src .and. dst -> dst
BIS[.w];BIS.B src,dst src .or. dst -> dst
BIT[.w];BIT.B src,dst src .and. dst 0
BA dst Branch to
CALL dst PC+2 -> stack, dst -> PC
CLA[. W];CLA.B dst Clear destination
CLAC Clear carry bit 0
CLAN Clear negative bit 0
CLAZ Clear zero bit 0
CMP[.w];CMP.B src,dst dst - src
DADC[.W];DADC.B dst dst + C -> dst (deCimal)
DADD[.w];DADD.B src,dst src + dst + C -> dst (decimal)
DEC[.w];DEC.B dst dst - 1 -> dst
DECD[.w];DECD.B dst dst - 2 -> dst
DINT Disable interrupt
EINT Enable interrupt
INC[.w];INC.B dst Increment destination,

dst +1 -> dst

2-3

Instruction set

INCD[.w];INCD.B

INV[.w];INV.B
JC/JHS
JEQ/JZ
JGE
JL
JMP
IN

JNC/JLO
JNE/JNZ

dst

dst
Label
Label
Label
Label
Label
Label

Label
Label

Double-Increment destination,
dst+2->dst
Invert destination
Jump to Label if Carry-bit is set
Jump to Label if Zero-bit is set
Jump to Label if (N .XOR. V) = 0 -
Jump to Label if (N .XOR. V) = 1 -
Jump to Label unconditionally
Jump to Label if Negative-bit is
set
Jump to Label if Carry-bit is reset -
Jump to Label if Zero-bit is reset -

MSP430 Family

Note: Marked instructions are emulated instructions

All marked instructions (*) are emulated instructions. The emulated instructions
use core instructions combined with the architecture and implementation of the
CPU for higher code efficiency and faster execution.

2-4

MOV[.w];MOV.B src,dst
NOP
POP[.w];POP.B dst
PUSH[.w];PUSH.B src
RETI

RET

RLA[.w];RLA.B
RLC[.W];RLC.B
RRA[.w];RRA.B
RRC[.w];RRC.B
SBC[.w];SBC.B
SETC
SETN
SETZ
SUB[.w];SUB.B
SUBC[.w];SUBC.B
SWPB
SXT
TST[.w];TST.B
XOR[.w];XOR.B

dst
dst
dst
dst
dst

src,dst
src,dst
dst
dst
dst
src,dst

src -> dst
No operation
Item from stack, SP+2 --7 SP
SP - 2 --7 SP, src --7 @SP
Return from interrupt
TOS --7 SR, SP + 2 --7 SP
TOS --7 PC, SP + 2 --7 SZP
Return from subroutine
TOS --7 PC, SP + 2 --7 SP
Rotate left arithmetically
Rotate left through carry
MSB --7 MSB --7 .•.. LSB --7 C
C --7 MSB --7•• LSB --7 C
Subtract carry from destination
Set carry bit
Set negative bit
Set zero bit
dst + .not.src + 1 --7 dst
dst + .not.src + C --7 dst
swap bytes
Bit? --7 Bit8 Bit15
Test destination
src .xor. dst --7 dst

Status Bits

V N Z C

o *

o *
o *

MSP430 Family Instruction set

Note: Marked instructions

All marked instructions (*) are emulated instructions. The emulated instructions
use core instructions combined with the architecture and implementation of the
CPU for higher code efficiency and faster execution.

2.2 Instruction Formats

Double operand instructions (core instructions)

The instruction format using double operands consists of four main fields, in total a 16bit
code:

• operational code field, 4bit
• source field, 6bit
• byte operation identifier, 1 bit
• destination field, 5bit

lOP-Code]
[source register + As]
[BW]
[des!. register + Ad]

The source field is composed of two addressing bits and the 4bit register number
(0 15); the destination field is composed of one addressing bit and the 4bit register
number (0 15).
The byte identifier BIW indicates whether the instruction is executed as a byte (BIW=1)
or as a word instruction (BIW=O)

15 12 11 8 7 6 5 4 3 o

OP - Code source register I Ad I BIW I As I des!. register I
operational code field

2-5

Instruction set MSP430 Family

ADD[.w[;ADD.B
ADDC[.w];ADDC.B
AND[.w];AND.B
BIC[.w];BIC.B
BIS[.W];BIS.B
BIT[.w];BIT.B
CMP[.w];CMP.B
DADD[.w];DADD.B
MOV[.w];MOV.B
SUB[.w];SUB.B
SUBC[.w];SUBC.B
XOR[.w];XOR.B

src,dst
src,dst
src,dst
src,dst
src,dst
src,dst
src,dst
src,dst
src,dst
src,dst
src,dst
src,dst

src + dst -> dst
src + dst + C -> dst
src .and. dst -> dst
.not.src .and. dst -> dst
src .or. dst -> dst
src .and. dst
dst - src
src + dst + C -> dst (dec)
src -> dst
dst + .not.src + 1 -> dst
dst + .not.src + C -> dst
src .xor. dst -> dst

Status Bits

V N Z C

o

o

Note: Operations using Status Register SR for destination

All operations using Status Register SR for destination overwrite the content of
SR with the result of that operation: the status bits are not affected as described in
that operation.

Example: ADD #3,SR ; Operation: (SR) + 3 --> SR

Single operand instructions (core instructions)

The instruction format using a single operand consists of two main fields, in total 16bit:
• operational code field, 9bit with 4MSB equal '1 h'
• byte operation identifier, 1 bit [BW]
• destination field, 6bit [destination register + Ad]

The destination field is composed of two addressing bits and the 4bit register number
(0 15). The bit position of the destination field is located in the same position as the
two operand instructions.
The byte identifier BIW indicates whether the instruction is executed as a byte (BIW=1)
or as a word instruction (BIW=O)

15 12 11 10 9 7 6 5 4 3 o
o o o x x x x Ad I destination register

operational code field destination field

2-6

MSP430 Family Instruction set

Status Bits

V N Z C

RRA[.w);RRA.B dst MSB ~ MSB ~ ... LSB ~ C o
RRC[.w);RRC.B dst C ~ MSB ~ LSB ~C
PUSH[.w);PUSH.B dst SP· 2 ~ SP, src ~ @SP
SWPB dst swap bytes
CALL dst PC+2 ~ @SP, dst ~ PC
RETI TOS ~ SR, SP + 2 ~ SP

TOS ~ PC, SP + 2 ~ SP
SXT dst Bit7 .> BitS Bit15 o

Conditional and unconditional Jumps (core instructions)

The instruction format for (un·)conditional jumps consists of two main fields, in total 16bit

• operational code (OP·Code) field, 6bit
• jump offset field, 1 Obit

The operational code field is composed of OP·Code (3bits) and 3 bits according to the
following conditions.

15

o
13 12 10 9

o x X XXXX XXX X XX X

OP·Code IJump·on .Code Sign I

operational code field

Offset

Jump offset field

o

The conditional jumps allow jumps to addresses in the range ·511 to +512 words relative
to the current address. The assembler computes the signed offsets and inserts them
into the opcode.

2-7

Instruction set MSP430 Family

JC/JHS Label Jump to Label if Carry-bit is set

JEQ/JZ Label Jump to Label if Zero-bit is set

JGE Label Jump to Label if (N .XOR. V) = 0

JL Label Jump to Label if (N .XOR. V) = 1

JMP Label Jump to Label unconditionally

IN Label Jump to Label if Negative-bit is set

JNC/JLO Label Jump to Label if Carry-bit is reset

JNElJNZ Label Jump to Label if Zero-bit is reset

Note: Conditional and unconditional Jumps

The conditional and unconditional Jumps do not effect the status bits.

A Jump which has been taken alters the PC with the offset: PCnew=PCold + 2 +
2*offset.
A Jump which has not been taken continues the programme with the ascending
instruction.

Emulation of instructions without ROM penalty

The following instructions can be emulated with the reduced instruction set without
additional ROM words. The assembler accepts the mnemonic of the emulated
instruction and inserts the opcode of the suitable core instruction.

Note: Emulation of the following instructions

The emulation of the following instructions is possible using the contents of R2
and R3:
The register R2(CG1) contains the immediate values 2 and 4; the register
R3(CG2) contains -1 or OFFFFh, 0, +1 and +2 depending on the addressing bits
As. The assembler sets the addressing bits according to the used immediate
value.

2-8

MSP430 Family Instruction set

Short form of emulated instructions

Mnemonic Description Statusbits Emulation

V N Z C
Arithmetical instructions
ADC[.w] dst Add carry to destination AD DC #O,dst
ADC.B dst Add carry to destination ADDC.B #O,dst
DADC[.w] dst Add carry decimal to destination * DADD #O,dst
DADC.B dst Add carry decimal to destination * DADD.B #O,dst
DEC[.w] dst Decrement destination SUB #1,dst
DEC.B dst Decrement destination SUB.B #1,dst
DECD[.w] dst Double-Decrement destination SUB #2,dst
DECD.B dst Double-Decrement destination SUB.B #2,dst
INC[.w] dst Increment destination ADD #1,dst
INC.B dst Increment destination ADD.B #1,dst
INCD[.w] dst Increment destination ADD #2,dst
INCD.B dst Increment destination ADD.B #2,dst
SBC[.w] dst Subtract carry from destination SUBC #O,dst
SBC.B dst Subtract carry from destination SUBC.B #O,dst

Logical instructions
I NV[.w] dst Invert destination XOR #OFFFFh,dst
INV.B dst Invert destination XOR.B #OFFFFh,dst
RLA[.w] dst Rotate left arithmetically ADD dst,dst
RLA.B dst Rotate left arithmetically ADD.B dst,dst
RLC[.w] dst Rotate left through carry AD DC dst,dst
RLC.B dst Rotate left through carry ADDC.B dst,dst

Data instructions (common use)
CLR[.w] Clear destination MOV #O,dst
CLR.B Clear destination MOV.B #O,dst
CLRC Clear carry bit ° BIC #1,SR
CLRN Clear negative bit ° BIC #4,SR
CLRZ Clear zero bit ° BIC #2,SR
POP dst Item from stack MOV @SP+,dst
SETC Set carry bit BIS #1,SR
SETN Set negative bit BIS #4,SR
SETZ Set zero bit BIS #2,SR
TST[.w] dst Test destination ° CMP #O,dst
TST.B dst Test destination ° CMP.B #O,dst

Programme flow instructions
BR dst Branch to MOV dst,PC
DINT Disable interrupt BIC #8,SR
EINT Enable interrupt BIS #8,SR
NOP No operation MOV #Oh,#Oh
RET Return from subroutine MOV @SP+,PC

2-9

Instruction set MSP430 Family

2.3 Instruction set description - alphabetical order

This section catalogues and describes all core and emulated instructions. Some
examples are given for explanation and as application hints.
The suffix .W or no suffix in the instruction memonic will result in a word operation.
The suffix .B at the instruction memonic will result in a byte operation.

* ADC[.W] Add carry to destination

Syntax ADC dst or ADC.W dst

Operation dst + C -> dst

Emulation ADDC #O,dst

Description The carry C is added to the destination operand. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from OFFFFh to 0000, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example

2-10

The 16-bit counter pointed to
pointed to by R12.
ADD @R13,0(R12)
ADC 2(R12)

by R13 is added to a 32-bit counter

; Add LSDs
; Add carry to MSD

MSP430 Family Instruction set

* ADC.B Add carry to destination

Syntax ADC.B dst

Operation dst + C -> dst

Emulation ADDC.B #O,dst

Description The carry C is added to the destination operand. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from OFFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example The 8-bit counter pointed to by R 13 is added to a 16-bit counter pointed
to by R12.
ADD.B @R13,0(R12) ; Add LSDs
ADC.B 1 (R12) ; Add carry to MSD

2-11

Instruction set MSP430 Family

ADD[.W] Add source to destination

Syntax ADD src,dst or ADD.W src,dst

Operation src + dst -> dst

Description The source operand is added to the destination operand. The source
operand is not affected, the previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the result, cleared if not.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example RS is increased by 10. The 'Jump' to TONI is performed on a carry

2·12

ADD
JC

#10,RS
TONI ; Carry occurred

; No carry

MSP430 Family Instruction set

ADD.B Add source to destination

Syntax ADD.B src,dst

Operation src + dst .> dst

Description The source operand is added to the destination operand. The source
operand is not affected, the previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the result, cleared if not.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOtt, CPUOtt and GIE are not affected

Example RS is increased by 10. The 'Jump' to TONI is performed on a carry

ADD.B
JC

#10,RS
TONI

; Add 10 to Lowbyte of RS
; Carry occurred, if (RS) <= 246 [OAh+OF6h)
; No carry

2-13

Instruction set MSP430 Family

ADDC[.W] Add source and carry to destination.

Syntax ADDC src,dst or ADDC.w src,dst

Operation src + dst + C -> dst

Description The source operand and the carry C are added to the destination
operand. The source operand is not affected, the previous contents of
the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset if not
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example The 32-bit counter pointed to by R13 is added to a 32-bit counter eleven
words (20/2 + 2/2) above pOinter in R13.

2-14

ADD
AD DC

@R13+,20(R13)
@R13+,20(R13)

; ADD LSDs with no carryin
; ADD MSDs with carry
; resulting from the LSDs

MSP430 Family Instruction set

ADDC.B source and carry to destination.

Syntax ADDC.B src,dst

Operation src + dst + C -> dst

Description The source operand and the carry C are added to the destination
operand. The source operand is not affected, the previous contents of
the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset if not
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example The 24-bit counter pointed to by R13 is added to a 24-bit counter eleven
words above pointer in R13.

ADD.B
ADDC.B
ADDC.B

@R13+,10(R13)
@R13+,10(R13)
@R13+,10(R13)

; ADD LSDs with no carryin
; ADD medium Bits with carry
; ADD MSDs with carry

; resulting from the LSDs

2-15

Instruction set MSP430 Family

AND[.W] source AND destination

Syntax AND src,dst or AND.W src,dst

Operation src .AND. dst -> dst

Description The source operand and the destination operand are logically AND'ed.
The result is placed into the destination.

Status Bits N: Set if MSB of result is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example The bits set in R5 are used as a mask (#OAA55h) for the word
addressed by TOM. If the result is zero, a branch is taken to label TONI

2-16

MOV
AND
JZ

or

#OAA55h,R5
R5,TOM
TONI

AND #OAA55h,TOM
JZ TONI

; Load mask into register R5
; mask word addressed by TOM with R5
,
; Result is not zero

MSP430 Family Instruction set

AND.B source AND destination

Syntax AND.S src,dst

Operation src .AND. dst -> dst

Description The source operand and the destination operand are logically AND'ed.
The result is placed into the destination.

Status Bits N: Set if MSB of result is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example The bits of mask #OA5h are logically AND'ed with the Lowbyte TOM. If
the result is zero, a branch is taken to label TONI

AND.S #OA5h,TOM ; mask Lowbyte TOM with R5
JZ TONI

; Result is not zero

2-17

Instruction set MSP430 Family

BIC[.W] Clear bits in destination

Syntax BICsrc,dst or BIC.w src,dst

Operation .NOT.src .AND. dst -> dst

Description The inverted source operand and the destination operand are logically
AND'ed. The result is placed into the destination. The source operand is
not affected.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff and GIE are not affected

Example The 6 MSBs of the RAM word LEO are cleared.

BIC#OFCOOh,LEO ; Clear 6 MSBs in MEM(LEO)

2-18

MSP430 Family Instruction set

BIC.B Clear bits in destination

Syntax BIC.B src,dst

Operation .NOT.src .AND. dst -> dst

Description The inverted source operand and the destination operand are logically
AND'ed. The result is placed into the destination. The source operand is
not affected.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOtt, CPUOff and GIE are not affected

Example

Example

The 5 MSBs of the RAM byte LEO are cleared.

BIC.B #OF8h,LEO ; Clear 5 MSBs in Ram location LEO

The Portpins PO and P1 are cleared.

POOUT .equ
PO .equ
P1 .equ

011h
01h
02h

;Definition of the Portaddress

BIC.B #PO+P1,&POOUT ;Set PO and P1 to low

2-19

Instruction set MSP430 Family

BIS[.W] Set bits in destination

Syntax SIS src,dst or SIS.w src,dst

Operation src .OR. dst -> dst

Description The source operand and the destination operand are logically OR'ed.
The result is placed into the destination. The source operand is not
affected.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff and GIE are not affected

Example The 6 LSS's of the RAM word TOM are set.

Example

2-20

SIS #003Fh,TOM ; set the 6 LSS's in RAM location TOM

Start an AID-conversion

ASOC .equ
ACTL .equ

1
114h

SIS #ASOC,&ACTL

;Start of Conversion bit
;ADC-Control Register

;Start AID-conversion

MSP430 Family Instruction set

BIS.B Set bits in destination

Syntax BIS.B src,dst

Operation src .OR. dst -> dst

Description The source operand and the destination operand are logically OR'ed.
The result is placed into the destination. The source operand is not
affected.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff and GIE are not affected

Example The 3 MSBs of the RAM byte TOM are set.

BIS.B #OEOh,TOM; set the 3 MSBs in RAM location TOM

Example The Portpins PO and P1 are set to high

POOUT .equ 011 h
PO .equ 01h
P1 .equ 02h

BIS.B #PO+P1,&POOUT

2-21

Instruction set MSP430 Family

BIT[.W] Test bits in destination

Syntax BIT src,dst or BIT.W src,dst

Operation src .AND. dst

Description The source operand and the destination operand are logically AND'ed.
The result affects only the Status Bits. The source and destination
operands are not affected.

Status Bits N: Set if MSB of result is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example If bit 9 of R8 is set, a branch is taken to label TOM.

Example

2-22

BIT
JNZ

#0200h,R8
TOM

; bit 9 of R8 set?
; Yes, branch to TOM
; No, proceed

Determine which AID-Channel is configured by the MUX

ACTL

BIT
jnz

.equ 114h

#4,&ACTL
END

;ADC Control Register

;Is Channel 0 selected?
;Yes, branch to END

MSP430 Family Instruction set

SIT.S Test bits in destination

Syntax BITB src,dst

Operation src .AND. dst

Description The source operand and the destination operand are logically AND'ed.
The result affects only the Status Bits: the source and destination
operands are not affected.

Status Bits N: Set if MSB of result is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example If bit 3 of R8 is set, a branch is taken to label TOM.
BITB #8,R8
JC TOM

Example
; The receive bit RCV of a serial communication is tested. Since while using the BIT

; instruction to test a single bit the carry is equal to the state of the
tested bit, the carry is ; used by the subsequent instruction: the read info
is shifted into the register RECBUF.

; Serial communication with LSB is shifted first:

BITB
RRC

#RCV,RCCTL
RECBUF

; Serial communication with MSB is shifted first:

; xxxx xxxx xxxx xxxx
; Bit info into carry
; Carry -> MSB of RECBUF
; cxxx xxxx
; repeat previous two instructions
; 8 times
; cccc CCCC
./\ /\

; MSB LSB

BITB #RCV,RCCTL ; Bit info into carry
RLC.B RECBUF ; Carry -> LSB of RECBUF

; xxxx xxxc
; repeat previous two instructions
; 8 times
; cccc cccc
; I LSB
; MSB

2-23

Instruction set MSP430 Family

* BR, BRANCH Branch to destination

Syntax BR dst

Operation dst -> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the 64 K
address space. All source addressing modes may be used. The branch
instruction is a word instruction.

Status Bits Status bits are not affected

Examples Examples for all addressing modes are given

BR #EXEC

BR EXEC

BR &EXEC

BR R5

BR @R5

BR @R5+

2-24

; Branch to label EXEC or direct branch (e.g #OA4h)
; Core instruction MOV @PC+,PC

; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

; Branch to the address contained in absolute
; address
; EXEC
; Core instruction MOV X(O),PC
; Indirect address

; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

; Branch to the address contained in the word R5
; points
; to. Core instruction MOV @R5,PC
; Indirect, indirect R5

; Branch to the address contained in the word R5
; points to and increments pOinter in R5 afterwards.
; The next time - SIW flow uses R5 pointer - it can
; alter the programme execution due to access to
; next address in a table, pointed by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

MSP430 Family

BR X(R5)

Instruction set

; Branch to the address contained in the address
; pointed to by R5 + X (e.g table with address start
; ing at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect indirect R5 + X

2-25

Instruction set

CALL

Syntax

Operation

Subroutine

CALL dst

dst
SP-2
PC
tmp

-> tmp
-> SP
-> @SP
-> PC

dst is evaluated and stored

updated PC to TOS
saved dst to PC

MSP430 Family

Description A subroutine call is made to an address anywhere in the 64-K-address
space. All addressing modes may be used. The return address (the
address of the following instruction) is stored on the stack. The call in
struction is a word instruction.

Status Bits Status bits are not affected

Example Examples for all addressing modes are given

2·26

CALL #EXEC ; Call on label EXEC or immediate address (e.g
; #OA4h)
; SP-2 ~ SP, PC+2 ~ @SP, @PC+ ~ PC

CALL EXEC ; Call on the address contained in EXEC
; SP-2 ~ SP, PC+2 ~ @SP, X(PC) ~ PC
; Indirect address

CALL &EXEC ; Call on the address contained in absolute address
; EXEC
; SP-2 ~ SP, PC+2 ~ @SP, X(PC) ~ PC
; Indirect address

CALL RS ; Call on the address contained in RS
; SP-2 ~ SP, PC+2 ~ @SP, RS ~ PC
; Indirect RS

CALL @RS ; Call on the address contained in the word RS
; points
;to
; SP-2 ~ SP, PC+2 ~ @SP, @RS ~ PC
; Indirect, indirect RS

CALL @RS+ ; Call on the address contained in the word RS points
; to and increments pointer in RS. The next time -
; SIW flow uses RS pointer - it can alter the
; programme execution due to access to next address
; in a table, pointed; to by RS
; SP-2 ~ SP, PC+2 ~ @SP, @RS ~ PC
; Indirect, indirect RS with autoincrement

CALL X(RS) ; Call on the address contained in the address pointed
; to by RS + X (e.g table with address starting at X)
; X can be an address or a label
; SP-2 ~ SP, PC+2 ~ @SP, X(RS) ~ PC
; Indirect indirect RS + X

MSP430 Family Instruction set

* CLR[.W] Clear destination

Syntax

Operation

Emulation

CLR

0-> dst

MOV

dst or CLR.w dst

#O,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected

Example RAM word TONI is cleared

CLR TONI ; 0 -> TONI

Example Register R5 is cleared

CLR R5

2-27

Instruction set

* CLR.B

Syntax

Operation

Emulation

Clear destination

CLR.B dst

0-> dst

MOV.B #O,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected

Example RAM byte TONI is cleared

CLR.B TONI ; 0 -> TONI

2-28

MSP430 Family

MSP430 Family Instruction set

* CLRC Clear carry bit

Syntax CLRC

Operation 0 -> C

Emulation BIC#1,SR

Description The Carry Bit C is cleared. The clear carry instruction is a word
instruction.

Status Bits N: Not affected
Z: Not affected
C: Cleared
V: Not affected

Mode Bits OscOff, CPUOff and GIE are not affected

Example The 16bit decimal counter pointed to by R13 is added to a 32bit counter
pointed to by R12.

CLRC
DADD @R13,O(R12)

DADC 2(R12)

; C=O: Defines start
; add 16bit counter to Lowword of 32bit
; counter
; add carry to Highword of 32bit counter

2-29

Instruction set

*CLRN

Syntax CLRN

Operation

Clear Negative bit

O~N
or
(.NOT.src .AND. dst -> dst)

Emulation BIC#4,SR

MSP430 Family

Description The constant 04h is inverted (OFFFBh) and the destination operand are
logically AND'ed. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

Status Bits N: Reset to 0
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff and GIE are not affected

Example The Negative bit in the status register is cleared. This avoids the special
treatment of the called subroutine with negative numbers.

CLRN
CALL SUBR

SUBR IN SUBRET ; If input is negative: do nothing and return

SUBRET RET

2-30

MSP430 Family Instruction set

* CLRZ Clear Zero bit

Syntax CLRZ

Operation 0 ~ Z
or
(.NOT.src .AND. dst -> dst)

Emulation BIC#2,SR

Description The constant 02h is inverted (OFFFDh) and the destination operand are
logically AND'ed. The result is placed into the destination. The clear
zero bit instruction is a word instruction.

Status Bits N: Not affected
Z: Reset to 0
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff and GIE are not affected

Example The Zero bit in the status register is cleared.

CLRZ

2-31

Instruction set

CMP[.W]

Syntax

Operation

compare source and destination

CMP src,dst or CMP.w src,dst

dst + .NOT.src + 1
or
(dst - src)

MSP430 Family

Description The source operand is subtracted from the destination operand. This is
made by adding of the 1 's complement of the source operand plus 1.
The two operands are not affected, the result is not stored, only the
status bits are affected.

Status Bits N: Set if result is negative, reset if positive (src >= dst)
Z: Set if result is zero, reset otherwise (src = dst)
C: Set if there is a carry from the MSB of the result, reset if not
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example RS and R6 are compared. If they are equal, the programme continues at
the label EQUAL

Example

2-32

CMP
JEQ

RS,R6
EQUAL

; RS = R6?
; YES, JUMP

Two RAM blocks are compared. If they not equal, the programme
branches to the label ERROR

MOV
L$1 CMP

JNZ
DEC
JNZ

#NUM,RS
&BLOCK1,&BLOCK2
ERROR
RS
L$1

;number of words to be compared
;Are Words equal?
;No, branch to ERROR
;Are all words compared?
;No, another compare

MSP430 Family Instruction set

CMP.B compare source and destination

Syntax

Operation

CMP.8 src,dst

dst + .NOT.src + 1
or
(dst - src)

Description The source operand is subtracted from the destination operand. This is
made by adding of the 1 's complement of the source operand plus 1.
The two operands are not affected, the result is not stored, only the
status bits are affected.

Status Bits N: Set if result is negative, reset if positive (src >= dst)
Z: Set if result is zero, reset otherwise (src = dst)
C: Set if there is a carry from the MSB of the result, reset if not
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example The RAM bytes addressed by EDE and TONI are compared. If they are
equal, the programme continues at the label EQUAL

Example

CMP.B
JEQ

EDE,TONI ; MEM(EDE) = MEM(TONI) ?
EQUAL ; YES, JUMP

Check two Keys, which are connected to the Portpin PO and P1. If key1
is pressed, the programme branches to the label MENU1, if key2 is
pressed, the programme branches to MENU2 .

POIN . EQU 010h
KEY1 .EQU 01h
KEY2 .EQU 02h

CMP.B #KEY1,&POIN
JEQ MENU1
CMP.B #KEY2,&POIN
JEQ MENU2

2-33

Instruction set MSP430 Family

* DADC[.W] Add carry decimally

Syntax DADC dst 0 DADC.w src,dst

Operation dst + C -> dst (decimally)

Emulation DADD #O,dst

Description The Carry Bit C is added decimally to the destination

Status Bits N: Set if MSB is 1

Mode Bits

Example

2-34

Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 9999 to 0000, reset otherwise
V: Undefined

OscOff, CPUOff and GIE are not affected

The 4-digit decimal number contained in R5 is added to an 8-digit
decimal number pointed to by R8

CLRC

DADD R5,0(R8)
DADC 2(R8)

; Reset carry
; next instruction's start condition is defined
; Add LSDs + C
; Add carry to MSD

MSP430 Family Instruction set

* DADC.B Add carry decimally

Syntax DADC.B dst

Operation dst + C -> dst (decimally)

Emulation DADD.B #O,dst

Description The Carry Bit C is added decimally to the destination

Status Bits N: Set if MSB is 1

Mode Bits

Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 99 to 00, reset otherwise
V: Undefined

OscOff, CPUOff and GIE are not affected

Example The 2-digit decimal number contained in R5 is added to an 4-digit
decimal number pOinted to by R8

CLRC

DADD.B R5,0(R8)
DADC 1(R8)

; Reset carry
; next instruction's start condition is
; defined
; Add LSDs+ C
; Add carry to MSDs

2-35

Instruction set MSP430 Family

DADD[.W] source and carry added decimally to destination

Syntax DADD src,dst or DADD.W src,dst

Operation src + dst + C -> dst (decimally)

Description The source operand and the destination operand are treated as four
binary coded decimals (BCD) with positive signs. The source operand
and the carry C are added decimally to the destination operand. The
source operand is not affected, the previous contents of the destination
are lost. The result is not defined for non-BCD numbers.

Status Bits N: Set if the MSB is 1, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if the result is greater than 9999.
V: Undefined
OscOff, CPUOff and GIE are not affected

Example The 8-digit-BCD-number contained in RS and R6 is added decimally to
a 8-digit-BCD-number contained in R3 and R4 (R6 and R4 contain the
MSDs).

2-36

CLRC
DADD
DADD
JC

RS,R3
R6,R4
OVERFLOW

; CLEAR CARRY
; add LSDs
; add MSDs with carry
; If carry occurs go to error handling routine

MSP430 Family Instruction set

DADD.B source and carry added decimally to destination

Syntax DADD.B src,dst

Operation src + dst + C -> dst (decimally)

Description The source operand and the destination operand are treated as two
binary coded decimals (BCD) with positive signs. The source operand
and the carry C are added decimally to the destination operand. The
source operand is not affected, the previous contents of the destination
are lost. The result is not defined for non-BCD numbers.

Status Bits N: Set if the MSB is 1, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if the result is greater than 99.
V: Undefined
OscOtt, CPUOtt and GIE are not affected

Example The 2-digit decimal counter in RAM byte CNT is incremented by one.

CLRC
DADD.B

or

SETC
DADD.B

#1,CNT

#O,CNT

; clear Carry
; increment decimal counter

; =DADC.B CNT

2-37

Instruction set MSP430 Family

* DEC[.W] Decrement destination

Syntax DEC dst or DEC.Wdst

Operation dst - 1 -> dst

Emulation SUB #1,dst

Description The destination operand is decremented by one. The original contents
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.

Mode Bits OscOff, CPUOff and GIE are not affected

Example R10 is decremented by 1

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location
; starting with TONI
; Tables should not overlap: start of destination address TONI must not be within the
range; EDE to EDE+OFEh

L$1

2-38

MOV
MOV
MOV.B
DEC
JNZ

#EDE,R6
#255,R10
@R6+,TONI-EDE-1(R6)
R10
L$1

Do not transfer tables with the routine above with this ovelap:

EDE ,----.,

EDE+254

+--_.,-----,
TONI

TONI+254'--__ --'

MSP430 Family Instruction set

* DEC.B Decrement destination

Syntax DEC.B dst

Operation dst·1 .> dst

Emulation SUB.B #1,dst

Description The destination operand is decremented by one. The original contents
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was OaOh, otherwise reset.

Mode Bits OscOff, CPUOff and GIE are not affected

Example Memory byte at address LEO is decremented by 1

DEC.B LEO ; Decrement MEM(LEO)

; Move a block of 255 bytes from memory location starting with EDE to memory location
; starting with TONI
; Tables should not overlap: start of destination address TONI must not be within the
range; EDE to EDE+OFEh

L$1

MOV
MOV.B
MOV.B
DEC.B
JNZ

#EDE,RS
#255,LEO
@RS+,TONI-EDE-1(RS)
LEO
L$1

2-39

Instruction set MSP430 Family

* DECD[.W] Double-Decrement destination

Syntax DECO dst or DECDW dst

Operation dst - 1 -> dst

Emulation SUB #2,dst

Description The destination operand is decremented by two. The original contents
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise

Mode Bits

Example

C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise
reset.

OscOff, CPUOff and GIE are not affected

R 10 is decremented by 2

DECO R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location
; starting with TONI
; Tables should not overlap: start of destination address TONI must not be within the
range; EDE to EDE+OFEh

L$1

2-40

MOV
MOV
MOV
DECO
JNZ

#EDE,R6
#510,R10
@R6+,TONI-EDE-2(R6)
R10
L$1

MSP430 Family Instruction set

* DECD.B Double-Decrement destination

Syntax DECD.B dst

Operation dst - 2 -> dst

Emulation SUB.B #2,dst

Description The destination operand is decremented by two. The original contents
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OscOtt, CPUOtt and GIE are not affected

Example Memory at location LEO is decremented by 2

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by 2

DECD.B STATUS

2-41

Instruction set MSP430 Family

* DINT Disable (general) interrupts

Syntax

Operation

DINT

O~GIE
or
(OFFF7h .AND. SR ~ SR .NOT.src .AND. dst -> dst)

Emulation BIC #8,SR

Description All interrupts are disabled.
The constant #08h is inverted and logically AND'ed with the status
register SA. The result is placed into the SA.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits GIE is reset.
OscOff and CPUOff are not affected

Example The general interrupt enable bit GIE in the status register is cleared to
allow a non disrupted move of a 32bit counter. This ensures that the
counter is not modified during the move by any interrupt.

DINT

MOV
MOV
EINT

COUNTHI,R5
COUNTLO,R6

Note: Disable Interrupt

; All interrupt events using the GIE bit are

; disabled
; Copy counter

; All interrupt events using the GIE bit are
; enabled

The instruction following the disable interrupt instruction DINT is executed when
the interrupt request becomes active during execution of DINT. If any code
sequence needs to be protected from being interrupted the DINT instruction
should be executed at least one instruction before this sequence.

2-42

MSP430 Family Instruction set

* EINT Enable (general) interrupts

Syntax EINT

Operation 1 ~ GIE
or
(0008h .OR. SR -> SR / .NOT.src .OR. dst -> dst)

Emulation BIS #8,SR

Description All interrupts are enabled.
The constant #08h and the status register SR are logically OR'ed. The
result is placed into the SR.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits GIE is set.
OscOff and CPUOff are not affected

Example The general interrupt enable bit GIE in the status register is set.

; Interrupt routine of port PO.2 to PO.?
; The interrupt level is the lowest in the system
; POIN is the address of the register where all port bits are read. POIFG is the address of
; the register where all interrupt events are latched.

MaskOK

PUSH.B
BIC.B
EINT

BIT
JEQ

BIC

INCD

RETI

&POIN
@SP,&POIFG ; Reset only accepted flags

#Mask,@SP

; Preset port 0 interrupt flags stored on stack
; other interrupts are allowed

MaskOK ; Flags are present identically to mask: Jump

#Mask,@SP

SP ; Housekeeping: Inverse to PUSH instruction
; at the start of interrupt subroutine. Corrects
; the stack pointer.

Note: Enable Interrupt

The instruction following the enable interrupt instruction EINT is executed anyway
even on a pending interrupt service request

2-43

Instruction set MSP430 Family

* INC[.W] Increment destination

Syntax INC dst or INC.W dst

Operation dst + 1 -> dst

Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFFh, reset otherwise
C: Set if dst contained OFFFFh, reset otherwise
V: Set if dst contained 07FFFh, reset otherwise

Mode Bits OscOff, CPUOff and GIE are not affected

Example The item on the top of a software stack (not the system stack) for byte
data is removed.

SSP .EQU R4

2-44

INC SSP ; Remove TOSS (top of SW stack) by increment
; Do not use INC.B since SSP is a word register

MSP430 Family Instruction set

* INC.B Increment destination

Syntax INC.B dst

Operation dst + 1 -> dst

Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained OFFh, reset otherwise
C: Set if dst contained OFFh, reset otherwise
V: Set if dst contained 07Fh, reset otherwise

Mode Bits OscOff, CPUOff and GIE are not affected

Example The status byte of a process STATUS is incremented. When it is equal
to eleven, a branch to OVFL is taken.

INC.B
CMP.B
JEQ

STATUS

OVFL
#11 ,STATUS

2-45

Instruction set MSP430 Family

* INCD[.W] Double-Increment destination

Syntax INCD dst or INCD.w dst

Operation dst + 2 -> dst

EmulationADD #2,dst

Description The destination operand is incremented by two. The original contents
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFEh, reset otherwise
C: Set if dst contained OFFFEh or OFFFFh, reset otherwise
V: Set if dst contained 07FFEh or 07FFFh, reset otherwise

Mode Bits OscOff, CPUOff and GIE are not affected

Example The item on the top of the stack is removed without the use of a register.

SUB

2-46

PUSH RS ;RS is the result of a calculation, which is stored in the
; Stack

INCD SP ;Remove TOS by double-increment from stack
Do not use INCD.B, SP is a word aligned register

RET

MSP430 Family Instruction set

* INCD.B Double-Increment destination

Syntax INCD.B dst

Operation dst + 2 -> dst

Emulation ADD.B #2,dst

Description The destination operand is incremented by two. The original contents
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained OFEh, reset otherwise
C: Set if dst contained OFEh or OFFh, reset otherwise
V: Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OscOff, CPUOff and GIE are not affected

Example The byte on the top of the stack is incremented by two.

INCD.B O(SP) ; Byte on TOS is increment by two

2-47

Instruction set MSP430 Family

* INV[.W] Invert destination

Syntax INVdst

Operation .NOT.dst -> dst

Emulation XOR #OFFFFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFFh, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset
OscOff, CPUOff and GIE are not affected

Example Content of R5 is negated (two's complement).

2-48

MOV
INV
INC

#OOAeh,R5
R5
R5

; Invert R5,
; R5 is now negated,

R5 = OOOAEh
R5 = OFF51h
R5 = OFF52h

MSP430 Family Instruction set

* INV.B Invert destination

Syntax INV.B dst

Operation .NOT.dst -> dst

Emulation XOR #OFFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained OFFh, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand is negative, otherwise reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example Content of memory byte LEO is negated.

MOV.B
INV.B
INC.B

#OAEh,LEO
LEO ; Invert LEO,
LEO ; MEM(LEO) is now negated,

MEM(LEO) = OAEh
MEM(LEO) = 051 h
MEM(LEO) = 052h

2-49

Instruction set

JC
JHS

Syntax

Jump if carry set

Jump if higher or same

JC
JHS

label
label

MSP430 Family

Operation if C = 1: PC + 2'offset -> PC
if C = 0: execute following instruction

Description The Carry Bit C of the Status Register is tested. If it is set, the 10-bit
signed offset contained in the LSB's of the instruction is added to the
Programme Counter. If C is reset, the next instruction following the jump
is executed. JC Gump if carry/higher or same) is used for the
comparison of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected

Example The signal of input POIN.1 is used to define or control the programme
flow.

Example

2-50

BIT #10h,&POIN; State of signal-> Carry
JC PROGA ; If carry=1 then execute programme routine A

; Carry=O, execute programme here

R5 is compared to 15. If the content is higher or same branch to LABEL.

CMP
JHS

#15,R5
LABEL ; Jump is taken if R5 ;:: 15

; Continue here if R5 < 15

MSP430 Family Instruction set

JEQ, JZ Jump if equal, Jump if zero

Syntax JEQ label, JZ label

Operation if Z = 1: PC + 2*offset -> PC
if Z = 0: execute following instruction

Description The Zero Bit Z of the Status Register is tested. If it is set, the 10-bit
signed offset contained in the LSB's of the instruction is added to the
Programme Counter. If Z is not set, the next instruction following the
jump is executed.

Status Bits Status bits are not affected

Example Jump to address TONI if R7 contains zero.

Example

Example

TST
JZ

R7
TONI

; Test R7
; if zero: JUMP

Jump to address LEO if RS is equal to the table contents.

CMP RS,Table(RS); Compare content of RS with content of
; MEM(Table address + content of RS)

JEQ LEO ; Jump if both data are equal
; No, data are not equal, continue here

Branch to LABEL if RS is o.

TST RS
JZ LABEL

2-51

Instruction set MSP430 Family

JGE Jump if greater or equal

Syntax JGE label

Operation if (N .XOR. V) = 0 then jump to label: PC + 2*offset -> PC
if (N .XOR. V) = 1 then execute following instruction

Description The negative bit N and the overflow bit V of the Status Register are
tested. If both N and V are set or reset, the 10-bit signed offset
contained in the LS8's of the instruction is added to the Programme
Counter. If only one is set, the next instruction following the jump is
executed.
This allows comparison of signed integers.

Status Bits Status bits are not affected

Example When the content of R6 is greater or equal the memory pointed to by R7
the programme continues at label EDE.

2-52

CMP
JGE

@R7,R6
EDE

; R6 ~ (R7)?, compare on signed numbers
; Yes, R6 ~ (R7)
; No, proceed

MSP430 Family Instruction set

JL Jump if less

Syntax JL label

Operation if (N .xOR. V) = 1 then jump to label: PC + 2*offset -> PC
if (N .xOR. V) = 0 then execute following instruction

Description The negative bit N and the overflow bit V of the Status Register are
tested. If only one is set, the 10-bit signed offset contained in the LSB's
of the instruction is added to the Programme Counter. If both N and V
are set or reset, the next instruction following the jump is executed.
This allows comparison of signed integers.

Status Bits Status bits are not affected

Example When the content of R6 is less than the memory pointed to by R7 the
programme continues at label EDE.

CMP
JL

@R7,R6
EDE

; R6 < (R7)?, compare on signed numbers
; Yes, R6 < (R7)
; No, proceed

2-53

Instruction set MSP430 Family

JMP Jump unconditionally

Syntax JMP label

Operation PC + 2*offset -> PC

Description The 10-bit signed offset contained in the LSB's of the instruction is
added to the Programme Counter.

Status Bits Status bits are not affected

Hint This 1 word instruction replaces the BRANCH instruction in the range of
-511 to +512 words relative to the current programme counter.

2-54

MSP430 Family Instruction set

IN Jump if negative

Syntax JN label

Operation if N = 1: PC + 2*offset -> PC
if N = 0: execute following instruction

Description The negative bit N of the Status Register is tested. If it is set, the 10-bit
signed offset contained in the LSB's of the instruction is added to the
Programme Counter. If N is reset, the next instruction following the jump
is executed.

Status Bits Status bits are not affected

Example The result of a computation in RS is to be subtracted from COUNT. If
the result is negative, COUNT is to be cleared and the programme
continues execution in another path.

L$1

SUB
JN

RS,COUNT
L$1

CLR COUNT

; COUNT - RS -> COUNT
; If negative continue with COUNT =Oat PC=L$1
; Continue with COUNT2':O

2-55

Instruction set

JNC
JLO

Syntax

Jump if carry not set

Jump if lower

JNC label
JNC label

MSP430 Family

Operation if C = 0: PC + 2'offset -> PC
if C = 1: execute following instruction

Description The Carry Bit C of the Status Register is tested. If it is reset, the 10-bit
signed offset contained in the LSB's of the instruction is added to the
Programme Counter. If C is set, the next instruction following the jump is
executed. JNC (jump if no carry/lower) is used for the comparison of
unsigned numbers (0 to 65536).

Status Bits status bits are not affected

Example The result in R6 is added in BUFFER. If an overflow occurs an error
handling routine at address ERROR is going to be used.

ERROR

CONT

Example

2-56

ADD
JNC

R6,BUFFER
CONT

; BUFFER + R6 -> BUFFER
; No carry, jump to CO NT
; Error handler start

; Continue with normal programme flow

Branch to STL2 if byte STATUS contains 1 or o.
CMP.B
JLO

#2,STATUS
STL2 ; STATUS <2

; STATUS?: 2, continue here

MSP430 Family Instruction set

JNE, JNZ Jump if not equal, Jump if not zero

Syntax JNE label, JNZ label

Operation if Z = 0: PC + 2*offset -> PC
if Z = 1: execute following instruction

Description The Zero Bit Z of the Status Register is tested. If it is reset, the 10-bit
signed offset contained in the LSB's of the instruction is added to the
Programme Counter. If Z is set, the next instruction following the jump is
executed.

Status Bits Status bits are not affected

Example Jump to address TONI if R7 and R8 have different contents

CMP R7,R8
JNE TONI

; COMPARE R7 WITH R8
; if different: Jump
; if equal, continue

2-57

Instruction set MSP430 Family

MOV[.W] Move source to destination

Syntax MOV src,dst or MOV.w src,dst

Operation src -> dst

Description The source operand is moved to the destination.
The source operand is not affected, the previous contents of the
destination are lost.

Status Bits Status bits are not affected

Mode Bits OscOff, CPUOff and GIE are not affected

Example The contents of table EDE (word data) are copied to table TOM. The
length of the tables should be 020h locations.

Loop

2-58

MOV
MOV
MOV
DEC
JNZ

#EDE,R10
#020h,R9
@R10+,TOM-EDE-2(R10)
R9
Loop

; Prepare pointer
; Prepare counter
; Use pointer in R10 for both tables
; Decrement counter
; Counter "# 0, continue copying
; Copying completed

MSP430 Family Instruction set

MOV.B Move source to destination

Syntax MOV.B src,dst

Operation src -> dst

Description The source operand is moved to the destination.
The source operand is not affected, the previous contents of the
destination are lost.

Status Bits Status bits are not affected

Mode Bits OscOff, CPUOff and GIE are not affected

Example The contents of table EDE (byte data) are copied to table TOM. The
length of the tables should be 020h locations.

Loop

MOV
MOV

DEC
JNZ

#EDE,R10
#020h,R9
MOV.B @R10+,TOM-EDE-1 (R1 0)

R9
Loop

; Prepare pointer
; Prepare counter
; Use pointer in R10 for
; both tables
; Decrement counter
; Counter", 0, continue
; copying
; Copying completed

2-59

Instruction set MSP430 Family

*NOP No operation

Syntax NOP

Operation None

Emulation MOV #0,#0

Description No operation is performed. The instruction may be used for the
elimination of instructions during the software check or for defined
waiting times.

Status Bits Status bits are not affected

The NOP instruction is mainly used for two purposes:
• hold one, two or three memory words
• adjust software timing

Note: Other instructions can be used to emulate no operation

Other instructions can be used to emulate no-operation instruction using different
numbers of cycles and different numbers of code words.

Examples:
MOV 0(R4),0(R4)
MOV @R4,0(R4)
BIC #0,EDE(R4)
JMP $+2
BIC #0,R5

2-60

; 6 cycles, 3 words
; 5 cycles, 2 words
; 4 cycles, 2 words
; 2 cycles, 1 word
; 1 cycles, 1 word.

MSP430 Family Instruction set

* POP[.W] Pop word from stack to destination

Syntax

Operation

Emulation

POP dst

@SP -> dst
SP + 2 -> SP

MOV @SP+,dst or MOV.w @SP+,dst

Description The stack location pointed to by the Stack Pointer (TOS) is moved to the
destination. The Stack Pointer is incremented by two afterwards.

Status Bits Status bits are not affected

Example The contents of R7 and the Status Register are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

Note: The system Stack Pointer SP, Note 1

The system Stack Pointer SP is always incremented by two, independent of the
byte suffix. This is mandatory since the system Stack Pointer is used not only by
POP instructions; it is also used by the RETI instruction.

2-61

Instruction set MSP430 Family

* POP.B Pop byte from stack to destination

Syntax POP.B dst

Operation @SP -> dst
SP + 2 -> SP

Emulation MOV.B @SP+,dst

Description The stack location pointed to by the Stack Pointer (TOS) is moved to the
destination. The Stack Pointer is incremented by two afterwards.

Status Bits Status bits are not affected

Example The content of RAM byte LEO is restored from the stack.

Example

Example

POP.B LEO ; The Low byte of the stack is moved to LEO.

The content of R7 is restored from the stack.

POP.B R7 ; The Low byte of the stack is moved to R7,
; the High byte of R7 is OOh

The contents of the memory pointed to by R7 and the Status Register
are restored from the stack.

POP.B O(R7)

POP SR

; The Low byte of the stack is moved to the
; the byte which is pointed to by R7
: Ex1: R7 = 203h

Mem(R7) = Low Byte of system stack
,
: Ex2: R7 = 20Ah

Mem(R7) = Low Byte of system stack

Note: The system Stack Pointer, Note 2

The system Stack Pointer SP is always incremented by two, independent of the
byte suffix. This is mandatory since the system Stack Pointer is used not only by
POP instructions; it is also used by the RETI instruction.

2-62

MSP430 Family Instruction set

PUSH[.W] Push word onto stack

Syntax

Operation

PUSH src or PUSH.w src

SP-2 ~ SP
src~ @SP

Description The Stack Pointer is decremented by two, then the source operand is
moved to the RAM word addressed by the Stack Pointer (TOS).

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff and GIE are not affected

Example The contents of the Status Register and R8 are saved on the stack.

PUSH SR
PUSH R8

; save status register
; save R8

Note: The system Stack Pointer, Note 3

The system Stack Pointer SP is always decremented by two, independent of the
byte suffix. This is mandatory since the system Stack Pointer is used not only by
PUSH instruction; it is also used by the interrupt routine service.

2-63

Instructi()n set

PUSH.B

Syntax

Operation

Push byte onto stack

PUSH.B src

SP - 2 ~ SP
src ~ @SP

MSP430 Family

Description The Stack Pointer is decremented by two, then the source operand is
moved to the RAM byte addressed by the Stack Pointer (TOS).

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff and GIE are not affected

Example The content of the peripheral TCDAT is saved on the stack.

PUSH.B &TCDAT ; save data from 8bit peripheral module,
; address TCDAT, onto stack

Note: The system Stack Pointer, Note 4

The system Stack Pointer SP is always decremented by two, independent of the
byte suffix. This is mandatory since the system Stack Pointer is used not only by
PUSH instruction; it is also used by the interrupt routine service.

2-64

MSP430 Family Instruction set

* RET Return from subroutine

Syntax RET

Operation @SP~ PC
SP+2 ~SP

Emulation MOV @SP+,PC

Description The return address pushed onto the stack by a CALL instruction is
moved to the Programme Counter. The programme continues at the
code address following the subroutine call.

Status Bits Status bits are not affected

2-65

Instruction set

RETI

Syntax

Operation

Return from Interrupt

RETI

TOS
SP+2
TOS

~SR

~SP

~PC

SP+2 ~SP

MSP430 Family

Description 1. The status register is restored to the value at the beginning of the
interrupt service routine. This is performed by replacing present the
contents of SR with the contents of TOS memory. The stack pointer
SP is incremented by two.

2. The programme counter is restored to the value at the beginning of
interrupt service. This is the consecutive step after the interrupted
programme flow. Restore is performed by replacing present
contents of PC with the contents of TOS memory. The stack pointer
SP is incremented.

Status Bits N: restored from system stack
Z: restored from system stack
C: restored from system stack
V: restored from system stack

Mode Bits OscOff, CPUOff and GIE are restored from system stack

Example Main programme is interrupted

--
PC-S
--
PC-4
--
PC-2

i ~ Interrupt request --
PC ~ Interrupt accepted -- 1------ ----
PC+2 PC+2 is stored PC=PCi
-- onto stack --- ----
PC+4 PCi+2
-- --
PC+S PCi+4
-- --
PC+8
--

IV

PCi+n-4

PCi+n-2

PCi+n "- RETI
--

2-66

MSP430 Family Instruction set

* RLA[.W] Rotate left arithmetically

Syntax RLA dst ·or RLA.W dst

Operation C <- MSB <- MSB-1 LSB+1 <- LSB <- 0

Emulation ADD dst,dst

Description The destination operand is shifted left one position. The MSB is shifted
into the carry C, the LSB is filled with O. The RLA instruction acts as a
signed multiplication with 2. An overflow occurs if dst ~ 04000h and dst
< OCOOOh before operation is performed: the result has changed sign.

15 o

~--------------~~
Status Bits

Mode Bits

Example

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs-

the initial value is 04000h :'> dst < OCOOOh;
otherwise it is reset

OscOff, CPUOff and GIE are not affected

R7 is multiplied by 4.

RLA R7
RLA R7

; Shift left R7 (x 2) - emulated by ADD R7,R7
; Shift left R7 (x 4) - emulated by ADD R7,R7

Note: RLA substitution

The Assembler does not recognize the instruction

RLA @R5+.

It must be substituted by

ADD @R5+,-2(R5).

o

2-67

Instruction set MSP430 Family

* RLA.B Rotate left arithmetically

Syntax RLA.B dst

Operation C <- MSB <- MSB-1 LSB+1 <- LSB <- 0

Emulation ADD.B dst,dst

Description The destination operand is shifted left one position. The MSB is shifted
into the carry C, the LSB is filled with o. The RLA instruction acts as a
signed multiplication with 2. An overflow occurs if dst ~ 040h and dst <
OCOh before operation is performed: the result has changed sign.

Status Bits

Mode Bits

Example

7

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:

the initial value is 040h::; dst < OCOh;
otherwise it is reset

OscOff, CPUOff and GIE are not affected

Lowbyte of R7 is multiplied by 4.

o

RLA.B R7 ; Shift left Lowbyte of R7 (x 2) - emulated by
; ADD.B R7,R7

RLA.B R7

Note: RLA.B substitution

; Shift left Lowbyte of R7 (x 4) - emulated by
; ADD.B R7,R7

The Assembler does not recognize the instruction

RLA.B @R5+.

It must be substituted by

ADD.B @R5+,-1(R5).

2-68

MSP430 Family Instruction set

* RLC[.W] Rotate left through carry

Syntax RLC dst or RLC.w dst

Operation C <- MSB <- MSB-1 LSB+1 <- LSB <- C

Emulation ADDC dst,dst

Description The destination operand is shifted left one position. The carry C is
shifted into the LSB, the MSB is shifted into the carry C.

15 o
.@r .. ~L...-_____ ------,f..n

Status Bits

Mode Bits

Example

Example

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if arithmetic overflow occurs otherwise reset

Set if 03FFFh < dstinitial < OCOOOh, otherwise reset

OscOff, CPUOff and GIE are not affected

R5 is shifted left one position.

RLC R5 ; (R5 x 2) + C -> R5

The information of input POIN.1 is to be shifted into LSB of R5.

BIT.B
RLC

#2,&POIN
R5

; Information -> Carry
; Carry=POin.1 -> LSB of R5

Note: RLC substitution

The Assembler does not recognize the instruction

RLC @R5+.

It must be substituted by

AD DC @R5+,-2(R5).

2-69

Instruction set MSP430 Family

* RLC.B Rotate left through carry

Syntax RLC.B dst

Operation C <- MSB <- MSB-1 LSB+1 <- LSB <- C

Emulation ADDC.B dst,dst

Description The destination operand is shifted left one position. The carry C is
shifted into the LSB, the MSB is shifted into the carry C.

Status Bits

Mode Bits

Example

7

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if arithmetic overflow occurs otherwise reset

Set if 03Fh < dstinitial < OCOh otherwise reset

OscOff, CPUOff and GIE are not affected

Content of MEM(LEO) is shifted left one position.

o

RLC.B LEO ; Mem(LEO) x 2 + C -> Mem(LEO)

Example The information of input POIN.1 is to be shifted into LSB of RS.

BIT.B #2,&POIN
RLC.B RS

Note: RLC.B emulated

; Information -> Carry
; Carry=POin.1 -> LSB of RS
; High byte of RS is reset

The Assembler does not recognize the instruction

RLC.B @RS+.

It must be substituted by

ADDC.B @RS+,-1(RS).

2-70

MSP430 Family Instruction set

RRA[.W] Rotate right arithmetically

Syntax RRA dst or RRA.W dst

Operation MSB -> MSB, MSB -> MSB-1, MSB-1 -> MSB-2 LSB+1 -> LSB,
LSB -> C

Description The destination operand is shifted right one position. The MSB is shifted
into the MSB, the MSB is shifted into the MSB-1, the LSB+ 1 is shifted
into the LSB.

15 a
-~ .. ~L.-._-_. - __ . __ .. ___ ---'~ I

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example RS is shifted right one position. The MSB remains with the old value. It
operates equal to an arithmetic division by 2.

;OR

RRA RS ; RS/2 -> RS

The value in RS is multiplied by 0.7S (O.S + 0.2S)

PUSH
RRA
ADD
RRA

RRA
PUSH
RRA
ADD

RS
RS
@SP+,RS
RS

RS
RS
@SP
@SP+,RS

; hold RS temporarily using stack
; RS x O.S -> RS
; RS x O.S + RS = 1.S x RS -> RS
; (1.S x RS) x O.S = 0.7S x RS -> RS

; RS x O.S -> RS
; RS x O.S -> TOS
; TOS x O.S = O.S x RS x O.S = 0.2S x RS -> TOS
; RS x O.S + RS x 0.2S = 0.7S x RS -> RS

2-71

Instruction set MSP430 Family

RRA.B Rotate right arithmetically

Syntax RRA.B dst

Operation MSB -> MSB, MSB -> MSB-1, MSB-1 -> MSB-2 LSB+ 1 -> LSB,
LSB -> C

Description The destination operand is shifted right one position. The MSB is shifted
into the MSB, the MSB is shifted into the MSB-1, the LSB+ 1 is shifted
into the LSB.

7 o

• 1-

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example The Lowbyte of R5 is shifted right one position. The MSB remains with
the old value. It operates equal to an arithmetic division by 2.

;OR

2-72

RRA.B R5 ; R5/2 -> R5: Operation is on Low byte only
; High byte of R5 is reset

The value in R5 - Low byte only! - is multiplied by 0.75 (0.5 + 0.25)

PUSH.B
RRA.B
ADD.B
RRA.B

RRA.B
PUSH.B
RRA.B
ADD.B

R5
R5
@SP+,R5
R5

R5
R5
@SP
@SP+,R5

; hold Low byte of R5 temporarily using stack
; R5 x 0.5 -> R5
; R5 x 0.5 + R5 = 1.5 x R5 -> R5
; (1.5 x R5) x 0.5 = 0.75 x R5 -> R5

; R5 x 0.5 -> R5
; R5 x 0.5 -> TOS
; TOS x 0.5 = 0.5 x R5 x 0.5 = 0.25x R5 -> TOS
; R5 x 0.5 + R5 x 0.25 = 0.75 x R5 -> R5

MSP430 Family Instruction set

RRC[.W] Rotate right through carry

Syntax RRC dst or RRC.W dst

Operation C -> MSB -> MSB-1 LSB+1 -> LSB -> C

Description The destination operand is shifted right one position. The carry C is
shifted into the MSB, the LSB is shifted into the carry C.

Status Bits

Mode Bits

Example

15 o

~ ~~--------'
N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Set if initial destination is positive and initial Carry is set, otherwise

reset

OscOff, CPUOff and GIE are not affected

R5 is shifted right one position. The MSB is loaded with 1.

SETC
RRC R5

; PREPARE CARRY FOR MSB
; R5/2 + 8000h -> R5

2-73

Instruction set MSP430 Family

RRC.B Rotate right through carry

Syntax RRC dst

Operation C -> MSB -> MSB-1 LSB+ 1 -> LSB -> C

Description The destination operand is shifted right one position. The carry C is
shifted into the MSB, the LSB is shifted into the carry C.

Status Bits

Example

2-74

7

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB

o

V: Set if initial destination is positive and initial Carry is set, otherwise
reset

OscOff, CPUOff and GIE are not affected

RS is shifted right one position. The MSB is loaded with 1.

SETC
RRC.B RS

; PREPARE CARRY FOR MSB
; RS/2 + BOh -> RS; Low byte of RS is used

MSP430 Family Instruction set

* SBC[.W] Subtract borrow') from destination

Syntax SBC dst or SBC.w dst

Operation dst + OFFFFh + C -> dst

Emulation SUBC #O,dst

Description The carry C is added to the destination operand minus one. The
previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Reset if dst was decremented from 0000 to OFFFFh, set otherwise
V: Set if initially C=O and dst=08000h

Mode Bits OscOff, CPUOff and GIE are not affected

Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12); Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

Note: Borrow is treated as a .NOT. carry 1

The borrow is treated as a .NOT. carry: Borrow
Yes
No

Carry bit
o
1

2-75

Instruction set MSP430 Family

* SBC.B Subtract borrow *) from destination

Syntax SBC.B dst

Operation dst + OFFh + C -> dst

Emulation SUBC.B #O,dst

Description The carry C is added to the destination operand minus one

the borrow is subtracted from the destination operand.

Status Bits

Mode Bits

Example

The previous contents of the destination are lost.

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Reset if dst was decremented from 0000 to OFFFFh, set otherwise
V: Set if initially C=O and dst=080h

OscOff, CPUOff and GIE are not affected

The 8bit counter pointed to by R13 is subtracted from a 16bit counter
pointed to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow is treated as a .NOT. carry 2

The borrow is treated as a .NOT. carry: Borrow

2-76

Yes
No

Carry bit
o
1

MSP430 Family Instruction set

* SETC Set carry bit

Syntax SETC

Operation 1 -> C

Emulation BIS #1,SR

Description The Carry Bit C is set, an often necessary operation.

Status Bits N: Not affected
Z: Not affected
C: Set

Mode Bits

Example

DSUB

V: Not affected

OscOtt, CPUOtt and GIE are not affected

Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5=3987 and R6=4137

ADD #6666h,R5

INV R5

SETC
DADD R5,R6

; Move content R5 from 0-9 to 6-0Fh
; R5 = 03987 + 6666 = 09FEDh
; Invert this(result back to 0-9)
; R5 = .NOT. R5 = 06012h
; Prepare carry = 1
; Emulate subtraction by adding of:
; (10000 - R5 - 1)
; R6 = R6 + R5 + 1
; R6 = 4137 + 06012 + 1 = 10150 = 0150

2-77

Instruction set

*SETN Set Negative bit

Syntax SETN

Operation 1 -> N

Emulation BIS #4,SR

Description The Negative bit N is set.

Status Bits N: Set
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff and GIE are not affected

2-78

MSP430 Family

MSP430 Family Instruction set

* SETZ Set Zero bit

Syntax SETZ

Operation 1 -> Z

Emulation SIS #2,SR

Description The Zero bit Z is set.

Status Bits N: Not affected
Z: Set
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff and GIE are not affected

2-79

Instruction set

SU8[.W]

Syntax

Operation

subtract source from destination

SUB src,dst or SUB.w

dst + .NOT.src + 1 -> dst
or
[(dst - src -> dst)]

MSP430 Family

src,dst

Description The source operand is subtracted from the destination operand. This is
made by adding of the 1 's complement of the source operand and the
constant 1. The source operand is not affected, the previous contents of
the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset if not

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example See example at the SBC instruction

Note: Borrow is treated as a .NOT. carry 3

The borrow is treated as a .NOT. carry: Borrow

2-80

Yes
No

Carry bit
o
1

MSP430 Family Instruction set

SUB.B subtract source from destination

Syntax

Operation

SUB.B src,dst

dst + .NOT.src + 1 -> dst
or
(dst - src -> dst)

Description The source operand is subtracted from the destination operand. This is
made by adding of the 1 's complement of the source operand and the
constant 1. The source operand is not affected, the previous contents of
the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset if not

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example See example at the SBC.B instruction

Note: Borrow is treated as a .NOT. carry 4

The borrow is treated as a .NOT. carry: Borrow
Yes
No

Carry bit
o
1

2-81

Instruction set MSP430 Family

SUBC[.W]SBB[.W] subtract source and borrow/.NOT. carry from destination

Syntax

Operation

SUBC
SBB

src,dst
src,dst

or SUBC.w
or SBB.W

dst + .NOT.src + C -> dst
or
(dst - src - 1 + C -> dst)

src,dst
src,dst

or

Description The source operand is subtracted from the destination operand. This is
made by adding of the 1 's complement of the source operand and the
carry C. The source operand is not affected, the previous contents of
the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset if not

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example Two floating point mantissas (24bits) are subtracted.
LSB's are in R13 resp. R10, MSB's are in R12 resp. R9.

SUB.W R13,R10 ; 16bit part, LSB's
SUBC.B R12,R9 ; 8bit part, MSB's

Note: Borrow is treated as a .NOT. carry 5

The borrow is treated as a .NOT. carry: Borrow

2-82

Yes
No

Carry bit
o
1

MSP430 Family Instruction set

SUBC.B,SBB.B subtract source and borrow/.NOT. carry from destination

Syntax

Operation

SUBC.B src,dst or SBB.B src,dst

dst + .NOT.src + C -> dst
or
(dst - src - 1 + C -> dst)

Description The source operand is subtracted from the destination operand. This is
made by adding of the 1's complement of the source operand and the
carry C. The source operand is not affected, the previous contents of
the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset if not

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff and GIE are not affected

Example The 16-bit counter pointed to by R13 is subtracted from a 16-bit counter
in R10 and R11 (MSD).

SUB.B @R13+,R10; Subtract LSDs without carry
SUBC.B @R13,R11 ; Subtract MSDs with carry

; resulting fron the LSDs

Note: Borrow is treated as a .NOT. carry 6

The borrow is treated as a .NOT. carry: Borrow
Yes
No

Carry bit
o
1

2-83

Instruction set MSP430 Family

SWPB Swap bytes

Syntax SWPB dst

Operation bits 15 to 8 <-> bits 7 to 0

Description The high and the low bytes of the destination operand are exchanged.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff and GIE are not affected

Example

Example

2-84

15 8 7

MOV #040BFh,R7
SWPB R7

o

; 0100000010111111 -> R7
; 1011111101000000 in R7

The value in R5 is multiplied by 256. The result is stored in R5,R4

SWPB R5
MOV R5,R4
BIC #OFFOOh,R5
BIC #00FFh,R4

;Copy the swapped value to R4
;Correct the result
;Correct the result

MSP430 Family Instruction set

SXT Extend Sign

Syntax SXT dst

Operation Bit 7 -> Bit B Bit 15

Description The sign of the Low byte is extended into the High byte.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

Mode Bits OscOff, CPUOff and GIE are not affected

15 8 7 o

Example R7 is loaded with Timer/Counter value. The operation of the sign extend
instruction expands the bitB to bit15 with the value of bit7.
R7 is added then to R6 where it is accumulated.

MOV.B
SXT
ADD

&TCDAT,R7
R7
R7,R6

; TCDAT = OBOh: 10000000
; R7 = OFFBOh: 1111111110000000
; add value of EDE to 16bit ACCU

2-85

Instruction set MSP430 Family

* TST[.W] Test destination

Syntax TST dst or TSTW dst

Operation dst + OFFFFh + 1

Emulation CMP #O,dst

Description The destination operand is compared to zero. The status bits are set
according to the result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive

Mode Bits

Example

R7POS

R7NEG

R7ZERO

2-86

Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset.

OscOff, CPUOff and GIE are not affected

R7 is tested. If it is negative continue at R7NEG; if it is positive but not
zero continue at R7POS.

TST R7
IN R7NEG
JZ R7ZERO

; Test R7
; R7 is negative
; R7 is zero
; R7 is positive but not zero

; R7 is negative

; R7 is zero

MSP430 Family Instruction set

* TST.B Test destination

Syntax TST.8 dst

Operation dst + OFFh + 1

Emulation CMP.B #O,dst

Description The destination operand is compared to zero (R15). The status bits are
set according to the result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive

Mode Bits

Example

R7POS

R7NEG

R7ZERO

Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset.

OscOff, CPUOff and GIE are not affected

Lowbyte of R7 is tested. If it is negative continue at R7NEG; if it is
positive but not zero continue at R7POS.

TST.B R7
IN R7NEG
JZ R7ZERO

; Test Low byte of R7
; Low byte of R7 is negative
; Low byte of R7 is zero
; Low byte of R7 is positive but not zero

; Lowbyte of R7 is negative

; Lowbyte of R7 is zero

2-87

Instruction set MSP430 Family

XOR[.W] Exclusive OR of source with destination

Syntax XOR src,dst or XOR.w src,dst

Operation src .XOR. dst -> dst

Description The source operand and the destination operand are OR'ed exclusively.
The result is placed into the destination. The source operand is not
affected.

Status Bits N: Set if MSB of result is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if both operands are negative

Mode Bits OscOff, CPUOff and GIE are not affected

Example The bits set in R6 toggle the bits in the RAM word TONI.

XOR R6,TONI; Toggle bits of word TONI on the bits set in R6

2-88

MSP430 Family Instruction set

XOR.B Exclusive OR of source with destination

Syntax XOR.B src,dst

Operation src .XOR. dst -> dst

Description The source operand and the destination operand are OR'ed exclusively.
The result is placed into the destination. The source operand is not
affected.

Status Bits N: Set if MSB of result is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if both operands are negative

Mode Bits OscOff, CPUOff and GIE are not affected

Example The bits set in R6 toggle the bits in the RAM byte TONI.

R6,

Example

XOR.B R6,TONI ; Toggle bits in word TONI on bits set in Low byte of

Reset bits in Lowbyte of R7 to 0 that are different to bits in RAM byte
EDE.

XOR.B
INV.B

EDE,R7
R7

; Set different bit to '1 s'
; Invert Lowbyte, Highbyte is Oh

2-89

Instruction set MSP430 Family

2.4 Macro instructions emulated with several instructions

The following table shows the instructions which need more words if emulated by the
reduced instruction set. This is not of big concern due to the rare use of them. The
immediate values -1, 0, +1, 2, 4 and 8 are provided by the Constant Generator Registers
R2/CG1 and R3/CG2.

Emulated instruction Instruction flow Comment

ABS dst TST dst ; Absolute value of destination
IN L$O ; Destination is negative

L$1 ; Destination is positive

L$O INV dst ; Convert negative destination
INC dst ; to positive
JMP L$1

DSUB src,dst ADD #6666h,src ; Decimal subtraction
INV src ; Source is destroyed!
SETC
DADD src,dst ; DST - SRC (dec)

NEG dst INV dst ; Negation of destination
INC dst

RL dst ADD dst,dst ; Rotate left circularly
ADDC #O,dst

RR dst CLRC ; Rotate right circularly
RRC dst
JNC L$1
BIS #8000h,dst

L$1

2-90

MSP430 Family Instruction set

2.5 Stack pointer addressing

The placement of the Stack Pointer inside the register space allows a lot of features not
possible with the normal allocation outside the register space.

MOV Rn,SP ; Load SP with the contents of Rn

MOV @Rn,SP ; Load SP with the contents of the word pointed to by
; Rn

MOV @Rn+,SP ; Same as above with autoincrement of Rn

MOV X(Rn),SP ; Load SP with the contents of a table pointed to by Rn.
; X defines the offset relative to the table start

MOV #n,SP ; Load SP with a constant n (e.g. for initialization)

MOV ADDR,SP ; Load SP with the contents of word AD DR

MOV &ADDR,SP ; Load SP with the contents of absolute address ADDR

MOV SP,Rn ; Copy SP to Rn (e.g. for later restoring)

MOV @SP,Rn ; Move top of stack (TOS) to Rn

MOV @SP+,Rn ; Pop stack item to Rn

MOV X(SP),Rn ; Move a stack item relative to the SP to Rn

MOV Rn,O(SP) ; Replace TOS by contents of Rn

MOV Rn,X(SP) ; Replace item on the stack. X defines the offset relative
; to the SP (TOS)

INCD SP ; Remove TOS item

The Stack Pointer allows the transfer of arguments in several ways. The following
example shows a CALL with arguments and the handling inside of the subroutine:

CALL
. BYTE
.wORD
.wORD
.wORD

#SUBROUT
MODE,CODE
ERRADD
ARG1
ARG2

; Control bytes
; Error address, if ERROR occurs
; ARGUMENT #1
; ARGUMENT #2
; Continue here after RETURN

2·91

Instruction set MSP430 Family

SUBROUT ; prepare registers
MOV @SP,Rn ; TOS points to control bytes
ADD #8,O(SP) ; Ajust return address
MOV @Rn+,Rm ; Control bytes -> Rm
MOV @Rn+,Rx ; Error address -> Rx
MOV @Rn+,Ry ; ARGUMENT #1 -> Ry
MOV @Rn+,Rz ; ARGUMENT #2 -> Rz

RETN ; Normal RETURN
ERROR MOV Rx,PC ; Error occured: return address to PC

The same subroutine can be called in different ways. The arguments following the call
are read by the subroutine and the information is handled appropriately.

2-92

MSP430 Family Instruction set

2.6 Branch operation

All seven addressing modes can be applied to the Branch instruction. The Branch
instruction is emulated by the core instruction MOV source,PC.

Branch and call instructions operate within one segment; both do not manipulate the
code segment information.

2.6.1 Indirect Branch, CALL

Indirect Branch

BR RS

MOV RS,PC ; Core instruction

Before: After:
Address Register Address Register
space space

OFF16h Oxxxxh PC OFF16h Oxxxxh PC
OFF14h 04S00h PC RS OFF14h 04S00h RS
OFF12h Oxxxxh OFF12h Oxxxxh

OFA34h Oxxxxh OFA34h Oxxxxh
OFA32h Oxxxxh OFA32h Oxxxxh PC
OFA30h Oxxxxh OFA30h Oxxxxh

2-93

Instruction set

Indirect CALL

CALL RS

Before:
Address
space

OFF16h Oxxxxh
OFF14h 01285h
OFF12h Oxxxxh

OFA34h Oxxxxh
OFA32h Oxxxxh
OFA30h Oxxxxh

OFFCh Oxxxxh
OFFAh Oxxxxh
OFF8h Oxxxxh

2-94

PC

SP

C
F
IE

P
S
R

Register

OFF14h
OFFCh
OFA32h

After: CALL
Address
space

OFF16h Oxxxxh
OFF14h 01285h
OFF12h Oxxxxh

OFA34h Oxxxxh
OFA32h Oxxxxh PC
OFA30h Oxxxxh

OFFCh Oxxxxh
OFFAh OFF16h
OFF8h Oxxxxh

After: RET
Address
space

OFF16h Oxxxxh
OFF14h 01285h
OFF12h Oxxxxh

OFA32h Oxxxxh
OFA31h Oxxxxh
OFA30h Oxxxxh

SP

PC

OFFBh Oxxxxh SP
OFFAh OFF16h
OFF9h Oxxxxh

MSP430 Family

C
~F

IE

P
S
R

C
,F
I~

P
S
R

Register

OFA32h
OFFAh
OFA32h

Register

OFF16h
OFFCh
OFA32h

MSP430 Family Instruction set

2.6.2 Indirect indexed Branch, CALL

Indirect indexed Branch

BR 2(R5)

MOV 2(R5),PC ;Core instruction

Before: After:
Address Register Address Register
space space

OFF16h 0OOO2h PC OFF16h Oxxxxh PC
OFF14h 04510h PC OFF14h 04510h R5
OFF12h Oxxxxh OFF12h Oxxxxh

0OOO2h
OFA36h Oxxxxh +OFA32h OF08Ch Oxxxxh
OFA34h OF08Ah OFA34h OF08Ah Oxxxxh PC
OFA32h Oxxxxh OF088h Oxxxxh

2-95

Instruction set

Indirect indexed CALL

CALL 2(RS)

Before:
Address Register
space

OFF18h Oxxxxh
OFF16h 0OOO2h PC OFF14h
OFF14h 01295h PC SP OFFCh
OFF12h Oxxxxh R5 OFA32h

0OOO2h
OFA36h Oxxxxh +OFA32h
OFA34h OF088h OFA34h
OFA32h Oxxxxh

OFFCh Oxxxxh SP
OFFAh Oxxxxh
OFF8h Oxxxxh

2-96

After: CALL
Address
space

OFF18h Oxxxxh
OFF16h 0OOO2h
OFF14h 01295h
OFF12h Oxxxxh

OF08Ah Oxxxxh
OF088h Oxxxxh
OF086h Oxxxxh

OFFCh Oxxxxh
OFFAh OFF18h
OFF8h Oxxxxh

After: RET
Address
space

OFF18h Oxxxxh
OFF16h 0OOO2h
OFF14h 01295h
OFF12h Oxxxxh

OF08Ah Oxxxxh
OF088h Oxxxxh
OF086h Oxxxxh

PC

SP

PC

OFFCh Oxxxxh SP
OFFAh OFF18h
OFF8h Oxxxxh

MSP430 Family

Register

PC OF088h
SP OFFAh
R5 OFA32h

.Register

PC OFF18h
SP OFFCh
R5 OFA32h

MSP430 Family Instruction set

2.6.3 Indirect symbolic Branch, CALL

Indirect symbolic Branch

BR EDE

MOV EDE,PC ; Core instruction

Before: After:
Address Register Address Register
space space

OFF16h OFB1Eh PCI OFF14h OFF16h OFB1Eh Pcl OF378h I
OFF14h 04010h PC OFF14h 04010h
OFF12h Oxxxxh OFF12h Oxxxxh

OFB1Eh
OFA36h Oxxxxh +OFF16h OF37Ah Oxxxxh

OFA34h OF378h EDE OFA34h OF378h Oxxxxh PC
OFA32h Oxxxxh OF376h Oxxxxh

2-97

Instruction set MSP430 Family

Indirect symbolic CALL

CALL EDE

Before: After:
Address Register Address Register
space space

OFF18h Oxxxxh OFF18h Oxxxxh
OFF16h OFB1Eh PC OFF16h OFB1Eh PC
OFF14h 01290h PC SP OFF14h 01290h SP
OFF12h Oxxxxh OFF12h Oxxxxh

OFB1Eh
OFA36h Oxxxxh +OFF16h OF37Ah Oxxxxh
OFA34h OF378h <-- EDE OFA34h OF378h Oxxxxh PC
OFA32h Oxxxxh OF376h Oxxxxh

OFFCh Oxxxxh SP OFFCh Oxxxxh
OFFAh Oxxxxh OFFAh OFF18h SP
OFF8h Oxxxxh OFF8h Oxxxxh

After: RET
Address Register
space

OFF18h Oxxxxh PC
OFF16h OFB1Eh PC
OFF14h 01290h SP
OFF12h Oxxxxh

OF37Ah Oxxxxh
OF378h Oxxxxh
OF376h Oxxxxh

OFFCh Oxxxxh SP
OFFAh OFF18h
OFF8h Oxxxxh

2-98

MSP430 Family Instruction set

2.6.4 Indirect absolute Branch, CALL

The absolute branch and call instruction in the segmented memory model will result in a
branch or call to code segment O.

Indirect absolute Branch

BR &EDE

MOV &EDE,PC ; Core instruction

Before: After:
Address Register Address Register
space space

OFF16h OF378h PC I OFF14h OFF16h OF378h PC I 01234h I
OFF14h 04210h PC OFF14h 04210h
OFF12h Oxxxxh OFF12h Oxxxxh

OF378h
OF37Ah Oxxxxh +OOOOOh 01236h Oxxxxh
OF378h 01234h OF378h 01234h Oxxxxh PC EDE
OF376h Oxxxxh 01232h Oxxxxh

2-99

Instruction set MSP430 Family

Indirect absolute CALL

CALL &EDE

Before: After:
Address Register Address Register
space space

OFF18h Oxxxxh OFF18h Oxxxxh
OFF16h OF378h PC OFF16h OF378h PC
OFF14h 01292h PC SP OFF14h 01292h SP
OFF12h Oxxxxh OFF12h Oxxxxh

OF378h
OF37Ah Oxxxxh +OOOOOh 01236h Oxxxxh
OF378h 01234h OF378h 01234h Oxxxxh PC EDE
OF376h Oxxxxh 01232h Oxxxxh

OFFCh Oxxxxh SP OFFCh Oxxxxh
OFFAh Oxxxxh OFFAh OFF18h SP
OFF8h Oxxxxh OFF8h Oxxxxh

After: RET
Address Register
space

OFF18h Oxxxxh PC
OFF16h OF378h PC
OFF14h 01292h SP
OFF12h Oxxxxh

OF37Ah Oxxxxh
OF378h 01234h
OF376h Oxxxxh

OFFCh Oxxxxh SP
OFFAh OFF18h
OFF8h Oxxxxh

2-100

MSP430 Family

2.6.5 Indirect indirect Branch, CALL

Indirect indirect Branch

BR @R9

MOV @R9,PC ; Core instruction

Before:
Address Register
space

OFF16h Oxxxxh PC
OFF14h 04920h PC R9
OFF12h Oxxxxh

OFA34h Oxxxxh
OFA32h OF124h
OFA30h Oxxxxh

After:
Address
space

OFF16h Oxxxxh
OFF14h 04920h
OFF12h Oxxxxh

OF126h Oxxxxh
OF124h Oxxxxh PC
OF122h Oxxxxh

Instruction set

Register

PC~~~
R91..,;,,;...;....;.;;;~

2-101

Instruction set MSP430 Family

Indirect indirect CALL

CALL @R9

Before: After: CALL
Address Register Address Register
space space

OFF16h Oxxxxh PC OFF14h OFF16h Oxxxxh PC OF124h
OFF14h 012A9h PC SP OFFCh OFF14h 012A9h SP OFFAh
OFF12h Oxxxxh R9 OFA32h OFF12h Oxxxxh R9 OFA32h

OFA34h Oxxxxh OF126h Oxxxxh
OFA32h OF124h OF124h Oxxxxh PC
OFA30h Oxxxxh OF122h Oxxxxh

OFFCh Oxxxxh SP OFFCh Oxxxxh
OFFAh Oxxxxh OFFAh OFF16h SP
OFF8h Oxxxxh OFF8h Oxxxxh

After: RET
Address Register
space

OFF16h Oxxxxh PC PC OFF16h
OFF14h 012A9h SP OFFCh
OFF12h Oxxxxh R9 OFA32h

OF125h Oxxxxh
OF124h Oxxxxh
OF123h Oxxxxh

OFFCh Oxxxxh SP
OFFAh OFF16h
OFF8h Oxxxxh

2-102

MSP430 Family

2.6.6 Indirect indirect Branch, CALL with autoincrement

Indirect indirect Branch with autoincrement

BR @R5+

MOV

Before:

@R5+,PC

Address
space

; Core instruction

Register

OFF16h Oxxxxh PC
OFF14h 04530h PC R5 ~~~-t
OFF12h Oxxxxh

OFA36h Oxxxxh
OFA32h OF124h
OFA30h Oxxxxh

After:
Address
space

OFF16h Oxxxxh
OFF14h 04530h
OFF12h Oxxxxh

OF126h Oxxxxh
OF124h Oxxxxh PC
OF122h Oxxxxh

Instruction set

Register

PC
R5~~~

Instruction set

Indirect indirect CALL with autoincrement

CALL @R5+

Before:
Address Register
space

OFF16h Oxxxxh PC OFF14h
OFF14h 01285h PC SR OFFCh
OFF12h Oxxxxh R5 OFA32h

OFA34h Oxxxxh
OFA32h OF124h
OFA30h Oxxxxh

OFFCh Oxxxxh SP
OFFAh Oxxxxh
OFF8h Oxxxxh

2-104

After: CALL
Address
space

OFF16h Oxxxxh
OFF14h 01285h
OFF12h Oxxxxh

OF126h Oxxxxh
OF124h Oxxxxh PC
OF122h Oxxxxh

OFFCh Oxxxxh
OFF16h S OFFAh P

OFF8h Oxxxxh

After: RET
Address
space

OFF16h Oxxxxh PC
OFF14h 01285h
OFF12h Oxxxxh

OF126h Oxxxxh
OF124h Oxxxxh
OF122h Oxxxxh

OFFCh Oxxxxh SP
OFFAh OFF16h
OFF8h Oxxxxh

MSP430 Family

(

R
Ie

P
S
R

C
F
Ie

P
S
R

Register

OF124h
OFFAh
OFA34h

Register

OFF16
OFFCh
OFA34h

MSP430 Family Instruction set

2.6.7 Direct Branch, direct CALL

Branch immediate #N, Branch Label

BR #OF146h OR BR #Label

MOV @PC+,PC ; Core instruction

Before: After:
Address Register Address Register
space space

OFF16h OF146h pcl OFF14h OFF16h OF146h pcl OF146h I
OFF14h 04030h PC OFF14h 04030h
OFF12h Oxxxxh OFF12h Oxxxxh

OF148h Oxxxxh OF148h Oxxxxh
OF146h Oxxxxh <-- Lab OF146h Oxxxxh PC

el
OF144h Oxxxxh OF144h Oxxxxh

2-105

Instruction set MSP430 Family

Direct CALL

CALL #OF146h OR CALL #Label

Before: After: CALL
Address Register Address Register
space space

OFF18h Oxxxxh OFF18h Oxxxxh
OFF16h OF146h PC OFF16h OF146h PC
OFF14h 012BOh PC OFF14h 012BOh SP
OFF12h Oxxxxh OFF12h Oxxxxh

OF148h Oxxxxh OF148h Oxxxxh
OF146h Oxxxxh <-- Label OF146h Oxxxxh PC
OF144h Oxxxxh OF144h Oxxxxh

OFFCh Oxxxxh SP OFFCh Oxxxxh
OFFAh Oxxxxh OFFAh OFF18h SP
OFF8h Oxxxxh OFF8h Oxxxxh

After: RET
Address Register
space

OFF18h Oxxxxh PC
OFF16h OF146h PC
OFF14h 012BOh SR
OFF12h Oxxxxh

OF148h Oxxxxh
OF146h Oxxxxh
OF144h Oxxxxh

OFFCh Oxxxxh SP
OFFAh OFF18h
OFF8h Oxxxxh

2-106

MSP430 Family

3 General Initialization

3.1 System Clock Generator

3.2 RAM Clearing Rmoutine

3.3 RAM Self-Test

3.4 ROM Checksum

3.5 Battery Check

3.6 Interrupt Management

Figure Title

3.1 Battery Check

Topics

Figures

General Initialization

3-3

3-3

3-4

3-4

3-5

3-6

3-9

Page

3-6

3-1

General Initialization MSP430 Family

3-2

MSP430 Family General Initialization

3 General Initialization

The most important thing to initialize the processor is the reset vector, which is located
at address FFFEh and must point to the starting address of the programme code. The
initialization of the stack in the RAM area is important as well. This is done by simple
MOV instructions as shown in the following example. To operate with the proper system
frequency the system clock generator must be initialized.

3.1 System Clock Generator

The first thing to do after the power up reset is to initialize the system clock generator.
The following waiting loop is used to get the initialized system frequency. Then the stack
is defined at the RAM address 300h and can range down to 200h (depending on the
MSP430 type). Therefore, the first word which is pushed on the stack will be located at
2FEh. If the RAM is used for storing variables the space for the stack will be smaller.

STACK
SCFQCTL
SCFIl

START

.EQU

.EQU

.EQU

.SECT

MOV.B
MOV.B
MOV
CALL

.SECT

. WORD

300H
052H
051H

"INIT",OF100H

#lFH,&SCFQCTL
#80H, &SCFIl
#STACK,SP
#RAMCLR

;STARTADDRESS OF THE RAM VERSION
;SPECIAL STARTUP FOR FLL
;LOAD FLL TO RUN WITH 32KHZ*20H
;LOAD FLL TO RUN WITH lMHZ
;INITIALIZE STACK
;USED FOR WAITING, TOO

"RES_VECT",OFFFEH
START ; POR, EXT. RESET, WATCHDOG

3-3

General Initialization MSP430 Family

3.2 RAM Clearing Routine

This subroutine sets all of the RAM to zero and is called after the initialization of the
system clock generator. The size of the RAM depends on the type of the MSP430. For
the following example the RAM starts at address 200h and the size is assumed to be
100h.

; DEFINITIONS FOR THE RAM BLOCK (DEPENDS ON MSP430 TYPE)
RAMSTRT .EQU 0200H ; START OF RAM
RAMEND .EQU 02FFH ; LAST RAM ADDRESS

; SUBROUTINE FOR THE CLEARING OF THE RAM BLOCK
RAMCLR CLR R4 PREPARE INDEX REGISTER
RCL CLR

INCD
CMP
JLO
RET

RAMSTRT(R4) ; 1ST RAM ADDRESS
R4 ; NEXT ADDRESS
#RAMEND-RAMSTRT+1,R4 ; RAM CLEARED?
RCL ; NO, ONCE MORE

3.3 RAM Self-Test

This routine performs a simple alternating 0/1 test on the RAM. The RAM is tested by
writing a AAh,55h pattern to the entire RAM and checking the RAM for this patten. The
inverted pattern is then written to RAM and rechecked. Finally, the entire RAM is
cleared. If an error is found, the negative bit is set.

RAMSTRT .EQU
RAMEND .EQU

0200H
02FFH

START OF RAM
; LAST RAM ADDRESS

;SUBROUTINE TO CHECK ENTIRE RAM
;USE REGISTER: R4,R5
RAMCHECK

MOV
FILLS CLR
FILLR MOV

INCD
CMP
JLO
CLR

COMPAR CMP
JNE

#55AAH,R4 ;FIRST TESTPATTERN
R5 ;POINTER TO RAM
R4,RAMSTRT(R5);FILL RAM WITH R4
R5 ;NEW RAM POINTER
#RAMEND-RAMSTRT+1,R5 ;IS RAM FILLED?
FILLR
R5 ;NEW RAM POINTER
R4,RAMSTRT(R5);COMPARE RAM WITH R4
ERROR ;EXIT IF VALUES DON'T MATCH

DECD R5 ; NEXT RAM WORD

?

3·4

CMP #RAMEND-RAMSTRT+1,R5 ;ALL OF RAM TESTED

JLO
SWPB

COMPAR
R4

TST R4
IN
JZ
CLR

FILLS
EXIT
R4

;NEW TESTPATTERN

;=AA55H, NEW TEST
;=OOOOH, FINISCHED
;TESTPATTERN = 0000

MSP430 Family General Initialization

JMP FILLS
ERROR SETN
EXIT RET

3.4 ROM Checksum

This routine checks the integrity of the ROM by performing a checksum on the entire
ROM. All ROM words from ROMSTRT+2 to ROMEND are added together in a 16-bit
word. This sum is checked against the value at the beginning of the ROM (ROMSTRT).
If these values do not match, then an error has occurred and the negative bit is set.

STACK .SET 02EOH ;START OF SYSTEM STACK

ROMSTRT . SECT
. WORD

START MOV

"PROG",OFOOOH
CHECKSUM
#STACK,SP

;PUT CORRECT CHECKSUM INTO ROM
;INITIALIZE SYSTEM STACK
; POINTER
;OTHER INITIALIZATION PROGRAM
; HERE

;SUBROUTINE TO CHECK THE INTEGRITY OF THE ROM
;USE REGISTER: R4,R5
;OUTPUT: ROM OK. N=O

ROM CHECK FAILED: N=l

ROMCHECK
CLR R5

#ROMEND,R4 MOV
SUB
ADD
DECD

#ROMSTRT,R4 ;R4 CONTAINS THE LENGTH OF ROM
ROML ROMSTRT(R4),R5 ;MAKE CHECKSUM

R4
JNZ ROML
CMP
JEQ
SETN

ROMEXIT RET

R5, &ROMSTRT
ROMEXIT

;IF MATCH, N-BIT IS CLEARED

;INTERRUPT VECTOR ADDRESSES:

ROMEND
.SECT
. WORD

"RSTVECT",OFFFEH; PUC/RESET ADDRESS
START

3-5

General Initialization MSP430 Family

3.5 Battery Check

Due to the ratiometric measurement principle of the ADC, the measured digital value is
an indication of the supply voltage of the MSP430. The measured value is inversly
proportional to the supply voltage Vcc. To get the reference for later battery tests a
measurement is made with Vcc = Vccmin. The result is stored in the RAM. If the battery
should be tested, another measurement has to be made, and the result compared to the
stored value measured with Vcc=Vccmin determines the status of the battery. If the
measured value exceeds the stored one, then Vcc<Vccmin and a Battery low indication
can be given by software.

o 32kHz

.-____________ --i SVcc

R=82k MSP430

~----------~A3

LMx85-1.2
Uref=1.2V

'---------f AGND
Vss Vcc

OV +3V

Figure 3.0: Battery Check

If no reference measurement has to be done, the value for the comparison can be
determined by calculation.

According to the data sheet of the LMx85-1.2 the typical reference voltage is 1.235 Volt
with a maximal deviation of ±O.012 Volt. Using the Auto-Mode of the ND-Converter, the
digital value is

3-6

N = INT VIN . 214
1

SVcc

MSP430 Family General Initialization

The reference voltage can be calculated as follows:

SV cc=SV ccmin=2.8 Volt

VIN = 1.235 ± 0,012 Volt

NREF = INTI(1.235±0,012 Volt).2 14 = 7226±70
2.8 Volt

To ensure that the voltage of the battery is above SVccmin, the reference value should
be set to:

NREF=7156

Every measured value above 7156 indicates that the battery voltage is lower than the
calculated value, and a battery low signal should be sent.

The software for making a reference measurement and a resulting comparison with a
new measured value is shown below.

ASOC .SET 1 ;BIT POSITION FOR CONVERSION
START

;IN BTCTL
ADAUTO .SET BOOH ;BIT POSITION TO SELECT AUTO MODE
ADNOI .SET 100H ;BIT POSITION TO SELECT NO
CURRENT

; SOURCE
ADA3 .SET OCH ;BIT POSITION TO SELECT INPUT TO

;A3
ADVREF .SET 2H ;SVCC=VCC

;FIRST THE VCCMIN VALUE HAS TO BE MEASURED
;AND IS STORED IN THE RAM VARIABLE BATREF

CALL #MEAS_A3 ;MEASURE VCCMIN
MOV R10,&BATREF ;AND STORE VALUE IN RAM

;MAIN PROGRAM:

;NOW THE BATTERY SHOULD BE CKECKED. IF THE BATTERY IS LOW, THE
;PROGRAM JUMPS TO THE LABEL BATLOW

CALL #MEAS_A3 ;MEASURE INPUT A3
CMP &BATREF,R10 ;IS VBATT <= VMIN ?
JLO BAT OK

;BATTERY IS LOW! BATLOW
BATOK ;BATTERY IS OK, NORMAL OPERATION

3-7

General Initialization MSP430 Family

3-8

MSP430 Family General Initialization

;***

;SUBROUTINE TO MEASURE CHANNEL A3 WITH THE POLLING METHOD FOR
ONE
;TIME. THE RESULT WILL BE CONTAINED IN R10
;OUTPUT: ADC VALUE OF A3 IN R10
;***

MEAS_A3 BIC.B
MOV

MEAS 1 BIT.B -
(IE2)

JZ
BIC.I3
MOV
BIS.B
RET

#ADIE,&IE2 ;DISABLE ADC INTERRUPT
#ADVREF+ADA3+ADNOI+ADAUTO+ASOC,&ACTL

;SVCC=VCC

#ADIFG,&IFG2

MEAS 1
#ADIFG,&IFG2
&ADAT,R10
#ADIE,&IE2

;INPUT=A3
;NO CURRENT SOURCE
;RANGE=AUTO
;WAIT FOR EOC-SHOULD BE IFG2

;CLEAR EOC FLAG

;ENABLE ADC INTERRUPT

3.6 Interrupt Management

Using Interrupts is a very good method for achieving fast response with several events:
for example, a transition at the 110 port initiating a communication (Start Bit). Another
reason for using interrupts instead of the polling method is that the time during the
occurrence of interrupts can be used for further calculations: e.g. during an ND
conversion, a multiplication can be performed. By entering an interrupt service routine,
the GIE bit will be set and therefore no other interrupt request can be handled. After
leaving the interrupt service routine by executing the RETI instruction, the status word
including the GIE-bit will be restored and every occurring interrupt request can now be
handled. If an interrupt request should be handled while executing another interrupt
service routine, the GIE-bit has to be set explicitly by software in the dedicated interrupt
service routine. The handling of the interrupts is easy, as shown in the following
example.

START .SECT "PROG",OFOOOH
CLR.B &IEl ; CLEAR ALL INTERRUPT ENABLE

; FLAGS
CLR.B &IE2
CLR.B &IFG ; CLEAR ALL INTERRUPT FLAG

; REGISTER
CLR.B &IFG2
BIS.B #PO _0 IE+ .. , &IEl ; ENABLE USED INTERRUPTS
BIS.B #ADIE+BTIE+ .. ,&IE2
EINT ; ENABLE INTERRUPTS

3-9

General Initialization MSP430 Family

;INTERRUPT SERVICE ROUTINES
PO OISR EINT ;SET GIE-BIT TO ALLOW INTERRUPT NESTING

RETI
ADCISR

RETI
BTISR

RETI
;INERRUPT VECTORS

.SECT

. WORD

. WORD

. WORD

. WORD

. WORD

. WORD

. WORD

. WORD

. WORD

. WORD

. WORD

. WORD

. WORD

. WORD

. WORD

. WORD

3-10

" INT_ VECT" , OFFEOH
PO 27ISR ;PORTO, BIT 2 TO BIT 7
BTISR ;BASIC TIMER
START ;NO SOURCE
START ;NO SOURCE
START ;NO SOURCE
ADCISR ;EOC FORM ADC
START ;NO SOURCE
START ;NO SOURCE
START ;NO SOURCE
START ;NO SOURCE
WDTISR ; WATCHDOG/TIMER, TIMER MODE
START ;NO SOURCE
UARTISR ;ADDRESS OF UART HANDLER
PO OISR ;PORTO BIT 0
START iNMI, OSCILLATOR FAULT
START ;POWER UP RESET, WATCHDOG

MSP430 Family General Initialization

3-11

MSP430 Family

Topics

4 Integer Calculation Subroutines

4.1 Unsigned Multiplication 16 x 16 bits

4.2 Signed Multiplication 16 x 16 bits

4.3 Unsigned Multiplication 8 x 8 bits

4.4 Signed Multiplication 8 x 8 bits

4.5 Unsigned Division 32/16 bits

4.6 Shift Routines

4.7 Rules for the Integer Subroutines

Figures

Figure Title

4.1 16 x 16 Bit Multiplication: Register Use
4.2 8 x 8 Bit Multiplication: Register Use
4.3 Unsigned Division: Register Use

Integer Calculation

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

Page

4-4
4-6
4-8

4-1

Integer Calculation MSP430 Family

4-2

MSP430 Family Integer Calculation

4 Integer Calculation Subroutines

Integer routines have important advantages compared to all other calculation
subroutines:

1. Speed:
The highest speed is possible, especially if no loops are used.

2. ROM space:
The minimum of ROM space is needed for these subroutines.

3. Adaptability:
With the following definitions it is very easy to adapt the subroutines to the actual
needs. The necessary calculation registers can be located in the RAM or in registers.

The following definitions are valid for all of the following Integer Subroutines

; INTEGER SUBROUTINES

IRBT .EQU R9
IROPl .EQU R4
IROP2L .EQU R5
IROP2M .EQU R6
IRACL .EQU R7
IRACM .EQU R8

DEFINITIONS

BIT TEST REGISTER MPY
FIRST OPERAND
SECOND OPERAND LOW WORD
SECOND OPERAND HIGH WORD
RESULT LOW WORD
RESULT HIGH WORD

4.1 Unsigned Multiplication 16 x 16 bits

The following subroutine performs an unsigned 16 x 16-bit multiplication (label MPYU) or
"Multiplication and Accumulation" (label MACU). The multiplication subroutine clears the
result registers IRACL and IRACM before the start; the MACU subroutine adds the
result of the multiplication to the contents of the result registers.

The multiplication loop starting at label MACU is the same one as the one used for the
signed multiplication. This allows the usage of this subroutine for signed and unsigned
multiplication, if both are needed. The used registers are shown below:

15 o
Bit Test Register

Multiplicand

R6 IROP2M R5 IROP2L I Multiplier

R7 IRACL I Accumulated Result
L-__________ ~ ____________ ~

R8 IRACM

Figure 4.1: 16 x 16 Bit Multiplication: Register Use

4-3

Integer Calculation MSP430 Family

; EXECUTION TIMES FOR REGISTERS USED (CYCLES @ lMHZ) :
; TASK MACU MPYU EXAMPLE
"---,

MINIMUM 132 134 OOOOOH X OOOOOH OOOOOOOOOH
MEDIUM 148 150 OA5A5H X 05A5AH 03A763E02H
MAXIMUM 164 166 OFFFFH X OFFFFH OFFFEOO01H

UNSIGNED MULTIPLY SUBROUTINE: IROPl X IROP2L -> IRACM/IRACL
USED REGISTERS IROP1, IROP2L, IROP2M, IRACL, IRACM, IRBT

MPYU CLR IRACL 0 -> LSBS RESULT
CLR IRACM 0 -> MSBS RESULT

UNSIGNED MULTIPLY AND ACCUMULATE SUBROUTINE:
(IROPl X IROP2L) + IRACMIIRACL -> IRACMIIRACL

MACU CLR IROP2M MSBS MULTIPLIER
MOV #l,IRBT BIT TEST REGISTER

L$002 BIT IRBT,IROPl TEST ACTUAL BIT
JZ L$Ol IF 0: DO NOTHING
ADD IROP2L,IRACL IF 1: ADD MULTIPLIER TO RESULT
ADDC IROP2M,IRACM

L$Ol RLA IROP2L MULTIPLIER X 2
RLC IROP2M

RLA IRBT NEXT BIT TO TEST
JNC L$002 IF BIT IN CARRY: FINISHED
RET

4.2 Signed Multiplication 16 x 16 bits

The following subroutine performs a signed 16 x 16-bit multiplication (label MPYS) or
"Multiplication and Accumulation" (label MACS). The multiplication subroutine clears the
result registers IRACL and IRACM before the start, and the MACS subroutine adds the
result of the multiplication to the contents of the result registers. The register use is the
same as with the unsigned multiplication; Figure 4.1 is therefore also valid.

EXECUTION TIMES FOR REGISTERS USED (CYCLES @ lMHZ):

TASK MACS MPYS EXAMPLE
0 ______ --- _______ _ ,

MINIMUM
MEDIUM
MAXIMUM

138
155
172

140
157
174

OOOOOH X OOOOOH
OA5A5H X 05A5AH
OFFFFH X OFFFFH

OOOOOOOOOH
OE01C3E02H
000000001H

SIGNED MULTIPLY SUBROUTINE: IROPl X IROP2L -> IRACMIIRACL

4-4

MSP430 Family Integer Calculation

; USED REGISTERS IROP1, IROP2L, IROP2M, IRACL, IRACM, IRBT

MPYS CLR
CLR

IRACL
IRACM

o -> LSBS RESULT
o -> MSBS RESULT

;SIGNED MULTIPLY AND ACCUMULATE SUBROUTINE:
; (IROPl X IROP2L) + IRACM I IRACL -> IRACM I IRACL

MACS TST IROPl MULTIPLICAND NEGATIVE ?
JGE L$OOl
SUB IROP2L,IRACM YES, CORRECT RESULT REGISTER

L$OOl TST IROP2L MULTIPLIER NEGATIVE ?
JGE MACU
SUB IROP1,IRACM YES, CORRECT RESULT REGISTER

; THE REMAINING PART IS EQUAL TO THE UNSIGNED MULTIPLICATION

MACU CLR IROP2M MSBS MULTIPLIER
MOV #l,IRBT BIT TEST REGISTER

L$OO2 BIT IRBT,IROPl TEST ACTUAL BIT
JZ L$Ol IF 0: DO NOTHING
ADD IROP2L,IRACL IF 1: ADD MULTIPLIER TO RESULT
ADDC IROP2M,IRACM

L$Ol RLA IROP2L MULTIPLIER X 2
RLC IROP2M

RLA IRBT NEXT BIT TO TEST
JNC L$OO2 IF BIT IN CARRY: FINISHED
RET

4.3 Unsigned Multiplication 8 x 8 bits

The following subroutine performs an unsigned 8 x 8-bit multiplication (label MPYU8) or
"Multiplication and Accumulation" (label MACU8). The multiplication subroutine clears
the result register IRACL before the start, the MACU subroutine adds the result of the
multiplication to the contents of the result register. The upper bytes of IROP1 and
IROP2L must be zero when the subroutine is called. The register use is shown below:

4-5

Integer Calculation

15 0

00 R9 Bit Test Register IRBT

I
00 R4 Multiplicand IROP1

00 R5 I Multiplier IROP2L

R7 I Accumulated Result IRACL

Figure 4.2: 8 x 8 Bit Multiplication: Register Use

EXECUTION TIMES FOR REGISTERS USED (CYCLES @ 1MHZ):

TASK

MINIMUM
MEDIUM
MAXIMUM

MACU8 MPYU8 EXAMPLE

58
62
66

59
63
67

OOOH X OOOH
OA5H X 05AH
OFFH X OFFH

OOOOOH
03A02H
OFEOIH

MSP430 Family

UNSIGNED BYTE MULTIPLY SUBROUTINE: IROP1 X IROP2L -> IRACL

USED REGISTERS IROP1, IROP2L, IRACL, IRBT

MPYU8 CLR IRACL ; 0 -> RESULT

UNSIGNED BYTE MULTIPLY AND ACCUMULATE SUBROUTINE:
(IROP1 X IROP2L) +IRACL -> IRACL

MACU8 MOV #1,IRBT BIT TEST REGISTER
L$002 BIT IRBT,IROP1 TEST ACTUAL BIT

JZ L$Ol IF 0: DO NOTHING
ADD IROP2L,IRACL IF 1: ADD MULTIPLIER TO RESULT

L$Ol RLA IROP2L MULTIPLIER X 2
RLA.B IRBT NEXT BIT TO TEST
JNC L$002 IF BIT IN CARRY: FINISHED
RET

4-6

MSP430 Family Integer Calculation

4.4 Signed Multiplication 8 x 8 bits

The following subroutine performs a signed 8 x 8-bit multiplication (label MPYS8) or
"Multiplication and Accumulation" (label MACS8). The multiplication subroutine clears
the result register IRACL before the start, and the MACS8 subroutine adds the result of
the multiplication to the contents of the result register. The register usage is the same as
with the unsigned 8 x 8 multiplication; Figure 4.2 is therefore also valid.

The part starting with label MACU8 is the same as used with the unsigned multiplication.

EXECUTION TIMES FOR REGISTER USED (CYCLES @ 1MHZ):

TASK MACS8 MPYS8 EXAMPLE
"---,

MINIMUM
MEDIUM
MAXIMUM

64
75
86

65
76
87

OOOH X OOOH
OA5H X 05AH
OFFH X OFFH

OOOOOH
OE002H
OOOOlH

SIGNED BYTE MULTIPLY SUBROUTINE: IROP1 X IROP2L -> IRACL

USED REGISTERS IROP1, IROP2L, IRACL, IRBT

MPYS8 CLR IRACL ; 0 -> RESULT

SIGNED BYTE MULTIPLY AND ACCUMULATE SUBROUTINE:
(IROP1 X IROP2L) +IRACL -> IRACL

MACS8 TST.B IROP1 MULTIPLICAND NEGATIVE
JGE L$lOl NO
SWPB IROP2L YES, CORRECT RESULT
SUB IROP2L, IRACL
SWPB IROP2L RESTORE MULTIPLTCATOR

L$lOl TST.B IROP2L MULTIPLICATOR NEGATIVE
JGE MAcu8
SWPB IROP1 YES, CORRECT RESULT
SUB IROP1,IRACL
SWPB IROP1

; THE REMAINING PART IS THE UNSIGNED MULTIPLICATION

MACU8 MOV #1,IRBT BIT TEST REGISTER
L$002 BIT IRBT,IROP1 TEST ACTUAL BIT

JZ L$Ol IF 0: DO NOTHING

?

?

ADD IROP2L,IRACL IF 1: ADD MULTIPLIER TO RESULT
L$Ol RLA IROP2L MULTIPLIER X 2

RLA.B IRBT NEXT BIT TO TEST
JNC L$002 IF BIT IN CARRY: FINISHED
RET

4-7

Integer Calculation MSP430 Family

4.5 Unsigned Division 32/16 bits

The subroutine performs an unsigned 32-bit by 16-bit division. If the result does not fit
into 16-bit, then the carry is set after return. If a valid result is obtained, then the carry is
reset after return. The register usage is shown in the next figure:

15 0

R6 IROP2M Divisor

R5 IROP2L R4 IROP1 Dividend

Remainder
R7 IRACL Result

Figure 4.3:Unsigned Division: Register use

DIVISION SUBROUTINE 32-BIT BY 16-BIT
IROP2L/IROP1 : IROP2M -> IRACL REMAINDER IN IROP2L
RETURN: CARRY 0: OK CARRY = 1: QUOTIENT> 16 BITS

DIVIDE CLR IRACL
#17,IRACM
IROP2M,IROP2L
DIV2

CLEAR RESULT
MOV

DIV1 CMP
INITIALIZE CYCLE COUNTER
DIVIDEND > DIVISOR ?

DIV2

DIV3
DIV4

4-8

JLO NO
SUB IROP2M,IROP2L ;YES, DIVIDEND = DIVIDEND -

RLC
JC
DEC
JZ
RLA
RLC
JNC

IRACL
DIV4
IRACM
DIV3
IROP1
IROP2L
DIV1

;DIVISOR
;C = 0, IF DIVIDEND < DIVISOR
;IF CARRY, END
;OPERATION AT THE END?
;YES,
;DOUBBLE DIVIDEND

;NO CARRY BY DOUBBLING THE
;DIVIDEND ?

SUB IROP2M,IROP2L; IF CARRY, DIVIDEND = DIVIDEND-
; DIVISOR

SETC ;CARRY = 1 IF DIVIDEND> DIVISOR
JMP DIV2
CLRC
RET

;CLEAR CARRY

MSP430 Family Integer Calculation

4.6 Shift Routines

The results of the above subroutines (MPV, DIV) accumulated in IRACM/IRACL have to
be adapted to different numbers of bits after the decimal point, or because they are
getting too large to fit into 32 bits. The following subroutines can do these jobs. If other
numbers of shifting are necessary they may be constructed as shown for the 6-bit shifts.
No tests are made for overflow!

SIGNED SHIFT RIGHT SUBROUTINE FOR IRACM/IRACL
DEFINITIONS SEE ABOVE

SHFTRS6 CALL #SHFTRS3 SHIFT 6 BITS RIGHT
SHFTRS3 RRA IRACM SHIFT MSBS, BITO -> CARRY

RRC IRACL SHIFT LSBS, CARRY -> BIT15
SHFTRS2 RRA IRACM

RRC IRACL
SHFTRSl RRA IRACM

RRC IRACL
RET

UNSIGNED SHIFT RIGHT SUBROUTINE FOR IRACM/IRACL

SHFTRU6 CALL #SHFTRU3 SHIFT 6 BITS RIGHT
SHFTRU3 CLRC CLEAR CARRY

RRC IRACM SHIFT MSBS, BITO -> CARRY,
0 -> BIT15

RRC IRACL SHIFT LSBS, CARRY -> BIT15
SHFTRU2 CLRC

RRC IRACM
RRC IRACL

SHFTRUl CLRC
RRC IRACM
RRC IRACL
RET

SIGNED/UNSIGNED SHIFT LEFT SUBROUTINE FOR IRACM/IRACL

SHFTL6 CALL #SHFTL3 SHIFT 6 BITS LEFT
SHFTL3 RLA IRACL SHIFT LSBS, BITO -> CARRY

RLC IRACM SHIFT MSBS, CARRY -> BIT15
SHFTL2 RLA IRACL

RLC IRACM
SHFTLl RLA IRACL

RLC IRACM
RET

4-9

Integer Calculation MSP430 Family

4.7 Rules for the Integer Subroutines

Despite the fact that the subroutines shown above can only handle integer numbers, it is
possible to use numbers with fractional parts. It is only necessary to define for each
number where the "virtual" decimal pOint is located. Relatively simple rules define where
the decimal point is located for the result.

For calculations with the integer subroutines it is almost impossible to remember where
the virtual decimal point is located. It is therefore a good programming practice to
indicate, in the comment part of the software listing, where the decimal point is currently
located. The indication can have the following form:

N.M

with: N Worst case bit count of integer part (allows additional assessments)
M Number of bits after the virtual decimal point

The rules for determining the location of the decimal point are easy:

1. Addition and subtraction: Positions after the decimal point have to be equal. The
position is the same for the result.

2. Multiplication: Positions after the decimal point may be different. The two positions
are added for the result.

3. Division: Positions after the decimal point may be different. The two positions are
subtracted for the result. (Dividend - divisor)

EXAMPLES:

First Operand Operation Second Operand Result

NNN.MMM + NNNN.MMM NNNN.MMM
NNN.M x NN.MMM NNNNN.MMMM
NNN.MM NN.MM NNN.MM

NNNN.MMMM NN.MMM NN.M
NNN.M + NNNN.M NNNN.M
NNN.MM x NN.MMM NNNNN . MMMMM
NNN.M NN.M NNN.M

NNNN.MMMMM NN.M NN.MMMM

If two numbers have to be divided and the result should have n digits after the decimal
pOint, the dividend has to be loaded with the number appropriately shifted to the left, and
zeroes filled into the lower bits. The same procedure may be used if a smaller number is
to be divided by a larger one.

4-10

MSP430 Family

EXAMPLES for the division:

First Operand
(shifted)

NNNN.OOO
NNNN.OOO
NNNN.OOO

O.MMMOOO

Operation Second Operand

NN
NN.M

N.MM
NN.M

Integer Calculation

Result

NN.MMM
NN.MM

NNN.M
o .MMMMM

EXAMPLE for a source using the number indication:

MOV #01234H, IROP2L CONSTANT 12.34 LOADED 8.8H
MOV R15,IROP1 OPERAND FETCHED 2.3H
CALL #MPYS SIGNED MPY 10.11
CALL #SHFTRS3 DIVIDE BY 2 A 3 10.8
ADD #00678H,IRACL ADD CONSTANT 6.78 10.8
ADC IRACM ADD CARRY 10.8

4-11

Integer Calculation MSP430 Family

4-12

MSP430 Family

TOPICS

5 General Purpose Subroutines

5.1 Saving Power Consumption

5.2 Calculated Branch

5.3 Binary to BCD

5.4 BCD to Binary

5.5 Bubble Sort

5.6 Table Search

5.7 Parity

5.8 Realtime Clock with 8 bit Timer

5.9 Realtime Clock with Basic Timer

5.10 Optional Calendar

5.11 Square Root

5.12 Trigonometric Calculation

Figures

Figure Title

5.1 Format of the Calendar

5.2

5.3

Straight Line Approximation

Sine Wave Approximation

General Purpose Subroutines

5-3

5-3

5-4

5-6

5-7

5-8

5-9

5-10

5-12

5-14

5-15

5-17

5-19

Page

5-15

5-19

5-21

5-1

General Purpose Subroutines MSP430 Family

5-2

MSP430 Family General Purpose Subroutines

5 General Purpose Subroutines

5.1 Saving Power Consumption

The following software routine generates a square-wave at the port pin PO.O. The low to
high ratio is 1 :1. The time for the high and the low period is determined by the 8bit Timer
Preload Register, which is set to fOh. This means that every 512 MCLK cycles (= 16
ACLK cycles) an interrupt occurs. In the time between these interrupts the processor is
switched to Low Power Mode LPM3, to save power consumption. A wake up is initiated
by the 8bit Timer. In the corresponding interrupt service routine the level of the port pin
is determined.

i*** *******
;EVERY 512 MCLK CYCLES A TC8-INTERRUPT OCCURS AND WAKES UP
;THE MSP430 FROM LOW POWER MODE 3
i*** *******

LOOP

MOV.B
CLR.B

CLR.B
BIS.B
MOV.B

EINT
MOV.B

CLR.B

MOV.B

BIS
JMP

#PO_lIFG, &IE1 ;ENABLE TC8 INTERRUPT
&IE2 ;AND DISABLE ALL OTHER

; INTERRUPTS
&POIE ; DISABLE I/O INTERRUPT
#po_O,&PODIR ;SET PORTPIN PO TO OUTPUT
#PO_O,&POOUT ;SET PORTPIN PO TO LOW

;SET GIE BIT IN SR
#OFOH,&TCPLD ;LOAD PRELOAD REGISTER

; (0100H-16)
&TCDAT ;LOAD COUNTER WITH PRELOAD

; REGISTER
#SSELO+ISCTL+ENCNT,&TCCTL

;SET TC8 TO ACLK CLOCK SOURCE,
;INTERRUPT FROM COUNTER AND
;ENABLE COUNTER

#SCGO+SCG1+CPUOFF,SR ;ENTER LP-MODE 3
LOOP ;NEVER ENDING LOOP

;INTERRUPT SERVICE ROUTINE FOR INTERRUPT CAUSED BY TC8:
PO lINT XOR.B #PO_O,&POOUT ;TOGGLE OUTPUT

RETI ;RETURN FROM INTERRUPT

; INTERRUPT VECTOR ADDRESSES:
. SECT "PO_1 VECT" ,OFFF8H ;ADDRESS FOR TC8 INTERRUPT
. WORD
.SECT
. WORD

PO lINT
"RSTVECT",OFFFEH
START

;PUC/RESET ADDRESS

5-3

General Purpose Subroutines MSP430 Family

5.2 Calculated Branch

The following software example shows a small menu system. Two keys control the
operations: the Enter key calls the displayed subroutine, and the Next key selects the
subroutine. The following subroutines are assumed:

DSP_TXT
WAIT10MS
KEVIN

displays the text, which is pointed to by R10
waits 10 ms
reads the keyboard and stores the pressed key into R6

This example should demonstrate the capability of branches controlled by pOinter.

CLR
MOV
CALL

CALL
CALL
CMP.B
JEQ
CMP.B
JEQ

JMP
BR
INCD
TST

JNZ
JMP

R15
TXT_TAB (R15) ,Ria
#DSP_TXT

#WAIT10MS
#KEYIN
#KEYE,R6
MENU_E
#KEYN,R6
MENU_N

MENU_3
SUB_TAB (R15)
R15
SUB_TAB (R15)

;TABLE POINTER
;TEXT POINTER
;DISPL. THE TEXT POINTED BY
;Rl0
;WAITS 10 MS
;READS THE KEYS INTO R6
;WAS ENTER KEY PRESSED ?

;YES, JUMP TO PROPER SUBROUTINE
;WAS NEXT KEY PRESSED ?

;YES, POINTER TO NEXT MENU
; ENTRY
;NO
;JUMP TO SELECTED ROUTINE
;UPDATE TABLE POINTER
;IS POINTER AT THE END OF
; TABLE
;NO
;YES, RESET POINTER

;TABLE FOR ALL TEXT DISPLAYED ON THE LCD
TXT_TAB . WORD TEXTl ; POINTER TO TEXT TEXTl

. WORD

. WORD
TEXT2
TEXT3

; POINTER TO TEXT TEXT2
;POINTER TO TEXT TEXT3

;TABLE FOR ALL SUBROUTINES, WHICH CAN BE CALLED
SUB_TAB . WORD SUBl ; POINTER TO SUBROUTINE SUBl

. WORD

. WORD

. WORD

SUB2
SUB3
a

;POINTER TO SUBROUTINE SUBl
; POINTER TO SUBROUTINE SUBl
;END OF TABLE

;DEFINITION OF THE TEXT, WHICH IS DISPLAYED
TEXTl . BYTE "SUB1" ,255 ;255 IS END OF TEXT
TEXT2 . BYTE "SUB2" ,255
TEXT3 . BYTE "SUB3" ,255

5·4

MSP430 Family General Purpose Subroutines

; SUBROUTINES WHICH ARE CALLED BY THE MENU
SUBl

JMP MENU
SUB2

JMP MENU
SUB3

JMP MENU

The above program example use word-tables to branch to the appropriate location. To
reduce program space, the word tables can be substituted by byte-tables. The following
example use byte-tables to branch to the apropriate program location.

MEASINIT MOV.B #O,ADCST STATUS 0 IS THE INITIALIZATION
VALUE

;SUBROU1'INE TO DEMONSTRATE THE BRANCHES IN REGARD OF BYTE-TABLES

ADCINT PUSH R6 WORKING REGISTER
MOV.B ADCST,R6 ADC STATUS BYTE
MOV.B ADCIT(R6) ,R6 REL. ADDRESS OF CURRENT

HANDLER
ADD R6,PC BRANCH TO HANDLER

ADCIT . BYTE ADCSTO-ADCIT STATUSO: ADC INACTIVE
. RYTF ADCST1-ADCIT 1: INIT 1ST CHARGE
. BYTE ADCST2-ADCIT 2: CHARGE, INIT 1ST MEASUREMENT
.BYTE ADCST3-ADCIT 3 : 1ST MEAS., INIT 2ND CHARGE

ADCSTO
JMP L$402

ADCST1
JMP L$402

ADCST2
JMP L$402

ADCST3
JMP L$402

5-5

General Purpose Subroutines

L$402 INC.B

POP
RET

ADCST

R6

5.3 Binary to BCD

MSP430 Family

ADCST + 1

RESTORE R6

The conversion of binary to BCD and vice versa is normally a time-consuming task. For
example, five divisions by ten are necessary to convert a 16-bit binary number to BCD.
The DADO instruction reduces this to a loop with five instructions.

THE BINARY NUMBER IN R4 IS CONVERTED TO AS-DIGIT
BCD NUMBER CONTAINED IN R5 AND R6

BINDEC MOV #16,R7 LOOP COUNTER
CLR R6 0 -> RESULT MSD
CLR R5 o -> RESULT LSD

L$I RLA R4
DADD R5,R5 RESULT X2 LSD
DADD R6,R6 MSD
DEC R7 THROUGH?
JNZ L$I
RET YES, RESULT IN R51R6

The above subroutine may be enlarged to any length of the binary part simply by adding
registers for the storage of the BCD number.

5.4 BCD to Binary

This subroutine converts a packed 16 bit BCD word to a 16 bit binary word by multiplying
the digit with its valency. To reduce code length, the horner scheme is used as follows:

R4

;THE PACKED BCD NUMBER IN R4 IS CONVERTED INTO A BINARY NUMBER
;CONTAINED IN R5
; INPUT: R4 = BCD NUMBER
; OUTPUT: R5 = BINARY NUMBER
;EXECUTION TIME: 79 CYCLES

5-6

MSP430 Family General Purpose Subroutines

BCDBIN MOV
CLR
CLR

SHFT4 RLA
RLC
RLA
RLC
RLA
RLC
RLA
RLC
ADD
CLR
DEC
JZ

MPY10 RLA
MOV
RLA
RLA
ADD
JMP

END RET

5.5 Bubble Sort

#4,R8
R5
R6
R4
R6
R4
R6
R4
R6
R4
R6
R6,R5
R6
R8
END
R5
R5,R7
R5
R5
R7,R5
SHFT4

;LOOP COUNTER (4 DIGITS)

;SHIFT LEFT DIGIT INTO R6
;THROUGH CARRY

;THROUGH ?

;YES
;NO, MULTIPLICATION WITH 10

;NEXT DIGIT
;RESULT IS IN R5

The following routine is sorting a word-array in falling sequence by using the Bubble Sort
Algorithm, which is the most efficient algorithm if the array is less than 20 elements. If up
to 100 elements are contained in the array, the execution time of this algorithm is
acceptable with regard to the code-length. The number of loops which are necessary to
check the entire word array is as follows:

n·(n-1)
N=--

2
N = number of loops
n = number of elements to be sorted

The absolute execution time depends on the number of changes to be done.

Example:
Number of words to be sorted: 20
Number of cycles, if words are sorted: 7412
Number of cycles, if words are sorted inversely: 9122

The software to implement the Bubble Sort algorithm is as follows.

VARSTRT . SECT
TABST . WORD
TABEND . WORD

"VAR",0200H
10,20,30,4,5,6,7
8

;TABLE OF WORDS TO BE SORTED
;END OF TABLE
; INITIALISATION, ASO.

5-7

General Purpose Subroutines MSP430 Family

;SUBROUTINE TO SORT A LIST OF WORDS
;THE LIST TO SORT BEGINS AT ADDRESS TABST AND ENDS WITH ADDRESS
;TABEND.
;USE REGISTER: RS,R6,R7

BUBBLE
L$20
L$30

L$12

MOV
MOV
MOV
CMP
JHS
MOV
MOV
CMP
JNE
DEC
JNE
RET

#TABEND-TABST,R6
#TABST,RS
@RS+,R7
@RS,R7
L$12
@RS,-2(R5)
R7,O(R5)
#TABEND,R5
L$30
R6
L$20

5.6 Table Search

;LENGTH OF LIST
;START OF LIST
;FETCH 1ST ITEM
;COMPARE TWO ITEMS
;RIGHT ORDER
;WRONG ORDER:
;EXCHANGE ITEMS
;ALL THROUGH?
;NO
;N-TIMES MADE ?
;NO

Table searches are efficiently performed by using the indexed mode (X(Rn)) to address
the tables. In the following example, a table of 31 bytes is searched for a match with a 5-
byte string. The used index mode has the capability to search a 65535-byte string in an
65535-byte table, if needed. If the search-string is found, the address of the first
character will be TABST(R6).

EOS .EQU OFFH ;END OF STRING

VARSTRT . SECT "VAR",0200H
TABST . BYTE "MUEHLHOFERANTONTEXASINSTRUMENTS"
TABEND . BYTE EOS

ROMSTRT . SECT "PROG",OFOOOH
;INITIALIZATION AND OTHER SOFTWARE

SEARCH
STRLEN MOV #OFFFFH,R4 ;DETERMINES THE LENGTH OF A STRING
STR_1 INC R4 ;RESULT WILL BE CONTAINED IN R4

CMP.B #EOS,STRING(R4)
JNE STR_l ;R4 IS LENGHT OF STRING

DEC R4 ;POINTER TO END OF STRING
MOV #TABEND-TABST,R6 ;LENGHT OF TABLE

L1 MOV R4,R7 ;RESET POINTER
L2 DEC R6 ;NEXT CHARACTER TO COMPARE

JNC NOFIND ;THE SEARCH STRING WAS NOT FOUND
CMP.B STRING (R7) ,TABST(R6)

5-8

MSP430 Family General Purpose Subroutines

JNE
DEC
JC

MATCH

Ll
R7
L2

;COMPARE NEXT
;ONE CHARACTER WAS FOUND
;IS NEXT CHARACTER THE SAME

;TABSTRT(R6) IS THE BEGINNING

NOFIND
;OF THE FOUND STRING IN THE TABLE
;THE TEXT WAS NOT FOUND

STRING . BYTE "TEXAS",EOS ;STRING TO FIND

5.7 Parity

This routine provides a quick way of determining the parity of the number of 1 's in a byte.
By exclusive OR'ing all the bits of the byte together, a single bit will be derived which is
the even parity of the word. When exclusive OR'ing, an even number of 1 's will combine
to form a 0, leaving either an odd 1 or 0 bit. This routine keeps splitting the byte in half,
and exclusive OR'ing the two halves. The algorithm is shown below:

STEP 1
7654 3210 R4

XOR 7654 R5

XXXX ABCD R4
STEP 2

AB CD R4
XOR AB R5

XXXX XX AB R4
STEP3

A B R4
XOR A R5

XXXX XX X P (RESULT) R4-> CARRY

i*** **********

;SUBROUTINE TO FIND EVEN PARITY IN R4
;CARRY ~ 0 ~ EVEN NUMBER OF is
;CARRY ~ 1 ~ ODD NUMBER OF is
;R4 IS CLEARED AFTERWARDS
;USE REGISTER : R5
;EXECUTION TIME: 17 CYCLES INCLUDING RET
;CODE LENGTH : 30 BYTES
i*** **********

5-9

General Purpose Subroutines

PARITY MOV R4,R5
RRA R5

RRA R5
RRA R5
RRA R5
XOR R5,R4

MOV R4,R5
RRA R5
RRA R5
XOR R5,R4
MOV R4,R5
RRA R5
XOR R5,R4
RRA R4
RET

MSP430 Family

;DUBLICATE TARGET BYTE
;LINE UP THE MS NIBBLE WITH
;THE LS NIBBLE

;EXCLUSIVE OR THE NIBBLES TO GET A
;NIBBLE ANSWER
;DUBLICATE THE NIBBLE ANSWER
;LINE UP BITS 0, 1 OF THE ANSWER
;2, 3 OF THE ANSWER
;GET A NEW 2-BIT ANSWER
;DUBLICATE THIS 2-BIT ANSWER
;LINE UP BIT ° WITH BIT 1
;GET FINAL EVEN PARITY ANSWER
;ROTATE ANSWER INTO THE CARRY BIT

The next possibility to find the parity of a byte is less program memory consuming, but
needs more execution time. All bits of the byte whose parity has to be determined are
shifted into the carry and added to as a sum. If the lowest significant bit is zero, the
number of 1 's is even; if it is one, the number of 1 's is odd. This bit is shifted into the
carry to identify the parity.

i*** **********

;SUBROUTINE TO FIND EVEN PARITY IN R4
;CARRY = ° = EVEN NUMBER OF 1S
;CARRY = 1 = ODD NUMBER OF 1S
;R4 IS CLEARED AFTERWARDS
;USE REGISTER: R5,R6
;EXECUTION TIME : 46 CYCLES INCLUDING RET
;CODE LENGTH : 16 BYTES
i*** **********

PARITY2 MOV #8,R5
CLR R6

L1 RRA R4
ADC R6
DEC R5
JNZ L1
RRA R6
RET

5-10

MSP430 Family General Purpose Subroutines

5.8 Realtime Clock with 8 bit Timer

To programme a realtime clock, in this example the 8bit Timer is used to get the
appropriate timing. The AClK frequency (32.768 kHz) is divided by 256 by the 8 bit
Timer, and an interrupt is generated. This interrupt occurs every 1/128 second. The
corresponding interrupt handler has to accumulate these interrupts to be able to
calculate the time of it. The current time is stored in the 16 bit registers RTClSW and
RTCMSW as follows:

RTCMSW I 2 :J 5 5
hours minutes

RTClSW 55 12l
seconds 1/128sec

These registers are defined as R4 and R5, but they can also be located in the RAM. The
routine to display the time is assumed to exist and is named DSP _ClK.

This routine can be extended to a complete calendar. For this purpose, the days can be
accumulated to weeks, and further to months and years.

The accuracy of the calendar and the clock depends only on the accuracy of the crystal
frequency.

i*** ********
8BIT TIMER/COUNTER AS REALTIME CLOCK

;***

RTCLSW
RTCMSW
CALEN

.EQU

.EQU

.EQU °

CLR
CLR
MOV.B
CLR.B

CLR.B
CLR.B

MOV.B

R4
R5

; °
;LO WORD OF REALTIME CLOCK
;HI WORD OF REALTIME CLOCK

NO CALENDAR IS IMPLEMENTED

RTCLSW
RTCMSW
#PO_lIFG, &IE1
&IE2

&TCPLD
&TCDAT

;1 ~ CALENDAR IS IMPLEMENTED
; INITIALIZATION:

;CLEAR REALTIME CLOCK

;ENABLE TC8 INTERRUPT
;AND DISABLE ALL OTHER
; INTERRUPTS
;CLEAR PRELOAD REGISTER
;LOAD COUNTER WITH PRELOAD
; REGISTER

#SSEL1+ISCTL+ENCNT,&TCCTL
;SET TC8 TO ACLK CLOCK
; SOURCE,
;INTERRUPT FROM COUNTER AND

5-11

General Purpose Subroutines MSP430 Family

; ENABLE COUNTER
EINT ;SET GIE BIT IN SR

;INTERRUPT SERVICE ROUTINE FOR INTERRUPT CAUSED BY TC8:
TC8 INT

INC
BIT
JZ
CLRC
DADD
CMP
JLO
CLRC
DADD
DADC
CMP.B
JNE
CLRC
DADD
CMP
JNE
CLR
.IF
CALL

.ENDIF
TC8 1 CALL
TC8_END RETI

RTCLSW
#80H,RTCLSB
TC8_END

#20H,RTCLSW
#6000H,RTCLSW
TC8_1

#4000H,RTCLSW
RTCMSW
#0060H,RTCMSW
TC8_1

#40H,RTCMSW
#2400H,RTCMSW
TC8 1
RTCMSW
CALEN
#CALDAR

;INTERRUPT VECTOR ADDRESSES:

;INC 1/128 SEC COUNTER
;1 SEC OVER?
;NO
;YES
;ADJUST LSW WITHOUT CARRY
;60 SEC OVER?
;NO, DISPLAY NEW TIME
;YES
;ADJUST MSW WITHOUT
;AND ADJUST MSW
;1 HOUR OVER ?
;NO
;YES
; ADJUST MSW WITHOUT
;1 DAY OVER?
;NO
;YES, ADJUST MSW

CARRY

CARRY

;ONLY IF THE CALENDAR
; FUNCTION
;IS IMPLEMENTED

;DISPLAY THE TIME

. SECT

. WORD

. SECT

. WORD

"PO_1VECT",OFFF8H ;ADDRESS FOR TC8 INTERRUPT
TC8_INT
"RSTVECT",OFFFEH
START

; PUC/RESET ADDRESS

5.9 Realtime Clock with Basic Timer

The appropriate timing for a Realtime Clock can also be generated by the Basic Timer.
The initialization routine has to be substituted by the following routine:

; INITIALIZATION:
CALEN .EQU o

CLR RTCLW
CLR RTCMSW

; 0
; 1

NO CALENDAR IS IMPLEMENTED
CALENDAR IS IMPLEMENTED

;CLEAR REALTIME CLOCK

;LCD-TIMING CONFIGURATION STANDS HERE

5-12

MSP430 Family General Purpose Subroutines

BIS.B

BIS.B
CLR.B

EINT

#IP2+DIV,&BTCTL;TIMER INTERRUPT OCCURS EVERY
;SEC.

#BTIE,&IE2
&IEl

;ENABLE BASIC TIMER INTERRUPT
;AND DISABLE ALL OTHER
; INTERRUPTS
;SET GIE BIT IN SR

Because of the possibility of configuring the Basic Timer in such a way that the interrupt
occurs only every second (not every 1/128 sec as above), the counter for the 1/128
seconds is unnecessary and will be set to zero. For that reason the interrupt service
routine becomes shorter as follows:

;INTERRUPT SERVICE ROUTINE FOR INTERRUPT CAUSED BY BT:
BT_INT

CLRC
DADD
CMP
JLO
CLRC
DADD

#lOOH,RTCLSW
#6000H,RTCLSW
BT_1

#4000H,RTCLSW
DADC RTCMSW
CMP.B #0060H,RTCMSW
JNE BT_l
CLRC
DADD
CMP
JNE
CLR
.IF
CALL

.ENDIF
CALL

#40H,RTCMSW
#2400H,RTCMSW
BT_l
RTCMSW
CALEN
#CALDAR

#DSP_CLK

;ADJUST LSW WITHOUT CARRY
;60 SEC OVER?
;NO, DISPLAY NEW TIME
;YES
;ADJUST MSW WITHOUT CARRY
;AND ADJUST MSW
; 1 HOUR OVER ?
;NO
;YES
;ADJUST MSW WITHOUT CARRY
;1 DAY OVER?
;NO
;YES, ADJUST MSW

;ONLY IF THE CALENDAR
; FUNCTION
;IS IMPLEMENTED

;DISPLAY THE TIME

; INTERRUPT VECTOR ADDRESSES:
. SECT "PO_1 VECT" , OFFE2H; ADDRESS FOR BT INTERRUPT
. WORD
. SECT
. WORD

BT_INT
"RSTVECT",OFFFEH ;PUC/RESET ADDRESS
START

5-13

General Purpose Subroutines MSP430 Family

5.10 Optional Calendar

This code enhances the previous realtime clock to a calendar, which will keep track of
days, months, and years including leap years. To implement these functions, it is
necessary to set the assembler variable CALEN =1. The result will be in the following
registers in the BCD Format:

MONDAY 12 3D
months days

YEAR

years

Figure 5.1: Format of the Calendar

i*** ***********

; SUBROUTINE: CALDAR
;THIS ROUTINE IS CALLED EVERY DAY AND CALCULATES THE DATE INCLUDING
;LEAP YEARS.
; INPUT: IS CALLED EVERY DAY
;OUTPUT: WORD MODAY : MSB = MONTHS, LSB DAYS

WORD YEAR : YEARS
;USED REGISTER: TEMP .EQU RB
;**

TEMP .EQU RB ; TEMPORARY REGISTER
LEAPO .EQU OFFECH ; MASKS
LEAPl .EQU 12H
LEAP2 .EQU OH

DAYTAB . BYTE 31H,2BH,31H,30H,31H,30H ;MAX DAYS EACH MONTH
. BYTE 31H,31H,30H,31H,30H,31H ;IN BCD FORMAT

CALDAR MOV MODAY, TEMP ;ONLY MONTHS TO TEMP
SWPB TEMP
BIC #OFFOOH,TEMP ;CLEAR DAYS OF TEMP
CMP.B #lO,TEMP ;ADJUST BCD -> BIN
JLO CALDAR_l
SUB.B #6,TEMP

CALDAR_l
CMP.B DAYTAB-l(TEMP),MODAY ;IS ONE MONTH OVER ?
JLO CALDAR_6 ;NO
CMP #022BH,MODAY ; WAS IT 2B.FEB. ?

5-14

MSP430 Family General Purpose Subroutines

JNE CALDAR_5

CALCULATION OF THE LEAP YEAR
MOV YEAR,TEMP
BIC #LEAPO , TEMP
CMP #LEAP1,TEMP
JEQ CALEAP
CMP #LEAP2,TEMP
JEQ CALEAP
JMP CALDAR_5

CALEAP INC MODAY
RET

; NORMAL OPERATION WITHOUT LEAP YEAR
CALDAR_5

CLRC
DADD #OlOOH,MODAY
BIC #OOFFH,MODAY

CALDAR_6
CLRC
DADD #l,MODAY
CMP #13 OOH, MODAY
JLO CALDAR_7
MOV #OlOlH,MODAY
CLRC
DADD #l,YEAR

CALDAR_7
RET

5.11 Square Root

;NO, NORMAL OPERATION

;NO LEAP YEAR, NORMAL OPERATION
;TODAY IS 29.FEB

;YES, ONE MORE MONTH
; DAYS TO ZERO

;ONE DAY IS OVER
;IS ONE YEAR OVER ?
;NO
;YES, ADJUST MONTHS AND DAYS

;ONE MORE YEAR

The square root is often needed in computations. The following subroutine uses the
NEWTONIAN approximation for this calculation. The number of iterations depends on
the length of the operand. The general formula is:

m.fA = X

Xn+l = ~(m-1).xn+_A_)
m Xnm- 1

With the substitution of m=2 it follows:

.fA =X

Xn+l=..!..(Xn+~)
2 Xn

XO=%

5-15

General Purpose Subroutines MSP430 Family

To calculate NXn a division is necessary, which is done in the subroutine XDIV. The
result of this division has the same integer format as the divisor Xn. This makes an easy
operation possible.

AH
AL
XNH
XNL

.EQU

.EQU

.EQU

.EQU

R8
R9
RiO
Rll

;HIGH WORD OF A
;LOW WORD OF A
;HIGH WORD OF RESULT
;LOW WORD OF RESULT

;THE RANGE FOR THE OPERAND EXTENDS FROM OOOO.0002H TO 7FFF.FFFFH
; INPUT: OPERAND IN AH.AL
;OUTPUT: RESULT IN XNH.XNL
; EXAMPLE: SQR(2)=1.6A09H

SQR(7FFF.FFFFH) B5.04F3H
SQR(OOOO.0002H) O.016AH

SQR ;SET XO TO A!2 FOR THE FIRST MOV AH,XNH
MOV
RRA
RRC
CALL
ADD
ADDC
RRA
RRC
CMP
JNE
CMP
JNE
RET

AL,XNL
XNH
XNL
#XDIV
R13,XNL
R12,XNH
XNH
XNL
XNH,R12
SQR_l
XNL,R13
SQR_l

; APPROXIMATION
;XO=A!2

;R12XR13=A!XN
;XN+i=XN+A!XN

;XN+i=1!2(XN+A!XN)

;IS HIGH WORD OF XN+l = XN
;NO, ANOTHER APPROXIMATION
;YES, IS LOW WORD OF XN+i = XN
;NO, ANOTHER APPROXIMATION
;YES, RESULT IS XNH.XNL

i*** ********
;EXTENDED UNSIGNED DIVISION
;R81R9 ! RiOIRil = R121R13, REST IS R141R15
;THIS DIVISION ROUTINE IS WRITTEN EXCLUSIVELY FOR THE SQUARE
;ROOT ROUTINE TO OPTIMIZE THE EXECUTION TIME FOR THE DIVISION
;OF A!XN.
i*** ********

XDIV
PUSH R8 ;SAVE OPERANDS ONTO THE STACK
PUSH R9
PUSH RiO
PUSH Rll
MOV #48,R7 ;ONLY 48 LOOPS ARE NECESSARY
CLR R15 ; CLEAR REST
CLR R14
CLR R12 ; CLEAR RESULT
CLR R13

5-16

MSP430 Family General Purpose Subroutines

L$361 RLA R9 ;SHIFT ONE BIT OF R81R9 TO
;R141R15

RLC R8
RLC R15
RLC R14
CMP RIO,R14 ;1S SUBTRACTION NECESSARY?
JLO L$364 ;NO
JNE L$363 ;YES
CMP Rll,R15 ;Rll=R15
JLO L$364 ;NO

L$363 SUB Rll, R15 ;YES, SUBTFACT
SUBC FIO,R14

L$364 RLC R13 ;SHIFT FESULT TO R121 R13
RLC F12
DEC R7 ;AFE 48 LOOPS OVEF ?

JNZ L$361 ;NO
POP Rll ;YES, FESTOFE OPEFANDS
POP RIO
POP R9
POP F8
RET

5.12 Trigonometric Calculation

As a matter of principle there are three methods of calculating trigonometric functions:

1. Power series
e.g. Series of Taylor

2. Straight line approximation
Fetch the gradient and offset of a straight line equation from a table
e.g. sin(x) = mx . x = tx ;mx and tx are stored in a table.

3. Fetching the calculated values from a table.

The first method is the most time-consuming method, since there is no hardware
multiplier implemented in the processor. The advantage of this method is the optional
accuracy. The higher the accuracy the higher is the ordinal number of the power series.
The multiplication can be reduced by using the horner scheme.

As opposed to the first method, the following two methods determine the value indirectly
from tables. For this purpose the trigonometric curves are divided into sections and
therefore the accuracy of the result is limited. The straight line approximation needs one
table to determine the gradient and one table to determine the offset of a straight line.

5-17

General Purpose Subroutines MSP430 Family

Y=~x+~

Y
Y=111a X+a

1 Y=~X+~

Y=~X+~

_x
sect. 1 sect. 2 sect. 3 sect. 4

Figure 5.2: Straight Line Approximation

IN THE FOLLOWING EXAMPLE THE SUBROUTINE MPYU IS USED.
THIS ROUTINE IS DEFINED IN THE CHAPTER INTEGER SUBROUTINES.
USING THE MPYU SUBROUTINE, THE CORRESPONDING EQUATIONS MUST
BE INSERTED IN
X IS IN IROP1

SECTl .EQU
SECT2 .EQU
SECT3 .EQU

IROPl .EQU
PTAB .EQU

GRA_TAB . WORD
OFF_TAB . WORD

THE PROGRAM OF COURSE.

2
5
8

R4
R5

1,2,3,4
11,22,33,44

;SUBROUTINE TO CALCULATE TRIGONOMETRIC FUNCTIONS WITH THE STRAIGHT
;LINE APPORXIMATION
; INPUT: OPERAND IN IROP1
; OUTPUT: RESULT IN IRACL

EX CLR PTAB
CMP #SECT1,IROP1
JLO EX_1
INCD PTAB
CMP #SECT2,IROP1

5-18

;CLEAR TABLE POINTER
;IS X IN SECT. 1 ?
;YES
;NO, ACTUALIZE POINTER
;IS X IN SECT. 2 ?

MSP430 Family General Purpose Subroutines

JLO EX_l ;YES
INCD PTAB ;NO, ACTUALIZE POINTER
CMP #SECT3,IROPl ;IS x IN SECT. 3 ?
JLO EX_l ;YES
INCD PTAB ;NO, x IS IN SECT. 4

EX_l MOV GRA_TAB(PTAB) ,IROP2L ; FETCH GRADIENT
CALL #MPYU ;IRACL=M*X
ADD OFF_TAB (PTAB) ,IRACL ;IRACL=M*X+T
RET

The straight line approximation method is advantageous, if the trigonometric curve can
be divided into a few sections. If many sections are needed, the search for the right
section will take a lot of time and code space. A solution is to calculate the pointer by the
x-value immediately.

For example:
Range of x-values: 0.0 ... 10.0
Sections needed at least: 8

To get the right pointer from the x-value only, the input value is used. This means that if
the trigonometric curve is divided into 10 sections, the input value is already the pointer
to the tables.

The third method to calculate a trigonometric function is to get the value directly from a
table. This is suitable if only a few operands are possible. For example the operands of a
sine wave can only be one of 46 possible values of one period.

y

~~~~~--------~----------------~~~x 

Figure 5.3: Sine Wave Approximation 

5-19 



General Purpose Subroutines MSP430 Family 

Only the values of the quarter of the sinus wave are stored in the table. All values can be 
determined as follows: 

O<x<n/2 
n/2<x<1t 
1t<x<21t 

y=y(x) 
y = y(INV(x)+1t) 
Y = -y(x-1t) 

The accuracy of the values that are stored in the table is 8 bit and can be increased to 
16 bit. The table length can be up to 65536 bytes or words. In this example 12 values 
are stored (including 0) for one quarter of the sine wave. 

HALFW .EQU 

QUARTW .EQU 

24 

12 

;NUMflRR OF VALUES FOR THE HALF 
; WAVE 
;NUMBER OF VALUES FOF THE 
; QUARTER 

;************************************************************ 
SIN(R4)=R5 

;IN THE SIN_TAB ONLY THE NUMBERS AFTER THE POINT ARE PERFORMED. 
;THE OPERAND HAS TO BE LOADED INTO R4 BEFORE CALLING SIN AND 
;MUST BE A NUMBER BETWEEN 0 AND 45. THE RESULT WILL BE IN R5 
;************************************************************ 

SIN 

. BY'rE 

. BYTE 
PUSH 
CMP 
JLO 
SUB 
CMP 

JLO 
INV 
ADD 
MOV.B 

O,22H,45H,65H,85H,OA1H,OBBH,OD1H,OE3H,OF1H 
OFAH,OFFH 
R4 
#HALFW,R4 
SIN_1 
#HALFW-1,R4 
#QUARTW,R4 

SIN_2 
R4 

;IS x IN THE NEGATIVE HALF WAVE? 
;NO 
;YES, CORRECT x 
;IS x IN THE 2TH HALF OF THE 
;HALF WAVE 
;NO 

#HALFW,R4 ;YES, ADJUST x 
SIN_TAB (R4) ,R5 ;GET RESULT FROM TABLE 

POP R4 
CMP 
JLO 
INV 
INC 

SIN_END RET 

5-20 

#HALFW,R4 
SIN_END 
R5 
R5 

;IS x IN THE NEGATIVE HALF WAVE? 
;NO RESULT IS OK 
;YES, RESULT HAS TO BE NEGATED 



MSP430 Family 

Topics 

6 
6.1 

6.2 

6.3 

6.4 

6.5 

6.6 

1/0 Module Programming Examples 

Initialization 

Keyboard-Matrix of 4 x 4 Keys 

Keyboard-Matrix of 3 x 4 Keys 

Noise Generator 

External EEPROM for Setup Values 

12C BUS Connection 

Figure Title 

6.1 4x4 Keyboard Matrix 

6.2 3x4 Keyboard Matrix 

6.3 

6.4 

6.5 

Noise Generator 

External EEPROM Connection 

12C-Bus Connections 

Figure Title 

Figures 

Notes 

6.1 Next example does not contain the necessary delay times 

6.2 Next example does not contain the necessary delay times 

Tables 

Figure Title 

6.1 Configuration of the MUX Modes 

6.2 Configuration of the MUX Modes 

1/0 Module 

6-3 
6-3 

6-4 

6-6 

6-8 

6-9 

6-11 

Page 

6-4 

6-6 

6-8 

6-9 

6-11 

Page 

6-10 

6-11 

Page 

6-4 

6-6 

6-1 



110 Module MSP430 Family 

6-2 



MSP430 Family I/O Module 

6 I/O Module Programming Examples 

6.1 Initialization 

One common task is getting information from the connected keys, jumpers and digital 
signals. Only the methods for connecting a keyboard to the MSP430 are described 
below. Other digital signals can be read in the same way. 

The input pins can be the I/O-port, and unused analogue inputs can be switched to 
digital inputs. If the I/O-port is used for inputs, then wake-up by input changes is 
possible. If one of the input signal changes of interest occurs, an interrupt is given and 
wake-up occurs. 

There are several methods of building a keyboard. The easiest way is to connect the 
keys directly to input pins. The software to get the pressed key is also easy to 
implement. Only the test of one register is necessary to get information about the keys. 
This method is possible if only a few keys are necessary to control the programme flow. 

If more input signals exists than free inputs, then scanning is necessary. The scanning 
outputs can be the I/O-port and unused select outputs On. The scanning input can be 
I/O-ports and analogue inputs as described above. 

The interrupt handler for the 1/0 pins PO.2 to PO.? is as follows. 

IOINTR PUSH RS ;SAVE RS 
MOV.B &IOFLAG,RS ;READ INTERRUPT FLAGS 
AND.B POIE,RS ;MASK ALLOWED INTERRUPTS 
BIC.B RS,&IOFLAG ;ADDITIONAL SET BITS ARE NOT 

; CLEARED 
EINT ;ALLOW INTERRUPT NESTING 

;RS CONTAINS INFORMATION WHICH I/O PIN CAUSED INTERRUPT 

POP RS ;RESTORE RS 
RETI 

.SECT "IO_VECT",OFFEOH 

. WORD IOINTR 

. SECT "RST_VEC".OFFFEH 

. WORD START 

6-3 



I/O Module MSP430 Family 

6.2 Keyboard-Matrix of 4 x 4 Keys 

This is the most commonly used method of connecting a keyboard to a microprocessor, 
because of the minimal hardware requirement. Only the diodes are necessary to protect 
the outputs PO.O to PO.3 if more than one key is pressed. 

o 32kHz 

LCD 

COM 112jY55lB I SEL 

MSP430 

PO.O 
PO.l 

PO.2 
PO.3 

PO.4 
*A *8 *C *D 

PO.5 
*E *F *G *H 

PO.6 
*1 *J 'K *L 

po.? 
*M *N '0 *P 

*=F 
Figure 6.1: 4x4 Keyboard matrix 

To check the keyboard, one output line ( PO.O to PO.3 ) has to be high. If a key in this 
line is pressed, the corresponding input line will be high too. To scan all keys, the 
outputs have to be high, one after the other, and the input lines can then be read in. 

The following table shows the key-code which is on the 1/0 port, if the correspondig key 
was pressed. 

6-4 



MSP430 Family 1/0 Module 

Key inp autp Hex 

A 0001 1000 18 

B 0001 0100 14 

C 0001 0010 12 

D 0001 0001 11 

E 0010 1000 28 

F 0010 0100 24 

G 0010 0010 22 

H 0010 0001 24 

I 0100 1000 48 

J 0100 0100 44 

K 0100 0010 42 

L 0100 0001 41 

M 1000 1000 88 

N 1000 0100 84 

0 1000 0010 82 

p 1000 0001 81 

Table 6.1: Configuration of the MUX Modes 

The Routine to scan the 4x4 keyboard now follows. The pressed key will be stored in 
KEYOUT. If more than one key was pressed, the result is the binary OR of the keycodes 
shown in the table above. If no key was pressed, KEYOUT becomes zero. 

KEYMASK . EQU 
KEYOUT .EQU 

R4 
R6 

; MASK FOR THE OU~'PUT 

;RESULT OF THE SCAN 

MOV.B #OFH, &PODIR ;INITIALIZATION OF THE I/O PORT 

;SUBROUTINE TO GET THE SCANCODE FROM THE KEYBOARD WITH THE 
;4X4 MATRIX 
;OUTPUT: SCANCODE AS SHOWN IN TABLE 6.1 IN KEYOUT 
;USE REGISTER: R7 

KEYSCAN MOV #4,R7 
MOV #1, KEYMASK 
MOV.B 
TST.B 
JZ 

KEYMASK,&POOUT 
&POIN 
SCAN_2 

;LOOP COUNTER 

;SCAN ONE LINE 
;ANY KEY PRESSED 
;NO 

6-5 



I/O Module MSP430 Family 

BIS.B KEYMASK,KEYOUT ;YES, SET CORRESPONDING BITS 
BIS.B &POIN,KEYOUT 

SCAN_2 RLA.B KEYMASK ; NEXT SCANNING LINE 
DEC R7 ;ALL LINES TESTED ? 
JNZ SCAN_l ;NO, NEXT LINE 
RET 

6.3 Keyboard-Matrix of 3 x 4 Keys 

The next scheme describes a keyboard matrix which needs only 4 1/0 pins to handle 12 
keys. This is possible because of the capability of switching the direction of the 110 pins 
independently. 

32kHz 

r1Dfl" LCD 

COM =>[123Y56lB I SEL 

Key Outp Inp Hex 

A 0001 1000 18 
MSP430 

B 0001 0100 14 

C 0001 0010 12 
po.o 

A l! C 0 0010 1000 28 
PO.1 

D E F E 0010 0100 24 
PO.2 

G H I F 0010 0001 21 
PO.3 

J K L G 0100 1000 48 

'7 '7 H 0100 0010 42 

'---- I 0100 0001 41 

J 1000 0100 84 

'=F K 1000 0010 82 

L 1000 0001 81 

Figure 6.2: 3 x 4 Keyboard Matrix Table 6.2: 
Configuration of the MUX Modes 

6-6 



MSP430 Family I/O Module 

KEYMASK . EQU 
KEYOUT .EQU 

R4 
R6 

;MASK FOR THE OUTPUT 
;RESULT OF THE SCAN 

;SUBROUTINE TO GET THE SCANCODE AS SHOWN IN TABLE 6.2 
; OUTPUT: KEYOUT = SCANCODE 
;USE REGISTER: R7,R8,R9 

KEYSCAN MOV 
MOV 
BIC.B 
BIC.B 

SCAN_l BI S . B 
BIS.B 
MOV.B 
BIC.B 
TST.B 

JZ 
MOV.B 

RLA.B 

#4,R7 
#l,KEYMASK 
#OFH,&POOUT 
#OFH,&PODIR 

KEYMASK,&POOUT 
KEYMASK,&PODIR 
&POIN,R8 
KEYMASK+OFOH,R8 
RS 

R9 

RLA.B R9 
RLA.B R9 
RLA.B R9 
BIS.B 
BIS.B 
BIC.B 
BIC.B 
RLA.B 
DEC 
JNZ 
RET 

R9,KEYOUT 
R8,KEYOUT 
KEYMASK,&POOUT 
KEYMASK,&PODIR 
KEYMASK 
R7 
SCAN_l 

6.4 Noise Generator 

;LOOP COUNTER 
;FIRST SCANNING LINE 
; INITIALISATION VALUE 
;SET ONLY KEYBOARD LINES TO 
; INPUT 
;SCAN ONE LINE 
;SET THE OUTPUT LINE 
;WHOLE INPUT REGISTER TO R8 
;RS CONTAINS THE PRESSED KEY 
;WAS ANY KEY IN THIS LINE 
;PRESSED ? 

;NO, TEST ANOTHER LINE 
;YES, SET THE CORRESPONDING 
;BITS 
;SHIFT THE OUTPUT MASK 4 BITS 
; LEFT 

;SET THE MASKED OUTPUT BITS 
;SET THE MASKED INPUT BITS 
;CLEAR OUTPUT REGISTER 
;CLEAR DIRECTION REGISTER 
;NEW SCANNING LINE 
;ALL LINES TESTED 
;NO, NEXT LINE 
;YES, RETURN 

The Noise Generator is constructed with a 32bit shift register having feedback which is 
generated by a logical XNOR of bit 1 and bit 14 of the 16bit register NREG+ 1. 
Therefore, the shift register receives about 2 billion different conditions before the values 
are repeated. 

The output can be a loudspeaker with amplifier and low-pass filter. If a random number 
is necessary, the value of the register NREG or NREG+ 1 has simply to be used. 

6-7 



VO Module 

Noise 

NREG+1 
16 bit 

Bit 14 

XNOR 

MSP430 Family 

NREG+O 
16 bit 

Figure 6.3: Noise Generator 

LS .EQU 1 ;OUTPUT PIN FOR THE LOUDSPEAKER 
NREGO .EQU R4 
NREG1 .EQU R5 

BIS.B #LS,&PODIR ;PREPARE I/O PIN FOR OUTPUT 
NOISE CLR NREGO ;STARTING VALUE FOR THE 32 BIT 

; SHIFT 
CLR NREG1 ;REGISTER, CAN BE EVERY OTHER 

; NUMBER 

NLOOP1 BIC.B #LS,&POOUT ;SET OUTPUT TO LOW 
NLOOP2 MOV NREG1,R6 ;DUPLICATE NREG1 

RRC R6 ;SHIFT BIT 14 TO BIT 1 
RRC R6 
RRC R6 
RRC R6 
XOR NREG1,R6 ;XOR BIT 14 AND BIT 1 
BIT #4000H,R6 ;AND MOVE RESULT TO CARRY 
XOR #1,SR ;INVERT CARRY 

;NOW CARRY IS BIT 14 XNOR BIT 1 
RLC NREGO ;SHIFT 32BIT REGISTER FOR ONE TIME 
RLC NREG1 
JNC NLOOP1 ;AND OUTPUT CARRY TO LS 
BIS.B #LS,&POOUT 
JMP NLOOP2 

One loop needs 17 cycles, so the sampling rate of the generated signal on the output is 
about 59 kHz and therefore the signal repeats after about 9 hours. This should be 
acceptable for a noise. 

6-8 



MSP430 Family I/O Module 

6.5 External EEPROM for Setup Values 

To save important values in a nonvolatile storage, a serial EEPROM can be connected 
to the 1/0 port of the MSP430. This memory keeps its values even if the supply voltage 
is disconnected. In this way it is possible to store setup values which are necessary to 
initialize the system after the Powerup Reset. 

The EEPROM is connected to the MSP430 by dedicated inputs and outputs. Three 
(two) control lines are necessary for proper operation: 

- Data line SDA: an I/O-port is needed for this bi-directional line. Data can be read from 
and written to the EEPROM 

- Clock line SCL: an output line is sufficient for the clock line. This clock line may be 
used for other peripheral devices too, if it is ensured that no data is present on the 
data line during use. 

- Supply line: if the current consumption of the EEPROM when not in use is too high, 
then switching of the EEPROM's Vcc is necessary. Three possible solutions are 
shown: 
1. The EEPROM is connected to SVcc. This is a very simple way to have the 

EEPROM switched off when not in use 
2. The EEPROM is switched on and off by an external PNP transistor. 
3. The EEPROM is connected permanently to +5V , if its power consumption does 

not playa role. 

SVee 
+5V +5V 

PO.z,Oy 

MSP430 

Clock 
PO.y,Ox 

Vee 
SCL ~-.;:.:.:.;::.:..t--l 

X24LCxx 
Data Ax SDA 1+-_-==-4-~ PO.x 

Vss 
Vss Vee 

OV 

OV +5V 

Figure 6.4: External EEPROM Connection 

An additional way to connect an EEPROM to the MSP430 is shown in the chapter 
describing the 12C-8us. 

6-9 



1/0 Module MSP430 Family 

Note: Next example does not contain the necessary delay times 

The next example does not contain the necessary delay times between the setting 
and resetting of the clock and data bits. These delay times can be seen in the 
specifications of the EEPROM device. With a processor frequency of 1 MHz each 
one of the next instructions needs 5f.ls. 

EXAMPLE: The EEPROM with the dedicated I/O-lines is controlled with normal 1/0-
instructions. The SCL line is driven by 017; the SDA line is driven by PO.6: 

POOUT .EQU 011H PORTO OUTPUT REGISTER 
PODIR .EQU 012H PORTO DIRECTION REGISTER 
SCL .EQU OFOH 017 CONTROLS SCL, 039H LCD 

ADDRESS 
SDA .EQU 040H PO.6 CONTROLS SDA 
LCDM .EQU 030H LCD CONTROL BYTE 

INITIALIZE I2C BUS PORTS: 
INPUT DIRECTION: BUS LINE GETS HIGH 
OUTPUT BUFFER LOW: PREPARATION FOR LOW SIGNALS 

BIC.B #SDA,&PODIR SDA TO INPUT DIRECTION 
BIS.B #SCL,&LCDM+9 SET CLOCK HI 
BIC.B #SDA,&POOUT SDA LOW 

START CONDITION: SCL AND SDA ARE HIGH, SDA IS SET LOW, 
AFTERWARDS SCL GOES LO 

BIS.B #SDA,&PODIR SET SDA LO (SDA GETS OUTPUT) 
BIC.B #SCL,&LCDM+9 SET CLOCK LO 

DATA TRANSFER: OUTPUT OF A "1 " 
BIC.B #SDA, &PODIR SET SDA HI 
BIS.B #SCL,&LCDM+9 SET CLOCK HI 
BIC.B #SCL,&LCDM+9 SET CLOCK LO 

DATA TRANSFER: OUTPUT OF A 110 " 
BIS.B #SDA,&PODIR SET SDA LO 
BIS.B #SCL,&LCDM+9 SET CLOCK HI 
BIC.B #SCL,&LCDM+9 SET CLOCK LO 

STOP CONDITION: SDA IS LOW, SCL IS HI, SDA IS SET HI 
BIC.B #SDA,&PODIR SET SDA HI 
BIS.B #SCL,&LCDM+9 SET SCL HI 

The examples shown above for the different conditions can be implemented into a 
subroutine which outputs the content of a register. This shortens the necessary ROM 
code significantly. Instead of line Ox for the SCL line, another I/O-port PO.x may be 
used. See section 12C Bus Connection for more details of such a subroutine. 

6·10 



MSP430 Family VO Module 

6.6 12C BUS Connection 

If more than one device is to be connected to the 12C-Bus, then two I/O-ports are 
needed for the control of the 12C-peripherals. The reason for this is the need to switch 
SOA and SCl to the high impedance state. 

The figure below shows the connection of three 12C-peripherals to the MSP430: 
- An EEPROM PCF8581 with 128x8-bit data 
- An EEPROM X24lCxx with 2048x8-bit data 
- An 8-bit OAC/AOC 

+5V 

Rp ORP 

PO.a 

PO.b 
t t MSP430 

SCL SDA SCL SDA SCL SDA 
A2 - A2 - Ax 

PCF8581 A1 - X24LCxx A1 r- PCF8591 AINx 
AO - AO - AOUT 

Vee Vss Vdd Vss Vdd Vss Vdd Vss 

I I I I I I I I 
+5V OV +5V OV +5V OV +5V OV 

Figure 6.5: 12C-Bus Connections 

Note: Next example does not contain the necessary delay times 

SCL 

SDA 

~ 
~ 
~ 

The next example does not contain the necessary delay times between the setting 
and resetting of the clock and data bits. These delay times can be seen in the 
specifications of the peripheral device. 

6-11 



I/O Module MSP430 Family 

The complete 12C-Handler for one byte of data follows. The data pin SDA needs an 1/0-
pin (PortO); the clock pin SCL may be an I/O-pin or an output pin. 

Bit 15 8 7 0 

I Slave Address I RIW I Data I 

SCLDAT .EQU OllH POOUT 
SCLEN .EQU 012H PODIR 
SDA .EQU 040H PO.6 CONTROLS SDA 
SCL .EQU 080H PO.7 CONTROLS SCL 
SDADAT .EQU OllH PO OUTPUT DIRECTION 

REGISTER 
SDAEN .EQU 012H PO DIRECTION REGISTER 

INITIALIZATION FOR THE I2C BUS PORTS: 
INPUT DIRECTION: BUS LINES GET HIGH BY PULL-UPS 
OUTPUT BUFFERS LOW: PREPARATION FOR LOW ACTIVE SIGNALS 
INITIALIZATION FOR SDA AND SCL FROM PORTO 

BIC.B #SCL+SDA,&SDAEN 

BIC.B #SCL+SDA,&SDADAT 

INITIALIZATION FOR SDA AT PORTO, SCL 

BIC.B #SDA,&SDAEN 
BIC.B #SDA,&SDADAT 
BIC.B #SCL,&SCLEN 
BIC.B #SCL,&SDADAT 

SCL AND SDA TO INPUT 
DIRECTION 
SCL AND SDA OUTPUT BUFFER 
LOW 

AT TP.X (EVEOPT) 

SDA TO INPUT DIRECTION 
SDA OUTPUT BUFFER LOW 
SCL TO INPUT DIRECTION 
SCL OUTPUT BUFFER LOW 

i***************************************************** ************* 

I2C-HANDLER: OUTPUTS OR READS 8-BIT DATA 

WRITE: R/@W = O. R6 CONTAINS SLAVE ADDRESS AND 8-BIT DATA 
RETURN: C = 0: TRANSFER OK (R6 UNCHANGED) 

; CALL 

;READ: 

6-12 

MOV.B 
BIS 
CALL 
JC 

R/@W 

C = 1: ERROR (R6 UNCHANGED) 
DATA,R6 
(2*ADDR)*0100H,R6 
#I2CHND 
ERROR 

8-BIT DATA TO R6 
ADDRESS AND FUNCTION 
CALL HANDLER 
C = 1: ERROR OCCURED 

1. R6 CONTAINS SLAVE ADDRESS, LOW BYTE UNDEFINED 



MSP430 Family I/O Module 

; CALL 
RETURN: R6 CONTAINS 8-BIT DATA IN LOW BYTE, HI BYTE 0 

MOV 
CALL 

(2*ADDR+1)*0100H,R6 
#I2CHND 

ADDRESS AND FUNCTION 
CALL HANDLER 
8-BIT INFO IN R6 LO 

;****************************************************************** 

I2CHND . PUSH R5 ; SAVE REGISTERS 

I2C START CONDITION: SCL AND SDA ARE HIGH, SDA GOES LOW 
THEN SCL GOES LOW 

BIS.B 
BIS.B 

#SDA,&SDAEN 
#SCL,&SCLEN 

SET SDA LO 
SET SCL LINE LO 

SENDING OF THE ADDRESS BITS (7) AND R/@W-BIT 

MOV #8000H,R5 BIT MASK MSB 
I2CCL BIT R5,R6 BIT -> CARRY 

CALL #I2CSND SEND CARRY 
CLRC 
RRC R5 NEXT ADDRESS BIT 
CMP #080H,R5 R/@W SENT? 
JNE I2CCL NO, CONTINUE 

ADDRESS AND R/@W SENT: RECEIVE OF ATHEN CKNOWLEDGE BIT, 
DECISION IF READ OR WRITE 

CALL #I2ACKN 
JC 12CERR NO ACKNOWLEDGE, 
BIT #100H,R6 READ OR WRITE? 
JNZ I2CRI 

; WRITE: CONTINUE WITH 8-BIT DATA IN LOW BYTE OF R6 

ERROR 

I2CWL BIT 
CALL 
CLRC 
RRC 

R5,R6 
#I2CSND 

; WRITE: CONTINUE WITH DATA 

R5 

JNC I2CWL 
CALL #I2CACKN 

; CARRY INFORMATION: 0: OK, 1: ERROR 

I2CEND 
I2CERR 

.EQU 
BIC.B 
BIC.B 
RET 

$ 
#SCL,&SCLEN 
#SDA,&SDAEN 

IF TESTBIT IN CARRY: 
FINISHED 

ACKNOWLEDGE BIT -> CARRY 

STOP CONDITION 
SET SDA HI 
CARRY INFO UNDESTROYED 

READ: READ 8 DATA BITS TO R6 LOW BYTE. R5 = 080H 

6-13 



I/O Module 

I2CRI CALL 
RLC.B 
RRA 
JNC 

CALL 
JMP 

#I2CRD 
R6 
R5 
I2CRI 

#I2CO 
I2CEND 

SUBROUTINES FOR I2C-HANDLER 

MSP430 Family 

READ BIT -> CARRY 
CARRY TO LSB R6 
BIT MASK USED FOR COUNT 
BIT MASK IN CARRY: 
FINISHED 
ACKNOWLEDGE BIT = 0 
CARRY = 0 

SENDROUTINE: INFO IN CARRY IS SENT OUT. 
ACKNOWLEDGE BIT SUBROUTINE IS USED FOR CLOCK OUTPUT 

I2CSND JNC I2CO INFO IN CARRY 
BIC.B #SDA,&SDAEN INFO 1 
JMP I2CACKN 

I2CO BIS.B #SDA,&SDAEN INFO 0 

; READING OF ACKNOWLEDGE (OR DATA) BIT TO CARRY 

I2CACKN .EQU $ 
I2CRD BIC.B #SCL,&SCLEN SET CLOCK HI 

BIT.B #SDA,&SDAIN READ DATA TO CARRY 
BIS.B #SCL,&SCLEN CLOCK LO 
RET 

6-14 



MSP430 Family 

7 

7,1 

7,1 
7,1,1 
7,1,2 

7,2 
7.2,1 
7,2,2 
7,2,3 

7,2 

7,3 
7,3,1 
7,3,2 

Timer Examples 

Watchdog 

8 bit Timer 
Measuring the Pulse Width 

Topics 

Output Pulse Responding to Input Signal 

Basic Timer 
Generating Interrupts Sequently 
PWM-Modulation 
Software UART 

8 bit PWM Timer 

Universal Timer / Port Module 
Initialization 
Measuring the Revolutions of a Toothed-Wheel 

Figures 

Figure Title 

7,1 Measuring the Pulse Width 

7,2 Output a 1 ms Signal 

7,3 

7.4 

7,5 

PWM Modulation 

PWM Modulation 

Measuring the Revolutions of a Toothed Wheel 

Timer Examples 

7-3 

7-3 

7-4 
7-4 
7-5 
7-6 
7-6 
7-7 

7-10 

7-18 

7-20 
7-21 
7-23 

Page 

7-4 

7-5 
7-7 

7-18 

7-23 

7-1 



Timer Examples MSP430 Family 

7-2 



MSP430 Family Timer Examples 

7 Timer Examples 

7.1 Watchdog 

The Watchdog timer can be used as Watchdog, or as a normal timer. It is even possible 
to switch between these functions. The following example shows the correct method. 
The watchdog mode is first selected and a time interval of 0.5 ms is performed. The 
Watchdog Timer then works as a normal timer with an time interval of 250 ms. The 
corresponding interrupt service routine can be programmed as usual. 

WDTCTL .EQU 0120H ;ADDRESS OF WATCHDOG TIMER 
WDTPW .EQU 05AOOH ; PASSWORD 
T250MS .EQU 5 ;INTERVAL IS SET TO 250 MS 
T05MS .EQU 2 ;INTERVAL IS SET TO 0.5 MS 
CNTCL .EQU 8 ;BITPOSITION TO RESET WDTCNT 
TNSEL .EQU OlOH ;BITPOSITION TO SELECT TIMER MODE 
IEl .EQU 0 ;ADDRESS OF IEl 

;FOLLOWING INSTRUCTION SELECTS THE WATCHDOG MODE AND A TIME 
;INTERVAL OF 0,5MS IS PERFORMED. 

MOV 
MOV 

#WDTPW+CNTCL,&WDTCTL 
#WDTPW+T05MS,&WDTCTL 

;RESET WDT COUNTER 
;WATCHDOG MODE AND 
;0.5 MS TIME INTERVAL 

;TO CHANGE TO TIMER MODE AND A TIMER INTERVAL OF 250 MS, THE 
;FOLLOWING INSTRUCTION SEQUENCE CAN BE USED: 

MOV #WDTPW+CNTCL,&WDTCTL ;CLEAR WDT COUNTER 
MOV #WDTPW+T250MS+TMSEL,&WDTCTL ;SELECT 250 MS AND 

BIS.B #l,&IEl 
EINT 

;TIMER MODE 
;ENABLE WDT INTERRUPT 
;ALLOW INTERRUPT 

;IN THE TIMER MODE A INTERRUPT SERVICE ROUTINE IS NECESSARY TO 
;HANDLE THE INTERRUPT CAUSED BY THE WATCHDOG TIMER 
WDTISR ;INTERRUPT SERVICE 

;ROUTINE FOR THE WDT 
RETI 

.SECT 

. WORD 
"WDTVECT",OFFF4H 
WDTISR 

;IN THE TIMER MODE 

;INTERRUPT VECTOR OF 
;WDT IN TIMER MODE 

7-3 



Timer Examples MSP430 Family 

7.2 8 bit Timer 

7.2.1 Measuring the Pulse Width 

The following example shows the performance of the 8bit Timer I Counter to measure 
the pulse width of a signal on port pin PO.1. In the 8bit Counter Control Register there is 
an option to select the source of the clock input to the signal on pin PO.1 AND MCLK. 
Therefore, if the signal at pin PO.1 is high, the MCLK pulses are counted. The maximum 
length of the pulse can be up to 4096 seconds. The result of the following pulse will be 
13. 

I( tpulse 

PO.1 

MCLK = 1 MHZ .... I (~ __ 1_3_c .... y_cl_es __ ~> I 

Figure 7.1: Measuring the Pulse Width 

i***************************************************** ********** 

;THIS ROUTINE MEASURES THE TIME DURING A PULSE AT THE I/O PIN 
;PO.l IS HIGH. THE RESULT IN 1/(2 A 20) SEC IS TO BE STORED IN ;R5IR6. 
i***************************************************** ********** 

;CONFIGURE 8BIT TIMER TO COUNT THE MCLK'S DURING THE SIGNAL 
;AT THE I/O PIN PO.l IS HIGH. 

LOOP 

TC8ISR 

7-4 

MOV.B 
CLR.B 
CLR.B 
BIC.B 
BIS.B 
EINT 

BIT.B 
JNZ 
BIS.B 
JMP 

ADD 
ADC 
RETI 

#ENCNT+ISCTL+SSELO+SSELl,&TCCTL 
&TCPLD 
&TCDAT 
#PO_l, &PODIR 
#8,&IEl 

#PO_l,&POIN 
LOOP 
&TCDAT,R5 
LOOP 

#100H,R6 
R5 

;CLEAR COUNTER 
;PO.l IS INPUT 
;ALLOW COUNTER INTERRUPT 

;IS SIGNAL HIGH? 
;YES 
;RESULT IS R51R6 



MSP430 Family Timer Examples 

;INTERRUPT VECTOR ADDRESSES: 
.SECT 
. WORD 
.SECT 
. WORD 

"TC8VECT" , OFFF8H 
TC8ISR 
" RSTVECT " , OFFFEH 
START 

;PUC/RESET ADDRESS 

7.2.2 Output Pulse Responding to Input Signal 

Output a 1 ms pulse on every positive edge of an input signal. 

po.o 

PO.3 

Figure 7.2: Output a 1 ms Signal 

In this example, a rising edge on the PO.2 input pin causes a 1 ms pulse to be outputted 
on the PO.3 pin. To give a simple application, this could be used in a 50 Hz lamp dimmer 
or motor speed controller, where the input is the 50 Hz signal and the output connects to 
the output driver. 

; INITIALIZATION OF THE COUNTER: 
MOV.B #-32,&TCPLD 
CLR.B &TCDAT 

;LOAD PRELOAD REGISTER 
;LOAD COUNTER WITH PRELOAD 

MOV.B #SSELO+ISCTL,&TCCTL 

BIS.B 

; INITIALIZATION OF THE I/O PORT 
BIS.B #po _3,&PODIR 
BIS.B #PO _OIE,&IEl 
BIC.B #PO_O,&POIES 
EINT 

LOOP JMP LOOP 

POINT BIS.B #ENCNT,&TCCTL 
BIS.B #PO_3,&POOUT 
RETI 

;SET TC8 TO ACLK CLOCK SOURCE, 
;INTERRUPT FROM COUNTER AND 
;ENABLE COUNTER 
;ENABLE TC8 INTERRUPT 

;PO_3 TO OUTPUT 
;ENABLE po_o INTERRUPT 
;SET INTERRUPT EDGE TO LO/HI 
;SET GIE BIT IN SR 
;ENDLESS LOOP 

;ENABLE COUNTER 
;START OF 1 MS PULSE 

7-5 



Timer Examples MSP430 Family 

TC8INT BIC.B 
BIC.B 
RETI 

#ENCNT,&TCCTL 
#PO_3,&POOUT 

;DISABLE COUNTER 
;END OF 1 MS PULSE 

; INTERRUPT VECTOR ADDRESSES: 
.SECT "PO_IVECT",OFFF8H ; ADDRESS FOR TC8 INTERRUPT 
. WORD TC8INT 
. SECT "PO _OVECT",OFFFAH ; ADDRESS FOR PO 0 INTERRUPT -
. WORD POINT 
.SECT "RSTVECT",OFFFEH ;PUC/RESET ADDRESS 
. WORD START 

7.3 Basic Timer 

7.3.1 Generating Interrupts Sequentially 

The Basic timer is well suited for generating interrupts periodically. The following 
software routine generates a one second interrupt sequence. In the corresponding 
interrupt service routine, the LCD can be updated or a new measurement cycle can be 
initiated, for example. 

; INITIALISATION 

START BIC.B 

BIS.B 
BIS.B 

EINT 

#OE7H,&BTCTL 

#IP2+DIV,&BTCTL 
#BTIE,&IE2 

;INTERRUPT SERVICE ROUTINES 

CALL 
CALL 

RETI 

#LCD_UPD 
#NEW_MEAS 

; INTERRUPT VECTOR ADDRESS 

7-6 

. SECT 

. WORD 

. SECT 

. WORD 

"BTVECT",OFFE2H 
BT_ISR 
"RSTVECT",OFFFEH 
START 

;CLEAR CONFIGURATION BITS FOR 
;BT 
;NOW THE BT IS CONFIGURED 
;ALLOW INTERRUPT CAUSED BY BT 

;ALLOW ALL INTERRUPTS 
; PROGRAM 

;UPDATE LCD 
;INITIATE A NEW MEASUREMENT 

;ADDRESS FOR BASIC TIMER INT . 

;PUC/RESET ADDRESS 



MSP430 Family 

7.3.2 PWM Modulation 

Output a 1 kHz signal with a varying duty cycle 

PWMPIN 

1< t2 >1 ~t2~ 

n 
1< t1 >1< 

t1 = periodic time (=1 ms) 

t2= duty cycle 

Figure 7.3: PWM Modulation 

t1 

Timer Examples 

I( t2 >1 

U 
>I( t1 >1 

The Basic Timer controls the period of the signal (t1) and is not changed in this routine, 
while the 8 bit Timer / Counter controls the varying duty cycle (t2). The Basic Timer 
Service Routine will be entered each time the interrupt request flag BTIFG is set. The 
main programme is required to load any new values for the PWM duty cycle into the 
working Register, which is loaded into the Pre-load Register by the interrupt routine. 

The discrepancy between the value in the PWM register and the corresponding duty 
cycle is caused by the interrupt service rotine, which takes about 34 cycles, if the value 
in the PWM regiser is lower than 100h. If it is higher than 100h, the 8 bit Timer service 
routine is called more times, and therefore it takes additional cycles (14 cycles per 
additional interrupt request). 

The periodic time can be increased by choosing another time devision factor for the 
Basic Timer. Therefore the difference between the value in the PWM register and the 
duty cycle must not be considered. 

7-7 



Timer Examples MSP430 Family 

;******************************************************** 

;PWM 
Tl = 939 CYCLES = 1117 HZ ( MCLK = 220 HZ ) 

CAUSED BY BASIC TIMER WITH DEVIDING FACTOR 32 
T2,MIN = 40 CYCLES (PWM=6) 
T2,MAX = 908 CYCLES (PWM=830) 

;********************************************************* 

RAMSTART . SECT 
PWM . WORD 
PWMLOAD . WORD 

"RAM",0200H 
o 
o 

START .SECT "PROG", OFOOOH 

;WORKING REGISTER 
;MAX=990, MIN=10 

;INITIALIZATION OF THE BASIC TIMER FOR THE 1 MS INTERRUPT INTERVAL 
BIC.B #OE7H,&BTCTL ;CLEAR CONFIGURATION BITS FOR 

;BT 
BIS.B 
BIS.B 
BIS.B 

;INITIALZATION OF 
CLR.B 

BIS.B 

BIS.B 

#IP2,&BTCTL 
#BTIE,&IE2 
#BTME,&ME2 

THE 8 BIT TIMER / 
&TCCTL 

#SSEL1+ISCTL 

#PO_lIE, &IEl 

;INITIALIZATION OF THE I/O PORT 
BIS.B 
BIC.B 

EINT 

#PWMPIN,&PODIR 
#PWMPIN,&POOUT 

;INTERRUPT INTERVAL IS 1 MS 
;ENABLE BT INTERRUPT 
;ENABLE BT MODULE 

COUNTER 
; CLEAR CONFIGURATION OF 8 BIT 
; TIMER 
; CARRY IS INTERRUPT SOURCE 
; CLOCK INPUT IS MCLK 
;ENABLE 8 BIT TIMER INTERRUPT 

;SET DEDICATED PIN TO OUTPUT 
;PWM OUTPUT = LOW 

;ENABLE SELECTED INTERRUPTS 
;MAIN PROGRAM CHANGES THE DURY CYCLE BY CHANGING THE VALUE IN 
;THE RAM WORD PWM 

MAIN MOV #l,&PWM 
CALL #WAIT 
MOV #lOO,&PWM 
CALL #WAIT 
MOV #lOOOH,&PWM 
CALL #WAIT 
JMP MAIN 

7-8 



MSP430 Family Timer Examples 

WAIT 
WAITL$ 

MOV 
DEC 
JNZ 
RET 

#500,R4 
#R4 
WAITL$ 

;BASIC TIMER INTERRUPT SERVICE ROUTINE 
BTISR MOV.B 

INV.B 
CLR.B 

BIS.B 
BIS.B 
RETI 

&PWM,&TCPLD 

&TCPLD 
&TCDAT 

#PWMPIN,&POOUT 
#ENCNT,&TCCTL 

;LOAD PWM VALUE INTO PRELOAD 
;REG 
;8 BIT TIMER = UPCOUNTER ! 
;LOAD PRELOAD REGISTER INTO 
; COUNTER 
;OUTPUT PIN = HIGH 
;ENABLE 8 BIT TIMER 

;8 BIT TIMER / COUNTER INTERRUPT SERVICE ROUTINE 
TC8ISR CLR.B &TCPLD ;CLEAR PRE-LOAD REGISTER 

BIC.B 

CLR.B 

SUB 
JNC 
BIC.B 
BIC.B 

TC8_END RET I 

&TCDAT 

#lOOH,&PWM 
TC8_END 
#PWMPIN,&POOUT 
#ENCNT,&TCCTL 

; NECESSARY , IF PRE-LOAD VALUE 
;IS FFH 
;AND LOAD NEW VALUE INTO 
; COUNTER 
;ACTUALIZE WORKING REGISTER 
;T2 OVER ? 
;YES, SET OUTPUT TO LOW 
;DISABLE 8 BIT TIMER 

;INTERRUPT VECTOR ADDRESSES: 
. SECT 
. WORD 
. SECT 
. WORD 
. SECT 
. WORD 

"BTVECT",OFFE2H ;ADDRESS FOR BT INTERRUPT 
BTISR 
"PO_1VECT",OFFF8H ;ADDRESS FOR TC8 INTERRUPT 
TC8ISR 
"RSTVECT",OFFFEH ;PUC/RESET ADDRESS 
START 

7.3.3 Software UART 

The following software routines for implementing a Software UART use the 8 bit Timer/ 
Counter for generating the appropriate timing, and support half duplex protocols. The 
baudrate is up to 2400 bps with the ACLK of 32768 Hz. The transmit and receive 
routines are written as interrupt service routines, to get high performance. The 
communication parameters (Stop bit, Data bits, Parity) can be defined at the setting part 
at the beginning of the programme. 

7-9 



Timer Examples MSP430 Family 

;**************************************************************** 

SOFTWARE UART FOR MSP430 
CONDITIONS: HALF DUPLEX, ACLK IS CLOCK SOURCE OF 8-BIT
TIMER/COUNTER 
REQUIRED RAM-SPACE FOR VARIABLES: 5 BYTES 

;**************************************************************** 

; DEFINED BY USER 

BAUD 
DATABITS 
PARITY 
STOPBITS 

.SET 

.SET 

.SET 

.SET 

600 
8 
"NONE" 
1 

;600,1200,2400 
; 7 I 8 
; "EVEN", "ODD", "NONE" 
; 1, 2 

; PROTOCOL DEFINITIONS 

.IF PARITY = "NONE" 
FRAME_END .SET 2* (l+DATABITS+STOPBITS) ;# OF BITS (*2) 

.ELSE 
FRAME_END .SET 2* (2+DATABITS+STOPBITS) ;# OF BITS (*2 ) 

.ENDIF 

.IF BAUD = 600 
BITIME1 .SET 0100H - 55 ;TWICE USED 54.6133 
BITIME2 .SET 0100H - 54 ;SINGLE USED 
BITIME1 2 .SET - 0100H - 27 ;HALFBIT 27.3067 

.ENDIF 

. IF BAUD = 1200 
BITIME1 .SET 0100H - 27 ;TWICE USED 27.3067 
BITIME2 .SET 0100H - 28 ;SINGLE USED 
BITIME1 2 .SET 0100H - 14 ;HALFBIT 13.6533 

.ENDIF 

.IF BAUD = 2400 
BITIME1 .SET 0100H - 14 ;TWICE USED 13.6533 
BITIME2 .SET 0100H - 13 ;SINGLE USED 
BITIME1 - 2 .SET 0100H - 7 ;HALFBIT 6.8267 

.ENDIF 

;1/0 DEFINITION 
POlES .SET 14H 
; TIMER DEFINITIONS 
TCDAT .SET 44H 
TCPLD .SET 43H 

; RAM DEFINITIONS 
. SECT "RAM",200H 

TXDATA . BYTE 0,0 ;TRANSMIT SHIFT REGISTER 
TXSTATUS . BYTE 0 ;ACTUAL STATUS OF TRANSMIT 

7-10 



MSP430 Family 

TXFLAGS . BYTE 
RXBUF . BYTE 

RXDATA .SET 
RXSTATUS .SET 

RXFLAGS .SET 

REC BIT .SET 
PAR_BIT .SET 
ERR_BIT .SET 

; CONTROL DEFINITIONS 
POlES 1 .SET 
POIFG 1 .SET 

TCCTL .S~'l' 

RXD .SET 
TXD .SET 
RXACT .SET 
ENCNT .SET 
TXE .SET 

ISCTL .SET 
lEI .SET 

POlE .SET 

IFG1 .SET 
TEMP .SET 

TXDATA 
TXSTATUS 

TXFLAGS 

01H 
02H 
04H 

02H 
OSH 

042H 

1 
2 
4 

010H 

020H 
OH 

OSH 

02H 
R4 

Timer Examples 

; SEQUENCE 
;FLAGS DURING TRANSMITTING 
;RECEIVE BUFFER FOR COMPLETED 
;CHARS 

;RECEIVE SHIFT REGISTER 
;ACTUAL STATUS OF RECEIVE 
; SEQUENCE 
;FLAGS DURING RECEIVING 

;FLAG INDICATES 'CHAR RECEIVED' 
;PARITY BIT 
;RECEIVE ERROR 

;EDGE SELECT FOR PO.1 INTRPT 
;INT. FLAG FOR PO.1 

; 'j' lM~R/ COUNTER CONTROL 
; REGISTER 
;RECEIVE DATA BIT IN TCCTL 
;TRANSMIT DATA BIT IN TCCTL 
;EDGE DETECT LOGIC BIT 
;COUNTER ENABLE BIT IN TCCTL 
;1: TX BUF ACTIVE, 0: TX BUF 
;3-STATE 
;INTERRUPT SOURCE BIT 
;INT ENABLE 1 REGISTER 
;ADDRESS (SFR) 
;BIT IN INT ENABLE 1 REGISTER 
; (SFR) 
;INTERRUPT FLAG REGISTER 1 

; SUBROUTINE : INn'IALIZE UART CONTROL REGISTERS 
; (CALLED ONCE AFTER RESET) 

INIT RXTX 
MOV.B #072H,&TCCTL 

BIS.B #POIES_1,&POIES 

BIC.B #POIFG_1,&IFG1 

CLR.B RXFLAGS 
CLR.B RXSTATUS 
RET 

;ACLK IS SOURCE FOR 8-BIT
; TIMER/COUNT 
;SELECT NEGATIVE EDGE FOR 
;PO.l 
;INTRPT 
;AND RXACT_FF, RESET INT. 
;FLAG 

CLEAR RX/TX REGISTERS 
; CLEAR RX STATUS REGISTER 

7-11 



Timer Examples 

; SUBROUTINE : PREPARE TRANSMIT CYCLE 

CLR.B 
MOV.B 

MOV.B 

MOV.B 

MOV.B 

BIS.B 
JMP 

TXSTATUS 
#072H,&TCCTL 

#OFOH, TCPLD 

#O,&TCDAT 

#BITIME1,TCPLD 

#ENCNT,&TCCTL 
PREP_RXTX 

; SUBROUTINE : PREPARE RECEIVE CYCLE 

PREP_RX CLR.B RXSTATUS 
MOV.B #072H,&TCCTL 

MOV.B #BITIMEl _2,&TCPLD 

MOV.B #0, &TCDA'!' 

MOV.B #BITIME1,&TCPLD 

BIS.B #RXACT,&TCCTL 

MSP430 Family 

;INITIALIZE TRANSMIT STATUS 
;TXD = 1, TXE = 1 

;LOAD TIME UNTIL START BIT 
; STARTS 
;DUMMY WRITE TO LOAD 
; COUNTER/TIMER 
;LOAD PRELOAD REG. WITH 
;BITTIME 1 

;SET TRANSMIT START CONDITION 
;FALL INTO COMMON PART 

; INITIALIZE RECEIVE STATUS 
;SSELl = 0, SSELO = ISCTL = 1 

;SET PRELOAD REGISTER WITH 
;'1'1-2 
;DUMMY WRITE TO LOAD COUNTER/ 
; TIMER 
; LOAD PRELOAD REG. WITH 
;BITTIME 1 

; ACTIVATE NEG. EDGE DETECT OF 
;PO.l(RX) 

PREP RXTX ;COMMON PART ALSO FOR 
;PREP_TX 

7-12 

.IF PARITY = "EVEN" 
BIC.B #PAR_BIT,RXFLAGS 
.ELSE 
BIS.B 
.ENDIF 
BIS.B 

RET 

#PAR_BIT,RXFLAGS 

;PRESET PAR_BIT o 

;PRESET PAR_BIT 1 

;ENABLE PO.l / 8BIT COUNTER 
;INTRPT 
;ACCORDING TO STATE OF ISCTL 



MSP430 Family Timer Examples 

;**************************************************************** 

; INTERRUPT HANDLER OF SOFTWARE UART 
;**************************************************************** 

BIT 
JNZ 

# RXACT , TCCTL 
RXINTRPT 

;RX/TX INTRPT HANDLER? 
;RECEIVE MODE IS ACTIVE -> 

; JUMP 

TRANSMIT INTERRUPT HANDLER : DATA IS IN TXDATA 
; INPUT : DATA TO TRANSMIT IN TXDATA 
; OUTPUT: IF TRANSMIT IS COMPLETED, TXSTATUS WILL BE #FRAME_END 

TXINTRPT 

TXTAB 

PUSH 
MOV.B 
BR 
. WORD 
. WORD 
. WORD 
. WORD 
. WORD 
. WORD 
. WORD 
. WORD 

R5 
TXSTATUS,R5 
TXTAB (R5) 
TXSTATO 
TXSTAT2 
TXSTATl 
TXSTATl 
TXSTAT2 
TXSTATl 
TXSTATl 
TXSTAT2 

.IF DATABITS = 8 

. WORD TXSTATl 

.ENDIF 

.IF PARITY != "NONE" 

. WORD TXPAR 

.ENDIF 

.IF STOPBITS = 2 

. WORD 

.ENDIF 

. WORD 

. WORD 

TXSTOP 

TXSTOP 
TXRET 

TXSTATO MOV. B 
JMP 

TXSTAT2 MOV. B 

#BITIME1,&TCPLD 
TX_LO 
#BITIME2,&TCPLD 

TXSTATl MOV. B 
TX_BIT RRA 

JNC 
XOR.B 
BIS.B 
JMP 
BIC.B 

#BITIME1,&TCPLD 
&TXDATA 
TX_LO 
#PAR_BIT,TXFLAGS 
#TXD,&TCCTL 
TXRET 
#TXD,&TCCTL 

;RXACT = 0 --> TRANSMIT 
;USE TXSTATUS FOR 
;TRANSMIT PROCESS TABLE 
;STARTBIT 
;BIT 0, LSB BITIME2 
;BIT 1 BITIMEl 
;BIT 2 
;BIT 3 
;BIT 4 
;BIT 5 
;BIT 6 

;BIT 7 

BITIMEl 
BITIME2 
BITIMEl 
BITIMEl 
BITIME2 

BITIMEl 

;PARITY BIT BITIMEl 

;STOPBIT BITIMEl 

;STOPBIT BITIMEl 
;FRAME TRANSMITTED 

;LOAD BITTIME OF NEXT BIT 
;STARTBIT, OUT=LO 
;LOAD BITTIME OF NEXT BIT 

;LSB -> CARRY 

; 1 

; 0 

TOGGLE PARITY 
OUT=HI 

OUT=LO 

7-13 



Timer Examples 

TXRET INCD.B &TXSTATUS 
POP R5 
RETI 

; PARITY BIT CHECK: PAR_BIT + PARITY 
TXPAR MOV.B #BITIME1,&TCPLD 

BIT.B #PAR_BIT,TXFLAGS 
JNZ TX_HI 
JMP TX_LO 

; OUTPUT OF STOP BIT(S) 
TXSTOP MOV.B #BITIME1,&TCPLD 

JMP TX_HI 

RECEIVE INTERRUPT HANDLER 
; OUTPUT: RECEIVED DATA IN RXDATA 

MSP430 Family 

;TXSTATUS + 2 

;TRANSMISSION OF ONE BIT 
; COMPLETED 

BIT MUST BE EVEN 

;CHECK PARITY BIT VALUE 
;PARITY BIT SHOULD BE MARK 
;PARITY BIT SHOULD BE SPACE 

;SEND STOP BIT 1 OR 2 

; RECEIVE FINISHED: #REC_BIT IS SET IN STATUS BYTE RXFLAGS 
0 _______________________________________________________________ _ , 

RXINTRPT 
PUSH R5 ;RECEIVER INTERRUPT ROUTINE 
MOV.B &RXSTATUS,R5 ;R5 IS USED TEMPORARY AS 

; POINTER OF 
BR RCTAB(R5) ;RECEIVE PROCESS TABLE 

RCTAB . WORD RCSTATO ; START BIT 
. WORD RCSTATl ;BIT 0 
. WORD RCSTATl ;BIT 1 
. WORD RCSTAT2 ;BIT 2 
. WORD RCSTATl ;BIT 3 
. WORD RCSTATl ;BIT 4 
. WORD RCSTAT2 ;BIT 5 
. WORD RCSTATl ;BIT 6 
.IF DATABITS = 8 
. WORD RCSTATl ;BIT 7 
.ENDIF 
.IF PARITY 1= "NONE" 
. WORD RCSTAT2 ;PARITY BIT BIT 1 
.ENDIF 
.IF STOPBITS = 2 
. WORD RCSTOPl ; STOP BIT BIT 2 
.ENDIF 
. WORD RCSTOP2 ; STOP BIT BIT 2 

7-14 



MSP430 Family 

RCSTATO BIT. B 
JC 

MOV.B 

#RXD,&TCCTL 
RCERROR 

#BITIME2,&TCPLD 

JMP RCRETO 
RCSTAT2 MOV. B #BITIME2,&TCPLD 

JMP RCBIT 
RCSTAT1 MOV. B 

RCBIT BIT.B 
JNC 

#BITIME1,&TCPLD 

#RXD,&TCCTL 
RCRET 

&RXDATA 

Timer Examples 

;CHECK START BIT 
; ERROR: START BIT IS MARK NOT 
; SPACE 
;START BIT FINE, LOAD PRE
;LOAD REG. 

;LOAD PRELOAD REG. WITH BIT 
;TIME 2 

;LOAD PRELOAD REG. WITH BIT 
;TIME 1 
;RXD BIT->CARRY BIT 
;RXD BIT=CARRY BIT=O ? YES, 
; JUMP 
;RXD BIT -> MSB, NEGATIVE BIT RRC 

XOR.B 
JMP 
RRC 

#PAR_BIT,RXFLAGS; RXD BIT = 1, TOGGLE PAR_BIT 
RCRETO 

RCRET 

RCRETO 
RCCMPL 

INCD.B 
POP 
RET I 

&RXDATA 

&RXSTATUS 
R5 

;RXD=O, RXD BIT -> MSB, 
;NEGATIVE BIT 

; PARITY BIT WAS RECEIVED JUST LIKE ALL OTHER BITS 

RCSTOP1 MOV. B 

RCSTOP2 

BIT.B 
JZ 
JMP 

#BITIME1,&TCPLD 

#RXD,&TCCTL 
RCERROR 
RCRETO 

.IF PARITY != "NONE" 
BIT.B #PAR_BIT,RXFLAGS 

JNZ RCERROR 
.ENDIF 
BIT.B #RXD,&TCCTL 
JZ RCERROR 
POP R5 

;LOAD PRELOAD REG. WITH BIT 
;TIME 1 
;CHECK STOP BIT FOR MARK 
;STOP BIT IS MARK -> OK 

;CHECK PARITY BIT. BIT MUST 
;BE ZERO 
;PARITY BIT FALSE. 

;CHECK STOP BIT FOR MARK 
;STOP BIT IS MARK -> OK 

PREPARE CHARACTER RECEIVED AND STORE IT 

.IF PARITY != "NONE" 
RLA 
.ENDIF 

RXDATA 

.IF DATABITS = 7 
CLRC 
RRC RXDATA 
.ENDIF 
MOV.B &RXDATA+1,&RXBUF 

;SHIFT PARITY OUT 

;CLEAR CARRY 
;SHIFT 0 INTO BIT 7 

;STORE RECEIVED CHARACTER 

7-15 



Timer Examples MSP430 Family 

BIS.B 
CALL 
RETI 

#REC_BIT,RXFLAGS 
#PREP_RX 

; ERROR HANDLING: A NEW START IS TRIED 
RCERROR BI S. B #ERR_BIT, RXFLAGS 

CALL #PREP_RX 
JMP RCCMPL 

INTERRUPT VECTOR ADDRESS 

;SET 'RECEIVED' BIT 
;PREPARE NEXT FRAME 

1 

. SECT "PO_l VECT" ,OFFF8H ; ADDRESS FOR TC8 INTERRUPT 

. WORD 

. SECT 

. WORD 

INT_PO_l 
"RST_VECT",OFFFEH ;PUC / RESET ADDRESS 
START 

The following subroutines shows the capability of the software UART described above. 
First, the timer must be initialized by calling the subroutine INIT _RXTX. 

The direction of the communication has to be selected by calling the subroutines 
PREP _PX respectively PREP _ TX. This subroutine call is performed in the following 
example. 

RX_CHAR initiates the timer to receive one byte, that will be stored in the RAMbyte 
RXBUF after the complete receive cycle. If an error occurs during the serial 
communication, the error bit in the RXFLAGS byte will be set. 

; SUBROUTINE : RECEIVE 1 CHARACTER INTO RXBUF 
; OUTPUT : RECEIVED CHARACTER IN RXBUF 

RX_CHAR BIC.B #ERR_BIT,RXFLAGS ;CLEAR ERROR BIT FROM 
PREVIOUS CALL 

BIT.B #REC_BIT, RXFLAGS ;TEST 'RECEIVED' FLAG 
JZ RX_CHAR ; ° : WAIT FOR CHAR. 
BIC.B #REC_BIT,RXFLAGS ; 1 : CLEAR FLAG AND EXIT 
RET ;RXBUF HOLDS DATA 

The next example called TX_SPACE transmits one space character, that is located in 
the RAM byte TXDATA. Every other character can be transmitted, of course. Saving 
code space, this routine uses the part TX-END, that is used by the subroutined 
TX_TABLE, too. The routine TX_TABLE transmits a whole string, which is pointed to by 
TEMP. The end of the string is indicated by the value 00. 

7-16 



MSP430 Family Timer Examples 

; SUBROUTINE : TRANSMIT 1 CHARACTER FROM TXDATA 

TX SPACE -
MOV #' , ,TXDATA ;TRANSMIT <SPACE> 

TX_CHAR 
CALL #PREP_TX ;INITIALIZE TRANSMISSION 

TX_CHARl 
CMP.B #FRAME_END,TXSTATUS 

; OUTPUT OF ONE FRAME 
; COMPLETED? 

JNE TX_CHARl ;NO : WAIT FOR COMPLETION 
JMP TX_END 

;SUBROUTINE : TRANSMIT DATA FROM TEXT TABLE, STARTADDRESS IN TEMP 

TX_TABLE 
CALL #PREP_TX ;INITIALIZE TRANSMISSION 

TX_TABLEl 
MOV.B @TEMP+,TXDATA ;CHAR TO SEND TO TXDATA 
TST.B TXDATA ;ALL CHARS TRANSMITTED? 

; (CHAR = 0) 
JZ TX_END ;YES, STOP TX AND CONTINUE 

; PROGRAM 
CLR.B TXSTATUS ;CLEAR TRANSMIT STATUS 

.IF PARITY = "EVEN" 
BIC.B #PAR_BIT,TXFLAGS ; PRESET PAR_BIT 0 
.ELSE 
BIS.B #PAR_BIT,TXFLAGS ; PRESET PAR_BIT 1 
.ENDIF 

TX_TABLE2 
CMP.B #FRAME_END,TXSTATUS 

; OUTPUT OF ONE FRAME 
; COMPLETED? 

JEQ TX_TABLEl ;YES, TRANSMIT NEXT DATA OF 
; TABLE ! 

JMP TX_TABLE2 ;NO, WAIT FOR COMPLETION 

----------- OUTPUT OF ONE STRING COMPLETED --------------------
CMP.B 
JNE 

#FRAME_END+2, TXSTATUS 
;WAIT FOR OUTPUT OF LAST 
;STOPBIT 

7-17 



Timer Examples 

BIC.B 

MSP430 Family 

;INTERPT DISABLED FOR PO.1/TC 
;IN SFR 

BIC.B #ENCNT,&TCCTL ;STOP COUNTER TO SAVE POWER 
;CONS. 

RET 

; EXAMPLE FOR TRANSMITTING THE 
STRING . BYTE "TONI",O 

TEST MOV STRING,TEMP 
CALL #TX_TABLE 

7.3 8 bit PWM Timer 

TEXT 

;TRANSMISSION OF TABLE IS 
; COMPLETED 

"TONI" 
; a IS THE INDICATION OF THE 
; END OF 
;THE STRING 

This module is integrated in the EVE_OPT-Version of the MSP430 family, and 
generates a rectangular output pulse with a duty factor of 0% to 100 %. The period of 
the PWM signal can be selected from 242 ~s up to 992,2 ms, as shown in the table 
below. The resolution of the duty factor is 1/254 . 

Figure 7.4: PWM Modulation 

7-18 

t1 = periodic time (=1 ms) 
t2 = duty cycle 



MSP430 Family Timer Examples 

Clock Source Period Time t1 SSEL2 

MCLK X20 ·254 = 242 ILs 0 

MCL'X ~20 ·254 = 969ILs 0 

MCL'X6 1%20 ·254 = 3,88 ms 0 

ACLK X15· 254 = 7,75 ms 0 

ACL'X ~15·254 = 31,01 ms 1 

ACL% ,%15 ·254 = 62,01 ms 1 

ACL'X6 1%15 ·254 = 124,02 ms 1 

ACL'X28 12,% .254 = 9922 ms 1 
215 ' 

t2 = t1. PWMDT 
254 

; PWMDT E [O,FEh] 

SSEL1 SSELO 

0 0 

0 1 

1 0 

1 1 

0 0 

0 1 

1 0 

1 1 

The following software example shows the capability of this peripheral module. After 
configuration of the PWM registers, no software control is necessary to generate the 
output pulses, unless the duty cycle or the PWM period have to be modified. These 
modifications will affect the output after the end of the actual PWM period. 

INITIALIZATION 
CLR.B 

MOV.B 

&PWMCTL 

#7FH,&PWMCTL 

; CHANGE DUTY CYCLE T2 
MOV.B #3FH,&PWMDT 

; CHANGE PWM PERIOD Tl 

;Tl=242 US 
;PWM OUTPUT IS DISABLED 
;POSITIVE LOGIC 
;DUTY CYCLE = 50 % 

;DUTY CYCLE 25 % 

BIC.B #SSELO+SSEL1+SSEL2, &PWMCTL 

BIS.B 
;CLEAR ALL CLOCK SOURCES 

#SSELO+SSELl,&PWMCTL 
;NEW CLOCK SOURCE IS ACLK, 
;Tl=7,75MS 

7-19 



Timer Examples MSP430 Family 

; STOP PWM SIGNAL AT LOW STATE 
LOOP BIT.B #CMPM,&PWMCTL ; WAIT FOR PWM OUTPUT LOW 

JZ LOOP 
BIC.B #OEH,&PWMCTL ;STOP PWM SIGNAL 
CLR.B &PWMCNT ;RESET COUNTER 

BIS.B #OEH,&PWMCTL ;CONTINUE WITH PWM 

7.4 Universal Timer I Port Module 

The Universal Timer / Port Module is implemented in the EVE-Opt version of the 
MSP430 family and contains up to six independent outputs (TP.O .. TP.5), two 8 bit 
counters which are cascadeable for 16 bit mode, and a comparator for AID-conversion 
of the slope-converter type. The use of this module as an AID-Converter is described in 
the section The Analog to Digital Converters. 

If no AID-conversion is needed, this module can be configured as an Universal Timer / 
Counter with interrupt capability. 

The following example shows the use of this module in the timer mode. The Register 
Equate table for the software examples is shown below. 

;UNIVERSAL TIMER PORT REGISTER DEFINITIONS 
TPCTL .EQU 4BH 
TPCNTl .EQU 4CH 
TPCNT2 .EQU 4DH 
TPD .EQU 4EH 
TPE .EQU 4FH 

;TPCTL BIT DEFINITIONS 
EN1FG .EQU lH 
RC1FG .EQU 2H 
RC2FG .EQU 4H 
ENl .EQU BH 
ENA .EQU lOH 
ENB .EQU 20H 
TPSSELO .EQU 40H 
TPSSELl .EQU BOH 

;TPD BIT DEFINITIONS 
CPON .EQU 40H 
TP16B . EQU BOH 

;TPE BIT DEFINITIONS 
TPSSEL2 .EQU 40H 
TPSSEL3 .EQU BOH 

7-20 



MSP430 Family Timer Examples 

lEI .EQU OOH 
IE2 .EQU 01H 
IFGl .EQU 02H 
IFG2 .EQU 03H 

TPIE .EQU 4H 

7.4.1 Initialization 

The initalization for using the two 8 bit counters in 16 bit mode is shown in the following 
example. Every other configuration can be achieved easily by modifying the appropriate 
bits in the configuration registers described in the MSP430 Architecture Guide. 

;INITIALIZATION OF THE TIMER / PORT REGISTERS 
MOV.B 

CLR.B 
CLR.B 

MOV.B 

#TPSSELO,&TPCTL 

&TPCNTI 
&TPCNT2 

#TPI6B,&TPD 

;CLEAR ENI FLAG 
;CLEAR RCI AND RC2 FLAG 
;ENl=O : DISABLES COUNTER 
;CLOCK SOURCE IS ACLK 

; CLEAR COUNTER 1 
; CLEAR COUNTER 2 

;16 BIT COUNTER MODE 
; TPCNTI = LOW BYTE 
; TPCNT2 = HIGH BYTE 
; RESETS OUTPUTS TP.O TO TP.5 

CLR.B &TPE ;TO.O TO TP.5 ARE SET TO 3-STATE 
;CLOCK SOURCE = CLKI = ACLK 

MOV.B #OAAH,&TPCNTI ;LOAD LOW BYTE WITH APPROPRIATE 
; VALUE 

MOV.B #OBBH,&TPCNT2 ;LOAD HIGH BYTE WITH APPROPRIATE 
; VALUE 

BIS.B 
GIE 

#TPIE,&IE2 ;ENABLE TIMER/PORT INTERRUPT 
;ENABLE ALL SELECTED INTERRUPTS 

i***************************************************** *********** 

; TIMER / PORT COUNTER INTERRUPT SERVICE ROUTINE 
;FOLLOWING INTERRUPT SERVICE ROUTINE CAN BE USED FOR EVERY MODE 
;OF 
;THIS MODULE. IN THE 8 BIT MODE THREE DIFFERENT SOURCES CAN CAUSE 
;INTERRUPTS CAN OCCUR 

- NEGATIVE EDGE OF ENI 
- OVERFLOW FROM TPCNTI 
- OVERFLOW FROM TPCNT2 

RCI SIGNAL 
RC2 SIGNAL 

7-21 



Timer Examples MSP430 Family 

;IN THE 16 BIT MODE OF THE COUNTER TWO DIFFERENT SOURCES CAN 
; CAUSE 
; INTERRUPTS: 

- NEGATIVE EDGE OF EN1 
- OVERFLOW FROM TPCNT2 

i***************************************************** *********** 

TPA8 ISR 

EN1 ISR 

BIT.B 

JNZ 
BIT.B 

JNZ 
BIT.B 
JNZ 

BIC.B 

RETI 

BIC.B 

RETI 

BIC.B 

RETI 

BIC.B 

RETI 

#EN1FG,&TPCTL 

EN1_ISR 
#RC1FG,&TPCTL 

TPA8_ISR 
#TP16B,&TPD 
TP16 ISR 

#RC2FG,&TPCTL 

;16 BIT MODE 
#RC2FG,&TPCTL 

;NEG.EDGE ON EN1 CAUSES INTERRUPT 

;YES, EXECUTE CORRESPONDING ISR 
;RIPPLE CARRY OF COUNTER1 CAUSES 
;INT ? 
;YES, EXECUTE CORRESPONDIG ISR 
;IS 16 BIT MODE SELECTED? 
;YES, EXECUTE 16 BIT ISR 

;8BIT MODE, ISR FOR COUNTER 2 

;8 BIT MODE, COUNTER 1 
#RC1FG,&TPCTL 

;EN1 ISR 
#EN1FG,&TPCTL 

;INTERRUPT VECTOR ADDRESSES FOR THE UNIVERSAL COUNTER 

7-22 

. SECT 

. WORD 
"TPVECT",OFFEAH ;UNIVERSAL COUNTER 
TP_ISR 



MSP430 Family Timer Examples 

7.4.2 Measuring the Revolutions of a Toothed Wheel 

The Figure below shows the set-up for determining the number of revolutions and the 
angular resolution of the number of the tooths of the wheel. If the toothed wheel has 72 
teeth, the resolution is in steps of 5 degrees. 

LED 

LDR 

< 
MSP430 

CIN tl 
Figure 7.5: Measuring the Revolutions of a Toothed-Wheel 

When the light from the LED impinges on the LOR, the pulse which occurs increments 
the 8 bit counter by 1. If one revolution of the disk is performed, the counter TPCNT1 will 
generate an overflow, and an interrupt occurs. The corresponding ISR increments the 
revolution register; the actual angle is contained in the PTCNT1 register. 

7-23 



Timer Examples 

NUT 
REV 

.EQU 

.EQU 
72 
RIO 

MSP430 Family 

;NUMBER OF TOOTHS 
;CONTAININ~ THE NUMBER OF 
; REVOLUTIONS 

;INITIALIZATION OF THE UNIVERSAL COUNTER 

CLR.B &TPCTL 

MOV.B #O-NUT,&TPCNTI 

CLR.B &TPD 

CLR.B &IFGI 

CLR.B &IFG2 

BIS.B #TPIE,&IE2 

BIS.B #ENA,&TPCTL 

;ENI=O 
;CLKI = CIN 
;INTERRUPT FLAGS = 0 

;GENERATE OVERFLOW, IF ONE 
;REVOLUTION IS OVER 
;IS OVER 

;SET OUTPUTS TP.O TO TP.5 TO 
; LOW 
;8 BIT COUTER MODE 
;COMPARATOR IS SWITCHED OFF 

;CLEAR INTERRUPT REQUEST 
;FLAG 1 
;CLEAR INTERRUPT REQUEST 
;FLAG 2 
;ENABLE UNIVERSAL COUNTER 
; INTERRUPT 
;START COUNTER 

;INTERRUPT SERVICE ROUTINE 

BIC.B 
INC 
MOV.B 

APPROPRIATE 

RETI 

#RCIFG,&TPCTL 
REV 
#O-NUT,&TPCNTI 

;CLEAR INTERRUPT REQUEST FLAG 
;ONE MORE REVOLUTION 
;RELOAD COUNTER WITH 

; VALUE 

;INTERRUPT VECTOR ADDRESSES FOR THE UNIVERSAL COUNTER 

7-24 

. SECT 

. WORD 
"TPVECT",OFFEAH;UNIVERSAL COUNTER 
TP_ISR 



MSP430 Family 

8 
8.1 

8.2 

8.3 

8.4 
8.4.1 
8.4.2 
8.4.3 

8.5 

LCD Display 

Initialization 

Definition of the Characters 

Display Text 

Adaption to other MUX Modes 
Adaption to 3MUX Mode 
Adaption to 2MUX Mode 
Adaption to Static Mode 

Topics 

Use of Unused Select Lines for Digital Outputs 

Figures 

Figure Title 

8.1 Allocation of the Segments, 4 MUX Mode 

8.2 

8.3 

8.4 

8.5 

Allocation of the LCD Digits in the Memory 

Allocation of the Segments, 3 MUX Mode 

Allocation of the Segments, 2 MUX Mode 

Allocation of the Segments, Static Mode 

Notes 

Figure Title 

8.1 Restrictions using select lines as outputs 

Tables 

Figure Title 

8.1 Allocation of the LCD Digits in 4MUX Mode 

8.2 

8.3 

8.4 

8.5 

8.6 

Configuration of the MUX Modes 

Allocation of the LCD Digits in 3MUX Mode 

Allocation of the LCD Digits in 2MUX Mode 

Allocation of the LCD Digits in Static Mode 

Dependence of the Select Lines to LCDP 

LCD Display 

8-3 

8-3 

8-4 

8-6 

8-9 
8-10 
8-12 
8-14 

8-16 

Page 

8-4 

8-6 

8-10 

8-12 

8-14 

Page 

8-16 

Page 

8-4 

8-9 

8-10 

8-12 

8-14 

8-16 

8-1 



LCD Display MSP430 Family 

8-2 



MSP430 Family LCD Display 

8 LCD Display 

In many applications the result of an operation must be visually displayed. For this 
purpose, the integrated LCD Driver can be used. In the 4 MUX mode, up to 8 user
defined characters can be displayed at once. 

8.1 Initialization 

First, the right display mode has to be selected. In the following example the 4MUX 
mode is selected, because this mode allows displaying up to 8 digits with only 20 lines ( 
4xCOM + 16xSelect ). The correct timing for the selected mode is generated by the 
basic timer, which has to be initialized accordingly. The number of digits on the LCD 
used can be defined by LCD_DIG. 

i***************************************************** ****** 
;BASIC-TIMER DEFINITIONS 
;*********************************************************** 

BTCTL .SET 040H ;BASIC TIMER CONTROL REGISTER 

i***************************************************** ****** 
;LCD DRIVER DEFINITIONS FOR ALL MUX MODES 
i***************************************************** ****** 
LCDO 
LCDM 
LCD_DIG 

.SET 

.SET 

.SET 

00030H 
0031H 
8 

;ADDRESS OF LCD CONTROL 
;START OF LCD DIGIT MEMORY 
;LCD WITH 8 DIGITS 

i***************************************************** ****** 
;PREPARE LCD AND BASIC TIMER FOR 4 MUX MODE 
;*********************************************************** 

MOV.B 

MOV.B 

BIS.B 
BIC.B 

#-lH,&LCDO 

#077H,&BTCTL 

#80H,&ME2 
#040H,&BTCTL 

;SELECTED FUNCT. ANALOG 
;GENERATOR ON 
;LOW IMPEDANCE OF AG 
; 4MUX ACTIVE 
;ALL OUTPUTS ARE SEG 

;SELECTED FUNCTION BASIC TIMER: 
; ACLK 
;RESET 
;HIGHEST DIVISION FACTOR 
;LCD FRAME FREQUENCY @4MUX: 64HZ 
;ENABLE BASIC TIMER MODULE 
;BASIC TIMER RESET DISABLED 

8-3 



LCD Display MSP430 Family 

8.2 Definition of the Characters 

To define the characters, the allocation of the segments is assumed to be as shown in 
Figure 8.1. In the first table of the following software routine, the 8 segments ( a to h ) 
are defined. In the LCDTAB the characters which can be built with the segments are 
arranged with the ASCII code. Therefore, it is possible to get the segment code in a 
simple manner. 

n mm!l COM3 

[]® - COM2 

c=J COMl 

c=J COMO 

SEGn SEGn+l 

Figure 8.1: Allocation of the Segments, 4 MUX Mode 

The allocation of the segments depens on the model of the used LC Display. Figure 8.1 
shows only a possible allocation. if a different display is used, the proper segment 
allocation has to be defined by the tables shown in the MSP430 Family Architecture 
Guide. For the 4MUX Mode LCD's the table of the segment allocation is as follows. 

bit position 
3Fh 

32h 
31h 

7 

-
-
-
-

COM3 

6 5 4 

f e d 
COM2 COM1 COMO 

select n+1 

3 2 o 
-
-
- y h ~ 
- c b a 

COM3 COM2 COM1 COMO 
select n 

Table 8.1: Allocation of the LCD Digits in 4MUX Mode 

For example the a-segment can be selected by COM3 and odd select (select n+ 1), the 
appropriate equation is: 

A .EQU BaH ;= 1000 0000 B 
; BIT 7 MEANS COM3 AND SELECT N+1 

8-4 



MSP430 Family LCD Display 

If this pattern is written in the RAM Memory, the a-segment will shine. Writing OFFh into 
the LCD RAM byte, all segments will shine. If the segments are defined correctly by the 
8 equations, all of the described subroutines will work. 

A .EQU BOH ; DEFINITION OF THE 7 SEGMENTS 
B .EQU 40H ;BY THE USER. 
C .EQU 20H ;DEPENDS ON THE USED LC DISPLAY 
D .EQU 01H ;THIS EXAMPLE IS IN RELATION TO 
E .EQU 02H ;THE LCD CONFIGURATION SHOWN IN 
F .EQU OBH ;FIGURE B.l 
G .EQU 04H 
H .EQU 10H 

;THE FOLLOWING ASCII TABLE CAN BE USED FOR ALL MUX MODES 
LCDTAB . BYTE A+B+C+D+E+F ; "0" 

. BYTE B+C ;" 1" 

. BYTE A+B+G+E+D ; "2" 

. BYTE A+B+G+C+D ; "3" 

. BYTE F+G+B+C ; "4" 

. BYTE A+F+G+C+D ;" 5" 

. BYTE A+F+E+D+C+G ; "6" 

. BYTE A+B+C ;"7" 

. BYTE A+B+C+D+E+F+G ;"B" 

. BYTE A+B+C+D+G+F ; "9" 

. BYTE 0 i":" 

. BYTE 0 i";" 

. BYTE 0 ; 11<" 

. BYTE G .11_11 , -

. BYTE 0 ; ">11 

. BYTE 0 ill? II 

.BYTE 0 ; "@" 

.BYTE E+F+A+B+C+G ;"A" 

.BYTE F+E+D+C+G ; "B" 

. BYTE G+E+D ; "C" 

. BYTE G+E+D+C+B ; "D" 

. BYTE A+F+E+D+G ; "E" 

. BYTE A+F+E+G ; "F" 

. BYTE A+F+E+D+C+G ; "G" 

. BYTE F+E+B+C+G ; "H" 

. BYTE B+C ; "I" 

. BYTE B+C+D ; "J" 

. BYTE 0 ; "K" 

. BYTE F+E+D ; "L" 

. BYTE E+F+A+B+C ;"M" 

. BYTE 0 ; "N" 

. BYTE E+D+C+G ; "0" 

. BYTE F+E+A+B+G ; "P" 

. BYTE 0 ; "Q" 

. BYTE E+G ; "R" 

. BYTE A+F+G+C+D ; "S" 

8-5 



LCD Display MSP430 Family 

. BYTE F+E+D+G i "Tn 

. BYTE F+E+D+C+B ;"U" 

. BYTE 0 ;"V" 

. BYTE 0 ;"W" 

. BYTE 0 i "X" 

. BYTE F+G+B+C+D ; "yn 

. BYTE 0 ;"Z" 
T - LCD . BYTE "LCDTEST",255 ;TESTSTRING WITH END OF 

; TEXT = 255 

8.3 Display Text 

The following subroutines describe how easy it is to handle the display driver. The text 
which is to be displayed is simply moved into the LCD RAM. The allocation of the LCD 
RAM is shown in Figure 8.2. 

38h 
37h 
36h 
35h 
34h 
33h 
32h 
31h 
30h 

Digit Position: 765 4 3 2 1 0 

digit 8 

~ digit 7 

digit 6 

digit 5 

digit 4 

digit 3 

digit 2 

digit 1 

LCDO 

Figure 8.2: Allocation of the LCD Digits in the Memory 

8-6 



MSP430 Family LCD Display 

i***************************************************** ***** 
;LCD DISPLAY CHARACTER USING 4 MUX MODE 
;THE LSDIGIT OF REGISTER R12(OOOM) IS DISPLAYED ON 
;DIGIT R13(O .. LCD_DIG) 
i***************************************************** ***** 

DSP_CHR 
SUB 
CMP 
JLO 
MOV 

DSP_MUX4 
MOV.B 
RET 

#030H,R12 
#42, R12 
DSP_MUX4 
#11, R12 

;R12 IS ASCII FORMAT 
;ABOVE TABLE 
;NO 
;YES PRINT SPACE 

LCDTAB(R12),LCDM(R13) 

i***************************************************** ******* 
; DSP_TXT, CAN BE USED FOR ALL MUX MODES 
;SHOWS THE TEXT, WHICH IS POINTED TO BY R10 ON THE BEGINING OF 
;THE DISPLAY 
; EXAMPLE 

MOV 
CALL 

#T_LCD,R10 
#DSP_TXT 

i***************************************************** ******* 

DSP_TXT 
PUSH R13 
MOV #LCD_DIG-l,R13 ;R13 IS MAX LCD POSITION 

DSP_L$l MOV.B @R1O+,R12 ;CHAR TO REGISTER 
CMP.B #OFFH,R12 ; END OF TEXT 
JZ DSP_L$2 
CALL #DSP_CHR ; ONE CHARACTER TO THE LCD 
DEC R13 ; NEW POSITION OF THE POINTER 
JHS DSP_L$l ;NEXT CHARACTER 

DSP_L$2 POP R13 
RET 

i***************************************************** ********* 

;CLRSCR : WRITE BLANKS TO THE LCD BY CLEARING THE LCD MEMORY 
i***************************************************** ********* 

CLRSCR PUSH 
MOV 

CLR.B 
DEC 

R5 
#LCD_DIG,R10 

LCDM(R10) 
R10 

;NUMER OF LCD DIGITS TO R10 

;CLEAR ONE DIGIT 
;NEXT LCD POSITION 

8-7 



LCD Display 

JNZ 
POP 
RET 

;ALL DIGITS CLEARED 
;YES 

MSP430 Family 

i***************************************************** ******** 
;BINTOLCD : PUT THE INTEGER IN R10 ON THE LCD BY USING DSP_CHR 
;R13 MUST CONTAIN THE POSITION ON THE LCD(4 .. 7) 
i***************************************************** ******** 

BINTOLCD 

BINL$l 

BINL$2 

PUSH 
PUSH 
PUSH 
MOV 
SUB 

MOV 
BIC 
CMP 
JLO 
ADD 

ADD 
CALL 
INC 
RRA 
RRA 
RRA 
RRA 
DEC 
JNZ 
POP 
POP 

R12 
R10 
R4 
#4,R4 
#3, R13 

R10,R12 
#OFFFOH,R12 
#10,R12 
BINL$2 
#7,R12 

#30H,R12 
#DSP_CHR 
R13 
R10 
R10 
R10 
R10 
R4 
BINL$l 
R4 
R10 

POP R12 
RET 

;SAVE USED REGISTERS 

;COUNTER OF DIGITS 
;FIRST MEMORY POSITION 

;STORE VALUE 
;ONLY LAST DIGIT 
;VALUE ABOVE 10 (A) 
;NO 
;YES, SELECT A .. F 

;ADJUST TO ASCII CODE 
;ONE CHARACTER TO LCD 
;NEW POSITION ON LCD 
;NEXT DIGIT INTO LAST POSITION 
;OF REGISTER 

;ALL DIGITS DISPLAYED? 
;NO 
;YES, RESTORE USED REGISTERS 

8.4 Adaption to other MUX Modes 

The routines described above can also be used for Displays using other Modes (3 MUX, 
2 MUX or static). For these purposes the initialization of the LCD Mode Register has to 
be modified as follows: 

8-8 



MSP430 Family LCD Display 

MUX Mode Mode Register 

LCDM4 LCDM3 LCDM2 

MUX4 1 1 1 

MUX3 1 0 1 

MUX2 0 1 1 

Static 0 0 1 

Table 8.2:Configuration of the MUX Modes 

Additionally, the equations for the segments have to be adjusted. 
Furthermore, the software routines for displaying one character on the dedicated LCD 
position (DSP _CHR) have to be substituted. 

The DSP _CHR routine for the 3 MUX Mode is the most complicated, because the 
determination of the LCD position in the LCD memory needs a lot of code. 

8.4.1 Adaption to 3MUX Mode 

The DSP _CHR routine for the 3 MUX Mode is the most complicated, because the 
determination of the LCD position in the LCD memory needs a lot of code. 
The eight segments of the digits are located in 1 Y, display memory bytes. In the 3MUX 
Mode an additional segment Y can be selected. 

Example for a layout of a 3MUX driven LCD digit: 

selectn 

selectn+l selectn+2 

_ COM2 

c=J COMI 

1""",0\1 COMO 

Figure 8.3: Allocation of the Segments, 3 MUX Mode 

8-9 



LCD Display MSP430 Family 

Using a LCD with the segment allocation as shown above, the corresponding RAM 
memory should be as follows: 

bit position 
3Fh 

32h 
31h 

7 
-
-
-
-

6 5 

f e 
COM2 COM1 

select n+1 (odd) 

4 3 
-
-
-

d -
COMO 

Table 8.3: Allocation of the LCD Digits in 3MUX Mode 

2 o 

y h Q 

c b a 
COM2 COM1 COMO 
select n (even) 

The following equations shows the allocation between segments and memory location. 

a .equ 001h 
b .equ 002h 
c .equ 004h 
d .equ 010h 
e .equ 020h 
f .equ 040h 
g .equ 100h 
h .equ 200h 
y .equ 400h 

;********************************************************** 

;LCD DISPLAY CHARACTER USING 3 MUX MODE 
;THE LSDIGIT OF REGISTER R12(OOOM) IS DISPLAYED ON 
;DIGIT R13(O .. LCD_DIG) 
i***************************************************** ***** 

;FIRST THE POSITON OF THE DIGIT 
;THE LCD MEMORY MUST BE LOCATED 

BIT.B #8,R13 ;IS LCD POSITION 6 OR 7 ? 
JZ NEXTl ;NO 
ADD #3, R13 ;YES, ADJUST MEMORY POSITION 
JMP DSP_STRT ;WRITE CHARACTER INTO MEMORY 

NEXTl BIT.B #4, R13 ;IS LCD POSITION 4 OR 5 ? 
JZ NEXT2 ;NO 
ADD #2, R13 ;YES, ADJUST MEMORY POSITON 
JMP DSP_STRT ;WRITE CHARACTER INTO MEMORY 

NEXT2 BIT.B #2, R13 ;IS LCD POSITION 2 OR 3 ? 
JZ DSP_STRT ;NO, LCD POSITION IS o OR 1 
INC R13 ;YES, ADJUST MEMORY POSITION 

8-10 

IN 



MSP430 Family LCD Display 

SUB 
CMP 
JLO 
MOV 

MOV.B 
BIT.B 
JNZ 
MOV.B 
SWPB 
BIC.B 
BIS.B 
RET 
RLA 
RLA 
RLA 
RLA 
BIC.B 
BIS.B 
SWPB 
MOV.B 
RET 

#030H,R12 
#42,R12 
DSP_MUX3 
#11, R12 

LCDTAB(R12) ,R4 
#1, R13 
DIG_1 
R4, LCDM (R13) 
R4 

;R12 IS ASCII 
;ABOVE TABLE 
;NO 
;YES PRINT SPACE 

; POSITION ODD OR EVEN 

#07H,LCDM+1(R13) 
R4,LCDM+1(R13) 

R4 
R4 
R4 
R4 
#07H,LCDM(R13) 
#R4,LCDM(R13) 
R4 
R4,LCDM+1(R13) 

8.4.2 Adaption to 2MUX Mode 

? 

The DSP _CHR routines for the 2 Mux and the static Mode are simpler to implement 
than the 3 MUX Mode, because of the easy to determine coherence between the LCD 
position and the corresponding memory position. 

The eight segments of one digit are located in 2 bytes of the display memory. 

Example of a possible layout of the segjments of a 2 MUX driven LCD 

~~. 

,r{l 
~? 

selectn+2 selectn+1 selectn+3 

Figure 8.4: Allocation of the Segments, 2 MUX Mode 

COMl 

COMO 

8-11 



LCD Display 

The corresponding RAM memory should be as follows: 

bit position 
3Fh 

32h 
31h 

7 

-
-
-
-

6 5 
-
-
- h 
- d 

COM1 
select n+1 (odd) 

4 3 
-
-

g -
c -

COMO 

Table 8.4: Allocation of the LCD Digits in 2MUX Mode 

a .equ 001h 
b .equ 002h 
c .equ 010h 
d .equ 020h 
e .equ 004h 
f .equ 008h 
g .equ 040h 
h .equ 080h 

MSP430 Family 

2 o 
-
-
- f e 
- b a 

COM1 COMO 
select n (even) 

i***************************************************** ***** 
;LCD DISPLAY CHARACTER USING 2 MUX MODE 
;THE LSDIGIT OF REGISTER R12(OOOM) IS DISPLAYED ON 
;DIGIT R13(O .. LCD_DIG) 
;********************************************************** 

DSP_CHR 
SUB #030H,R12 ;R12 IS ASCII 
CMP #42,R12 ;ABOVE TABLE 
JLO DSP_MUX2 ;NO 
MOV #11, R12 ;YES PRINT SPACE 

DSP_MUX2 
RRA R13 
MOV.B LCDTAB(R12),R4 
MOV.B R4,LCDM(R13) 
RRA R4 
RRA R4 
MOV.B R4,LCDM+l(R13) 
RET 

8-12 



MSP430 Family 

8.4.3 Adaption to Static Mode 

The eight segments of one digit are located in four display memory bytes. 

Example for a layout of a static driven LCD digit: 

selectn 

"~'~'-Q ! 9-"", . ., 
~selectn+6 

selectn+4 ----D a-- selectn+2 ¥ ®-",,-, 
selectn+3 

Figure 8.5: Allocation of the Segments, Static Mode 

The corresponding display-RAM is shown below: 

bit position 
3Fh 

33h 
32h 
31h 

7 
-
-
-
-
-

6 5 
- -
- -
- -
- -
- -

COM2 COM1 
select n+1 (odd) 

4 

h 
f 
d 
b 

COMO 

3 
-
-
-
-
-

Table 8.5: Allocation of the LCD Digits in Static Mode 

2 
- -
- -
- -
- -
- -

COM2 COM1 
select n (even) 

LCD Display 

o 

g 
e 
c 
a 

COMO 

If the static driven LCD is connected as shown above, following equation are valid: 

a .equ 001h 
b .equ 010h 
c .equ 002h 
d .equ 020h 
e .equ 004h 
f .equ 040h 
g .equ 008h 
h .equ 080h 

8-13 



LCD Display MSP430 Family 

;********************************************************** 

;LCD DISPLAY CHARACTER USING STATIC MODE 
;THE LSDIGIT OF REGISTER R12(OOOM) IS DISPLAYED ON 
;DIGIT R13(O .. LCD_DIG) 
i********************************************************** 

DSP_CHR 
SUB #030H,R12 ;R12 IS ASCII 
CMP #42, R12 ;ABOVE TABLE 
JLO DSP_MUX1 ;NO 
MOV #11, R12 ;YES PRINT SPACE 

DSP_MUXI 
RRA R13 
RRA R13 
MOV.B LCDTAB(R12) ,R4 
MOV.B R4,LCDM(R13) 
RRA R4 
MOV.B R4,LCDM+l(R13) 
RRA R4 
MOV.B R4,LCDM+2(R13) 
RRA R4 
MOV.B R4,LCDM+3(R13) 
RET 

8-14 



MSP430 Family LCD Display 

8.5 Use of Unused Select Lines for Digital Outputs 

The LCD Driver of the MSP43Cl allows the use of additional digital outputs if select lines 
are not used. Up to 28 digital outputs are possible in the hardware design, but not all of 
them will be implemented for a given chip. The addressing scheme for the digital outputs 
02 to 029 is as follows: 

Address 7 6 5 4 3 2 1 0 Digit Nr. LCDP 

03Fh 029 028 Digit 15 6toO 

03Eh 027 026 Digit 14 6to 0 

03Dh 025 024 Digit 13 5 to 0 

03Ch 023 022 Digit 12 5toO 

03Sh 021 020 Digit 11 4to 0 

03Ah 019 018 Digit 10 4 to 0 

039h 017 016 Digit 9 3toO 

038h 015 014 Digit 8 3 to 0 

037h 013 012 Digit 7 2 to 0 

036h 011 010 Digit 6 2toO 

035h 009 008 Digit 5 1 to 0 

034h 007 006 Digit 4 1 to 0 

033h 005 004 Digit 3 0 

032h 003 002 Digit 2 0 

031h h g f e d c b a Digit 1 

Table 8.6: Dependence of the Select Lines on LCDP 

The above table shows the dependence of the select/output lines on the 3-bit value 
LCDP. Only if LCDP = 7 are all lines switched to the LCD Mode (select lines). 

8-15 



LCD Display MSP430 Family 

Note: Restrictions using select lines as outputs 

The above table shows the digit environment for a 4MUX LCD display. The 
outputs 00 and 01 are not available: SO and S1 are always implemented. 
(digit 1). 

The digital outputs Ox have always to be addressed with all four bits. This means 
that OFh is to be used for the addressing of one output. 

Only byte addressing is allowed for the addressing of the LCD controller bytes . 

• Software example: SO to S13 drive a 4MUX LCD (7 digits). 014 to 017 are digital 
outputs. 

;LCD DRIVER DEFINITIONS: 

LCDM .EQU 030H 
LCDMO .EQU 00lH 
LCDMl .EQU 002H 
MUX .EQU 004H 
LCDP .EQU 020H 

014 .EQU OOFH 
015 .EQU OFOH 
016 .EQU OOFH 
017 .EQU OFOH 

INITIALIZATION:DISPLAY ON: 
HI IMPEDANCE 
4MUX: 

014 TO 017 ARE OUTPUTS: 

ADDRESS LCD CONTROL BYTE 
0: LCD OFF 1: LCD ON 
0: HIGH 0: LOW IMPEDANCE 
MUX: STATIC, 2MUX, 3MUX, 4MUX 
SELECT/OUTPUT DEFINITION 
LCDM7/6/5 
014 CONTROL DEFINITION 
015 
016 
017 

LCDMO = 1 
LCDMl = 0 
LCDM4/3/2 
LCDM7/6/5 

7 
3 

MOV #(LCDP*3)+(MUX*7)+LCDMO,&LCDM INIT LCD 

NORMAL PROGRAM EXECUTION: 
SOME EXAMPLES HOW TO MODIFY THE DIGITAL OUTPUTS 014 TO 017: 

BIS.B #014,&LCDM+8 SET 014, 015 UNCHANGED 
BIC.B #015+014,&LCDM+8 RESET 014 AND 015 
MOV.B #015+014,&LCDM+8 SET 014 AND 015 
MOV.B #017,&LCDM+9 RESET 016, SET 017 
XOR.B #017,&LCDM+9 TOGGLE 017, 016 STAYS 

UNCHANGED 

8-16 



MSP430 Family The Analogue-to-Digital Converters 

Topics 

9 The Analogue-to-Digital Converters 

9.1 The 14-bit Analogue-to-Digital Converter 
9.1.1 The Current Source 
9.1.2 The 14-bit Analogue-to-Digital Converter used in 14-bit-Mode 
9.1.2.1 ADC with Signed Signals 
9.1.2.2 Four-Wire Circuitry for Sensors 
9.1.2.3 Referencing with Reference Resistors 
9.1.2.4 Interrupt Handling using the 14-bit-Mode 

9.1.3 The 14-bit Analogue-to-Digital Converter used in 12-bit-Mode 
9.1.3.1 ADC with Signed Signals 
9.1.3.2 Interrupt Handling using the 12-bit-Mode 

9.2 The Universal Timer/Port Module used as ADC 
9.2.1 Interrupt Handling 

Figures 

Figure Title 

9.1 Possible Sensor Connections to the MSP430 

9.2 Complete ADC Range 

9.3 Virtual Ground IC for Level Shifting 

9.4 Splitted Power Supply for Level Shifting 

9.5 Current Source for Level Shifting 

9.6 4-Wire Circuitry with Voltage Supply 

9.7 4-Wire Circuitry with Current Supply 

9.8 Referencing with Precision Resistors 

9.9 The four Single ADC Ranges 

9.10 Single ADC Range 

9.11 Possible Sensor Connections to the MSP430 

9.12 Timing for the Universal Timer 

9.13 Schematic of Example 

Notes 

Figure Title 

9.1 ADC Definitions are Valid for all ADC Examples 

9.2 ADC Ranges 

9-3 

9-3 
9-5 
9-6 
9-7 

9-11 
9-13 
9-15 

9-16 
9-18 
9-19 

9-20 
9-23 

Page 

9-4 

9-6 

9-7 

9-9 

9-10 

9-11 

9-12 

9-13 

9-16 

9-16 

9-17 

9-20 

9-20 

Page 

9-7 

9-16 

9-1 



The Analogue-to-Oigital Converters MSP430Family 

9-2 



MSP430 Family The Analogue-to-Digital Converters 

9 The Analogue-to-Digital Converters 

Two completely different Analogue-to-Digital Converters (ADCs) are in use, depending 
on the MSP430 device type: 
- EVE contains a successive approximation ADC with 14 and 12-bit resolution 
- EVE_OPT contains a capacitor discharge unit which allows comparison of discharge 

times with measurement resistors (resistive sensors). 

9.1 The (12+2)-bit Analogue-to-Digital Converter 

The ADC of the MSP430 is usable in two different modes: 

- (12+2)-bit ADC with an input range of the complete SVcc. The ADC searches 
automatically which one of the four ranges is currently appropriate to the input 
voltage. This searching adds 30 MCLK cycles to the conversion time. The complete 
conversion time for a 14-bit conversion is 132 MCLK cycles. 

- 12-bit ADC with four ranges. Each range covers one fourth of the SVcc. This 
conversion mode is used, if the voltage range of the input signal is known. The 
conversion needs 1 02 fls. 

The sampling of the ADC input takes 12 MCLK cycles; this means the sampling gate is 
open during this time (12flS@1MHz). The input of an ADC pin can be seen as an RC 
low pass filter: 2kn in series with 32pF. The 32pF capacitor must be charged during the 
12 MCLK cycles to the final value to be measured. This means within 2-14 of this value. 
This time limits the internal resistance Ri of the source to be measured: 

Solved for Ri this results in: 

(Ri + 2kn) x 32pF < 12~ 
In2 

Ri< 36.6kQ 

For the full resolution of the ADC the internal resistance of the input signal must be lower 
than 36.6kn. 

" a resolution of n bits is sufficient then the internal resistance Ri of the ADC input 
source can be higher: 

Ri < 12flS _ 2kn -t Ri < 375000 - 2kn 
In2n x 32pF In2n 

EXAMPLE: To get a resolution of 13 bits, what is the maximum internal resistance of the 
input signal? 

Ri < 375000 _ 2kn 
In213 

375000 _ 2kn = 41.6k - 2k = 39.6kQ 
9.0109 

9-3 



The Analogue-to-Digital Converters MSP430Family 

The internal resistance of the input signal must be lower than 39.6kQ. 

The next figure shows different methods of connecting analogue signals to the MSP430: 

1. Current supply for resistive sensors 
2. Voltage supply for resistive sensors 
3. Direct connection of input signals 
4. 4-Wire circuitry with current supply 
S. 4-Wire circuitry with voltage supply 

yin 

R1 

R2 

(Rsens1 at AO) 
(Rsens2 at A 1 ) 
(Vin at A2) 
(Rsens3 at A3 to AS 
(Rsens4 at A6 to A7 

svcc svcc 
A3 

Ri A6 

A2 A4 

A1 
AO A5 

A7 
MSP430 

--~--------~~--------~~-----tAGND AGNDr-----~------------~--------

Vss Vee 

OV +5V 

Figure 9.1: Possible Sensor Connections to the MSP430 

9.1.1 The Current Source 

A stable, programmable Current Source is available at the analogue inputs AO to A3. 
With a programming resistor Rext between pins SVcc and Ri it is possible to get defined 
currents out of the programmed analogue input An: the current is directly related to the 
voltage SVcc. The analogue input to be measured and the analogue input for the 
Current Source are independent of each other. This means that the Current Source may 
be programmed to A3 and the measurement taken from A4 as shown in the example 
above. 

When using the Current Source it is not possible to use the full range of the ADC: only 
the range defined with "Load Compliance" in the Electrical Description is usable 
(O.SSVcc in Revision 0.44, which means only ranges A and 8). 

9-4 



MSP430 Family The Analogue-to-Digital Converters 

The current ICS defined by the external resistor Rext is: 

Ics = 0.25 x SVcc 
Rext 

The input voltage at the analogue input with the current ICS is then: 

Vin = RSENs x les = RSENs x 0.25 x SVcc 
Rext 

9.1.2 The (12+2)-bit Analogue-to-Digital Converter used in 14-bit Mode 

The 14-bit mode is used if the range of the input voltage exceeds one ADC range. The 
input signal range is from analogue ground (Vss) to SVcc (Vcc). 

ADCValue 

03FFFh 

03000h 

02000h 

01000h 

OOOOOh 

o 0.25 SVdd 0.5 SVdd 0.75 SVdd SVdd 

Figure 9.2: Complete ADC Range 

The nominal ADC formulas for the 14-bit conversion are: 

N= VAx X214 ~ VAx = NxVref 
Vref 214 

with: N 14-bit result of the ADC conversion 
VAx Input voltage at the selected analogue input Ax 
Vref Voltage at pin SVcc (external reference or internal Vcc) 

If the current source is used, the above equation changes to: 

N= 0.25 x Vref x Rx X214 

Rext Vref 

Input 
Voltage 

9-5 



The Analogue-to-Digital Converters MSP430Family 

This gives for the resistor Rx: 

R _ NxRext 
x - 12 

2 

with: Rext Resistor between SVcc pin and Ri pin (defines current Ics) 
Rx Resistor to be measured (connected to Ax and AGND) 

9.1.2.1 ADC with Signed Signals 

The ADC of the MSP430 measures unsigned signals from Vss to Vcc. If signed 
measurements are necessary. then a virtual zero-point has to be provided. Signals 
above this zero-point are treated as positive signals; signals below it are treated as 
negative ones. 

Three possibilities for a virtual zero-point are shown: 
- Virtual Ground IC 
- Split power supply 
- Use of the current source 

Virtual Ground IC 

With the "Phase Splitter" TLE2426 a common reference is created which lies exactly in 
the middle of the voltage SVcc. All signed input voltages are connected to this virtual 
ground with their reference potential (OV). The virtual ground voltage (at AO) is 
measured at regular time intervals and the measured ADC value is stored and 
subtracted from the measured signal (at A 1). This gives a signed result for the input A 1. 

+5V SVee 

A1 

+2.5V 
AO 

MSP430 

OV 
AGND 

Vss Vee 

OV +5V 

Figure 9.3: Virtual Ground IC for Level Shifting 

9-6 



MSP430 Family The Analogue-to-Digital Converters 

Note: ADC Definitions are Valid for all ADC Examples 

The ADC definitions given in the next example are valid for all ADC examples 
which follow. They are in accordance with the "MSP430 Family User's Guide 
Preliminary Specification". 

EXAMPLE: The virtual ground voltage at AO is measured and stored in RAM cell 
VIRTGR. The value of VIRTGR is subtracted from the ADC value measured at input A1. 
This gives the signed value for the A 1 input. 

; HARDWARE DEFINITIONS FOR THE ANALOGUE-TO-DIGITAL CONVERTER 

AIN 

AEN 

ACTL 
CS 
VREF 
AO 
A1 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 
A2 .EQU 
CSAO .EQU 
CSA1 .EQU 
CSOFF .EQU 
CSON .EQU 
RNGA .EQU 
RNGB .EQU 
RNGC .EQU 
RNGD .EQU 
RNGAUTO . EQU 
PD .EQU 

ADAT .EQU 
IFG2 .EQU 
ADIFG .EQU 

IE2 .EQU 
ADIE .EQU 

VIRTGR .EQU 

OllOH 

01l2H 

01l4H 
01H 
02H 
OOH 
04H 
OSH 
OOH 
40H 
100H 
OOOH 
OOH 
200H 
400H 
600H 
SOOH 
1000H 

OllSH 
03H 
04H 

01H 
02H 

R4 

INPUT REGISTER (FOR DIGITAL 
INPUTS) 
0: ANALOGUE INPUT 
INPUT 
ADC CONTROL REGISTER 
CONVERSION START 

1: DIGITAL 

0: EXT. REFERENCE 1: SVCC ON 
INPUT AO 
INPUT A1 
INPUT A2 
CURRENT SOURCE TO AO 
CURRENT SOURCE TO A1 
CURRENT SOURCE OFF 
CURRENT SOURCE ON 
RANGE SELECT A (0 ... 0.25SVCC) 
RANGE SELECT B (0.25 .. 0.50SVCC) 
RANGE SELECT C (0.5 ... 0.75SVCC) 
RANGE SELECT D (0.75 .. SVCC) 
1: RANGE SELECTED AUTOMATICALLY 
1: ADC POWERED DOWN 

ADC DATA REGISTER (12 OR 14-BIT) 
INTERRUPT FLAG REGISTER 2 
ADC "EOC" BIT (IFG2.2) 

INTERRUPT ENABLE REGISTER 2 
ADC INTERRUPT ENABLE BIT 

VIRTUAL GROUND ADC VALUE 

MEASURE VIRTUAL GROUND INPUT AO AND STORE VALUE FOR REFERENCE 
MOV #RNGAUTO+CSOFF+AO+VREF+CS,&ACTL 

9-7 



The Analogue-to-Digital Converters 

L$101 BIT.B 
JZ 
MOV 

#ADIFG,&IFG2 
L$101 
&ADAT,VIRTGR 

CONVERSION COMPLETED? 
IF Z=l: NO 
STORE AO 14-BIT VALUE 

MEASURE INPUT Ai (0 ... 03FFFH) AND COMPUTE SIGNED VALUE 
(02000H ... 01FFFH). 

L$102 
MOV 
BIT.B 
JZ 

#RNGAUTO+CSOFF+Al+VREF+CS,&ACTL 
#ADIFG,&IFG2 CONVERSION COMPLETED? 
L$102 IF Z=l: NO 

READ ADC VALUE FOR Ai 

MSP430Family 

MOV 
SUB 

&ADAT,R5 
VIRTGR,R5 R5 CONTAINS SIGNED ADC VALUE 

Split Power Supply 

With two power supplies, for example +2.SV and -2.SV, a potential in the middle of the 
ADC range of the MSP430 can be created. All signed input voltages are connected to 
this voltage with their reference potential (OV). The mid range voltage (at AO) is 
measured at regular time intervals and the measured ADC value is stored and 
subtracted from the measured signal (at A 1). This gives a signed result for the input A 1. 

+2.5V 
SVee 

OV 

<?-2V+2V 
A1 

AO 

MSP430 

-2.5V 
AGND 

Vss Vee 

I I 
-2.5V +2.5V 

Figure 9.4: Split Power Supply for Level Shifting 

The same software can be used as shown with the Virtual Ground IC. 

9-8 



MSP430 Family The Analogue-to-Digital Converters 

Use of the Current Source 

With the current source a voltage which is partially or completely below the AGND 
potential can be shifted to the middle of the usable ADC range of the MSP430. This is 
accomplished by a resistor Rh whose voltage drop shifts the input voltage accordingly. 
This method is useful especially if differential measurements are necessary, because 
the ADC value of the signal's midpoint is not available as easily as with the methods 
shown previously. 

The example below shows an input signal V1 reaching from -1V to +1V. To shift the 
signal's midpoint (OV) to the midpoint of the usable ADC range (SVcc/4) a current ICS is 
used. The necessary current ICS to shift the input signal is: 

Ics= SVcc/4 
Rh 

Rh 
SVcc/4 

Ics 

Rh includes the internal resistance of the voltage source Vi. 

The current Ics of the current source is defined by: 

Ics = 0.25 x SVcc 
Rext 

Therefore, the necessary shift resistor Rh is 

Rh= SVcc/4xRext ~ Rh=Rext 
0.25xSVcc 

The voltage VA 1 at the analogue input A 1 is: 

VA1 = V1+Rhx 0.25xSVcc 
Rext 

Therefore, the unknown voltage V1 is: 

V1 = VA1-Rhx 0.25 x SVcc 
Rext 

N 
SVcc( 14 

2 

RhxO.25) 
Rext 

9-9 



The Analogue-to-Digital Converters 

-----------1~~SV~ 

Rex! 

Ri 
V1 +(Iade x Rh) 

r-~-~----------'A1 
lade 

-1V ... +1V 

MSP430 

--~--------------1AGND 

Vss v~ 

OV +5V 

Figure 9.5: Current Source for Level Shifting 

9.1.2.2 Four-Wire Circuitry for Sensors 

MSP430Family 

A proven method for eliminating the error coming from the voltage drop on the 
connection lines to the sensor is the use of 4-wire circuitry. Instead of 2 lines, 4 lines are 
used: 2 for the measurement current, and 2 for the sensor voltages. These 2 sensor 
lines do not carry current (the input current of the analogue inputs is only some 
nanoamps), and this means that no voltage drop falsifies the measured values. The 
formula for voltage supply is: 

R1+R2 
Rsens = -14--

~-1 
~N 

--------~------__1SV~ 

R1 

~------_I A 1 

MSP430 

'-------_I AO 

---------+--------;AGND 
Vss v~ 

OV +5V 

Figure 9.6: 4-Wire Circuitry with Voltage Supply 

9-10 



MSP430 Family The Analogue-to-Digital Converters 

EXAMPLE: The sensor Rsens at AO and A1 is measured, and the ADC value of it is 
computed by the difference of the two results measured at A1 and AO. The result is 
stored in R5. 

MEASURE UPPER VALUE OF RSENS AT INPUT A1 AND STORE VALUE 

L$103 
MOV 
BIT.B 
JZ 

MOV 

#RNGAUTO+CSOFF+A1+VREF+CS,&ACTL 
#ADIFG,&IFG2 CONVERSION COMPLETED? 
L$103 IF Z=l: NO 

&ADAT,R5 STORE A1 VALUE 

MEASURE INPUT AO AND COMPUTE ADC VALUE OF RSENS 

L$104 
MOV 
BIT.B 
JZ 

#RNGAUTO+CSOFF+AO+VREF+CS,&ACTL 
#ADIFG,&IFG2 CONVERSION COMPLETED? 
L$104 IF Z=l: NO 

SUB &ADAT,R5 R5 CONTAINS RSENS ADC VALUE 

The next figure shows the more common 4-wire circuitry with Current Supply: 

R _ ANxRext 
sens - 212 

--------~~-------;AGND 

Vss Vee 

OV +5V 

Figure 9.7: 4-Wire Circuitry with Current Supply 

9-11 



The Analogue-to-Digital Converters MSP430Family 

9.1.2.3 Referencing with Reference Resistors 

A system that uses sensors normally needs to be calibrated, due to tolerances of the 
sensors themselves, and of the ADC. A way to omit the costly calibration procedure is 
the use of reference resistors. Two different methods can be used, depending on the 
kind of sensor: 

1. Platinum sensors. These are sensors with a precisely known temperature-resistance 
characteristic. Precision resistors are used with the sensor values of the 
temperatures at the two limits of the range. 

2. Other sensors. Nearly all other sensors have tolerances. This makes it necessary to 
group sensors with similar characteristics and to select the two reference resistors 
according to the upper and lower limits of these groups. 

If the two reference resistors have precisely the values of the sensors at the range limits 
(or at another well-defined point) then all tolerances are eliminated during calculation: 

SVee 

Rex! 

Ri 

r--------~ AO 
r-------I A1 

.------1 A2 
A3 

MSP430 

-~-~-~--~--~AGND 

Rref1 Rsens1 Rsens2 Rref2 Vss Vee 

OV +5V 

Figure 9.8: Referencing with Precision Resistors 

The nominal formulas, given in the preceding sections, need to be changed if offset and 
slope are considered. The ADC value Nx for a given resistor Rx is now: 

O.25xRx 14 
Nx = x 2 x Slope + Offset 

Rext 

9-12 



MSP430 Family The Analogue-to-Digital Converters 

With two known resistors Rref1 and Rref2 it is possible to compute slope and offset and 
to get the values of unknown resistors exactly. The result of the solved equations gives: 

with: Nx 
Nref1 
Nref2 
Rref1 
Rref2 

Nx-Nref2 
Rx = x (Rref2 - Rref1) + Rref2 

Nref2 - Nref1 

ADC conversion result for Rx 
ADC conversion result for Rref1 
ADC conversion result for Rref2 
Resistance of Rref1 
Resistanceof Rref2 

As shown, only known or measurable values are needed for the computation of Rx from 
Nx. The slope and offset of the ADC disappear completely. 

9.1.2.4 Interrupt Handling using the 14-bit-Mode 

The examples shown above all use polling techniques for checking the completion of 
conversion. This takes up computing power which can be used otherwise if interrupt 
techniques are used. 

EXAMPLE: Analogue input AO (without Current Source) and A1 (with Current Source) 
are measured alternately. The measured 14-bit results are stored in address MEASO for 
AO and MEAS1 for A 1. The background software uses these measured values and sets 
them to OFFFFh after use. The time interval between two measurements is defined by 
the a-bit timer: every timer interrupt starts a new conversion for the prepared analogue 
input. 

HARDWARE DEFINITIONS SEE 1ST ADC EXAMPLE 
ANALOGUE INPUT AO A1 
CURRENT SOURCE OFF ON 
RESULT TO MEASO MEAS1 
RANGE SELECTION AUTO AUTO 
REFERENCE SVCC SVCC 

INITIALIZATION PART FOR THE ADC: 

#RNGAUTO+CSOFF+AO+VREF,&ACTL 
#ADIE,&IE2 ENABLE ADC INTERRUPT 

MOV 
MOV.B 
MOV #OFFH-3,&AEN ONLY AO AND A1 ANALOGUE INPUTS 

INITIALIZE OTHER MODULES 

ADC INTERRUPT HANDLER: AO AND A1 ARE MEASURED ALTERNATIVELY 
THE NEXT MEASUREMENT IS PREPARED BUT NOT STARTED. 

AD_I NT BIT #A1,&ACTL A1 RESULT IN ADAT? 
JNZ ADI YES 
MOV &ADAT,MEASO AO VALUE IS ACTUAL 
MOV #RNGAUTO+CSON+A1+VREF,&ACTL ; A1 NEXT MEAS. 
RETI 

9-13 



The Analogue-to-Digital Converters MSP430Family 

ADI MOV 
MOV 
RET I 

&ADAT, MEASl ; Al VALUE 
#RNGAUTO+CSOFF+AO+VREF,&ACTL AO NEXT MEAS. 

8-BIT TIMER INTERRUPT HANDLER: THE ADC CONVERSION IS STARTED 
FOR THE PREPARED ADC INPUT 

T8BINT BIS #CS,&ACTL START CONVERSION FOR THE ADC 

RETI 

.SECT "INT_VECO",OFFEAH INTERRUPT VECTORS 

. WORD AD_I NT ADC INTERRUPT VECTOR; 

.SECT "INT_VEC1",OFFF8H 

. WORD T8BINT 8-BIT TIMER INTERRUPT 
VECTOR 

9.1.3 The (12+2)-bit Analogue-to-Digital Converter used in 12-bit Mode 

This mode is used if it is known in which range the input voltage is. If, for example. a 
temperature sensor is used whose signal range always fits into one range (for example 
range C). then the 12-bit mode is the correct selection. The measurement time with 
MCLK = 1 MHz is only 102 !-Is. compared to 132 !-Is if the auto ranging mode is used. The 
following Figure shows the four ranges compared to SVcc. 

ADCValue 

Overflow 
OFFFh 

OCOOh 

0800h 

0400h 

OOOOOh~~------~------~~------~~-------r Input~ 

SVcc Voltage Vax o 0.25 SVcc 0.5 SVcc 0.75 SVcc 

Figure 9.9: The four Single ADC Ranges 

9-14 



MSP430 Family The Analogue-to-Digital Converters 

Note: ADC Ranges 

The ADC results OOOOH and OFFFh mean underflow and overflow: the voltage at 
the measured analogue input is below or above the limits of the addressed range 
respectively. 

The next figure shows how one of the ranges can be seen: 

ADCValue 

OFFFh 

0800h 

Range N-1 Range N+1 

OOOOh 

o (N-1)xO.25 SVcc NxO.25 SVcc 

Figure 9.10: Single ADC Range 

SVcc 

Input __ 

Voltage 

The possible ways to connect sensors to the MSP430 are the same as shown for the 
(12+2)-bit ADC: 

----_------.---1 SVee SVee 1------_-

Ri 
~~--_!_-----~A2 

+-------f A1 

A3 

A6 I--_!_---,. 
A4 

AO ~~ 1-_-+ __ ./ 
MSP430 

-+---~---~--~AGND AGNDI--~---+---v__ Vee 

OV +5V 

Figure 9.11: Possible Sensor Connections to the MSP430 

9-15 



The Analogue-to-Digital Converters MSP430Family 

The nominal ADC formulas for the 12-bit conversion are: 

N 

with: N 
VAx 
Vref 
n 

VAx-nxO.25xVref 214 V V f ( N 025) x ~ Ax = re 14"+nx. 
Vref 2 

12-bit result of the ADC conversion 
Input voltage at the selected analogue input Ax 
Voltage at pin SVcc (external reference or internal Vcc) 
Range constant (n = 0,1,2,3 for ranges A,B,C,D) 

The ADC formula for a resistor Rx (Rsens2 in the above figure) which is connected to 
Vref via a resistor Rv is: 

~ x Vref - n x 0.25 x Vref 
N Rv+Rx x214 ~ Rx 

Vref 

If a current source is used (as for Rsens1 in the above figure), the above equation 
changes to: 

N 

0.25 x Vref x Rx _ n x 0.25 x Vref 
Rext X214 

Vref 
(~_n)x212 

Rext 

This gives for the unknown resistor Rx: 

with: Rext 
Rx 

RX=(2~2 +n)xRext 

Resistor between SVcc pin and Ri pin (defines current Ics) 
Resistor to be measured (connected to Ax and AGND) 

9.1.3.1 ADC with Signed Signals 

Only the Current Source method is applicable if signed signals have to be measured: 
- Normal phase splitter circuits are not able to shift the virtual ground into the middle of 

range A (0.125 SVcc) or B (0.375 SVcc), as is necessary here. 
- The split power supply method would need two different voltages to get the zero point 

into the middle of range A (0.625v/4.375V) or range B (1.875V/3.125V) 

For signed signals it is necessary to shift the input signal V1 to the middle of the range A 
or B. If range B (0.375 SVcc) is used the necessary shift resistor Rh is 

Rh = 0.375 x SVcc xRext ~ Rh = 1.5 x Rext 
0.25 x SVcc 

9-16 



MSP430 Family The Analogue-to-Digital Converters 

The unknown voltage V1 referred to its zero point in the middle of range n is: 

V1 = VAx - Rh x Ics 

With the above equations for Vax this leads to: 

V1 = 0.25 x SVcc -+n---( N Rh ) 
212 Rext 

9.1.3.2 Interrupt Handling using the 12-bit-Mode 

The software is the same as for the 14-bit conversion. The only difference is the 
omission of the RNGAUTO bit during the initialization of ACTL. Instead, the desired 
range is to be included into the initialization part of each measurement. 

EXAMPLE: Analogue input AO (without Current Source, always range C, external 
reference at pin SVcc) and A 1 (with Current Source, always range A) have to be 
measured alternately. The measured 12-bit results have to be stored in address MEASO 
for AO and MEAS1 for A1. The background software uses these measured values and 
sets them to OFFFFh after use. The time interval between two measurements is defined 
by the 8-bit timer: every timer interrupt starts a new conversion for the prepared 
analogue input. 

HARDWARE DEFINITIONS SEE 1ST ADC EXAMPLE 
ANALOGUE INPUT AD A1 
CURRENT SOURCE 
RESULT TO 
RANGE 
REFERENCE 

OFF ON 
MEASD MEAS1 
C A 
EXTERNAL SVCC 

INITIALIZATION PART FOR THE ADC: 

MOV 
MOV.B 
MOV 

#RNGC+CSOFF+AD,&ACTL 
#ADIE,&IE2 ENABLE ADC INTERRUPT 
#DFFH-3,&AEN ONLY AD AND A1 ANALOGUE 

INPUTS 
INITIALIZE OTHER MODULES 

ADC INTERRUPT HANDLER: AD AND A1 ARE MEASURED ALTERNATIVELY 
THE NEXT MEASUREMENT IS PREPARED BUT NOT STARTED 

BIT 
JNZ 

#A1,&ACTL 
ADI 

A1 MEASURED 
YES 

MOV &ADAT,MEASD AD VALUE IS ACTUAL 
MOV #RNGA+CSA1+A1+VREF,&ACTL ; A1 NEXT MEAS. 
RETI 

9-17 



The Analogue-to-Digital Converters MSP430Family 

ADI MOV 
MOV 
RETI 

&ADAT,MEASI Al VALUE 
#RNGC+CSOFF+AD,&ACTL; AD NEXT MEASUREMENT 

8-BIT TIMER INTERRUPT HANDLER: THE ADC CONVERSION IS STARTED 
FOR THE ADDRESSED ADC INPUT 

T8BINT BIS #CS,&ACTL START CONVERSION 

RETI 

. SECT "INT_VECT",OFFEAH INTERRUPT VECTORS 

. WORD AD_INT ADC INTERRUPT VECTOR; 

. SECT "INT_VECT",OFFF8H 

. WORD T8BINT 8-BIT TIMER INTERRUPT 
VECTOR 

9.2 The Universal Timer/Port Module used as ADC 

This ADC module is contained in MSP430 versions that do not have the (12+2)-bit ADC. 
The function is completely different from the (12+2)-bit ADC: the discharge times tdc for 
different resistors are measured and compared. 

Vth +---+----..,...:::::----f---+-------""''''""--

o 

Figure 9.12: Timing for the Universal Timer 

9-18 

~ 

Time 



MSP430 Family 

with Vth 
tdc1 
tdc2 
tc 

The Analogue-to-Digital Converters 

Threshold voltage of the comparator 
Discharge time with the reference resistor 
Discharge time with the sensor 
Charge time for the capacitor 

EXAMPLE: Use of the Universal Timer Port as an ADC without interrupt 

MSP430 

Enable Control TPIN.5 TPD.5 TPE.5 TPD.4 TPE.4 TPD.3 TPE.3 TPD.2 TPE.2 TPD.l TPE.l TPD.O TPE.O 

Figure 9.13: Schematic of Example 

; DEFINITION PART FOR THE UT/PM ADC 

TPCTL .EQU 04BH TIMER PORT CONTROL REGISTER 
TPSSELO .EQU 040H TPSSEL.O 
ENB .EQU 020H CONTROLS ENI OF TPCNTI 
ENA .EQU 010H AS ENB 
ENI .EQU 008H ENABLE INPUT FOR TPCNTI 
RC2FG .EQU 004H RIPPLE CARRY TPCNT2 
ENIFG .EQU 001H ENI FLAG BIT 

TPCNTI .EQU 04CH LO 8-BIT COUNTER/TIMER 
TPCNT2 .EQU 04DH HI 8-BIT COUNTER/TIMER 

TPD .EQU 04EH DATA REGISTER 
B16 .EQU 080H 0: SEPARATE TIMERS 1: 16-BIT 

TIMER 
CPON .EQU 040H 0: COMP OFF 1 : COMP ON 
TPDMAX .EQU 008H BIT POSITION OUTPUT TPD.MAX 

9-19 



The Analogue-to-Digital Converters MSP430Family 

TPE 

MSTACK 
NN 

.EQU 

.EQU 

.EQU 

04FH 

0240H 
OllH 

DATA ENABLE REGISTER 

RESULT STACK 1ST WORD 
TPCNT2 VALUE FOR CHARGING OF C 

MEASUREMENT SUBROUTINE WITHOUT INTERRUPT. TPD.4 AND TPD.5 
ARE NOT USED AND THEREFORE OVERWRITTEN 
INITIALIZATION: STACK INDEX <- 0, START WITH TPD.3 
16-BIT TIMER, MCLK, CIN ENABLES COUNTING 

MEASURE PUSH.B#TPDMAX ; START WITH SENSOR R3 TPD.MAX 
; INDEX FOR RESULT STACK CLR 

MEASLOP MOV. B 
R5 
# (TPSSELO*3)+ENB+ENA,&TPCTL ; RESET FLAGS 

CAPACITOR C IS CHARGED UP FOR> 5 TAU. N-1 OUTPUTS ARE USED 

OUTPUTS 

MLPO 

MOV.B 

MOV.B 
MOV.B 

BIT.B 
JZ 

MOV.B 
CLR.B 

#B16+CPON+TPDMAX-1,&TPD ; SELECT CHARGE 

#TPDMAX-1,&TPE; ENABLE CHARGE OUTPUTS 
#NN,&TPCNT2 LOAD NEG. CHARGE TIME 

#RC2FG,&TPCTL 
MLPO 

@SP,&TPE 
&TPCNT2 

CHARGE TIME ELAPSED? 
NO CONTINUE WAITING 

ENABLE ONLY ACTUAL SENSOR 
CLEAR HI BYTE TIMER 

SWITCH ALL INTERRUPTS OFF, TO ALLOW NON-INTERRUPTED START 
OF TIMER AND CAPACITY DISCHARGE 

; WAIT 

MLP1 

DINT 
CLR.B 
BIC.B 

EINT 
UNTIL EOC 

BIT.B 
JNZ 
BIT.B 
JZ 

&TPCNT1 
@SP,&TPD 

(EN1 = 1) OR OVERFLOW 

#RC2FG,&TPCTL 
MERR 
#EN1,&TPCTL 
MLP1 

ALLOW NEXT 2 INSTRUCTIONS 
CLEAR LO BYTE TIMER 
SWITCH ACTUAL SENSOR TO 
LO 
COMMON START TOOK PLACE 

ERROR (RC2FG = 1) 

OVERFLOW (BROKEN SENSOR)? 
YES, GO TO ERROR HANDLING 
CIN < UCOMP? 
NO, WAIT 

EN1 = 0: END OF CONVERSION: STORE 2 X 8 BIT RESULT ON MSTACK 
ADDRESS NEXT SENSOR, IF NO ONE ADDRESSED: END REACHED 

L$301 

9-20 

MOV.B 
MOV.B 
INCD 
RRA.B 

& TPCNT1,MSTACK (R5) 
&TPCNT2,MSTACK+1(R5) 
R5 
@SP 

STORE RESULT ON STACK 
HI BYTE 

ADDRESS NEXT WORD 
NEXT OUTPUT TPD.X 



MSP430 Family 

JNC 
INCD 

RET 

MEASLOP 
SP 

The Analogue-to-Digital Converters 

IF C=1: FINISHED 
HOUSEKEEPING: 
TPDMAX OFF STACK 

ERROR HANDLING: ONLY OVERFLOW POSSIBLE (BROKEN SENSOR ?) 
OFFFFH IS WRITTEN FOR RESULT AND SUBROUTINE CONTINUED 

MERR MOV 
JMP 

#OFFFFH,MSTACK(R5) 
L$301 

9.2.1 Interrupt Handling 

; OVERFLOW 

EXAMPLE: Use of the Universal Timer Port as an ADC with interrupt. This has the same 
function as the example without interrupt. 

; DEFINITION PART FOR THE UT/PM ADC 

TPCTL .EQU 
TPSSELO . EQU 
ENB .EQU 
ENA .EQU 
EN1 .EQU 
RC2FG .EQU 
EN1FG .EQU 

TPCNT1 .EQU 
TPCNT2 .EQU 

TPD 
B16 

CPON 

TPE 

MSTACK 

ADCST 
NN 

IFG2 
TPIFG 

IE2 
ADIE 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

04BH 
040H 
020H 
010H 
008H 
004H 
001H 

04CH 
04DH 

04EH 
080H 

040H 

04FH 

0240H 

MSTACK+8 
OllH 

003H 
008H 

001H 
004H 

TIMER PORT CONTROL REGISTER 
TPSSEL.O 
CONTROLS EN1 OF TPCNT1 
AS ENB 
ENABLE INPUT FOR TPCNT1 
RIPPLE CARRY TPCNT2 
EN1 FLAG BIT 

LO 8-BIT COUNTER/TIMER 
HI 8-BIT COUNTER/TIMER 

DATA REGISTER 
0: SEPARATE TIMERS 1: 16-BIT 
TIMER 
0: COMP OFF 1: COMP ON 

DATA ENABLE REGISTER 

RESULT STACK 1ST WORD 
(8 BYTES) 

TPCNT2 VALUE FOR CHARGING OF C 

INTERRUPT FLAG REGISTER 2 
ADC INTERRUPT FLAG 

INTERRUPT ENABLE REGISTER 2 
ADC INTERRUPT ENABLE BIT 

9-21 



The Analogue-to-Digital Converters 

TPO 
TP1 
TP2 
TP3 

.EQU 

.EQU 

.EQU 

.EQU 

01H 
02H 
04H 
OSH 

TP.O BIT ADDRESS 
TP.1 BIT ADDRESS 
TP.2 BIT ADDRESS 
TP.3 BIT ADDRESS 

MSP430Family 

MEASUREMENT SUBROUTINE WITH INTERRUPT. TPD.4 AND TPD.5 
ARE NOT USED AND THEREFORE OVERWRITTEN 

RETURN: RESULTS FOR TP.3 TO TP.O IN MSTACK TO MSTACK+6 
ADCST 10: RESULTS OK 
ADCST ~ 11: ERROR 

INITIALIZATION: ADCST<- 1, 16-BIT TIMER, MCLK 
CIN ENABLES COUNTING 
ADCST IS SET: CAUSES INTERRUPT FOR CHARGE INITIALIZATION 

MEASINIT MOV.B #l,ADCST 

ADCINT 

ADCIT 

ADCERR 

9-22 

BIS.B #TPIFG,&IFG2 
BIS.B 
EINT 

PUSH 
MOV.B 
MOV.B 

ADD 
. BYTE 
. BYTE 
. BYTE 
. BYTE 
. BYTE 
. BYTE 
. BYTE 
. BYTE 
. BYTE 
. BYTE 
. BYTE 
. BYTE 

#ADIE,&IE2 

R6 
ADCST,R6 
ADCIT(R6),R6 

R6,PC 
ADCSTO-ADCIT 
ADCST1-ADCIT 
ADCST2-ADCIT 
ADCST3-ADCIT 
ADCST4-ADCIT 
ADCST3-ADCIT 
ADCST6-ADCIT 
ADCST3-ADCIT 
ADCSTS-ADCIT 
ADCST3-ADCIT 
ADCSTO-ADCIT 
ADCSTO-ADCIT 

STATUS TO INIT. OF CHARGE 
CAUSES INTERRUPT FOR INIT. 
ENABLE ADC INTERRUPT 
GIE ON 
CONTINUE MAIN PROGRAM 

WORKING REGISTER 
ADC STATUS BYTE 
REL. ADDRESS OF CURRENT 
HANDLER 
BRANCH TO HANDLER 
STATUSO: ADC INACTIVE 
1: INIT 1ST CHARGE 
2: CHARGE, INIT 1ST MEASUREMENT 
3: 1ST MEAS., INIT 2ND CHARGE 
4: CHARGE, INIT 2ND MEASUREMENT 
5: 2ND MEAS., INIT 3RD CHARGE 
6: CHARGE, INIT 3RD MEASUREMENT 
7: 3RD MEAS., INIT 4TH CHARGE 
8: CHARGE, INIT 4TH MEASUREMENT 
9: 4TH MEAS . 
10: COMPLETED, NO ERROR 
11: ERROR OCCURED 



MSP430 Family The Analogue-to-Digital Converters 

MEASUREMENT COMPLETED? EN1FG 
RC2FG 

1: YES, OK 

ADCST3 

L$401 

MOV.B 
RLA 
BIT.B 
JNZ 
MOV.B 

JMP 

MOV.B 
MOV.B 

1: OVERFLOW BY BROKEN 
SENSOR 

ADCST,R6 STATUS X 2 
R6 
#EN1FG,&TPCTL 

FOR RESULT ADDRESSING 
EN1 OR RC2FG? 

L$401 
#ADCERR-ADCIT-1,ADCST 

ADCCMPL 

& TPCNT1,MSTACK-6 (R6) 
&TPCNT2,MSTACK-5(R6) 

ERROR CODE-1 TO 
STATUS 
SWITCH OFF ADC 

STORE RESULT ON STACK 
HI BYTE 

IF LAST MEASUREMENT (ADCST = 9): SWITCH OFF ADC 

CMP.B #9,ADCST 
JNE ADCST1 ADCST # 9: INIT NEXT 

MEAS. 

ADCCMPL CLR &TPE OUTPUTS DISABLED 
CLR &TPD ADC OFF, OUTPUTS LO 
JMP L$402 ADCST =10 AFTER 

RETURN 

; CAPACITOR C CHARGE-UP FOR> 5 TAU. TP.2 TO TP.O ARE USED 

ADCST1 MOV.B #(TPSSELO*3)+ENB+ENA,&TPCTL RESET FLAGS 

MOV.B #B16+CPON+TPO+TP1+TP2,&TPD SELECT OUTPUTS 
MOV.B #TPO+TP1+TP2,&TPE ENABLE CHARGE OUTPUTS 
MOV.B #NN,&TPCNT2 LOAD NEG. CHARGE TIME 
JMP L$402 

; CHARGE IS MADE, INIT MEASUREMENT 

ADCST8 MOV.B #TPO,&TPE ENABLE TP.O 
BIC.B #TPO,&TPD SET TP.O LOW 
JMP L$403 

ADCST6 MOV.B #TP1,&TPE ENABLE TP.1 
BIC.B #TP1,&TPD SET TP.1 LOW 
JMP L$403 

ADCST4 MOV.B #TP2,&TPE ENABLE TP.2 
BIC.B #TP2,&TPD SET TP.2 LOW 
JMP L$403 

9-23 



The Analogue-to-Digital Converters MSP430Family 

ADCST2 MOV.B #TP3,&TPE ENABLE TP.3 
BIC.B #TP3,&TPD SET TP.3 LOW 

L$403 CLR.B &TPCNT2 CLEAR HI BYTE TIMER 
CLR.B &TPCNTl CLEAR LO BYTE TIMER 

L$402 INC.B ADCST ADCST + 1 

ADCSTO BIC.B #TPIFG,&IFG2 RESET ADC FLAG 
POP R6 RESTORE R6 
RETI 

. SECT " INT _ VECT" , 0 FFEAH ; INTERRUPT VECTORS 

. WORD ADCINT ; ADC INTERRUPT VECTOR; 

9-24 



MSP430 Family 

Topics 

10 Hints and Recommendations 
10.1 Hints for Programmers 

10.2 Design Checklist 

10.3 Most often Occuring Software Errors 

Notes 
Note Title 
10.1 Handling the Stack 

Hints and Recommendations 

10-3 
10-3 

10-7 

10-8 

Page 
10-4 

10-1 



Hints and Recommendations MSP430 Family 

10-2 



MSP430 Family Hints and Recommendations 

10 Hints and Recommendations 

10.1 Hints for Programmers 

During the software development of the first MSP430 projects, a great deal of 
experience was acquired. The following hints and recommendations are intended for all 
programmers and system designers having more experience with 4- and 8-bit 
microcomputers than with 16-bit systems. Also mentioned are differences which the 
MSP430 family has when compared with other 16-bit architectures (e.g. the function of 
the carry bit as an inverted zero bit with some instructions). 

Bits to be used frequently should be located always in bit positions 0, 1, 2, 3, 7, 15. 
The first four bits can be set, reset and tested with constants coming from the 
Constant Generator (1, 2, 4, 8) and the last two ones can be tested easily with the 
conditional jump instructions IN and JGE: 

TST.B 
JGE 

TST 
IN 

RSTAT 
BIT7LO 

MSTAT 
BIT15HI 

TEST BIT7 (OV <- 0) 
JUMP IF MSB OF BYTE IS 0 

TEST BIT15 (OV <- 0) 
JUMP IF MSB OF WORD IS 1 

Use BCD arithmetic if simple up/down counters are used that are to be displayed. 
This saves time and ROM space due to unnecessary binary-BCD conversion. 

EXAMPLE: Counter1 (4 BCD digits) is incremented, Counter2 (8 BCD digits) is 
decremented by one: 

CLRC DADD ADDS CARRY BIT TOO! 
DADD #OOOl,COUNTERl INCREMENT COUNTERl 

DECIMALLY 
CLRC 
DADD #9999,COUNTER2 DECREMENT 8 DIGIT COUNTER2 
DADD #9999,COUNTER2+2 ; DECIMALLY 

- The Conditional Assembly feature of the MSP430 assembler allows obtaining more 
than one version out of one source. This reduces the effort to maintain software 
drastically: only one version needs to be updated if changes are necessary. See 
section "Conditional Assembly". 

- Use bytes wherever appropriate. The MSP430 allows using every instruction with 
bytes. (exceptions are only SWPB, SXT and CALL) 

- Use status bytes or words, not flags, for remembering states. This allows the 
extremely fast branching in one instruction to the appropriate handler. Otherwise a 
time (and ROM) consuming skip chain is necessary. 

10-3 



Hints and Recommendations MSP430 Family 

- Computing software. Use integer routines if speed is essential; use FPP if complex 
computing is necessary. 

- Bit Test Instructions: 
With the bit handling instructions (BIS, BIT and BIC) more than one bit can be 
handled simultaneously: up to 16 bits can be handled inside one instruction. 
The BIS instruction is equivalent to the logical OR and can be used this way 
The BIC instruction is equivalent to the logical AND with the inverted source and can 
be used this way. 

- Use of Addressing Modes: 
Use the Symbolic Mode for random accesses 
Use the Absolute Mode for fixed addresses like peripherals 
Use the Indexed Mode for random accesses in tables 
Use the Register Mode for time critical processing and as the normal mode 
Use assigned registers for extremely critical purposes: if a register contains always 
the same information, then it is not necessary to save it and to load it afterwards. The 
same is true for the restoring of the register when the task is done. 

- Stack Operations: 
All items on the stack can be accessed directly with the Indexed Mode: this allows 
completely new applications compared with architectures that have only simple 
hardware stacks. 
The stack size is limited only by the available RAM, not by hardware register 
limitations. 

Note: Handling the Stack 

The above mentioned possibilities make careful "house keeping" necessary: 
every programme part which uses the stack has to ensure that only relevant 
information remains on the stack, and that all irrelevant data is removed. If this 
rule is not used consequently, the stack will overflow or underflow. If complex 
stack handling is used it is advisable to draw the stack with its items and the stack 
pointer as shown with the examples "Argument Transfer with Subroutine Calls" in 
the appendix. 

- The Programme Counter PC can be accessed like every other register with all 
instructions and all addressing modes. Be very careful when using this feature! Do not 
use byte instructions when accessing the PC, due to the clearing of the upper byte 
when used. 

- The Status Register SR can be accessed in register Mode only. Every status bit can 
be set or reset alone or together with other ones. This feature may be used for status 
transfer in subroutines. 

10-4 



MSP430 Family Hints and Recommendations 

- If highest possible speed is necessary for multiplications then two possibilities exist. 
Straight through programming: the effort used for the looping can be saved if the 
shifts and adds are programmed straight through. The routine ends at the known MSB 
of the multiplicand (here at bit 13 due to an ADC result [14 bits] that is multiplied): 

EXECUTION TIMES FOR REGISTER USE (CYCLES @ 1MHZ, 16 BITS): 

TASK 

MINIMUM 80 
MEDIUM 
MAXIMUM 132 

MACUF EXAMPLE 

OOOOOH X OOOOOH = OOOOOOOOOH 
96 OA5A5H X 05A5AH = 03A763E02H 

OFFFFH X OFFFFH = OFFFE0001H 

FAST MULTIPLICATION ROUTINE: PART USED BY SIGNED AND UNSIGNED 
MULTIPLICATION 

MACUF CLR 

RRA 
JNC 
ADD 

ADDC 
L$Ol RLA 

RLC 

RRA 
JNC 
ADD 

ADDC 
L$02 RLA 

RLC 

RRA 
JNC 
ADD 

ADDC 
L$014 RET 

R6 

R4 
L$Ol 
R5, R7 

R6,R8 
R5 
R6 

R4 
L$02 
R5,R7 

R6,R8 
R5 
R6 

R4 
L$014 
R5,R7 

R6,R8 

MSBS MULTIPLIER 

LSB TO CARRY 
IF ZERO: DO NOTHING 
IF ONE: ADD MULTIPLIER TO 
RESULT 

MULTIPLIER X 2 

LSB TO CARRY 
IF ZERO: DO NOTHING 
IF ONE: ADD MULTIPLIER TO 
RESULT 

MULTIPLIER X 2 

SAME WAY FOR BITS 2 TO 12 

LSB TO CARRY 
IF ZERO: DO NOTHING 
IF ONE: ADD MULTIPLIER TO 
RESULT 

10-5 



Hints and Recommendation~ MSP430 Family 

- The following instructions have a special feature that is valuable during serial to 
parallel conversion: the carry acts as an inverted zero bit. This means that if the result 
of an operation is zero, then the carry is reset and vice versa. The instructions 
involved are: 

XOR, SXT, INV, BIT, AND. 

Without this feature a typical sequence for the conversion of an I/O-port bit to a 
parallel word would look like as follows: 

RLA R5 FREE BIT 0 FOR NEXT INFO 
BIT #l,&IOIN PO.O HIGH ? 
JZ L$111 
INC R5 YES, SET BIT 0 

L$111 INFO IN BIT 0 

With this feature the above sequence is shortened to two instructions: 

BIT 
RLA 

#l,&IOIN 
R5 

PO.O HIGH? .NOT.ZERO -> CARRY 
SHIFT BIT INTO R5 

The carry bit can be used if increments by one are used: 

EXAMPLE: If the RAM word COUNT is greater than or equal to the value 1000 then a 
word COUNTER is to be incremented by one 

CMP 
ADC 

#1000,COUNT 
COUNTER 

COUNT >= 1000 
IF YES, CARRY = 1 

- The carry bit can be added immediately. No conditional jumps are necessary for 
counters longer than 16 bits: 

ADD 
ADC 
ADC 

R5,COUNT 
COUNT+2 
COUNT+4 

LOW PART OF COUNT 
MEDIUM PART 
HIGH PART OF 48-BIT COUNTER 

- "Fall Through" Usage: ROM space is saved if a subroutine call that is located 
immediately before a RET instruction is changed: The called subroutine is located 
after the instruction before the CALL and the programme falls through it. This saves.6 
bytes of ROM: the CALL itself and the RET instruction. The 12C handler uses thiS 
mode. 

NORMAL WAY: SUBR2 IS CALLED, AFTERWARDS RETURNED 
SUBR1 

10-6 

MOV 
CALL 
RET 

R5,R6 
#SUBR2 CALL SUBROUTINE 



MSP430 Family Hints and Recommendations 

; "FALL THROUGH" SOLUTION: SUBR2 IS LOCATED AFTER SUBR1 

SUBRI 
MOV R5,R6 ;GO TO SUBR2 

SUBR2 ;START OF SUBROUTINE SUBR2 
RET 

10.2 Design Checklist 

Several steps are necessary to complete a system consisting of an MSP430 and its 
peripherals with the necessary performance. Typical and recommended development 
steps are shown below. All of the tasks mentioned should be done carefully in order to 
prevent trouble later on. 

1. Definition of the tasks to be performed by the MSP430 and its peripherals. 
2. Worst case timing considerations for all of the tasks (interrupt timing, calculation 

times, 110 etc.). 
3. Drawing of a complete hardware schematic. Decision which hardware options are 

used (Supply voltage, pull-downs at the liD-ports ?) 
4. Worst case design for all of the external components. 
5. Organization of the RAM and if present of the EEPROM. 
6. Flowcharting of the complete programme. 
7. Coding of the software with an editor 
8. Assembling of the programme with the ASM430 Assembler 
9. Removing of the logical errors found by the ASM430 Assembler 
10. Testing of the software with the SIM430 Simulator and EMU430 Emulator 
11. Repetition of the steps 7 to 10 until the software is error free 

10.3 Most frequently Occurring Software Errors 

During software development the same errors are made by nearly all assembler 
programmers. The following list contains the errors most often heard of and 
experienced. 

- A lack of "housekeeping" during stack operations: if items are removed from or placed 
onto the stack during subroutines or interrupt handlers, it is mandatory to keep track 
of these operations. Any wrong positioning of the stack pointer will lead to a 
programme crash due to wrong data which is written into the Programme Counter. 

- Use of the wrong jump instructions: the conditional jump instructions JLO and JL, and 
JHS and JGE, respectively, give different results if used for numbers above 07FFFh. 
It is therefore necessary always to distinguish between signed and unsigned 
comparisons. 

10-7 



Hints and Recommendations MSP430 Family 

- Wrong completion instructions: dDespite their virtual similarity, subroutines and 
interrupt handlers need completely different actions when completed. 
Subroutines end with the RET instruction: only the address of the next instruction (the 
one following the subroutine call) is popped from the stack. 
Interrupt handlers end with the RETI instruction: two items are popped from the stack, 
first the Status Register is restored and afterwards the address (the address of the 
next instruction after the interrupted one) is popped from the stack to the Programme 
Counter. 
If RETI and RET are used wrongly, then a wrong item is written into the PC anyway. 
This means that the software will continue at random addresses and will therefore 
hang-up. 

- Addition and subtraction of numbers with differently located decimal points: if numbers 
with virtual decimal points are used the addition or subtraction of numbers with 
different fractional bits leads to errors. It is necessary to shift one of the operands in a 
way to achieve equal fractional parts. See "Rules for the Integer Subroutines". 

- Byte instructions applied to registers always clear the upper byte of the register. It is 
necessary therefore to use word instructions if operations in registers can exceed the 
byte range. 

- Use of byte instructions with the Programme Counter as destination register: if the PC 
is the destination register, byte instructions do not make sense. The clearing of the 
PC's high byte is certainly wrong in any case. Instead a register should be used 
before the modification of the PC with the byte information. 

- Use of falsely addressed branches and subroutine calls. The destination of branches 
and calls is used indirectly; this means the content of the destination is used as the 
address. These errors occur most often with the symbolic mode and the absolute 
mode: 

CALL 
CALL 

MAIN 
#MAIN 

;SUBROUTINE'S ADDRESS IS STORED IN MAIN 
;SUBROUTINE STARTS AT ADDRESS MAIN 

The real behaviour is seen easily when looking at the branch instruction. It is an 
emulated instruction, using the MOV instruction: 

BR MAIN ; EMULATED INSTRUCTION BR 
MOV MAIN, PC ; EMULATION BY MOV INSTRUCTION 

The addressing for the CALL instruction is exactly the same as for the BR instruction. 

- If counters or timers longer than 16 bits are modified by the foreground (interrupt 
routines) and used by the background, it is necessary to disable the timer interrupt 
(most simple with the GIE bit in SR) during the reading of these words. If this is not 
done, the foreground can modify these words between the reading of two words. This 
would mean that one word contains the old value and the other one the modified one. 

10-8 



MSP430 Family Hints and Recommendations 

EXAMPLE: The timer interrupt handler increments a 32-bit timer. The background 
software uses this timer for calculations. The disabling of the interrupts avoids a timer 
interrupt that occurs between the reading of TIMLO and TIMHI falsifying the read 
information. This is the case if TIMLO overflows from OFFFFh to OOOOh during the 
interrupt routine: TIMLO was read with the old information OFFFFh and TIMHI contains 
the new information x+ 1. 

BT_HAN INC TIMLO ;INCR. LO WORD 
ADC TIMHI ;INCR. HI WORD 
RETI 

BACKGROUND PART COPIES TIMXX FOR CALCULATIONS 

DINT ;GIE <- a 
NOP ;DINT NEEDS 2 CYCLES 
MOV TIMLO,R4 ;COPY LSDS 
MOV TIMHI,RS ;COPY MSDS 
EINT ; ENABLE INTERRUPT AGAIN 

- When using sophisticated stack processing it is often overlooked that the PUSH 
instruction decrements the stack pOinter first and moves the item afterwards. 

EXAMPLE: The return address stored at TOS is to be moved one word down to free 
space for an argument. 

PUSH @SP 

PUSH 2 (SP) 

;WRONG! 1ST FREE WORD (TOS-2) IS 
; COPIED 
;ON ITSELF 

; CORRECT, OLD TOS IS PUSHED 

10-9 



Hints and Recommendations MSP430 Family 

10-10 



MSP430 Family 

Topics 

Appendixes 

A1 CPU Registers and Features 
AU The Program Counter RO 

A1.2 Stack Processing 
A1.2.1 Usage of the System Stack Pointer R1 
A1.2.2 Usage of the System Stack Pointer R1 
A1.3 Byte and Word Handling 

A1.4 Constant Generator 

A1.S Addressing 

A1.6 Program Flow Control 
A1.6.1 Computed Branches and Calls 
A1.6.2 Nesting of Subroutines 
A1.6.3 Jumps 

A2 Special Coding Techniques 
A2.1 Conditional Assembly 
A2.2 Position Independent Code 
A2.2.1 Referencing of Code Inside of PIC 
A2.2.2 Referencing of Code Outside of PIC (Absolute) 

A2.3 Reentrant Code 

A2.4 Recursive Code 

A2.S Flag Replacement by Status Usage 

A2.6 Argument Transfer with Subroutine Calls 
A2.6.1 Arguments on the Stack 
A2.6.2 Arguments following the Subroutine Call 
A2.6.3 Arguments in Registers 

A2.7 Interrupt Vectors in RAM 

A3 References 

Figures 

Figure Title 

A 1 Word/Byte Configuration 

A2 

A3 

Arguments on the Stack 

Arguments on the Stack 

Appendixes 

A-3 

A-3 
A-3 

A-3 
A-3 
A-4 
A-S 

A-6 

A-7 

A-9 
A-9 
A-9 
A-9 

A-11 
A-11 
A-12 
A-13 
A-14 

A-1S 

A-16 

A-17 

A-19 
A-19 
A-22 
A-22 

A-23 

A-24 

Page 

A-S 

A-20 

A-20 

A-1 



Appendixes 

Tables 

Table Title 

A1 

A2 

A3 

Constants of the Constant Generator 

Addressing Modes 

Possible Jumps 

Notes 

MSP430 Family 

Page 

A-6 

A-7 

A-9 

Note Title Page 

A 1 Use no Odd Address, if the Program Counter is Involved A-3 

A2 Use no Odd Address, if the Stack Pointer is Involved A-4 

A3 Byte Addressing and RO to R15 A-5 

A4 Conditional jumps for Signed and Unsigned Data A-10 

A5 Only Unsigned Jumps are Adequate for Computed Addresses A-10 

A6 Only Data at of above the Top Of Stack is Protected Against Overwriting A-21 

A-2 



MSP430 Family Appendixes 

Appendixes 

A 1 CPU Registers and Features 

All of the MSP430 CPU-registers can be used with all instructions. 

A 1.1 The Programme Counter RO 

One of the main differences to other microcomputer architectures relates to the 
Programme Counter (PC) that may be used as a normal register with the MSP430. This 
means that all of the instructions and addressing modes may be used with the 
Programme Counter too. For example, a branch is made by simply moving an address 
into the PC: 

MOV 
MOV 

MOV 

#LABEL,PC 
&LABEL,PC 

@R14,PC 

;JUMP TO ADDRESS LABEL 
;JUMP TO ADDRESS CONTAINED 
; IN ADDRESS LABEL 
;JUMP INDIRECT INDIRECT R14 

Note: Use no Odd Address, if the Programme Counter is involved 

The Programme Counter always points to even addresses: this means the LSB is 
always zero. The software has to ensure that no odd addresses are used if the 
Programme Counter is involved. Odd PC addresses will end up with non
predictable results. 

A 1.2 Stack Processing 

A 1.2.1 Usage of the Stack Pointer R1 

The system stack pointer (SP) is a normal register like the other ones. This means it can 
use the same addressing modes. This gives good access to all items on the stack, not 
only to the one on the top of the stack. 

The system stack pointer SP is used for the storage of the following items: 
• Interrupt return addresses and Status Register contents 
• Subroutine return addresses 
• Intermediate results 
• Variables for subroutines, floating point package etc. 

When using the system stack, one should bear in mind that the microcomputer hardware 
uses the stack painter for interrupts and subroutine calls too. To ensure the error free 

A·3 



Appendixes MSP430 Family 

running of the programme it is necessary to do exact "housekeeping" for the system 
stack. 

Note: Use no Odd Address, if the Stack Pointer is involved 

The Stack Pointer always points to even addresses: this means the LSB is always 
zero. The software has to ensure that no odd addresses are used if the Stack 
Pointer is involved. Odd SP addresses will end up with non-predictable results. 

If bytes are pushed on the system stack, only the lower byte is used; the upper byte is 
not modified. 

PUSH 
PUSH.B 

#05H 
#05H 

A 1.2.2 Software Stacks 

0005H -> TOS 
XX05H -> TOS 

Every register from R4 to R15 may be used as a software stack pointer. This allows 
independent stacks for jobs that have a need for this. Every part of the RAM may be 
used for these software stacks. 

EXAMPLE: R4 is to be used as a software stack pointer. 

MOV #SW_STACK,R4 ;INIT. SW STACK POINTER 

DECD R4 ;DECREMENT STACK POINTER 
MOV ITEM,O(R4) ;STORE ITEM ON STACK 

; PROCEED 
MOV @R4+,ITEM2 ;POP ITEM FROM STACK 

Software stacks may be organized as byte stacks. This is not possible for the system 
stack which always uses 16-bit words. The example shows R4 used as a byte stack 
pointer: 

MOV #SW_STACK,R4 ;INIT. SW STACK POINTER 

DEC R4 ;DECREMENT STACK POINTER 
MOV.B ITEM,O(R4) ;STORE ITEM ON STACK 

; PROCEED 
MOV.B @R4+,ITEM2 ;POP ITEM FROM STACK 

A 1.3 Byte and Word Handling 

Every word is addressable by three addresses as shown in Figure A 1 : 
• The word address: an even address N 
• The lower byte address: an even address N 

A-4 



MSP430 Family Appendixes 

• The upper byte address: an odd address N+ 1 

If byte addressing is used, only the addressed byte is affected: no carry or overflow can 
affect the other byte. 

Note: Byte Addressing and RO to R15 

Registers RO to R15 do not have an address: they are treated in a special way. 
Byte addressing always uses the lower byte of the register; the upper byte is set 
to zero. 

The wayan instruction treats data is defined with its extension: 
• The extension .B means byte handling 
• The extension .W (or none) means word handling 

Examples: The first two lines are equivalent. The 16-bit values, read in absolute address 
050h, are added to the value in R5. 

ADD 
ADD.W 

&050H,R5 
&050H,R5 

; ADD 16~BIT VALUE TO R5 
; ADD 16~BIT VALUE TO R5 

The 8-bit value, read in the lower byte of absolute address 050h, is added to the value 
contained in the lower byte of R5. The upper byte of R5 is set to zero. If the addressed 
byte 050h contains 078h, then R5 will contain 00078h afterwards, regardless of its 
former contents. 

ADD.B &050H,R5 ; ADD 8~BIT VALUE TO R5 

Bit 15 8 7 0 

~I-----u-p-p-e-r-B-yt-e------~I-------L-ow-e-r-B-yt-e------'I 

Odd Address N+ 1 Even Address N 

Word Address N 

Word/Byte Configuration 

Figure A1: Word/Byte Configuration 

A-5 



Appendixes MSP430 Family 

If registers are used with byte instructions the upper byte of the destination register is 
always set to zero. It is necessary therefore to use word instructions if the range of 
calculations can exceed the byte range. 

EXAMPLE: The two signed bytes OP1 and OP2 have to be added and the result stored 
in word OP3. 

MOV.B &OP1,R4 
SXT R4 
MOV.B &OP2,R5 
SXT R5 
ADD.W R4,R5 
MOV.W R5,&OP3 

A 1.4 Constant Generator 

FETCH 1ST OPERAND 
CHANGE TO WORD FORMAT 
SECOND OPERAND 

ADD WORDS 
16-BIT RESULT TO OP3 

A statistical look to the numbers used with the Immediate Mode shows that a few small 
numbers are in use most often. The six most often used numbers can be addressed with 
the four addressing modes of R3 (Constant Generator 2) and with the two not usable 
addressing modes of R2 (Status Register). The six constants that do not need an 
additional 16-bit word when used with the immediate mode are: 

Number Hexadecimal Register Ad 

+0 Zero (OOOOh) R3 00 

+1 positive one (0001 h) R3 01 

+2 positive two (0002h) R3 10 

+4 positive four (0004h) R2 10 

+8 positive eight (0008h) R2 11 

-1 negative one (FFFFh) R3 11 

Table A 1: Constantsof the Constant Generator 

The assembler inserts these ROM-saving addressing modes automatically if one of the 
above immediate constants is encountered. But only immediate constants are 
replaceable this way, not (for example) index values. 
If an immediate constant out of the Constant Generator is used then the execution time 
is equal to the execution time of the Register Mode. 
The most commonly used bits of the peripheral registers are, whenever possible, 
located in the bits addressable by the Constant Generator bits. 

A-6 



MSP430 Family Appendixes 

A 1.5 Addressing 

The MSP430 allows seven addressing modes for the source operand, and four or five 
addressing modes for the destination. The addressing modes used are: 

Address Bits Source Modes Destination Modes Example 

00 Register Register R5 

01 Indexed Indexed TAB(R5) 

01 Symbolic Symbolic TABLE 

01 Absolute Absolute &BTCTL 

10 Indirect --- @R5 

11 Ind. autoinkr. --- @R5+ 

11 Immediate ---- #TABLE 

Table A2: Addressing Modes 

The three missing addressing modes for the destination operand are not of much 
concern for the programming: 
Immediate Mode: Not necessary for the destination; immediate operands can always be 
placed into the source. Only in a very few cases will it be necessary to have two 
immediate operands in one instruction 

Indirect Mode: if necessary the Indexed Mode with an index of zero is usable. For 
example: 

ADD 
CMP 

#16,O(R6) 
RS,O(SP) 

@R6 + 16 -> @R6 
RS EQUAL TO TOS? 

The second example above can be written in the following way saving 2 bytes of ROM: 

CMP @SP,RS ; RS EQUAL TO TOS? (RS-TOS) 

Indirect Auto increment Mode: with table computing a method is usable that saves 
ROM-space, and also the number of registers used: 

Example: The content of TAB1 is to be written into TAB2. TAB1 ends at the word 
preceding TAB1END. 

LOOP 
MOV 
MOV.B 
CMP 
JNE 

#TAB1,RS 
@RS+,TAB2-TAB1-l(RS) 
#TAB1END,RS 
LOOP 

INITIALIZE POINTER 
MOVE TAB1 -> TAB2 
END OF TAB1 REACHED? 
NO, PROCEED 
YES, FINISHED 

A-7 



Appendixes MSP430 Family 

The above example uses only one register instead of two and saves three words due to 
the smaller initialization part. The normally written, longer loop is shown below 

MOV #TAB1,RS ;INITIALIZE POINTERS 
MOV #TAB2,R6 

LOOP MOV.B @RS+,O(R6) ;MOVE TABl -> TAB2 
INC R6 
CMP #TAB1END,RS ;END OF TABl REACHED? 
JNE LOOP ;NO, PROCEED 

;YES, FINISHED 

In other cases it may be possible to exchange source and destination operands to have 
the auto increment feature available for a pointer. 

Each of the seven addressing modes has its own features and advantages: 

Register Mode: 
Fastest mode, least ROM requirements 

Indexed Mode: 
Random access to tables 

Symbolic Mode: 
Access to random addresses without overhead by loading of pointers 

Absolute Mode: 
Access to absolute addresses independent of current programme address 

Indirect Mode: 
Table addressing via register, code saving access to often referenced addresses 

Indirect Autoincrement Mode: 
Table addressing with code saving automatic stepping, for transfer routines 

Immediate Mode: 
Loading of pointers, 16-bit-constants within the instruction. 

With the usage of the Symbolic Mode, an interrupt routine can be as short as possible. 
An interrupt routine is shown which has to increment a RAM word COUNTER, and to do 
a comparison if a status byte STATUS has reached the value 5. If this is the case, the 
status byte is cleared; otherwise, the interrupt routine terminates: 

INTRPT INC COUNTER ;INCREMENT COUNTER 
CMP.B #S,STATUS ; STATUS S? 
JNE INTRET 
CLR.B STATUS ;STATUS = S: CLEAR IT 

INTRET RETI 

No loading of pointers or saving and restoring of registers is necessary. What needs to 
be done is performed immediately without any overhead. 

A-8 



MSP430 Family 

A 1.6 Programme Flow Control 

A 1.6.1 Computed Branches and Calls 

Appendixes 

The Branch instruction is an emulated instruction which moves the destination address 
into the Programme Counter: 

MOV DST,PC ; EMULATION FOR BR DST 

The possibility to access the Programme Counter in the same way as all other registers 
gives interesting possibilities: 
1. The destination address can be taken from tables 
2. The destination address may be computed 
3. The destination address may be a constant 

A 1.6.2 Nesting of Subroutines 

Thanks to the stack orientation of the MSP430, one of the main problems of other 
architectures does not playa role at all: subroutine nesting can proceed as long as RAM 
is available. There is no need to keep track of the subroutine calls as long as all 
subroutines terminate with a "Return from Subroutine" instruction. If subroutines are left 
without the RET instruction, then some housekeeping is necessary: popping of the 
return address or addresses from the stack. 

A 1.6.3 Jumps 

Jumps allow the conditional or unconditional leaving of the linear programme flow. The 
Jumps cannot reach every address of the address map, but they have the advantage of 
needing only one word and only two oscillator cycles. The 10-bit offset field allows 
Jumps of 512 words maximum in the forward direction, and 511 words maximum 
backwards. This is four times the normal reach of a Jump: only in few cases is the two 
word branch necessary. 

Eight Jumps are possible with the MSP430. Four of them have two mnemonics, to allow 
better readability: 

A-9 



Appendixes MSP430 Family 

Mnemonic Condition Purpose 

JMP label Unconditional Jump Programme control transfer 

JEQ label Jump if Z = 1 After comparisons 

JZ label Jump if Z = 1 Test for zero contents 

JNE label Jump if Z = 0 After comparisons 

JNZ label Jump if Z = 0 Test for non zero contents 

JHS label Jump if C = 1 After unsigned comparisons 

JC label Jump if C = 1 Test for set Carry 

JLO label Jump if C = 0 After unsigned comparisons 

JNC label Jump if C = 0 Test for reset Carry 

JGE label Jump if N .XOR. V = 0 

JL label Jump if N .xOR. V = 1 

IN label Jump if N = 1 Test for sign of a result 

Table A3: Possible Jumps 

Note: Conditional Jumps for Signed and UnSigned Data 

It is important to use the appropriate conditional Jump for signed and unsigned 
data. For positive data (0 to 07FFFh and 0 to 07Fh) both signed and unsigned 
conditional jumps behave similiarly. This changes completely when used with 
negative data (08000h to OFFFFh and 080h to OFFh): the signed conditional 
jumps treat negative data as smaller numbers than the positive ones; the 
unsigned conditional jumps treat them as larger numbers than the positive ones. 

No "Jump if Positive" is provided, only a "Jump if Negative". But after several 
instructions it is possible to use the "Jump if Greater Than or Equal" for this purpose. It 
must only be ensured that the instruction preceding the JGE resets the overflow bit V. 
The following instructions ensure this: 

AND SRC,DST V <- 0 
BIT SRC,DST V <- 0 
RRA DST V <- 0 
SXT DST V <- 0 
TST DST V <- 0 

If this feature is used it should be noted in the comment for later software modifications. 
For example: 

A-10 

MOV 
TST 
JGE 

ITEM,R7 
R7 
ITEMPOS 

FETCH ITEM 
V <- 0, ITEM POSITIVE? 
v=o: JUMP IF >= 0 



MSP430 Family Appendixes 

Note: Only Unsigned Jumps are Adequate for Computed Addresses 

If addresses are computed only the unsigned jumps are adequate: addresses are 
always unsigned, positive numbers. 

A 2 Special Coding Techniques 

A 2.1 Conditional Assembly 

The Syntax for conditional assembly is described in detail in the MSP430 Family 
Assembler Tools User's Guide. Another example for conditional assembly is shown in 
the section Software UART. 

Conditional assembly provides the possibility of compiling different lines of source into 
the object file, depending on the value of an expression that is defined in the source of 
the programme. This makes it easy to alter the behaviour of the code by modifying one 
single line in the source. 

The following example shows how to use conditional assembly. The example will allow 
easy debugging of a programme that processes input from the ADC, by pretending that 
the input of the ADC is always 07FFh. The following is the routine used for reading the 
input of the ADC. It returns the value read from ADC input AO in R8. 

DEBUG .SET 1 ;1= DEBUGGING MODE; 0= NORMAL MODE 
ACTL .SET 01l4H 
ADAT .SET 01l8H 
IFG2 .SET 3 
ADIFG .SET 4 

GET_ADC_VALUE: 

. IF DEBUG=l 
MOV #07FFH,R8 
.ELSE 
BIC #60,&ACTL INPUT CHANNEL IS AO 
BIC.B #ADIFG,&IFG2 
BIS #l,&ACTL START CONVERSION 

WAIT BIT.B #ADIFG, &IFG2 
JZ WAIT WAIT UNTIL CONVERSION READY 
MOV &ADAT,R8 
.ENDIF 
RET 

With a little further refining of the code, better results may be achieved. The following 
piece of code shows more built-in ways to debug the code. The second 'debug code', 
where debug=2, returns 0700h and 0800h alternately. 

A-11 



Appendixes 

DEBUG .SET 
0= 
ACTL .SET 
ADAT .SET 
IFG2 .SET 
ADIFG .SET 

; GET_ADC_VALUE: 

VAR 
OSC 

WAIT 

. SECT 

. WORD 

.IF 
MOV 
.ELSEIF 
MOV 
SUB 
MOV 
.ELSE 
BIC 
BIC 
BIS 
BIT 
JZ 
MOV 
.ENDIF 
RET 

1 

01l4H 
01l8H 
3 
4 

"VAR"'0200H 
0700H 

DEBUG=l 
#07FFH,R8 

DEBUG=2 
#OFOOH,R8 
OSC,R8 
R8,OSC 

#60H,&ACTL 
#ADIFG,&IFG2 
#l,&ACTL 
#ADIFG,&IFG2 
WAIT 
&ADAT,R8 

A 2.2 Position Independent Code 

MSP430 Family 

1= DEBUG MODE 1; 2= DEB. MODE 2; 
NORMAL MODE 

RETURNING CONSTANT VALUE 

RETURNING ALTERNATING VALUE 

INPUT CHANNEL IS AO 

START CONVERSION 

WAIT UNTIL CONVERSION READY 

The architecture of the MSP430 allows the easy implementation of "Position 
Independent Code" (PIC). This is a code which may run anywhere in the address space 
of a computer, without any relocation being necessary. PIC is possible with the MSP430 
mainly due to the allocation of the PC inside the register bank. Great use is made of the 
availability of the PC. Links to other PIC-blocks are possible only by references to 
absolute addresses (pointers). 

EXAMPLE: Code is transferred to the RAM from an outside storage (EPROM, ROM, 
EEPROM) and executed there with full speed. This code needs to be PIC. 

A 2.2.1 Referencing of Code Inside of PIC 

The referenced code or data is located in the same block of PIC as that in which the 
programme resides. 

Jumps 
Jumps are anyway position independent: their address information is an offset to the 
destination address. 

A-12 



MSP430 Family Appendixes 

Branches 

ADD 
. WORD 

Subroutine Calls 

@PC,PC 
DESTINATION-$ 

;BRANCH TO LABEL DESTINATION 

Calling a subroutine starting at the label SUBR: 

SC MOV 
ADD 
CALL 

Operations on Data 

PC,RN 
#SUBR-$,RN 
RN' 

;ADDRESS SC+2 -> AUX. REG 
;ADD OFFSET (SUBR - (SC+2)) 
;SC+2+SUBR-(SC+2)) = SUBR 

The symbolic addressing mode is position independent: an offset to the PC is used. No 
special addressing is necessary 

MOV 
CMP 

Jump Tables 

DATA,RN 
DATA1,DATA2 

;DATA IS ADDRESSED 
; SYMBOLICALLY 

The status contained in Rstatus decides where the SW continues. Rstatus contains a 
multiple of 2 (0, 2, 4 ... 2n). Range: +512 words, -511 words 

ADD RSTATUS,PC ;RSTATUS = (2X STATUS) 
JMP STATUS 0 ;CODE FOR STATUS 0 
JMP STATUSl ; CODE FOR STATUS 2 

JMP STATUSN ; CODE FOR STATUS 2N 

Branch Tables 
The status contained in Rstatus decides where the SW continues. Rstatus contains a 
multiple of 2 (0, 2, 4 ... 2n). Range: complete 64K 

TABLE 
ADD 
. WORD 
. WORD 

. WORD 

TABLE (RSTATUS) ,PC 
STATUSQ-TABLE 
STATUS1-TABLE 

STATUSN-TABLE 

;RSTATUS = STATUS 
;OFFSET FOR STATUS 
;OFFSET FOR STATUS 

;OFFSET FOR STATUS 

A 2.2.2 Referencing of Code Outside of PIC (Absolute) 

Q 

2 

2N 

The referenced code or data is located outside the block of PIC. These addresses can 
be absolute addresses only, e.g. for linking to other blocks and peripheral addresses. 

Branches 
Branching to the absolute address DESTINATION: 

BR #DESTINATION ;#DESTINATION -> PC 

A-13 



Appendixes 

Subroutine Calls 
Calling a subroutine starting at the absolute address SUBR: 

CALL #SUBR 

Operations on Data 
Absolute mode (indexed mode with Reg = 0) 

CMP 
ADD 
PUSH 

Branch Tables 

&DATAl,&DATA2 
&DATAl,RN 
&DATA2 

;#SUBR -> PC 

;DATAI + 0 = DATAl 

;DATA2 -> STACK 

MSP430 Family 

The status contained in Rstatus decides where the SW continues. Rstatus steps in 
increments of 2. Table is located in absolute address space: 

MOV TABLE (RSTATUS) ,PC ; RSTATUS STATUS 

.SECT XXX ;TABLE IN ABSOLUTE ADDRESS 
; SPACE 

TABLE . WORD STATUS 0 ; CODE FOR STATUS 0 
. WORD STATUS 1 ; CODE FOR STATUS 2 

. WORD STATUSN ; CODE FOR STATUS 2N 

Table is located in PIC address space, but addresses are absolute: 

MOV RSTATUS,RHELP ;RSTATUS CONTAINS STATUS 
ADD PC,RHELP ;STATUS + L$l -> RHELP 

L$l ADD #TABLE-L$l,RHELP ;STATUS+L$l+TABLE-L$l 
MOV @RHELP,PC ;COMPUTED ADDRESS TO PC 

TABLE . WORD STATUS 0 ; CODE FOR STATUS 0 
. WORD STATUSI ; CODE FOR STATUS 2 

. WORD STATUSN ; CODE FOR STATUS 2N 

The above shown programme examples may be implemented as MACRO's if needed. 
This would simplify usage and improve transparency. 

A 2.3 Reentrant Code 

If the same subroutine is used by the background programme and interrupt routines, 
then two copies of this subroutine are necessary with normal computer architectures. 
The stack gives a method of programming that allows many tasks to use a single copy 
of the same routine. This ability of sharing a subroutine between several tasks is called 
"Reentrancy" . 

A-14 



MSP430 Family Appendixes 

Reentrancy allows the calling of a subroutine despite the fact that the current task in use 
has not yet finished the subroutine. 

The main difference between a reentrant subroutine and a normal one is that the 
reentrant routine contains only "pure code": that is, no part of the routine is modified 
during usage. The linkage between the routine itself and the calling software part is 
possible only via the stack i.e. all arguments during calling, and all results after 
completion, have to be placed on the stack and retrieved from there. The following 
conditions must be met for "Reentrant Code": 
• No usage of dedicated RAM, only stack usage 
• If registers are used, they need to be saved on the stack and restored from there. 

EXAMPLE: A conversion subroutine "Binary to BCD" needs to be called from the 
background and the interrupt part. The subroutine reads the input number from TOS and 
places the 5-digit result also on TOS (two words): the subroutines save all used 
registers on the stack and restore them from there, or they compute directly on the 
stack. 

PUSH 
CALL 
MOV 
MOV 

R7 
#BINBCD 
@SP+,LSD 
@SP+,MSD 

A 2.4 Recursive Code 

R7 CONTAINS THE BINARY VALUE 
TO BE CONVERTED TO BCD 
BCD-LSDS FROM STACK 
BCD-MSD FROM STACK 

Recursive subroutines are subroutines that call themselves. This is not possible with 
normal architectures: stack processing is necessary for this frequently used feature. A 
simple example of recursive code is a lineprinter handler that calls itself for inserting a 
"Form Feed" after a certain number of printed lines. This self-calling allows the use of all 
of the existing checks and features of the handler without the need to write them once 
more. 

The following conditions must be met for "Recursive Code": 
• No usage of dedicated RAM; only stack usage 
• A termination item must exist to avoid infinite nesting (e.g. the lines per page must be 

greater than 1 with the above line printer example) 
• If registers are used they need to be saved and restored on the stack 

EXAMPLE: The line printer handler inserts a Form Feed after 70 printed lines 

LPHAND PUSH R4 SAVE R4 

CMP #70 , LINES 70 LINES PRINTED? 
JL L$500 NO, PROCEED 
CALL #LPHAND 
. BYTE CR,FF YES, OUTPUT CARRIAGE RETURN 

AND FORM FEED 
L$500 

A-15 



Appendixes MSP430 Family 

A 2.5 Flag Replacement by Status Usage 

Flags have several disadvantages if used for programme control: 
• Missing transparency (flags may depend on other flags) 
• Possibility of nonexistent flag combinations, if not handled very carefully 
• Slow speed: the flags can only be tested serially 

The MSP430 allows the use of a status (contained in a RAM byte or register) which 
defines the current programme part to be used. This status is very descriptive and 
prohibits "nonexistent" combinations. A second advantage is the high speed of the 
decision: one instruction only is needed to get to the start of the appropriate handler. 
See Branch Tables. 

The programme parts that are used currently define the new status dependent on the 
actual conditions: normally the status is only incremented, but it may also change more 
randomly. 

EXAMPLE: The status contained in register Rstatus decides where the software 
continues. Rstatus contains a multiple of 2 (0, 2, 4 ... 2n) 

; RANGE: COMPLETE 64K 

MOV 
TABLE . WORD 

. WORD 

. WORD 

STATUS a 
INC 
JMP 

TABLE(RSTATUS),PC ;RSTATUS = STATUS 
STATUSO ADDRESS HANDLER FOR STATUS 

= a 

STATUSI ADDRESS HANDLER FOR STATUS 
= 2 

STATUSN ADDRESS HANDLER FOR STATUS 
= 2N 

START HANDLER STATUS a 
RSTATUS NEXT STATUS IS 1 
HEND COMMON END 

The above solution has the disadvantage to use words even if the distances to the 
different programme parts are small. The next example shows the use of bytes for the 
branch table. The SXT instruction allows backward references (handler starts on lower 
addresses than TABLE4). 

BRANCH TABLES WITH BYTES: STATUS IN R5 (0, 1, 2, .. N) 
USABLE RANGE: TABLE4-128 TO TABLE4+126 

PUSH.B TABLE4 (R5) STATUSX-TABLE4 -> STACK 
SXT @SP FORWARD/BACKWARD REFERENCES 
ADD @SP+,PC TABLE4+STATUSX-TABLE4 -> PC 

TABLE4 . BYTE STATUSO-TABLE4 DIFFERENCE TO START OF HANDLER 
. BYTE STATUS1-TABLE4 

A-16 



MSP430 Family Appendixes 

. BYTE STATUSN-TABLE4 ; OFFSET FOR STATUS = N 
If only forward references are possible (normal case) the addressing range can be 
doubled. The following example shows this: 

STEPPING IS FORWARD ONLY (WITH DOUBLED FORWARD RANGE) 
STATUS IS CONTAINED IN R5 (0, 1, .. N) 
USABLE RANGE: TABLE5 TO TABLE5+254 

PUSH.B TABLE5 (R5) ;STATUSX-TABLE -> STACK 
CLR.B 1 (SP) ; HI BYTE <- 0 
ADD @SP+,PC ;TABLE+STATUSX-TABLE -> PC 

TABLE5 . BYTE STATUSO-TABLE5 ;DIFFERENCE TO START OF HANDLER 
. BYTE STATUS1-TABLE5 

. BYTE STATUSN-TABLE5 ;OFFSET FOR STATUS = N 

The above example can be made shorter and faster if a register can be used: 

STEPPING IS FORWARD ONLY (WITH DOUBLED FORWARD RANGE) 
STATUS IS CONTAINED IN R5 (0, 1, 2 .. N) 
USABLE RANGE: TABLE5 TO TABLE5+254 

MOV.B TABLE5(R5),R6 ;STATUSX-TABLE5 -> R6 
ADD R6,PC ;TABLE5+STATUSX-TABLE5 -> PC 

TABLE5 . BYTE STATUSO-TABLE5 ;DIFFERENCE TO START OF HANDLER 
. BYTE STATUS1-TABLE5 

. BYTE STATUSN-TABLE5 ;OFFSET FOR STATUS N 

The addressable range can be doubled once more with the following code; the status (0, 
1, 2, .. n) is doubled before its use. 

THE ADDRESSABLE RANGE MAY BE DOUBLED WITH THE FOLLOWING CODE: 
THE "FORWARD ONLY" VERSION WITH AN AVAILABLE REGISTER (R6) IS 
SHOWN: STATUS 0, 1, 2 ... N 
USABLE RANGE: TABLE6 TO TABLE6+510 

MOV.B TABLE6(R5) ,R6 ; (STATUSX-TABLE6)/2 
RLA R6 ;STATUSX-TABLE6 
ADD R6,PC ;TABLE6+STATUSX-TABLE6 -> PC 

TABLE6 . BYTE (STATUSO-TABLE6)/2 
. BYTE (STATUS1-TABLE6)/2 

. BYTE (STATUSN-TABLE6)/2 ;OFFSET FOR STATUS N 

A-17 



Appendixes MSP430 Family 

A 2.6 Argument Transfer with Subroutine Calls 

Subroutines often have arguments to work with. Several methods exist for the passing of 
these arguments to the subroutine: 
- On the stack 

In the words (bytes) after the subroutine call 
- In registers 
- Address is contained in the word after the subroutine call 

The information passed may itself consist of numbers, addresses, counter contents, 
upper and lower limits etc. It depends only on the application. 

A 2.6.1 Arguments on the Stack 

The arguments are pushed on the stack and read afterwards by the called subroutine. 
The subroutine is responsible for the necessary housekeeping (here, the transfer of the 
return address to the top of the stack). 

Advantages: 
• Usable generally; no registers have to be freed for argument passing 
• Variable arguments are possible 

Disadvantages: 
• Overhead due to necessary housekeeping 
• Not easy to understand 

EXAMPLE: The subroutine SUBR gets its information from two arguments pushed onto 
the stack before the calling. No information is given back; normal return from subroutine 
is used. 

PUSH ARGUMENT 0 1ST ARGUMENT FOR SUBROUTINE 
PUSH ARGUMENT 1 2ND ARGUMENT 
CALL #SUBR SUBROUTINE CALL 

SUBR MOV 4 (SP) ,RX COPY ARGUMENTO TO RX 
MOV 2 (SP) ,RY COPY ARGUMENT1 TO RY 
MOV @SP,4(SP) RETURN ADDRESS TO CORRECT LOC. 
ADD #4,SP PREPARE SP FOR NORMAL RETURN 

PROCESSING OF DATA 
RET NORMAL RETURN 

A-18 



MSP430 Family Appendixes 

SP -

After the Call After the Return 

ArgumentO 

Argument1 

Return Address 

TOS before CALL S P ---iI 
1-----------1 

Address N+4 

Address N+2 

Address N 

Figure A2: Arguments on the Stack 

EXAMPLE: The subroutine SUBR gets its information from two arguments pushed onto 
the stack before the calling. Three result words are returned on the stack: it is the 
responsibility of the calling programme to pop the results from the stack. 

PUSH ARGUMENT 0 1ST ARGUMENT FOR SUBROUTINE 
PUSH ARGUMENT 1 2ND ARGUMENT 
CALL #SUBR SUBROUTINE CALL 
POP R15 RESULT2 -> R15 
POP R14 RESULT1 -> R14 
POP R13 RESULTO -> R13 

SUBR MOV 4(SP) ,RX COpy ARGUMENTO TO RX 
MOV 2(SP) ,RY COPY ARGUMENT 1 TO RY 

PROCESSING CONTINUES 
PUSH 2 (SP) SAVE RETURN ADDRESS 
MOV RESULTO, 6 (SP) 1ST RESULT ON STACK 
MOV RESULT1,4(SP) 2ND RESULT ON STACK 
MOV RESULT2,2(SP) 3RD RESULT ON STACK 
RET 

After the subroutine call and the RET, the stack looks as follows: 

After the Call After the Return 

TOS before CALL 

ArgumentO Address N+4 ResullD 

Argument1 Address N+2 Result1 

SP - Return Address Address N SP - Result2 

Figure A3: Arguments on the Stack 

A-19 



Appendixes MSP430 Family 

Note: Only Data at or above the Top Of Stack is Protected Against 
Overwriting 

If the stack is involved during data transfers it is very important to have in mind 
that only data at or above the top of stack (TOS, the word the SP points to) is 
protected against overwriting by enabled interrupts. This does not allow moving 
the SP above the last item on the stack; indexed addressing is needed instead. 

A 2.6.2 Arguments following the Subroutine Call 

The arguments follow the subroutine call and are read by the called subroutine. The 
subroutine is responsible for the necessary housekeeping; here, the adaptation of the 
return address on the stack to the 1 st word after the arguments. 

Advantages: 
• Very clear and good readable interface 

Disadvantages: 
• Overhead due to necessary housekeeping 
• Only fixed arguments possible 

EXAMPLE: The subroutine SUBR gets its information from two arguments following the 
subroutine call. Information can be given back on the stack or in registers. 

CALL #SUBR SUBROUTINE CALL 
. WORD START 
. BYTE 24,0 

SUBR MOV @SP,R5 
MOV @R5+,R6 
MOV @R5+,R7 
MOV R5,0(SP) 

RET 

A 2.6.3 Arguments in Registers 

START OF TABLE 
LENGTH OF TABLE, FLAGS 

COPY ADDRESS 1ST ARGUMENT TO R5 
MOVE 1ST ARGUMENT TO R6 
MOVE ARGUMENT BYTES TO R7 
ADJUST RETURN ADDRESS ON STACK 
PROCESSING OF DATA 
NORMAL RETURN 

The arguments are moved into defined registers and used afterwards by the subroutine. 

Advantages: 
• Simple interface and easy to understand 
• Very fast 
• Variable arguments are possible 

Disadvantages: 
• Registers have to be freed 

EXAMPLE: The subroutine SUBR gets its information inside two registers which are 
loaded before the calling. Information can be given back or not, with the same registers. 

A-20 



MSP430 Family Appendixes 

SUBR 

MOV 
MOV 
CALL 

RET 

ARGO, R.5 
ARG1,R6 
#SUBR 

A 2.7 Interrupt Vectors in RAM 

1ST ARGUMENT FOR SUBROUTINE 
2ND ARGUMENT 
SUBROUTINE CALL 

PROCESSING OF DATA 
NORMAL RETURN 

If the destination address of an interrupt changes with the programme run it is valuable 
to have the possibility to modify the pointer. The vector itself (which resides in ROM) is 
not changeable but a second pointer residing in RAM may be used for this purpose: 

EXAMPLE: The interrupt handler for the Basic Timer starts at location BTHAN1 after 
initialization and at BTHAN2 when a certain condition is met (for example calibration is 
made). 

BASIC TIMER INTERRUPT GOES TO ADDRESS BTVEC. THE INSTRUCTION 
"MOV @PC,PC" WRITES THE ADDRESS IN BTVEC+2 INTO THE PC: PROGRAM 
CONTINUES AT THAT ADDRESS 

BTVEC 
.SECT 
. WORD 
.WORD 

"VAR",0200H 
o 
o 

RAM START 
OPCODE "MOV @PC,PC" 
ACTUAL HANDLER START ADDR. 

; THE SOFTWARE VECTOR BTVEC IS INITIALIZED: 

INIT MOV 
MOV 

#04020H,BTVEC 
#B1'HAN1, BTVEC+2 

OPCODE "MOV @PC,PC 
START WITH HANDLER BTHAN1 
INITIALIZATION CONTINUES 

THE CONDITION IS MET: THE BASIC 'rIMER INTERRUPT IS HANDLED 
AT ADDRESS BTHAN2 STARTING NOW 

MOV #BTHAN2,BTVEC+2 CONT. WITH ANOTHER HANDLER 

THE INTERRUPT VECTOR FOR THE BASIC TIMER CONTAINS THE RAM 
ADDRESS OF THE SOFTWARE VECTOR BTVEC: 

.ORG 

. WORD 
OFFE2H 
BTVEC 

VECTOR ADDRESS BASIC TIMER 
FETCH ACTUAL VECTOR THERE 

A-21 



Appendixes MSP430 Family 

A 3 References 

MSP430 Family Architecture Guide and Module Library 1994 

MSP430 Family Assembly Language Tools User's Guide 1994 

MSP430 Family Metering User's Guide 1994 

The Art of Electronics, Cambridge University Press 1989 

A-22 



Notes 



TI SC Sales TI Technology 
Offices in Europe Centres 

Belgium Hungary France 
Texas Instruments S.A.IN.v. TI Representation: Texas Instruments 
Brussels Budapest Velizy Villacoublay 
Tel.: (02) 7 26 75 80 Tel.: (1) 1 76 37 33 Tel.: Standard: 
Fax: (02) 7 26 72 76 Fax: (1) 2 02 62 56 (1) 30 70 10 01 

Technical Service: 
Finland Italy (1) 30 70 11 33 
Texas Instruments OY Texas Instruments S.p.A. 
Espoo Agrate Brianza (Mi) Holland 
Tel.: (0) 43 54 20 33 Tel.: (0 39) 6 84 21 Texas Instruments B.V. 
Fax: (0) 46 73 23 Fax: (0 39) 6 84 29 12 Amstelveen 

Tel.: (020) 5 45 06 00 
France, Republic of Ireland Fax: (0 20) 6 40 38 46 
Middle-East & Africa Texas Instruments Ltd. 
Texas Instruments Dublin Italy 
Velizy Villacoublay Tel.: (01) 4 75 52 33 Texas Instruments S.p.A. 
Tel.: (1) 30 70 10 01 Fax: (01) 4 78 14 63 Agrate Brianza (Mi) 
Fax: (1) 30 70 10 54 Tel.: (039) 6 84 21 

Spain Fax: (0 39) 6 84 29 12 
Germany Texas Instruments S.A. 
Texas Instruments GmbH Madrid Sweden 
Freising Tel.: (1) 3 72 80 51 Texas Instruments 
Tel.: (0 81 61) 80-0 Fax: (1) 3 72 82 66 International Trade Corporation 
Fax: (0 81 61) 80 45 16 Kista 

Sweden Tel.: (08) 7 52 58 00 
Hannover Texas Instruments Fax: (08) 7 51 97 15 
Tel.: (05 11) 90 49 60 International Trade Corporation 
Fax: (05 11) 6 49 03 31 Kista 

Tel.: (08) 7 52 58 00 
Ostfildern Fax: (08) 7 51 97 15 
Tel.: (07 11) 3 40 30 European SC 
Fax: (07 11) 3 40 32 57 United Kingdom Information Centre 

Texas Instruments Ltd. 
Holland Northampton Telephone: 
Texas Instruments B.V. Tel.: (0 16 04) 66 30 00 Dutch (33) 1 30 70 11 66 
Amstelveen Fax: (0 16 04) 66 30 01 English (33) 1 30 70 11 65 
Tel.: (0 20) 6 40 04 16 French (33) 1 30 70 11 64 
Fax: (0 20) 5 45 06 60 German (33) 1 30 70 11 68 

(0 20) 6 40 38 46 Italian (33) 1 30 70 11 67 

Fax: (33) 1 30 70 10 32 

~TEXAS 
INSTRUMENTS 

Printed in Gennany Chlorine free paper - to protect our environment 
by Sellier Druck, Angerstr. 54, 85354, Freising 



'1!1 TEXAS 
INSTRUMENTS 

SLAUE11 




