
TMS320C25
User's Guide
Preliminary

~ .
TEXAS

. INSTRUMENTS

SPRU012

TMS320C25
User's Guide

Digital Signal Processor Products

Preliminary

TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (Tl) reserves the right to make changes in the
devices or the dev.ice specifications identified in this publication
without notice. Tl advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

In the absence of written agreement to the contrary, Tl assumes no
liability for Tl applications assistance, customer's product design,
or infringement of patents or copyrights of third parties by or arising
from use of semiconductor devices described herein. Nor does Tl
warrant or represent that any license, either express or implied, is
granted under any patent right, copyright, or other intellectual
property right of Tl covering or relating to any combination, machine,
or process in which such semiconductor devices might be or are
used.

Copyright© 1986, Texas Instruments Incorporated

Section

1 Introduction
1.1 General Description
1 .2 Typical Applications
1.3 Key Features
1 .4 How To Use This Manual
1 .5 References

2 Architectural Overview

Contents

2.1 'Functional Block Diagram
2.2 Pinout and Signal Descriptions
2.3 Memory
2.4 Central Arithmetic Logic Unit (CALU)
2.5 System Control
2.6 1/0 Interface
2.7 System Configurations
2.8 Addressing Modes and Instructions
2.9 Development Support

3 Device Operation
3.1 Internal Hardware Summary
3.2 Memory Organization
3.2.1 On-Chip Program ROM
3.2.2 On-Chip Data RAM Blocks
3.2.3 Memory Maps
3.2.4 Memory- Mapped Registers
3.2.5 Auxiliary Registers
3.2.6 Addressing Modes
3.2.7 Memory-to-Memory Moves
3.3 Central Arithmetic Logic Unit (CALU)
3.3.1 Scaling Shifter
3.3.2 ALU and Accumulator
3.3.3 Multiplier, T and P Registers
3.4 System Control
3.4.1 Program Counter and Related Hardware
3.4.2 Reset
3.4.3 Status Registers
3.4.4 Timer Operation
3.4.5 Repeat Counter
3.4.6 Powerdown Mode
3.5 External Memory and 1/0 Interface
3.5.1 Memory Combinations
3.5.2 Internal Clock Timing Relationships
3.5.3 External Read Cycle
3.5.4 External Write Cycle
3.6 Interrupts
3.6.1 Interrupt Operation
3.6.2 External Interrupt Interface
3.7 Serial Port
3.7.1 Burst-Mode Operation
3.7.2 Continuous-Mode Operation Using Frame Sync Pulses
3.7.3 Continuous-Mode Operation Without Frame Sync Pulses
3.7.4 Initialization of Continuous-Mode Operation Without Frame Sync Pulses
3.8 Multiprocessing and Direct Memory Access (OMA)

Page

1-1
1-2
1-4
1-5
1-6
1-7

2-1
2-3
2-3
2-7
2-10
2-11
2-12
2-12
2-15
2-22

3-1
3-3
3-5
3-5
3-6
3-7
3-9
3-9
3-12
3-13
3-13
3-14
3-15
3-16
3-18
3-18
3-21
3-22
3-24
3-26
3-26
3-26
3-27
3-28
3-28
3-30
3-31
3-31
3-33
3-35
3-38
3-40
3-41
3-43
3-44

iii

3.8.1 Synchronization
3.8.2 Global Memory
3.8.3 The Hold Function
3.9 General-Purpose 1/0 Pins
3.9.1 BIO Input
3.9.2 External Flag Output

4
4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1
4.2.2
4.3

Assembly Language Instructions
Memory Addressing Modes

Direct Addressing Mode
Indirect Addressing Mode
Immediate Addressing Mode

Instruction Set
Symbols and Abbreviations
Instruction Set Summary

Individual Instruction Descriptions

5 Software Applications
5.1 Processor Initialization
5.2 Program Control
5.2.1 Subroutines
5.2.2 Software Stack
5.2.3 Timer Operation
5.2.4 Single-Instruction Loops
5.2.5 Computed GOTOs
5.3 Interrupt Service Routine
5.3.1 Context Switching
5.3.2 Interrupt Priority
5.4 Memory Management
5.4.1 Block Moves
5.4.2 Configuring On-Chip RAM
5.4.3 Using On-Chip RAM for Program Execution
5.5 Fundamental Logical and Arithmetic Operations
5.5.1 Status Register Effect on Data Processing
5.5.2 Bit Manipulation
5.6 Advanced Arithmetic Operations
5 .. 6.1 Overflow Management
5.6.2 Scaling
5.6.3 Moving Data
5.6.4 Multiplication
5.6.5 Division
5.6.6 Floating- Point Arithmetic
5.6.7 Indexed Addressing
5.6.8 Extended-Precision Arithmetic
5.7 Application-Oriented Operations
5.7.1 Companding
5.7.2 Filtering
5.7.3 Fast Fourier Transforms (FFT)

6 Hardware Applications
6.1 External Local Memory Interface
6.2 Wait States
6.3 Direct Memory Access
6.4 Global Memory
6.5 Codec Interface
6.6 1/0 Ports

iv

3-45
3-45
3-47
3-49
3-49
3-50

4-1
4-2
4-2
4-3
4-7
4-8
4-8
4-9
4-13

5-1
5-2
5-4
5-4
5-6
5-7
5-8
5-9
5-11
5-11
5-14
5-15
5-15
5-17
5-20
5-23
5-23
5-24
5-25
5-25
5-26
5-26
5-28
5-32
5-35
5-37
5-38
5-42
5-42
5-43
5-46

6-1
6-2
6-3
6-4
6-6
6-7
6-8

7 Assembler Directives
7.1 Creation of TMS320C25 Source Code
7 .1 .1 Label Field
7.1.2 Command Field
7 .1 .3 Operand Field
7 .1 .4 Comment Field
7.2 Symbols
7.2.1 Predefined Symbols
7 .3 Constants
7.3.1 Decimal Integer Constants
7.3.2 Binary Integer Constants
7.3.3 Hexadecimal Integer Constants
7.3.4 Character Constants
7 .3.5 Assembly-Time Constants
7 .4 Character Strings
7 .5 Expressions
7 .5.1 Arithmetic Operators in Expressions
7.5.2 Parentheses in Expressions
7.5.3 Well-Defined Expressions
7 .5.4 Absolute and Relocatable Symbols in Expressions
7.5.5 Externally Referenced Symbols in Expressions
7.6 Assembler Directives
7 .6.1 Directives That Affect the Location Counter
7 .6.2 Directives That Affect Assembler Output
7.6.3 Directives That Initialize Constants
7 .6.4 Directives That Provide Linkage Between Programs
7.6.5 Miscellaneous Directives
7.7 Individual Directive Descriptions
7.8 Source Listing Format
7 .9 Object Code
7 .9.1 Object Code Format
7.9.2 Changing Object Code
7 .10 Cross- Reference Listing
7 .11 Assembler Error Messages

8 Assembler Macros
8.1 Macro Definitions
8.1.1 Sample Macros
8.2 Labels
8.3 Strings
8.4 Constants
8.5 Variables
8.5.1 Parameters
8.5.2 Macro Symbol Table (MST)
8.5.3 Variable Qualifiers
8.6 Operators
8.6.1 Arithmetic Operators
8.6.2 Relational Operators
8.6.3 Logical Operators
8.7 Keywords
8.7.1 Symbol Attribute Component Keywords
8.7.2 Parameter Attribute Component Keywords
8.8 Verb Statements
8.8.1 $ASG (Value Assignment Verb)
8.8.2 $ELSE (Alternate Else Verb)
8.8.3 $END (Macro Definition Termination Verb)
8.8.4 $ENDIF (IF Termination Verb)
8.8.5 $IF (Conditional If Verb)
8.8.6 $MACRO (Macro Definition Verb)
8.8.7 $VAR (Variable Declaration Verb)

7-1
7-2
7-2
7-3
7-3
7-3
7-4
7-4
7-4
7-5
7-5
7-5
7-5
7-6
7-6
7-6
7-7
7-7
7-7
7-8
7-8
7-9
7-9
7-10
7-10
7-10
7-11
7-12
7-44
7-45
7-46
7-49
7-50
7-51

8-1
8-2
8-4
8-5
8-5
8-5
8-5
8-6
8-6
8c7
8-9
8-9
8-9
8-9
8-10
8-10
8-10
8-11
8-11
8-13
8-13
8-13
8-13
8-14
8-17

v

8.9 Model Statements
8.1 0 Macro Examples
8.1 0.1 ID (Identification Macro)
8.10.2 GENCMT (Generate Comment Macro)
8.1 0.3 FACT (Factorial Macro)
8.11 Macro Error Messages

9 Link Editor
9.1 Description
9.2 Program Definition
9.3 Link Editor Files
9.3.1 Link Control File
9.3.2 Object Modules
9.3.3 Libraries
9.3.4 Linked Output File
9.3.5 Listing File
9.4 Linker Commands .
9.4.1 Entering a Command
9.4.2 Linker Command Set
9.4.3 Individual Command Descriptions
9.5 Linking Examples
9.5.1 Simple Linking
9.5.2 ROM/RAM Partitioning
9.5.3 Partial Linking
9.5.4 Library Creation
9.6 Link Editor Error Messages

A TM S320C25 Data Sheet
B TMS32020 Data Sheet
C TMS320C10 Data Sheet
D TMS32020/TMS320C25 System Migration
E TMS320C25 Instruction Cycle Timings
F TMS320C25 Development Support/Part Order Information
G TMS320C25 Macro Assembler and Link Editor Installation

vi

8-17
8-18
8-1.8
8-19
8-20
8-20

9-1
9-2
9-2
9-3
9-3
9-3
9-4
9-4
9-4
9-5
9-5
9-5
9-7
9-36
9-39
9-41
9-43
9-47
9-50

A-1
B-1
C-1
0-1
E-1
F-1
G-1

111 ustrations

Figure

1 -1 .
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.
3-13.
3-14.
3-15.
3-16.
3-17.
3-18.
3-19.
3-20.
3-21.
3-22.
3-23.
3-24.
3-25.
3-26.
3-27.
3-28.
3-29.
3-30.
3-31.
3-32.
3-33.
3-34.
3-35.
3-36.
3-37.
4-1.
4-2.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
6-1.

TMS320C25 Digital Signal Processor
TMS320C25 Block Diagram
TMS320C25 Pin Assignments
TMS320C25 Memory Maps
A Minimum Processing System
Global Memory Parallel Processing .. .
Host/Peripheral Coprocessing Using Interface Control Signals
TMS320C25 Development Support
TMS320C25 Block Diagram
On-Chip Data Memory
Memory Maps .. .
Indirect Auxiliary Register Addressing Example
Auxiliary Register File .. .
Methods of Instruction Operand Addressing
Central Arithmetic Logic Unit (CALU)
Examples of Carry Bit Operation .. .
Program Counter and Related Hardware
Three- Level Pipeline Operation
Two- Level Pipeline Operation .. .
Pipeline Operation During BANZ Instruction
Pipeline Operation When Crossing Program Boundaries
Status Register Organization
Timer Block Diagram
Four- Phase Clock
Read Cycle Functional Timing
Functional Timing of Write Cycles and Wait States
Interrupt Mask Register (IMR)
Internal Interrupt Logic Diagram .. .
Interrupt Timing Diagram
The DRR and DXR Registers
Serial Port Block Diagram
Burst-Mode Serial Port Transmit Operation
Burst- Mode Serial Port Receive Operation
Byte-Mode DRR Operation .. .
Serial Port Transmit Continuous Operation (FSM=1)
Serial Port Receive Continuous Operation (FSM=1)
Serial Port Transmit Continuous Operation (FSM=O)
Serial Port Receive Continuous Operation (FSM =0)
Continuous Transmit Operation Initialization
Continuous Receive Operation Initialization
Synchronization Timing Diagram
Global Memory Access Timing
Hold Timing Diagram .. .
BIO Timing Diagram
External Flag Timing Diagram .. .
Direct Addressing Block Diagram
Indirect Addressing Block Diagram .. .
On-Chip RAM Configurations .. .
MACO Operation
Execution Time vs. Number of Multiply-Accumulates
Program Memory vs. Number of Multiply-Accumulates
An In-Place DIT FFT with In-Order Outputs and Bit-Reversed Inputs
An In-Place DIT FFT with In-Order Inputs but Bit-Reversed Outputs
Minimal External Program Memory Configuration

Page

1-3
2-2
2-4
2-8
2-13
2-14
2-15
2-22
3-2
3-6
3-8
3-10
3-11
3-12
3-14
3-15
3-18
3-19
3-19
3-20
3-21
3-23
3-25
3-28
3-29
3-31
3-32
3-34
3-35
3-36
3-37
3-38
3-39
3-39
3-40
3-41
3-42
3-42
3-43
3-44
3-45
3-46
3-48
3-50
3-51
4-2
4-3
5-18
5-27
5-30
5-31
5-47
5-47
6-2

vii

6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.
7-1.
7-2.
7-3.
9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
9-8.
D-1.
F-1.
F-2.
F-3.

One Wait-State Memory Access Timing
One Wait-State Generator Using MSC
Direct Memory Access Using a Master-Slave Configuration
Direct Memory Access in a PC Environment
Global Memory Communication .. .
Codec Interface
1/0 Port Addressing
1/0 Port Processor-to-Processor Communication
Source Statement Line Example .. .
Sample Object Code
Cross- Reference Listing Format .. .
Source for Module MAIN
Source for Module RESET .. .
Source for Module INTRPT .. .
Listing File for a Simple Link .. .
Listing File for ROM/RAM Partitioning
Listing and Object Files for a Partial Link
Listing and Object Files for Relinking the Partial Link Output
Source File for Sequential Library Creation
Serial Port System Migration .. .
TMS320 Family Development Support
TMS320C25 XDS/22 Emulator System Configuration
TMS320 Nomenclature

Tables

6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
7-44
7-45
7-50
9-36
9-37
9-38
9-40
9-42
9-44
9-46
9-48
D-3
F-1
F-4
F-5

Table Page

1-1. Typical Applications of the TMS320 Family 1-4
2-1. TMS320C25 Signal Descriptions .. 2-5
2-2. Addressing Modes ... 2-16
2-3. Instruction Symbols .. 2-17
2-4. TMS320C25 Instructions . 2-18
3-1. Internal Hardware .. 3-3
3-2. Memory-Mapped Registers ... 3-9
3-3. PM Shift Modes ... 3-17
3-4. Status Register Field Definitions . 3-23
3-5. Interrupt Locations and Priorities . 3-32
3-6. Global Data Memory Configurations . 3-46
4-1. Indirect Addressing Arithmetic Operations 4-5
4-2. Bit Fields for Indirect Addressing .. 4-5
4-3. Instruction Symbols . 4-9
4-4. Instruction Set Summary ... 4-10
5-1. Bit-Reversal Algorithm for an 8-Point Radix-2 DIT FFT 5-48
5-2. FFT Memory Space and Time Requirements . 5-54
7-1. Results of Operations on Absolute and Relocatable Items . 7-8
7-2. Assembler Directives That Affect the Location Counter 7-9
7-3. Assembler Directives That Affect Assembler Output . 7-10
7-4. Assembler Directives That Initialize Constants 7-10
7-5. Assembler Directives That Provide Linkage Between Programs 7-11
7-6. Miscellaneous Assembler Directives .. 7-11
7-7. A$sembler Directive Symbols ... 7-12
7-8. Object Record Format and Tags ... 7-48
7-9. Assembly Symbol Attributes . 7-51
7-10. Non-Fatal Error Listing .. 7-52

viii

7-11. Fatal Error Listing .. 7-53
7-12. Assembly Information Message Listing 7-54
8-1. Variable Qualifiers .. 8-7
8-2. Variable Qualifiers for Symbol Components . 8-8
8-3. Symbol Attribute Component Keywords 8-10
8-4. Parameter Attribute Component Keywords . 8-11
8-5. Macro Error Messages . 8-20
9-1. Linker Syntax Symbols .. 9-5
9-2. Linker Command Set Summary . 9-6
E-1. TMS320C25 Instructions by Cycle Class E-1
E-2. Cycle Timings for Cycle Classes When Not in Repeat Mode . E-2
E-3. Cycle Timings for Cycle Classes When in Repeat Mode . E-4

ix

x

1. Introduction

The TMS320C25 Digital Signal Processor is a member of the TMS320 family of VLSI
digital signal processors and peripherals. The TMS320 family supports realtime
digital signal processing (DSP) and computation-intensive applications in the areas
of telecommunications, modems, speech processing, graphics/image processing,
spectrum analysis, audio processing, digital filtering, high-speed control, instru­
mentation, and numeric processing.

The architectural investment made in the TMS320 family provides the user with a
choice of five distinct processors (TMS32010, TMS320C10, TMS32011,
TMS32020, TMS320C25) to best support a wide spectrum of DSP applications.
Software compatibility is maintained throughout the family to protect the user's
investment in the architecture. Each processor has software and hardware tools to
facilitate rapid design.

The first processor in the TMS320 family is the TMS32010, a microcomputer with
a 32-bit internal Harvard architecture and a 16-bit external interface capable of
executing five million instructions per second. The TMS32020 is the next processor
in the family with an architecture based on that of the TMS32010. Major architectural
changes made on the TMS32020 enable the device to lower system cost and improve
throughput by two to three times over the TMS32010 for DSP applications. The
TMS32020 instruction set is a superset of that of the TMS32010, thus maintaining
software compatibility.

The TMS320C25 is a pin-compatible CMOS version of the TMS32020 with a faster
instruction cycle time and the inclusion of additional hardware and software features.
The TMS320C25 is completely object code-compatible with the TMS32020 so that
TMS32020 programs run unmodified on the TMS320C25. Some of the major
enhancements of the TMS320C25 over the TMS32020 are as follows:

• Faster instruction cycle time: 1 00 ns
• Low-power CMOS technology with powerdown mode
• 4K words of on-chip masked ROM
• Eight auxiliary registers with a dedicated arithmetic unit
• Eight-level hardware stack
• Fully static double-buffered serial port
• Concurrent DMA using an extended hold operation
• Bit-reversed addressing modes for radix-2 FFTs
• Extended-precision arithmetic and adaptive filtering support
• Full-speed operation of MAC/MACO from external memory
• Accumulator carry bit and related instructions

Development tools and applications support are key advantages to using the
TMS320C25. Full-speed emulators, software simulators and assemblers, and exten­
sive documentation including over 735 pages of application reports provide for rapid
design and development cycles. Texas Instruments regional technology centers,
system application engineers, and third-party support are available for DSP educa­
tion, training, and design.

1 -1

Introduction

1.1 General Description

1-2

The TMS320C25 architecture is based upon that of the TMS32020 digital signal
processor. The TMS320C25 increases performance of DSP algorithms through a
faster instruction cycle time and innovative additions to the TMS320 family archi­
tecture. The TMS320C25 is object code-compatible with the TMS32020, thus
enabling current TMS32020 programs to run unmodified on the TMS320C25.

(

Two versions of the TMS320C25 are available to support price and performance
requirements for different applications: 100-ns and 125-ns instruction cycle time
versions.

The 100-ns instruction cycle time provides double the throughput for existing
applications. Since most instructions are capable of executing in a single cycle, the
processor is capable of executing ten million instructions per second (10 MIPS).
Increased throughput on the TMS320C25 for many DSP applications is attained by
means of single-cycle multiply/accumulate instructions with a data move option,
eight auxiliary registers with a dedicated arithmetic unit, instruction set support for
adaptive filtering and extended-precision arithmetic, bit-reversal addressing, and
faster 1/0 necessary for data-intensive signal processing.

The architectural design of the' TMS320C25 emphasizes overall system speed,
communication, and flexibility in processor configuration. Control signals and
instructions provide block memory transfers, communication to slower off-chip
devices, multiprocessing implementations, and floating-point support.

Two large on-chip data RAM blocks (a total of 544 words), one of which is
configurable either as program or data memory, provide increased flexibility in system
design. An off-chip 64K-word directly addressable data memory address space is
included to facilitate implementations of DSP algorithms. The large on-chip 4K-word
masked ROM can be used to cost-reduce systems, thus providing for a true
single-chip DSP solution. Programs of up to 4K words can be masked into the
internal program ROM. The remainder of the 64K-word program memory space is
located externally. Large programs can execute at full speed from this memory space.
Programs may also be downloaded from slow external memory to on-chip RAM for
full-speed operation. The VLSI implementation of the TMS320C25 incorporates all
of these features as well as many others such as a hardware timer, serial port, and
block data transfer capabilities.

Introduction

Figure 1-1. TMS320C25 Digital Signal Processor

1-3

Introduction

1.2 Typical Applications

1-4

The TMS320 family's unique versatility and power offer a new approach to a variety
of sophisticated applications. Table 1-1 lists some typical applications of the
TMS320 family.

Table 1-1. Typical Applications of the TMS320 Family

GENERAL-PURPOSE DSP GRAPHICSAMAGING INSTRUMENTATION

Digital Filtering 3-D Rotation Spectrum Analysis

Convolution Robot Vision Function Generation

Correlation Image Transmission/ Pattern Matching

Hilbert Transforms Compression Seismic Processing

Fast Fourier Transforms Pattern Recognition Transient Analysis

Adaptive Filtering Image Enhancement Digital Filtering

Windowing Homomorphic Processing Phase-Locked Loops

Waveform Generation Workstations

Animation/Digital Map

VOICE/SPEECH CONTROL MILITARY

Voice Mail Disk Control Secure Communications

Speech Vocoding Servo Control Radar Processing

Speech Recognition Robot Control Sonar Processing

Speaker Verification Laser Printer Control Image Processing

Speech Enhancement Engine Control Navigation

Speech Synthesis Motor Control Missile Guidance

Text to Speech Radio Frequency Modems

TELECOMMUNICATIONS AUTOMOTIVE

Echo Cancellation FAX Engine Control

ADPCM Transcoders Cellular Telephones Vibration Analysis

Digital PBXs Speaker Phones Antiskid Brakes

Line Repeaters Digital Speech Adaptive Ride Control

Channel Multiplexing Interpolation (OSI) Global Positioning

1200 to 19200-bps Modems X.25 Packet Switching Navigation

Adaptive Equalizers Video Conferencing Voice Commands

DTMF Encoding;Oecoding Spread Spectrum Digital Radio

Data Encryption Communications Cellular Telephones

CONSUMER INDUSTRIAL MEDICAL

Radar Detectors Robotics Hearing Aids

Power Tools Numeric Control Patient Monitoring

Digital Audio/TV Security Access Ultrasound Equipment

Music Synthesizer Power Line Monitors Diagnostic Tools

Educational Toys Prosthetics

Fetal Monitors

Introduction

Many of the TMS320C25's features, such as single-cycle multiply/accumulate
instructions, 32-bit arithmetic unit, large auxiliary register file with a separate arith­
metic unit, and large on-chip RAM and ROM, make the device particularly applicable
in digital signal processing systems. At the same time, general-purpose applications
of the TMS320C25 are greatly enhanced by its large address spaces, on-chip timer,
serial port, multiple interrupt structure, provision for external wait states, and multi­
processor interface capability.

The flexibility of the TMS320C25 allows it to be configured to satisfy a wide range
of system requirements. This allows the device to be applied in systems currently
using costly bit-slice processors or custom ICs. Some of the system configurations
are:

• A standalone system using 4K words of on-chip ROM and 544 words of
on-chip RAM

• Parallel multiprocessing systems with shared global data memory
• Host/peripheral coprocessing using interface control signals.

1.3 Key Features

The TMS320C25 Digital Signal Processor offers a cost-effective alternative to custom
VLSI and bit-slice devices. It has the following significant key features:

• 100-ns instruction cycle time
• 544 words of on-chip data RAM
• 4K words of on-chip masked ROM
• 128K words of data/program space
• Single-cycle multiply/accumulate instructions
• Object code-compatible with the TMS32020
• 16-bit instruction and data words
• 32-bit ALU and accumulator
• 16-bit parallel shifter
• Block moves for efficient data/program management
• Unsigned multiply instruction for extended-precision arithmetic
• Carry bit with associated add and subtract instructions
• Instructions for floating-point operations and adaptive filtering
• Eight auxiliary registers and a dedicated arithmetic unit
• Bit-reversed indexed addressing mode for radix-2 FFTs
• Wait states for communication to slow off-chip memories/peripherals
• Double-buffered static serial port for direct codec interface
• ·Three external, maskable user interrupts
• Synchronization capability between multiple processors
• On-chip clock generator
• 1 .8-micron CMOS technology; single 5-volt supply
• 68-pin plastic leaded chip carrier (PLCC)
• Two versions available:

40-MHz clock
32-MHz clock

• Commercial and military versions supported.

1-5

Introduction

1.4 How To Use This Manual

1-6

The purpose of this user's guide is to serve as a reference book for the TMS320C25
Digital Signal Processor. Sections 2 through 6 provide specific ,information about the
architecture and operation of the device, and Sections 7 through 9 describe how to
use the macro assembler/linker support software. TMS320C25 electrical specifica­
tions and mechanical data can be found in the data sheet (Appendix A).

This user's guide is designed to provide information that assists managers and
hardware/software engineers in application development. The Introduction and
Architectural Overview sections provide managers with basic information that
describes the capabilities of the TMS320C25 for a particular application. The hard­
ware engineer will find the Architectural Overview, Device Operation, and Hardware
Applications sections and the Data Sheet and System Migration appendices most
helpful. The Assembly Language Instructions, Software Applications, Assembler
Directives, Macros, and Link Editor sections and the Instruction Cycle Timings,
Development Support, and Software Installation appendices will aid the software
engineer.

The following table lists each section and briefly describes the section contents.

Section 2.

Section 3.

Section 4.

Section 5.

Section 6.

Section 7.

Section 8.

Section 9.

Architectural Overview. Brief description of the TMS320C25
hardware components and their functions. Block diagram, pinout
of the 68-pin plastic leaded chip carrier (PLCC) package, a table
of signal descriptions, and a list of TMS320C25 instructions.

Device Operation. TMS320C25 design description, hardware
components, and their functions. Functional block diagram and
internal hardware summary table.

Assembly Language Instructions. Addressing modes and format
descriptions. Instruction set summary listed according to function.
Alphabetized individual instruction descriptions with examples.

Software Applications. Software application examples for the use
of various TMS320C25 instruction set features.

Hardware Applications. Hardware design techniques and applica­
tion examples for interfacing to codecs or external memory.

Assembler Directives. Description of assembly language source
statement, source listing, and object code format. Individual
assembler directive descriptions in alphabetical Ofder. Assembler
error diagnostics.

Assembler Macros. Description of macro assembly language
elements. Individual macro verb descriptions. Several macro
examples given. Macro error diagnostics.

Link Editor. Description of link editor and its files. Individual linker
command descriptions in alphabetical order. Examples of simple
linking, ROM/RAM partitioning, partial linking, and library creation
given. Linker error diagnostics.

Seven appendices are included to provide additional information.

Appendix A. TMS320C25 Data Sheet. Electrical specifications, timing, and
mechanical data for the TMS320C25.

Appendix B. TMS32020 Data Sheet. Electrical specifications, timing, and
mechanical data for the TMS32020 Digital Signal Processor.

Introduction

Appendix C. TMS320C10 Data Sheet. Electrical specifications, timing, and
mechanical data for the TMS320C10 Digital Signal Processor.

Appendix D. TMS32020/TMS320C25 System Migration. Information for
upgrading a TMS32020-based system to a TMS320C25-based
system.

Appendix E. TMS320C25 Instruction Cycle Timings. Listing of the number of
cycles for an instruction to execute in a given memory configura­
tion.

Appendix F. TMS320C25 Development Support/Part Order Information. List­
ings of the hardware and software available to support the
TMS320C25.

Appendix G. TMS320C25 Macro Assembler and Link Editor Installation. Series
of procedures used to install and verify the TMS320C25 Macro
Assembler and Link Editor on a VAX or Tl/IBM PC.

1 .5 References

The following reference list contains useful information regarding functions, oper­
ations, and applications of digital signal processing. These books also list other
references to many useful technical papers. The references are organized into cate­
gories of general DSP, speech, image processing, and digital control theory.

General Digital Signal Processing:

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw-Hill Company, Inc., 1979.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ: Pren­
tice-Hall, Inc., 1974.

Burrus, C.S. and Parks, T.W., DFT/FFT and Convolution Algorithms. New York,
NY: John Wiley & Sons, Inc., 1984.

Digital Signal Processing Applications with the TMS320 Family, Texas Instru­
ments, 198.6.

Gold, Bernard and Rabiner, Lawrence R., Theory and Application of Digital
Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Gold, Bernard and Rader, C.M., Digital Processing of Signals. New York, NY:
McGraw-Hill Company, Inc., 1969.

Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1977.

IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Processing.
New York, NY: IEEE Press, 1979.

Jackson, Leland B., Digital Filters and Signal Processing. Hingham, MA: Kluwer
Academic Publishers, 1986.

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Canada: Carleton
University, 1983.

Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

1-7

Introduction

1-8

Oppenheim, Alan V. and Schafer, R.W., Digital Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1975.

Oppenheim, Alan V. and Willsky, A.N. with Young, l.T., Signals and Systems.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Parks, T.W. and Burrus, C.S., Digital Filter Design. New York, NY: John Wiley
& Sons, Inc., 1986.

Speech:

Gray, A.H. and Markel, J.D., Linear Production of Speech. New York, NY:
Springer-Verlag, 1976.

Jayant, N.S. and Noll, Peter, Digital Coding of Waveforms. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1984.

Papamichalis, Panos, Practical Approaches to Speech Coding. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1986.

Rabiner, Lawrence R. and Schafer, R.W., Digital Processing of Speech
Signals. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Image Processing:

Andrews, H.C. and Hunt, B.R., Digital Image Restoration. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1977.

Gonzales, Rafael C. and Wintz, Paul, Digital Image Processing. Reading, MA:
Addison-Wesley Publishing Company, Inc., 1977.

Pratt, William K., Digital Image Processing. New York, NY: John Wiley & Sons,
1978.

Digital Control Theory:

Jacquot, R., Modern Digital Control Systems. New York, NY: Marcel Dekker,
Inc., 1981.

Katz, P., Digital Control Using Microprocessors. Englewood Cliffs, NJ: Pren­
tice-Hall, Inc., 1981.

Kuo, B.C., Digital Control Systems. New York, NY: Holt, Reinholt and Winston,
Inc., 1980.

Moroney, P., Issues in the Implementation of Digital Feedback Compensators.
Cambridge, MA: The MIT Press, 1983.

Phillips, C. and Nagle, H., Digital Control System Analysis and Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

2. Architectural Overview

The TMS320C25 high-performance digital signal processor implements a single­
accumulator, Harvard-type architecture in which program and data memory reside
in separate address spaces. This allows a full overlap of instruction fetch and
execution. Instructions are included to provide data transfers between the two
spaces. Externally, the program and data memory spaces are multiplexed over the
same bus so as to maximize the address range for both spaces while minimizing the
pin count of the device. Internally, the TMS320C25 architecture maximizes proc­
essing power by maintaining two separate bus structures, program and data, for
full-speed execution. Increased flexibility in system design is provided by two large
on-chip data RAM blocks, one of which is configurable either as program or data
memory.

The TMS320C25 incorporates a separate level of pipelining for instruction decoding.
The instruction fetch-decode-execute pipeline is essentially invisible to the user,
except in some cases where the pipeline must be broken (such as for branch
instructions). In this case, the instructions will have slightly different timing charac­
teristics than the TMS32020. Other instructions, such as those that operate with
external data memory, have improved cycle timings compared to the TMS32020. The
device executes the majority of its instructions in a single machine cycle when
sufficiently fast memory is utilized. The device may also communicate to slower
off-chip memories or peripherals by utilizing the READY signal. In those cases, the
instructions become multicycle.

The major topics discussed in this section are as follows:

• Functional Block Diagram {Section 2.1 on page 2-3)

• Pinout and Signal Descriptions {Section 2.2 on page 2-3)

• Memory (Section 2.3 on page 2-7)

• Central Arithmetic Logic Unit {CALU) (Section 2.4 on page 2-10)

• System Control {Section 2.5 on page 2-11)

• 1/0 Interface {Section 2.6 on page 2-12)

• System Configurations {Section 2.7 on page 2-12)

• Addressing Modes and Instructions {Section 2.8 on page 2-15)

• Development Support {Section 2.9 on page 2-22)

2-1

Architectural Overview

2-2

R/W

STRB
READY

iii
XF

HOW
HOLDA

MSC
BIO
iiS
~

MP/Ml:----'
iiiiT12-01--7'~----'

A15-AO

015-DO

~n
~ ~ ~
:::
~n

i11
: ; ~
=~.
~ i:
: ~.

~ ~ :
:::
H;
: ~ ~
n

3

ARPl3l

3

ARBC3l

3

16

16 16

BLOCK B2
(32 x 16)

DATA RAM
BLOCK Bl

(256 x 16)

16

ADDRESS

PROGRAM
ROM

14096 x 16)

;:;:;:::;:::;::::::::::::::::::w::::;:: PROGR

1a H
H
H

ii
~ ~
::

16

INSTRUCTION

16

16

16

AR0(16l

AR1116l

AR2(16l

AR3116l

AR4116)

AR5(16l 32

AR6C16l

IR(16l

STOC16l

ST1C16l

RPTCIBl

IFR16l

.----------DR
.--------CLKR

.--------FSR

DRRC16l

DXR(16l

TIM(16l

PRDC16l

IMR(6)

GREG CBI

16

MULTIPLIER

PRC32l

.-----ox
CLKX
FSX

~ ~::: :: : : :: ::: ::: : ::: : : : : : :: ::::: :: : : ::: : :: ::DATA BUS : :: :: :: : :: ::: : :: : : : : :: : ::: : ::: :: : ::: : :: : ::: : : :: : :: : : : : :: : : :: : :: : : :::::::: :: :

LEGEND:
ACCH = Accumulator high IFR = Interrupt flag register PC = Program counter
ACCL = Accumulator low IMR = Interrupt mask register PFC = Prafetch counter
ALU = Arithmetic logic unit IR = Instruction register RPTC = Repeat instruction counter
ARAU = Auxiliary register arithmetic unit MCS = Microcall stack GREG = Global memory allocation register
ARB = Auxlllary register pointer buffer QIR = Queue instruction register RSA = Serial port receive shift register
ARP = Auxiliary register pointer PR = Product register XSR = Serial port transmit shift register
DP = Data memory page pointer PRO = Period register for timer ARO-AR7 = Auxiliary registers
ORR = Serial port data receive register TIM =Timer STO,ST1 = Status registers
DXR = Serial port data transmit register TR = Temporary register

Figure 2-1. TMS320C25 Block Diagram

Architectural Overview

2.1 Functional Block Diagram

The functional block diagram of the TMS320C25, shown in Figure 2-1, outlines the
principal blocks and data paths within the processor. The diagram also shows all of
the TMS320C25 interface pins.

The TMS320C25 architecture is built around two major buses: the program bus and
the data bus. The program bus carries the instruction code and immediate operands
from program memory. The data bus interconnects various elements, such as the
Central Arithmetic Logic Unit (CALU) and the auxiliary register file, to the data RAM.
Together, the program and data buses can carry data from on-chip data RAM and
internal or external program memory to the multiplier in a single cycle for
multiply/accumulate operations.

The TMS320C25 has a high degree of parallelism; e.g., while the data is being
operated upon by the CALU, arithmetic operations may also be implemented in the
Auxiliary Register Arithmetic Unit (ARAU). Such parallelism results in a powerful
set of arithmetic, logic, and bit-manipulation operations that may all be performed
in a single machine cycle.

2.2 Pinout and Signal Descriptions

The TMS320C25 is packaged in a 68-pin plastic leaded chip carrier (PLCC). The
electrical specifications and mechanical data are given in Appendix A, the
TMS320C25 Data Sheet. Figure 2-2 shows a pinout of the TMS320C25 PLCC
package. Table 2-1 lists each TMS320C25 signal, its pin location, function, and
input, output, or high-impedance state (1/0/Z). The signals in Table 2-1 are grouped
according to function and alphabetized within that grouping.

Adaptor sockets are commercially available to convert a TMS320C25 PLCC package
to a TMS32020-like 68-pin grid array (PGA) footprint, thus maintaining plug-in
compatibility.

2-3

Architectural Overview

10 >
IC c a: >< o.-NC">-=t'Ln~ ...1c:c ~.~u 0

~~ ~~owf....1....100
CCCCCCCC m~a:a:UU>>

9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61
Vss 10 60 IACK

D7 11 59 MSC
D6 12 58 CLKOUT1
D5 13 57 CLKOUT2
D4 14 56 XF
D3 15 55 HOLDA
D2 16 54 DX
D1 17 53 FSX
DO 18 52 X2/CLKIN

SYNC 19 51 X1
INTO 20 50 BR
INT1 21 49 STRB
INT2 22 48 R/W
Vee 23 47 PS

DR 24 46 IS
FSR 25 45 DS
AO 26 44 Vss

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

0.-NC">-=t'Ln~~u~~o.-NC">-=t'Ln
0<C<C<C<C<C<C<CU<C<C.-.-.-.-.-.-
> > <C<C<C<C<C<C

Figure 2-2. TMS320C25 Pin Assignments

2-4

Architectural Overview

Table 2-1. TMS320C25 Signal Descriptions

SIGNAL PIN 1/0/Zt DESCRIPTION

ADDRESS/DATA BUSES

A15 MSB 43 0/Z Parallel address bus A15 (MSB) through AO (LSB). Multiplexed to address external
A14 42 data/program memory or 1/0. Placed in high-impedance state in the hold mode.
A13 41
A12 40
A11 39
A10 38
A9 37
AB 36
A7 34
A6 33
A5 32
A4 31
A3 30
A2 29
A1 28
AO LSB 26

D15 MSB 2 1/0/Z Parallel data bus D15 (MSB) through DO (LSB). Multiplexed to transfer data between
D14 3 the TMS320C25 and external data/program memory or 1/0 devices. Placed in high-
D13 4 impedance state when not outputting or when JIB or FR>D5 is asserted.
D12 5
D11 6
D10 7
D9 8
DB 9
D7 11
D6 12
D5 13
D4 14
D3 15
D2 16
D1 17
DO LSB 18

INTERFACE CONTROL SIGNALS

15"S" 45 0/Z Data, program, and 1/0 space select signals. Always high unless low level asserted for
l5S" 47 communicating to a particular external space. Placed in high-impedance state in the
~ 46 hold mode.

READY 66 I Data ready input. Indicates that an external device is prepared for the bus transaction to
be completed. If the device is not ready (READY= 0), the TMS320C25 waits one cycle
and checks READY again. READY also indicates a bus grant to an external device after
a ~ (bus request) signal.

R/W 48 0/Z Read/write signal. Indicates transfer direction when communicating to an external device.
Normally in read mode (high), unless low level asserted for performing a write operation.
Placed in high-impedance state in the hold mode.

~ 49 0/Z Strobe signal. Always high unless asserted low to indicate an external bus cycle. Placed
in high-impedance state in the hold mode.

MULTIPROCESSING SIGNALS

~ 50 0 Bus request signal. Asserted when the TMS320C25 requires access to an external global
data memory space. READY is asserted to the device when the bus is available and the
global data memory is available for the bus transaction.

FR>D5 67 I Hold input. When asserted, the TMS320C25 places the data, address, and control lines
in the high-impedance state.

"R"O"r6A 55 0 Hold acknowledge signal. .Indicates that the TMS320C25 has gone into the hold mode
and that an external processor may access the local external memory of the TMS320C25.

~ 19 I Synchronization input. Allows clock synchronization of two or more TMS320C25s. ~
is an active-low signal and must be asserted on the rising edge of CLKIN.

t Input/Output/High-impedance state

2-5

Architectural Overview

Table 2-1. TMS320C25 Signal Descriptions (Concluded)

SIGNAL PIN 1/0/Zt DESCRIPTION

INTERRUPT AND MISCELLANEOUS SIGNALS

BIO 68 I Branch control input. Polled by BIOZ instruction. If low, the TMS320C25 executes a
branch. This signal must be active during the BIOZ instruction fetch.

IACK 60 0 Interrupt acknowledge signal. Output is only valid while CLKOUT1 is low. Indicates
receipt of an interrupt and that the program is branching to the interrupt-vector location
indicated by A 15-AO.

INT2 22 I External user interrupt inputs. Prioritized and maskable by the interrupt mask register
INT1 21 and the interrupt mode bit.
INTO 20

MP/MC 1 I Microprocessor/microcomputer mode select pin. When asserted low, the pin causes the
internal ROM to be mapped into the lower 4K words of the program memory map.

MSC 59 0 Microstate complete signal. Asserted low and valid only during CLKOUT1 low when the
TMS320C25 has just com~e~d a memory operation, such as an instruction fetch or a
data memory read/write. S can be used to generate a one wait-state READY signal
for slow memory.

RS 65 I Reset input. Causes the TMS320C25 to terminate execution and forces the program
counter to zero. When brought to a high level, execution begins at location zero of
program memory. RS affects various registers and status bits.

XF 56 0 External flag output (latched software-programmable signal). Used for signalling other
processors in multiprocessor configurations or as a general-purpose output pin.

SUPPLY/OSCILLATOR SIGNALS

CLKOUT1 58 0 Master clock output signal (CLKIN frequency/4). Rises at the beginning of quarter-phase
3 (03) and falls at the beginning of quarter-phase 1 (01).

CLKOUT2 57 0 A second clock output signal. Rises at the beginning of quarter-phase 2 (02) and falls
at beginning of quarter-phase 4 (04).

Vee 23 I Four 5-V supply pins, tied together externally.
35
61
62

Vss 10 I Three ground pins, tied together externally.
27
44

X1 51 0 Output pin from the internal oscillator for the crystal. If a crystal is not used, this pin
should be left unconnected.

X2/CLKIN 52 I Input pin to the internal oscillator from the crystal. If a crystal is not used, a clock may
be input to the device on this pin.

SERIAL PORT SIGNALS

CLKR 64 I Receive clock input. External clock signal for clocking data from the DR (data receive)
pin into the RSR (serial port receive shift register). Must be present during serial port
transfers.

CLKX 63 I Transmit clock input. External clock signal for clocking data from the XSR (serial port
transmit shift register) to the DX (data transmit) pin. Must be present during serial port
transfers.

DR 24 I Serial data receive input. Serial data is received in the RSR (serial port receive shift
register) via the DR pin.

DX 54 0/Z Serial data transmit output. Serial data transmitted from the XSR (serial port transmit shift
register) via the DX pin. Placed in high-impedance state when not transmitting.

FSR 25 I Frame synchronization pulse for receive input. The falling edge of the FSR pulse initiates
the data-receive process by gating the clock for receive (CLKR) input to the ORR (serial
port data receive register). and beginning the clocking of the RSR.

FSX 53 1/0 Frame synchronization pulse for transmit input/output. The falling edge of the FSX pulse
initiates the data-transmit process by gating the clock for transmit (CLKX) input to the
shift register associated with DXR (serial port data transmit register). and beginning the
clocking of the XSR. The FSX is normally an input, but this pin is an output when the
TXM in the status register is set to 1.

t Input/Output/High-impedance state

2-6

Architectural Overview

2.3 Memory

The TMS320C25 provides a total of 544 16-bit words of on-chip data RAM, which
is divided into three separate blocks (BO, B1, and B2). Of the 544 words, 256 words
(block BO) are configurable as either data or program memory by CNFD or CNFP
instructions provided for that purpose; 288 words (blocks B1 and B2) are always
data memory. A data memory size of 544 words allows the TMS320C25 to handle
a data array of 512 words while still leaving 32 locations for intermediate storage.
The TMS320C25 provides 64K words of off-chip directly addressable data memory
space.

The TMS320C25 is equipped with a 4096-word on-chip ROM that can be mask­
programmed at the factory with a customer's program. The ROM may be mapped
in or out of the TMS320C25's memory space by an external pin on the device,
MicroProcessor/MicroComputer select (MP/MC). This permits the designer to
accelerate time-to-market with a TMS320C25-based product by using external ROM,
and cost-reducing it later with the large 4K internal ROM on the device without any
PC-board redesign. The TMS320C25 provides 64K words of off-chip program
memory space in which programs can be executed at full speed with sufficiently fast
memory or with wait states inserted for slower memories. Block BO may also be used
as program memory. Instructions can be downloaded from slow (inexpensive)
external program memory by using block repeats from program to data memory
(RPTK and BLKP). The block can then be configured as program memory using the
CNFP instruction. In this way, small time-critical blocks of program memory can
be stored inexpensively yet executed at full speed.

The TMS320C25 provides three separate address spaces for program memory, data
memory, and 1/0. In addition to blocks BO, B1, and B2, the data memory map (see
Figure 2-3) includes the memory-mapped registers and reserved locations. Six
peripheral registers including the serial port registers, timer register, period register,
interrupt mask register, and global memory allocation register have been mapped into
the data memory space for easy modification. Reserved locations may not be used
for storage, and their contents are undefined when read.

Architectural Overview

PROGRAM

0(>0000)
INTERRUPTS

0(>0000)

AND RESERVED
(EXTERNAL)

31(>001F) 31(>001Fl
32(>0020) 32(>0020)

4015(>0FAFl
4016(>0FBO)

4095(> OFFFl
4096(>1000)

EXTERNAL

PROGRAM

INTERRUPTS
AND RESERVED
(ON-CHIP ROM)

ON-CHIP
ROM

RESERVED

EXTERNAL

0(>0000)

5(>0005)
6(>0006)

95(>005F)
96(>0060)

127(>007Fl
128(>0080)

511(>01FF)
. 512(>0200)

767(>02FF)
768(>0300)

1023(> 03FFl
1024(>0400)

65,535(> FFFF) 65,535(> FFFFl 65,535(> FFFF)
~------~

IF MP/MC = 1
(MICROPROCESSOR MODE)

IF MP/MC= 0
(MICROCOMPUTER MODEi

(al MEMORY MAPS AFTER A CNFD INSTRUCTION

0(>0000)

311>001Fl
32(>00201

65,279(> FEFF)
65.280(> FFOOl

PROGRAM

INTERRUPTS
AND RESERVED

(EXTERNAL)

EXTERNAL

ON-CHIP
BLOCK BO

0(>0000)

31(>001Fl
32(>0020)

4015(>0FAF)
4016(>OFBO)

4095(> OFFFl
4096(>1000)

65,279(> FEFF)
65,280(>FFOO)

PROGRAM

INTERRUPTS
AND RESERVED
(ON-CHIP ROM)

ON-CHIP
ROM

RESERVED

EXTERNAL

ON-CHIP

BLOCK BO

0(>0000)

5(>0005)
6(>0006)

95(>005F)
96(>0060)

127{>007Fl
128(>0080)

511 (>01 FF)
512(>0200)

767(>02FFl
768{>0300)

1023(> 03FFl
1024(>0400)

65,535(>FFFF) 65,535(> FFFF) 65,535(> FFFFl
~------~

IF MP/MC= 1
(MICROPROCESSOR MODEi

IF MP/MC= 0
(MICROCOMPUTER MODE)

(bl MEMORY MAPS AFTER A CNFP INSTRUCTION

DATA

ON-CHIP
MEMORY-MAPPED

REGISTERS

RESERVED

ON-CHIP
BLOCK B2

RESERVED

ON-CHIP
BLOCK BO

ON-CHIP
BLOCK B1

EXTERNAL

DATA

ON-CHIP
MEMORY-MAPPED

REGISTERS

RESERVED

ON-CHIP
BLOCK B2

RESERVED

DOES NOT
EXIST

ON-CHIP
BLOCK 81

EXTERNAL

Figure 2-3. TMS320C25 Memory Maps

2-8

PAGE 0

PAGES 1-3

PAGES 4-5

PAGES 6-7

PAGES 8-511

PAGE 0

PAGES 1-3

PAGES 4-5

PAGES 6-7

PAGES 8-511

Architectural Overview

The TMS320C25 provides a register file containing eight Auxiliary Registers
(ARO-AR7), which may be used for indirect addressing of data memory or for
temporary storage. These registers may be either directly addressed by an instruction
or indirectly addressed by a three-bit Auxiliary Register Pointer (ARP). The auxiliary
registers and the ARP may be loaded from either data memory or by an immediate
operand defined in the instruction. The contents of these registers may also be stored
into data memory.

The auxiliary register file is connected to the Auxiliary Register Arithmetic Unit
(ARAU). The ARAU may autoindex the current auxiliary register while the data
memory location is being addressed. Indexing by either +/-1 or the contents of ARO
may be performed. As a result, accessing tables of information does not require the
CALU for address manipulation, thus freeing it for other operations.

Although the ARAU is useful for address manipulation in parallel with other oper­
ations, it may also serve as an additional general-purpose arithmetic unit since the
auxiliary register file can directly communicate with data memory. The ARAU
implements 16-bit unsigned arithmetic, whereas the CALU implements 32-bit
two's-complement arithmetic. Branches dependent on the comparison of ARO with
the auxiliary register pointed to by ARP are also provided.

The TMS320C25 contains a 16-bit Program Counter (PC), a 16-bit Prefetch Counter
(PFC), a MicroCall Stack (MCS) register, and an eight-level hardware stack for PC
storage. The program counter contains the address of the currently executing
instruction, either on-chip or off-chip, and the prefetch counter is used for fetching
instructions. The eight-level stack is used during interrupts and subroutines, and the
MCS is used to store the contents of the PFC during BLKD/BLKP, MAC/MACO,
and TBLR/TBLW instructions.

The contents of the accumulator may be loaded into the PC in order to implement
"computed go to" operations. The TMS320C25 includes push and pop instructions
for nesting of subroutines/interrupts beyond eight levels by allowing a stack to be
built in data memory. These instructions store the top of the stack into data memory
or load it into the accumulator.

The TMS320C25 local memory interface consists of a 16-bit parallel data bus
(015-00), a 16-bit program address bus (A15-AO), three pins for data/program
memory or 1/0 space select (OS, PS, and TS), and various system control signals.
The R/W signal controls the direction of a data transfer, and STRB provides a timing
signal to control the transfer. When using on-chip program RAM, ROM, or high­
speed external program memory, the TMS320C25 runs at full speed without wait
states. The use of a READY signal allows wait-state generation for communicating
with slower off-chip memories.

The TMS320C25 supports Direct Memory Access (OMA) to its external
program/data memory using the HOLD and HOLDA signals. Another processor can
take complete control of the TMS320C25's external memory by asserting HOLD low.
This causes the TMS320C25 to place its address, data, and control lines in the
high-impedance state. Signaling between the external processor and the
TMS320C25 can be performed using interrupts. Two modes are available on the
device. In the TMS32020-like mode, execution is suspended during assertion of
HOLD. In the new "concurrent OMA" mode, the TMS320C25 continues to execute
its program while operating from internal RAM or ROM, thus greatly increasing
throughput in data-intensive applications.

2-9

Architectural Overview

2.4 Central Arithmetic Logic Unit (CALU)

2-10

The TMS320C25 CALU. contains a 16-bit scaling shifter, a 16 x 16-bit parallel
multiplier, a 32-bit Arithmetic Logic Unit {ALU), a 32-bit accui:nulator, and some
additional scalers available at the outputs of both the accumulator and the multiplier.

' '• ' ,j' '

The following steps occur in the implementation of a typical ALU instruction:

1) Data is fetched from the RAM on the data bus,
2) Data is passed through the scaling shifter and the ALU where the arithmetic is

performed, and
3) The result i~ moved into the accumulator.

One input to the ALU is always provided from the accumulator, and the other input
may be transferred from the Product Register {PR) of the multiplier or the scaling
shifter which is loaded from data memory.

The TMS320C25 scaling shifter has a 16-bit input connected to the data bus and a
32-bit output connected to the ALU. The scaling shifter produces a left-shift of 0
to 16 bits on the input data, as programmed in the instruction. The LSBs of the output
are filled with zeros, and the MSBs may be either filled with zeros or sign-extended,
depending upon the state of the sign-extension mode bit of status register ST1.
Additional shift capabilities enable the processor to perform numerical scaling, bit
extraction, extended arithmetic, and overflow prevention.

The TMS320C25 32-bit ALU and accumulator perform a wide range of arithmetic
and logical instructions, the majority of which execute in a single clock cycle. The
overflow saturation mode may be programmed through the SOVM and ROVM
{set/reset overflow mode) instructions. When the accumulator is in the overflow
saturation mode and an overflow occurs, an overflow flag is set and the accumulator
is loaded with the most positive/negative number depending upon the direction of
overflow. ·

The 32-bit accumulator is split into two .16-bit segments for storage in data memory:
ACCH {accumulator high) and ACCL {accumulator low). Additional shifters at the
output of the accumulator provide a shift of 0 to 7 places to the left. This shift is
performed while the data is being transferred to the data bus for storage. The contents
of the accumulator remain unchanged. The accumulator also has an in-place one-bit
shift to the left or right {SFL or SFR instructions) and rotate through carry {AOL or
ROA instructions) for shifting the contents of the accumulator.

A carry bit has been added to the TMS320C25 to facilitate multiple-precision arith­
metic. The carry bit is affected by all add and subtract instructions. Two new
instructions, ADDC {add with carry) and SUBB {subtract wth borrow), use the carry
bit when computing a result.

The TMS320C25 utilizes a 16 x 16-bit hardware multiplier, which is capable of
computing a 32-bit product during every machine cycle. Two registers are associated
with the multiplier:

• A 16-bit Temporary Register {TR) that holds one of the operands for the
multiplier, and

• A 32-bit Product Register {PR) that holds the product.

The output of the product register can be left-shifted 1 or 4 bits. This is useful for
implementing fractional arithmetic or justifying fractional products. The output of the
PR can also be right-shifted 6 bits to enable the execution of up to 128 consecutive
multiply /accumulates without overflow.

An unsigned multiply {MPYU) instruction facilitates extended-precision multipli­
cation. The unsigned contents of the T register are multiplied by the unsigned

Architectural Overview

contents of the addressed data memory location, with the result placed in the P
register.

Two multiply/accumulate instructions (MAC and MACO) fully utilize the computa­
tional bandwidth of the multiplier, allowing both operands to be processed simul­
taneously. For MAC and MACO, two operands are transferred to the multiplier each
cycle via the program and data buses. This provides for single-cycle
multiply/accumulates when used with repeat (RPT or RPTK) instructions. The
program bus can supply data from internal or external memory (RAM or ROM) and
still maintain single-cycle operation. The SORA (square/add) and SORS
(square/subtract) instructions pass the same value to both inputs of the multiplier
for squaring a data memory value.

The TMS320C25 supports floating-point operations for applications requiring a large
dynamic range. A normalization (NORM) instruction is used to normalize fixed-point
numbers contained in the accumulator by performing left shifts. The LACT {load
accumulator with shift specified by the T register) instruction denormalizes a float­
ing-point number by arithmetically left-shifting the mantissa through the input
scaling shifter. The AOOT and SUBT instructions have also been provided to allow
additional arithmetic operations with shift specified by the T register. Floating-point
numbers with 16-bit mantissas and 4-bit exponents can thus be manipulated.

The device has a variety of branch instructions that are interpreted according to the
status of the ALU. Bit test instructions {BIT and BITT) have also been included,
which do not affect the accumulator but allow the testing of a specified bit of a word
in data memory.

2.5 System Control

Control operations are provided on the TMS320C25 by an on-chip timer, a repeat
counter, three external maskable user interrupts, and internal interrupts generated
by serial port operations or by the timer.

The TMS320C25 provides a memory-mapped 16-bit timer {TIM) register that is a
down counter continuously clocked by CLKOUT1. A timer interrupt (TINT) is
generated whenever the timer decrements to zero. The timer is reloaded with the value
contained in the period (PRO) register within the next cycle after it reaches zero so
that interrupts may be programmed to occur at regular intervals of (PRO + 1) x
CLKOUT1 cycles. This feature is useful for control operations and for synchronously
sampling or writing to peripherals.

The TMS320C25 design includes a repeat feature that allows a single instruction to
be performed up to 256 times. The repeat counter (RPTC) is loaded with either a
data memory value (in the case of the RPT instruction) or an immediate value (in
the case of the RPTK instruction). The repeat feature can be used with instructions
such as multiply/accumulates, block moves, 1/0 transfers, and table read/writes.
Those instructions that are normally multicycle are pipelined when using the repeat
feature, and effectively become single-cycle instructions. For example, the table read
(TBLR) instruction ordinarily takes four cycles, but when repeated, a table location
can be read every cycle.

The TMS320C25 has three external maskable user interrupts (INT2-INTO) available
for external devices that interrupt the processor. Internal interrupts are generated
by either the serial port, the timer, or the software interrupt instruction. Interrupts
are prioritized with reset having the highest priority and the serial port transmit
interrupt having the lowest priority.

2-11

Architectural Overview

The c9nditions and.modes of the TMS320C25 are stored in the two status registers,
STO and ST1. Instructions allow for storing and loading the status registers into and
from data memory. In this manner, the current status of the device may be saved
during interrupts and subroutine calls.

2.6 1/0 Interface

The TMS320C25 supports a wide range of system interfacing requirements. Three
separate address spaces (program, data, and 1/0} provide interfacing to memory and
1/0, thus maximizing system throughput. 1/0 design is simplified by having 1/0
treated the same way as memory. 1/0 devices are mapped into the 1/0 address space
using the processor's external address and data buses in the same manner as
memory-mapped d.evices. Interfacing to memory and 1/0 devices of varying speeds
is accomplished by using the READY line.

The TMS320C25 1/0 space consists of 16 input and 16 output ports. These ports
provide the full 16-bit parallel 1/0 interface via the data bus on the device. A single
input or output operation typically takes two cycles; however, when used with the
repeat counter, the operation becomes single-cycle.

An on-chip serial port provides direct communication with serial devices such as
codecs, serial A/D converters, and other serial systems. The interface signals are
compatible with codecs and many other serial devices with a minimum of external
hardware. The two serial port memory-mapped registers {the data transmit/receive
registers} may be operated in either an 8-bit byte or 16-bit word mode. The transmit
framing synchronization pulse can be generated internally or externally. The maxi­
mum speed of the serial port is 5 MHz.

The primary enhancements of the TMS320C25's serial port over the TMS32020 are:

• Double-buffering for both receive and transmit operations, thus allowing a
continuous bit stream even if FSX is an output,

• No minimum CLKR/CLKX frequency {fmin = 0 Hz}, and
• Frame sync mode {FSM} bit, which allows continuous operation with no frame

synchronization pulses.

The frame sync mode is useful in communicating to "PCM highways." For AT&T
T1 and CCITT G711 /712 lines, the TMS320C25 can easily be made to communicate
directly in these formats by counting the transmitted/received bytes in software and
performing SFSM/RFSM instructions as needed to set/reset the FSM bit.

2.7 System Configurations

2-12

The flexibility of the TMS320C25 allows configurations to satisfy a wide range of
system requirements. The TMS320C25 can be used as follows:

• A standalone system {a single processor using 4K words of on-chip ROM and
544 words of on-chip RAM},

• Parallel multiprocessing systems with shared global data memory, or
• Host/peripheral coprocessing using interface control signals.

The standalone hardware system interface consists of a 16-bit parallel data bus, a
16-bit address bus, three pins for memory space select, and various system control
signals. In Figure 2-4, an external data RAM and a PROM/EPROM have been added
to the minimum processing system. The READY signal allows wait-state generation
for communicating with slower off-chip memories. All the memories and 1/0 devices

Architectural Overview

are directly controlled by the TMS320C25, thus minimizing external hardware
requirements.

A 1 5-A 0 (::::::::::::::::i:;((::i::::ii(((((:;::(:;((: A DOR ESS BUS '.::i:::::::::::;(::::::iiiiiiiii::ii(i::i::::i:::::

READY

TMS320C25

~---fiS

~--10s

r-- --,
I EPROM/ I
I PROM
I (OPTIONAL) I
L --- .J

r-- --,
I DATA RAMI I (OPTIONAL) I
I I
- -- ...I

1/0
DEVICES

PS D 1 5-DO ·:i::::::;:::::i::ii::i::::::i§::{ii::::::::::::::::::. D ~·f ~-.·~~:~· 'ii§i§§§§§iiiiiiiii{ii::§::i§iiiiii§i:·.

Figure 2-4. A Minimum Processing System

The serial port can interface to serial devices such as codecs and serial A/D
converters. Serial communication can also be used between processors, e.g., to
connect two minimal systems together to make a multiprocessing system.

For multiprocessing applications, the TMS320C25 has the capability of allocating
global data memory space and communicating with that space via the BR (bus
request) and READY control signals. The 8-bit memory-mapped global memory
allocation register (GREG) specifies up to 32K words of the TMS320C25's data
memory as global external memory. The contents of the register determine the size
of the global memory space. If the current instruction addresses an operand within
that space, BR is asserted to request control of the bus. The length of the memory
cycle is controlled by the READY line.

In a multiprocessing system using global memory, the address space of each
processor is divided into local and global sections. Global memory can be used for
common data memory storage.

Figure 2-5 shows a configuration for a parallel processing system using global
memory. Two TMS320C25s share a global data memory while executing from local
program memory. The arbitration for the global memory is handled in software by
using the XF and BIO pins. The XF pin acts as an external flag, and the BIO pin can
be polled by a branch (BIOZ) instruction whose condition depends on the state of
BIO.

2-13

Architectural Overview

2-14

TMS320C25
#1

READY

TMS320C25
#2

BR 1--------+----------------.....-4 BIO

XF~-----4--------------~

D15-DO

A15-AO

LOCAL
MEMORY a:

w
u. u.
::>
CD

GLOBAL
MEMORY

a:
w
u. u.
::>
CD

LOCAL
MEMORY

#2

Figure 2-5. Global Memory Parallel Processing

READY

D15-DO

A15-AO

Multiprocessing with the TMS320C25 may also be accomplished through the use
of two sets of interface control signals: HOLD/HOLDA and interrupts. HOLD/HOLDA
{hold/hold acknowledge) signals allow another microprocessor to read from or write
to the local off-chip data/program memory of the temporarily halted processor. Using
these signals to implement direct memory access is useful for downloading to or
initializing the TMS320C25. In interrupt-driven multiprocessing, time-critical oper­
ations can be protected by masking out interrupts.

The TMS320C25 has been enhanced to provide a new hold mode that provides the
ability to perform concurrent OMA The new hold mode has been defined so that if
the device is executing from on-chip program memory {ROM or RAM) and HOLD
is asserted, the device is not halted, but instead proceeds with program execution
until an external access must be made. This greatly enhances system throughput in
multiprocessing applications.

Many applications require a digital signal processing-type peripheral interface to a
general-purpose 16- or 16/32-bit microcomputer. Such configurations are often
useful when a general-purpose system is already available. A host/peripheral
configuration using the interface control signals of HOLD/HOLDA is shown in Figure
2-6.

Architectural Overview

XF READY ..._,.~,__ _ _,J
HOST

PROCESSOR

SELECT
S -----1 HOLDA

HOLD

SYSTEM A. _... ~_ ~ TMS320C25
k'."""' . ·------·••••"- I./••••••••••••••••·-···········-.•·••••••••••~

~ INT D15-DO ~·:•:•:·:·?.A.1:°~ -~~~;·:·:·:w ~:·:•:•:•:•:•:·:~·:•:•:•:•:·:~·.1?~:1:~-~':J~:·:·:•:•:•:•:•:•:•:•:•:·:~ D15-DO XF__-....

r--1 llF CONTROL- I T ffi::c v 1 -y l/F CONTROL r--
A 15-AO A15-AO

··· ~ r-wcAi.-1 ·:::
••' LOCAL ~ LOCAL II MEMORY I :•:•:•:

~ ~· MEMORY
•:·:·:~ MEMORY a: ~ #2 I #3 I ~::·:•:
:::. #1 ~ (DATA! I (OPTIONAL I ·::::::
::::::: l ~ L~~IGR~M2_1 ~::::::~
::::::: ~ ~ :::::::
:::.·:::::::.ADDRESS eus·::::::::~ L(.":·:·:·.·::·:·:·:~.·.·.·:::::. ADDRess eUS :~~:.·.·:.·::.·:.·.·.·.·.·.·.·.·.·.·:.·.·: .. y~·································--·························

-y ~
SELECT - \ _..z MUX ~

l

Figure 2-6. Host/Peripheral Coprocessing Using Interface Control Signals

A great advantage to using the TMS320C25 in a multiprocessor system is its ability
to be synchronized to an external signal. A special SYNC pin allows the internal clocks
of two or more TMS320C25s to be synchronized. Since the processors operate on
the same internal clock phase, all external signals will also be synchronized, elimi­
nating the need for external logic to synchronize interprocessor signals.

2.8 Addressing Modes and Instructions

The TMS320C25 instruction set supports numeric-intensive signal processing
operations as well as general-purpose applications such as multiprocessing and
high-speed control. The TMS320C25 is completely object code upward-compatible
with the TMS32020 so that TMS32020 programs run unmodified on the
TMS320C25. The TMS32010 source code is upward-compatible with the
TMS320C25 source code.

For maximum throughput, the current instruction is executed while the next
instruction is decoded and the one following that is prefetched. Since the same data
lines are used to communicate to external data/program or 1/0 space, the number
of cycles may vary depending upon whether the next data operand fetch is from
internal or external memory. Highest throughput is achieved by maintaining data
memory on-chip and using either internal or fast external program memory.

2-15

Architectural Overview

2-16

Three memory addressing modes are available with the TMS320C25 instruction set:
direct, indirect, and immediate addressing. Both direct and indirect addressing can
be used to access data memory. When using direct addressing, seven bits of the
instruction word are concatenated with the nine bits of the Data memory page Pointer
(DP) to form the 16-bit data memory address. With a 128-word page length, the
DP register points to one of 512 possible data memory pages to obtain a 64K total
data memory space. The seven-bit address in the instruction points to the specific
location within the data memory page. Direct addressing can be used with all
instructions except CALL, the branch instructions, immediate operand instructions,
and instructions with no operands.

Flexible and powerful indirect addressing is provided by the eight auxiliary registers
(ARO-AR7). The data address to be used in an instruction is placed into one of eight
auxiliary registers. To select a specific auxiliary register, the Auxiliary Register Pointer
(ARP) is loaded with a value from 0 through 7, designating ARO through AR7,
respectively. The ARAU implements 16-bit unsigned arithmetic, performing auxiliary
register arithmetic operations in the same cycle as the execution of the instruction.

There are seven types of indirect addressing: indexing with either increment or
decrement, indexing by either adding or subtracting the contents of ARO, indexing
by either adding or subtracting the contents of ARO with the carry propagation
reversed (for FFTs), or no indexing (see Table 2-2). All indexing operations are
performed on the current auxiliary register in the same cycle as the original instruction,
with an optional new ARP value being loaded.

Bit-reversed indexed addressing modes allow efficient 1/0 to be performed for the
resequencing of data points in a radix-2 FFT program. The direction of carry propa­
gation in the ARAU is reversed when this mode is selected and ARO is added
to/subtracted from the current auxiliary register. Typical use of this addressing mode
requires that ARO first be set to a value corresponding to one-half of the array size,
and AR (ARP) be set to the base address of the data (the first data point).

Table 2-2. Addressing Modes

ADDRESSING MODE OPERATION

OPA Direct addressing
OP *(,NARP) Indirect; no change to AR.
OP *+(,NARP) Indirect; current AR is incremented.
OP *-(,NARP) Indirect; current AR is decremented.
OP *O+(,NARP) Indirect; ARO is added to current AR.
OP *0-(,NARP) Indirect; ARO is subtracted from current AR.
OP *BRO+(,NARP) Indirect; ARO is added to current AR (with

reverse carry propagation).
OP *BRO-(,NARP) Indirect; ARO is subtracted from current AR

(with reverse carry propagation).

NOTE: The optional NARP field specifies a new value of the ARP.

In immediate addressing, the instruction word contains the value of the immediate
operand. The TMS320C25 has both single-word (8-bit and 13-bit constant) short
immediate instructions and two-word (16-bit constant) long immediate instructions.
In the case of long (16-bit constant) immediate instructions, the word following the
instruction opcode is used as the immediate operand. Included in the TMS320C25's
instruction set are 17 immediate operand instructions.

Table 2-3 defines the symbols and abbreviations used in the operation portion of the
list of TMS320C25 instructions (Table 2-4).

Architectural Overview

Table 2-3. Instruction Symbols

SYMBOL MEANING

ACC Accumulator
ARB Auxiliary register pointer buffer
ARn Auxiliary Register n (ARO through AR7 are predefined

assembler symbols equal to 0 through 7, respectively.)
ARP Auxiliary register pointer
BIO Branch control input
c Carry bit

CM 2-bit field specifying compare mode
CNF On-chip RAM configuration control bit
dma Data memory address
DP Data page pointer
FO Format status bit

FSM Frame synchronization mode bit
HM Hold mode bit

INTM Interrupt mode flag bit
>nn Indicates nn is a hexadecimal number. (All others are

assumed to be decimal values.)
ov Overflow flag bit

OVM Overflow mode bit
p Product register

PA Port address. (PAO through PA15 are predefined assembler
symbols equal to 0 through 15, respectively.)

PC Program counter
PM 2-bit field specifying P register output shift code
pma Program memory address
Preg Product register

RPTC Repeat counter
STn Status Register n (STO or ST1)
SXM Sign-extension mode bit

T Temporary register
TC Test control bit

TOS Top of stack
Treg Temporary register
TXM Transmit mode bit
Usgn Unsigned value

XF XF pin status bit
..... Is assigned to
11 An absolute value
[J Optional items
() Contents of

Twenty-four new instructions have been added to the TMS320C25 instruction set
to improve overall processor throughput and ease of use. These new instructions can
be categorized into the following four groups:

e Extended-precision arithmetic (ADDC, SUBB, MPYU, BC, BNC, SC, RC)
e Adaptive filtering (MPYA, MPYS, ZALR)
e Control and 1/0 (SHM, RHM, STC, RTC, SFSM, RFSM)
• Accumulator and register instructions (SPH, SPL, ADDK, SUBK, ADRK, SBRK,

ROL, ROR)

The list of TMS320C25 instructions in Table 2-4 is organized according to function
and alphabetized within each functional grouping. The symbol (t) indicates
instructions that are not included in the TMS32010 instruction set, and the symbol
(+) those not included in the TMS32020 instruction set.

2-17

Architectural Overview

Table 2-4. TMS320C25 Instructions

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS

NO.
MNEMONIC DESCRIPTION

WORDS

ABS

ADD

ADDc:t

ADDH

ADDK:t

ADDS

ADLKt

AND

CMPLt

LAC

LACK

LAcrt

LALKt

NEGt

NORMt

OR

ORKt

SACH

SACL

SBLKt

SFLt

SFRt

SUB

suBB;

SUBC

SUBH

SUBK:t

SUBS

XOR

XORKt

ZAC

ZALH

ZALR:t

ZALS

Absolute value of accumulator

Add to accumulator with shift

Add to accumulator with carry

Add to high accumulator

Add to accumulator short immediate

Add to low accumulator with sign

extension suppressed

Add to accumulator with shift specified by

T register

Add to accumulator long immediate with shift

AND with accumulator

AND immediate with accumulator with shift

Complement accumulator

Load accumulator with shift

Load accumulator immediate short

Load accumulator with shift specified by T register

Load accumulator long immediate with shift

Negate accumulator

Normalize contents of accumulator

OR with accumulator

OR immediate with accumulator with shift

Rotate accumulator left

Rotate accumulator right

Store high accumulator with shift

Store low accumulator with shift

Subtract from accumulator long immediate with shift

Shift accumulator left

Shift accumulator right

Subtract from accumulator with shift

Subtract from accumulator with borrow

Conditional subtract

Subtract from high accumulator

Subtract from accumulator short immediate

Subtract from low accumulator with sign

extension suppressed

Subtract from accumulator with shift specified by

T register

Exclusive-OR with accumulator

Exclusive-OR immediate with accumulator with shift

Zero accumulator

Zero low accumulator and load high accumulator

Zero low accumulator and load high accumulator

with rounding

Zero accumulator and load low accumulator with

sign extension suppressed

trhese instructions are not included in the TMS32010 instruction set.
:trhese instructions are not included in the TMS32020 instruction set.

2-18

2

1

2

1

1

1

1

2
1

1

1

2

1

1

2

1

1

1

1

1

1

1

1

1

2

OPERATION

l!ACC)i ACC

(ACC) + [(dma) x 2shift]-+ ACC

(ACC) + (dma) + (C) -+ ACC

(ACC) + [(dma) x 216] -+ ACC

(ACC) + 8-bit constant ACC

(ACC) + (dma) -+ ACC

(ACC) + [(dma) x 2<Tregl] -+ ACC

(ACC) + [16-bit constant x 2shift] -+ ACC

(ACC(15-0)).AND.(dma)-+ ACC(15-0).

0 ACC(31-16)

(ACC)30-0)).AND.[16-bit constant x 2shift]

ACC(30-0). 0 -+ ACC(30-0)

(ACC)-+ ACC

(dma) x 2shift ACC

8-bit constant -+ ACC
(dma) x 2ITregl -+ ACC

(16-bit constant) x 216-+ ACC

-(ACC)-+ ACC

(ACC(l 5-0)).0R. (dma) -+ ACC(l 5-0)

(ACC(30-0)).0R.[16-bit constant x 2shift]

ACC(30-0)

(ACC(30-0))-+ ACC(31-1). (Cl ACC(O),

(ACC(31))-+ C

(ACC(31-1)) ACC(30-0), (C)-+ ACC(31).

(ACC(O)) C

[(ACC) x 2shift] -+ dma

[(ACCL) x 2shift] -+ dma

(ACC) - (16-bit constant x 2shift] -+ ACC

(ACC(30-0))-+ ACC(31-1), 0-+ ACC(O)

(ACC(31-1))-+ ACC(30-0), (ACC(31))-+ ACC(31)

(ACC) - [(dma) x 2shift] -+ ACC

!ACCl - (dma) - !Cl ACC

(ACC) - [(dma) x 216]-+ ACC

(ACC) - 8-bit constant -+ ACC

(ACC) - (dma)-+ ACC

(ACC) - [(dma) x 21Tregl] -+ ACC

(ACC(15-0)).XOR.(dma)-+ ACC(15-0)

(ACC(30-0)).XOR.[16-bit constant x 2shift]

ACC(30-0)

0-+ ACC

(dma) x 216-+ ACC

(dma) x 216 + >8000-+ ACC

(dma) ACCL, 0 -+ ACCH

Architectural Overview

Table 2-4. TMS320C25 Instructions (Continued}

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS

MNEMONIC DESCRIPTION

ADRKf Add to auxiliary register short immediate

CMPRt Compare auxiliary register with auxiliary register ARO

LAR Load auxiliary register

LARK Load auxiliary register short immediate

LARP Load auxiliary register pointer

LOP Load data memory page pointer

LDPK Load data memory page pointer immediate
LRLKt Load auxiliary register long immediate

MAR Modify auxiliary register

SAR Store auxiliary register

SBRK* Subtract from auxiliary register short immediate

NO.

WORDS

1

1

1

1

1

1

1

2

1

1

1

OPERATION

(ARnl + 8-bit constant --+ ARn

If ARn I CM I ARO, then 1 --+ TC; else 0 --+ TC

(dma) --+ (ARn)

8-bit constant --+ ARn

3-bit constant --+ ARP, (ARP) --+ ARB

(dma)--+ DP

9-bit constant --+ DP

16-bit constant --+ ARn

(ARnl--+ dma

(ARnl - 8-bit constant --+ ARn

T REGISTER, P REGISTER. AND MULTIPLY INSTRUCTIONS

MNEMONIC DESCRIPTION

APAC Add P register to accumulator

LPHt Load high P register

LT Load T register

LTA Load T register and accumulate previous product

LTD Load T register, accumulate previous product,

and move data

LTPt Load T register and store P register in accumulator
LTSt Load T register and subtract previous product

MACt Multiply and accumulate

MAcot Multiply and accumulate with data move

MPV Multiply (with T register, store product in P register)

MPYA* Multiply and accumulate previous product

MPYK Multiply immediate

MPYS* Multiply and subtract previous product

MPYU* Multiply unsigned

PAC Load accumulator with P register

SPAC Subtract P register from accumulator

SPH* Store high P register

SPL* Store low P register

SPMt Set P register output shift mode

SQRAt Square and accumulate

SQRSt Square and subtract previous product

tThese instructions are not included in the TMS32010 instruction set.
*These instructions are not included in the TMS32020 instruction set.

NO.

WORDS
OPERATION

1 (ACC) + (shift Preg) --+ ACC

1 (dma)--+ Preg (31-16)

1 (dma)--+ Treg

1 (dma) --+ Treg, (ACC) + (shifted Preg) --+ ACC

1 (dma) --+ Treg, (dma) --+ dma + 1,

(ACC) + (shifted Preg) --+ ACC

1 (dma) --+ Treg, (shifted Preg) --+ ACC

1 (dma) --+ Treg, (ACC) - (shifted Preg) --+ ACC

2 (ACC) + (shifted Preg) --+ ACC,

(pma) x (dma) --+ Preg

2 (ACCl + (shifted Preg) --+ ACC.

(pma) x (dma) --+ Preg, (dma) --+ dma + 1

1 (Treg) x (dma) --+ Preg

1 (ACC) + (shifted Preg) --+ ACC.

(Treg) x (dma) --+ Preg

1 (Treg) x 13-bit constant --+ Preg

1 (ACCl - (shifted Preg) --+ ACC,

(Treg) x (dma) --+ Preg

1 Usgn (Treg) x Usgn (dma) --+ Preg

1 (shifted Preg) --+ ACC

1 (ACC) - (shifted Preg) --+ ACC

1 (shifted Preg (31-16))--+ dma

1 (shifted Preg (15-0)) --+ dma

1 2-bit constant --+ PM

1 (ACC) + (shifted Preg) --+ ACC,

(dma) x (dma) --+ Preg

1 (ACCl - (shifted Preg) --+ ACC.

(dma) x (dma) --+ Preg

2-19

Architectural Ov.erview

Table 2-4. TMS320C25 Instructions (Continued)

BRANCH/CALL INSTRUCTIONS

MNEMONIC DESCRIPTION

B Branch unconditionally

BAcct Branch to address specified by accumulator

BANZ Branch on auxiliary register riot zero

BBNZ t Branch if TC bit * 0

BBzt Branch if TC bit = O

BC; Branch on carry

BGEZ Branch if accumulator <!: 0

BGZ Branch if accumulator > O

BIOZ Branch on 1/0 status = 0

BLEZ Branch if accumulator s 0

BLZ Branch if accumulator < 0

BNC; Branch on no carry

BNvt Branch if no overflow

BNZ Branch if accumulator * 0

BV Branch on overflow

BZ Branch if accumulator = 0

CALA Call subroutine indirect

CALL Call subroutine

RET Return from subroutine

NO.

WORDS

2

1

2

2

2

2

2
2

2

2

2
2

2
2

2

2

1

2
1

OPERATION

pma-+ PC

(ACC(l 5-0)) -+ PC

If (AR(ARP)) * 0, then pma -+ PC; else (PC) + 2 -+-

PC

If (TC) = 1, then pma -+ PC; else (PC) + 2 -+ PC

If (TC) = 0, then pma -+ PC; else (PC) + 2 -+ PC

If (Cl = 1, then pma -+ PC; else (PC) + 2 -+ PC

If (ACC) <!: 0, then pma -+ PC; else (PC) + 2 -+ PC

If (ACC) > 0, then pma -+ PC; else (PC) + · 2 -+ PC

If (BIO) = 0, then pma -+ PC; else (PC) + 2 -+ PC

If (ACC) S 0, then pma -+ PC; else (PC) + 2 -+ PC

If (ACC) < 0, then pma -+ PC; else (PC) + 2 -+ PC

If (C) = 0, then pma -+ PC; else (PC) + 2 -+ PC

If (OV) * 0, then pma -+ PC; else (PC) + 2 -+ PC

If (ACC) * 0, then pma -+ PC; else (PC) + 2 -+ PC

If (OV) = 0, then pma -+ PC; else (PC) + 2 -+ PC

If (ACC) = 0, then pma -+ PC; else (PC) + 2 -+ PC

(ACC(l 5-0)) -+ PC, (PC) + 1 -+ TOS

(PC) + 2 -+ TOS, pma -+ PC

(TOS)-+ PC

1/0 AND DATA MEMORY OPERATIONS

MNEMONIC DESCRIPTION

BLKDt

BLKPt

DMOV

FORTt

IN

OUT

RFSM:f:

RTXMt

RXFt

SFSM:f:

STXMt

sxFt
TBLR

TBLW

Block move from data memory to data memory

Block move from program memory to data memory

Data move in data memory

Format serial port registers

Input data from port

Output data to port

Reset serial port frame synchronization mode

Reset serial port transmit mode

Reset external flag

Set serial port frame synchronization mode

Set serial port transmit mode

Set external flag

Table read

Table write

tThese instructions are not included in the TMS32010 instruction set.
;These instructions are not included in the TMS32020 instruction set.

2-20

NO.

WORDS
OPERATION

2 (dma 1, addressed by PC) -+ dma2

2 (pma, addressed by PC) -+ dma

1 (dma) -+ dma + 1

1 1-bit constant -+ FO

1 (data bus, addressed by PA) -+ dma

1 (dma) -+ data bus, addressed by PA

1 0-+ FSM

1 0-+ TXM

1 0-+ XF

1 1 -+ FSM

1 1 -+ TXM

1 1 -+ XF

1 (pma, addressed by ACC (15-0)) -+ dma

1 (dma) -+ pma, addressed by ACC (1 5-0)

Architectural Overview

Table 2-4. TMS320C25 Instructions (Concluded)

CONTROL INSTRUCTIONS

MNEMONIC DESCRIPTION

e1TT Test bit

e1rrt Test bit specified by T register

CNFot Configure block as data memory

CNFPt Configure block as program memory

DINT Disable interrupt

EINT Enable interrupt

IDLEt Idle until interrupt

LST Load status register STO

Lsnt Load status register ST 1

NOP No operation

POP Pop top of stack to low accumulator
popot Pop top of stack to data memory

PSHot Push data memory value onto stack

PUSH Push low accumulator onto stack

RC* Reset carry bit

RHM* Reset hold mode

ROVM Reset overflow mode

RPTt Repeat instruction as specified by data memory value

RPTKt Repeat instruction as specified by immediate value
RSXMt Reset sign-extension mode

RTC* Reset test/control flag

sc* Set carry bit

SHM* Set hold mode

SOVM Set overflow mode

SST Store status register STO

ssnt .Store status register ST1

ssxMt Set sign-extension mode

sTc* Set test/control flag

TRAPt Software interrupt

tThese instructions are not included in the TMS32010 instruction set.
*These instructions are not included in the TMS32020 instruction set.

NO.

WORDS

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 ·

1

1

1

1

1

1

1

OPERATIONS

(dma bit at (15-bit codell -+ TC

(dma bit at 115-Tregll -+TC

0-+ CNF

1 -+ CNF

1 -+ INTM

0-+ INTM

(PC) + 1 -+ PC, powerdown

(dma)-+ STO

ldma)-+ ST1

IPC) + 1 -+PC

ITOS)-+ ACC

(TOS)-+ dma

ldma)-+ TOS

(ACCL) -+ TOS

0-+ c

0-+ HM

0-+ OVM

(dma) -+ RPTC

8-bit constant RPTC

0-+ SXM

0-+ TC

1 -+ c

1-+ HM

1-+ OVM

STO-+ dma

ST1 -+ dma

1-+ SXM

1 -+TC

(PC) + 1 -+ TOS, 30 -+ PC

2-21

Architectural Overview

2.9 Development Support

2-22

Texas Instruments offers extensive development support and documentation for the
TMS320 family (see Figure 2- 7). Sophisticated development operations are
performed with the TMS320C25 Macro Assembler/Linker, Simulator, and Emulator
to evaluate the performance of the processor, develop algorithms, and fully integrate
the design's software and hardware modules. Since the TMS320C25 is pin-com­
patible with the TMS32020, development can begin immediately by utilizing the
broad base of TMS32020 support tools (see Appendix F).

Extensive documentation, including application reports, user's guides, and textbooks,
is available to support DSP design, research, and education. When questions arise,
additional support can be obtained by contacting the Texas Instruments Customer
Response Center (CRC) hotline number, 1-800-232-3200.

Figure 2-7. TMS320 Family Development Support

Architectural Overview

TMS320C25 MACRO ASSEMBLER/LINKER

The TMS320C25 Macro Assembler translates TMS320C25 assembly language
source code into executable object code. The assembler allows the programmer to
work with mnemonics rather than hexadecimal machine instructions and to reference
memory locations with symbolic addresses. The macro assembler supports macro
calls and definitions along with conditional assembly.

The TMS320C25 Linker permits a program to be designed and implemented in
separate modules that will later be linked together to form the complete program.
The linker resolves external definitions and references for relocatable code, creating
an object file that can be executed by the TMS320C25 Simulator, TMS320C25
Emulator, or TMS320C25 processor.

The TMS320C25 Macro Assembler/Linker is supported on the VAX/VMS, Tl
PC/MS-DOS, and IBM PC/PC-DOS operating systems.

TMS320C25 SIMULATOR

The TMS320C25 Simulator is a software program that simulates operation of the
TMS320C25 to allow program verification. The debug mode enables the user to
monitor the state of the simulated TMS320C25 while the program is executing. The
simulator uses the TMS320C25 object code produced by the TMS320C25 Macro
Assembler/Linker. During program execution, the internal registers and memory of
the simulated TMS320C25 are modified as each instruction is interpreted by the host
computer. Once program execution is suspended, the internal registers and both
program and data memories can be inspected and/or modified.

The TMS320C25 Simulator is supported on the VAX/VMS, Tl PC/MS-DOS, and IBM
PC/PC- DOS operating systems.

TMS320C25 EMULATOR

The TMS320C25 Emulator (XDS/22) is a user-friendly system that has all the
features necessary for realtime in-circuit emulation. This allows integration of the
hardware and software modules in the debug mode. By setting breakpoints based
on internal conditions or external events, execution of the program can be suspended
and control given to the debug mode. In the debug mode, all registers and memory
locations can be inspected and modified. Single-step execution is available. Full
trace capabilities at full speed and a reverse assembler that translates machine code
back into assembly instructions also increase debugging productivity.

The TMS320C25 Emulator is a completely self-contained system. With three
RS-232-C ports, it can be interfaced to a terminal, host computer for source or object
downloading/uploading capabilities, and printer or PROM programmer. The
emulator has 4K x 16-bit words of high-speed static RAM (zero wait states) for
program memory. The XDS/22 also supports memory expansion by including 64K
words of DRAM. This slower memory is configurable by the user as either all program
memory, all data memory, or 32K words of each.

2-23

2-24

3. Device Operation

The TMS320C25 microprocessor architectural design emphasizes overall speed,
communication, and flexibility in processor configuration. Control signals and
instructions provide block-memory transfers, communication to slower off-chip
devices, and multiprocessing implementations. Increased throughput for many digital
signal processing (DSP) applications is accomplished by single-cycle
multiply/accumulate instructions, two large on-chip RAM blocks, eight auxiliary
registers with a dedicated arithmetic unit, a serial port, hardware timer, faster 1/0 for
data-intensive signal processing, and many other features. Figure 2-1 shows the
functional block diagram of the TMS320C25 processor.

Major topics discussed in this section are listed below.

• Internal Hardware Summary (Section 3.1 on page 3-3)

• Memory Organization (Section 3.2 on page 3-5)
On-chip program ROM
On-chip data RAM blocks
Memory maps
Memory-mapped registers
Auxiliary registers
Addressing modes
Memory-to-memory moves

• Central Arithmetic Logic Unit (CALU) (Section 3.3 on page 3-13)
Scaling shifter
ALU and accumulator
Multiplier, T and P registers

• System Control (Section 3.4 on page 3-18)
Program counter and related hardware
Reset
Status registers
Timer operation
Repeat counter
Powerdown mode

• External Memory and 1/0 Interface (Section 3.5 on page 3-26)
Internal clock timing relationships
External read and write cycles
Wait states

• Interrupts (Section 3.6 on page 3-31)
Interrupt operation
External interrupt interface

• Serial Port (Section 3.7 on page 3-35)
Transmit and receive operations

• Multiprocessing and Direct Memory Access (Section 3.8 on page 3-44)
Synchronization
Global memory
The hold function

• General-Purpose 1/0 Pins (Section 3.9 on page 3-49)
BIO input
External flag output

3-1

Device Operation

RiW
ml

READY

Iii
XF

i:mm
RM5A

iHi:
m
fili

iXa<

MP/~----'

16

iNT(2-01, _______ _,

A15·AO

D16·DO

3

3

3

LEGEND:

16 16

BLOCK B2
(32 x 161

DATARAM
BLOCK B1

(256 x 161

16

ACCH = Accumulator high
ACCL = Accumulator low
ALU = Arithmetic logic unit

PROGRAM
ROM

(4096 x 161

INSTRUCTION

16

16

16

AR0(161

AR1(161

AR2(161

AR3l161

AR4(161

AR51161

AR61161

ARAU = Auxiliary register arithmetic unit

IFR
IMR
IR
MCS
QIR
PR
PRD
TIM
TR

ARB = AuxlHary register pointer buffer
ARP = AuxUiary register pointer
DP = Data memory page pointer
DRR = Serlal port data receive register
DXR = Serial port data transmit raglstar

16

18 x 161

16

= Interrupt flag register
= Interrupt mask register
= Instruction register
= Microcall stack
= Queue instruction register
= Product register
= Period register for timer
=Timer
= Temporary register

16

16

ST0(161

ST11161

RPTCl81

IFRl61

DR
CLKR
FSR
DX
CLKX
FSX

RSRl161

XSRl161

DRRl161

DXRl161

TIM(161

PRDl161

IMRl61

GREG181

PRl321

PC = Program counter
PFC = Prefetch counter
RPTC = Repeat instruction counter
GREG = Global memory allocation register
RSR = Serial port receive shift register
XSR = Serial port transmit shift register
AR()..AR7 = Auxiliary registers
STO.ST1 = Status registers

Figure 3-1. TMS320C25 Block Diagram

3-2

Device Operation

3.1 Internal Hardware Summary

UNIT

The TMS320C25 internal hardware implements functions that other processors
typically perform in software or microcode. For example, the device contains
hardware for single-cycle 16 x 16-bit multiplication, data shifting, and address
manipulation. This hardware-intensive approach provides computing power previ­
ously unavailable on a single chip.

Table 3-1 presents a summary of the TMS320C25 internal hardware. This summary
table, which includes the internal processing elements, registers, and buses, is
alphabetized within each functional grouping. All of the symbols used in this table
correspond to the symbols used in the block diagram of Figure 3-1, the succeeding
block diagrams in this section, and the text throughout this document.

Table 3-1. Internal Hardware

SYMBOL FUNCTION

PROCESSING ELEMENTS

Arithmetic Logic Unit ALU A 32-bit two's-complement arithmetic logic unit having two 32-bit input ports
and one 32~bit output port feeding the accumulator.

Central Arithmetic Logic CALU The grouping of the ALU, multiplier, accumulator, and scaling shifter.
Unit

Multiplier MULT A 16 x 16-bit parallel multiplier.

Period Register PRO (15-0) A 16-bit memory-mapped register used to reload the timer.

Program Counter PC (15-0) A 16-bit program counter used to address program memory. The PC always
contains the address of the next instruction to be executed. The PC contents
are updated following each instruction decode operation.

Prefetch Counter PFC (15-0) A 16-bit counter used to prefetch program instructions. The PFC contains the
address of the instruction currently being prefetched. The PFC is updated
when a new prefetch is initiated. The PFC is also used to address data memory
when using the block move (BLKO and BLKP), multiply/accumulate (MAC
and MACO), and table read/write {TBLR and TBLW) instructions.

Random Access Memory RAM (BO) A RAM block with 256 x 16 locations configured either as data or program
(data or program) memory.

Random Access Memory RAM (81) A data RAM block, organized as 256 x 16 locations.
(data only)

Random Access Memory RAM (82) A data RAM block, organized as 32 x 16 locations.
(data only)

Auxiliary Register ARAU A 16-bit unsigned arithmetic unit used to perform operations on auxiliary
Arithmetic Unit register data.

Repeat Counter RPTC (7-0) An 8-bit counter to control the repeated execution of a single instruction.

Shifters SFL,SFR Shifters SFL (left) and SFR (right) are located at the ALU input. the accu-
mulator output, and the product register output. Also an in-place shifter within
the accumulator.

Timer TIM (15-0) A 16-bit memory-mapped timer (counter) for timing control.

Accumulator ACC (31-0) A 32-bit accumulator split in two halves: ACCH (accumulator high) and
ACCH(31-16) ACCL (accumulator low). Used for storage of ALU output.
ACCL(15-0)

Auxiliary Register File ARO,AR1 ,AR2 A register file containing 8 16-bit auxiliary registers (ARO-AR7), used for
AR3,AR4,AR5 addressing data memory, for temporary storage, or for integer arithmetic
AR6,AR7 processing through the ARAU.
(15-0)

Auxiliary Register Pointer ARP(2-0) A 3-bit register used to select one of the eight auxiliary registers.

3-3

Device Operation

Table 3-1. Internal Hardware (Continued)

UNIT SYMBOL FUNCTION

REGISTERS

Auxiliary Register Pointer ARB{2-0) A 3-bit register used to buffer the ARP. Each time the ARP is loaded, the old
Buffer value is written to the ARB, except during an LST {load status register)

instruction. When the ARB is loaded with an LST1, the same value is also
copied into ARP.

Data Memory Page DP{8-0) A 9-bit register pointing to the address of the current page. Data pages are
Pointer 128 words each, resulting in 512 pages of addressable data memory space

{some locations are reserved).

Global Memory GREG{7-0) An 8-bit memory-mapped register for allocating the size of the global
Allocation Register memory space.

Instruction Register IR{15-0) A 16-bit register used to store the currently executing
instruction.

Queue Instruction QIR{15-0) A 16-bit register used to store prefetched instructions.
Register

Interrupt Flag Register IFR{5-0) A 6-bit flag register used to latch the active-low external user interrupts
00(2-0) and the internal interrupts XINT/RINT {serial port transmit/receive
interrupts) and TINT {timer interrupt). The IFR is not accessible through
software.

Interrupt Mask Register IMR{5-0) A 6-bit memory-mapped register used to mask interrupts.

Product Register PR{31-0) A 32-bit product register used to hold the multiplier product. The PR
PH{31-16) can also be accessed as the most or least significant words using the SPH
PL{15-0) {store P register high) or SPL {store P register low) instructions.

Stack Stack{15-0) An 8 x 16 hardware stack used to store the PC during interrupts or calls. The
ACCL and data memory values. may also be pushed onto and popped from the
stack.

MicroCall Stack MCS {15-0) A single-word stack that temporarily stores the contents of the PFC while the
PFC is being used to address data memory with the block move {BLKD and
BLKP), multiply/accumulate {MAC and MACO), and table read/write {TBLR
and TBLW) instructions.

Serial Port Data DRR{15-0) A 16-bit memory-mapped serial port data receive register. Only the eight
Receive Register LSBs are used in the byte mode.

Serial Port Data DXR{15-0) A 16-bit memory-mapped serial port data transmit register. Only the eight
Transmit Register LSBs are used in the byte mode.

Serial Port Receive RSR{15-0) A 16-bit register used to shift in serial port data from the RX pin. RSR contents
Shift Register are sent to the ORR after a serial transfer is completed. RSR is not directly

accessible through software.

Serial Port Transmit XSR{15-0) A 16-bit register used to shift out serial port data onto the DX pin. XSR contents
Shift Register are loaded from DXR at the beginning of a serial port transmit operation. XSR

is not directly accessible through software.

Status Registers STO,ST1 Two 16-bit status registers that contain status and control bits.
{15-0)

Temporary Register TR{15-0) A 16-bit register that holds either an operand for the multiplier or a shift code
for the scaling shifter.

3-4

Device Operation

Table 3-1. Internal Hardware (Concluded)

UNIT SYMBOL FUNCTION

BUSES

Auxiliary Register File Bu~ AFB(15-0) A 16-bit bus that carries data from the AR pointed to by the ARP.

Data Bus 0(15-0) A 16-bit bus used to route data.

Data Memory Address DAB(15-0) A 16-bit bus that carries the data memory address.
Bus

Direct Data Memory DRB(15-0) A 16-bit bus that carries the 'direct' address for the data memory, which is the
Address Bus concatenation of the DP register with the seven LSBs of the instruction.

Program Bus P(15-0) A 16-bit bus used to route instructions (and data for the MAC and MACO
instructions).

Program Memory Address PAB(15-0) A 16-bit bus that carries the program memory address.
Bus

3.2 Memory Organization

The TMS320C25 provides a total of 544 16-bit words of on-chip data RAM and
4K words of maskable program ROM. Of the 544 words of on-chip data RAM, 288
are always data memory and the remaining 256 words may be configured as either
program or data memory. This section explains memory management using the
on-chip program ROM and data RAM, external memory, memory maps, memory­
mapped registers, auxiliary registers, data memory addressing, and memory-to-me­
mory moves.

3.2.1 On-Chip Program ROM

The 4K words of on-chip program ROM allow program execution at full speed
without the need for high-speed external program memory. The use of this memory
also allows the external data bus to be freed for access of external data memory. In
addition, there is the added benefit of increased security for the algorithms contained
in on-chip memory, which may be proprietary.

Mapping of the first 4K-word block of program memory is user-selectable by means
of the MP/MC (microprocessor/microcomputer) pin. Setting MP/MC high maps in
the block of off-chip memory while holding the pin low maps in the block of on-chip
ROM. The XF (external flag) pin can be used to toggle the MP/MC pin to dynamically
enable or disable the on-chip ROM. The MP/MC pin is in the location of a VCC pin
on the TMS32020. This allows substitution of a TMS320C25 for a TMS32020 since
the TMS320C25 automatically operates in the microprocessor mode and therefore
is directly compatible in the system. See Section 3.2.3 for the location of the on-chip
program ROM in the memory map configurations.

3-5

Device Operation

3.2.2 On-Chip Data RAM Blocks

3-6

The 544 words of on-chip data RAM are divided into three separate blocks (BO, 81,
and 82), as shown in Figure 3-2. Of the 544 words, 256 words (block BO) are
configurable as either data or program memory by instructions provided for that
purpose; 288 words (blocks B1 and B2) are always data memory. A data memory
size of 544 words allows the TMS320C25 to handle a data array of 512 words (256
words if on-chip RAM is used for program memory), while still leaving 32 locations
for intermediate storage. See Section 3.2.3 for memory map configurations.

When using block BO as program memory, instructions can be downloaded from
external program memory using the RPTK (repeat instruction as specified by imme­
diate value) and BLKP (block move from program memory to data memory)
instructions.

FROM
PREFETCH
COUNTER

16

BLOCK B2
(32 x 16)

DATA RAM
BLOCK B1
(256 x 16)

FROM
AUXILIARY REGISTERS

OR
DATA PAGE POINTER

AND
DIRECT MEMORY ADDRESS

16 16

16

DATA/PROG
RAM (256 x 16)

BLOCK BO

TO
PROGRAM

~~~~~~Tll"'l~~T.l'll:~~~~~BUS 

Figure 3-2. On-Chip Data Memory 

When using on-chip program RAM, ROM, or high-speed external program memory, 
the TMS320C25 runs at full speed without wait states. However, the READY line 
can be used to interface the TMS320C25 to slower, less-expensive external memory. 
Downloading programs from slow off-chip memory to on-chip program RAM speeds 
processing while cutting system costs. See Section 3.5 for a description of instruction 
execution using various memory configurations. 



Device Operation 

3.2.3 Memory Maps 

The TMS320C25 provides three separate address spaces for program memory, data 
memory, and 1/0, as shown in Figure 3-3. These spaces are distinguished externally 
by means of the PS, DS, and TS (program, data, and 1/0 space select) signals. The 
on-chip memory blocks BO, B1, and B2 are comprised of a total of 544 words of 
RAM. Program/data RAM block BO (256 words) resides in pages 4 and 5 of the data 
memory map when configured as data RAM and at addresses > FFOO to > FFFF when 
configured as program RAM. Block B1 (always data RAM) resides in pages 6 and 
7, while block B2 resides in the upper 32 words of page 0. Note that the remainder 
of page 0 is composed of the memory-mapped registers and reserved locations, and 
pages 1-3 of the data memory map consist of reserved locations. Reserved locations 
may not be used for storage, and their contents are undefined when read. See Section 
3.2.4 for further information on the memory-mapped registers. 

The CNFD/CNFP instructions are used to configure block BO as either data or 
program memory, respectively. The BLKP (block move from program memory to data 
memory) instruction may be used to download program information to block BO 
when it is configured as data RAM, and then a CNFP (configure block as program 
memory) instruction may be used to convert it to program RAM (see the code 
example in Section 5.4.2). 

Reset configures block BO as data RAM. Note that, due to internal pipelining, when 
the CNFD or CNFP instruction is used to remap RAM block BO, there is a delay before 
the new configuration becomes effective. This delay is one fetch cycle if execution 
is from internal program RAM and two fetch cycles if execution is from ROM or 
external program memory. This is particularly important if program execution is from 
the locations around 65280. Accordingly, a CNFP instruction must be placed at 
location 65277 in external memory if execution is to continue from the first location 
in block BO. 

If a CNFP is placed at location 65278, and the instruction at location 65279 is a 
two-word instruction, the second word of the instruction will be fetched from the 
first location in block BO. If execution is from above location 65280 and block BO 
is reconfigured, care must be taken to assure that execution resumes at the appro­
priate point in a new configuration. See Section 3.4.1 for a detailed description of 
pipeline operation. 

On-chip program ROM is located in the lower 4K words of program memory when 
selected by setting MP/MC= 0. When MP/MC= 1, the lower 4K words of program 
memory are external. 

3-7 



Device Operation 

OC>OOOOI 

PROGRAM 

INTERRUPTS 
AND RESERVED 

I EXTERN ALI 
31C>001FI 1---------l 

32(>00201 

EXTERNAL 

OC>OOOOI 

311>:001FI 
321>00201 

40161>0FAFI 
4016l>OFBOI 

4096C>OFFFI 
4096C>10001 

PROGRAM 

INTERRUPTS 
AND RESERVED 
CON-CHIP, ROMI 

ON-CHIP 
ROM 

RESERVED 

EXTERNAL 

0(>00001 

5(>00061 
6(>00061 

96(>005FI 
96(>00601 

1271>007FI 
128(>00801 

5111>01FFI 
512(>02001 

767(>02FFI 
768(>03001 

10231>03FFI 
10241>04001 

66,535C > FFFFI 65.635C > FFFFI 65,535C > FFFFI .__ _____ __. 

IF MP/Mi:= 1 
CMICROPROCESSOR MODEi 

PROGRAM 

0(>00001 
INTERRUPTS 

AND RESERVED 
(EXTERNAL) 

311>001FI 
32(>00201 

EXTERNAL 

IF MP/Me= 0 
(MICROCOMPUTER MODEi 

(al MEMORY MAPS AFTER A CNFD INSTRUCTION 

PROGRAM 

OC>OOOOI 
INTERRUPTS 

AND RESERVED 
CON-CHIP ROMI 

31C>001Fl 
321>00201 ON-CHIP 

ROM 
4016(>0FAFI 
4016(>0FBOJ 

RESERVED 

4095(>0FFFJ 
4096(>1000) 

EXTERNAL 

0(>00001 

5(>00051 
'6(>00061 

951>005Fl 
96(>00601 

1271>007FI 
128C>00801 

5111>01FFI 
512(>02001 

767(>02FFI 
768C>0300) 

66,2791 > FEFFI ------------------------------ 65.2791 > FEFFI ---··------------------------- 1023C > 03FFI 
1024C>04001 66.280C > FFOOI ON-CHIP 66.2801 >FFOOI ON-CHIP 

BLOCK BO BLOCK BO 
66,6351>FFFFI ,__ _____ __, 65,6361 > FFFFI 65,535( > FFFFI 

3-8 

IF MP/ii.re = 1 
(MICROPROCESSOR MODEi 

IF MP/MC:= 0 
(MICROCOMPUTER MODEi 

Cbl MEMORY MAPS AFTER A CNFP INSTRUCTION 

Figure 3-3. Memory Maps 

DATA 

ON-CHIP 
MEMORY-MAPPED 

REGISTERS 

RESERVED PAGEO 

ON-CHIP 
BLOCK 82 

RESERVED PAGES 1-3 

ON-CHIP 
BLOCK BO PAGES 4-5 

ON-CHIP 
BLOCK B1 

PAGES 6-7 

EXTERNAL PAGES 8-511 

DATA 

ON-CHIP 
MEMORY-MAPPED 

REGISTERS 

RESERVED PAGEO 

ON-CHIP 
BLOCK B2 

RESERVED PAGES 1-3 

DOES NOT 
EXIST PAGES 4-5 

ON-CHIP 
BLOCK B1 

PAGES 6-7 

EXTERNAL PAGES 8-511 



Device Operation 

3.2.4 Memory-Mapped Registers 

The six registers mapped into the data memory space are listed in Table 3-2 and are 
shown in the block diagram of Figure 3-1. 

The memory-mapped registers may be accessed in the same manner as any other 
data memory location, with the exception that block moves using the BLKD (block 
move from data memory to data memory) instruction cannot be performed from the 
memory-mapped registers. 

Table 3-2. Memory-Mapped Registers 

REGISTER ADDRESS 
NAME LOCATION DEFINITION 

DRR(15-0) 0 Serial port data receive register 
DXR(15-0) 1 Serial port data transmit register 
TIM(15-0) 2 Timer register 
PRD(15-0) 3 Period register 
IMR (5-0) 4 Interrupt mask register 
GREG(7-0) 5 Global memory allocation register 

3.2.5 Auxiliary Registers 

The TMS320C25 provides a register file containing eight auxiliary registers (ARO­
AR7). This section discusses each register's function and how an auxiliary register 
is selected and stored. 

The auxiliary registers may be used for indirect addressing of data memory or for 
temporary data storage. Indirect auxiliary register addressing (see Figure 3-4) allows 
placement of the data memory address of an instruction operand into one of eight 
auxiliary registers. These registers are pointed to by a three-bit Auxiliary Register 
Pointer (ARP) that is loaded with a value from 0 through 7, designating ARO through 
AR7, respectively. The auxiliary registers and the ARP may be loaded either from 
data memory or by an immediate operand defined in the instruction. The contents 
of these registers may also be stored in data memory. (Section 4 describes the 
programming of the indirect addressing mode.) 

3-9 



Device Operation 

3-10 

AUXILIARY REGISTER ALE DATA 
MEMORY 

MAP 
ARO!> 0 5 3 z I LOCATION 

>0000 
AR1 I> § § g I INTERNAL 

AUXILIARY 
REGISTER >03FF 
POINTER AR2l> E i I! C I >0400 
(IN STO) EXTERNAL 

ARP IQl1l1 l--+AR3 I> E E a A I ---+ >FF3A >3T2T 

AR41> 1 0 3 e I >FFFF 

ARS!> ~ 8 § 1 I 

AR6 ! > 0 0 0 a I 

ARZ P 8 4 3 b I 

Figure 3-4. Indirect Auxiliary Register Addressing Example 

The auxiliary register file (ARO-AR7) is connected to the Auxiliary Register Arithmetic 
Unit {ARAU), shown in Figure 3-5. The ARAU may autoindex the current auxiliary 
register while the data memory location is being addressed. Indexing by either ±1 
or by the contents of ARO may be performed. As a result, accessing tables of infor­
mation does not require the Central Arithmetic Logic Unit {CALU) for address 
manipulation, thus freeing it for other operations. 



Device Operation 

8 

8 LSB 
OF IR 

AUXILIARY 
REGISTER 
POINTER 
(ARP) (3) 

AUXILIARY 
REGISTER 
BUFFER 

(ARB) (3) 

AUXILIARY REGISTER ARITHMETIC UNrT 
(ARAU) (18) 3 

AUXILIARY REGISTER ALE BUS (AFB) 18 

Figure 3-5. Auxiliary Register File 

As shown in Figure 3-5, auxiliary register 0 (ARO) or the eight LSBs of the instruction 
registers can be connected to one of the inputs of the ARAU. The other input is fed 
by the current AR (being pointed to by ARP). AR(ARP) refers to the contents of the 
current AR pointed to by ARP. The ARAU performs the following functions: 

AR(ARP) + ARO 

AR(ARP) - ARO 

..... AR(ARP) Index the current AR by adding a 16-bit integer 
contained in ARO . 

..... AR(ARP) Index the current AR by subtracting a 16-bit 
integer contained in ARO. 

AR(ARP) + 1 ..... AR(ARP) Increment the current AR by one. 
AR(ARP) - 1 ..... AR(ARP) Decrement the current AR by one. 
AR(ARP) ..... AR(ARP) AR(ARP) is unchanged. 
AR(ARP) + IR(7-0) ..... AR(ARP) Add 8-bit immediate value to the current 

AR(ARP) - IR(7-0) 

AR(ARP) + rcARO 

AR(ARP) - rcARO 

AR. 
..... AR(ARP) Subtract 8-bit immediate value to the 

current AR . 
..... AR(ARP) Bit-reversed indexing with reverse-carry 

propagation (see Section 4.1.2). 
-+ AR(ARP) Bit-reversed indexing with reverse-carry 

propagation (see Section 4.1.2). 

Although the ARAU is useful for address manipulation in parallel with other oper­
ations, it may also serve as an additional general-purpose arithmetic unit since the 
auxiliary register file can directly communicate with data memory. The ARAU 
implements 16-bit unsigned arithmetic, whereas the CALU implements 32-bit 
two's-complement arithmetic. Instructions provide branches dependent on the 
comparison of the auxiliary register pointed to by ARP with ARO. 

Figure 3-5 also shows the three-bit Auxiliary Register pointer Buffer (ARB) that 
provides storage for the ARP on subroutine calls and interrupts. 

3-11 



Device Operation 

3.2.6 Addressing Modes 

3-12 

The TMS320C25 can address a total of 64K words of program memory and 64K 
words of data memory. The on-chip data memory is mapped into the 64K data 
memory space. The memory maps, which change with the configuration of block 
BO, are described in detail in Section 3.2.4. 

The 16-bit Data Address Bus (DAB) addresses data memory in one of the following 
two ways: 

1) By the DiRect address Bus (DAB) using the direct addressing mode (e.g., ADD 
>10),or 

2) By the Auxiliary register File Bus (AFB) using the indirect addressing mode 
(e.g., ADD*). 

Operands are also addressed by the contents of the program counter in the immediate 
addressing mode. 

Figure 3-6 illustrates operand addressing in the direct, indirect, and immediate 
addressing modes. 

INSTRUCTION 
DIRECT ADDRESSING I OPCODE I cha I DP 

l ,tZ i9 /16 • , ... --OP_ERAN..,...-D.,.._-. 

INSTR,CTION 
INDIRECT ADDRESSING I OPCODE NF 

l ,3 AR (ARP) I 1116 •I OPERAND 

INSTRUCTION 

IMMEDIATE OPERAND 1 OPCODE IOP8§ij s~ ~ INSTRUCTION 

PC+1~ OPERAND 

Figure 3-6. Methods of Instruction Operand Addressing 

If the direct addressing mode is used, the 9-bit Data memory page Pointer (DP) 
points to one of 512 128-word pages. The data memory address (dma), specified 
by the seven LSBs of the instruction, points to the desired word within the page. 
The address on the direct address bus (DAB) is formed by concatenating the 9-bit 
DP with the 7-bit dma. 

When using the indirect addressing mode, the currently selected 16-bit auxiliary 
register AR(ARP) addresses the data memory through the auxiliary register file bus 
(AFB). While the selected auxiliary register provides the data memory address and 
the data is being manipulated by the Central Arithmetic Logic Unit (CALU), the 
contents of the auxiliary register may be manipulated through the Auxiliary Register 
Arithmetic Unit (ARAU). See Figure 3-4 for an example of indirect auxiliary register 
addressing. The direct and indirect addressing modes are described in detail in 
Section 4.1 . 

When an immediate operand is used, it is either contained within the instruction word 
itself or, in the case of 16-bit immediate operands, the word following the instruction 
opcode. 



Device Operation 

3.2.7 Memory-to-Memory Moves 

The TMS320C25 provides instructions for data and program block moves and for 
data move functions that efficiently utilize the configurable on-chip RAM. 

The BLKD instruction moves a block within data memory, and the BLKP instruction 
moves a block from program memory to data memory. When used with the repeat 
instructions (RPT and RPTK), the BLKD and BLKP instructions efficiently perform 
block moves from on- or off-chip memory. 

The DMOV {data move) function is useful for implementing algorithms that use the 
z-1 delay operation, such as convolutions and digital filtering where data is being 
passed through a time window. The data move function can be used anywhere 
within blocks BO, B1, or B2. It is continuous across the boundary of blocks BO and 
81 but cannot be used with off-chip data memory. 

Implemented in on-chip RAM, the DMOV function is equivalent to that of the 
TMS32010 and TMS32020. DMOV allows a word to be copied from the currently 
addressed data memory location in on-chip RAM to the next higher location while 
the data from the addressed location is being operated upon in the same cycle (e.g., 
by the CALU). An ARAU operation may also be performed in the same cycle when 
using the indirect addressing mode. The MACO (multiply and accumulate with data 
move) and the LTD (load T register, accumulate previous product, and move data) 
instructions use the data move function. 

3.3 Central Arithmetic Logic Unit (CALLI) 

The TMS320C25 Central Arithmetic Logic Unit (CALU) contains a 16-bit scaling 
shifter, a 16 x 16-bit parallel multiplier, a 32-bit Arithmetic Logic Unit (ALU), a 32-bit 
accumulator (ACC), and additional shifters at the outputs of both the accumulator 
and the multiplier. This section describes the CALU components and their functions. 
Figure 3-7 is a block diagram showing the components of the CALU. 

The following steps occur in the implementation of a typical ALU instruction: 

1 ) Data is fetched from the RAM on the data bus, 

2) Data is passed through the scaling shifter and the ALU where the arithmetic is 
performed, and 

3) The result is moved into the accumulator. 

One input to the ALU is always provided from the accumulator, and the other input 
may be fed from the Product Register (PR) of the multiplier or the scaling shifter that 
is loaded from data memory. 

3-13 



Device Operation 

32 sx 
OR 0 

32 

Figure 3-7. Central Arithmetic Logic Unit (CALU) 

3.3.1 Scaling Shifter 

3-14 

The. TMS320C25 scaling shifter has a 16-bit input connected to the data bus and a 
32-bit output connected to the ALU (see Figure 3-7). The scaling shifter produces 
a left shift of 0 to 16 bits on the input data, as programmed in the instruction. The 
LSBs of the output are filled with zeros, and the MSBs may be either filled with zeros 
or sign-extended, depending upon the status programmed into the SXM (sign-ex­
tension mode) bit of status register STO. 

The TMS320C25 also contains several other shifters, which allow it to perform 
numerical scaling, bit extraction, extended arithmetic, and overflow prevention. These 
shifters are connected to the output of the multiplier and the accumulator. 



Device Operation 

3.3.2 ALU and Accumulator 

The TMS320C25 32-bit ALU and accumulator implement a wide range of arithmetic 
and logical functions, the majority of which execute in a single clock cycle. Once 
an operation is performed in the ALU, the result is transferred to the accumulator 
where additional operations such as shifting may occur. Data that is input to the 
ALU may be scaled by the scaling shifter. 

The 32-bit accumulator (see Figure 3-7) is split into two 16-bit segments for storage 
in data memory: ACCH (accumulator high} and ACCL (accumulator low). Shifters 
at the output of the accumulator provide a left-shift of 0 to 7 places. This shift is 
performed while the data is being transferred to the data bus for storage. The contents 
of the accumulator remain unchanged. When the ACCH data is shifted left, the LSBs 
are transferred from the ACCL, and the MSBs are lost. When ACCL is shifted left, 
the LSBs are zero-filled, and the MSBs are lost. 

The accumulator also has an associated carry bit that is set or reset depending on 
various operations within the TMS320C25. The carry bit allows more efficient 
computation of extended-precision products and additions or subtractions. It is 
affected by most arithmetic instructions as well as the shift and rotate instructions. 
It is not affected by loading the accumulator, logical operations, or other such 
nonarithmetic or control instructions. It is also not affected by the multiply (MPY, 
M PYK, and M PYU) instructions, but is affected by the accumulation process in the 
MAC and MACD instructions. Examples of carry bit operation are shown in Figure 
3-8. 

c MSB LSB c MSB LSB 

x FF FF FF FF ACC x 0 0 0 0 0 0 0 0 ACC 
+ 1 1 

1 0 0 0 0 0 0 0 0 0 FF FF FF FF 

x 7 F F F FF FF ACC x 8 0 0 0 0 0 0 0 ACC 
+ 1 (OVM=O) (OVM=O) 

0 8 0 0 0 0 0 0 0 7 F F F FF FF 

1 0 0 0 0 0 0 0 0 ACC 0 FF FF FF FF ACC 
+ 0 (AODC (BUBB 

0 0 0 0 0 0 0 0 1 INSTRUCTION) 1 FF FF FF FE INSTRUCTION) 

Figure 3-8. Examples of Carry Bit Operation 

The value added to or subtracted from the accumulator, shown in the examples of 
Figure 3-8, may come from either the input scaling shifter or the shifter at the output 
of the P register. The carry bit is set if the result of an addition or accumulation process 
generates a carry, or reset to zero if the result of a subtraction generates a borrow. 
Otherwise, it is reset after an addition or set after a subtraction. 

The ADDC (add to accumulator with carry) and SUBB (subtract from accumulator 
with borrow) instructions use the previous value of carry in their addition/subtraction 
operation (see these instructions in Section 4 for more detailed information). 

The one exception to operation of the carry bit, as shown in Figure 3-8, is in the use 
of the ADDH (add to high accumulator) and SUBH (subtract from high accumulator) 
instructions. The ADDH instruction can only set the carry bit if a carry is generated, 
and the SUBH instruction can only reset the carry bit if a borrow is generated; 
otherwise, neither instruction can affect it. 

3-15 



Device Operation 

Two branch instructions, BC and BNC, have been provided for branching on the 
status of the carry bit. The SC, RC, and LST1 instructions can also be used to load 
the carry bit. The carry bit is set to one on a hardware reset. 

The SFL and SFR {in-place one-bit shift to the left or right) and ROL and ROR {rotate 
to the left or right) instructions implement shifting or rotating of the contents of the 
accumulator through the carry bit. The SXM bit affects the definition of the SFR {shift 
accumulator right) instruction. When SXM = 1, SFR performs an arithmetic right 
shift, maintaining the sign of the accumulator data. When SXM = 0, SFR performs 
a logical shift, shifting out the LSB and shifting in a zero for the MSB. The SFL {shift 
accumulator left) instruction is not affected by the SXM bit and behaves the same 
in both cases, shifting out the MSB and shifting in a zero. Repeat (RPT or RPTK) 
instructions may be used with the shift and rotate instructions for multiple shift 
counts. 

The TMS320C25 supports floating-point operations for applications requiring a large 
dynamic range. The NORM (normalization) instruction is used to normalize fixed­
point numbers contained in the accumulator by performing left shifts. The LACT 
{load accumulator with shift specified by the T register) instruction denormalizes a 
floating-point number by arithmetically left-shifting the mantissa through the input 
scaling shifter. The shift count, in this case, is the value of the exponent specified 
by the four low-order bits of the T register {TR). AOOT and SUBT {add to/subtract 
from accumulator with shift specified by T register) instructions have also been 
provided to allow additional arithmetic operations. Floating-point numbers with 
16-bit mantissas and 4-bit exponents can thus be manipulated. 

The accumulator overflow saturation mode may be programmed through the SOVM 
and ROVM (set/reset overflow mode) instructions. When the accumulator is in the 
overflow saturation mode and an overflow occurs, the overflow flag is set and the 
accumulator is loaded with the most positive or negative number depending upon 
the direction of overflow. 

The TMS320C25 also has the capacity of executing branch instructions that depend 
on the status of the ALU and accumulator. These instructions include the BC {branch 
on carry), BV (branch on overflow), and BZ (branch on accumulator equal to zero) 
instructions. (Refer to Section 4 for a complete list of TMS320C25 instructions.) In 
addition, the BACC {branch to address in accumulator) instruction provides the 
ability to branch to an address specified by the accumulator. 

3.3.3 Multiplier, T and P Registers 

The TMS320C25 utilizes a 16 x 16-bit hardware multiplier, which is capable of 
computing a 32-bit product in a single machine cycle. As shown in Figure 3-7, the 
following two registers are associated with the multiplier: 

• A 16-bit Temporary Register (TR) that holds one of the operands for the 
multiplier, and 

• A 32-bit Product Register (PR) that holds the product. 

Normally, an LT (load T register) instruction loads the TR to provide one operand 
(from the data bus), and the MPY (multiply) instruction provides the second operand 
(also from the data bus). Alternatively, a multiplication can be performed with an 
immediate operand using the MPYK instruction. In either case, a product can be 
obtained every two cycles. 

Two multiply/accumulate instructions (MAC and MACO) fully utilize the computa­
tional bandwidth of the multiplier, allowing both operands to be processed simul­
taneously. For MAC and MACO, two operands are transferred to the multiplier each 



Device Operation 

cycle via the program and data buses. This provides for single-cycle 
multiply/accumulates when used with repeat (RPT or RPTK) instructions. The MAC 
and MACD instructions can be used with operands in either internal or external 
memory. The SORA (square/add) and SORS (square/subtract) instructions pass the 
same value to both inputs of the multiplier for squaring a data memory value. 

All multiply instructions, except the M PYU (multiply unsigned) instruction, perform 
a signed multiply operation in the multiplier. That is, the two numbers being multi­
plied are treated as two's-complement numbers, and the result is a 32-bit two's­
complement number. The M PYU instruction performs an unsigned multiplication, 
which greatly facilitates multiple-precision arithmetic operations. This allows oper­
ands of greater than 16 bits to be broken down into 16-bit words and processed 
separately to generate products of greater than 32 bits. 

After the multiplication of two 16-bit numbers, the 32-bit product is loaded into the 
32-bit Product Register (PR). The product from the PR may be transferred to the 
ALU directly or optionally shifted before it is transferred to the ALU. 

Four product shift modes (PM) are available. The PM field of status register ST1 
specifies the PM shift mode, as shown in Table 3-3. 

Table 3-3. PM Shift Modes 

IF PM IS: RESULT 

00 No shift 
01 Left shift of 1 bit 
10 Left shift of 4 bits 
11 Right shift of 6 bits 

Left shifts specified by the PM value are useful for implementing fractional arithmetic 
or justifying fractional products. For example, the product of either two normalized, 
16-bit, two's-complement numbers or two 015 numbers contains two sign bits, one 
of which is redundant (see Section 5.6.6 for an explanation of 015 representation). 
The single-bit left shift allows this extra sign bit to be shifted off of the product when 
it is passed to the accumulator. This results in the accumulator contents being 
formatted in the same manner as the multiplicands. Similarly, the product of either 
a normalized, 16-bit, two's-complement or 015 number and a 13-bit, two's­
complement constant contains five sign bits, four of which are redundant. This is 
the case, for example, when using the MPYK instruction. Here the four-bit shift 
properly aligns the result as it is transferred to the accumulator. 

Use of the right-shift PM value allows the execution of up to 128 consecutive 
multiply/accumulate operations without the threat of an arithmetic overflow, thereby 
avoiding the overhead of overflow management. The shifter can be disabled to cause 
no shift in the product when working with integer or 32-bit precision operations. 
This allows compatibility with TMS32010 code to be maintained. Note that the PM 
right shift is always sign-extended regardless of the state of SXM. 

The four least significant bits of the T register (TR) also define a variable shift through 
the scaling shifter for the LACT/ADDT/SUBT (load/add-to/subtract-from accu­
mulator with shift specified by the TR) instructions. These instructions are useful in 
floating-point arithmetic where a number needs to be denormalized, i.e., floating­
point to fixed-point conversion. The BITT (bit test) instruction allows testing of a 
single bit of a word in data memory based on the value contained in the four LSBs 
of the TR. 

3-17 



Device Operation 

3.4 System Control 

System control on the TMS320C25 is provided by the program counter and related 
hardware, the external reset signal, the status registers, the on-chip timer, and the 
repeat counter. The following sections describe the function of each of these 
components in system control. 

3.4.1 Program Counter and Related Hardware 

3-18 

The description of the TMS320C25 Program Counter (PC) and its related hardware 
contained in this section provides information useful in understanding the sequence 
of external bus operations that occurs during instruction execution. It should be 
noted, however, that in virtually all cases, operation of this hardware and its effects 
on operation of the internal pipeline are transparent to the user and are included in 
the instruction cycle timings provided in Appendix E. 

The PC and related hardware (see Figure 3-9) direct program execution on the 
TMS320C25. Included in the related hardware are the eight-level PC stack, the 
Prefetch Counter (PFC), the 16-bit MicroCall Stack (MCS) register, the Instruction 
Register (IR}, and the Queue Instruction Register (QIR). The operation of these 
components and their function in instruction pipelining is now described in detail. 

-MOG,~6-

~'ll'~ I .. 16 

16 I ,. 

Figure 3-9. Program Counter and Related Hardware 

In order to speed instruction execution, the TMS320C25 utilizes a three-level internal 
pipeline, which divides an instruction cycle into three operations: prefetch, decode, 
and execution. The PFC contains the address of the next instruction to be prefetched. 
Once an instruction is prefetched, the instruction is loaded into the IR, unless the IR 
still contains an instruction currently executing, in which case the prefetched 
instruction is stored in the QIR. The PFC is then incremented, and after the current 
instruction has completed execution, the instruction in the QIR is loaded into the IR 
to be executed. 



Device Operation 

The PC contains the address of the next instruction to be executed, and is not used 
directly in instruction fetch operations, but merely serves as a reference pointer to the 
current position within the program. The PC is incremented as each instruction is 
executed. When interrupts or subroutine call instructions occur, the contents of the 
PC are pushed onto the stack to preserve return linkage to the previous program 
context. 

In the operation of the pipeline, the prefetch, decode, and execute operations are 
independent, which allows instruction executions to overlap. Thus, during any given 
cycle, three· different instructions can be active, each at a different stage of 
completion, resulting in the three-instruction pipeline. Figure 3-10 shows the 
operation of the three-level pipeline for single-word, single-cycle instructions 
executing from either internal program ROM or external memory with no wait states. 

CLKOUT1 I L 
pref etch : .. N 11: .. N+1 11: .. N+2 II~ 

decode ;.. N-1 11: .. N 11!4 N+1 11: .. 

execute .... N-2 111111 N-1 .,... ~ 11'4 
: : : : 

Figure 3-10. ·Three-Level Pipeline Operation 

Pipelining is reduced to two levels when execution is from internal program RAM 
due to the fact that an instruction in internal RAM can be fetched and decoded in 
the same cycle. Thus, separate prefetch and decode operations are not required, as 
shown in Figure 3-11. 

CLKOUT1 I L 
pref etch : .. N 

11: .. N+1 11!4 N+2 11: .. 

decode ;.. N. 
11: .. N+1 11: .. N+2 11:111 

execute ... N-1 • •• N 11'4 N+l .... 
: : : : 

Figure 3-11. Two-Level Pipeline Operation 

Note that the difference in pipeline levels does not necessarily affect instruction 
execution speed, but merely changes the fetch/decode sequence. Most instructions 
execute in the same number of cycles regardless of whether they are executed from 
internal RAM, ROM, or external program memory. Also note that the effects of 
pipelining are included in the instruction cycle timings listed in Appendix E. 

When branches, subroutine calls, or interrupts occur, the pipeline flow shown in 
Figure 3-12 and Figure 3-13 is disrupted because the pipeline prefetches sequen­
tially, and cannot in general detect that a transfer of control will occur until an 
instruction reaches execution. This is especially true with conditional branches. 

3-19 



Device Operation 

CLKOUT11 

A15-AO :111 

pref etch .4 
decode ·4 

execute :111 

3-20 

During branch or call instructions, both the PC and PFC are loaded with the desti­
nation address, and the pipeline must be refilled. This causes these instructions to 
require at least three cycles to execute when the destination address is located 
externally or in internal program ROM. When the destination address is located in 
internal program RAM, branch instructions generally execute in two cycles, due to 
the two-level pipeline for internal RAM. In either case, some instructions that have 
been prefetched may be discarded as control passes to the branch destination 
address. Operation of the pipeline during interrupts is similar and is described in 
Section 3.6.2. 

Operation of the pipeline during execution of a conditional branch instruction such 
as a BANZ (branch on auxiliary register not zero), located in external program 
memory with no wait states, is shown in Figure 3-12. The diagram shows the 
sequence that occurs when the branch is taken, and the destination address is also 
in external memory. When the branch is not taken, instruction execution continues 
sequentially, and the branch instruction requires only two cycles to execute. Oper­
ation of unconditional branches is identical to that of conditional branches with the 
exception that in conditional branches, the N+2 instruction is not fetched, although 
the address bus is still driven with N+2. 

L 
N i.:111 N+1 

•:111 
N+2 •:4 DEST 

i.:111 DEST+ 1 i.:111 
DEST+ 2 •: 

N .:,. N+1 i.:111 N+2 .;,. DEST i.:111 DEST+ 1 .;,. DEST+ 2 .; 
N-1 .. ,. ~ .. ,. .. ,. .. ,. CESI .. ,. DEST+ 1 ... 
N-2 i.:111 ~-l i.:111 N i.:111 N i.:111 N i.:111 

DEST •' 

Figure 3-12. Pipeline Operation During BANZ Instruction 

There is one additional condition under which the pipeline becomes disrupted. This 
is when execution of single-cycle instructions changes from internal RAM to external 
program memory or internal ROM. This occurs in only the following two cases: 

1) When execution of single-cycle instructions wraps around from >FFFF in block 
BO (when configured as program memory) to location >0000. 

2) When execution of single-cycle instructions is from block BO (configured as 
program memory) and a CNFD instruction is executed, converting block BO to 
data memory. 

Under these conditions, one dummy execute cycle occurs as the pipeline is refilled. 
This situation is depicted in Figure 3-13. Note that this condition occurs only under 
the above circumstances, and its effects are not included in the instruction cycle 
timings given in Appendix E. 



Device Operation 

CU<OUT1 

prefetch 

decode 

execute 

I I r 
~· A ·~· ff1i1 ·~· ~ (P RJ ·~· <PWiRJ ·~· 

(P. ·~·MR> 
•• t!! ... t!l+l ... u N+g u N+3 u ~ 

:• N-1 ••• N ••• N+1 ••• DUMMY ••• N+2 •:• N+3 

Legend: Pl = Program Internal 
PE = Program External 
PR = Program ROM 

Figure 3-13. Pipeline Operation When Crossing Program Boundaries 

The contents of the accumulator may be loaded into the PC and PFC in order to 
implement "computed go to" operations. This can be accomplished using the BACC 
(branch to address in accumulator) or CALA (call subroutine indirect) instructions. 

The PC stack is accessible through the use of the PUSH and POP instructions. 
Whenever the contents of the PC are pushed onto the top of the stack, the previous 
contents of each level are pushed down, and the eighth location of the stack is lost. 
Therefore, data will be lost if more than eight successive pushes occur before a pop. 
The reverse happens on pop operations. Any pop after seven sequential pops yields 
the value at the eighth stack level. All eight stack levels then contain the same value. 
Two additional instructions, PSHD and POPD, push a data memory value onto the 
stack or pop a value from the stack to data memory. These instructions allow a stack 
to be built in data memory for the nesting of subroutines/interrupts beyond eight 
levels. 

The 16-bit MicroCall Stack (MCS) register is used expressly for temporary storage 
of the PFC contents during execution of the TBLR/TBLW, MAC/MACO, and 
BLKD/BLKP instructions. In these instructions, two operand addresses are required: 
one provided through either direct or indirect addressing, and the other loaded into 
the PFC. When execution of the instruction is completed, the contents of the MCS 
are transferred back to the PFC. 

3.4.2 Reset 

Reset (RS) is a non-maskable external interrupt that can be used at any time to put 
the TM5320C25 into a known state. Reset is typically applied after powerup when 
the machine is in a random state. 

Driving the RS signal low causes the TMS320C25 to terminate execution and forces 
the program cou.nter to zero. RS affects various registers and status bits. At powerup, 
the state of the processor is undefined. For correct system operation after powerup, 
a reset signal must be asserted low for at least three clock cycles to guarantee a reset 
of the device. Processor execution begins at location 0, which normally contains a 
B (branch) statement to direct program execution to the system initialization routine 
(see Section 5.1 for an initialization routine example). 

Upon receiving an RS signal, the following actions take place: 

3-21 



Device Operation 

1) A logic 0 is loaded into the CNF {configuration control) bit in status register 
ST1, causing all RAM to be configured as data memory. 

2) The Program Counter {PC) is set to 0, and the address bus A15-AO is driven 
with all zeroes while RS is low. · 

3) The data bus 015-DO is placed in the high-impedance state. 

4) All memory and 1/0 space control signals {PS, DS, TS, R/W, STRB, and BR) are 
de-asserted by setting them to high levels while RS is low. 

5) All interrupts are disabled by setting the INTM {interrupt mode) bit to a high 
level. {Note that RS is non-maskable). The interrupt flag register {IFR) is reset 
to all zeroes. 

6) Status bits: 
0 -> OV; 1 _, XF; 1 -> SXM; 0 -> PM; 1 -> HM; 0 -> F0;1 -> C 
1 -> FSM {Remaining status bits are unchanged). 

7) The global memory allocation register (GREG) is cleared to make all memory 
local. 

8) The RPTC {repeat counter) is cleared, 

9) The DX (data transmit) pin is placed in the high-impedance state. Any 
transmit/receive operations on the serial port are terminated, and the TXM 
(transmit mode) bit is reset to a low level. This configures the FSX framing pulse 
to be an input. A transmit/receive operation may be started by framing pulses 
only after the removal of RS. · 

10) The timer {TIM) and period {PRO) registers are both set to >FFFF and TIM 
does not begin decrementing until RS is de-asserted. 

11) The IACK (interrupt acknowledge) signal is generated in the same manner as a 
maskable interrupt. 

Execution starts from location 0 of program memory when the RS signal is taken high. 
Note that if RS is asserted while in the hold mode, normal reset operation occurs 
internally, but all buses and control lines remain in the high-impedance state. Upon 
release of HOLD and RS, execution starts from location zero. 

Note that the ARB, ARP, DP, IMR, OVM, and TC bits are not initialized by reset. 

3.4.3 Status Registers 

3-22 

Two status registers, STO and ST1, contain the status of various conditions and 
modes. The SST and SST1 instructions provide for storing the status registers into 
data memory. The LST and LST1 instructions load the status registers from data 
memory. In this manner, the current status of the device may be saved on interrupts 
and subroutine calls. 

Figure 3-14 shows the organization of both status registers, indicating all status bits 
contained .in each. Note that the PP, ARP, and ARB registers are shown as separate 
registers in the processor block diagram of Figure 3-1. Because these registers do 
not have separate instructions for storing them into RAM, they are included in the 
status registers. 



Device. Operation 

FIELD 

ARB 

ARP 

c 

CNF 

DP 

FO 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

sTol ARP I ov lovMI l1NTMI DP 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

iml ARB lcNFI TC lsxMI c 1 I HM IFsMI XF FO ITxMI PM 

Figure 3-14. Status Register Organization 

The capability of storing the status registers into data memory and loading them from 
data memory allows the status of the machine to be saved and restored for interrupts 
and subroutines. All status bits are written to and read from using LST /LST1 and 
SST/SST1 instructions, respectively {with the exception of INTM, which cannot be 
loaded via an LST instruction). However, some additional instructions or functions 
may affect those bits, as indicated in Table 3-4. 

As shown in Figure 3-14, several bits in the status registers are reserved and are read 
as logic '1 's by the LST and LST1 instructions. 

Table 3-4. Status Register Field Definitions 

FUNCTION 

Auxiliary Register Pointer Buffer. Whenever the ARP is loaded, the old ARP value is copied to the ARB 
except during an LST instruction. When the ARB is loaded via an LST1 instruction, the same value is also 
copied to the ARP. 

Auxiliary Register Pointer. This three-bit field selects the AR to be used in indirect addressing. When ARP 
is loaded, the old ARP value is copied to the ARB register. ARP may be modified by memory-reference 
instructions when using indirect addressing, and by the LARP, MAR, and LST instructions. ARP is also 
loaded with the same value as ARB when an LST1 instruction is executed. 

Carry bit. This bit is set to '1' if the result of an addition generates a carry, or reset to 'O' if the result of a 
subtraction generates a borrow. Otherwise, it is reset after an addition or set after a subtraction, except if 
the instruction is an ADDH or a SUBH. ADDH can only set and SUBH only reset the carry bit, but cannot 
affect it otherwise. The shift and rotate instructions also affect this bit, as well as the SC, RC, and LST1 
instructions. Two branch instructions, BC and BNC, have been provided to branch on the status of C. c 
is set to '1' on a reset. The carry bit is useful in implementing multiple-precision arithmetic and in overflow 
management. 

On-Chip RAM Configuration Control bit. If set to '0'. block BO is configured as data memory; otherwise, 
block BO is configured as program memory. The CNF may be modified by the CNFD, CNFP, and LST1 
instructions. 1iS resets the CNF to 'O'. 

Data Memory Page Pointer. The 9-bit DP register is concatenated with the 7 LSBs of an instruction word 
to form a direct memory address of 16 bits. DP may be modified by the LST, LOP, and LDPK instructions. 

Format bit. A 'O'. configures the serial port registers as 16-bit registers. A '1' configures the port registers to 
receive and transmit eight-bit bytes. FO may be modified by the FORT and LST1 instructions. FO is reset 
to 'O'. 

3-23 



Device Operation 

Table 3-4. Status Register Field Definitions (Concluded) 

FIELD FUNCTION 

FSM Frame Synchronization Mode bit. This bit indicates whether the serial port will operate with or without frame 
sync pulses. When FSM = 1, the serial port operation will be initiated following a frame sync pulse on the 
FSX/FSR inputs. When FSM =; 0, the FSX/FSR inputs are ignored and the serial port operates continuously 
with no frame sync pulses required. The bit is set to one by a reset. 

HM Hold Mode bit. When HM = 1, the TMS320C25 halts internal execution when acknowledging an active 
HOLD. When HM = 0, the processor may continue execution out of internal program memory but puts its 
external interface in a high-impedance state. This bit is set to one by a reset. 

INTM Interrupt Mode. A 'O' enables all unmasked interrupts. A '1' disables all maskable interrupts. I NTM is set and 
reset by the DI NT and El NT instructions. RS and IACK also set I NTM. I NTM has no effect on the unmaskable 
RS' interrupt. Note that I NTM is unaffected by the LST instruction. 

ov Overflow Flag. As a latched overflow signal, OV is set to '1' when overflow occurs in the ALU. Once an 
overflow occurs, the OV remains set until a reset, BV. BNV, or LST instruction clears the OV. 

OVM Overflow Mode. A 'O' causes overflowed results to overflow normally in the accumulator. A '1' causes the 
accumulator to be set to either its most positive or negative value upon encountering an overflow. The SOVM 
and ROVM instructions set and reset this bit. LST may also be used to modify the OVM. 

PM Product Shift Mode. If these two bits are 00, the multiplier's 32-bit product is loaded into the ALU with 
no shift. If PM = 01, the PR output is left-shifted one place and loaded into the ALU, with the LSBs 
zero-filled. If PM = 10, the PR output is left-shifted by four bits and loaded into the ALU, with the LSBs 
zero-filled. PM = 11 produces a right shift of six bits, sign-extended. Note that the PR contents remain 
unchanged. The shift takes place when transferring the contents of the PR to the ALU. PM is loaded with 
the SPM and LST1 instructions. The PM bits are cleared by RS. 

SXM Sign-Extension Mode bit. A '1' produces sign extension on data as it is passed into the accumulator through 
the scaling shifter. A 'O' suppresses sign extension. Note that SXM does not affect the definition of certain 
instructions. For example, the ADDS instruction suppresses sign extension regardless of SXM. This bit is 
set and reset by the SSXM and RSXM instructions and may also be loaded by LST1. SXM is set to '1' by 
RS. 

TC Test/Control Flag bit. The TC bit is affected by the BIT. BITT, CMPR, LST1. and NORM instructions. The 
TC bit is set to a '1' if: (1) a bit tested by BIT or BITT is a '1 ', (2) a compare condition tested by CMPR exists 
between ARO and another AR pointed to by ARP. or (3) the exclusive-OR function of the two MSBs of the 
accumulator is true when tested by a NORM instruction. Two branch instructions, BBZ and BBNZ. provide 
branching on the status of the TC. 

TXM Transmit Mode bit. A '1' configures the serial port's FSX pin to be an output. In this mode, a pulse is produced 
on FSX when DXR is loaded. Transmission then starts on the DX pin. A 'O' configures the FSX pin to be 
an input. TXM is set and reset by the STXM and RTXM instructions and may also be loaded by LST1. RS' 
resets TXM to a 'O'. 

XF XF pin status. A status bit indicating the state of the XF pin. a g11neral-purpose output pin. XF is set and reset 
by the SXF and RXF instructions or may be.loaded by LST1. XF is set to '1' by RS. 

3.4.4 Timer Operation 

3-24 

The TMS320C25 provides a memory-mapped timer (TIM) register and a period 
(PRO) register. The timer register is a down counter continuously clocked by 
CLKOUT1. Reset sets the timer and period registers (see Figure 3-15) to their 
maximum value (>FFFF). Upon release of reset, the timer begins decrementing. 
Following this, the TIM and PRO registers may be reloaded under program control. 
See Section 3.4.2 forreset information. 



Device Operation 

CRYSTAL 
OR 

EXTERNAL 
CLOCK 

PRO (18) 

18 

DMDE (CLOCK) 
--..M BY --..;..._-....o..jH 

FOUR 

18 TINT 

CLKOllT1 

Figure 3-15. Timer Block Diagram 

The TIM register, data memory location 2, holds the current count of the timer. At 
every CLKOUT1 cycle, the TIM register is decremented by one. The PRO register, 
data memory location 3, holds the starting count for the timer. When the TIM 
register decrements to zero, a TINT (timer interrupt) is generated. In the next cycle, 
the contents of the PRO register are loaded into the TIM register. In this way, a 
TINT is generated every PRO + 1 cycles of CLKOUT1. By programming the PRO 
register from 1 to 65,535 (>FFFF), a TINT can be generated every 2 to 65,536 
cycles, respectively. A PRO register value of zero is not allowed. 

The timer and period registers can be read from or written to on any cycle. The count 
can be monitored by reading the TIM register. A new counter period can be written 
to the period register without disturbing the current timer count. The timer will then 
start the new period after the current count is complete. If both the PRO and TIM 
registers are loaded with a new period, the timer begins decrementing the new 
period without generating an interrupt. Thus, the programmer has complete control 
of the current and next periods of the timer. 

If the timer is not used, TINT should be masked or all maskable interrupts disabled 
by a DINT instruction. The PRO register can then be used as a general-purpose 
data memory location. If TINT is used, the PRO and TIM registers should be 
programmed before unmasking the TINT. 

3-25 



Device Operation 

3.4.5 Repeat Counter 

The repeat counter (RPTC) is an 8-bit counter, which when loaded with a number 
N, causes the next single instruction to be executed N + 1 times. The RPTC can 
be loaded with a number from 0 to 255 using either the RPT (repeat) or RPTK 
(repeat immediate) instructions. This results in a maximum of 256 executions of a 
given instruction. RPTC is cleared by reset. 

The repeat feature can be used with instructions such as multiply/accumulates 
(MAC/MACO), block moves (BLKD/BLKP), 1/0 transfers (IN/OUT), ·and table 
read/writes (TBLR/TBLW). These instructions, which are normally multicycle, are 
pipelined when using the repeat feature, and effectively become single-cycle 
instructions. For example, the table read instruction may take three or more cycles 
to execute, but when repeated, a table location can be read every cycle. Note that 
not all instructions can be repeated (see Section 4.3 and Appendix E for more 
information). 

3.4.6 Powerdown Mode 

When operated in the powerdown mode, the TMS320C25 enters a dormant state 
and requires only a fraction of the power normally needed to supply the device. 
Powerdown mode is invoked either by executing an IDLE instruction or by driving 
the HOLD input low with the HM status bit set to one. 

While in powerdown mode, all of the internal contents of the processor are main­
tained to allow operation to continue unaltered when powerdown mode is termi­
nated. Powerdown mode is terminated upon receipt of an interrupt when an IDLE 
instruction is being executed or by removal of the HOLD input. (Refer to the ID LE 
instruction description in Section 4 and the hold function description in Section 
3.8.3 for further information.) Actual power supply current requirements in 
powerdown mode are specified in the TMS320C25 Data Sheet (Appendix A). 

3.5 External Memory and 1/0 Interface 

3-26 

Data, program, and 1/0 address spaces provide interfacing to memory and 1/0, thus 
maximizing system throughput. The local memory interface consists of: 

• A 16-bit parallel data bus (D15-DO), 

• A 16-bit address bus (A15-AO), 

• Data, program, and 1/0 space select ( DS, PS, and TS) signals, and 

• Various system control signals. 

The R/W (read/write) signal controls the direction of the transfer, and STRB 
(strobe) provides a timing signal to control the transfer. 

1/0 design is simplified by having 1/0 treated the same way as memory. 1/0 devices 
are mapped into the 1/0 address space using the processor's external address and 
data buses in the same manner as memory-mapped devices. 

Interfacing to memory and 1/0 devices of varying speeds is accomplished by using 
the READY line. When communicating with slower devices, the TMS320C25 
processor waits until the other device completes its function, signals the processor 
via the READY line, and continues execution. 



Device Operation 

3.5.1 Memory Combinations 

The exact sequence of operations performed as instructions execute depends on 
the areas in memory where the instructions and operands are located. There are 
six possible combinations of program and data niemory since information can be 
located in either internal RAM, external memory, or internal ROM. The six possible 
combinations are: 

• Program Internal RAM/Data Internal (Pl/DI) 
• Program Internal RAM/Data External (Pl/DE) 
• Program External/Data Internal (PE/DI) 
• Program External/Data External (PE/DE) 
• Program Internal ROM/Data Internal (PR/DI) 
• Program Internal ROM/Data External (PR/DE) 

Appendix E provides cycle timings for instructions both when repeated and when 
not repeated. The following is a summary of program execution, organized 
according to memory configuration. 

Pl/DI or PR/DI When both program and data memory are on-chip, 
the processor runs at full speed with no wait states. 
Note that IN and OUT instructions have different 
cycle timings when program memory is internal; IN 
requires two cycles to execute while OUT requires 
only one. 

PE/DI This memory mode can run at full speed if external 
program memory is sufficiently fast since internal 
data operations can occur coincident with external 
program memory accesses. If external program 
memory is not fast enough, wait states may be 
generated using the READY input. 

Pl/DE, PE/DE, or PR/DE Additional cycles are required to execute instructions 
that reference an external data memory space. At 
least two cycles are required to execute 'read from 
external data memory' instructions such as ADD, 
LAR, etc. Further additional cycles may be required 
due to wait states if external data memory is not fast 
enough to be accessed within a single cycle. Note, 
however, that the TMS320C25 has the capability of 
executing 'write to external data memory' 
instructions in a single cycle when program memory 
is internal (two cycles are required if program 
memory is also external). Additional cycles are also 
required in this case if external data memory is not 
sufficiently fast. 

Note that in all memory configurations where the same bus is used to communicate 
with external data, program, or 1/0 space, the number of cycles required to execute 
a particular instruction may further vary depending on whether the next instruction 
fetch is from internal or external program memory. Instruction execution and 
operation of the pipeline are discussed in detail in the following sections and in 
Section 3.4.1 . 

3-27 



Device Operation 

3.5.2 Internal Clock Timing Relationships 

The crystal or external clock source frequency is divided to produce an internal 
four-phase clock. The four phases are defined by CLKOUT1 and CLKOUT2, as 
shown in Figure 3-16. 

Phase # ! 03 I 04 I 01 I 02 ! 03 I 04 I 
CLKOUT1 j \ i \_ 
CLKOUT2 

01 

\ __ \ _ ____,/ 
----!11-. _---'!, 

02l _______ n_. ~--
03 

04 

Figure 3-16. Four-Phase Clock 

Figure 3-16 shows the start of quarter-phase 3 (03) on the rising edge of 
CLKOUT1. To help facilitate the description of the TMS320C25's operation, this 
nomenclature is used throughout this document. 

3.5.3 External Read Cycle 

3-28 

Each time an external read cycle is performed, a specific sequence of events occurs. 
This sequence of events is as follows: 

1) During clock quarter-phase 1, the processor begins driving the address bus 
and one of the memory space select signals. R/W is driven high to indicate 
an external memory read. 

2) At the beginning of quarter-phase 2, STRB is asserted to indicate that the 
address bus is valid. STRB, in conjunction with R/W, may be used to gate a 
read enable signal. 

3) After decoding the addressed memory area, the user's memory interface must 
set up the appropriate READY signal during quarter-phase 2. READY is 
sampled by the processor at the beginning of quarter-phase 3. 

4) If READY was high at the proper time, the data is clocked in at the end of 
quarter-phase 3. 

5) STRB is deasserted at the beginning of quarter-phase 4. The processor ends 
the memory access by deactivating the address bus and PS, OS, or TS. 

Note that the control signals PS, OS, IS, STRB, and R/W are only asserted when 
an external address location is being accessed. 



Device Operation 

Phase• 

CLKOUT1 

fetch 

execute 

external 
bus 

PS 

Figure 3-17 shows the timing for several read operations. Two instructions are 
shown executing completely, an ADD and a SUB instruction. Note that a previous 
instruction is being executed while ADD and SUB are being fetched. Also note that 
while the SUB instruction is being executed, the next instruction, LAC, is being 
fetched even though execution of the LAC is not shown. 

The ADD instruction takes one cycle to execute because both the next instruction 
and the ADD's data are internal. The SUB instruction that is fetched during ADD 
execution takes two cycles to execute because its data is external. The LAC 
instruction is fetched externally, but no wait state is needed since fast program 
memory is being used. STRB going high (inactive) signals the end of the read cycle. 
Data is clocked into the processor at the beginning of clock quarter-phase 4 if the 
READY signal was active at the beginning of quarter-phase 3 and satisfied the 
required setup time. 

Note that one dummy execute cycle occurs in the sequence of instructions because 
program execution changes from Pl to PE. This is discussed in detail in Section 
3.4.1. 

11121314111213141112131411121314111213141112 

·4 (~) 11i·4 SUB 11i:4 11i;4 LAC 11i;4 NEXT ... : (PVDE> <PE/DI) (PE/Di) 

:4 PREVIOUS 11i:4 APP 11i:4 SUB 11i:4 SUB 11i:4 PUMMY 11i; 

READ SUB FETCH FETCH 
OPERAND LAC NEXT 

:\ & r-

READY .... w ... 
R/W-

A15-AO - VALID x VALID x VALID c 
D15-DO ---------------<{VALID )>---c:( VALID )>---c:( VALID }--

Figure 3-17. Read Cycle Functional Timing 



Device Operation 

3-30 

3.5.4 External Write Cycle 

The sequence of events that occurs each time an external write cycle is performed, 
is as follows: 

1) During clock quarter-phase 1, the TMS320C25 begins driving the address 
bus and one of the memory space select signals. R/W is driven low to indicate 
an external memory write. 

2) At the beginning of quarter-phase 2, STRB is asserted to indicate that the 
address bus is valid. STRB, in conjunction with R/W, may be used to gate a 
write enable signal. 

3) After decoding the addressed memory area, the user's memory interface must 
provide the appropriate logic level to the READY signal input during quar­
ter-phase 2. READY is sampled by the processor at the beginning of quar­
ter-phase 3. 

4) The data bus begins to be driven at the start of quarter-phase 2. 

5) STRB is then deasserted at the beginning of quarter-phase 4. The processor 
ends the memory access by deactivating the address bus and PS, DS, or TS. 

The number of cycles in a memory or 1/0 access is determined by the state of the 
READY input. At the start of quarter-phase 3, the TMS320C25 samples the READY 
input. If READY is high, the memory access ends at the next falling edge of 
CLKOUT1. If READY is low, the memory cycle is extended by one machine cycle, 
and all other signals remain valid. At the beginning of the next quarter-phase 3, 
this sequence is repeated. Note that for on-chip program and data memory 
accesses, the READY input is ignored. 

Figure 3-18 illustrates the functional timing for write operations and wait states. 
The timing for three instructions, SACL, SAR, and SACH, is shown. The SACL 
instruction stores data in external data memory, and the next instruction fetched 
is in internal program memory. Therefore, the SACL instruction's memory references 
are Pl/DE. SACL only takes one cycle to complete, because the instruction writes 
to the zero wait-state external data memory. The SAR instruction references a Pl/DI 
memory configuration. This instruction only takes one cycle to execute, because 
the data and program are internal. The SACH instruction uses slow external data 
memory (one wait state) and fast external program memory. SACH takes three 
cycles: one for the write to external data memory, one for a wait state since the 
external data is slow, and one for the external program fetch. External logic holds 
the READY line inactive during quarter-phase 2 to indicate a wait state. For write 
operations, STRB going high can be used to clock data into the external memory. 

One dummy execute cycle also occurs in this sequence of instructions, because 
program execution changes from Pl to PE (see Section 3.4.1). 



Device Operation 

Phase• 

CLKOUT1 

fetch 

execute 

external 
bus 

READY 

Rfii 

A15-AO 

D15-DO 

11,2,3,411,2,3,411,2,3,411,2,3,411,2,3,411,2,3,411,2,3,411,2,3,411, . . . . . 

·4 Wo~ •'4 (~~I) ··4 ,9~is •:4 ,as •:4 •'4 •.4 ··4 c'505o •'. 
: 

:4PREVIOUS .:4 SACL •'.• SAR •:• DUMMY.:. SACH .:4 SACH ••4 SACH •:4 ADD .: 

WRITE FETCH FETCH : WRITE SACH DATA : FETCH 
'SACL DATA' SACH ADD :4 ONE WAIT STATE•: LAC : : 

\ a :; 

w 

' ',' '.' "' ............ ·:: .. 
' ' ,, .. "' '"'' ' '" '""" ..... ' '" ' ............. ' .. .. I{ VALID X VALID X VALID ___ v_A_LI_D ___ ) 

VALID 

Figure 3-18. Functional Timing of Write Cycles and Wait States 

3.6 Interrupts 

The TMS320C25 has three external maskable user interrupts (INT2-INTO), available 
for external devices that interrupt the processor. Internal interrupts are generated 
by the serial port (RINT and XINT), by the timer (TINT), and by the software 
interrupt (TRAP) instruction. Interrupts are prioritized with reset having the highest 
priority and the serial port transmit interrupt having the lowest priority. 

3.6.1 Interrupt Operation 

This subsection details interrupt organization and management. Vector locations 
and priorities for all internal and external interrupts are shown in Table 3-5. The 
TRAP instruction, used for software interrupts, is not prioritized but is included here 
since it has its own vector location. Each interrupt address has been spaced apart 
by two locations so that branch instructions can be accommodated in those 
locations. 

3-31 



Device Operation 

3-32 

Table 3-5. Interrupt Locations and Priorities 

INTERRUPT MEMORY 
NAME LOCATION PRIORITY FUNCTION 

RS 0 1 (highest) External reset signal 
INTO 2 2 External user interrupt #0 
001 4 3 External user interrupt #1 
ilili'2 6 4 External user interrupt #2 

8-23 Reserved locations 
TINT 24 5 Internal timer interrupt 
RINT 26 6 Serial port receive interrupt 
XINT 28 7 (lowest) Serial port transmit interrupt 
TRAP 30 N/A TRAP instruction address 

When an interrupt occurs, it is stored inthe 6-bit Interrupt Flag Register (IFR). This 
register is set by the external user interrupts INT(2-0) and the internal interrupts 
RINT, XINT, and TINT. Each interrupt is stored until it is recognized and then 
cleared by the IACK (interrupt acknowledge) signal or the RS (reset) signal. The 
RS signal is not stored in the I FR. No instructions are provided for reading from 
or writing to the IFR. 

The TMS320C25 has a memory-mapped Interrupt Mask Register (IMR) for 
masking external and internal interrupts. The layout of the register is shown in 
Figure 3-19. A '1' in bit positions 5 through 0 of the IM R enables the corre­
sponding interrupt, provided that INTM = 0. The IMR is accessible with both read 
and write operations but cannot be read using BLKD. When the IMR is read, the 
unused bits (15 through 6) will be read as '1 's. The lower six bits are used to write 
to or read from the IM R. Note that RS is not included in the IM R, and therefore 
the IM R has no effect on reset. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

RESERVED 

Figure 3-19. Interrupt Mask Register (IMR) 

The INTM (interrupt mode) bit, which is bit 9 of status register STO, enables or 
disables all maskable interrupts. A 'O' in INTM enables all the unmasked interrupts, 
and a '1' disables these interrupts. The INTM is set to a '1' by the IACK (interrupt 
acknowledge) signal, the DINT instruction, or a reset. This bit is reset to a 'O' by 
the EINT instruction. Note that the INTM does not actually modify the IMR or IFR. 

The TMS320C25 has a built-in mechanism for protecting multicycle instructions. 
If an interrupt occurs during a multicycle instruction, the interrupt is not processed 
until the instruction is completed. This also includes instructions that become 
multicycle due to the READY signal. 

In addition, the device also does not allow interrupts to be processed when an 
instruction is being repeated via the RPT or RPTK instructions. The interrupt is 
stored in the IFR until the repeat counter (RPTC) decrements to zero, and then the 
interrupt is processed. Note that even if the interrupt is de-asserted while the 
TMS320C25 is processing the RPT or RPTK, the interrupt will still be latched by 
IFR and be pending until RPTC decrements to zero. 



Device Operation 

If both the HOLD line and an interrupt go active during a multicycle instruction or 
a repeat loop, the HOLD takes control of the processor at the end of the instruction 
or loop. When HOLD is released, the interrupt is acknowledged. 

Interrupts cannot be processed between EINT and the next instruction in a program 
sequence. For example, if an interrupt occurs during an EINT instruction execution, 
the device always completes EINT as well as the following instruction before the 
pending interrupt is processed. This insures that a RET can be executed before the 
next interrupt is processed, assuming that a RET instruction follows the EINT. The 
state of the machine, upon receiving an interrupt, may be saved and restored (see 
Section 5.3.1 ) . 

3.6.2 External Interrupt Interface 

INT(2-0) may be asynchronous edges or levels. The functional logic organization 
for INT(2-0) is shown in Figure 3-20. As shown in the figure, the external interrupt 
INTO is connected to an edge-triggered flip-flop. The INTO signal is ORed with the 
interrupt edge flip-flop Q output and synchronized with internal quarter-phases 1 
and 2 to produce an interrupt signal. In this way, the device can handle both 
edge-triggered and level-triggered interrupts. 

If the INTM bit and flag register have been properly enabled, the interrupt signal 
is accepted by the processor. An IACK (interrupt acknowledge) signal is then 
generated. The IACK clears the appropriate interrupt edge flip-flop and disables 
the INTM latch. The logic is the same for INT1 and INT2. 

3-33 



Device Operation 

-----~-~-----~-~ 

IACK--.-~~~+-~~~~--~.,......~~~~ ........ ~~~ ........ ~-1-...:u:""-~~~~ 

RS 

iii' (0, 1, OR 2) 

3-34 

D 0 

INTERRUPT 
EDGE 

FF 
CU< 

SVNC 
FF 

CLK 

Q D 
INTERRUPT 

FLAG 
REGISTER 

CU< 

Figure 3-20. Internal Interrupt Logic Diagram 

INTERRUPT 
PROCESSOR 

FROM 
lllTERNAL 

INTERRUPTS 

TO 
PC 

MACHlllE 
STATE 

In a typical interrupt {INT2-INTO) operation, the interrupt is generated by a nega­
tive-going edge and the IFR bit is set. Since INTM is disabled when the interrupt 
is acknowledged, the level may continue to be present on the INT input without 
generating further interrupts. If the level is removed before an EINT instruction is 
executed, no further interrupts are generated. If a low level continues to be present 
after the EINT, another interrupt is generated after the EINT /next instruction 
sequence. In addition, if the INT pin is pulsed between the previous IACK and EINT, 
another interrupt is generated after EINT /RET, because the corresponding IFR bit 
is again set. 

The timing diagram of Figure 3-21, shows an interrupt, interrupt acknowledge, and 
various other signals for the special case of single-cycle instructions. An interrupt 
generated during the current (N) fetch cycle still allows the fetch and execution 
of that instruction. The N+1 and N+2 instructions are also fetched, then discarded, 
and the address N+1 is pushed onto the top of the stack. The instruction is fetched 
again upon a return command from the interrupt routine. 

As shown in Figure 3-21, two dummy execute cycles occur on an interrupt. The 
IACK signal is asserted low during CLKOUT1 low when the device initiates a fetch 
from interrupt location I. Therefore, an external device can determine the interrupt 
that occurred by latching the address bus value present on A4-A1 with the rising 
edge of CLKOUT2 when IACK is low. 



Device Operation 

Phase# 

CLKOUT1 

CLKOUT2 

STRB 

INT2-INTO 

A15-AO 

fetch 

execute 

IACK 

112131411121314!1121314!1121314!1121314!11213141 

) N x N+1 x N+2 x x 1+1 x 
N : 

... .... N+2 : 1+1 : .... .... ..... N+1 : .... 
: .. N-2 .... N-1 ..... N . .... DUMMY ..... DUMMY u 

: TOP OF= 
,N+1-STACK : .. ... 81111111/ -

Notes: 1. N is the program memory location for the current instruction. 
2. I is the interrupt vector location in program memory for the active 

interrupt. 
3. For simplicity, this example only shows the execution of single-cycle 

instructions fetched from external program memory, rather than 
multicycle instructions. 

Figure 3-21. Interrupt Timing Diagram 

3.7 Serial Port 

1+2 ( 
1+2 : • • 

• • 

The on-chip serial port provides direct communication with serial devices such as 
codecs, serial A/D converters, and other serial systems. The interface signals are 
compatible with codecs and many other serial devices with a minimum of external 
hardware. The serial port may also be used for intercommunication between 
processors in multiprocessing applications. 

Serial port operation is controlled by the following registers and mode bits: 

• Data Transmit Register (DXR) 
• Transmit Shift Register (XSR) 
• Data Receive Register (ORR) 
• Receive Shift Register (RSR) 
• Format bit (FO) 
• Transmit Mode bit (TXM) 
• Frame Synchronization Mode bit (FSM) 

The serial port uses two memory-mapped registers: the DXR register that holds the 
data to be transmitted by the serial port, and the ORR register that holds the 
received data (see Figure 3-22). Any instruction accessing data memory can be 
used to read from or write to these registers; however, the BLKD (block move from 

3-35 



Device Operation 

3-36 

data memory to data memory) instruction cannot be used to read these registers. 
The DXR and ORR registers are mapped into locations 0 and 1 in the data address 
space. The XSR and RSR registers are not directly accessible through software. 

ADDRESS 
MSB LSB 

>0000 DRR 

>0001 DXR 

Figure 3-22. The ORR and DXR Registers 

The transmit and receive sections of the serial port are implemented separately to 
allow independent transmit and receive operations, as shown in Figure 3-23. 
Externally, the serial port interface is implemented using the following six pins on 
the TMS320C25 device: 

• Transmitted serial data (DX) 
• Transmit clock (CLKX) 
• Transmit framing synchronization signal (FSX) 
• Received serial data (RX) 
• Receive clock (CLKR) 
• Receive framing synchronization signal (FSR) 

The data on the DX and DR pins is clocked out of or into the XSR or RSR by the 
CLKX or CLKR signal, respectively. CLKX and CLKR are only required to be present 
during actual serial port transfers, and may be stopped when no data is being 
transferred. Data bits can be transferred in either 8-bit bytes or 16-bit words. Data 
is clocked out of XSR on the rising edges of CLKX, while data is clocked into RSR 
on the falling edges of CLKR. The MSB of the data is transferred first. 

The XSR and RSR are connected to the DXR and ORR, respectively. For transmit 
operations, the contents of DXR are transferred to XSR when a new transmission 
begins. For a receive operation, the contents of RSR are transferred to ORR when 
all of the bits have been received. Thus, the serial port is double-buffered since 
data may be transferred to or from the DXR or ORR while another transmit or receive 
operation is being performed. 



Device Operation 

.Af)())\\)/:':t:t:ff{()'( ((::::::::)()DATA BUS ;::(()(()(()(:(:)\)((:tt?':()()Vi/ 

+ ~ 

116 1 
LOAD 

(16 

+ CONTROL • 
ORR (16) l_j_LOAD_l LOGIC [ J l ~ 

J_LOADJ_ 

[ DXR (16) J 

116 ~ LOAD ~ CONTROL 
LOGIC 

116 

RSR (16) [ ] J XSR (16) L 
J 

,, "" L.lCLEAR_l 
_!_CARIU.LJ BYTE/WORD COUNTER I.! :LOCK 

J_CLEAR_L M_ 
!CL OC"'IBYTEJWORD COUITTmj (CARR 1 l L ~ 

RINT XINT 

DR 
FSR FSX ~ 

DX 
CLKR CLKX 

Figure 3-23. Serial Port Block Diagram 

Serial port transfers are generally initiated by a frame sync pulse. The exception to 
this is when the continuous mode of operation is used with FSM=O, as described 
in a subsequent paragraph. Frame sync pulses are input on FSX for transmit 
operations and on FSR for receive operations. 

Upon completion of a serial port transfer, an internal interrupt is generated. The 
RI NT interrupt is generated for a receive operation, and XI NT is generated for a 
transmit operation. RINT and XINT are generated on the rising edge of CLKR and 
CLKX, respectively, after the last bit is transferred. Note that if ORR is read before 
a RINT is received, it will contain the data from the previous operation. Similarly, 
if DXR is loaded more than once after an XINT is generated (in the continuous 
transmission mode), only the last value written will be loaded into XSR for the next 
transmit operation. 

When the TMS320C25 is reset, TXM is cleared to zero, and DX is placed in a 
high-impedance state. Any transmit or receive operation that is in progress when 
the reset occurs is terminated. 

If the serial port is not being used, the ORR and DXR registers can be used as 
general-purpose registers. In this case, the CLKR or FSR should be connected to 
a logic low to prevent a possible receive operation from being initiated. 

The FO (format) bit, located in status register ST1, is used to define whether data 
to be transmitted and received is an 8-bit byte or a 16-bit word. If FO == 0, the 
data is formatted in 16-bit words. If FO == 1, the data is formatted in 8-bit bytes. 
In the 8-bit mode, only the lower eight least-significant bits are used for 
transmit/receive operations. The FO bit is loaded by the FORT (format serial port 
registers) instruction. On reset, FO is set to a 'O'. 

3-37 



Device Operation 

The TXM (transmit mode) bit, also located in status register ST1, is used to 
determine if the frame sync pulse for the transmit operation is generated internally 
or externally. If TXM=O, FSX is an input, but if TXM=1, FSX becomes an output 
and frame sync pulses are produced on FSX at the beginning of a serial port tran­
smission. The TXM bit can be loaded by the LST1, STXM, or RTXM instructions. 

The FSM (frame synchronization mode) status register bit is used to select whether 
frame sync pulses are required for each serial port transfer. If FSM=1, frame sync 
pulses are required; if FSM=O, they are not required. FSM is set by the SFSM (set 
frame synchronization mode) instruction and cleared by the RFSM (reset frame 
synchronization mode) instruction. 

The timing of the serial port signals is compatible with the Tl/Intel 2910 series 
codecs. The timing is also compatible with the AM I 53506 series codecs if the 
frame synchronization signals are inverted. 

3.7.1 Burst-Mode Operation 

3-38 

CLKX 

DX 
(F0=1) 

XINT 

In burst-mode serial port operation, transfers are separated in time by periods of 
no serial port activity (the serial port does not operate continuously}. For burst­
mode operation, FSM must be set to one. Timing of the serial port in this mode 
of operation is shown in Figure 3-24 and Figure 3-25. 

........ ~ ........ ~-.-~--~..-~----.~......-~-.---~~~--~..-

i l DXR 
LOADED 

XSR 
LOADED 

(DURING CLKX LOW) 

D ! R l RELOADED 

XSR 
RELOADED 

Figure 3-24. Burst-Mode Serial Port Transmit Operation 



Device Operation 

CLKR 

DR 
(F0=1) 

RINT 

A4 AS 81 

--~--~--~----~~----.~--~----r---\...._ __ ~.....,..-
t 

ORR 
LOADED 

FROM RSR 

Figure 3-25. Burst-Mode Serial Port Receive Operation 

When TXM =1 (in the transmit operation) and the serial port register DXR is loaded, 
a framing pulse is generated on the next rising edge of CLKX. XSR is loaded with 
the current contents of DXR while FSX is high and CLKX is low. Transmission 
begins when FSX goes low while CLKX is high or is going high. Figure 3-24 shows 
the timing for the byte mode (F0=1 ). XINT is generated on the rising edge of CLKX 
after all 8 or 16 bits have been transmitted and DX is placed in the high-impedance 
state. If DXR is reloaded before the next rising edge of CLKX after XINT, FSX will 
again be generated as shown, and XSR will be reloaded. 

The receive operation is very similar to the transmit operation. The contents of RSR 
are loaded into DRR while CLKR is low, just after reception of the last bit sent by 
the transmitting device (see Figure 3-25). RINT is generated on the next rising 
edge of CLKR, and DRR may be read at any time before the reception of the final 
bit of the next transmission. When operating in the byte mode, the eight most­
significant bits of the DRR are the contents of the eight least-significant bits of the 
DRR prior to reception of the current byte, as shown in Figure 3-26. 

MSB LSB 

Initial x y 
Conditions 

After 1st Receive y A (Byte 'A') 

After 2nd Receive 
A B (Byte 'B') 

Etc. 

Figure 3-26. Byte-Mode ORR Operation 

3-39 



Device Operation 

3.7.2 Continuous-Mode Operation Using Frame Sync Pulses 

CLIOC 

FSX 
(TXM•1) 

3-40 

DX 
(Fo-1) 

XINT 

The TMS320C25 provides two modes of operation that allow the use of a 
continuous stream of serial data. When FSM =1, frame sync pulses are required, 
but since DXR is double-buffered, continuous operation is achieved even if 
TXM=1. Writing to DXR during a serial port transmission does not abort the 
transmission in progress, but instead DXR stores that data until XSR can be 
reloaded. As long as DXR is reloaded before the CLKX rising edge on the final bit 
being transmitted, the FSX pulse will go high on the rising edge of CLKX during 
the transmission of the final bit and fall on the next rising edge when transmission 
of the word just loaded begins. If DXR is not reloaded within this period and FSM 
=1, the DX pin will be placed in a high-impedance state for at least one CLKX cycle 
until DXR is reloaded (as described in the previous section}. Figure 3-27 and Figure 
3-28 show the timing diagrams for the continuous operation with frame sync 
pulses. 

-----r--1----~----~--~----~-r---1----~---
B4 B7 BB 

__ __,_ __ r-i. __________________ r-1 ___ 

i 
DXR 

LOADED 
WITH B r i r DXR 

~i:g 
XSR 

LOADED 
XSR 

LOADED 

Figure 3-27. Serial Port Transmit Continuous Operation (FSM=1) 



Device Operation 

CLKR 

FSR 

DR 
(F0=1) 

RINT 

i 
READ 
ORR r 

ORR 
LOADED 

FROM RSR 

i 
READ 
ORR 

n 
C1 C2 

n 

r 
ORR 

LOADED 
FROM RSR 

Figure 3-28. Serial Port Receive Continuous Operation ( FSM =1) 

Continuous receive operation with FSM=1 is identical to that of burst-mode 
operation with the exception that FSR is pulsed during reception of the final bit. 

3.7.3 Continuous-Mode Operation Without Frame Sync Pulses 

The continuous mode of operation allows transmission and reception of a contin­
uous bit stream without requiring frame sync pulses every 8 or 16 bits. This mode 
is selected by setting FSM=O. 

Figure 3-29 and Figure 3-30 show operation of the serial port for both states of 
FSM to illustrate differences in operation for each case. FSM is initially set to one, 
and frame sync pulses are required to initiate serial transfers. During processing 
of the next serial port interrupt (XINT or RINT), FSM is reset to zero by means of 
an RFSM (reset FSM) instruction. RFSM can occur either before or after the write 
to DXR or read from ORR. From this point on, the FSX and FSR inputs are ignored, 
with transmission occurring every CLKX cycle and reception occurring every CLKR 
cycle as long as those clocks are present. 

3-41 



Device Operation 

CLIO{ 

FSX 
(TXM=1) 

FSX 
(TXM=O) 

DX 
(F0=1) 

----~---~~--~~--~----~-----~---n J ---. ,----------- --
83 84 87 88 

. . 

XINT n--.....-~---~-.....----.n--..-

3-42 

CLKR 

FSR 

DR 
(F0•1) 

RINT 

XSR 
LOADED 

i l DXR 
LOADED 
WITH C 

RFSM 

i 
XSR 

LOADED 

Figure 3-29. Serial Port Transmit Continuous Operation (FSM=O) 

--~-'.r-T\_ ______________ , 

BEi 87 88 

: 

n n 
i l i l i 

READ READ ORR 
ORR ORR LOADED 

FROM RSR 
ORR RFSM 

LOADED 
FROM RSR 

Figure 3-30. Serial Port Receive Continuous Operation (FSM=O) 

If FSX is configured as an output, it will remain low until FSM is set back to one 
and DXR is reloaded. If DXR is not reloaded with new data every XINT (every 8 
or 16 CLKX cycles depending on FO), the last value loaded will be transmitted on 
DX continuously. Note that this is different from the case with FSM=1 where DX 
is placed into a high-impedance state if DXR is not reloaded before transmission 
of the last bit of the current word in XSR. For example.if byte C is not loaded into 
DXR as indicated in Figure 3-29, bits 81 -88 will be retransmitted instead of bits 
C1 and C2 as shown. 



Device Operation 

For receive operations, ORR is loaded from RSR (and an RINT is generated) every 
8 or 16 CLKR cycles (depending on FO), regardless of whether or not ORR has 
been read. An overrun of ORR is also possible with FSM=1 if ORR is not read 
before the next RINT. The only way to stop continuous transmission or reception 
once started, when FSM=O, is to either stop CLKX or CLKR or to perform an SFSM 
(set FSM) instruction. 

Continuous transmission without frame sync pulses is very useful in communicating 
directly to telephone system PCM highways. For AT&T T1 and CCITT G711 /712 
lines, FSX and FSR pulses are generated only every 24 or 32 bytes. By counting 
the transmitted and received bytes in software after an initial FSX or FSR and 
performing SFSM and RFSM instructions as required, the TMS320C25 can easily 
be made to communicate in these formats. 

3.7.4 Initialization of Continuous-Mode Operation Without Frame Sync Pulses 

CLl<X 

FSX 
CTXM=1) 

FSX 
CTXM=O) 

DX 
(F0=1) 

.xlNT 

FSM is normally initialized during an XINT or RINT service routine to enable or 
disable FSX and FSR, respectively, for the next serial port operation. However, in 
order to initialize the continuous-mode operation, it is permissible to reset FSM to 
zero before a serial port transmit or receive is initiated. As shown in Figure 3-31 
and Figure 3-32, RFSM may occur before a write to OXR, regardless of the state 
of TXM. If TXM=1, FSX is generated in a normal manner on the next rising edge 
of CLKX, but only once. If TXM=O, the TMS320C25 waits to transmit until FSX 
is pulsed, but from then on, the FSX input is ignored. Note that just as in the case 
of continuous-mode operation without sync pulses described in Section 3.7.3, the 
first data written to OXR (byte A) is output twice unless DXR is reloaded before 
the second transmission is started. It is important to consider this dummy cycle 
when using continuo1.:1s-mode serial operation. 

n 

.ll i 
XSR 

LOADED 

DXR 
LOADED 
WITH A 

A3 A4 

l 
XSR 

RB..OADED 

Figure 3-31. Continuous Transmit Operation Initialization 

3-43 



Device Operation 

CLKR 

FSR 

DR 
(F0=1) 

RINT 

___ ) : 

~--------.--------------------------------r---\--__,,_ 
i 

RFSM 
i 

ORR 
LOADED 

FROM RSR 

Figure 3-32. Continuous Receive Operation Initialization 

The receive timings are the same as those for the transmit operations with TXM =O. 
The TMS320C25 waits to receive data until FSR is pulsed, but thereafter the FSR 
input is ignored. No dummy cycle is associated with the receive operation due to 
the postbuffering nature of DRR as opposed to the prebuffering nature of DXR. 

3.8 Multiprocessing and Direct Memory Access (OMA) 

3-44 

The flexibility of the TMS320C25 allows configurations to satisfy a wide range of 
system requirements. Some of the system configurations using the TMS320C25 
are as follows: 

• A standalone system (single processor) 

• A host/slave or parallel multiprocessing system with shared global data 
memory 

• A host/peripheral coprocessor configuration using interface control signals. 

These system configurations are made possible by three specialized features of the 
TMS320C25. These three features are the synchronization function utilizing the 
SYNC input the global memory interface, and the hold function implemented with 
the HOLD and HOLDA pins. The following sections describe these functions in 
detail. 



Device Operation 

3.8.1 Synchronization 

Phase• 

CLl<IN 

CLKOUT1 

CLKOUT2 

In a multiprocessor environment, the SYNC input can be used to greatly ease 
interface between processors. This input is used to cause each of the TMS320C25s 
in the system to synchronize their internal clocks, thereby allowing the processors 
to run in lock-step operation. 

Multiple TMS320C25s are synchronized by using common SYNC and external 
clock inputs. A negative transition on SYNC sets each processor to internal quar­
ter-phase one (01 ). This transition must occur synchronously with the rising edge 
of CLKIN. The timing diagram for the SYNC input is shown in Figure 3-33. Note 
that there is a two CLKIN cycle delay following the cycle in which SYNC goes low, 
before the synchronized 01 occurs. 

04 01 02 

\--~-l 

--~--' 

03 01 02 

'--~-l 
\ __ / 

Figure 3-33. Synchronization Timing Diagram 

03 04 

\ __ _ 

Normally, SYNC is applied while RS is active. If SYNC is asserted after a reset, the 
following can occur: 

1 ) The processor machine cycle is reset to 01, provided that the timing 
requirements for SYNC are met. If SYNC is asserted at the beginning of 01, 
03, or 04, the current instruction is improperly executed. If SYNC is asserted 
at the beginning of 02, the current instruction is executed properly. 

2) If SYNC does not meet the timing requirements, unpredictable processor 
operation occurs. A reset should then be executed to place the processor back 
in a known state. 

3.8.2 Global Memory 

For multiprocessing applications, the TMS320C25 has the capability of allocating 
global data memory space and communicating with that space via the BR (bus 
request) and READY control signals. 

Global memory is memory shared by more than one processor; therefore, access 
to it must be arbitrated. When using global memory, the processor's address space 
is divided into local and global sections. The local section is used by the processor 
to perform its individual function, and the global section is used to communicate 
with other processors. 

3-45 



Device Operation 

3-46 

A memory-mapped register (GREG) is provided that allows part of data memory 
to be specified as global external memory. GREG, which is memory-mapped at data 
memory address location ,5, is an eight-bit register connected to the eight LSBs 
of the internal D bus. The upper eight bits of location 5 are nonexistent and read 
as '1 's. 

The contents of GREG determine the size of the global memory space. The legal 
values of GREG and corresponding global memory spaces are shown in Table 3-6. 
Note that values other than those listed in the table lead to fragmented memory 

·maps. 

Table 3-6. Global Data Memory Configurations 

LOCAL MEMORY GLOBAL MEMORY 
GREG VALUE RANGE #WORDS RANGE #WORDS 

ooooooxx >O - >FFFF 65,536 ------------- 0 
10000000 >O - >7FFF 32,768 >8000 - >FFFF 32,768 
11000000 >O - >BFFF 49,152 >COOO - >FFFF 16,384 
11100000 >O - >DFFF 57,344 >EOOO - >FFFF 8,192 
11110000 >O - >EFFF 61.440 >FOOO - >FFFF 4,096 
11111000 >O - >F7FF 63.488 >F800 - >FFFF 2,048 
11111100 >O - >FBFF 64,512 >FCOO - >FFFF 1,024 
11111110 >O - >FDFF 65,024 >FEOO - >FFFF 512 
11111111 >O - >FEFF 65,280 >FFOO - >FFFF 256 

When a data memory address, either direct or indirect, corresponds to a global data 
memory address (as defined by GREG), BR is asserted low with DS to indicate that 
the processor wishes to make a global memory access. External logic then arbitrates 
for control of the global· memory, asserting READY when the TMS320C25 has 
control. One wait-state timing is shown in Figure 3-34. Note that all signals not 
shown have the same timing as in the normal read or write case. 

Phase# 4 ! 2 ! 3 4 ! 1 2 I 3 4 ! 

CLKOUT1 '-----I \ I \__ 

READY .., 

Figure 3-34. Global Memory Access Timing 



Device Operation 

3.8.3 The Hold Function 

The TMS320C25 supports Direct Memory Access (OMA) to its local (off-chip) 
program, data, and 1/0 spaces. Two signals, HOLD and HOLDA, are provided to 
allow another device to take control of the processor's buses. Upon receiving a 
ROLD signal from an external device, the processor acknowledges by bringing 
HOLDA low. The processor then places its address and data buses as well as all 
control signals (PS, DS, TS, R/W, and STAB) in the high-impedance state. The serial 
port output pins, DX and FSX, are not affected by HOLD. 

The timing for the HOLD and HOLDA signals is shown in Figure 3-35. HOLD has 
the same setup time as READY and is sampled at the beginning of quarter-phase 
3. If the setup time is met, it takes three machine cycles before the buses and control 
signals go to the high-impedance state. Note that unlike the external interrupts 
INT(2-0), HOLD is not a latched input. The external device must keep HOLD low 
until it receives a HOLDA from the TMS320C25. 

The hold function has two distinct operating modes, which are selected by the 
HM (hold mode) status register bit. The HOLD signal is pulled low, as shown in 
the first part of Figure 3-35. When HM=1, the TMS320C25 halts program 
execution and enters the hold state directly. When HM =O, the processor enters 
the hold state directly, as shown in Figure 3-35, if program execution is from 
external memory or if external data memory is being accessed. If program execution 
is from internal memory, however, and if no external data memory accesses are 
required, the processor enters the hold state externally, but program execution 
continues internally. This allows more efficient system operation since a program 
may continue executing while an external OMA operation is being performed. 

Note that if the processor is in a hold state with HM =O and an internally executing 
program requires an external access, or if the program branches to an external 
address, program execution ceases until HOLD is removed. Also, if a repeat 
instruction that requires the use of the external bus is executing with HM=O and 
a hold occurs, the hold state is entered after the current bus cycle. If this situation 
occurs with HM= 1, the hold state will not be entered until the repeat count is 
completed. HM is set and reset by the SHM (set hold mode) and RHM (reset hold 
mode) instructions, respectively. 

If the TMS320C25 is in the middle of a multicycle instruction, it will finish the 
instruction before entering the hold state. After the instruction is completed, the 
buses are placed in the high-impedance state. This also applies to instructions that 
become multicycle due to insertion of wait states. 

After HOLD is de-asserted, program execution resumes from the same point at 
which it was halted. HOLDA is removed synchronously with HOLD, as shown in 
Figure 3-35. If the setup time is met, two machine cycles are required before the 
buses and control signals become valid. 

All interrupts are disabled while HOLD is active with HM= 1. If an interrupt is 
received during this period, the interrupt is latched and remains pending. HOLD 
itself does not affect any interrupt flags or registers. If HM =O, interrupts function 
normally. 

HOLD is not treated as an interrupt. If the TMS320C25 was executing the IDLE 
instruction before entering the hold state, it resumes executing I OLE once it leaves 
the hold state. 

3-47 



Device Operation 

3-48 



Device Operation 

Phase # I 1 I 2 I 3 I 4 I 1 I 2 I 3 I 4 I 1 I 2 I 3 I 4 I 1 I 2 I 3 I 4 I 11 2 I 3 I 41 1 I 21 31 41 

CLKOUT1 

STRB 

HOLD 

A15-AO ~ N+2 x N+2 x N+3 x N+4 K 
: 

PS, ~f 
OR I 

I ~ VALID x VALID ~ VALID x 
R/W 

D15-DO ® @ ~ 
fetch :4 •: :4 .:4 N+2 .:4 N+3 .:4 N+4 ·: 

execute :4 •: :4 
N+1 

11Jo:4 
DUMMY 

11Jo'4 
N+2 .,, 

HOLDA 

Figure 3-35. Hold Timing Diagram (Concluded) 

3.9 General-Purpose 1/0 Pins 

The TMS320C25 has two general-purpose pins that are software-controlled. The 
BIO pin is a branch control input pin, and the XF pin is an external flag output pin. 

3.9.1 BIO Input 

When the BIO input pin is active (low), execution of the BIOZ instruction causes 
a branch to occur. 

The BIO pin is useful for monitoring peripheral device status. It is especially useful 
as an alternative to using an interrupt when it is necessary not to disturb time-cri­
tical loops. 

Figure 3-36 shows the BIO timing diagram. BIO is sampled at the end of quar­
ter-phase 4. Note that the timing diagram shown is for a sequence of single-cycle, 
single-word instructions without branches located in external memory. Because 
of variations in pipelining due to instructions prior to and following the BIOZ 
instruction, this timing may vary. Therefore, it is recommended that several cycles 
of setup be provided if BIO is to be recognized on a particular cycle. 

3-49 



Device Operation 

Phase# 1 I 2 I 3 I 4 1 I 2 I 3 I 4 1 I 2 I 3 I 4 1 I 2 I 3 I 4 

CLKOUT1 

CLKOUT2 

STRB 

A15-AO VALID VALID VALID VALID 

(BRANCH NEXT 
(BIOZ) ADDRESS) INSTRUCTION) 

fetch .4 
N u N+1 ... 4 N+2 

.. :4 .. : 

Figure 3-36. BIO Timing Diagram 

3.9.2 External Flag Output 

3-50 

The XF (external flag) output pin is set to a high level by the SXF (set external flag) 
instruction and reset to a low level by the RXF (reset external flag) instruction. XF 
is set high by RS. 

The relationship between the time the SXF/RXF instruction is fetched before the 
XF pin is set or reset is shown in Figure 3-37. As with BIO, the timing shown for 
XF is for a sequence of single-cycle, single-word instructions located in external 
memory. Actual timing may vary with different instruction sequences. 



Device Operation 

Phase# 

CLKOUT1 

STRB 

A15-AO 

fetch 

XF 
(SXF) 

XF 
(RXF) 

VALID VALID VALID VALID 

(SXF OR RXF) 
:+•~~~N-'-~-+~:••~_.;..;N~+---'-1~_.~:••~-'-'N_+;....::;2~_.~:••~----'-'N~+'--"3~-+ 

Notes: 1. N is the program memory location for the current instruction. 
2. This example only shows the execution of single-cycle instructions 

fetched from external program memory. 

Figure 3-37. External Flag Timing Diagram 

3-51 



3-52 



4. Assembly Language Instructions 

The TMS320C25 instruction set supports numeric-intensive signal processing 
operations as well as general-purpose applications, such as multiprocessing and 
high-speed control. TMS32010 source code is upward-compatible with 
TMS320C25 source code. TMS32020 object code is upward-compatible with 
TMS320C25 object code. 

This section describes the assembly language instructions for the TMS320C25 
microprocessor. Included in this section are the following major topics: 

• Memory Addressing Modes (Section 4.1 on page 4-2) 
Direct addressing 
Indirect addressing (using eight auxiliary registers) 
Immediate addressing 

• Instruction Set (Section 4.2 on page 4-8) 
Symbols and abbreviations used in the instructions 
Instruction set summary (listed according to function) 

• Individual Instruction Descriptions (Section 4.3 on page 4-13) 
Presented in alphabetical order and providing the following: 

- Assembler syntax 
- Operands 
- Execution 
- Encoding 
- Description 
- Words 
- Cycles 
- Repeatability 
- Example(s) 

4-1 



Assembly Language Instructions 

4.1 Memory Addressing Modes 

The TMS320C25 instruction set provides three memory addressing modes: 

• Direct addressing mode 
• Indirect addressing mode 
• Immediate addressing mode 

Both direct and indirect addressing can be used to access data memory. Direct 
addressing concatenates seven bits of the instruction word with the nine bits of the 
data memory page pointer to form the 16-bit data memory address. Indirect 
addressing accesses data memory through the eight auxiliary registers. In immediate 
addressing, the data is based on a portion of the instruction word(s). The following 
sections describe each addressing mode and give the opcode formats and some 
examples for each mode. 

4.1.1 Direct Addressing Mode 

. 4-2 

In the direct memory addressing mode, the instruction word contains the lower seven 
bits of the data memory address (dma). This field is concatenated with the nine bits 
of the data memory page pointer (DP) register to form the full 16-bit data memory 
address. Thus, the DP register points to one of 512 possible 128-word data memory 
pages, and the 7-bit address in the instruction points to the specific location within 
that data memory page. The DP register is loaded through the LOP (load data memory 
page pointer), LDPK (load data memory page pointer immediate), or LST (load status 
register STO) instructions. Figure 4-1 illustrates how the 16-bit data address is 
formed. 

7 7 LSBS FROM 
INSTRUCTION 
REGISTER (IR) 

16-BIT DATA ADDRESS 

Figure 4-1. Direct Addressing Block Diagram 

Direct addressing can be used with all instructions except CALL, the branch 
instructions, immediate operand instructions, and instructions with no operands. The 
direct addressing format is as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I Opcode 0 dma 

Bits 15 through 8 contain the opcode. Bit 7 = 0 defines the addressing mode as 
direct, and bits 6 through 0 contain the data memory address ( dma) . 



Assembly Language Instructions 

Example of Direct Addressing Format: 

ADD 9,5 Add to accumulator the contents of data memory location 9 left­
shifted 5 bits. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I o o o o o o 1 0 0 0 0 0 0 1 

The opcode of the ADD 9,5 instruction is >05 and appears in bits 15 through 8. The 
notation >nn indicates nn is a hexadecimal number. The shift count of >5 appears 
in bits 11 through 8 of the opcode. The data memory address >09 appears in bits 
6 through 0. 

4.1.2 Indirect Addressing Mode 

The eight auxiliary registers (ARO-AR7) provide flexible and powerful indirect 
addressing. To select a specific auxiliary register, the Auxiliary Register Pointer (ARP) 
is loaded with a value from 0 through 7, designating ARO through AR7, respectively 
(see Figure 4-2). 

The contents of the auxiliary registers may be operated upon by the Auxiliary Register 
Arithmetic Unit (ARAU), which implements 16-bit unsigned arithmetic. The ARAU 
performs auxiliary register arithmetic operations in the same cycle as the execution 
of the instruction. (Note that the increment or decrement of the indicated AR is 
always executed after the use of that AR in the instruction.) 

AUXILIARY 
REGISTERS 

ARO 16 
AR1 (16) 
AR2 16 
AR3 16 
AR4 16 
ARS 16 
AR6 16 
AR7 16 16 

16-BIT DATA ADDRESS 

Figure 4-2. Indirect Addressing Block Diagram 

In indirect addressing, any location in the 64K data memory space can be accessed 
via the 16-bit addresses contained in the auxiliary registers. These may be loaded 
by the instructions LAA (load auxiliary register), LARK (load auxiliary register 
immediate), and LALK (load auxiliary register long immediate). The auxiliary registers 
may be modified by ADAK (add to auxiliary register short immediate) or SBRK 
(subtract from auxiliary register short immediate). The auxiliary registers may also 
be modified by the MAR (modify auxiliary register)· instruction or, equivalently, by 

4-3 



Assembly Language Instructions 

4-4 

the indirect addressing field of any instruction supporting indirect addressing. 
AR(ARP) denotes the auxiliary register selected by ARP. 

The following symbols are used in indirect addressing: 

* 

* 

*+ 

*0-

*O+ 

Contents of AR(ARP) are used as the data memory address. 

Contents of AR(ARP) are used as the data memory address, then decre­
mented after the access. 

Contents of AR(ARP) are used as the data memory address, then incre­
mented after the access. 

Contents of AR(ARP) are used as the data memory address, and the 
contents of ARO subtracted from it after the access. 

Contents of AR(ARP) are used as the data memory address, and the 
contents of ARO added to it after the access. 

*BRO- t-ontents of AR(AR-P) are used as the data memory address, and the 
contents of ARO subtracted from it (with reverse carry propagation) after 
the access. 

*BRO+ Contents of AR(ARP) are used as the data memory address, and the 
contents of ARO added to it (with reverse carry propagation) after the access. 

There are two main types of indirect addressing with indexing: 

• Regular indirect addressing with increment or decrement, and 
• Indirect addressing with indexing based on the value of ARO. 

In either case, the contents of the auxiliary register pointed to by the ARP register 
are used as the address of the data memory operand. Then, the ARAU performs the 
specified mathematical operation on the indicated auxiliary register. Additionally, the 
ARP may be loaded with a new value. 

Indirect auxiliary register addressing allows for post-access adjustments of the 
auxiliary register pointed to by the ARP. The adjustment may be an increment or 
decrement by one or based upon the contents of ARO. 

Indirect addressing can be used with all instructions except immediate operand 
instructions and instructions with no operands. The indirect addressing format is 
as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Opcode 1 I IDv I 1Nc I DEC I NARI y 

Bits 15 through 8 contain the opcode, and bit 7 = 1 defines the addressing mode 
as indirect. Bits 6 through 0 contain the indirect addressing control bits. 

Bit 6 contains the increment/decrement value (IDV). The IDV determines whether 
ARO will be used to increment or decrement the current auxiliary register. If bit 6 = 
0, an increment or decrement (if any) by one occurs to the current auxiliary register. 
If bit 6 = 1, ARO may be added to or subtracted from the current auxiliary register 
as defined by bits 5 and 4. 

Bits 5 and 4 control the arithmetic operation to be performed with AR(ARP) and 
ARO. When set, bit 5 indicates that an increment is to be performed. If bit 4 is set, a 
decrement is to be performed. Table 4-1 shows the correspondence of bit pattern 
and arithmetic operation. 



Assembly Language Instructions 

15 14 13 

Table 4-1. Indirect Addressing Arithmetic Operations 

BITS ARITHMETIC OPERATION 
6 5 4 

0 0 0 No operation on AR(ARP) 
0 0 1 AR(ARP) - 1 --+ AR(ARP) 
0 1 0 AR(ARP) + 1 --+ AR(ARP) 
0 1 1 Not used 
1 0 0 AR(ARP) - ARO--+ AR(ARP) [reverse carry propagation] 
1 0 1 AR(ARP) - ARO --+ AR(ARP) 
1 1 0 AR(ARP) + ARO --+ AR(ARP) 
1 1 1 AR(ARP) + ARO --+ AR(ARP) [reverse carry propagation] 

Bit 3 and bits 2 through 0 control the Auxiliary Register Pointer (ARP). Bit 3 (NAR) 
determines if a new value is loaded into the ARP. If bit 3 = 1, the contents of bits 
2 through 0 (Y = next ARP) are loaded into the ARP. If bit 3 = 0, the contents of 
the ARP remain unchanged. 

Table 4-2. Bit Fields for Indirect Addressing 

INSTRUCTION FIELD BITS NOTATION OPERATION 
12 11 10 9 8 7 6 5 4 3 2 1 0 

OPCODE 1 0 0 0 O-Y- . No manipulation of ARs/ ARP 
OPCODE 1 0 0 0 1-Y- *,Y Y --+ ARP 
OPCODE 1 0 0 1 O-Y- . - AR(ARP)-1 --+ AR(ARP) 
OPCODE 1 0 0 1 1-Y- ·-.Y AR(ARP)-1 --+ AR(ARP); 

Y --+ ARP 
OPCODE 1 0 1 0 o-Y- •+ AR(ARP)+1 --+ AR(ARP) 
OPCODE 1 0 1 0 1-Y- •+,Y AR(ARP)+1 --+ AR(ARP); 

Y --+ ARP 
OPCODE 1 1 0 0 O-Y- *BRO- AR(ARP)-rcARO--+ AR(ARP)t 
OPCODE 1 1 0 0 1 -Y- *BRO-;Y AR(ARP)-rcARO --+ AR(ARP); 

Y --+ ARPt 
OPCODE 1 1 0 1 O-Y- ·o- AR(ARP)-ARO --+ AR(ARP) 
OPCODE 1 1 0 1 1-Y- *0-,Y AR(ARP)-ARO --+ AR(ARP); 

Y --+ ARP 
OPCODE 1 1 1 0 o-Y-- ·o+ AR(ARP)+ARO--+ AR(ARP) 
OPCODE 1 1 1 0 1-Y- *O+,Y AR(ARP) +ARO --+ AR(ARP); 

Y --+ ARP 
OPCODE 1 1 1 1 O-Y-- *BRO+ AR(ARP)+rcARO--+ AR(ARP)t 
OPCODE 1 1 1 1 1-Y- *BRO+,Y AR(ARP) +rcARO --+ AR(ARP); 

Y --+ ARPt 

trc = reverse carry propagation 

For some instructions, the notation in Table 4-2 includes a shift code, e.g., *O+ ,8,3 
where 8 is the shift code and Y = 3. 

The CMPR (compare auxiliary register with ARO), and BBZ/BBNZ (branch if TC bit 
equal/not equal to zero) instructions facilitate conditional branches based on 
comparisons between the contents of ARO and the contents of AR(ARP). 

The auxiliary registers may also be used for temporary storage via the load and store 
auxiliary register instructions, LAR and SAR, respectively. 



Assembly Language Instructions 

4-6 

The-following examples illustrate the indirect addressing format: 

Example 1: 

ADD *+,8 Add to the accumulator the contents of the data memory address 
defined by the contents of the current auxiliary register. This data 
is left-shifted 8 bits before being added. The current auxiliary 
register is autoincremented by one. The opcode is >OSAO, as 
shown below. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

loo o o 1 o o o 1 o 1 0 0 0 0 0 

. Example 2: 

ADD *,8 

Example 3: 

ADD *-,8 

Example 4: 

ADD *0+,8 

Example 5: 

ADD *0-,8 

Example 6: 

ADD *+,8,3 

Example 7: 

As in Example 1, but with no autoincrement; the opcode is >0880. 

As in Example 1, except that the current auxiliary register is 
decremented by one; the opcode is >0890. 

As in Example 1, except that the contents of auxiliary register ARO 
are added to the current auxiliary register; the opcode is >OSEO. 

As in Example 1, except that the contents of auxiliary register ARO 
are subtracted from the current auxiliary register; the opcode is 
>0800. 

As in Example 1, except that the auxiliary register pointer (ARP) 
is loaded with the value 3 for subsequent instructions; the opcode 
is >OSAB. 

ADD *BR0-,8 The opcode is >OSCO. The contents of auxiliary register ARO are 
subtracted from the current auxiliary register with reverse carry 
propagation. 

Example 8: 

ADD *BR0+,8 The opcode is >OSFO. The contents of auxiliary register ARO are 
added to the current auxiliary register with reverse carry propa­
gation. 



Assembly Language Instructions 

4.1.3 Immediate Addressing Mode 

In immediate addressing, the instruction word{s) contains the value of the immediate 
operand. The immediate operand may be contained within the instruction word itself 
or in the wo.rd following the opcode. 

The following instructions contain the immediate operand in the instruction word 
and execute within a single instruction cycle. The length of the constant operand is 
instruction -dependent. 

ADDK 

ADRK 

LACK 

LARK 

LARP 

LDPK 

MPYK 

RPTK 

SBRK 

SUBK 

Add to accumulator short immediate (8-bit absolute constant) 

Add to auxiliary register short immediate (8-bit absolute constant ) 

Load accumulator immediate short (8-bit absolute constant) 

Load auxiliary register immediate short (8-bit absolute constant) 

Load auxiliary register pointer (3-bit constant) 

Load data memory page pointer immediate (9-bit constant) 

Multiply immediate (13-bit two's-complement constant) 

Repeat instruction as specified by immediate value (8-bit constant) 

Subtract from auxiliary register short immediate (8-bit absolute 
constant) 

Subtract from accumulator short immediate (8-bit absolute constant). 

For the other immediate instructions, the constant is a 16-bit value in the word 
following the opcode. The 16-bit value can be optionally used as an absolute 
constant or as a two's-complement value. 

ADLK 

ANDK 

LALK 

LRLK 

ORK 

SBLK 

XORK 

Add to accumulator long immediate with shift (absolute or two's 
complement) 

AND immediate with accumulator with shift 

Load accumulator long immediate with shift (absolute or two's 
· complement) 

Load auxiliary register long immediate 

OR immediate with accumulator with shift 

Subtract from accumulator long immediate with shift (absolute or two's 
complement) 

Exclusive-OR immediate with accumulator with shift. 

4-7 



Assembly Language Instructions 

The following examples illustrate immediate addressing format: 

Example 1: 

ADLK 16384,2 Add to the accumulator the value 16384 with a shift to the left 
of two, effectively adding 65536 to the contents of the accu­
mulator. 

The ADLK instruction uses the word following the instruction opcode as the imme­
diate operand. The instruction format for ADLK is as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 
1 1 0 1 Shift 0 0 0 0 0 0 1 0 

16- Bit Constant 

. l;x.c;1m_pl~ 2: 

RPTK 99 Execute the instruction following this instruction 100 times. 

With the RPTK instruction, the immediate operand is contained as a part of the 
instruction opcode. The instruction format for RPTK is as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 1 0 0 1 0 1 1 8-Bit Constant 

4.2 Instruction Set 

The following sections list the symbols and abbreviations used in the instruction set 
summary and in the instruction descriptions. The complete instruction set summary 
is organized according to function. A detailed description of each instruction is listed 
in the instruction set summary. 

4.2.1 Symbols and Abbreviations 

4-8 

Table 4-3 lists symbols and abbreviations used in the instruction set summary (Table 
4-4) and the individual instruction descriptions. 



Assembly Language Instructions 

SYMBOL 
ACC 
ARB 
ARn 

ARP 
B 

BIO 
c 

CM 
CNF 

D 
DATn 
dma 
DP 
FO 

FSM 
HM 

I 
INTM 

K 
>nn 

ov 
OVM 

p 
PA 

PC 
PM 
pma 

PRGn 
R 

RPTC 
s 

STn 
SXM 

T 
TC 

TOS 
TXM 

x 
XF 
-+ 

I I 
< > 
[ ] 
( ) 
{ } 

4.2.2 Instruction Set Summary 

Table 4-3. Instruction Symbols 

MEANING 
Accumulator 
Auxiliary register pointer buffer 
Auxiliary Register n (ARO through AR7 are predefined 
assembler symbols equal to 0 through 7, respectively.) 
Auxiliary register pointer 
4-bit field specifying a bit code 
Branch control input 
Carry bit 
2-bit field specifying compare mode 
On-chip RAM configuration control bit 
Data memory address field 
Label assigned to data memory location n 
Data memory address 
Data page pointer 
Format status bit 
Frame synchronization mode bit 
Hold mode bit 
Addressing mode bit 
Interrupt mode flag bit 
Immediate operand field 
Indicates nn is a hexadecimal number. (All others are 
assumed to be decimal values.) 
Overflow mode flag bit 
Overflow mode bit 
Product register 
Port address (PAO through PA15 are predefined assembler 
symbols equal to 0 through 15, respectively.) 
Program counter 
2-bit field specifying P register output shift code 
Program memory address 
Label assigned to program memory location n 
3-bit operand field specifying auxiliary register 
Repeat counter 
4-bit left-shift code 
Status register n (STO or ST1) 
Sign-extension mode bit 
Temporary register 
Test control bit 
Top of stack 
Transmit mode bit 
3-bit accumulator left-shift field 
XF pin status bit 
Is assigned to 
An absolute value 
User-defined items 
Optional items 
Contents of 
Alternative items, one of which must be entered 
Blanks or spaces must be entered where shown. 

The instruction set summary of Table 4-4 is arranged according to function and 
alphabetized within each functional grouping. Additional information is presented 
in the individual instruction descriptions in the following section. The symbol t 
indicates instructions that are not included in the TMS32010 instruction set. The 
symbol + indicates instructions that are not included in the TMS32020 instruction 
set. 

4-9 



f 

Assembly Language Instructions 

Table 4-4. Instruction Set Summary 

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS -
MNEMONIC DESCRIPTION 

NO. INSTRUCTION BIT CODE 

WORDS 
151413121110 9 8 7 6 5 4 

ABS Absolute value of accumulator 

ADD Add to accumulator with shift 

ADDc+ Add to accumulator with carry 

ADDH Add to high accumulator 

ADDK+ Add to· accumulator short immediate 

ADDS Add to low accumulator with sign 

extension suppressed 

ADDrt Add to accumulator with shift specified by 

T register 

ADLKt Add to accumulator long immediate with shift 

AND AND with accumulator 

ANDKt AND immediate with accumulator with shift 

CMPLt Complement accumulator 

LAC Load accumulator with shift 

LACK Load accumulator immediate short 

LAcrt Load accumulator .with shift specified by T register 

LALKt Load accumulator long immediate with shift 

NEGt Negate accumulator 

NORMt Normalize contents of accumulator 

OR OR with accumulator 

ORKt OR immediate with accumulator with shift 

ROL+ Rotate accumulator left 

ROR* Rotate accumulator right 

SACH Store high accumulator with shift 

SACL Store low accumulator with shift 

SBLKt Subtract from accumulator long immediate with shift 

SFLt Shift accumulator left 

SFRt Shift accumulator right 

SUB Subtract from accumulator with shift 

suss+ Subtract from accumulator with borrow 

SUBC Conditional subtract 

SUBH Subtract from high accumulator 

SUBK* Subtract from accumulator short immediate 

SUBS Subtract from low accumulator with sign 

extension suppressed 

susrt Subtract from accumulator with shift specified by 

T register 

XOR Exclusive-OR with accumulator 

XORKt Exclusive-OR immediate with accumulator with shift 

ZAC Zero accumulator . 

ZALH Zero low accumulator and load high accumulator 

ZALR+ Zero low accumulator and load high accumulator 

with rounding 

ZALS Zero accumulator and load low accumulator with 

sign extension suppressed 

trhese instructions are not included in the TMS32010 instruction set. 
*These instructions are not included in the TMS32020 instruction set. 

4-10 

1 1 1 0 

1 0 0 0 

1 0 1 0 

1 0 1 0 

1 1 1 0 

1 0 1 0 

1 0 1 0 

2 1 1 0 

1 0 1 0 

2 1 1 0 

1 1 1 0 

1 0 0 1 

1 1 1 0 

1 0 1 0 

2 1 1 0 

1 1 1 0 

1 1 1 0 

1 0 1 0 

2 1 1 0 

1 1 1 0 

1 1 1 0 

1 0 1 1 

1 0 1 1 

2 1 1 0 

1 1 1 0 

1 1 1 0 

1 0 0 0 

1 0 1 0 

1 0 1 0 

1 0 1 0 

1 1 1 0 

1 0 1 0 

1 0 1 0 

1 0 1 0 

2 1 1 0 

1 1 1 0 

1 0 1 0 

1 0 1 1 

1 0 1 0 

0 1 1 1 0 0 0 0 1 

0 +-S--+ I ..... 
0 0 0 1 1 I 

0 1 0 0 0 I .. 
0 1 1 0 0 K 

0 1 0 0 1 I + 

0 1 0 1 0 I .. 
1 +-S--+ 0 0 0 0 

0 1 1 1 0 I 

1 +-S--+ 0 0 0 0 

0 1 1 1 0 0 0 1 0 

0 +-S--+ I 

0 1 0 1 0 ..... K 

0 0 0 1 0 I 

1 +-S--+ 0 0 0 0 

0 1 1 1 0 0 0 1 0 

0 1 1 1 0 1 + 

0 1 1 0 1 I 

1 +-S--+ 0 0 0 0 

0 1 1 1 0 0 0 1 1 

0 1 1 1 0 0 0 1 1 

0 1 ..-x ..... I 

0 0 ..-x ..... I ..... 
1 +-S--+ 0 0 0 0 

0 1 1 1 0 0 0 0 1 

0 1 1 1 0 0 0 0 1 

1 +-S--+ I 

0 1 1 1 1 I ...._ 

0 0 1 1 1 I ...._ 

0 0 1 0 0 I .. 
0 1 1 0 1 K 

0 0 1 0 1 I .. 
0 0 1 1 0 I .. 
0 1 1 0 0 I .. 
1 +-S--+ 0 0 0 0 

0 1 0 1 0 0 0 0 0 

0 0 0 0 0 I 
...._ 

1 1 0 1 1 I ..... 

0 0 0 0 1 I ..... 

3 2 1 0 

1 0 1 1 

D __... 

D 

D __..., 

D __... 

D ... 
0 0 1 o, 
D 

0 1 0 0 

0 1 1 1 

D 
__... 

D ~ 

0 0 0 1 

0 0 1 1 

D __..., 

D 

0 1 0 1 

0 1 0 0 

0 1 0 1 

D __... 

D .... 
0 0 1 1 

1 0 0 0 

1 0 0 1 

D 

D _... 

D 

D .. 
D _... 

D .. 
D ... 
0 1 1 0 

0 0 0 0 

D __... 

D ... 
D ... 



Assembly Language Instructions 

Table 4-4. Instruction Set Summary (Continued) 

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS 

MNEMONIC 
NO. INSTRUCTION BIT CODE 

DESCRIPTION 
WORDS 

151413121110 9 8 7 6 5 4 

ADRKl Add to auxiliary register short immediate 1 0 1 1 1 1 1 1 0 K 

CMPRt Compare auxiliary register with auxiliary register ARO 1 1 1 0 0 1 1 1 0 0 1 0 1 

LAR Load auxiliary register 1 0 0 1 1 0 ..,._R_.,. I ...._ 

LARK Load auxiliary register short immediate 1 1 1 0 0 0 ..,._R_.,. K 

LARP Load au:r.iliary register pointer 1 0 1 0 1 0 1 0 1 1 0 0 0 

LDP Load data memory page pointer 1 0 1 0 1 0 0 1 0 I 

LDPK Load data memory page pointer immediate 1 1 1 0 0 1 0 0 • DP 

LRLKt Load auxiliary register long immediate 2 1 1 0 1 0 ..,._R_.,. 0 0 0 0 

MAR Modify auxiliary register 1 0 1 0 1 0 1 0 1 I ...._ 

SAR Store auxiliary register 1 0 1 1 1 0 ..,._R_.,. I 

SBRKt Subtract from auxiliary register short immediate 1 0 1 1 1 1 1 1 1 ...._ K 

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS 

MNEMONIC DESCRIPTION 

APAC Add P register to accumulator 

LPHt Load high P register 

LT Load T register 

LTA Load T register and accumulate previous product 

LTD Load T register, accumulate previous product, 

and move data 

LTPt Load T register and store P register in accumulator 

Lrst Load T register and subtract previous product 

MACt Multiply and accumulate 

MAcot Multiply and accumulate with data move 

MPV Multiply (with T register, store product in P register) 

MPYAt Multiply and accumulate previous product 

MPYK Multiply immediate 

MPvst Multiply and subtract previous product 

MPvut Multiply unsigned 

PAC Load accumulator with P register 

SPAC Subtract P register from accumulator 

SPHt Store high P register 

SPLt Store low P register 

SPMt Set P register output shift mode 

SQRAt Square and accumulate 

SQRSt Square and subtract previous product 

trhese instructions are not included in the TMS32010 instruction set. 
trhese instructions are not included in the TMS32020 instruction set. 

NO. 

WORDS 

1 

1 

1 

1 

1 

1 

1 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

INSTRUCTION BIT CODE 

151413121110 9 8 7 6 5 4 

1 1 0 0 1 1 1 0 0 0 0 1 

0 1 0 1 0 0 1 1 I ...._ 

0 0 1 1 1 1 0 0 I --
0 0 1 1 1 1 0 1 I --
0 0 1 1 1 1 1 1 I --
0 0 1 1 1 1 1 0 I 

0 1 0 1 1 0 1 1 I ...._ 

0 1 0 1 1 1 0 1 I --
0 1 0 1 1 1 0 0 I 

0 0 1 1 1 0 0 0 I ~ 

0 0 1 1 1 0 1 0 I 

1 0 1 -- K 

0 0 1 1 1 0 1 1 I 

1 1 0 0 1 1 1 1 I • 
1 1 0 0 1 1 1 0 0 0 0 1 

1 1 0 0 1 1 1 0 0 0 0 1 

0 1 1 1 1 1 0 1 I 

0 1 1 1 1 1 0 0 I ..... 
1 1 0 0 1 1 1 0 0 0 0 0 

0 0 1 1 1 0 0 1 I --
0 1 0 1 1 0 1 0 I --

3 2 1 0 

0 O..,.CM.,. 

D ...... 

1 ..,._R_.,. 

D 
...... 

0 0 0 0 

D ...... 

D 
...... 

3 2 1 0 

0 1 0 1 

D ...... 

D-__.,. 

D ...... 

D 

D 

D ...... 

D ....... 

D ...... 

D 

D ...... 

... 
D ...... 

D ....... 

0 1 0 0 

0 1 1 0 

D ...... 

D ....... 

1 O..,.PM.,. 

D 

D ...... 

4-11 



' Assembl\f Language Instructions 

Table 4-4. Instruction Set Summary (Continued) 

BRANCH/CALL INSTRUCTIONS 

MNEMONIC DESCRIPTION 
NO. INSTRUCTION BIT CODE 

WORDS 
151413121110 9 8 7 6 5 4 

B Branch unconditionally 2 1 1 1 1 1 1 1 1 1 -
BAcct Branch to address specified by accumulator 1 1 1 0 0 1 1 1 0 0 0 1 0 

BANZ Branch on auxiliary register not zero 2 1 1 1 1 1 0 1 1 1 ....._ 

BBNzt Branch if TC bit * 0 2 1 1 1 1 1 0 0 1 1 -. 
BBzt Branch if TC bit = 0 2 1 1 1 1 1 0 0 0 1 ....._ 

BC* Branch on carry 2 0 1 0 1 1 1 1 0 1 -. 

BGEZ Branch if accumulator ~ 0 2 1 1 1 1 0 1 0 0 1 

BGZ Branch if accumulator > 0 2 1 1 1 1 0 0 0 1 1 .....-

BIOZ Branch on 1/0 status = 0 2 1 1 1 1 1 0 1 0 1 ....._ 

.BLEZ .. Branch.if. accumulator ··S 0 . I- 2 1- 1- l l -0- -0- 1- .{). 1 .. 
BLZ Branch if accumulator < 0 2 1 1 1 1 0 0 1 1 1 

BNC* Branch on no carry 2 0 1 0 1 1 1 1 1 1 ~ 

BNvt Branch if no overflow 2 1 1 1 1 0 1 1 1 1 ....._ 

BNZ Branch if accumulator * 0 2 1 1 1 1 0 1 0 1 1 .....-

BV Branch on overflow 2 1 1 1 1 0 0 0 0 1 

BZ Branch if accumulator = 0 2 1 1 1 1 0 1 1 0 1 ~ 

CALA Call subroutine indirect 1 1 1 0 0 1 ·1 1 0 0 0 1 0 

CALL Call subroutine 2 1 1 1 1 1 1 1 0 1 .....-

RET Return from subroutine 1 1 1 0 0 1 1 1 0 0 0 1 0 

1/0 AND DATA MEMORY OPERATIONS 

MNEMONIC DESCRIPTION 

BLKDT Block move from data memory to data memory 

BLKPt Block move from program memory to data memory 

DMOV Data move in data memory 

FORTt Format serial port registers 

IN Input data from port 

OUT Output data to port 

RFSM* Reset serial port frame synchronization mode 

RTXMt Reset serial port transmit mode 
RXFt Reset external flag 

SFSM* Set serial port frame synchronization mode 

STXMt Set serial port transmit mode 
sxFt Set external flag 

TBLR Table read 

TBLW Table write 

tThese instructions are not included in the TMS32010 instruction set. 
*These instructions are not included in the TMS32020 instruction set. 

4-12 

NO. 

WORDS 

2 

2 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

INSTRUCTION BIT CODE 

151413121110 9 8 7 6 5 4 

1 1 1 1 1 1 0 1 I ... 
1 1 1 1 1 1 0 0 I ....._ 

0 1 0 1 0 1 1 0 I ~ 

1 1 0 0 1 1 1 0 0 0 0 0 

1 0 0 0 ._PA-+ I 

1 1 1 0 ._PA-+ I 
....._ 

1 1 0 0 1 1 1 0 0 0 1 1 

1 1 0 0 1 1 1 0 0 0 1 0 

1 1 0 0 1 1 1 0 0 0 0 0 

1 1 0 0 1 1 1 0 0 0 1 1 

1 1 0 0 1 1 1 0 0 0 1 0 

1 1 0 0 1 1 1 0 0 0 0 0 

0 1 0 1 1 0 0 0 I ....._ 

0 1 0 1 1 0 0 1 I -. 

3 2 1 0 

D 

0 1 0 1 

D 

D .... 
D 

D ..... 
D 

D .... 
D 

D .. 
D 

D ...... 

D .. 
D .. 
D 

D ...... 

0 1 0 0 

D ... 
0 1 1 0 

3 2 1 0 

D ...... 

D .. 
D ... 
1 1 1 FO 

D ... 
D 

0 1 1 0 

0 0 0 0 

1 1 0 0 

0 1 1 1 

0 0 0 1 

1 1 0 1 

D 

D ...... 



Assembly Language Instructions 

Table 4-4. Instruction Set Summary (Concluded) 

CONTROL INSTRUCTIONS 

NO. INSTRUCTION BIT CODE 
MNEMONIC DESCRIPTION 

WORDS 
151413121110 9 8 7 6 5 4 3 2 1 

BITt Test bit 1 1 0 0 1 +--B- I .... D 

BITTt Test bit specified by T register 1 0 1 0 1 0 1 1 1 I .._ D 

CNFDt Configure block as data memory 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 0 

CNFPt Configure block as program memory 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 0 

DINT Disable interrupt 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 

EINT Enable interrupt 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 

IDLEt Idle until interrupt 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 

LST Load status register STO 1 0 1 0 1 0 0 0 0 I .... D 

LST1 t Load status register ST1 1 0 1 0 1 0 0 0 1 I .._ D 

NOP No operation 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 

POP Pop top of stack to low accumulator 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 

POPDt Pop top of stack to data memory 1 0 1 1 1 1 0 1 0 I .... D 

PSHDt Push data memory value onto stack 1 0 1 0 1 0 1 0 0 I .._ 
D 

PUSH Push low accumulator onto stack 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 

RCl Reset carry bit 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 

RHMl Reset hold mode 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 

ROVM Reset overflow mode 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 

RPTt Repeat instruction as specified by data mem .. y value 1 0 1 0 0 1 0 1 1 I .... D· 

RPTKt Repeat instruction as specified by immediate value 1 1 1 0 0 1 0 1 1 .._ K 

RSXMt Reset sign-extension mode 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 

RTCl Reset test/control flag 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 

set Set carry bit 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 

SHMl Set hold mode 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 

SOVM Set overflow mode 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 

SST Store status register STO 1 0 1 1 1 1 0 0 0 I - D 

SST1t Store status register ST 1 1 0 1 1 1 1 0 0 1 I .... D 

ssxMt Set sign-extension mode 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 

STct Set test/control flag 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 

TRAPt Software interrupt 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 

tThese instructions are not included in the TMS3201 O instruction set. 
lThese instructions are not included in the TMS32020 instruction set. 

4.3 Individual Instruction Descriptions 

Each instruction in the instruction set summary is described in the following pages. 
Instructions are listed in alphabetical order. Information, such as assembler syntax, 
operands, operation, encoding, description, words, cycles, repeatability, and exam­
ples, is provided for each instruction. An example instruction is provided to familiarize 
the user with the special format used and explain its content. Refer to Section 4.1 
for further information on memory addressing. Code examples using many of the 
instructions are given in Section 5 on Software Applications. 

4-13 

0 

... 
0 

1 

1 

0 

1 

..... 
0 

1 

..... 
0 

0 

0 

0 

... 
0 

0 

1 

1 

1 
..... 

1 

1 

0 



EXAMPLE Example Instruction EXAMPLE 

Qjr~tAddressing: [<label>] EXAMPLE <dma>[,<shift>] 
ln~irect Addressing: [<label>] EXAMPLE {*l*+l*-l*O+l*O-l*BRO+l*BRO-}[,<shift> [,<nextARP> ]] 

Immediate Addressing: [<label>] EXAMPLE [<constant>] 

Operands 

Execution 

Encoding 

Each instruction begins with an assembler syntax expression. The optional 
comment field that concludes the syntax is not included in the syntax expression. 
Space(s) are required between each field (label. command, operand, and 
comment fields) as shown in the syntax. The syntax example illustrates both direct 
and indirect addressing, as well as immediate addressing in which the operand 
field includes <constant>. 

0 s dma s 127 
0 s next ARP s 7 
0 s constant s 255 

Operands may be constants or assembly-time expressions referring to memory, 
1/0 and register addresses, pointers, shift counts, and a variety of constants. The 
o_perand values used illJ~e f}Xaf'Tlplf} l>Yl'l!S.X are sho_vvl'l· 

(PC) + 1 -+ PC 
(ACC) + [(dma) x 2shift] -+ ACC 

If SXM = 1: 
Then (dma) is sign-extended. 

If SXM = 0: 
Then (dma) is not sign-extended. 

Affects C and OV; affected by OVM and SXM. 

This section provides an example of the instruction operation sequence, describing 
the processing that takes place when the instruction is executed. Conditional 
effects of status register specified modes are also given. In addition, those bits in 
the status registers that are affected by the instruction are listed. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct I 0 0 0 oj Shift I oj Data Memory Address 

Indirect I 0 0 0 ol Shift 1 See Section 4.1 

Short Immediate I 1 1 0 0 1 0 1 1 8-Bit Constant 

4-14 

Long Immediate I 1 1 0 1 Shift 0 0 0 0 0 0 1 0 

16-Bit Constant 

Opcode examples are shown of both direct and indirect addressing or of the use 
of short or long immediate operands. 



EXAMPLE 

Description 

Words 

Cycles 

Repeatability 

Example 

Example Instruction EXAMPLE 

This section decribes the instruction execution and its effect on the rest'of the 
processor or memory contents. Any constraints on the operands imposed by the 
processor or the assembler are also described here. The description parallels and 
supplements the information given by the execution block. 

1 

The digit specifies the number of memory words required to store the instruction 
and its extension words. 

Class I (1) 

Instructions are classified according to the number of cycles required for each 
instruction. The single digit value enclosed in parentheses represents the cycle 
execution time of the instruction when not repeated. The instruction is assumed 
to be executed from on-chip ROM and use on-chip RAM. Repeatable multicycle 
instructions will execute in one cycle on all repeat executions. Refer to Appendix 
E for detailed information on instruction cycle timings. 

Category B 

The repeatability of each instruction (using APT or RPTK) is classified as to A, 
B, C, or X according to the following: 

A Instruction repeatable; useful if repeated. 
B Instruction repeatable; may be of some use if repeated. 
C Instruction repeatable; not useful to repeat the instruction. 
X Instruction not repeatable. 

DATl I 3 (DP = 10) ADD 
or 
ADD *,3 If current auxiliary register contains 1281. 

Before Instruction After Instruction 

Data Data 
Memory >8 Memory >8 

1281 1281 

ACC ~ I >2 ACC @] I >4 2 

c c 
The sample code presented in the above format shows the effect of the code on 
memory and/or registers. 

4-15 



Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-16· 

Absol.ute Value of AccumulatO'r 

[<label>]. ABS 

None 

(PC) + 1 -+ PC 
I (ACC) I -+ ACC 

Affects C and OV; affected by OVM. 
Not affected by SXM. 

15 14 13 12 11 10 9 

11 0 0 1 1 1 

8 7 6 
0 0 0 

ABS 

5 4 . 3 2 0 

0 1 1 0 1 

If the contents of the accumulator are greater than or equal to zero, the accu­
mulator isunchanged by the execution of ABS. If the contents of the accumulator 
is less than zero, the accumulator is replaced by its two's-complement value. 

Note that >80000000 is a special case. When the overflow mode is not set, the 
-A-ss- or>~oouoow 15·- > sooooooo: ·-wne·r.-1n--ffie-overtrow--moae, tne ·AlJS-of· 
>80000000 is > 7FFFFFFF. In either case, the OV status bit is set. Also note that 
the carry bit C is always reset to zero by the execution of this instruction. 

1 
Class IV (1) 
Category C 

ABS 

ACC 0 
c 

ACC 0 
c 

Before Instruction 

I >1 2 3 4 

I >FF FF F FF F 

After Instruction 

ACC @] I >1 2 3 4 

c 

ACC @] I >1 

c 



ADD Add to Accumulator with Shift ADD 

Assembler Syntax 
Direct Addressing: [<label>] ADD <dma>,[<shift>] 

Indirect Addressing: [<label>] ADD {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<shift>[,<next ARP>]] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 ::S dma ::S 127 
0 ::S next ARP ::S 7 
0 ::S shift ::S 15 (defaults to 0) 

(PC) + 1 -+ PC 
(ACC) + [(dma) x 2shift] -+ ACC 

If SXM = 1: 
Then (dma) is sign-extended. 

If SXM = 0: 
Then (dma) is not sign-extended. 

Affects C and OV; affected by OVM and SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 0 0 ol Shift I ol Data Memory Address 

Indirect I 0 0 0 ol Shift I 1 I See Section 4.1 

The contents of the addressed data memory location are left-shifted and added 
to the accumulator. During shifting, low-order bits are zero-filled. High-order 
bits are sign-extended if SXM = 1 and zero-filled if SXM = 0. The result is stored 
in the accumulator. 

1 
Class I (1) 
Category A 

ADD DATl,3 
or 
ADD *,3 

Data 
Memory 

1281 

ACC 0 
c 

I 

(DP = 10) 

If current auxiliary register contains 1281. 

Before Instruction After Instruction 

Data 
>8 Memory >8 

1281 

>2 ACC @] I >4 2 

c 

4-17 



ADDC Add to Accumulator with Cclrry ADDC 

Assembler Syntax 
Direct Addressing: [<label>] ADDC <dma> 

Indirect Addressing: [<label>] ADDC {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

· DescrTptfon 

Words 
Cycles 
Repeatability 

Example 1 

Example 2 

4-18 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+ PC 
(ACC) + (dma) + (C) -+ ACC 

Affects C and OV; affected by OVM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct 0 1 0 0 0 0 1 1 I 0 I Data Memory Address 

Indirect I 0 1 0 0 0 0 1 1 I 1 See Section 4.1 

The-coriterit!:f c>rme·· aaaressea·crat~fmemorv-rac·1mo11- ana·me·valae·or me· carry· 
bit are added to the accumulator. The carry bit is then affected in the normal 
manner. 

The ADDC instruction can be used in performing multiple-precision arithmetic. 

1 
Class I (1) 
Category B 

ADDC DATS 
or 

(DP = 8) 

ADDC * If current auxiliary register contains 1029. 

Data 
Memory 

1029 

Before Instruction 

>4 

ACC [TI .__I -~->1_3__. 

ADDC DATS 
or 

c 
(DP = 8) 

Data 
Memory 

1029 

ACC 

After Instruction 

>4 

@] l....__ ___ >1_8__, 

c 

ADDC * If current auxiliary register contains 1029. 

Data 
Memory 

1029 

ACC 

Before Instruction 

>O 

[TI I >F F F F F F F F 

c 

Data 
Memory 

1029 

ACC 

After Instruction 

>O 

[TI ~I ___ >o__. 
c 



ADDH Add to High Accumulator ADDH 

Assembler Syntax 
Direct Addressing: [<label>] ADDH <dma> 

Indirect Addressing: [<label>] ADDH {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+ PC 
(ACC) + [(dma) x 216] -+ ACC 

Affects C and OV; affected by OVM. 
Low-order bits of the ACC not affected. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 0 0 1 0 0 ol 0 I Data Memory Address 

Indirect I 0 1 0 0 1 0 0 ol 1 I See Section 4.1 

The contents of the addressed data memory location are added to the upper half 
of the accumulator (bits 31 through 16). Low-order bits are unaffected by ADDH. 
The carry bit C is set if the result of the addition generates a carry; otherwise, C 
is unaffected. The carry bit can only be set, not reset, by the ADDH instruction. 

The ADDH instruction may be used in performing 32-bit arithmetic. 

1 
Class I (1) 
Category B 

ADDH DATS 
or 
ADDH 

Data 
Memory 

1029 

ACC 

* 

OJ 
c 

I 

(DP = 8) 

If current auxiliary register contains 1029. 

Before Instruction After Instruction 

Data 
>4 Memory >4 

1029 

>1 3 ACC OJ I >4 0 0 1 3 

c 

4-19 



ADDK Add to Accumulator Short lmmE!diate ADDK 

Assembler Syntax [<label>] ADDK <constant> 

Operands 0 s constant s 255 

Execution (PC) + 1 -+ PC 

Encoding 

Description 

Words 
:CVcles··-··--
Repeatability 

Example 

4-20 

(ACC) + 8-bit positive constant-+ ACC 

Affects C and OV: affected by OVM. 
Not affected by SXM. 

15 14 13 12 11 10 9 8 7 
1 1 0 0 1 1 o o I 

6 5 4 3 2 1 0 

8-Bit Constant 

The 8-bit immediate value is added, right-justified, to the accumulator with the 
result replacing the accumulator contents. The immediate value is treated as an 
8-bit positive number, regardless of the value of SXM. 

1 
-- ··crass·w-m 

Category X 

ADDK >S 

Before Instruction After Instruction 

ACC 0 I >7 9 B 2 E 1 ACC @] I >7 9 B 2 E 6 

c c 



ADDS Add to Accumulator with Sign-Extension Suppressed ADDS 

Assembler Syntax 
Direct Addressing: [<label>] ADDS <dma> 

Indirect Addressing: [<label>] ADDS {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma s 127 
0 s next ARP s 7 

(PC} + 1 -+ PC 
(ACC} + (dma) -+ ACC 
(dma} is a 16-bit unsigned number. 

Affects C and OV; affected by OVM. 
Not affected by SXM. 

15 14 13 12 11 10 9 

Direct I 0 1 0 0 1 0 0 

8 7 6 

Indirect I 0 1 0 0 10011 

5 4 3 2 1 0 

Data Memory Address 

See Section 4.1 

The contents of the specified data memory location are added with sign-extension 
suppressed. The data is treated as a 16-bit unsigned number, regardless of SXM. 
The accumulator behaves as a signed number. Note that ADDS produces the 
same results as an ADD instruction with SXM = 0 and a shift count of 0. 

1 
Class I (1} 
Category B 

ADDS 
or 
ADDS 

DATll (DP = 6) 

* If current auxiliary register contains 779. 

Before Instruction After Instruction 

Data Data 
Memory >F 0 0 6 Memory >F 0 0 6 

779 779 

ACC 0 I >3 ACC @] I >F 0 0 9 

c c 

4-21 



ADDT Add to Accumulator with Shift Specified by T Register ADDT 

Assembler Syntax 
Direct.Addressing: [<label>] ADDT <dma> 

Indirect Addressing: [<label>] ADDT {*l*+l*-1*0+1*0-l*BRO+l'*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

\ 4-22 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 .... PC 
(ACC) + [(dma) x 2T register(3-0)] .... (ACC) 

If SXM = 1: 
Then (dma} is sign-extended. 

If SXM = 0: 
Then (dma} is not sign-extended. 

Affects C and OV; affected by SXM and OVM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

· ·mrecrt -1i 1- ---cr ---u -·-1- -u-·-- ···· T ---u-fu l ·- ·uatawremorfA<fcfress . -1 

Indirect I 0 0 0 1 0 0 I 1 I See Section 4.1 

The data memory value, left-shifted as defined by the four LSBs of the T register, 
is added to the accumulator, with the result replacing the accumulator contents. 
Sign extension on the data memory value is controlled by SXM. 

1 
Class I (1} 
Category A 

ADDT DAT127 
or 
ADDT 

Data 
Memory 

639 

T 

ACC 

* 

[8] 
c 

I 

(DP = 4) 

If current auxiliary register contains 639. 

Before Instruction After Instruction 

Data 
>9 Memory >9 

639 

>FF 9 4 T >FF 9 4 

>F 7 1 5 ACC @] I >F 7 A 5 

c 



ADLK Add to Accumulator Long Immediate with Shift ADLK 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

[<label>] ADLK <constant>[,<shift>] 

16-bit constant 
0 s shift s 15 (defaults to 0) 

(PC) + 2-+ PC 
(ACC) + [constant x 2shift] ... ACC 

If SXM = 1: 
Then -32768 s constant s 32767. 

If SXM = 0: 
Then 0 s constant s 65535. 

Affects C and OV; affected by OVM and SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 o 1 I Shift I 0 0 0 0 0 0 1 

16-bit Constant 

The 16-bit immediate value, left-shifted as specified, is added to the accumulator. 
The result replaces the accumulator contents. SXM determines whether the 
constant is treated as a signed two's-complement number or as an unsigned 
number. The shift count is optional and defaults to zero. 

2 
Class V (2) 
Category X 

ADLK 5,8 

Before Instruction 

ACC ~ I >1 0 E F 

c 

After Instruction 

ACC @] I >1 5 E F 

c 

4-23 



Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 

.. -~-!t~e~~.!l!>.i~~y 

Example 

4-24 

Add to Auxiliary Register Shortlmmediate ADRK 

[<label>] ADRK <constant>· 

0 s constant s 255 

(PC} + 1 -+ PC 
AR(ARP} + 8-bit positive constant-+ AR(ARP} 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 1 1 1 o I 8- Bit Constant 

The 8-bit immediate value is added, right-justified, to the currently selected 
auxiliary register with the result replacing the auxiliary register contents. The 
addition takes place in the ARAU, with the immediate value treated as an 8-bit 
positive integer. 

1 
Class IV (1} 

---·-~j;!teg_~ry_?_< ______ _ 

ADRK >80 

AR5 

(ARP = 5) 

Before Instruction 

, >4 3 2 1 AR5 

After Instruction 

>43A1 



AND AND with Accumulator AND 

Assembler Syntax 
Direct Addressing: [<label>] AND <dma> 

Indirect Addressing: [<label>] AND {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 ... PC 
(ACC(15-0)).AND.(dma) ... ACC(15-0) 
0 -+ ACC{31 -16) 

Not affected by SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 0 0 1 1 1 ol o I Data Memory Address 

Indirect I 0 1 0 0 1 1 1 ol 1 See Section 4.1 

The lower half of the accumulator is ANDed with the contents of the addressed 
data memory location. The upper half of the accumulator is ANDed with all zeroes. 
Therefore, the upper half of the accumulator is always zeroed by the AND 
instruction. 

1 
Class I (1) 
Category B 

DAT16 (DP = 4) AND 
or 
AND * If current auxiliary register contains 528. 

Before Instruction After Instruction 

Data Data 
Memory >FF Memory >FF 

528 528 

ACC ~ I >1 2 3 4 5 6 7 8 ACC ~ I >O 0 0 0 0 0 7 8 
c c 

4-25 



ANDK 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-26 

AND Immediate with Accumulator with Shift ANDK 

[<label>] ANDK <constant>[.<shift>J 

16-bit constant 
0 s shifts 15 (defaults to 0) 

(PC} + 2 -> PC . 
(ACC(30-0}).AND.[(constant x 2shift)] -> ACC(30-0} 
0 -> ACC(31} and all other bit positions not occupied by the shifted constant. 

Not affected by SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 I Shift I 0 0 0 0 0 0 01 16-bit Constant 

The 16-bit immediate constant is left-shifted as specified and ANDed with the 
accumulator. The result is left in the accumulator. Low-order bits below and 

_high=ard.er_bits_ahave__tbe_shifted w!ua.are_treated .as zeroes,.clearing tha..corre" 
spending bits in the accumulator. Note that the accumulator's most-significant 
bit is always zeroed regardless of the shift-code value. 

2 
Class V (2) 
Category X 

ANDK >FFFF,12 

ACC 

Before Instruction 

~ I >1 2 3 4 5 6 1 a 
c 

ACC 

After Instruction 

~ I >O 2 3 4 5 0 0 0 
c 



APAC 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Add P Register to Accumulator. 

[<label>] APAC 

None 

(PC) + 1 -+ PC 
(ACC) + (shifted P register) -+ ACC 

Affects C and OV; affected by PM and OVM. 
Not affected by SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 
1 1 0 0 1 1 0 0 0 0 1 

APAC 

3 2 1 0 

0 0 1 

The contents of the P register are shifted as defined by the PM status bits and 
added to the contents of the accumulator. The result is left in the accumulator. 
APAC is not affected by the SXM bit of the status register; the P register is always 
sign-extended. Note that APAC is a subset of the LTA, LTD, MAC, MACO, M PYA 
and SORA instructions. 

1 
Class IV (1) 
Category B 

APAC 

p 

ACC 

(PM = 0) 

Before Instruction 

>4 0 

0 l....__ __ >2_0__. 
c 

p 

ACC 

After Instruction 

>4 0 

@J ..._I ___ >_s_o__, 
c 

4-27 



B 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles. 
Repeatability 

Example 

4-28 

Branch Unconditionally 

[<label>] B <pma>[,{*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>]] 

0 s pma s 65535 
0 s next ARP s 7 

pma .... PC 
Modify AR(ARP) and ARP as specified. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

1 1 1 1 1 1 1 See Section 4.1 

Program Memory Address 

B 

0 

The current auxiliary register and ARP are modified as specified, and control 
passes to the designated program memory address (pma). Note that no AR cir 
ARP modification occurs if nothing is specified in those fields. Pma can be either 
a symbolic or a numeric address. 

2 
C+ass VtH (3} 
Category X 

B PRG191 191 is loaded into the program counter, and 
the program continues running from that 
location. 



BACC 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Branch to Address Specified by Accumulator BACC 

[<label>] BACC 

None 

(ACC(15-0)) --- PC 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1 

The branch uses the lower half of the accumulator (bits 15-0) for the branch 
address. 

1 
Class VIII (3) 
Category X 

BACC 

PC 

ACC 

Before Instruction 

>1 6 E 4 

[8] I >F 7 F F 9 5 4 5 

c 

PC 

ACC 

After Instruction 

>9 5 4 5 

[8] I >F 7 FF 9 5 4 5 

c 

4-29 



BANZ 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 1 

Example 2 

4-30 

Branch on Auxiliary Register Not Zero BANZ 

[<label>] BANZ <pma> [,{*j*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>]] 

0 s pma s 65535 
0 s next ARP s 7 

If AR(ARP) ¢: 0: 
Then pma -+ PC; 
Else (PC) + 2 -+ PC. 

Modify AR(ARP) as specified. 

15 14 13 12 11 10 

1 1 1 1 0 

9 8 7 6 5 4 3 2 1 0 

1 See Section 4.1 

Program Memory Address 

Control is passed to the designated program memory address (pma) if the current 
auxiliary register is not equal to zero. Otherwise, control passes to the next 
instruction. The current auxiliary register and ARP are also modified as specified. 

The current auxiliary register is either incremented or decremented from zero when 
the branch is not taken. Note that the AR modification defaults to*- (decrement 
current AR by one) when nothing is specified, making it compatible with the 
TMS32010. Pma can be either a symbolic or a numeric address. 

2 
Class VII (3) 
Category X 

BANZ 

AR 

PC 

or 

AR 

PC 

BANZ 

AR 

PC 

or 

AR 

PC 

PRG35,*-

Before Instruction 

>1 

>4 6 

>O 

>4 6 

PRG64,*+ 

Before Instruction 

>FF FF 

>1 1 7 

>O 

>1 1 7 

AR 

PC 

AR 

PC 

AR 

PC 

AR 

PC 

After Instruction 

>O 

>3 5 

>FF FF 

>4 8 

After Instruction 

>O 

>6 4 

>1 

>1 1 9 



BANZ Branch on Auxiliary Register Not Zero BANZ 

Note: 

BANZ is designed for loop control using the auxiliary registers as loop coun­
ters. Using *O+ or *0- allows modification of the loop counter by a variable 
step size. Care must be exercised when doing this, however, because the 
auxiliary registers behave as modulo 65536 counters, and zero may be passed 
without being detected if ARO > 1 . 

4-31 



BBNZ 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-32 

Branch on Bit Not. Equal to Zero BBNZ 

[<label>] BBNZ <pma> [,{*l*+l*-1*0+1*0-l*BRO+ !*BRO-}[, <next ARP>]] 

0 s pma s 65535 
0 :S next ARP s 7 

If test/control (TC) status bit = 1 : 
Then pma ..... PC; 
Else (PC) + 2 ..... PC. 

Modify AR (ARP) and ARP as specified. 

Affected by TC. 

15 14 13 12 11 10 9 8 
1 1 1 1 0 0 

7 6 5 4 3 2 1 

See Section 4.1 

Program Memory Address 

0 

The current auxiliary register and ARP are modified as specified. Control then 
passes to the designated pro~ram memoryaddress if TC = 1 . 91'1tlJWise, CQntrol 
passes fo the next lrlstrucfiOn. Note that no A-R or ARP modification occurs if 
nothing is specified in those fields. Pma can be either a symbolic or a numeric 
address. Note that the TC bit may be affected by the BIT, BITT, CMPR, LST1, 
NORM, RTC, and STC instructions. 

2 
Class VI I (3) 
Category X 

BBNZ PRG650 If TC = 1, 650 is loaded into the program 
counter; otherwise, the program counter 
is incremented by 2. 



BBZ 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Branch on Bit Equal to Zero BBZ 

[<label>] BBZ <pma> [,{*I*+ l*-1*0+1*0-l*BRO+ l*BRO-}[, <next ARP>]] 

0 s pma s 65535 
0 s next ARP s 7 

If test/control (TC) status bit = 0: 
Then pma -+ PC; 
Else (PC) + 2 -+ PC. 

Modify AR(ARP) and ARP as specified. 

Affected by TC bit. 

15 14 13 12 11 10 9 8 7 6 
1 1 0 0 0 1J 

5 4 3 2 

See Section 4.1 

Program Memory Address 

0 

The current auxiliary register and ARP are modified as specified. Control then 
passes to the designated program memory address if TC = 0. Otherwise, control 
passes to the next instruction. No AR or ARP modification occurs if nothing is 
specified in those fields. Pma can be either a symbolic or a numeric address. 
Note that the TC bit is affected by the BIT, BITT, CMPR, LST1, NORM, RTC, and 
STC instructions. 

2 
Class VII (3) 
Category X 

BBZ PRG325 If TC = 0, 325 is loaded into the program 
counter; otherwise, the program counter 
is incremented by 2. 

4-33 



BC 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-34 

Branch on Carry 

[<label>] BC <pma> [,{*l*+l*-1*0+ l*O-l*BRO+l*BRO-}[,<next ARP>]] 

0 :S pma :S 65535 
0 :S next ARP :S 7 

If carry bit C = 1 : 
Then pma -+ PC; 
Else (PC) + 2 -+ PC. 

Modify AR(ARP) and ARP as specified. 

Affected by C. 

15 14 13 12 11 10 9 8 7 6 
0 1 0 1 1 1 1 

5 4 3 2 

See Section 4.1 

Program Memory Address 

BC 

0 

The current auxiliary register and ARP are modified as specified. Control then 
QCl~s~~ J9 lbe desjgnat~d g_ro_gram. memo.r_y addressil1he .carcy.hltC.= L .Other­
wise, control passes to the next instruction. Note that no AR or ARP modification 
occurs if nothing is specified in those fields. Pma can be either a symbolic or a 
numeric address. 

Note that the carry bit C is affected by all add, subtract, and accumulate 
instructions as well as the ABS, LST1, NEG, RC, SC, rotate, and shift instructions. 
The carry bit is not affected by execution of BC, BNC, or nonarithmetic 
instructions. 

2 
Class VII (3) 
Category X 

BC PRG512 If the carry bit c = 1, 512 is loaded into 
the program counter; otherwise, the program 
counter is incremented by 2. 



BGEZ Branch if Accumulator Greater Than or Equal to Zero BGEZ 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

[<label>] BGEZ <pma> [,{*I*+ l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>]] 

0 s pma s 65535 
0 s next ARP s 7 

If (ACC);;::: 0: 
Then pma -+ PC; 
Else (PC) + 2 -+ PC. 

Modify AR (ARP) and ARP as specified. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 0 0 0 See Section 4.1 

Program Memory Address 

The current auxiliary register and ARP are modified as specified. Control then 
passes to the designated program memory address if the contents of the accu­
mulator are greater than or equal to zero. Otherwise, control passes to the next 
instruction. Note that no AR or ARP modification occurs if nothing is specified 
in those fields. Pma can be either a symbolic or a numeric address. 

2 
Class VII (3) 
Category X 

BGEZ PRG217 217 is loaded into the program counter if 
the accumulator is greater than or equal 
to zero. 

4-35 



BGZ 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-36 

Branch if Accumulator Greater Than Zero BGZ 

[<label>] BGZ <pma>[,{*l*+l*-1"0+1*0-l*BRO+l"BRO-}[,<next ARP>]] 

0 $ pma $ 65535 
0 $ next ARP $ 7 

If (ACC) > 0: 
Then pma ... PC; 
Else (PC) + 2-+ PC. 

Modify AR(ARP) and ARP as specified. 

15 14 13 12 11 10 9 8 
1 1 1 1 0 0 0 1 

7 6 5 4 3 2 1 

See Section 4.1 

Program Memory Address 

0 

The current auxiliary register and ARP are modified as specified. Control then 
passes to the designated program memory address if the contents of the accu­
mulator are greater than zero. Otherwise, control passes to the next instruction. 
-~Q.~l!J_~~t n~-~RQ_r A.-_8f.'.m<?<m.i~_~tl<>n <>~~Y!$.Jf_119thio_g_i$. $.Q~cified.ir:tthose.fields. 
Pma can be either a symbolic or a numeric address. 

2 
Class VII (3) 
Category X 

BGZ PRG342 342 is loaded into the program counter if 
the accumulator is greater than zero. 



BIOZ 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Branch on 1/0 Status Equal to Zero BIOZ 

[<label>] BIOZ <pma>[,{*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP9Jl 

0 :s; pma :s; 65535 
0 :s; next ARP :s; 7 

If BIO= 0: 
Then pma -+ PC; 
Else (PC) + 2 -+ PC. 

Modify AR(ARP) and ARP as specified. 

15 14 13 12 11 10 9 8 7 6 5 

1 1 0 0 

Program Memory Address 

4 3 2 1 0 

See Section 4.1 

The current auxiliary register and ARP are modified as specified. Control then 
passes to the designated program memory address if the BIO pin is low. Other­
wise, control passes to the next instruction. Note that no AR or ARP modification 
occurs if nothing is specified in those fields. Pma can be either a symbolic or a 
numeric address. 

BIOZ in conjunction with the BIO pin can be used to test if a peripheral is ready 
to send or receive data. Polling the BIO pin using BIOZ may be preferable to an 
interrupt when executing time-critical loops. 

2 
Class VII (3) 
Category X 

BIOZ PRG64 If the BIO- pin is active (low), then 
a branch to location 64 occurs. 

4-37 



BIT Test Bit BIT 

Assembler Syntax 
Direct Addressing: [<label>] BIT <dma>,<bit code> 

Indirect Addressing: [<label>] BIT {*l*+l*-1*0+1*0-l*BRO+l*BRO-},<bit code>[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-38 

0 :s; dma :s; 127 
0 :s; ARP :s; 7 
0 :s; bit code :s; 1 5 

(PC) + 1 .,... PC 
(dma bit at bit address (15-bit code)) .... TC. 

Affects TC. 

15 14 13 12 11 10 9 7 6 5 4 3 2 1 0 

Direct I 1 0 0 1 I Bit Code ol Data Memory Address 

Indirect I 1 0 0 1 I Bit Code See Section 4.1 
··--·---··· ··- -.... ·--·--- ... ~ -·· ·--····"-·-·- ··-- .... 

The BIT instruction copies the specified bit of the data memory value to the TC 
bit of status register ST1. Note that the BITT, CMPR, LST1, and NORM 
instructions also affect the TC bit in status register ST1. A bit code value is 
specified that corresponds to a certain bit address in the instruction, as given by 
the following table: 

1 

(LSB) 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

(MSB) 15 

Class I (1) 
Category C 

BIT 
or 
BIT 

Data 
Memory 
>F400 

TC 

>0,>8 

*,8 

(DP = 488) 

Bit Code 
1110 ~ §. 

1 1 1 
1 1 0 
1 0 1 
1 0 0 
0 1 1 
0 1 0 
0 0 1 

1 0 0 0 
0 1 1 1 
0 1 1 0 
0 1 0 1 
0 1 0 0 
0 0 1 1 
0 0 1 0 
0 0 0 1 
0 0 0 0 

If current auxiliary register contains >F400. 

Before Instruction 

>7 E 9 8 

>O 

Data 
Memory 
>F400 

TC 

After Instruction 

>7 E 9 8 

>1 



BITT Test Bit Specified by T Register BITT 

Assembler Syntax 
Direct Addressing: [<label>] BITT <dma> 

Indirect Addressing: [<label>] BITT {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+ PC 
(dma bit at bit address (15-T register(3-0))) -+ TC 

Affects TC. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 0 1 0 1 Data Memory Address 

Indirect I 0 1 0 1 0 1 1 1 1 See Section 4.1 

The BITT instruction copies the specified bit of the data memory value to the TC 
bit of status register ST1. Note that the BIT, CMPR, LST1, and NORM instructions 
also affect the TC bit in status register ST1. The bit address is specified by a bit 
code value contained in the LSBs of the T register, as given in the following table: 

(LSB) 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

(MSB) 15 

1 
Class I (1) 
Category C 

BITT >O 

or 
BITT * 

Data 
Memory 
>7800 

TR 

TC 

Bit Code 
~Z!Q 

1 1 1 
1 1 0 
1 0 1 
1 0 0 
0 1 1 
0 1 0 
0 0 1 

1 0 0 0 
0 1 1 1 
0 1 1 0 
0 1 0 1 
0 1 0 0 
0 0 1 1 
0 0 1 0 
0 0 0 1 
0 0 0 0 

Value in T register points to bit 14 of 
data word (DP= 240). 

If current auxiliary register contains >7800. 

Before Instruction 

>4 DC 8 

>1 

>O 

Data 
Memory 
>7800 

TR 

TC 

After Instruction 

>4 DC 8 

>1 

>1 

4-39 



·Branch if Acc.umulator Less Than or,E9ual to Zero BLEZ 

Assembler Syntax 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-40 

[<label>] BLEZ <pma> [,{*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>]] 

0 s pma s 6~535 
0 s next ARP s 7 

If (ACC) s 0: 
Then prna -+ PC; 
Else (PC) + 2 -+ PC. 

Modify AR(ARP) and ARP as specified. 

15 14 13 12 11 10 9 8 

1111001 0 

7' 6 5 4 3 2 1 
See Section 4.1 

Program Memory Address 

0 

The current auxiliary register and ARP are modified as specified. Control then 
passes to the designated program memory address if the contents of the accu­
mulator are less than or equal to zero. Otherwise, control passes to the next 
instruction. Note that no AR or ARP modification occurs if nothing is specifiec:i 
rn· tli<fse fiefds·:vma cari be- either a symbolfo or a"niimeric address: . .. . . .. ... .. 

2 
Class VII (3) 
Category X 

BLEZ PRG63 63 is loaded into the program counter if the 
accumulator is less than or equal to zero. 



BLKD Block Move from Data Memory to Data Memory BLKD 

Assembler Syntax 
Direct Addressing: [<label>] BLKD <dma1 >,<dma2> 

Indirect Addressing: [<label>] BLKD <dma1 >,{*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Direct 

Indirect 

0 :s dma1 :s 65535 
0 :S dma2 :s 127 
0 :s next ARP :S 7 

(PC) + 2-+ PC 
(PFC) -+ MCS 
(dma1) -+ PFC 

While (repeat counter) ':I: 0: 
(dma1, addressed by PFC) -+ dma2, 
Modify AR(ARP) and ARP as specified, 
(PFC) + 1 -+ PFC, 
(repeat counter) - 1 -+ repeat counter. 

(dma1, addressed by PFC) -+ dma2 
Modify AR(ARP) and ARP as specified. 
(MCS) -+PFC 

15 14 13 12 11 10 9 8 7 

1 1 1 1 1 1 0 1 Io I 
6 

Data Memory Address 1 

1 1 1 1 1 1 0 11 1 l 

5 4 3 2 1 0 

Data Memory Address 2 

See Section 4.1 

Data Memory Address 1 

Consecutive memory words are moved from a source data memory block to a 
destination data memory block. The starting address (lowest) of the source block 
is defined by the second word of the instruction. The starting address of the 
destination block is defined by either the dma contained in the opcode (for direct 
addressing) or the current AR (for indirect addressing). In the indirect addressing 
mode, both the current AR and ARP may be modified in the usual manner. In the 
direct addressing mode, dma2 is used as the destination address for the block 
move but is not modified upon repeated executions of the instruction. Thus, the 
contents of memory at the dma2 address will be the same as the contents of 
memory at the last dma1 address in a repeat sequence. 

RPT or RPTK must be used with this instruction, in the indirect addressing mode, 
if more than one word is to be moved. The number of words to be moved is one 
greater than the number contained in the repeat counter RPTC at the beginning 
of the instruction. At the end of this instruction, the RPTC contains zero and, if 
using indirect addressing, AR(ARP) will be modified to contain the address after 
the end of the destination block. Note that the source and destination blocks do 
NOT have to be entirely on-chip or off-chip. However, BLKD cannot be used to 
transfer data from a memory-mapped register to any other location in data 
memory. 

The PC points to the instruction following BLKD after execution. Interrupts are 
inhibited during a BLKD operation used with RPT or RPTK. 

2 
Class XIII ( 4) 
Category A 

4-41 



BLKD Block Move from Data Memory to Data Memory BLKD 

Example RPTK 2 
BLKD >F400,*+ If current aux~liary register contains 1030. 

dma1 

Before Instruction After Instruction 

Data Data 
Memory >7 F 9 8 Memory >7 F 9 8 
62464 62464 

Data Data 
Memory >FF E 6 Memory >FF E 6 
62465 62465 

Data 
f 

Data 
Memo_r.v .. :.>:9.522 l Memory. { >-9522 l 
62466 62466 

dma2 

Before Instruction After Instruction 

Data Data 
Memory >8 DEE Memory >7 F 9 8 

1030 1030 

Data Data 
Memory >9 3 1 5 Memory >FF E 6 

1031 1031 

Data Data 
Memory >2 5 3 1 Memory >9 5 2 2 

1032 1032 

4-42 



BLKP Block Move from Program Memory to Data Memory BLKP 

Assembler Syntax 
Direct Addressing: [<label>] BLKP <pma>,<dma> 

Indirect Addressing: [<label>] BLKP <pma>,{*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

0 s pma s 65535 
0 s dma s 127 
0 s next ARP s 7 

{PC) + 2-+ PC 
{PFC)-+ MCS 
{pma)-+ PFC 

While {repeat counter) :f: 0: 
{pma, addressed by PFC) -+ dma, 
Modify AR{ARP) and ARP as specified, 
{PFC) + 1 -+ PFC, 
{repeat counter) - 1 -+ repeat counter. 

{pma, addressed by PFC) -+ dma 
Modify AR{ARP) and ARP as specified. 
{MCS) ..... PFC 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct 1 1 1 1 1 1 Data Memory Address 

Indirect 

Program Memory Address 

1 1 1 1 1 1 o o l 1 I See Section 4.1 

Program Memory Address 

Consecutive memory words are moved from a source program memory block to 
a destination data memory block. The starting address (lowest) of the source 
block is defined by the second word of the instruction. The starting address of 
the destination block is defined by either the dma contained in the opcode (for 
direct addressing) or the current AR {for indirect addressing). In the indirect 
addressing mode, both the ARP and the current AR may be modified in the usual 
manner. In the direct addressing mode, dma is used as the destination address for 
the block move but is not modified by repeated executions of the instruction. 
Thus, the contents of memory at the dma address will be the same as the contents 
of memory at the last pma address in a repeat sequence. 

RPT or RPTK must be used with this instruction if more than one word is to be 
moved. The number of words to be moved is one greater than the number 
contained in the repeat counter RPTC at the beginning of the instruction. At the 
end of this instruction, the RPTC contains zerc. and, if using indirect addressing, 
AR{ARP) will be modified to contain the addr~ss after the end of the destination 
block. Note that source and destination blocks do NOT have to be entirely on-chip 
or off-chip. 

The PC points to the instruction following BLKP after execution. Interrupts are 
inhibited during a BLKP operation. 

If the MP/MC pin is low at the time of execution of this instruction and the 
program memory address used is less than 4096, an on-chip ROM location will 
be read. 

2 
Class XIV (4) 
Category A 

4-43 



BLKP Block Move from Program. Memory ~o Data Memory BLKP 

Example RPTK 2 
BLKP 65120,*+ If current auxiliary register contains 2048. 

pma 

Before Instruction After Instruction 

Program Program 
Memory >AO 8 9 Memory >A08 9 
65120 65120 

Program Program 
Memory >2 DC E Memory >2 DC E 
65121 65121 

Program Program 
Memory >~ .. A~·EJ Memory i :>3-A-9-F 
65'f 22 65122 

dma 

Before Instruction After Instruction 

Data Data 
Memory >1 2 3 4 Memory >AO 8 9 

2048 2048 

Data Data 
Memory >2 0 0 5 Memory >2 DC E 

2049 2049 

Data Data 
Memory >E 9 8 C Memory >3 A 9 F 

2050 2050 

4-44 



BLZ 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatabi I ity 

Example 

Branch if Accumulator Less Than Zero BLZ 

[<label>] BLZ <pma> [,{*l*+l*-1*0+1*0-l*BRO+ l*BRO-}[,<next ARP>]] 

0 s pma s 65535 
0 s next ARP s 7 

If (ACC) < 0: 
Then pma -+ PC; 
Else (PC) + 2 -+ PC. 

Modify AR(ARP) and ARP as specified. 

15 14 13 12 11 10 9 8 

1 0 0 

7 6 5 4 3 2 1 

See Section 4.1 

Program Memory Address 

0 

The current auxiliary register and ARP are modified as specified. Control then 
passes to the designated program memory address if the contents of the accu­
mulator are less than zero. Otherwise, control passes to the next instruction. Note 
that no AR or ARP modification occurs when nothing is specified in those fields 
Pma can be either a symbolic or a numeric address. 

2 
Class VII (3) 
Category X 

BLZ PRG481 481 is loaded into the program counter if the 
accumulator is less than zero. 

4-45 



BNC 

AssEtmbler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-46 

Branch on No Carry BNC 

[<label>] BNC <pma> [,{*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>]] 

0 s pma s 65535 
0 s next ARP s 7 

If carry bit C = 0: 
Then pma -+ PC; 
Else (PC) + 2 -+ PC. 

Modify AR(ARP) and ARP as specified. 

Affected by C. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
0 1 0 1 1 1 See Section 4.1 

Program Memory Address 

0 

The current auxiliary register and ARP are modified as specified. Control then 
passes to thedesignated program memory address if the c;arry bit C = 0 .. Other­
wise;-corifroT passes tcithe nexfTnstn.ictfon. Note that no AR or ARP mod ffication 
occurs when nothing is specified in those fields. Pma can be either a symbolic 
or a numeric address. 

Note that the carry bit C is affected by all add, subtract, and accumulate 
instructions as well as the ABS, LST1, NEG, RC, SC, rotate, and shift instructions. 
The carry bit is not affected by execution of the BC, BNC, or nonarithmetic 
instructions. 

2 
Class VII (3) 
Category X 

BNC PRG325 If the carry bit C = 0, 325 is loaded into 
the program counter. Otherwise, the program 
counter is incremented by 2. 



BNV 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Branch if No Overflow BNV 

[<label>] BNV <pma>[,{*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>]] 

0 s pma s 65535 
0 s next ARP s 7 

If overflow OV status bit = 0: 
Then pma ..... PC; 
Else {PC) + 2 ..... PC and 0 ..... OV. 

Modify AR{ARP) and ARP as specified. 

Affects OV; affected by OV. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

111101 1 1 See Section 4.1 

Program Memory Address 

The current auxiliary register and ARP are modified as specified. Control then 
passes to the designated program address if the OV {overflow flag) is clear. 
Otherwise, the OV is cleared, and control passes to the next instruction. Note that 
no AR or ARP modification occurs if nothing is specified in those fields. Pma 
can be either a symbolic or a numeric address. 

2 
Class VII (3) 
Category X 

BNV PRG315 315 is loaded into the program counter if 
the overflow flag is clear. OV is cleared. 

4-47 



SNZ Branch if Apcumulator Not Eq:tJal to Zero BNZ 

Asse(flbl~r Syntax . [<label>J BNZ <pma>[,{*l~+l*-l*0+.1.*.0-l~BRO+l*BRO-}[,<next ARP>]] 

Operands 0 :S pma :S 65535 
0 :S next ARP :S 7 

Execution If (ACC) ¢ 0: 
Then pma -+ PC; 
Else (PC) + 2 -+ PC. 

Modify AR(ARP) and ARP as specified .... 

Encoding 15 14 13 12 11 10 9 8 .. 7 . ' . .6 5 4 3 2 1 

1 1 1 1 0 1 0 1 1 J See Section 4.1 

Program Memory. Address 

0 

Description The current auxiliary register and ARP are modified as specified. Control then 
passes to the designated program memory address if the contents of the accu­
mulator are not equal to zero. Otherwise, control passes to the next instruction. 
Note that ho AR or ARP modification occucsjf nothing is specified in those fields. 

··-·····-· ···· ···- Pma can-be- eithe1 a sy111bolic or a nameric_ad.dress:----- · · ·· 

Words 
Cycles 
Repeatability 

Example 

4-48 

2 
Class VII (3) 
Category X 

BNZ PRG320 320 is loaded into the program counter if 
the accumulator does not equal zero. 



BV 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

·· · · Branch on Overflow 

[<label>] BV <pma>[,{*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>]] 

0 s pma s 65535 
0 s next ARP s 7 

If overflow (OV) status bit = 1: 
Then pma -+ PC and 0 -+ OV; 
Else (PC) + 2 -+ PC. 

Modify AR(ARP) and ARP as specified. 

Affects OV; affected by OV. 

15 14 13 12 11 10 9 8 7 6 
1 1 1 1 0 0 0 

5 4 3 2 1 

See Section 4.1 

Program Memory Address 

BV 

0 

The current auxiliary register and ARP are modified as specified, and the overflow 
flag is cleared. Control passes to the designated program memory address if the 
OV (overflow flag) is set. Otherwise, control passes to the next instruction. Note 
that no AR or ARP modification occurs if nothing is specified in those fields. Pma 
can be either a symbolic or a numeric address. 

2 
Class VII (3) 
Category X 

BV PRG610 If an overflow has occurred since the over­
flow flag was last cleared, then 610 is 
loaded in the program counter. 
OV is cleared. 

4-49 



BZ 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-50 

Branch if Accumulator Equals·Zero BZ 

[<label>] .BZ <pma> [,{*l*+l*-1*0+1*0-l*BRO+ l*BRO-}[, <next ARP>]] 

0 s pma s 65535 
0 s next ARP s 7 

If (ACC) = 0: 
Then pma -+ PC; 
Else (PC) + 2 -+ PC. 

Modify AR(ARP) and ARP as specified. 

15 14 13 12 11 10 9 8 7 6 
1 1 1 1 0 1 

5 4 3 2 

See Section 4.1 

Program Memory Address 

0 

The current auxiliary register and ARP are modified as specified. Control then 
passes to the designated program memory address if the contents of the accu­
mulator are equal to zero. Otherwise, control passes to the next instruction. Note 
that no AR or ARP modification occurs if nothing is specified in those fields. Pma 
canoEf-elffier· a svm ooTic ·ar a n umeffc -acraress: - ·- ·· - - -· · 

2 
Class VI I (3) 
Category X 

BZ PRG102 102 is loaded into the program counter if 
the accumulator is equal to zero. 



CALA 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Call Subroutine Indirect CALA 

[<label>] CALA 

None 

(PC) + 1 -+ TOS 
(ACC(15-0)) -+ PC 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 0 0 0 1 0 0 1 0 ol 
The current program counter is incremented and pushed onto the top of the stack. 
Then, the contents of the lower half of the accumulator are loaded into the PC. 
The carry bit is unaffected by this instruction. 

The CALA instruction is used to perform computed subroutine calls. 

1 
Class VIII (3) 
Category X 

CALA 

PC 

ACC 

STACK 

Before Instruction 

>2 5 

>8 3 

>3 2 
>7 5 
>8 4 
>4 9 

>O 
>O 
>O 
>O 

PC 

ACC 

STACK 

After Instruction 

>8 3 

>8 3 

>2 6 
>3 2 
>7 5 
>8 4 
>4 9 

>O 
>O 
>O 

4-51 



CALL 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-52 

Call Subroutine CALL 

[<label>] CALL <pma>[,{*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>]] 

0 s pma s 65535 
0 s next ARP s 7 

(PC) + 2 -+ TOS 
pma-+ PC 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 1 1 0 See Section 4.1 

Program Memory Address 

The current auxiliary register and ARP are modified as specified, and the PC 
(program counter) is incremented by two and pushed onto the top of the stack. 
The specified program memory address is then loaded into the PC. Note that no 
AR or ARP modification occurs if nothing is specified in those fields. Pma can 
be either a symbolic or a numeric address. 

2 
Class VIII (3) 
Category X 

CALL PRG109 

PC 

STACK 

Before Instruction 

>3 3 

>7 1 
>4 8 
>1 6 
>8 0 

>O 
>O 
>O 
>O 

PC 

STACK 

After Instruction 

>6 D 

>3 5 
>7 1 
>4 8 
>1 6 
>8 0 

>O 
>O 
>O 



CMPL 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Complement Accumulator CMPL 

[<label>] CMPL 

None 

(PC) + 1 -+ PC 
(ACC} -+ ACC 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 1 0 0 1 1 0 0 0 0 0 1 1 1 

The contents of the accumulator are replaced with its logical inversion (one's 
complement). 

1 
Class IV (1) 
Category C 

CMPL 

ACC 

Before Instruction 

0 I >F798251 3 

c 
ACC 

After Instruction 

0 l>o 8 6 7 D A E C 

c 

4-53 



CMPR Compare Auxiliary Register with Auxiliary Register ARO CMPR 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatabi I ity 

Example 

4-54 

[<label>] CMPR <CM> 

0 s CM s 3 

(PC) + 1 -. PC 
Compare AR(ARP) to ARO, placing result in TC bit of status register ST1. 

Affects TC. 
Not affected by SXM; does not affect SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 0 0 1 0 1 0 0 I CM 

The CM PR instruction performs the following comparisons dependent on the 
value of CM: 

If CM = 00, test if AR(ARP) =ARO 
If CM = 01, test if AR(ARP) < ARO 
If CM = 10, test if AR' ARP' > ARO 
1rc·M··.,; ·11:test ffA-RtA:·R-P)-;-ARo··· 

If the result of a test is true, a one is loaded into the TC status bit. Otherwise, 
TC is loaded with a zero. The auxiliary registers are treated as unsigned integers 
in the comparison. 

1 
Class IV (1) 
Category C 

CMPR 2 

ARO 

AR4 

TC 

(ARP = 4) 

Before Instruction 

>FF FF 

>7 FF F 

>1 

ARO 

AR4 

TC 

After Instruction 

>FF FF 

>7 FF F 

>O 



CNFD 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Configure Block as Data Memory CNFD 

[<label>] CNFD 

None 

(PC) + 1 __. PC 
0 __. RAM configuration control (CNF) status bit 

Affects CNF. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 0 0 0 0 0 0 1 0 ol 
On-chip RAM block 0 is configured as data memory. The block is mapped to 
locations 512 through 767 in data memory. This instruction is the complement 
of the CNFP instruction and sets the CNF bit in status register ST1 to a zero. 
CNF is also loaded by the CNFP and LST1 instructions. 

The next two instruction fetches immediately following a CNFD or CNFP 
instruction use the old value of CNF. 

1 
Class IV (1) 
Category C 

CNFD A zero is loaded into the. CNF status bit, thus 
configuring block BO as data memory (see 
memory maps in Section 3.2). 

4-55 



CNFP 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-56 

Configure Block as Program Memory CNFP 

[<label>] CNFP 

None 

(PC) + 1 -+ PC 
1 -+ RAM configuration control (CNF) status bit 

Affects CNF. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 0 0 0 0 0 0 1 0 

On-chip RAM block 0 is configured as program memory. The block is mapped 
to locations 65280 through 65535 in program memory space. This instruction 
is the complement of the CNFD instruction and sets the CNF bit in status register 
ST1 to a one. CNF is also loaded by the CNFD and LST1 instruction. 

Configuring this block as program memory allows the use of the program counter 
as-a.i+address generator to access data from on chip RAM;-Bsed-in conju11ction 
with the repeat instructions, this allows two data memory locations to be 
addressed simultaneously, one from the auxiliary registers and one from the 
program counter. Instructions that take advantage of this feature are the MAC, 
MACD, BLKD, and BLKP instructions. 

The next two instruction fetches immediately following a CNFD or CNFP 
instruction use the old value of CNF. 

1 
Class IV (1) 
Category C 

CNFP The CNF bit is set to a logic 1, thus config­
uring block BO as program memory (see memory 
maps in Section 3.2) 



DINT 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Disable Interrupt DINT 

[<label>] DINT 

None 

(PC) + 1 ..... PC 
1 -+ interrupt mode (I NTM) status bit 

Affects INTM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 

The interrupt mode (INTM) status bit is set to logic 1. Maskable interrupts are 
disabled immediately after the DINT instruction executes. Note that the LST 
instruction does not affect INTM. 

The unmaskable interrupt, RS, is not disabled by this instruction, and the interrupt 
mask register (IMR) is unaffected. Interrupts are also disabled by a reset. 

1 
Class IV (1) 
Category C 

DINT Maskable interrupts are disabled, and INTM is 
set to one. 

4-57 



DMOV Data Move in Data Memory DMOV 

Assembler Syntax 
Direct Addressing: [<label>] DMOV <dma> 

Indirect Addressing: [<label>] . DMOV {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

_ l;>e~c_!.!_pti9_11 _ ... 

Words 
Cycles 
Repeatability 

Example 

4-58 

0 s dma s 127 
0 s next ARP s 7 

(PC} + 1 .... PC 
(dma} -+ dma + 1 

Affected by CNF. 

15 14 13 12 f1 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 0 1 0 1 1 ol o I Data Memory Address 

Indirect I 0 1 0 1 0 1 1 ol 1 See Section 4.1 

_Th!;!__@ll-1e.Il1S_oi1he_ specified .data memory address are copied into the contents 
of the next higher address. DMOV works only within the on-chip data RAM 
blocks BO, B1, and 82. It works within block BO if it is configured as data memory, 
and the data move function is continuous across the boundaries of blocks BO and 
B1; ie., it works for locations 512 to 1023. The data move function cannot be 
used on external data memory. If used on external data memory or memory­
mapped registers, DMOV will read the specified memory location but will perform 
no other operations. 

When data is copied from the addressed location to the next higher location, the 
contents of the addressed location remain unaltered. 

The data move function is useful in implementing the z-1 delay encountered in 
digital signal processing. The DMOV function is included in the LTD and MACO 
instructions (see the LTD and MACO instructions for more information}. 

1 
Class I (1} 
Category A 

DMOV 
or 
DMOV 

Data 
Memory 

520 

Data 
Memory 

521 

OATS 

* If current auxiliary register contains 520. 

Before Instruction 

>4 3 

>2 

Data 
Memory 

520 

Data 
Memory 

521 

After Instruction 

>4 3 

>4 3 



EINT 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Enable Interrupt EINT 

[<label>] EINT 

None 

(PC) + 1 -+ PC 
0-+ interrupt-mode (INTM) status bit 

Affects INTM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 0 0 0 0 0 0 0 0 ol 
The interrupt-mode flag (INTM) in the status register is cleared to logic 0. 
Maskable interrupts are enabled after the instruction following El NT executes. 
This allows an interrupt service routine to re-enable interrupts and execute a RET 
instruction before any other pending interrupts are processed. Note that the LST 
instruction does not affect INTM. (See the DINT instruction for further informa­
tion.) 

1 
Class IV (1) 
Category C 

EINT Unmasked interrupts are enabled, and INTM is 
set to zero. 

4-59 



FORT 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
cvcies­
Repeatabmtv 

Example 

4-60 

Format Serial Port Registers FORT 

[<label>] FORT [<constant>] 

Constant = 0 or 1 

(PC) + 1 -+ PC 
Constant -+ format (FO) status bit 

Affects FO. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 

The format (FO) status bit is loaded by the instruction with the LSB specified in 
the instruction. The FO bit is used to control the formatting of the transmit and 
receive shift registers of the serial port. If FO = 0, the registers are configured to 
receive/transmit 16-bit words. If FO = 1, the registers are configured to 
receive/transmit 8-bit bytes. FO is set to zero on a reset. 

1 -
Class IV (1) 
Category C 

FORT 1 The FO status bit is loaded with 1, making 
the bit length of the serial port 8 bits. 



IDLE 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Idle Until Interrupt IDLE 

[<label>] IDLE 

None 

(PC) + 1 -+ PC 
0 -+ interrupt mode (INTM) status bit 

Affects I NTM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 

The IDLE instruction forces the program being executed to wait until an interrupt 
or reset occurs. The PC is incremented only once, and the device remains in an 
idle state until interrupted. Note that INTM is set to zero in order for the maskable 
interrupts to be recognized. Execution of the I OLE instruction causes the device 
to enter the powerdown mode (see Section 3.4.6). 

1 
Class XV (3) 
Category X 

IDLE The processor idles until a reset or unmasked 
interrupt occurs. 

4-61 



IN Input Data from Port IN 

Assembler Syntax 
Direct Addressing: [<label>] IN <dma>,<PA> 

Indirect Addressing: [<label>] IN {*l*+l*-1*0+1*0-l*BRO+l*BRO-},<PA>[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-62 

· O s dma s 1 27 
0 s next ARP s 7 
0 s port address PA s 15 

(PC) + 1 .... PC 
Port address .... address bus A3-AO 
0 .... address bus A15-A4 
Data bus D1 5- DO -+ dma 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 1 0 0 
01 

Port I 01 Address 
Data Memory Address 

lridirectf. 1 0 0 .o+ __ fQJL +JI Address 
See Section A.1 

The IN instruction reads a 16-bit value from one of the external 1/0 ports into the 
specified data memory location. The TS line goes low to indicate an 1/0 access, 
and the STAB, R/W, and READY timings are the same as for an external data 
memory read. 

1 
Class IX (2) 
Category A 

IN 

or 

LRLK 
LARP 
IN 

STAT,PAS 

1,520 
1 
*-,PAl,O 

Read in word from peripheral on port 
address 5. Store in data memory 
location STAT. 

Load ARl with decimal 520. 
Load ARP with decimal 520. 
Read in word from peripheral on port 
address 1. Store in data memory 
location 520. Decrement ARl to 519. 
Load the ARP with 0. 



LAC Load Accumulator with Shift LAC 

Assembler Syntax 
Direct Addressing: [<label>] LAC <dma>,[<shift>] 

Indirect Addressing: [<label>] LAC {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<shift>[,<next ARP>]] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 :S dma :S 1 27 
0 :S next ARP :S 7 
0 :S shift :S 15 (defaults to 0) 

(PC) + 1 .... PC 
(dma) x 2shift .... ACC 

If SXM = 1: 
Then (dma) is sign-extended. 

If SXM = 0: 
Then (dma) is not sign-extended. 

Affected by SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 0 1 0 I Shift Data Memory Address 

Indirect I 0 0 1 0 I Shift See Section 4.1 

The contents of the specified data memory address are left-shifted and loaded into 
the accumulator. During shifting, low-order bits are zero-filled. High-order bits 
are sign-extended if SXM = 1 and zeroed if SXM = 0. 

1 
Class I (1) 
Category C 

LAC 
or 
LAC 

Data 
Memory 

1030 

ACC 

DAT6,4 

*,4 

~ 
c 

I 

(DP = 8) 

If current auxiliary register contains 1030. 

Before Instruction After Instruction 

Data 
>1 Memory >1 

1030 

>O ACC ~ I >1 0 

c 

4-63 



LACK 

Assembler Syntax 

Operands· 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-64 

Load- Accumulator Immediate Short LACK 

[<label>] LACK <constant> 

0 :S constant s 255 

(PC)+ 1 _. PC 
8-bit positive constant_. ACC 

Not affected by SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1100101 ol 8-Bit Constant 

The 8-bit constant is loaded into the accumulator right-justified. The upper 24 
bits of the accumulator are zeroed (i.e., sign extension is suppressed). 

1 
Class IV (1) 
Category X 

LACK >15 

Before Instruction 

.ACC ~ I >31 
c 

After Instruction 

ACC ~ I >1 s 
c 



LACT Load Accumulator with Shift Specified by T Register LACT 

Assembler Syntax 
Direct Addressing: [<label>] LACT <dma> 

Indirect Addressing: [<label>] LACT {*l*+l*-l*O+l*O-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 :$ dma :$ 127 
0 :!!!: next ARP :!!!: 7 

(PC) + 1 ... PC 
(dma) x 2T register(3-0) ... ACC 

If SXM = 1: 
Then (dma) is sign-extended. 

If SXM = 0: 
Then (dma) is not sign-extended. 

Affected by SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 0 0 0 0 1 ol ol Data Memory Address 

Indirect I 0 1 0 0 0 0 1 ol 1 See Section 4.1 

The LACT instruction loads the accumulator with a data memory value shifted left 
the number of places specified by the four LSBs of the T register. Using the T 
register's contents as a shift code provides a variable shift mechanism. 

LACT may be used to denormalize a floating-point number if the actual exponent 
is placed in the four LSBs of the T register and the mantissa is referenced by the 
data memory address. Note that this method of denormalization can only be used 
when the magnitude of the exponent is four bits or less. 

1 
Class I (1) 
Category C 

LACT 
or 
LACT 

DATl 

Data 
Memory 

769 

ACC 

T 

* 

~ 
c 

(DP = 6) 

If current auxiliary register contains 769. 

Before Instruction After Instruction 

Data 
>137 6 Memory >137 6 

769 

I >9 8 F 7 E c 8 3 ACC ~ I >1 3 7 6 0 

c 

>301 4 T >301 4 

4-65 



LA:LK 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 1 

Example 2 

4~66 

Load Accumulator Long Immediate with Shift 

[<label>] LALK <constant>[, <shift>] 

16-bit cohstant 
0 :s; shift :s; 15 (defaults to 0) 

(PC) + 2-+ PC 
Constant x 2shift -+ ACC 

If SXM = 1: 
Then -32768 :s; constant :s; 32767. 

If SXM = 0: 
Then 0 :s; constant :s; 65535. 

Affected by SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

_1 __ 1 __ 0 __ 1_l __ s_h_ift ___ I _o __ o __ o __ o __ o _0 __ 0 __ 1 I ____ _ 
16-Bit Constant . __ 

The left-shifted 16-bit immediate value is loaded into the accumulator. The shifted 
16-bit constant is sign-extended if SXM = 1; otherwise, the high-order bits of 
the accumulator (past the shift) are set to zero. Note that the MSB of the accu­
mulator can only be set if. SXM = 1 and a negative number is loaded. The shift 
count is optional and defaults to zero. 

2 
Class V (2) 

. Category X 

LALK >F794,8 . (SXM=l) 

ACC 

LALK 

ACC 

Before Instruction 

0 I >1 2 3 4 5 6 1 a I 
c 

>F794,8 (SXM=O) 

Before Instruction 

0 I >1 2 3 4 s 6 1 a 
c 

ACC 

ACC 

After Instruction 

0 I >FF F 7 9 4 0 0 

c 

After Instruction 

0 I >F 7 9 4 0 0 

c 



LAR Load Auxiliary Register LAR 

Assembler Syntax 
Direct Addressing: [<label>] LAR <AR>,<dma> 

Indirect Addressing: [<label>] LAR <AR>,{*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 1 

Example 2 

Direct 

Indirect 

0 s dma s 127 
0 s auxiliary register AR s 7 
0 s next ARP s 7 

(PC} + 1 _.PC 
(dma} ... auxiliary register AR 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 0 Auxiliary 0 Data Memory Address 
Register 

0 0 1 1 0 Auxiliary 1 See Section 4.1 
Register 

The contents of the specified data memory address are loaded into the designated 
auxiliary register. 

The LAR and SAR (store auxiliary register} instructions can be used to load and 
store the auxiliary registers during subroutine calls and interrupts. If an auxiliary 
register is not being used for indirect addressing, LAR and SAR enable the register 
to be used as an additional storage register, especially for swapping values 
between data memory locations without affecting the contents of the accumulator. 

1 
Class II (1} 
Category C 

LAR ARO,DATlO (DP = 4) 

Data 
Memory 

522 

ARO 

LARP AR6 
LAR AR6,*-

Data 
Memory 

617 

AR6 

Before Instruction 

>1 8 

>6 

Before Instruction 

>3 2 

>6 1 7 

Data 
Memory 

522 

ARO 

Data 
Memory 

617 

AR6 

After Instruction 

>1 8 

>1 8 

After Instruction 

>3 2 

>3 2 

4-67 



LAR 

4-68 

L9ad Auxiliary Register LAR 

Note: 

LAR, in· the indirect addressing mode, ignores any AR modifications if the 
AR specified by the instruction is the same as that pointed to by the ARP. 
Therefore, in Example 2, AR6 is not decremented after the LAR instruction. 



LARK 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Load Auxiliarv Register Immediate Short LARK 

[<label>] LARK <AR>,<constant> 

0 :S constant :S 255 
0 :S auxiliary register AR :S 7 

(PC) + 1 -+ PC 
8-bit constant -+ auxiliary register AR 

15 14 13 12 11 

1 1 0 0 0 

10 9 8 

Auxiliary 
Register 

7 6 5 4 3 2 1 0 
8- Bit Constant 

The 8-bit positive constant is loaded into the designated auxiliary register right­
justified and zero-filled (i.e., sign-extension suppressed). 

LARK is useful for loading an initial loop counter value into an auxiliary register 
for use with the BANZ instruction. 

1 
Class IV (1) 
Category X 

LARK AR0,>15 

ARO 

Before Instruction 

>O ARO 

After Instruction 

>1 5 

4-69 



LARP 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-70 

Load Auxiliary Register Pointer 

[<label>] LARP <constant> 

0 :S constant :S 7 

(PC) + 1 -+ PC 
(ARP)-+ ARB 
Constant -+ARP 

Affects ARP and ARB. 

15 14 13 12 11 10 

0 1 0 0 1 

9 8 7 6 

0 1 1 0 

LARP 

5 4 3 2 1 0 

0 0 ARP 

The auxiliary register pointer is loaded with the contents of the three LSBs of the 
instruction (a 3-bit constant identifying the desired auxiliary register). The old 
ARP is copied to the ARB field of status register ST1. ARP can also be modified 
by the LST, LST1, and MAR instructions, as well as any instruction that is used 
in the indirect addressing mode. 

-. ... ·-- - -~-· -·-~ ----- . -- - - ,.-•--. - ___ ., __ _ 

The LARP instruction is a subset of MAR; i.e., the opcode is the same as MAR 
in the indirect addressing mode. The following instruction has the same effect 
as LARP: 

MAR *,<constant> 

1 
Class IV (1) 
Category C 

LARP 1 Any succeeding instructions will use 
auxiliary register ARl for indirect 
addressing. 



LOP Load Data Memory Page Pointer LOP 

Assembler Syntax 
Direct Addressing: [<label>] LOP <dma> 

Indirect Addressing: [<label>] LOP {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatabi I ity 

Example 

0 :s; dma :s; 127 
0 :S next ARP :S 7 

(PC) + 1 -+ PC 
Nine LSBs of (dma) -+ data page pointer register (DP) status bits 

Affects DP. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 0 1 0 0 1 ol 0 I Data Memory Address 

Indirect I 0 1 0 1 0 0 1 ol 1 I See Section 4.1 

The nine LSBs of the contents of the addressed data memory location are loaded 
into the DP (data memory page pointer) register. The DP and 7-bit data memory 
address are concatenated to form 16-bit data memory addresses. The DP may 
also be loaded by the LST and LDPK instructions. 

1 
Class II (1) 
Category C 

DAT127 LDP 
or 
LDP * 

Data 
Memory 
65535 

DP 

(DP = 511) 

If current auxiliary register contains 65535. 

Before Instruction 

>FED C 

I >1 FF 

Data 
Memory 
65535 

DP 

After Instruction 

>FED C 

>DC 

4-71 



LDPK 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

'w'Vords · -····-- - --­
Cycles 
Repeatability 

Example 

4-72 

Load Data Memory Page Pointer Immediate 

[<label>] LDPK <constant> 

0 :s constant :s 511 

(PC) + 1 -+ PC 
Constant-+ data memory page pointer (DP) status bits 

Affects DP. 

15 14 13 12 11 10 9 8 7 6 5 4 3 

1 1 0 0 1 0 ol DP 

LDPK 

2 1 0 

The DP (data memory page pointer) register is loaded with a 9-bit constant. The 
DP and 7-bit data memory address are concatenated to form 16-bit direct data 
memory addresses. DP ~ 8 specifies external data memory. DP = 4 through 7 
specifies on-chip RAM blocks BO or B1. Block B2 is located in the upper 32 
words of page 0. DP may also be loaded by the LST and LOP instructions. 

··-+---·--·-··---···- ---······ .. 

Class IV (1) 
Category X 

LDPK 64 The data page pointer is set to 64. 



LPH Load High P Register LPH 

Assembler Syntax 
Direct Addressing: [<label>] LPH <dma> 

Indirect Addressing: [<label>] LPH {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 :S dma :S 127 
0 :S next ARP :S 7 

(PC) + 1 -+ PC 
(dma) -+ P register(31-16) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 0 1 0 0 1 1 I o I Data Memory Address 

Indirect I 0 1 0 1 0 0 1 1 1 See Section 4.1 

The P register high-order bits are loaded with the contents of data memory. The 
low-order P register bits are unaffected. 

The LPH instruction is particularly useful for restoring the high-order bits of the 
P register after subroutine calls or interrupts. 

1 
Class I (1) 
Category C 

LPH 
or 
LPH 

Data 
Memory 

512 

p 

DATO 

* 

(DP = 4) 

If current auxiliary register contains 512. 

Before Instruction After Instruction 

Data 
>F 7 9 C Memory >F 7 9 C 

512 

1>3oo1ss4 4 p I >F 7 9 c 9 8 4 4 

4-73 



LRLK 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

. \l),.'ords ·-·· -
Cycles 
Repeatability 

Example 

4-74 

Load Auxiliary .Register Long Immediate 

[<label>] LRLK <AR>,<constant> 

0 :S auxiliary register :S 7 
0 :S constant :S 65535 

(PC) + 2 ~PC 
Constant ~ AR 

Not affected by SXM; does not affect SXM. 

15 14 13 12 11 10 9 8 7 6 

1 1 o 1 ol AR I 0 0 
16-Bit Constant 

5 

0 

LRLK 

4 3 2 1 0 

0 0 0 0 

The 16-bit immediate value is loaded into the auxiliary register specified by the 
AR field. The specified constant must be an unsigned integer, and its value is 
not affected by SX.M . 

.. ·····2-··-·· . ·-··· ....... . 
Class V (2) 
Category X 

LRLK AR3,>3080 

AR3 

Before Instruction 

>7 F 8 0 AR3 

After Instruction 

>3 0 8 0 



LST Load Status Register STO LST 

Assembler Syntax 
Direct Addressing: [<label>] LST <dma> 

Indirect Addressing: [<label>] LST {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 1 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 .... PC 
(dma) .... status register STO 

Affects ARP, OV, OVM, and DP. 
Does not affect INTM or ARB. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Direct I 0 1 0 1 0 0 0 ol o I Data Memory Address 

Indirect I 0 1 0 1 0 0 0 ol 1 See Section 4.1 

Status register STO is loaded with the addressed data memory value. Note that 
the INTM (interrupt mode) bit is unaffected by LST. ARB is also unaffected even 
though a new ARP is loaded. If a next ARP value is specified via the indirect 
addressing mode, the specified value is ignored. Instead, ARP is loaded with the 
value contained within the addressed data memory word. 

The LST instruction is used to load status register STO after interrupts and 
subroutine calls. The STO contains the status bits: OV (overflow flag) bit, OVM 
(overflow mode) bit, INTM (interrupt mode) bit, ARP (auxiliary register pointer), 
and DP (data memory page pointer). These bits were stored (by the SST 
instruction) in the data memory word as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

ARP I ov lovMI 1 l1NrMI DP 

1 
Class II (1) 
Category C 

LARP 
LST 

0 
*,1 The data memory word addressed by the 

contents of auxiliary register ARO is 
loaded into status register STO, except 
for the INTM bit. Note that even 
though a next ARP value is specified, 
that value is ignored, and even though a 
new ARP is loaded, the old ARP is not 
loaded into ARB. 

0 

4-75 



LST Load Status Register STO LST 

Example 2 LST >60 (DP = 0) 

Before Instruction After Instruction 

Data Data 
Memory >2 4 0 4 Memory >2 4 0 4 

96 96 

STO >6 E 0 0 STO >2 6 0 4 

ST1 >O 5 8 0 ST1 >O 5 8 0 

Example 3 LARP AR7 (AR7 = >3FF) 
LST *-

Before Instruction After Instruction 

AR7 L_ >3 FF AR7 >3 FE 

Data Data 
Memory >CE 0 6 Memory >CE 0 6 

1023 1023 

STO >F C 0 4 STO >CC 0 6 

ST1 >E 7 8 0 ST1 >E 7 8 0 

Example 4 LARP AR7 (AR7 = >3FF) 
LST *-,1 

Before Instruction After Instruction 

AR7 >3 FF AR7 >3 FE 

Data Data 
Memory >EE 0 4 Memory >EE 0 4 

1023 1023 

STO >EE 0 0 STO >EE 0 4 

ST1 >F 7 8 0 ST1 >F 7 8 0 

4-76 



LST1 Load Status Register ST1 LST1 

Assembler Syntax 
Direct Addressing: [<label>] LST1 <dma> 

Indirect Addressing: [<label>] LST1 {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 1 

Example 2 

0 :s; dma :s; 127 
0 :s; next ARP :s; 7 

(PC) + 1 -+ PC 
(dma) -+ status register ST1 
(ARB) -+ ARP 

Affects ARP, ARB, CNF, TC, SXM, C, HM, FSM, XF, FO, TXM, and PM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 0 1 0 0 0 Data Memory Address 

Indirect l.___0 ____ 0 __ 1 __ 0 __ 0 __ 0 __ 1__.__1___.._ ___ s_e_e_S_e_ct_io_n_4_.1 ___ __, 

Status register ST1 is loaded with the data memory value. The bits of the data 
memory value, which are loaded into ARB, are also loaded into ARP to facilitate 
context switching. Note that if a next ARP value is specified via the indirect 
addressing mode, the specified value is ignored. 

LST1 is used to load status bits after interrupts and subroutine calls. ST1 contains 
the status bits: ARB (auxiliary register pointer buffer), CNF (RAM configuration 
control) bit, TC (test/control) bit, SXM (sign-extension mode) bit, C (carry) bit, 
HM (hold mode) bit, FSM (frame synchronization mode) bit, XF (external flag) 
bit, FO (serial port format) bit, TXM (transmit mode) bit, and the PM (product 
register shift mode) bit. These bits are loaded into the status register from the 
data memory word as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

ARB I CNF I TC I SXM I c I 1 1 I HM IFsMI xF I FO lrxMI PM 

1 
Class II (1) 
Category C 

LARP 
LSTl 

LSTl 

Data 
Memory 

97 

STO 

ST1 

3 
*-

>61 

The data memory word addressed by the 
contents of auxiliary register AR3 
replaces the status bits of status 
register STl, and AR3 is decremented. 

(DP = 0) 

Before Instruction After Instruction 

>O 5 8 0 

>A COO 

>O 5 81 

Data 
Memory 

97 

STO 

ST1 

>O 5 8 0 

>O C 0 O 

>O 5 8 O 

4-77 



LST1 Load Status ·Register ST1 · LST1 

Example 3 LARP AR7 (AR7 = >3FE) 
LSTl *-

Before Instruction After Instruction 

AR7 >3 FE AR7 >3 FD 

Data Data 
Memory >4 F 9 0 Memory >4 F 9 0 

1022 1022 

STO >F C 0 4 STO >5 c 04 

ST1 >E 7 8 0 ST1 >4 F 9 0 

Example 4 LARP AR7 (AR7 = >3FE) 
-----·--· .. ---··----·- ------·- -- -- . .. --1.S'l!-l.- -- -*-,l- ---· - - -··--·····-··-· - --~-- ----

Before Instruction After Instruction 

AR7 >3 FE AR7 >3 FD 

Data Data 
Memory >6190 Memory >6190 

1022 1022 

STO >FE 0 4 STO >7 E 0 4 

ST1 >O 5 9 3 ST1 >6190 

4-78 



LT Load T Register LT 

Assembler Syntax 
Direct Addressing: [<label>] LT <dma> 

Indirect Addressing: [<label>] LT {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+ PC 
(dma) -+ T register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct 0 0 1 1 1 1 0 ol o I Data Memory Address 

Indirect I 0 0 1 1 0 ol See Section 4.1 

The T register is loaded with the contents of the specified data memory location. 
The LT instruction may be used to load the T register in preparation for multipli­
cation. See also the LTA, LTD, LTP, LTS, MPY, MPYA, MPYK, MPYS, and MPYU 
instructions. 

1 
Class I (1) 
Category C 

LT 
or 
LT 

DAT24 

* 

Data 
Memory 

1048 

T 

(DP = 8) 

If current auxiliary register contains 1048. 

Before Instruction 

>6 2 

>3 

Data 
Memory 

1048 

T 

After Instruction 

>6 2 

>6 2 

4-79 



LTA Load T Register and Accumulate -Previous Product LTA 

Assembler Syntax 
Direct Addressing: [<label>] LTA <dma> 

Indirect Addressing: [<label>) LTA {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Words 
Cycles 
Repeatability 

Example 

4-80 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+ PC 
(dma) -+ T register 
(ACC) + (shifted P register) -+ ACC 

Affects C and OV; affected by OVM and PM. 

15 14 13 12 11 10 9 8 7 

Direct I 0 0 1 1 1 1 0 1 I 0 

Indirect I 0 0 1 1 0 I 1 

6 5 4 3 2 0 

I Data Memory Address 

I See Section 4.1 

. ---·-~----·---.. ---·---·--·---··---·-----·-----·-·-··· ·····----- ·---· .. ••the-'r--regfste_r __ is iOadecfwith.the-contents of the specified data memory address. 
The contents of the product register, shifted as defined by the PM status bits, are 
added to the accumulator, with the result left in the accumulator. 

The function of the LTA instruction is included in the LTD instruction. 

1 
Class I (1) 
Category B 

LTA 
or 
LTA 

DAT36 

* 

Data 
Memory 

804 

T 

p 

ACC 0 
c 

I 

(DP = 6, PM = 0) 

If current auxiliary register contains 804. 

Before Instruction After Instruction 

Data 
>6 2 Memory >6 2 

804 

>3 T >6 2 

>F p >F 

>5 ACC @] I >1 4 

c 



LTD Load T Register, Accumulate Previous Product, and Move Data LTD 

Assembler Syntax 
Direct Addressing: [<label>] 

Indirect Addressing: [<label>] 
LTD <dma> 
LTD {*l*+l*-l*O+l*O-l*BRO+J*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Direct 

0 :S dma :S 1 27 
0 :S next ARP :S 7 

(PC) + 1 -+ PC 
(dma) -+ T register 
{dma) -+ dma + 1 
(ACC) + (shifted P register) -+ ACC 

Affects C and OV; affected by OVM and PM. 

15 14 13 12 11 10 9 8 7 6 
0 0 1 1 I o I 

5 4 3 2 1 0 

Data Memory Address 

Indirect l 0 0 1 1 1 See Section 4.1 

The T register is loaded with the contents of the specified data memory address. 
The contents of the P register, shifted as defined by the PM status bits, are added 
to the accumulator, and the result is placed in the accumulator. The contents of 
the specified data memory address are also copied to the next higher data memory 
address. This instruction is valid for blocks B1 and B2, and is also valid for block 
BO if block BO is configured as data memory. The data move function is contin­
uous across the boundary of blocks BO and B1, but cannot be used with external 
data memory or memory-mapped registers. This function is described under the 
instruction DMOV. Note that if used with external data memory, the function of 
LTD is identical to that of LT A. 

1 
Class I (1) 
Category B 

LTD 
or 
LTD 

DAT126 

* 

Data 
Memory 

1022 

Data 
Memory 

1023 

T 

p 

ACC 0 
c 

I 

(DP= 7, PM= 0) 

If current auxiliary register contains 1022. 

Before Instruction After Instruction 

Data 
>6 2 Memory >6 2 

1022 

Data 
>O Memory >6 2 

1023 

>3 T >6 2 

>F p >F 

>5 ACC @] I >1 4 

c 

4-81 



LTP Load T Register and Store P Register in Accumulator LTP 

Assembler Syntax 
Direct Addressing: [<label>] LTP <dma> 

Indirect Addressing: [<label>] LTP {*l*+l*-l*O+l*O-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-82 

0 s dma s 127 
0 :S next ARP s 7 

(PC) + 1 -+PC 
(dma) -+ T register 
(shifted P register) -+ ACC 

Affected by PM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 0 1 1 1 1 1 ol o I Data Memory Address 

Indirect I 0 0 1 1 1 1 1 ol 1 See Section 4.1 

The T register is loaded with the contents of the addressed data memory location, 
and the product register is stored in the accumulator. The shift at the output of 
the product register is controlled by the PM status bits. 

1 
Class I (1) 
Category C 

LTP 
or 
LTP 

DAT36 

* 

Data 
Memory 

804 

T 

p 

ACC ~ 
c 

I 

(DP = 6, PM = 0) 

If current auxiliary register contains 804. 

Before Instruction After Instruction 

Data 
>6 2 Memory >6 2 

804 

>3 T >6 2 

>F p >F 

>5 ACC ~ I >F 

c 



LTS Load T Register, Subtract Previous Product LTS 

Assembler Syntax 
DirectAddressing: [<label>] LTS <dma> 

Indirect Addressing: [<label>] LTS {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatabi I ity 

Example 

Direct 

0 s; dma s; 127 
0 s; next ARP s; 7 

(PC) + 1 -+ PC 
(dma) -+ T register 
(ACC) - (shifted P register) -+ ACC 

Affects C and OV; affected by PM and OVM. 

15 14 13 12 11 10 9 8 7 

0 0 1 0 1 I 0 

6 5 4 3 2 1 0 

I Data Memory Address 

Indirect I 0 0 0 1 1 I See Section 4.1 

The T register is loaded with the contents of the addressed data memory location. 
The contents of the product register, shifted as defined by the contents of the PM 
status bits, are subtracted from the accumulator. The result is left in the accu­
mulator. 

1 
Class I (1) 
Category B 

LTS 
or 
LTS 

Data 
Memory 

804 

T 

p 

DAT36 

* 

(DP = 6, PM = 0) 

If current auxiliary register contains 804. 

Before Instruction 

>6 2 

>3 

>F 

Data 
Memory 

804 

T 

p 

After Instruction 

>6 2 

>6 2 

>F 

ACC ~I .......... ___ >5__, ACC @] l>FFFFFFF6 

c c 

4-83 



MAC Multiply and Accumulate MAC 

Assembler Syntax 
Direct Addressing: [<label>] MAC <pma>,<dma> 

Indirect Addressing: (<label>] MAC <pma>,{*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

4-84 

0 s pma s 65535 
0 s dma s 127 
0 s next ARP s 7 

(PC) + 2-+ PC 
(PFC)-+ MCS 
(pma) -+PFC 

While (repeat counter) ¢ 0: 
(ACC) + (shifted P register) -+ ACC, 
(dma) -+ T register, 
(dma) x (pma, addressed by PFC) -+ P register, 
Modify AR(ARP) and ARP as specified, 
(PFC) + 1 -+ PFC, 

n. (repeat counter) -1-repeatcou11te1. 

(ACC) + (shifted P register) -+ ACC 
(dma) -+ T register 
(dma) x (pma, addressed by PFC) -+ P register 
Modify AR(ARP) and ARP as specified. 
(MCS)-+ PFC 

Affects C and OV; affected by OVM and PM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct 0 1 0 1 1 0 1 I o I Data Memory Address 

Indirect 

Program Memory Address 

0 1 0 1 1 See Section 4.1 

Program Memory Address 

The MAC instruction multiplies a data memory value. (specified by dma) by a 
program memory value (specified by pma). It also adds the previous product, 
shifted as defined by the PM status bits, to the accumulator. 

The data and program memory locations may be any nonreserved, on-chip or 
off-chip memory locations. If the program memory is block BO of on-chip RAM, 
then the CNF bit must be set to one. Note that the upper eight bits of the program 
memory address should be set to >FF to address BO program RAM, and the upper 
six bits of dma should be set to 0 to address a location below 1024. When used 
in the direct addressing mode, the dma cannot be modified during repetition of 
the instruction. · 

When the MAC instruction is repeated, the program memory address contained 
in the PFC is incremented by one during its operation. This enables accessing a 
series of operands in memory. MAC is useful for long sum-of-products oper­
ations, since MAC becomes a single-cycle instruction once the RPT pipeline is 
started. 

2 
Class VI (4) 
Category A 



MAC 

Example 

Multiply and Accumulate MAC 

SPM 
CNFP 
LARP 
LRLK 
RPTK 
MAC 

3 

1 
1,768 
255 

>FFOO,*+ 

Select a "shift-right-by-6" mode on PR output. 
Configure block BO as program memory (>FFXX). 
Use ARl to address block Bl. 
Point to lowest location in RAM block Bl. 
Compute 256 sum-of-product operations. 
Multiply/accumulate and increment ARl. 

The following example shows register and memory contents before and after the 
third step repeat loop: 

AR1 

RPT 

PFC 

Data 
Memory 

770 

Program 
Memory 
65282 

p 

ACC 

Before Instruction 

>3 0 2 

>FD 

>FF 0 2 

>2 3 

>FAAA 

>4 5 8 9 7 2 

0 I >7 2 3 E c 41 

c 

AR1 

RPT 

PFC 

Data 
Memory 

770 

Program 
Memory 
65282 

p 

ACC 

After Instruction 

>3 0 3 

>F C 

>FF 0 3 

>2 3 

>FAAA 

I >F FF F 4 5 3 E 

@J I >7 2 5 o 2 6 6 

c 

4-85 



MACO Multiply and Accumulate with Data Move MACO 

Assembler Syntax 
Direct Addressing: [<label>] MACO <pma>,<dma> 

Indirect Addressing: [<label>] MACO <pma>,{*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

4-86 

0 s pma s 65535 
0 s dma s 127 
0 s next ARP s 7 

(PC) + 2 ... PC 
(PFC) ... MCS 
(pma) ... PFC 

While (repeat counter) ¢ 0: 
(ACC) + (shifted P register) ... ACC. 
(dma) ... T register, 
(dma) x (pma, addressed by PFC) ... P register, 
(dma) ... dma + 1, 
Modify AR(ARP) and ARP as specified, 

-\PFC}-f'I--. PFc.------ - --- -- .. - - ----
(repeat counter) - 1 ... repeat counter. 

(ACC) + (shifted P register) ... ACC 
(dma) ... T register 
(dma) x (pma, addressed by PFC) ... P register 
(dma) ... dma + 1 
Modify AR(ARP) and ARP as specified. 
(MCS) ... PFC 

Affects C and OV; affected by OVM and PM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct 0 1 0 1 1 1 0 0 J 0 J Data Memory Address 

Indirect 

Program Memory Address 

0 1 0 1 1 o o I 1 I See Section 4.1 

Program Memory Address 

The MACO instruction multiplies a data memory value (specified by dma) by a 
program memory value (specified by pma). It also adds the previous product, 
shifted as defined by the PM status bits, to the accumulator. 

The data and program memory locations may be any nonreserved, on-chip or 
off-chip memory locations. If MACO addresses one of the memory-mapped 
registers or external memory as a data memory location, the effect of the instruc­
tion will be that of a MAC instruction (see the DMOV instruction description). 

If the program memory is block BO of on-chip RAM, then the CNF must be set 
to one. Note that the upper eight bits of the program memory address should 
be set to >FF to address BO program RAM, and the upper six bits of the effective 
16-bit dma should be set to 0 to address a location below 1024. When used in 
the direct addressing mode, the dma cannot be modified during repetition of the 
instruction. 

MACO functions in the same manner as MAC, with the addition of data move for 
block BO, B1, or B2. Otherwise, the effects are the same as for MAC. This feature 
makes MACO useful for applications such as convolution and transversal filtering. 



MACO 

Words 
Cycles 
Repeatability 

Example 

Multiply and Accumulate with Data Move MACO 

When the MACO instruction is repeated, the program memory address contained 
in the PFC is incremented by one during its operation. This enables accessing a 
series of operands in memory. When used with RPT or RPTK, MACO becomes 
a single-cycle instruction once the RPT pipeline is started. 

2 
Class VI (4) 
Category A 

SPM 
SOVM 
CNFP 
LARP 
LRLK 
RPTK 
MACO 

0 

3 
3,1023 
255 
>FFOO,*-

Select no shift mode on PR output. 
Set overflow mode. 
Configure block BO as program memory (>FFXX). 
Use AR3 to address block Bl. 
Point to highest location in RAM block Bl. 
Compute 1 sample of a length-256 convolution. 
Multiply/accumulate, shift data word in block 
Bl, and decrement AR3. 

The following example shows register and memory contents before and after the 
third step repeat loop: 

AR1 

RPT 

PFC 

Data 
Memory 

1021 

Data 
Memory 

1022 

Program 
Memory 
65282 

p 

ACC 

Note: 

Before Instruction 

>3 FD 

>FD 

>FF 0 2 

>2 3 

>7 F C 

>FAAA 

>4 5 8 9 7 2 

0 I >7 2 3 E c 41 

c 

AR1 

RPT 

PFC 

Data 
Memory 

1021 

Data 
Memory 

1022 

Program 
Memory 
65282 

p 

ACC 

After Instruction 

>3 F C 

>F C 

>FF 0 3 

>2 3 

>2 3 

>FAAA 

I >FF FF 4 5 3 E 

@] I >7 6 9 7 5 B 3 

c 

The data move function for MACO can only occur within on-chip data RAM 
blocks BO, B1, and B2. 

4-87 



MAR Modify Auxiliary Register MAR 

Assembler: Syntax 
Direct Addressing: [<label>] 

Indirect Addressing: [<label>] 
MAR <dma> 
MAR {*I*+ l*-1*0+ 1*0-l*BRO+ l*BRO-}[, <next ARP>] 

Oper:ands 

Execution 

Encoding 

Descr:iption 

Words 
Cycles 
Repeatability 

Example 1 

Example 2 

Example 3 

4-88 

Direct 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+ PC 
Modifies ARP, AR(ARP) as specified by the indirect 
addressing field (acts as a NOP in direct addressing). 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

0 0 1 0 0 Data Memory Address 

0 

Indirect ._I _0 ____ 0 __ 1 __ 0 ____ 0 __ 1 ......... _ __,_ ____ s_e_e_S_e_c_t_io_n_4_.1 ___ _, 

The MAR instruction acts as a no-operation instruction in the direct addressing 
. moda. Jn.the.indirect Mid.res.sing mo.de,.tha a11xiliary registers an.dthe. ASP.are. 
modified; however, no use is made of the memory being referenced. MAR is used 
only to modify the auxiliary registers or the ARP. The old ARP is copied to the 
ARB field of status register ST1. Note that any operation that MAR performs can 
also be performed with any instruction that supports indirect addressing. ARP 
may also be loaded by an LST instruction. 

In the direct addressing mode, MAR is a NOP. Also, the instruction LARP is a 
subset of MAR (i.e., MAR *,4 performs the same function as LARP 4). 

1 
Class IV (1) 
Category C 

MAR *,l 

ARP 

MAR *-

AR1 

MAR *+,5 

AR1 

ARP 

Load the ARP with 1. 

Before Instruction After Instruction 

o I ARP 

Decrement current auxiliary register (in this 
case, ARl) 

Before Instruction After Instruction 

>3 5 I AR1 >3 4 

Increment current auxiliary register (ARl) and 
load ARP with 5. 

Before Instruction After Instruction 

>3 4 AR1 >3 5 

ARP 5 



MPV Multiply MPV 

Assembler Syntax 
Direct Addressing: [<label>] MPY <dma> 

Indirect Addressing: [<label>] MPY {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,:<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+PC 
(T register) x (dma) -+ P register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 0 1 1 1 0 0 ol o I Data Memory Address 

Indirect I 0 0 1 1 1 0 0 ol 1 See Section 4.1 

The contents of the T register are multiplied by the contents of the addressed data 
memory location. The result is placed in the P register. 

1 
Class I (1) 
Category C 

DAT13 (DP = 8) MPY 
or 
MPY * If current auxiliary register contains 1037. 

Data 
Memory 

1037 

T 

p 

Before Instruction 

>7 

>6 

>3 6 

Data 
Memory 

1037 

T 

p 

After Instruction 

>7 

>6 

>2A 

4-89 



MPYA Multiply and Accumulate Previous Product 

Assembler Syntax 
Direct Addressing: [<label>] MPYA <dma> 

Indirect Addressing: [<label>] MPYA {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-90 

0 s dma s 127 
· 0 s next ARP s 7 

(PC) + 1 -+ PC 
(ACC) + (shifted P register) -+ ACC 
(T register) x (dma) -+ P register 

Affects C and OV; affected by OVM and PM. 

15 14 13 12 11 10 9 8 7 

·Direct I 0 0 1 1 1 0 1 ol o I 
Indirect I 0 0 1 1 0 . 1 ol 1 I 

6 5 4 3 2 1 0 

Data Memory Address 

See Section 4.1 

The contents of the T register are multiplied by the contents of the addressed data 
memory location. The result is placed in the P register. The previous product, 
shifted as defined by the PM status bits, is also added to the accumulator. 

1 
Class I (1) 
Category A 

MPYA DAT13 (DP = 6, PM = 0) 
or 
MPYA * If current auxiliary register contains 781. 

Before Instruction After Instruction 

Data Data 
Memory >7 Memory >7 

781 781 

T >6 T >6 

p >3 6 p >2A 

ACC ~ I >5 4 ACC @] I >SA 

c c 



MPYK 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Multiply Immediate 

[<label>] MPYK <constant> 

-4096 s constant s 4095 
-212 s constant s 212 - 1 

(PC) + 1 .... PC 
(T register) x constant .... P register 

Not affected by SXM. 

. MPYK 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 I 13-Bit Constant 

The contents of the T register are multiplied by the signed, 13-bit constant. The 
result is loaded into the P register. The immediate field is right-justified and 
sign-extended before multiplication, regardless of SXM. 

1 
Class IV (1) 
Category X 

MPYK -9 

T 

p 

Before Instruction 

>7 

>2A 

T 

p 

After Instruction 

>7 

I >FF FF FF c 1 

4-91 



MPYS Multiply and Subtract Previous Product MPYS 

Assembler Syntax 
Direct Addressing: [<label>] MPYS <dma> 

Indirect Addressing: [<label>] MPYS {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-92 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+ PC 
(ACC) - (shifted P register) -+ ACC 
(T register) x (dma) -+ P register 

Affects C and OV; affected by OVM and PM. 

15 14 13 12 11 10 9 8 7 

Direct 0 0 1 1 1 0 1 1 I 0 

Indirect I 0 0 1 1 1 0 1 1 1 

6 5 4 3 2 1 0 

I Data Memory Address 

I See Section 4.1 

The contents of the T register are multiplied by the contents of the addressed data 
memory location. The result is placed in the P register. The previous product, 
shifted as defined by the PM status bits, is also subtracted from the accumulator. 

1 
Class I (1) 
Category A 

DAT13 (DP = 6, PM = 0) MPYS 
or 
MPYS * If current auxiliary register contains 781. 

Before Instruction After Instruction 

Data Data 
Memory >7 Memory >7 

781 781 

T >6 T >6 

p >3 6 p >2A 

ACC 0 I >5 4 ACC [i] I >1 E 

c c 



MPYU Multiply Unsigned MPVU 

Assembler Syntax 
Direct Addressing: [<label>] 

Indirect Addressing: [<label>] 
MPYU <dma> 
MPYU {*l*+l*-1*0+1*0-J*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma s 1 27 
0 s next ARP s 7 

(PC) + 1 -+PC 
Unsigned (T register) x unsigned {dma) -+ P register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct 1 0 0 1 1 I o I Data Memory Address 

Indirect ._I _____ 0 __ 0 __ 1 ______ 1__.._1 __._ ____ s_e_e_S_ec_t_io_n_4_.1 ___ _.. 

The unsigned contents of the T register are multiplied by the unsigned contents 
of the addressed data memory location. The result is placed in the P register. Note 
that the multiplier acts as a 17 x 17-bit signed multiplier for this instruction, with 
the MSB of both operands forced to zero. 

The shifter at the output of the P register will always invoke sign-extension on 
the P register when PM = 3 (right-shift by 6 mode). Therefore, this shift mode 
should not be used if unsigned products are desired. 

The MPYU instruction is particularly useful for computing multiple-precision 
products, such as when multiplying two 32-bit numbers to yield a 64-bit product. 

1 
Class I (1) 
Category C 

DAT16 (DP = 4) MPYU 
or 
MPYU * If current auxiliary register contains 528. 

Data 
Memory 

528 

T 

p 

Before Instruction 

>FF FF 

>FF FF 

>1 

Data 
Memory 

528 

T 

p 

After Instruction 

>FF FF 

>FF FF 

I >F FF E 0 0 0 1 

4-93 



NEG 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-94 

Negate Accumulator NEG 

[<label>] NEG 

None 

(PC) + 1 ..... PC 
(ACC) x -1 ..... ACC 

Affects C and OV; affected by OVM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 

The contents of the accumulator are replaced with its arithmetic complement 
(two's complement). The OV bit is set when taking the NEG of >80000000. If 
OVM = 1, the accumulator contents are replaced with >7FFFFFFF. If OVM = 
0, the result is >80000000. The carry bit C is reset to zero by this instruction for 
all nonzero values of the accumulator, and set to one if the accumulator equals 
zero. 

1 
Class IV (1) 
Category C 

NEG 

ACC 

Before Instruction 

0 I >FF FF F 2 2 8 

c 

After Instruction 

ACC @] I >DD 8 

c 



NOP 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

No Operation NOP 

[<label>] NOP 

None 

(PC} + 1 -+ PC 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 ol 
No operation is performed. The NOP instruction affects only the PC. NOP func­
tions in the same manner as the MAR instruction in the direct addressing mode; 
NOP has the same opcode as MAR in the direct addressing mode with dma = 
0. 

The NOP instruction is useful as a pad or temporary instruction during program 
development. 

1 
Class IV (1} 
Category B 

NOP 

4-95 



NORM 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 1 

4-96 

Normalize Contents of Accumulator 

[<label>] NORM {*l*+l*-1*0+1*0-l*BRO+l*BRO-} 

None 

(PC) + 1 ..... PC 

If (ACC) = 0: 
Then TC ..... 1; 
Else, if (ACC(31 )).XOR.(ACC(30)) = 0: 

Then TC ..... 0, 
(ACC) x 2 ..... ACC, 
Modify AR(ARP) as specified; 

Else TC ..... 1. 

Affects TC; affected by TC. 

15 14 13 12 11 10 9 8 7 6 5 4 

t 1 4 --- --e-- -e 1 + 1- --e-- 1--t ---- --- M~~fy t 

NORM 

3 2 1 0 

i}----e-- -·t -{tt 
The NORM instruction is provided for normalizing a signed number that is 
contained in the accumulator. Normalizing a fixed-point number separates it into 
a mantissa and an exponent. To do this, the magnitude of a sign-extended number 
must be found. ACC bit 31 is exclusive-ORed with ACC bit 30 to determine if 
bit 30 is part of the magnitude or part of the sign extension. If they are the same, 
they are both sign bits, and the accumulator is left-shifted to eliminate the extra 
sign bit. 

The AR(ARP) is modified as specified to generate the magnitude of the exponent. 
It is assumed that AR(ARP) is initialized before the normalization begins. The 
default modification of the AR(ARP) is an increment. making it compatible with 
the TMS32020. 

Multiple executions of the NORM instruction may be required to completely 
normalize a 32-bit number in the accumulator. Although using NORM with RPT 
or RPTK does not cause execution of NORM to "fall out" of the repeat loop 
automatici;!lly when the normalization is complete, no operation is performed for 
the remainder of the repeat loop. Note that NORM functions on both positive 
and negative two's-complement numbers. 

1 
Class IV (1) 
Category A 

31 - Bit Normalization: 

LOOP 

LARP 
LARK 
NORM 
BBZ 

1 
1,0 
*+ 
LOOP 

Use ARl for exponent storage. 
Clear out exponent counter. 
One bit is normalized. 
If TC = 0, magnitude is not found yet. 



NORM 

Example 2 

Normalize Contents of Accumulator NORM 

15- Bit Normalization: 

LARP 
LARK 
RPTK 

NORM 

1 
1,15 
14 

*-

Use ARl to store the exponent. 
Initialize exponent counter. 
15-bit normalization is specified 
(yielding a 4-bit exponent and a 16-bit 
mantissa) . 
NORM automatically stops shifting 
when the first significant magnitude 
bit is found, performing NOPs for the 
remainder of the repeat loop. 

The first method is used to normalize a 32-bit number and yields a 5-bit exponent 
magnitude. The second method is used to normalize a 16-bit number and yields 
a 4-bit exponent magnitude. If it is known that the number requires only a small 
amount of normalization, the first method may be preferable to the second. This 
results because Example 1 runs only until normalization is complete. Example 2 
always executes all 15 cycles of the repeat loop. Specifically, Example 1 is more 
efficient if the number requires five or less shifts. If the number requires six or 
more shifts, Example 2 is more efficient. 

Note: 

Source code compatibility with the TMS32020 allows the NORM instruction 
to be used without a specified operand. In that case, any comments on the 
same line as the instruction will be interpreted as the operand. If the first 
character is an asterisk (*), then the instruction will be assembled as 
NORM * with no auxiliary register modification taking place upon execution. 
The user is therefore advised to replace the NORM instructions with 
NORM *+when the default modification of increment is desired. 

The resulting value in the auxiliary register will not be the real exponent of the 
number for all modification options. However, it can always be used to obtain 
the exponent. 

4-97 



OR OR with Accumulator OR 

Assembler Syntax 
Direct Addressing: [<label>] OR <dma> 

Indirect Addressing: [<label>] OR {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-98 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+PC 
(ACC(15-0)) .OR.dma -+ ACC(15-0) 
(ACC(31 -16)) -+ ACC(31 -16) 

Not affected by SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct I 0 1 0 0 1 1 0 I 0 I Data Memory Address 

0 0 0 1 1 0 1 See Section 4.1 

The low-order bits of the accumulator are ORed with the contents of the 
addressed data memory location. The high-order bits of the accumulator are ORed 
with all zeroes. Therefore, the upper half of the accumulator is unaffected by this 
instruction. 

1 
Class I (1) 
Category B 

DATS (DP = 8) OR 
or 
OR * Where current auxiliary register contains 1032. 

Before Instruction 

Data 
Memory >F 0 0 0 

1032 

ACC 0 I >O 0 1 0 0 0 0 2 

c 

After Instruction 

Data 
Memory >F 0 0 0 

1032 

ACC 0 I >O 0 1 0 F 0 0 2 

c 



ORK 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

OR Immediate with Accumulator with Shift ORK 

[<label>] ORK <constant>[,<shift>] 

16-bit constant 
0 :s; shift :S 15 (defaults to 0) 

(PC) + 2-+ PC 
(ACC(30-0)).0R.[constant x 2shift] -+ ACC(30-0) 
(ACC(31 ) ) -+ ACC(31) 

Not affected by SXM. 

15 14 13 12 11 10 9 8 7 6 

1 1 0 1 I Shift I o 0 

16-Bit Constant 

5 4 3 2 1 0 

0 0 0 1 0 1 

The left-shifted 16-bit immediate constant is ORed with the accumulator. The 
result is left in the accumulator. Low-order bits below and high-order bits above 
the shifted value are treated as zeroes. The corresponding bits of the accumulator 
are unaffected. Note that the most:significant bit of the accumulator is not 
affected, regardless of the shift code value. 

2 
Class V (2) 
Category X 

ORK >FF'FF,8 

ACC 

Before Instruction 

~ I >1 2 3 4 5 6 1 a 
c 

ACC 

After Instruction 

~ I >1 2 F F F F 7 8 

c 

4-99 



OUT Output Pata to Port OUT 

Assembler Syntax 
Direct Addressing: [~label>] OUT <dma>,<PA> 

Indirect Addressing: [<label>] OUT {*l*+l*-1*0+1*0-l*BRO+l*BRO-},<PA>[,<next ARP>] 

Operands 

Execution 

Encoding 

O ~ dma ~ 127 
0 ~ next ARP ~ 7 
0 $ port address PA ~ 15 

(PC) + 1 .... PC 
Port address PA .... address bus A3-AO 
0 .... address bus A15-A4 
(dma) .... data bus D15-DO 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct ... 1 _1 __ 1 ___ -1 __ 0_1 __ A_d_Pd_~_~_ss ___ l _o_l ___ D_a_ta_M_e_m_o_ry_A_d_d_re_s_s __ I 

-----·· _ -rnJ.11.QJr~~--L ____ L .. ___ L ___ Q_f-~s--f-tf-- -------~~-~~-~!:L!J ____ ··· -+ 
Description 

Words 
Cycles 
Repeatability 

Example 

4-100 

\ 

The OUT instruction writes a 16-bit value from a data memory location to the 
specified 1/0 port. The IS line goes low to indicate an 1/0 access, and the 
STRB, R/W, and READY timings are the same as for an external data memory write. 
OUT is a single-cycle instruction when in the Pl/DI memory configuration (see 
Appendix E). 

1 
Class X (1) 
Category A 

OUT >78,7 

OUT *,>F 

(DP = 4) Output data word stored in data 
memory·location >78 to peripheral on 
port address 7. 
Output data word referenced by current 
auxiliary register to peripheral on port 
address >F. 



PAC 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Load Accumulator with P Register PAC 

[<label>] PAC 

None 

(PC) + 1 -+PC 
(shifted P register) -+ ACC 

Affected by PM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 1 0 0 0 0 1 0 1 o ol 
The contents of the P register are loaded into the accumulator, shifted as specified 
by the PM status bits. 

1 
Class IV (1) 
Category C 

PAC 

p 

(PM = 0) 

Before Instruction 

>144 

ACC ~ ...... 1 ___ >_2_3__. 

c 

p 

ACC 

After Instruction 

>144 

~ ..... I ___ >_1_4_4__. 

c 

4-101 



POP 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description · 

Pop Top of Stack to Low Accumulator POP 

[<label>] POP 

None 

(PC) + 1 -+ PC 
(TOS) -+ ACC(15-0) 
0-+ ACC(31-16) 
Pop stack one level. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 

The contents of the top of the stack (TOS) are copied to the low accumulator, 
and the stack popped after the contents are copied. The upper half of the accu­
mulator is set to all zeros. The hardware stack is a last-in, first-out stack with eight 
locations. Any time a pop occurs, every stack value is copied to the next higher 
stack location, and the top value is removed from the stack. After a pop, the 
bottom two stack words will have the same value. Because each stack value is 

- --- -- --------- copied, if more than seven pops (due to POP, POPD, or AET instructions) occur -­
before any pushes occur, all levels of the stack contain the same value. No 
provision exists to check stack underflow. 

Words 
Cycles 
Repeatability 

Example 

4-102 

1 
Class IV (1) 
Category C 

POP 

Before Instruction 

ACC ~ I >a2 
c 

STACK >4 5 
>1 6 

>1 
>3 3 
>4 2 
>5 6 
>3 7 
>61 

ACC 

STACK 

After Instruction 

~ .__I ___ >4__...5__. 

c 

>1 6 
>7 

>3 3 
>4 2 
>5 6 
>3 7 
>61 
>6 1 



POPD Pop Top of Stack to Data Memory; POPD 

Assembler Syntax 
Direct Addressing: [<label>] POPD <dma> 

Indirect Addressing: [<label>] POPD {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 ~ dma ~ 127 
0 ~ next ARP ~ 7 

{PC) + 1 -+ PC 
{TOS)-+ dma 
POP stack one level. 

15 14 13 12 11 10 9 

Direct I 0 1 1 1 1 0 1 

8 7 6 5 4 3 2 1 0 

0 I 0 I Data Memory Address j 

Indirect I 0 1 1 1 1 o 1 o I 1 See Section 4.1 

The value from the top of the stack is transferred into the data memory location 
specified by the instruction. The values are also popped in the lower seven 
locations of the stack. The hardware stack is described in the previous instruction 
POP. The lowest stack location remains unaffected. No provision exists to check 
stack underflow. 

1 
Class Ill {1) 
Category A 

POPD 
or 
POPD 

Data 
Memory 

1124 

Stack 

DATlOO 

* 

(DP = 8) 

If current auxiliary register contains 1124. 

Before Instruction 

>5 5 

>9 2 
>12 

>8 
>44 
>8 1 
>7 5 
>3 2 
>AA 

Data 
Memory 

1124 

Stack 

After Instruction 

>9 2 

>12 
>8 

>44 
>81 
>15 
>3 2 
>AA 
>AA 

4-103 



PSHD Push Data Memory Value onto Stack PSHD 

Assembler Syntax 
Direct Addressing: [<label>] PSHD <dma> 

Indirect Addressing: [<label>] PSHD {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Ex~cution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-104 

0 s dma s 127 
0 s next ARP s 7 

(dma)-+ TOS 
(PC) + 1 -+ PC 
Push all stack locations down one level. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 . 1 0 1 0 1 0 ol o I Data Memory Address 

Indirect I 0 1 0 1 0 1 0 ol 1 See Section 4.1 

The value from the data memory location specified by the instruction is transferred 
·- · to the top of the staek,, The val1:1es are also p1:1shed dovtn in the lower-seven-· · · 

locations of the stack, as described in the nextinstruction PUSH. The lowest stack 
location is lost. 

1 
Class I (1) 
Category A 

PSHD 
or 
PSHD 

Data 
Memory 

511 

Stack 

DAT127 

* 

(DP = 3) 

If current auxiliary register contains 511. 

Before Instruction 

>6 5 

>2 
>3 3 
>7 8 
>9 9 
>4 2 
>5 0 

>O 
>O 

Data 
Memory 

511 

Stack 

After Instruction 

l.__ ___ >_6_5 _, 

>6 5 
>2 

>3 3 
>18 
>9 9 
>4 2 
>5 0 

>O 



PUSH 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Push Low Accumulator onto Stack PUSH 

[<label>] PUSH 

None 

(PC} + 1 -+ PC 
Push all stack locations down one level. 
(ACC(15-0}} -+ TOS 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 1 0 0 0 0 1 1 1 o ol 
The contents of the lower half of the accumulator are copied onto the top of the 
hardware stack. The stack is pushed down before the accumulator value is copied. 
The hardware stack is a last-in, first-out stack with eight locations. If more than 
eight pushes (due to CALA, CALL, PSHD, PUSH, or TRAP instructions} occur 
before a pop, the first data values written will be lost with each succeeding push. 

1 
Class IV (1} 
Category C 

PUSH 

Before Instruction 

ACC 0 I > 7 
c 

STACK >2 
>5 
>3 
>O 

>1 2 
>8 6 
>5 4 
>3 F 

ACC 

STACK 

After Instruction 

0 I >1 
c 

>7 
>2 
>5 
>3 
>O 

>1 2 
>8 6 
>54 

4-105 



RC 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-106 

Reset Carry Bit RC 

[<label>] RC 

None 

(PC) + 1 ... PC 
0 ... carry bit C in status register ST1 

Affects C. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 oj 
The carry bit C in status register ST1 is reset to logic zero. The carry bit may also 
be loaded directly by the LST1 and SC instructions. 

1 
Class IV (1) 
Category C 

RC The carry bit C is reset to logic zero. 



RET 

Assembl.er Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Return from Subroutine RET 

[<label>] RET 

None 

(TOS) -+PC 
Pop stack one level. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 ol 
The contents of the top stack register are copied into the program counter. The 
stack is t110n popped one level. RET is used with CALA and CALL for subroutines. 

1 
Class VIII (3) 
Category X 

RET 

PC 

STACK 

Before Instruction 

>9 6 

>3 7 
>4 5 
>7 5 
>2 1 
>3 F 
>4 5 
>6 E 
>6 E 

PC 

STACK 

After Instruction 

>3 7 

>4 5 
>7 5 
>21 
>3 F 
>4 5 
>6 E 
>6 E 
>6 E 

4-107 



RFSM 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-108 

Reset Serial Port Frame Sync Mode RFSM 

[<label>] RFSM 

None 

(PC) + 1 -+ PC 
0 - FSM status bit in status register ST1 

Affects FSM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 ,2 1 0 
11001 1 1 0 0 0 1 1 0 1 1 ol 

The RFSM status bit resets the FSM status bit to logic zero. In this mode, external 
FSR pulses are not required to initiate the receive operation for each word 
received, but rather only one FSR pulse is required to initiate a "continuous mode" 
of operation. The same holds true for FSX when TXM = 0. After the first FSR/FSX 
pulse, these inputs are then in a "don't care" state. If TXM = 1, FSX is pulsed the 
first time DXR is loaded, but remains low thereafter. See Section 3.7 for further 

- details on the operation onne-senaTport. FSM ma~niliooiToaded by thift:ST'r- · 
and SFSM instructions. 

1 
Class IV (1) 
Category C 

RFSM FSM is reset, putting the serial port 
in a mode of operation where frame 
synchronization pulses are not required •. 
This allows a continuous bit stream to 
be transmitted or received without FSX/FSR 
pulses every 8/16 bits. 



RHM 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Reset Hold Mode RHM 

[<label>] RHM 

None 

{PC} + 1 -+ PC 
0 -+ HM status bit in status register ST1 

Affects HM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 1 0 0 0 1 1 1 0 o ol 
The RHM instruction resets the HM status bit to logic zero. In this mode, the 
TMS320C25 is not halted during the assertion of HOLD when executing from 
on-chip program memory {either RAM or ROM}, but instead places its external 
buses in the high-impedance state and continues execution until an external 
access must be made. External access can mean {in addition to the normal 
connotation} the following conditions: 

MP/'M"C CNF PC 

0 0 PC 4096 

0 1 4096 s PC s 65279 

1 0 Any PC value {normal TMS32020-type 
hold mode} 

1 1 PCs 65279 

HM can also be loaded by the LST1 and SHM instructions. 

1 
Class IV (1} 
Category C 

RHM HM is reset, implementing the new 
TMS320C25 hold mode for on-chip program 
execution. 

4-109 



ROL 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-110 

Rotattf A@n'rutator Left 

[<label>] AOL 

None 

(PC) + 1 ... PC 
(ACC(31)) ... C 
(ACC(30-0)) ... ACC(31-1) 
(C, before AOL) ... ACC(O) 

Affects C. 
Not affected by SXM. 

15 14 13 12 11 10. 9. 8 7 6 

I 1 1 o o 1 1 .1 o o o 

ROL 

5 4 3 2 1 0 

1 1 o 1 o ol 

The AOL instruction rotates the accumulator left one bit. The MSB is shifted into 
the carry bit, and the value of the carry bit from before the execution of the 
instruction is shifted into the LSB. 

1 
Class IV (1) 
Category A 

ROL 

ACC 

Before Instruction 

OJ l>eooo1234 I 
c 

ACC 

After Instruction 

OJ I >6 o o o 2 4 s 9 

c 



ROR 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Rotate Acc;;ymulator Right 

[<label>] ROR 

None 

(PC) + 1 .... PC 
(ACC(O)) .... C 
(ACC(31-1)) .... ACC(30-0) 
(C, before ROR) .... ACC(31) 

Affects C. 
Not affected by SXM. 

ROR 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
11 1 0 0 1 1 1 0 0 0 1 1 0 1 

The ROR instruction rotates the accumulator right one bit. The LSB is shifted into 
the carry bit, and the value of the carry bit from before the execution of the 
instruction is shifted into the MSB. 

1 
Class IV (1) 
Category A 

ROR 

ACC 

Before Instruction 

@] 1>80001234 

c 
ACC 

After Instruction 

@] I >5 8 0 0 0 9 1 A I 
c 

4-111 



ROVM 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
. -{;-yefett . 

Repeatability 

Example 

4-112 

Reset Overflow Mode ROVM 

[<label>] ROVM 

None 

(PC) + 1 -+ PC 
0 -+ OVM status bit in status register STO 

Affects OVM 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 1 0 0 1 1 1 0 0 0 0 0 0 0 ol 
The OVM status bit is reset to logic zero, which disables the overflow mode. If 
an overflow occurs with OVM reset, the OV (overflow flag) is set, and the over­
flowed result is placed in the accumulator. OVM may also be loaded by the LST 
and SOVM instructions. 

1 
-.C-lass+v -fl-} 
Category C 

ROVM The overflow mode bit OVM is reset, 
disabling the overflow mode on any 
subsequent arithmetic operations. 



RPT Repeat Instruction as Specified by Data Memory Value RPT 

Assembler Syntax 
Direct Addressing: [<label>] RPT <dma> 

Indirect Addressing: [<label>] RPT {*l*+l*-l*O+l*O-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 :s dma :s 1 27 
0 :s next ARP :s 7 

(PC) + 1 -+ PC 
(dma(7-0)) -+ RPTC 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 0 0 1 0 1 1 I 0 I Data Memory Address 

Indirect I 0 1 0 0 1 0 1 1 1 See Section 4.1 

The eight LSBs of the addressed data memory value are loaded into the repeat 
counter (RPTC). This causes the following instruction to be executed one time 
more than the number loaded into the RPTC (provided that it is a repeatable 
instruction). Interrupts are masked out until the next instruction has been 
executed the specified number of times. (Interrupts cannot be allowed during the 
RPT/next instruction sequence, because the RPTC cannot be saved during a 
context switch.) The RPTC counter is cleared on a RS. 

RPT and RPTK are especially useful for repeating instructions, such as BLKP, 
BLKD, IN, MAC, MACO, NORM, OUT, TBLR, TBLW, and others. 

1 
Class I (1) 
Category X 

RPT 
SFR 
or 
RPT 
SFR 

DAT127 

* 

Data 
Memory 

4095 

ACC ~ 
c 

(DP = 31) 

If current auxiliary register contains 4095. 

Before Instruction After Instruction 

Data 
>C Memory >C 

4095 

I >1 2 3 4 5 s 1 a ACC @] I >1 2 3 4 5 

c 

4-113 



RPTK Repeat Instruction as Specified by Immediate Value RPTK 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-114 

[<label>] RPTK <constant> 

0 s constant s 255 

(PC) + 1 -+ PC 
Constant -+ RPTC 

15 14 13 12 11 10 9 

1 1 0 0 1 0 1 

8 7 6 5 4 3 2 0 

8-Bit Constant 

The 8-bit immediate value is loaded into the RPTC (repeat counter). This causes 
the following instruction to be executed one time more than the number loaded 
into the RPTC (provided that it is a repeatable instruction). Interrupts are masked 
out until the next instruction has been executed the specified number of times. 
(Interrupts cannot be allowed during the APT /next instruction sequence because 
the RPTC cannot be saved during a context switch.} The RPTC is cleared on a 
RS. 

. --~-imd- R PTK are. especially . .useful.-fGr. repeating instructions,-suGR--.as.-B.l..KP, -
BLKD, IN, MAC, MACO, NORM, OUT, TBLR, TBLW, and others. 

1 
Class IV (1) 
Category X 

LRLK 
LARP 
ZAC 
MPYK 
RPTK 
SQRA 
APAC 

AR2,>200 
2 

0 
2 
*+ 

Load AR2 with the address of X. 

Clear the accumulator. 
Clear the P register. 
Repeat next instruction 3 times. 
Compute X**2 + Y**2 + Z**2. 



RSXM 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Reset Sign-Extension Mode RSXM 

[<label>] RSXM 

None 

(PC) + 1 -+ PC 
0 -+ SXM sign-extension mode status bit 

Affects SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 ol 
The RSXM instruction resets the SXM status bit to logic zero, which suppresses 
sign-extension on shifted data memory values for the following arithmetic 
instructions: ADD, ADDT, ADLK, LAC, LACT, LALK, SBLK, SUB, and SUBT. 

The RSXM instruction affects the definition of the SFR instruction. SXM may 
also be loaded by the LST1 and SSXM instructions. 

1 
Class IV (1) 
Category C 

RSXM SXM is reset, disabling sign-extension on 
subsequent instructions. 

4-115 



RTC 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-116 

Reset Test/Control Flag RTC 

[<label>] RTC 

None 

(PC) + 1 -+ PC 
0 -+ TC test/control flag in status register ST1 

Affects TC. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 1 0 0 1 1 1 0 0 0 1 1 0 0 ol 
The TC (test/control) flag in status register ST1 is reset to logic zero. TC may also 
be loaded by the LST1 and STC instructions. 

1 
Class IV (1) 
Category C 

RTC 
- .. - -·--·· -·- . ··- -·- - ---- - - -

TC (test/control) flag is reset to logic zero. 



RTXM 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Reset Serial Port Transmit Mode RTXM 

[<label>] RTXM 

None 

(PC) + 1 ... PC 
0 ... TXM transmit mode status bit 

Affects TXM mode bit. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 1 0 0 0 1 o o o o ol 

The RTXM instruction resets the TXM status bit, which configures the serial port 
transmit section in a mode where it is controlled by an FSX (external framing 
pulse}. The transmit operation is started when an external FSX pulse is applied. 
TXM may also be loaded by the LST1 and STXM instructions. 

1 
Class IV (1} 
Category C 

RTXM TXM is reset, configuring FSX as an input. 

4-117 



RXF 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-118 

Reset External Flag RXF 

[<label>] RXF 

None 

(PC) + 1 -+ PC 
0 -+ XF external flag pin and status bit 

Affects XF. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 1 1 0 0 0 0 0 1 0 ol 
The XF pin and XF status bit in status register ST1 are reset to logic zero. XF 
may also be loaded by the LST1 and SXF instructions. 

1 
Class IV (1) 
Category C 

RXF XF pin and status bit are reset to logic zero. 



SACH Store High Accumulator with Shift SACH 

Assembler Syntax 
Direct Addressing: [<label>] SACH <dma>,[<shift>] 

Indirect Addressing: [<label>] SACH {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<shift>[,<next ARP>]] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma s 127 
0 s next ARP s 7 
0 s shift s 7 (defaults to 0) 

(PC) + 1 -+ PC 
16 MSBs of (ACC) x 2shift-+ dma 

Not affected by SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 1 0 1 I Shift I ol Data Memory Address 

Indirect I 0 1 1 0 1 Shift I 1 I See Section 4.1 

The SACH instruction copies the entire accumulator into a shifter. It then shifts 
this entire 32-bit number anywhere from 0 to 7 bits, and copies the upper 16 bits 
of the shifted value into data memory. The accumulator itself remains unaffected. 

1 
Class Ill (1) 
Category A 

DATl0,2 (DP = 4) SACH 
or 
SACH *,2 If current auxiliary register contains 522. 

ACC 

Data 
Memory 

522 

Before Instruction 

0 1 >42oaoo1 

c 

>O 

ACC 

Data 
Memory 

522 

After Instruction 

0 I >42oaoo1 

c 

>108 2 

4-119 



SACL Store Low Accumulator with Shift SACL 

Assembler Syntax 
Direct Addressing: [<label>] SACL <dma>,[<shift>] 

Indirect Addressing: [<label>] SACL {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<shift>[,<next ARP>]] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-120 

0 s dma s 127 
0 s next ARP s 7 
0 s shift s 7 (defaults to 0) 

(PC) + 1 -+PC 
16 LSBs of (ACC) x 2shift -+ dma 

Not affected by SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 1 0 ol Shift I ol Data Memory Address 

Indirect I 0 1 1 0 ol Shift I 1 I See Section 4.1 

The low-order bits of the accumulator, shifted left anywhere from 0 to 7 bits as 
specified by the shift code, are stored in data memory. The low-order bits are filled 
with zeros, and the high-order bits are lost. The accumulator itself is unaffected. 

1 
Class Ill (1) 
Category A 

DATll,5 (DP = 4) SACL 
or 
SACL *,5 If current auxiliary register contains 523. 

Before Instruction 

ACC 0 I >7 c 6 3 8 4 2 1 

c 

Data 
Memory >5 

523 

After Instruction 

ACC 0 I >7 c 6 3 8 4 2 1 

c 

Data 
Memory >8 4 2 0 

523 



SAR Store Auxiliary Register SAR 

Assembler Syntax 
Direct Addressing: [<label>] SAR <AR>,<dma> 

Indirect Addressing: [<label>] SAR <AR>,{*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 1 

Example 2 

Direct 

Indirect 

0 :s: dma :s: 127 
0 :s: auxiliary register AR :s: 7 
0 :s: next ARP :s: 7 

(PC) + 1 -+ PC 
(AR) -+ dma 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 0 Auxiliary 0 Data Memory Address 
Register 

0 1 1 1 0 Auxiliary 1 See Section 4.1 
Register 

The contents of the designated auxiliary register are stored in the addressed data 
memory location. 

When modifying the contents of the current auxiliary register in the indirect 
addressing mode, SAR ARn (when n = ARP) stores the value of the auxiliary 
register contents before it is incremented, decremented, or indexed by ARO. 

1 
Class Ill (1) 
Category B 

AR0,DAT30 (DP = 6) SAR 
or 
SAR ARO,* If current auxiliary register contains 798. 

ARO 

Data 
Memory 

798 

LARP 
SAR 

ARO 

Data 
Memory 

1025 

ARO 

Before Instruction 

>3 7 

>1 8 

ARO I *O+ 

>401 

>O 

ARO 

Data 
Memory 

798 

ARO 

Data 
Memory 

1025 

After Instruction 

>3 7 

>3 7 

>8 0 2 

>401 

4-121 



SBLK Subtract from Accumulator Long Immediate with Shift SBLK 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-122 

[<label>] SBLK <constant>[,<shift>] 

16-bit constant 
0 :s; shift :s; 15 (defaults to 0) 

(PC) + 2-+ PC 
(ACC) - [constant x 2shift] -+ ACC 

If SXM = 1: 
Then -32768 :s; constant :s; 32767. 

If SXM = 0: 
Then 0 s constant s 65535. 

Affects C and OV; affected by OVM and SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 1 0 1 I Shift I 0 0 0 0 0 0 

I 16- Bit Constant 

The immediate field of the instruction is subtracted from the accumulator. The 
result replaces the accumulator contents. SXM determines whether the constant 
is treated as a signed two's-complement number or as an unsigned number. The 
shift count is optional and defaults to zero. 

2 
Class V (2) 
Category X 

SBLK 5,12 

ACC 

Before Instruction 

~ l.___>_3_F_C_O_E_F__. 
c 

ACC 

After Instruction 

ITJ ._I _>_3_F_7_0_E_F__. 
c 



SBRK Subtract from Auxiliary Register Short Immediate SBRK 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

[<label>] SBRK <constant> 

0 s constant s 255 

(PC) + 1 -+ PC 
AR(ARP) - 8-bit positive constant-+ AR(ARP) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 1 1 I 8- Bit Constant 

The 8-bit immediate value is subtracted, right-justified, from the currently selected 
auxiliary register with the result replacing the auxiliary register contents. The 
subtraction takes place in the ARAU, with the immediate value treated as an 8-bit 
positive integer. 

1 
Class IV (1) 
Category X 

SBRK >FF 

AR7 

(ARP = 7) 

Before Instruction 

>O AR7 

After Instruction 

>FF 0 1 

4-123 



SC 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Set Carry .Bit SC 

[<label>] SC 

None 

(PC) + 1 .... PC 
1 .... carry bit C in status register ST1 

Affects C. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 

The carry bit C in status register ST1 is set to logic one. The carry bit may also 
be loaded directly by the LST1 and RC instructions. 

1 
Class IV (1) 
Category C 

-·-·----- --cxampre··---- --·-· · - ··-·5c;··- -- ···- Carry bit C is set to logic one. 

4-124 



SFL 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Shift Accumulator Left SFL 

[<label>] SFL 

None 

(PC) + 1 .... PC 
(ACC(31 ) ) .... C 
(ACC(30-0)) .... ACC(31 -1) 
0 .... ACC(O) 

Affects C. 
Not affected by SXM bit. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 ol 
The SFL instruction shifts the entire accumulator left one bit. 

The least-significant bit is filled with a zero, and the most-significant bit is shifted 
into the carry bit. Note that SFL, unlike SFR, is unaffected by SXM. 

1 
Class IV (1) 
Category A 

SFL 

ACC 

Before Instruction 

~ I >B 0 0 0 1 2 3 4 

c 
ACC 

After Instruction 

IT] I >6 o o o 2 4 s s 
c 

4-125 



SFR 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 1 

Example 2 

4-126 

$hift Accumulator Right · 

[<label>] SFR 

None 

(PC) + 1 -+ PC 

If SXM = 0: 
Then (ACC(O)) -+ C 

SFR 

(ACC(31-1)) -+ ACC (30-0) and 0 -+ ACC(31 ). 
If SXM = 1: 

Then (ACC(O)) -+ C 
(ACC(31-1)) -+ ACC(30-0) and (ACC(31)) -+ ACC(31 ). 

Affects C. 
Affected by SXM bit. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 
___ .,_., ______________ , 

.. -----·-------------- -··-··-·- .. ·----
The SFR instruction shifts the accumulator right one bit. 

If SXM = 1, the instruction produces an arithmetic right shift. The sign bit (MSB) 
is unchanged and is also copied into bit 30. Bit 0 is shifted into the carry bit. 

If SXM = 0, the instruction produces a logical right shift. All of the accumulator 
bits are shifted by one bit to the right. The least-significant bit is shifted into the 
carry bit, and the most-significant bit is filled with a zero. 

1 
Class IV (1) 
Category A 

SFR (SXM=O) 

Before Instruction After Instruction 

ACC 0 I >B 0 0 0 1 2 3 4 ACC @] I >5 8 0 0 0 9 1 A 

c c 

SFR (SXM=l) 

ACC 0 I >B 0 0 0 1 2 3 4 ACC @] I> D 8 0 0 0 9 1 A 

c c 



SFSM 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Set Serial Port Frame Sync Mode SFSM 

[<label>] SFSM 

None 

(PC) + 1 -+ PC 
1 -+ FSM status bit in status register ST1 

Affects FSM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 0 0 0 1 1 0 1 1 

The SFSM instruction sets the FSM status bit to logic one. In this mode, an 
external FSR pulse is required for a receive operation, and an external FSX pulse 
is required if TXM = 0. If TXM = 1, FSX pulses are generated in the normal manner 
every time the transmit shift register XSR is loaded. See Section 3.7 for details 
on the operation of the serial port. FSM may also be loaded by the LST1 and 
RFSM instructions. 

1 
Class IV (1) 
Category C 

SFSM FSM is set, putting the serial port in a 
mode of operation where frame synchronization 
pulses are required for each word to be 
transmitted or received. 

4-127 



SHM 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
_ ~Y-~t~-~ _ _ .. 
Repeatability 

Example 

4-128 

Set Hold Mode SHM 

[<label>] SHM 

None 

(PC) + 1 -+ PC 
1 -+ HM status bit in status register ST1 

Affects HM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 0 0 1 1 0 0 1 

The SHM instruction sets the HM status bit to logic one. In this mode, the 
TMS320C25 is halted in the normal manner whenever HOLD is asserted, regard­
less of the PC value or the state of the MP/MC pin. HM may also be loaded by 
the LST1 and RHM instructions. 

1 
. CJci~~JV JU 

Category C 

SHM HM is set, implementing the normal 
(TMS32020-type) hold mode of operation. 



SOVM 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Set Overflow Mode SOVM 

[<label>] SOVM 

None 

(PC) + 1 --+ PC 
1 --+ overflow mode (OVM) status bit 

Affects OVM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 0 0 1 0 0 0 0 0 0 0 

The OVM status bit is set to logic one, which enables the overflow (saturation) 
mode. If an overflow occurs with OVM set, the overflow flag OV is set, and the 
accumulator is set to the largest representable 32-bit positive (>7FFFFFFF) or 
negative (>80000000) number according to the direction of overflow. OVM may 
also be loaded by the LST and ROVM instructions. 

1 
Class IV (1) 
Category C 

SOVM The overflow mode bit OVM is set, enabling 
the overflow mode on any subsequent 
arithmetic operations. 

4-129 



SPAC 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-130 

Subtract P Register. from Accumulator SPAC 

[<label>] SPAC 

None 

(PC) + 1 .... PC 
(ACC) - (shifted P register) -+ ACC 

Affects C and OV; affected by PM and OVM. 
Not affected by SXM. 

15 14 13 12 11 10 9 8 7 6 
1 1 0 0 1 1 1 0 0 0 

5 4 3 2 1 0 
0 1 0 1 1 ol 

The contents of the P register, shifted as defined by the PM status bits, are 
subtracted from the contents of the accumulator. The result is stored in the 
accumulator. Note that SPAC is unaffected by SXM; the P register is always 
sign-extended. SPAC is a subset of LTS, MPYS, and SORS. 

1 
c1assrv····r1r 
Category B 

SPAC 

p 

ACC 

(PM = 0) 

Before Instruction 

>2 4 

~ .__I ___ >3_c__. 
c 

p 

ACC 

After Instruction 

>2 4 

OJ ._I ___ >_1_s__. 
c 



SPH Store High P Register SPH 

Assembler Syntax 
Direct Addressing: [<label>] SPH <dma> 

Indirect Addressing: [<label>] SPH {*l*+l*-l*O+l*O-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma :s: 127 
0 :s: next ARP :s: 7 

(PC} + 1 ~PC 
(PR shifter output (31-16}} ~ dma 

Affected by PM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 1 1 1 1 0 1 I o I Data Memory Address 

Indirect I 0 1 1 1 1 1 0 1 1 I See Section 4.1 

The high-order bits of the P register, shifted as specified by the PM bits, are stored 
in data memory. Neither the P register nor the accumulator are affected by this 
instruction. High-order bits are sign-extended when the right-shift by 6 mode is 
selected. Low-order bits are taken from the low P register when left-shifts are 
selected. 

1 
Class Ill (1} 
Category B 

SPH 
or 
SPH 

p 

Data 
Memory 

515 

DAT3 

* 

(DP = 4, PM = 2) 

If current auxiliary register contains 515. 

Before Instruction 

l>FE079844 

>4 5 6 7 

p 

Data 
Memory 

515 

After Instruction 

I >FE 0 7 9 8 4 4 

>E 0 7 9 

4-131 



SPL Store Low P Register SPL 

Assembler Syntax 
Direct Addressing: [<label>] SPL <dma> 

Indirect Addressing: [<label>] SPL {*1*+1*~1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 0 ::s; dma ::s; 127 
0 ::s; next ARP ::s; 7 

Execution {PC) + 1 .... PC 
{PR shifter output (15-0)) .... dma 

Affected by PM. 

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 1 1 1 1 0 ol o I Data Memory Address 

Indirect I 0 1 1 1 1 1 0 ol 1 I See Section 4.1 

. Description.---.. ·--·-··- The tow-order bits of the P register, shifted as specified by the PM bits, are stored . 
in data memory. Neither the P register nor the accumulator are affected by this 
instruction. High-order bits are taken from the high P register when the right-shift 
by 6 mode is selected. Low-order bits are zero-filled when left-shifts are selected. 

Words 
Cycles 
Repeatability 

Example 

4-132 

1 
Class Ill (1) 
Category B 

SPL 
or 
SPL 

p 

Data 
Memory 

515 

DAT3 

* 

(DP = 4, PM = 2) 

If current auxiliary register contains 515. 

Before Instruction 

I >FE 0 7 9 8 4 4 

>4 5 6 7 

p 

Data 
Memory 

515 

After Instruction 

I >FE 0 7 9 8 4 4 

>8 44 0 



SPM 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Set P Register Output Shift Mode SPM 

[<label>] SPM <constant> 

0 s constant s 3 

(PC) + 1 -+ PC 
Constant-+ product register shift mode (PM) status bits 

Affects PM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 1 0 0 0 0 0 1 0 I PM 

The two low-order bits of the instruction word are copied into the PM field of 
status register ST1. The PM status bits control the P register output shifter. This 
shifter has the ability to shift the P register output either one or four bits to the 
left or six bits to the right, or to perform no shift. The bit combinations and their 
meanings are shown below. 

PM ACTION 

00 No shift of multiplier output 
01 Output left-shifted 1 place and zero-filled 
10 Output left-shifted 4 places and zero-filled 
11 Output right-shifted 6 places, sign-extended, and LSB bits lost. 

The left-shifts allow the product to be justified for fractional arithmetic. The 
right-shift by six bits has been incorporated to implement up to 128 multiply­
accumulate processes without the possibility of overflow occurring. PM may also 
be loaded by an LST1 instruction. 

1 
Class IV (1) 
Category X 

SPM 3 Product register shift mode 3 is selected, 
causing all subsequent transfers from the 
product register to the ALU to be shifted 
to the right six places. 

4-133 



SORA Square and Accumulate Previous Product SORA 

Assembler Syntax 
Direct Addressing: [<label>] SORA <dma> 

Indirect Addressing: [<label>] SORA {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Direct 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+ PC 
(ACC) + (shifted P register) -+ ACC 
(dma) -+ T register 
(dma) x (dma) -+ P register 

Affects C and OV; affected by PM and OVM. 

15 14 13 12 11 10 9 8 7 

I 0 0 1 1 1 0 0 1 I 0 

6 5 4 3 2 1 0 

I Data Memory Address I 
__ JndJre~11 __ 0 __ 0 _1 1 -·- L 0 0 1J tI-- -·- See Section 4,J __ ---l-

Description 

Words 
Cycles 
Repeatability 

Example 

4-134 

The contents of the P register, shifted as defined by the PM status bits, are added 
to the accumulator. The addressed data memory value is then loaded into the T 
register, squared, and stored in the P register. 

1 
Class I (1) 
Category A 

SQRA 
or 
SQRA 

DAT30 

* 

Data 
Memory 

798 

T 

p 

ACC 0 
c 

I 

(DP = 6, PM = 0) 

If current auxiliary register contains 798. 

Before Instruction After Instruction 

Data 
>F Memory >F 

798 

>3 T >F 

>1 2 c p >E 1 

>1 F 4 ACC @] I >3 2 0 

c 



SQRS Square and Subtract Previous Product SQRS 

Assembler Syntax 
Direct Addressing: [<label>] SQRS < dma > 

Indirect Addressing: [<label>] SQRS {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+ PC 
(ACC) - (shifted P register) -+ ACC 
(dma) -+ T register 
(dma) x (dma) -+ P register 

Affects C and OV; affected by PM and OVM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct I 0 1 0 1 1 0 1 ol o I Data Memory Address 

Indirect I 0 1 0 1 1 0 1 ol 1 See Section 4.1 

The contents of the P register, shifted as defined by the PM status bits, are 
subtracted from the accumulator. The addressed data memory value is then loaded 
into the T register, squared, and stored into the P register. 

1 
Class I (1) 
Category A 

SQRS 
or 
SQRS 

DAT9 

* 

Data 
Memory 

777 

T 

p 

ACC 0 
c 

I 

(DP = 6, PM = 0) 

If current auxiliary register contains 777. 

Before Instruction After Instruction 

Data 
>8 Memory >8 

777 

>1 1 2 4 T >8 

>1 9 0 p >4 0 

>145 0 ACC [iJ I >12c0 

c 

4-135 



SST Store Status Register STO SST 

Assembler Syntax 
Direct Addressing: [<label>] SST <dma> 

Indirect Addressing: [<label>] SST {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4~136 

0 :;; dma :;; 127 
0 :;; next ARP :;; 7 

(PC) + 1 -+ PC 
(status register STO) -+ dma 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct 0 1 1 1 0 0 ol o I Data Memory Address 

Indirect I 0 1 0 0 ol I See Section 4.1 

Status register STO is stored in data memory . 

. ... 1n1hfL.direc.taddressing .moda,..stat11s registerSIO.is..alwa¥S stored.in .page.0. 
regardless of the value of the DP register. The processor automatically forces the 
page to be 0, and the specific location within that page is defined in the 
instruction. Note that the DP register is not physically modified. This allows 
storage of the DP register in the data memory on interrupts, etc., in the direct 
addressing mode without having to change the DP. In the indirect addressing 
mode, the data memory address is obtained from the auxiliary register selected. 
(See the LST instruction for more information.) 

The SST instruction can be used to store status register STO after interrupts and 
subroutine calls. The STO contains the status bits: OV (overflow flag) bit, OVM 
(overflow mode) bit, INTM (interrupt mode) bit, ARP (auxiliary register pointer) 
bit, and DP (data memory page pointer) bit. The status bits are stored in the data 
memory word as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

ARP I ov lovMI 1 l1NTMI DP 

Note that SST* may be used to store status register STO anywhere in data memory, 
while SST in direct mode is forced to page 0. 

1 
Class Ill (1) 
Category C . 

SST 
or 
SST 

Status 
Register 

STO 

Data 
Memory 

96 

DAT96 

* 

(DP = don't care) 

If current auxiliary register contains 96. 

Before Instruction 

>A 4 0 8 

>A I 

Status 
Register 

STO 

Data 
Memory 

96 

After Instruction 

>A 4 0 8 

>A 4 0 8 



SST1 Store Status Register ST1 SST1 

Assembler Syntax 
Direct Addressing: [<label>] SST1 <dma> 

Indirect Addressing: [<label>] SST1 {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma s 127 
0 s next ARP :s; 7 

(PC) + 1 -+ PC 
(status register ST1) -+ dma 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Direct 0 1 1 1 1 0 0 1 I o I Data Memory Address 

Indirect I 0 1 1 1 1 0 0 1 1 See Section 4.1 

Status register ST1 is stored in data memory. 

In the direct addressing mode, status register ST1 is always stored in page 0 
regardless of the value of the DP register. The processor automatically forces the 
page to be 0, and the specific location within that page is defined in the 
instruction. Note that the DP register is not physically modified. This allows the 
storage of the DP in the data memory on interrupts, etc., in the direct addressing 
mode without having to change the DP. In the indirect addressing mode, the data 
memory address is obtained from the auxiliary register selected. (See the LST1 
instruction for more information.) 

This instruction can be used to store status register ST1 after interrupts and 
subroutine calls. The ST1 contains the status bits: CNF (RAM configuration 
mode) bit, TC (test/control) bit, SXM (sign-extension mode) bit, C (carry) bit, 
HM (hold mode) bit, FSM (frame synchronization mode) bit, XF (external flag) 
bit, FO (serial port format), TXM (transmit mode) bit, ARB (auxiliary register 
pointer buffer), and PM (product register shift mode) bit. The status bits are stored 
in the data memory word as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

ARB I CNF I TC I SXM I c I 1 

Note that SST1 * may be used to store status register ST1 anywhere in data 
memory, while SST1 in direct mode is forced to page 0. 

1 
Class Ill (1) 
Category C 

SS Tl 
SSTl 

Status 
Register 

ST1 

Data 
Memory 

97 

DAT97 
* 

(DP = don't care) 
If current auxiliary register contains 97. 

Before Instruction 

>A 7 E 0 

>B 

Status 
Register 

ST1 

Data 
Memory 

97 

After Instruction 

>A 7 E 0 

>A 7 E 0 

4-137 



SSXM 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-138 

Set Sign-Extension Mode SSXM 

[<label>] SSXM 

None 

(PC) + 1 .... PC 
1 .... SXM status bit in status register ST1 

Affects SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 10000001 1 1 

The SSXM instruction sets the SXM status bit to logic 1, which enables sign­
extension on shifted data memory values for the following arithmetic instructions: 
ADD, ADDT, ADLK, LAC, LACT, LALK, SBLK, SUB, and SUBT. 

SSXM also affects the. definition of the SFR instruction. SXM may also .be loaded 
by the LST1 and RSXM instructions. 

1 
Class IV (1) 
Category C 

SSXM SXM is set, enabling sign extension on 
subsequent instructions. 



STC 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Set Test/Control Flag STC 

[<label>] STC 

None 

(PC) + 1 -+ PC 
1 -+ TC test/control flag in status register ST1 

Affects TC. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 

The TC (test/control) flag in status register ST1 is set to logic one. TC may also 
be loaded by the LST1 and RTC instructions. 

1 
Class IV (1) 
Category C 

STC TC (test/control) flag is set to logic one. 

4-139 



STXM 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-140 

------ - ------

Set Serial Port Transmit Mode STXM 

[<label>] STXM 

None 

(PC) + 1 .... PC 
1 -+ TXM status bit in status register ST1 

Affects TXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 0 0 0 0 0 0 0 

The STXM instruction sets the TXM status bit to logic 1, which configures the 
serial port transmit section to a mode where the FSX pin behaves as an output. 
A pulse is produced on the FSX pin each time the DXR register is loaded internally. 
The transmission is initiated by the negative edge of this pulse. TXM may also 
be loaded by the LST1 and RTXM instructions. If the FSM status bit is a logic 
zero and serial port operation has already started, the FSX pin will be driven low 
itfXM-=1:-

1 
Class IV (1) 
Category C 

STXM TXM is set, configuring FSX as an output. 



SUB Subtract from Accumulator with Shift SUB 

Assembler Syntax 
Direct Addressing: [<label>] SUB <dma>,[<shift>] 

Indirect Addressing: [<label>] SUB {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<shift>[,<next ARP>]] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma s 127 
0 :S next ARP s 7 
0 s shifts 15 (defaults to 0) 

(PC} + 1 -+ PC 
(ACC} - [(dma} x 2shift] -+ ACC 

If SXM = 1: 
Then (dma} is sign-extended. 

If SXM = 0: 
Then (dma} is not sign-extended. 

Affects C and OV; affected by OVM and SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 0 0 1 I Shift I ol Data Memory Address 

Indirect I 0 0 0 1 Shift I , I See Section 4.1 

The contents of the addressed data memory location are left-shifted and 
subtracted from the accumulator. During shifting, low-order bits are zero-filled. 
High-order bits are sign-extended if SXM = 1 and zero-filled if SXM = 0. The 
result is stored in the accumulator. 

1 
Class I (1) 
Category A 

SUB 
or 
SUB 

DAT80 

* 

Data 
Memory 

1104 

ACC 0 
c 

I 

(DP = 8) 

If current auxiliary register contains 1104. 

Before Instruction After Instruction 

Data 
>1 1 Memory >1 1 

1104 

>2 4 ACC [TI I >1 3 

c 

4-141 



SUBB Subtract from Accumulator with Borrow SUBB 

Assembler Syntax 
Direct Addressing: [<label>] SUBB <dma> 

Indirect Addressing: [<label>] SUBB {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Words 
Cycles 
Repeatability 

Example 

4-142 

0 s dma s 1 27 
0 s next ARP s 7 

(PC) + 1 -+ PC 
(ACC) - (dma) - (C) -+ ACC 

Affects C and OV; affected by OVM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct 0 1 0 0 I o I Data Memory Address 

Indirect I 0 1 0 0 See Section 4.1 

. Ihe. contents_oftheaddressed.data_memaryJocation_aru:Lthe..v.alua.ofthe.cau.y 
bit are subtracted from the accumulator. The carry bit is then affected in the normal 
manner (see Section 3.4.3). 

1 
Class I (1) 
Category B 

SUBB 
or 
SUBB 

Data 
Memory 

1029 

OATS 

* 

(DP = 8) 

If current auxiliary register contains 1029. 

Before Instruction 

>6 
Data 

Memory 
1029 

After Instruction 

>6 

ACC @] I >6 ACC @] I >F F F F F FF F 

c c 
In the above example, C is originally zeroed, presumably from the result of a 
previous subtract instruction that performed a borrow. Thus, 6 - 6 - (5) = -1 
was the effective operation performed, generating another borrow (and resetting 
carry again) in the process. 

The SUBB instruction can be used in performing multiple-precision arithmetic. 



SUBC Conditional Subtract SUBC 

Assembler Syntax 
Direct Addressing: [<label>] SUBC <dma> 

Indirect Addressing: [<label>] SUBC {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+ PC 
(ACC) - [(dma) x 215] -+ALU output 

If ALU output <!: 0: 
Then (ALU output) x 2 + 1 -+ ACC; 
Else (ACC) x 2 -+ ACC. 

Affects C and OV. 
Not affected by OVM (no saturation) or SXM. 

15 14 13 12 11 10 9 8 7 6 
Direct 0 1 0 0 0 1 I o I 

5 4 3 2 0 

Data Memory Address 

Indirect l..__0 ____ 0 __ 0 __ 0 ______ 1__. _ __._ ____ s_e_e_S_e_c_t_io_n_4_.1 ___ __. 

The SUBC instruction performs conditional subtraction, which may be used for 
division. The 16-bit dividend is placed in the low accumulator, and the high 
accumulator is zeroed. The divisor is in data memory. SU BC is executed 16 times 
for 16-bit division. After completion of the last SUBC, the quotient of the division 
is in the lower-order 16-bit field of the accumulator, and the remainder is in the 
high-order 16 bits of the accumulator. SUBC assumes the divisor and the divi­
dend are both positive. 

If the 16-bit dividend contains less than 16 significant bits, the dividend may be 
placed in the accumulator left-shifted by the number of leading non-significant 
zeroes. The number of executions of SUBC is reduced from 16 by that number. 
One leading zero is always significant. 

Note that SUBC affects OV but is not affected by OVM, and therefore the accu­
mulator does not saturate upon positive or negative overflows when executing 
this instruction. 

1 
Class I (1) 
Category A 

RPTK 
SUBC 
or 
RPTK 
SUBC 

Data 
Memory 

514 

ACC 

15 
DAT2 

15 
* 

0 
c 

I 

(DP = 4) 

If current auxiliary register contains 514. 

Before Instruction After Instruction 

Data 
>7 Memory >7 

514 

>4 1 ACC OJ I >2 0 0 0 9 

c 

4-143 



SUBH ·Subtract from.·High Accumulator SUBH 

Assembler Syntax 
Direct Addressing: [<label>] SUBH <dma> 

Indirect Addressing: [<label>] SUBH {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Words 
Cycles 
Repeatability 

Example 

4-144 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 .... PC 
(ACC) - [(dma) x 216] .... ACC 

Affects C and OV; affected by OVM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Direct 0 1 0 0 0 0 0 I 0 I Data Memory Address 

Indirect I 0 1 0 0 0 0 ol See Section 4.1 

.. Iha contents of the addressed data memory location are subtracted from .the...u.pper.u. 
16 bits of the accumulator. The 16 low-order bits of the accumulator are unaf­
fected. The result is stored in the accumulator. The carry bit C is reset if the result 
of the subtraction generates a borrow; otherwise, C is unaffected. 

The SUBH instruction can be used for performing 32-bit arithmetic. 

1 
Class I (1) 
Category B 

SUBH 
or 
SUBH 

DAT33 

* 

Data 
Memory 

801 

ACC 0 
c 

I 

(DP = 6) 

If curren.t auxiliary register contains 801. 

Before Instruction After Instruction 

Data 
>4 Memory >4 

801 

>A 0 0 1 3 ACC OJ I >6 0 0 1 3 

c 



SUBK 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Subtract from Accumulator Short Immediate SUBK 

[<label>] SUBK <constant> 

0 s constant s 255 

(PC) + 1 ..... PC 
(ACC) - 8-bit positive constant -+ ACC 

Affects C and OV: affected by OVM. 
Not affected by SXM. 

15 14 13 12 11 10 9 

11001 1 0 

8 7 6 5 4 3 2 1 0 

8- Bit Constant 

The 8-bit immediate value is subtracted, righHustified, from the accumulator with 
the result replacing the accumulator contents. The immediate value is treated as 
an 8-bit positive number, regardless of the value of SXM. 

1 
Class IV (1) 
Category X 

SUBK >12 

Before Instruction 

ACC 0 I >37 
c 

After Instruction 

ACC IT] I >2 5 

c 

4-145 



SUBS 

Assembler Syntax 

Subtract from Low Accumulator 
with Sign-Extension Suppressed SUBS 

Direct Addressing: [<label>] SUBS <dma> 
Indirect Addressing: [<label>] SUBS {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+ PC 
(ACC) - (dma) -+ ACC 

Affects C and OV; affected by OVM. 
Not affected by SXM. 

15 14 13 12 11 10 9 8 7 6 

Direct I 0 1 0 0 0 1 · 0 1 I 0 I 
5 4 3 2 1 0 

Data Memory Address I 
__ Indirect + _ _o_ ____ _L._o_ _ _o_ __ ._D_ _ _j_._. ___ _D_ __ g __ q _____ ---- See Section 4.1 · -·----+- .. -

Description 

Words 
Cycles 
Repeatability 

Example 

4-146 

The contents of the addressed data memory location are subtracted from the 
accumulator with sign-extension suppressed. The data is treated as a 16-bit 
unsigned number, regardless of SXM. The accumulator behaves as a signed 
number. SUBS produces the salT)e result as a SUB instruction with SXM = 0 and 
a shift count of 0. 

1 
Class I (1) 
Category B 

SUBS 
or 
SUBS 

Data 
Memory 

2050 

DAT2 

* 

(DP = 16) 

If current auxiliary register contains 2050. 

Before Instruction 

>F 0 0 3 

Before Instruction 

Data 
Memory 

2050 

After Instruction 

>F 0 0 3 

After Instruction 

ACC ~ I >F 1 0 5 ACC [!] l.._ ___ >1_0_2__. 

c c 



SUBT 
Subtract from Accumulator 

with Shift Specified by T Register SUBT 

Assembler Syntax 
Direct Addressing: [<label>] SUBT <dma> 

Indirect Addressing: [<label>] SUBT {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+PC 
(ACC) _ [ (dma) x 2T register(3-0)] ... (ACC) 

If SXM = 1: 
Then (dma) is sign-extended. 

If SXM = 0: 
Then (dma) is not sign-extended. 

Affects C and OV; affected by SXM and OVM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 0 0 0 1 1 o I o I Data Memory Address 

Indirect I 0 1 0 0 0 1 1 o I 1 See Section 4.1 

The data memory value, left-shifted as defined by the four LSBs of the T register, 
is subtracted from the accumulator. The result replaces the accumulator contents. 
Sign-extension on the data memory value is controlled by the SXM status bit. 

1 
Class I (1) 
Category A 

SUBT 
or 
SUBT 

DAT127 

* 

Data 
Memory 

639 

T 

ACC 0 I 
c 

(DP = 4) 

If current auxiliary register contains 639. 

Before Instruction After Instruction 

Data 
>6 Memory >6 

639 

>FF 9 8 T >FF 9 8 

>FD A5 ACC OJ I >F 7 A 5 

c 

4-147 



SXF 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

·-cxampte· 

4-148 

Set External Flag SXF 

[<label>] SXF 

None 

(PC) + 1 -+ PC 
1 -+ external flag (XF) pin and status bit 

Affects XF. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 

The XF pin and the XF status bit in status register ST1 are set to logic 1. XF may 
also be loaded by the LST1 and RXF instructions. 

1 
Class IV (1) 
Category C 



TBLR Table Read TBLR 

Assembler Syntax 
Direct Addressing: [<label>] TBLR <dma> 

Indirect Addressing: [<label>] TBLR {*j*+l*-l*O+j*O-j*BRO+j*BRO-}[.<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+ PC 
(PFC) -+ MCS 
(ACC(15-0}) -+ PFC 

While (repeat counter) :f:. 0: 
(pma, addressed by PFC) -+ dma, 
Modify AR(ARP) and ARP as specified, 
(PFC) + 1 -+ PFC, 
(repeat counter) - 1 -+ repeat counter. 

(pma, addressed by PFC) -+ dma 
Modify AR(ARP) and ARP as specified. 
(MCS) -+PFC 

15 14 13 12 11 10 9 8 7 6 
Direct I 0 1 0 1 1 0 0 o I o I 

Indirect I 0 1 0 1 1 o o o I 1 

5 4 3 2 1 0 

Data Memory Address 

See Section 4.1 

The TBLR instruction transfers a word from a location in program memory to a 
data memory location specified by the instruction. The program memory address 
is defined by the low-order 16 bits of the accumulator. For this operation, a read 
from program memory is performed, followed by a write to data memory. When 
in the repeat mode, TBLR effectively becomes a single-cycle instruction, and the 
program counter that contains the ACCL is incremented once each cycle. If the 
MP/MC pin is low at the time of execution of this instruction and the program 
memory address used is less than 4096, an on-chip ROM location will be read. 

1 
Class XI (4) 
Category A 

TBLR 
TBLR 

ACC 

Program 
Memory 

35 

Data 
Memory 

518 

DAT6 
* 

(DP = 4) 
If current auxiliary register contains 518. 

Before Instruction 

>2 3 

>3 0 6 

>7 5 

ACC 

Program 
Memory 

35 

Data 
Memory 

518 

After Instruction 

>2 3 

>3 0 6 

>3 0 6 

4-149 



TBLW Table Write TBLW 

Assembler Syntax 
Direct Addressing: [<label>] TBLW <dma> 

Indirect Addressing: [<label>] TBLW {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

··-·- ·---··. 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-150 

Direct 

0 s dma s 127 
0 .s next ARP s 7 

(PC) + 1 -+ PC 
(PFC)-+ MCS 
(ACC(15-0)) -+ PFC 

While (repeat counter) .,,_ 0: 
(dma) -+ pma, addressed by PFC, 
Modify AR(ARP) and ARP as specified, 
(PFC) + 1 -+ PFC, 
(repeat counter) - 1 -+ repeat counter. 

(dma) -+ pma, addressed by PFC, 
Modify AR(ARP) and ARP as specified. 
(MCS} -~-f!f.C..um- "" --.-·---··· ------·-···-····--·-······ ·-- ···-----~-----· 

15 14 13 12 11 10 9 8 7 

0 1 0 1 1 0 0 1 I 0 I 
6 5 4 3 2 1 0 

Data Memory Address 

Indirect I 0 1 0 1 1 0 0 1 I 1 I See Section 4.1 

The TBLW instruction transfers a word in data memory to program memory. The 
data memory address is specified by the instruction, and the program memory 
address is specified by the lower half of the accumulator. A read from data memory 
is followed by a write to program memory to complete the instruction. When in 
the repeat mode, TBLW effectively becomes a single-cycle instruction, and the 
program counter that contains the ACCL is incremented once each cycle. If the 
MP/MC pin is low at the time of execution of this instruction and the program 
memory address used is less than 4096, an on-chip ROM location will. be 
addressed but not written to. 

1 
Class XII (3) 
Category A 

TBLW 
TBLW 

ACC 

Data 
Memory 

4101 

Program 
Memory 

599 

DATS 
* 

(DP = 32) 
If current auxiliary register contains 4101. 

Before Instruction 

>2 5 7 

>4 3 3 9 

>3 0 6 

ACC 

Data 
Memory 

4101 

Program 
Memory 

599 

After Instruction 

>2 5 7 

>4 3 3 9 

>4 3 3 9 



TRAP 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

Software Interrupt TRAP 

[<label>] TRAP 

None 

(PC) + 1 -+stack 
30-+ PC 

Not affected by INTM; does not affect INTM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 1 1 0 0 0 0 1 1 1 1 ol 
The TRAP instruction is a software interrupt that transfers program control to 
program memory location 30 and pushes the program counter plus one onto the 
hardware stack. The instruction at location 30 may contain a branch instruction 
to transfer control to the TRAP routine. Putting the PC + 1 onto the stack enables 
an RET instruction to pop the return PC (points to instruction after the TRAP) from 
the stack. 

1 
Class VIII (3) 
Category X 

TRAP Control is passed to program memory 
location 30. PC + 1 is pushed onto 
the stack. 

4-151 



XOR Exclusive-OR with Accumulator XOR 

Assembler Syntax 
Direct Addressing: [<label>] XOR <dma> 

Indirect Addressing: [<label>] XOR {*l*+l*-l*O+l*O-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-152 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+ PC 
(ACC(15-0)) .XOR.dma -+ ACC(15-0) 
(ACC(31 -16)) -+ ACC(31 -16) 

Not affected by SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 0 0 1 1 0 ol o I Data Memory Address 

Indirect I 0 1 0 0 1 1 0 ol See Section 4.1 
----· ··---··-- ---- -----·-· _,,__ ---···-··-··-.. ·-------··- -----··-·---·-- --- - -

The low half of the accumulator is exclusive-ORed with the contents of the 
addressed data memory location. The upper half of the accumulator is not affected 
by this instruction. 

1 
Class I (1) 
Category B 

DAT127 (DP = 511) XOR 
or 
XOR * If current auxiliary register contains 65535. 

Before Instruction 

Data 
Memory >F 0 F 0 
65535 

ACC 0 I >1 2 3 4 5 6 7 8 

c 

After Instruction 

Data 
Memory >F 0 F 0 
65535 

ACC 0 I >1 2 3 4 A 6 8 8 

c 



XORK 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

XOR Immediate with Accumulator with Shift XORK 

[<label>] XORK <constant>[,<shift>] 

16-bit constant 
0 s shift s 15 (defaults to 0) 

(PC) + 2-+ PC 
(ACC(30-0)) .XOR. [constant x 2shift] -+ ACC(30-0) 
(ACC(31)) -+ ACC(31) 

Not affected by SXM. 

15 14 13 12 11 

1 1 o 1 I 
10 9 8 7 6 

Shift I 0 0 

16-Bit Constant 

5 4 3 2 1 0 

0 0 0 1 1 

The left-shifted 16-bit immediate constant is exclusive-ORed with the accu­
mulator, leaving the result in the accumulator. Low-order bits below and high­
order bits above the shifted value are treated as zeroes, thus not affecting the 
corresponding bits of the accumulator. Note that the most-significant bit of the 
accumulator is not affected, regardless of the shift code value. 

2 
Class V (2) 
Category X 

XORK >FFFF,8 

ACC 

Before Instruction 

0 I >1 2 3 4 5 a 1 a 
c 

ACC 

After Instruction 

~ 1>1 2 CB A 9 7 8 

c 

4-153 



ZAC 

Assembler Syntax 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

4-154 

Zero Accumulator ZAC 

[<label>] ZAC 

None 

(PC) + 1 .... PC 
0 -+ACC 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 ol 

The contents of the accumulator are replaced with zero. The ZAC instruction has 
been implemented as a special case of LACK. (ZAC assembles as LACK 0.) 

1 
Class IV (1) 
Category X 

ZAC 

ACC 

Before Instruction 

~ l>A5A5A5A5 

c 

After Instruction 

ACC ~I >O 
c 



ZALH Zero Low Accumulator and Load High Accumulator ZALH 

Assembler Syntax 
Direct Addressing: [<label>] ZALH <dma> 

Indirect Addressing: [<label>] ZALH {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 s dma s 127 
0 s next ARP s 7 

(PC) + 1 -+ PC 
0 -+ ACC(15-0) 
(dma)-+ ACC(31-16) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct 0 1 0 0 0 0 0 ol o I Data Memory Address 

Indirect I 0 0 0 0 0 0 ol See Section 4.1 

ZALH loads a data memory value into the high-order half of the accumulator. The 
low-order bits of the accumulator are zeroed. 

ZALH is useful for 32-bit arithmetic operations. 

1 
Class I (1) 
Category C 

ZALH 
or 
ZALH 

DAT3 

* 

Data 
Memory 

4099 

ACC 0 
c 

I 

(DP = 32) 

If current auxiliary register contains 4099. 

Before Instruction After Instruction 

Data 
>3 F 0 1 Memory >3 F 0 1 

4099 

>7 7 F F F F ACC 0 I >3 F 0 1 0 0 0 0 

c 

4-155 



ZALR 
Zero Low Accumulator, Load High Accumulator 

with Rounding ZALR 

Assembler Syntax 
Direct Addressing: [<label>] ZALR <dma> 

Indirect Addressing: [<label>] ZALR {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[,<next ARP>] 

Operands 

Execution 

Encoding 

Words 
Cycles 
Repeatability 

Example 

4-156 

0 :S dma s 127 
0 :S next ARP s 7 

(PC) + 1 -+PC 
>8000 -+ ACC(15-0) 
(dma)-+ ACC(31-16) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 1 1 1 0 1 1 I o I Data Memory Address 

Indirect I 0 1 1 1 1 0 1 1 1 See Section 4.1 

mm The ZALR mstruct1on loads a-aaramemory--valueTlifo the h1g11~-orcrerflalr-Oflffe ______ -
accumulator with rounding the value by adding 1 /2 LSB; i.e., the 15 low bits (bits 
0-14) of the accumulator are set to zero and bit 15 of the accumulator is set to 
one. 

ZALR is a derivative instruction from ZALH. 

1 
Class I (1) 
Category C 

ZALR 
or 
ZALR 

DAT3 

* 

Data 
Memory 

4099 

ACC ~ 
c 

I 

(DP = 32) 

If current auxiliary register contains 4099. 

Before Instruction After Instruction 

Data 
>3F01 Memory >3F01 

4099 

>7 7 FF FF ACC ~ I >3F0180 0 0 

c 



'ZALS 
Zero Accumulator, Load Low Accumulator 

with Sign-Extension Suppressed ZALS 

Assembler Syntax 
Direct Addressing: [<label>] ZALS <dma> 

Indirect Addressing: [<label>] ZALS {*l*+l*-1*0+1*0-l*BRO+l*BRO-}[.<next ARP>] 

Operands 

Execution 

Encoding 

Description 

Words 
Cycles 
Repeatability 

Example 

0 :S dma :S 127 
0 :S next ARP :S 7 

(PC) + 1 -+ PC 
0 -+ ACC(31 -16) 
(dma) -+ ACC(15-0) 

Not affected by SXM. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct I 0 1 0 0 0 0 0 1 I o I Data Memory Address 

Indirect I 0 1 0 0 0 0 0 1 1 See Section 4.1 

The contents of the addressed data memory location are loaded into the 16 
low-order bits of the accumulator. The upper half of the accumulator is zeroed. 
The data is treated as a 16-bit unsigned number rather than a two's-complement 
number. Therefore, there is no sign-extension with this instruction, regardless 
of the state of SXM. (ZALS behaves the same as a LAC instruction with no shift 
and SXM = 0.) 

ZALS is useful for 32-bit arithmetic operations. 

1 
Class I (1) 
Category C 

DATl (DP = 6) ZALS 
or 
ZALS * If current auxiliary register contains 769. 

Before Instruction After Instruction 

Data Data 
Memory >F 7 FF Memory >F 7 FF 

769 769 

ACC ~ I >7 FF 0 0 0 3 3 ACC ~ I >F 7 FF 

c c 

4-157 



4-158 



5. Software Applications 

The TMS320C25 microprocessor/microcomputer design emphasizes overall speed, 
communication, and flexibility. Control signals and instructions provide block­
memory transfers, communication with off-chip devices (both serial and parallel), 
and multiprocessing possibilities. The instructions are tailored to digital signal proc­
essing tasks, providing single-cycle multiply/accumulates, adaptive filtering support, 
and many other features. There is also instruction support for floating-point, 
extended-precision, and logical processing. Increased throughput for many digital 
signal processing (DSP) applications is accomplished by the single-cycle 
multiply/accumulate instructions, two large on-chip RAM blocks, eight auxiliary 
registers with a dedicated arithmetic unit, a serial port, hardware timer, and single­
cycle 1/0. 

This section provides explanations of how to use the various TMS320C25 processor 
and instruction set features along with assembly language coding examples. More 
information about specific applications can be found in the book, Digital Signal 
Processing Applications with the TMS320 Family. 

Major topics discussed in this section are listed below. 

• Processor Initialization (Section 5.1 on page 5-2) 

• Program Control (Section 5.2 on page 5-4) 
Subroutines 
Software stack 
Timer operation 
Single-instruction loops 
Computed GOTOs 

• Interrupt Service Routines (Section 5.3 on page 5-11) 
Context switching 
Interrupt priority 

• Memory Management (Section 5.4 on page 5-15) 
Block moves 
Configuring on-chip RAM 
Using on-chip RAM for program execution 

• Fundamental Logical and Arithmetic Operations (Section 5.5 on page 5-23) 
Status register effects 
Bit manipulation 

• Advanced Arithmetic Operations (Section 5.6 on page 5-25) 
Overflow management 
Scaling 
Moving data 
Multiplication 
Division 
Floating-point arithmetic 
Indexed addressing 
Extended-precision arithmetic 

• Application-Oriented Operations (Section 5.7 on page 5-42) 
Companding 
Filtering 
Fast Fourier Transforms (FFT) 

~ 

6-1 



Software Applications 

5.1 Processor Initialization 

Prior to the execution of a digital signal processing algorithm, it is necessary to 
initialize the processor. Generally, initialization takes place anytime the processor is 
reset. 

When reset is activated by applying a low level to the RS (reset) input for at least 
three cycles, the TMS320C25 terminates execution and forces the program counter 
(PC) to zero. Program memory location 0 normally contains a B (branch) instruction 
in order to direct program execution to the system initialization routine. The hardware 
reset !!llso initializes various registers and status bits. · 

After reset, the processor should be initialized to meet the requirements of the system. 
Instructions should be executed that set up operational modes, memory pointers, 
interrupts, and the remaining functions necessary to meet system requirements. 

To configure the processor after reset,. the following internal functions should be 
-· · · ·-··- ·---~--.. --------'"--·· 1n 1t1al1zed: ~- ----·-~-------------------·------·------·-------·------·---·--- -·-· 

• Memory-mapped registers 
• Interrupt structure 
e Mode control (OVM, SXM, HM, FSM, FO, TXM, PM) 
• Memory control (CNF) 
• Auxiliary registers and the auxiliary register pointer (ARP) 
• Data memory page pointer (DP). 

The OVM (overflow mode), TC (test/control flag), and IMR (interrupt mask register) 
bits are not initialized by reset. The auxiliary register pointer (ARP), auxiliary register 
pointer buffer (ARB), and data memory page pointer (DP) are also not initialized 
by reset. 

Example 5-1 shows coding for initializing the TMS320C25 to the following machine 
state, in addition to the initialization performed during the hardware reset: 

• All interrupts enabled 
• Overflow mode (OVM) disabled 
• Data memory page pointer (DP) set to zero 
• Auxiliary register pointer (ARP) set to seven 
• Internal memory filled with zero. 



Software Applications 

Example 5-1. Processor Initialization 

TITL 'PROCESSOR INITIALIZATION' 
IDT 'EXAMPLE' 
DEF RESET,INTO,INT1,INT2 
DEF TINT,RINT,XINT,USER 
REF ISRO,ISR1,ISR2 
REF TIME,RCV,XMT,PROC 

* * PROCESSOR INITIALIZATION 
* RESET AND INTERRUPT VECTOR SPECIFICATION 
* BRANCHES FOR EXTERNAL AND INTERNAL INTERRUPTS 
* 

AORG >0000 
RESET B INIT RS- BEGINS PROCESSING HERE. 
* 
INTO B ISRO INTO- BEGINS PROCESSING HERE. 
INTl B ISRl INTl- BEGINS PROCESSING HERE. 
INT2 B ISR2 INT2- BEGINS PROCESSING HERE. 

* 
AORG >0018 

TINT B TIME TIMER INTERRUPT PROCESSING. 
RINT B RCV SERIAL PORT RECEIVE PROCESSING. 
XINT B XMT SERIAL PORT TRANSMIT PROCESSING. 
* 
USER B PROC TRAP VECTOR PROCESSING BEGINS. 
* * THE BRANCH INSTRUCTION AT PROGRAM MEMORY LOCATION 0 DIRECTS 
* EXECUTION TO BEGIN HERE FOR RESET PROCESSING THAT INITIALIZES 
* THE PROCESSOR. WHEN RESET IS APPLIED, THE FOLLOWING CONDITIONS 
* ARE ESTABLISHED FOR THE STATUS AND OTHER INTERNAL REGISTERS: 
* 
* ARP ov OVM 1 INTM DP 
* STO: xxx 0 x 1 1 xxxxxxxxx 
* 
* ARB CNF TC SXM c 11 HM FSM XF FO TXM PM 
* STl: xxx 0 x 1 1 11 1 1 1 0 0 00 
* * REGISTER ADDRESS DATA 
* ORR >0000 xx xx xxxx xxxx xx xx 
* DXR >0001 xx xx xxxx xxxx xx xx 
* TIM >0002 1111 1111 1111 1111 
* PRO >0003 1111 1111 1111 1111 
* IMR >0004 1111 1111 llXX xxxx 
* GREG >0005 1111 1111 0000 0000 
* 
* RESERVED XINT RINT TINT INT2 INTl INTO 
* IMR: 1111111111 x x x x x x 
* 
INIT ROVM DISABLE OVERFLOW MODE. 

LDPK 0 POINT DP REGISTER TO DATA PAGE o. 
LARP 7 POINT TO AUXILIARY REGISTER 7. 
LACK >3F LOAD ACCUMULATOR WITH >3F. 
SACL 4 ENABLE ALL INTERRUPTS VIA IMR. 

5-3 



Software Applications 

* * INTERNAL DATA MEMORY INITIALIZATION. 
* 

* 

* 
* 

* 

ZAC 
LARK 
RPTK 
SACL 

LRLK 
RPTK 
SACL 
RPTK 
SACL 

RPTK 
SACL 
RPTK 
SACL 

AR7, >60 
31 
*+ 

AR7,>200 
255 
*+ 
255 
*+ 

255 
*+ 
255 
*+ 

ZERO THE ACCUMULATOR. 
POINT TO BLOCK B2. 

STORE ZERO IN ALL 32 LOCATIONS. 

POINT TO BLOCK BO. 

ZERO ALL OF PAGE 4. 

ZERO ALL OF PAGE 5. 

POINT TO BLOCK Bl. 

ZERO ALL OF PAGE 6. 

ZERO ALL OF PAGE 7. 

* THE PROCESSOR IS INITIALIZED. THE REMAINING APPLICATION-
-•- DEPENDENT --nrRT--eF---THE- SYSTEM- (BOTH ON -Mffi· OFF CHIP) mrem.-e­
* NOW BE INITIALIZED. 
* 

EINT ENABLE ALL INTERRUPTS. 

5.2 Program Control 

To facilitate the TMS320C25's use in general-purpose high-speed processing, a 
variety of instructions are provided for software stack expansion, subroutine calls, 
timer operation, single-instruction loops, and external branch control. Descriptions 
and examples of how to use these features of the TMS320C25 are given in this 
section. 

5.2.1 Subroutines 

5-4 

The TM5320C25 has a 16-bit Program Counter (PC) and an eight-level hardware 
stack for PC storage. The CALL and CALA subroutine calls store the current contents 
of the program counter on the top of the stack. The RET (return from subroutine) 
instruction then pops the top of the stack to the program counter. 

Example 5-2 illustrates the use of a subroutine to determine the square root of a 
16-bit number. Processing proceeds in the main routine to the point where the square 
root of a number should be taken. At this point a CALL is made to the subroutine, 
transferring control to that section of the program memory for execution and then 
returning to the calling routine via the RET instruction when execution has 
completed. 



Software Applications 

Example 5-2. Subroutines 

* AUTOCORRELATION 
* * THIS ROUTINE PERFORMS A CORRELATION OF TWO VECTORS AND THEN 
* CALLS A SQUARE ROOT SUBROUTINE THAT WILL DETERMINE THE RMS 
* AMPLITUDE OF THE WAVEFORM. 
* 
AUTOC 

* 

LAC ENERGY 
CALL SQRT 
SACL ENERGY 

* SQUARE ROOT 
* * THIS SUBROUTINE DETERMINES THE SQUARE ROOT OF A NUMBER X THAT 
* IS LOCATED IN THE LOW HALF OF THE ACCUMULATOR WHEN THE ROUTINE 
* IS CALLED. THE FRACTIONAL SQUARE ROOT OF X IS TAKEN, WHERE 
* 0 < X < 1 AND WHERE 1 IS REPRESENTED BY >7FFF. THE RESULT IS 
* RETURNED TO THE CALLING ROUTINE IN THE ACCUMULATOR. 
* 
STO EQU >60 
STl EQU >61 
NUMBER EQU >62 
TEMPR EQU >63 
GUESS EQU >64 
* 
SQRT 

* 

SST 
SSTl 
LDPK 
SSXM 
SPM 
SACL 
LARP 
LARK 
LALK 
SACL 
SACL 
SACH 
LAC 
SELK 
BLZ 
LAC 
SACL 
SACL 
LARK 

STO 
STl 
0 

1 
NUMBER 
ARl 
ARl,11 
>800 
GUESS 
TEMPR 
ROOT 
NUMBER 
>200 
SQRTLP 
GUESS,3 
GUESS 
TEMPR 
ARl,14 

* SQUARE ROOT LOOP 
* 
SQRTLP SQRA 

ZALH 
SPAC 
BLZ 
ZALH 
SACH 

TEMPR 
NUMBER 

NEXTLP 
TEMPR 
ROOT 

SAVED STATUS REGISTER STO ADDRESS 
SAVED STATUS REGISTER STl ADDRESS 
NUMBER X WHOSE SQUARE ROOT IS TAKEN 
INTERMEDIATE ROOTS 
SQUARE ROOT OF X 

SAVE STATUS REGISTER STO. 
SAVE STATUS REGISTER STl. 
LOAD DATA PAGE POINTER = 0. 
SET SIGN-EXTENSION MODE. 
LEFT-SHIFT PR OUTPUT TO ACCUMULATOR. 
SAVE X. 
INITIALIZE VARIABLES FOR SQUARE ROOT. 
12 ITERATIONS 
ASSUME X IS LESS THAN >200. 
SET INITIAL GUESS TO >800. 
SET FIRST INTERMEDIATE ROOT TO >800. 
SET SQUARE ROOT VALUE TO 0. 
LOAD X INTO THE ACCUMULATOR. 
TEST IF X IS LESS THAN >200. 
IF YES, TAKE THE ROOT; 
IF NO, THEN REINITIALIZE. 
SET INITIAL GUESS TO >4000. 
SET FIRST INTERMEDIATE ROOT TO >4000. 
15 ITERATIONS 

SQUARE TEMPORARY (INTERMEDIATE) ROOT. 
CHECK IF RESULT IS LESS THAN X. 

IF IT'S NOT, SKIP ROOT. UPDATE. 
IF IT IS, SET ROOT EQUAL TEMPR. 

5-5 



Software Applications 

NEXTLP LAC 
SACH 
ADDH 
SACH 
BANZ 
LAC 
LSTl 
LST 
RET 

GUESS,15 
GUESS 
ROOT 
TEMPR 
SQRTLP 
ROOT 
STl 
STO 

SCALE DOWN GUESS BY 2 TO CONVERGE. 

ADD CURRENT ROOT ESTIMATE. 
UPDATE TEMPORARY ROOT VALUE. 
REPEAT SPECIFIED NUMBER OF ITERATIONS. 
LOAD THE ROOT OF X. 
RESTORE STATUS REGISTER STl. 
RESTORE STATUS REGISTER STO. 

Hardware stack allocation involves its use in interrupts, subroutine calls, pipelined 
instructions, and the emulator (XDS). The TMS320C25 disables all interrupts when 
taking an interrupt trap. If interrupts are enabled more than one instruction before 
the return of the interrupt service routine, the routine can also be interrupted, thus 
using another level of the hardware stack. This condition should be considered when 
managing the use of the stack. When nesting subroutine calls, each call uses a level 
of the stack. The number of levels used by the interrupt must be remembered as well 
as #te~ ef tfte-nesti ng-ef subroutines. ···· :f-he- emu later {X-DSt tJSeS -<me--~··Gf 
the stack for breakpoint/single-step operations. Given these constraints, the follow­
ing listings describe possible allocations of the hardware stack levels: 

- 1 level suggested for emulator (XDS) stack 
- 1 level reserved for TRAP (software interrupt) instruction 
- 1 level reserved for interrupt service routines ( ISR) 
- 5 levels available for subroutine calls. 

or: 

- 1 level suggested for emulator (XDS) stack 
- 1 level reserved for TRAP (software interrupt) instruction 
- 2 levels reserved for interrupt service routines (ISR) 
- 4 levels available for subroutine calls. 

When two levels are allocated for ISRs, the individual ISRs can utilize one level of 
subroutine calls or one level of interrupt nesting. 

5.2.2 Software Stack 

5-6 

Provisions have been made on the TMS320C25 for extending the hardware stack into 
data memory. This is useful for deep subroutine nesting or stack overflow protection. 

The hardware stack is accessible via the accumulator using the PUSH and POP 
instructions. Two additional instructions, PSHD and POPD, are included in the 
instruction set so that the stack may be directly stored to and recovered from data 
memory. 

A software stack can be implemented by using the POPD instruction at the beginning 
of each subroutine in order to save the PC in data memory. Then before returning, 
a PSH D is used to put the proper value back onto the top of the stack. 

When the stack has seven values stored on it and two or more values are to be put 
on the stack before any other values are popped off, a subroutine that expands the 
stack is needed, such as shown in Example 5-3. In this example, the main program 
stores the stack starting location in memory in AR2 and indicates to the subroutine 
whether to push data from memory onto the stack or pop data from the stack to 
memory. If a 'O' is loaded into the accumulator before calling the subroutine, the 



Software Applications 

subroutine pushes data from memory to the stack. If a '1' is loaded into the accu­
mulator, the subroutine pops data from the stack to memory. 

Since the CALL instruction uses the stack to save the program counter, the subroutine 
pops this value into the accumulator and utilizes the BACC (branch to address 
specified by accumulator) instruction to return to the main program. This prevents 
the program counter from being stored into a memory location. The subroutine in 
Example 5-3 uses the BANZ (branch on auxiliary register not zero) instruction to 
control all of its loops. 

Example 5-3. Software Stack Expansion 

* THIS ROUTINE EXPANDS THE STACK WHILE LETTING THE MAIN 
* PROGRAM DETERMINE WHERE TO STORE THE STACK CONTENTS OR FROM 
* WHERE TO RECOVER THEM. 
* 
STACK LARP 2 USE AR2. 

LARK ARl,6 LOAD COUNTER. 
BNZ PO IF POPD IS NEEDED, GOTO PO. 
POP ELSE, SAVE PROGRAM COUNTER. 

p PSHD *+,ARl PUT MEMORY IN STACK. 
BANZ P,*-,AR2 BRANCH TO P UNTIL STACK IS FULL. 
BACC RETURN TO MAIN PROGRAM. 

PO POP SAVE PROGRAM COUNTER. 
MAR *- ALIGN STACK POINTER. 

POl POPD *-,ARl PUT STACK IN MEMORY. 
BANZ P01,*-,AR2 BRANCH TO POl UNTIL SAVED. 
MAR *+ REALIGN STACK POINTER. 
BACC RETURN TO MAIN PROGRAM. 

5.2.3 Timer Operation 

The TMS320C25 provides an on-chip timer and its associated interrupt to perform 
various functions at regular time intervals. By programming the period (PRO) register 
from 1 to 65,535 ( > FFFF), a timer interrupt (Tl NT) can be generated every 2 to 
65,536 cycles, respectively. (A period register value of zero is not allowed.) 

Two memory-mapped registers are used to operate the timer. The timer {TIM) 
register, data memory location 2, holds the current count of the timer. At every 
CLKOUT1 cycle, the TIM register is decremented by one. The PRO register, data 
memory location 3, holds the starting count for the timer. When the TIM register 
decrements to zero, a timer interrupt {TINT) is generated. In the following cycle, the 
contents of the PRO register are loaded into the TIM register. In this way, a TINT is 
generated every (PRO + 1) cycles of CLKOUT1. 

The timer and period registers can be read from or written to on any cycle. The count 
can be monitored by reading the TIM register. A new counter period can be written 
to the PRO register without disturbing the current timer count. The timer will then 
start the new period after the current count is complete. If both the PRO and TIM 
registers are loaded with a new period, the timer begins decrementing the new period 
without generating an interrupt. Thus, the programmer has complete control of the 
current and next periods of the timer. 

The TIM and PRO registers are both set to the maximum value on reset {>FFFF). 
The TIM register begins decrementing only after RS is de-asserted. If the timer is 
not used, TINT should be masked. The PRO register can then be used as a gener-

5-7 



Software Applications 

al-purpose data memory location. If TINT is used, the PRO and TIM registers should 
be programmed before unmasking the TINT. 

Example 5-4 shows the assembly code that implements the use of the timer to divide 
down the CLKOUT1 signal. To generate a 9600-Hz clock signal, the PRO register 
should be loaded with 520. In the timer interrupt service routine, the XF line is 
toggled. The XF output is also used as an input for BIO in this example. The output 
of XF will provide a 50-percent duty cycle clock signal as long as the main routine 
or other interrupt routines do not disable interrupts. Interrupts may be disabled by 
direct or implied use of DINT, or by executing instructions in the repeat mode. The 
value for the PRO register is calculated as follows: 

CLKOUT1 /{PRO + 1} = 2 x frequency of signal 
1 0 MHz/ (520 + 1 } = 2 x 9600 Hz 

Assuming a 10-M Hz CLKOUT1 frequency, the frequency of the divided signal is 
9597 Hz. 

Example 5-4. Clock Divider Using Timer 

* SETUP FOR INTERRUPT SERVICE ROUTINE. 
* 

LALK 
SACL 
LACK 
OR 
SACL 
EINT 

. 
* I/O SERVICE 
* 
TIME BIOZ 

RXF 
EINT 
RET 

SETl SXF 
EINT 
RET 

520 
DMA3 
8 
DMA4 
DMA4 

ROUTINE. 

SETl 

LOAD THE PERIOD REGISTER. 

ENABLE THE TIMER INTERRUPT. 
ENABLE INTERRUPTS. 

CHECK THE CURRENT XF STATE. 
XF WAS HIGH; SET IT LOW. 
ENABLE INTERRUPTS. 
RETURN TO INTERRUPTED CODE. 
XF WAS LOW; SET IT HIGH. 
ENABLE INTERRUPTS. 
RETURN TO INTERRUPTED CODE. 

5.2.4 Single-Instruction Loops 

5-8 

When programming time-critical high-computationiJI tasks, it is often necessary to 
repeat the same operation many times. For these cases, repeat instructions that allow 
the execution of the next single instruction N+1 tirhes are provided. N is defined 
by an eight-bit repeat counter (RPTC}, which is loaded by the RPT or RPTK 
instructions. The instruction immediately following is then executed, and the RPTC 
is decremented until it reaches zero. 

When using the repeat feature, the instruction being repeated is fetched only once. 
As a result, many multicycle instructions become single-cycle when repeated. This 
is especially useful for 1/0 instructions, such as TBLR/TBLW, IN/OUT, or 
BLKD/BLKP. 

Since the instruction is fetched and internally latched, the program bus can be used 
to fetch or write a second operand in parallel to operations using the data bus. With 
the instruction latched for repeated execution, the program counter can be loaded 
with a data address and incremented on succeeding executions to fetch data in 



Software Applications 

successive memory locations. As an example, the MAC instruction fetches the 
multiplicand from program memory via the program bus. Simultaneous with the 
program bus fetch, the second multiplicand is fetched from data memory via the data 
bus. In addition to these data fetches, preparation is made for accesses in the 
following cycles by incrementing the program counter and by indexing the auxiliary 
register. TBLR is another example of an instruction that benefits from simultaneous 
transfers of data on both the program and data buses. In this case, data values from 
a table in program memory may be read and transferred to data memory. When 
repeated, the program overhead of reading the instruction from program memory 
must be executed only once, thus allowing the rest of the executions to operate in 
a single cycle. 

Programs, such as those implementing digital filters, require loops that execute in a 
minimum amount of time. Example 5-5 shows the use of the RPT or RPTK 
instructions. 

Example 5-5. Instruction Repeating 

* THIS ROUTINE USES THE RPT INSTRUCTION TO SET UP THE LOOP COUNTER 
* IN ONE CYCLE. THE FOLLOWING EQUATION IS IMPLEMENTED IN THIS 
* ROUTINE: 
* * 10 
* 
* 
* 
* 

\ 
I 

* I = 1 
* 

X(I) x Y(I) 

* THIS ROUTINE ASSUMES THAT THE X VALUES ARE LOCATED IN ON-CHIP 
* ROM, AND THE Y VALUES IN BLOCK Bl. WHEN REPLACING RPT NUM 
*WITH RPTK 9, THE PROGRAM WILL EXECUTE THE SAME WAY. 
* 
SERIES LARP AR6 

LACK 9 
SACL NUM 
LRLK AR6,>300 
MPYK >O 
ZAC 
RPT NUM 
MAC >600, *+ 
APAC 
RET 

5.2.5 Computed GOTOs 

SET COUNTER TO 9. 
(NUM) = 9. 
POINT AT BEGINNING OF DATA. 
CLEAR P REGISTER. 
CLEAR ACCUMULATOR. 
EXECUTE FOLLOWING INSTRUCTION 10 TIMES. 
MULTIPLY AND ACCUMULATE; INCREMENT AR6. 

RETURN TO MAIN PROGRAM. 

Processing may be executed in a time- and process-dependent or selected way. 
Following a specific time or data processing path may then result in selecting one 
of several processing options. 

A simple computed GOTO can be programmed in the TMS320C25 by using the 
CALA instruction. This instruction uses the contents of the accumulator as the direct 
address of the call. Thus, the call address can be computed in the ALU, as shown 
in Example 5-6. 

5-9 



Software Applications 

Example 5-6. Computed GOTO 

5-10 

* TASK CONTROLLER 
* * THIS MAIN TASK ROUTINE CONTROLS THE ORDER OF EXECUTION 
* AND SCHEDULING OF TASKS. WHEN AN INTERRUPT OCCURS, THE 
* INTERRUPT SERVICE .ROUTINE IS EXECUTED TO PROCESS THE INPUT 
* AND OUTPUT DATA SAMPLES. AFTER THE INTERRUPT SERVICE 
* ROUTINE HAS COMPLETED, THE PROCESSOR BEGINS EXECUTION WITH 
* THE INSTRUCTION FOLLOWING THE IDLE INSTRUCTION. THIS 
* ROUTINE SELECTS THE TASK APPROPRIATE FOR THE CURRENT 
* SAMPLE CYCLE, CALLS THE TASK AS A SUBROUTINE, AND BRANCHES 
* BACK TO THE IDLE TO WAIT FOR THE NEXT SAMPLE INTERRUPT 
* WHEN THE SCHEDULED TASK HAS COMPLETED EXECUTION. 
* 
WAIT IDLE 

LAC SAMPLE 
SUB ONE 
BGEZ OVRSAM 
LACK 15 

. --u-·n OVRSAM - _.rn_. ___ SAMPLE 

* 
TSKSEQ 

ADLK TSKSEQ 
TBLR TEMP 
LAC TEMP 
CALA 
B WAIT 

EQU $ 
DATA DUMMY 
DATA DUMMY 
DATA DUMMY 
DATA DUMMY 
DATA BDCLK2 
DATA DUMMY 
DATA OUT 
DATA DECODE 
DATA DEMO DB 
DATA DUMMY 
DATA AGCUPT 
DATA DUMMY 
DATA BDCLKl 
DATA DUMMY 
DATA DUMMY 
DATA DUMMY 

WAIT FOR SAMPLE INTERRUPT. 
FETCH SAMPLE COUNT VALUE. 
DECREMENT THE SAMPLE COUNT. 
TEST FOR END OF BAUD INTERVAL. 

; INIT COUNT FOR NEW BAUD INTERVAL. 
.+-SAVE NEW COUNT VAT.TIE ------··· 

ADD TASK TABLE BASE ADDRESS. 
READ SUBROUTINE TASK ADDRESS. 
LOAD ACCUMULATOR FOR TASK CALL. 
EXECUTE APPROPRIATE TASK. 

15 - UNUSED CYCLE 
14 - UNUSED CYCLE 
13 - UNUSED CYCLE 
12 - UNUSED CYCLE 
11 - COMPUTE ENERGY E ( 11) 
10 - UNUSED CYCLE 
9 - COMMUNICATE WITH U-CONTROLLER 
8 - DECODE/GET SCRAMBLED DIBIT 
7 - DEMODULATE IN MIDDLE OF BAUD 
6 - UNUSED CYCLE 
5 - UPDATE AGC EVERY 3RD BAUD 
4 - UNUSED CYCLE 
3 - COMPUTE ENERGY E ( 3) 
2 - UNUSED CYCLE 
1 - UNUSED CYCLE 
0 - UNUSED CYCLE 



Software Applications 

5.3 Interrupt Service Routine 

Interrupts on the TMS320C25 are prioritized and vectored. When an interrupt occurs, 
the corresponding flag is set in the Interrupt Flag Register (IFR). If the corresponding 
bit in the Interrupt Mask Register (IMR) is set and interrupts are enabled (INTM=O), 
then interrupt processing begins. 

When the interrupt vector is loaded into the program counter, interrupts are disabled 
(INTM=1) and a branch is made to the appropriate routine via the branch instruction 
stored at the associated vector location. Since all interrupts are disabled, interrupt 
processing may proceed without further interruption unless the interrupt service 
routine (ISR) re-enables interrupts. 

Unless the interrupt service routines are simple 1/0 handlers, the processing in each 
ISR generally must assure that the processor context is preserved during execution. 
The context must be saved before executing the routine itself and restored when the 
routine is finished. A common routine or routines individualized for each interrupt 
may be used to secure the context of the processor during interrupt processing. 
Context switching is also useful for subroutine calls, especially when extensive use 
is made of the stack or auxiliary registers. Code examples of context switching and 
an interrupt service routine are provided in this section. 

5.3.1 Context Switching 

Context switching, commonly required when processing a subroutine call or inter­
rupt, may be quite extensive or simple, depending on the system requirements. On 
the TMS320C25, the program counter is stored automatically on the hardware stack. 
If there is any important information in the other TMS320C25 registers, such as the 
status or auxiliary registers, these must be saved by software command. A stack in 
data memory, identified by an auxiliary register, is useful for storing the machine state 
when processing interrupts. 

Examples of saving and restoring the state of the TMS320C25 are given in Example 
5-7 and Example 5-8. Auxiliary register 7 (AR7) is used in both examples as the 
stack pointer. As the stack grows, it expands into lower memory addresses. The 
registers saved are the status registers (STO and ST1 ), accumulator (ACCH and 
ACCL), product register (PR), temporary register (TR), all eight levels of the hardware 
stack, and the auxiliary registers (ARO through AR6). 

The routines in Example 5-7 and Example 5-8 are protected against interrupts, 
allowing context switches to be nested. This is accomplished by the use of the 
MAR *-and MAR *+instructions at the beginning of the context save and context 
restore routines, respectively. Note that the last instruction of the context save 
decrements AR7 while the context restore is completed with an additional increment 
of AR7. This prevents the loss of data if a context save or restore routine is interrupted. 

5-11 



Software Applications 

Example 5-7. Context Save 

TITL 'CONTEXT SAVE' 
DEF SAVE 

* 
* CONTEXT SAVE ON SUBROUTINE CALL OR INTERRUPT. 
* 
* ASSUME AR7 IS THE STACK POINTER AND AR7 = 128. 
* 
SAVE LARP 

MAR 
AR7 
*-

; (ARP ) - - > ARB , 7 - - > ARP , AR 7 
AR7 

5-12 

* 
* SAVE THE STATUS REGISTERS. 

SSTl *- ; STl --> (127), 
SST *- ; STO --> (126), 

* 
* SAVE THE ACCUMULATOR. 

SACH *- ACCH --> (125), 
SACL *- ACCL--> (124), 

* SAVE THE P REGISTER. 
SPM 0 
SPH *-
SPL *-

* 

NO SHIFT ON PR OUTPUT 
PRH --> (123), 
PRL--> (122), 

* SAVE THE T REGISTER. 
MPYK 1 PR = TR 
SPL *- TR --> (121), 

* 
* SAVE _ALL 

RPTK 
POPD 

EIGHT 
7 
*-

LEVELS OF 

TOS 

THE HARDWARE STACK. 

( 8) --> ( 120) ' 
* 
* 
* 
* 
* 
* 
* 
* 

STACK( 7) 
STACK(6) 
STACK(5) 
STACK(4) 
STACK(3) 
STACK(2) 
BOS ( 1) 

--> ( 119) ' 
--> ( 118) ' 
--> (117), 
--> ( 116) ' 
--> ( 115) ' 
--> ( 114) ' 
--> ( 113) ' 

* SAVE AUXILIARY REGISTERS ARO THROUGH AR6. 
SAR ARO,*- ARO --> ( 112) , 
SAR ARl, *- ARO --> ( 111) , 
SAR AR2,*- ARO--> (110), 
SAR AR3, *- ARO --> ( 109) , 
SAR AR4, *- ARO --> ( 108) , 
SAR AR5, *- ARO --> ( 107) , 
SAR AR6, *- ARO --> ( 106) , 

* 
* SAVE IS COMPLETE. 

AR7 
AR7 

AR7 
AR7 

AR7 
AR7 

AR7 

AR7 
AR7 
AR7 
AR7 
AR7 
AR7 
AR7 
AR7 

AR7 
AR7 
AR7 
AR7 
AR7 
AR7 
AR7 

128 
127 

126 
125 

124 
123 

122 
121 

120 

119 
118 
117 
116 
115 
114 
113 
112 

111 
110 
109 
108 
107 
106 
105 



Software Applications 

Example 5-8. Context Restore 

* 

TITL 
DEF 

'CONTEXT RESTORE' 
RES TOR 

* CONTEXT RESTORE AT THE END OF A SUBROUTINE OR INTERRUPT. 
* 
* ASSUME AR7 IS THE STACK POINTER AND AR7 = 105. 
* 
RESTOR LARP 

MAR 
AR7 
*+ 

(ARP) --> ARB, 7 --> ARP, AR7 
AR7 

105 
106 

* 
* RESTORE AUXILIARY REGISTERS ARO THROUGH AR6. 

LAR AR6,*+ (106) --> AR6, 
LAR AR5, *+ ( 107) --> AR5, 
LAR AR4,*+ (108) --> AR4, 
LAR AR3,*+ (109) --> AR3, 
LAR AR2,*+ (110) --> AR2, 
LAR ARl,*+ (111) --> ARl, 
LAR ARO,*+ (112) --> ARO, 

* 
* RESTORE ALL EIGHT LEVELS OF THE HARDWARE STACK. 

RPTK 7 
PSHD *+ ( 113) --> BOS ( 1) , 

* ( 114) --> STACK( 2) , 
* ( 115) --> STACK( 3) , 
* ( 116) --> STACK( 4), 
* ( 117) --> STACK( 5), 
* ( 118) --> STACK(6), 
* ( 119) --> STACK( 7), 
* ( 120) --> TOS ( 8) , 
* 

AR7 
AR7 
AR7 
AR7 
AR7 
AR7 
AR7 

107 
108 
109 
110 
111 
112 
113 

AR7 114 
AR7 115 
AR7 116 
AR7 117 
AR7 118 
AR7 119 
AR7 120 
AR7 121 

* THE RETURN PC IS NOW ON THE TOP OF THE STACK FOR THE 
* RET INSTRUCTION. NOTE THAT THE LOWER 16 BITS OF THE 
* P REGISTER MUST BE LOADED VIA THE T REGISTER AND THAT 
* THE STACK POINTER IS POINTING AT THE VALUE TO BE LOADED 
* IN THE T REGISTER. 
* 
* RESTORE THE 

MAR 
LT 
MPYK 

* 
* RESTORE THE 

LT 
MAR 

LPH 
* 
* RESTORE THE 

ZALS 
ADDH 

* 
* RESTORE THE 

LST 
LS Tl 

* 
* RESTORE IS 

EINT 
RET 

* 

LOW p REGISTER. 
*+ SKIP T REGISTER, 
*- (122) --> TR, 
1 (TR) --> PRL 

T REGISTER. 
*+ ( 121) --> TR, 
*+ SKIP P REGISTER LOW, 

*+ ; ( 12 3) --> PRH, 

ACCUMULATOR. 
*+ ; (124) --> ACCL, 
*+ ; (125) --> ACCH, 

STATUS REGISTERS. 
*+ (126) -> STO, 
*+ (127) -> STl, 

CGMPLETE. 
ENABLE INTERRUPTS. 
RETURN TO INTERRUPTS 
CALLING ROUTINE. 

OR 

AR7 122 
AR7 121 

AR7 122 
AR7 123 

AR7 124 

AR7 125 
AR7 126 

AR7 127 
AR7 128 

5-13 



Software Applications 

5.3.2 Interrupt Priority 

Interrupts on the TMS320C25 are prioritized in hardware. This allows interrupts that 
occur simultaneously to be serviced in a prioritized order. Sometimes priority may 
be determined by frequency or rate of occurrence. An infrequent. but lengthy, inter­
rupt service routine (ISR) might need to be interrupted by a more frequently occurring 
interrupt. In the routine of Example 5-9, the ISR for INT1 temporarily modifies the 

·interrupt mask register (IMR) to permit interrupt processing when an interrupt on 
INTO (but no other interrupt) occurs. When the routine has finished processing, the 
IMR is restored to its original state. 

Example 5-9. Interrupt Service Routine 

5-14 

* 

TITL 
DEF 
REF 

'INTERRUPT SERVICE ROUTINE' 
ISRl 
IMR 

* -INTERRUPT -PROCESSING FOR-EXTERNAL lNTERRUPT fNT1.:... 
* 
* THIS ROUTINE MAY BE INTERRUPTED BY AN INTERRUPT FROM 
* EXTERNAL INTERRUPT INTO-, BUT NO OTHER. 
* 
ISRl LARP AR7 7 --> ARP 

MAR *- AR7 AR7 - 1 
SSTl *- STl --> *AR7, AR7 AR7 - 1 
SST *- STO --> *AR7, AR7 AR7 - 1 
SACH *- ACCH --> *AR7, AR7 AR7 - 1 
SACL *- ACCL --> *AR7, AR7 AR7 - 1 
LDPK 0 DP = 0 
PSHD IMR IMR --> TOS 
LACK >0001 MASK FOR INTO-
AND IMR MASK CURRENT IMR CONTENTS. 
SACL IMR ACC --> IMR 
EINT ENABLE INTERRUPTS. 

* 
* MAIN PROCESSING SECTION FOR ISRl. 

* 
DINT DISABLE INTERRUPTS. 
LDPK 0 DP = 0 
POPD IMR TOS --> IMR 
LARP AR7 7 --> ARP 
MAR *+ AR7 AR7 + 1 
ZALS *+ *AR7 --> ACCL, AR7 AR7 + 1 
ADDH *+ *AR7 --> ACCH, AR7 AR7 + 1 
LST *+ *AR7 --> STO, AR7 AR7 + 1 
LSTl *+ *AR7 --> STl, AR7 AR7 + 1 
EINT ENABLE INTERRUPTS. 
RET 

THE 



Software Applications 

5.4 Memory Management 

The structure of the TMS320C25's memory map is programmable and can vary for 
each application. Instructions are provided for moving blocks of data or program 
memory, configuring a block of on-chip data RAM as program memory, and defining 
part of external data memory as global. Explanations and examples of moving, 
configuring, and manipulating memory are provided in this section. 

5.4.1 Block Moves 

Since the TMS320C25 directly addresses a large amount of memory, blocks of data 
or program code can be stored off-chip in slow memories and then loaded on-chip 
for faster execution. Data can also be moved from on-chip to off-chip for storage 
or for multiprocessor data transfers. 

The BLKD and BLKP instructions facilitate memory-to-memory block moves on the 
TMS320C25. The BLKD instruction moves a block within data memory as shown 
in Example 5-1 0. Data may also be transferred between data memory and program 
memory by means of the TBLR and TBLW instructions. The instructions IN and OUT 
are used to transfer data between the data memory and the 1/0 space. 

Example 5-10. Moving External Data Memory to Internal Data Memory with BLKD 

* THIS ROUTINE USES THE BLKD INSTRUCTION TO MOVE A BLOCK OF 
* EXTERNAL DATA MEMORY (DATA PAGES 8 AND 9) TO INTERNAL BLOCK 
*Bl (DATA PAGES 6 AND 7). 
* 
MOVED LARP 

LRLK 
RPTK 
BLKD 
RET 

AR2 
AR2,>300 
255 
>400,*+ 

DESTINATION IS BLOCK Bl IN RAM. 
REPEAT NEXT INSTRUCTION 256 TIMES. 
MOVE EXTERNAL BLOCK TO BLOCK Bl. 
RETURN TO MAIN PROGRAM. 

For systems that have external program memory but no external data memory, BLKP 
can be used to move program memory blocks into data memory. Example 5-11 
demonstrates how to use the BLKP instruction. 

Example 5-11. Moving Program Memory to Data Memory with BLKP 

* THIS ROUTINE USES THE BLKP INSTRUCTION TO MOVE DATA VALUES 
* FROM PROGRAM MEMORY INTO DATA MEMORY. SPECIFICALLY, THE 
* VALUES IN LOCATIONS 2, 3, 4, AND 5 IN PROGRAM MEMORY ARE 
*MOVED TO LOCATIONS 512, 513, 514, AND 515 IN DATA MEMORY. 
* 
MOVEP LARP 

LRLK 
RPTK 
BLKP 
RET 

AR2 
AR2,512 
3 

SET REFERENCE FOR INDIRECT ADDRESSING. 
LOAD BEGIN~ING OF BLOCK BO IN AR2. 
SET UP LOOP. 

>2,*+ PUT DATA INTO DATA RAM. 
RETURN TO MAIN PROGRAM. 

Another method for transferring data from program memory into data memory makes 
use of the TBLR instruction. By using the TBLR instruction, a calculated, rather than 
predetermined, location of a block of data in program memory may be specified for 
transfer. A routine using this approach is shown in Example 5-12. 

5-15 



Software Applications 

Example 5-12. Moving Program Memory to Data Memory withTBLR 

* THIS ROUTINE USES. THE TBLR INSTRUCTION TO MOVE DATA VALUES 
* FROM PROGRAM MEMORY INTO DATA MEMORY. BY USING THIS ROUTINE, 
* THE PROGRAM MEMORY LOCATION IN THE ACCUMULATOR FROM WHICH 
* DATA IS TO BE MOVED TO A SPECIFIC DATA MEMORY LOCATION CAN 
* BE SPECIFIED. ASSUME THAT THE ACCUMULATOR CONTAINS THE 
* ADDRESS IN PROGRAM MEMORY FROM WHICH TO TRANSFER THE DATA. 

* 
TABLER LARP 

LRLK 
RPTK 
TBLR 
RET 

AR5 
AR5,380 
127 
*+ 

DESTINATION ADDRESS = PAGE 7. 
TRANSFER 128 VALUES. 
MOVE DATA INTO DATA RAM. 
RETURN TO CALLING PROGRAM. 

In cases where systems require that temporary storage be allocated in the program 
memory, TBLW can be used to transfer data f!om interQ_a_L~ata m_~l!IQ.IY_!<?_e.~J~rncil_ 

.. ----program ___ memory.-The coCie-Tn--Exa-mpie-5-1_3 __ demonstrates how this may be 
accomplished. 

Example 5-13. Moving Internal Data Memory to Program Memory with TBLW 

* THIS ROUTINE USES THE TBLW INSTRUCTION TO MOVE DATA VALUES 
* FROM INTERNAL DATA MEMORY TO EXTERNAL PROGRAM MEMORY. THE 
* CALLING ROUTINE MUST SPECIFY THE DESTINATION PROGRAM MEMORY 
* ADDRESS IN THE ACCUMULATOR. ASSUME THAT THE ACCUMULATOR 
* CONTAINS THE ADDRESS IN PROGRAM MEMORY INTO WHICH THE DATA 
* IS TRANSFERRED. 

* 
TABLEW LARP 

LRLK 
RPTK 
TBLW 
RET 

AR6 
AR6,380 
127 
*+ 

SOURCE ADDRESS =PAGE 7. 
.TRANSFER 128 VALUES. 
MOVE DATA TO EXTERNAL PROGRAM RAM. 
RETURN TO CALLING PROGRAM. 

The IN and OUT instructions are used to transfer data between the data memory and 
the 1/0 space, as shown in Example 5-14 and Example 5-15. 

Example 5-14. Moving Data from 1/0 Space into Data Memory with IN 

5-16 

* THIS ROUTINE USES THE IN INSTRUCTION TO MOVE DATA VALUES 
* FROM THE I/O SPACE INTO DATA MEMORY. DATA ACCESSED FROM 
* I/O PORT 15 IS TRANSFERRED TO SUCCESSIVE MEMORY LOCATIONS 
* ON.DATA PAGE 5. 

* 
INPUT LARP 

LRLK 
RPTK 
IN 
RET 

AR2 
~J2,>2CO 

PA15,*+ 

DESTINATION ADDRESS = PAGE 5. 
TRANSFER 64 VALUES. 
MOVE DATA INTO DATA RAM. 
RETURN TO CALLING PROGRAM. 



Software Applications 

Example 5-15. Moving Data from Data Memory to 1/0 Space with OUT 

* THIS ROUTINE USES THE OUT INSTRUCTION TO MOVE DATA VALUES 
* FROM THE DATA MEMORY TO THE I/O SPACE. DATA IS TRANSFERRED 
* TO I/O PORT 8 FROM SUCCESSIVE MEMORY LOCATIONS ON DATA 
* PAGE 4. 
* 
OUTPUT LARP 

LRLK 
RPTK 
OUT 
RET 

AR4 
AR4,>200 
63 
PAS,*+ 

5.4.2 Configuring On-Chip RAM 

SOURCE ADDRESS = PAGE 4. 
TRANSFER 64 VALUES. 
MOVE DATA FROM DATA RAM. 
RETURN TO CALLING PROGRAM. 

The large amount of external memory and the configurability of on-chip RAM simplify 
the downloading of data or program memory into the TMS320C25. Also, since data 
in the RAM is preserved when redefining on-chip RAM, block BO can be configured 
dynamically as either data or program memory. Figure 5-1 illustrates the changes in 
on-chip RAM when switching configurations . 

• 
5-17 



Software Applications 

5-18 

PROGRAM 
BUS 

PROGRAM 
BUS 

DATA 
BUS 

DATA 
BUS 

MEMORY-MAPPED 
REGISTERS ______ ___, 

BLOCK B2 

-------
BLOCK BO ______ ___, 

MEMORY 
LOCATIONS 

} 
DATA 0-5 
(>0000->0005) 

} 
DATA 96-127 
(>0060->007F) 

} 
DATA 512-767 
(>0200->02FF) 

BLOCK B1 
""""- -}"""DATA 768-1023 

(>0300->03FF) ______ ___, 

MEMORY-MAPPED 
REGISTERS ..._ _____ ___. 

BLOCK B2 ______ __. 

BLOCK BO 

BLOCK B1 

-------

MEMORY 
LOCATIONS 

} DATA 0-5 
(>0000->0005) 

} 
DATA 96-127 
(>0060->007F) 

} 
DATA 768-1023 
(>0300->03FF) 

Figure 5-1. On-Chip RAM Configurations 

On-chip memory is configured by a reset or by the CNFD and CNFP instructions. 
Block BO is configured as data memory by executing CNFD or reset. A CNFP 
instruction configures block BO as program memory. 

Configuring block BO as program memory is useful for implementing adaptive filters 
or othersimilar applications at full speed with only on-chip memories. Example 5-16 



Software Applications 

illustrates the use of the configuration modes to utilize block BO as data and program 
memory while executing from on-chip program ROM. 

Example 5-16. Configuring and Using On-Chip RAM 

TITL 'ADAPTIVE FILTER' 
DEF ADPFIR 
DEF X,Y 

* 
* THIS 128-TAP ADAPTIVE FIR FILTER USES ON-CHIP MEMORY BLOCK 
* BO FOR COEFFICIENTS AND BLOCK Bl FOR DATA SAMPLES. THE 
* NEWEST INPUT SHOULD BE IN MEMORY LOCATION X WHEN CALLED. 
* THE OUTPUT WILL BE IN MEMORY LOCATION Y WHEN RETURNED. 
* 
COEFFP EQU >FFOO 
COEFFD EQU >0200 
* 
ONE EQU >7A 
BETA EQU >7B 
ERR EQU >7C 
ERRF EQU >7D 
y EQU >7E 
x EQU >7F 
FRSTAP EQU >0380 
LAST AP EQU >03FF 
* 
* FINITE IMPULSE RESPONSE 
* 
ADPFIR CNFP 

MPYK 0 
LAC ONE, 14 
LARP AR3 
LRLK AR3,LASTAP 

FIR RPTK 127 

* 

MACD COEFFP, *­
CNFD 
APAC 
SACH Y, 1 
NEG 
ADD X, 15 
SACH ERR, 1 

BO PROGRAM MEMORY ADDRESS 
BO DATA MEMORY ADDRESS 

CONSTANT ONE (DP=6) 
ADAPTATION CONSTANT (DP=6) 
SIGNAL ERROR (DP=6) 
ERROR FUNCTION (DP=6) 
FILTER OUTPUT (DP=6) 
NEWEST DATA SAMPLE (DP=6) 
NEXT NEWEST DATA SAMPLE 
OLDEST DATA SAMPLE 

(FIR) FILTER. 

CONFIGURE BO AS PROGRAM: 
Clear the P register. 
Load output rounding bit. 

Point to the oldest sample. 

128-tap FIR filter. 
CONFIGURE BO AS DATA: 

Store the filter output. 

Add the newest input. 
err(n) = x(n) - y(n) 

* LMS ADAPTATION OF FILTER COEFFICIENTS. 
* 

LT 
MPY 
PAC 
ADD 
SACH 

* 
LARP 
LARK 
LRLK 
LRLK 
DMOV 
LT 
MPY 

ERR 
BETA 

ONE,14 
ERRF,l 

AR3 
ARl,127 
AR2,COEFFD 
AR3,LASTAP 
x 
ERRF 
*-,AR2 

128-TAP FIR FILTER. 
errf(n) = beta * err(n) 
ROUND THE RESULT. 

128 COEFFICIENTS TO UPDATE. 
POINT TO THE COEFFICIENTS. 
POINT TO THE DATA SAMPLES. 
INCLUDE NEWEST SAMPLE. 

P = 2*beta*err(n)*x(n-k) 

5-19 



Software Applications 

* 
ADAPT ZALR * ,AR3 

* 

* 

MPYA *- ,AR2 

SACH *+, 0 ,ARl 
BANZ ADAPT,*- ,AR2 

RET 

LOAD ACCH WITH ak(n) & ROUND. 
ak(n+l) = ak(n) + P 
P = 2*beta*err(n)*x(n-k) 
STORE ak(n+l). 
END OF LOOP TEST. 

RETURN TO CALLING ROUTINE. 

5.4.3 Using On-Chip RAM for Program Execution 

5-20 

In using on-chip memory {block BO) for program execution, this memory must first 
be loaded with executable code from external memories while configured as data 
memory. On-chip execution is initiated by using the CNFP instruction to reconfigure 
_block _ _BQ_JlS_ program .. memor_~/ and performing _a branch_or_calLto...an_.on.-Cbip_ BAM 
address. By configuring block BO as program memory and executing from this 
internal memory, full-speed execution can be achieved in systems using slower 
external memory. Example 5-17 illustrates how a program may be written to be 
loaded into and executed from on-chip memory. 

One group of instructions, the branch/call instructions, are impacted by the location 
of execution. Normally, by using labels, the assembler properly determines the 
location to which a branch is taken. Since the code is relocated prior to execution 
from on-chip memory, it is necessary to alter the address determined by the assembler 
for branch instructions. This alteration is necessary so that the branch address that 
is determined can be consistent with the address space used during execution. In 
Example 5-17, this is accomplished by adding an offset value {OFFSET) to the 
branch label representing the destination address in the operand field for each branch 
instruction. The offset address is determined by use of an EQU {equate) directive 
that subtracts the assembler location of the code to be relocated {equivalent to base-0 
addressing) from the base address of the relocation address {internal block BO 
address in this case). 



Software Applications 

Example 5-17. Program Execution from On-Chip Memory 

AORG 0 
RESET B INIT 
* 
* BRANCHES FOR EXTERNAL OR INTERNAL INTERRUPTS FOLLOW HERE AT 
* THE DESIGNATED LOCATIONS AS REQUIRED. 

* 
AORG >20 

* 
* A BRANCH INSTRUCTION AT PROGRAM MEMORY LOCATION 0 DIRECTS 
* PROCESSOR EXECUTION HERE. 
* 
* INITIALIZE THE PROCESSOR. 
* 
INIT ROVM 

SSXM 
LDPK 0 
SPM 0 
LARP AR4 
LARK AR4,PRD 
LALK >FFFF 
SACL *+ 
SACL *+ 
ZAC 
SACH * 

* 
* LOAD TIME-CRITICAL 
* 

LARP ARl 
LRLK ARl,BLKO 
RPTK PROGL-1 
BLKP PROG, *+ 

* 

DISABLE OVERFLOW MODE. 
SET SIGN EXTENSION. 
POINT DP REGISTER TO DATA MEMORY PAGE 0. 
NO SHIFT ON PRODUCT REGISTER OUTPUT. 
USE AUXILIARY REGISTER 4 (SET ARP= 4). 
POINT AR4 TO PERIOD REGISTER. 
SET ACCUMULATOR TO >FFFF. 
LOAD PERIOD REGISTER WITH MAXIMUM VALUE. 
ENABLE ALL INTERRUPTS VIA IMR. 
CLEAR ACCUMULATOR. 
CLEAR GREG TO MAKE ALL MEMORY LOCAL. 

CODE FROM EXTERNAL SLOW MEMORY TO INTERNAL RAM. 

USE AUXILIARY REGISTER 1 (SET ARP = 1) . 
POINT ARl TO RECONFIGURABLE BLOCK BO. 
LOAD REPEAT COUNTER WITH BLOCK LENGTH. 
MOVE CODE FROM PROG MEMORY TO ON-CHIP RAM. 

* INITIALIZE PARAMETERS FOR EXECUTION. 

* 
LDPK 
LACK 
SACL 
LRLK 
RPTK 
BLKP 
CNFP 
LALK 
BACC 

6 
1 
ONE ; 
ARl,BLKO+PRGL; 
COEFL-1 
COEF,*+ 

>FFOO 

POINT DP REGISTER TO DATA MEMORY PAGE 6. 
SET ACCUMULATOR TO >0001. 
STORE VALUE OF 1. 
POINT ARl TO INTERNAL MEMORY ADDRESS. 
LOAD REPEAT COUNTER WITH BLOCK LENGTH. 
MOVE DATA FROM PROG MEMORY TO ON-CHIP RAM. 
CONFIGURE BLOCK BO AS PROGRAM MEMORY. 
LOAD ACC WITH PROG ADDR IN INTERNAL RAM. 
BRANCH TO ON-CHIP EXECUTION ADDRESS. 

5-21 



Software Applications 

5-22 

* * SIGNAL PROCESSING CODE TO BE EXECUTED FROM ON-CHIP RAM. 

* 
PROG 
LPTS 

GET 

PROGE 
PROGL 
OFFSET 
* 

EQU 
BIOZ 
B 
OUT 
IN 
LRLK 
ZAC 
MPYK 
RPTK 
MACO 
APAC 
SACH 
B 
EQU 
EQU 
EQU 

$ 
GE'l'+OFFSET 
LPTS+OFFSET 
FILOUT,PA2 
FILIN,PA2 ; 
ARl,BLKl+SIGNAL; 

0 
15 
>FFOO+COEFF,*-

FILOUT,l 
LPTS+OFFSET 
$ 
PROGE-PROG 
>FFOO-PROG 

WAIT FOR INPUT SIGNAL. 
BRANCH IF NO SIGNAL. 
OUTPUT LAST FILTER OUTPUT. 
INPUT NEW SIGNAL SAMPLE. 
POINT ARl TO SIGNAL DATA TO PROCESS. 
CLEAR THE ACCUMULATOR. 
CLEAR THE P REGISTER. 
REPEAT MACO INSTRUCTION FOR 16 TAPS. 
MULTIPLY/ACCUMULATE, SAMPLE DELAY. 
ACCUMULATE THE LAST PRODUCT. 
SAVE THE RESULT. 
LOOP TO WAIT FOR NEXT SAMPLE. 

PROGRAM CODE LENGTH. 
BASE ADDRESS OFFSET. 

* COEFFICIENT DATA TO BE LOADED INTO ON-CHIP RAM. 
* 
COEF 

COEFE 
CO EFL 
* 

DATA 
DATA 
DATA 
DATA 
EQU 
EQU 

385,-1196,1839,-2009 
1390,407,-4403,19958 
19958,-4403,407,1390 
-2009,1839,-1196,385 
$ 
COEFE-COEF COEFFICIENT DATA LENGTH. 

* INTERNAL MEMORY CONSTANTS. 

* 
BLKO 
BLKl 
* 
* DATA 
* 

DRR 
DXR 
TIM 
PRO 
!MR 
GREG 
* 
* DATA 
* 

BO 
COE FF 
* 
* DATA 
* 
ONE 
FI LOUT 
FIL IN 
SIGNAL 

EQU >200 
EQU >300 

PAGE 0 (BLOCK B2) 

DORG 0 
BSS 1 
BSS 1 
BSS 1 
BSS 1 
BSS 1 
BSS 1 

PAGE 4 (BLOCK BO) 

DORG 0 
BSS PROGL 
BSS CO EFL 

PAGE 6 (BLOCK Bl) 

DORG 0 
BSS 1 
BSS 1 
BSS 1 
BES 14 
END 

- DATA MEMORY LABELS. 

SERIAL PORT DATA RECEIVE REGISTER. 
SERIAL PORT DATA TRANSMIT REGISTER. 
TIMER REGISTER. 
PERIOD REGISTER. 
INTERRUPT MASK REGISTER. 
GLOBAL MEMORY ALLOCATION REGISTER. 

- DATA MEMORY LABELS. 

; LOCATIONS FOR INTERNAL PROGRAM CODE. 
; LOCATIONS FOR COEFFICIENT MEMORY. 

- DATA MEMORY LABELS. 

RESERVED FOR DATA VALUE OF 1. 
FILTER OUTPUT SIGNAL VALUE. 
FILTER INPUT SIGNAL VALUE. 
LAST SIGNAL DELAY VALUE. 



Software Applications 

5.5 Fundamental Logical and Arithmetic Operations 

Although the TMS320C25 instruction set is oriented toward digital signal processing, 
the same fundamental operations of a general-purpose. processor are included. This 
section explains basic operations of the TMS320C25's Central Arithmetic Logic Unit 
(CALU), particularly accumulator operations, the status register effect on data 
processing, and bit manipulation. 

The TMS320C25 provides a complete set of logical operations, including AND, OR, 
XOR, and CMPL {complement) instructions. This enables the device to perform any 
logical function. These instructions may be used to perform sign magnitude to two's 
complement or the reverse conversions. 

The contents of the accumulator may be stored in data memory using the SACH and 
SACL instructions or stored in the stack by using the PUSH instruction. The accu­
mulator may be loaded from data memory using the ZALH and ZALS instructions, 
which zero the accumulator before loading the data value. The ZAC instruction zeroes 
the accumulator. POP can be used to restore the accumulator contents from the 
stack. 

The accumulator is also affected by the ABS and NEG instructions. ABS replaces 
the contents of the accumulator with the absolute value of its contents. NEG 
generates the arithmetic complement of the accumulator in two's-complement form. 

5.5.1 Status Register Effect on Data Processing 

Three data processing options allow the ALU to automatically suppress sign exten­
sion, manage overflow, or scale product accumulations. These options are enabled 
or disabled through bits in the status registers. These options function in parallel 
with normal execution of the instructions and cause no additional machine cycles, 
therefore no performance overhead. 

The sign-extension mode option is used to determine whether or not the shifted data 
values fetched for ALU operations should be sign-extended. The SXM status bit 
controls this operation. This bit is set to '1' for enabling sign extension using the 
SSXM instruction, and set to 'O' for suppressing sign extension using the RSXM 
instruction. This operation affects all the instructions that include a shift of the 
incoming data value (i.e., ADD, ADDT, ADLK, LAC, LACT, LALK, SBLK, SFR, SUB, 
and SUBT). 

The overflow mode option is used to minimize the effects of an arithmetic overflow 
by forcing the accumulator to saturate at the largest positive value (or in the case 
of underflow, the largest negative value). The OVM status bit controls this operation. 
The overflow mode is enabled by setting the OVM bit to a '1' using the SOVM 
instruction, and reset using the ROVM instruction. This feature affects all arithmetic 
operations in the ALU. 

The product register shift mode option forces all products to be shifted before they 
are accumulated. The products can be left-shifted one bit to delete the extra sign 
bit in the multiply of two 16-bit signed numbers. The products can be left-shifted 
four bits to delete the extra sign bits in multiplying a 16-bit data value by a 13-bit 
constant. The product shifter can also be used to shift all products six bits to the right 
to allow up to 128 product accumulations without the threat of an arithmetic over­
flow, thereby avoiding the overhead of overflow management. The shifter can be 
disabled to cause no shift in the product when working with integer or 32-bit 
precision operations. This also maintains compatibility with TMS32010 code. These 
operations are controlled by the value contained in the PM bits of status register ST1. 
The PM bits are set using the SPM instruction. This feature affects all the instructions 

5-23 



Software Applications 

that use the product of the multiplier (i.e., APAC, LTA. LTD, LTP, LTS, MAC, MACO, 
MPYA, MPYS, PAC, SPAC, SPH, SPL, SORA, and SORS). 

5.5.2 Bit Manipulation 

The BIT instruction tests any of the 16 bits of the addressed data word. The specified 
bit is copied into the TC of the status register. The bit tested is specified by a bit 
code in the opcode of the instruction. Either the BBZ {branch on TC bit = 0) or 
BBNZ (branch on TC bit = 1) instructions check the bit and allow branching to a 
service routine. 

Bit testing is useful in control applications where a number of states or conditions 
may be latched externally and read into the TMS320C25 via an IN instruction. At this 
point, individual bits can be tested and branches taken for appropriate processing. 

Since the BIT instruction requires the bit code to be specified with the instruction, 
it cannot be placed in a loop to test several different bits of a data word or bits 
determined by prior processing for efficient use. The TMS320C25 also has a BITT 
instruction in which the bit code is specified in the T register. Since the T register 
can easily be modified, BITT may be used to test all bits of a data word if placed 
within a loop or to test a bit location determined by past processing. 

Example 5-18. Using BIT and BBZ 

5-24 

* THIS ROUTINE USES THE BIT INSTRUCTION TO TEST THE CONDITION 
* OF AN EXTERNAL MUX. BIT 4 DETERMINES THE UTILITY OF THE 
* REMAINING DATA. IF ZERO, A COUNTER IS INCREMENTED. IF ONE, 
* ADDITIONAL PROCESSING OCCURS AND THE COUNTER IS CLEARED. 
* THE ROUTINE IS INVOKED WHENEVER A TIMER INTERRUPT OCCURS. 
* 
TIME SST STO SAVE STATUS REGISTER STO. 

LDPK 0 
LARP AR6 
IN DAT,PA8 READ IN VALUE. 
BIT DAT,>B TEST BIT 4. 
BBZ !NCR BRANCH AND INCREMENT IF POSITIVE. 

LARK AR6,0 CLEAR THE COUNTER. 
LST STO RELOAD THE STATUS REGISTER. 
EINT ENABLE INTERRUPTS. 
RET RETURN TO INTERRUPTED ROUTINE. 

* 
INCR MAR *+ INCREMENT THE COUNTER. 

LST STO RELOAD THE STATUS REGISTER. 
EINT ENABLE INTERRUPTS. 
RET RETURN TO INTERRUPTED ROUTINE. 



Software Applications 

Example 5-19. Using BITT and BBNZ 

* THIS ROUTINE USES THE BITT INSTRUCTION TO TEST THE CONDITION 
* OF AN EXTERNAL MUX. A BIT IN THE MUX IS SIGNIFICANT ONLY 
* WHEN PRIOR PROCESSING HAS DESIGNATED THE BIT TO BE ACTIVE. 
* INDIVIDUAL PROCESSING WILL TAKE PLACE BASED UPON THE STATE 
* OF THE TESTED BIT. THE BITS ARE TESTED EACH TIME A TIMER 
* INTERRUPT OCCURS. 
* 
TIME SST STO 

LDPK 0 
LARP ARS 
LAR ARS,BCNT 
LRLK AR6,BTBL 
IN DAT,PA8 
B LTEST,*-,6 

TMLOOP LT *+,5 
BITT DAT 
BBNZ LTEST 

LTEST BANZ TMLOOP, *-, 6 
LST STO 
EINT 
RET 

5.6 Advanced Arithmetic Operations 

SAVE STATUS REGISTER STO. 

LOAD COUNT OF ACTIVE BITS. 
LOAD THE BIT TABLE ADDRESS. 
READ IN VALUE. 

LOAD BIT CODE. 
TEST SPECIFIED BIT. 
BRANCH IF BIT IS ONE. 

RELOAD THE STATUS REGISTER. 
ENABLE INTERRUPTS. 
RETURN TO INTERRUPTED ROUTINE. 

The TMS320C25 provides special instructions that facilitate efficient execution of 
arithmetic-intensive DSP algorithms, such as MACO, SORA, SUBC, arid NORM. 
Explanations and examples of how to use these instructions with overflow 
management, and for data moves, multiplications, division, floating-point arithmetic, 
indexed addressing, and extended-precision arithmetic are included in this section. 

5.6.1 Overflow Management 

The TMS320C25 has four features that can be used to handle overflow management. 
These include the branch on overflow conditions, accumulator saturation (overflow 
mode), product register right shift, and accumulator right shift. These features provide 
several options for overflow protection within an algorithm. 

A program can branch to an error handler routine on an overflow of the accumulator 
by using the BV (branch on overflow) instruction or bypass an error handler by using 
the BNV (branch if no overflow) instruction. These instructions can be performed 
after any ALU operation that may cause an accumulator overflow. 

The overflow mode is a feature useful for DSP applications. This mode simulates the 
saturation effect characteristic of analog systems. When enabled, any overflow in 
the accumulator results in the accumulator contents being replaced with the largest 
positive value (>7FFFFFFF) if the overflowed number is positive, or the largest 
negative value (>80000000) if negative. The overflow mode is controlled by the 
OVM bit of status register STO and can be changed by the SOVM (set overflow 
mode), ROVM (reset overflow mode), or LST (load status register) instructions. 
Overflows can be detected in software by testing the OV (overflow) bit in status 
register STO. When a branch is used to test the overflow bit, OV is automatically reset. 
Note that the OV bit does not function as a carry bit. It is set only when the absolute 

5-25 



Software Applications 

5.6.2 Scaling 

value of a number is too large to be represented in the accumulator, and it is not reset 
except by specific instructions. 

Another method of overflow management, which applies to multiply-accumulate 
operations, is the use of the right shifter of the product register. The right shifter, 
which operates with no cycle overhead, allows up to 128 accumulations without the 
possibility of an overflow. The least-significant six bits of the product are lost, and 
the MSBs are filled with sign bits. This feature is initiated by setting the PM bits of 
status register ST1 to '11' using the SPM or LST1 instructions. 

The TMS320C25 also has a right shift of the accumulator (using the SFR instruction) 
to scale down the accumulator when it nears overflow. 

Scaling the data coming into the accumulator or already in the accumulator is useful 
in signal processing algorithms. This is frequently necessary in adaptation or other 
algorithms that must compute and apply correction factors or normalize intermediate 
results. Scaling and normalizing are implemented on the TMS320C25 via right and 
left shifts in the accumulator and shifts of data on the incoming path to the accu­
mulator. 

Right and left shifts of the accumulator can be performed using the SFL and SFR 
instructions. SFL performs a logical left shift. SFR performs logical or arithmetic right 
shifts depending on the state of the SXM bit in the status register. A '1' in the SXM 
bit, corresponding to sign-extension enabled, causes an arithmetic shift to be 
performed. 

In addition to the shift instructions, data can be left-shifted 0 to 15 bits when the 
accumulator is loaded using a LAC instruction, and left-shifted 0 to 7 bits when 
storing from the accumulator using SACH or SACL instructions. These shifts can 
be used for loading numbers into the high 16 bits of the accumulator and renor­
malizing the result of a multiply. The incoming left shift of 0 to 15 bits can be supplied 
in the instruction itself or can be taken from the lowest four bits of the T register. 
Left shifts of data fetched from data memory are available for loading the accumulator 
(LAC/LACT), adding to the accumulator (ADD/ ADDT), and subtracting from the 
accumulator (SUB/SU BT). The contents of the P register may also be shifted prior 
to accumulation. 

5.6.3 Moving Data 

5-26 

Many DSP applications must perform convolution operations or other operations 
similar in form. These operations require data to be shifted or delayed. The DMOV, 
LTD, and MACO instructions can perform the needed data moves for convolution. 

The data move function allows a word to be copied from the currently addressed 
data memory location in on-chip RAM to the next higher location while the data from 
the addressed location is being operated upon (e.g., by the CALU). The data move 
and the CALU operation are performed in the same cycle. In addition, an ARAU 
operation may also be performed in the same cycle when using the indirect 
addressing mode. The data move function is useful in implementing algorithms, such 
as convolutions and digital filtering, where data is being passed through a time 
window. It models the z-1 delay operation encountered in those applications. The 
data move function is continuous across the boundary of the on-chip data memory 
blocks BO, B1, and B2. However, the data move function cannot be used if off-chip 
memory is referenced. 



Software Applications 

In Example 5-20, the following equation is implemented: 

2 
Y(n) = L H(k) X(n-k) 

k=O 

where the H values stay the same, and the X values are shifted each time the 
microprocessor performs one of the following series of multiplications (similar to 
operations performed in FIR filters): 

First Series: 
Second Series: 
Third Series: 

Y(2) = (HO)(X2)+(H1)(X1)+(H2)(XO) 
Y(3) = (HO)(X3)+(H1)(X2)+(H2)(X1) 
Y(4) = (HO)(X4)+(H1 )(X3)+(H2)(X2) 

The MACO instruction, which combines accumulate and multiply operations with a 
data move, is tailored to the type of calculation shown in the summation equation 
above. In order to use MACO, the H values have been stored in block BO, configured 
as program RAM, and the X values have been read into block 81 of data RAM as 
shown in Figure 5-2. 

PC 

l 
PROGRAM 
BLOCK BO 

(COEFFICIENTS) 

>FFOO >300 

>FF01 >301 

>FF02 >302 

DATA 
BLOCK B1 

(SAMPLES) 

Figure 5-2. MACO Operation 

l 
AR1 

Also in Example 5-20, the summation in the above equation is performed in the 
reverse order, i.e., from K = 2 to 0, due to the operation of the data move function. 
This results in the oldest X value being used and discarded first. 

If the MACO instruction is replaced with the following two instructions, then the 
MAC instruction can be utilized with the same results. 

MAC * 
DMOV *-

In cases where many more than three MACO instructions are required, the RPT or 
RPTK instructions may be used with MACO, yielding the same computational results 
but using less assembly code. 

5-27 



Software Applications 

Example 5·20. Using MACO for Moving Data 

* THIS ROUTINE IMPLEMENTS A SINGLE PASS OF A THIRD-ORDER FIR 
* FILTER. IT IS ASSUMED THAT THE H AND X VALUES HAVE ALREADY 
* BEEN LOADED INTO THEIR RESPECTIVE MEMORY LOCATIONS, THAT 
* THE ACCUMULATOR AND P REGISTER ARE BOTH RESET TO ZERO, AND 
* THAT ARl IS POINTING AT XO. NOTE THAT THE MACD INSTRUCTION 
* MAY BE USED IN THE REPEAT MODE, BUT IT IS NOT IMPLEMENTED 
* HERE. 
* 
FIR CNFP 

LARP 
MAC 
MACD 
MACD 
APAC 
CNFD 
RET 

1 
>FFOO,*­
>FFOl,*­
>FF02,* 

CONFIGURE BLOCK BO AS PROGRAM MEMORY. 
ARl SHOULD POINT AT THE X VALUES. 
P = (XO) (H2) 
ACC = (XO) (H2) 
ACC = (XO)(H2) + (Xl)(Hl) 
ACC = (XO)(H2) + (Xl) (Hl) + (X2) (HO) 
CONFIGURE BLOCK BO AS DATA MEMORY. 
RETURN TO MAIN PROGRAM. 

5.6.4 Multiplication 

The TMS320C25 hardware multiplier normally performs two's-complement 16-bit 
by 16-bit multiplies and produces a 32-bit result in one processor cycle. A single 
instruction, MPYU, can be used to multiply two 16-bit unsigned numbers. To 
multiply two operands, one operand must be loaded into the T register (TR). The 
second operand is moved by the multiply instruction to the multiplier, which then 
produces the product in the P register (PR). Before another multiply can be 
performed, the contents of the PR must be moved to the accumulator. A single­
multiply program is shown in Example 5-21. By pipelining multiplies and PR moves, 
most multiply operations can be performed with a single instruction. 

A common operation in DSP algorithms is the summation of products. The MAC 
instruction, normally performed in four cycles, adds the contents of the PR to the 
accumulator and then simultaneously reads two values and multiplies them. When 
using the MAC instruction, a data memory value is multiplied by a program memory 
value. One of the operands can come from block B1 or B2 in on-chip data memory 
while the other operand. may come from block BO. Block BO must be configured as 
program memory when it supplies the second operand. Pipelining of the MAC 
instruction with a repeat instruction results in an execution time for each succeeding 
multiply-and-accumulate operation of only one cycle. 

Example 5·21. Multiply 

5-28 

* THIS ROUTINE MULTIPLIES TWO VALUES IN DATA MEMORY LOCATIONS 
* >200 AND >201 WITH THE RESULT STORED IN >202 AND >203. 
* 
MUL LRLK ARl,>200 POINT AT BLOCK BO. 

LARP 1 
LT *+ GET FIRST VALUE AT >200. 
MPY *+ MULTIPLY BY VALUE AT >201. 
PAC PUT RESULT IN ACCUMULATOR. 
SACL *+ STORE LOW WORD AT >202. 
SACH * STORE HIGH WORD AT >203. 
RET RETURN TO MAIN PROGRAM. 

The pipelining of the MAC and MACO instructions incurs a certain amount of 
overhead in execution. In those cases where speed is more critical than program 



Software Applications 

memory, it may be beneficial to use LT A or LTD and M PY instructions rather than 
MAC or MACO. Example 5-22 and Example 5-23 show an implementation of 
multiply-accumulates using the MAC instruction and the LTA-MPY instruction pair, 
respectively. Figure 5-3 and Figure 5-4 provide graphically the information necessary 
to determine the efficiency of use for each of the techniques. 

Example 5-22. Multiply-Accumulate Using the MAC Instruction 

* clock total clock program total program 
* cycles cycles memory memory 
* 

LARP ARl 1 1 
LRLK ARl,>300 2 2 
CNFP 1 1 
ZAC 1 1 
MPYK 0 1 1 
RPTK N-1 1 1 
MAC >FFOO,*+ 3 + N 2 
APAC 1 11 + N 1 10 

Example 5-23. Multiply-Accumulate Using the LTA-MPY Instruction Pair 

* clock total clock program total program 
* cycles cycles memory memory 
* 

ZAC 1 1 
LT Dl 1 1 
MPY Cl 1 1 
LTA 02 1 1 
MPY C2 1 1 

2 x N 2 x N 

LTA DN 1 1 
MPY CN 1 1 
APAC 1 2 + 2N 1 2 + 2N 

5-29 



Software Applications 

24 .. ··:·· .. ~· ... ; .. ":·· .. ; .... ; .... ; .... ; ..... ; .... ; .... ; ... 

22 .... ; .... ; .... ; .... ; .... : .... ~· .. ·~ .. ··> .. ~· .. ±·· ··~· .. 
ffi 20 
...I 

~ 18 
0 
::w:: 18 
0 
g 14 
0 

;s::; 12 

4 

2 

: . : . : : : : 
.... : .. ··. : ... . : .... : .. , .. : ... ,; .... : .... ; ... ·X·· .:: .... : . .. ~ 

: . : . : : : . : : : 

... ·' .... , .... : .... .; .... ' .... ; ...... ·•· .. :. ... ; .... : .... 
: . : . : . : ; : ; : .... ,. ... :· .. ·: .... : .. ··~ .. ·: ...•... , ..... , .... , .... ·: ... 
: : : . : : : : 

.... , .... : ......... ; .... , ........ " .... : .... " ... ; .... , .. .. 
: . : : : : 

.. ·t· .. i· .. ·; .... ; .. ··; .• ·~ .... ~ .... {· .. ··~ .. ··~·· .• ~· ..• 

.... ; ... ··: .... : .... ; .... : .... ~· .. ·~ .... : .... ~· ... : .... ; .... 
. . . . . . 

.... ; .... : ........ : .... ; ... ·: .... ; .... ~· ... ; .... :·· .. ; ... . 

. .. ·; .. ·~·· ··:· ... ; .... : .... i· .. ·; .. ··> .. ;· .. ·1 .... : .. .. 
..••... : .... ; .... : .... : .... : .... = .... : ..... = .... ' .•..• = .•.. 

: ' : : • • MAC IMPLEMeITATION 
.... ; .... ; .... ; .... : o= LTA-MPY IMPLEMENTATION 

: ; : ; x = BREAK-EVEN POINT 

1 2 a 4 s e 1 a e 10 fl 
NUMBER OF MULTIPLY-ACCUMULATES TO BE 

PERFORMED 

Figure 5-3. Execution Time vs. Number of Multiply-Accumulates 

5-30 



Software Applications 

. . . . . . . 
24 .... : .... ;· .. ·i .. .. : .... ; ... ·: .. ·-: .... '.· ... ; .. "'." .. , .. 
22 

fg 20 

~ 18 

~ 18 
>-15 14 

iii 12 
:E 

~ 10 

" 8 
~ 8 

4 

.. ·~ .... : .... ~· .... : .... : .... ~· .. ·~ .... ; .... ~· .. ~ .... : .... 
.... ~ .... : . .. -~ .... ~ .... ~ ... ·~ .... ~ .... ~· .. ~ .. ··'.·· .. ~- .. . . . 

: : . . . .. ,; .... : .... ;, .. ,; .... : .... : ... ,; ... .o ... ;, ... ~ .... : .... 
: : : : : : : : : : : 

.... : .... ; ... ·i .... :-- .. : .... ·~ .. ·~· .. ;· .. ·~ .... > .. : .. .. 
... ~ .... : .... ; .... ; .... : .... ; ... ; .... : .... ; ... ·; .... : .. .. 

.... : .... ~ .... : .... : ........ ; .... : .... ; .... : .... : .... ~ ... 
: : : : : . : . : . : ............... '*" ·•· .. ~ ....... ~ ....... ~ ........ . . . . . : . : . : . 

.. .. : .... : ........ : .... ; ... ·: .... : .... :· ... ; .... : .... ~· .. 

.. ,; .. ·~· .. ;, ... ; .... : .... ~· ... ; .... : .... ; ... ·~ .... : .... 
: . : . : . : . : . : 

.. ·~· .. ~· .. ·~ .... : .... : ..... '. .... : .... ' .... ·'· .... ' .... : .... 
; ; ; ; •=MAC IMPLEMENTATION 

2 .... :· .... , .... , .... : O = LTA-MPV IMPLEMENTATION 
: x = BREAK-EVEN POINT 

1234587891011 
NUMBER OF MULTIPLY-ACCUMULATES TO BE 

PERFORMED 

Figure 5-4. Program Memory vs. Number of Multiply-Accumulates 

In numerical analysis, it is often necessary to square numbers along with adding or 
subtracting. The TMS320C25 has two instructions, SORA and SORS, that accom­
plish this in a single machine cycle. The result of the previous operation in the PR 
is first added to the accumulator if SORA is used, or subtracted from the accumulator 
if SORS is used. Then the data value addressed is squared, and the result is stored 
in the PR. Example 5-24 uses the SORA instruction to perform the computation. 

Example 5-24. Using SORA 

* THIS ROUTINE USES THE SQRA INSTRUCTION TO COMPUTE THE 
* SQUARE OF THE DISTANCE BETWEEN TWO POINTS WHERE D**2 
* IS DEFINED AS FOLLOWS: 
* 
* D**2 = (XA - XB)**2 + (YA - YB)**2 
* 
DIST LAC XA 

SUB XB 
SACL XT XT XA - XB 

* 
LAC YA 
SUB YB 
SACL YT YT = YA - YB 

* 
SQRA XT (P) = XT**2 
ZAC (ACC) = 0 
SQRA YT (P) = YT**2, (ACC) = XT**2 
APAC (ACC) = XT**2 + YT**2 = D**2 

* 
RET RETURN TO MAIN PROGRAM. 

5-31 



Software Applications 

When performing multiply-and-accumulate operations, it may be desirable to shift 
the product before adding it to the accumulator. This can be accomplished simul­
taneously with the MAC instruction by using the product shift mode. This mode, 
controlled by two bits in the PM field of status register ST1, shifts the value from the 
PR while it is transferred to the accumulator. The contents of the PR are not shifted. 

5.6.5 Division 

5-32 

Division is implemented on the TMS320C25 by repeated subtractions using SUBC, 
a special conditional subtract instruction. Given a 16-bit positive dividend and 
divisor, the repetition of the SUBC command 16 times produces a 16-bit quotient 
in the low accumulator and a 16-bit remainder in the high accumulator. 

SUBC implements binary division in the same manner as is commonly done in long 
division. The dividend is shifted until subtracting the divisor no longer produces a 
negative resu!t. For each subtract that does not produce a negative answer, '1 ' is 
put in the LSB of the quotient and then shifted. The shifting of the remainder and 
quotient after each subtract produces the separation of the quotient and remainder 
in the low and high halves of the accumulator. 

There are similarities between long division and the SUBC method of division. Both 
methods are used to divide 33 by 5. 



Software Applications 

LONG DMSION: 

0000000000000110 
0000000000000101 )0000000000100001 

-101 
110 

-101 
-11 

SUBC METHOD: 

I LOW ACC °i 

Quotient 

Remainder 

COMMENT 132 HIGH ACC I 
0000000000000000 

-10 
0000000000100001 (1) 
1000000000000000 

Dividend la loaded Into ACC. The 
divisor la left-shifted 15 and sub­
tracted from ACC. The subtraction 
la negative, so discard the result 
and shift left the ACC one bit. 

-10 0111111111011111 

I I I 
0000000000000000 0000000001000010 

-10 1000000000000000 
-10 0111111110111110 

• • • 
I I I I 
0000000000000100 0010000000000000 

-10 1000000000000000 
0000000000000001 1010000000000000 

I I I I 
0000000000000011 0100000000000001 

-10 1000000000000000 
0000000000000000 1100000000000001 

I I I I 

(2) 2nd subtract produces negative 
answer, so discard result and shift 
ACC (dividend) left. 

• • • 
(14) 14th SUBC command. The result 

la positive. Shift result left and 
replace LSB with '1'. 

(15) Result la again positive. Shift 
result left and replace LSB with '1'. 

0000000000000001 1000000000000011 (16) Last subtract. Negative answer, so 
-10 1000000000000000 discard result and shift ACC left. 

- 1111111111111101 

0000000000000011 0000000000000110 Answer reached after 16 SUBC 
Instructions. 

REMAINDER QUOTIENT 

Note that since the condition of the divisor being less than the shifted dividend is 
determined by the sign of the result, both the dividend and divisor must be positive 
when using the SUBC command. Thus, the sign of the quotient must be determined 
and the quotient computed using the absolute value of the dividend and divisor. 

Integer and fractional division can be implemented with the SUBC instruction as 
shown in Example 5-25 and Example 5-26, respectively. When implementing a 
divide algorithm, it is important to know if the quotient can be represented as a 
fraction and the degree of accuracy to which the quotient is to be computed. For 
integer division, the absolute value of the numerator must be greater than the absolute 
value of the denominator. For fractional division, the absolute value of the numerator 
must be less than the absolute value of the denominator. 

5-33 



Software Applications 

Example 5-25. Using SUBC for Integer Division 

* THIS ROUTINE IMPLEMENTS INTEGER DIVISION. 
* 
DNl 

* 

LT NUMERA 
MPY DENOM 
PAC 
SACH TEMSGN 
LAC DEN OM 
ABS 
SACL DENOM 
ZALS NUMERA 
ABS 

GET SIGN OF QUOTIENT. 

SAVE SIGN OF QUOTIENT. 

MAKE DENOMINATOR POSITIVE. 
ALIGN NUMERATOR. 

* IF DIVISOR AND DIVIDEND ARE ALIGNED, DIVISION CAN START 
* HERE. 
* 

RPTK 15 
SUBC DEN OM 16-CYCLE DIVIDE LOOP. 
SACL QUOT 
LAC TEMSGN 
BGEZ DONE DONE IF SIGN IS POSITIVE. 
ZAC 
SUB QUOT 
SACL QUOT NEGATE QUOTIENT IF NEGATIVE. 

DONE LAC QUOT 
RET RETURN TO MAIN PROGRAM. 

Example 5-26. Using SU BC for Fractional Division 

5-34 

* THIS ROUfINE IMPLEMENTS FRACTIONAL DIVISION. 
* 
DNl 

* 

LT NUMERA 
MPY DEN OM 
PAC 
SACH TEMSGN 
LAC DENOM 
ABS 
SACL DENOM 
ZALH NUMERA 
ABS 

GET SIGN OF QUOTIENT. 

SAVE SIGN OF QUOTIENT. 

MAKE DENOMINATOR POSITIVE. 
ALIGN NUMERATOR. 

* IF DIVISOR AND DIVIDEND ARE ALIGNED, DIVISION CAN START 
* HERE. 
* 

DONE 

RPTK 
SUBC 
SACL 
LAC 
BGEZ 
ZAC 
SUB 
SACL 
LAC 
RET 

14 
DEN OM 
QUOT 
TEMSGN 
DONE 

QUOT 
QUOT 
QUOT 

15-CYCLE DIVIDE LOOP. 

DONE IF SIGN IS POSITIVE. 

NEGATE QUOTIENT IF NEGATIVE. 

RETURN TO MAIN PROGRAM. 



Software Applications 

5.6.6 Floating-Point Arithmetic 

Floating-point numbers are often represented on microprocessors in a two-word 
format of mantissa and exponent. The mantissa is stored in one word. The exponent, 
the second word, indicates how many bit positions from the left the decimal point 
is located. If the mantissa is 16 bits, a 4-bit exponent is sufficient to express the 
location of the decimal point. Because of its 16-bit word size, the 16/4-bit float­
ing-point format functions most efficiently on the TMS320C25. 

Operations in the TMS320C25's central ALU are performed in two's-complement 
fixed-point notation. To implement floating-point arithmetic, operands must be 
converted to fixed point for arithmetic operations, and then converted back to floating 
point. 

Conversion to floating-point notation is performed by normalizing the input data (i.e., 
shifting the MSB of the data word into the MSB of the internal memory word). The 
exponent word then indicates how many shifts are required. To multiply two float­
ing-point numbers, the mantissas are multiplied and the exponents added. The 
resulting mantissa must be renormalized. (Since the input operands are normalized, 
no more then one left shift is required to normalize the result.) 

Floating-point addition or subtraction requires shifting the mantissa so that the 
exponents of the two operands match. The difference between the exponents is used 
to left-shift the lower power operand before adding. Then, the output of the add 
must be renormalized. 

TMS320C25 instructions useful in floating-point operations are the NORM, LACT, 
ADDT, and SUBT instructions. NORM (see Example 5-7) may be used to convert 
fixed-point numbers to floating-point. LACT may be used to convert back to 
fixed-point numbers. Addition and subtraction can be computed in floating point 
using ADDT and SUBT. 

Example 5-27 performs a floating-point multiply. The mantissas are assumed to be 
in 01 5 format. 01 5, one of the various types of 0 format, is a number representation 
commonly used when performing operations on non-integer numbers. In 0 format, 
the 0 number (15 in 015) denotes how many digits are located to the right of the 
decimal point. A 16-bit number in 015 format, therefore, has an assumed decimal 
point immediately to the right of the most significant bit. Since the most significant 
bit constitutes the sign of the number, then numbers represented in 015 may take 
on values from +1 (represented by +0.9999999 ... ) to -1 (represented by 
-0.9999999 ... ). 

5-35 



Softw@re Applications 

Example 5-27. Using NORM for Floating-Point Multiply 

5-36 

* THIS SUBROUTINE PERFORMS A FLOATING-POINT MULTIPLY USING 
* THE NORM INSTRUCTION. THE INPUTS AND OUTPUTS ARE OF THE 
* FORM: 
* 
* C = MC * 2**EC 
* 
* SINCE THE MANTISSAS, MA AND MB, ARE NORMALIZED, MC CAN BE 
* NORMALIZED WITH A LEFT SHIFT OF EITHER 0 OR 1 IN THE 
* ACCUMULATOR. THE EXPONENT OF THE RESULT IS ADJUSTED 
* APPROPRIATELY .. FOR EXAMPLE, MULTIPLICATION OF THE TWO 
* NUMBERS A AND B, WHERE A= 0.1 * 2**2 AND B = 0.1 * 2**4, 
* PROCEEDS AS FOLLOWS: 
* 
* 
* 
* 
MULT 

* 

* 

* 

1) A * B = 0.01 * 2**6 
2) A * B = 0.1 * 2**5 (NORMALIZED RESULT) 

LAC EA 
.ADD EB 
SACL EC 
LT MA 
MPY MB 
PAC 

SFL 
LARP ARS 
LAR ARS,EC 

NORM *-

SACH MC 
SAR ARS,EC 
RET 

EC = EXPONENT OF RESUI,,.T BEFORE 
NORMALIZATION. 

(ACC) = MA * MB 

TAKES CARE OF REDUNDANT SIGN BIT. 

ARS IS INITIALIZED WITH EC. 

FINDS MSB AND MODIFIES ARS. 

MC = MA * MB (NORMALIZED) 

RETURN TO MAIN PROGRAM. 

Floating-point implementation programs often require denormalization as well as 
normalization to return results in a 16-bit format. Example 5-28 is tailored for 
denormalizing number's that were normalized using the NORM instruction. This 
program assumes that the mantissa is in the accumulator and the exponent is in AR5, 
which is the format of the NORM instruction after execution. 



Software Applications 

Example 5-28. Using LACT for Denormalization 

* THIS ROUTINE DENORMALIZES NUMBERS NORMALIZED BY THE NORM 
* INSTRUCTION. THE DENORMALIZED NUMBER WILL BE IN THE 
* ACCUMULATOR. 
* 
DENORM LARP 

* 

LRLK 
SAR 
SACH 

1 
ARl,>200 
ARS,*+ 
*-

USE ARl TO POINT AT BLOCK BO. 

STORE EXPONENT AT >200. 
STORE MANTISSA AT >201. 

* SUBTRACT EXPONENT FROM 16 TO DETERMINE THE NUMBER OF SHIFTS 
* REQUIRED TO DENORMALIZE. 
* 

LAC 
BZ 
LT 
LACT 
RET 

OUT MAR 
ZALH 
RET 

5.6.7 Indexed Addressing 

* 
OUT 
*+ 
* 

*+ 
* 

LOAD ACCUMULATOR WITH EXPONENT. 
CHECK FOR ZERO EXPONENT. 

DENORMALIZE NUMBER. 
RETURN TO MAIN PROGRAM. 
POINT TO MANTISSA. 
LOAD ACCUMULATOR WITH RESULT. 
RETURN TO MAIN PROGRAM. 

The Auxiliary Register Arithmetic Unit (ARAU) allows the the next indirect address 
to be calculated using increment/decrement calculations or indexed addressing in 
parallel to the current arithmetic operation. For example, in the multiplication of two 
matrices, the operation requires addressing across the rows (incrementing the address 
by one) or down the columns (incrementing by n). Example 5-29 gives the code for 
multiplying a row times a column of two 10 x 10 matrices. The first matrix resides 
in data RAM block B1, and the second matrix resides in block BO. 

Example 5-29. Row Times Column 

LARK O,>A 
LARP 1 
LRLK l,>300 
CNFP 
ZAC 
MPYK 0 
RPTK 9 
MAC >FOOO,*O+ 
APAC 

* 

SET INDEX TO 10. 
USE ARl FOR ADDRESSING THE COLUMN. 
POINT ARl TO THE START OF BLOCK Bl. 
SET BO TO PROGRAM ADDRESS FOR PIPELINING. 
INITIALIZE THE ACCUMULATOR. 
CLEAR THE PRODUCT REGISTER. 
REPEAT 10 TIMES AS DIMENSION OF MATRIX. 
MULTIPLY ROW ELEMENT TIMES COLUMN ELEMENT. 
EXECUTE FINAL ACCUMULATION. 
ACCUMULATOR CONTAINS PRODUCT ELEMENT. 

The algorithm in Example 5-29 executes in 22 machine cycles. The key to this 
performance is the parallel addressing of both multiplicands simultaneously. The 
operation is made possible by the use of the data bus to fetch one multiplicand and 
the program bus to fetch the other. The auxiliary register indexes down the column 
of one matrix while the PC generates incremental addressing of each row of the other 
matrix. Each cycle of the repeat loop performs the following operations: 

1) Accumulates the previous product, 
2) Multiplies the row element times the column element, 
3) Increments the row address, and 
4) Indexes the column address. 

5-37 



Software Applicaticms 

5.6.8 Extended-Precision Arithmetic 

5-38 

Numerical analysis, floating-point computations, or other operations may require 
arithmetic to be executed with more than 32 bits of precisjon. Two features of the 
TMS320C25 help to make extended-precision calculations more efficient. One of the 
features is the carry status bit. This bit is affected by all arithmetic operations of the 
accumulator (ABS, ADD, ADDH, ADDK, ADDS, ADDT, ADLK, APAC, LTA, LTD, 
LTS, MAC, MACO, MPYA, MPYS, NEG, SBLK, SPAC, SORA, SQRS, SUB, SUBB, 
SUBC, SUBH, SUBK, SUBS, and SUBT). The carry bit is also affected by the rotate 
and shift accumulator instructions (ROL, ROR, SFL, and SFR) or may be explicitly 
modified by the load status register ST1 (LST1 ), reset carry (RC), and set carry (SC) 
instructions. For proper operation, the overflow mode bit should be reset (OVM=O) 
so that the accumulator results will not be loaded with the saturation value. Note that 
this means that some additional code may be required if overflow of the most 
significant portion of the result is expected. 

The carry bit is set whenever the addition of a value from the input scaling shifter 
or the P register to the accumulator contents generates a carry out of bit 31. Other­
wise, the carry bit is reset since the carry out of bit 31 is a zero. One exception to this 
case is the ADDH instruction which can only set the carry bit. This allows the 
accumulation to generate the proper single carry when either the addition to the lower 
or upper half of the accumulator actually causes the carry. The following e.icamples 
help to demonstrate the significance of the carry bit for additions: 

c MSB LSB c MSB LSB 
x FF FF FF FF ACC x FF FF FF FF ACC 

+ +EE EE EE EE 
1 0 0 0 0 0 0 0 0 1 F F F F FF FE 

x 7 F F F FF FF ACC x 7 F F F FF FF ACC 
+ 1 +FE FF EE FE 

0 8 0 0 0 0 0 0 0 1 7 F F F FF FE 

x 8 0 0 0 0 0 0 0 ACC x 8 0 0 0 0 0 0 0 ACC 
+ +EE EE EE EE 

0 8 0 0 0 0 0 0 1 1 7 F F F FF FF 

1 0 0 0 0 0 0 0 0 ACC 1 FF FF FF FF ACC 
+ 0 (ADDC) + 0 (ADOC) 

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

1 8 0 0 0 FF FF ACC 1 8 0 0 0 FF FF ACC 
+oogo 

1 8 0 0 ~ ~ ~ ~ (ADDH) +~~FF 1 F F 
0 Q Q 0 
FF FF 

(ADDH) 

Example 5-30 shows an implementation of two 64-bit numbers added to each other 
to obtain a 64-bit result. 



Software Applications 

Example 5-30. 64-Bit Addition 

* TWO 64-BIT NUMBERS ARE ADDED TO EACH OTHER PRODUCING A 
* 64-BIT RESULT. THE NUMBERS X (X3,X2,Xl,XO) AND Y 
* (Y3,Y2,Yl,YO) ARE ADDED RESULTING IN W (W3,W2,Wl,WO). 

* 
* X3 X2 Xl XO 
* + Y3 Y2 Yl YO 
* -----------
* W3 W2 Wl WO 
* 
ADD64 ZALH Xl ACC Xl 00 

ADDS XO ACC Xl XO 
ADDS YO ACC Xl XO + 00 YO 
ADDH Yl ACC Xl XO + Yl YO Wl WO 
SACL WO 
SACH Wl 
ZALH X3 ACC X3 00 
ADDC X2 ACC X3 X2 + c 
ADDS Y2 ACC X3 X2 + 00 Y2 + c 
ADDH Y3 ACC X3 X2 + Y3 Y2 + c W3 W2 
SACL W2 
SACH W3 
RET 

In a similar way, the carry bit is reset whenever the input scaling shifter or the P-re-
gister value subtracted from the accumulator contents generates a borrow into bit 
31. Otherwise, the carry bit is set since no borrow into bit 31 is required. One 
exception to this case is the SUBH instruction which can only reset the carry bit. 
This allows the generation of the proper single carry when either the subtraction from 
the lower or upper half of the accumulator actually causes the borrow. The following 
examples help to demonstrate the significance of the carry bit for subtractions: 

c MSB LSB c MSB LSB 

x 0 0 0 0 0 0 0 0 ACC x 0 0 0 0 0 0 0 0 ACC 
1 -FFFF FF E F 

0 FF FF FF FF 0 0 0 0 0 0 0 0 1 

x 7 F F F FF FF ACC x 7 F F F FF FF ACC 
1 - FF FF FF FF 

1 7 FF F FF FE 0 8 0 0 0 0 0 0 0 

x 8 0 0 0 0 0 0 0 ACC x 8 0 0 0 0 0 0 0 ACC 
1 -FEFE FF FF 

1 7 F F F FF FF 0 8 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 ACC 0 FF FF FF FF ACC 
0 (SUBS) 0 (SUBS) 

0 FF FF F F F F 1 FF FF FF FE 

0 8 0 0 0 F F F F ACC 0 8 0 0 0 FF FF ACC 
- 0 0 0 1 0 0 0 0 (SUBH) -FFFF 0 0 0 0 (SUBH) 

0 7 F F F FF FF 0 8 0 0 0 FF FF 

Example 5-31 provides the code for the implementation of two 64-bit numbers 
subtracted to obtain a 64-bit number. 

5-39 



Software Applications 

Example 5-31. 64-Bit Subtraction 

5-40 

* TWO 64-BIT NUMBERS ARE SUBTRACTED, PRODUCING A 64•BIT 
* RESULT. THE NUMBER Y (Y3,Y2,Y1,YO) IS SUBTRACTED FROM 
* X (X3,X2,Xl,XO) RESULTING IN W (W3,W2,Wl,WO). 
* 
* X3 X2 Xl XO 

* - Y3 Y2 Yl YO 

* -----------
* W3 W2 Wl WO 
* 
SUB64 ZALH Xl ACC = Xl 00 

ADDS XO ACC = Xl XO 
SUBS YO ACC Xl XO - 00 YO 
SUBH Yl ACC Xl XO - Y1 YO Wl WO 
SACL WO 
SACH Wl 
ZALS X2 ACC = 00 X2 
SUBB Y2 ACC 00 X2 - 00 Y2 - c 
ADDH X3 ACC = X3 X2 - 00 Y2 - c 
SUBH Y3 ACC = X3 X2 - Y3 Y2 - c W3 W2 
SACL W2 
SACH W3 
RET 

The second feature of the TMS320C25 aiding in extended-precision calculations is 
the MPYU (unsigned multiply) instruction. The MPYU instruction allows two 
unsigned 16-bit numbers to be multiplied and the 32-bit result placed in the product 
register in a single cycle. Efficiency is gained by the ability to generate partial 
products from the 16-bit portions of a 32-bit or larger value instead of having to split 
the value into 15-bit or smaller parts. Example 5-32 shows an implementation of 
multiplying two 32-bit numbers to obtain a 64-bit result. 



Software Applications 

Example 5-32. 32 x 32-Bit Multiplication 

* TWO 32-BIT NUMBERS ARE MULTIPLIED, PRODUCING A 64-BIT 
* RESULT. THE NUMBERS X (Xl,XO) AND Y (Yl,YO) ARE 
*MULTIPLIED RESULTING IN W (W3,W2,Wl,WO). 
* 
* 
* x 
* 
* 
* 
* 
* 
* 
* 
* 
* DETERMINE 
* 
MPY32 

* 

ZALS 
XOR 
SACH 

Xl XO 
Yl YO 

XO*YO 
Xl*YO 
XO*Yl 

Xl*Yl 

W3 W2 Wl WO 

THE SIGN OF THE PRODUCT. 

Xl 
Yl 
SIGN 

ACCL = SXXX XXXX XXXX XXXX 
ACCL = S---
SAVE THE PRODUCT SIGN O=+, l=-. 

* TAKE THE ABSOLUTE VALUE OF BOTH X AND Y. 
* 
ABSX ZALH Xl ACC Xl 00 

ADDS XO ACC Xl XO 
ABS 
SACH Xl SAVE JXl J. 
SACL XO SAVE IXO J. 

ABSY ZALH Yl ACC Yl 00 
ADDS YO ACC = Yl XO 
ABS 
SACH Yl SAVE JYlJ. 
SACL YO SAVE JYO J. 

* 
* MULTIPLY IXI AND IYI TO PRODUCE IWI' 
* 
MULT LT XO T = XO 

MPYU YO T = XO, P = XO*YO 
SPL Wl SAVE JWOJ. 
SPH WO SAVE PARTIAL JWlJ. 
MPYU Yl T XO, p XO*Yl 
LTP Xl T Xl, P = XO*Yl, ACC = XO*Yl 
MPYU YO T Xl, P = Xl*YO, ACC = XO*Yl 
ADDS Wl T Xl, P = Xl*YO, 

* ACC = XO*Yl + XO*Y0*2**-16 
MPYA Yl T = Xl, P = Xl*Yl, 

* ACC = Xl*YO + XO*Yl + XO*Y0*2**-16 
SACL Wl SAVE JWlJ. 
SACH W2 SAVE PARTIAL JW2J. 
ZALS W2 P = Xl*Yl, 

* ACC = (Xl*YO + XO*Yl)*2**-16 
BNC SUM TEST FOR CARRY FROM W2. 
ADDH ONE 

SUM APAC ACC = Xl*Yl + (Xl*YO + XO*Yl)*2**-16 
SACL W2 SAVE 1w21. 
SACH W3 SAVE JW3J. 

5-41 



Software Applications 

* * TEST THE SIGN OF THE PRODUCT; NEGATE IF NEGATIVE. 
* 

LAC SIGN 
BZ DONE RETURN IF POSITIVE. 

* 
ZALH Wl ACC IWl 001 
ADDS WO ACC = IWl WOI 
CMPL 
ADD ONE ACC = Wl WO AND CARRY GENERATION 
SACL WO SAVE WO. 
SACH Wl SAVE Wl. 
ZALS W2 ACC 100 W21 
ADDH W3 ACC = IW3 W21 
CMPL 
ADDC ONE ACC = W3 W2 
SACL W2 SAVE W2. 
SACH W3 SAVE W3. 

* 
DONE RET 

5.7 Application-Oriented Operations 

The TMS320C25 has been designed to provide efficient implementations of many 
common digital signal processing algorithms. The architecture supporting these 
design features was discussed in Section 3. In general, the features provide efficient 
solutions to numerically intensive problems usually characterized by 
multiply/accumulates. Some device-specific features that aid in the implementation 
of specific algorithms are discussed in this section. 

5.7.1 Companding 

5-42 

Applications implemented on the TMS320C25 include filtering, FFTs, and more 
complex processes comprised primarily of filtering and FFTs. These applications 
require 1/0 performed either in parallel or serial. Hardware requirements for 1/0 are 
discussed in Sections 3 and 6. 

In the area of telecommunications, one of the primary concerns is the 1/0 bandwidth 
in the communications channel. One way to minimize this bandwidth is by 
companding. Two modes commonly used are A-law and 11-law companding. 
Detailed descriptions of companding are found in the application report available 
from Texas Instruments {see the book, Digital Signal Processing Applications with 
the TMS320 Family}. 

The technique of companding allows the digital sample information corresponding 
to a 13-bit dynamic range to be transmitted as 8-bit data. For processing in the 
TMS320C25, it is necessary to convert the 8-bit {logarithmic) sign-magnitude data 
to a 16-bit two's-complement {linear) format. Prior to output, the linear result must 
be converted to the compressed or companded format. Table lookup or conversion 
subroutines may be used to implement these functions. 

In expanding from the 8-bit data to the 13-bit linear representation, table lookup is 
very effective since the table length is only 256 words. This is especially true for a 
microcomputer design since the TMS320C25 has 4K words of mask-programmable 
ROM. The table lookup technique requires three instructions {four words of program 



Software Applications 

memory), one data memory location, 256 words of table memory, and seven 
instruction cycles (program in on-chip ROM) to execute. 

LAC 
ADLK 
TBLR 

SAMPLE 
MUTABL 
SAMPLE 

; LOAD 8-BIT DATA. 
; ADD THE CONVERSION TABLE BASE ADDRESS. 
; READ THE CORRESPONDING LINEAR VALUE. 

The above conversion could be programmed as a subroutine. This would eliminate 
the need for a table, but would increase execution time and require additional data 
memory locations. 

When the output data has been determined in a system transmitting companded data, 
a compression of the data must be performed. The compression reduces the data back 
to the 8-bit format. Unless memory for a table of length 16384 is acceptable, the table 
lookup approach must be abandoned for conversion routines. Details of these 
implementations may be found in the application report on companding. 

5.7.2 Filtering 

Digital filters are a common requirement for digital signal processing systems. The 
filters fall into two basic categories: Finite Impulse Response (FIR) and Infinite 
Impulse Response (II R) filters. For either category of filter, the coefficients of the filter 
(weighting factors) may be fixed or adapted during the course of the signal proc­
essing. The theory and implementation of digital filters has been presented and 
discussed in an application report (see the book, Digital Signal Processing Applica­
tions with the TMS320 Family). The TMS320C25 reduces the execution time of 
all filters by virtue of its 100-ns instruction cycle time. 

llR filters benefit from the 100-ns instruction cycle time of the TMS320C25. llR 
filters typically require fewer multiply/accumulates. Correspondingly, the amount of 
data memory for samples and coefficients is not usually the limiting factor. Because 
of sensitivity to quantization of the coefficients themselves, llR filters are usually 
implemented in cascaded second-order sections. This translates to instruction code 
consisting of L TDs and M PYs rather than MAC Os. 

FIR filters also benefit from the faster instruction cycle time. In addition, an FIR filter 
requires many more multiply/accumulates than does the llR filter with equivalent 
sharpness at the cutoff frequencies and distortion and attenuation in the passbands 
and stopbands. The TMS320C25 can help solve this problem by making longer filters 
feasible to implement. This is accomplished by allowing the coefficients to be fetched 
from program memory at the same time as a sample is being fetched from data 
memory. The simple implementation of this process uses the MACO instruction with 
the RPT/RPTK instruction. 

RPTK 255 
MACD *-,COEFFP 

The coefficients may be stored anywhere in program memory (reconfigurable on-chip 
RAM, on-chip ROM, or external memories). When the coefficients are stored in 
on-chip ROM or externally, the entire on-chip data RAM may be used to store the 
sample sequence. Ultimately, this allows filters of up to 512 taps to be implemented 
on the TMS320C25. Execution of the filter will be at full speed or 100 ns per tap 
as long as the memory supports full-speed execution. 

Up to this point, it has been assumed that the filter coefficients are themselves fixed. 
If the coefficients are adapted or updated with time, then another factor impacts the 
computational capacity. The second factor is the requirement to adapt each of the 
coefficients, usually with each sample. New instructions ( M PYA or M PYS and ZALR) 
on the TMS320C25 aid with this adaptation to reduce the execution time. A means 

5-43 



Software Applications 

5-44 

of adapting the coefficients is the Least-Mean-Square (LMS) algorithm given by the 
following equation: 

btc(I+ 1) = btc(I) + 28 e(I) x(l-k) 

where e(I) = x(I) - y(I) 

N-1 
and y(I) = I bk x(l-k) 

k=O 

Quantization errors in the updated coefficients can be minimized if the result is 
obtained by rounding rather than truncating. For each coefficient in the filter at a 
given point in time, the factor 2*B*e(i) is a constant. This factor can then be 
computed once and stored in the T register for each of the updates. Thus, the 
computational requirement has become one multiply/accumulate plus rounding. 
Without the new instructions, the adaptation of each coefficient is five instructions 
corresponding to five clock cycles. This is shown in the following instruction 
sequence: 

LRLK AR2,COEFFD LOAD ADDRESS OF COEFFICIENTS. 
LRLK AR3,LASTAP LOAD ADDRESS OF DATA SAMPLES. 
LARP AR2 
LT ERRF errf = 2*B*e(i) 

. 
ZALH *,AR3 ACC bk(i)*2**16 
ADD ONE,15 ACC bk(i)*2**16 + 2**15 
MPY *-,AR2 
APAC ACC bk(i)*2**16 + errf*x(i-k) + 2**15 
SACH *+ SAVE bk( i+l). 

When the M PY A and ZALR instructions are used, the adaptation reduces to three 
instructions corresponding to three clock cycles, as shown in the following instruc­
tion sequence. Note that the processing order has been slightly changed to incor­
porate the use of the MPYA instruction. This is due to the fact that the accumulation 
performed by the MPYA is the accumulation of the previous product. 

LRLK AR2,COEFFD LOAD ADDRESS OF COEFFICIENTS. 
LRLK AR3,LASTAP LOAD ADDRESS OF DATA SAMPLES. 
LARP AR2 
LT ERRF errf = 2*B*e(i) 

. 
ZALR * ,AR3 ACC = bk(i)*2**16 + 2**15 
MPYA *-,AR2 ACC = bk(i)*2**16 + errf*x(i-k) + 2**15 

* PREG = errf*x(i-k+l) 
SACH *+ SAVE bk( i+l). 

Example 5-33 shows a routine to filter a signal and update the coefficients. The total 
execution time of the routine is 33 + 4n where n is the filter length. Data and program 
memory requirements are 5 + 2n and 30 + 3n words, respectively. Note that for 
adaptive filters, the filter length is restricted both by execution time as well as memory. 
There is obviously more processing to be completed per sample due to the adaptation, 
and the adaptation itself dictates that the coefficients be stored in the reconfigurable 
block of on-chip RAM. Thus, the practical limit of an adaptive filter with no external 
data memory is 256 taps. 



Software Applications 

Example 5-33. 256-Tap Adaptive FIR Filter 

TITL 'ADAPTIVE FILTER' 
DEF ADPFIR 
DEF X, Y 

* 
* THIS 256-TAP ADAPTIVE FIR FILTER USES ON-CHIP MEMORY BLOCK 
* BO FOR COEFFICIENTS AND BLOCK Bl FOR DATA SAMPLES. THE 
* NEWEST INPUT SHOULD BE IN MEMORY LOCATION X WHEN CALLED. 
* THE OUTPUT WILL BE IN MEMORY LOCATION Y WHEN RETURNED. 
* ASSUME THAT THE DATA PAGE IS 0 WHEN THE ROUTINE IS CALLED. 
* 
COEFFP EQU >FFOO 
COEFFD EQU >0200 
* 
ONE EQU >7A 
BETA EQU >7B 
ERR EQU >7C 
ERRF EQU >7D 
y EQU >7E 
x EQU >7F 
FRSTAP EQU >0300 
LAST AP EQU >03FF 
* 
* FINITE IMPULSE RESPONSE 
* 
ADPFIR CNFP 

MPYK 0 
LAC ONE, 14 
LARP AR3 
LRLK AR3 ,LASTAP 

FIR RPTK 255 

* 

MACO COEFFP I*­
CNFD 
APAC 
SACH y I 1 
NEG 
ADD X,15 
SACH ERR, 1 

BO PROGRAM MEMORY ADDRESS 
BO DATA MEMORY ADDRESS 

CONSTANT ONE (DP=O) 
ADAPTATION CONSTANT (DP=O) 
SIGNAL ERROR (DP=O) 
ERROR FUNCTION (DP=O) 
FILTER OUTPUT (DP=O) 
NEWEST DATA SAMPLE (DP=O) 
NEXT NEWEST DATA SAMPLE 
OLDEST DATA SAMPLE 

(FIR) FILTER. 

CONFIGURE BO AS PROGRAM: 
Clear the P register. 
Load output rounding bit. 

Point to the oldest sample. 

256-tap FIR filter. 
CONFIGURE BO AS DATA: 

Store the filter output. 

Add the newest input. 
err(i) = x(i) - y(i) 

* LMS ADAPTATION OF FILTER COEFFICIENTS. 

* 

* 

* 

LT ERR 
MPY BETA 
PAC 
ADD ONE, 14 
SACH ERRF I 1 

MAR *+ 
LAC X 
SACL * 

LRLK 
LRLK 
LT 
MPY 

AR2,COEFFD 
AR3,LASTAP 
ERRF 
*-,AR2 

errf(i) = beta * err(i) 
ROUND THE RESULT. 

INCLUDE NEWEST SAMPLE. 

POINT TO THE COEFFICIENTS. 
POINT TO THE DATA SAMPLES. 

P = 2*beta*err(i)*x(i-255) 

5-45 



Software Applications 

* 
ADAPT ZALR * ,AR3 LOAD ACCH WITH b255(i) & ROUND. 

MPYA *-,AR2 b255(i+l) = b255(i) + p 
* P = 2*beta*err(i)*x(i-254) 

SACH *+,O,ARl STORE b255(i+l). 
* 

ZALR * ,AR3 LOAD ACCH WITH b254(i) & ROUND. 
MPYA *-,AR2 b254(i+l) = b254(i) + p 

* P = 2*beta*err(i)*x(i-253) 
SACH *+,0,ARl STORE b254 ( i+l). 

* 
ZALR * ,AR3 LOAD ACCH WITH b253(i) & ROUND. 
MPYA *-,AR2 b253 ( i+l) = b253(i) + p 

* P = 2*beta*err(i)*x(i-252) 
SACH *+,0,ARl STORE b253(i+l). 

* 
ZALR * ,AR3 LOAD ACCH WITH bl(i) & ROUND. 
MPYA *-,AR2 bl(i+l) = bl(i) + p 

* P = 2*beta*err(i)*x(i-O) 
SACH *+,0,ARl STORE bl(i+l). 

* 
ZALR * ,AR3 LOAD ACCH WITH bO(i) & ROUND. 
APAC *-,AR2 bO ( i+l) = bO(i) + p 
SACH *+,0,ARl STORE bO(i+l). 

* 
RET RETURN TO CALLING ROUTINE. 

5.7.3 Fast Fourier Transforms (FFT) 

5-46 

Fourier transforms are an important tool often used in digital signal processing 
systems. The purpose of the transform is to convert information from the time domain 
to the frequency domain. The inverse Fourier transform converts information back 
to the time domain from the frequency domain. Implementations of Fourier transforms 
that are computationally efficient are known as Fast Fourier Transforms (FFTs). The 
theory and implementation of FFTs on the TMS32020 has been discussed in an 
application report in the book, Digital Signal Processing Applications with the 

· TMS320 Family. The TMS320C25 reduces the execution time of all FFTs by virtue 
of its 100-ns instruction cycle time. 

In addition to the shorter cycle time, an addressing feature has been added to the 
TMS320C25 which provides execution speed and program memory enhancements 
for radix-2 FFTs. As demonstrated in Figure 5-5 and Figure 5-6 the inputs or outputs 
of an FFT are not in sequential order, i.e., they are scrambled. The scrambling of the 
data addressing is a direct result of the radix-2 FFT derivation. Observation of the 
figures and the relationship of the input and output addressing in each case reveal 
that the address indexing is a bit-reversed order, as shown in Table 5-1. As a result, 
either the data input sequence or the data output sequence must be scrambled in 
association with the execution of the FFT. 



Software Applications 

STAGE 1 STAGE 2 STAGE 3 

x(Ol X(O) 

WO 
x(4l X(ll 

WO 
xl21 X(2) 

x(6) 
WO W2 

X13l 

x(l) X14l 

WO 
x(5) X15l 

x(3) 
WO 

X16l 

x(7) 
WO W2 

X(71 

LEGEND FOR TWIDDLE FACTOR: WO=W~ Wl =W~ W2=W~ W3=W~ 

Figure 5-5. An In-Place DIT FFT with In-Order Outputs and Bit-Reversed 
Inputs 

STAGE 1 STAGE 2 STAGE 3 
xlOI X(O) 

x(l) X141 

x(2) X121 

x(3) X16l 

x(4) Xlll 

x(5) X15l 

x(6) X(3) 

---X(7l 

LEGEND FOR TWIDDLE FACTOR: WO=W~ Wl =W~ W2=W~ W3=W~ 

Figure 5-6. An In-Place DIT FFT with In-Order Inputs but Bit-Reversed 
Outputs 

5-47 



Software Applications 

5-48 

Table 5-1. Bit~Reversal Algorithm for an 8-Point Radix-2 DIT FFT 

INDEX BIT PATTERN BIT-REVERSED PATTERN BIT-REVERSED INDEX 

0 000 000 0 
1 001 100 4 
2 010 010 2 
3 011 110 6 
4 100 001 1 
5 101 101 5 
6 110 011 3 
7 111 111 7 

On the TM532020 the bit reversal was handled by loading the accumulator with pairs 
of points that needed to be swapped and then storing them back in the swapped 
locations. A new addressing feature that uses reverse carry-bit propagation allows 
the TMS320C25 to scramble the inputs or outputs while it is performing the 1/0. 
The addressing mode is part of the indirect addressing implemented with the auxiliary 
registers and the associated arithmetic unit. In this mode (a derivative of indexed 
addressing), a value (index) contained in ARO is either added or subtracted from the 
auxiliary register being pointed to by the ARP. However, instead of propagating the 
carry bit in the forward direction, it is propagated in the reverse direction. The result 
is a scrambling in the address access. 

The procedure for generating the bit-reversal address sequence is to load ARO with 
a value corresponding to the length of the FFT and to load another auxiliary register, 
e.g., AR1, with the base address of the data array. Implementations of FFTs involve 
complex arithmetic; as a result, there are two data memory locations (one real and 
one imaginary) associated with every data sample. Generally, the samples are stored 
in memory in pairs with the real part in the even address locations and the imaginary 
part in the odd address location. This means that the offset from the base address 
for any given sample is twice the sample index. Real input data is easily transferred 
into the data memory and stored in the scrambled order, with every other location 
in the data memory representing the imaginary part of the data. 



Software Applications 

The following list shows the contents of auxiliary register AR1 when ARO is initialized 
with a value of 8 (8-point FFT) and when data is being transferred by the code that 
follows. 

MSB LSB 
ARO: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 8-Point FFT 

AR1 : 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Base Address 

RPTK 7 
IN *BRO+,PAO 

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 XR(O) 

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 XR(4) 

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 XR(2) 

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 XR(6) 

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 XR(1) 

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 XR(5) 

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 XR(3) 

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 XR(7) 

Example 5-34 consists of lists of macros used in the implementation of FFTs. The 
first macro implements the bit reversal in the way necessary for the TMS32020 and 
is not necessary for implementations on the TMS320C25. 

5-49 



Software Applications 

Example 5-34. FFT Macros 

5-50 

BITREV $MACRO PR,PI,QR,QI 
* * BIT REVERSAL CODE - SWAP PR AND QR, SWAP PI AND QI. 
* 

ZALH :PR: 
ADDS :QR: 
SACL :PR: 
SACH :QR: 
ZALH :PI: 
ADDS :QI: 
SACL :PI: 
SACH :QI: 
$END 

* 
COMBO $MACRO Rl,Il,R2,I2,R3,I3,R4,I4 
* 
* CALCULATE PARTIAL TERMS FOR R3, R4, I3, AND I4. 
* 

* 

LAC 
ADD 
SACH 
SUB 
SACH 
LAC 
ADD 
SACH 
SUB 
SACH 

:R3: ,14 
: R4: , 14 
: R3:, 1 
: R4: , 15 
: R4:, 1 
:I3: ,14 
:I4: ,14 
: I3: , 1 
:I4: ,15 
: 14:, 1 

ACC ·= (1/4) (R3) 
ACC := (1/4) (R3+R4) 
R3 ·= (l/2)(R3+R4) 
ACC ·= (1/4) (R3+R4)-(l/2) (R4) 
R4 ·= (1/2) (R3-R4) 
ACC ·= (1/4) (I3) 
ACC ·= (1/4) (I3+I4) 
I3 ·= (1/2) (I3+I4) 
ACC ·= (1/4) (I3+I4)-(l/2) (I4) 
I4 ·= (1/2) (I3-I4) 

* CALCULATE PARTIAL TERMS FOR R2, R4, 12, AND I4. 
* 

* 

LAC 
ADD 
SACH 
SUB 
ADD 
SACH 
SUBH 
DMOV 
SACH 
LAC 
ADD 
SACH 
SUB 
SUB 
SACH 
ADDH 
SACH 

:Rl:,14 
:R2: ,14 
:Rl:, 1 
: R2: I 15 
:14:,15 
:R2: 
:I4: 
:R4: 
:R4: 
:Il:,14 
:I2:,14 
: Il: , 1 
:I2:,15 
: 14: , 15 
: I2: 
: 14: 
: I4: 

ACC ·= (1/4) (Rl) 
ACC := (1/4) (Rl+R2) 
Rl ·= (1/2) (Rl+R2) 
ACC ·= (1/4) (Rl+R2)-(l/2) (R2) 
ACC ·= (1/4) [ (Rl-R2)+(I3-I4)] 
R2 ·= (1/4) [ (Rl-R2)+(I3-I4)] 
ACC := (1/4) [(Rl-R2)-(I3-I4)] 
I4 ·= R4 = (1/2) (R3-R4) 
R4 ·= (1/4) [ (Rl-R2)-(I3-I4)] 
ACC ·= (1/4) (Il) 
ACC ·= (1/4) (Il+I2) 
Il ·= (1/2) (Il+I2) 
ACC ·= (1/4) (Il+I2)-(l/2) (I2) 
ACC ·= (l/4)[(Il-I2)-(I3-I4)] 
I2 ·= (1/4) [(Il-I2)-(I3-I4)] 
ACC := (1/4) [(Il-I2)+(I3-I4)] 
I4 ·= (1/4) [ (Il-I2)+(I3-I4)] 

* CALCULATE PARTIAL TERMS FOR Rl, R3, Il, AND I3. 
* 

LAC 
ADD 
SACH 
SUBH 
SACH 
LAC 
ADD 
SACH 
SUBH 
SACH 
$END 

:Rl:,15 
: R3: I 15 
:Rl: 
:R3: 
:R3: 
:Il:,15 
:I3:,15 
:Il: 
: I3: 
: 13: 

ACC := (1/4) (Rl+R2) 
ACC ·= (1/4) [(Rl+R2)+(R3+R4)] 
Rl := (1/4) [(Rl+R2)+(R3+R4)] 
ACC ·= (1/4) [(Rl+R2)-(R3+R4)] 
R3 := (1/4) [(Rl+R2)-(R3+R4)] 
ACC ·= (l/4)(Il+I2) 
ACC ·= (1/4) [ (Il+I2)+(I3+I4)] 
Il ·= (1/4) [ (Il+I2)+(I3+I4)] 
ACC ·= (l/4)[(Il+I2)-(I3+I4)] 
I3 ·= (1/4) [ (Il+I2)-(I3+I4)] 



Software Applications 

* 
ZERO $MACRO PR,PI,QR,QI 
* 
* CALCULATE Re[P+Q] AND Re[P-Q] 
* 

LAC : PR:, 15 ACC ·= (1/2)(PR) 
ADD :QR:,15 ACC := (1/2) (PR+QR) 
SACH :PR: PR := (1/2) (PR+QR) 
SUBH :QR: ACC := (1/2) (PR+QR)-(QR) 
SACH :QR: QR := ( 1/2) (PR-QR) 

* 
* CALCULATE Im[P+Q] AND Im[P-Q] 
* 

LAC :PI:,15 ACC := (1/2)(PI) 
ADD :QI:,15 ACC := ( 1/2) ( PI+QI) 
SACH :PI: PI := (1/2) (PI+QI) 
SUBH :QI: ACC := (1/2)(PI+QI)-(QI) 
SACH :QI: QI := (l/2)(PI-QI) 
$END 

* 
PIBY4 $MACRO PR,PI,QR,QI,W 
* 

LT :W: T REGISTER := W=COS(PI/4)=SIN(PI/4) 
LAC :QI:,14 ACC ·= (1/4) (QI) 
SUB :QR:,14 ACC ·= (1/4) (QI-QR) 
SACH : QI: , 1 QI := (1/2)(QI-QR) 
ADD : QR:, 15 ACC := (1/4) (QI+QR) 
SACH :QR:, 1 QR := ( 1/2) ( QI+QR) 
LAC : PR:, 14 ACC := (1/4) (PR) 
MPY :QR: P REGISTER ·= (1/4) (QI+QR)*W 
APAC ACC := (1/4) [PR+(QI+QR)*W] 
SACH : PR:, 1 PR := (1/2) [PR+(QI+QR)*W] 
SPAC ACC := (1/4) (PR) 
SPAC ACC := (1/4) [PR-(QI+QR)*W] 
SACH :QR:, 1 QR := (1/2) [PR-(QI+QR)*W] 
LAC : PI: , 14 ACC ·= (1/4) (PI) 
MPY :QI: P REGISTER := ( 1/4) (QI-QR) *W 
APAC ACC ·= (1/4) [PI+(QI-QR)*W] 
SACH : PI:, 1 PI := (1/2) [PI+(QI-QR)*W] 
SPAC ACC := (1/4) (PI) 
SPAC ACC := (1/4) [PI-(QI-QR)*W] 
SACH : QI:, 1 QI ·= (1/2) [PI-(QI-QR)*W] 
$END 

* 
PIBY2 $MACRO PR,PI,QR,QI 
* 
* CALCULATE Re[P+jQ] AND Re[P-jQ] 
* 

LAC :PI: ,15 ACC ·= (1/2)(PI) 
SUB :QR:,15 ACC := ( 1/2) (PI-QR) 
SACH :PI: PI ·= (1/2) (PI-QR) 
ADDH :QR: ACC ·= (1/2) (PI-QR)+(QR) 
SACH :QR: QR := (1/2) (PI+QR) 

* 
* CALCULATE Im[P+jQ] AND Im[P-jQ] 
* 

LAC :PR:,15 ACC := ( 1/2) (PR) 
ADD :QI:,15 ACC ·= ( 1/2) ( PR+QI) 
SACH :PR: PR := (1/2) (PR+QI) 
SUBH :QI: ACC ·= (1/2) (PR+QI)-(QI) 
DMOV :QR: QR -> QI 
SACH :QR: QR := (1/2) (PR-QI) 
$END 

5-51 



Software Appl.ications 

5-52 

* 
PI3BY4 $MACRO PR,PI,QR,QI,W 
* 

LT :W: T REGISTER := W=COS(PI/4)=SIN(PI/4) 
LAC :QI:,14 ACC ·= (1/4) (QI) 
SUB :QR:, 14 ACC := ( 1/4) (QI-QR) 
SACH :QI:, 1 QI := ( 1/2) (QI-QR) 
ADD :QR:,15 ACC := ( 1/4) (QI+QR) 
SACH :QR: ,1 QR := ( 1/2) (QI+QR) 
LAC :PR:,14 ACC := (1/4) (PR) 
MPY :QI: P REGISTER := ( 1/4) (QI-QR) *W 
APAC ACC := (1/4) [PR+(QI-QR)*W] 
SACH :PR:, 1 PR := (1/2) [PR+(QI-QR)*W] 
SPAC ACC := ( 1/4) (PR) 
SPAC ACC ·= (1/4) [PR-(QI-QR)*W] 
MPY :QR: P REGISTER ·= (1/4) (QI+QR)*W 
SACH :QR: ,1 QR := (1/2) [PR-(QI-QR)*W] 
LAC :PI:,14 ACC := (1/4)(PI) 
SPAC ACC := (1/4) [PI-(QI+QR)*W] 
SACH :PI:, 1 PI := (1/2) [PI-(QI~QR)*W] 
APAC ACC := (1/4) (PI) 
APAC ACC := (1/4) [PI+(QI+QR)*W] 
SACH :QI:, 1 QI := (1/2) [PI+(QI+QR)*W] 
$END 

Example 5-35 shows the bit-reversal addressing capability of the TMS320C25 for 
implementing an 8cpoint DIT FFT. On the TMS320C25 the following instructions 
input the data and store it in memory in the bit-reversed sequence: 

RPTK 7 
IN *BRO+,PAO 

This code combines the functions of input and bit-reversal addressing which were 
previously implemented separately on the TMS32020. The following implementation 
uses a separate bit-reverse macro: 

RPTK 7 
IN *O+ ,PAO 

BITREV XlR,SlI,X4R,X4I 
BITREV X3R,S3I,X6R,X6I 



Software Applications 

Example 5-35. An 8-Point DIT FFT 

XOR EQU 00 
XOI EQU 01 
XlR EQU 02 
XlI EQU 03 
X2R EQU 04 
X2I EQU 05 
X3R EQU 06 
X3I EQU 07 
X4R EQU 08 
X4I EQU 09 
X5R EQU 10 
X5I EQU 11 
X6R EQU 12 
X6I EQU 13 
X7R EQU 14 
X7I EQU 15 
W EQU 16 
WVALUE EQU >5A82 ; VALUE FOR SIN(45) OR COS(45) 
* 
* INITIALIZE FFT PROCESSING. 
* 
FFT 

* 

SPM 
SSXM 
ROVM 
LDPK 
LALK 
SACL 

0 

4 
WVALUE 
w 

NO SHIFT OF PR OUTPUT 
SET SIGN-EXTENSION MODE. 
RESET OVERFLOW MODE. 
SET DATA PAGE POINTER TO 4. 
GET TWIDDLE FACTOR VALUE. 
STORE SIN(45) OR COS(45). 

* INPUT SAMPLES, STORING IN BIT-REVERSED ORDER. 
* 

LOAD LENGTH OF FFT IN ARO. LARK 
LRLK 
LARP 
RPTK 
IN 

AR0,8 
ARl,>200 
ARl 

LOAD ARl WITH DATA PAGE 4 ADDRESS. 

* 

7 
*BRO+,PAO ONLY REAL-VALUED INPUT 

* FIRST & SECOND STAGES COMBINED WITH DIVIDE-BY-4 INTERSTAGE 
SCALING 
* 

* 

COMBO XOR,XOI,XlR,XlI,X2R,X2I,X3R,X3I, 
COMBO X4R,X4I,X5R,X5I,X6R,X6I,X7R,X7I. 

* THIRD STAGE WITH DIVIDE-BY-2 INTERSTAGE SCALING 
* 

* 

ZERO 
PIBY4 
PIBY2 
PI3BY4 

XOR,XOI,X4R,X4I 
XlR,XlI,X5R,X5I,W 
X2R,X2I,X6R,X6I 
X3R,X3I,X7R,X7I,W 

* OUTPUT SAMPLES, SUPPLYING IN SEQUENTIAL ORDER. 
* 

LRLK 
RPTK 
OUT 
RET 

ARl,>200 
15 
*+,PAO 

LOAD ARl WITH DATA PAGE 4 ADDRESS. 

COMPLEX-VALUED OUTPUT 

5-53 



Software Applications 

5-54 

Table 5-2 provides a comparison of execution speed, program memory, and data 
memory for an 8-point DIT FFT implementation using the TMS32020 and 
TMS320C25. 

Table 5-2. FFT Memory Space and Time Requirements 

DEVICE WORDS IN MEMORY CPU CYCLES TIME 
Data Program (µs) 

TMS32020 17 169 216 43.2 
TMS320C25 17 153 178 17.8 



6. Hardware Applications 

Information and examples on how to interface the TMS320C25 to external devices 
are presented in this section. The examples given are general enough in nature that 
they may be easily adapted to fit a particular system requirement. 

The following buses, ports, and control signals provide system interface to the 
TMS320C25 processor: 

• 16-bit address bus (A15-AO) 
• 16-bit data bus (015-00) 
• Serial port 
• PS, OS, IS (program, data, 1/0 space select) 
• R/W (read/write) and STRB (strobe) 
• READY and MSC (microstate complete) 
• HOLD and HOLDA (hold acknowledge) 
• INT(2-0) and IACK (interrupt acknowledge) 
• XF (external flag) and BIO (branch control) 
• SYNC (synchronization) and BR (bus request) 

Major hardware applications discussed in this section are listed below. 

• External Local Memory Interface (Section 6.1 on page 6-2) 

• Wait States (Section 6.2 on page 6-3) 

• Direct Memory Access (Section 6.3 on page 6-4) 

• Global Memory (Section 6.4 on page 6-6) 

• Codec Interface (Section 6.5 on page 6-7) 

• 1/0 Ports (Section 6.6 on page 6-8) 

6-1 



Hardware Applications 

6.1 External Local Memory Interface 

6-2 

The external local memory interface provides the versatility to interface the 
TMS320C25 to a wide variety of memory devices. For example, if speed and maxi­
mum throughput are desired, the TMS320C25 can run with zero wait states and 
perform memory accesses in a single machine cycle. The TMS320C25 can access 
slower memories by inserting one or more wait states into the memory access oper­
ation by using the READY input signal. 

If the internal data RAM on the TMS320C25 is sufficient for system needs, a minimal 
memory configuration, such as the one shown in Figure 6-1, can be implemented. 
In the example, two (2K x 8) PROMs are used as program memory. No address 
decoding is performed, and the PS control signal is used as the chip enable. 

Depending on the access time of the PROMs, the READY input can be either 
connected to a logic high for zero wait states or connected to the MicroState 
Complete (MSC) pin for automatic one wait-state generation. 

TBP38L165 

A15_AO ~1 ADDRESS BUS A10-AO 

015-DB~~ 

+5 v 

TMS320C25 

TBP38L165 

+5 v 

16 

16 DATA BUS 

74ALS32 

Figure 6-1. Minimal External Program Memory Configuration 



Hardware Applications 

6.2 Wait States 

The number of cycles in a memory or 1/0 access is determined by the state of the 
READY input. At the start of quarter-phase 3, the TMS320C25 samples the READY 
input. If READY is high, the memory access ends at the next falling edge of 
CLKOUT1. If READY is low, the memory cycle is extended by one machine cycle, 
and all other signals remain valid. At the beginning of the next quarter-phase 3, this 
sequence is repeated. Figure 6-2 shows a one wait-state memory access. Note that 
for on-chip program and data memory accesses, the READY input is ignored. 

Phase # " I 1 I 2 I 3 I " I 1 I 2 I 3 I " I 1 

CLl<OUTI \ I \ I \_ 
6TRB \ 

~-AQ. =-s.o. 
OR 

..._ _______ vAL_10 _________ ),49( 
: 

R/W ..._ _______ vAL_10 _________ ~ ~ 
READY ... ..... 

(F0~1~~ -------------------c'( ~ATA )>--....--
OPERATION) : . IN . 

~~~~ -------~f)(MYill~..._ ____ o_~_TA_o_UT _______ )---.... 
Figure 6-2. One Wait-State Memory Access Timing

The automatic generation of one wait state can be accomplished by the use of the
MicroState Complete {MSC) signal. The MSC output is asserted low during
CLKOUT1 low to indicate the beginning of an internal or external memory or 1/0
operation (see Figure 6-2). By gating MSC with the address and PS, OS, and/or
TS, a one-wait READY signal can be generated (see Figure 6-3).

6-3

Hardware Applications

TMS320C25
SIGNALS

~~--~~~~~~

PS

M

16

A15-AO

ONE
WArT-STAlE

68.ECT
LOGIC

.__.--------....
READY

Figure 6-3. One Wait-State Generator Using MSC

6.3 Direct Memory Access

6-4

The TMS320C25 supports Direct Memory Access (OMA) to its external
program/data memory using the HOLD and HOLDA signals. Direct memory access
can be used for multiprocessing by temporarily halting the execution of one or more
processors to allow another processor to read from or write to the halted processor's
local off-chip memory. Here the multiprocessing is typically a master-slave config­
uration. The master may initialize a slave by downloading a program into its program
memory space and/or provide the slave with the necessary data to complete a task.

In a typical TMS320C25 direct memory access scheme, the master may be a gener­
al-purpose CPU, another TMS320C25, or perhaps even an analog-to-digital
converter. A simple TMS320C25 master-slave configuration is shown in Figure 6-4.
The master TMS320C25 takes complete controf of the slave's external memory by
asserting HOLD low via its external flag (XF). This causes the slave to place its
address, data, and control lines in a high-impedance state. By asserting RS in
conjunction with HOLD, the inaster processor can load the slave's local program
memory with the necessary initialization code on reset or powerup. The two
processors can be synchronized using the SYNC pin to make the transfer over the
memory bus faster and more efficient.

After control of the slave's buses is given up to the master processor, the slave alerts
the master of this fact by asserting HOLDA. This signal may be tied to the master
TMS320C25's BIO pin. The slave's XF pin may be used to indicate to the master
when it has finished performing its task and needs to be reprogrammed or requires
additional data to continue processing. In a multiple slave configuration, the priority
of each slave's task may be determined by tying the slave's XF signals to the
appropriate INT(2-0) pin on the master TMS320C25.

Hardware Applications

TMS320C25
(MASTER)

TMS320C25
(SLAVE)

XF1---------------......... HOLD

BIO,..- HOLDA

INTO-INT21+---------------1XF

IACK l 1 y BIO

A16-AOt--~----1 ""' H+i----..,.....•-A15-AO
BUFFER

015-00 ... ,..-.....,...-----1--..lo'lll L~Ji'c N+1-----..---t--1rM015-DO

--~~~~RIW--_;--+-----1--..lo'lll~~~~~
~

+ i_
MASTER

DATA

~~r

MASTER
PROGRAM

~ir~r

SLAVE
PROGRAM
MEMORY

(RAM)

Figure 6-4. Direct Memory Access Using a Master-Slave Configuration

A PC environment presents another example of a potential direct memory access
scheme where a system bus (the PC-bus) is used for data transfer. In this config­
uration, either the master CPU or a disk controller may place data onto the system
bus, which can be downloaded into the local memory of the TMS320C25. Here the
TMS320C25 acts more like a peripheral processor with multifunction capability. In
a speech application, for example, the master can load the TM5320C25's program
memory with algorithms to perform such tasks as speech analysis, synthesis, or
recognition, and fill the TMS320C25's data memory with the required speech
templates. In another application example, the TMS320C25 can serve as a dedicated
graphics engine. Programs can be stored in TMS320C25 program ROM or down­
loaded via the system bus into program RAM. Data can come from PC disk storage
or provided directly by the master CPU.

Figure 6-5 depicts a direct memory access using a PC environment. In this config­
uration, decode and arbitration logic is used to control the direct memory access.
When the address on the system bus resides in the local memory of the peripheral
TMS320C25, this logic asserts the HOLD signal of the TMS320C25 while sending
the master a not-ready indication to allow wait states. After the TMS320C25
acknowledges the direct memory access by asserting HOLDA, READY is asserted and
the information transferred.

6-5

Hardware Applications

MASTER
CPU ADDRESS

1111111 ~DATA
ADDRESS r--+1·'·.:,·
DATA~I

11 :~:
jMj ADDRESS

DISK
CONTROLLER

i
1---

ADDRESS !+-1:_:·:::
DATAJ+-+1:·,:·

ADDRESS LOCAL
B PROGRAM/DATA

_.. U r MEMORY F (RAM)

. ~ DATA ~ ~
R ADDRESS DATA

TMS320C25

DECODE/
_.. ARBITRATION ,__ __ _,+ .. HOLD

LOGIC ·

h....------1HOLDA
READY

LOCAL
PROGRAM
MEMORY

(ROM)

J +
.._ADDRESS
......- DATA ./

Figure 6-5. Direct Memory Access in a PC Environment

6.4 Global Memory

6-6

In various digital signal processing tasks, such as filters or modems, the algorithm
being implemented may be divided into sections with a distinct processor dedicated
to each section. In this multiple processor scheme, the first and second processors
may share global data memory, as well as the second and third, the third and fourth,
etc. Arbitration logic may be required to determine which section of the algorithm
is executing and which processor has access to the global memory. With multiple
processors dedicated to distinct sections of the algorithm, throughput may be
increased via pipelined execution.

The external memory of the TMS320C25 can be divided into both global and local
sections. Special registers and pins included on the TMS320C25 allow multiple
processors to share up to 32K words of global data memory. This implementation
facilitates efficient "shared data" multiprocessing where data is transferred between
two or more processors. Unlike a direct memory access scheme, reading or writing
global memory does not require one of the processors to be halted.

The size of the global memory is programmable between 256 and 32K locations in
data memory by loading the global register (GREG). After global memory is defined
in the GREG, the TMS320C25 asserts the BR (bus request) signal before each global
memory access. The processor then inserts wait states until a bus grant is given by

Hardware Applications

asserting the READY line. Figure 6-6 illustrates such a global memory interface.
Since the processors can be synchronized by using the SYNC pin, the arbitration logic
may be simplified and the address and data bus transfers more efficient.

The SYNC pin on the TMS320C25 may also be used to synchronize several proces­
sors to allow for execution of redundant fail-safe systems. SYNC permits instruction
broadcasting between several processors and lock-step execution after initial
synchronization.

TMS320C25 TMS320C25

6.5 Codec Interface

BR 1------..i ARBITRATION -------.BR

READY LOGIC READY

A15-AO

D15-DO

PROGRAM
MEMORY

B
u
F
F
E
R
s

B
u

GLOBAL F
DATA F

MEMORY E
R
s

SYNC
GENERATION--- CLOCK

LOGIC

A15-AO

D15-DO

PROGRAM
MEMORY

Figure 6-6. Global Memory Communication

In some areas of telecommunications, speech processing, and other applications that
require low-cost analog 1/0 devices, a codec may be useful. The combo-codec used
here consists of nonlinear A/D and D/ A converters with all the associated filters and
data-holding registers.

The TMS320C25 serial port allows communication with serial devices such as
codecs. The speed and versatility of the TMS320C25 allow it to compand (COMpress
and exPAND} a PCM (Pulse Code Modulation} data stream, acquired by the codec,
through the TMS320C25 execution of software conversion routines (see the appli­
cation report, "Companding Routines for the TMS32010/TMS32020," in the book,
Digital Signal Processing Applications with the TMS320 Family}. Figure 6-7 shows
an interface example of a Texas Instruments TCM2913 codec to the TMS320C25
serial port.

6-7

Hardware Applications

TMS320C25

DR

DX

CLKR

FSR

CLKX I---'

FSX

TCM2913

PCMOUT

-.- PCMIN

CLKX

FSX
FSR CLKR

J
FREQUENCY t+----1 DMDER OSCILLATOR

Figure 6-7. Codec Interface

+ .. ANALOG OUT

ANALOG IN

In this configuration, all timing and synchronization signals are externally generated
using independent oscillator and frequency-dividing hardware such as the 74AS867
or 74LS161 counters. Alternatively, the designer may decide to generate the timing
signals from the TMS320C25 clock by subdividing its frequency.

In some circuits, it may be necessary to include an opamp at the analog output of
the codec. In such cases or if variable output gain is required, a gain-setting resistor
network must be provided as specified in the TCM2913 documentation.

Other linear A/D and D/A converters may be interfaced to the TMS320C25 through
its parallel ports as well as the serial ports.

6.6 1/0 Ports

6-8

1/0 design on the TMS320C25 is treated the same way as memory. The 1/0 address
space is distinguished from the local program/data memory space by the IS signal.
TS goes low at the beginning of the memory cycle. All other control signals and timing
parameters will be the same as those for the program/data external memory interface.

The TMS320C25 software instructions can access 16 input and 16 output ports.
The four least significant bits of the address bus specify the particular port being
accessed. A pair of 74AS138s can be used to fully decode these address bits (see
Figure 6-8).

Hardware Applications

TM6320C25
SIGNALS

A3

16

A2

A1

AO

+

16

A3

A2

A1

AO

r

svL

74AS138

G1

G2A

G2B

c
B

A

74AS138

G1

G2A

G2B

c
B

A

Y7

Y6

Y5

Y4

Y3

Y2

Y1

YO

Y7

Y6

Y5

Y4

Y3

Y2

Y1

YO

Figure 6-8. 1/0 Port Addressing

1/0 PORT

1/0 PORT

1/0 PORT

15

14

13

12

11

10

1/0 PORT

1/0 PORT

1/0 PORT

1/0 PORT

1/0 PORT

1/0 PORT

170 PORT

1/0 PORT

1/0 PORT

1/0 PORT

1/0 PORT

1/0 PORT

VO PORT

9

8

7

6

5

4

3

2

1

0

A simple interface between two processors can be implemented using up to 16
bidirectional 1/0 ports connected to the TMS320C25. An interprocessor communi­
cation path can be formed by memory-mapping peripherals to the 1/0 ports of the
TMS320C25. In this manner, the TMS320C25 can connect to parallel A/Ds, registers,
FIFOs, two-port memories, or other peripheral devices. In a multiprocessing scheme,
intelligent peripherals can be memory-mapped into the 1/0 ports. Here the
TMS320C25 can communicate with UARTs, general-purpose microprocessors, disk
controllers, video controllers, or other peripheral processors.

Using an 8-bit general-purpose microprocessor, such as Tl's TMS7042, for a
keyboard interface is an example of a TMS320C25 1/0 port multiprocessing scheme,
as shown in Figure 6-9. The TMS7042 may be mapped into the TMS320C25 1/0
space using latches to store the transferred data. In a single or multiple 1/0 port
multiprocessing configuration, the four LSBs of the address bus are decoded to
determine which of the 16 1/0 ports on the TMS320C25 is being accessed. The
TMS320C25 selects the 1/0 space (TS) for its external bus and reads/writes data
using the IN/OUT instructions.

Processor-controlled signals between the TMS320C25 and the peripheral device
indicate when data is available to be read. This interprocessor communication is
facilitated by using the input and output pins of the TMS7042 (or other peripheral
processor). In an 1/0 multiprocessing configuration, the 1/0 port address space is

6-9

Hardware Applications

6-10

limited, and data transfers are relatively slow compared to a direct memory access
or global memory configuration.

TMS320C25 TMS7042

IS
__.,

r DECODE ..
....... LOGIC --..- CONTROL

PA3-PAO r PINS

J
~

L A
T_

D15-DO c DATA ...- ~
H

...
.......__..

...
~

L
L-+- A ... T

' c r

H PROGRAM
MEMORY

I.----"

Figure 6-9. 1/0 Port Processor-to-Processor Communication

7. Assembler Directives

The TMS320C25 Macro Assembler translates mnemonic instructions and assembler
directives specified by the TMS320C25 assembly language source code into
executable object code. Some directives make sections of the program relocatable,
others define constants for data or text, and still others provide linkage between
separate program modules to form a complete executable program. After the Link
Editor links a program as required, the TMS320C25 Simulator provides simulation
for effective software development and program verification.

Given a file of TMS320C25 source code as input the assembler outputs a listing file,
an object file, an optional symbol table, and a cross-reference list. The assembler
also provides a comprehensive set of error diagnostics.

Major topics discussed in this section are listed below.

• Creation of TMS320C25 Source Code (Section 7.1 on page 7-2)
Label field
Command field
Operand field
Comment field
Assembly language elements:

- Symbols (Section 7.2 on page 7-4)
- Constants (Section 7.3 on page 7-4)
- Character strings (Section 7.4 on page 7-6)
- Expressions (Section 7 .5 on page 7-6)

• Assembler Directives (Section 7.6 on page 7-9)
Functional groupings

• Individual Directive Descriptions (Section 7.7 on page 7-12)
Presented in alphabetical order and providing the following:

- Syntax
- Description
- Example(s)

• Source Listing Format (Section 7.8 on page 7-44)

• Object Code (Section 7.9 on page 7-45)
Object code format
Changing object code

• Cross- Reference Listing (Section 7 .10 on page 7-50)

• Assembler Error Messages (Section 7.11 on page 7-51)

7-1

Assembler Directives

7.1 Creation of TMS320C25 Source Code

The TMS320C25 assembly language consists of operation codes (called mnemonics)
that correspond directly to binary machine instructions. An assembly language
program is called a source program. Before it can be executed by the computer, the
source program must be processed by the assembler to obtain a machine language
program. This processing of a source program is called assembling. This consists
of combining the binary values (which correspond to the operation code) with the
binary address information to form the machine language instruction.

The TMS320C25 Assembler is a two-pass assembler that processes source code
twice. On the first pass, the assembler maintains the location counter (which defines
the program memory addresses assigned to the resulting words of object code);
builds a symbol table, and produces a list file of the source code. On the second
pass, the assembler produces the object code using the operation codes and the
symbol table of the first pass.

An assembly language source program consists of source statements that may
contain assembler directives, machine instructions, or comments. Source statements
scanned by the assembler may contain four ordered fields (label, command, operand,
and comment) separated by one or more blanks. Source statements containing an
asterisk (*) in the first character position are comment statements, and as such, have
no effect on the assembly. The source statement line may be as long as the source
file format allows; however, the assembler truncates the source line to 60 characters
without warning. Only comments may extend past column 60 without an error
resulting.

The TMS320C25 Assembler uses the ASCII character set.

The syntax for source statements is as follows:

[<label>] <mnemonic> [<operand>] [<comment>]

A source statement may have a label that is user-defined. The label field begins in
character position one of the source statement. At least one blank must separate the
label from the command mnemonic, the mnemonic from the operand (when an
operand is required), and the operand(s) from the comment field.

The last source statement of a source program, usually the END directive, is followed
by the end-of-file statement for the source medium.

7 .1 .1 Label Field

7-2

The label field begins in character position one of the source statement and contains
a label of up to six significant characters. The first character of the label must be
alphabetic; additional characters may be alphanumeric. A label is optional for machine
instructions and for many assembler directives. When the label is omitted, the first
character position must contain a blank.

A source statement consisting of only a label field is a valid statement. It has the
effect of assigning the current value of the location counter to the label as well as
to the next source statement. This is equivalent to the following directive statement:

<label> EQU $ Where $ represents the current value of the location
counter at that point in the assembly.

Assembler Directives

7 .1 .2 Command Field

The command field begins after the blank that terminates the label field, or in the first
non-blank character past the first character position (which must be blank when the
label is omitted}. The command field is terminated by one or more blanks and may
not extend past the right margin. The command field may contain one of the
following:

• Assembler mnemonic of a machine instruction (e.g., MAC}
• Macro mnemonic (e.g., FACT}
• Assembler directive (e.g., DATA}

7 .1 .3 Operand Field

The operand field begins following the blank that terminates the command field and
may not extend past the right margin of the source statement. The operand field is
terminated by one or more blanks.

The operand field may contain one or more of the following:

• Constants
• Character strings
• Expressions

Symbols used in the operand field must be defined in the assembly, usually by
appearing in the label field of a statement or in the operand field of a REF (external
reference} or SREF (secondary external reference} directive. REF and SREF directives
provide access to symbols defined in other programs.

7.1.4 Comment Field

The comment' field begins after the blank terminating the operand field or the blank
terminating the command field, as in the case of commands that have no operands.
The comment field may extend to the end of the source statement (if required} and
may contain any ASCII character including blank(s}. The contents of the comment
field up to the end of the source record are listed in the source portion of the assembly
listing and have no other effect on the assembly.

7-3

Assembler Directives

7.2 Symbols

Symbols are used in the label field and the operand field. A symbol is a string of
alphanumeric characters, ('A' through 'Z', 'O' through '9', and'$'}. The first character
in a symbol must be 'A' through 'Z' or'$'. No character may be blank. When more
than six characters are used in a symbol, the assembler prints all the characters, but
accepts only the first six characters for processing (the assembler prints a warning
indicating that the symbol has been truncated}. Therefore, symbols must be unique
in the first six characters. User-defined symbols are valid only during the assembly
in which they are defined.

Symbols used in the label field become symbolic addresses. They are associated
with locations in the program and must not be used in the label field of other state­
ments. Mnemonic operation codes and assembler directive names may also be used
as valid user-defined symbols when placed in the label field.

Any symbol appearing in the label field of a source statement, other than an EQU
(define assembly-time constant} directive, is either absolute or relocatable depending
on whether or not the statement is in an absolute (specified} block of the program.

7.2.1 Predefined Symbols

The predefined symbols are the dollar sign character ($) and the auxiliary register
and port symbols. The dollar sign character is used to represent the current location
within the program. The auxiliary register symbols are of the form 'ARn' where 'n'
is 0 to 4. The port addresses are of the form 'PAn' where 'n' is 0 through 15.

Examples of valid predefined symbols:

$

ARO
PA12

Represents the current location
Represents Auxiliary Register 0
Represents Port Address 1 2

7 .3 Constants

7-4

The assembler recognizes the following five types of constants, each internally
maintained as a 16-bit quantity:

• Decimal integer constants
• Binary integer constants
• Hexadecimal integer constants
• Character constants
• Assembly-time constants

Decimal, binary, hexadecimal, and character constants are absolute. Assembly-time
constants defined by absolute expressions are absolute, and assembly-time constants
defined by relocatable expressions are relocatable.

Assembler Directives

7.3.1 Decimal Integer Constants

A decimal integer constant is written as a string of decimal digits. Decimal integers
range in value from -32,768 to +32,767. Positive decimal integer constants in the
range of 32,768 to 65,535 are considered negative when interpreted as two's­
complement values.

Examples of valid decimal constants:

1000
-32768
25

Constant equal to 1000 or >3E8
Constant equal to -32768 or >8000
Constant equal to 25 or >19

7.3.2 Binary Integer Constants

A binary integer constant is written as a string of up to 16 binary digits (0 or 1)
preceded by a question mark, '?'. If less than 16 digits are specified, the assembler
right-justifies the given bits in the resulting constant.

Examples of valid binary constants:

?0000000000010011
?0111111111111111
?11110

Constant equal to 19 or >0013
Constant equal to 32767 or > 7FFF
Constant equal to 30 or >001 E

7.3.3 Hexadecimal Integer Constants

A hexadecimal integer constant is written as a string of up to four hexadecimal digits
preceded by a 'greater than' sign, '>'. If less than four hexadecimal digits are spec­
ified, the assembler right-justifies the given bits in the resulting constant. Hexade­
cimal digits include the decimal. values 'O' through '9' and the letters 'A' through 'F'.

Examples of valid hexadecimal constants:

>78
>F
>37AC

Constant equal to 120 or >0078
Constant equal to 15 or >OOOF
Constant equal to 14252 or >37AC

7.3.4 Character Constants

A character constant is written as a string of one or two alphabetic characters
enclosed in single quotes. Two consecutive single quotes represent each single
quote contained within a character constant. If less than two characters are specified,
the assembler right-justifies the given bits in the resulting constant. The characters
are represented internally as eight-bit ASCII characters. A character constant
consisting only of two single quotes (no character) is valid and is assigned the value
0000 (hexadecimal).

Examples of valid character constants:

'AB' Represented internally as >4142
'C' Represented internally as >0043
'N' Represented internally as >004E
"'D' Represented internally as >2744

7-5

Assembler Directives

7 .3.5 Assembly-Time Constants

An assembly-time constant is a symbol given a value by an EOU directive. The value
of the symbol, determined at assembly time, is considered to be absolute or relocat­
able according to the relocatability of the expression, not according to the relocata­
bility of the location counter value. Absolute value symbols may be assigned values
with expressions using any of the above constant types.

7 .4 Character Strings

Some a$sembler directives require character strings in the operand field. A character
string is written as a string of characters enclosed in single quotes. Two consecutive
single quotes represent a single quote in a character string. The maximum length
of the string is defined for each directive requiring a character string. The characters
~re represented internally as eight-bit ASCII.

Examples of valid character strings:

'SAMPLE PROGRAM' Defines a 14-character string consisting of SAMPLE
PROGRAM.

'PLAN "C"' Defines an 8-character string consisting of PLAN 'C'.

7 .5 Expressions

7-6

Expressions are used in operand fields of assembler directives and machine
instructions. An expression is a constant or symbol, a series of constants or symbols,
or a series of constants and symbols separated by arithmetic operators. Each constant
or symbol may be preceded by a plus sign (unary plus}, a minus sign (unary minus},
or the # symbol (unary invert}. Unary minus takes the two's complement of the
expression, and unary invert takes the one's complement. The # symbol yields the
value of the logical complement of the following constant or symbol. An expression
does not contain embedded blanks. The valid range of values for an expression is
-32,768 to +65,535.

An expression is relocatable when the number of relocatable symbols or constants
added to the expression is one greater than the number of relocatable symbols or
constants subtracted from the expression. (All other valid expressions are absolute.}
When the first symbol or constant is unsigned, it is considered as added to the
expression. For example, when all symbols in the following expressions are relo­
catable, the expressions are relocatable:

LABEL+1
LABEL+TABLE+-INC
-LABEL+TABLE+INC

Assembler Directives

7.5.1 Arithmetic Operators in Expressions

Arithmetic operators used in expressions are as follows:

+ for addition
- for subtraction
* for multiplication
I for division

In evaluating an expression, the assembler first negates any constant or symbol
preceded by a unary minus and then performs the arithmetic operations from left to
right. The assembler does not assign precedence to any operation other than unary
plus or unary minus. All operations are integer operations. The assembler truncates
the fraction in division. When a unary minus follows a subtraction operator, the
effective operation is addition. The unary minus cannot be applied to a relocatable
expression or subexpression. For example, the expression 4+5*2 would be evaluated
as 18, not 14; and the expression 7+1 /2 would be evaluated as 4, not 7.

The assembler checks for a valid range of values. The warning message 'VALUE
TRUNCATED' is given when a value is out of range.

An example of where a 'VALUE TRUNCATED' message is given:

B 65538

7 .5.2 Parentheses in Expressions

The assembler supports the use of parentheses in expressions to alter the order of
evaluation of the expression. Nesting of pairs of parentheses within expressions is
also supported. Evaluation of portions of an expression within parentheses at the
same nesting level may be considered to be simultaneous. Parentheses cannot be
nested more than eight levels deep.

For example, the use of parentheses in the expression LAB1 +{(4+3)*7) results in
the following operation:

1) Add four to three,
2) Multiply the resulting sum by seven, and
3) Add the resulting product to the value of LAB1.

7.5.3 Well-Defined Expressions

Some assembler directives require well-defined expressions in operand fields. For
an expression to be well-defined, any symbols or assembly-time constants in the
expression must have been previously defined. The evaluation of a well-defined
expression must be absolute, and a well-defined expression must not contain a
character constant. An example of a well-defined expression is as follows:

>1000+X Where X must have been previously defined.

7-7

Assembler Directives

7 .5.4 Absolute and Relocatable Symbols in Expressions

The value of an expression containing absolute or relocatable symbols is either
absolute or relocatable depending on a precise set of rules. An expression containing
a relocatable symbol or relocatable constant immediately following a multiplication
or division operator is illegal. When the result of evaluating an expression up to a
multiplication or division operator is relocatable, the expression is also illegal. Table
7-1 defines the relocatability of the result for each type of operator.

If the current value of an expression is relocatable with respect to one relocatable
section, a symbol of another section cannot be included until the value of the
expression becomes absolute. The following are examples of legal expressions:

BLUE+1

GREEN-4

2*16+RED

440/2-RED

The sum of the value of symbol BLUE plus one is legal and of the
same type as BLUE.

The result of subtracting four from the value of symbol GREEN is
legal and of the same type as GREEN.

The sum of the value of symbol RED plus the product of two times
16 is legal, and of the same type as RED.

The result of dividing 440 by two and subtracting the value of
symbol RED from the quotient (RED must be absolute for this to
be a legal expression).

Table 7-1. Results of Operations on Absolute and Relocatable Items

RESULT RESULT RESULT RESULT
OF OF OF OF

IF A IS AND BIS A+B A-B A*B A/B

ABS ABS ABS ABS ABS ABS(B¢0)

ABS RELOC RELOC illegal Note 1 illegal

RELOC ABS RELOC RELOC Note 2 Note 3

RELOC RELOC illegal Note 4 illegal illegal

Notes: 1. Illegal unless A equals zero or one. If A is one, the result is relocatable; if A is zero, the
result is an absolute zero.

2. Illegal unless B equals zero or one. If B is one, the result is relocatable; if B is zero, the
result is an absolute zero.

3. Illegal unless B equals one. If B equals one, the result is relocatable.
4. Illegal unless A and B are in the same section. If A and Bare in the same section, the result

is absolute.

7.5.5 Externally Referenced Symbols in Expressions

7-8

As defined in the REF (external reference) and SREF (secondary external reference)
directives, the assembler allows externally referenced symbols in expressions under
the following conditions:

1) Only one externally referenced symbol is used in an expression.

2) The character preceding the referenced symbol must be a blank, a plus sign,
or a comma. The portion of the expression preceding the symbol, if any, must
be added to the symbol.

Assembler Directives

3) The portion of the expression following the referenced symbol must not include
multiplication or division on the symbol (as for a relocatable symbol).

4) The remainder of the expression following the referenced symbol must be
absolute.

The link editor resolves all externally referenced symbols automatically. However,
the assembler limits the user to a total of 255 externally referenced symbols per
module. Modules using more than 255 external symbols must be broken into smaller
modules for assembly, and linked using the link editor.

7.6 Assembler Directives

Assembler directives are instructions that control the assembly process rather than
produce object code for machine instructions. The TMS320C25 Assembler supports
directives in the following categories:

• Directives that affect the location counter
• Directives that affect assembler output
• Directives that initialize constants
• Directives that provide linkage between programs
• Miscellaneous directives.

7.6.1 Directives That Affect the Location Counter

As the assembler reads the source statements of a program, the location counter is
set to correspond to the memory locations assigned to the resulting object code.
The thirteen assembler directives that affect the location counter are shown in Table
7-2. The first nine initialize the location counter and define its value as relocatable,
absolute, or dummy. The next two directives set the location counter to provide a
block of program memory for the object code. The last two directives define a block
of an independently stored program segment.

Table 7-2. Assembler Directives That Affect the Location Counter

DIRECTIVES MNEMONICS

Absolute origin AORG
Relocatable origin RORG
Dummy origin DORG
Block starting with symbol BSS
Block ending with symbol BES
Data segment DSEG
Data segment end DENO
Common segment CSEG
Common segment end CEND
Program segment PSEG
Program segment end PEND
Independent program segment EXEC
Independent segment end XEND

7-9

Assembler Directives

7.6.2 Directives That Affect Assembler Output

Directives that affect assembler output (see Table 7-3) are primarily used to improve
user interface. The first directive supplies a program identifier in the objact code.
The other five directives in this category format the source listing.

Table 7-3. Assembler Directives That Affect Assembler Output

DIRECTIVES MNEMONICS

Program identifier IDT
Output options OPTION
Page title TITL
Restart source listing LIST
Stop source listing UNL
Eject page PAGE

7.6.3 Directives That Initialize Constants

Table 7-4 lists those directives that initialize constants. DATA and TEXT assign
hexadecimal values in successive words of the object code. EQU initializes a constant
for use during the assembly process.

Table 7-4. Assembler Directives That Initialize Constants

DIRECTIVES MNEMONICS

Initialize word DATA
Initialize text TEXT
Define assembly-time constant EQU

7.6.4 Directives That Provide Linkage Between Programs

7-10

Two pairs of directives, DEF/REF and SREF/LOAD, generate the information required
to link program modules, thereby making it unnecessary to assemble an entire
program in the same assembly. A long program may be divided into separately
assembled modules to avoid a long assembly or to reduce the symbol table size.
Modules common to several programs may also be combined as required. Program
modules may be linked by the link editor to form a linked object module that may
be stored on a library and/or loaded as required.

The DEF/REF directives enable program modules to be assembled separately and
integrated into an executable program. The DEF directive places one or more symbols
defined in· the module into the object code of the assembled module, thus making
them available for linking. The REF directive places symbols used in the module,
but defined in another module, into the object code of the assembled module,
allowing them to be linked.

The Link Editor's major function is to provide symbol resolution for external references
and definitions created by the REF and DEF assembler directives (see Table 7-5).
Each symbol defined in a program module and required by other program modules
must be placed in the operand field of a DEF directive in the program module defining
it and in the operand field of a REF directive in the program module referencing it.
All program modules to be linked by the link editor must include an IDT directive
with a character string enclosed in single quotes placed in its operand field as the

Assembler Directives

program module name. The link editor builds a list of symbols from DEF directives
as it links the program modules, and matches symbols from REF directives to the
symbols in the list. The link editor follows linking commands to determine the
modules to be linked. If the module in which a routine is defined has the same name
as the routine entry points, the link editor can automatically locate the required
module in a designated library.

The Link Editor requires a link control file as input to specify the task name, to define
the starting location for the data and program segments, and to indicate the object
files to be linked. The following linker commands are the primary commands that
should be included in a link control file:

FORMAT ASCII
TASK <tasknarne>
PROGRAM >0000
DATA >0000
INCLUDE <object code filenames separated by commas>
INCLUDE < or listed in separate INCLUDE commands >
END

The Link Editor outputs two files when linking TMS320C25 object modules. The
first file is a source listing file that shows the source statement number, a location
counter value, the assembled object code, the source statement as entered, and a
cross-reference listing of externally defined variables. The second file contains the
actual load module of linked object code to be executed by the TMS320C25.

Table 7-5. Assembler Directives That Provide Linkage Between Programs

DIRECTIVES MNEMONICS

External definition DEF
External reference REF
Secondary external reference SREF
Force load LOAD

7.6.5 Miscellaneous Directives

This category includes assembler directives not applicable to the other categories.

Table 7-6. Miscellaneous Assembler Directives

DIRECTIVES MNEMONICS

Program end END
Copy source file COPY
Define MACRO library MLIB

The Macro Library (MLIB) assembler directive provides the TMS320C25 Assembler
with the name of a library containing macro definitions. The operand of this directive
is a directory pathname (constructed according to the conventions of the host
operating system) enclosed in single quotes. The macros listed in this directory are
user-defined, one macro per file. The MLIB directive is defined only for hosts that
support libraries.

7-11

Assembler Directives

7.7 Individual Directive Descriptions

7-12

Each TMS320C25 assembler directive is described in this section. Directives are listed
in alphabetical order.

The majority of the instruction symbols used to describe the syntax of the assembler
directives is identical to those symbols in Table 4-2. Those that are introduced for
the first time or have definitions specific to this section are listed in Table 7- 7.

Table 7-7. Assembler Directive Symbols

SYMBOL MEANING

label The contents of the label field

exp An expression

wd-exp A well-defined expression

comment The contents of the comment field

string A character string

II Items within slashes can be used only if the
operand field is not empty. When not empty,
they are optional.

[l Items within brackets are optional.

'' Items within single quotes are character
constants or character strings.

AORG

Syntax

Description

Example 1

Example 2

Absolute Origin Directive AORG

[<label>] AORG [<wd-exp> /<comment>/]

When a label is used, it is assigned the value that the AORG directive places in
the location counter.

AORG places a value in the location counter and defines the succeeding locations
as absolute. An absolute location is not affected by relocation. Upon encount­
ering an AORG statement, the assembler places the value of the well-defined
expression into the location counter. When no AORG is entered, no absolute
addresses are included in the object program. When the operand field is not used,
the length of all preceding absolute code replaces the value in the location
counter.

AORG > lOOO+X

>1 OOO+X must be a well-defined expr~ssion. If X has a value of 6, the location
counter is set to >1006.

HEX AORG >1000

The location counter is set to >1000. The label HEX is assigned the value >1000.

7-13 .

BES

Syntax

Description

Example

7-14

Block Ending with Symbol Directive BES

[<label>] BES <wd-exp> [<comment>]

When used, a label is assigned the value of the location following the block.

BES advances the location counter by the value in the operand field. The operand
field contains a well-defined expression representing the number of words to be
added to the location counter. BES assigns a label the value of the location
following the block.

BUFF2 BES >10

BES reserves a 16-word buffer. If the location counter contains >100 when the
assembler processes this directive, BUFF2 is assigned the value >110.

BSS

Syntax

Description

Example

Block Starting with Symbol Directive BSS

[<label>] BSS <wd-exp> [<comment>]

When used, a label is assigned the value of the location of the first word in the
block.

BSS advances the location counter by the value of the well-defined expression
(wd-exp) in the operand field. The well-defined expression represents the number
of words to be added to the location counter. BSS assigns a label the value of
the location of the first word in the block.

BUFFl BSS >10

If the location counter contains >100 when the assembler processes this directive,
BUFF1 is assigned >100. The location counter is set to >110.

7-15

CEND

Syntax

Description

Example

Common Segment End Directive CEND

[<label>] CEND [<comment>]

When used, a label is assigned the value of the location counter prior to modifi­
cation.

CEND terminates the definition of a block of common-relocatable code by placing
a value in the location counter and defining succeeding locations as program­
relocatable. CEND results in setting the location counter to one of these values:

• The maximum value the location counter has ever attained as a result of the
assembly of any preceding block of program-relocatable code, or

• Zero, if no program-relocatable code has been previously assembled.

If encountered in data- or program-relocatable code, CEND functions as a DENO
or PEND, and a warning message is issued. Like DENO and PEND, CEND is
invalid when used in absolute code.

See CSEG for an example of the use of CEND.

COPY

Syntax

Description

Example

Copy Source File Directive COPY

[<label>] COPY <file-name> [<comment>]

COPY causes the assembler to read source statements from a different file. The
file name may be one of the following:

• An access name recognized by the operating system, or

• A synonym form of an access name.

When end-of-file is reached, the assembler resumes processing source statements
from the file or device previous to the COPY directive. A COPY directive may be
placed in a file being copied. Nested copying of files can be performed by placing
a COPY directive in a file being copied. Such nesting is limited by the assembler
to eight levels; additional restrictions may be set by the host operating system.

COPY SFILE.ASM

COPY causes the assembler to take source statements from a file called
SFILE.ASM.

7-17

CSEG

Syntax

Description

7-18

Common Segment Directive CSEG

[<label>] CSEG ['<string>' /<comment>/]

When used, a label is assigned the value placed by the directive in the location
counter.

CSEG defines succeeding locations as common-relocatable. CSEG permits the
construction and definition of independently relocatable data segments that
several programs may access or reference at execution time. The segments are
assembly language counterparts of FORTRAN COMMON. Information placed in
the object code by the assembler permits the link editor to relocate all common
segments independently and make appropriate adjustments to all addresses
referencing locations within common segments. The difference between CSEG
and DSEG is that locations within a particular common segment may be refer­
enced by several different programs if each program contains a CSEG directive
with the same operand or no operand.

If the operand field is not used, the CSEG directive defines the beginning (or
continuation) of the blank common segment of the program. When used, the
operand field contains a character string of up to six characters enclosed in quotes.
(If the string length exceeds six characters, the assembler prints a truncation error
message and retains the first six characters of the string.) If this string has not
previously appeared as the operand of a CSEG directive, the assembler associates
a new relocation section number with the operand, sets the location counter to
zero, and defines succeeding locations as relocatable with respect to the new
relocatable section. When the operand string has been previously used in a CSEG,
the succeeding code represents a continuation of the particular common segment
associated with the operand. The location counter is reset to the maximum value
attained during the previous assembly of any portion of that particular common
segment.

The following directives properly terminate the definition of a block of
common-relocatable code: CEND, PSEG, DSEG, AORG, and END. The block is
normally terminated with a CEND directive. The PSEG directive, like CEND,
indicates that succeeding locations are program-relocatable. The DSEG and
AORG directives effectively terminate the common segment by beginning a data
segment or an absolute segment. The END directive terminates the common
segment and the program.

CSEG

Example

Common Segment Directive

COMlA CSEG 'ONE'

* COMMON RELOCATABLE SECTION, NAMED 'ONE'

.
CEND

*
COM2A CSEG 'TWO'

.
* COMMON-RELOCATABLE SECTION, NAMED 'TWO'

.
COM2B CEND
COMlC CSEG

*
COMlB CEND
*

'ONE'

COMlL DATA COMlB-COMlA LENGTH OF SEGMEN.T 'ONE'
COM2L DATA COM2B-COM2A LENGTH OF SEGMENT 'TWO'

CSEG

This example illustrates the use of CSEG and CEND. The three blocks of code
between CSEG and CEND are common-relocatable. The first and third blocks
are relocatable with respect to one common relocation counter; the second is
relocatable with respect to another. The first and third blocks constitute the
common segment 'ONE'; the value of the symbol COM1 Lis the number of words
in this segment. The symbol COM2A is the symbolic address of the first word
of common segment 'TWO'; COM2B is the common-relocatable (type 'TWO')
word address of the location following the segment. (Note that the symbols
COM2B and COM1 C are of different relocation types and possibly different
values.) The value of the symbol COM2L is the number of words in common
segment 'TWO'.

7-19

DATA

Syntax

Description

Example

7-20

Initialize Word Directive DATA

[<label>] DATA <exp>[,<exp>] [<comment>]

When used, a label is assigned the location where the assembler places the first
word.

DATA places one or more values in one or more successive words in program
memory. The assembler evaluates each expression and places the value in a word
as a 16-bit two's-complement number.

DATA should be used to place coefficients or other data words in program
memory. During TMS320C25 execution, TBLR can be used to transfer the data
words from program memory to data RAM. As many operands as desired may
be used up to a total line length of 60 characters.

KONSl DATA 3200,l+'AB' ,-'AF' ,>F4AO,'A'

DATA initializes five words, starting with a word at location KONS1. The contents
of the resulting words are >OC80, >4143, >BEBA, >F4AO, and >0041.

DEF

Syntax

Description

Example 1

Example 2

External Definition Directive DEF

[<label>] DEF <symbol>[.<symbol>] [<comment>]

When used, a label is assigned the current value of the location counter.

DEF makes one or more symbols available to other programs. All symbols used
in the DEF statement must be defined in the same module. Each symbol defined
in a program module and required by other program modules must be placed in
the operand field of a DEF directive. A program named 'ROUTINES' that DEFs
a routine named 'SUBR1' is shown below. The label 'SUBR1' must be defined
in the program.

IDT 'ROUTINES'
DEF SUBR1,SUBR2

SUBRl EQU $

RET
SUBR2 EQU $

RET
END

DEF ENTER,ANS

This example causes the assembler to include symbols ENTER and ANS in the
object code; these symbols are available to other programs.

0001
0002
0003 0000
0004
0005
NO ERRORS, NO

0000 ABC
0001 DEF

WARNINGS

EQU
EQU
AORG
DEF
END

The object code for the above example is:

0
1
0
ABC,DEF

KOOOONO$IDT 60000ABC 60001DEF 7F89AF 2.1 83.074 N0$IDT 1

The symbol name follows the four-digit hexadecimal numbers assigned to the
symbol by EQU. The number 6 preceding the 4-digit hexadecimal number is an
object code tag.

7-21

DENO

Syntax

Description

7-22

Data Segment End Directive DENO

(<label>) DENO [<comment>)

When used, a label is assigned the value of the location counter prior to modifi­
cation.

DENO terminates the definition of a block of data-relocatable code by placing a
value in the location counter and defining succeeding locations as program-re­
locatable. DENO results in setting the location counter to one of these values:

• The maximum value attained by the location counter as a result of assembling
any preceding block of program-relocatable code, or

• Zero, if no program-relocatable code has been previously assembled.

If encountered in common-relocatable or program-relocatable code, DENO
functions as a CEND or PEND, and a warning message is issued. Like CEND and
PEND, DENO is invalid when used in absolute code.

DORG

Syntax

Description

Example 1

Example 2

Example 3

Dummy Origin Directive DORG

[<label>] DORG <exp> [<comment>]

The label is assigned the value that the directive places in the location counter.

DORG defines the succeeding locations as a dummy block or section. When
assembling a dummy section, the assembler does not generate object code but
operates normally in all other respects. The result is that symbols that describe
the layout of the dummy section are available to the assembler during assembly
of the remainder of the program. Any symbol in the expression must have been
previously defined.

When the operand field is absolute, the location counter is assigned the absolute
value. When the operand is relocatable, the location counter is assigned the
relocatable value and the same relocation type as the operand. When this occurs,
space is reserved in the section that has that relocation type.

DORG 0

DORG causes the assembler to assign values relative to the start of the dummy
section to the labels within the dummy section.

RORG 0

(code as desired)

DORG $

(data segment)

END

This example directive defines a data structure for the executable portion
(procedure division) of a procedure that is common to more than one task. The
executable portion of the module (following a RORG directive) should use the
labels of the dummy section as relative addresses. The code corresponding to the
dummy section must be assembled in another program module. In this manner,
separate data portions (dummy sections) are available to the procedure portion,
regardless of the memory area into which the data is loaded.

CSEG 'COMl'

DORG $ "$" HAS A COMMON-RELOCATABLE VALUE

LABl DATA $

MASK DATA >FOOO

CEND

DORG may also be used with data-relocatable or common-relocatable operands
to specify dummy data or common segments. In this example, no object code is
generated to initialize the common segment COM1, but space is reserved. All
common-relocatable labels describing the structure of the common block
(including LAB1 and MASK) are available for use throughout the program.

7-23

DSEG

Syntax

Description

Example

7-24

Data Segment Directive DSEG

[<label>] DSEG [<comment>]

When a label is used, it is assigned the data-relocatable value that the directive
places in the location counter.

DSEG defines succeeding locations as data-relocatable. Either of these values
is placed in the location counter:

• The maximum value the location counter can attain as the result of assem-
bling any block of data-relocatable code, or

• Zero, if no data-relocatable code has been previously assembled.

DSEG defines the beginning of a block of data-relocatable code. The block is
normally terminated with DEN D. If several such blocks appear throughout the
program, they constitute the data segment of the program. The entire data
segment may be relocated independently of the program segment at link-edit time.
This provides a convenient way to separate modifiable data from executable code.

In addition to the DENO directive, PSEG, CSEG, AORG, and END properly
terminate the definition of a block of data-relocatable code. PSEG, like DENO,
indicates that succeeding locations are program-relocatable. CSEG and AORG
effectively terminate the data segment by beginning a common segment (CSEG)
or an absolute segment (AORG). END terminates the data segment as well as
the program.

RAM DSEG START OF DATA AREA

<Data-relocatable code>

ERAM DENO

LRAM EQU ERAM - RAM

The block of code between DSEG and DENO is data-relocatable. RAM is the
symbolic address of the first word of this block; ERAM is the data-relocatable
word address of the location following the code block. The value of the symbol
LRAM is the length of words in the block.

Caution:

The TMS320C25 architecture provides separate data and program
memory space, which results in two memory segments occupying
the same address space. Data and program segment code must be
distinguished. In particular, DATA and TEXT should not be used in
DSEG to initialize an area within data memory.

Data memory is volatile RAM and cannot retain information from
one powerup to the next, so the proper way to initialize memory
is by the execution of instructions in program memory on powerup.
BSS or BES can be used within the DSEG to establish the size and
names of variables, scalers, arrays, etc., in data memory. No other
directives or instructions should be placed in a DSEG or CSEG.

END

Syntax

Description

Example

Example

Program End Directive END

[<label>] END [<symbol>] /<comment>/

When used, a label is assigned the current value of the location counter.

END terminates the assembly. The last source statement of a program is the END
directive. Any source statements or blank records following END are considered
part of the next assembly.

When used, the operand field contains a program-relocatable or absolute symbol
that specifies to the link editor the entry point of the program. The entry point is
the program address where execution of the assembled module begins. When
the operand field is not used, no entry point is placed in the object code. If the
entry point symbol is specified in the link control file, it must be REFed; otherwise
the linker cannot find the entry symbol.

ENTRY

AORG
NOP
NOP
END

0

ENTRY

The symbol ENTRY is assigned the value 1 by the assembler. Since ENTRY
appears as the operand of END, the value of the symbol appears as a four-digit
hexadecimal character 1, as seen in the sample printout below.

Sample Printout:

n-VALUE OF THE SYMBOL

KOOOON0$1DT 90000B5500B5500100017F8A3F N0$1DT

ENTRY
AORG
NOP
END

>20

ENTRY

The symbol ENTRY is assigned the value >20. As in Example 1, the value appears
in the object code following the tag character 1, as shown in the sample printout
below.

Sample Printout:

~--1-- VALUE OF THE SYMBOL

KOOOON0$1DT 90020B5500100207F9C7F N0$1DT

7-25

EQU

Syntax

Description

Example 1

Example 2

7-26

Define Assembly-Time Constant Directive EQU

[<label>] EOU <exp> [<comment>]

The label field contains the symbol to be given a value.

EQU assigns a value to a symbol. <exp> may not contain a symbol appearing
in a REF directive nor contain forward references. Symbols in the operand field
must be previously defined. Certain symbols, such as ARO and PAO, have
predefined values. ·

SUM EQU ARl

The EOU directive assigns an absolute value to the symbol SUM, making SUM
available as a register address.

TIME EQU HOURS

This example assigns the value of the previously defined symbol HOURS to the
symbol TIME. When HOURS appears in the label field of a machine instruction
in a relocatable block of the program, the value is a relocatable value. After
execution of EOU, the two symbols may be used interchangeably.

EXEC

Syntax

Description

Example

Independent Program Segment Directive EXEC

[<label>] EXEC <pma> [<comment>]

When used, a label is assigned the value that the directive places in the location
counter.

EXEC places the value <pma> in the location counter and defines succeeding
locations as independently stored program segments. EXEC defines the beginning
of a block of independent code. The block is terminated by XEND. Directives that
affect the value in the location counter, such as BSS, cannot be used in the
program segment defined by EXEC. Use of this type of directive terminates the
EXEC segment.

EXEC enables execution of a program segment at its actual loading address. The
value placed in the location counter is the actual loading address of the inde­
pendent segment.

EXECl EXEC >1F40

XEND

7-27

IDT

Syntax

Description

Example

7-28

Program Identifier Directive IDT

[<label>] IDT '<string>' [<comment>]

When used, a label assumes the current value of the location counter.

IDT assigns a name to the object module produced. The operand field contains
the module name <string>, a character string of up to eight characters within
single quotes. When a character string of more than eight characters is entered,
the assembler prints a truncation warning message and retains the first eight
characters as the program name.

Program modules to be linked by the link editor must include an IDT. The module
names in the character strings of IDTs should be unique. The <string> on IDT
is not automatically a DEFed symbol.

0001
0002
0003

0001
0002

IDT
ONE
TWO

'EXAMPLE'
EQU 1
EQU 2

IDT assigns the name EXAMPLE to the module being assembled. The module
name is then printed in the source listing as the operand of I OT and appears in
the page heading of the source listing. The module name is also placed in the
object code and is used by the link editor to determine the entry point for the
module. The entry point must also appear as a symbol in a REF directive.

Note:

Uppercase letters and numerals are recommended within the quotes. The
assembler accepts lowercase letters and special characters, but ROM loaders
{for example) do not.

LIST

Syntax

Description

Example

Restart Source Listing Directive LIST

[<label>] LIST [<comment>]

When used, the label assumes the current value of the location counter.

LIST restores printing of the source listing. LIST is required only when UNL (stop
source listing) is in effect and causes the assembler to resume listing. LIST is not
printed in the source listing, but the line counter is incremented. The assembler
does not print the comment.

LIST

The printing of the source listing is restored.

7-29

LOAD

Syntax

Description

Example

7-30

Force Load Directive LOAD

[<label>] LOAD <symbol>[.<symbol>] [<comment>]

When used, a label is assigned the current value of the location counter.

LOAD makes one or more symbols available to other programs. The LOAD
directive is like DEF, except that the symbols need not be used in the module
containing LOAD. The symbols used in LOAD must be defined in some other
module during link edit time. LOADs are used with SREFs. If a one-to-one
matching of LOAD and SREF pairs does occur, there will be no unresolved
references during link editing.

MODULE A1 MODULE A2. MODULE A3

LOAD C, D LOAD C LOAD E, F

•
MODULE B ...

SREF C, D, E, F
DATAC
DATAD
DATA E
DATA F

1 I l
DEF C DEF D DEF E DEF F

MODULE C MODULE D MODULE E MODULE F

Module A(n) uses a branch table in module B to obtain one module: either C,
D, E, or F. Module B has an SREF for C, D, E, and F. SREF does not require that
symbols C, D, E, and F have corresponding symbols defined in another module,
so modules need not be included in one link editing time. Module C has a DEF
for C; module D has a DEF for D; module E has a DEF for E; and module F has
a DEF for F. Module A1 has a LOAD for modules C and D; module A2 has a LOAD
for module C; and module A3 has a LOAD for modules E and F.

LOAD and SREF permit module B to be written to in order to handle a highly
involved case and still be linked together without unnecessary modules. A(n)
only has LOAD directives for its required modules. This is especially useful when
developing large codes that may have more than a hundred modules. Not all
modules are required to test a particular function.

If the link control file included A1 and A2, modules C and D would be pulled in
from a specified library while modules E and F would not. If the link control file
included A3, modules E and F would be pulled in while modules C and D would
not. If the link control file included A2, module C would be pulled in while
modules D, E, and F would not.

LOAD Force Load Directive

TASK TSTLOAD
FORMAT ASCII
PROGRAM 0
INCLUDE E:Al.MPO
INCLUDE E:B.MPO
FIND A:*.MPO
END

LOAD

In this example using a PC/MS- DOS computer, the A:* .M PO is a selection of files
that contain 990-tagged object modules for modules C, D, E, and F. In this case,
only modules C and D are to be linked into the LOAD object module.

7-31

MLIB

Syntax

Description

Example 1

Example 2

7-32

Define MACRO Library Directive MLIB

[<label>] MLIB '<pathname>' [<comment>]

When used, a label assumes the current value of the location counter.

MLIB provides the assembler with the name of a library containing macro defi­
nitions. The operand of MLIB is a directory pathname (constructed according to
the conventions of the host operating system) enclosed in single quotes (see IDT
and TITL directives). The operand field contains the pathname, a character string
of up to 48 characters enclosed in single quotes; longer strings cause a truncation
error message.

MLIB 'DRCl: [PROJECT.STDMACS] I

MLIB 'DRCl: [PROJECT.DSPMACS] I

When the program finds macro call SUBMAC (not previously defined), the above
example causes the macro to search first for a file named:

DRCl:[PROJECT.DSPMACS]SUBMAC.ASM

Then, if that file is not found, the macro searches for a file named:

DRCl:[PROJECT.STDMACS]SUBMAC.ASM

in that order.

MLIB 'DRCO: [MOORE.MACLIB].ASM32'
MLIB 'A: I

(VAX)
(MS-DOS VER 1.25)

This example shows the typical use of MLIB on other systems.

Note:

On VAX/VMS systems, the filename of all files in the macro library must have
an extension name of ".ASM". For example, if the statement: MLIB
'DRC1 :[MACROS]' has been used, the VAX/VMS version of the macro library
processor would expect to find files such as MYMACRO.ASM, NEWMAC.ASM,
etc., within the macro library 'MACROS'.

On PC/MS-DOS systems, the filename of all files in the directory that are to
be found as macros must not have an extension. For example, if the statement:
MLIB 'E:' has been used, then the PC/MS-DOS version of the macro library
processor would expect to find files such as MYMACRO, NEWMAC, etc., within
the current level directory.

OPTION

Syntax

Description

Example

Output Options Directive OPTION

[<label>] OPTION <option list> [<comment>]

When used, the label assumes the current value of the location counter.

OPTION selects several options for the assembler listing output. The <option­
list> operand is a list of keywords, separated by commas, where each keyword
selects a listing feature. The available <option-list> features are as follows:

DUNLST: Limit the listing of DATA directives to one line.

FUNLST: Turn off all list options.

NOLIST: Inhibit all listing output (overrides LIST directive).

SYM LST: Produce a symbol table list in the object file.

TUNLST: Limit the listing of TEXT directives to one line.

XREF: Produce a symbol cross-reference listing.

OPTION XREF

This example results in the production of a symbol cross-reference listing .

••

7-33

.PAGE,.

Syntax

Description

Example

7-34

, Eject Page Directive PAGE

[<label>] PAGE [<comment>]

When used, a label assumes the current value of the location counter.

PAGE causes the assembler to continue the source program listing on a new page.
PAGE is not printed in the source listing, but the line counter is incremented.
The assembler does not print the comment. Using PAGE to divide the source
listing into logical divisions improves program documentation.

PAGE

PAGE causes the assembler to list a next source statement as the first statement
on a new page· in the source listing.

PEND

Syntax

Description

Example

Program Segment End Directive PEND

[<label>] PEND [<comment>]

When used, a label is assigned the value of the location counter prior to modifi­
cation.

PEND ends a segment that is program-relocatable. This directive is provided as
the program-segment counterpart to DENO and CEND. PEND, like DENO and
CEND, places a value in the location counter and ends a segment that has defined
succeeding locations as program-relocatable. Since PEND properly appears only
in program-relocatable code, the relocation type of succeeding locations remains
unchanged.

The value placed in the location counter by PEND is the maximum value attained
by the location counter as a result of the assembly of all preceding program-re­
locatable code. PEND is invalid when used in absolute code.

See PSEG.

7-35 :

PSEG

Syntax

Description

Example

7-36

Program Segment Directive PSEG

[<label>] PSEG [<comment>]

When used, a label is assigned the value that the directive places in the location
counter.

PSEG places a value in the location counter and defines succeeding locations as
program-relocatable. The location counter is set to one of the following values:

• The maximum value the location counter attained as a result of the assembly
of any preceding block of program-relocatable code, or

• Zero, if no program-relocatable code was previously assembled.

PSEG is provided as the program-segment counterpart to DSEG and CSEG.
Together, the three directives provide a consistent method of defining the various
types of relocatable segments.

The following two sequences of directives are functionally identical:

SEQUENCE 1

DSEG

<Data-relocatable code>

DENO
CSEG

.
<Common-relocatable code>

CEND
PSEG

PEND

END

SEQUENCE i

DSEG

.
<Data-relocatable code>

.
CSEG

.
<Common-relocatable code>

.
PSEG

END

REF

Syntax

Description

Example

External Reference Directive REF

[<label>] REF <symbol>[.<symbol>] [<comment>]

When used, a label is assigned the current value of the location counter.

REF provides access to one or more symbols defined in other programs. Each
symbol from another program module must be placed in the operand field of REF
or SREF in the program module that requires the symbol. Below is a program
named 'MAIN' that REFs a routine named 'SUBR1 '. SUBR1 is not defined in this
file.

IDT 'MAIN'
REF SUBRl

.
CALL SUBRl

END

If a symbol is listed in the REF statement, a corresponding symbol must also be
present in a DEF statement in another source module. If a one-to-one matching
of symbols does not occur, then an error occurs at link edit time. The link editor
generates a summary list of all unresolved references.

REF ARG1,ARG2

This example causes the assembler to include symbols ARG1 and ARG2 in the
object code so that the corresponding addresses may be obtained from other
programs.

7-37

RORG

Syntax

Description

Example 1

Example 2

7-38

Relocatable Origin Directive RORG

[<label>] RORG [[<exp>] /<comment>/]

When a. label is used, it is assigned the value that the directive places into the
location counter.

RORG defines succeeding locations as program-relocatable and initializes the
location counter to either the value following the previous relocatable code of the
program or to zero if no relocatable code has been previously assembled.

Since the location counter begins at zero, the length of a segment and the next
available address within that segment are identical. For example, if a segment
begins at >O and ends at >E, the length is >F. The next available address is >F.

When the operand field is used, the operand must be an absolute or a relocatable
expression that contains only previously defined symbols. (Symbols are defined
by the EQU directive.) When the operand field is not used, previous data segments
and specific common segments of a program replace the value of the location
counter. If RORG appears in absolute code, a relocatable operand must be
program-relocatable. RORG changes the location counter to program-relocatable
and replaces its value with the operand value. In relocatable code, the relocation
type of the operand must match that of the current location counter. The operand
value replaces the current location counter value, and the relocation type of the
location counter remains unchanged.

RORG $-10 OVERLAY TEN WORDS

The $ symbol refers to the present location counter value. This has the effect of
backing up the location counter by ten words. The instructions and directives
following RORG replace the ten previously assembled words of relocatable code,
permitting correction of the program without removing source records. If a label
had been included, the label would have been assigned the value placed in the
location counter. RORG would have no effect except at the end of an absolute
block or a dummy block.

SEG2 RORG

The location counter contents depend upon preceding source statements.
Assume that after defining data for a program that occupied >44 words, AORG
initiated an absolute block of code. The absolute block is followed by the RORG
directive from Example 1 . This places >0044 in the location counter and defines
the location counter as relocatable. Symbol SEG2 is a relocatable value, >0044.

SREF

Syntax

Description

Example

Secondary External Reference Directive SREF

[<label>] SREF <symbol>[,<symbol>] [<comment>]

When a label is used. the current value of the location counter is assigned to the
label.

SREF provides access to one or more symbols defined in other programs. Unlike
REF. SREF does not require that a symbol have a corresponding symbol listed in
a DEF statement of another source module. The SREFed symbol will be an
unresolved reference, but is not included in the summary list of unresolved refer­
ences.

SREF ARG1,ARG2

This example causes the assembler to include symbols ARG1 and ARG2 in the
object code so that the corresponding addresses may be obtained from other
programs.

7-39

TEXT

Syntax

Description

Example

7-40

Initialize Text Directive TEXT

[<label>) TEXT [-)'<string>' [<comment>]

When used, a label is assigned the location at which the assembler places the first
character.

TEXT places one or more characters of a string of characters in successive words
of program memory. The assembler negates the last character of the string when
the string is preceded by a unary minus (-) sign. The operand field contains a
character string of up to 52 characters enclosed in single quotes, which may be
preceded by a unary minus sign.

MSGl TEXT 'EXAMPLE' MESSAGE HEADING

In this example, TEXT places the eight-bit ASCII character representations in
memory and fills the unused byte of the last word with an ASCII space {>20).
This space is considered as the last character if the negate option is specified.
The result is >4558, >4140, >504C, and >4520. The label MSG1 is assigned
the first word's address, which contains the value >4558.

TITL

Syntax

Description

Example

Page Title Directive TITL

[<label>] TITL '<string>' [<comment>]

When used, a label field assumes the current value of the location counter.

TITL supplies a title to be printed in the heading of each page of the source listing.
Unlike IDT, TITL is not printed in the source listing. When a title is desired in the
heading of the listing's page, TITL must be the first source statement submitted
to the assembler. The assembler does not print the comment because TITL is not
printed. The line counter is incremented.

The operand field contains the title (string) and a character string of up to 50
characters enclosed in single quotes. When more than 50 characters are entered,
the assembler retains the first 50 characters as the title and prints a syntax error
message.

When TITL is the first source statement in a program, the title is printed on all
pages until another TITL is processed. Otherwise, the title is printed on the next
page after TITL is processed, and on subsequent pages until another TITL is
processed.

TITL '**REPORT GENERATOR**'

This example causes the title **REPORT GENERATOR** to be printed in the page
headings of the source listing.

7-41

UNL

Syntax

Description

Example

7-42

Stop Source Listing Directive UNL

[<label>] UNL [<comment>]

When used, the label assumes the value of the location counter.

UNL halts the source listing output until the occurrence of a LIST directive. UNL
is not printed in the source listing, but the source line counter is incremented.
UNL is frequently used in macro definitions to inhibit the listing of the macro
expansion. The assembler does not print the comment.

UNL can be used to reduce assembly time and the size of the source listing.

NOPRINT UNL STOP LISTING

The source listing is halted until a LIST directive occurs.

XEND

Syntax

Description

Example

Independent Segment End Directive XEND

[<label>] XEND [<comment>]

When used, a label is assigned the value placed in the location counter by the
XEND directive.

XEN D terminates the block definition of an independently stored program
segment, previously defined by EXEC. The command field contains XEND. XEND
results in setting the location counter to the value attained by the location counter
before EXEC was issued, plus the difference between the most recent value in the
location counter and the loading address of EXEC.

Without using EXEC, a warning message is issued.

See EXEC.

7-43

Assembler Directives

7.8 Source Listing Format

7-44

The source listings show the source statements and the resulting object code. Each
page of the source listing has a title line at the top, on which is printed a title supplied
by a TITL (title) directive. If TITL is not used, the title line is left blank. A page number
is printed to the right of the title. The printer inserts a blank line below the title line
and prints a line for each source statement listed.

Each source statement line contains a source statement number, a location counter
value, the assembled object code, and the source statement as entered. A source
statement may result in more than one word of object code. The assembler prints the
location counter value and object code on a separate line for each additional word.
Each added line is printed immediately following the source statement line. Figure
7 -1 is an example of a source statement line.

(SOURCE STATEMENT NUMBER IN DECIMAL)

(LOCATION COUNTER VALUE IN HEXADECIMAL)

(ASSEMBLED OBJECT CODE IN HEXADECIMAL)

(LABEL FIELD)

(COMMAND FIELD)

l(OPERAND FIELD)

rOMMENT AB.DJ

0070 004A CAFF BEGIN LACK 255 LOAD ACCUMULATOR IMMEDIATE

Figure 7-1. Source Statement Line Example

The source statement number, 0070 in the example, is a four-digit decimal number.
Source records are numbered in the order in which they are entered, including those
source records that are not listed (e.g., TITL, LIST, UNL, and PAGE directives are
not listed; source records between UNL and LIST are not listed). The difference
between two source record numbers printed immediately in line indicates the number
of source records entered and not listed. Source records generated by a macro call,
however, are renumbered starting at line number 0001. The original line-numbering
sequence continues after the macro expansion is complete.

The next field in the source listing contains a hexadecimal location counter value.
In the example, 004A is the location counter value. Since not all directives affect the
location counter, the location counter field is blank for those directives that do not
affect it, such as the IDT (program identifier}, DEF (external definition), END
(program end), EQU, REF, and SREF directives.

The third field is the object code field which contains the hexadecimal representation
of the object code, (>CAFF in the above example). All machine instructions and the
DATA and TEXT directives use this field to list object code. The EOU directive places
the value corresponding to the label in the object code field.

The fourth field contains the characters of the source statement as they were scanned
by the assembler. The maximum line length that the assembler will accept is 60
characters. Spacing in this field is determined by the spacing in the source statement.
The four fields contained in source statements are aligned in the listing only when
they are aligned in the source statements or when tab characters are used. Each of
the four fields must be separated by at least one blank space.

Assembler Directives

7 .9 Object Code

A major advantage of the TMS320C25 Macro Assembler is its ability to generate
relocatable object code modules that can then be linked by the link editor to form
an executable program. The ability to relocate modules simplifies the programming
task. Programs designed as a set of modules are easier to code, test, and debug, and
are also easier to understand and maintain. Relocatability also permits multiple
programmers to work on a program's components. Relocatable code includes
information that allows a link editor to place the code in any available area of memory,
thus providing the most efficient use of available memory. Absolute code must be
loaded into a specified area of memory and cannot be moved.

Object code generated by an assembler constitutes the assembled program, and
consists of machine language instructions, addresses, and data. The code includes
absolute, program-relocatable, data-relocatable, and common-relocatable segments.

In assembly language source programs, symbolic references to locations within a
relocatable segment are called relocatable addresses. These addresses are repres­
ented in the object code as displacements from the beginning of a specified segment.
A program-relocatable address, for example, is a displacement into the program
segment. At load time, all program-relocatable addresses are adjusted by a value
equal to the load address (the load address defines the beginning of the module).
Data-relocatable addresses are represented by a displacement into the data segment.
There may be several types of common-relocatable addresses in the same program,
since distinct common segments may be relocated independently of each other.

The assembler produces object code that may be linked to other object code modules
or programs, and is loaded directly into the processor. Object code consists of records
containing up to 71 ASCII characters. Corrections on record data can be made via
a keyboard, making reassembly unnecessary. Figure 7-2 is an example of object code.

KOOOOFACT 91006BCA01B6000BCA01B6001BCA02B6002BCA03B6003B3C037F240F
BA002BCE14B6003BCA04B6004B3C04BA003BCE14B6004B3C04BA003BCE14B60047Fl6BF
BCA05B6005B3C05BA004BCE14B6005B3C05BA003BCE14B6005B3C05BA002BCE147Fl51F
B6005BCA06B6006B3C06BA005BCE14B6006B3C06BA004BCE14B6006B3C06BA0037Fl69F
BCE14B6006B3C06BA002BCE14B6006BCA07B6007B3C07BA006BCE14B6007B3C077F14BF
BA005BCE14B6007B3C07BA004BCE14B6007B3C07BA003BCE14B6007B3C07BA0027Fl58F
BCE14B60077FD8BF

FACT 8/7/84 16:42:51 ASM32020 0.6 84.140

Figure 7-2. Sample Object Code

7.9.1 Object Code Format

FACT 1
FACT 2
FACT 3
FACT 4
FACT 5
FACT 6
FACT 7
FACT 8

Object code is formatted to contain records made up of fields sandwiched between
tag characters. Table 7-8 lists field and tag character information.

A tag character occupies the first position on each record of object code and identifies
the fields it precedes. The specific tag character used depends on the function of the
field with which it is associated. The following paragraphs detail the various tag
characters and their associated fields.

Tag character K is placed at the beginning of each program and is followed by two
fields. Field one contains the number of words of program relocatable code; field two
contains the program identifier assigned to the program by an IDT directive. When
no IDT is entered, N0$1DT is put into field two. The link editor uses the program

7-45

Assembler Directives

7-46

identifier to identify the program, and the number of words of program-relocatable
code to determine the load bias for the next module or program.

The tag character M is used when data or common segments are defined in the
program and is followed by three fields. Field one contains the length, in words, of
data- or common-relocatable code; field two contains the data or common segment
identifier; and field three contains a common number. The identifier is a six-character
field containing the name $DATA (padded on the right by one blank) for data
segments and $BLANK for blank common segments. If a named common segment
appears in the program, an M tag appears in the object code, with an identifier field
corresponding to the operand in the defining CSEG directive(s). Field three of the
M tag consists of a four-character hexadecimal number defining a unique common
number to be used by other tags referencing or initializing data of that particular
segment. For data segments, this common number is always zero. For common
segments (including blank common), common numbers are assigned in increasing
order. The maximum number of common segments that a program may contain is
127.

Tag characters 1 and 2 are used with entry addresses. The associated field is used
by the linker to determine the entry point where execution starts when linking is
complete. tag character 1 is used when the entry address is absolute; tag character
2 is used when the address is relocatable. The field lists the address in hexadecimal.

Tag characters 9, A, 5, and P are used with load addresses required for data words
to be placed at other than the next immediate memory addresses. Tag character 9 is
used when the load address is absolute; A when the load address is program-relo­
catable; 5 when the load address is data-relocatable; and P when the load address
is common-relocatable. Field one contains the load address. Field two is only used
with P and contains the common number.

Tag characters B, C, T, and N are used with data words. Tag character B is used
when the data is absolute (i.e., an instruction word or a word containing text char­
acters or absolute constants). B is used for absolute word data (16 bits). Tag
character C is used for a word containing a program-relocatable address; tag char­
acter T for a word containing a data-relocatable address; tag character N for a word
containing a common-relocatable address. Field one contains the data word. The
linker places the data word in the memory location specified in the preceding load
address field or in the memory location that follows the preceding data word. Field
two is only used with N and contains the common number.

Tag characters #, %, and & are also used when an instruction's multibit field refers
to a data element in a DSEG, PSEG, or CSEG. Tag character# identifies an instruction
containing a reference to a multibit data-relative item. The second field following
the tag contains a mask indicating to the link editor the width of the field (mask =
>007F indicates the least significant 7 bits). The link editor generates the final version
of this instruction by adding the beginning location of the data segment to the
masked data word, and re-inserting the sum in the multibit field within the data word.
Note that field overflow may occur in the link edit operation, and error messages
may be generated that were not evident at assembly time, which may give unpre­
dictable results. The description of the % tag is the same as above, except that it
represents the use of a program-relative item as the operand. The fields used with
the & tag are identical to the# and % tags, except that the second field is the common
number, and the mask becomes the third field.

Tag characters 5, 6, and W are used for external definitions. Tag character 5 is used
when the location is program-relocatable; 6 when the location is absolute; and W
when the location is data- or common-relocatable. The link editor uses the fields
to provide the desired linking to the external definition. Field one contains the

Assembler Directives

location of the last appearance of the symbol; field two contains the symbol of the
external definition; and field three of tag character W contains the common number.

Tag character 4 is used for external references when the last appearance of the
externally referenced symbol is in absolute code. Tag character 4 is associated with
two fields: field one contains the location of the last appearance of the symbol, and
field two contains the symbol itself.

Tag character E is used for external references. An E tag is used when a non-zero
quantity is added to a reference. Field 1 identifies the reference by occurrence in the
object code (0, 1, 2, ...). In other words, the value in field one is an index to references
identified by the 4 and Y tags in the object code. The list is maintained by order of
occurrence (i.e., the first entry in the list is the symbol located in field two of the first
4 or Y tag). Field 2 contains the value to be added to the reference after the reference
is resolved.

Tag character ! is used when a multibit field of an instruction refers to an external
reference. The format of the ! sequence is:

! (external symbol number) (opcode/offset) (mask)

This tag and its associated fields are processed the same as that of the # tag.

Tag characters G, H, and J are used when the symbol table option (see the OPTION
directive) is specified. Tag character G is used when the location or value of the
symbol is program-relocatable; H when the location or value of the symbol is abso­
lute; and J when the location or value of the symbol is data- or common-relocatable.
Field one contains the location or value of the symbol; field two contains the symbol
to which the location is assigned; field three is used only with tag character J and
contains the common number.

Tag character U is generated by the LOAD directive. The symbol specified is treated
as if it were the value specified in an INCLUDE command to the loader. Field one
contains zeroes, and field two contains the symbol for which the loader will search
for a definition.

Tag character Y is used for secondary external references when the last appearance
of the externally referenced symbol is in absolute code. Tag character Y is associated
with two fields: field one contains the location of the last appearance of the symbol,
and field two contains the symbol itself.

Tag character 7 precedes the checksum, and is placed at the end of the set of fields
in the record. The checksum is an error detection word formed as the record is being
written. The checksum is the two's complement of the sum of the characters' 8-bit
ASCII values from the first tag of the record through the checksum tag (tag character
7).

Tag character 8 is also associated with the checksum field but is used when the
checksum field is to be ignored (as when changing the object code).

Tag character D, used to specify a load bias, has an associated field containing the
absolute address used by the loader to relocate symbols. The link editor does not
accept the D tag.

Tag character F is placed at the end of the record, and it may be followed by blanks.

The end of each record is identified by the tag character 7, followed by the checksum
field and tag character F. The assembler fills the rest of the record with blanks and
a sequence number, and begins a new record with the appropriate tag character.

7-47

Assembler Directives

7-48

The last record of an object module has a colon (:) in the first character position of
the record, followed by the module. name, assembly date,.and assembly time.

Table 7-8 defines the object record format and tags.

Table 7-8. Object Record Format and Tags

TAG 1ST FIELD 2ND FIELD 3RD FIELD

(MODULE DEFINITION)

K PSEG LENGTH PROGRAM ID(S)
M DSEG LENGTH $D~TA 0000
M BLANK COMMON $BLANK COMMON#

LENGTH
M CSEG LENGTH COMMON NAME(6) COMMON#

(ENTRY POINT DEFINITION)

1 ABSOLUTE ADDRESS
2 P-R ADDRESS

(LOAD ADDRESS)

9 ABSOLUTE ADDRESS
A P-R ADDRESS
s D-R ADDRESS
p C-R ADDRESS COMMON#

(DATA WORD)

B ABSOLUTE 16-BIT
VALUE

c P-R ADDRESS
T D-R ADDRESS
N C-R ADDRESS COMMON#
OPCODE/DR ADDRESS MASK
% OPCODE/PR ADDRESS MASK

& OPCODE/CR ADDRESS COMMON# MASK

(EXTERNAL DEFINITIONS)

6 ABSOLUTE VALUE SYMBOL(6)
5 P-R ADDRESS SYMBOL(6)
w D-R/C-R ADDRESS SYMBOL(6) COMMON#

(EXTERNAL REFERENCES)

4 ABSOLUTE ADDRESS SYMBOL (6)
OF CHAIN

E SYMBOL INDEX ABSOLUTE OFFSET
NUMBER

I SYMBOL INDEX OPCODE/OFFSET MASK
NUMBER

(SYMBOL DEFINITIONS)

G P-R ADDRESS SYMBOL(6)
H ABSOLUTE VALUE SYMBOL(6)
J D-R/C-R ADDRESS SYMBOL(6) COMMON#

Assembler Directives

Table 7-8. Object Record Format and Tags (Concluded)

TAG} 1ST FIELD I 2ND FIELD I
(FORCE LOAD)

u 1 0000 l SYMBOL(6) I
(SECONDARY EXTERNAL REFERENCE)

y I ABSOLUTE ADDRESS I SYMBOL(6) I OF CHAIN

(CHECKSUM)

7 I VALUE I I
(IGNORE CHECKSUM)

8 j ANY VALUE l l
(LOAD BIAS)

D l ABSOLUTE ADDRESS 1 l
(END OF RECORD)

F l 1 J
(END OF MODULE)

: l (IMPLEMENTATION DEPENDENT)

(PROGRAM ID [SYMT OPTION])

I I P-R ADDRESS I PROGRAM ID(8) I
NOTES: 1. All field widths are four characters unless otherwise specified.

If the first tag is >01, the file is in compressed object format.
P- R denotes program segment, relative address.

2.
3.

D- R denotes data segment, relative address.
C- R denotes common segment, relative address.

7.9.2 Changing Object Code

3RD FIELD

Object code may be corrected without reassembling a program by changing or adding
one or more records. One additional tag character is recognized by the loader to
permit specifying a load point. The additional tag character, D, may be used in object
records changed or added manually.

Tag character D is followed by a load bias (offset) value. The loader uses this value
instead of the load bias computed by the loader itself. The loader adds the load bias
to all relocatable entry addresses, external references, external definitions, load
addresses, and data. The effect of tag character D is to specify that area of memory
into which the loader loads the program. The tag character D and the associated field
must be placed ahead of the object code generated by the assembler.

Correction of the object code may only require changing a character or a word in
an object code record. Records may be duplicated up to the character or word in error.
Then the correct data replaces the incorrect data, and the remainder of the record
up to tag character 7 is duplicated. When the checksum is verified as the record is
loaded, the changes made cause a checksum error. The tag character 7 should be
changed to 8. This causes the checksum error resulting from the record change to
be ignored.

When more extensive changes are required, an additional object code record(s) may
be written. Each record is begun with a tag character 9, A, S, or P (load address tag
characters}, followed by an absolute load address or a relocatable load address. This
may be an address into which an existing object code record places a different value.
The new value on the new record overrides the old value when the new record

7-49

Assembler Directives

follows the old record in the loading sequence. The load address is followed by a
tag character B, C, T, or N {data word tag characters) and an absolute data word
or a relocatable data word. Additional data words preceded by appropriate tag
characters may follow. When additional data is placed at a nonsequential address,
another load address tag character is written followed by the load address and data
words preceded by tag characters. When the record is full, or all changes have been
written, tag character F is written to end the record.

When .additional memory locations are loaded as a result of changes, field one of tag
character K containing the number of words of relocatable code must be changed.
For example, if the object field written by the assembler contained 1000 hexadecimal
words of relocatable code and the change has added eight words in a new object
record, additional memory locations will be loaded. In the object code file, the value
following the tag character K is changed from 1000 to 1008. The tag character 7 is
also changed to 8 in that record.

When added records place corrected data in locations previously loaded, the added
records must follow the incorrect records. The loader processes the records as they
are read from the object medium. The last record that affects a given memory location
determines the contents of that location at execution time.

The object code records that contain the external definition fields, the external
reference fields, the entry address field, and the final program start field, must follow
all other object records. An additional field or record may be added to include
reference to a program identifier. The tag character is 4, and the hexadecimal field
contains zeros. The second field contains the first six characters of the IDT character
string. External definitions may be added using tag character 5 or 6, followed by the
relocatable or absolute address, respectively. The second field contains the defined
symbol, filled to the right with blanks when the symbol contains less than six char­
acters.

7.10 Cross-Reference Listing

LABEL

BASE2
BC
BC DONE
CTXTO
CTXTl
CTXT2
IORT
IORTlB
IORTlF
IORT2F
IORT3F
IORTBl
IORTB2
IORTB3
IORTB4

7-50

The assembler prints an optional cross-reference listing following the source listing.
{The cross-reference listing is created by using the OPTION directive.) The format
of the listing is shown in Figure 7-3.

VALUE DEFN REFERENCES

029B 0095
0236 0009 0003 0025 0030 0035 0060 0061 0064 0067 0069
REF 0004 0082 0084 0086 0088 0090 0092 0094
023B 0014 0020 0079
023C 0015 0021 0077
0230 0016 0022 0078
SREF 0005
UNDF 0039 0043
0256 0040 0028
025B 0044 0036
0281 0076 0072
0298 0093 0058
0295 0091 0055
0292 0089 0052
028F 0087 0049

Figure 7-3. Cross-Reference Listing Format

Assembler Directives

As shown in Figure 7-3, the assembler prints in the LABEL column each symbol
defined or referenced in the assembly. The VALUE column contains a four-digit
hexadecimal number and is possibly followed by either a character or a name that
represents the attributes of the symbol. A four-digit hexadecimal number represents
the value assigned to the symbol. The characters following the four-digit number or
the names that may be in the VALUE column have their meanings listed in Table 7-9.
The number of the statement in which the symbol is defined appears in the DEFN
(definition) column. For undefined symbols, this column is left blank. The REFER­
ENCES column lists the number of statements that reference the symbol. A blank in
this column indicates the symbol was defined but never used.

Table 7-9. Assembly Symbol Attributes

CHARACTER
OR NAME MEANING

REF External reference (REF)
UNDF Undefined
SREF Secondary reference (SREF)

Symbol defined in a program segment
" Symbol defined in a data segment
+ Symbol defined in a common segment

7.11 Assembler Error Messages

The assembler issues the following three types of error messages:

• Nonfatal
• Fatal
• Informative

When the assembler completes an assembly, it indicates any errors it encounters in
the assembly listing. The assembler indicates errors following the source line in which
they occur. The errors are referenced by number. At the end of a module (as delin­
eated by the IDT /END directive pair), the corresponding messages are printed. Table
7-10 lists non-fatal error messages, and Table 7-11 lists fatal messages. In Table
7-12, assembly information messages are given.

7-51

Assembler Directives

Table 7-10. Non-Fatal Error Listing

MESSAGE EXPLANATION/RESPONSE

WARNING - 'CEND' ASSUMED Occurs when CSEG is not terminated by CEND.

WARNING - 'DENO' ASSUMED Occurs when DSEG is not terminated by DENO.

WARNING - 'PEND' ASSUMED Occurs when PSEG is not terminated by PEND.

WARNING - 'DSEG' ASSUMED This is a warning that the following two statements have the same result:
CSEG 'DATA'
DSEG

WARNING - SYMBOL TRUNCATED The maximum length for a symbol is 6 characters. The assembler ignores the
extra characters.

WARNING - STRING TRUNCATED Check the syntax for the directive question to determine the maximum length
for the string.

WARNING - TRAILING OPERAND(S) The assembler found fewer or more operands than expected in the flagged
instruction.

WARNING - BYTE VALUE TRUNCATED A value to be used as a byte is larger than can be loaded into the space for a
byte.

WARNING - NULL STRING DEFINED An empty string (i.e .• length = 0) is defined for string input, for directives
that require a null string operand.

7-52

Assembler Directives

Table 7-11. Fatal Error Listing

MESSAGE EXPLANATION/RESPONSE

ABSOLUTE VALUE REQUIRED A relocatable symbol was used where an absolute symbol was
expected.

DISPLACEMENT TOO BIG The maximum value of the operand was exceeded.

INVALID EXPRESSION This may indicate invalid use of a relocatable symbol in arithmetic.

EXPRESSION OUT OF BOUNDS Range limit for the value of the operand was exceeded.

DUPLICATE DEFINITION The symbol appears as an operand of a REF statement, as well as
in the the label field of the source, or the symbol appears more than
once in the label field of the source.

INVALID RELOCATION TYPE An absolute variable cannot be made relocatable.

INVALID OPCODE The command field of the source record has an entry that is not a
defined instruction, directive, or macro.

INVALID OPTION The option given in the OPTION directive is invalid. An option is
often misspelled.

INVALID REGISTER VALUE The register specified is too large or too small. Only values of 0 to
4 are allowed for ARO to AR4, respectively.

INVALID SYMBOL The symbol has invalid characters in it.

VALUE TRUNCATED The value is too big for the field and has been truncated. This
message also appears when a label string exceeds its maximum
length.

SYMBOL USED IN BOTH REF AND DEF

COPY FILE OPEN ERROR File does not exist or is already being used.

EXPRESSION SYNTAX ERROR Unbalanced parentheses or invalid operations on relocatable
symbols.

INVALID ABSOLUTE CODE DIRECTIVE The directives PEND, DENO and CEND have no meaning in abso-
lute code.

LABEL REQUIRED The flagged directive must have a label.

BLANK MISSING A blank or blanks must separate each field of the source statement.

COMMA MISSING Expected a comma but did not find one. Usually means that more
operands were expected.

COPY FILENAME MISSING Filename specified cannot be found.

SYMBOL REQUIRED OPTION, DEF, REF, SREF, and LOAD directives require symbols
as operands.

OPERAND MISSING An operand must be supplied.

CLOSE(') MISSING All strings must be enclosed in quotes.

CLOSE(')') MISSING Mismatched parenthesis.

STRING REQUIRED TEXT directive used with no text following.

PASS1/PASS2 OPERAND CONFLICT A symbol in the symbol table did not have the same value in PASS1
and PASS2.

SYNTAX ERROR Error in syntax.

UNDEFINED SYMBOL The symbol has not been REFed, or it has been DEFed but not
used.

DIVIDE BY ZERO An expression or well-defined expression contains invalid division.

ILLEGAL SHIFT COUNT The shift count requested is not valid.

7-53

Assembler Directives

Table 7-12. Assembly Information Message Listing

MESSAGE EXPLANATION/RESPONSE

OPCODES REDEFINED As a result of an MLIB directive, one or more assembler opcodes
have been redefined by a MACRO within a MACRO directory. The
user should take action if this is not intended.

MACROS REDEFINED As a result of an MLIB directive, one or more currently defined
MACROS have been redefined by a MACRO (of the same name)
within a MACRO directory. The user should take action if this is
not intended.

7-54

8. Assembler Macros

The TMS320C25 Macro Assembler supports macro calls and definitions along with
macro-conditional assembly for simplifying programming and consolidating
frequently repeated source code. Macros may be defined with the assembler input
or in a library (directory) of external files to be included at link time.

Major topics discussed in this section are listed below.

• Macro Definitions (Section 8.1 on page 8-2)
Sample macros
Macro assembly language elements:

- Labels (Section 8.2 on page 8-5)
- Strings (Section 8.3 on page 8-5)
- Constants (Section 8.4 on age 8-5)
- Variables (Section 8.5 on page 8-5)
- Operators (Section 8.6 on page 8-9)
- Keywords (Section 8.7 on page 8-10)
- Verb statements (Section 8.8 on page 8-11)

• Model Statements (Section 8.9 on page 8-17)

• Macro Examples (Section 8.10 on page 8-18)

• Macro Error Messages (Section 8.11 on page 8-20)

8-1

Assembler Macros

8.1 Macro Definitions

8-2

The TMS320C25 Macro Assembler recognizes a macro definition language that is
used to simplify programming. A macro definition is a set of source statements
(machine instructions, macro statements, and assembler directives), which constitute
a template for generating other statements within a source program. Macro defi­
nitions consist of model statements and statements containing macro verbs. They
are used to define macros and macro variables and to determine which model
statements are assembled.

When the assembler processes a macro call, it substitutes the predefined statements
of the macro definition for the macro call statement in the source program, and
assembles the substituted statements as if they had been included in the source
program.

Macro definitions are usually created by including lines of code in a predefined format
within the assembler source file. In general, this format requires a symbolic line
marking the start of a macro definition. The macro name is placed in the line's label
field, and the string '$MACRO' is placed in the operand field. A list of formal
parameters separated by commas may be placed in the operand field.

The elements of the macro assembly language are labels, strings, constants, variables,
operators, keywords, and verbs. A macro definition consists of model statements
and statements containing macro verbs used to define the macro and macro variables
and determine which model statements are assembled. All macro statements that
do not contain verbs are processed as model statements. A model statement results
in an assembly language source statement.

Macros may be defined in-line with the normal assembler source code, provided that
the macro definition appears before that macro is called. Macro definitions are usually
placed at the top of the assembler source file. This allows easy reference to the macro
definitions since they are in one location.

Macros may also be defined in external files. These files are simply text files (like the
assembler source file) that contain macros defined in the same manner as those
defined in the main assembler source file. Only one macro may be defined in a file.
The assembler is informed of the existence of a macro library (i.e., a collection of
macro files) by means of the MLIB directive (see Section 7.6.5). An example of the
use of the MLIB directive is:

MLIB 'E: I

The string enclosed in the quotes represents a directory name in the format required
by the host operating system.

To illustrate the use of a macro library, a library of macro definitions is assumed to
be contained in a directory named 'E:' and a file named 'CPXADD' that is a member
of that dfrectory. If the macro call

LABEL CPXADD CX1,CX2

is found in the assembler source, the in-memory macro table is first searched for the
definition of CPXADD. CPXADD will be in the macro table if CPXADD was previously
defined in the assembler source file or was previously encountered and read from a
macro file. If the definition is not found in the macro table, a search of the normal
assembler opcode/directive table is made. If found in the assembler opcode/directive
table, the opcode is assembled as a normal machine instruction. If not, an attempt
is made to find the file whose name is formed by appending the macro name to the
MLIB name. If more than one MLIB directive has been encountered, the most recently
defined library is searched first; then all remaining libraries are searched. If the file

Assembler Macros

is found, the macro definition is copied into the assembler's macro file (in a
compressed format), and an entry is made in the macro table for later use.

Because of the sequential search for matching definitions (library search following
the opcode/directive table search), a macro defined in a library will not automatically
redefine a machine instruction, although this is easily done using an in-line macro
definition. To extend this capability to the macro library, that library should include
a text file named 'MLIST', which contains the names of the opcodes and currently
defined macros (one name per line, starting with column one) which are to be
redefined.

A typical M LIST file may be constructed as follows, using the appropriate system text
editor:

file name

record 1
record 2
record 3
record 4

<MLIB directory name>.

ADD
LACK
DMOV
FSUB

ML I ST

(opcode)
(opcode)
(opcode)
(macro)
eof(MLIST)

This MLIST file is read when the MLIB directive is processed. If a name found there
matches a currently defined opcode or a name in the macro table, the matching entry
is removed from its table. This forces a search of the libraries, since the name will
not be found elsewhere. When a name is found matching an opcode, the message:

' **** OPCODES REDEFINED'

is printed in the assembler listing, following the printing of the MLIB statement. A
similar message:

' **** MACROS REDEFINED'

appears when currently defined macros are redefined. If this is intended, then no
action is required; if not, then some action is necessary, such as the deletion of some
or all of the records in the M LIST file.

The name of a macro in file should be the same as the file name; otherwise, some
inefficiency in macro usage will result. If the file named CPXADD contains a definition
line such as:

CPXMUL $MACRO MR, MD

an entry for a macro named CPXMUL will be made in the internal macro table. The
next call to CPXADD will be recognized as undefined and reentered into the internal
macro table as CPXMUL.

Note that the use of an MLIST file to override the assembler opcode table can result
in unpredictable behavior of the assembler. Care should be taken in using this option.

8-3

Assembler Macros

8.1.1 Sample Macros

8-4

The following example defines a. macro named INCX. $MACRO identifies the
beginning of the macro definition, and $END identifies the end of the macro defi­
nition. LACK 1, ADD X, and SACL X are model statements which will be placed into
the source program upon a macro calL The macro INCX may be used in the source
program as often as necessary.

INCX $MACRO
LACK
ADD
SACL
$END

1
x
x

The macro INCX may be called by simply placing the line INCX within the source
file. The macro assembler will replace this line with the remainder of the definition,
i.e.:

LACK 1
ADD X
SACL X

X must be a symbol representing a memory address in the source program assigned
by the EQU directive. INCX is limited because the macro can only be used with the
single memory location X. The INC macro can be used with any memory location:

INC $MACRO
LACK
ADD
SACL
$END

M
1
:M.S:
:M.S:

M is a macro parameter that is replaced by the actual parameter when the macro is
called. M.S is the string component of this variable, i.e., the symbol representation
of the variable. For example, the line INC Y will be replaced by:

LACK 1
ADD Y
SACL Y

Likewise, INC Z will be replaced by:

LACK 1
ADD Z
SACL Z

Another component of a macro variable is the value component, as shown in the
following example:

ADDK $MACRO X,NUM
LACK :NUM. V:

ADD :X.S:
SACL :X.S:
$END

The macro call ADDK Y,3 will result in:

LACK 3
ADD Y
SACL Y

X and NUM are parameters.
NUM V is the value component
of parameter NUM.

Assembler Macros

8.2 Labels

8.3 Strings

A macro label consists of one to six characters. The first character must be alphabetic,
optionally followed by alphanumeric characters. Macro labels are used to determine
the sequence of processing of statements in a macro definition when the statements
are not to be processed in order.

Examples of valid macro labels:

Ll

NXTPNT

c

Macro strings consist of one or more characters with enclosing quotes. Macro strings
are defined in the same manner as the character string used in the assembly language
source statement (see Section 7.4).

Example of strings:

'ONE'

(three blank spaces)

8.4 Constants

Constants for macros are defined in the same manner as constants in the assembly
language source statements (see Section 7.3).

Examples of constants:

>9F3C

$ (current location counter value)

8.5 Variables

Variables are symbols, used within a macro, which take on values through various
mechanisms in the macro definition language. The maximum length of a variable is
six characters. Macro variables are strictly local, i.e., they are available only to the
macro that defines them. Macro $VAR (variable declaration verb) statements declare
variables for a macro definition.

The macro assembly ,language permits concatenation of macro variable components
with strings, characters of model statements, and other macro variables. Variables
are represented in the same manner as symbols in the Assembler Symbol Table (AST).
This table maintains all the references to the variables, symbols, and labels used.

8-5

8.5.1 Parameters

Parameters are macro variables that are declared in the $MACRO (macro definition
verb) statement at the beginning of the macro definition .. The sequence of parameters
in the operand field of the $MACRO statement corresponds to the sequence of
operands in the operand field of the macro call. In the expansion of a macro call,
the parameters have values that are associated with the corresponding operands in
the macro call.

Examples of $MACRO statements with parameters:

LABEL $MACRO

NAME $MACRO

A,B3

O,RC,AMT

8.5.2 Macro Symbol Table (MST)

8-6

The macro translator maintains a Macro Symbol Table (MST} similar to the Assembler
Symbol Table (AST}. Each entry consists of four components: string, value, length,
and attributes of a variable or parameter. The macro assembler places parameters in
the MST while processing a macro call. Variables are placed in the MST as the
assembler processes the macro $VAR statements that declare variables.

An entry's string component in the MST contains a character string assigned to the
macro variable or parameter by the macro expander. The value component contains
the numerical equivalent of the string component if the string component is an
integer. The value component can also contain the numerical value of the symbol
if the string component is a symbol in the AST.

If a parameter is an operand list. the value is the length of the list. The length
component contains the number of characters in the string component. The attribute
component of the MST is a bit vector, the bits of which correspond to the attributes
of the variable or parameter.

Macro definition example:

ADDK $MACRO x, NUM The $MACRO directive defines the beginning of the defi­
nition of the macro ADDK with parameters X and NUM.

Macro call example:

ADDK VARl,3

With the MST now containing parameters X and NUM, the string component of
parameter Xis the character string VAR1. The attribute component indicates that the
parameter is supplied in a macro call. The length component is four. The string
component of parameter NUM is the ASCII character 3. The value component is three
(expressed as a binary number) and the length component is one. The attribute
component indicates that the parameter is supplied in the macro call.

Each macro variable component may be accessed individually. Reference to a vari­
able component is made in either binary mode or string mode. In the binary mode,
the referenced macro-variable component is treated as a signed 16-bit integer. Binary
mode access is made by writing the variable name and component. When a reference
is made to the string component of a macro variable in binary mode, the 16-bit integer
value. of the ASCII representation of the first two characters of the string is obtained.
In the macro definition and call examples above, the binary-mode value of the string
component of X is >5641, which is the ASCII representation for VA.

Assembler Macros

String-mode access of macro-variable components is signified by enclosing the
variable in a pair of colons, e.g., :X:. Colons are always used in pairs to enclose a
variable name. If a component qualifier is used, the pair of colons enclose the entire
qualified name.

8.5.3 Variable Qualifiers

Parameter or variable components may be specified using the names shown in Table
8-1. The variable name is followed by a period'.' and a single-letter qualifier. The
following examples refer to previous macro examples using ADDK.

Examples of qualified variables:

x. s String component of variable VAR1. X.S equals the binary equivalent for
VA or >5641. A string mode indicated as :X.S: is equal to the string 'VAR1 '.

x. A Attribute component of variable X. This component may be accessed by
use of logical operators and attribute keywords (described in Table 8-3).

x. v Value component of variable X.

x. L Length component of variable X. In the first example of the macro call for
the macro ADDK,:X.L: = 4.

Table 8-1. Variable Qualifiers

QUALIFIER MEANING

s The string component of the variable
A The attribute component of the variable
v The value component of the variable
L The length component of the variable

If a variable is not followed by a period '.' and a single-letter qualifier, it is referred
to as an unqualified variable. Except in an $ASG statement, an unqualified variable
defaults to the string component of the variable. In the two following examples, the
concatenated strings are equivalent:

Example 1: :CT.S:'WAY' Variable CT qualified

Example 2: :CT:'WAY' Variable CT unqualified

In model statements, binary references to macro variables MUST be qualified.

All symbols in the Assembler Symbol Table (AST) have symbol components. (All
components of macro parameters and the values of all AST symbols are directly
accessible.) In order for other components to be accessed in a macro, the symbol
must be assigned to the string component of a macro variable, using $ASG (value
assignment verb). The additional qualifiers shown in Table 8-2 may be used with
the macro variable to access the symbol components of the AST symbols.

8-7

Assembler Macros

8-8

Table 8-2. Variable Qualifiers for Symbol Components

QUALIFIER MEANING

SS String component of a symbol that is
the string component of a variable

SV Value component of a symbol that is
the string component of a variable

SA Attribute component of a symbol that
is the string component of a variable

SL Length component of a symbol that is
the string component of a variable

Assuming that V1.S is defined as MASK and the statement MASK EQU >FF has
been previously encountered in the assembly language source program, the following
examples of qualified variables specify symbol components of string components of
variables:

Vl.SS

Vl.SV

Vl.SA

Vl.SL

String component of the symbol MASK. Null unless a macro instruction
has caused a string to be associated with it by using a $ASG statement.

Value component of the symbol MASK, i.e., >FF. In string mode,
:V1 .SV: equals the characters '255'.

Attribute component of the symbol MASK. May be accessed by logical
operators and keywords.

Length component of the symbol MASK. If a string has been assigned
to MASK, then V1 .SL is the length of that string.

Concatenation is especially useful when a previously defined string is augmented
with additional characters. The string ONE may be represented by a qualified variable
such as CT.S. In that case, concatenation is expressed as:

:CT.S: I WAY'

and provides the same result as writing:

ONE WAY

If the qualified variable CT.S represented the string 'TWO', then the result of the
concatenation in the example would be TWO WAY. Strings and qualified variables
may be concatenated as required and the variable need not be first. Components
of variables that are represented by a binary value (e.g., CT.V and CT.L) are converted
to their ASCII decimal equivalents before concatenation. For example,

:CT.S:' WAY ':CT.L:

is expanded as

ONE WAY 3

since the length component of the variable CT is three.

Assembler Macros

8.6 Operators

Three types of operators are available for use in the macro assembler: arithmetic,
relational, and logical operators.

8.6.1 Arithmetic Operators

Arithmetic operators, using the functions of+,-,* (multiply), and I (divide), generate
operand values.

Example of an arithmetic operator:

LABEL EQU $+4 (current location counter value + 4)

8.6.2 Relational Operators

Relational operators compare the values of two variables, or a variable and a constant,
and return the answer of TRUE or FALSE. The relational operators are as follows:

Equal
> Greater than
< Less than
"" Not equal

Examples of relational operators:

$IF A. V>3 Process succeeding block if value component of variable
A is >3.

$IF B.L¢A.L Process succeeding block if length component of variable
B is· not equal to length component of variable A.

8.6.3 Logical Operators

Logical (Boolean) operators perform the desired operation and return either TRUE
or FALSE. The following are logical operators:

& AND
++ OR

NOT

Example of a logical operator:

$IF (A.V>3)&(B.L¢A.L) Process succeeding block if both expressions in
parentheses are true.

8-9

Assembler Macros

8. 7 Keywords

The attribute component of assembler symbols and macro parameters contains
information on various attributes of those symbols and parameters. The macro
assembly language recognizes certain keywords that are used to access that infor­
mation. A keyword is used with a logical operator and the attribute component to
test or to set a specific attribute of a symbol or parameter.

8.7.1 Symbol Attribute Component Keywords

The keywords listed in Table 8-3 may be used with a logical operator and the symbol
attribute component (.SA) to test or set the corresponding attribute component in
the Assembler Symbol Table (AST).

Table 8-3. Symbol Attribute Component Keywords

KEYWORD SYMBOL MEANING

$REL Relocatable

$REF An operand of an REF directive

$DEF An operand of a DEF directive

$STR Assigned a component string

$MAC Defined as a macro name

$UNDF Not defined

Note that the use of these attributes in conditional assembly (see $1 F) can lead to
pass conflict errors if the symbol has not been defined before the macro call.

Examples using symbol attribute component keywords:

Vl.SA&$STR

Vl.SA++$REL

The result of an AND operation between the attribute component
of the symbol MASK (assuming V1 .S has been defined as MASK)
and a flag corresponding to keyword $STR. The expression is
TRUE when the contents of the string component of MASK are
not null; otherwise, the expression is FALSE.

The result of an OR operation between the attribute component
of the symbol MASK and the flag corresponding to keyword $REL.

8.7.2 Parameter Attribute Component Keywords

8-10

The keywords listed in Table 8-4 may be used with a logical operator and the macro
symbol attribute component to test or set the corresponding attribute in the MST
attribute component or attributes of all variables in the MST.

Assembler Macros

Table 8-4. Parameter Attribute Component Keywords

KEYWORD SYMBOL MEANING

$PCALL Appears as a macro instruction operand.

$POPL An operand list (the value component
contains the number of operands in the
list).

$PSYM A symbolic memory address (recog-
nized when the variable is preceded by
an@ character).

Examples using parameter attribute component keywords:

P6.A&$PCALL

RA.A++$PSYM

8.8 Verb Statements

The result of an AND operation between the attribute component
of variable P6 and the flag corresponding to keyword $PCALL.
The expression is TRUE when variable P6 is a parameter supplied
in a macro call; otherwise, the expression is FALSE.

The result of an OR operation between the attribute component
of variable RA and the flag corresponding to keyword $PSYM.

The following verbs may be used in macro statements:

$ASG
$ELSE
$END
$ENDIF
$IF
$MACRO
$VAR

Any statement in a macro definition not containing a macro verb in the operation field
is processed as a model statement.

The macro verb statements are listed in alphabetical order and described in the
following pages. The syntax and an example are also given.

8.8.1 $ASG (Value Assignment Verb)

The $ASG statement assigns values to the components of a variable. Variables that
are not parameters do not have values for any components until values are assigned
using $ASG statements. Components of variables with previously assigned values
may be assigned new values with $ASG statements.

Syntax: $ASG <expression/string> TO <var> [<comment>]

The expression operand may be any valid assembler expression and may contain
binary-mode variable references and keywords.

8-11

Assembler Macros

8-12

A string may be one or more characters enclosed in single quotes or the concat­
enation of such a literal string with the string mode value of a qualified variable.
The <var> may be either an unqualified or a qualified variable.

When the operands are both unqualified variables, all components are transferred to
target variables. When the destination variable is qualified, only the specified
component receives the corresponding component of the expression or string. An
exception to this is when a string is assigned to the string component of a variable
or symbol, the length component of that variable or symbol is set to the number of
characters in the assigned string. If the attribute component of the destination
variable is to be changed, only those attributes that can be tested using keywords
are changed. Other attributes maintained by the macro assembler may or may not
be changed as appropriate. A qualified variable that specifies the length component
is illegal as a destination in a $ASG statement, and will NOT set the length compo­
nent.

The following examples illustrate the use of $ASG. Variables P3, V3, and CT are
assumed to have been previously declared either as parameters in a $MACRO state­
ment or as variables in a $VAR statement.

$ASG P3 TO V3 Assigns all the components of variable P3 to variable V3.

$ASG :P3.S:'ES' TO P3.S
Concatenates string 'ES' to the string component of vari­
able P3, and set the string component to the result. This
adds 2 to the length component of P3.

$ASG CT.A++$PSYM TO CT.A
Sets the flag in the attribute component of variable CT to
indicate the symbolic address attribute.

The $ASG statement may be used to modify symbol components as shown in the
following examples. Assume that P3.V = 6 and P3.S =SUB.

$ASG 'TEN' TO G. s Assigns 'TEN' as the string component of variable G. When
'TEN' is a symbol in the AST, this statement allows the use
of symbol component qualifiers to modify the components
of symbol TEN.

$ASG P 3. v TO G. sv Sets the value component of the symbol in the string
component of variable G to the value component of variable
P3. In this case, the value component of TEN is set to six.

$ASG 'A':P3.S:'S' TOG.SS
Concatenates string 'A', the string component of variable
P3, and string 'S', and places the result in the string
component of the symbol in the string component of vari­
able G. Also sets the length component of the same symbol.
Thus, the string component of TEN is ASU BS, and the
length component is five.

Keywords in a $ASG statement must be used with a Boolean (logical) operator and
an attribute component of a variable in the source field. The attribute component
must come first. When quoted strings are assigned to the string component of some
variable, that string may later appear in the list of undefined symbols.

Assembler Macros

8.8.2 $ELSE (Alternate Else Verb)

The $ELSE statement begins an alternate block to be processed if the preceding $IF
expression was false.

Syntax: $ELSE

Example: See $IF.

[<comment>]

8.8.3 $END (Macro Definition Termination Verb)

The $END statement marks the end of the group of statements of the macro definition
named in the operand. When executed, the $END statement terminates the proc­
essing of the macro definition.

Syntax: $END [<MACRO NAME>] [<COMMENT>]

Example: $END FIX Terminates the definition of the FIX macro.

8.8.4 $ENDIF (IF Termination Verb)

The $ENDIF statement terminates the conditional processing initiated by an $IF
statement in a macro definition.

Syntax: $ENDIF

Example: See $IF.

8.8.5 $If (Conditional If Verb)

[<comment>]

The $IF statement provides conditional processing in a macro definition. The
condition of the $IF statement determines whether or not a block of statements is
processed, or which of two blocks of statements is processed. A block may consist
of zero or more statements.

An $IF statement is followed by a block of macro language statements terminated
by an $ELSE statement or an $ENDIF statement. When the $ELSE statement is used,
it is followed by another block of macro statements terminated by an $ENDIF state­
ment. When the expression in the $IF statement has a nonzero value (or is evaluated
as TRUE), the block of statements following the $IF statement is processed. When
the expression in the $IF statement has a zero value (or is evaluated as FALSE), the
block of statements following the $IF statement is skipped. When the $ELSE state­
ment is used and the expression in the $IF statement has a nonzero value, the block
of statements following the $ELSE statement and terminated by the $EN DI F statement
is skipped.

Syntax: $IF <expression> [<comment>]

The <expression> may be any expression as defined for the $ASG statement and
may include qualified variables and keywords. The expression defines the condition
for the $IF statement.

Note that the expression is always evaluated in binary mode. Specifically, the rela­
tional operations (<,>,=,¢} operate only on the binary mode values of macro vari­
ables. Logical operators may be nested. In addition, $IF blocks may be nested up to
44 levels.

8-13

Assembler Macros

$IF

.
ELSE

$ENDIF

IF --

$ENDIF

IF

Example:

KY.SV

BLOCK

BLOCK

A

B

Process the statements of BLOCK A when the value component
of the symbol in the string component of variable KY contains
a non-zero value. Process the statements of BLOCK B when the
component contains zero. After processing either block of
statements, continue processing at the statement following the
$ENDIF statement.

(T.A &$PCALL) Process the statements of BLOCK A when the attribute

BLOCK A

T.L=5

BLOCK A

component of parameter T indicates that parameter T is not
supplied in the macro instruction. If parameter T is supplied, do
not process the statements of BLOCK A. Continue processing
at the statement following the $ENDIF statements in either case.

Process the statements of BLOCK A when the length component
of variable T is equal to 5; otherwise, do not process the state­
ments of BLOCK A. Continue processing at the statement
following the $ENDIF statement.

8.8.6 $MACRO (Macro Definition Verb)

8-14

The $MACRO statement must be the first statement of a macro definition. It assigns
a name to the macro and declares the parameters for the macro. The macro name
consists of one to six alphanumeric characters, the first of which must be alphabetic.
Each <parm> is a parameter for the macro. The operand field may contain as many
parameters as the size of the field allows and must contain all parameters used in the
macro definition. The comment field may not be used if there are no parameters.

Syntax: <macro name> $MACRO [<parm-list>] [<comment>]

where <parm-list> is a sequence of parameters separated by commas. The macro
definition is used in the expansion of macro calls where that macro name appears
in the instruction field.

Syntax for a call:

<macro name> [<operand-list>] [<comment>]

where <operand-list> is a sequence of operands, separated by commas. The macro
name specifies the macro definition to be used. Each operand may be any expression
or address type recognized by the assembler, or a character string enclosed in quotes.
Alternatively, a list that is a group of operands enclosed in parentheses and separated
by commas (when two or more operands are in the list) may be used. A list is
processed as a set after removal of the outer parentheses during macro expansion.

Operands (or lists) may be nested in parentheses in the macro call for use within
macro definitions. For example, if the macro ONE is defined as

ONE $MACRO Pl,P2

then the statement

ONE PAR1,PAR2

results in PAR1 being associated with P1, and PAR2 being associated with P2.
Similarly, the statement

Assembler Macros

ONE PAR1,(PAR21,PAR22)

results in PAR1 being associated with P1. and PAR21,PAR22 being associated with
P2.

The macro expander is responsible for replacing the macro call with the appropriate
source code. Processing of each macro call in a' source program causes the macro
expander to associate the first parameter in the $MACRO statement with the first
operand or operand list on the macro call line and the second parameter with the
second operand or operand list, etc. Each parameter receiving a value has the
$PCALL attribute (see Table 8-4) set in the MST. When the macro definition has
more parameters specified than the number of operands in the macro call, the $PCALL
attribute is not set for the excess parameters. The $PCALL attribute also is not set
if an operand is null (i.e., the call line has two commas adjacent or an operand list
has zero operands). Expansion of the macro can be controlled by the number of
operands by using the $PCALL attribute and $1 F statements.

For example, a macro definition containing

AMAC $MACRO Pl,P2,P3

when called by

AMAC AB1,AB2

sets $PCALL parameters P1 and P2, but not P3. Similarly,

AMAC XY,,XY3

causes $PCALL to be set for P1 and P3, but not P2.

When the macro call has more operands than the number of parameters in the
$MACRO statement, the excess operands are combined with the operand or list
corresponding to the last parameter to form a list (or a longer list). In the macro
statements shown below, the operands of the two macro calls would be assigned
to the parameters in the same way.

Macro Call 1:

ONE
TWO
THREE
FIX

EQU
EQU
EQU
$MACRO

$END

FIX
FIX

9
43
86
Pl,P2

ONE,TWO,THREE
ONE , (TWO, THREE)

MACRO FIX

MACRO CALL
MACRO CALL

Assembler Macros

\

8-16

Macro Call 2:

A
B
c
D
E
F
G
H
I
PARM

EQU
EQU
DATA
DATA
EQU
EQU
EQU
EQU
EQU
$MACRO

.
$END

PARM

7
15
17
63
95
47
58
101
119
Pl,P2,P3,P4,P5,P6,P7,P8,P9

A, ,B, () ,C, (D) ,E, (G, (H,I))

For the above macro call, the parameter assignments for PARM are as follows:

P1.S =A
P1 .A = $PCALL
P1 .L = 1
P1.V=7

P3.S = B
P3.A = $PCALL
P3.L = 1
P3.V = 15

P5.S = C
P5.A = $PCALL
P5.L = 1
P5.V=17

P7.S = E
P7 .A = $PCALL
P7.L = 1
P7.V = 95

P9.S = (no string)
P9.A = (all false)
P9.L = 0
P9.V = 0

P2.S = (no string)
P2.A = (all false)
P2.L = 0
P2.V = 0

P4.S = (no string)
P4.A = $POPL
P4.L = 0
P4.V = 0

P6.S = D
P6.A = $PCALL,$POPL
P6.L = 1
P6.V = 1

P8.S = G,(H,I)
PS.A = $PCALL,$POPL
P8.L = 7
P8.V = 2

A macro definition supercedes previous macro definitions and native instructions
with the same name. Symbolic operands that appear in a macro call are treated as
symbolic operands in native instructions; i.e., if they are not defined with the program
in which they appear, they are listed as undefined symbols.

Assembler Macros

8.8.7 $VAR (Variable Declaration Verb)

The $VAR statement declares the variables for a macro definition. The $VAR state­
ment is required only if the macro definition contains one or more variables other than
parameters. More than one $VAR statement may be included, and each $VAR
statement may declare more than one variable. Each <var> in the operand is a
variable.

Syntax: $VAR <var> [,<var> l [<comment> l

Example: $VAR A, CT, V3 THREE VARIABLES FOR A MACRO

The example declares variables A, CT, and V3, which must not have been declared
as parameters.

The $VAR statement does not assign values to any components of the variables; that
is the function of the $ASG statement. $VAR statements may appear anywhere in
the macro definition to which they apply, provided each variable is declared before
the first statement that uses the variable. Placing $VAR statements immediately
following the $MACRO statement is recommended for clarity in reading the source
code.

8.9 Model Statements

A macro definition consists of model statements and statements that contain macro
verbs. Processing a model statement results in an assembly language statement.
This statement may be composed of the usual elements of an assembly language
statement combined with string mode qualified variable components.

Examples of model statements:

IN *+,PA7,1 An assembly language source statement that contains a
machine instruction.

:P7.S: LAR :P2.S:,R8 :V4.S:
The string component of variable P7, followed by one blank,
LAR, and one more blank, is concatenated to the string. The
string component of variable P2 is concatenated to the
result, to which RS and three blanks are concatenated. A
final concatenation places the string component of variable
V4 in the model statement. The result is an assembly
language machine instruction having the label and
comment fields and part of the operand field supplied as
string components.

: MS. s: The string component of variable MS. Preceding statements
in the macro definition must place a valid assembly
language source statement in the string component to
prevent assembly errors.

Note that conditional assembly directives may not appear as operations in a model
statement. Comments supplied in model statements may not contain periods since
the macro assembler scans them. Improper use of punctuation may cause syntax
errors.

8-17

Assembler Macros

8.10 Macro Examples

Macros may simply substitute a machine instruction for a macro instruction, or they
may include conditional processing, access the Assembler Symbol Table (AST), and
employ recursion. Several examples of macro definitions are described in the
following paragraphs.

8.10.1 ID (Identification Macro)

8-18

The ID macro, an example of a macro with a default value, supplies two DATA
directives to the source program. The ID macro consists of nine other macro state­
ments, four of which are model statements. The definition is as follows:

ID . $MACRO WS , PC Defines ID with parameters WS and PC .

DATA : ws. s: Model statement: places a DATA directive with
the string of the first parameter as the operand
in. the source program.

$IF PC. A&$PCALL Tests for presence of parameter PC.

DATA : PC. s:, 15 Model statement: places a DATA directive in
the source program. The first operand is the
string of the second parameter, and the second
operand is 15. This statement is processed if
the second parameter is present.

$ELSE

DATA START,15

Starts the alternate portion of the definition.

Model statement: places a DATA directive in
the source program. The first operand is label
START, and the second operand is 15. This
statement is processed if the second parameter
is omitted.

START EQU $ Model statement: places label ST ART in the
source program. This statement is processed
if the second parameter is omitted.

$END IF Ends the conditional processing.

$END Ends the macro.

Syntax: [<label>] ID <exp> [,<exp>] [<comment>]

The addresses may be expressions or symbols.

Example of a macro call for macro ID:

ID WORKl,BEGIN

The resulting source code would be

DATA WORKl
DATA BEGIN,15

Assembler Macros

If only one operand is supplied, the macro instruction could be coded as follows:

ID WORK2

This would result in the following source code:

START

DATA
DATA
EQU

WORK2
START,15
$

This form of the macro instruction imposes two restrictions on the source program.
The source program may only call the ID macro with a single parameter once. This
is necessary to prevent the use of the label 'ST ART' more than once. Problems with
labels supplied in macros may be prevented by reserving certain characters for use
in macro-generated labels. A macro definition may maintain a count of the number
of times it is called, and use this count in each label generated by the macro.

8.10.2 GENCMT (Generate Comment Macro)

The GENCMT macro implements only those comments that appear in the macro
definition and the expansion of the macro. In the following example, the first five lines
define the macro, followed by :V.S: that expands the macro definition.

Example of assembler list file:

0001 IDT 'GENCMT'
0002 GENCMT $MACRO
0003 $VAR V
0004 * THIS IS A MACRO DEFINITION COMMENT.
0005 $ASG '*' TO V.S
0006 :V.S: THIS IS A MACRO EXPANSION COMMENT.
0007 $END
0008 *
0009 *
0010 GENCMT
0001 * THIS IS A MACRO EXPANSION COMMENT.
0011 OOOQ 0000 DATA 0,1

0001 0001
0012
0001 * THIS
0013
0001 * THIS
0014 0002 0004
0015
NO ERRORS, NO WARNINGS

GENCMT
IS A MACRO

GENCMT
IS A MACRO

DATA 4
END

EXPANSION COMMENT.

EXPANSION COMMENT.

8-19

Assembler Macros

8.10.3 FACT (Factorial Macro)

The FACT macro, an example of the recursive use of macros, produces the assembly
code necessary to calculate the factorial of N where N is an immediate value, and
store that value at data memory address LOC. FACT accomplishes this by calling
FACT1, which calls itself recursively.

Example:

FACT
*
*
*

*
FACTl

$MACRO N,LOC

$IF N.V<2
LACK 1
SACL :LOC:
$ELSE
LACK :N.V:
SACL :LOC:
$ASG N.V-1 TO N.V
FACTl :N.V:,:LOC:
$ENDIF
$END

$MACRO M,AREA
$IF M.V>l
LT :AREA:
MPYK :M.V:
PAC
SACL :AREA:
$ASG M.V-1 TO M.V
FACTl :M.V:,:AREA:
$ENDIF
$END

* N IS AN INTEGER CONSTANT AND
* LOC IS THE DATA MEMORY ADDRESS
* WHERE NI IS TO BE STORED.

* 01= 1! = 1

* N >= 2 SO, STORE N AT LOC,
* DECREMENT N, AND DO THE
* FACTORIAL OF N-1.

* MULTIPLY PRESENT FACTORIAL
* BY PRESENT POSITION.

* SAVE RESULT.
* DECREMENT POSITION.
* RECURSIVE CALL.

8.11 Macro Error Messages

Table 8-5 lists and defines the macro error messages, and gives correction informa­
tion.

Table 8-5. Macro Error Messages

MESSAGE DESCRIPTION

MACRO LINE TOO LONG In a macro definition, macro directive lines may be only 58 characters long.
Model statements, when fully expanded, may be only 60 characters long.

LONG MACRO VARIABLE QUALIFIER Macro variable qualifiers may be only one or two characters long.

TOO MANY MACRO VARIABLES The total number of macro parameter variables and labels in a single macro
definition may not exceed 128.

INVALID MACRO QUALIFIER The only valid macro qualifiers are: S. V, L, A. SS, SV, SL, and SA.

VARIABLE ALREADY DEFINED A macro variable cannot be redefined within a macro.

IF LEVEL EXCEEDED The maximum nesting level of $IF directives is 44.

MACRO ASSEMBLER PROGRAM ERROR The macro assembler has detected an internal error. These can be caused
by incorrect syntax.

8-20

9. Link Editor

The Link Editor combines separately generated object modules with associated
procedures and overlays to form a single, linked, relocatable object module that can
be installed and executed on various computer systems. The object code is generated
by an assembler supplied with the TMS320C25 software development system. The
link editor is currently available for the VAX (VMS) and Tl/IBM PC (MS/PC-DOS)
operating systems.

This section describes the Link Editor, its files and control commands, and gives
examples of various linking procedures. Included in this section are the following
major topics:

• Description (Section 9.1 on 9-2)

• Program definition (Section 9.2 on 9-2)
Phase and task

• Link Editor Files (Section 9.3 on 9-2)
Link control file
Object modules
Libraries
Linked output file
Listing file

• Linker Commands (Section 9.4 on 9-5)
Entering a command
Command set summary {listed according to function)
Individual command descriptions {alphabetized)

• Linking Examples (Section 9.5 on 9-36)
Simple link
RAM/ROM partitioning
Partial link
Library creation

• Link Editor Error Messages (Section 9.6 on 9-49)

9-1

Link Editor

9.1 Description

The Link Editor provides symbol resolution for external references and definitions
created by the REF and DEF assembler directives (see Section 6). Without this
function, all modules would have to be compiled or assembled at once, and modules
written in different languages could not be mixed.

The Link Editor builds a list of symbols from the REF tags in the object modules that
are included in the linking process. The Link Editor then resolves references by
matching DEF tag symbols with the REF tags and inserting the correct values for
these symbols in the linked object code.

The Link Editor can position the three defined segments (program, data, and
common) to prescribed boundaries for eventual ROM/RAM partitioning. Program,
data and common segments are defined by the PSEG, DSEG, and CSEG assembler
directives, respectively. If these directives are not used, the entire object module is
tagged as a program segment.

When PSEG, DSEG, and CSEG tags are encountered in the included modules, the
Link Editor reorganizes segments from each module into three segments in the linked
output. The first segment contains the PSEGs of all included modules, the second
segment contains the DSEGs, and the third segment the CSEGs of all included
modules. The beginning location for each segment can be user-defined.

The Link Editor also allows overlays and procedure/task segmentation. However, if
the system being used loads only one module at a time, procedure/task segmentation
and overlays cannot be used because they produce multiple output modules.

9.2 Program Definition

To use the Link Editor, each program must be defined as a phase or a task. Below
are the definitions of each.

Phase The smallest functional unit that can be loaded as a logical entity during
execution in an overlay structure.

Each phase is identified by a name and a level number. The root phase
is at level 0 and is that portion of the program that must remain memory
resident. Other phases (level 1 and above) that do not have to be
simultaneously memory-resident can overlay each other.

Task A complete program containing both variable data and executable code
or the variable data portion of a program (for procedure/task segmen­
tation).

9.3 Link Editor Files

9-2

Executing the Link Editor utility begins by accessing the Linker and then responding
to prompts for the link control file, linked output file, and listing file. The Link Editor
utility uses the following five files in the linking process:

• Link control file
• Object modules
• Libraries
• Linked output file
• Listing file.

Link Editor

Each file is given a pathname so that when that pathname is entered, the Link Editor
can search for that file. The pathnames for the link control file, object modules,
declared libraries, the linked output file, and the listing file are in the listing file. An
example of pathname structure (default value) for the link control file is given for the
two operating systems currently available for the TMS320C25 Link Editor.

Pathname

[PROJECT.MACK] SEGMENT.CON
A:PARTIAL.CTL

System

VAX (VMS)
Tl/IBM PC (MS/PC-DOS)

Each of the link editor files is described in the succeeding subsections.

9.3.1 Link Control File

The link control file is an input file that controls the operation of the Link Editor.
This file contains a set of link control commands called a control stream which
defines the modules to be linked and how they are to be linked. The Link Editor links
the object modules in the order specified by the linke.r commands. See Table 9-2
for a summary of all the linker commands.

The link control file must be created ahead of time. Entering a pathname instructs the
editor to look for a file containing the necessary control commands.

9.3.2 Object Modules

Object modules are the input programs that are to be linked together. They are
contained in files and must consist of either ASCII or compressed 990-tagged object
code. The ASCII 990-tagged object code is the type of code generated by the
assembler supplied with the TMS320C25 Software Development System. The object
code consists of ASCII tags followed by data fields (see Section 7.9 for a description
of object code format).

As the Link Editor finishes writing out an object module, it names the module and
gives the number of object records it contains. When the link terminates normally,
the last line written reads '* * * LINKING COMPLETED' . The date and time at the
end of the link are printed on the last line. The date and time captured at the
beginning of the link are printed at the top of every page and on the last card of every
module in the linked object.

Object modules can be explicitly user-defined with the INCLUDE command in the
control file, or automatically included by the Link Editor as a result of a search for
unresolved references.

9-3

Link Editor

9.3.3 Libraries

Libraries are directories or files containing collections of object modules. An object
library may be either random or sequential. A random library is a directory of object
modules in separate files, whereas a sequential library is a file containing one or more
object modules concatenated together. See Section 8.5.4 for examples of library
creation.

Libraries are used to automatically resolve the REF and DEF tag symbols between
object modules specified in INCLUDE commands.

Two types of symbol resolution are implemented:

• Automatic symbol resolution by default (the AUTO command) when the END
command is detected in the control file unless the NOAUTO command has been
used.

• Symbol resolution at a user-defined point in the linking process when a
SEARCH or FIND command is used. The SEARCH command is used with
random libraries and the FIND command with sequential libraries.

Libraries defined by the LIBRARY command are searched in the same order they are
defined. Any additional unresolved references created by modules to satisfy refer­
ences are also resolved automatically. Automatic symbol resolution still occurs at
the end of the linking process for any remaining unresolved references unless a
NOAUTO command is in the control file.

9.3.4 Linked Output File

The linked output file is an SO-character output file containing the 990-tagged object
format load module in the "LINKED OUTPUT" file. This load module appears in
ASCII or compressed format, depending on the use of the FORMAT command in the
object link control file. The response to the linked output file name specifies the
destination of the load module.

9.3.6 Listing File

9-4

The listing file consists of a listing that includes the control stream ,and a link map
that lists the modules with their origins and lengths. The link map consists of the
following four sections:

1) Individual constituent object modules
2) Common segments
3) Symbols (external)
4) Unresolved references (identified even if the NO MAP option has been selected).

The response to the listing file access name specifies the destination of the listing
generated during the link edit. The pathnames for the control file, the listing file, the
linked object file, and declared libraries are in the listing file. Messages are listed for
detected errors in the listing file.

The Link Editor creates two temporary files on the work file disk. Therefore, sufficient
space for two disk or diskette files must be available.

Link Editor

9.4 Linker Commands

Link control commands define the modules to be linked and how they are linked.
This section gives some rules for entering a command in the link control file.

A command set summary of all the linker commands, arranged according to function,
is provided for easy reference. Each command in the summary table is next described
individually. Linker syntax and example(s) are also given for each command. The
commands are listed in alphabetical order.

9.4.1 Entering a Command

When entering a command in the control file, these rules should be followed:

• Either the entire command or only the first four characters may be specified.
• At least one space must separate the command from its parameters.
• Comments may be entered either on a separate line or following the command

parameters.
• All comments must be preceded by a semicolon (;).
• The command must be contained within the first 72 characters of the line.

9.4.2 Linker Command Set

Table 9-1 lists the symbols used in the syntax definitions of the linker commands.

Table 9-1. Linker Syntax Symbols

SYMBOL MEANING
< > User-defined parameters.
[] Optional parameters. They may be omitted.
{ } Alternative parameters, one of which must be entered.
... The preceding parameter may be repeated .
() Indicates •contents of".

<acnm> An access name for a file or library must be entered for
the parameter.

<base> The starting location of a segment, expressed as either
a decimal or hexadecimal number up to five digits in
length.

<level> The level of a phase.
<name> The name of a specified area. Consists of one to eight

alphanumeric characters, the first of which must be
alphabetic.

(<name>) The name of a member in a library.
<value> The number of lines, between 16 and 60, to be printed

on a page. Replaces the default value of 60.
> Represents hexadecimal, as does also a leading zero.

Words shown in capital letters and special characters
not listed here must be entered as shown.

The link command set summary of Table 9-2 is arranged according to function and
alphabetized within each functional grouping. Of the four groups, the first group
consists of basic commands that are required to perform basic Link Editor functions.
The second group consists of ROM/RAM partitioning commands. The third group
includes those miscellaneous commands that perform auxiliary link editor functions,
such as specifying default conditions and procedure/task segmentation. The fourth
group consists of the partial link commands.

9-5

Link Editor

Table 9-2. Linker Command Set Summary

BASIC COMMANDS
Command Function

END Indicates the end of the control stream. This is a required command.
FIND Specifies a search of only sequential libraries for unresolved references at this point

in the control stream.
FORMAT Defines the format of the linked output module as ASCII or COMPRESSED code.

The default is ASCII object code.
INCLUDE Defines one or more modules to be included in the linking process. At least one

INCLUDE command is required in each control stream.
LIBRARY Defines a random library directory.
PHASE Defines the level and name of a phase in a program. Either the PHASE or the TASK

command must appear in each control stream. Multiple phases are allowed when
overlays are used.

SEARCH Specifies a search of defined random libraries for unresolved references at this point
in the control stream.

TASK Defines a phase to be installed and executed as a task or standalone program. A
name is assigned the task.

ROM/RAM PARTITIONING COMMANDS
Command Function

ALLOCATE Controls the relative positioning of the program, data, and common segments
(PSEG, DSEG, and CSEG assembler directives, respectively).

COMMON Specifies the starting location of the common segment in the linked output.
DATA Specifies the starting location of the data segment in the linked output.
PROGRAM Specifies the starting location of the program segment in the linked output.

AUXILIARY FUNCTION COMMANDS
Command Function

ADJUST Aligns a phase or a module within a phase on a specified boundary.
AUTO Specifies automatic symbol resolution at the end of the control stream (default

condition).
DUMMY Suppresses generation of the linked output file. Usefu I for error identification or

when only a listing file is required.
ENTRY Specifies a symbol for an entry tag to be produced.
NOAUTO Inhibits automatic symbol resolution, allowing the user to explicitly control library

searching for unresolved references.
NO MAP Suppresses the output of the link map listing by omitting the module, common, and

symbol maps from the listing.
NO PAGE Inhibits page ejects between the link maps of each phase.
NOSY MT Omits symbol tables from included modules in the linked output file (default

condition).
PAGE Causes page ejects between link maps for each phase (default condition).
PROCEDURE Defines a phase of the link edit structure which can be installed as a procedure.

Used for procedure/task segmentation only. An alternate version of this command
can be used to support levels 1 and 2.

REPLACE Replaces one external symbol name for another in the next object file read in.
SYMT Includes symbol tables in linked output files.

PARTIAL LINK COMMANDS
Command Function

ALLGLOBAL Declares all external definitions in included modules as global symbols for subse-
quent relinking (default condition).

GLOBAL Identifies the symbols defined in included modules to be processed as global
symbols for subsequent relinking.

NOTGLOBAL Declares either specified externally defined symbols or all externally defined symbols
in included modules as local symbols.

PARTIAL Performs a partial link and outputs either ASCII or compressed object code. The
output of a partial link must be linked again without the PARTIAL command before
the program can be loaded and executed.

9-6

Link Editor

9.4.3 Individual Command Descriptions

Each command in the linker command set summary is described in the following
pages. Information, such as linker syntax, a description, and example(s), is given for
each command. The commands are listed in alphabetical order.

9-7

ADJU

Syntax

Description

9-8

Specify Alignment of Phase Command ADJU

ADJUST [<n>]

where <n> = a decimal number less than 16 specifying a power-of­
two bytes. A value greater than 15 causes an error.
When the parameter is omitted dr equal to zero, align­
ment is on the next word boundary.

The ADJUST command specifies the alignment of a phase or of a module within
a phase on a specified boundary.

When the ADJUST command appears immediately before a PHASE command,
the next phase and all subsequent phases of the same level and with the same
parent node are aligned on the specified boundary, relative to the beginning of
the program.

If the ADJUST command follows a PHASE command but precedes all INCLUDE
commands in the phase, the effect is the same as above. When the ADJUST
command follows a PHASE command but precedes an INCLUDE command, the
next module in that phase is aligned on the specified boundary, relative to the
beginning of the phase.

ALLG

Syntax

Description

Declare Global Symbols Command ALLG

ALLGLOBAL

The ALLGLOBAL (partial linking) command declares all external definitions in
included modules as global symbols. ALLGLOBAL is a default condition.

Global symbols are externally defined in the linked output module and therefore
may be re-linked in a subsequent linking process.

9-9

ALLO

Syntax

Description

9-10

Allocate Relative Positioning of Segments Command ALLO

ALLOCATE

The ALLOCATE command controls the relative positioning of program, data, and
common segments (PSEG, DSEG, and CSEG directives, respectively). ALLO­
CATE has no parameters.

ALLOCATE directs the Link Editor to reserve space for all outstanding data and
common segments as if no more object modules were to be included in the link.
The primary purpose of the ALLOCATE command is to aid the user in sharing
non-reentrant procedures between different tasks.

The ALLOCATE command only works if all read/write data is contained in data
segments (DSEGs) or common segments (CSEGs).

AUTO

Syntax

Description

Automatic Symbol Resolution Command AUTO

AUTO

The AUTO command specifies automatic symbol resolution using defined libraries
at the end of the linking process. The AUTO command has no parameters and
is optional. It is the default condition.

9-11

COMM

Syntax

Description

Example 1

Example 2

Example 3

Example 4

9-12

Set Starting Location Counter for CSEG Command COMM

COMMON {<base>[,<name>] [,<name>] ... }

where <base> =

<name>=

the starting location of the common segment. It can
be expressed as either a decimal or hexadecimal number
up to five digits in length.

the name of the common segment. Any unnamed
common segment begins after the last data area
encountered. The commons are allocated in the order
in which the definitions appear in the object module.

The COMMON command defines the starting address for the specified common
segment (CSEG). Commons that are loaded at the specified address must be
specifically identified within this command. The COMMON command is only valid
when used with the PROGRAM command and is ignored if used alone.

More than one COMMON command may be used, and a continuation can be
performed by repeating the command using a previously named common instead
of a starting address. The COMMON command cannot be used in partial links.

COMMON 01000,COMA Begin common COMA at location
>1000.

COMM >1000,COMA Results are the same as the
preceding example.

COMMON COMA,COMB Begin common COMB immediately
following COMA.

COMM 4096,COMA,COMB Results are the same as the
two preceding examples.

DATA

Syntax

Description

Example 1

Example 2

Set Starting Location Counter for DSEG Command DATA

DATA <base>

where <base> = the starting location of the data segment. It can be
expressed as either a decimal or hexadecimal number
up to five digits in length.

The DATA command defines the absolute starting address for tile data segment
(DSEG) in the linked output. The DATA command is only valid when used with
the PROGRAM command and is ignored if used alone.

The DATA command may appear more than once in the control stream, but the
first DATA command must appear before the first INCLUDE command. If the
DATA command is omitted, the starting location for each data area defaults to the
end of the corresponding program area.

The DATA command cannot be used in partial links.

DATA 01000 Begin data segment at location >1000.

DATA 4096 Same as the preceding example.

9-13

DUMM

Syntax

Description

9-14

Suppress Generation of.Linked.,0.utput File Command DUMM

DUMMY

The DUMMY command supresses generation of the linked output file. This
command is useful for error identification or when only a listing file is needed.
DUMMY has no para.meters.

END

Syntax

Description

Specify End of Control Stream Command END

END

The END command specifies the end of the control stream. The command is
required in every control stream.

9-15

ENTR

Syntax

Description

9-16

Specify a Symbol for an Entry Tag Command ENTR

ENTRY <symbol>

The ENTRY command specifies a symbol for the entry point in order to produce
an entry tag. This overrides all entry tags received in input object modules.

FIND

Syntax

Description

Example

Search Sequential Libraries
for Unresolved References Command FIND

FIND <acnm>[,<acnm>][,<acnm>] ...

where <acnm> = the access name of the sequential library that is to be
searched for unresolved re~erences.

The FIND command specifies a search of sequential libraries for members
representing unresolved references. Only one pass is made through a library in
response to a single FIND command. The search occurs at the point in the linking
process where the FIND command occurs.

The FIND command functions as a SEARCH command but applies to sequential
libraries only. The FIND command is listed as a SEARCH command in the link
map.

FIND A:*.EXT For PC/MS-DOS system.

9-17

FORM

Syntax

Description

9-18

Define Format of Linked Output Module Command FORM

FORMAT {ASCII.COMPRESSED}

The FORMAT command defines the format of the linked output module.

The format specified may be either ASCII or COMPRESSED object code. In ASCII
format, .each integer value in the object is represented as a four-byte character
string. ASCII format is also called 990-tagged object format and is the default
condition. Compressed format is more efficient to use since each integer value
is represented as a two-byte word.

GLOB

Syntax

Description

Identify Global Symbols Command GLOB

GLOBAL [symbolname] [,symbolname] ...

where symbolname = a symbol that is to be processed as a global symbol. It
is defined at assembly time and consists of six charac­
ters or less, the first of which must be alphabetic.

The GLOBAL command is a partial linking command, identifying the symbols
defined in included modules to be processed as global symbols. Global symbols
are externally defined in the output module that may be relinked.

Each parameter specifies a symbol that is to be processed as a global symbol.
The command may include several parameters and may appear more than once
in the command stream. If no parameters are specified, the command functions
as an ALLGLOBAL command.

Symbols defined by the GLOBAL command are not affected by the NOTGLOBAL
command (no parameters) that declares all symbols to be local.

9-19

INCL

Syntax

Description

Example 1

Example 2

Example 3

Specify Modules To Be Included in Link Command INCL

INCLUDE { <acnm>[, <acnm>] ... ,(<name>)[,(<name>)] ... }

where <acnm> =

{<name>) =

the access name of a file containing the object
module(s) to be included in the linking process.

a member in a library.

The INCLUDE command specifies modules to be included in the linking process.
This command is required in the control stream. More than one INCLUDE
command may be used as needed.

A PROCEDURE, TASK, or PHASE command must precede the first INCLUDE
command.

If the <name> parameter is used, enclose only the file name or module name of
the object modules (rather than the entire access name) in parentheses. The
specified <name> must be of a file contained in a defined random library. The
Link Editor searches the defined libraries for the specified module.

If no parameters are given, in-line text format (not compressed) object code is
assumed. The in-line object (see Example 3) is delimited by either end-of-file
or by a record with '/*' in columns one and two. This method is suitable, for
example, when the control file is read in from a card reader (in which case,
end-of-file is denoted by a '/*' card).

INCLUDE (X)

INCLUDE TEST.MPO

Search defined random libraries for
a file named X and include the
module(s) in that file.

Include the module TEST.MPO from the
default directory on a PC/MS-DOS
system.

INCLUDE
K006CCARTMOND50020LBL2Bl50021LBL2B240000LBL2C240000LBL2D2A00207FlE7F
BCE26BCE26BFE80EOOOOOOOOBFE80E00010000BCElBB0201B0388B4802B48A97FlElF
BFFEEBCE27BCE50BCE04BCE05BCE01B567BB568CBCEOOBCEOFBCE1FB807AB81A87F048F

CARTMOND 4/10/85 10:53:14 ASM32020 PC 1.0 85.092
/*

9-20

LIBR

Syntax

Description

Example

Define Random Library Directories Command LIBR

LIBRARY <acnm>[,<acnm>] ...

where <acnm> = the access name of the directory that is to be defined
as a library.

The LIBRARY command defines random library directories. Random libraries
must consist of a directory, and the files in the directory must contain 990-tagged
object modules. Sequential libraries, consisting of a sequential file of object
modules, are indicated using the FIND command.

LIER A:*.EXT Define drive A: as a random
library of files with extension
.EXT on a PC/MS-DOS system.

9-21

NOAU

Syntax

Description

9-22

Inhibit Automatic Symbol Resolution Command NOAU

NOAUTO

The NOAUTO command inhibits automatic symbol resolution at the end of the
linking process. This command allows the user to explicitly control library
searching for unresolved references through use of the SEARCH and FIND
commands. NOAUTO has no parameters.

NOMA

Syntax

Description

Omit Module, Common, and Symbol Maps
from Listing Command

NO MAP

NOMA

The NOMAP command specifies that the module, common, and symbol maps
are to be omitted from the listing. This gives some improvement in terms of speed
and number of symbols that can be processed. The following information is still
printed on the listing file:

• Length of task and procedure{s)
• Unresolved references
• Release number of the Link Editor.

NOMAP must appear before any PHASE or TASK commands are used.

9-23

NOPA

Syntax

Description

9-24

Set No Page Ejects Between Link Maps Command NOPA

NO PAGE

The NO PAGE command sets no page ejects between the link maps for each phase.
New pages are started for the listing of the first phase and when the number of
lines per page has been exceeded.

NOSY

Syntax

Description

Omit Symbol Table from Modules Command NOSY

NOSY MT

The NOSYMT command omits symbol tables from included modules in the linked
output file. This provides for more compact object code but does not allow
symbolic debugging.

The NOSYMT command may appear anywhere in the control file. However, if
an overlay structure is used, the NOSYMT command must appear in the root phase
(phase 0).

NOSYMT is the default option and is the inverse of SYMT.

9-25

NOTG

Syntax

Description

9-26

Define Local Symbols Command NOTG

NOTGLOBAL [symbolname] [,symbolname] ...

where symbolname = a symbol which is to be processed as a local symbol.
It is defined at assembly time and consists of six char­
acters or less, the first of which must be alphabetic.

The NOTGLOBAL command is a partial linking command, declaring that either
specified externally defined symbols or all externally defined symbols in the
included modules are to be processed as local (not global) symbols.

Local symbols are not externally defined in the partially linked output module and
thus can only be referenced by modules included in the current partial link.

The command may include several parameters and may appear more than once
in the command stream. If no parameters are specified, all symbols are processed
as local, except those specified in the GLOBAL command.

PAGE

Syntax

Description

Set Page Eject to Separate Link Maps Command PAGE

PAGE [value]

where value = the number of lines to be printed on a page, replacing
the default value of 60. The value parameter is optional,
but when present, the value must be between 16 and
60.

The PAGE command causes page ejects to separate the beginning of each link
map for each phase. This is the default condition.

9-27

PART

Syntax

Description

9-28

Perform Partial Link Command PART

PARTIAL

The PARTIAL command performs a partial link and outputs either ASCII or
compressed object code. The output of a partial link is not executable and must
be linked again without the PARTIAL directive before the program can be loaded
and executed.

The PARTIAL command causes the Link Editor to do the following:

1) Resolve all external references defined by any module included in the partial
link.

2) Retain all entry points in the partial link as an entry in the output (subject
to GLOBAL, NOTGLOBAL, ALLGLOBAL commands).

3) Retain the common tags and update common numbers.

4) Output one data section that is the total of all input data sections.

Partial linking is allowed for single phases only, and the control stream must
contain either a TASK or PHASE 0 command. If partial linking of overlays is
required, each phase must be partially linked separately as a phase 0. The phase
level and name may be redefined in subsequent links. The following commands
are invalid with partial links: ALLOCATE, PROGRAM, DATA, COMMON, and
DUMMY.

PHAS

Syntax

Description

Example 1

Example 2

Define Phase Level and Name Command PHAS

PHASE <level>,<name>

where <level> =

<name> =

the level of the phase. Levels specified greater than zero
can be used for overlay structures only. Level 0 defines
the root (memory-resident) phase. Each subsequent
PHASE command defines the level and name of an
overlay.

the name of the phase. It consists of one to eight
alphanumeric characters, the first of which must be
alphabetic. The name supplied becomes the IDT name,
placed on the last card of the object module produced
and on the identification fields of ASCII-formatted
object records.

The PHASE command defines the level and name of a phase in a program.

PHASE 0 and TASK commands are logically identical; one and only one of these
two commands must appear in each control stream.

The Link Editor produces an output module for each phase of the program. PHASE
commands are followed by INCLUDE commands that define the modules included
in the phase. Multiple phases are allowed when overlays are used.

PHASE O,MAIN Define phase MAIN at level 0.

PHAS 2,DISK Define phase DISK at level 2.

9-29

PROC

Syntax

Description

Example 1

Example 2

Example 3

9-30

Define Phase as Procedure Command PROC

PROCEDURE {<name>,< level,name>}

where <name> = the identifier of the procedure to be used. The parameter
consists of one to eight alphanumeric characters, the
first of which must be alphabetic.

<level> = the level of the phase.

The PROCEDURE command provides procedure/task segmentation by defining
a phase of the link edit structure, which can be installed as a procedure (a
re-entrant procedure may be shared among several tasks). The name supplied
becomes the IDT name, placed on the last record of the object module produced
and on the identification field of ASCII-formatted object records. This command
is 4seful in ROM/RAM partitioning for generating load modules with a level of
root phase 0.

When used, the PROCEDURE command must precede the TASK command, all
PHASE commands, and the INCLUDE command that defines the procedure
module.

The PROCEDURE command is used with the INCLUDE commmand to define the
procedure. The PROCEDURE command defines the name of the procedure, and
the INCLUDE command defines the modules that are to be in that procedure.
Procedures contain the program segment (PSEG), which may be the entire
program but is usually only the executable code and read-only data.

A generalization of the standard PROCEDURE command is supported for levels
1 and 2. In place of a single first procedure, any number of other level-one
procedures can be defined, any of which can be resident in memory at a given
time under the user's control. The length of the first procedure area is the maxi­
mum of the lengths of the individual level-one modules. Analogous properties
apply to second-level PROCEDURES. Modules brought in by automatic call to
satisfy references in any procedure module are placed in the root.

PROCEDURE FORLIB Define procedure FORLIB.

PROC RUNLIB Define procedure RUNLIB.

PROCEDURE 2,FILEMG Define a procedure FILMG at level 2.

PROG

Syntax

Description

Example 1

Example 2

Example 3

Define Absolute Starting Counter for PSEG Command PROG

PROGRAM <base>

where <base> = the starting location of the program segment. It can
be expressed as a decimal or hexadecimal number up
to five digits in length.

The PROGRAM command defines the absolute starting address for the program
segment (PSEG) in the linked output.

The PROGRAM command may be used more than once. The first PROGRAM
command must appear before the first INCLUDE command. Use of the PROGRAM
command by itself or with the DATA and COMMON commands causes the linked
output to be loaded at the specified address (base).

PROGRAM OlFOO Begin program segment at location
>lFOO.

PROG >lFOO Same as the preceding example.

PROG 7936 Begin program segment at location
7936 (>lFOO).

9-31

REPL

Syntax

Description

9-32

Replace Oldsym with Newsym Command REPL

REPLACE <oldsym(newsym)> [,<oldsym(newsym) >] ...

where oldsym =

(newsym) =

the currently existing external symbol representing a
reference, definition, or common name.

the new external symbol to replace the oldsym.

The REPLACE command specifies that in the next file read in, each occurrence
of 'oldsym' as an external symbol is replaced by 'newsym'. The command applies
to every module in a file containing multiple modules. It applies only to the first
file in an INCLUDE command list. If the command immediately precedes a FIND,
SEARCH, or END command, it still applies to the next single file read in.

If 'oldsym' is $DATA and an affected module contains a DSEG, the link editor
converts the DSEG to a common with the name 'newsym'. This means that no
data segment is identified in the listing, and if other instances of the common name
occur, the common may be extended in length or promoted (moved up to a
lower-numbered phase).

Note that data segments can be shared by using the REPLACE command to
convert them to a common. Appropriately used, this permits a module to share a
data segment in an ancestor phase and places no restrictions on the order of
definition of segments with different lengths.

SEAR

Syntax

Description

Example 1

Example 2

Search for Unresolved References Command SEAR

SEARCH [<acnm>][,<acnm>] ...

where <acnm> = the access name of random libraries to be searched.
The order of these access names determines the order
of the search. If no <acnm>s are specified, the libraries
defined by the LIBRARY commands define the search
ordering.

The SEARCH command directs the Link Editor to search for unresolved references
at any point in the control stream.

If a SEARCH command is given in a phase other than the TASK or PHASE 0 phase,
searching is performed only for symbols that are unresolved in that phase. Unre­
solved references that were established in or promoted to other phases are ignored.

A SEARCH command in a TASK phase causes searching to be done for every
phase (for the given phase and all its descendant and previous phases). The only
way the SEARCH command can be applied to more than one phase is by re-en­
tering a phase defined earlier. This is permitted only for the task phase and for the
purpose of doing SEARCHes and FINDs.

SEARCH

SEARCH A:*.EXE

Search defined libraries for
unresolved references.

Search drive A: as a library of
files with extension .EXE on a
PC/MS-DOS system.

9-33

SYMT

Syntax

Description

9-34

Include Symbol Tables in Linked Output File Command SYMT

SYMT

The SYMT command causes the Link Editor to include symbol tables in the linked
output file when the linker input files contain such symbols. These symbols were
provided in the assembler as a result of selecting the SYMLST option (see the
OPTION directive in Section 7.7). Although symbol tables make the linked
module larger, they are useful for symbolic debugging.

SYMT is the inverse of the NOSYMT option.

TASK

Syntax

Description

Example 1

Example 2

Define Phase as Task Command TASK

TASK [<name>]

where <name> = the identifier of the task module. The <name> can have
up to eight characters. The name supplied becomes the
IDT name, placed on the last record of the object
module produced and on the ID fields of ASCII-for­
matted records. If the parameter is omitted, the IDT
name of the first included module is used as the task
name.

The TASK command defines a phase that can be installed and executed as a task
or standalone program, and assigns a name to the task.

A task is either a complete program, containing both variable data and executable
code, or it is the variable data portion of a program (procedure/task segmenta­
tion). The TASK and PHASE 0 commands are logically identical; one and only
one of these two commands must appear in each control stream.

When task/procedure segmentation is used, the TASK command must follow all
PROCEDURE commands and precede all PHASE and INCLUDE commands that
define the task module. The TASK command can be given after overlays have been
defined (to re-enter the root phase).

TASK FORPRG

TASK

Define task named FORPRG.

Define task and assign it the IDT name
of the first included module.

9-35

Link Editor

9.5 Linking Examples

9-36

Examples showing how and when to use the link control commands are provided
in this section. Among the examples are a simple link (Section 8.5,1), ROM/RAM
partitioning (Section 8.5.2), and a partial link (Section 8.5.3). In addition, examples
are given for creating random and sequentiallibraries (Section 8.5.4).

Three separately assembled modules, MAIN, RESET, and INTRPT, are to be linked
together. Figure 9-1, Figure 9-2, and Figure 9-3 contain the assembly language
source for each module. The TMS320C25 Assembler produces 990-tagged object
code that the Link Editor requires as input.

The first and third linking examples assume that each module is contained in a
separate file named MAIN.MPO, RESET.MPO, and INTRPT.MPO, respectively, and
that the three files are listed on a diskette in a Tl/IBM PC (MS/PC-DOS) operating
system. The second example is similar, but bases its file access on the VAX/VMS
operating system.

IDT 'MAIN'
*

DEF MAIN
REF RESET,INTRPT

* DATA PAGE 6 RAM DEFINITION
NE XTO EQU 0
SAMPLE EQU 32
*

PSEG
BEGIN B RESET
INTO B INTRPT
*

BSS 28
MAIN LARP ARl

LDPK 6
LOOP !DLF

LALK INPUT
TBLR SAMPLE
LRLK AR1,>0300+SAMPLE
CNFP
MPYK 0
ZAC
RPTK 31
MACO >FFOO,*-
APAC
SACL *
CNFD
LALK OUTPUT
TBLW NE XTO
B LOOP
PEND

*
CSEG 'IO'

INPUT BSS 1
OUTPUT BSS 1

CEND
*

END

Figure 9-1. Source for Module MAIN

Link Editor

IDT 'RESET'
*

DEF RESET
REF MAIN
PSEG

RESET LARP ARl
LRLK ARl,>0300
ZAC
RPTK 35
SACL *+
LRLK ARl,>0200
RPTK 31
BLKP CFIR, *+
B MAIN

*
CFIR DATA 176,-203,297,-398,493,-566,598,-567

DATA 448,-212,-176,772,-1684,3193,8,7
DATA 6,5,3193,-1684,772,-176,-212,448
DATA -567,598,-566,493,-398,297,-203,l76
PEND

*
END

Figure 9-2. Source for Module RESET

9-37

link Editor

IDT 'INTRPT'
*

DEF INTRPT
* DATA PAGE 0 RAM DEFINITION
STATUS EQU 96
TEMPl EQU 97
TEMP2 EQU 98

PSEG
*
INTRPT SST STATUS

LDPK 0
IN TEMPl,PAO
LALK LAST IN
TBLR TEMP2
TBLW TEMPl
LAC TEMP2
SUB TEMPl
SACL TEMPl
LALK INPUT
TBLW TEMPl
LALK OUTPUT
TBLR TEMPl
LALK LAS TO
TBLR TEMP2
LAC TEMP2
ADD TEMPl
SACL TEMPl
OUT TEMPl ,PAl
LALK LAS TO
TBLW TEMPl
LST STATUS
RET
PEND

*
CSEG 'IO'

INPUT BSS 1
OUTPUT BSS 1

CEND
*

DSEG
LAST IN BSS 1
LAS TO BSS 1

DEND
*

END

Figure 9-3. Source for Module INTRPT

9-38

Link Editor

9.5.1 Simple Linking

Every control stream must contain either a TASK or PHASE 0 command to define the
name of the program being linked. In addition, the control stream must contain one
or more INCLUDE commands to define modules that are being linked. The control
stream is terminated with an END command. The following is an example control
stream on the Tl/IBM PC MS/PC-DOS operating system for linking the three
example object modules generated for MAIN, RESET, and INTRPT.

PHASE
INCLUDE
INCLUDE
INCLUDE
END

O,SIMPLE
MAIN.MPO
RESET.MPO
INTRPT.MPO

The three modules may be specified in one INCLUDE command rather than with three
separate commands. The diskette containing the modules (A:) may also be defined
as a library. When this is done, only the file name (enclosed in parentheses) need
be specified. The Link Editor searches the defined library for the required files. An
example of a control stream using the INCLUDE command is as follows:

PHASE
LIBRARY
INCLUDE
END

O,SIMPLE
A:* .MPO
(MAIN),(RESET),(INTRPT)

Since MAIN references RESET and INTRPT, and the directory containing these
modules has been defined as a library, MAIN is the only module that must be spec­
ified in the INCLUDE command, as shown in the following example:

PHASE
LIBR
INCL
END

O,SIMPLE
A:*.MPO
(MAIN)

At the end of the control stream, the Link Editor automatically searches the defined
library for unresolved references and includes the modules that satisfy the references
in the linking process.

The Link Editor produces a listing of the linking process and writes it to a specified
file. Figure 9-4 is an example of the listing file produced. The listing file for this
example consists of three pages. The first page contains a copy of the link control
stream. The second page lists the parameters used when the Link Editor was
initialized (access names of the control file, linked output file, and listing file) and
the format of the linked output. Since the FORMAT command was not included in
the control stream, the default, ASCII, is used.

The third page contains the link map, which is generated to facilitate debugging.
The link map lists the origins and lengths of the phase being linked, the modules
included in the link, and any common segments. The origins are relative to the
beginning of the phase. The order in which the included modules are linked is
indicated by. the number listed next to the module name. The link map also lists the
symbols defined in the included modules, indicating the module in which the symbol
is defined (number) and the resolved location of the symbol (value). An asterisk
(*) preceding the symbol name indicates that the symbol is not referenced in the
included modules. An asterisk to the right means the symbolic value is absolute.

9-39

Link Editor

9-40

PC/CrossWare Family Linker v.2.3 85.084 6/21/85 08:49:35 PAGE 1
COMMAND LIST

PHASE
INCLUDE
INCLUDE
INCLUDE
END

O,SIMPLE
A:MAIN.MPO
A:RESET.MPO
A:INTRPT.MPO

PC/CrossWare Family Linker v.2.3 85.084 6/21/85 08:49:35 PAGE 2
LINK MAP

CONTROL FILE = A:SIMPLE.CTL

LINKED OUTPUT FILE = A:SIMPLE.LOD

LIST FILE = A:SIMPLE.MAP

OUTPUT FORMAT = ASCII

PC/CrossWare Family Linker v.2.3 85.084 6/21/85 08:49:35 PAGE 3

PHASE 0 SIMPLE MODULE ORIGIN 0000 LENGTH = 0083

MODULE NO ·ORIGIN LENGTH TYPE DATE TIME CREATOR

MAIN 1 0000 0036 INCLUDE 06/21/85 08:48:34 ASM320
RESET 2 0036 002D INCLUDE 06/21/85 08:49:03 ASM320
INTRPT 3 0063 OOlC INCLUDE 06/21/85 08:49:18 ASM320
$DATA 3 007F 0002

COMMON NO ORIGIN LENGTH

IO 1 0081 0002

D E F I N I T I 0 N S

NAME VALUE NO NAME VALUE NO NAME VALUE NO

INTRPT 0063 3 MAIN 0020 1 RESET 0036 2

LENGTH OF REGION FOR TASK 0083

NUMBER OF RECORDS FOR MODULE SIMPLE 10

TOTAL RECORDS WRITTEN 10

**** LINKING COMPLETED 06/21/85 08:49:42

Figure 9-4. Listing File for a Simple Link

Link Editor

9.5.2 ROM/RAM Partitioning

Each example module has a program segment defined by the PSEG assembler
directive, a data segment defined by the DSEG directive, and a common defined by
the CSEG directive. Program segments generally contain instructions and nonvari­
able data (read only). Data segments generally contain variable data (read/write)
and are labeled by the Link Editor as $DATA. Common segments contain variable
data that may be shared by more than one module.

The Link Editor automatically reorganizes the output so that all the program segments
of the included modules are together, followed by the data segments and then the
common segments. The link control commands PROGRAM, DATA, and COMMON
can be used to specify the beginning location of each output segment. These
commands cannot be used with a PROCEDURE command or a PHASE command
with a level greater than zero.

The following is an example of the control stream for a VAX/VMS operating system,
which is used to partition the program and data segments into potential ROM and
RAM locations.

PHASE
PROGRAM
DATA
COMMON
INCLUDE
INCLUDE
INCLUDE
END

O,SEGMENT
>0000
>2000
>3000,IO
[PROJECT.MACK]MAIN.MPO
[PROJECT.MACK]RESET.MPO
[PROJECT.MACK]INTRPT.MPO

The example assumes that location >0000 is in ROM and locations >2000 and
>3000 are in RAM. This control stream causes the program segment of MAIN to
begin at location >0000, followed by the program segment of RESET, and then
INTRPT. The data segment begins at location >2000. The common segment that
is to be shared by the modules begins at location >3000. Note that if the common
segment is not specifically named in the COMMON command, the segment begins
immediately following the last data segment.

Figure 9-5 contains the listing produced by this link. Use of the PROGRAM, DATA,
and COMMON commands causes the phase length to be listed as zero and the origins
to be listed as absolute locations. An asterisk(*) preceding the symbol name indicates
that the symbol is not referenced in the included modules. An asterisk following the
value of a symbol name indicates an absolute location. Linking absolute code
generated by the assembler (AORG assembler directive) also causes the phase length
to be listed as zero and the origins to be absolute locations.

9-41

Link Editor

9-42

VAX/32020 LINKER VERSION v.2.3 85.084 6/21/85 08:49:53 PAGE 1
COMMAND LIST

PHASE
PROGRAM
DATA
COMMON
INCLUDE
INCLUDE
INCLUDE
END

O,SEGMENT
>0000
>2000
>3000
[PROJECT.MACK)MAIN.MPO
[PROJECT.MACK)RESET.MPO
[PROJECT.MACK)INTRPT.MPO

VAX/32020 LINKER VERSION v.2.3 85.084 6/21/85 08:49:53 PAGE 2
LINK MAP

CONTROL FILE = [PROJECT.MACK)SEGMENT.CTL

LINKED OUTPUT FILE = [PROJECT.MACK)SEGMENT.LOD

LIST FILE = [PROJECT.MACK]SEGMENT.MAP

OUTPUT FORMAT = ASCII

VAX/32020 LINKER VERSION v.2.3 85.084 6/21/85 08:49:53 PAGE 3

PHASE 0 SEGMENT MODULE ORIGIN 0000 LENGTH = 0000

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR

MAIN 1 0000 0036 INCLUDE 06/21/85 08:48:34 ASM320
RESET 2 0036 002D INCLUDE 06/21/85 08:49:03 ASM320
INTRPT 3 0063 OOlC INCLUDE 06/21/85 08:49:18 ASM320
$DATA 3 2000 0002

COMMON NO ORIGIN LENGTH

IO 1 3000* 0002

D E F I N I T I 0 N S

NAME VALUE NO NAME VALUE NO NAME VALUE NO

INTRPT 0063* 3 MAIN 0020* 1 RESET 0036* 2

LENGTH OF REGION FOR TASK 0000

NUMBER OF RECORDS FOR MODULE SEGMENT 10

TOTAL RECORDS WRITTEN 10

**** LINKING COMPLETED 06/21/85 08:50:05

Figure 9-5. Listing File for ROM/RAM Partitioning

Link Editor

9.5.3 Partial Linking

This section shows how to generate a partial link and then include the output of the
partial link in a subsequent link. Only ASCII object code can be used in partial linking
on the TMS320C25 device.

The PARTIAL command is used in the control stream to specify a partial link. In this
example, modules RESET and INTRPT are to be linked together in a partial link. The
output of the partial link is not executable and must be linked again without the
PARTIAL command so that the output of this partial link will then be linked with
module MAIN to produce an executable module. The following is the control stream
for the partial link, using the Tl/IBM PC (MS/PC-DOS) operating system:

PARTIAL
PHASE
INCLUDE
INCLUDE
END

0,PARTIAL
A:RESET.MPO
A: INTRPT. MPO

All commands pertaining to partial links must be issued before any INCLUDE,
SEARCH, and FIND commands. The PARTIAL command must be given before the
first INCLUDE command in the control stream. In a partial link, only one phase is
allowed and must be defined by the PHASE 0 or TASK command.

The ALLGLOBAL, GLOBAL, and NOTGLOBAL commands are used with the
PARTIAL command to define the scope of DEF tags in modules included in the partial
link. These symbols are specified as either global or local. All externally-defined
symbols are processed as global symbols. Global symbols are externally defined in
the partially linked output modules and may be referenced in a subsequent link. Local
symbols are not externally defined in the partially linked output module; therefore,
they may be referenced in the current partial link. Since none of these commands
are included in the control stream, the default, ALLGLOBAL, is used.

The output of the partial link can now be linked with module MAIN to produce an
executable module, using the following control stream:

PHASE
INCLUDE
INCLUDE
END

0,PROJ
B:MAIN.MPO
B:PARTIAL.MPO

The listing and object modules from a partial link using the PARTIAL command are
given in Figure 9-6.

The second part of the link, in which the output of the partial link is relinked without
using the PARTIAL command, is performed next. The listing and object files for
relinking the output of the partial link are shown in Figure 9-7.

9-43

Link Editor

9-44

pC/CrossWare Family Linker v.2.3 85.084 6/21/85 08:51:09 PAGE 1
COMMAND LIST

PARTIAL
PHASE
INCLUDE
INCLUDE
END

O,PARTIAL
A:RESET.MPO
A:INTRPT.MPO

PC/CrossWare Family Linker v.2.3 85.084 6/21/85 08:51:09 PAGE 2
LINK MAP

CONTROL FILE = A:PARTIAL.CTL

LINKED OUTPUT FILE = A:PARTIAL.MPO

LIST FILE = A:PARTIAL.MAP

OUTPUT FORMAT = ASCII

PC/CrossWare Family Linker v.2.3 85.084 6/21/85 08:51:09 PAGE 3

PHASE 0 PARTIAL MODULE ORIGIN = 0000 LENGTH = 004D

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR

RESET 1 0000 002D INCLUDE 06/21/85 08:49:03 ASM320
INTRPT 2 0020 OOlC INCLUDE 06/21/85 08:49:18 ASM320
$DATA 2 0000 0002

COMMON NO ORIGIN LENGTH

IO 2 0000 0002

D E F I N I T I 0 N S

NAME VALUE NO NAME VALUE NO

*INTRPT 002D 2 *RESET 0000 1

UNRESOLVED REFERENCES

MAIN 1

LENGTH OF REGION FOR TASK 004D

NUMBER OF UNRESOLVED REFERENCES 1

NUMBER OF RECORDS FOR MODULE PARTIAL 9

TOTAL RECORDS WRITTEN 9

**** LINKING COMPLETED 06/21/85 08:51:17

a. Listing File for a Partial Link

Figure 9-6. Listing and Object Files for a Partial Link

Link Editor

K0049PARTIAL M0002$DATA OOOOM0002IO 000250000RESET 5002DINTRPT7FOEAF
40000MAIN AOOOOB5589BD100B0300BCAOOBCB23B60AOBD100B0200BCB1FBFCA07F136F
COOODBFF80EOOOOOOOOBOOBOBFF35B0129BFE72B01EDBFDCAB0256BFDC9B01C07Fl40F
BFF2CBFF50B0304BF96CBOC79B0008B0007B0006B0005BOC79BF96CB0304BFF507F12EF
BFF2CB01COBFDC9B0256BFDCAB01EDBFE72B0129BFF35BOOBOA002DB7860BC8007FOC4F
B8061BD001TOOOOB5862B5961B2062B1061B6061BD001N00000002B5961BD0017F225F
N00010002B5861BD001T0001B5862B2062B0061B6061BE161BD001T0001B59617F219F
B5060BCE267FD8AF

PARTIAL 06/21/85 08:51:09 XLNKPC v2.3 85.084

b. Object File for a Partial Link

Figure 9-6. Listing and Object Files for a Partial Link (Concluded}

The second part of the link, in which the output of the partial link is relinked without
using the PARTIAL command, is performed next. The listing and object files for
relinking the output of the partial link are shown in Figure 9-7.

9-45

Link Editor

9-46

PC/CrdssWare Family Linker v .. 2. 3 85. 084 6/21/85 08: 51: 33 PAGE 1
COMMAND LIST

PHASE
INCLUDE
INCLUDE
END

O,PROJ
A:MAIN.MPO
A:PARTIAL.MPO

PC/CrossWare Family Linker v.2.3 85.084 6/21/85 08:51:33 PAGE 2
LINK MAP

CONTROL FILE = A:PROJ.CTL

LINKED OUTPUT FILE = A:PROJ.LOD

LIST FILE = A:PROJ.MAP

OUTPUT FORMAT = ASCII

PC/CrossWare Family Linker v.2.3 85.084 6/21/85 08:51:33 PAGE 3

PHASE 0 PROJ MODULE ·oRIGIN = 0000 LENGTH = 0083

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR

MAIN 1 0000 0036 INCLUDE 06/21/85 08:48:34 ASM320
PARTIAL 2 0036 0049 INCLUDE 06/21/85 08:51:09 XLNKPC
$DATA 2 007F 0002

COMMON NO ORIGIN LENGTH

IO 1 0081 0002

D E F I N I T I 0 N S

NAME VALUE NO NAME

MAIN

VALUE NO NAME

RESET

0083

10

10

08:51:40

VALUE NO

INTRPT 0063 2 0020

LENGTH OF REGION FOR TASK

NUMBER OF RECORDS FOR MODULE PROJ

TOTAL RECORDS WRITTEN

**** LINKING COMPLETED 06/21/85

1 0036

a. Listing File for Relinking the Partial Link Output

2

K0083PROJ AOOOOBFF80C0036BFF80C0063A0020B5589BC806BCE1FBD0017F1D8F
C0081B5820BD100B0320BCE05BA000BCAOOBCB1FB5C90BFFOOBCE15B6080BCE047F129F
BD001C0082B5900BFF80C0022A0036B5589BD100B0300BCAOOBCB23B60AOBD1007F193F
B0200BCB1FBFCAOC0043BFF80C0020BOOBOBFF35B0129BFE72B01EDBFDCAB02567FOEDF
BFDC9B01COBFF2CBFF50B0304BF96CBOC79BOOOBB0007B0006B0005BOC79BF96C7Fl0CF
B0304BFF50BFF2CB01COBFDC9B0256BFDCAB01EDBFE72B0129BFF35BOOBOA00637FOC9F
B7860BC800B8061BD001C007FB5862B5961B2062B1061B6061BD001C0081B59617F1COF
BD001C0082B5861BD001C0080B5862B2062B0061B6061BE161BD001C0080B59617F1DAF
B5060BCE267FD8AF

PROJ 06/21/85 08:51:33 XLNKPC v2.3 85.084

b. Object File for Relinking the Partial Link Output

Figure 9-7. Listing and Object Files for Relinking the Partial Link Output

Link Editor

9.5.4 Library Creation

The linker can accommodate two object library types: random and sequential.

A random library can be created almost automatically. Whenever one or more object
files are placed in the same directory or sub-directory, that directory becomes a
random library. Some examples of random libraries are as follows:

DUAO:[USER07.PROJ2710.PARTS]

A:*.MPO

(VAX), where the example indicates a directory containing
object file members named (e.g., PART1 .OBJ,
INITIAL.OBJ, CLEANUP.OBJ, etc.).

(MS-DOS), where the name indicates a drive and all files
with the extension .MPO (e.g., OUICK.MPO, BTREE.MPO,
SHELL.MPO, etc.).

The creation of sequential libraries is more involved. Since sequential libraries offer
no advantages over random libraries, their use is probably restricted to those users
of systems not supporting random libraries, i.e., not supporting multilevel directories
or "wild-card" file specifications.

A sequential library is a single file and consists of a "dictionary," followed by one
or more concatenated object modules. The user must order the elements in a
sequential library so that no object segment contains an external reference to a
preceding segment. The concatenated object files may be created by assembling a
source file created by concatenating the source files of several proposed members
of the sequential library. Such a source file may appear as shown in Figure 9-8.

*
QUICK

TRESRT

*

*

IDT 'TRESRT'
TITL 'THIS IS THE FIRST LIB MEMBER'
DEF TRESRT,QUICK

EQU $

EQU $

END

IDT 'ELEM'
TITL 'STILL IN SEQ LIB'
DEF ELEM

END

IDT 'LASTPROG'
TITL 'ET CETERA'

.
END

Figure 9-8. Source File for Sequential Library Creation

9-47

Link Editor

9-48

The assembler output contains all modules within the same file, yet distinct. The use
of a text editor allows the creation of such a file by appending .the object files. that
result from independent assembly of the proposed library members. The dictionary
structure must be created by use of the text editor. It precedes the first object module
and must match the following pattern:

First line, the library 'IDT' record: OllllaaaaaaaaF

where 0 =tag
1111 = length of the dictionary
aaaaaaaa = library name
F = end-of-record tag
user-defined information out to 80th character

Example: OOOOOSEOLIB01F04/10/85 08:15:00

One entry for each object module included in the library:
Flllllaaaaaaaa;

where F =tag
I = IDT marker
1111 = length of PSEG of module
aaaaaaaa = IDT of the module
';' = record end marker

Example: FIOOCEFASTSORT;

For each DEF within a module: FEtllllaaaaaa{,tllllaaaaaa};

where F =tag
E =tag
t = type of DEF ("A" = absolute, "R" = relative)
1111 = value of the DEF'd symbol
aaaaaa = 6-character name of symbol DEF'd in this module
, = if more (up to five DEFs allowed per record
; =if no more

Example: FEA0050PACK ,ROOACUNPAK ,AOE08ENCODE;

For each REF within the module: FR

where F =tag
R =tag
' ' = five blanks

aaaaaa{, aaaaaa}

aaaaaa = 6-character name of symbol REF'd
, = if more (up to five REFs allowed per record)
; =if no more

Example: FR EXREF, ESYM, x

For each COMMON segment contained within the module:
FCllllaaaaaa{,llllaaaaaa};

where F =tag
C =tag
1111 = length of COMMON segment
aaaaaa = 6-character COMMON segment name

Link Editor

Example: FC0140COMNAM,0266$BLANK;

For each DATA segment defined within the module:
FDllll {,1111 }

where F =tag
D =tag
1111 = length of DATA segment
' ' = six blanks
up to five DSEGs allowed, separated by commas
terminated by ;

Example: FD001 0 ,0032

This set of records is repeated for each object module in the library. The final record,
just prior to the first record of the first library member, must contain a colon in the
first character position. The remainder of this colon record is not specified. It can
be used for date, time, and other user-defined information.

9.6 Link Editor Error Messages

Messages are listed for detected errors in the listing file. The Link Editor error
messages are named and described below.

When the error-message description indicates that a malfunction of the link editor
has occurred, please contact the Texas Instruments Customer Response Center
(CRC) hotline number, 1-800-232-3200, extension 2171, for assistance. Its .. "81 '1
'(' EXPECTED: The REPLACE command expects a parenthesis. Z3 c_o
ADDRESS SPACE HAS OVERFLOWED IN THIS MODULE: The maximum
address required to represent this module is >10000 or greater. No valid object
module can be produced for this phase. The linker continues to produce the map,
but with increased likelihood that it will abort from internal errors.

ADDRESS SPACE TRUNCATED FOR TAG = X IN THE SEGMENT START­
ING AT VVVV: The 320-specific tags have a seven-bit address field that has
overflowed.

ALIGNMENT VALUE MUST BE IN THE RANGE 0 .. 15: The value in the
ADJ UST command is out of range.

AN ACTIVE BUFFER SHOULD HAVE BEEN CLOSED: A buffer that needs to
be closed is still marked as active.

ATTEMPT MADE TO WRITE TO A NIL SEGMENT: The linker attempted to
write to a nonexistent segment. Indicates a malfunction of the link editor; call hotline
immediately.

ATTEMPT MADE TO WRITE TO INACTIVE SEGMENT: The linker has
attempted to write to an unopen segment. Indicates a malfunction of the link editor;
call hotline immediately.

ATTEMPT TO ACTIVATE AN ALREADY ACTIVE SEGMENT: The linker has
attempted to open a segment that is already active. Indicates a malfunction of the
link editor; call hotline immediately.

9-49

Link Editor

9-50

ATTEMPT TO ACTIVATE NIL SEGMENT: The linker has attempted to open a
nonexistent segment. Indicates a malfunction of the link editor; call hotline imme­
diately.

ATTEMPT TO ALLOCATE AFTER DSEG OF CSEG DEFINED: The ALLOCATE
command has been given after data and/or common segments have been encount­
ered.

ATTEMPT TO MOVE NON-COMMON SEGMENT: An attempt has been made
to move a segment that is not a common. Indicates a malfunction of the link editor;
call hotline immediately.

ATTEMPT TO ORDER A NIL SEGMENT: A common that was never defined
cannot be placed in the stream of commons. Indicates a malfunction of the link
editor; call hotline immediately.

ATTEMPT TO REDEFINE COMMON ORIGIN: Directives to place a common
origin provide information that conflicts with information that has been already
determined.

BAD CHAIN FOR XXXX TO YYYY: In a partial link, the reference chain for XXXX
points to the address YYYY that is outside the scope of the segment.

BAD INDEX - COMMAND FORMAT NOT RECOGNIZED: In a partial link,
an error was detected in the control record such that the current index is negative.

BAD TAG IN CHAIN FOR XXXX AT YYYY: In a partial link, an invalid tag was
encountered in the processing of the reference chain. If this error occurs, the object
module has been damaged.

CANNOT ORDER COMMONS FROM DIFFERENT MODULES: Commons
that are overlayed in procedures of the same phase level cannot be ordered together.
This usually occurs in a partial link.

CAN'T ASSIGN LUNO TO LIBRARY: The limit has been exceeded in the number
of files that can be opened at one time. ·

CAN'T OPEN FILE: A file that should be opened cannot be opened. The system
return code is identified in the immediate preceding warning.

CAN'T OPEN LIBRARY: An error code was returned or an attempt made to open
the directory.

CHAIN TO UNINITIALIZED LOCATION FOR XXXX AT YYYY: The reference
chain for value XXXX points from YYYY to an insignificant address.. Processing of
the chain is discontinued.

COMMAND NOT VALID WITH PARTIAL LINK: The specified command is not
valid in producing a partial link. ·

COMMAND ONLY VALID WITH PARTIAL LINK: The GLOBAL, NOTGLOBAL,
·and ALLGLOBAL commands must follow a PARTIAL command in a control stream.

COMMON HAS NOT BEEN PLACED VALIDLY: An attempt has been made
to place a common at two or more locations.

COMMON NAME TRUNCATED: The common name has been truncated to six
characters. This is a trivial warning and processing proceeds with the truncated name.

COMMON NUMBER INVALID: The common number given an M tag is not in
the valid range.

Link Editor

COMMON ORIGIN HAS ALREADY BEEN SET: An attempt has been made to
define a common origin already set with a previous COMMON command.

COMMON ORIGIN INVALID: The origin for a common is not valid.

COMMON ORIGIN WAS NOT DEFINED: The first common name specified in
a COMMON command was never defined in the I.ink.

COMMON SEGMENT HAS NO SYMBOL DEFINED: A symbol has been given
for a common segment, but the segment itself does not exist.

COMMON SYMBOL IS NOT VALID: The given common symbol is not legal.

COMMON SYMBOL WAS NEVER DEFINED: A common segment was not
found corresponding to the common symbol.

COMPRESSED FORMAT NOT SUPPORTED FOR 320 INPUT MODULES:
The linker only recognizes ASCII-formatted input modules for these object codes.

CONFLICTING COMMON SYMBOL FOUND: A common symbol that is not
consistent with previous commons has been detected.

CURRENT SEGMENT HAS NOT BEEN DEACTIVATED: The segment that
should be closed has been left active.

DUPLICATE SYMBOL DEFINITION ENCOUNTERED: Two definitions have
been encountered for the same external symbol.

ENTRY NAME TRUNCATED: The entry name has been truncated to six char­
acters. This is a trivial warning and processing proceeds with the truncated name.

EXTERNAL REFERENCE INDEX OUT OF RANGE: The index number specified
by an E tag in an input object module is not valid. ·

EXTERNAL SYMBOL TRUNCATED: A symbol specified in a GLOBAL or
NOTGLOBAL command exceeds six characters in length.

FATAL ERROR DETECTED -- *LINKER ABORTING*: An error that the linker
cannot recover from has been detected. The user should repeat the process. If the
message occurs again, then either check the procedures used or call the hotline for
assistance.

FIRST PHASE HAS ALREADY BEEN DEFINED: A NOMAP command has
appeared after a TASK or a PHASE command has been issued in the control stream.

HEAP ERROR ENCOUNTERED IN PASS2: A heap error was detected while
trying to allocate data space for the second pass. Indicates a malfunction of the link
editor; call hotline immediately.

ILLEGAL INTERMEDIATE TAG ENCOUNTERED AT XXXX: An encoded tag
was encountered that was not valid. Indicates a malfunction of the link editor; call
hotline immediately.

ILLEGAL TAG FOUND IN INTERMEDIATE FILE; TAG=X: An invalid tag was
found in the intermediate file. Indicates a malfunction of the link editor; call hotline
immediately.

INTERMEDIATE FILE OVERFLOW: The maximum number of records for inter­
mediate object representation has been exceeded. Obtain more file space by making
individual object modules smaller or call the hotline for assistance.

INTERMEDIATE RECORD NUMBER INVALID: The record index for the
intermediate storage is not in the legal range.

9-51

Link Editor

9-52

INTERNAL LINKER ERROR IN AUTOCALL: An error has occurred in the
automatic-call algorithm. This error should never ·Occur. If it does, unresolved
references may be the result of modules not having been read in; in other respects,
the object module produced should be good. Relink using specific INCLUDES for
the missing modules or call the hotline for assistance.

INVALID ATTEMPT TO MOVE FIRST COMMON: The linker has attempted
to move a common that was specified as the first common by a COMMON command.
Indicates a malfunction of the link editor; call hotline immediately.

INVALID ATTEMPT TO READ BUFFER: The linker has attempted to activate a
buffer that is not of the correct type. Indicates a malfunction of the link editor; call
hotline immediately.

INVALID LEVEL FOR PHASE: The level argument to a PHASE command is not
appropriate. The first phase established must be a TASK or a phase of level 0. If the
current level is N, a new phase must have level s N+1.

INVALID PROCEDURE LEVEL: The level for procedures must be 1 or 2.

INVALID PROCEDURE SPECIFIED: An illegal procedure has been declared.

INVALID SYMBOL NAME FOR REPLACE: The REPLACE command has
encountered an illegal symbol name.

INVALID VALUE FOR LINES PER PAGE: The argument to a page command
is not recognized as a positive integer or is out of the range of 16 to 60 lines per page.

LAST COMMON IN LIST IS NIL: The last common in a list of ordered commons
does not exist. Indicates a malfunction of the link editor; call hotline immediately.

LAST MODULE FOR PHASE IS NIL: The linker cannot find the information
about the current phase. Indicates a malfunction of the link editor; call hotline
immediately.

MAP RECORD INDEX IS OUT OF RANGE: The map record is full or the index
has been changed to an invalid value. Indicates a malfunction of the link editor; call
hotline immediately.

MEMBER NAME TOO LONG: The member name exceeds eight characters. The
command is not processed.

MEMBER NAME TRUNCATED: The member name has been truncated to eight
characters. This is a trivial warning and processing proceeds with the truncated name.

MINIMUM NUMBER OF LINES PER PAGE IS 16: A PAGE N command may
not specify a value of N less than 16.

MODULE LENGTH IS ZERO: The length for the module has been incorrectly
specified as zero.

MODULE ORIGIN IS NOT ZERO: The origin for a module must be zero before
the relocation is applied.

NIL COMMON SEGMENT WAS ACTIVATED: An attempt was made to activate
a common segment that does not exist.

NIL SEGMENT FORM TAG SYMBOL: An M tag definition applies to a segment
that does not exist. Indicates a malfunction of the link editor; call hotline immediately.

Link Editor

NO PHASE IS DEFINED: No PROCEDURE, TASK, or PHASE 0 has been defined.
A command has been given which requires that object modules be read in or that
some phase be active.

NO TASK PHASE IS DEFINED: No TASK or PHASE 0 has been defined. A valid
set of linked object modules cannot be produced.

NOTGLOBAL MUST PRECEDE A GLOBAL COMMAND: The GLOBAL
command is only valid if it is preceded by a NOTGLOBAL command with no
parameter.

OBJECT CARD INDEX ERROR DETECTED: After writing an object record, the
index into the record was not equal to one. Indicates a malfunction of the link editor;
call hotline immediately.

ORIGIN CANNOT BE WRITTEN TO INACTIVE SEGMENT: The linker has
attempted to write origin information to a segment that is not open. Indicates a
malfunction of the link editor; call hotline immediately.

OVERWRITTEN BLOCKS FOR XXXX TO YYYY: Absolutely placed object code
overlaps at the given address.

OVERWRITTEN SEGMENTS STARTING AT XXXX IN MODULE
NNNNNNNN: Overlapping segments have been detected starting at location
XXXX. The link map specifies which segment starts at that point. This is flagged
as a warning.

PARTIAL COMMAND INVALID IN CONTEXT: The PARTIAL command was
specified in the control stream after a command that is inconsistent with partial links
(e.g., DUMMY, PROGRAM, DATA, COMMON, ALLOCATE, PROCEDURE, PHASE
1, etc.)

PHASE LEVEL EXPECTED: The level argument to a PHASE command must be
a zero or a positive integer.

PHASE LEVEL SPECIFIED IS NOT VALID: The level specified in a PHASE
command is not in the valid range.

PHASE NAME TRUNCATED: The phase name has been truncated to eight
characters. This is a trivial warning, and processing proceeds with the truncated
name.

PHASE SEQUENCE IS NOT VALID: The order in which the phases have been
declared is not legal.

PREMATURE END OF CONTROL FILE: The control file has ended before an
END command was encountered. No further processing is done.

PROCEDURE CANNOT HAVE BROTHERS: A procedure cannot have phases
at the same level defined with it.

PROCEDURE NAME TRUNCATED: The procedure name has been truncated
to eight characters. This is a trivial warning, and processing proceeds with the
truncated name.

PROC 1 MUST BE DUMMIED TO DUMMY PROC 2: In order to dummy the
second procedure, the first procedure must also be dummied.

PROC 1 SYMBOL NUMBER IS NOT ZERO: The symbol number for the
procedure must be zero.

PROC 2 SYMBOL NUMBER IS NOT ZERO: The symbol number for the
procedure must be zero.

9-53

Link Editor

9-54

RELOCATABLE AD.DRESS IS NOT VALID;SEG.MENTS · ... SHOULD BE
PLACED AT. ABSOl,..UTE LOCATIPNS: Certain iMS320-specific tags require
that segments .to which they refer be placed at absolute addresses.

SEGMENT BUFFER HAS BEEN. DAMAG.ED: The current segment does not
contain the expected information. Indicates a malfunction of the link editor; call
hotline immediately. ·

SEGMENT ORIGIN IS ZERO: The origin for a segmenthas erroneously changed
to zero. Indicates a malfunction of the link editor; call hotline immediately.

TASK OR PHASE 0 IS ALREADY DEFINED: A PROCEDURE command cannot
be given once a task phase has been defined.

TASK OR PHASE 0 MUST BE DEFINED BEFORE OVERLAY: An overlay has
been defined before the task or root phase.

THE CURRENT SEGMENT IS NIL: The segment that is being examined does
not exist. Indicates a malfunction of the link. editor; call hotline immediately.

THE INPUT OBJECT MODULE HAS BEEN DAMAGED: Unexpected or invalid
tags and values have been encountered in the input object module.

THE MAP RECORD IS NIL: An attempt has been made to place information into
the map record when the record does not exist. Indicates a malfunction of the link
editor; call hotline immediately.

THE .OVERWRITTEN BLOCKS ARE NOT COMPATIBLE: The types of the
overlapping blocks are not the same, and a valid object module cannot be produced.

THE PHASE TYPE IS NOT TASK, OVLY. OR PROC: This error should never
occur, because the only valid types are TASK, OVLY, and PROC.

THE SEGMENT TYPE IS NOT PSEG, DSEG, OR CSEG: The only valid segment
types are PSEG, DSEG, and CSEG.

TOO MANY SYMBOLS HAVE BEEN DEFINED: The statically allocated arrays
that contain the values for symbols {mostly external symbols and phase lengths,
origins, etc.) have overflowed. The number of symbols allowed in a symbol table is
1110.

UNABLE TO PROPERLY ORDER COMMONS: The linker cannot order the
commons as specified.

UNEXPECTED TAG: The input object module is not of the expected format. It
may not really be an object module. Processing stops.

UNRECOGNIZED FORMAT: The argument to the FORMAT command is not
recognized.

UNRECOGNIZED COMMAND: The command on the most recent line is not
recognized as a linker command. The line is ignored.

UNSUPPORTED INTER-SEGMENT LINK FOR XXXX FROM YYYY TO
ZZZZ: This message is printed by the second pass, and applies to the module in
the linked output that is-next identified. An external reference chain has pointed from
one PSEG, DSEG, or CSEG into another. XXXX!is the value of the external symbol
to be filled in~ {The second pass cannot identify it by symbol name. The name can
often. be found by examining the symbol definitions. A symbol with a value of zero
may be an unresolved reference.) YYYY, the address where the chain starts, identifies
the offending module. ZZZZ is the address to which the chain points. The only
deficiency in the linked object. is that incorrect values remain where the value of
external symbol XXXX should have been inserted.

ADVANCE
INFORMATION

TMS320C25
DIGITAL SIGNAL PROCESSOR

MAY 1986

• 100-ns Instruction Cycle Time • Block Moves for Data/Program Management

• 544 Words of Programmable On-Chip Data
RAM

• 4K Words of On-Chip Program ROM

• 128K Words of Data/Program Space

• Sixteen Input and Sixteen Output Channels

• 16-Bit Parallel Interface

• Directly Accessible External Data Memory
Space

• Global Data Memory Interface

• 16-Bit Instruction and Data Words

• 32-Bit ALU and Accumulator

• Repeat Instructions for Efficient Use of
Program Space

• Eight Auxiliary Registers and Dedicated
Arithmetic Unit for Indirect Addressing

• Serial Port for Direct Codec Interface

• Synchronization Input for Synchronous
Multiprocessor Configurations

• Wait States for Communication to Slow
Off-Chip Memories/Peripherals

• On-Chip Timer for Control Operations

• Three External Maskable User Interrupts

• Single-Cycle Multiply/Accumulate
Instructions

• Input Pin Polled by Software Branch
Instruction

• Programmable Output Pin for Signalling
External Devices • 0 to 16-Bit Scaling Shifter

• Bit Manipulation and Logical Instructions • 1.8-µ.m CMOS Technology

• Instruction Set Support for Floating-Point
Operations, Adaptive Filtering, and
Extended-Precision Arithmetic

• Single 5-V Supply

• On-Chip Clock Generator

68-PIN FN
PLASTIC LEADED CHIP CARRIER PACKAGE

(TOP VIEW)

10 > IQ Q a: x o.-NM-tlll ~ ...I<(~~ o 0
mm.-.-.-.-.- ... ~~OwF...1...100
cccccccc~m~a:a:oo>>

9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61

Vss 10 60 IACK
07 11 59 MSC
06 12 58 CLKOUT1
05 13 57 CLKOUT2
04 14 56 XF
03 15 55 HOLDA
02 16 54 DX
01 17 53 FSX
DO 18 52 X2/CLKIN

SYNC 19 51 X1
INTO 20 50 BR
INT1 21 49 ST.RB
INT2 22 48 R/W

Vee 23 47 PS
DR 24 46 IS

FSR 25 45 OS
AO 26 44 Vss

27 28 29 30 313233 34 35 36 37 38 39 40 414243

0.-NM-tin~~ommo.-NM-tin
0<(<(<(<(<(<(<(0<C<C
> > <(<(<(<(<(<(

ADVANCE INFORMATION documents contain
information on new products in the samplinu or
11reproduction phase of development Characteristic
ilata and other specifications ara subject to change
without notice.

TEXAS.,,
INSTRUMENTS

Copyright © 1986, Texas Instruments Incorporated

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

A-1

A-2

TMS320C25
DIGITAL SIGNAL PROCESSOR

PIN NOMENCLATURE

SIGNALS 1101zt DEFINITION

Vee I 5-V supply pins

Vss I Ground pins

X1 0 Output from internal oscillator for crystal

X2/CLKIN I Input to internal oscillator from crystal or external clock

CLKOUT1 0 Master clock output (crystal or CLKIN frequency/4)

CLKOUT2 0 A second clock output signal

D15-DO 1/0/Z 16-bit data bus D15 IMSB) through DO (LSB). Multiplexed between program, data, and 1/0

spaces.

A15-AO O/Z 16-bit address bus· A 1 5 (MSB) through AO (LSB)

PS, OS, iS O/Z Program, data, and 1/0 space select signals

R/W O/Z Read/write signal

STRB O/Z Strobe signal

'RS I Reset input

iN'i' 2-iN'i'O I External user interrupt inputs

MP/MC I Microprocessor/microcomputer mode select pin

~ 0 Microstate complete signal

IACK 0 Interrupt acknowledge signal

READY I Data ready input. Asserted by external logic when using slower devices to indicate that the

current bus transaction is complete.

'BR 0 Bus request signal. Asserted when the TMS320C25 requires access to an external global

data memory space.

XF 0 External flag output (latched software-programmable signal)

HOLD I Hold input. When asserted, TMS320C25 goes into an idle mode and places the data, address,

and control lines in the high-impedance state.

HOLDA 0 Hold acknowledge signal

SYfiiC I Synchronization input

BIO I Branch control input. Polled by BIOZ instruction.

DR I Serial data receive input

CLKR I Clock for receive input for serial port

FSR I Frame synchronization pulse for receive input

DX O/Z Serial data transmit output

CLKX I Clock for transmit output for serial port

FSX 1/0/Z Frame synchronization pulse for transmit. Configurable as either an input or an output.

t11otz denotes input/output/high-impedance state.

description

The TMS320C25 Digital Signal Processor is a member of the TMS320 family of VLSI digital signal processors
and peripherals. The TMS320 family supports a wide range of digital signal processing applications, such
as telecommunications, modems, image processing, speech processing, spectrum analysis, audio
processing, digital filtering, high-speed control, graphics, and other computation-intensive applications.

With a 100-ns instruction cycle time and an innovative memory configuration, the TMS320C25 performs
operations necessary for many real-time digital signal processing algorithms. Since most instructions require
only one cycle, the TMS320C25 is capable of executing ten million instructions per second. On-chip data
RAM of .544 16-bit words, on-chip program ROM of 4K words, direct addressing of up to 64K words of
external data memory space and 64K words of external program memory space, and multiprocessor
interface features for sharing global memory minimize unnecessary data transfers to take full advantage
of the capabilities of the processor.

TEXAS 'f
INSTRUMENTS

PO.ST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

functional block diagram

R/W

~
READY

l3ii
XF

iiOm
R'&6A
~
llll5
RI

im(

MP/Ml:
ffil'fl2-0) PROGRAM

ROM

A15-AO
14096 x 16)

INSTRUCTION

015-DO

LEGEND:

&LOCK B2
132 x 161

DATA RAM
BLOCK B1
(256 x 161

16

ACCH = Accumulator high
ACCL = Accumulator low
ALU = Arithmetic logic unit

16

ARAU = Auxiliary register arithmetic unit
ARB = Auxlllary register pointer buffer
ARP = Auxlllary register pointer
DP · = Data memory page pointer
DRR = Serial port data receive register
DXR = Serial Port data transmit register

IFR
IMR
IR
MCS
QIR
PR
PRO
TIM
TR

16

16

16

TMS320C25
DIGIT AL SIGNAL PROCESSOR

ST0(16)

ST1116)

.RPTC(8)

IFR(6)

DR
CLKR
FSR
DX
CLKX
FSX

RSR(16)

XSR(16)

DRRt16)

DXR(161

TIM(161

PRDl161

IMRl61

GREGISI

=~ ::

~~
'-~~~__.~1~&;__~~~~-...J~1_s~~~~~~~~'tll

= Interrupt flag register
= Interrupt mask register
= Instruction register
= Mlcrocall stack
= Queue instruction register
= Produc1 register
= Period register for timer
=Timer
= Temporary register

FIGURE 3-1.

:·

PC = Program counter
PFC = Prefetch counter
RPTC = Repeat Instruction counter
GREG = Global memory allocation register
RSR = Serial pon receive shift register
XSR = Serial port transmit shift register
ARO-AR7 = Auxlllery registers
STO,ST1 = Status registers

TEXAS.
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

A-3

A-4

TMS320C25
DIGITAL SIGNAL PROCESSOR

architecture

The TMS320C25 architecture is based upon that of the TMS32020, the second member of the TMS320
family. The TMS320C25 increases performance of DSP algorithms through innovative additions to the
TMS320 family architecture. TMS32020 source code is upward-compatible with TMS320C25 source code
and can be assembled using the TMS320C25 Macro Assembler. TMS32020 object code will run directly
on the TMS320C25.

Increased throughput on the TMS320C25 for many DSP applications is accomplished by means of single­
cycle multiply/accumulate instructions with a data move option, eight auxiliary registers with a dedicated
arithmetic unit, and faster 1/0 necessary for data-intensive signal processing.

The architectural design of the TMS320C25 emphasizes overall speed, communication, and flexibility in
processor configuration. Control signals and instructions provide floating-point support, block-memory
transfers, communication to slower off-chip devices, and multiprocessing implementations.

Two large on-chip RAM blocks, configurable either as separate program and data spaces or as two
contiguous data blocks, provide increased flexibility in system design. Programs of up to 4K words can
be masked into the internal program ROM. The remainder of the 64K-word program memory space is located
externally. Large programs can execute at full speed from this memory space. Programs can also be
downloaded from slow external memory to high-speed on-chip RAM. A total of 64K data memory address
space is included to facilitate implementation of DSP algorithms. The VLSI implementation of the
TMS320C25 incorporates all of these features as well as many others, such as a hardware timer, serial
port, and block data transfer capabilities.

32-bit ALU/accumulator

The TMS320C25 32-bit Arithmetic Logic Unit (ALU) and accumulator perform a wide range of arithmetic
and logical instructions, the majority of which execute in a single clock cycle. The ALU executes a variety
of branch instructions dependent on the status of the ALU or a single bit in a word. These instructions
provide the following capabilities:

• Branch to an address specified by the accumulator
• Normalize fixed-point numbers contained in the accumulator
• Test a specified bit of a word in data memory.

One input to the ALU is always provided from the accumulator, and the other input may be provided from
the Product Register (PR) of the multiplier or the input scaling shifter which has fetched data from the
RAM on the data bus. After the ALU ha~ performed the arithmetic or logical operations, the result is stored
in the accumulator.

The 32-bit accumulator is split into two 16-bit segments for storage in data memory. Additional shifters
at the output of the accumulator perform shifts while the data is being transferred to the data bus for
storage. The contents of the accumulator remain unchanged.

scaling shifter

The TMS320C25 scaling shifter has a 16-bit input connected to the data bus and a 32-bit output connected
to the ALU. The scaling shifter produces a left shift of 0 to 16 bits on the input data, as programmed
in the instruction. The LSBs of the output are filled with zeroes, and the MSBs may be either filled with
zeroes or sign-extended, depending upon the status programmed into the SXM (sign-extension mode) bit
of status register STO.

TEXAS.
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

16 x 16-bit parallel multiplier

TMS320C25
DIGITAL SIGNAL PROCESSOR

The TMS320C25 has a 16 x 16-bit hardware multiplier, which is capable of computing a signed or unsigned
32-bit product in a single machine cycle. The multiplier has the following two associated registers:

• A 16-bit Temporary Register (TR) that holds one of the operands for the multiplier, and
• A 32-bit Product Register (PR) that holds the product.

Incorporated into the TMS320C25 instruction set are single-cycle multiply/accumulate instructions that
allow both operands to be processed simultaneously. The data for these operations may reside anywhere
in internal or external memory, and can be transferred to the multiplier each cycle via the program and
data buses.

Four product shift modes are available at the Product Register (PR) output that are useful when performing
multiply/accumulate operations, fractional arithmetic, or justifying fractional products.

timer

The TMS320C25 provides a memory-mapped 16-bit timer for control operations. The on-chip timer (TIM)
register is a down counter that is continuously clocked by CLKOUT1. A timer interrupt (TINT) is generated
every time the timer decrements to zero. The timer is reloaded with the value contained in the period (PRO)
register within the next cycle after it reaches zero so that interrupts may be programmed to occur at regular
intervals of PRO + 1 cycles of CLKOUT1.

memory control

The TMS320C25 provides a total of 544 16-bit words of on-chip data RAM, divided into three separate
blocks (BO, B1, and B2). Of the 544 words, 288 words (blocks B1 and B2) are always data memory, and
256 words (block BO) are programmable as either data or program memory. A data memory size of 544
words allows the TMS320C25 to handle a data array of 512 words (256 words if on-chip RAM is used
for program memory), while still leaving 32 locations for intermediate storage. When using block BO as
program memory, instructions can be downloaded from external program memory into on-chip RAM and
then executed.

When using on-chip program RAM, ROM, or high-speed external program memory, the TMS320C25 runs
at full speed without wait states. However, the READY line can be used to interface the TMS320C25
to slower, less-expensive external memory. Downloading programs from slow off-chip memory to on-chip
program RAM speeds processing while cutting system costs.

The TMS320C25 provides three separate address spaces for program memory, data memory, and 1/0.
The on-chip memory is mapped into either the 64K-word data memory or program memory space, depending
upon the memory configuration. The CNFD (configure block BO as data memory) and CNFP (configure
block BO as program memory) instructions allow dynamic configuration of the memory maps through
software. Regardless of the configuration, the user may still execute from external program memory.

The TMS320C25 has six registers that are mapped into the data memory space: a serial port data receive
register, serial port data transmit register, timer register, period register, interrupt mask register, and global
memory allocation register.

TEXAS -1!1
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

A-5

TMS320C25
DIGITAL SIGNAL PROCESSOR

A-6

PROGRAM

0(>0000)
INTERRUPTS

0(>0000)

AND RESERVED
IEXTERNALI

311>001FI 311>001FI
32(>00201 32(>00201

40151>0FAFI
40161>0FBO)

40951 > OFFFI
40961>1000)

EXTERNAL

PROGRAM

INTERRUPTS
AND RESERVED
ION-CHIP ROM)

ON-CHIP
ROM

RESERVED

EXTERNAL

0(>0000)

5(>0005)
6(>00061

951>005F)
96(>0060)

127(>007FI
128(>0080)

511(>01FFI
512(>0200)

767(>02FFI
768(>03001

10231>03FFI
1024(>0400)

65,5351 > FFFFI 65,5351 > FFFFI 65,5351 > FFFFI ,___ _____ _,

IF MP/MC= 1
!MICROPROCESSOR MODEi

PROGRAM

0(>00001
INTERRUPTS

AND RESERVED
I EXTERN ALI

31(>001FI
32(>00201

EXTERNAL

IF MP/MC= 0
(MICROCOMPUTER MODEi

(al MEMORY MAPS AFTER A CNFD INSTRUCTION

PROGRAM

0(>0000)
INTERRUPTS

AND RESERVED
(ON-CHIP ROMI

311>001FI
32(>00201 ON-CHIP

ROM
4015(> OFAFI
4016(>0FBOI

RESERVED

4095(> OFFFI
40961 >10001

EXTERNAL

0(>00001

5(>0005)
6(>0006)

95(>005FI
96(>0060)

1271>007FI
128(>0080)

5111>01FF)
512(>02001

767(>02FFI
768(>0300)

65,2791 > FEFFI •••••••••••••••••••••••••••••• 65,2791 > FEFFI ------------------------------- 10231>03FFI
10241 >0400) 65.2801 > FFOOI ON-CHIP 65,2801 >FFOOI ON-CHIP

BLOCK BO BLOCK BO
65,5351 >FFFFI '---------' 65,5351 >FFFFI 65,5351 > FFFFI

IF MP/MC= 1
(MICROPROCESSOR MODEi

IF MP/MC= 0
(MICROCOMPUTER MODEi

(bl MEMORY MAPS AFTER A CNFP INSTRUCTION

FIGURE 1. MEMORY MAPS

TEXAS .JI
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

DATA

ON-CHIP
MEMORY-MAPPED

REGISTERS

RESERVED PAGE 0

ON-CHIP
BLOCK B2

RESERVED PAGES 1-3

ON-CHIP
BLOCK BO PAGES 4-5

ON-CHIP
BLOCK B1

PAGES 6-7

EXTERNAL PAGES 8-511

DATA

ON-CHIP
MEMORY-MAPPED

REGISTERS

RESERVED PAGE 0

ON-CHIP
BLOCK B2

RESERVED PAGES 1-3

DOES NOT
EXIST PAGES 4-5

ON-CHIP
BLOCK B1

PAGES 6·7

EXTERNAL PAGES 8-511

interrupts and subroutines

TMS320C25
DIGITAL SIGNAL PROCESSOR

The TMS320C25 has three external maskable user interrupts INT2-INTO, available for external devices that
interrupt the processor. Internal interrupts are generated by the serial port (RINT and XINTL by the timer
(TINT). and by the software interrupt (TRAP) instruction. Interrupts are prioritized with reset (RS) having
the highest priority and the serial port transmit interrupt (XINT) having the lowest priority. All interrupt
locations are on two-word boundaries so that branch instructions can be accommodated in those locations
if desired.

A built-in mechanism protects multicycle instructions from interrupts. If an interrupt occurs during a
multicycle instruction, the interrupt is not processed until the instruction is completed. This mechanism
applies both to instructions that are repeated or become multicycle due to the READY signal.

external interface

The TMS320C25 supports a wide range of system interfacing requirements. Program, data, and 1/0 address
spaces provide interface to memory and 1/0, thus maximizing system throughput. 1/0 design is simplified
by having 1/0 treated the same way as memory. 1/0 devices are mapped into the 1/0 address space using
the processor's external address and data busses in the same manner as memory-mapped devices. Interface
to memory and 1/0 devices of varying speeds is accomplished by using the READY line. When transactions
are made with slower devices, the TMS320C25 processor waits until the other device completes its function
and signals the processor via the READY line. Then, theTMS320C25 continues execution.

A serial port provides communication with serial devices, such as codecs, serial A/D converters, and other
serial systems. The interface signals are compatible with codecs and many other serial devices with a
minimum of external hardware. The serial port may also be used for intercommunication between processors
in multiprocessing applications.

The serial port has two memory-mapped registers: the data transmit register (DXR) and the data receive
register (ORR). Both registers operate in either the byte mode or 16-bit word mode, and may be accessed
in the same manner as any other data memory location. Each register has an external clock, a framing
synchronization pulse, and associated shift registers. One method of multiprocessing may be implemented
by programming one device to transmit while the others are in the receive mode.

multiprocessing

The flexibility of the TMS320C25 allows configurations to satisfy a wide range of system requirements.
The TMS320C25 can be used as follows:

• A standalone processor
• A multiprocessor with devices in parallel
• A slave/host multiprocessor with global memory space
• A peripheral processor interfaced via processor-controlled signals to another device.

For multiprocessing applications, the TMS320C25 has the capability of allocating global data memory space
and communicating with that space via the BR (bus request) and READY control signals. Global memory
is data memory shar.ed by more than one processor. Global data memory access must be arbitrated. The
8-bit memory-mapped GREG (global memory allocation register) specifies part of the TMS320C25's data
memory as global external memory. The contents of the register determine the size of the global memory
space. If the current instruction addresses an operand within that space, BR is asserted to request control
of the bus. The length of the memory cycle is controlled by the READY line.

The TMS320C25 supports DMA (direct memory access) to its external program/data memory using the
HOLD and HOLDA signals. Another processor can take complete control of the TMS320C25's external
memory by asserting HOLD low. This causes the TMS320C25 to place its address, data, and control
lines in a high-impedance state, and assert HOLDA.

TEXAS ..
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001

A-7

TMS32DC25
DIGITAL SIGNAL PROCESSOR

instruction set

A-8

The TMS320C25 microprocessor implements a comprehensive instruction set that supports both numeric­
intensive signal processing operations as well as general-purpose applications, such as multiprocessing
and high-speed control. The TMS32020 source code is upward-compatible with TMS320C25 source code.
TMS32020 object code runs directly on the TMS320C25.

For maximum throughput, the next instruction is prefetched while the current one is being executed. Since
the same data lines are used to communicate to external data/program or 1/0 space, the number of cycles
may vary depending upon whether the next data operand fetch is from internal or external program memory.
Highest throughput is achieved by maintaining data memory on-chip and using either internal or fast external
program memory.

addressing modes

The TMS320C25 instruction set provides three memory addressing modes: direct, indirect, and immediate
addressing.

Both direct and indirect addressing can be used to access data memory. In direct addressing, seven bits
of the instruction word are concatenated with the nine bits of the data memory page pointer to form the
16-bit data memory address. Indirect addressing accesses data memory through the eight auxiliary registers.
In immediate addressing, the data is based on a portion of the instruction word(s).

In direct memory addressing, the instruction word contains the lower seven bits of the data memory address.
This field is concatenated with the nine bits of the data memory page pointer to form the full 16-bit address.
Thus, memory is paged in the direct addressing mode with a total of 512 pages, each page containing
128 words.

Eight auxiliary registers (ARO-AR7) provide flexible and powerful indirect addressing. To select a specific
auxiliary register, the Auxiliary Register Pointer (ARP) is loaded with a value from 0 through 7 for ARO
through AR7, respectively.

There are seven types of indirect addressing: auto-increment or auto-decrement, post-indexing by either
adding or subtracting the contents of ARO, single indirect addressing with no increment or decrement,
and bit-reversal addressing (used in FFTsl with increment or decrement. All operations are performed on
the current auxiliary register in the same cycle as the original instruction, followed by a new ARP value
being loaded.

repeat feature

A repeat feature, used with instructions such as multiply/accumulates, block moves, 1/0 transfers, and
table read/writes, allows a single instruction to be performed up to 256 times. The repeat counter (RPTC)
is loaded with either a data memory value (APT instruction) or an immediate value (RPTK instruction). The
value of this operand is one less than the number of times that the next instruction is executed. Those
instructions that are normally multicycle are pipelined when using the repeat feature, and effectively become
single-cycle instructions.

instruction set summary

Table 1 lists the symbols and abbreviations used in Table 2, the instruction set summary. Table 2 consists
primarily of single-cycle, single-word instructions. Infrequently used branch, 1/0, and CALL instructions
are multicycle. The instruction set summary is arranged according to function and alphabetized within each
functional grouping. The symbol (ti indicates those instructions that are not included in the TMS32010
instruction set. The symbol (:t) indicates instructions that are not included in the TMS32020 instruction set.

TEXAS ..
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

SYMBOL

B

CM

D

FO

I

K

PA

PM

R

s
x

TABLE 1. INSTRUCTION SYMBOLS

MEANING

4-bit field specifying a bit code

2-bit field specifying compare mode

Data memory address field

Format status bit

Addressing mode bit

Immediate operand field

TMS320C25
DIGIT AL SIGNAL PROCESSOR

Port address (PAO through PA 1 5 are predefined

assembler symbols equal to 0 through 15, respectively.)

2-bit field specifying P register output shift code

3-bit operand field specifying auxiliary register

4-bit left-shift code

3-bit accumulator left-shift field

TEXAS -1!1
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001

A-9

TMS320C25
DIGITAL SIGNAL PROCESSOR

TABLE 2. TMS320C25 INSTRUCTION SET SUMMARY

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS

MNEMONIC DESCRIPTION
NO. INSTRUCTION BIT CODE

WORDS
151413121110 9 8

ABS Absolute value of accumulator 1

ADD Add to accumulator with shift 1
ADDct Add to accumulator with carry 1

ADDH Add to high accumulator 1

ADDKt Add to accumulator short immediate 1

ADDS Add to low accumulator with sign 1

extension suppressed

ADDTt Add to accumulator with shift specified by 1

T register

ADLKt Add to accumulator long immediate with shift 2

AND AND with accumulator 1

ANDKt AND immediate with accumulator with shift 2

CMPLt Complement accumulator 1

LAC Load accumulator with shift 1

LACK Load accumulator immediate short 1

LACTt Load accumulator with shift specified by T register 1
LALKt Load accumulator long immediate with shift 2

NEGt Negate accumulator 1

NORMt Normalize contents of accumulator 1

OR OR with accumulator 1
ORKt OR immediate with accumulator with shift 2

RQLt Rotate accumulator left 1

RORt Rotate accumulator right 1

SACH Store high accumulator with shift 1

SACL Store low accumulator with shift 1

SBLKt Subtract from accumulator long immediate with shift 2

SFLt Shift accumulator left 1

SFRt Shift accumulator right 1

SUB Subtract from accumulator with shift 1

suBBt Subtract from accumulator with borrow 1

SUBC Conditional subtract 1

SUBH Subtract from high accumulator 1

SUBKt Subtract from accumulator short immediate 1

SUBS Subtract from low accumulator with sign 1

extension suppressed

SUBTt Subtract from accumulator with shift specified by ,
T register

XOR Exclusive-OR with accumulator 1

XORKt Exclusive-OR immediate with accumulator with shift 2

ZAC Zero accumulator 1

ZALH Zero low accumulator and load high accumulator 1

ZALRt Zero low accumulator and load high accumulator 1

with rounding

ZALS Zero accumulator and load low accumulator with 1

sign extension suppressed

tThese instructions are not included in the TMS32010 instruction set.
tThese instructions are not included in the TMS32020 instruction set.

A-10 TEXAS.
INSTRUMENTS

1 1

0 0

0 1

0 1

1 1

0 1

0 1

1 1

0 1

1 1

1 1

0 0

1 1

0 1

1 1

1 1

1 1

0 1

1 1

1 1

1 1

0 1

0 1

1 1

1 1

1 1

0 0

0 1

0 1

0 1

1 1

0 1

0 1

0 1

1 1

1 1

0 1

0 1

0 1

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001

0 0 1 1 1 0
0 0 .._S--+

0 0 0 0 1 1

0 0 1 0 0 0

0 0 1 1 0 0

0 0 1 0 0 1

0 0 1 0 1 0

0 1 .._S--+

0 0 1 1 1 0

0 1 .._S--+

0 0 1 1 1 0

1 0 .._S--+

0 0 1 0 1 0
0 0 0 0 1 0

0 1 .._S--+

0 0 1 1 1 0

0 0 1 1 1 0

0 0 1 1 0 1

0 1 .._S--+

0 0 1 1 1 0

0 0 1 1 1 0

1 0 1 .-x-+
1 0 0 .-x-+
0 1 .._S--+

0 0 1 1 1 0

0 0 1 1 1 0

0 1 .._S--+

0 0 1 1 1 1

0 0 0 1 1 1

0 0 0 1 0 0

0 0 1 1 0 1

0 0 0 1 0 1

0 0 0 1 1 0

0 0 1 1 0 0

0 1 .._S--+

0 0 1 0 1 0

0 0 0 0 0 0

1 1 1 0 1 1

0 0 0 0 0 1

7 6 5 4

0 0 0 1

I

I
I
...... K

I

I

0 0 0 0

I ~

0 0 0 0

0 0 1 0

I
K

I
0 0 0 0

0 0 1 0

1
I

0 0 0 0

0 0 1 1

0 0 1 1

I

I
0 0 0 0

0 0 0 1

0 0 0 1

I

I --
I

I --
-. K

I

I

I
0 0 0 0

0 0 0 0

I

I

I

3 2 1 0
1 0 1 1

0 ~

D
D ~

.....
D ~

D ..
0 0 1 0

D ~

0 1 0 0

0 1 1 1

D

D
0 0 0 1

0 0 1 1

D ..
D
0 1 0 1

0 1 0 0

0 1 0 1

D

D
0 0 1 1

1 0 0 0

1 0 0 1

D

D ~

D

D
__..
·~

......

D ~

D

D
0 1 1 0

0 0 0 0

D ~

D

D ~

TMS320C25
DIGITAL SIGNAL PROCESSOR

TABLE 2. TMS320C25 INSTRUCTION SET SUMMARY (CONTINUED)

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS

MNEMONIC DESCRIPTION
NO. INSTRUCTION BIT CODE

WORDS
151413121110 9 8 7 6 5 4

ADRK:I: Add to auxiliary register short immediate 1 0 1 1 1 1 1 1 0 -- K

CMPRt Compare auxiliary register with auxiliary register ARO 1 1 1 0 0 1 1 1 0 0 1 0 1

LAR Load auxiliary register 1 0 0 1 1 0 -+-R__. I ..
LARK Load auxiliary register short immediate 1 1 1 0 0 0 -+-R__. K

LARP Load auxiliary register pointer 1 0 1 0 1 0 1 0 1 1 0 0 0

LOP Load data memory page pointer 1 0 1 0 1 0 0 1 0 I --
LDPK Load data memory page pointer immediate 1 1 1 0 0 1 0 0 -. DP

LRLKt Load auxiliary register long immediate 2 1 1 0 1 0 -+-R__. 0 0 0 0

MAR Modify auxiliary register 1 0 1 0 1 0 1 0 1 I -.
SAR Store auxiliary register 1 0 1 1 1 0 +-R__. I --
SBRK:I: Subtract from auxiliary register short immediate 1 0 1 1 1 1 1 1 1 .. K

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS

NO. INSTRUCTION BIT CODE
MNEMONIC DESCRIPTION

WORDS
151413121110 9 8 7 6 5 4

APAC Add P register to accumulator 1 1 1 0 0 1 1 1 0 0 0 0 1

LPHt Load high P register 1 0 1 0 1 0 0 1 1 I

LT Load T register 1 0 0 1 1 1 1 0 0 I --
LTA Load T register and accumulate previous product 1 0 0 1 1 1 1 0 1 I

LTD Load T register, accumulate previous product, 1 0 0 1 1 1 1 1 1 I --
and move data

LTPt Load T register and store P register in accumulator 1 0 0 1 1 1 1 1 0 I ..
LTSt Load T register and subtract previous product 1 0 1 0 1 1 0 1 1 I

MACt Multiply and accumulate 2 0 1 0 1 1 1 0 1 I --
MAcot Multiply and accumulate with data move 2 0 1 0 1 1 1 0 0 I

MPV Multiply (with T register, store product in P register) 1 0 0 1 1 1 0 0 0 I ..
MPYA:I: Multiply and accumulate previous product 1 0 0 1 1 1 0 1 0 I

MPYK Multiply immediate 1 1 0 1 -. K

MPYS:I: Multiply and subtract previous product 1 0 0 1 1 1 0 1 1 I

MPYU:I: Multiply unsigned 1 1 1 0 0 1 1 1 1 I --
PAC Load accumulator with P register 1 1 1 0 0 1 1 1 0 0 0 0 1

SPAC Subtract P register from accumulator 1 1 1 0 0 1 1 1 0 0 0 0 1

SPH:I: Store high P register 1 0 1 1 1 1 1 0 1 I --
SPL:I: Store low P register 1 0 1 1 1 1 1 0 0 I -.
SPMt Set P register output shift mode - 1 1 1 0 0 1 1 1 0 0 0 0 0

SQRAt Square and accumulate 1 0 0 1 1 1 0 0 1 I

SQRSt Square and subtract previous product 1 0 1 0 1 1 0 1 0 I --
trhese instructions are not included in the TMS32010 instruction set.
:!:These instructions are not included in the TMS32020 instruction set.

TEXAS 'I/>
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001

3 2 1 0
......

0 O...,.CM._

D

1 -+-R__.

D

0 0 0 0

D
D

....

3 2 1 0

0 1 0 1

D

D

D

D

D ..
D

D
D

D ..
D ..
D

D
0 1 0 0

0 1 1 0

D

D

1 O...,.PM._

D

D ..

A-11

TMS320C25
DIGITAL SIGNAL PROCESSOR

TABLE 2. TMS320C25 INSTRUCTION SET SUMMARY (CONTINUED)
_.:c

BRANCH/CALL INSTRUCTIONS

DESCRIPTION
NO. INSTRUCTION BIT CODE

MNEMONIC
WORDS

151413121110 9 8 7 6 5 4

B Branch unconditionally 2 1 1 1 1 1 1 1 1 1 ..
BAcct Branch to address specified by accumulator 1 1 1 0 0 1 1 1 0 0 0 1 0

BANZ Branch on auxiliary register not zero 2 1 1 1 1 1 0 1 1 1 ~

BBNzt Bra.nch if TC bit * 0 2 1 1 1 1 1 0 0 1 1
BBzt Branch if TC bit = 0 2 1 1 1 1 1 0 0 0 1 ~

Bc:i: Branch on carry 2 0 1 0 1 1 1 1 0 1
BGEZ Branch if accumulator ~ 0 2 1 1 1 1 0 1 0 0 1 ~

BGZ Branch if accumulator > 0 2 1 1 1 1 0 0 0 1 1 --
BIOZ Branch on 1/0 status = 0 2 1 1 1 1 1 0 1 0 1

~

BLEZ Branch if accumulator s 0 2 1 1 1 1 0 0 1 0 1 --
BLZ Branch if accumulator < 0 2 1 1 1 1 0 0 1 1 1

~

BNC=I= Branch on no carry 2 0 1 0 1 1 1 1 1 1 ...
BNVt Branch if no overflow 2 1 1 1 1 0 1 1 1 1
BNZ Branch if accumulator * 0 2 1 1 1 1 0 1 0 1 1 ...
BV Branch on overflow 2 1 1 1 1 0 0 0 0 1
BZ Branch if accumulator = 0 2 1 1 1 1 0 1 1 0 1 --
CALA Call subroutine indirect 1 1 1 0 0 1 1 1 0 0 0 1 0

CALL Call subroutine 2 1 1 1 1 1 1 1 0 1 ~

RET Return from subroutine 1 1 1 0 0 1 1 1 0 0 0 1 0

1/0 AND DATA MEMORY OPERATIONS

NO. INSTRUCTION BIT CODE
MNEMONIC DESCRIPTION

WORDS

BLKD-t Block move from data memory to data memory 2

BLKPt Block move from program memory to data memory 2

DMOV Data move in data memory 1

FORTt Format serial port registers 1

IN Input data from port 1

OUT Output data to port 1

RFSM=I= Reset serial port frame synchronization mode 1

RTXMt Reset serial port transmit mode 1

RXFt Reset external flag 1

SFSM=I= Set serial port frame synchronization mode 1

STXMt Set serial port transmit mode 1

sxFt Set external flag 1

TBLR Table read 1

TBLW Table write 1

tThese instructions are not included in the TMS32010 instruction set.
:!:These instructions are not included in the TMS32020 instruction set.

A-12 TEXAS.
INSTRUMEN1S

151413121110 9 8

1 1 1 1 1 1 0 1

1 1 1 1 1 1 0 0

0 1 0 1 0 1 1 0

1 1 0 0 1 1 1 0

1 0 0 0 ._PA_.

1 1 1 0 ._PA_.

1 1 0 0 1 1 1 0

1 1 0 0 1 1 1 0

1 1 0 0 1 1 1 0

1 1 0 0 1 1 1 0

1 1 0 0 1 1 1 0

1 1 0 0 1 1 1 0

0 1 0 1 1 0 0 0

0 1 0 1 1 0 0 1

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001

7 6 5 4

I ...
I
I ~

0 0 0 0

I ~

I --
0 0 1 1

0 0 1 0

0 0 0 0

0 0 1 1

0 0 1 0

0 0 0 0

I
I --

3 2 1 0

D ..
0 1 0 1

D ...
D

D
D

D
D

D

D

D

D

D

D
D

D

0 1 0 0

D ~

0 1 1 0

3 2 1 0

D
D

D ~

1 1 1 FO

D ~

D

0 1 1 0

0 0 0 0

1 1 0 0

0 1 1 1

0 0 0 1

1 1 0 1

D

D

TMS320C25
DIGITAL SIGNAL PROCESSOR

TABLE 2. TMS320C25 INSTRUCTION SET SUMMARY (CONCLUDED)

CONTROL INSTRUCTIONS

MNEMONIC DESCRIPTION
NO. INSTRUCTION BIT CODE

WORDS
151413121110 9 8 7 6 5 4

BITt Test bit 1
BITTt Test bit specified by T register 1

CNFDt Configure block as data memory 1

CNFPt Configure block as program memory 1

DINT Disable interrupt 1

EINT Enable interrupt 1
IDLEt Idle until interrupt 1

LST Load status register STO 1

LST1 t Load status register ST 1 1

NOP No operation 1

POP Pop top of stack to low accumulator 1
POPDt Pop top of stack to data memory 1

PSHDt Push data memory value onto stack 1

PUSH Push low accumulator onto stack 1

RC* Reset carry bit 1

RHM* Reset hold mode 1

ROVM Reset overflow mode 1

RPTt Repeat instruction as specified by data memory value 1

RPTKt Repeat instruction as specified by immediate value 1

RSXMt Reset sign-extension mode 1

RTC* Reset test/control flag 1

sc* Set carry bit 1

SHM* Set hold mode 1

SOVM Set overflow mode 1

SST Store status register STO 1
ssnt Store status register ST 1 1
ssxMt Set sign-extension mode 1

STC* Set test/control flag 1

TRAPt Software interrupt 1

tThese instructions are not included in the TMS32010 instruction set.
*These instructions are not included in the TMS32020 instruction set.

TEXAS.
INSTRUMENTS

1 0 0

0 1 0
1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

0 1 0

0 1 0

0 1 0

1 1 0

0 1 1

0 1 0

1 1 0

1 1 0

1 1 0

1 1 0

0 1 -0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

0 1 1

0 1 1

1 1 0

1 1 0

1 1 0

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

1 +-8-+ I --
1 0 1 1 1 I --
0 1 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0 1

1 0 0 0 0 I --
1 0 0 0 1 I ~

1 0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0 1

1 1 0 1 0 I --
1 0 1 0 0 I --
0 1 1 1 0 0 0 0 1

0 1 1 1 0 0 0 1 1

0 1 1 1 0 0 0 1 1

0 1 1 1 0 0 0 0 0

0 1 0 1 1 I
0 1 0 1 1 .. K

0 1 1 1 0 0 0 0 0

0 1 1 1 0 0 0 1 1

0 1 1 1 0 0 0 1 1

0 1 1 1 0 0 0' 1 1

0 1 1 1 0 0 0 0 0

1 1 0 0 0 I --
1 1 0 0 1 I ...
0 1 1 1 0 0 0 0 0

0 1 1 1 0 0 0 1 1

0 1 1 1 0 0 0 0 1

3 2 1 0
D
D ..
0 1 0 0

0 1 0 1

0 0 0 1

0 0 0 0

1 1 1 1

D
D •
0 0 0 0

1 1 0 1

D •
D •
1 1 0 0

0 0 0 0

1 0 0 0
0 0 1 0

D ..
_..
~

0 1 1 0

0 0 1 0

0 0 0 1

1 0 0 1

0 0 1 1

D _..

D •
0 1 1 1

0 0 1 1

1 1 1 0

A-13

TMS320C25
DIGITAL SIGNAL PROCESSOR

development systems and-software support

A-14

Texas Instruments offers concentrated development support and complete documentation for designing
a TMS320C25-based microprocessor system. When developing an application, tools are provided to
evaluate the performance of the processor, to develop the algorithm implementation, and to fully integrate
the design's software and hardware modules. When questions arise, additional support can be obtained
by calling the nearest Texas Instruments Regional Technology Center (ATC).

Sophisticated development operations are performed with the TMS320C25 Macro Assembler/Lihker,
Simulator, and Emulator (XOS). The macro assembler and linker are used to translate program modules
into object code and link them together. This puts the program modules into a form which can be loaded
into the TMS320C25 Simulator or Emulator. The simulator provides a quick means for initially debugging
TMS320C25 software while the emulator provides the real-time in-circuit emulation necessary to perform
system level debug efficiently.

Table 3 gives a complete list of TMS320C25 software and hardware development tools.

TABLE 3. TMS320C25 SOFTWARE AND HARDWARE SUPPORT

MACRO ASSEMBLERS/LINKERS

Host Computer Operating System Part Number

DEC VAX VMS TM DS3242210-08

Tl/IBM PC MS/PC-DOS TMDS3242810-02

SIMULATORS

Host Computer Operating System Part Number

D!:C VAX VMS TMDS3242211-08

Tl/IBM PC MS/PC-DOS TMDS3242811-02

EMULATORS

Model Power Supply Part Number

XDS/22 Included TMDS3262221

TEXAS.
INSTRUMENlS

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001

TMS320C25
DIGIT AL SIGNAL PROCESSOR

absolute maximum ratings over specified temperature range (unless otherwise noted) t

Supply voltage range, Vcc:t . -0.3 V to 7 V
Input voltage range - 0. 3 V to 7 V
Output voltage range - 0.3 V to 7 V
Continuous power dissipation ... 1. 5 W
Operating free-air temperature range 0 °C to 70 °C
Storage temperature range .. - 55 °C to 150 °C

tstresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating
Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect
device reliability.

iAll voltage values are with respect to Vss-

recommended operating conditions

MIN NOM MAX UNIT

Vee Supply voltage 4.5 5 5.5 v
Vss Supply voltage 0 v

All inputs except CLKIN 2 vcc+0.3 v
V1H High-level input voltage

CLKIN 2.4 vcc+0.3 v
All inputs except CLKIN -0.3 0.8 v

V1L Low-level input voltage
CLKIN -0.3 0.8 v

loH High-level output current 300 µA

loL Low-level output current 2 mA

TA Operating free-air temperature 0 70 oc

electrical characteristics over specified free-air temperature range (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN TvPt MAX UNIT

VoH High-level output voltage Vee = MIN, loH = MAX 2.4 3 v
Vol Low-level output voltage Vee = MIN, loL = MAX 0.3 0.6 v
lz Three-state current Vee = MAX -20 20 µA

11 Input current v1 = Vss to Vee -10 10 µA

ice Supply current TA= 0°C, Vee = MAX, fx = MAX 180 mA

C1 Input capacitance 15 pF

Co Output capacitance 15 pF

t All typical values are at Vee

!.. Caution. This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic
.~ ... ~-~ fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according
to MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum
rated voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together or the device
should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriate logic voltage level, preferrably
either Vee or ground. Specific guidelines for handling devices of this type are contained in the publication "Guidelines for Handling Electrostatic­
Discharge Sensitive (ESDS) Devices and Assemblies" available from Texas Instruments.

TEXAS.
INSTRUMENTS

A-15

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001

TMS320C25
DIGITAL· SIGNAL PROCESSOR

CLOCK CHARACTERISTICS AND TIMING

The TMS320C25 can use either its internal oscillator or an external frequency source for a clock.

internal clock option

fx

fsx

The internal oscillator is enabled by connecting a crystal across X 1 and X2/CLKIN (see Figure 2). The
frequency of CLKOUT1 is one-fourth the crystal fundamental frequency. The crystal should be fundamental
mode, and parallel resonant, with an effective series resistance of 30 ohms, a power dissipation of 1 mW,
and be specified at a load capacitance of 20 pF.

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

Input clock frequency TA = 0°C to 70°C 6.7 40 MHz

Serial port frequency TA = 0°C to 70°C 0 5,000 kHz

C1, C2 TA = 0°C to 70°C 10 pF

X1 X2/CLKIN

CRYSTAL ----tot-----
+C2

FIGURE 2. INTERNAL CLOCK OPTION

external clock option

An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X1 left
unconnected. The external frequency injected must conform to the specifications listed in the following table.

switching characteristics over recommended operating conditions (see Note 1)

PARAMETER MIN TYP MAX UNIT

tc(C) CLKOUT1 /CLKOUT2 cycle time 100 597 ns

td(CIH-C) CLKIN high to CLKOUT1 /CLKOUT2/STRB high/low 12 25 ns

tf(C) CLKOUT1 /CLKOUT2/STRB fall time 5 ns

tr(C) CLKOUT1 /CLKOUT2/STRB rise time 5 ns

tw(CL) CLKOUT1 /CLKOUT2 low pulse duration 2Q-.8 2Q 2Q+8 ns

tw(CH) CLKOUT1 /CLKOUT2 high pulse duration 2Q-8 2Q 2Q+8 ns

td(C1-C2l CLKOUT1 high to CLKOUT2 low, CLKOUT2 high to CLKOUT1 high, etc. Q-5 Q Q+5 ns

NOTE 1: Q = 1 /4tc(C)·

A-16 . TEXAS ..
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

TMS320C25
DIGIT AL SIGNAL PROCESSOR

timing requirements over recommended operating conditions (see Note 1)

tc(Cll CLKIN cycle time

tf_l_Cll CLKIN fall time

tr(Cll CLKIN rise time

tw(CILI CLKIN low pulse duration, tc(CI) = 50 ns (Note 21

twJ_CIHI CLKIN high pulse duration, tc(CI) = 50 ns (Note 21

tsuj_SI §VNC setup time before CKLIN low

th(SI SYNC hold time from CLKIN low

NOTES: 1. a = 1/4tc(C)·
2. CLKIN duty cycle [tr(CI) + tw(CIH)lltc(CI) must be within 40-60%.

1.88 v-

2.4v-
2.ov­
o.8v­

2.15 v

RL = 825 0

FROM OUTPUT o---•
UNDER TEST ----o TEST

POINT

1c,.100 pf

FIGURE 3. TEST LOAD CIRCUIT

V1H (MINI

(al INPUT

----- VoH (MINI

o.& v -':!:===~=-==:..==.:=::::~===-Vol (MAXI
0

lbl OUTPUTS

FIGURE 4. VOLTAGE REFERENCE LEVELS

TEXAS.
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001

MIN

25

5

5

5

8

NOM MAX UNIT

150 ns

5 ns

5 ns

20 ns

20 ns

Q-5 ns

ns

A-17

TMS320C25
DIGITAL SIGNAL PROCESSOR

clock timing

,.__.. tc(CI)___,

I-i -t;(Cll

t11c11--I r- 1 I :
I I

I I
I I ' I
I I I I I I I I I
I r---f-tsu(S) I i-----'-tsu(SI · iw(CILl....i-.-i I I

I ,,..; ... Tth!Sl-llirl ___ _,1____ 1-..J_
I I Jf I \ tw(CIH/1

SYNC I I I I I
I 1 td(CIH-c1.,.........-i
L__,_ . t ------rtd(CIH-Cl !""I -------- c1c1--------! I ... , .. ___ tw(CLJ---- I

CLKOUT1 If I '\.!.__ ______ """'"I{ }i
-.;......-----'· I I ~ .(. !.. tw(CH1---~ \ ____ _

I,.td(CIH-Cl jJ L-tr1c1 --' J--t11c1

!) !
I I

X/2CLKIN

I i-----+----..... tc1c1-------..i
I I I I tw(CLI __ __

CLKOUT2 _)I" 1 ~ /i N"-_______ rr
I I 1 li...•--tw1cH1---·""'I I I I
l-td1c1-c21-' I l-td1c1-c21--' I 11 trici--' L-

I r-td(C1-c21-f
t-td(C1-C2)-i --1 -tf(CI

A-18 TEXAS ..
INSTRUMENlS

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

TMS320C25
DIGITAL SIGNAL PROCESSOR

MEMORY AND PERIPHERAL INTERFACE TIMING

switching characteristics over recommended operating conditions (see Note 1)

PARAMETER MIN TYP MAX UNIT

td(C1-SI STRB from CLKOUT1 (if STRB is present) 0-8 0 0+8 ns

tc!.l._c2-SI CLKOUT2 to STRB (if STRB is present) -8 0 8 ns

tsu(A) Address setup time before STRB low (Note 31 0-15 ns

th(Al Address hold time after STRB high (Note 31 0-8 ns

tw(SLI S'fFiB low pulse duration (no wait states, Note 4) 20 ns

tw(SHI STRB high pulse duration (between consecutive cycles, Note 4) 20 ns

tsu(D)W Data write setup time before STRB high (no wait states) 20-22 ns

th(D)W Data write hold time from STRB high 0-8 0 ns

ten(D) Data bus starts being driven after STRB low (write cycle) 0 ns

tdislDI Data bus three-state after STRB high (write cycle) 0 O+ 15 ns

td(MSCI MSC valid from CLKOUT1 -12 0 12 ns

NOTES: 1. 0 = 1 /4tc(CI·
3. A15-AO, PS, IIB, iS, R/W, and BR timings are all included in timings referenced as "address."
4. Delays between CLKOUT1/CLKOUT2 edges and STRB edges track each other, resulting in tw(SLI and tw(SH) being 20 with

no wait states.

timing requirements over recommended operating conditions (see Note 1)

MIN

ta(A) Read data access time from address time (read cycle, Notes 3 and 5)

tsu(O)R Data read setup time before STRB high 20

th(Dj_R Data re.ad hold time from STRB high 0

td(SL-RI READY valid after STRB low (no wait states)

td(C2H-RI READY valid after CLKOUT2 high

th(SL-R) READY hold time after S'fFiB low (no wait states) 0-2

th(C2H-RI READY hold after CLKOUT2 high 0-2

td(M-RI READY valid after MSC valid

th(M-RI READY hold time after MSC valid 0

NOTES: 1. 0 = 1/4tc(C)·
3. A 15-AO, PS, OS, iS, R/W, and BR timings are all included in timings referenced as "address."
5. Read data access time is defined as ta(A) = tsu(A) + tw(SLI - tsu(D)R·

TEXAS ..
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

NOM MAX UNIT

30-35 ns

ns

ns

0-20 ns

0-20 ns

ns

ns

20-25 ns

ns

A-19

TMS320C25
DIGITAL SIGNAL PROCESSOR

memory read timing

r--t1uc1-s1-
1 I

'~ I t ':i: I II
1 '-tc11c1-s1-i

CLKOUT2 \ IT ! \1'---'',, _____ _,/
,__ _____ _, I I t I

__. l--td(C2-Sl 11= I -- - td(C2-S)

STRB ---------] l--tw(SH)--1\

tsu(Al 1 • 1..----tw(SL)___J i---r-th(A)

\ ___ _
CLKOUT1

A15-AO, ----
BR.PS,DS, ""~~~.,. VALID

ORiS -----"

READY~!~
-th(SL-Rlt'iJ r--th(D)R

D15-DO ------------{ D~~A)~------
memory write timing

A-20

CLKOUT1 \ I
CLKOUT2 \,,_ _____ __, I \

A15-AO, ---­
BR.PS.OS,

ORiS -----'

\ A
I

r--+tsu(A)
I

1·

I
I

VALID

I I
I I

\

I
I
I

I

\

~
I I
I I

I I
m-,..,.._-

R/W

I I

READY~
I tsu(D)W ,. .1 • th(D)W

D15-DO ---------l(..(}('.)()00()(! DATA OUT

--ten(D) 1--tdis(D)-

T. • . 1EXAS
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001

TMS320C25
DIGITAL SIGNAL PROCESSOR

one wait-state memory access timing

CLKOUT1 \ Ii \ __ ! __
I I
I I
I I

I If \ A
I I I
I I I
I I I

! ~ I I
I I

\ __ CLKOUT2

I I 1· •1 th(C2H-RI

~~~:=* : . VALID : : ~ 
I r- ~, th!C2H-Rl td(C2H-Rl--f t-- I 
~1c2H-Rl--lr~I ~ 

READY I I 1 

D15-DO 
(FOR READ 

OPERATION) 

D15-DO 
(FOR WRITE 
OPERATION! 

I I 
I 1-td(M-RI~ I I 1--t L.-th(M-RI 
I I I I '-td( -I I 
I I th(M-Rl--1 t--1 I M-RI ( ) 
I I I I I 11 • DATA >-· ------

1 I I I I IN 
I I I I I 
I I I I I 

! - :DATAOUT : 

I I I I I 
I I I I I 

'MSC-~- ~ ~ 
__j I --t 1-td(MSCI 
---i ..,._td(MSCI 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

A-21 



TMS320C25 
DIGITAL SIGNAL PROCESSOR 

RS, INT, BIO, and XF TIMING 

switching characteristics over recommended operating conditions (see Note 1 ) 

PARAMETER MIN TYP MAX UNIT 

td(RS) CLKOUT1 low to reset state entered 22 ns 

td(IACK) CLKOUT1 to JACK valid ...,. 12 0 12 ns 

tdJ_XJ:l XF valid before falling edge of STRB Q-15 ns 

NOTES: 1. Q = 1/4tc(C)· 
6. RS, INT, and BIO are asynchronous inputs and can occur at any time during a clock cycle. However, if the specified setup 

time is met, the exact sequence shown in the timing diagrams will occur. 

timing requirements over recommended operating conditions (see Note 1) 

MIN NOM MAX UNIT 

tsu(IN) INT/BIO/RS setup before CLKOUT1 high 25 ns 

th(IN) INT/BIO/RS hold after CLKOUT1 high 0 ns 

tf(IN) INT/BIO fall time 8 ns 

tw(IN) INT/BIO low pulse duration tc(C) ns 

twJ_RS.l RS low pulse duration 3tcJ_CJ. ns 

NOTES: 1. Q = 1 /4tc(C)· 
6. RS, INT, and BIO are asynchronous inputs and can occur at any time during a clock cycle. However, if the specified setup time 

is met, the exact sequence shown in the timing diagrams will occur. 

reset timing 

A-22 

CLKOUT1 

t Control signals are OS, TS, R/W and XF. 
*Serial port controls are DX and FSX. 

TEXAS .. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

BEGIN 
PROGRAM 

EXECUTION 



TMS320C25 
DIGITAL SIGNAL PROCESSOR 

interrupt timing 

CLKOUT1 

INT2-INTO 

\ __ ,! ! 
--i 

I• 

N 
I I 

1--tsu(IN) ! 
twll!'ll 

I 
I 
I 

I 

I 
I 
I 
I 

\ !/ 
-f 1--th(IN) 

·' IY 
\ I \ I 

__, t-- tf(IN) I 
I 

I 
I 

A15-AO =x-

BIO timing 

CLKOUT1 

A15-AO 

FETCH N x 
td(IACKl--1 

( FETCH 

FETCH:N+1 x 
t-. I 
I -, t-- td(IACK) 

( BRANCH ADDRESS 

FETCH 
BIOZ 

FETCH N + 2 X ... __ FE_T_c_H_i __ )C 

FETCH 
NEXT INSTRUCTION 

PC=N PC=N+ 1 t t 
tsu(IN) --11 .__I 

PC=N+2 PC=N+3 I--' r-th(IN) OR BRANCH ADDRESS 

BIO~VALID 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

A-23 



TMS320C25 
DIGITAL SIGNAL PROCESSOR 

external flag timing 

CLKOUT1 

A15-AO 
FETCH 

SXF/RXF 
VALID VALID 

PC=N PC=N+1 PC=N+2 1 PC=N+3 
I 
I 

XF VALID 

A-24 TEXAS.,, 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



TMS320C25 
DIGITAL SIGNAL PROCESSOR 

HOLD TIMING 

switching characteristics over recommended operating conditions (see Note 1) 

PARAMETER MIN TYP MAX 

td(C1 L-AL) HOLDA low after CLKOUT1 low -12 12 

tdis(AL-A) HOLDA low to address three-state 15 

tdis(C1L-A) Address three-state after CLKOUT1 low (HOLD mode, Note 3) 30 

td(HH-AH) HOLD high to HOLDA high 25 

ten(A-C1 L) Address driven before CLKOUT1 low (HOLD mode, Note 3) 5 

NOTES: 1. Q = 1 /4tfi.C).:..._ _ _ _ 
3. A 15-AO, PS, OS, IS, R/W, and BR timings are all included in timings referenced as "address." 

timing requirements over recommended operating conditions (see Note 1) 

MIN NOM MAX 

td(C2H-H) HOLD valid after CLKOUT2 high Q - 20 

NOTE: 1. Q = 1 /4tc(C)· 

HOLD timing (part A) 

CLKOUT1 

I 
\ 

CLKOUT2 __ Jj \ I \_--J 
~ I \_____,/ 

I 

\ I/ 
I \ 

/~ 
I I 
I I 
I I 
I I 
I I 

---! f--td(C2H-H) 

~~~~~"{~'~~~~~~~~~~~~~~~~~~-1'---t~~~~~~~ HOLD 

A15-AO

PS.OS,
OR iS

R/W

015-00

FETCH

EXECUTE

HOLDA

N N+1

VALID VALID

0 0
N N+1

N-2 N-1

N+2

.. ...
N . ..

~-----------
--1 f--tdis(C 1 L-A)

I I
I I
I I, • I I
I I

., • I I .,.
I I
1--t I-- ldis(AL-Al

~~~~~~~~~~~~~~~~~~~~~~-!--\, \.l. 
I ~,~~~~~~-

td(C1L-AL)--I t--

TEXAS .. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

UNIT 

ns 

ns 

ns 

ns 

ns 

UNIT 

ns 

A-25 



TMS320C25 
DIGITAL SIGNAL PROCESSOR 

HOLD timing (part B) 

CLKOUT1 

CLKOUT2 /: 
I 
I 
I 

STRB I 
I 
1 ... I 

HOLD 

A15-AO 

PS.OS, 
OR IS 

R/W 

015-DO 

FETCH 

EXECUTE 

HOLDA 

A-26 

I 

\ I \ !/ 
I 

\ 
I 

I ~ I 
I ""I tdlC2H-HI I I 

I I 

A 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
---' I 

I I 
-{ r-ten(A-C1LI 

I 

m 
I 
I 

w 
I 
I 

w 

r-tdlHH-AHI 

TEXAS -1/> 
INSTRUMENTS 

N+2 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001 

I \ 
\ I 

»< N+2 > 
'« VALID > 

0 
N+2 

N+1 



TMS320C25 
DIGITAL SIGNAL PROCESSOR 

SERIAL PORT TIMING 

switching characteristics over recommended operating conditions (see Note 1) 

PARAMETER MIN 

td(CH-DX) DX valid after CLKX rising edge (Note 7) 

td(FL-DX) DX valid after FSX falling edge (TXM = 0, Note 7) 

td(CH-FS) FSX valid after CLKX rising edge (TXM = 1 ) 

NOTES: 1. Q = 1 /4tc(C)· 
7. The last occurrence of FSX falling and CLKX rising. 

timing requirements over recommended operating conditions (see Note 1) 

tc(SCK) Serial port clock (CLKX/CLKR) cycle time 

tf(SCK) Serial port clock (CLKX/CLKR) fall time 

tr(SCK) Serial port clock (CLKX/CLKR) rise time 

tw(SCK) Serial port clock (CLKX/CLKR) low pulse duration (see Note 8) 

tw(SCK) Serial port clock (CLKX/CLKR) high pulse duration (see Note 8) 

tsu(FS) FSX/FSR setup time before (CLKX/CLKR) falling edge (TXM = 0) 

th(FS) FSX/FSR hold time after (CLKX/CLKR) falling edge (TXM = 0) 

tsu(DR) DR setup time before CLKR falling edge 

th(DR) DR hold time after CLKR falling edge 

NOTES: 1. Q = 1/4tc(C)· 
8. The duty cycle of the serial port clock must be within 40-60%. 

serial port receive timing 

CLKR 

serial port transmit timing 

CLKX 

FSX 
(INPUT,TXM =01 I 

I 

I---tc(SCKI -----I 
I •' 

· ltrlSCKl-t I 
! I ! 

I 
I 

i- j 
~tw(SCKI 

1--tsu(FSI ! _I - I .......,_td(CH-DXI 
I td(FL-DXl---r--'I;,.... ____ ~(· ---

MIN 

200 

80 

80 

10 

10 

10 

10 

tw(SCKI 

N=S.16 DX I : { N=1 ~ 
--1 rtd(CH-FSI L__,_..___td-(C-H--F-SI-- "----...J 

TYP 

NOM 

(OUTPUT,TXM~S~ __/' . \i.l\;I -----------·Ir------------

.. TEXAS.,, 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

MAX UNIT 

50 ns 

25 ns 

30 ns 

MAX UNIT 

ns 

25 ns 

25 ns 

ns 

ns 

ns 

ns 

ns 

ns 

A-27 



TMS320C25 
DIGITAL SIGNAL PROCESSOR 

MECHANICAL DATA 

68-pin plastic leaded chip carrier package 

THERMAL RESISTANCE CHARACTERISTICS 

A(IJA 

R(IJC 

PARAMETER MAX UNIT 

Junction-to-free-air 

thermal resistance 
46 °C/W 

Junction-to-case 

thermal resistance 
11 °C/W 

____ ..._. 4,78 {0.1881 

4,06 {0.1601 

1. 14 10.0451 

1,27 {0.0501 x 45° 
NOM 

0,63 {0.0251 

~---1i-t-2,41 (0.0951 MIN 

3° NOM 

0,46 {0.0181 
0,36 {0.0141 

61 62 63 64 65 66 67 68 1 2 3 4 5 6 7 8 9 

I - - - - 24.28 {0.9561 

1----------~24~.~13r+.i{0~.9~5~0~1·---------.i 
25,27 (0.9951 --------24,59 {0.9681 ______ _ 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

A-28 TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

j_ 

25,27 {0.9951 
24.59 10.9681 

L 1.35 {0.0531 
1,19 (0.047) 



• 200-ns Instruction Cycle Time 

• 544 Words of Programmable On-Chip Data 
RAM 

• 128K Words of Data/Program Space 

• Sixteen Input and Sixteen Output Channels 

• 16-Bit Parallel Interface 

• Directly Accessible External Data Memory 
Space 

• Global Data Memory Interface 

• 16-Bit Instruction and Data Words 

• 32-Bit ALU and Accumulator 

• Single-Cycle Multiply/Accumulate 
Instructions 

• 0 to 16-Bit Scaling Shifter 

• Bit Manipulation and Logical Instructions 

• Instruction Set Support for Floating-Point 
Operations 

• Block Moves for Data/Program Management 

PIN ASSIGNMENTS 

PIN FUNCTION PIN FUNCTION PIN FUNCTION 

A2 DS C11 CLKOUT1 J10 PS 

A3 D10 D1 D4 J11 iS 
A4 D12 D2 D3 K1 AO 

A5 D14 010 CLKOUT2 K2 A1 

AG Vee 011 XF K3 A3 

A7 HOLD E1 02 K4 A5 

AS RS E2 01 K5 A7 

A9 CLKX E10 HOLDA KG AS 

A10 Vee E11 DX K7 A10 

B1 Vss F1 DO KS A12 

B2 07 F2 SYNC K9 A14 

B3 09 F10 FSX K10 OS 

B4 D11 F11 X2/CLKIN K11 Vss 
B5 013 G1 INTO L2 Vss 
BG 015 G2 INT1 L3 A2 

B7 BIO G10 X1 L4 A4 

BS READY G11 BR L5 AG 

B9 CLKR H1 INT2 LG Vee 
B10 Vee H2 Vee L7 A9 

B11 IACK H10 STRB LS A 11 

C1 DG H11 R/W L9 A13 

C2 05 J1 DR L10 A15 

C10 MSC J2 FSR 

TMS32020 
DIGITAL SIGNAL PROCESSOR 

MARCH 1985-REVISED MAY 1986 

• Repeat Instructions for Efficient Use of 
Program Space 

• Five Auxiliary Registers and Dedicated 
Arithmetic Unit for Indirect Addressing 

• Serial Port for Direct Codec Interface 

• Synchronization Input for Synchronous 
Multiprocessor Configurations 

• Wait States for Communication to Slow 
Off-Chip Memories/Peripherals 

• On-Chip Timer for Control Operations 

• Three External Maskable User Interrupts 

• Input Pin Polled by Software Branch 
Instruction 

• Programmable Output Pin for Signalling 
External Devices 

• 2.4-Micron NMOS Technology 

• Single 5-V Supply 

• On-Chip Clock Generator 

6S-PIN GB 

PIN GRID ARRAY CERAMIC PACKAGE t 

(TOP VIEW) 

2 3 4 5 6 7 8 9 10 11 

A • • • • • • • • • 
B • c!J • • • • • • • (i) • 
c • • • • 
D • • • • 
E • • • • 
F • • • • 
G • • • • 
H • • • • 
J • • • • 
K • 

,., 
,_, • • • • • • • '•1 ,_ • 

L • • • • • • • • • 
t See Pin Assignments Table (Pag~ 1) and Pin Nomenclature Table 

(Page 2) for location and description of all pins. 

PRODUCTION DATA documents contain information 
current as of publication date. Products conform 
to specifications per the terms of Texas Instruments 
standard warranty. Production processing don not 
nacessarily include testing of all parameters. 

TEXAS. 
INSTRUMENTS 

Copyright ;S 1986, Texas Instruments Incorporated 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 



TMS32020 
DIGITAL. SIGNAL PROCESSOR 

PIN NOMENCLATURE 

NAME 1101zt DEFINITION 

vcc I 5-V supply pins 

Vss I Ground pins 

X1 0 Output from internal oscillator for crystal 

X2/CLKIN I Input to internal oscillator from crystal or external clock 

CLKOUT1 0 Master clock output (crystal or CLKIN frequency/4) 

CLKOUT2 0 A second clock output signal 

D15-DO 1/0/Z 16-bit data bus D15 (MSB) through DO (LSB). Multiplexed between program, data, and 1/0 

spaces. 

A15-AO O/Z 16-bit addre~s bus A 15 (MSB) through AO (LSB) 

PS,DS,iS O!Z Program, data, and 1/0 space select signals 

R/W O/Z Read/write signal 

STAB O/Z Strobe signal 

RS I Reset input 

INT2-INTO I External user interrupt inputs 

MSC 0 Microstate complete signal 

IACK 0 Interrupt acknowledge signal 

READY I Data ready input. Asserted by external logic when using slower devices to indicate that the 

current bus transaction is complete. 

BR 0 Bus request signal. Asserted when the TMS32020 requires access to an external global data 

memory space. 

XF 0 External flag output (latched software-programmable signal). 

HOLD I Hold input. When asserted, TMS32020 goes into an idle mode and puts the data, address, and 

control lines in the high-impedance state. 

HOLDA 0 Hold acknowledge signal 

SYNC I Clock synchronization input 

BIO I Branch control input. Polled by BIOZ instruction. 

DR I Serial data receive input 

CLKR I Clock for receive input for serial port 

FSA I Frame synchronization pulse for receive input 

DX O/Z Serial data transmit output 

CLKX I Clock for transmit output for serial port 

FSX 1/0/Z Frame synchronization pulse for transmit. Configurable as either an input or an output. 

t1101z Input/Output/High-impedance state. 

B-2 TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



functional block diagram 

TMS32020 
DIGITAL' SIGNAL PROCESSOR 

PROGRAM BUS 

+ 
R/W4-- t-- ,-J 
STRB+- t+-

(}_ R EADY-+ 

BR+- a: >± w 
XF+-- .... ~ .... 

HOLD-+ 
0 a: 

OLDA+--
I-

H z 
MSC+-

0 I PCl16l] (,) 

.... 

.Y 16 

Bl~-+ 

16fa 
RS_--+-

IACK+- "16 

3-L J STACK 
IN Tl2-0l (4X16l -, 

16..._ 
/ 16 -r -.. ... v 16 

~ 16,. 

A 15-AO ..._ 16 -L 

~ 16-"-~ .... 
16 fi .... -.. 

D 15-DO ... :1.... :I 16 

~ 16 -.l 

v 16 
. 

v 6 
v 8 , . 
v . 

PROGRAM BUS 

16 

..-----,---...----.....-------..---D-A_T_A_B_u_s~---.-----~------..---~-;;' 
71

6 ~fu 16 16 116_e j 

3 16 16 
AR0116) DPl9l 

' ' [SHIFTER(0-16) r--TR-1-16-l.....,LJ.: 

--,_1-;:.3_.J-~~-4~--;AuRi21~11iii6r, I MULTIPLIER 6 
( ARP(3) AR2116l 7 LSB 

3 , 
( ARBl3) 

l-3 

AR3.(16) 
)' 9 • FROM IR 

AR4(16) 

h 16 
"16 

ARAU(16l] ~ ~Q 
, ~'---------+-, 

Y15 l ""I'!.' .._ ___ .,..... ___ ~ 16.L ,. 
.. 16 

~ 
BLOCK B2 
132 x 16) 

1-·-·-·-·-·-
DAT RAM 
BLOCK B1 
1256 x 16) 

j 

)'16 

"16 

.. 
DATA/PROG 

RAM 1256 x 16) 
BLOCK BO 

~ 
16 

~ 16 

' , 
16 

DATA BUS 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

¥32 PR(32) 

32 

L SHIFTERl-6.0, 1.4) 1 
' l 132 

~~ 
(32 
t 

L ACCHI 16) ACCL{ 16[) 

32 

[ SHIFTERSIO. 1.4) ] 

l-16 

B-3 



B-4 

TMS32020 
DIGITAL SIGNAL PROCESSOR 

description 

The TMS32020 Digital Signal Processor is the second member of the TMS320 family of VLSI digital signal 
processors and peripherals. The TMS320 family supports a wide range of digital signal processing 
applications, such as telecommunications, modems, image processing, speech processing, spectrum 
analysis, audio processing, digital filtering, high-speed control, graphics, and other computation-intensive 
applications. 

With a 200-ns instruction cycle time and an innovative memory configuration, the TMS32020 performs 
operations necessary for many real-time digital signal processing algorithms. Since most instructions require 
only one cycle, the TMS32020 is capable of executing five million instructions per second. On-chip data 
RAM of 544 16-bit words, direct addressing of up to 64K words of external data memory space and 64K 
words of external program memory space, and multiprocessor interface features for sharing global memory 
minimize unnecessary data transfers to take full advantage of the capabilities of the processor. 

architecture 

The TMS32020 architecture is based upon that of the TMS32010, the first member of the TMS320 family. 
The TMS32020 increases performance of DSP algorithms through innovative additions to the TMS320 
family architecture. TMS32010 source code is upward-compatible with TMS32020 source code and can 
be assembled using the TMS32020 Macro Assembler. 

Increased throughput on the TMS32020 for many DSP applications is accomplished by means of single­
cycle multiply/accumulate instructions with a data move option, five auxiliary registers with a dedicated 
arithmetic unit, and faster 1/0 necessary for data-intensive signal processing. 

The architectural design of the TMS32020 emphasizes overall speed, communication, and flexibility in 
processor configuration. Control signals and instructions provide floating-point support, block-memory 
transfers, communication to slower off-chip devices, and multiprocessing implementations. 

Two large on-chip RAM blocks, configurable either as separate program and data spaces or as two 
contiguous data blocks, provide increased flexibility in system design. Maintaining program memory off­
chip allows large address spaces from which large programs of up to 64K words can operate at full speed. 
Programs can also be downloaded from slow external memory to high-speed on-chip RAM. A total of 64K 
data memory address space is included to facilitate implementation of DSP algorithms. The VLSI 
implementation of the TMS32020 incorporates all of these features as well as many others, such as a 
hardware timer, serial port, and block data transfer capabilities. 

32-bit ALU/accumulator 

The TMS32020 32-bit Arithmetic Logic Unit (ALU) and accumulator perform a wide range of arithmetic 
and logical instructions, the majority of which execute in a single clock cycle. The ALU executes a variety 
of branch instructions dependent on the status of the ALU or a single bit in a word. These instructions 
provide the following capabilities: 

• Branch to an address specified by the accumulator 
• Normalize fixed-point numbers contained in the accumulator 
• Test a specified bit of a word in data memory. 

One input to the ALU is always provided from the accumulator, and the other input may be provided from 
the Product Register (PR) of the multiplier or the input scaling shifter which has fetched data from the 
RAM on the data bus. After the ALU has performed the arithmetic or logical operations, the result is stored 
in the accumulator. 

The 32-bit accumulator is split into two 16-bit segments for storage in data memory. Additional shifters 
at the output of the accumulator perform shifts while the data is being transferred to the data bus for 
storage. The contents of the accumulator remain unchanged. 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



scaling shifter 

TMS32020 
DIGITAL SIGNAL PROCESSOR 

The TMS32020 scaling shifter has a 16-bit input connected to the data bus and a 32-bit output connected 
to the ALU. The scaling shifter produces a left shift of 0 to 16 bits on the input data, as programmed 
in the instruction. The LSBs of the output are filled with zeroes, and the MSBs may be either filled with 
zeroes or sign-extended, depending upon the status programmed into the SXM (sign-extension mode) bit 
of status register STO. 

16 x 16-bit parallel multiplier 

The TMS32020 has a two's complement 16 x 16-bit hardware multiplier, which is capable of computing 
a 32-bit product in a single machine cycle. The multiplier has the following two associated registers: 

• A 16-bit Temporary Register (TR) that holds one of the operands for the multiplier, and 
• A 32-bit Product Register (PR) that holds the product. 

Incorporated into the TMS32020 instruction set are single-cycle multiply/accumulate instructions that allow 
both operands to be processed simultaneously. The data for these operations resides in the on-chip RAM 
blocks and can be transferred to the multiplier each cycle via the program and data buses. 

Four product shift modes are available at the Product Register (PR) output that are useful when performing 
multiply/accumulate operations, fractional arithmetic, or justifying fractional products. 

timer 

The TMS32020 provides a memory-mapped 16-bit timer for control operations. The on-chip timer (TIM) 
register is a down counter that is continuously clocked by an internal clock. This clock is derived by dividing 
the CLKOUT1 frequency by 4. A timer interrupt (TINT) is generated every time the timer decrements to 
zero. The timer is reloaded with the value contained in the period (PRD) register within the same cycle 
that it reaches zero so that interrupts may be programmed to occur at regular intervals of 4 x (PRD) 
cycles of CLKOUT1. 

memory control 

The TMS32020 provides a total of 544 16-bit words of on-chip data RAM, divided into three separate 
blocks (BO, B1, and B2). Of the 544 words, 288 words (blocks B1 and B2) are always data memory, and 
256 words (block BO) are programmable as either data or program memory. A data memory size of 544 
words allows the TMS32020 to handle a data array of 512 words (256 words if on-chip RAM is used 
for program memory), while still leaving 32 locations for intermediate storage. When using block BO as 
program memory, instructions can be downloaded from external program memory into on-chip RAM and 
then executed. 

When using on-chip program RAM or high-speed external program memory, the TMS32020 runs at full 
speed without wait states. However, the READY line can be used to interface the TMS32020 to slower, 
less-expensive external memory. Downloading programs from slow off-chip memory to on-chip program 
RAM speeds processing while cutting system costs. 

The TMS32020 provides three separate address spaces for program memory, data memory, and 1/0. The 
on-chip memory is mapped into either the 64K-word data memory or program memory space, depending 
upon the memory configuration. The CNFD (configure block BO as data memory) and CNFP (configure 
block BO as program memory) instructions allow dynamic configuration of the memory maps through 
software. Regardless of the configuration, the user may still execute from external program memory. 

The TMS32020 has six registers that are mapped into the data memory space: a serial port data receive 
register, serial port data transmit register, timer register, period register, interrupt mask register, and global 
memory allocation register. 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 

B-5 



B-6 

TMS32020 
DIGITAL SIGNAL PROCESSOR 

0(>0000) 

31(>001Fl 
32(>00201 

65,535(>FFFF) 

0(>0000) 

31(>001Fl 
32(>0020) 

65,279( >FEFFI 
65,280( >FFOO) 

65,535( > FFFFI 

PROGRAM 

INTERRUPTS 
AND RESERVED 

I EXTERNAL I 

EXTERNAL 

PROGRAM 

INTERRUPTS 
AND RESERVED 

(EXTERNAL) 

EXTERNAL 

ON-CHIP 
BLOCK BO 

DATA 
0(>0000) 

ON-CHIP 
MEMORY-MAPPED 

REGISTERS 
5(>0005) 
6(>00061 ~ 

RESERVED 
95(>005Fl 
96(>0060) ON-CHIP 

127(>007Fl 
BLOCK B2 

128(>00801 

511(>01FFI 
RESERVED ~ 

512(>0200) 

767(>02FFI 

ON-CHIP > BLOCK BO 

768(>03001 

1023( > 03FFI 

ON-CHIP > BLOCK B1 

1024(>0400) 
EXTERNAL 

65,535( > FFFFI 

(a) ADDRESS MAPS AFTER A CNFD INSTRUCTION 

0(>0000) 

5(>00051 
6(>00061 

95(>005Fl 
96(>0060) 

127(>007Fl 
128(>00801 

511(>01FFI 
512(>0200) 

767(>02FFI 
768(>0300) 

1023( >03FFI 
1024(>0400) 

65,535( > FFFFI 

DATA 

ON-CHIP 
MEMORY-MAPPED 

REGISTERS 

;-
RESERVED 

ON-CHIP 
BLOCK B2 

RESERVED ~ 
I 

DOES NOT r EXIST 

ON-CHIP } BLOCK B1 

EXTERNAL 

(bl ADDRESS MAPS AFTER A CNFP INSTRUCTION 

FIGURE 1. MEMORY MAPS 

TEXAS '!.' 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

1/0 

0 I EXTERNAL I 
15 

PAGE 0 

PAGES 1-3 

PAGES 4-5 

PAGES 6,7 

PAGES 8-511 

1/0 

or-::::1 
15~ 

PAGE 0 

PAGES 1-3 

PAGES 4-5 

PAGES 6-7 

PAGES 8-511 



interrupts and subroutines 

TMS32020 
DIGIT AL SIGNAL PROCESSOR 

The TMS32020 has three external maskable user interrupts INT2-TNiO, available for external devices that 
interrupt the processor. Internal interrupts are generated by the serial port (RINT and XINT), by the timer 
(TINT), and by the software interrupt (TRAP) instruction. Interrupts are prioritized with reset (RS) having 
the highest priority and the serial port transmit interrupt (XINT) having the lowest priority. All interrupt 
locations are on two-word boundaries so that branch instructions can be accommodated in those locations 
if desired. 

A built-in mechanism protects multicycle instructions from interrupts. If an interrupt occurs during a 
multicycle instruction, the interrupt is not processed until the instruction is completed. This mechanism 
applies both to instructions that are repeated or become multicycle due to the READY signal. 

external interface 

The TMS32020 supports a wide range of system interfacing requirements. Program, data, and 1/0 address 
spaces provide interface to memory and 1/0, thus maximizing system throughput. 1/0 design is simplified 
by having 1/0 treated the same way as memory. 1/0 devices are mapped into the 1/0 address space using 
the processor's external address and data busses in the same manner as memory-mapped devices. Interface 
to memory and 1/0 devices of varying speeds is accomplished by using the READY line. When transactions 
are made with slower devices, the TMS32020 processor waits until the other device completes its function 
and signals the processor via the READY line. Then, theTMS32020 continues execution. 

A serial port provides communication with serial devices, such as codecs, serial A/D converters, and other 
serial systems. The interface signals are compatible with codecs and many other serial devices with a 
minimum of external hardware. The serial port may also be used for intercommunication between processors 
in multiprocessing applications. 

The serial port has two memory-mapped registers: the data transmit register (DXR) and the data receive 
register (ORR). Both registers operate in either the byte mode or 16-bit word mode, and may be accessed 
in the same manner as any other data memory location. Each register has an external clock, a framing 
synchronization pulse, and associated shift registers. One method of multiprocessing may be implemented 
by programming one device to transmit while the others are in the receive mode. 

multiprocessing 

The flexibility of the TMS32020 allows configurations to satisfy a wide range of system requirements. 
The TMS32020 can be used as follows: 

• A standalone processor 
• A multiprocessor with devices in parallel 
• A slave/host multiprocessor with global memory space 
• A peripheral processor interfaced via processor-controlled signals to another device. 

For multiprocessing applications, the TMS32020 has the capability of allocating global data memory space 
and communicating with that space via the BR (bus request) and READY control signals. Global memory 
is data memory shared by more than one processor. Global data memory access must be arbitrated. The 
8-bit memory-mapped GREG (global memory allocation register) specifies part of the TMS32020's data 
memory as global external memory. The contents of the register determine the size of the global memory 
space. If the current instruction addresses an operand within that space, BR is asserted to request control 
of the bus. The length of the memory cycle is controlled by the READY line. 

The TMS32020 supports OMA (direct memory access) to its external program/data memory using the HOLD 
and HOLDA signals. Another processor can take complete control of the TMS32020's external memory 
by asserting HOLD low. This causes the TMS32020 to place its address, data, and control lines in a 
high-impedance state and assert HOLDA. 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

B-7 



8-8 

TMS32020 
DIGITAL SIGNAt PROCESSOR 

instruction set 

The TMS32020 microprocessor implements a comprehensive instruction set that supports both numeric­
intensive signal processing operations as well as general-purpose applications, such as multiprocessing 
and high-speed control. The TMS32010 source code is upward-compatible with TMS32020 source code. 

For maximum throughput, the next instruction is prefetched while the current one is being executed. Since 
the same data lines are used to communicate to external data/program or 1/0 space, the number of cycles 
may vary depending upon whether the next data operand fetch is from internal or external program memory. 
Highest throughput is achieved by maintaining data memory on-chip and using either internal or fast external 
program. memory. 

addressing modes 

The TMS32020 instruction set provides three memory addressing modes: direct, indirect, and immediate 
addressing. 

Both direct and indirect addressing can be used to access data memory. In direct addressing, seven bits 
of the instruction word are concatenated with the nine bits of the data memory page pointer to form the 
16-bit data memory address. Indirect addressing accesses data memory through the five auxiliary registers. 
In immediate addressing, the data is based on a portion of the instruction word(s). 

In direct memory addressing, the instruction word contains the lower seven bits of the data memory address. 
This field is concatenated with the nine bits of the data memory page pointer to form the full 16-bit address. 
Thus, memory is paged in the direct addressing mode with a total of 512 pages, each page containing 
128 words. · 

Five auxiliary registers -(ARO-AR4) provide flexible and powerful indirect addressing. To select a specific 
auxiliary register, the Auxiliary Register Pointer (ARP) is loaded· with either a 0, 1, 2, 3, or a 4 for ARO 
through AR4, respectively. 

There are five types of indirect addressing: auto-increment or auto-decrement, post~indexing by either adding 
or subtracting the contents of ARO, or single indirect addressing with no increment or deGrement. All 
operations are performed on the current.auxiliary register in the same cycle as the original instruction, 
followed by a new ARP value being loaded. 

repeat feature 

A repeat feature, used with instructions such as multiply/accumulates, block moves, 1/0 transfers, and 
table read/writes, allows a single instruction to be performed up to 256 times. The repeat counter (RPTC) 
is loaded with either a data memory value (RPT instruction) or an immediate value (RPTK instruction). The 
value of this operand is one less than the number of times that the next instruction is executed. Those 
instructions that are normally multicycle are pipelined when using the repeat feature, and effectively become 
single-cycle instructions. 

instruction set summary 

Table 1 lists the symbols and abbreviations used in Table 2, the instruction set summary. Table 2 consists 
primarily of single-cycle, single-word instructions. Infrequently used branch, 1/0, and CALL instructions 
are multicycle. The instruction set summary is arranged according to function and alphabetized within each 
functional grouping. The symbol (t) indicates those instructions that are not included in the TMS32010 
instruction set. 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



SYMBOL 

B 
CM 
D 

FO 
I 
K 

PA 

PM 

R 
s 
x 

TABLE 1. INSTRUCTION SYMBOLS 

MEANING 

4-bit field specifying a bit code 
2-bit field specifying compare mode 
Data memory address field 
Format status bit 
Addressing mode bit 
Immediate operand field 

TMS32020 
DIGITAL SIGNAL PROCESSOR 

Port address (PAO through PA 1 5 are predefined 
assembler symbols equal to 0 through 15, 
respectively.) 
2-bit field specifying P register output shift 
code 
3-bit operand field specifying auxiliary register 
4-bit left-shift code 
3-bit accumulator left-shift field 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXA!': 77001 

8-9 



TMS32020· 
DIGITAL SIGNAL PROCESSOR 

B-10 

TABLE 2. INSTRUCTION srtr SUMMARY 
= 

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS 

No. 
Mnemonic Description Words Instruction Bit Code 

ABS 
ADD 
ADDH 
ADDS 

ADDTt 

ADLKt 

AND 
AND Kt 

CMPLt 
LAC 
LACK 
LACTt 

LALKt 

NEGt 
NOR Mt 
OR 
OR Kt 

SACH 
SACL 
SBLKt 

SF Lt 
SF Rt 
SUB 
SUBC 
SUBH 
SUBS 

SUBTt 

XOR 
XOR Kt 

ZAC 
ZALH 

ZALS 

Absolute value.of accumulator 
Add to accumulator with shift 
Add to high accumulator 
Add to low accumulator with 
sign extension suppressed 

Add to accumulator with shift 
specified by T register 
Add to accumulator 
long immediate with shift 
AND with accumulator 
AND immediate with accumulator with 
shift 
Complement accumulator 
Load accumulator with shift 
Load accumulator immediate short 
Load accumulator with shift 
specified by T register 
Load accumulator long 
immediate with shift 
Negate accumulator 
Normalize contents of accumulator 
OR with accumulator 
OR immediate with accumulator with 
shift 
Store high accumulator with shift 
Store low accumulator with shift 
Subtract from accumulator 
long immediate with shift 
Shift accumulator left 
Shift accumulator right 
Subtract from accumulator with shift 
Conditional subtract 
Subtract from high accumulator 
Subtract from low accumulator 
with sign extension suppressed 
Subtract from accumulator with 
shift specified by T register 
Exclusive-OR with accumulator 
Exclusive-OR immediate with 
accumulator with shift 
Zero accumulator 
Zero low accumulator and load high 
accumulator 
Zero accumulator and load low 
accumulator with sign extension 
suppressed 

2 

1 
2 

2 

1 
1 
1 
2 

1 
1 
2 

1 
2 

15 14 13 1.2 11 10 9 8 7 6 .. 5 4 3 2 1 0 
1100111000,01 1 0 1 
o o o o-s.---1-----0---• 
0 1 0 b 1 0 0 0 I D---• 
0 1 0 0 1 0 0 1 I D---

0 1 

0 1 
1 1 

0 0 1 0 1 0 I -----D---• 
o 1...:.-s---o o o o o o 1 0 

0 0 1 1 1 0 I D---• 
o 1-s---0 o o o o 1 o o 

110011100010011 
0 0 1 ' 0 ,.--s---• I ---------0 ---• 
1 1 0 0 1 0 1 o--------K---
0 1 0 0 0 0 1 0 1-----0---

1 1 
1 1 
0 1 
1 1 

0 
0 
1 

o 1-s---0 o o o o o o 1 

00111000100011 
00111010100010 
0 0 1 1 0 1 I D---
0 1-s---0 o o o o 1 o 1 

1 
1 
0 

o 1----x-1 o---· 
o o-x-1 o---• 
1-s o o o o o o 1 

1100111000011 
1100111000011 

0 0 0 
0 0 1 

o o o 1-s---1-----0---
0 1 0 0 0 1 1 1 I D---
0 1 0 0 0 1 0 0 I D---
0 1 0 0 0 1 0 1 I D---

0 1 

0 1 
1 1 

1 
0 

0 1 

0 0 0 1 0 1----- o ---

0 0 1 1 0 0 I D---
0 1-s ---o o o o o 1 1 0 

00101 000000000 
0 0 0 0 0 0 I D---

0 0 0 0 0 1 1-----0---

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS 

No. 
Mnemonic Description Words Instruction Bit Code 

CMPRt 

LAR 
LARK 
LARP 
LOP 
LDPK 

LRLKt 
MAR 
SAR 

Compare auxiliary register with 
auxiliary register ARO 
Load auxiliary register 
Load auxiliary register immediate short 
Load auxiliary register pointer 
Load data memory page pointer 
Load data memory page pointer 
immediate 
Load auxiliary register long immediate 
Modify auxiliary register 
Store auxiliary register 

1 

1 
1 
1 
1 
1 

2 
1 
1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 1 1 1 0 0 1 0 1 0 O<CM> 

0 0 1 1 o-R-1-----0---
1 1 0 0 o-R-----K----• 
0101010110001 R 
0 1 0 1 0 0 1 0 I D---
1 1 0 0 1 0 o------K----• 

1 1 
0 1 
0 1 

0 1 
0 1 
1 1 

o-R-o o o o o o o o 
0 1 0 1 I o---
o-R-1 D---• 

trhese instructions not included in the TMS32010 instruction set. 

··TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HeJUSTON. TEXAS 77001 



TMS32020 
DIGIT Al SIGNAL PROCESSOR 

TABLE 2. INSTRUCTION SET SUMMARY (CONTINUED) 

T REGISTER, P REGISTER. AND MULTIPLY INSTRUCTIONS 

No. 
Mnemonic Description Words Instruction Bit Code 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

APAC Add P register to accumulator 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 
LP Ht load high P register 1 0 1 0 1 0 0 1 1 I D 
LT load T register 1 0 0 1 1 1 1 0 0 I D 
LTA load T register and accumulate 1 0 0 1 1 1 1 0 1 I D 

previous product 
LTD load T register. accumulate previous 1 0 0 1 1 1 1 1 1 I D 

product, and move data 
LTPt load T register and store P 1 0 0 1 1 1 1 1 0 I D 

register in accumulator 
LTSt Load T register and subtract 1 0 1 0 1 1 0 1 1 I D 

previous product 
MACt Multiply and accumulate 2 0 1 0 1 1 1 0 1 I D 
MACDt Multiply and accumulate 2 0 1 0 1 1 1 0 0 I D 

with data move 
MPV Multiply (with T register, store product 1 0 0 1 1 1 0 0 0 I D 

in P register) 
MPYK Multiply immediate 1 1 0 1 K 
PAC Load accumulator with P register 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 
SPAC Subtract P register from accumulator 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 0 
SP Mt Set P register output shift mode 1 1 1 0 0 1 1 1 0 0 0 0 0 1 O<PM> 
SORAt Square and accumulate 1 0 0 1 1 1 0 0 1 I D 
SOR St Square and subtract previous product 1 0 1 0 1 1 0 1 0 I D 

BRANCH/CALL INSTRUCTIONS 

No. 
Mnemonic Description Words Instruction Bit Code 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

B Branch unconditionally 2 1 1 1 1 1 1 1 1 1 D 
BACCt Branch to address specified by 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1 

accumulator 
BANZ Branch on auxiliary register not zero 2 1 1 1 1 1 0 1 1 1 D 
BBNZt Branch if TC bit ¢ 0 2 1 1 1 1 1 0 0 1 1 D 
BBZt Branch if TC bit = 0 2 1 1 1 1 1 0 0 0 1 D 
BGEZ Branch if accumulator L·o 2 1 1 1 1 0 1 0 0 1 D 
BGZ Branch if accumulator > 0 2 1 1 1 1 0 0 0 1 1 D 
BIOZ Branch on 1/0 status = 0 2 1 1 1 1 1 0 1 0 1 D 
BLEZ Branch if accumulator :S 0 2 1 1 1 1 0 0 1 0 1 D 
BLZ Branch if accumulator < 0 2 1 1 1 1 0 0 1 1 1 D 
BNVt Branch if no overflow 2 1 1 1 1 0 1 1 1 1 D 
BNZ Branch if accumulator ¢ 0 2 1 1 1 1 0 1 0 1 1 D 
BV Branch on overflow 2 1 1 1 1 0 0 0 0 1 D 
BZ Branch if accumulator = O 2 1 1 1 1 0 1 1 0 1 D 
CALA Call subroutine indirect 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 
CALL Call subroutine 2 1 1 1 1 1 1 1 0 1 D 
RET Return from subroutine 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0 

tThese instructions not included in the TMS32010 instruction set. 

TEXAS. 
INSTRUMENTS 

B-11 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



TMS32020 
DIGITAL SIGNAL PROCESSOR 

TABLE 2. INSTRUCTION SET SUMMARY (CONCLUDED) 
.= 

CONTROL INSTRUCTIONS 

No. 
Mnemonic Description Words Instruction Bit Code 

B-12 

15 14 13 12 11 10 9 8 7 6 5 

BITt Test bit 1 1 0 0 1 B-1 
BITTt Test bit specified by T register 1 0 1 0 1 0 1 1 1 I 
CNFDt Configure block as data memory 1 1 1 0 0 1 1 1 0 0 0 0 
CNF Pt Configure block as program memory 1 1 1 0 0 1 1 1 0 0 0 0 
DINT Disable interrupt 1 1 1 0 0 1 1 1 0 0 0 0 
EINT Enable interrupt 1 1 1 0 0 1 1 1 0 0 0 0 
IDLEt Idle until interrupt 1 1 1 0 0 1 1 1 0 0 0 0 
LST Load status register STO 1 0 1 0 1 0 0 0 0 I 
LST1t Load status register ST1 1 0 1 0 1 0 0 0 1 I 
NOP No operation 1 0 1 0 1 0 1 0 1 0 0 0 
POP Pop top of stack to low accumulator 1 1 1 0 0 1 1 1 0 0 0 0 
POPDt Pop top of stack to data memory 1 0 1 1 1 1 0 1 0 I 
PSHDt Push data memory value onto stack 1 0 1 0 1 0 1 0 0 I 
PUSH Push tow accumulator onto stack 1 1 1 0 0 1 i' 1 0 0 0 0 
ROVM Reset overflow mode 1 1 1 0 0 1 1 1 0 0 0 0 
RPTt Repeat instruction as specified 1 0 1 0 0 1 0 1 1 I 

by data memory value 
RPTKt Repeat instruction as specified 1 1 1 0 0 1 0 1 1 

by immediate value 
RSX Mt Reset sign-extension mode 1 1 1 0 0 1 1 1 0 0 0 0 
SOVM Set overflow mode 1 1 1 0 0 1 1 1 0 0 0 0 
SST Store status register STO 1 0 1 1 1 1 0 0 0 I 
SST1t Store status register ST1 1 0 1 1 1 1 0 0 1 I 
SSXMt Set sign-extension mode 1 1 1 0 0 1 1 1 0 0 0 0 
TR A Pt Software interrupt 1 1 1 0 0 1 1 1 0 0 0 0 

1/0 AND DATA MEMORY OPERATIONS 

No. 
Mnemonic Description Words Instruction Bit Code 

15 14 13 12 11 10 9 8 7 

BLKDt Block move from data memory to 2 1 1 1 1 1 1 0 1 I 
data memory 

BLKPt Block move from program memory 2 1 1 1 1 1 1 0 0 I 
to data memory 

DMOV Data move in data memory 1 0 1 0 1 0 1 1 0 I 
FORTt Format serial port registers 1 1 1 0 0 1 1 1 0 0 
IN Input data from port 1 1 0 0 o-PA-1 
OUT Output data to port 1 1 1 1 o-PA-1 
RTXMt Reset serial port transmit mode 1 1 1 0 0 1 1 1 0 0 
RX Ft Reset external flag 1 1 1 0 0 1 1 1 0 0 
STX Mt Set serial port transmit mode 1 1 1 0 0 1 1 1 0 0 
SXFt Set external flag 1 1 1 0 0 1 1 1 0 0 
TBLR Table read 1 0 1 0 1 1 0 0 0 I 
TBLW Table write 1 0 1 0 1 1 0 0 1 I 

tThese instructions not included in the TMS32010 instruction set. 

TEXAS~ 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

6 5 

0 0 

0 1 
0 0 
0 1 
0 0 

4 3 2 1 0 

D 
D 

0 0 1 0 0 
0 0 1 0 1 
0 0 0 0 1 
0 0 0 0 0 
1 1 1 1 1 

D 
D 

0 0 0 0 0 
1 1 1 0 1 

D 
D 

1 1 1 0 0 
0 0 0 1 0 

D 

K 

0 0 1 1 0 
0 0 0 1 1 

D 
D 

0 0 1 1 1 
1 1 1 1 0 

4 3 2 1 0 

D 

D 

D 
0 1 1 1 FO 

D 
D 

0 0 0 0 0 
0 1 1 0 0 
0 0 0 0 1 
0 1 1 0 1 

D 
D 



TMS32020 
DIGITAL SIGNAL PROCESSOR 

development systems and software support 

Texas Instruments offers concentrated development support and complete documentation for designing 
a TMS32020-based microprocessor system. When developing an application, tools are provided to evaluate 
the performance of the processor, to develop the algorithm implementation, and to fully integrate the 
design's software and hardware modules. When questions arise, additional support can be obtained by 
calling the nearest Texas Instruments Regional Technology Center (RTC). 

Sophisticated development operations are performed with the TMS32020 Macro Assembler/Linker, 
Simulator, and Emulator (XDS). The macro assembler and linker are used to translate program modules 
into object code and link them together. This puts the program modules into a form which can be loaded 
into the TMS32020 Simulator or Emulator. The simulator provides a quick means for initially debugging 
TMS32020 software while the emulator provides the real-time in-circuit emulation necessary to perform 
system level debug efficiently. 

Table 3 gives a complete list of TMS32020 software and hardware development tools. 

TABLE 3. TMS32020 SOFTWARE AND HARDWARE SUPPORT 

MACRO ASSEMBLERS/LINKERS 

Host Computer Operating System Part Number 

DEC VAX VMS TMDS3241210-08 

Tl/IBM PC MS/PC-DOS TMDS3241810-02 

SIMULATORS 

Host Computer Operating System Part Number 

DEC VAX VMS TMDS3241211-08 

Tl/IBM PC MS/PC-DOS TMDS3241811-02 

EMULATORS 

Model Power Supply Part Number 

XDS/11 5 V @ 5 A required TMDS3261120 

XDS/22 Included TMDS3262220 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

B-13 



TMS32020 
DIGITAL SIGNAL. PROCESSOR 

absolute maximum ratings over specified temperature range (unless otherwise noted) t 

Supply voltage range, Vcct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 v to 7 v 
Input voltage range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.3 V to 7 V 
Output voltage range ................................................. - 0.3 V to 7 V 
Continuous power dissipation ................................................. 2.0 W 
Operating free-air temperature range ....................................... 0°C to 70°C 
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 55 °C to 150 °C 

tstresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating 
only and functional operation of the device at these or any other conditions beyond those indicated in the. "Recommended Operating 
Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect 
device reliability. 

:!:All voltage values are with respect to Vss· 

recommended operating conditions 

Vee Supply voltage 

Vss Supply voltage 

All inputs except CLKIN 
V1H High-level input voltage 

CLKIN 

All inputs except CLKIN 
V1L Low-level input voltage 

CLKIN 

IOH High-level output current 

IOL Low-level output current 

TA Operating free-air temperature (Notes 1 and 2) 

NOTES: 1. Case temperature !Tel must be maintained below 90°C. 
2. RIJJA = 36 °C/Watt; RIJJC = 6 °C/Watt. 

MIN NOM MAX 

4.75 5 5.25 

0 

2 Vcc+0.3 
2.4 Vcc+o.3 

-0.3 0.8 

-0.3 0.8 

300 

2 

0 70 

electrical characteristics over specified free-air temperature range (unless otherwise noted) 

PARAMETER TEST CONDITIONS MIN TYPt MAX 

VoH High-level output voltage Vee = MIN, loH = MAX 2.4 3 

VOL Low-level output voltage Vee = MIN, loL = MAX 0.3 0.6 

lz Three-state current Vee =MAX -20 20 

11 Input current v1 = Vss to Vee -10 10 

TA= 0°C, Vee = MAX, fx = MAX 360 

ice Supply current TA = 25°C, Vee = 5 v. fx = MAX 250 

Tc = 90°C, Vee = MAX, fx = MAX 285 

C1 Input capacitance 15 

Co Output capacitance 15 

t All typical values are at Vee 25°C . 

• 

UNIT 

v 
v 
v 
v 
v 
v 

µA 

mA 
oc 

UNIT 

v 
v 

µA 

µA 

mA 

mA 

mA 

pF 

pF 

,Ji,,t.,. ..... Caution. This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic 
-- fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according 
to MIL-STD-883C, Method 301 5; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum 
rated voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together or the device 
should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriate logic voltage level, preferrably 
either Vee or ground. Specific guidelines for handling devices of this type are contained in the publication "Guidelines for Handling Electrostatic­
Discharge Sensitive (ESDS) Devices and Assemblies" available from Texas Instruments . 

B-14 
. TEXAS. 

INSTRUMENTS 
POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



TMS32020 
DIGIT AL SIGNAL PROCESSOR 

CLOCK CHARACTERISTICS AND TIMING 

The TMS32020 can use either its internal oscillator or an external frequency source for a clock. 

internal clock option 

The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN (see Figure 2). The 
frequency of CLKOUT1 is one-fourth the crystal fundamental frequency. The crystal should be fundamental 
mode, and parallel resonant, with an effective series resistance of 30 ohms, a power dissipation of 1 mW, 
and be specified at a load capacitance of 20 pF. 

PARAMETER 

fx Input clock frequency 

fsx Serial port frequency 

C1, C2 

external clock option 

TEST CONDITIONS 

TA = 0 °C to 70 °C 

TA = 0°c to 70°C 

TA = 0°C to 70°C 

X1 X2/CLKIN 

CRYSTAL 

--..... ot---

FIGURE 2. INTERNAL CLOCK OPTION 

MIN TYP MAX UNIT 

6.7 20.5 MHz 

50 2563 kHz 

10 pF 

An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X 1 left 
unconnected. The external frequency injected must conform to the specifications listed in the following table. 

switching characteristics over recommended operating conditions (see Note 3) 

PARAMETER MIN TYP MAX UNIT 

tc(C) CLKOUT1 /CLKOUT2 cycle time 195 597 ns 

td(CIH-C) CLKIN high to CLKOUT1 /CLKOUT2/STRB high/low 25 50 ns 

tf(CI CLKOUT1 /CLKOUT2/STRB fall time 10 ns 

tr(C) CLKOUT1/CLKOUT2/STRB rise time 10 ns 

tw(Cll CLKOUT1 /CLKOUT2 low pulse duration 20-15 20 20+15 ns 

tw(CHI CLKOUT1 /CLKOUT2 high pulse duration 20-15 20 20+15 ns 

td_lC 1 -C 2_l CLKOUT1 high to CLKOUT2 low, CLKOUT2 high to CLKOUT1 high, etc. 0-10 0 O+ 10 ns 

NOTE 3: 0 = 1/4tc(C)· 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

B-15 



TMS32020 
DIGITAL SIGNAL PROCESSOR 

timing requirements over recommended operating conditions (see Note 3) 

tc(CI) CLKIN cycle time 

tf(CI) CLKIN fall time 

tr(CI) CLKIN rise time 

tw(CIL) CLKIN low pulse duration, tc(CI) = 50 ns (Note 4) 

tw(CIH) CLKIN high pulse duration, tc(CI) = 50 ns (Note 4) 

tsu(S) S'f1'lC setup time before CLKIN low 

th(S) ~ hold time from CLKIN low 

NOTES: 3. Q = 1 /4tc(C)· 

B-16 

4. CLKIN duty cycle [tr(CI) + tw(CIH)lltc(CI) must be within 40-60%. 

2.15 v 

Rt = 825 ll 

FROM OUTPUT o---• 
UNDER TEST ---<> TEST 

2.0 v .... 
1.88 v--
0.92 v .... 

POINT r c, = 100 .. 

FIGURE 3. TEST LOAD CIRCUIT 

V1H (MIN) 

0.80 v _._...m;;;;;.;;;;,;;,...:; 

2.ov-
0.8 v 

0 

0 

(a) INPUT 

----- VoH (MIN) 

(bl OUTPUTS 

FIGURE 4. VOLTAGE REFERENCE LEVELS 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 

MIN NO.M MAX UNIT 

48.8 ... 150 ns 

10 ns 

10 ns 

10 40 ns 

10 40 ns 

10 Q-10 ns 

15 ns 



clock timing 

X2/CLKIN 

CLKOUT1 

CLKOUT2 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

TMS32020 
DIGITAL SIGNAL PROCESSOR 

'--

B-17 



TMS32020 
DIGITAL SIGNAL PROCESSOR 

MEMORY AND PERIPHERAL INTERFACE TIMING 

switching characteristics over recommended operating conditions (see Note 3) 

PARAMETER .. MIN TVP MAX UNIT 

td(C1-S) STAB from CLKOUT1 (if STAB ts present) Q-15 Q Q+ 15 ns 

td(C2-S) CLKOUT2 to STAB (if STAB is present) -15 0 15 ns 

tsu(AI Address setup time before STAB low (Note 51 Q-30 ns 

th(A) Address l)old time after STAB high (Note 5) Q-15 ns 

tw(SL) Si'RB low pulse duration (no wait states. Note 6) 2Q ns 

tw(SH) 'Sm high pulse duration (between consecutive cycles, Note 6) 2Q ns 

tsu(D)W Data write setup time before 'Sm high (no wait states) 20-45 ns 

th(D)W. Data write hold time from Si'RB high Q-15 Q ns 

ten(D) Data bus starts being driven after 'S'fiIB low (write cycle) 0 ns 

tdis(D) Data bus three-state after 'S'mB high (write cycle) Q Q+30 ns 

td(MSCI M'SC valid from CLKOUT1 -25 0 25 ns 

Q = 1/4~C)· 
A 15-AO, PS, OS, iS, R/W, and~ timings are all included in timings referenced as "address." 

NOTES: 3. 
5. 
6. Delays between CLKOUT1 /CLKOUT2 edges and STAB edges track each other, resulting in tw(SLI and tw(SHI being 2Q with no 

wait states. 

timing requirements over recommended operating conditions (see Note 3) 

MIN 

ta(A) Read data access time from address time (read cycle, Notes 5 and 7) 

tsu(DIR Data read setup time before STAB high 40 

th(DIR Data read hold time from STAB high 0 

td(SL-R) READY valid after STAB low (no wait states) 

td(C2H-R) READY valid after CLKOUT2 high 

th(SL-RI READY hold time after 'S'i'RB low (no wait states) Q-5 

th{C2H-R) READY hold after CLKOUT2 high Q-5 

td(M-RI READY valid after MSC valid 

thlM-fil. READY hold time after MSC valid 0 

NOTES: 3. Q = 1 /4tQ!_C)· 
5. A 15-AO, PS, tIB, iS, R/W, and mt timings are all included in timings referenced as "address." 
7. Read data access time is defined as ta(A) = tsu(A) + tw(SLI - tsu(D)R· 

B-18 
TEXAS ..If 

INSTRUMENTS 
POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

NOM MAX UN1T 

30-70 ns 

ns 

ns 

Q-40 ns 

Q-40 ns 

ns 

ns 

2Q-50 ns 

ns 



memory read timing 

memory write timing 

CLKOUT1 

CLKOUT2 

STRB 

A15-AQ._ 
BR.PS.OS. 
OR iS 

R/W 

READY 

015-00 

CLKOUT1 

\ 

jf If td(C1-S) 
I I 

/i '1 I 
I 
I I 
I 

,. 
I /1 

I 
~ 
I 

TMS32020 
DIGITAL SIGNAL PROCESSOR 

\ 
td(C1-S) 

I \i I I 
tdlC2-Sl -it-tj ~ td(C2-S) 

) I 

tsu(A) 14 
l: ~ ~ tw(SH) ~ 

I 
--41 I I 

t-- tw(SL) I ~ th(A) 

VALID 

~ta(A) ~ I I 

Y/11 : F tsu(O)R ~ 
__ _....,,,,.,.. I I I I • --! I I-t ~ I ~ I 1 

h(SL-R) j I i -tt i.._ th(O)R 

________ 1 --<( D~~A }~----

\ ___ ! '--
CLKOUT2 I \ __ _ , ___ , 
STRB 

A15-AO. 
BR.PS.OS. 
OR IS 

R/W 

READY 

D15-DO 

\ 'i __ --.JA 
tsu(A) r th(A) ---------

VALID 

I 

• 
DATA OUT 

TEXAS~ 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

I ---

B-19 



TMS32020 
DIGITAL SIGNALPROCESSOR 

one wait-state memory access timing 

CLKOUT1 

CLKOUT2 

A15-AO,IR, 
PS,DS.R/W, 
ORIS 

READY 

D15-DO 
(FOR READ 
OPERATION) 

D15-DO 
(FOR WRITE 
OPERATION) 

~. /i 
~J1------1. I 

\ ___ ! \__ 
I 

--+----" ! \ t : I I 
----1 I I I .. \~ : I 

I \ I I 

I I ! ~---~ th(C2H-Rl 

\ __ _ 
I 

•. ,. VALID . . . . )8( 
.. ---•I -+-I th(C2H-Rl t..au. . I I I. .. . . 

tcltC2H-RI -*"1 I I · . ·· · . -.m.-2fAAI ~ I 

--~-td(M-RI ~ .. I I td(M-RI i. " ~ th(M-RI 

i I -+i ~ th(M-RI I I I I<' DATA )>-----
11 I I I I I. IN . 
I l I I I I I 
I I I I I I 

I!.. - DATA OUT 

i 1 I I i i 

~~1Msc1~ --ti r-- td(MSCI 

·.· TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 



RS, INT, BIO, and XF TIMING 

TMS32020 
DIGITAL , SIGNAL PROCESSOR 

switching characteristics over recommended operating conditions (see Note 3) 

PARAMETER MIN TYP MAX UNIT 

td(RS) CLKOUT1 low to reset state entered 45 ns 

td(IACK) CLKOUT1 to IACK valid -25 0 25 ns 

td_lXli XF valid before falling edge of STAB Q-30 ns 

NOTE 3: Q = 1 /4tc(C)· 
8. RS, INT, and BIO are asynchronous inputs and can occur at any time during a clock cycle. However, if the specified setup 

time is met, the exact sequence shown in the timing diagrams will occur. 

timing requirements over recommended operating conditions (see Note 3) 

MIN NOM MAX UNIT 

tsu(IN) INT/BIO/RS setup before CLKOUT1 high 50 ns 

th(IN) INT /BIO/RS hold after CLKOUT 1 high 0 ns 

tf(IN) INT/BIO fall time 15 ns 

tw(IN) INT /BIO low pulse duration tc(C) ns 

twJ_RS_l_ RS low pulse duration 3tG.1_C_l ns 

NOTE 3: Q = 1 /4tc(C)· 
8. RS, INT, and BIO are asynchronous inputs and can occur at any time during a clock cycle. However, if the specified setup time 

is met, the exact sequence shown in the timing diagrams will occur. 

reset timing 

t Control signals are OS, IS, R/W and XF. 
:t Serial port controls are DX and FSX. 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

B-21 



TM,S32Q20 
DIGl'FAL SIGNAL PROC,ESSOR 

interrupt timing 

CLKOUT1 

INT2-INTO 

A15-AO 

IACK 

BIO timing 

B-22 

I 
I 
I 

-+11"---!z:! 
I I 1 

~tw(IN) 
I I 

-+I ~ tf(INI 

~ FETCH N 

CLKOUT1 

A15-AO 

·--1 
I 
I 
I 
I 

---+! f4- th(IN) 

I ~,-----------
: ;J-
I I 
I I 

FETCH N +, __ FE_Tc_H_• _X FETCH , +, K 

PC=N 
I I 

PC=N+1 

t++f- thllNI 
tsu(IN) {+-+I I 

I I I 
I I I 

PC=N+2 
OR BRANCH ADDRESS 

-VALID-

! I I 

BIO 

'TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



external flag timing 

CLKOUT1 \ I \ I \ 
STRB 

-1 
A15-AO 

FETCH 
VALID .SXF/RXF 

PC=N PC=N+1 I 
I 
I 
I 
I 

XF 
I 

· TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

TMS32020 
DIGITAL SIGNAL PROCESSOR 

I \_ 

I 
I+- td(XFI 
I 

VALID 

PC=N+2 

VALID 

B-23 



TMS32020 
DIGITAL SIGNAL PROCESSOR 

HOLD. TIMING 

switching characteristics over recommended operating conditions (see Note 3) 

PARAMETER MIN TYP MAX UNIT 

td(C1L-ALl R'5LI5A low after CLKOUT1 low -25 25 ns 

tdis(AL-A) HC5U5A low to address three-state 15 ns 

tdis(C 1 L-A) Address three-state after CLKOUT1 low (HOLD mode, Note 5) 30 ns 

td(HH-AHl HOLD high to HOLDA high 50 ns 

tenJ_A-C 1 L_l Address driven before CLKOUT1 low (HOLD mode, Note 5) 10 ns 

NOTES: 3. 0 = 1 /4~Cl· 
5. A 15-AO, PS, 'IIB, TS, R/W, and BR timings are all included in timings referenced as "address." 

timing requirements over recommended operating conditions (see Note 31 

MIN NOM MAX UNIT 

td(C2H-Hl HQ[i5 valid after CLKOUT2 high 0-40 ns 

NOTE: 3. 0 = 1/4tc(C)· 

HOLD timing (part A) 

CLKOUT1 \ I \ I \ I \_\ I \ I 

A \ I \ I \ I I \__ CLKOUT2 I 
I 

I 

I \ I \ I • STiii " I _..., ~ td(C2H-HI I I 

'i 
I I 

HOLD I I 
I I 

I I I 
I I I • A15-AO ~ N 

* 
N+1 

* 
N+2 

I I 

PS.OS. ~ VALID 

* 
VALID * VALID -ORIS 

I I 

R/W ..... "It= .... IC1L-A] 

0 0 015-DO I I 
I I 
I I 
I I 

N N+1 N/A •4 ! I N/A 
FETCH 4 •4 •4 • I ' I 

I I 
I I DEAD N-1 N DUMMY I 

EXECUTE 4 •4 ~4 ~4. ~ 
II 

1-+t I+- ldis(AL-AI 

--- '\l.' HOLDA I I! 

td(C1 L-ALI --..! I+--

B-24 TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



HOLD timing (part Bl 

CLKOUT1 

CLKOUT2 
I 
I 
I 

STRB I 
I 

---+! 
HOLD 

A15-AO 

PS.OS, 
OR iS 

R/W 

D15-DO 

FETCH 4 

EXECUTE 4 

HOLDA 

I • I 
I I 
I I t"IC2H~HJ 
I I 
~ If'- ten(A-C1LI 

I I 

I I 

• I 
I 
I 
I I 
I • I 
I 
I I 
I I 
I 

-I 
I 
I 
I 
I 
I 
I 
I 
I 

N/A N/A 
•4 .. 

DEAD DEAD 
I .. 
I 
I 
I I 

--.l/i+- td(HH-AHI 
I 

TEXAS 'J> 
INSTRUMENTS 

N+2 

VALID 

0 
N+2 

N + 1 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

TMS32020 
DIGITAL SIGNAL PROCESSOR 

\ I 

* N+3 ) 

* VALID ) 

0-
N+3 

N+2 

B-25 



TMS32020 
DIGIT AL SIGNAL PROCESSOR 

SERIAL PORT TIMING 

switching characteristics over recommended operating conditions (see Note 3) 

PARAMETER MIN TYP 

td(CH-DX) DX valid after CLKX rising edge (Note 9) 

td(FL-DX) DX valid after FSX falling edge (TXM = 0, Note ·9) 

td_.LCH-FS_l FSX valid after CLKX rising edge (TXM = 1) 

NOTES: 3. 0 = 1 /4tc(C)· 
9. The last occurrence of FSX falling and CLKX rising. 

timing requirements over recommended operating conditions (see Note 3) 

MIN NOM 

tc(SCK) Serial port clock (CLKX/CLKR) cycle time 390 

tf(SCK) Serial port .clock JCLKX/CLKRJ fall time 

tr(SCK) Serial port clock (CLKX/CLKR) rise time 

tw(SCK) Serial port clock (CLKX/CLKR) low pulse duration (see Note 101 150 

tw(SCK) Serial port clock (CLKX/CLKR) high pulse duration (see Note 10) 150 

tsu(FS) FSX/FSR setup time before (CLKX/CLKR) falling edge (TXM = 0) 20 

th(FS) FSX/FSR hold time after (CLKX/CLKR) falling edge (TXM = 0) 20 

tsu(DR) DR setup time before CLKR falling edge 20 

th_.LDR_l DR hold time after CLKR falling edge 20 

NOTES: 3. 0 = 1 /4tc(C)· 
10. The duty cycle of the serial port clock must be within 40-60%. 

serial port receive timing 

CLKR 

FSR 

DR 

serial port transmit timing 

CLKX 

FSX ! t 
{INPUT,TXM=OI ' t t 

: ! t : : +-----tt tcl(CH-DX) I ' t 
' I d(FL-DXI ~I ,4 ~-DX) 

DX rt if-1su(FSI ! ,--N-=-,--~ N=B,16 

-.! ~ 1d(CH-FSI ___.: :+""- ld(CH-FSI 

r~~TPUT,TXM = 11 __/,"": _....__....__'""'\ ... ' --------tl ~-----------

8-26 
TEXAS 'I!> 

INSTRUMENTS 
POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

MAX UNIT 

100 ns 

50 ns 

60 ns 

MAX UNIT 

20,000 ns 

50 ns 

50 ns 

12,000 ns 

12,000 ns 

ns 

ns 

ns 

ns 



MECHANICAL DATA 

TMS32020 
DIGITAL SIGNAL PROCESSOR 

68-pin GB pin grid array ceramic package 

/ I I 

THERMAL RESISTANCE CHARACTERISTICS 
--18.448(1.120) 

27.432 (1.080) 

R11JA 

R11JC 

PARAMETER 

Junction-to-free-air 

thermal resistance 

Junction-to-case 

thermal resistance 

MAX UNIT 

36 °C/W 

6 °C/W 

4,953 (0.195) 
2,032 (0.080) 

3,302 (0.130) 
2,794 (0.110) 

17 ,02 (0.670) 

.________._ i 
J 

I ~ 1,397 (0.055) 
I L.£ MAX 

K-~ 1f 1f ir ir ir ir 1f m-1f, 
0,508 (0.020)-l~ w__ 1,575 (0.062) DIA 
0.406 (0.016) 1.4 73 (0.058) 

BOTTOM VIEW 2,54 (0.100)t1 
T.P. 

r-+----i,.....-~~~~~~~~~~----. 

L I ©0eeeeeee-1 
K 000 e e e e e e0e·-t2.54(o.1001 

J e e e e T.P. 

Hee ee 

Gee ee 

Fee ee 

Eee ee 

oee ee 

NOM 
c e e 0 0 =£1.524 (0.060) 

a e0eeeeeeeee 4PLACEs 

A eeeeeeeee-_j__ 

2 3 4 5 6 1 8 9 10 11 L1.21(0.0501 
NOM 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

TEXAS~ 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

B-27 



B-28 



ADVANCE 
INFORMATION 

• 200-ns Instruction Cycle 

• 144-Word On-Chip Data RAM 

• ROMless Version - TMS320C10 

• 1.5K-Word On-Chip Program ROM 
TMS320CM10 

• External Memory Expansion to a Total of 4K 
Words at Full Speed 

• 16-Bit Instruction/Data Word 

• 32-Bit ALU/Accumulator 

• 16 x 16-Bit Multiply in 200 ns 

• 0 to 16-Bit Barrel Shifter 

• Eight Input and Eight Output Channels 

• 16-Bit Bidirectional Data Bus with 
40-Megabits-per-Second Transfer Rate 

• Interrupt with Full Context Save 

• Signed Two's-Complement Fixed-Point 
Arithmetic 

• CMOS Technology 

• Single 5-V Supply 

description 

The TMS320C 1 0 is the first low-power CMOS 
member of the Texas Instruments TMS320 
family of Digital Signal Processors. This device 
is a CMOS pin-for-pin compatible version of the 
industry-standard TMS32010 Digital Signal 
Processor. The 100-mW typical power 
dissipation of the TMS320C 10 enables power­
sensitive applications to take advantage of the 
TMS3201 O's high performance. The 16/32-bit 
microcomputer was designed to support a wide 
range of high-speed and numeric-intensive 
applications. The TMS320C 10 combines the 
flexibility of a high-speed controller with the 
numerical capability of an array processor, 
thereby offering an inexpensive alternative to 
multichip bit-slice processors. The highly 
pipelined architecture and efficient instruction 
set of the TMS320C 10 provides the capability 
of executing more than five million instructions 
per second. The instruction set is easily 
programmed and contains general-purpose as 
well as digital signal processing instructions. 

CLKOUT 
X1 

X2/CLKIN 
BIO 
NC 

Vss 
D8 
DS 

D10 
D11 
D12 

ADVANCE INFORMATION documents contain 
information on new 11roducts in the samplin~ or 
preproduction phase of development. Characteristic 
ilata and other specifications are subject to change 
without notice. 

TEXAS. 
INSTRUMENTS 

TMS320C10 
DIGITAL SIGNAL PROCESSOR 

JANUARY 1986 

A 1/PA 1 
AO/PAO 
MC/MP 

RS 
INT 

CLKOUT 
X1 

X2/CLKIN 
BIO 

Vss 
D8 
DS 

D10 
D 11 
D12 
D13 
D14 
D15 

D7 
D6 

.N PACKAGE 

(TOP VIEW) 

FN PACKAGE 

(TOP VIEW) 

IC.. 0 ~ N 
:2: <( <( <( 

A2/PA2 
A3 
A4 
A5 
A6 
A7 
A8 
MEN 
DEN 
WE 

Vee 
AS 
A10 
A 11 
DO 
D1 
D2 
D3 
D4 

D5 

~ c... c... c... 
I..... I(/) u 0 ;::: u N (") ~ LO co 
~ a: :2: <( <( z <( <( <( <( <( 

7 
8 
9 
10 

11 
12 
13 
14 
15 
16 
17 

6 5 4 3 2 1 4443424140 
0 

18 19 20 21 22 23 24 25 26 27 28 

U (") ~ LO I' CO LO ~ C"l N U 
z~~~ooooooz 

Cl Cl Cl 

39 
38 
37 
36 
35 
34 
33 
32 
31 
30 
29 

A7 
A8 
MEN 
DEN 
WE 

Vee 
AS 
A10 
A 11 
DO 
D1 

Copyright © 1986, Texas Instruments Incorporated 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

C-1 



TMS320C10 

C-2 

DIGIT AL SIGNAL PROCESSOR 

PIN NOMENCLATURE 

NAME 1/0 DEFINITION 

A 11-AO/PA2-PAO 0 External address bus. 1/0 port address multiplexed over PA2-PAO. 

BIO I External polling input for bit test and jump operations. 

CLKOUT 0 System clock output, 1/4 crystal/CLKIN frequency. 

015-00 1/0 16-bit data bus. 

DEN 0 Data enable indicates the processor accepting input data on D 1 5-DO. 

INT I Interrupt. 

MC/MP I Memory mode select pin. High selects microcomputer mode. Low selects microprocessor 

mode. 

MEN 0 Memory enable indicates that 015-DO will accept external memory instruction. 

NC No connection. 

RS I Reset used to initialize the device. 

Vee I Power. 

Vss I Ground. 

WE 0 Write enable indicates valid data on 015-00. 

X1 I Crystal input. 

X2/CLKIN I Crystal input or external clock input. 

The TMS320 family's unique versatility and power give the design engineer a new approach to a variety 
of complex applications. In addition, these microcomputers are capable of providing the multiple functions 
often required for a single application. For example, the TMS320 family can enable an industrial robot to 
synthesize and recognize speech, sense objects with radar or optical intelligence, and perform mechanical 
operations through digital servo-loop computations. 

architecture 

The TMS320 family utilizes a modified Harvard architecture for speed and flexibility. In a strict Harvard 
architecture, program and data memory lie in two separate spaces, permitting a full overlap of the instruction 
fetch and execution. The TMS320 family's modification of the Harvard architecture allows transfers 
between program and data spaces, thereby increasing the flexibility of the device. This modification permits 
coefficients stored in program memory to be read into the RAM, eliminating the need for a separate 
coefficient ROM. It also makes available immediate instructions and subroutines based on computed values. 

The TMS320C10 utilizes hardware to implement functions that other processors typically perform in 
software. For example, this device contains a hardware multiplier to perform a multiplication in a single 
200-ns cycle. There is also a hardware barrel shifter for shifting data on its way into the ALU. Finally, 
extra hardware has been included so that auxiliary registers, which provide indirect data RAM addresses, 
can be configured in an autoincrement/decrement mode for single-cycle manipulation of data tables. This 
hardware-intensive approach gives the design engineer the type of power previously unavailable on a single 
chip. 

32-bit ALU/accumulator 

The TMS320C 10 contains a 32-bit ALU and accumulator that support double-precision arithmetic. The 
ALU operates on 16-bit words taken from the data RAM or derived from immediate instructions. Besides 
the usual arithmetic instructions, the ALU can perform Boolean operations, providing th.e bit manipulation 
ability required of a high-speed controller. 

TEXAS -I/} 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



functional block diagram 

X1 
CLKOUT X2/CLKIN 

WE 

DEN a: w 
MEN 

_, _, 
0 

BIO a: 
I-z 

MC/MP 0 
CJ 

12 

12 (/) 

16 

INSTRUCTION 

TMS320C10 
DIGITAL SIGNAL PROCESSOR 

INT 

RS 
.--+~~~--~~--- fil PROGRAM 

A11-AO/ 
PA2-PAO 

3 

ARO (161 I 

AR1 1161 I 

LEGEND: 

ACC = Accumulator 

ARP= Auxiliary register pointer 

ARO= Auxiliary register 0 

AR1 = Auxiliary register 1 

DP Data page pointer 

PC 
p 

T 

Program counter 

P register 

T register 

STACK 
4 x 12 

16 

8 

a: ROM 
g (1536 x 161 
c:C 

PROGRAM BUS 

ADDRESS 

DATA RAM 
(144 x 161 

DATA 

16 

DATA BUS 

TEXAS .. 
INSTRUMENTS 

SHIFTER 
10-151 

32 

~1-t..-- D15-DO 

16 

Tl161 

MULTIPLIER 

P(321 

32 

ALU (321 

32 

ACC (321 

32 

32 

SHIFTER 10. 1, 41 16 

16 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

16 

C-3 



C-4 

TMS320C10 
DIGITAL SIGNAL PROCESSOR 

shifters 

A barrel shifter is available for left-shifting data 0 to 1 5 places before it is loaded into, subtracted from, 
or added to the accumulator. This shifter extends the high-order bit of the data word and zero-fills the 
low-order bits for two's-complement arithmetic. A second shifter left-shifts the upper half of the accumulator 
0, 1, or 4 places while it is being stored in the data RAM. Both shifters are useful for scaling and bit 
extraction. 

16 x 16-bit parallel multiplier 

The TMS320C 1 O's multiplier performs a 16 x 16-bit, two's-complement multiplication in one 200cns 
instruction cycle. The 16-bitT Register temporarily stores the multiplicand; the P Register stores the 32-bit 
result. Multiplier values either come from the data memory or are derived immediately from the MPYK 
(multiply immediate) instruction word. The fast on-chip multiplier allows the TMS320C10 to perform such 
fundamental operations as convolution, correlation, and filtering at the rate of better than 3 million samples 
per second. 

program memory expansion 

The TMS320CM 10 is equipped with a 1536-word ROM, which is mask-programmed at the factory with 
a customer's program. It can also execute from an additional 2560 words of off-chip program memory 
at full speed. This memory expansion capability is especially useful for those situations where a customer 
has a number of different applications that share the same subroutines. In this case, the common subroutines 
can be stored on-chip while the application specific code is stored off-chip. 

The TMS320CM 10 can operate in either of the following memory modes via the MC/MP pin: 

Microcomputer Mode (MC) - Instruction addresses 0-1.535 fetched from on-chip ROM; instruction 
addresses 1536-4095 fetched from off-chip memory at full speed. 

Microprocessor Mode (MP) - Full-speed execution from all 4096 off-chip instruction addresses. 

The TMS320C 10 is identical to the TMS320CM 10, except that the TMS320C 10 operates only in the 
microprocessor mode. Henceforth, TMS320C 10 refers to both versions. 

The ability of the TMS320C 10 to execute at full speed from off-chip memory provides the following 
important benefits: 

• Easier prototyping and development work than possible with a device that can address only on-chip ROM, 
• Purchase of a standard off-the-shelf product rather than a semicustom mask-programmed device, 
• Ease of updating code, 
• Execution from external RAM, 
• Downloading of code from another microprocessor, and 
• Use of off-chip RAM to expand data storage capability. 

input/output 

The TMS320C 1 O's 16-bit parallel data bus can be utilized to perform 1/0 functions at burst rates of 40 
million bits per second. Available for interfacing to peripheral devices are 128 input and 128 output bits 
consisting of eight 16-bit multiplexed input ports and eight 16-bit multiplexed output ports. In addition, 
a polling input for bit test and jump operations (BIO) and an interrupt pin (INT) have been incorporated 
for multitasking. 

interrupts and subroutines 

The TMS320C 10 contains a four-level hardware stack for saving the contents of the program counter 
dllring interrupts and subroutine calls. Instructions are available for saving the TMS320C 1 O's complete 
context. The instructions, PUSH stack from accumulator and POP stack to accumulator, permit a level 
of nesting restricted only by the amount of available RAM. The interrupts used in the TMS320C10 are 
maskable. 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



instruction set 

TMS320C10 
DIGIT AL SIGNAL PROCESSOR 

The TMS320C10's comprehensive instruction set supports both numeric-intensive operations, such as 
signal processing, and general-purpose operations, such as high-speed control. The instruction set, explained 
in Tables 1 and 2, consists primarily of single-cycle single-word instructions, permitting execution rates 
of better than 5 million instructions per second. Only infrequently used branch and 1/0 instructions are 
multicycle. 

The TMS320C 10 also contains a number of instructions that shift data as part of an arithmetic operation. 
These all execute in a single cycle and are useful for scaling data in parallel with other operations. 

Three main addressing modes are available with the TMS320C 10 instruction set: direct, indirect, and 
immediate addressing. 

direct addressing 

In direct addressing, seven bits of the instruction word concatenated with the data page pointer form the 
data memory address. This implements a paging scheme in which the first page contains 128 words and 
the second page contains 16 words. In a typical application, infrequently accessed variables, such as those 
used for servicing an interrupt, are stored on the second page. The instruction format for direct addressing 
is shown below. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

OPCODE 0 dma 

Bit 7 = 0 defines direct addressing mode. The opcm1le is contained in bits 1 5 through 8. Bits 6 through 
0 contain data memory address. 

The seven bits of the data memory address (dma) field can directly address up to 128 words ( 1 page) 
of data memory. Use of the data memory page pointer is required to address the full 144 words of data 
memory. 

Direct addressing can be used with all instructions requiring data operands, except for the immediate operand 
instructions. 

indirect addressing 

Indirect addressing forms the data memory address from the least significant eight bits of one of two auxiliary 
registers, ARO and AR 1. The auxiliary register pointer (ARP) selects the current auxiliary register. The 
auxiliary registers can be automatically incremented or decremented in parallel with the execution of any 
indirect instruction to permit single-cycle manipulation of data tables. The instruction format for indirect 
addressing is as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

OPCODE 

Bit 7 = 1 defines the indirect addressing mode. The opcode is contained in bits 1 5 through 8. Bits 7 through 
0 contain indirect addressing control bits. 

Bit 3 and bit 0 control the Auxiliary Register Pointer (ARP). If bit 3 = 0, then the content of bit 0 is loaded 
into the ARP. If bit 3 = 1, then the content of ARP remains unchanged. ARP = 0 defines the contents 
of ARO as memory address. ARP = 1 defines the contents of AR1 as memory address. 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

C-5 



C-6 

TMS32oc·1e 
DIGIT At S·IGNAL PRUCESSOR 

-~ '·, -{" .. . ·.; - ~ ',.· 

Bit 5 and bit 4 control the auxiliary registers. If bit 5 1, then the ARP defines which auxilia~y register 
is to be incremented by l; If bitA = 1, then the ARP defines which auxiliary register is to be decremented 
by 1. lfbit 5 and bit4 are zero, then neither auxiliary register is incremented or decremented. Bits 6, 2, 
and 1 are reserved.and should always be programmed to zero. 

Indirect addressing can be used with all instructions requiring data operands, except for the immediate 
operand instructions. 

immediate ~~dressing 

The TMS320C 10 instruction set contains special "immediate" instructions. These instructions derive data 
from part of the instruction word rather than from the data RAM. Some useful immediate instructions are 
multiply immediate (MPYK), load accumulator immediate (LACK), and load auxiliary register immediate 
(LARK). 

SYMBOL 

ACC 

D 

I 

K 

PA 

R 

s 
x 

- ._,,.. .... 

TA(:ILI; 1, .INSTRUCTION SYl\llBOLS 

MEANING 

Accumulator 

Data memory address field 

Addressing mode bit 

Immediate operand field 

3-bit port address field 

1-bit operand field specifying auxiliary register 

4-bit left-shift code 

3-bit accumulator left-shift field 

' .TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



MNEMONIC 

ABS 

ADD 

ADDH 

ADDS 

AND 

LAC 

LACK 

OR 

SACH 

SACL 

SUB 

SUBC 

SUBH 

SUBS 

XOR 

ZAC 

ZALH 

ZALS 

MNEMONIC 

LAR 

LARK 

LARP 

LOP 

LDPK 

MAR 

SAR 

TMS320C10 
DIGITAL SIGNAL PROCESSOR 

TABLE 2. TMS320C10 INSTRUCTION SET SUMMARY 

ACCUMULATOR INSTRUCTIONS 

NO. NO. 
OPCODE 

DESCRIPTION INSTRUCTION REGISTER 
CYCLES WORDS 

151413121110 9 8 6 2 0 7 5 4 3 1 
Absolute value of accumulator , , 0 , , , , , , , , 0 0 0 , 0 0 0 
Add to accumulator with shift , , 0 0 0 0 +-s• I 4 D .. 
Add to high-order accumulator bits , , 0 , , 0 0 0 0 0 I 4 D .. 
Add to accumulator with no sign 

extension 
, , 0 , , 0 0 0 0 , I 4 D .. 

AND with accumulator , , 0 , , , , 0 0 , I 4 o--+ 
Load accumulator with shift , , 0 0 1 0 +-s+ I 4 D--+ 
Load accumulator immediate , 1 0 1 1 1 , 1 1 0 4 K • 
OR with accumulator , 1 0 1 1 1 1 0 1 0 I 4 D--+ 
Store high-order accumulator bits with 

shift 
1 , 0 1 0 1 1 +x• I 4 D .. 

Store low-order accumulator bits 1 1 0 , 0 1 0 0 0 0 I 4 D .. 
Subtract from accumulator with shift 1 1 0 0 0 , +-s• I 4 o--+ 

Conditional subtract (for divide) 1 , 0 , 1 0 0 1 0 0 I 4 o--+ 

Subtract from high-order accumulator bits 1 1 0 1 1 0 0 0 1 0 I 4 D--+ 
Subtract from accumulator with no sign 

extension 
1 , 0 1 1 0 0 0 1 1 I 4 D .. 

Exclusive OR with accumulator 1 1 0 1 1 1 , 0 0 0 I 4 D .. 
Zero accumulator 1 , 0 1 1 1 1 1 , 1 , 0 0 0 1 0 0 1 

Zero accumulator and load high-order bits , 1 0 1 1 0 0 1 0 1 I 4 D .. 
Zero accumulator and load low-order bits 

with no sign extension 
1 1 0 1 1 0 0 1 , 0 I 4 D .. 

AUXILIARY REGISTER AND DATA PAGE POINTER INSTRUCTIONS 

NO. NO. 
OPCODE 

DESCRIPTION INSTRUCTION REGISTER 
CYCLES WORDS 

151413121110 9 8 7 6 5 4 3 2 1 0 
Load auxiliary register 1 1 0 0 1 1 , 0 0 R I 4 D .. 
Load auxiliary register immediate 1 1 0 1 1 , 0 0 0 R 4 K--+ 
Load auxiliary register pointer immediate , 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 K 

Load data memory page pointer 1 , 0 1 1 0 1 1 1 1 I 4 D___. 

Load data memory page pointer immediate 1 1 0 1 , 0 1 , , 0 0 0 0 0 0 0 0 K 

Modify auxiliary register and pointer , 1 0 1 1 0 1 0 0 0 I 4 D .. 
Store auxiliary register , 1 0 0 1 1 0 0 0 R I 4---D--+ 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

C-7 



c-s 

TMS320CJO 
DIGITAL SIGNAL'· PROCESSOR 

MNEMONIC 

B 

BANZ 

BGEZ 

BGZ 

BIOZ 

BLEZ 

BLZ 

BNZ 

av 

BZ 

CALA 

CALL 

RET 

MNEMONIC 

APAC 

LT 

LTA 

LTD 

MPV 

MPYK 

PAC 

SPAC 

TABLE 2 TMS320C10 INSTRUCTION SET SUMMARY (CONTINUED) 

BRANCH INSTRl)CTIONS 

OPCODE 
NO. NO. 

INSTRUCTION REGISTER DESCRIPTION 
CYCLES WORDS 

151413121110 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 
Branch unconditionally 2 2 

0 0 0 +-- BRANCH ADDRESS --+ 0 

1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 
Branch on auxiliary register not zero 2 2 

0 0 0 +-- BRANCH ADDRESS --+ 0 

1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 
Branch if accumulator <!: 0 2 2 

0 0 0 0 4--- BRANCH ADDRESS --+ 

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
Branch if accumulator > 0 2 2 

0 0 0 0 +-- BRANCH ADDRESS ___. 

1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 
Branch on Bi'5 = 0 2 2 

0 0 0 0 +--BRANCH ADDRESS ___. 

1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 
Branch if accumulator :S 0 2 2 

0 0 0 0 4--- BRANCH ADDRESS____. 

1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 
Branch if accumulator < 0 2 2 

0 0 0 0 4--- BRANCH ADDRESS--+ 

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
Branch if accumulator * 0 2 2 

0 0 0 0 +-- BRANCH ADDRESS ---+ 
1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 

Branch on overflow 2 2 
0 0 0 0 +-BRANCH ADDRESS____. 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
Branch if accumulator = 0 2 2 

0 0 0 0 +-BRANCH ADDRESS___. 

Call subroutine from accumulator 2 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
Call subroutine immediately 2 2 

0 0 0 0 +-- BRANCH ADDRESS--+ 

Return from subroutine or interrupt routine 2 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 

T REGISTER. P REGISTER. AND MULTIPLY INSTRUCTIONS :c_ 

DESCRIPTION 
NO. NO. 

OPCODE 

INSTRUCTION REGISTER 
CYCLES WORDS 

1514131211.10 9 8 7 6 5 4 

Add P register to accumulator 1 1 

Load T register 1 1 

LTA combines LT and APAC into one 
1 1 

instruction 

LTD combines LT, APAC, and DMOV into 
1 1 

one instruction 

Multiply with T register, store product in 
1 1 

P register 

Multiply T register with immediate 

operand; store product in P register 

Load accumulator from P register 

Subtract P register from accumulator 

1 1 

1 1 

1 1 

TEXAS.,, 
INSTRUMENTS 

0 1 

0 1 

0 1 

0 1 

0 1 

1 0 

0 1 

0 1 

POST OFFIC~ BOX 1443 e HOUi>TON, TEXAS 77001 

1 1 

1 0 

1 0 

1 0 

1 0 

0 • 
1 1 

1 1 

1 1 1 1 1 0 0 0 

1 0 1 0 I .. 
1 1 0 0 I .. 
1 0 1 1 I • 
1 1 0 1 I • 

K 

1 1 1 1 1 0 0 0 

1 1 1 1 1 0 0 1 

3 2 1 0 

1 1 1 1 

D .. 
D-+ 

D • 
D • 

_. .. 
1 1 1 0 

0 0 0 0 



TMS320C10 
DIGITAL SIGNAL PROCESSOR 

TABLE 2. TMS320C10 INSTRUCTION SET SUMMARY (CONCLUDED) 

CONTROL INSTRUCTIONS 

OPCODE 

MNEMONIC DESCRIPTION 
NO. NO. 

INSTRUCTION REGISTER 
CYCLES WORDS 

151413121110 9 8 7 6 5 4 3 2 1 0 
DINT Disable interrupt 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 

EINT Enable interrupt 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 
LST Load status register 1 1 0 1 1 1 1 0 1 1 I 4 D ... 
NOP No operation 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 
POP POP stack to accumulator 2 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 

PUSH PUSH stack from accumulator 2 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 
ROVM Reset overflow mode 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 
SOVM Set overflow mode 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 
SST Store status register 1 1 0 1 1 1 1 1 0 0 I 4 D---+ 

1/0 AND DATA MEMORY OPERATIONS 

OPCODE 

MNEMONIC DESCRIPTION 
NO. NO. 

INSTRUCTION REGISTER 
CYCLES WORDS 

151413121110 9 8 7 6 5 4 3 2 1 0 

DMOV 
Copy contents of data memory location 

1 1 0 1 1 0 1 0 0 1 I +---o Ill 
into next location 

IN Input data from port 2 1 0 1 0 0 0 4PA+ I +---o ... 
OUT Output data to port 2 1 0 1 0 0 1 4PA+ I +---D ... 
TBLR 

Table read from program memory to data 
3 1 0 , 1 0 0 1 1 1 I +---o ... 

RAM 

TBLW 
Table write from data RAM to program 

3 1 0 1 , 1 1 1 0 1 I 4 D ... 

development systems and software support 

Texas Instruments offers concentrated development support and complete documentation for designing 
a TMS32010-based microprocessor system. When developing an application, tools are provided to evaluate 
the performance of the processor, to develop the algorithm implementation, and to fully integrate the 
design's software and hardware modules. When questions arise, additional support can be obtained by 
calling the nearest Texas Instruments Regional Technology Center (RTC). 

Sophisticated development operations are performed with the TMS32010 Evaluation Module (EVM), Macro 
Assembler/Linker, Simulator, and Emulator (XDS). In the initial phase of developing an application, the 
evaluation module is used to characterize the performance of the TMS320C 10. Once this evaluation phase 
is completed, the macro assembler and linker are used to translate program modules into object code and 
link them together. This puts the program modules into a form that can be loaded into the TMS32010 
Evaluation Module, Simulator, or Emulator. The simulator provides a quick means for initially debugging 
TMS320C 10 software while the emulator provides real-time in-circuit emulation necessary to perform 
system level debug efficiently. 

A complete list of TMS320C 10 software and hardware development tools is given in Table 3. 

TEXAS .. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

C-9 



TMS320C10 
DIGITAL SIGNAL PROCESSOR 

TABLE 3. TMS320C10 SOFTWARE AND HARDWARE SUPPORT 

HOST OPERATING PART 

COMPUTER SYSTEM NUMBER 

TMS32010 MACRO ASSEMBLERS/LINKERS 

DEC VAX VMS TMDS3240210-08 

Tl/IBM PC MS/PC-DOS TMDS3240810-02 

TMS32010 SIMULATORS 

DEC VAX VMS TMDS3240211-08 

Tl/IBM PC MS/PC-DOS TMDS3240811-02 

TMS32010 DIGITAL FILTER DESIGN PACKAGE IDFDPI 

Tl PC MS-DOS DFDP-TI001 

IBM PC PC-DOS DFDP-IBM001 

TMS32010 HARDWARE 

Evaluation Module (EVM) RTC/EVM320A-03 

Analog Interface Board (AIBI RTC/EVM320C-06 

Emulator: 

XDS/22 TMDS3262210 

Enhanced XDS/22 (available early 1986) TMDS3262211 

absolute maximum ratings over specified temperature range (unless otherwise noted) t 

Supply voltage, Vee+ ................................................ -0.3 V to 7 V 
All input voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.3 V to 1 5 V 
Output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0. 3 V to 1 5 V 
Continuous power dissipation ................................................. 0.4 W 
Air temperature range above operating device ............................... 0 °C to 70 °C 
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 55 °C to + 150°C 

tstresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating 
only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating 
Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect 
device reliability. 

tAll voltage values are with respect to Vss-

recommended operating conditions 

Vee 

Vss 

V1H 

V1L 

IOH 

loL 

TA 

NOTE 1. 

C-10 

Supply voltage 

Supply voltage 

High-level input voltage 1 All inputs except CLKIN 

l CLKIN 

Low-level input voltage (all inputs) 

High-level output current (all outputs) 

Low-level output current (all outputs) 

Operating free-air temperature 

For dual-in-line package: 
R11JA = 51.6°C/Watt 
R11Jc = 16.6 °C/Watt. 

For plastic chip-carrier package: 
R11JA = 70°C/Watt 
R11Jc = 20°C/Watt. 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

MIN NOM MAX UNIT 

4.5 5 5.5 v 
0 v 

2 v 
2.8 

0.8 v 
300 µA 

2 mA 

0 70 oc 



TMS320C10 
DIGITAL SIGNAL PROCESSOR 

electrical characteristics over specified temperature range (unless otherwise noted) 

PARAMETER TEST CONDITIONS MIN TvPt MAX 

VoH High-level output voltage IOH =MAX 2.4 3 

Vol Low-level output voltage IOL =MAX 0.3 0.5 

1 Vo = 2.4 V 20 
loz Off-state output current Vee = MAX 

l Vo = 0.4 V -20 

11 Input current v1 = v55 to Vee ± 50 

icc:t: Supply current TA = 0°C 20 

Ci Input capacitance 
Data bus 

All others 

25 

f = 1 MHz, 15 

Co Output capacitance 
Data bus 

All others 
All other pins 0 V 

25 

10 

t All typical values except for Ice are at Vee = 5 V, TA = 25 °C. 
:t:icc characteristics are inversely proportional to temperature; i.e., Ice decreases approximately linearly with temperature. 
§value derived from characterization data and not tested. 

CLOCK CHARACTERISTICS AND TIMING 

The TMS320C 10 can use either its internal oscillator or an external frequency source for a clock. 

internal clock option 

UNIT 

v 
v 

µA 

µA 

mA 

pF 

pF 

The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN (see Figure 1 ). The 
frequency of CLKOUT is one-fourth the crystal fundamental frequency. The crystal should be fundamental 
mode, and parallel resonant, with an effective series resistance of 30 ohms, a power dissipation of 1 mW, 
and be specified at a load capacitance of 20 pF. 

PARAMETER 

Crystal frequency f x 

C1, C2 

TEST CONDITIONS 

0°c - 70°C 

0°C 70°C 

X1 X2/CLKIN 

CRYSTAL 

-o-

FIGURE 1. INTERNAL CLOCK OPTION 

TEXAS~ 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

MIN NOM MAX UNIT 

6.7 20.5 MHz 

10 pF 

C-11 



TMS320C10 
DIGITAL SIGNAL PaOCESSOR 

external clock option 

An external frequency source can be used by injecting the frequency directly into X2/CLKiN with X 1 left 
unconnected. The external frequency injected must conform to the Specifications listed in the table below. 

timing requirements over recommended operating conditions 

MIN NOM 

tc(MC) Master clock cycle time 48.78 

tr( MC) Rise time master clock input 5 

tf(MC) Fall time master clock input 5 

tw(MCP) Pulse duration master clock 0.475tc(C) 

tw(MCL) Pulse duration master clock low, tc(MC) = 50 ns 20 

twJ_MCH_l Pulse duration master clock high, tqMCJ = 50 ns 20 

switching characteristics over recommended operating conditions 

PARAMETER TEST CONDITIONS MIN NOM 

tc(C) CLKOUT cycle time t 195.12 

tr(C) CLKOUT rise time 10 

tflC) CLKOUT fall time 
RL = 825 0 

8 

tw(CL) Pulse duration, CLKOUT low 
CL = 100 pF, 

92 

tw(CH) Pulse duration, CLKOUT high 
See Figure 2 

90 

t<tl_MCC_l Delay time CLKINi to CLKOUT ~ t 25 

ttc(C) is the cycle time of CLKOUT, i.e., 4 *tc(MC) (4 times CLKIN cycle time if an external oscillator is used). 
tvalues given were derived from characterization data and are not tested . 

C-12 
. · .. TEXAS.,, 

INSTRUMENTS 
POST OFFICE BOX 1443 e HOUSTON, T.EXAS 77001 

MAX UNIT 

150 ns 

10 ns 

10 ns 

0.525tciC) ns 

ns 

ns 

MAX UNIT 

ns 

ns 

ns 

ns 

ns 

60 ns 



TMS320C10 
DIGIT AL SIGNAL PROCESSOR 

PARAMETER MEASUREMENT INFORMATION 

2.15 v 

RL = 825 0 

FROM OUTPUT o---
UNDER TEST ---<> TEST 

2.ov ... 
1.88 v-

POINT 

I CL= 100 pf 

-= 
FIGURE 2. TEST LOAD CIRCUIT 

V1H (MINI 

V1L !MAXI 
...._ ___________ ~ 

2.ov-
0.8 v 

0 
(al INPUT 

0 

lbl OUTPUTS 

FIGURE 3. VOLTAGE REFERENCE LEVELS 

TEXAS.,, 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

C-13 



TMS320C10 
DIGITAL· SIGIAl PROCESSOR 

clock timing 

°--t ... tr(MCI ~ -I tw(MCHI 
I ,. tcCMCI -f I l4 ~ tw(MCPI t 

X2/CLKIN 1 T\ ___ / \ ___ ,--, I 
I ,' '= I •i.~--.t-- tw(MCLI 
I tf(MCI ...I t.-
I..; llll~to------- tw(CH) ------'!• 

\_/ 
.. .. tclCMCCI t I I 

CLKOUT ~-----------------------------"',..-------------------------.--..~ 
_J le- tf(CI -.! !.... trlCI II 

'1 k d ,~ I i. twCCLI -------• .. 

-----------------------------~tc(CI ------------------------------

NOTE 2: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 
ttd(MCCI and tw(MCPI are referenced to an intermediate level of 1.5 volts on the CLKIN waveform. 

MEMORY AND PERIPHERAL INTERFACE TIMING 

switching characteristics over recommended operating conditions 

PARAMETER 
TEST 

CONDITIONS 
MIN TYP MAX UNIT 

td1 
Delay time CLKOUT l to 

1ot 50 
address bus valid (see Note 41 

ns 

td2 Delay time CLKOUT l to 'finml Y4tc(C)-5t Y4tc(C)+15 ns 

td3 Delay time CLKOUT l to 'finmt -1ot 15 ns 

td4 Delay time CLKOUT l to '15ml Y4tc1cl-st Y4tc(C)+ 15 ns 

td5 Delay time CLKOUTl to Dmt -1ot 15 ns 

tde Delay time CLKOUT l to iiV£l RL = 825 0, 112tc1cl-st 1f2tc(C)+15 ns 

tcl7 Delay time CLKOUT l to WEt CL = 100 pF, -1ot 15 ns 

td8 
Delay time CLKOUT l to See Figure 2 

Y4tc(C)+65 
data bus OUT valid 

ns 

Time after CLKOUT l that data 
Y4tc(C)-5t tcl9 bus starts to be driven 

ns 

Time after CLKOUT l that data 
Y4tc(Cl + 30 t tc110 bus stops being driven 

ns 

!Y_ Data bus OUT valid after CLKOUT l Y4~-10 ns 

NOTE 3: Address bus will be valid upon WEt. DENt, or MENt. 
tThese values were derived from characterization data lihd are not tested. 

timing requirements over recommended operating conditions 

TEST 

CONDITIONS 
MIN NOM MAX UNIT 

tsulDl Setup time data bus valid prior to CLKOUT l RL = 825 0, 50 ns 

tsu(A·MDi Address bus setup time prior to ~l or Dml CL = 100 pF, 5 ns 

th(D) Hold time data bus held valid after CLKOUT l See Figure 2 0 ns 

NOTE 4: Data may be removed from the data bus upon MENt or DENt preceding CLKOUTl. 

t-14 TEXAS .. 
INSTRUMENTS 

POST OFFICE BOX. 1443 e HOUSTON, TEXAS 77001 



" 0 
en 
--< 
0 
"T1 

::!!-

hl z 
~~ 
~~~ 
. c:~ I~
~ l"'l
ci z
~~.ct
)>
en
-.J
-.J
0
0

()
I

(J1

~ ~a ~

3
C1>

3
0

< ...
C1>
I»
c.

CLKOUT '\ I '{ I
ldJ --{ '4- td2 ~ I

MEN 1/ '{VI \
~ ·- .___

~ td1 . ~

A11-AO ~ ADDRESS BUS VALID pm<------
~ tsu(D) ~·

015-00) (INSTRUCTION IN VALID)>-----------
NOTE 2: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

c -C')

=i
)::lo
r-
(j) -C")
2
):::io
r-
"'a
=s: Oen
(") w m....,
Cl)= cna o
:ad

" 0
Cf)

-<
0 ,,

('")
I _.

O>

:!'-

~z
'ti (/)
::: -l
t ;c r;;i
• c::~ I~
~ rri ciz
~~~ 
l> 
Cf) 

" " 0 
0 

~ C..,f 
-31 al 
C') -r- -en :l:I -tw 
l>N :J r-c VI 

CLKOUT \ I \ I \ I \ I \ I 
td3 _.r--~d2 ---( -+I j4-td3 

2 ! T"\I 3 I 4 MEN 

en~ 
..... ... 
c: a= (") ..... 2 cs· 

~ :J 

:!'. -a 3 = :;· 0 cc C"> 
m 
en 
en 
0 = 

A11-AO 5 6 7 

---'> < 9 ) j4-ls"l;;;:j ~'hlDI 8 

10 ) ( 11 > < 12 ),.----015-DO 

LEGEND: 

1. TBLR INSTRUCTION PREFETCH 7. ADDRESS BUS VALID 

2. DUMMY PREFETCH 8. ADDRESS BUS VALID 

3. DATA FETCH 9. INSTRUCTION IN VALID 

4. NEXT INSTRUCTION PREFETCH 10. INSTRUCTION IN VALID 

5. ADDRESS BUS VALID 11. DATA IN VALID 

6. ADDRESS BUS VALID 12. INSTRUCTION IN VALID 

NOTE 2: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 



-0 
0 
rn 
--1 
0 .,, 
:!!-

hl z 
~ 00 
t~d 
: c~r"1 
6~ 
~ f"'1 
~z 
~ (ij. 
)> 
rn 
.... .... 
0 
0 

0 
I ..... 

-.J 

CLKOUT 

MEN 

A11-AO 

WE 

015-DO 

\I\ I \I \l\r 

1 2 

4 5 

I 
I 
I 

6 

3 

7 

=> ( 8 . ) ( 11 ) 

LEGEND: 

1. TBLW INSTRUCTION PREFETCH 7. ADDRESS BUS VALID 

2. DUMMY PREFETCH 8. INSTRUCTION IN VALID 

3. NEXT INSTRUCTION PREFETCH 9. INSTRUCTION IN VALID 

4. ADDRESS BUS VALID 10. DATA OUT VALID 

5. ADDRESS BUS VALID 11. INSTRUCTION IN VALID 

6. ADDRESS BUS VALID 

NOTE 2: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 

-f 
m 
:E 
::;, 
!1. ... c 
n ... c;· 
::;, ... 3· 
:;· 

(Q 

5! 
G) 

=i 
J:li ..... 
!:!! 
G) 
2 
J:li ..... 
-a .... 
:a ii: 
=en nw 
mN en c::a cnn =­:a Cl 



-0 
0 
Ul __, 
0 
"Tl 

() 
I .... 

CX> 

:!! -~z 
~ UJ 

~ ~r;;i 
. c:~ 6~ 
5i rrl 
~z 
~~~ 
l>
en

"' "' 0
0

2
:;·
(/) c:
(') ... c;·
:l ...
3·
:;·
cc

CLKOUT \ I \ I \- I \H_ - -- I
I I

MEN _I \ 1 I/ I \ 2 I \ __
I l

A11-AO _)9(--3 -)@(4 &a< 5)G(_

DEN

14---- td4----f td5~ ~
~~~~~---x v.~~~~~--

f4-ts~~ ,_ 
I ----.-. ,.-th(D) 

D15-DO ) ( 6 ) (.,.___7 ____., 8 _)~--

LEGEND: 

1. 

2. 
3. 

4. 

IN INSTRUCTION PREFETCH 

NEXT INSTRUCTION PREFETCH 

ADDRESS BUS VALID 

PERIPHERAL ADDRESS VALID 

5. 
6. 

7. 
8. 

ADDRESS BUS VALID 

INSTRUCTION IN VALID 

DATA IN VALID 

INSTRUCTION IN VALID 

NOTE 2: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 

0-1 
c; ii: 
-en 
-I CA) 
J::liN 
l'""'Q 

enn --C')Q 
2 
;i:::i. 
r-
"a 
:a 
Q 
C') 
m 
en 
en 
Q 
:a 



" 0 
en 
-< 
0 ,, 
::!!-

~z 
't5 {/) 
~.., --_ 

t ;o r;;i 
• t:~ 6~ 
5dTJ 
~z 
~@4r 
)> 
en ..., ..., 
0 
~ 

(') 
I ..... 

<.O 

CLKOUT 

MEN 

A11-AO 

WE 

015-DO 

\_ __ ____r \_ I \ I \ I 
I I 

0 
c: 
-t 
::l 
en ... ... c 
0 
r+ s· 
::l ... 
~r 
::l 
cc 

- _/ \ , !;-----1 -\ 2 I \ 
- I -

I I ---3 4 5 

'4---- td6 ~ --..! 14- td7 { y~----------~ ~td91 

J.-- tr . ., tv •~=;td, o I 
) (-a~) a{- 1 ~ a ) 

------, 

LEGEND: 

1. OUT INSTRUCTION PREFETCH 5. ADDRESS BUS VALID 

2. NEXT INSTRUCTION PREFETCH 6. INSTRUCTION IN VALID 

3. ADDRESS BUS VALID 7. DATA OUT VALID 

4. PERIPHERAL ADDRESS VALID 8. INSTRUCTION IN VALID 

NOTE 2: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 

c -~ 
=t 
:J:=ii ,.. 
~ 
~ 
i2 
:J:=ii ,.. 
"'Cl ..... 
=:s: Oen 
n "" mN enc 
enn 
c-== 



TMS320C10 
DIGITAL SIGNAL PROCESSOR 

RESET (RS) TIMING 

timing requirements over recommended operating . conditions 

MIN NOM MAX 

tsu(Rl Reset (~) setup time prior to CLKOUT. See Note 5. 50 

tw(R) RS pulse duration 5tc(Cl 

switching characteristics over recommended operating conditions 

PARAMETER 
TEST 

CONDITIONS 
MIN TVP 

td11 Delay time MNi, WEi, and mtili from RS RL = 825 0, 

tdis(R) Data bus disable time after FIB 
CL = 100 pF, 

See Fjgure 2 

NOTE 5: RS can occur anytime during a clock cycle. Time given is minimum to ensure synchronous operation. 
tThese values were derived from characterization data and are not tested. 

reset timing 

CLKOUT 

Ktsu(RI ~tsu(Rl 

'{ i 
i..---------..s~ 
11111,.1------tw(RI-----•-, 

I 
SEE I 
NOTE 10 I 

~ ~td11 
tdis(RJ--9i j4-

MAX 

ihtc(C) + 50 t 

Y4fc(C)+50t 

UNIT 

ns 

ns 

UNIT 

ns 

ns 

D15-DO --< Do"Jt >>-----------s .... s----------c(D~1A~~tiRRgM)-{~~~:RF:J>!', 

ADDRESS 
BUS 

DATA SHOWN RELATIVE TO Wf SS \ __ (\_ 
AB = ADDRESS BUS 

AB= PC :=A=B====P=c==+==1= __ .P, _______ A_B_=_P_c_=_o ______ XAB = PC + 1 

NOTES: 2. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless ·otherwise 
noted. 

C-20 

6. FIB forces D'm, ~. and MEN high and tristates data bus DO through D 1 5. AB outputs (and program counter) are synchronously 

cleared to zero after the next complete CLK cycle from i'RS. 
7. RS must be maintained for a minimum of five clock cycles. 

8. Resumption of normal program will comme~~e after one complete CLK cycle from tFIB. 
9. Due to the synchronizing action on FIB, time to execute the function can vary dependent upon when fFIB or i'RS occur in 

the CLK cycle. 

10. Diagram shown is for definition purpose only. DEN, WE, and MEN are mutually exclusive. 

11. During a write cycle, FIB may produce an invalid write address. 

TEXAS ..If 
INSTRUMENTS 

POST OFFICE aox 1443 • HOUSTON. TEXAS 77001 



INTERRUPT (INT) TIMING 

timing requirements over recommended operating conditions 

tf(INT) Fall time INT 

tw(INT) Pulse duration INT 

tsl!l.!NTI. Setup time INT t before CLKOUT t 

interrupt timing 

I \ I \ 
r -f tsu(INTI 

CLKOUT 

~ I 
tf(INT)--.i i:=--

tw(INT) ~ 

TMS320C10 
DIGITAL SIGNAL PROCESSOR 

MIN NOM MAX UNIT 

15 ns 

tc(C) ns 

50 ns 

I \_ 

NOTE 2: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted . 

. 1/0 (810) TIMING 

timing requirements over recommended operating conditions 

MIN NOM MAX UNIT 

tf(IO) Fall time BIO 15 ns 

tw(IO) Pulse duration BIO tc(C) ns 

tsl!l.!O.l Setup time BIOL before CLKOUT t 50 ns 

BIO timing 

CLKOUT I \ I \ I \__ 
~ ~ tsu(IO) 

~ I 
tmo1--! 14- I 

14 tw(IOI -'I 
NOTE 2: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 

TEXAS .. 
INSTRUMENTS 

C-21 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



TMS320C10 
DIGITAL SIGNAL PROCESSOR 

THERMAL DATA 

thermal resistance characteristics 

PACKAGE RoJA RoJC 
(°C/W) (°C/W) 

40-pin plastic dual-in-line package 51.6 16.6 

44-lead plastic chip carrier ~ackci_g_e 70 20 

MECHANICAL DATA 

40-pin plastic dual-in-line package 

--------- 53, 1 (2.090) MAX--------

EITHER OR BOTH 
INDEX MARKS 

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

NOTE A: Each pin centerline is located within 0,254 (0.010) of its true longitudinal position. 

C-22 TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



TMS320C10 
DIGITAL SIGNAL PROCESSOR 

44-lead plastic chip carrier package 

29 

30 

31 

32 

38 

39 
INDEX 
DOT 

16,66 10.656) 
16,51 10.650) 

17 ,65 10.695) 
17.40 10.685) 

j 4,57 10.180) -l+-------i 

~ 
- 4,19 10.165) 

2 3 4 5 ~6 - - -------~ 3,05 10.120) -i.------i 
2,29 10.090) 

1. 14 10.045) x 45• 
TYP 0,51 10.020) 

MIN 

16,00 10.630) 
14,99 10.590) 

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 

C-23 



C-24 



D. TMS32020/TMS320C25 System Migration 

This appendix contains information necessary to upgrade a TMS32020 program to 
a TMS320C25-based system. The information consists of a detailed list of the 
programming differences and hardware and timing differences between the two 
processors. The following items should be considered in migrating from the 
TMS32020 to the TMS320C25: 

1) Instructions are fully compatible at the object code level. TMS32020 object 
(memory image) code can be used directly on the TMS320C25 processor. 

2) Instructions are compatible at the source code level. The NORM instruction that 
previously had no operands now has an optional operand to define the auxiliary 
register modification. Any comments on the same line in the source code file 
will be interpreted as the operand if no other operand is specified. NORM 
instructions should be modified to specify the default operand, *+. 

3) Execution cycle timings of instructions have been modified. Most TMS320C25 
instructions execute in a single machine cycle. The number of cycles for some 
multicycle instructions have been changed. Refer to Appendix E for detailed 
information on instruction cycle timings. By following the entries in this 
appendix, the key timing differences can be noted. 

4) The IDLE instruction automatically sets the INTM bit in status register STO to 
a zero. This assures that an external interrupt will 'wake up' the processor. The 
instruction also requires three memory cycles to execute on the TMS320C25 
rather than one as on the TMS32020. 

5) In general, all branch, call, and return instructions that reload the program 
counter (PC) should be counted as three-cycle instructions when evaluating 
code execution timings on the TMS320C25. 

6) The store instructions (SACH, SACL, etc.) execute in one less cycle on the 
TMS320C25 than on the TMS32020 when data is stored to external data 
memory. 

7) The MAC and MACO instructions require one extra cycle, going from three to 
four cycles. The extra cycle is in the instruction read and setup overhead, and 
repeated execution will be one cycle per execution as on the TMS32020. 

8) The delay for a new memory configuration to become effective when using the 
CNFO or CNFP instructions on the TMS320C25 is two instruction fetches (for 
single-cycle instructions) when executing from external memory or internal 
ROM, as compared to one instruction fetch for the TMS32020. Thus, on the 
TMS320C25, a CNFP instruction must be placed at location 65277 if execution 
is to continue from the first location in block BO. When execution is from internal 
RAM on the TMS320C25, ·however, this delay is one instruction fetch as on 
the TMS32020. 

9) The timer on the TMS320C25 is clocked by CLKOUT1 and counts PRO + 1 
CLKOUT1 cycles, whereas the timer on the TMS32020 is clocked by 
CLKOUT1 /4 and counts 4 x PRO cycles. Therefore, to count an equivalent 
amount of time on the TMS320C25 using the same input clock frequency, PRO 
values from the TMS32020 must first be multiplied by four and then decre­
mented by one. If different input clock frequencies are used, this must also be 
accounted for by multiplying the PRO value for the TMS320C25 obtained above 
by the ratio of the TMS320C25 input clock frequency to the TMS32020 input 
clock frequency. 

0-1 



Appendix D 

D-2 

10) On the TMS320C25, both the timer (TIM) and perioci (PRO) registers are 
.··initialized to >FFFF on reset, while on the TMS32020, only the TIM register is 

initialized. 

11) Several bits (C, HM, and FSM) have been added to status register ST1 on the 
TMS320C2.5, as shown below. 

I 

TMS32020 Status Register ST1: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

ARB lcNFI TC ~xMI .1 1 

TMS320C25 Status Register ST1 : 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

ARB lcNFI TC ~xMI c I HM IFsMj XF I FO ~xMI PM 

The FSM, HM, and C status register bits are initialized by reset and are all set 
to one when reset occurs. Note that the new bits are assigned polarities in such 
a way that the values of the corresponding bits on the TMS32020 invoke a 
TMS32020-like operation on the TMS320C25. 

The SXM and PM status register bits that were previously uninitialized on the 
TMS32020 are now initialized by reset on the TMS320C25. When the 
TMS320C25 is reset, SXM is set to one, and the PM bits are set to zero. 

12) There are four differences between the serial ports on the TMS32020 and 
TMS320C25 that impact system migration. The two major differences are that 
the serial port on the TMS320C25 is double-buffered and is fully static in 
operation. Double-buffering greatly increases the amount of time available for 
processing serial port interrupts. Fully static operation effectively places no 
lower limit on serial port clock frequency. Neither of these features is present 
on the TMS32020. · 

Another difference in serial port operation between the two processors is that 
serial port interrupts are generated half of a CLKR or CLKX cycle later on the 
TMS320C25 than they are on the TMS32020. Specifically, on the TMS32020, 
RINT and XINT are generated on the falling edge of CLKR and CLKX, respec­
tively, during transfer of the last bit. On the TMS320C25, RINT and XINT are 
generated on the rising edge of CLKR or CLKX after the last bit has been 
transferred. This should not be critical for TMS32020 programs running on the 
TMS320C25 since double-buffering of the serial port on the TMS320C25 
allows more time for processing of serial port interrupts. Some modification of 
TMS32020 programs may, however, be required to take advantage of the 
double-buffering, depending on how serial port interrupt servicing is imple­
mented. 

Finally, when operating the TMS320C25 serial port in byte mode, ORR behaves 
differently than it does on the TMS32020. On the TMS32020, the contents of 
the most significant byte of ORR remain unchanged once byte mode is initiated 
by executing a FORT instruction. On the TMS320C25, however, each time a 
new byte is received, the previous contents of the least significant byte of ORR 
are transferred to the most significant byte of ORR. Figure D-1 illustrates the 
behavior of DRR on both the TMS32020 and the TMS320C25 processors. 



Appendix D 

TMS320C25 TMS32020 

MSB LSB MSB LSB 

Initial I x y I I x y I Conditions 

After 1st Receive y A x A (Byte 'A') 

After 2nd Receive 
A B x B (Byte 'B') 

Etc. 

Figure D-1. Serial Port System Migration 

D-3 



D-4 



E. TMS320C25 Instruction Cycle Timings 

This appendix details the instruction cycle timings for the TMS320C25. Table E-1 
lists the instructions according to cycle classification. 

Table E-1. TMS320C25 Instructions by Cycle Class 

CLASS INSTRUCTION 

I ADD ADDC ADDH ADDS ADDT AND BIT BITI DMOV LAC 
LACT LPH LT LTA LTD LTP LTS MPV MPYA MPYS 
MPYU PSHD OR RPT SORA SQRS SUB SUBB SUBC SUBH 
SUBS SUBT XOR ZALH ZALR ZALS (RPT not repeatable) 

II LAR LOP LST LST1 

Ill POPD SACH SACL SAR SPH SPL SST SST1 

IV ABS ADDK ADRK APAC CMPL CMPR CNFD CNFP DINT EINT 
FORT LACK LARK LARP LDPK MAR MPYK NEG NOP NORM 
PAC POP PUSH RC RFSM RHM ROL ROR ROVM RPTK 
RSXM RTC RTXM RXF SBRK SC SFL SFR SFSM SHM 
SOVM SPAC SPM SSXM STC STXM SUBK SXF ZAC 
(ADDK, ADRK, LACK, LARK, LDPK, MPYK, RPTK, SBRK, SPM, 
SUBK, and ZAC not repeatable) 

v ADLK ANDK LALK LRLK ORK SBLK XORK 
(All not repeatable) 

VI MAC MACO 

VII SANZ BBNZ BBZ BC BGEZ BGZ BIOZ BLEZ BLZ BNC 
BNV BNZ BV BZ (All not repeatable) 

VIII B BACC CALA CALL RET TRAP 
(All not repeatable) 

IX IN 

x OUT 

XI TBLR 

XII TBLW (Table in ROM not applicable) 

XIII BLKD 

XIV BLKP 

xv IDLE 

E-1 



Appendix E 

Table E-2 and Table E-3 show the number of cycles required for a given TMS320C25 
instruction to execute iii a given memory configuration, The column headings in the 
tables indicate the program source location and data destination or source. 

The number of cycles required for each instruction is given in terms of the 
program/data memory and 1/0 access times as defined in the following listing: 

p - Program memory wait states. Represents the number of clock cycles the 
device waits for external program memory to respond to an access. Tac is 
the access time, in nanoseconds, (maximum) required by the TMS320C25 
for an external memory access to be made with no wait states. T mem is the 
memory device access time, and T p is the clock period (4/crystal 
frequency). 

p = 0; If T mem :s; Tac 
p = 1; If Tac < T mem :s; (T p + Tad 
p = 2; If (T p + Tac)< T mem :s; (T p x 2 + Tad 
p = k; If [Tp x (k-1) + TacJ< T mem :s; (Tp x k +Tac) 

d - Data memory wait states. Represents the number of cycles the device must 
wait for external data memory to respond to an access. This number is 
calculated in the same way as the p number. 

i - 1/0 memory wait states. Represents the number of cycles the device must 
wait for external 1/0 memory to respond to an access. This number is 
calculated in the same way as the p number. 

The other abbreviations used in the tables and their meanings are as follows: 

Pl - The instruction executes from internal program memory (RAM). 

PR - The instruction executes from internal program memory (ROM). 

PE - The instruction executes from external program memory. 

DI - The instruction executes using internal data memory. 

DE - The instruction executes using external data memory. 

INT - Interrupt. 

n - The number of times an instruction is executed when using the RPT or 
RPTK instruction. 

Table E-2. Cycle Timings for Cycle Classes When Not in Repeat Mode 

CLASS Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE 

I 1 2+d 1 +p 2+d+p 1 2+d 

II 1 2+d 1 +p 2+d+p 1 2+d 

Ill 1 1 +d 1 +p 2+d+p 1 1 +d 

IV 1 1 +p 1 

v 2 2+2p 2 

E-2 



Appendix E. 

Table E-2. Cycle Timings for Cycle Classes When Not in Repeat Mode (Concluded) 

CLASS Pl/DI I Pl/DE I PE/DI I PE/DE I PR/DI I PR/DE 

VI Table is in on-chip RAM: 
3 4+d 4+2p 5+d+2p 4 5+d 

Table is in on-chip ROM: 
4 5+d 4+2p 5+d+2p 4 5+d 

Table is in external memory: 
4+p 5+d+p 4+3p 5+d+3p 4+p 5+d+p 

VII True Conditions: 
Destination is on-chip RAM: 

2 2+2p 2 

Destination is on-chip ROM: 
3 3+2p 3 

Destination is external memory: 
3+p 3+3p 3+p 

False Condition: 
Destination is anywhere: 

2 2+2p 2 

VIII Destination is on-chip RAM: 
2 2+p 2 

Destination is on-chip ROM: 
3 3+p 3 

Destination is external memory: 
3+p 3+2p 3+p 

IX 2+i 2+d+i 2+p+i 3+d+p+i 2+i 2+d+i 

x 1 +i 2+d+i 2+p+i 3+d+p+i 1 +i 2+d+i 

XI Table is in on-chip RAM: 
2 2+d 3+p 3+d+p 3 3+d 

Table is in on-chip ROM: 
3 3+d 4+p 4+d+p 4 4+d 

Table is in external memory: 
3+p 3+d+p 4+2p 4+d+2p 4+p 4+d+p 

XII Table is in on-chip RAM: 
2 3+d 3+p 4+d+p 3 4+d 

Table is in on-chip ROM: 
not applicable 

Table is in external memory: 
2+p 3+d+p 3+2p 4+d+2p 3+p 4+d+p 

XIII Source data is in on-chip RAM: 
3 3+d 3+2p 3+d+2p 3 3+d 

Source data is in external memory: 
4+d 4+2d 4+d+2p 4+2d+2p 4+d 4+2d 

XIV Table is in on-chip RAM: 
3 3+d 4+2p 4+d+2p 4 4+d 

Table is in on-chip ROM: 
4 4+d 4+2p 4+d+2p 4 4+d 

Table is in external memory: 
4+p 4+d+p 4+3p 4+d+3p 4+p 4+d+p 

xv {Interrupt) destination is on-chip ROM 
3 {minimum waits for INT) 

{Interrupt) destination is external memory 
3+2p {minimum waits for INT) 

E-3 



Appendix E 

Table E-3. Cycle Timings for Cycle Classes When in Repeat Mode 

CLASS Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE 
I n 1 +n+nd n+p 1 +n+nd+p n 1 +n +nd 

II n 2n+nd n+p 2n+nd+p n 2n+nd 

Ill n n+nd n+p 1 +n+nd+p n n+nd 

IV n n+p n 

v not repeatable 

VI Table is in on-chip RAM: 
2+n 2+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd 

Table is in on-chip ROM: 
3+n 3+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd 

Table is in external memory: 
3+n+np 3+2n+nd+np 3+n+np+2p 3+2n+nd+np+2p 3+n+np 3+2n+nd+np 

VII not repeatable 

VIII not repeatable 

IX 1 +n+ni 2n+nd+ni 1 +n+p+ni 1 +2n+nd+p+ni 1 +n+ni 2n+nd+ni 

x n+ni 2n+nd+ni 1 +n+p+ni 1 +2n+nd+p+ni n+ni+ni 2n+nd+ni 

XI Table is in on-chip RAM: 
1 +n 1 +n+nd 2+n+p 2+n+nd+p 2+n 2+n+nd 

Table is in on-chip ROM: 
2+n 2+n+nd 3+n+p 3+n+nd+p 3+n 3+n+nd 

Table is in external memory: 
2+n+np 1 +2n+nd+np 3+n+np+p 2+2n+nd+np+p 3+n+np 2+2n+nd+np 

XII Table is in on-chip RAM: 
1 +n 2+n+nd 2+n+p 3+n+nd+p 2+n 3+n+nd 

Table is in on-chip ROM: 
not applicable 

Table is in external memory: 
1 +n+np 1 +2n+nd+np 2+n+np+p 2+2n+nd+np+p 2+n+np 2+2n+nd+np 

XIII Source data is in on-chip RAM: 
2+n 2+n+nd 2+n+2p 2+n+nd+2p 2+n 2+n+nd 

Source data is in external memory: 
3+n+nd 2+2n+2nd 3+n+nd+2p 2+2n+2nd+2p 3+n+nd 2+2n+2nd 

XIV Table is in on-chip RAM: 
2+n 2+n+nd 3+n+2p 3+n+nd+2p 3+n 3+n+nd 

Table is in on-chip ROM: 
3+n 3+n+nd 3+n+2p 3+n+nd+2p 3+n 3+n+nd 

Table is in external memory: 
3+n+np 2+2n+nd+np 3+n+np+2p 2+2n+nd+np+2p 3+n+np 2+2n+nd+np 

xv not repeatable 

E-4 



F. TMS320C25 Development Support/Part 
Order Information 

Texas Instruments offers extensive development support and complete documenta­
tion with the TMS320 family of digital signal processors (see Figure F-1 ). Tools are 
provided to evaluate the performance of the processor, develop algorithm imple­
mentations, and fully integrate the design's software and hardware modules. 

The development support available for the TMS320C25 is listed below. 

• Macro Assembler/Linker 

• Simulator 

• Emulator (XDS/22) 

Key features, a description, and part order information for each TMS320C25 devel­
opment support tool can be found in the following pages. Contact the nearest Tl field 
sales office for availability or further details (see list of sales offices and distributors 
at end of book). 

Figure F-1. TMS320 Family Development Support 

F-1 



Appendix F 

F.1 TMS320C25 Macro Assembler/Linker 

The TMS320C25 Macro Assembler translates TMS320C25 assembly language 
source code into executable object code. The assembler allows the programmer to 
work with mnemonics rather than hexadecimal machine instructions and to reference 
memory locations with symbolic addresses. The macro assembler supports macro 
calls and definitions along with conditional assembly. 

The TMS320C25 Linker permits a program to be designed and implemented in 
separate modules that will later be linked together to form the complete program. 
The linker resolves external definitions and references for relocatable code, creating 
an object file that can be executed by the TMS320C25 Simulator, TMS320C25 
Emulators, or TMS320C25 processor. 

The following key features distinguish the TMS320C25 Macro Assembler/Linker: 

• Macro Capabilities and Library Functions 
• Conditional Assembly 
• Relocatable Modules 
• Complete Error Diagnostics 
• Symbol Table and Cross Reference 

The TMS320C25 Macro Assembler/Linker is currently available for the VAX/VMS, 
Tl PC/MS-DOS, and IBM PC/PC-DOS operating systems. 

HOST OPERATING PART NUMBER MEDIUM 
SYSTEM 

DEC VAX VMS TMDS3242210-08 1600 BPI MAG TAPE 
Tl/IBM PC MS/PC-DOS TMDS3242810-02 5 1 /4" FLOPPY 

F.2 TMS320C25 Simulator 

F-2 

The TMS320C25 Simulator is a software program that simulates operation of the 
TMS320C25 to allow program verification. The debug mode enables the user to 
monitor the state of the simulated TMS320C25 while the program is executing. The 
simulator uses the TMS320C25 object code produced by the TMS320C25 Macro 
Assembler/Linker. During program execution, the internal registers and memory of 
the simulated TMS320C25 are modified as each instruction is interpreted by the host 
computer. Once program execution is suspended, the internal registers and both 
program and data memories can be inspected and/or modified. In addition, files can 
be associated with the 1/0 ports. 

The following features highlight simulator capability for effective TMS320C25 soft­
ware development: 

• Program Debug/Verification 
• Single-Step Option 
• Trace/Breakpoint Capabilities 
• Full Access to Simulated Registers and Memories 
• 1/0 Device Simulation 

The TMS320C25 Simulator is currently available for the VAX/VMS, Tl PC/MS-DOS, 
and IBM PC/PC-DOS operating systems. 

HOST OPERATING PART NUMBER MEDIUM 
SYSTEM 

DEC VAX VMS TMDS3242211-08 1600 BPI MAG TAPE 
Tl/IBM PC MS/PC-DOS TMDS3242811-02 5 1 /4" FLOPPY 



Appendix F 

F.3 TMS320C25 Emulator 

The TMS320C25 Emulator (XDS/22) is a user-friendly system that has all the 
features necessary for realtime in-circuit emulation. This allows integration of hard­
ware and software modules in the debug mode. By setting breakpoints based on 
internal conditions or external events, execution of the program can be suspended 
and control given to the debug mode. In the debug mode, all registers and memory 
locations can be inspected and modified. Single-step execution is available. Full­
trace capabilities at full speed and a reverse assembler that translates machine code 
back into assembly instructions also increase debugging productivity. Using a 
standard RS-232-C port, the object file produced by the TMS320C25 Macro 
Assembler/Linker can be downloaded into the emulator, which then can be 
controlled through a terminal. 

The XDS/22 provides 4K x 16 words of high-speed static RAM (zero wait states) 
for program memory and sockets for 4K x 16 words of high-speed static RAM for 
user-supplied data memory. It also has the capability of executing out of target 
memory to utilize the full TMS320C25 program/data address range. For multiproc­
essing configurations, up to nine emulators can be daisy-chained together. 

The XDS/22 emulator is a completely self-contained system with power supply. This 
model also includes memory expansion with 64K x 16 words of DRAM (two wait 
states). This slower memory is configurable by the user as either all program memory, 
all data memory, or 32K words of each. With three RS-232-C ports, the XDS/22 
Emulator can be interfaced to a terminal, host computer for source or object 
downloading/uploading capabilities, and printer or PROM programmer. 

The key features of the XDS/22 Emulator are as follows: 

• Full-Speed In-Circuit Emulation 
• 4K Words of Program Memory for User Code 
• Program/Data DRAM Memory Expansion to 64K Words 
• Hardware Breakpoint on Program, Data, or 1/0 Conditions 
• 2K Words of Full-Speed Hardware Trace 
• Use of Target System Crystal, Internal Crystal, or External Clock Signal 
• Up to Ten Software Breakpoints 
• Single-Step Option 
• Assembler/Reverse Assembler 
• Host-Independent Upload/Download Capabilities to/from Program or Data 

Memory 
• Ability to Inspect and Modify Registers and Program/Data Memory 
• Multiprocessor System Development 

MODEL PART NUMBER POWER SUPPLY 

XDS/22 TMDS3262221 (Included) 

Figure F-2 shows a block diagram of a typical system configuration using the 
TMS320C25 XDS/22 Emulator. 

F-3 



Appendix F 

USER'S . 
TERMINAL 

PROM 
PROGRAMMER 

OR 
LINE 

PRINTER 

TMS320C25 
XDS/22 

EMULATOR 

BREAKPOINT 
TRACE 

64K DRAM 
EXPANSION 

TARGET 
SYSTEM 

HOST 
COMPUTER 

SYSTEM 

Figure F-2. TMS320C25 XDS/22 Emulator System Configuration 

F.4 Device Prefix Designators 

F-4 

To provide expeditious system evaluations by customers during the product devel­
opment cycle, Texas Instruments assigns a prefix designator with three options: TMX, 
TMP, and TMS. These prefixes are representative of the evolutionary stages of 
product development from engineering prototypes (TMX) through fully qualified 
production devices (TMS). This evolutionary development flow is defined below. 

TMX Experimental devices that are not representative of the final device's 
electrical specifications. 

TMP Final silicon die that conforms to the device's electrical specifications 
but has not completed quality and reliability verification. 

TMS Fully qualified production devices. 

TMX devices are shipped against the following disclaimer: 

1) Product is experimental and its reliability has not been characterized. 

2) Product is sold "as is." 

3) Product is not warranted to be exemplary of final production version if or when 
released by Texas Instruments. 

TMP devices are shipped against the following disclaimer: 



Appendix F 

1) Customer understands that the product purchased hereunder has not been fully 
characterized and the expectation of quality and reliability cannot be defined; 
therefore, Texas Instruments standard warranty refers only to the device's 
specifications. 

2) No warranty of merchantability or fitness is expressed or implied. 

Note: 

Texas Instruments recommends that prototype devices (TMX or TMP) not be 
used in production systems since their expected end-use failure rate is undefined 
but predicted to be greater than standard qualified production devices. 

TMS devices have been fully characterized and the quality and reliability of the device 
has been fully demonstrated. Texas Instruments standard warranty applies. 

F.5 TMS320 Nomenclature 

In addition to the prefix, the device family name, the specific device name, package 
type, and temperature range are designated in the device nomenclature. Figure F-3 
provides a legend for reading the complete device name. 

TMS 320 C 25 

PREFIX----------' 
TMS = standard prefix 
SMJ = MIL-STD-883C 

FAMILY-------------' 
320 = signal processing family 

TECHNOLOGY--------------' 
C =CMOS 

DEVICE------------------' 
10 = 1st-generation microprocessor/microcomputer 
11 
20 = 2nd-generation microprocessor 
25 

FN L 

L_ TEMPERATURE RANGE 
L = o•c to 10-c 
s = -ss•c to 100-c 
M = -ss•c to 12s·c 
A = -40"C to as·c 

'------ PACKAGE TYPE 
N = plastic DIP 
JD = ceramic DIP side-brazed 
FN = plastic leaded cc 
GB = ceramic PGA 
FJ = ceramic leaded cc 
FD = leadless ceramic cc 

Figure F-3. TMS320 Nomenclature 

F-5 



F-6 



G. TMS320C25 Macro Assembler and Link 
Editor Installation 

This appendix contains step-by-step instructions for installing, verifying, and 
relinking the TMS320C25 Macro Assembler and Link Editor. This software can be 
installed on two operating systems: 

• VAX/VMS (Digital Equipment Corporation VAX-11 )1 

e MS/PC-DOS (MS-DOS for the Tl PC and PC-DOS for the IBM PC) 2 

The following style and symbol conventions are used to present information clearly 
and concisely: 

• The symbol <CR> indicates that a carriage return should be entered. 
• Screen displays are shown in a special font. 
• Portions of a display that are user responses are underscored. 

VAX-11 and VMS are trademarks of Digital Equipment Corporation. 

2 PC-DOS is a trademark of International Business Machines. 

G-1 



Appendix G 

G.1 TMS320C25 VAX/VMS CrossWare Installation 

The TMS320C25 CrossWare tape was created with the VMS BACKUP utility. The 
package is contained in two directories, shipped in two save-sets. 

In the examples, replace <directory> with the name of the directory in which this 
package resides, e.g., DUA2:[DSP.ASM25]. Note the use of brackets in this section 
to indicate a directory. 

The following subsections include the sequence of steps used for restoring the 
directories of the Macro Assembler and Link Editor, installing command files, 
providing transparent access, verifying the installation procedure, and relinking the 
product components. A list of the product directories is also provided. 

G.1.1 Restoring the Distribution Tape to Disk 

G-2 

In the following examples, MFAO is the tape drive name and·DUA2 is the hard disk 
drive name. The tape drive and disk drive may have other names, dependent on a 
particular system. 

• Mount the Tape 

Place the tape on a tape drive. Mount it by entering: 

ALLOC MFAO: <CR> 
MOUNT MFA07/0VER=ID/FOR/DEN=l600 <CR> 

If the mount is successful, the screen displays: 

ASM25 MOUNTED ON MFAO 

• Restore the Macro Assembler 

Use the BACKUP utility to read the C25ASM save-set from the tape: 

BACKUP/LOG/VERIFY MFAO:C25ASM.BCK DUA2:[<directory>]*.* <CR> 

The CrossWare package can reside in either the user directory or a system 
directory. The examples copy the package into the user directory, copying the 
C25ASM.BCK directory structure on the tape into [<directory>] on disk DUA2. 

A README file explaining the Macro Assembler validation procedure is 
contained in this directory: 

[<directory>.C25ASM]README.DAT 

If not installing the Link Editor, skip the next step and unload the tape. 

• Restore the Link Editor 

Use the BACKUP utility to copy the LINKER save-set from the tape: 

BACKUP/LOG/VERIFY MFAO:LINKER.BCK DUA2:[<directory>]*.* <CR> 

The LINKER.BCK directory structure on the tape is copied into [<directory>] 
on disk DUA2. 

A READM E file explaining the Link Editor validation procedure is contained in 
this directory: 

[<directory>.LINKER]README.DAT 



Appendix G 

• Dismount the Tape 

Dismount the tape by entering: 

DISMOUNT MFAO: <CR> 

Remove the tape from the drive. Deallocate the tape drive by entering: 

DEALLOCATE MFAO: <CR> 

G.1.2 Installing Command Files 

Two command procedures are provided to ensure correct system-dependent parse 
features. If the VAX/VMS system runs under Version 2.5, use the PARSE.C25 
command procedure by renaming it PARSE.COM. If the system runs under Version 
3.0, use the default PARSE.COM. 

Set the default directory to the directory to which the Assembler and Linker have 
been restored. Edit the Assembler and Linker command files, replacing existing 
pathnames with the pathnames to which they have been restored: 

e Edit the file: [<directory> .C25ASM] XASM. COM 

Insert the appropriate file pathnames in three places: 

For the two calls to the PARSE command, which appear within the first 
20 lines, insert the appropriate file pathname after@ and before PARSE: 

$ @DUA2:[<directory>.C25ASM]PARSE 'Pl' ... 

For the one RUN statement, which appears near the bottom of the file, 
insert the appropriate file pathname after RUN and before ASM32020: 

$RUN DUA2:[<directory>.C25ASM]ASM32020 

e Edit the file: [<directory>. LINKER] XL INKER. COM 

Substitute the appropriate file pathnames in three places: 

Two calls to the PARSE command, marked in the file by a preceding line 
'****** I 

$ @[MOORE.LINKER]PARSE 'Pl' ... 

Change them to: 

$ @DUA2:[<directory>.LINKER]PARSE 'Pl' 

One RUN statement near the end of the file. 

$ RUN[MOORE.LINKER]LINKER 

Change it to: 

$ RUN DUA2: [<directory>.LINKER]LINKER 

G-3 



Appendix G 

G.1.3 Providing Transparent Access 

Use the following procedure to provide transparent access to the Assembler and Link 
Editor for all users. After the directories are on disk, make the following assignments 
into the LOGIN.COM file: 

$ X320 :== @DUA2: [<directory>.C25ASM]XASM.COM 
$ XLINK :== @DUA2: [<directory>.LINKER]XLINKER.COM 

This defines the X320 and XLINK commands, which execute the Macro Assembler 
and Link Editor. Execute the Macro Assembler by entering X320 at the terminal in 
System Mode. Similarly, execute the Link Editor by entering XLINK. 

G.1.4 Verifying Installation 

G-4 

This verification procedure is not designed to perform an exhaustive test. It simply 
verifies that the installation procedures were executed correctly. It also provides 
familiarity with the basic operation and data flow of this package. 

The test procedure consists of creating a test directory, assembling three source files, 
and linking the assembler output files. 

1) Create a test directory. Copy the TEST.ASM, TEST1 .ASM, TEST2.ASM, and 
TEST1 .CON files from [.C25ASM] and [.LINKER] into the directory by entering 
these commands: 

$ CREATE/DIR [<userid>.TEST] <CR> 
$ SET DEF [<userid>.TEST] <CR> 
$ COPY <director >.C25ASM TEST.ASM * <CR> 
$ COPY <director >.LINKER TESTl.ASM-* <CR> 
$ COPY [<directory>.LINKER]TEST2.ASM * <CR> 
$ COPY [<directory>.LINKER]TESTl.CON ~ <CR> 

2) In System Mode, enter: X320 <CR> 

For the first input parameter in each of the three assembler runs, enter 
TEST .ASM, TESTl .ASM, and TEST2 .ASM, respectively (ASM is the default). 
The command procedure parses the pathname and generates defaults for the 
output listing and object files. Press the carriage return to accept the defaults, 
or specify user file pathnames as follows: 

$ X320 TEST <CR> 
Object file (TEST.MPO): <CR> 
Listing file (TEST.LIS): <CR> 
Messages (~TXEl:): <CR> 

$ X320 TESTl 
Object file (TESTl.MPO): <CR> 
Listing file (TESTl.LIS): <CR> 
Messages (~TXEl:): <CR> 

$ X320 TEST2 
Object file (TEST2.MPO): <CR> 
Listing file (TEST2.LIS): <CR> 
Messages (~TXEl:): <CR> 

This creates the TEST.MPO, TEST.LIS, TEST1 .MPO, TEST1 .LIS, TEST2.MPO 
and TEST2.LIS files in the directory [ <userid> .TEST]. 

3) In System Mode, enter: XLINK <CR> 

As the first input parameter, enter TESTl. CON. For the second and third 
parameters, the command procedure parses the pathname and generates 



Appendix G 

defaults for the output, load, and map files. This procedure links the object files 
for TEST1 and TEST2 into a single executable object file in TEST1 .LOO (CON 
is the default for the first parameter): 

$ XLINK TESTl <CR> 
Linked object file (TESTl.LOD): <CR> 
Map file (TESTl.MAP): <CR> 

This creates the files TEST1 .LOO and TEST1 .MAP. These files should agree 
with the precompiled versions in the product directories for the Macro Assem­
bler and Link Editor. 

G.1.5 Relinking the Macro Assembler and Link Editor 

It should not be necessary to relink the Macro Assembler or Link Editor, but command 
files have been provided to allow for this contingency. 

To relink the Macro Assembler, edit the LINKASM.COM procedure file to put the 
correct pathname for the runtime library in the logical assignment statement. In 
System Mode, execute LINKASM.COM to relink the ASM32020.EXE file: 

$ SET DEF [<directory>.C25ASM] <CR> 
$ @LINKASM <CR> 

Similarly, to relink the Link Editor, edit the LINKLINK.COM procedure file to put the 
correct pathname for the runtime library in the logical assignment statement. In 
System Mode, execute LINKLINK.COM to relink the LINKER.EXE file: 

$ SET DEF [<directory>.LINKERl <CR> 
$ @LINKLINK <CR> 

G.1.6 Product Directories 

The following listing contains the product directories found in the CrossWare pack­
age. These two directories contain a total of 40 files. 

SET DEF [<userid>.<directory>J <CR> 
DIR <CR> 

Directory [<directory>] 
C25ASM.DIR;l LINKER.DIR;l 
Total: 2 files 

DIR [<directory>.C25ASM] <CR> 

Directory [<directory>.C25ASM] 
ASM.OBJ;l ASM32020.EXE;l 
FORMO.LIS;l FORMO.MPO;l 
FORMl.MPO;l FORM2.ASM;l 
FORMREST.ASM;l FORMREST.LIS;l 
PARSE.C25;1 PARSE.COM;l 
TEST.LIS;l TEST.MPO;l 
Total: 23 files 

DIR [<directory>.LINKER] <CR> 

Directory [<directory>.LINKER.] 
XLINKER.COM;l LINKER.EXE;1 
LINKRTS.OLB;l PARSE.C25;1 
TESTl.ASM;l TESTl.CON;l 
TESTl.MAP;l TESTl.MPO;l 
TEST2.MPO;l . 
Total: 17 files 

ASMRTS .. OLB; 1 
FORMl.ASM;l 
FORM2.LIS;l 
FORMREST.MPO;l 
README.LIS;l 
XASM.COM;l 

LINKER.OBJ;l 
PARSE.COM;l 
TESTl. LIS; 1 
TEST2.ASM;l 

FORMO.ASM;l 
FORMl. LIS; 1 
FORM2.MPO;l 
LINKASM.COM;l 
TEST.ASM;l 

LINKLINK.COM;l 
README.LIS;l 
TESTl.LOD;l 
TEST2.LIS;l 

G-5 



AppendixG 

G.2 TMS320C25 MS/PC-DOS Cros•Ware 

The TMS320C25 CrossWare installation package is contained on a dual-density 
double-sided floppy diskette. The Macro Assembler and Link Editor execute in batch 
mode on MS-DOS (Tl PC) and PC-DOS (IBM PC) systems. At least 256K bytes 
of memory space must be available. 

Instructions are included for both hard-disk systems and dual floppy-drive systems. 
The examples use these symbols for drive names: 

A: Floppy-disk drive for hard-disk systems or source drive for dual floppy-drive 
systems. 

e: Destination or system disk drive for dual floppy-drive systems. 

E: Winchester (hard disk) for hard-disk systems. 

The following subsections include a list of the files on the diskette and the sequence 
of steps used for restoring, executing, and testing the directories of the Macro 
Assembler and Link Editor. 

G.2.1 Diskette Files 

G-6 

• The TMS320C25 Assembler portion of the diskette contains four files: an 
executable module and three test files. 

Executable Module: 

XASM.EXE 

Test Files: 

FFT.ASM 
FFT.LST 
FFT.MPO 

Executes the Macro Assembler 

Source file for Assembler test program 
Co.rrect output listing file for Assembler test program 
Correct output object file for Assembler test program 

• The TMS320C25 Linker portion of the diskette contains ten files: one executable 
module and nine test files. 

Executable Module: 

LINKER.EXE Executes the Link Editor 

Test Files: 

TST1.ASM 
TST1.LST 
TST1.MPO 
TST2.ASM 
TST2.LST 
TST2.MPO 
LNKTST.CTL 
LNKTST.MAP 
LNKTST.LOD 

Source file for test program #1 
Correct output listing file for test program #1 
Correct output object file for test program #1 
Source file for test program #2 
Correct output listing file for test program #2 
Correct output object file for test program #2 
Linker test program (link control file) 
Correct output listing file for the Linker test program 
Correct output object file for the Linker test program 



Appendix G 

G.2.2 Restoring the Macro Assembler and Linker 

Instructions are provided for hard-disk systems and dual floppy-drive systems. If 
using a dual floppy-drive system, the MS/PC- DOS system diskette should be in drive 
B. 

1) Make a backup diskette of the Macro Assembler and Linker. 

• On MS- DOS, insert the source diskette in drive A. Enter: 

DISKCOPY A: A:/F/V <CR> 

The /F (format) switch tells MS-DOS to format the new {destination) 
diskette before copying begins. The JV (verify) switch tells MS- DOS to 
verify that the source and destination diskettes are identical after the copy 
has completed. 

• On PC- DOS, insert a blank diskette in drive A. Enter: 

FORMAT A: <CR> 

Then enter: 

DISKCOPY A: A: <CR> 

When MS/PC-DOS first prompts for the destination diskette, remove the source 
diskette and insert a blank diskette. Follow the prompts, removing and inserting 
the source and destination diskettes as directed. When MS/PC-DOS prompts: 

COPY ANOTHER (Y/N)? 

respond with ,N. 

2) Copy the Macro Assembler onto the hard disk or the system disk. 

On hard-disk systems, enter: 

COPY A:XASM.EXE E:*.*/V <CR> 

On dual floppy-drive systems, enter: 

COPY A:XASM.EXE B:*.*/V <CR> 

3) Copy the Link Editor onto the hard disk or the system disk: 

On hard-disk systems, enter: 

COPY A:LINKER.EXE E:*.*/V <CR> 

On dual floppy-drive systems, enter: 

COPY A:LINKER.EXE B:*.*/V <CR> 

G-7 



Appendix G 

G.2.3 Executing the Macro Assembler 

To execute the Macro Assembler, enter: 

XASM <CR> 

The command line parser prompts for the source, listing, and object file names: 

Source File 

Listing File 
Object File 

Enter the source file name (if the source file does not have an 
extension, then type the file name with an explicit'.'). 
Enter the output listing file name. 
Enter the output object file name. 

MS/PC-DOS creates defaults for the listing and object files and/or their extensions. 
The default extensions are: 

.ASM 

.LST 

.MPO 

Source file 
Listing file 
Object file 

In the following examples, two special command characters are used: semicolon (;) 
and comma (,). Using a semicolon (;) followed immediately by a carriage return at 
any time after the first filename in a command line selects the default responses to 
the remaining prompts. The comma (,) separates responses to successive prompts. 

Examples: 

XASM <filename>.SRC; 
Uses <filename> with extension SAC. 
Generates defaults for the listing file <filename.LST> and object file 
<filename>.MPO. 

XKSM <filename>; 
Uses <filename> with default extension ASM. 
Generates defaults for the listing and object files as indicated above. 

XASM <filename>,<newname>; 
Uses <filename> with default extension ASM. 
Generates listing file <newname>.LST and object file <newname>.MPO. 

XASM <filename>,<newname> 
Uses <filename> with default extension ASM. 
Generates listing file <newname>.LST.and prompts for object file name. 

G.2.4 Executing the Link Editor 

G-8 

To execute the Linker, enter: 

LINKER <CR> 

The command line parser prompts for the control, linkmap, and load file names. 

Control File Enter the control file name with extension (if the control file does 
not have an extension, type the file name with an explicit'.'). 
Enter the linkmap file name with extension. Map File 

Load File Enter the load module file name with extension. 

MS/PC-DOS generates defaults for the linkmap and load files and/or their exten­
sions. The default extensions are: 

.CTL 

.MAP 

.LOO 

Control file 
Linkmap file 
Load file 



Appendix G 

In the following examples, two special command characters are used: semicolon (;) 
and comma (.). Using a semicolon (;) followed immediately by a carriage return at 
any time after the first filename in a command line selects the default responses to 
the remaining prompts. The comma (.) separates responses to successive prompts. 

Examples: 

LINKER <filename>.SRC; 
Uses <filename> with extension SRC. 
Generates defaults for the linkmap and load files as indicated above. 

LINKER <filename>; 
Uses <filename> with default extension CTL. 
Generates defaults for the linkmap and load files as indicated above. 

LINKER <filename>,<newname>; 
Uses <filename> with default extension CTL. 
Generates linkmap file <newname>.MAP and load file <newname>.LOD. 

LINKER <filename>,<newname> 
Uses <filename> with default extension CTL. 
Generates linkmap file <newname> .MAP and prompts for the load file name. 

G.2.5 Testing the Macro Assembler 

• Hard-Disk Systems 

1) Copy the FFT.ASM test file from the backup diskette onto the hard disk 
using the MS/PC- DOS COPY utility: 

COPY A:FFT.ASM E:*.*/V <CR> 

2) Execute the Macro Assembler using FFT.ASM as the source file. By 
entering: 

XASM FFT; <CR> 

in response to the system prompt, the Assembler generates the default 
object file.,FFT.MPO and default listing file FFT.LST. 

3) Compare the listing and object files just created to those on the backup 
diskette: 

On MS-DOS, use the FILCOM utility to make the comparison: 

FILCOM FFT.MPO A:FFT.MPO <CR> 
FILCOM FFT.LST A:FFT.LST <CR> 

The contents of each file can be viewed with the TYPE utility. 

On PC- DOS, use the TYPE utility to show the contents of the two 
files and to visually check the contents for verification: 

TYPE FFT.MPO <CR> 
TYPE A:FFT.MPO <CR> 

TYPE FFT.LST <CR> 
TYPE A:FFT.LST <CR> 

Only lines containing dates or times should differ. 

G-9 



Appendix G 

• Floppy- Drive Systems: 

1) Insert the backup diskette into the default floppy drive. 

2) Execute the Macro Assembler using FFT.ASM as the source test file. It 
is important to use a different name for the object and listing files. Other­
wise, the Assembler will write over these files on the backup diskette, and 
there will be no correct files with which to compare the created files. By 
entering: 

XASM FFT,MYFFT; <CR> 

in response to the system prompt, the Assembler generates object file 
MYFFT.MPO and listing file MYFFT.LST. 

3) Compare the listing and object files just created to those shipped on the 

Note: 

backup diskette: 

On MS-DOS, use the FILCOM utility to make the comparison: 

FILCOM FFT.MPO MYFFT.MPO <CR> 
FILCOM FFT.LST MYFFT.LST <CR> 

The contents of each file can be viewed with the TYPE utility. 

On PC- DOS, use the TYPE utility to show the contents of the two 
files and to visually check the contents for verification: 

TYPE FFT.MPO <CR> 
TYPE MYFFT.MPO <CR> 

TYPE FFT.LST <CR> 
TYPE MYFFT.LST <CR> 

Only lines containing dates or times should differ. 

The files TEST1 .ASM and TEST2.ASM, contained in the Linker portion of the 
diskette, can also be used to test the Macro Assembler. 

G.2.6 Testing the Link Editor 

G-10 

• Hard-Disk Systems 

1) .Copy the LNKTST.CTL, TST1 .MPO, and TST2.MPO files from the backup 
diskette onto the hard disk using the MS/PC-DOS COPY utility: 

COPY A:LNKTST.CTL E:*.*/V <CR> 

COPY A:TST*.MPO E:*.*/V <CR> 

2) Execute the Link Editor using LNKTST.CTL as the control file. By entering: 

LINKER LNKTST; <CR> 

in response to the system prompt, the Linker generates the default linkmap 
file LNKTST.MAP and default load file LNKTST.LOD. 

3) Compare the map and load files just created to those on the backup 
diskette: 



Appendix G 

On MS-DOS, use the FILCOM utility to make the comparison: 

FILCOM LNKTST.MAP A:LNKTST.MAP <CR> 
FILCOM LNKTST.LOD A:LNKTST.LOD <CR> 

The contents of each file can be viewed with the TYPE utility. 

On PC- DOS, use the TYPE utility to show the contents of the two 
files and to visually check the contents for verification: 

TYPE LNKTST.MAP <CR> 
TYPE A:LNKTST.MAP <CR> 

TYPE LNKTST.LOD <CR> 
TYPE A:LNKTST.LOD <CR> 

Only lines containing dates or times should differ. 

• Floppy- Drive Systems: 

1) Insert the backup diskette into the default floppy drive. 

2) Execute the Link Editor using LNKTST.CTL as the control file. It is 
important to use a different name for the map and load files. Otherwise, 
the Linker will write over these files on the backup diskette, and there will 
be no correct files with which to compare the created files. By entering: 

LINKER LNKTST,MYLNK; <CR> 

in response to the system prompt, the Linker generates the linkmap file 
MYLNK.MAP and load file MYLNK.LOD. 

3) Compare the map and load files just created to those shipped on the 
backup diskette: 

On MS- DOS, use the Fl LCOM utility to make the comparison: 

FILCOM LNKTST.MAP MYLNK.MAP <CR> 
FILCOM LNKTST.LOD MYLNK.LOD <CR> 

The contents of each file can be viewed with the TYPE utility. 

On PC- DOS, use the TYPE utility to show the contents of the two 
files and to visually check the contents for verification: 

TYPE LNKTST.MAP <CR> 
TYPE MYLNK.MAP <CR> 

TYPE LNKTST.LOD <CR> 
TYPE MYLNK.LOD <CR> 

Only lines containing dates or times should differ. 

G-11 



G-12 



Index 
A 

ABS 
Absolute Value of Accumulator 4-16 

accumulator 2-10, 3-3, 3-15 
adaptor sockets 2-3 
ADD 

Add to Accumulator with Shift 4-17 
ADDC 

Add to Accumulator with Carry 4-18 
ADDH 

Add to High Accumulator 4-19 
ADDK 

Add to Accumulator Short 
Immediate 4-20 

address bus (A 15-AO) 2-5 
addressing modes 2-15, 3-12, 4-2 

direct addressing 2-16, 3-12, 4-2 
immediate addressing 2-16, 3-12, 4-7 
indirect addressing 2-16, 3-12, 4-3 

ADDS 
Add to Accumulator with Sign-Extension 

Suppressed 4-21 
ADDT 3-16 

Add to Accumulator with Shift Specified 
by T Register 4-22 

ADLK 
Add to Accumulator Long Immediate with 

Shift 4-23 
ADRK 

Add to Auxiliary Register Short 
Immediate 4-24 

AND 
AND with Accumulator 4-25 

ANDK 
AND Immediate with Accumulator with 

Shift 4-26 
APAC 

Add P Register to Accumulator 4-27 
ARAU 3-10, 3-12, 5-37 
ARB 3-11, 3-23 
architectural overview 2-1 
arithmetic logic unit (ALU) 3-3, 3-15 
A'RP 3-9, 3-12, 3-23 
assembler 7-2 

assembler directives 7-1, 7-9 
AORG (Absolute Origin) 7-13 
BES (Block Ending with Symbol) 7-14 
BSS (Block Starting with Symbol) 7-15 
CEND (Common Segment End) 7-16 
COPY (Copy Source File) 7-17 
CSEG (Common Segment) 7-18 
DATA (Initialize Word) 7-20 
DEF (External Definition) 7-21 
DEND (Data Segment End) 7-22 
DORG (Dummy Origin) 7-23 
DSEG (Data Segment) 7-24 
END (Program End) 7-25 
EQU (Define Assembly-Time 

Constant) 7-26 
EXEC (Independent Program 

Segment) 7-27 
IDT (Program Identifier) 7 -28 
LIST (Restart Source Listing) 7-29 
LOAD (Force Load) 7-30 
MLIB (Define MACRO Library) 7-32 
OPTION (Output Options) 7-33 
PAGE (Eject Page) 7-34 
PEND (Program Segment End) 7-35 
PSEG (Program Segment) 7-36 
REF (External Reference) 7-37 
RORG (Relocatable Origin) 7-38 
SREF (Secondary External 

Reference) 7-39 
TEXT (Initialize Text) 7-40 
TITL (Page Title) 7-41 
UNL (Stop Source Listing) 7-42 
XEND (Independent Segment 

End) 7-43 
assembler error messages 7-51 
assembly language instructions 2-17, 4-1 
auxiliary register arithmetic unit 

(ARAU) 2-9, 3-3, 3-10, 3-12 
auxiliary register file bus (AFB) 3-5, 3-12 
auxiliary register pointer (ARP) 3-3, 3-9, 

3-12, 3-23 
auxiliary register pointer buffer (ARB) 3-4, 

3-11,3-23 
auxiliary registers (ARO-AR7) 2-8, 3-3, 

3-9, 4-3 

lndex-1 



Index 

B 

B 
Branch Unconditionally 4-28 

BACC 
Branch to Address Specified by Accu­
mulator 4-29 

BANZ 3-20 
Branch on Auxiliary Register Not 
Zero 4-30 

BBNZ 5-24 
Branch on Bit Not Equal to Zero 4-32 

BBZ 5-24 
Branch on Bit Equal to Zero 4-33 

BC 
Branch on Carry 4-34 

BGEZ 
Branch if Accumulator Greater Than or 

Equal to Zero 4-35 
BGZ 

Branch if Accumulator Greater Than 
Zero 4-36 

BIO 2-6, 3-49 
BIOZ 

Branch on 1/0 Status Equal to 
Zero 4-37 

BIT 5-24 
Test Bit 4-38 

bit manipulation 5-24 
bit-reversed addressing 2-16, 5-46 
BITT 5-24 

Test Bit Specified by T Register 
BLEZ 

4-39 

Branch if Accumulator Less Than or Equal 
to Zero 4-41 

BLKD 3-13, 5-15 
Block Move from Data Memory to Data 

Memory 4-42 
BLKP 3-13, 5-15 

Block Move from Program Memory to 
Data Memory 4-44 

block diagram 2-3 
block moves 3-13, 5-15 
BLZ 

Branch if Accumulator Less Than 
Zero 4-46 

BNC 
Branch on No Carry 4-47 

BNV 5-25 
Branch if No Overflow 4-48 

BNZ 
Branch if Accumulator Not Equal to 
Zero 4-49 

BR 2-5, 3-46 
branches 3-20, 5-20, D-1 
BV 5-25 

Branch on Overflow 4-50 

lndex-2 

BZ 

c 

Branch if Accumulator Equals 
Zero 4-51 

CALA 5-4 
Call Subroutine Indirect 4-52 

CALL 5-4 
Call Subroutine 4-53 

calls 3-20, 5-20, D-1 
carry bit (C) 2-10, 3-15, 3-23, 5-38, D-2 
central arithmetic logic unit (CALU) 2-10, 

3-3, 3-13 
CLKOUT1 2-6 
CLKOUT2 2-6 
CLKR 2-6, 3-36, D-2 
CLKX 2-6, 3-36, D-2 
clock timing 3-28 
CMPL 

Complement Accumulator 4-54 
CMPR 

Compare Auxiliary Register with Auxiliary 
Register ARO 4-55 

CNF 3-23 
CNFD 3-7, 5-18, D-1 

Configure Block as Data Memory 4-56 
CNFP 3- 7, 5-18, D-1 

Configure Block as Program 
Memory 4-57 

codec interface 6-7 
commands (see linker commands) 
companding 5-42 
computed GOTO 5-9 
constants 7-4, 8-5 
context switching 5-11 
convolution 5-26 
cycle timings (instructions) D-1, E-1 

D 

data address bus (DAB) 3-5, 3-12 
data bus (015-DO) 2-5, 3-5 
data memory addressing 3-12 
data memory page pointer (DP) 3-4, 3-12, 

3-23 
data moves 3-13, 5-26 
data receive register (ORR) 3-4, 3-35 
data transmit register (DXR) 3-4, 3-35 
denormalization 5-36 
development support 2-22, F-1 

emulator (XDS) 2-23, F-3 
macro assembler/linker 2-23, F-2 
simulator 2-23, F-2 



Index 

digital filters 5-43 
DINT 

Disable Interrupt 4-58 
direct address bus (ORB) 3-5, 3-12 
direct addressing mode 3-12, 4-2 
direct memory access (OMA) 2-9, 2-14, 

3-47, 6-4 
directives (see assembler directives) 7-1 
division 5-32 
DMOV 3-13, 5-26 

Data Move in Data Memory 4-59 
DR 2-6 
ORR 3-9 3-35 D-2 
OS 2-5 I ' 

DX 2-6, 3-36 
DXR 3-9, 3-35 

E 

EINT 3-33, 3-34 
Enable Interrupt 4-60 

emulator (XDS) 2-23, F-3 
EXAMPLE 

Example Instruction 4-14 
extended-precision arithmetic 5-38 
external clock (CLKX) 3-36 
external flag (XF) 3-24, 3-50 
external memory interface 3-26, 6-2 
external read cycle 3-28 
external write cycle 3-30 

F 

Fast Fourier Transforms (FFT) 5-46 
filtering 5-43 
finite impulse response (FIR) filters 5-43 
floating-point arithmetic 2-11, 3-16, 5-35 
format bit (FO) 3-23, 3-35 
FORT D-2 

Format Serial Port Registers 4-61 
frame sync mode 2-12 
frame synchronization mode bit 

(FSM) 3-24, 3-35, D-2 
FSR 2-6, 3-36 
FSX 2-6, 3-36 

G 

global memory 2-13, 3-45, 6-6 
global memory allocation register 

(GREG) 3-4, 3-9, 3-45, 3-46, 6-7 

H 

hardware applications 6-1 
hardware stack 2-9, 3-4, 5-6, 5-11 
Harvard architecture 1 -1, 2-1 
HOLD 2-5, 3-47 
hold mode (HM) 3-24, D-2 
HOLDA 2-5, 3-47 

1/0 interface 2-12, 3-26 
!LQ_ports 2-12, 6-8 
IACK 2-6, 3-32, 3-33 
IBM/PC-DOS CrossWare installation G-1 
IDLE D-1 

Idle Until Interrupt 4-62 
immediate addressing mode 3-12, 4-7 
IN 5-15 

Input Data from Port 4-63 
indexed addressing 2-16, 5-37 
indirect addressing mode 3-12, 4-3 
infinite impulse response (llR) filters 5-43 
initialization 5-2 
instruction cycle classes E-1 
instruction cycle timings E-1 
instruction pipeline 3-18, 3-1 9 
instruction register (IR) 3-4, 3-18 
instruction repeatability 4-15 
instructions (assembly language) 4-1 
interrupt acknowledge (IACK) 3-32, 3-33 
interrupt flag register (IFR) 3-4, 3-32, 5-11 
interrupt mask register (IMR) 3-4, 3-9, 

3-32, 5-11 
interrupt mode (INTM) 3-24, 3-32, 3-33 
interrupts 2-11, 3-31, 3-47, 5-11 

logic 3-34 
e!Lorities 3-32, 5-14 
RS 3-21 
service routine 5-11 
vector locations 3-32, 5-11 

INT2-INTO 2-6 
IS 2-5 

lndex-3 



Index 

K 

keywords 8-1 0 

L 

labels 8-5 
LAC 

Load Accumulator with Shift 4-64 
LACK 

Load Accumulator Immediate 
Short 4-65 

LACT 3-16 
Load Accumulator with Shift Specified 

by T Register 4-66 
LALK 

Load Accumulator Long Immediate with 
Shift 4-67 

LAR 
Load Auxiliary Register 4-68 

LARK 
Load Auxiliary Register Immediate 
Short 4-70 

LARP 
Load Auxiliary Register Pointer 4-71 

LOP 
Load Data Memory Page Pointer 4-72 

LDPK 
Load Data Memory Page Pointer Imme­

diate 4-73 
link editor 9-1 
link editor files 9-3 

libraries 9-4 
library creation 9-47 
symbol resolution 9~4 

link control file 9-3 
linked output file 9-4 
listing file 9-4 · 

link map 9-4 
object modules 9-3 

linker 2-23, F-2 
description 9-2 
error messages 9-50 
examples 9-36 
files 9-3 
procedure/task segmentation 9-2, 

9-30, 9-35 
program definition 9-2 
segment positioning 9-2, 9-10 

linker command set summary 9-5 
linker commands 9-5 

ADJUST (Specify Alignment of 
Phase) 9-8 

ALLGLOBAL (Declare Global 
Symbols) 9-9 

·. lndex~4 

ALLOCATE (Allocate Relative Positioning 
ofSegments) 9-10 

AUTO (Automatic Symbol 
Resolution) 9-11 

COMMON (Set Starting Counter for 
CSEG) 9-12 

DATA (Set Starting Counter for 
DSEG) 9-1.3 · 

DUMMY (Supress Generation of Linked 
Output File) 9-14 

END (Specify End of Control 
Stream) 9-15 

ENTRY (Specify a Symbol for an Entry 
Tag) 9-16 

Fl ND (Search Sequential Libraries for 
Unresolved References) 9-17 

FORMAT (Define Format of Linked 
Output Module) 9-18 

GLOBAL (Identify Global 
Symbols) 9-19 

INCLUDE (Specify Modules To Be 
Included in Link) 9-20 

LIBRARY (Define Random Library 
Directories) 9-21 

NOAUTO (Inhibit Automatic Symbol 
Resolution) 9-22 

NOMAP (Omit Module, Common, and 
Symbol Maps from Listing) 9-23 

NOPAGE (Set No Page Ejects Between 
Link Maps) 9-24 

NOSYMT (Omit Symbol Table from 
Modules) 9-25 

NOTGLOBAL (Define Local 
Symbols) 9-26 

PAGE (Set Page Eject to Separate Link 
Maps) 9-27 

PARTIAL (Perform Partial Link) 9-28 
PHASE (Define Phase Level and 

Name) 9-29 . 
PROCEDURE (Define Phase as Proce­
dure) 9-30 

PROGRAM (Define Absolute Counter for 
PSEG) 9-31 

REPLACE (Relate Oldsym with 
Newsym) 9-32 

SEARCH (Search for Unresolved Refer­
ences) 9-33 

SYMT (Include Symbol Tables in Linked 
Output File) 9-34 

TASK (Define Phase as Task) 9-35 
linking examples 9-36 

library creation 9-47 
partial linking 9-43 
ROM/RAM partitioning 9-41 
simple linking 9-39 

listing file (linker) 9-4 
logical operations 5-23 
LPH 



Index 

Load High P Register 4-74 
LRLK 

Load Auxiliary Register Long 
Immediate 4-75 

LST 
Load Status Register STO 4-76 

LST1 
Load Status Register ST1 4-78 

LT 
Load T Register 4-80 

LTA 5-29 
Load T Register and Accumulate Previous 

Product 4-81 
LTD 5-29 

Load T Register, Accumulate Previous 
Product, and Move Data 4-82 

LTP 
Load T Register and Store P Register in 
Accumulator 4-83 

LTS 

M 

Load T Register, Subtract Previous Prod­
uct 4-84 

MAC 2-11, 5-28, 5-29, D-1 
Multiply and Accumulate 4-85 

MACO 2-11, 5-26, 5-29, D-1 
Multiply and Accumulate with Data 

Move 4-87 
macro assembler 2-23, 8-1, F-2 

absolute symbols 7-8 
character strings 7 -6 
constants 7-4 
cross-reference listing 7-50 
error messages 7-51 
object code 7-45 
relocatable symbols 7 -8 
source listing format 7-44 
symbols 7-4 

macro definitions 8-2 
macro error messages 8-20 
macro examples 8-18 
macros 8-1 
MAR 

Modify Auxiliary Register 4-89 
memory 2-7, 3-5, 5-15 

block moves 5-1 5 
global memory 3-45, 6-6 

memory combinations 3-27 
memory interface 2-9 
memory management 5-15 
memory maps 2-8, 3-7, 3-8 
memory-mapped registers 3-7, 3-9 
microcall stack (MCS) register 3-4, 3-18, 

3-21 

microstate complete (MSC) 6-3 
model statements 8-17 
MP/MC 2-6 
MPY 5-29 

Multiply 4-90 
MPYA 

Multiply and Accumulate Previous Prod­
uct 4-91 

MPYK 
Multiply Immediate 4-92 

MPYS 
Multiply and Subtract Previous 

Product 4-93 
MPYU 2-11, 3-17 
__ Multiply Unsigned 4-94 
MSC 2-6, 6-3 
multiplier 2-10, 3-3, 3-16, 5-28 
multiprocessing 2-13, 3-44 

N 

NEG 
Negate Accumulator 4-95 

NOP 
No Operation 4-96 

NORM 3-16 
Normalize Contents of 
Accumulator 4-97 

normalization 5-35, 5-36 

0 

object code 7-45 
object modules (linker) 9-3 
on-chip data RAM 2-7 
on-chip program RAM execution 5-20 
on-chip program ROM 3-5, 3-7 
on-chip RAM 3-3, 3-6, 3-7, 5-17 
on-chip RAM configuration control bit 

(CNF) 3-23 
on-chip ROM 2-7 
on-chip timer 2-11 
operators 8-9 
OR 

OR with Accumulator 4-99 
order information F-1 
ORK 

OR Immediate with Accumulator with 
Shift 4-100 

OUT 5-15 
Output Data to Port 4-101 

overflow flag (OV) 3-24, 5-26 
overflow management 5-25 
overflow mode (OVM) 3-24, 5-23, 5-26 

lndex-5 



Index 

overflow saturation mode 2-10, 3-16 

p 

P register (PR) 3-15, 3-16, 5-28 
PAC 

Load Accumulator with P 
Register 4-1 02 

partial linking 9-43 
PC stack 3-18, 3.-21, 5-4 
period register (PRD) 2-11, 3-3, 3-9, 3-24, 

5-7, D-1 
pinout 2-3 
PM bits 3-24, 5-32, D-2 
POP 3-21 

Pop Top of Stack to Low 
Accumulator 4-103 

POPD 3-21, 5-6 
Pop Top of Stack to Data 

Memory 4-1 04 
powerdown mode 3-26 
prefetch counter (PFC) 3-3, 3-18 
product register (PR) 2-10, 3-4, 3-16, 5-28 
product shift mode (PM) bits 3-17, 3-24, 

5-24, 5-32, D-2 
program address bus (PAB) 3-5 
program bus 3-5 
program counter (PC) 3-3, 3-.18 
PS 2-5 
PSH D 3-21, 5-6 

Push Data Memory Value onto 
Stack 4-105 

PUSH 3-21 

a 

Push Low Accumulator onto 
Stack 4-106 

queue instruction register (QIR) 3-4, 3-18 
015 format 3-17, 5-35 

R 

R/W 2-5 
random libraries (linker) 9-4 

creation 9-47 
definition 9-4, 9-21 
search using SEARCH command 9-33 

RC 
Reset Carry Bit 4-107 

READY 2-5, 3-30, 3-46 
receive framing synchronization signal 

(FSR) 3-36 

lndex-6 

receive shift register (RSR) 3-4, 3-35 
received serial data (RX) 3-36 
repeat counter (RPTC) 2-11, 3-3, 3-21, 

3-26, 3-32, 5-8 
repeatability of instruction 4-15 
reset (RS) 2-6, 3-21, 3-32 
RET 5-4 

Return from Subroutine 4-1 08 
RFSM 

Reset Serial Port Frame Sync 
Mode 4-109 

RHM 
Reset Hold Mode 4-110 

RINT 3-31, 3-32, D-2 
ROL 

Rotate Accumulator Left 4-111 
ROM/RAM partitioning 9-41 
ROR 

Rotate Accumulator Right 4-112 
ROVM 3-16, 5-23, 5-26 

Reset Overflow Mode 4-113 
RPT 3-26, 3-32, 5-8 

Repeat Instruction as Specified by Data 
Memory Value 4-114 

RPTK 3-26, 3-32, 5-8 
Repeat Instruction as Specified by 

Immediate Value 4-115 
RSR 3-4, 3-35 
RSXM 5-23 

Reset Sign- Extension Mode 4-116 
RTC 

Reset Test/Control Flag 4-117 
RTXM 

Reset Serial Port Transmit Mode 4-118 
RX 3-36 
RXF 3-50 

Reset External Flag 4-119 

s 
SACH D-1 

Store High Accumulator with 
Shift 4-120 

SACL D-1 
Store Low Accumulator with 

Shift 4-121 
SAR 

Store Auxiliary Register 4-122 
SBLK 

Subtract from Accumulator Long Imme­
diate with Shift 4-123 

SBRK 

SC 

Subtract from Auxiliary Register Short 
Immediate 4-124 

Set Carry Bit 4-125 



Index 

scaling 5-26 
scaling shifter 2-10, 3-14 
sequential libraries (linker) 9-4 

creation 9-47 
definition 9-4 
search using FIND command 9-17 

serial port 2-12, 3-35, 6-8, D-2 
burst-mode operation 3-38 
continuous-mode operation 3-40, 3-41 

serial-port clock (CLKR) 3-36 
SFL 3-16, 5-26 

Shift Accumulator Left 4-126 
SFR 3-16, 5-26 

Shift Accumulator Right 4-127 
SFSM 

Set Serial Port Frame Sync Mode 4-128 
shifters 3-3 

accumulator 2-10, 3-14 
accumulator output 2-10, 3-14, 5-26 
product register output 2-10, 3-14, 

5-26 
scaling shifter 2-10, 3-14 

SHM 
Set Hold Mode 4-129 

signal descriptions 2-3 
sign-extension mode 5-23 
sign-extension mode bit (SXM) 3-16, 3-24, 

5-23, D-2 
simulator 2-23, F-2 
single-instruction loops 5-8 
software applications 5-1 
software stack 5-6 
source listing format 7-44 
SOVM 3-16, 5-23, 5-26 

Set Overflow Mode 4-130 
SPAC 

Subtract P Register from 
Accumulator 4-131 

SPH 
Store High P Register 4-132 

SPL 
Store Low P Register 4-133 

SPM 5-24 
Set P Register Output Shift 

Mode 4-134 
SORA 5-31 . 

Square and Accumulate Previous 
Product 4-135 

SORS 5-31 
Square and Subtract Previous 

Product 4-136 
square-root routine 5-4 
SST 

Store Status Register STO 4-137 
SST1 

Store Status Register ST1 4-138 
SSXM 5-23 

Set Sign-Extension Mode 4-139 

status registers 2-12, 3-4, 3-22, D-2 
STC 

Set Test/ Control Flag 4-140 
STRB 2-5 
strings 7-6, 8-5 
STXM 

Set Serial Port Transmit Mode 4-141 
SUB 

Subtract from Accumulator with 
Shift 4-142 

SUBB 
Subtract from Accumulator with 

Borrow 4-143 
SUBC 5-32 

Conditional Subtract 4-144 
SUBH 

Subtract from High Accumulator 4-145 
SUBK 

Subtract from Accumulator Short Imme­
diate 4-146 

subroutines 5-4 
SUBS 

Subtract from Low Accumulator with 
Sign-Extension Suppressed 4-147 

SUBT 3-16 
Subtract from Accumulator with Shift 

Specified by T Register 4-148 
SXF 3-50 

Set External Flag 4-149 
SXM 3-16, 3-24, 5-23, D-2 
symbol resolution (linker) 9-4 

automatic resolution 9-4 
inhibit resolution 9-22 
user-defined resolution 9-4 

SYNC 2-5, 3-45 
synchronization 3-45 
system configurations 2-12 
system control 2-11 

T 

T register {TR) 2-11, 3-16, 5-28 
tag characters 7 -46 
TBLR 5-15 

Table Read 4-150 
TBLW 5-15 

Table Write 4-151 
temporary register (TR) 2-10, 3-4, 3-16, 

5-28 
test control flag bit {TC) 3-24 
Tl/MS-DOS CrossWare installation G-1 
timer 3-3, 3-24, 5-7, D-1 
timer interrupt {TINT) 3-25, 3-32, 5-7 
timer register (TIM) 2-11, 3-9, 3-24, 5-7 
TMS320 nomenclature F-5 
TMS320C10 data sheet C-1 

lndex-7 



Index 

TMS320C25 data sheet A-1 
TMS32020 data sheet B-1 
TMS32020/TMS320C25 system 

migration D-1 
transmit framing synchronization signal 

(FSX) 3-36 
transmit mode bit (TXM) 3-24, 3-35 
transmit shift register (XSR) 3-4, 3-35 
transmitted serial data (DX) 3-36 
TRAP 3-32 

Software Interrupt 4-152 
typical applications 1 -4 

v 
variables 8-5 
VAX/VMS CrossWare install-ation G-1 
vcc 2-6 
verb statements 8-11 

$ASG 8-11 
$ELSE 8-13 
$END 8-13 
$ENDIF 8-13 
$IF 8-13 
$MACRO 8-14 
$VAR 8-17 

vss 2-6 

w 
wait states 6-3 

lndex:.:8 

x 
XDS emulator 2-23, F-3 
XF 2-6,3-24,3-50 
XINT 3-31, 3-32, D-2 
XOR 

Exclusive-OR with Accumulator 4-153 
XORK 

XOR Immediate with Accumulator with 
Shift 4-154 

XSR 3-4, 3-35 
X1 2-6 
X2/CLKIN 2-6 

z 
ZAC 

Zero Accumulator 4-155 
ZALH 

Zero Low Accumulator and Load High 
Accumulator 4-156 

ZALR 
Zero Low Accumulator, Load High 

Accumulator with Rounding 
ressed 4-157 

ZALS 
Zero Accumulator, Load Low Accumula­

tor with Sign-Extension 
Suppressed 4-158 



TI Sales Offices TI Distributors 
ALABAMA: Huntsville (205) 837·7530. 

ARIZONA: Phoenix (602) 995· 1007; 
Tucson (602) 624·3276. 

CALIFORNIA: Irvine (714) 660·8187; 
Sacramento (916) 929·1521; 
San Diego (619) 278·9601; 
Santa Clara (408) 980·9000; 
Torrance (213) 217·7010; 
Woodland Hills (818) 704·7759. 

COLORADO: Aurora (303) 368-8000. 

CONNECTICUT: Waillnglord (203) 269·0074. 

FLORIDA: Ft. Lauderdale (305) 973·8502; 
Maitland (305) 660·4600; Tampa (813) 870·6420. 

GEORGIA: Norcross (404) 662·7900. 

ILLINOIS: Arlington Heights (312) 640·2925. 

INDIANA: Ft. Wayne (219) 424·5174; 
lndlanapolls (317) 248-8555. 

IOWA: Cedar Rapids (319) 395·9550. 

MARYLAND: Baltlmora (301) 944·8600. 

MASSACHUSETTS: Waltham (617) 895·9100. 

MICHIGAN: Farmington Hiiis (313) 553·1500; 
Grand Rapids (616) 957·4200. 

MINNESOTA: Eden Prairie (612) 828·9300. 

MISSOURI: Kansas City (816) 523·2500; 
St. Louis (314) 569·7600. 

NEW JERSEY: lselln (201) 750·1050. 

NEW MEXICO: Albuquerque (505) 345·2555. 

NEW YORK: East Syracuse (315) 463·9291; 
Endicott (607) 754·3900; Melville (516) 454-6600; 
Pittsford (716) 385-6770; 
Poughkeepsie (914) 473·2900. 

NORTH CAROLINA: Charlotte (704) 527·0930; 
Raleigh (919) 876·2725. 

OHIO: Beachwood (216) 464·6100; 
Dayton (513) 258·3877. 

OREGON: Beaverton (503) 643·6758. 

PENNSYLVANIA: Ft. Washington (215) 643·6450; 
Coraopolis (412) 771-8550. 

PUERTO RICO: Halo Rey (809) 753·8700 

TEXAS: Austin (512) 250·7655; 
Houston (713) 778-6592; Richardson (214) 680·5082; 
San Antonio (512) 496-1779. 

UTAH: Murray (801) 266·8972. 

VIRGINIA: Fairfax (703) 849·1400. 

WASHINGTON: Redmond (206) 881·3080. 

WISCONSIN: Brookfield (414) 785·7140. 

CANADA: Nepean, Ontario (613) 726·1970; 
Richmond Hiii, Ontario (416) 884-9181; 
St. Laurent, Quebec (514) 335-8392. 

TI Regional 
Technology Centers 
CALIFORNIA: Irvine (714) 660·8140, 
Santa Clara (408) 748·2220. 

GEORGIA: Norcross (404) 662-7945. 

ILLINOIS: Arlington Heights (312) 640-2909. 

MASSACHUSETTS: Waltham (617) 895·9197. 

TEXAS: Richardson (214) 680·5066. 

CANADA: Nepean, Ontario (613) 726·1970 

Customer 
Response Center 
TOLL FREE: (800) 232·3200 

OUTSIDE USA: (214) 995·6611 
(8:00 a.m. - 5:00 p.m. CST) 

Tl AUTHORIZED DISTRIBUTORS IN 
USA 

Arrow Electronics 
Diplomat Electronics 
General Radio Supply Company 
Graham Electronics 
Hall-Mark Electronics 
Kierulff Electronics 
Marshall Industries 
Milgray Electronics 
Newark Electronics 
Time Electronics 
R.V. Weatherford Co. 
Wyle Laboratories 
Zeus Component, Inc. (Military) 

Tl AUTHORIZED DISTRIBUTORS IN 
CANADA 

Arrow Electronics Canada 
Future Electronics 

Tl AUTHORIZED DISTRIBUTORS IN 
USA 

-OBSOLETE PRODUCT ONLY­
Rochester Electronics, Inc. 
Newburyport, Massachusetts 
(617) 462-9332 

ALABAMA: Arrow (205) 837·6955; 
Hall-Mark (205) 837·8700; Kierulff (205) 883·6070; 
Marshall (205) 881·9235. 

ARIZONA: Arrow (602) 968-4800; 
Hall·Mark (602) 437·1200; Kierulff (602) 437·0750; 
Marshall (602) 968-6181; Wyle (602) 866·2888. 

CALIFORNIA: Los Angeles/Orange County: 
Arrow (818) 701·7500, (714) 838·5422; 
Hall-Mark (818) 716·7300, (714) 669-4700, 
(213) 217·8400; Kierulff (213) 725-0325, (714) 731·5711, 
(714) 220·6300; Marshall (818) 407-0101, 
(818) 442-7204, (714) 660-0951; 
R.V. Weatherford (714) 966·1447, (213) 849-3451, 
Wyle (213) 322·8100, (818) 880·9001, (714) 863-9953; 
Zeus (714) 632·6880; 
Sacramento: Arrow (916) 925-7456; 
Hall·Mark (916) 722·8600; Marshall (916) 635·9700; 
Wyle (916) 638·5282; 
San Diego: Arrow (619) 565-4800; 
Hall-Mark (619) 268·1201; Kierulff (619) 278·2112; 
Marshall (619) 578-9600; Wyle (619) 565·9171; 
San Francisco Bay Area: Arrow (408) 745·6600; 
(415) 487·4600; Hall-Mark (408) 946·0900; 
Kierulff (408) 971·2600; Marshall (408) 943·4600; 
Wyle (408) 727·2500; Zeus (408) 998·5121. 

COLORADO: Arrow (303) 696·1111; 
Hall-Mark (303) 790·1662; Kierulff (303) 790·4444; 
Wyle (303) 457·9953. 

CONNECTICUT: Arrow (203) 265-7741; 
Diplomat (203) 797·9674; Hall·Mark (203) 269·0100; 
Kierulff (203) 265·1115; Marshall (203) 265·3822; 
Milgray (203) 795-0714. 

FLORIDA: Ft. Lauderdale: Arrow (305) 429·8200; 
Diplomat (305) 974-8700; Hall-Mark (305) 971-9280; 
Kierulff (305) 486·4004; Marshal I (305) 928·0661; 
Orlando: Arrow (305) 725· 1480; 
Hall·Mark (305) 855·4020; Marshall (305) 841-1878; 
Mllgray (305) 647·5747; Zeus (305) 365·3000; 
Tampa: Arrow (813) 576·8995; 
Diplomat (813) 443·4514; Hall·Mark (813) 530·4543; 
Kierulff (813) 576·1966. 

GEORGIA: Arrow (404) 449·8252; 
Hall·Mark (404) 447-8000; Kierulff (404) 447·5252; 
Marshall (404) 923-5750. 

.,, 
TEXAS 

INSTRUMENTS 

ILLINOIS: Arrow (312) 397·3440; 
Diplomat (312) 595-1000; Hall-Mark (312) 860·3800; 
Kierulff (312) 250-0500; Marshall (312) 490·0155; 
Newark (312) 784-5100. 

INDIANA: lndlanapolls: Arrow (317) 243·9353; 
Graham (317) 634·8202; Hall-Mark (317) 872·8875; 
Marshall (317) 297·0483; 
Ft. Wayne: Graham (219) 423·3422. 

IOWA: Arrow (319) 395·7230. 

KANSAS: Kansas City: Arrow (913) 541 ·9542; 
Hall·Mark (913) 888·4747; Marshall (913) 492-3121. 

MARYLAND: Arrow (301) 995·0003; 
Diplomat (301) 995·1226; Hall-Mark (301) 988-9800; 
Kierulff (301) 636-5800; Mllgray (301) 995-6169; 
Marshall (301) 840-9450; Zeus (301) 997-1118. 

MASSACHUSETTS: Arrow (617) 933·8130; 
Diplomat (617) 667-4670; Hall-Mark (617) 667·0902; 
Klerulff (617) 667-8331; Marshall (617) 272·8200; 
Time (617) 532-6200; Zeus (617) 863-8800. 

MICHIGAN: Detroit: Arrow (313) 971-8220; 
Marshall (313) 525·5850; Newark (313) 967·0600; 
Grand Rapids: Arrow (616) 243-0912. 

MINNESOTA: Arrow (612) 830·1800; 
Hall·Mark (612) 941-2600; Kierulff (612) 941-7500; 
Marshall (612) 559-2211. 

MISSOURI: St. Louis: Arrow (314) 567-6888; 
Hall-Mark (314) 291·5350; Kierulff (314) 739·0855. 

NEW HAMPSHIRE: Arrow (603) 668-6968. 

NEW JERSEY: Arrow (201) 575·5300, (609) 
596·8000; Diplomat (201) 785·1830; 
General Radio (609) 964·8560; 
Hall·Mark (201) 575-4415, (609) 235·1900; 
Kierulff (201) 575-6750, (609) 235-1444; 
Marshall (201) 882-0320, (609) 234·9100; 
Mllgray (609) 983-5010. 

NEW MEXICO: Arrow (505) 243-4566. 

NEW YORK: Long Island: Arrow (516) 231·1000; 
Diplomat (516) 454-6400; 
Hall-Mark (516) 737·0600; Marshall (516) 273-2053; 
Milgray (516) 420·9800; Zeus (914) 937-7400; 
Rochester: Arrow (716) 427·0300; 
Marshall (716) 235·7620; Diplomat (716) 359·4400; 
Syracuse: Arrow (315) 652-1000; 
Marshall (607) 798·1611. 

NORTH CAROLINA: Arrow (919) 876·3132, 
(919) 725·8711; Hall·Mark (919) 872-0712; 
Kierulff (919) 872-8410; Marshall (919) 878-9882. 

OHIO: Cleveland: Arrow (216) 248·3990; 
Hall-Mark (216) 349-4632; Klerulff (216) 831-5222; 
Marshall (216) 248-1788. 
Columbus: Arrow (614) 885-8362; 
Hall-Mark (614) 888-3313; 
Dayton: Arrow (513) 435·5563; 
Graham (513) 435·8660; Kierulff (513) 439-0045; 
Marshall (513) 236·8088. 

OKLAHOMA: Arrow (918) 665·7700; 
Klerulff (918) 252-7537. 

OREGON: Arrow (503) 684·1690; 
Kierulff (503) 641-9153; Wyle (503) 640-6000; 
Marshall (503) 644·5050. 

PENNSYLVANIA: Arrow (412) 856-7000, 
(215) 928-1800; General Radio (215) 922·7037. 

RHODE ISLAND: Arrow (401) 431·0980 

TEXAS: Austin: Arrow (512) 835·4180; 
Hall-Mark (512) 258·8848; Kierulff (512) 835-2090; 
Marshall (512) 837-1991; Wyle (512) 834·9957; 
Dallas: Arrow (214) 380-6464; 
Hall-Mark (214) 553·4300; Kierulff (214) 343-2400; 
Marshall (214) 233-5200; Wyle (214) 235·9953; 
Zeus (214) 783·7010; 
Houston: Arrow (713) 530-4700; 
Hall-Mark (713) 781-6100; Kierulff (713) 530·7030; 
Marshall (713) 895·9200; Wyle (713) 879-9953. 

UTAH: Arrow (801) 972·0404; 
Diplomat (801) 486·4134; 
Hall·Mark (801) 268·3779; Kierulff (801) 973-6913; 
Wyle (801) 974·9953. 

WASHINGTON: Arrow (206) 643-4800; 
Kierulff (206) 575-4420; Wyle (206) 453·8300; 
Marshall (206) 747-9100. 

WISCONSIN: Arrow (414) 792·0150; 
Hall-Mark (414) 797-7844; Kierulff (414) 784·8160; 
Marshall (414) 797-8400. 

CANADA: Calgary: Future (403) 235·5325; 
Edmonton: Future (403) 438·2858; 
Montreal: Arrow Canada (514) 735-5511; 
Future (514) 694-7710; 
Ottawa: Arrow Canada (613) 226-6903; 
Future (613) 820·8313; 
Quebec City: Arrow Canada (418) 687·4231; 
Toronto: Arrow Canada (416) 661-0220; 
Future (416) 638-4771; 
Vancouver: Future (604) 294·1166 
Winnipeg: Future (204) 339-0554 

BQ 



TI Worldwide 
Sales Offices 
ALABAMA: Huntsville: 500 Wynn Drive, Suite 514, 
Huntsville, AL 35805, (205) 837-7530. 

ARIZONA: Phoenix: 8825 N. 23rd Ave., Phoenix, 
AZ 85021, (602) 995-1007. 

CALIFORNIA: Irvine: 17891 Cartwright Rd., Irvine, 
CA 92714, (714) 660-8187; Sacramento: 1900 Point 
West Way, Suite 171, Sacramento, CA 95815, 
(916) 929-1521; San Diego: 4333 View Ridge Ave., 
Suite B., San Diego, CA 92123, (619) 278-9601; 
Santa Clara: 5353 Betsy Ross Dr., Santa Clara, CA 
95054, (408) 980-9000; Torrance: 690 Knox St., 
Torrance, CA 90502, (213) 217-7010; 
Woodland Hills: 21220 Erwin St., Woodland Hills, 
CA 91367, (818) 704-7759. 

COLORADO: Aurora: 1400 S. Potomac Ave., 
Suite 101, Aurora, CO 80012, (303) 368-8000. 

CONNECTICUT: Wallingford: 9 Barnes Industrial 
Park Rd., Barnes Industrial Park, Wallingford, 
CT 06492, (203) 269-0074. 

FLORIDA: Ft. Lauderdale: 2765 N.W. 62nd St., 
Ft. Lauderdale, FL 33309, (305) 973-8502; 
Maitland: 2601 Maitland Center Parkway, 
Maitland, FL 32751, (305) 660-4600; 
Tampa: 5010 W. Kennedy Blvd., Suite 101, 
Tampa, FL 33609, (813) 870-6420. 

GEORGIA: Norcross: 5515 Spalding Drive, Norcross, 
GA 30092, (404) 662-7900 

ILLINOIS: Arlington Heights: 515 W. Algonquin, 
Arlington Heights, IL 60005, (312) 640-2925. 

INDIANA: Ft. Wayne: 2020 Inwood Dr., Ft. Wayne, 
IN 46815, (219) 424-5174; 
Indianapolis: 2346 S. Lynhurst, Suite J-400, 
Indianapolis, IN 46241, (317) 248-8555. 

IOWA: Cedar Rapids: 373 Collins Rd. NE, Suite 200, 
Cedar Rapids, IA 52402, (319) 395-9550. 

MARYLAND: Baltimore: 1 Rutherford Pl., 
7133 Rutherford Rd., Baltimore, MD 21207, 
(301) 944-8600. 

MASSACHUSETTS: Waltham: 504 Totten Pond Rd., 
Waltham, MA 02154, (617) 895-9100. 

MICHIGAN: Farmington Hills: 33737 W. 12 Mile Rd., 
Farmington Hills, Ml 48018, (313) 553-1500. 

MINNESOTA: Eden Prairie: 11000 W. 78th St., 
Eden Prairie, MN 55344 (612) 828-9300. 

MISSOURI: Kansas City: 8080 Ward Pkwy., Kansas 
City, MO 64114, (816) 523-2500; 
St. Louis: 11816 Borman Drive, St. Louis, 
MO 63146, (314) 569-7600. 

NEW JERSEY: lselln: 485E U.S. Route 1 South, 
Parkway Towers, lselin, NJ 08830 (201) 750-1050 

NEW MEXICO: Albuquerque: 2820-D ·Broadbent Pkwy 
NE, Albuquerque, NM 87107, (505) 345-2555. 

NEW YORK: East Syracuse: 6365 Collamer Dr., East 
Syracuse, NY 13057, (315) 463-9291; 
Endicott: 112 Nanticoke Ave., P.O. Box 618, Endicott, 
NY 13760, (607) 754-3900; Melville: 1 Huntington 
Quadrangle, Suite 3C10, P.O. Box 2936, Melville, 
NY 11747, (516) 454-6600; Pittsford: 2851 Clover St., 
Pittsford, NY 14534, (716) 385-6770; 
Poughkeepsie: 385 South Rd., Poughkeepsie, 
NY 12601, (914) 473-2900. 

NORTH CAROLINA: Charlotte: 8 Woodlawn Green, 
Woodlawn Rd., Charlotte, NC 28210, (704) 527-0930; 
Raleigh: 2809 Highwoods Blvd., Suite 100, Raleigh, 
NC 27625, (919) 876-2725. 

OHIO: Beachwood: 23408 Commerce Park Rd., 
Beachwood, OH 44122, (216) 464-6100; 
Dayton: Kingsley Bldg., 4124 Linden Ave., Dayton, 
OH 45432, (513) 258-3877. 

OREGON: Beaverton: 6700 SW 105th St., Suite 110, 
Beaverton, OR 97005, (503) 643-6758. 

PENNSYLVANIA: Ft. Washington: 260 New York Dr., 
Ft. Washington, PA 19034, (215) 643-6450; 
Coraopolis: 420 Rouser Rd., 3 Airport Office Park, 
Coraopolis, PA 15108, (412) 771-8550. 

PUERTO RICO: Halo Rey: Mercantil Plaza Bldg., 
Suite 505, Hato Rey, PR 00919, (809) 753-8700. 

TEXAS: Austin: P.O. Box 2909, Austin, TX 78769, 
(512) 250-7655; Richardson: 1001 E. Campbell Rd., 
Richardson, TX 75080, 
(214) 680-5082; Houston: 9100 Southwest Frwy., 
Suite 237, Houston, TX 77036, (713) 778-6592; 
San Antonio: 1000 Central Parkway South, 
San Antonio, TX 78232, (512) 496-1779. 

UTAH: Murray: 5201 South Green SE, Suite 200, 
Murray, UT 84107, (801) 266-8972. 

VIRGINIA: Fairfax: 2750 Prosperity, Fairfax, VA 
22031, (703) 849-1400. 

WASHINGTON: Redmond: 5010 148th NE, Bldg B, 
Suite 107, Redmond, WA 98052, (206) 881-3080. 

WISCONSIN: Brookfield: 450 N. Sunny Slope, 
Suite 150, Brookfield, WI 53005, (414) 785-7140. 

CANADA: Nepean: 301 Moodie Drive, Mallorn 
Center, Nepean, Ontario, ·canada, K2H9C4, 
(613) 726-1970. Richmond Hill: 280 Centre St. E., 
Richmond Hill L4C1B1, Ontario, Canada 
(416) 884-9181; St. Laurent: Ville St. Laurent Quebec, 
9460 Trans Canada Hwy., St. Laurent, Quebec, 
Canada H4S1R7, (514) 335-8392. 

ARGENTINA: Texas Instruments Argentina 
S.A.l.C.F.: Esmeralda 130, 15th Floor, 1035 Buenos 
Aires, Argentina, 1+394-3008. 

AUSTRALIA (& NEW ZEALAND): Texas Instruments 
Australia Ltd.: 6-10 Talavera Rd., North Ryde 
(Sydney), New South Wales, Australia 2113, 
2 + 887-1122; 5th Floor, 418 St. Kilda Road, 
Melbourne, Victoria, Australia 3004, 3 + 267-4677; 
171 Philip Highway, Elizabeth, South Australia 5112, 
8 + 255-2066. 

AUSTRIA: Texas Instruments Ges.m.b.H.: 
lndustriestrabe B/16, A-2345 Brunn/Gebirge, 
2236-846210. 

BELGIUM: Texas Instruments N.V. Belgium S.A.: 
Mercure Centre, Raketstraat 100, Rue de la Fusee, 
1130 Brussels, Belgium, 2/720.80.00. 

BRAZIL: Texas Instruments Electronicos do Brasil 
Lida.: Rua Paes Leme, 524-7 Andar Pinhelros, 05424 
Sao Paulo, Brazil, 0815-6166. 

DENMARK: Texas Instruments A/S, Mairelundvej 
46E, DK-2730 Herlev, Denmark, 2 - 91 74 00. 

FINLAND: Texas Instruments Finland OY: 
Teollisuuskatu 19D 00511 Helsinki 51, Finland, (90) 
701-3133. 

FRANCE: Texas Instruments France: Headquarters 
and Prod. Plant, BP 05, 06270 Villeneuve-Loubet, 
(93) 20-01-01; Paris Office, BP 67 8-10 Avenue 
Morane-Saulnier, 78141 Velizy-Villacoublay, 
(3) 946-97-12; Lyon Sales Office, L'Oree D'Ecully, 
Batiment B, Chemin de la Forestiere, 69130 Ecully, 
(7) 833-04-40; Strasbourg Sales Office, Le Sebastopol 
3, Qual Kleber, 67055 Strasbourg Cedex, 
(88) 22-12-66; Rennes, 23-25 Rue du Puits Mauger, 
35100 Rennes, (99) 31-54-86; Toulouse Sales Office, 
Le Perlpole-2, Chemin du Pigeonnler de la Cepiere, 
31100 Toulouse, (61) 44-18-19; Marseille Sales Office, 
Noilly Paradis-146 Rue Paradis, 13006 Marseille, 
(91) 37-25-30. 

~ 
TEXAS 

INSTRUMENTS 
Creating useful products 

and services for you 

GERMANY (Fed. Republic of Germany): Texas 
Instruments Deutschland GmbH: Haggertystrasse 1, 
D-8050 Freising, 8161 +80-4591; Kurfuerstendamm 
195/196, D-1000 Berlin 15, 30+882-7365; Ill, Hagen 
43/Kibbelstrasse, .19, D-4300 Essen, 201-24250; 
Frankfurter Allee 6·8, D-6236 Eschborm 1, 
06196+8070; Hamburgerstrasse 11, D-2000 Hamburg 
76, 040+220-1154, Kirchhorsterstrasse 2, D-3000 
Hannover 51, 511 +648021; Maybachstrabe 11, 
D-7302 Ostfildern 2-Nelingen, 711 +547001; 
Mixikoring 19, D-2000 Hamburg 60, 40+637+0061; 
Postfach 1309, Roonstrasse 16, D-5400 Koblenz, 
261 +35044. 

HONG KONG(+ PEOPLES REPUBLIC OF CHINA): 
Texas Instruments Asia Ltd., 8th Floor, World 
Shipping Ctr., Harbour City, 7 Canton Rd., Kowloon, 
Hong Kong, 3 + 722-1223. 

IRELAND: Texas Instruments (Ireland) Limited: 
Brewery Rd., Stillorgan, County Dublin, Eire, 
1 831311. 

ITALY: Texas Instruments Semiconduttori Italia Spa: 
Viale Delle Scienze, 1, 02015 Cittaducale (Rleti), 
Italy, 746 694.1; Via Salaria KM 24 (Palazzo Cosma), 
Monterotondo Scalo (Rome), Italy, 6+9003241; Viale 
Europa, 38-44, 20093 Cologno Monzese (Milano), 
2 2532541; Corso Svizzera, 185, 10100 Torino, Italy, 
11 774545; Via J. Barozzi 6, 40100 Bologna, Italy, 51 
355851. 

JAPAN: Texas Instruments Asia Ltd.: 4F Aoyama 
Fuji Bldg., 6-12, Kita Aoyama 3-Chome, Minato-ku, 
Tokyo, Japan 107, 3-498-2111; Osaka Branch, SF, 
Nissho lwai Bldg., 30 lmabashi 3· Chome, 
Higashi-ku, Osaka, Japan 541, 06-204-1881; Nagoya 
Branch, 7F Daini Toyota West Bldg., 10-27, Meieki 
4-Chome, Nakamura-ku Nagoya, Japan 
450, 52-583-8691. 

KOREA: Texas Instruments Supply Co.: 3rd Floor, 
Samon Bldg., Yuksam-Dong, Gangnam-ku, 
135 Seoul, Korea, 2+462-8001. 

M!:XICO: Texas Instruments de Mexico S.A.: Mexico 
City, AV Reforma No. 450 - 10th Floor, Mexico, 
D.F., 06600, 5+514-3003. 

MIDDLE EAST: Texas Instruments: No. 13, 1st Floor 
Mannai Bldg., Diplomatic Area, P.O. Box 26335, 
Manama Bahrain, Arabian Gulf, 973+274681. 

NETHERLANDS: Texas Instruments Holland B.V., 
P.O. Box 12995, (Bullewijk) 1100 CB Amsterdam, 
Zuid-Oost, Holland 20 + 5602911. 

NORWAY: Texas Instruments Norway A/S: PB106, 
Refstad 131, Oslo 1, Norway, (2) 155090. 

PHILIPPINES: Texas Instruments Asia Ltd.: 14th 
Floor, Ba- Lepanto Bldg., 8747 Paseo de Roxas, 
Makati, Metro Manila, Philippines, 2+8188987. 

PORTUGAL: Texas Instruments Equipamento 
Electronico (Portugal), Lda.: Rua Eng. Frederico 
Ulrich, 2650 Moreira Da Maia, 4470 Maia, Portugal, 
2-948-1003. 

SINGAPORE(+ INDIA, INDONESIA, MALAYSIA, 
THAILAND): Texas Instruments Asia Ltd.: 12 Lorong 
Bakar Batu, Unit 01-02, Kolam Ayer Industrial Estate, 
Republic of Singapore, 747-2255. 

SPAIN: Texas Instruments Espana, S.A.: C/Jose 
Lazaro Galdiano No. 6, Madrid 16, 1/458.14.58. 

SWEDEN: Texas Instruments International Trade 
Corporation (Sverigefilialen): Box 39103, 10054 
Stockholm, Sweden, 8 - 235480. 

SWITZERLAND: Texas Instruments, Inc., Reidstrasse 
6, CH-8953 Dietikon (Zuerich) Switzerland, 
1-740 2220. 

TAIWAN: Texas Instruments Supply Co.: Room 903, 
205 Tun Hwan Rd., 71 Sung-Kiang Road, Taipei, 
Taiwan, Republic of China, 2 + 521-9321. 

UNITED KINGDOM: Texas Instruments Limited: 
Manton Lane, Bedford, MK41 ?PA, England, 0234 
67466; St. James House, Wellington Road North, 
Stockport, SK4 2RT, England, 61+442-7162. 

BM 



Reader Response Card May 1986 

TMS320C25 User's Guide 

Please use this form to communicate your comments about this document, its 
organization and subject matter, for the purpose of improving technical documen­
tation. 

1) What do you feel are the best features of this document? --------

2) How does this document meet your digital signal processing needs? ___ _ 

3) Do you find the organization of this document easy to follow? If not, why? 

4) What additions do you think would enhance the structure and subject matter? 

5) What deletions could be made without affecting overall usefulness? ___ _ 

6) Is there any incorrect or misleading information?-----------

7) How would you improve this document?----=-----------

If you would like a reply, please give your name and address below: 

Name----------------------------~ 
Company ____________ Title ---------------
Address ____________________________ _ 

City/State/Zip __________ Telephone ------------

Thank you for your cooperation. 

SPRU012 



11111 

BUSINESS REPl Y MAil 
FIRST CLASS PERMIT NO. 6189 HOUSTON, TX 

POSTAGE WILL BE PAID BY ADDRESSEE 

Texas Instruments Incorporated 
M/S 640 
P.O. Box 1443 
Houston, Texas 77001 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 



Instruction Set Summary (Concluded) 

Mnemonic Description # Words Instruction Bit Code 

STXM 

SUB 

SUBB 

SUBC 
SUBH 

SUBK 

SUBS 

SUBT 

SXF 
TBLR 
TBLW 
TRAP 
XOR 

XORK 

ZAC 
ZALH 

ZALR 

ZALS 

Set serial port transmit 
mode 
Subtract from accumulator 
with shift 
Subtract from accumulator 
with borrow 
Conditional subtract 
Sub!ract from high 
accumulator 
Subtract from accumulator 
short immediate 
Subtract from low 
accumulator with sign ­
extension suppressed 
Subtract from accumulator 
with shift specified by 
T register 
Set external flag 
Table read 
Table write 
Software interrupt 
Exclusive-OR with 
accumulator 
Exclusive-OR immediate 
with accumulator w ith 
shift 
Zero accumulator 
Zero low accumulator and 
load high accumulator 
Zero low accumulator and 
load high accumulator with 
rounding 
Zero accumulator and load 
low accumulator With 
sign-extension suppressed 

1 
1 
1 
1 
1 

2 

FEDCBA9B7654321 0 
1100111000100001 

0001~s-1-o-

010011111-o-

010001111-0-
010001001-0-

11001101-K-

010001011-0-

010001 101-o-

1100111000001101 
0101 1000 1-o-
01 011 001 1-o-
1100111000011110 
01001 1001-0-

11 01-s-0000011 o 

1100101000000000 
010000001-0-

011110111-0-

010000011-0-

Assembler Directives (Concluded) 

LOAD (Force Load) : Defines symbols for other programs. 
(< label > ] LOAD < symbol > [. < symbol > ] [<comment>] 

M LIB (Define MACRO Library): Specifies the library containing 
macro definitions. 

[ < label > ] MLIB '< pathname> ' [<comment>] 

OPTION (Output Options): Selects several options for the 
assembler listing output. 

( < label > ] OPTION < option list> [ < comment > ] 

PAGE (Eject Page): Continues source listing on new page. 
(< label >] PAGE [ < comment > ] 

PEND (Program Segment End) : Terminates definition of a block 
of program-relocatable code. 

(<label>] PEND [ < comment > ] 

PSEG (Program Segment): Defines succeeding locations as 
program-relocatable. 

(< label > ] PSEG [<comment>] 

REF (External Reference) : Provides access to symbols defined 
in other programs. 

(< label >] REF < symbol > [. < symbol > ] [ < comment > ] 

RORG (Relocatable Origin) : Defines succeeding locations as 
program -relocatable and initializes location counter. 

[<label>] RORG ([ < exp >] /<comment>/] 

SREF (Secondary External Reference) : Provides secondary 
access to symbols defined in other programs. 

( <label >] SREF < symbol >[.<symbol > ] [ < comment > ] 

TEXT (Initialize Text) : Places a character string in successive 
program memory words. 

[ < label >] TEXT [-]' < string >' [ < comment>] 

TITL (Page Title): Supplies source listing page titles. 
[ < label >] TITL '<string>' [<comment>] 

UNL (Stop Source Listing): Halts source listing output until the 
occurrence of a LIST directive. 

( < label>] UNL [ < comment > ] 

XEND (Independent Segment End): Terminates definition of 
an independently stored program segment, definedby EXEC. 

[<label > ] XEND [ < comment > ] 

4 

TMS320C25 
DIGITAL SIGNAL PROCESSOR 
Programmer's Reference Card 

Tl Customer Response Center (CRC) Hotline Number 

For help with the TMS320C25, call 1-800-232-3200. 

Symbols for Instruction Set Summary 

SYMBOL MEANING 
B 4-bit field specifying a bit code 

CM 2-bit field specifying compare mode 
D Data memory address field 

FO Format status bit 
I Addressing mode bit 
K ·immediate operand field 

PA Port address (PAO through PA15 are predefined assem-
bier symbols equal to 0 through 1 5, respectively.) 

PM 2-bit field specifying P register output shift code 
R 3-bit operand field specifying auxiliary register 
s 4-bit left-shift code 
x 3-bit accumulator left-shift field 

Assembler Directives 

AORG (Absolute Origin) : Defines succeeding locations as 
absolute and places a value in the location counter. 

( < label > ] AORG [ < exp> /<comment>/] 

BES (Block Ending with Symbol): Advances location counter 
and assigns a label the value of location following block. 

[ < label > ] BES < exp> [ < comment> ] 

BSS (Block Starting with Symbol): Advances location counter 
and assigns a label the value of location of first word in block. 

(<label>] BSS < exp> [ < comment > ] 

CEND (Common Segment End): Terminates definition of a 
block of common-relocatable code. 

(<label >] CEND [ < comment>] 

COPY (Copy Source File): Causes source statements to be read 
from a different file. 

( < label > ] COPY < file-name > [<comment>] 

CSEG (Common Segment) : Defines succeed ing locations as 
common -relocatable. 

[ < lab'el > ] CSEG [' < string >' /<comment>/] 

DATA (Initialize Word) : Pl aces values in successive program 
memory words. 

[<label>] DATA < exp>[.<exp>] [ < comment>] 

DEF (External Definition) : Defines symbols for other programs. 
( < label > ] DEF < symbol > [. < symbol >] [ < comment > ] 

DENO (Data Segment End) : Terminates definition of a block 
of data- relocatable code. 

[<label>] DENO [ < comment>] 

DORG (Dummy Origin): Defines succeeding locations as a 
dummy block. 

( < label > ] DORG < exp> [ < comment > ] 

DSEG (Data Segment): Defines succeeding locations as data­
relocatable. 

[ < label > ] DSEG [ < comment > ] 

END (Program End): Terminates the assembly. 
( < label > ] END (< symbol >/<comment/] 

EQU (Define Assembly-Time Constant) : Assigns symbol value. 
( < label > ] EQU < exp> [ < comment > ] 

EXEC (Independent Program Segment): Defines independently 
stored program segment and loads location counter. 

( < label > ] EXEC < pma > .[ < comment > ] 

IDT (Program Identifier): Names the object module produced. 
( < label > ] IDT '<string>' [ < comment > ] 

LIST (Restart Source Listing): Resumes source listing. 
(< label > ] LIST [<comment>] 

J;_. TEXAS 
'V INSTRUMENTS 



Instruction Set Summary Instruction Set Summary (Continued) 

Mnemonic Description #Words Instruction Bit Code Mnemonic Description #Words Instruction Bit Code 

FEDCBA987654321 0 FEDCBA987654321 0 

ABS Absolute value of accumu- 1100111000011011 LTA Load T register and accu - 1 00111101 .1-0-
la tor mulate previous product 

ADD Add to accumulator with OOOO•S-l--- D LTD Load T register, accumulate 1 001111111-0-
shift previous product, and 

ADDC Add to accumulator with 0 1 0000111--D move data 
carry LTP Load T register and store 1 001111101-0-

ADDH Add to high accumulator 0 1 0010001--D P register in accumulator 
ADDK Add to accumulator 110011 oo-K- LTS Load T register and subtract 1 010110111-0-

short immediate previous product 
ADDS Acid to low accumulator 010010011--D MAC Multiply and accumulate 2 010111011-0-

with sign -extension MACO Multiply and accumulate 2 010111001-o-
suppressed with data move 

ADDT Add to accumulator with 010010101--0 MAR Modify auxiliary register 1 010101011-0-
shift spec ified by T register MPV Multiply (with T register, 1 001110001--0-

ADLK Add to accumulator long 2 11 01-s-0000001 o store product in P reg ister) 
immediate with shift MPYA Multiply and accumulate 1 0011 10101-o-

ADRK Add to auxiliary register 01111110-K previous product 
short immediate MPYK Multiply immediate 1 101-K 

AND AND with accumulator 1 010011101-0- MPYS Multiply and subtract 1 001110111-0-
ANDK AND immediate with accu- 2 11 01-s-000001 o o previous product 

mulator with shift 
APAC Add P register to accumu - 1100111000010101 

MPYU Multiply unsigned 1 110011111-0-
NEG Negate accumulator 1 1100111000100011 

lator 
B Branch unconditionally 2 111111111-0 

NOP No operation 1 0101010100000000 
NORM Normalize contents of accu- 1 110011101-0-

BACC Branch to address specified 1 1100111000100101 umulator 
by accumulator OR OR with accumulator 1 01001101 1-0-

BANZ Branch on auxiliary reg ister 2 111110111-0 ORK OR immediate with accu- 2 1101-s-000001o1 
not zero mulator with shift 

BBNZ Branch if TC bit -,;:. 0 2 111110011-0 OUT Output data to port 1 1 1 1 O-PA-l- D-
BBZ Branch if TC bit = 0 2 11111 0001-0 PAC Load accumulator with 1 1100111000010100 
BC Branch on carry 2 010111101-0- P register 
BGEZ Branch if accumulator C!: 0 'i2 1111 01 001-0- POP Pop top of stack to low 1 1100111000011101 
BGZ Branch if accumulator > 0 2 1111 00011-0- accumulator 
BIT Test bit 1 1001-B-1-o- POPD Pop top of stack to data 1 0 1 1 1 1 0 1 0 t- D----1 
BITT Test bit spec ified by T 1 01 01 0 1 1 1 I-D memory 

register PSHD Push data memory value 1 010101001-0----1 
BIOZ Branch on 1/ 0 status = 0 2 111110101-0- onto stack 
BLEZ Branch if accumulator S 0 2 111100101-0- PUSH Push low accumulator 1 1100111000011100 
BLKD Block move from data mem- 2 111111011-0- onto stack 

ory to data memory RC Reset carry bit 1 1100111000110000 
BLKP Block move from program 2 111111001-0- RET Return from subroutine 1 1100111000100110 

memory to data memory RFSM Reset serial port frame 1 1100111000110110 
BLZ Branch if accumulator < 0 2 111100111-0 synchronization mode 
BNC Branch on no carry 2 010111111-0 RHM Reset hold mode 1 1100111000111000 
BNV Branch if no overflow 2 111 1 01111-0 ROL Rotate accumulator left 1 1100111000110100 
BNZ Branch if accumulator '# 0 2 1111010 11-0- ROR Rotate accumulator right 1 1100111000110101 
BV Branch on overflow 2 1111 00001-0 ROVM Reset overflow mode 1 110011100000001 0 
BZ Branch if accumulator = 0 2 111101101-0 RPT Repeat instruction as speci - 1 01 001 011 1-0---1 
CALA Call subroutine indirect 1 1100111000100100 tied by data memory value 
CALL Call subroutine 2 111111101-0 RPTK Repeat instruction as speci- 1 11001011-K-I 
CMPL Complement accumulator 1 1100111000100111 tied by immediate value 
CMPR Compare auxiliary register 1 11001110010100 c RSXM Reset sign-extension mode 1 11 00111 00000011 0 

with auxiliary register ARO RTC Reset test/ control flag 1 1100111000110010 
CNFD Configure block as data 1100111000000100 RTXM Reset serial port transmit 1 1100111000100000 

memory mode 
CNFP Configure block as program 1100111000000101 RXF Reset external flag 1 1100111000001100 

memory SACH Store high accumulator 1 01101-x-1- o-
DINT Disable interrupt 11 00111000000001 with shift 
DMOV Data move in data memory 010101101-0- SACL Store low accumulator 1 011 00-x-1-o-
EINT Enable interrupt 11 00111000000000 with sh ift 
FORT Format serial port registers 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 FO SAR Store auxiliary register 1 0111 O-R-1- o-
IDLE Idle until interrupt 1100111000011111 SBLK Subtract from accumulator 2 11 01-s-0000001 1 
IN Input data from port 1 0 OO-PA-1-D- long immediate with shift 
LAC Load accumulator with 0010-s-1-o- SBRK Subtract from auxiliary 1 01111111-K--
LACK Load accumulator imme- 11001010-K- register short immed iate 

diate short SC Set carry bit 1 1100111000110001 
LACT Load accumulator w ith 010000101-0- SFL Shift accumulator left 1 1100111000011000 

shift specified by T register SFR Shift accumulator right 1 11 00111 000011001 
LALK Load accumulator long 2 1101-s-00000001 SFSM Set serial port frame 1 1100111000110111 

immediate with shift synchronization mode 
LAR Load auxil iary register 00110+-R-.1-o- SHM Set hold mode 1 1100111000111001 
LARK Load auxiliary register 11 000+-R--t-K SOVM Set overflow mode 1 11 00111 00000001 1 

immediate short SPAC Subtract P register from 1 11001110000101 1 0 
LARP Load auxiliary register 01 01 01 0 1 1 0001-R- accumulator 

pointer SPH Store high P register 1 011111011-0-
LOP Load data memory page 010100101-0- SPL Store low P register 1 011111001-0-

pointer SPM Set P register output 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0 PM 
LDPK Load data memory page 1100100-K shift mode 

pointer immediate SORA Square and accumulate 1 00 1 1 1001 1- o -
LPH Load high P reg ister 1 0 1 0 1 0 0 1 1 I- D SQRS Square and subtract 1 010110101-0-
LST Load status reg ister STO 1 010100001-0- previous product 
LST1 Load status register ST1 1 010100011-0-
LRLK Load auxiliary reg ister 2 11010•R-OOOOOOOO 

long immediate 
LT Load T register 00 1 11 1001-o-

SST Store status register STO 1 0 1 1110001- 0-
SST1 Store status reg ister ST1 1 011 1 100 11-0-
SSXM Set sign -extension mode 1 11 00111 00000011 1 
STC Set test/ control flag 1 1100111000110011 

2 3 



July 1986 

Printed in U.S .A. 
• TEXAS 

INSTRUMENTS SPRU012 




