Xip {?TEXAS

INSTRUMENTS

TMS320C14/TMS320E14

User’s Guide

PISOCESHL/PIOO0CESIHL

1988 1988 Digital Signal Processor Products

TMS320C14/TMS320E14
User’s Guide

U
TEXas
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (T1) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without
notice. Tl advises its customers to obtain the latest version of the relevant in-
formation to verify, before placing orders, that the information being relied
upon is current.

Tl warrants performance of its semiconductor products to current specifica-
tions in accordance with Tl’s standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this
warranty. Unless mandated by government requirements, specific testmg of
all parameters of each device is not necessarily performed.

Tl assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does Tl warrant or represent that license, either express or implied, is
granted under any patent right, copyright, mask work right, or other intellec-
tual property right of Tl covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are
used. :

Copyright © 1988, Texas Instruments Incorporated

SPRZ067

Manual Update Sheet DATE: November 16, 1989

Document Title: TMS320C14/E14 User’s Guide - ECN: _550007 ' (10-12-89)
Document Numbers: SPRU032 New Rev. Level: A

2558514-9701 New Rev. Level:_-9702

The following are changes to the TMS320C14/E14 User’s Guide.

PAGE CHANGE OR ADD
iv Change page numbers of Sections 5.8 and £ 8.1 to 5-40 and 5-41 respectively.
2-2 Note that the top figure is the top view and the bottom figure is the bottom view.
3-6 In Section 3.1.2, note that REN and WE are active for program fetch/write regardless of

the state of MC/MP. If the device is in MC mode, a dummy read is performed for program
fetch or an external write is performed for the case of TBLW.

Also note that the data bus is driven during all write operations, including writes to internal
peripherals.

3-14 It should not be inferred from the second paragraph in Section 3.2.2 that the address lines
are driven only during accesses to external peripherals. Address lines are always driv-
en. Forinstruction fetch, itis the instruction address, and for a peripheral, itis the peripher-
al port address. It does not matter whether or not the access is internal or external.

3-18 In Figure 3-6, delete the two OR gates and flip-flop that compose the MC/MP function in
the top of the figure.
3-46 In Table 3-12, rewrite the zero setting for Bit 10 to read:

0 = Holds the output pins at zero and prevents interrupts from being
generated by the compare subsystem.

(Bit 10 does not hold registers CMPRO—CMPRS to zero when the bit is zero.)

3-48/49 In subsection 3.7.1.5 (High Precision PWM Mode), note that the value thatdecides when
the output pin drops is written to the Action Register and not to the Compare Register di-
rectly.

Also, 2 is the minimum valid value that can be loaded into the Period Register of the timer
specified to drive the compare system.

3-50 Change item 2 in the summary at the bottom of the page to read:
2) TMRXx counts until its 14 LSBs match the 14 MSBs of the Compare Register.
3-54 It should not be inferred from subsection 3.7.2.3 (Capture Control Register) that writing

to CCLR affects all the bits of Register CCON. It does not; the effect is only on the overrun
error bits (bits 3, 7, 11, and 15 of Register CCON).

3-61 In the data for bit 10 in Table 3—19, change the last line to read:
Setto 1 on reset.

3-69 to 3-79 Parity is not supportedin synchronous and codec modes on the serial port. Delete all refer-
ences to parity generation and detection in Sections 3.8.4 and 3.8.5.

3-70, 3-76, A-19 The maximum transmission/reception rate is CLKOUT/6 for external serial clock sources
asynchronous to CLKOUT, and CLKOUT/4 for external sources synchronous to CLKOUT.

6-10

A-19

A-24

A-26

E-72

SPRZ067

SPRZ067

in the third equation, middle of the page, change 2.4 to 24 in the second line so that
it reads:

The write enable access time is:
tec) - te - ta7 156.25 - 125y - 12 - 12
78.1 - 24

54.1 ns

The timing for th(txp-c) is for unsynchronized operation of the port. th(txp-cy is the dura-
tion of the interval where TXD is valid. This is tyL + twH - 0.25xt¢(c) - 20 ns.

wonon

The values for ty| (cLK-C) @and twH(CLK-C) @ssume synchronized operation of the serial
port. CLKX should ‘::e synchromzed to CL&%OUT to within 5 ns to achieve proper operation
of the port at full speed.

In the bit I/O timing diagram, ty(jop) should read tg(0py-.

Note that the externally generated FSX and FSR signal durations must be less than the
duration of the data word. If this is violated, another transmission occurs. Also, FSX and
FSR must be low-to-high transistions in order to mimic their internally generated counter-
parts.

The device has no input for adding a crystal. It does have internal circuitry for this purpose,
but no pin is brought out to simply add a crystal and provide CLKIN. Section 6.1.2 on page
6-5 describes typical circuits for CLKIN generation.

Note that once the RBIT is programmed, the device functions only in the microcomputer
mode.

Contents

Section

1 Introduction

1.1 Control System Design Considerations
1.2 TMS320C14/E14 Description
1.3 Key Features e
2 Pinout and Signal Descriptions

21 Pinouts L e e
2.2 Signal Descriptions L.
3 Architecture

31 Architectural Overview
311 Processing Hardware
31.2 1/O Structure L
3.1.3 I/O Peripherals
314 On-Chip Peripheral Register Mapping
315 On-Chip/Off-Chip Peripheral Selection
3.2 SystemControl
3.21 Program Counterand Stack
3.2.2 Microprocessor/Microcomputer Modes
323 Reset e
3.24 Status Register
3.25 Interrupts L e
3.3 Central Arithmetic Logic Unit (CALU)
3.31 Shifters L L
3.3.2 ALU and Accumulator L
333 Multiplier, Tand P Registers
3.4 Memory Organization
341 Data Memory
34.2 Program Memory L.
343 Auxiliary Registerso
344 Memory Addressing Modes Lo L
3.5 BitSelectable I/OPort
3.5.1 Configuring Data Direction
352 I/0 Port Status and Control,
3.56.3 Input Pattern Match
3.6 Timers e e e
3.6.1 Watchdog Timer
3.6.2 General Purpose Timers
3.6.3 Serial Port Baud Rate Generator (as a timer)
3.7 Event Manager L
3.7.1 Compare Subsystem e
3.7.2 Capture Subsystem
3.8 Serial Port
3.8.1 Serial Control Register
38.2 Serial Port Baud Rate Generator
383 Asynchronous Mode L Lo
384 Synchronous Mode

o oo
ool

w w

wioo

ARRERSADS
N =

W=
-

O1.01 01 61 G1 01 G1 01 G1 OF 01 O1 O1 01 O O1 01 01 01
oNoOTmbwWN=

WONGTRRRPRPRRRONDD

N = BN

POOOONONDNNNNNONDOOO®
OO wWN -

PERRRPLWWWRORWRLWNNN S

AN OIS

Codec.Mode 3-74
Communication Protocols 3-79
Assembly Language Instructions 4-1
Memory Addressing Modes L L. 4-2
Direct Addressing Mode, 4-2
Indirect Addressing Mode oL 4-4
Immediate Addressing Modeo 4-5
Instruction Set e e e 4-7
Symbols and Abbreviationso 4-7
Instruction Set Summary 4-8
Individual Instruction Descriptions, 4-11
Software Applications 5-1
Processor Initialization 5-2
Header File Defining Constants 5-3
Interrupt Management e 5-14
Memory Management L. L Lo e e 5-17
Logical and Arithmetic Operations 5-19
Bit Manipulation e 5-19
Overflow Management 5-20
Scaling e e 5-21
Convolution Operations i 5-22
Multiplication L e e 5-23
Division e e 5-26
Addition L e e 5-29
Floating-Point Arithmetic 5-30
PID Control e e e e 5-32
PWM Generation e e e 5-34
Speed/Position Measurement e 5-36
Using the Serial Port 3-40
Asynchronous Configuration 3-41
Hardware Applications 6-1
System Control Circuitry e 6-3
Powerup Reset Circuit 6-3
Crystal Oscillator Circuit 6-5
MC/MP Mode Configurations 6-7
External Memory Interfacing oL L 6-8
Program ROM Expansion 6-11
Data RAM Expansion 6-12
External Peripheral Interfacing 6-14
A/Dinterface e e 6-14
D/AInterface e 6-16
Codec Interface e 6-16
RS-232 1Interface e e 6-19
Optical Encoder Interface 6-20
XDS Design Considerations, 6-21
System Applications e 6-24
Disk Drive Control e 6-24
Plotter Control e 6-25
Tape Drive Control e 6-26
AC Motor Control e 6-27

TMoOwW>

First-Generation TMS320C14/E14 Data Sheet
ROM Codes

Quality and Reliability

Development Support/Part Order Information
External Peripherals, Sockets and Crystals
Programming the TMS320E14 EPROM Cell

Illustrations

Figure

1-1 TMS320 Family Evolution i,
2-1 TMS320C14/E14 Pin Assignmentsuuiiuennnn...
3-1 TMS320C14/E14 Functional Block Diagram
3-2 Bank Select Register
3-3 Instruction Pipeline Operation
3-4 Syscon Register
3-6 Status Register Organization i,
3-6 Interrupt Subsystem
3-7 IF/IM/FCLR Register Relationship
3-8 IF Register e
3-9 Central Arithmetic Logic Unit (CALU)
3-10 Data Memory Map ...t e
3-11 Program Memory Map
3-12 Auxiliary Register Counter i
3-13 Indirect Addressing Autoincrement
3-14 Indirect Addressing Autodecrement,
3-15 Methods of Instruction Operand Addressing
3-16 Bit Selectable I/O Port e
3-17 Configuring the IOP Register i,
3-18 Watchdog Timer Module
3-19 Timer1 and Timer2 Block Diagram
3-20 TCON Register Timer Bit Configuration
3-21 Compare Module e
3-22 TCON Register Compare Bit Configuration
3-23 ACTx Register Configuration
3-24 Compare Subsystem in PWM Modeo ...
3-25 CMPx Pin Level
3-26 TMR Bit Configuration
3-27 Capture Module e
3-28 TCON Register Capture Bit Configuration
3-29 CCON and CCLR Registerst ieeeee
3-30 SCON Register Control i e
3-31 Serial Port in Asynchronous Operation c.iuiuun...
3-32 Asynchronous Transmission of Eight Bits Plus Parity
3-33 Start Bit Detection
3-34 Asychronous Reception of Eight Bits Plus Parity
3-35 Serial Port in Synchronous Operation
3-36 Master Mode Single Synchronous Transmission with 8 Data Bits, No Parity
3-37 Synchronous Continuous Transmission with 9 Data Bits, No Parity
3-38 Synchronous Reception with 9 Data Bits, No Parity
3-39 Master Mode Single Synchronous Reception with 8 Data Bits, No Parity
3-40 Serial Port in Codec Operation
3-41 Codec Transmit Timing for External Framing
3-42 Codec Receive Timing for External Framing
3-43 Serial Port Using Address Detect Protocol
3-44 Address Detect Reception
3-45 Serial Port Using Address Match Protocol
3-46 Address Match Reception it
4-1 Direct Addressing Block Diagram

5-1 Long Division and SUBC Division
5-2 Dual Channel Optical Encoder Outputs
6-1 Powerup Reset Circuit i
6-2 Voltage on TMS320C14/E14 Reset Pin
6-3 Parallel Resonant Crystal Oscillator Circuit
6-4 Series Resonant Crystal Oscillator Circuit
6-5 Mode Control Circuit e
6-6 Memory Read Timing e
6-7 Memory Write Timing (TBLW Instruction)
6-8 Minimum Program ROM Expansion
6-9 Data RAM EXpansion
6-10 A/D Converter to TMS320C14/E14 Interface
6-11 D/A Converter to TMS320C14/E14 Interface
6-12 Interface of TMS320C14/E14 to TCM29C13 Codec
6-13 RS-232 Interface i
6-14 Optical Encoder Interface
6-15 Disk Drive Control
6-16 Plotter Control e
6-17 Tape Drive Control e
6-18 AC Motor Control
B-1 TMS320C14 ROM Code Flowchart
D-1 TMS320C14/E14 Software Development Flow
D-2 TMS320C14/E14 XDS/22 System Configuration
D-3 TMS320C14/E14 AIB2 System Configuration
D-4 TMS320 Device Nomenclature,
E-1 Crystal ConNNection i e e
F-1 EPROM Adaptor Socket e
F-2 EPROM Programming Data Format
F-3 TMS320E14 EPROM Conversion to TMS27C64 EPROM Pinout
F-4 Fast Programming Flowchart
F-5 SNAP! Pulse Programming Flowchart
F-6 Programming Timing e
F-7 EPROM Protection Flowchart
F-8 EPROM Protection Timing ...
Tables

Table

2-1 TMS320C14/E14 Signal Descriptions i ...
3-1 TMS320C14/E14 Processing Hardware Summary
3-2 I/ORegister Map o
3-3 Peripheral Registers e
3-4 Registers Configuration on Reset
3-5 Status Register Field Definitions
3-6 IF Register Description
3-7 Accumulator Results of a Logical Operation
3-8 1/0 Port Register Summary
3-9 Timer Module Register Summary
3-10 TCON Register Timer Description iunnn..
3-11 Compare Subsystem Register Summary
3-12 TCON Compare Register Description
3-13

Action Register Description

vii

1

O wwWo~NOOI A~

A]
NN =

UUOOC’C’JUI-P—J?MOJOOQ)Q)WQJW
'
N =

1

'n'lnrn
N = =

viii

PWM Resolution Bits Comparison , 3-49
Capture Subsystem Register Summary 3-52
TCON Capture Register Description 0., 3-b4
CCON Register Description e 3-56
Serial Port Register Summary e 3-59
SCON Register Description e 3-60
Serial Port Key Default Settings e e e 3-63
SBRG Value For Standard Baud Rates 3-64
Instruction Symbols 4-7

Instruction Set Summary e 4-8

1/0 Register Map 5-2

XDS/Target Device Timing Delays i iiinnn. 6-21
XDS/Device DC Loading 6-22
Microprocessor and Microcontroller Tests C-5

Transistor Complement C-5

TMS320C14/E14 Digital Signal Processor Part Numbers D-11
TMS320C14/E14 Support Tool Part Numbers D-11
Commonly Used Crystal Frequenciesciiiinnrnnn E-72
TMS320E14 Programming Mode Levels F-6

TMS320E14 EPROM Protect and Protect Verify Mode Levels F-12

Section 1

Introduction

The TMS320C14 and TMS320E14 are members of Texas Intruments first-
generation TMS320 digital signal processor (DSP) family. The
TMS320C14/E14 has been specifically designed for control system applica-
tions and are the first devices that combine the high performance of a DSP
with the on-chip peripherals of a microcontroller. The TMS320C14/E14, at
25.6 MHz, offer 10 to 20 times the speed of traditional 16-bit microcontrollers
and microprocessors.

The DSP engine of the TMS320C14/E14 provides analog designers, for the
first time, a digital solution without sacrificing the precision and performance
of their systems. In fact, system performance can be enhanced through the
use of advanced control algorithms. These include adaptive control, Kalman
filtering, and state controllers. The TMS320C14/E14 offer the reliability and
programmability of a digital solution. Analog control systems, on the other
hand are hard-wired solutions, and can experience performance degradation
due to aging and other environmental factors.

The high speed central processing unit (CPU) of the TMS320C14/E14 allows
the digital designer to process algorithms in real time as opposed to approxi-
mation results via look-up tables. System performance is thus dramatically
increased. The general purpose instruction set of the TMS320C14/E14 cou-
pled with the extensive development support for the TMS320 DSP family re-
duces development time, and provides the same ease of use as traditional 8-
and 16-bit microcontrollers.

The TMS320 family architecture has been available for more than six years
providing users with the security of a standard architecture. The TMS320
family has now expanded into three generations of processors: TMS320C1x,
TMS320C2x, and TMS320C3x (see Figure 1-1). Many features are common
among these generations. Some specific features are added in each processor
to provide different cost/performance tradeoffs. Software compatibility is
maintained throughout the family to protect the user’s investment in architec-
ture. Each processor has software and hardware tools to facilitate rapid de-
sign.

This section includes the following information listed below:
® Control System Design Considerations (Section 1.1 page 1-3)
° TMS320C14/E14 Description (Section 1.2 on page 1-5)

° Key Features (Section 1.3 on page 1-6)

1-1

Introduction

TMS320C3x

« 32-bit fit-pt CPU
+ 60-ns Instr cyc

* 2KW RAM

+ 4KW ROM

+ 64W Instr Cache

320C30

TMS320C2x

16MW total mem

32 x 32 = 40-bit mult
2 Serial ports

2 Timers

DMA

16/32-bit CPU
80 ns Instr cyc
544W data RAM

TMS320C1x

e e s e e e

4KW ROM/EPROM
128KW total mem
16 x 16 = 32-bit multiplier
Serial port and timer

Block move/repeat
Mutltiprocessor I/F

16/32-bit CPU
160-ns Instr cyc
256W data RAM
4KW ROM/EPROM
4KW ext prog mem
16 x 16 = 32-bit mult
Serial ports

Timers

1-2

Figure 1-1. TMS320 Family Evolution

Introduction - Control System Design Considerations

1.1 Control System Design Considerations

Traditional control systems have been implemented with analog components,
and designers have had to learn to live with these systems. Analog compo-
nents exhibit the disadvantages of temperature drift and component aging.
An analog solution for an application requires that hardware be designed to
perform a specific function. Modifications and upgrades for such hardware
mean labor-intensive projects. These problems have prompted a growing
trend toward implementing control systems in digital form.

In a digital control system, the actual processing of the intput signal is done
in digital form by a microprocessor. However, the input signal has to be con-
verted into digital form by an analog-to-digital (A/D) converter. The output
of the microprocessor has to be converted again (D/A) to analog form to
provide a control function.

Although 8/16-bit microcontrollers have the necessary peripherals that would
seem to provide a single chip solution for a digital controller, they lack both
the performance and the architecture needed to process control signals. For
years contrel designers have worked around this problem by using look-up
tables. In this method, the processing of control signals is done in non-real-
time on large computers and the results are programmed in the microcontrol-
ler's memory. When an input signal is received, the corresponding result is
looked up from memory and routed from the processor. The algorithms that
can be used with this kind of approach are usually simpler and limited to sin-
gle input, single output systems.

In some cases realtime processing of control signals is implemented with
traditional microcontrollers/microprocessors. These controllers are restricted
to low bandwidth systems. In spite of these limitations, most digital control
systems implemented today use 8/16-bit general purpose
microprocessors/microcontrollers. Designers of high precision and high
bandwidth systems find solutions provided by these CPUs far from optimum.
They still have to rely upon analog solutions to provide the performance
needed for their systems.

To provide an optimum solution for a digital controller, a processor must have
the architecture, performance, and peripherals necessary for digital control
systems. The input signal is not processed continuously in digital control
systems, but rather sampled at discrete intervals. The discrete samples are then
processed by the controller. Selection of a sampling interval is critical and is
usually chosen to be six to ten times the bandwidth of the system. For realtime
performance the processor should be able to process the sample before the
arrival of the next sample. Most digital control and DSP algorithms are made
up of many multiply and accumulate terms and the processor should be able
to perform these operations very rapidly. For this reason, the TMS320 family
of processors incorporate a hardware multiplier to perform .a multiply in only
one clock cycle.

In addition to having realtime capability, the controller should have the ap-
propriate architecture. Conversion of a continuous signal into discrete form
results in loss of resolution. This is often referred to as quantization error.
Therefore, the controller should have a large wordlength to reduce quantiza-
tion error. Additional errors are also introduced due to processing of signals.
As an example, if a 16 x 16 muitiply is done, the result is 32 bits. However,

1-3

Introduction - Control System Design Considerations

1-4

if only 16 bits are stored, an error is induced because of lack of precision. This
is referred to as truncation error. The TMS320 family minimizes the effects of
truncation by employing 32-bit precision for storing intermediate results.

Additional truncation and quantization errors can be introduced if the numbers
are not scaled properly (i.e., all significant bits are not maintained, and there
are too many leading or trailing zeros). To maintain the correct precision,
shifters should be available that do not require CPU overhead. Finally, numeric
processing of control signals can create overflows, causing the accumulator
to wrap-around and suddenly go from the most positive value to the most
negative with disastrous consequences for the control system. In the TMS320
family, the accumulator can be prevented from wrapping around, and the value
is kept at the most positive or most negative value. This simulates the satu-
ration of an analog system.

The final requirement for an optimum controller is to provide all the necessary
peripherals on a single chip. Different members of the TMS320 family have
been optimized for specific signal processing applications. The
TMS320C14/E14 integrates peripherals on-chip that have been optimized for
implementing digital controllers.

Introduction - TMS320C14/E14 Description

1.2 TMS320C14/E14 Description

The TMS320C14/E14 is a DSP that meets the requirements for an optimum
digital controller. Using a 25.6 MHz clock input, the TMS320C14/E14 can
execute 6.4 million instructions per second. Almost all instructions are exe-
cuted in a single cycle, including multiplication. This high performance allows
execution of very complex control algorithms such as adaptive control and
Kalman filters in realtime. Very high sampling rates can also be implemented
to minimize loop delays.

The TMS320C14/E14 has been optimized for digital control system applica-
tions and has all the architectural features necessary for high-speed signal
processing. The device possesses all the peripherals needed to provide a sin-
gle-chip solution in control system applications. Based on the TMS320
family’s first-generation CPU (the industry standard TMS320C10), the device
includes 256 words of RAM and 4K words of ROM or EPROM. Also inte-
grated on-chip are additional peripheral functions for control systems and
other applications requiring a single-chip stand-alone DSP controller. These
peripherals include bit-selectable |/O ports, a serial port with USART and co-
dec-compatible modes. six high-precision pulse width modulation (PWM)
outputs, four capture inputs, and four independent timers. The
TMS320C14/E14 devices are manufactured using CMOS technology,
achieving a power dissipation of less than one sixth that of a comparable
NMOS device.

The instruction set of the TMS320C14/E14 is source and object code com-
patible with the other members of the TMS320C1x family, allowing users to
protect their investment in TMS320C1 x software.

The TMS320C14/E14 architecture is also optimized for processing control
signals. A 16-bit wordlength is used along with 32-bit registers for storing
intermediate results, and two hardware shifters are available to scale numbers
independent of the CPU. This combination minimizes quantization and trun-
cation errors, and increases processing power for additional functions. Such
functions might include: A notch filter that could cancel mechanical reso-
nances in the system, or an estimation technique that could eliminate state
sSensors in a system.

The VLS| of the TMS320C14/E14 allows extra on-chip peripherals that pro-
vide additional functions. An event manager, with its own capture
inputs/PWM compare outputs, simplifies system design. Up to four timers are
available for sequencing of control signal processing. The on-chip peripherals
of the TMS320C14/E14 make it the ideal solution for digital control.

1-6

Introduction - Key Features

1.3 Key Features
Some of the key features of the TMS320C14/E14 devices are listed below:

1-6

160-ns instruction cycle

256-word on-chip data RAM

4K-word on-chip program ROM (TMS320C1 4)

4K-word on-chip program EPROM (TMS320E14)

EPROM code protection for copyright security

4K-word total external. memory at full speed (microprocessor mode)
32-bit ALU/accumulator

16 x 16-bit multiplier with a 32-bit product

0 to 16-bit barrel shifter

Seven input and seven output channels

16-bit bidirectional data bus with 50-Mbps transfer rate
Bit-selectable 1/0O port (16pins)

Serial port with programmable protocols

Event manager with capfure inputs and compare outputs

Four independent timers (watchdog, general purpose (2), serial port)

15 external/internal interrupts

Section 2

Pinout and Signal Descriptions

|
-

The TMS320C14/E14 digital signal processor devices are available in plas-
tic-leaded chip carrier (PLCC) and ceramic-leaded chip carrier (CLCC) pack-
ages.

This section provides the pinouts and signal descriptions in the following
sections:

[] Pinouts (Section 2.1 on page 2-2)

® Pin Descriptions (Section 2.2 on page 2-3)

Electrical specifications and mechanical data are given in the data sheet in
Appendix A. Refer to Appendix F for the pinouts used for EPROM program-
ming.

Pinouts and Signal Descriptions - Pinouts

2.1 Pinouts
Figure 2-1 shows the pinouts of the TMS320C14/E14 devices.
«c X
€&
58
< <
QO
O - NNNMNMO ~F W0
@%%9: 8%%%%%%%0-—&\4:0
cOo0OCC>>0000000000
9876054 3 2 16867666564636261
TCLK1/CLKR] 10 eog D4
TCLK2/CLKX [J 11 59(] D5
A8][]12 58(| D6
A7}j13 57{}D7
A6l 14 s6(] 1oPO
WE[]15 55[] 1OP1
REN[] 16 54} 10P2
RSfl17 53[] 10P3
INT[)18 52[| 10P4
CLKOUT [J 19 51(] 10P5
A5[] 20 50[] D8
A4l 21 49[| D9
NMI/MC/MP] 22 48[] RXD/DATA
WDT[23 47[] TXD/CLK
CLKIN[] 24 a6[| D10
A3[) 25 a5[] 10P6
A2[]26 a4[] 10P7
2728 29 30 31 32 33 34 35 36 37 38 39 40414243
TR N SRR 2N2RC
ssggLreesseneee
X @
eg¢
28
< <
Q0
Ot OO N N - O
on-osS5%X%3388525835,
00000V OLOLLLO>>ACCLCOOL
6162636465666768 12 34 56 78 9)
D4 [60 10 [| TCLK1/CLKR
D5[) 59 11 [| TCLK2/CLKX
D6 [] 58 12 [] A8
D7[}57 13 [| A7
10PO [] 56 14 [} A6
10P1 [} 55 15 [| WE
10P2 [54 16 [| REN
10P3[] 53 17[] RS
10P4 f] 52 18 [| INT
10P5) 51 19 [| CLKOUT
D8] 50 20| A5
D9[] 49 21[| A4
RXD/DATA [) 48 22 [| NMi/mc/MP
TXD/CLK f] 47 23 [| WDT
D10[j46 24 [| CLKIN
10P6 [45 25] A3
10P7 [| 44 26 [| A2
4342414039 3537 3635 3433 32 31 3029 28 27
PRI o222
500885555 558558

Figure 2-1. TMS320C14/E14 Pin Assignments

2-2

Pinouts and Signal Descriptions - Signal Descriptions

2.2 Signal Descriptions

This section provides the signal descriptions for the TMS320C14/E14 devices.
Table 2-1 lists each signal, its pin location, operating mode (i.e., input, output,
high impedance state), and description. The signals are grouped according
to function and alphabetized within that grouping. .

Table 2-1. TMS320C14/E14 Signal Descriptions

SIGNAL | PN | yoszt | DESCRIPTION
ADDRESS/DATA BUSES
A11 5 0/Z Program memory address bus A11 (MSB) through AO
A10 6 (LSB) and port addresses PA2 (MSB) through PAO (LSB).
A9 9 Addresses A11 through AQO are always active and never
A8 12 go to high impedance except during reset. During
A7 13 execution of the IN and OUT instructions, pins 26,
A6 14 27, and 28 carry the port addresses. Pins A3
Ab 20 through A11 are held high when port accesses are
Ad 21 made on pins PAQ through PA2.
A3 25
A2/PA2 26
A1/PA1 27
AO/PAO 28
D15 MSB 35 1/0/2Z Parallel data bus D15 (MSB) through DO (LSB). The data
D14 36 bus is always in the high-impedance state except when
D13 39 WE is active (low). The data bus is also active when
D12 40 internal peripherals are written to.
D11 43
D10 46
D9 49
D8 50
D7 57
D5 58
D5 59
D4 60
D3 61
D2 62
D1 63
DO LSB 64

t tnput/Output/High-impedance state

2-3

Pinouts and Signal Descriptions - Signal Descriptions

Table 2-1. TMS320C14/E14 Signal Descriptions (Continued)

SIGNAL PIN | 1o | DESCRIPTION
INTERRUPT AND MISCELLANEOUS SIGNALS)
TNT 18 | External interrupt input. The interrupt signal is generated by
a low signal on this pin.)

NMI/MC/MP 22 1 Non-maskable interrupt. When this pin is brought low, de-
vice is interrupted irrespective of the state of INTM (status
register ST) bit.

Microcomputer/Microprocessor select. This pin is also
sampled when RS is low. If high during reset, internal pro-
gram memory is selected. If low during reset, external pro-
gram memory will be selected.

WE 15 0 Write enable. When active low, WE indicates that device will
output data on the bus.

REN 16 0 Read enable. When active low, REN indicates that device
will accept data from the bus. .

RS 17] Reset. When this Schmidt trigger input is low, the device is
reset and PC is set to zero.

SUPPLY/OSCILLATOR SIGNALS
CLKOUT 19 (o) System clock output (one fourth CLKIN frequency).
Vce 4,33 1 5-V supply pins.
Vgs 3,34 1 Ground pins.
CLKIN 24 1 Master clock input (from external clock source).
SERIAL PORT AND TIMER SIGNALS
RXD/DATA 48 1/0 In the asynchronous and codec modes, this pin is the receive
input. In the synchronous mode, this pin is data in while
receiving data, and data out while transmitting data.
TXD/CLK 47 1/0 In the asynchronous and codec modes, this pin is the trans-

mit output. In the synchronous mode, this pin is clock input
with external clock, and clock output with internal clock.

TCLK1/CLKR 10 | Timer 1 clock. If external clock selected, it serves as clock
input to Timer 1. Can also be configured as serial port receive
clock in codec mode.

TCLK2/CLKX 11 | Timer 2 clock. If external clock selected, it serves as clock
input to Timer 2. Can also be configured as serial port tran-
smit clock in codec mode.

DT 23 (0} Watchdog timer output. An active low is generated on this
pin when the watchdog timer times out.

2-4

Pinouts and Signal Descriptions - Signal Descriptions

Table 2-1. TMS320C14/E14 Signal Descriptions (Concluded)

SIGNAL | PN | 10 | DESCRIPTION
BIT 1/0 PINS
I0P15 MSB 29 1/0 16 bit 1/0 lines that can be individually configured
10P14 30 as inputs or outputs and also be individually set or reset
10P13 31 when configured as outputs.
10P12 32
10P11 37
10P10 38
10P9 a1
10P8 42
10P7 44
10P6 45
1OP5 51
10P4 52
10P3 53
10P2 54
10P1 55
10PO LSB 56
COMPARE AND CAPTURE SIGNALS
CMPO 8 (o} Compare outputs. The states of these pins are determined
CMP1 7 by the combination of compare and action registers.
CMP2 2
CMP3 1
CAPO 68 | Capture inputs. A transition on these Schmidt trigger inputs
CAP1 67 causes the timer register value to be loaded into the
corresponding FIFO.
CMP4/CAP2/ 66 1/0 This pin can be configured as a compare output, capture in-
FSR put, or as an external framing input/output for the receiver
of the serial port in codec mode.
CMP5/CAP3/ 65 1/0 This pin can be configured as a Schmidt trigger input or as
FSX an output. That is, as a compare output, capture input, or

as external framing input/output for transmit sectionof
the serial port while in codec mode.

2-5

Pinouts and Signal Descriptions - Signal Descriptions

2-6

Section 3

Architecture

This section describes the architecture of the TMS320C14/E14, which is
based on the TMS320C1x architecture. The term TMS320C1x architecture is
used to describe the features that are generic to all members of the
TMS320C1x family, e.g., TMS320C10, TMS320C14/E14, TMS320C15/E15,
TMS320C17/E17, and others. For more information regarding the
TMS320C1x family, refer to the TMS320C1x User's Guide. Major topics dis-
cussed in this section are listed below.

e Architectural Overview (Section 3.1 on page 3-2)

System Control (Section 3.2 on page 3-12)

Central Arithmetic logic Unit (Section 3.3 on page 3-22)

Memory Organization (Section 3.4 on page 3-27)

Bit Selectable 1/0 Port (Section 3.5 on page 3-32)

Timers (Section 3.6 on page 3-36)

Event Manager (Section 3.7 on page 3-43)

Serial Port (Section 3.8 on page 3-58)

3-1

Architecture - Overview

3.1

3-2

Architectural Overview

The TMS320C14/E14 architecture is based on the TMS320C1x, which uti-
lizes a modified Harvard architecture for speed and flexibility. In a strict Har-
vard architecture, program and data memory lie in two separate spaces,
permitting a full overlap of instruction fetch and execution. The TMS320C1x
modification of the Harvard architecture allows transfers between program and
data spaces, thereby increasing the flexibility of the device. This permits gain
constants (or coefficients) stored in program memory to be read into RAM,
allowing expansion beyond the 256 word data memory space. This also
makes available immediate instructions and subroutines based on computed
values. The functional block diagram shown in Figure 3-1 outlines the princi-
pal hardware structure of the TMS320C14/E14 devices. Both devices are the
same except for the respective ROM/EPROM difference in program memory.

Architecture - Overview
=
z 3
x X
x %
o o
16 INTERRUPT N P
INT.NMI/MC/MP
4 CONTROLLER
] WATCHDOG _
wWoT
« 1 TiMer
WE—wad = 12 Ls8
REN - 2 16 2
- " CUKR Gk
8 12 16 _, 16 .
INSTRUCTION <
PC (12) F] 015:00
12
A 12 8% 12l proGRAM
#| ROM/EPROM
AO-A11 X 8| (ax worps) 16]
PAO-PA2 F <
STACK / / 16 CMPO
. 4 x 12 16, | | cmer e CMP3
/‘ | @ {—e=— CMP4,5/
/7. PROGRAM BUS pa 1 CAP2,3/
[FSR.FSX
4 x 16
r 6ATA BUS /; / 15,1 FIFO
16 STACK ——cAPo,1
1 6 {7 I he d
T(16 . 16,
T ARO(16) m MULTILIER -—rJ 7
AR1(16) P(32) 16 SERIAL SERIAL
=4 PORT PORT
8 8 / mmer |) | conTRoLLER
/ 16]
MUX
TBR TSR TXDICLK
3 8 / RXD/DATA
32 / 10P0-
1 1op 10P15
ADDRESS
DATA (256 WORDS) ﬂ
DATA
LEGEND: DP —Data Page Pointer
BSR 16 / ACC — Accumulator 10P — Input/Output Port
ACT — Action Register (Bit Selectable)
6 ALU — Arithmetic Logic Unit PC — Program Counter
16 / ARP— Auxiliary Register Point P—P Register
ARO - Auxiliary Register O RBR - Receive Buffer Register
v/ DATA’BUS AR1 - Auxiliary Register 1 RSR — Receive Shift Register

BSR—Bank Select Register
CAP - Capture
CMPR — Compare Register

T-T Register
TBR— Transmit Buffer Register
TSR— Transmit Shift Register

Figure 3-1. TMS320C14/E14 Functional Block Diagram

3-3

Architecture - Overview

3.1.1 Processing Hardware

3-4

The TMS320C14/E14 devices contain a 32-bit ALU and accumulator for
support of double-precision, two’s complement arithmetic. The ALU is a
general-purpose arithmetic unit that uses 16-bit words taken from data RAM
or derived from immediate instructions, or uses the 32-bit result of the multi-
plier's product register. In addition to the usual arithmetic instructions, the
ALU can perform Boolean operations, providing the bit manipulation ability
required of a high-speed controller. The accumulator stores the output from
the ALU and is often an input to the ALU. The accumulator is 32-bits in
length and is divided into a high-order word (bits 16 through 31) and a low-
order word (bits O through 15). Instructions are provided for storing the
high-and low-order accumulator words in memory.

The multiplier performs a 16 x 16-bit two’s complement multiplication with a
32-bit result in a single instruction cycle. The multiplier consists of three ele-
ments: the T register, P register, and multiplier array. The 16-bit T register
temporarily stores the multiplicand; the P Register stores the 32-bit product.
Multiplier values either come from the data memory, or are derived imme-
diately from the MPYK (multiply immediate) instruction word. The fast on-
chip multiplier allows the device to efficiently perform mathematically
intensive algorithms such as Kalman filtering, PID loops, and lead/lag com-
pensation.

" Two shifters are available for manipulating data. The ALU barrel shifter per-

forms a left-shift of O to 16 places on data memory words loaded into the
ALU. This shifter extends the high-order bit of the data word and zero-fills
the low-order bits for two’s complement arithmetic. The accumulator parallel

. shifter performs a left-shift of 0, 1, or 4 places on the entire accumulator, and

stores the resulting high-order accumulator bits into data RAM. Both shifters
are useful for scaling and bit extraction.

The TMS320C1x devices contain a four-level hardware stack for saving the
contents of the program counter during interrupts and subroutine calls. In-
structions are available for saving the device’s complete context. PUSH and
POP instructions permit a level of nesting restricted only by the amount of
available RAM.

Table 3-1 provides a summary of the processing hardware contained in the
TMS320C14/E14.

Architecture - Overview

Table 3-1. TMS320C14/E14 Processing Hardware Summary

UNIT SYMBOL FUNCTION

Accumulator ACC A 32-bit accumulator divided into a high-order word (bits
31 through 16) and a low-order word (bits 15 through 0).
Used for storage of ALU output.

Arithmetic Logic Unit ALU A 32-bit two’s-complement arithmetic logic unit having
two 32-bit input ports and one 32-bit output port feeding
the accumulator.

Auxiliary Registers ARO,AR1 Two 16-bit registers used for data memory addressing and
loop count control. Nine LSBs of each register are con-
figured as up/down counters.

Auxiliary Register Pointer ARP A status bit that indicates the currently active auxiliary
register.

Central Arithmetic Logic CALU The grouping of the ALU, multiplier, accumulator, and

Unit shifters.

Data Bus D(15-0) A 16-bit bus used to route data to and from RAM.

Data Memory Page DP A status bit that points to the data RAM address of the

Pointer current page. A data page contains 128 words.

Data RAM - 256 words of on-chip random access memory
containing data.

External Address Bus A(11-0)/ A 12-bit bus used to address external program memory.

PA(2-0) The three LSBs are port addresses in the I/0O mode.

Interrupt Flag INTF A single-bit flag that indicates an interrupt request has
occurred (is pending).

Interrupt Mode INTM A status bit that masks the interrupt flag.

Multiplier MULT A 16 x 16-bit parallel hardware multiplier.

Overflow Flag oV A status bit flag that indicates an overflow in arithmetic
operations. .

Overflow Mode OovM A status bit that defines a saturated or unsaturated mode
in arithmetic operations.

P Register P A 32-bit register containing the product of multiply oper-
ations.

Program Bus P(15-0) A 16-bit bus used to route instructions from program
memory.

Program Counter PC (11-0) A 12-bit register used to address program memory. The

PC always contains the address of the next instruction to
be executed. The PC contents are updated following each
instruction decode operation.

Program ROM/EPROM - 4K words of on-chip read only memory (ROM or EPROM)
centaining the program code.

Shifters - Two shifters: the ALU barrel shifter that performs a left-
shift of O to 16 bits on data memory words loaded into the
ALU, and the accumulator parallel shifter that performs a
left-shift of O, 1, or 4 places on the entire accumulator and
places the resulting high-order bits into data RAM.

Stack - A 4 x 12-bit hardware stack used to store the PC during
interrupts or calls.

3-5

Architecture - Overview

Table 3-1. TMS320C14/E14 Processing Hardwaré Summary (Concluded)

UNIT SYMBOL FUNCTION
Status Register ST A 16-bit status register that contains status and control
bits.
T Register T A 16-bit register containing the multiplicand during mul-
' tiply operations.

3.1.2 /0 Structure

3-6

The TMS320C1x architecture implements a variety of 1/0 functions that can
be used for communicating with internal/external peripherals. The 16-bit
parallel data bus can be utilized to perform I/O functions in two cycles using
IN and OUT instructions. The 1/0O ports are addressed by AO through A2 of
the address bus, with AQ as the LSB of the 1/0O port address. The upper ad-
dress bits of A3 through A11 are driven high during 1/0 port accesses. In the
TMS320C14/E14, the 1/0 ports addressed can be on-chip or off-chip.

1/0 design is simplified by having |/O treated the same way as memory. /0
peripherals, whether on-chip or off-chip, are mapped into the 1/0 space using
the processor’s internal/external address and data buses in the same manner
as memory mapped devices.

Input/output of data, to/from an on-chip or off-chip peripheral, is accom-
plished by IN and OUT instructions. If external peripherals are addressed, data
is transferred over the external 16-bit data bus to and from data memory by
two independent strobes: read enable (REN) and write enable (WE). If on-
chip peripherals are addressed, data is transferred over the internal data bus
and the REN and WE strobes are not active.

Note:

Unlike other TMS320C1x devices, strobe REN is active for ALL external
accesses, whether for an 1/O port or program memory.

The bidirectional external data bus (D15 - DO) is always in the high-impe-
dance state, except when WE is active (low). WE goes low during the first
cycle of the QUT instruction, if external peripherals are addressed. WE also
goes low during the second cycle of the TBLW instruction if external program
memory is addressed. If internal peripherals are addressed, then WE remains
inactive (high).

Architecture - Overview

3.1.3 I/0 Peripherals

The TMS320C14/E14 includes all the features of the TMS320C1 x achitecture
as well as some additional 1/0 functions. The 16-bit parallel data bus can be
utilized to access external program memory and |/O functions. These external
bus cycles are controlled by the write enable (WE) and read enable (REN) pins.

The TMS320C14/E14 has 16-pins of bit I/O that can be individually selected
as inputs or outputs. There are provisionk to allow setting and clearing of each
pin without affecting the others. The capability to detect and match patterns
on the input pins is also included. Refer to section 3.5 for more information
on the bit 1/0 pins.

Also included in the TMS320C14/E14 are two 16-bit timers that can be used
as event counters with internal or external clocks, and a Watchdog timer that
is available for time-out functions. A fourth timer, the serial port baud rate
generator, is intended for serial port operation, but may also be used as a
general-purpose timer if sychronous/asychronous communication is not used.
Associated with each timer is a 16-bit period register. Refer to Section 3.6 for
more information on the timers.

The TMS320C14/E14 has an event manager that consists of a compare sub-
system and a capture subsystem. The compare subsystem has six compare
registers that constantly compare their outputs with one of the timers. Asso-
ciated with each compare register is an action register that controls the com-
pare output pins. The action registers determine actions that take place on
output pins in case of a match between the timer and a compare register. In
addition, the compare subsystem can be configured to generate six channels
of high-precision PWM. The event manager also contains four capture inputs.
This subsystem captures the value of a timer in a corresponding four-deep
FIFO stack when a certain transition is detected on a capture input pin. Sec-
tion 3.8 contains more information on the event manager.

The serial port of the TMS320C14/E14 provides three modes of operation:
synchronous, asynchronous, and codec-compatible. Two protocols for inter-
processor communication are supported, and a dedicated timer generates the
baud rates. Refer to Section 3.8 for more information on the serial port.

The TMS320C14/E14 has a total of 15 internal/external interrupts that can
be individually masked. An external non-maskable interrupt (NMI/MC/MP) is
also available. Each of the interrupts triggers a master interrupt. The master
interrupt is controlled by the INTM bit in the status register. For more infor-
mation, refer to Section 3.2.5 regarding interrupts.

A maximum of eight I/O addresses are available on the TMS320C1x and
TMS320C14/E14 for interfacing to peripheral devices: eight 16-bit multi-
plexed input ports and eight 16-bit multiplexed output ports. To maintain
compatibility with the TMS320C1x architecture, all peripherals on the
TMS320C14/E14 are implemented in the I/O address space. However, the
number of on-chip peripheral devices that can be accessed is greater than 16.
To implement the peripherals within the address space of eight 1/O ports, a
dual address scheme has been adopted that includes a bank address, and a
port address within that bank. This allows a user to preserve his investment in
TMS320C1x software and development tools.

3-7

Architecture - Overview

3.1.4 On-Chip Peripheral Register Mapping

The on-chip peripherals on the TMS320C14/E14 are controlled by peripheral
registers mapped in the I/0 space. A 16-bit bank select register (BSR) is used
to map all these internal peripherals in the I/O space. Each peripheral register
has a bank address and a port address. The bank address is selected by writ-
ing the bank address into the bank select register (BSR). The port address is
specified in the IN or OUT instruction.

Table 3-2 shows the location of each peripheral register.
Table 3-2. 1/O Register Map

PORT|BANKO| BANK1 | BANK2 | BANK3|BANK4|BANK5|BANK6|BANK7| BANKFFFF

0 10P WDT TMR1 |CMPRO| ACTO | SCON | FIFOO EXT. 1/0
1 DDR WPER TPR1 |CMPR1| ACT1 | SSET | FIFO1) EXT. 1/0
2 BSET | WTPL4 | TMR2 |CMPR2| ACT2 | SCLR | FIFO2 | SMAT | EXT.1/0
3 BCLR | SYSCON| TPR2 |CMPR3| ACT3 | TBR | FIFO3 | TSR EXT. 1/0
4 IF TCON |CMPR4| ACT4 RBR | CCON | RSR EXT. 1/0
5 M CMPR5| ACT5 | SBRG | CCLR | STMR EXT. 1/0
6 FCLR : EXT. 1/0
7

3.1.6

3-8

BSR BSR BSR BSR BSR BSR BSR BSR BSR

On-Chip/Off-Chip Peripheral Selection

To select a particular register, the bank address is first stored in the BSR, en-
abling the selected bank. Then an access to that port is made with an IN or
OUT instruction. If another register in the same bank needs to be accessed, it
is not necessary to write to the bank register again. For an OUT instruction,
data always appears on the data bus. The WE strobe, however, is not acti-
vated.

Port 7 is reserved in all banks for the BSR. Any 1/0 read/write to port 7 using
IN or OUT instructions automatically access the bank select register (BSR).
As shown in Figure 3-2, only the lower three bits of the BSR are used to select
the bank address for the on-chip penpherals The upper 13 bits must be ze-
roes.

o
o

BANK
ADDRESS

Figure 3-2. Bank Select Register

To select off-chip peripherals, bank address FFFFh must be used. Table 3-3
lists the peripheral registers available on the TMS320C14/E14 and their port

Architecture - Overview

and bank addresses. A more detailed description of their operation is given in
the detailed descriptions of the on-chip peripherals.

3-9

Architecture - Overview

Table 3-3. Peripheral Registers

REGISTER

PORT

BANK

DESCRIPTION

SYSCON

3

1

System configuration register. Configures the device
as microcomputer or microprocessor.

BSR

7

All

Bank select register. Stores bank address for a register.
All read/writes for port 7 go automatically to BSR.
Used in selection of on-chip/off-chip peripherals.

BIT I/0 PORTS

0P

1/0 port latch. Stores data for IOP pins configured as
output. Also stores data for pattern match on input IOP
pins. -

DDR

Data direction register. Configures IOP pins as inputs
or outputs.

BSET

Bit set register. Allows setting of individual bits in IOP
latch without affecting others.

BCLR

Bit clear register. Allows clearing of individual bits in
10P latch without affecting others.

INTERRUPTS

Interrupt flag register. Indicates interrupts that have
been received by the device.

IM

Interrupt mask register. Directs the CPU to acknowl-
edge or ignore an interrupt source.

FCLR

Flag register clear. Allows individual clearing of bits in
IF register without affecting other bits.

TIMERS

WDT/TMR4

Watchdog timer/Timer 4. Free-running 16-bit timer
that acts as a watchdog timer. Can also be used as a
fourth timer. Timer is reset to 0000h when it equals the
period register.

WPER/TPR4

Watchdog timer period register. Causes the timer to
reset to 0000h when its value equals the period regis-
ter.

WTPL

Watchdog timer period register latch that prevents the
watchdog period from being changed on the fly. This
register stores the old value of WPER, used by WDT to
determine its period.

TMR1

Timer 1. 16-bit timer that can be used as an event
counter. TMR1 is reset to 0000h when its value value
equals TPR1.

TPR1

Timer 1 period register. Causes TMR1 to reset to 0000h
when its value equals TPR1.

TMR2

Timer 2. 16-bit timer that can be used as an event
counter. TMR2 is reset to 0000h when its value equals
TPR2.

TPR2

Timer 2 period register. Causes TMR2 to reset to 0000h
when its value equals TPR2.

TCON

Timer control register. Controls operation and config-
uration of Timers 1 and 2, and the compare and capture
subsystems.

Architecture - Overview

Table 3-3. Peripheral Registers (Concluded)

REGISTER | PORT|BANK| DESCRIPTION
EVENT MANAGER

CMPRO 0 3 Compare registers. Contents of compare registers are

CMPR1 1 3 constantly being compared with Timer 1 or Timer 2.

CMPR2 2 3 When any one of the compare registers matches the

CMPR3 3 3 timer, it generates an action specified by an action

CMPR4 4 3 register. In the PWM mode, a match with the timer

CMPR5 5 3 resets the corresponding CMPx pin to a low level.

ACTO 0 4 Action registers. Contents of action registers

ACT1 1 4 determine what action should take place on the CMPx

ACT2 2 4 pin when the compare registers match the timer,

ACT3 3 4 including generation of an interrupt. In the PWM

ACT4 4 4 mode, the action registers act as double buffers

ACT5 5 4 for the corresponding CMPRXx register.

FIFOO 0 6 Four-deep FIFO stacks that capture timer values

FIFO1 1 6 when a transition is detected on the corresponding

FIFO2 2 6 CAPx pin.

FIFO3 3 6

CCON 4 6 Capture control register. Controls configuration and
operation of capture inputs. It also holds the status of
the FIFOs.

CCLR 5 6 CCON bit clear register. Allows clearing of individual
bits in CCON without affecting other bits.

SERIAL PORT

SCON 0 5 Serial port control register. Controls configuration and
operation of serial port.

SSET 1 5 SCON bit set register. Allows setting of individual bits
in SCON without affecting other bits.

SCLR 2 5 SCON bit clear register. Allows clearing of individual
bits in SCON without affecting other bits.

TBR 3 5 Transmit buffer register. Stores temporary data while
old data is being shifted out from transmit register.

TSR 3 7 Transmit shift register. Stores outging data currently
being transmitted.

RBR 4 5 Receive buffer register. Stores temporary data while
new data is being shifted into receive register.

RSR 4 7 Receive shift register. Stores incoming data currently
being received.

SMAT 2 7 Serial port match word register. Serial port stays in
sleep mode until match of received value with contents
of SMAT register is detected.

SBRG/TPR3| 5 5 Serial port baud rate generator. Sets divide ratios for
serial port timer to generate baud rates for asynchro-
nous and synchronous modes. Can also be used as
period register when not used by serial port.

STMR/TMR3} 5 7 Timer 3 Free-running 16-bit timer used for baud-rate
generation for serial port. Can be used as general pur-
pose timer when not used by serial port.

Architecture - System Control

3.2 System Control

System control on the TMS320C14/E14 processors is provided by the pro-
gram counter and stack, the SYSCON register (mode control), the external
reset signal, the status register, and the interrupts. This section explains the
function of these components in system control.

Note:

The TMS320C14/E14 does not have the BIO pin present on other
TMS320C1x devices. An attempt to execute the BIOZ (Branch on BIO
low) instruction will result in a two cycle NOP action.

3.2.1 Program Counter and Stack

The program counter and stack enable the execution of branches, subroutine
calls, interrupts, and table read/table write instructions. The program counter
(PC) is a 12-bit register that contains the program memory address of the next
instruction to be executed. The TMS320C14/E14 reads the instruction from
the program memory location addressed by the PC and increments the PC in
preparation for the next instruction prefetch. The PC is initialized to zero by
activating the reset (RS) line.

The TMS320C14/E14 devices utilize a modified Harvard architecture in which
data memory and program memory lie in two separate spaces, thus permitting
a full overlap of instruction fetch and execution. Figure 3-3 outlines the over-
lap of the instruction prefetch and execution. On the falling edge of CLKOUT,
the program counter (PC) is loaded with the address of the instruction (load
PC 2) to be prefetched while the current instruction (execute 1) is decoded
and begins execution. The next instruction is then fetched (fetch 2) while the
current instruction continues to execute (execute 1). Even as another prefetch
occurs (fetch 3), both the current instruction (execute 2) and the previous
instruction are still executing. This is possible because of a highly pipelined
internal structure.

Architecture - System Control

exorr [[LT LT LI L

LOAD
PC 1
-
FETCH 1
-

EXECUTE 1

LOAD
PC 2
-
FETCH 2
-

EXECUTE 2

LOAD
PC 3

FETCH 3
EXECUTE 3

Figure 3-3. Instruction Pipeline Operation

To permit the use of external program memory, the PC outputs are buffered
and sent to the external address bus pins, A11 through AO. The PC outputs
appear on the address bus during all modes of operation. The nine MSBs of
the PC (A11 through A3) have unique outputs assigned to them, while the
three LSBs are multiplexed with the port address lines, PA2 through PAO. The
port address field is used by the 1/0 instructions, IN and QUT.

Program memory is always addressed by the contents of the PC. The contents
of the PC can be changed by a branch instruction if the particular branch
condition being tested is true. Otherwise, the branch instruction simply incre-
ments the PC. All branches are absolute, rather than relative, i.e., a 12-bit
value derived from the branch instruction word is loaded directly into the PC
in order to accomplish the branch. When interrupts or subroutine call in-
structions occur, the contents of the PC are pushed onto the stack to preserve
return linkage to the previous program context. .

The stack is 12 bits wide and four levels deep. The PC stack is accessible
through the use of the PUSH and POP instructions. The PUSH instruction
pushes the twelve LSBs of the accumulator onto the top of the stack (TOS).
Whenever the contents of the PC are pushed onto the TOS, the previous
contents of each level are pushed down, and the fourth location of the stack
is lost. Therefore, data will be lost if more than four successive pushes (stack
overflow) occur before a pop. The reverse happens on pop operations. The
POP instruction pops the TOS into the twelve LSBs of the accumulator. Any
pop after three sequential pops yields the value at the fourth stack level. All
four stack levels then contain the same value. Following the POP instruction,
the TOS can be moved into data memory by storing the low-order accumula-
tor word (SACL instruction). This allows expansion of the stack into data
RAM. From data RAM, it can easily be copied into program RAM off-chip by

3-13

Architecture - System Control

using the TBLW (table write) instruction. In this way, the stack can be ex-
panded to very large levels.

Note that the TBLR and TBLW instructions utilize one level of the stack;
therefore, only three nested subroutines or interrupts can be accommodated
without stack overflow occurring.

To handle subroutines and interrupts of much higher nesting levels, part of the
data RAM or external RAM can be allocated to stack management. In this
case, the TOS is popped immediately at the start of a subroutine or interrupt
routine and stored in RAM. At the end of the subroutine or interrupt routine,
the stack value stored in RAM is pushed back onto the TOS before returning
to the main routine.

3.2.2 Microprocessor/Microcomputer Modes

The TMS320C14/E14 has two modes of operation: microprocessor and mi-
crocomputer. These modes are controlled by the MC/MP (bit 0) of the SYS-
CON register (see Figure 3-4). Bits 15 - 1 in this register must be set to all
ones.

15 1 0
1 <1 [MC/
MP

Figure 3-4. Syscon Register

Writing a 1 to the MC/MP bit configures the device to microcomputer mode.
In this mode, all program memory accesses are performed from internal 4K-
word program memory. The 16-bit external data bus can be used for access-
ing off-chip peripherals. However, only the lower three address lines
(PAO-PA2) are driven, while the upper 9 address lines will always be 1.
Writing a 0 to the MC/MP bit (bit 0) of the SYSCON register configures the
device into microprocessor mode. In this mode, all program accesses are made
from external memory, and the internal ROM/EPROM is disabled.

In addition to the software control of the MC/MP bit in the SYSCON register,
the TMS320C14/E14 has an external hardware option that controls this bit
and configures the device in microprocessor or microcomputer mode. The
NMI/MC/MP pin is sensed while the RS pin is low. If the NMI/MC/MP pin is
low at that time,internal program memory is disabled and all program accesses
are from external memory. If the NMI/MC/MP pin is high at the time, the de-
vice is placed in the microcomputer mode and all program memory accesses
are from internal memory. Once RS goes high and this pin is brought high, it
behaves as a normal NMI pin. The NMI/MC/MP (non-maskable interrupt) is
edge triggered, and the pin can be brought high anytime after a reset without
generating an interrupt. For more timing information, see Section 6.1.3..

A device may be initially configured by hardware to be in microcomputer or
microprocessor mode. However, the user can still modify the MC/MP bit to
change the mode on the device. Using a software bit, in addition to the
hardware option, provides much greater flexibility. Changing the
microprocessor/microcomputer modes with software allows the user to switch
from internal to external memory, thus doubling the memory size to 8K words.

Architecture - System Control

To provide an orderly switch of program memory, a delay of two cycles is
needed. The context switches two cycles after writing to the MC/MP bit
(using an OUT instruction). The two cycle delay allows a B (branch), CALL,
or RET instruction to be executed and reach the desired memory location. If
no location change is desired, two NOPs should be introduced to track the
two-cycle delay. The SYSCON register can be accessed at bank 1h and port
address 3h.

3.2.3 Reset

Reset is an external interrupt that cannot be masked. It can be used at any time
to put the TMS320C14/E14 into a known state. Reset is typically applied
after power-up when the machine is in a random state. The RS Schmidt trig-
ger input pin must be held low for a minimum of five clock cycles to be ef-
fective.

Driving the RS signal low causes the TMS320C14/E14 to terminate execution,
and forces the program counter to zero. RS affects various registers and status
bits. At power-up the state of the processor is undefined. For correct system
operation after power-up, a reset signal must be asserted low to guarantee a
reset of the device. Processor execution begins at location 0, which normally
contains a branch statement. This statement directs program execution of the
system initialization routine.

Upon receiving an RS signal, the following actions take place in the
TMS320C14/E14.

(] The program counter (PC) is set to 0, and the address bus A11- AO is
placed in a high-impedance state.

® The control lines WE and REN are forced high.
® The data bus D15-DO is placed in a high-impedance state.

L Bit 1/0 pins IOP15-10PO0 are configured as inputs and placed in a high-
impedance state.

(] Pins CMP4/CAP2 and CMP5/CAP3 are configured as capture inputs
and placed in a high-impedance state.

) Output pins CMP3-CMPO are reset to 0.
{ WDT pin is set to 1.

® Serial port pins TXD/CLK and RXD/DATA are placed in a high- impe-
dance state.

[The NMI/MC/MP pin is sampled to determine whether internal or ex-
ternal program memory is enabled.

[] RS is brought high, and the address bus A11 - AO is cleared to all zeros
in the next clock cycle.

In addition, Table 3-4 shows those registers that are also configured to the
known state during reset. The status of all other registers is unknown at reset.

3-15

Architecture - System Control

Table 3-4. Registers Configuration on Reset

REGISTER | STATUS DESCRIPTION
BSR FFFFh Bank select register. Points to off-chip peripherals.
DDR 0000h Data direction. All bit 1/0 pins configured as inputs.
IF 0000h Interrupt flag register. All interrupt flags cleared.
IM OFFFFh Interrupt mask register. All interrupts masked or disabled.
WDT 0000h Watchdog timer. Set to 0.
WPER OFFFFh Watchdog period. Set to maximum count.
WTPL OFFFFh Watchdog timer period latch. Set to maximum count.
TCON 0000h Timer control register. Timers 1 and 2 disabled. Compare
pins held at 0. Compare disabled. Capture system enabled
SCON 0A841h Serial port control register. Synchronous slave mode,
continuous reception, no protocol, parity disabled,
8 data bits.)
CCON 0000h Capture control register. Capture on all individual pins
disabled.

3.2.4 Status Register

The status register consists of five status bits. These status bits can be indi-
vidually altered through dedicated instructions. In addition, the SST instruc-
tion provides for storing the status register in data memory. The LST
instruction loads the status register from data memory, with the exception of
the INTM bit. This bit can be changed only by the EINT/DINT (enable/disable
interrupt) instructions. In this manner, the current status of the device may
be saved on interrupts and subroutine calls.

Table 3-5 describes the status register bits and shows instructions that affect
the status register contents. Note that several bits in the status registers are
reserved and read from the status register as logic ones by the SST instruction.

Architecture - System Control

Table 3-5. Status Register Field Definitions

FIELD FUNCTION

ARP Auxiliary Register Pointer. This single-bit field selects the AR to be used
in indirect addressing. ARP = 0 selects ARO; ARP = 1 selects AR1. ARP
may be modified by executing instructions that permit the indirect ad-
dressing option, and by the LARP, MAR, and LST instructions.

DP . Data Memory Page Pointer. The single-bit DP register is concatenated
with the 7 LSBs of an instruction word to form a direct memory address
of 8 bits. DP = 0 selects the first 128 words of data memory, i.e., page 0.
DP = 1 selects page 1, the next 128 words in data memory. DP may be
modified by the LST, LDP, and LDPK instructions.

INTM interrupt Mode Bit. When an interrupt is serviced, the INTM bit is auto-
matically set to one before the interrupt service routine begins. INTM =
0 enables all maskable interrupts; INTM = 1 disables all maskable inter-
rupts. INTM is set and reset by the DINT and EINT instructions, respec-
tively. RS also sets INTM. INTM has no effect on the unmaskable RS or
NMI interrupts. Note that INTM is unaffected by the LST instruction.

ov Overflow Flag. OV = 0 indicates that the accumulator has not overflowed.
OV = 1 indicates that an overflow has occurred. Once an overflow occurs,
the OV remains set until a reset, BV, or LST instruction clears the OV.

OovM Overflow Mode Bit. OVM = 0 disables the overflow mode, causing over-
flowed results to remain in the accumulator. OVM = 1 enables the over-
flow mode, causing the accumulator to be set to either its most

positive or negative value upon encountering an overflow. The SOVM
and ROVM instructions set and reset this bit. LST may also be used to
modify the OVM.

The contents of the status register can be stored in data memory by executing
the SST instruction.

Note:

If the SST instruction is executed using the direct addressing mode, the
device automatically stores this information on page 1 of data memory at
the location specified by the instruction, regardless of the value of the data
page pointer.

If the indirect addressing mode is selected, the contents of the status register
may be stored in any RAM location selected by the auxiliary register.

The SST instruction does not modify the contents of the status register. Figure
3-5 shows the position of the status bits as they appear in the appropriate data
RAM location after execution of the SST instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ovjovm| iNTm |1 1 1 1farp| 1 1 1 1 1 1 o |DP|

Figure 3-5. Status Register Organization

Architecture - System Control

The LST instruction may be executed to load the status register. LST does not
assume the status register has been stored on page one. When direct memory
addressing has been used, the DP must be set to one for the LST instruction
to access status bits stored on page one. The interrupt mode (INTM) bit
cannot be changed by the LST instruction. However, all other status bits can
be modified by this instruction.

3.2.5 Interrupts

The TMS320C14/E14 provides a total of 15 external and internal interrupts
for comimunication with time-critical internal and external operations. Two
interrupts are dedicated for external sources, and are triggered by a negative
edge on pins NMI/MC/MP and INT. The remainder of the interrupts are used
to service the on-chip peripherals. All the interrupts, internal or external, are
mapped into a 16-bit register called the interrupt flag register (IF). In addition,
a 16-bit register called the interrupt mask register (IM), is also available to
mask individual interrupts. Figure 3-6 shows the architecture of the interrupt
subsystem.

RS

EXTERNAL | INTERNAL DATA BUS 0.
| ‘D_L SYSCONO ,
D al——mcimp

+8

WR SYSCON _D_—fx

v F_REGISTER

D a INTERRUPT
NMI - 15 INTF ACTIVE
PIN +5V (STATUS)
D a) af
14
INT >
PIN >
J a
INTERNAL & 130
INTERRUPTS
INTM
FCLR 15-0 (STATUS)
M _REGISTER eV
)
MSK15 Ib
15
> -
CLK > al—nc 2
MsK14 b
" oINT EINT
> a
MSK12-0 o
130
> a INTERRUPT
ACKNOWLEDGE

Figure 3-6. Interrupt Subsystem

Architecture - System Control

When an interrupt is generated either by a peripheral or an external source, the
following sequence of events occurs:

1) A bitis set to 1 in the IF register cbrresponding to that interrupt. This
indicates an interrupt pending.

2) A check is made to determine if the corresponding bit in the IM register
is 0. This indicates an interrupt is unmasked.

3) If the interrupt is unmasked, an interrupt is generated to the CPU by
setting the interrupt flag (INTF). If the interrupt is masked, it continues
to be latched in the IF register, and will interrupt the CPU only when
unmasked.

4) If the interrupt mode (INTM) bit in the status register is 0 (CPU interrupt
is enabled), the CPU responds by saving the present program counter
value (PC) on the hardware stack and branching to location 2 in pro-
gram memory. |f the INTM bit in the status register is 1, the CPU inter-
rupt continues to be latched in the INTF bit.

5) Sequence of events 1 through 4 is true for all interrupts except the
non-maskable interrupt (NMI). In the case of the NMI, the interrupt is
passed straight through to the CPU without checking the IM register or
the INTM bit. The CPU responds immediately by saving the present PC
value on the hardware stack and branching to location 2 in program
memory.

6) The INTM bit is set to 1, disabling further interrupts (except NMI).

7) The interrupt service routine, starting at address 2h, polls the IF flag re-
gister to determine which peripheral is the source of the interrupt. In
addition, the corresponding flag in the IF flag register must be cleared
and the CPU interrupt enabled by executing an enable interrupt (EINT)
instruction.

To facilitate clearing individual flags in the IF register, an additional register
called the Flag Clear, (FCLR) is also provided. When a 1 is written to a bit in
the FCLR register, it clears the corresponding bit in the IF register. Writing a
0 to a bit in the FCLR register leaves the corresponding bit in the IF register
unaffected. The IF, IM, and FCLR registers have a bank address of Oh, and
port addresses of 4h, 5h, and 6h, respectively. Figure 3-7 shows the re-
lationship of the IF, IM and FCLR registers. ‘

Note:

The IF register should not be written to directly. To reduce the risk of af-
fecting the wrong bits, all writes should be through the FCLR register.

Architecture - System Control

15 0
IF | INTERRUPT BITS |
141 0

M | MASK BITS |
15 0

FCLR | CLEAR BITS |

NOTE: t Most significant usable bit. Writing a 1 to
IM bit 15 does not mask corresponding interrupt (NMI).

Figure 3-7. IF/IM/FCLR Register Relationship

Figure 3-8 and Table 3-6 describe the individual interrupt bits of the IF regis-
ter. The bits of the IM and FCLR registers correspond directly to those of the
IF register. Detailed descriptions of how these interrupts are generated are
found in the sections describing peripheral operation in detail. When an in-
terrupt is received, the corresponding bit in the IF register is set to 1. This IF
register bit remains set until cleared by the user. To mask an interrupt, the
corresponding bit in the IM register is set to 1. The mask will remain in effect
until the IM bit is cleared by the user.

15 1413 12 1 10 9 8 7 6 5 4 3 2 1 0
NMIJINT|T|TIMINT3/|CAP-|CAP-|CAP-| CAP- ICMP{CMP-{ TIM- [TIM-| RXINT| TXINT | WDT [IOPINT
STMRINT]INT3 | INT2 | INT1| INTOJINT1|INTO| INT2 JINT1 INT

NOTE: T Reserved bit

Figure 3-8. IF Register

3-20

Architecture - System Control

Table 3-6. IF Register Description
BIT# | INTERRUPT DESCRIPTION
15 NMI Nonmaskable interrupt.
14 INT External interrupt
13 Reserved IF 13 should be set to 0, IM 13 should
be set to 1.
12 TIMINT3/ Timer 3 interrupt (Timer 3 is normally
STMRINT used by serial port).
11 CAPINT3 Capture interrupt 3.
10 CAPINT2 Capture interrupt 2.
9 CAPINT1 Capture interrupt 1.
8 CAPINTO Capture interrupt O.
7 CMPINT1 Compare interrupt 1.
6 CMPINTO Compare interrupt 0.
5 TIMINT2 Timer 2 interrupt.
4 TIMINT1 Timer 1 interrupt.
3 RXINT Serial port receive interrupt.
2 TXINT Serial port transmit interrupt.
1 WDTINT Watchdog timer interrupt.
0 IOPINT 1/0 port IOP interrupt.

3-21

Architecture - CALU

3.3 Central Arithmetic Logic Unit (CALU)

The Central Arithmetic Logic Unit (CALU) contains a 16 x 16-bit parallel
multiplier, a 32-bit Arithmetic Logic Unit (ALU), a 32-bit accumulator (ACC),
and two shifters. This section describes the CALU components and their
functions. Figure 3-9 is a block diagram showing the components of the
CALU.

3-22

T(16)

MULTIPLIER

P(32)

Figure 3-9. Central Arithmetic Logic Unit (CALU)

The following steps occur in the implementation of a typical ALU operation:

1)
2)

3)

4)

Data is fetched from the RAM on the data bus.

Data is passed through the barrel shifter where it can be left-shifted O
to 16 bits, depending on the value specified by the instruction.

Data enters the ALU where it is operated upon and loaded into the ac-
cumulator.

The result obtained in the accumulator is passed through a parallel left-
shifter present at the accumulator output to aid in scaling results.

Architecture - CALU

5) The result is stored in the data RAM. Since the accumulator is 32 bits
wide, both halves must be stored separately.

Oneinput to the ALU is always provided from the accumulator, and the other
input may be provided from the P Register of the multiplier or the barrel shifter
that is loaded from data memory.

3.3.1 Shifters

Two shifters are available for manipulating data: a barrel shifter for shifting
data from the data RAM into the ALU and a parallel shifter for shifting the
accumulator into the data RAM (see Figure 3-9).

The barrel shifter has a 16-bit input connected to the data bus and a 32-bit
output connected to the ALU The barrel shifter produces a left shift of 0 to
16 bits on all data memory words that are loaded into, subtracted from, or
added to the accumulator by the LAC, SUB, and ADD instructions. The shifter
zero-fills the LSBs and sign-extends the 16-bit data memory word to 32 bits
by an arithmetic left-shift (i.e., the bits to the left of the MSB of the data word
are filled with ones if the MSB is a one or with zeros if the MSB is a zero).
This differs from a logical left-shift where the bits to the left of the MSB are
always filled with zeros. A small amount of code is required to perform an
arithmetic right-shift or a logical right-shift.

The following examples illustrate the barrel shifter’s function:

® Data memory location 20 holds the two’s-complement number: 7EBCh.

The LAC (load accumulator) instruction is executed, specifying a left-
shift of 4:

LAC 20,4

The accumulator then. holds the following 32-bit signed two's-
complement number:

31 16 15 0
o 00 7/EBCO

Since the MSB of 7EBCh is a zero, the upper accumulator was zero-
filled.

® Data memory location 30 holds the two’s-complement number: 8EBCh.

The LAC (load accumulator) instruction is executed, specifying a left-
shift of 8:

LAC 30,8

The accumulator then holds the following 32-bit signed two’s-
complement number:

31 16 15 0
F F8 Ef|BCOO

3-23

Architecture - CALU

Since the MSB of 8EBCh is a one, the upper accumulator was filled with
ones.

Instructions are provided that perform operations with the lower half of the
accumulator and a data word without first sign-extending the data word (i.e.,
treating it as a 16-bit rather than a 32-bit word). The mnemonics of these in-
structions typically end with an ’'S,’ indicating that sign-extension is sup-
pressed (e.g., ADDS, SUBS). Along with the instructions that operate on the
upper half of the accumulator, these instructions allow the manipulation of
32-bit precision numbers.

The parallel shifter is activated only by the SACH (store high-order accu-
mulator word) instruction. This instruction causes the shifter to be loaded with
the 32-bit contents of the accumulator. The data is then left-shifted. The
most-significant 16 bits from the shifter are stored in RAM, resulting in a loss
of the high-order bits of data. The contents of the accumulator remain un-
changed. The parallel shifter can execute a shift of only 0, 1, or 4. Shifts of 1
and 4 are used with multiplication operations. No right-shift is directly imple-
mented. The following example illustrates the accumulator shifter’s function:

° The accumulator holds the following 32-bit signed two’s-complement
number:

31 16 15 0
A 3 4 B|7 8 CD

The SACH instruction is executed, specifying that a left-shift of four be
performed on the high-order accumulator word before it is stored in data
memory location 40:

SACH 40,4

Data memory location 40 then contains the two’s-complement number:
34B7h. The accumulator still retains A34B78CDh.

3.3.2 ALU and Accumulator

3.24

The 32-bit ALU and accumulator (see Figure 3-9) implement a wide range
of arithmetic and logical functions, the majority of which execute in a single
clock cycle. Once an operation is performed in the ALU, the result is trans- -
ferred to the accumulator where additional operations such as shifting may
occur. Data that is input to the ALU may be scaled by the barrel shifter.

The ALU is a general-purpose arithmetic logic unit that operates on 16-bit
data words, producing a 32-bit result. The ALU can add, subtract, and perform
logical operations. The accumulator is always the destination and the primary
operand. The result of logical operations is shown in Table 3-7. A data mem-
ory value (dma) is the operand for the lower half of the accumulator (bits 15
through 0). Zero is the operand for the upper half of the accumulator.

Architecture - CALU

Table 3-7. Accumulator Results of a Logical Operation

FUNCTION ACC BITS 31-16 ACC BITS 15-0
XOR (0).XOR.(ACC (31-16)) (dma).XOR.(ACC (15-0))
AND (0).AND.(ACC (31-16)) (dma).AND.(ACC (15-0))

OR (0).0R.(ACC (31-16)) (dma).OR.(ACC (15-0))

The 32-bit accumulator stores the output from the ALU and is also often an
input to the ALU. The accumulator is divided into two 16-bit words for stor-
age in data memory: a high-order word (bits 31 through 16) and a low-order
word (bits 15 through 0). The SACH and SACL instructions are used to store
the high- and low-order accumulator words in data memory. These in-
structions can be used in the implementation of double-precision arithmetic.

A shifter at the output of the accumulator provides a left-shift of 0, 1, or 4
places. This shift is performed while the data is being transferred to the data
bus for storage. The contents of the accumulator remain unchanged. When
the high-order word is shifted left, the LSBs are transferred from the low-order
word, and the MSBs are lost.

The accumulator also has the ability to simulate the effect of saturation in an-
alog systems. This capability is implemented using the accumulator overflow
saturation mode, which is controlled by the OVM (overflow mode) status
register bit. The accumulator saturation mode is enabled or disabled by setting
or resetting the OVM bit, respectively, through the use of the SOVM and
ROVM (set and reset OVM bit) instructions. If OVM is set and accumulator
operation results in an overflow, the accumulator is loaded with either the
largest positive or negative number, depending on the sign of the operands
and the actual resuit. The value of the accumulator upon saturation is
7FFFFFFFh (positive) or 80000000h (negative). If OVM is reset and an ov-
erflow occurs, the overflowed results are loaded into the accumulator without
modification. (Note that logical operations cannot result in overflow.)

It is particularly desirable to enable the saturation mode when the accumulator
contents represent a signal value, since without saturation mode enabled, ov-
erflows cause undesirable discontinuities in the represented waveform. When
saturation mode is enabled, behavior of the accumulator more closely resem-
bles the tendency of an analog system to limit or saturate at a maximum level
when subjected to excessively large size signals.

When an overflow occurs, the OV (overflow) bit in the status register is set,
regardless of whether or not the OVM bit is set. The BV (branch on overflow)
instruction, which branches only if OV is set, can be used to allow programs
to make decisions based on whether or not an overflow has occurred and act
accordingly. Once set, OV is reset only by the BV instruction, or by directly
loading the status register. Since OV is part of the status register, its state can
be stored in data memory using the SST (store status register) instruction or
loaded using the LST (load status register) instruction. This allows the state
of OV from different program contexts to be saved independently, if desired,
and examined outside of time-critical code segments.

3-25

Architecture - CALU

The TMS320C14/E14 also has the capability of executing branch instructions
that depend on the status of the ALU and accumulator. These instructions
(BLZ, BLEZ, BGEZ, BGZ, BNZ, and BZ) cause a branch to be executed if a
specific condition is met (see Section 4 for a complete list of
TMS320C14/E14 instructions).

3.3.3 Multiplier, T and P Registers

3-26

The TMS320C14/E14 utilizes 16 x 16-bit hardware multiplier (see Figure
3-9), which is capable of computing a 32-bit product in a single machine
cycle. The following two registers are associated with the multiplier:

° A 16-bit Temporary Register (T) that holds one of the operands for the
multiplier, and

[A 32-bit Product Register (P) that holds the product.

In order to use the multiplier, an operand must first be loaded into the T reg-
ister from the data bus using an LT, LTA, or LTD instruction. Then, the MPY
(multiply) or MPYK (multiply immediate) instruction provides the second
operand (also from the data bus). If the MPY instruction is used, the multi-
plier value is a 16-bit number. If the MPYK instruction is used, the value is a
13-bit immediate constant contained in the MPYK instruction word. This
13-bit constant is right-justified and sign-extended. After execution of the
multiply instruction, the product will be placed in the P register. The product
can then be added to, subtracted from, or loaded into the accumulator by ex-
ecuting a PAC, APAC, SPAC, LTA, or LTD instruction. Pipelined multiply and
accumulate operations can be accomplished with the LTA/LTD and
MPY/MPYK instructions. Note that no special provisions are made for the
condition of 8000h x 8000h. If this condition arises, the product will be
C0000000h.

Note that the contents of the P register cannot be restored without altering
other registers. Interrupts are prevented from occurring until the instruction
following the MPY/MPYK instruction has been executed. Therefore, the mul-
tiply instruction should always be followed by an instruction that combines
the P register with the accumulator.

Architecture - Memory Organization

3.4 Memory Organization

3.4.1 Data

The TMS320C14/E14 devices utilize a modified Harvard architecture with two
separate spaces for data and program storage. The TMS320C14 contains 256
words ‘of RAM for data and 4K words of ROM program space. The
TMS320E14 contains 256 words of RAM for data and 4K words of EPROM
program space. As mentioned in section 3.2.2, internal or external program
memory space may be accessed by the CPU, depending on the mode the CPU
is operating in. Mode changing, which is both hardware and software con-
trollable, effectively doubles the amount of program memory, allowing the
processor to perform multiple tasks.

Memory

The TMS320C14/E14 devices contain a 256-word x 16-bit RAM area for data
storage. Figure 3-10 shows the memory map for the data RAM. The data
RAM may be considered as 256 registers for temporary storage/fast access for
data.

DATA 110
0(0000h) (0000<)0
EXTERNAL
7(>0007)
PAGE 0
127(007Fh)
128(0080h)
PAGE 1
256(00FFh)

Figure 3-10. Data Memory Map

3-27

Architecture - Memory Organization

3.4.2 Program Memory

0000(000h)

3999(F9Fh)
4000(FAOh)

4015(FFFh)

3-28

C-14 ON-CHIP E-14 ON-CHIP EXTERNAL
ROM ; EPROM MEMORY
0000(000h) 0000(000h)

AVAILABLE AVAILABLE AVAILABLE
MEMORY MEMORY MEMORY
SPACE SPACE SPACE

4088(FF8h)
RESERVED
4095(FFFh) 4095(FFFh) VO PORT 07
MC/MP = 1 MC/MP=1 MC/MP=0

Figure 3-11. Program Memory Map

Figure 3-11 shows options for program memory storage. Aside from an on-
chip program 4K-word x 16-bit ROM or EPROM, the TMS320C14/E14 can
access external memory as well. The selection of memory resource is done
with the MC/MP bit found as part of the SYSCON register. As stated in
Section 3.2.2, setting this bit high configures the device to select the on-chip
resource (ROM or EPROM). Setting this bit low configures the device to se-
lect the off-chip memory device. This device is initialized at reset when the
NMI/MC/MP pin is sampled, and may be subsequently altered through writes
to the SYSCON register. This ability to alter the MC/MP bit at run time yields
a mechanism to easily expand program memory beyond 4K-words up to a
maximum of 8K-words. Note that the upper eight words of external memory
are reserved for external I/O ports O through 7.

It should also be noted, that the TMS320E14 includes a security bit which,
when set, denies read access to the EPROM. Finally, the last 96 words in the
ROM on the TMS320C14 are reserved for Texas Instruments internal use.

Architecture - Memory Organization

3.4.3 Auxiliary Registers

The TMS320C14/E14 devices provide two 16-bit auxiliary registers (ARO and
AR1). This section discusses each register's function and how an auxiliary
register is selected, loaded, and stored.

The auxiliary registers may be used for indirect addressing of data memory,
temporary data storage, and loop control. Indirect addressing allows place-
ment of the data memory address of an instruction operand into the least-
significant eight bits of an auxiliary register. The registers are selected by a
single-bit Auxiliary Register Pointer (ARP) that is loaded with a value of O or
1, designating ARO or AR1, respectively. The ARP is part of the status register,
and can be stored in memory.

When the auxiliary registers are autoincremented/decremented by an indirect
addressing instruction or by the BANZ (branch on auxiliary register not zero)
instruction, the lowest nine bits are affected (see Figure 3-12). The auxiliary
registers are useful as counters when the BANZ instruction is used. This
counter portion of an auxiliary register is a 9-bit counter, as shown in Figure
3-13 and Figure 3-14.

COUNTER

'
! -
- -

1
)
15 958 7
1
l

AR |

INDIRECT ADDRESS

Figure 3-12. Auxiliary Register Counter

15 8 0
AR [UNAFFECTED [1 11111111

INCREMENT

5 8 0

AR | UNAFFECTED |ooooooooo

Figure 3-13. Indirect Addressing Autoincrement

15 8 0
AR rUNAFFECTED |1 111111 11|<——-

DECREMENT

15 8 0

AR lUNAFFECTED looooooooo

Figure 3-14. Indirect Addressing Autodecrement

3-29

Architecture - Memory Organization

The upper seven bits of an auxiliary register (i.e., bits 9 through 15) are unaf-
fected by any autoincrement/decrement operation. This includes autoincre-
ment of 111111111 (the lowest nine bits go to 0) and autodecrement of
000000000 (the lowest nine bits go to 111111111); in each case, bits 9
through 15 are unaffected.

The auxiliary registers can be saved in and loaded from data memory with the
SAR (store auxiliary register) and LAR (load auxiliary register) instructions.
This is useful for performing context saves. SAR and LAR transfer entire 16-bit
values to and from the auxiliary registers even though indirect addressing and
loop counting utilize only a portion of the auxiliary register. See Section 4 for
programming of the indirect addressing mode.

The BANZ instruction permits the auxiliary registers to also be used as loop
counters. BANZ checks if an auxiliary register is zero. If not, it decrements and
branches. See Section 5.3.3 for loop code using the auxiliary registers.

3.4.4 Memory Addressing Modes

The TMS320C14/E14 can address up to 4K words of program memory and
up to 256 words of data memory. Three forms of instruction operand ad-
dressing can be used: direct, indirect, and immediate addressing. Figure 3-15
illustrates operand addressing in the three modes. The addressing modes are
described in detail in Section 4.1.

INSTRUCTION
DIRECT ADDRESSING OPCODE dma DP
7 8
OPERAND
INSTRUCTION

INDIRECT ADDRESSING | OPCODE | ARP

| AR (ARP) }2] OPERAND |

INSTRUCTION

IMMEDIATE OPERAND OPCODE |OPERAND

3-30

Figure 3-15. Methods of Instruction Operand Addressing

In the direct addressing mode, the 1-bit data memory page pointer (DP) se-
lects either page 0 consisting of memory locations 0-127 or page 1 consisting
of locations 128-255. The data memory address (dma), specified by the seven
LSBs of the instruction concatenated with the DP, addresses the desired word
within the page. Note that DP is part of the status register and thus can be
stored in data memory.

Indirect addressing uses the lower eight bits of the auxiliary registers as the
data memory address. This is sufficient to address all 256 data words; no
paging is necessary with indirect addressing. The current auxiliary register is
selected by the auxiliary register pointer (ARP). In addition, the auxiliary
registers can be made to autoincrement/decrement during any given indirect

Architecture - Memory Organization

instruction. Note that the increment/decrement occurs after the current in-
struction is finished executing.

When an immediate operand is used, it is contained within the instruction
word itself.

3-31

Architecture - Bit Selectable I/O Port

3.5 Bit Selectable I/O Port
The TMS320C14/E14 incorporates a 16-bit I/0 Port (I0P) consisting of 16
individually bit-selectable 1/0 pins IOPO (LSB) through IOP15 (MSB). Key
features of the I0P are listed below:
] 16 bit-selectable 1/0 pins
(] Independant input/output pin configuration
o Independant set/clear control
® Dedicated register for output data storage

o Specific pattern detection

o Maskable interrupt

The IOP is controlled by registers configured by user software. Table 3-8
provides a summary of the |OP registers.

Table 3-8. 1/0 Port Register Summary

REGISTER | PORT | BANK DESCRIPTION

10P 0 0 1/0 port latch. Stores data for IOP pins that are
configured as output. Also stores data for pattern
match on input IOP pins.

DDR 1 0 Data direction register.Configures |OP pins as
inputs or outputs. DDR=1 configures the IOP pin
as output. DDR=0 configures the pin as an input.

BSET 2 0 Bit set register. Allows setting of individual bits
in 10P latch without affecting others. BSET=1
sets the IOP bitto a 1. BSET=0 leaves the IOP
bit unaffected.

BCLR 3 0 Bit clear register. Allows clearing of individual
bits in IOP latch without affecting others.
BCLR=1 clears the IOP bitto a 0. BCLR=0 leaves
the IOP unaffected.

3-32

Architecture - Bit Selectable I/O Port

RD 10P

AS

T0

DATA
BUS WRIOP
WR BSET
PORT PIN

s a H>_“- 10PX
WR 0P
R
WR BCLR

WR DDR —————4

IOPNT
(Tocry) e

Figure 3-16. Bit Selectable I/O Port

3.5.1 Configuring Data Direction

The direction of data at the IOP pins is determined by the 16-bit data direction
register (DDR). Each bit of the DDR controls a corresponding pin in the IOP
port. Each pin of the IOP can be individually configured as an input or output
pin by specifying the corresponding bit in the DDR (see Figure 3-16).
Clearing the bit to O configures the corresponding pin to be an input. Setting
the bit to 1 configures the pin to be an output. Bit DDRO configures pin I0PO,
while bit DDR15 configures pin IOP15. Upon reset, the DDR is configured
to be 0000h, thus making the I/0O pins inputs. The DDR has a bank address
of Oh and a port address of 1h.

3-33

Architecture - Bit Selectable I/O Port

3.5.2 1/0O Port Status and Control

BSET
REGISTER

3-34

Associated with the IOP port is a 16-bit latch called the IOP register. The IOP
register provides the following functions:

1) Stores data to be transmitted on I0OP pins configured as outputs

2) Stores the status of IOP pins configured as inputs when read, and a
pattern to be matched with the input signals when written.

Two additional 16-bit registers, the bit set (BSET) and bit clear (BCLR) fa-
cilitate the use of the IOP register. Each bit of these registers corresponds to
a bit in the IOP register. Writing a one to bit 15 of the BSET register sets bit
15 of the 10P register. Writing a one to bit 15 of the BCLR register clears bit
15 of the IOP register (see Figure 3-17)

15 1]
0P |

REGISTER

| Lo

15 (4]

[

0
BCLR
l REGISTER j

1

(1

Figure 3-17. Configuring the IOP Register

Writing a zero to the BSET or BCLR has no effect on the IOP register. Reading
the 10P register gives the status of the IOP pins configured as inputs, and the
data to be transmitted on IOP pins configured as outputs. BSET register has
a bank address of Oh and a port address of 2h. BCLR register uses bank ad-
dress Oh and port address 3h. BSET and BCLR are write-only registers.

Architecture - Bit Selectable 1/O Port

3.5.3 Input Pattern Match

The TMS320C14/E14 provides an automatic compare feature. This feature
uses |OP register bits that correspond to the IOP pins configured as inputs
(see Figure 3-16). Since these bits would normally provide only the status
of the input pins, these bits are available for an automatic compare function.
A specific pattern can be stored in the IOP register of the bits corresponding
to IOP inputs. This pattern is then constantly compared to the data received
on the input pins. When a match occurs, an interrupt (IOPINT) is sent to the
CPU. The pattern can be written to the IOP register directly, or using the
BSET and BCLR register. Writing to the IOP register directly should be
avoided, since this will also affect other bits. Once a pattern is written into the
I0OP register, it cannot be read back. A read will give the data on the 1/0O port
input pins, instead of the data in the IOP register bits.

The pattern in the |OP register must match all the pins configured as inputs.
No subset of the input pins is possible. This feature helps the CPU detect a
comparison on the input ports without polling. The IOPINT interrupt appears
only the first time a match is detected, after which it appears only if the com-
parison becomes false and then valid again. Interrupt IOPINT sets bit O in the
interrupt flag register IF. IOPINT can be disabled by setting bit O in the inter-
rupt mask register |M.

Note:

To reduce the risk of affecting the wrong bits, all writes to the I0P register
should be through the BSET and BCLR registers.

3-35

Architecture - Timers

3.6 Timers

3-36

The TMS320C14/E14 is equipped with four independent timers; a watchdog
timer, two general-purpose timers, plus the internal clock/baud-rate generator.
The first three 16-bit timers can be used as software development aids as well
as integrated into the DSP function. The fourth timer, the internal clock/baud
rate generator, is intended for use with the serial port, but may also be used
as a general purpose timer if not required for serial communication.

Each of the four timers contain the following features:
(A 16-bit free-running timer
° A 16-bit period register

® A dedicated maskable interrupt

Architecture - Timers

Table 3-9. Timer Module Register Summary

REGISTER |ADDR|BANK DESCRIPTION

WDT/TMR4 0 1 Watchdog timer/Timer 4. Free-running 16-bit
timer that acts as a watchdog timer. Can also
be used as a fourth timer. The timer is reset
when it equals the period register.

WPER/TPR4 1 1 Watchdog timer period register. It causes the
timer to be reset to 0000h when it equals the
period register.

WTPL 2 1 Watchdog timer period register that prevents the
watchdog period from being changed on the fly.
This register stores the old value of WPER, used
by WDT to determine its period.

TMR1 0 2 Timer 1. Free running 16-bit timer that can be
used as an event counter. |t is reset to 0000h
when its value equals TPR1.

TPR1 1 2 Timer 1 period register. It causes TMR1 to be
reset to 0000h when its value equals TPR1.
TMR2 2 2 Timer 2. Free running 16-bit timer that can be

used as an event counter. It is reset to 0000h
when its value equals TPR2.

TPR2 3 2 Timer 2 period register. It causes TMR2 to be
reset to 0000h when its value equals TPR2.

TCON 4 2 Timer control register. Controls operation and
configuration of Timers 1, 2, and event manager.
STMR/TMR3 5 7 Timer 3. Free-running 16-bit timer used for baud-

rate generation for serial port. Can be used as
general purpose timer when not used by serial port.

SBRG/TPR3 5 5 Baud rate generator. Sets divide ratios for serial
port timer to generate baud rates for asynchronous
and synchronous mode. Can also be used as
period register when not used by the serial port.

3.6.1 Watchdog Timer

The TMS320C14/E14 is equipped with a free running 16-bit Watchdog Timer
(WDT). This timer (Figure 3-18) is designed to prevent software hang-ups.
If the WDT is allowed to time out, a pulse is generated on pin WDT that can
be used to reset the TMS320C14/E14 and/or external hardware. In addition
to the external pulse, an interrupt (WDTINT) is also routed to the CPU. In this
way, a mechanism for recovering from software faults is provided.

To reset the watchdog timer (WDT), a pattern ABCDh followed by 2345h
should be written to the WDT register with consecutive OUT instructions.

3-37

Architecture - Timers

|
WDINT INTERNAL | EXTERNAL

CHIP

RESET DELAY DATABUS =
RESET 2 CLKOUT p—— >ABCD
TIMER CYCLES DETECT

WR WDT

\—\——l— DATABUS =

>2345

| WATCHDOG TIMER (WDT) (16) 1| oetect | |

— 1

* '

WDT __EXTERNAL

COMPARATOR |

|] | PIN CONN
|
|
PERIOD REGISTER SLAVE LATCH | PRESCALER |
WTPL (16) (BY 8) <~ Clkout |

ERIOD REGISTER MASTER LATC LATCH

RD

(WPER) (16) weL

RD
wDT wpsn WPER
N INTERNAL DATA BUS (16)

&

3-38

Figure 3-18. Watchdog Timer Module

The WDT is a read-only register and cannot be updated. However, WDT is
reset to 0000h under the following conditions:

1) Pattern OABCDh followed by 02345h is written to the WDT by two
consecutive OUT instructions. (Writing anything else has no affect.)

2) WDT times out when its contents match that of the period register latch
WTPL.

3) Device is reset (RS driven low).

In the case of a timeout, interrupt WDTINT is generated along with a pulse
on pin WDT. If needed, the contents of the WDT can be read. WDT has a bank
address of 1h and a port address of Oh.

Architecture - Timers

3.6.1.1 WDT Period Register

Associated with the WDT are two 16-bit registers, WPER and WTPL. These
registers operate in a master/slave relationship to store the maximum time that
could occur between updates to the WDT. Timeout on the WDT occurs if it
is not reset by consecutive writes, and its value matches with the contents of
the WTPL.

The WPER is directly accessible from the data bus. It is double-buffered to
prevent accidental changes to the watchdog period register. Associated with
the WPER is a 16-bit buffer latch (WTPL) that stores the old value of the
WPER if the WPER is changed. The WDT timer compares its value with the
WTPL instead of the WPER. If the WPER is updated in the meantime, it has
no affect on WTPL or on the period of the WDT. The WTPL is not directly
accessible for writing and is only updated when the WDT is reset to 0000h.
At that time the new period value is transferred from the WPER to the WTPL.
However, the WTPL can be read if needed. The WTPL uses bank address 1h
and port address 2h. The WPER uses bank address 1h and port address 1h.
At reset, the WPER is set to OFFFFh (maximum timeout value).

3.6.1.2 WDT Input

Input to the WDT is CLKOUT (CLKIN/4) divided by 8. At 25.6 MHz, this gives
a clock rate of 800 KHz. The external pulse generated on pin WDT when a
timeout occurs is one WDT clock cycle or 8 CLKOUT periods. The maximum
value that can be entered in the WPER is FFFFh, which gives a maximum pe-
riod of 81.9 ms at 25.6 MHz. The interrupt routed to the CPU, WDTINT, sets
bit 1 in the interrupt flag (IF) register. WDTINT can be disabled by setting
bit 1 in the interrupt mask (IM) register. Although the WDT is not writable
(except for the reset pattern), it can still be read and used as a regular timer
in the system. The WDT can be used as a general purpose timer if not being
used for the watchdog function. Table 3-9 provides a summary of the regis-
ters used by the WDT.

3.6.2 General Purpose Timers

The TMS320C14/E14 is equipped with two 16-bit general-purpose incre-
menting timers (TMR1 and TMR2) that can be used as event counters (see
Figure 3-19). Input to the timers can be from internal or external sources.
Associated with the timers are two 16-bit period registers. When a timer value
matches the value in the corresponding period register, the timer is reset in the
next count cycle. A corresponding interrupt to the CPU is then generated.

3-39

Architecture - Timers

TCLK1 PIN
PRESCALER
ora o;_;]—[TIMER/COUNTER 1 (TMR1) (16)]
cLkouT 2
[COMPARATOR]__”_____.JI_ TMINT1
ONO
Te TCON2,
TCON1

IPERIOD REG|3TER 1 (TPR1) (16) I

WR
TMR1 TMR‘l TPRA TPR1

b INTERNAL DATA BUS (16)

i

TCLK2 PIN——11

PRESCALER

0.1, 4, OR 16 TIMER/COUNTER 2 (TMR2)(16) l

CLKOUT—»— \

l COMPARATOR }——————l L o N2

TCON4, TCONSG, I PERIOD REGISTER 2 (TPR2) (16)]

TCONS TCON7
WR
TMR2 TMR2 TPRZ TPR2

I INTERNAL DATA BUS (16)

Figure 3-19. Timer1 and Timer2 Block Diagram

The operation of the timers is controlled by the timer control (TCON) regis-
ter.Figure 3-20 shows the usage of the TCON register bits. The TCON register
also controls the compare and capture subsystems. The TCON register uses
bank register 2h and port address 4h. Table 3-10 shows a summary of the
TCON register bit functions.

Bit O of the TCON selects the clock source for TMR1. If bit 0 is 0, TMR1 input
is from internal clock (CLKOUT). If bit 0 is 1, TMR1 input is from external
source on pin TCLK1. The maximum clock rate from an external source is
CLKOUT/2, and TMR1 is incremented on the rising edge of TCLK1. If de-
sired, the input to TMR1 can be prescaled. whether internal or external clock
is selected. Bits 1 and 2 select the prescale value. The clock input can have a
prescale factor of 1 (no prescaling), 4, or 16. In addition, prescale bits 1 and
2 can also be used to stop or disable TMR1 at any time.

3-40

Architecture - Timers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| COMPARE | | |
| CONTROL | TIMER2 | of | TIMER1
CAPTURE | | CONTROL | | CONTROL
CONTROL | | | |
NOTE: 1 Reserved bit, should be cleared to 0.

Figure 3-20. TCON Register Timer Bit Configuration

Table 3-10. TCON Register Timer Description

BIT FUNCTION
7,6 | Prescale select for TMR2.
00 = Timer stop. Stops timer as soon as set to 00
01 = Prescale of 4. Divides input by 4.
10 = Prescale of 16.
11 = Prescale of 1. No prescaling.
Timer disabled on reset.
5, 4 | Selects clock source for TMR2.

00 = internal clock.
10 = TMR1 output is input clock.
11 = external clock.

3 Reserved. Should always be cleared (0).

2,1 Prescale select for TMR1.

00 = Timer stop. Stops timer as soon as set to 00
01 = Prescale of 4. Divides input clock by 4.

10 = Prescale of 16. Divides input clock by 16.
11 = Prescale of 1. No prescaling.

Timer disabled on reset.

0 Clock select for TMR1.
0 = Internal clock (CLKOUT).
1 = External clock. Selects clock input on TCLK1.

All bits cleared to 0 on reset.

NOTE:

Bits 4 and 5 specify the clock source for timer 2 (TMR2). In addition to in-
ternal (CLKOUT) and external clock, output of TMR1 can be specified as in-
put to TMR2. It is thus possible to have a 32-bit timer with 8-bits of prescale.
If external clock is specified, input to TMR2 is from pin TCLK2. Bits 6 and 7
select the prescale values for TMR2. Bits 6 and 7 can also be used to hold
or disable TMR2.

Both TMR1 and TMR2 can be written to and read from. TMR1 has a 16-bit
period register (TPR1) associated with it. When the value of TMR1 matches
TPR1, TMR1 is reset to 0000h, and an interrupt (TIMINT1) to the CPU is
generated. TIMINT1 sets bit 4 in the interrupt flag (IF) register. TIMINT1 can
be disabled by setting bit 4 in the interrupt mask (IM) register. TMR1 register
has a bank address of 2h and a port address of Oh. TPR1 has a bank address
of 2h and a port address of 1h. At reset, TPR1 is set to FFFFh.

The TMR2 has a 16-bit period register (TPR2) associated with it. When the
value of TMR2 matches TPR2, TMR2 is reset to 0000h and an interrupt
(TIMINT2) to the CPU is generated. TIMINT2 sets bit 5 in the IF register. It

3-41

Architecture - Timers

can be disabled by setting bit 5 in the IM register. TMR2 has a bank address
of 2h and a port address of 2h. The TPR2 has a bank address of 2h and a port
address of 3h. At reset, TPR2 is set to FFFFh.

3.6.3 Serial Port Baud Rate Generator (as a timer)

3-42

The serial port baud rate generator (STMR) is primarily intended for use with
the serial port during synchronous/asynchronous communication. It can,
however, be used as a 16-bit general purpose timer if such communications
are not used. The input to the STMR is always CLKOUT. Like the other timers,
the STMR has a 16-bit period register (SBRG) associated with it, and an in-
terrupt (STMRINT) can be generated to the CPU that sets bit 12 (which is
maskable) in the interrupt flag (IF) register.

Architecture - Event Manager

3.7 Event Manager

The TMS320C14/E14 comes with an event manager that consists of compare
and capture subsystems. The event manager uses TMR1 and TMR2 as asso-
ciated clock sources, and has eight pins divided between the compare (CMP)
and capture subsystems.

The compare subsystem consists of compare and action registers and output
pins. The compare registers compare their values with those of the timers.
When a match is detected, the action registers specify an action that takes
place on the output pins. The action registers can specify that an interrupt to
the CPU should be generated. The compare subsystem also has a high pre-
cision PWM mode. In the PWM mode, six channels of high precision PWM
outputs are available.

The capture subsystem consists of four FIFO’s and input pins. When a change
is detected on the input pins, the current values of TMR1 or TMR2 are cap-
tured in the FIFOs. An interrupt to the CPU can also be generated at this time.

3.7.1 Compare Subsystem

The compare subsystem includes the following features:
[] Six 16-bit compare registers

(] Six 16-bit action registers

] Six possible compare output pins

[] High precision PWM mode with double-buffered PWM registers and six
PWM channels

[Two maskable interrupts

The 16-bit compare (CMPRx) registers are used for comparison with a se-
lected timer, while the 16-bit action (ACTx) registers control the action of the
output pins (see Figure 3-21). The action registers can specify generation of
two interrupts (CMPINTO and CMPINT1). The compare subsystem has four
dedicated output pins (CMPO through CMP3) and two pins that can be spe-
cified as compare outputs or capture inputs. Table 3-11 summarizes the reg-
isters associated with the compare subsystem.

3-43

Architecture - Event Manager

3-44

Table 3-11. Compare Subsystem Register Summary

REGISTER |ADDR|BANK DESCRIPTION
TCON 4 2 Timer control register. Controls operation and
configuration of Timers 1 and 2 and compare and
capture subsystems.
CMPRO 0 3 Compare registers. Contents of compare registers
CMPR1 1 3 are constantly being compared with Timer 1 or
CMPR2 2 3 Timer 2. When any one of the compare registers
CMPR3 3 3 matches the timer, it generates an action specified
CMPR4 4 3 by an action register. In the PWM mode, a match with
CMPR5 5 3 timer resets the corresponding CMPx pin to a low
level.
ACTO 0 4 Action registers. Contents of action registers
ACT1 1 4 determine what action should take place on the
ACT2 2 4 CMPx pin when the compare registers match the
ACT3 3 4 timer, including generation of an interrupt. In
ACT4 4 4 the PWM mode, the action registers act as double
ACT5 5 4 buffers for the corresponding CMPRXx register.

Architecture - Event Manager

S WR CMPO
COMPARE
DATA REGISTER
BUS {CMPO)
ACTO
o BIT SET
o 15 @ J Qa IR CMPO
16 s PIN
T™R1 16| < S
o
s
BIT RESET
3 12 9 K cr
T™R2 18] ACTO
. ACT1 ACTS
TCON10 . :
.
L]
ACTO
BIT Q
a) CMPINTO
BIT
2 o CMPINT1
[__cmp1-cMP3
ACTO _—J—— PINS
SAME
As{ CMPa/
CMPO —CMP5
PINS
TCON12
TO CAPTURE
SUBSYSTEM

Figure 3-21. Compare Module

The compare registers are used to store certain values or periods. These are
compared with timer values. Bits 8 through 12 of the timer control (TCON)
register control the operation of the compare registers. Figure 3-22 and Table
3-12 show the functions of the TCON register bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

f COMPARE | |

i CONTROL | TIMER2 | of | TIMER1
| | |
| | |

CAPTURE [CONTROL CONTROL
CONTROL |

NOTE: t Reserved bit. Should be cleared to 0.

Figure 3-22. TCON Register Compare Bit Configuration

3-45

Architecture - Event Manager

Table 3-12. TCON Compare Register Description

BIT # DESCRIPTION

12 CMP5/CAP3 Configure. Set to zero on reset.
0 = Configures pin CMP5/CAP3 as capture input.
1 = Configures pin CMP5/CAP3 as compare output.

1 CMP4/CAP2 Configure. Set to zero on reset.
0 = Configures pin CMP4/CAP2 as capture input.
1 = Configures pin CMP4/CAP2 as compare output.

10 Compare Enable. Set to zero on reset.

0 = Disables the compare subsystem. Pins CMPO -
CMPS5 are held at 0. Compare registers CMPRO
through CMPR5 are reset and held at 0000h,
compare interrupts are disabled.

1 = Enables the compare subsystem. Allows normal
operation of compare subsystems.

9 Timer select for Compare subsystem. Set to zero on reset.
0 = Timer 1. Select Timer 1 for use in comparison
1 = Timer 2. Select Timer 2 for use in comparison

8 Compare mode selection. Set to Zero on reset.
0 = Normal compare subsystem operation.
1 = High precision PWM mode.

3.7.1.1 Compare Registers

Once a value is stored in each of the six compare registers, the compare system
works independently without any intervention from the CPU. Each of the
compare registers (CMPRO through CMPR5) is constantly comparing itself
with either TMR1 or TMR2.

When a match is detected between the value stored in the compare register
and the value in the timer, a match signal enables the corresponding action
register to carry out an action on a compare output pin. All compare registers
have the same bank address of 3h, and port addresses of Oh through 5h. They
can be read or written to using these addresses.

3.7.1.2 Action Registers

3-46

Each of the action registers is dedicated to a compare register, and is capable
of controlling all six compare output pins (CMPO through CMP5). When a
match signal is received from the corresponding compare register (i.e., value
of timer matches compare register value), each of the compare output pins can
either be set high, reset low, or toggled. In addition, each action register can
specify generation of one or both interrupts (CMPINTO AND CMPINT1).
Figure 3-23 shows the configuration of the bits in each action register.

15 14 1312 11109 87 65 4 3 2 1.0
[cmpPo|cmP1|cmp2]cMP3[cMP4|CcMPS| CMPINTO | CMPINT1 | Reserved

Figure 3-23. ACTx Register Configuration

Architecture - Event Manager

Bits 4 through 15 of the action register control (in pairs) the action of CMPO
through CMP5. Bits 2 and 3 control generation of CMPINTO and CMPINT1.
Bits 0.and 1 are reserved. ACTO through ACT5 have the same bank address
of 4h and port addresses Oh through 5h. They can be read from or written to

using these addresses.

When the value in the specified timer equals the value in a compare register,
the corresponding action register will specify an action depending upon the
configuration as shown in Table 3-13.

Table 3-13. Action Register Description

BIT #| FUNCTION DESCRIPTION
15,14 Set/Reset 00 = No action taken on pin CMPO.
CMPO 01 = Resets pin CMPO to a low level.
10 = Sets pin CMPO to a high level.
11 = Toggle pin CMPO.
13,12 Set/Reset 00 = No action taken on pin CMP1.
CMP1 01 = Resets pin CMP1 to a low level.
10 = Sets pin CMP1 to a high level.
11 = Toggle pin CMP1.
11,10 Set/Reset 00 = No action taken on pin CMP2.
CMP2 01 = Resets pin CMP2 to a low level.
10 = Sets pin CMP2 to a high level.
11 = Toggle pin CMP2.
9,8 Set/Reset 00 = No action taken on pin CMPO03.
CMP3 01 = Resets pin CMP3 to a low level.
10 = Sets pin CMP3 to a high level.
11 = Toggle pin CMP3.
7.6 Set/Reset 00 = No action taken on pin CMP4.
CMP4 01 = Resets pin CMP4 to a low level.
10 = Sets pin CMP4 to a high level.
11 = Toggle pin CMP4.
5.4 Set/Reset 00 = No action taken on pin CMP5.
CMP5 01 = Resets pin CMP5 to a low level.
10 = Sets pin CMP5 to a high level.
11 = Toggle pin CMP5.
3 Set CMPINTO| O = No interrupt generated.
1 = Generates interrupt and sets bit 6 in IF register.
2 Set CMPINT1| 0 = No interrupt generated.
1 = Generates interrupt and sets bit 7 in IF register
Reserved Should be set to 1.
0 Reserved Should be set to 1.

3-47

Architecture - Event Manager

3.7.1.3 Compare pins

There are four output pins (CMPO through CMP3), dedicated to the compare
subsystem. Two additional pins are also available for the compare subsystem.
These pins (CMP4/CAP2 and CMP5/CAP3) are shared with the capture (in-
put) subsystem. CMP4/CAP2 and CMP5/CAP3 are configured by bits 11
and 12 of the TCON register. Each of the compare output pins can be con-
trolled by all six action registers to create specific waveforms. However, if two
action registers specify simultaneous action (i.e., set is specified by one action
register, while toggle is specified by other action register), unpredictable ac-
tion can occur. Pins CMPO through CMP3 are set low on reset. Pins
CMP4/CAP2 and CMP5/CAP3 are configured as inputs and put in a high
impedance at reset.

3.7.1.4 Compare Interrupts

Bits 2 and 3 of each action register can generate interrupts (CMPINTO and
CMPINT1) to the CPU, when the corresponding compare register generates
a match or EQ signal. CMPINTO sets bit 6 in the interrupt flag register (IF).
CMPINT1 sets bit 7 of IF. Both interrupts can be masked by using the inter-
rupt mask register (IM).

3.7.1.5 High Precision PWM Mode

3-48

The compare subsystem has a mode for generating high precision pulse width
modulation (PWM) outputs (refer to Figure 3-24). In the high precision
mode, the pulse width on pins CMPx has two extra bits of resolution. Thus,
the pulse width in this mode can be specified with a minimum resolution of
40 ns @ 25.6 Mhz (vs 160 ns in the normal compare mode). Table 3-14 gives
a comparison between the high precision PWM mode and the normal compare
mode.

Architecture - Event Manager

TCONS8
TCONS

CLKIN ﬁ&

INTERNAL
DATA
BUS

TMR
RESET |
TIMER 14 }
{>O_F_____ 1 4 |
b >< 14 |
2
ﬂ }
TIMER 14 | _cMmP:
"—3— 2 i J e PN
CARRY 8 |
; S |cLkinp> I
E |
2-BIT 2, = |
TIMER g K I
= |
—10 |
© |
16 ACTION COMPARE | ;¢ |
REGISTER REGISTOR |
(ACTx) CMPRx) |
WR TCON10 I
ACTx !
Figure 3-24. Compare Subsystem in PWM Mode
Table 3-14. PWM Resolution Bits Comparison
PWM Bits of Resolution
Frequency Normal Compare High Precision
(in KHz) Mode PWM Mode
100 6 8
25 8 10
6.26 10 12
1.506 12 14
The PWM mode is enabled by setting bit 8 of TCON register to 1. In this

mode, each of the six output pins is uniquely associated with one compare
and action register, and each work independently. The pulse width of each
compare ‘output pin is determined by the associated compare register, while
the overall period is determined by the selected timer period register.

To begin using the PWM mode, TMR1 or TMR2 is selected (prescale of 1,
internal source), and its period register is loaded with the period value. The
selected timer, clocked by CLKOUT, begins to count (refer to Figure 3-25)
until the value of the 14 LSBs of the timer match the 14 MSBs of the compare
register. The two LSBs of the specified compare register are then used to
count the number of CLKIN pulses before the associated compare pin is reset

3-49

Architecture - Event Manager

3-50

(refer to Figure 3-25). If the two LSBs are 00, a transition occurs immediately
on the compare pin. If 01 appears in the two LSBs, a transition occurs after
one CLKIN cycle. If 10 appears in the two LSBs, a transition occurs after two
CLKIN cycles. If 11 appears in the two LSBs, a transition occurs after three
CLKIN cycles. In this way, the resolution of the PWM mode is increased by
a factor of four. The timer continues to count until its 14 LSBs match the 14
LSBs of its associated period register. When this occurs, all compare pins are
set (refer to Figure 3-25), the timer is reset to 0000h, and the compare regis-
ters are loaded with the values in their associated action registers. Since only
the 14 LSBs are used in comparing the timer and its period register, the two
MSBs in the period register MUST BE ZEROS. The timer begins counting
from 0000h, and a new PWM cycle begins.

TIMER STARTS CMPRx=TIMER TIMER TIMES OUT
i i i

Figure 3-25. CMPx Pin Level

Note that the action of the CMPx pins are no longer controlled by the action
registers. The action registers also do not generate any interrupts. Interrupt
CMPINTO is dedicated to register CMPR4, and is generated when contents
of CMPR4 match contents of TMRx. Interrupt CMPINT1 is dedicated to
CMPRS5, and is generated when contents of CMPR5 match contents of TMRXx.
Either TMR1 or TMR2 can be used for comparison in this mode. Note that the
selected timer has to be clocked at the CLKOUT rate with a prescale of one.

In summary:

1) TMR1 or TMR2 is selected, and the associated timer period register is
loaded with the pulse period value.

2) TMRx counts until its 14 LSBs match the 14 LSBs of the compare reg-
ister.

3) The two LSBs of the compare register decide which quarter phase will
cause the compare pin to reset.

4) When contents of register CMPR4 matches value of TMRx, pin CMP4
is reset to 0, and interrupt CMPINTO is generated.

5) When contents of register CMPR5 matches value of TMRx, pin CMP5
is reset to 0, and interrupt CMPINT1 is generated.

6) TMRx continues to count until its 14 LSBs match the 14 LSBs of its
associated period register. Recall that the two MSBs in the period reg-
ister must be zeros.

7) ALL compare pins are set.

8) - TMRx is reset to 0000h and begins counting.

Architecture - Event Manager

9) The value in the action register is automatically written into its associated
compare register.

10) New PWM cycle starts.

__BITS USED IN PWM MODE
N 1\
1514 _ 4 3 2 1 0

HEEEYEEEEN

2

15 14 10

BITS USED IN NORMAL MODE
*First bit read by CPU

Figure 3-26. TMR Bit Configuration

3.7.2 Capture Subsystem

The capture subsystem provides a logging function for up to four different
events (transitions). The capture subsystem includes the following features:

° Four 16 x 4 FIFO stacks

(] Four possible Schmidt trigger input capture pins
[] User specified edge detection

° FIFO status indicator bits

® Optional timer selection

The operation of the capture subsystem is controlled by the timer control
(TCON) and capture control (CCON) registers. Figure 3-27 shows the struc-
ture of the capture subsystem. Table 3-15 summarizes the registers associated
with the capture subsystem.

3-51

Architecture - Event Manager

3-52

Table 3-15. Capture Subsystem Register Summary

REGISTER |ADDR|BANK DESCRIPTION

TCON 4 2 Timer control register. Controls operation and con-
figuration of TMR1, TMR2, compare and capture sub-
systems.

FIFOO 0 6 Four deep FIFO stacks that capture the timer values

FIFO1 1 6 when a transition is detected on the associated CAPx

FIFO2 2 6 pin.

FIFO3 3 6

CCON 4 6 Capture control register. Controls configuration and
operation of capture inputs. It also holds the '
status of the FIFOs.

CCLR 5 6 CCON bit clear register. Allows clearing of individual
bits in CCON without affecting other bits.

CAPINTO

J Qp~FIFO FULL

K
& INTERNAL DATA BUS (16) 3 I

- THIRD ENTRY

RD FIFO-0

FIFO-0 (TOS)
TCON15
FIFO-0

—
L/
FIFO-0)
FIFO-0: (BOS) [*

TIMER1 TIMER2
BUS BUS

CCON1 -—.J

CCONO

Figure 3-27. Capture Module

Any time a positive or negative transition is detected on a capture input pin,
the current value of a timer is saved in a FIFO. In addition, when a capture is
made, each FIFO can generate an interrupt to the CPU. There are four inter-
rupts (CAPINTO through CAPINT3) dedicated to the capture subsystem.

Architecture - Event Manager

3.7.2.1 FIFO Stacks

Each of the FIFOs is four deep and dedicated to one of the capture input pins.
When a transition is detected on a capture input pin, the current value of the
timer is saved in the corresponding FIFO. Either TMR1 or TMR2 may be
specified. Each FIFO has a dedicated interrupt (CAPINTx). The FIFO can
generate an interrupt when the first capture is made, or when the third capture
entry is received. The CPU has direct access only to the top of each FIFO. To
read the rest of the FIFO entries, successive read must be made. When a FIFO
is empty (i.e., all entries are read), a status bit (FIFOx NOT EMPTY) is cleared
in CCON. When a FIFO is full and an additional capture is made, the overrun
condition is indicated by setting a status bit (FIFOx OVERRUN) in CCON.
At the same time, the FIFO preserves existing entries and ignores all additional
entries thus losing them. The FIFO registers have a bank address of 6h, and a
port address of Oh through 3h.

3.7.2.2 TCON Register
Bits 11 through 15 of the timer control (TCON) register control the operation
of the capture subsystem. Figure 3-28 and Table 3-16 show the functions of
the TCON register bits associated with the capture subsystem.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

; COMPARE
| CONTROL

CAPTURE |
CONTROL |

TIMER1

|

|
CONTROL | CONTROL
|

l |
| TIMER2 | of
l l
| |

NOTE: t Reserved bit. Should be cleared to 0.
Figure 3-28. TCON Register Capture Bit Configuration

3-53

Architecture - Event Manager

Table 3-16. TCON Capture Register Description

BIT # DESCRIPTION

15 Interrupt on first or third entry in FIFOx.

0 = An interrupt is generated to the CPU on the first
capture entry received in an empty FIFO.

1 = An interrupt is generated when the third capture
entry is received in the FIFO, and the FIFO already
has two entries.

14 Capture Enable.

0 = Enables Capture subsystem. Starts normal operation
of capture subsystem.

1 = Disables the capture subsystem. No capture possible
on any pin. All FIFO registers (FIFOx) are reset to
0000h.All FIFOx NOT EMPTY bits reset to 0. All
FIFOx OVERRUN bits reset to O.

13 Timer Select for Capture Subsystem.
0 = Timer 1. Selects Timer 1 for use in capture.
1 = Timer 2. Selects Timer 2 for use in capture.

12 CMP5/CAP3 Configure.

0 = Configures pin CMP5/CAP3 as capture input.

1 = Configures pin CMP5/CAP3 as compare output.
11 CMP4/CAP2 Configure.

0 = Configures pin CMP4/CAP2 as capture input.
1 = Configures pin CMP4/CAP2 as compare output.

NOTE: All bits cleared to zero on reset.

3.7.2.3 Capture Control Register

3-54

The Capture Control register (CCON), refer to Figure 3-29 and Table 3-17, is
used to configure and control the operation of individual capture inputs. Each
capture input has four bits in CCON that controls its operation. Capture can
be enabled or disabled on each individual capture pin. In addition, each pin
can be programmed to detect: a transition, a falling edge, or a rising edge. If
either CMP4/CAP2 or CMP5/CAP3 pins are configured as output compare
pins, it is still possible to enable a capture function on these pins. In this case
the transition detected will be due to the compare output function, not an
external input.

The CCON gives the status of each of the FIFO’s, whether they are empty or
have an overflow. When an overflow is detected, and bit FIFOx OVERRUN
is set to 1, CCON has to be cleared to 0. The user does this in software after
a read from FIFOx is done. Some bits of the CCON i.e. FIFO status bits, can
only be read while the rest of the bits can be written to and read from.

Architecture - Event Manager

Another 16-bit register - Capture Clear (CCLR) is also used by the capture
subsystem. The CCLR allows clearing of individual bits in CCON without af-
fecting other bits. The operation of the CCLR is similar to the BCLR register.
There is a direct correlation between bits of CCLR and CCONii.e. Setting bit
3 of CCLR to 1 will clear bit 3 of CCON. Figure 3-29 illustrates bit 15 of CCLR
clearing bit 15 of CCON. The CCLR makes it easier to configure the CCON
since it is not possible to write to the CCON directly. The CCON has a bank
address of 6h and port address 4h. The CCLR has bank address 6h and port
address 5h, and is described in Table 3-17.

CCON 18 >
REGISTER I] l

(0)

|

CCLR 12
I’tEGISTERl [I

(1)

Figure 3-29. CCON and CCLR Registers

3-55

Architecture - Event Manager

3-56

Table 3-17. CCON Register Description

BIT #| FUNCTION DESCRIPTION
15 FIFO-3 0 = FIFO-3 not full.
overrun 1 = FIFO-3 is full, and another transition or capture entry
error. is detected.
This bit must be cleared by the user, if a read is done on
FIFO-3.
Status bit. Read and clear access.
14 FIFO-3 0 = No entries available in FIFO-3. .
not empty. 1 = FIFO-3 has one or more unread entries.
Cleared as soon as CPU has read all entries and FIFO-3 is
empty.
Status bit. Read access only.
13,12 | Edge 00 = Capture disabled on pin CAP3.
transition 01 = Detect positive (rising) edge on pin CAP3.
detection 10 = Detect negative (falling) edge on pin CAP3
for CAP3 11 = Detect any transition on pin CAP3.
Control bits. Read and write access.
11 FIFO-2 0 = FIFO-2 not full.
overrun 1 = FIFO-2 is full, and another transition or capture entry
error. is detected.
This bit must be cleared by the user if a read is done on
FIFO-2.
Status bit. Read and clear access.
10 FIFO-2 0 = No entries available in FIFO-2.
not empty. 1 = FIFO-0 has one or more unread entries.
Cleared as soon as CPU has read all entries and FIFO-2 is
empty.
Status bit. Read access only.
9,8 Edge 00 = Capture disabled on pin CAP2.
transition 01 = Detect positive (rising) edge on pin CAP2
detection 10 = Detect negative (falling) edge on pin CAP2.
for CAP2 11 = Detect any transition on pin CAP2.
Control bits. Read and write access.
7 FIFO-1 0 = FIFO-1 not full.
overrun 1 = FIFO-1 is full, and another transition or capture entry
error. is detected.
This bit must be cleared by the user if a read is done on
FIFO-1.
Status bit. Read and clear access.
6 FIFO-1 0 = No entries available in FIFO-1.
not empty. 1 = FIFO-1 has one or more unread entries.
Cleared as soon as CPU has read all entries, and FIFO-1 is
empty.
Status bit. Read access only.
5,4 Edge 00 = Capture disabled on pin CAP1.
transition 01 = Detect positive (rising) edge on pin CAP1.
detection 10 = Detect negative (falling) edge on pin CAP1
for CAP1 11 = Detect any transition on pin CAP1.

Control bits. Read and write access.

NOTE: All bits cleared to zero on reset.

Architecture - Event Manager

Table 3-17. CCON Register Description (Concluded)

BIT #| FUNCTION DESCRIPTION
3 FIFO-0 0 = FIFO-0 not full.
overrun 1 = FIFO-0 is full, and another transition or capture entry
error is detected.
This bit must be cleared by the user if a read is done on
FIFO-0.
Status bit. Read and clear access.
2 FIFO-0 0 = No entries available in FIFO-0.
not empty. 1 = FIFO-0 has one or more unread entries.
Cleared as soon as CPU has read all entries and FIFO-0 is
empty.
Status bit. Read access only.
1.0 Edge 00 = Capture disabled on pin CAPO.
transition 01 = Detect positive (rising) edge on pin CAPO.
detection 10 = Detect negative (falling) edge on pin CAPO
for CAPO 11 = Detect any transition on pin CAPO.
Control bits. Read and write access

NOTE: All bits cleared to zero on reset.

3.7.2.4 Capture Interrupts

Each capture input has a dedicated interrupt (CAPINTX), that can be gener-
ated either when the corresponding FIFO receives its first or third entry. This
selection is done by means of bit 15 of TCON. CAPINTO through CAPINT3
set bits 8 through bit 11 of IF. These interrupts can be masked by setting the
appropriate bit in IM.

3-57

Architecture - Serial Port

3.8 Serial Port

3-58

The TMS320C14/E14 has a Universal Synchronous/Asynchronous
Receiver/Transmitter (USART) type serial port that supports industry-standard
communications protocols. Key features of the serial port include the follow-
ing:

[] Double-buffered receiver/transmitter

[] Full-duplex asynchronous mode with 400 Kbps maximum transceiving
rate (25.6 MHz clock)

° Half-duplex synchronous mode with master/slave option at maximum
transceiving rate of 6.4 Mbps(25.6 MHz clock)

° Full-duplex codec-compatible mode with maximum transceiving rate of
1.6 MHZ (25.6 Mhz clock)

° Supports address detect and address match protocols
® 'Separate interrupts for receiver/transmitter
[J Separate 16-bit timer for baud rate generation

° Programmable operation through 16-bit control/status register

The operational architecture of the serial port is dependent on the mode it is
operating in. The asynchronous (async) mode is full-duplex with a maximum
transmission/reception rate of CLKOUT/16. The async mode uses start and
stop bits for synchronization at the byte level. The synchronous (sync) mode
is half-duplex, with a maximum transceiving rate of CLKOUT. In the syn-
chronous mode, the serial port can operate in either master or slave config-
uration, accepting an internal or external clock. The codec mode is full-duplex
and compatible with industry standard codecs such as TCM29C13, etc.
Maximum transceiving rate in the codec mode is CLKOUT/4. Either internal
or external frame sync pulses can be used in this mode. Double-buffering of
receive/transmit data is used in all modes.

The serial port supports two communication protocols. The first communi-
cation protocol supports 8051 type 9-bit communication, where the ninth bit
indicates address or data reception/transmission. The second communication
protocol supports a sleep/wakeup mode, in which all nine bits have to match
the device address stored in a register (SMAT) in order to start data reception.
These communication protocols are available in all three modes: asynchro-
nous, synchronous, and codec. Table 3-18 summarizes the registers associ-
ated with the serial port.

Architecture - Serial Port

Table 3-18. Serial Port Register Summary

REGISTER ADDR BANK DESCRIPTION

SCON 0 5 Serial port control register. controls config-
uration and operation of serial port.

SSET 1 5 SCON bit set register. allows setting of indi-
vidual bits in SCON without affecting other
bits.

SCLR 2 5 SCON bit clear register. Allows clearing of

individual bits without affecting other bits.

TBR 3 5 Transmit buffer register. Stores temporary
data while old data is being shifted out from
transmit register.

RBR 4 5 Receive buffer register. Stores temporary
data while new data is being shifted into
receive register.

SBRG 5 5 Serial Port Baud rate generator. Sets the
divide ratios for the serial port timer to
generate baud rates for synchronous mode.

SMAT 2 7 Serial Port Match word register. The serial
port stays in the sleep mode until an ad-
dress match with value in SMAT register is

detected.
TSR 3 7 Transmit shift register. Stores outgoing data
’ that is currently being transmitted.
RSR 4 7 Receive shift register. Stores incoming data
that is currently being received.
STMR/TMR3 5 7 Timer 3. Free running timer that is used for

baud rate generation for the serial port

3.8.1 Serial Control Register

The Serial Control (SCON) register (see Table 3-19) is a 16-bit register that
controls operation of the serial port. At the same time, the SCON also acts as
a status register to indicate the status of the serial port. Async, sync, or codec
mode is selected by configuring bits O and 14 of the SCON. Reception on the
serial port can be disabled by bit 11 of the SCON. Bits 5 and 6 select the
number of data bits. Bits 9 and 10 select the communication protocol. Bits
3,4, 7, and 8 indicate errors or overflows. The SCON should not be modified
during reception or transmission, or unpredictable results may occur. The
complete configuration of the SCON is described in the following section.
The SCON has a a bank address of 5h and a port address of Oh.

3-59

Architecture - Serial Port

Table 3-19. SCON Register Description

BIT #| FUNCTION DESCRIPTION

0 Sync mode = Disables Synchronous mode and selects asynchronous
select mode. Note that in addition to configuring this
(SYNC) bit, bit 14 also has to be cleared to O to select

async/sync mode.
1 = Enables synchronous mode.
Control bit. Write and read access.
Set to 1 on reset.

1 Parity 0 = Disable parity.
enable 1= Enables parity. Parity is added during transmission,
enable and detected during reception.

(PEN) Control bit. Write and read access.
Cleared to O on reset.

2 Even/Odd 0 = Selects even parity.
parity 1 = Selects odd parity.
select (EOP) Control bit. Write and read access.

Cleared to O on reset.

3 Parity 0 = Normal operation. No parity error detected.
error 1 = Parity error has been detected during reception.
detect Must be cleared in software by user.

Status bit. Read and clear access only.
Cleared to 0 on reset.

4 Framing 0 = Normal operation. No framing error detected.
error 1 = Framing error has been detected, i.e. invalid stop bit
detect received. Must be cleared in software by user.
(FERR) Status bit. Read or.clear access.

Cleared to O on reset.
6,5 | Data bits 00 = Selects 6 data bits.
select 01 = Selects 7 data bits.
(DNO,DN1) 10 = Selects 8 data bits.
11 = Selects 9 data bits.
Control bits. Write and read access.
Set to 10 on reset.
7 Receiver 0 = Normal operation. No overflow detected.
overflow 1 = Receiver buffer overflow detected. Both receive
registers (RSR and RBR) are full, and third data
error reception detected. Must be cleared in software
(ROV) by user.
Status bit. Read and clear access.
Cleared to O on reset.

8 Receive 0 = No framing error detected.
buffers 1 = Receive buffers full detected. Both receive
full registers/buffers RSR, RBR have just filled.
(BBF) New data word is fully received in RSR.

Status bit. Read and clear access.
Cleared to O on reset.

3-60

Architecture - Serial Port

Table 3-19. SCON Register Description (Continued)
BIT #| FUNCTION DESCRIPTION

9 Receive 0 = Protocol 1 disabled. Normal reception mode.
qualifier1 Receive interrupt, RXINT, generated to CPU every time
(RINTQ1) new data frame is clocked into RSR register.

1 = Interrupt CPU if MSB of receive word is 1.
Protocol 1 is enabled and normal reception mode is
disabled. Serial port is put in sleep mode. Receive
interrupt (RXTINT) is generated if MSB or last bit of
received word is 1 (indicating address reception).

Control bit. Write and read access.

Cleared to O on reset.

10 | Receive 0 = Protocol 2 disabled. Normal reception mode.
interrupt Receive interrupt (RXINT) generated to CPU every
qualifier2 time new data frame is clocked into RSR.

(RINTQ2) 1 = Interrupt CPU if receive word matches SMAT.
Protocol 2 is enabled and normal reception mode is
disabled. Serial port is put in sleep mode. Receive
interrupt (RXTINT) is generated if received word
matches value in SMAT (indicates serial port has
been addressed).

Control bit. Write and read access.
Cleared to O on reset.

1 Continuous 0 = Disables reception in asynchronous, synchronous slave
receive and codec modes. Disables continous reception in
enable. synchronous “master” mode.

(CREN) 1 = Enables reception/continuous reception. In the async,
codec, and synch "slave” modes this enables reception.
In the sync “master” mode, it enables continuous
reception.

Control bit. Write and read access.
Set to 1 on reset.

12 |Single 0 = Disables reception in sync "master” mode. Can be over-
receive ridden by CREN bit. In codec mode, sets frame sync
enable pulse generated by TMS320C14/E14 at one clock pulse
(SREN)/ wide.

Frame Synch 1 = Allows single word reception in sync "master” mode. In
pulse width the sync "master” mode,the receiver will receive exactly
(FSPW) one word, then reset this bit to 0 to disable further
reception. In the codec mode, sets frame sync pulse
generated by the TMS320C14/E14 at two clock pulses
wide
Control bit. Write and read access.
Cleared to O on reset.

3-61

Architecture - Serial Port

3-62

Table 3-19. SCON Register Description (Concluded)

BIT #| FUNCTION DESCRIPTION
13 | Clock source |0 = Internal clock/”"master” selected in sync mode.
(CSRC)/ Selects “master” in sync mode. Internal clock generator is
Frame sync used as clock source and output on TXD/CLKpin. In codec
pulse source mode, internal clock generator is used to generate frame
sync pulses. In addition to resetting this bit to zero, bits
11 and 12 of TCON must be set to 1 to configure FSX
and FSR pins as outputs.

1 = External clock/slave in synchronous mode. External clock
source is selected in sync mode and accepted on TXD/CLK
pin for both receive and transmit. This configures the
serial port as “slave” in sync mode. In the codec mode,
external frame sync pulses are selected. In addition to
setting this bit to 1, bits 11 and 12 of TCON register
must be set to 0 to configure FSX and FSR pins as outputs.
In addition, bits 8 and 12 of CCON must be set to 1 to
enable positive edge detection on FSR and FSX pins.

Control bit. Write and read access.

Cleared to O on reset.

14 | Codec 0 = Disables codec mode. Bit 0 of SCON configures serial port
mode as synchronous or asynchronous.

(CODEC) 1 = Selects codec mode. Configures serial port in codec
codec mode and overrides bit 0 of SCON.

Control bit. Write and read access.

Cleared to O upon reset.

15 | Transmit 0 = Transmit buffer not empty. Transmit buffer contains data
Buffer data that has not been transferred to transmit shift register.
empty. 1 = Transmit buffer empty. Transmit buffer is empty and ready
(TBE) to accept new data from the CPU.

Status bit. Read access only.
Set to 1 on reset.

To facilitate clearing and setting of individual bits in the SCON, two additional
registers (SCLR and SSET) are also provided (see Figure Figure 3-30). SCLR
and SSET function similarly to BCLR and BSET. They clear or set individual
bits in the SCON. A mask of ones written to SCLR will clear the corresponding
bits in the SCON. Bit positions in SCLR containing zeroes will not affect cor-
responding bits in the SCON. Similarly, SSET will set to one, all bits in the
SCON that have corresponding ones in SSET. Bit positions having zeroes will
not affect corresponding bits in the SCON. The SCLR and SSET have a bank
address of 5h and port addresses of 1h and 2h.

Architecture - Serial Port

15 [+]

L] I

(0)

SCON
REGISTER

(1)

15 0

SSET
REGISTER

(1

SCLR
REGISTER

L1

(1)

(1

Figure 3-30. SCON Register Control

Table 3-20 shows the basic configuration of the serial port after power-up or a reset.

Table 3-20. Serial Port Key Default Settings

PARAMETER DESCRIPTION
Mode Synchronous
Parity None

Word Length 8 Data bits
Reception Continuous
Clock Internal

3.8.2 Serial Port Baud Rate Generator

The serial port baud rate generator provides internal baud rate generation for
the asynchronous and synchronous modes. It is not required for the codec
mode, or for synchronous ‘slave’ operation. If the baud rate generator is not
required for clock/baud rate generation, it can be used as a general-purpose
timer (refer to Section 3.5.3) with it's own interrupt. When used for baud
rate/clock generation, bit 12 of the interrupt mask (IM) register should be
masked.

The baud rate generator has a 16-bit register (STMR), refer to Figure 3-31,
and baud rate generation register (SBRG), and uses CLKOUT as the input.
The SBRG register holds a user-installed value that is used in generating the
baud rate.

3-63

Architecture - Serial Port

3.8.2.1 Asynchronous Baud Rate Generation

The asynchronous baud rate is computed as follows:
Baud Rate=CLKOUT frequency
16 x (K+1)
K =value stored in the SBRG register
CLKOUT=CLKIN / 4

The maximum transmission/reception rate is CLKOUT/16, or 400 KHz at
25.6 MHz CLKIN frequency. The following table gives the K values that have
to be stored in the SBRG register to obtain the standard baud rates and the
deviations from those rates. These calculations use the maximum osciilator
frequency of 25.6 MHz.

Table 3-21. SBRG Value For Standard Baud Rates

Desired SBRG Value Actual
Baud Rate (K) Baud Rate
19.2 Kbps 0014h 19.048 Kbps
9600 bps 0028h 9756.00 bps
4800 bps 0052h 4819.00 bps
2400 bps 00A6h 2395.20 bps
1200 bps 014Ch 1201.20 bps
300 bps 0534h 300.07 bps
110 bps 0E33h 110.011 bps

NOTE: All K values in hex.

The maximum baud rate is obtained when K = 0. The minimum baud rate is
generated when the value 65535 (FFFFh) is stored in the SBRG register. The
percentage deviation (Pcd) is computed as follows:
Pcd = (Actual rate - desired rate) / desired rate
3.8.2.2 Synchronous Baud Rate Generation

In the synchronous mode, the rate of the transmitted clock signal is computed
by the following formula:

Baud Rate= CLKOUT frequency
K+ 1

K=value stored in SBRG register

CLKOUT=CLKIN / 4

3-64

Architecture - Serial Port

3.8.3 Asynchronous Mode

The asynchronous mode is selected by clearing bits 0 and 14 of the SCON to
0. This is a full-duplex mode, with data being transmitted on the TXD/CLK
pin, and data received on the RXD/DATA pin. Figure 3-31 shows the archi-
tecture of the serial port for asynchronous communication.

INTERNAL DATA BUS (16)

A

[RECEIVE BUFFER REGISTER (RBR) (SL]

RD RBR EMPTY/
RSR RSR FULL

- P RXD/DATA
cLockout RXINT—{ RECEIVE SHIFT REGISTER (RSR) (9) | PIN
RECEIVE SHIFT CLOCK | START BIT OKAY/
RSR EMPTY
SERIAL DIVIDE
PORT BY16 | | NEG. EDGE DETECT
BAUD
RATE DIVIDE
GENERATOR BY 16
Y START BIT
STOP BIT
TXINT—| TRANSMIT SHIFT REGISTER (TSR) (9) PARITY BIT TXD/CLK PIN
RD TSR EMPTY/ DATABIT
TSR TBR FULL SEQUENCE
LTRANSMIT BUFFER REGISTER (TBR) (9)J CONTROL
WR
TBR TBR

INTERNAL DATA BUS (16)

Figure 3-31. Serial Port in Asynchronous Operation

In the asynchronous mode, data is transmitted on a character-by- character
basis, with each data frame containing a start bit, 6-9 data bits, a parity bit (if
parity is enabled), and a stop bit. Both the transmit and receive sections are
double-buffered to allow continuous transceiving. The serial port timer pro-
vides the transmit and receive register clock signals, as well as the baud rate.

3-65

Architecture - Serial Port

3.8.3.1 Asynchronous Transmission

-~

3-66

The transmit section consists of a 9-bit Transmit Shift register (TSR) and a
9-bit Transmit Buffer register (TBR). Data is always written to the TBR, and
then transferred to the TSR. Data to the TBR should be written in right-just-
ified form, irrespective of the number of the bits to be transmitted. It is pos-
sible to directly read the TSR. It is not possible to write to the TSR directly.
Data from the TSR is shifted out on pin TXD/CLK. The TXD/CLK pin is held
at 1 while the serial port is not transmitting. Figure 3-32 shows an asyn-
chronous 8-bit data for transmission with parity.

TBR SHIFTED
TO TSR

START DATA DATA DATA DATA DATA PARITY STOP
BIT 1 BIT 2 BIT 3 BIT 7 BIT 8 BIT BIT

Figure 3-32. Asynchronous Transmission of Eight Bits Plus Parity

Transmission in the serial port is started by writing data to the TBR. If the TSR
is empty, data from the TBR is transferred to the TSR. If the TSR is full, then
data is kept in the TBR, and existing data in the TSR is shifted out to the Se-
quence Control logic. At the same time, bit 15 in the SCON register is cleared
to O to indicate the TBR is not empty. If both the TSR and TBR are full and
the CPU tries to write to the TBR, the write is not allowed to take place, and
existing data in both registers are maintained. The Sequence Control logic
constructs the transmit frame by outputing a start bit followed by the data bits
from the TSR, and a parity bit is then added (if required). As soon as the last
data or parity bit has left the TSR, TXINT is generated to the CPU, indicating
a frame has been sent.

The TSR has a bank address of 7h and a port address of 3h. The TBR has a
bank address of 5h and a port address of 3h.

Summary of Asynchronous Mode Transmission:

1) Asynchronous mode is enabled by clearing bit 0 of SCON to 0, and
setting bit 11 to 1.

2) Transmission begins by writing data to TBR. If TSR is empty, this data
is transferred to TSR.

3) Start bit is transmitted first, followed by 6 to 9 data bits (LSB through
MSB).

4) If parity is enabled, parity bit is added after MSB.

Architecture - Serial Port

5) Stop bit is shifted out and TXINT is generated, indicating end of trans-
mission.

3.8.3.2 Asynchronous Reception

The receive section includes two 9-bit registers: the Receive Buffer register
(RBR) and Receive Shift register (RSR). Data is received on the RXD/DATA
pin and the Negative Edge Detect logic samples the input for a start bit on the
7th, 8th, and 9th sampling pulse following a detected falling edge (Figure

3-33).
FALLING
EDGE MAJORITY MAJORITY
DETECTED \ VOTE VOTE
SCI CLK
: : 123456 7 8 9101112131415161 2 3 4 56 6 7 8 910111213141516 1
a0 |! R | KR! X

START BIT LS BIT OF DATA

Figure 3-33. Start Bit Detection

A majority vote of O by the three sample pulses results in the data being loaded
into the RSR. If the majority vote is 1, the data is not accepted, and the sam-
pling continues until a start bit is detected.

After the appropriate number of data bits are received (i.e. 6-9 bits), parity is
computed on the data bits (if parity is enabled) and compared with the re-
ceived parity bit. If the computed parity does not match with the received
parity, a parity error is indicated by setting a flag (i.e. bit 3 of SCON regis-
ter-PERR), to a 1. Normal reception will continue. The user is responsible for
checking this bit and clearing it. PERR (parity error) is also double buffered.
This means when both buffers are full and PERR is raised, the data in RBR
has a parity error. If data in RSR also has a parity error, PERR will be raised
again when data is transferred from RSR to RBR.

After the parity bit is received, a stop bit is received, indicating the end of that
block. If a stop bit is not received, a framing error is indicated by the setting
of bit 4 (FERR) in SCON to a 1. Normal reception will continue, and the re-
ceiver will look for the next start bit. The user is responsible for checking this
bit and clearing it. Data is then transferred to the RBR and interrupt RXINT
is routed to the CPU (Figure 3-34). The RSR is now available to receive an-
other data block, and the Negative Edge Detect logic is activated again.

3-67

Architecture - Serial Port

N

START
BIT

STOP BIT
DETECTED

DATA
BIT

3-68

DATA DATA DATA DATA PARITY STOP
BIT 2 BIT 3 BIT 7 BIT 8 BIT BIT

RSR SHIFTED
TO RBR, RXINT
GENERTATED

Figure 3-34. Asychronous Reception of Eight Bits Plus Parity

If RBR is not empty when new data has just been received in the RSR, an error

flag,

BBF (both buffers full) is set in SCON. In this case, data from RSR will

not be transferred to RBR and all further reception will be disabled. Existing

data

will be maintained in both RSR and RBR until the user reads RBR.

Reading RBR will automatically clear the BBF flag, and data in the RSR will
be transferred into RBR, thus allowing further reception. RSR has a bank ad-
dress of 7h, and a port address of 4h. RBR has bank address of 5h, and a
port address of 4h.

Summary of Asynchronous Mode Reception:

1)

2)

3)

4)

5)
6)

7)

A negative edge is received to indicate a start bit. A test is done to indi-
cate whether start bit is valid or not. If invalid, start bit reception is dis-
continued.

If start bit is valid, appropriate number of data bits (as specified by the
SCON register) are shifted into RSR.

(Optional). Parity is computed on the data bits, and a parity bit is re-
ceived. Computed parity is compared with received parity. |f different,
parity error is indicated.

A stop bit is received to indicate end of reception. If stop bit is not re-
ceived, framing error is indicated.

An interrupt is generated to the CPU.

Data is transferred from RSR to RBR. If RBR is full, a flag is set (both
buffers full-BBF).

Reception is complete, receiver waits for another negative transition.

Architecture - Serial Port

3.8.4 Synchronous Mode

The synchronous (sync) mode is selected by setting bit O of SCON to 1, and
clearing bit 14 of SCON to 0. The Sync mode is half duplex, with one line
used for transceiving data, and another line for the clock signal. The clock
signal, (provided internally or externally) is used for synchronization between
the transmitter and receiver instead of start and stop bits. The master or slave
mode is selected by bit 13 (CSRC) of SCON. Figure 3-35 shows the archi-
tecture for the serial port in synchronous communication.

INTERNAL DATA BUS (16)

e

[RECEIVE BUFFER REGISTER (RBR) (Q)J

RD RBR EMPTY/
RSR RSR FULL
cLockouT | RECEIVE SHIFT REGISTER (RSR) (9) '::;DIDATA
RECEIVE SHIFT CLOCK

SERIAL REN/RSR EMPTY

PORT 0 MUX , \ CSRC/REN

BAUD TSRC

RATE | iNTERNAL cLock N TXDICLK
GENERATOR 1 PIN

(SBRG) & EXTERNAL CLOCK

{STMR)

Y TRANSMIT SHIFT CLOCK

l TRANSMIT SHIFT REGISTER (TSR) (9)

RD TSR EMPTY/
TSR TBR FULL
[TRANSM|T BUFFER REGISTER (TBR) (9)]
RD WR
TBR TBR
INTERNAL DATA BUS (16) 8

Figure 3-35. Serial Port in Synchronous Operation

Basically, the architecture of the serial port for the sync mode is the same as
for the async mode. Both transmit and receive sections are doubled-buffered
to allow continuous transceiving. The data, however, is transmitted and re-
ceived on the same (RXD/DATA) pin. The TXD/CLK pin is used for either
transmitting or receiving the clock signal. The maximum allowable clock rate

3-69

Architecture - Serial Port

is 6.4 Mhz when internal clock is selected. The synchronous data block can
contain from 6-9 bits with an optional parity bit. Start and stop bits are not
used. The number of data bits and whether or not parity is enabled are options
controlled by the SCON register.

3.8.4.1 Master/Slave Operation

The synchronous mode requires that the serial port be configured as either a
master or slave. Configured as the master, the serial port’s baud rate generator
provides the clock signal for transmission and and reception.

In slave operation the clock signal is provided externally from the external de-
vice. Master/slave operation is controlled by bit 13 of the SCON register.

3.8.4.2 Synchronous Transmission

3-70

The transmit section is double-buffered and consists of two 9-bit registers:
transmit shift register (TSR) and transmit buffer register (TSR). Data is always
loaded into TBR in right-justified form, and shifted out from TSR on the
RXD/DATA pin. This pin is held at logic 1 when no transmission is taking
place. If master mode or internal clock is selected, the TXD/CLK pin is held at
logic one when no transmission is taking place.

Before synchronous transmission can begin, it must be enabled by resetting
bits 11 and 12 of the SCON register to 0. Synchronous transmission begins
when the CPU writes data into the TBR. In slave operation, this should occur
before the arrival of the first rising edge of external clock. This is to prevent
the receiving device from reading an erroneous 1, since the RXD/DATA pin is
held at logic 1 during no transmission. If the TSR is empty, the data in the
TBR is transferred immediately to TSR. If TSR is full, then this data is retained
in TBR and the existing data from TSR is shifted out (Figure 3-36 and Figure
3-37). If both TBR and TSR are full and the CPU tries to write data to TBR,
the write is not allowed to take place, and existing data in both registers are
maintained.

Transmission is controlled by the presence of the clock signal on the CLK pin.
Single or continuous data transmission is possible as shown in Figure 3-36
and Figure 3-37 respectively depending on the termination or continuation of
the clock signal.

With internal clock, a continuous update of TBR on each TXINT will cause the
port to operate in continuous fashion. If the TBR is not updated, data transmit
and clock will stop after the last bit in TSR is output.

With external clock, a continuous clock source will cause the TBR to transfer
to the TSR at the end of each data word. The same data word will continue
to be transmitted if the TBR is not updated.

Architecture - Serial Port

CLK L-“—J
TBR SHIFTED TO TSR
| TXINT GENERATED
f (
DATA \BI‘I‘ 1 >< BIT 2 X)>< BIT 7 XBIT 8/
£
)

Figure 3-36. Master Mode Single Synchronous Transmission with 8 Data Bits,
No Parity

TBR SHIFTED TO TSR
TXINT GENERATED

g . TBR SHIFTED TSR
LSB MSB | TXINT GENERATED
DATA X BT X BIT 2X BIT3 X >< BIT 7X BIT 8 X BIT 9
|
|

Figure 3-37. Synchronous Continuous Transmission with 9 Data Bits, No Parity

Data is shifted out from the TSR on the rising edge of internal or external clock
and transmitted on the RXD/DATA pin. At this time, maskable interrupt TXINT
is generated to the CPU. Six to nine data bits are transmitted with an optional
parity bit, and without start and stop bits.

Summary of transmission in Synchronous Mode:

1) Synchronous mode is enabled by setting bit 0 of SCON to 1, and bit 14
of SCON to 0.

2) Master mode is selected by selecting internal clock, and slave mode is
selected by selecting external clock.

3) Transmission is enabled by resetting bit 11 and 12 of SCON register to
0.

3-71

Architecture - Serial Port

4) Transmission begins by writing data to TBR. If TSR is empty, this data
is transferred to TSR.

5) Data is shifted out on next rising edge of internal/external clock, LSB
first.

6) 6 to 9 bits of data are transmitted with an optional parity bit.

7) An interrupt (TXINT) is routed to the CPU when the last bit is shifted
out.

8) If a write to TBR has been done, i.e. it contains new data, it is transferred
to TSR, and new transmission begins.

3.8.4.3 Synchronous Reception

The receive section is double buffered and consists of two 9-bit registers:
Receive Shift Register (RSR) and Receive Buffer Register (RBR). Data is
clocked into RSR on the RXD/DATA pin, and always read from RBR in
right-justified form. If data is less than 9 bits, the upper bits are read as zeroes.

Reception is enabled by setting either of the two receive enable bits (bit 11-
CREN) or bit 12-SREN of SCON to 1. CREN allows continous reception
(refer to Figure 3-38), while SREN allows a single reception only (refer to
Figure 3-39). After reception is enabled, data is sampled on the falling edge
of the internally generated clock. Data is shifted in on the RXD/DATA pin into
RSR. 6 to 9 data bits are accepted with an optional parity bit. When the
complete word is received, the contents of RSR are transferred to RBR and
an RXINT to CPU is generated (refer to Figure 3-38 and Figure 3-39).

RSR SHIFTED TO RBR ! RSR SHIFTED TO RBR
RXINT GENERATED LsB Mse / RXINT GENERATED
DATA 3 X o1 X ar2 X a3 X & 7X BIT 8 Xarr 9 X Biro
|
I

3-72

Figure 3-38. Synchronous Reception with 9 Data Bits, No Parity

Architecture - Serial Port

CLOCK

DATA

RSR SHIFTED TO RBR
RXINT GENERATED

, N

\f\a.nxmx f:xa.nxm/

Figure 3-39. Master Mode Single Synchronous Reception with 8 Data Bits, No

Parity

If the Receive Buffer register (RBR) is full and another word is received in the
RSR register, the BBF (both buffers full) bit is set in the SCON. In this case,
contents of RSR will not be transferred into RBR, and both registers will
maintain existing data. However, no further reception will be allowed, and all
new data coming into the RXD/DATA pin will be ignored. To allow further
reception, the RBR must be read by the user. This will automatically clear
BBF, and contents of RSR will be transferred into RBR. This will then allow
RSR to receive new data.

If additional data is detected on the RXD/DATA pin when both buffers are full
(i.e. BBF is 1), ROV (receive overflow flag bit-7), of SCON is set. This indi-
cates that incoming data has been lost. The user must clear this by software.
If the received parity does not match the computed parity on the received
word, PERR (parity error bit-3), in SCON is set to 1. Again, the user must
clear this by software. PERR is also double-buffered. When both buffers are
full and PERR flag is raised, the data in RBR has a parity error. If data in RSR
also has parity errors, then PERR will be set again when that data is transferred
from RSR to RBR.

Master Receive. In master mode, it is possible to have either continous
reception or receive only a single word. If bit 12 (SREN) of SCON is set to
one, only a single word is received. After receiving the single word, the
hardware disables further reception by automatically clearing SREN to O, and
also disables the clock in the master receive mode. Reception will remain
disabled until the user enables reception. SREN can also be reset to O in the
middle of a reception to abort that reception. If continous reception is re-
quired, bit 11 (CREN) of SCON register is set to 1. If both SREN and CREN
bits are set to 1 (both continous and single reception enabled) CREN takes
precedence over SREN and continous reception occurs. In continous recep-
tion mode, data words are received continuously without any break. Maskable
interrupt RXINT is generated after receiving each data word. CREN is never
reset by hardware. The user has to reset it to disable reception.

3-73

Architecture - Serial Port

S/ave Receive. In slave mode, reception is enabled only by setting CREN
(bit 11) of SCON to 1. The SREN bit has no affect in slave mode. After ena-
bling, receive data is sampled on the falling edge of external clock. Data is
shifted in on the RXD/DATA pin into RSR. When the complete block (6-9
bits) is received, the contents of the RSR are transferred to the RBR and in-
terrupt RXINT is routed to the CPU.

Summary of Reception in Synchronous mode

1) Synchronous mode is enabled by setting bit 0 of SCON to 1, and bit 14
of SCON to 0.

2) Master or slave mode is enabled by selecting internal or external clock
- with bit 13 of SCON. :

3) Reception is enabled by setting bit 11 of SCON to 1 in slave mode, and
bit 11 or bit 12 of SCON in master mode.

4) Reception starts on next falling edge of internal/external clock, LSB first.
5) 6 to 9 data bits are received with an optional parity bit.

6) RXINT is generated to the CPU, and computed parity on received data
is compared against received parity. If different, PERR is set in SCON.

7) Received word is transferred from RSR to RBR. If RBR contains data,
BBF (both buffers full) is set in SCON.

8) If transfer to RBR is successful, and continous reception is enabled, RSR
is ready to receive new data. Otherwise reception is stopped until RBR
is read and/or reception is enabled.

3.8.5 Codec Mode

3-74

Codec (COmpanding and DECompanding) mode is selected by setting bit 14
of SCON to a 1. Bit O of SCON is ignored if bit 14 is set to 1. The codec
mode is full-duplex and allows a direct interface with industry standard codecs
like the TCM29C13. Codec supports the communication industry standard
protoco! of PCM (pulse code modulation). In the codec mode (see Figure
3-40), data is transmitted on the TXD/CLK pin and received on the
RXD/DATA pin. Codec mode uses external clock for both transmitting and
receiving, so the serial port baud rate generator is not required for baud rate
generation. The transmit clock (CLKX), is accepted on pin TCLK2/CLKX,
while the receive clock (CLKR), is accepted on pin TCLK1/CLKR.

Architecture - Serial Port

RECEIVE
FRAME SYNC | caP2/CMP4
PULSE - FSR
INTERNAL DATA BUS (16) DETECTION/ | pin
GENERATION
RBR RBR RSR
: : EMPTY REN
[ReceIve BUFFER REGISTER (TABR) (9) |
ed RBR EMPTY/
RSR FULL
| RECIEVE SHIFT REGISTER (RSR) (9) } <] R D/DATA
t ECEIVE
RECEIVE SHIFT CLOCK OLKA/CLKR
+ TRANSMIT SHIFT CLOCK TOLK2/CLKX
[TRANSMIT SHIFT REGISTER (TSR (9) | > :::“D’ CLk
AD TSR EMPTY/
TSR TBR FULL
ITRANSMIT BUFFER REGISTER (TER) (9) |
WR TSR
18R TBR FULL
TRANSMIT
TA BUS (16
% INTERNAL DATA BUS (16) 0 FRAME SYNC | capaicmps
PULSE | Fsx
DETECTION/ | piN
GENERATION

Figure 3-40. Serial Port in Codec Operation

In addition to external clocks, the codec mode also needs frame sync pulses.
Frame sync pulses can be internally generated or accepted from external
sources. The transmit frame synchronization pulse (FSX), is accepted or out-
put on pin CMP5/CAP3/FSX, and the receive frame synchronization pulse
(FSR), is accepted or output on pin CMP4/CAP3/FSR. SCON bit 13 selects
between internal or external frame sync pulses. If bit 13 is 1, external frame
sync pulse is selected. In addition to setting bit 13 of SCON to 1, bits 11 and
12 of TCON must be set to 0, to configure pins CMP5/CAP3/FSX and
CMP4/CAP2/FSR as Schmidt trigger inputs. Also, bits 8 and 9, and bits 12
and 13 of CCON must be set to 10 to enable positive edge detection on these
pins.

Internal frame sync pulses are selected by setting bit 13 of SCON to a 0. Bits
11 and 12 of TCON must be set to 1 to configure pins CMP5/CAP3/FSX and

3-75

Architecture - Serial Port

bit 12 of SCON. The frame sync pulse is one clock pulse wide if bit 12 is 0,
and two clock pulses wide if bit 12 is 1. |If external frame sync pulse is se-
lected, than bit 12 of SCON is ignored and the width of the frame sync puise
is determined by the width of the external frame sync pulse.

Both transmit and receive sections are double-buffered and continous
transmission/reception is possible. The maximum transmission/reception rate
in codec mode is CLKOUT/4. A higher rate of CLKOUT/3 is possible. To
achieve this rate, the transmit and receive clocks must be synchronized with
the CLKOUT of the TMS320C14/E14. Six to nine bits of data are allowed in
the codec mode, with an optional parity bit. In the codec mode, the MSB is
transmitted/received first, unlike the sync and async modes which
transmit/receive LSB first.

3.8.5.1 Codec Transmission

CLKX

FSX _—/—_—\

The transmit section consists of two 9-bit registers: Transmit Shift register
(TSR) and Transmit Buffer register (TSR). Transmission begins after the CPU
writes to TBR, and a transmit frame sync pulse (FSX) occurs. If TSR is empty,
this data is transferred to the TBR. Otherwise existing data in the TSR is
shifted out. Data is transmitted MSB first.

Data is shifted out upon detection of the first rising edge of external clock
(CLKX) following receipt of the rising edge of external FSX (frame sync pulse)

as shown in Figure 3-41

TSR TO TBR,

TXINT GENERATED
FSX MSB

Txp DETECTED :>< BIT sX BIT 7>< BIT e><:: X BT z>'< BI;:B1 X

3-76

Figure 3-41. Codec Transmit Timing for External Framing

If internal FSX is used, then the data is shifted out on the first rising edge of
external clock after TBR has been written to. The data bits are shifted out with
an optional parity bit. When the last bit is shifted out, TXINT is generated to
the CPU.

To start transmission in codec mode, the TBR has to be written to, and the
frame sync pulse (FSX), has to be detected. FSX is detected by its positive
edge. If TBR has not been written to by the CPU and FSX is detected, no
transmission takes place. Alternatively if FSX is not detected while TBR is
written to, transmission will not take place. The user is responsible for insur-
ing TBR is written to before arrival of FSX. If internal frame sync is selected,
then FSX will be generated as soon as TBR is written to.

Architecture - Serial Port

Summary of Transmission in Codec mode:
1) Codec mode is selected by setting bit 14 of SCON to 1.
2) Internal or external FSX is selected with bit 13 of SCON register.

3) If external FSX is selected, the bit 12 of TCON is set to O to configure
pin CMP5/CAP3/FSX as input. Bit 12 of CCON register is set to 1 to
detect positive edge.

4) If internal FSX is selected, the width of FSX is determined by bit 12 of
SCON. Bit12 of TCON is set to 1, to configure pin CMP5/CAP3/FSX
as an output.

B) A data word is written to TBR. If TSR is empty, this data is transferred
into TSR, otherwise existing data in TSR will be transmitted.

6) If internal FSX is selected, transmission begins on the next rising edge
of external clock CLKX.

7) If external FSX is selected, transmission begins on the next rising edge
of external clock CLKX, following detection of a rising edge on
CMP5/CAP3/FSX pin.

8) 6 to 9 data bits are transmitted followed by an optional parity bit.

9) TXINT is generated to the CPU, and new transmission will begin after
TBR is written to.

10) If TBRis already written to, then its data is transferred to TSR. If internal
FSX is selected, new transmission will begin on next rising edge of ex-
ternal clock. If external FSX is selected, new transmission will begin af-
ter rising edge of FSX is detected.

3.8.5.2 Codec Reception

The receive section consists of two 9-bit registers; Receive Buffer Register
(RBR), and Receive Shift Register (RSR). Reception is enabled by setting
bit 11 (CREN) in SCON to 1. Data is shifted in to the RSR register on the
RXD/DATA pin on the falling edge of CLKR. The external clock is accepted
on pin TCLK1/CLKR. Reception is started after a frame sync pulse (FSR) is
detected on pin CMP4/CAP2/FSR. Data is received with MSB first.

The selection of internal or external frame sync is common to both transmit
and receive sections. If internal FSR (frame sync) is selected, it is output on
pin CMP4/CAP/FSR. The width of FSR is controlled by bit 12 of SCON .
FSR is sent out on the first positive edge of external clock, after reception is
enabled by setting bit 11 (CREN) of SCON to a 1. Data is shifted in upon
detection of the second negative edge of external clock following the positive
edge of FSR.

If external FSR is selected, bit 13 of SCON must be set to 1.
CMP4/CAP2/FSR pin must also be configured as input by setting bit 11 of
TCON to 0, and bits 8 and 9 of CCON register must be set to 10 to enable
positive edge detection. Once reception is enabled, data is shifted in on the

3-77

Architecture - Serial Port

CLKR

=/ N\

RXD

3-78

second negative edge of external clock (CLKR), following the rising edge of

FSR as shown in Figure 3-42.
. [

RSR TO RBR,
RXINT GENERATED

FSR MSB

bETECTED :}E@T NCDC .«,)CD@T 2 Xan:)\<

Figure 3-42. Codec Receive Timing for External Framing

The data bits (6-9) are shifted into RSR on successive negative edges of
CLKR via the RXD/DATA pin. The data bits are followed by an optional parity
bit. After data is shifted into RSR the RXINT is generated to the CPU. If RBR
register is empty, the contents of RSR are transferred into RBR.

If RBR is already full, BBF (both buffers full), is set in SCON. In this case
contents of RSR will not be transferred into RBR, and both registers will
maintain existing data. No further reception will be allowed, and all new data
coming into the RXD/DATA pin will be ignored. To allow further reception,
RBR must be read by the user. This will automatically clear BBF and contents
of RSR will be transferred into RBR, allowingl RSR to receive new data.

If an additional FSR pulse is detected when both buffers are full (i.e. BBF is
1), (ROV, receive overflow flag- bit 7), of SCON is set, indicating incoming
data has been lost. The user must clear ROV with in their software.

If the received parity does not match the computed parity on the received
word, (PERR (parity error-bit 3), in SCON is set to 1. The user must clear this
in their software. PERR is also double buffered. When both buffers are full
and PERR is set, the data in RBR has a parity error. If data in RSR also has
parity errors, then PERR will be set again when that data is transferred from
RSR to RBR .

Summary of Reception in Codec Mode
1) Codec mode is selected by setting bit 14 of SCON to 1.
2) Internal or external FSR is selected with bit 13 of SCON

3) If external FSR is selected than bit 11 of TCON register is set to O to
configure pin CMP4/CAP2/FSR as input, and bit 8 of CCON register
is set to 1 to detect positive edge.

4) If internal FSR is selected than width of FSR is determined by bit 12 of
SCON register. In addition bit 11 of TCON register must be set to 1 to
configure pin CMP4/CAP2/FSR as an output.

5) Reception is enabled by setting bit 11 (CREN) of SCON register to 1.

Architecture - Serial Port

6) If internal FSR is selected, FSR is output on the first rising edge of ex-
ternal clock, and reception begins on the second falling edge of external
clock CLKR.

7) If external FSR is selected, reception begins on the second falling edge
of external clock CLKR, following detection of a rising edge on
CMP4/CAP2/FSR pin.

8) Six to nine data bits are received followed by an optional parity bit.

9) Interrupt RXINT is generated to the CPU, and computed parity on re-
ceived data is compared against received parity. If different PERR (bit
3 of SCON) flag is raised.

10) Received word is transferred from RSR to RBR. If RBR contalns data, a
flag (BBF, both buffers fuli) is raised in SCON.

11) If transfer to RBR is successful, and continous reception is enabled, RSR
is ready to receive new data. Otherwise, reception is stopped until RBR
is read and/or reception is enabled.

3.8.6 Communication Protocols

Besides supporting the regular transmission/reception (no protocol), the
TMS320C14/E14 supports two communication protocols. These protocols
are used for inter-processor communication and allow the processor to ig-
nore all reception until it is being addressed by another device. The first
communication protocol, address detect, allows the TMS320C14/E14 to ig-
nore all reception until it detects an address reception. The serial port then
wakes up and allows the user tc determine via software if the right address
was received or not. The second communication protocol, address match
allows the serial port to actually match the incoming address with its own
address (stored in SMAT register). If the addresses match, the serial port
wakes up. If not, all reception is ignored. The communication protocols are
selected by bits 9 and 10 of the SCON register.

3.8.6.1 Address Detect Protocol/

Address Detect allows the processor to detect when an address is being re-
ceived in the serial port. This protocol is enabled by setting bit 9, RINTQ1
(Receive interrupt qualifier 1), of the SCON register to 1. This protocol re-
quires that 9-bit data transmission be used. The 9th bit or MSB is used to
determine whether address or data is being transmitted. If the 9th bit equals
0, this indicates data is being received, and the serial port ignores the recep-
tion. Although data is being shifted into the RSR register, no interrupt is

- generated to the CPU (i.e. RXINT). If the 9th bit equals 1, interrupt RXINT
is generated indicating that an address is being received (see Figure 3-43).

3-79

Architecture - Serial Port

3-80

EXTERNAL | INTERNAL

BIT

BIT 9 DETECTED
COUNTER ! }——A—RXlNT
RXD/
PIN

Figure 3-43. Serial Port Using Address Detect Protocol

Upon detection of an address, the serial port wakes up and generates interrupt
RXINT to the CPU. The user’s software then matches the received address
with its own address. If the address does not match, the serial port is allowed
to remain in sleep mode. If a match is indicated, the user’s software will have
to put the serial port in a wake up by setting bit RINTQ1 to O, disabling the
communication protocol. This allows reception of data. When the complete
message is received, the RINTQ1 bit can again be set to 1, enabling the
protocol and putting the serial port back in a sleep mode. Data is shifted in
with the rising edge of the signal. Every ninth clock bit is detected to deter-
mine whether the received bits are address or data (see Figure 3-44).

EXTERNAL | INTERNAL
SCOPIJ 5,6

BIT ALL DATA BITS RECEIVED
COUNTER

|
|
I
|
|
|
|
|
1

— RXINT

COMPARATOR }

Figure 3-44. Address Detect Reception

The address detect protocol can be used in all three modes; synchronous,
asynchronous, and codec modes. However, when this protocol is used,

parity must be disabled. The receiver assumes that no parity is being sent
along with data.

Architecture - Serial Port

Summary of Address Detect Protocol:
1) 9 data bits are selected, and parity is disabled.

2) Serial port mode (Synchronous, Asynchronous, or Codec) is selected
and reception is enabled.

3) Protocol 1 is selected by setting RINTQ1 bit (bit 9 of SCON) to a 1, also
putting serial port in a sleep mode.

4) Data is clocked into the RSR register. The MSB (9th bit) is checked to
seeifitisOoran.

5) If msbis 0, incoming word is assumed to be data and nothing happens.
Serial port continues in sleep mode.

6) If msb is 1, incoming word is detected as address and interrupt
RXINT, is generated to the CPU.

7) User software looks at incoming address and decides whether to wake
up or continue sleeping.

8) If it decides to continue sleeping, nothing is done, and serial port
will ignore all data clocked in, till another address is detected.

9) If user decides to wake, RINTQ1 (bit 9), of SCON register is set to O.

10) Normal reception is enabled, and data is clocked into RSR, generating
interrupt RXINT each time a word is shifted in.

11) User determines that full message is received and goes back to sleep
by setting RINTQ1 bit back to 1, and enabling protocol.

3.8.6.2 Address Match Protocol

Address Match protocol allows the serial port to actually match an incoming
address to determine if another device wants to communicate with it. This
protocol is enabled by setting bit 10 (RINTQ2 bit) of SCON register to a 1.
Address match requires that an address be written to a 9-bit sync match reg-
ister called SMAT. The incoming word is matched against the value in the
SMAT register (see Figure 3-45 and Figure 3-46). If a match is detected,
the serial port determines that it is being addressed, and "wakes up”. It then
generates interrupt RXINT to the CPU. If no match is detected, then data
clocked into RSR register is discarded and the serial port remains in the sleep
mode.

3-81

Architecture - Serial Port

EXTERNAL | INTERNAL

CLOCK |

lI scor;n 5.6
l BIT ALL DATA BITS RECEIVED
i | counter
RXD/ |
DATA— ¢ { RsR
PIN |
|
|
|
|
)

— RXINT

COMPARATOR |

Figure 3-45. Serial Port Using Address Match Protocol

Once an address match is detected, the serial port wakes up by generating an
interrupt to the CPU. The user then has to put the serial port in the normal
reception mode. This is done by resetting RINTQ2 bit (bit 10) of SCON to a
0. Data will now be clocked into the RSR register, generating interrupt RXINT
every time a complete word is received. When the complete message is re-
ceived, the user can put the serial port back into sleep mode by setting
RINTQ2 bit back to 1. Address Match can be used in all three modes of the
serial port. It does not require parity to be disabled. Address Match also does
not require that the full 9-bit data length be used. If the value written into the
SMAT register is less than nine bits, the value must be right-justified, and the
remaining upper bits must be zeros. Note that to generate a unique address,
the number of bits in the address frame must exceed the number of bits in the

data frame.

RXD >< BIT 1 ><7BIT ZX BIT 3 >< X BIT 8 XPARITYX
RSR COMPARED
NOTE: If RSR = SMAT, RXINT is generated. WITH SMAT

3-82

Figure 3-46. Address Match Reception

Architecture - Serial Port

Note:

In codec mode, the user must insure that the value written into the SMAT
register is in the reverse order (i.e.,the MSB is swapped with the LSB,
etc.). This is required because while the SMAT register assumes the
standard protocol of LSB transmitted or received first, the codec mode

transmits/receives the MSB first.

The SMAT register has a bank address of 7h, and a port address of 2h.

Summary of Address Match Protocol

1)
2)
3)

4)

5)
6)

7)

8)

9)
10)

11)

12)

User selects synchronous, asynchronous, or codec modes.
Parity and number of data bits are selected.

Serial port address (up to 9 bits) is written into SMAT register. If
codec mode was selected, then bits are swapped with msb written into
Isb of SMAT etc.

Protocol 2 is enabled by setting RINTQ2 bit in SCON to 1, also putting
serial port in a sleep mode.

Redeption is enabled.

Data is shifted into the RSR register and is compared against the SMAT
register.

If a match does not occur, the data is discarded and serial port remains
in sleep mode.

If a match occurs, the serial port wakes up and generates an interrupt
(RXINT) to the CPU.

User resets RINTQ2 bit to 0 enabling normal reception.

Data is clocked into RSR generating an interrupt RXINT, every time
a complete word is received.

User determines that complete message has been received and puts the
serial port back to sleep mode by setting RINTQ2 bit back to 1.

Serial port waits for another address match.

3-83

Architecture - Serial Port

3-84

Section 4

Assembly Language Instructions

The instruction set of the TMS320C14/E14 processors supports numeric-in-
tensive signal processing operations, such as high-speed control, as well as
general-purpose applications. The instruction set shown in Table 4-2 consists
primarily of single-cycle, single-word instructions, permitting execution rates
of up to 6.25 million instructions per second. Only infrequently used branch
and 1/0 instructions are multicycle.

To support DSP operations, this instruction set, which is essentially the same
for all TMS320C1x devices, includes a single-cycle multiply. For ease of use
in Harvard architecture, table read (TBLR) and table write (TBLW) in-
structions are provided, which allow information transfer between data and
program memory. The IN and OUT instructions permit a data word to be read
into the on-chip RAM from peripherals in only two cycles. The SUBC (con-
ditional subtract) instruction performs the shifting and conditional subtraction
necessary to implement a divide efficiently and quickly.

Based on TMS320C10 archetecture, the TMS320C14/E14 is software com-
patible with the TMS320C1x family, so that software tools may be shared.
This section describes the TMS320C14/E14 assembly language instructions.
Included in this section are the following major topics:

° Memory Addressing Modes (Section 4.1 on page 4-2)
Direct addressing
Indirect addressing (using two auxiliary registers)
immediate addressing

(] Instruction Set (Section 4.2 on page 4-7)
Symbols and abbreviations used in the instructions
Instruction set summary (listed according to function)

[] Individual Instruction Descriptions (Section 4.3 on page 4-11)
Presented in alphabetical order and providing the following:
- Assembler syntax
- Operands
- Execution
- Encoding
- Description
- Words
- Cycles
- Example(s)

4-1

Assembly Language Instructions - Memory Addressing Modes

4.1 Memory Addressing Modes

The TMS320C14/E14 instruction set provides three memory addressing
modes: ’

[] Direct addressing mode
[] Indirect addressing mode
[Immediate addressing mode.

Both direct and indirect addressing can be used to access data memory. Direct
addressing concatenates seven bits of the instruction word with the 1 -bit data
memory page pointer to form the 8-bit data memory address. Indirect ad-
dressing accesses data memory through the two auxiliary registers. In imme-
diate addressing, the data is based on a portion of the instruction word(s).
The following sections describe each addressing mode and give the opcode
formats and some examples for each mode.

4.1.1 Direct Addressing Mode

4-2

In the direct memory addressing mode, the instruction word contains the
lower seven bits of the data memory address (dma). This field is concatenated
with the one-bit data memory page pointer (DP) register to form the full 8-bit
data memory address. This implements a paging scheme in which the first
page contains 128 words and the second page also contains 128 words. In
a typical application, infrequently accessed system variables, such as those
used when performing an interrupt routine, are stored on the second page.
The 7-bit address in the instruction points to the specific location within that
data memory page. The DP register is loaded through the LDP (load data
memory page pointer), LDPK (load data memory page pointer immediate), or
LST (load status bits from data memory) instructions. The data page pointer
is part of the status register and thus can be stored in data memory.

Note:

The data page pointer is not initialized by reset and is therefore undefined
after powerup. The TMS320C14/E14 development tools, however, utilize
default values for many parameters, including the data page pointer. Be-
cause of this, programs that do not explicitly initialize the data page
pointer may execute improperly depending on whether they are executed
on a TMS320C14/E14 device or using a development tool. Thus,’' it is
critical that all programs initialize the data page pointer in software.

Figure 4-1 illustrates how the 8-bit data address is formed.

Assembly Language Instructions - Memory Addressing Modes

7 7 LSBS FROM
INSTRUCTION
REGISTER (IR)

8
8-BIT DATA ADDRESS

Figure 4-1. Direct Addressing Block Diagram

Direct addressing can be used with all instructions except CALL, branch in-
structions, immediate operand instructions, and instructions with no operands.
The direct addressing format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o |

L Opcode dma J

Bits 15 through 8 contain the opcode. Bit 7 = O defines the addressing mode
as direct. Bits 6 through O contain the data memory address (dma), which can
directly address up to 128 words (1 page) of data memory. Use of the data
memory page pointer is required to address the full data memory space.

Example of Direct Addressing Format:

ADD 9,5 Add to accumulator the contents of data memory location
9 left-shifted 5 bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ooooo1o1|o|ooo1oo1

The opcode of the ADD 9,5 instruction is 05h and appears in bits 15 through
8. The notation nnh indicates nn is a hexadecimal number. The shift count
of 5h appears in bits 11 through 8 of the opcode. The data memory address
09h appears in bits 6 through 0.

Assembly Language Instructions - Memory Addressing Modes

4.1.2 Indirect Addressing Mode

4-4

Indirect addressing forms the data memory address from the least significant
eight bits of one of the two auxiliary registers, ARO and AR1. This is sufficient
to address all the data memory; no paging is necessary with indirect address-
ing. The Auxiliary Register Pointer (ARP) selects the current auxiliary register.
The auxiliary registers can be automatically incremented or decremented in
parallel with the execution of any indirect instruction to permit single-cycle
manipulation of data tables. The increment/decrement occurs AFTER the cur-
rent instruction has completed executing.

In indirect addressing, the 8-bit addresses contained in the auxiliary registers
may be loaded by the instructions LAR (load auxiliary register) and LARK
(load auxiliary register immediate). The auxiliary registers may be modified
by the MAR (modify auxiliary register) instruction or, equivalently, by the in-
direct addressing field of any instruction supporting indirect addressing.
AR(ARP) denotes the auxiliary register selected by ARP.

The following symbols are used in indirect addressing:

* Contents of AR(ARP) are used for data memory address.
* Contents of AR(ARP) are used for address, then decremented after data
memory access.

*+ Contents of AR(ARP) are used for address, then incremented after data
memory access.

The indirect addressing format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| Opcode , [1]o]inc|[DEC] NAR | 0 | 0 [ARP]
NOTE: NAR = new auxiliary register control bit.

Bits 15 through 8 contain the opcode, and bit 7 = 1 defines the addressing
mode as indirect. Bits 6 through O contain the indirect addressing control bits.

Bit 3 and bit O control the Auxiliary Register Pointer (ARP). If bit 3 = 0, the
contents of bit O are loaded into the ARP after execution of the current in-
struction. If bit 3 = 1, the contents of the ARP remain unchanged. ARP = 0
defines the contents of ARO as a memory address. ARP = 1 defines the con-
tents of AR1 as a memory address. Note that NAR denotes the new auxiliary
register control bit.

Bit 5 and bit 4 control the auxiliary registers. If bit 5 = 1, the current auxiliary
register is incremented by 1 after execution. If bit 4 = 1, the current auxiliary
register is decremented by 1 after execution. If bit 5 and bit 4 are 0, then
neither auxiliary register is incremented nor decremented. Bits 6, 2, and 1 are
reserved and should always be programmed to O.

The auxiliary registers may also be used for temporary storage via the load and
store auxiliary register instructions, LAR and SAR, respectively.

The examples that follow illustrate the indirect addressing format. Indirect
addressing is indicated by an . asterisk (*) in these examples and in the
TMS320C1x assembler.

Assembly Language |

nstructions - Memory Addressing Modes

Example 1:

ADD *+.,8

15 14 1

Add to the accumulator the contents of the data memory
address defined by the contents of the current auxiliary
register. This data is left-shifted 8 bits before being added.
The current auxiliary register is autoincremented by one.
The opcode is 08A8h, as shown below.

3 12 11 10 9 8 7 6 &6 4 3 2 1 O

o0 0o o 1 0o o of1]0o 1 0 1 0 0

Example 2:

ADD *.,8

Example 3:
ADD *-,8

Example 4:
ADD *+,8

Example 5:
ADD *+.,8

As in Example 1, but with no autoincrement; the opcode
is 0888h.

As in Example 1, except that the current auxiliary register
is decremented by 1; the opcode is 0898h.

| As in Example 1, except that the auxiliary register pointer
is loaded with the value 1 after execution; the opcode is
08A1h.

,0 As in Example 4, except that the auxiliary register pointer
is loaded with the value O after execution; the opcode is
08AOh.

4.1.3 Immediate Addressing Mode

Included in
structions, i

the TMS320C1x instruction set are five immediate operand in-
n which the immediate operand is contained within the instruction

word. These instructions execute within a single instruction cycle. The length
of the constant operand is instruction-dependent. The immediate instructions

are:

LACK
LARK
LARP
LDPK
MPYK

Load accumulator immediate short (8-bit constant)

Load auxiliary register immediate short (8-bit constant)
Load auxiliary register pointer immediate(1-bit constant)
Load data memory page pointer immediate (1-bit constant)
Multiply immediate (13-bit constant)

4-5

Assembly Language Instructions - Memory Addressing Modes

4-6

The following examples illustrate immediate addressing format:

Example 1:

MPYK 2781 Multiply the value 2781 with the contents of the T register.
The result is loaded into the P register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I 1 0 0 | 13-bit constant I

Example 2:

LACK 221 Load the constant 221 in the lower eight bits of the accu-
mulator right-justified. The upper 24 bits of the accumulator

are zero.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fofr [[rfr]r]1]o] 8-bit constant |

Assembly Language Instructions - Instruction Set

4.2 Instruction Set

The following sections list the symbols and abbreviations used in the
TMS320C1x instruction set summary and in the instruction descriptions. The
complete instruction set summary is organized according to function. A de-
tailed description of each instruction is listed in the instruction set summary.

4.2.1 Symbols and Abbreviations

Table 4-1 lists symbols and abbreviations used in the instruction set summary
(Table 4-2) and the individual instruction descriptions.

Table 4-1. Instruction Symbols

SYMBOL MEANING
A Port address
ACC Accumulator
ARn Auxiliary Register n (ARO and AR1) are predefined assembler symbols
equal to 0 and 1, respectively.)
ARP Auxiliary register pointer
B Branch address
D Data memory address field
DATn Label assigned to data memory location n
dma Data memory address or direct memory address
DP Data page pointer
| Addressing mode bit
INTM Interrupt mode bit
K Immediate operand field
nnh Indicates nn is a hexadecimal number. (All others are assumed to be
decimal values.)
OoVvM Overfilow (saturation) mode flag bit
P Product register
PA Port address (PAO through PA7 are predefined assembler symbols equal
to 0 through 7, respectively.)
PC Program counter
pma Program memory address
PRGn Label assigned to program memory location n
R 1-bit operand field specifying auxiliary register
S 4-bit left-shift code
T Temporary register
TOS Top of stack
X 3-bit accumulator left-shift field
d Is assigned to
| An absolute value
< > User-defined items
[1 Optional items
() "Contents of”
{} Alternative items, one of which must be entered
<> Angle brackets back-to-back indicate "not equal”.
Blanks or spaces must be entered where shown.

4-7

Assembly Language Instructions - Instruction Set

4.2.2 Instruction Set Summary

Table 4-2 provides the TMS320C1x instruction set summary, arranged ac-
cording to function and alphabetized within each functional grouping. Addi-
tional information is presented in the individual instruction descriptions in the
following section.

The instruction set summary consists primarily of single-cycle, single-word
instructions. Only infrequently used branch and |/O instructions require mul-
tiple cycles.

Table 4-2. Instruction Set Summary

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS
Mnemonic and Description Cycles |Words 16-Bit Opcode
MSB LSB
ABS Absolute value of accumulator 1 1 0111 1111 1000 1000
ADD Add to accumulator with shift 1 1 0000 SSSS | DDD DDDD
ADDH Add to high accumulator 1 1 0110 0000 | DDD DDDD
ADDS Add to low accumulator with 1 1 0110 0001 | DDD DDDD
sign-extension suppressed
AND AND with accumulator 1 1 0111 1001 | DDD DDDD
LAC Load accumulator with shift 1 1 0010 SSSS | DDD DDDD
LACK Load accumulator immediate short 1 1 0111 1110 KKKK KKKK
OR OR with accumulator 1 1 0111 1010 | DDD DDDD
SACH Store high accumulator with shift 1 1 0101 1XXX | DDD DDDD
SACL Store low accumulator . 1 1 0101 0000 | DDD DDDD
SUB Subtract from accumulator with shift 1 1 0001 SSSS | bbD DDDD
SUBC Conditional subtract 1 1 0110 0100 | DDD DDDD
SUBH Subtract from high accumulator 1 1 0110 0010 | DDD DDDD
SUBS Subtract from low accumulator 1 1 0110 0011 | DDD DDDD
with sign-extension suppressed :
XOR Exclusive-OR with low accumulator 1 1 0111 1000 | bDDD DDDD
ZAC Zero accumulator 1 1 0111 1111 1000 1001
ZALH Zero low accumulator and load high 1 1 0110 0101 | DDD - -DDDD
accumulator .
ZALS Zero accumulator and load low 1 1 0110 0110 | DDD DDDD
accumulator with sign-extension
suppressed
AUXILIARY REGISTER AND DATA PAGE POINTER INSTRUCTIONS
Mnemonic and Description Cycles |Words 16-Bit Opcode
’ MSB LSB
LAR Load auxiliary register 1 1 0011 100R | DDD DDDD
LARK Load auxiliary register immediate short 1 1 0111 O000R KKKK KKKK
LARP Load auxiliary register pointer 1 1 0110 1000 1000 000K
immediate
LDP Load data memory page pointer : 1 1 0110 1111 | DDD DDDD
LDPK Load data memory page pointer 1 1 0110 1110 0000 000K
immediate
MAR Modify auxiliary register 1 1 0110 1000 | DDD -DDDD
SAR Store auxiliary register 1 1 0011 OOOR | DDD DDDD

4-8

Assembly Language Instructions - Instruction Set

Table 4-2. Instruction Set Summary (Continued)

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS
Mnemonic and Description Cycles |Words 16-Bit Opcode
mMSB LSB
APAC Add P register to accumulator 1 1 0111 1111 1000 1111
LT Load T register 1 1 0110 1010 | DDD DDDD
LTA Load T register and accumulate 1 1 0110 1100 | DDD DDDD
previous product
LTD Load T register, accumulate previous 1 1 0110 1011 |1 DDD DDDD
product, and move data
MPY Multiply (with T register, store product 1 1 0110 1101 | DDD DDDD
in P register)
MPYK Multiply immediate 1 1 100K KKKK KKKK KKKK
PAC Load accumulator with P register 1 1 0111 1111 1000 1110
SPAC Subtract P register from accumulator 1 1 0111 1111 1001 0000
BRANCH/CALL INSTRUCTIONS
Mnemonic and Description Cycles |Words 16-Bit Opcode
MSB LsB
B Branch unconditionally 2 2 1111 1001 0000 0000
0000 BBBB BBBB BBBB
BANZ Branch on auxiliary register not zero 2 2 1111 0100 0000 0000
000 BBBB BBBB BBBB
BGEZ Branch if accumulator > 0 2 2 1111 1101 0000 0000
BBBB BBBB BBBB
BGZ Branch if accumulator > 0 2 2 1111 1100 0000 0000
BBBB BBBB BBBB
BLEZ Branch if accumulator £ 0 2 2 1111 1011 0000 0000
BBBB BBBB BBBB
BLZ Branch if accumulator < 0 2 2 1111 1010 0000 0000
BBBB BBBB BBBB
BNZ Branch if accumulator # 0 2 2 1111 1110 0000 0000
0000 BBBB BBBB BBBB
BV Branch on overflow 2 2 1111 0101 0000 0000
0000 BBBB BBBB BBBB
Bz Branch if accumulator = 0 2 2 1111 1111 0000 0000
0000 BBBB BBBB BBBB
CALA Call subroutine indirect 2 1 0111 1111 1000 1100
CALL Call subroutine 2 2 17111 1000 0000 00O0O
0000 BBBB BBBB BBBB
RET Return from subroutine 2 1 0111 1111 1000 1101
Note: The TMS320C14/E14 does not have the BTO pin present on other TMS320C1x devices. An attempt
to execute the BIOZ (Branch on BIO low) instruction will result in a two cycle NOP action.
CONTROL INSTRUCTIONS)
Mnemonic and Description Cycles |Words 16-Bit Opcode
MSB LSB
DINT Disable interrupt 1 1 0111 1111 1000 0001
EINT Enable interrupt 1 1 0111 1111 1000 0010
LST Load status register from data memory 1 1 0111 1011 | DDD DDDD
NOP No operation 1 1 0111 1111 1000 0000
POP Pop top of stack to low accumulator 2 1 0111 1111 1001 1101
PUSH Push low accumulator onto stack 2 1 0111 1111 1001 1100
ROVM Reset overflow mode 1 1 0111 1111 1000 1010
SOVM Set overflow mode 1 1 0111 1111 1000 1011
SST Store status register 1 1 0111 1100 | DDD DDDD

4-9

Assembly Language Instructions - Instruction Set

Table 4-2. Instruction Set Summary (Concluded)

1/0 AND DATA MEMORY OPERATIONS

Mnemonic and Description Cycles |Words 16-Bit Opcode
MSB LSB

0110 1001 | DDD DDDD
0100 OAAA | DDD DDDD
0100 1AAA | DDD DDDD
0110 0111 | DDD DDDD
0111 1101 | DDD DDDD

DMOV Data move in data memory
IN Input data from port

ouT QOutput data to port

TBLR Table read

TBLW Table write

WWwNN =
[Y

Assembly Language Instructions - Individual Descriptions

4.3 Individual Instruction Descriptions

Each instruction in the instruction set summary is described in the following
pages. Instructions are listed in alphabetical order. Information, such as as-
sembler syntax, operands, execution, encoding, description, words, cycles,
and examples, is provided for each instruction. An example instruction is
provided on the next two pages to familiarize the user with the special format
used and explain its content. Refer to Section 4.1 for further information on
memory addressing. Code examples using many of the instructions are given
in Section 5 on Software Applications.

EXAMPLE

Example Instruction

Syntax
Direct
Indirect

Immediate:

Operands

Execution

Encoding

: [<label>] EXAMPLE <dma>[,<shift>]
. [<label>] EXAMPLE {*|*+|*-}[,<shift>[,<next ARP>1]
[<label>] EXAMPLE [<constant>]

Each instruction begins with an assembler syntax expression. The optional
comment field that concludes the syntax is not included in the syntax ex-
pression. Space(s) are required between each field (label, command, op-
erand, and comment fields) as shown in the syntax. The syntax example
illustrates both direct and indirect addressing, as well as immediate ad-
dressing in which the operand field includes <constant>.

0 < dma <127
ARP =0or1
0 < constant < 255

Operands may be constants or assembly-time expressions referring to me-
mory, 1/0O and register addresses, pointers, shift counts, and a variety of
constants. The operand values used in the example syntax are shown.

(PC) + 1 -» PC ,
(ACC) + (dma) x 2shift » AcC

1 = interrupt mode (INTM) status bit
Affects INTM.

This section provides an example of the instruction operation sequence,
describing the processing that takes place when the instruction is executed.
Conditional effects of status register specified modes are also given. In ad-
dition, those bits in the status registers that are affected by the instruction
are listed.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Direct:t[0 0 0 0] Shift | o] Data Memory Address |

Indirect:{ 0 0 0 o0 | Shift | 1] See Section 4.1 |

Immediate:|1 0 OI 13-Bit Constant |

Opcode examples are shown of both direct and indirect addressing or of the
use of an immediate operand.

Example Instruction EXAMPLE

Description This section decribes the instruction execution and its effect on the rest of
the processor or memory contents. Any constraints on the operands im-
posed by the processor or the assembler are also described here. The de-
scription parallels and supplements the information given by the execution
block.

Words 1
The digit specifies the number of memory words required to store the in-
struction and its extension words.

Cycles 1

The digit specifies the number of cycles required to execute the instruction.

Example 1 ADD DAT1,3 (DP = 0)
or
ADD *,3 If current auxiliary register contains 1.
Before Instruction After Instruction
Data Data

ooy Voo

ACC 7h ACC “17h

The sample code presented in the above format shows the effect of the
code on memory and/or registers.

ABS Absolute Value of Accumulator

Syntax [<label>] ABS

Operands None

Execution (PC) +1 -» PC
If (ACC) < O:

Then -(ACC) - ACC

Affects QV; affected by OVM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1+ 1 1 1 1 1 1 1 0 0 0 1 0 0 O0f

Description If the contents of the accumulator are greater than or equal to zero, the ac-
cumulator is unchanged by the execution of ABS. If the contents of the
accumulator are less than zero, the accumulator is replaced by its two's-
complement value.
Note that 80000000h is a special case. When the overflow mode is not set,
the ABS of 80000000h is 80000000h. When in the overflow mode, the
ABS of 80000000h is 7FFFFFFFh.

Words 1

Cycles 1

Example ABS

Before Instruction After Instruction

Acc | 1234h | Acc | 1234 |
ACC FFFFFFFFh ACC

Add to Accumulator with Shift ADD

Syntax

Direct: [<label>] ADD <dma>[,<shift>]
Indirect: [<label>] ADD {*|*+|*-}[,<shift>[,<next ARP>1]

Operands 0 <dma < 127
ARP =0 or1
Execution (PC) +1 - PC .
(ACC) + (dma) x 2shift - AccC
Affects OV, affected by OVM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:l o 0 0 O | Shift | 0 | Data Memory Address I
Indirectt| 0 0 o o] Shift [1] See Section 4.1 |
Description Contents of the addressed data memory location are left-shifted and added
to the accumulator. During shifting, low-order bits are zero-filled, and
high-order bits are sign-extended. The result is stored in the accumulator.
Words 1
Cycles 1
Example ADD DAT1,3 (DP = 0)
or
ADD *,3 If current auxiliary register contains 1.
Before Instruction After Instruction
Data Data
Memory vemary
I
acc acc
Example ADD DAT2,4 (DP = 0)
or
ADD *,4 If current auxiliary register contains 2.
Before instruction After Instruction
Data Data

Mergory 8BOEh Meg\ory 8BOEh

!I

ACC 0 ACC FFF8BOEOh

ADDH

Add to High Accumulator

Syntax

Direct: [<label>] ADDH <dma>
Indirect: [<label>] ADDH {*|"+|*-}[,<next ARP>]

Operands 0 < dma <127
ARP =0or1
Execution (PC) +1 = PC
(ACC) + (dma) x 216 » ACC
Affects OV; affected by OVM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct:| 0 1 1 0 0 0 0 00 | Data Memory Address l
Indirect:f 0 1 1 0o 0o o o o1 | See Section 4.1 |
Description Contents of the addressed data memory location are added to the upper
half of the accumulator (bits 31 through 16). Low-order bits are unaffected
by ADDH. i
The ADDH instruction may be used in performing 32-bit arithmetic.
Words 1
Cycles 1
Example 1 ADDH DAT5 (DP = 0)

or

ADDH * If current auxiliary register contains 5.
Before Instruction After Instruction
Data Data
5 5
ACC 13h ACC 40013h

ADDS

Add to Accumulator
with Sign-Extension Suppressed ADDS

Syntax

Direct: [<label>] ADDS <dma>
Indirect: [<label>] ADDS {*|*+|*-}[,<next ARP>]

Operands 0 < dma < 127
ARP =0or1
Execution (PC) +1 - PC
(ACC) + (dma) = ACC
(dma) is a 16-bit unsigned number.
Affects OV, affected by OVM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direc:|0 1 1 0o 0o o o 1]o] Data Memory Address |
Indirectt{ 0 1 1 0 0 0 o0 1]1 | See Section 4.1 |
Description Contents of the specified data memory location are added with sign-ex-
tension suppressed. The data is treated as a 16-bit unsigned number rather
than a two’s-complement number. Therefore, there is no sign-extension as
with the ADD instruction.
The ADDS instruction can be used in implementing 32-bit arithmetic.
Words 1
Cycles 1
Example 2 ADDS DAT11 (DP = 0)
or
ADDS * If current auxiliary register contains 11.
Before Instruction After Instruction
Data Data
Memory OF006h Me1n:‘nory OF006h
ACC AcC 0F009h

AND AND with Low-Order Bits of Accumulator

Syntax
Direct: [<label>] AND <dma>
Indirect: [<label>] AND {*|*+|*-}[,<next ARP>]

Operands 0 < dma < 127
ARP =0 or1

Execution (PC) +1 - PC
(ACC(15-0)).AND.(dma) - ACC(15-0)
0 - ACC(31-16)

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct: I 0o 1 1 1 1 0o 0 1 I 0 I Data Memory Address l
Indirect:{ 0 1 1 1 1 0 o 1|1] See Section 4.1 |

Description The lower half of the accumulator is ANDed with the contents of the ad-
dressed data memory location. The upper half of the accumulator is ANDed
with all zeroes. Therefore, the upper half of the accumulator is always ze-
roed by the AND instruction.

Words 1
Cycles 1
Example 1 AND DAT16 (DP = 0)
Z?\{\ID * If current auxiliary register contéins 16.

Before instruction After Instruction
Data

Data '
Memory OFFh Memory OFFh
16 16

ACC 12345678h ACC 78h

Add P Register to Accumulator

APAC

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

[<label>] APAC
None

(PC) +1 - PC

(ACC) + (P register) - ACC

Affects OV, affected by OVM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
fo 7+ 1 1 1 1 1 1 1 0 0 0 1 1 1 1]

The contents of the P register, the result of a multiply, are added to the
contents of the accumulator. The result is stored in the accumulator.

The APAC instruction is a subset of the LTA and LTD instructions.
1
1

APAC

Before Instruction After Instruction

o
o

40h 40h

ACC 20h ACC 60h

B Branch Unconditionally

Syntax [<label>] B <pma>

Operands 0 < pma < 4095

Execution pma — PC

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 1 0 0 0 0 0 0 0o 0

Program Memory Address
Description Control passes to the designated program memory address (pma). Pma can
be either a symbolic or a numeric address.

Words 2

Cycles 2

Example B PRG191 191 is loaded into the program counter,

4-20

and the program continues running from
that location.

Branch on Auxiliary Register Not Zero BANZ

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

[<label>] BANZ <pma>
0 < pma < 4095

If (AR bits 8-0) # O:
Then pma - PC;
Else (PC) + 2 - PC

(AR) - 1 — AR.

5 14 13 12 11 170 9 8 7 6 65 4 3 2 1 O

1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 O

Program Memory Address

If the lower nine bits of the current auxiliary register are not equal to zero,
then the address contained in the following word is loaded into the pro-
gram counter. If these bits are equal to zero, the current program counter is
incremented by two. In either case, the auxiliary register is decremented.
Note that the test for zero is performed before decrementing the auxiliary
register. The branch to a location in program is specified by the program
memory address (pma). Pma can be either a symbolic or numeric address.

2

2
BANZ PRG35
Before Instruction . After Instruction
AR AR
PC PC
or '
PC 46h PC 48h
Note:

BANZ is designed for loop control using the auxiliary registers as loop
counters. The auxiliary register is decremented after testing for zero.
The auxiliary registers also behave as modulo 512 counters.

4-21

Branch if Accumulator

BGEZ Greater Than or Equal to Zero BGEZ
Syntax [<label>] BGEZ <pma>
Operands 0 < pma < 4095
Execution If (ACC) = 0O:
Then pma - PC;
Else (PC) + 2 » PC.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 1 0 1 0 0 0 0 0 0 0O O
Program Memory Address
Description If the contents of the accumulator are greater than or equal to zero, then
branch to the specified program memory location. The branch to a location
in program is specified by the program memory address (pma). Pma can
be either a symbolic or numeric address.
Words 2
Cycles 2
Example BGEZ PRG217 217 is loaded into the program counter

4-22

if the accumulator is greater than or
equal to zero.

Branch if Accumulator Greater Than Zero BGZ

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example 1

[<label>] BGZ <pma>
0 < pma < 4095
If (ACC) > O:

Then pma - PC;
Else (PC) +2 - PC.

15 14 13 12 11 10 9 8 7 6 565 4 3 2 1

1 1 1 1 1 1 o o0 O o O 0O O 0 o0 O

Program Memory Address

If the contents of the accumulator are greater than zero, then branch to the
specified program memory location. The branch to a location in program
is specified by the program memory address (pma). Pma can be either a
symbolic or numeric address.

2
2

BGZ PRG342 342 is loaded into the program counter
if the accumulator is greater than zero.

4-23

Branch if Accumulator

BLEZ Less Than or Equal to Zero BLEZ
Syntax [<label>] BLEZ <pma>
Operands 0 < pma < 4095
Execution If (ACC) < O:
Then pma - PC;
Else (PC) +2 —» PC.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 1 1 1 0 1 1 0 0 0 0 0 0 0o 0
Program Memory Address
Description If the contents of the accumulator are less than or equal to zero, then
branch to the specified program memory location. The branch to a location
in program is specified by the program memory address (pma). Pma can
be either a symbolic or numeric address.
Words 2
Cycles 2
Example 2 BLEZ PRG63 63 is loaded into the program counter if
the accumulator is less than or equal to
zero.

4-24

Branch if Accumulator Less Than Zero BLZ

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example 1

[<label>] BLZ <pma>
0 < pma < 4095
If (ACC) <G:

Then pma = PC;
Else (PC) + 2 - PC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 0 1 0 0 0 0 0 O 0 0 O

Program Memory Address

If the contents of the accumulator are less than zero, then branch to the
specified program memory location. The branch to a location in program
is specified by the program -memory address (pma). Pma can be either a
symbolic or numeric address.

2
2

BLZ PRG481 481 is loaded into the program counter if
the accumulator is less than zero.

4-25

BNZ Branch if Accumulator Not Equal to Zero
Syntax [<label>] BNZ <pma>
Operands 0 < pma < 4095
Execution If (ACC) # O:
Then pma — PC;
Else (PC) + 2 - PC.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0O O
Program Memory Address
Description If the contents of the accumulator are not equal to zero, then branch to the
specified program memory location. The branch to a location in program
is specified by the program memory address (pma). Pma can be either a
symbolic or numeric address.
Words 2
Cycles 2
Example BNZ PRG320 320 is loaded into the program counter

4-26

if the accumulator does not equal zero.

Branch on Overflow BV

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

[<label>] BV <pma>
0 < pma < 4095

If overflow (OV) status bit = 1:
Then pma - PC and 0 —» OV;
Else (PC) + 2 = PC.

Affects OV; affected by OV.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 0 1 0 1 o 0 0 O 0 0O 0 0

Program Memory Address

If the overflow (OV) flag has been set, then a branch to the specified pro-
gram memory location occurs and the overflow flag is cleared. Otherwise,
the program counter is incremented to the next instruction. The branch to
a location in program is specified by the program memory address (pma).
Pma can be either a symbolic or numeric address.

2
2

BV PRG610 If an overflow has occurred since the
overflow flag was last cleared, then 610
is loaded into the program counter and
OV is cleared. Otherwise, the program
counter is incremented.

4-27

BZ Branch if Accumulator Equals Zero
Syntax [<label>] BZ <pma>
Operands 0 < pma < 4095
Execution If (ACC) =0:
Then pma - PC;
Else (PC) + 2 — PC.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0o 0
Program Memory Address
Description If the contents of the accumulator are equal to zero, then branch to the
specified program memory location. The branch to a location in program
is specified by the program memory address (pma). Pma can be either a
symbolic or numeric address.
Words 2
Cycles 2
Example BZ PRG102 102 is loaded into the program counter

4-28

if the accumulator is equal to zero.

Call Subroutine Indirect

CALA

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

[<label>] CALA
None

(PC) +1 - T0OS
(ACC(11-0)) » PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1+ 1+ 1 1 1 1 1 1 0 0 0 1 1 0 0]

The current program counter is incremented and pushed onto the top of the
stack. Then, the contents of the 12 least significant bits of the accumulator
are loaded into the PC.

The CALA instruction is used to perform computed subroutine calls.
1
2

CALA

Before Instruction After Instruction

PC 25h PC 83h
ACC 83h ACC 83h
32h 26h

Stack 75h Stack 32h
84h 75h

49h 84h

4-29

CALL Call Subroutine

Syntax [<label>] CALL <pma>

Operands 0 < pma < 4095

Execution (PC) + 2 > TOS
pma = PC

Encoding 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0o 0
Program Memory Address

Description The current program counter is incremented by two and pushed onto the
top of the stack. The specified program memory address (pma) is then
loaded into the PC. Pma can be either a symbolic or a numeric address.

Words 2

Cycles 2

Example CALL PRG109

4-30

Before Instruction After Instruction
PC 33h PC 6Dh
71h 35h
Stack ~ 48h Stack 71h
16h 48h
80h 16h

Disable Interrupt DINT

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

[<label>] DINT
None

(PC) +1 - PC
1 — interrupt mode (INTM) status bit
Affects INTM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 7 1 1 1 1 1 1 1 0 0 0 0 0 0 1]

The interrupt mode (INTM) status bit is set to logic 1. Maskable interrupts
are disabled immediately after the DINT instruction executes. Interrupts are
also disabled by a reset. Note that the LST instruction does not affect
INTM.

Note that RS and NMI is not disabled by this instruction.
1
1

DINT Maskable interrupts are disabled, and INTM
is set to one.

4-31

DMOV \Data Move in Data Memory

Syntax
Direct: [<label>] DMOV <dma>
Indirect: [<label>] DMOV {*|*+|*-}[,<next ARP>]

Operands 0 <dma <127
ARP =0or1

Execution (PC) +1 » PC
(dma) - dma + 1

Encoding 15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O
Direct|0 1 1 o 1 0o 0o 1]o0 | Data Memory Address |
Indirectt{ 0 1 1 0o 1 0 o 1[1] See Section 4.1 |

Description The contents of the specified data memory address are copied into the
contents of the next higher address. When data is copied from the ad-
dressed location to the next higher location, the contents of the addressed
location remain unaltered.

The data move function is useful in implementing the z-1 delay encountered
in digital signal processing. The DMOV function is included in the LTD in-
struction (see LTD for more information).

Words 1
Cycles 1
Example DMOV DATS

or

DMOV * If current auxiliary register contains 8.

Before Instruction After Instruction
Data Data
Mergory 43h Mergory 43h

Data

Data
Mergory Megmory 43h

4-32

Enable Interrupt EINT

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

[<label>] EINT
None

(PC) +1 > PC
0 — interrupt mode (INTM) status bit
Affects INTM.

% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[Oo 1+ 1 1 1 1 1 1 1 0 0 0 0 0 1 Of

The interrupt mode (INTM) status bit is cleared to logic 0. Maskable in-
terrupts are enabled after the instruction following EINT executes. This al-
lows an interrupt service routine to re-enable interrupts and execute a RET
instruction before any other pending interrupts are processed. Note that the
EINT instruction should not be used immediately preceding a branch in-
struction.

The LST instruction does not affect INTM. (See the DINT instruction for
further information.)

1
1

EINT Maskable interrupts are enabled, and INTM
is set to zero.

4-33

IN Input Data from Port
Syntax
Direct: [<label>] IN <dma> <PA>
Indirect: [<label>] IN {*|*+|*-},<PA>[,<next ARP>]
Operands 0 < dma < 127
ARP =0 or1
0 < port address PA < 7
Execution (PC) +1 - PC
Port address — address lines A2/PA2-A0/PAQO
1 - address bus A11-A3
Data bus D15-D0O - dma
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct:l 0o 1 0O 0 O l Port Address I 0 l Data Memory Address l
Indirect:| 0 1 0 0 0| Port Address | 1 | See Section 4.1 |
Description The IN instruction reads data from a peripheral and places it in data mem-
ory. This is a two-cycle instruction. During the first cycle, the port address
is sent to address lines A2/PA2-A0/PAOQ. REN goes low during the same
cycle, strobing in the data that the addressed peripheral places on the data
bus D15-DO0. The upper address lines A11 - A3 are held high.
Words 1
Cycles 2
Example IN STAT,PAS Read in word from peripheral on port
address 5. Store in data memory
location STAT.
or
LARK 1,20 Load AR1 with decimal 20.
LARP 1 Load ARP with decimal 1.
IN *-,PA1,0 Read in word from peripheral on port

4-34

address 1. Store in data memory
location 20. Decrement ARl to 19.
Load the ARP with O.

Load Accumulator with Shift LAC

Syntax

Direct: [<label>] LAC <dma>[,<shift>]
Indirect: [<label>] LAC {*|*+|*-}[,<shift>[,<next ARP>]]

Operands 0 <dma <127
ARP =0or1
0 < shift < 15 (defaults to 0)
Execution (PC) +1 - PC
(dma) x 2shift - AcC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Directt [0 0 1 o] Shift | o] Data Memory Address |
Indirect:{ 0 0 1 o] Shift [1] See Section 4.1 |
Description Contents of the specified data memory address are left-shifted and loaded
into the accumulator. During shifting, low-order bits are zero-filled.
High-order bits are sign-extended.
Words 1
Cycles 1
Example LAC DAT6,4 (DP = 0)
or
LAC *,4 If current auxiliary register contains 6.

Before Instruction After Instruction

Data

Data
Memory 1h Memory

ACC h ACC 10h

!I

4-35

LACK Load Accumulator Immediate
Syntax [<label>] LACK <constant>
Operands 0 < constant < 255
Execution (PC) +1 - PC

8-bit positive constant -~ ACC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 1 1 1 1 1 o] 8-Bit Constant |
Description The 8-bit constant is loaded into the accumulator right-justified. The upper

24 bits of the accumulator are zeroed (i.e., sign extension is suppressed).
Words 1
Cycles 1
Example LACK 15h

Before Instruction After Instruction
ACC 31h ACC 15h

4-36

Load Auxiliary Register LAR

Syntax
Direct: [<label>] LAR <AR>,<dma>
Indirect: [<label>] LAR <AR>{*|*+|*-}[,<next ARP>]

Operands 0 <dma < 127
auxiliary register AR = 0 or 1
ARP =0or1
Execution (PC) +1 - PC
(dma) — auxiliary register AR
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Directt{0 0o 1 1 1 o ofaAr]| o] Data Memory Address |
Indirect:| 0 0 1 1 1 o ofar| 1] See Section 4.1 |

Description The contents of the specified data memory address are loaded into the de-
signated auxiliary register. The LAR and SAR (store auxiliary register) in-
structions can be used to load and store the auxiliary registers during
subroutine calls and interrupts. If an auxiliary register is not being used for
indirect addressing, LAR and SAR enable the register to be used as an ad-
ditional storage register, especially for swapping values between data
memory locations without affecting the contents of the accumulator.

If indirect addressing with autodecrement is used with LAR to load the
current auxiliary register, the new value of the auxiliary register is not dec-
remented as a result of instruction execution. The analagous case is true
with autoincrement.

Words 1
Cycles 1
Example LAR ARO,DAT19
Before Instruction After Instruction
Data Data
Memory 18h Memory 18h
19 19
ARO ARO T8
also,
LARP O
LAR ARO, *~
Data Data
Mer;wry 32h Mer_1/10ry 32h

4-37

LAR Load Auxiliary Register

ARO ARO Pn

4-38

Load Auxiliary Register Immediate LARK

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

[<label>] LARK <AR>,<constant>

0 < constant < 255
auxiliary register AR = 0 or 1

(PC) +1 - PC
8-bit constant — auxiliary register AR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
[o 7 1 1 0o o ofAR] 8-Bit Constant

The 8-bit positive constant is loaded into the designated auxiliary register
right-justified and zero-filled (i.e., sign-extension suppressed).

LARK is useful for loading an initial loop counter value into an auxiliary
register for use with the BANZ instruction.

1
1

LARK ARO,21h

Before Instruction After Instruction

ARO ARO 7

LARP Load Auxiliary Register Pointer

Syntax [<label>] LARP <constant>

Operands 0 < constant < 1

Execution (PC) +1 - PC
Constant —» ARP
Affects ARP

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo 17 1 0o 1 0 0 0 1 0 0 0 0 O 0IARP

Description The auxiliary register pointer is loaded with the one-bit constant identifying
the desired auxiliary register. ARP can also be modified by the LST and
MAR instructions, as well as any instruction that is used in the indirect ad-
dressing mode.
The LARP instruction is a subset of MAR; i.e., the opcode is the same as
MAR in the indirect addressing mode. The instruction MAR *,<next ARP>
has the same effect as LARP.

Words 1

Cycles 1

Example LARP 1 Any succeeding instructions will use

auxiliary register AR1 for indirect
addressing.

4-40

Load Data Memory Page Pointer LDP
Syntax
Direct: [<label>] LDP <dma>
Indirect: [<label>] LDP {*|*+|*-}[,<next ARP>]
Operands 0 < dma < 127
ARP =0 or1
Execution (PC) +1 > PC
LSB of (dma) — data memory page pointer (DP =0 or 1)
Affects DP.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct|0 1 1 0 1 1 1 1[0 | Data Memory Address |
Indirect{ 011 0 1 1 1 1]1] See Section 4.1 |
Description The least significant bit of the contents of the specified data memory ad-
dress is ioaded into the DP (data memory page pointer) register. All high-
er-order bits are ignored in the data word. DP = O defines page O that
contains words 0-127. DP = 1 defines page 1 that contains words 128-
255. The DP may also be loaded by the LST and LDPK instructions.
Words 1
Cycles 1
Example LDP DAT1 LSB of location DAT1 is loaded into DP.
or
LDP *,1 LSB of location currently addressed by

auxiliary register is loaded into DP.
ARP is set to 1.

Before Instruction After Instruction

Data Data

Mer1nory OFEDCh Meqﬁory OFEDCh

/|
I

DP 1h DP

4-41

LDPK Load Data Memory Page Pointer Immediate

Syntax [<label>] LDPK <constant>

Operands 0 < constant < 1

Execution (PC) +1 » PC
Constant - data memory page pointer (DP)
Affects DP. :

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo 1 1 0o 1 1 1 0o 0o 0 0 0 0 0 o]fpr|

Description The DP (data memory page pointer) register is loaded with a 1-bit constant.
DP = 0 defines page 0 that contains words 0-127. DP = 1 defines page 1
that contains words 128-255. The DP may also be loaded by the LST and
LDP instructions.

Words 1

Cycles 1

Example

4-42

LDPK 0 The ‘data page pointer is set to O.

Load Status Register from Data Memory . LST

Syntax
Direct: [<label>] LST <dma>
Indirect: [<label>] LST {*|"+|"-}[,<next ARP>]

Operands 0 <dma <127
ARP =0or1
Execution (PC) +1 > PC

(dma) — status register bits
Affects ARP, OV, OVM, and DP.
Does not affect INTM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Directt{0 1 1 1 1 0 1 1|0 | Data Memory Address |
Indirect:t{ 0 1 1 1 1 0o 1 1]1] See Section 4.1 |

Description The status register is loaded with the addressed data memory value. Note
that the INTM (interrupt mode) bit is unaffected by LST.

The LST instruction is used to load the status register after interrupts and
subroutine calls. The status register contains the status bits: OV (overflow
flag) bit, OVM (overflow mode) bit, ARP (auxiliary register pointer), and
DP (data memory page pointer). These bits were stored (by the SST in-
struction) in the data memory word as follows:

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

[ovlovm[intm] 1 1+ 1 1 JaRp[1 1 1 1 1 1 o [or|
Words 1
Cycles 1
Example LARP 0
LST *,1 The data memory word addressed by the
contents of auxiliary register ARO
replaces the status bits. ARP becomes 1.
Note:

When using direct addressing, the SST instruction always saves status
on page 1. The LST instruction will not automatically restore status
from page 1. Therefore, the user must specify the correct data page
pointer.

4-43

LT Load T Register
Syntax
Direct: [<label>] LT <dma>
Indirect: [<label>] LT {*|*+|*-}[,<next ARP>]
Operands 0 <dma <127
ARP =0or1
Execution (PC) +1 » PC
(dma) = T register
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:| 0 1 1 0 1 0 1 0|0 | DataMemory Address |
Indirectt| 0 1 1 0 1 0 1 of1] See Section 4.1 l
Description The T register is loaded with the contents of the specified data memory lo-
cation. The LT instruction may be used to load the T register in preparation
for multiplication (see the LTA, LTD, MPY, and MPYK instructions).
Words 1
Cycles 1
Example LT DAT24 (DP = 0)
or
LT * If current auxiliary register contains 24.
Before Instruction After Instruction
Data Data —
Memory 62h Memory 62h
24 24

4-44

62h

-
!

>

-

Load T Register and Accumulate Previous Product LTA

Syntax
Direct: [<label>] LTA <dma>
Indirect: [<label>] LTA {*|*+|*-}[,<next ARP>]

Operands 0 <dma < 127
ARP =0or1

Execution (PC) +1 - PC
(dma) — T register
(ACC) + (P register) - ACC
Affects QV; affected by OVM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direc:/|0 1 1 0o 1 1 0o oo | Data Memory Address |
Indirectt{0 1 1 0 1 1 0 o1 | See Section 4.1 |

Description The T register is loaded with the contents of the specified data memory
address. The P register, containing the previous product of the multiply
operation, is added to the accumulator, and the result is stored in the ac-
cumulator.

The function of the LTA instruction is included in the LTD instruction.
Words 1

Cycles 1
Example LTA DAT24 (DP = 0)
or
LTA * If current auxiliary register contains 24.
Before Instruction After Instruction
Data Data
Memory 62h Memory 62h
24 24

-
-

3h 62h

P OFh P OFh
acc Acc T

4-45

Load T Register, Accumulate
LTD Previous Product, and Move Data LTD

Syntax
Direct: [<label>] LTD <dma>
Indirect: [<label>] LTD {*|*+|*-}[,<next ARP>]

Operands 0 < dma < 127
ARP =0or1

Execution (PC) +1 - PC
(dma) = T register
(dma) » dma + 1
(ACC) + (P register) = ACC
Affects OV; affected by OVM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct {0 1 1 0o 1 0o 1 1]o0| Data Memory Address |
indirect] 0 1 1 0 1 0o 1 1[1] See Section 4.1 |

Description The T register is loaded with the contents of the specified data memory
address. The contents of the P register are added to the accumulator, and
the result is placed in the accumulator. The contents of the specified data
memory address are also copied to the next higher data memory address.
This function is described under the instruction DMOV.

Words 1
Cycles 1
Example LT DAT24 {(DP = 0)
or .
LTD * If current auxiliary register contains 24.
Before Instruction After Instruction
Data Data
Memary Memary
24 24
Data Data
Memory Memory 62h
25 25
; T
P OFh P OFh
Ace Acc Tah

4-46

Modify Auxiliary Register MAR

Syntax
Direct: [<label>] MAR <dma>
Indirect: [<label>] MAR {*|*+|*-}[,<next ARP>]

Operands 0 <dma < 127
ARP =0or1

Execution (PC) +1 - PC
Modifies AR(ARP), ARP as specified by the indirect addressing field
(acts as a NOP in direct addressing).

Encoding 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Directt{0 1 1 0 1 0o o ofo] Data Memory Address |
Indirec:| 0 1 1 0o 1 0 o0 o1 | See Section 4.1 |

Description In the indirect addressing mode, the auxiliary registers are either incre-
mented or decremented and the ARP is modified; however, no use is made
of the memory being referenced. MAR is used only to modify the auxiliary
registers or the ARP. ARP may also be loaded by an LST instruction.

MAR acts as a no-operation (NOP) instruction in the direct addressing
mode. Also, the LARP instruction is a subset of MAR (i.e., MAR *,0 per-
forms the same function as LARP 0).

Words 1
Cycles 1
Example 1 MAR *,1 Load the ARP with 1.
Before Instruction After Instruction
ARP ARP
Example 2 MAR *- Decrement current auxiliary register (in this
case, AR1l)
Before Instruction After Instruction
AR1 35h AR1 34h

4-47

MAR Modify Auxiliary Register

Example 3 MAR *+,0 Increment current auxiliary register (AR1l) and
load ARP with O.
Before Instruction After Instruction
AR1 34h AR1 35h

Age AgP

4-48

Multiply MPY

Syntax
Direct: [<label>] MPY <dma>
Indirect: [<label>] MPY {*|*+|*-}[,<next ARP>]

Operands 0 < dma < 127

ARP =0or1
Execution (PC) +1 - PC
(T register) x (dma) — P register
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct:| 0 1 1 0 1 1 0 1{0| Data Memory Address |
Indirec:| 0 1 1 0o 1 1 o 1]1 | See Section 4.1 |

Description The contents of the T register are multiplied by the contents of the ad-
dressed data memory location. The result is placed in the P register.

During an interrupt, all registers except the P register can be saved and re-
stored directly. However, the first-generation TMS320 devices have hard-
ware protection against servicing an interrupt between an MPY or MPYK
instruction and the following instruction. For this reason, it is advisable to
follow MPY and MPYK with LTA, LTD, PAC, APAC, or SPAC.

Note that no provisions are made for the condition of 8000h x 8000h. If
this condition arises, the product will be CO000000h.

Words 1
Cycles 1
Example 1 MPY DAT13 (DP = 0)
D%DY * If current auxiliary register contains 13.
Before Instruction After Instruction
Data Data
Memory 7h Memory 7h

13 13

-
—

6h 6h

P 36h P 2Ah

4-49

MPYK Multiply Immediate

Syntax [<label>] MPYK <constant>
Operands -212 < constant < 212

Execution (PC) +1 - PC :
(T register) x constant = P register

Encoding 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I 1 0 0| 13-Bit Constant I

Description The contents of the T register are multiplied by the signed 13-bit constant.
The result is loaded into the P register.

During an interrupt, all registers except the P register can be saved and re-
stored directly. Since no provision is made to save the contents of the P
register during an interrupt, the MPYK instruction should be followed by
one of the following instructions: PAC, APAC, SPAC, LTA, or LTD. Pro-
vision is made in hardware to inhibit interrupt during MPYK until the next
instruction is executed.

Words 1
Cycles 1
Example MPYK -9

Before Instruction After Instruction

-
-

7h 7h

P 2Ah P OFFFFFFC1h

4-50

No Operation NOP

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

[<label>] NOP
None
(PC) +1 = PC

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo 7+ 1 1 1 1 1 1 1 0o 0o 0 0 0 0 O]

No operation is performed. NOP affects only the PC.

NOP is useful as a pad or temporary instruction during program develop-
ment.

1
1

NOP

4-51

OR

OR with Accumulator

Syntax
Direct: [<label>] OR <dma>
Indirect: [<label>] OR {*|*+|*-}[,<next ARP>]
Operands 0 < dma <127
ARP =0or1
Execution (PC) +1 - PC
(ACC(15-0)) .OR.dma —» ACC(15-0)
(ACC(31-16)) = ACC(31-16)
Encoding 5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct{0 1 1 1 1 0 1 ofo | Data Memory Address |
Indirect:f 0 1 1 1 1 0o 1 o1] See Section 4.1 |
Description The low-order bits of the accumulator are ORed with the contents of the
addressed data memory location. The high-order bits of the accumulator
are ORed with all zeroes. Therefore, the upper half of the accumulator is
unaffected by this instruction. The result is stored in the accumulator.
The OR instruction is useful for comparing selected bits of a data word.
Words 1
Cycles 1
Example OR DATS8S8 (DP = 0)

4-52

or
OR * Where current auxiliary register contains 88.

Before Instruction After Instruction
Data Data

Memory 0F000h Memory OFO00h
88 88

ACC 100002h ACC 10F002h

Output Data to Port ouT

Syntax
Direct: [<label>] OUT <dma>,<PA>
Indirect: [<label>] OUT {*|*+|*-},<PA>[,<next ARP>]
Operands 0 <dma <127
ARP =0 or1
0 < port address PA < 7
Execution (PC) +1 ->PC
Port address PA — address bus A2/PA2-A0/PAQ
1 — address bus A11-A3
(dma) — data bus D15-DO
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct:| 0 1 0 0 1 [PortAddress | 0| Data Memory Address |
Indirect:{| 0 1 0 0 1| PortAddress | 1 | See Section 4.1 |
Description The OUT instruction transfers data from data memory to an external pe-
ripheral. The first cycle of this instruction places the port address onto ad-
dress lines A2/PA2-A0/PAOQ. During the same cycle, WE goes low and the
data word is placed on the data bus D15-D0. The upper address lines A11
- A3 are held high.
Words 1
Cycles 2
Example ouT 120,7 Output data word stored in data memory

location 120 to peripheral on port
address 7.

ouT *,5 Output data word referenced by current
auxiliary register to peripheral on port
address 5.

4-53

PAC Load Accumulator with P Register

Syntax [<label>] PAC

Operands None

Execution (PC) +1 -» PC
(P register) - ACC

Encoding 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo 1 1t 1 1t 1 1 1 1 0 0 0 1 1 1 0]

Description The contents of the P register resulting from a multiply are loaded into the
accumulator.

Words 1

Cycles 1

Example PAC

4-54

Before Instruction After Instruction

144h 144h

)
o

ACC 23h ACC 144h

Pop Top of Stack to Low Accumulator POP

Syntax [<label>] POP

Operands None

Execution (PC) +1 - PC
(TOS) - ACC(11-0)
0 - ACC(31-12)
Pop stack one level.

Encoding 15 14 13 12 11 10 9 8 6 4 3 2 1 0
[0 1 1 I 0 11 1 0 1|

Description The contents of the top of the stack (TOS) are copied to the low accu-
mulator, and the stack popped after the contents are copied. The next ele-
ment on the stack becomes the top of the stack. The upper bits (31-12)
of the accumulator are zeroed. The hardware stack is a last-in, first-out
stack with four locations. Any time a pop occurs, every stack value is co-
pied to the next higher stack location, and the top value is removed from
the stack. After a pop, the bottom two stack words will have the same
value. Because each stack value is copied, if more than three pops (due to
POP or RET instructions) occur before any pushes occur, all levels of the
stack contain the same value.

Words 1

Cycles 2

Example POP

ACC

Stack

Before Instruction

82h

45h
16h

7h
33h

ACC

Stack

After Instruction

45h

16h
7h
33h

33h

4-55

PUSH Push Low Accumulator onto Stack
Syntax [<label>] PUSH
Operands None
Execution (PC) +1 - PC
Push all stack locations down one level.
(ACC(11-0)) » TOS
Encoding i5 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
fo 1+ 1 1 1 1 1 1 1 0 0 1 1 1 0 0]
Description The contents of the lower 12 bits (11-0) of the accumulator are copied
. onto the top of the hardware stack. The stack is pushed down before the
accumulator value is copied. The hardware stack is a last-in, first-out stack
with four locations. If more than four pushes (due to CALA, CALL, PUSH,
TBLR, or TBLW instructions or interrupts) occur before a pop, the first data
values written will be lost with each succeeding push.
Words 1
Cycles 2
Example PUSH
Before Instruction After Instruction
acc acc
2h : - 7h
Stack 5h Stack 2h
3h 5h
Oh 3h

4-56

Return from Subroutine

RET

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

[<label>] RET
None

(TOS) » PC
Pop stack one level.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 |

The contents of the top of stack are copied into the program counter. The
stack is then popped one level. RET is used in conjunction with CALA and
CALL for subroutines and interrupts.

1
2
RET

Before Instruction After Instruction

PC 96h PC 37h
37h 45h

Stack 45h Stack 75h
75h 75h

75h 75h

4-57

ROVM

Reset Overflow Mode

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

4-58

[<label>] ROVM
None

(PC) +1 - PC
0 - OVM status bit
Affects OVM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo 1+ 1 1 1 1 1 1 1 0 0 0 1 0 1 0]

The OVM status bit is reset to logic zero. This disables the overflow mode,
in which the device was placed by the SOVM instruction. If an overflow
occurs with OVM reset, the OV (overflow flag) is set, and the overflowed
result is placed in the accumulator. OVM may also be loaded by the LST
and SOVM instructions (see the SOVM instruction).

1
1

ROVM * The overflow mode bit OVM is reset,
disabling the overflow mode on any
subsequent arithmetic operations.

Store High

Accumulator with Shift SACH

Syntax
Direct:
Indirect:

Operands

Execution

Encoding
Direct:
Indirect:

Description

Words
Cycles

Example

[<label>] SACH <dma>[,<shift>]
[<label>] SACH {*|*+|*-}[,<shift>[,<next ARP>]]

0 <dma < 127
ARP =0 or1
shift = 0,1, 0r 4

(PC) +1 - PC ,
16 MSBs of (ACC) x 2shift » dma

1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l 0 1 0 1 1 | Shift I OI Data Memory Address]

o 1 o 1 1] shir | 1] See Section 4.1 |

The SACH instruction copies the entire accumulator into a shifter. It then
left-shifts this entire 32-bit number 0, 1, or 4 bits, and copies the upper 16
bits of the shifted value into data memory. The accumulator itself remains
unaffected.

1
1

SACH DAT70,1 (DP = 0)

or
SACH *,1 If current auxiliary register contains 70.
Before Instruction After Instruction
ACC 4208001h ACC 4208001h
Data Data
Memory l Oh l Memory 841h
70 70

4-59

SACL

Store Low Accumulator

Syntax

Direct: [<label>] SACL <dma>
Indirect: [<label>] SACL {*|*+|*-}[,<0>[,<next ARP>1]

4-60

Operands 0 < dma < 127
ARP =0or1
shift = 0
Execution (PC) + 1 - PC
(ACC(15-0)) -» dma . ‘
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Directt{0 1 0o 1 0 0o o oo | Data Memory Address |
Indirect] 0 1 0 1 0 0 o0 of1] See Section 4.1 |
Description The low-order bits of the accumulator are stored in data memory. There is
no shift associated with this instruction, although a shift code of zero
MUST be specified if the ARP is to be changed.
‘Words 1
Cycles 1
Example SACL DAT71 (DP = 0)
or
SACL * If current auxiliary register contains 71.
Before Instruction After Instruction
Data Data
Memory 5h Memory 8421h

71 71

ACC 7C638421h ACC 7C638421h

Store Auxiliary Register

SAR

Syntax

Direct: [<label>] SAR <AR>,<dma>
Indirect: [<label>] SAR <AR>,{*|"+|*-}[.<next ARP>]

Operands 0 <dma <127
auxiliary register AR = 0 or 1
ARP =0or1
Execution (PC) +1 - PC
(auxiliary register AR) = dma
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Directt |0 0 1 1 0 0 oJAR] 0] Data Memory Address |
Indirect{0 0 1 1 0 0 O0|AR| 1] See Section 4.1 |
Description The contents of the designated auxiliary register are stored in the addressed
data memory location. For more information, see the LAR instruction.
Words 1
Cycles 1
Example SAR ARO,DAT30 (DP = 0)
or
SAR ARC,* If current auxiliary register contains 30.
Before Instruction After Instruction
ARO ARO
Data Data
Memory 18h Memory 37h
30 30
Example LARP ARO

SAR ARO, *+

ARO 5 ARO 6

Data Data’
Mergqry 0 Mergory 6

!!
!!

4-61

SAR Store Auxiliary Register

Warning:

Special problems arise when SAR is used to store the current
auxiliary register with indirect addressing if auto-
increment/decrement is used.

LARP ARO
LARK ARO, 10
SAR ARO,*+ or SAR ARO,*-

In this case, SAR ARO,*+ will cause the value 11 to be stored
in location 10. SAR ARO,*- will cause the value 9 to be stored
in location 10.

4-62

Set Overflow Mode SOVM

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example 1

[<label>] SOVM
None

(PC) +1 - PC
1 — overflow mode (OVM) status bit
Affects OVM.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0t 1 1 1 1 1 1 1 0 0 0 1 0 1 1]

The OVM status bit is set to logic 1, which enables the overflow (satu-
ration) mode. If an overflow occurs with OVM set, the overflow flag OV is
set, and the accumulator is set to the largest representable 32-bit positive
(7FFFFFFFh) or negative (80000000h) number according to the direction
of overflow. OVM may also be loaded by the LST and ROVM instructions.
(See the ROVM instruction for further information.)

1
1

SOVM The overflow mode bit OVM is set, enabling
the overflow mode on any subsequent
arithmetic operations.

SPAC

Subtract P Register from Accumulator

Syntax
Operands

Execution

Encoding

Description
Words

Cycles

Example

4-64

[<label>] SPAC
None

(PC) +1 » PC

(ACC) - (P register) - ACC

Affects OV; affected by OVM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
fo 7 1 1 1 1 1 1 1 0 0 1 0 0 0 0]

The contents of the P register are subtracted from the contents of the ac-
cumulator. The result is stored in the accumulator. Note that the P register
is always sign-extended.

1
1

SPAC

Before Instruction After Instruction

U
o

24h 24h

ACC 3Ch ACC 18h

Store Status Register SST

Syntax
Direct:
Indirect:

Operands

Execution

Encoding
Direct:
Indirect:

Description

Words
Cycles

Example

[<label>] SST <dma>
[<label>] SST {*|*+|*-}[,<next ARP>]

0 <dma <127
ARP =0or1

(PC) +1 » PC
(status register) — specified dma (page 1 only in direct addressing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
fo 1 1 1 1 1 0o ofo] Data Memory Address |

o 1 1 1 1 1 o of1] See Section 4.1 |

The status bits are saved into the specified data memory address (page 1
only if direct memory addressing is used).

In the direct addressing mode, the status register is always stored in page
1 regardiess of the value of the DP register. The processor automatically
forces the page to be 1, and the specific location within that page is defined
in the instruction. Note that the DP register is not physically modified. This
allows storage of the DP register in the data memory on interrupts, etc., in
the direct addressing mode without having to change the DP. In the indi-
rect addressing mode, the data memory address is obtained from the auxil-
iary register selected. (See the LST instruction for more information.)

The SST instruction can be used to store the status bits after interrupts and
subroutine calls. These status bits include the OV (overflow flag) bit, OVM
(overflow mode) bit, INTM (interrupt mode) bit, ARP (auxiliary register
pointer) bit, and DP (data memory page pointer) bit. The status bits are
stored in the data memory word as follows:

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
foviovm]intTm] 1 1 1 1 JaRp[1 1 1 1 1 1 x |pp|

X = reserved

1
1
SST DAT1 (DP = don't care) or
SST *,1 If current auxiliary register contains 1.
Before Instruction After Instruction
Status Status
Register 5EFEh Register 5EFEh
Data Data
Mer1nory Meq‘lory BEFEh

4-65

SuUB

Subtract from Accumulator with Shift

Syntax

Direct: [<label>] SUB <dma>[,<shift>]
Indirect: [<label>] SUB {*|*+|*-}[,<shift>[,<next ARP>]]

Operands 0 < dma <127
ARP =0or1
0 < shift < 15 (defaults to 0)
Execution (PC) +1 - PC)
(ACC) - [(dma) x 2shift] > ACC
Affects OV; affected by OVM.
Encoding 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:l o 0 0 1 I Shift | 0 | Data Memory Address '
Indirect:] 0 0 0 1] Shift [1] See Section 4.1 |
Description The contents of the addressed data memory location are left-shifted and
subtracted from the accumulator. During shifting, the low-order bits are
zero-filled. The high-order bit is sign-extended. The result is stored in the
accumulator.
Words 1
Cycles 1
Example SUB DATS59 (DP = 0)
or
SUB * If current auxiliary register contains 59.
Before Instruction After Instruction
ace acc
Data Data
Memory 11h Memory 11h
59 59

4-66

Conditional Subtract SuUBC

Syntax
Direct: [<label>] SUBC <dma>
Indirect: [<label>] SUBC {*|*+|*-}[,<next ARP>]
Operands 0 <dma < 127
ARP =0or1
Execution (PC) +1 = PC
(ACC) - [(dma) x 215] - ALU output
If ALU output > O:
Then (ALU output) x 2 + 1 = ACC;
Eise (ACC) x 2 - ACC.
Affects OV but NOT affected by OVM (no saturation).
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direc:|0 1 1 0 0o 1 o ofo| Data Memory Address |
indirec:{ 0 1 1 0 o 1 o o1 | See Section 4.1 |
Description The SUBC instruction performs conditional subtraction, which may be used
for division. The 16-bit dividend is placed in the low accumulator, and the
high accumulator is zeroed. The divisor is in data memory. SUBC is exe-
cuted 16 times for 16-bit division. After completion of the last SUBC, the
quotient of the division is in the lower-order 16-bit field of the accumulator,
and the remainder is in the high-order 16 bits of the accumulator. SUBC
assumes the divisor and the dividend are both positive.
If the 16-bit dividend contains less than 16 significant bits, the dividend
may be placed in the accumulator left-shifted by the number of leading
non-significant zeroes. The number of executions of SUBC is reduced from
16 by that number. However, at least one leading zero must always be
present since both operands of the SUBC instruction must be positive.
Note that the next instruction after SUBC cannot use the accumulator.
The SUBC instruction affects OV but is not affected by OVM. Therefore, the
accumulator does not saturate upon positive or negative overflows when
executing this instruction.
The above description is for 16-bit integer division. SUBC can also be used
in fixed-point division.
Words 1
Cycles 1
Example LARP ARO
LARK ARO,15
DIV SUBC DAT2 (DP = 0)
BANZ DIV

4-67

SUBC Conditional Subtract

Before Instfuction After Instruction
Data Data
Memary Memary
2 2
ACC 41h ACC 20009h

The results above show the execution of all the instructions in the code
example.

4-68

Subtract from High Accumulator SUBH

Syntax

Direct: [<label>] SUBH <dma>
Indirect: [<label>] SUBH {*|*+|*-}[,<next ARP>]

Operands 0 < dma < 127
ARP =0or1
Execution (PC) +1 = PC
(ACC) - [(dma) x 216] -» ACC
Affects OV; affected by OVM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direc:/|0 1 1 0 0 0 1 ofo | Data Memory Address |
Indirect| 0 1 1 0 o0 o 1 o1] See Section 4.1 |
Description The contents of the addressed data memory location are subtracted from the
upper 16 bits of the accumulator. The 16 low-order bits of the accumulator
are unaffected. The result is stored in the accumulator.
The SUBH instruction can be used for performing 32-bit arithmetic.
Words 1
Cycles 1
Example SUBH DAT33 - (DP = 0)
or
SUBH * If current auxiliary register contains 33.
Before Instruction After Instruction
Data Data
Memory 4h Memory 4h
33 33

ACC 0A0013h ACC 60013h

4-69

Subtract from Low Accumulator
SUBS with Sign-Extension Suppressed SUBS

Syntax
Direct: [<label>] SUBS <dma>
Indirect: [<label>] SUBS {*|*+|*-}[,<next ARP>]

Operands 0 <dma <127
ARP =0 or1

Execution (PC) +1 - PC
(ACC) - (dma) » ACC
Affects OV, affected by OVM.

Encoding ~ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:l o 1 1 -0 0 0 1 1 I 0 l Data Memory Address I
indirect[0 1 1 0o o o 1 1]1 | See Section 4.1 |

Description The contents of the addressed data memory location are subtracted from the
accumulator with sign-extension suppressed. The data is treated as a 16-
bit unsigned number, rather than a two’s-complement number. The accu-
mulator behaves as a signed number.

Words 1
Cycles 1
Example SUBS DAT2 (DP = 0)
gIrJBS * If current auxiliary register contains 2.
Before Instruction After Instruction
Data Data

Mergow CF003h Me?ory OF003h

Before Instruction After Instruction

ACC 0F105h ACC 102h

4-70

Table Read ~ TBLR

Syntax
Direct: [<label>] TBLR <dma>
Indirect: [<label>] TBLR {*|*+|*-}[,<next ARP>]

Operands 0 < dma < 127
ARP =0or1

Execution (PC) +1 - TOS
(ACC(11-0)) —» PC
(pma) - dma
Modify AR(ARP) and ARP as specified

(TOS) —» PC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Directt{0 1 1 0 0 1 1 1]o0] Data Memory Address]
Indirect| 0 11 0 o0 1 1 1[1] See Section 4.1 |

Description The TBLR instruction transfers a word from a location in program memory
to a data memory location specified by the instruction. The program mem-
ory address is defined by the low-order 12 bits of the accumulator. For this
operation, a read from program memory is performed, followed by a write
to data memory. The contents of the lowest stack location are lost when
using TBLW.

The TBLR instruction is useful for reading coefficients that have have been
stored in program ROM, or time-dependent data stored in RAM.

Words 1

Cycles 3
Example 1 TBLR DAT6 (DP = 0)
TBLR * If current auxiliary register contains 6.
Before Instruction After Instruction
Acc ace
Program Program
Mergory 306h Mergory 306h
Data Data
Memory 75h Memory 306h
6 6
71h 71h
Stack 48h Stack 48h
16h 16h
80h 16h

4-71

TBLW

Table Write

Syntax

Direct: [<label>] TBLW <dma>
Indirect: [<label>] TBLW {*|*+|*-}[,<next ARP>]

Operands

Execution

Encoding

0 < dma < 127

ARP =0or1

(PC) +1 - TOS
(ACC(11-0)) - PC

(dma) - pma

Modify AR(ARP) and ARP as specified

(TOS) - PC
15 14 13 12 11 10 9 8 6 5 4 3 2 1 0
Direct:[0 1 1 1 1 0 1[0 | Data Memory Address |

Indirect: | o 1 1

Description

Words
Cycles

Example

4-72

1 1 0

Kl

See Section 4.1 |

The TBLW instruction transfers a word in data memory to program memory.
The data memory address is specified by the instruction, and the program
memory address is specified by the lower 12 bits of the accumulator. A read
from data memory is followed by a write to program memory to complete
the instruction. The contents of the lowest stack location are lost when

using TBLW.
1
3
TBLW DATS
TBLW *
Data
Memory
5
Program
Memory
8
ACC
Stack

(DP = 0)

If current auxiliary register contains 5.

Before Instruction

433%h

306h

8h

34h
23h
11h
97h

Data
Memory
5

Program
Mergory

ACC

Stack

After Instruction

433%h

4339h

h

34h
23h
11h
11h

Exclusive-OR with Low Accumulator XOR

Syntax
Direct: [<label>] XOR <dma>
Indirect: [<label>] XOR {*|*+|*-}[,<next ARP>]

Operands 0 < dma <127
ARP =0or1

Execution (PC) +1 - PC
(ACC(15-0)).XOR.dma = ACC(15-0)
(ACC(31-16)) = ACC(31-16)

Encoding 15 14 13 12 11 10 9 8 7 6. 5 4 3 2 1 0
Direct:] 0 1 1 1 1 0 0 o0fo0 | Data Memory Address |
Indirec:t] 0 1 1 1 1 0 o0 o1 | See Section 4.1 |

Description The low half of the accumulator is exclusive-ORed with the contents of the
addressed data memory location. The upper haif of the accumulator is not
affected by this instruction.

The XOR instruction is useful for toggling or setting bits of a word for
high-speed control. In addition, the one’s complement of a word can be
found by exclusive-ORing it with all ones.

Words 1
Cycles 1
Example XOR DAT127 (DP = 0)
or
XOR * If current auxiliary register contains 127.
Before Instruction After Instruction
Data Data
Memory OFOFOh Memory OFOFOh
127 127

ACC 12345678h ACC 1234A688h

4-73

ZAC

Zero Accumulator

Syntax
Operands

Execution

Encoding

Description
Words
Cycles

Example

4-74

[<label>] ZAC
None

(PC) +1 - PC
0 »'ACC

1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
fo 7+ 1 1 1t 1 1 1 1 0 0 0 1 0 0 1]

The contents of the accumulator are replaced with zero.
1
1

ZAC

Before Instruction After Instruction

ACC |0A5A5ABAS5h AcC

Zero Low Accumulator
ZALH and Load High Accumulator ZALH

Syntax
Direct: [<label>] ZALH <dma>
Indirect: [<label>] ZALH {*|"+|*-}[,<next ARP>]

Operands 0 <dma <127
ARP =0 or1

Execution (PC) +1 - PC
0 - ACC(15-0)
(dma) = ACC(31-16)

Encoding 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Directtfo 1 1 0 o0 1 0 1]o] Data Memory Address |
Indirect{ 0 1 1 0o o 1 o 1]1] See Section 4.1 |

Description ZALH loads a data memory value into the high-order half of the accumula-
tor. The low-order bits of the accumulator are zeroed.

ZALH is useful for 32-bit arithmetic operations.

Words 1
Cycles 1
Example ZALH DAT3 (DP = 0)
(Z):ALH * If current auxiliary register contains 3.

Before Instruction After Instruction
Data

Data
Me%mry 3F01h Mergory 3F01h

ACC 77FFFFh ACC 3F010000h

4-75

Zero Accumulator, Load Low Accumulator
ZALS with Sign-Extension Suppressed ZALS

Syntax
Direct: [<label>] ZALS <dma> -
Indirect: [<label>] ZALS {*|*+|*-}[,<next ARP>]

Operands 0 < dma < 127
ARP =0or1

Execution (PC) +1 - PC
0 - ACC(31-16)
(dma) - ACC(15-0)

Encoding %5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct{|0 1 1 0 0 1 1 0]o | Data Memory Address |
indirec:| 0 1 1 0o o0 1 1 of1] See Section 4.1 [

Description The contents of the addressed data memory location are loaded into the 16
low-order bits of the accumulator. The upper half of the accumulator is
zeroed. The data is treated as a 16-bit unsigned number rather than a
two’s-complement number. Therefore, there is no sign-extension with this
instruction.

ZALS is useful for 32-bit arithmetic operations.

Words 1
Cycles 1
Example ZALS DAT1 (DP = 0)
cZ,;LLS * If current auxiliary register contains 1.

Before Instruction After Instruction

Data Data .
MeTory OF7FFh Mer1nory OF7FFh

ACC 7FF00033h ACC OF7FFh

4-76

Section b

Software Applications

This section provides examples of how to use the various architectural and
instruction set features of the TMS320C14/E14. For more information about
specific applications, refer to the book Digital Signal Processing Applications
with the TMS320 Family (SPRA012A).

Major topics discussed in this section include:

Processor Initialization (Section 5.1, Page 5-2)

Interrupt Management (Section 5.2, Page 5-14)

Memory Management (Section 5.3, Page 5-17)

Logical and Arithmetic Operations (Section 5.4, Page 5-19)
PID Control (Section 5.5, Page 5-32)

PWM Generation (Section 5.6, Page 5-34)

Speed/Position Measurement (Section 5.7, Page 5-36)

Serial Port Usage (Section 5.8, Page 5-40)

5-1

Software Applications - Processor Initialization

5.1 Processor Initialization

5-2

It is necessary to initilize the processor prior to execution of a DSP algorithm.
Initilization is normally done following a reset so that the processor and pe-
ripherals will meet the requirements of the system. In initializing the
TMS320C14/E14, the system requirements of the following functions should
be considered:

(] Auxiliary register pointer

Watchdog timer

® Data memory page pointer
[Overflow mode

[J Interrupt structure

° Bit 1/0

® Serial port

®

[J

General purpose timer

® Event manager (compare/capture)

Note that although a hardware reset forces the program counter to zero and
initializes various registers and status bits, the overflow mode bit (OVM), in-
terrupt mode bit (INTM), auxiliary register pointer (ARP), and data memory
page pointer bit (DP) must be initialized by the programmer.

As described in Section 3.1.4, the on-chip peripherals are accessed with a
bank address and a port address. Table 5-1 shows how the 1/0 registers are
mapped. .

Table 5-1. 1/0 Register Map

PORT|BANKO| BANK1 | BANK2 |BANK3|BANK4|BANK5|BANK6|BANK7| BANKFFFF

0 10P WDT TMR1 |CMPRO| ACTO | SCON | FIFOO EXT. /0
1 DDR WPER TPR1 |CMPR1| ACT1 | SSET | FIFO1 EXT. 1/0
2 BSET | WTPL4 | TMR2 |CMPR2| ACT2 | SCLR | FIFO2 | SMAT EXT. 1/0
3 BCLR | SYSCON| TPR2 |CMPR3| ACT3 | TBR FIFO3 | TSR EXT. /O
4 IF TCON |CMPR4| ACT4 RBR | CCON | RSR EXT. 1/0
5 IM CMPR5| ACT5 | SBRG | CCLR | STMR EXT. 1/0
6 FCLR EXT. 1/0
7 BSR BSR BSR BSR BSR BSR BSR BSR BSR

Software Applications - Processor Initialization

The assembly language code presented here initializes the TMS320C14/E14
to the following machine state:

Overflow mode disabled

Data memory page pointer set to zero
Auxiliary register pointer set to zero
Internal memory filled with zero

Bit I/0

- Bits 15 through 8 configured as inputs
- Bits 7 through 0 configured as outputs

Serial port configured as:

- Asynchronous mode
- Seven data bits

- Even parity

- 19.2 kbps bit rate

Watchdog timer set to time out once every 1 ms.

Use compare subsystem and set compare data to a specific pattern. If
match occurs, output pin is toggled appropriately as defined by action
register.

Interrupt enabled

Timer 1 and 2 used by the compare subsystem are initialized to 400 ps.

5.1.1 Header File Defining Constants

The following header file (Example 5-1), is included in each of the following
program listing example in this section. It defines constants used for symbolic
access to registers and bit field maps of control registers. The following ex-
ample listings refer to the header file simply as "C14INC".

5-3

Software Applications - Processor Initialization

Example 5-1. Header File Constants

*
.title 'HEADER FILE CONSTANTS'

*

* FILE NAME: C14INC

*

* THIS HEADER FILE DEFINES CONSTANTS FOR SYMBOLIC ACCESS
* TO REGISTERS AND BIT MAP FIELDS OF CONTROL REGISTERS
*

*

* DEFINE CONSTANTS FOR BITS
*

BITO .set * 0000000000000001B
BIT1 .set 0000000000000010B
BIT2 .set 0000000000000100B
BIT3 . .set 0000000000001000B
BIT4 .set 0000000000010000B
BITS .set 0000000000100000B
BIT6 .set 0000000001000000B
BIT7 .set 0000000010000000B
BIT8 .set 0000000100000000B
BIT9 .set 0000001000000000B
BIT10 .set 0000010000000000B
BIT11 .set 0000100000000000B
BIT12 .set 0001000000000000B
BIT13 .set 0010000000000000B
BIT14 .set 0100000000000000B
BIT15 .set 1000000000000000B
*

MASKO .set 1111111111111110B
MASK1 .set 11113111111111101B
MASK2 .set 1111111111111011B
MASK3 .set 1111111111110111B
MASKA4 .set 1111111111101111B
MASKS5 .set 1111111111011111B
MASK6 .set 1111111110111111B
MASK7 .set 1111111101111111B
MASKS8 .set 1111111011111111B
MASK9 .set 1111110111111111B
MASK10 .set 1111101111111111B
MASK11 .set 1111011111111111B
MASK12 .set 1110111111111111B
MASK13 .set 1101111111111111B
MASK14 .set 1011111111111111B
MASK15 .set 0111111111111111B
*

*

BitIOBank .set 0

InterruptBank .set 0

WDTBank .set 1

SYSBank .set 1

TimerBank .set 2

CompareBank .set 3

ActionBank .set 4

SerialPort .set 5

CaptureBank .set 6

SerialPortRegs .set 7

*

5-4

Software Applications - Processor Initialization

ExternallIO
*

BSR
*
*
*
I0pP
DDR

BSET

BCLR
*

*
*

IF
IM
FCLR
*

*
*
WDT
TMR4
WPER
TPR4

WTPL
*

*
*

SYSCON
*

*
*

TMR1
TPR1
TMR2
TPR2

TCON
*

*
*

CMPRO
CMPR1
CMPR2
CMPR3
CMPR4
CMPR5

*
*
*

ACTO
ACT1
ACT2
ACT3
ACT4
ACTS5

DEFINE

DEFINE

DEFINE

DEFINE

DEFINE

DEFINE

DEFINE

.set OFFFFH
.set 7
REGISTERS IN BitIOBank
.set 0
.set 1
.set 2
.set 3

REGISTERS FOR InterruptBank

.set 4
.set 5
.set 6
REGISTERS IN
.set (¢}
.set 0
.set 1
.set 1
.set 2

WDTBank

REGISTER IN SYSBank

.set 3
REGISTERS IN

.set
.set
.set
.set
.set

BDWNRO

REGISTERS IN

.set
.set
.set
.set
.set
.set

abwhRrOo

REGISTERS IN

.set
.set
.set
.set
.set
.set

ubhwWNDRO

TimerBank

CompareBank

ActionBank

5-5

Software Applications - Processor Initialization

* DEFINE
*

SCON

SSET

SCLR

TBR

RBR

SBRG

*

* DEFINE
*

FIFOO

FIFO1l

FIFO2

FIFO3

CCON

CCLR

*

* DEFINE
*

SMAT
TSR
RSR
STMR
*

* DEFINE
*

MCMPbit

*

* DEFINE
*

_ov
_OVM
_INTM
_ARP
DP

*
* DEFINE

*
_NMI
_INT
_STMRINT
_CAPINT3
_CAPINT2
_CAPINT1
_CAPINTO
_CMPINT1
_CMPINTO
_TIMINT2
_TIMINT1
~RXINT
_TXINT
_WDTINT
_IOPINT
*

5-6

REGISTERS IN SerialPort
.set 0
.set 1
.set 2
.set 3
.set 4
.set 5
REGISTERS IN CaptureBank
.set 0
.set 1
.set 2
.set 3
.set 4
.set 5
SerialPortRegs
.set 2
.set 3
.set 4
.set 5
BIT MAP FOR SYSCON
.set BITO
BIT MAP FOR STATUS REGISTER
.set BIT15
.set BIT14
.set BIT13
.set BIT8
.set BITO
BIT MAP FOR INTERRUPT FLAG REGISTER
.set BIT15
.set BIT14
.set BIT12
.set BIT11
.set BIT10
.set BIT9
.set BIT8
.set BIT7
.set BIT6
.set BITS
.set BIT4
.set BIT3
.set BIT2
.set BITL
.set BITO

Software Applications - Processor Initialization

*

DEFINE SHIFTS FOR INTERRUPT BIT MAP
*

NMI_BIT .set 15
INT_BIT .set 14
STMRINT_BIT .set 12
CAPINT3_BIT .set 11
CAPINT2_BIT .set 10
CAPINT1_BIT .set 9
CAPINTO_BIT .set 8
CAPINT1_BIT .set 7
CMPINTO_BIT .set 6
TIMINT2_BIT .set 5
TIMINT1_BIT .set 4
RXINT_BIT .set 3
TXINT_BIT .set 2
WDTINT_BIT .set 1
IOPINT_BIT .set 0
*
* DEFINE BIT MAP FOR TCON

TCON BIT
*
CAPINtOnFirst .set BIT15 ; 15
CAPIntOnThird .set 0
*
CaptureEnable .set 0 ; 14
CaptureDisable .set BIT14
*
CAPTMR2Select .set BIT13 ; 13
CAPTMR1Select .set 0
*
CMP5Enable .set Bitl2 ; 12
CAP3Enable .set 0
*
CMP4Enable .set BIT11 ;11
CAP2Enable .set 0
*
CMPEnable .set BIT10 ; 10
*
CMPTMR2Select .set BIT9 7 9
CMPTMR1Select .set 0
*
CMPPWMMode .set BIT8 ; 8
CMPNormalMode .set 0
*
TMR2Enable .set BIT6 ; 7,6 TIMER 2 MODE FIELD
*
TMR2Internal .set 0 ; 5,4 TIMER 2 SOURCE
TMR2External .set BIT4+BITS
TMR2fromTMR1 .set BITS
*
TMR1Enable .set BIT1 ; 2,1 TIMER 1 MODE FIELD
*
TMR1lInternal .set 0 ; O TIMER 1 SOURCE
TMR1External .set 1
*

5-7

Software Applications - Processor Initialization

*

* TIMER 1 AND 2 MODES
TMRStop .set ¢}
TMRby4 .set 1
TMRby16 .set 2
TMRby1l .set 3
*
* BIT MAP FOR ACTION REGISTER
*
* ACTION CODES
*
CMPNoaction .set 0
CMPReset .set 1
CMPSet .set 2
CMPToggle .set 3
*
* COMPARE OUTPUT ACTION FIELDS
*
CMPOAct .set BIT14
CMP1lAct .set BIT12
CMP2Act .set BIT10
CMP3Act .set BIT8
CMP4Act .set BIT6
CMP5Act .set BIT4
*
* COMPARE INTERRUPT ENABLES
*
CMPINT1Enable .set BIT3
CMPINT2Enable .set BIT2
ActionDefault .set BIT1+BITO
*
* BIT MAP FOR CCON
*
* CAPTURE CONTROL BIT FIELD DEFINITIONS
*
* FIFO STATUS BITS
*
'FIFOFull .set 8
FIFONotEmpty .set 4
*
* CAPTURE MODE DEFINITIONS
*
CAPDisable .set 0
PosEdgeDetect .set 1
NegEdgeDetect .set 2
PosNegDetect .set 3
*
* CAPTURE CONTROL FIELDS
*
CAP3Mode .set BIT12
CAP2Mode .set BIT8
CAP1Mode .set = BIT4
- CAPOMode .set BITO
*

5-8

Software Applications - Processor Initialization

*

* BIT MAP FOR SCON

SCON BIT
*
*
SynchMode .set BITO ; O
AsynchMode .set 0
*
ParityEnable .set BIT1 ;1
ParityDisble .set 0
*
OddParity .set BIT2 ; 2
EvenParity .set 0
*
ParityError .set BIT3 ;3
*
FERR .set BIT4 ; 4
*
* NUMBER OF DATA BITS SELECT FIELD
*
SixDataBits .set 0 ; 5,6
SevenDataBits .set BITS
EightDataBits .set BIT6
NineDataBits .set BIT5+BIT6
*
RxOverflow .set BIT7 ;7
*
RxFull .set BITS8 i 8
*
* CODEC MODE FIELD
* SEE TABLE 3-19 FOR DEFINITIONS
*
CodecMode .set BIT9 ; 9,10,11,12,13
*
CodecEnable .set BIT14 ; 14
*
TXxEmpty .set BIT15 ; 15
*
* EQUATES FOR BAUD RATE WITH 25.6 MHZ CLOCK
*
SBRG19200 .set 20
SBRG9600 .set 40
SBRG4800 .set 82
SBRG2400 .set 166
SBRG1200 .set 332
SBRG300 .set 1332
*
* EQUATES FOR WDT RESET
*
WDTmagicl .set OABCDh
WDTmagic2 .set 2345h

5-9

Software Applications - Processor Initialization

Example 5-2. TMS320C14/E14 Processor Initialization

*

* INITIALIZATION FOR THE Cl4/E14
*

.title 'C14/E14 PROCESSOR INITIALIZATION'
*

.include "C14INC" ; INCLUDE HEADER FILE
*

WDT1mS .set 782 ; COUNTS FOR 1 MS WITH MAX CLOCK RATE
TMR2Period .set 3125 ; PERIOD FOR TIMER2 (400 MICROSEC)
IOPortData .set OA5h

InterruptMask .set OFFFCh ; MASK FOR IM TO ENABLE WDT

* ; AND IOP INTERRUPTS

*

SerialPortMode .set AsynchMode+SevenDataBits+ParityEnable+EvenParity
CaptureMode .set CAPIntOnFirst+CAPTMR2Select

CompareMode .set CMP5Enable+CMPEnable

Timer2Mode .set TMR2Enable*TMRbyl+TMR2Internal

Timer1lMode .set TMR1lEnable*TMRStop

ActionMode .set CMP5Act*CMPToggle+ActionDefault

CaptureControl .set PosNegDetect*CAP2Mode
*

.bss ONE,1
.bss TMP,1
.bss BANK,1
.bss REG,1
.bss VALUE,1
.bss WDTVAL1,1
.bss WDTVAL2,1
.bss INTMSK, 1

.ref ISR
* RESET AND INTERRUPT BRANCH INSTRUCTIONS
.text

B INIT
B ISR
* .
* PLACE INIT TABLE IN INITIALIZED DATA SPACE
.data
*
InitTable:
.word WDT1mS
.word WDTmagicl
.word WDTmagic2
.word SerialPortMode ; SERIAL PORT MODE
.word SBRG19200 :
.word CaptureMode+CompareMode+Timer1Mode+Timer2Mode
.word TMR2Period
.word InterruptMask
.word ActionMode
.word CaptureControl

Software Applications - Processor Initialization

* BACK TO PROGRAM SPACE
*
.text
*
INIT:
ROVM
LDPK 0
LARK ARO, 255
*
* CLEAR DATA RAM
*
ZAC
LARP ARO
LOOP:
SACL *
BANZ LOOP
*
LACK 1
SACL ONE
*
LT ONE
MPYK InitTable
PAC
TBLR VALUE
SACL TMP
*
LACK WDTBank
SACL BANK
ouT BANK, BSR
ouT VALUE ,WPER
*
LAC TMP
ADD ONE
SACL TMP
TBLR WDTVAL1
*
LAC TMP
ADD ONE
SACL TMP
SACL WDTVAL?2
*
LAC TMP
ADD ONE
SACL T™MP
TBLR VALUE
LACK SerialPort
SACL BANK
ouT BANK,BSR
ouT VALUE, SCON

e N

~

NeNe Ne Ne Ne N Se N Se

N~ N

P R T

DISABLE OVERFLOW MODE
POINT TO DATA PAGE O
ARO = 255

ARP -> ARO

CLEAR MEMORY POINTED TO BY ARO
DECREMENT ARO AND BRANCH TO LOOP
IF ARO <> O

ONE = 1

ACC = ->InitTable

SINCE LACK ONLY REFERENCES AN 8 BIT
CONSTANT AND MPYK REFERENCES A 13 BIT
CONSTANT, MULTIPLYING BY 1 AND THEN
SAVING THE RESULT IN THE ACC THROUGH
THE P REGISTER SOLVES THE PROBLEM OF
GETTING A 12 BIT ADDRESS INTO THE ACC
VALUE = InitTable[O0]

TMP = ->InitTable(0]

INITIALIZE THE WDT PERIOD REGISTER
LOAD WPER WITH COUNTS FOR 1MS
TIMEOUT

TMP = ->InitTable[1]
INITIALIZE WDT MAGIC VALUE 1

TMP = ->InitTable[2]
INITIALIZE WDT MAGIC VALUE 2

TMP = ->InitTable[3]
INITIALIZE SCON REGISTER
ASYNCHRONOUS MODE

7 DATA BITS

EVEN PARITY

Software Applications - Processor Initialization

LAC
ADD
SACL
TBLR
ouT

LAC
ADD
SACL
TBLR
LACK
SACL
ouT
ouT

LAC
ADD
SACL
TBLR
ouT

LAC
ADD
SACL
TBLR
LACK
SACL
ouT
ouT
LAC
ADD
SACL
TBLR
LACK
SACL
ouT
ouT

LAC
ADD
SACL
TBLR
LACK
SACL
ouT
ouT

TMP

ONE

TMP

VALUE
VALUE, SBRG

T™MP

ONE

TMP

VALUE
TimerBank
BANK
BANK,BSR
VALUE, TCON

TMP

ONE

TMP

VALUE
VALUE, TPR2

TMP
ONE
TMP
VALUE

InterruptBank;

BANK
BANK,BSR
VALUE, IM

TMP

ONE

TMP

VALUE
ActionBank
BANK
BANK,BSR
VALUE, ACT5

TMP

ONE

TMP

VALUE
CaptureBank
BANK
BANK,BSR
VALUE, CCON

~e

Ne Se oNe Ne Ne Se

~e N Ne we

i
;
i

Ne Ne Ne

TMP = ->InitTable[4]
SET BAUD RATE GENERATOR FOR 19200 BAUD

TMP = —>In1tTable[5]

INITIALIZE TCON

ENABLE CAPTURE, INTERRUPT ON FIRST INPUT
COMPARE 5: TOGGLE MODE

TIMER 1 STOP

TIMER 2 DIVIDE BY 1, INTERNAL CLOCK

TMP = ->InitTable[6]

INITIALIZE TMR2 PERIOD

LOAD WITH COUNTS FOR 400 MICROSEC PERIOD
WITH 25.6 MHZ CLOCK INPUT

TMP = =>InitTable[7]
INITIALIZE INTERRUPT MASK
ENABLE WDT AND IOP INTERRUPTS

TMP = ->InitTable([8]
INITIALIZE ACTION MODE FOR CMP5
TOGGLE COMPARE OUTPUT 5

TMP = ->InitTable[9]
INITIALIZE CAPTURE CONTROL
DETECT RISING OR FALLING EDGES ON CAP2

Software Applications - Processor Initialization

INITIALIZE DDR

CONFIGURE BITS 0-7 OF IOP AS OUTPUTS AND
8-15 OF IOP AS INPUTS

* Ok H * * *

LACK BitIOBank
SACL BANK

ouT BANK,BSR

LACK 11111111B
SACL VALUE

ouT VALUE,DDR

*

THIS COMPLETES DEVICE INITIALIZATION
EINT ; ENABLE INTERRUPTS
END

Software Applications - Interrupt Management

5.2 Interrupt Management

The interrupt function allows current CPU processing to be suspended in or-
der to perform a more critical function. The TMS320C14/E14 provides a total
of 15 external and internal interrupts. Two interrupts are dedicated for external
sources. The remaining interrupts are used to service the on-chip peripherals.
All interrupts, with the exception NMI, are maskable through an interrupt mask
register (IM). The interrupts are synchronized and multiplexed into the master
interrupt circuitry and have the same priority. Software polling techniques are
used to determine which input caused the interrupt.

Processing in the Interrupt Service Routine (ISR) must assure that the pro-
cessor context is saved before execution and restored when the routine is fin-
ished.

Interrupt processing on the TMS320C14/E14 begins as follows:

1) The EINT (enable interrupt) instruction is executed, setting the INTM
(interrupt mode) bit to 0 so that the interrupts can be received.

2) When an interrupt occurs, a bit in the Interrupt Flag (IF) register corre-
sponding to that interrupt is setto a 1. ’

3) If the corresponding interrupt mask (IM) bit is zero, the CPU interrupt
is generated.

As an interrupt is generated (either by an internal or external source) the fol-
lowing events occur automatically:

1) The INTM bit is set to 1 to disable further interrupts.
2) The current PC is pushed onto the top of stack (TOS).
3) The new PCis setto 2.

During the servicing of the interrupt, the following operations are commonly
performed by the user in software:

1) Program memory address 2 will either have a service routine to save the
context of the machine or branch to the interrupt service routine.

2) The interrupt service routine is executed. The context of the machine may
be stored and then restored later if required. The following can be used
to select which interrupt to service:

a) Use software polling techniques to determine which one of the 15
flags has been set in the control register.

b) Check for corresponding mask bits before proceeding (optional).

c) Clear the flag (reset to 0) through the FCLR register and service the
source of the flag.

3) The EINT instruction is executed, clearing the INTM bit to O.
4) The RET instruction is executed.

Although all interrupts have the same hardware priority, the user can control
the polling of the interrupt flags. The ISR should clear the interrupt flag before
executing the EINT instruction or enabling interrupts. Note that clearing the
flag register requires writing a one to the FCLR register. Writing a zero has no

Software Applications - Interrupt Management

effect. The following interrupt service routine example is for a system with five
active interrupts, and includes polling.

Example 5-3. Interrupt Service Routine

*
* .
* THIS IS AN EXAMPLE INTERRUPT SERVICE ROUTINE
*
* THIS ROUTINE MAY BE LOCATED AT LOCATION 2 TO BE INVOKED THROUGH
* A BRANCH LOCATED AT LOCATION 2. THIS MODULE IS DESIGNED AS A
* DISPATCHER FOR THE VARIOUS SERVICE ROUTINES THAT WOULD BE REQUIRED
* TO IMPLEMENT THE DESIRED RESPONSES TO SYSTEM INTERRUPTS.
*
.include "C1l4INC" ; INCLUDE HEADER FILE
*
.def ISR, ISRexit
*
.ref Rxisr,Txisr ,WDTisr ,NMIisr,INTisr,IOPisr
.ref ONE ; INITIALIZED TO 1
*
.ref BANK ; THESE 7 LOCAL VARIABLES SHOULD BE
.ref STATUS ; PLACED ON PAGE 1
.ref ACCL
.ref ACCH
.ref BankSave
.ref TMP
.ref IFimage
*
.text
*
ISR:
*

SAVE ENVIRONMENT
*

SST STATUS ; SAVE STATUS ON DATA PAGE 1
LDPK 1 ; DP NOW POINTS TO DATA PAGE 1
SACL ACCL ; SAVE ACCUMULATOR
SACH ACCH
IN BankSave,BSR ; SAVE BSR
*
* BRANCH TO THE APPROPRIATE INTERRUPT SERVICE ROUTINE BASED
* ON BIT MAP OF IF
*
ouT InterruptBank,BSR ; GET INTERRUPT FLAGS
IN IFimage, IF ; STORE IN IFimage
LAC ONE, 15 ; TMP = 7FFFh
SUB ONE
SACL TMP
ouT TMP, FCLR ; CLEAR ALL INTERRUPTS
*
* TEST FOR INTERRUPTS FROM:
* NMI
* TRANSMITTER AND RECEIVE SECTIONS
* OF SERIAL PORT
* WDT
* BIT I/O PORT
* INT PIN
*

*

IGNORE ALL OTHER INTERRUPTS

LAC ONE,NMI_BIT

5-15

Software Applications - Interrupt Management

SkipNMI:

SkipRx:

SkipTx:

SkipWDT:

SkipIOP:

SkipINT:
*
*
*
ISRexit:
*
*

*
RESTORE:

LAC
AND
BZ
CALL

LAC
AND
BZ
CALL

LAC
AND
BZ
CALL

LAC
AND
BZ
CALL

LAC
AND
BZ
CALL

LAC
AND
BZ
CALL

ONE ,NMI_BIT
IFimage
SkipNMI
NMIisr

ONE ,RXINT_BIT
IFimage
SkipRx

Rxisr

ONE, TXINT_BIT
IFimage
SkipTx

Txisr

ONE ,WDINT_BIT
IFimage
SkipWDT
WDTisr

ONE,IOPINT_BIT
IFimage
SkipIOP

IOPisr

ONE, INT_BIT
IFimage
SkipINT
INTisr

~

~

~

~

IF

IF

IF

IF

IF

IF

(NMI) NMIisr()

(RECEIVE PORT INTERRUPT) Rxisr()

(TRANSMIT PORT INTERRUPT) Txisr()

(WDT INTERRUPT) WDTisr

(I/0 PORT INTERRUPT) IOPisr

(INT) INTisr

EXIT INTERRUPT SERVICE ROUTINE

RESTORE ENVIRONMENT

ouT
ZALH
ADDS
LST
EINT
RET

END

BankSave,BSR
ACCH

ACCL

STATUS

Ne we NE owe e e

RESTORE BSR

RESTORE UPPER ACCUMULATOR
RESTORE LOWER ACCUMULATOR
RESTORE STATUS

ENABLE INTERRUPTS

RETURN TO INTERRUPTED CODE

Software Applications - Memory Management

5.3 Memory Management

The TMS320C14/E14 has a modified Harvard architecture in which program
information and data information reside in two separate memories. Therefore,
the next instruction fetch can occur while the current instruction is fetching
data and executing the operation. The use of the Harvard architecture in-
creases the speed of the device, but requires the use of special instructions to
transfer a word between program memory and data memory.

The data memory consists of 256 words of on-chip RAM. Three forms of data
memory addressing are available for use; direct, indirect, and immediate. Direct
addressing uses the seven lower bits of the instruction word concatenated
with the data page pointer to form the data memory address. Indirect ad-
dressing uses the lower eight bits of the auxilary registers as the data memory
address. Immediate addressing uses part of the instruction word for data
rather than data RAM.

The TMS320C14/E14 provides two options of program memory usage: either
4K words of internal ROM/EPROM can be used in the microcomputer mode,
or the same amount of external memory can be used in the microprocessor
mode.

The TMS320C14/E14 microprocessor and microcomputer modes are config-
urable through hardware or software. The hardware method uses the
NMI/MC/MP and RS pins to set the mode (Section 3.2.1). The software
method uses bit 0 of the SYSCON register to set the mode. A 1 written to this
bit sets the CPU in the microprocessor mode.

The initial configuration of the CPU is not binding, that is, it can be changed
later into the other mode and then back again if desired. This affectively dou-
bles the amount of program memory to 8K words. In Example 5-4, the CPU
is set to the microprocessor mode.

Software Applications - Memory Management

Example 5-4. Memory Expansion Routine

* F * F F

L 2 B

* ¥ ¥ *

5-18

THIS IS AN EXAMPLE OF HOW TO MANIPULATE THE MC/MP BIT IN THE
SYSCON REGISTER TO FORCE MICROPROCESSOR MODE. THAT IS, TO FORCE
PROGRAM ACCESS TO EXTERNAL MEMORY.

.include "C1l4INC" ; INCLUDE HEADER FILE

IT IS ASSUMED THAT BANK AND TMP ARE ALLOCATED IN THE CURRENT
MEMORY.

.ref BANK, TMP

IT IS ALSO ASSUMED THAT 'EXTERNAL' IS THE ADDRESS IN EXTERNAL
MEMORY WHICH IS TO BE EXECUTED AFTER THE MC/MP BIT CHANGE.

.ref EXTERNAL

.text

LACK SYSBank
SACL BANK

OUT BANK,BSR
ZAC

SACL TMP

ouT TMP , SYSCON

CALL EXTERNAL CALL SUBROUTINE IN EXTERNAL MEMORY.
PROGRAM FLOW RETURNS HERE IF
MC/MP BIT IS SET TO 1 PRIOR

TO THE 'RET' INSTRUCTION

Ne Se Se Ne

END

Software Applications - Logical and Arithmetic Operations

5.4 Logical and Arithmetic Operations

Although the TMS320C14/E14 instruction set is oriented toward digital signal
processing, the same fundamental operations of a general-purpose processor,
such as bit manipulation, logical and arithmetic operations, logical and arith-
metic shifts, and overflow management, are included. Explanations and ex-
amples of how to use instructions for scaling, convolution operations,
fixed-point multiplication/division/addition, and floating-point arithmetic are
also included in this section.

The contents of the accumulator may be stored in data memory using the
SACH and SACL instructions or stored in the stack by using the PUSH in-
struction. Note that PUSH and POP only affect the lower 12 bits of the ac-
cumulator. The accumulator may be loaded from data memory using the
ZALH, ZALS, and LAC instructions, which zero the accumulator before load-
ing the data value. The ZAC instruction zeroes the accumulator. POP can be
used to restore the accumulator contents from the stack. The accumulator is
also affected by the execution of the ABS instruction, which replaces the
contents of the accumulator with its absolute value.

5.4.1 Bit Manipulation

A specified bit of a word from data memory can either be set, cleared, or
tested. Such bit manipulations are accomplished by using the accumulator, the
hardware shifter and the logic instructions, AND, OR, and XOR. In Example
5-5, operations on single bits are performed on the data word VALUE. In this
and the following example, data memory location ONE contains the value 1
and MINUS contains the value -1 (all bits set).

Example 5-5. Single-Bit Manipulation
CLEAR BIT 5 OF DATA MEMORY LOCATION VALUE. MEMORY

LOCATION ONE CONTAINS CONSTANT 1. MEMORY LOCATION MINUS
CONTAINS -1 OR OFFFFh.

* F F Ok *

LAC ONE,5 ; ACC = 00000020h

XOR MINUS ; INVERT ACCUMULATOR; ACC = OOOOFFDFh
AND VALUE ; BIT 5 OF VALUE IS ZEROED

SACL VALUE

*

SET BIT 12 OF VALUE.

LAC ONE,12 ; ACC = 00001000h
OR VALUE ; BIT 12 OF VALUE
SACL VALUE

*

TEST BIT 3 OF VALUE.

LAC ONE,3 ; ACC = 00000008h
AND VALUE ; TEST BIT 3 OF VALUE
BZ BIT3Z ; BRANCH TO BIT3Z IF BIT IS CLEAR

More than one bit can be set, cleared, or tested at one time if the necessary
mask exists in data memory. In Example 5-6, the six low-order bits in the word
VALUE are cleared if MASK contains the value 63.

Software Applications - Logical and Arithmetic Operations

Example 5-6. Multiple-Bit Manipulation

CLEAR LOWER SIX BITS OF: VALUE. MEMORY LOCATION MASK
CONTAINS THE MASK TO CLEAR THE BITS. MEMORY LOCATION
MINUS CONTAINS -1 OR OFFFFh.

* ¥ X F *

LAC MASK ; ACC = 0000003Fh

XOR MINUS ; INVERT ACCUMULATOR; ACC = OOOOFFCOh
AND VALUE ; CLEAR LOWER SIX BITS

SACL VALUE

5.4.2 Overflow Management

The TMS320C14/E14 has two features that can be used to handle overflow
management. These include the branch on overflow conditions and accu-
mulator saturation (overflow mode). These features provide several options
for overflow protection within an algorithm. :

A program can branch to an error handler routine on an overflow of the ac-
cumulator by using the BV (branch on overflow) instruction. This instruction
can be performed after any ALU operation that may cause an accumulator
overflow.

The overflow mode is a feature useful for DSP applications. This mode emu-
lates the saturation effect characteristic of analog systems. When enabled, any
overflow in the accumulator results in the accumulator contents being re-
placed with the largest positive value (7FFFFFFFh) if the overflowed number
is positive, or the largest negative value (80000000h) if negative. The over-
flow mode is controlled by the OVM bit of the status register and can be
changed by the SOVM (set overflow mode), ROVM (reset overflow mode),
or LST (load status register) instructions. Overflows can be detected in soft-
ware by testing the OV (overflow) bit in the status register. When a branch is
used to test the overflow bit, OV is automatically reset. Note that the OV bit
does not function as a carry bit. It is set only when the absolute value of a
number is too large to be represented in the accumulator, and it is not reset
except by specific instructions. The overflow mode feature affects all arithmetic
operations in the ALU.

In Example 5-7, the accumulator saturates to 7FFFFFFFh or the largest pos-
itive value. The BV instruction also clears the OV bit.

Example 5-7. Overflow Management

5-20

BV OVRFLW CHECK OV BIT

BRANCH TO OVERFLOW HANDLING ROUTINE

* THE ACCUMULATOR WILL SATURATE TO THE HIGHEST POSITIVE
* VALUE WHEN OVERFLOW OCCURS. THE ACCUMULATOR CONTAINS
* 7JFFFF423h. MEMORY LOCATION A CONTAINS 74EDh. MEMORY
* LOCATION B CONTAINS 67AFh.
*

SOVM ; SET OVERFLOW MODE

LT A ; T = 74EDh

MPY B ; P = 2F5B4903h

APAC ; ACC = 7FFFFFFFh

Software Applications - Logical and Arithmetic Operations

The effect on the accumulator before and after the code execution is shown

as follows:
Before Code After Code
Execution Execution
ACC 7FFFF423h TFFFFFFFh

5.4.3 Scaling

Scaling the data coming into the accumulator or already in the accumulator is
useful in signal processing algorithms. This is frequently necessary in adapta-
tion or other algorithms that must compute and apply correction factors or
normalize intermediate results. Scaling and normalizing are implemented on
the TMS320C14/E14 via shifts of data on the incoming path to the accu-
mulator.

There are two types of shifts: logical and arithmetic. A logical shift is imple-
mented by filling the empty bits to the left of the MSB with zeros, regardless
of the value of the MSB. An arithmetic shift fills the empty bits to the left of
the MSB with ones if the MSB is one, or with zeros if the MBS is zero. The
second type of bit padding is referred to as sign extension.

Data can be left-shifted O to 16 bits when the accumulator is loaded, and
left-shifted 0, 1, or 4 bits when storing from the accumulator using the SACH
instruction. These shifts can be used for loading numbers into the high 16
bits of the accumulator and renormalizing the result of a multiply. The in-
coming left shift of O to 16 bits is supplied in the instruction itself. Left shifts
of data fetched from data memory are available for loading the accumulator
(LAC), adding to the accumulator (ADD), and subtracting from the accu-
mulator (SUB). When data is left-shifted 16 bits, the ZALH, ADDH, and
SUBH instructions are used. The ieft-shift of 0, 1, or 4, available with the
SACH instruction, is used to shift out the extra sign bits when fractional mul-
tiplication is used (see Section 5.4.5).

The hardware shift, which is built into the ADD, SUB, and LAC instructions,
performs an arithmetic left-shift on a 16-bit word. This feature can also be
used to perform right-shifts. A right-shift of n is implemented by performing
a left-shift of 16-n and saving the upper word of the accumulator. Example
5-8 performs an arithmetic right-shift of 7 on a 16-bit number in the accu-
mulator.

Example 5-8. Arithmetic Right-Shift

SACL TEMP ; MOVE NUMBER TO MEMORY

LAC TEMP,9 ; SHIFT LEFT (16-7)

SACH TEMP ; SAVE HIGH WORD IN MEMORY

LAC TEMP ; RETURN NUMBER BACK TO ACCUMULATOR

The effect on the accumulator before and after the code execution is shown

as follows:
Before Code After Code
Execution Execution
ACC FFFFA452h FFFFFF48h

5-21

Software Applications - Logical and Arithmetic Operations

A logical right-shift of 4 on a 32-bit number stored in the accumulator is
shown in Example 5-9. The 32-bit results of the shift are then stored in data
memory. In this example, the accumulator initially contains the hexadecimal
number, 9D84C1B2h. The variables, SHIFTH and SHIFTL, will receive the
high word (09D8h) and low word (4C1Bh) of the shifted results.

Example 5-9. Logical Right-Shift

*
* SHIFT THE LOWER WORD. MEMORY LOCATION MINUS CONTAINS -1
* OR FFFFh.
*
SACH SHIFTH ; SHIFTH = 9D84h INITIAL VALUES
SACL SHIFTL ; SHIFTL = OC1B2h
LAC SHIFTL,12 ; ACC = OFC1B2000h
SACH SHIFTL ; SHIFTL = OFC1Bh
LAC MINUS,12 ; ACC = OFFFFFO0Oh
XOR MINUS ; ACC = OFFFFOFFFh
AND SHIFTL ; ACC = 00000C1Bh
*
* SHIFT THE UPPER WORD.
*

ADD SHIFTH,12
SACL SHIFTL
SACH SHIFTH

ACC = OF9D84C1Bh
SHIFTL = 4C1Bh FINAL LOW VALUE
SHIFTH = OF9D8h

LAC MINUS,12 ACC = OFFFFFO00Oh
XOR MINUS ACC = OFFFFOFFFh
AND SHIFTH ACC = 000009D8h

P L I LI

SACL SHIFTH
ZALH SHIFTH
ADDS SHIFTL

SHIFTH = 09D8h FINAL HIGH VALUE

The accumulator is affected before and after the code execution as follows:

Before Code After Code
Execution Execution
ACC 9D84C1B2h 09D84C1Bh

An arithmetic right-shift of 4 can be implemented using the same routine as
shown above, except with the last four lines omitted.

5.4.4 Convolution Operations

5-22

Many DSP applications must perform convolution operations or other oper-
ations similar in form. These operations require data to be shifted or delayed.
The DMOV and LTD instructions can perform the needed data moves for
convolution.

The data move function is used for on-chip data memory. It allows a word to
be copied from the currently addressed data memory location in on-chip RAM
to the next higher location while the data from the addressed location is being
operated upon (e.g., by the CALU). The data move and the CALU operation
are performed in the same cycle. The data move function is useful in imple-
menting algorithms, such as convolutions and digital filtering, where data is
being passed through a time window. It models the z'1 delay operation en-
countered in those applications.

Software Applications - Logical and Arithmetic Operations

5.4.5 Multiplication

The TMS320C14/E14 hardware multiplier normally performs two's-
complement 16-bit by 16-bit multiplies and produces a 32-bit result in a sin-
gle processor cycle. To multiply two operands, one operand must be loaded
into the T register. The second operand is moved by the multiply instruction
to the multiplier, which then produces the product in the P register. Before
another muitiply can be performed, the contents of the P register must be
moved to the accumulator. By pipelining multiplies and P-register moves,
most multiply operations can be performed with a single instruction.

Computation on the TMS320C14/E14 is based on a fixed-point two’s-
complement representation of numbers. Each 16-bit number is evaluated with
a sign bit, i integer bits, and 15-i fractional bits. Thus, the number

0 0000010 10100000
binary point

has a value of 2.625. This particular number is said to be represented in a Q8
format (8 fractional bits). Its range is between -128 (1000000000000000)
and 127.996 (0111111111111111). The fractional accuracy of a Q8 number
is about 0.004 (one part in 28 or 256).

Although particular situations (e.g., a combination of dynamic range and ac-
curacy requirements) must use mixed notations, it is more common to work
entirely with fractions represented in a Q15 format or integers in a Q0 format.
This is especially true for signal processing algorithms where multiply and ac-
cumulate operations are dominant. The result of a fraction times a fraction re-
mains a fraction, and the result of an integer times an integer remains an
integer. No overflows are possible.

Q format is a number representation commonly used when performing oper-
ations on noninteger numbers. In Q format, the Q number (15 in Q15) denotes
how many bits are located to the right of the binary point. A 16-bit number in
Q15 format, therefore, has an assumed binary point immediately to the right
of the most significant bit. Since the most significant bit constitutes the sign
of the number, then numbers represented in Q15 may take on values from +1
(represented by +0.99997...) to -1.

A wide variety of situations may be encountered when multiplying two num-
bers. Three of these situations are provided in Example 5-10, Example 5-11,
and Example 5-12.

5-23

Software Applications - Logical and Arithmetic Operations

Example 5-10. Fraction x Fraction

0100000000000000 = 0.5 in Q15
x 0100000000000000 = 0.5 in Q15
00 01000000000000 0000000000000000 = 0.25in Q30

binary point

Two sign bits remain after the multiply. Generally, a single-precision (16-bit)
result is saved, rather than maintaining the full intermediate precision. The
upper half of the result does not contain a full 15 bits of fractional precision
since the multiply operation actually creates a second sign bit. In order to re-
cover that precision, the product must be shifted left by one bit, as shown in
the following code excerpt:

LT OP1 ; OP1 = 4000h (0.5 in Q15)
MPY OP2 ; OP2 = 4000h (0.5 in Q15)
PAC

SACH ANS,1; ANS

2000h (0.5 in Q15)

The MPYK instruction provides a multiply by a 13-bit signed constant. In
fractional notation, this means that a Q15 number can be multiplied by a Q12
number. The resulting number must be left-shifted by four bits to maintain full
precision.

LT OP1 ; OP1 = 4000h (0.5 in Q15)
MPYK 2048 ; OP2 = 0800h (0.5 in Q12)
PAC

SACH ANS,4; ANS

2000h (0.25 in Q15)

Example 5-11. Integer x Integer

5-24

0000000000010001 = 17 in QO
x 1111111111111011 = -5in Q0
1111111111111111 1111111110101011 = -85in QO

|" binary point

In this case, the extra sign bits do not change the result, and the desired pro-
duct is entirely in the lower half of the product, as shown in the following
program:

LT OP1 ; OP1 = 0011h (17 in QO)
MPY OP2 ; OP2 = FFFBh (-5 in QO)
PAC

SACH ANS ; ANS

i

FFABh (-85 in QO)

Software Applications - Logical and Arithmetic Operations

Example 5-12. Mixed Notation (Q14 x Q14 = Q28)

0110000000000000 = 1.50 in Q14
x 0011000000000000 = 0.75 in Q14
0001 001000000000 0000000000000000 = 1.125in Q28

I" binary point

The maximum magnitude of a Q14 number is two. Thus, the maximum mag-
nitude of the product of two Q14 numbers is four. Two integer bits are re-
quired to allow for this possibility, leaving a maximum precision for the
product of 13 bits. In general, the following rule applies: The product of a
number with i integer bits and f fractional bits and a second number with j
integer bits and g fractional bits will be a number with (i+j) integer bits and
(f+g) fractional bits. The highest precision possible for a 16-bit representation
of this number will have (i+j) integer bits and (15-i-j) fractional bits.

If the physical system being modelled is well understood, the precision with
which the number is modelled can be increased. For example, if it is known
that the above product can be no more than 1.8, the product can be repres-
ented as a Q14 number rather than the theoretical worst case of Q13, shown
in the following program:

LT OP1l ; OP1 = 6000h (1.5 in Q14)
MPY oP2 ; OP2 = 3000h (0.75 in Q14)
PAC

SACH ANS,1 ; ANS

2400h(1.125 in Q13)

The techniques illustrated in the previous three examples all truncate the result
of the multiplication to the desired precision. The error generated as a result
can be as much as minus one full LSB. This is true whether the truncated
number is positive or negative. It is possible to implement a simple rounding
technique to reduce this potential error by a factor of two, as shown in the
code sequence of Example 5-13. The maximum error generated in this example
is plus one-half LSB whether ANS is positive or negative.

Example 5-13. Multiplication Rounding Technique

LT oP1l
MPY oP2 ; OP1 * OP2
PAC

ADD ONE,14 ; ROUND UP
SACH ANS,1

A common operation in DSP algorithms is the summation of products. The
contents of the P register are added to the accumulator, and two values si-
multaneously read and multiplied. A data memory value is multiplied by a
second data memory value. Example 5-14 shows an implementation of mul-
tiplies and accumulates using the LTA-MPY instruction pair.

5-25

Software Applications - Logical and Arithmetic Operations

Example 5-14. Multiply and Accumulate

* CLOCK TOTAL CLOCK PROGRAM TOTAL PROGRAM
* CYCLES CYCLES MEMORY MEMORY
*

ZAC 1T 1 \

LT DIl 1 1

MPY C1 1 1

LTA D2 1 1

MPY C2 1 &- 2N 1 > 2N

LTA DN 1 1

MPY CN 1) 1

APAC 1 2 + 2N 1 2 + 2N

5.4.6 Division

5-26

Binary division is the inverse of multiplication. Multiplication consists of a se-
ries of shift and add operations, while division can be broken into a series of
subtracts and shifts. Although the first-generation TMS320 does not have an
explicit divide instruction, it is possible to implement an efficient flexible divide
capability using the conditional subtract instruction, SUBC. SUBC imple-
ments binary division in the same manner as is commonly done in long divi-
sion. Given a 16-bit positive dividend and divisor, the repetition of the SUBC
command 16 times produces a 16-bit quotient in the low accumulator and a
16-bit remainder in the high accumulator. With each SUBC, the divisor is
left-shifted 15 bits and subtracted from the accumulator (or divided). For
each subtract not producing a negative answer, the results are stored in the
accumulator which is then shifted and a one is put in the LSB of the accu-
mulator. For each subtract producing a negative answer, the accumulator is
simply left-shifted. The shifting of the remainder and quotient after each
subtract produces the separation of the quotient and remainder in the low and
high halves of the accumulator. The similarities between long division and the
SUBC method of division are shown in Figure 5-1 where 33 is divided by 5.

Software Applications - Logical and Arithmetic Operations

LONG DIVISION:
0000000000000110 Quotient

0000000000000101 YOO0000000010000T

-101_

110
-101
11 Remainder

SUBC METHOD:
32 HIGH ACC LOW ACC COMMENT

9
|
0000000000000000 0000000000100001
-10 1000000000000000

-10 O111111111011111

I I |
0000000000000000 0000000001000010
-10 _1000000000000000

-10° 0T11111110111110

0000000000000100 0010000000000000
-10 1000000000000000

0000000000000001 1010000000000000

! I
0100000000000001
1000000000000000
1100000000000001

| I
1000000000000011
1000000000000000

0000000000000011
-10
000000000000000

0000000000000001
-10

- 1111111111110

0000000000000011 0000000000000110

REMAINDER | | QUOTIENT

[§)]

(2)

(14)

(15)

(16)

Dividend is loaded into ACC. The
divisor is left-shifted 15 and sub-
tracted from ACC. The subtraction
is negative, so discard the result
and shift left the ACC one bit.

2nd subtract produces negative

answer, so discard result and shift
ACC (dividend) left.

14th SUBC command. The result
is positive. Shift resuit left and
replace LSB with 1’

Result is again positive. Shift

result left and replace LSB with '1".

Last subtract. Negative answer, so
discard result and shift ACC left.

Answer reached after 16 SUBC
instructions.

Figure 5-1. Long Division and SUBC Division

The condition of the divisor, less than the shifted dividend, is determined by
the sign of the result. The only restriction for the use of the SUBC instruction
is that both the dividend and divisor MUST be positive. Thus, the sign of the
quotient must be determined and the quotient computed using the absolute
value of the dividend and divisor. In addition, when implementing a divide al-
gorithm, it is important to know if the quotient can be represented as a fraction
and the degree of accuracy to which the quotient is to be computed. Each of
these considerations can affect how the SUBC instruction is used (see Exam-
ple 5-15 and Example 5-16). Note that the next instruction after SUBC can-
not use the accumulator.

5-27

Software Applications - Logical and Arithmetic Operations

Example 5-15. Using SUBC With Numerator < Denominator

* THIS ROUTINE DIVIDES TWO BINARY, TWO'S-COMPLEMENT NUMBERS
* OF ANY SIGN WHERE THE NUMERATOR IS LESS THAN THE
* DENOMINATOR.

* .

* BEFORE AFTER

* EXECUTION EXECUTION

*

* NUMERA 21 21

* DENOM 42 42

* QUOT 0 0.5

* (0.1 0 0)

*

DIV LARP 0O

LT NUMERA
MPY DENOM
PAC

SACH TEMSGN
LAC DENOM
ABS

SACL DENOM
ZALH NUMERA
ABS

LARK 0,14

GET SIGN OF QUOTIENT

~

SAVE SIGN OF QUOTIENT

~

MAKE DENOMINATOR POSITIVE
ALIGN NUMERATOR
MAKE NUMERATOR POSITIVE

~e e oS,

IF DIVISOR AND DIVIDEND ARE ALIGNED, DIVISION CAN START
HERE.

* % % *

KPDVNG SUBC DENOM ; 15-CYCLE DIVIDE LOOP

BANZ KPDVNG
*

SACL QUOT

LAC TEMSGN

BGEZ DONE ; DONE IF SIGN IS POSITIVE

ZAC

SUB QUOT

SACL QUOT ; NEGATE QUOTIENT IF NEGATIVE
DONE RET ; RETURN TO MAIN PROGRAM

5-28

Software Applications - Logical and Arithmetic Operations

Example 5-16. Using SUBC With Specified Quotient Accuracy

* THIS ROUTINE DIVIDES TWO BINARY, TWO'S-COMPLEMENT NUMBERS
* OF ANY SIGN, SPECIFYING THE FRACTIONAL ACCURACY OF THE
* QUOTIENT (FRAC).
*
* BEFORE AFTER
* EXECUTION EXECUTION
*
* NUMERA 11 11
* DENOM 8 8
* FRAC 3 3
* QUOT 17 1.375
* (1.0 1 1)
*
DN1 LT NUMERA ; GET SIGN OF QUOTIENT
MPY DENOM
PAC
SACH TEMSGN ; SAVE SIGN OF QUOTIENT
LAC DENOM
ABS
SACL DENOM ; MAKE DENOMINATOR POSITIVE
LACK 15
ADD FRAC
SACL FRAC ; COMPUTE LOOP COUNT
LAC NUMERA ; ALIGN NUMERATOR
ABS ; MAKE NUMERATOR POSITIVE
LAR O,FRAC
*
* IF DIVISOR AND DIVIDEND ARE ALIGNED, DIVISION CAN START
* HERE.
*
KPDVNG SUBC DENOM ; 16 + FRAC CYCLE DIVIDE LOOP
BANZ KPDVNG
*
SACL QUOT
LAC TEMSGN
BGEZ DONE ; DONE IF SIGN IS POSITIVE
ZAC
SUB QUOT
-SACL QUOT ; NEGATE QUOTIENT IF NEGATIVE
DONE RET ; RETURN TO MAIN PROGRAM

5.4.7 Addition

Both operands in addition must be represented in the same Q format. Enough
room must be allowed in the result to accommodate bit growth or there must

be some preparation to handle overflows.

If the operands are only 16 bits

long, the result may have to be represented as a double-precision number.
Example 5-17 and Example 5-18 illustrate two approaches to adding 16-bit

numbers.

Example 5-17. Maintaining 32-Bit Results

LAC
ADD
SACH
SACL

oP1
OoP2
ANSHI
ANSLO

;
H
i
i

Q15

015

HIGH-ORDER 16 BITS OF RESULT
LOW-ORDER 16 BITS OF RESULT

5-29

Software Applications - Logical and Arithmetic Operations

Example 5-18. Adjusted Binary Point for 16-Bit Results

LAC OP1,15 ; Q14 NUMBER IN ACCH
ADD OP2,15 ; Ql4 NUMBER IN ACCH
SACH ANS ; Q14

Double-precision operands present a more complex problem since actual
arithmetic overflows or underflows may occur. The BV (branch on overflow)
instruction can be used to check for the occurrence of these conditions. A
second technique is the use of saturation mode operations, which will saturate
the result of overflowing accumulations to the most positive or most negative
number. Both techniques, however, result in a loss of precision. The best
technique involves a thorough understanding of the underlying physical pro-
cess and care in selecting number representations.

5.4.8 Floating-Point Arithmetic

5-30

Although the TMS320C14/E14 devices are fixed-point 16/32-bit micro-
processors, they can also perform floating-point computations. Using the
floating-point single-precision standard proposed by the IEEE, the
TMS320C14/E14 can perform a floating-point multiplication in 8.4 us and a
floating-point addition in 17.2 ps. For a detailed discussion of floating-point
arithmetic and TMS320 source code, refer to “Floating-Point Arithmetic with
the TMS32010,” an application report in the book, Digital Signal Processing
Applications with the TMS320 Family.

Floating-point numbers are often represented on microprocessors in a two-
word format of mantissa and exponent. The mantissa is stored in one word.
The exponent, the second word, indicates how many bit positions from the left
the binary point is located. If the mantissa is 16 bits, a 4-bit exponent is suf-
ficient to express the location of the binary point. Because of its 16-bit word
size, the 16/4-bit floating-point format functions most efficiently on the
TMS320C14/E14.

Operations in the TMS320C14/E14 central ALU are performed in two’s-
complement fixed-point notation. To implement floating-point arithmetic,
operands must be converted to fixed point for arithmetic operations, and then
converted back to floating point. Conversion to floating-point notation is
performed by normalizing the input data (i.e., shifting the MSB of the data
word into the MSB of the internal memory word). The exponent word then
indicates how many shifts are required. To multiply two floating-point num-
bers, the mantissas are multiplied and the exponents added. The resulting
mantissa must be renormalized. (Since the input operands are normalized, no
mare then one left shift is required to normalize the result.)

Floating-point addition or subtraction requires shifting the mantissa so that
the exponents of the two operands match. The difference between the expo-
nents is used to left-shift the lower power operand before adding. Then, the

-output of the add must be renormalized.

Instructions useful in floating-point operations are the LAC, LACK, ADD, and
SUB instructions. The mantissas are often maintained in Q15 format. Q for-
mat is a number representation commonly used when performing operations
on noninteger numbers. In Q format, the Q number (15 in Q15) denotes how

Software Applications - Logical and Arithmetic Operations

many digits are located to the right of the binary point. A 16-bit number in
Q15 format, therefore, has an assumed binary point immediately to the right
of the most significant bit. Since the most significant bit constitutes the sign
of the number, then numbers represented in Q15 may take on values from +1
(represented by +0.99997...) to -1.

5-31

Software Applications - PID Control

5.5 PID Control

5-32

Control systems are concerned with regulating a process and achieving a de-
sired behavior or output from the process. A control system consists of three
main components: sensors, actuators, and a controller. Sensors measure the
behavior of the system. Actuators supply the driving force to ensure the de-
sired behavior. The controller generates actuator commands corresponding to
the error conditions observed by the sensors and the control algorithms pro-
grammed in the controller. The controller typically consists of an analog or
digital processor.

Analog control systems are usually based on fixed components and are not
programmable. They are also limited to using single-purpose characteristics
of the error signal, such as P (proportional), | (integral), and D (derivative),
or their combination. These limitations, along with other disadvantages of an-
alog systems such as component aging and temperature drift, are causing di-
gital control systems to increasingly replace analog systems in most control
applications.

Digital control systems that use a microprocessor/microcontroller are able to
implement more sophisticated algorithms of modern control theory, such as
state models, deadbeat control, state estimation, optimal control, and adaptive
control. Digital control algorithms deal with the processing of digital signals
and are similar to DSP algorithms. The TMS320C1x instruction set can there-
fore be used very effectively in digital control systems.

The most commonly used algorithm in both analog and digital control systems
is the PID (Proportional, Integral, and Derivative) algorithm. The classical PID
algorithm is given by

u(t) = Kp e(t) + K; [edt + Ky de/dt
The PID algorithm must be converted into a digital form for implementation

on a microprocessor. Using a rectangular approximation for the integral, the
PID algorithm can be approximated as

u(n) = u(n-1) + Kg e(n) + K4 e(n-1) + K2 e(n-2)

This algorithm is implemented in Example 5-19.

“Software Applications - PID Control

Example 5-19. PID Control

IMPLEMENTS A PID ALGORITHM.

OUTPUT OF CONTROLLER
LATEST ERROR SAMPLE
PREVIOUS ERROR SAMPLE
OLDEST ERROR SAMPLE
GAIN CONSTANT

GAIN CONSTANT

GAIN CONSTANT

SELECTED.

READ NEW ERROR SAMPLE

u(n-1)

LOAD T REG WITH OLDEST SAMPLE

P = K2*e(n-2)

ACC = u(n-1)+K2*e(n-2)

P = Kl*e(n-1)

ACC = u(n-1)+Kl*e(n-1)+K2*e(n-2)
P = KO*e(n)

; ACC = u(n-1)+KO*e(n)+Kl*e(n-1)

+K2*e(n-2)
STORE QUTPUT

.title 'PID CONTROL'
.def PID

*

* THIS ROUTINE

*
.ref UN ;
.ref EO ;
.ref E1l ;
.ref E2 ;
.ref KO ;
.ref K1l ;
.ref K2 ;

*

* ASSUME DATA PAGE O IS

*
.text

PID IN EO,PAO ;
LAC UN ; ACC
LT E2 ;
MPY K2 ;
LTD El ;
MPY K1 ;
LTD EO H
MPY KO ;
APAC ;

* ’
SACH UN,1 ;
ouT UN,PAl ;

The PID loop takes 13 cycles t

SEND IT

o execute or 2.03 us at a 25.6-MHz clock rate.

The TMS320 can also be used to implement more sophisticated algorithms
such as state modeling, adaptive control, state estimation, Kalman filtering,
and optimal control. Other functions that can be implemented are noise fil-
tering, stability analysis, and additional control loops.

5-33

Software Applications - PWM Generation

5.6 PWM Generation

5-34

The TMS320C14/E14 can be configured to generate high-precision Pulse
Width Modulation (PWM) outputs. In this function, the compare output pins
are controlled directly by the compare registers. The contents of the compare
registers control the duration of the high portion of the PWM waveform. The
PWM output is useful in controlling stepper motors.

The following example contains code that could be used in adjusting the
phase response of a three phase motor. By controlling the width of the PWM
waveform output a designer can control the relative phase of a three phase
motor. Timer 2 is used to determine the duration of the PWM pulse width.

Software Applications - PWM Generation

Example 5-20. Using Compare Outputs For Motor control

*
* PWM GENERATION WITH COMPARE OUTPUTS EXAMPLE. SETTING BIT 8
* OF THE TCON REGISTER OVERRIDES ANY OTHER CONFIGURATION. THE
* COMPARE REGISTER(S) MUST BE SET UP WITH THE DURATION OF THE
* HIGH PORTION OF THE PWM OUTPUT. IF THESE VALUES ARE TO BE
* CHANGED, WRITING TO THE PROPER ACTION REGISTER WILL ACCOMPLISH
* THE TASK IMMEDIATELY AT THE END OF THE CURRENT CYCLE.
*
.include "C14INC" ; INCLUDE HEADER FILE
*
* IT IS ASSUMED THAT 'BANK' AND 'TMP' ARE AVAILABLE TO STORE
* VALUES TO THE BSR AND THE CONTROL REGISTER WHICH IS TO BE
* ALTERED. IT IS ALSO ASSUMED THAT 'ONE' HOLDS THE CONSTANT 1.
*
.ref BANK , TMP , ONE
*
* IT IS ALSO ASSUMED THAT 'PWMperiod' HOLDS THE DESIRED PERIOD
* AND 'PWMwidth' HOLDS THE WIDTH.
*
.ref PWMperiod,PWMwidth
*
*
*
* -
.data
*
TABLE:
.word CMPPWMMode+CMPTMR1lSelect+TMR1lEnable*TMRbyl+TMRlInternal
*
*
* .
.text
*
* SET UP PERIOD REGISTER OF TIMER 1
*
LACK TimerBank
SACL BANK
ouT BANK, BSR
ouT PWMperiod, TPR1
*
* GET MODE WORD FOR TCON
*
LT ONE
MPYK TABLE
PAC
TBLR TMP
ouT TMP, TCON ; LOAD TCON
*
LACK ActionBank
SACL BANK
ouT BANK,BSR
ouT PWMwidth,ACT5 ; UPDATE PWM WIDTH
*
*
*
* .
END

5-35

Software Applications - Speed/Position Measurement

b.7 Speed/Position Measurement

5-36

The capture subsystem on the TMS320C14/E14 is capable of detecting and
storing any transition on it's capture input pins. Using optical encoders, a di-
gital representation of an analog process such as speed measurement can be
obtained. An incremental encoder creates a series of square waves. The num-
ber of square waves corresponds to the mechanical increment required. For
an encoder that supplies 1024 square wave cycles per revolution (360 de-
grees), each increment of one corresponds to 0.351 degrees of revolution.
Using a counter, the rotation of the shaft can be calculated.

A dual channel incremental encoder can be used for position sensing, as
shown in Figure 5-2. Most incremental systems use two output channels in
quadrature to allow the designer to count the transitions from a high state to
a low state, and view the state of the opposite channel during these transi-
tions. Using this information, you can determine if channel A leads channel B
and derive the direction.

CHANNEL A

CHANNEL B
Figure 5-2. Dual Channel Optical Encoder Outputs

Example 5-21 instructs the CPU to read the capture input once every 0.5 ms,
compare the input to a value (contents of Timer 1) and toggle the Bit I/0 pins
0 and 1 for every match.

Software Applications - Speed/Position Measurement

Example 5-21. Using the Capture Inputs To Detect Speed

Ok X H X H F A ¥ ¥ X X

USE CAPTURE INPUTS TO DETERMINE SPEED. BITS 11 THROUGH 15 OF TCON
ARE PRESUMED TO BE O. THIS THEN IMPLIES THAT TIMER 1 IS USED FOR
CAPTURE OPERATIONS WITH INTERNAL CLOCK SOURCE WITH AN INTERRUPT
GENERATED ON THE FIRST CAPTURE ENTRY RECEIVED IN FIFOO. THE OPTICAL
ENCODER OUTPUTS A AND B ARE CONNECTED TO CAPO AND CAP1l INPUTS. ANY
TRANSITION FROM HIGH TO LOW WILL TRIGGER A CAPTURE. THIS ROUTINE
COMPUTES MEAN TIME BETWEEN A AND B PULSES AND DETERMINES SIGN OF
FORWARD DIFFERENCE OF TIME BETWEEN AN A PULSE AND A B PULSE.
INCLUDE Cl14 EQUATES
.include "C14INC" ; INCLUDE HEADER FILE
*
.def CapturelInit,CaptureISR
*
.data
*
TABLE:
.word CAPOMode*NegEdgeDetect+CAP1Mode*NegEdgeDetect
.word (_CAPINTO + _CAPINT1l) A OFFFFh ; CONSTRUCT CAPTURE MASK
*
*
.ref IFimage ; INTERRUPT FLAG IMAGE
.ref IMimage ; INTERRUPT MASK IMAGE
.ref BANK ; TEMPORARY STORAGE FOR VALUE FOR BSR
.ref TMP ; SCRATCH SPACE
.ref POINT ; TEMPORARY STORAGE FOR TABLE POINTER
.ref ONE ; THE VALUE 1 SAVED AS A CONSTANT
.ref SampleRate ; NUMBER OF CLOCK TICKS FOR 0.5 MS
.ref MeanATime ; MEAN CLOCK TICKS BETWEEN TRANSITIONS ON A
.ref MeanBTime ; MEAN CLOCK TICKS BETWEEN TRANSITIONS ON B
.ref FIFOOvalue ; LAST FIFOO VALUE
.ref FIFOlvalue ; LAST FIFO1l VALUE
.ref ABdifference ; FIFOO - FIFO1l
.ref IntBankSave ; PRESUMED INITIALIZED TO InterruptBank
*
.bss CapBankSave, 1l ; DEFINE CAPTURE BANK
.bss TimBankSave,l ; DEFINE TIMER BANK
*
* THE FOLLOWING CODE INITIALIZES CCON. IT WOULD BE REFERENCED DURING
* INITIALIZATION. USE TIMER 1 WITH INTERNAL CLOCK SOURCE WITH X1 PRE-
* SCALE. SET TIMER PERIOD TO 3125 (ABOUT 0.5 MS FOR A 25 MHZ DEVICE).
*
.text
*
Capturelnit:
*
LT ONE
MPYK TABLE
PAC
SACL POINT
TBLR TMP
LACK CaptureBank
SACL CapBankSave ; CapBankSave = CaptureBank
OUT CapBankSave,BSR
ouT TMP , CCON ; INITIALIZE CCON FROM TABLE

LAC POINT
ADD ONE
SACL POINT

5-37

Software Applications - Speed/Position Measurement

SACL POINT
LACK TimerBank

SACL TimBankSave ; TimBankSave = TimerBank

OUT TimBankSave,BSR

ouT TMP,TPR1 ; INITIALIZE TIMER 1 PERIOD
LAC POINT

ADD ONE

SACL POINT ; POINT = ->TABLE[1]

TBLR TMP ; TMP = TABLE[1]

OUT IntBankSave,BSR

IN IMimage, IM ; READ IM AND STORE IN IMimage
LAC T™P

AND IMimage
SACL IMimage

OUT IMimage,IM ENABLE CAPINTO AND CAPINTI1

~

RET
*
* CAPTURE ISR PRESUMES THAT A CAPTURE INTERRUPT WAS DETECTED,
* AND THAT THE ENVIRONMENT HAS BEEN SAVED PRIOR TO THE DISPATCH
* OF THIS ROUTINE. IT IS PRESUMED THAT THE IF REGISTER WAS SAVED AT
* IFimage PRIOR TO IMAGE ENTRY INTO THE ROUTINE. UPON COMPLETION OF
* HANDLING THE CAPTURE INTERRUPT, THE ROUTINE EXECUTES A 'RET'
* INSTRUCTION, RETURNING IT TO THE POINT WHERE IT WAS INVOKED FOR THE
* RESTORATION OF THE ENVIRONMENT AND/OR FURTHER INTERRUPT PROCESSING.
*
CaptureISR:
OUT CapBankSave,BSR ; BSR -> CAPTURE BANK
*
LAC ONE,CAPINTO_BIT
AND IFimage
BNZ CaptureO ; IF (CAPINTO) THEN PROCESS IT
LAC ONE,CAPINT1_BIT
AND IFimage
BNZ Capturel ; ELSE IF (CAPINT1) THEN PROCESS IT
RET ; RETURN TO CALLING ROUTINE
*
CaptureO:
IN TMP ,FIFOO
LAC TMP
SUB FIFOOvalue
ADD MeanATime
SACL MeanATime
LAC TMP
SACL FIFOOvalue ; FIFOOvalue = FIFQO
LAC MeanATime, 15
SACH MeanATime ; MeanATime = (MeanATime + FIFOOdif) /2
*
LAC FIFOOvalue
SUB FIFOlvalue
SACL ABdifference ; ABdifference = FIFOOvalue - FIFOlvalue
RET
*
Capturel:
IN TMP,FIFO1 ; Get FIFO 1 VALUE
LAC TMP

SUB FIFOlvalue
ADD MeanBTime
SACL MeanBTime

SUBTRACT PREVIOUS FIFO1l

~

LAC TMP

SACL FIFOlvalue ; UPDATE FIFOlvalue

LAC MeanBTime,1l5

SACH MeanBTime ; MeanBTime = (MeanBTime + FIFO1ldif) /2

5-38

Software Applications - Speed/Position Measurement

SACL FIFOlvalue ; UPDATE FIFOlvalue

LAC MeanBTime, 15

SACH MeanBTime ; MeanBTime = (MeanBTime + FIFO1ldif) /2
*

RET
*

END

5-39

Software Applications - Using the Serial Port

5.8 Using the Serial Port

5-40

The TMS320C14/E14 has a dedicated Universal Synchronous/Asynchronous
Receiver/Transmitter (USART) that can operate in either a synchronous,
asynchronous, or codec mode. An independent timer is used for baud rate
generation, if required. Two interrupts (receiver buffer full or transmitter
buffer empty) are generated by the serial port to initiate transceiving.

The synchronous mode of operation supports half-duplex operation with a
maximum rate of CLKOUT bps (= 6.4 Mbps @ 25.6 MHz). When configured
in the slave mode, the serial port clock is external. The serial port can be
configured in receive mode with protocol #2 active, meaning that the serial
port is automatically decoding incoming data until it is addressed. When con-
figured to operate in protocol #1 mode, it is the responsibility of the user to
determine an address match. To start transmitting, bit 11 of the SCON register
must be set to 0 by writing a mask of 1 to the SCLR register.

The asynchronous operation is full-duplex with internal baud rate generation,
with a maximum transmission rate of CLKOUT/16 bps (= 400 Kbps @ 25.6
MHz). In this mode the serial port is capable of detecting parity, framing, and
frame overrun errors.

The codec mode of operation is full duplex and is designed for direct interface
to industry standard codecs, with a maximum transmission rate of CLKOUT/4
bps (= 1.6 Mbps @ 25.6 MHz). The frame sync pulses can be configured to
be either internal or external. The received data in this mode is logarithmic
code output and must be converted to linear. For further details on the con-
version process refer to Digital Signal Processing Applications with the
TMS320 Family (SPRAO12A) pages 171-211.

Software Applications - Using the Serial Port

5.8.1 Asynchronous Configuration

Example 5-22 below sets up the serial port in the asynchronous mode with 7
data bits, even parity, and normal reception. A software polling technique is
used to determine if the receiver or the transmitter requires servicing, and data
is either read from the receive buffer or written to the transmit buffer, de-
pending on the source of the interrupt. :

5-41

Software Applications - Using the Serial Port

K

Example 5-22. Configuring for Asynchronous Operation

* F X % % ok %

INCLUDE C14 EQUATES

.Include"C1l4INC"

*

.def
.data

TABLE:
.word
.word
.word

.ref
.ref
.ref
.ref
.ref
.ref

.ref

.ref

.text

synchInit:

* ¥ % kO *

LT
MPYK
PAC
SACL
TBLR
LACK
SACL
ouT
ouT

LAC
ADD
SACL
TBLR
ouT

LAC
ADD
SACL
TBLR
LACK

5-42

EXAMPLE PROGRAM SEGMENT TO INITIALIZE SERIAL PORT FOR
ASYNCHRONOUS OPERATION AND TO RESPOND TO INTERRUPTS FROM
TRANSMIT AND RECEIVE SECTIONS OF THE SUBSYSTEMS.

INCLUDE HEADER FILE

AsynchInit,AsynchISR

SBRG19200

7

CONSTANT FOR 19.2 KBAUD

AsynchMode+SevenDataBits+ParityEnable+EvenParity

(_RXINT + _TXINT)

IFimage
IMimage
BANK
TMP
POINT
ONE

PortBankSave

IntBankSave

ONE
TABLE

POINT

TMP
SerialPort
PortBankSave

’

Ne N N N N Ne

~e S owe

~e e oSt

THE FOLLOWING CODE INITIALIZES SCON.
DURING INITIALIZATION.

r
PortBankSave,BSR

TMP , SBRG

POINT
ONE
POINT
TMP
TMP , SCON

POINT
ONE
POINT
TMP

InterruptBank

i

~e e

A OFFFFh
CONSTRUCT IM MASK FOR SERIAL PORT

INTERRUPT FLAG IMAGE

INTERRUPT MASK IMAGE

TEMPOARAY STORAGE FOR BSR VALUE
SCRATCH SPACE

TEMPORARY STORAGE FOR TABLE POINTER
THE VALUE 1 SAVED AS A CONSTANT

INITIALIZED TO SerialPort BANK
TO SPEED EXECUTION DURING
INTERRUPT SERVICE ROUTINE
INITIALIZED TO InterruptBank

TO SPEED EXECUTION DURING
INTERRUPT SERVICE ROUTINE

IT WOULD BE REFERENCED

POINT = =->TABLE[O]

PortBankSAve = SerialPort

SET SBRG FOR 19.2 KBAUD

POINT = ->TABLE[1]
TMP = TABLE[1]
INITIALIZE SCON FROM TABLE

POINT = ->TABLE[2]
TMP = TABLE[2]

Software Applications - Using the Serial Port

SACL
ouT
ouT

*

RET

* * Kk ¥

AsynchISR:
ouT
*
LAC
AND
BZ

* ok * * * * %

Txtest:
LAC
AND
Bz

* H kKX X ¥ *

AsynchExit:

ouT
ZAC
LAC
ADD
SACL
ouT
RET

END

IntBankSave
IntBankSave,BSR
TMP , IM

PortBankSave,BSR

ONE ,RXINT_BIT
IFimage
Txtest

ONE , TXINT_BIT
IFimage
AsynchExit

PortBankSave,BSR

ONE ,RXINT_BIT
ONE, TXINT_BIT
TMP

TMP,FCLR

;

i

’

;

;

i

IntBankSAve = InterruptBank
ENABLE RXINT AND TXINT

THIS ROUTINE IS PRESUMED TO BE INVOKED FROM AN INTERRUPT
SERVICE DISPATCHER WHICH SAVES AND RESTORES ENVIRONMENT

BSR -> SERIAL PORT

IF (RXINT) THEN PROCESS IT

PROCESS INTERRUPT FROM RECEIVER

ELSE IF (TXINT) THEN PROCESS IT

PROCESS INTERRUPT FROM TRANSMITTER

CLEAR INTERRUPT FLAGS FOR TX AND RX

RETURN TO CALLING ROUTINE

5-43

Software Applications - Using the Serial Port

5-44

Section 6

Hardware Applications

The TMS320C14/E14 has been designed for a wide range of applications in
digital signal processing and digital control. A large number of on-chip pe-
ripherals have been integrated into the TMS320C14/E14 giving it direct-con-
nect capability with various external devices. This can reduce and even
eliminate interfacing hardware.

Major hardware applications discussed in this section are listed below.

® System Control Circuitry (Section 6.1, Page 6-3)

- Power Up Reset Circuit
- Crystal Oscillator Circuits
- MC/MP Mode Configurations

[External Memory Interfacing (Section 6.2, Page 6-8)

- EPROM Interface
- Data Memory Expansion

(External Peripheral Interfacing (Section 6.3, Page 6-14)

- A/D Interface

- D/A Interface

- Codec Interface

- RS-232 Interface

- Optical Encoder Interface

- XDS Interface Considerations

[] System Applications (Section 6.4, Page 6-24)

- Disk Drive Servo Control
Plotter Control

- Tape Servo Control

AC Motor Control

6-1

Hardware Applications

6-2

The following buses, ports, and control signals provide system interfacing to

the TMS320C14/E14.

® 12-bit address bus (A11 - AQ)

® 16-bit data bus (D15 - DO)

® 3-bit port address bus (PA2 - PAQ)

® Enable signals; read enable (REN) and write enable (WE)

® Melemory control and non-maskable interrupt signals (NMI/MC/MP) sig-
nals. ,

® nterrupt (INT)

® 16 bit I/0 pins (I0P15-10P0)

® Serial port (RXD/DATA, TXD/CLK, TCLK1/CLKR, TCLK2/CLKX,
CMP4/CAP2/FSR, CMP5/CAP3/FSX)

® Timers (WDT, TCLK/CLKR, TCLK2/CLKX)

® Event manager (CMPO-CMP3, CAPO-CAP1, CMP4/CAP2/FSR,
CMP5/ CAP3/FSX)

® Reset (RS)

Hardware Applications - System Control Circuitry

6.1 System Control Circuitry

The system control circuitry performs functions that are critical for proper
system initialization and operation. A powerup reset circuit design and a crys-
tal oscillator circuit design are presented in this section. The powerup reset
circuit assures that a reset of the part occurs only after the oscillator is running
and stabilized.

6.1.1 Powerup Reset Circuit

The reset circuit shown in Figure 6-1 performs a powerup reset; i.e., the
TMS320C14/E14 is reset when power is applied. Note that the switch circuit
may include debounce circuitry. Driving the RS signal low initializes the pro-
cessor. Reset affects several registers and status bits. (refer to Section 3.2.2 for
a detailed description of the effect of a reset on processor status).

TMS320C14

+5V

Ri = 1 MQ

) ly

DGND

Figure 6-1. Powerup Reset Circuit

For proper system intialization, the reset signal must be applied for at least five
CLKOUT cycles, i.e., 800 ns for a TMS320C14/E14 operating at 25.6 MHz.

6-3

Hardware Applications - System Control Circuii:ry

6-4

Upon powerup, it can take up to one hundred milliseconds before the system
oscillator reaches a stable operating state. Therefore, the powerup reset circuit
should generate a low pulse on the reset line until the oscillator is stable (i.e.,
100 to 200 ms).

The voltage on the reset pin (RS) is controlled by the R1Cq network (see
Figure 6-1). After a reset, this voltage rises exponentially according to the time
constant R1Cq, as shown in Figure 6-2.

VOLTAGE §
/V = Ve (1-e—t7)
VeeF——————"""""—"=
Vi p——
|
|
|
1 -
9 =0 14 TIME

Figure 6-2. Voltage on TMS320C14/E14 Reset Pin

The duration of the low puise on the reset pin is approximately t1, which is the
time it takes for capacitor Cq to be charged to 1.5 volts. This is approximately
the voltage at which the rest input switches from a logic level 0 to a logic level
1. The capacitor voltage is given by following formula:

t
V=Vcc[1-—e—-;]

where = R1Cq is the reset circuit time constant. Solving (1) for t is given in
the formula:

v
t=-R{CiIn |1 - —
1 [Vcc]

For example, the following values of:

Ri=1MQ Vee=5V
C1 =047 uF V=V =15V

yields t = t1 = 167 ms. In this case, the reset circuit of Figure 6-1 can generate
a low pulse of long enough duration (167 ms) to ensure the stabilization of
the oscillator upon powerup in most systems.

Hardware Applications - System Control Circuitry

6.1.2 Crystal Oscillator Circuit

The TMS320C14/E14 requires an external clock source to drive the CLKIN
pin. Either a prepackaged oscillator can be used or a simple oscillator circuit
using TTL gates can be built. Prepackaged oscillators provide a wide operat-
ing range and better stability. A well designed crystal oscillator, however, will
provide good performance with TTL gates. Two types of crystal oscillator
circuits can be used; one with series resonance, or one with parallel resonance.

Figure 6-3 shows implementation of a parallel resonant oscillator circuit. The
circuit is designed to use the fundamental frequency of the crystal. The
74AS04 inverter provides the 180-degree phase shift that a parallel oscillator
requires. The 4.7 KQ resistor provides the negative feedback for stability, i.e.,
the poles of the system are constrained in a narrow region about the Jw axis
of the s-plane (analog domain). The 10 KQ potentiometer is used to bias the
74AS04 in the linear region.

4.7 kQ TMS320C14/E14
— \N——— 'As04

‘S04 .__.Do— CLKIN
>———| >O0———¢

25.6 MHz 10 kQ

10 kQ

Figure 6-3. Parallel Resonant Crystal Oscillator Circuit

Hardware Applications - System Control Circuitry

Figure 6-4 shows a series resonant oscillator -circuit. This circuit is also de-
signed to use the fundamental frequency of the crystal. The inverter provides
a 180-degree phase shift in a series resonant oscillator circuit. The 330 Q re-
sistors provide the negative feedback for stability.

330 0 330 0
TMS320C14/E14
'A% A%
‘S04 0.1 ufd s0a ‘S04
cp——Do———o——-I(—-«L—-—Dc Do— CLKIN
25.6 MHz

it

Figure 6-4. Series Resonant Crystal Oscillator Circuit

6-6

Hardware Applications - System Control Circuitry

6.1.3 MC/MP Mode Configurations

The TMS320C14/E14 can be configured (by software or hardware) to address
internal or external program memory. The software technique uses the
MC/MP bit in the SYSCON register to switch between internal and external
memory. The hardware technique uses the NMI/MC/MP pin which is sensed
during reset. If the pin is low, the device is put in the microprocessor (external
memory) mode. If the pin is high, the device is put in the microcomputer
(internal memory).

Figure 6-5 shows a circuit for configuring the device into the microprocessor
mode using a hardware technique. The RS and NMI/MC/MP pins cannot be
tied together since the NMi/MC/MP pin must be held low for 1.25 clock cy-
cles (200 ps in the circuit below) after RS goes high. If the NMI function is
not being used, however, the NMI/MC/MP pin may be tied to ground. This
will not produce an interrupt since the NMI function is edge-triggered.

+5V

‘LS14 ‘LS14 ALS08 TMS320C14/E14

NMi/mMC/MP

Tvalues depend on reset timing. To operate with this circuit,
values of 1 MQ and 1.33 uF would be used.

Figure 6-5. Mode Control Circuit

6-7

Hardware Applications - External Memory Interfacing

6.2 External Memory Interfacing

6-8

The TMS320C14/E14 can be interfaced with PROMs, EPROMs, and RAMs.
The TMS320C14/E14 has no provisions to insert wait states, all memory
devices should therefore meet the full speed access requirements of the device.

The TMS320C14/E14 implements two kinds of memory spaces, program
memory (4K words) and data memory (256 words). Data memory accesses
are always from internal RAM and no off-chip accesses are available. Program
memory accesses can be configured from either on-chip ROM/EPROM or
off-chip memory. REN (read enable) and WE (write enable) strobes are active
whether accessing on-chip or off-chip program memory.

The following discussion describes the TMS320C14/E14 read and write
cycles. A program memory write cycle occurs when a TBLW instruction is
executed. For timing diagrams, refer to the TMS320C14/E14 data sheet.
Memory interfaces assume that the TMS320C14/E14 is running at 25.6 MHz
and Q is 39.1 ns. Q is used to indicate one quarter cycle of CLKOUT fre-
quency.

In the read cycle, the following sequence occurs (refer to Figure 6-6):

1‘) CLKOUT goes low, terminating the previous bus cycle and starting the
next cycle.

2) Address becomes valid after a delay of no more than tyq. This is fol-
lowed by REN going low after a delay of tqs to indicate the start of a read
cycle.

3) External device is selected with a minimum address setup time of
tsu(A-REN) and puts it's data on the bus.

4) CLKOUT goes low to terminate the cycle and data is sampled at the
falling edge of CLKOUT. Data has to be valid for at least tg,(p) prior to
CLKOQUT going low, and must be held valid for at least th(D).

5) REN goes high after a delay of no more than ty3 and the address bus
becomes invalid after a delay of no more than tp(a.wWR)-

For read only devices, the maximum access time from address valid until data
valid is:

t6(C) - tg1 - teu:(D) = 156.25 - 40 - 40
= 76.25 ns

From chip enable until data valid is:
tc(C) - t42 - tgy(D) 156.25 - (1/4 1.(C) +12) - 40

156.25 - 39.1 - 12 - 40

65.15 ns

The minimum address setup time prior to chip enable will be:

teu(A-REN) = 1/4t¢(C) - 35

1
4.1 ns

o

Hardware Applications - External Memory Interfacing

Therefore for read access, memories with a maximum access time of 65 ns
from chip enable are required.

tc(c) —|l

CLKOUT / | /

tg3—e

2|
mi
2

—i—tg,,(A-REN)
h——— td1 ————l - I‘_’r th(A- WR)
A11-A0)m@ ADDRESS BUS VALID XE gg SS 8 X
!
[————»—th (D)
[tgy(D)—™ 1
AN r X
D15-D0 | INSTRUCTION IN VALID 1
4 X £

Figure 6-6. Memory Read Timing

In the write cycle (executing a TBLW), the following sequence occurs (refer
to Figure 6-7):

1) CLKOUT goes low, terminating the previous cycle and starting the write
cycle for the TBLW instruction.

2) Address becomes valid after a delay of tg41.

3) Data bus is driven after a delay of t49, and data becomes valid after a
delay of no more than tyg.

4) WE goes low in the second half of the cycle after a delay of tgg.
5) CLKOUT goes low to terminate the cycle.

6) WE goes high after a delay of ty7 and address bus becomes invalid after
a delay of t,.

7) Data bus is driven invalid after a delay of no more than tgqqg.

6-9

Hardware Applications - External Memory Interfacing

6-10

For RAM devices, the maximum access time from address valid until data valid
is:

1/4t,(C) + 52 - 40
391 +12
51.1 ns

148 - tg1

o

From chip enable until data valid is:

148 - t46 = 1/4t,(C) + 52 - 1/2t,(C) - 12
=1/4t,(C)+ 40
=39.1 - 40
=09ns

The write enable access time is:

tc(C) - t46 - t47 = 156.25 - 1/2t,(C) - 12 - 12
=781-24
=541 ns

The minimum data hold time provided is:
ty - 17 = 1/4t,(C) - 10 -12

=39.1 - 22
=171 ns

Therefore for write access, memories with a maximum access time of 50 ns
from chip enable are required.

Hardware Applications - External Memory Interfacing

pe—— Te(C)————1
CLKOUT

}‘— td1 ——!
A11-A0 @8)(- 1 @88)(
—

tde - ll —’“-_td7

WE [o—tdg—o| !

] 0'0'0 (XXX
D15-DO 0.0 n QOO

TBLW ADDRESS
TBLW DATA

N =
([}

Figure 6-7. Memory Write Timing (TBLW Instruction)

6.2.1 Program ROM Expansion

Twelve output pins (A11-AQ) are available for addressing external memory.
They contain either the buffered outputs of the program counter or the I/0
port address.

Read operations are performed on external memory either during opcode or
operand fetches or during the execution of a TBLR (table read) instruction.
Write operations have no effect on the circuit. When a read operation occurs,
an address is placed on the address bus, and the REN (read enable) strobe is
generated by driving REN low to enable external memory. The instruction word
is then transferred to the TMS320C14/E14 via the 16-bit data bus.

Hardware Applications - External Memory Interfacing

A memory address being placed on the bus becomes valid following a maxi-
mum delay (tgq1) from the falling edge of CLKOUT. The combined delay of:

td1 + ta(a) * tsu(p)= Minimum cycle time t ¢(C)

where taa) = mémory access time of EPROM from address valid
tsu(D) = setup time from data bus valid prior to CLKOUT!

serve as the timing constraints used when calculating t¢(c).

When only external program ROM is required, a minimum system can consist
of a TMS320C14/E14 and up to 4K words of external program memory
(TMS27C292), as shown in Figure 6-8, The REN signal and the address
(A11-A0) and data (D15-D0) lines on the TMS320C14/E14 are connected
directly to the TMS27C292 memories, and no address decoding is required.
The memories used are a pair of Texas Instruments TMS27C292 4K x 8 ROMs,
configured in parallel for a direct 16-bit interface to the TMS320C14/E14.

12

TMS320C14/E14 TMS27C292 TMS27C282
A11-AO AT-AO A11-A0
Q7-Q0 Q7-Q0
REN q G1 G1
D15-D8 8
D7-DO A

Figure 6-8. Minimum Program ROM Expansion

6.2.2 Data RAM Expansion

No direct memory expansion is provided on the TMS320C14/E14. However,
if RAM is used for external program memory, this memory can be used to store
data information, accessed using the TBLR and TBLW instructions. These in-
structions, however, take three cycles to execute.

If larger memory or faster memory accesses are required, an alternative memory
expansion scheme using I/0 ports can be implemented fora TMS320C14/E14
device. In this case, additional RAM can be used to supplement internal data
memory, and can be accessed in only two cycles using the IN and OUT in-
structions. If RAM is to be used for program memory, additional logic must
be included to distinguish between an I/O write (OUT) and a program mem-
ory write (TBLW).

Figure 6-9 provides an example of external data memory expansion. The de-
sign consists of up to 16K words of static RAM (IMS1420), addressed by the
lower 14 bits of a 16-bit counter (74ALS193). In the case of the IMS1420s,

Hardware Applications - External Memory interfacing

the address of the data to be accessed is loaded into the counter by imple-
menting an OUT instruction to port 0. This loads the data bus into the coun-
ters. Memory can then be read from or written to sequentially by doing an IN
or OUT instruction to port 1. The MSB in the counters determines whether the
memory address is incremented (MSB = 0) or decremented (MSB = 1) after
a read or write of data memory. Memory continues to be addressed sequen-
tially until new data is loaded into the counters.

4 16K X 16 DATA RAM
LOAD {ms1a20)
UNITS
ADDRESS (4K X 1 T0-NS SRAM)
(74ALS193) | 44
(4 UNITS) A13-A0
A15(MSB)
U D CS WE
16
COUNT UP
COUNT DOWN
WRITE RAM ALS02
READ RAM
ALS00
PA PA 16
DECODER DECODER
(74A8138) (74AS138)
Q
b 4
WE REN
D15-DO
TMS320C 14/E14
PA2-PAO

Figure 6-9. Data RAM Expansion

Dynamic memories may also be used; however, these devices may impose
additional constraints on the system designer. For example, some memory cy-
cle times may not allow consecutive IN/OUT/IN instruction sequences. Me-
mory refresh must also be considered. Since the TMS320C14/E14 does not
implement “wait” states, memory refresh must be generated transparent to the
processor.

Hardware Applications - External Peripheral Interfacing

6.3 External Peripheral Interfacing

The TMS320C14/E14 is flexible enough to be used in a wide range of appli-
cations requiring different types of peripheral interfaces. The following sec-
tions describe A/D-D/A interfacing, an AIC interface, a Codec interface, and
optical encoder application, a serial communication interface, and XDS inter-
face considerations.

6.3.1 A/D Interface

The TMS320C14/E14 can be interfaced to an A/D (analog-to-digital) con-
verter to perform the necessary conversions. A minimum of external circuitry
is required.

Figure 6-10 shows an interface of the TLC0820 8-bit A/D converter to the
TMS320C14/E14. Since the control circuitry of the TLC0820 operates much
more slowly than the TMS320C14/E14, it cannot be directly interfaced. All
of the logic functions are implemented with one each of the following devices
from the 74ALS family of Advanced Low-power Schottky Logic:

74ALS679 12-bit address comparator
741874 Dual positive edge-triggered D-type flip-flops
74ALS465 Octal buffer with three-state output

Hardware Applications - External Peripheral Interfacing

+5 V
TMS320C14/E14 74ALS679
T - 3
1 P1
P2
- S
A11-A0 A12-AT1 = +5 Vv TLCO0820
74ALS465 OnE
¥ a1 Vin
REN G2
o7 Y8 A8 D7
D6 Y7 A7 D6
D5 Y6 A6 D5
D4 Y5 A5 D4
D3 va A4 D3
D2 Y3 A3 D2
D1 Y2 A2 D1
Do Z A1 DO
ALS02
WE
74L874
<
1D 1Q RD
2D 20 WR/RDY

Figure 6-10. A/D Converter to TMS320C14/E14 Interface

Hardware Applications - External Peripheral Interfacing

6.3.2 D/A Interface

An interface of the TLC7524 8-bit D/A converter to the TMS320C14/E14 is
shown in Figure 6-11. Due to the high-speed operation of the internal logic
circuitry of the TLC7524, the interface to the TMS320C14/E14 requires ex-
ternal logic circuitry to decode the address of the peripheral. Here a 74ALS679
12-bit address comparator is used.

TMS320C14/E14 74ALS679 +5 V
—G P3
J:-_ p2
P1
s
A11-A0 A12-A1 = Vet
TLC7524
yYb——{Cs REF}
RFB
ouT1 h L ;
WE WR Vo
OUT2I——12T1 051
D7-DO DB7-DBO

tv = = di
V,=-V, D_, where D = digital input
[*] ref 355

Figure 6-11. D/A Converter to TMS320C14/E14 Interface

For further information about the A/D and D/A converters shown in the fig- .
ures, refer to the Linear Circuits Data Book (SLYDO0OT).

6.3.3 Codec Interface

6-16

Some areas of speech, telecommunications, and many other applications re-
quire low-cost analog-to-digital (A/D) and digital-to-analog (D/A) convert-
ers. Combo-codecs are most effective in serving DSP system data-conversion
requirements. Combo-codecs are single-chip pulse-code-modulated encod-
ers and decoders (PCM codecs), designed to perform the encoding (A/D
conversion) and decoding (D/A conversion), as well as the antialiasing and
smoothing filtering functions. Since combo-codecs perform these functions
in a single 300-mil DIP package at low cost, they are extremely economical
for providing system data-conversion functions.

Combo-codecs interface directly to the TMS320C14/E14 by means of the
serial port and provide a companded, PCM-coded digital representation of
analog input samples. This PCM code is easily translated into linear form by
the TMS320C14/E14 for use in processing. The design discussed here and
shown in Figure 6-12 uses a Texas Instruments TCM29C13 codec, interfaced
using the serial port of the TMS320C14/E14.

Hardware Applications - External Peripheral Interfacing

The TMS320C14/E14 serial port provides direct synchronous communication
with serial devices. The interface signals are compatible with codecs and other
serial components so that minimal external hardware is required. Externally,
the serial port interface is implemented using the following pins on the
TMS320C14/E14:

TXD/CLK (transmitted serial data)

TCLK2/CLKX (transmit clock)

CMP5/CAP3/FSX (transmit framing synchronization signal)
RXD/DATA (received serial data)

TCLK1/CLKR (receive clock)

CMP4/CAP2/FSR (receive framing synchronization signal)

Data on TXD and RXD are clocked by CLKX and CLKR, respectively. These
clocks are only required during serial transfers on the TMS320C14/E14.

Hardware Applications - External Peripheral Interfacing

+5V 500 kQ
r
0.05
TMS320E14 20| 5 lrcmzscn KF
Vgc PDN 18 100 k@ >-—I(—O
15 AIN-
.L AsCL
= > ANALOG
= 100 k0 > INPUT
48 13 19
RXD pe PCMOUT GSX 2 ———o0
TXD 81 pcmin PWRD + o e
11 6
CLKX i CLKSEL . 100 k0 3 ANALOG
10 |MCLK 19 < ouTPUT
CLKR CLKR/X DCLKART > ou
Vg ——0
FSX FSR AGND AIN + DGND]
66 A
FSR —1 15| 8] 18] 17| 10 L @
6 -
rsx|2 o PP L 5V
74HC393 74AS869 74ALSO4A
100 (8 ek meo 3
1 10
so H +5V
cukin 24 Y1a j
21, 1 G 9
1) 8
1 CLR ENT F
+5V
RS 2 23
RS S ol
R1 7 A B C D
1 Mo 74ALS04A 3| P 5] 6
s wov Ly
74AS04 W l
Cq r L
0.47 4F I_ °<] 74AS04 =
-»——oq—b
= I 24.70EI MHz L 10 k0
é = ANALOG GROUND 20pF 20 pF

-_I_- = DIGITAL GROUND

Ao

Figure 6-12. Interface of TMS320C14/E14 to TCM29C13 Codec

Serial port transfers are initiated by framing pulses on the FSX and FSR pins
for transmit and receive operations, respectively. For transmit operations, the
FSX pin can be configured as an input or an output. This option is selected
by the SCON register bit 13 (SPC1). In this design, FSX is assumed to be
configured as an input; therefore, transmit operations are initiated by a framing

Hardware Applications - External Peripheral Interfacing

pulse on the FSX pin. Upon completion of receive and transmit operations, an
RINT (serial port receive interrupt) and an XINT (serial port transmit interrupt)
are generated, respectively. The serial port is doubled buffered and allows
continuous reception and transmission.

The TMS320C14/E14 interfaces directly to the codec, as shown in Figure
6-12, with no additional logic required. The PCM p-law data generated by the
codec at the PCMOUT pin is read by the TMS320C14/E14 from the data re-
ceive (RXD) pin, which is internally connected to the receive serial register
(RSR). The data transmitted from the data transmit (TXD) pin of the
TMS320C14/E14 is received by the PCMIN input of the codec. During the
digital-to-analog conversion, this p-law companded data must be converted
back to a linear representation for use in the TMS320C14/E14. The resulting
analog waveform is lowpass-filtered by the codec’s internal smoothing filter.
Therefore, no additional filtering is required at the codec output (PWRO+).
Software companding routines appropriate for use on the TMS320C14/E14
are provided in the book, Digital Signal Processing Applications with the
TMS320 Family.

A combo-codec configured in the fixed-data-rate mode requires the following
external clock signals:

(] A 1.544 MHz clock to be used as the master clock, and
(] 8-kHz framing pulses to initialize the data transfers.

To generate the 1.544 MHz master clock for the combo-codec, a division by
16 of the 24.704 MHz system clock is required. The 74HC393 contains two
divide-by-16 counters.

The 74AS869 is configured to generate the 8-kHz clock pulse (the ripple carry
output is 1.544 MHz/193 = 8 kHz). This pulse is used by the
TMS320C14/E14 and codec as a framing pulse to initiate data transfers.

The level of the analog input signal is controlled using the TLO72 opamp
connected in the inverting configuration (see Figure 6-12). Using the
500-kQ potentiometer, the gain of this circuit can be varied from 0 to 5. The
output of the 0.01-uyF coupling capacitor drives the TCM29C13'’s internal op
amp. This op amp is connected in the inverting configuration with unity gain
(feedback and input impedances having the same value of 100 kQ).

6.3.4 RS-232 Interface

The TMS320C14/E14 allows for implementation of an RS-232 interface for
connection to communication equipment, terminals, and PC’s. The only de-
vices needed are line drivers/receivers for the TTL/RS-232 level conversions.
Figure 6-13 shows a typical interface with the TMS320C/E14 as a data ter-
minal equipment (DTE) device connected to a data communication equipment
(DCE) device (such as a modem). The serial port is configured for the asyn-
chronous mode with the appropriate parameters selected. The bit 1/O pins
IOP15-10PCQ are used to provide any necessary handshaking signals (i.e., RTS,
CTS, DSR, and DTR). i

6-19

Hardware Applications - External Peripheral Interfacing

T RS-232C

TMS320C14/E14 | pvpls 75188 LEVELS DCE
TXD/CLK ' TXDATA

10Px H RTS

10Px } DTR

} 75189

RXD/DATA } RXDATA

10Px | DSR

10Px 1 ; cTS

RS-232 Interface

Figure 6-13. RS-232 Interface

6.3.5 Optical Encoder Interface

Optical encoders are commonly used as sensors in measuring both speed and
position. The capture inputs of the TMS320C14/E14 allow direct interfacing
with optical encoders. A very cost-effective noise filtering system can be built
with a couple of gates, D latches, and RC filters. The one-shot constructed
of XOR generates pulses on each edge of each signal. Pulses generated by
phase A are used to clock the signal from phase B, and vice versa. Figure 6-14
shows a typical interface with an optical encoder.

1 TMS320C14/E14
D
HC386 al—capo
PHASE A
>
20 k@
=]
HC386 P ao}— car1
PHASE B
>
20 k@
T 50 pf HC74

Figure 6-14. Optical Encoder Interface

6-20

Hardware Applications - External Peripheral Interfacing

6.3.6 XDS Design Considerations

The TMS320C14 XDS Emulator is implemented with a dual processor system
incorporating a TMS320C14 and a TMS9996. The TMS9996 acts as con-
troller in the system, while the TMS320C14 performs the emulation. The de-
sign of the XDS maximizes performance and allows full speed in-circuit
emulation. This discussion covers general design considerations as well as
timing and loading.

6.3.6.1 Bus Control

When the emulator is halted from the keyboard or by a breakpoint condition,
the current state of the TMS320C14 is extracted by the TMS9996 imple-
mented to look like a co-processor. The TMS9996 communicates with the
TMS320C14 over the internal data bus (of the emulated device) which is not
seen by the user. Additional communication between the two processors is
generated with commands entered from the keyboard. The TMS9996 shares
the data bus only when the REN and WE signals are high. The target system
should drive the data bus ONLY when devices on the target system are ad-
dressed and REN or WE is low. If these rules are violated, the XDS gives a
"PROCESSOR SYNC LOST” error message #1185. This error may also be
caused by signal-to-signal shorts in the target system, misalignment of the
target connector, or wiring errors in the target system.

6.3.6.2 XDS Timing

The TMS320C14/E14 emulator has additional logic in series with the inputs
RS, INT, NMi/MC/MP, and outputs REN and WE. Propagation delays assume 3
ns for cable delay and capacitive loading. The delays outlined below are in
addition to device specifications.

Table 6-1. XDS/Target Device Timing Delays

Signal Delay

TNT,NMI,RS Asynchronous

WE, REN, Delay from part to pin = 7 ns.

PA2-PAO,

CLKOUT

CLKIN PLCC target cable delay from pin
to part = 20 ns

Other Signals Delay from part to pin or pin
to part = 3 ns

6-21

Hardware Applications - External Peripheral Interfacing

6.3.6.3 Reset

The Reset (RS) signal is synchronized on the rising edge of CLKOUT after
being sent from the pin through a 16L8 PAL. The reset signal is applied to the
TMS320C14/E14 on the rising edge of CLKOUT. This is done to implement
a run on application of target reset function in the emulator. It is not necessary
for the user to synchronize RS in their design.

6.3.6.4 Emulator Loading

Additional loading on the outputs is induced by the XDS. The differences in
the DC loading between the emulator and the device are defined below.

Table 6-2. XDS/Device DC Loading

Signal Load
RS 0.3 ma
NMi/MC/MP 0.6 ma
D15-DO_ 1.0 ma
REN, WE 0.3 ma

6.3.6.5 Miscellaneous Considerations

6-22

The emulator coprocessor initially sets up the device being emulated to run
and then does not attempt to communicate with the emulated device until the
user communicates with the emulator via the keyboard. If the target system is
continuously asserting RS, the coprocessor does not gain control of the device
and will report a "PROCESSOR SYNC LOST” error message 1185. This con-
dition can be caused by a powered-up emulator plugged into a powered-
down target system. Even though RS is pulled up through a resistor on the
emulator, the impedance of the target system powered off can be low enough
to assert a low on RS or load the data bus so as to keep the emulator from
functioning.

Caution:

The conductive foam on the XDS target connector and logic
show cable must be removed before power-up. Failure to do so

will result in a malfunction and may cause damage.

Hardware Applications - External Peripheral Interfacing

6.3.6.6 Transmission Line Phenomena

Since the XDS target cable is approximately 20 inches long, use of advanced
CMOS or Fast/Advanced Schottky TTL may cause line reflections (ringing
above input thresholds) on input lines to the XDS. Series termination resistors
(22 to 68 ohms) can help eliminate this problem. Generally, the user should
use the cables as supplied, and keep connections as short as possible.

6.3.6.7 Clock Source
The XDS Emulator only supports the use of either an internal oscillator or a
TTL clock source provided by the user’s target system. The emulator clock is
selectable from three sources:
1) The target clock

2) A socketed, changeable crystal (Y2) on the Processor Module (PM)
board

3) A socketed, changeable canned TTL oscillator (U1) on the PM board

6-23

Hardware Applications - System Applications

6.4 System Applications

The TMS320C14/E14 can be used in a wide variety of applications. The fast
CPU and associated circuitry allow the device to used in computation inten-
sive applications requiring processing of signals in control systems, speech
systems, telecommunications, FFT’'s, and filtering systems. The
TMS320C14/E14 goes a step further than previous DSP’s by including a large
amount of peripheral circuitry. These integrated modules reduce (and may
even eliminate) the amount of “glue” circuitry normally required with other
DSP’s, thus providing a cost effective solution to designers in many applica-
tions. - Included in this section are discussions of some example applications
that the TMS320C14/E14 is suited for.

6.4.1 Disk Drive Control

TMS320C14/E14

DATA SIGNAL
- | AD I' ISHAPER

The implementation of the TMS320C14/E14 for disk drive control is shown
in Figure 6-15. In this example, both the read/write actuator and the spindle
motor are controlled by the DSP. This illustrates an application where two sets
of linear functions are provided.

_——> DIsK

6-24

DRIVE [—I;IA_I N DRIVE
| I | LV

POSITION

] . oMp I———— MOTOR

OPTICAL
ENCODER

Figure 6-15. Disk Drive Conurol

Using sophisticated algorithms, the TMS320C14/E14 may perform the fol-
lowing functions:

e Precisely control the read/write actuator for fast access time.
® Cancel mechanical resonance.
® Estimate and control actuator speed.

Position information is read from the disk surface and converted into digital
form by an A/D. A D/A provides conversion for the position control signal to

Hardware Applications - System Applications

the actuator. The PWM outputs directly control the speed of the spindle motor,
while the capture inputs accept the optical encoder signals indicating velocity.

6.4.2 Plotter Control
Figure 6-16 shows the TMS320C14/E14 used as a pen position controller for

a plotter. The capture inputs receive position signals from the optical encoders
of the the position rotors, and the PWM outputs provide the controlling sig-
nals to the X-Y drive motors.

TMS320C14/E14
POSITION
POSITION
DRIVE
DRIVE

Figure 6-16. Plotter Control

6-25

Hardware Applications - System Applications

6.4.3 Tape Drive Control

TMS320C14/E14

6-26

The TMS320C14/E14 is illustrated in Figure 6-17 as providing servo control
of a magnetic tape drive mechanism. The PWM outputs generate the signals
for controlling the tension and takeup motors, while the optical encoder sen-
sors provide input to the capture inputs. The DSP is responsible for keeping
the speed of the tape constant, as well as maintaining proper tape tension.
Tape speed may also be detected by reading embedded information off the
tape. Tape tension is detected by the position of lever arms attached to servo

motors.
SUPPLY
REEL
TENSION
MOTOR
DRIVE
SPEED DATA
DRIVE
POSITION
TAPE
POSITION TENSION
SENSORS

TAKEUP
MOTOR

TAKEUP
REEL

Figure 6-17. Tape Drive Control

Hardware Applications - System Applications

6.4.4 AC Motor Control

With the TMS320C14/E14, it is possible to provide cost effective servo control
of either AC induction and synchronous motors or DC brushless motors. AC
motors are cheaper to manufacture and easier to maintain than DC servo mo-
tors: Their control structure, however, is much more complex than DC servo
motors. Vector rotation techniques are used to transform the coordinates and
simplify the control structure of an AC motor to field controlled DC motor.
The TMS320C14/E14 can be used to perform the necessary computations
that will permit vector control of AC motors. The PWM outputs can be used
to control the multiple phases. Speed information can be obtained from op-
tical encoders. Figure 6-18 shows implementation of control of an AC motor.

TMS320C14/E14
SPEED OPTICAL ENCODER o
DRIVE MOTOR ‘ /

Figure 6-18. AC Motor Control

6-27

Hardware Applications - System Applications

6-28

Appendix A
TMS320C14/E14 Data Sheet

A-1

Appendix A

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSORS

DECEMBER 1988

® 160-ns Instruction Cycle TMS320C14, TMS320E14
FN AND FZ PACKAGES
® 256-Word On-Chip Data RAM

(TOP VIEW)
® 4K-Word On-Chip Program ROM e x
(TMS320C14) o¢
N ™
® 4K-Word On-Chip Program EPROM Lk
T 20E14 o NegPorIR
(TIS320E14) 255228855885 25505
® EPROM Code Protection for Copyright
- 9 87 6 54 3 2 16867666564636261
Security TCLK1/CLKR [10 60[Da
TCLK2/CLKX [} 11 59(] D5
® 4K-Word Total External Memory at Full A8 fl12 s8(] o6
Speed (Microprocessor Mode) A7H3 57407
A6 [l 14 56(] tOPO
® 32-Bit ALU/Accumulator WEl1s b R
REN [] 16 s4[]10P2
® 16 x 16-Bit Multiplier with a 32-Bit Product RSz s3(1op3
INT (|18 52[] 10P4
® 0 to 16-Bit Barrel Shifter CLKOUT [l 19 51 1ops
A5 [} 20 50(} D8
® Seven Input and Seven Output External A4 49fjo9 2
P rt NMI/MM 22 48[] RXD/DATA
orts WDT [23 47[| TXD/CLK o
® 16-Bit Bidirectional Data Bus with Greater C"K"\'; i‘; :g :3':!?6 '|:
Than 50-Mbps Transfer Rate a2 fl26 4] 10P7
272829 3031323334353637383940414243 <
@ Bit-Selectable 1/0 Port (16 Pins) —FOWYTON ~—DF~ONONDD— E
) <<z3izgBccizioncsn
@ Serial Port with Programmable Protocols 8g8g98>>" " g9 o
® Event Manager with Capture Inputs and O
Compare Outputs ® Single 5-V Supply %
® Four Independent Timers (Watchdog, ® Packaging: 68-Pin PLCC or CLCC —_—
General Purpose [2], Serial Port) @ 15 Internal/External Interrupts (17}
introduction g
This data sheet provides complete design documentation for the TMS320C14 and TMS320E 14 devices, <
which are a part of the First Generation TMS320 family. The TMS32010, the first digital signal processor >
of the TMS320 family, was introduced in 1982. Its powerful instruction set, inherent flexibility, high speed =)
number-crunching capabilities, and innovative architecture have made this high performance, cost-effective <
processor the ideal solution for many commercial, industrial and military applications. Since that time, three
generations of the TMS320 family have evolved, each with its own group of related devices. All TMS320
devices combine the flexibility of a high speed controller with the numerical capability of an array processor.
This offers an inexpensive alternative to multichip bit-slice processors.
The TMS320C14/E14 devices are 16/32-bit single-chip digital signal processors that are object-code
compatible with the TMS32010 device. This allows hardware upgrading without the expense of software
re-development. The highly paralleled architecture and efficient instruction set provide the speed and
flexibility to execute 6.4 million instructions per second (MIPS). The TMS320C14/E14 devices contain
several on-chip peripherals that can reduce and even eliminate interface components and ‘‘glue’’ circuitry,
allowing use in space-critical applications.
The TMS320C14/E14 is offered in a 68-pin plastic leaded chip carrier package (FN suffix) rated for operation
from 0°C to 70°C (L suffix). It is also offered in a 68-pin ceramic leaded chip carrier package (FZ suffix)
carrier rated for operation from 0°C to 70°C (L suffix).
This data sheet is divided into the following major sections: introduction, functional block diagram,
architecture, instruction set, development, support products, documentation support, electrical and timing
specifications, timing diagrams, and EPROM programming. An index is provided for quick reference to
specific information.
ADVANCE llFOHMATlUl llocu‘u.mu connm l Copyright © 1988, Texas Instruments Incorporated
pnpmduetlnn phm azs of davelopment. Charactaristic EXAS U A
other subj hai -3
wn!wut n“mspmﬁmons are sbject to change lNSTRUMEN]S

POST OFFICE BOX 1443 ® HOUSTON, TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

pin descriptions

PIN 1ozt T DESCRIPTION
NAME NO. ADDRESS/DATA BUSES

A1l 5 0/z Program memory address bus A11 (MSB) through AO (LSB) and port addresses PA2

A10 6 (MSB) through PAO (LSB). Addresses A11 through AO are always active and never

A9 9 go to high impedance except during reset. During execution of the IN and OUT

A8 12 instructions, pins 26, 27, and 28 carry the port addresses. Pins A3 through A11 are

A7 13 held high when port accesses are made on pins PAO through PA2.

A6 14

A5 20

A4 21

A3 25

A2/PA2 26

A1/PA1 27

AO/PAO 28

D15 MSB 35 1/0/Z Paraliel data bus D15 (MSB) through DO (LSB). The data bus is always in the high-

D14 36 impedance state except when WE is active (low). The data bus is also active when

D13 39 internal peripherals are written to.

D12 40

D11 43

D10 46

D9 49

D8 50

D7 57

Dé 58

D5 59

D4 60

D3 61

D2 62

D1 63

DO LSB 64

INTERRUPT AND MISCELLANEOUS SIGNALS

INT 18 1 External interrupt input. The interrupt signal is generated by a low signal on this pin.

NMI/MC/MP 22 | Non-maskable interrupt. When this pin is brought low, the device is interrupted
irrespective of the state of the INTM bit in status register ST.
Microcomputer/microprocessor select. This pin is also sampled when RS is low. If
high during reset, internal program memory is selected. If low during reset, external
memory will be selected.

WE 15 [¢] Write enable. When active low, WE indicates that device will output data on the bus.

REN 16 o Read enable. When active low, REN indicates that device will accept data from the bus.

RS 17 | Reset. When this pin is low, the device is reset and PC is set to zero.

SUPPLY/OSCILLATOR SIGNALS

CLKOUT 19 (o] System clock output (one fourth CLKIN frequency).

Vee 4,33 1 5-V supply pins. '

Vss 3,34 | Ground pins.

CLKIN 24 I Master clock input from external clock source.

Tlnput/Output/High—impedanc@ state.

{i?
A-4 TeEXAS
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

pin descriptions (concluded)

PIN 170 DESCRIPTION
NAME NO. SERIAL PORT AND TIMER SIGNALS
RXD/DATA 48 10 In the asynchronous and codec modes, this pin is the receive input. In the synchronous
mode, this pin is data in while receiving data, and data out while transmitting data.
TXD/CLK 47 10 In the asynchronous and codec modes, this pin is the transmit output. In the synchronous
mode, this pin is clock input with external clock, and clock output with internal clock.
TCLK1/CLKR 10 | Timer 1 clock. If external clock is selected, it serves as clock input to Timer 1. Can
also be configured as serial port receive clock in codec mode.
TCLK2/CLKX 1 | Timer 2 clock. If external clock is selected, it serves as clock input to Timer 2. Can
also be configured as serial port transmit clock in codec mode.
WDT 23 (o} Watchdog timer output. An active low is generated on this pin when the watchdog
timer times out.
BIT 1/O PINS
10P15 MSB 29 110 16 bit 1/O lines that can be individually configured as inputs or outputs and also
IOP14 30 individually set or reset when configured as outputs.
I0P13 31
10P12 32
10P11 37
I0P10 38
10P9 41
0P8 42
I0P7 44
|10P6 45
10P5 51
I0P4 52
I10P3 53
10P2 54
10P1 55
|OPO LSB 56
COMPARE AND CAPTURE SIGNALS
CMPO 8 (o] Compare outputs. The states of these pins are determined by the combination of
CMP1 7 compare and action registers.
CMP2 2
CMP3 1
CAPO 68 | Capture inputs. A transition on these pins causes the timer register to be captured
CAP1 67 in FIFO stack.
CMP4/CAP2/ 66 /0 This pin can be configured as compare output, capture input, or as external framing
FSR input/output for the receiver section of the serial port in codec mode.
CMP5/CAP3 65 110 This pin can be configured as compare output, capture input, or as external framing
FSX input/output for transmit section of the serial port in codec mode.

{i?
Texas
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

A-5

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

functional block diagram

-
z 3
x %
o O

16 INTERRUPT [
CONTROLLER INT,NMi/MC/MP

I WATCHDOG
& 1__Timer WoT
WE —a—] g‘ Lse
EN —=—| 3 16
W] & TIMERS — 3
8 16 1.2 - 16 CLKR,CLKX
INSTRUCTION <
3 D15.00
H
2 PROGRAM
#| ROM/EPROM
AO-A11 3| ax worps) e []
PAO-PA2 <
16 cmPo-
4 x 12 6 | - cmP3
t—e= CMP4.5/
£ PROGRAM BUS' % CAP2.3/
FSR,FSX
13
r DATA BUS 16
] 16 7 t—— CAPO,1
1 16 7 1
T(16) 16 16, n
MULTILIER [~ 7
ARP
P(32) 26 SERIAL SERIAL
PORT PORT
TIMER CONTROLLER f——
TXD/CLK
RXD/DATA
10PO-
10P
ADDRESS 10P18
DATA (266 WORDS)
DATA
LEGEND: DP—Data Page Pointer
BSR 16 ACC—Accumulator 0P —Input/Output Port
ACT —Action Register (Bit Selectable)
16 ALU — Arithmetic Logic Unit PC—Program Counter
16 ARP — Auxiliary Register Point P—P Register
ARO—Auxiliary Register O RBR—Receive Buffer Register
[7 DATABUS, AR1— Auxiliary Register 1 RSR—Receive Shift Register
BSR—Bank Select Register T—T Register
CAP—Capture TBR—Transmit Buffer Register
. CMPR —Compare Register TSR—Transmit Shift Register
architecture

The TMS320 family utilizes a modified Harvard architecture for speed and flexibility. In a strict Harvard
architecture, program and data memory lie in two separate spaces, permitting a full overlap of instruction
fetch and execution. The TMS320 family’s modification of the Harvard architecture allows transfers
between program and data spaces, thereby increasing the flexibility of the device. This modification permits
coefficients stored in program memory to be read into the RAM, eliminating the need for a separate
coefficient ROM. It also makes available immediate instructions and subroutines based on computed values.

32-bit ALU/accumulator

The TMS320C14/E14 devices contain a 32-bit ALU and accumuiator for support of double-precision, two’s-
complement arithmetic. The ALU is a general-purpose arithmetic unit that operates on 16-bit words taken
from the data RAM or derived from immediate instructions. In addition to the usual arithmetic instructions,
the ALU can perform Boolean operations, providing the bit manipulation ability required of a high-speed
controller. The accumulator stores the output from the ALU and is often an input to the ALU. It operates
with a 32-bit wordlength. The accumulator is divided into a high-order word (bits 31 through 16) and a
low-order word (bits 15 through 0). Instructions are provided for storing the high- and low-order accumulator

A-6

words in memory.
(]
Texas ‘b
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

shifters

Two shifters are available for manipulating data. The ALU barrel shifter performs a left-shift of O to 16
places on data memory words loaded into the ALU. This shifter extends the high-order bit of the data word
and zero-fills the low-order bits for two’s-complement arithmetic. The accumulator parallel shifter performs
a left-shift of O, 1, or 4 places on the entire accumulator and places the resulting high-order accumulator
bits into data RAM. Both shifters are useful for scaling and bit extraction.

16 x 16-bit parallel multiplier

The multiplier performs a 16 x 16-bit two's-complement multiplication with a 32-bit result in a single
instruction cycle. The multiplier consists of three units: the T Register, P Register, and multiplier array.
The 16-bit T Register temporarily stores the multiplicand; the P Register stores the 32-bit product. Multiplier
values either come from the data memory or are derived immediately from the MPYK (multiply immediate)
instruction word. The fast on-chip multiplier allows the device to perform fundamental operations such
as convolution, correlation, and filtering.

data and program memory

Since the TMS320C14/E14 devices use a Harvard architecture, data and program memory reside in two
separate spaces. These devices have 256 words of on-chip data RAM and 4K words of on-chip program
ROM (TMS320C14) or EPROM (TMS320E14). The EPROM cell utilizes standard PROM programmers and
is programed identically to a 64K CMOS EPROM (TMS27C64).

program memory expansion

The first-generation devices are capable of executing up to 4K words of external memory at full speed
for those applications requiring external program memory space. This allows for external RAM-based
systems to provide multiple functionality.

microcomputer/microprocessor operating modes

The TMS320C14/E14 devices offer two modes of operation defined by the state of the NMI/MC/MP pin
during reset: the microcomputer mode (NMI/MC/MP = 1) or the microprocessor mode (NMI/MC/MP = 0).
In the microcomputer mode, on-chip ROM is mapped into the memory space with up to 4K words of internal
memory available. In the microprocessor mode, all 4K words of memory are external.

interrupts and subroutines

The TMS320C14/E14 devices contain a four-level hardware stack for saving the contents of the program
counter during interrupts and subroutine calls. Instructions are available for saving the complete context
of the device. PUSH and POP instructions permit a level of nesting restricted only by the amount of available
RAM. The TMS320C14/E14 has a total of 16 internal/external interrupts. Fifteen of these are maskable;
NMI is the sixteenth.

input/output

The 16-bit parallel data bus can be utilized to access external peripherals. Only the lower three address
lines are active, however. The upper nine address lines are driven high.

bit 1/0

The TMS320C14/E14 has 16 pins of bit /O that can be individually configured as inputs or outputs. Each
of the pins can be set or cleared without affecting the others. The input pins can also detect and match
patterns and generate a maskable interrupt signal to the CPU.

{i’
Texas A-7
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

serial port

The TMS320C14/E14 includes an |/O mapped serial port that can operate in one of three modes:
asynchronous, synchronous, and codec. Two types of inter-processor communication protocols are
supported in all modes. An associated timer provides baud rate/clock generation if required. Depending
on the mode, internal/external clock (master/slave) options are available. All communication parameters
are software-controlled through a serial control register.

event manager

An event manager is included that provides up to four capture inputs and up to six compare outputs. This
peripheral operates with the timers to provide a form of programmable event logging/detection. The six
compare outputs can also be configured to produce six channels of high precision PWM.

timers 1 and 2

Two identical 16-bit timers are provided for general purpose applications. Both timers include a 16-bit period
register and buffer latch, and can generate a maskable interrupt.

serial port timer

The serial port timer is a 16-bit timer primarily intended for baud rate generation for the serial port. its
architecture is the same as timers 1 and 2, therefore it can serve as a general purpose timer if not needed
for serial communication.

watchdog timer

The TMS320C14/E14 contains a 16-bit watchdog timer that can produce a timeout (WDT) signal for various
applications such as software development and event monitoring. The watchdog timer also generates,
at the point of the timeout, a maskable interrupt signal to the CPU.

A-8

Qi’
Texas
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

instruction set

A comprehensive instruction set supports both numeric-intensive operations, such as signal processing,
and general-purpose operations, such as high-speed control. All of the first-generation devices are object-
code compatible and use the same 60 instructions. The instruction set consists primarily of single-cycle
single-word instructions, permitting execution rates of more than six million instructions per second. Only
infrequently used branch and /O instructions are multicycle. Instructions that shift data as part of an
arithmetic operation execute in a single cycle and are useful for scaling data in parallel with other operations.

NOTE

The BIO pin on other TMS320C1x devices are not available for use in the TMS320C14/E14. An
attempt to execute the BIOZ (Branch on BIO low) instruction will result in a two cycle NOP action.

Three main addressing modes are available with the instruction set: direct, indirect, and immediate
addressing.

direct addressing

In direct addressing, seven bits of the instruction word concatenated with the 1-bit data page pointer form
the data memory address. This implements a paging scheme in which each page contains 128 words.

indirect addressing

Indirect addressing forms the data memory address from the least-significant eight bits of one of the two
auxiliary registers, ARO and AR1. The Auxiliary Register Pointer (ARP) selects the current auxiliary register.
The auxiliary registers can be automatically incremented or decremented and the ARP changed in parallel
with the execution of any indirect instruction to permit single-cycle manipulation of data tables. Indirect
addressing can be used with all instructions requiring data operands, except for the immediate operand
instructions.

immediate addressing

Immediate instructions derive data from part of the instruction word rather than from the data RAM. Some
useful immediate instructions are multiply immediate (MPYK), load accumulator immediate (LACK), and
load auxiliary register immediate (LARK).

instruction set summary

Table 1 lists the symbols and abbreviations used in Table 2, the instruction set summary. Table 2 contains
a short description and the opcode for each TMS320 first-generation instruction. The summary is arranged
according to function and alphabetized within each functional group.

{i’
EXAS A-9
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS320C14/TMS320E14

DIGITAL SIGNAL PROCESSOR

TABLE 1. INSTRUCTION SYMBOLS

SYMBOL MEANING
ACC Accumulator
D Data memory address field
| Addressing mode bit
K Immediate operand field
PA 3-bit port address field
R 1-bit operand field specifying auxiliary register
S 4-bit left-shift code
X 3-bit accumulator left-shift field

TABLE 2. TMS320 FIRST-GENERATION INSTRUCTION SET SUMMARY

ACCUMULATOR INSTRUCTIONS
OPCODE
NO. NO.
MNEMONIC DESCRIPTION CYCLES | WORDS INSTRUCTION REGISTER
1514131211109 8 7 6 5 4 3 2 1 0

ABS Absolute value of accumulator 1 1 0111111110001 000
ADD Add to accumulator with shift 1 1 0000 &—S» | «&—D——»
ADDH Add to high-order accumulator bits 1 1 01100000 | 4—D——»
ADDS Add to accumulator with no sign 1 1 01100001 | &4——D—Pp

extension
AND AND with accumulator 1 1 01111001 | 4&4———D—»
LAC Load accumulator with shift 1 1 0010 «—S» | «———D—»
LACK Load accumulator immediate 1 1 o1111110 ¢4——K—>
OR OR with accumulator 1 1 01111010 ! €&——D—>
SACH Store high-order accumulator bits with 1 1 01011 &XxX» | «——D—P

shift
SACL Store low-order accumulator bits 1 1 01010000 | 4&4——D—P
sus Subtract from accumulator with shift 1 1 0001 4—S» | «—D—»
SUBC Conditional subtract (for divide) 1 1 01100100 | ¢—D—b»
SUBH Subtract from high-order accumulator bits 1 1 01100010 | 4&——D—p
suss Subtract from accumulator with no sign 1 1 01100011 | 4—D—>»

extension
XOR Exclusive OR with accumulator 1 1 01111000 | «4——D—b»
ZAC Zero accumulator 1 1 o111 i11110001001
ZALH Zero accumulator and load high-order bits 1 1 01100101 4&—D—bP>
ZALS Zero accumulator and load low-order bits 1 1 01100110 ! &4——D—>»

with no sign extension

AUXILIARY REGISTER AND DATA PAGE POINTER INSTRUCTIONS
NO. NO. OPCODE
MNEMONIC DESCRIPTION INSTRUCTION REGISTER
CYCLES | WORDS
1514131211109 8 7 6 56 4 3 2 1 0
LAR Load auxiliary register 1 1 0011100RI| €&44—D—»
LARK Load auxiliary register immediate 1 1 01 11000R &————K—>
LARP Load auxiliary register pointer immediate 1 1 011010001 00O0O0OO0O0K
LDP Load data memory page pointer 1 1 c1101111| 4&—D—P
LDPK Load data memory page pointer immediate 1 1 O110111000O0O0OO0O0O0K
MAR Modify auxiliary register and pointer 1 1 01101000 | €&——D—p
SAR Store auxiliary register 1 1 0011000RI| 4——D—Pp
3
A-10 TeExAs

INSTRUMENTS

POST OFFICE BO

X 1443 @ HOUSTON. TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

TABLE 2. TMS320 FIRST-GENERATION INSTRUCTION SET SUMMARY (continued)

[BRANCH INSTRUCTIONS
OPCODE
NO. NO.
MNEMONIC DESCRIPTION INSTRUCTION REGISTER
CYCLES | WORDS
1514131211109 8 7 6 5 4 3 2 1 O
B Branch unconditionally 2 2 11111001 00O0O0OOOO
0 0 0 O 44— BRANCH ADDRESS —
BANZ Branch on auxihary register not zero 2 2 11 1101000O0O0OO0OOOO
0O 0 0 O 44— BRANCH ADDRESS —»
BGEZ Branch if accumulator = O 2 2 11111 1010000O0O0OO0OO
0 0 0 0O <4—— BRANCH ADDRESS —¥
BGz Branch if accumulator > 0O 2 2 11111 10000O0O0OO0O0OO
0O 0 0 0O 44— BRANCH ADDRESS —»
BLEZ Branch if accumulator = 0 2 2 1111101 1000O0O0OO0CDO
0 0 0 0O 44— BRANCH ADDRESS —
BLZ Branch if accumulator < O 2 2 11111 01000O0O0OOOO
0O 0 0 O <4—— BRANCH ADDRESS —
BNZ Branch if accumulator # O 2 2 1111 1110000000O0O0
0 0 0 0O 44— BRANCH ADDRESS —»
BV Branch on overflow 2 2 11110101 0000O0OO0O0CO
0 0 0O O 4——BRANCH ADDRESS —
BZ Branch f accumulator 0 2 2 T1111111000O0O0O0O0O0
0 0 0 0O 4——BRANCH ADDRESS —p
CALA Call subroutine from accumulator 2 1 o111 111110001100
CALL Call subroutine immediately 2 2 *t111100000O0OOOOO
0 0 0O O 4——BRANCH ADDRESS —
RET Return from subroutine or interrupt routine 2 1 o1111 11110001101
T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS
OPCODE
NO. NO
MNEMONIC DESCRIPTION INSTRUCTION REGISTER
CYCLES | WORDS
1514131211109 8 7 6 5 4 3 2 1 0
APAC Add P register to accumulator 1 1 o1r11111 110001111
LT Load T register 1 1 011010101 4—D—¥»
LTA LTA combines LT and APAC into one 1 1 oO1101100! 4&——D—Pp
instruction
LTD LTD combines LT, APAC, and DMOV into 1 1 6011010111 4—D—P
one nstruction
MPY Multiply with T register, store product in 1 1 o1101101! «—D—»
P register
MPYK Multiply T registér with immediate 1 1 100 « K L g
operand; store product in P register
PAC Load accumulator from P register 1 1 o1r1r111 1110001110
SPAC Subtract P register from accumulator 1 1 o111 1t11110010O0O0O0

TeExas {9

INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

TABLE 2. TMS320 FIRST-GENERATION INSTRUCTION SET SUMMARY (concluded)

CONTROL INSTRUCTIONS
NO. NO. OPCODE
MNEMONIC DESCRIPTION cYCLES | WORDS INSTRUCTION REGISTER
1514131211109 8 7 6 56 4 3 2 1 0
DINT Disable interrupt 1 1 o1 111111 i000O0O0O01
EINT Enable interrupt 1 1 o1 1111 1110000010
LST Load status register 1 1 o1111011 | 4—D—bp
NOP No operation 1 1 o111 11111000O0O0O0O0
POP POP stack to accumulator 2 1 011111111001 1101
PUSH PUSH stack from accumulator 2 1 o11111111001 1100
ROVM Reset overflow mode 1 1 0111111110001 010
SOVM Set overflow mode 1 1 o111 1111100011011V
SST Store status register 1 1 01111100 | 4—D—b
1/0 AND DATA MEMORY OPERATIONS
OPCODE
NO. NO.
MNEMONIC DESCRIPTION INSTRUCTION REGISTER
CYCLES | WORDS
1514131211109876543210
bmMov Copy contents of data memory location 1 1 011010011 €——D—P
into next higher location
IN Input data from port 2 1 01000 4PAP» | 4——D—P
ouT Output data to port 2 1 0100 1 4PAD | 4—D—P
TBLR Table read from program memory to data 3 1 ot1100111 | 4¢——D—Pp
RAM
TBLW Table write from data RAM to program 3 1 o1111101tI €&—D—Pp
memory
+p
A-12 TEXAS

INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON, TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

development support products

Texas Instruments offers an extensive line of development support products to assist the user in all
aspects of TMS320 first-generation-based design and development. These products range from
development and application software to complete hardware development and evaluation systems such
as the XDS/22. Table 3 lists the software and hardware support products for the first-generation TMS320
devices.

TABLE 3. TMS320C14 SOFTWARE AND HARDWARE SUPPORT

SOFTWARE TOOLS

PART NUMBER

Macro Assembler/Linker
VAX VMst
IBM PC MS-DOS*8
VAX ULTRIXT
SUN-3 UNIX#1

CPU Simulator
VAX VMst
IBM PC MS-DOS*§

Digital Filter Design Package. (DFDP)
IBM PC-MS-DOS#8

DSP Software Library
VAX vMmst
IBM PC MS-DOS*8

TMDS3242250-08
TMDS3242850-02
TMDS3242260-08
TMDS3242550-08

TMDS3240211-08
TMDS3240811-02

DFDP-IBM002

TMDC3240212-18
TMDC3240812-12

HARDWARE TOOLS

PART NUMBER

Analog Interface Board (AIB2)
AlIB2 Adapter Board

XDS/22 Emulator

RTC/EVM320C-06
RTC/ADPC14A-06
TMDS3262214

EPROM Programmer Adapter Socket = TMDX3270110

TMS320 Design Kit TMS320DDK

tVAX, VMS, and ULTRIX are trademarks of Digital Equipment Corporation.
#MS-DOS is a trademark of Microsoft, Incorporated.

§IBM PC is a trademark of IBM Corporation.

TUNIX is a trademark of AT&T Bell Laboratories.

#SUN is a trademark of Sun Microsystems, Incorporated.

System development begins with the use of the Emulator (XDS). This hardware tool allows the designer
to evaluate the processor’s performance, benchmark time-critical code, and determine the feasibility of
using a TMS320 device to implement a specific algorithm.

Software and hardware can be developed in parallel by using the macro assembler/linker and simulator
for software development and the XDS for hardware development. The assembler/linker translates the
system’s assembly source program into an object module that can be executed by the CPU simulator
or XDS. The XDS provides realtime in-circuit emulation and is a powerful tool for debugging and integrating
software and hardware modules.

Additional support for the TMS320 products consists of extensive documentation and three-day DSP
design workshops offered by the Tl Regional Technology Centers (RTCs). The workshops provide hands-
on experience with the TMS320 development tools. Refer to the TMS320 Family Development Support
Reference Guide (SPRUO11) for further information about TMS320 development support products and
DSP workshops. When technical questions arise regarding the TMS320, contact the Texas Instruments

TMS320 DSP Hotline, (713) 274-2320.
{i’
Texas A-13
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON, TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

documentation support

Extensive documentation supports the first-generation TMS320 devices from product announcement through
applications development. The types of documentationinclude data sheets with design specifications, complete
user’s guides, and 750 pages of application reports published in the book Digital Signal Processing Applications
with the TMS320 Family (SPRAO12A).

A series of DSP textbooks is being published by both Prentice Hall and John Wiley and Sons to support
digital signal processing research and education. Prentice Hall (201) 767-5937 offers among others: Practical
Approaches to Speech Coding, and A DSP Laboratory Using the TMS32010. John Wiley and Sons (800)
526-5368 has published such books as Digital Fifter Design, DFT/FFT and Convolution Algorithms, and
A Practical Guide to Adaptive Filter Design. The TMS320 newsletter, Details on Signal Processing, is
published quarterly and distributed to update TMS320 customers on product information. The TMS320
DSP bulletin board service provides access to large amounts of information pertaining to the TMS320 family.

Refer to the TMS320 Family Development Support Reference Guide for further information about TMS320
documentation. To receive copies of first-generation TMS320 literature, call the Customer Response Center

at 1-800-232-3200.

> electrical specifications
Q This section contains all the electrical specifications for the TMS320C 14/E14 devices, including test parameter
< measurementinformation. Parameters with pp subscript apply only to TMS320E 14 in EPROM programming mode.
E absolute maximum ratings over specified temperature range (unless otherwise noted) t
(@] Supply voltagerange, VCCF ... o e -0.3Vto7V
m Supply voltagerange, VPP -0.6Vto 14V
— Inputvoltage range e -0.3Vto 14V
2 OUtPUL VORAGE TANGE o o e oottt e e e -0.3Vto7V
M Continuous power diSSIPationottt 0.5W
O Air temperature range above operating device: Lversion 0°Cto70°C
s o) Storage temperature rangeottt e —-55°Cto +150°C
g TStresses beyond those listed under ‘‘Absolute Maximum Ratings’’ may cause permanent damage to the device. This is a stress rating only,
> and functional operation of the device at these or any other conditions beyond those indicated in the ‘’/Recommended Operating Conditions’”
_.' section of this speciﬁcation isnotimplied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
== *All voltage values are with respect to Vss.
g recommended operating conditions
MIN NOM MAX UNIT
EPROM devices 4.75 5 5.25
v Supply volt EPROM devices while Fast programming 5.75 6.0 6.25 v
CC Supply votage EPROM devices while SNAP! programming 625 65 675
All other devices 4.5 5 5.5
Vpp Supply voltage for Fast programming (see Note 1) 12.25 12,5 12.75 v
Vpp Supply voltage for SNAP! programming (see Note 1) 12.75 13.0 13.25 v
Vss Supply voltage o] \%
CLKIN 3
ViH High-level input voltage| CLKIN, CAPO, CAP1, CMP4/CAP2/FSR, CMP5/CAP3/FSX, RS 4 v
All remaining inputs 2
Vi Low-level input voltage, all inputs except as noted 0.8 \"
ViL CAPO, CAP1, CMP4/CAP2/FSR, CMP5/CAP3/FSX, RS 1 \
loH * High-level output current, all outputs —-300 | uA
loL Low-level output current, all outputs 2 mA
Ta Operating free-air temperature, L version o 70 °C
NOTE 1: Vpp can be connected directly (except in the program mode). Vcc supplyl current in this case would be icc + Ipp.
i
A-14 TEXAS

INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

electrical characteristics over specified temperature range (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN Typt MAX UNIT
loH = MAX 2.4 3 \
VoH High-level output voltage OH
loH = 20 uA (see Note 2) Vec-0.4% v
VoL Low-level output voltage loL = MAX 0.3 0.5 \
[Off-state output current Vee = MAX Vo = 24V 20 A
oz p e cc = Vo =04V >0 i
All inputs except CLKIN +20
| Input t =V Vi A
| nput curren Vi ss to Vce CLKIN 250 w
f= . Hz, V| = 5. .
EPROM 25.6 MHz Ve = 5.2 V 65 mA
5 Ta = 0°C to 70°C
Icc? Supply current T - 25.6 MHa. V. 525
= 25. z, Vcc = 5.25 V,
ROM 55 A
Ta = 0°C to 70°C m
Ipp1 Vpp supply current Vpp = Vcc = 5.5V 100 A
Vpp supply current
1 Vpp = 13V 30 50 A
PP2 {during program pulse) PP m
Data b 25%
Ci Input capacitance ata bus pF Z
All others) 15% o
f = 1 MHz, All other pins O V —
) Data bus 25% I_
Co Output capacitance pF
All others 10# L~
TAll typical values are at Ve = 5V, TA = 25°C, except Icc at 70°C. E
*Values derived from characterization data and not tested. m
§I(;C characteristics are inversely proportional to temperature. o
NOTE 2: This voltage specification is included for interface to HC logic. However, note that all of the other timing parameters defined
in this data sheet are specified for TTL logic levels and will differ for HC logic levels. I-é
—
PARAMETER MEASUREMENT INFORMATION 8
215V E
:E R - 8250 (@)
<4 <
FROM OUTPUT
o—99
UNDER TEST o TEST
< POINT
T Cp = 100 pF
FIGURE 1. TEST LOAD CIRCUIT
EXTERNAL CLOCK REQUIREMENTS
The TMS320C14/E14 uses an external frequency source for a clock. This source is applied to the CLKIN pin,
and must conform to the specifications in the table below.
PARAMETER TEST CONDITIONS MIN NOM MAX | UNIT
CLKIN input clock frequency Ta = 0°C to 70°C 6.7 25.6 MHz
T {I’
EXAS A-15
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

CLOCK TIMING
switching characteristics over recommended operating conditions
PARAMETER TEST CONDITIONS MIN NOM MAX | UNIT
tc(C) CLKOUT cycle time¥ 156.26 160 597 ns
tr(C) CLKOUT rise time R = 8250, 10t ns
t§(C) CLKOUT fall time CL = 1000, 8t ns
tw(CL) Pulse duration, CLKOUT low See Figure 1. 72t ns
tw(CH) _ Pulse duration, CLKOUT high 70t ns
tdg(Mcc) Delay time CLKINT to CLKOUT! a5t ns
TValues derived from characterization data and not tested.
ttc(C) is the cycle time of CLKOUT, i.e., 4 x tc(MC) (4 times CLKIN cycle time if an external oscillator is used).
timing requirements over recommended operating conditions
MIN NOM MAX UNIT
tc(MC) Master clock cycle time 39.06 40 150 ns
> | trMC) Rise time master clock input 5t 10t ns
U t{MC) Fall time master clock input 5t 10t ns
< tw(MCP) Pulse duration master clock 0.45tcmc) T 0.55t¢(mc) t ns
> tw(MCL) Pulse duration master clock low 157 ns
2 tw(MCH) Pulse duration master clock high 15t ns
O | TValues derived from characterization data and not tested.
m MEMORY READ AND INSTRUCTION TIMING
E switching characteristics over recommended operating conditions
py PARAMETER TEST MIN TYP MAX UNIT
O CONDITIONS
X t41 Delay time CLKOUT ! to address bus valid 10t 40 ns
g t42 Delay time CLKOUT! to REN/ (memory access) 0.25t¢(c) — 57 0.25t¢(C)+12 ns
> 143 Delay time CLKOUT | to REN! (memory access) -10t 12 ns
j tda Delay time CLKOUT | to REN/ (1/O access) 0.25t¢(c) — 5t 0.25t5(c)+12 ns
QO |ws Delay time CLKOUT! to REN! (/0 access) —10t 12 ns
2 td6 Delay time CLKOUT ! to WE! R =825Q, 0.5t¢(c) — 5t 0.5t¢(cy+12 ns
td7 Delay time CLKOUT! to WE! CL = 100 pF, -10t 12 ns
tds Delay time CLKOUT! to data bus OUT valid See Figure 1. 0.25t¢(c) +52 ns
149 Time after CLKOUT| that data bus starts to be driven 0.25tg(c)— 57 ns
t410 Time after CLKOUT! that data bus stops being driven 0.25t¢(c) + 30t ns
ty Data bus OUT valid after CLKOUT! 0.25t¢(c)~ 10 ns
th(A-WR) _ Address hold time after WE!, REN1 of ns
tsu(A-REN) Address bus setup time prior to RENI 0.25t¢(c) — 35 ns
TValues derived from characterization data and not tested.
timing requirements over recommended operating conditions
TEST CONDITIONS MIN NOM MAX | UNIT
tsu(D) Setup time data bus valid prior to CLKOUT! RL =82510, 40 ns
th(D) Hold time data bus held valid after CLKOUT | CL= .100 pF, 0 ns
(see Note 3) See Figure 1.

NOTE 3: Data may be removed from the data bus upon REN! preceding CLKOUT .

Texas
INSTRUMENTS

his

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

RESET (RS) TIMING
switching characteristics over recommended operating conditions

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t411 Delay time WE!, and REN! :r_om RS RL = 8259, 0.5tgc)+507| ns
tdis(R) Data bus disable time after RS ¢ 100 pF 0.25t¢(C) +507 ns

: . == L= ,
tdis(A) Address bus disable time afterff low See Figure 1. O.ZStC(C)+507 ns
ten(A) Address bus enable time after RS high 0.25t¢(c) +507 ns

tThese values were derived from characterization data and not tested.

timing requirements over recommended operating conditions

MIN NOM MAX | UNIT
tsu(R) Reset (RS) setup time prior to CLKOUT (see Note 4) 40 ns

tw(R) RS pulse duration 5te(C) ns

NOTE 4: RS can occur anytime during a clock cycle. Time given is minimum to ensure synchronous operation.

MICROCOMPUTER/MICROPROCESSOR MODE (NMI/MC/MP)

timing requirements over recommended operating conditions

MIN NOM MAX | UNIT
thiMc/Mp)* Hold time after RS high 1.25t¢ ns

*Hold time to put device in microprocessor mode.

INTERRUPT (INT)/NON-MASKABLE INTERRUPT (NMi)

timing requirements over recommended operating conditions (see Note 5)

MIN NOM MAX UNIT
tf(INT) Fall time NT 151 ns
tiNMIl) Fall time NMIT 157 -
tw(INT) Puise duration INT () o~
tw(NMI) Pulse duration NMI te(C) ns
tsy(INT) Setup time INT before CLKOUT low 40 e
tsu(NMI) Setup time NMI before CLKOUT low 40 ns

TThese values were derived from characterization data and not tested.
NOTE 5: INT and NMI are synchronous inputs and can occur at any time during the cycle. NMI and INT are edge triggered only.

i
Texas {‘ A-17
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

ADVANCE INFORMATION

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

BIT I/O TIMING

switching characteristics over recommended operating conditions

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
trip Rise and fall time outputs RL = 82540, 20t ns
CL = 100 pF,
td(IOP) CLKOUT low to data valid outputs See Figure 1. .25t¢(C) +20 ns
timing requirements over recommended operating conditions
TEST CONDITIONS MIN TYP MAX UNIT
tfiqiop) Rise and fall time inputs RL = 825 Q, 20t ns
tsu(10P) Data setup time before CLKOUT time CL = 100 pF, 2071 ns
twli(IOP) Input pulse duration See Figure 1. te(c) +20 ns
TThese values were derived from characterization data and not tested.
GENERAL PURPOSE TIMERS
> timing requirements over recommended operating conditions
2 TEST CONDITIONS MIN TYP MAX | UNIT
1, TCLK2 rise ti T
> tr(TIM) TCLK1, TCLK2 rise time R - 8250, 20 ns
> H(TIM) TCLK1, TCLK2 fall time i = 100 oF 20t | ns
O thL(TIM) Hold time TCLK1, TCLK2 low Sl;e—Figurep*l ’ te(c) +20 ns
m L thH(TIM) Hold time TCLK1, TCLK2 high ’ te(c) +20 ns
— tThese values were derived from characterization data and not tested.
% WATCHDOG TIMER TIMING
© switching characteristics over recommended operating conditions
2 PARAMETER TEST CONDITIONS MIN TYP MAX | UNIT
tH(WDT) Fall time, WDT R = 825Q, 20t ns
E' td(WDT) CLKOUT to WDT valid CL = 100 pF, 0.25t¢(c) +20 ns
mm |ty (WDT) WDT output pulse duration See Figure 1. 8tg(C)—20 8t +20 ns
g TThese values were derived from characterization data and not tested.
EVENT MANAGER TIMING
switching characteristics over recommended operating conditions
N PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tycmp) Fall time, CMPO-CMP5 Ry = 82540, 20t | ns
CL = 100 pF,
t(CMP) Rise time, CMPO-CMP5 See Figure 1. 20t ns
TThese values were derived from characterization data and not tested.
timing requirements over recommended operating conditions
TEST CONDITIONS MIN TYP MAX | UNIT
tw(CAP) CAPO-CAP3 input pulse duration RL = 8259, tg(C) +20 ns
Cp = 100 pF,
tsu(CAP) Capture input setup time before CLKOUT low See Figure 1. 20t ns
TThese values were derived from characterization data and not tested.
i
A-18 XAS lu

E
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON, TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

SERIAL PORT-SYNCHRONOUS MODE TIMING
switching characteristics over recommended operating conditions

PARAMETER TEST CONDITIONS MIN MAX UNIT
tc(CLK-S) Serial port clock cycle time T te(C) 65,636t¢(C) ns
tf(CLK-S) TXD/CLK fall timet 20 ns
t(CLK-S) TXD/CLK rise time T 20 ns
twl(CLK-S) TXD/CLK low time T RL =825, 0.5tc(CLK-S) —20 0.5t¢(CLK-S) + 20 ns
twH(CLK-S) TXD/CLK high timet CL = 100pF, . 0.5tc(CcLK-§) —20 0.5t¢(CLK-S) + 20 ns
td(TX-S) RXD/DATA output valid before TXD/CLK low T See Figure 1. twH(CLK-S) — 20 ns
th(TX-S) RXD/DATA hold after TXD/CLK (internal) low td(TX-S) + 20 ns
td(TX-S) RSD/DATA output valid before TXD/CLK low# twH — 1.75t¢(c) + 20 ns
th(Tx-s) = RXD/DATA hold after after TXD/CLK low?# twL+1.75t¢(C)+20| ns

Tinternal clock ‘
*External clock
timing requirements over recommended operating conditions g
TEST CONDITIONS MIN MAX UNIT —
twL(CLK-S) TXD/CLK low time (external) ¥ 2t¢(C) ns E
twH(CLK-S) TXD/CLK high time (external)¥ 2t¢(C) ns
tsy(RX-S) RXD/DATA input setup before TXD/CLK low?# R =825Q, 0 ns E
RS - 0c
th(RX-S) RXD/DATA input hold after TXD/CLK low ¥ CL = 100 pF, 2te(c)— 20 ns
¢ RXD/DATA input setup before See Figure 1. 20 ns o
SURX-S) TxD/CLK external low ! LL
. RXD/DATA input hold after 0.25¢ +20 ns E
h(RX-S) TxD/CLK external low t -£3telC) w
Tinternal clock (&)
*External clock z
SERIAL PORT-CODEC MODE TIMING <
switching characteristics over recommended operating conditions S
PARAMETER TEST CONDITIONS MIN MAX UNIT <
td(TXD-C) TXD output valid before CLKX low RL = 8250, 0.5t¢(C) - 20 ns
Cp = 100 pF,
th(TXD-C) TXD output hold after CLKX low See Figure 1. twlL +1.75t¢(c) — 20 ns
timing requirements over recommended operating conditions
TEST CONDITIONS MIN MAX UNIT
to(CLK-C) CLKR, CLKX cycle time 3te(c) 8 ns
tf(CLK-C) CLKR, CLKX fall time 208 ns
t(CLK-C) CLKR/CLKX rise time 208 ns
twL(CLK-C) CLKR, CLKX high time RL =825Q, 1.5tc(C)— 201 ns
twH(CLK-C) CLKR, CLKX low time CL = 100 pF, 1.5t¢(C)— 201 ns
tsu(FSX) FSX valid before CLKX low See Figure 1. 0.5tg(c) - 20 ns
tsu(FSR) FSR valid before CLKR low 0.5tg(c) - 20 ns
| tsu(RXD-C) RXD input setup time before CLKR low 0 ns
th(TXD-C) RXD input hold time after CLKR low te(C) +20 ns
5These values were derived from characterization data and not tested.
IThis cycle time is only possible when CLK(R) and CLK(X) are synchronized with CLKOUT.
i
TEXAS e A-19

INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS320C14/TMS320E14 _
DIGITAL SIGNAL PROCESSOR

timing diagrams

This section contains all the timing diagrams for the TMS320C14/E14 devices.

Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts,
unless otherwise noted.

clock timing

| & tymc) [} twiMCH)
t ¢—» tymcp)!
: r‘——— ciMC) —) | : : wi
1
1 |
! | le—ab twmcu
) M) ol e .
[e—————— twich) ———————H
le—r wamco)! | | :
l
cLKouT (
‘ ' 1'_
—J (- - ! I
c) %= tyc)
| le ol !
| e tw(CL) —5 |
e t(C) >

Ttd(MCC) and ty,(MCP) are referenced to an intermediate level of 1.5 volts on the CLKIN waveform.

memory read timing

CLKOUT

NOILVINHO4NI 3ONVAQY

A11-A0

— r X
D15-DO N INSTRUCTION INPUT VALID
% 7

A-20 Texas %2

INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

TBLR instruction timing

CLKOUT

|

2|
m|
2|

—o
;
|

S
B OEC i

k—!m—a'
A11-A0 5 6 W 7 W 8
[‘——-tmm
; “'su(;)‘q
LEGEND:
1. TBLR INSTRUCTION PREFETCH 7. ADDRESS BUS VALID
2. DUMMY PREFETCH 8. ADDRESS BUS VALID
3. DATA FETCH 9. INSTRUCTION INPUT VALID
4. NEXT INSTRUCTION PREFETCH 10. INSTRUCTION INPUT VALID
5. ADDRESS BUS VALID 11. DATA INPUT VALID
6. ADDRESS BUS VALID 12. INSTRUCTION INPUT VALID

TBLW instruction timing

wor __ /N M NS S

ADVANCE INFORMATION

/A

s
:

D15-DO 1 { 8 >
—/ N~/

LEGEND:
1. TBLW INSTRUCTION PREFETCH 7. ADDRESS BUS VALID
2. DUMMY PREFETCH 8. INSTRUCTION INPUT VALID
3. NEXT INSTRUCTION PREFETCH 9. INSTRUCTION INPUT VALID
4. ADDRESS BUS VALID 10. DATA OUTPUT VALID
5. ADDRESS BUS VALID 11. INSTRUCTION INPUT VALID
6. ADDRESS BUS VALID

XAS {? A-21

E
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

IN instruction timing

| —""-':MAREN) |
tsu(D)
‘dd—J tdﬁ—il

|

l I

REN / \ ’ / \ 2 | ﬁ \ / \
| = jewo

LEGEND:

I> ! ININSTRUCTION PREFETCH - 5. ADDRESS BUS VALID

2. NEXT INSTRUCTION PREFETCH 6. INSTRUCTION INPUT VALID
O 5 Appress sus vALID 7. DATA INPUT VALID
& 4. PERIPHERAL ADDRESS VALID 8. INSTRUCTION INPUT VALID
% OUT instruction timing
m
s~/ N/ N/ /"
o | |
n = / \ 1 1/ | \ 2 / \
> | '
.—I A11-A0
o)
2 .

D15-DO

LEGEND:

1. OUT INSTRUCTION PREFETCH 5. ADDRESS BUS VALID

2. NEXT INSTRUCTION PREFETCH 6. INSTRUCTION INPUT VALID

3. ADDRESS BUS VALID 7. DATA OUTPUT VALID

4. PERIPHERAL ADDRESS VALID 8. INSTRUCTION INPUT VALID

A-22 TeExASs 'b
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 770C1

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

reset timing

|

[
—ey re-tey(R) —-: e tsy(R)

s\ 4

1 L4

Pty (R) = |

|
|
REN SEE (W4l ;
WE NOTE 10 | H
11—l e |
N DATA SHOWN
= - Uis(R) Re) ATIVE TO WE !
DATA N » ! /DATA IN FROM DATA IN FROM
D15-DO ouT » T _PC ADDR 0 PC ADDR PC + 1
!
—ay ba-tgig(a) re——-tgn(a)

ADDRESS X a8 - pc Iy & AB = PC = 0 Xp?:a s
AB - ADDRESS BUS

NOTES: 6. RS forces REN and WE high and places data bus DO-D15 and address bus AO-A11 in a high-impedance state. AB outputs
(and program counter) are synchronously cleared to zero after the next complete CLK cycle from RS1.

. RS must be maintained for a minimum of five clock cycles.

. Resumption of normal program will commence after one complete CLK cycle from RSt.

. Due to the synchronizing action on RS, time to execute the function can vary dependent upon when RSt or RS! occur in
the CLK cycle.

10. Diagram shown is for definition purpose only. WE and REN are mutually exclusive.

©0 o~

microcomputer/microprocessor mode timing diagram

CLKOUT__\,_/—__/__/—_/—
RS\ /|
|

re——T,(MC/MP) ——as

—

ADVANCE INFORMATION

2|
=
=
F4
Q
j
*

i
Texas {’ A-23
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

NOILVINHO4NI IONVAQY

A-24

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

interrupt timing

CLKOUT —/_—\L___/_——____/—

]
P t5u(INT)

NMi or INT \ /

[[
tf —e f— |

| |
e tyw (INT) ———{

bit I/0 timing

wor /N /NS

]
i‘—’:— th(l0P)

10P15-10P0 d
(OUTPUT)
T !
|~ ke trfO(IOP)
— !4— tsu(lOP)
|

10P15-10PO
(INPUT)

twi(lOp) ——
a—trfI(1OP)

bl

general purpose timers

TCLK1, TCLK2 M
|

U fethrrivm | i
; fa—tHTIM)—e

11
Y(TIM) —o t— 11
thL(TIM)—e= fa—

{ip
Texas
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

watchdog timer

1
— i‘— td(WDT)

g
-

tw(WDT) j/—
|

I
—o wa— t{WDT)

event manager

ra——-t5y(CAP)

CAP3-CAPO | K

|
bett—————— tw(CAP) —————i

CMP5-CMPO 11

11
—sl pa—t(CMP)/tr(CMP)

serial port - synchronous mode timing

i | |

| [} 1

i
. [[}<_—-.- twH(CLK-S)
WL(CKK-§) —a————1 :

—e| h— X
t{CLK-S)—o= ja— t(CLK-S)

If'_.: th(RX-S)
td(TX-S)—=f by

RXD/DATA l:x | | x |

1 i

o= tourx-S)

ADVANCE INFORMATION

{i’
EXAS
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

A-25

TMS320C14/TMS320E14
DIGITAL SIGNAL PROCESSOR

serial port - codec mode timing

cLRx/ r X
CLKR ¥ e—twhiciccr

t(CLK-C)—o4 rt— | ha—twi(CLK-C)—
--! r— tf(CLK-C)
tsu(FSX) —fat—om

CMPS/CAP3/
FSX

N

'au(TXD-C)-—-.: ot —

.3

t5u(FSR) —tat———tmt th(THD-C)—t-‘-——.;

TXD/DATA

> CMP4/CAFPSZI4 ’ \i
2 ‘su(RXD-C)-: f—
; RXD/DATA < x
% .

2

-

(@]

o s

S

>

=

(®)

2

A-26 Texas {"

INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON, TEXAS 77001

TMS320E14
DIGITAL SIGNAL PROCESSOR

EPROM programming

The TMS320E14 includes a 4K x 16-bit industry-standard EPROM cell for prototyping and low-volume
production. The TMS320C 14 with a 4K-word masked ROM then provides a migration path for cost-effective
production. An EPROM adapter socket (part #TMDX32701 10), shownin Figure 2, is available to provide 68-pin
to 28-pin conversion for programming the TMS320E14.

Key features of the EPROM cellinclude the normal programming operation as well as verification. The EPROM
cell also includes a code protection feature that allows code to be protected against copyright violations.

The TMS320E14 EPROM cell is programmed using the same family and device codes as the TMS27C64 8K

x 8-bit EPROM. The TMS27C64 EPROM series are ultraviolet-light erasable, electrically programmable, read-
only memories, fabricated using HVCMOS technology. They are pin-compatible with existing 28-pin ROMs
and EPROMs. These EPROMs operate from a single 5-V supply in the read mode; however, a 12.5-V supply
is needed for programming. All programming signals are TTL level. For programming outside the system, existing
EPROM programmers can be used. Locations may be programmed singly, in blocks, or at random.

=
Q
-
<
=
o
o
LL
=
Ll
o
=
<
>
(a]
<
FIGURE 2. EPROM ADAPTER SOCKET
i
XAS b A-27

E
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON, TEXAS 77001

TMS320E14
DIGITAL SIGNAL PROCESSOR

NOILVINHO4NI 3ONVAQY

The TMS320E 14 uses 12 address lines plus WE to address the 4K-word memory in byte format (8K-byte
memory). In word format, the most-significant byte of each word is assigned an even address and the least-
significant byte an odd address in the byte format. Programming information should be downloaded to EPROM
programmer memory in a high-byte to low-byte order for proper programming of the devices (see Figure 3.)

TMS320C14 On-Chip TMS320E14 On-Chip EPROM

Program Memory . Program Memory Programmer
{Word Format) (Byte Format) Memory
’ Byte Format with

Adapter Socket

0(0000h) 1234h 0(0000h) 34h 0(0000h) 12h

1(0001h) 5678h 1(0001h) 12h 1(0001h) 34h

2(0002h) 9ABCh 2(0002h) 78h 2(0002h) 56h

3(0003h) DEFOh 3(0003h) 56h 3(0003h) 78h

4(0004h) BCh 4(0004h) 9Ah

5(0005h) 9Ah 5(0005h) BCh

. . 6(0006h) FOh 6(0006h) DEh

4095(0FFh) 7(0