{f TeExASs

% INSTRUMENTS

Digital Signal Processing
Applications with the TMS320 Family

Theory, Algorithms,
and Implementations

Volume 2

>
K=}
©
-
(2]
D
=
©
S

Buissasoid jeubig |e)161q

Ajnweyg 0ZeSWL 243 Yyim suonedijddy

1990 1990 Digital Signal Processor Products

Digital Signal Processing
Applications with the TMS320 Family

Volume 2

Edited by
Panos Papamichalis, Ph.D.
Digital Signal Processing
Semiconductor Group
Texas Instruments

.
TExas
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without notice.
Tl advises its customers to obtain the latest version of the relevant information
to verify, before placing orders, that the information being relied upon is current.

Ti warrants performance of its semiconductor products to current specifications
in accordance with Tl's standard warranty. Testing and other quality control tech-
niques are utilized to the extent TI deems necessary to support this warranty. Un-
less mandated by government requirements, specific testing of all parameters of
each device is not necessarily performed.

Tl assumes no liability for Tl applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does Tl warrant or represent thatlicense, either express orimplied, is granted
under any patent right, copyright, mask work right, or other intellectual property
right of Tl covering or relating to any combination, machine, or process in which
such semiconductor products or services might be or are used.

TRADEMARKS

ADI and AutoCAD are trademarks of Autodesk, Inc.

Apollo and Domain are trademarks of Apollo Computer, Inc.

ATVista is a trademark of Truevision, Inc.

CodeView, MS-Windows, MS, and MS-DOS are trademarks of Microsoft Corp.
DEC, Digital DX, VAX, VMS, and Ultrix are trademarks of Digital Equipment Corp.
DGIS is a trademark of Graphic Software Systems, Inc.

EPIC, XDS, TIGA, and TIGA-340 are trademarks of Texas Instruments, Inc.
GEM is a trademark of Digital Research, Inc.

GSS*CGl is a trademark of Graphic Software Systems, Inc.

HPGL is a registered trademark of Hewlett-Packard Co.

Macintosh and MPW are trademarks of Apple Computer Corp.

NEC is a trademark of NEC Corp.

PC-DOS, PGA, and Micro Channel are trademarks of IBM Corp.

PEPPER is a registered trademark of Number Nine Computer Corp.

PM is a trademark of Microsoft Corp.

PostScript is a trademark of Adobe Systems, Inc.

RTF is a trademark of Microsoft Corp.

Sony is a trademark of Sony Corp.

Sun 3, Sun Workstation, SunView, SunWindows, and SPARC are trademarks of
Sun Microsystems, Inc. ,

UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © 1990, Texas Instruments Incorporated

CONTENTS

FOREWORD v
PREFACE it it e e e e vii
PART I. INTRODUCTION
1. The TMS320 Family and Book OVerviewoiiiiiiiiiiiiiiiiii i 3

2. The TMS320 Family of Digital Signal Processors
(Kun-Shan Lin, Gene A. Frantz, and Ray Simar, Jr., reprinted from PROCEEDINGS OF THE IEEE,
Vol. 75, No. 9, September 1987) ittt s 11

3. The Texas Instruments TMS320C25 Digital Signal Microcomputer
(Gene A. Frantz, Kun-Shan Lin, Jay B. Reimer, and Jon Bradley, reprinted from IEEE Micro Magazine,
Vol. 6, No. 6, December 1086)ttt ittt it ettt ittt et aanns 29

PART II. DIGITAL SIGNAL PROCESSING INTERFACE TECHNIQUES

4. Hardware Interfacing to the TMS320C2x
(George Troullinos and Jon Bradley) i e 53

5. Interfacing the TMS320 Family to the TLC32040 Family
(Linear Products — Texas INStruments)ttt ettt tie e 107

6. Icc Requirements of a TMS320C25
(Dave Zalac)ccovvevnnnnnn.. PP ... 153

7. An Implementation of a Software UART Using the TMS320C25
(DAVe ZalAC) . . . o e ettt ettt e e e e e e e e 167

8. TMS320C17 and TMS370C010 Serial Interface
(Peter RODINSON)t e e e e 189

PART III. DATA COMMUNICATIONS

9. Theory and Implementation of a Splitband Modem Using the TMS32010
(George Troullinos, Peter Ehlig, Raj Chirayil, Jon Bradley, and Domingo Garcia) 221

10. Implementation of an FSK Modem Using the TMS320C17
(Phil Evans and Al Lovrich) oo et 331

11. An All-Digital Automatic Gain Control
(Al Lovrich and Raj Chirayil) i 389

PART IV. TELECOMMUNICATIONS

12. General-Purpose Tone Decoding and DTMF Detection :
(Craig Marven) et e e 423

PART V. CONTROL

13. Implementation of PID and Deadbeat Controllers with the TMS320 Family
(rfan Ahmed) e e ... 529

iii

PART VI. TOOLS

14. TMS320 Algorithm Debugging Techniques

(Peter RODINSON)o oottt iiiieeeeaaan e e e 585
TMS320 BIBLIOGRAPHY ORI 597
IN D E X . ottt et e e e 615

iv

Foreword

Much has happened in the TMS320 Family since Volume 1 of Digital Signal Processing
Applications with the TMS320 Family was published, and Volumes 2 and 3 are a timely update to
the family history.

The DSP microcomputers keep changing the perspective of the systems designers by offer-
ing more computational power and better interfacing capabilities. The steps of change are coming
more quickly, and the potential impact is greater and greater. Because things change so rapidly in
this area, there is a pressing need for ways to quickly learn how to utilize the new technology. These
new volumes respond to that need.

As with Volume 1, the purpose of these books is to teach us about the issues and techniques
that are important in implementing digital signal processing systems using microprocessors in the
TMS320 Family. Volume 2 highlights the TMS320C25; and Volume 3, the TMS320C30 chip. A
large part of the books is devoted to such matters as characteristics of the TMS320C25 and
TMS320C30 chips, useful program code for implementing special DSP functions, and details on
interfacing the new chips to external devices. The remainder of the books illustrates how these
chips can be used in communications, control, and computer graphics applications.

What these two volumes make clear is how remarkably fast the field of DSP microcomputing
is evolving. IC technologists and designers are simply packing more and more of the right kind of
computing power into affordable microprocessor chips. The high-speed floating-point computing
power and huge address spaces of chips like the TMS320C30 open the door to a whole new class
of applications that were difficult or impractical with earlier generations of fixed-point DSP chips.
The signal processing theorists and system designers are clearly being challenged to match the cre-
ativity of the chip designers.

The present books differ from Volume 1 in the inclusion of a small section on tools. This is
a hopeful sign, because it is progress in this area that is likely to have the greatest impact on speeding
the widespread application of DSP microprocessors. While useful design tools are beginning to
emerge, much more can be done to help system designers manage the complexity of sophisticated
DSP systems, which often involve a unique combination of theory, numerical and symbolic pro-
cessing algorithms, real-time programming, and multiprocessing. No doubt future volumes of Dig-
ital Signal Processing Applications with the TMS320 Family will have more to say about this im-
- portant topic. Until then, Volumes 2 and 3 have much useful information to help system designers
keep up with the TMS320 Family.

Ronald W. Schafer
Atlanta, Georgia
November 14, 1989

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 v

vi

Digital Signal Processing Applications with the TMS320 Family, Vol. 2

Preface

With the advancement of DSP devices, the application of Digital Signal Processing has be-
come more widespread. Areas that were considered outside the domain of DSP devices because
of cost, processing power, or peripheral capabilities (such as graphics, control, and consumer prod-
ucts) have seen applications using digital signal processors. On the other hand, the diverse needs
of the designer have been addressed in the architectures and the performance of the newer devices.

Volume 2 of Digital Signal Processing Applications with the TMS320 Family contains appli-
cations on the first and second generations of the TMS320 Family (fixed-point devices). It is a con-
tinuation of Volume 1 in the sense that it addresses the same needs of the designer. The designer
still has the task of selecting the DSP device with the appropriate cost, performance, and support,
developing the DSP algorithm that will solve his problem, and implementing the algorithm on the
processor. This volume tries to help the designer by bringing him up to date in the applications of
newer processors or in different applications of earlier processors.

The objectives remain the same as in Volume 1. First, the application reports can be used as
examples of device use. They can also serve as tutorials in programming the devices. Of course,
the same purpose is served on a more elementary basis by the software and hardware applications
sections of the corresponding user’s guides. Second, since the source code of each application is
provided with the report, the designer can take it intact (or extract a portion of it) and place it in
his application.

Itis assumed that the reader has exposure to the TMS320 devices or, at least, has the necessary
manuals (such as the appropriate TMS320 user’s guides) that will help him understand the explana-
tions in the reports. The reports themselves include as references the necessary background materi-
al. Additionally, the Introduction gives a brief overview of the available devices at the time of the
writing, and points to sources of more information.

The reports are grouped by application area. The term report is used here in a broad sense,
since some articles from technical publications are also included. The authors of the reports are ei-
ther the digital signal processing engineering staff of the Texas Instruments Semiconductor Group
(including both field and factory personnel, and summer students) or third parties.

The source code associated with the reports is also available in electronic form, and the reader
can download it from the TI DSP Electronic Bulletin Board (telephone (713) 274-2323). If more
information is needed, the DSP Hotline can be called at (713) 274-2320.

The editor wishes to thank all the authors and the reviewers for their contribution to this vol-
ume of application reports.

Panos E. Papamichalis, Ph.D.
Senior Member of Technical Staff

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 vii

viii

Digital Signal Processing Applications with the TMS320 Family, Vol. 2

Part I. Introduction
1. The TMS320 Family and Book Overview

2. The TMS320 Family of Digital Signal Processors
(Kun-Shan Lin, Gene A. Frantz, and Ray Simar, Jr., reprinted from
PROCEEDINGS OF THE IEEE, Vol. 75, No. 9, September 1987)

3. The Texas Instruments TMS320C25 Digital Signal Microcomputer
(Gene A. Frantz, Kun-Shan Lin, Jay B. Reimer, and Jon Bradley, reprinted
from IEEE Micro Magazine, Vol. 6, No. 6, December 1986)

TMS320 Family and Book Overview

Digital signal processors have found applications in areas where they were not even consid-
ered a few years earlier. The two major reasons for such proliferation are an increase in processor
performance and a reduction in cost. Volume 2 of Digital Signal Processing Applications with the
TMS320 Family presents a set of application reports on the first- and second-generation TMS320
devices.

Organization of the Book

The application reports in this book are grouped by subject area:
¢ Introduction

* DSP Interface Techniques

* Data Communications

* Telecommunications

¢ Control

* Tools

¢ Bibliography

The Introduction contains this overview and two review articles. The first article gives a
general description of the TMS320 family and is reprinted from a special issue of the IEEE Pro-
ceedings, while the second article discusses the TMS320C25 device and is reprinted from the JEEE
MicroMagazine. The overview points out how the TMS320 family has grown since the two articles
were published and also introduces newer devices.

The section on DSP Interface Techniques contains articles on interfacing first- and second-
generation devices with external hardware, such as memories, A/D and D/A converters, or micro-
controller devices like the TMS370 series. Other articles cover the implementation of a UART on
the TMS320C25 and the power dissipation of the TMS320C25.

The three articles in the Data Communications section deal with different aspects of modem
implementations. A V.22 design is presented in the first article, a 300-bps FSK modem in the sec-
ond, and an Automatic Gain Control (AGC) in the third. In all cases, first-generation devices are
considered.

The following three sections contain one article each. In the Telecommunications section,
a generalized tone decoding and DTMF detection method is presented. The Control section article
gives insight into the relatively new application of digital signal processors in digital control. In
the Tools section, the article describes ways to debug the algorithms with the aid of spreadsheets
and other packages.

The Bibliography section contains a list of articles mentioning DSP implementations using
TMS320 devices. The different titles are listed chronologically and are grouped by subject. The
list is not exhaustive, but it gives enough pointers for pursuing practical implementations in repre-
sentative application areas.

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 3

The TMS320 Family of Processors

The TMS320 Family of digital signal processors started with the TMS32010 in 1982, but it
has been expanded to encompass five generations (at the time of this writing) with devices in each
generation. Figure 1 shows this progression through the generations. The TMS320 devices can be
grouped in two broad categories: fixed-point and floating-point devices. As implied by Figure 1,
the first, second, and fifth generations are the fixed-point devices, while the third and the fourth
geﬁerations (the last one under development) support floating-point arithmetic.

Floating-point DSP
Fixed-point DSP
* 1990 NEW TMS320

Figure 1. TMS320 Family Roadmap

*TMS320C40
TMS320C30
*TMS320C30- 26

Pl m
e 1; *TMS320C31
r
fl o TMS320C2x
18 *TMS320C50
-
o P \mssﬂ_clf/ TMS32020 TMS320C51
M TMS320C25
TMS320E25
al m | T™S320C10, -14 TMS320C25-50
nl i TMS320C10-25 *TMS320C26
TMS320C15/E15
Cl P | tms320c15-25
€| S | TMS320C17/E17
TMS320C14/E14
S, —_— e -
Generation

Digital Signal Processing Applications with the TMS320 Family, Vol. 2

The following article, “The TMS320 Family of Digital Signal Processors,” by Lin, et. al.,
is reprinted from the proceedings of the IEEE and gives an overview of the TMS320 family. Since
additional devices have been developed from the time the article was written, this section highlights
these newerdevices. Table 1 shows a comprehensive list of the currently available TMS320 devices
and their salient characteristics.

Table 1. TMS320 Family Overview

Memory o
Data Cycle On- off- On-
.Gen Device T Time | RAM | Chip | EPROM Chi Parallel Serial DMA Chip Package
pe (ns) ROM P Timers

TMS320C10 9 Integer 200 144 1.5K 4K 8x16 DIP/PLCC
TMS320C10-25 Integer 160 144 1.5K 4K 8x16 DIP/PLCC.
TMS320C10-14 Integer 280 144 1.5K 4K 8x16 DIP/PLCC
TMS320E14 Integer 160 256 4K 4K x16 1 4 CERQUAD

Ist TMS320C15 1 Integer 200 . | 256 4K 4K 8x16 DIP/PLCC
TMS320C15-25 1 Integer 160 256 4K 4K 8x16 DIP/PLCC
TMS320E15 1 Integer 200 256 4K 4K 8x16 DIP/CERQUAD
TMS320E15-25 Integer 160 256 4K 4K 8x16 DIP/CERQUAD
TMS320C17 Integer 200 256 4K 4K 6x16 2 1 DIP/PLCC
TMS320E17 Integer 200 256 4K 4K 6x16 2 1 DIP/CERQUAD
TMS32020 1 Integer 200 544 128K 16x16 1 + 1 PGA
TMS320C25 Integer 100 544 4K 128K 16x16 1 t 1 PGA/PLCC

2nd TMS320C25-50 1 Integer 80 544 4K 128K 16x16 1 1 1 PGA/PLCC
TMS320E25 1 Integer 100 544 4K 128K 16x16 1 T 1 CERQUAD
TMS320C26 Integer 100 1LSK | 256 128K 1 t 1 PLCC

3rd TMS320C30 9 Float Pt 60 2K 4K 16M 16Mx32 2 } 2 PGA

Sth TMS320C50 1 Integer 50 8.5K 2K 128K 16x16 1 T 1 CLCC

t External DMA

i External/Internal DMA

9 For information on military versions of these devices, contact your local T1 sales office.

Digital Signal Processing Applications with the TMS320 Family, Vol. 2

6

The additions to the first generation are the TMS320C14 and the TMS320E14; the latter is
identical with the former, except that the latter’s on-chip program memory is EPROM. The
TMS320C14/E14 devices have features that make them suitable for control applications. Figure
2 shows the components of these devices. The memory and the CPU are identical to those of the
TMS320C15/E15, while the peripherals reflect the orientation of the devices toward control.

Figure 2. TMS320C14/E14 Key Features

DATA RAM
256x16 bits

PROGRAM ROM/EPROM
4KX 16 bits

16-bit
Barrel Shifter

16-bit T-Reg Timer/Counter 1

32-bit ALU 16x%16-bit

Timer/Counter 2

32-bit ACC

Multiply

Watchdog Timer

| 0,1,a-bitshitt | 32-bit P-Reg

16 bit I/O

2 Auxiliary Registers

SERIAL PORT

4 level H/W Stack

Event Manager

Status Register

Some of the key features of the TMS320C14/E14 are:

160-ns instruction cycle time
Object-code-compatible with the TMS320C15

Four 16-bit timers

— Two general-purpose timers
— One watchdog timer
— One baud-rate generator

16 individual bit-selectable 1/O pins

Serial port/USART with codec-compatible mode
Event manager with 6-channel PWM D/A
CMOS technology, 68-pin CERQUAD

The additions to the second generation are the TMS320E25, the TMS320C25-50, and the
TMS320C26. The TMS320E2S is identical to the TMS320C25, except that the 4K-word on-chip

Digital Signal Processing Applications with the TMS320 Family, Vol. 2

program memory is EPROM. Since increased speed is very important for the real-time implemen-
tation of certain applications, the TMS320C25-50 was designed as a faster version of the
TMS320C25 and has a clock frequency of 50 MHz instead of 40 MHz.

The TMS320C26 is a modification of the TMS320C25 in which the program ROM has been
exchanged for RAM. The memory space of the TMS320C26 has 1.5K words of on-chip RAM and
256 words of on-chip ROM, making it ideal for applications requiring larger RAM but minimal
external memory.

A new generation of higher-performance fixed-point processors has been introduced in the
TMS320Family: the TMS320C5X devices. This generation shares many features with the first and
the second generations, but it also encompasses significant new features. Figure 3 shows the basic
components of the first device in the fifth generation, the TMS320C50.

Figure 3. TMS320C50 Key Features

PROG/DATA RAM | DATA/PROG RAM BOOT ROM
8Kx16 bits 544x16 bits 2Kx16 bits

0-16B Preshift 16b T-Reg
32b Accumulator 16x16 bit
32b Acc Buffer Multiply Serial Port
32b ALU 32b P-Reg Timer
0-16b Rightshift 0,1,4, -6b shift S/W Waitsts
0-7b Postshift Paraliel 16x16
Logic Unit Inputs
12 Context : 16x16
Switch Regs Outputs

Memory Mapped

Some of the important features of the TMS320C50 are listed below:

* Source code is upward compatible with the TMS320C1x/C2x devices
® 50/35-ns instruction cycle time

® 8K words of on-chip program/data RAM

* 2K words boot ROM

® 544 words of data/program RAM

® 128K words addressable total memory

¢ Enhanced general-purpose and DSP-specific instructions

¢ Static CMOS, 84-pin CERQUAD

* JTAG serial scan path

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 7

The software and hardware development tools available for the TMS320 family make the
development of applications easy. Such tools include assemblers, linkers, simulators, and C com-
pilers for software and evaluation modules, software development boards, and extended develop-
ment systems for hardware. These tools are mentioned in the following paper by Lin, et. al. The
interested reader can find much more information in additional literature that is published by Texas
Instruments and mentioned in the nextsection. In particular, the TMS320 Family Development Sup-
port Reference Guide is an excellent source.

One important addition to the list of tools is the SPOX operating system, developed by Spec-
tron Microsystems. SPOX permits you to write an application in a high-level language (C) and run
it on actual DSP hardware. The operating-system of SPOX hides the details of the interface from
you and lets you concentrate on your algorithm while running it at supercomputer speeds on the
TMS320C30.

References

Texas Instruments publishes an extensive bibliography to help designers use the TMS320 de-
vices effectively. Besides user’s guides for corresponding generations, there are manuals for the
software and the hardware tools. The Development Support Reference Guide is particularly useful
because it provides information not only on development tools offered by TI, but also on those pro-
duced by third parties. Here is a partial list of the literature available (the literature number is in
parentheses):

® TMS320 Family Development Support Reference Guide (SPRU011A)

® TMS320CIx User’s Guide (SPRU013A)

* TMS320C2x User’s Guide (SPRU014)

® TMS320C3x User’s Guide (SPRU031)

® TMS320C1x/TMS320C2x Assembly Language Tools User’s Guide (SPRU018)

® TMS320C30 Assembly Language Tools User's Guide (SPRU03S5)

® TMS320C25 C Compiler Reference Guide (SPRU024)

® TMS320C30 C Compiler Reference Guide (SPRU(034)

* Digital Signal Processing Applications with the TMS320 Family, Volume 1 (SPRA012)

* Digital Signal Processing Applications with the TMS320 Family, Volume 3 (SPRA017)

You can request this literature by calling the Customer Response Center at 1-800-232-3200,
or the DSP Hotline at 1-713-274-2320.

Contents of Other Volumes of the Application Book
Volume 1
Part 1. Digital Signal Processing and the TMS320 Family

® Introduction
* The TMS320 Family

Part II. Fundamental Digital Signal Processing Operations
¢ Digital Signal Processing Routines ‘

8 Digital Signal Processing Applications with the TMS320 Family, Vol. 2

— Implementation of FIR/IIR Filters with the TMS32010/TMS32020

— Implementation of Fast Fourier Transform Algorithms with the TMS32020
— Companding Routines for the TMS32010/TMS32020

— Floating-Point Arithmetic with the TMS32010

— Floating-Point Arithmetic with the TMS32020

— Precision Digital Sine-Wave Generation with the TMS32010

— Matrix Multiplication with the TMS32010 and TMS32020

* DSP Interface Techniques
— Interfacing to Asynchronous Inputs with the TMS32010
— Interfacing External Memory to the TMS32010
— Hardware Interfacing to the TMS32020
— TMS32020 and MC68000 Interface

Part III. Digital Signal Processing Applications
* Telecommunications
— Telecommunications Interfacing to the TMS32010
Digital Voice Echo Canceller with a TMS32020
— Implementation of the Data Encryption Standard Using the TMS32010
32K-bit/s ADPCM with the TMS32010
A Real-Time Speech Subband Coder Using the TMS32010
Add DTMF Generation and Decoding to DSP-uP Designs
¢ Computers and Peripherals
* Speech Coding/Recognition
— Assingle-Processor LPC Vocoder
— The Design of an Adaptive Predictive Coder Using a Single-Chip
— Digital Signal Processor
— Firmware-Programmable C Aids Speech Recognition
* Image/Graphics
— A Graphics Implementation Using the TMS32020 and TMS34061
* Digital Control
— Control System Compensation and Implementation with the TMS32010

Volume 3

Part I. Introduction

®* Book Overview

* The TMS320 Family of DSP

* The TMS320C30 Floating-Point DSP

Part 1I. Digital Signal Processing Routines

* Implementation of FFT, DCT, and other Transforms on the TMS320C30
* Doublelength Floating-Point Arithmetic on the TMS320C30

* An 8 x 8 Discrete Cosine Transform Implementation on the TMS320C25 and the
TMS320C30

* Implementation of Adaptive Filters with the TMS320C25 and TMS320C30
* A Collection of Functions for the TMS320C30

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 9

10

Part I1I. DSP Interface Techniques
* Hardware Interfacing to the TMS320C30
¢ TMS320C30 - IEEE Floating-Point Format Converter

Part IV. Telecommunications
* Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX

Part V. Computers
¢ A Digital Signal Processor Based 3-D Graphics System

Part VI. Tools
* TMS320C30 Applications Board Functional Description

Digital Signal Processing Applications with the TMS320 Family, Vol. 2

The TMS320 Family
of
Digital Signal Processors

Kun-Shan Lin
Gene A. Frantz
Ray Simar, Jr.

Digital Signal Processor Products — Semiconductor Group
. Texas Instruments

Reprinted from
PROCEEDINGS OF THE IEEE
Vol. 75, No. 9, September 1987

11

12

Theé TMS320 Family of Digital Signal Processors

The TMS320 Family of Digital Signal

Processors

KUN-SHAN LIN, MEMBER, 1Eee, GENE A. FRANTZ, SENIOR MEMBER, IEEE,

AND RAY SIMAR, Jr.

This paper begins with a discussion of the characteristics of dig-
ital signal processing, which are the driving force behind the design
of digital signal processors. The remainder of the paper describes
the three generations of the TMS320 family of digital signal proces-
sors available from Texas Instruments. The evolution in architec-
tural design of these processors and key features of each genera-
tion of processors are discussed. More detailed information is
provided for the TMS320C25 and TMS320C30, the newest members
in the family. The benefits and cost-performance tradeoffs of these
processors become obvious when applied to digital signal pro-
cessing applications, such as telecommunications, data commu-
nications, graphics/image processing, etc.

DIGITAL SIGNAL PROCESSING CHARACTERISTICS

Digital signal processing (DSP) encompasses a broad
spectrum of applications. Some application examples
include digital filtering, speech vocoding, image process-
ing, fast Fourier transforms, and digital audio [1]-[10]. These
applications and those considered digital signal processing
have several characteristics in common:

* mathematically intensive algorithms,
+ real-time operation,

+ sampled data implementation,

+ system flexibility.

To illustrate these characteristics in this section, we will use
the digital filter as an example. Specifically, we will use the
Finite Impulse Response (FIR) filter which in the time
domain takes the general form of

N
yo) = 2 al) * x(n = i) 0]

where y(n) is the output sample at time n, a(i) is the ith coef-
ficient or weighting factor, and x(n — i) is the (n — i)th input
sample.

With this example in mind, we can discuss the various
characteristics of digital signal processing: mathematically
intensive algorithms, real-time processing, sampled data
implementation, and system flexibility. First, let us look at
the concept of mathematically intensive algorithms.

Manuscript received October 6, 1986; revised March 27, 1987.

The authors are with the Semiconductor Group, Texas Instru-
ments Inc., Houston, TX 77521-1445, USA.

IEEE Log Number 8716214,

Mathematically Intensive Algorithms

From (1), we can see that to generate every y(n), we have
to compute N multiplications and additions or sums of
products. This computation makes it mathematically inten-
sive, especially when N is large. .

At this point it is worthwhile to give the FIR filter some
physical significance. An FIR filter is a common technique
used to eliminate the erratic nature of stock market prices.
When the day-to-day closing prices are plotted, it is some-
times difficult to obtain the desired information, such as the
trend of the stock, because of the large variations. A simple
way of smoothing the data is to calculate the average clos-
ing values of the previous five days. For the new average
value each day, the oldest value is dropped and the newest
value added. Each daily average value (average (n)) would
be the sum of the weighted value of the latest five days,
where the weighting factors (a(i)’s) are 1/5. In equation form,
the average is determined by

1
average (n) = % xdn — 1) + 5t din =2

+%*d(n—3)+%*d(n—4)

+%*d(n - 5) 2)

where d(n — i) is the daily stock closing price for the (n —
i)th day. Equation (2) assumes the same form as (1). This is
also the general form of the convolution of two sequences
of numbers, a(i) and x(i) [5), [6]. Both FIR filtering and con-
volution are fundamental to digital signal processing.

Real-Time Processing

In addition to being mathematically intensive, DSP algo-
rithms must be performed in real time. Real time can be
defined as a process that is accomplished by the DSP with-
out creating a delay noticeable to the user. In the stock mar-
ket example, as long as the new average value can be com-
puted prior to the nextday whenitis needed, itis considered
to be completed in real time. In digital signal processing
applications, processes happen faster than on a daily basis.
In the FIR filter example in (1), the sum of products must

©1989-/IEEE. Reprinted, with permission, from PROCEEDINGS OF THE IEEE; Vol. 75, No. 9,

pp. 1143-1159; September 1989.

The TMS320 Family of Digital Signal Processors

13

be computed usually within hundreds of microseconds
before the next sample comes into the system. A second
example is in a speech recognition system where a notice-
able delay between a word being spoken and being rec-
ognized would be unacceptable and not considered real-
time. Another example is in image processing, where it is
considered real-time if the processor finishes the process-
ing within the frame update period. If the pixel information
cannot be updated within the frame update period, prob-
lems such as flicker, smearing, or missing information will
occur.

Sampled Data Implementation

The application must be capable of being handled as a
sampled data system in order to be processed by digital
processors, such as digital signal processors. The stock
market is an example of a sampled data system. That is, a
specific value (closing value) is assigned to each sample
period or day. Other periods may be chosen such as hourly
prices or weekly prices. In an FIR filter as shown in (1), the
output y(n) is calculated to be the weighted sum of the pre-
vious N inputs. In other words, the input signal is sampled
at periodic intervals (1 over the sample rate), multiplied by
weighting factor a(i), and then added together to give the
output resultof y(n). Examples of sample rates for some typ-
ical sampled data applications [2], [4] are shown in Table 1.

Table 1 Sample Rates versus Applications

Nominal
Application Sample Rate

Control 1 kHz
Telecommunications 8 kHz
Speech processing 8-10 kHz
Audio processing 40-48 kHz
Video frame rate 30 Hz
Video pixel rate 14 MHz

In a typical DSP application, the processor must be able
to effectively handle sampled datain large quantity and also
perform arithmetic computations in real time.

System Flexibility

The design of the digital signal processing system must
be flexible enough to allow improvements in the state of
the art. We may find out after several weeks of using the
average stock price as a means of measuring a particular
stock’s value that a different method of obtaining the daily
information is more suited to our needs, e.g., using dif-

“ferent daily weightings, a different number of periods over
which to average, or a different procedure for calculating
the result. Enough flexibility in the system must be available
to allow for these variations. In many of the DSP applica-
tions, techniques are still in the developmental phase, and
therefore the algorithms tend to change over time. As an
example, speech recognition is presently an inexact tech-
nique requiring continual algorithmic modification. From
this example we can see the need for system flexibility so
that the DSP algorithm can be updated. A programmable
DSP system can provide this flexibility to the user.

14

HisToricaL DSP SoLUTIONS

Over the past several decades, digital signal processing
machines have taken on several evolutions in order to
incorporate these characteristics. Large mainframe com-
puters were initially used to process signals in the digital
domain. Typically, because of state-of-the-art limitations,
this was done in nonreal time. As the state of the art
advanced, array processors were added to the processing
task. Because of their flexibility and speed, array processors
have become the accepted solution for the research lab-
oratory, and have been extended to end-applications in
many instances. However, integrated circuit technology has
matured, thus allowing for the design of faster micropro-
cessors and microcomputers. As a result, many digital sig-
nal processing applications have migrated from the array
processor to microprocessor subsystems (i.e., bit-slice
machines) to single-chip integrated circuit solutions. This
migration has brought the cost of the DSP solution down
to a point that allows pervasive use of the technology. The
increased performance of these highly integrated circuits
has also expanded DSP applications from traditional tele-
communications to graphics/image processing, then to
consumer audio processing.

A recent development in DSP technology is the single-
chip digital signal processor, such as the TMS320 family of
processors. These processors give the designer a DSP solu-
tion with its performance attainable only by the array pro-
cessors a few years ago. Fig. 1 shows the TMS320 family in
graphical form with the y-axis indicating the hypothetical
performance and the x-axis being the evolution of the semi-
conductor processing technology. The first member of the
family, the TMS$32010, was disclosed to the market in 1982
[11], [12]. It gave the system designer the first microcom-
puter capable of performing five million DSP operations
per second (5 MIPS), including the add and multiply func-
tions [13] required in (1). Today there are a dozen spinoffs
from the TMS32010 in the first generation of the TMS320
family. Some of these devices are the TMS320C10,
TMS320C15, and TMS320C17 [14]. The second generation
of devices include the TMS32020 [15] and TMS320C25 [16).
The TMS320C25 can perform 10 MIPS [16]. In addition,
expanded memory space, combined single-cycle multiply/
accumulate operation, multiprocessing capabilities, and
expanded /O functions have given the TMS320C25 a
2 to 4 times performance improvement over its predeces-
sors. The third generation of the TMS320 family of proces-
sors, the TMS320C30 [26], [27], has a computational rate of
33 million DSP floating-point operations per second (33
MFLOPS). Its performance (speed, throughput, and pre-
cision) has far exceeded the digital signal processors avail-
able today and has reached the level of a supercomputer.

It we look closely at the TMS320 family as shown in Fig.
1, we can see that devices in the same generation, such as
the TMS320C10, TMS320C15, and TMS320C17, are assembly
object-code compatible. Devices across generations, such
as the TMS$320C10 and TMS320C25, are assembly source-
code compatible. Software investment on DSP algorithms
therefore can be maintained during the system upgrade.
Another point is that since the introduction of the
TMS32010, semiconductor processing technology has
emerged from 3-um NMOS to 2-um CMOS to 1-um CMOS.

The TMS320 Family of Digital Signal Processors

PROCESEG TECANBLoaY

po—————— 2.4um NMOS ———=fpo—————— 2.0um CMOS ———————afee—

Fig. 1. The TMS320 family of digital signal processors.

The TMS320 generations of processors have also taken the
same evolution in processing technology. Low power con-
sumption, high performance, and high-density circuit inte-
gration are some of the direct benefits of this semicon-
ductor processing evolution.

From Fig. 1, it can be observed that various DSP building
blocks, such as the CPU, RAM, ROM, I/O configurations,
and processor speeds, have been designed as individual
modules and can be rearranged or combined with other
standard cells to meet the needs of specific applications.
Each of the three generations (and future generations) will
evolve in the same manner. As applications become more
sophisticated, semicustom solutions based on the core CPU
will become the solution of choice. An example of this
approach is the TMS320C17/E17, which consists of the
TMS320C10 core CPU, expanded 4K-word program ROM
(TMS320C17) or EPROM (TMS320E17), enlarged data RAM
of 256 words, dual serial ports, companding hardware, and
a coprocessor interface. Furthermore, as integrated circuit
layout rules move into smaller geometry (now at 2 um, rap-
idly going to 1 xm), not only will the TMS320 devices become
smaller in size, but also multiple CPUs will be incorporated
on the same device along with application-specific 1/0 to
achieve low-cost integrated system solutions.

BAasic TMS320 ARCHITECTURE

As noted previously, the underlying assumption regard-
ing a digital signal processor is fast arithmetic operations
and high throughput to handle mathematically intensive
algorithms in real time. In the TMS320 family [11}-{17], [26],
[27], this is accomplished by using the following basic con-
cepts:

« Harvard architecture,

*+ extensive pipelining,

+ dedicated hardware multiplier,
special DSP instructions,

fast instruction cycle.

-

The TMS320 Family of Digital Signal Processors

14

1.0um

CMos

These concepts were designed into the TMS320 digital sig-
nal processors to handle the vast amount of data charac-
teristic of DSP operations, and to allow most DSP opera-
tions to be executed in a single-cycle instruction.
Furthermore, the TMS320 processors are programmable
devices, providing the flexibility and ease of use of general-
purpose microprocessors. The following paragraphs dis-
cuss how each of the above concepts is used in the TMS320
family of devices to make them useful in digital signal pro-
cessing applications.

Harvard Architecture

The TMS320 utilizes a modified Harvard architecture for
speed and flexibility. In a strict Harvard architecture [18],
[19], the program and data memories lie in two separate
spaces, permitting a full overlap of instruction fetch and
execution. The TMS320 family’s modification of the Har-
vard architecture further allows transfer between program
and data spaces, thereby increasing the flexibility of the
device. This architectural modification eliminates the need
for a separate coefficient ROM and also maximizes the pro-
cessing power by maintaining two separate bus structures
(program and data) for full-speed execution.

Extensive Pipelining

In conjunction with the Harvard architecture, pipelining
is used extensively to reduce the instruction cycle time to
its absolute minimum, and to increase the throughput of
the processor. The pipeline can be anywhere from two to
four levels deep, depending on which processor in the fam-
ily is used. The TMS320 family architecture uses a two-level
pipeline for its first generation, a three-level pipeline for its
second generation, and a four-level pipeline for its third
generation of processors. This means that the device is pro-
cessing from two to four instructions in parallel, and each
instruction isatadifferent stage in its execution. Fig. 2 shows
an example of a three-level pipeline operation.

15

worn | [L[LT L

prefetch N Net N+2
docode N-1 N Nel
execute N-2 N-1 N

Fig. 2. Three-level pipeline operation.

In pipeline operation, the prefetch, decode, and execute
operations can be handled independently, thus allowing
the execution of instructions to overlap. During any instruc-
tion cycle, three different instructions are active, each at a
different stage of completion. For example, as the Nth
instruction is being prefetched, the previous (N — 1)th
instruction is being decoded, and the previous (N — 2)th
instruction is being executed. In general, the pipeline is
transparent to the user.

Dedicated Hardware Multiplier

As we saw in the general form of an FIR filter, multipli-
cation is an important part of digital signal processing. For
each filter tap (denoted by i), a multiplication and an addi-
tion must take place. The faster a multiplication can be per-
formed, the higher the performance of the digital signal
processor. In general-purpose microprocessors, the mul-
tiplication instruction is constructed by a series of addi-
tions, therefore taking many instruction cycles. In com-
parison, the characteristic of every DSP device is a dedicated
multiplier. In the TMS320 family, multiplication is a single-
cycle instruction as a result of the dedicated hardware mul-
tiplier. If we look at the arithmetic for each tap of the FIR
filter to be performed by the TMS32010, we see that each
tap of the filter requires a multiplication (MPY) instruction.

LT ;LOAD MULTIPLICAND INTO T REGISTER
DMOV ;MOVE DATA IN MEMORY TO DO DELAY
MPY ;MULTIPLY

APAC ;ADD MULTIPLICATION RESULT TO ACC

The other three instructions are used to load the multiplier
circuit with the multiplicand (LT), move the data through
the filter tap (DMOV), and add the result of the muiltipli-
cation (stored in the product register) to the accumulator
(APAC). Specifically, the multiply instruction (MPY) loads
the multiplier into the dedicated multiplier and performs
the multiplication, placing the result in a product register.
Therefore, if a 256-tap FIR filter is used, these four instruc-
tions are repeated 256 times. At each sample period, 256
multiplications must be performed. In a typical general-
purpose microprocessor, this requires each tap to be 30 to
40 instruction cycles long, whereas in the TMS320C10, it is
only four instruction cycles. We will see in the next section
how special DSP instructions reduce the time required for
each FIR tap even further.

Special DSP Instructions

Another characteristic of DSP devices is the use of special
instructions. We were introduced to one of them in the pre-
vious example, the DMOV (data move) instruction. In dig-
ital signal processing, the delay operator (z ~") is very impor-
tant. Recalling the stock market example, during each new
sample period (i.e., each new day), the oldest piece of data

16

(the closing price five days ago) was dropped and a new one
(today’s closing price) was added. Or, each piece of the old
data is delayed or moved one sample period to make room
for the incoming most current sample. This delay is the
function of the DMOV instruction. Another special instruc-
tion in the TMS32010 is the LTD instruction. It executes the
LT, DMOV, and APAC instructionsin asingle cycle. The LTD
and MPY instruction then reduce the number of instruction
cycles per FIR filter tap from four to two. In the second-gen-
eration TMS320, such as the TMS320C25, two more special
instructions have been included (the RPT and MACD
instructions) to reduce the number of cycles per tap to one,
as shown in the following:

RPTK 255 ;REPEAT THE NEXT INSTRUCTION 256 TIMES
(N+1)

MACD ;LT, DMOV, MPY, AND APAC

Fast Instruction Cycle

The real-time processing capability is further enhanced
by the raw speed of the processor in executing instructions.
The characteristics which we have discussed, combined
with optimization of the integrated circuit design for speed,
give the DSP devices instruction cycle times less than 200
ns. The specific instruction cycle times for the TMS320 fam-
ily are given in Table 2. These fast cycle times have made

Table 2 TMS320 Cycle Times

Cycle Time
Device (ns)
TMS320C10* 160-200
TMS32020 160-200
TMS320C25 100-125
TMS320C30 60-75

*The same cycle time applies to all of the first-generation processors.

the TMS320 family of processors highly suited for many real-
time DSP applications. Table 1 showed the sample rates for
some typical DSP applications. This table can be combined
with the cycle times indicated in Table 2 to show how many
instruction cycles per sample can be achieved by the var-
ious generations of the TMS320 for real-time applications
(see Fig. 3).

As we can see from Fig. 3, many instruction cycles are
available to process the signal or to generate commands for
real-time control applications. Therefore, for simple con-
trol applications, the general-purpose microprocessors or
controllers would be adequate. However, for more math-
ematically intensive control applications, such as robotics
and adaptive control, digital signal processors are much
better suited [24]. The number of available instruction cycles
is reduced as we increase the sample rate from 8 kHz for
typical telecommunication applications to 40-48 kHz for
audio processing. Since most of these real-time applica-
tions require only a few hundreds of instructions per sam-
ple (such as ADPCM [4], and echo cancelation [4)), this is
within the reach of the TMS320. For higher sample rate
applications, such as video/image processing, digital signal
processors available today are not capable of handling the
processing of the real-time video data. Therefore, for these

The TMS320 Family of Digital Signal Processors

L Third-Generation TMS320
5000
Second-Generation TMS320
g First-Generation TMS320
@ c
§ oo]
k3 N
© T T
R E S
o L P v
L E E 1
g sof- cE)
ocC E
M H o
5 1 I 1 1)
o 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz
Sample Rate

Fig. 3. Number of instruction cycles/sample versus sample rate for the TMS320 family.

types of applications, multiple digital signal processors and
frame buffers are usually required. From Fig. 3, it can also
be seen that for slower speed applications, such as control,
the first-generation TMS320 provides better cost-perfor-
mance tradeoffs than the other processors. For high sample
rate applications, such as video/image processing, the sec-
ond and third generations of the TMS320 with their mul-
tiprocessing capabilities and high throughput are better
suited.

Now that we have discussed the basic characteristics of
digital signal processors, we can concentrate on specific
details of each of the three generations of the TMS320 fam-
ily devices.

THE FIRST GENERATION -OF THE TMS320 FAMILY

The first generation of the TMS320 family includes the
TMS32010 [13), and TMS32011 [17], which are processed in
2.4pm NMOS technology, and the TMS320C10 [13],
TMS320C15/E15 [14], and TMS320C17/E17 [14), processed in
1.8-um CMOS technology. Some of the key features of these
devices are [14] as follows:

* instruction cycle timing:
-160 ns
-200 ns
-280 ns.
* On-chip data RAM:
-144 words
-256 words (TMS320C15/E15, TMS320C17/E17).
* On-chip program ROM:
-1.5K words
-4K words (TMS320C15, TMS$320C17).
+ 4K words of on-chip program EPROM (TMS320E15,
TMS320E17).
« External memory expansion up to 4K words at full
speed.
* 16 X 16-bit parallel multiplier with 32-bit resuit.
« Barrel shifter for shifting data memory words into the
ALU.
Parallel shifter.
4 X 12-bit stack that allows context switching.
+ Two auxiliary registers for indirect addressing.

The TMS320 Family of Digital Signal Processors

« Dual-channel serial port (TMS32011, TMS320C17,
TMS320E17).
* On-chip companding
TMS320C17, TMS320E17).
 Coprocessor interface (TM$320C17, TMS320E17).
* Device packaging
-40-pin DIP
-44-pin PLCC.

hardware (TMS32011,

TMS320C10

The first generation of the TMS320 processors is based
on the architecture of the TM$32010 and its CMOS replica,
the TMS320C10. The TMS$32010 was introduced in 1982 and
was the first microcomputer capable of performing 5 MIPS,
Since the TMS32010 has been covered extensively in the
literature [4], [11]-[14], we will only provide a cursory review
here. A functional block diagram of the TMS320C10 is shown
in Fig. 4.

As shown in Fig. 4, the TMS320C10 utilizes the modified
Harvard architecture in which program memory and data
memory lie in two separate spaces. Program memory can
reside both on-chip (1.5K words) or off-chip (4K words). Data
memory is the 144 X 16-bit on-chip dataRAM. There are four
basic arithmetic elements: the ALU, the accumulator, the
multiplier, and the shifters. All arithmetic operations are
performed using two’s-complement arithmetic.

ALU: The ALU is a general-purpose arithmetic logic unit
that operates with a 32-bit data word. The unit can add, sub-
tract, and perform logical operations.

Accumulator: The accumulator stores the output from the
ALU and is also often an input to the ALU. it operates with
a32-bitword length. The accumulator is divided into a high-
order word (bits 31 through 16) and a low-order word (bits
15 through 0). Instructions are provided for storing the high-
and low-order accumulator words in data memory (SACH
for store accumulator high and SACL for store accumulator
low).

Multiplier: The 16 X 16-bit parallel multiplier consists of
three units: the T register, the P register, and the multipler
array. The T register is a 16-bit register that stores the mul-
tiplicand, while the P register is a 32-bit register that stores
the product. In order to use the multiplier, the multiplicand

17

X1

CLKOUT | X2/CLKIN
Z
Tw 12188
WE —a—{ L
DN —e— & '
MEN —e— 2 V12
510 —»- [pcoz] INSTRUCTION
MC/MP —p—]
NT —» 12
§ PROGRAM
RS § ROM
1536 x 161
I —l:ucx] g| nevexe
< 12
A11-A0/ X ax
PA2-PAO H 16
I 3 PROGRAM BUS D15.00
pan
(f‘ 16
L
16
T - ¥
T
ARO (16) L Ti16)
"> ' =
AR1(16) | SHIETER 16
L MULTIPUER | @]
Xs (0-16)
PI32)
32
ADDRESS
DATA RAM
(144 x 16)
LEGEND:
ACC= Accumulator DATA
ARP = Auxiliary register pointer
ARO = Auxiliary register O
AR1 = Auxiliary register 1
DP = Data page pointer
PC = Program counter
P = P register
T = T register
DATA BUS
L

Fig. 4. TMS320C10 functional block diagram.

must first be loaded into the T register from the data RAM
by using one of the following instructions: LT, LTA, or LTD.
Then the MPY (multiply) or the MPYK (multiply immediate)
instruction is executed. The multiply and accumulate oper-
ations can be accomplished in two instruction cycles with
the LTA/LTD and MPY/MPYK instructions.

" Shifters: Two shifters are available for manipulating data:
a barrel shifter and a parallel shifter. The barrel shifter per-
forms a left-shift of 0 to 16 bits on all data memory words
that are to be loaded into, subtracted from, or added to the
accumulator. The parallel shifter, activated by the SACH
instruction, can execute a shift of 0, 1, or 4 bits to take care
of the sign bits in two’s-complement arithmetic calcula-
tions.

Based on the architecture of the TMS32010/C10, several
spinoffs have been generated offering different processor
speeds, expanded memory, and various 1/O integration.
Currently, the newest members in this generation are the
TMS320C15/E15 and the TMS320C17/E17 [14].

18

TMS320C15/E15

The TMS320C15 and TMS320E15 are fully object-code and
pin-for-pin compatible with the TMS32010 and offer
expanded on-chip RAM of 256 words and on-chip program
ROM (TMS320C15) or EPROM (TMS320E15) of 4K words. The
TMS320C15 is available in either a 200-ns version or a 160-
ns version (TMS320C15-25).

TMS320C17/E17

The TMS320C17/E17 is a dedicated microcomputer with
4K words of on-chip program ROM (TMS320C17) or EPROM
(TMS320E17), a dual-channel serial port for full-duplex serial
communication, on-chip companding hardware (u-law/
A-law), a serial port timer for stand-alone serial commu-
nication, and a coprocessor interface for zero glue interface
between the processor and any 4/8/16-bit microprocessor.
The TMS320C17/E17 is also object-code compatible with the
TMS32010 and can use the same development tools. The

The TMS320 Family of Digital Signal Processors

Table 3 TMS320 First-Generation Processors

Instruction On-Chip On-Chip On-Chip Off-Chip

TMS320 Cycle Time Prog ROM Prog EPROM Data RAM Prog

Devices (ns) Process (words) (words) (words) (words) Ref
TMS32010 200 NMOS 1.5K 144 4K (13]
TMS32010-25 160 NMOS 1.5K 144 4K [13)
TMS32010-14 280 NMOS 1.5K 144 4K [13]
TMS32011 200 NMOS 1.5K 144 171
TMS320C10 200 CMOS 1.5K 144 4K [13)
TMS320C10-25 160 CMOS 1.5K 144 4K [13)
TMS320C15 200 CMOs 4.0K 256 4K [13]
TMS320C15-25 160 CMOS 4.0K 256 4K (14]
TMS320E15 200 CMOS 4.0K 256 4K 4]
TMS320C17 200 CMOS 4.0K 256 4
TMS320C17-25 160 CMOS 4.0K 256 [14]
TMS320E17 200 CMOS 4.0K 256 {14)

device is based on the TMS320C10 core CPU with added TMS320C25 Architecture

peripheral memory and I/O modules added on-chip. The
TMS320C17/E17 can be regarded as a semicustom DSP solu-
tion suited for high-volume telecommunication and con-
sumer applications.

Table 3 provides a feature comparison of all members of
the first-generation TMS320 processors. References to more
detailed information on these processors are also provided.

THE SECOND GENERATION OF THE TMS320 FamiLy

The second-generation TMS320 digital signal processors
includes two members, the TMS32020 [15] and the
TMS320C25[16]. The architecture of these devices has been
evolved from the TMS32010, the first member of the TMS320
family. Key features of the second-generation TMS320 are
as follows: '

* Instruction cycle timing:
-100 ns (TMS320C25)
-200 ns (TMS32020).

+ 4K words of on-chip masked ROM (TMS320C25).
« 544 words of on-chip data RAM.
+ 128K words of total program data memory space.
+ Eight auxiliary registers with a dedicated arithmetic

unit.
« Eight-level hardware stack.
* Fully static double-buffered serial port.
+ Wait states for communication to slower off-chip

memories.

+ Serial port for multiprocessing or interfacing to codecs.
+ Concurrent DMA using an extended hold operation

(TMS320C25).
- Bit-reversed addressing modes for fast Fourier trans-

forms (TMS320C25).

+ Extended-precision arithmetic and adaptive filtering
support (TMS$320C25).
Full-speed operation of MAC/MACD instructions from
external memory (TMS320C25).
Accumulator carry bit and related instructions
(TMS320C25).
1.8-um CMOS technology (TMS320C25):

-68-pin grid array (PGA) package.

-68-pin lead chip carrier (PLCC) package.
2.4-um NMOS technology (TM$32020):

-68-pin PGA package.

.

The TMS320 Family of Digital Signal Processors

The TMS320C25 is the latest member in the second gen-
eration of TMS$320 digital signal processors. It is a pin-com-
patible CMOS version of the TMS32020 microprocessor,
butwith an instruction cycle time twice as fast and the inclu-
sion of additional hardware and software features. The
instruction set is a superset of both the TM$32010 and
TMS32020, maintaining source-code compatibility. In addi-
tion, it is completely object-code compatible with the
TMS32020 so that TMS32020 programs run unmodified on
the TMS320C25.

The 100-ns instruction cycle time provides a significant
throughput advantage for many existing applications. Since
most instructions are capable of executing in a single cycle,
the processor is capable of executing ten million instruc-
tions per second (10 MIPS). Increased throughput on the
TMS320C25 for many DSP applications is attained by means
of single-cycle multiply/accumulate instructions with a data
move option (MAC/MACD), eight auxiliary registers with a
dedicated arithmetic unit, instruction set support for adap-
tive filtering and extended-precision arithmetic, bit-rever-
sal addressing, and faster 1/O necessary for data-intensive
signal processing.

Instructions are included to provide data transfers
between the two memory spaces. Externally, the program
and data memory spaces are multiplexed over the same bus
50 as to maximize the address range for both spaces while
minimizing the pin count of the device. Internally, the
TMS320C25 architecture maximizes processing power by
maintaining two separate bus structures, program and data,
for full-speed execution.

Program execution in the device takes the form of athree-
level instruction fetch-decode-execute pipeline (see Fig.
2). The pipeline is essentially invisible to the user, except
in some cases where it must be broken (such as for branch
instructions). In this case, the instruction timing takes into
account the fact that the pipeline must be emptied and
refilled. Two large on-chip data RAM blocks (a total of 544
words), one of which is configurable either as program or
datamemory, provide increased flexibility in system design.
An off-chip 64K-word directly addressable data memory
address space is included to facilitate implementations of
DSP algorithms. The large on-chip 4K-word masked ROM
can be used for cost-reduced systems, thus providing for
a true single-chip DSP solution. The remainder of the 64K-
word program memory space is located externally. Large

19

programs can execute at full speed from this memory space. features as well as many others such as a hardware timer,

Programs may also be downloaded from slow external serial port, and block data transfer capabilities.
memory to on-chip RAM for full-speed operation. The VLS| A functional block diagram of the TMS320C25, shown in
implementation of the TMS320C25 incorporates all of these Fig. 5, outlines the principal blocks and data paths within
z- o
Zctg
© 333
lf R i
®Brelk *x%33
FHi .
AW —a— PFC(16) QIR{16)
STRB ——71 1R(16)
READY « STO(16)
z: w ST1(16)
3
Fob—e— & RPTC(8)
HOLDA ——— 5 IFR(6)
wsc——o 8 oR
810 —— CLKR
RS ——1 16 FSR
6 [———0X
TATK ! CLKX
ADDRESS Fox
MP/MC 3 RSR(16)
NT(2:0) GRAM XSR(16) []
y Rom DRR(16)
1580 =S (T} 14096 ~ 16) oxRer
INSTRUCTION TIM16)
16 PRD(16)
i Py IMR(6)
16 H
16 x : GREG(8)
: D15-D0 g 16 16,
:PROGRAM BUS:

AROI16) [swrreriorer | TR(16)
AR1(16)
E@ 3 AR2(16) 71s8 MULTIPLIER

RS [Corer] |rromm
AR4(16) b PR(32)

3 AR5(16) 9
ARG(16)
AR7(16) 6

l ARAU(16) I

16

DATA/PROG
RAM (256 ~ 16)
BLOCK BO

BLOCK B2
{32 x 16)
DATA RAM
BLOCK B1
(256 x 16)

LEGEND:
ACCH = Accumulator high IFR - Interrupt flag register [Program counter
ACCL = Accumulator low IMR - Interrupt mask register PEC - Prefetch counter
ALU = Arithmetic logic unit IR - Instruction register RPTC - Repeat instruction counter
ARAU = Auxiliary register arithmetic unit MCS - Microcall stack GREG - Global memory allocation register
ARB = Auxiliary register pointer buffer QIR - Queue instruction register RSR - Serial port receive shift register
ARP = Auxiliary register pointer PR _ Product register XSR
OP - Data memory pointer PRD . Peri er for timer ARO-AR7 - Auxi
OAR = port data receive register TIM STO.ST1 Status registers

DXR = Seriol port data transmit register TR - Temporary register
Fig. 5. TMS320C25 functional block diagram.

20 The TMS320 Family of Digital Signal Processors

the processor. The diagram also shows all of the TMS320C25
interface pins.

In the following architectural discussions on the mem-
ory, central arithmetic logic unit, hardware multiplier, con-
trol operations, serial port, and /O interface, please refer
to the block diagram shown in Fig. 5.

Memory Allocation: The TMS320C25 provides a total of
4K 16-bit words of on-chip program ROM and 544 16-bit
words of on-chip data RAM. The RAM is divided into three
separate Blocks (B0, B1, and B2). Of the 544 words, 256 words
(block BO0) are configurable as either data or program mem-
ory by CNFD (configure data memory) or CNFP (configure
program memory) instructions provided for that purpose;
288 words (blocks B1 and B2) are always data memory. A
data memory size of 544 words allows the TMS320C25 to
handle a data array of 512 words while still leaving 32 loca-
tions for intermediate storage. The TMS320C25 provides
64K words of off-chip directly addressable data memory
space as well as a 64K-word off-chip program memory space.

A register file containing eight Auxiliary Registers (AR0O-
AR?), which are used for indirect addressing of data mem-
ory and for temporary storage, increase the flexibility and
efficiency of the device. These registers may be either
directly addressed by an instruction or indirectly addressed
by a 3-bit Auxiliary Register Pointer (ARP). The auxiliary reg-
isters and the ARP may be loaded from either data memory
or by animmediate operand defined in the instruction. The
contents of these registers may also be stored into data
memory. The auxiliary register file is connected to the Aux-
iliary Register Arithmetic Unit (ARAU). Using the ARAU
accessing tables of information does not require the CALU
for address manipulation, thus freeing it for other opera-
tions.

Central Arithmetic Logic Unit (CALU): The CALU contains
a 16-bit scaling shifter, a 16 x 16-bit parallel multiplier, a 32-
bit Arithmetic Logic Unit (ALU), and a 32-bit accumulator.
The scaling shifter has a 16-bit input connected to the data
bus and a 32-bit output connected to the ALU. This shifter
produces a left-shift of 0 to 16 bits on the input data, as pro-
grammed in the instruction. Additional shifters at the out-
puts of both the accumulator and the multiplier are suitable
for numerical scaling, bit extraction, extended-precision
arithmetic, and overflow prevention.

The following steps occur in the implementation of a typ-
ical ALU instruction:

1) Data are fetched from the RAM on the data bus.

2) Data are passed through the scaling shifter and the
ALU where the arithmetic is performed.

3) The result is moved into the accumulator.

The 32-bit accumulator is split into two 16-bit segments
for storage in data memory: ACCH (accumulator high) and
ACCL (accumulator low). The accumulator has a carry bit
to facilitate multiple-precision arithmetic for both addition
and subtract instructions.

Hardware Multiplier: The TMS320C25 utilizes a 16 X 16-
bit hardware multiplier, which is capable of computing a
32-bit product during every machine cycle. Two registers
are associated with the multiplier:

+ a16-bit Temporary Register (TR) that holds one of the
operands for the multiplier, and
« a 32-bit Product Register (PR) that holds the product.

The TMS320 Family of Digital Signal Processors

The output of the product register can be left-shifted 1 or
4 bits. This is useful for implementing fractional arithmetic
or justifying fractional products. The output of the PR can
also be right-shifted 6 bits to enable the execution of up to
128 consecutive multiple/accumulates without overflow.
An unsigned multiply (MPYU) instruction facilitates
extended-precision multiplication.

I/0 Interface: The TMS320C25 1/O space consists of 16
input and 16 output ports. These ports provide the full 16-
bit parallel I/O interface via the data bus on the device. A
single input (IN) or output (OUT) operation typically takes
two cycles; however, when used with the repeat counter,
the operation becomes single-cycle. 1/O devices are mapped
into the 1/O address space using the processor’s external
address and data buses in the same manner as memory-
mapped devices. Interfacing to memory and I/O devices of
varying speeds is accomplished by using the READY line.

A Direct Memory Access (DMA) to external program/data
memory is also supported. Another processor can take
complete control of the TMS320C25's external memory by
asserting HOLD low, causing the TMS320C25 to place its
address, data, and control lines in the high-impedance state.
Signaling between the external processor and the
TMS320C25 can be performed using interrupts. Two modes
of DMA are available on the device. In the first, execution
is suspended during assertion of HOLD. In the second
“concurrent DMA” mode, the TMS320C25 continues to
execute its program while operating from internal RAM or
ROM, thus greatly increasing throughput in data-intensive
applications.

TMS320C25 Software

The majority of the TMS320C25 instructions (97 out of 133)
are executed in a single instruction cycle. Of the 36 instruc-
tions that require additional cycles of execution, 21 involve
branches, calls, and returns that result in a reload of the
program counter and a break in the execution pipeline.
‘Another seven of the instructions are two-word, long-
immediate instructions. The remaining eight instructions
support 1/O, transfers of data between memory spaces, or
provide for additional parallel operation in the processor.
Furthermore, these eight instructions (IN, OUT, BLKD,
BLKP, TBLR, TBLW, MAC, and MACD) become single-cycle
when used in conjunction with the repeat counter. The
functional performance of the instructions exploits the par-
allelism of the processor, allowing complex and/or numer-
ically intensive computations to be implemented in rela-
tively few instructions.

Addressing Modes: Since most of the instructions are
coded in a single 16-bit word, most instructions can be exe-
cuted in a single cycle. Three memory addressing modes
are available with the instruction set: direct, indirect, and
immediate addressing. Both direct and indirect addressing
are used to access data memory. Inmediate addressing uses
the contents of the memory addressed by the program
counter.

When using direct addressing, 7 bits of the instruction
word are concatenated with the 9 bits of the data memory
page pointer (DP) to form the 16-bit data memory address.
With a 128-word page length, the DP register points to one
of 512 possible data memory pages to obtain a 64K total data
memory space. Indirect addressing is provided by the aux-

21

iliary registers (ARO-AR7). The seven types of indirect
addressing are shown in Table 4. Bit-reversed indexed
addressing modes allow efficient 1/O to be performed for
the resequencing of data points in a radix-2 FFT program.

Table 4 Addressing Modes of the TMS320C25

Addressing Mode

OP A

OP * (,NARP)
OP *+(,NARP)
OP *—(,NARP)
OP *0+(,NARP)
OP *0—(,NARP)

Operation

direct addressing

indirect; no change to AR.

indirect; current AR is incremented.

indirect; current AR is decremented.

indirect; ARO is added to current AR.

indirect; ARO is subtracted from
current AR.

indirect; ARO is added to current AR
(with reverse carry propagation).

indirect; ARO is subtracted from
current AR (with reverse carry
propagation).

OP *BR0O+(,NARP)

OP *BRO—(,NARP)

Note: The optional NARP field specifies a new value of the ARP.

TMS320C25 System Configurations

The flexibility of the TMS320C25 allows systems config-
urations to satisfy awide range of application requirements
[16]. The TMS320C25 can be used in the following config-
urations:

+ a stand-alone system (a single processor using 4K
words of on-chip ROM and 544 words of on-chip RAM),

« parallel multiprocessing systems with shared global
data memory, or

+ host/peripheral coprocessing using interface control
signals.

A minimal processing system is shown in Fig. 6 using
external data RAM and PROM/EPROM. Parallel multipro-
cessing and host/peripheral coprocessing systems can be
designed by taking advantage of the TMS320C25's direct
memory access and global memory configuration capabil-
ities.

In some digital processing tasks, the algorithm being
implemented can be divided into sections with a distinct
processor dedicated to each section. In this case, the first
and second processors may share global data memory, as
well as the second and third, the third and fourth, etc. Arbi-
tration logic may be required to determine which section
of the algorithm is executing and which processor has
accessto the global memory. With multiple processors ded-

SERIAL /
COMMUNICATION

-

icated to distinct sections of the algorithm, throughput can
be increased via pipelined execution. The TMS320C25 is
capable of allocating up to 32K words of data memory as
global memory for multiprocessing applications. '

THe THIRD GENERATION OF THE TMS320 Famiry

The TMS320C30 [26]-[27] is Texas Instruments third-gen-
eration member of the TMS320 family of compatible digital
signal processors. With acomputational rate of 33 MFLOPS
(million floating-point operations per second), the
TMS320C30 far exceeds the performance of any program-
mable DSP available today. Total system performance has
been maximized through internal parallelism, more than
twenty-four thousand bytes of on-chip memory, single-cycle
floating-point operations, and concurrent I/O. The total sys-
tem cost is minimized with on-chip memory and on-chip
peripherals such as timers and serial ports. Finally, the user’s
system design time is dramatically reduced with the avail-
ability of the floating-point operations, general-purpose
instructions and features, and quality development tools.

The TMS320C30 provides the user with a level of per-
formance that, at one time, was the exclusive domain of
supercomputers. The strong architectural emphasis of pro-
viding a low-cost system solution to demanding arithmetic
algorithms has resulted in the architecture shown in Fig. 7.

The key features of the TMS320C30 [26], [27] are as fol-
lows:

* 60-ns single-cycle execution time, 1-um CMOS.

* Two 1K X 32-bit single-cycle dual-access RAM blocks.

*+ One 4K x 32-bit single-cycle dual-access ROM block.

* 64 x 32-bit instruction cache.

« 32-bit instruction and data words, 24-bit addresses.

* 32/40-bit floating-point and integer multiplier.

*+ 32/40-bit floating-point, integer, and logical ALU.

+ 32-bit barrel shifter.

+ Eight extended-precision registers.

+ Two address-generators with eight auxiliary registers.

+ On-chip Direct Memory Access (DMA) controller for
concurrent 1/0 and CPU operation.

+ Peripheral bus and modules for easy customization.

+ High-level language support.

+ Interlocked instructions for multiprocessing support.

+ Zero overhead loops and single-cycle branches.

The architecture of the TMS320C30 is targeted at 60-ns
and faster cycle times. To achieve such high-performance

evovnn B S
E::gxl l [DATA RAM o
I oprioNaL! | Devices

(OPTIONAL}
4

Fig. 6. Minimal processing system with external data RAM and PROM/EPROM.

22

The TMS320 Family of Digital Signal Processors

PROGRAM RAM ROM
CACHE BLOCK O BLOCK 1 BLOCK O
(64 X 32) (1K X 32) 1K X 32) 14K X 32) TORBY
TOHOLD
ROV TOROLBA
HOLDA ™M 10R/W
TR "] 32-BIT DATA BUSES v 100(31-0)
AW x D 8 X 10A(12:0)
0(31-0)
A(23-0) le—-F5X0
cPu OMA
P |—e= DX0
SERIAL
RESEY — INTEGER/ INTEGER/ SOURCE AND DESTINATION :~ poRT | CLkxo
FLOATING-POINT | FLOATING-POINT ADDRESS GENERATORS 0 [<— FSRO
W¥3.0) g MULTIPLIER ALY ; le— RO
JACR=— . REGISTERS " CLKRO
XF(1-0) - 32.BIT BARREL SHIFTER
o7 € oo FSX1
Mo/ R EXTENDED-PRECISION R
- j—e DX1
1 -

X ° REGISTERS (RO-R7) A SERIAL ckx1
x2/CL L L PORT [
Vee!7-0)— : ADDRESS ADDRESS . . le— FSR1

vssio.0—e] & GENERATOR O | GENERATOR 1 s le—oR1
VB8P <—1 AUXILIARY REGISTERS s CLKR1
CONTROL REGISTERS (12)
LA

Fig. 7. TMS320C30 functional block diagram.

goals while still providing low-cost system solutions, the
TMS320C30 is designed using Texas Instruments state-of-
the-art 1-um CMOS process. The TMS320C30 ’s high system
performance is achieved through a high degree of paral-
lelism, the accuracy and precision of its floating-point units,
its on-chip DMA controller that supports concurrent 1/O,
and its general-purpose features. At the heart of the archi-
tecture is the Central Processing Unit (CPU).

The CPU

The CPU consists of the following elements: floating-
point/integer multiplier; ALU for performing floating-point,
integer, and logical operations; auxiliary register arithmetic
units; supporting register file, and associated buses. The
multiplier of the CPU performs floating-point and integer
multiplication. When performing floating-point multipli-
cation, the inputs are 32-bit floating-point numbers, and the
result is a 40-bit floating-point number. When performing
integer multiplication, the input data is 24 bits and yields
a 32-bit result. The ALU performs 32-bit integer, 32-bit log-
ical, and 40-bit floating-point operations. Results of the mul-
tiplier and the ALU are always maintained in 32-bit integer
or 40-bit floating-point formats. The TMS320C30 has the
ability to perform, in a single cycle, parallel multiplies and
adds (subtracts) on integer or floating-point data. It is this
ability to perform floating-point multiplies and adds (sub-
tracts) in a single cycle which give the TMS$320C30 its peak
computational rate of 33 MFLOPS.

Floating-point operations provide the user with a con-
venient and virtually trouble-free means of performing
computations while maintaining accuracy and precision.
The TMS320C30 implementation of floating-point arith-

The TMS320 Family of Digital Signal Processors

metic allows for floating-point operations at integer speeds.
The floating-point capability allows the user to ignore, to
alarge extent, problems with overflow, operand alignment,
and other burdensome tasks common to integer opera-
tions.

The register file contains 28 registers, which may be oper-
ated upon by the multiplier and ALU. The first eight of these
registers (RO-R7) are the extended-precision registers,
which support operations on 40-bit floating-point numbers
and 32-bit integers.

The next eight registers (AR0-AR?) are the auxiliary reg-
isters, whose primary function is related to the generation
of addresses. However, they also may be used as general-
purpose 32-bit registers. Two auxiliary register arithmetic
units (ARAUO and ARAU1) can generate two addresses in
a single cycle. The ARAUSs operate in parallel with the mul-
tiplier and ALU. They support addressing with displace-
ments, index registers (IR0 and IR1), and circular and bit-
reversed addressing.

The remaining registers support a variety of system func-
tions: addressing, stack management, processor status,
block repeat, and interrupts.

Data Organization

Two integer formats are supported on the TMS320C30:
a 16-bit format used for immediate integer operands and
a 32-bit single-precision integer format.

Two unsigned-integer formats are available: a 16-bit for-
mat for immediate unsigned-integer operands and a 32-bit
single-precision unsigned-integer format.

The three floating-point formats are assumed to be nor-
malized, thus providing an extra bit of precision. The first

23

is a 16-bit short floating-point format for immediate float-
ing-point operands, which consists of a 4-bit exponent, 1
sign bit, and an 11-bit fraction. The second is a single-pre-
cision format consisting of an 8-bit exponent, 1 sign bit, and
a23-bit fraction. The third is an extended-precision format
consisting of an 8-bit exponent, 1 sign bit, and a 31-bit frac-
tion.

The total memory space of the TMS320C30 is 16M (mil-
lion) x 32 bits. A machine word is 32 bits, and all addressing
is performed by word. Program, data, and 1/O space are con-
tained within the 16M-word address space.

RAM blocks 0 and 1are each 1K X 32 bits. The ROM block
is 4K x 32 bits. Each RAM block and ROM block is capable
of supporting two data accesses in a single cycle. For exam-
ple, the user may, in a single cycle, access a program word
and a data word from the ROM block.

The separate program data, and DMA buses allow for par-
allel program fetches, data reads and writes, and DMA oper-
ations. Management of memory resources and busing is
handled by the memory controller. For example, a typical
mode of operation could involve a program fetch from the
on-chip program cache, two data fetches from RAM block
0, and the DMA moving data from off-chip memory to RAM
block 1. All of this can be done in parallel with no impact
on the performance of the CPU.

A 64 x 32-bit instruction cache allows for maximum sys-
tem performance with minimal system cost. The instruction
cache stores often repeated sections of code. The code may
then be fetched from the cache, thus greatly reducing the
number of off-chip accesses necessary. This allows for code
to be stored off-chip in slower, lower cost memories. Also,
the external buses are freed, thus allowing for their use by
the DMA or other devices in the system.

DMA

The TMS320C30 processes an on-chip Direct Memory
Access (DMA) controller. The DMA controller is able to per-
form reads from and writes to any location in the memory
map without interfering with the operation of the CPU. As
a consequence, it is possible to interface the TMS320C30
to slow external memories and peripherals (A/Ds, serial
ports, etc.) without affecting the computational throughput

-of the CPU. The result isimproved system performance and
decreased system cost.

The DMA controller contains its own address generators,
source and destination registers, and transfer counter.

. Dedicated DMA address and data buses allow for operation
with no conflicts between the CPU and DMA controller.
The DMA controller responds to interrupts in a similar

way to the CPU. This ability allows the DMA to transfer data
based upon the interrupts received. Thus I/O transfers that
would normally be performed by the CPU may instead be
performed by the DMA. Again, the CPU may continue pro-
cessing data while the DMA receives or transmits data.

Peripherals

All peripheral modules are manipulated through mem-
ory-mapped registers located on adedicated peripheral bus.
This peripheral bus allows for the straightforward addition,
removal, and creation of peripheral modules. The initial
TMS320C30 peripheral library will include timers and serial
ports. The peripheral library concept allows Texas Instru-

ments to create new modules to serve a wide variety of
applications. For example, the configuration of the
TMS320C30in Fig. 7 includes two timers and two serial ports.

Timers: The two timer modules are general-purpose
timer/event counters, with two signaling modes and inter-
nal or external clocking.

Available to each timer is an I/O pin that can be used as
an input clock to the timer or as an output signal driven by
the timer. The pin may also be configured as a general-pur-
pose 1/O pin.

Serial Ports: The two serial ports are modular and totally
independent. Each serial port can be configured to transfer
8,16, 24, or 32 bits of data per frame. The clock for each serial
port can originate either internally or externally. An inter-
nally generated divide-down clock is provided. The pins of
the serial ports are configurable as general-purpose 1/0
pins. A special handshake mode allows TMS320C30s to
communicate over their serial ports with guaranteed syn-
chronization. The serial ports may also be configured to
operate as timers.

External Interfaces

The TMS320C30 provides two external interfaces: the par-
allel interface and the 1/O interface. The parallel interface
consists of a 32-bit data bus, a 24-bit address bus, and a set
of control signals. The I/O interface consists of a 32-bit data
bus, a 13-bit address bus, and a set of control signals. Both
ports support an external ready signal for wait-state gen-
eration and the use of software-controlled wait states.

The TMS320C30 supports four external interrupts, anum-
ber of internal interrupts, and a nonmaskable external reset
signal. Two dedicated, general-purpose, external I/O flags,
XF0 and XF1, may be configured as input or output pins
under software control. These pins are also used by the
interlocked instructions to support multiprocessor com-
munication.

Pipelining In the TMS320C30

The operation of the TMS320C30 is controlled by five
major functional units. The five major units and their func-
tion are as follows:

« Fetch Unit (F) which controls the program counter
updates and fetches of the instruction words from
memory.

+ Decode Unit (D) which decodes the instruction word
and controls address generation.

* Read Unit (R) which controls the operand reads from
memory.

* Execute Unit (E) which reads operands from the reg-
ister file, performs the necessary operation, and writes
results back to the register file and memory.

« DMA Channel (DMA) which reads and writes memory
concurrently with CPU operation.

Each instruction is operated upon by four of these stages;
namely, fetch, decode, read, and execute. To provide for
maximum processor throughput these units can perform
in parallel with each unit operating on a different instruc-
tion. The overlapping of the fetch, decode, read, and exe-
cute operations of different instructions is called pipelin-
ing. The DMA controller runs concurrently with these units.
The pipelining of these operations is key to the high per-

The TMS320 Family of Digital Signal Processors v

formance of the TMS320C30. The ability of the DMA to move
datawithin the processor’s memory space results inan even
greater utilization of the CPU with fewer interruptions of
the pipeline which inevitably yields greater performance.

The pipeline control of the TMS320C30 allows for
extremely high-speed execution rate by allowing an effec-
tive rate of one execution per cycle. It also manages pipe-
line conflicts in a way that makes them transparent to the
user.

While the pipelining of the different phases of an instruc-
tion is key to the performance of the TMS320C30, the
designers felt it essential to avoid pipelining the operation
of the multiplier or ALU. By ruling out this additional level
of pipelining it was possible to greatly improve the pro-
cessor’s useability.

Instructions

The TMS320C30 instruction set is exceptionally well
suited to digital signal processing and other numerically
intensive applications. The TMS320C30 also possesses a full
complement of general-purpose instructions. The instruc-
tion set is organized into the following groups:

* load and store instructions;

+ two-operand arithmetic instructions;

* two-operand logical instructions;

+ three-operand arithmetic instructions;

+ three-operand logic instructions; -

parallel operation instructions;

arithmetic/logical instruction with store instructions;
program control instructions;

interlocked operations instructions.

.

The load and store instructions perform the movement
of a single word to and from the registers and memory.
Included is the ability to load a register conditionally. This
operation is particularly useful for locating the maximum
and minimum of a set of data.

The two-operand arithmetic and logical instructions con-
sist of a complete set of arithmetic instructions. They have
two operands; src and dst for source and destination,
respectively. The src operand may come from memory, a
register, or be part of the instruction word. The dst operand
is always a register. This portion of the instruction set
includes floating-point integer and logical operations, sup-
port of multiprecision arithmetic, and 32-bit arithmetic and
logical shifts.

The three-operand arithmetic and logical instructions are
a subset of the two-operand arithmetic and logical instruc-
tions. They have three operands: two src operands and a
dst operand. The src operands may come from memory or
a register. The dst operand is always a register. These
instructions allow for the reading of two operands from
memory and/or the CPU register file in a single cycle.

The parallel operation instructions allow for a high degree
of parallelism. They support very flexible, parallel floating-
pointand integer multiplies and adds. They also include the
ability to load two registers in parallel.

The arithmetic/logical and store instructions support a
high degree of parallelism, thus complementing the par-
allel operation instructions. They allow for the performance
of an arithmetic or logical instruction between a register
and an operand read from memory, in parallel with the stor-

The TMS320 Family of Digital Signal Processors

ing of a register to memory. They also provide for extremely
rapid operations on blocks of memory.

The program control instructions consist of all those
operations that affect the program flow. This section of the
instruction set includes a set of flexible and powerful con-
structs that allow for software control of the program flow.
These fall into two main types: repeat modes and branch-
ing.

For many algorithms, there is an inner kernel of code
where most of the execution time is spent. The repeat modes
of the TMS320C30 allow for the implementation of zero
overhead looping. Using the repeat modes allows these
time-critical sections of code to be executed in the shortest
possible time. The instructions supporting the repeat
modes are RPTB (repeat a block of code) and RPTS (repeat
asingle instruction). Through the use of the dedicated stack-
pointer, block repeats (RPTBs) may be nested.

Thebranching capabilities of the TMS320C30include two
main subsets: standard and delayed branches. Standard
branches, as in any pipelined machine that comprehends
them, empty the pipeline to guarantee correct manage-
ment of the program counter. This results in a branch
requiring, in the case of the TMS$320C30, four cycles to exe-
cute. Included in this subset are calls and returns. A stan-
dard branch (BR) is illustrated below.

BR THREE ; standard branch.

MPYF ; not executed.
ADDF ; not executed.
SUBF ; not executed.
AND ; not executed.
THREE MPYF ; fetched 3 cycles after BR

is fetched.

Delayed branches do not empty the pipe, but rather,
guarantee that the next three instructions will be fetched
before the program counter is modified by the branch. The
result is a branch that only requires a single cycle. Every
delayed branch has a standard branch counterpart. A
delayed branch (BRD) is illustrated below.

BRD THREE ; delayed branch.

MPYF ; executed.
ADDF ; executed.
SUBF ; executed.
AND ; not executed.
THREE MPYF ; fetched after SUBF fetched.

The combination of the repeat modes, standard branches,
and delayed branches provides the user with a set of pro-
gramming constructs which are well suited to awide range
of performance requirements.

The program control instructions also include condi-
tional calls and returns. The decrement and branch con-
ditionally instruction allows for efficient loop control by
combining the comparison of a loop counter to zero with

25

the check of condition flags, i.e., floating-point overflow.

" Thecondition codes available include unsigned and signed
comparisons, comparisons to zero, and comparisons based
upon the status of individual condition flags. These con-
ditions may be used with any of the conditional instruc-
tions.

The interlocked operations instructions support multi-
processor communication. Through the use of external sig-
nals, these instructions allow for powerful synchronization
mechanisms, such as semaphores, to be implemented. The
interlocked operations use the two external flag pins, XFO
and XF1. XFO signals an interlocked-operation request and
XF1 acts as an acknowledge signal for the requested inter-
locked operation. The interlocked operations include inter-
locked loads and stores. When an interlocked operation is
performed the external request and acknowledge signals
can be used to arbitrate between multiple processors shar-
ing memory, semaphores, or counters.

DEVELOPMENT AND SUPPORT ToOLS

Digital signal processors are essentially application-spe-
cific microprocessors (or microcomputers). Like any other
microprocessor, no matter how impressive the perfor-
‘mance of the processor or the ease of interfacing, without
good development tools and technical support, it is very
difficult to design it into the system. In developing an appli-
cation, problems are encountered and questions are asked.
Oftentimes the tools and vendor support provided to the
designer are the difference between the success and failure
of the project.

The TMS320 family has awide range of development tools
available [25]. These tools range from very inexpensive eval-
uation modules for application evaluation and bench-
marking purposes, assembler/linkers, and software simu-
lators, to full-capability hardware emulators. A brief sum-
mary of these support tools is provided in the succeeding
subsections.

Software Tools

Assembler/linkers and software simulators are available
on PC and VAX for users to develop and debug TMS320 DSP
algorithms. Their features are described as follows:

Assembler/Linker: The Macro Assembler translates
assembly language source code into executable object
code. The Linker permits a program to be designed and
implemented in separate modules that will later be linked
together to form the complete program. .

Simulator: The Simulator simulates operations of the
device in software to allow program verification and debug.
The simulator uses the object code produced by the Macro
Assembler/Linker.

C Complier: The C Compiler is a full implementation of
the standard Kernighan and Ritchie C as defined in The C
Programming Language [28). The compiler supports the
insertion of assembly language code into the C source code.
The user may also write functions in assembly language,
and then call these functions from the C source. Similarly,
C functions may be called from assembly language.
Variables defined in the C source may be accessed in
assembly language modules and vice versa. The result is a
complier that allows the user to tailor the amount of high-
level programming versus the amount of assembly lan-

26

guage according to his application. The C compiler is sup-
ported on the TMS320C25 and the TMS320C30.

Hardware Tools

Evaluation modules and emulation tools are available for
in-circuit emulation and hardware program debugging for
developing and testing DSP algorithms in a real product
environment.

Evaluation Module (EVM): The EVM is a stand-alone sin-
gle-board module that contains all of the tools necessary
to evaluate the device as well as provide basic in-circuit
emulation. The EVM contains a debug monitor, editor,
assembler, reverse assembler, and software communica-
tions to a host computer or a line printer.

SoftWare Development System (SWDS): The SoftWare
Development System is a PC plug-in card with similar func-
tionality of the EVM.

Emulator (XDS): The eXtended Development System pro-
vides full-speed in-circuit emulation with real-time hard-
ware breakpoint/trace and program execution capability
from target memory. By setting breakpoints based on inter-
nal conditions or external events, execution of the program
can be suspended and the XDS placed into the debug mode.
In the debug mode, all registers and memory locations can
be inspected and modified. Full-trace capabilities at full
speed and areverse assembler that translates machine code
back into assembly instructions are included. The XDS sys-
tem is designed to interface with either a terminal or a host
computer. In addition to the above design tools, other
development support is available [25]:

APPLICATIONS

The TMS320 is designed for real-time DSP and other com-
putation-intensive applications [4]. In these applications,
the TMS320 provides an excellent means for executing sig-
nal processing algorithms such as fast Fourier transforms
(FFTs), digital filters, frequency synthesis, correlation, and
convolution. The TMS320 also provides for more general-
purpose functions via bit-manipulation instructions, block
data move capabilities, large program and data memory
address spaces, and flexible memory mapping.

Tointroduce applications performed by the TMS320, dig-
ital filters will be used as examples. The remaining portion
of this section will briefly cover applications, and conclude
by showing some benchmarks.

Digital Filtering

As discussed several times in this paper, the FIR filter is
simply the sum of products in a sampled data system. This
was shown in (1). A simple implementation of the FIR filter
uses the MACD instruction (multiply/accumulate and data
move) for each filter tap, with the RPT/RPTK instruction
repeating the MACD for each filter tap. As we saw earlier,
a 256-tap FIR filter can be implemented by using the fol-
lowing two instructions:

RPTK 255
MACD *-,COEFFP

In this example, the coefficients may be stored anywhere
in program memory (reconfigurable on-chip RAM, on-chip
ROM, or external memories). When the coefficients are

The TMS320 Family of Digital Signal Processors

For this application, a large on-chip RAM of 544 words and
on-chip ROM of 4K words on the TMS320C25 provides for
a256-tap adaptive filter (32-ms echo cancellation) to be exe-
cuted in a single chip without external data or program
memory.

High-Speed Modems: The TMS320 can perform numer-
ous functions such a modulation/demodulation, adaptive
equalization, and echo cancellation [21], [22]. For lower
speed modems, such as Bell 212A and V.22 bis modems, the
TMS320C17 provides the most cost-effective single-chip
solution to these applications. For higher speed modems,
such as the V.32, requiring more processing power and
multiprocessing capabilities, the TMS320C25 and TMS-
320C30 are the designer’s choice.

Voice Coding: Voice-coding techniques (3], [4], such
as full-duplex 32-kbit/'s ADPCM (CCITT G.721), CVSD,
16-kbit/s subband coders, and LPC, are frequently used in
voice transmission and storage. Arithmetic speed, nor-
malization, and the bit-manipulation capability of the
TMS320 provide for implementation of these functions,
usually in a single chip. For example, the TMS320C17 can
be used as a single-chip ADPCM [4], subband [4], or LPC [4]
coder. An application of voice coding is an ADPCM trans-
coder implemented in half-duplex on a single TMS320C17
or full-duplex on a TMS320C25 for telecommunication mul-
tiplexing applications. Another example is a secure-voice
communication system, requiring voice coding, as well as
data encryption and transmission over a public-switched
network via a modem; the TMS320C25 offers an ideal solu-
tion.

Graphics/Image Processing Applications

In graphics and image processing applications [4], the
ability to interface with a host processor is important. Both
the TMS320C30 and the TMS320C25 multiprocessor inter-
face enable them to be used in a variety of host/coprocessor
configurations [4]. Graphics and image processing appli-
cations can use the large directly addressable external data
space and global memory capability to allow graphical
images in memory to be shared with a host processor, thus
minimizing unnecessary data transfers. The indexed indi-
rect addressing modes allow matrices to be processed row-
by-row when performing matrix multiplication for three-
dimensional image rotations, translations, and scaling.

The TMS320C30 has a number of features that support
graphics and image processing extremely well. The float-
ing-point capabilities allow for extremely precise compu-
tation of perspective transformations. They also support
more sophisticated algorithms such as shading and hidden
line removal, operations which are computationally inten-
sive.

The large address space allows for straightforward
addressing of large images or displays. The flexible address-
ing registers, coupled with the integer multiply, support
powerful addressing of multiple-dimensional arrays. Vec-
tor-oriented instructions allow the user to efficiently
manipulate large blocks of memory. Finally, the on-chip
DMA controller allows the user to easily overlap the pro-
cessing of data with its I/O.

High-Speed Control

High-speed control applications [4], [24] use the
TMS320C17 and TMS320C25 general-purpose features for
bit-test and logical operations, timing synchronization, and

The TMS320 Family of Digital Signal Processors

high data-transfer rate (ten million 16-bit words per sec-
ond). Both devices can be used in closed-loop systems for
control signal conditioning, filtering, high-speed comput-
ing, and multichannel multiplexing capabilities. The fol-
lowing demonstrates two typical control applications:

Disk Control: Digital filtering in a closed-loop actuation
mechanism positions the read/write heads over the disk
surface. Supplemented with many general-purpose fea-
tures, the TMS320 can replace costly bit-slice/custom/ana-
log solutions to perform such tasks as compensation, fil-
tering, fine/coarse tuning, and other signal conditioning
algorithms.

Robotics: Digital signal processing and bit-manipulation
power, coupled with host interface, allow the TMS320C25
to be useful in robotics control [24]. The TMS320C25 can
replace both the digital controllers and analog signal pro-
cessing hardware for communication to a central host pro-
cessor and for the performance of numerically intensive
control functions.

Instrumentation

Instrumentation, such as spectrum analyzers and various
high-speed/high-precision instruments, often requires a
large data memory space and the high performance of a
digital signal processor. The TMS$320C25 and TMS$320C30
are capable of performing very long-length FFTs and gen-
erating precision functions with minimal external hard-
ware.

Numeric Processing

Numeric and array processing applications benefit from
TMS320 performance. High throughput resulting from fea-
tures, such as a fast cycle time and an on-chip hardware
multiplier, combined with multiprocessing capabilities and
data memory expansion, provide for a fow-cost, easy-to-use
replacement for a typical bit-slice solution. The TMS-
320C30’s floating-point precision, high throughput, and
interface flexibility are excellent for this application.

TMS320 Benchmarks

To complete the discussion on the applications that the
TMS320 can perform, we will provide some benchmarks.
The TMS320 has demonstrated impressive benchmarks in
performing some of the common DSP routines and system
applications. Table 5 shows typical TMS320 benchmarks [4].

Table 5 TMS320 Family Benchmarks

First Second Third
DSP Routines/Applications Generation Generation Generation
FIR filter tap 400 ns 100 ns 60 ns
256-tap FIR sample rate 9.25kHz 37 kHz >60 kHz
LMS adaptive FIR filter tap 700 ns 400 ns 180 ns
256-tap adaptive FIR filter 5.4 kHz 9.5 kHz >20 kHz
sample rate
Bi-quad filter element (five 2 us 1ps 360 ns
multiplies)
Echo canceler (single 8 ms 32 ms >64 ms
chip)
SUMMARY

This paper has discussed characteristics of digital signal
processing and how these characteristics have influenced
the architectural design of the Texas Instruments TMS320
family of digital signal processors. Three generations of the

27

TMS320 family were covered, and their support tools nec-
essary to develop end-applications were briefly reviewed.
The paper concluded with an overview of digital signal pro-
cessing applications using these devices.

REFERENCES

m
2]
3]
[4]
[51
(6]
7
(8
9
[10]

11
12)

(13}
[14]
(15
[16]
]
8]

(9]
[20]
21
[22]

[23]
[24]

[25]
[26]

271
{28

28

L. R. Rabiner and B. Gold, Theory and Application of Digital
Signal Processing. Englewood Cliffs, N): Prentice-Hall, 1975.
A. V. Oppenheim, Ed., Applications of Digital Signal Process-
ing. Englewood Cliffs, NJ: Prentice-Hall, 1978.

L. R. Rabiner and R. W. Schafer, Digital Processing of Speech
Signals. Englewood Cliffs, NJ: Prentice-Hall, 1978.

K. Lin, Ed., Digital Signal Processing Applications with the
TMS320 Family. Englewood Cliffs, NJ: Prentice-Hall, 1987
A.V.Oppenhiem and R. W. Schafer, Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1975.

C. Burrus and T. Parks, DFT/FFT and Convolution Algorithms.
New York, NY: Wiley, 1985.

T. Parks and C. Burrus, Digital Filter Design. New York, NY:
Wiley, 1987.

J. Treichler, C. Johnson, and M. Larimore, A Practical Guide
to Adaptive Filter Design. New York, NY: Wiley, 1987.

P. Papamichalis, Practical Approaches to Speech Coding.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

R. Morris, Digital Signal Processing Software. Ottawa, Ont.,
Canada: DSPS Inc., 1983.

K. McDonough, E. Caudel, S. Magar, and A. Leigh, “Micro-
computer with 32-bit arithmetic does high-precision number
crunching,” Electronics, pp. 105-110, Feb. 24, 1982.

S. Magar, E. Caudel, and A. Leigh, ‘A Microcomputer with
digital signal processing capability,” in 7982 Int. Solid State
Conf. Dig. Tech. Pap., pp. 32-33, 284, 285.

First Generation TMS320 User’s Guide. Houston, TX: Texas
Instruments Inc., 1987.

TMS320 First-Generation Digital Signal Processors Data Sheet.
Houston, TX: Texas Instruments Inc., 1987.

TMS32020 User’'s Guide. Houston, TX: Texas Instruments
Inc., 1985.

TMS320C25 User’s Guide. Houston, TX: Texas Instruments
Inc., 1986.

TMS32071 User’s Guide. Houston, TX: Texas Instruments
Inc., 1985.

H. Cragon, ““The elements of single-chip microcomputer
architecture,”” Comput. Mag., vol. 13, no. 10, pp. 27-41, Oct.
1980.

S. Rosen, “’Electronic computers: A historical survey,”” Com-
put. Surv., vol. 1, no. 1, Mar. 1969.

M. Honig and D. Messerschmitt, Adaptive Filters. Dor-
drecht, The Netherlands: Kluwer, 1984,

R. Lucky et al., Principles of Data Communication. New York,
NY: McGraw-Hill, 1965.

P. Van Gerwen et al., “Microprocessor implementation of
high speed data modems,” IEEE Trans. Commun., vol. COM-
25, pp. 238-249, 1977.

M. Bellanger, “New applications of digital signal processing
in communications,” IEEE ASSP Mag., pp. 6-11, july 1986.
Y. Wang, M. Andrews, S. Butner, and G. Beni, “Robot-con-
troller system,” in Proc. Symp. on Incremental Motion Con-
trol Systems and Devices, pp. 17-26, June 1986.

TMS320 Family Development Support Reference Guide.
Houston, TX: Texas Instruments Inc., 1986.

R. Simar, T. Leigh, P. Koeppen, J. Leach, J. Potts, and D. Bla-
lock, ‘A 40 MFLOPS digital signal processor: The first super-
computer on a chip,” in Proc. IEEE Int’l Conf. on Acoustics,
Speech, and Signal Processing, Apr. 1987.

TMS320C30 User’s Guide. Houston, TX: Texas Instruments
Inc., 1987.

B. Kernighan and D. Ritchie, The C Programming Language.
Englewood Cliffs, NJ: Prentice-Hall, 1978.

The TMS320 Family of Digital Signal Processors

The Texas Instruments
TMS320C25
Digital Signal Microcomputer

Gene A. Frantz

Kun-Shan Lin

Jay B. Reimer
Jon Bradley

Digital Signal Processor Products — Semiconductor Group
Texas Instruments

Reprinted from
IEEE MICRO MAGAZINE
Vol. 6, No. 6, December 1986

29

30

The Texas Instruments TMS320C25 Digital Signal Microcomputer

The Texas

Instruments

TMS320C25
Digital Signal
Microcomputer

Gene A. Frantz, Kun-Shan Lin,
Jay B. Reimer, and Jon Bradley

Texas Instruments Incorporated

Capable of 10 million operations per
second, the newest member of the
TMS320 family can serve as an
inexpensive alternative to bit-slice
processors or custom ICs in digital
signal processing applications.

applications, including digital filtering, speech

vocoding, image processing, fast Fourier trans-
forms, and digital audio. > All DSP applications have
several characteristics in common. First, they employ algo-
rithms that are mathematically intensive. An example is the
finite-duration impulse response, or FIR, filter, which in the
time domain takes the form

D igital signal processing encompasses a variety of

N
yn) = Y a() - x(n—i), [¢))

i=1

where y(n) is the output sample at time #, a(i) is the ith
coefficient or weighting factor, and x(n —i) is the (n—i)th
input sample. From this equation, we can see that the FIR
filter contains an abundance of multiplications and addi-
tions (that is, sums of products). This equation is the
general form of an FIR filter® as well as the convolution of
two sequences of numbers a(i) and x(i).” Both operations
are fundamental to digital signal processing.

Second, DSP algorithms must be performed in real time;

-i.e., they must not produce a delay noticeable to the user. In

a speech recognition system, for example, the algorithms
must not produce a noticeable delay between a word being
spoken and that word being recognized. In an image pro-
cessing system, processing needs to be completed within a
frame update period.

Third, all DSP applications involve the sampling of a
signal. Referring to Equation 1, we can see that the output
y(n) is calculated to be the weighted sum of the previous N
inputs. In other words, the input signal is sampled at
periodic intervals, and the samples are multiplied by a
weighting factor a(i) and then added together to give the
output result y(n). In a typical DSP application, the pro-
cessor must be able to perform arithmetic computations and
effectively handle sampled data in large quantities.

Last, DSP systems must be flexible enough to incorporate
improvements in the state of the art. Many DSP techniques
are still developing, and therefore their algorithms tend to
change. Speech recognition, for example, is presently an in-
exact technique still undergoing algorithmic modification.
This implies that DSP systems need to be programmable so
that they can easily accommodate revised algorithms.

Over the past several decades, digital signal processing
machines have taken several forms in response to applica-
tion need and available technology. Array processors have
long been the accepted solution for the research laboratory
and have been extended to end applications in some in-
stances. However, as integrated circuit technology has
matured, digital signal processing has migrated from the ar-
ray processor to the bit-slice processor to the single-chip
processor. This has brought the cost of DSP solutions down
to a point that allows pervasive use of the technology.

The members of the TMS320 family of devices are ex-
amples of the single-chip digital signal processor. The first
member of the family, the TMS32010, was introduced to
the market in 1983.89 It can perform five million DSP

©1989-IEEE. Reprinted, with permission, from IEEE Micro Magazine; Vol. 6, No. 6, pp. 10-28; December 1986.

The Texas Instruments TMS320C25 Digital Signal Microcomputer 31

operations per second, including the add and multiply func-
tions !0 required in Equation 1. The newest member of the
family, the TMS320C25, can perform 10 million DSP
operations per second, !! and it combines the multiply/
accumulate functions into one single-cycle operation.

Basic TMS320 architecture

The fundamental attribute of a digital signal processor is
fast arithmetic operations. The members of the TMS320
family, 1912 like many other digital signal processors,
achieve fast arithmetic operations by employing

® a Harvard architecture,

® a dedicated hardware multiplier,

© special DSP instructions, and

® extensive pipelining.

Use of these concepts allows a digital signal processor to
handle a vast amount of data and execute most DSP opera-
tions in a one-cycle instruction.

The TMS320 family utilizes a modified Harvard architec-
ture for speed and flexibility. In a strict Harvard architec-
ture, 1314 the program memory and data memory lie in two
separate spaces, permitting a full overlap of the instruction
fetch and execution. The TMS320 family’s modification of
the Harvard architecture allows transfers between the pro-
gram space and data space, thereby increasing the flexibility
of the devices in the family. This architectural modification
eliminates the need for a separate coefficient ROM and also
maximizes processing power by maintaining two separate
bus structures (program and data) for full-speed execution.

The TMS320 family’s dedicated hardware multiplier em-
ploys a 16 x 16-bit organization, which yields a 32-bit
result and allows multiplication to take place in a single
cycle. The special DSP instructions include DMOV (data
move) and RPT (repeat), which speed up DSP operations.
The extensive pipelining ensures maximum throughput for
real-time applications.

The TMS320C25 architecture

The TMS320C25 digital signal processor is a micro-
computer with a 32-bit internal Harvard architecture and
a 16-bit external interface. It is a pin-compatible CMOS
version of the TMS32020 microprocessor but has an in-
struction execution rate twice as fast and includes addi-
tional hardware and software features. The TMS320C25’s
instruction set is a superset of that of the TMS32010 and
that of the TMS32020, and it maintains source-code com-
patibility with them. In addition, it is completely object-code-
compatible with the TMS32020 so that TMS32020 programs
can run unmodified on the TMS320C25. Some of the major
features of the TMS320C25 are

© a 32-bit ALU and accumulator,
 an instruction cycle time of 100 ns,

@ a single-cycle multiply/accumulate,

 use of low-power CMOS technology with a power-
down mode,

® 4K 16-bit words of on-chip masked ROM,
® 544 words of on-chip data RAM,

® 128K words of data/program memory space,

® eight auxiliary registers with a dedicated arithmetic unit,

® an eight-level-hardware stack,
« a fully static double-buffered serial port,
_® concurrent DMA that uses an extended hold operation,

* bit-reversed addressing modes for fast Fourier trans-
forms,

e extended-precision arithmetic and adaptive filtering
support,

* full-speed operation of data move instructions from ex-
ternal memory,

© an accumulator carry bit and related instructions, and

® fabrication in 1.8-um CMOS and packaging in a 68-pin
PLCC.

The 100-ns instruction cycle time provides a significant
throughput advantage for many applications. Since most of
the TMS320C25’s instructions can execute in a single cycle,
it can execute 10 million instructions per second. Most of
the other features listed above also contribute to the
TMS320C25’s high throughput.

The TMS320C25 includes instructions to perform the
data transfers between program space and memory space
discussed earlier. Externally, the program and data memory
spaces are multiplexed over the same bus so as to maximize
the address range for both spaces and minimize the pin
count of the device. Internally, the TMS320C25 architecture
maximizes processing power by maintaining two separate
bus structures, program and data, for full-speed execution.

Program execution in the device takes the form of a
three-level instruction fetch-decode-execute pipeline. This
pipeline is invisible to the user except in cases in which it
must be broken, such as for branch instructions. In this
case, the instruction timing takes into account the fact that
the pipeline must be emptied and refilled.

Two large, on-chip data RAM blocks (a total of 544
words), one of which is configurable either as program or
data memory, are provided. An off-chip, 64K-word,
directly addressable data memory address space is included
to facilitate implementations of DSP algorithms with large
data memory requirements. Four-K words of on-chip pro-
gram ROM and 64K words of off-chip program address
space are available. Large programs can execute at full
speed from this memory space. Programs can also be

32 The Texas Instruments TMS320C25 Digital Signal Microcomputer

|-—ps

DS
is
|~=—SVNC

X2/CLKIN
CLKOUT2

L’-X‘I

————»—CLKOUT1

MSC ——j
810 —=—
RS

1ACK

CONTROLLER

MP/MC
iNT(2-0)

D15-00

PROGRAM

{16

16

‘_;i—j
ROM
16 P | (a096 « 161
A15-A0 16
INSTRUCTION
16 x
2
3

QIR{16)

IR{16)

ST0(16}

ST1(16)

RPTCI(8)

IFR(6}

RSR(16)

XSR(16)

DRR(16)

DXR{(16)

TIM(16)

PRD(16)

IMR(6)

GREGI(8)

TTLLIDATA BUS:

16

ARO(16)

AR1(16)

ARZ(16) L—f
AR3(16) o
AR4(16)
AR5(16)

ARG6({16)
AR7(16)

16

1
16
| ARAU(16) l Mux

MUX
16

DATA/PROG

oty RAM (256 - 16)
. - BLOCK BO

DATA RAM

BLOCK B1

{256 ~ 16)

[swiererio1e) |

TR(16)

7188

:1 FROM IR

MULTIPLIER

PR(32)

LEGEND:
ACCH - Accumulator high R Interrupt flag regi
ACCL - Accumulator low IMR Interrupt mask register
ALU - Arithmetic logic unit R Instruction register
ARAU - i MCS - Microcall stack
ARB - QiR Queue instruction register
ARP - Auxiliary register pointer PR . Product register
oP - Data memory page pointer PRD - Period register for timer
DRR - Serial port data receive register TIM . Timer.
DXR - Serinl port data transmit register TR - Temporary register

PFC
RPTC
GREG
RSR
XSR
ARO-AR7
STO.ST1

Program counter

Prefetch counter

Repeat instruction. counter
Global memory allocation
Serial port receive shift regi
Serial port transmit shift register
Auxiliary registers

Status registers

Figure 1.
TMS320C25

block diagram.

The Texas Instruments TMS320C25 Digital Signal Microcomputer

33

{MICROPROCESSOR MODE)

*Block BO is add!

as prog|

PROGRAM PROGRAM DATA
01>00001 | \\rerpupPTS 0(>0000) | \\repRUPTS 0(>0000) ON-CHIP
AND RESERVED AND RESERVED MEMORY-MAPPED
(EXTERNAL) (ON-CHIP ROM) REGISTERS
31(>001F) 31(>001F) 5(>0005)
32(>0020) 32(>0020) . 6(>0006)
on- e RESERVED PAGE 0
4015(>OFAF) 95(>005F)
4016(>0FBO) 96(>0060)
RESERVED n?g&”:’z
4095(> OFFF) 127(>007F)
4096(>1000) 128(>0080)
RESERVED PAGES 1-3
511(>01FF)
EXTERNAL EXTERNAL 512(>0200)
ON-CHIP
BLOOK Bo* PAGES 4-5
767(>02FF)
768(>0300) i}
ON-CHIP PAGES 6-7
BLOCK B1
65.279(>FEFF) | _ . 1023(>03FF)
65,280(>FF00) 1024(>0400)
afg&";;. EXTERNAL PAGES 8-511
65,535(> FFFF) 65.535(> FFFF) 65,535(> FFFF)
IF MP/MC = 1 IF MP/MC = 0

(MICROCOMPUTER MODE)

y after a CNFP instruction, and as data memory after a CNFD instruction.

Figure 2. TMS320C25 memory maps.

downloaded from slow external memory to on-chip RAM
for full-speed operation.

The TMS320C25 also incorporates a hardware timer and
a block data transfer capability.

The diagram of the TMS320C25 in Figure 1 shows the
principal blocks and data paths within the processor. It also
shows all of the TMS320C25’s interface pins.

The TMS320C25’s architecture is built around the pro-
gram and data buses. The program bus carries the instruc-
tion code and immediate operands from program memory.
The data bus interconnects elements such as the central
arithmetic logic unit (CALU) and the auxiliary register file,
to the data RAM. Together, the program and data buses can
carry data from on-chip data RAM and internal or external
program memory to the multiplier in a single cycle for mul-
tiply/accumulate operations.

A high degree of parallelism exists in the device—for
example, while data are being operated on by the CALU,
arithmetic operations can be implemented in the auxiliary
register arithmetic unit (ARAU). Such parallelism results in
a powerful set of arithmetic, logical, and bit-manipulation
operations that can be performed in a single machine cycle.

Memory allocation. As mentioned above, the TMS320C25
provides 4K 16-bit words of on-chip program ROM and 544

16-bit words of on-chip data RAM. The RAM is divided
into three blocks, B0, Bl, and B2. Of the 544 words, 256
words (block B0) are configurable as either data memory or
program memory; 288 words (blocks B1 and B2) are always
data memory. A data memory size of 544 words allows the
TMS320C25 to handle a data array of 512 words but still
leaves 32 locations for intermediate storage.

The TMS320C25 maintains separate address spaces for
program memory, data memory, and I/0. In addition to
blocks BO, B1, and B2, the on-chip data memory map (see
Figure 2) includes memory-mapped registers. Six peripheral
registers, the serial-port registers (DRR and DXR), timer
register (TIM), period register (PRD), interrupt mask
register (IMR), and global memory allocation register
(GREG), have been mapped into the data memory space so
they can be easily modified.

The TMS320C25 has a register file containing eight aux-
iliary registers that can be used for indirect addressing of
data memory or for temporary storage. These registers,
ARO0-AR?7, can be either directly addressed by an instruction
or indirectly addressed by a three-bit auxiliary register
pointer (ARP). The auxiliary registers and the ARP can be
loaded either from data memory or by an immediate
operand defined in the instruction. The contents of the
registers can also be stored in data memory.

34 The Texas Instruments TMS320C25 Digital Signal Microcomputer

[ADYICARY REGISTER 7 R Te)
[ACXILIARY REGISTER 6 (AR6) (1)

[AUXILURY REGISTER 0 (ARO) (16)

AUXILIARY

LIRRRERRYD

A8
¥)

3 REGISTER | 3
POINTER *1 BUFFER
(ARP) (3) (ARB) (3)

[NB OUT

3

) (16)

AUXILIARY REGISTER ARITHMETIC UNIT
(ARAU

Figure 3.
Auxiliary
register file.

AUXILIARY REGISTER FILE BUS (AFB) A6 R

The auxiliary register file is connected to the auxiliary
register arithmetic unit as shown in Figure 3. The ARAU
can autoindex the current auxiliary register while the data
memory location is being addressed. The current auxiliary
register can also be indexed either by +1/—1 or by the
contents of ARO. As a result, the accessing of tables of in-
formation does not require the CALU for address manipu-
lation, thereby freeing it for other operations.

Although the ARAU was designed to support address
manipulation in parallel with other operations, it can also
serve as an additional general-purpose arithmetic unit since
the auxiliary register file can communicate directly with data
memory. The ARAU impl s 16-bit d arithme-
tic, whereas the CALU implements 32-bit two’s-comple-
ment arithmetic. The ARAU also provides branches depen-
dent on the comparison of ARO to the auxiliary register
pointed to by the ARP.

Central arithmetic logic unit. The CALU contains a
16-bit scaling shifter, a 16 X 16-bit parallel multiplier, a
32-bit ALU, and a 32-bit accumulator. The scaling shifter
has a 16-bit input connected to the data bus and a 32-bit
output connected to the ALU. This shifter produces a left
shift of 0 to 16 bits on the input data, as programmed in the
instruction. The least significant bits of the output are filled
with zeroes, and the most significant bits are either filled
with zeroes or sign-extended, depending upon the state of
the sign-extension mode bit of status register ST1. Addi-
tional shifters at the outputs of both the accumulator and
the multiplier are suitable for numerical scaling, bit extrac-
tion, extended-precision arithmetic, and overflow preven-
tion. Due to the pipelining in the TMS320C25, shifting is
accomplished as part of an instruction and thus does not re-
quire additional cycles for execution.

The 32-bit ALU and accumulator perform a wide range
of arithmetic and logical instructions. An overflow satura-
tion mode permits the accumulator to be loaded with the
most positive or negative number (the choice depending on

The Texas Instruments TMS320C25 Digital Signal Microcomputer

the direction of overflow), and it allows an overflow flag to
be set whenever an overflow occurs. One of the two inputs
to the ALU is always provided from the accumulator, and
the other may be transferred from the product register (PR)
of the multiplier or from the scaling shifter loaded from
data memory.

The implementation of a typical ALU instruction requires
these steps:

e data are fetched from the Rcarrn the data bus;

e data are passed through the scaling shifter and through
the ALU, where the arithmetic is performed; and

® the result is moved into the accumulator.

The 32-bit accumulator is split into two 16-bit segments
for storage in data memory: ACCH (accumulator high) and
ACCL (accumulator low). Shifters at the output of the ac-
cumulator provide a shift of 0 to 7 places to the left. This
shift is performed while the data are being transferred to the
data bus for storage. The contents of the accumulator re-
main unch d. The acc lator also has an in-place one-
bit shift to the left or right (SFL or SFR instruction) and a
rotate through carry (ROL or ROR instruction) for shifting
its contents.

A carry bit is provided to the accumulator, allowing more
efficient extended-precision computation. ADDC (add with
carry) and SUBB (subtract with borrow) are two instruc-
tions using the carry bit. Branch instructions that use the
carry bit are also provided.

Hardware multiplier. The TMS320C25 uses a 16 X 16-bit
hardware multiplier that can compute a 32-bit product dur-
ing every machine cycle. Two registers are associated with
the multiplier: a 16-bit temporary register (TR) that holds
one of the operands for the multiplier, and a 32-bit product
register (PR) that holds the product.

The output of the product register can be left-shifted one
or four bits. This is useful for implementing fractional
arithmetic or justifying fractional products. The output of
the PR can also be right-shifted six bits to enable the execu-

35

tion of up to 128 consecutive multiply/accumulates without
overflow.

The multiplier performs both signed and unsigned opera-
tions. Two signed instructions, MAC (multiply/accumulate)
and MACD (multiply/accumulate and data move), can pro-
cess both operands simultaneously, thereby fully utilizing
the computational bandwidth of the multiplier. For MAC
and MACD, the two operands are transferred to the mul-
tiplier at each cycle via the program and data buses. This
enables MAC and MACD to be performed in a single cycle
when they are used with repeat (RPT or RPTK) instruc-
tions. The program bus can supply data from internal or ex-
ternal memory (RAM or ROM) and still maintain single-
cycle operation. An unsigned multiply (MPYU) instruction
facilitates extended-precision multiplication. It multiplies
the unsigned contents of the TR by the unsigned contents of
the addressed data memory location, and places the result in
the PR.

Control operations. Control operations are provided on
the TMS320C25 by an on-chip timer, a repeat counter, three
external maskable user interrupts, and internal interrupts
generated by serial-port operations or by the timer.

A memory-mapped 16-bit timer (TIM) register (a down
counter) is continuously clocked by CLKOUTI. A timer in-
terrupt (TINT) is generated whenever the timer decremerts
to zero. The timer is reloaded with the value contained in
the period (PRD) register within the first cycle after it
reaches zero so that interrupts may be programmed to occur
at regular intervals of (PRD + 1) + CLKOUT]1 cycles. This
feature is useful for control operations and for synchronous
sampling of or writing to peripherals.

The repeat counter (RPTC) is loaded with either a data
memory value (in the case of the RPT instruction) or an im-
mediate value (in the case of the RPTK instruction). The
repeat feature enables a single instruction to be executed up
to 256 times. It can be used with instructions such as mul-
tiply/accumulates, block moves, 1/0 transfers, and table
read/writes. Those instructions that are normally multicycle
are pipelined when the repeat feature is used and effectively
become single-cycle instructions. For example, the table
read (TBLR) instruction ordinarily takes three or more
cycles, but when it is repeated, it becomes a single-cycle
instruction.

The three external maskable user interrupts, INT2 to
INTO, enable external devices to interrupt the processor.
Internal interrupts are generated by either the serial port,
the timer, or the software interrupt instruction. Interrupts
are prioritized, with reset having the highest priority and the
serial-port transmit interrupt the lowest.

Serial port. An on-chip serial port provides direct com-
munication with serial devices such as codecs and serial
A/D and D/A converters. The serial port’s interface re-
quires a minimum of external hardware. The port has two
memory-mapped registers—a data transmit register and a
data receive register—which can be operated in either an
eight-bit byte mode or a 16-bit word mode. The transmit

framing sync pulse can be generated internally or externally.
The serial port’s maximum speed is 5§ MHz.

The primary enhancements of the TMS320C25’s serial
port are

* double buffering for both receive and transmit opera-
tions,

o the eli ion of a
(fmin = 0 Hz), and

© the provision of a frame sync mode (FSM) bit, which
allows continuous operation with no frame sync pulses.

CLKR/CLKX frequency

The FSM is useful for communicating on pulse-code-
modulated telephone system highways. As a result the TMS-
320C25 can communicate directly on PCM highways such
as AT&T T-1 and CCITT G.711/712 by counting the trans-
mitted and received bytes in software and performing the
instructions needed to set (SFSM) and reset (RFSM) the
FSM bit.

1/0 interface. The TMS320C25’s 1/0 space consists of 16
input and 16 output ports. These ports provide a full 16-bit
parallel 170 interface via the processor’s data bus. A single
input (IN) or output (OUT) operation typically takes two
cycles; however, when executed in the repeat mode, such an
operation becomes single-cycle. The TMS320C25 supports a
range of system interfacing requirements. As previously
mentioned, three separate address spaces—program, data,
and I/O—provide interfacing to memory and 1/0, thereby
maximizing system throughput. The TMS320C25 simplifies
1/0 design by treating 1/0 the same way it treats memory.
It maps I/0 devices into the I/0 address space using its ex-
ternal address and data buses in the same way as it uses
them for mapping memory devices into memory address
space.

The local memory interface consists of a 16-bit parallel
data bus (D15-D0), a 16-bit address bus (A15-A0), three
pins for data memory, program memory, and 1/0 space
select (DS, PS, and IS, respectively), and various system
control signals. The R/W signal controls the direction of a
data transfer, and STRB provides a timing signal to control
the transfer. When using on-chip program RAM, ROM, or
high-speed external program memory, the TMS320C25 runs
at full speed without wait states. By using the READY
signal, it can generate wait states so it can communicate
with slower off-chip memories.

The TMS320C25 supports direct memory access to exter-
nal program and data memory. Another processor can take
complete control of the TMS320C25’s external memory by
asserting HOLD low, causing the TMS320C2S5 to place its
address, data, and control lines in the high-impedance state.
Two modes are available on the device. In the first mode,
execution is suspended during assertion of HOLD. In the
second mode—the ‘‘concurrent DMA mode’’—the TMS-
320C25 continues to execute its program while operating
from internal RAM or ROM, thereby greatly increasing
throughput in data-intensive applications. Signaling be-
tween the external processor and the TMS320C25 can be
performed through interrupts.

36 The Texas Instruments TMS320C25 Digital Signal Microcomputer

~ Table1,

TMS320C25 instructions.
ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS
NO.
MNEMONIC DESCRIPTION WORDS . OPERATION
ABS Absolute value of accumulator 1 {tacC) - ACC
ADD Add to accumulator with shift 1 (ACC) + |(dma) x 2shift] — acC *
ADDC! Add to accurulator with carry 1 (ACC) + (dma) + (C) - ACC
ADDH - - Add to high accumulator 1 (ACC) + [idma) x 216] » ACC
ADDK? Add to lator short immedi 1 (ACC) + 8-bit constant ~ ACC
ADDS Add to low accumulator with sign 1 (ACC) + (dma) -~ ACC
) extension suppressed '
ADDT? Add to accurulator with shift specified by 1 (ACC) + [{dma) x 2(Tregl] » ACC
T register .
ADLK T Add to accumulator long immediate with shift 2 (ACC) + [16-bit constant x 25"“'[-~ ACC
AND ‘AND with accumulator 1 {ACC(15-0)).AND. (dma) - ACC{15-0),
- . 0 - ACC(31-16)
ANDK? AND imrhediate with accumulator with shift 2 (ACC)30-0)}. AND. | 16-bit constant x 2shift| —
o ’ ACC(30-0), 0~ ACC(30-0))
CMPLT - Complement accumulator 1 (ACC) - ACC
LAC Load accumulator with shift 1 (dma) x 2shift — ACC
LACK Load accumulator immediate short 1 8-bit constant — ACC
LacT?t Load accumul with shift specified by T register 1 (dma) x 2(Treg) — ACC .
LALKY " Load accumulator long immediate w»th shift 2 (16-bit constant) x 216 - ACC
NEGT Negate accumulator 1 ~{ACC) =~ ACC
‘NORmt N of I 1
OR OR with accumulator 1 (ACC(15-0)).0R. (dma) - ACC(15-0)
ORKT _OR immediate with accumulator with shift 2 (ACC(30-0)).0R.|16-bit constant x 2shift] —
. o ACC(30-0)
ROL¥ -Rotate accumulator left 1 (ACC(30-0)) = ACC(31-1), (C) ~ ACC(0),

‘ o . (ACC(31)) ~ C.

RORY - . Rotate accumulator right : 1 {ACC(31-1) — ACC(30-0), (C) ~ ACC(31),
. S L : : " (ACC(Of) ~ C o

SACH - Store high accumulator with shift

1 HACC) x 2shift] — dma
SACL, Store low. accumulator with shift 1 [(ACCL) x 2shift] - dma
BBLKY - . Subtract from accumulator long immediate with shift 2 (ACC) - [16-bit constant x 25'""1 -~ ACC
| sFLt Shift accumutator left 1 (ACC(30-0)) ~ACC(31-1), 0 -+ ACC(O)
“I'skRTshift accumulator right 1 {ACT(31-1)) ~ ACCI30-0), (ACC(31}) —~ ACC(31)
'SUB . Subtract from accumulator with shift 1 (ACC) - [(dma) x 2shift] - ACC
1 susg? Subtract from accumulator, with borrow 1 (ACC) - (dmal - () » ACC
SuBC Conditional subtract 1 E) -
i SUBH. Subtract from high. accumulator 1 {ACC) - {(dma) x 216] - ACC
5030(3" . Subtract from accumulator short immediate 1 {ACC) - ‘8-bit constant — ACC .
] suBS - Subtract from low accumulator with sign 1 ACC) - (dma) -~ ACC
... extension suppressed
sugTt . : ‘ Subtract from accumulator wuth shift specmad by 1 {ACC) - |(drha) x 2‘7“’9'| - ACC
1 T register . . .
XOR. - " Exclusive-OR with acc 1 1 (ACC(15-0)). XOR. {drna) - ACC(15-0)
XORKT' Exclusive-OR immediate with accumulator with shift 2 (ACC(30-0)).XOR. [16-bit constant x 2shift| —
T ACC{30-0)
ZAC . Zero accumlator S 1 0 - ACC .
ZALH Zero low accumulator arid !oad high accumulator ' 1 (dma) x 218 - ACC
ZALRY . . Zero low accumulator and load high accumulaxor . 1 {dma) x 216 4+ >8000- ACC
1 : with (oundmg) :) ’ B ‘

ZALS Zero accumulator and load low accumu!ator w;th 1 {dma) ~ ACCL, 0 ~ ACCH
. ;&mgn extenston suppressed i RN o .

Thesé instructions are not included irt the TMSI2010 instruction set.
These mstmcﬂons are notinclutled in the TMS32020 instruction set

The Texas Instruments TMS320C25 Digital Signal Microcomputer 37

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS Lt
MNEMONIC DESCRIPTION NO. OPERATION '
WORDS
"ADRK? Add to auxiliary register short immediate : 1 (ARn) + 8-bit constant - ARn .~ A]
CMPRT" Compare auxiliary tegister with auxiliary reg:étef ARO 1 If ARn | CM | ARO, then 1 — TC; else 0 - :
| LAR Load auxiliary register . 1 (dma). - (ARM :
"LARK . Load auxiliary register short immediate 1 8-bit constant ~ ARn L i
LARP. Load auxiliary register pointer 1 | 3-bit cohstant — ARP, (ARP) ARB' .
LDP " Load data memory page pointer 1 (dma) — DP ' o
| LOPK Load data memory page pointer immediate 1 9-bit constant —DOP :
LRLKT Lo&d auxiliary register long immediate 2 16-bit coristant — ARn
. MAR “Modify auxiliary register 1
SAR: Store auxiliary register 1 (ARn) — dma .
'SBRK§ - Subtract from auxiliary register short immediate 1 {ARn) - 8-bit constant —+ ARn
T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS
NO.
MNEMONIC DESCRIPTION WORDS OPERATION
APAC Add P register to accumulator 1 (ACC). + {shift Preg) — ACC
LPH! Load high P register o 1 (dma) — Preg (31-16}
LT Load T register 1 {dma) — Treg .
LTA" Load T register and accumulate previous product 1 (dma) Treg,, (ACC) + {shifted Pveg) - ACC
LTD Load T registéer, accumulate previous product, 1 {dma) — Treg, (dma) = dma + 1, .
and move data (ACC) + (shifted Preg) — ACC
Lrpt Load T register and store P register in accumulator A (dma) — Treg, {shifted Preg) = T
LTS" . Load T register and subtract previous product 1 (dma) — Treg, (ACC) - shifted Prég ;
MACt Multiply and accumulate) 2 (ACC) '+ ishiftéd Preg) = ACC, -
| P . : (pma) x (dma) ~ Preg)
‘MACD? Multiply and accumulate with data move 2 (ACC) + {shifted Preg) » ACC, .
e) _ (pma) x_(dma) ~ Preg, (dma} - dma’ + 1
MPY Multiply twith T register, store ‘product in P régister) 1 (Treg) x (dms* —Preg.- .
MPYA ¥ Multiply and ‘éccumirlme previous product 1 (ACC) + (shifted Pregl = ACG;." :
1 . (Treg) x (dmal -~ Prég
"MPYK . Multaply immediate : 1 (Treg) x 13-bit constant — Preg
MPYS$. “Multiply and subtract pvavious product . 1 {ACC). - (shifted PréQ) ~ ACC
, S ' (Treg)x (dmal = Preg ="
MPYUF Mul!lp\y unsngned 1 Usgn (Treg) x Usgn (dma) = Pveg
PAC - Load accumulator ‘with P fegnster 1 (shnfted Preg) = ACC o
SPAC - Subtract P register from accumulstor 1 (ACC) ~ (shifted Preg) —~ ACC . .~ N [O
S_PH‘ Store high P register 1 (shifted Preg (31-16)) = dma B K ‘
SPL¥ ‘Storelow P register : 1 (shifted Preg (15-0)1 = dma) o i
- semt . Set P register output shift mode ’ 1 _2-bit constant — PM
SQRAT - . Square and accumulate’ 1 (ACCY + (shifted Preg) — ACC
. : o ' - (dma) x (dma) - Preg
‘»’SQR$'r _ Squate and subtract previous product . 1 (ACC) - (shifted Preg) ~ ACC,
: ' {dma) x (dma) = Preg

SYMBOL MEANING svymBeoL MEANING

ACC Accumulator PA Fort address (PAD thiough PATS are predenned assembler
ARB Auxiliary register pointer buffer N symbols equal 1o 0 through 15 respectively)
ARn Auxiliary Register n (ARO through AR7 are predetined PC Program counter
assembler symbols equal 10 0 through 7 respectively) PM 2:bit field specifying P register output shift code

ARP Auniliary segister pointer e pma Program memory address
810 Branch control input B Preg Product register

c Carey bit RPTC Repeat counter
™ 2-bit field specifying compare mode B STn Status Register n (STO or ST1)
CNF On chip RAM configuration control bit . SXM Sign extension mode bt
dma Data memory address s i Temporary register

s Tc Test contral bit

Data page pointer

Format status bit Top of stack

FSM Frame synchronization mode bit Temporary register
Hold mode bit Transmit mode bit

INTM Interrupt mode flag bit Unsigned value

>nn Indicates nn 1s a hexadecimal number (All others are XF pin status bit

Is assigned (o

An absolute value
Optional items
Contents of

assumed 10 be decimal values |
Overflow tlag bit

ovM Overflow mode bit

Product register

LR ¢ LY S A e LR T S T Y o TR A S 0

38 The Texas Instruments TMS320C25 Digital Signal Microcomputer

BRANCH/CALL INSTRUCTIONS

Block’ mave fram mogum remory to data memory

b s o m m o aaa e e N

+{pma, addrcmﬂvaCCHS-On ‘*W

NO.
MNEMONIC DESCRIPTION WORDS OPERATION
18 Beanch unconditionally 2 pma —» PC .
BACCT ' Brénch to address specified by accumulator 1 (ACC(15-0 PC
VBA'NZ_ : lunoh on auxiliary register not zero 2
‘BBNZT Branch if TC bit # o o 2
882" © ' Branchif TCbit = 0 2
Bct Branch on catry’) 2
BGEZ . Branch if accumulator 2 O 2 It (ACC) 2 o then pma = |
legz Branth if accumulator > 0 2 If (ACC) > O, then pma = |
| moz Branch on /0 status = 0 2 # (BIB) = 0; then pma ~ PC:; avmpcnz nc .
; T Beanéh if dccumulator 0 2 If 1ACC) < 0, then pra - PC; else (PC) + 2 —PC
~Brangh if accumulator < O 2 H(ACC) < O, mmpma*Pcm(PC)+2~»Pq
Btmhonnocmy 2 It (C) = O, then pma - PC; elsePC) +- 2w PC | |
: 2 If {OV) # O, theh pma — PC: 063!"’0+2 PC
- 'BNZ leaccmndatm*o . 2 If (ACC) # 0, then pma — PC; eleetPC)+2-'PC
BV Beanch on overflow 2 | 1 ©OV) = 0, then pma — PC; else (PC) + 2 ~ PC |
m&ﬂmwmuluoiao 2 If {tACC) = O, thenpma»PC dss(ﬂﬁ)*? PCl
Call subroutine indirect 1 (ACC(15-0) —~ PC, (PC) + 1 = TOS i
" Call suibroutine - - 2 {PC) + 2 ~ TOS, pma ~ PC
Mum ‘trom subroutine 1 (TOS) ~ PC .
1/0 AND DATA MEMORY OPERATIONS
NO.
MNEMONIC DESCRIPTION - WORDS OPERATION
"1 "Bloek'move from data memoty to data memory 2 (dma1, addressed by PC) — dma2

{pma, addressed by PC) ~ dma
(dma) = dma + 1
1-bit constant — FO Lo
{data bus, addtesssd tw PA) — dma
{dma) - data bus, addrmed WPK
O - FSM .
- TXM
'0 - XF
1 - FSM
A - TXM
1~ XF

{dma) -~ pma; addressed by ACC (15:0) -

CONTROL INSTRUCTIONS

DESCRIPTION

NO.
WORDS

OPERATIONS

_ {dmia bit at (15-bit.codel) - TC

!dma bit at ns-mq» - T

The Texas Instruments TMS320C25 Digital Signal Microcomputer

39

The TMS320C25’s conditions and modes are stored in
two status registers, STO and ST1. Instructions are provided
to allow these registers to be stored in or loaded from data
memory. This capability allows the current status of the
device to be saved during interrupts and subroutine calls.

‘TMS320C25 software

Earlier, we characterized digital signal processing as the
real-time processing of mathematically intensive algorithms.
This characterization equates to a requirement for high-
speed, multiply/accumulate capability in a processor. The
performance of a signal processor is therefore measured in
terms appropriate to this requirement—that is, it is mea-
sured in terms of the speed of execution of individual in-
structions, the power of the instruction set, and the 170
capabilities. The speed is given as the basic instruction cycle
time and the number of cycles required to complete any
instruction.

As we noted earlier, pipelining of instruction fetching,
decoding, and execution provides an instruction cycle time
of only 100 ns. The overwhelming majority of the
TMS320C25’s instructions (97 out of 133) are executed in
a single instruction cycle. Of the 36 instructions requiring
additional cycles for execution, 21 involve branches, calls,
and returns that result in a reload of the program counter
and a break in the execution pipeline. Another seven of

the instructions are two-word, long immediate instruc-
tions. The remaining eight—IN, OUT, BLKD, BLKP,
TBLR, TBLW, MAC, and MACD—support I/0 and
transfers of data between memory spaces, or provide for
additional parallel operation in the processor. Further-
more, these eight instructions become single-cycle when
used in conjunction with the repeat counter. The instruc-
tion set of the TMS320C25 exploits the parallelism of the
processor, allowing complex or numerically intensive com-
putations to be implemented in relatively few instructions.
Table 1 lists the TMS320C25’s instructions.

Addressing modes. Most TMS320C25 instructions are
coded in a single 16-bit word—the reason most can be exe-
cuted in a single cycle. The 16-bit word comprises an eight-
bit opcode and an eight-bit address. Three memory address-
ing modes are available: direct, indirect, and immediate
(Table 2). Both direct and indirect addressing are used to
access data memory. Immediate addressing uses the contents
of the memory addressed by the program counter. Figure 4
illustrates operand addressing in the direct, indirect, and im-
mediate modes.

In direct addressing, seven bits of the instruction word
are concatenated with the nine-bit data memory page
pointer (DP) to form the 16-bit data memory address. The
DP register points to one of 512 possible data memory
pages, each 128 word in length, to obtain a 64K total data
memory space. The seven-bit address in the instruction

The Texas Instruments TMS320C25 Digital Signal Microcomputer

points to the specific location within the data memory page.

Indirect addressing is provided by the eight auxiliary
registers ARO-AR7. These registers can be used to indirectly
address data memory, as loop counters, or for temporary
data storage. Indirect auxiliary register addressing (Figure 5)
allows placement of the data memory address of an instruc-
tion operand into one of the eight auxiliary registers. These
registers are pointed to by a three-bit auxiliary register
pointer (ARP) that is loaded with a value from 0 through 7
designating ARO through AR7, respectively. The auxiliary
registers and the ARP may be loaded either from data
memory or by an immediate operand defined in the instruc-
tion. Furthermore, the contents of the auxiliary registers
may be stored in data memory.

There are seven types of indirect addressing (see Table 2
again):

© indexing with increment,

® indexing with decrement,

¢ indexing by adding the contents of ARO,

© indexing by subtracting the contents of ARO,

* indexing by adding the contents of ARO with the carry
propagation reversed (for bit-reversing an FFT),

 indexing by subtracting the contents of ARO with the
carry propagation reversed (also for bit-reversing an FFT),
and

® no indexing.

All indexing operations are performed on the current aux-
iliary register in the same cycle as the original instruction,
with loading of a new ARP value available as an option.
The operations performed in the ARAU can even be per-
formed during branch instruction execution, allowing effi-
cient control with conditional looping.

Bit-reversed indexed addressing modes allow efficient I/0
to be performed for the resequencing of data points in a
radix-2 FFT program. The direction of carry propagation in
the ARAU is reversed when this mode is selected, and ARO
is added to or subtracted from the current auxiliary register.

In immediate addressing, the instruction word contains
the value of the immediate operand. Both single-word (8-bit
and 13-bit constant) short immediate instructions and two-
word (16-bit constant) long immediate instructions are in-
cluded in the instruction set. In the case of long immediate

instructions, the word following the instruction opcode is
used as the immediate operand. MPYK is an example of an
immediate instruction; it multiplies the contents of the T
register by a signed 13-bit constant. Seventeen immediate
operand instructions are included in the instruction set (see
Table 1 again).

Instruction set parallelism—an example. The MACD
(multiply/accumulate and data move) instruction serves as
an informative example of the parallelism designed into the
TMS320C25 instruction set as well as into the TMS320C25
architecture. As shown in Equation 1, the requirement for
parallelism exists in common DSP operations such as con-
volution and filtering. 67

Parallelism in the execution of instructions enables a
complete multiply/accumulate/data move operation to be
completed in a single 100-ns instruction cycle. The execution
of the MACD involves the following steps:

1) The contents of the 32-bit P register are shifted (scaled)
by an output shifter.)

2) The 32-bit ALU accumulates the shifted result of the
32-bit P register with the current contents of the 32-bit
accumulator.

3) The 16-bit contents of a data memory location (usually
addressed indirectly via one of the auxiliary registers) are
loaded into the T register.

4) The 16-bit contents of a program memory location
(addressed via the prefetch counter PFC) are introduced to
the multiplier and a 16 x 16-bit multiply is executed,
resulting in a new 32-bit product. The product is placed in
the P register to be accumulated during the next cycle.

5) The 16-bit contents of the data memory location are
copied to the next higher data memory address.

6) The carry and overflow status bits are set, as ap-
propriate, in the status registers.

7) The 16-bit contents of the auxiliary register pointed to
by the ARP are modified (typically decremented) in
preparation for the use of the data memory address on the
next cycle.

8) The 16-bit contents of the PFC are incremented in
preparation for the use of the program memory address on
the next cycle.

9) The repeat counter is decremented.

As can be seen from the above, one of the data values is
taken from data memory while the other is taken from pro-
gram memory. A single-cycle execution and data move is ac-
complished when the data memory being addressed is the
on-chip data memory. The program memory location can
be either on or off chip and, if on chip, can come from
either ROM or the reconfigurable memory block BO.
Parallel operation of certain subsets of TMS320C25 func-
tions is also available. These subsets include loading the T
register in combination with addition (LTA), subtraction
(LTS), or a move of the P register’s contents to the ac-
cumulator (LTP). The accumulation can be supplemented
by the data move function (LTD). Another combination
(MPYA/MPYS) provides the accumulation of the previous

The Texas Instruments TMS320C25 Digital Signal Microcomputer 41

INGTR TION
INDIRECT ADDRESSING [oPcope | ArP |

INSTRUCTION .
IMMEDIATE OPERAND | 0PCODE JoPERAND) pe INSTRUCTION | Figure 4. Methods
PC+ OPERAND of addressing the

product along with the execution of the multiplier to
generate a new product. This combination is particularly
useful in adaptive filtering techniques such as those em-
bodied in the least-mean-square (LMS) algorithm. !5 The
implementation of an adaptive filter by means of these in-
structions will be described in detail in the section on
applications.

Block moves. The TMS320C25 provides six instructions
for data and program block moves and transfers of data via
the 170 ports. When these instructions are pipelined by
means of the repeat instruction, significantly higher through-
put is achieved—the pipelining results in a transfer rate of 160
million bits per second.

The BLKD instruction moves a block within data
memory, and the BLKP instruction moves a block from
program memory to data memory. Block transfers between
program and data memory spaces can also be implemented
with the TBLR and TBLW (table read and table write) in-
structions. The advantages of TBLR and TBLW are that
they allow the source address as well as the destination ad-
dress to be determined during programming and that they
permit the data to be transferred from data memory to pro-
gram memory. The IN and OUT instructions permit data to
be transferred between the I/0 and data memory spaces.
While the source address is determined by the prefetch
counter, which is incremented on every cycle, the destina-
tion address is determined by an auxiliary register whose
contents can be modified in any of the previously specified
ways. This permits sequential and contiguous data place-
ment (* +, * —), sequential but noncontiguous data place-
ment (*0+,%0—), or scrambled data placement
(*BRO+, *BRO —). The value of these address modifica-
tions during block data transfers becomes particularly ap-
parent in the use of indexing with reverse-carry propagation
to set up the data block in an FFT. The result is not only a
savings in execution time but a savings in program memory
space as well.

Floating-point support. The TMS320C25 supports
floating-point operations for applications requiring a large
dynamic range. The NORM (normalization) instruction
normalizes fixed-point numbers contained in the accumulat-

42 :

or by performing left shifts. The LACT (load accumulator
with shift specified by the T register) instruction denor-
malizes a floating-point number by arithmetically left-
shifting the mantissa through the input scaling shifter. The
shift count, in this case, is the value of the exponent speci-
fied by the four low-order bits of the T register. ADDT and
SUBT instructions (add to/subtract from accumulator with
shift specified by the T register) have been provided to allow
additional arithmetic operations.

TMS320C25 hardware

The most important task for a hardware designer is inter-
facing the DSP device to the rest of the system as inexpen-
sively as possible. Here, we will discuss the TMS320C25’s
interfacing capabilities.

AUXILIARY REGISTER FILE DATA
MEMORY
w2 T3] LOCATION
>0000
M EE 501 INTERNA
AUXILIARY
REGISTER >03FF
Y . R
(N 8TO) EXTERNAL

e [T — Ave CEF T A1) —» Froa| 92T
WETTTE ore
L)
e[0T T E)
[L S .

Figure 5. Example of indirect auxiliary register addressing.

The Texas Instruments TMS320C25 Digital Signal Microcomputer

instruction operand.

[TBP38L165 |
At5-A0}—A1 ADDRESS BUS 1416 s
D15-D8|2—
Ps »q4G1
+5 V‘[G2
TMS320C25 Y
[TBP3BL16S |
——»JA10-A0 ool
+qG1
D15-D0 +5 V——lG2 Y
ieE laa 18
18 DATA BUS
74AL632

Figure 6. Minimal configuration for external program
memory.

System configurations. The flexibility of the TMS320C25
allows systems configurations that satisfy a broad range of
application requirements. The TMS320C25 can be con-
figured as

® a stand-alone system (that is, as a single processor using
4K words of on-chip ROM and 544 words of on-chip
RAM),

® part of a parallel multiprocessing system (two or more
TMS320C25s) with shared global data memory, or

® a coprocessor for a host processor.

The stand-alone system interface consists of a 16-bit par-
allel data bus, a 16-bit address bus, three pins for memory
space select, and various system control signals. In Figure 6,
an external data RAM and a PROM/EPROM have been
added to the basic stand-alone system. The READY signal
is used for wait-state generation for communicating with
slower off-chip memories. All the memories and 1/0
devices are directly controlled by the TMS320C25, thus
minimizing external hardware requirements.

Parallel multiprocessing and host/coprocessor systems
take advantage of the TMS320C25’s direct memory access
and global memory configuration capabilities.

Direct memory access. The TMS320C25 supports direct
memory access to its external program/data memory and
1/0 space through its HOLD and HOLDA signals. Direct
memory access can be used for multiprocessing: Execution
on one or more processors can be temporarily halted to
allow another processor to read from or write to the halted
processor’s local off-chip memory. Here the multiprocessing
is typically performed in a master/slave configuration. The
master can initialize the slave by downloading a program
into its program memory space or provide the slave with the
data needed to complete a task.

In a direct memory access scheme, the master may be a
general-purpose CPU, a TMS320C25, or perhaps even an
A/D converter. A master TMS320C25 takes complete con-
trol of the slave’s external memory by asserting HOLD low
through its external flag (XF). This causes the slave to place
its address, data, and control lines in a high-impedance
state. By asserting RS in conjunction with HOLD, the
master processor can load the slave’s local program memory
with the necessary initialization code on reset or power-up.
The two processors can be synchronized through use of the
SYNC pin to make the transfer over the memory bus faster
and more efficient.

After control of the slave’s buses is given to the master
processor, the slave alerts the master by asserting HOLDA.
This signal can be tied to the master’s BIO pin. The slave’s
XEF pin can be used to indicate to the master when the slave
has finished performing its task and needs to be repro-
grammed or given additional data to continue processing.
In a multiple-slave configuration, the priority of each slave’s
task can be determined by tying the slave’s XF signals to the
appropriate INT pin on the master.

A PC environment provides an example of a direct
memory access scheme in which the system bus is used for
data transfer. In this configuration, either the master CPU
or a disk controller may place data on the system bus for
downloading into the local memory of the TMS320C25.
Here the TMS320C2S5 acts like a peripheral processor with
multifunction capability. In a speech application, for exam-
ple, the master can load the TMS320C25’s program
memory with algorithms to perform tasks such as speech
analysis, synthesis, or recognition, and its data memory
with the required speech templates. In a graphics applica-
tion, the TMS320C25 can serve as a dedicated graphics
engine. programs can be stored in ROM or downloaded via
the system bus into program RAM. Again, data can come
from PC disk storage or be provided directly by the master
CPU. In this configuration, decode and arbitration logic is
used to control the direct memory access. When the address
on the system bus resides in the local memory of the periph-
eral TMS320C2S, this logic asserts the HOLD signal while
sending the master a not-ready indication to allow wait
states. After the TMS320C25 acknowledges the direct
memory access by asserting HOLDA, READY is asserted
and the information is transferred.

Global memory. In some digital signal processing tasks,
the algorithm being implemented can be divided into sec-
tions and a processor dedicated to each. In this case, the

The Texas Instruments TMS320C25 Digital Signal Microcomputer 43

first and second processors can share global data memory,
as can the second and third, the third and fourth, and so
on. Arbitration logic may be required to determine which
section of the algorithm will execute and which processor
will have access to the global memory. The dedication of
each processor to a distinct section of the algorithm makes
pipelined execution—and thus higher throughput—possible.

External memory can be divided into global and local sec-
tions. Special registers and pins on the TMS320C25 allow
multiple processors to share up to 32K words of global data
memory. This facilitates efficient ‘‘shared data’’ multi-
processing, in which data are transferred between two or
more processors. Unlike a direct memory access scheme,
reading or writing global memory does not require one of
the processors to be halted.

TMS320C25 development tools
and support

A digital signal processor is essentially an application-
specific microprocessor or microcomputer. Like any micro-
processor, it needs good development tools and technical
support—no matter how impressive its performance or how
éasy its interfacing to other devices, it cannot be easily
designed into systems without such tools and support. In
developing an application, a designer encounters problems

can be executed by the simulator, emulator, or the TMS-
320C25 processor. The macro assembler/linker is currently
available for the VAX/VMS, TI PC/MS-DOS, and IBM
PC/PC-DOS operating systems.

Simulator. The simulator is a software program that
simulates TMS320 operations to allow program verification.
Its debug mode enables the user to monitor the state of the
simulated TMS320 while his program is executing. The
simulator uses the object code produced by the macro
assembler/linker. During program execution, the internal
registers and memory of the simulated TMS320 are modi-
fied as each instruction is interpreted by the host computer.
Once program execution is suspended, the internal registers
and the program and data memories can be inspected and
modified. The simulator is currently available for the
VAX/VMS, TI PC/MS-DOS, and IBM PC/PC-DOS oper-
ating systems.

Hardware tools. Tools are provided for in-circuit emula-
tion and hardware program debugging such as breakpoint-
ing and tracing so that DSP algorithms can be developed
and tested in a real-product environment.

Evaluation module. The evaluation module, or EVM, is a
stand-alone board that contains all the hardware tools

No matter how impressive its performance or how easy its interfacing to other
devices, a digital signal processor cannot be designed into systems without good
development tools and vendor support.

and needs to ask questions. Often the tools and vendor sup-
port given him are the difference between the success and
failure of his project.

The TMS320C25 is supported by many development
tools. 16 These tools range from inexpensive modules for ap-
plication evaluation and benchmarking to an assembler/
linker and software simulator to a full-capability hardware
emulator.

Software tools. An assembler/linker and software simu-
lator that enable users to develop and debug TMS320 DSP
algorithms are available for the TI PC, IBM PC, and VAX.

Assembler/linker. The macro assembler translates assem-
bly language source code into executable object code. It
allows the programmer to work with mnemonics rather than
hexadecimal machine instructions and to reference memory
locations with symbolic addresses. It supports macro calls
and definitions along with conditional assembly. The linker
permits a program to be designed and impl d in
separate modules that are later linked to form the complete
program. The linker resolves external definitions and
references for relocatable code, creating an object file that

needed to evaluate the TMS320C25 and that provides in-
circuit emulation of it. The EVM’s firmware package con-
tains a debug monitor, an editor, an assembler, a reverse
assembler, and software communication to two EIA ports.
These ports allow the EVM to be connected to a terminal
and to either a host computer or a line printer. The EVM
accepts either source or object code downloaded from the
host computer. Its resident assembler converts incoming
source text into executable code in just one pass by auto-
matically resolving labels after the first assembly pass is
completed. When a session is finished, code is saved via the
host computer interface.

Software development system. The SWDS is a plug-in
card for the TI PC and IBM PC that provides the same
functionality as the EVM.

Emulator. The XDS (Extended Development System) is
an emulator providing full-speed in-circuit emulation with
real-time hardware breakpointing and tracing and program
execution capability from target memory. The XDS allows
integration of hardware and software modules in the debug
mode. By setting breakpoints based on internal conditions

The Texas Instruments TMS320C25 Digital Signal Microcomputer

or external events, the XDS user can suspend execution of
the program and give control to the debug mode. In the
debug mode, he can inspect and modify all registers and
memory locations. Single-step execution is available. Full-
trace capabilities at full speed and a reverse assembler that
translates machine code back into assembly instructions also
increase debugging productivity. The XDS system is de-
signed to interface with either a terminal or a host com-
puter. Object code generated by the assembler/linker can be
downloaded to the XDS and then controlled through a
terminal.

Analog interface board. The AIB is an analog-to-digital
(A/D) and digital-to-analog (D/A) conversion board that
can be used in conjunction with the EVM or XDS. It can
also be used in an educational environment to help familiar-
ize the user with real-world digital signal processing tech-
niques. The AIB includes A/D and D/ A converters with
12-bit resolution as well as antialiasing and smoothing filters
that have a cut-off frequency programmable from 4.7 kHz
to 20 kHz.

In addition to the above design tools, development sup-
port includes

 the Digital Filter Design Package, which runs on both
TI and IBM PCs and which allows the user to design digital
filters (low-pass, high-pass, band-pass, and band-stop types)
using a menu-driven approach,

® TI Regional Technology Centers staffed with qualified
engineers who provide technical support and design services,

® access to third parties with DSP expertise in various ap-
plication areas,

* a series of DSP books covering DSP theory, algorithms,
and applications and TMS320 implementations, 457

© documentation such as user’s guides, !%!2 data sheets, a
development support reference guide, !¢ and comprehensive
application reports, 4 and

® a technical support hotline and a bulletin board service.

TMS320C25 applications

The TMS320C25 is designed for real-time DSP and
other computation-intensive tasks in telecommunications,
graphics, image processing, high-speed control, speech pro-
cessing, instrumentation, and numeric processing. In these
applications, the TMS320C25 provides an excellent means
for executing signal processing algorithms such as fast Four-
ier transforms (FFTs), digital filters, frequency synthesizers,
correlators, and convolution routines. It can also execute
general-purpose functions since it includes bit-manipulation
instructions, block data move capabilities, large program
and data memory address spaces, and flexible memory
mapping.

Since digital filters are used in so many DSP applications,
let us examine them as a prelude to our discussion of
TMS320C25 applications.

Digital filtering. Filters are often implemented in digital
signal processing systems. Such filters fall into two
categories: finite impulse response (FIR) filters and infinite
impulse response (IR) filters. #6 For both types of filter, the
coefficients of the filter (weighting factors) may be fixed or
adapted during the course of the signal processing. The
TMS320C25 reduces the execution time of all filters by vir-
tue of its 100-ns instruction cycle time and optimized in-
structions for filter operations.

As we stated earlier, the FIR filter is simply the sum of
products in a sampled data system (see Equation 1 again).
A simple implementation of the FIR filter uses the MACD
instruction (multiply/accumulate and data move) for each
filter tap and the RPT/RPTK instruction to repeat the
MACD for each tap. Thus, a 256-tap FIR filter can be im-
plemented as

RPTK 255
MACD *-,COEFFP

Here, the coefficients can be stored anywhere in program
memory (in the reconfigurable on-chip RAM, in the on-chip
ROM, or in external memories). When the coefficients are
stored in on-chip ROM or externally, the entire on-chip data
RAM can be used to store the sample sequence. This allows
filters of up to 512 taps to be implemented. Execution of
the filter will be at full speed, or 100 ns per tap, as long as
the memory (either on-chip RAM or high-speed external
RAM) supports full-speed execution.

Up to this point, we have assumed that the filter coeffi-
cients are fixed from sample to sample. If the coefficients
are adapted or updated with time, as they are in adaptive
filters for echo cancellation, #!5 the DSP algorithm requires
a greater computational capacity from the processor. To
adapt or update the coefficients, usually with each sample,
the TMS320C25 uses three instructions—multiply and
add/substract previous product to/from accumulator
(MPYA/MPYS), zero-out low-order accumulator bits and
load high-order accumulator bits with data (ZALR), and
store high-order bits of accumulator to data memory
(SACH). The method it uses to adapt the coefficients is the
least-mean-square, or LMS, algorithm, which can be ex-
pressed as

bp(i+1) = by (i) + 2B [e(i) - x(1—k)], (03]

where b (i + 1) is the weighting coefficient for the next sam
ple period, b (i) is the weighting coefficient for the present
sample period, B is the gain factor or adaptation step size,
e(i) is the error function, and x(i— k) is the input of the
filter.

In an adaptive filter, the coefficients b (/) must be up-
dated to minimize the error function e (i), which is the dif-
ference between the output of the filter and a reference
signal. Quantization errors arising during coefficient up-
dating can strongly affect the performance of the filter, but
these errors can be minirized if the updated values are ob-
tained by rounding rather than truncating. For each coeffi-
cient in the filter at a given point in time, the factor

The Texas Instruments TMS320C25 Digital Signal Microcomputer 45

TITL 'ADAPTIVE FILTER'
DEF ADPFIR
DEF X,Y

THIS 256-TAP ADAPTIVE FIR FILTER USES ON-CHIP MEMORY BLOCK
BO FOR COEFFICIENTS AND BLOCK Bl FOR DATA SAMPLES. THE
NEWEST INPUT SHOULD BE IN MEMORY LOCATION X WHEN CALLED.
THE OUTPUT WILL BE IN MEMORY LOCATION Y WHEN RETURNED.
ASSUME THAT THE DATA PAGE IS O WHEN THE ROUTINE IS CALLED.

2xB#e(i) is a constant. This factor can be computed once
and stored in the T register for each of the updates. This
reduces the computational requirement to one mul-
tiply/accumulate plus rounding. Without the new instruc- *

tions, the adaptation of each coefficient would take five in- ggg?gg ggg ;g;gg
structions corresponding to five clock cycles, as the follow- »

* kK K kK

BO PROGRAM MEMORY ADDRESS
BO DATA MEMORY ADDRESS

ing instruction sequence shows: ONE EQU >7A ; CONSTANT ONE (DP=0)
BETA EQU >7B ; ADAPTATION CONSTANT (DP=0)
ERR EQU >7C ; SIGNAL ERROR (DP=0)
LRLK AR2,COEFFD ; LOAD ADDRESS OF COEFFICIENTS. ERRF EQU >7D ; ERROR FUNCTION (DP=0)
LRLK AR3,LASTAP ; LOAD ADDRESS OF DATA SAMPLES. M EQU >7E ; FILTER OUTPUT (DP=0)
LARP AR2 X EQU >7F ; NEWEST DATA SAMPLE (DP=0)
LT ERRF i errf = 2%Bre(1) FRSTAP EQU >0300 ; NEXT NEWEST DATA SAMPLE
i

OLDEST DATA SAMPLE

LASTAP EQU >03FF
*

* FINITE IMPULSE RESPONSE (FIR) FILTER.
*

ZALH *,AR3 i ACC = bk(i)*2#*16
ADD ONE,15 : ACC = bk(1)*2#%16 + 2%#15 ADPFIR CNFP ; CONFIGURE BO AS PROGRAM:
MPY %- AR2 MPYK 0 ; Clear the P register.
APAC 3 ACC = bk(i)*2%%16 LAC ONE, 14 ; Load output rounding bit.
LARP AR3
* - *:
+oerrf¥x(1-k) + 24015 LRLK AR3,LASTAP ; Point to the oldest sample.
» N FIR RPTK 255
SfCH + 3 SAVE bk(1+1). MACD COEFFP,*- ; 256-tap FIR filter.
CNFD ; CONFIGURE BO AS DATA:
. APAC
* . SACH Y,1 ; Store the filter output.
NEG
. . ADD X,15 ; Add th t i t.
When the MPYA and ZALR instructions are used, the SACH ERR,1 Perr(i) = x(i) - yei)

*

adaptation reduces to three instructions corresponding to

: * LMS ADAPTATION OF FILTER COEFFICIENTS.
three clock cycles, as shown below: » LMs

LT ERR
MPY BETA
LRLK AR2,COEFFD ; LOAD ADDRESS OF COEFFICIENTS. PAC ; errf(i) = beta * err(i)
LRLK AR3,LASTAP ; LOAD ADDRESS OF DATA SAMPLES. ADD ONE,14 ; ROUND THE RESULT.
LARP AR2 SACH ERRF,1
LT ERRF ; errf = 2%B*e(i) *
. MAR *4
. LAC X ; INCLUDE NEWEST SAMPLE,
. SACL *
ZALR *,AR3 3 ACC = bk(1)*2%#16 + 2#%15 »
MPYA *-,AR2 i ACC = bk(1)*2%*16 LRLK AR2,COEFFD ; POINT TO THE COEFFICIENTS.
+ errf*x(i-k) + 2%*15 LRLK AR3,LASTAP ; POINT TO THE DATA SAMPLES.
; PREG = errf*x(i-k+l) LT ERRF
SACH *+ ; SAVE bk(i+1). MPY *-,AR2 ; P = 2%beta*err(i)*x(i-255)
. *
. . ADAPT ZALR *,AR3 ; LOAD ACCH WITH b255(i) & ROUND.
. MPYA *-,AR2 i b255(i+1) = b255(i) + P
* ;3 P = 2%betaerr(i)*x(i-254)
SACH *4+ ; STORE b255(i+l).
*
. . ZALR *,AR3 ; LOAD ACCH WITH b254(i) & ROUND.
Note that the processing order has been slightly changed to MPYA *.,AR2 3 b254(1+1) = b25A(i)(¢)P
incorporate the use of the MPYA instruction. This is dueto | * . i P . 2'”;2'“‘(”"‘(1'253)
the fact that the accumulation performed by the MPYA is » SACH *+ 3 STORE b254(1+1).
the accumulation of the previous product. ZALR *,AR3 ; LOAD ACCH WITH b253(i) & ROUND.
We have now seen the basic code for a FIR filter tapand | , MPYA *-,AR2 i gzzagnza:e:z?%iz(;_;52)
. . . ” ’
a coefficient update. Figure 7 shows a routine to filter a SACH *4+ 3 STORE b253(i+1).
signal and update the coefficients for a 256-tap adaptive .

FIR filter. Note that for each tap one instruction cycle is
needed to perform the FIR filter (i.e., to execute a MACD), | *

three instruction cycles ?re needed to update the filter coef- i:ﬂ :lfi:z : 'g?'(“i) A():CE :{H)bi“) & ROUND.
ficients, and 33 instruction cycles are needed for overhead. * 3 P = 2%beta*err(i)*x(i-0)
Therefore, the total number of execution cycles needed for N SACH *+ i STORE bl(i+1).

the routine is 33 + 4n, where 7 is the filter length. Also, ZALR % ,AR3 ; LOAD ACCH WITH b0(1) & ROUND,
note that data memory and program memory requirem'ents giég :; +AR2 ; g%;;l g ozi:(l’g i)+

are 5 + 2n and 30 + 3n words, respectively. For adaptive *

filters, the filter length is restricted by both execution time RET ; RETURN TO CALLING ROUTINE.

and memory. There is obviously more processing to be com-
pleted per sample due to the adaptation, and the adaptation ~ Figure 7. 256-tap adaptive FIR filter routine.

46 The Texas Instruments TMS320C25 Digital Signal Microcomputer

itself dictates that the coefficients be stored in the recon-
figurable block of on-chip RAM. Thus, an adaptive filter
with no external data memory is limited to 256 taps.

Telecommunications applications. Digital signal process-
ing will be more ively used in telecc ions as it
evolves toward all-digital networks. !7 Below, we discuss
several typical uses of the TMS320C25 in telecommunica-
tions applications.

Echo cancellation. In echo cancellation, an adaptive FIR
filter performs the modeling routine and signal modifica-
tions needed to adaptively cancel the echo caused by im-
pedance mismatches in telephone transmission lines. The
TMS320C25’s large on-chip RAM of 544 words and on-
chip ROM of 4K words allow it to execute a 256-tap adap-
tive filter (32-ms echo cancellation) without external data or
program memory.

High-speed modems. For high-speed modems, the
TMS320C25 can perform functions such as modulation
and demodulation, adaptive equalization, and echo
cancellation. 1819

Voice coding. Voice-coding techniques such as full-duplex,
32,000-bit-per-second adaptive differential pulse-code
modulation (CCITT G.721), CVSD, 16,000-bit-per-second
subband coding, and linear predictive coding are frequent-
ly used in voice transmission and storage. The speed of the
TMS320C25 in performing arithmetic and its normaliza-
tion and bit-manipulation capabilities enable it to imple-
ment these functions, usually within itself (i.e., with no ex-
ternal devices).

Graphics and image processing applications. In these ap-
plications, a signal processor’s ability to interface with a
host processor is important. The TMS320C25 multi-
processor interface enables it to be used in a variety of
host/coprocessor configurations. Graphics and image pro-
cessing applications can use the TMS320C25’s large directly
addressable external data space and global memory capabil-
ity to allow graphical images in memory to be shared with a
host processor, thus minimizing data transfers. The
TMS320C25’s indexed indirect addressing modes allow ma-
trices to be processed row by row when matrix multiplica-
tion is performed for 3-D image rotation, translation, and
scaling.

High-speed control applications. These applications use
the TMS320C25’s general-purpose features for bit-test and
logical operations, timing synchronization, and fast data
transfers (10 million 16-bit words per second). They use the
TMS320C25 in closed-loop systems for control signal condi-
tioning, filtering, high-speed computing, and multichannel
multiplexing. The following examples demonstrate typical
control applications.

Disk control. In disk drives, a closed-loop actuation
mechanism positions the read/write heads over the disk
surface. Accurate positioning requires various signal con-
ditioning tasks to be performed. The TMS320C25 can
replace costly bit-slice, custom, and analog solutions in
performing such tasks as compensation, filtering, and
fine/coarse tuning.

Robotics. The TMS320C25’s digital signal processing and
bit-manipulation power, coupled with its host interface,
allow it to be useful in robotics control. The TMS320C25
can replace both the digital controllers and the analog signal
processing hardware a robot needs to communicate to a
central host processor, and it can perform the numerically
intensive control functions typical of robotic applications.

Instrumentation. Instruments such as spectrum analyzers
often require a large data memory space and a processor
capable of performing long-length FFTs and generating
high-precision functions with minimal external hardware.
The TMS320C25 fulfills these requirements.

Numeric processing applications. Numeric and array pro-
cessing applications benefit from the TMS320C25’s perfor-
mance. The device’s high throughput and its multi-
processing and data memory expansion capabilities make it
a low-cost, easy-to-use replacement for a typical bit-slice ar-
ray processor.

Benchmarks. The TMS320C25 has demonstrated im-
pressive performance of benchmarks representing common
DSP routines and applications. Table 3 shows this perfor-
mance.

member of the TMS320 family. It is a pin-

compatible, CMOS version of the TMS32020 but
offers several enhancements of that device—a 100-ns in-
struction cycle time, 4K words of on-chip masked ROM,
eight auxiliary registers, an eight-level hardware stack, and a
double-buffered serial port. It also enhances the TMS32020
instruction set to support adaptive filtering, extended-
precision arithmetic, bit-reversed addressing, and faster
1/0.

The TMS320C25’s multiprocessor capability, large
memory spaces, and general-purpose features allow it to be
used in a variety of systems, including ones currently
employing costly bit-slice processors or custom ICs. Ji

T he TMS320C25 digital signal processor is the newest

The Texas Instruments TMS320C25 Digital Signal Microcomputer 47

References

1. L. R. Rabiner and B. Gold, Theory and Application of
Digital Signal Processing, Prentice-Hall, Englewood
Cliffs, N.J., 1975.

. A. V. Oppenheim, ed., Applications of Digital Signal
Processing, Prentice-Hall, Englewood Cliffs, N.J.,
1978.

. L. R. Rabiner and R. W. Schafer, Digital Processing of
Speech Signals, Prentice-Hall, Englewood Cliffs, N.J.,
1978.

. Digital Signal Processing Applications with the TMS320
Family, Texas Instruments Inc., 1986.

. R. Morris, Digital Signal Processing Software, DSPS
Inc., Ottawa, Ont., 1983.

. A.V. Oppenheim and R.W. Schafer, Digital Signal Pro-
cessing, Prentice-Hall, Englewood Cliffs, N.J., 1975.

. C. Burrus and T. Parks, DFT/FFT and Convolution
Algorithms, John Wiley & Sons, New York, 1985.

. K. McDonough, E. Caudel, S. Magar, and A. Leigh,
‘‘Microcomputer with 32-bit Arithmetic Does High-
Precision Number Crunching,’’ Electronics, Feb. 24,
1982, pp. 105-110.

. S. Magar, E. Caudel, and A. Leigh, ‘A Microcomputei
with Digital Signal Processing Capability,”” Digest of

The Texas Instruments TMS320C25 Digital Signal Microcomputer

10.
11.

Tech. Papers— 1982 IEEE Int’l Solid-State Circuits
Conf., pp. 32-33 and 284-285.

TMS32010 User’s Guide, Texas Instruments Inc., 1983.

TMS320C25 User’s Guide, Texas Instruments Inc., -
1986.

. TMS32020 User’s Guide, Texas Instruments Inc., 1985.
. H. G. Cragon, “The Elements of Single-Chip Micro-

computer Architecture,”” Computer, Vol. 13, No. 10,
Oct. 1980, pp. 27-41. '

. S. Rosen, ““Electronic Computers: A Historical

Survey,”” Computing Surveys, Vol. 1, No. 1, Mar. 1969.

. M. Honig and D. Messerschmitt, Adaptive Filters,

Kluwer Academic Publishers, Hingham, Mass., 1984.

. TMS320 Family Development Support Reference

Guide, Texas Instruments Inc., 1986.

. M. Bellanger, ‘‘New Applications of Digital Signal Pro-

cessing in Communications,”” IEEE ASSP Magazine,
July 1986, pp. 6-11.

. R. Lucky et al., Principles of Data Communication,

McGraw-Hill, New York, 1965.

. P. Van Gerwen et al., ‘““Microprocessor Implementation

of High Speed Data Modems,’’ IEEE Trans. Com-
munications, Vol. COM-25, 1977, pp. 238-249.

Gene A. Frantz has been Texas Instruments’ applications
manager for digital signal processing products since 1984.
He is also a senior member of the Technical Staff at TI. He
joined TI in 1974 as a system design engineer and worked
on calculators in TI’s Consumer Products Division. In 1976
he was assigned to the Li’l Professor design team. He was
next assigned to the Speak & Spell project, where he served
as program manager. Since then, he has been involved with
every speech-related consumer product developed at TI.
Frantz received a BSEE from the University of Central
Florida in 1971, an MSEE from Southern Methodist
University, and an MBA from Texas Tech University.

Jay Reimer, a member of the TI Technical Staff, handles
DSP applications engineering for the TMS320 family of
products. He joined TI in 1979 to work with speech prod-
ucts in the company’s Consumer Products Division. In
1984, he transferred to the Semiconductor Group to work
with digital signal processors. His responsibilities include
software development for the TMS320 family and applica-
tions assistance for customers using the processors. Reimer
received a BS in physics from Fort Hays State University,
Kansas, in 1975 and an MS in physics from the University
of Kansas in 1977.

The Texas Instruments TMS320C25 Digital Signal Microcomputer

T

Kun-Shan Lin has been involved in digital signal processing
applications in the TI Semiconductor Group since 1984. He
is a senior member of the TI Technical Staff. He joined
Texas Instruments in 1979 and was assigned to the Con-
sumer Products Division, where he developed speech tech-
niques for learning aids. Prior to joining TI, he was an
assistant professor of electrical engineering at Tennessee
State University and an adjunct assistant professor of EE at
the University of New Mexico. Lin received his PhD from
the University of New Mexico in 1976.

Jon Bradley is an applications engineer for the TMS320
family. He joined Texas Instruments in 1976 and has been
an applications engineer for most of TI’s microprocessor
and peripheral products, starting with the TMS9900 family.
His responsibilities have included microprocessor system
design, digital and analog circuit design, integrated circuit
design, test engineering, and programming. Bradley received
a BSEE from Worcester Polytechnic Institute, Massachu-
setts, in 1976.

49

50

The Texas Instruments TMS320C25 Digital Signal Micrdcomputer

Part II. Digital Signal Processing
Interface Techniques

4. Hardware Interfacing to the TMS320C2x
(George Troullinos and Jon Bradley)

5. Interfacing the TMS320 Family to the TLC32040 Family
(Linear Products — Texas Instruments)

6. Icc Requirements of a TMS320C25
(Dave Zalac)

7. An Implementation of a Software UART Using the TMS320C25
(Dave Zalac)

8. TMS320C17 and TMS370C010 Serial Interface
(Peter Robinson)

51

52

Hardware Interfacing
to the
TMS320C2x

George Troullinos
Jon Bradley

Digital Signal Processor Products — Semiconductor Group
Texas Instruments

53

54

Hardware Interfacing to the TMS320C2x

Introduction

Each member of the TMS320 Second-Generation Digital Signal Processors family has the
power and flexibility to satisfy a wide range of system requirements. The second-generation
TMS320 line includes the TMS32020, TMS320C25, TMS320C25-50, TMS320E2S, and
TMS320C26. Please refer to the Second-Generation TMS320 User’s Guide[1] for details on de-
vice-to-device variation.

AllI'TMS320second-generation DSPs are pin-compatible and thus have the same set of exter-
nal interface signals. For convenience, the following notation will be used throughout this report:
Second-generation TMS320 devices refer to all members of this family, TMS320C2x refers to all
members of the second-generation family except the TMS32020 (ie., TMS320C25,
TMS320C25-50, TMS320E25, and TMS320C26). In other TI literature, TMS320C2x normally
refers to the entire second-generation family. This report will focus on TMS320C2x hardware in-
terfacing.

All second-generation TMS320 devices can address 64K 16-bit words in data space, 64K
words in program space, and 16 16-bit wide I/O ports. The 128K-word address space for program
and data memory can be utilized in applications that require large amounts of memory by interfac-
ing external memories using the control signals of second-generation TMS320 devices. In other
applications, the internal program and data resources of second-generation TMS320 devices can
be used to implement single-chip solutions. Peripheral devices can be interfaced to second-genera-
tion TMS320 devices to perform analog signal acquisition at different levels of signal quality.

This report suggests hardware design techniques for interfacing memories and peripherals
to the TMS320C2x. Differences between the TMS320C2x and the TMS32020 are pointed out
when appropriate. The first section presents the design interfaces of PROMs, EPROMs, and static
RAMs (SRAM) to the TMS320C2x. Timing requirements of the processor and external memories
are considered. The second section discusses the interface of acombo-codec (PCM coder-decoder),
an analog-to-digital converter, and a digital-to-analog converter to the TMS320C2x. All interfaces
in this report have been built and tested to verify their operation.

Ready Generation Techniques

This section describes techniques for generating the READY input signal for the
TMS320C2x. READY can be used to extend external bus cycles by an integer number of machine
cycles. The READY input thereby provides a means of interfacing the TMS320C2x to external de-
vices that cannot be accessed at full speed, such as memory devices having access times longer than
those required by the TMS320C2x.

The access time (t,) of a given device determines the number of dormant cycles (wait-states)
required for each access of that device. In general, N wait-states are required for a particular access
if ’

[te(c) * (N-1) + ta(A) <ty <] te(C) * N + taa)]1,N>0
where t¢(c) is the period of CLKOUT1/2 (the reciprocal of the machine rate) and ta(A) is the access
time from address specified in the appropriate second-generation TMS320 device electrical speci-
fication, Table 1 gives appropriate values of N for several ranges of t, for a TMS320C25 operating

Hardware Interfacing to the TMS320C2x 55

with a 100 ns instruction cycle time and a TMS320C25-50 operating with a 80 ns instruction cycle
time.

Table 1. Number of Wait-States Required for a Memory or Peripheral Access

TMS320C25 ’ - TMS320C25-50
Access Time Number of Wait Access Time Number of Wait
States Required States Required
t, < 40ns v 0 ta< 29 ns 0

40 ns< t, < 140 ns 1 29 ns< t, < 109 ns
140 ns < t, < 240 ns 2 109 ns< t, < 189 ns
240 ns< t, < 340 &s 3 189 ns< t, < 269 ns
340 ns< t, < 440 ns 4 269 ns< t, < 349 ns

Alwlo|m-

The timing requirements for generation of the READY signal are specified in the
TMS320C25 electrical specifications by tgy(A) and tg(sp-R) Of t4(C2H-R)-

Figure 1. Ready Timing Requirement

courz /{* \ /
- \L / \

|
_.': re— tsua)

____ A15-A0,
RS, DS, LS, RW '

|
ra— tysLR) —

READY (see Figure 1) must be valid no later than tgy(a) + tq(sL-R) after the address bus and
interface control signals (except STRB) become valid. This evaluates to

tsu(A) * td(SL-R) = (Q-11) + (Q-20) =9 ns
for a TMS320C25-50 operating with an input clock frequency of 50.0 MHz, and
tsu(A) * td(SL-R) = (Q-12) + (Q-20) = 18 ns

for a TMS320C25 operating with an input clock frequency of 40.0 MHz. Note that for bus cycles
with wait-states, CLKOUT? serves as‘the timing reference, whereas for no-wait cycles either
STRB or CLKOUT?2 can be used as the timing reference. Any skew between these two signals may
be disregarded as tq(s -R) and ta(C2H-R) 2re guaranteed independently.

56 Hardware Interfacing to the TMS320C2x

If all external bus cycles are to occur with no wait-states, READY can simply be tied high
with a pull-up resistor. Extending all external bus cycles with one wait-state can easily be accom-
plished by connecting the MSC output to READY as shown in Figure 2.

Figure 2. Connection for One Wait-State External Accesses

66
READY
TMS320C25-50
MSC
59

Similarly, MSC and the FS: f)_S_, and IS signals can be used to generate wait-state mixes such
as that resulting from the circuit in Figure 3. With this circuit, all program space accesses are one
wait-state accesses while all data space and I/O accesses occur at full speed.

Figure 3. Ready Generation for One Wait-State Program Space Accesses

READY

TMS320C25-50

2
3 3
Ol v

74AS32

Hardware Interfacing to the TMS320C2x

57

Applications having sufficiently simple address partitioning can make use of one or more
levels of standard logic gates to generate READY. The circuit shown in Figure 4 has the following

wait-state map:

External Space Address Range Number of Wait-States
Program 0000h—-7FFFh 1
Program 8000h—FFFFh 0
Data 0000h-FFFFh 0
1/0 0000h—000Fh 1

Figure 4. Ready Generator with Simple Address Partitioning

EB 74AS10
Wse }L_YS 74AS10

b r Do—
P

/3 74AS10

TMS320C25-50

O

@l

A15

READY

Note that this circuit just meets the READY specification of the TMS320C25-50 with
READY guaranteed valid no later than 9 ns from address valid.

TMS320C25-50 applications requiring more extensive address decoding will in most cases
require the use of a high-speed programmable logic device to generate READY sufficiently fast. -
Two such devices are listed in Table 2.

Table 2. High-Speed Programmable Logic Devices

Manufacturer Part Number thd (ns)
TI TIBPAL16L8-7 715
AMD PAL1618-7 7.5

The wait-state generator shown in Figure 5 can be used to generate the READY signal for
a TMS320C2S5 interfaced to external devices requiring up to 2 wait-states. A timing diagram for
this circuit is shown in Figure 6.

58 Hardware Interfacing to the TMS320C2x

Figure 5. Two Wait-State Generator Design

S8IN |-

5

FROM
TMS320C2x:

—q
1/2 74ALS20A |3

101 1/2 74ALS114A

CLR 74ALS20/
1] 1/274ALS114A

CLKOUT2

RS

TMS320C2x

T Connections to other devices in the system that require two wait states. (Inputs not used by other devices should be

pulled up.)

¥ Connections to other devices in the system that require one wait state. (Inputs not used by other devices should be pulled

up.)

§ Connections to other devices in the system that require zero wait states. (Inputs not used by other devices should be

pulled up.)

Figure 6. Timing Diagram for Two Wait-State Generator Design

CLKOUT1

XX
WEWSEL O\ an

)

ONE WAIT
STATE

- TWO WAIT
STATES

With this arrangement, READY is driven by a multiple-input NAND gate. This can be a stan-
dard gate such as a 74AS30 or can be part of the logic implemented by a high-speed programmable
logic device. The output of this gate is low unless at least one of the inputs is low. The propagation
delay of READY decode logic selecting zero wait-state devices in addition to the NAND delay

Hardware Interfacing to the TMS320C2x

59

must be short enough to satisfy the READY specification discussed above. For zero wait-state
accesses, the flip-flop J inputs are low, the Q outputs are high and neither flip-flop switches state.

Now consider the circuit operation when a one or two wait-state device is selected. The Q
output of each JK flip-flop is high at the start of the access, which can be considered to begin with
the falling edge of CLKOUT?2. All the inputs to the NAND gate generating READY are high and
thus READY is low during the first cycle and the TMS320C25 inserts one wait-state. If a one
wait-state device is decoded, the J input of the first flip-flop goes high. The Q output goes low on
the next falling edge of CLKOUT?2 and READY goes high.

If a two wait-state device is decoded, the J input of the second flip-flop goes high. Two cycles
are required for this signal to propagate to the READY line. For each cycle, one wait-state is in-
serted.

Referring to Figure 6, the following two inequalities must be satisfied in order for the setup
time specification of the flip-flops to be met:

1) t(decode) + {(NAND) * tsu(74ALS114A) < tsu(a) + 2Q

2) tph(74ALS114A) * {(NAND) *+ tsu(74ALS114A) < 4Q
where t(gecode) is the propagation delay of the decode logic for the selected device, tNaND) is the

delay associated with the NAND gate at the flip-flop input, tsu(74ALS114A) and tp(74ALS114A) are
the data setup time and prop delay of the 74 ALS114A, respectively, and Q = 1/4t¢(c). In Figure 6,

t = t(decodca)
t2 = {(NAND) * tsu(74ALS114A) and
13 = Ip(74ALS114A) + {(NAND)-
A third inequality must be satisfied for the READY specification to be met:
3) th(74ALS114A) * {(NAND) < td(C2H-R) + 2Q
For a TMS320C25-50 operating at 50 MHz, inequality (1) evaluates to
1) t(decode) * 5 ns+22ns <9 ns +40ns

or

t(decode) < 22 ns

This inequality specifies the maximum decode time in order for the setup time specification
of the pertinent flip-flop to be met.

The remaining two inequalities are satisfied:
2) 19ns + Sns + 22ns < 80ns
3) 19ns + 5ns < Ons + 40ns

All three of these inequalities should be considered if different flip-flops and/or gates are
used to implement the wait-state generator.

Note that special considerations should be made with respect to READY timing if the TI Ex-
tended Development Support (XDS) in-circuit emulator is used. Please refer to TMS320 Sec-
ond-Generation User’s Guide[1] and/or Extended Development Support Products User’s Guide
(literature number SPYF001) for further details on READY timing requirements.

60 Hardware Interfacing to the TMS320C2x

Interfacing Memories to the TMS320C25

This section describes interfaces of external memory devices to the 40 MHz speed version
ofthe TMS320C25. Interfaces to PROMS, EPROMs, and SRAMS are included. A separate section
is included in this document to describe memory interfaces to the TMS320C25-50.

The TMS320C2x offers 544 words of RAM and 4K words of masked ROM. For prototyping
and/or system expansion, however, external memories may be required. The speed, cost, and power
limitations imposed by a particular application determine the selection of a specific memory de-
vice. If speed and maximum throughput are desired, the TMS320C2x can run with no wait-states.
In this case, memory accesses are performed in a single machine cycle. Alternatively, slower me-
mories can be accessed by introducing an appropriate number of wait-states or by slowing down
the system clock. The latter approach is more appropriate when interfacing to memories with ac-
cess times slightly longer than those required by the TMS320C2x at full speed.

When wait-states are required, the number of wait-states depends on the memory access time
(see Table 1 on page 2). With no wait-states, the READY input to the TMS320C2x can be pulled
high. If one or more wait-states are required, the READY input must be driven low during the
cycles in which the TMS320C2x enters a wait-state.

The TMS320C2x implements two separate and distinct memory spaces: program space (64K
words) and data space (64K words). Distinction between the two spaces is made through the use
of the PS (program space) and DS (data space) pins. A third space, the I/O space, is also available
for interfacing with peripherals. This space is selected by the IS (I/O space) pin, and is discussed
in the Interfacing Peripherals section of this report.

The following brief discussion describes the TMS320C2x read and write cycles. A more
complete discussion is contained in the Second-Generation TMS320 User s Guide.[1] Throughout
this report, Q is used to indicate the duration of a quarter-phase of the output clock (CLKOUT1 or
CLKOUT?2). Memory interfaces discussed in this report assume that the TMS320C2x is running
at 40 MHz; i.e., Q = 25 ns. The memory read and write timings are shown in Figure 7. In a read
cycle, the following sequence occurs:

1) Nearthe beginning of the machine cycle (CLKOUT1 goes low), the address bus and one

of the memory select signals (PS DS, or IS) becomes valid. R/W goes high to indicate
a read cycle.
2) STRB goeslow in not less than tg(4) = (Q - 12) ns after the address bus becomes valid.
3) Early in the second half of the cycle, the READY input is sampled. READY must be
stable (low or high) at the TMS320C2x no later than td(SL-R) = (Q-20) ns after STRB
goes low.

4) With no wait-states (READY is high), data must be available no later than

tacsL) = (2Q —23) ns after STRB goes low.

The sequence of events that occurs during an external write cycle is the same as the above,
with the following differences:
1) R/W goes low to indicate a write cycle.
2) The data bus begins to be driven approximately concurrently with STRB going low.
3) The databus enters a high-impedance state no later than tgigpy = (Q + 15) ns after STRB
goes high.

Hardware Interfacing to the TMS320C2x 61

Figure 7. Read and Write Timings

. CLKOUT1 \ / \
A15-A0
I G R—

RAW XRIXKIRIKLKSS
R | W
"V \/ \/ V" \/\/ '.V‘V """V’V‘V’V‘ '""’V"‘V‘V’V""".”' \/ """""' """""" READ
READY RS EEEEEEE eveLe
D15-DO :
| |
| |'
. Y v’v‘v.v \V, v’v’v’v.v‘\ |
i SRRTRIRIN, &R
|
> *tysR !
\/\/ "V’V""’V"’V’""V’V"’v’v"‘ """' """""V"’V‘V V."V"".'.""""'."" W R lT E
READY {XXXXXEOKEIILKIKY LIS [cyCLE
‘ F— tyisp) —
D15-D0 @(DATA OUT

Interfacing with a PROM

A convenient means of implementing program memory in a TMS320C2x system is provided
through the use of PROMs. Two separate approaches for interfacing PROMs to the TMS320C2x
are considered. The first approach does not require address decoding since the system contains only
a small amount of one type of memory. The second approach illustrates an interface that utilizes
address decoding to distinguish between two or more memory types with different access times.

Direct PROM Interface

An example of a no wait-state memory system is the direct PROM interface design shown
in Figure 8. In this design, the TMS320C2x is interfaced with the Texas Instruments

TBP38L165-35, a low-power, 2K x 8-bit PROM. The interface timing for the design of Figure 8
is shown in Figure 9.

62 Hardware Interfacing to the TMS320C2x

Figure 8. Direct Interface of the TBP38L165-35 to the TMS320C2x

AO
A1

TMS320C2X

D10
D11
D12
D13
D14
D15

TBP38L165-35

55 | H10

Kt A N P aol2__Do
5 | AT a1 oy
L3 A2 Q2
Lo B N R 1N
e N as
PrEm
Ka N3] as a5)15_D5
e N Qs[5
K5 A N1l -
K6 23 :; Q N
L7 22| o
K7) 21 A0
s GI G2 G3
74ALS04
o 20 |18 |19
H11
BV 20 |18 |19
Gl G2 G3
358 e N o Qo| ?o gg
F1 ——] A1 Q1N
E2) ——o~ A2 Q2f-=os
E1) N a3 Q3f——"|
=] 14D12
D2 o> A4 Qa4
‘ 15D13
D1 N—oI A5 Q5>
—— 16 D14
C2 ——1 A6 Q65
c1 N— A7 Q7—=
(B2 N—7 A8
A2 —o A9
B3) N—— A10
A3
Ba TBP38L165-35
Ad N
B5
A5
B6

Hardware Interfacing to the TMS320C2x

63

Figure 9. Interface Timing of the TBP38L165-35 to the TMS320C2x

CLKOUT1 _—\ / \—_

| |
'r'. tsu |

—-—: ‘
A15-A0 y

] |
[S— —) -l
ta(s) | | tdls

D15-DO DATA'IN

As discussed earlier, the TMS320C2x expects data to be valid no later than (2Q —23) ns after
STRB goes low; this is 27 ns for a TMS320C2x operating at 40 MHz. The access times of the
TBP38L165-35 are 35 ns maximum from address (ta(a)), and 20 ns maximum from chip enable
(ta(s))- On the TMS320C2x, address becomes valid a minimum of tg, = (Q —_12) ns = 13 ns
before STRB goes low (see Figure 1). The memory is not enabled, however until STRB goes low.
Therefore, the data appears on the data bus within 27 ns after STRB goes low, as required by the
TMS320C2x.

Bus conflict may occur when a TMS320C2x write cycle is followed by a memory read cycle.
Inthis case, the TMS320C2x data lines must enter a high-impedance state before the memory starts
driving the data bus. In a write cycle, the TMS320C2x enters a high-impedance state no later than
15 ns after the beginning of the next cycle. Since the design of Figure 8 utilizes STRB to enable
the TBP38L165s, these memories cannot drive the data bus before STRB goes low, i.e., Q ns after
the beginning of the cycle. Therefore, bus conflict is avoided since 25 ns > 15 ns.

Note that the TMS320C2x R/W line is connected to the G enable line on both TBP38L165s.
Therefore, the PROMs are disabled whenever R/'W goes low, even if STRB is active. This prevents
the bus conflict that occurs if the PROMs are written to when using the TBLW instruction, which
transfers data from the data memory space to the program memory space.[1] Such transfers, how-
ever, were intended to be made only when RAMs are used in the program space.

64 Hardware Interfacing to the TMS320C2x

The most critical timing parameters of the TBP38L165-35 direct interface to the
TMS320C2x are summarized in Table 3.

Table 3. Timing Parameters of the TBP38L.165-35 Direct Interface to the TMS320C2x

Description Symbol Used in Figure 9 Value
Address setup time to 13 ns (min)
TBP38L165-35 access time from chip enable ta(s) 20 ns (max)
TBP38L165-35 disable time tdis 15 ns (max)

PROM Interface with Address Decoding

The second design example considers the interface of PROMs to the TMS320C2x using ad-
dress decoding. A major issue when designing an interface with address decoding is that the
TMS320C2x requires the READY signal to be stable no later than (Q — 20) ns after STRB goes
low. Since the setup time for the address is (Q — 12) ns, the TMS320C2x requires (worst case) a
stable READY at least (2Q — 32) ns after the address has been stabilized. This is 18 ns at 40 MHz.
Proper address decoding may require two levels of gating. A third level of gating is required when
more than one type of memories or peripherals with different numbers of wait-states is used. Using
’AS interface logic (the fastest currently available), these three levels of gating have a total propa-
gation delay of 15 ns (worst case). Using a 74AS138 three-to-eight-line decoder to implement the
first two levels of gating does will not result in any significant improvement in the propagation
delay. (The 74AS138 has a maximum propagation delay of 9.5 ns for a high-to-low transition.)

Anapproach thatcan be used to meetthe READY timing requirements is shown in Figure 10.
This design utilizes one address decoding scheme to generate READY, and a second address decod-
ing scheme to enable the different memory banks.

In this design, the memories with no wait-states are mapped at the upper half (upper 32K)
of the program space. The lower halfis used for memories with one or more wait-states. This decod-
ing is implemented with the 74AS20 four-input NAND gate. The output of this gate is low when
the following are true:

1) Address line A15 is high; i.e., the upper 32K words are selected.

2) DS and IS are high; i.e., an external program memory cycle is in progress.

Hardware Interfacing to the TMS320C2x 65

Figure 10. Interface of the TBP38L165-35 to the TMS320C2x

TMS320C2X TBP38L165-35
K1 8 9 DO
A0 — —— A0 Qo
o e N P ok
Nl C N Q21555
A3 = N—1 A3 Q3
as |2 NI W Q¢ |14 D4
K4 3 [15 D5
As | —=1 A5 Q5 o
5 2 16 D6
12 [xs 1] 48 7 o7
A7 —K—B——/ \—5 A7 Q7|
A8 =1 7 A8
A 1 5] A9
A10 |—— 74AS138 — | Al0
A13 :29 ; A 56 5 G1 G2 G3
9 ’__] 20 |18 |19
:}g L10 3 g L
PS *J;ﬁ g G2A oz L1 MEMSE
RIW
+5V
55 K10 1kQ
= [‘
READY |28
STRB |10 >
Fi 74AS04 MEMSTRB 20 [18 |19
DO !
E2 Gi G2 G3
o1] ¢ Gleo
D3 122 —] Al S EEIGI
pa [21 N e 54 KEISTIN
Ds |22 N Q3 D12
Ty A 1A o EEIIE
07 182 145 Q5 5 D1a
ps [A2 N Q5 147 Bis)
Do |53 N———oAA7 Q7 —=
10 122 —— As
B4) A9
D11 P2 A10
D12 =2
B5
D13 e TBP38L165-35
D14 [22
D15 =

Hardware Interfacing to the TMS320C2x

The timing of READY is shown in Figure 11. READY goes high 10 ns (worst case) after the .
address has become valid.

Figure 11. Interface Timing of the TBP381.165-35 to the
TMS320C2x (with Address Decoding)

CLKOUT1 \ /

g

CLKOUT2 / \
STRB \ /T
|
| |
: !
T
MEMSTRB l /r | \
| |
| | | |
— Y — r—t,
A15-A0
|]
— -t |
+ | |
MEMSEL | \L : /
| T
— :<—-t3 {
I
READY . / : \
: — :‘— tais
y tq > |
D15-DO {: DATA IN }——

Address decoding is implemented by the 74AS138. This decoding separates the program
space into eight segments of 8K words each. The first four of these segments (lower 32K of address
space) are enabled by the YO0, Y1, Y2, and Y3 outputs of the 74AS138. These segments are used
for memories with one or more wait-states. The other four segments select memories with no
wait-states (the TBP38L165s are mapped in segment #5 starting at address 8000h). Note that in
Figure 10, R/W is used to enable the 74AS138. This prevents a bus conflict from occurring if an
attempt is made to write to the PROMs.

In Figure 10, MEMSEL goes low no later than 10 ns (time t; in Figure 11) after address is
valid. The PROMs are not enabled, however, until MEMSTRB goes high, i.e., a minimum of 5 ns
after STRB goes low (time t1 in Figure 11). Valid data appears on the data bus within 25 ns later.
This meets the 27 ns or (2Q—23) ns access time required from STRB low by the TMS320C2x. Note
that in the design of Figure 10, STRB is used to enable the PROMs so that no bus conflict occurs

Hardware Interfacing to the TMS320C2x 67

if the memory read cycle is followed by a write cycle. As seen in Figure 11, the memory enters a
high-impedance state within (t + tgis) = 20 ns.after STRB goes high. Therefore, if a memory read
cycle is followed by a write cycle, no bus conflict occurs since the TMS320C2x starts driving the
data bus no earlier than Q ns after the beginning of the write cycle.

The most critical timing parameters of the TBP38L165-35 interface with address decoding
to the TMS320C2x are summarized in Table 4.

Table 4. Timing Parameters of the TBP38L165-35 Interface with
Address Decoding to the TMS320C2x

Description Symbol Used in Figure 11 Value
Propagation delay through the 74AS04 ty 5 ns (max)
Propagation delay through the 74AS138 ty 10 ns (max)
Address valid to READY t3 10 ns (max)
TBP38L165-35 disable time tais 15 ns (max)

In summary, when interfacing to PROM memories with the TMS320C2x, two different ap-
proaches can be taken depending on whether or not any of the memories in the system require
wait-states. When no wait-states are required for any of the memories, READY can be tied high,
and the interface to the PROMs becomes a direct connection. When some of the system memories
require wait-states, address decoding must be performed, and a valid READY signal that meets the
TMS320C2x timing requirements must be provided. An efficient method of accomplishing this is
to use one section of circuitry to generate the address decode, and a second, independent section
to generate the READY signal.

EPROM Interfacing

EPROMSs may be used to debug TMS320C2x algorithms. Three different EPROM interfaces
to the TMS320C2x are presented in this subsection. First, the direct interface of an EPROM that
requires no wait-states is discussed. This is followed by descriptions of EPROM interfaces that re-
quire one and two wait-states.

Direct EPROM Interface with No Wait-States

A Texas Instruments TMS27C292-35 EPROM can interface directly to the TMS320C2x
with no wait-states, as shown in Figure 12. The TMS27C292-35 is a CMOS EPROM with access
times of 35 ns from valid address and 25 ns from chip select. The timing of the interface is shown
in Figure 13. "

68 k Hardware Interfacing to the TMS320C2x

Figure 12. Direct Interface of the TMS27C292-35 to the TMS320C2x

TBP38L165-35

D15

Hardware Interfacing to the TMS320C2x

N N 90 (3551
A1 LA — A1 Q1 11 D2
L3 \ 6 1
A2 5]A2 Q214513
A3 e o KT
A4 N—— A4 Q44—
K4 NE 15 D5
A5 > A5 Qs 16 D6 \
A6 S —— A6 Q6 17 D7
A7 LW N1 A7 Q7 __Z__\
A8 -—/ff ;gg A8
A9 NEETIpW
Ao —=A10
GI G2 G3
720 |18 |19
sTRB 1O
é 55 J10 74AS04 D‘:
§ AW H11
2 sV 20 |18 |19
P— —
Gl G2 G3
3_8_% 1k N—— A0 Qo> D8
READY -
K 0 D9
polEl Al Q1 41D10
E2 N—oA2 Q2
D1}= 13D11
E1 — A3 Q3
D2f—— 14D12
D322 | ot [15D13
D1 N——A5 Q5
D4\ 16D14
ps5 €2 —]A6 Q6o p1s
poe[5] N——A7 Q7
5o\
B2 — A8
g; A2 N—IAg
Do | B3 ——A10
A3
D10 TBP38L165-35
D11 F
D12}
D13 —ig
D14
B6

69

Figure 13. Interface Timing of the TMS27C292-35 to the TMS320C2x

CLKOUT1 ——\ ’ / L
s \

|
——D-: :4— tey

A15-A0

! T
j— ta(s) —_.: - tdis _.:

D15-DO { DATA IN }———

Asshown in Figure 13, the EPROMs are not enabled until STRB goes low. Since the address
has been valid for at least ty,, = 13 ns before STRB goes low, valid data appear on the data bus
ta(s) = 25 ns (max) later. The EPROMs are disabled with STRB going high, and their output buffers
enter a high-impedance state, tgjs = 25 ns (max) later. Therefore, no bus conflict occurs even if the
memory read cycle is followed by a write cycle.

N

The most critical timing parameters of the TMS27C292-35 direct interface to the
TMS320C2x are summarized in Table 5.

Table 5. Timing Parameters of the TMS27C292-35 Direct Interface to the TMS320C2x

Description Symbol Used in Figure 11 Value
Address sctup time tou 13 ns (min)
TMS27C292-35 access time from chip enable tacs) 25 ns (max)
TMS27C292-35 disable time tais 25 ns (max)

EPROM Interface with One Wait-State

The hardware interface of the Wafer Scale WS57C64F-12 (8K x 8-bit EPROMs) to the
TMS320C2x is shown in Figure 14. The WS57C64F-12s are mapped at address 2000h. The inter-
face timing diagram is provided in Figure 15.

70 Hardware Interfacing to the TMS320C2x

Figure 14. Interface of the WS57C64F-12 to the TMS320C2x

TMS320C2x WS57C64F-12
Aol KL_A 10,0 ooltl__DO
K2 t 9 12 D1
A= Al O1f———
Ao|3 N8lar oofi3__D2
Al 5% 9o
Adhea 51 947 s
A5 f— N—4A5 05—
5 4 18 D6
A6 A6 06—
N L 3l%; o707
A8 _K_G.._/ N_25 A8
AolZ_A n—24]%g +5V
K7 21
At0f —S5A10 1kQ
A1 F/ ¥___2_ A1l PGM
K8 74AS138 2] 27
N) A2
A13}=2 ; A CE OE
Al4 B __| 14 MEMSEL 20 22
PN LI B . ¢
J10 4 | === 5
————d p—
R;’_/? T E g.;zA caap™ 74AS32
1o L D) DTSTR
STRB|; 1/
D0 f——
D1 E—f-\ 200 22
D255 WAIT-STATE L 10 25 85 1 D8
D35 GENERATOR 9 12 D9 \
D4t OF FIGURE 8 N N EENGE
D5 |- (ONE WAIT STATE) | [—]A2 02f-—pq
DEIE>™N G ﬁi 82 16 D12 N
D7125 N—5]as o5/1Z_DI3 N
2 N 4las osli8_Di4
D9s 19
D10} N 2: A7 07 D13
B4 N A8
DI ™ 74AS30 24] e 5V
D12[55N _21]
D13 A10 1 kQ
A5 N_23} 711 5RT
D14 A11 PGM
B6 21412 27
D15¥-\
READYITC WS57C64F-12)

Hardware Interfacing to the TMS320C2x

7

Figure 15. Interface Timing of the WS57C64F-12 to the TMS320C2x

CLKOUT1

CLKOUT2

7

|
[
e B R ! .
DTSTR \ L/ ’
|
|
PS/RW, .
A15-A0 ! VALID)M
1
- 1, !
MEMSEL A" | /
| i
| |
I T
READY |
| / 1\
o t ; —t, —»
_ F
D15-D0 L VALID >

The WS57C64-12 access times from valid address, chip select, and output enable are
taga) = 120 ns (max), ta(CE) = 120 ns (max), and t,(oE) = 35 ns (max), respectively. As shown
in Figure 14, the 74AS138 is used for address decoding. PS and R/W are used to drive the
G2A and G1 enable inputs of the 74AS138, respectively. The latter prevents any bus conflict re-
sulting from an accidental write (using the TBLW instruction) to the program space. MEMSEL go-
ing low t{ = 10 ns (max) after address valid (see Figure 15) is used for two purposes:

1) to drive the wait-state generator, as discussed earlier; and

2) to generate a strobe signal, DTSTR, that activates the output buffers of the

WS57C64-12s.

Time t3 in Figure 15, is the time from valid address to valid data on the data bus, i.e., t3 = t] +ty(CE)
=130 ns (max). Since 40 ns < t3 < 140 ns, one wait-state is required. The wait-state generator of
Figure 14 may be used to implement this wait-state. Also, note that the WS57CF64-12 is the slow-
est member of the WS57C64F EPROM series, and still meets the specifications for one wait-state.

With STRB going high, the read has been completed. DTSTR is then used to turn off the
memory output buffers. The output disable time of the WS57C64F-12 is tg;s = 35 ns (max). Time
t4 in Figure 15 is used to indicate the time from STRB high to output entering a high-impedance
state. With a propagation delay of tp=5.8ns (max) through the 74AS32, t4 = tp + tgis = 40.8 ns
(max). Since this time is less than 50 ns (the earliest the TMS320C2x can start driving the data bus
when the next instruction is a write), there is no bus conflict.

72 Hardware Interfacing to the TMS320C2x

Table 6 summarizes the most critical timing parameters of the WS57C64F-12 interface to
the TMS320C2x.

Table 6. Timing Parameters of the WS57C64F-12 Interface to the TMS320C2x

Description Symbol Used in Figure 11 Value
Address valid to MEMSEL low ty 10.5 ns (max)
STRB to DTSTR low ty 5.8 ns (max)
TMS320C2x address valid to WS57C64F-12 data valid t3 130.0 ns (max)
STRB high to WS57C64F-12 output disable ty 40.8 ns (max)

Hardware Interfacing to the TMS320C2x 73

EPROM Interface with Two Wait-States

The interface of the TMS27C64-20 to the TMS320C2x is shown in Figure 16. The
TMS27C64-20 is a CMOS 8K x 8-bit EPROM with an access time of 200 ns. The timing diagram
is shown in Figure 17.

Figure 16. Interface of the TMS27C64-20 to the TMS320C2x

TMS320C2x TMS27C64-20 74ALS244A
AO—E—;-/ \—1—3—‘A0 Q1 :12 i 1A1 1Y1—12———g—?—\
A1—L3— *—"E‘A1 Q2 13 6 1A2 1Y2W
AZH— —7A2 Q3 15 3 1A3 1Y3W\
A3LT- 6 A3 Q4 16 1 1A4 1Y43_——D—£_
A4T(T—/ ¥5—A4 Q5 [-——={2A1 2Y1-—=
AS'E—/ ;41\5 Q6 18 15 2A2 ZYZW
A6 |— A6 Q7 2A3 2Y3[———

K5 3 19 17 3 D7
A7 [\———25 A7 Q8= 2A4 2v4———
ABF—— N—=21A8 1G_2G
L7 \ 24
A9 ————/K_, o 1kQ |
A0 ——{A10 PGM
A1l L8 1 k23] A1 27
RTILCES 74AS138 —21p12 gh22
A13}=2 1M E 1
K9 2 I
A14170 B — | 14 MEMSEL 20
A15[=2 3 c Yo
P GoA ~=|.5
a1 6]gy 628] L v
—[H10 = b
STRB|
DOf=——\
E2
D1 FET 420 A
D2 WAIT-STATE 10 E 11 2|16 2G|,
p3 P2 GENERATOR N—g]A0 Qifm—1A1 1Y1e—roN]
D4L\ OF FIGURE 8 —8'A1 Q2 13 5 1A2 1Y2-_m
D512 (Tgo_;”A'T \—7A2 Q3f= a]1A3 1Y3Eo—oe
pe I€1 ATES) —{A3 Qe 1A4 1YaRS—on
o7 B2 : —5 A4 Q5o 72A1 2Y1E—oe
pa}A2_] A5 Q6T 2A2 2V2l—pu
polB3] —51R6 Q7[i5—7]2A3 2v3—
p1o}23 —-A7 as 2A4 2Y4:
Ba N_25] g +5V
g“ v 74AS30 N—24] pg ko TAALS244A
12[e5 21 A10 PGM
D13 s 23 27
D14fee > :11 sh22
—={A12
D15m D__lf_
READY TMS27C64-20

74 Hardware Interfacing to the TMS320C2x .

Figure 17. Interface Timing of the TMS27C64-20 to the TMS320C2x

CLKOUT1

awoz N/ N/ N _
STRB 'S

|
fet—
—- | t2

W

|
|
. \\ L/
BTSTR 1
]
}
PSR, | VALID .
—->|l :<—t1 :
— |
MEMSEL P\ L/
| |
|
| 1
READY | / M\
|
e ty ! - et
D15-D0 L VALID e

With a 200-ns access time, two wait-states are needed. These can be implemented using the
wait-state generator of Figure 14(a). Address decoding is similar to that used for the
WS57C64F-12, and the TMS27C64 is mapped at address 0000h. The memory cycle starts with ad-
dress valid. MEMSEL becomes low t1 = 10 ns (max) later, due to propagation delay through the
74AS138. With MEMSEL active, valid data appear on the TMS27C64 data lines, t, = 200 ns (max)
later. As shown in Figure 16, the 74A1.S244A octal buffers are used to buffer the memories from
the TMS320C2x. These buffers are enabled with DTSTR, which is a logical-OR signal of both
MEMSEL and STRB. The maximum propagation delay through these buffers is t; = 10 ns. There-
fore, valid data appear on the TMS320C2x data bus no later than t3 =ty + t, + tp = 220 ns from valid
address. This is the overall access time, and 140 ns < t3 <240 ns, i.e., two wait-states are sufficient.

With STRB going high, the TMS320C2x has completed the memory read. DTSTR follows
STRB, and t = 5.8 ns (maximum propagation delay through the 74AS32) after STRB goes high;
DTSTR also goes high. This forces the 74ALS244As to enter a high-impedance state 13 ns (max)
later. Therefore, no later than t4 = (13 + 5.8) ns = 18.8 ns after STRB goes high, the outputs of the
74ALS244As are in a high-impedance state (see Figure 12). Buffers were used because the disable
time of the TMS27C64-20 is 60 ns, which will generate a conflict on the data bus. '

Hardware Interfacing to the TMS320C2x 75

Table 7 summarizes the most critical timing parameters of the TMS27C64-20 interface to
the TMS320C2x.

Table 7. Timing Pafameters of the TMS27C64-20 Interface to the TMS320C2x

Description Symbol Used in Figure 11 Value
Address Valid to MEMSEL low ty 10.5 ns (max)
STRB low to DTSR low ty 5.8 ns (max)
TMS320C2x address valid to TMS27C64-20 t3 220.0 ns (max)
data valid
STRB high to TMS27C64-20 output disable ty 18.8 ns (max)

In summary, EPROMs can be a valuable tool during the prototyping stages of a design, and
may even be desirable for production. When EPROMs that are fast enough are used with the
TMS320C2x, a direct interface similar to that used for PROMs may be used. When slower, less
costly EPROMs are used, a simple flip-flop circuit can be used to generate one or more wait-states.
With slower EPROMSs, however, data output turnoff can be slow, and must be taken into consider-
ation in the design. The same advantages are offered by the TMS320E25, which has an on-chip
4K-word EPROM in place of the 4K-word on-chip ROM of the TMS320C25.

Interfacing SRAMS

The TMS320C2x can utilize SRAM as either program or data memory. When used as pro-
gram memory, object code can be downloaded into the RAM and executed. SRAM can also be used
as data memory to extend the TMS320C2x’s 544 words of internal RAM. In the first case, the
SRAM is mapped into the TMS320C2x program space, while the second case maps the SRAM into
the data space.

The SRAM chosen for this interface is the Cypress Semiconductor CY7C169-25 4K x 4-bit
SRAM. This SRAM has a 25-ns access time from address (t(A)) and a 15-ns access time from chip
enable (ty(cg))- Note that these access times are fast enough that a wait-state generator is not re-
quired for this interface. If, however, RAMs that require wait-states are used in the system,the
wait-state generator described in the Interfacing EPROMSs subsection can be used.

RAMs with a 4K x 4-bit organization are used in this application to minimize the package
count for the desired number of words of memory being implemented. In this case, only four pack-
agesarerequired. In contrast, if 16K x 1-bit memories had been used, 16 packages would have been
required, and much of the memory might have gone unused. In general, the choice of memory orga-
nization for a particular system should be based on the amount of memory required and the organi-
zation of the memories currently available in the industry. '

The hardware interface to this RAM is shown in Figure 18, and a timing diagram of the inter-
face is presented in Figure 19. ‘

76 Hardware Interfacing to the TMS320C2x

Figure 18. Interface of the CY7C169-25 to the TMS320C2x

TMS320C2x CY7C169-25
Py LA
K2
Al—
A2 _li/
ey LI
Ad LL/
L
Ls
A6l——
K5
AT~
K6
A8l ——
A9 15 DO
K7 /o1 fo—
A0
14 DI
A11 V0215552
READY V031453
74AS30 1/04 \
o5 10 15 D4
Vo1 g D5
74AS32 ‘
14 DS
\A0_16],, /02 7 D6
74AS138 N A1 17 /03 o\
ars|EO L L 3R 114 [As 184! yo4 |12 b7
K9 2 Y1 —=——1 A2
A14 B A3 19
L9 1 +5V 22" 1A3
A13 ry NAd 10 vo1 118 D8
|10 5]S2A 1hQ| NAS_ 21,4 14 D9
stRe [0 G2B G1 A6 3 1/02
—IH11 6 N2 “1a6 /03 13 D10
RV, A7__ 41,5 10s 12 D11
DOrEZ N L
D=\ NA9_ 6],.q
o2 tE S— A0 7|10 1ot 115 D12
D2 ME VTENY N
D3| 55— \A1L_8] 0 o2 |4 D13
pal2 == 13 D14
C2 1] S VO3I; D15
D513 4dW 104
D6 Feo—
p7—
A2
D8 ==
Do f——
A3
D1of=o—
B4
D11 ——
A4
D12f=o—
B5
D13}
A5
D14rge
D15}——

Hardware Interfacing to the TMS320C2x

77

Figure 19. Interface Timing of the CY7C169-25 to the TMS320C2x

CLKOUT1 \ / ' \
1
|
DS,)@(VALID XX
A15-A0 \
re-ty -
READY /“ \

STRB, \
/
|
i
|
—

]
!
_ | ;
RW !
. R B
H ! 1
MEMSEL ; \ Vi
I
.-ty ; ! READ
T™MS320C25 % I 5 rCYCLE
D15-D0 e e g =t ;
‘ ts - e Ballnm
CY7C169-25 h —
D15-D0
AW R LR
MEMSEL ' \ /
— et WRITE
| tB Ty > CYCLE
D15-DO
CY7C169-25 —\ '
g0, ___/ '

The design of Figure 18 utilizes a similar approach to the one described in the Interfacing
PROMs and Interfacing EPROMs subsections; i.e., one address decoding scheme is used to gener-
ate READY, and a second address decoding scheme is used to enable the SRAM. In this design,
RAMs with no wait-states are mapped at the lower half (lower 32K words) of the TMS320C2x data
space. The upper half is used for memories with one or more wait-states. This decoding is implem-
ented with the 74AS32 two-input OR gate. The output of this gate is low (active) when DS is low
(i.e.,access to external data space requested), and A15 islow (i.e., lower 32K words selected). Time
t1 in Figure 19 indicates the time from valid address to READY going high. The maximum value
for tg is '

t1= tp(74AS32) + tp(74AS30) =(5.8+5)ns=10.8ns

where th(X) denotes the maximum propagation delay through device X.

78 Hardware Interfacing to the TMS320C2x

As shown in Figure 18, address decoding that enables the RAM is implemented with the
74AS138. This decoding separates the data space into eight segments with 8K words per segment.
The first four segments are enabled by the Y0, Y1, Y2, and Y3 outputs of the 74AS138. These seg-
ments are used for memories with no wait-states. Note, in Figure 18, that the CY7C169s are en-
abled by Y1; i.e., the memories are mapped at address 2000h. The rest of those segments, enabled

by the other outputs of the 74AS138 decoder, are used for memories with one or more wait-states.

Memory Read Cycle

Figure 19 shows the timing for memory read and write cycles. In aread cycle, R/W goes high
concurrently with valid address, indicating that a read rather than a write cycle has been initiated.
With STRB used to enable the 74AS138, MEMSEL goes low no later than t) = 8.5 ns after STRB
goes low. This is the maximum propagation delay of the 74AS138 before outputting a high-to-low
transition from the G enable pin. The CY7C169s begin driving the data bus no earlier than ts =5 ns
after MEMSEL goes low. By then, all of the devices having access to the data bus must have entered
a high-impedance state. Figure 19 shows the TMS320C2x data lines entering a high-impedance
state no later than t4 = 15 ns after the beginning of the read cycle. This is the case when the present
read cycle is preceded by a write cycle.

The RAMs provide valid data no later than tg = 15 ns after MEMSEL goes low. Therefore,
the worst-case access time from STRB going low is ty + tg = 23.5 ns. This meets the 27-ns access
time required by the TMS320C2x operating at 40 MHz.

The TMS320C2x read cycle is concluded with STRB going high. MEMSEL follows STRB
and goes high within t3 = 7.5 ns. This time is the maximum propagation delay through the 74AS138
for a low-to-high transition. The CY7C169 data lines enter a high-impedance state no later than
t7 = 15 ns after MEMSEL goes high. Therefore, no bus conflict occurs if the present read cycle is
followed by a write cycle.

Memory Write Cycle

As shown in Figure 19, the memory write cycle is similar to the read cycle with the exception
that R/W is low. The TMS320C2x begins driving the data bus as soon as STRB goes low, while
MEMSEL follows STRB within t; = 8.5 ns. Since R/W is low when MEMSEL goes low, the
CY7C169s do not drive the data bus.

Data is clocked into the CY7C169s on the rising edge of MEMSEL. Time tg in Figure 19 is
the time that data is valid before MEMSEL goes high. This time is no less than the TMS320C2x
minirnum data setup time before STRB goes high (tg = (2Q — 20) ns = 30 ns when operating at
40 MHz) plus the 2-ns minimum propagation delay through the 74AS138. Therefore, tg is equal
to or greater than 32 ns. Note that this time meets the 10-ns minimum data setup time required by
the CY7C1609.

Table 8 summarizes the most critical timing parameters that must be considered when inter-
facing the CY7C169s with the TMS320C2x.

Hardware Inierfacing to the TMS320C2x 79

Table 8. Timing Parameters of the CY7C169-25 Interface to the TMS320C2x

Description Symbol Used in Figure 11) Value
Address valid to READY valid t; 10.8 ns (max)
STRB low to MEMSEL low ty 8.5 ns (max)
STRB high to MEMSEL high t3 7.5 ns (max)
CLKOUT1 low to TMS320C2x data bus ty 15.0 ns (max)
entering the high-impedance state
MEMSEL low to CY7C169-25 driving ts 5.0 ns (min)
MEMSEL low to CY7C169-25 data valid te 15.0 ns (max)
MEMSEL high to CY7C169-25 entering ty 15.0 ns (max)
the high-impedance state
Data setup time for a write tg 32.0 ns (min)
Data hold time tg 7.5 ns (min)

In summary, interfacing external RAM to the TMS320C2x is quite useful for expanding the
internal data memory or implementing additional RAM program memory. In cases where RAMs
of different execution times are used, separate schemes for address decoding and READY genera-
tion can be used to meet READY timing requirements in a similar manner to that used for the
PROM interface as described in this report. RAMSs with similar access times may then be grouped
together in one segment of memory.

Interfacing Memories to the TMS320C25-50

TMS320C25-50 memory interfaces are similar or identical in form to those of the 40-MHZ.
version of the TMS320C2S. In many cases, the interfacing techniques given in the preceding sec-
tion can be used, with higher-speed versions of the memory devices substituted.

This section describes the memory interface timing requirements of the TMS320C25-50.
Determining appropriate memory device speeds requires an understanding of TMS320C25-50 ex-
ternal bus cycles and the timing specification of the device.

The following excerpt from the TMS320C25-50 Electrical Specification and Figure 20
show the information necessary to determine the minimum memory device speed for a given appli-
cation.

Min Max Units
ta(A) . 30—31 ns
tsu(A) Q—l 1 ns
tsu(D)R 17 ns

80 Hardware Interfacing to the TMS320C2x

Figure 20 shows a TMS320C25-50 memory read and write cycle. Either of two timing re-
quirements must be satisfied to guarantee a successful read operation. These two requirements are
specified by ta(A) and tgy(p)R. Note that it is not necessary to satisfy both requirements, as each
parameter is guaranteed independently.

Figure 20. TMS320C25-50 Memory Read and Write Cycle
CLKOUT1 \ / \
A15-A0,
L8 T O R

|
STRB \f /{
| i
— V"" ""V"""’V"""" T T
R QOO ! |
l0nleleletedoloviel I t ! W
iy ,“' d(SL-R) | :
V‘V ""V"’V‘v" "' v.v‘v.v’v‘v.vr v’v.v’v.v’v’v’v.v‘v’v‘v’v.v.v.v‘v’v \/ \/ V" "' v‘v
(XX XXHX X XXX XXX QLXK XXX XXKKXIXX X XXX X READ
READY 00X XXX XXX XXXKXXNK) EXXXXXXXXXXXXXXXXXXKXKE [CYCLE
b tasy !
D15-D0 [5 ¢ oatan B
B : ’
— v.v.v.v.v’v v.v.v’v.v.v\ | | I
i SRRRREIRIN, | &
|
= *tysLm !
V’V‘V \/\/\/\/\/\/ V’V’V’V‘V’V"‘V‘V’ V.V V‘V’V’V"‘V’V’V’V’V’V’V’V’V"’V’V"’V’V"‘V’V"’ WR 'TE
READY (XY EEEREEEIEEIEEE 1 eyeLE
! F— taiso) —™
D15-D0 @(DATA OUT

Hardware Interfacing to the TMS320C2x 81

Atiming requirement of special interest is the memory access time measured from the falling
edge of STRB. The specification of this requirement is jointly implied by the device tyo) and
tsu(D)R specifications as shown in the following.

ta(a) is defined as follows:

ta(A) = tsu(A)min + tw(SL) * t(C) ~ tsu(D)Rmin
For convenience, define ty,(s) as follows:
tw(s) = tw(SL) * tx(C)
Then ty(a) is given by
ta(A) = tsu(A)min + tw(S) ~ tsu(D)R min
The taa) specification guarantees that
ta(A) > ta(A)max
or)
tsu(A)min * tw(S) ~ tsu(D)Rmin > ta(A)max
The above inequality is potentially confusing in that it guarantees a minimum on a parameter
with a max subscript. As with any parameter specified as a maximum, the measured t, A) value of
a given device must be greater than the specified maximum in order for the device to pass the ty(a)

test performed on the device. In this way, all values of ty(a) less than ty(o)max are guaranteed to
meet the device ty(A) requirement.

ta(A)max is specified as

ta(A)max = 30-35 ns (40 MHz TMS320C25)
ta(A)max = 3Q-31 ns (TMS320C25-50)

Thus, the following inequalities are guaranteed:

Q-12 + ty(g)~23>3Q-35 (40 MHz TMS320C25)
Q-11 + ty(gy~17>3Q-31 (TMS320C25-50)

which evaluate to

tw(s) > 2Q (40 MHz TMS320C25)
tw(s) > 2Q-3 (TMS320C25-50)

The ta(A) specification thus implies a minimum value for ty,g).

On a memory read cycle, data must be valid no later than tgy(p)Rmin prior to STRB going
high. The maximum access time from STRB low (define this as ty(sy)) is thus

ta(SL)max = tw(S)min ~ tsu(D)Rmin
=2Q-23 (40 MHz TMS320C25)

or
= (2Q-3)- 17 =2Q-20 (TMS320C25-50)

The specification of ta(SL) typically determines the maximum access time from chip select
and/or output enable for a memory device, as discussed in the following sections. Note that the

82 Hardware Interfacing to the TMS320C2x

specification of the minimum value of ty,(g1) (STRB —low pulse width) is in no way involved in
assessing access time from address or from STRB going low.

Full-Speed Interfaces

The TMS320C25-50 can be interfaced to fast SRAM with no wait-states. Two key memory
device specifications for such an interface are access time from address valid and access time from
chip select and/or output enable. The key TMS320C25-50 timing requirements are specified by

ta(SL) and ty(a).
If STRB is an input to logic that generates the chip select and/or output enable signal for a

memory device, data must be guaranteed valid no later than t,(gy) — tq from STRB falling, where
tq is the delay imposed by the logic used to generate the chip select or output enable signal.

Typically, devices with both chip select and output enable signals can more easily accommo-
date the ty(y) requirement, as STRB can directly serve as the output enable signal (active low),
resulting in the condition tq = 0. Logic internal to the memory device enables the device’s input
or output buffers (depending on the state of R/W) only if the chip is selected via its chip select input.

Interfaces to memory devices having a chip select input but no output enable input will in-
clude chip select logic having STRB as one of its inputs. In these cases tq is nonzero and thus the
requirement on access time from chip select is tightened.

Hardware Interfacing to the TMS320C2x ' 83

Figure 21 shows a TMS320C25-50 interfaced to 8K-words of full-speed SRAM and
8K-words of two wait-state EPROM. The operation of this circuit is discussed in the following sec-
tion.

Figure 21. TMS320C25-50 Interfaced to Full-Speed SRAM and Two Wait-State EPROM

5

° 8 =
8l : '
5 o
IN
. (4]
74ALS244A 8.\ ©
Iz 5
(U]
8
e
) i
G O
~N
] > — |4 o] <
o o o
TMS27C64-15 MT5C6408-20 TAALSTI4A Io
lw — Iu" bl - 'Y
2 lo S T\
@ [
g 9 By
gl 2 S =
< & o o
z < =
o
AN (7] p—
3]
g v)
9‘-‘\2 2\2
< % —
lof— £ l‘-“ m lo (]
<] I~ o 5
TMS27C64-15 l @« MT5C6408-20 74ALS114A|0
m o — | o
= |0 D A X
fo l
2]
N a
O L N <
74ALS244A (=] hd
i =
I - 5
._|_.J |2 <
) [4
Xy =
2 9
Cd a -
=) (<
kg
&
o lo lo 2 5 &
42 o | <
N 2 -4 ‘<
Q © - 0 -
2 o a - -
i 8 3
< o8] o
=] © >
T8 8 B o 1812 218 2 & &
[=
T ° B w % T
3]

TMS320C25-50

84 Hardware Interfacing to the TMS320C2x

Full-Speed SRAM in Program Space

The cost and/or availability of non-volatile memory devices able to support TMS320C25-50
full-speed program execution may be prohibitive for some applications. (One such device is the
Cypress Semiconductor 2K x 8 EPROM, part number CY7C291A-25.) The program code for
Figure 21 can be stored in EPROM and self-booted into the SRAM devices at powerup for subse-
quent full-speed execution.

Table 9 shows the wait-state map for this circuit. Note that the READY generation logic for
this arrangement is simple enough that inexpensive gates can be used for its implementation. Refer
to the Ready Generation Techniques section earlier in this report for details of operation of the
READY generation logic.

Table 9. Wait-State Map for Circuit of Figure 21.

External Space Address Range Number of Wait-States
Program 0000h-7FFFh 2
Program 8000h—FFFFh 0
Data 0000h~FFFFh 0
1/0 0000h—000Fh 1

Hardware Interfacing to the TMS320C2x

The TI TMS27C64 EPROM devices reside in the two wait-state portion of program space
at locations 0000h—1FFFh; the Micron MT5C6408-20 SRAM devices reside in the zero-wait por-
tion of program space at locations 8000h—9FFFh.

Timing Analysis

Figure 22 shows the interface timing for accesses of the TMS27C64 EPROMs. Key timings
are listed in Table 10. The output disable time of the TMS27C64 is too long to guarantee that no
bus conflict will occur if an external write cycle follows-a TMS27C64 read cycle; this is solved by
buffering the data lines with TMS74A1S244A octal buffer ICs.

Figure 22. Interface Timing for Accesses of TMS27C64-15 to the TMS320C25-50

CLKOUT2 ____/_——__/_______/—____
STRB \ /:
— |
PS/RW,
A15-A0 ' VALID - XK
ty ol e i
PROM N L /
| |
READY] / 1\
e t, " =l ety
D15-D0 Y VALID r—

(o]
W

Table 10. TMS27C64 Interface Timing Parameters

Parameter Name Designation in Figure 22 Time Duration
Address valid to PROM valid t; 5.8 ns (max)
PROM valid to TMS27C64 data valid 150 ns (max)
Address valid to TMS320C25 data valid ty 165.8 ns (max)
STRB high to TMS74ALS244A outputs high-Z t3 18.8 ns (max)

As shown in Figure 11, data is valid on the TMS27C64 data lines 5.8 ns + 150 ns (max) after
address becomes valid. The delay through the TMS74ALS244A buffersis 10 ns (max). Data is val-
id on the TMS320C25-50 data bus ty + ty +10 = 165.8 ns (max) after address valid. Thus the in-
equality ty +t +10 (max) < ty(a) + Nic(c) is satisfied; 165.8 ns < 29 ns + 2 * 80 ns. Note that te)
is assumed to equal 80 ns. The buffer outputs are set in the high-impedance state t3 = 5.8 ns + 13
ns = 18.8 ns (max) after STRB goes high.

Figure 23 shows the interface timing for accesses of the MT5C6408 SRAMs. Key interface
timing parameters are given in Table 11.

Figure 23. Interface Timing for Accesses of the MT5C6408-20 to the TMS320C25-50

PS, DS, IS l
READY / \

STRB \ /}‘
! |
RW ! | (
L7/ — T
| |
SRM2 /}' ! \
| | ., READ
TMS320C25-50 "\ i } CYCLE
D15-DO / | T
-ty —t —
1
MTSC6408-20
Das-DaT QL& D
!
|
_ — t, ——
%N | | LR
| —ty —— WRITE
CYCLE
D15-DO

86 Hardware Interfacing to the TMS320C2x

Table 11. MT5C6408-20 Interface Timing Parameters

Read Cycle
Parameter Name Designation in 23 Time Duration
Address valid to READY valid ty 9 ns (max)
Address valid to SRM2 valid ty 9 ns (max)
Address valid to SRM1 valid 9 ns (max)
SRM1/SRM?2 valid to data valid t3 20 ns (max)
STRB high to data bus high-Z ty 15 ns (max)
Write Cycle
Parameter Name Designation in Figure 23 Time Duration
Address valid to READY valid t 9 ns (max)
Address valid to SRM2 valid ty 9 ps (max)
Address valid to SRM1 valid 9 ns (max)
Data valid before STRB high ts 23 ns (max)
STRB high to data bus high-Z ty 15 ns (max)

The SRAMs are enabled if CE1 is low and CE2 is high. CE2 is high when IS, DS, and A15
are high. (Making use of the fact that the 3 external spaces are mutually exclusive and exhaustive,
1 gate delay is saved by using IS and DS rather than PS. This is crucial for satisfying the READY
timing requirement.) CEl is driven directly by STRB.

The function of the OE input of the MT5C6408s is the inverse of that of the WE input.

Read Cycle

Asshown in Table 11, both chip enable inputs are valid no later than 9 ns from address valid.
Data is valid no later than 20 ns after CE1 and CE2 are valid, thus satisfying the condition
ta(SL) S ta(SL)max- The outputs are tristated no later than 15 ns from STRB high.

Write Cycle

Asshown in Table 11, both chip enable inputs are valid no later than 9 ns from address valid.
Data is valid 23 ns (min) prior to STRB going high, satisfying the MT5C6408 data setup time re-
quirement of 12 ns (min). The outputs are tristated no later than 35 ns from STRB high.

The complete electrical specifications and additional information pertaining to the
TMS320C25-50 may be found in the Second-Generation TMS320 User’s Guide.[1]

System Control Circuitry

A system control circuitry performs important functions in system initialization and opera-
tion. A powerup reset circuit design and a crystal oscillator circuit design are presented in this sec-
tion.

Reset Circuit

The reset circuit shown in Figure 24 performs a power-up restart operation; i.e., the
TMS320C2x is reset when power is applied. Note that the switch circuit must contain debounce

Hardware Interfacing to the TMS320C2x 87

circuitry. Driving the RS signal low initializes the processor. Reset affects several registers and sta-
tus bits. For a detailed description of the effect of reset on the processor status, refer to the Sec-
ond-Generation TMS320 User’s Guide.[1]

Figure 24. Powerup Reset Circuit

TMS320C2x
RS
+5V A8
R1=100 kQ A
4.7 uF I|-
= = DGND

For proper system initialization, the reset signal must be applied for at least three CLKOUT
cycles; i.e., 300 ns for a TMS320C2x operating at 40 MHz. Upon powerup, however, it can take
up to hundreds of milliseconds before the system oscillator reaches a stable operating state. There-
fore, the powerup reset circuit should generate a low pulse on the reset line until the oscillator is
stable (between 100 and 200 ms). Once a proper reset pulse has been applied, processor operation
begins at program memory location 0 which normally contains a branch (B) statement to direct pro-
gram execution to the system initialization routine.

The voltage on node A is controlled by the R1Cy network (see Figure 24). After a reset, the
voltage rises exponentially to the time constant R1Cy, as shown in Figure 25.

Figure 25. Voltage on the TMS320C2x Reset Pin
VOLTAGE

/v=vcc(1— ey

=0 TIME

88 Hardware Interfacing to the TMS320C2x

The duration of the low pulse on the reset pin is approximately t;, which is the time it takes
for the capacitor Cq to fully charge; i.e., 1.5 V. This is approximately the voltage at which the reset
input switches from a logic level 0 to a logic level 1. The capacitor’s voltage is given by

V=Vee [1-e-%] .)

where T = R1Cq is the reset circuit time constant.

Solving (1) for t gives:

t=-R{Rqy In [1 "T/Y—} | @)

cc

Setting the following:

R1 1 MQ

C1 0.47 uF

\'% V=15V
Vce 5V

gives t =ty = 167 ms. The Schmitt triggers shown in Figure 25 appropiately reshape the signal on
node A.Therefore, the reset circuit of Figure 24 can generate a low pulse of an appropriate duration
(167 ms) to ensure the stabilization of the system oscillator when most systems are powered.

1]

1]

Crystal Oscillator Circuit

The crystal oscillator circuit shown in Figure 26 is suitable for providing the input clock sig-
nal to any TMS320C2x device except the TMS32020. Since crystals with fundamental oscillation
frequencies of 30 MHz and above are not readily available, a parallel-resonant third-overtone oscil-
lator is used. If a packed clock oscillator is used, oscillator design is of no concern.

Figure 26. Crystal Oscillator Circuit

TMS320C2x +5V f(;rystal
1171
. . {00l

74HCO04 10 KQ
F11 4.7 kQ
CLKIN * —T_
47 pF 74AS04 0.1 uF
10kQ |C= '
20 pF
L

The 74AS04 inverter in Figure 26 provides the 180-degree phase shift that a parallel oscilla-
tor requires. The 4.7-kS2 resistor provides the negative feedback that keeps the oscillator in a stable

Hardware Interfacing to the TMS320C2x ’ 89

state; i.e., the poles of the system are constrained in a narrow region about the j axis of the s-plane
(analog domain). The 10-k2 potentiometer is used to bias the 74AS04 in the linear region. This
~ potentiometer is adjusted as follows: Before the crystal is placed on the system board, adjust the
potentiometer so that the voltage at the input of the inverter is in the transition region between a
logic level 0 and a logic level 1 (i.e., approximately 1.5 V). Then install the crystal.

In a third-overtone oscillator, the crystal fundamental frequency must be attenuated so that
oscillation is at the third harmonic. This is achieved with an LC circuit that filters out the fundamen-
tal, thus allowing oscillation at the third harmonic. The impedance of the LC network must be in-
ductive at the crystal fundamental frequency and capacitive at the third harmonic. The impedance
of the LC circuit is given by: '

L
Zw) = —S— | ©)

Therefore, the LC circuit has a pole at:

1
Wy =——= (4)
P /Lc
At frequencies significantly lovx'rer than wp, the 1/(wC) term in (3) becomes the dominating
term while wL can be neglected. This gives:

z(w) = joL, for w<< p ®)

In (5), the LC circuit appears inductive at frequencies lower than wp. On the other hand, at
frequencies much higher than wp, the wL term is the dominant term in (3), and 1/(wC) can be ne-
glected. This gives:

1
zZ(w) = —— forw >> (6
(®) joC ®p
The LC circuit in (6) appears increasingly capacitive as frequency increases above u)'p This
is shown in Figure 27, which is a plot of the magnitude of the impedance of the LC circuit of
Figure 26 versus frequency.

Based on the discussion above, the design of the LC circuit proceeds 4s follows: Choose the
pole frequency wp approximately halfway between the crystal fundamental and the third harmonic.
The circuit now appears inductive at the fundamental frequency and capacitive at the third harmon-
ic.

In the oscillator of Figure 26, choose wj, = 166.5 rads/s for the 40.96 MHz design or
wp, = 223.6 for the 51.2 MHz design. These angular frequencies lie approximately halfway be-
tween the respective fundamentals and third harmonics. Choose C = 20 pF. The appropriate value
of L may then be computed using (4). Values of L for three different TMS320C2x devices operating
at different frequencies are tabulated in Table 12.

90 ’ Hardware Interfacing to the TMS320C2x -

Table 12. Values of fcpysta) and L for TMS320C2x Devices

fcrysm (MHz) L (uH)
TMS320C25 40.96 1.8
TMS320C25-50 51.20 1.0
TMS320E25 40.96 1.8

Figure 27. Magnitude of the Impedance of the Oscillator LC Network

J
|z ()]

CAPACITIVE
REGION

INDUCTIVE
REGION

7
Wp = —= w
P~ /L (rad/s)

The 0.1 uF capacitor in series with the 1.8 pH inductor is a coupling capacitor, requiring no
DC path to ground. The 74AS04 inverter is included to shorten the rise and fall times of the
waveform generated by the oscillator.

Consider the case where the TTL inverter goes low. In this case, the current flowing through
the 10-kQ resistor is less than 5 V/10-kQ = 0.5 mA. This is an acceptable current level since the
74AS04 inverter can sink up to 20 mA.

The output of the oscillator drives the CLKIN input of the TMS320C2x, thus providing the
four phases required for each machine cycle. With a 40.96 MHz input clock frequency, the
TMS320C2x machine cycle is 97.6 ns.

In summary, the system control circuitry performs functions that, while often overlooked,
are critical for proper system initialization and operation. The powerup reset circuit assures that
a reset of the part occurs only after the oscillator is running and stabilized. The oscillator circuit
described allows the use of third-overtone crystals that are more readily available at frequencies
above 20 MHz.

Interfacing Peripherals

Most DSP systems implement some amount of I/O using peripherals in addition to any
memory included in the system. Quite commonly this includes analog input and output, which can

Hardware Interfacing to the TMS320C2x 91

be performed through the parallel and serial I/O ports on the TMS320C2x. In this section, hardware
interfaces of the TMS320C2x to a codec, an analog-to-digital converter (A/D), and a digital-to-ana-
log converter (D/A) are described. Interfacing TMS320 devices to the Texas Instruments
TLC32040 Analog Interface Chip is described in the applications report Interfacing the TMS320
Family to the TLC32040 Family found in this book.

Combo-Codec Interface

In speech, telecommunications, and many other applications that require low-cost ana-
log-to-digital and digital-to-analog converters, a combo-codec may be used. Combo-codecs are
single-chip pulse-code-modulated encoders and decoders (PCM codecs). They are designed to per-
form the encoding (A/D conversion) and decoding (D/A conversion), as well as the antialiasing
and smoothing filtering functions. Since combo-codecs perform these functions in a single 300-mil
DIP package at low cost, they are extremely economical for providing system data conversion func-
tions. The design presented here uses a Texas Instruments TCM29C16 codec, interfaced using the
serial port of the TMS320C2x.

TMS320C2x Serial Port

The TMS320C2x serial port provides direct synchronous communication with serial de-
vices. The interface signals are compatible with codecs and other serial components so that mini-
mum external hardware is required. Externally, the serial port interface is implemented using the
following pins on the TMS320C2x:

¢ DX (transmitted serial data)

* CLKX (transmit clock)

* FSX (transmit framing synchronization signal)

* DR (received serial data)

* CLKR (receive clock)

¢ FSR (receive framing synchronization signal)

Data on DX and DR are clocked by CLKX and CLKR, respectively. These clocks are only
required during serial transfers. Note that this is different from the TMS32020 serial port in which
the clocks must be present at all times if the serial port is being used. Also, the TMS320C2x serial
port is double-buffered while that of the TMS32020 is not.

Serial port transfers are initiated by framing pulses on the FSX and FSR pins for transmit and
receive operations respectively. For transmit operations, the FSX pin can be configured as an input
or output. This option is selected by the transmit mode (TXM) bit of status register ST1.[1] In this
design, FSX is assumed to be configured as an input; therefore, transmit operations are initiated
by a framing pulse on the FSX pin. Upon completion of receive and transmit operations, an RINT
(serial port receive interrupt) and an XINT (serial port transmit interrupt) are generated, respective-

ly.

The format (FO) bit of status register ST1 is used to select the format (8-bit byte or 16-bit
word) of the data to be received or transmitted. For interfacing the TMS320C2x to a codec, the for-
mat bit should be set to one, formatting the data in 8-bit bytes.[1]

92 Hardware Interfacing to the TMS320C2x

After the information from the codec is received by the TMS320C2x, the u- or A-law com-
panded data must be converted back to a linear representation for use in the TMS320C2x. Software
companding routines appropriate for use on the TMS320C2x are provided in the book, Digital Sig-
nal Processing with the TMS320 Family Volume 1.[2]

The software required to initialize the TMS320C2x-codec interface is shown next. The ini-
tialization routine should include the following:

INIT DINT ; Disable interrupts
FORT 1 ; Set 8-bit data format
LACK 10h
LDPK 0 _
SACL DMA4 ; Enable RINT (through IMR)
*
*
*
EINT ; Enable interrupts

Note that since reset initializes the TXM (transmit mode) and FSM (frame synchronization
mode) bits to the values required by this interface, it was not necessary to explicitly initialize these
values in the routine shown above. However, in digital communications with peripherals/devices/
ports (T trunks) that do not require a framing pulse for every byte/word transmitted, the FSM bit
must be set to O using the RFSM instruction.[1]

The interrupt mask register (IMR) located at data memory location 4h of the TMS320C2x
data memory is used to enable the serial port receive interrupts (RINT). To access that memory lo-
cation, the data page pointer must be set to zero. Also, the data page pointer must be initialized after
reset since its contents are random at powerup. A value of 10h in the IMR enables only the RINT;
all other interrupt sources are disabled.

Interrupts are disabled upon reset. Before exiting the initialization routine, interrupts are re-
enabled with the EINT instruction.

Hardware Interfacing to the TMS320C2x 93

~ The hardware interface between the TMS320C2x and the TCM29C16 combo-codec is
shown in Figure 28.

Figure 28. Interface of the TMS320C2x to the TCM29C16 Codec

8V 500 ko2
0.05 uF
TMS320C2x 16__la__TCM20C16 40040
Vec PDN 14
ce AIN- < ANALOG
0.01 uF > INPUT
100 kQ ——o
DR ‘;:1 1; PCMOUT asx [
DXfe PCMIN PWRD: |2 I aiaLoa
CLKX DCLKR
Fox|Be] MCLKo| oo Vey [} 100keZ outeUT
42 FSX_FSRAGND DGND i
';z?(_ﬁ—ﬂ Ep 10 17 13 |8 _5
g = 74ALS04A
74HC390 74AS869
Mek meo B3
1 10
> SO0 H 9]
rr KL S1 G T
+5v| ckinfF 23 -E—:-'T; Fl7]
RS A B C D
Ri= 7 A8 =
1MQ G
J‘c1= lf 5V 40.96 MHz L -L +
0.47 uF 10 kQ {0}
47kQ

A\J

1
74HC04 0.1 uF

47 pF 10k “Te_20 pF 3 L=1.8 uH
74AS04

é- ANALOG GROUND

.]?_— DIGITAL GROUND

Clock Divider Circuit
A combo- codec configured in the fixed-data-rate mode requires the following external clock
signals:

A 2.048-MHz clock to be used as thé masterclock, and
8-kHz framing pulses required to initialize the data transfers.
Both of these signals can be derived from the 40.96 MHz system clock with appropriate di-
vider circuitry. This is the primary justification for selecting 40.96 MHz as the system clock fre-

94 ' Hardware Interfacing to the TMS320C2x

quency. The clock divider circuit consists of a 74AS74 D-type flip-flop, a 74HC390 decade count-
er, and a 74AS869 8-bit up/down counter. The hardware connections between these devices are
shown in Figure 28.

To generate the 2.048-MHz master clock for the combo-codec, a division by 20 of the
40.96-MHz system clock is required. The 74HC390 contains on-chip two divide-by-2 and two di-
vide-by-5 counters. Since the 74HC390 cannot be clocked with frequencies above approximately
27 MHz, a 74AS74 configured as a T-type flip-flop is used. This implements a divide-by-2 of the
40.96-MHz clock, thus making the output of the 74AS74 slow enough (20.48 MHz) to properly
clock the 74HC390. The 10-kS2 pullup resistor shown in Figure 28 is used to ensure the compatibili-
ty between the logic levels of the TTL (74AS74) and HCMOS (74HC390) devices.

The 74HC390 is first used to implement a divide-by-5, which appears at the output pin 1Qp
(pin #7) of the 74HC390 (see Figure 28). This in turn drives the divide-by-2 counter, at the output
of which (pin 1Qp) the 2.048 MHz clock appears. Note that the divide-by-5 precedes the di-
vide-by-2 because the codec requires a clock with a minimum duty cycle of 40 percent, while the
output of the divide-by-5 has a duty cycle of only 20 percent. By following the divide-by-5 counter
with the divide-by-2, the duty cycle at the output of the 74HC390 is 50 percent.

The 74AS869 is configured to count down (SO = 1 and S1 = 0 in Figure 28); therefore, the
counting sequence is 255, 254, ..., 1, 0, 255, ..., and so on. The ripple carry output generates a
low-level pulse while the count is zero. The duration of this pulse is one input clock cycle, i.e.,
488 ns. The frequency of the ripple carry output is 2.048 MHz/256 = 8 kHz. By inverting this signal,
positive pulses at 8 kHz are generated. These pulses are used by the TMS320C2x and codec as fram-
ing pulses to initiate data transfers.

TMS320C2x-Codec Interface

The TMS320C2x interfaces directly to the codec, as shown in Figure 28, with no additional
logic required. The PCM u-law data generated by the codec at the PCMOUT pin is read by the
TMS320C2x from the data receive (DR) pin, which is internally connected to the receive serial reg-
ister (RSR).[1] The data transmitted from the data transmit (DX) pin of the TMS320C2x is received
by the PCMIN input of the codec. During the digital-to-analog conversion, this data is converted
from p-law PCM to linear. The resulting analog waveform is lowpass-filtered by the codec’s inter-
nal smoothing filter. Therefore, no additional filtering is required at the codec output (PWRO+).

Hardware Interfacing to the TMS320C2x 95

The timing diagram of the TMS320C2x-codec interface is shown in Figure 29.

Figure 29. Interface Timing of the TMS320C2x to the TCM29C16 Codec

Fsx_/~ \ v 4\
‘ i @)
(FO '3() A1 XAz X(A3 X A4 X As X a6 X(A7 X A8 4 B
XINT /- N\ N
(a) DATA TRANSMITTED BY THE TMS320C25
FsR_Y/ N o/ I\
DR " (b)
(Fo-1) A1 X(A2 (A3 XAa XCAS X(A6 X A7 X A8 . B1 X
RINT / \

(a) DATA RECEIVED BY THE TMS320C25

Asindicated in Figure 29, both the transmit and receive operations are initiated by a framing
pulse on the FSX and FSR pins of the TMS320C2x and the codec. The receive and transmit inter-
rupts shown in Figure 29 occur only if they are enabled. Note that Figure 29 corresponds to the
burst-mode serial port operation of the TMS320C2x.[1] Continuous-mode operation using fram-
ing pulses or without framing pulses is also available.

Analog Input

The level of the analog input signal is controlled using the TL072 opamp connected in the
inverting configuration (see Figure 28). Using the 500-kQ potentiometer, the gain of this circuit
can be varied from 0 to 5. The output of the 0.01-pF coupling capacitor drives the TCM29C16’s
internal opamp. This opamp is connected in the inverting configuration with unity gain (feedback
and input impedances having the same value of 100 k).

In summary, codecs, combo-codecs in particular, are most effective in serving DSP system
data-conversion requirements. These inexpensive devices interface directly to the TMS320C2x,
‘occupy minimal board space, and perform both filtering and data conversion functions. Codecs in-
terface to the TMS320C2x by means of the serial port and provide a companded, PCM-coded digi-
tal representation of analog input samples. This PCM code is easily translated into a linear form
by the TMS320C2x for use in processing. Interface to the codec on the serial port is initialized by
a simple software routine in the TMS320C2x.

Interfacing an Analog-to-Digital (A/D) Converter

Many digital signal processing applications require a higher level of signal quality‘ than that
offered by the eight companded bits of a combo-codec. For these applications, linear analog-to-dig- -

96 Hardware Interfacing to the TMS320C2x

ital converters with 10, 12, or 14 bits are commonly used. The improved signal quality obtained
with these converters, however, is accompanied by increased system complexity and higher cost.

The hardware interface of a 12-bit linear analog-to-digital (A/D) converter to the
TMS320C2x is discussed in this subsection. In this design, the A/D is mapped into the input/output
(1/0) space of the TMS320C2x. The distinction between the 1/O space and the program and data
spaces is made by using the IS pin. This pin goes active (low) when the I/O space is accessed. The
TMS320C2x space contains 16 ports that can be read from or written to. These ports are accessed
with the IN and OUT instructions.[1]

The hardware design of this interface is shown in Figure 30. This design utilizes an antialias-
ing (lowpass) filter, the Analog Devices’ AD585 sample-and-hold and ADADCB84 analog-to-digi-
tal converter, two 74AS534 octal D-type flip-flops, plus additional logic to generate the READY
signal.

Figure 30. Interface of the ADADCS84 to the TMS320C2x

é = ANALOG GROUND
74AS30 TMS320C2x

i = DIGITAL GROUND

Vg HOL| ADADC84 BIT5
BIT 4

a 12 29 sTATUS BIT3
} +2v BIT 2
22M BIT1

+12Vv 50 .. GAIN
Q3T I ADJ -Vg CONVERT
. 31 211
-12v
0.01 uF4———

T D 4ALSO4A
7
BT a0

50 kQ2
74AS32 B8 peaDy
It
500 kQ 900 pF 74ALSO04A _
01 UF 1ok OO0 A HIYf e
EXTERNAL o—](——W—f——1 Hiol=
INPUT 1 KA TRE
; TLOT2 744532 Lafss
K2
oAl
12V +12V A0
0 o Lo AT
N\ ‘
\BIT12 3] — .2 | b1
111 ADS85 é 26 |28 |23 |22 1 \BIT11 4 ;g Qc ;_|g 5 g2|g;
+VS AGND +Vg glP compP
1 15 FF N |4
RIN _ VIN- DGND BIT 12 |
] [7 2
L—J‘i HOLD RFs |2 + Hciock BIT 11
REF : IN BIT 10 [2—
NULL VIN+ +sv =—14sHoRT cYcLe BITO[-—
GND l 14 BIT 8 |2
Vece BIT 7 15—
NULL 1uF BIT 6 H—1
10 kQ2 18
104
114
13/

The design of Figure 30 consists of two sections: the analog-to-digital conversion-and the
interface to the TMS320C2x. Each of these sections is considered separately.

Hardware Interfacing to the TMS320C2x , 97

Analog-to-Digital Conversion

The analog-to-digital conversion section of this interface performs the function of sampling
" and coding the input waveform. This circuit consists of the antialiasing filter, the sample-and-hold,
and the analog-to-digital converter.

To avoid distortion during an analog-to-digital conversion, the sampling theorem states that
the analog signal must contain no frequency components greater than half the sampling frequency.
If this condition is not met, distortion occurs in the form of aliasing; i.e., high-frequency compo-
nents are superimposed on the low frequencies of the signal spectrum. To avoid this phenomenon,
an antialiasing (lowpass) filter is used.

In the design of Figure 30, the antialiasing filter is implemented using a TLO72 opamp con-.
nected in the inverting configuration. The gain of the opamp is determined by the values of two
fixed resistors (10 kQ and 50 k) and a 500-kS2 potentiometer. The resistance of the potentiometer
inversely varies the gain of the opamp. The minimum gain of 0.098 (50 k2/510 kQ) is reached
when the potentiometer is 500 k2. The maximum gain of 5 (50 kQ/10kQ) is achieved when the
potentiometer is decreased to zero resistance.

To satisfy the sampling theorem, the cutoff frequency of the antialiasing filter must be less
than half the sampling rate. In the design of Figure 30, the 900 pF capacitor in the feedback path
introduces a pole at the frequency f defined by:

1 1

f= - = 3.5kH
27RC . 271(50k2)(0.9)nF) z

After 3.5 kHz, the frequency response of the filter drops by 6 dB per decade. This rejection,
however, may not be adequate for some applications. In such cases, a lowpass filter of higher order
is required. Such a filter is presented in the next subsection.

The output of the antialiasing filter is connected to the input of the AD585 sample-and-hold,
which is configured for a gain of —1. The operation of this device is controlled by the HOLD input.
When HOLD is low, the output of the sample-and-hold (Vo) follows the input (lowpass version
of the external input). When HOLD is high, the output stays constant. The time from HOLD high
to output stable is referred to as the aperture time, specified as 35 ns for the ADS85.

A/D conversions are implemented by the ADADC84, a 12-bit linear A/D converter in which
data is represented in complementary two’s-complement form. A conversion begins when the
CONVERT input goes high. The XF (external flag) output of the TMS320C2x i$ used to drive the
CONVERT input. Since the XF pin is software controlled, the TMS320C2x internal timer may be
used to generate programmable sampling rates. This is discussed in more detail later.

When CONVERT goes high, the ADADC84 begins the conversion and STATUS goes high.
This puts the AD585 in the hold mode. The A/D conversion lasts for 10 ps, with the MSB decision
made approximately 820 ns after STATUS goes high. Note that the aperture time of the AD585 is
only 35 ns, and as a result, the input.to the A/D converter is stable well before the time the MSB
decisionis made. The LSB decision is made at least 40 ns before STATUS goes low. When STATUS
goes low, the ADS8S enters the sample mode with a gain of —1; i.e., the output follows the inverted

98 Hardware Interfacing to the TMS320C2x

input wavefgg. As shown in Figure 30, the BIO pin of the TMS320C2x is connected to STATUS.
By polling BIO, the TMS320C2x can detect when an A/D conversion is completed.

The falling edge of STATUS generates a rising edge at the clock inputs of the 74AS534s. This
rising edge clocks the ADADC84 data into the 74AS534s. Since the LSB decision is made 40 ns
before STATUS goes low, the 3 ns setup time for the 74AS534s is met. Since the 74AS534s are
inverting-type flip-flops, the ADADCB84 outputs are complemented to give data in two’s-comple-
ment form. This data, however, does not appear on the TMS320C2x data bus until the output buffers
of the 74AS534s are enabled.

Interface to the TMS320C2x

The interface logic in Figure 30 is used to perform the following functions:
* Generate READY, and

* Enable the output buffers of the 74AS534s so that the TMS320C2x can read
the data from the A/D conversion

To meet the TMS320C2x READY timing requirements, two separate address decoding
schemes are used to implement these two functions. One decoding scheme is used for READY, and
a second is used to enable the I/O-mapped devices.

The address decoding for READY is implmented with the 74AS32 positive-OR gate. The
output of the 74AS32 goes low when both IS and A3 go low; i.e., access to ports 0 through 7 is re-
quested. This scheme generates READY for devices that do not require wait-states. 1/O devices that
generate one or more wait-states can utilize ports 8 through 15.

To enable the I/O devices, a 74AS138 is used. Outputs YO through Y7 of the 74AS138 can
be used to enable the devices 0 through 7, respectively. In Figure 30, Y0 is used to enable a read
from the A/D converter. Note that YO is ORed with the inverted R/W. This prevents the bus conflict
that occurs if the TMS320C2x writes to port 0.

Hardware Interfacing to the TMS320C2x 99

The timing diagram of a TMS320C2x read from port 0 is shown in Figure 31.
Figure 31. Interface Timing of the ADADCS84 to the TMS320C2x

CLKOUT{ \ / . \
iS,RW, —
A15-A0 @{t VALID M
—
READY / \
STRB \
—-b\l ;4—
RDAT ! 7'.
|
|
—
' }_
D15-D4 VALID
‘ 'S

Time t; in Figure 31 indicates the time from valid address to READY high. This is less than
10.8 ns, the maximum propagation delay through the READY generation logic. Therefore, the
18-ns READY timing requirement (at 40 MHz) is met.

RDAT in Figure 31 is used to enable the output buffers of the 74AS534s. RDAT goes active
(low) no later than tj = t;(74A5138) + tp(74AS32) = 14.3 ns after STRB goes low (STRB is used
to enable the 74AS138). With a low level on the output control (OC) of the 74AS534s, valid data
appears on the TMS320C2x data bus within t4 =10 ns. The worst-case access time is
ts + t4 = 24.3 ns from STRB going low, which is less than the 27 ns required by the TMS320C2x.

When STRB goes high, RDAT follows within t3 = 13.3 ns. With a high logic level on the out-
put control (OC), the output buffers of the 74 AS534s enter a high-impedance state within ts = 6 ns.
Since t3 + t5 = 19.3 ns after STRB goes high, the 74AS534s have entered a high-impedance state,
and no bus conflict will occur if a write cycle follows the present read cycle.

Table 13 summarizes the most critical timing parameters of the ADADCS84 interface to the
TMS320C2x.

Table 13. Timing Parameters of the ADADCS84 Interface to the TMS320C2x

Description Symbol Used in Figure 3 Value
Address valid to READY valid ty 10.8 ns (max)
STRB low to RDAT low ty 14.3 ns (max)
STRB high to RDAT high ts 13.3 ns (max)
Progagation delay through the 74AS534 (QC to Q) ty 10.0 ns (max)
74AS534 disable time ts 6.0 ns (max)

100 Hardware Interfacing to the TMS320C2x

Controlling A/D Conversions with the TMS320C2x Timer

The TMS320C2x timer can generate periodic interrupts that may be used to set the A/D sam-
pling frequency. The TMS320C2x timer logic consists of a 16-bit timer register and a 16-bit period
register. At every CLKOUT1 cycle, the timer register is decremented by one. When the count
reaches zero, a timer interrupt (TINT) is generated. In the next cycle, the contents of the period
(PRD) register are loaded into the timer register. Therefore, a timer interrupt is generated every
PRD + 1 cycle of CLKOUT1, and the frequency of these interrupts is CLKOUT1/(PRD + 1).

As an example, consider a TMS320C2x operating at 40 MHz. The design of Figure 30 is uti-
lized to interface the A/D converter to the TMS320C2x. A sampling rate of 10 kHz is desired.

To generate timer interrupts at the 10 KHz sampling rate, the value of the period register is
calculated as follows: Since

_ CLKOUT!
*" PRD+1

the period register is

PRD = CLKOUT 1

S

With CLKOUT1 = 10 MHz and f = 10 kHz, the value of the period register is PRD = 999.
By loading the period register (data memory location 3) with 999, timer interrupts (if enabled) oc-
cur ata 10 kHz frequency. This can be implemented with the following TMS320C2x source code:

LDPK 0 ; Point to Data Page #0
LALK 999 ; ACC 999

SACL DMA3 ; Period Register ACC
LACL 8 ; Enable TINT

OR DMA4 ; through

SACL DMA4 ; the IMR

To start the A/D conversion, the interrupt service routine must generate a positive pulse on
the XF output. This can be implemented with the following code:

ISE SXF ; Set external flag (XF)
RXF ; Clear external flag (XF)
EINT ; Enable interrupts
RET

Note that upon entering the interrupt service routine, the interrupts are disabled. Interrupts
are reenabled by the EINT instruction just before exiting the interrupt service routine. Also, the
conversion pulse that this routine generates is 100 ns long, easily meeting the 50-ns minimum con-
version pulse width required by the ADADCS84.

To summarize, 10-bit to more than 14-bit linear A/D converters are often used to perform
data conversions in DSP systems that require more resolution than is provided by codecs. The cir-
cuit shown in Figure 30 describes the interface of an A/D conversion subsystem to the

Hardware Interfacing to the TMS320C2x 101

TMS320C2x. This subsystem contains antialiasing filters, a sample-and-hold circuit, and a 12-bit
A/D converter. Communication with the TMS320C2x is provided via the I/O space. The A/D con-
verter is isolated from the processor’s data bus by high-impedance buffers when data transfers are
not being performed. The TMS320C2x’s internal timer is used to establish the A/D sample rates,
thus reducing system logic requirements.

Interfacing a Digital-to-Analog (D/A) Converter

This subsection discusses the hardware interface of a 10-bit digital-to-analog converter to
the TMS320C2x. The design, shown in Figure 32, utilizes the Analog Device’s ADDAC100 digi-
tal-to-analog converter, a 74AS822 10-bit flip-flop, a smoothing filter, plus additional logic to gen-
erate READY.

Figure 32. Interface of the ADDAC100 to the TMS320C2x

TMS320C2x
READY é = ANALOG GROUND
74AS32
J,- = DIGITAL GROUND
s ':110 SrSoa
STRB G2B
K3 6
A3 I >—{at
Az e
K2 74AS04 2
AT 1% s
A0 A Y1 +H2V
74AS138 w—noﬁ! 14 1] 5000 1N95788
74ALS04 94 V+ BIPOLAR AGND
D15 B6 D 275 ok 1042 13 BIT 1 (sB) REF AD DAC100
AS 3|— 22 12
D14 f== r B 20— HBIT2
D13 s KB 3a[=-— 8T 3 18
D12y, |22 il ETIRCY it 22662 L opF
D11 5D 5Q BITS 3 TLO72) F 13K0Q P
A3 71— 18 8 AAA iy Y
D10fg3 8|2 ol ETZEA il PN o o
4 o o170 7Q s elB77 2.6 kQ2 L VoUT
psf== i saL=—21BIT8 a TLo72
D722 s ECl saf 2 —Hairo Sk 0.28 uF
D6 100 5z 10Q BIT 10 SCALE %
I -V ADJUST
= 2 |15
f 200 Q
12V

This design consists of three sections: the interface to the TMS320C2x, the D/A converter,
and the smoothing filter. Each of these sections is considered separately.

Interface to the TMS320C2x ’

The 74AS822 is used to latch the data from the TMS320C2x. Since the output control (OC)
of the 74AS822 is always active (grounded), the latched data is available at the inputs of the D/A
converter immediately following a write from the TMS320C2x. In bipolar mode, the ADDAC100
accepts data in complementary offset binary form. By inverting the MSB of the two’s-complement

102 Hardware Interfacing to the TMS320C2x

data from the TMS320C2x, the data input to the 74 AS822 is converted to offset binary form. This
datais inverted by the 74AS822 so that the input to the ADDAC100 becomes complementary offset
binary form.

The circuit shown in Figure 32 utilizes the same address decoding technique used for the ana-

- log-to-digital converter interface. This technique maps devices that require no wait-states into ports

0 through 7. Ports 8 through 15 are used for devices that require one or more wait-states. In this

design, the D/A converter is mapped into port 1 of the TMS320C2x /O space. The timing diagram
for a write to the D/A is shown in Figure 33.

Figure 33. Interface Timing of the ADDAC100 to the TMS320C2x

CLKOUT1 \ /
IS, RW,
A15-A0 @l VALID

|
— :<—t1

AN

XK

READY ‘ / | \
/%_JL____

STRB \
WRDAT \
- ty ——

D15-D6 { VALID }_____

When port 1 is addressed, WRDAT goes low. No later than ty = 7.5 ns after STRB goes
high, WRDAT follows. This rising edge of WRDAT clocks the data into the 74AS822. The
minimum setup time for the data before WRDAT goes high is t3 min + ty min (see Figure 33).
Time t3 min is the minimum setup time for the TMS320C2x data before STRB goes high (30
ns), minus the maximum propagation delay through the 74ALS04 (11 ns). Time t; min is the
minimum propagation delay through the 74AS138 (2 ns). Therefore, the minimum setup time
for the data before WRDAT goes high is 21 ns, which is greater than the 6-ns minimum setup
time required by the 74AS822.

{1 I A

.

Hardware Interfacing to the TMS320C2x 103

Table 14 summarizes the most critical timing parameters of the ADDAC100 interface to the
TMS320C2x.

Table 14. Timing Parameters of the ADDAC100 Interface to the TMS320C2x

) Description Symbol Used in Figure 3 Value
Address valid to READY valid t; 10.8 ns (max)
STRB high to WRDAT high ty 7.5 ns (max)
Data setup time before STRB high t3 19.0 ns (min)
Data setup time before WRDAT high : t3+ 1ty 21.0 ns (min)
Data hold time from STRB high ty 15.0 ns (min)
Data hold time from WRDAT high tg—ty 7.5 ns (min)

D/A Converter

The ADDAC100 10-bit digital-to-analog converter converts a digital input to an output cur-
rent. The standard current-to-voltage conversion is implemented using the TLO72 opamp. This is
the opamp closest to the ADDAC100 in Figure 32. The offset and gain ajustments are implemented
with the 500-€ and 200-Q potentiometers, respectively.

Smoothing Filter

The output of the ADDAC100 contains high-frequency components to be removed by the
smoothing filter. In the design of Figure 32, this filter is implemented with the TLO72 opamp confi-
gured to implement a second-order lowpass filter with a cutoff frequency around 1.7 KHz. For
some applications, however, a rejection of 12 dB per decade is not adequate. A design that imple-
ments a sixth-order lowpass filter is shown in Figure 34. This design is a cascade of three opamps,
each implementing a second-order section.

Figure 34. Sixth-Order Lowpass Filter Used for Antialiasing and
Smoothing Filter Operations

Vin

é = Analog Ground

104 Hardware Interfacing to the TMS320C2x

The design of Figure 34 is used to implement the antialiasing and smoothing filtering opera-
tions in the TMS32010 Analog Interface Board. The cutoff frequency of this filter depends on the
values of the passive components. The values of these components for several cutoff frequencies.
are shown in Table 15.[3]

Table 15. Lowpass Filter Component Values for Various Frequencies

f 1.7 kHz 4.7 kHz 7.7 kHz 10 kHz 12 kHz 16 kHz 20 kHz
R1 2.588 2.588 2.588 2.588 2.588 2.588 2.588
C1 0.280 0.101 0.0617 0.0475 0.0396 0.0297 0.0238
R2 1.294 1.294 1.294 1.294 1.294 1.294 1.294
R3 2.588 2.588 2.588 2.588 2.588 2.588 2.588
Cc2 0.00936 0.00339 0.00207 0.00160 0.00133 0.000995 0.000796
R4 7.071 7.071 7.071 7.071 7.071 7.071 7.071
Cc3 0.0375 0.0136 0.00827 0.00637 0.00531 0.00398 0.00318
RS 3.536 3.536 3.536 3.536 3.536 3.536 2.536
R6 7.071 7.071 7.071 7.071 7.071 7.071 7.071
C4 0.00936 0.00339 0.00207 0.00160 0.00133 0.000995 0.000796
R7 9.659 9.659 9.659 9.659 9.659 9.659 9.659
Cs 0.0201 0.00726 0.00443 0.00341 0.00284 0.00213 0.00171
R8 4.830 4.830 4.830 4.830 4.830 4.830 4.830
R9 9.659 9.659 9.659 9.659 9.659 9.659 9.659
C6 0.00936 0.00339 0.00207 0.00160 0.00133 0.000995 0.000796

Note: The unit for resistance is kQ
The unit for capacitance is uF

The above values are not industry-standard values

.

In summary, the 10-bit linear D/A converter provides analog output for the TMS320C2x. The D/A
converter is interfaced to the processor through the I/O space and is driven by latches that store the
digital data for the current sample until the next sample period. A smoothing filter provides final
analog signal reconstruction by eliminating extraneous high-frequency components in the output

waveform.

Summary

The interface of memories and peripherals to the TMS320C2x has been described in this
application report. Both direct interfaces and interfaces that utilize address decoding have been
considered, with special attention given to READY timing requirements. The design techniques
used in these interfaces can be extended to encompass interface of other devices to the

TMS320C2x.

Hardware Interfacing to the TMS320C2x

105

- References

106

1)
2
3)

4)
5)

6)
)

Second-Generation TMS320 User’s Guide (literature number SPRU014A), Texas In-
struments (1989).

Digital Signal Processing Applications with the TMS320 Family, Volume 1 (literature
number SPRA012A), Texas Instruments (1986).

TMS32010 Analog Interface Board User’s Guide (literature number SPRU006) Texas
Instruments (1983).

The TTL Data Book Volume 2 (literature number SDLD001), Texas Instruments (1985).
The TTL Data Book Volume 3 (literature number SDAD001A), Texas Instruments
(1984).

MOS Data Book, Micron Technology, Inc. (1990).

CMOS/BiCMOS Data Book, Cypress Semiconductor (1989)

Hardware Interfacing to the TMS320C2x

Interfacing the
TMS320 Family to the
TLC32040 Family

Linear Products — Semiconductor Group
Texas Instruments

107

108 Interfacing the TMS320 Family to the TLC32040 Family

1 Introduction

The TLC32040 and TLC32041 analog interface circuits are designed to provide a
high level of system integration and performance. The analog interface circuits combine
high resolution A/D and D/A converters, programmabile filters, digital control and timing
circuits as well as programmable input amplifiers and multiplexers. Emphasis is placed
on making the interface to digital signal processors (the TMS320 family) and most
microprocessors as simple as possible. This user’s guide describes the software and
circuits necessary to interface to numerous members of the TMS320 family. It
presents three circuits for interfacing the TLC32040 Analog Interface Circuit to the
TMS320 family of digital signal processors. Details of the hardware and software
necessary for these interfaces are provided.

To facilitate the discussion of the software, the following definitions and naming
conventions are used:

1. >nnnn - a number represented in hexadecimal.

2. Interrupt service routine — a subroutine called in direct response to a processor
interrupt.

3. Interrupt subroutine — any routine called by the interrupt service routine.

4. Application program (application routine) — the user’s application dependent
software (e.g. digital filtering routines, signal generation routines, etc.)

Interfacing the TMS320 Family to the TLC32040 Family 109

110 Interfacing the TMS320 Family to the TLC32040 Family

2 TLC32040 Interface to the TMS32010/E15

2.1 Hardware

Because the TLC32040 (Analog Interface Circuit) is a serial-l/O device, the interface
to the TMS32010, which has no serial port, requires a small amount of glue-logic.
The circuit shown in Figure 2-1 accomplishes the serial-to-parallel conversion for the
AIC operating in synchronous mode.

2.1.1 Parts List

The interface circuit for the TMS32010 uses the following standard logic circuits:

1. One SN74LS138 3-to-8-line address decoder
2. One SN74LS02 Quad NOR-Gate
3. One SN74LS00 Quad NAND-Gate
4. One SN74LS04 Hex Inverter
5. One SN74LS74 Dual D-Flip-Flop
6. Two SN74LS299 8-bit Shift Registers
. - 7415299 TLC32040
TMS32010/C15
- s1 FSX
EN G2 QH’ > DX
7415138
u2
—4G1 Y0 SO g
A4l T ﬁ_‘ SHIFT
CLK
U1 / \ S SR
AO/PAO A ' 7] e
a L6
A1/PA1 B
A2/PA2 c
7415299
s1
G2 aw
S0
u3
Dls h \'/
. o SR o Dple{ORr
Do : u4
L3
741874
WE & D L5
cLKouT MSTRCLK
iNT : EODX

Figure 2-1. AIC Interface to TMS32010/E15

Interfacing the TMS320 Family to the TLC32040 Family 111

2.1.2 Hardware Description

2.2 Software

The 74LS138 is used to decode the addresses of the ports to which the TLC32040
and the interface logic have been mapped. If no other ports are needed in the
development system, this device may be eliminated and the address lines of the
TMS32010 used directly in place of Y1 and YO (see Figure 2-1).

Since the interface circuits are only addressed when the TMS32010 executes an IN
or an OUT instruction, gates L1, L2, L3, L4, and L5 are required to enable reading
and writing to the shift registers only on these instructions. The TBLW instruction
is prohibited because it has the same timing as the OUT instruction. Flip-flop U4
ensures that the setup and hold times of 74LS299 shift registers are met.

Although not shown in the circuit diagram, it is recommended that the CLR pins of
the 74LS299 shift registers as well as the RESET pin of the AIC be tied to the power-
up reset circuit shown in the AIC data sheet. This ensures that the registers are clear
when the AIC begins to transfer data and decrease the possibility that the AIC will
shift in bad data which could cause the AIC to shut down or behave in an unexpected
manner.

The flowcharts for the communication program along with the TMS32010 program
listing are presented in Appendix A. If this software is to be used, an application
program that moves data into and out of the transmit and receive registers must be
supplied.

2.2.1 |Initializing the TMS32010/E15

As shown in the flowcharts in Appendix A, the program begins with an initialization
routine which clears both the transmit/receive-end flag and the secondary
communication flag, and stores the addresses of the interrupt subroutines. The
program uses the MPYK..PAC instruction sequence to load data memory locations
with the 12-bit address of the subroutines. This sequence is only necessary if the
subroutines are to reside in program memory locations larger than >O0O0FF. Otherwise,
the instructions LACK and SACL may be used to initialize the subroutine-address
storage locations.

2.2.2 Communicating with the TLC32040

112

After the storage registers and status register have been initialized, the interrupt is
enabled and control is passed to the user’s application routine (i.e. the system-
dependent software that processes received data and prepares data for transmission).
The program ignores the first interrupt that occurs after interrupts are enabled (page
A-6, line 206, IGINT routine), allowing the AIC to stabilize after a reset. The application
routine should not write to the shift registers while data is moving into (and out of)
them. In addition, it should ensure that no primary data is written to the shift registers
between a primary and secondary data-communication pair. The first objective can
be accomplished by writing to the 74LS299 shift registers as quickly as possible after
the receive interrupt. The number of instruction cycles between the data transfers
can be calculated from the conversion frequency. By counting instruction cycles in
the application program, it is possible to determine whether the data transfer will
conflict with the OUT instruction to the shift register. The second objective can be
accomplished by monitoring SNDFLG in the application program. If SNDFLG is true
(>O0O0FF), secondary communication has not been completed.

Intérfacing the TMS320 Family to the TLC32040 Family

When the processor receives an interrupt, the program counter is pushed onto the
hardware stack and then the program counter is set to >0002, the location of the
interrupt service routine, INTSVC (page A-3, line 46). The interrupt service routine
then saves the contents of the accumulator and the status register and calls the
interrupt subroutine to which XVECT points. If secondary communication is to follow
the upcoming primary communication, XVECT, is set by the application program to
refer to SINT 1, otherwise, XVECT defaults to NINT (i.e the normal interrupt routine).

Because the interrupt subroutine makes one subroutine call and uses two levels of
the hardware stack, the application program can only use two levels of nesting (i.e.,
if stack extension is not used). This means that any subroutine called by the application
program can only call subroutines containing no instructions that use the hardware
stack (e.g. TBLW) and that make no other subroutine calls. In addition, if the application
program and communication program are being implemented on an XDS series
emulator, the emulator consumes one level of the hardware stack and allows the
application program only one level of nesting (i.e., one level of subroutine calls).

As shown in the flowcharts in Appendix A, the normal interrupt routine reads the
A/D data from the shift registers and then sets the receive/transmit end-flag (RXEFLG).
The application program must write the outgoing D/A data word to the shift registers
at a time convenient to the application routine. It should have the restriction that the
data be written before the next data transfer.

2.2.3 TLC32040 Secondary Communication

If it is necessary to write to the control register of the AIC or configure any of the
AIC internal counters, the application program must initiate a primary/secondary
communication pair. This can be accomplished by placing a data word in which bits
0 and 1 are both high into DXMT, placing the secondary control word (see program
listing page A-3) in D2ND, and placing the address of the secondary communication
subroutine, SINT1, in XVECT. When the next interrupt occurs, the interrupt subroutine
will call routine SINT1. SINT1 reads the A/D information from the shift registers and
writes the secondary communication word to the shift registers.

Interfacing the TMS320 Family to the TLC32040 Family 113

114 Interfacing the TMS320 Family to the TLC32040 Family

3 TLC32040 Interface to the TMS32020

3.1 Hardware Description

3.2 Software

Interfacing the TMS320 Family to the TLC32040 Family

Because the TLC32040 is designed specifically to interface with the serial port of
the TMS32020/C25, the interface requires no external hardware. Except for CLKR
and CLKX, there is a one-to-one correspondence between the serial port control and
data pins of TMS32020 and TLC32040. CLKR and CLKX are tied together since both
the transmit and the receive operations are synchronized with SHIFT CLK of the
TLC32040. The interface circuit, along with the communication program (page B-5),
allow the AIC to communicate with the TMS32020/C25 in both synchronous and
asynchronous modes. See Figures 3-1, 3-2, and 3-4.

The program listed in Appendix B allows the AIC to communicate with the TMS32020
in synchronous or asynchronous mode. Although originally written for the TMS32020,
it will work just as well for the TMS320C25.

TMS32020/C25 TLC32040
5V
‘_ WORD/BYTE
CLKOUT MSTR CLK
FSX FSX
DX DX
FSR FSR
DR DR
CLKX 2 SHIFT CLK
CLKR —T

Figure 3-1. AIC Interface to TMS32020/C25

115

SHIFT CLK

FSR, FSX \

DX —(D15

EODR, EODX

,L J

|
|
! |
D15 xpm (013] D12 G{CX 02\ D1 DO
])
| | |
x o14ln13x D12 ‘ m’;:x D2 x D1J DoJ1
£ L

- —

The sequence of operation is:

1. The FSX or FSR pin is brought low.

2. One 16-bit word is transmitted or one 16-bit byte is received.
3. The FSX or FSR pin is brought high.
4

. The EODX

or EODR pin emits a low-going pulse as shown.

Figure 3-2. Operating Sequence for AIC-TMC32020/C25 Interface

|
(%]
x|

S S N S

|
2|

j -) -

Figure 3-3. Asynchronous Communication AIC-TMS32020/C25 Interface

3.2.1 |Initializing the TMS32020/C25

116

This program starts by calling the initialization routine. The working storage registers
for the communication program and the transmit and receive registers of the DSP
are cleared, and the status registers and interrupt mask register of the TMS32020/C25
are set (see program flow charts in Appendix B). The addresses of the transmit and
receive interrupt subroutines are placed in their storage locations, and the addresses
of the routines which ignore the first transmit and receive interrupts are placed in
the transmit and receive subroutine pointers (XVECT and RVECT). The
TMS32020/C25 serial port is configured to allow transmission of 16-bit data words
(FO, the serial port format bit of the TMS32020/C25 must be set to zero) with an
externally generated frame synchronization (FSX and FXR are inputs, TXM bit is set
to O).

Interfacing the TMS320 Family to the TLC32040 Family

3.2.2 Communicating with the TLC32040

After the TMS32020/C25 has been initialized, interrupts are enabled and the program
calls subroutine IGR. The processor is instructed to wait for the first transmit and
receive interrupts (XINT and RINT) and ignore them. After the TMS32020 has received
both a receive and a transmit interrupt, the IGR routine will transfer control back to
the main program and IGR will not be called again.

If the transmit interrupt is enabled, the processor branches to location 28 in program
memory at the end of a serial transmission. This is the location of the transmit interrupt
service routine. The program context is saved by storing the status registers and the
contents of the accumulator. Then the interrupt service routine calls the interrupt
subroutine whose address is stored in the transmit interrupt pointer (XVECT).

A similar procedure occurs on completion of a serial receive. If the receive interrupt
is enabled, the processor branches to location 26 in program memory. As with the
transmit interrupt service routine (XINT, page B-8, line 223), the receive interrupt
service routine (page B-8,line 191) saves context and then calls the interrupt subroutine
whose address is stored in the receive interrupt pointer (RVECT). It is important that
during the execution of either the receive or transmit interrupt service routines, all
interrupts are disabled and must be re-enabled when the interrupt service routine ends.

The main program is the application program. Procedures such as digital filtering, tone-
generation and detection,and secondary communication judgment can be placed in
the application program. In the program listing shown in Appendix B, a subroutine
(C2ND) is provided which will prepare for secondary communication. If secondary
communication is required, the user must first write the data with the secondary code
to the DXMT register. This data word should have the two least significant bits set
high (e.g. >0003). The first 14 bits transmitted will go to the D/A converter and the
last two bits indicate to the AIC that secondary communication will follow. After
writing to the DXMT register, the secondary communication word should be written
to the D2ND register.

This data may be used to program the AIC internal counters or to reconfigure the
AIC (e.g. to change from synchronous to asynchronous mode or to bypass the
bandpass filter). After both data words are stored in their respective registers, the
application program can then call the subroutine C2ND which will prepare the
TMS32020 to transmit the secondary communication word immediately after primary
communication.

3.2.3 Secondary Communications - Special Considerations

This communication program disables the receive interrupt (RINT) when secondary
communication is requested. Because of the critical timing between the primary and
secondary communication words and because RINT carries a higher priority than the
transmit interrupt, the receive interrupt cannot be allowed to interrupt the processor
before the secondary data word can be written to the data-transmit register. If this
situation were to occur, the AIC would not receive the correct secondary control word
and the AIC could be shut down.

In many applications, the AIC internal registers need only be set at the beginning of
operation, (i.e, just after initialization). Thereafter, the DSP only communicates with
the AIC using primary communication. In cases such as these, the communication
program can be greatly simplified.

Interfacing the TMS320 Family to the TLC32040 Family 117

118 Interfacing the TMS320 Family to the TLC32040 Family

4 Interfacing the TLC32040 to the TMS320C17

4.1 Hardware Description

As shown in Figure 4-1, the TMS320C17 interfaces directly with the TLC32040.
However, because the TMS320C17 responds more slowly to interrupts than the
TMS32010/E15 or the TMS32020/C25, additional circuit connections are necessary
to ensure thatthe TMS320C17 can respond to the interrupt, accomplish the context-
switching that is required when an interrupt is serviced, and proceed with the interrupt
vector. This must all be accomplished within the strict timing requirements imposed
by the TLC32040. To meet these requirements, FSX of the TLC32040 is connected
to the EXINT pin of the TMS320C17. This allows the TMS320C 17 to recognize the
transmit interrupt before the transmission is complete. This allows the interrupt service
routine to complete its context-switching while the data is being transferred. The
interrupt service routine branches to the interrupt subroutines only after the FSX flag
bit has been set. This signals the end of data transmission.

The other hardware modification involves connecting the EODX pin of the TLC32040
to the BIO pin of the TMS320C17. Because the TMS320C 17 serial port accepts data
in 8-bit bytes (see Figure 4-2) and the TLC32040 controls the byte sequence (i.e.
which byte is transmitted first, the high-order byte or the low-order byte) it is important
that the TMS320C17 be able to distinguish between the two transmitted bytes. The
EODX signal is asserted only once during each transmission pair, making it useful for
marking the end of a transmission pair and synchronizing the TMS320C17 with the
AIC byte sequence. After synchronism has been established, the BIO line is no longer
needed by the interface program and may be used elsewhere.

Because the TMS320C17 serial port operates only in byte mode, 16-bit transmit data
should be separated into two 8-bit bytes and stored in separate registers before a
transmit interrupt is acknowledged. Alternatively, the data can be prepared inside the
interrupt service routine before the interrupt subroutine is called. From the time that
the interrupt is recognized to the end of the data transmission is equivalent to 28
TMS320C17 instruction cycles.

TMS320C17 TLC32040
EXINT '_l _g- WORD/BYTE
FSX |—& FSX
CLK OUT MSTR CLK
DX0 DX
SR SR
DRO DR
SCLK SHIFT CLK
BIO ‘EODX

Figure 4-1. AIC Interface to TMS320C17

Interfacing the TMS320 Family to the TLC32040 Family 119

] 1 .
! 1
FSX, FSR \ <+ | i [

[} "

1 g - b < b

DR D15 D14 m‘a- D8 ¥D7 X DS':X D2 \ D1 DO

T :) = j)

[)

EODR, EODX o \
oy

Sp— R

The sequence of operation is:

1. The FSX or FSR pin is brought low.

. One 8-bit word is transmitted or one 8-bit byte is received.

. The EODX or EODR pins are brought low.

. The FSX or FSR emit a positive frame-sync pulse that is four shift clock cycles wide.
. One 8-bit byte is transmitted and one 8-bit byte is received.

. The EODX and EODR pins are brought high.

. The FSX and FSR pins are brought high

T NOORWN

Figure 4-2. Operating Sequence for AIC-TMS320C17

4.2 Software

The software listed in Appendix C only allows the AIC to communicate with the
TMS320C17 in synchronous mode. This communication program is supplied with an
application routine, DLB (Appendix C, program listing line 236), which returns the
most recently received data word back to the AIC (digital loopback).

4.2.1 Initializing the TMS320C17

The program begins with an initialization routine (INIT, page C-5, line 122). Interrupts
are disabled and all the working storage registers used by the communication program
are cleared. Both transmit registers are cleared, the constants used by the program
are initialized and the addresses of the subroutines called by the program are placed
in data memory. This enables the interrupt service routine to call subroutines located
in program-memory addresses higher than 255. After the initialization is complete,
the program monitors the BIO line of the TMS320C17 and waits for the end of the
first interrupt pair (the AIC is in byte mode). Afterwards, interrupts are enabled and
control is passed to the main program.

4.2.2 AIC Communications and Interrupt Management

Because the AIC FSX pin is tied to the EXINT line of the TMS320C17 and the delay
through the interrupt multiplexer, the interrupt service routine is called four instruction
cycles after the falling edge of FSX. The interrupt service routine (INTSVC,
Appendix C, program listing, line 91) completes its context switching and then
monitors the lower control register, polling the FSX flag bit that indicates the end
of the 8-bit serial data transfer. If the FSX flag bit is set, the transfer is complete.
After this bit is set, control is transferred to the interrupt subroutine whose address
is stored in VECT. The serial communication must be complete before data is read
from the data receive register.

120 - Interfacing the TMS320 Family to the TLC32040 Family

b

When no secondary communication is to follow, the interrupt subroutines, NINT1 and
NINT2, are called. If data has been stored in DXMT2 (the low-order eight bits of the
transmit data word), which does not indicate that secondary communication is to
follow, the interrupt service routine calls NINT1 when the first 8-bit serial transfer
is complete. NINT1 immediately writes the second byte of transmit data, (i.e., the
contents of DXMT2) to transmit data register O (TRO). It then moves the first byte
of the received data (i.e. the high-order byte of the A/D conversion result) into DRCV1.
NINT1 then stores in VECT the address of NINT2. NINT2 is called at the end of the
next 8-bit data transfer and resets the FSX interrupt flag bit by writing a logic high
to it. The next interrupt (a falling edge on EXINT) occurs before the interrupt service
routine returns control to the main program. This is an acceptable situation since the
TMS320C17, on leaving the interrupt service routine, recognizes that an interrupt
has occurred and immediately responds by servicing the interrupt.

The interrupt subroutine NINT2 is similar in operation to NINT1. It stores the low-
order byte of receive data (bits 7 through O of the A/D conversion result) and stores
the addréss of the next interrupt subroutine in VECT. NINT2 does not write to the
transmit data register, TRO. This task has been left to the application program. After
the transmit data has been prepared by the main program and the data has been stored
in DXMT1 and DXMT2, the main program stores the first byte of the transmit data
in transmit data register O (TRO).

4.2.3 Secondary Communications

The interrupt subroutines SINT1 through SINT4 are called when secondary
communication is required. For secondary communication, DXMT1 and DXMT2 will
hold the primary communication word. DXMT3 and DXMT4 will hold the secondary
communication word. VECT, the subroutine pointer should then be initialized to the
address of SINT1. As with the normal (primary’ communication only) interrupt
subroutines (i.e., NINT1 and NINT2), the secondary communication routines will
change VECT to point to the succeeding routine (e.g., SINT1 will pointto SINT2, SINT2
will point to SINT3, etc.).

Interfacing the TMS320 Family to the TLC32040 Family 121

122 Interfacing the TMS320 Family to the TLC32040 Family

5 Summary

The TLC32040 is an excellent choice for many digital signal processing applications
such as speech recognition/storage systems and industrial process control. The
different serial modes of the AIC (synchronous, asynchronous, 8- and 16-bit) allow
it to interface easily with all of the serial port members of the TMS320 family as well
as other processors.

Interfacing the TMS320 Family to the TLC32040 Family 123

124

Interfacing the TMS320 Family to the TLC32040 Family

A TLC32040 and TMS32010 Flowcharts and
Communication Program

A.1 Flowcharts

INITIALIZE

ENABLE INTERRUPT

DATA
TRANSFER

RECEIVE DATA
READ SHIFT REGISTER

WRITE TRANSMIT DATA

TO SHIFT REGISTER
< SET RECEIVE AND
TRANSMIT END FLAG

USER AREA

***Modified to call NINT.

a. MAIN b. PRIMARY INTERRUPT ROUTINE

Interfacing the TMS320 Family to the TLC32040 Family 125

G-

RECEIVE DATA
READ SHIFT REGISTER

MODIFY INTERRUPT
LOCATION

| seT seconpary FLaT |

*Set, if need secondary.
* *Modify to call SINT2.
***Modify to call NINT.
****Must execute before transfer beginning.

*n

c. SECONDARY DATA COMMUNICATIONS 1

A.2 Communication Program List

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030

126

MODIFY INTERRUPT
LOCATION

l

SET RECEIVE AND
TRANSMIT END FLAG

[cLear seconpary FLAG |

d. SECONDARY DATA COMMUNICATION 2

36366 36 36 3 36 36 26 26 36 36 J6 36 3 3 36 6 JE 36 € 3 I€ 36 26 6 X I 36 26 3 X 36 6 2 36 2 X I 3 3 J6 36 3 I X 2 26 3 I 26 X X 36 3 I) X X %
When using this program, the circuit in the TLC32040

equivalent circuit must be used.

transmitting. TBLW command is

prohibited because it has the same timing as the OUT

* *
* *
¥ TMS32010 port 0 and port 1 are reserved for data x
% %
% %
% %

command. TLC32040 is used only in synchronous mode.
366 36 € 36 36 2 JE 36 3 JE 6 3 26 36 6 3 JE 36 JE JE J6 6 3 I 26 I6 36 2 JE IE I X JE 36 3 3 I 2 36 36 3 H J6 3 I 2 X 26 I 3 I 36 3 I I X) X X

data sheet or its
receiving and data
*
0002 RXEFLG EQU >02
0003 SNDFLG EQU >03
0004 DRCV EQU >04
0005 DXMT EQU >05
0006 D2ND EQU >06
0007 XVECT EQU >07
0008 ACHSTK EQU >08
0009 ACLSTK EQU >09
000A SSTSTK EQU >0A
000C ANINT EQU >0C
000D ASINT1 EQU >0D
000E ASINT2 EQU >0E
000F TMPO EQU >0F
*
00FF SET EQU >FF
0001 ONE EQU >01
%* E=Z===ZZ=Z=T========
%* Reset vector.
* =======sS=z==Z======
0000 AORG >0000
0000 F900 B EPIL
0001 000D

receive & xmit end flag.
secondary communication flag.
receive data storage.

xmit data storage.
secondary data storage.
interrupt address storage.
ACCH stack.

ACCL stack.

Status stack.

interrupt address 1
interrupt address 2
interrupt address 3
temporary register.

program start address.
jump to Initialization.

lnterfacing the TMS320 Family to the TLC32040 Family

0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
00446
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083

0002
0002
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
oooC

000D
000D
000D
000E
000E
000F
0010
0011
0012
0013
0014
0014
0015
0016

7C0A
6E01
5808
5009
2007
7F8C
6508
7A09
7B0A
7F82
7F8D

6E01

7€01
500F
6A0F
802C
7F38E
500C

8030
7F8E
500D

b3 3333333332233 33323 2233333333333 3333333333338233383333333333333

For secondary communication,modify the contents
of XVECT to the address of secondary communication
and store secondary data in D2ND.

ex.
LAC ASINT1,0 modify XVECT.
SACL XVECT,0
|

LAC D2ND, 0 store secondary data.

363636 6 26 36 3 36 36 3 36 36 36 3 3 36 6 3 26 J€ 6 3 36 36 36 36 3 36 36 36 36 3 36 26 3 36 36 3 36 36 3 36 J6 36 2 36 6 3 I 36 X I I H I K X K
AORG >0002 interrupt vector.

LR B B B B S 35 3 S5 B
KoK XK X K XK K K XK K K

INTSVC SST SSTSTK push status register.
LDPK ONE set data pointer one.
SACH ACHSTK push ACCH.
SACL ACLSTK push ACCL.
LAC XVECT,0 load interrupt address.
CALA branch to interrupt routine.
ZALH ACHSTK pop ACCH
OR ACLSTK pop ACCL.
LST SSTSTK pop stack register.
EINT enable interrupt.
RET return from interrupt routine.
36 3€ € 3 € 3 3 36 I I 36 I 3 3 I I 3 H I I I 3 € 3 3 IE 3 X I I I I6 3¢ 3 I 3 3 3 I 3 3 3 JE € I€ J€ I I€ I X X 3¢ 3 2
SZ=ZCSZZ=zSZ=SOS=zT=ZZTTZTZ=T=S=TSTITTZ==
Initialization after reset.

12 words of Page l,are reserved for this program.

The user must set the status register by adding

the SST command at the end of the initial routineX
6 36 36 36 36 96 3 JE 36 36 36 6 3 26 36 36 26 JE 36 36 36 6 36 6 3 I 3 3 3 3 3 JE I JE I I J€ 36 36 36 36 36 36 3 26 36 26 36 J6 36 2 36 6 %

KoK K XK K K XK

b3
*
*
*
* Data RAM locations 82H(130) through 8FH(143),
%
E 3
*

3

3

*
AORG $ initial program.

EPIL LDPK ONE set Data page pointer one.
LACK ONE save normal communication address
SACL TMPO to its storage.
LT TMPO
MPYK NINT
PAC
SACL ANINT N
MPYK SINT1 save secondary communication addressl
PAC to its storage.

SACL ASINT1

Interfacing the TMS320 Family to the TLC32040 Family 127

0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123

0017
0017
0018
0019
001A
001A
001B
00lcC
001D
001D
001E
001F
001F
0020
0020
0020
0020

0021
0021
0022

. 0023

0124
0125
0126

0127
0128
0129
0130
0131
0132
0133

128

0024
0024
0025
0026
0027
0027
00238
0028
0029
002A
002A
0028

8037
7F8E
500E

803E
7F8E
5007

7F89
5002

5003

7F82

2002
FFOO0
0021

2003
FEOO
0028
4905

7F89
5002

F900
0021

MPYK
PAC
SACL

MPYK
PAC
SACL

ZAC
SACL

SACL

EINT
%

SINT2 save secondary communication address2
to its storage.

ASINT2

IGINT ignore interrupt once after master
reset.

XVECT
clear flags.

RXEFLG, 0

SNDFLG, 0

enable interrupt.

XXX*XXXXXXXXXXXXXXXXXXXXXXXXX!XXXX*XXXXXXXXXXXXXXXXXXXXXX*X*

cycles. If

This program allows the user 2 levels of nesting, since
two levels are used as stack for the interrupt.

When the RXEFLG flag is false, no data transfer has
occurred; if true then data transfer has finished.

User rout1nes such as digital filter, secondary*data—
communlcat1on judgement etc. must be placed in this
location. Depending on the sampling rate. (cpnvers1on
rate), these user routines must write the xmit data to
the shift registers within approximately 500 instruction

will be necessary to delay the OUT instruction until the
secondary data transfer has flnlshed

Main program.
User can modify

the user requires secondary communication, it

MO N K M M M K K K K K XK K XK KX -

XXXXXX*XXXXXXX!XXXXX%XXX!XXXX*XXXXXXXXXXXXXXK!XXXX*XXX!XX*XX

MAIN LAC
BZ

LAC
BNZ
ouT

MAIN1 ZAC
SACL

RXEFLG,0 wait for interrupt.
MAIN

SNDFLG,0 skip QUT instruction during secondary
MAIN1 communication.

DXMT,PAl write xmit data to shift register.

. clear flags.
RXEFLG

MAIN loop.

Interfacing the TMS320 Family to the TLC32040 Family

0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0i74
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184

002¢
002c
002D
002D
002E
002F
002F

0030
0030
0031
0031

0032
0033
0034
0034
0035
0036
0036
0037

0037

4004

TEFF
5002

7F8D

4004
4906

200E
5007

7EFF
5003

7F8D

0185 0037 200C
0186 0038 5007

*
36 36 36 6 26 36 36 36 3 JE 36 36 36 6 3 26 JE 26 36 26 3 36 36 36 36 36 6 36 36 36 I 36 36 6 3 X J6 36 6 6 JE 26 I 36 6 3 3 I6 K 3 36 6 2) I % X
% CESTCSEZZZZE=ZISSE=SET=ZEZSTTSSz=cS====x

b 3
*
* destroy ACC,DP.
*
*
*

Write the contents of DXMT to the LS299's, receive
DAC data in DRCV, and set RXEFLG flag.
3636 36 36 36 36 6 36 36 6 36 36 6 36 36 € 36 J€ 36 I JE 36 36 36 3 26 36 36 36 3 36 36 36 2 I JE 36 J J€ 6 X 36 2 J6 I 6 I 6 3 J I 36 36 36 36)€ ¢ X

MoK KK K K X

NINT IN DRCV,PA0 Receive data from shift register.

LACK SET set receive and xmit ended flag.
SACL RXEFLG

RET : return.
%
t3.33333333333333333333333333333.332233332333323328233323332]
¥ IS SS oSS CSS SIS CSEI S SIS SSSCSTSSTSCSSSSCSITSZSSSSCSC

destroy ACC,DP

Write the contents of D2ND to the 'LS5299s, receive
data in DRCV, and modify XVECT for secondary communi
-cation interrupt.
;333332333333233333383333333332333333333333333323333233233333%

KoK XK K XK K X
MoOW KK KK K XK

SINT1 IN DRCV,PA0 receive data from shift register.

ouT D2ND,PAl write secondary data to shift

* register.
LAC ASINT2,0 modify interrupt location.
SACL XVECT secondary communication 2
LACK SET set secondary communication flag.

SACL SNDFLG,0
RET return.

66 36 36 € 3 36 96 36 3 36 36 3 J6 J6 36 36 JE I IE I I6 36 36 € 3 JE JE I 36 36 36 36 JE 36 I I 36 I6 6 6 6 36 3 36 36 36 JE 36 36 6 36 26 36 36 6 2 X

*
*
%
% destroy ACC, DP
*
%
*

X XK XK XK X

Modify XVECT for normal communication, and set RXEFLGX
flag. *
696 96 36 X 36 36 96 € € JE JE 26 J€ 36 36 3 2 26 36 36 36 6 JE 3 2€ JE 36 96 36 36 36 36 26 36 36 J€ 36 36 36 36 JE 26 36 36 2 3 36 36 26 36 26 36 36 36 3 X

SINT2 LAC ANINT modify interrupt location
SACL XVECT normal communication.

Interfacing the TMS320 Family to the TLC32040 Family 129

130

0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211

NO ERRORS,

0039
0039 7EFF
003A 5002
0038
003B 7F89
003C 5003
003D
003D 7F8D
003E

003E
003E 200C
003F 5007
0040
0040 7F8D
0041

LACK SET set receive and xmit ended flag.
SACL RXEFLG

ZAC Clear secondary communication flag.
SACL SNDFLG,0

RET return.

$3 33323333333 33333233333333382333333333333333333233333332333333

destroy ACC,DP.
Ignore first interrupt after reset. TLC32040 receives
¥ zero as DAC data but no ADC data in DRCV.
%
3636 36 3 36 36 6 3 36 € 36 36 36 3 36 6 3 36 6 3 36 6 36 36 6 3 36 36 JE 36 36 6 3 J€ 36 6 3 36 36 JE 36 36 36 3 J6 36 36 3 36 6 36 3 36 6 36 3 2 3¢ %

¥*
*
% S==ssssSsS=IsSSS==SsssssSIsSsssIsSsssIsIs=sss
%*
*

MoK K K K KK

IGINT LAC ANINT modify interrupt location

SACL XVECT normal communication.
RET) return.
END

NO WARNINGS

Interfacing the TMS320 Family to the TLC32040 Family

B TLC32040 and TMS32020 Flowcharts and
Communication Program

B.1 Flowcharts

| sersto status reGisTeR |1 I PUSH ACC, STO 1
| sevstistatus recisTer | 2 | Loao rinT vs(I:Ton ADDRESS |
| ciear B2 INTERNAL ReGISTER | 3 | cau ncvl ORIGNRR |6
| MASK IMR MASKING REGISTER | 4 B POP ACC. STO |
[sET conTenT olr EACH VECTOR | 5 [enasie II\IJTERRUPT]

1 - Alterable AR pointer and OVM.

2 - Alterable CNF, SXM and XF.

3 - Must clear at least 108 through 127, 19 of internal RAM.
4 - If IMR is changed by user program, INST must be changed.
6 - Their contents will be changed by their-routine locations.

6 - IGNRR is executed only once after reset.

a. INITIALIZATION b. RECEIVE INTERRUPT SERVICE ROUTINE

RCV

|sAvE Receive DATA As Alc copE]

I SET RECEIVE FLAG I SET FRE FLAG
c. RECEIVE SUBROUTINE d. IGNORE INTERRUPT

Interfacing the TMS320 Family to the TLC32040 Family 131

132

1l PUSH ACC, STO]

I

| LoaD xiNT vECTOR ADDRESS |

| cALLnRm. s1. 52, 1GNRX | 7

I POP ACC, STO]

|

| enaBLE INTERRUPT |

7 - IGNRX is executed only once after reset.

e. TRANSMIT INTERRUPT SERVICE ROUTINE

[WRITE SECONDARY DATA TO DXR I

| MoDIFY XINT VECTOR ADDRESS | 8

RETURN

8 - Modify to S2 address.
9 - Modify to NRM address.

g. PRIMARY-SECONDARY COMMUNICATIONS 1

| WRITE TRANSMIT DATA TO DXR |

1 SET TRANSMIT FLAG 1

RETURN

f. PRIMARY TRANSMISSION ROUTINE

[CLEAR DXR REGISTER _]

| cLear seconpary FLaG |

[MODIFY XINT VECTOR ADDRESS]

| MODIFY IMR INTERRUPT MASKING REGISTER | 9

h. PRIMARY-SECONDARY COMMUNICATIONS 2

Interfacing the TMS320 Family to the TLC32040 Family

IS TRANSMIT DATA
SECONDARY CODE?

| serseconparyFac |

l SET FXE FLAG A

| [mooiFy xinT vecTor ApDRESS | 11
[mooiFy xinT vecToR ADDRESS | 10

RETURN RETURN

10 - Modify to NRM address.
11 - Modify to S1 address.

[DISABLE OTHER INTERRUPT]

i. IGNORE TRANSMIT INTERRUPT j. SECONDARY COMMUNICATION JUDGMENT

IGR

FINISH FIRST
RINT?

RETURN

k. IGNORE FIRST INTERRUPTS

Interfacing the TMS320 Family to the TLC32040 Family 133

B.2 Communication Program List

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054

134

0000
0001
0004

006C
006D
006F
0070
0071
0072
0073
00746
0075
0076
0077
0078
0079
007A
007B
007¢C
007D
007E
007F

£3333333323323323333333333333333232333323232328232323232232333323333333 2233

* CS S S SIS ETCSECCSCSCSESCSEZESESESSSSCSSS=S=IT=SSSIT=S=SSsSSs=sS====== *
% TLC32040 & TMS32020 communication program. *
* S S S S CSCSCTCSCSSTCSICSCSESSESIZSESISESSEZSSTsS==SS=SzTz=S======= *
x by H.Okubo & W.Rowand *
x version 1.0 77/15/787. %
3 *
¥ This is a TMS32020 - TLC32040 communication program *
¥ that can can be used in many systems. To use this *
¥ program, the TMS32020 and the TLC32040 (AIC) must be 3
¥ connected as shown in Volume 3 of Linear and Interface *
¥ Applications. The program reserves TMS32020 internal *
¥ data memory 108 through 127 (B2) as flags and data %
% storage. When secondary communication is needed, every x
¥ maskable interrupt except XINT interrupt is disabled *
¥ until that communication finishes. This means that XINT X
¥ will be valid only during one DAC conversion time. *
¥ If you have any questions, please let us know. x
366 36 36 6 36 36 6 3 26 36 3 X 36 3 3 36 3 3 26 36 3 36 36 X J6 36 JE I 36 3 JE I 36 36 36 36 36 36 36 3 JE JE I 6 3 J6 36 3 J6 6 26 6 6 I 36 26 I X X
%

*

x S SES=S=STSSSSS==Z====s=S=T==S=====

* Memory mapped register.

¥ =========S=S=ss==sSs============

*

DRR EQU 0 ¥ data receive register address.

DXR EQU 1 % data xmit register address.

IMR EQU ¢4 ¥ interrupt mask register address.

*

x CE S =SS S EC S-S SIS SECSES=EECZESESE=S=SCSIo=SSZS=SSET==Z==Z=S========

* Reserved onchip RAM as flags and storages.

% (block B2 108 through 127.)

x S =SS ESSSCESECSCSECCSZZo=CSCSIZ===S=S=SsS=D=s-=s=Szzsz========

*

FXE EQU 108 X ignore first XINT flag.

FRE EQU 109 ¥ ignore first RINT flag.

TMPO EQU 111 % temporary register.

ACCHST EQU 112 % stack for ACCH.

ACCLST EQU 113 % stack for ACCL.

SSTST EQU 114 ¥ stack for STO register.

INTST EQU 115 ¥ stack for IMR register.

RVECT EQU 116 % vector for RINT.

XVECT EQU 117 ¥ vector for XINT.

VRCV EQU 118 ¥ RINT vector storage.

VNRM EQU 119 X XINT vector storage.

Vsl EQU 120 ¥ secondary vector storagel.

Vs2 EQU 121 ¥ secondary vector storage2.

DRCV EQU 122 ¥ receive data storage.

DXMT EQU 123 ¥ xmit data storage.

D2ND EQU 124 X secondary data storage.

FRCV EQU 125 ¥ receive flag.

FXMT EQU 126 ¥ xmit flag.

F2ND EQU 127 ¥ secondary communication flag.

Interfacing the TMS320 Family to the TLC32040 Family

0055
0056
0057
0058
0059

0060
0061
0062
0063
0064
0065
0066

0067
0068
0069
0070
0071
0072
0073

0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084

0085
0086

0000
0000
0001

001A
001A
001B

001C
001C
001D

0020

0020
0020
0021
0022
0023
0024

FF80
0020

FF80
004A

FF80
005A

FE80
0025
CEOO
FE30
008B

3636 6 36 36 36 36 3 36 2 36 3 36 6 36 36 26 36 3 26 3 36 6 J€ 3 36 I 36 J6 36 I 3 I€ 36 I€ 36 J€ 36 36 26 3 36 36 36 36 3 I 3 36 36 36 36 3 36 36 36 I X) X

* Processor starts at this address after reset. *
* *
AORG 0 ¥ program start address. %
B STRT ¥ jump to Initialization routine. *

£3333333333333333333333333323233333323333333333333333333333333]

*

3636 36 36 36 36 36 3 36 36 3 36 36 36 3 3 36 36 JE 3E 36 6 JE 36 36 3 26 36 36 3 36 36 36 3 36 36 3 36 J6 J6 3 3 JE JE 36 6 3 I I 6 X J€ 36 36 D€ 36 3 J€ X I

* Receive interrupt location. x

% *
AORG 26 ¥ Rint vector. %
B RINT ¥ jump to receive interrupt routine. X

3333332233333 2233333333333 3323332333333233232232233332333233333283
*
$2232332823333333233332332233333333333333333333833333833333338 3]

* Transmit interrupt location. *
%* *
AORG 28 ¥ Xint vector. *
B XINT %X jump to xmit interrupt routine. *

;3333333333333 38333333333333333233333333232333333333333332233323
*

AORG 32 ¥ start initial program.
%
636 36 36 36 36 3 3E 36 JE I I JE I JE I I IEIE 36 IE 36 36 36 3 3 JE 26 36 J6 36 36 3 JE I I6 36 36 36 36 6 36 36 36 36 26 26 36 36 26 6 36 36 3 36 36 36 36 X X
¥ User must initialize DSP with the routine INIT. The *
¥ user may modify this routine to suit his system require- %
¥ ments as he likes. *

}333333333333333333333333333333332333333333 3833 2332323333333 28]

STRT CALL INIT *

EINT ¥ enable interrupt.
CALL IGR

Interfacing the TMS320 Family to the TLC32040 Family 135

0037
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0126

0125
0126
0127
0128
0129
0130
0131
0132
0133
0134

0135

0136
0137

136

0025
0026
0027
0028
0029

002A
0028
002C
002D

C800
D001

0EOO

606F
506F

D001
03F0
606F
516F

%*
X*X**XK*XXX!X!XXXXX*!!XXX*X!XXXXXXXXXXXXXX*XX!*K**XXXXX*%X%X

This program allows the user 2 levels of nesting, since
2 levels are used as stack for the interrupt. When the
FXMT flag is false no data transmit has occurred. When
the FRCV flag is false no data has been received. As
those flags are not reset by any routine in this program
the user must reset the flag to read or write new data
and note that >00FF means true, >0000 means false.

User routines such as digital filtering, secondary-data-
communication judgement etc. must be placed in this
location. Depending on the sampling rate (conversion
rate), these user routines must write the xmit data to
DXMT registers within approximately 500 instruction
cycles. If the user requires secondary communication,
first write data with secondary code to DXMT, then write
secondary data to D2ND and call C2ND routine to set F2ND
and modify XVECT for secondary communication. Note that
every maskable interrupt except XINT is disabled during
this conversion cycle including secondary communication.
636 36 26 36 36 26 36 36 36 3 36 36 36 36 3 JE 36 € X I 36 6 36 36 6 26 36 3 JE 36 6 JE 36 3 3E 36 6 JE I 36 3 3 I€ 36 36 3 I 36 6 3 JE 6) I 36 36 6 X %
x

3636 3 36 9 36 36 36 36 26 36 36 36 6 36 36 36 36 6 36 I 36 36 36 36 36 6 3 3 2 36 36 36 36 6 3E X I 96 I I I 36 I 3 36 96 36 36 36 6 3 I 36 6 X %6 6 X %

MoMK K MK MK K K KK K XK KK K K K K KK K K XK
MoK KK K K K K K KK K K K K K XK XK K K K XK

This routine initializes the status registers, flags,
vector storage contents and internal data locations

96 through 107. Note that the User can modify these
registers (i.e. STO STl IMR), as long as the contents do
not conflict with the operation the AIC.
3636 36 96 36 36 36 36 56 3 3 26 3 36 26 26 36 3 3 36 36 36 3 3 6 3 3 3 36 26 36 6 56 36 26 36 36 36 36 36 26 26 26 36 6 36 36 36 3 36 26 I 36 26)6 26 X X X
INIT LDPK 0 ¥ set status0 register.
LALK >0E00,0 % 0000 1110 0000 0000B

MoK KK KK XK XK
KoK XK KK K K XK

SACL TMPO,0 X ARP=0 AR pointer 0

LST TMPO ¥ 0V =0 (Overflow reg.clear)
* X OVM=1 (Overflow mode set to 1)
* ¥ 7 =1 Not affected.
* %X INTM=1 Not affected
x x DP 000000000 page 0
*
x % set statusl register.
x x '

LALK >03F0 % 0000 0011 1111 00O0OB

SACL TMPO,0 % APB=0

LST1 TMPO . % CNF=0 (Set B0 data memory)
* ¥ TC =0

Interfacing the TMS320 Family to the TLC32040 Family

0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163

0164
0165
0166

0167
0168
0169

0170
0171
0172

0173
0174
0175

0176
0177
0178

0179
0180

002E
002F
0030
0031
0032
0033

0034
0035
0036

0037
0038
0039

003A
003B
003C

003D
003E
003F

0040
0041
0042

0043
0044
0045

0046
0047
0048
0049

CAO0
6001
6000
C060
CB1F
60A0

CA30
6004
6073

D001
0065
6077

D001
006A
6078

D001
006F
6079

Dool
0055
6076

D001
0092
6074

D001
0097
6075
CE26

KoK XK K K XK XK XK

*

KKK K X

ZAC

SACL
SACL
LARK
RPTK
SACL

Interrupt

LACK

SACL
SACL

LALK

SACL

LALK

SACL

LALK

SACL

LALK

SACL

LALK

SACL

LALK

SACL
RET

DXR, 0
DRR, 0
ARO, 96
31

*+,0
masking
>30

IMR, 0
INTST,0

NRM, 0

VNRM, 0

S1,0

VS1,0

52,0

vs2,0

RCV,0

VRCV, 0

IGNRR, 0

RVECT, 0

IGNRX, 0

XVECT, 0

* MoK KKK

MoK K K K K

Interfacing the TMS320 Family to the TLC32040 Family

SXM=1 (enable sign extend mode
D9-D5=111111 not affected.
XF=1 (XF pin status.)

F0=0 (16bit data transfer mode
TXM=0 (FSX input)

clear registers

clear Block B2.

0000 0000 0011 0000B
XINT o
RINT P
TINT !
INT2
INT1
INTO

normal xint routine address.

secondary xint routine address

2

D

1.

secondary xint routine address 2.

rint routine address.

set ignore first rint address.

set ignore first xint address.

return. '

137

0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233

138

006A
004B
004C
004D
004E
004F
0050
0051
0052
0053
0054

0055
0056
0057
0058
0059

005A
005B
005C
005D
005E
005F
0060
0061
0062
0063
0064

7872
c8oo
6071
6870
2074
CE24
4171
4870
5072
CEOO
CE26

2000
607A
CAFF
607D
CE26

7872
Cc800
6071
6870
2075
CE24
4171
4870
5072
CEO0O
CE26

*
}333333333333333333333333333333332333333333333333333333¢83333819

This routine stores receive data in its storage

DRCV (112 page0) and sets receive flag FRCV (125 page0).
As 2 levels nesting are used, this routine allows the
user 2 levels nesting, without stack extension.

26636 36 36 6 3 26 36 36 36 36 36 36 36 € 36 6 6 JE 36 36 26 36 36 36 36 3 36 26 J6 JE 36 36 36 6 3 3 3 26 36 36 36 J6 36 36 36 6 36 2 36 I€ 36 36 6 36 26 36 6 3
RINT SST SSTST ¥ push STO register.

KoK KK K K K
KoK K K K K XK

LDPK 0 ¥ data pointer page 0.
SACL ACCLST, 0 ¥ push ACCL.
SACH ACCHST, 0 ¥ push ACCH.
LAC RVECT,O0 ¥ load ACC vector address.
CALA
ZALS ACCLST %X pop ACC
ADDH ACCHST
LST SSTST ¥ pop ST register.
EINT ¥ enable interrupts.
RET % return.
%*
RCV LAC DRR,0 ¥ load data from DRR.
SACL DRCV,0 ¥ save it to its storage.
LACK >FF ¥ set receive flag.
SACL FRCV *
RET ¥ return.
%

}33 3333332332333 2323333332333333333333833333338333333333333¢8¢3

* TS S CSCSESISCSECSESSSESESZIZS=ZZ==Zz=== *
% Xmit interrupt routine. x
% L i3 2 i 2t 2 s s E E E E S F F E E F F 2 11 %
¥ This routine writes xmit data (the contents of DXMT *
% (123 pagel)) to DXR register according to communication X
¥ condition, i.e. normal communication or secondary *
¥ communication. For normal communication call normal com- %
¥ munication routine (NRM). For secondary, call secondary %
¥ communication routines (S1 and S2). Because these %
% routines use 2 levels of nesting, the user is allowed 2 X
%X levels of nesting if stack extension is not used. 3
*)
3636 36 3 36 36 3 36 36 3 36 36 € 3 36 36 36 6 3 36 36 3 3 J6 36 6 3E 36 36 JE 36 36 36 36 I€ 6 36 36 J6 6 JE 3E I€ 36 36 36 36 36 3 I€ 36 3 36 36 3 36 6 36 36 X
XINT SST SSTST ¥ push ST register.

LDPK 0 ¥ data pointer page 0.

SACL ACCLST,O ¥ push ACCL. '

SACH ACCHST,O0 ¥ push ACCH.

LAC XVECT,0 ¥ load vector address.

CALA ¥ call xmit routine.

ZALS ACCLST % pop ACC

ADDH - ACCHST

LST SSTST ¥ pop ST register.

EINT ¥ enable interrupt.

RET ¥ return.

Interfacing the TMS320 Family to the TLC32040 Family

0234
0235
0236
0237
0238
0239
0240
0241
0242
0243 0065
0246 0066
0245 0067
0246 0068
0247 0069
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258 006A
0259 006B
0260 006C
0261 006D
0262 006E
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275 006F
0276 0070
0277 0071
0278 0072
0279 0073
0280 0074
0281 0075
0282 0076
0283 0077
0284 00738

207B
6001
CAFF
607E
CE26

207C
6001
2079
6075
CE26

CA00
6001
607F
CAFF
607E
2077
6075
2073
6004
CE26

x

t333333338333332333333333333333333333333333233232332333238323333

x’oOXK X

*

% this routine writes xmit data to DXR, and sets xmit flag

*

(126 page0).

*
*
%
This routine is called when normal communication occurs.X
%
*
*

3T ELLIILELS233 3232233223 33333333323333333333333 8233324

NR

*

M LAC DXMT,0 ¥ write DXR data.
SACL DXR, 0
LACK >FF ¥ set flag.
SACL FXMT
RET ¥ return.

(3333232222222 333223333333333333332333333332333333223233EE3S

MoK K K K K K XK

w
—

*

This routine is called when secondary communication

occurs. This routine writes secondary data to DXR, and
modifies the content of XVECT(117 pagel) for continuing

the secondary communication.

KoK K XK XK XK XK

;3332333332323 2333333333333333¢33323333333333333333.333333.33.81

LAC D2ND, 0 ¥ write DXR 2nd data.
SACL DXR,0

LAC VS2,0 X modify for next XINT.
SACL XVECT,0

RET ¥ return.

3636 36 26 3 3 X 3 2 I K 3 I I, I KK I K I K K I K I I IE X I I K I I I H I X I X I X X %

WO K K K K K K XK

This routine is called when secondary communication

occurs. This routine writes dummy data to DXR to clear

the secondary code for the protection of double writing
the secondary code and reset secondary flag(l127 page0),
modify the content of XVECT(11l7 page0) for normal XINT.

KO K K K K XK K X

£33$3333223323333333333233333333333333333333333333333333383833

S2

ZAC ¥ clear data for protection.

SACL DXR,0 ¥ of double secondary communication.
SACL F2ND X clear secondary flag.

LACK >FF ¥ set xmit end flag.

SACL FXMT,O0

LAC VNRM,0 ¥ set normal communication vector.

SACL XVECT,0

LAC INTST,O0 ¥ enable all interrupts.
SACL IMR,0

RET ¥ return.

Interfacing the TMS320 Family to the TLC32040 Family

139

0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304

0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328

0329
0330

0331

140

0079
007A
007B
007¢C
007D
007E
007F
0080
00381

0082
0083
0084
0085
0086
0087
0088
0089
008A

008B
008C
008D
008E
008F
0090
0091

caoo
CA03
606F
207B
GE6F
106F
F680
0082
CE26

CAFF
607F
CA20
6004
2078
6075
207B
6001
CE26

206D
F680
008B
206C
F680
008B
CE26

v

%
3636 € 36 36 3 36 3 36 € 3 36 3 3 36 36 26 2 36 3E 36 6 3 36 36 36 36 6 X 36 36 36 3 36 3 36 36 6 36 36 36 X6 36 36 X 36 J6 36 36 J6 I 3 36 26 3 3) X X %
% CSESSCSESRSSIS==SSSESS===== *
* Check secondary code. destory DP pointer. 3
% St -t E F - - E - T E - T 5+ - 41 ACC. *
x x
X This routine checks whether the data in DXMT (123 page0)x
¥ has secondary code or not. If secondary code exists, *
X then disable maskable interrupts except XINT, modify the %
X contents of XVECT(117 page0) for secondary communication,X
X and set secondary flag. Note that we recommend calling *
X this routine to send control words to AIC. x
26 36 26 36 96 € 26 36 36 36 6 3 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 6 6 26 26 JE 36 J€ 36 3 36 26 26 J6 26 36 6 6 3 26 IE 36 6 I 36 6 36 3 I 36 X X
C2ND LDPK 0 ¥ data page pointer 0.

LACK 03

SACL TMPO

LAC DXMT,0 % is this data secondary code ?

AND TMPO

SUB TMPO,0 %

BZ C2ND1 x if yes, then next.

RET X else return.
3
C2ND1 LACK >FF ¥ set secondary flag.

SACL F2ND,O0

LACK >20 ¥ enable only XINT.

SACL IMR,0

LAC VS1,0 ¥modify vector address for secondary

SACL XVECT,O0 ¥ communication.

LAC DXMT,0 ¥ write primary data to DXR.

SACL DXR,0

RET %X return.
*

3696 26 3 26 I€ 3 26 I€ 3 3 I I I X I I I X I I I 2 XXX

;3332333333333 3222232332238233333¢83

* x
%X CESsESosss=Sc-ss==z===s=== b 3
% Check first interrupt %
'S SZ=-=Ss=Z=z=z=z=z=zzzzzzz===== *
* %
* This routine check whether both first interrupts have X
¥ occurred. If this routine is called after reset, this x
¥ routine waits for both interrupts then returns. *
b3$33333333333333333333333333333333323333333333333233¢83333¢33%
IGR LAC FRE,0 % check first interrupt after

BZ IGR ¥ master reset.

LAC FXE,0

BZ IGR

RET

Interfacing the TMS320 Family to the TLC32040 Family

0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344 0092
0345 0093
0346 0094
0347 0095
0348 0096
0349
0350 0097
0351 0098
0352 0099
0353 009A
0354 009B
0355
0356
NO ERRORS,

CAFF
606D
2076
60746
CE26

CAFF
606C
2077
6075
CE26

*

363696 36 3 36 36 36 3 3 36 36 3 6 3 26 36 6 36 36 3 3 36 36 J6 26 JE I 6 3 J6 36 36 26 I 36 3 36 X 3 36 336 3 36 6 2 I) X 9 X X) X X X X X%
x ====z=zs=z=z==z==z=z=z==z==z=z=z=zz==z==== %
* Ignore interrupt routine. *
* :::::==========':=============: *
¥ These routines are for the purpose of ignoring the firstx
¥ RINT and XINT after the DSP reset. The routines only set %
¥ flags and modify each vector address to normal interrupt X
¥ address but do not read or write to serial ports. *
X Note that first data that the first data that the AIC *
¥ will receive after the DSP reset is 0000H. *

3636 363 36 336 96 36 36 36 36 26 36 36 36 36 36 36 26 26 36 36 26 26 36 36 3 36 3 3 2 26 36 36 36 36 36 36 36 6 3 3 36 26 36 36 6 3 3)6 36 36 36 6 36 36 6 X X
IGNRR LACK >FF

SACL FRE, O
LAC VRCV,0 ¥ set normal receive address.
SACL RVECT, 0 x
RET X return.
*
IGNRX LACK >FF
SACL FXE, O
LAC VNRM,O0 ¥ set normal xmit address.
SACL XVECT,0 *
RET ¥ return.
*
END

NO WARNINGS

Interfacing the TMS320 Family to the TLC32040 Family 141

142 Interfacing the TMS320 Family to the TLC32040 Family

C TLC32040 and TMS320C17 Flowcharts and
Communication Program

C.1 Flowcharts

| INITIALIZE 1

L warrror FlnsLTW PULSE |

[ENABLE INTERRUPT] | push sTatus RecisTER |
N | pushaccumutator]

[wriTe seconpary communicaTion | I

| CLEAR FSX FLAG 1

lMODIFV INTERRUPT LOCATION. 'SINT1]

IS TRANSFER
COMPLETE?

DATA TRANSFER
END?

CALL SUBROUTINE REFERENCED
BY VECTOR

|

| POP ACCUMULATOR]

|
| POP STATUS]

USER AREA RETURN

a. MAIN b. INTERRUPT SERVICE ROUTINE

MORE SECONDARY

Interfacing the TMS320 Family to the TLC32040 Family 143

NINT1

N

| write TRANSMIT LOW BYTE |

l |

| . GeETReceive HIGH BYTE -]

|

[MODIFY INTERRUPT LOCATION. "NINTZI

| cLear TRansFeEREND FLAG |

)

RETURN

c. PRIMARY COMMUNICATION 1

SINT1

L

| write TRANSMIT LOW BYTE]

| GET RECEIVE HIGH BYTE |

[MODIFY INTERRUPT LOCATION. *SINT2 |

| . CLEAR TRANSFER END FLAG 1

RETURN

i)

e. PRIMARY-SECONDARY COMMUNICATION 1

SINT3

L

[wriTe seconDARY DATA Low BYTE |

[MODIFY INTERRUPT LOCATION. "SINT4]

| CLEAR TRANSFER END FLAG. |

)

RETURN

g. PRIMARY-SECONDARY COMMUNICATION 3

. NINT2

L

I GET RECEIVE LOW BYTE k 1

. i
|MODIFY INTERRUPT LOCATION. *NINT1]

| CLEAR TRANSFER END FLAG |

)

RETURN

d. PRIMARY COMMUNICATION 2

. SINT2

l

I write sEcONDARY DATA HIGH BYTE |

| ' Gsf RECEIVE LOW aﬁe -]

| MODIFY INTERRUPT LOCATION. *SINT3 |

RETURN

l

f. PRIMARY-SECONDARY COMMUNICATION 2

-

SINT4

|MODIFY INTERRUPT LOCATION. *NINT1

ICLEAR TRANSMIT LOW BYTE STORAGE LOCATlON]

| cLEAR TRANSFER END FLAG |

RETURN

B

h.. PRIMARY-SECONDARY. COMMUNICATION 4

144 Interfacing the TMS320 Family to the TLC32040 Family

DLB

DATA TRANSFER
COMPLETE?

MOVE RECEIVE HIGH-BYTE
TO TRANSMIT HIGH-BYTE

i

[MOVE RECEIVE LOW-BYTE]
TO TRANSMIT LOW-BYTE

WRITE TRANSMIT HIGH-BYTE TO
TRANSMIT REGISTER BUFFER

I

i. DIGITAL LOOPBACK

Interfacing the TMS320 Family to the TLC32040 Family 145

C.2 Communication Program List

0001 $3383333333333.33333333
0002 x *
0003 ¥ EEZIS SIS oS ESCSCSCSCSCCSISISSSSSSCSEISISSSSSSSSSISSSSSSSSZIZES %
0004 * TLC32040 to TMS320C17 Communication Program %*
0005 * version 1.1 x
0006 % x
0007 % by Hironori Okubo and Woody Rowand *
0008 * Texas Instruments *
06009 % : x
0010 % CEZCZZCICSCZ TSI SS IS CSCoISSESSSSSCSSZSSSSSSIZESSIZSZISI=I=Z=S *
0011 % *
0012 ¥ This program uses the circuit published in the vol. 3 *
0013 ¥ of Linear and Interface Circuit Applications with the x
0014 ¥ following modifications: *
0015 * 1. BIO- of the TMS320C17 must be connected to EODX- *
0016 * of the TLC32040. *
0017 * 2. INT- of the TMS320C17 must be connected to FSX- x
0018 % of the TLC32040. *
0019 * *
0020 ¥ In this configuration, the program will allow the x
0021 %X TLC32040 to communicate with the TLC320C17 with the %
0022 %X with the restriction that all interrupts except INT- %
0023 ¥ are prohibited and only synchronous communication %
00246 %X can occur. The program allows the user 2 levels of %
0025 ¥ nesting in the main program; the remaining 2 levels *
0026 ¥ being reserved for the interrupt vector and sub- *
0027 ¥ routines. %
0028 % x
0029 ¥ If desired, this program may be used with the *
0030 ¥ TMS32011 Digital Signal Processor with the following b3
0031 X change. Since the TMS32011 has only sixteen words of %
0032 X data RAM on data page 1, all of the registers used by x
0033 ¥ this program should be moved to data page 0, except 3
0034 ¥ for SSTSTK (the temporary storage location for the *
0035 ¥ status register) which must remain on page 1 (since *
0036 ¥ the SST instruction always addresses page 1). %
0037 * %
0038 1333333333 2333332333333333333333328333332333333333333333333332%3
0039 0000 SSTSTK EQU >00 stack for status (SST) register.
0040 0001 ACHSTK EQU >01 stack for accumulator high (ACCH).
0041 0002 ACLSTK EQU >02 stack for accumulator low (ACCL).
0042 0003 RXEFLG EQU >03 xmit/receive in progress.

0043 0006 DRCV1 EQU >04 storage for high byte receive data.
0044 0005 DRCV2 EQU >05 storage for low byte receive data.
0045 0006 DXMT1l EQU >06 storage for high byte xmit data.
0046 0007 DXMT2 EQU >07 storage for low byte xmit data.

0047 0008 DXMT3 EQU >08 storage for high byte secndry data.
00438 0009 DXMT4 EQU >09 storage for low byte secndry data.
0049 000A VECT EQU >0A storage for interrupt vector addr.
0050 000B ANINT1 EQU >0B storage for normal xmit/rcv vect 1.
0051 000C ANINT2 EQU >0C storage for normal xmit/rcv vect 2.
0052 000D ASINT1 EQU >0D storage for secndry xmit/rcv vect 1.

146 Interfacing the TMS320 Family to the TLC32040 Family

0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066

0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100

0000

0000
0000
0001
0002

0002
0002
0002
0002
0003
0004
0005
0006
0007
0007
0008
0009
000A
000B

000E
000F
0010
0011
0012
0013
0014
00FF

F900
0013

6E01
7C00
5801
5002
4813

4011
2011
7912
FFOO
0007

ASINT2 EQU >0E storage for secndry xmit/rcv vect 2.
ASINT3 EQU >0F storage for secndry xmit/rcv vect 3.
ASINT4 EQU >10 storage for secndry xmit/rcv vect 4.
CNTREG EQU >11 storage for control register.
MXINT EQU >12 storage for xmit interrupt mask.
CLRX EQU >13 storage for xmit interrupt clear.
TEMP EQU >14 temporary register.
FLAG EQU >FF flag set.
b3 Branch to Initialization Routine.
* R]

AORG >0000

B INIT branch to initialization routine.

;3333333323233 8233322333323333333333333333333338332333333223

* -+t -t 2 32 2 S 2 3 S+ S 2 L+ 0 S 4 F -5 0 *
* Interrupt Service Routine. x
* TSI SIS ICSCCISSSCSSSZCSSSSSSSZSTIITSZ=== %
* *
¥ To initiate secondary communications, change the *
X contents of VECT to the address of the secondary *
¥ communications subroutine and store the secondary *
¥ communication information in DXMT3 and DXMT4. *
4 *
X e.g. *
* LAC ASINT1 modify VECT. *
* SACL VECT *
* H) *
% LAC H1 store high-byte of secondary %
x SACL DXMT3 information in DXMT3. *
* LAC H2 store low-byte in DXMT4. %
x SACL DXMT4 %
% %

$3$3$23333333333333333333333333333333333333322233232333332332323

AORG >0002 interrupt vector.

INTSVC LDPK 1

SST SSTSTK push status register.
SACH ACHSTK push accumulator high.
SACL ACLSTK push accumulator low.

ouT CLRX,PAD make sure FSX-flag is clear.

WAIT1 IN CNTREG,PAO0 read control register.
LAC CNTREG,PA0 load accumulator with control reg.
AND MXINT mask-off xmit interrupt flag.
BZ WAIT1 loop until xmit interrupt flag is

Interfacing the TMS320 Family to the TLC32040 Family 147

0101 *) recognized.

0102 000C 200A LAC VECT load acc with interrupt vector.

0103 000D 7F8C CALA call appropriate xmit/rcv routines.
0104 000E 6501 ZALH ACHSTK pop accumulator high.

0105 000F 7A02 OR ACLSTK pop accumulator low.

0106 0010 7B0OO LST SSTSTK pop status register.

0107 0011 7F82 EINT enable interrupts.

0108 0012 7F8D RET return to main program.

0109 0013

0110 $33332333333333333332323333333333323323%232333233333333338333333 8
0111 E 4 ST ZZZSZ=ISTSSSSZSSSSSSSSSSTSSZSIS===SS *
0112 * Initialization after Reset. *
0113 X 3 F i A s s S R N i ittt %
0114 * *
0115 ¥ Data RAM locations >80 through >92 are reserved by x
0116 ¥ this program. The user must set the status register x
0117 ¥ at the end of this program with the SST command or x
0118 X a combination of SOVM, LDPK etc. *
0119 * *
0120 3696 96 636 36 36 3 36 6 2 96 6 3 26 36 3 36 26 3 I 36 3 36 3 26 3 3 3 36 36 3 I 96 36 3 3 36 I 36 3 I 36 3 36 6) 36 3) X X X X
0121 0013

0122 0013 7F81 INIT DINT disable interrupts.

0123 0014 6EOQ1 LDPK 1 set Data page pointer one.

0124 0015 g

0125 0015 7F89 ZAC clear registers.

0126 0016 6880 LARP 0

0127 0017 7083 LARK O,RXEFLG+>80

0128 0018 50A8 SACL X+

0129 0019 50A8 SACL *+

0130 001A 50A8 SACL x+

0131 001B 50A8 SACL *%+

0132 001C S50A8 SACL x+

0133 001D 50A8 SACL x+

0134 001E 50A8 SACL %+

0135 001F 5088 SACL x

0136 0020

0137 0020 4906 ouT DXMT1,PAl clear transmit registers.

0138 0021 4906 ouT DXMT1, PAl

0139 0022

0140 0022 7E04 LACK 700000100

0141 0023 5012 SACL MXINT initialize xmit-int mask.

0142 0024

0143 0024 7EO01 LACK 1 prepare for serial port initial-
0144 0025 5014 SACL TEMP ization and initialization of regis-
0145 0026 6Al4 LT TEMP ters containing 16-bit constants.
0146 0027

0147 0027 8094 MPYK CLX1 initialize interrupt flag clear.
0148 0028 7F8E PAC

0149 0029 6713 TBLR CLRX

0150 002A 4813 ouT CLRX,PAO configure serial port.

0151 002B

0152 002B 806E MPYK NINT1 save normal communication address
0153 002C 7F8E PAC to its storage.

148 Interfacing the TMS320 Family to the TLC32040 Family

0154 002D

0155 002E

0156 002F

0157 002F

0158 0030

0159 0031

0160 0032

0161 0032

0162 0033

0163 0034

0164 0035

0165 0035

0166 0036

0167 0037

0168 0038

0169 0038

0170 0039

0171 003A

0172 003B

0173 003B

0174 003C

0175 003D

0176 003E

0177 O003E
003F

0178 0040
0041

0179 0042
0043

0180 0044

0181 0049

0182 0045

0183

0184

0185

0186

0187

0188

0189

0190

0191

0192

0193

0194

0195

0196

0197

0198

0199

0200

0201

0202 0045

5008
500A

8074
7F8E
500C

807B
7F8E
500D

8081
7F8E
500E

8087
TF8E
500F

808C
7F8E
5010

F600
00642
F900
003E
F600
0042

7F82

SACL
SACL

MPYK
PAC
SACL

MPYK
PAC
SACL
MPYK
PAC
SACL
MPYK
PAC
SACL
MPYK
PAC
SACL

IGNOR1 BIOZ
B

IGNOR2 BIOZ

EINT

ANINT1
VECT

NINT2

ANINT2

SINT1

ASINT1

SINT2

ASINT2

SINT3

ASINT3

SINTG

ASINTG

IGNOR2

IGNOR1

IGNOR2

preset interrupt address.
save normal communication address 2

to its storage.

save secondary communication
address 1 to its storage.

save secondary communication
address 2 to its storage.

save secondary communication
address 3 to its storage.

save secondary communication
address 4 to its storage.

ignore first FSX pair after reset.

enable interrupt.

t33223332333333332333333333233333333233333333333333333333333 23

x X
=X
o
-
3
-
3
o
Qa
3
o
3
-~
c
]
o
b
o
3
1]
o
-

MoK K K K K K K K K K K K XK

This program allows the user 2 levels nesting, since
one level is used as stack for the interrupt and the
interrupt service routine makes one subroutine call.
User routines such as digital filtering and secondary-
communication judgement. Depending on the sampling rate
the user's routines must write the data to the transmit
registers within approximately 500 instruction cycles.

In the example below,
secondary information to the AIC. The first configures
the TB and RB registers. The second configures the
control register.

the first two transmissions send

KoK K XK K XK K XK K M K XK K XK K K X

3636 36 36 3 36 J€ JE 36 J€ 3 I 36 3 I 26 X I I I I6 26 3 36 I X I 26 3 3 I 3 I X 3 I X I X J6 26 6 26 J 6 X 3 I X I I I X 2 I XX

Interfacing the TMS320 Family to the TLC32040 Family 149

0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219

0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242

102643

150

0244
0245
0246
0247

0248
0249
0250
0251
0252
0253

0045
0046
0047
0048
0049
006A
004B
004C
004D
004E
004F

0050
0051
0052
0052
0053
0054
0055
0055
0056
0057
0058
0059
005A
005B
005C
005D
005E
005F
0060
0060
0061
0062

0062
0062
0063
0064
0065
0066
0067
0068
0069

7F89
5006
7E03
5007
7E24
5008
7E92
5009
200D
500A
4906

7F89
5003

2003
FFO0O
0052

7F89
5006
7E03
5007
7E00
5008
7E67
5009
200D
500A
4906

7F89
5003

2003
FFOO
0062
2004
5006
2005
5007
4906

MAIN ZAC
SACL
LACK
SACL
LACK
SACL
LACK
SACL
LAC
SACL
ouT

ZAC
SACL

MAIN1 LAC
BZ

ZAC

SACL
LACK
SACL
LACK
SACL
LACK
SACL
LAC

SACL
ouT

ZAC
SACL

prepare first control word.
DXMT1
>03
DXMT2 should be xxxx xx1l.
>24
DXMT3
>92
DXMT4
ASINT1 set VECT for secondary
VECT communications.
DXMT1,PAl store first transmit byte in
transmit buffer.

RXEFLG clear xmit/rcv end flag.
RXEFLG
MAIN1 wait for data transfer to complete.

prepare second control word.
DXMT1
>03
DXMT2
>00
DXMT3
>67
DXMT4
ASINT1
VECT
DXMT1,PAl

RXEFLG clear xmit/rcv end flag.

E3 3333333333333 333333333332333232333332233333332333332ETSELTTES

X

KoK K XK

This program serves as an example of what can be done
in the user area.

MoK XK XK XK K XK

b3333333333333333333333333 333333333233 2332333323232333382332222E3

DLB LAC
BZ

LAC
SACL
LAC
SACL
ouT

RXEFLG wait for data transfer to complete.
DLB

DRCV1 move receive data to transit

DXMT1 registers.

DRCV2

DXMT2

DXMT1,PAl write first transmit byte to
transmit buffer.

Interfacing the TMS320 Family to the TLC32040 Family

0254
0255
0256

0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0230
0281
0282
0283
0284
0235
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305

006A
006B
006C
006D
006E

006E
006E
006F
0070
0071
0072
0073
0074
0074
0075
0076
0077
0078
0079
007A
007B

007B
007B
007C
007D
007E
007F
0080

7F89
5003
F900
0062

4907
4106
200C
500A
4813
7F8D

4105
200B
500A
4813
7EFF
5003
7F8D

4907
4106
200E
500A
4813
7F8D

ZAC
SACL RXEFLG
B DLB

clear rcv/xmit-end flag.

3696 26 36 3 36 3 36 36 3 36 3 JE 36 I J€ 3 JE 36 3 36 3 26 I6 3 I€ 3 I 3 2 I X I 3 I I 3 36 I X 36 3 36 3 36 36 36 96 3 I 3 I X 3 I X 6) X X

% ST =S=SS=SS=CS=ZZzSCSSZCSSTCoZSIIsSSsSsS==S===== *
* Normal Interrupt Routines. *
* SIS TEZZEZZEZEZEZZZSISCoSCoZIZoZSIZ=Sz=S=S===== *
* *
¥ These routines destroy the contents of the accumulator ¥
¥ and the data page pointer, making it necessary to save X
%X these before the routines begin. %
* . *
¥ HWrite the contents of DXMT2 to the transmit buffer and ¥
X read the receive buffer into DRCV1. *
* *

$3.333.333333333333333332332323323333232333333333333333332333332

NINT1 OUuT DXMT2,PAl
IN DRCV1,PAl
LAC ANINT2

SACL VECT
ouT CLRX,PAO
RET

NINT2 IN DRCVZ,PAl

LAC ANINT1
SACL VECT

OUT CLRX,PAOQ
LACK FLAG
SACL RXEFLG
RET

write xmit-low to xmit register.
read rcv-data-high from rcv reg.
prepare next interrupt vector.
clear xmit interrupt flag.

read receive-data-low from rcv reg.
prepare next interrupt vector.

clear xmit interrupt flag.

set xmit/rcv end flag.

$333333333333332323333333333 3333 333333332833338333222332 2223

E 3 CEZEZZESCS=CZS=ZS=SS=oSZSIZ=SSSESCSsSSsSSsSSsSDsSZS=I===ECS *
% Secondary Interrupt Routines x
% IS S =SS =SS ESTEZSSSSSSSSTSSSISE=IZSZ==CS *
X These routines destroy the contents of the accumulator
¥ and the data page pointer. *
* *
X The following routines write the low byte of primary *
¥ communications and the high and low byte of secondary Ed
X communication. They also read the A/D information from X
%X the receive registers. *

36 36 36 26 36 26 € 36 3 36 36 36 I 36 36 I€ 3 6 26 3 36 I I 3 I6 J I I€ I 3 I€ 3 I6 36 36 2 36 HE J6 3 I€ 36 J6 3 I€ 3 I 2 36 26 3 I X 36 36 X I€ 36 3 2

SINT1 oOuT DXMT2,PAl
IN DRCV1,PAl

LAC ASINT2

SACL VECT
ouT CLRX,PAO
RET

write xmit-data—-low to xmit reg.
read receive-data-high from rcv reg.
prepare next interrupt vector.

clear xmit interrupt flag.

Interfacing the TMS320 Family to the TLC32040 Family 151

0306 0081
0307 0081 4908 SINT2 OUT DXMT3,PAl write secondary-data-high to xmit.

0308 0082 4105 IN DRCV2,PAl read receive-data-low from rcv.

0309 0083 200F LAC ASINT3 prepare next interrupt vector.

0310 0084 500A SACL VECT

0311 0085 4813 ouT CLRX,PAO clear xmit interrupt flag.

0312 0086 7F8D RET '

0313 0087

0314 0087 4909 SINT3 OUT DXMT4,PAl write secondary-data-low to xmit.
0315 0088 2010 LAC ASINT4 prepare next interrupt vector.

0316 0089 500A. SACL VECT

0317 008A 4813 ouT CLRX,PAO clear xmit interrupt flag.

0318 008B 7F8D RET

0319 008C . '

0320 008C 200B SINT4 LAC ANINT1 prepare next interrupt vector.

0321 008D 500A SACL VECT’

0322 008E 4813 OUT CLRX,PA0 clear xmit interrupt flag.

0323 008F 7F89 ZAC L

0324 0090 5007 SACL DXMT2 clear DXMT2 immediately to eliminate
0325 0091 7EFF LACK FLAG unnexpected secondary communications.
0326 0092 5003 SACL RXEFLG set xmit/rcv end flag.

0327 0093 7F8D RET ‘

0328 363696 36 36 6 X6 6 36 6 36 3 36 3 36 36 3636 136 JE 3636 36 36 3 36 36 6 26 36 36 HE 6 96 36 36 6 6 36 36 3 36 36 36 3 36 6 X6 X) I X 2 X
0329 * : *
0330 * CONTROL REGISTER INFORMATION %
0331 x S x
0332 %x SERIAL-PORT CONFIG. INT. MASK INT. FLAG %
0333 x 11000 111 000 0 10 1 0 o0} x
0334 * 1514 13121110 9 8 7 6 56 3 2 1 0 *
0335 * s | b 1IN x
0336 * |_XF status [FSR %
0337 * Vol FSX x
0338 % H FR %
0339 * *
0340 * (write 1's to clear) *
0341 36 36 36 26 96 26 36 3 3 36 36 26 36 3 26 36 96 26 26 X6 26 36 3 3 6 36 6 3 26 I 96 9 I 2 J 3 X X X X XK K KX XXX XXX
0342 0094 8El14 CLX1 DATA >8Els4

0343 END

NO ERRORS, NO WARNINGS

152 Interfacing the TMS320 Family to the TLC32040 Family

Icc Requirements
of a
TMS320C25

Dave Zalac

Digital Signal Processor Products — Semiconductor Group
Texas Instruments

153

154 ‘ Icc Requirements of a TMS320C25

Introduction

Minimization of total power dissipation of an electronic system is often an important design
objective. If tight contraints on supply current are imposed on a design (such as in battery-powered
systems), considerations relating to supply current are especially critical. Optimization of such de-
signs is facilitated by an understanding of the tradeoffs involved in the behavior of the supply cur-
rent requirement of each component of the system.

The supply current (Icc) requirement of the TMS320C25 digital signal processor varies sig-
nificantly under different sets of user-imposed conditions. The purpose of this report is to present
a characterization of that requirement with respect to operating frequency, supply voltage, output
loading, and temperature. Given an understanding of the variations of TMS320C25 I, the sys-
tem designer can make appropriate design tradeoffs.

In this report, a description of supply current as time-averaged capacitor-charging will be de-
veloped by considering the supply current requirement of a CMOS inverter. Characterization data
describing the behavior of the I requirement of the TMS320C25 in normal and low-current
modes will be presented. The effects on I of output loading and temperature variation are dis-
cussed. Finally, some low frequency considerations are made.

Supply Current Requirement of a CMOS Inverter

Some insight into the behavior of supply requirement under varying conditions can be gained
through consideration of the basic CMOS converter shown in Figure 1. The capacitor shown in the
figure represents the total load capacitance presented by the capacitances of gates connected to the
output node, capacitances associated with the inverter structure itself, and interconnect capaci-
tance.

Icc Requirements of a TMS320C25 155

Figure 1. Basic CMOS Inverter

Vee

Vi

1||—0

Ifthe input voltage is fixed at a logic high or logic low level, one of the two inverter transistors
will be non-conducting (off) while the other has a highly conductive channel (on). Under this condi-
tion, the supply current is equal to the negligibly small P-N junction leakage current through the
off device.

If the input makes a transition from a logic high to a logic low level (or vice-versa), there will
be a short interval of time during which both transistors conduct as the inverter is switching. The
supply current during this interval is much larger than that under DC-input conditions.

Thus, appreciable current is drawn from the supply only when the inverter is switching. This
is in contrast to NMOS logic inverters, in which both the load and driver transistors are always con-
ducting. The absence of a current path under DC-input conditions is thus responsible for the strong
dependence of power consumption on operating frequency in CMOS logic circuitry.

Let us assume a transition of the input signal is possible every T seconds. The average supply
current can be computed by taking into account the supply currents associated with each of three
possible events of the output signal (no transition, high-to-low transition, low-to-high transition).

As already stated, the supply current is negligibly small under static input conditions. Thus
we will take the average current to be zero for an interval T wide during which the inverter does
not switch.

If the input voltage makes a high-to-low transition, the N-channel transistor will turn off and
the capacitor C will be charged through the conducting P-channel device to the output high level
of Vg volts. The total charge Q delivered to C is given by

156 ’ Icc Requirement of a TMS320C25

Q0 =C X (Vou— Vor) (1)

The output levels for a typical CMOS inverter approach Vo = Vcc and Vgp, = 0 V. Thus
C x V¢ coulombs are transferred to C each time the output makes a low-to-hlgh transition. The
average charging current during the interval is given by

1C=%=vaccxf @

where f = 1/T.

When the output makes a high-to-low transition, C discharges through the N-channel device.
The energy stored on the capacitance C is dissipated primarily in the N-type channel. The current
sourced by the supply for high-to-low transitions of the output is zero as the P-channel device is
off. :

Given this description of supply current, low-to-high transitions of the output are the only
events during which current is sourced by the power supply. The average supply current is thus giv-
en by:

IAV5=kXCXVCCXf (3)

where k is equal to the normalized number of transitions that are from a low to a high output level.
Thus the average supply current is linearly related to output capacitance, supply voltage, and oper-
ating frequency. The average power delivered by the supply is the average product of supply volt-
age and current and is given by:

Pive = (VX Davg = Vec X Iyyg =k X C X Ve X f M)

Similar variations with operating frequercy, supply voltage, and node capacitances can be
expected of the behavior of the supply current of a complex CMOS integrated circuit. Each time
the machine is clocked, charge is transferred to some nodes from either the power supply or from
previously charged nodes. Some of the charge on nodes previously at alogic high is lost due to leak-
age. Additional supply current may be required to replenish the charge on these nodes.

The total charge requirement for a given machine cycle depends, as in the case of the inverter,
on the product of Vo and the total capacitance charged during that machine cycle. The total capac-
itance of the IC is directly related to the area of the die. Thus we expect the IC’s supply current re-
quirement to be proportional to supply voltage, operating frequency, and die size.

Recall that both I oy and P oy g for the CMOS inverter are proportional to k. The implication
this has for a complex CMOS integrated circuit is that of a relationship between power dissipation
and the binary representation of the code being executed by the device and data driven on the exter-
nal bus. Execution of different pieces of code can result in different supply current requirements
under otherwise equal conditions.

Giventhis information, let us now look specifically at the TMS320C25 with respect to supply
current requirement. It is important for the reader to understand that the data presented in the fol-
lowing sections are used only to characterize the way in which I varies as externally imposed

Icc Requirement of a TMS320C25 157

conditions are varied. The data should not be taken to supersede the TMS320C25 electrical specifi-
cation. Furthermore, as a result of process variations and enhancements, the relationship between
Icc and external conditions can itself vary. For example, the slopes of the lines in the graphs shown
in Figure 2 may increase or decrease somewhat with process parameter variations. In all cases,
however, the supply current specification is met by every TMS320C25 device.

Shown in Figure 2 are plots of supply current vs. frequency for five values of supply voltage
for the TMS320C25.

Figure 2. TMS320C25 Supply Current Versus Frequency Plots

loc V8. foukn AND Ve
(NORMAL OPERATING MODE)

VCC = 550 V
VCC = 525 V

150 A
140 AV =500V

130 » AVee =475V
AT =450V

P
o A
I p .
F o
i

-
)
o

N

\

\

\

]
60 A//
>

4 8 12 16 20 24 28 32 36 40 44 48 52
foLkine MHz

For a fixed value of supply voltage Vg, Icc increases linearly with the frequency of the
CLKIN signal with a slope m given by v

m = 0.37 X Vgeo — 0.71 milliamperes per megahertz ®)

Note that m = 1.1 mA/MHz at Vg = 5.0 V. For a fixed operating frequency f, Icc in-
creases linearly with supply voltage with a slope m given by

m = 037 X fy + 0.14 milliamperes per megahertz (6)

Note that m = 15 mA/V at fo = 40 MHz. Full loading of the device outputs was imposed in
the measurement of the values given. This is explained in detail in the following section. The same
data is given in tabular form in Table 1.

158 Icc Requirement of a TMS320C25

Table 1. Icc vs. fcLkin (MHz) and V¢ (V) in Normal Operating Mode

Vec 4.50 4.75 5.00 5.25 5.50
4 13 15 17 19 21
8 22 25 28 30 33

12 32 35 38 41 45
16 41 45 49 52 56
20 50 54 59 64 68
24 59 64 69 75 80
28 68 74 80 86 92
32 77 84 90 97 103
36 87 94 101 108 115
40 96 103 111 119 127
44 105 113 122 130 138
48 114 123 132 141 150
52 123 133 143 152 162

Variation of Icc with Output Loading

The TMS320C25 has two modes in which the device’s supply current requirement is signifi-
cantly reduced. These modes are referred to as the POWERDOWN and HOLD modes. When in
HOLD mode, the address, data, and control lines of the TMS320C25 are put into a high-impedance
state. The HOLD mode is invoked by lowering the HOLD input on the device. If the HOLD mode
isinvoked with the HM status bit set to zero and program execution is from internal memory, execu-
tion will continue until an attempt to access external resources is made. Concurrent DMA is possi-
ble in this mode. If the HOLD mode is invoked with HM set to one, program execution ceases until
the HOLD mode is exited by raising HOLD. POWERDOWN mode is identical to HOLD mode
with HM = 1 if it is entered by driving HOLD low. However, POWERDOWN mode may also be
invoked in software by executing an IDLE instruction. In this case, only the data lines are placed

_in the high-impedance state. Please refer to the Second-Generation TMS320 User s Guide for fur-
ther details on these modes of operation.

Shown in Figure 3 are plots of supply current vs. CLKIN frequency for five values of supply
voltage with the TMS320C25 in POWERDOWN mode.

Icc Requirement of a TMS320C25 159

Figure 3. TMS320C25 POWERDOWN Mode Plots of Supply Current

Versus CLKIN Frequency
Igg Vs. fo iy AND Vg
80 (POWERDOWN MODE)
2o Ve =550V
(7 AVoc =525V
P //// Vg = 5.00V
60 =
v 7 //Vcc—4-75V
50 = ’644,/ Voo =480V
< ' . /
0 b’,;‘:Z:::E;;E;::::f""’
Y /
- -
20 'Af/
—
10
0

4 8 12 16 20 24 28 32 36 40 44 48 52
forkine Mhz

Note that relative to normal operating conditions, the supply current is reduced by approxi-
mately 50%. Table 2 shows the same information in tabular form.

Table 2. Icc vs. fopkiy (MHz) and Ve (V) in POWERDOWN Mode

fiVcc 450 475 5.00 5.25 5.50
4 8 8 8 9 9
8 11 12 13 14 15

12 15 16 18 19 20
16 19 21 22 24 25
20 23 25 27 28 30
24 27 29 31 33 36
28 30 33 36 38 41
32 34 37 40 43 46
36 38 41 45 48 51
40 42 45 49 53 57
44 45 50 54 58 62
48 49 54 58 63 67
52 53 58 63 67 72

The above shows that a significant percentage of I is spent on driving the device outputs.
These include the address, data, and control lines. A typical load is shown in Figure 4. The capaci-

160 Icc Requirement of a TMS320C25

tance Ct is made up of capacitances associated with the output buffer itself, capacitance of the out-
put conductor to ground, and input capacitances of other connected devices. The DC current load
(such as that presented by TTL inputs) is represented by the current sink. :

Figure 4. Device Output Typical Load

T
|

TMs320C25!

OUTPUT i *
J
— e _J == Ct Idc

An equivalent load connected to each device output during the TMS320C25 I measure-
ment is shown in Figure 5. Note that when the output is high, the device sources (Vo —2.15)/825
=303 pA at Vg =2.4 V. The device sinks (2.15-V 5)/825 = 2.12 mA at V= 0.4 V when the
output is low. When the output is switching, the output buffer drives 100 pF of capacitance in addi-
tion to the resistor current.

Figure 5. Device Output Equivalent Load

215V
“““““““ 'i 825 Q
TMS320C25 |
OUTPUT |
(UNDER TEST) |
|
|

_______ J —}_— 100pF

The user can estimate the TMS320C25 supply current (mA) for a particular set of conditions
using the following relationship:

Icc (normal operating mode)
C ™)
= (Ipwrpwn +30) + rol X [Ivoru = Upwrown +30) = 11] + Ipc

0

Icc Requirement of a TMS320C25 161

where IpyyrpwN is the supply current in POWERDOWN mode taken from Figure 3, I;jorm is the
supply current in normal operation with full output loading taken from Figure 2, C is the average
load capacitance imposed on a device output by the user (in pF), and C, = 100 pF, as shown in Figure
5.

The above expression can be derived as follows. The total supply current is given by
Icc = Icore + Iuc + Inc ®

where IcoRE is the supply current with the outputs in the high impedance state and with ac-
tive internal program execution, I ¢ is the capacitive load current, and Ip¢ is the DC load current.

Icorg depends on supply voltage and opcratmg frequency, but does not depend on output
loadmg IcORE is given by

Icore = Ipwrpwy + 30 mA ®

IpwRDWN can be taken directly from Figure 3. The supply current with the outputs in the
high-impedance state when the device is executing code internally is approximately 30 mA greater
than when the device is in POWERDOWN mode at fo1 xyn = 40 MHz. This value (30 mA) is fre-
quency-dependent, but for simplicity is given as a constant.

Ioc for a given capacitive loading is a scaled version of the maximum AC load current
sourced under the condition C = C,, = 100 pF. InorM (taken directly from Figure 2) is related to
the maximum AC load current as follows:

Iyorv = Icore + Iacimar) + Ipcimay (10)
Thus I5c for a given capacitive load is given by
Cc
Iyc = oA X Lyciman)
0 ' 11)

C
= F X [Unorm—1 CORE-IDC(max)]
0
Since Figures 2 and 3 provide the values for INorM and IpwRDWN: IDC(max) is the only
quantity still needed to evaluate Isc. Ipc(max) is given by
Ipcimaxy = N X Iopmay 12)
where N is the number of device outputs driving Ioy milliamperes of current and Iggy(max) = 300
uA, as given in the device electrical specification. For the TMS320C25, an appropriate value of
N is 36. Thus Ipc(max) is approximately 11 mA.

Finally, Ipc is the total DC load current under the user’s loading conditions. Plugging this
and the results of expressions (9) through (12) into (8) yields the relationship given in (7).

As in the case of a simple inverter, the current requirement of a given output depends on the
average number of low-to-high transitions per second, the value of C;, and the magnitude of the
output voltage swing.

- 162 Icc Requirement of a TMS320C25

Variation of Icc with Ambient Temperature

The behavior of supply current with temperature is complex in that there are several tempera-
ture-dependent quantities involved that affect Icc. (See References [2] and [4] for a detailed dis-
cussion.) Variations in MOS transistor threshold voltages and other MOS device parameters, in-
creases in leakage currents, and other variations typically result in a slight decrease in supply cur-
rent with increasing temperature. However, the supply current of the TMS320C25 exhibits no sig-
nificant variation with temperature over the 0°C — 70°C range specified in the recommended oper-
ating conditions for the device. The TMS320C25 I vs. temperature characteristic exhibits a
slight downward taper outside this range. The value of I¢c at either military temperature range
(-55°C to 125°C) endpoint is approximately 10 mA less than that at commercial temperature
(0°Cto 70°C).

Low-Frequency Considerations

There are some mechanisms in dynamic logic circuitry that are of issue if the device is oper-
ated at a very low clock frequency (less than 100 kHz) that give rise to dramatic increases in supply
current. Since the TMS320C25 has dynamic logic circuitry, let us briefly examine asimple dynam-
ic circuit to understand one of these mechanisms. '

Shown in Figure 6 is a CMOS inverter, identical to that in Figure 1, being driven by a second
inverter. When the clock signal Q1 goes high, node A is pre-charged to alogic 1 level through tran-
sistor T1. Note that no current path exists through T2 and T3 during this interval, as Q2 is low and
therefore T2 is off. When Q2 goes high, node A is conditionally discharged through T2 and T3.
Suppose the input X is low. In this case node A will not go low when Q2 goes high because T3 will
be off. During the interval bounded by the falling edge of Q1 and the next rising edge of Q1, the
inputto the CMOS inverter is held high only by the charge on C; i.e., highimpedance is seen looking
into the output node A. Under this high-impedance condition, node A is said to be floating. In con-
trast, recall that if the input to the inverter in Figure 1 is high or low, a current path exists between
the output node and a supply node. The output node is thus always driven, as is always the case in
conventional static logic. Node A is referred to as a dynamic logic node. The distinguishing feature
of dynamic logic is the storage of logic information on high-impedance nodes. While Q1 is low,
some of the charge on Cis lost due to leakage. If the low interval of Q1 is long enough for the poten-
tial at A to drop by one transistor threshold voltage, the P-channel device driven from node A will
begin to conduct. If Vi, sV, s Voo - thp|, both T4 and TS5 will conduct, and the current drawn
from the supply will be much larger than the quiescent current required when V, (voltage on node
A) is fixed high or low.

Icc Requirement of a TMS320C25 163

Figure 6. CMOS Inverter Driven by a Second Inverter

Vee

=77 T
| |
T I T4 } Vinreshold = th
Qf l ' | I
| |
A | |
= ¢ +—e } O
I | Vo
| | 1
. l | __I | =
|
Q2 T2 | \ T5 | Vinreshotd = Vin
= : CMOS _J '
3
X I 3

o 1T
« 1T

Again, this high-current condition is not of concern in static logic circuits, and is only of con-
cern in dynamic logic circuits at very low clock frequency. The minimum input clock frequency
of the TMS320C2S5 is specified at 6.7 MHz. This lower limit is orders of magnitude higher than
the frequency at which adverse mechanisms in dynamic logic come into play; its choice was driven
by other practical considerations such as test time minimization.

Thus the TMS320C25 must be always be clocked at a sufficiently high rate when under
power.

164 Icc Requirement of a TMS320C25

Summary

It has been shown that the TMS320C25 supply current increases approximately linearly with
operating frequency and supply voltage. Loading of the device outputs also has a significant effect
on the magnitude of Icc. The TMS320C25 supply current does not vary significantly with temper-
ature over the 0°C — 70°C commercial temperature range. The device must be clocked at a suffi-

ciently high rate when biased.

The I specification for the TMS320C25 is given in Table 3. Also given are several “typi-
cal” values. (These values assume 50% output loading, rather than the 100% output loading im-
posed in the measurement of the data presented in Figure 2 and Table 2.) Note that careful consider-
ation of the behavior of I can result in a supply current requirement significantly less than the
specified maximum.

Table 3. Icc Specification and Typical Values

Vee |Ta | f(CLKIN) Icct MAX/TYP | NORMAL/POWERDOWN
525 | 0 40.96 185 MAX NORMAL

525 | 0 40.96 100 MAX POWERDOWN

475 | t 40 89 TYP NORMAL

500 | + 40 95 TYP NORMAL

525 | t 40 101 TYP NORMAL

475 | t 20 55 TYP NORMAL

500 | t 20 58 TYP NORMAL

525 | 20 61 TYP NORMAL

¥ Igc is approximately constant over 0°C — 70°C range.

)
2
3)

4
5)

References

Hodges, David A. and Jackson, Horace G., Analysis and Design of Digital Integrated
Circuits, McGraw-Hill, 1983.
Mavor, J., Jack, M.A., and Denyer, P.B., Introduction to MOS LSI Design, Addi-

son-Wesley, 1983.

Pierret, Robert F., Field Effect Devices, (Modular Series on Solid State Devices, Volume
4), Addison Wesley, 1983.
Streetman, Ben G., Solid State Electronic Devices, Prentice-Hall, 1980.
Texas Instruments, Second-Generation TMS320 User’s Guide (literature number

SPRUO014), Texas Instruments, 1989.

Icc Requirement of a TMS320C25

165

166

Icc Requirements of a TMS320C25

An Implementation
of a
Software UART
Using the
TMS320C25

Dave Zalac

Digital Signal Processor Products — Semiconductor Group
Texas Instruments

167

168 An Implementation of a Software UART Using the TMS320C25

Introduction

Interfacing to asynchronous devices is a common problem in transmitting to and
receiving data from a processing engine such as the TMS320C25 digital signal processor.
This report describes a software implementation of a Universal Asynchronous Receiver
& Transmitter (UART) that provides the ability to communicate with asynchronous serial
devices -in a system with a minimum of external hardware.

Asynchronous communications are characterized by the absence of a timing reference
such as a clock or framing signal. Various tradeoffs arise from this distinction from syn-
chronous communications in terms of hardware and software requirements and data
throughput capacity. Synchronous communications require a timing reference, but other-
wise have minimal hardware and software requirements. Asynchronous communications
require a mechanism for deriving a timing reference from the received signal. Additional-
ly, various error-checking functions are typically implemented. These requirements im-
pose hardware and/or software overhead that is not imposed in the synchronous case.
Moreover, synchronous interfaces can typically support much higher data throughput rates
than asynchronous interfaces.

Implementing a UART in software imposes CPU overhead whose acceptability is
application-dependent. In applications where the overall data throughput rate is sufficiently
low, or in cases in which a UART is to be used only for booting system memory at powerup,
use of a software UART may be justifiable. A hardware solution (i.e., a UART IC) may
be more appropriate in high data rate applications and in applications requiring low I/O
overhead. A detailed analysis of overhead imposed by the TMS320C25 software UART
is given later in this report.

A high-speed synchronous serial interface is provided by the on-chip serial port of
the TMS320C25. A full description and specification of the serial port may be found in
the Second-Generation TMS320 User’s Guide. [4]

Overview

The functions provided by a UART are simply the transmission and reception of
serial data and the checking and signalling of various error conditions. These functions
are described in detail in the following sections.

Data Format

, Shown in Figure 1 is the layout of a word in a format assumed by the UART. Bit

0 is a space (logic low) and is referred to as the start bit. Bits 1 through N are the N
data bits of the word with the LSB occupying bit position 1. Typically, N has a value
of 5, 6, 7, or 8. The maximum value of N is given by Nmax = 14—M, where M is the

Ar Implementation of a Software UART Using the TMS320C25 169

number of stop bits. Bit N+1 is referred to as the parity bit and has a value such that
the total number of ones in the word (bits 1 through N+ 1) is odd if odd parity is selected
and even if even parity is selected. Bits N+2 through N+M+1 are referred to as stop
bits, and each has a value of one. The total word length WORD__LEN is thus given by
WORD__LEN = N+M+2.

Bit N+M+1 ~ BitN+2 BitN+1 BitN _ Bit 1 Bit 0

| §
Stop N Stop . N
bit bt | P | mss Lss | Sar
(last) a (first) A :
A J -
N\ V. / AN v, J/
M stop bits N data bits

Figure 1. UART Word Format
Data Reception

Reception of a data word starts with detection of the start bit. One way of perform-
ing start bit detection is to sample the input data signal at a rate that is large compared
to the bit rate, then testing each sample for a space (logic low). An optional check can
be performed to verify that the first logic low detected represents a valid start bit and
not just noise. This check is performed by testing that the input signal is low one-half-bit
duration after the start bit has been detected.

Once the start bit has been detected, the UART simply recovers the data from the
input signal and keeps track of the data parity. The parity is checked against the received
parity bit after all the data bits have been received. Finally, the integrity of the word fram-
ing is checked by testing that the input signal is high when the first stop bit is expected.

Data Transmission

Transmission is considerably simpler than reception in that timing information does
not have to be recovered from an asynchronous signal. Furthermore, no error checking
is performed by the UART transmitter. Transmitting a data word is preceded by appropriate-
ly formatting the data to be transmitted; i.e., adding start, stop and parity bits. Formatting
is done in TMS320C25 software. The output signal is generated from the data and ap-
pears on the UART’s output signal line.

Implementation

The UART implementation described in this report makes use of two TMS320C25
general-purpose I/O pins (XF and BIO/) and the timer interrupt. The input signal is received
on the BIO pin via the TMS320C25 BIOZ instruction. The output signal appears on
the general-purpose flag pin XF. The state of XF is controlled in software via the SXF
and RXF instructions. The TMS320C25 serial port is not used. As shown if Figure 2,

170 An Implementation of a Software UART Using the TMS320C25

the transmitter and receiver are ‘‘serviced’’ each time a timer interrupt is generated. The
timer interrupt rate is an integer multiple (K) of the bit rate.

Service
Transmitter

3

Service
Receiver

Figure 2. Timer Interrupt Service Routine

Several pieces of code comprise the UART software:
1. Timer interrupt service routine

2. UART__INIT initialization routine
3. XMT routine

4. RCV routine

5. PUT_DATA

6. GET__DATA

7. XCOMPOSE

The UART transmitter and receiver are located in the timer interrupt service routine.
(No context save/restore is included in this interrupt servic