TMS320C25
User’s Gulde

Preliminary

pap .

Dlgltal Slgnal Processor

Products

%ip
Texas
INSTRUMENTS

TMS320C25
User’s Guide

Digital Signal Processor Products

Preliminary

TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. Tl advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

In the absence of written agreement to the contrary, Tl assumes no
liability for Tl applications assistance, customer’s product design,
or infringement of patents or copyrights of third parties by or arising
from use of semiconductor devices described herein. Nor does Ti
warrant or represent that any license, either express or implied, is
granted under any patent right, copyright, or other intellectual
property right of Tl covering or relating to any combination, machine,
or process in which such semiconductor devices might be or are
used.

Copyright © 1986, Texas Instruments Incorporated

Contents

Section Page
1 Introduction 1-1
1.1 General Description e 1-2
1.2 Typical Applications 1-4
1.3 Key Features e e 1-5
1.4 How To Use This Manual ettt 1-6
1.5 References e e 1-7
2 Architectural Overview 2-1
2.1 Functional Block Diagram e 2-3
2.2 Pinout and Signal Descriptions 2-3
2.3 Memory ..o e e e 2-7
2.4 Central Arithmetic Logic Unit (CALU) 2-10
25 System Control e 2-11
26 [/Olnterface e 2-12
2.7 System Configurations e e e e 2-12
2.8 Addressing Modes and Instructions L o 2-15
2.9 Development Support L L e 2-22
3 Device Operation 3-1
3.1 Internal Hardware Summary e e e 3-3
3.2 Memory Organization e e e e e e 3-5
3.21 On-Chip Program ROM e e e e e e e e e e e e e e 3-5
322 On-Chip Data RAM Blocks 3-6
323 Memory Maps e e e e e e e e e 3-7
324 Memory-Mapped Registerso 3-9
3.25 Auxiliary Registers e e 3-9
3.26 Addressing Modes e 3-12
3.2.7 Memory-to-Memory Moves e e e e e e 3-13
3.3 Central Arithmetic Logic Unit (CALU), 3-13
3.31 Scaling Shifter 3-14
3.3.2 ALUand Accumulator e e e 3-15
333 Multiplier, Tand P Registers @ i e 3-16
3.4 System Control L L e e e e e e 3-18
341 Program Counter and Related Hardware 3-18
34.2 Reset e e e 3-21
3.4.3 Status Registers L e e e e e e e e 3-22
344 Timer Operation e e L. 3-24
345 Repeat Counter e e e e e e 3-26
3.4.6 Powerdown Mode e e 3-26
3.5 External Memory and I/O Interface o 3-26
3.5.1 Memory Combinations e e e 3-27
35.2 Iinternal Clock Timing Relationships 3-28
35.3 External Read Cycle 3-28
354 External Write Cycle 3-30
3.6 INterrupts e e e e e e e e e e e e e 3-3
3.6.1 Interrupt Operation L e e e 3-31
36.2 External Interrupt Interface Lo 3-33
3.7 Serial Port . . e e e e e 3-35
371 Burst-Mode Operation e e 3-38
372 Continuous-Mode Operation Using Frame Sync Pulses 3-40
3.73 Continuous-Mode Operation Without Frame Sync Pulses 3-41
374 Initialization of Continuous-Mode Operation Without Frame Sync Pulses 3-43
3.8 Multiprocessing and Direct Memory Access (DMA) 3-44

3.8.1 Synchronization L e e e e
3.8.2 Global Memory e e e e
3.83 TheHold Function e e

3.9.1 BIO Input e e e e e

3.9 General-Purpose I/O Pins
3.9.2 External Flag Qutput
4 Assembly Language Instructions
4.1 Memory Addressing Modes C
411 Direct Addressing Mode C
41.2 Indirect Addressing Mode ..
41.3 Immediate Addressing Mode .
4.2 Instruction Set
421 Symbols and Abbreviations .
422 Instruction Set Summary . . .

4.3 Individual Instruction Descriptions

5 Software Applications

5.1 Processor Initialization L e
5.2 Program Control e e e e e e e e e e e
5.2.1 Subroutines e e
5.2.2 Software Stack e e e e e
5.23 Timer Operation e e e e e e
5.24 Single-Instruction Loops e
525 Computed GOTOS e e
5.3 Interrupt Service Routine L e e e e
5.3.1 Context Switching e e e e e e e e e e
5.3.2 Interrupt Priority e e e e e e e e e
54 Memory Management e e e e e e e e e e e e e e
54.1 Block Moves L e e e e e
54.2 Configuring On-Chip RAM e
54.3 Using On-Chip RAM for Program Execution
5.5 Fundamental Logical and Arithmetic Operations
5.5.1 Status Register Effect on Data Processing
55.2 Bit Manipulation L e e e e e e e e
5.6 Advanced Arithmetic Operations e
5.6.1 Overflow Management e
56.2 Scaling e e
5.6.3 Moving Data e e e e e e e e
5.6.4 Multiplication L e e e e e e e e
56.5 Division L e e e e e e
5.6.6 Floating-Point Arithmetic e e e e
5.6.7 Indexed Addressing L L e e e e e e e

5.6.8 Extended-Precision Arithmetic
5.7 Application-Oriented Operations
5.7.1 Companding
5.7.2 Filtering
573 Fast Fourier Transforms (FFT)

6 Hardware Applications
6.1 External Local Memory Interface
6.2 WaitStates

6.3 . Direct Memory Access
6.4 Global Memory
6.5 Codec Interface
66 I/OPorts

.............................

OCONOORRAN=

— —
— —

7 Assembler Directives 7-1
7.1 Creation of TMS320C25 Source Code 7-2
711 Label Field e 7-2
7.1.2 Command Field e e e 7-3
71.3 Operand Field e 7-3
7.1.4 Comment Field e 7-3
7.2 Symbols . . e e e 7-4
7.21 Predefined Symbols 7-4
7.3 Constants L e e e e e e e e e e e 7-4
7.3.1 Decimal Integer Constants 7-5
7.3.2 Binary Integer Constants e e 7-5
7.3.3 Hexadecimal Integer Constants e 7-5
734 Character Constants e e e e e 7-5
7.3.5 Assembly-Time Constants 7-6
7.4 Character Strings e e e 7-6
7.5 EXPressions e e e e 7-6
751 Arithmetic Operators in Expressions, 7-7
75.2 Parentheses in Expressions e e 7-7
7.5.3 Well-Defined Expressions e 7-7
7.5.4 Absolute and Relocatable Symbols in Expressions 7-8
755 Externally Referenced Symbols in Expressions 7-8
7.6 Assembler Directives L L e e e e 7-9
7.6.1 Directives That Affect the Location Counter 7-9
7.6.2 Directives That Affect Assembler Qutput, 7-10
7.6.3 Directives That Initialize Constants, 7-10
7.6.4 Directives That Provide Linkage Between Programs 7-10
7.6.5 Miscellaneous Directives e e 7-11
7.7 Individual Directive Descriptions e 7-12
7.8 Source Listing Format e e 7-44
7.9 Object Code e 7-45
7.9.1 Object Code Format e e 7-46
7.9.2 Changing Object Code e 7-49
7.10 Cross-Reference Listing 7-50
7.11 Assembler Error Messages L. e e e 7-51
8 Assembler Macros 8-1
8.1 Macro Definitions L 8-2
8.1.1 Sample Macros e e 8-4
8.2 Labels e e 8-5
8.3 Strings e e e e e 8-5
8.4 Constants e e 8-5
8.5 Variables 8-5
8.5.1 Parameters L e e e e e e 8-6
8.5.2 Macro Symbol Table (MST) 8-6
8.5.3 Variable Qualifiers e e 8-7
8.6 Operators e e 8-9
8.6.1 Arithmetic Operators e e 8-9
8.6.2 Relational Operators e e 8-9
8.6.3 Logical Operators e e e e e e 8-9
8.7 Keywords L e e e e e 8-10
8.7.1 Symbol Attribute Component Keywords 8-10
8.7.2 Parameter Attribute Component Keywords 8-10
8.8 Verb Statements L e e 8-11
8.8.1 $ASG (Value Assignment Verb)o 8-11
8.8.2 SELSE (Alternate Else Verb)o 8-13
8.8.3 $END (Macro Definition Termination Verb) 8-13
8.8.4 SENDIF (IF Termination Verb) 8-13
8.85 SIF (Conditional If Verb) 8-13
8.8.6 S$MACRO (Macro Definition Verb) o 8-14
8.8.7 $VAR (Variable Declaration Verb)o 8-17

8.9 Model Statements L L e e e e e e e e 8-17
8.10 Macro Examples e e e e e 8-18
8.10.1 ID (ldentification Macro) e e e e e e e e e e e e 8-18
8.10.2 GENCMT (Generate Comment Macro), 8-19
8.10.3 FACT (Factorial Macro) e e 8-20
8.11 Macro Error Messages e e e e e 8-20
9 Link Editor , 9-1
9.1 " Description e e e e e e e e e e 9-2
9.2 Program Definition L e e e 9-2
9.3 Link Editor Files e e 9-3
9.3.1 Link Control File S 9-3
9.3.2 Object Modules e e e e 9-3
9.3.3 Libraries e e e e e e - 9-4
9.34 Linked Output File e 9-4
9.35 Listing File e e e 9-4
9.4 Linker Commands e e e e 9-5
9.4.1 Enteringa Command e e 9-5
9.4.2 Linker Command Set e e 9-5
943 Individual Command Descriptions e 9-7
9.5 Linking Examples e e 9-36
9.5.1 Simple Linking e e e e 9-39
9.5.2 ROM/RAM Partitioning i e e e 9-41
9.5.3 Partial Linking e e e e 9-43
954 Library Creation e e e e 9-47
9.6 Link Editor Error Messages e e e e 9-50
A TMS320C25 Data Sheet A-1
B TMS32020 Data Sheet B-1
C TMS320C10 Data Sheet C-1
D TMS32020/TMS320C25 System Migration D-1
E TMS320C25 Instruction Cycle Timings E-1
F TMS320C25 Development Support/Part Order Information F-1
G TMS320C25 Macro Assembler and Link Editor Installation G-1

Vi

lllustrations

Figure

1-1. TMS320C25 Digital Signal Processor e
2-1. TMS320C25 Block Diagram
2-2. TMS320C25 Pin ASSIGNMENTSttt e e
2-3. TMS320C25 Memory Maps e
2-4. A Minimum Processing System
2-5. Global Memory Parallel Processing
2-6. Host/Peripheral Coprocessing Using Interface Control Signals
2-7. TMS320C25 Development Support e
3-1. TMS320C25 Block Diagram e
3-2. On-Chip Data Memory e
3-8, Memory Maps ..
3-4. Indirect Auxiliary Register Addressing Example
3-5. Auxiliary Register File e
3-6. Methods of Instruction Operand Addressing
3-7. Central Arithmetic Logic Unit (CALU)
3-8. Examples of Carry Bit Operation e
3-9. Program Counter and Related Hardware
3-10. Three-Level Pipeline Operation i
3-11. Two-Level Pipeline Operation e e
3-12. Pipeline Operation During BANZ Instruction 0. ...
3-13. Pipeline Operation When Crossing Program Boundaries
3-14. Status Register Organization
3-15. Timer Block Diagram
3-16. Four-Phase Clock
3-17. Read Cycle Functional Timing e e
3-18. Functional Timing of Write Cycles and Wait States
3-19. Interrupt Mask Register (IMR) e
3-20. Internal Interrupt Logic Diagram
3-21. Interrupt Timing Diagram e
3-22. The DRR and DXR Registers e e e
3-23. Serial Port Block Diagram
3-24. Burst-Mode Serial Port Transmit Operation
3-25. Burst-Mode Serial Port Receive Operation
3-26. Byte-Mode DRR Operation
3-27. Serial Port Transmit Continuous Operation (FSM=1)
3-28. Serial Port Receive Continuous Operation (FSM=1)
3-29. Serial Port Transmit Continuous Operation (FSM=0)
3-30. Serial Port Receive Continuous Operation (FSM=0)
3-31. Continuous Transmit Operation Initialization
3-32. Continuous Receive Operation Initialization
3-33. Synchronization Timing Diagram e
3-34. Global Memory Access Timing
3-35. Hold Timing Diagram
3-36. BIO Timing Diagram
3-37. External Flag Timing Diagram
4-1. Direct Addressing Block Diagram R
4-2. Indirect Addressing Block Diagram
5-1. On-Chip RAM Configurations e
5-2. MACD Operation
5-3. Execution Time vs. Number of Multiply-Accumulates
5-4. Program Memory vs. Number of Multiply-Accumulates
5-5. An In-Place DIT FFT with In-Order Outputs and Bit-Reversed Inputs
5-6. An In-Place DIT FFT with In-Order Inputs but Bit-Reversed Outputs
6-1. Minimal External Program Memory Configuration

vii

(D(D(O(O(D(O(QCO\II\I\IO’O)OOO)OO)O’)
ONOORWN_WN_2OONOIRWN

o
4L

'11'Il'l"l'|
WN —

Table

S OONOOITARAWN_N_RWON_LOOOPWON=_RARON==

viii

1
.o D i g - A D i e -

One Wait-State Memory Access TimiNng ittt i 6-3

One Wait-State Generator Using MSC e 6-4
Direct Memory Access Using a Master-Slave Configuration — 6-5
Direct Memory Access in a PC Environment 6-6
Global Memory Communication i i 6-7
Codec Interface e 6-8
1/O Port Addressing e e 6-9
I/O Port Processor-to-Processor Communication —00uu.... 6-10
Source Statement Line Example L 7-44
Sample Object Code e 7-45
Cross-Reference Listing Format 7-50
Source for Module MAIN ... e 9-36
Source for Module RESET e 9-37
Source for Module INTRPT e e e 9-38
Listing File for a Simple Link e 9-40
Listing File for ROM/RAM Partitioning i 9-42
Listing and Object Files for a Partial Link 9-44
Listing and Object Files for Relinking the Partial Link Qutput 9-46
Source File for Sequential Library Creation 9-48
Serial Port System Migration e D-3
TMS320 Family Development Support e e F-1
TMS320C25 XDS/22 Emulator System Configuration — F-4
TMS320 Nomenclature e e F-5

Tables

Page
Typical Applications of the TMS320 Family 1-4
TMS320C25 Signal Descriptions i e 2-5
Addressing Modes e PP 2-16
Instruction Symbols e e 2-17
TMS320C25 Instructions i e 2-18
Internal Hardware e 3-3
Memory-Mapped Registers i e 3-9
PM Shift Modes e 3-17
Status Register Field Definitions e 3-23
Interrupt Locations and Priorities 3-32
Global Data Memory Configurations it iiie e, 3-46
Indirect Addressing Arithmetic Operations i, 4-5
Bit Fields for Indirect Addressing 4-5
Instruction Symbols L e e e 4-9
Instruction Set Summary e e e 4-10
Bit-Reversal Algorithm for an 8-Point Radix-2 DIT FFT 5-48
FFT Memory Space and Time Requirementscuuiiiiiiinnnnnnnnns 5-54
Results of Operations on Absolute and Relocatable Items 7-8
Assembler Directives That Affect the Location Counter 7-9
Assembler Directives That Affect Assembler Qutput Y A 1Y)
Assembler Directives That Initialize Constants 7-10
Assembler Directives That Provide Linkage Between Programs 7-11
Miscellaneous Assembler Directives e 7-11
Assembler Directive Symbols e e e 7-12
Object Record Format and Tagsttt et 7-48
Assembly Symbol Attributes e 7-51
Non-Fatal Error Listing e e 7-52

7-11. Fatal Error Listing 7-53
7-12. Assembly Information Message Listing 7-54
8-1. Variable Qualifiers e 8-7
8-2. Variable Qualifiers for Symbol Components 8-8
8-3. Symbol Attribute Component Keywords 8-10
8-4. Parameter Attribute Component Keywords e 8-11
8-5. Macro Error Messages 8-20
9-1. Linker Syntax Symbols 9-5
9-2. Linker Command Set Summary 9-6
E-1. TMS320C25 Instructions by Cycle Class i E-1
E-2. Cycle Timings for Cycle Classes When Not in Repeat Mode E-2
E-3. Cycle Timings for Cycle Classes When in Repeat Mode E-4

1.

Introduction

The TMS320C25 Digital Signal Processor is a member of the TMS320 family of VLSI
digital signal processors and peripherals. The TMS320 family supports realtime
digital signal processing (DSP) and computation-intensive applications in the areas
of telecommunications, modems, speech processing, graphics/image processing,
spectrum analysis, audio processing, digital filtering, high-speed control, instru-
mentation, and numeric processing.

The architectural investment made in the TMS320 family provides the user with a
choice of five distinct processors (TMS32010, TMS320C10, TMS32011,
TMS32020, TMS320C25) to best support a wide spectrum of DSP applications.
Software compatibility is maintained throughout the family to protect the user’s
investment in the architecture. Each processor has software and hardware tools to
facilitate rapid design.

The first processor in the TMS320 family is the TMS32010, a microcomputer with
a 32-bit internal Harvard architecture and a 16-bit external interface capable of
executing five million instructions per second. The TMS32020 is the next processor
in the family with an architecture based on that of the TMS32010. Major architectural
changes made on the TMS32020 enable the device to lower system cost and improve
throughput by two to three times over the TMS32010 for DSP applications. The
TMS32020 instruction set is a superset of that of the TMS32010, thus maintaining
software compatibility.

The TMS320C25 is a pin-compatible CMOS version of the TMS32020 with a faster
instruction cycle time and the inclusion of additional hardware and software features.
The TMS320C25 is completely object code-compatible with the TMS32020 so that
TMS32020 programs run unmodified on the TMS320C25. Some of the major
enhancements of the TMS320C25 over the TMS32020 are as follows:

Faster instruction cycle time: 100 ns

Low-power CMOS technology with powerdown mode

4K words of on-chip masked ROM

Eight auxiliary registers with a dedicated arithmetic unit
Eight-level hardware stack

Fully static double-buffered serial port

Concurrent DMA using an extended hold operation
Bit-reversed addressing modes for radix-2 FFTs
Extended-precision arithmetic and adaptive filtering support
Full-speed operation of MAC/MACD from external memory
Accumulator carry bit and related instructions

Development tools and applications support are key advantages to using the
TMS320C25. Full-speed emulators, software simulators and assemblers, and exten-
sive documentation including over 735 pages of application reports provide for rapid
design and development cycles. Texas Instruments regional technology centers,
system application engineers, and third-party support are available for DSP educa-
tion, training, and design.

1-1

Introduction

1.1 General Description

1-2

The TMS320C25 architecture is based upon that of the TMS32020 digital signal
processor. The TMS320C25 increases performance of DSP algorithms through a
faster instruction cycle time and innovative additions to the TMS320 family archi-
tecture. The TMS320C25 is object code-compatible with the TMS32020, thus
enabling current TMS32020 programs to run unmodified on the TMS320C25.

{
Two versions of the TMS320C25 are available to support price and performance
requirements for different applications: 100-ns and 125-ns instruction cycle time
versions.

The 100-ns instruction cycle time provides double the throughput for existing
applications. Since most instructions are capable of executing in a single cycle, the
processor is capable of executing ten million instructions per second (10 MIPS).
Increased throughput on the TMS320C25 for many DSP applications is attained by
means of single-cycle multiply/accumulate instructions with a data move option,
eight auxiliary registers with a dedicated arithmetic unit, instruction set support for
adaptive filtering and extended-precision arithmetic, bit-reversal addressing, and
faster |/O necessary for data-intensive signal processing.

The architectural design of the TMS320C25 emphasizes overall system speed,
communication, and flexibility in processor configuration. Control signals and
instructions provide block memory transfers, communication to slower off-chip
devices, multiprocessing implementations, and floating-point support.

Two large on-chip data RAM blocks (a total of 544 words), one of which is
configurable either as program or data memory, provide increased flexibility in system
design. An off-chip 64K-word directly addressable data memory address space is
included to facilitate implementations of DSP algorithms. The large on-chip 4K-word
masked ROM can be used to cost-reduce systems, thus providing for a true
single-chip DSP solution. Programs of up to 4K words can be masked into the
internal program ROM. The remainder of the 64K-word program memory space is
located externally. Large programs can execute at full speed from this memory space.
Programs may also be downloaded from slow external memory to on-chip RAM for
full-speed operation. The VLS| implementation of the TMS320C25 incorporates all
of these features as well as many others such as a hardware timer, serial port, and
block data transfer capabilities.

Introduction

Figure 1-1. TMS320C25 Digital Signal Processor

1-3

Introduction

1.2 Typical Applications

1-4

The TMS320 family’s unique versatility and power offer a new approach to a variety

of sophisticated applications. Table 1-1 lists some typical applications of the

TMS320 family.

Table 1-1. Typical Applications of the TMS320 Family

GENERAL-PURPOSE DSP

GRAPHICS/IMAGING

INSTRUMENTATION

Digital Filtering
Convolution

Correlation

Hilbert Transforms

Fast Fourier Transforms
Adaptive Filtering
Windowing

Waveform Generation

3-D Rotation

Robot Vision

Image Transmission/
Compression

Pattern Recognition

Image Enhancement

Homomorphic Processing

Workstations

Animation/Digital Map

Spectrum Analysis
Function Generation
Pattern Matching
Seismic Processing
Transient Analysis
Digital Filtering
Phase-Locked Loops

VOICE/SPEECH

CONTROL

MILITARY

Voice Mail

Speech Vocoding
Speech Recognition
Speaker Verification
Speech Enhancement
Speech Synthesis
Text to Speech

~ Disk Control

Servo Control
Robot Control
Laser Printer Control
Engine Control
Motor Control

Secure Communications
Radar Processing

Sonar Processing

Image Processing
Navigation

Missile Guidance

Radio Frequency Modems

TELECOMMUNICATIONS

AUTOMOTIVE

Echo Cancellation

ADPCM Transcoders

Digital PBXs

Line Repeaters

Channel Multiplexing

1200 to 19200-bps Modems
Adaptive Equalizers

DTMF Encoding/Decoding
Data Encryption

FAX
Cellular Telephones
Speaker Phones
Digital Speech
Interpolation (DSI)
X.25 Packet Switching
Video Conferencing
Spread Spectrum
Communications

Engine Control
Vibration Analysis
Antiskid Brakes
Adaptive Ride Control
Global Positioning
Navigation

Voice Commands
Digital Radio

Cellular Telephones

CONSUMER

INDUSTRIAL

MEDICAL

Radar Detectors
Power Tools
Digital Audio/TV
Music Synthesizer
Educational Toys

Robotics

Numeric Control
Security Access
Power Line Monitors

Hearing Aids

Patient Monitoring
Ultrasound Equipment
Diagnostic Tools
Prosthetics

Fetal Monitors

Introduction

Many of the TMS320C25's features, such as single-cycle multiply/accumulate
instructions, 32-bit arithmetic unit, large auxiliary register file with a separate arith-
metic unit, and large on-chip RAM and ROM, make the device particularly applicable
in digital signal processing systems. At the same time, general-purpose applications
of the TMS320C25 are greatly enhanced by its large address spaces, on-chip timer,
serial port, multiple interrupt structure, provision for external wait states, and multi-
processor interface capability.

The flexibility of the TMS320C25 allows it to be configured to satisfy a wide range
of system requirements. This allows the device to be applied in systems currently
using costly bit-slice processors or custom ICs. Some of the system configurations
are:

® A standalone system using 4K words of on-chip ROM and 544 words of
on-chip RAM

® Parallel multiprocessing systems with shared global data memory

® Host/peripheral coprocessing using interface control signals.

1.3 Key Features

The TMS320C25 Digital Signal Processor offers a cost-effective alternative to custom
VLSI and bit-slice devices. It has the following significant key features:

100-ns instruction cycle time
544 words of on-chip data RAM
4K words of on-chip masked ROM
128K words of data/program space
Single-cycle multiply/accumulate instructions
Object code-compatible with the TMS32020
16-bit instruction and data words
32-bit ALU and accumulator
16-bit parallel shifter
Block moves for efficient data/program management
Unsigned multiply instruction for extended-precision arithmetic
Carry bit with associated add and subtract instructions
Instructions for floating-point operations and adaptive filtering
Eight auxiliary registers and a dedicated arithmetic unit
Bit-reversed indexed addressing mode for radix-2 FFTs
Wait states for communication to slow off-chip memories/peripherals
Double-buffered static serial port for direct codec interface
‘Three external, maskable user interrupts
Synchronization capability between multiple processors
On-chip clock generator
1.8-micron CMOS technology; single 5-volt supply
68-pin plastic leaded chip carrier (PLCC)
Two versions available:

40-MHz clock

32-MHz clock
® Commercial and military versions supported.

1-56

Introduction

1.4 How To Use This Manual

1-6

The purpose of this user’s guide is to serve as a reference book for the TMS320C25
Digital Signal Processor. Sections 2 through 6 provide specific information about the
architecture and operation of the device, and Sections 7 through 9 describe how to
use the macro assembler/linker support software. TMS320C25 electrical specifica-
tions and mechanical data can be found in the data sheet (Appendix A).

This user's guide is designed to provide information that assists managers and
hardware/software engineers in application development. The Introduction and
Architectural Overview sections provide managers with basic information that
describes the capabilities of the TMS320C25 for a particular application. The hard-
ware engineer will find the Architectural Overview, Device Operation, and Hardware
Applications sections and the Data Sheet and System Migration appendices most
helpful. The Assembly Language Instructions, Software Applications, Assembler
Directives, Macros, and Link Editor sections and the Instruction Cycle Timings,
Development Support, and Software Installation appendices will aid the software
engineer.

The following table lists each section and briefly describes the section contents.

Section 2. Architectural Overview. Brief description of the TMS320C25
hardware components and their functions. Block diagram, pinout
of the 68-pin plastic leaded chip carrier (PLCC) package, a table
of signal descriptions, and a list of TMS320C25 instructions.

Section 3. Device Operation. TMS320C25 design description, hardware
components, and their functions. Functional block diagram and
internal hardware summary table.

Section 4. Assembly Language Instructions. Addressing modes and format
descriptions. Instruction set summary listed according to function.
Alphabetized individual instruction descriptions with examples.

Section 5. Software Applications. Software application examples for the use
of various TMS320C25 instruction set features.

Section 6. Hardware Applications. Hardware design techniques and applica-
tion examples for interfacing to codecs or external memory.

Section 7. Assembler Directives. Description of assembly language source
statement, source listing, and object code format. Individual
assembler directive descriptions in alphabetical order. Assembler
error diagnostics.

Section 8. Assembler Macros. Description of macro assembly language
elements. Individual macro verb descriptions. Several macro
examples given. Macro error diagnostics.

Section 9. Link Editor. Description of link editor and its files. Individual linker
command descriptions in alphabetical order. Examples of simple
linking, ROM/RAM partitioning, partial linking, and library creation
given. Linker error diagnostics.

Seven appendices are included to provide additional information.

Appendix A. TMS320C25 Data Sheet. Electrical specifications, timing, and
mechanical data for the TMS320C25.

Appendix B. TMS32020 Data Sheet. Electrical specifications, timing, and
mechanical data for the TMS32020 Digital Signal Processor.

Introduction

Appendix C. TMS320C10 Data Sheet. Electrical specifications, timing, and

mechanical data for the TMS320C10 Digital Signal Processor.

Appendix D. TMS32020/TMS320C25 System Migration. Information for

upgrading a TMS32020-based system to a TMS320C25-based
system.

Appendix E. TMS320C25 Instruction Cycle Timings. Listing of the number of

cycles for an instruction to execute in a given memory configura-
tion.

Appendix F. TMS320C25 Development Support/Part Order Information. List-

ings of the hardware and software available to support the
TMS320C25.

Appendix G. TMS320C25 Macro Assembler and Link Editor Installation. Series

1.5 References

of procedures used to install and verify the TMS320C25 Macro
Assembler and Link Editor on a VAX or TI/IBM PC.

The following reference list contains useful information regarding functions, oper-
ations, and applications of digital signal processing. These books also list other
references to many useful technical papers. The references are organized into cate-
gories of general DSP, speech, image processing, and digital control theory.

General Digital Signal Processing:

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw-Hill Company, Inc., 1979.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ: Pren-
tice-Hall, Inc., 1974.

Burrus, C.S. and Parks, T.W., DFT/FFT and Convolution Algorithms. New York,
NY: John Wiley & Sons, Inc., 1984.

Digital Signal Processing Applications with the TMS320 Family, Texas Instru-
ments, 1986.

Gold, Bernard and Rabiner, Lawrence R., Theory and Application of Digital
Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Gold, Bernard and Rader, C.M., Digital Processing of Signals. New York, NY:
McGraw-Hill Company, Inc., 1969.

Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1977.

IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Processing.
New York, NY: |IEEE Press, 1979.

Jackson, Leland B., Digital Filters and Signal Processing. Hingham, MA: Kluwer
Academic Publishers, 1986.

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Canada: Carleton
University, 1983.

Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

1-7

Introduction

Oppenheim, Alan V. and Schafer, RW., Digital Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1975.

Oppenheim, Alan V. and Willsky, A.N. with Young, |.T., Signals and Systems.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Parks, T.W. and Burrus, C.S., Digital Filter Design. New York, NY: John Wiley
& Sons, Inc., 1986.

Speech:

Gray, A.H. and Markel, J.D., Linear Production of Speech. New York, NY:
Springer-Verlag, 1976.

Jayant, N.S. and Noll, Peter, Digital Coding of Waveforms. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1984.

Papamichalis, Panos, Practical Approaches to Speech Coding. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1986.

Rabiner, Lawrence R. and Schafer, R.W., Digital Processing of Speech
Signals. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Image Processing:

Andrews, H.C. and Hunt, B.R., Digital Image Restoration. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1977.

Gonzales, Rafael C. and Wintz, Paul, Digital Image Processing. Reading, MA:
Addison-Wesley Publishing Company, Inc., 1977.

Pratt, William K., Digital Image Processing. New York, NY: John Wiley & Sons,
1978.

Digital Control Theory:

1-8

Jacquot, R., Modern Digital Control Systems. New York, NY: Marcel Dekker,
Inc., 1981.

Katz, P., Digital Control Using Microprocessors. Englewood Cliffs, NJ: Pren-
tice-Hall, Inc., 1981.

Kuo, B.C., Digital Control Systems. New York, NY: Holt, Reinholt and Winston,
Inc., 1980.

Moroney, P., Issues in the Implementation of Digital Feedback Compensators.
Cambridge, MA: The MIT Press, 1983.

Phillips, C. and Nagle, H., Digital Control System Analysis and Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

2. Architectural Overview

The TMS320C25 high-performance digital signal processor implements a single-
accumulator, Harvard-type architecture in which program and data memory reside
in separate address spaces. This allows a full overlap of instruction fetch and
execution. Instructions are included to provide data transfers between the two
spaces. Externally, the program and data memory spaces are multiplexed over the
same bus so as to maximize the address range for both spaces while minimizing the
pin count of the device. Internally, the TMS320C25 architecture maximizes proc-
essing power by maintaining two separate bus structures, program and data, for
full-speed execution. Increased flexibility in system design is provided by two large
on-chip data RAM blocks, one of which is configurable either as program or data
memory.

The TMS320C25 incorporates a separate level of pipelining for instruction decoding.
The instruction fetch-decode-execute pipeline is essentially invisible to the user,
except in some cases where the pipeline must be broken (such as for branch
instructions). In this case, the instructions will have slightly different timing charac-
teristics than the TMS32020. Other instructions, such as those that operate with
external data memory, have improved cycle timings compared to the TMS32020. The
device executes the majority of its instructions in a single machine cycle when
sufficiently fast memory is utilized. The device may also communicate to slower
off-chip memories or peripherals by utilizing the.READY signal. In those cases, the
instructions become multicycle.

The major topics discussed in this section are as follows:

® Functional Block Diagram (Section 2.1 on page 2-3)

® Pinout and Signal Descriptions (Section 2.2 on page 2-3)

[) Memory (Section 2.3 on page 2-7)

® Central Arithmetic Logic Unit (CALU) (Section 2.4 on page 2-10)
® System Control (Section 2.5 on page 2-11)

® 1/0 Interface (Section 2.6 on page 2-12)

® System Configurations (Section 2.7 on page 2-12)

® Addressing Modes and Instructions (Section 2.8 on page 2-15)

® Development Support (Section 2.9 on page 2-22)

2-1

Architectural Overview

2N
£55
g _8¢ge
lf If lr i x$33
RIW —a— —'f PFC(16) QIR{16)
STRBE —w— : IR(16)
READY —- 1 i sTo(16)
BR—a— § 16 MUX H
o E: 16 i [—— ST1(16)
4 .
OB 16 :
HOLD ?_ /1 RPTC(8)
FODA——1 2 | [Wcsiie)] IFR(6)
msc——o1 | Mcste) | PC(16) : DR
BIO —— 2 d CLKR
RS —»— 16 ,16 16 : '16 FSR
JACK —=— 16 ’ iy ——»—Dz(Kx
i 'Yy F
A —FSX
_ } l ADDRESS AL i e
MP/MIC 3 8 x 16) : RSR(16)
INT(2-0) 4 "“gg;‘\"‘ : 1 XSR(16)
16 %9 | (086 x 161 : “ DRR(16)
A15-A0 DXR(16)
INSTRUCTION : 1 i6 V(16
A 16 i . g PRD(16)
\ s IMR(6)
16
16 x : GREG(8)
- = .
D15-D0 2| 16 16 :
H “PROGRAM BUS,:
A5 116 416 1
ARO(16) | sHiFTER(0-16) | TR(16) -
s AR1(16)]
4 | ARP(3) |5# AR2(16) 71SB MULTIPLIER
— YO | 9) | FROM IR i
; L ARA(16) L L PR(32) i
| 4 v A
3 AR5(16) 9 32
: ARG(16] " 32 :
AR7(16) M6 i
T SHIFTER(-6.0,1,4) | i
16 i
1 ! i
[LaRau16) | MU_/.X 16 i
Il 1
6 Y
16
Y 1°Y
MUX
Mux ALU(32)
16 1 (32 :
DATA/PROG
:3;;)?(1(1361; RAM (256 x 16) I c IACCHHG)I ACCL(16) | i
_____ BLOCK BO o
DATA RAM
BLOCK B1 16 !
(256 x 16)
I SHIFTERS(0-7) |
V

LEGEND
ACCH = Accumulator high IFR = Interrupt flag register PC = Program counter
ACCL = Accumulator low IMR = Interrupt mask register PFC = Prefetch counter
ALU = Arithmetic logic unit IR = Instruction register RPTC = Repeat instruction counter
ARAU = Auxiliary register arithmetic unit MCS = Microcall stack GREG = Global memory allocation register
ARB = Auxiliary register pointer buffer QIR = Queue instruction register RSR = Serial port receive shift register
ARP = Auxiliary register pointer PR = Product register XSR = Serial port transmit shift register
DP = Data memory page pointer PRD = Period register for timer ARO-AR7 = Auxiliary registers
DRR = Serial port data receive register TIM = Timer STO,ST1 = Status registers
DXR = Serial port data transmit register TR = Temporary register

Figure 2-1. TMS320C25 Block Diagram

2-2

Architectural Overview

2.1 Functional Block Diagram

The functional block diagram of the TMS320C25, shown in Figure 2-1, outlines the
principal blocks and data paths within the processor. The diagram also shows all of
the TMS320C25 interface pins.

The TMS320C25 architecture is built around two major buses: the program bus and
the data bus. The program bus carries the instruction code and immediate operands
from program memory. The data bus interconnects various elements, such as the
Central Arithmetic Logic Unit (CALU) and the auxiliary register file, to the data RAM.
Together, the program and data buses can carry data from on-chip data RAM and
internal or external program memory to the multiplier in a single cycle for
multiply/accumulate operations.

The TMS320C25 has a high degree of parallelism; e.g., while the data is being
operated upon by the CALU, arithmetic operations may also be implemented in the
Auxiliary Register Arithmetic Unit (ARAU). Such parallelism results in a powerful
set of arithmetic, logic, and bit-manipulation operations that may all be performed
in a single machine cycle.

2.2 Pinout and Signal Descriptions

The TMS320C25 is packaged in a 68-pin plastic leaded chip carrier (PLCC). The
electrical specifications and mechanical data are given in Appendix A, the
TMS320C25 Data Sheet. Figure 2-2 shows a pinout of the TMS320C25 PLCC
package. Table 2-1 lists each TMS320C25 signal, its pin location, function, and
input, output, or high-impedance state (I/0/Z). The signals in Table 2-1 are grouped
according to function and alphabetized within that grouping.

Adaptor sockets are commercially available to convert a TMS320C25 PLCC package
to a TMS32020-like 68-pin grid array (PGA) footprint, thus maintaining plug-in
compatibility.

2-3

Architectural Overview

2-4

Figure 2-2. TMS320C25 Pin Assignments

IACK
MSC
CLKOUT1
CLKOUT2
XF
HOLDA
DX

FSX
X2/CLKIN
X1

BR

STRB
RIW

PS

is

DS

Vss

Architectural Overview

Table 2-1. TMS320C25 Signal Descriptions

SIGNAL | PIN |1/0/zt | DESCRIPTION
ADDRESS/DATA BUSES
A15 MSB 43 0/z Parallel address bus A15 (MSB) through AO (LSB). Multiplexed to address external
A14 42 data/program memory or 1/0. Placed in high-impedance state in the hold mode.
. A13 a1

A12 40

Al1 39

A10 38

A9 37

A8 36

A7 34

A6 33

A5 32

A4 31

A3 30

A2 29

A1 28

A0 LSB 26

D15 MSB 2 1/0/Z | Parallel data bus D15 (MSB) through DO (LSB). Multiplexed to transfer data between

D14 3 the TMS320C25 and external data/program memory or |/O devices. Placed in high-

D13 4 impedance state when not outputting or when RS or HOLD is asserted.

D12 5

D11 6

D10 7

D9 8

D8 9

D7 11

D6 12

D5 13

D4 14

D3 15

D2 16

D1 17

DO LSB 18

INTERFACE CONTROL SIGNALS

U_s 45 0/z Data, program, and 1/0 space select signals. Always high unless low level asserted for

PS 47 communicating to a particular external space. Placed in high-impedance state in the

[l 46 hold mode.

READY 66 | Data ready input. Indicates that an external device is prepared for the bus transaction to
be completed. If the device is not ready (READY = 0), the TMS320C25 waits one cycle
and checks READY again. READY also indicates a bus grant to an external device after
a BR (bus request) signal.

R/W 48 0/Z Read/write signal. Indicates transfer direction when communicating to an external device.
Normally in read mode (high), unless low level asserted for performing a write operation.
Placed in high-impedance state in the hold mode.

STRB 49 0/Z Strobe signal. Always high unless asserted low to indicate an external bus cycle. Placed
in high-impedance state in the hold mode.

- MULTIPROCESSING SIGNALS

BR 50 (o] Bus request signal. Asserted when the TMS320C25 requires access to an external global
data memory space. READY is asserted to the device when the bus is available and the
global data memory is available for the bus transaction.

ROLD 67 1 Hold input. When asserted, the TMS320C25 places the data, address, and control lines
in the high-impedance state. ’

HOLDA 55 0 Hold acknowledge signal. Indicates that the TMS320C25 has gone into the hold mode
and that an external processor may access the local external memory of the TMS320C25.

SYNC 19 I Synchronization input. Allows clock synchronization of two or more TMS320C25s. SYNC
is an active-low signal and must be asserted on the rising edge of CLKIN.

t Input/Output/High-impedance state

Architectural Overview

Table 2-1. TMS320C25 Signal Descriptions (Concluded)

siGNAL | PIN [1/0/zt] DESCRIPTION
INTERRUPT AND MISCELLANEQUS SIGNALS

BIO 68 I Branch control input. Polled by BIOZ instruction. If low, the TMS320C25 executes a
branch. This signal must be active during the BIOZ instruction fetch.

IACK 60 0 Interrupt acknowledge signal. Output is only valid while CLKOUT1 is low. Indicates
receipt of an interrupt and that the program is branching to the interrupt-vector location
indicated by A15-A0.

TNT2 22 | External user interrupt inputs. Prioritized and maskable by the interrupt mask register

INT1 21 and the interrupt mode bit.

INTO 20

MP/MC 1 | Microprocessor/microcomputer mode select pin. When asserted low, the pin causes the
internal ROM to be mapped into the lower 4K words of the program memory map.

MSC 59 (o] Microstate complete signal. Asserted low and valid only during CLKOUT1 low when the
TMS320C25 has just completed a memory operation, such as an instruction fetch or a
data memory read/write. can be used to generate a one wait-state READY signal
for slow memory.

RS 65 | Reset input. Causes the TMS320C25 to terminate execution and forces the program
counter to zero. When brought to a high level, execution begins at location zero of
program memory. RS affects various registers and status bits.

XF 56 (0] External flag output (latched software-programmable signal). Used for signalling other
processors in multiprocessor configurations or as a general-purpose output pin.

SUPPLY/OSCILLATOR SIGNALS

CLKOUT1 58 0 Master clock output signal (CLKIN frequency/4). Rises at the beginning of quarter-phase
3 (Q3) and falls at the beginning of quarter-phase 1 (Q1).

CLKOUT2 57 0 A second clock output signal. Rises at the beginning of quarter-phase 2 (Q2) and falls
at beginning of quarter-phase 4 (Q4).

Vee 23 | Four 5-V supply pins, tied together externally.

35
61
62
Vss 10 I Three ground pins, tied together externally.
27
44

X1 51 0 Output pin from the internal oscillator for the crystal. If a crystal is not used, this pin
should be left unconnected.

X2/CLKIN 52 | Input pin to the internal oscillator from the crystal. If a crystal is not used, a clock may
be input to the device on this pin.

SERIAL PORT SIGNALS

CLKR 64 | Receive clock input. External clock signal for clocking data from the DR (data receive)
pin into the RSR (serial port receive shift register). Must be present during serial port
transfers.

CLKX 63 I Transmit clock input. External clock signal for clocking data from the XSR (serial port
transmit shift register) to the DX (data transmit) pin. Must be present during serial port
transfers.

DR 24 | Serial data receive input. Serial data is received in the RSR (serial port receive shift

' register) via the DR pin.

DX 54 0/z Serial data transmit output. Serial data transmitted from the XSR (serial port transmit shift
register) via the DX pin. Placed in high-impedance state when not transmitting.

FSR 25 | Frame synchronization puise for receive input. The falling edge of the FSR pulse initiates
the data-receive process by gating the clock for receive (CLKR) input to the DRR (serial
port data receive register), and beginning the clocking of the RSR.

FSX 53 1/0 | Frame synchronization pulse for transmit input/output. The falling edge of the FSX pulse
initiates the data-transmit process by gating the clock for transmit (CLKX) input to the
shift register associated with DXR (serial port data transmit register), and beginning the
clocking of the XSR. The FSX is normally an input, but this pin is an output when the
TXM in the status register is set to 1.

t Input/Output/High-impedance state

2-6

Architectural Overview

2.3 Memory

The TMS320C25 provides a total of 544 16-bit words of on-chip data RAM, which
is divided into three separate blocks (BO, B1, and B2). Of the 544 words, 256 words
(block BO) are configurable as either data or program memory by CNFD or CNFP
instructions provided for that purpose; 288 words (blocks B1 and B2) are always
data memory. A data memory size of 544 words allows the TMS320C25 to handle
a data array of 512 words while still leaving 32 locations for intermediate storage.
The TMS320C25 provides 64K words of off-chip directly addressable data memory
space.

The TMS320C25 is equipped with a 4096-word on-chip ROM that can be mask-
programmed at the factory with a customer’s program. The ROM may be mapped
in or out of the TMS320C25’s memory space by an external pin on the device,
MicroProcessor/MicroComputer select (MP/MC). This permits the designer to
accelerate time-to-market with a TMS320C25-based product by using external ROM,
and cost-reducing it later with the large 4K internal ROM on the device without any
PC-board redesign. The TMS320C25 provides 64K words of off-chip program
memory space in which programs can be executed at full speed with sufficiently fast
memory or with wait states inserted for slower memories. Block BO may also be used
as program memory. Instructions can be downloaded from slow (inexpensive)
external program memory by using block repeats from program to data memory
(RPTK and BLKP). The block can then be configured as program memory using the
CNFP instruction. In this way, small time-critical blocks of program memory can
be stored inexpensively yet executed at full speed.

The TMS320C25 provides three separate address spaces for program memory, data
memory, and 1/0. In addition to blocks BO, B1, and B2, the data memory map (see
Figure 2-3) includes the memory-mapped registers and reserved locations. Six
peripheral registers including the serial port registers, timer register, period register,
interrupt mask register, and global memory allocation register have been mapped into
the data memory space for easy modification. Reserved locations may not be used
for storage, and their contents are undefined when read.

Architectural Overview

PROGRAM
0(>0000) | \\rerpUPTS
AND RESERVED
(EXTERNAL)
31(>001F)
32(>0020)
EXTERNAL
65,535(>FFFF)
IF MP/MIT = 1

(MICROPROCESSOR MODE)

PROGRAM
0(>0000) | \nrERRUPTS
AND RESERVED
(EXTERNAL)
31(>001F)
32(>0020)
EXTERNAL
65,279(>FEFF)
65,280(>FF00) ON-CHIP
BLOCK BO
65,535(> FFFF)
IF MP/MC = 1

(MICROPROCESSOR MODE)

2-8

PROGRAM
0(>0000) INTERRUPTS
AND RESERVED
(ON-CHIP ROM)
31(>001F)
32(>0020) ON-CHIP
ROM
4015(>0FAF)
4016(>0FBO)
RESERVED
4095(>OFFF)
4096(>1000)
EXTERNAL
65,535(> FFFF)
IF MP/MC = 0

0(>0000)

5(>0005)
6(>0006)

95(>005F)
96(>0060)

127(>007F)
128(>0080)

511(>01FF)
.512(>0200)

767(>02FF)
768(>0300)

1023(>03FF)
1024(>0400)

65,535(> FFFF)

(MICROCOMPUTER MODE)

(a) MEMORY MAPS AFTER A CNFD INSTRUCTION

PROGRAM
0(>0000) | \nreRRUPTS
AND RESERVED
(ON-CHIP ROM)
31(>001F)
32(>0020) ON-CHIP
ROM
4015(>OFAF)
4016(>0FBO)
RESERVED
4095(> OFFF)
4096(>1000)
EXTERNAL
65,279(>FEFF)
65,280(>FF00) ON-CHIP
BLOCK BO
65,535(> FFFF)
IF MP/MC = 0

0(>0000)

5(>0005)
6(>0006)

95(>005F)
96(>0060)

127(>007F)
128(>0080)

511(>01FF)
512(>0200)

767(>02FF)
768(>0300)

1023(>03FF)
1024(>0400)

65,535(> FFFF)

(MICROCOMPUTER MODE)

(b) MEMORY MAPS AFTER A CNFP INSTRUCTION

DATA

ON-CHIP
MEMORY-MAPPED
REGISTERS

RESERVED

ON-CHIP
BLOCK B2

RESERVED

ON-CHIP
BLOCK BO

ON-CHIP
BLOCK B1

EXTERNAL

DATA

ON-CHIP
MEMORY-MAPPED
REGISTERS

RESERVED

ON-CHIP
BLOCK B2

RESERVED

DOES NOT
EXIST

ON-CHIP
BLOCK B1

EXTERNAL

Figure 2-3. TMS320C25 Memory Maps

PAGE 0

PAGES 1-3

PAGES 4-5

PAGES 6-7

PAGES 8-511

PAGE 0

PAGES 1-3

PAGES 4-5

PAGES 6-7

PAGES 8-511

Architectural Overview

The TMS320C25 provides a register file containing eight Auxiliary Registers
(ARO-AR7), which may be used for indirect addressing of data memory or for
temporary storage. These registers may be either directly addressed by an instruction
or indirectly addressed by a three-bit Auxiliary Register Pointer (ARP). The auxiliary
registers and the ARP may be loaded from either data memory or by an immediate
operand defined in the instruction. The contents of these registers may also be stored
into data memory.

The auxiliary register file is connected to the Auxiliary Register Arithmetic Unit
(ARAU). The ARAU may autoindex the current auxiliary register while the data
memory location is being addressed. Indexing by either +/-1 or the contents of ARO
may be performed. As a result, accessing tables of information does not require the
CALU for address manipulation, thus freeing it for other operations.

Although the ARAU is useful for address manipulation in parallel with other oper-
ations, it may also serve as an additional general-purpose arithmetic unit since the
auxiliary register file can directly communicate with data memory. The ARAU
implements 16-bit unsigned arithmetic, whereas the CALU implements 32-bit
two’s-complement arithmetic. Branches dependent on the comparison of ARO with
the auxiliary register pointed to by ARP are also provided.

The TMS320C25 contains a 16-bit Program Counter (PC), a 16-bit Prefetch Counter
(PFC), a MicroCall Stack (MCS) register, and an eight-level hardware stack for PC
storage. The program counter contains the address of the currently executing
instruction, either on-chip or off-chip, and the prefetch counter is used for fetching
instructions. The eight-level stack is used during interrupts and subroutines, and the
MCS is used to store the contents of the PFC during BLKD/BLKP, MAC/MACD,
and TBLR/TBLW instructions.

The contents of the accumulator may be loaded into the PC in order to implement
“computed go to” operations. The TMS320C25 includes push and pop instructions
for nesting of subroutines/interrupts beyond eight levels by allowing a stack to be
built in data memory. These instructions store the top of the stack into data memory
or load it into the accumulator.

The TMS320C25 local memory interface consists of a 16-bit parallel data bus
(D15-DO0), a 16-bit program address bus (A15-A0), three pins for data/program
memory or 1/O space select (DS, PS, and 1S), and various system control signals.
The R/W signal controls the direction of a data transfer, and STRB provides a timing
signal to control the transfer. When using on-chip program RAM, ROM, or high-
speed external program memory, the TMS320C25 runs at full speed without wait
states. The use of a READY signal allows wait-state generation for communicating
with slower off-chip memories.

The TMS320C25 supports Direct Memory Access (DMA) to its external
program/data memory using the HOLD and HOLDA signals. Another processor can
take complete control of the TMS320C25’s external memory by asserting HOLD low.
This causes the TMS320C25 to place its address, data, and control lines in the
high-impedance state. Signaling between the external processor and the
TMS320C25 can be performed using interrupts. Two modes are available on the
device. In the TMS32020-like mode, execution is suspended during assertion of
HOLD. In the new “concurrent DMA" mode, the TMS320C25 continues to execute
its program while operating from internal RAM or ROM, thus greatly increasing
throughput in data-intensive applications.

2-9

Architectural Overview

2.4 Central Arithmetic Logic Unit (CALU)

2-10

The TMS320C25 CALU contains a 16-bit scaling shifter, a 16 x 16-bit parallel
multiplier, a 32-bit Arithmetic Logic Unit (ALU), a 32-bit accumulator, and some
additional scalers available at the outputs of both the accumulator and the multiplier.

The following steps occur in the implementation of a typical ALU instruction:

1) Data is fetched from the RAM on the data bus,

2) Data is passed through the scaling shifter and the ALU where the arithmetic is
performed, and

3) The result is moved into the accumulator.

One input to the ALU is always provided from the accumulator, and the other input
may be transferred from the Product Register (PR) of the multiplier or the scaling
shifter which is loaded from data memory.

The TMS320C25 scaling shifter has a 16-bit input connected to the data bus and a
32-bit output connected to the ALU. The scaling shifter produces a left-shift of 0
to 16 bits on the input data, as programmed in the instruction. The LSBs of the output
are filled with zeros, and the MSBs may be either filled with zeros or sign-extended,
depending upon the state of the sign-extension mode bit of status register ST1.
Additional shift capabilities enable the processor to perform numerical scaling, bit
extraction, extended arithmetic, and overflow prevention.

The TMS320C25 32-bit ALU and accumulator perform a wide range of arithmetic
and logical instructions, the majority of which execute in a single clock cycle. The
overflow saturation mode may be programmed through the SOVM and ROVM
(set/reset overflow mode) instructions. When the accumulator is in the overflow
saturation mode and an overflow occurs, an overflow flag is set and the accumulator
is loaded with the most positive/negative number depending upon the direction of
overflow.

The 32-bit accumulator is split into two 16-bit segments for storage in data memory:
ACCH (accumulator high) and ACCL (accumulator low). Additional shifters at the
output of the accumulator provide a shift of 0 to 7 places to the left. This shift is
performed while the data is being transferred to the data bus for storage. The contents
of the accumulator remain unchanged. The accumulator also has an in-place one-bit
shift to the left or right (SFL or SFR instructions) and rotate through carry (ROL or
ROR instructions) for shifting the contents of the accumulator.

A carry bit has been added to the TMS320C25 to facilitate multiple-precision arith-
metic. The carry bit is affected by all add and subtract instructions. Two new
instructions, ADDC (add with carry) and SUBB (subtract wth borrow), use the carry
bit when computing a result.

The TMS320C25 utilizes a 16 x 16-bit hardware multiplier, which is capable of
computing a 32-bit product during every machine cycle. Two registers are associated
with the multiplier:

® A 16-bit Temporary Register (TR) that holds one of the operands for the
multiplier, and
® A 32-bit Product Register (PR) that holds the product.

The output of the product register can be left-shifted 1 or 4 bits. This is useful for
implementing fractional arithmetic or justifying fractional products. The output of the
PR can also be right-shifted 6 bits to enable the execution of up to 128 consecutive
multiply/accumulates without overflow.

An unsigned multiply (MPYU) instruction facilitates extended-precision multipli-
cation. The unsigned contents of the T register are multiplied by the unsigned

Architectural Overview

contents of the addressed data memory location, with the result placed in the P
register.

Two multiply/accumulate instructions (MAC and MACD) fully utilize the computa-
tional bandwidth of the multiplier, allowing both operands to be processed simul-
taneously. For MAC and MACD, two operands are transferred to the multiplier each
cycle via the program and data buses. This provides for single-cycle
multiply/accumulates when used with repeat (RPT or RPTK) instructions. The
program bus can supply data from internal or external memory (RAM or ROM) and
still maintain single-cycle operation. The SQRA (square/add) and SQRS
(square/subtract) instructions pass the same value to both inputs of the multiplier
for squaring a data memory value.

The TMS320C25 supports floating-point operations for applications requiring a large
dynamic range. A normalization (NORM) instruction is used to normalize fixed-point
numbers contained in the accumulator by performing left shifts. The LACT (load
accumulator with shift specified by the T register) instruction denormalizes a float-
ing-point number by arithmetically left-shifting the mantissa through the input
scaling shifter. The ADDT and SUBT instructions have also been provided to allow
additional arithmetic operations with shift specified by the T register. Floating-point
numbers with 16-bit mantissas and 4-bit exponents can thus be manipulated.

The device has a variety of branch instructions that are interpreted according to the
status of the ALU. Bit test instructions (BIT and BITT) have also been included,
which do not affect the accumulator but allow the testing of a specified bit of a word
in data memory.

2.5 System Control

Control operations are provided on the TMS320C25 by an on-chip timer, a repeat
counter, three external maskable user interrupts, and internal interrupts generated
by serial port operations or by the timer.

The TMS320C25 provides a memory-mapped 16-bit timer (TIM) register that is a
down counter continuously clocked by CLKOUT1. A timer interrupt (TINT) is
generated whenever the timer decrements to zero. The timer is reloaded with the value
contained in the period (PRD) register within the next cycle after it reaches zero so
that interrupts may be programmed to occur at regular intervals of (PRD + 1) x
CLKOUT1 cycles. This feature is useful for control operations and for synchronously
sampling or writing to peripherals.

The TMS320C25 design includes a repeat feature that allows a single instruction to
be performed up to 256 times. The repeat counter (RPTC) is loaded with either a
data memory value (in the case of the RPT instruction) or an immediate value (in
the case of the RPTK instruction). The repeat feature can be used with instructions
such as multiply/accumulates, block moves, I/O transfers, and table read/writes.
Those instructions that are normally multicycle are pipelined when using the repeat
feature, and effectively become single-cycle instructions. For example, the table read
(TBLR) instruction ordinarily takes four cycles, but when repeated, a table location
can be read every cycle.

The TMS320C25 has three external maskable user interrupts (INT2-TNTO) available
for external devices that interrupt the processor. Internal interrupts are generated
by either the serial port, the timer, or the software interrupt instruction. Interrupts
are prioritized with reset having the highest priority and the serial port transmit
interrupt having the lowest priority.

Architectural Overview

The conditions and modes of the TMS320C25 are stored in the two status registers,
STO and ST1. Instructions allow for storing and loading the status registers into and
from data memory. In this manner, the current status of the device may be saved
during interrupts and subroutine calls.

2.6 1/0 Interface

The TMS320C25 supports a wide range of system interfacing requirements. Three
separate address spaces (program, data, and I/0) provide interfacing to memory and
1/0, thus maximizing system throughput. 1/0 design is simplified by having 1/0
treated the same way as memory. |/0 devices are mapped into the I/O address space
using the processor’'s external address and data buses in the same manner as
memory-mapped devices. Interfacing to memory and |/O devices of varying speeds
is accomplished by using the READY line.

The TMS320C25 1/0 space consists of 16 input and 16 output ports. These ports
provide the full 16-bit parallel 1/0 interface via the data bus on the device. A single
input or output operation typically takes two cycles; however, when used with the
repeat counter, the operation becomes single-cycle.

An on-chip serial port provides direct communication with serial devices such as
codecs, serial A/D converters, and other serial systems. The interface signals are
compatible with codecs and many other serial devices with a minimum of external
hardware. The two serial port memory-mapped registers (the data transmit/receive
registers) may be operated in either an 8-bit byte or 16-bit word mode. The transmit
framing synchronization pulse can be generated internally or externally. The maxi-
mum speed of the serial port is 5 MHz.

The primary enhancements of the TMS320C25's serial port over the TMS32020 are:

® Double-buffering for both receive and transmit operations, thus allowing a
continuous bit stream even if FSX is an output,

® No minimum CLKR/CLKX frequency (fmin = 0 Hz), and

° Frame sync mode (FSM) bit, which allows continuous operation with no frame
synchronization pulses.

The frame sync mode is useful in communicating to “PCM highways.” For AT&T
T1 and CCITT G711/712 lines, the TMS320C25 can easily be made to communicate
directly in these formats by counting the transmitted/received bytes in software and
performing SFSM/RFSM instructions as needed to set/reset the FSM bit.

2.7 System Configurations

The flexibility of the TMS320C25 allows configurations to satisfy a wide range of
system requirements. The TMS320C25 can be used as follows:

® A standalone system (a single processor using 4K words of on-chip ROM and
544 words of on-chip RAM),

® Parallel multiprocessing systems with shared global data memory, or

® Host/peripheral coprocessing using interface control signals.

The standalone hardware system interface consists of a 16-bit parallel data bus, a
16-bit address bus, three pins for memory space select, and various system control
signals. In Figure 2-4, an external data RAM and a PROM/EPROM have been added
to the minimum processing system. The READY signal allows wait-state generation
for communicating with slower off-chip memories. All the memories and 1/0 devices

Architectural Overview

are directly controlled by the TMS320C25, thus minimizing external hardware
requirements.

A15-A0 * ADDRESS BUS~:
SERIAL
COMMUNICATION READY |—=—
Y |
" /"
| EPROM/ ‘ | l
TMS320C25 | PROM DATA RAM /0

| (OPTIONAL) { : (0PT|ONAL)= DEVICES

-

lﬁ____‘;.., _{__] t

a g @

A
D15-DON:™:
r)

Y VYY

Figure 2-4. A Minimum Processing System

The serial port can interface to serial devices such as codecs and serial A/D
converters. Serial communication can also be used between processors, e.g., to
connect two minimal systems together to make a multiprocessing system.

For multiprocessing applications, the TMS320C25 has the capability of allocating
global data memory space and communicating with that space via the BR (bus
request) and READY control signals. The 8-bit memory-mapped global memory
allocation register (GREG) specifies up to 32K words of the TMS320C25’s data
memory as global external memory. The contents of the register determine the size
of the global memory space. If the current instruction addresses an operand within
that space, BR is asserted to request control of the bus. The length of the memory
cycle is controlled by the READY line.

In a multiprocessing system using global memory, the address space of each
processor is divided into local and global sections. Global memory can be used for
common data memory storage.

Figure 2-5 shows a configuration for a parallel processing system using global
memory. Two TMS320C25s share a global data memory while executing from local
program memory. The arbitration for the global memory is handled in software by
using the XF and BIO pins. The XF pin acts as an external flag, and the BIO pin can
be polled by a branch (BIOZ) instruction whose condition depends on the state of
BIO.

2-13

Architectural Overview

TMS320C25 TMS320C25
#1 #2
XF
READY —<—C *

BR I_l BIO

XF Ty '
READY

_ Y -

BIO BR
D15-D0 [5. D15-D0
A15-A0 [} z [} z A15-A0
AR v ': ‘ 'é xxx
S n
LOCAL ® GLOBAL i LOCAL
MEMORY] MEMORY w MEMORY
#1 i & #2
2] @

Figure 2-5. Global Memory Parallel Processing

Multiprocessing with the TMS320C25 may also be accomplished through the use
of two sets of interface control signals: HOLD/HOLDA and interrupts. HOLD/HOLDA
(hold/hold acknowledge) signals allow another microprocessor to read from or write
to the local off-chip data/program memory of the temporarily halted processor. Using
these signals to implement direct memory access is useful for downloading to or
initializing the TMS320C25. In interrupt-driven multiprocessing, time-critical oper-
ations can be protected by masking out interrupts.

The TMS320C25 has been enhanced to provide a new hold mode that provides the
ability to perform concurrent DMA. The new hold mode has been defined so that if
the device is executing from on-chip program memory (ROM or RAM) and HOLD
is asserted, the device is not halted, but instead proceeds with program execution
until an external access must be made. This greatly enhances system throughput in
multiprocessing applications.

Many applications require a digital signal processing-type peripheral interface to a
general-purpose 16- or 16/32-bit microcomputer. Such configurations are often
useful when a general-purpose system is already available. A host/peripheral
configuration using the interface control signals of HOLD/HOLDA is shown in Figure
2-6.

Architectural Overview

SELECT _ oD
XF READY a OLDA HOLD
HOST
PROCESSOR
SYSTEM TMS320C25
> INT D15-DO D15-DO XE -
~a— I/F CONTROL * I/F CONTROL |-—
%, Y A15-A0
[m——— oxm
s LOCAL | LOCAL | i
3 | memony | | memory :
& > #2 RS 0
3 | PROGRAM)
—

SELECT
MUX

) 4

Figure 2-6. Host/Peripheral Coprocessing Using Interface Control Signals

A great advantage to using the TMS320C25 in a multiprocessor system is its ability
to be synchronized to an external signal. A special SYNC pin allows the internal clocks
of two or more TMS320C25s to be synchronized. Since the processors operate on
the same internal clock phase, all external signals will also be synchronized, elimi-
nating the need for external logic to synchronize interprocessor signals.

2.8 Addressing Modes and Instructions

The TMS320C25 instruction set supports numeric-intensive signal processing
operations as well as general-purpose applications such as multiprocessing and
high-speed control. The TMS320C25 is completely object code upward-compatible
with the TMS32020 so that TMS32020 programs run unmodified on the
TMS320C25. The TMS32010 source code is upward-compatible with the
TMS320C25 source code.

For maximum throughput, the current instruction is executed while the next
instruction is decoded and the one following that is prefetched. Since the same data
lines are used to communicate to external data/program or |/O space, the number
of cycles may vary depending upon whether the next data operand fetch is from
internal or external memory. Highest throughput is achieved by maintaining data
memory on-chip and using either internal or fast external program memory.

Architectural Overview

2-16

Three memory addressing modes are available with the TMS320C25 instruction set:
direct, indirect, and immediate addressing. Both direct and indirect addressing can
be used to access data memory. When using direct addressing, seven bits of the
instruction word are concatenated with the nine bits of the Data memory page Pointer
(DP) to form the 16-bit data memory address. With a 128-word page length, the
DP register points to one of 512 possible data memory pages to obtain a 64K total
data memory space. The seven-bit address in the instruction points to the specific
location within the data memory page. Direct addressing can be used with all
instructions except CALL, the branch instructions, immediate operand instructions,
and instructions with no operands.

Flexible and powerful indirect addressing is provided by the eight auxiliary registers
(ARO-AR7). The data address to be used in an instruction is placed into one of eight
auxiliary registers. To select a specific auxiliary register, the Auxiliary Register Pointer
(ARP) is loaded with a value from O through 7, designating ARO through AR7,
respectively. The ARAU implements 16-bit unsigned arithmetic, performing auxiliary
register arithmetic operations in the same cycle as the execution of the instruction.

There are seven types of indirect addressing: indexing with either increment or
decrement, indexing by either adding or subtracting the contents of ARO, indexing
by either adding or subtracting the contents of ARO with the carry propagation
reversed (for FFTs), or no indexing (see Table 2-2). All indexing operations are
performed on the current auxiliary register in the same cycle as the original instruction,
with an optional new ARP value being loaded.

Bit-reversed indexed addressing modes allow efficient 1/0 to be performed for the
resequencing of data points in a radix-2 FFT program. The direction of carry propa-
gation in the ARAU is reversed when this mode is selected and ARO is added
to/subtracted from the current auxiliary register. Typical use of this addressing mode
requires that ARO first be set to a value corresponding to one-half of the array size,
and AR (ARP) be set to the base address of the data (the first data point).

Table 2-2. Addressing Modes

ADDRESSING MODE OPERATION

OP A Direct addressing

OP *(,NARP) Indirect; no change to AR.

OP *+(,NARP) Indirect; current AR is incremented.

OP *-(,NARP) Indirect; current AR is decremented.

OP *0+(,NARP) Indirect; ARO is added to current AR.

OP *0-(,NARP) Indirect; ARO is subtracted from current AR.

OP *BRO+(,NARP) Indirect; ARO is added to current AR (with
reverse carry propagation).

OP *BRO-(,NARP) Indirect; ARO is subtracted from current AR
(with reverse carry propagation).

NOTE: The optional NARP field specifies a new value of the ARP.

In immediate addressing, the instruction word contains the value of the immediate
operand. The TMS320C25 has both single-word (8-bit and 13-bit constant) short
immediate instructions and two-word (16-bit constant) long immediate instructions.
In the case of long (16-bit constant) immediate instructions, the word following the
instruction opcode is used as the immediate operand. Included in the TMS320C25's
instruction set are 17 immediate operand instructions.

Table 2-3 defines the symbols and abbreviations used in the operation portion of the
list of TMS320C25 instructions (Table 2-4).

Architectural Overview

Table 2-3. Instruction Symbols

SYMBOL

MEANING

ACC
ARB
ARn

ARP
BIO

CM

pma
Preg
RPTC
STn
SXM

TOS
Treg
TXM
Usgn

~—— —

Accumulator

Auxiliary register pointer buffer

Auxiliary Register n (ARO through AR7 are predefined
assembler symbols equal to O through 7, respectively.)
Auxiliary register pointer

Branch control input

Carry bit

2-bit field specifying compare mode

On-chip RAM configuration control bit

Data memory address

Data page pointer

Format status bit

Frame synchronization mode bit

Hold mode bit

Interrupt mode flag bit

Indicates nn is a hexadecimal number. (All others are
assumed to be decimal values.)

Overflow flag bit

Overflow mode bit

Product register

Port address. (PAO through PA15 are predefined assembler
symbols equal to O through 15, respectively.)
Program counter

2-bit field specifying P register output shift code
Program memory address

Product register

Repeat counter

Status Register n (STO or ST1)

Sign-extension mode bit

Temporary register

Test control bit

Top of stack

Temporary register

Transmit mode bit

Unsigned value

XF pin status bit

Is assigned to

An absolute value

Optional items

Contents of

Twenty-four new instructions have been added to the TMS320C25 instruction set
to improve overall processor throughput and ease of use. These new instructions can

be categorized into the following four groups:

ROL, ROR)

The list of TMS320C25 instructions in Table 2-4 is organized according to function
and alphabetized within each functional grouping.
instructions that are not included in the TMS32010 instruction set, and the symbol

Extended-precision arithmetic (ADDC, SUBB, MPYU, BC, BNC, SC, RC)
Adaptive filtering (MPYA, MPYS, ZALR)

Control and I/0 (SHM, RHM, STC, RTC, SFSM, RFSM)
Accumulator and register instructions (SPH, SPL, ADDK, SUBK, ADRK, SBRK,

(¥) those not included in the TMS32020 instruction set.

The symbol (1) indicates

Architectural Overview

Table 2-4. TMS320C25 Instructions

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS

NO.
MNEMONIC DESCRIPTION WORDS OPERATION
ABS Absolute value of accumulator 1 |(ACC)| = ACC
ADD Add to accumulator with shift 1 (ACC) + [(dma) x 2shift] - ACC
ADDC? Add to accumulator with carry 1 (ACC) + (dma) + (C) » ACC
ADDH Add to high accumulator 1 (ACC) + [(dma) x 216] - ACC
ADDK* Add to accumulator short immediate 1 (ACC) + 8-bit constant = ACC
ADDS Add to low accumulator with sign 1 (ACC) + (dma) —» ACC
extension suppressed)
ADDT? Add to accumulator with shift specified by 1 (ACC) + [(dma) x 2(Treg)] — ACC
T register)
ADLKT Add to accumulator long immediate with shift 2 (ACC) + [16-bit constant x 2shift] - ACC
AND AND with accumulator 1 (ACC(15-0)).AND.(dma) —» ACC(15-0),
0 — ACC(31-16)
ANDK 1 AND immediate with accumulator with shift 2 (ACC)30-0)).AND.[16-bit constant x 2shift] —
ACC(30-0), 0 = ACC(30-0)
cmpLt Complement accumulator 1 (ACC) —» ACC
LAC Load accumulator with shift 1 (dma) x 2shift - ACC
LACK Load accumulator immediate short 1 8-bit constant - ACC
LACT? Load accumulator with shift specified by T register 1 (dma) x 2(Treg) - ACC
LALKT Load accumulator long immediate with shift 2 (16-bit constant) x 216 - ACC
NEGT Negate accumulator 1 —-(ACC) —» ACC
NORMT Normalize contents of accumulator 1
OR OR with accumulator 1 (ACC(15-0)).0R. (dma) = ACC(15-0)
ORK ' OR immediate with accumulator with shift 2 (ACC(30-0)).0R.[16-bit constant x 2shift] —
ACC(30-0)
ROL* Rotate accumulator left 1 (ACC(30-0)) = ACC(31-1), (C) — ACC(O),
(ACC(31)) = C
ROR¥ Rotate accumulator right 1 (ACC(31-1)) = ACC(30-0), (C) = ACC(31),
(ACC(0)) —» C
SACH Store high accumulator with shift 1 [(ACC) x 2shift] —» dma
SACL Store low accumulator with shift 1 [{ACCL) x 2shift} » dma
SBLKT Subtract from accumulator long immediate with shift 2 (ACC) — [16-bit constant x 2shift] - ACC
SFLT Shift accumulator left 1 (ACC(30-0)) = ACC(31-1), 0 — ACC(0)
SFRT Shift accumulator right 1 (ACC(31-1)) = ACC(30-0), (ACC(31)) = ACC(31)
SuUB Subtract from accumulator with shift 1 (ACC) - [(dma) x 2shiftj - ACC
susB? Subtract from accumulator with borrow 1 (ACC) - (dma) — (C) = ACC
SUBC Conditional subtract 1
SUBH Subtract from high accumulator 1 (ACC) - [{dma). x 216] - ACC
suBk* Subtract from accumulator short immediate 1 (ACC) — 8-bit constant = ACC
SUBS Subtract from low accumulator with sign 1 (ACC) - (dma) —» ACC
extension suppressed
suBT? Subtract from accumulator with shift specified by 1 (ACC) — [(dma) x 2(Tregl] - ACC
T register
XOR Exclusive-OR with accumulator 1 (ACC({15-0)).XOR. (dma) = ACC(15-0)
XORK T Exclusive-OR immediate with accumulator with shift 2 (ACC(30-0)).XOR.[16-bit constant x 2shift] —
ACC(30-0)
ZAC Zero accumulator 1 0 — ACC
ZALH Zero low accumulator and load high accumulator 1 (dma) x 216 - ACC
ZALR#* Zero low accumulator and load high accumulator 1 (dma) x 216 + >8000— ACC
with rounding
ZALS Zero accumulator and load low accumulator with 1 {dma) - ACCL, 0 - ACCH
sign extension suppressed

tThese instructions are not included in the TMS32010 instruction set.
¥These instructions are not included in the TMS32020 instruction set.

2-18

Architectural Overview

Table 2-4. TMS320C25 Instructions (Continued)

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS
NO.

MNEMONIC DESCRIPTION WORDS OPERATION

ADRK# Add to auxiliary register short immediate 1 (ARn) + 8-bit constant = ARn

CMPRT Compare auxiliary register with auxiliary register ARO 1 If ARn | CM | ARO, then 1 = TC; else 0 — TC

LAR Load auxiliary register 1 (dma) — (ARn)

LARK Load auxiliary register short immediate 1 8-bit constant » ARn

LARP Load auxiliary register pointer 1 3-bit constant = ARP, (ARP) — ARB

LDP Load data memory page pointer 1 (dma) — DP

LDPK Load data memory page pointer immediate 1 9-bit constant — DP

LRLK T Load auxiliary register long immediate 2 16-bit constant = ARn

MAR Modify auxiliary register 1

SAR Store auxiliary register 1 (ARn) = dma

SBRK ¥ Subtract from auxiliary register short immediate 1 (ARn) — 8-bit constant - ARn

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS
NO.

MNEMONIC DESCRIPTION WORDS OPERATION

APAC Add P register to accumulator 1 (ACC) + (shift Preg) = ACC

LPHT Load high P register 1 (dma) — Preg (31-16)

LT Load T register 1 (dma) — Treg

LTA Load T register and accumulate previous product 1 (dma) — Treg, (ACC) + (shifted Preg) = ACC

LTD Load T register, accumulate previous product, 1 (dma) — Treg, (dma) - dma + 1,

and move data (ACC) + (shifted Preg) - ACC

LTpt Load T register and store P register in accumulator 1 (dma) — Treg, (shifted Preg) - ACC

LTst Load T register and subtract previous product 1 (dma) = Treg, (ACC) - (shifted Preg) - ACC

MACT Muitiply and accumulate 2 (ACC) + (shifted Preg) - ACC,
(pma) x (dma) — Preg

MACD' Multiply and accumulate with data move 2 (ACC) + (shifted Preg) = ACC,
(pma) x (dma) — Preg, (dma) - dma + 1

MPY Muiltiply (with T register, store product in P register) 1 (Treg) x (dma) — Preg

MPYA# Multiply and accumulate previous product 1 (ACC) + (shifted Preg) — ACC,
(Treg) x (dma) — Preg

MPYK Multiply immediate 1 (Treg) x 13-bit constant — Preg

MpPYs# Multiply and subtract previous product 1 (ACC) — (shifted Preg) - ACC,
(Treg) x (dma) — Preg

MPYU# Multiply unsigned 1 Usgn (Treg) x Usgn (dma) — Preg

PAC Load accumulator with P register 1 (shifted Preg) = ACC

SPAC Subtract P register from accumulator 1 (ACC) — (shifted Preg) = ACC

SPH?¥ Store high P register 1 (shifted Preg (31-16)) = dma

spL¥ Store low P register 1 (shifted Preg (15-0)) —» dma

spmT Set P register output shift mode 1 2-bit constant —» PM

SQRA' Square and accumulate 1 (ACC) + (shifted Preg) = ACC,
(dma) x (dma) — Preg

sarst Square and subtract previous product 1 (ACC) — (shifted Preg) = ACC,
(dma) x (dma) — Preg

TThese instructions are not included in the TMS32010 instruction set.
#These instructions are not included in the TMS32020 instruction set.

Architectural Overview

Table 2-4. TMS320C25 Instructions (Continued)

BRANCH/CALL INSTRUCTIONS
NO.
MNEMONIC DESCRIPTION WORDS OPERATION
B Branch unconditicnally 2 pma — PC
BACCt Branch to address specified by accumulator 1 (ACC(15-0)) = PC
BANZ Branch on auxiliary register not zero 2 If (AR(ARP)) # O, then pma — PC; else (PC) + 2 —-
PC '
BBNZT Branch if TC bit # O 2 If (TC) = 1, then pma — PC; else (PC) + 2 — PC
BBzt Branch if TC bit = 0 2 If (TC) = O, then pma — PC; else (PC) + 2 - PC
BC# Branch on carry 2 If (C) = 1, then pma — PC; else (PC) + 2 - PC
BGEZ Branch if accumulator > 0 2 If (ACC) > O, then pma — PC; else (PC) + 2 = PC
BGZ Branch if accumulator > 0 2 If (ACC) > O, then pma — PC; else (PC) + 2 = PC
BIOZ Branch on 1/O status = O 2 If (BIO) = 0, then pma — PC; else (PC) + 2 - PC
BLEZ Branch if accumulator < O 2 If (ACC) < O, then pma — PC; else (PC) + 2 —» PC
BLZ Branch if accumulator < O 2 If (ACC) < O, then pma — PC; else (PC) + 2 - PC
BNC* Branch on no carry 2 If (C) =0, then pma — PC; else (PC) + 2 - PC
BNV T Branch if no overflow 2 If (OV) # O, then pma — PC; else (PC) + 2 —» PC
BNZ Branch if accumulator # O 2 If (ACC) # O, then pma — PC; else (PC) + 2 —» PC
BV Branch on overflow 2 If (OV) = 0, then pma — PC; else (PC) + 2 = PC
BZ Branch if accumulator = O 2 If (ACC) = O, then pma — PC; else (PC) + 2 —» PC
CALA Call subroutine indirect 1 (ACC(15-0)) = PC, (PC) + 1 = TOS
CALL Call subroutine 2 (PC) + 2 = TOS, pma — PC
RET Return from subroutine 1 (TOS) = PC
1/0 AND DATA MEMORY OPERATIONS
NO.
MNEMONIC DESCRIPTION WORDS OPERATION
BLKDT Block move from data memory to data memory 2 (dma1, addressed by PC) — dma2
BLKPT Block move from program memory to data memory 2 (pma, addressed by PC) — dma
DMOV Data move in data memory 1 (dma) — dma + 1
FORTt Format serial port registers 1 1-bit constant = FO
IN Input data from port 1 (data bus, addressed by PA) - dma
ouT Output data to port 1 (dma) — data bus, addressed by PA
RFSM# Reset serial port frame synchronization mode 1 0 —» FSM
RTXMT Reset serial port transmit mode 1 0 - TXM
RXFT Reset external flag 1 0 - XF
SFSM# Set serial port frame synchronization mode 1 1 - FSM
sTXmT Set serial port transmit mode 1 1 - TXM
sxFt Set external flag 1 1 - XF
TBLR Table read 1 (pma, addressed by ACC (15-0)) —» dma
TBLW Table write 1 (dma) - pma, addressed by ACC (15-0)

TThese instructions are not included in the TMS32010 instruction set.
#These instructions are not included in the TMS32020 instruction set.

1 2-20

Architectural Overview

Table 2-4. TMS320C25 Instructions (Concluded)

CONTROL INSTRUCTIONS
NO.

MNEMONIC DESCRIPTION WORDS OPERATIONS
BITT Test bit 1 (dma bit at (15-bit code)) = TC
BITT! Test bit specified by T register 1 (dma bit at (15-Treg)) = TC
CNFD1 Configure block as data memory 1 0 = CNF
CNFP? Configure block as program memory 1 1 — CNF
DINT Disable interrupt 1 1 = INTM
EINT Enable interrupt 1 0 — INTM
IDLE? Idle until interrupt 1 (PC) + 1 = PC, powerdown
LST Load status register STO 1 (dma) — STO
LsT1t Load status register ST1 1 (dma) - ST1
NOP No operation 1 (PC) + 1 = PC
POP Pop top of stack to low accumulator 1 (TOS) = ACC
popD* Pop top of stack to data memory 1 (TOS) —» dma
PSHDt Push data memory value onto stack 1 (dma) — TOS
PUSH Push low accumulator onto stack 1 (ACCL) = TOS
RC# Reset carry bit 1 0o-C
RHM# Reset hold mode 1 0— HM
ROVM Reset overflow mode 1 0 — OVM
RPTT Repeat instruction as specified by data memory value 1 (dma) -+ RPTC
RPTK? Repeat instruction as specified by immediate value 1 8-bit constant =+ RPTC
RsXxmt Reset sign-extension mode 1 0 — SXM
RTC* Reset test/control flag 1 0-TC
sct Set carry bit 1 1—-C
SHMm# Set hold mode 1 1 - HM
SOVM Set overflow mode 1 1 - 0OVM
SST Store status register STO 1 STO — dma
ssT1t Store status register ST1 1 ST1 - dma
ssxmt Set sign-extension mode 1 1 - SXM
sTC} Set test/control flag 1 1-TC
TRAPT Software interrupt 1 (PC) + 1 - TOS, 30 - PC

tThese instructions are not included in the TMS32010 instruction set.
#These instructions are not included in the TMS32020 instruction set.

2-21

Architectural Overview

2.9 Development Support

2-22

Texas Instruments offers extensive development support and documentation for the
TMS320 family (see Figure 2-7). Sophisticated development operations are
performed with the TMS320C25 Macro Assembler/Linker, Simulator, and Emulator

" to evaluate the performance of the processor, develop algorithms, and fully integrate
" the design’s software and hardware modules. Since the TMS320C25 is pin-com-

patible with the TMS32020, development can begin immediately by utilizing the
broad base of TMS32020 support tools (see Appendix F).

Extensive documentation, including application reports, user’s guides, and textbooks,
is available to support DSP design, research, and education. When questions arise,
additional support can be obtained by contacting the Texas Instruments Customer
Response Center (CRC) hotline number, 1-800-232-3200.

Figure 2-7. TMS320 Family Development Support

Architectural Overview

TMS320C25 MACRO ASSEMBLER/LINKER

The TMS320C25 Macro Assembler translates TMS320C25 assembly language
source code into executable object code. The assembler allows the programmer to
work with mnemonics rather than hexadecimal machine instructions and to reference
memory locations with symbolic addresses. The macro assembler supports macro
calls and definitions along with conditional assembly.

The TMS320C25 Linker permits a program to be designed and implemented in
separate modules that will later be linked together to form the complete program.
The linker resolves external definitions and references for relocatable code, creating
an object file that can be executed by the TMS320C25 Simulator, TMS320C25
Emulator, or TMS320C25 processor.

The TMS320C25 Macro Assembler/Linker is supported on the VAX/VMS, Ti
PC/MS-DQOS, and IBM PC/PC-DOS operating systems.

TMS320C25 SIMULATOR

The TMS320C25 Simulator is a software program that simulates operation of the
TMS320C25 to allow program verification. The debug mode enables the user to
monitor the state of the simulated TMS320C25 while the program is executing. The
simulator uses the TMS320C25 object code produced by the TMS320C25 Macro
Assembler/Linker. During program execution, the internal registers and memory of
the simulated TMS320C25 are modified as each instruction is interpreted by the host
computer. Once program execution is suspended, the internal registers and both
program and data memories can be inspected and/or modified.

The TMS320C25 Simulator is supported on the VAX/VMS, TI PC/MS-DOS, and IBM
PC/PC-DOS operating systems.

TMS320C25 EMULATOR

The TMS320C25 Emulator (XDS/22) is a user-friendly system that has all the
features necessary for realtime in-circuit emulation. This allows integration of the
hardware and software modules in the debug mode. By setting breakpoints based
on internal conditions or external events, execution of the program can be suspended
and control given to the debug mode. In the debug mode, all registers and memory
locations can be inspected and modified. Single-step execution is available. Full
trace capabilities at full speed and a reverse assembler that translates machine code
back into assembly instructions also increase debugging productivity.

The TMS320C25 Emulator is a completely self-contained system. With three
RS-232-C ports, it can be interfaced to a terminal, host computer for source or object
downloading/uploading capabilities, and printer or PROM programmer. The
emulator has 4K x 16-bit words of high-speed static RAM (zero wait states) for
program memory. The XDS/22 also supports memory expansion by including 64K
words of DRAM. This slower memory is configurable by the user as either all program
memory, all data memory, or 32K words of each.

2-23

2-24

3. Device Operation

The TMS320C25 microprocessor architectural design emphasizes overall speed,
communication, and flexibility in processor configuration. Control signals and
instructions provide block-memory transfers, communication to slower off-chip
devices, and multiprocessing implementations. Increased throughput for many digital
signal processing (DSP) applications is accomplished by single-cycle
multiply/accumulate instructions, two large on-chip RAM blocks, eight auxiliary
registers with a dedicated arithmetic unit, a serial port, hardware timer, faster |/0 for
data-intensive signal processing, and many other features. Figure 2-1 shows the
functional block diagram of the TMS320C25 processor.

Major topics discussed in this section are listed below.
) Internal Hardware Summary (Section 3.1 on page 3-3)

) Memory Organization (Section 3.2 on page 3-5)
On-chip program ROM
On-chip data RAM blocks
Memory maps
Memory-mapped registers
Auxiliary registers
Addressing modes
Memory-to-memory moves

® Central Arithmetic Logic Unit (CALU) (Section 3.3 on page 3-13)
Scaling shifter
ALU and accumulator
Multiplier, T and P registers

® System Control (Section 3.4 on page 3-18)
Program counter and related hardware
Reset
Status registers
Timer operation
Repeat counter
Powerdown mode

® External Memory and |/O Interface (Section 3.5 on page 3-26)
Internal clock timing relationships
External read and write cycles
Wait states

® Interrupts (Section 3.6 on page 3-31)
Interrupt operation
External interrupt interface

® Serial Port (Section 3.7 on page 3-35)
Transmit and receive operations

[) Multiprocessing and Direct Memory Access (Section 3.8 on page 3-44)
Synchronization
Global memory
The hold function

® General-Purpose 1/0 Pins (Section 3.9 on page 3-49)

BIO input
External flag output

31

Device Operation

2N
£55
|‘z’ 222
KBk *xX33
‘ |) 16 16 ¥16
—, 16, 16 "
AW —s PFC(16) QIR{16)
STRB —=——] IR(16)
READY —»— . o STO(16)
X ! ¥ e —— ST1(16)
| 4
FOLD ——— g 1 16 RPTC(8)
HAOLDA —a——o 2 : IFR(6)
w17, 8 PC(16) OR
B0 —»—1 o] CLKR
RS —»— 2 ” 2 16 16 FSR
R 1re 16 1’16 ’ ¥ _+2ka
A
V. ™ FSX
} ADDRESS STACK 1
MP/MC 3 8 x 16) RSR(16)
INT(2-0) —~4—! P“gga‘"‘ 6 XSR(16)]
AT5.A0 16] | @096 x 16) 6 DRRI16)
. : DXR(16)
INSTRUCTION : 1 ; 6 TIMCE)
Y6 5 PRD(16)
\ 3 IMR(6)
6 (% AL GREG(8)
- =2
D15-D0 2 16 16 :
. ’ t i iii:1PROGRAM BUS::::

AROTIE) | sHIFTER(0-16) | TR(16) Mux
3 AR1(16)
AP 1o ARZIT0) 7188 MULTIPLIER | 16
— =R3ner DP(9) | |FROM IR
AR
3 4016))) PR(32)
AR5(16) V.
' AR6(16) ('
AR7(16) e :
r 6 l smrrsn(’e 0,1,4) |
b Y :
3 | ARAU(16) | M%] 16
V.‘.7(_ ,4 /’
16
Y | 1 16 y
MUX
MUX y ALU(32)
16 16 132
Y
DATA/PROG
BLOCK B2 RAM (256 x 16) | ¢ | accuiie | accie |
(32 x 16)
BLOCK BO Z
————— A 32
DATA RAM
BLOCK B1 16 y
1256 x 16)
I SHIFTERS(0-7) |
V
16 .18 e
16 4 y
N\

:3:DATA BUS:::

LEGEND:
ACCH = Accumulator high IFR = Interrupt flag register PC = Program counter
ACCL = Accumulator low IMR = Interrupt mask register PFC = Prefetch counter
ALU = Arithmetic logic unit R = Instruction register RPTC = Repeat instruction counter
ARAU = Auxiliary register arithmetic unit MCS = Microcall stack GREG = Global memory allocation register
ARB = Auxiliary register pointer buffer QIR = Queue instruction register RSR = Serial port receive shift register
ARP = Auxiliary register pointer PR = Product register XSR = Serial port transmit shift register
oP = Data memory page pointer PRD = Period register for timer ARO-AR7 = Auxiliary registers
DRR = Serial port data receive register TIM = Timer STO,ST1 = Status registers

DXR = Serial port data transmit register TR Temporary register

Figure 3-1. TMS320C25 Block Diagram

3-2

Device Operation

3.1

Internal Hardware Summary

The TMS320C25 internal hardware implements functions that other processors

typically perform in software or microcode.

For example, the device contains

hardware for single-cycle 16 x 16-bit multiplication, data shifting, and address
manipulation. This hardware-intensive approach provides computing power previ-
ously unavailable on a single chip.

Table 3-1 presents a summary of the TMS320C25 internal hardware. This summary
table, which includes the internal processing elements, registers, and buses, is
alphabetized within each functional grouping. All of the symbols used in this table
correspond to the symbols used in the block diagram of Figure 3-1, the succeeding
block diagrams in this section, and the text throughout this document.

Table 3-1.

Internal Hardware

UNIT

| symBoL |

FUNCTION

PROCESSING ELEMENTS

Arithmetic Logic Unit ALU A 32-bit two’s-complement arithmetic logic unit having two 32-bit input ports
) and one 32-bit output port feeding the accumulator.

Central Arithmetic Logic | CALU The grouping of the ALU, multiplier, accumulator, and scaling shifter.

Unit

Multiplier MULT A 16 x 16-bit parallel multiplier.

Period Register PRD (15-0) | A 16-bit memory-mapped register used to reload the timer.

Program Counter PC (15-0) A 16-bit program counter used to address program memory. The PC always
contains the address of the next instruction to be executed. The PC contents
are updated following each instruction decode operation.

Prefetch Counter PFC (15-0) A 16-bit counter used to prefetch program instructions. The PFC contains the
address of the instruction currently being prefetched. The PFC is updated
when a new prefetch is initiated. The PFC is also used to address data memory
when using the block move (BLKD and BLKP), multiply/accumulate (MAC
and MACD), and table read/write (TBLR and TBLW) instructions.

Random Access Memory | RAM (BO) A RAM block with 256 x 16 locations configured either as data or program

(data or program) memory.)

Random Access Memory | RAM (B1) A data RAM block, organized as 256 x 16 locations.

(data only)

Random Access Memory | RAM (B2) A data RAM block, organized as 32 x 16 locations.

(data only)

Aucxiliary Register ARAU A 16-bit unsigned arithmetic unit used to perform operations on auxiliary

Arithmetic Unit register data.

Repeat Counter RPTC (7-0) | An 8-bit counter to control the repeated execution of a single instruction.

Shifters SFL, SFR Shifters SFL (left) and SFR (right) are located at the ALU input, the accu-
mulator output, and the product register output. Also an in-place shifter within
the accumulator.

Timer TIM (15-0) A 16-bit memory-mapped timer (counter) for timing control.

Accumulator ACC (31-0) A 32-bit accumulator split in two halves: ACCH (accumulator high) and

ACCH(31-16)] ACCL (accumulator low). Used for storage of ALU output.
ACCL(15-0)
Auxiliary Register File ARO,AR1,AR2| A register file containing 8 16-bit auxiliary registers (AR0-AR7), used for
AR3,AR4,AR5| addressing data memory, for temporary storage, or for integer arithmetic
AR6,AR7 processing through the ARAU.
(15-0)
Auxiliary Register Pointer | ARP(2-0) A 3-bit register used to select one of the eight auxiliary registers.

3-3

Device Operation

Table 3-1. Internal Hardware (Continued)

UNIT | symsoL | FUNCTION
REGISTERS

Auxiliary Register Pointer | ARB(2-0) A 3-bit register used to buffer the ARP. Each time the ARP is loaded, the old

Buffer value is written to the ARB, except during an LST (load status register)
instruction. When the ARB is loaded with an LST1, the same value is also
copied into ARP.

Data Memory Page DP(8-0) A 9-bit register pointing to the address of the current page. Data pages are

Pointer : 128 words each, resulting in 512 pages of addressable data memory space
(some locations are reserved).

Global Memory GREG(7-0) | An 8-bit memory-mapped register for allocating the size of the global

Allocation Register memory space.

Instruction Register IR(15-0) A 16-bit register used to store the currently executing
instruction.

Queue Instruction QIR(15-0) A 16-bit register used to store prefetched instructions.

Register

Interrupt Flag Register IFR(5-0) A 6-bit flag register used to latch the active-low external user interrupts
TNT(2-0) and the internal interrupts XINT/RINT (serial port transmit/receive
interrupts) and TINT (timer interrupt). The IFR is not accessible through
software.

Interrupt Mask Register IMR(5-0) A 6-bit memory-mapped register used to mask interrupts.

Product Register PR(31-0) A 32-bit product register used to hold the muitiplier product. The PR

PH(31-16) can also be accessed as the most or least significant words using the SPH
PL(15-0) (store P register high) or SPL (store P register low) instructions.

Stack

Stack(15-0)

An 8 x 16 hardware stack used to store the PC during interrupts or calls. The
ACCL and data memory values may also be pushed onto and popped from the
stack.

MicroCall Stack MCS (15-0) | A single-word stack that temporarily stores the contents of the PFC while the
PFC is being used to address data memory with the block move (BLKD and
BLKP), multiply/accumulate (MAC and MACD), and table read/write (TBLR
and TBLW) instructions.

Serial Port Data DRR(15-0) A 16-bit memory-mapped serial port data receive register. Only the eight

Receive Register LSBs are used in the byte mode.

Serial Port Data DXR(15-0) A 16-bit memory-mapped serial port data transmit register. Only the eight

Transmit Register LSBs are used in the byte mode.

Serial Port Receive RSR(15-0) A 16-bit register used to shift in serial port data from the RX pin. RSR content

Shift Register are sent to the DRR after a serial transfer is completed. RSR is not directly
accessible through software.

Serial Port Transmit XSR(15-0) A 16-bit register used to shift out serial port data onto the DX pin. XSR contentd

Shift Register are loaded from DXR at the beginning of a serial port transmit operation. XSR
is not directly accessible through software.

Status Registers STO,ST1 Two 16-bit status registers that contain status and control bits.

(15-0)
Temporary Register TR(15-0) A 16-bit register that holds either an operand for the multiplier or a shift code

for the scaling shifter.

3-4

Device Operation

Table 3-1. Internal Hardware (Concluded)

Address Bus

UNIT | symsoL | FUNCTION
BUSES
Auxiliary Register File Bus] AFB(15-0) A 16-bit bus that carries data from the AR pointed to by the ARP.
Data Bus D(15-0) A 16-bit bus used to route data.
gata Memory Address DAB(15-0) A 16-bit bus that carries the data memory address.
us
Direct Data Memory DRB(15-0) A 16-bit bus that carries the 'direct’ address for the data memory, which is the

concatenation of the DP register with the seven LSBs of the instruction.

Program Bus

P(15-0) A 16-bit bus used to route instructions (and data for the MAC and MACD
instructions).

Bus

Program Memory Address| PAB(15-0) A 16-bit bus that carries the program memory address.

3.2 Memory Organization

The TMS320C25 provides a total of 544 16-bit words of on-chip data RAM and
4K words of maskable program ROM. Of the 544 words of on-chip data RAM, 288
are always data memory and the remaining 256 words may be configured as either
program or data memory. This section explains memory management using the
on-chip program ROM and data RAM, external memory, memory maps, memory-
mapped registers, auxiliary registers, data memory addressing, and memory-to-me-
mory moves.

3.2.1 On-Chip Program ROM

The 4K words of on-chip program ROM allow program execution at full speed
without the need for high-speed external program memory. The use of this memory
also allows the external data bus to be freed for access of external data memory. In
addition, there is the added benefit of increased security for the algorithms contained
in on-chip memory, which may be proprietary.

Mapping of the first 4K-word block of program memory is user-selectable by means
of the MP/MC (microprocessor/microcomputer) pin. Setting MP/MC high maps in
the block of off-chip memory while holding the pin low maps in the block of on-chip
ROM. The XF (external flag) pin can be used to toggle the MP/MC pin to dynamically
enable or disable the on-chip ROM. The MP/MC pin is in the location of a VCC pin
on the TMS32020. This allows substitution of a TMS320C25 for a TMS32020 since
the TMS320C25 automatically operates in the microprocessor mode and therefore
is directly compatible in the system. See Section 3.2.3 for the location of the on-chip
program ROM in the memory map configurations.

3-5

Device Operation

3.2.2 On-Chip Data RAM Blocks .

-+ 3-6

The 544 words of on-chip data RAM are divided into three separate blocks (BO, B1,
and B2), as shown in Figure 3-2. Of the 544 words, 256 words (block BO) are
configurable as either data or program memory by instructions provided for that
purpose; 288 words (blocks B1 and B2) are always data memory. A data memory
size of 544 words allows the TMS320C25 to handle a data array of 512 words (256
words if on-chip RAM is used for program memory), while still leaving 32 locations
for intermediate storage. See Section 3.2.3 for memory map configurations.

When using block BO as program memory, instructions can be downloaded from
external program memory using the RPTK (repeat instruction as specified by imme-
diate value) and BLKP (block move from program memory to data memory)
instructions.

FROM

PREFETCH
COUNTER
FROM
AUXILIARYOD;EGISTERS
DATA PAEEDPONTER
DIRECT MEMORY ADDRESS
v ‘r
116 416 /16
v v
MUX / \MUX
{*
116
BLOCK B2
(32 x 16) il
DATA RAM DATA/PROG
BLOCK B1 RAM (256 x 16)
(256 x 16) BLOCK BO

:DATA BUS (16}

Figure 3-2. On-Chip Data Memory

When using on-chip program RAM, ROM, or high-speed external program memory,
the TMS320C25 runs at full speed without wait states. However, the READY line
can be used to interface the TMS320C25 to slower, less-expensive external memory.
Downloading programs from slow off-chip memory to on-chip program RAM speeds
processing while cutting system costs. See Section 3.5 for a description of instruction
execution using various memory configurations.

Device Operation

3.2.3 Memory Maps

The TMS320C25 provides three separate address spaces for program memory, data
memory, and 1/0, as shown in Figure 3-3. These spaces are distinguished externally
by means of the PS, DS, and TS (program, data, and 1/O space select) signals. The
on-chip memory blocks BO, B1, and B2 are comprised of a total of 544 words of
RAM. Program/data RAM block BO (256 words) resides in pages 4 and 5 of the data
memory map when configured as data RAM and at addresses >FFQO0 to >FFFF when
configured as program RAM. Block B1 (always data RAM) resides in pages 6 and
7, while block B2 resides in the upper 32 words of page 0. Note that the remainder
of page 0 is composed of the memory-mapped registers and reserved locations, and
pages 1-3 of the data memory map consist of reserved locations. Reserved locations
may not be used for storage, and their contents are undefined when read. See Section
3.2.4 for further information on the memory-mapped registers.

The CNFD/CNFP instructions are used to configure block BO as either data or
program memory, respectively. The BLKP (block move from program memory to data
memory) instruction may be used to download program information to block BO
when it is configured as data RAM, and then a CNFP (configure block as program
memory) instruction may be used to convert it to program RAM (see the code
example in Section 5.4.2).

Reset configures block BO as data RAM. Note that, due to internal pipelining, when
the CNFD or CNFP instruction is used to remap RAM block BO, there is a delay before
the new configuration becomes effective. This delay is one fetch cycle if execution
is from internal program RAM and two fetch cycles if execution is from ROM or
external program memory. This is particularly important if program execution is from
the locations around 65280. Accordingly, a CNFP instruction must be placed at
location 65277 in external memory if execution is to continue from the first location
in block BO. :

If a CNFP is placed at location 65278, and the instruction at location 65279 is a
two-word instruction, the second word of the instruction will be fetched from the
first location in block BO. If execution is from above location 65280 and block BO
is reconfigured, care must be taken to assure that execution resumes at the appro-
priate point in a new configuration. See Section 3.4.1 for a detailed description of
pipeline operation.

On-chip program ROM is_located in the lower 4K words of program memory when
selected by setting MP/MC = 0. When MP/MC = 1, the lower 4K words of program
memory are external.

3-7

Device Operation

PROGRAM
0(>0000) { ,\reRRUPTS
AND RESERVED
(EXTERNAL)
31(>001F)
32(>0020)
EXTERNAL
65,535(> FFFF)
IF MP/MIC = 1

(MICROPROCESSOR MODE)

PROGRAM
0(>0000) | \yreRRUPTS
AND RESERVED
(EXTERNAL)
31(>001F) |:
32(>0020)
EXTERNAL
65,279(> FEFF)
65.280(> FF00) ON-CHIP
BLOCK BO
65,635(> FFFF)
IF MP/NC = 1

(MICROPROCESSOR MODE)

3-8

PROGRAM
0(>0000) | \\reRRUPTS
AND RESERVED
(ON-CHIP ROM)
31(>001F)
32(>0020) ON-CHIP
ROM
4015(>OFAF)
4016(>0FBO0)
RESERVED
4095(> OFFF)
4096(>1000)
EXTERNAL
65,635(> FFFF)
IF MP/MC = 0

0(>0000)

5(>0005)
6(>0006)

95(>005F)
96(>0060)

127(>007F)
. 128(>0080)

511(>01FF)
512(>0200)

767(>02FF)
768(>0300)

1023(>03FF)
1024(>0400)

65,535(> FFFF)

(MICROCOMPUTER MODE)

(a) MEMORY MAPS AFTER A CNFD INSTRUCTION

PROGRAM
0(>0000)| \\reRRUPTS
AND RESERVED
(ON-CHIP ROM)
31(>001F)
32(>0020) ON-CHIP
ROM
4015(>OFAF)
4016(>OFBO)
RESERVED
4095(>OFFF)
4096(>1000)
EXTERNAL
65,279(> FEFF)
65,280(>FF00) ON-CHIP
BLOCK BO
65,535(>FFFF)
IF MP/MC = 0

0(>0000)

5(>0005)
6(>0006)

95(>005F)
96(>0060)

127(>007F)
128(>0080)

511(>01FF)
512(>0200)

767(>02FF)
768(>0300)

1023(>03FF)
1024(>0400)

65,535(> FFFF)

(MICROCOMPUTER MODE)

(b) MEMORY MAPS AFTER A CNFP INSTRUCTION

Figure 3-3. Memory Maps

DATA

ON-CHIP

MEMORY-MAPPED

REGISTERS

RESERVED

ON-CHIP
BLOCK B2

RESERVED

ON-CHIP
BLOCK BO

ON-CHIP
BLOCK B1

EXTERNAL

DATA

ON-CHIP

MEMORY-MAPPED

REGISTERS

RESERVED

ON-CHIP
BLOCK B2

RESERVED

DOES NOT
EXIST

ON-CHIP
BLOCK B1

EXTERNAL

PAGE 0

PAGES 1-3

PAGES 4-5

PAGES 6-7

PAGES 8-511

PAGE 0

PAGES 1-3

PAGES 4-5

PAGES 6-7

PAGES 8-511

Device Operation

3.2.4 Memory-Mapped Registers

The six registers mapped into the data memory space are listed in Table 3-2 and are
shown in the block diagram of Figure 3-1.

The memory-mapped registers may be accessed in the same manner as any other
data memory location, with the exception that block moves using the BLKD (block
move from data memory to data memory) instruction cannot be performed from the
memory-mapped registers.

Table 3-2. Memory-Mapped Registers

REGISTER ADDRESS
NAME LOCATION DEFINITION

DRR(15-0) 0 Serial port data receive register
DXR(15-0) 1 Serial port data transmit register
TIM(15-0) 2 Timer register
PRD(15-0) 3 Period register
IMR (5-0) 4 Interrupt mask register
GREG(7-0) 5 Global memory allocation register

3.2.5 Auxiliary Registers

The TMS320C25 provides a regisier file containing eight auxiliary registers (ARO-
AR7). This section discusses each register’s function and how an auxiliary register
is selected and stored.

The auxiliary registers may be used for indirect addressing of data memory or for
temporary data storage. Indirect auxiliary register addressing (see Figure 3-4) allows
placement of the data memory address of an instruction operand into one of eight
auxiliary registers. These registers are pointed to by a three-bit Auxiliary Register
Pointer (ARP) that is loaded with a value from 0 through 7, designating ARO through
AR7, respectively. The auxiliary registers and the ARP may be loaded either from
data memory or by an immediate operand defined in the instruction. The contents
of these registers may also be stored in data memory. (Section 4 describes the
programming of the indirect addressing mode.)

3-9

Device Operation

AUXILIARY REGISTER FILE DATA
MEMORY
MAP
T
AROL>_0 0 3 T LOCATION
. >0000
>S5 1.5 0]
AUXILIARY el
REGISTER >03FF
NTER ARRGE 9 F CJ >0400
(IN STO) EXTERNAL
AR [OATT]—ARs CF F 3 A]—>» >FF3A| 38727
AR4[>T 0 3 B] >FFFF

ARs 326 B 1]

AR [> 0 0 0 8]

AT E T 3 D]

Figure 3-4. Indirect Auxiliary Register Addressing Example

The auxiliary register file (ARO-AR7) is connected to the Auxiliary Register Arithmetic
Unit (ARAU), shown in Figure 3-5. The ARAU may autoindex the current auxiliary
register while the data memory location is being addressed. Indexing by either +1
or by the contents of ARO may be performed. As a result, accessing tables of infor-
mation does not require the Central Arithmetic Logic Unit (CALU) for address
manipulation, thus freeing it for other operations.

Device Operation

[AUXILIARY REGISTER 7 (ART) (16)]
—- AUXILIARY REGISTER 6 (AR6) (16)
—-| AUXILIARY REGISTER & (ARS) (16)]
—>1 AUXILIARY REGIS 4 (AR4) (1
- AUXILIARY AUXILIARY
—1 AUXILIARY REGISTER 1 (AR1) (16 16 OF IR (ARP) (3) (ARB) (3)
I—>{ AUXILIARY REGISTER O (ARO) (16)
/\13 18 MUX 4 3

. A3
y
'IN}E olrr IN A

116 AUXILIARY REGISTER ARITHMETIC UNIT
(ARAU) (18)

_AUXILIARY REGISTER FILE BUS (AFB) ,/16 >

:DATA BUS

 PROGRAM BUS

Figure 3-5. Auxiliary Register File

As shown in Figure 3-5, auxiliary register 0 (ARO) or the eight LSBs of the instruction
registers can be connected to one of the inputs of the ARAU. The other input is fed
by the current AR (being pointed to by ARP). AR(ARP) refers to the contents of the
current AR pointed to by ARP. The ARAU performs the following functions:

AR(ARP) + ARO - AR(ARP) Index the current AR by adding a 16-bit integer
contained in ARO.

AR(ARP) - ARO - AR(ARP) Index the current AR by subtracting a 16-bit
integer contained in ARO.

AR(ARP) + 1 - AR(ARP) Increment the current AR by one.

AR(ARP) - 1 - AR(ARP) Decrement the current AR by one.

AR(ARP) - AR(ARP) AR(ARP) is unchanged.

AR(ARP) + IR(7-0) » AR(ARP) Add 8-bit immediate value to the current
AR.

AR(ARP) - IR(7-0) » AR(ARP) Subtract 8-bit immediate value to the
current AR.

AR(ARP) + rcARO - AR(ARP) Bit-reversed indexing with reverse-carry
propagation (see Section 4.1.2).

AR(ARP) - rcARO — AR(ARP) Bit-reversed indexing with reverse-carry
propagation (see Section 4.1.2).

Although the ARAU is useful for address manipulation in parallel with other oper-
ations, it may also serve as an additional general-purpose arithmetic unit since the
auxiliary register file can directly communicate with data memory. The ARAU
implements 16-bit unsigned arithmetic, whereas the CALU implements 32-bit
two’s-complement arithmetic. Instructions provide branches dependent on the
comparison of the auxiliary register pointed to by ARP with ARO.

Figure 3-5 also shows the three-bit Auxiliary Register pointer Buffer (ARB) that
provides storage for the ARP on subroutine calls and interrupts.

Device Operation

3.2.6 Addressing Modes

3-12

The TMS320C25 can address a total of 64K words of program memory and 64K
words of data memory. The on-chip data memory is mapped into the 64K data
memory space. The memory maps, which change with the configuration of block
BO, are described in detail in Section 3.2.4.

The 16-bit Data Address Bus (DAB) addresses data memory in one of the following
two ways:

1) By the DiRect address Bus (DRB) using the direct addressing mode (e.g., ADD
>10), or

2) By the Auxiliary register File Bus (AFB) using the indirect addressing mode
(e.g., ADD *).

Operands are also addressed by the contents of the program counter in the immediate
addressing mode.

Figure 3-6 illustrates operand addressing in the direct, indirect, and immediate
addressing modes.

INSTRUCTION
DIRECT ADDRESSING [OPCODE | dma | DP
9

INDIRECT ADDRESSING IOPCOCE 7

OPERAND

INSTRUCTION
IMMEDIATE OPERAND | OPCODE JOPERAND] PC INSTRUCTION
OR
PC+ OPERAND

Figure 3-6. Methods of Instruction Operand Addressing

If the direct addressing mode is used, the 9-bit Data memory page Pointer (DP)
points to one of 512 128-word pages. The data memory address (dma), specified
by the seven LSBs of the instruction, points to the desired word within the page.
The address on the direct address bus (DRB) is formed by concatenating the 9-bit
DP with the 7-bit dma.

When using the indirect addressing mode, the currently selected 16-bit auxiliary
register AR(ARP) addresses the data memory through the auxiliary register file bus
(AFB). While the selected auxiliary register provides the data memory address and
the data is being manipulated by the Central Arithmetic Logic Unit (CALU), the
contents of the auxiliary register may be manipulated through the Auxiliary Register
Arithmetic Unit (ARAU). See Figure 3-4 for an example of indirect auxiliary register
addressing. The direct and indirect addressing modes are described in detail in
Section 4.1.

When an immediate operand is used, it is either contained within the instruction word
itself or, in the case of 16-bit immediate operands, the word following the instruction
opcode.

Device Operation

3.2.7 Memory-to-Memory Moves

The TMS320C25 provides instructions for data and program block moves and for
data move functions that efficiently utilize the configurable on-chip RAM.

The BLKD instruction moves a block within data memory, and the BLKP instruction
moves a block from program memory to data memory. When used with the repeat
instructions (RPT and RPTK), the BLKD and BLKP instructions efficiently perform
block moves from on- or off-chip memory.

The DMOV (data move) function is useful for implementing algorithms that use the
z-1 delay operation, such as convolutions and digital filtering where data is being
passed through a time window. The data move function can be used anywhere
within blocks BO, B1, or B2. It is continuous across the boundary of blocks BO and
B1 but cannot be used with off-chip data memory.

Implemented in on-chip RAM, the DMOV function is equivalent to that of the
TMS32010 and TMS32020. DMOV allows a word to be copied from the currently
addressed data memory location in on-chip RAM to the next higher location while
the data from the addressed location is being operated upon in the same cycle (e.g.,
by the CALU). An ARAU operation may also be performed in the same cycle when
using the indirect addressing mode. The MACD (multiply and accumulate with data
move) and the LTD (load T register, accumulate previous product, and move data)
instructions use the data move function.

3.3 Central Arithmetic Logic Unit (CALU)

The TMS320C25 Central Arithmetic Logic Unit (CALU) contains a 16-bit scaling
shifter, a 16 x 16-bit parallel multiplier, a 32-bit Arithmetic Logic Unit (ALU), a 32-bit
accumulator (ACC), and additional shifters at the outputs of both the accumulator
and the multiplier. This section describes the CALU components and their functions.
Figure 3-7 is a block diagram showing the components of the CALU.

The following steps occur in the implementation of a typical ALU instruction:
1) Data is fetched from the RAM on the data bus,

2) Data is passed through the scaling shifter and the ALU where the arithmetic is
performed, and

3) The result is moved into the accumulator.

One input to the ALU is always provided from the accumulator, and the other input
may be fed from the Product Register (PR) of the multiplier or the scaling shifter that
is loaded from data memory.

3-13

Device Operation

PROGRAM BUS

SCALING
SHIFTER

SFL(0-16)

Figure 3-7. Central Arithmetic Logic Unit (CALU)

3.3.1 Scaling Shifter

The TMS320C25 scaling shifter has a 16-bit input connected to the data bus and a
32-bit output connected to the ALU (see Figure 3-7). The scaling shifter produces
a left shift of O to 16 bits on the input data, as programmed in the instruction. The
LSBs of the output are filled with zeros, and the MSBs may be either filled with zeros
or sign-extended, depending upon the status programmed into the SXM (sign-ex-
tension mode) bit of status register STO.

The TMS320C25 also contains several other shifters, which allow it to perform
numerical scaling, bit extraction, extended arithmetic, and overflow prevention. These
shifters are connected to the output of the multiplier and the accumulator.

Device Operation

3.3.2 ALU and Accumulator

The TMS320C25 32-bit ALU and accumulator implement a wide range of arithmetic
and logical functions, the majority of which execute in a single clock cycle. Once
an operation is performed in the ALU, the result is transferred to the accumulator
where additional operations such as shifting may occur. Data that is input to the
ALU may be scaled by the scaling shifter.

The 32-bit accumulator (see Figure 3-7) is split into two 16-bit segments for storage
in data memory: ACCH (accumulator high) and ACCL (accumulator low). Shifters
at the output of the accumulator provide a left-shift of O to 7 places. This shift is
performed while the data is being transferred to the data bus for storage. The contents
of the accumulator remain unchanged. When the ACCH data is shifted left, the LSBs
are transferred from the ACCL, and the MSBs are lost. When ACCL is shifted left,
the LSBs are zero-filled, and the MSBs are lost.

The accumulator also has an associated carry bit that is set or reset depending on
various operations within the TMS320C25. The carry bit allows more efficient
computation of extended-precision products and additions or subtractions. It is
affected by most arithmetic instructions as well as the shift and rotate instructions.
It is not affected by loading the accumulator, logical operations, or other such
nonarithmetic or control instructions. It is also not affected by the multiply (MPY,
MPYK, and MPYU) instructions, but is affected by the accumulation process in the
MAC and MACD instructions. Examples of carry bit operation are shown in Figure

3-8.
C MsB LsB C MsB LsB
X FFFF FFFl;-'ACC X 0000 OOO?ACC
+ -
1 0000 0000 0 FFFF FFFF
X 7TFFF FFFF ACC X 8000 0000 ACC
+ 1 (OVM=0) - 1 (OVM=0)
0O 8000 0000 1 TFFF FFFF
1 0000 0000 ACC 0 FFFF FFFF ACC
+ 0 (ADDC - 0 (sueB
O 0000 00O 1 INSTRUCTION) 1 FFFF FFFE INSTRUCTION)

Figure 3-8. Examples of Carry Bit Operation

The value added to or subtracted from the accumulator, shown in the examples of
Figure 3-8, may come from either the input scaling shifter or the shifter at the output
of the P register. The carry bit is set if the result of an addition or accumulation process
generates a carry, or reset to zero if the result of a subtraction generates a borrow.
Otherwise, it is reset after an addition or set after a subtraction.

The ADDC (add to accumulator with carry) and SUBB (subtract from accumulator
with borrow) instructions use the previous value of carry in their addition/subtraction
operation (see these instructions in Section 4 for more detailed information).

The one exception to operation of the carry bit, as shown in Figure 3-8, is in the use
of the ADDH (add to high accumulator) and SUBH (subtract from high accumulator)
instructions. The ADDH instruction can only set the carry bit if a carry is generated,
and the SUBH instruction can only reset the carry bit if a borrow is generated;
otherwise, neither instruction can affect it.

Device Operation

Two branch instructions, BC and BNC, have been provided for branching on the
status of the carry bit. The SC, RC, and LST1 instructions can also be used to load
the carry bit. The carry bit is set to one on a hardware reset.

The SFL and SFR (in-place one-bit shift to the left or right) and ROL and ROR (rotate
to the left or right) instructions implement shifting or rotating of the contents of the
accumulator through the carry bit. The SXM bit affects the definition of the SFR (shift
accumulator right) instruction. When SXM = 1, SFR performs an arithmetic right
shift, maintaining the sign of the accumulator data. When SXM = 0, SFR performs
a logical shift, shifting out the LSB and shifting in a zero for the MSB. The SFL (shift
accumulator left) instruction is not affected by the SXM bit and behaves the same
in both cases, shifting out the MSB and shifting in a zero. Repeat (RPT or RPTK)
instructions may be used with the shift and rotate instructions for multiple shift
counts.

The TMS320C25 supports floating-point operations for applications requiring a large
dynamic range. The NORM (normalization) instruction is used to normalize fixed-
point numbers contained in the accumulator by performing left shifts. The LACT
(load accumulator with shift specified by the T register) instruction denormalizes a
floating-point number by arithmetically left-shifting the mantissa through the input
scaling shifter. The shift count, in this case, is the value of the exponent specified
by the four low-order bits of the T register (TR). ADDT and SUBT (add to/subtract
from accumulator with shift specified by T register) instructions have also been
provided to allow additional arithmetic operations. Floating-point numbers with
16-bit mantissas and 4-bit exponents can thus be manipulated.

The accumulator overflow saturation mode may be programmed through the SOVM
and ROVM (set/reset overflow mode) instructions. When the accumulator is in the
overflow saturation mode and an overflow occurs, the overflow flag is set and the
accumulator is loaded with the most positive or negative number depending upon
the direction of overflow.

The TMS320C25 also has the capacity of executing branch instructions that depend
on the status of the ALU and accumulator. These instructions include the BC (branch
on carry), BV (branch on overflow), and BZ (branch on accumulator equal to zero)
instructions. (Refer to Section 4 for a complete list of TMS320C25 instructions.) In
addition, the BACC (branch to address in accumulator) instruction provides the
ability to branch to an address specified by the accumulator.

3.3.3 Multiplier, T and P Registers

The TMS320C25 utilizes a 16 x 16-bit hardware multiplier, which is capable of
computing a 32-bit product in a single machine cycle. As shown in Figure 3-7, the
following two registers are associated with the multiplier:

® A 16-bit Temporary Register (TR) that holds one of the operands for the
multiplier, and

® A 32-bit Product Register (PR) that holds the product.

Normally, an LT (load T register) instruction loads the TR to provide one operand
(from the data bus), and the MPY (multiply) instruction provides the second operand
(also from the data bus). Alternatively, a multiplication can be performed with an
immediate operand using the MPYK instruction. In either case, a product can be
obtained every two cycles.

Two multiply/accumulate instructions (MAC and MACD) fully utilize the computa-
tional bandwidth of the multiplier, allowing both operands to be processed simul-
taneously. For MAC and MACD, two operands are transferred to the multiplier each

Device Operation

cycle via the program and data buses. This provides for single-cycle
multiply/accumulates when used with repeat (RPT or RPTK) instructions. The MAC
and MACD instructions can be used with operands in either internal or external
memary. The SQRA (square/add) and SQRS (square/subtract) instructions pass the
same value to both inputs of the multiplier for squaring a data memory value.

All multiply instructions, except the MPYU (multiply unsigned) instruction, perform
a signed multiply operation in the multiplier. That is, the two numbers being multi-
plied are treated as two’s-complement numbers, and the result is a 32-bit two's-
complement number. The MPYU instruction performs an unsigned multiplication,
which greatly facilitates muitiple-precision arithmetic operations. This allows oper-
ands of greater than 16 bits to be broken down into 16-bit words and processed
separately to generate products of greater than 32 bits.

After the multiplication of two 16-bit-numbers, the 32-bit product is loaded into the
32-bit Product Register (PR). The product from the PR may be transferred to the
ALU directly or optionally shifted before it is transferred to the ALU.

Four product shift modes (PM) are available. The PM field of status register ST1
specifies the PM shift mode, as shown in Table 3-3.

Table 3-3. PM Shift Modes

IF PMIS: RESULT
00 No shift-
01 Left shift of 1 bit
10 Left shift of 4 bits
11 Right shift of 6 bits

Left shifts specified by the PM value are useful for implementing fractional arithmetic
or justifying fractional products. For example, the product of either two normalized,
16-bit, two’s-complement numbers or two Q15 numbers contains two sign bits, one
of which is redundant (see Section 5.6.6 for an explanation of Q15 representation).
The single-bit left shift allows this extra sign bit to be shifted off of the product when
it is passed to the accumulator. This results in the accumulator contents being
formatted in the same manner as the multiplicands. Similarly, the product of either
a normalized, 16-bit, two’'s-complement or Q15 number and a 13-bit, two’s-
complement constant contains five sign bits, four of which are redundant. This is
the case, for example, when using the MPYK instruction. Here the four-bit shift
properly aligns the result as it is transferred to the accumulator.

Use of the right-shift PM value allows the execution of up to 128 consecutive
multiply/accumulate operations without the threat of an arithmetic overflow, thereby
avoiding the overhead of overflow management. The shifter can be disabled to cause
no shift in the product when working with integer or 32-bit precision operations.
This allows compatibility with TMS32010 code to be maintained. Note that the PM
right shift is always sign-extended regardless of the state of SXM.

The four least significant bits of the T register (TR) also define a variable shift through
the scaling shifter for the LACT/ADDT/SUBT (load/add-to/subtract-from accu-
mulator with shift specified by the TR) instructions. These instructions are useful in
floating-point arithmetic where a number needs to be denormalized, i.e., floating-
point to fixed-point conversion. The BITT (bit test) instruction allows testing of a
single bit of a word in data memory based on the value contained in the four LSBs
of the TR.

Device Operation

3.4 System Control

System control on the TMS320C25 is provided by the program counter and related
hardware, the external reset signal, the status registers, the on-chip timer, and the
repeat counter. The following sections describe the function of each of these
components in system control.

3.4.1 Program Counter and Related Hardware

The description of the TMS320C25 Program Counter (PC) and its related hardware
contained in this section provides information useful in understanding the sequence
of external bus operations that occurs during instruction execution. It should be
noted, however, that in virtually all cases, operation of this hardware and its effects
on operation of the internal pipeline are transparent to the user and are included in
the instruction cycle timings provided in Appendix E.

The PC and related hardware (see Figure 3-9) direct program execution on the
TMS320C25. Included in the related hardware are the eight-level PC stack, the
Prefetch Counter (PFC), the 16-bit MicroCall Stack (MCS) register, the Instruction
Register (IR), and the Queue Instruction Register (QIR). The operation of these
components and their function in instruction pipelining is now described in detail.

(]

TO PROGRAM _ L
ADDRESS BUS {16
] 16
A18 116

Figure 3-9. Program Counter and Related Hardware

In order to speed instruction execution, the TMS320C25 utilizes a three-level internal
pipeline, which divides an instruction cycle into three operations: prefetch, decode,
and execution. The PFC contains the address of the next instruction to be prefetched.
Once an instruction is prefetched, the instruction is loaded into the IR, unless the IR
still contains an instruction currently executing, in which case the prefetched
instruction is stored in the QIR. The PFC is then incremented, and after the current
instruction has completed execution, the instruction in the QIR is loaded into the IR
to be executed.

Device Operation

The PC contains the address of the next instruction to be executed, and is not used
directly in instruction fetch operations, but merely serves as a reference pointer to the
current position within the program. The PC is incremented as each instruction is
executed. When interrupts or subroutine call instructions occur, the contents of the
PC are pushed onto the stack to preserve return linkage to the previous program
context.

In the operation of the pipeline, the prefetch, decode, and execute operations are
independent, which allows instruction executions to overlap. Thus, during any given
cycle, three different instructions can be active, each at a different stage of
completion, resulting in the three-instruction pipeline. Figure 3-10 shows the
operation of the three-level pipeline for single-word, single-cycle instructions
executing from either internal program ROM or external memory with no wait states.

CLKOUT1
prefetch * N e N+1 »e N+2 be
decode P N-1 > N >e N+1 »e
: N-2 L, N1 N o

execute ¢

Figure 3-10. Three-Level Pipeline Operation

Pipelining is reduced to two levels when execution is from internal program RAM
due to the fact that an instruction in internal RAM can be fetched and decoded in
the same cycle. Thus, separate prefetch and decode operations are not required, as
shown in Figure 3-11.

CLKOUT1
prefetch —N e NH e N2
decode “ N pe—N# L Ne2 .
execute . N-1 e N e N+1 >

Figure 3-11. Two-Level Pipeline Operation

Note that the difference in pipeline levels does not necessarily affect instruction
execution speed, but merely changes the fetch/decode sequence. Most instructions
execute in the same number of cycles regardiess of whether they are executed from
internal RAM, ROM, or external program memory. Also note that the effects of
pipelining are included in the instruction cycle timings listed in Appendix E.

When branches, subroutine calls, or interrupts occur, the pipeline flow shown in
Figure 3-12 and Figure 3-13 is disrupted because the pipeline prefetches sequen-
tially, and cannot in general detect that a transfer of control will occur until an
instruction reaches execution. This is especially true with conditional branches.

3-19

Device Operation

During branch or call instructions, both the PC and PFC are loaded with the desti-
nation address, and the pipeline must be refilled. This causes these instructions to
require at least three cycles to execute when the destination address is located
externally or in internal program ROM. When the destination address is located in
internal program RAM, branch instructions generally execute in two cycles, due to
the two-level pipeline for internal RAM. In either case, some instructions that have
been prefetched may be discarded. as control passes to the branch destination
address. Operation of the pipeline during interrupts is similar and is described in
Section 3.6.2. :

Operation of the pipeline during execution of a conditional branch instruction such
as a BANZ (branch on auxiliary register not zero), located in external program
memory with no wait states, is shown in Figure 3-12. The diagram shows the
seqguence that occurs when the branch is taken, and the destination address is also
in external memory. When the branch is not taken, instruction execution continues
sequentially, and the branch instruction requires only two cycles to execute. Oper-
ation of unconditional branches is identical to that of conditional branches with the
exception that in conditional branches, the N+2 instruction is not fetched, although
the address bus is still driven with N+2.

CLKOUT1 | I

AB-AD —N g N#1

prefetch -
decode

execute :

3-20

N1 : N+2 i DEST .. DEST+1 ., DEST+2 .
: N+2 : DEST o, DEST+1 o, DEST+2
: ' DEST +1

Figure 3-12. Pipeline Operation During BANZ Instruction

There is one additional condition under which the pipeline becomes disrupted. This
is when execution of single-cycle instructions changes from internal RAM to external
program memory or internal ROM. This occurs in only the following two cases:

1) When execution of single-cycle instructions wraps around from >FFFF in block
BO (when configured as program memory) to location >0000.

2) When execution of single-cycle instructions is from block BO (configured as
program memory) and a CNFD instruction is executed, converting block BO to
data memory.

Under these conditions, one dummy execute cycle occurs as the pipeline is refilled.
This situation is depicted in Figure 3-13. Note that this condition occurs only under
the above circumstances, and its effects are not included in the instruction cycle
timings given in Appendix E.

Device Operation

CLKOUTY

prefetch

decode

execute

4§
z
N

N o N+1

Legend: Pl = Program Internal

PE = Program External
PR = Program ROM

Figure 3-13. Pipeline Operation When Crossing Program Boundaries

3.4.2 Reset

The contents of the accumulator may be loaded into the PC and PFC in order to
implement “computed go to” operations. This can be accomplished using the BACC
(branch to address in accumulator) or CALA (call subroutine indirect) instructions.

The PC stack is accessible through the use of the PUSH and POP instructions.
Whenever the contents of the PC are pushed onto the top of the stack, the previous
contents of each level are pushed down, and the eighth location of the stack is lost.
Therefore, data will be lost if more than eight successive pushes occur before a pop.
The reverse happens on pop operations. Any pop after seven sequential pops yields
the value at the eighth stack level. All eight stack levels then contain the same value.
Two additional instructions, PSHD and POPD, push a data memory value onto the
stack or pop a value from the stack to data memory. These instructions allow a stack
to be built in data memory for the nesting of subroutines/interrupts beyond eight
levels.

The 16-bit MicroCall Stack (MCS) register is used expressly for temporary storage
of the PFC contents during execution of the TBLR/TBLW, MAC/MACD, and
BLKD/BLKP instructions. In these instructions, two operand addresses are required:
one provided through either direct or indirect addressing, and the other loaded into
the PFC. When execution of the instruction is completed, the contents of the MCS
are transferred back to the PFC.

Reset (RS) is a non-maskable external interrupt that can be used at any time to put
the TMS320C25 into a known state. Reset is typically applied after powerup when
the machine is in a random state.

Driving the RS signal low causes the TMS320C25 to terminate execution and forces
the program counter to zero. RS affects various registers and status bits. At powerup,
the state of the processor is undefined. For correct system operation after powerup,
a reset signal must be asserted low for at least three clock cycles to guarantee a reset
of the device. Processor execution begins at location 0, which normally contains a
B (branch) statement to direct program execution to the system initialization routine
(see Section 5.1 for an initialization routine example).

Upon receiving an RS signal, the following actions take place:

3-21

Device Operation

1) A logic 0 is loaded into the CNF (configuration control) bit in status register
ST1, causing all RAM to be configured as data memory.

2) . The Program Counter (PC) is set to O, and the address bus A15-A0 is driven
with all zeroes while RS is low.

3) The data bus D15-DO0 is placed in the high-impedance state.

4) All memory and |/0 space control signals (PS, DS, IS, R/W, STRB, and BR) are
de-asserted by setting them to high levels while RS is low.

5) All interrupts are_disabled by setting the INTM (interrupt mode) bit to a high
level. (Note that RS is non-maskable). The interrupt flag register (IFR) is reset
to all zeroes.

6) Status bits:
0-0V;1-=XF,1>SXM;0~>PM;1>HM; 0~ F0O;1~>C
1 = FSM (Remaining status bits are unchanged).

7) The global memory allocation register (GREG) is cleared to make all memory
local.

8) The RPTC (repeat counter) is cleared.

9) The DX (data transmit) pin is placed in the high-impedance state. Any
transmit/receive operations on the serial port are terminated, and the TXM
(transmit mode) bit is reset to a low level. This configures the FSX framing pulse
to be an input.. A transmit/receive operation may be started by framing pulses
only after the removal of RS.

10) The timer (TIM) and period (PRD) registers are both set to >FFFF and TIM
does not begin decrementing until RS is de-asserted.

11) The TACK (interrupt acknowledge) signal is generated in the same manner as a
maskable interrupt.

Execution starts from location 0 of program memory when the RS signal is taken high.
Note that if RS is asserted while in the hold mode, normal reset operation occurs
internally, but all buses and control lines remain in the high-impedance state. Upon
release of HOLD and RS, execution starts from location zero.

Note that the ARB, ARP, DP, IMR, OVM, and TC bits are not initialized by reset.

3.4.3 Status Registers

3-22

Two status registers, STO and ST1, contain the status of various conditions and
modes. The SST and SST1 instructions provide for storing the status registers into
data memory. The LST and LST1 instructions load the status registers from data
memory. In this manner, the current status of the device may be saved on interrupts
and subroutine calls.

Figure 3-14 shows the organization of both status registers, indicating all status bits
contained in each. Note that the DP, ARP, and ARB registers are shown as separate
registers in the processor block diagram of Figure 3-1. Because these registers do
not have separate instructions for storing them into RAM, they are included in the
status registers.

Device Operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STO| ARP [ov Jovm]| 1 [iNTM| DP |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ST1| ARB [cne| Tc |sxm| ¢ [1 1 |Hm|Fsm| xF [Fo [Txm] Pm |

Figure 3-14. Status Register Organization

The capability of storing the status registers into data memory and loading them from
data memory allows the status of the machine to be saved and restored for interrupts
and subroutines. All status bits are written to and read from using LST/LST1 and
SST/SST1 instructions, respectively (with the exception of INTM, which cannot be
loaded via an LST instruction). However, some additional instructions or functions
may affect those bits, as indicated in Table 3-4.

As shown in Figure 3-14, several bits in the status registers are reserved and are read

as logic ‘1's by the LST and LST1 instructions.

Table 3-4. Status Register Field Definitions

FIELD

FUNCTION

ARB

Auxiliary Register Pointer Buffer. Whenever the ARP is loaded, the old ARP value is copied to the ARB
except during an LST instruction. When the ARB is loaded via an LST1 instruction, the same value is also
copied to the ARP.

ARP

Auxiliary Register Pointer. This three-bit field selects the AR to be used in indirect addressing. When ARP
is loaded, the old ARP value is copied to the ARB register. ARP may be modified by memory-reference
instructions when using indirect addressing, and by the LARP, MAR, and LST instructions. ARP is also
loaded with the same value as ARB when an LST1 instruction is executed.

Carry bit. This bit is set to ‘1’ if the result of an addition generates a carry, or reset to ‘0’ if the result of a
subtraction generates a borrow. Otherwise, it is reset after an addition or set after a subtraction, except if
the instruction is an ADDH or a SUBH. ADDH can only set and SUBH only reset the carry bit, but cannot
affect it otherwise. The shift and rotate instructions also affect this bit, as well as the SC, RC, and LST1
instructions. Two branch instructions, BC and BNC, have been provided to branch on the status of C. C
is set to ‘1’ on a reset. The carry bit is useful in implementing multiple-precision arithmetic and in overflow
management.

CNF

On-Chip RAM Configuration Control bit. If set to ‘0", block B0 is configured as data memory; otherwise,
block BO is configured as program memory. The CNF may be modified by the CNFD, CNFP, and LST1
instructions. RS resets the CNF to ‘0",

DP

Data Memory Page Pointer. The 9-bit DP register is concatenated with the 7 LSBs of an instruction word
to form a direct memory address of 16 bits. DP may be modified by the LST, LDP, and LDPK instructions.

FO

Format bit. A ‘0’ configures the serial port registers as 16-bit registers. A ‘1’ configures the port registers to
receive and transmit eight-bit bytes. FO may be modified by the FORT and LST1 instructions. FO is reset
to ‘0.

3-23

Device Operation

Table 3-4. Status Register Field Definitions (Concluded)

FIELD

FUNCTION

FSM

Frame Synchronization Mode bit. This bit indicates whether the serial port will operate with or without frame
sync pulses. When FSM = 1, the serial port operation will be initiated following a frame sync pulse on the
FSX/FSR inputs. When FSM = 0, the FSX/FSR inputs are ignored and the serial port operates continuously
with no frame sync pulses required. The bit is set to one by a reset.

HM

Hold Mode bit. When HM = 1, the TMS320C25 halts internal execution when acknowledging an active
HOLD. -When HM = 0, the processor may continue execution out of internal program memory but puts its
external interface in a high-impedance state. This bit is set to one by a reset.

INTM

Interrupt Mode. A ‘0" enables all unmasked interrupts. A "1’ disables all maskable interrupts. INTM is set and
reset by the DINT and EINT instructions. RS and IACK also set INTM. INTM has no effect on the unmaskable
RS interrupt. Note that INTM is unaffected by the LST instruction.

oV

Overflow Flag. As a latched overflow signal, OV is set to ‘1’ when overflow occurs in the ALU. Once an
overflow occurs, the OV remains set until a reset, BV, BNV, or LST instruction clears the OV.

ovMm

Overflow Mode. A ‘0’ causes overflowed results to overflow normally in the accumulator. A "1’ causes the
accumulator to be set to either its most positive or negative value upon encountering an overflow. The SOVM
and ROVM instructions set and reset this bit. LST may also be used to modify the OVM.

PM

Product Shift Mode. If these two bits are 00, the multiplier's 32-bit product is loaded into the ALU with
no shift. If PM = 01, the PR output is left-shifted one place and loaded into the ALU, with the LSBs
zero-filled. If PM = 10, the PR output is left-shifted by four bits and loaded into the ALU, with the LSBs
zero-filled. PM = 11 produces a right shift of six bits, sign-extended. Note that the PR contents remain
unchanged. The shift takes place when transferring the contents of the PR to the ALU. PM is loaded with
the SPM and LST1 instructions. The PM bits are cleared by RS.

SXM

Sign-Extension Mode bit. A ’1’ produces sign extension on data as it is passed into the accumulator through
the scaling shifter. A ‘0’ suppresses sign extension. Note that SXM does not affect the definition of certain
instructions. For example, the ADDS instruction suppresses sign extension regardless of SXM. This bit is
set and reset by the SSXM and RSXM instructions and may also be loaded by LST1. SXM is set to "1” by
RS.

TC

Test/Control Flag bit. The TC bit is affected by the BIT, BITT, CMPR, LST1, and NORM instructions. The
TC bitis setto a ‘1’ if: (1) a bit tested by BIT or BITT is a '1’, (2) a compare condition tested by CMPR exists
between ARO and another AR pointed to by ARP, or (3) the exclusive-OR function of the two MSBs of the
accumulator is true when tested by a NORM instruction. Two branch instructions, BBZ and BBNZ, provide
branching on the status of the TC.

XM

Transmit Mode bit. A1’ configures the serial port’s FSX pin to be an output. In this mode, a pulse is produced
on FSX when DXR is loaded. Transmission then starts on the DX pin. A ‘0’ configures the FSX pin to be
an input. TXM is set and reset by the STXM and RTXM instructions and may also be loaded by LST1. RS
resets TXM to a '0’.

XF

XF pin status. A status bit indicating the state of the XF pin, a general-purpose output pin. XF is set and reset
by the SXF and RXF instructions or may be loaded by LST1. XF is set to ‘1" by RS.

3.4.4 Timer Operation

3-24

The TMS320C25 provides a memory-mapped timer (TIM) register and a period
(PRD) register. The timer register is a down counter continuously clocked by
CLKOUT1. Reset sets the timer and period registers (see Figure 3-15) to their
maximum value (>FFFF). Upon release of reset, the timer begins decrementing.
Following this, the TIM and PRD registers may be reloaded under program control.
See Section 3.4.2 for reset information.

Device Operation

CR’S%TAL DIVIDE (CLOCK) | oer ey Te—L0AD) | ZERO
EXTERNAL FOUR DETECT
cLoCK -
Y16 TINT
CLKOUT1

Figure 3-15. Timer Block Diagram

The TIM register, data memory location 2, holds the current count of the timer. At
every CLKOUT1 cycle, the TIM register is decremented by one. The PRD register,
data memory location 3, holds the starting count for the timer. When the TIM
register decrements to zero, a TINT (timer interrupt) is generated. In the next cycle,
the contents of the PRD register are loaded into the TIM register. In this way, a
TINT is generated every PRD + 1 cycles of CLKOUT1. By programming the PRD
register from 1 to 65,635 (>FFFF), a TINT can be generated every 2 to 65,536
cycles, respectively. A PRD register value of zero is not allowed.

The timer and period registers can be read from or written to on any cycle. The count
can be monitored by reading the TIM register. A new counter period can be written
to the period register without disturbing the current timer count. The timer will then
start the new period after the current count is complete. If both the PRD and TIM
registers are loaded with a new period, the timer begins decrementing the new
period without generating an interrupt. Thus, the programmer has complete control
of the current and next periods of the timer.

If the timer is not used, TINT should be masked or all maskable interrupts disabled
by a DINT instruction. The PRD register can then be used as a general-purpose
data memory location. If TINT is used, the PRD and TIM registers should be
programmed before unmasking the TINT.

3-25

Device Operation

3.4.5 Repeat Counter

The repeat counter (RPTC) is an 8-bit counter, which when loaded with a number
N, causes the next single instruction to be executed N + 1 times. The RPTC can
be loaded with a number from 0 to 255 using either the RPT (repeat) or RPTK
(repeat immediate) instructions. This results in a maximum of 256 executions of a
given instruction. RPTC is cleared by reset.

The repeat feature can be used with instructions such as multiply/accumulates
(MAC/MACD), block moves (BLKD/BLKP), I/O transfers (IN/JOUT), -and table
read/writes (TBLR/TBLW). These instructions, which are normally multicycle, are
pipelined when using the repeat feature, and effectively become single-cycle
instructions. For example, the table read instruction may take three or more cycles
to execute, but when repeated, a table location can be read every cycle. Note that
not all instructions can be repeated (see Section 4.3 and Appendix E for more
information).

3.4.6 Powerdown Mode

When operated in the powerdown mode, the TMS320C25 enters a dormant state
and requires only a fraction of the power normally needed to supply the device.
Powerdown mode is invoked either by executing an IDLE instruction or by driving
the HOLD input low with the HM status bit set to one.

While in powerdown mode, all of the internal contents of the processor are main-
tained to allow operation to continue unaltered when powerdown mode is termi-
nated. Powerdown mode is terminated upon receipt of an interrupt when an IDLE
instruction is being executed or by removal of the HOLD input. (Refer to the IDLE
instruction description in Section 4 and the hold function description in Section
3.8.3 for further information.) Actual power supply current requirements in
powerdown mode are specified in the TMS320C25 Data Sheet (Appendix A).

3.5 External Memory and 1/0 Interface

3-26

Data, program, and |/0 address spaces provide interfacing to memory and 1/0, thus
maximizing system throughput. The local memory interface consists of:

® A 16-bit parallel data bus (D15-D0),

® A 16-bit address bus (A15-A0),

@ Data, program, and 1/0 space select (DS, PS, and IS) signals, and
® Various system control signals.

The R/W (read/write) signal controls the direction of the transfer, and STRB
(strobe) provides a timing signal to control the transfer.

1/0 design is simplified by having /O treated the same way as memory. 1/0 devices
are mapped into the 1/O address space using the processor’s external address and
data buses in the same manner as memory-mapped devices.

Interfacing to memory and /O devices of varying speeds is accomplished by using
the READY line. When communicating with slower devices, the TMS320C25
processor waits until the other device completes its function, signals the processor
via the READY line, and continues execution.

Device Operation

3.5.1 Memory Combinations

The exact sequence of operations performed as instructions execute depends on
the areas in memory where the instructions and operands are located. There are
six possible combinations of program and data memory since information can be
located in either internal RAM, external memory, or internal ROM. The six possible
combinations are:

Program Internal RAM/Data Internal (P1/Dl)
Program Internal RAM/Data External (Pl/DE)
Program External/Data Internal (PE/DI)
Program External/Data External (PE/DE)
Program Internal ROM/Data Internal (PR/DI)
Program Internal ROM/Data External (PR/DE)

Appendix E provides cycle timings for instructions both when repeated and when
not repeated. The following is a summary of program execution, organized
according to memory configuration.

P1/DI or PR/DI When both program and data memory are on-chip,
the processor runs at full speed with no wait states.
Note that IN and OUT instructions have different
cycle timings when program memory is internal; IN
requires two cycles to execute while OUT requires
only one.

PE/DI This memory mode can run at full speed if external
program memory is sufficiently fast since internal
data operations can occur coincident with external
program memory accesses. If external program
memory is not fast enough, wait states may be
generated using the READY input.

PI1/DE, PE/DE, or PR/DE Additional cycles are required to execute instructions
that reference an external data memory space. At
least two cycles are required to execute ‘read from
external data memory’ instructions such as ADD,
LAR, etc. Further additional cycles may be required
due to wait states if external data memory is not fast
enough to be accessed within a single cycle. Note,
however, that the TMS320C25 has the capability of
executing ‘write to external data memory’
instructions in a single cycle when program memory
is internal (two cycles are required if program
memory is also external). Additional cycles are also
required in this case if external data memory is not
sufficiently fast.

Note that in all memory configurations where the same bus is used to communicate
with external data, program, or /0 space, the number of cycles required to execute
a particular instruction may further vary depending on whether the next instruction
fetch is from internal or external program memory. Instruction execution and
operation of the pipeline are discussed in detail in the following sections and in
Section 3.4.1.

3-27

Device Operation

3.5.2 Internal Clock Timing Relationships

The crystal or external clock source frequency is divided to produce an internal
four-phase clock. The four phases are defined by CLKOUT1 and CLKOUT2, as
shown in Figure 3-16.

Phase # | Q3 | Q4 | Q1 | Q2 | 03 | Q4 |

CLKOUT1

ckourz ;N\ /o N\
@ [T
a2 _| e
a3 _j_ L ;
« M . T

Figure 3-16. Four-Phase Clock

Figure 3-16 shows the start of quarter-phase 3 (Q3) on the rising edge of
CLKOUT1. To help facilitate the description of the TMS320C25’s operation, this
nomenclature is used throughout this document.

3.56.3 External Read Cycle

3-28

Each time an external read cycle is performed, a specific sequence of events occurs.
This sequence of events is as follows:

1)

2)

3)

4)

5)

During clock quaher-phase 1, the processor begins driving the address bus
and one of the memory space select signals. R/W is driven high to indicate
an external memory read.

At the beginning of quarter-phase 2, STRB is asserted to indicate that the
address bus is valid. STRB, in conjunction with R/W, may be used to gate a
read enable signal.

After decoding the addressed memory area, the user's memory interface must
set up the appropriate READY signal during quarter-phase 2. READY s
sampled by the processor at the beginning of quarter-phase 3.

If READY was high at the proper time, the data is clocked in at the end of
quarter-phase 3.

STRB is deasserted at the beginning of quarter-phase 4. The processor ends
the memory access by deactivating the address bus and PS, DS, or IS.

Note that the control signals PS, DS, IS, STRB, and R/W are only asserted when
an external address location is being accessed.

Device Operation

Figure 3-17 shows the timing for several read operations. Two instructions are
shown executing completely, an ADD and a SUB instruction. Note that a previous
instruction is being executed while ADD and SUB are being fetched. Also note that
while the SUB instruction is being executed, the next instruction, LAC, is being
fetched even though execution of the LAC is not shown.

The ADD instruction takes one cycle to execute because both the next instruction
and the ADD’s data are internal. The SUB instruction that is fetched during ADD
execution takes two cycles to execute because its data is external. The LAC
instruction is fetched externally, but no wait state is needed since fast program
memory is being used. STRB going high (inactive) signals the end of the read cycle.
Data is clocked into the processor at the beginning of clock quarter-phase 4 if the
READY signal was active at the beginning of quarter-phase 3 and satisfied the
required setup time.

Note that one dummy execute cycle occurs in the sequence of instructions because
program execution changes from Pl to PE. This is discussed in detail in Section
3.4.1.

Phase # l172/8/4l1,2/ 3,411, 2/ 3,411, 2,3, 4l1,2,3,411,2
CLKOUT1 \ \

fetch
execute

external
bus

PS

STRB

XXX KXXXXXX)

.0’0:0:0:0."0:0.0’:0:0:0.0‘0‘0:0‘ "l’o'o;‘o‘».».o.o:’o‘c'000‘0:’000”’0
A 0O0GCO00C000N0000000
RO XY) O A Y XN N XA XY

vauo X vap X vawp X

D15-DO 3. } : VALID VALID

Figure 3-17. Read Cycle Functional Timing

A15-A0

3-29

Device Operation

3-30

3.56.4 External Write Cycle

The sequence of events that occurs each time an external write cycle is performed,
is as follows:

1) During clock quarter-phase 1, the TMS320C25 begins driving the address
bus and one of the memory space select signals. R/W is driven low to indicate
an external memory write.

2) At the beginning of quarter-phase 2, STRB is asserted to indicate that the
address bus is valid. STRB, in conjunction with R/W, may be used to gate a
write enable signal.

3) After decoding the addressed memory area, the user's memory interface must
provide the appropriate logic level to the READY signal input during quar-
ter-phase 2. READY is sampled by the processor at the beginning of quar-
ter-phase 3.

4) The data bus begins to be driven at the start of quarter-phase 2.

5) STRB is then deasserted at the beginning of quarter-phase 4. The processor
ends the memory access by deactivating the address bus and PS, DS, or IS.

The number of cycles in a memory or 1/O access is determined by the state of the
READY input. At the start of quarter-phase 3, the TMS320C25 samples the READY
input. If READY is high, the memory access ends at the next falling edge of
CLKOUT1. If READY is low, the memory cycle is extended by one machine cycle,
and all other signals remain valid. At the beginning of the next quarter-phase 3,
this sequence is repeated. Note that for on-chip program and data memory
accesses, the READY input is ignored.

Figure 3-18 illustrates the functional timing for write operations and wait states.
The timing for three instructions, SACL, SAR, and SACH, is shown. The SACL
instruction stores data in external data memory, and the next instruction fetched
is in internal program memory. Therefore, the SACL instruction’s memory references
are PI/DE. SACL only takes one cycle to complete, because the instruction writes
to the zero wait-state external data memory. The SAR instruction references a P1/DI
memory configuration. This instruction only takes one cycle to execute, because
the data and program are internal. The SACH instruction uses slow external data
memory (one wait state) and fast external program memory. SACH takes three
cycles: one for the write to external data memory, one for a wait state since the
external data is slow, and one for the external program fetch. External logic holds
the READY line inactive during quarter-phase 2 to indicate a wait state. For write
operations, STRB going high can be used to clock data into the external memory.

One dummy execute cycle also occurs in this sequence of instructions, because
program execution changes from Pl to PE (see Section 3.4.1).

Device Operation

Phase # 11,2,3,411,2,3,411,2,3,4(1,2,3,411,2,3,411,2,3,4(1,2,3,411,2,3,411,
o N/ NN\
fetch ._(ge%_. : : —m e = :

: : : : ; PN ™
exeoute PREVIOUS,, SACL ,, BAR ,, DUMMY . BACH ,, GACH , «ADD_,
external : ' WRTE_: FETCH @ FETCH : _ ;'WRITE SACH DATA ,; FETCH

bus . 'SACL DATA: SACH . ADD J ONE ~WAIT STATE: LAC

B B S

VALID

A15-A0

VALID X VALD X VALD

D15-D0 —— (VAL }——{VALD }——{VALD}————eioe{___VALD e

Figure 3-18. Functional Timing of Write Cycles and Wait States

3.6 Interrupts

The TMS320C25 has three external maskable user interrupts (INT2-TNTO), available
for external devices that interrupt the processor. Internal interrupts are generated
by the serial port (RINT and XINT), by the timer (TINT), and by the software
interrupt (TRAP) instruction. Interrupts are prioritized with reset having the highest
priority and the serial port transmit interrupt having the lowest priority.

3.6.1 Interrupt Operation

This subsection details interrupt organization and management. Vector locations
and priorities for all internal and external interrupts are shown in Table 3-5. The
TRAP instruction, used for software interrupts, is not prioritized but is included here
since it has its own vector location. Each interrupt address has been spaced apart
by two locations so that branch instructions can be accommodated in those
locations.

3-31

Device Operation

3-32

Table 3-5. Interrupt Locations and Priorities

INTERRUPT MEMORY
NAME LOCATION PRIORITY FUNCTION

RS 0 1 (highest) External reset signal

TNTO 2 2 External user interrupt #0

TNT1 4 3 External user interrupt #1

TNT2 6 4 External user interrupt #2

8-23 Reserved locations

TINT 24 5 Internal timer interrupt

RINT 26 6 Serial port receive interrupt

XINT 28 7 (lowest) Serial port transmit interrupt
~ TRAP 30 N/A TRAP instruction address

When an interrupt occurs, it is stored in the 6-bit Interrupt Flag Register (IFR). This
register is set by the external user interrupts INT(2-0) and the internal interrupts
RINT, XINT, and TINT. Each interrupt is stored until it is recognized and then
cleared by the TACK (interrupt acknowledge) signal or the RS (reset) signal. The
RS signal is not stored in the IFR. No instructions are provided for reading from
or writing to the IFR.

The TMS320C25 has a memory-mapped Interrupt Mask Register (IMR) for
masking external and internal interrupts. The layout of the register is shown in
Figure 3-19. A ‘1’ in bit positions 5 through 0 of the IMR enables the corre-
sponding interrupt, provided that INTM = 0. The IMR is accessible with both read
and write operations but cannot be read using BLKD. When the IMR is read, the
unused bits (15 through 6) will be read as ‘1’s. The lower six bits are used to write
to or read from the IMR. Note that RS is not included in the IMR, and therefore
the IMR has no effect on reset.

9 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RESERVED XINT|RINT|{TINT[INT2{INT1[INTO|

Figure 3-19. Interrupt Mask Register (IMR)

The INTM (interrupt mode) bit, which is bit 9 of status register STO, enables or
disables all maskable interrupts. A ‘0" in INTM enables all the unmasked interrupts,
and a ‘1’ disables these interrupts. The INTM is set to a ‘1’ by the TACK (interrupt
acknowledge) signal, the DINT instruction, or a reset. This bit is reset to a ‘0’ by
the EINT instruction. Note that the INTM does not actually modify the IMR or IFR.

The TMS320C25 has a built-in mechanism for protecting multicycle instructions.
If an interrupt occurs during a multicycle instruction, the interrupt is not processed
until the instruction is completed. This also includes instructions that become
multicycle due to the READY signal.

In addition, the device also does not allow interrupts to be processed when an
instruction is being repeated via the RPT or RPTK instructions. The interrupt is
stored in the IFR until the repeat counter (RPTC) decrements to zero, and then the
interrupt is processed. Note that even if the interrupt is de-asserted while the
TMS320C25 is processing the RPT or RPTK, the interrupt will still be latched by
IFR and be pending until RPTC decrements to zero.

Device Operation

If both the HOLD line and an interrupt go active during a multicycle instruction or
a repeat loop, the HOLD takes control of the processor at the end of the instruction
or loop. When HOLD is released, the interrupt is acknowledged.

Interrupts cannot be processed between EINT and the next instruction in a program
sequence. For example, if an interrupt occurs during an EINT instruction execution,
the device always completes EINT as well as the following instruction before the
pending interrupt is processed. This insures that a RET can be executed before the
next interrupt is processed, assuming that a RET instruction follows the EINT. The
state of the machine, upon receiving an interrupt, may be saved and restored (see
Section 5.3.1).

3.6.2 External Interrupt Interface

INT(2-0) may be asynchronous edges or levels. The functional logic organization

for INT(2-0) is shown in Figure 3-20. As shown in the figure, the external interrupt

INTO is connected to an edge-triggered flip-flop. The INTO signal is ORed with the

interrupt edge flip-flop Q output and synchronized with internal quarter-phases 1

and 2 to produce an interrupt signal. In this way, the device can handle both
' edge-triggered and level-triggered interrupts. '

If the INTM bit and flag register have been properly enabled, the interrupt signal
is accepted by the processor. An TACK (interrupt acknowledge) signal is then
generated. The TACK clears the appropriate interrupt edge flip-flop and disables
the INTM latch. The logic is the same for INT1 and INT2.

3-33

Device Operation

e e e e . e . e . e e e e
l
TACK — —aq | IACK
ml > | o
FROM
Q D ——————'—DATA
BUS
INTERRUPT |
REGISTER INTERRUPT
<I (INTM) 3 sl
IDLE
| R ENT
INT (0, 1, OR 2) — | IACK
PRIORITY
D Q ' CODE |, T0
INTERRUPT| | PC
REGISTER INTERRUPT
PROCESSOR
CLK | INTERRUPT] MACHINE
l 4 "STATE
| FROM
— _ __ _LOOIC FOR EACH EXTERNAL INTERRUPT __ | INTERRUPTS

Figure 3-20. Internal Interrupt Logic Diagram

In a typical interrupt (INT2-INTO) operation, the interrupt is generated by a nega-
tive-going edge and the IFR bit is set. Since INTM is disabled when the interrupt
is acknowledged, the level may continue to be present on the INT input without
generating further interrupts. If the level is removed before an EINT instruction is
executed, no further interrupts are generated. If a low level continues to be present
after the EINT, another interrupt is generated after the EINT/next instruction
sequence. In addition, if the INT pin is pulsed between the previous TACK and EINT,
another interrupt is generated after EINT/RET, because the corresponding IFR bit
is again set.

The timing diagram of Figure 3-21, shows an interrupt, interrupt acknowledge, and
various other signals for the special case of single-cycle instructions. An interrupt
generated during the current (N) fetch cycle still allows the fetch and execution
of that instruction. The N+1 and N+2 instructions are also fetched, then discarded,
and the address N+1 is pushed onto the top of the stack. The instruction is fetched
again upon a return command from the interrupt routine.

As shown in Figure 3-21, two dummy execute cycles occur on an interrupt. The
TACK signal is asserted low during CLKOUT1 low when the device initiates a fetch
from interrupt location |. Therefore, an external device can determine the interrupt
that occurred by latching the address bus value present on A4-A1 with the rising
edge of CLKOUT2 when TACK is low.

3-34

Device Operation

Phase # | 1.2.3.4|1.2.3.4]1.2.3.4]1.2:3.4/1.2:3:4]1.:2.:3.:4]

cmom\f—\/__/\/\/“_f‘\
wor NN\
s TN/ /1 /“__/ T\
Wz-mfo';'—'\, :

fotch N N+1 N+2 ; | 1+1 1+2
execute +— N2 o N1 N se—DUMMY . DUMMY | N
: : : TOP OF : :
........................... N1 =sTack
IACK RSB o

DOOCOO00000

\ 3 onnnnn 3
RN 000N SO 8 O 000000 00

Notes: 1. N is the program memory location for the current instruction.
2. | is the interrupt vector location in program memory for the active
interrupt.
3. For simplicity, this example only shows the execution of single-cycle
instructions fetched from external program memory, rather than
multicycle instructions.

Figure 3-21. Interrupt Timing Diagram

3.7 Serial Port

The on-chip serial port provides direct communication with serial devices such as
codecs, serial A/D converters, and other serial systems. The interface signals are
compatible with codecs and many other serial devices with a minimum of external
hardware. The serial port may also be used for intercommunication between
processors in multiprocessing applications.

Serial port operation is controlled by the following registers and mode bits:

Data Transmit Register (DXR)

Transmit Shift Register (XSR)

Data Receive Register (DRR)

Receive Shift Register (RSR)

Format bit (FO)

Transmit Mode bit (TXM)

Frame Synchronization Mode bit (FSM)

The serial port uses two memory-mapped registers: the DXR register that holds the
data to be transmitted by the serial port, and the DRR register that holds the
received data (see Figure 3-22). Any instruction accessing data memory can be
used to read from or write to these registers; however, the BLKD (block move from

3-35

Device Operation

3-36

data memory to data memory) instruction cannot be used to read these registers.
The DXR and DRR registers are mapped into locations 0 and 1 in the data address
space. The XSR and RSR registers are not directly accessible through software.

ADDRESS
MSB LSB
>0000 | DRR |
>0001 [DXR |

Figure 3-22. The DRR and DXR Registers

The transmit and receive sections of the serial port are implemented separately to
allow independent transmit and receive operations, as shown in Figure 3-23.
Externally, the serial port interface is implemented using the following six pins on
the TMS320C25 device:

Transmitted serial data (DX)

Transmit clock (CLKX)

Transmit framing synchronization signal (FSX)
Received serial data (RX)

Receive clock (CLKR)

Receive framing synchronization signal (FSR)

The data on the DX and DR pins is clocked out of or into the XSR or RSR by the
CLKX or CLKR signal, respectively. CLKX and CLKR are only required to be present
during actual serial port transfers, and may be stopped when no data is being
transferred. Data bits can be transferred in either 8-bit bytes or 16-bit words. Data
is clocked out of XSR on the rising edges of CLKX, while data is clocked into RSR
on the falling edges of CLKR. The MSB of the data is transferred first.

The XSR and RSR are connected to the DXR and DRR, respectively. For transmit
operations, the contents of DXR are transferred to XSR when a new transmission
begins. For a receive operation, the contents of RSR are transferred to DRR when
all of the bits have been received. Thus, the serial port is double-buffered since
data may be transferred to or from the DXR or DRR while another transmit or receive
operation is being performed.

Device Operation

—
16 —L— 16
TR
DRR (16) (LOAD) DXR (16)
A
(LOAD)
. LOAD L
A18 CONTROL 418
LOGIC i
> RSR (16) XSR (16)
(CLEAR) (CLEAR)
CARRY) | 5vTE/WORD COUNTER [(CLOCK] {CLOCK)| BYTE/WORD COUNTER]-(CARR
RINT XINT
Fer| |Fex v
DR DX
CLKR CLKX

Figure 3-23. Serial Port Block Diagram

Serial port transfers are generally initiated by a frame sync pulse. The exception to
this is when the continuous mode of operation is used with FSM=0, as described
in a subsequent paragraph. Frame sync pulses are input on FSX for transmit
operations and on FSR for receive operations.

Upon completion of a serial port transfer, an internal interrupt is generated. The
RINT interrupt is generated for a receive operation, and XINT is generated for a
transmit operation. RINT and XINT are generated on the rising edge of CLKR and
CLKX, respectively, after the last bit is transferred. Note that if DRR is read before
a RINT is received, it will contain the data from the previous operation. Similarly,
if DXR is loaded more than once after an XINT is generated (in the continuous
transmission mode), only the last value written will be loaded into XSR for the next
transmit operation.

When the TMS320C25 is reset, TXM is cleared to zero, and DX is placed in a
high-impedance state. Any transmit or receive operation that is in progress when
the reset occurs is terminated.

If the serial port is not being used, the DRR and DXR registers can be used as
general-purpose registers. In this case, the CLKR or FSR should be connected to
a logic low to prevent a possible receive operation from being initiated.

The FO (format) bit, located in status register ST1, is used to define whether data
to be transmitted and received is an 8-bit byte or a 16-bit word. If FO = 0, the
data is formatted in 16-bit words. If FO = 1, the data is formatted in 8-bit bytes.
In the 8-bit mode, only the lower eight least-significant bits are used for
transmit/receive operations. The FO bit is loaded by the FORT (format serial port
registers) instruction. On reset, FO is set to a ‘0".

3-37

Device Operation

The TXM (transmit mode) bit, also located in status register ST1, is used to
determine if the frame sync pulse for the transmit operation is generated internally
or externally. If TXM=0, FSX is an input, but if TXM=1, FSX becomes an output
and frame sync pulses are produced on FSX at the beginning of a serial port tran-
smission. The TXM bit can be loaded by the LST1, STXM, or RTXM instructions.

The FSM (frame synchronization mode) status register bit is used to select whether
frame sync pulses are required for each serial port transfer. If FSM=1, frame sync
pulses are required; if FSM =0, they are not required. FSM is set by the SFSM (set
frame synchronization mode) instruction and cleared by the RFSM (reset frame
synchronization mode) instruction.

The timing of the serial port signals is compatible with the Tl/Intel 2910 series
codecs. The timing is also compatible with the AM| S3506 series codecs if the
frame synchronization signals are inverted.

3.7.1 Burst-Mode Operation

In burst-mode serial port operation, transfers are separated in time by periods of
no serial port activity (the serial port does not operate continuously). For burst-
mode operation, FSM must be set to one. Timing of the serial port in this mode
of operation is shown in Figure 3-24 and Figure 3-25.

m — 1
w2 — @
XNT ; L : ; : ; : : :
DXR DXR
LOADED RELOADED
XSR XSR

LOADED RELOADED
(DURING CLKX LOW)

Figure 3-24. Burst-Mode Serial Port Transmit Operation

3-38

Device Operation

CLKR

(Fogs_é_E(MXAZXMXMiASkABXfMXAe
DIR

LOADED
FROM RSR

Figure 3-25. Burst-Mode Serial Port Receive Operation

When TXM=1 (in the transmit operation) and the serial port register DXR is loaded,
a framing pulse is generated on the next rising edge of CLKX. XSR is loaded with
the current contents of DXR while FSX is high and CLKX is low. Transmission
begins when FSX goes low while CLKX is high or is going high. Figure 3-24 shows
the timing for the byte mode (FO=1). XINT is generated on the rising edge of CLKX
after all 8 or 16 bits have been transmitted and DX is placed in the high-impedance
state. If DXR is reloaded before the next rising edge of CLKX after XINT, FSX will
again be generated as shown, and XSR will be reloaded.

The receive operation is very similar to the transmit operation. The contents of RSR
are loaded into DRR while CLKR is low, just after reception of the last bit sent by
the transmitting device (see Figure 3-25). RINT is generated on the next rising
edge of CLKR, and DRR may be read at any time before the reception of the final
bit of the next transmission. When operating in the byte mode, the eight most-
significant bits of the DRR are the contents of the eight least-significant bits of the
DRR prior to reception of the current byte, as shown in Figure 3-26.

MSB LSB
Initial
Conditions X Y
After 1st Receive
(Byte "A’) Y A
After 2nd Receive
(Byte 'B’) A B

Etc.

Figure 3-26. Byte-Mode DRR Operation

3-39

Device Operation

3.7.2 Continuous-Mode Operation Using Frame Sync Pulses

CLKX

FEX
(TXM=1)

3-40

DX
(Fo=1)

XINT

The - TMS320C25 provides two modes of operation that allow the use of a
continuous stream of serial data. When FSM=1, frame sync pulses are required,
but since DXR is double-buffered, continuous operation is achieved even if
TXM=1. Wiriting to DXR during a serial port transmission does not abort the
transmission in progress, but instead DXR stores that data until XSR can be
reloaded. As long as DXR is reloaded before the CLKX rising edge on the final bit
being transmitted, the FSX pulse will go high on the rising edge of CLKX during
the transmission of the final bit and fall on the next rising edge when transmission
of the word just loaded begins. If DXR is not reloaded within this period and FSM
=1, the DX pin will be placed in a high-impedance state for at least one CLKX cycle
until DXR is reloaded (as described in the previous section). Figure 3-27 and Figure
3-28 show the timing diagrams for the continuous operation with frame sync
pulses.

:XﬁAs:Xm iXBz:Xaszxmias?rseiXmiBs:Xm

/U S NS U e U

f !

DXR DXR
LOADED LOADED
WITH B WITH C
XSR XSR
LOADED LOADED

Figure 3-27. Serial Port Transmit Continuous Operation (FSM=1)

Device Operation

CLKR . i . : ‘ . :
“’023WABXB1XBZXBst‘XBSXBGXB7XBBXC1
— "

READ READ
DRR DRR
DRR DRR
LOADED LOADED
FROM RSR FROM RSR

Figure 3-28. Serial Port Receive Continuous Operation (FSM=1)

Continuous receive operation with FSM=1 is identical to that of burst-mode
operation with the exception that FSR is pulsed during reception of the final bit.

3.7.3 Continuous-Mode Operation Without Frame Sync Pulses

The continuous mode of operation allows transmission and reception of a contin-
uous bit stream without requiring frame sync pulses every 8 or 16 bits. This mode

is selected by setting FSM=0.

Figure 3-29 and Figure 3-30 show operation of the serial port for both states of
FSM to illustrate differences in operation for each case. FSM is initially set to one,
and frame sync pulses are required to initiate serial transfers. During processing
of the next serial port interrupt (XINT or RINT), FSM is reset to zero by means of
an RFSM (reset FSM) instruction. RFSM can occur either before or after the write
to DXR or read from DRR. From this point on, the FSX and FSR inputs are ignored,
with transmission occurring every CLKX cycle and reception occurring every CLKR

cycle as long as those clocks are present.

3-41

Device Operation

CLKX

LU Xy
BO000000000CA000A00ACAOR00N0CA0MSO0000
0000000000000

FSX
(TXM=0)

Fo2 jA7kA3XZB1ksz:XasxmgssieeiXB7XBs*c1chzt

RX00A00C0GO000A000000N) 0
e
POVERREENRENERTROIIRONEDOIRRA 00T IPON oINSy

= R B

aanio s s vl

DXR DXR X8R
LOADED LOADED LOADED
WITH B WITH C

XS8R RFSM
LOADED

Figure 3-29. Serial Port Transmit Continuous Operation (FSM=0)

CLKR

FSR ¢ -/ \

Foon B1XB2 faazxmissiseimjasimiczi_

w0 T
1 1 1

READ READ DRR
DRR DRR LOADED
FROM RSR
DRR RFSM
LOADED
FROM RSR

Figure 3-30. Serial Port Receive Continuous Operation (FSM=0)

If FSX is configured as an output, it will remain low until FSM is set back to one
and DXR is reloaded. If DXR is not reloaded with new data every XINT (every 8
or 16 CLKX cycles depending on FO), the last value loaded will be transmitted on
DX continuously. Note that this is different from the case with FSM=1 where DX
is placed into a high-impedance state if DXR is not reloaded before transmission
of the last bit of the current word in XSR. For example,if byte C is not loaded into
DXR as indicated in Figure 3-29, bits B1-B8 will be retransmitted instead of bits

C1 and C2 as shown.

3-42

Device Operation

For receive operations, DRR is loaded from RSR (and an RINT is generated) every
8 or 16 CLKR cycles (depending on FO), regardless of whether or not DRR has
been read. An overrun of DRR is also possible with FSM=1 if DRR is not read
before the next RINT. The only way to stop continuous transmission or reception
once started, when FSM=0, is to either stop CLKX or CLKR or to perform an SFSM
(set FSM) instruction.

Continuous transmission without frame sync pulses is very useful in communicating
directly to telephone system PCM highways. For AT&T T1 and CCITT G711/712
lines, FSX and FSR pulses are generated only every 24 or 32 bytes. By counting
the transmitted and received bytes in software after an initial FSX or FSR and
performing SFSM and RFSM instructions as required, the TMS320C25 can easily
be made to communicate in these formats.

3.7.4 Initialization of Continuous-Mode Operation Without Frame Sync Pulses

FSM is normally initialized during an XINT or RINT service routine to enable or
disable FSX and FSR, respectively, for the next serial port operation. However, in
order to initialize the continuous-mode operation, it is permissible to reset FSM to
zero before a serial port transmit or receive is initiated. As shown in Figure 3-31
and Figure 3-32, RFSM may occur before a write to DXR, regardless of the state
of TXM. If TXM=1, FSX is generated in a normal manner on the next rising edge
of CLKX, but only once. If TXM=0, the TMS320C25 waits to transmit until FSX
is pulsed, but from then on, the FSX input is ignored. Note that just as in the case
of continuous-mode operation without sync pulses described in Section 3.7.3, the
first data written to DXR (byte A) is output twice unless DXR is reloaded before
the second transmission is started. It is important to consider this dummy cycle
when using continuous-mode serial operation.

CLKX

FSX
(TXM=1)

X T ' : —
mM=0) [GRS ; A RS
Foo) ———-(A1XMXA3XMYMXAeXA7XAsXA1XA2x:
o

RFSM XSR
LOADED

DXR XSR
LOADED RELOADED
WITH A

Figure 3-31. Continuous Transmit Operation Initialization

3-43

Device Operation

CLKR

OO OO OO XX XX OO OO X X X O000000000T00OOXX OOOOCOOCOOOOOCOOONOXX X OCOCOOOUOOCOOOUIXX
BB
R O A A OO0 OO OO OOOOOODOUOIAOOOON

FSR

(Foon -—;——-;——-—:(A1XA2XA3XA4XASX a6 X A7 X A8 X B1 X B2 X
RNT J'____

RFSM DRR
LOADED
FROM RSR

Figure 3-32. Continuous Receive Operation Initialization

The receive timings are the same as those for the transmit operations with TXM=0.
The TMS320C25 waits to receive data until FSR is pulsed, but thereafter the FSR
input is ignored. No dummy cycle is associated with the receive operation due to
the postbuffering nature of DRR as opposed to the prebuffering nature of DXR.

3.8 Multiprocessing and Direct Memory Access (DMA)

The flexibility of the TMS320C25 allows configurations to satisfy a wide range of
system requirements. Some of the system configurations using the TMS320C25
are as follows:

® A standalone system (single processor)

® A host/slave or parallel multiprocessing system with shared global data
memory

® A host/peripheral coprocessor configuration using interface control signals.

These system configurations are made possible by three specialized features of the
TMS320C25. These three features are the synchronization function utilizing the
SYNC input, the global memory interface, and the hold function implemented with
the HOLD and HOLDA pins. The following sections describe these functions in
detail.

3-44

Device Operation

3.8.1 Synchronization

In a multiprocessor environment, the SYNC input can be used to greatly ease
interface between processors. This input is used to cause each of the TMS320C25s
in the system to synchronize their internal clocks, thereby allowing the processors
to run in lock-step operation.

Multiple TMS320C25s are synchronized by using common SYNC and external
clock inputs. A negative transition on SYNC sets each processor to internal quar-
ter-phase one (Q1). This transition must occur synchronously with the rising edge
of CLKIN. The timing diagram for the SYNC input is shown in Figure 3-33. Note
that there is a two CLKIN cycle delay following the cycle in which SYNC goes low,
before the synchronized Q1 occurs.

Phase #

o N\

CLKOUT1

Figure 3-33. Synchronization Timing Diagram

Normally, SYNC is applied while RS is active. |f SYNC is asserted after a reset, the
following can occur:

1) The processor machine cycle is reset to Q1, provided that the timing
requirements for SYNC are met. If SYNC is asserted at the beginning of Q1,
Q3, or Q4, the current instruction is improperly executed. If SYNC is asserted
at the beginning of Q2, the current instruction is executed properly.

2) If SYNC does not meet the timing requirements, unpredictable processor
operation occurs. A reset should then be executed to place the processor back
in a known state.

3.8.2 Global Memory

For multiprocessing applications, the TMS320C25 has the capability of allocating
global data memory space and communicating with that space via the BR (bus
request) and READY control signals.

Global memory is memory shared by more than one processor; therefore, access
to it must be arbitrated. When using global memory, the processor’s address space
is divided into local and global sections. The local section is used by the processor
to perform its individual function, and the global section is used to communicate
with other processors.

3-45

Device Operation

3-46

A memory-mapped register (GREG) is provided that allows part of data memory
to be specified as global external memory. GREG, which is memory-mapped at data
memory address location ‘5, is an eight-bit register connected to the eight LSBs
of the internal D bus. The upper eight bits of location 5 are nonexistent and read
as '1’s. :

The contents of GREG determine the size of the global memory space. The legal
values of GREG and corresponding global memory spaces are shown in Table 3-6.
Note that values other than those listed in the table lead to fragmented memory

maps.
Table 3-6. Global Data Memory Configurations
LOCAL MEMORY GLOBAL MEMORY

GREG VALUE RANGE # WORDS RANGE # WORDS
000000XX >0 - >FFFF 65,536 | @ --eeo-ee-ee- 0
10000000 >0 - >7FFF 32,768 >8000 - >FFFF 32,768
11000000 >0 - >BFFF 49,152 >C000 - >FFFF 16,384
11100000 >0 - >DFFF 57,344 >EQ00 - >FFFF 8,192
11110000 >0 - >EFFF 61,440 >F000 - >FFFF 4,096
11111000 >0 - >F7FF 63,488 >F800 - >FFFF 2,048
11111100 >0 - >FBFF 64,512 >FCO0 - >FFFF 1,024
11111110 >0 - >FDFF 65,024 >FEQO - >FFFF 512
11111111 >0 - >FEFF 65,280 >FF00 - >FFFF 256

When a data memory address, either direct or indirect, corresponds to a global data
memory address (as defined by GREG), BR is asserted low with DS to indicate that
the processor wishes to make a global memory access. External logic then arbitrates
for control of the global memory, asserting READY when the TMS320C25 has
control. One wait-state timing is shown in Figure 3-34. Note that all signals not
shown have the same timing as in the normal read or write case.

Phase# 4 | 1 . 2 | 3 4 | 1 2 | 38 4 |1

CLKOUTA \
STRB i \ ; | ; ; / :
A15-A0)@(VALID W

oy
RS
Y

Figure 3-34. Global Memory Access Timing

Device Operation

3.8.3 The Hold Function

The TMS320C25 supports Direct Memory Access (DMA) to its local (off-chip)
program, data, and |/O spaces. Two signals, HOLD and HOLDA, are provided to
allow another device to take control of the processor’s buses. Upon receiving a
HOLD signal from an external device, the processor acknowledges by bringing
HOLDA low. The processor then places its address and data buses as well as all
control signals (PS, DS, 1S, R/W, and STRB) in the high-impedance state. The serial
port output pins, DX and FSX, are not affected by HOLD.

The timing for the HOLD and HOLDA signals is shown in Figure 3-35. HOLD has
the same setup time as READY and is sampled at the beginning of quarter-phase
3. If the setup time is met, it takes three machine cycles before the buses and control
signals go to the high-impedance state. Note that unlike the external interrupts
TNT(2-0), HOLD is not a latched input. The external device must keep HOLD low
until it receives a HOLDA from the TMS320C25.

The hold function has two distinct operating modes, which are selected by the
HM (hoid mode) status register bit. The HOLD signal is pulled low, as shown in
the first part of Figure 3-35. When HM=1, the TMS320C25 halts program
execution and enters the hold state directly. When HM=0, the processor enters
the hold state directly, as shown in Figure 3-35, if program execution is from
external memory or if external data memory is being accessed. If program execution
is from internal memory, however, and if no external data memory accesses are
required, the processor enters the hold state externally, but program execution
continues internally. This allows more efficient system operation since a program
may continue executing while an external DMA operation is being performed.

Note that if the processor is in a hold state with HM=0 and an internally executing
program requires an external access, or if the program branches to an external
address, program execution ceases until HOLD is removed. Also, if a repeat
instruction that requires the use of the external bus is executing with HM=0 and
a hold occurs, the hold state is entered after the current bus cycle. If this situation
occurs with HM=1, the hold state will not be entered until the repeat count is -
completed. HM is set and reset by the SHM (set hold mode) and RHM (reset hold
mode) instructions, respectively.

If the TMS320C25 is in the middle of a multicycle instruction, it will finish the
instruction before entering the hold state. After the instruction is completed, the
buses are placed in the high-impedance state. This also applies to instructions that
become multicycle due to insertion of wait states.

After HOLD is de-asserted, program execution resumes from the same point at
which it was halted. HOLDA is removed synchronously with HOLD, as shown in
Figure 3-35. If the setup time is met, two machine cycles are required before the
buses and control signals become valid.

All interrupts are disabled while HOLD is active with HM=1. If an interrupt is
received during this period, the interrupt is latched and remains pending. HOLD
itself does not affect any interrupt flags or registers. If HM=0, interrupts function
normally.

HOLD is not treated as an interrupt. If the TMS320C25 was executing the IDLE
instruction before entering the hold state, it resumes executing IDLE once it leaves
the hold state.

3-47

Device Operation

Phase # |1,2,83,4|1,2,3,4|1,2,3,4|1,2,3,4|

CLKOUTH

STRB

HOLD F\ f
_ M N \f
A15-A0 x: N X N X)
Pe e X ; : ; \
i X__VALD X VALID)/ ;
R/W \
D15-DO (IN— {IN) :
fetch —N N e T be N
execute «— N2 > N-1 >e N >e — >
HOLDA ; : .f \
Notes: 1. Nis the'program memory location for the current instruction.

This example only shows the execution of single-cycle instructions
fetched from external program memory.

Figure 3-35. Hold Timing Diagram

3-48

Device Operation

Phase #

CLKOUT1
STRB
HOLD

A15-A0

Ps, DS,
OR

RIW
D15-DO
fetch

execute

woox ./

|11.2,3.,4/1,2,3,4/1,2,3,4[1,2,8,4]/1,2,3,4]|1,2,3, 4|

) SV W WV W WV WV AN

f_f‘\/—-\/—\' /—'

D G G5 D G ¢

P RS

/ Y VALID X VALID X VALID)(

M~ /A
\N— W (R
L - T et Ve N42 G N4B . Ned
- i - : - i N+1 .. DUMMY ... N2

v
4
v
A

v
' N
v
A
v
'S
v

‘&
«

Figure 3-35. Hold Timing Diagram (Concluded)

3.9 General-Purpose I/O Pins

The TMS320C25 has two general-purpose pins that are software-controlled. The
B10O pin is a branch control input pin, and the XF pin is an external flag output pin.

3.9.1 BIO Input

When the BIO input pin is active (low), execution of the BIOZ instruction causes
a branch to occur.

The BIO pin is useful for monitoring peripheral device status. It is especially useful
as an alternative to using an interrupt when it is necessary not to disturb time-cri-
tical loops.

Figure 3-36 shows the BIO timing diagram. BIO is sampled at the end of quar-
ter-phase 4. Note that the timing diagram shown is for a sequence of single-cycle,
single-word instructions without branches located in external memory. Because
of variations in pipelining due to instructions prior to and following the BIOZ
instruction, this timing may vary. Therefore, it is recommended that several cycles
of setup be provided if BIO is to be recognized on a particular cycle.

3-49

Device Operation

Phase* | 4,2 13,4112 1314111231411 1213 14|

CLKOUT1

CLKOUT2

A15-A0 w VALID)@(vap XX vap) VALID)

;" (BRANCH__: NEXT _ (NEXT INSTRUCTION
(810Z) : ADDRESS) : INSTRUCTION) N+3 OR BRANCH
fetch - N ::= N+1 :'4 N+2 =:= DRESS =:

\ A
VALID RS R !
LA XS D X N N X Y Y A X X X Y A X X X X N X A N Y X X XX XXX XXX XY X

Figure 3-36. BIO Timing Diagram

3.9.2 External Flag Output

3-50

The XF (external flag) output pin is set to a high level by the SXF (set external flag)
instruction and reset to a low level by the RXF (reset external flag) instruction. XF
is set high by RS.

The relationship between the time the SXF/RXF instruction is fetched before the
XF pin is set or reset is shown in Figure 3-37. As with BIO, the timing shown for
XF is for a sequence of single-cycle, single-word instructions located in external
memory. Actual timing may vary with different instruction sequences.

Device Operation

Phase # 1121314111213 1411,2:31411.:12:13 .4

CLKOUT1

STRB

A15-A0 :)@(VALID »(VALID »(VALID W VALID X:

. (eXF o RXF)

fetch ¢ ve—N+1 , N+2 ,, N+3
XF

(sxXF) /
XF ‘

(RXF) \

Notes: 1. N is the program memory location for the current instruction.
2. This example only shows the execution of single-cycle instructions
fetched from external program memory.

Figure 3-37. External Flag Timing Diagram

3-51

3-62

4. Assembly Language Instructions

The TMS320C25 instruction set supports numeric-intensive signal processing
operations as well as general-purpose applications, such as multiprocessing and
high-speed control. TMS32010 source code is upward-compatible with
TMS320C25 source code. TMS32020 object code is upward-compatible with
TMS320C25 object code.

This section describes the assembly language instructions for the TMS320C25
microprocessor. Included in this section are the following major topics:

) Memory Addressing Modes (Section 4.1 on page 4-2)
Direct addressing
Indirect addressing (using eight auxiliary registers)
Immediate addressing

® Instruction Set (Section 4.2 on page 4-8)
Symbols and abbreviations used in the instructions
Instruction set summary (listed according to function)

® Individual Instruction Descriptions (Section 4.3 on page 4-13)
Presented in alphabetical order and providing the following:
- Assembler syntax
- Operands
- Execution
- Encoding
- Description
- Words
- Cycles
- Repeatability
- Example(s)

4-1

Assembly Language Instructions

4.1 Memory Addressing Modes

The TMS320C25 instruction set provides three memory addressing modes:

) Direct addressing mode
° Indirect addressing mode
) Immediate addressing mode

Both direct and indirect addressing can be used to access data memory. Direct
addressing concatenates seven bits of the instruction word with the nine bits of the
data memory page pointer to form the 16-bit data memory address. Indirect
addressing accesses data memory through the eight auxiliary registers. In immediate
addressing, the data is based on a portion of the instruction word(s). The following
sections describe each addressing mode and give the opcode formats and some
examples for each mode.

4.1.1 Direct Addressing Mode

.4-2

In the direct memory addressing mode, the instruction word contains the lower seven
bits of the data memory address (dma). This field is concatenated with the nine bits
of the data memory page pointer (DP) register to form the full 16-bit data memory
address. Thus, the DP register points to one of 512 possible 128-word data memory
pages, and the 7-bit address in the instruction points to the specific location within
that data memory page. The DP register is loaded through the LDP (load data memory
page pointer), LDPK (load data memory page pointer immediate), or LST (load status
register STO) instructions. Figure 4-1 illustrates how the 16-bit data address is
formed.

7 LSBS FROM
INSTRUCTION
REGISTER (IR)

16-BIT DATA ADDRESS

Figure 4-1. Direct Addressing Block Diagram

Direct addressing can be used with all instructions except CALL, the branch
instructions, immediate operand instructions, and instructions with no operands. The
direct addressing format is as follows:
1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Opcode | 0 l dma

Bits 15 through 8 contain the opcode. Bit 7 = 0 defines the addressing mode as
direct, and bits 6 through O contain the data memory address (dma).

Assembly Language Instructions

Example of Direct Addressing Format:

ADD 9,5 Add to accumulator the contents of data memory location 9 left-
shifted 5 bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0o 0 0o 0 0 1 0 1/0fo 0 0 1 0 0 1

The opcode of the ADD 9,5 instruction is >05 and appears in bits 15 through 8. The
notation >nn indicates nn is a hexadecimal number. The shift count of >5 appears
in bits 11 through 8 of the opcode. The data memory address >09 appears in bits
6 through O.

4.1.2 Indirect Addressing Mode

The eight auxiliary registers (ARO-AR7) provide flexible and powerful indirect
addressing. To select a specific auxiliary register, the Auxiliary Register Pointer (ARP)
is loaded with a value from O through 7, designating ARO through AR7, respectively
(see Figure 4-2).

The contents of the auxiliary registers may be operated upon by the Auxiliary Register
Arithmetic Unit (ARAU), which implements 16-bit unsigned arithmetic. The ARAU
performs auxiliary register arithmetic operations in the same cycle as the execution
of the instruction. (Note that the increment or decrement of the indicated AR is
always executed after the use of that AR in the instruction.)

AUXILIARY
REGISTERS

ARO (16

AR1(16)_|

AR2 (16

AR3 (16

AR% (16
ARG (18) |
[ARB (16 ,
—ART (16 116
3
16 ¢

[ARAU (i)]

v
16-BIT DATA ADDRESS

Figure 4-2. Indirect Addressing Block Diagram

In indirect addressing, any location in the 64K data memory space can be accessed
via the 16-bit addresses contained in the auxiliary registers. These may be loaded
by the instructions LAR (load auxiliary register), LARK (load auxiliary register
immediate), and LRLK (load auxiliary register long immediate). The auxiliary registers
may be modified by ADRK (add to auxiliary register short immediate) or SBRK
(subtract from auxiliary register short immediate). The auxiliary registers may also
be modified by the MAR (modify auxiliary register) instruction or, equivalently, by

4-3

Assembly Language Instructions

the indirect addressing field of any instruction supporting indirect addressing.
AR(ARP) denotes the auxiliary register selected by ARP.

The following symbols are used in indirect addressing:

Contents of AR(ARP) are used as the data memory address.

- Contents of AR(ARP) are used as the data memory address, then decre-
mented after the access.

"+ Contents of AR(ARP) are used as the data memory address, then incre-
mented after the access.

*0- Contents of AR(ARP) are used as the data memory address, and the
contents of ARO subtracted from it after the access.

*0+ Contents of AR(ARP) are used as the data memory address, and the
contents of ARO added to it after the access.

*BRO- Contents of AR(ARP) are used as the data memory address, and the
contents of ARO subtracted from it (with reverse carry propagation) after
the access.

*BRO+ Contents of AR(ARP) are used as the data memory address, and the
contents of AROQ added to it (with reverse carry propagation) after the access.

There are two main types of indirect addressing with indexing:

® Regular indirect addressing with increment or decrement, and
® Indirect addressing with indexing based on the value of ARO.

In either case, the contents of the auxiliary register pointed to by the ARP register
are used as the address of the data memory operand. Then, the ARAU performs the
specified mathematical operation on the indicated auxiliary register. Additionally, the
ARP may be loaded with a new value.

Indirect auxiliary register addressing allows for post-access adjustments of the
auxiliary register pointed to by the ARP. The adjustment may be an increment or
decrement by one or based upon the contents of ARO.

Indirect addressing can be used with all instructions except immediate operand
instructions and instructions with no operands. The indirect addressing format is
as follows:

15 14 13 12 11 _10 9 8 7 6 5 4 3 2 1 0
(Opcode [1 |bv]inc|DEC|NAR] Y |

Bits 15 through 8 contain the opcode, and bit 7 = 1 defines the addressing mode
as indirect. Bits 6 through O contain the indirect addressing control bits.

Bit 6 contains the increment/decrement value (IDV). The IDV determines whether
ARO will be used to increment or decrement the current auxiliary register. If bit 6 =
0, an increment or decrement (if any) by one occurs to the current auxiliary register.
If bit 6 = 1, ARO may be added to or subtracted from the current auxiliary register
as defined by bits 5 and 4.

Bits 5 and 4 control the arithmetic operation to be performed with AR(ARP) and
ARO. When set, bit 5 indicates that an increment is to be performed. If bit 4 is set, a
decrement is to be performed. Table 4-1 shows the correspondence of bit pattern
and arithmetic operation.

Assembly Language Instructions

Table 4-1. Indirect Addressing Arithmetic Operations

BITS ARITHMETIC OPERATION
6 5 4
0O 0 O No operation on AR(ARP)
0O 0 1 AR(ARP) - 1 = AR(ARP)
0 1 0 | AR(ARP) +1 = AR(ARP)
o 1 1 Not used
1 0 O AR(ARP) - ARO = AR(ARP) [reverse carry propagation]
1 0 1 AR(ARP) - ARO = AR(ARP)
1 1 0 | AR(ARP) + ARO = AR(ARP)
11 1 AR(ARP) + ARO = AR(ARP) [reverse carry propagation]

Bit 3 and bits 2 through O control the Auxiliary Register Pointer (ARP). Bit 3 (NAR)
determines if a new value is loaded into the ARP. If bit 3 = 1, the contents of bits
2 through 0 (Y = next ARP) are loaded into the ARP. If bit 3 = 0, the contents of
the ARP remain unchanged.

Table 4-2. Bit Fields for Indirect Addressing

INSTRUCTION FIELD BITS NOTATION OPERATION
15 14 13 12 11 10 9 8 76 543 210

OPCODE 1000 0—Y— * No manipulation of ARs/ARP

OPCODE 1000 1=—Y— Y Y = ARP

OPCODE 1001 0-—Y— *- AR(ARP)-1 = AR(ARP)

<+————— OPCODE 1001 1=—Y— *Y AR(ARP)-1 = AR(ARP);

Y = ARP

OPCODE 1010 0—Y—] -+ AR(ARP)+1 = AR(ARP)

OPCODE 1010 1—Y—| *+Y AR(ARP)+1 = AR(ARP);
Y = ARP

OPCODE 1100 0—Y—] *BRO- AR(ARP)-rcARO = AR(ARP)t

OPCODE 1100 1-——Y— *BRO-Y | AR(ARP)-rcARO - AR(ARP);
Y = ARPt

OPCODE 1101 0—Y—| *0- AR(ARP)-ARO = AR(ARP)

OPCODE 1101 1<+—Y—+ *0-Y AR(ARP)-ARO = AR(ARP);
Y = ARP

OPCODE 1110 0—Y—=| *0+ AR(ARP)+ARO = AR(ARP)

OPCODE 1110 1-<—Y—| *0+Y AR(ARP)+ARO = AR(ARP):
Y = ARP

OPCODE 17111 0—Y— *BRO+ AR(ARP)+rcARO = AR(ARP)t

OPCODE 111 1T 1+—Y— *BRO+,Y AR(ARP) +rcARO = AR(ARP);
Y = ARPT

trc = reverse carry propagation

For some instructions, the notation in Table 4-2 includes a shift code, e.g., *0+,8,3
where 8 is the shift code and Y = 3.

The CMPR (compare auxiliary register with ARO), and BBZ/BBNZ (branch if TC bit
equal/not equal to zero) instructions facilitate conditional branches based on
comparisons between the contents of ARO and the contents of AR(ARP).

The auxiliary registers may also be used for temporary storage via the load and store
auxiliary register instructions, LAR and SAR, respectively.

4-5

Assembly Language Ihstructipns

4-6

The following examples illustrate the indirect addressing format:

Example 1:

ADD *+,8

15 14 13

Add to the accumulator the contents of the data memory address
defined by the contents of the current auxiliary register. This data
is left-shifted 8 bits before being added. The current auxiliary
register is autoincremented by one. The opcode is >08A0, as
shown below.

2 11 10 9 8 7 6 5 4 3 2 1 O

0 o0 O

o 1t o o0 O}j17f0 1 0 O O O0 O

. Example 2:
ADD *,8

Example 3:

ADD *-8

Example 4:

ADD *0+.,8

Example 5:

ADD *0-,8

Example 6:

ADD *+,8,3

Example 7:

ADD *"BRO-,8

Example 8:

ADD *"BRO+.,8

As in Example 1, but with no autoincrement; the opcode is >0880.

As in Example 1, except that the current auxiliary register is
decremented by one; the opcode is >0890.

As in Example 1, except that the contents of auxiliary register ARO
are added to the current auxiliary register; the opcode is >08EO.

As in Example 1, except that the contents of auxiliary register ARO
are subtracted from the current auxiliary register; the opcode is
>08D0.

As in Example 1, except that the auxiliary register pointer (ARP)
is loaded with the value 3 for subsequent instructions; the opcode
is >08AB.

The opcode is >08CO0. The contents of auxiliary register ARO are
subtracted from the current auxiliary register with reverse carry
propagation.

The opcode is >08F0. The contents of auxiliary register ARO are
added to the current auxiliary register with reverse carry propa-
gation.

Assembly Language Instructions

4.1.3 Immediate Addressing Mode

In immediate addressing, the instruction word(s) contains the value of the immediate
operand. The immediate operand may be contained within the instruction word itself
or in the word following the opcode.

The following instructions contain the immediate operand in the instruction word
and execute within a single instruction cycle. The length of the constant operand is
instruction-dependent.

ADDK
ADRK
LACK
LARK
LARP
LDPK
MPYK
RPTK
SBRK

SUBK

Add to accumulator short immediate (8-bit absolute constant)

Add to auxiliary register short immediate (8-bit absolute constant)
Load accumulator immediate short (8-bit absolute constant)

Load auxiliary register immediate short (8-bit absolute constant)
Load auxiliary register pointer (3-bit constant)

Load data memory page pointer immediate (9-bit constant)
Multiply immediate (13-bit two’s-complement constant)

Repeat instruction as specified by immediate value (8-bit constant)

Subtract from auxiliary register short immediate (8-bit absolute
constant)

Subtract from accumulator short immediate (8-bit absolute constant).

For the other immediate instructions, the constant is a 16-bit value in the word
following the opcode. The 16-bit value can be optionally used as an absolute
constant or as a two’s-complement value.

ADLK

ANDK
LALK

LRLK
ORK
SBLK

XORK

Add to accumulator long immediate with shift (absolute or two’s
complement)

AND immediate with accumulator with shift

Load accumulator long immediate with shift (absolute or two’s

- complement)

Load auxiliary register long immediate
OR immediate with accumulator with shift

Subtract from accumulator long immediate with shift (absolute or two’s
complement)

Exclusive-OR immediate with accumulator with shift.

4-7

Assembly Language Instructions

The following examples illustrate immediate addressing format:
Example 1:

ADLK 16384,2 Add to the accumulator the value 16384 with a shift to the left
of two, effectively adding 65536 to the contents of the accu-
mulator.

The ADLK instruction uses the word following the instruction opcode as the imme-

diate operand. The instruction format for ADLK is as follows:

1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 1 0 1 Shift o 0 0o o 0o O 1 O
16-Bit Constant

- Example 2:

RPTK 99 Execute the instruction following this instruction 100 times.

With the RPTK instruction, the immediate operand is contained as a part of the
instruction opcode. The instruction format for RPTK is as follows:

1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 o 0 1 o 1 1 8-Bit Constant

4.2 Instruction Set

The following sections list the symbols and abbreviations used in the instruction set
summary and in the instruction descriptions. The complete instruction set summary
is organized according to function. A detailed description of each instruction is listed
in the instruction set summary.

4.21 Symbols and Abbreviations

4-8

Table 4-3 lists symbols and abbreviations used in the instruction set summary (Table
4-4) and the individual instruction descriptions.

Assembly Language Instructions

Table 4-3. Instruction Symbols

SYMBOL

MEANING

ACC
ARB
ARn

ARP
B
BIO
C
CM
CNF
D
DATn
dma
DP
FO
FSM
HM
|
INTM

K
>nn

oV
OVM
P
PA

Accumulator

Auxiliary register pointer buffer

Auxiliary Register n (ARO through AR7 are predefined
assembler symbols equal to 0 through 7, respectively.)
Auxiliary register pointer

4-bit field specifying a bit code

Branch control input

Carry bit

2-bit field specifying compare mode

On-chip RAM configuration control bit

Data memory address field

Label assigned to data memory location n

Data memory address

Data page pointer

Format status bit

Frame synchronization mode bit

Hold mode bit

Addressing mode bit

Interrupt mode flag bit

Immediate operand field

Indicates nn is a hexadecimal number. (All others are
assumed to be decimal values.)

Overflow mode flag bit

Overflow mode bit

Product register

Port address (PAO through PA15 are predefined assembler
symbols equal to 0 through 15, respectively.)
Program counter

2-bit field specifying P register output shift code
Program memory address

Label assigned to program memory location n
3-bit operand field specifying auxiliary register
Repeat counter

4-bit left-shift code

Status register n (STO or ST1)

Sign-extension mode bit

Temporary register

Test control bit

Top of stack

Transmit mode bit

3-bit accumulator left-shift field

XF pin status bit

Is assigned to

An absolute value

User-defined items

Optional items

Contents of

Alternative items, one of which must be entered
Blanks or spaces must be entered where shown.

4.2.2 Instruction Set Summary

The instruction set summary of Table 4-4 is arranged according to function and
alphabetized within each functional grouping. Additional information is presented

in the individual instruction descriptions in the following section.
indicates instructions that are not included in the TMS32010 instruction set.

The symbol T

The

symbol ¥ indicates instructions that are not included in the TMS32020 instruction

set.

4-9

Assembly Language Instructions

Table 4-4. Instruction Set Summary

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS

MNEMONIC DESCRIPTION NO. INSTRUCTION BIT CODE
WORDS
1514131211109 8 7 6 56 4 3 2 1 0

ABS Absolute value of accumulator 1 1170011100001 1T011
ADD Add to accumulator with shift 1 0000 -—S—>» | «——D—»
ADDC# Add to accumulator with carry 1 o1o000011| €-—D—>»
ADDH Add to high accumulator 1 01001000 | «-—D———»
ADDK* Add to accumulator short immediate 1 117001710 0 -—K———»
ADDS Add to low accumulator with sign 1 o1001001 | 4-—D———»

extension suppressed
ADDT? Add to accumulator with shift specified by 1 01001010 | 4-—D——»

T register
ADLK T Add to accumulator long immediate with shift 2 1101 «—S—» 00000010
AND AND with accumulator 1 01001110 | <-—D———»
ANDK T AND immediate with accumulator with shift 2 11701 «<—S—» 0 0 0 0O 01 OO
cmpLt Complement accumulator 1 1170011 1000100111
LAC Load accumulator with shift 1 0010 «-—S—>» | «——-D—>
LACK Load accumulator immediate short 1 11001010 «-—mmK————»
LACT? Load accumulator with shift specified by T register 1 o10000170 | «—D———>»
LALK T Load accumulator long immediate with shift 2 1101 «<—S—» 0 0 0 0 O O O 1
NEGT Negate accumulator 1 110011 1000100011
NORM T Normalize contents of accumulator 1 171F"°0011101 «—D—»
OR OR with accumulator 1 01001101 | <—D——»
ORKT OR immediate with accumulator with shift 2 1101 «—S—» 0 0 0 0 0 1 0 1
RoOL* Rotate accumulator left 1 110011100011 0100
ROR* Rotate accumulator right 1 117001110001 10101
SACH Store high accumulator with shift 1 01101 «-X*» | «<—D——>
SACL Store low accumulator with shift 1 01100 «-X*» | «——D——»
sBLkt Subtract from accumulator long immediate with shift 2 1101 «<—S—» 0 0 0 0 0 O 1 1
SFLT Shift accumulator left 1 11700111 000011000
SFRT Shift accumulator right 1 110011100001 1001
SuB Subtract from accumulator with shift 1 0001 «-—S—>» | «——D——»
susB# Subtract from accumulator with borrow 1 o1001111 | 4—D——>
SUBC Conditional subtract 1 o1o0001111 | <-—D—»
SUBH Subtract from high accumulator 1 01000100 | «—7m—D—»
SsuBk ¥ Subtract from accumulator short immediate 1 11001101 «-—K——m»
SuUBS Subtract from low accumulator with sign 1 o1o000101"| 4-—D——>»

extension suppressed
suBT?t Subtract from accumulator with shift specified by 01000110 | 4<—D——»

T register
XOR Exclusive-OR with accumulator 1 01001100 | «<——D—»
XORK T Exclusive-OR immediate with accumulator with shift 2 1101 «<—S—» 0 0 000110
ZAC Zero accumulator . 1 1100101 00000O0OO0OO00O0
ZALH Zero low accumulator and load high accumulator 1 01000000 | -——D—»
ZALR? Zero low accumulator and load high accumulator 1 1111011 | <—D——»

with rounding
ZALS Zero accumulator and load low accumulator with 1 01000001 «<—D—»

sign extension suppressed

TThese instructions are not included in the TMS32010 instruction set.
¥These instructions are not included in the TMS32020 instruction set.

4-10

Assembly Language Instructions

Table 4-4. Instruction Set Summary (Continued)

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS
MNEMONIC DESCRIPTION NO. INSTRUCTION BIT CODE
WORDS

1514131211109 8 7 6 5 4 3 2 1 0
ADRK?¥ Add to auxiliary register short immediate 1 o1111110 -——mK—-—>
CcMmPRT Compare auxiliary register with auxiliary register ARO 1 1100111001010 O=«CM»
LAR Load auxiliary register 1 00110 «-R>» | «<—D—>
LARK Load auxiliary register short immediate 1 1100 0 «-R¥» «——K—>
LARP Load auxiliary register pointer 1 0O101T01T01T1T000 1 «-R»
LDP Load data memory page pointer 1 01010010 | «<—D—»
LDPK Load data memory page pointer immediate 1 117001 00 «<—DP—————>»
LRLK T Load auxiliary register long immediate 2 11010 «R—» 00O0O0O0O0O0OCO
MAR Modify auxiliary register 1 o1o0t1r0101 | <—D—»
SAR Store auxiliary register 1 01110 «R¥» | «-—D——>»
SBRK Subtract from auxiliary register short immediate 1 o1111111 «-—m K>

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS
MNEMONIC DESCRIPTION NO. INSTRUCTION BIT CODE
WORDS

1514131211109 8 7 6 56 4 3 2 1 0
APAC Add P register to accumulator 1 11700111 000010101
LPHT Load high P register 1 01010011 | 4-—D—»
LT Load T register 1 oo111100!| €«<-——D——»
LTA Load T register and accumulate previous product 1 oo111t101 | €<-——D—»
LTD Load T register, accumulate previous product, 1 ocoo11t1t111 1| 4<-—D—»

and move data

LTPt Load T register and store P register in accumulator 1 ocoo111110 | 4-——7D—»
LTSt Load T register and subtract previous product 1 o1011011 | 4<———D——»
mact Multiply and accumulate 2 01011101 | «——D—»
MACDT Multiply and accumulate with data move 2 co1011100 | 4<——D——»
MPY Multiply (with T register, store product in P register) 1 oo0111000 | €«<—D—»
MPYA$ Multiply and accumulate previous product 1 oo111010 | 4«<——7D———»
MPYK Muitiply immediate 1 1 0 1 = K >
MPYS?* Multiply and subtract previous product 1 oo111011 | <—D—»
mMPYu?t Muiltiply unsigned 1 11001111 | 4«-—D—>»
PAC Load accumulator with P register 1 1170011 1T000O01TO01TO00O0
SPAC Subtract P register from accumulator 1 110011 1000O0O1TO0T110
SPH#¥ Store high P register 1 o1111101| <—D——>»
spL* Store low P register 1 017111100 | «——D—»
spmT Set P register output shift mode 1 1170011 1000O0O01 O=wM»
sQrat Square and accumulate 1 00111001 | «—D—»
sarst Square and subtract previous product 1 o101!1010 | «<—D———>»

TThese instructions are not included in the TMS32010 instruction set.
$These instructions are not included in the TMS32020 instruction set.

j
Assembly Language Instructions

Table 4-4. Instruction Set Summary (Continued)

BRANCH/CALL INSTRUCTIONS

MNEMONIC DESCRIPTION NO. INSTRUCTION BIT CODE
WORDS
1514131211109 8 7 6 56 4 3 2 1 0
B Branch unconditionally 2 111111111 «<—D————>
Bacct Branch to address specified by accumulator 1 110011 1000100101
BANZ Branch on auxiliary register not zero 2 t1T1T111011 1 «<—D——>
BBNZ T Branch if TC bit # 0 2 111110011 <—m—D——p
BBz*t Branch if TC bit = 0 2 11111000 1 —D—>
sc# Branch on carry 2 co1ro01r11101 <—D——»
BGEZ Branch if accumulator > 0 2 111101001 «—m8m—D—»
BGz Branch if accumulator > 0 2 111100011 «</—D—»
BiOZ Branch on /O status = 0 2 t1T1110101 «<—D——»
{-BLEZ. —Branch if accumulator <O 2 +1+1 100101 e—p—>
BLZ Branch if accumulator < O 2 11171700111 «<—D——»
BNC# Branch on no carry 2 0101171111 «——D——>
BNV Branch if no overflow 2 1711101111 «—D—>
BNZ Branch if accumulator # O 2 111101011 «<—D———»
BV Branch on overflow 2 111100001 «—m—D——»
BZ Branch if accumulator = O 2 111101101 «<—D———»
CALA Call subroutine indirect 1 1100111000100 100
CALL Call subroutine 2 111111101 <——D—>
RET Return from subroutine 1 117001110001 00110
1/0 AND DATA MEMORY OPERATIONS

MNEMONIC DESCRIPTION Wgzl.bs INSTRUCTION BIT CODE
1514131211109 8 7 6 5 4 3 2 1 0
BLKDT Block move from data memory to data memory 2 111111011 4<—D———»
BLKPT Block move from program memory to data memory 2 11111100 | <———D——»
DMOV Data move in data memory 1 01010110 | €<-—D—»
FORTT Format serial port registers 1 1100111000001 11F0
IN Input data from port 1 100 0 «-—PA—>» | +————D——>
ouTt Output data to port 1 1110 «<—PA—>»> | «———D———>
RFSM# Reset serial port frame synchronization mode 1 1170011100011 0110
RTXMT Reset serial port transmit mode 1 1170011 1000100O0O00O0
RXFT Reset external flag 1 1100111000001 100
SFSM# Set serial port frame synchronization mode 1 11001110001T1T0111
sTxm? Set serial port transmit mode 1 110011 1000100001
SXFT Set external flag 1 1100111000001 101
TBLR Table read 1 01011000 | <—D—»
TBLW Table write 1 01011001 <-—D—»

TThese instructions are not included in the TMS32010 instruction set.
$These instructions are not included in the TMS32020 instruction set.

Assembly Language Instructions

Table 4-4. Instruction Set Summary

(Concluded)

CONTROL INSTRUCTIONS

MNEMONIC DESCRIPTION NO. INSTRUCTION BIT CODE
WORDS

1514131211109 8 7 6 56 4 3 2 1 0
BITT Test bit 1 1001 «<—B—» | «——D—»
BITTT Test bit specified by T register 1 o1010111 | 4-—D———»
CNFDT Configure block as data memory 1 110011 1T00O0O0OO0O0OT11TO00O0
CNFPT Configure block as program memory 1 11700111 00O0O0O0OO0T1TO0M1
DINT Disable interrupt 1 110011 100O0O0O0O0O0O01
EINT Enable interrupt 1 110011 1000O0O0O0OO0OO0DO0
IDLET Idle until interrupt 1 1100111000011 111
LST Load status register STO 1 01010000 | «——7D——»
LsT1t Load status register ST1 1 01010001 «-——D—>»
NOP No operation 1 01010101 000O0O0OO0O0ODO0
POP Pop top of stack to low accumulator 1 110011 1000O01T1T 101
popD ' Pop top of stack to data memory 1 o1111010 | *-—7D—»
PSHDT Push data memory value onto stack 1 o1010100 | 4«-—D—»
PUSH Push low accumulator onto stack 1 1170011 1000O0O11T17100
Rc?t Reset carry bit 1 1170011100011 0O0O00O0
RHM* Reset hold mode 1 1717001110001 11000
ROVM Reset overflow mode 1 110011 1000O0O0O0OO0OT1TO0
RPTT Repeat instruction as specified by data mem .y value 1 o1o001011 | €<——D——>»
RPTKT Repeat instruction as specified by immediate value 1 11001011 «<—K——>
RSXMT Reset sign-extension mode 1 110011 1T000O0O0O0OT1TT10
RTC? Reset test/control flag 1 1170011 1000110010
sct Set carry bit 1 1717001110001 1000 1
SHM? Set hold mode 1 11001 11000111001
SOVM Set overflow mode 1 110011 100O0O0O0OO0OO0TU11
SST Store status register STO 1 o1111000| «-<——D—»
ssT1t Store status register ST1 1 oO1111001 | 4-—D—»
ssxmt Set sign-extension mode 1 1100111 000O0O0OO0T1T1T1
sTCt Set test/control flag 1 110011100011 0011
TRAPT Software interrupt 1 1170011 1000O01T1T1T 10

TThese instructions are not included in the TMS32010 instruction set.
$These instructions are not included in the TMS32020 instruction set.

4.3 Individual Instruction Descriptions

Each instruction in the instruction set summary is described in the following pages.
Instructions are listed in alphabetical order. Information, such as assembler syntax,
operands, operation, encoding, description, words, cycles, repeatability, and exam-
ples, is provided for each instruction. An example instruction is provided to familiarize
the user with the special format used and explain its content. Refer to Section 4.1
for further information on memory addressing. Code examples using many of the
instructions are given in Section 5 on Software Applications.

EXAMPLE

Example Instruction EXAMPLE

i+ Direct: Addressing:
:Indirect Addressing:
Immediate Addressing:

[<label>] EXAMPLE <dma>[,<shift>]
[<label>] EXAMPLE {*|*+|*-|*0+]|"0- |*BRO+| BRO-}[,<shift>[,<nextARP>]]
[<label>] EXAMPLE [<constant>]

Each instruction begins with an assembler Syntax expression. The optional
comment field that concludes the syntax is not included in the syntax expression.
Space(s) are required between each field (label, command, operand, and
comment fields) as shown in the syntax. The syntax example illustrates both direct
and indirect addressing, as well as immediate addressing in which the operand
field includes <constant>.

Operands 0 < dma < 127
0 < next ARP < 7
0 < constant < 255
Operands may -be constants or assembly-time expressions referring to memory,
1/0 and register addresses, pointers, shift counts, and a variety of constants. The
operand values used in the example syntax are shown.
Execution (PC) +1 = PC
(ACC) + [(dma) x 2shift] -~ ACC
If SXM = 1:
Then (dma) is sign-extended.
If SXM = 0:
Then (dma) is not sign-extended.
Affects C and OV; affected by OVM and SXM.
This section provides an example of the instruction operation sequence, describing
the processing that takes place when the instruction is executed. Conditional
effects of status register specified modes are also given. In addition, those bits in
the status registers that are affected by the instruction are listed.
Encoding 1% 14 13 12 1110 9 8 7 6 5 4 3 2 1 O
Direct I 0O 0 o0 O | Shift r 0 | Data Memory Address]
Indirect| 0 0 0 O] Shift [1] See Section 4.1 |
Short immediate | 1 1 0 0 1 0 1 1] 8-Bit Constant |

4-14

Long immediate

1 1 0 1] Shift [o o o o 0o 0 1 o

16-Bit Constant

Opcode examples are shown of both direct and indirect addressing or of the use
of short or long immediate operands.

EXAMPLE

Example Instruction EXAMPLE

Description

Words

Cycles

Repeatability

Example

This section decribes the instruction execution and its effect on the rest'of the
processor or memory contents. Any constraints on the operands imposed by the
processor or the assembler are also described here. The description parallels and
supplements the information given by the execution block.

1

The digit specifies the number of memory words required to store the instruction
and its extension words.

Class | (1)

Instructions are classified according to the number of cycles required for each
instruction. The single digit value enclosed in parentheses represents the cycle
execution time of the instruction when not repeated. The instruction is assumed
to be executed from on-chip ROM and use on-chip RAM. Repeatable multicycle
instructions will execute in one cycle on all repeat executions. Refer to Appendix
E for detailed information on instruction cycle timings.

Category B

The repeatability of each instruction (using RPT or RPTK) is classified as to A,
B, C, or X according to the following:

A Instruction repeatable; useful if repeated.
B Instruction repeatable; may be of some use if repeated.
Cc Instruction repeatable; not useful to repeat the instruction.
X Instruction not repeatable.
ADD DAT1,3 (DP = 10)
or
ADD *,3 If current auxiliary register contains 1281.
Before Instruction After Instruction
Data Data
Memory | >8 | Memory | >8 |
1281 1281
ACC | >2 | acc [o] [>42 |
C C

The sample code presented in the above format shows the effect of the code on
memory and/or registers.

ABS

Assembler Syntax
Operands

Execution

Encoding

Description

Words
Cycles
Repeatability

Example

Absolute Value of Accumulator ___ABS

[<label>] ABS

None
(PC) + 1~ PC
[(ACC)| - ACC

Affects C and OV, affected by OVM.
Not affected by SXM.

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[1 1 0 0 1 1.1 0 0 0 0 1 1 0 1 1

If the contents of the accumulator are greater than or equal to zero, the accu-
mulator is unchanged by the execution of ABS. If the contents of the accumulator
is less than zero, the accumulator is replaced by its two’s-complement value.

Note that >80000000 is a special case. When the overflow mode is not set, the
'ABS of >80000000 is >80000000. When in the overflow mode, the ABS of
>80000000 is >7FFFFFFF. In either case, the OV status bit is set. Also note that
the carry bit C is always reset to zero by the execution of this instruction.

1
Class IV (1)
Category C
ABS
Before Instruction After Instruction
ACC [>1234 | acc [o] | >1234 |
C C
acc [X] [>FFFFFFFF | acc o] | >1 |
c C

DD

Add to Accumulator with Shift ADD

Assembler Syntax
Direct Addressing:
Indirect Addressing:

[<label>] ADD <dma>,[<shift>]
[<label>] ADD {*|*+|*-|*0+|"0-|*BRO+|*"BRO-}[,<shift>[,<next ARP>]]

Operands 0 < dma < 127
0 < next ARP < 7
0 < shift < 15 (defaults to 0)
Execution (PC) +1 - PC .
(ACC) + [(dma) x 2shift] = ACC
If SXM = 1:
Then (dma) is sign-extended.
If SXM = 0:
Then (dma) is not sign-extended.
Affects C and OV, affected by OVM and SXM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct I 0O 0 0 O I Shift | o | Data Memory Address I
Indirect| 0 0 0 O] Shift [1] See Section 4.1 |

Description

Words
Cycles
Repeatability

Example

The contents of the addressed data memory location are left-shifted and added
to the accumulator. During shifting, low-order bits are zero-filled. High-order
bits are sign-extended if SXM = 1 and zero-filled if SXM = 0. The result is stored
in the accumulator.

1

Class | (1)

Category A

ADD DAT1,3 (DP = 10)

or

ADD *,3 If current auxiliary register contains 1281.

Before Instruction After Instruction

Data Data

Memory | >8 I Memory | >8 |
1281 1281
ACC | >2 | acc [o] | >42 |

C C

4-17

ADDC Add to Accumulator with Carry ADDC

Assembler Syntax
Direct Addressing: [<label>] ADDC <dma>
Indirect Addressing: [<label>] - ADDC {*|*+|*-|*0+|*0-|* BRO+| BRO-}[,<next ARP>]

Operands 0 < dma < 127
0 < nextARP < 7
Execution (PC) +1 - PC

(ACC) + (dma) + (C) = ACC
Affects C and OV, affected by OVM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Directl o 1 0O 0 O 0 1 1|0l - Data Memory Address I
Indirect| 0 1 0 0 0 0 1 1[1] See Section 4.1 |
Description The contents of the addressed data memory Tocation and the vaiue of the carry
bit are added to the accumulator. The carry bit is then affected in the normal
mannetr.

The ADDC instruction can be used in performing multiple-precision arithmetic.

Words 1 ,
Cycles Class | (1)
Repeatability Category B
Example 1 ADDC DAT5 (DP = 8)
or
ADDC * If current auxiliary register contains 1029.
Before Instruction After Instruction
Data Data
Memory l >4 | Memory I >4 I
1029 1029
acc [1] | >13 | acc [o] | >18 |
C C
Example 2 ADDC DATS (DP = 8)
or
ADDC * If current auxiliary register contains 1029.
Before Instruction After Instruction
Data Data
Memory l >0 I Memory | >0 l
1029 1029
Acc [1] [>FFFFFFFF] acc [1] [>0 |
C C

DDH : Add to High Accumulator _ADDH

Assembler Syntax
Direct Addressing: [<label>] ADDH <dma>
Indirect Addressing: [<label>] ADDH {*|*+|*-|*0+|*0-|*BRO+|*BRO-}[,<next ARP>]

Operands 0 < dma < 127
0O <nextARP <7
Execution (PC) +1 -~ PC

(ACC) + [(dma) x 216] - ACC

Affects C and OV, affected by OVM.
Low-order bits of the ACC not affected.

Encoding 5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct| 0 1 0 0 1 0 0 o0fo| Data Memory Address |
Indirect| 0 1 0 0 1 0 0 01| See Section 4.1 |
Description The contents of the addressed data memory location are added to the upper half

of the accumulator (bits 31 through 16). Low-order bits are unaffected by ADDH.
The carry bit C is set if the result of the addition generates a carry; otherwise, C
" is unaffected. The carry bit can only be set, not reset, by the ADDH instruction.

The ADDH instruction may be used in performing 32-bit arithmetic.

Words 1
Cycles Class | (1)
Repeatability Category B
Example ADDH DAT5 (DP = 8)
or
ADDH * If current auxiliary register contains 1029.
Before Instruction After Instruction
Data Data
Memory l >4 | Memory I >4 |
1029 - 1029
acc 1] | >13] AcC [>40013]
v C (o

4-19

ADDK

Add to Accumulator Short Immediate ADDK

Assembler Syntax

Operands

Execution

Encoding
Description

Words
Cycles
Repeatability

Example

4-20

[<label>] ADDK <constant>

0 < constant < 255

(PC) +1 - PC
(ACC) + 8-bit positive constant =~ ACC

Affects C and OV: affected by OVM.
Not affected by SXM.

% 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0

1 1 0O 0 1 1 0 O 8-Bit Constant

The 8-bit immediate value is added, rightFjustified, to the accumulator with the
result replacing the accumulator contents. The immediate value is treated as an
8-bit positive number, regardless of the value of SXM.

1
~ ClasS TV Ty
Category X
ADDK >5
Before Instruction After Instruction
acc [x] [>79B2E1 acc [o] [>79B2E®
C Cc

ADDS Add to Accumulator with Sign-Extension Suppressed ADDS

Assembler Syntax
Direct Addressing:
Indirect Addressing:

[<label>] ADDS <dma>
[<label>] ADDS {*|*+|*-|*0+|*0-|*"BRO+|*BRO-}[,<next ARP>]

Operands 0 <dma < 127
0 < next ARP < 7
Execution (PC) +1 - PC
(ACC) + (dma) - ACC
(dma) is a 16-bit unsigned number.
Affects C and OV, affected by OVM.
Not affected by SXM.
Encoding 1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct I o 1 o 0o 1 0 0 1 I 0 l Data Memory Address I
Indiect| 0 1 0 0 1 0 0 1[1] See Section 4.1 |

Description

Words
Cycles
Repeatability

Example

The contents of the specified data memory location are added with sign-extension
suppressed. The data is treated as a 16-bit unsigned number, regardless of SXM.
The accumulator behaves as a signed number. Note that ADDS produces the
same results as an ADD instruction with SXM = 0 and a shift count of 0.

1

Class | (1)

Category B

ADDS DAT11 (DP = 6)

or

ADDS * If current auxiliary register contains 779.

Before Instruction After Instruction
Data Data
Memory | >F006 | Memory | >F006 |
779 779
ACC I >3 | Acc [o] | >F009 |
(o Cc

4-21

ADDT Add to Accumulator with Shift Specified by T Register ADDT

Assembler Syntax
Direct Addressing: [<label>] ADDT <dma>
Indirect Addressing: [<label>] ADDT {*|*+|*-|*0+|*0-|*BRO+|* BRO },<next ARP>]

Operands 0 <dma < 127
0 < next ARP < 7

Execution (PC) +1 - PC
(ACC) + [(dma) x 2T register(3- 0)] - (ACC)

If SXM = 1:
Then (dma) is sign-extended.
If SXM = 0:
Then (dma) is not sign-extended.

Affects C and OV, affected by SXM and OVM.

Encoding 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Indirect| 0 1 0 0 1 0 1 01| See Section 4.1 |
Description The data memory value, left-shifted as defined by the four LSBs of the T register,

is added to the accumulator, with the result replacing the accumulator contents.
Sign extension on the data memory value is controlled by SXM.

Words 1
Cycles Class | (1)
Repeatability Category A
Example ADDT DAT127 (DP = 4)
or
ADDT * If current auxiliary register contains 639.
Before Instruction After Instruction
Data Data
Memory I >9 I Memory I >9 l
639 639
T | >FF94 | T | >FF94 |
ACC | >F715 | acc o] | >F7A5 |
o C

L 4-22

ADLK Add to Accumulator Long Immediate with Shift ADLK

Assembler Syntax

Operands

Execution

Encoding

Description

Words
Cycles
Repeatability

Example

[<label>] ADLK <constant>[,<shift>]

16-bit constant
0 < shift £ 15 (defaults to 0)

(PC) + 2 » PC _
(ACC) + [constant x 2shift] - AcC

If SXM = 1:
Then -32768 < constant < 32767.
If SXM = 0:

Then 0 < constant < 65535.
Affects C and OV, affected by OVM and SXM.

1% 14 13 12 11 10 9 8 7 6

11 0 1 Shift 0 O

0o 0o o o0 1 O

16-bit Constant

The 16-bit immediate value, left-shifted as specified, is added to the accumulator.

The result replaces the accumulator contents.

SXM determines whether the

constant is treated as a signed two’s-complement number or as an unsigned
number. The shift count is optional and defaults to zero.

2
Class V (2)
Category X
ADLK 5,8
Before Instruction
acc [x] | >10EF | ACC
C

After Instruction

[o] [>15EF

c

4-23

ADRK

Assembler Syntax

Operands

Execution

Encoding

Description

Words
Cycles
~ Repeatability

__Add to Auxiliary Register Short Immediate ADRK

[<label>] ADRK <constant>

0 < constant < 255
(PC) +1 - PC T
AR(ARP) + 8-bit positive constant = AR(ARP)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1. 1 1 1 1 1 o = 8-BitConstant

The 8-bit immediate value is added, right-justified, to the currently selected
auxiliary register with the result replacing the auxiliary register contents. The
addition takes place in the ARAU, with the immediate value treated as an 8-bit
positive integer.

Example

4-24

1
Class IV (1)
Category X
ADRK >80 (ARP = 5)
Before Instruction , After Instruction
AR5 >4321 AR5 | >4 3 A1

AND

AND with Accumulator _ AND

Assembler Syntax
Direct Addressing:
Indirect Addressing:

Operands

Execution

Encoding

[<label>] AND <dma>
[<label>] AND {*|*+|*-|*0+|*0-|*BRO+|*BRO-}[,<next ARP>]

0 < dma < 127
0 < next ARP < 7

(PC) +1 - PC
(ACC(15-0)).AND.(dma) = ACC(15-0)
0 -+ ACC(31-16)

Not affected by SXM.

1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Direct| 0 1 0 0 1 1 1 o0]o0| Data Memory Address |

Indirectf 0 1 0 0 1 1 1 0f1] See Section 4.1 |

Description

Words
Cycles
Repeatability

Example

The lower half of the accumulator is ANDed with the contents of the addressed
data memory location. The upper half of the accumulator is ANDed with all zeroes.
Therefore, the upper half of the accumulator is always zeroed by the AND
instruction.

1
Class | (1)
Category B

AND DAT16 (DP = 4)
or

AND * If current auxiliary register contains 528.
Before Instruction After Instruction
Data Data
Memory [>FF | Memory I >F F }
528 528
ACC [>12345678 | ACC |>00000078 |
C C

4-25

ANDK

AND Immediate with Accumulator with Shift ANDK

Assembler Syntax

Operands

Execution

Encoding

Description

Words
Cycles
Repeatability

Example

4-26

[<label>] ANDK <constant>[,<shift>]

16-bit constant -
0 < shift < 15 (defaults to 0)

(PC) +2 - PC
(ACC(30-0)).AND.[(constant x 2shifty] - ACC(30- -0)
0 = ACC(31) and all other bit positions not occupied by the shifted constant.

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 Shift O 0 0 0 0 1 0 O
16-bit Constant

The 16-bit immediate constant is left-shifted as specified and ANDed with the
accumulator. The result is left in the accumulator. Low-order bits below and

_high-arder bits above the shifted value are treated as zeroes, clearing the corre-

sponding bits in the accumulator. Note that the accumulator’'s most-significant
bit is always zeroed regardless of the shift-code value.

2
Class V (2)
Category X
ANDK >FFFF,12
Before Instruction After Instruction
Acc [>12345678 ACC [>02345000
C C

APAC

Add P Register to Accumulator APAC

Assembler Syntax

Operands

Execution

Encoding

Description

Words
Cycles
Repeatability

Example

[<label>] APAC

None

(PC) +1 -+ PC
(ACC) + (shifted P register) = ACC

Affects C and OV, affected by PM and OVM.
Not affected by SXM.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t 10 o0 1 1 1 0 O O O 1T O 1 0 1

The contents of the P register are shifted as defined by the PM status bits and
added to the contents of the accumulator. The result is left in the accumulator.
APAC is not affected by the SXM bit of the status register; the P register is always
sign-extended. Note that APAC is a subset of the LTA, LTD, MAC, MACD, MPYA,
and SQRA instructions.

1

Class IV (1)
Category B
APAC (PM = 0)
Before Instruction After Instruction
p [>40 | P | >40 |
ACC | >20 | acc [o] [>60 |
C C

4-27

Assembler Syntax

Operands

Execution

Encoding

Description

Words
Cycles
Repeatability

Example

4-28

Branch Unconditionally _ B

[<label>] B <pma>[{*|*+|*-|*0+|*0-|*BRO+|*BRO-}[,<next ARP>]]

0 < pma < 65535
0 < next ARP < 7

pma - PC
Modify AR(ARP) and ARP as specified.

i 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 1 1 1 1 1 1 1 1] See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified, and control
passes to the designated program memory address (pma). Note that no AR or
ARP modification occurs if nothing is specified in those fields. Pma can be either
a symbolic or a numeric address.

2

Class VHH (3)

Category X

B PRG191 191 is loaded into the program counter, and
the program continues running from that
location.

BACC

Assembler Syntax

Operands

Execution

Encoding

Description

Words
Cycles
Repeatability

Example

Branch to Address Specified by Accumulator BACC

[<label>] BACC
None
(ACC(15-0)) — PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 0 o 1 1.1 0 0 0 1. 0 0 1 0 1]

The branch uses the lower half of the accumulator (bits 15-0) for the branch
address.

1

Class VIlI (3)
Category X
BACC
Before Instruction After Instruction
PC | >16E4 | PC | >9545 |
ACC [>F7FFo9545 | ACC [>F7FF9545 |
C C

4-29

BANZ

Branch on Auxiliary Register Not Zero BANZ

Assembler Syntax

Operands

Execution

Encoding

Description

Words
Cycles
Repeatability

Example 1

Example 2

4-30

[<label>] BANZ <pma>[{*|"+|"-|"0+|*0-|*BRO+|*BRO-}[,<next ARP>]]

0 < pma < 65535
0 < next ARP < 7

If AR(ARP) # O:
Then pma - PC;
Else (PC) + 2 = PC.
Modify AR(ARP) as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 See Section 4.1

Program Memory Address

Control is passed to the designated program memory address (pma) if the current
auxiliary register is not equal to zero. Otherwise, control passes to the next
instruction. The current auxiliary register and ARP are also modified as specified.

The current auxiliary register is either incremented or decremented from zero when
the branch is not taken. Note that the AR modification defaults to *- (decrement
current AR by one) when nothing is specified, making it compatible with the
TMS32010. Pma can be either a symbolic or a numeric address.

2
Class VIl (3)
Category X
BANZ PRG35, *=-
Before Instruction After Instruction
AR | >1 | AR | >0 |
PC | >4 6 | PC | >35 |
or
AR | >0 | AR [>FFFF |
PC | >46 | PC | >4 8 |
BANZ PRG64, *+
Before Instruction After Instruction
AR | >FFFF | AR | >0 |
PC | >117 | PC | >6 4 |
or
AR | >0 | AR | >1 |
pc | >117 | PC | >119 |

BANZ Branch on Auxiliary Register Not Zero BANZ

Note:

BANZ is designed for loop control using the auxiliary registers as loop coun-
ters. Using *0+ or *0- allows modification of the loop counter by a variable
step size. Care must be exercised when doing this, however, because the
auxiliary registers behave as modulo 65536 counters, and zero may be passed
without being detected if ARO > 1.

4-31

BBNZ

Assembler Syntax

Operands

Execution

Encoding

Description

Words
Cycles
Repeatability

Example

4-32

Branch on Bit Not Equal to Zero BBNZ

[<label>] BBNZ <pma>[{*|"+|*-|*0+|*0-|*BRO+|*BRO-}[,<next ARP>]]

0 < pma < 65535
0O <nextARP < 7

If test/control (TC) status bit = 1:
Then pma = PC;
Else (PC) + 2 = PC.
Modify AR (ARP) and ARP as specified.

Affected by TC.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0O 0 1 1 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address if TC = 1. Otherwise, control

" ‘passes to the next instruction. Note that no AR or ARP modification occurs if

nothing is specified in those fields. Pma can be either a symbolic or a numeric
address. Note that the TC bit may be affected by the BIT, BITT, CMPR, LST1,
NORM, RTC, and STC instructions.

2

Class VIl (3)

Category X

BBNZ PRG650 If TC = 1, 650 is loaded into the program

counter; otherwise, the program counter
is incremented by 2.

BBZ

Branch on Bit Equal to Zero BBZ

Assembler Syntax

Operands

Execution

Encoding

Description

Words
Cycles
Repeatability

Example

[<label>] BBZ <pma>[{"|*+|*-|*0+|*0-|*"BRO+|*BRO-}[,<next ARP>]]

0 < pma < 65535
0 < next ARP < 7

If test/control (TC) status bit = O:
Then pma —* PC;
Else (PC) + 2 = PC.
Modify AR(ARP) and ARP as specified.

Affected by TC bit.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0O 0 O 1 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address if TC = 0. Otherwise, control
passes to the next instruction. No AR or ARP maodification occurs if nothing is
specified in those fields. Pma can be either a symbolic or a numeric address.
Note that the TC bit is affected by the BIT, BITT, CMPR, LST1, NORM, RTC, and
STC instructions.

2

Class VII (3)

Category X

BBZ PRG325 If TC = 0, 325 is loaded into the program

counter; otherwise, the program counter
is incremented by 2.

4-33

BC

Branch on Carry BC

Assembler Syntax

Operands

Execution

Encoding

Description

Words
Cycles
Repeatability

Example

4-34

[<label>] BC <pma>[{*|*+|*-]"0+|*0-|"BRO+|[*BRO-}[,<next ARP>]]

0 < pma < 65535
0 < next ARP < 7

if carry bit C = 1:
Then pma - PC;

Else (PC) + 2 = PC.
Modify AR(ARP) and ARP as specified.

Affected by C.
16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o 1 0 1 1 1 1 0 1| See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then

 passes to the designated program memory address if the carry bit C = 1. Other-

wise, control passes to the next instruction. Note that no AR or ARP modification
occurs if nothing is specified in those fields. Pma can be either a symbolic or a
numeric address.

Note that the carry bit C is affected by all add, subtract, and accumulate
instructions as well as the ABS, LST1, NEG, RC, SC, rotate, and shift instructions.
The carry bit is not affected by execution of BC, BNC, or nonarithmetic
instructions.

2
Class VII (3)
Category X

BC PRG512 If the carry bit C = 1, 512 is loaded into
the program counter; otherwise, the program
counter is incremented by 2.

BGEZ Branch if Accumulator Greater Than or Equal to Zero BGEZ

Assembler Syntax

Operands

Execution

Encoding

Description

Words
Cycles
Repeatability

Example

[<label>] BGEZ <pma>[{*|*+|*-|"0+|*0-|*BRO+|*BRO-}[,<next ARP>1]

0 < pma < 65535
0 < next ARP < 7

iIf (ACC) = O:
Then pma - PC;
Else (PC) + 2 = PC.
Modify AR (ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 &6 4 3 2 1 O

1 1 1 1 0 1 0 0 1 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address if the contents of the accu-
mulator are greater than or equal to zero. Otherwise, control passes to the next
instruction. Note that no AR or ARP modification occurs if nothing is specified
in those fields. Pma can be either a symbolic or a numeric address.

2

Class VIl (3)

Category X

BGEZ PRG217 217 is loaded into the program counter if
the accumulator is greater than or equal
to zero.

4-35

BGZ

Branch if Accumulator Greater Than Zero BGZ

Assembler Syntax

Operands

Execution

Encoding

Description

Words
Cycles
Repeatability

Example

4-36

[<label>] BGZ <pma>[,{*|*+|*-|*0+|*0-|*"BRO+|*BRO-}[,<next ARP>]]

0 < pma < 65535
0 s next ARP < 7

If (ACC) > 0:
Then pma - PC;
Else (PC) + 2~ PC.
Modify AR(ARP) and ARP as specified. -
i1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 o 0 o0 1 1 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address if the contents of the accu-
mulator are greater than zero. Otherwise, control passes to the next instruction.
Note that no AR or ARP modification occurs if nothing is specified in those fields.
Pma can be either a symbolic or a numeric address.

2

Class Vil (3)

Category X

BGZ PRG342 342 is loaded into the program counter if

the accumulator is greater than zero.

BIOZ

Branch on 1/O Status Equal to Zero BIOZ

Assembler Syntax

Operands

Execution

Encoding

Description

Words
Cycles
Repeatability

Example

[<label>] BIOZ <pma>[{*|*+|*-|*0+|*0-|"BRO+|*BRO-}[,<next ARP>7]"

0 < pma < 65535
0 < next ARP < 7

If BIO = O:
Then pma - PC;
Else (PC) + 2 = PC.
Modify AR(ARP) and ARP as specified.

% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 1 1 1 1 0 1 0 1] See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address if the BIO pin is low. Other-
wise, control passes to the next instruction. Note that no AR or ARP modification
occurs if nothing is specified in those fields. Pma can be either a symbolic or a
numeric address.

BIOZ in conjunction with the BIO pin can be used to test if a peripheral is ready
to send or receive data. Polling the BIO pin using BIOZ may be preferable to an
interrupt when executing time-critical loops.

2

Class VII (3)

Category X

BIOZ PRG64 If the BIO- pin is active (low), then

a branch to location 64 occurs.

4-37

BIT

Test Bit

s
-

Assembler Syntax
Direct Addressing: [<label>] BIT <dma>,<bit code> ,
Indirect Addressing: [<label>] BIT {*|*+|*-|*0+|*0-|*BRO+|*BR0-},<bit code>[,<next ARP>]

Operands

Execution

Encoding

0 < dma g 127
0 <ARP <7
0 < bitcode < 15

(PC) +1 = PC
(dma bit at bit address (15-bit code)) = TC.

Affects TC.

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
Direct| 1 0 0 1| BitCode [o Data Memory Address |

Indirectl 1 0 0 1 | Bit Code | 1 I See Section 4.1 l

Description

Words
Cycles
Repeatability

Example

4-38

The BIT instruction copies the specified bit of the data memory value to the TC
bit of status register ST1. Note that the BITT, CMPR, LST1, and NORM
instructions also affect the TC bit in status register ST1. A bit code value is
specified that corresponds to a certain bit address in the instruction, as given by
the following table:

Bit Code
Bit Address 11109 8
(LSB) 0 1111
1 1110
2 1101<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>