TMS320C2x
User’s Guide

1604907-9761 revision C
January 1993

i3
TEXAS
INSTRUMENTS

Chapter 1

Introduction

The TMS320 family of 16/32-bit single-chip digital signal processors combines
the flexibility of a high-speed controller with the numerical capability of an array
processor, offering an inexpensive alternative to custom VLSI and multichip
bit-slice processors for signal processing.

The TMS32010, the first digital signal processor in the TMS320 family, was
introduced in 1982. Since that time, the TMS320 family has established itself
as the industry standard for digital signal processing. The powerful instruction
set, inherent flexibility, high-speed number-crunching capabilities, and innova-
tive architecture make these high-performance, cost-effective processors
ideal for many telecommunications, computer, commercial, industrial, and mil-
itary applications.

Note:

Throughout this document, TMS320C2x refers to the TMS320C25,
TMS320C25-33, TMS320C25-50, TMS320E25, TMS320C26, and
TMS320C28 unless stated otherwise. Where applicable, ROM includes the
on-chip EPROM of the TMS320E25.

Topics in this chapter include

Topic Page
1.1 General Descriptiont 1-2
1.2 Key Features ... e 1-6
1.3 Typical Applicationst 1-8

11

General Description

1.1 General Description

1-2

The TMS320 family currently consists of five generations: TMS320C1x,
TMS320C2x, TMS320C3x, TMS320C4x, and TMS320C5x (see Figure 1-1).
The family expansion includes enhancements of existing generations and
more powerful new generations of digital signal processors. Many features are
common among these generations. Some specific features are added in each
processor to provide different cost/performance tradeoffs. Software compati-
bility is maintained throughout the family to protect the user’s investmentin ar-
chitecture. Each processor has software and hardware tools to facilitate rapid
design.

This document discusses the TMS320C2x devices:

[TMS320C25, a CMOS 40-MHz digital signal processor capable of twice
the performance of the TMS320C1x devices

TMS320C25-33 a CMOS 33-MHz version of the TMS32025

[

[TMS320C25-50, a CMOS enhanced-speed (50-MHz) version of the
TMS320C25

[TMS320E25, a version of the TMS320C25 (40-MHz) with on-chip ROM
replaced by secure, on-chip EPROM

] TMS320C26, aversion ofthe TMS320C25 (40-MHz) with expanded confi-
gurable program/data RAM

[The TMS320C28, a version of the TMS320C25 (40-MHz) with expanded
8K-word on-chip ROM and an added power-down mode.

Introduction

Figure 1-1. TMS320 Device Evolution

mOzZ>»>ZX0V0TIoMT

NWIOrTMZ=T~NT—=

TMS320C1x

TMS320C10
TMS320C10-14/-25
TMS320C14
TMS320E14/P14

TMS320C15/LC15
TMS320E15/P15
TMS320C15-25
TMS320E15-25
TMS320C16
TMS320C17/LC17

TMS320E17/P17

Fixed-Point Generations

TMS320C2x

TMS320C25
TMS320E25
TMS320C25-33
TMS320C25-50
TMS320C26
TMS320C28

TMS320C50
TMS320C51
TMS320C53

GENERATION

W\
Floating-Point Generations
N Fleating

General Description

Plans for expansion of the TMS320 family include more spinoffs of the existing
generations as well as more powerful future generations of digital signal pro-

cessors.

The TMS320 family combines the high performance and specialized features
necessary in digital signal processing (DSP) applications with an extensive
program of development support, including hardware and software develop-
menttools, product documentation, textbooks, newsletters, DSP design work-
shops, and a variety of application reports. See Appendix K for a discussion

of the wide range of development tools available.

1-3

General Description

The combination of the TMS320's Harvard-type architecture (separate pro-
gram and data buses) and its special digital signal processing instruction set
provide speed and flexibility to execute 12.8 MIPS (million instructions per se-
cond). The TMS320 family optimizes speed by implementing functions in
hardware that other processors implement through software or microcode.
This hardware-intensive approach provides the design engineer with power
previously unavailable on a single chip.

The TMS320C2x generation includes six members: TMS320C25,
TMS320C25-33, TMS320C25-50, TMS320E25, TMS320C26, and
TMS320C28. Table 1-1 provides an overview of the TMS320C2x generation
of processors with comparisons of memory, 1/O, cycle timing, and package

type.

Table 1-1. TMS320C2x Processors Overview

Memory
Device On-chip ROM/ Off-chip /0 Ports T Cycle Package
RAM EPROM Prog Data Time Type*

Ser Par DMA (ns) PGA PLCC CER QFP
TMS320C25% 544 4K 64K 64K Yes 16x16 Con 100 68 68 — —
TMS320C25-33 544 4K 64K 64K Yes 16x16 Con 120 — 68 — —
TMS320C25-508 544 4K 64K 64K Yes 16x16 Con 80 — 68 — —
TMS320E258 544 4K 64K 64K Yes 16x16 Con 100 — — 68 80
TMS320C26 1568 256 64K 64K Yes 16x16 Con 100 — 68 — —
TMS320C28 544 8K 64K 64K Yes 16 x16 Con 100 — 68 — 80

tSer = serial; Par = parallel; DMA = direct memory access; Con = concurrent DMA.

FMilitary version available; contact nearest Tl Field Sales Office for availability.

§Military version planned; contact nearest Tl Field Sales Office for details.

*PGA = 68-pin grid array; PLCC = plastic-leaded chip carrier; CER = surface mount ceramic-leaded chip carrier (CER-QUAD);
QFP = plastic quad flat package

1-4

The TMS320C25, like all members of the TMS320C2x generation, is pro-
cessed in CMOS technology. The TMS320C25 is capable of executing 10 mil-
lion instructions per second. Enhanced features such as 24 additional instruc-
tions (133 total), eight auxiliary registers, an eight-level hardware stack, 4K
words of on-chip program ROM, a bit-reversed indexed addressing mode, and
the low power dissipation inherent to the CMOS process contribute to the high
performance.

The TMS320C25-33 is a 33-MHz version of the TMS320C25. It is capable of
an instruction cycle of 120 ns. It is architecturally identical to the 40-MHz ver-
sion of the TMS320C25 and is pin-for-pin and object-code compatible with the
TMS320C25.

The TMS320C25-50 is a high-speed version of the TMS320C25. Itis capable
of an instruction cycle time of 80 ns. Itis architecturally identical to the 40-MHz
version of the TMS320C25 and is pin-for-pin and object-code compatible with
the TMS320C25.

Introduction

General Description

The TMS320E25 is identical to the TMS320C25, except that the on-chip
4K-word program ROM is replaced with a 4K-word on-chip program EPROM.
On-chip EPROM allows realtime code development and modification for im-
mediate evaluation of system performance.

The TMS320C26 is pin-for-pin and object-code compatible (except for RAM
configuration instructions) with the TMS320C25. It is capable of an instruction
cycle time of 100 ns. The enhancement over the TMS320C25 consists of a
larger, configurable, on-chip RAM divided into 4 blocks, for a total 1568-word
program/data space. The TMS320C26 is similar to the TMS320C25 except for
its internal memory configuration. This is discussed in Section 3.4 and in Ap-
pendix B.

The TMS320C28 s object code-compatible with the TMS320C25. Itis capable
of aninstruction cycle time of 100 ns. The TMS320C28 contains an expanded
8K words of on-chip program ROM and an added power-down mode, which
conserves power while saving the contents of on-chip SRAM (B0, B1, and B2).

1-5

Key Features

1.2 Key Features

1-6

Key features of the TMS320C2x devices are listed below. Those that pertain
to a particular device are followed by the device name within parentheses.

d

(I T

I Ty Ay N Ny

(I Iy N Iy Iy Ny Ay I

Instruction cycle timing:

80-ns (TMS320C25-50)
100-ns (TMS320C25, TMS320E25, TMS320C26, and TMS320C28)
120-ns (TMS320C25-33)

544-word programmable on-chip data RAM
1568-word configurable program/data RAM (TMS320C26 only)

4K-word on-chip program ROM (TMS320C25, TMS302C25-33, and
TMS320C25-50)

8K-word on-chip program ROM (TMS320C28 only)
Secure 4K-word on-chip program EPROM (TMS320E25)
128K-word total data/program memory space

32-bit ALU/accumulator

16- x16-bit parallel multiplier with a 32-bit product
Single-cycle multiply/accumulate instructions

Repeat instructions for efficient use of program space and enhanced
execution

Block moves for data/program management

On-chip timer for control operations

Up to eight auxiliary registers with dedicated arithmetic unit

Up to eight-level hardware stack

Sixteen input and sixteen output channels

16-bit parallel shifter

Wait states for communication to slower off-chip memories/peripherals
Serial port for direct codec interface

Synchronization input for synchronous multiprocessor configurations

Introduction

U U0 oo ddd o

Key Features

Global data memory interface

TMS320C1x source-code upward compatibility

Concurrent DMA using an extended hold operation

Instructions for adaptive filtering, FFT, and extended-precision arithmetic
Bit-reversed indexed-addressing mode for radix-2 FFT

On-chip clock generator

Single 5-V supply

Power-down mode (TMS320C28 only)

Device packaging:

68-pin PGA (TMS320C25)

68-lead PLCC (TMS320C25, TMS320C26, and TMS320C28)
68-lead CER-QUAD (TMS320E25)

80-pin QFP (TMS320C28)

Commercial and military versions available

1-7

Typical Applications

1.3 Typical Applications

The TMS320 family’s unique versatility and realtime performance offer flexible
design approaches in a variety of applications. In addition, TMS320 devices
can simultaneously provide the multiple functions often required in those com-
plex applications. Table 1-2 lists typical TMS320 family applications.

Table 1-2. Typical Applications of the TMS320 Family

General-Purpose DSP

Graphics/Imaging

Instrumentation

Digital Filtering
Convolution

Correlation

Hilbert Transforms

Fast Fourier Transforms
Adaptive Filtering
Windowing

Waveform Generation

3-D Rotation

Robot Vision

Image Transmission/
Compression

Pattern Recognition
Image Enhancement
Homomorphic Processing
Workstations
Animation/Digital Map

Spectrum Analysis
Function Generation
Pattern Matching
Seismic Processing
Transient Analysis
Digital Filtering
Phase-Locked Loops

Speaker Verification
Speech Enhancement
Speech Synthesis
Text-to-Speech

Laser Printer Control
Engine Control
Motor Control

Voice/Speech Control Military
Voice Mail Disk Control Secure Communications
Speech Vocoding Servo Control Radar Processing
Speech Recognition Robot Control Sonar Processing

Image Processing
Navigation

Missile Guidance

Radio Frequency Modems

Telecommunications

Automotive

Echo Cancellation
ADPCM Transcoders
Digital PBXs

Line Repeaters
Channel Multiplexing

FAX

Cellular Telephones
Speaker Phones
Digital Speech
Interpolation (DSI)

Engine Control
Vibration Analysis
Antiskid Brakes
Adaptive Ride Control
Global Positioning

Power Tools

Digital Audio/TV
Music Synthesizer
Toys and Games
Solid-State Answering
Machines

Numeric Control
Security Access
Power Line Monitors

1200 to 19200-bps Modems X.25 Packet Switching Navigation

Adaptive Equalizers Video Conferencing Voice Commands

DTMF Encoding/Decoding Spread Spectrum Digital Radio

Data Encryption Communications Cellular Telephones
Consumer Industrial Medical

Radar Detectors Robotics Hearing Aids

Patient Monitoring
Ultrasound Equipment
Diagnostic Tools
Prosthetics

Fetal Monitors

Many of the TMS320C2x features, such as single-cycle multiply/accumulate
instructions, 32-bit arithmetic unit, large auxiliary register file with a separate
arithmetic unit, and large on-chip RAM and ROM make the device particularly
applicable in digital signal processing systems. At the same time, general-pur-
pose applications are greatly enhanced by the large address spaces, on-chip
timer, serial port, multiple interrupt structure, provision for external wait states,
and capability for multiprocessor interface and direct memory access.

1-8

Introduction

Typical Applications

The TMS320C2x has the flexibility to be configured to satisfy a wide range of
system requirements. This allows the device to be applied in systems currently
using costly bit-slice processors or custom ICs. These are examples of such
system configurations:

] A standalone system using on-chip memory,

[Parallel multiprocessing systems with shared global data memory, or

[] Host/peripheral coprocessing using interface control signals.

1-9

1-10 Introduction

Chapter 2

Pinouts and Signal Descriptions

The TMS320C2x generation digital signal processors are available in one or
more of four package types. The TMS320C25 (40-MHz version only) is avail-
able in a 68-pin grid array (PGA) package. The TMS320C25 (33-MHz,
40-MHz, and 50-MHz versions) and the TMS320C26 are available in a plastic
68-lead chip carrier (PLCC) package. The TMS320E25 is packaged in a ce-
ramic surface mount 68-lead chip carrier (CER-QUAD) package. The
TMS320C28 is available in a 80-pin quad flat package (QFP). All TMS320
packages conform to JEDEC specifications.

Conversion sockets that accept PLCC and CER-QUAD packages and have
a PGA footprint are commercially available. For more information, refer to Ap-
pendix D.

When using the XDS emulator, refer to subsection 6.1.3 for user target design
considerations.

The TMS320C26 is similar to the TMS320C25 except for its internal memory
configuration. This is discussed in Section 3.4 and in Appendix B.

Topics in this chapter include

Topic Page
2.1 TMS320C2X PiNOULSttt e 2-2
2.2 TMS320C2x Signal Descriptions ..., 2-4

2-1

TMS320C2x Pinouts

2.1 TMS320C2x Pinouts

Figure 2—1 shows pinouts of the PGA, PLCC, and CER-QUAD packages for
the TMS320C2x devices. Note that the pinout and external dimensions of
PLCC and CER-QUAD are identical. Figure 2—2 shows preliminary pinouts
of the QFP package for the TMS320C28 device.

Figure 2—1. TMS320C2x Pin Assignments

68-Pin GB Pin Grid Array
Ceramic Package (Top View)

1 2 3 4 5 6 7 8 9 10 11

/

A e © o o o o o o o

B e @ © o o o o o o (0 o
c o o ° o
D o o e o
E o o e o
F LI } e o
G o o e o
H o o e o
J o o o o
K e @ o o o o o o o (0 o
L e © o o o o o o o

68-Pin FN Plastic Leaded Chip Carrier
Package and 68-Pin FZ CER-QUAD
Package (Top View)

TACK
MSC
CLKOUT1
CLKOUT2
XF
HOLDA
DX

FSX

X2 CLKIN
X1

BR

STRB
RIW

PS

is

DS

Vss

2.2 Pinouts and Signal Descriptions

Figure 2-2. TMS320C28 Pin Assignments

IACK O
PDI 4

Vece E

Vce

CLKX 5

Vss
CLKR o
RS o
READY
HOLD
BIO O
MP/MC O
D15 O
Vss 5
D14 Y
D13 E
vee
D12
D11
D10
DO
D6]

Vss
Vss

80-Pin PH Quad Flat Package t

[WAKEUP
- Vss
- A15

— A7

) A6
Vss
A5

Ad
A3

4 Al

— PDACK

]
]

(Top View)
— N
53 6. .5 @

BE% L0 BxsSaxEB 0
2334R S5ESRBhERRLIE
oo ooonnnonnnn
(" 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
10 64
2 63
3 62
4 61
5 60
6 59
7 58
8 57
9 56
10 55
1 54
12 53
13 52
14 51
15 50
16 49
17 48
18 47
19 46
20 45
21 a4
22 43
5225 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4Q,
24IJIJIJI_IIJIJIJIJIJIJIJIJIJIJIJIJ41
588288 gEBREEE 85§
> P ZIZiZ2 = o

t Packages are shown for pinout reference only.

Vss
A0

TMS320C2x Pinouts

2-3

ADVANCE INFORMATION

TMS320C2x Signal Descriptions

2.2 TMS320C2x Signal Descriptions

Table 2-1. TMS320C2x Signal Descriptions

The signal descriptions for the TMS320C2x devices are provided in this sec-
tion. Table 2-1 lists each signal, its pin location (PGA, PLCC, and CER-
QUAD), function, and operating mode(s): that is, input, output, or high-imped-
ance state as indicated by I, O, or Z. The signals in Table 2—1 are grouped ac-
cording to function and alphabetized within that grouping.

Signal Pin 1ozt Description
(PGA/PLCCT
Address/Data Buses

Al15 MSB L10/43 0lz Parallel address bus A15 (MSB) through AO (LSB).

Al4 K9/42 Multiplexed to address external data/program memory or /0.

A13 L9/41 Placed in high-impedance state in the hold mode.

Al2 K8/40

All L8/39

Al0 K7/38

A9 L7/37

A8 K6/36

A7 K5/34

A6 L5/33

A5 K4/32

A4 L4/31

A3 K3/30

A2 L3/29

Al K2/28

AO LSB K1/26

D15 MSB B6/2 1/0/Z2 Parallel data bus D15 (MSB) through DO (LSB). Multiplexed to

D14 A5/3 transfer data between the TMS320C2x and external data/pro-

D13 B5/4 gram memory or I/O devices. Placed in the high-impedance state

D12 A4/5 when not outputting or when RS or HOLD is asserted.

D11 B4/6

D10 A3/7

D9 B3/8

D8 A2/9

D7 B2/11

D6 C1/12

D5 C2/13

D4 D1/14

D3 D2/15

D2 E1/16

D1 E2/17

DO LSB F1/18

Interface Control Signals

DS K10/45 O/z Data, program, and I/O space select signals. Always high unless

PS J10/47 low level asserted for communicating to a particular external

IS J11/46 space. Placed in high-impedance state in the hold mode.

READY B8/66 | Data ready input. Indicates that an external device is prepared for
the bus transaction to be completed. If the device is not ready
(READY = 0), the TMS320C2x waits one cycle and checks
READY again. READY also indicates a bus grant to an external
device after a BR (bus request) signal.

T Pin numbers apply to CER-QUAD as well as to PLCC.

¥ Input/Output/High-impedance state.

2-4

Pinouts and Signal Descriptions

TMS320C2x Signal Descriptions

Table 2—-1. TMS320C2x Signal Descriptions (Continued)

Signal

Pin
(PcAPLCCT)

ljorz+

Description

Interface Control Signals (Continued)

RIW

H11/48

O/z

Read/write signal. Indicates transfer direction when communicat-
ing to an external device. Normally in read mode (high), unless
low level asserted for performing a write operation. Placed in
high-impedance state in the hold mode.

STRB

H10/49

0o/z

Strobe signal. Always high unless asserted low to indicate an ex-
ternal bus cycle. Placed in high-impedance state in the hold
mode.

Multiprocessing Signals

G11/50

o

Bus request signal. Asserted when the TMS320C2x requires ac-
cess to an external global data memory space. READY is as-
serted to the device when the bus is available and the global data
memory is available for the bus transaction.

HOLD

A7/67

Hold input. When this signal is asserted, the TMS320C2x places
the data, address, and control lines in the high-impedance state.

HOLDA

E10/55

Hold acknowledge signal. Indicates that the TMS320C2x has
gone into the hold mode and that an external processor may ac-
cess the local external memory of the TMS320C2x.

SYNC

F2/19

Synchronization input._Allows clock synchronization of two or
more TMS320C2xs. SYNC is an active-low signal and must be
asserted on the rising edge of CLKIN.

Interrupt and Miscellaneous Signals

BIO

B7/68

Branch control input. Polled by BIOZ instruction. I BIO is low, the
TMS320C2x executes a branch. This signal must be active during
the BIOZ instruction fetch.

IACK

B11/60

Interrupt acknowledge signal. Output is valid only while
CLKOUT1 s low. Indicates receipt of an interrupt and that the pro-
gram is branching to the interrupt-vector location designated by
A15-A0.

INT2
INT1
INTO

H1/22
G2/21
G1/20

External user interrupt inputs. Prioritized and maskable by the in-
terrupt mask register and the interrupt mode bit.

MP/MC

A6/1

Microprocessor/microcomputer mode select pin for the
TMS320C25. When asserted low (microcomputer mode), the pin
causes the internal ROM to be mapped into the lower 4K words
of the program memory map. In the microprocessor mode, the
lower 4K words of program memory are external.

T Pin numbers apply to CER-QUAD as well as to PLCC.
T Input/Output/High-impedance state.

2-5

TMS320C2x Signal Descriptions

Table 2—-1. TMS320C2x Signal Descriptions (Continued)

Signal Pin Y43 Description
(PGA/PLCCT
Interrupt and Miscellaneous Signals (Continued)

MSC C10/59 (@) Microstate complete signal. Asserted low and valid only during
CLKOUTL1 low when the TMS320C2x has just completed a
memory operation, such as an instruction fetch or a data memory
read/write. MSC can be used to generate a one wait-state
READY signal for slow memory.

RS A8/65 | Reset input. Causes the TMS320C2x to terminate execution and
forces the program counter to zero. When RS is brought to a high
level, execution begins at location zero of program memory. RS
affects various registers and status bits.

XF D11/56 (0] External flag output (latched software-programmable signal).
Used for signaling other processors in multiprocessor configura-
tions or as a general-purpose output pin.

Supply/Oscillator Signals

CLKOUT1 C11/58 O Master clock output signal (CLKIN frequency/4). CLKOUT1 rises
atthe beginning of quarter-phase 3 (Q3) and falls at the beginning
of quarter-phase 1 (Q1).

CLKOUT2 D10/57 (0] A second clock output signal. CLKOUT2 rises at the beginning of
quarter-phase 2 (Q2) and falls at the beginning of quarter-phase
4(Q4).

Vce A10/61 | Four 5-V supply pins, tied together externally.

B10/62
H2/23
L6/35
Vss B1/10 Three ground pins, tied together externally.
K11/44
L2/27

X1 G10/51 (0] Output pin from the internal oscillator for the crystal. If a crystal is
not used, this pin should be left unconnected.

X2/CLKIN F11/52 | Input pin to the internal oscillator from the crystal. If crystal is not
used, a clock may be input to the device on this pin

T Pin numbers apply to CER-QUAD as well as to PLCC.
¥ Input/Output/High-impedance state.

2-6

Pinouts and Signal Descriptions

TMS320C2x Signal Descriptions

Table 2—-1. TMS320C2x Signal Descriptions (Continued)

Signal Pin l1o/z+ Description
(PcAPLCCT)
Serial Port Signals

CLKR B9/64 | Receive clock input. External clock signal for clocking data from
the DR (data receive) pin into the RSR (serial port receive shift
register). Must be present during serial port transfers.

CLKX A9/63 | Transmit clock input. External clock signal for clocking data from
the XSR (serial port transmit shift register) to the DX (data trans-
mit) pin. Must be present during serial port transfers.

DR J1/24 | Serial datareceive input. Serial datais received in the RSR (serial
port receive shift register) via the DR pin.

DX E11/54 0o/z Serial data transmit output. Serial data transmitted from the XSR
(serial port transmit shift register) via the DX pin. Placed in high-
impedance state when not transmitting.

FSR J2/25 | Frame synchronization pulse for receive input. The falling edge
ofthe FSR pulse initiates the data-receive process, beginning the
clocking of the RSR.

FSX F10/53 /0 Frame synchronization pulse for transmit input/output. The falling

edge of the FSX pulse initiates the data- transmit process, begin-
ning the clocking of the XSR. Following reset, the default operat-
ing condition of FSX is as an input. This pin may be selected by
software to be an output when the TXM bit in the status register
is setto 1.

T Pin numbers apply to CER-QUAD as well as to PLCC.
T Input/Output/High-impedance state.

Note: See Appendix C for TMS320C28 signal descriptions.

2-7

2-8

Pinouts and Signal Descriptions

About This Manual

Read This First

The purpose of this user’s guide is to serve as a reference book for the
TMS320C2x digital signal processors. Chapters 2 through 6 provide specific
information about the architecture and operation of the devices. Appendices
A through E furnish electrical specifications and mechanical data.

How to Use This Manual

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

This document contains the following chapters:

Introduction
Description and key features of the TMS320C2x generation of digital signal
processors.

Pinouts and Signal Descriptions
Package drawings for TMS320C2x devices. Functional listings of the signals,
their pin locations, and descriptions.

Architecture
TMS320C2x design description, hardware components, and device
operation. Functional block diagram and internal hardware summary table.

Assembly Language Instructions

Addressing modes and format descriptions. Instruction set summary listed
according to function. Alphabetized individual instruction descriptions with
examples.

Software Applications
Software application examples for the use of various TMS320C2x instruction
set features.

Hardware Applications

Hardware design techniques and application examples for interfacing to
memories, peripherals, or other microcomputers/microprocessors. XDS
design considerations. System applications.

How to Use This Manual

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix |

Appendix J

Appendix K

Eleven appendices are included to provide additional information.

TMS320C25 Digital Signal Processor
Electrical specifications, timing, and mechanical data for the TMS320C25
devices.

TMS320C26 Digital Signal Processor
Data sheet information for the TMS320C26 digital signal processor.

TMS320C28 Digital Signal Processor
Data sheet information for the TMS320C28 digital signal processor.

SMJ320C2x Digital Signal Processors
Data sheet information for the SMJ320C2x digital signal processors family.

Instruction Cycle Timings
Listings of the number of cycles for an instruction to execute in a given memory
configuration on the TMS320C25.

TMS320E25 EPROM Programming
Programming hardware description and methodology.

Analog Interface Peripherals and Applications
Discussion of various analog input/output devices that interface directly to
TMS320 DSPs and their applications.

Memories , Analog Converters , Sockets , and Crystals

Listings of the Tl memories, analog converters, and sockets available to
support the TMS320C2x devices in DSP applications. Crystal specifications
and vendors.

ROM Codes
Discussion of ROM codes (mask options) and the procedure for
implementation.

Quality and Reliability
Discussion of Texas Instruments quality and reliability criteria for evaluating
performance.

Development Support
Listings of the hardware and software available to support the TMS320C2x
devices.

Read This First

Style and Symbol Conventions

Style and Symbol Conventions
This document uses the following conventions.

[Program listings, program examples, interactive displays, filenames, and

symbol names are shown in a special typeface similar to a
typewriter’s. Examples use a bold version of the special typeface for
emphasis; interactive displays use a bold version of the special

typeface to distinguish commands that you enter from items that the
system displays (such as prompts, command output, error messages,
etc.).

Here is a sample program listing:

0011 0005 0001 field 1,2
0012 0005 0003 field 3,4
0013 0005 0006 field 6,3

0014 0006 .even
Here is an example of a system prompt and a command that you might
enter:

C: csr—a/userfti/simuboard/utilities

(1 In syntax descriptions, the instruction, command, or directive is in a bold
typeface fontand parameters areinan italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in jtalics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect " section name”’, address

.asect is the directive. This directive has two parameters, indicated by
section name and address. When you use .asect, the first parameter must
be an actual section name, enclosed in double quotes; the second
parameter must be an address.

(] Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don't enter the brackets themselves. Here’s an example of an instruction
that has an optional parameter:

LALK 16-bit constant|, shiff]

The LALK instruction has two parameters. The first parameter, 16-bit
constant, is required. The second parameter, shift, is optional. As this
syntax shows, if you use the optional second parameter, you must
precede it with a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the
pathname (they are not optional).

U =)

This provides three choices: *, *+, or *— .

Style and Symbol Conventions / Information About Cautions

[] Braces({and})indicate alist. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

Unless the listis enclosed in square brackets, you must choose one item
from the list.

[] Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

.byte valueg [, ..., valuep]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

Information about Cautions

This book may contain cautions. A caution describes a situation that could
potentially damage your software or equipment.

This is what a caution looks like.

The information in a caution is provided for your protection. Please read each
caution carefully.

vi Read This First

Related Documentation From Texas Instruments

Related Documentation From Texas Instruments
General Digital Signal Processing

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw-Hill Company, Inc., 1979.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1974.

Burrus, C.S. and Parks, TW., DFT/FFT and Convolution Algorithms. New
York, NY: John Wiley and Sons, Inc., 1984.

Digital Signal Processing Applications with the TMS320 Family, Texas
Instruments, 1986; Prentice-Hall, Inc., 1987.

Gold, Bernard and Rader, C.M., Digital Processing of Signals. New York, NY:
McGraw-Hill Company, Inc., 1969.

Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1977.

IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Processing.
New York, NY: IEEE Press, 1979.

Jackson, Leland B., Digital Filters and Signal Processing. Hingham, MA:
Kluwer Academic Publishers, 1986.

Jones, D.L. and Parks, T.W., A Digital Signal Processing Laboratory Using the
TMS32010. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Lim, Jae and Oppenheim, Alan V. (Editors), Advanced Topics in Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988.

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Canada:
Carleton University, 1983.

Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Oppenheim, Alan V. and Schafer, R.W., Digital Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1975.

Oppenheim, Alan V. and Willsky, A.N. with Young, |.T., Signals and Systems.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Parks, T.W. and Burrus, C.S., Digital Filter Design. New York, NY: John Wiley
and Sons, Inc., 1987.

Rabiner, Lawrence R., Gold and Bernard, Theory and Application of Digital
Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Treichler, J.R., Johnson, Jr., C.R. and Larimore, M.G., A Practical Guide to
Adaptive Filter Design. New York, NY: John Wiley and Sons, Inc., 1987.

Vii

Related Documentation From Texas Instruments

Trademarks

viii

Speech:

Gray, A.H. and Markel, J.D., Linear Prediction of Speech. New York, NY:
Springer-Verlag, 1976.

Jayant, N.S. and Noll, Peter, Digital Coding of Waveforms. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1984.

Papamichalis, Panos, Practical Approaches to Speech Coding. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1987.

Rabiner, Lawrence R. and Schafer, R.W., Digital Processing of Speech
Signals. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Image Processing :

Andrews, H.C. and Hunt, B.R., Digital Image Restoration. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1977.

Gonzales, Rafael C. and Wintz, Paul, Digital Image Processing. Reading, MA:
Addison-Wesley Publishing Company, Inc., 1977.

Pratt, William K., Digital Image Processing. New York, NY: John Wiley and
Sons, 1978.

Digital Control Theory

Jacquot, R., Modern Digital Control Systems. New York, NY: Marcel Dekker,
Inc., 1981.

Katz, P., Digital Control Using Microprocessors. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

Kuo, B.C., Digital Control Systems. New York, NY: Holt, Reinholt and Winston,
Inc., 1980.

Moroney, P., Issues in the Implementation of Digital Feedback Compensators.
Cambridge, MA: The MIT Press, 1983.

Phillips, C. and Nagle, H., Digital Control System Analysis and Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

MS, and MS-DOS are trademarks of Microsoft Corp.

VAX, VMS, and Ultrix are trademarks of Digital Equipment Corp.
PC-DOS is a trademark of International Business Machines Corp.
Sun 3 is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories.
XDS is a trademark of Texas Instruments Incorporated.

Read This First

If You Need Assistance. . .

If You Need Assistance

If you want to.

Do this. . .

Request more information about
Texas Instruments Digital Signal
Processing (DSP) products

Write to:

Texas Instruments Incorporated

Market Communications Manager, MS 736
P.O. Box 1443

Houston, Texas 77251-1443

Order Texas Instruments
documentation

Call the TI Literature Response Center:
(800) 477-8924

Ask questions about product
operation or report suspected
problems

Call the DSP hotline:
(713) 274-2320

Report mistakes in this document
or any other Tl documentation

Send your comments to:

Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443

Houston, Texas 77251-1443

Read This First

Contents

INErOAUCHION . e e 1-1
1.1 General DesCription 1-2
1.2 KeY FRaUIES ..ttt e e e e 1-6
1.3 Typical AppliCatioNS 1-8
Pinouts and Signal DescCriptions ottt 2-1
2.1 TMS320C2X PiNOULS ...\ttt ittt e e e e et 2-2
2.2 TMS320C2x Signal DeSCrptioNSottt e e e 2-4
ATCNI T UNE oo 3-1
3.1 Architectural OVEIVIEW 3-2
3.2 Functional Block Diagramt e 3-6
3.3 Internal Hardware SUMMaryttt et e 3-9
3.4 Memory Organizationt 3-12
341 Data MemMOIY .ot e 3-12
3.4.2 Program MemMOIYttt e e 3-12
3.4.3 TMS320C2X MemMOry Maps oiti ittt et e 3-15
3.4.4 TMS320C26 MemOory Mapsottt e 3-16
3.45 Memory-Mapped RegiSters ...t 3-22
3.4.6 Auxiliary RegiSterso 3-22
3.4.7 Memory Addressing MOdesot 3-25
3.4.8 Memory-to-Memory MOVES ... i 3-27
3.5 Central Arithmetic Logic Unit (CALU)t e 3-28
3.5.1 Scaling Shifter e 3-30
3.5.2 ALU and Accumulator 3-30
3.5.3 Multiplier, Tand P Registers ... 3-32
3.6 System CoNntrol 3-35
3.6.1 Program Counter and Stack 3-35
3.6.2 Pipeline Operationoo it 3-37
3.6.3 RESEl .. 3-47
3.6.4 StatuUsS ReQISIEIS . ..o\t 3-49
3.6.5 TimMer Operationt 3-52
3.6.6 Repeat CoUNterttt e e e e e e 3-53
3.6.7 Powerdown Modes (TMS320C25) ...t 3-53
3.7 External Memory and l/O Interface 3-54
3.7.1 Memory Combinationsi it 3-54
3.7.2 Internal Clock Timing Relationships it 3-56
3.7.3 General-Purpose I/OPins (BlIOand XF) ..., 3-56

Xi

Contents

Xii

3.8 I ITUPES . oottt 3-59
3.8.1 Interrupt Operationt 3-59
3.8.2 External Interrupt Interface i 3-60
3.9 Serial POt .. 3-63
3.9.1 Transmit and Receive Operationsoiiiiiiiineiiineennn .. 3-65
3.9.2 Timing and Framing Controlc. i 3-67
3.9.3 Burst-Mode Operationii it 3-68
3.9.4 Continuous Operation Using Frame Sync Pulses (TMS320C25) 3-69
3.9.5 Continuous Operation Without Frame Sync Pulses (TMS320C25) 3-71
3.9.6 Initialization of Continuous Operation Without Frame Sync Pulses 3-73
3.10 Multiprocessing and Direct Memory Access (DMA) ..., 3-75
3.10.1 SYNchronizationii i 3-75
3.10.2 Global MeMOrY 3-76
3.10.3 The Hold FUNCLION o e e 3-78
3.11 General Description of the TMS320C26 ...ttt 3-82
3.12 General Description of the TMS320C28 i 3-83
Assembly Language INSIrUCLIONS ...t e 4-1
4.1 Memory Addressing MOOESttt e e 4-2
4.1.1 Direct Addressing MOdet 4-2
4.1.2 Indirect Addressing Modet 4-4
4.1.3 Immediate AddressingMode 4-8
4.2 INSHUCHON Stt e 4-11
4.2.1 Symbols and Abbreviations 4-11
4.2.2 INStrUCtion Set SUMMANYottt 4-13
4.3 Individual Instruction DeSCHptioNSottt e 4-18
Software Applications 5-1
5.1 Processor Initialization e 5-2
5.1.1 TMS320C26 Download/BootstrappingModes 5-6
5.2 Program CONtrolo e 5-22
5.2.1 SUBIOULINES . ..ot 5-22
5.2.2 Software Stack 5-24
5.2.3 TimMer Operationii i e 5-25
5.2.4 Single-InStruction LOOPS oot 5-26
525 Computed GOTOS ..ottt e e 5-28
5.3 Interrupt Service ROULINE i e e e e e 5-29
5.3.1 Context SWItChing 5-29
5.3.2 Interrupt Priority e 5-32
5.4 Memory Managementt e 5-33
541 BIOCK MOVES ..ot 5-33
5.4.2 Configuring On-Chip RAM e e 5-35
5.4.3 Using On-Chip RAM for Program Executionouun... 5-38
5.5 Fundamental Logical and Arithmetic Operations 5-43
5.5.1 Status Register Effect on Data Processingcoiiiiiin.... 5-43
5.5.2 BitManipulation e 5-44

Table of Contents

Contents

5.6 Advanced Arithmetic Operationsiiiii i 5-46
5.6.1 Overflow Management i 5-46
B5.6.2 SCaliNg . ..ot 5-47
5.6.3 ShiftingData 5-47
5.6.4 MovINg Datao 5-51
5.6.5 Multiplication e 5-53
B5.6.6 DIVISION ..ot 5-57
5.6.7 Floating-Point Arithmetic 5-60
5.6.8 Indexed AdAreSSingoiiuiiin e 5-62
5.6.9 Extended-Precision Arithmetico 5-62
5.7 Application-Oriented Operationst 5-68
B.7.1 Compandingottt 5-68
572 FIRMR FIREriNG oo e 5-70
5.7.3 Adaptive Filteringot 5-71
5.7.4 Fast Fourier Transforms (FFT) e 5-75
5.75 PIDCONOl ...t 5-82
Hardware Applications o 6-1
6.1 System Control CirCUItIY ot e 6-2
6.1.1 Powerup Reset CirCUItot i e e et 6-2
6.1.2 Crystal Oscillator CirCuit e 6-5
6.1.3 User Target Design Considerations forthe XDS 6-7
6.2 Interfacing MEMOIIES o 6-11
6.2.1 Interfacing PROMS 6-12
6.2.2 Wait-State GeNeratoriitr it 6-19
6.2.3 Interfacing EPROMS 6-22
6.2.4 Interfacing Static RAMS e 6-26
6.2.5 Interface TiMiNg ANalYSISt 6-29
6.3 Direct Memory ACCESS (DMA) ...t e 6-32
6.4 Global MemMOrY 6-35
6.5 Interfacing Peripherals i e 6-37
6.5.1 Combo-Codec Interface 6-37
6.5.2 AlCINterface 6-40
6.5.3 Digital-to-Analog (D/A) Interface i 6-42
6.5.4 Analog-to-Digital (A/D) Interfacec.co i 6-43
B.5.5 1O POIS .. 6-46
6.6 System AppPliCatiONS 6-48
6.6.1 EchoCancellation 6-48
6.6.2 High-Speed Modem i 6-48
6.6.3 VOICE COAING ..ottt e e e 6-49
6.6.4 Graphics and Image Processingo 6-50
6.6.5 High-Speed Controlt e e e 6-51
6.6.6 Instrumentation and Numeric Processingcooiiiiaen... 6-51

xii

Contents

A
B
C
D
E

Xiv

TMS320C25 Digital Signal ProCessorst e e A-1
TMS320C26 Digital Signal ProCessor e B-1
TMS320C28 Digital Signal ProCessort e C-1
SMJ320C2x Digital Signal ProCessorsttt e e D-1
Instruction Cycle TiMINGSttt e e e e e E-1
E.1 TMS320C2x Instruction Cycle TIMiNgSouuiii e E-2
TMS320E25 EPROM Programmingttt et F-1
F.1 Using the EPROM Programmer Adapter Socket oo .. F-2
F1.1 Supplying External POWer it F-2
F.2 Programming and Verification i F-4
Fo2.0 ErasSUIe . F-7
F.2.2 FAST Programmingottt ettt ettt F-7
F.2.3 SNAP! Pulse Programminguiuumitinnein it F-8
F.2.4 Program Verify F-8
F2.5 ProgramInhibit F-11
F.2.6 RO ... F-11
F.2.7 OutputDisable F-11
F.3 EPROM Protection and Verificationiiiiiiiiiiinennn.. F-12
F.3.1 EPROMPIOteCtiONttt e e F-12
F3.2 Howthe RBITWOIKS e e F-14
F.3.3 Protect Verify F-15
Analog Interface Peripherals and Applications i G-1
G.1 Multimedia Applications e G-2
G.1.1 System Design Considerationsc.ouiiiiiiiii i G-2
G.1.2 Multimedia-Related DevViCeSscoiiiiii s G-4
G.2 Telecommunications Applications i G-5
G.3 Dedicated Speech Synthesis Applications i i, G-10
G.4 Servo Control/Disk Drive Applicationscc it G-12
G.5 Modem AppPlICAtIONS o e G-15
G.6 Advanced Digital Electronics Applications for Consumers G-18
Memories, Analog Converters, Sockets, and Crystals t H-1
H.1 Memories and Analog CONVEIEIS ottt H-2
H.2 SOCKEIS o H-3
H.3 CryStals .ot e e e H-4
ROM €008 ..ottt e e e e e -1
Quality and Reliability J-1
J.1 Reliahility Stress TestSt J-2
DeVvelopPMENt SUPPOI ..o K-1
K.1 Device and Development Support Tool Nomenclature K-2

Table of Contents

WWWWWWWNNNNNNNNNNNRPPRPRPEPRPRPPRPPRPRPPOO~NOORMWNENERPR

WWWWWWWWWwwWwwWwwWwwWwwWwwWwWwwWwwWwWwWwwWwWwWwWwWwWwWwwWwwWwWwwWwwWwwwwWwWwNN -
O PAPRWNRPODOONOODUPMWNRPRPOOO~NOUDMWNREO

Figures

TMS320 Device EVOIULIONo o e 1-3
TMS320C2X Pin ASSIgNMENTSttt e e et ettt 2-2
TMS320C28 Pin ASSIgNMENTSttt et e e e 2-3
TMS320C2x Simplified Block Diagramt 3-3
TMS320C25/E25 BIOCK Diagramttt i 3-7
TMS320C26 Block Diagram e 3-8
TMS320C2x On-Chip Data MEMOIY ot 3-13
TMS320C26 On-Chip Data MemMOrYot i 3-14
Comparison of Internal RAM Configured as Data Spaceccoovounn. 3-18
Comparison of Internal RAM Configured as Program Space 3-18
TMS320C2X MEMOTIY MapS ..ottt e e e e e e 3-19
TMS320C26 MeMOIY MapPS . ..ottt e e e 3-20
Indirect Auxiliary Register Addressing Example i 3-23
Auxiliary Register File 3-24
Methods of Instruction Operand Addressing, 3-26
Central Arithmetic Logic Unit (CALU), TMS320C2Xttt 3-29
Examples of TMS320C25 Carry Bit Operation, 3-31
Program Counter, Stack, and Related Hardware 3-35
Three-Level Pipeline Operation (TMS320C25)ot 3-38
Two-Level Pipeline Operation e 3-38
TMS320C25 Standard Pipeline Operation ...ttt 3-39
Pipeline Operation of ADD Followed by SACL 3-41
Pipeline Operation With Wait Statesc it i 3-42
Pipeline With External Data Bus Conflict it 3-43
Pipeline Operation of Branchto On-Chip RAM i 3-44
Pipeline Operation of RET From On-Chip RAM i, 3-45
TMS320C2x Status Register Organizationt 3-49
TMS320C26 Status Register Organizationciiiiiiiieinennnennan. 3-50
Timer BlocK Diagramo 3-52
Four-Phase CloCK 3-56
BIO Timing Diagramttt e e e e e 3-57
External Flag Timing Diagram oottt e 3-58
Interrupt Mask Register (IMR) 3-60
Internal Interrupt LOgic Diagram e 3-61
Interrupt Timing Diagram (TMS320C25)ottt e 3-62
The DRR and DXR ReQIStErSt e 3-64
Serial Port Block Diagram 3-65
Serial Port Transmit Timing Diagramt e 3-66
Serial Port Receive Timing Diagram it 3-67

XV

Figures

3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45

1 1 |
A DD
0 ~N o

[L R
A OWONEDNPRE

o

| |
N

AW

|
WNRPRBRERBOONOO

[
N

o

11 1
A OWN

PPPPIOOPPPIIDDOO DD D QO A gagagggoog g s N
PR RREEREOENO O

~N o Ol

Burst-Mode Serial Port Transmit Operationciiiiiiiieiininennann. 3-68
Burst-Mode Serial Port Receive Operation 3-68
Byte-Mode DRR Operation (TMS320C25)ot e 3-69
Serial Port Transmit Continuous Operation (FSM=1) i, 3-70
Serial Port Receive Continuous Operation (FSM =1) iiiiiiaa... 3-70
Serial Port Transmit Continuous Operation (FSM=0)ciiiiiiiinan... 3-72
Serial Port Receive Continuous Operation (FSM=0) i, 3-72
Continuous Transmit Operation Initialization 3-74
Continuous Receive Operation Initialization 3-74
Synchronization Timing Diagram (TMS320C25)ttt 3-76
Global Memory ACCeSS TIMINGottt e e e et et 3-77
TMS320C25 Hold Timing Diagramt 3-80
Direct Addressing Block Diagramot 4-3
Indirect Addressing Block Diagramt e 4-4
BIO—XF Handshake e e e 5-7
Sequence for 8-Bit Transfers i 5-8
Sequence for 16-Bit Transfers i e 5-8
Building LENGTH From STATUS and PROGRAM LENGTHWords 5-9
RS232 Connection to the TMS320C26ottt e e 5-11
Sequence for RS232 Transfer (8 Data Bits Only), 5-13
Building LENGTH From STATUS and PROGRAM LENGTHWords 5-14
External Memory Byte Ordering e 5-16
On-Chip RAM Configurationst e 5-36
MACD OPerationottt e e e e e e e e e 5-52
Execution Time vs. Number of Multiply-Accumulates (TMS320C25) 5-55
Program Memory vs. Number of Multiply-Accumulates 5-56
An In-Place DIT FFT With In-Order Outputs and Bit-Reversed Inputs 5-76
An In-Place DIT FFT With In-Order Inputs but Bit-Reversed Outputs 5-76
Powerup Reset CirCUIt e 6-3
Voltage on TMS320C25 Reset Pin i e e e 6-4
Crystal Oscillator CIrCUIL e e e 6-5
Magnitude of Impedance of Oscillator LC Network io... 6-6
Direct Interface of TBP38L165-351t0 TMS320C25ttt 6-14
Interface Timing of TBP38L165-35t0 TMS320C25t 6-15
Interface of TBP38L165-35t0 TMS320C25ttt 6-17
Interface Timing of TBP38L165-35 to TMS320C25 (Address Decoding) 6-18
One Wait-State Memory AcCess TIMINGottt e 6-20
Wait-State Generator Designt e 6-21
Wait-State Generator TIMINGot e e 6-22
Interface of WS57C65F-12t0 TMS320C25ottt n 6-23
Interface Timing of WS57C65F-12t0 TMS320C25ttt 6-24
Interface of TMS27C64-20 t0 TMS320C25 ittt 6-25
Interface Timing of TMS27C64-20t0 TMS320C25 i 6-26
Interface of CY7C169-25t0 TMS320C25 ittt e 6-28
Interface Timing of CY7C169-25t0 TMS320C25 6-29

Table of Contents

777720200 RTTTRRR?
WWWWWWWNDNNDNNNNNNN PR
U PR WNRPFPOOONOOUORAWNE O OO®

IR A A
©oo~NOOOTh, WNPE

F-10
G-1
G-2
G-3
G4
G-5

G-7
G-8
G-9
G-10
G-11
G-12
G-13
G-14

Figures

Direct Memory Access Using a Master-Slave Configuration 6-33
Direct Memory Access ina PC Environment i, 6-34
Global Memory Communicationttt 6-36
Interface of TMS320C25 10 TCM29C16 COUECottt i et e 6-38
Interface of TLC32040 t0 TMS320C2X . ..ottt e 6-41
Synchronous Timing of TLC32040 10 TMS320C2X oo vt i i i 6-41
Asynchronous Timing of TLC32040 t0 TMS320C2Xo vttt 6-42
Interface of TLC7524 t0 TMS320C2X . .ottt e 6-42
Interface Timing of TLC7524 t0 TMS320C2X . ..ot i v ettt e e 6-43
Interface of TLC0820 t0 TMS320C2X . ..ot ittt e 6-44
Interface Timing of TLCO820 t0 TMS320C2X« ottt et e 6-45
/O POrt AddreSSINg ..ottt e e 6-46
I/0 Port Processor-to-Processor Communicationoiiiiinaen.... 6-47
EChO CanCeler 6-48
High-Speed Modem e e 6-49
Voice Coding SYStemM . ..o 6-49
GraphiCs SY S M .. .o 6-50
Robot Axis Controller Subsystem 6-51
InStrumentation SYSIEIMo e 6-51
EPROM Programming Adapter Socket e e F-2
Ve and Vpp Jumper Settings for External Power F-3
EPROM Programming Data Format F-4
TMS320E25 EPROM Conversion to TMS27C64 EPROM Pinout F-5
FAST Programming Flowchart e F-9
SNAP! Pulse Programming Flowchart i F-10
Programming Timingt e e e e e e F-11
EPROM Protection Flowchart e F-13
How the RBIT Fits Into the TMS320E25 Block Diagrams F-14
EPROM Protection TIMING e e F-15
System BIOCK Diagramo G-2
Multimedia Speech Encoding and Modem Communication G-3
TMS320C25t0 TLC32047 INterface ..ot i G-3
Typical DSP/Combo Interface G-6
DSP/Combo Interface TimMiNgt e et G-7
General Telecom Applicationso G-9
Generic Telecom Applicationt G-9
Generic Servo Control LOOPot G-12
Disk Drive Control System Block Diagramt G-13
TMS320C14 — TLC32071 Interfaceo ooi e e G-14
High-Speed V.32 Bis and Multistandard Modem With the TLC320ACO1 AIC G-16
Applications Performance Requirements, G-18
Video Signal Processing Basic System i G-19
Typical Digital Audio Implementation i G-19
Crystal CoNNECHION ot e e H-4
TMS320 ROM Code Flowcharto e I-2
TMS320 Device Nomenclature e e K-3
TMS320 Development Tool Nomenclature K-4

XVii

Tables

1 I
ArONMNRPEPNBR

|
WNEFP O0o~NO O

oo I 101 1 |
WNEPD™MWDNE A

N

QeI
Abbhlhorvmronroa

XViii

TMS320C2X Processors OVEIVIEW vttt ettt ettt i e e et 1-4
Typical Applications of the TMS320 Family i, 1-8
TMS320C2x Signal DesCriptionsttt e 2-4
TMS320C2x Internal Hardwareot e 3-9
TMS320C25/26 Memory BIocksS 3-17
Memory-Mapped RegiSters e 3-22
PM Shift MOOES . ..o e e 3-33
Instruction Pipeline SeqUENCEt e e e 3-40
Status Register Field Definitions 3-50
Interrupt Locations and Priorities 3-59
Serial Port Bits, Pins, and Registers e 3-63
Global Data Memory Configurationsoiiiii i 3-77
Indirect Addressing Arithmetic Operations ...ttt 4-6
Bit Fields for Indirect AddresSingt 4-7
Instruction Symbols e 4-12
INSTrUCHION SEt SUMMANY ot e e 4-14
Program Space and Time Requirements for p-/A-Law Companding 5-69
256-Tap Adaptive Filtering Memory Space and Time Requirements 5-74
Bit-Reversal Algorithm for an 8-Point Radix-2 DITFFT 5-77
FFT Memory Space and Time Requirementsiiiitiniinnneennnaan. 5-81
Timing Parameters of TBP38L165-35 Direct Interface to TMS320C25............... 6-15
Timing Parameters of TBP38L165-35 to TMS320C25 (Address Decoding) 6-19
Wait States Required for Memory/Peripheral AcCess, 6-20
Timing Parameters of WS57C64F-12 Interface to TMS320C25 6-24
Timing Parameters of TMS27C64-20 Interface to TMS320C25 6-26
Timing Parameters of CY7C169-25 Interface to TMS320C25 6-27
TMS320C2x Instructions by Cycle Classt e E-2
Cycle Timings for Cycle Classes When Notin RepeatMode E-3
Cycle Timings for Cycle Classes Whenin RepeatMode E-5
Pin Nomenclature (TMS320E25)ottt e et et F-5
TMS320E25 Programming Mode Levels i F-6
TMS320E25 EPROM Protect and Protect Verify Mode Levels F-12
Data Converter [CS e G-4
Switched-Capacitor Filter ICs i e e e G-4
TeleCOM DRVICES . . oot e e e e e e G-8
Switched-Capacitor Filter ICs o e G-8

Table of Contents

(&)

[
N o

©

ICPCDG)OOG)
-
o

[
I
=

N -

Tables

VOICE SYNINESIZEIS . ..ot G-10
SPEECh MEMOKIES . .. oot G-10
Switched-Capacitor Filter ICS oo G-11
Control-Related DeVvIiCeS G-13
Modem AFE Data CONVEIEISttt e et e e e e e G-15
Audio/Video Analog/Digital Interface Devices ..., G-20
Commonly Used Crystal FreqUeNCIESt et et H-4
Microprocessor and Microcontroller TestSttt J-5
TMS320C2X TranSIStOrSttt et et e e e e e e J-5

XiX

Examples

o

N -

w

S

(¢

~N O

[e¢]

= O

N

w

S

o 0

o

o ©

=

N

w

o b

mwwwwwwl\)l\)l\)l\Jl\)l\Jl\)l\Jl\)l\)I«—D‘l—‘HI—\HI—‘HI—‘HI—‘QOOO\IG)U‘IJ}OOI\JI—\

)]

Processor Initialization (TMS320C25)t e 5-3
Processor Initialization (TMS320C26)ottt e 5-4
BIO—XF Transfer Protocolo e e 5-7
RS232 Transfer Protocol e 5-12
TMS320C26BFNL Bootloadert i 5-17
SUBIOULINES ..o 5-22
Software Stack EXPanSiON 5-24
Clock Divider Using Timer (TMS320C25)ottt e e 5-26
Instruction Repeating ot 5-27
Computed GOTO ..ottt e 5-28
Context Save (TMS320C25)ttt e e e i 5-30
Context Restore (TMS320C25)ttt e e 5-31
Interrupt Service ROULINEo i e e e e et e e 5-32
Moving External Data to Internal Data Memory With BLKD 5-33
Moving Program Memory to Data Memory WithBLKP 5-33
Moving Program Memory to Data Memory With TBLR 5-34
Moving Internal Data Memory to Program Memory With TBLW 5-34
Moving Data From I/O Space Into Data Memory With IN 5-34
Moving Data From Data Memory to I/O Space WithOUT 5-35
Configuring and Using On-Chip RAM 5-37
Program Execution From On-Chip Memory 5-39
Program Execution From On-Chip Memory (TMS320C26), 5-41
UsiNg BIT @and BBZot e e e e e 5-45
Using BITT and BBNZ o e 5-45
Bit-Reversed Carry ADdition i e 5-48
FET Bit ReVersals e 5-48
Using the ARO Test Bit to Calculate the Square Root of a Long Integer 5-50
Using MACD forMoving Dataoivi i e et e e 5-52
MU LY . 5-53
Multiply-Accumulate Using the MAC Instruction (TMS320C25) 5-54
Multiply-Accumulate Using the LTA-MPY Instruction Pair 5-54
USIiNg SQRA o 5-57
Divide 33 DY 5 ..o 5-58
Using SUBC for Integer DiViSioNnt e e e 5-59
Using SUBC for Fractional DiviSion e 5-59
Using NORM for Floating-Point Multiply i 5-61

Table of Contents

5-37
5-38
5-39
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47

Examples

Using LACT for Denormalization ...ttt 5-61
ROW Times ColUMN ... e e e et et 5-62
B4-Bit AdditioN o 5-64
B4-Bit SUDLraCtion e 5-65
32 x 32-Bit Multiplication 5-66
Implementing an IR Filter 5-70
256-Tap Adaptive FIR Filter e e 5-73
Adaptive Filter Routine Concluded i 5-74
FET MaACIOS . .ottt e e e e 5-79
AN B-PoiNt DIT FRT oo e e 5-81
PID CONtrOl e e 5-83

XXi

XXii Table of Contents

Chapter 3

Architecture

The architectural design of the TMS320C2x emphasizes overall system
speed, communication, and flexibility in processor configuration. Control sig-
nals and instructions provide block memory transfers, communication to slow-
er off-chip devices, and multiprocessing implementations. Single-cycle multi-
ply/accumulate instructions, two large on-chip RAM Blocks, eight auxiliary
registers with a dedicated arithmetic unit, a serial port, a hardware timer, and
a faster 1/O for data-intensive signal processing are features that increase
throughput for DSP applications.

The TMS320C26 is similar to the TMS320C25 except for its internal memory
configuration. This is discussed in Section 3.4 and in Appendix B.

Topics in this chapter include:

Topic Page
3.1 Architectural OVerviewt 3-2
3.2 Functional Block Diagram 3-6
3.3 Internal Hardware Summary ...t 3-9
3.4 Memory Organization oiuiiniiii 3-12
3.5 Central Arithmetic Logic Unit (CALU) 3:28
3.6 System CONtrol ... i 3-35
3.7 External Memory and I/O Interface , 3-55
3.8 INtermuUPtS . 3-60
3.9 Serial Port ... 3-64
3.10 Multiprocessing and Direct Memory Access (DMA) 3-76
3.11 General Description of the TMS320C26 3-83
3.12 General Description of the TMS320C28 3-84

Architectural Overview

3.1 Architectural Overview

3-2

Harvard Architecture. The TMS320C2x high-performance digital signal pro-
cessors, like the TMS320C1x devices, implement a Harvard-type architecture
that maximizes processing power by maintaining two separate memory bus
structures, program and data, for full-speed execution. Instructions are in-
cluded to provide data transfers between the two spaces. Externally, the pro-
gram and data memory can be multiplexed over the same bus so as to maxi-
mize the address range for both spaces while minimizing the pin count of the
device.

On-Chip Memory. The TMS320C25 provides increased flexibility in system
design by two large on-chip data RAM blocks (a total of 544 16-bit words), one
of which is configurable either as program or data memory (see Figure 3-1).
The TMS320C26 provides three large on-chip RAM blocks, configurable ei-
ther as separate program and data spaces or as three continuous data blocks,
to provide increased flexibility in system design. An off-chip 64K-word directly
addressable data memory address space is included to facilitate implementa-
tions of DSP algorithms.

The large on-chip 4K-word masked ROM on the TMS320C25 can reduce the
cost of systems, thus providing for a true single-chip DSP solution (see
Figure 3-1). Programs of up to 4K words can be masked into the internal pro-
gram ROM. The remainder of the 64K-word program memory space is located
externally. Large programs can execute at full speed from this memory space.
Programs may also be downloaded from slow external memory to on-chip
RAM for full-speed operation.

The 4K-word on-chip EPROM on the TMS320E25 allows realtime code devel-
opment and modification for immediate evaluation of system performance.
Instructions can be executed from the EPROM at full speed. The EPROM is
equipped with a security mechanism allowing you to protect proprietary in-
formation. A programming adapter socket is available from Texas Instruments
that provides 68- to 28-pin conversion for programming with standard PROM
programmers. Refer to Appendix F for details.

Architecture

Architectural Overview

Figure 3—-1. TMS320C2x Simplified Block Diagram

+5V Gnd
Data/Prog Data RAM
Interrupts R 288-word
_nterrupts . 11 256-word Data (16)
(1568-Word
TMS320C26) Multiprocessor
Interface
4-K Words ROM/EPROM S —
(TMS320C25/E25)
Multiplier
Serial
—r 32-Bit ALU/ACC Interface
] Shifters
_L Address (16)
Timer

Arithmetic Logic Unit. The TMS320C2x performs 2s-complement arithmetic
using the 32-bit ALU and accumulator. The ALU is a general-purpose arithme-
tic unit that operates using 16-bit words taken from data RAM or derived from
immediate instructions or using the 32-bit result of the multiplier’s product reg-
ister. In addition to the usual arithmetic instructions, the ALU can perform Bool-
ean operations, providing the bit manipulation ability required of a high-speed
controller. The accumulator stores the output from the ALU and is the second
inputto the ALU. The accumulator is 32 bits in length and is divided into a high-
order word (bits 31 through 16) and a low-order word (bits 15 through 0).
Instructions are provided for storing the high- and low-order accumulator
words in memory.

Multiplier. The multiplier performs a 16 x 16-bit 2s-complement multiplication
with a 32-bit result in a single instruction cycle. The multiplier consists of three
elements: the T register, P register, and multiplier array. The 16-bit T register
temporarily stores the multiplicand; the P register stores the 32-bit product.
Multiplier values come from data memory, from program memory when using
the MAC/MACD instructions, or immediately from the MPYK (multiply immedi-
ate) instruction word. The fast on-chip multiplier allows the device to perform
efficiently the fundamental DSP operations such as convolution, correlation,
and filtering.

3-3

Architectural Overview

3-4

The TMS320C2x scaling shifter has a 16-bit input connected to the data bus
and a 32-bit output connected to the ALU. The scaling shifter produces a left-
shift of 0 to 16 bits on the input data, as programmed in the instruction. The
LSBs of the output are filled with zeros, and the MSBs may be either filled with
zeros or sign-extended, depending upon the state of the sign-extension mode
bit of status register ST1. Additional shift capabilities enable the processor to
perform numerical scaling, bit extraction, extended arithmetic, and overflow
prevention.

Memory Interface. The TMS320C2x local memory interface consists of a
16-bit parallel data bus (D15-D0), a 16-bit address bus (A15-A0), three pins
for data/program memory or I/O space select (DS, PS, and IS), and various
system control signals. The R/W signal controls the direction of a data transfer,
and the STRB signal provides a timing signal to control the transfer. When us-
ing on-chip program RAM, ROM/EPROM, or high-speed external program
memory, the TMS320C2x runs at full speed without wait states. The use of a
READY signal allows wait-state generation for communicating with slower off-
chip memories.

Up to eight levels of hardware stack are provided for saving the contents of the
program counter during interrupts and subroutine calls. Instructions are avail-
able for saving the device's complete context. PUSH and POP instructions
permit a level of nesting restricted only by the amount of available RAM. The
interrupts used in these devices are maskable.

All control operations are supported on the TMS320C2x by an on-chip
memory-mapped 16-bit timer, a repeat counter, three external maskable user
interrupts, and internal interrupts generated by serial port operations or by the
timer. A built-in mechanism protects from instructions that are repeated or be-
come multicycle due to the READY signal and from holds and interrupts.

Serial Port. An on-chip full-duplex serial port provides direct communication
with serial devices such as codecs, serial A/D converters, and other serial sys-
tems. The interface signals are compatible with codecs and many other serial
devices with a minimum of external hardware. The two serial port memory-
mapped registers (the data transmit/receive registers) may be operated in ei-
ther an 8-bit byte or 16-bit word mode. Each register has an external clock in-
put, a framing synchronization input, and associated shift registers.

Multiprocessing Applications. The TMS320C2x has the capability of allo-
cating global data memory space and communicating with that space via the
BR (bus request) and READY control signals. The 8-bit memory-mapped
global memory allocation register (GREG) specifies up to 32K words of the
TMS320C2x data memory as global external memory. The contents of the reg-
ister determine the size of the global memory space. If the current instruction
addresses an operand within that space, BR is asserted to request control of
the bus. The length of the memory cycle is controlled by the READY line.

Architecture

Architectural Overview

Direct Memory Access. The TMS320C2x supports direct memory access
(DMA) to its external program/data memory using the HOLD and HOLDA sig-
nals. Another processor can take complete control of the TMS320C2x external
memory by asserting HOLD low. This causes the TMS320C2x to place its ad-
dress, data, and control lines in the high-impedance state. Signaling between
the external processor and the TMS320C2x can be performed by using inter-
rupts. On the TMS320C2x, two modes are available: a mode in which execu-
tion is suspended during assertion of HOLD, and a concurrent DMA mode in
which the TMS320C2x continues to execute its program while operating from
internal RAM or ROM, thus greatly increasing throughput in data-intensive ap-
plications.

3-5

Functional Block Diagram

3.2 Functional Block Diagram

3-6

The functional block diagram shown in Figure 3—2 and Figure 3—3 outlines the
principal blocks and data paths within the TMS320C2x processors. Further
details of the functional blocks are provided in the succeeding sections. Refer
to Section 3.3, Internal Hardware Summatry, for definitions of the symbols used
in Figure 3-2. The block diagram also shows all of the TMS320C2x interface
pins. Figure 3—3 shows the block diagram of the TMS320C26.

The TMS320C2x architecture is built around two major buses: the program
bus and the data bus. The program bus carries the instruction code and im-
mediate operands from program memory. The data bus interconnects various
elements, such as the central arithmetic logic unit (CALU) and the auxiliary
register file, to the data RAM. Together, the program and data buses can carry
data from on-chip data RAM and internal or external program memory to the
multiplier in a single cycle for multiply/accumulate operations.

The TMS320C2x has a high degree of parallelism; for example, while the data
is being operated upon by the CALU, arithmetic operations may also be imple-
mented in the auxiliary register arithmetic unit (ARAU). Such parallelism re-
sults in a powerful set of arithmetic, logic, and bit-manipulation operations that
may all be performed in a single machine cycle.

LEGEND:

ACCH = Accumulator high IFR = Interrupt flag register PC = Program Counter

ACCL = Accumulator low IMR = Interrupt mask register PFC = Prefetch counter

ALU = Arithmetic logic unit IR = Instruction register RPTC = Repeat instruction counter
ARAU = Auxiliary register arithmetic unit MCS = Microcall stack GREG = Global memory allocation register
ARB = Auxiliary register pointer buffer QIR = Queue instruction register RSR = Serial port receive shift register
ARP = Auxiliary register pointer PR = Product register XSR = Serial port transmit shift register

DP = Data memory page pointer PRD = Period register for timer ARO-AR = Auxiliary registers

DRR = Serial port data receive register TIM = Timer STO.ST = Status registers

DXR = Serial port data transmit register TR =Temporary register C = Carry bit

Architecture

Figure 3-2. TMS320C25/E25 Block Diagram

Functional Block Diagram

SYNC
|_§ zpw Program Bus
X DD
DS —— %33
PS Qxx 16 16 16
} A4y XR0OO 16
R PFC(16) QIR(16)
STRE—<— IR(16)
READY —»— J—— STO(16)
55_‘_ 5 16 JE— ST1(16)
__XE—= o S
HOLD —>— g > RPTC(8)
HOLDA——
OM_sc—<— o MCS(16) PC(16) IFRO) oR
BIO —* — CLKR
RS —*— FSR
TACK—<— 312 T " DXy
_ } A Address Stack Yvyy —»— FSX
MP/MC 3 16 (8 x 16) 16 I
INTR-O———— Program o
ROM/ XSR(16)
16 7] < 16 EPROM 16 SRROG
A15-Al 3 (4096 X 16) 1 (16)
= I DXR(16)
Instruction 1 TIM(16)
RBIT | 16 19 PRD(16)
Y 6 IMR(6)
16 £ « o 16 £ 8 GREG(8)
D15-D!)
s 16 16
< 16
t Data Bus r t |\ t Program Bus
16
16 LG 16 16 16 16 16
3 9
ARO(16) 71sB TR(16) L
3 AR1(16) From IR MUX
ARP(3) »{ AR2(16) DP(O
—_— Y] © v Multiplier 16
ARICE 9 | Shlﬂer(O-lG)I
3 AR5(16) L»] PR(32)
Il AR6(16) q
32 32
AR7(16) 16 v
| ARB(3) | 7
Shifter(-6, 0, 1, 4
7 4 = [hifercs 0.2, 9]
16 32
MUX,
3 [Carauas)] U_7 Y
MUX
16
v A 4 "16 32
MUX, MUX,
32
16 16 ALU(32)
Block B2 DATA/PROG 3%
(32 X 16) RAM (256 X 16) | | | |
Data RAM Block BO c | AccH@e) | AccL(ie)
Block B1 16 32
(256 X 16) v
Shifter(0-7)
16 16 16 16
Data Bus N >

NOTE: Shaded areas indicate a bus.

3-7

Functional Block Diagram

Figure 3-3. TMS320C26 Block Diagram

SYNC Program Bus
is ZER g
DS —— 333
PS Oxx
AAY ; Q d d 16 " 16 116
i ——] PEC(16) QIR(16)
STRB — < 16 IR(16)
READY —»— [S— STO(16)
E'l:? —] 5 16 J—— ST1(16)
— o
HOLD —>—1 = > RPTC(8)
HOLDA —<— S IFR(6
MSC —<— o MCS(16) 6 oR
BIO —> CLKR
—BS 8 16 {16 FSR
JACK —<— v Y Y ,—V &
MPIVC } 4 16 Address Stack 16 8 Yvyy —>— FSX
- 3 (8 X 16)
INT2-0)——————— Bootload RSR(16)
16 Program XSR(16)
16 ROM 16 DRR(16)
A15-A (256 X 16) 1 DXR(16)
Instruction 1 TIM(16)
16 1 PRD(16)
Y " 6 IMR(6)
16 £ > 8 GREG(8)
D15-D0 3 16 16
L 16
t Data Bus (t L t Program Bus
16
16 16 16 16 16 16 16
3 9
ARO(16) 7LSB TR (16)
3 AR1(16) From IR
ARP(3) AR2(16) DP(9
— Lcro | Y Multiplier 16
ARS(1) | Shifter(0-16 |
ARA(L6) 9 jfter(0-16)
3 AR5(16) LI~ PRG32)
{ AR6(16)
—— AR7(16) 16 32 {3
16
ARAU(16 hJ
32
3 " Mu><7 v
MU
v v v v 32
MUX, MUX MUX
16 16 16 16 ALU(32)
DATA DATA/PROG DATA/PROG DATA/PROG 32 $ 32
RAM (32 X 16) | |RAM (512 X 16) | | RAM (512 X 16) | | RAM (512 X 16)
Block B2 Block B3 Block B1 Block BO Lc] Acchae | Accias) |
32
A4
MUX MUX Shifter(0-7)
16 16
16 16 16 - 16 - g
v v Y
Data Bus
NOTE: Shaded areas indicate a bus.
Architecture

3-8

3.3 Internal Hardware Summary

Internal Hardware Summary

The TMS320C2x internal hardware implements functions that other proces-
sors typically perform in software or microcode. For example, the device con-
tains hardware for single-cycle 16 x 16-bit multiplication, data shifting, and ad-
dress manipulation. This hardware-intensive approach provides computing
power previously unavailable on a single chip.

Table 3—-1 presents a summary of the TMS320C2x internal hardware. This
summary table, which includes the internal processing elements, registers,
and buses, is alphabetized within each functional grouping. All of the symbols
used in this table correspond to the symbols used in the block diagram of
Section 3.2, the succeeding block diagrams in this section, and the text
throughout this document.

Table 3—1. TMS320C2x Internal Hardware

Unit Symbol Function
Accumulator ACC (31-0) A 32-bit accumulator splitin two halves: ACCH (accumulator high) and
ACCH (31-16) ACCL (accumulator low). Used for storage of ALU output.
ACCL (15-0)

Arithmetic Logic Unit ALU A 32-bit twos-complement arithmetic logic unit having two 32-bit input
ports and one 32-bit output port feeding the accumulator.

Auxiliary Register Arithmetic ARAU A 16-bit unsigned arithmetic unit used to perform operations on auxilia-

Unit ry register data.

Auxiliary Register File ARO-AR7 A register file containing eight 16-bit auxiliary registers (AR0-AR?7),

(15-0) used for addressing data memory, temporary storage, or integer arith-
metic processing through the ARAU.

Auxiliary Register File Bus AFB(15-0) A 16-bit bus that carries data from the AR pointed to by the ARP.

Auxiliary Register Pointer ARP(2-0) A 3-bit register used to select one of five or eight auxiliary registers.

Auxiliary Register Pointer ARB(2-0) A 3-bit register used to buffer the ARP. Each time the ARP is loaded,

Buffer the old value is written to the ARB, except during an LST (load status
register) instruction. When the ARB is loaded with an LST1, the same
value is also copied into ARP.

Central Arithmetic Logic Unit CALU The grouping of the ALU, multiplier, accumulator, and scaling shifter.

Data Bus D(15-0) A 16-bit bus used to route data.

Data Memory Address Bus DAB(15-0) A 16-bit bus that carries the data memory address.

Data Memory Page Pointer DP(8-0) A 9-bit register pointing to the address of the current page. Data pages
are 128 words each, resulting in 512 pages of addressable data
memory space (some locations are reserved).

Direct Data Memory Address DRB(15-0) A 16-bit bus that carries the direct address for the data memory, which

Bus is the concatenation of the DP register with the seven LSBs of the
instruction.

Global Memory Allocation GREG(7-0) An 8-bit memory-mapped register for allocating the size of the global

Register memory space.

3-9

Internal Hardware Summary

Table 3—1. TMS320C2x Internal Hardware (Continued)

Unit Symbol Function

Instruction Register IR(15-0) A 16-bit register used to store the currently executing instruction.

Interrupt Flag Register IFR(5-0) A 6-bit flag register used to latch the active-low external user interrupts
INT(2-0), the internal interrupts XINT/RINT (serial port transmit/re-
ceive), and TINT (timer) interrupts. The IFR is not accessible through
software.

Interrupt Mask Register IMR(5-0) A 6-bit memory-mapped register used to mask interrupts.

Microcall Stack MCS (15-0) A single-word stack that temporarily stores the contents of the PFC
while the PFC is being used to address data memory with the block
move (BLKD/BLKP), multiply-accumulate (MAC/MACD), and table
read/write (TBLR/TBLW)and table read/write (TBLR/TBLW) instruction

Multiplier MULT A 16 x 16-bit parallel multiplier.

Period Register PRD (15-0) A 16-bit memory-mapped register used to reload the timer.

Prefetch Counter PFC (15-0) A 16-bit counter used to prefetch program instructions. The PFC con-
tains the address of the instruction currently being prefetched. It is up-
dated when a new prefetch is initiated. The PFC is also used to address
program memory when using the block move (BLKP), multiply-accu-
mulate (MAC/MACD), and table read/write (TBLR/TBLW) instructions
and to address data memory when using the block move (BLKD)
instruction.

Product Register PR(31-0) A 32-bit product register used to hold the multiplier product. The PR can
also be accessed as the most or least significant words by using the
SPH/SPL (store P register high/low) instructions.

Program Bus P(15-0) A 16-bit bus usedto route instructions (and data for the MAC and MACD
instructions).

Program Counter PC (15-0) A 16-bit program counter used to address program memory. The PC
always contains the address of the next instruction to be executed. The
PC contents are updated following each instruction decode operation.

Program Memory Address PAB(15-0) A 16-bit bus that carries the program memory address.

Bus

Queue Instruction Register QIR(15-0) A 16-bit register used to store prefetched instructions.

Random Access Memory RAM (BO) A RAM block with 256 x 16 locations configured as either data or pro-

(data or program) gram memory. (512 x 16 for TMS320C26)

Random Access Memory RAM (B1) A data RAM block, organized as 256 x 16 locations. (512 x 16 can be

(data only) configured as program or data for TMS320C26)

Random Access Memory RAM (B2) A data RAM block, organized as 32 x 16 locations.

(data only)

Random Access Memory RAM (B3) A RAM block with 512 x 16 locations configured as either data or pro-

(data or program) (TMS320C26 only) | gram memory (TMS320C26 only).

Read Only Memory ROM A ROM block, 4096 x 16 (256 x 16 for TMS320C26; 8192 x 16 for
TMS320C28).

Repeat Counter RPTC (7-0) An 8-bit counter to control the repeated execution of a single instruction.

Serial Port Data DRR(15-0) A 16-bit memory-mapped serial port data receive register. Only the

Receive Register eight LSBs are used in the byte mode.

Serial Port Data Transmit DXR(15-0) A 16-bit memory-mapped serial port data transmit register. Only the

Register eight LSBs are used in the byte mode.

3-10

Architecture

Internal Hardware Summary

Table 3—1. TMS320C2x Internal Hardware (Concluded)

Unit Symbol Function
Serial Port Receive Shift RSR(15-0) A 16-bit register used to shift in serial port data from the RX pin. RSR
Register contents are sent to the DRR after a serial transfer is completed. RSR
is not directly accessible through software.
Serial Port Transmit Shift XSR(15-0) A 16-bit register used to shift out serial port data onto the DX pin. XSR

Register

contents are loaded from DXR at the beginning of a serial port transmit
operation. XSR is not directly accessible through software.

Shifters — Shifters are located at the ALU input, the accumulator output, and the
product register output. Also, an in-place shifter is located within the ac-
cumulator.

Stack Stack(15-0) A4 %16 or 8 x 16 hardware stack used to store the PC during interrupts

or calls. The ACCL and data memory values may also be pushed onto
and popped from the stack.

Status Registers Temporary STO,ST1 Two 16-bit status registers that contain status and control bits. A 16-bit

Register (15-0) register that holds either an operand for the multiplier or a shift code for
the scaling shifter.

Temporary Register TR(15-0) A 16-bit register that holds either an operand for the multiplier or a shift
code for the scaling shifter.

Timer TIM (15-0) A 16-bit memory-mapped timer (counter) for timing control.

3-11

Memory Organization

3.4 Memory Organization

3.4.1 Data Memory

The TMS320C2x provides a total of 544 16-bit words of on-chip data RAM, of
which 288 words are always data memory and the remaining 256 words may
be configured as either program or data memory. The TMS320C26 provides
a total of 1568 words of 16 bit on-chip RAM, divided into four separate bolcks
(BO, B1, B2, and B3). The TMS320C25 also provides 4K words of maskable
program ROM, while the TMS320E25 provides 4K words of EPROM. This sec-
tion explains memory management using the on-chip data and program
memory, memory maps, memory-mapped registers, auxiliary registers,
memory addressing modes, and memory-to-memory moves.

The 544 words of on-chip data RAM are divided into three separate blocks (BO,
B1, and B2), as shown in Figure 3—4. Of the 544 words, 256 words (block BO)
are configurable as either data or program memory by instructions provided
for that purpose; 288 words (blocks B1 and B2) are always data memory. A
data memory size of 544 words allows the TMS320C2x to handle a data array
of 512 words (256 words if on-chip RAM is used for program memory), while
still leaving 32 locations for intermediate storage. See subsection 3.4.3 for
memory map configurations.

In the TMS320C26, of the 1568 words, 32 words (block B2) are always data
memory, and all other words are programmable as either data or program
memory, as shown in Figure 3-5. A data memory size of 1568 words allows
the TMS320C26 to handle a data array of 1536 words, while still leaving 32
locations for intermediate storage. When using BO, B1, or B3 as program
memory, instructions can be downloaded from external program memory into
on-chip RAM, and then executed.

The TMS320C2x can address a total of 64K words of data memory. The on-
chip data memory and internally reserved locations are mapped into the lower
1K words of the data memory space. Data memory is directly expandable up
to 64K words while still maintaining full-speed operation. A READY line is pro-
vided for interface to slower, less expensive memories, such as DRAMs.

3.4.2 Program Memory

3-12

On-chip program RAM, ROM/EPROM, or high-speed external program
memory can be used at full speed with no wait states. Alternatively, the READY
line can interface the TMS320C2x to slower, less expensive external memory.
A total of 64K words of memory space is available. Internal RAM block BO can
be configured as program memory using instructions for that purpose. Execu-
tion from this block can be initiated after the memory space has been reconfi-
gured. See subsection 3.7.1 for a description of instruction execution using
various memory configurations.

Architecture

Memory Organization

Additionally, the TMS320C25 is internally equipped with 4K words of program-
mable ROM. This on-chip program ROM can be mask programmed at the fac-
tory with a customer’s program. The TMS320E25 provides a 4K-word, on-chip
EPROM. Either on-chip ROM or EPROM allows program execution at full
speed without the need for high-speed external program memory. The use of
this memory also allows the external data bus to be freed for access of external
data memory.

Figure 3—4. TMS320C2x On-Chip Data Memory

From From
Program Counter Auxiliary Registers
or or
From Data Page Pointer
Prefetch Counter and
Direct Memory Address
\ 4 ¥
16 16 16
* ¥

I I

16
A4
Block B2
| @2x16) y
Data RAM Data/Prog
Block B1 RAM (256 x 16)
(256 x 16) Block BO
&
16
\ 4
16 MUX
16
16 To Program Bus
Data Bus (16) \

3-13

Memory Organization

Figure 3-5. TMS320C26 On-Chip Data Memory

3-14

From Auxiliary
Registers

From Data Memory

Page Pointer
From Program

Counter
MU
\ 4 \ 4 Y Y \ 4 \ 4 \ 4 Y
MU MU MU MU
16 16 16 16
Data Data/Prog Data/Prog Data/Prog
RAM (32 x 16) RAM (512 x 16) | | RAM (512 x 16) | | RAM (512 x 16)
Block B2 Block B3 Block B1 Block BO
MUX MUX MUX
L Ay Ay
16
L
16 16 16 16 To Program Bus
Y Data Bus Y

Mapping of the first 4K-word block of off-chip/on-chip program memory is user-
selectable by means of the MP/MC (microprocessor/microcomputer) pin on
the TMS320C2x. Setting MP/MC to a high maps in the block of off-chip
memory; holding the pin at a low maps in the block of on-chip ROM. Conse-
guently, compatible products that depend upon external memory from the
ROM can be manufactured in a shorter time frame than the TMS320C2x.
Eventually, the off-chip memory device can be replaced by an on-chip memory
device at a lower cost because the PC board will not require any modification.

In another mapping technique, the XF (external flag) pin is used to toggle the
MP/MC pin by dynamically enabling or disabling the on-chip ROM. Note that
care must be taken and the instruction pipeline operation (see subsection
3.6.2) must be understood when using this method.

Architecture

Memory Organization

3.4.3 TMS320C2x Memory Maps

The TMS320C2x provides three separate address spaces for program
memory, data memory, and I/O, as shown in Figure 3-8. These spaces are
distinguished externally by means of the PS, DS, and IS (program, data, and
I/O space select) signals. The PS, DS, IS, and STRB signals are active only
for external bus accesses. During an internal addressing cycle, these signals
remain inactive high, thus preventing conflicts in memory addressing, for ex-
ample, when block BO is configured as program memory.

The on-chip memory blocks (B0, B1, and B2) consist of a total of 544 words
of RAM. Program/data RAM block B0 (256 words) resides in pages 4 and 5
of the data memory map when configured as data RAM and at addresses
OFF0O0h to OFFFFh when configured as program RAM. Block B1 (always data
RAM) resides in pages 6 and 7, while block B2 resides in the upper 32 words
of page 0. Note that the remainder of page 0 is composed of the memory-
mapped registers and internally reserved locations, and pages 1-3 of the data
memory map consist of internally reserved locations. The internally reserved
locations may not be used for storage, and their contents are undefined when
read. See subsection 3.4.4 for further information on the memory-mapped reg-
isters.

The on-chip RAM is mapped into either the 64K-word data memory or program
memory space, depending on the memory configuration (see Figure 3-5).
The CNFD/CNFP instructions are used to configure block BO as either data
or program memory, respectively. The BLKP (block move from program
memory to data memory) instruction may be used to download program in-
formation to block BOwhenitis configured as data RAM. Then a CNFP (config-
ure block as program memory) instruction may be used to convert it to program
RAM (see the code example in subsection 5.4.2). Regardless of the configura-
tion, you may still execute from external program memory. Note that when
accessing internal program memory, external control lines remain inactive.

Reset configures all internal RAM as data. Note that, due to internal pipelining,
when the CNFD or CNFP instruction is used to remap RAM block BO, there is
adelay before the new configuration becomes effective. This delay is one fetch
cycle if execution is from internal program RAM. On the TMS320C2x, there is
a delay of two fetch cycles if execution is from ROM or external program
memory. This is particularly important if program execution is from the loca-
tions around OFF0Oh. Accordingly, a CNFP instruction must be placed at loca-
tion OFEFDh in external memory if execution is to continue from the first loca-
tion in block BO. If a CNFP is placed at location OFEFDh, and the instruction
atlocation OFEFFh is a two-word instruction, the second word of the instruction
will be fetched from the first location in block BO. If execution is from above
location OFFOOh and block BO is reconfigured, care must be taken to assure
that execution resumes at the appropriate point in a new configuration.

3-15

Memory Organization

The on-chip program ROM can be mapped into the lower 4K words of program
memory. This ROM is enabled when MP/MC is set to a logic low. To disable
the on-chip ROM and use these lower addresses externally, MP/MC must be
set to a logic high. If all internal RAM blocks are configured as data memory,
a program address in the range FF00 to FFFFh accesses external program
memory.

3.4.4 TMS320C26 Memory Maps

3-16

The memory map of the TMS320C26 is similar to that of the TMS320C25 and
is shown in Figure 3—9. The on-chip memory-mapped register and block B2
with 32 words on page 0 are unchanged.

The ROM is reduced to 256 words and contains a multi-purpose bootloader.
(See Subsection 5.1.1 and Appendix B.) Additional RAM is included, making
the TMS320C26 ideal for many applications.

If the TMS320C26 is in microcomputer mode, the address space from 0 to
OFFFh is internal. External program memory, selected via PS (Program Se-
lect), can be used starting at address 1000h. The missing space from 0100h
to OFFFh, which would correspond to the larger ROM of the 'C25/E25, is also
reserved. If one or more of the blocks BO, B1, or B3 is configured as program
memory, the program address space from hexadecimal FAOOh to FFFFh is in-
ternally reserved for these blocks and can not access external program
memory. If all internal RAM blocks are configured as data memory, a program
address in the range FAOOh to FFFFh accesses external program memory.

The external data memory, selected with DS (Data Select), always starts at
address 800h (2048 decimal), regardless of the configuration mode of the in-
ternal memory.

Because internal memory blocks BO, B1, and B3 (new) are of different size,
the internal data memory blocks of the TMS320C26 reside in pages 0 and 4
to 15, while those of the TMS320C25 reside in, pages 0 and 4 to 7. Table 3-2
shows both processors and their internal memory locations. Program memory
is also affected by the different block sizes, and the results are given in
Table 3-2.

Architecture

Table 3—2. TMS320C25/26 Memory Blocks

Memory Organization

Configured As Data Memory

TMS320C26 TMS320C25
Address Address Address Address
Block Pages Decimal Hexadecimal Pages Decimal Hexadecimal
B2 0 96-127 0060h—00F7h 0 96-127 0060h—007Fh
BO 4-7 512-1023 0200h—03FFh 4-5 512-768 0200h—02FFh
B1 8-11 1024-1536 0400h—-05FFh 6-7 769-1024 0300h-03FFh
B3 12-15 1537-2048 0600h—07FFh B3 does not exist
Configured As Program Memory
TMS320C26 TMS320C25
Address Address Address Address
Block Pages Decimal Hexadecimal Pages Decimal Hexadecimal
B2 B2 is not configurable B2 is not configurable
BO 500-503 | 64000-64511 FAOOh—FBFFh 510-511 | 65280-65535 FFOOh—FFFFh
B1 504-507 | 64512-65023 FCOOh—FDFFh B1 is not configurable
B3 508-511 65024-65535 FEOOh—FFFFh B3 does not exist

As shown in Table 3—-2 along with Figure 3—6 and Figure 3-7, there is no
difference between the TMS320C25/26 data spaces except for the location of
memory blocks; therefore, no data memory modification is necessary.
However for an internal program (such as relocatable code), the start and stop
addresses of each RAM block must be considered.

3-17

Memory Organization

Figure 3—6. Comparison of Internal RAM Configured as Data Space

05h
06h

05Fh
060h

07Fh
080h

01FFh
0200h

2FFh
300h

03FFh
0400h

TMS320C25
TMS320C28

Memory-Mapped
Registers

TMS320C26

Reserved

Memory-Mapped
Registers

B2

Reserved

Reserved

B2

BO

Reserved

B1

BO

External

B1

B3

External

05h
06h

05Fh
060h

07Fh
080h

01FFh
0200h

03FFh
0400h

05FFh
0600h

New RAM Block

07FFh
0800h

FFFF

Figure 3—7. Comparison of Internal RAM Configured as Program Space

FEFF
FF0O

FFFF

3-18

TMS320C25
TMS320C28

External/ROM

TMS320C26

External

External/ROM

External

BO

B1

BO

B3

FBFF
FA0O

FBFF
FCO0

New Block

FDFF
FE0O

New Block

FFFF

Architecture

Figure 3-8. TMS320C2x Memory Maps

Program
0(0000h)
Interrupts
and Reserved
31 (001Fh) (External)
32(0020h)
External
65,535 (OFFFFh)
If MPIMC = 1

(Microprocessor Mode)

Program
0 (0000h)
Interrupts
and Reserved
31 (001Fh) (External)
32 (0020h)

External
65279(OFEFFh) | |
65,280 (OFF00h)

On-Chip
Block BO
65,535 (OFFFFh)
If MPIMC = 1

(Microprocessor Mode)

(a) Memory Maps After a CNFD Instruction

Program
0(0000h) Interrupts
and Reserved
(On-Chip
31(001Fh) | ROM/EPROM)
32(0020h)
On-Chip
4015 (OFAFh) EPROM/ROM
4016 (OFBOh)
Reserved
4095 (OFFFh)
4096 (1000h)
External
65,535 (0OFFFFh)
If MPIMC = 0

(Microcomputer Mode
on TMS320C25)

0(0000h)

5(0005h)
6 (0006h)

95 (005Fh)
96 (0060h)

127 (007Fh)
128 (0080h)

511 (01FFh)
512 (0200h)

767 (02FFh)
768 (0300h)

1023 (03FFh)
1024 (0400h)

65,535 (OFFFFh)

(b) Memory Maps After a CNFP Instruction

Program
0(0000h) Interrupts
and Reserved
(On-Chip
31 (001Fh) ROM/EPROM)
32(0020h)
On-Chip
4015 (OFAFh) ROM/EPROM
4016 (OFBOh)
Reserved
4095 (OFFFh)
4096 (1000h)

External
65279(OFEFFh) | |
65,280 (OFFO0h)

On-Chip
Block BO
65,535 (0FFFFh)
If MPIMC = 0

(Microcomputer Mode
on TMS320C25)

0(0000h)

5(0005h)
6 (0006h)

95 (005Fh)
96 (0060h)

127 (007Fh)
128 (0080h)

511 (01FFh)
512 (0200h)

767 (02FFh)
768 (0300h)

1023 (03FFh)
1024 (0400h)

65,535 (OFFFFh)

Memory Organization

Data

On-Chip
Memory-Mapped
Registers

Reserved

On-Chip
Block B2

Reserved

On-Chip
Block BO

On-Chip
Block B1

External

Data

On-Chip
Memory-Mapped
Registers

Reserved

On-Chip
Block B2

Reserved

Does Not
Exist

On-Chip
Block B1

External

Page 0

Pages 1-3

Pages 4-5

Pages 6-7

Pages 8-511

Page 0

Pages 1-3

Pages 4-5

Pages 6-7

Pages 8-511

3-19

Memory Organization

Figure 3-9. TMS320C26 Memory Maps

Program Program Data
(0000h) (0000h) (0000h) —
Interrupts Interrupts On-Chip
and Reserved and Reserved Memory-Mapped
Ext | Bootload ROM Registers
(001Fh) (Extemal) (00FFh) (0005h)
0020h
() (0100h) (0006h) Reserved Page 0
(OFFFh) Reserved (005Fh)
0060h .
(1000h) () On-Chip
Block B2
(007Fh)
0080h
¢) Reserved Pages 1-3
(01FFh)
(0200n) On-Chip Pages 4-7
External Block BO B
External (03FFh)
0400h .
() On-Chip Pages 8 — 11
Block B1
(05FFh)
(0600h) h
é)lgci é‘; Pages 12-15
(07FFh)
(0800h)
External Pages 16-511
(FFFFh) (FFFFh) (FFFFh)
If MP/MC = 1 If MP/MC =0
(Microprocessor Mode) (Microcomputer Mode)
(a) Memory Maps After a CONF O Instruction and After Reset
Program Program Data
(0000h) (0000h) (0000h)
Interrupts Interrupts On-Chip
and Reserved and Reserved Memory-Mapped
External Bootload ROM Registers
(001Fh) () (g(lJ(F)g:) (0005h) 9
(0020h) () Reserved (0006h) Page 0
OFFEh Reserved
ElOOOh; (005Fh)
(0060h) On-Chip
(007Fh) Block B2
0080h
External ¢) Reserved Pages 1-3
External (01FFh)
(0200n) Does Not P 4-7
Exist ages
(FOFFh) (03FFh)
FAOOh) (FOFFh) 0400h)
() On-Chip FAOOh . () On-Chip Pages 8 — 11
Block BO () On-Chip Block B1
(FBFFh) Block BO (05FFh)
(FCOOh) (FBFFh) 0600h
(FCOoO0h) ¢) On-Chip
External Pages 12-15
EDFFh External Block B3
() (FDFFh) (07FFh)
(FEOOh) (FEOOh) (0800h)
External External External Pages 16-511
(FFFFh) (FFFFh) (FFFFh)
If MP/MC = 1 If MP/IMC =0

(Microprocessor Mode) (Microcomputer Mode

(a) Memory Maps After a CONF 1 Instruction

3-20 Architecture

Program
(0000h)
Interrupts
and Reserved
(001Fh) (External)
(0020h)
External
(FOFFh)
FAOOh
() On-Chip
(FBFFh) Block BO
(FCOOh) on-Chip
Block B1
(FDFFh)
(FEOOh)
External
(FFFFh)
If MP/MC = 1

(Microprocessor Mode)

Program
(0000h)
Interrupts
and Reserved
(001Fh) (External)
(0020h)
External
(FOFFh)
(FAOOh)]
On-Chip
Block BO
(FBFFh) ¢
(FCOOh)
On-Chip
Block B1
(FDFFh)
(FEOOh))
On-Chip
Block B3
(FFFFh) oc
If MP/MC = 1

(Microprocessor Mode)

Figure 3-9. TMS320C26 Memory Maps (continued)

Program
(0000h)

Interrupts

and Reserved
Bootload ROM

(00FFh) ootioa
(0100h)

Reserved
(OFFFh)
(1000h)

External
(FOFFh)
(FAOOh) on-Chip
(FBFFh) Block BO
(FCOOh) on-Chip
(FDFFh) Block B1
(FEOOh)

External
(FFFFh)

If MP/MC = 0

(Microcomputer Mode)

(c) Memory Maps After a CONF 2 Instruction

Program
(0000h)

Interrupts

and Reserved
Bootload ROM

(0OFFh)
(0100h)

Reserved
(OFFFh)
(1000h)

External
(FOFFh)
(FAOOh) on-Chip
(FBFFh) Block BO
(FCOoh)

On-Chip
(FDFFh) Block B1
(FEOOh) i

On-Chip

Block B3
(FFFFh) oc

If MP/MC = 0

(Microcomputer Mode

(d) Memory Maps After a CONF 3 Instruction

(0000h)

(0005h)
(0006h)

(005Fh)
(0060h)

(007Fh)
(0080h)

(01FFh)
(0200h)

(03FFh)
(0400h)

(05FFh)
(0600h)

(07FFh)
(0800h)

(FFFFh)

(0000h)

(0005h)
(0006h)

(005Fh)
(0060h)

(007Fh)
(0080h)

(01FFh)
(0200h)

(03FFh)
(0400h)

(05FFh)
(0600h)

(07FFh)
(0800h)

(FFFFh)

Data

On-Chip
Memory-Mapped
Registers

Reserved

On-Chip
Block B2

Reserved

Does Not
Exist

Does Not
Exist

On-Chip
Block B3

External

Data

On-Chip
Memory-Mapped
Registers

Reserved

On-Chip
Block B2

Reserved

Does Not
Exist

Does Not
Exist

Does Not
Exist

External

Memory Organization

Page 0

Pages 1-3

Pages 4-7

Pages 8 — 11

Pages 12-15

Pages 16-511

Page 0

Pages 1-3

Pages 4-7

Pages 8 — 11

Pages 12-15

Pages 16-511

3-21

Memory Organization

3.4.5 Memory-Mapped Registers

The six registers mapped into the data memory space are listed in Table 3-2
and are shown in the block diagram of Figure 3-2.

The memory-mapped registers may be accessed in the same manner as any
other data memory location, with the exception that block moves using the
BLKD (block move from data memory to data memory) instruction cannot be
performed from the memory-mapped registers.

Table 3-3. Memory-Mapped Registers

Register Address
Name Location Definition

DRR(15-0) 0 Serial port data receive register
DXR(15-0) 1 Serial port data transmit register
TIM(15-0) 2 Timer register

PRD(15-0) 3 Period register

IMR (5-0) 4 Interrupt mask register
GREG(7-0) 5 Global memory allocation register

3.4.6 Auxiliary Registers

3-22

The TMS320C2x provides a register file containing eight auxiliary registers
(ARO—ARY). This section discusses each register’s function and how an auxil-
iary register is selected and stored.

The auxiliary registers may be used for indirect addressing of data memory or
for temporary data storage. Indirect auxiliary register addressing (see
Figure 4-2) allows placement of the data memory address of an instruction
operand into one of the auxiliary registers. These registers are pointed to by
a three-bit auxiliary register pointer (ARP) that is loaded with a value from 0
through 7, designating ARO through AR7, respectively. The auxiliary registers
and the ARP may be loaded either from data memory or by an immediate oper-
and defined in the instruction. The contents of these registers may also be
stored in data memory. (Chapter 4 describes the programming of the indirect
addressing mode.)

Architecture

Memory Organization

Figure 3-10. Indirect Auxiliary Register Addressing Example

Auxiliary Register File

Data
Memory
ARO 053 7h Map
Location
AR1 515 0h 000h Internal
Auxiliary 03FFh
Register 0400h
Pointer AR2 JOE 9 F C h External
(psTO) - ——]
ARp » AR3 |OF F 3 A hl —P oFF3ah| 31 2 1 h
AR4 1 03 Bh OFFFFh
AR5 2 6 B 1h
AR6 0 00 8h
AR7 8 43 Dh

The auxiliary register files (ARO—AR7 on the TMS320C2x) are connected to
the auxiliary register arithmetic unit (ARAU), shown in Figure 3—11. The ARAU
may autoindex the current auxiliary register while the data memory location is
being addressed. Indexing by either 1 or by the contents of ARO may be per-
formed. As a result, accessing tables of information does not require the cen-
tral arithmetic logic unit (CALU) for address manipulation, thus freeing it for
other operations.

3-23

Memory Organization

Figure 3—-11. Auxiliary Register File

3-24

16

16

Auxiliary Register 7 (AR7) (16)
Auxiliary Register 6 (AR6) (16)
Auxiliary Register 5 (AR5) (16)

Auxiliary Register 4 (AR4) (16) Auxili Auxil
— - uxiliar uxiliar
Auxiliary Register 3 (AR3) (16) 3 Registe¥ 3 _ Registe¥
Auxiliary Register 2 (AR2) (16) [¢ Pointer " Buffer
Auxiliary Register L(ARD (16) | 15 orint (ARP) (3) (ARP) (3)
Auxiliary Register 0 (ARO) (16) T T
16 3
} T A
InB Out In A L"Y'_UX 3
Auxiliary Register Arithmetic 3
Unit (ARAU) (16)
3LSB
Auxiliary Register File Bus (AFB) R 3 or IR
3MSB 3 MSB \
AN Data Bus (16) \

s

Data Bus (16)

AN

As shown in Figure 3—11, auxiliary register O (ARO) or the eight LSBs of the
instruction registers can be connected to one of the inputs of the ARAU. The
other input is fed by the current AR (being pointed to by ARP). AR(ARP) refers
to the contents of the current AR pointed to by ARP. The ARAU performs the

following functions:

AR(ARP) + ARO - AR(ARP)

AR(ARP) — ARO - AR(ARP)

AR(ARP) + 1 _. AR(ARP)
AR(ARP) — 1 - AR(ARP)
AR(ARP) _ AR(ARP)

Index the current AR by adding a 16-bit
integer contained in ARO.

Index the current AR by subtracting a
16-bit integer contained in ARO.

Increment the current AR by one.
Decrement the current AR by one.

AR(ARP) is unchanged.

In addition to the above functions, the ARAU on the TMS320C25 performs
functions as follows:

AR(ARP) + IR(7-0) - AR(ARP) Add 8-bit immediate value to the

current AR.

AR(ARP) — IR(7 — 0) -~ AR(ARP) Subtract 8-bit immediate value to the

current AR.

Architecture

Memory Organization

AR(ARP) + rcARO - AR(ARP) Bit-reversed indexing, add ARO with
reverse-carry (rc) propagation (see
subsection 4.1.2)

AR(ARP) —rcARO - AR(ARP) Bit-reversed indexing, subtract ARO
with reverse-carry (rc) propagation
(see subsection 4.1.2).

Although the ARAU is useful for address manipulation in parallel with other op-
erations, it may also serve as an additional general-purpose arithmetic unit,
since the auxiliary register file can directly communicate with data memory.
The ARAU implements 16-bit unsigned arithmetic, whereas the CALU imple-
ments 32-bit 2s-complement arithmetic. Instructions provide branches depen-
dent on the comparison of the auxiliary register pointed to by ARP with ARO.
The BANZ instruction permits the auxiliary registers to be used also as loop
counters.

The three-bit auxiliary register pointer buffer (ARB), shown in Figure 3-8, pro-
vides storage for the ARP on subroutine calls and interrupts.

3.4.7 Memory Addressing Modes

The TMS320C2x can address a total of 64K words of program memory and
64K words of data memory. The on-chip data memory is mapped into the 64K-
word data memory space. The on-chip ROM in the TMS320C25 is mapped
into the program memory space when in the microcomputer mode. The
memory maps, which change with the configuration of block BO, B1, and B3,
are described in detail in subsections 3.4.3 and 3.4.4.

The 16-bit data address bus (DAB) addresses data memory in one of the fol-
lowing two ways:

1) By the direct address bus (DRB) using the direct addressing mode (for
example, ADD 10h), or

2) Bythe auxiliary register file bus (AFB) using the indirect addressing mode
(for example, ADD *).

Operands are also addressed by the contents of the program counter in the
immediate addressing mode.

Figure 3—12 illustrates operand addressing in the direct, indirect, and immedi-
ate addressing modes.

3-25

Memory Organization

Figure 3—12. Methods of Instruction Operand Addressing

Instruction

DlrectAddressmgl Opcode I dma I DP
9
7 16
Operand |
Instruction
IndirectAddressingI Opcode I ARP I
3 16
AR (ARP) I—/—>-| Operandl
Instruction
ImmediateOperandl Opcode | Operand |
PC —» Instruction
or o) q
PC+1 peran

3-26

Inthe direct addressing mode, the 9-bit data memory page pointer (DP) points
to one of 512 pages, each page consisting of 128 words. The data memory
address (dma), specified by the seven LSBs of the instruction, points to the
desired word within the page. The address on the direct address bus (DRB)
is formed by concatenating the 9-bit DP with the 7-bit dma.

Inthe indirect addressing mode, the currently selected 16-bit auxiliary register
AR(ARP) addresses the data memory through the auxiliary register file bus
(AFB). While the selected auxiliary register provides the data memory address
and the data is being manipulated by the CALU, the contents of the auxiliary
register may be manipulated through the ARAU. See Figure 3-12 for an ex-
ample of indirect auxiliary register addressing. The direct and indirect addres-
sing modes are described in detail in Section 4.1.

When an immediate operand is used, it is contained either within the instruc-
tion word itself or, in the case of 16-bitimmediate operands, in the word follow-
ing the instruction opcode.

Architecture

Memory Organization

3.4.8 Memory-to-Memory Moves

The TMS320C2x provides instructions for data and program block moves and
for data move functions that efficiently utilize the configurable on-chip RAM.

The BLKD instruction moves a block within data memory, and the BLKP
instruction moves a block from program memory to data memory. When used
with the repeat instructions (RPT/RPTK), the BLKD/BLKP instructions effi-
ciently perform block moves from on- or off-chip memory.

Implemented in on-chip RAM, the DMOV (data move) function on the
TMS320C2x is equivalent to that of the TMS320C1x. DMOV allows a word to
be copied from the currently addressed data memory location in on-chip RAM
to the next higher location while the data from the addressed location is being
operated uponin the same cycle (for example, by the CALU). An ARAU opera-
tion may also be performed in the same cycle when using the indirect addres-
sing mode. The DMOV function is useful for implementing algorithms that use
the z—1 delay operation, such as convolutions and digital filtering where data
is being passed through a time window. The data move function can be used
anywhere within blocks B0, B1, and B2 (and block B3 with the TMS320C26).
It is continuous across the boundary of blocks BO and B1 but cannot be used
with off-chip data memory. The MACD (multiply and accumulate with data
move) and the LTD (load T register, accumulate previous product, and move
data) instructions use the data move function.

The TBLR/TBLW (table read/write) instructions allow words to be transferred
between program and data spaces. TBLR is used to read words from on-chip
ROM or off-chip program ROM/RAM into the data RAM. TBLW is used to write
words from on-chip data RAM to off-chip program RAM.

3-27

Central Arithmetic Logic Unit (CALU)

3.5 Central Arithmetic Logic Unit (CALU)

The TMS320C2x central arithmetic logic unit (CALU) contains a 16-bit scaling
shifter, a 16 x 16-bit parallel multiplier, a 32-bit arithmetic logic unit (ALU), a
32-bit accumulator (ACC), and additional shifters at the outputs of both the ac-
cumulator and the multiplier. This section describes the CALU components
and their functions. Figure 3-13 is a block diagram showing the components
of the CALU. In the figure, note that SFL and SFR indicate shifts to the left or
right, respectively.

The following steps occur in the implementation of a typical ALU instruction:
1) Data is fetched from the RAM on the data bus,

2) Datais passed through the scaling shifter and the ALU where the arithme-
tic is performed, and

3) The result is moved into the accumulator.

One input to the ALU is always provided from the accumulator, and the other
input may be transferred from the product register (PR) of the multiplier or from
the scaling shifter that is loaded from data memory.

3-28 Architecture

Central Arithmetic Logic Unit (CALU)

Figure 3-13. Central Arithmetic Logic Unit (CALU), TMS320C2x

Program Bus
16 16
Data Bus
16
A4
16 MUX
16
TR(16)
Shifter 16 16
Multiplier
SXor0 —p (0-16) «——0 p
— PR(32)
sx —-| Shifter(-6, 0, 1, 4) | «—— 0
32
SX
32 or0
|
16
\ 4
ACCH(16) | ACCL(16) 0
3
SFL(0-7
Data Bus 16 Y 16

3-29

Central Arithmetic Logic Unit (CALU)

3.5.1 Scaling Shifter

3.5.2 ALU and Accu

3-30

The TMS320C2x provides a scaling shifter that has a 16-bit input connected
to the data bus and a 32-bit output connected to the ALU (see Figure 3-13).
The scaling shifter produces a left shift of O to 16 bits on the input data, as pro-
grammed in the instruction. The LSBs of the output are filled with zeros, and
the MSBs may be either filled with zeros or sign-extended, depending upon
the status programmed into the SXM (sign-extension mode) bit of status regis-
ter ST1.

The TMS320C2x also contains several other shifters, which allow it to perform
numerical scaling, bit extraction, extended-precision arithmetic, and overflow
prevention. These shifters are connected to the output of the multiplier and the
accumulator.

mulator

The TMS320C2x 32-bit ALU and accumulator implement a wide range of arith-
metic and logical functions, the majority of which execute in a single clock
cycle. Once an operation is performed in the ALU, the result is transferred to
the accumulator where additional operations such as shifting may occur. Data
that is input to the ALU may be scaled by the scaling shifter.

The ALU is a general-purpose arithmetic unit that operates on 16-bit words
taken from data RAM or derived from immediate instructions. In addition to the
usual arithmetic instructions, the ALU can perform Boolean operations that
make possible the bit manipulation required of a high-speed controller. One
input to the ALU is always provided from the accumulator, and the other input
may be provided from the product register (PR) of the multiplier or the input
scaling shifter that has fetched data from the RAM on the data bus. After the
ALU has performed the arithmetic or logical operations, the result is stored in
the accumulator.

The 32-bit accumulator (see Figure 3—13) is split into two 16-bit segments for
storage in data memory: ACCH (accumulator high) and ACCL (accumulator
low). Shifters at the output of the accumulator provide a left-shift of O to 7
places on the TMS320C2x. This shift is performed while the data is being
transferred to the data bus for storage. The contents of the accumulator re-
main unchanged. When the ACCH data is shifted left, the LSBs are transferred
from the ACCL, and the MSBs are lost. When ACCL is shifted left, the LSBs
are zero-filled, and the MSBs are lost.

The TMS320C2x supports floating-point operations for applications requiring
a large dynamic range. The NORM (normalization) instruction performs left
shifts to normalize fixed-point numbers contained in the accumulator. The
LACT (load accumulator with shift specified by the T register) instruction de-
normalizes a floating-point number by arithmetically left-shifting the mantissa
through the input scaling shifter. The shift count, in this case, is the value of

Architecture

Central Arithmetic Logic Unit (CALU)

the exponent specified by the four low-order bits of the T register (TR). ADDT
and SUBT (add to/subtract from accumulator with shift specified by the T regis-
ter) instructions have also been provided to allow additional arithmetic opera-
tions.

The accumulator overflow saturation mode may be programmed through the
SOVM and ROVM (set/reset overflow mode) instructions. When the accumu-
lator is in the overflow saturation mode and an overflow occurs, the overflow
flag is set and the accumulator is loaded with either the most positive or the
most negative number, depending upon the direction of overflow. The value
of the accumulator upon saturation is 7FFFFFFFh (positive) or 80000000h
(negative). If the OVM (overflow mode) status register bit is reset and an over-
flow occurs, the overflowed results are loaded into the accumulator without
modification. (Note that logical operations cannot result in overflow.)

The TMS320C2x can execute a variety of branch instructions that depend on
the status of the ALU and accumulator. These instructions include the BV
(branch on overflow) and BZ (branch on accumulator equal to zero). In addi-
tion, the BACC (branch to address in accumulator) instruction provides the
ability to branch to an address specified by the accumulator. Bit test instruc-
tions (BIT and BITT), which do not affect the accumulator, allow the testing of
a specified bit of a word in data memory.

The accumulator on the TMS320C25 also has an associated carry bit that is
set or reset, depending on various operations within the device. The carry bit
allows more efficient computation of extended-precision products and addi-
tions or subtractions. It is also useful in overflow management. The carry bit
is affected by most arithmetic instructions as well as the shift and rotate instruc-
tions. Itis not affected by loading the accumulator, logical operations, or other
such nonarithmetic or control instructions. Itis also not affected by the multiply
(MPY, MPYK, and MPYU) instructions, butis affected by the accumulation pro-
cess in the MAC and MACD instructions. Examples of carry bit operation are
shown in Figure 3-14.

Figure 3—-14. Examples of TMS320C25 Carry Bit Operation

c MSB LSB C MSB LSB

X FFFF F F F F ACC X 0000 0 00 0 ACC

+ 1 - 1

1 0000 0000 0 FFFF FFFF

X 7 F FF F F F F ACC X 8000 0 00 0 ACC

+ 1 (OVM=0) - 1 (OVM=0)

0 8 0 0 0 0000 1 7 FFF FFFF

1 0000 00 0 0 ACC 0 FFFF F FFF ACC

+ 0 (ADD - 0 (suBB
Instruction) Instruction)

0 0000 000 1 1 FFFF FFFE

3-31

Central Arithmetic Logic Unit (CALU)

The value added to or subtracted from the accumulator, shown in the exam-
ples of Figure 3—14, may come from either the input scaling shifter or the shift-
er at the output of the P register. The carry bit is set if the result of an addition
or accumulation process generates a carry; it is reset to zero if the result of a
subtraction generates a borrow. Otherwise, it is reset after an addition or set
after a subtraction.

The ADDC (add to accumulator with carry) and SUBB (subtract from accumu-
lator with borrow) instructions provided on the TMS320C25 use the previous
value of carry in their addition/subtraction operation (see these instructions in
Chapter 4 for more detailed information).

The one exception to operation of the carry bit, as shown in Figure 3-14, is in
the use of the ADDH (add to high accumulator) and SUBH (subtract from high
accumulator) instructions. The ADDH instruction can set the carry bit only if
a carry is generated, and the SUBH instruction can reset the carry bit only if
a borrow is generated; otherwise, neither instruction can affect it.

Two branch instructions, BC and BNC, can execute branching on the status
of the carry bit. The SC, RC, and LST1 instructions can also be used to load
the carry bit. The carry bit is set to one on a hardware reset.

The SFL and SFR (in-place one-bit shift to the left/right) instructions on the
TMS320C2x and the ROL and ROR (rotate to the left/right) instructions on the
TMS320C25 implement shifting or rotating of the contents of the accumulator
through the carry bit. The SXM bit affects the definition of the SFR (shift accu-
mulator right) instruction. When SXM = 1, SFR performs an arithmetic right
shift, maintaining the sign of the accumulator data. When SXM = 0, SFR per-
forms a logical shift, shifting out the LSB and shifting in a zero for the MSB. The
SFL (shift accumulator left) instruction is not affected by the SXM bit and be-
haves the same in both cases, shifting out the MSB and shifting in a zero. Re-
peat (RPT or RPTK) instructions may be used with the shift and rotate instruc-
tions for multiple shift counts.

3.5.3 Multiplier, T and P Registers

3-32

The TMS320C2x utilizes a 16 x 16-bit hardware multiplier, which is capable
of computing a signed or unsigned 32-bit product in a single machine cycle.
All multiply instructions, except the MPYU (multiply unsigned) instruction on
the TMS320C25, perform a signed multiply operation in the multiplier. That is,
the two numbers being multiplied are treated as 2s complement numbers, and
the resultis a 32-bit 2s complement number. As shown in Figure 3—13, the fol-
lowing two registers are associated with the multiplier:

[A 16-bit temporary register (TR) that holds one of the operands for the
multiplier,

(] A 32-bit product register (PR) that holds the product.

Architecture

Central Arithmetic Logic Unit (CALU)

The output of the product register can be left-shifted 1 or 4 bits. This is useful
forimplementing fractional arithmetic or justifying fractional products. The out-
put of the PR can also be right-shifted 6 bits to enable the execution of up to
128 consecutive multiply/accumulates without the possibility of overflow.

An LT (load T register) instruction normally loads the TR to provide one oper-
and (from the data bus), and the MPY (multiply) instruction provides the se-
cond operand (also from the data bus). A multiplication can also be performed
with an immediate operand using the MPYK instruction. In either case, a prod-
uct can be obtained every two cycles.

Two multiply/accumulate instructions (MAC and MACD) fully utilize the com-
putational bandwidth of the multiplier, allowing both operands to be processed
simultaneously. The data for these operations may reside anywhere in internal
or external memory or can be transferred to the multiplier each cycle via the
program and data buses. This provides for single-cycle multiply/accumulates
when used with repeat (RPT/RPTK) instructions. Note that the DMOV portion
of the MACD instruction will not function with external data memory address-
es. On the TMS320C2x, the MAC and MACD instructions can be used with
both operands in either internal or external memory or one each in on-chip
RAM. The SQRA (square/add) and SQRS (square/subtract) instructions pass
the same value to both inputs of the multiplier for squaring a data memory val-
ue.

The MPYU instruction on the TMS320C2x performs an unsigned multiplica-
tion, which greatly facilitates extended-precision arithmetic operations. The
unsigned contents of the T register are multiplied by the unsigned contents of
the addressed data memory location, with the result placed in the P register.
This allows operands of greater than 16 bits to be broken down into 16-bit
words and processed separately to generate products of greater than 32 bits.

After the multiplication of two 16-bit numbers, the 32-bit product is loaded into
the PR on the TMS320C2x. The product from the PR may be transferred to
the ALU.

Four product shift modes (PM) are available at the PR output and are useful
when performing multiply/accumulate operations and fractional arithmetic, or
when justifying fractional products. The PM field of status register ST1 speci-
fies the PM shift mode, as shown in Table 3—4.

Table 3—4. PM Shift Modes

If PM Is: Result
00 No shift
01 Left shift of 1 bit
10 Left shift of 4 bits
11 Right shift of 6 bits

3-33

Central Arithmetic Logic Unit (CALU)

3-34

Left shifts specified by the PM value are useful for implementing fractional
arithmetic or justifying fractional products. For example, the product of either
two normalized, 16-bit, 2s-complement numbers or two Q15 numbers con-
tains two sign bits, one of which is redundant. Q15 format, one of the various
types of Q format, is a number representation commonly used when perform-
ing operations on noninteger numbers (see subsection 5.6.7 for an explana-
tion and examples of Q15 representation). The single-bit left shift eliminates
this extra sign bit from the product when it is transferred to the accumulator.
This results in the accumulator contents being formatted in the same manner
as the multiplicands. Similarly, the product of either a normalized, 16-bit, 2s-
complement or Q15 number and a 13-bit, 2s-complement constant contains
five sign bits, four of which are redundant. This is the case, for example, when
using the MPYK instruction. Here the four-bit shift properly aligns the result as
it is transferred to the accumulator.

Using the right-shift PM value allows the execution of up to 128 consecutive
multiply/accumulate operations without the threat of an arithmetic overflow,
thereby avoiding the overhead of overflow management. The shifter can be
disabled to cause no shift in the product when working with integer or 32-bit
precision operations. This allows compatibility with TMS320C1x code to be
maintained. Note that the PM right shift is always sign-extended, regardless
of the state of SXM.

The four least significant bits of the T register (TR) also define a variable shift
through the scaling shifter for the LACT/ADDT/SUBT (load/add-to/subtract-
from accumulator with shift specified by the TR) instructions. These instruc-
tions are useful in floating-point arithmetic where a number needs to be de-
normalized, that is, floating-point to fixed-point conversion. The BITT (bit test)
instruction allows testing of a single bit of a word in data memory based on the
value contained in the four LSBs of the TR.

Architecture

System Control

3.6 System Control

System control on the TMS320C2x is supported by the program counter, hard-
ware stack, PC-related hardware, the external reset signal, interrupts (see
Section 3.8), the status registers, the on-chip timer, and the repeat counter.
The following sections describe the function of each of these components in
system control and pipeline operation.

3.6.1 Program Counter and Stack

The TMS320C2x contains a 16-bit program counter (PC) and a hardware
stack of eight locations for PC storage (see Figure 3—15). The program count-
er addresses internal and external program memory in fetching instructions.
The stack is used during interrupts and subroutines.

Figure 3—-15. Program Counter, Stack, and Related Hardware

\ Program Bus \
im im
16

MCS -« PFC QIR

(16) e (16) MUX (16)
16

16 16 Y y
| PC (16) IR
(16)
16
To Program > 16
Address Bus v
——— Stack 16
(8% 16)
16
_4+
/ 16
16
A \4 A
\ Data Bus \

The program counter addresses program memory, either on-chip or off-chip,
via the program address bus (PAB). Through the PAB, an instruction is fetched
from program memory and loaded into the instruction register (IR). When the
IR is loaded, the PC is ready to start the next instruction fetch cycle. The PC
may address any on-chip RAM blocks configured as program memory, or the

3-35

System Control

3-36

on-chip ROM provided on the TMS320C25. The PC also addresses off-chip
program memory through the external address bus A15-A0 and the external
data bus D15-DO.

Data memory is addressed by the program counter during a BLKD instruction,
which moves data blocks from one section of data memory to another. The
contents of the accumulator may be loaded into the PC to implement com-
puted GOTO operations. This can be accomplished using the BACC (branch
to address in accumulator) or CALA (call subroutine indirect) instructions.

To start a new fetch cycle, the PC is loaded either with PC+1 or with a branch
address (for instructions such as branches, calls, or interrupts). In the case of
conditional branches where the branch is not taken, the PC is incremented
once more beyond the location of the branch address.

The TMS320C2x also has a feature that allows the execution of the next single
instruction N+1 times. N is defined by loading an 8-bit counter RPTC (repeat
counter). If this repeat feature is used, the instruction is executed, and the
RPTC is decremented until the RPTC goes to zero. This feature is useful with
many instructions, such as NORM (normalize contents of accumulator),
MACD (multiply and accumulate with data move), and SUBC (conditional sub-
tract). When used with some multicycle instructions, such as MACD, the re-
peat features can result in these instructions effectively executing in a single
cycle.

The stack is 16 bits wide and eight levels deep. The PC stack is accessible
through the use of the PUSH and POP instructions. Whenever the contents
of the PC are pushed onto the top of the stack, the previous contents of each
level are pushed down, and the bottom (eighth) location of the stack is lost.
Therefore, data will be lost if more than eight successive pushes occur before
a pop. The reverse happens on pop operations. Any pop after seven sequen-
tial pops yields the value at the bottom stack level. All of the stack levels then
contain the same value. Two additional instructions, PSHD and POPD, push
a data memory value onto the stack or pop a value from the stack to data
memory. These instructions allow a stack to be built in data memory for the
nesting of subroutines/interrupts beyond four/eight levels.

Note that on the TMS320C2x, the TBLR/TBLW, MAC/MACD, and BLKD/BLKP
instructions use a separate stack, MCS (microcall stack); no level of the PC
stack is used.

Architecture

System Control

3.6.2 Pipeline Operation

Instruction pipelining consists of the sequence of external bus operations that
occurs during instruction execution. The prefetch-decode-execute pipeline is
essentially invisible to the user, exceptin some cases where the pipeline must
be broken (such as for branch instructions). In the operation of the pipeline,
the prefetch, decode, and execute operations are independent, which allows
instruction executions to overlap. Thus, during any given cycle, three different
instructions can be active, each at a different stage of completion, resulting in
the three-level pipeline on the TMS320C2x.

The difference in pipeline levels does not necessarily affect instruction execu-
tion speed, but merely changes the fetch/decode sequence. Most instructions
execute in the same number of cycles, regardless of whether they are
executed from internal RAM, ROM, or external program memory. The effects
of pipelining are included in the instruction cycle timings for the TMS320C25
listed in Appendix D.

Additional PC-related hardware (see Figure 3-15) is provided on the
TMS320C25 to allow three-level pipelining for higher performance. Included
in the related hardware are the prefetch counter (PFC), the 16-bit microcall
stack (MCS) register, the instruction register (IR), and the queue instruction
register (QIR).

In the three-level pipeline on the TMS320C25, the PFC contains the address
of the next instruction to be prefetched. Once an instruction is prefetched, the
instruction is loaded into the IR, unless the IR still contains an instruction cur-
rently executing, in which case the prefetched instruction is stored in the QIR.
The PFC is then incremented, and after the current instruction has completed
execution, the instruction in the QIR is loaded into the IR to be executed.

The PC contains the address of the next instruction to be executed and is not
used directly in instruction fetch operations, but merely serves as a reference
pointer to the current position within the program. The PC is incremented as
each instruction is executed. When interrupts or subroutine call instructions
occur, the contents of the PC are pushed onto the stack to preserve return link-
age to the previous program context.

The prefetch, decode, and execute operations of the pipeline are independent,
thus allowing instruction executions to overlap. During any given cycle, three
different instructions can be active, each at a different stage of completion.
Figure 3—-16 shows the operation of the three-level pipeline for single-word,
single-cycle instructions executing from either internal program ROM or exter-
nal memory with no wait states.

3-37

System Control

Figure 3—-16. Three-Level Pipeline Operation (TMS320C25)

CLKOUT1
I I I I
I I I I
N N+1 N+2
prefetch | | |
N-1 N N+1
decode |r—+—+—+—
| N-2 | N-1 | N |

execute PP ——

Pipelining is reduced to two levels when execution is from internal program
RAM due to the fact that an instruction in internal RAM can be fetched and de-
coded in the same cycle. Thus, separate prefetch and decode operations are
not required, as shown in Figure 3-17.

Figure 3—17. Two-Level Pipeline Operation

CLKOUT1
I I I I
I I I I
N N+1 N+2
prefetch | | |
N N+1 N+2
decode |r—+—+—+—

execute F—*—*—*—

The following paragraphs describe, in detail, the operation of the TMS320C25
pipeline. This description, in conjunction with Appendix D, gives sufficient in-
formation for predicting the operation of the TMS320C25 for hardware inter-
face optimization, accurate program cycle counting, and simulation modelling.
Often, it is not necessary to understand the intricate detail of the pipeline to
design with the TMS320C25. Therefore, if you are not specifically interested
in these details, you can skip this description.

3-38 Architecture

System Control

The TMS320C25 executes most of its instructions in a single cycle because
allthe instructions are straight decodes and highly pipelined as opposed to mi-
crocode. The basic pipeline operation is 3.25 cycles deep where the device
sequence on any given cycle is fetching the third instruction, decoding the se-
cond instruction, and executing the first. Figure 3—18 shows the internal op-
eration of the TMS320C25 pipeline in reference to quarter phases 1 through

4 (Q1-Q4).

Figure 3-18. TMS320C25 Standard Pipeline Operation

Clock

CLKOUT1

CLKOUT2

STRB

Address

Data

Decode

RAMRD

Execute

Status

AUXREG

RAMWR

Cycle 1 Cycle 2 Cycle 3

|Q2|Q3|Q4|Q1|Q2|Q3|Q4|Q1|Q2|Q3|Q4|Q1|

INST1 INST2 INST3
T T T T T T
: | INSTlI : | INST2I | | : INST3I | ! :
t
, | I = I — I
]] |]
INSTO : INST1 : INST2
[| [| [
| I N '
[InsTo INST2
| T | | | | [i
| | | I I | |
INST ACC INSTO ACC T + I T
| | |
l | l I nsT1 | | [TinsT | | l INST
_1 I I — [[Loz J | [12
| | |
I yr=yveyey LOAD INSTLARAU H LoAD INST2 ARAU H LoAD
: | | I |
| | | | | | | | |
| T T T T T T ST T T T

The TMS320C25 machine cycle, externally referenced by the falling edges of
the CLKOUT1 signal, consists of four internal cycles (or CLKIN cycles). This
allows internal operations of the pipeline to execute as fast as 1/4 the machine
cycle. The sequence of a general instruction execution in the pipeline is shown
in Table 3-5.

3-39

System Control

Table 3-5. Instruction Pipeline Sequence

3-40

Cycle Q Phase Operation
1

New PC is output on address bus
External read of instruction
External read of instruction
External read of instruction

Instruction decode
Instruction decode/ARAU execution
On-chip RAM access/ARAU execution

On-chip RAM access/load new AR value/update ARP
ALU execution

ALU execution

Load accumulator

RlhrwNRER]RARONR]|RRONE

4 Load status register

When using an add instruction (for example, ADD *+,12,AR4), the device
fetches the instruction in cycle 1. During Q2 and Q3 of cycle 2, the instruction
is decoded. This includes the ALU command decode as well as generation of
the data operand fetch address. In this case, the address comes from an auxil-
iary register. During Q4 of cycle 2 and Q1 of cycle 3, the operand is fetched
from the RAM location. The increment of the auxiliary register is performed
during Q3 and Q4 of cycle 2, and the value is loaded into the auxiliary register
in Q1 of cycle 3. The ARP is also updated in Q1 of cycle 3. During Q2 and Q3
of cycle 3, the data is passed through the barrel shifter to execute the 12-hit
left-shift, and the data is added by the ALU to the contents in the accumulator.
In Q4 of the third cycle, the ALU resultis loaded into the accumulator. The sta-
tus of the ALU operation is loaded into the status register in Q1 of the fourth
cycle. The bits being loaded into the status register at this time consist of the
current ALU status and the ARP associated with the next instruction.

In the case of a store instruction (for example, SACL *0-,3,AR2), the device
operates the first two cycles in the same manner as the ADD instruction. In Q1
and Q2 of the third cycle, the data in the accumulator is passed through a barrel
shifter, left-shifted 3 bits, and zero-filled. The lower 16 bits of the shifted value
are written to the address specified by the current auxiliary register. During Q3
and Q4 of the third cycle, the index register (ARO) is added to the contents of
the current auxiliary register and loaded back into the current auxiliary register
in Q1 of the fourth phase. In Q1 of the fourth cycle, the auxiliary register pointer
ischangedto AR2. There is no execution phase of this instruction. Figure 3-19
shows the ADD and SACL instructions operating back-to-back in a program
sequence. It is assumed that both instructions reside in external, zero wait-
state memory and that the data resides in on-chip RAM.

Architecture

System Control

Figure 3-19. Pipeline Operation of ADD Followed by SACL

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
‘QZ‘Q3|Q4 QllQZ‘Q3‘Q4 QllQZ‘Q3‘Q4 Ql‘QZ‘Q?"Q“ QllQZ‘Q3‘
Clock
CLKOUT1 \ \ | | \ \ | | \ \ | | \ \ \
S | — | — | — | — |
58 | | | I sy W
Address ‘ADD *+12, AR4 ‘SACL *0,3, AR2 ‘ ‘ ‘
. —L — L
Data ‘ ‘ —— | | T ‘ | ‘
Decode 1 i } } AI‘DD ; SA‘CL | ; — } 1 } }
RAM } ‘ | } ‘ ‘ ADD‘/Read l l SACL Write ; | } | |
Execute | ‘ ; | } | + + I~ ADD ACC Dummy 'd—‘—‘—‘—
AUXREG } } : } +— Arx+1_HLoad AR4‘-ARO Load | } } ; } } }

When the device is reading instructions out of on-chip ROM, the basic internal
operation of the pipeline is the same. The only difference is that the control
lines (that is, STRB, PS, and R/W) are inactive. If the device is fetching the
instructions from on-chip RAM, the pipeline is shortened to 2.5 cycles, since
the device can fetch the instruction in half a cycle as opposed to the full cycle
required in an external or on-chip ROM fetch. The instruction is fetched during
Q4 and Q1, then decoded in Q2 and Q3. The rest of the pipeline tracks as de-
scribed above.

Some operations add additional machine cycles to the instruction execution
without damaging the integrity of the program or hardware. External wait
states, multiplexed data bus conflicts, two-word instructions, and program
counter discontinuities are included in these operations, as described in the
following paragraphs.

Wait States . The TMS320C25 is designed to be interfaced to slower external
devices through the use of hardware-generated wait states. This applies to the
program, data, and I/O memory spaces of the Harvard architecture. Wait
states are a direct delay on the instruction pipeline. Each wait state inserted
during the instruction fetch contributes an additional machine cycle in the pipe-
line execution of the instruction. In addition, any wait state incurred when
accessing external data or 1/O space also contributes an additional machine
cycle to the pipeline execution of the instruction. This factor applies to all
instructions. Figure 3—20 describes how the pipeline reacts to wait states in
external program memory. Note that the wait state added in cycle 2 results in
a no-execution operation in cycle 4.

3-41

System Control

Figure 3-20. Pipeline Operation With Wait States

Clock
CLKOUT1
CLKOUT2

STRB
Address
Data
Decode
RAM
Execute

AUXREG

3-42

Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5

|Q2|Q3|Q4|Q1|Q2|Q3|Q4|Q1|Q2|Q3|Q4|Q1|Q2|Q3|Q4|Q1|Q2|Q3|

| |
: T {0 J[acd : —
i+ Dl

Multiplexed External Data Bus. The external data bus is multiplexed to sup-
port all three memory spaces of the TMS320C25. Therefore, external fetches
to multiple spaces in the same instruction add additional machine cycles to the
pipeline execution of the instruction. This is due to the fact that the external
fetch takes a full cycle, whereas the internal equivalent takes two quarter
phases and can be included in the execution stage of the three-deep pipeline.
Accessing the data memory space is controlled by setting of the data page
pointer or the value contained in the auxiliary register used in any instruction.
Also affecting the pipeline is the access of the 1/0 bus or the tables in program
memory (thatis, IN, OUT, TBLR, and TBLW). Figure 3—21 shows how the pipe-
line processes an instruction with external program and data access.

I I + Dummy

| |
ADD *+,12, AR4 Wait State SACL *0,3, AR2 Wait State OR *+
] I [] | [I [
L L L L L L L L
T 1 T T T T | | 1 T T T | |
| | | | |
| + T ADD : | 1 l + SACL | : + 1
I | I
: : f ADD Read I l T 1 1 SACL/Write-—l
| | | l l
I I
L L
1 I

Architecture

System Control

Figure 3-21. Pipeline With External Data Bus Conflict

Clock
CLKOUT1
CLKOUT2

STRB
PS

DS
Address
Data
Decode
EXTRAM

Execute

AUXREG

Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5

|Q2|Q3|Q4|Q1|Q2|Q3|Q4|Q1|Q2|Q3|Q4|Q1|QZ|Q3|Q4|Q1|Q2|Q3|

| |
[A

N

| |
| I
! |
! | I I I
—t— (. [| S
T I I I T I T 1 | | | | | | ———
L 1 L 1 - T L
SASEEC AL LACH Data Space Data Space
! J 1 ! —LI ! TLI —]
A —l-' T J T rite § 1 Rea I ,
|
—t—t— SACL ! e | : — —
| | | |
: : : 11 SACL Wiite orem ———1
| |
N mTm —
— AR4-ARO H Load ARz 1) Coad ———t——t——f—t—of

Two-Word Instructions . All two-word instructions take an additional cycle to
fetch the 16-bit immediate operand following the instruction mnemonic. The
first set of instructions for which this applies is the long immediate instructions.
The instruction mnemonic is followed by a 16-bit immediate operand to be
executed in the ALU. The second set applies to those instructions that use the
PFC register as a second data addressing unit on some optimized instruc-
tions—for example, the multiply/accumulate and block move instructions
(MAC, MACD, BLKP, and BLKD). In the second set, the extra cycle appears
only once in a repeat loop. The third set involves conditional branches not tak-
en.

Program Counter Discontinuities. Because the TMS320C25 is pipelined,
a change (other than an increment) in the program counter requires that the
pipeline be flushed. This applies to all branches, subroutine calls, software
traps, interrupt traps, and returns. The pipeline, being three deep, has the next
instruction already loaded when the branch occurs. At this point, this instruc-
tion will not affect any data or registers, so itis cleared from the pipeline. There-
fore, two dead execution cycles are inserted while waiting for the pipeline to
reload. The device takes only one additional cycle if the destination of the
branch is in on-chip RAM block 0. The pipeline is only two-deep in this case
and takes only one cycle to reload. Figure 3—22 shows a branch from normal
execution to an address in on-chip RAM, and Figure 3—-23 shows an example
of a return executed from on-chip RAM to a location in off-chip memory.

System Control

Figure 3-22. Pipeline Operation of Branch to On-Chip RAM

Clock
CLKOUT1
CLKOUT2

STRB
Address
Data
Decode
INTRAM
DATARAM
Status
Execute

AUXREG

3-44

Cycle 1 I

I Cycle 3

I Cycle 5

IQ2IQ3IQ4|Q1IQ2IQ3IQ4|Q1IQ2IQ3IQ4|QlIQ2IQ3IQ4|Q1IQ2IQ3I

I
II 'I
J,

T

! | !
I I
| ! | | |
f } f T ADDH
I | | SUB*-,12, AR4 |
—— : ——— Ao ——t—
I : | || I I
; : } } I I } } I SUB Read
I | | | | | [
[T | | o
| | I | | | | BY | | | | SUB
(. ! [[T I | |
i —t —t—t — 1 floadp—
Architecture

System Control

Figure 3-23. Pipeline Operation of RET From On-Chip RAM

Clock
CLKOUT1
CLKOUT2

STRB
Address
Data
Decode
INTRAM
DATARAM
Status
Execute

AUXREG

Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5

|Q2|Q3|Q4|Q1|Q2|Q3|Q4|Q1|Q2|Q3|Q4|Q1|Q2|Q3|Q4|Q1|Q2|Q3|

|
o
! } : |
— i
[[| I I T 1 | | | |
| [A | ‘—’—[I
| . T {_ADD *+ 12, AR4 SUB *0-, 3, AR2 OR *+
—L ! T
I L : — ! ' +— —— —
| | T
! o
s L I — ADD SUB
! I | T ; I
RE | | | | | l | | | | | I . L
T T | | ! | | | | | T T T i r f t
| | | | | l | | . | | | | | L I—
BN C
:'l | : : L : : — : [1 — L
| | | | l | T
—t || RET [S S T N e
o | R
i i : : ; i ; : : : : : f ARx +1 ffLoad

Interrupts are hardware-generated discontinuities to the sequential accessing
of the program counter. The interrupt is executed based upon instruction
execution complete, rather than memory operation complete. The instruction
that is currently executing at the time of an interrupt executes completely. The
interrupt traps following the completion of that instruction before the start of the
execution of the next instruction. In this case, the repeated instruction is con-
sidered one execution; therefore, the repeat loop finishes before the interrupt
trap is taken. This gives priority to the algorithm over the interrupt service. The
interrupt operation in reference to the pipeline execution is illustrated in the
data sheet timing diagrams (see Appendix A). Note that when interrupt vectors
reside in external memory running with one wait state, there are two interrupt
acknowledge (IACK) pulses. If this is a problem, the IACK line should be gated
with READY.

Hardware Aspects of the Pipeline. Viewing these effects on the pipeline at
the hardware level requires additional explanation due to the lack of visibility
of on-chip operations or optimization of the pipeline execution. The following
paragraphs describe the effects of HOLD/HOLDA, RS, interrupts, accumula-
tor store, on-chip program access, external data access, and repeats as they
are visible from the pins of the device. In the cases of RS, interrupts, and
HOLD/HOLDA, the effects on the pipeline are shown in the data sheet timing
diagrams (see Appendix A).

3-45

System Control

3-46

Reset. The reset interrupt is a totally nonmaskable interrupt. When executed,
it stops operation of the pipeline and flushes the unexecuted parts. The reset
pulse must be at least three CLKOUT cycles wide. After the second CLKOUT
cycle has completed (before the third rising edge of CLKOUT1), the device has
brought all outputs into a high-impedance state. After the rising edge of RS,
the device begins to fetch the reset vector. Since the pipeline is empty, it does
not execute the reset vector branch until two cycles later. If the HOLD line is
brought low during the active reset, the device does not start the fetch of the
reset vector until after the active HOLD is removed and the device deactivates
the HOLDA line. When HOLD is activated with RS to allow bootloading of the
code, the HOLDA line will go active low in three cycles, regardless of whether
or not the RS line has gone high. This is useful in that the HOLDA line can be
used to enable the release of the RS line and guarantee the required three-
cycle reset.

Interrupts . The effects of an interrupt become apparent on the hardware
when a interrupt acknowledge (IACK) signal is valid on the rising edge of
CLKOUTZ2. This signifies the fetch of the first word of the interrupt vector. If wait
states are generated in the memory segment where the interrupt vector re-
sides, an additional IACK pulse occurs for each wait state added. If this causes
a problem with the external interface, IACK can be gated with READY to ac-
cept only the last interrupt acknowledge pulse. Note that the BIOZ instruction
tests the level of the BIO pin during the instruction fetch phase of the pipeline.

Hold/Hold Acknowledge .The hold operation, like that of interrupt, takes se-
cond priority to algorithm execution; therefore, the hold will not be acknowl-
edged until after the currently running instruction is completed (a minimum of
three cycles). This includes repeated instructions. The next instruction, after
the final instruction executed before HOLDA, is latched into the pipeline and
executed two cycles after the HOLDA line goes inactive high. The second
instruction after the last instruction executed is fetched two cycles again after
the HOLDA line goes inactive high. If the HM bit of status register ST1 is set
high, the TMS320C25 stops execution and sits idle until the hold is removed.
This lowers power consumption by removing the drive of the memory address
and control lines and also stopping major parts of the internal CPU circuits from
switching and drawing power. This can be used as a hardware powerdown
mode. If the HM bit is low, the TMS320C25 continues executing any instruction
that can be executed with on-chip resources only. This means both program
and datareside in on-chip memory. The device will continue to operate normal-
ly unless an off-chip access is required by an instruction, at which time the pro-
cessor adds wait states until the hold state is removed. When running from on-
chip resources with HM = 0, the processor acknowledges HOLD with HOLDA
during a multicycle instruction.

On-Chip Program Access. When you execute from on-chip resources, the
pipeline is visible only in the MSC line, which signals microstate complete
when active low on the rising edge of CLKOUT2. Note that executing from on-
chip program memory does not allow instruction accessing of external data

Architecture

3.6.3 Reset

System Control

memory to run in a single cycle. The normal operation of the instruction takes
only two quarter phases of the execution cycle to fetch the on-chip data
memory, whereas off-chip access requires all four quarter phases. The pipe-
line is, however, optimized to handle a repeated instruction that accesses ex-
ternal data memory with only one extra cycle for the first external fetch.

External Program/Data Access. Visibility of the pipeline when using external
program and data memory requires a monitoring of the MSC, STRB, PS, and
DS lines. The MSC line indicates at the rising edge of CLKOUT2 whether or
not the cycle is the beginning of a new instruction fetch; thatis, MSC active low
indicates the completion of an instruction and the acquisition of another
instruction. The PS (program select) line indicates that the data bus is currently
being used to fetch an instruction. A step in the pipeline is not indicated, since
the PS line remains while the pipeline is fetching instructions externally. To
track the fetches, the STRB line, which frames external accesses, must be
monitored.

The PS line being active low does not necessarily mean that the device is
fetching an instruction. In the cases of table read/write (TBLR/TBLW), multiply/
accumulate (MAC/MACD), and block transfer (BLKP) instructions, the device
uses the PS line active low to access tables.

To monitor external data memory fetches, watch the data select (DS) line in
conjunction with the STRB line. An active low on the DS line indicates the data
bus is currently being used to access data memory space. This line remains
low for two memory fetches in the case of an accumulator store followed by
an ALU instruction, both operating with off-chip memory. However, two STRB
pulses will identify the individual access. Likewise, the line remains low for
many cycles in the case of a repeated instruction. I/O space access operates
similarily to data space operation with the OUT and IN instructions replacing
the save and ALU instruction.

A clear understanding of this information in conjunction with the data in Appen-
dix E should be sufficient to predict the operation of the TMS320C25 pipeline.

Reset (RS) is a nonmaskable external interrupt that can be used at any time
to put the TMS320C2x into a known state. Reset is typically applied after pow-
erup when the machine is in a random state.

Driving the RS signal low causes the TMS320C2x to terminate execution and
forces the program counter to zero. RS affects various registers and status
bits. At powerup, the state of the processor is undefined. For correct system
operation after powerup, a reset signal must be asserted low for at least three
clock cycles to guarantee areset of the device (see Section 5.1 for otherimpor-
tant reset considerations). Processor execution begins at location 0, which
normally contains a B (branch) statement to direct program execution to the
system initialization routine (also see Section 5.1 for an initialization routine
example). Section 6.1 provides system control circuitry design examples.

3-47

System Control

3-48

When an RS signal is received, the following actions take place:

1)

2)

3)

4)

5)

6)

7

8)

9)

RAM configuration bits are set so that all on-chip RAM resides in data
space.

The program counter (PC) is setto 0, and the address bus A15—-A0 is driv-
en with all zeros while RS is low.

The data bus D15-D0 is placed in the high-impedance state.

All memory and I/0 space control signals (PS, DS, IS, R/W, STRB, and
BR) are deasserted by setting them to high levels while RS is low.

All interrupts are disabled by setting the INTM (interrupt mode) bit to 1.
(Note that RS is nonmaskable.) The interrupt flag register (IFR) is reset to
all zeros.

Status bits are set:

For all TMS320C2x devices, 0 - OV, 1 »~ XF, 0 - FO, 0 - TXM,
0 - CNF (0 - CNFO0,0 -~ CNF1forthe TMS320C26),1 - SXM,0 - PM,
1 - HM, 1 - C,and 1 - FSM. The remaining status bits on the
TMS320C2x are unchanged.

The global memory allocation register (GREG) is cleared to make all
memory local.

The RPTC (repeat counter) is cleared.

The DX (data transmit) pin is placed in the high-impedance state. Any
transmit/receive operations on the serial port are terminated, and the TXM
(transmit mode) bit is reset to a low level. This configures the FSX framing
pulse to be an input. A transmit/receive operation may be started by fram-
ing pulses only after the removal of RS.

10) The TIMregister is set to the maximum value (OFFFFh) on reset. Also, the

PRD register on the TMS320C25 is initialized by reset to OFFFFh. (See
Example 5-1). The TIM register begins decrementing only after RS is
deasserted.

11) ThelACK (interrupt acknowledge) signal is generated in the same manner

as a maskable interrupt.

12) The state of the RAM is undefined following RS.

13) The ARB, ARP, DP, IMR, OVM, and TC bits are not initialized by reset.

Therefore, itis critical that you initialize these bits in software following re-
set.

Architecture

System Control

Execution starts from location 0 of program memory when the RS signal is tak-
en high. Note that if RS is asserted while in the hold mode, normal reset opera-
tion occurs internally, but all buses and control lines remain in the high-imped-
ance state. Upon release of HOLD and RS, execution starts from location zero.
The TMS320C2x can be held in the reset state indefinitely.

Note:

Reset does not have internal Schmidt hysteresis. To insure proper reset op-
eration, avoid slow rise and fall times.

3.6.4 Status Registers

Two status registers, STO and ST1, contain the status of various conditions
and modes. The status registers can be stored into data memory and loaded
from data memory, thus allowing the status of the machine to be saved and
restored for interrupts and subroutines. All status bits are written to and read
from using LST/LST1 and SST/SST1 instructions, respectively (with the ex-
ception of INTM, which cannot be loaded via an LST instruction).

Figure 3—24 shows the organization of both status registers, indicating all sta-
tus bits contained in each. Note thatthe DP, ARP, and ARB registers are shown
as separate registers in the processor block diagram of Figure 3—2. Because
these registers do not have separate instructions for storing them into RAM,
they are included in the status registers. As shown in Figure 3—24, several bits
in the status registers are reserved and read as logic 1s by the LST and LST1
instructions.

Figure 3-24. TMS320C2x Status Register Organization
15 14 13 12 11 10 9 8 7 & 5 4 3 2 1 0
STO| ARP | ov|ovw|| 1 |INTM| DP |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STll ARB |CNF|TC|SXM| C |1 1|HM|FSM|XF|FO|TXM| PM |

The status register ST1 of the TMS320C26 uses one of the unused bits and
the CNF bit of the TMS320C25 to define the four configuration modes as de-
scribed above. The bits are named CNF0 and CNF1 and can be set by the
instruction CONF const, where constis a number between 0 and 3. This two-
bit constant is loaded into the two status register bits CNFO and CNF1.

Some additional instructions or functions may affect the status bits, as indi-
cated in Table 3—6.

The bits can also be modified by the LST1 instruction, and both are set to 0
by RESET. If TMS320C26 designs are started by using the TMS320C25 as a
base, consider defining the mask for loading the status register ST1 with the
instruction LST1 in such a way that the TMS320C26 is also configured as de-
sired.

3-49

System Control

Figure 3—-25 shows the two status registers of the TMS320C26. All bits, be-
sides the redefined CNFO (CNF in the TMS320C25) and the new CNF1 bit, are
unchanged.

Figure 3-25. TMS320C26 Status Register Organization
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST ARP OV |OVM| 1 | INTM DP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST1. ARB CNFO| TC|SXM| C | 1 | CNF1| HM[FSM| XF | FO|TXM PM

Table 3—6. Status Register Field Definitions

Field Function

ARB Auxiliary register pointer buffer. Whenever the ARP is loaded, the old ARP
value is copied to the ARB except during an LST instruction. When the ARB
is loaded via an LST1 instruction, the same value is also copied to the ARP.

ARP Auxiliary register pointer. This three-bit field selects the AR to be used in indi-
rectaddressing. When ARP is loaded, the old ARP value is copied to the ARB
register. ARP may be modified by memory-reference instructions when us-
ing indirect addressing, and by the LARP, MAR, and LST instructions. ARP
is also loaded with the same value as ARB when an LST1 instruction is
executed.

Cc Carry bit. This bit is set to 1 if the result of an addition generates a carry, or
reset to O if the result of a subtraction generates a borrow. Otherwise, itis re-
set after an addition or set after a subtraction, except if the instruction is
ADDH or SUBH. ADDH can only set and SUBH only reset the carry bit, but
cannot affect it otherwise. These instructions will also affect this bit: SC, RC,
LST1, shift, and rotate. Two branch instructions, BC and BNC, have been
provided to branch on the status of C. C is set to 1 on a reset.

CNF On-chip ram configuration control bit. If set to 0, block BO is configured as
data memory; otherwise, block BO is configured as program memory. The
CNF may be modified by the CNFD, CNFP, and LST1 instructions. RS resets
the CNF to 0.

DP Data memory page pointer. The 9-bit DP register is concatenated with the 7
LSBs of an instruction word to form a direct memory address of 16 bits. DP
may be modified by the LST, LDP, and LDPK instructions.

CNFX X =0or1: CNFO and CNF1 are the on-chip RAM configuration control bits
forthe TMS320C26. Depending on the status of these 2 bits, one of the 4 con-
figuration modes can be selected. RS resets both CNFO and CNF1 to 0.

FO Format bit. When set to 0, the serial port registers are configured as 16-bit
registers. When set to 1, the port registers are configured to receive and
transmit eight-bit bytes. FO may be modified by the FORT and LST1 instruc-
tions. FO is reset to 0.

FSM Frame synchronization mode bit. This bitindicates whether the serial port op-
erates with or without frame sync pulses. When FSM = 1, the serial port op-
erationis initiated following a frame sync pulse on the FSX/FSR inputs. When
FSM =0, the FSX/FSR inputs are ignored and the serial port operates contin-
uously with no frame sync pulses required. The bit is set to 1 by a reset.

3-50 Architecture

System Control

Table 3—6. Status Register Field Definitions (Continued)

Field

Function

HM

Hold mode bit. When HM = 1, the processor halts internal execution when
acknowledging an active HOLD. When HM = 0, the processor may continue
execution out of internal program memory but puts its external interface in
a high-impedance state. This bit is set to 1 by a reset.

INTM

Interrupt mode bit. When set to 0, allunmasked interrupts are enabled. When
set to 1, all maskable interrupts are disabled. INTM is set and reset by the
DINT and EINT instructions. RS and IACK also set INTM. INTM has no effect
on the unmaskable RS interrupt. Note that INTM is unaffected by the LST
instruction.

ov

Overflow flag bit. As a latched overflow signal, OV is set to 1 when overflow
occursinthe ALU. Once an overflow occurs, the OV remains set until areset,
BV, BNV, or LST instruction clears the OV.

OVM

Overflow mode bit. When setto 0, overflowed results overflow normally in the
accumulator. When set to 1, the accumulator is set to either its most positive
or its most negative value upon encountering an overflow. The SOVM and
ROVM instructions set and reset this bit, respectively. LST may also be used
to modify the OVM.

PM

Product shift mode. If these two bits are 00, the multiplier’s 32-bit product is
loaded into the ALU with no shift. If PM = 01, the PR output is left-shifted one
place and loaded into the ALU, with the LSBs zero-filled. If PM = 10, the PR
outputis left-shifted by four bits and loaded into the ALU, with the LSBs zero-
filled. PM = 11 produces a right shift of six bits, sign-extended. Note that the
PR contents remain unchanged. The shift takes place when transferring the
contents of the PR to the ALU. PM_is loaded by the SPM and LST1 instruc-
tions. The PM bits are cleared by RS.

SXM

Sign-extension mode bit. SXM = 1 produces sign extension on data as it is
passed into the accumulator through the scaling shifter. SXM = 0 suppresses
sign extension. SXM does not affect the definition of certain instructions; for
example, the ADDS instruction suppresses sign extension regardless of
SXM. This bit is set and reset by the SSXM and RSXM instructions, and may
also be loaded by LST1. SXM is set to 1 by RS.

TC

Test/control flag bit. The TC bitis affected by the BIT, BITT, CMPR, LST1, and
NORM instructions. The TC bit is set to a 1 if a bit tested by BIT or BITT is
a1, ifacompare condition tested by CMPR exists between ARO and another
AR pointed to by ARP, or if the exclusive-OR function of the two MSBs of the
accumulator is true when tested by a NORM instruction. Two branch instruc-
tions, BBZ and BBNZ, provide branching on the status of the TC.

TXM

Transmit mode bit. TXM = 1 configures the serial port's FSX pin to be an out-
put. Inthis mode, a pulse is produced on FSXwhen DXR is loaded. Transmis-
sion then starts on the DX pin. TXM = 0 configures the FSX pin to be an input.
TXM is set and reset by the STXM and RTXM instructions and may also be
loaded by LST1. RS resets TXM to O.

XF

XF pin status bit. This status bit indicates the state of the XF pin, a general-
purpose output pin. XF is set and reset by the SXF and RXF instructions or
may be loaded by LST1. XF is setto 1 by RS.

3-51

System Control

3.6.5 Timer Operation

The TMS320C2x provides a memory-mapped 16-bit timer (TIM) register and
a 16-bit period (PRD) register, as shown in Figure 3—26. The on-chip timer is
a down counter that is continuously clocked by CLKOUT1.

Figure 3-26. Timer Block Diagram

3-52

/ Data Bus /

g

PRD (16)
16
16
Crystal
or Divide by | Clock Jmae I« (Load) Zero
External Four d - Detect
Clock Py
16 ,
CLKOUT1 Tint

The TIM register is set to the maximum value (OFFFFh) on reset for the
TMS320C25. The PRD register on the TMS320C25 is also initialized by reset
to OFFFFh. (See Example 5-1). The TIM register begins decrementing only
after RS is deasserted. Following this, the TIM and PRD registers may be re-
loaded under program control. See subsection 3.6.3 for reset information.

The TIM register, data memory location 2, holds the current count of the timer.
At every CLKOUT1 cycle the TIM register is decremented by one. The PRD
register, data memory location 3, holds the starting count for the timer. A timer
interrupt (TINT) is generated every time the timer decrements to zero. The tim-
er is reloaded with the value contained in the period (PRD) register within the
next cycle after it reaches zero so that interrupts can be programmed to occur
at regular intervals of (PRD + 1) cycles of CLKOUT1. This feature is useful for
control operations and for synchronously sampling or writing to peripherals.
By programming the PRD register from 1 to 65,535 (OFFFFh), a TINT can be
generated every 2 to 65,536 cycles on the TMS320C25. A PRD register value
of zero is not allowed.

The timer and period registers can be read from or written to on any cycle. The
count can be monitored by reading the TIM register. A new counter period can
be written to the period register without disturbing the current timer count. The
timer will then start the new period after the current count is complete. If both
the PRD and TIM registers are loaded with a new period, the timer begins
decrementing the new period without generating an interrupt. Thus, the pro-
grammer has complete control of the current and next periods of the timer.

Architecture

System Control

If the timer is not used, either TINT is to be masked or all maskable interrupts
are to be disabled by a DINT instruction. The PRD register can then be used
as a general-purpose data memory location. If TINT is used, the PRD and TIM
registers are to be programmed before unmasking the TINT.

3.6.6 Repeat Counter

The repeat counter (RPTC) is an 8-bit counter, which, when loaded with a num-
ber N, causes the next single instruction to be executed N + 1 times. The RPTC
can be loaded with a number from 0 to 255 using either the RPT (repeat) or
RPTK (repeat immediate) instructions. This results in a maximum of 256
executions of a given instruction. RPTC is cleared by reset.

The repeat feature can be used with instructions such as multiply/accumulates
(MAC/MACD), block moves (BLKD/BLKP), I/O transfers (IN/OUT), and table
read/writes (TBLR/TBLW). These instructions, which are normally multicycle,
are pipelined when using the repeat feature, and effectively become single-
cycle instructions. For example, the table read instruction may take three or
more cycles to execute, but when repeated, a table location can be read every
cycle. Note that not all instructions can be repeated (see Section 4.3 and
Appendix E for more information).

3.6.7 Powerdown Modes (TMS320C25)

When operated in either of two powerdown modes, the TMS320C25 enters a
dormant state and requires approximately one-half the power normally need-
ed to supply the device (see the data sheet, Appendix A). Depending upon the
application, one powerdown mode is invoked by executing an IDLE instruction
while the other mode is invoked by driving the HOLD input low while the HM
status bit is set to one.

While in a powerdown condition, all of the internal contents of the TMS320C25
are retained. This allows the operation to continue unaltered after the power-
down condition is terminated. If the powerdown mode was entered by driving
HOLD low with HM = 1, the data and address buses and the interface control
signals (PS, DS, IS, STRB, and R/W) are all maintained in the high-impedance
state. If the mode was entered by the IDLE instruction, only the data bus goes
to the high-impedance state; address bus and interface control signals are
maintained in a steady-state condition and can still be driven. In accordance
with the execution process, the powerdown mode may be terminated either
by removing the HOLD input or by applying an interrupt signal during the IDLE
operation. For application and other information, refer to the descriptions of the
IDLE instruction in Chapter 4 and the hold function in subsection 3.10.3.

3-53

External Memory and I/O Interface

3.7 External Memory and 1/O Interface

The TMS320C2x supports a wide range of system interfacing requirements.
Data, program, and I/O address spaces provide interfacing to memory and 1/O,
thus maximizing system throughput. The local memory interface consists of:

[A 16-bit parallel data bus (D15-D0),

(] A 16-bit address bus (A15-A0),

[] Data, program, and I/O space select (DS, PS, and IS) signals, and
[[] Various system control signals.

The R/W (read/write) signal controls the direction of the transfer, and STRB
(strobe) provides a timing signal to control the transfer.

The TMS320C2x I/O space consists of 16 input and 16 output ports. These
ports provide the full 16-bit parallel I/O interface via the data bus on the device.
A single input or output operation, using the IN or OUT instructions, typically
takes two cycles; however, when used with the repeat counter, the operation
becomes single-cycle.

I/0O design is simplified by having I/O treated the same way as memory. /O de-
vices are mapped into the 1/0O address space using the processor’s external
address and data buses in the same manner as memory-mapped devices.
When addressing internal memory, the data bus must be in the high-imped-
ance state and the control signals go to an inactive state (logic high). Refer to
Chapter 5 for the effect instructions have on 1/O.

Interfacing to memory and I/O devices of varying speeds is accomplished by
using the READY line. When communicating with slower devices, the
TMS320C2x processor waits until the other device completes its function,
signals the processor via the READY line, and continues execution
(see Chapter 6).

3.7.1 Memory Combinations

3-54

The exact sequence of operations performed as instructions execute depends
on the areas in memory where the instructions and operands are located.
There are eight possible combinations of program and data memory because
information can be located in internal RAM, external memory, or internal ROM/
EPROM (available on TMS320C25 /TMS320E25). The eight possible com-
binations are:

1) Program Internal RAM/Data Internal (P1/DI)
2) Program Internal RAM/Data External (PI/DE)

3) Program External/Data Internal (PE/DI)

Architecture

External Memory and I/O Interface

4) Program External/Data External (PE/DE)

5) Program Internal ROM/Data Internal (PR/DI) on the TMS320C25

6) Program Internal EPROM/Data Internal (PR/DI) on the TMS320E25

7) Program Internal ROM/Data External (PR/DE) on the TMS320C25

8) Program Internal EPROM/Data External (PR/DE) on the TMS320E25

Appendix E provides cycle timings for instructions, both when repeated and
when not repeated. The following is a summary of program execution, orga-
nized according to memory configuration.

PI/DI or PR/DI

PE/DI

When both program and data memory are on-chip,
the processor runs at full speed with no wait states.
Note that IN and OUT instructions have different
cycle timings when program memory is internal; IN
requires two cycles to execute, whereas OUT re-
quires only one cycle.

If external program memory is sufficiently fast, this
memory mode can run at full speed because internal
data operations can occur coincidentally with exter-
nal program memory accesses. If external program
memory is not fast enough, wait states may be gener-
ated by using the READY input.

PI/DE, PE/DE, or PR/DE

Additional cycles are required to execute instructions
that reference an external data memory space. At
least two cycles are required to execute read from ex-
ternal data memory instructions such as ADD, LAR,
etc. Further additional cycles may be required be-
cause of wait states if external data memory is not
fast enough to be accessed within a single cycle.
Note, however, that the TMS320C2x has the capabil-
ity of executing write to external data memoryinstruc-
tions in a single cycle when program memory is inter-
nal (two cycles are required if program memory is
also external). Additional cycles are also required in
this case if external data memory is not sufficiently
fast.

In all memory configurations where the same bus is used to communicate with
external data, program, or I/O space, the number of cycles required to execute
a particular instruction may further vary, depending on whether the next
instruction fetch is from internal or external program memory. Instruction
execution and operation of the pipeline are discussed in subsection 3.6.2 and
in the succeeding subsections.

3-55

External Memory and I/O Interface

3.7.2 Internal Clock Timing Relationships

The crystal or external clock source frequency is divided to produce an internal
four-phase clock. The four phases are defined by CLKOUT1 and CLKOUT2,
as shown in Figure 3-27.

Figure 3-27. Four-Phase Clock

Phase # } Q3

|
|
| |
CLKOUT2 w
|

Q1

Q2

Q3

3.7.3 General-Purpose I/0 Pins (BIO and XF)

The TMS320C2x has two general-purpose pins that are software-controlled.
The BIO pin is a branch control input pin, and the XF pin is an external flag out-
put pin.

The BIO pin is useful for monitoring peripheral device status. It is especially
useful as an alternative to using an interrupt when it is necessary not to disturb
time-critical loops. When the BIO input pin is active (low), execution of the
BIOZ instruction causes a branch to occur.

3-56 Architecture

External Memory and I/O Interface

In Figure 3-28, BIO is sampled at the end of Q4. The timing diagram shown
is for a sequence of single-cycle, single-word instructions without branches lo-
cated in external memory. Because of variations in pipelining due to instruc-
tions prior to and following the BIOZ instruction, this timing may vary. There-
fore, itis recommended that several cycles of setup be provided if BIO is to be
recognized on a particular cycle.

Figure 3-28. BIO Timing Diagram

\ \ \ \ |
|

chouT m
TN/

| | |

| |

|

\
A15-A0 Valid)\@(Valid)\@(Valid W Valid)\C
\

‘ (Branch ‘ (Next (Next Instruction) }
(BIOZ) Address) | Instruction) | N+3 or Branch
N ‘ N+1 N+2 Address |

fetch

The XF (external flag) output pin is set to a high level by the SXF (set external
flag) instruction and reset to alow level by the RXF (reset external flag) instruc-
tion. XF is set high by RS.

The relationship between the time the SXF/RXF instruction is fetched before
the XF pin is set or reset is shown in Figure 3—29. As with BIO, the timing
shown for XF is for a sequence of single-cycle, single-word instructions lo-
cated in external memory. Actual timing may vary with different instruction se-
guences.

3-57

External Memory and I/O Interface

Figure 3-29. External Flag Timing Diagram

I I I I
| | | | |
| | | | :
STRB I I I I |
I I I I I
I I I I |
I I I I
I
A15-A0 D@(Valid W Valid W Valid I Valid ><:
I I I I
I I I I
(SXF or RXF)
I N I I

| N+2

(sxXFF) /

N+1 N+3

fetch

XF
(RXF)

Notes: 1) Nis the program memory location for the current instruction.
2) This example shows only the execution of single-cycle instructions fetched from external program memory.

3-58 Architecture

Interrupts

3.8 Interrupts

The TMS320C2x has three external maskable user interrupts (INT2—-INTO),
available for external devices that interrupt the processor. Internal interrupts
are generated by the serial port (RINT and XINT), by the timer (TINT), and by
the software interrupt (TRAP) instruction. Interrupts are prioritized with reset
(RS) having the highest priority and the serial port transmit interrupt (XINT)
having the lowest priority.

3.8.1 Interrupt Operation

This subsection explains details interrupt organization and management. Vec-
tor locations and priorities for all internal and external interrupts are shown in
Table 3—7. The TRAP instruction, used for software interrupts, is not prioritized
but is included here because it has its own vector location. Each interrupt ad-
dress has been spaced apart by two locations so that branch instructions can
be accommodated in those locations if desired.

Table 3—-7. Interrupt Locations and Priorities

Interrupt Memory
Name Location Priority Function
RS Oh 1 (highest) External reset signal
INTO 1lh 2 External user interrupt #0
INT1 2h 3 External user interrupt #1
INT2 3h 4 External user interrupt #2

8-17h Reserved locations

TINT 18h 5 Internal timer interrupt
RINT 1Ah 6 Serial port receive interrupt
XINT 1Ch 7 (lowest) Serial port transmit interrupt
TRAP 1Eh N/A TRAP instruction address

When an interrupt occurs, it is stored in the 6-bit interrupt flag register (IFR).
This register is set by the external user interrupts INT(2-0) and the internal in-
terrupts RINT, XINT, and TINT. Each interrupt is stored in the IFR until it is rec-
ognized, and then automatically cleared by the IACK (interrupt acknowledge)
signal or the RS (reset) signal. The RS signal is not stored in the IFR. No
instructions are provided for reading from or writing to the IFR.

The TMS320C2x has a memory-mapped interrupt mask register (IMR) for
masking external and internal interrupts. The layout of the register is shown
in Figure 3-30. A 1 in bit positions 5 through 0 of the IMR enables the corre-
sponding interrupt, provided that INTM = 0. The IMR is accessible with both
read and write operations but cannot be read using BLKD. When the IMR is
read, the unused bits (15 through 6) are read as 1s. The lower six bits are used
to write to or read from the IMR. Note that RS is not included in the IMR, and
therefore the IMR has no effect on reset.

3-59

Interrupts

Figure 3-30. Interrupt Mask Register (IMR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| RESERVED |X|NT|RlNT|T|NT|u\1_Tz|ﬁ1|ﬁo|

The INTM (interrupt mode) bit, which is bit 9 of status register STO, enables
or disables all maskable interrupts. INTM = 0 enables all the unmasked inter-
rupts, and INTM = 1 disables these interrupts. The INTM is set to 1 by the IACK
(interrupt acknowledge) signal, the DINT instruction, or areset. This bitis reset
to 0 by the EINT instruction. Note that the INTM does not actually modify the
IMR or IFR.

The TMS320C2x has a built-in mechanism for protecting multicycle instruc-
tions from interrupts. If an interrupt occurs during a multicycle instruction, the
interrupt is not processed until the instruction is completed. This mechanism
also applies to instructions that become multicycle due to the READY signal.

In addition, the device does not allow interrupts to be processed when an
instruction is being repeated via the RPT or RPTK instructions. The interrupt
is stored in the IFR until the repeat counter (RPTC) decrements to zero, and
then the interrupt is processed. Even if the interrupt is not used while the
TMS320C2x is processing the RPT or RPTK, the interrupt will still be latched
by IFR and pending until RPTC decrements to zero.

If both the HOLD line and an interrupt go active during a multicycle instruction
or a repeat loop, the HOLD takes control of the processor at the end of the
instruction or loop. When HOLD is released, the interrupt is acknowledged.

Interrupts cannot be processed between EINT and the next instruction in a
program sequence. For example, if an interrupt occurs during an EINT instruc-
tion execution, the device always completes EINT as well as the following
instruction before the pending interrupt is processed. This insures that a RET
can be executed before the next interrupt is processed, assuming that a RET
instruction follows the EINT. The state of the machine, upon receiving an inter-
rupt, may be saved and restored (see subsection 5.3.1).

3.8.2 External Interrupt Interface

3-60

Interrupts may be asynchronously edge- or level-triggered. In the functional
logic organization for INT(2—0), shown in Figure 3-31, the external interrupt
INTO is connected to an edge-triggered flip-flop. The INTO signal is ORed with
the interrupt edge flip-flop Q output and synchronized with internal quarter-
phases 1 and 2 to produce an interrupt signal. In this way, the device can han-
dle both edge-triggered and level-triggered interrupts.

Architecture

Interrupts

Figure 3-31. Internal Interrupt Logic Diagram

r—r———"—FT"""""""""""""""" 7
: I
[1ack
TACK —04 . i
RS }—[)o—o |
I
l | DINT
| | From
s @ o P
| CLR Interrupt |
| D Q Mask Interrupt
Register | Mode S
| InItEedrrupt | anTmy o
ge
— | FF R _G: Idle
INT | | EINT
©,1, —> CLK | IACK
or2) l_ T
| Priority
| | Decode To
| D o) N ¥} Q I — pc
SYNC Interrupt
| F | e
| Register | Interrupt)
| LK CLK . | Active Mggllge
| i | -
Q2 Q1 |
| | | T
L [legclremheremamemmt] From
Internal
Interrupts

Due to the level sensitivity of the external interrupts and the synchronization
of the interrupts (first on Q2, then on Q1 of the following machine cycle), the
INT line must be set to an inactive high at least two cycles before the enabling
interrupts (EINT). If this criteria is not met, the TMS320C25 will immediately
take the interrupt trap following the EINT plus the next instruction.

Ifthe INTM bit and mask register have been properly enabled, the interrupt sig-
nal is accepted by the processor. An IACK (interrupt acknowledge) signal is
then generated. The IACK clears the appropriate interrupt edge flip-flop and
disables the INTM latch. The logic is the same for INT1 and INT2.

In a typical interrupt (INT2-INTO) operation, the interrupt is generated by a
negative-going edge, and the IFR bit is set. Because INTM is disabled when
the interrupt is acknowledged, the level may continue to be present on the INT
input without generating further interrupts. If the level is removed before an
EINT instruction is executed, no further interrupts are generated. If a low level
continues to be present after the EINT, another interrupt is generated after the
EINT/next instruction sequence. In addition, if the INT pin is pulsed between
the previous IACK and EINT, another interrupt is generated after EINT/RET
because the corresponding IFR bit is again set.

3-61

Interrupts

Figure 3—32 shows an interrupt, interrupt acknowledge, and various other sig-
nals for the special case of single-cycle instructions. An interrupt generated
during the current (N) fetch cycle still allows the fetch and execution of that
instruction. The N+1 and N+2 instructions are also fetched, then discarded,
and the address N+1 is pushed onto the top of the stack. The instruction is
fetched again upon a return command from the interrupt routine.

Figure 3-32. Interrupt Timing Diagram (TMS320C25)

3-62

| | |

| | |

[ES | | |
| 1 |

| | | \

\ \

\
CLKOUT2 | | | | | | |

\

\

|

\
A15-A0 N XN X N2 XON+3 X 1 X w1 X 2
fotch e N plg N1 Ne2 EEEOREENONTEN

\ \ \
‘ N-2 | N-1 | N | Dummy | Dummy | Dummy‘ | \

execule @bl Bl Pt b bid——Plt—

| \ \ N+1 \
Top of Stack

Notes: 1) N isthe program memory location for the current instruction.
2) |is the interrupt vector location in program memory for the active interrupt.

3) For simplicity, this example shows only the execution of single-cycle instructions
fetched from external program memory, rather than multicycle instructions.

Three dummy execute cycles occur on aninterrupt, as shown in the timing dia-
gram for the TMS320C25 (Figure 3—32). The IACK signal is asserted low dur-
ing CLKOUT1 low when the device initiates a fetch from the interrupt location
I. Note that IACK is a valid signal only when CLKOUT1 is low. An external de-
vice can determine which interrupt had occurred by latching the address bus
value present on A4—A1 with the rising edge of CLKOUT2 when IACK is low.

Architecture

3.9 Serial Port

Serial Port

A full-duplex on-chip serial port provides direct communication with serial de-
vices such as codecs, serial A/D converters, and other serial systems. The in-
terface signals are compatible with codecs and many other serial devices with
a minimum of external hardware. The serial port may also be used for inter-
communication between processors in multiprocessing applications.

Both receive and transmit operations are double-buffered onthe TMS320C2x,
thus allowing a continuous bit stream even if FSX is an output. The use of the
frame sync mode (FSM) bit provides continuous operation that, once initiated,
requires no further frame synchronization pulses. No minimum CLKR/CLKX
frequency (fyin = 0 Hz) is required for serial port operation.

The bits, pins, and registers that control serial port operation are listed in
Table 3-8. Availability of a function on a particular device is also indicated.

Table 3-8. Serial Port Bits, Pins, and Registers

Serial Port Bits/Pins/Registers TMS320C25
FO Format bit Yes
TXM Transmit mode bit Yes
FSM Frame synchronization mode bit Yes
CLKX Transmit clock signal Yes
CLKR Receive clock signal Yes
DX Transmitted serial data signal Yes
DR Received serial data signal Yes
FSX Transmit framing synchronization signal Yes
FSR Receive framing synchronization signal Yes
DXR Data transmit register Yes
DRR Data receive register Yes
XSR Transmit shift register Yes
RSR Receive shift register Yes

The serial port uses two memory-mapped registers: the data transmit register
(DXR) that holds the data to be transmitted by the serial port, and the data re-
ceive register (DRR) that holds the received data (see Figure 3—33). Both reg-
isters operate in either the 8-bit byte mode or 16-bit word mode, and may be
accessed in the same manner as any other data memory location. Each regis-
ter has an external clock, a framing synchronization pulse, and associated
shift registers. Any instruction accessing data memory can be used to read
from or write to these registers; however, the BLKD (block move from data
memory to data memory) instruction cannot be used to read these registers.
The DXR and DRR registers are mapped into locations 0 and 1 in the data ad-
dress space. The XSR and RSR registers are not directly accessible through
software.

3-63

Serial Port

Figure 3-33. The DRR and DXR Registers

3-64

Address
MSB LSB
0000h DRR
0001h DXR

If the serial port is not being used, the DXR and DRR registers can be used
as general-purpose registers. In this case, the CLKR or FSR should be con-
nected to a logic low to prevent a possible receive operation from being initi-
ated.

Three bits in status register ST1 are used to control the serial port operation:
FO, TXM, and FSM. The FO (format) bit defines whether data to be transmitted
and received is an 8-bit byte or a 16-bit word. If FO = 0, the data is formatted
in 16-bit words. If FO =1, the data is formatted in 8-bit bytes. In the 8-bit mode,
only the eight least significant bits are used for transmit/receive operations.
The FO bitis loaded by the FORT (format serial port registers) instruction. On
reset, FO is set to 0.

The TXM (transmit mode) bit is used to determine if the frame synchronization
pulse for the transmit operation is generated externally or internally. If TXM =
1, the FSX pin becomes an output pin, and a framing pulse is produced on the
FSX pin every time the DXR register is loaded. This framing pulse is synchro-
nized with the rising edge of CLKX. If TXM = 0, the FSX pin becomes an input
pin. The TMS320C2x then waits for an external synchronization pulse before
beginning transmission. On a reset, TXM is set to zero, configuring FSX to be
an input. The TXM bit can be loaded by the LST1, STXM, or RTXM instruc-
tions.

The FSM (frame synchronization mode) status register bitis used to determine
whether frame sync pulses are required for each serial port transfer. When
FSM = 1, frame sync pulses are required; consequently, they are not required
when FSM = 0. FSM is set by the SFSM (set frame synchronization mode)
instruction and cleared by the RFSM (reset frame synchronization mode)
instruction. When FSM = 1 and frame sync pulses are required, an FSX pulse
will cause the XSR to be loaded with data from the DXR, and transmission will
begin. If an FSX is presented prior to the last bit of the current transmission,
the XSR will be reloaded from the DXR, thus aborting the current transmission
and immediately beginning a new one.

The frame sync mode is useful in communicating to PCM highways. For ATT
T1 and CCITT G711/712 lines, the processor can communicate directly in
these formats by counting the transmitted/received bytes in software and per-
forming SFSM/RFSM instructions as needed to set/reset the FSM bit.

Architecture

Serial Port

3.9.1 Transmit and Receive Operations

The transmit and receive sections of the serial port are implemented separate-
ly to allow independent transmit and receive operations. Externally, the serial
portinterface is implemented using the six serial port pins. Figure 3—34 shows
the registers and pins used in transmit and receive operations.

Figure 3-34. Serial Port Block Diagram

(Carry)

DR RINT

/ Data Bus /

E 16 $ 16
Load
(Load) Control
DRR (16) —— Logic DXR (16)
4 Load (Load)
16 Control 16
Logic v
RSR (16) XSR (16)
C C
(Carry) (Carry) (Camy)
Byte/Word Counter| (Clear) (Clear) |Byte/Word Counter
I FSR FSX l

CLKR CLKX XINT DX

Data is clocked onto the DX pin from the XSR of the TMS320C25 by a CLKX
signal. Data is clocked into the RSR of the TMS320C25 from the DR pin by a
CLKR signal. CLKX and CLKR are required to be present only during actual
serial port transfers, and may be stopped (at a valid logic level) when no data
is being transferred. Data bits can be transferred in either 8-bit bytes or 16-bit
words. Data is clocked out to DX on the rising edges of CLKX, while data is
clocked in from DR on the falling edges of CLKR. The MSB of the data is trans-
ferred first.

The XSR and RSR are connected to the DXR and DRR, respectively. For
transmit operations, the contents of DXR are transferred to XSR when a new
transmission begins. For a receive operation, the contents of RSR are trans-
ferred to DRR when all of the bits have been received. Thus, the serial port is
double-buffered because data may be transferred to or from the DXR or DRR
while another transmit or receive operation is being performed.

Serial port transfers on the TMS320C25 are generally initiated by a frame sync
pulse. The exception to this is when the continuous mode of operation is used
with FSM =0, as described in a subsequent paragraph. Frame sync pulses are
input on FSX for transmit operations and on FSR for receive operations.

3-65

Serial Port

The transmit timing diagram is shown in Figure 3—35. The transmit operation
begins when data is written into the data transmit register (DXR). The
TMS320C2x begins transmitting data when the frame synchronization pulse
(FSX) goes low while CLKX is high or going high. The data, starting with the
MSB, is then shifted out via the DX pin with the rising edge of CLKX. When all
bits have been transmitted, an internal transmit interrupt (XINT) is generated
on the rising edge of CLKX. When the serial port is not transmitting, DX is
placed in the high-impedance state.

Figure 3-35. Serial Port Transmit Timing Diagram

3-66

XINT

DX and FSX are unaffected by assertion of the HOLD input. Upon assertion
of HOLD, any serial port transmission in progress on the DX pin is completed
before DX is placed in the high-impedance state. FSX remains configured as
either an input or output, remaining low if it is an output.

The receive operation is similar to the transmit operation. The receive timing
diagram is shown in Figure 3—-36. Reception is initiated by a frame synchro-
nization pulse on the FSR pin. After FSR goes low, data on the DR pin is
clocked into the RSR register on the TMS320C25 on every negative-going
edge of CLKR. The first data bit is considered the MSB, and RSR is filled ac-
cordingly. After all the bits have been received (as specified by FO), an internal
receive interrupt (RINT) is generated on the rising edge of CLKR, and the con-
tents of RSR are transferred to DRR.

Architecture

Serial Port

Figure 3-36. Serial Port Receive Timing Diagram

CLKR

FSR

DR

RINT

8 or 16 Bits +———»

|
| |
| |
_HMS‘BX X ::)(| % s)
|
|
\

3.9.2 Timing and Framing Control

Upon completion of a serial port transfer, an internal interrupt is generated.
The RINT interrupt is generated for a receive operation, and XINT is generated
for a transmit operation. RINT and XINT are generated on the rising edge of
CLKR and CLKX, respectively, after the last bit is transferred. Note that if DRR
is read before a RINT is received, it will contain the data from the previous op-
eration. Similarly, if DXR is loaded more than once after an XINT is generated
(in the continuous transmission mode), only the last value written will be
loaded into XSR for the next transmit operation.

When the TMS320C2x is reset, TXM is cleared to zero, and DX is placed in
the high-impedance state. Any transmit or receive operation that is in progress
when the reset occurs is terminated.

The transmit framing synchronization pulse can be generated internally or ex-
ternally. The maximum speed of the serial portis 5 MHz. The timing of the seri-
al port signals is compatible with the Tl/Intel 29C1x series codecs. The timing
is also compatible with the AMI S3506 series codecs if the frame synchroniza-
tion signals are inverted.

Serial port transfers on the TMS320C25 are generally initiated by a frame sync
pulse, except when the continuous mode of operation is used with FSM = 0.
Frame sync pulses are input on FSX for transmit operations and on FSR for
receive operations. If FSM =1, frame sync pulses are required; if FSM =0, they
are not required. FSM is set by the SFSM (set frame synchronization mode)
instruction and cleared by the RFSM (reset frame synchronization mode)
instruction.

3-67

Serial Port

3.9.3 Burst-Mode Operation

In burst-mode serial port operation, transfers are separated in time by periods
of no serial port activity (the serial port does not operate continuously). For
burst-mode operation, FSM must be set to one. Timing of the serial port in this
mode of operation is shown in Figure 3—37 and Figure 3-38.

Figure 3-37. Burst-Mode Serial Port Transmit Operation

I I I I I I |
FSX — r—\
(TXM=D) = : : : : : : : : I
(Fole)é—HAl*AZ*AS*A4*A5*A6*A7*A8l | II
MSB LSB
| | | | | | | | | | | | |
xINT | I I I I I I I I /—\ I I
1 1 1 1 1 1 1 1 1 I I 1 1
t t
DXR DXR
Loaded Reloaded
XSR
Loaded XSR

(During CLKX Low) Reloaded

Figure 3-38. Burst-Mode Serial Port Receive Operation

(FO=1) I I I I I |
MSB LSB
I I I I I I I I I I I I I
RINT I I I I I I I I I / \ I I
1 T 1 T 1 T 1 T 1 Tl I T 1
DRR
Loaded
From RSR

3-68 Architecture

Serial Port

When TXM =1 (FSX is an output) and the serial port register DXR is loaded,
a framing pulse is generated on the next rising edge of CLKX. The XSR is
loaded with the current contents of DXR while FSX is high and CLKX is low.
Transmission begins when FSX goes low while CLKX is high or is going high.
Figure 3—-37 shows the timing for the byte mode (FO = 1). XINT is generated
on the rising edge of CLKX after all 8 or 16 bits have been transmitted and DX
is placed in the high-impedance state. If DXR is reloaded before the next rising
edge of CLKX after XINT, FSX will again be generated as shown, and XSR will
be reloaded.

The receive operation is similar to the transmit operation. The contents of RSR
are loaded into DRR while CLKR is low, just after reception of the last bit sent
by the transmitting device (see Figure 3—-38). RINT is generated on the next
rising edge of CLKR, and DRR may be read at any time before the reception
of the final bit of the next transmission. When operating in the byte mode, the
eight MSBs of the DRR are the contents of the eight LSBs of the DRR prior to
reception of the current byte, as shown in Figure 3—39 for the TMS320C25.

Figure 3-39. Byte-Mode DRR Operation (TMS320C25)

MSB LSB
Initial
Condition X Y
After 1st Receive
(Byte 'A) Y A
After 2nd Receive
(Byte 'B") A B

3.9.4 Continuous Operation Using Frame Sync Pulses (TMS320C25)

The TMS320C25 provides two modes of operation that allow the use of a con-
tinuous stream of serial data. When FSM = 1, frame sync pulses are required.
Because DXR is double-buffered, continuous operation is achieved even if
TXM = 1. Writing to DXR during a serial port transmission does not abort the
transmission in progress, but, instead, DXR stores that data until XSR can be
reloaded. As long as DXR is reloaded before the CLKX rising edge on the final
bit being transmitted, the FSX pulse will go high on the rising edge of CLKX
during the transmission of the final bit and fall on the next rising edge when
transmission of the word just loaded begins. If DXR is not reloaded within this
period and FSM = 1, the DX pin will be placed in a high-impedance state for
at least one CLKX cycle until DXR is reloaded (as described in the previous
section). Figure 3—-40 and Figure 3—41 show the timing diagrams for the con-
tinuous operation with frame sync pulses.

3-69

Serial Port

Figure 3—40. Serial Port Transmit Continuous Operation (FSM = 1)

(FO=1) | | |
MSB LSB
I I I I I I I I I
XINT | | I I I I I I V_‘{l

I | 1 | 1 | I

t t t t
DXR XSR DXR XSR
Loaded Loaded Loaded Loaded

With B With C

Figure 3—41. Serial Port Receive Continuous Operation (FSM = 1)

|
(FO:DS * A7*A8)k Bl* 52 X BS* B2 X BS* B6 X 87* B8 X c1* cXC
I"MsB ' ' ' LSB | '
| | I | I | I | I | I | |
RINT | | I I I I I I —\ |
I I T 1 T 1 T 1 I I |
t t
Read Read
DRR DRR
DRR DRR
Loaded Loaded
From RSR From RSR

Continuous receive operation with FSM = 1 is identical to that of burst-mode
operation with the exception that FSR is pulsed during reception of the final
bit.

3-70 Architecture

Serial Port

3.9.5 Continuous Operation Without Frame Sync Pulses (TMS320C25)

The continuous mode of operation on the TMS320C25 allows transmission
and reception of a continuous bit stream without requiring frame sync pulses
every 8 or 16 bits. This mode is selected by setting FSM = 0.

Figure 3—-42 and Figure 3—43 show operation of the serial port for both states
of TXM to illustrate differences in operation for each case. FSM is initially set
to one, and frame sync pulses are required to initiate serial transfers. Before
the completion of the transmission (that is, before the next serial portinterrupt),
the FSM must be reset to zero by means of an RFSM (reset FSM) instruction.
RFSM can occur either before or after the write to DXR or read from DRR.
From this point on, the FSX and FSR inputs are ignored, with transmission oc-
curring every CLKX cycle and reception occurring every CLKR cycle as long
as those clocks are present.

If FSX is configured as an output, it will remain low until FSM is set back to one
and DXR is reloaded. If DXR is not reloaded with new data every XINT (every
8 or 16 CLKX cycles, depending on FO), the last value loaded will be trans-
mitted on DX continuously. Note that this is different from the case with
FSM =1where DXis placed into a high-impedance state if DXR is not reloaded
before transmission of the last bit of the current word in XSR. For example, if
byte C is not loaded into DXR as indicated in Figure 3-42, bits of byte B
(B1-B8) will be retransmitted instead of bits of byte C as shown.

For receive operations, DRR is loaded from RSR (and an RINT is generated)
every 8 or 16 CLKR cycles (depending on FO), regardless of whether or not
DRR has been read. An overrun of DRR is also possible with FSM = 1 if DRR
is not read before the next RINT. The only way to stop continuous transmission
or reception once started, when FSM = 0, is either to stop CLKX or CLKR or
to perform an SFSM (set FSM) instruction.

Continuous transmission without frame sync pulses is very useful in communi-
cating directly to telephone system PCM highways. For ATT T1 and CCITT
G711/712lines, FSX and FSR pulses are generated only every 24 or 32 bytes.
By counting the transmitted and received bytes in software after an initial FSX
or FSR and performing SFSM and RFSM instructions as required, the
TMS320C25 can easily be made to communicate in these formats.

3-71

Serial Port

Figure 3—42. Serial Port Transmit Continuous Operation (FSM = 0)
I I I I I I I I I I I I I

I I I I I
FSX
i e e e e
FSX I y—\ I I I I I
(TXM=0) = | I | 1 | 1 |
(F0=Dl)§ *A?*AS*Bl*BZ*BS*B4*BS*BGlB7|88*01*02*:
MSB LSB
I I I I I I I I I I I I I
XINT | I y—\ I I | I I I —\ I
| 1 I I | 1 | 1 1 1 | I 1
t t
DXR
Loaded RFSM
With B
XSR DXR XSR
Loaded Loaded Loaded
From DXR With C

Figure 3—43. Serial Port Receive Continuous Operation (FSM = 0)
I I I I I I I I I I I I

I

Read RFSM
DRR
DRR Read DRR
Loaded DRR Loaded
From RSR From RSR

3-72 Architecture

Serial Port

3.9.6 Initialization of Continuous Operation Without Frame Sync Pulses

FSM is normally initialized during an XINT or RINT service routine to enable
or disable FSX and FSR, respectively, for the next serial port operation. It is
necessary to start this mode with FSM = 1 so that the first data transferred out
of the serial port is the data written to the DXR register. Otherwise, the serial
port starts transmitting the contents of the shift register before loading it with
the value stored in the DXR register. Upon each completion of a data packet
transmission, itloads the data contained in the DXR register into the shift regis-
ter and continues transmitting. After the first frame pulse has been generated
by or sent to the TMS320C25, the FSM bit must be reset to 0 using the RFSM
instruction. This must be done before the next serial port interrupt to ensure
continuous transmission. If continuous transmission is stopped via software,
this initiation sequence must be repeated to restart the continuous mode op-
eration.

As shown in Figure 3—44 and Figure 3-45, RFSM may occur before a write to
DXR, regardless of the state of TXM. If TXM =1, FSXis generated in a normal
manner on the next rising edge of CLKX, but only once. If TXM = 0, the
TMS320C25 waits to transmit until FSX is pulsed, but from then on, the FSX
input is ignored. Note that just as in the case of continuous-mode operation
without sync pulses described in subsection 3.9.5, the first data written to DXR
(byte A) is output twice unless DXR is reloaded before the second transmis-
sionis started. Itis important to consider this dummy cycle when using continu-
ous-mode serial operation.

The receive timings are the same as those for the transmit operations with
TXM =0. The TMS320C25 waits to receive data until FSR is pulsed, but there-
after the FSR input is ignored. No dummy cycle is associated with the receive
operation; this is because DRR has a post-buffering nature as opposed to the
prebuffering nature of DXR.

3-73

Serial Port

Figure 3—44. Continuous Transmit Operation Initialization

RFSM XSR

XSR
Loaded Reloaded
DXR
Loaded
With A

Figure 3—45. Continuous Receive Operation Initialization

A X X S Y X XTI T
O 0 0 e e 0 e e e 0 e e et e et ot ot o et e

R L | X XA X Aa X A X A6 X A7 X A X B X B
| I | | | | | | | | | | |

RINT | | | | | | | | | |)’___V____L_
1 | 1 | 1 | 1 | 1 | I I

f f

RFSM DRR
Loaded
From RSR

3-74 Architecture

Multiprocessing and Direct Memory Access (DMA)

3.10 Multiprocessing and Direct Memory Access (DMA)

The flexibility of the TMS320C2x allows configurations to satisfy a wide range
of system requirements. Some of the system configurations using the
TMS320C2x are as follows:

(] A standalone system (single processor),

(1 A multiprocessor with devices in parallel,

(1 A host/slave multiprocessor with shared global data memory space, or
4

A peripheral processor interfaced using processor-controlled signals to
another device.

These system configurations are made possible by three specialized features
of the TMS320C2x: the synchronization function utilizing the SYNC input, the
global memory interface, and the hold function implemented with the HOLD
and HOLDA pins. The following sections describe these functions in detail.

3.10.1 Synchronization

In a multiprocessor environment, the SYNC input can be used to greatly ease
interface between processors. This input is used to cause each TMS320C2x
inthe system to synchronize its internal clock, thereby allowing the processors
to run in lock-step operation.

Multiple TMS320C2x devices are synchronized by using common SYNC and
external clock inputs. A negative transition on SYNC sets each processor to
internal quarter-phase one (Q1). This transition must occur synchronously
with the rising edge of CLKIN. On the TMS320C25, there is a two-CLKIN-cycle
delay following the cycle in which SYNC goes low, before the synchronized Q1
occurs.

The timing diagram for the SYNC input is shown in Figure 3—46 for the
TMS320C2x.

3-75

Multiprocessing and Direct Memory Access (DMA)

Figure 3—46. Synchronization Timing Diagram (TMS320C25)

\
CLKOUT1 \
\

CLKOUT2

—

Normally, SYNC is applied while RS is active. If SYNC is asserted after a reset,
the following can occur:

1) The processor machine cycle is reset to Q1, provided that the timing re-
quirements for SYNC are met. If SYNC is asserted at the beginning of Q1,
Q3, or Q4, the current instruction is improperly executed. If SYNC is as-
serted at the beginning of Q2, the current instruction is executed properly.

2) 1f SYNC does not meet the timing requirements, unpredictable processor
operation occurs. A reset should then be executed to place the processor
back in a known state.

3.10.2 Global Memory

3-76

For multiprocessing applications, the TMS320C2x is capable of allocating
global data memory space and communicating with that space viathe BR (bus
request) and READY control signals.

Global memory is memory shared by more than one processor; therefore, ac-
cess to it must be arbitrated. When using global memory, the processor’s ad-
dress space is divided into local and global sections. The local section is used
by the processor to perform its individual function, and the global section is
used to communicate with other processors.

A memory-mapped global memory allocation register (GREG) specifies part
of the TMS320C2x’s data memory as global external memory. GREG, which
is memory-mapped at data memory address location 5, is an eight-bit register
connected to the eight LSBs of the internal D bus. The upper eight bits of loca-
tion 5 are nonexistent and read as 1s.

Architecture

Multiprocessing and Direct Memory Access (DMA)

The contents of GREG determine the size of the global memory space. The
legal values of GREG and corresponding global memory spaces are shown
in Table 3-9. Note that values other than those listed in the table lead to frag-
mented memory maps.

Table 3-9. Global Data Memory Configurations

GREG Value Local Memory Global Memory

Range # Words Range # Words
000000XX Oh — OFFFFh 65,536 _ 0
10000000 Oh — 07FFFh 32,768 08000h — OFFFFh 32,768
11000000 Oh — OBFFFh 49,152 0C000h — OFFFFh 16,384
11100000 Oh — ODFFFh 57,344 OE000h — OFFFFh 8,192
11110000 Oh — OEFFFh 61,440 0F000h — OFFFFh 4,096
11111000 Oh — OF7FFh 63,488 O0F800h — OFFFFh 2,048
11111100 Oh — OFBFFh 64,512 O0FCO00h — OFFFFh 1,024
11111110 Oh — OFDFFh 65,024 OFEOOh — OFFFFh 512
11111111 Oh — OFEFFh 65,280 OFFO0h — OFFFFh 256

When a data memory address, either direct or indirect, corresponds to a global
data memory address (as defined by GREG), BR is asserted low with DS to
indicate that the processor wishes to make a global memory access. External
logic then arbitrates for control of the global memory, asserting READY when
the TMS320C2x has control. The length of the memory cycle is controlled by
the READY line. One wait-state timing is shown in Figure 3—47. Note that all
signals not shown have the same timing as in the normal read or write case.

Figure 3—47. Global Memory Access Timing

\ \ \
\ —
\ \ \

)\@(| | |
o o
X | | |

TR R R TITIRR
READY (XKD LIS N e

3-77

Multiprocessing and Direct Memory Access (DMA)

3.10.3 The Hold Function

3-78

The TMS320C2x supports direct memory access (DMA) to its local (off-chip)
program, data, and I/O spaces. Two signals, HOLD and HOLDA, are provided
to allow another device to take control of the processor’s buses. Upon receiv-
ing a HOLD signal from an external device, the processor acknowledges by
bringing HOLDA low. The processor then places its address and data buses
as well as all control signals (PS, DS, IS, R/W, and STRB) in the high-imped-
ance state. The serial port output pins, DX and FSX, are not affected by HOLD.
Signaling between the external processor and the TMS320C2x can be per-
formed by using interrupts.

The timing for the HOLD and HOLDA signals is shown in Figure 3-48. HOLD
has the same setup time as READY and is sampled at the beginning of quar-
ter-phase 3. If the setup time is met, it takes three machine cycles before the
buses and control signals go to the high-impedance state. Note that unlike the
external interrupts (INT2 — INTO), HOLD is not a latched input. The external
device must keep HOLD low until it receives a HOLDA from the TMS320C2x.

If the TMS320C2x is in the middle of a multicycle instruction, it will finish the
instruction before entering the hold state. After the instruction is completed,
the buses are placed in the high-impedance state. This also applies to instruc-
tions that become multicycle due to insertion of wait states or to the use of RPT/
RPTK instructions.

After HOLD is deasserted, program execution resumes from the same point
at which it was halted. HOLDA is removed synchronously with HOLD, as
shown in Figure 3—48. If the setup time is met, two machine cycles are required
before the buses and control signals become valid.

HOLD is nottreated as an interrupt. If the TMS320C2x was executing the IDLE
instruction before entering the hold state, it resumes executing IDLE once it
leaves the hold state.

The hold function on the TMS320C25 has two distinct operating modes:
[A mode in which execution is suspended during assertion of HOLD, and

[ATMS320C25 concurrent DMA mode, in which the TMS320C25 contin-
ues to execute its program while operating from internal RAM or ROM,
thus greatly increasing throughput in data-intensive applications.

Architecture

Multiprocessing and Direct Memory Access (DMA)

The operating mode is selected by the HM (hold mode) status register bit on
the TMS320C25. The HOLD signal is pulled low, as shown in the first part of
Figure 3—48. When HM =1, the TMS320C25 halts program execution and en-
ters the hold state directly. When HM = 0, the processor enters the hold state
directly, as shown in Figure 3-48, if program execution is from external
memory or if external data memory is being accessed. If program execution
is from internal memory, however, and if no external data memory accesses
are required, the processor enters the hold state externally, but program
execution continues internally. This allows more efficient system operation be-
cause a program may continue executing while an external DMA operation is
being performed.

Program execution ceases until HOLD is removed if the processor is in a hold
state with HM = 0 and an internally executing program requires an external ac-
cess, or if the program branches to an external address. Also, if a repeat
instruction that requires the use of the external bus is executing with HM = 0
and a hold occurs, the hold state is entered after the current bus cycle. If this
situation occurs with HM = 1, the hold state will not be entered until the repeat
countis completed. HM is set and reset by the SHM (set hold mode) and RHM
(reset hold mode) instructions, respectively.

All interrupts are disabled while HOLD is active with HM = 1. If an interrupt is
received during this period, the interrupt is latched and remains pending.
Therefore, HOLD itself does not affect any interrupt flags or registers. When
HM = 0, interrupts function normally.

3-79

Multiprocessing and Direct Memory Access (DMA)

Figure 3—48. TMS320C25 Hold Timing Diagram

- | |
STRB | |
I
_ I
HOLD I I
| |
I I

A15-A0 N X N+1 N+2 y—l—
X | X | |
| | I | |
PS, DS, [| I I
or IS * Valid X Valid X \—l—
| | I | |
| | | | |
RW | | | N
| | I | I
| | I | |
| o\l N\ | |
D15-DO IN IN
A=A | |
fetch k¢*¢*-—*-—’l
execute N-2 N-1 N -

I
HOLDA I I | \ I
I I I I
Notes: 1) Nis the program memory location for the current instruction.
2) This example shows only the execution of single-cycle instructions fetched from external program memory.

3-80 Architecture

Multiprocessing and Direct Memory Access (DMA)

Figure 3-48. TMS320C25 Hold Timing Diagram (Continued)

STRB

§

HOLD

|

|
I
I
I I I
| | 4
A15-A0
I I N
I I I I | | |
PS.DS, _ | / | &
orls 1 | | \{ Valid X Valid X Valid
| I I I | | |
I I I | | | |
RW — ‘ 4 | | | |
	I				
			/	/_	/\
D15-D0 {IN) CIN) { IN)
l l l l N+2 l N+3 l N+4 l
fetch = = -
- - - N+1 Dummy N+2
execute

I I | | | | |
HOLDA | |/ I I I I I
I I | I I

Notes: 3) N is the program memory location for the current instruction.

4) This example shows only the execution of single-cycle instructions fetched from external program memory.

3-81

General Description of the TMS320C26

3.11 General Description of the TMS320C26

3-82

The TMS320C26 is a spin-off of the TMS320C25. It is processed in CMOS
technology, is capable of an instruction cycle time of 100 ns, and is pin-for-pin
and object code-compatible with the TMS320C25, with the exception of the
instructions for on-chip-memory configuration. The TMS320C26’s enhance-
ment over the TMS320C25 is basically the larger on-chip RAM (see the block
diagram in Figure 3-3), divided into 4 blocks with 1568 words altogether. The
three blocks, BO, B1, and B3—each with 512 x 16 bits—are configurable as
data or program memory. The block B2 with 32 x 16 bits is identical with the
same block of the TMS320C25 and is usable as data memory. The ROM of
the TMS320C26 consists of 256 words with a factory-programmed bootloader.

In many applications, the large internal memory of the TMS320C26 allows you
to build single-chip solutions with all data and programs internal and the option
to reload programs or algorithms. A memory size of 1568 words allows the
TMS320C26 to handle a data array of, for example, 1024 words with an on-
chip program RAM of 512 words and additional 32 words of data RAM. When
using internal blocks as program memory, instructions can be downloaded
from external program memory into on-chip RAM and then executed. The
TMS320C26 allows the DMOV function in all internal data memory blocks. An-
FIR filter programmed with the MAC or MACD instructions can use the internal
program RAM for storing the coefficients.

Architecture

General Description of the TMS320C28

3.12 General Description of the TMS320C28

The TMS320C28 is the newest member of the TMS320C2x family. Like the
TMS320C26, it is also processed in CMOS technology, is capable of 100-ns
instruction cycle time, and is object code-compatible with the TMS320C25.
The enhancements of the TMS320C28 over the TMS320C25 are the larger
on-chip ROM (8K words) and a new powerdown mode. The TMS320C28
comes in an 80-pin QFP package that includes three new pins (PDI, PDACK,
and WAKEUP) to support the powerdown feature. This mode decreases the
current to about 100 pA compared with the 50-mA current in the TMS320C25
idle mode. See Appendix C for more details about the TMS320C28 power-
down feature. The TMS320C28 has more on-chip memory (8K-word ROM
and 544-word RAM) than the TMS320C26. The 8K-word on-chip ROM re-
duces system cost and allows large programs to execute at full speed from
memory. The large internal memory and the powerdown feature of the
TMS320C28 allow you to build a single-chip solution with all data and pro-
grams internal, while conserving power.

3-83

3-84 Architecture

Chapter 4

Assembly Language Instructions

The TMS320C2x instruction set supports numeric-intensive signal processing
operations as well as general-purpose applications, such as multiprocessing
and high-speed control. TMS320C1x source code is upward-compatible with
TMS320C2x source code.

The TMS320C26 is similar to the TMS320C25 except for its internal memory
configuration. This is discussed in Section 3.4 and in Appendix B.

This chapter describes the assembly language instructions for the
TMS320C2x microprocessor. Topics include:

Topic Page
4.1 Memory Addressing Modes ... 4-2
4.2 INSHrUCHON Set ... 4-11
4.3 Individual Instruction Descriptions ... i 4-18

41

Memory Addressing Modes

4.1 Memory Addressing Modes

The TMS320C2x instruction set provides three memory addressing modes:
[] Direct addressing mode

[Indirect addressing mode

[Immediate addressing mode

Both direct and indirect addressing can be used to access data memory. Direct
addressing concatenates seven hits of the instruction word with the nine bits
of the data memory page pointer to form the 16-bit data memory address. Indi-
rect addressing accesses data memory through the auxiliary registers. In im-
mediate addressing, the data is based on a portion of the instruction word(s).
The following sections describe each addressing mode and give the opcode
formats and some examples for each mode.

4.1.1 Direct Addressing Mode

4-2

Inthe direct memory addressing mode, the instruction word contains the lower
seven bits of the data memory address (dma). This field is concatenated with
the nine bits of the data memory page pointer (DP) register to form the full
16-bit data memory address. Thus, the DP register points to one of 512 pos-
sible 128-word data memory pages, and the 7-bit address in the instruction
points to the specific location within that data memory page. The DP register
is loaded through the LDP (load data memory page pointer), LDPK (load data
memory page pointer immediate), or LST (load status register STO) instruc-
tions.

Note:

The data page pointer is not initialized by reset and is therefore undefined
after powerup. The TMS320C2x development tools, however, utilize default
values for many parameters, including the data page pointer. Because of
this, programs that do not explicitly initialize the data page pointer may
execute improperly, depending on whether they are executed on a
TMS320C2x device or by using a development tool. Thus, it is critical that
all programs initialize the data page pointer in software.

Assembly Language Instructions

Memory Addressing Modes

Figure 4-1 illustrates how the 16-bit data address is formed.

Figure 4-1. Direct Addressing Block Diagram

3 Data Bus (16) S

7 LSBs From
Instruction
Register (IR)

Direct addressing can be used with all instructions except CALL, the branch
instructions, immediate operand instructions, and instructions with no oper-

ands. The direct addressing format is as follows:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode 0 dma

Bits 15 through 8 contain the opcode. Bit 7 = 0 defines the addressing mode
as direct, and bits 6 through O contain the data memory address (dma).

Example of Direct Addressing Format:

ADD 9,5 Add to accumulator the contents of data memory location

9 left-shifted 5 bits.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o o o o0 o011 010l O O O 1 00 1

The opcode of the ADD 9,5 instruction is 05h and appears in bits 15 through
8. The notation nnh indicates nn is a hexadecimal number. The shift count of
5h appears in bits 11 through 8 of the opcode. The data memory address 09h
appears in bits 6 through 0.

4-3

Memory Addressing Modes

4.1.2

Indirect Addressing Mode

The auxiliary registers (AR) provide flexible and powerful indirect addressing.
Eight auxiliary registers (ARO—AR?7) are provided on the TMS320C2x. To se-
lect a specific auxiliary register, the auxiliary register pointer (ARP) is loaded
with a value from 0 through 7 designating ARO through AR7 (see Figure 4-2).

Figure 4-2. Indirect Addressing Block Diagram

4-4

S Data Bus (16) S

3 3
Auxiliary
3 Registers
ARB (3) H ARP (3) ARO (16)
(ARP = 2) 3 AR1 (16)
AR2 (16) }———
AR3 (16)
ARA4 (16)
ARS5 (16)
ARG (16) 16
AR7 (16)

A 16 v
16 \4

| ARAU (16) | 16-Bit Data Address

The contents of the auxiliary registers may be operated upon by the auxiliary
register arithmetic unit (ARAU), which implements 16-bit unsigned arithmetic.
The ARAU performs auxiliary register arithmetic operations in the same cycle
as the execution of the instruction. (Note that the increment or decrement of
the indicated AR is always executed after the use of that AR in the instruction.)

In indirect addressing, any location in the 64K data memory space can be ac-
cessed viathe 16-bit addresses contained in the auxiliary registers. These can
be loaded by the instructions LAR (load auxiliary register), LARK (load auxilia-
ry registerimmediate), and LRLK (load auxiliary register long immediate). The
auxiliary registers on the TMS320C2x can be modified by ADRK (add to auxil-
iary register short immediate) or SBRK (subtract from auxiliary register short
immediate). The TMS320C2x auxiliary registers can also be modified by the
MAR (modify auxiliary register) instruction or, equivalently, by the indirect ad-
dressing field of any instruction supporting indirect addressing. AR(ARP) de-
notes the auxiliary register selected by ARP.

Assembly Language Instructions

Memory Addressing Modes

The following symbols are used in indirect addressing, including bit-reversed
(BR) addressing:

* Contents of AR(ARP) are used as the data memory ad-
dress.

*— Contents of AR(ARP) are used as the data memory ad-
dress, then decremented after the access.

*+ Contents of AR(ARP) are used as the data memory ad-
dress, then incremented after the access.

*0— Contents of AR(ARP) are used as the data memory ad-
dress, and the contents of ARO subtracted from it after the
access.

*0+ Contents of AR(ARP) are used as the data memory ad-
dress, and the contents of ARO added to it after the access.

*BRO- Contents of AR(ARP) are used as the data memory ad-

dress, and the contents of ARO subtracted from it, with re-
verse carry (rc) propagation, after the access.

*BRO+ Contents of AR(ARP) are used as the data memory ad-
dress, and the contents of ARO added to it, with reverse
carry (rc) propagation, after the access.

There are two main types of indirect addressing with indexing:
[1 Regular indirect addressing with increment or decrement, and

(1 Indirect addressing with indexing based on the value of ARO:
Indexing by adding or subtracting the contents of ARO, or
Indexing by adding or subtracting the contents of ARO with the carry
propagation reversed (for FFTs on the TMS320C2x).

In either case, the contents of the auxiliary register pointed to by the ARP regis-
ter are used as the address of the data memory operand. Then, the ARAU per-
forms the specified mathematical operation on the indicated auxiliary register.
Additionally, the ARP may be loaded with a new value. All indexing operations
are performed on the current auxiliary register in the same cycle as the original
instruction.

Indirect auxiliary register addressing allows for post-access adjustments of the
auxiliary register pointed to by the ARP. The adjustment may be an increment
or decrement by one, or it may be based upon the contents of ARO.

Bit-reversed addressing modes on the TMS320C2x allow efficient 1/O to be
performed for the resequencing of data points in a radix-2 FFT program. The
direction of carry propagation in the ARAU is reversed when this mode is se-
lected and ARO is added to/subtracted from the current auxiliary register. Typi-
cal use of this addressing mode requires that ARO first be set to a value corre-

4-5

Memory Addressing Modes

sponding to one-half of the array size, and AR(ARP) be setto the base address
ofthe data (the first data point). See subsection 5.7.4 foran FFT example using
bit-reversed addressing modes.

Indirect addressing can be used with all instructions except immediate oper-
and instructions and instructions with no operands. The indirect addressing
format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 21 0

Opcode 1| IDV | INC | DEC | NAR Y

Bits 15 through 8 contain the opcode, and bit 7 = 1 defines the addressing
mode as indirect. Bits 6 through 0 contain the indirect addressing control bits.

Bit 6 contains the increment/decrement value (IDV). The IDV determines
whether ARO will be used to increment or decrement the current auxiliary reg-
ister. If bit 6 = 0, an increment or decrement (if any) by one occurs to the current
auxiliary register. If bit 6 = 1, ARO may be added to or subtracted from the cur-
rent auxiliary register as defined by bits 5 and 4.

Bits 5 and 4 control the arithmetic operation to be performed with AR(ARP) and
ARO. When set, bit 5 indicates that an increment is to be performed. If bit 4 is
set, a decrement is to be performed. Table 4-1 shows the correspondence of
bit pattern and arithmetic operation.

Table 4-1. Indirect Addressing Arithmetic Operations

Bits Arithmetic Operation
6 5 4
0 0 0 No operation on AR(ARP)
0 0 1 AR(ARP) -1 - AR(ARP)
0 1 0 AR(ARP) + 1 - AR(ARP)
0 1 1 Reserved
1 0 0 AR(ARP) — ARO - AR(ARP) [reverse carry propagation]
1 0 1 AR(ARP) — ARO - AR(ARP)
1 1 0 AR(ARP) + ARO - AR(ARP)
1 1 1 AR(ARP) + ARO - AR(ARP) [reverse carry propagation]

Bit 3 and bits 2 through O control the auxiliary register pointer (ARP). Bit 3
(NAR) determinesifanew value is loaded into the ARP. If bit 3=1, the contents
of bits 2 through 0 (Y = next ARP) are loaded into the ARP. If bit 3 =0, the con-
tents of the ARP remain unchanged.

Assembly Language Instructions

Memory Addressing Modes

Table 4-2 shows the bit fields, notation, and operation used for indirect ad-
dressing. For some instructions, the notation in Table 4-2 includes a shift
code: for example, *0+,8,3 where 8 is the shift code and Y = 3.

Table 4-2. Bit Fields for Indirect Addressing

Instruction Field Bits Notation Operation
15 - 876543210
~Opcode -1 0000 ~Y - * No manipulation of ARs/ARP
~Opcode -1 0001 Y - *Y Y - ARP
— Opcode ~10010 Y~ * AR(ARP) -1 - AR(ARP)
~Opcode 10011 <Y~ Y AR(ARP) -1 - AR(ARP) Y - ARP
~ Opcode 510100 Y~ x4 AR(ARP) +1 - AR(ARP)
~Opcode 10101 Y- *+,Y AR(ARP)+1 - AR(ARP) Y - ARP
~ Opcode ~1 1000 Y *BRO— AR(ARP)-IcARO — AR(ARP)
~Opcode 11001 Y~ *BRO-,Y AR(ARP)-IcARO — AR(ARP)

Y - ARP
~Opcode 11010 Y~ *0— AR(ARP)-ARO - AR(ARP)
~Opcode 11011 Y- *0-,Y AR(ARP)-ARO - AR(ARP)

Y - RP
—Opcode 11100 Y~ *0+ AR(ARP)+ARO - AR(ARP)
~Opcode -1 1101 <Y *0+,Y AR(ARP)+ARO — AR(ARP)

Y - ARP
~Opcode 11110 Y~ *BRO+ AR(ARP)+rcARO — AR(ARP)
~Opcode -11111 Y- *BRO+,Y ,\‘?R(AAR;%HCARO ~ AR(ARP)

The CMPR (compare auxiliary register with ARO), and BBZ/BBNZ (branch if
TC bit equal/not equal to zero) instructions facilitate conditional branches
based on comparisons between the contents of ARO and the contents of
AR(ARP).

The auxiliary registers may also be used for temporary storage via the load and
store auxiliary register instructions, LAR and SAR, respectively.

Memory Addressing Modes

4.1.3

The following examples illustrate the indirect addressing format:

Example 1 ADD *+,8 Add to the accumulator the contents of the data

memory address defined by the contents of the current auxiliary
register. This data s left-shifted 8 bits before being added. The cur-
rent auxiliary register is autoincremented by one. The opcode is
08A0h, as shown below.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0o 0o 0 0 1 0 0O /|1l 0 1 0 0 000 O

Example 2 ADD *,8 As in Example 1, but with no autoincrement; the
opcode is 0880h.

Example 3 ADD *—,8 As in Example 1, except that the current auxiliary
register is decremented by one; the opcode is 0890h.

Example 4 ADD *0+,8 Asin Example 1, except that the contents of auxil-
iary register ARO are added to the current auxiliary register; the op-
code is 08EOh.

Example 5 ADD *0-,8 As in Example 1, except that the contents of auxil-
iary register ARO are subtracted from the current auxiliary register;
the opcode is 08DO0h.

Example 6 ADD *+,8,3 As in Example 1, except that the auxiliary register
pointer (ARP) is loaded with the value 3 for subsequent instruc-
tions;the opcode is 08ABh.

Example 7 ADD *BR0-,8 The contents of auxiliary register ARO are sub-
tracted from the current auxiliary register with reverse carry propa-
gation; the opcode is 08COh.

Example 8 ADD *BR0+,8 The contents of auxiliary register ARO are added

to the current auxiliary register with reverse carry propagation; the
opcode is 08FO0h.

Immediate Addressing Mode

In immediate addressing, the instruction word(s) contains the value of the im-
mediate operand. The TMS320C2x has both single-word (8-bit and 13-bit
constant) shortimmediate instructions and two-word (16-bit constant) long im-
mediate instructions. The immediate operand is contained within the instruc-
tion word itself in short immediate instructions. In long immediate instructions,
the word following the instruction opcode is used as the immediate operand.

The following short immediate instructions contain the immediate operand in
the instruction word and execute within a single instruction cycle. The length
of the constant operand is instruction-dependent.

Assembly Language Instructions

Memory Addressing Modes

ADDK Add to accumulator short immediate (8-bit absolute
constant)

ADRK Add to auxiliary register short immediate (8-bit absolute
constant)

LACK Load accumulator short immediate (8-bit absolute
constant)

LARK Load auxiliary register short immediate (8-bit absolute
constant)

LARP Load auxiliary register pointer (3-bit constant)

LDPK Load data memory page pointer immediate (9-bit
constant)

MPYK Multiply immediate (13-bit 2s-complement constant)

RPTK Repeat instruction as specified by immediate value (8-bit
constant)

SBRK Subtract from auxiliary register short immediate (8-bit
absolute constant)

SUBK Subtract from accumulator shortimmediate (8-bit absolute
constant).

Example of short immediate addressing format:
RPTK 99 Execute the instruction following this instruction 100 times.

With the RPTK instruction, the immediate operand is contained as a part of the
instruction opcode. The instruction format for RPTK is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 1 0 0 1 0 1 1 8-Bit Constant

For long immediate instructions, the constant is a 16-bit value in the word fol-
lowing the opcode. The 16-bit value can be optionally used as an absolute
constant or as a 2s-complement value.

ADLK Add to accumulator long immediate with shift (absolute or
2s complement)

ANDK AND immediate with accumulator with shift

LALK Load accumulator long immediate with shift (absolute or 2s
complement)

LRLK Load auxiliary register long immediate

ORK OR immediate with accumulator with shift

SBLK Subtract from accumulator long immediate with shift (ab-

solute or 2s complement)
XORK Exclusive-OR immediate with accumulator with shift.

4-9

Memory Addressing Modes

4-10

Example of long immediate addressing format:

ADLK 16384,2 Add to the accumulator the value 16384 with a shift to the
left of two, effectively adding 65536 to the contents of the
accumulator.

The ADLK instruction uses the word following the instruction opcode as the

immediate operand. The instruction format for ADLK is as follows:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 Shift 0o o0 0 O o o0 1 o

16-Bit Constant

Assembly Language Instructions

Instruction Set

4.2 Instruction Set
The following sections list the symbols and abbreviations used in the instruc-
tion set summary and in the instruction descriptions. The complete instruction

set summary is organized according to function. A detailed description of each
instruction is listed in the instruction set summary.

4.2.1 Symbols and Abbreviations

Table 4-3 lists symbols and abbreviations used in the instruction set summary
(in Table 4—4) and the individual instruction descriptions.

4-11

Instruction Set

Table 4-3. Instruction Symbols

Symbol

Meaning

A
ACC
ARB
ARN
ARP
B
BIO
C
CM
CNF
D
DATn
dma
DP
FO
FSM
HM
INTM

MCS
nnh
ov

OVM

PA
PC
PFC
PM
pma
PRGN

RPTC

STn
SXM

TC
TOS
TXM

XF

Port address

Accumulator

Auxiliary register pointer buffer

Auxiliary register n (ARO, AR1 assembler symbols equal to O or 1)
Auxiliary register pointer

4-bit field specifying a bit code

Branch control input

Carry bit

2-bit field specifying compare mode

On-chip RAM configuration control bit

Data memory address field

Label assigned to data memory location n
Data memory address

Data page pointer

Format status bit

Frame synchronization mode bit

Hold mode bit

Interrupt mode flag bit

Immediate operand field

Addressing mode bit

Microcall stack

nnh = hexadecimal number (others are decimal values)
Overflow mode flag bit

Overflow mode bit

Product register

Port address (PAO-PA15 assembler symbols equal to 0 through 15)
Program counter

Prefetch counter

2-bit field specifying P register output shift code
Program memory address

Label assigned to program memory location n
3-bit operand field specifying auxiliary register
Repeat counter

4-bit left-shift code

Status register n (STO or ST1)

Sign-extension mode bit

Temporary register

Test control bit

Top of stack

Transmit mode bit

3-bit accumulator left-shift field

XF pin status bit

4-12

Assembly Language Instructions

Instruction Set

Table 4-3. Instruction Symbols (Continued)

Symbol Meaning

- Is assigned to
| An absolute value

italics User-defined items
[] Optional items
@) Contents of
{1} Alternative items, one of which must be entered

Blanks or spaces must be entered where shown.

4.2.2 Instruction Set Summary

Table 4-4 shows the instruction set summary for the TMS320C2x processor,
which is a superset of the TMS320C1x instruction set. Included in the instruc-
tion set are four special groups of instructions to improve overall processor
throughput and ease of use.

[Extended-precision arithmetic (ADDC, SUBB, MPYU, BC, BNC, SC, and
RC)

[Adaptive filtering (MPYA, MPYS, and ZALR)
[Control and /O (RHM, SHM, RTC, STC, RFSM, and SFSM)

[Accumulator and register (SPH, SPL, ADDK, SUBK, ADRK, SBRK, ROL,
and ROR).

The instruction set summary is arranged according to function and alphabet-
ized within each functional grouping. Additional information is presented in the
individual instruction descriptions in the following section.

4-13

Instruction Set

Table 4—4. Instruction Set Summary

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS

Mnemonic and Description Words 16-Bit Opcode
MSB LSB

1100 1110 0001 1011
0000 SSsss MDDD DDDD
0100 0011 MDDD DDDD
0100 1000 MDDD DDDD
1100 1100 KKKK KKKK
0100 1001 MDDD DDDD
0100 1010 MDDD DDDD
1101 SSSS 0000 0010
0100 1110 MDDD DDDD
1101 SSSS 0000 0100
1100 1110 0010 0111

ABS Absolute value of accumulator

ADD Add to accumulator with shift

ADDC Add to accumulator with carry

ADDH Add to high accumulator

ADDK Add to accumulator short immediate

ADDS Add to low accumulator with sign-extension suppressed
ADDT Add to accumulator with shift specified by T register
ADLK Add to accumulator long immediate with shift

AND AND with accumulator

ANDK AND immediate with accumulator with shift

CMPL Complement accumulator

LAC Load accumulator with shift 0010 Ssss MDDD DDDD
LACK Load accumulator short immediate 1100 1010 KKKK KKKK
LACT Load accumulator with shift specified by T register 0100 0010 MDDD DDDD
LALK Load accumulator long immediate with shift 1101 SSSS 0000 0001
NEG Negate accumulator 1100 1110 0010 0011
NORM Normalize contents of accumulator 1100 1110 1010 0010

OR OR with accumulator 0100 1101 MDDD DDDD
ORK OR immediate with accumulator with shift 1101 SSSS 0000 0101
ROL Rotate accumulator left 1100 1110 0011 0100
ROR Rotate accumulator right 1100 1110 0011 0101
SAC Store high accumulator with shift 0110 1XXX MDDD DDDD
SACL Store low accumulator with shift 0110 O0XXX MDDD DDDD
SBLK Subtract from accumulator long immediate with shift 1101 SSSS 0000 0011
SFL Shift accumulator left 1100 1110 0001 1000
SFR Shift accumulator right 1100 1110 0001 1001
SuB Subtract from accumulator with shift 0001 SSsss MDDD DDDD

0100 1111 MDDD DDDD
0100 0111 MDDD DDDD
0100 0100 MDDD DDDD
1100 1101 KKKK KKKK

SUBB Subtract from accumulator with borrow
SUBC Conditional subtract

SUBH Subtract from high accumulator

SUBK Subtract from accumulator short immediate

RPRRPRRRPRPRERNRPRRPRPRNRRPRENRRPRERRNRNRRRERRRERR

SUBS Subtract from low accumulator with sign extension 0100 0101 MDDD DDDD
suppressed

SUBT Subtract from accumulator with shift specified by 1 0100 0110 MDDD DDDD
T register

XOR Exclusive-OR with accumulator 1 0100 1100 MDDD DDDD

XORK Exclusive-OR immediate with accumulator with 2 1101 SSSS 0000 0110
shift

ZAC Zero accumulator 1 1100 1010 0000 0000

ZALH Zero low accumulator and load high accumulator 1 0100 0000 MDDD DDDD

ZALR Zero low accumulator and load high accumulator 1 0111 1011 MDDD DDDD

with rounding
ZALS Zero accumulator and load low accumulator with 1 0100 0001 MDDD DDDD
sign extension suppressed

4-14 Assembly Language Instructions

Table 4-4. Instruction Set Summary (Continued)

Instruction Set

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS

Mnemonic and Description Words 16-Bit Opcode

MSB LSB
ADRK Add to auxiliary register short immediate 1 0111 1110 KKKK KKKK
CMPR Compare auxiliary register with auxiliary 1 1100 1110 0101 OOKK

register ARO
LAR Load auxiliary register 1 0011 ORRR MDDD DDDD
LARK Load auxiliary register short immediate 1 1100 ORRR KKKK KKKK
LARP Load auxiliary register pointer 1 0101 0101 1000 1RRR
LDP Load data memory page pointer 1 0101 0010 MDDD DDDD
LDPK Load data memory page pointer immediate 1 1100 100K KKKK KKKK
LRLK Load auxiliary register long immediate 2 1101 ORRR 0000 0000
MAR Modify auxiliary register 1 0101 0101 MDDD DDDD
SAR Store auxiliary register 1 0111 ORRR MDDD DDDD
SBRK Subtract from auxiliary register short inmediate 1 0111 1111 KKKK KKKK
T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS
Mnemonic and Description Words 16-Bit Opcode

MSB LSB
APAC Add P register to accumulator 1 1100 1110 0001 0101
LPH Load high P register 1 0101 0011 MDDD DDDD
LT Load T register 1 0011 1100 MDDD DDDD
LTA Load T register and accumulate previous product 1 0011 1101 MDDD DDDD
LTD Load T register, accumulate previous product and 1 0011 1111 MDDD DDDD

move data

LTP Load T register and store P register in accumulator 1 0011 1110 MDDD DDDD
LTS Load T register and subtract previous product 1 0101 1011 MDDD DDDD
MAC Multiply and accumulate 2 0101 1101 MDDD DDDD
MACD Multiply and accumulate with data move 2 0101 1100 MDDD DDDD
MPY Multiply (with T register, store product in P register) 1 0011 1000 MDDD DDDD
MPYA Multiply and accumulate previous product 1 0011 1010 MDDD DDDD
MPYK Multiply immediate 1 101K KKKK KKKK KKKK
MPYS Multiply and subtract previous product 1 0011 1011 MDDD DDDD
MPYU Multiply unsigned 1 1100 1111 MDDD DDDD
PAC Load accumulator with P register 1 1100 1110 0001 0100
SPAC Subtract P register from accumulator 1 1100 1110 0001 0110
SPH Store high P register 1 0111 1101 MDDD DDDD
SPL Store low P register 1 0111 1100 MDDD DDDD
SPM Set P register output shift mode 1 1100 1110 0000 1O0KK
SQRA Square and accumulate 1 0011 1001 MDDD DDDD
SQRS Square and subtract previous product 1 0101 1010 MDDD DDDD

4-15

Instruction Set

Table 4—4. Instruction Set Summary (Continued)

BRANCH/CALL INSTRUCTIONS

Mnemonic and Description Words 16-Bit Opcode
MSB LSB

I/0 AND DATA MEMORY OPERATIONS

CALA Call subroutine indirect
CALL Call subroutine

RET Return from subroutine
TRAP Software interrupt

1100 1110 0010 0110
1100 1110 0001 1110

B Branch unconditionally 2 1111 1111 1DDD DDDD
BACC Branch to address specified by accumulator 1 1100 1110 0010 0101
BANZ Branch on auxiliary register not zero 2 1111 1011 1DDD DDDD
BBNZ Branch if TC bit#0 2 1111 1001 1DDD DDDD
BBz Branch if TC bit=0 2 1111 1000 1DDD DDDD
BC Branch on carry 2 0101 1110 1DDD DDDD
BGEZ Branch if accumulator # 0 2 1111 0100 1DDD DDDD
BGZ Branch if accumulator > 0 2 1111 0001 1DDD DDDD
BIOZ Branch on I/O status =0 2 1111 1010 1DDD DDDD
BLEZ Branch if accumulator < 0 2 1111 0010 1DDD DDDD
BLZ Branch if accumulator < 0 2 1111 0011 1DDD DDDD
BNC Branch on no carry 2 0101 1111 1DDD DDDD
BNV Branch if no overflow 2 1111 0111 1DDD DDDD
BNZ Branch if accumulator # 0 2 1111 0101 1DDD DDDD
BV Branch on overflow 2 1111 0000 1DDD DDDD
BZ Branch if accumulator = 0 2 1111 0110 1DDD DDDD

1

2

1

1

/0 AND DATA MEMORY OPERATIONS

Mnemonic and Description Words 16-Bit Opcode
MSB LSB

1111 1101 MDDD DDDD
1111 1100 MDDD DDDD
0101 0110 MDDD DDDD
1100 1110 0000 111K
1000 AAAA MDDD DDDD
1110 AAAA MDDD DDDD
1100 1110 0011 0110
1100 1110 0010 0000
1100 1110 0000 1100
1100 1110 0011 0111
1100 1110 0010 0001
1100 1110 0000 1101
0100 1000 MDDD DDDD
0101 1001 MDDD DDDD

BLKD Block move from data memory to data memory
BLKP Block move from program memory to data memory
DMOV Data move in data memory

FORT Format serial port registers

IN Input data from port

ouT Output data to port

RFSM Reset serial port frame synchronization mode
RTXM Reset serial port transmit mode

RXF Reset external flag

SFSM Set serial port frame synchronization mode
STXM Set serial port transmit mode

SXF Set external flag

TBLR Table read

TBLW Table write

RPRRPRRPRRPRRRREPRRLRENN

4-16 Assembly Language Instructions

Table 4-4. Instruction Set Summary (Continued)

Instruction Set

CONTROL INSTRUCTIONS

Mnemonic and Description Words 16-Bit Opcode

MSB LSB
BIT Test bit 1 1001 BBBB MDDD DDDD
BITT Test bit specified by T register 1 0101 0111 MDDD DDDD
CcNFDT Configure block as data memory 1 1100 1110 0000 0100
CNFPT Configure block as program memory 1 1100 1110 0000 0101
CONFT Configure block as data/program memory 1 1100 1110 0011 11KK
DINT Disable interrupt 1 1100 1110 0000 0001
EINT Enable interrupt 1 1100 1110 0000 0000
IDLE Idle until interrupt 1 1100 1110 0001 1111
LST Load status register STO 1 0101 0000 MDDD DDDD
LST1 Load status register ST1 1 0101 0001 MDDD DDDD
NOP No operation 1 0101 0101 0000 0000
POP Pop top of stack to low accumulator 1 1100 1110 0001 1101
POPD Pop top of stack to data memory 1 0111 1010 MDDD DDDD
PSHD Push data memory value onto stack 1 0101 0100 MDDD DDDD
PUSH Push low accumulator onto stack 1 1100 1110 0001 1100
RC Reset carry bit 1 1100 1110 0011 0000
RHM Reset hold mode 1 1100 1110 0011 1000
ROVM Reset overflow mode 1 1100 1110 0000 0010
RPT Repeat instruction as specified by data memory 1 0100 1011 MDDD DDDD

value
RPTK Repeat instruction as specified by immediate value 1 1100 1011 KKKK KKKK
RSXM Reset sign-extension mode 1 1100 1110 0000 0110
RTC Reset test/control flag 1 1100 1110 0011 0010
SC Set carry bit 1 1100 1110 0011 0001
SHM Set hold mode 1 1100 1110 0011 1001
SOVM Set overflow mode 1 1100 1110 0000 0011
SST Store status register STO 1 0111 1000 MDDD DDDD
SST1 Store status register ST1 1 0111 1001 ™MDDD DDDD
SSXM Set sign-extension mode 1 1100 1110 0000 0111
STC Set test/control flag 1 1100 1110 0011 0011
1) The CONF instruction is specific to the TMS320C26 instruction set; the instructions CNFD and CNFP are undefined.

4-17

Individual Instruction Descriptions

4.3 Individual Instruction Descriptions

Each instruction in the instruction set summary is described in the following
pages. Instructions are listed in alphabetical order. Information, such as as-
sembler syntax, operands, operation, encoding, description, words, cycles,
and examples, is provided for each instruction. An example instruction is pro-
vided to familiarize you with the special format used and to explain its content.
Refer to Section 4.1 for further information on memory addressing. Code ex-
amples using many of the instructions are given in Chapter 5, Software
Applications.

4-18 Assembly Language Instructions

Syntax

Operands

Execution

Example Instructions EXAMPLE

Direct: [label] EXAMPLE dmal [, shift]
Indirect: [label] EXAMPLE {ind} [, shift [next ARP]
Immediate: [label] EXAMPLE [constant]

Each instruction begins with an assembler syntax expression. The optional
comment field that concludes the syntax is not included in the syntax expres-
sion. Space(s) are required between each field (label, command, operand,
and comment fields) as shown in the syntax. The syntax example illustrates
both direct and indirect addressing, as well as immediate addressing in which
the operand field includes constant.

The indirect addressing operand options, including bit-reversed (BR) addres-
sing, are as follows:

TMS320C25: {*|*+|*=|*0+|*0—]*BRO + | * BRO -}

O0<dmac<127
O<nextARP <7
0 < constant < 255

Operands may be constants or assembly-time expressions referring to
memory, /0O and register addresses, pointers, shift counts, and a variety of
constants. The operand values used in the example syntax are shown.

(PC)+1 - PC
(ACC) + [(dma) x 2 shift] _, ACC

If SXM = 1:
Then (dma) is sign-extended.
If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by OVM and SXM.
Affects C.

4-19

EXAMPLE Example Instructions

Encoding

Description

Words

Cycles

4-20

An example of the instruction operation sequence is provided, describing the
processing that takes place when the instruction is executed. Conditional ef-
fects of status register specified modes are also given. Those bits in the
TMS320C2x status registers affected by the instruction are also listed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct:| 0 0 0 0 shift 0 Data Memory Address
Indirect:| o 0 0 0 shift 1 See Section 4.1
Immediate:| 1 0 o0 13-Bit Constant

Opcode examples are shown of both direct and indirect addressing or of the
use of an immediate operand.

Instruction execution and its effect on the rest of the processor or memory con-
tents are described. Any constraints on the operands imposed by the proces-
sor or the assembler are discussed. The description parallels and supple-
ments the information given by the execution block.

1

The digit specifies the number of memory words required to store the instruc-
tion and its extension words.

Cycle Timings for a Single Instruction

PI/DI

PI/DE

PE/DI

PE/DE

PR/DI

PR/DE

1

1+p

1+p

Cycle Timings for a Repeat Execution

n+p

n+p

The table shows the number of cycles required for a given TMS320C2x
instruction to execute in a given memory configuration when executed as a
single instruction or in the repeat mode. The column headings in the tables in-
dicate the program source location (PI, PE, or PR) and data destination or
source (DI or DE), defined as follows:

Assembly Language Instructions

Pl
PR
PE
DI
DE

Example Instructions EXAMPLE

The instruction executes from internal program memory (RAM).
The instruction executes from internal program memory (ROM).
The instruction executes from external program memory.

The instruction executes using internal data memory.

The instruction executes using external data memory.

The number of cycles required for each instruction is given in terms of the pro-
gram/data memory and 1/O access times as defined in the following listing:

p

Program memory wait states. Represents the number of clock cycles
the device waits for external program memory to respond to an ac-
cess. T is the access time, in nanoseconds, (maximum) required by
the TMS320C2x for an external memory access to be made with no
wait states. Tmem is the memory device access time, and T, is the
clock period (4/crystal frequency).

P=0; If Tmem < Tac

p=1 If Tac < Tmem < (TID + Tac)

P=21f (Tp+ Tac) < Tmem < (Tp X 2 + Tye)

p=K; If [Tp x (k=1) + Tac] < Tmem < (Tp X K + Tyc)

Data memory wait states. Represents the number of cycles the device
must wait for external data memory to respond to an access. This
number is calculated in the same way as the p number.

I/O memory wait states. Represents the number of cycles the device
must wait for external I/O memory to respond to an access. This num-
ber is calculated in the same way as the p number.

Other abbreviations used in the tables and their meanings are as follows:

br
int
INT

ext

Branch from ...

Internal program memory.
Interrupt.

External program memory.

The number of times an instruction is executed when using the RPT
or RPTK instruction.

Refer to Appendix D for further information on instruction cycle classifications
and timings.

4-21

EXAMPLE Example Instructions

Example ADD DAT1,3 ;(DP=10)
or
ADD *3 ;If current auxiliary register contains 1281.
Before Instruction After Instruction
Data Data
Memory 8h Memory 8h
1281 1281
ACC 2h ACC IEI 42h
C C

The sample code presented in the above format shows the effect of the code
on memory and/or registers. The use of the carry bit (C) provided on the
TMS320C25 is shown in the small box.

4-22 Assembly Language Instructions

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

[label] ABS

None
(PC)+1 - PC
[(ACC)| - ACC

Affects OV; affected by OVM.

Affects C.
Not affected by SXM.

15 14 13 12 11 10

9

Absolute Value of Accumulator

8 7 6

ABS

1 1 0 0 1 1

1

0 0 0

If the contents of the accumulator are greater than or equal to zero, the accu-
mulator is unchanged by the execution of ABS. If the contents of the accumula-
tor are less than zero, the accumulator is replaced by its 2s-complement value.

Note that 80000000h is a special case. When the overflow mode is not set, the
ABS of 80000000h is 80000000h. In the overflow mode, the ABS of
80000000h is 7FFFFFFFh. In either case, the OV status bit is set. The carry
bit (C) on the TMS320C2x is always reset to zero by the execution of this

instruction.
1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p n n

4-23

ABS Absolute Value of Accumulator

Example ABS

Before Instruction

ACC 1234h

C

ACC OFFFFFFFFh

C

4-24

ACC

ACC

o [=]o [=]

After Instruction

1234h

1h

Assembly Language Instructions

Add to Accumulator With Shift ADD

Syntax Direct: [label] ADD dma], shift]
Indirect: [label] ADD {ind} [, shift[, next ARP]]

Operands O0<dmas<127
O<nextARP <7
0 < shift < 15 (defaults to 0)

Execution (PCO)+1 - PC _
(ACC) + [(dma) x 2 shift] _, ACC

If SXM = 1:
Then (dma) is sign-extended.
If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by OVM and SXM.

Affects C.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:| 0 0 o0 0 shift 0 Data Memory Address
Indirect:| o 0 o0 0 shift 1 See Section 4.1
Description The contents of the addressed data memory location are left- shifted and add-

ed to the accumulator. During shifting, low-order bits are zero-filled. High-order
bits are sign-extended if SXM =1 and zero-filled if SXM = 0. The result is
stored in the accumulator.

Words 1

Cycles

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

4-25

ADD Add to Accumulator With Shift

Example

4-26

ADD DAT1,3

or
ADD *,3

Data
Memory
1281

ACC

C

:(DP = 10)

;If current auxiliary register contains 1281.

Before Instruction

8h

2h

Data
Memory
1281

ACC IEI

C

After Instruction

8h

42h

Assembly Language Instructions

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example 1

Direct:{ 0 © 0 6 0 0 1 1 0

Indirect:| 0 1 0 0 o0 0o 1 1 1 See Section 4.1

Add to Accumulator With Carry ADDC

Direct: [label] ADDC dma
Indirect: [label] ADDC {ind} [, next ARP]

0 <dma <127
O<nextARP<7

(PC)+1 - PC
(ACC) + (dma) + (C) — ACC

Affects OV and C; affected by OVM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Data Memory Address

The contents of the addressed data memory location and the value of the carry
bit are added to the accumulator. The carry bit is then affected in the normal
manner.

The ADDC instruction can be used in performing multiple-precision arithmetic.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n | 1+n+nd | n+p 1+n+nd+p n 1+n+nd
ADDC DAT5 ;(DP =8)
or
ADDC * ;If current auxiliary register contains 1029.
Before Instruction After Instruction
Data Data
Memory 4h Memory 4h
1029 1029
ACC 13h ACC IEI 18h
C C

4-27

ADDC Add to Accumulator With Carry

Example 2 ADDC DAT5

or
ADDC *

Data
Memory
1029

ACC

4-28

C

;(DP = 8)

;If current auxiliary register contains 1029.

Before Instruction

Oh

OFFFFFFFFh

Data
Memory
1029

ACC Oh

After Instruction

Oh

C

Assembly Language Instructions

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Add to High Accumulator ADDH

Direct: [label] ADDH dma
Indirect: [label] ADDH {ind} [, next ARP]

0<dmac<127
O<next ARP<7

(PC)+1 - PC
(ACC) + [(dma) x 216] _. ACC

Affects OV; affected by OVM.
Affects C.
Low-order bits of the ACC not affected.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Direct:] 0 1 0 6 1 0 0 O 0 Data Memory Address

Indirect:] 0 1 0 0 1 0 0 O 1 See Section 4.1

The contents of the addressed data memory location are added to the upper
half of the accumulator (bits 31 through 16). Low-order bits are unaffected by
ADDH. The carry bit (C) on the TMS320C2x is set if the result of the addition
generates a carry; otherwise, C is unaffected. The carry bit can only be set, not
reset, by the ADDH instruction.

The ADDH instruction may be used in performing 32-bit arithmetic.

1

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

4-29

ADDH Add to High Accumulator

Example ADDH DAT5
or
ADDH *
Data
Memory
1029
ACC
c

4-30

;(DP = 8)

;If current auxiliary register contains 1029.

Before Instruction

4h

13h

After Instruction

Data

Memory 4h
1029
ACC 40013h

C

Assembly Language Instructions

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

Example

Add to Accumulator Short Immediate ADDK

[label] ADDK constant
0 < constant < 255

(PC)+1 . PC
(ACC) + 8-hit positive constant - ACC

Affects OVM and C; affected by OVM.
Not affected by SXM.

15 14 183 12 11 10 9 8 7 6 5 4 3 2 1 O

1 1 0 0 1 1 (O] 8-Bit constant

The 8-bitimmediate value is added, right-justified, to the accumulator with the
result replacing the accumulator contents. The immediate value is treated as
an 8-bit positive number, regardless of the value of SXM.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
not repeatable
ADDK 5h
Before Instruction After Instruction
ACC 79B2E1lh ACC IEI 79B2E6h
C C

4-31

ADDS Add to Accumulator With Sign-Extension Suppressed

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

4-32

Direct: [label] ADDS dma
Indirect: [label] ADDS

0 <dma <127
O<nextARP <7

(PC)+1 - PC
(ACC) + (dma) - ACC
(dma) is a 16-bit unsigned number.

Affects OV; affected by OVM.
Affects C.
Not affected by SXM.

15 14 13 12 11 10 9 8

{ind}[, next ARP]

Direct:| 0 1 0 0 1 0O 0 1

Data Memory Address

Indirect:] o 1 0 0 1 0 0 1

See Section 4.1

The contents of the specified data memory location are added with sign-exten-
sion suppressed. The data is treated as a 16-bit unsigned number, regardless
of SXM. The accumulator behaves as a signed number. Note that ADDS pro-
duces the same results as an ADD instruction with SXM = 0 and a shift count

of 0.
1

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Assembly Language Instructions

Example ADDS DAT11

or
ADDS *

Data
Memory
779

ACC

C

Add to Accumulator With Sign-Extension Suppressed

;(DP =6)

;If current auxiliary register contains 779.

Before Instruction

0F006h

3h

Data
Memory
779

ACC IEI

C

After Instruction

0F006h

0F009h

ADDS

4-33

ADDT Add to Accumulator With Shift Specified by T Register

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

4-34

Direct:| 0 1 0 0 1 0 1 0 0

Indirect:] 0 1 0 0 1 0 1 0 1 See Section 4.1

Direct: [label] ADDT dma
Indirect: [label] ADDT {ind} [, next ARP]

O0<dmac<127
O<nextARP <7

(PC)+1 - PC
(ACC) + [(dma) x 2T register(3—0)] - (ACC)

If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by SXM and OVM.
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Data Memory Address

The data memory value is left- shifted and added to the accumulator, with the
result replacing the accumulator contents. The left- shift is defined by the four
LSBsofthe T register, resulting in shift options from 0 to 15 bits. Sign extension
on the data memory value is controlled by SXM.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Assembly Language Instructions

ADDT DAT127
or
ADDT *

Example

Data
Memory
639

Acc

Add to Accumulator With Shift Specified by T Register

;(DP = 4)

;If current auxiliary register contains 639.

Before Instruction

9h

OFF94h

OF715h

Data
Memory
639

acc o]

(@]

After Instruction

9h

OFF94h

OF7A5h

ADDT

4-35

ADLK Add to Accumulator Long Immediate With Shift

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-36

[label] ADLK constant|, shift]

16-bit constant
0 < shift < 15 (defaults to 0)

(PC) +2 - PC _
(ACC) + [constant x 2 shift] _, ACC

If SXM =1:;

Then —32768 < constant < 32767.
If SXM = 0:

Then 0 < constant < 65535.

Affects OV; affected by OVM and SXM.
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0

1 1 0 1 shift 0 0 0 0 0 0 1 o0

16-Bit Constant

The 16-bitimmediate value, left- shifted as specified, is added to the accumu-
lator. The result replaces the accumulator contents. SXM determines whether
the constant is treated as a signed 2s-complement number or as an unsigned
number. The shift count is optional and defaults to zero.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable
ADLK 5,8
Before Instruction After Instruction
ACC 10EFh ACC IEI 15EFh
C C

Assembly Language Instructions

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

Example

Direct:

[label]

Add to Auxiliary Register Short Inmediate ADRK

ADRK constant

0 < constant < 255

(PC)+1 - PC

AR(ARP) + 8-bit positive constant -~ AR(ARP)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 8-Bit constant

The 8-bit immediate value is added, right-justified, to the currently selected
auxiliary register with the result replacing the auxiliary register contents. The
addition takes place in the ARAU, with the immediate value treated as an 8-bit
positive integer.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
not repeatable
ADRK 80h J(ARP =5)
Before Instruction After Instruction
AR5 4321h AR5 43Alh

4-37

AND AND With Accumulator

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

4-38

Direct:] 0 1 0 0 1 1 1 0 0

Indirect:] 0 1 0 0 1 1 1 0 1 See Section 4.1

Direct: [label] AND dma
Indirect: [label] AND {ind}[, next ARP]

0 <dma <127
O<nextARP <7

(PC)+1 - PC

(ACC(15-0)) AND (dma) - ACC(15-0)
0 - ACC(31-16)

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Data Memory Address

The lower half of the accumulator is ANDed with the contents of the addressed
data memory location. The upper half of the accumulator is ANDed with all ze-
roes. Therefore, the upper half of the accumulator is always zeroed by the AND
instruction.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Assembly Language Instructions

Example AND DAT16

or

AND *
Data

Memory
528
ACC
c

;(DP =4)

AND With Accumulator

;If current auxiliary register contains 528.

Before Instruction

OFFh

12345678h

Data
Memory
528

ACC 00000078h

C

After Instruction

OFFh

AND

4-39

ANDK AND Immediate With Accumulator With Shift

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-40

Indirect:

[label]

16-bit constant

ANDK constant|, shift]

0 < shift < 15 (defaults to 0)

(PC)+2 - PC

(ACC(30-0)) AND [(constant x 2 shift)] _, ACC(30-0)

0 - ACC(31) and all other bit positions unoccupied by shifted constant.

Not affected by SXM.

15 14 13

12 11 10 9 8 7 6 5

Direct:| 1 1 0

1 shift 0 0 0

16-Bit constant

The 16-bit immediate constant is left-shifted as specified and ANDed with the
accumulator. The result is left in the accumulator. Low-order bits below and
high-order bits above the shifted value are treated as zeros, clearing the corre-
sponding bits in the accumulator. Note that the accumulator’s most-significant

bit is always zeroed regardless of the shift-code value.

2

Cycle Timings for a Single Instruction

PI/DI

PI/DE PE/DI PE/DE

PR/DI PR/DE

2 2+2p 2+2p

Cycle Timings for a Repeat Execution

not repeatable

ANDK OFFFFh,12

ACC

C

Before Instruction

After Instruction

12345678h

ACC

02345000h

C

Assembly Language Instructions

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

Example

Add P Register to Accumulator APAC

[label] APAC
None

(PC)+1 . PC
(ACC) + (shifted P register) - ACC

Affects OV; affected by PM and OVM.
Affects C.
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1

The contents of the P register are shifted as defined by the PM status bits and
added to the contents of the accumulator. The result is left in the accumulator.
APAC is not affected by the SXM bit of the status register; the P register is al-
ways sign-extended.

The APAC instruction is a subset of the LTA, LTD, MAC, MACD, MPYA, and
SQRA instructions.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n | n | n+p n+p n
APAC ;(PM =0)
Before Instruction After Instruction
=) 40h P 40h
ACC 20h ACC IEI 60h

(@]

4-41

B Branch Unconditionally

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-42

[label] B pmal{ind} [, next ARP]]

0 < pma < 65535
0< next ARP<7

pma - PC
Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified, and control
passes to the designated program memory address (pma). Note that no AR
or ARP modification occurs if nothing is specified in those fields. The pma can
be either a symbolic or a numeric address.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
Cycle Timings for a Repeat Execution
not repeatable
B PRG191 ;191 is loaded into the program counter,

;and the program continues running from
;that location.

Assembly Language Instructions

Branch to Address Specified by Accumulator BACC

Syntax [label] BACC
Operands None
Execution (ACC(15-0)) - PC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 O 1 0 0 1 0 1
Description The branch uses the lower half of the accumulator (bits 15 — 0) for the branch
address.
Words 1
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
Destination on-chip RAM:
2 2 2+p 2+p 2 2
Destination on-chip ROM:
3 3 3+p 3+p 3 3
Destination external memory:
3+p 3+p 3+2p 3+2p 3+p 3+p
Cycle Timings for a Repeat Execution
not repeatable
Example BACC
Before Instruction After Instruction
PC 16E4h PC 9545h
ACC OF7FF9545h ACC OF7FF9545h
C C

4-43

BANZ Branch on Auxiliary Register Not Zero

Syntax

Operands

Execution

Encoding

Description

Description

Words

Cycles

4-44

[label] BANZ pma [{ind} [, next ARP]]

0 < pma < 65535
O<nextARP <7

If AR (ARP) # 0:
Then pma - PC;
Else (PC) + 2 - PC.
Modify AR (ARP) as specified.

15 14 13 12 11 10 9 8 7

1 1 1 1 1 0 1 1 1

See Section 4.1

Program Memory Address

Control is passed to the designated program memory address (pma) if the cur-
rent auxiliary register is not equal to zero. Otherwise, control passes to the next
instruction. The current auxiliary register and ARP are also modified as speci-

fied.

The current auxiliary register is either incremented or decremented from zero

when the branch is not taken. Note that

the AR modification defaults to *-

(decrement current AR by one) when nothing is specified, making it compat-
ible with the TMS320C1x. The pma can be either a symbolic or a numeric ad-

dress.

2

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p
Destination on-chip ROM:
3 3 3+2p

Destination external memory:

3+p 3+p 3+3p

False Condition:
Destination anywhere:

2 2 2+2p

2+2p 2 2
3+2p 3 3
3+3p 3+p 3+p
2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Assembly Language Instructions

Example 1

Example 2

Branch on Auxiliary Register Not Zero BANZ

BANZ PRG35, *—
Before Instruction After Instruction
AR 1h AR Oh
PC 46h PC 35h
or
AR oh AR OFFFFh
PC 46h PC 48h
BANZ PRG64, * +
Before Instruction After Instruction
AR OFFFFh AR oh
PC 117h PC 64h
or
AR oh AR 1h
PC 117h PC 119h
I 1
Note:

BANZ is designed for loop control using the auxiliary registers as loop count-
ers. Using *0 + or *0 — allows modification of the loop counter by a variable
step size. Care must be exercised when doing this, however, because the
auxiliary registers behave as modulo 65536 counters, and zero may be

passed without being detected if ARO > 1.

4-45

BBNZ Branch on TC Bit Not Equal to Zero

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-46

[label] BBNZ pma[{ind} [, next ARP]]

0 < pma < 65536
O<nextARP <7

If test/control (TC) status = 1:
Then pma - PC;
Else (PC) + 2 - PC.
Modify AR (ARP) and ARP as specified.

Affected by TC bit

15 14 13

12 11 10 9 8 7 6 5

1 1 1

1 1 0 0o 1 1

See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address if TC = 1. Otherwise, con-
trol passes to the next instruction. Note that no AR or ARP modification occurs
if nothing is specified in those fields. The pma can be either a symbolic or nu-
meric address. Note that the TC bit may be affected by the BIT, BITT, CMPR,

LST1, NORM, RTC, and STC instructions.

2

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

BBNZ PRG650

;JFTC = 1, 650 is loaded into the program
;counter ; otherwise, the program counter

;is incremented by 2.

Assembly Language Instructions

Syntax

Operands

Execution

Encoding

Description

Words
Cycles

Example

Branch on TC Bit Equal to Zero

[label] BBZ pmal[,{ind}[, next ARP]]

0 <pma < 65536
O<nextARP <7

If test/control (TC) status bit = O:
Then pma - PC;
Else (PC) + 2 - PC.
Modify AR (ARP) and ARP as specified.

Affected by TC bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

BBZ

1 1 1 1 1 0 0 0 1 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address if TC = 0. Otherwise, con-
trol passes to the next instruction. No AR or ARP modification occurrs if noth-
ing is speciified in those fields. The pma can be either a symbolic or a numeric
address. Note that the TC bit is affected by the BIT, BITT, CMPR, LST1,

NORM, RTC, and STC instructions.
2

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3

Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

BBZ PRG325 ;If TC =0, 325 is loaded into the program
;counter; otherwise, the program counter
;is incremented by 2.

4-47

BC Branch on Carry

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

4-48

[label] BC pma

0 <pma < 65536
O<nextARP <7

If carry bit C = 1:
Then pma - PC;
Else (PC) + 2 - PC.

[{ind} [, next ARP]

Modify AR (ARP) and ARP as specified.

Affected by TC bit

15 14 13 12 11 10 9

7

0 1 0 1 1 1 1

1

See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address if the carry bit C is high.
Otherwise, control passes to the nextinstruction. Note that no AR or ARP mod-
ification occurs if nothing is specified in those fields. The pma can be either a

symbolic or a numeric address.

Note that the carry bit C is affected by all add, subtract, and accumulate
instructions as well as the ABS, LST1, NEG, RC, SC, rotate, and shift instruc-
tions. The carry bit is not affected by execution of BC, BNC, or nonarithmetic

instructions.
2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable

BC PRG512

;If the carry bit C = 1, 512 is loaded into the

;program counter. Otherwise, the PC is

;incremented by 2.

Assembly Language Instructions

Syntax

Operands

Execution

Encoding

Description

Words
Cycles

Example

Branch if Accumulator Greater Than or Equal to Zero BGEZ

[label] BGEZ pma

0 <pma < 65536
O<nextARP <7

If (ACC) = 0:
Then pma - PC;
Else (PC) +2 - PC.

[,{ind} [, next ARP]]

Modify AR (ARP) and ARP as specified.

15 14 13 12 1 10 9 8 7

6

4 3 2 1 0

1 1 1 1 0 1 0 0 1

See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address (pma) if the contents of
the accumulator are greater than or equal to zero. Otherwise, control passes
to the next instruction. Note that no AR or ARP modification occurs if nothing
is specified in those fields. The pma can be either a symbolic or a numeric ad-

dress.
2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable

BGEZ PRG217

;217 is loaded into the program counter if the

;accumulator is greater than or equal to zero.

4-49

BGZ Branch if Accumulator Greater Than Zero

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-50

[label] BGZ pma

0 < pma < 65536
O<nextARP <7

If (ACC) > 0:
Then pma - PC;
Else (PC) + 2 - PC.

Modify AR (ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7

[,{ind}[, next ARP]]

1 1 1 1 0 0 0o 1 1

See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address (pma) if the contents of
the accumulator are greater than zero. Otherwise, control passes to the next
instruction. Note that no AR or ARP maodification occurs if nothing is specified
in those fields. The pma can be either a symbolic or a numeric address.

2

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable

BGZ PRG342

;342 is loaded into the program counter if the

;accumulator is greater than or equal to zero.

Assembly Language Instructions

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

Branch on I/O Status Equal to Zero BIOZ

[label] BIOZ pma [,{ind}[, next ARP]]

0 <pma £ 65536
O<nextARP <7

If BIO = 0:
Then pma - PC;
Else (PC) + 2 - PC.
Modify AR (ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0

1 1 1 1 1 0 1 0 1 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address (pma) if the BIO pin is low.
Otherwise, control passes to the nextinstruction. Note that no AR or ARP mod-
ification occurs if nothing is specified in those fields. The pma can be either a
symbolic or a numeric address.

BIOZ in conjunction with the BIO pin can be used to test if a peripheral is ready
to send or receive data. Polling the BIO pin by using BIOZ may be preferable
to an interrupt when executing time-critical loops.

2

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3

Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

BIOZ PRG64 ;If the BIO pin is active (low), then a branch
;to location 64 occurs.

4-51

BIT TestBit

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

4-52

Direct: [label] BIT dma, bit code
Indirect : [label] BIT {ind} , bit code [, next ARP]

O0<dmac=<127
O<nextARP <7
0 < bit code <15

(PC)+ - PC
(dma bit at bit address (15-bit code)) - TC.
Affects TC.
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct:| 1 0 0 1 Bit Code 0 Data Memory Address
Indirect:| 1 0 o0 1 Bit Code 1 See Section 4.1

The BIT instruction copies the specified bit of the data memory value to the TC
bit of status register ST1. Note thatthe BITT, CMPR, LST1, and NORM instruc-
tions also affect the TC bit in status register ST1. A bit code value is specified
that corresponds to a certain bit address in the instruction, as given by the fol-

lowing table:
Bit Code
BitAddress 1110 9 8
(LSB) O 1 111
1 1 110
2 1 101
3 1 100
4 1 011
5 1 010
6 1 001
7 1 000
8 0 111
9 0 110
10 0 101
11 0 100
12 0 011
13 0 010
14 0 001
(MSB) 15 0 00O
1

Assembly Language Instructions

BIT

Test Bit
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 1+n+nd | n+p 1+n+nd+p n 1+n+nd
Example BIT 0Oh,8h ;(DP =488)
or
BIT *8 ;If current auxiliary register contains 0F400h.
Data Before Instruction Data After Instruction
Memory 7E98h Memory 7E98h
F400h F400h
TC Oh TC 1h

4-53

BITT Test Bit Specified by T Register

Syntax Direct: [label] BITT dma
Indirect: [label] BITT {ind} [, next ARP]
Operands 0 <dma <127
O<nextARP <7
Execution (PC)+1 - PC
(dma bit at bit address (15-T register(3-0))) - TC
Affects TC.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:{ 0 1 0 1 0 1 11 0 Data Memory Address
Indirect:[| 0 1 0 1 0 1 1 1 1 See Section 4.1
Description The BITT instruction copies the specified bit of the data memory value to the

TC bit of status register ST1. Note that the BIT, CMPR, LST1, and NORM
instructions also affect the TC bitin status register ST1. The bit address is spe-
cified by a bit code value contained in the LSBs of the T register, as given in
the following table:

Bit Code
Bi t Address 3210
(LSB) 0 1111
1 1110
2 1101
3 1100
4 1011
5 1010
6 1001
7 1000
8 0111
9 0110
10 0101
11 0100
12 0011
13 0010
14 0001
(MSB) 15 0000
Words 1

Cycles

4-54 Assembly Language Instructions

Test Bit Specified by T Register

BITT

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 1+n+nd | n+p | 1+n+nd+p n 1+n+nd
Example BITT Oh ;Value in T register points to bit 14 of
;data word (DP = 240).
or
BITT * ;If current auxiliary register contains 7800h.
Before Instruction After Instruction
Data Data
Memory 4DCs8h Memory 4DCs8h
7800h 7800h
TR 1h TR 1h
TC Oh TC 1h

4-55

BLEZ Branch if Accumulator Less Than or Equal to Zero

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-56

[label] BLEZ pmalJ{ind}[, next ARP]]

0 < pma < 65535
O<next ARP <7

If (ACC) < O:
Then pma - PC;
Else (PC) +2 - PC.
Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6

1 1 1 1 0 0 1 0 1

See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address (pma) if the contents of
the accumulator are less than or equal to zero. Otherwise, control passes to
the next instruction. Note that no AR or ARP modification occurs if nothing is
specified in those fields. The pma can be either a symbolic or a numeric ad-

dress.
2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable
BLEZ PRG63 ;63 is loaded into the program counter if the

;accumulator is less than or equal to zero.

Assembly Language Instructions

Block Move From Data Memory to Data Memory BLKD

Syntax Direct: [label] BLKD dmal , dma2
Indirect: [label] BLKD dmal {ind}[, next ARP]
Operands 0 <dmal < 65535

0 <dma2 <127
O<next<ARP <7

Execution (PC)+2 - PC
(PFC) - MCS
dmal - PFC

If (repeat counter) # 0:
Then (dmal, addressed by PFC) - dmaz2,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 - PFC,
(repeat counter) — 1 - repeat counter.

Else (dmal, addressed by PFC) - dma2
Modify AR(ARP) and ARP as specified.
(MCS) - PFC

4-57

BLKD Block Move From Data Memory to Data Memory

Encoding

Description

Words

Cycles

4-58

Direct:| 1 1 1 1 1 1 0 1 0 Data Memory Address

Indirect:] 1 12 12 1 1 1 o0 1|1 See Section 4.1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Memory Address 1

Data Memory Address 1

Consecutive memory words are moved from a source data memory block to
a destination data memory block. The starting address (lowest) of the source
block is defined by the second word of the instruction. The starting address
of the destination block is defined by either the dma contained in the opcode
(for direct addressing) or the current AR (for indirect addressing). In the indi-
rect addressing mode, both the current AR and ARP may be modified in the
usual manner. Inthe direct addressing mode, dmaz2 is used as the destination
address for the block move but is not modified upon repeated executions of
the instruction. Thus, the contents of memory at the dma2 address will be the
same as the contents of memory at the last dmal address in a repeat se-
guence.

RPT or RPTK must be used with the BLKD instruction, in the indirect addres-
sing mode, if more than one word is to be moved. The number of words to be
moved is one greater than the number contained in the repeat counter RPTC
atthe beginning of the instruction. Atthe end of this instruction, the RPTC con-
tains zero and, if using indirect addressing, AR(ARP) will be modified to con-
tain the address after the end of the destination block. Note that the source
and destination blocks do not have to be entirely on-chip or off-chip. However,
BLKD cannot be used to transfer data from a memory-mapped register to any
other location in data memory.

The PC points to the instruction following BLKD after execution. Interrupts are
inhibited during a BLKD operation used with RPT or RPTK.

2

Assembly Language Instructions

Example

Block Move From Data Memory to Data Memory BLKD

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
Source data in on-chip RAM:
3 3+d 3+2p 3+d+2p 3 3+d
Source data in external memory:
4+d 4+2d 4+d+2p 4+2d+2p 4+d 4+2d

Cycle Timings for a Repeat Execution

Source data in on-chip RAM:

2+n 2+n+nd 2+n+2p
Source data in external memory:
3+n+nd 2+n+nd 3+n+nd+2p 2+2n+2nd+2p 3+n+nd 2+2n+2nd

2+n+nd+2p 2+n 2+n+nd

RPTK 2
BLKD OF400h,*+ ;If current auxiliary register contains 1030.
dmal
Before Instruction After Instruction
Data Data
Memory 7F98h Memory 7F98h
62464 62464
Data Data
Memory OFFE6h Memory OFFE6h
62465 62465
Data Data
Memory 9522h Memory 9522h
62466 62466
dma2
Before Instruction After Instruction
Data Data
Memory 7F98h Memory 7F98h
1030 1030
Data Data
Memory 9315h Memory OFFE6h
1031 1031
Data Data
Memory 2531h Memory 9522h
1032 1032

BLKP Block Move From Program Memory to Data Memory

Syntax

Operands

Execution

Encoding

Description

4-60

Direct:| 1 1 1 1 1 1 0 0] o Data Memory Address

Indirect:] 1 1 1 1 1 1 0 O 1 See Section 4.1

Direct: [label] BLKP pma, dma
Indirect: [label] BLKP pmaJ(ind}[, next ARP]

0 < pma < 65535
0 <dma <127
O<nextARP <7

(PC)+2 - PC
(PFC) - MCS
pma - PFC

If (repeat counter) # 0:
Then (pma, addressed by PFC) - dma,
Modify AR(ARP) and ARP as specified,
(PFC) +1 - PFC,
(repeat counter) — 1 — repeat counter.

Else (pma, addressed by PFC) - dma
Modify AR(ARP) and ARP as specified.
(MCS) - PFC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Program Memory Address

Program Memory Address

Consecutive memory words are moved from a source program memory block
to a destination data memory block. The starting address (lowest) of the
source block is defined by the second word of the instruction. The starting ad-
dress of the destination block is defined by either the dma contained in the op-
code (for direct addressing) or the current AR (for indirect addressing). In the
indirect addressing mode, both the ARP and the current AR may be modified
in the usual manner. In the direct addressing mode, dma is used as the des-
tination address for the block move but is not modified by repeated executions
of the instruction. Thus, the contents of memory at the dma address will be
the same as the contents of memory at the last pma address in a repeat se-
guence.

RPT or RPTK must be used with the BLKP instruction if more than one word
is to be moved. The number of words to be moved is one greater than the num-
ber contained in the repeat counter RPTC at the beginning of the instruction.
Atthe end of this instruction, the RPTC contains zero and, if using indirect ad-
dressing, AR(ARP) will be modified to contain the address after the end of the
destination block. Note that source and destination blocks do not have to be
entirely on-chip or off-chip.

Assembly Language Instructions

Words

Cycles

Block Move From Program Memory to Data Memory BLKP

The PC points to the instruction following BLKP after execution. Interrupts are
inhibited during a BLKP operation.

If the MP/MC pin on the TMS320C25 is low at the time of execution of this
instruction and the program memory address used is less than 4096, an on-
chip ROM location will be read.

2

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE | PR/DI | PR/DE
Table in on-chip RAM:
3 3+d 4+2p 4+d+2p 4 4+d
Table in on-chip ROM:
4 4+d 4+2p 4+d+2p 4 4+d
Table in external memory:
4+p 4+d+p 4+3p 4+d+3p 4+p 4+d+p

Cycle Timings for a Repeat Execution

Table in on-chip RAM:

2+n 2+n+nd 2+n+2p 2+n+nd+2p _ _
Table in on-chip ROM:
3+n 3+n+nd 3+n+2p 3+n+nd+2p 3+n 3+n+nd

Table in external memory:

3+n+np 2+2n+nd+np 3+n+np+2p 2+2n+nd+ np+2p 3+n+np 2+2n+nd+np

4-61

BLKP Block Move From Program Memory to Data Memory

Example

RPTK 2

BLKP 65120,*+ ;If current auxiliary register contains 2048.

pma

dma

4-62

Data
Memory
65120

Data
Memory
65121

Data
Memory
65122

Data
Memory
2048

Data
Memory
2049

Data
Memory
2050

Before Instruction

0A089h

2DCEh

3A9Fh

Before Instruction

1234h

2005h

0E98Ch

Data
Memory
65120

Data
Memory
65121

Data
Memory
65122

Data
Memory
2048

Data
Memory
2049

Data
Memory
2050

Assembly Language Instructions

After Instruction

0A089h

2DCEh

3A9Fh

After Instruction

0A089h

2DCEh

3A9Fh

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

Branch if Accumulator Less Than Zero BLZ

[label] BLZ pma [{ind} [, next ARP]]

0 < pma < 65535
O<nextARP <7
If (ACC) <O0:
Then pma - PC;
Else (PC)+2 - PC.
Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 01 1 1 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address (pma) if the contents of
the accumulator are less than zero. Otherwise, control passes to the next
instruction. Note that no AR or ARP modification occurs when nothing is speci-
fied in those fields. The pma can be either a symbolic or a numeric address.

2

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3

Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

BLZ PRG481 ;481 is loaded into the program counter if
:the accumulator is less than zero.

4-63

BNC Branch on No Carry

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

4-64

[label] BNC pma [{ind}[, next ARP]]

0 < pma < 65535
O<nextARP <7

If carry bit C=0:
Then pma - PC;
Else (PC)+2 - PC.
Modify AR(ARP) and ARP as specified.

Affected by C.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 1 0 1 1 11 1 1 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address if the carry bit C is low.
Otherwise, control passes to the next instruction. Note that no AR or ARP
modification occurs when nothing is specified in those fields. The pma can be
either a symbolic or a numeric address.

Note that the carry bit C is affected by all add, subtract, and accumulate
instructions as well as the ABS, LST1, NEG, RC, SC, rotate, and shift instruc-
tions. The carry bit is not affected by execution of the BC, BNC, or nonarith-
metic instructions.

2

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3

Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

BNC PRG325 ;If the carry bit C = 0, 325 is loaded into
;program counter. Otherwise, the PC is the
;incremented by 2.

Assembly Language Instructions

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

Branch if No Overflow BNV

[label] BNV pma [{ind}[, next ARP]]

0 < pma < 65535
O<next ARP <7

If overflow OV status bit = O:
Then pma - PC;

Else (PC)+2 -~ PCand 0 - OV.
Modify AR(ARP) and ARP as specified.

Affects OV; affected by OV.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

1

0

1 1 1 1 0 1 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address (pma) if the OV (overflow
flag) is clear. Otherwise, the OV is cleared, and control passes to the next
instru