
lor
Graphics

ntroller
Board
User's Guide

~
TEXAS

INSTRUMENlS

SPPU019A

Color Graphics Controller
User's Guide

Graphics Products

~
TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. TI advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

In the absence of written agreement to the contrary, TI assumes no
liability for TI applications assistance, customer's product design,
or infringement of patents or copyrights of third parties by or arising
from use of semiconductor devices described herein. Nor does TI
warrant or represent that any license, either express or implied, is
granted under any patent right, copyright, or other intellectual
property right of TI covering or relating to any combination, machine,
or process in which such semiconductor devices might be or are
used.

Copyright © 1986, Texas Instruments Incorporated

Section

1
1 .1
1.2

2

Introduction
Functional Overview
Features

Quick Installation Guide

3 Installation and Operation
3.1 Hardware Configurable Jumpers
3.2 Memory Map
3.3 Video Memory Organization
3.4 TMS34061 Internal Registers
3.5 x-v Indirect Accesses
3.6 Shift Register Transfer Cycles
3.7 Interrupts
3.8 Expansion Bus
3.9 Video Output Connectors
3.10 Power Consumption
3.11 Sample Jumper Configurations

Theory of Operation
PC Bus to TMS34061 Interface
CPU to Palette Interface

Contents

4
4.1
4.2
4.3
4.4

TMS34061 to Frame Buffer Interface
Frame Buffer to Video Output Interface

5 Programming the CGC Board
5.1 Initializing the TMS34061 Registers
5.2 x-v Addressing
5.2.1 Advantages of X-Y Addressing Over Conventional Addressing
5.2.2 Setting Up the X-Y Address and Offset Registers
5.3 Shift Register Control
5.3.1 Memory Organization
5.3.2 Initiating a Shift Register Transfer
5.4 Horizontal Scrolling Using X-Y Addressing
5.5 Pixel Replication Zoom
5.6 Vector Drawing Using X-Y Addressing
5.7 Clearing the Screen Using Shift Register Transfers
5.8 Vertical Scrolling Using Shift Register Transfers
5.9 Vertical Screen Flip
5.10 Using the Palette
5.10.1 Initializing the Palette to Default Values
5.10.2 Using Repeat Mode

A List of Materials
8 PAL Equations
C Schematics

Page

1-1
1-2
1-2

2-1

3-1
3-2
3-3
3-5
3-5
3-7
3-9
3-10
3-10
3-11
3-12
3-12

4-1
4-2
4-5
4-5
4-6

5-1
5-2
5-3
5-3
5-5
5-7
5-8
5-9
5-10
5-12
5-14
5-16
5-18
5-19
5-20
5..:22
5-23

A-1
8-1
C-1

iii

Illustrations

Figure Page

1 -1. Color Graphics Controller Board Block Diagram " 1-3
3-1. location of Jumpers on the Board .. 3-3
3-2. Frame Buffer to Display Screen Memory Translation .. 3-5
3-3. Register Select Address Mapping to Address .. 3-6
3-4. X-V, None, Nibble, or Byte Function Mapping to PC Address 3-8
3-5. X-V, Two-Word Function Mapping to PC Address 3-8
3-6. X-Y Double Word Mask to Screen Correlation .. 3-9
3-7. Shift Register Transfer Addressing .. 3-10
3-8. Interrupt Jumper J02 .. 3-10
4-1. System Address Remapping ... 4-3
4-2. Memory Read/Write PC Bus Timing .. 4-4
4-3. Frame Buffer to Video Output Interface Timing .. 4-7
5-1. Memory and External Shift Register Organization .. 5-8
5-2. Shift Register Transfer Addressing .. 5-10
5-3. Horizontal Scrolling .. 5-11
5-4. Example of a 2X Pixel Replication Zoom Using X-Y Addressing 5-13
5-5. Vector Drawing Using X-Y Addressing .. 5-15
5-6. Vertical Scrolling Using Shift Register Transfers .. 5-19
5-7. Vertical Screen Flip Using Shift Register Transfers .. 5-20
5-8. Palette to Screen Mapping .. 5-21

Tables

Table Page

3-1. Jumper Settings and Features .. 3-2
3-2. Color Graphics Controller Board Memory Map .. 3-4
3-3. latching the Color Palette Modes .. 3-4
3-4. TMS34061 Internal Register Addressing .. 3-6
3-5. PC Memory Addressing for X-Y Indirect Access .. 3-7
3-6. I BM/TI PC Bus Pin Assignments .. 3-11
4-1. CAS Option Decode ... 4-2
4-2. Operations Encoded on Control Lines CASCTlO - CASCTl2 4-4
4-3. latching the Video Palette Modes .. 4-5
4-4. PAL U47 Truth Table , 4-5

iv

1. Introduction

The Color Graphics Controller Board is a TI PC and I BM PC I/O expansion bus
compatible graphics card which allows you to become familiar with the TMS34061
Video System Controller and TMS34070 Color Palette. The board and demonstration
software are configured at shipment to support a 640 pixel horizontal by 480 pixel
vertical resolution, similar to that of the IBM Professional Graphics Display. By
changing the crystal oscillator and reprogramming the TMS34061 control registers,
the board can support a maximum resolution of 1024 by 512 pixels, with four bits
per pixel.

Note:

Hexidecimal numbers are designated herein by the suffix "h".

1-1

Introduction

1.1 Functional Overview

The Color Graphics Controller Board is a single card designed around the IBM PC
I/O Expansion Bus card format. The board is intended to demonstrate the simplicity
and strengths of the TMS34061 Video System Controller and TMS34070 Color
Palette in controlling text and graphics while showing the ease of hardware design.
The board has the capability to drive both digital and analog raster scan color
monitors.

The frame buffer consists of 32 TMS4161 multiport memories organized as four color
planes, allowing for the possibility of 16 colors per frame from the digital outputs.
The color palette incorporates a 12-bit color look-up table which gives the
programmer a choic~ of 16 colors from a palette of 4096 colors per frame. Further­
more, the palette incorporates a unique line feature which allows the color look-up
table to be reloaded on every line, allowing 16 of 4096 colors per line. The
programmer can change this mode under software control.

The maximum resolution that the board can support is 1024 by 512 pixels with four
bits per pixel. The memory map shown in Section 2.2 can be changed by repro­
gramming the memory and control decode PALs (programmable array logic).

1.2 Features

• 256K-byte frame buffer (1024 x 512 pixels, four bits per pixel)

• Direct interface to most digital and analog RGB monitors

• Totally programmable resolution (640 x 480 pixels as shipped)

• IBM and TI PC I/O expansion bus compatible

• 16 of 4096 colors per line color palette

• Palette can be loaded on a line or frame basis under software control

The block diagram for the Color Graphics Controller Board is shown in Figure 1 -1.

1-2

Introduction

~/ __ ~~ ______ ~PC __ ~~ANr-S_IO_N_B_U_S ______ ~ ___ J\P1

I t I
ADDRESS
BUFFERS

DeCODe
LOGIC

I BU~S I

OSC

1
TMS34061 RE~~~ ~ VIDEO f----+ R

~r

Figure 1-1. Color Graphics Controller Board Block Diagram

P3

1-3

2. Quick Installation Guide

The Texas Instrume'nts TMDS3471804000 Color Graphics Controller {CGC} is
designed to operate when installed fn a TI Professional Computer or IBM Personal
Computer. The following is a step-by-step quick installation guide explaining how
to install the CGC card and execute the main demonstration program. See Section
3 for further installation information.

1) The CGC comes configured for display on an IBM Professional Graphics Display
or Princeton Graphics SR-12 driven by an IBM PC as the host computer. If a
TI PC is being used as the host, then the jumper options will have to be
reconfigured. The jumper options are shown below.

2) Make certain the host computer has 256K bytes of system RAM; otherwise,
system RAM will overlap CGC R~M, and the demonstration will not operate.
The CGC is memory-mapped from 50000h to AFFFFh.

3) Install the CGC in a vacant slot in the host computer, and connect the CGC
video output {the top port, P3} to the IBM Professional Graphics Display or the
Princeton Graphics SR-12.

4) Boot an MS-DOS system master on the host computer. Make certain that'the
version of MS-DOS is version 2.1 or later. Once MS-DOS is loaded, remove
the system master and insert the CGC demonstration disk into the drive.

5} Now that everything is configured, type" AUTOEXEC" to start execution of the
main demonstration. Once execution begins, press "Q" to terminate. Additional
information on the demonstration programs 'is contained in the text file called
"READ.ME" located on the demonstration diskette.

HOST: IBM PC
MONITOR:
OUTPUT PORT:

I BM Professional Graphics Display
P3

JUMPERS:
J01
J02
J03
J04
J05
J06

HOST:
MONITOR:

1 to 2
2 to 3
2 to 3 and 4 to 5
2 to 5
Not Connected
Not Connected

TIPe

OUTPUT PORT:
IBM Professional Graphics Display
P3

JUMPERS:
J01
J02
J03
J04
J05
J06

1 to 2
1 to 2
2 to 3 and 4 to 5
2 to 5
Not Connected
Not Connected

2-1

3. Installation and Operation

This section describes the necessary configuration procedures for correct operation
of the Color Graphics Controller Board. For information on how to program the
TMS34061 Video System Controller and the TMS34070 Color Palette, refer to the
TMS34061 User's Guide, part number SPPU014, and the TMS34070 User's Guide,
part number SPPU016.

3-1

Installation and Operation

3.1 Hardware Configurable Jumpers

3-2

The Color Graphics Controller Board has hardware-configurable jumpers for such
things as interrupts and monitor interfaces. Table 3-1 lists the jumpers and the
features that they control.

Table 3-1. Jumper Settings and Features

FEATURE ENABLED JUMPER POSITION

On board oscillator J01 1 to 2t

Backplane oscillator J01 2 to 3

Interrupt level 2 (TI PC) J02 1 to 2

Interrupt level 3 (IBM PC) J02 2 to 3t

Negative horizontal sync to P2-8 J03 1 to 2

Positive horizontal sync to P2-8 J03 1 to 4
2 to 3

Negative vertical sync to P2-9 J04 1 to 2

Positive vertical sync to P2-9 J04 1 to 4
2 to 3

Ground to P2-6 (TI PC digital monitor) J05 2 to 3

I to P2-6 (IBM Personal Computer color display) J06 1 to 2t

Negative composite sync to P2~9 J04 2 to 5

Positive composite sync to P2-9 J04 2-to 3
4 to 6

Negative horizontal sync to P3-5 J03 1 to 2

Positive horizontal sync to P3-6 J03 1 to 4
2 to 3

Negative vertical sync to P3-4 J04 1 to 2

Positive vertical sync to P3-4 J04 1 to 4
2 to 3

Negative composite sync to P3-4 J04 2 to 5t

Positive composite sync to P3-4 J04 2 to 3
4 to 5

P3-5 to logic 0 J03 2 to 5

P3-5 to logic 1 J03 2 to 3t
4 to 5

Remove host direct memory from board memory map J06 1 to 2

t Jumper setting as shipped

Figure 3-1 shows the location of the jumpers on the Color Graphics Controller Board.

Installation and Operation

P3

P2

J02

Figure 3-1. Location of Jumpers on the Board

3.2 Memory Map

The TMS34061 allows you to control five functions through the function select lines
FSO-FS2:

• Host memory direct access
• Shift register to memory
• Memory to shift register
• TMS34061 register access
• x-Y indirect access range

These functions have been placed in the PC memory space on the board. The Color
Palette Modes are memory-mapped and programmable under software control. The
memory map for the board is determined by the equations programmed in the decode
PALs U40, U45, and U48. Table 3-2 defines the memory map and contains a brief
description of the function mapped in each area. Table 3-3 defines the palette
memory map and how to program the mode by reading a set of addresses.

3-3

Installation and Operation

3-4

Table 3-2. Color Graphics Controller Board Memory Map

MEMORY RANGE TMS34081 FUNCTION FSO FS1 FS2

50000h-8FFFFht HOST MEMORY DIRECT ACCESS 1 1 0

903FOh-903FFh PALETTE MODE CONTROL 1 1 1

90400h-907XXh SHIFT REGISTER TO MEMORY 0 0 1

90800h-9OBXXh MEMORY TO SHIFT REGISTER 1 0 1

9OCOOh-900XXh TMS34061 REGISTER ACCESS 0 0 0

90EOOh-90FOOh* X-V INDIRECT ACCESS RANGE 1 0 0

" +
~XO~ X-Y INDIRECT BYTE ACCESS 1 0 0

~XOO12 X-Y INDIRECT RIGHT NIBBLE 1 0 0

--+X0102 X-V INDIRECT LEFT NIBBLE 1 0 0

--+X0112 X-V INDIRECT NO ACCESS 1 0 0

AOOOOh-AXXXXh * X-V INDIRECT 2-WORD ACCESS 1 0 0

Note: Left nibble = D7 - D4, right nibble = D3 - DO on the host/controller board
interface.

t If jumper J06 is installed (1 to 2), all host direct accesses are ignored to allow
for a larger memory space for system RAM.

:t: See ~ection 3.5 for determining how to construct an X-Y address.

The three Color Palette modes are latched by reading the addresses listed in Table
3-3. Reading these addresses latches signals PO and P1 as shown.

Table 3-3. Latching the Color Palette Modes

SIGNALS $ET

PALETTE MODE PO I P1 READ ADDRESS

Frame Load Mode 0 0 903FOh and 903F2h

Line Load Mode 0 1 903FOh and 903F6h

High (No Load) 1 0 903F4h and 903F2h

Reserved 1 1 903F4h and 903F6h

Installation and Operation

3.3 Video Memory Organization

The frame buffer (video memory) is comprised of 32 TMS4161 multiport video RAM.
These 256K bytes of multiport memory provide the board with the capability of
displaying screen sizes up to 1024 x 512 pixels with four bits per pixel.

The memory is organized in packed pixels, with two pixels sharing one byte of
memory. Figure 3-2 illustrates the correlation between the contents of two
consecutive memory addresses and the pixels they correspond to on the display
screen.

Figure 3-2. Frame Buffer to Display Screen Memory Translation

The frame buffer occupies a contiguous block of memory from 50000h to SFFFFh.
The memory is not mapped contiguous to the system memory so that the auto-sizing
program will not load the operating system into video memory space.

3.4 TMS34061 Internal Registers

The 1S internal registers of the TMS34061 are mapped to the base address 90COOh.
The least significant byte of each register is mapped on OOOOOh boundaries, while
the most significant byte is mapped on OOOOSh boundaries. The individual register
addresses are derived by adding a mUltiple of 00010h to the base address. Table
3-4 lists the addresses of all accessable registers.

3-5

Installation and Operation

A A A
1 1 1
9 8 7

1 0 0

3-6

Table 3-4. TMS34061 Internal Register Addressing

MEMORY ADDRESS
AS A7 AS A6 A4 A3

REGISTER NAME PC MEMORY TMS340S1 ADDRESSt
BASE ADDRESS C C C C C C

A A A A A A
LSB MSB 6 6 4 3 2 1

Horizontal end sync 90COOh 90C08h 0 0 0 0 0 X
Horizontal end blank 90C10h 90C18h 0 0 0 0 1 X
Horizontal start blank 90C20h 90C28h 0 0 0 1 0 X
Horizontal total 90C30h 90C38h 0 0 0 1 1 X

Vertical end sync 90C40h 90C48h 0 0 1 0 0 X
Vertical end blank 90C50h 90C58h 0 0 1 0 1 X
Vertical start blank 90C60h 90C68h 0 0 1 1 0 X
Vertical total 90C70h 90C78h 0 0 1 1 1 X

Display update 90C80h 90C88h 0 1 0 0 0 X
Display start 90C90h 90C98h 0 1 0 0 1 X

Vertical interrupt 90CAOh 90CA8h 0 1 0 1 0 X

Control register 1 90CBOh 90CB8h 0 1 0 1 1 X
Control register 2 90CCOh 90CC8h 0 1 1 0 0 X

Status register 90CDOh 90CD8h 0 1 1 0 1 X

X-Y offset register 90CEOh 90CE8h 0 1 1 1 0 X
X-Y address register 90CFOh 90CF8h 0 1 1 1 1 X

Display address register 90DOOh 90D08h 1 0 0 0 0 X
Vertical count register 90D10h 90D18h 1 0 0 0 1 X

t In CA1, when X = 0 the least significant byte is accessed.
When X = 1 the most significant byte is accessed.

Figure 3-3 shows how the register select address lines are mapped into a particular
PC memory address. Address lines A 19 - A9 are used for address decode, and A8 -
A3 are used to select one of the eighteen internal registers in the TMS34061, shown
in Table 3-4.

PC M EMORY ADDRESS

A A A A A A A A A A A A A A A A A
1 1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0
6 5 4 3 2 1 0

1 0 0 0 0 1 1 0 C C C C C C 0 0 0
A A A A A A
6 5 4 3 2 1

Figure 3-3. Register Select Address Mapping to Address

Installation and Operation

3.5 x-v Indirect Accesses

Host initiated X-Y indirect memory cycles are memory-mapped at base address
90EOOh. The 16 associated adjust functions of the X-Y registers after an X-Y indirect
cycle are selected by the address formed by the base address plus a multiple of
OOOOBh. Table 3-5 shows the addresses for the 16 functions of the X-Y standard
indirect byte cycle.

Table 3-5. PC Memory Addressing for X-V Indirect Access

MEMORY ADDRESS
A6 A5 A4 A3

VSC TMS34061 ADDRESS
PC x-v INDIRECT BYTE C C C C

MEMORY ACCESSES A A A A
ADDRESS FUNCTION MODIFICATION 4 3 2 1

90EOOh No adjustment 0 0 0 0
90E08h Increment X 0 0 0 1
90E10h Decrement X 0 0 1 0
90E18h Clear X 0 0 1 1

90E20h Increment Y 0 1 0 0
90E28h I ncrement X, Increment Y 0 1 0 1
90E30h Decrement X, Increment Y 0 1 1 0
90E38h Clear X, Increment Y 0 1 1 1

90E40h Decrement Y 1 0 0 0
90E48h Decrement Y, Increment X 1 0 0 1
90E50h Decrement y, Decrement X 1 0 1 0
90E58h Decrement Y, Clear X 1 0 1 1

90E60h Clear Y 1 1 0 0
·90E68h Clear Y, Increment X 1 1 0 1
90E70h Clear y, Decrement X 1 1 1 0
90E78h Clear Y, Clear X 1 1 1 1

External hardware has been added in the CAS lines to allow X-Y indirect access to
nibbles (4 bits) and double words (32 bits), in conjunction with bytes to be accessed.
This has been achieved by mapping the X-Y addresses into several address spaces.
Figure 3-4 shows how the X-Y functions modifications are mapped into a PC memory
address. The.upper address lines A19 - A7 are used for address decode. Address lines
A6 - A3 are used to select one of the sixteen X-V modifications. Address lines A1
and AO are used to select no access, nibble access, or byte access.

3-7

Installation and Operation

PC MEMORY ADDRESS

A
1 1 1 1 1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0
9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 0 0 0 1 1 1 0 0 C C C C 0 S S
A A A A 1 0
4 3 2 1

CAx = TMS34061's column address line

S1 SO
o 0
o 1
1 0
1 1

x -Y byte access
X-Y left nibble access DO - D3
X-Y right nibble access 04 - 07
X-Y no access, only changes pointer

Figure 3-4. X-V, None, Nibble, or Byte Function Mapping to PC Address

A A A
1 1 1
9 8 7

1 0 1

Figure 3-5 shows the mapping for X-Y two word accesses. This is for write functions
only. With this mode all 32 memories can be written to at once with address lines
A 15 - A8 used as a write mask. Figure 3-6 shows the correlation between the mask
on an X-Y double word access and the pixel position that is affected. Note that the
actual pixels modified on this access come from the TMS34061's internal X-Y
registers.

PC MEMORY ADDRESS

A A A A A A A A A A A A A A A A A
1 1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0
6 5 4 3 2 1 0

0 M M M M M M M M 0 C C C C X X X
0 1 2 3 4 5 6 7 A A A A

4 3 2 1

CAx = TMS34061's column address line

Figure 3-5. X-V, Two-Word Function Mapping to PC Address

3-8

Installation and Operation

PIXEL 0 PIX8.. 1
FRAME
BUFFER

Figure 3-6. X-Y Double Word Mask to Screen Correlation

3.6 Shift Register Transfer Cycles

Since the multiport memories are equipped with a 256-bit internal shift register, the
TMS34061 supports a shift register transfer from the memory to the shift register and
from the shift register to the memory array. The shift register transfer cycles are
memory-mapped starting at base addresses 90400h (shift register to memory) and
90800h (memory to shift register). An access to 90400h transfers the contents of
the shift registers in bank 0 to row 000 of the memory array. An access to 90800h
will transfer the contents of row 000 of the video memories in bank 0 to their internal
registers. likewise, an access to the other 255 rows or the other three banks of
memories can be done by adding a displacement to the base address. Figure 3-7
illustrates how the row and bank addresses are formed for a shift register transfer
cycle.

3-9

Installation and Operation

A A A
1 1 1
9 8 7

1 0 0

X1 XO
0 1
1 0

n BO
0 0
0 1
1 0
1 1

A A A A A
1 1 1 1 1
6 5 4 3 2

1 0 0 0 0

Shift register to memory
Memory to shift register

Bank 0 select
Bank 1 select
Bank 2 select
Bank 3 select

A A A A A A A A
1 1 9 8 7 6 5 4
1 0

X1 XO R7 R6 R5 R4 R3 R2

R7 - RO row address select

Figure 3-7. Shift Register Transfer Addressing

A A A A
3 2 1 0

R1 RO B1 BO

3.7 Interrupts

The Color Graphics Controller Board has a jumper-configurable interrupt, which can
be set to either interrupt level 2 for the TI PC or for interrupt level 3 for the IBM PC.
Figure 3-8 shows the how to configure the interrupt jumper for both of these
machines.

J02

IR02 4 --- 10}
JUMPER 1-2 FOR TI PC

INTREO ------.~ 20
~ ___ 3

0
} JUMPER 2-3 FOR IBM PC

IR03'4-

Figure 3-8. Interrupt Jumper J02

3.8 Expansion Bus

3-10

The Color Graphics Controller Board fits into the TI PC or IBM PC expansion bus,
and into the expansion connector of most IBM-compatible machines. The signals
that the board uses are shown in Table 3-6. Note that the only difference between
the I BM PC and the TI PC for the Color Graphics Controller Board is the interrupt
pins. This difference is handled by a jumper option, as described in Section 3.7.

Installation and Operation

Table 3-6. IBM/TI PC Bus Pin Assignments

SIGNAL NAME IBM TI SIGNAL NAME IBM TI
PIN NO. PIN NO. PIN NO. PIN NO.

Ground 81,810,831 81,810,831 RESET 82 82

+5 Volts 83,829 83,82.9 CLOCK 820 820

OSC 830 830

~ 811 811 'Fn5V A10 A10

'mJlR' 812 812 Am A11 A11

TFm2 N/A 824 11m3 825 N/A

DO A9 . A9 01 A8 A8

02 A7 A7 03 A6 A6

04 A5 A5 05 A4 A4

06 A3 A3 07 A2 A2

AO A31 A31 A1 A30 A30

A2 A29 A29 A3. A28 A28

A4 A27 A27 A5 A26 A26

A6 A25 A25 A7 A24 A24

A8 A23 A23 A9 A22 A22

A10 A21 A21 A11 A20 A20

A12 A19 A19 A13 A18 A18

A14 A17 A17 A15 A16 A16

A16 A15 A15 A17 A14 A14

A18 A13 A13 A19 A12 A12

3.9 Video Output Connectors

The Color Graphics Controller Board has two DB9 video output connectors, P2 and
P3. Connector P2 outputs a digital RGBlsignal and connector P3 outputs an RGB
signal at 1 volt peak to peak with 75-ohm drive capability. Both connectors have
positive and negative horizontal syncs and composite sync so that you can interface
to a variety of monitors. TheP2 pinout supports a TI or an IBM Personal Computer
color graphics display digital color monitor with no cable modification, and the P3
pinout supports the IBM professional graphics display analog color monitor with no
cable change. Other monitors can be interfaced easily by making your own cable.

PORT P2 PINOUT PORT P3 PINOUT

PIN SIGNAL PIN SIGNAL
NUMBER DESCRIPTION NUMBER DESCRIPTION

1 Ground 1 Red

2 Ground 2 Green

3 Red 3 81ue

4 Green 4 CSYNCt

5 81ue 5 MOOEt

6 lor Groundt 6 Ground

7 Reserved 7 Ground

8 HSYNCt 8 Ground

9 VSYNCt 9 Ground

t Jumper Options: See Table 3-1 for different options.

3-11

Installation and Operation

3.10 Power Consumption

The Color Graphics Controller Board uses only the +5 volt supply. The average
current consumption is 1 .2 A.

3.11 Sample Jumper Configurations

3-12

The following are sample jumper configurations for various host PCs and monitors.
The Color Graphics Controller Board is shipped with software to support the IBM
Professional Graphics Display. Software is also available to support 720 x 300
resolution like that of the TI Professional Computer and 640 x 200 resolution like that
of the IBM Personal Computer color display.

HOST:
MONITOR:
OUTPUT PORT:
SOFTWARE:
JUMPERS:

HOST:

J01
J02
J03
J04
J05
JOE)

MONITOR:
OUTPUT PORT:
SOFTWARE:
JUMPERS:

HOST:

J01
J02
J03
J04
J05
J06

MONITOR:
OUTPUT PORT:
SOFTWARE:
JUMPERS:

J01
J02
J03
J04
J05
J06

IBM PC
I BM Professional Graphics Display
P3
TM DS3440879202

1 to 2
2 to 3
2 to 3 and 4 to 5
2 to 5
Not Connected
Not Connected

IBM PC
IBM Personal Computer Color Display
P2
TM DS34408791 02t

2 to 3
2 to 3
1 to 2
1 to 2
1 to 2
Not Connected

IBM PC
TI Digital Monitor
P2
TM DS3440879002~

1 to 2, change oscillator to 18.432 MHz
2 to 3
1 to 4 and 2 to 3
1 to 2
2 to 3
Not Connected

Installation and Operation

HOST:
MONITOR:
OUTPUT PORT:
SOFTWARE:
JUMPERS:

HOST:

J01
J02
J03
J04
J05
J06

MONITOR:
OUTPUT PORT:
SOFTWARE:
JUMPERS:

J01
J02
J03
J04
J05
J06

TI PC
IBM Professional Graphics Display
P3
TM 053440879202

1 to 2
1 to 2
2 to 3 and 4 to 5
2to 5
Not Connected
Not Connected

TI PC
TI Digital Monitor
P2
TM 053440879002+

1 to 2, change oscillator to 18.432 MHz
1 to 2
1 to 4 and 2 to 3
1 to 2
2 to 3
Not Connected

t Supports 640 x 200 display
+ Supports 720 x 300 display
Contact your local sales office to order this software.

For systems using 512K bytes of system memory, connect jumper J06 1 to 2. This
disables host direct accesses to the frame buffer; therefore, only the X-Y mode can
be used to read or write to the frame buffer.

3-13

4. Theory of Operation

The following sections explain the theory of operation of the Color Graphics
Controller Board. The theory of operation is divided. into four parts: the PC bus to
TMS34061 interface, the CPU to palette interface, the TMS34061 to frame buffer
interface, and the frame buffer to video ouput interface.

4-1

Theory of Operation

4.1 PC Bus to TMS34061 Interface

4-2

The heart of the interface between the PC bus and the TMS34061 is PAls U48 and
U40. The equations for these PALS are shown in Appendix B, with a brief explanation
of their function.

The main control signals on the TMS34061 are CEl, CEH, SYSClK, ALE, R/W, and
RDY /HOlD. The TMS34061's SYSClK is connected to the PC's,ClK signal from the
expansion bus. The TMS34061 is reset when the PC is reset since the TMS34061 's
reset is generated from the PC's expansion bus reset. The CS line has been grounded
so the TMS34061 is always active. The ALE determines when a CPU request will
be generated.

When the host CPU executes a memory access to the memory range in which the
Color Graphics Controller Board is mapped, the following actions take place. PAL
U48 decodes the address and sends the appropriate FSO - FS2 code to the
TMS34061 (Table 3-2 shows the FS codes generated as a function of the memory
address location). PAL U48 also sends a two bit binary code (CASOPTO and
CASOPT1) to PAL U40 and PAL U45. The information encoded on these lines is
shown in Table 4-1.

Finally PAL U48 remaps the memory so that when the system auto-sizes the oper­
ating system starts at the bottom of memory (OOOOOh) and looks for the first non­
contiguous block. After the hole is found it loads the operating system in the highest
section of the contiguous section of memory as possible, T6;'prevent the operating
system from being loaded into the Color Graphics Controller Board frame buffer the
location between 40000h and 50000h cannot be used.

Since the memory now starts at 50000h the upper most address lines need to be
remapped so that it is on a binary value. Figure 4-1 shows the necessary memory
system memory map and the Color Graphics Controller Board memory remap.

Table 4-1. CAS Option Decode

~ASOPT1 ~ASOPTO TYPE OF CYCLE

0 0 x-Y double word access

0 1 X-Yaccess

1 0 Palette access

1 1 Other

Theory of Operation

SYSTEM ADDRESS TMS34061 RA7 AND RA6 ADDRESS
A19 A18 A17 A16 A17PAL A16PAl

OOOOOh 0 0 0 0 X X System RAM
10000h 0 0 0 1 X X System RAM
20000h 0 0 1 0 X X System RAM
30000h 0 0 1 1 X X System RAM

40000h 0 1 0 0 X X Emptyt
50000h 0 1 0 1 0 0 CG C frame buffert
60000h 0 1 1 0 0 1 CGC frame buffert
70000h 0 1 1 1 1 0 CGC frame buffert

80000h 0 0 0 1 1 CG C frame buffert
90000h 0 0 1 X X CGC registers
AOOOOh 0 1 0 X X CGC XY double word
BOOOOh 0 1 1 X X Available

COOOOh 1 0 0 X X System or user
DOOOOh 1 0 1 X X System or user
EOOOOh 1 1 0 X X System or user
FOOOOh 1 1 1 X X System or user

t This section of memory can be reclaimed for system use by installing J06.

Figure 4-1. System Address Remapping

After U48 decodes the address, one or more of the FSO - FS2 lines will be active low
if the Color Graphics Controller Board is selected. If all of the FS lines are high then
the Color Graphics Controller Board is not selected and no host operation will take
place. When PAL U40 receives a low input on one of the FS lines, it qualifies the input
with AEN from the PC bus and waits for memory read (MEMR) or memory write
(MEMW) to go active low.

When either of these signals go active low PAL U40 generates the ALE and eEL
signals, which start the TMS34061 on the host operation defined by the FS lines.
The TMS34061 R/W line is supplied by the PC bus MEMW line. When ALE falls the
TMS34061 will respond to the PC bus by dropping its ROY line, which will cause
the PC's CPU to wait until the cycle has completed.

PAL U40 also takes in the CASOPTO and CASOPT1 lines and in conjunction with
the two least significant address lines, A 1 and AO, it develops the control lines
CASCTlO, CASCTL 1, and CASCTl2. These three control lines are used during X-Y
address cycles to control the CAS lines, thus allowing software address control over
which memories are written to. This allows a performance increase in· executing
algorithms by reducing masking operations and allowing multiple memories to be
written to selectively. This technique will be explained in more detail in Section 4.3.
Table 4-2 describes the operations encoded on the CASCTlO - CASCTl2 lines as
a function of CASOPT1, CASOPT2, A1, and AO.

4-3

Theory of Operation

4-4

Table 4-2. Operations Encoded 0

~ASOPT1 CASOPTO A1

0 0 X

0 1 0

0 1 0

0 1 1

0 1 1

1 1 X

Figure 4-2 shows the PC bus ti
TMS34061.

eLK

ADDRESS II
I I
I I

MEMR/MEMW ~ I

I I
I I

RAS
I

~ I
I
I I
I I

CAS I I
I I
I I
I I

WAIT \ I
I

I i . I

Figure 4-2. Memory R

~ .---

e5ii_ ..t!II-

E5 -- 'I •

Theory of Operation

SYSTEM ADDRESS TMS34061 RA7 AND RA6 ADDRESS
A19 A18 A17 A16 A17PAL A16PAl

OOOOOh 0 0 0 0 X X System RAM
10000h 0 0 0 1 X X System RAM
20000h 0 0 1 0 X X System RAM
30000h 0 0 1 1 X X System RAM

40000h 0 1 0 0 X X Emptyt
50000h 0 1 0 1 0 0 CG C frame buffert
60000h 0 1 1 0 0 1 CGC frame buffert
70000h 0 1 1 1 1 0 CG C frame buffert

80000h 1 0 0 0 1 1 CG C frame buffert
90000h 1 0 0 1 X X CGC registers
AOOOOh 1 0 1 0 X X CGC XY double word
BOOOOh 1 0 1 1 X X Available

COOOOh 1 1 0 0 X X System or user
DOOOOh 1 1 0 1 X X System or user
EOOOOh 1 1 1 0 X X System or user
FOOOOh 1 1 1 1 X X System or user

t This section of memory can be reclaimed for system use by installing J06.

Figure 4-1. System Address Remapping

After U48 decodes the address, one or more of the FSO - FS2 lines will be active low
if the Color Graphics Controller Board is selected. If all of the FS lines are high then
the Color Graphics Controller Board is not selected and no host operation will take
place. When PAL U40 receives a low input on one of the FS lines, it qualifies the input
with AEN from the PC bus and waits for memory read (MEMR) or memory write
(MEMW) to go active low.

When either of these signals go active low PAL U40 generates the ALE and eEL
signals, which start the TMS34061 on the host operation defined by the FS lines.
The TMS34061 R/W line is supplied by the PC bus MEMW line. When ALE falls the
TMS34061 will respond to the PC bus by dropping its ROY line, which will cause
the PC's CPU to wait until the cycle has completed.

PAL U40 also takes in the CASOPTO and CASOPT1 lines and in conjunction with
the two least significant address lines, A1 and AO, it develops the control lines
CASCTlO, CASCTl1, and CASCTl2. These three control lines are used during X-Y
address cycles to control the CAS lines, thus allowing software address control over
which memories are written to. This allows a performance increase in· executing
algorithms by reducing masking operations and allowing multiple memories to be
written to selectively. This technique will be explained in more detail in Section 4.3.
Table 4-2 describes the operations encoded on the CASCTlO - CASCTl2 lines as
a function of CASOPT1, CASOPT2, A1, and AO.

4-3

Theory of Operation

4-4

Table 4-2. Operations Encoded on Control Lines CASCTLO - CASCTL2

CASCTL

CASOPT1 CASOPTO A1 AO 2 1 0 OPERATION

0 0 x x 0 1 1 x-v
Double word

0 1 0 0 1 0 0 X-V Byte
Access

0 1 0 1 1 1 0 X-V Access
Left nibble

0 1 1 0 1 0 1 X-V Access
Right nibble

0 1 1 1 1 1 1 X-V No Access

1 1 X X 0 0 0 o Host Direct

Figure 4-2 shows the PC bus timing for a memory read and memory write to the
TMS34061.

tw ts tot
CLK

I
I

ADDRESS II VALID ADDRESS I
I I i
I I

" MEMR/MEMW 1\ I

I I I
I I I

RAS
I

~ t I
I I
I I I
I I

~ It CAS I I
I I
I I I I
I I I I

WArT \ I 1/ I
I I

I ! I I
I

Figure 4-2. Memory Read/Write PC Bus Timing

Theory of Operation

4.2 CPU to Palette Interface

The TMS34070 Color Palette loads directly from the frame buffer. The blanking
signal from the TMS34061 is aligned by two flip-flops to form the DATAEN signal
on the palette, which controls the palette loading. The Mode pin on the palette
defines if the palette loads at the beginning of a frame (frame load mode), on every
line (line load mode), or if it is transparent (no load). The Mode pin has been
designed on the Color Graphics Controller Board to be controlled by software
program control. The function has been placed in memory space at address 903FOh
to 903F6h.

PAL U45 controls the op~ration of the palette by decoding the memory address. There
are two latches programmed into U45, PO and P1. These two latches determine the
state of the palette Mode pin. Table 4-3 shows the relationship betWeen these
latches, the memory locations which control them, and the Mode pin on the palette.

Table 4-3. Latching the Color Palette Modes

SIGNALS SET

PALETTE MODE PO I P1 READ ADDRESS

Frame Load Mode 0 0 903FOh and 903F2h

Line Load Mode 0 1 903FOh and 903F6h

High (No Load) 1 0 903F4h and 903F2h

Reserved 1 1 903F4h and 903F6h

4.3 TMS34061 to Frame Buffer Interface

The TMS34061 makes designing a frame buffer extremely simple since it directly
interfaces to the TMS4161. The maximum size frame buffer chosen on the Color
Graphics Controller Board is 1024 by 512 pixels with four bits per pixel. This requires
32 TMS4161 memories. The memories are organized in four banks of eight memories
each, and are sectioned off by the four RAS outputs, RASO - RAS3, on the
TMS34061. These bits are controlled by the least significant address lines of the PC
bus, which are connected to the TMS34061 's RSO and RS1 inputs respectively.
Because every eighth pixel comes from the same memory, the TMS34061 and
multiport memories operate at only one-eighth of the speed of the dotclock.

The address lines are multiplexed by the TMS34061 and are driven out on the MAO
- MAS lines. The data bus goes from the PC bus directly to the frame buffer allowing
any data bus width to be used. The CEl and CEH inputs on the TMS34061 control
the CASHI and CASlO outputs of the TMS34061 to the frame buffer. The CEH input
is not used because a trick has been played on the CAS inputs to the memories in
X-V mode so that an external PAL (U47) increases performance.

PAL U47 sections the memory into eight blocks of four memories. Therefore every
pixel has its own CAS. The CASHI output determines when a shift register transfer
is taking place so that all the CAS signals (CASO - CAS7) from U47 are driven low.
On any cycle except an X-V cycle, all the CAS signals are driven low when CASlO
goes low. But on X-V cycles the code on the CASCTlO - CASCTl2 inputs to U47,
along with the mask bits AS - A15, determine which CASO - CAS7 output will go
low when CASlO goes low. Table 4-4 shows the truth table for the logic in U47.

4-5

Theory of Operation

Table 4-4. PAL U47 Truth Table

MODE CASHI CASLO CASCTL CASO CAS1 CAS2 CAS3 CAS4 CAS5 CAse

2 1 0

Idle 1 1 X X X 1 1 1 1 1 1 1

SR Update 0 0 X X X 0 0 0 0 0 0 0

Host Direct 1 0 0 0 0 0 0 0 0 0 0 0

X-V 1 0 1 0 0 0 0 0 0 0 0 0

X-V Lnibble 1 0 1 1 0 1 0 1 0 1 0 1

X-V Rnibble 1 0 1 0 1 0 1 0 1 0 1 0

X-V No Access 1 0 1 1 1 1 1 1 1 1 1 1

X-V Ooubleword 1 0 0 1 1 ~ m m m m m m

Notes: 1. Lnibble = left nibble, 04 - 07
Rnibble = right nibble, DO - 03

2. Double word is all memories selected:
MO = A 15 M4 = A 11
M1 = A14 M5 = A10
M2 = A13 M6 = A9
M3 = A12 M7 = AS

4.4 Frame Buffer to Video Output Interface

4-6

The CRT timing is generated from the TMS34061. The dot clock is input into the
color palette and is divided by two, since the palette operates on two pixels at time
because of its parallel architecture. The result is divided by four and fed into the
TMS34061 's VI DCLK input. The TMS4161 s are clocked by two clock signals, SCLK1
and SCLKO. These clocks are generated by gating the TMS34061's BLANK output
with VIDCLK. This allows the memory shift registers to shut off during blanking so
that the shift registers can reload for the next line.

The outputs of the shift registers are input into four 74AS194 shift registers that are
configured as eight 2-bit shift registers. These shift registers are reloaded every two
pixels. The trick behind this method is wiring two memories together and alternat­
ingly turning the serial outputs on. This is done by creating two output enable clocks,
SOEO and SOE1. An example timing diagram is shown in Figure 4-3.

There are eight bits output at a time because the palette operates on two 4-bit pixels
at a time. For the digital output a 74AS157 is used to multiplex the a-bit wide color
bus back to four bits. The palette drives the analog 75 ohm impedance directly.

CAS7

1

0

0

0

0

1

1

m

Theory of Operation

PO
CLKOUT

BReLK

SRLOAD
I

VlDCLK J
I

l I \ I \
I

SOEOU
I U U I
I
I
I

Lr BOE1 W U
BLANK \ I

I
I

DATAEN \ I
I
I

BLANK2 \
I
I

BCLKO 1. \ I \ I
I

BCLI<1 \ / \ / \
I

Figure 4-3. Frame Buffer to Video Output Interface Timing

4-7

5. Programming the CGC Board

This section discusses the following topics:

• Initializing the TMS34061 registers
• x-Y addressing
• Shift register control
• Horizontal and vertical scrolling
• Pixel replication zoom
• Vector drawing
• Clearing the screen
• Using the palette

5-1

Programming the CGC Board

5.1 Initializing the TMS34061 Registers

The first thing that needs to be done upon powerup of the Color Graphics Controller
Board is to initialize the TMS34061's internal registers according to your current
display requirements.

The following code example initializes the Color Graphics Controller Board to
produce a display of 640 x 480 pixels; it assumes the display device connected to
the board is an IBM Personal Computer Graphics Display or has similar specifications.
Since no bulk clear of video RAM is performed here, the monitor will display whatever
data happens to be in video RAM after initialization.

j---i
Sample subroutine to Initialize TMS34061 registers:

i---i
TMS34061 Address Equates

i
VSCREG-BASE
FIRST-REG

EQU 9000H
EQU OCOOH

isegment register pointer
iaddress of first TMS34061 register

Initialize Extra Segment register to point to the segment
in which the TMS34061 registers are mapped.

MOV AX,VSCREG-BASE
MOV ES,AX

Point destination index [DI] to first TMS34061 register address
within segment [ES] and then point source index [SI] to
the first byte in the Register Initialization table. Set the loop count
CX to the number of table entries.

MOV DI,FIRST-REG
MOV SI,OFFSET INIT-TBL

Register initialization loop

CX,26

ipoints to first TMS34061 reg.
ipoints to first data byte

ILOOP:
MOV
MOV
MOV
ADD
INC
LOOP
RET

BL,BYTE PTR CS:[SI]
BYTE PTR ES: [DIl"BL
01,8

iloop counter (bytes)
iread a byte from table

SI
ILOOP

5-2

imove it to TMS34061 register
ipoint Dr to next register address
ipoint to next table entry
idec CX, and continue till done
ireturn to caller

Programming the CGC Board

.--, ,
TMS34061 register initialization table

Register Values for 640 x 480 screen resolution
;----1--i
;
INIT-TBL DB 03H ;Horizontal End Sync [LSB]

DB OOH [MSB]
DB OCH ;Horizontal End Blank
DB OOH
DB SCH ;Horizontal Start Blank
DB OOH
DB 64H ;Horizontal Total
DB DOH
DB 01H ';Vertical End Sync
DB OOH
DB 1DH ;Vertical End Blank
DB OOH

'DB FDH ;Vertical Start Blank
DB 01H
DB FFH ;Vertical Total
DB 01H
DB 02H ;Display Update
DB DOH
DB DOH ;Display Start
DB DOH
DB DOH ;Vertical Interrupt
DB OOH
DB DOH ;Control Register 1
DB 10H
DB DOH ;Control Register 2
DB 20H

5.2 X-Y Addressing

One of the TMS34061's most useful features is X-Y addressing mode. In brief, the
programmer supplies the logical X-Y pixel location to the TMS34061, and the
TMS34061 generates the proper address into the video RAM buffer.

Once the logical X-Y address has been loaded into the TMS34061 , the programmer
can perform any of ten operations on the logical address without reloading it into
the TMS34061. These ten operations include the ability to increment and decrement
the X-Y coordinates in any combination just by accessing a memory location.

5.2.1 Advantages of X-V Addressing Over Conventional Addressing

Suppose you want to draw a horizontal line starting at coordinates 80,100 and
continuing 20 pixels to the right. The first step is to load the X coordinate (80) and
the Y coordinate (100) into the TMS34061. From that point on, when~ver an oper­
ation is performed, the TMS34061 will generate the proper address, and after each
subsequent read or write operation is finished, the TMS34061 will modify the address
accordingly. In this example, the address that contains the pixel located at 80,100
is C828h. Normally, the programmer would have to calculate the address for every
pixel, which would be a very time-consuming task. X-Y addressing simplifies this.
Once the X-Y coordinate has been loaded into the TMS34061, you need only to
write the proper data to the X-Y adjustment address that performs the function
INCREMENT X, and the horizontal line is drawn.

5-3

Programming the CGC Board

The formula used to calculate the pixel address without using the TMS34061's X-Y
addressing feature is:

PIXEL-ADDRESS = BASE-ADDRESS + (Y * 0200h) + (X/2)

On the Color Graphics Controller Board, the resulting PIXEL-ADDRESS can be a
number greater than 16 bits, so the 8088's segment register would also have to be
set every time a new pixel address was calculated. But when using X-Y addressing
there is no need to worry about the segment register, since the TMS34061 provides
a 20-bit address into video RAM. This provides a tremendous advantage to the
programmer as it is no longer necessary to keep track of the pointer into VRAM.

The following is a comparison of the code needed to draw a horizontal white line
starting at 80,100 and continuing 20 pixels to the right. Note that the version not
using X-Y addressing requires an extra instruction in the innermost draw loop,
significantly increasing execution time.

Example using X-Y addressing

MOV
MOV
CALL
MOV
MOV

istarting X coordinate
istarting Y coordinate
iload logical coordinates into TMS34061
icolor code for 2 white pixels
ieach byte contains 2 pixels

ORAWLOOP: MOV
LOOP

AX,80
OX,IOO
SETXY
AL,OFFH
CX,IO
ES:1NCX,AL
ORAWLOOP

Example using conventional addressing

MOV
MOV
CALL
MOV
MOV

OX,80
AX,IOO
FINOXY
AL,OFFH
CX,IO

istarting X coordinate
;starting Y coordinate
iload logical coordinates into TMS34061
icolor code for 2 white pixels
ieach byte contains 2 pixels

ORAWLOOP: MOV
INC
LOOP

ES: [S1] ,AL
SI
ORAWLOOP

;extra instruction to increment pointer

5-4

The next example is similar. This is a vertical white line starting at 80,100 and
continuing 20 pixels down. Note the added computations when X-Y addressing is
not used. The program must also keep track of whether a segment boundary has been
crossed.

Programming the CGC Board

Example using X-Y addressing

MOV
MOV
CALL
MOV
MOV

DRAWLOOP: MOV
LOOP

Ax,ao
DX,lOO
SETXY
AL,OFFH
CX,lO
ES:INCY,AL
DRAWLOOP

;starting X coordinate
;starting Y coordinate
;load logical coordinates into TMS34061
;color code for 2· white pixels
;each byte contains 2 pixels
;draw and move down 1 line

Example using conventional addressing

MOV
MOV
CALL
MOV
MOV

DRAWLOOP: MOV
CLC
ADC
JNC
PUSH
MOV
ADD
MOV
POP

SAMESEG: LOOP

Dx,ao
AX,lOO
FINDXY
AL,OFFH
CX,lO
ES:[SI],AL

SI,0200H
SAMESEG
AX
AX,ES
AX,lOOOH
ES,AX
AX
DRAWLOOP

;starting X coordinate
;starting Y coordinate
;find address of X-Y coordinate
;color code for 2 white pixels
;each byte contains 2 pixels

;add offset for next vertical line
;if still in same segment, cont. normally
;else: save color data

get current segment
change to next segment
write it back
restore color data

The above examples clearly show the advantage of X-Y addressing over the more
conventional appoach. Consider also that both examples call a subroutine to set the
address that contains the desired pixel to be written, but only the conventional
method requires a time-consuming multiply and several add instructions.

Also consider that the two examples draw very simple horizontal lines. If a slanted
line was to be drawn, then you would have to resort to calling the pixel calculation
routine for each new pixel, which would quickly become burdensome.

5.2.2 Setting Up the x-v Address and Offset Registers

The following two code examples show the subroutine required to obtain the proper
VRAM address given the logical X-Y coordinates. Note that in the second example
there are two instructions that always load the X-Y offset register with the same
values. This is to describe how many bits of X and Yare required in a system. Since
the resolution of the board is always the same (1024 x 512) these two instructions
do not change. Therefore they could be removed from the subroutine and executed
only once when the system is powered up and the initial values are loaded into the
TMS34061 registers.

5-5

Programming the CGC Board

j---i
Calculate Pixel Address in VRAM (conventional method)

This subroutine takes the specified logical X-Y
coordinates and calculates the corresponding VRAM
address. After execution, ES:[DI] will point to
the proper pixel address.

Inputs: AX X
DX Y

jOutputs: DI Contains the address offset
ES is set to the properVRAM segment

i---i
The range of the supplied X is 0-1023 (O-3FFH) which
can be specified by 10 bits maximum.

The range of the supplied Y is 0-511 (O-IFFH) which
can be specified by 9 bits maximum

5-6

PUSH
MOV
MOV
MUL
MOV
XCHG
SHL
ADD
POP
SHR
ADD
PUSH
MOV
MOV
POP
RET

AX
AX,OX
BX,0200H
BX
CL,4
OL,OH
DX,CL

iSave X coordinate
;Get Y coordinate
;Vline increment
jFind Vertical start address

DX,VRAMBASEjadd VRAM BASE ADDRESS
BX jrestore X coordinate
BX,l ifind horizontal byte
AX,BX jadd to Vertical start address
AX isave offset address
AX,OX iget segment
ES,AX jset segment register
DI jset Dr to the offset address

Programming the CGC Board

i---j
Set Pointer to Pixel in VRAM (using X-Y addressing)

This subroutine takes the specified logical X-Y
coordinates and loads the TMS34061's X-Y address
and offset registers with the proper values.

Inputs: DX = Logical X coordinate
AX = Logical Y coordinate

Outputs: After execution, the TMS34061's 20-bit
X-Y address pointer will point to the memory
location that contains the pixel specified
by the logical coordinates.

Notes: ES is assumed to point to TMS34061 register
segment

MSB---------------------------------LSB
Offset reg 0 0 0 0 0 0 X X 0 0 1 0 0 0 0 0

; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;Address reg Y (9-bit value) X (7 MSBs)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
i---j

The range of the supplied X is 0-1023 (O-3FFH) which
can be specified by a maximum of 10 bits.

The range of the supplied Y is 0-511 (O-lFFH) which
can be specified by a maximum of 9 bits.

SHR OX,l ;DX=9 MSBs of xl
ROR OX,l iDL=7 MSBs of xl
ROR OX,l ;DH=2 LSBs of xl
ROL OH,l ;Use 2 LSBs of DH
ROL OH,l i as bank selects

note that the next two instructions describe the relationship between
the X and Y resolution.

MOV BL,20H ;XY addr increment
MOV ES:XYOFFSL,BL iload low byte of X-Y offset register
MOV ES:XYOFFSH,DH ;load high byte of X-Y offset register

calculate value for TMS34061's XY Address Register

XCHG
ROR
OR
MOV
MOV
RET

AL,AH ;swap y1 bytes
AX,l ialign y1 with xl
AL,DL iconcat xl & y1
ES:XYADDRL,AL iload XY
ES:XYADDRH,AH ; Address Reg

5.3 Shift Register Control

Another unique and extremely useful feature of the TMS34061 is its ability to control
the transfer of data to and from the TMS4161 's internal shift register. The 65,536
bits of memory contained within the TMS4161 are arranged into rows. There are 256
rows each containing 256 bits each. Under control of the TMS34061 the TMS4161
memory can be manipulated in one of two ways. The first is the ability to transfer
data contained in any of the 256 rows to the internal shift in a single instruction cycle.
The second is the complementary ability to transfer the shift register "data back to any
of the 256 rows.

This direct control of the shift register results in extremely fast execution of several
functions that normally require a lot of host processor time to execute. For example:

• Screen clear
• Screen fill

5-7

Programming the CGC Board

• Vertical scrolling (in either direction)
• Block memory moves and copies

Some of these functions are explained later in this document.

5.3.1 Memory Organization

5-8

Various decisions are necessary when designing a memory organization for your
system. One of these decisions concerns how shift register transfers will operate. A
common VRAM organization is such that a shift register transfer has the ability to
move a horizontal scan line of data to another section of the screen. Depending on
the needs of a particular system, you might choose to arrange VRAM such that a
single shift register transfer will move more than one line of data.

For example, the board is arranged so that a shift register reload loads the shift
registers of eight video RAMs. This means that every shift register reload loads
enough data for two scan lines of the display. To illustrate this, consider that the
horizontal resolution of the board is 1024 pixels, and the data contained in eight shift
register reloads is 8x256. That calculates to 2048 pixels of data, or two scan lines
of the display. Figure 5-1 shows the organization of the memory and external shift
registers and the relationship to the screen display.

Figure 5-1. Memory and External Shift Register Organization

Programming the CGC Board

5.3.2 Initiating a Shift Register Transfer

Turn

The shift register to memory transfers are memory-mapped starting at aadress
90400h, and the memory to shift register transfers start at 90800h. As shown in Figure
5-2, the lower two bits of the address select the appropriate memory bank, the next
eight bits select the row address within the TMS4161, and the next two bits deter­
mine the direction of the transfer.

Suppose you want to copy the data in Row 0 to Row 1. The first step would be to
inhibit automatic generation of the shift register transfer addresses. This is done by
setting bit 5 in Control Register 1 to a logical 1. Now you can control the addresses
manually. The second step is referencing address 90800h. This will transfer Row 0
of memory to the TMS4161 's internal shift register. The third step is to reference
address 90404h, which moves the contents of the shift register to Row 10f memory.
The following is an example of the code required to perform this copy.

display update off

MOV AL,020H ibit 5=true
MOV CNTRL1L,AL iset control reg-l

MOV 51,08008 ·iread address for Row 0
MOV 01,04048 iwrite address for Row 1
MOV OS: [SI] ,AX iRead Row 0 to shi~t-register
MOV OS: [01] ,AX iwrite shift-register to Row 1

Turn display update back on

MOV AL,O ibit 5=false
MOV CNTRL1L,AL iset control reg-l

5-9

Programming the CGC Board

(
,~ "'7

WRITE ROW ADDRESS BANK

(

'~"'7 READ ROW ADDRESS BANK

~ ROW 255

.... ROW 0

- I I I I I I II I 1 1 111 1 1 1 111

Figure 5-2. Shift Register Transfer Addressing

5.4 Horizontal Scrolling Using X-V Addressing

5-10

The following is an example of how horizontal screen scrolling can be implemented
using the TMS34061 's X-Y addressing feature. The advantage of using this method
is that after the initial size of the regio"n to be scrolled has been determined, the region
can be moved with a series of move instructions, and the program does not have to
monitor and adjust memory pointers. Since the Color Graphics Controller Board
memory is arranged so that one byte contains the information for two pixels, move­
ment of data in done a byte at a time for speed. Figure 5-3 shows a representation
of the steps involved when scrolling the three rightmost columns of pixels one
column to the left.

Programming 1he CGC Board

WRITE READ ~ START (INC X, INC V) (CEC X)
HERE leel leel leel leel

leel leel leel leel
lH1 leel leel leel
lH1 leel leel leel
leel leel leel leel
le-el leel leel leel

1,,1 lUI 1 •• 1 END
E

(INC X, CEC V) (DEC X)

Figure 5-3. Horizontal Scrolling

The first step is to position the X-Y address so it points to the memory location which
contains the upper left pixel in the region being scrolled. This position is designated
in Figure 5-3 by the words "Start Here". The next step is to read the byte of data from
the X-Y adjustment address that decrements X. This moves the pointer over one byte
to the left. The data is ready to be written back by writing to the X-Y adjustment
location that increments X and decrements Y. The result is that the first element of
the first column has been moved to the left and the pointer is positioned such that
the entire sequence can be repeated on the second element.

This operation is repeated until the desired number of elements have been moved.
Then the pointer is moved to the next column by performing two "dummy" read
operations from the X-Y adjustment location that increments X. The sequence is then
repeated moving up, and over columns until the entire region has been moved. The
following is an example of the code required to perform the scrolling.

5-11

Programming the CGC Board

;

This routine assumes that ES points to segment 9000H, which contains
the X-Y adjustment addresses. It also assumes the X-Y pointer has
been initialized to the upper-left hand corner of the region "to
be scrolled.

MOV DX,Number-of-Columns ;set column counter

NXTCLMN: MOV
NXTROWD: MOV

CX,Number-of-Rows
AL,ES:DECX
ES:INCX-INCY,AL
NXTROWD

;set row counter
;read byte and move left

MOV
LOOP

DEC
JE

MOV
MOV

DX
ALL DONE

AL,ES:INCX
AL,ES:INCX

;write byte and move down and right
;repeat until all rows done

;is this the last column?
iif so, exit

iif not, move to next column

MOV
NEXROWU: MOV

MOV
LOOP

CX,Number-of-Rows
AL,ES:DECX
ES:INCX-DECY,AL
NEXROWU

;set row counter
iread byte and move left
;write byte and move up and right
;repeat until all rows done

;

DEC
JNE

DX
NEXCLMN

;is this the last column
iif not, repeat

ALLDONE: RTS

5.5 Pixel Replication Zoom

5-12

The following is an example of how a region of the screen can be zoomed using the
TMS34061 's X-Y addressing feature. The advantage in using this method is the
programmer no longer has to keep track of and adjust memory pointers. For the sake
of simplicity the region to be zoomed is read using direct memory addressing, and
then written back in its expanded form using X-Y addressing.

Figure 5-4 shows a repesentation of a 2X zoom. A single pixel of data is read from
the source region, and written to the destination region using X-Y adjustment
addresses. The following code implements the zoom.

Programming the CGC Board

~.
If- 8 PIXa.S---.l

READ ONE

3PI~
"--

(

Plxa

~ DL ~fi-II--""""· ~~~M-~~~CE
WRITE BACK _.t

AS FOUR ~.
RIGHT

:::l _

/
8 PIXa.S

~

; ,4;.~; ~ ~~ •. ~;{; ~ ~4~ ~4-~ ~4-~ ~~,~
.. AA...~~.4 A ... A. .. ~ .i1.:i.

~ ~ ~~.; ~~ ~~; {; ~~I~;I~~
" A .. ~ .I;,. ... A ... k ... r
. v " - '" ~ .~

~,~,,~ ~ .. ~.~ ~",~ ~4~
i.. ~ ~

ry"'''''y~'''

Figure 5-4. Example of a 2X Pixel Replication Zoom Using X-V Addressing

This routine assumes the following:

-DS:S1 points to the byt7 which contains the upper-left hand
pixel of the source reg~on.

-ES is assumed to point to segment 9000H, which contains the TMS3406!'s
register functions.

-The logical X-Y coordinates of the upper left-hand corner of the
destination'region have already been loaded into the TMS34061's X-Y
address register.

zoom the even pixel first - this is the upper nibble of the source byte
;
ZOOML1NE: MOV

MOV
SHR
SHR
SHR
SHR
AND
OR
MOV
MOV

AL,DS:[SI]
AH,AL
AH,!
AH,!
AH,!
AH,!
AL,OFOH
AL,AH
ES:INCY,AL
ES:INXDCY,AL

;get byte from source region
;replicate byte
;justify in lower nibble

;strip off old odd pixel data
;duplicate even pixel in both nibbles
;write 2 pixels and move down
;write 2 pixels and move up and right

5-13

Programming the CGC Board

zoom the odd pixel next, this is the lower nibble of the same source byte

MOV
MOV
SHL
SHL
SHL
SHL
AND
OR
MOV
MOV

AL ,OS: [SI]
AH,AL
AH,l
AH,l
AH,l
AH,l
AL,OOFH
AL,AH
ES:INCY,AL
ES:INXDCY,AL

;get two pixels of data
;duplicate pixel
;justify in upper nibble

;strip off old even pixel data
;duplicate odd pixel in both nibbles
;write 2 pixels and move down
;write 2 pixels and move right and up

increment the source address to the byte which contains the next two
pixels we wish to zoom.

INC
LOOP

SI
ZOOMLINE ;repeat until zoom complete

5.6 Vector Drawing Using X-V Addressing

5-14

The following is an example of how a shape or font can be drawn using the
TSM34061 's X-Y addressing feature. A representation showing the steps involved
in vector drawing are shown in Figure 5-5. The octogon shown at the bottom of the
figure is the object being drawn. The graphic data used to describe the octogon is
stored in a table as a series of X-Y adjustment addresses follo~d by repeat counts.

For example, if a horizontal line 20 pixels wide was to be drawn, the table would
contain two words. The first word would be the X-Y adjustment address for increment
X, and the second word would contain the repeat count. In the case of the octogon
used in Figure 5-5, the data table contains 16 words of data. The program to display
this data would first load the address from the table, and then load the repeat count.
The next step would be to write the appropriate color value to the address the number
of times specified by the loop count. After the loop was complete, the' next address
and repeat count would be loaded from the table and the procedure repeated. A
simple way to terminate the table would be to set the address or loop count to zero.

Programming the CGC Board

137 laC B
~ '\

~ '" lSI 4 Iltt~ 1:1. Itt' :!
? ~ ms IBC~

12:14 IDEe RI IR~ V
137 DEC 8

~ ~
fSl4 ICE" 1:1 Cl;C :!I

~ ./
~ tL

~.

ms DEC:!

~4 I DEC :t Itt' 1::11

Figure 5-5. Vector Drawing Using X-V Addressing

An interesting modification to this routine is storing the X-Y adjustment address as
a number instead of the absolute address. Then a table of the adjustment addresses
could be kept and the number used as an index to the appropriate address in that
table. This modification lends itself well to rotating the figure at 45 degree incre­
ments; For example, a lookup table could be defined with its first entry as the absolute
address for INCREMENT X, and the number 0 in the graphic data table used to
represent it. That way a second lookup table could be defined whose first entry is
INCREMENT X and INCREMENT Y. Then when 0 is used to look up the absolute
address the vector would no longer be drawn horizontally (INCREMENT X). Instead
it would be drawn at a 45 degree angle sloping downwards to the right (INCREMENT
X, INCREMENT V).

The following is a code example which draws the octogon shown in Figure 5-5. Even
though the octogon doesn't use the MSB of the repeat count, setting it will result
in the vector being drawn without actually writing to memory. This is useful for
repositioning the X-Y pointer without actually plotting a new vector.

5-15

Programming the CGC Board

This routine assumes BL has already been loaded with the proper color
information, and the initial logical X-Y coordinates have been loaded
into the TMS34061 XY address register.

MOV SI,OFFSET GRTABLE ;setup pointer to table start

get an entry from the table, which will later be used as our
destination address.

;
DRAW: MOV

CMP
JE
ADD

DI,CS: [SI]
01,0

;move first table entry to destination pointer
iwas the entry zero?

;

ALL DONE
SI,2

i if so, we are done.
iincrement pointer to next table address

MOV CX,CS:[SI] iuse repeat value from table as loop counter
SHL CH,l iis the upper bit set
JC READVEC i if so, just move without drawing

REPVEC: MOV
LOOP
ADD
JMP

ES: [DI],BL ;store color at X-Y adjustment address
REPVEC ;repeat until vector is done
SI,2 ;increment pointer to next table address
DRAW ;repeat process until entire shape is done

;
READVEC: MOV

LOOP
ADD
JMP

AL,ES:[DI] ;dummy read at X-Y adjustment address
READVEC ;repeat until vector is done
SI,2 iincrement pointer to next table address
DCHR ;repeat process until entire shape is done

ALLDONE: RET
i===j

Graphic data table for octogon
;

WORD1: TMS34061 XY operation address (OOOO=terminate);
WORD2: Draw count (high bit set means don't plot)

;===;
GRTABLE DW INC-X,0007H imove right 7 times

DW INC-X-INC-Y,0004H imove right and down 4 times
DW INC-Y,OOOSH imove down 5 times
DW DEC-X-INC-Y,0004H ;move left and down 4 times
OW DEC....;.X,0007H imove left 7 times
OW DEC-X-OEC-Y,OOO4H imove left and up 4 times
OW DEC-Y,OOOSH imove up 5 times
OW INC-X-DEC-Y,0004H imove right and up 4 times
OW OOOOH

5.7 Clearing the Screen Using Shift Register Transfers

5-16

Manual control of shift register transfers lets you clear the screen very quickly. To
perform this operation, the first 1024 bytes of memory are filled with the desired
screen color (each scan line line consists of 512 bytes of RAM, therefore the first two
scan lines are filled). Shift register writes to RAM are then executed to move this
data to every line of the display. A step-by-step procedure and code example are
given below that describe how to accomplish this task.

Programming the CGC Board

1) The display screen is blanked by setting bit 13 (813) in Control Register 2 to
a zero. It is a good idea to check for the vertical interrupt before initiating this
so as not to disable the display in the middle of the active display region. Any
manipulation of data in video RAM while the display is active can be perceived
to some degree by the human eye and will usually result in a visible flash or
glitch.

2) The shift register display update must be turned off; otherwise, the system will
continue to move new information to the shift registers. This is done by setting
bit 5 (85) in Control Register 1 to a one.

3) RAS override is initiated by setting bits 2 thru 5 of Control Register 2 high. This
will cause all four RAS lines to be active at the same time, thus allowing
information written to one bank to be written simultaneously into all four banks.

4) The desired screen clear color is written into all 256 bits of ROW 0 in each of
the four banks. On the board this is done by filling memory from 5000h to
53FFh. Remember that it takes a bit from each of the four banks to form the
pixel. Therefore 256 x 4 (nibbles) is actually 128 x 8 (bytes). Decimal 128 is
80 in hex, and since each bank consists of eight RAMs, memory is from 5000h
to 53FFh (80h multiplied by 8).

5) Row 0 is then transferred to the shift register. The shift register data should
be transferred back to every row of RAM. Normally you would start with ROW
1 and increment to the next address until all 256 rows have been filled. Since
RAS override has been initiated and all four RAS lines are active at the same
time, only 256 rows need to be cleared, as the remaining RAMs will get the same
access.

6) After the shift register data has been transferred to each of the 256 rows, HAS
override is turned off, display update should be re-enabled, and the screen
should be unblanked. Just as before, it is good practice to unblank the display
during the vertical blanking interval, so as not to cause a visible glitch.

The following sample program follows the steps described above to fill video RAM
with zeros, thus clearing the screen. The data contained in register AL is written to
all RAM locations. The complete source code for this routine is contained on the
TMS34061 demo disk included with the board.

5-17

Programming the CGC Board

DS is assumed to point to the segment which contains the TMS34061 register
addresses.

MOV
CLD
MOV
MOV
MOV

AL,O

DS:CNTRL1L,020H
DS:CNTRL2L,03CH
DS:CNTRL2H,000H

;value to fill RAM with
;set flag to inc SI
;inhibit display update
;ras override
;blank display

fill first 1024 bytes of memory with desired color

MOV
MOV

SRBLANK: STOSB
ADD
LOOP
MOV
MOV
MOV

Move shift

MOV
SRO: LODSB

ADD
LOOP

CX,256
DI,VscMemPtr

DI,3
SRBLANK
SI,OFFSET SRLOAD
AL, [SI]
SI,OFFSET SRSTORE+4

register to each RAM row

CX,255

SI,3
SRO

;do 256 bits/rows
;point to memory
;al ~ es:vsc memory
;di=di+3+1 - next addr
;es: [di]
;load sr - ds: [si]
;row 000 ~ sr
irow 001

;255 rows
;sr ~ row ds: [sil
;si=si+3+1 - 255 rows

re-enable display and return to caller

MOV
MOV
MOV
RET

CNTRL1L,020H
CNTRL2L,000H
CNTRL2H,020H

iturn on disFlay update
;set normal ras select
;enable display

5.8 Vertical Scrolling Using Shift Register Transfers

5-18

Manual control of shift register transfers gives you the ability to scroll the screen in
a fast and smooth manner. Figure 5-6 shows the steps needed to scroll a region of
the screen with wraparound. Remember that on the Color Graphic Controller Board
every shift register transfer manipulates two scan lines of data. In Figure 5-6 the
screen is being scrolled up. The first step is labeled with the number 1, and shows
the movement of two lines (0-1) of data located at the top of the selected region to
a temporary off-screen buffer. The second step shows lines 2-3 moving up when to
where lines 0-1 used to be. The third step moves lines 4-5 up to 2-3. This is repeated
until the last two lines of the selected region have been moved up. Then the data
located in the off-screen buffer is shifted into the last line of the display. The region
of the screen has now been scrolled two lines, with the data previously at the top
of the region wrapped around to the bottom. To continue to scroll the screen the
process is repeated. The following is a program example which scrolls each pair of
lines up.

Programming the CGC Board

Turn display update off, set RAS override

MOVEUP:

MOV CNTRL1L,020H ;inhibit display update
MOV CNTRL2L,03CH ;ras override

MOV
MOV
MOV
MOV
ADD
ADD
DEC
JNE

SI,0804H
OI,0400H
OS: [SI],AX
oS: [01] ,AX
SI,04
SI,04
CX
MOVE UP

;read address for Lines 2-3
;write address for Lines 0-1
;read lines to shift register
;write shift register to lines
;change read address to next pair of lines
;change write address to next pair of lines
;all 15 line pairs done?

Set normal RAS control and turn display update back on

MOV
MOV
RET

CNTRL1L,020H
CNTRL2L,OOOH

;turn on display update
;set normal ras select

1

2 •••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••• 3 •••••••••••••••••••••••••••••• 4 •••••••••••••••••••••••••••••• 5 •••••••••••••••••••••••••••••• 8 •••••••••••••••••••••••••••••• 7 •••••••••••••••••••••••••••••• 8 •••••••••••••••••••••••••••••• 8 •••••••••••••••••••••••••••••• 10 •••••••••••••••••••••••••••••• 11 ~ 12 •••••••••••••••••••••••••••••• 13 •••••••••••••••••••••••••••••• 14 •••••••••••••••••••••••••••••• 15 ~ •••••••••••••••••••••••••••••• 18 OFF l..:: ~

Figure 5-6. Vertical Scrolling Using Shift Registe.r Transfers

5.9 Vertical Screen Flip

Manual control of shift register transfers lends itself well to various screen operations.
One practical apJ)lication is flipping the entire screen vertically. The steps involved
are shown in Figure 5-7. Row 0 (lines 0-1) are moved to the shift register, and then
written to the temporary off~screen buffer. The last two lines of the display are then
moved to the top, and replaced by the temporary data in the buffer. This process is
repeated moving inwards until the. two innermost pairs ·of line on the screen have
been exchanged.

5-19

Programming the CGC Board

······························0 ······························1 ······2 ······3 ······4 ······5
1 ••••••••••••••••••••••••••••• 8

••••••••••••••••••••••• •••• •• 7
••••••••••••••••••••••••••••• 8
••••••••••••••••••••••••••••• 9
••••••••••••••••••••••• •••••• w
••••••••••••••••••••••••••••• fl ~ ~
••••••••••••••••••••••••••••• u ______ ... 15

Figure 5-7. Vertical Screen Flip Using Shift Register Transfers

5.10 Using the Palette

5-20

Figure 5-8 shows how the palette is mapped in relationship to the Color Graphics
Controller Board screen. The palette consists of 16 registers, each 16 bits long. These
registers are loaded automatically from the first 16 words of display memory. Since
each pixel on the Color Graphics Controller Board is represented by a nibble of data,
the first 64 pixels are used by the palette. If the palette is in frame load mode, then
only the first 64 pixels of Line 0 are used to load the registers, and the palette is only
loaded once per frame. If the palette is in line load mode, then it is loaded with fresh
data from each line of the display. This means the first 64 pixels (32 bytes) of data
on every line is used by the palette.

Programming the CGC Board

RO R1 R2
LINE 0

R3

RO
R1
R2
R3
R4
RS
R8
R7
R8
R9

~
\oj

0
0
0
0

RS RS R7 R8 R9 R10 R11

E R BLUE GREEN RED
i'
C

0
0
0

1ST 84 PIXELS

R10
R11
R12
R13
R14
R1S

ACTIVE SCREEN REGION

Figure 5-8. Palette to Screen Mapping

As an example, assume that the palette is configured in frame load mode, and uses
the first 32 bytes of data at the beginning of line 0 to load its 16 internal registers.
This means that, on the Color Graphics Controller Board, memory locations 50000h
and 50001 h define palette register 0, and 50002h and 50003h define register 1, and
so forth. A pixel (nibble) in memory can be 0 to F hex. If a pixel is set to 0, then palette
register 0 will be selected. If the pixel is set to 1, then palette register 1 is selected,
and so forth. If the desired action was to display all nibbles containing the value 0
on the screen as the color black, palette register 0 must contain all zeros, which would
mean setting memory bytes 50000h and 50001 h to zeros. If the intent was to display
all nibbles containing the value 1 as red, then palette register 1 would have to be
loaded with the color code for red. Maximum intensity red would be defined by
loading memory location 50002h with zeros, and 50003h with the value OFh.
Nibbles containing the value 1 could then be displayed in maximum intensity green
by changing memory location 50003h to FOh.

Line load mode is almost identical, except the values located in memory from 50000h
to 5001 Fh only define the palette register values to be displayed on line 0 of the
display. Line 1 of the display would be defined by the first 32 bytes on that line,

5-21

Programming the CGC Board

50200h through 5021 Fh in memory. Likewise the first 32 bytes on each line are used
for the remaining lines of the display.

5.10.1 Initializing the Palette to Default Values

5-22

The first generation boards without the TMS34070 on board used only three bits of
every nibble to drive the monitor. These bits directly drove the Red, Green, and Blue
inputs of the TI or IBM monitor. Red was represented by the LSB of the nibble (1
hex), blue by 2 hex, and green by 4 hex. The MSB of the nibble representing one
pixel was not used. The following is an example of how the palette needs to be
initialized in order to duplicate these colors on an analog RG B monitor.

PIXEL
BITS
XOOO
X001
X010
X011
X100
X101
X110
X111
XOOO
X001
X010
X011
X100
X101
X110
X111

PALETTE
COLOR REGISTER
BLACK REG. 0
RED REG. 1
GREEN REG. 2
YELLOW REG. 3
BLUE REG.4
MAGENTA REG. 5
CYAN REG. 6
WHITE REG. 7
BLACK REG. 8
RED REG. 9
GREEN REG. 10
YELLOW REG. 11
BLUE REG. 12
MAGENTA REG. 13
CYAN REG. 14
WHITE REG.15

PALETTE REGISTERS
0000 BLUE GREEN RED
0000 0000 0000 0000
0000 0000 0000 1111
0000 0000 1111 0000
0000 0000 1111 1111
0000 1111 0000 0000
0000 1111 0000 1111
0000 1111 1111 0000
0000 1111 1111 1111
0000 0000 0000 0000
0000 0000 0000 1111
0000 0000 1111 0000
0000 0000 :>.1111 1111
0000 1111 0000 0000
0000 1111 0000 1111
0000 1111 1111 0000
0000 1111 1111 1111

If the palette were initialized in frame mode, then these values would be loaded into
memory starting at the beginning of line 0, at 50000h. A memory dump of the first
32 bytes would look like this:

ADDRESS DATA

50000H: OOOOH
50002H: OOOFH
50004H: OOFOH
50006H: OOFFH
50008H: OFOOH
5000AH: OFOFH
5000CH: OFFOH
5000EH: OFFFH
50010H: OOOOH
50012H: OOOFH
50014H: OOFOH
50016H: OOFFH
50018H: OFOOH
5001AH: OFOFH
5001CH: OFFOH
5001EH: OFFFH

If the palette were initialized in line load mode, then these values would have to be
loaded in the first 32 bytes of every line of the display.

Programming the CGC Board

5.10.2 Using Repeat Mode

Repeat mode is a simple function that can be used in a lot of interesting applications.
Each of the palette's 16 color lookup registers has a repeat bit associated with it. The
position of the repeat bit is shown in Figure 5-8 and is designated by "R". When
the repeat bit is set, the palette ignores the color data in that register. For example,
the repeat bit is set for palette register 0, and is not set for palette register 1. If the
palette receives the color code 1, it wiJIload the O-A outputs with the values located
in register 1. If the next color code was 0, the palette would check to see if the repeat
bit is set, and since it is, it would not load the O-A outputs with the values in register
O. Instead, it would just ignore the request and continue displaying the values it had
previously loaded from register 1.

5-23

A. list of Materials
ITEM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

PART
74AS194 shift register
74ASOO quad NAND gate
74AS04 hex inverter
74AS74 dual D flip-flop
74AS157 quad 2-input MUX
74ALS245 bidirectional buffer
74ALS541 octal buffer
PAL 16L8 programmable logic
PAL20L8 programmable logic
74LS125 quad buffer
TMS34061 video system controller
TMS34070 color palette
TMS4161-20 video memory
Oscillator, 25 MHz
Resistor network 16-pin 8 Resistor 22 ohm
Socket 68-pin PLCC
Socket 20-pin DIP
Socket 14-pin DIP
Socket 22-pin 400 MIL
Socket 24-pin 300 MIL
Stake pins
Jumper plug
Resistors 1/4 watt 4.7K
Resistors
Resistors
Resistors
Connector DB9 pin din female
Capacitor tantalum 39 uF 15 Volt
Capacitor decoupling 0.01 pF

LOCATION
U33,U34,U35,U36

U37
U50

U39,U42
U51
U52
U41

U40,U45,U48
U47
U44
U43
U49

U1 - U32
U46
U38

XU43
XU1 -XU32,XU40,XU45,XU48

XU46
XU49
XU47

J01 - J06

R1 - R1 O,R20 - R22
R11,R14,R17
R12,R15,R18
R13,R16,R19

P2,P3
C34,C37,C51,C58
C1 - C33,C35,C36

D38 - C50,C52 - C56

QUANTITY
4
1
1
2
1
1
1
3
1
1
1
1

32
1
1
1

35
1
1
1
29
9
13
3
3
3
2
4
53

A-1

B. PAL Equations

In the following equations, "&" means logical AND, "#" means logical OR, and "1"
means negation.

IBM PC Bus to TMS34061 Control Decode

U48 device P16L8

A19,A18,A17,A16,A15,A14,A13,A12,A11 ,A1 O,A9
CASOPT1 ,CASOPTO,A16PAL,A17PAL,FS2,FS1 ,FSO

pin 1,2,3,4,5,6,7,8,9,11,13
pin 12,14,15,16,17,18,19

!FSO=«A19&!A18&!A17&A16&!A15&!A14&!A13&!A12&!All&AlO)#
(A19&!A18&!A17&A16&!A15&!A14&!A13&!A12&All&AlO&!A9»

!FS1=«A19&!A18&!A17&A16&!A15&!A14&!A13&!A12&All&!AlO)#.
(A19&!A18&!A17&A16&!A15&!A14&!A13&!A12&!All&AlO)#
(A19&!A18&!A17&A16&!A15&!A14&!A13&!A12&All&AlO&!A9)#
(A19&!A18&!A17&A16&!A15&!A14&!A13&!A12&All&AlO&A9)#
(A19&!A18&A17&!A16»

SR TO MEM
REG ACCESS

MEM TO SR
SR TO MEM
REG ACCESS
X-Y
X-y 2 WORD

REG ACCESS
X-Y

!FS2=«A19&!A18&!A17&A16&!A15&!A14&!A13&!A12&All&AlO&!A9)#
(A19&!A18&!A17&A16&!A15&!A14&!A13&!A12&All&AlO&A9) #
(A19&!A18&A17&!A16)#
(A19&!A18&!A17&!A16)#
(! A19&A18&A17) #
(lA19&A18&A16))

X-Y 2 WORD
HOST DIRECT
HOST DIRECT
HOST DIRECT

!CASOPTO=«A19&!A18&A17&!A16)# X-Y 2 WORD
(A19&!A18&!A17&A16&!A15&!A14&!A13&!A12&!All&!AlO&A9» PALETTE

!CASOPTl=«A19&!A18&A17&!A16)# X-Y 2 WORD
(A19&!A18&!A17&A16&!A15&!A14&!A13&!A12&All&AlO&A9» X-Y

!A17PAL=«!A19&A18&!A17&A16)# REMAP 5
(!A19&A18&A17&!A16» REMAP 6

!A16PAL=!A19&A18&A16 REMAP 5 AND 7

8-1

Appendix B

IBM PC TMS34061 Controller

U40 device P16L8

CASOPTO,CASOPT1 ,FSO,FS1,FS2,AO,A1 ,MEMR,MEMW
AEN,CASCTL 1 ,CASCTL 1 ,HDOFF,HDSEL,ALE

pin 1,2,3,4,5,6,7,8,9
pin 11,15,16,13,17,19
pin 18,14 CM D,CASCTL2

!HDSEL=(!FS2&FSl&FSO)

!CMD=«!MEMR&!AEN)#
(!MEMW& !AEN))

!ALE=«!AEN&!FSO&HDOFF&!CMD)#
(!AEN&!FSl&HDOFF&!CMD)#
(!AEN&!FS2&HDOFF&!CMD)#
(!AEN&!FSO&HDSEL&!HDOFF&!CMD)#
(!AEN&!FSl&HDSEL&!HDOFF&!CMD)#
(!AEN&!FS2&HDSEL&!HDOFF&!CMD»

!CASCTLO=«CASOPTO&!CASOPTl&!Al&IAO)#
(!FS2&FSl&FSO)#
(CASOPTO&!CASOPTl&!Al&AO»

!CASCTLl=«CASOPTO&!CASOPTl&!Al&!AO)#
(!FS2&FSl&FSO)#
(CASOPTO&!CASOPTl&Al&!AO»

!CASCTL2=«!CASOPTO&!CASOPTl)#
(1 FS2&FSl&FSO))

B-2

HOST DIRECT CYCLE

COMMAND

SELECT ON !FSO AND HOST DIRECT ON
SELECT ON !FSI AND HOST DIRECT ON
SELECT ON !FS2 AND HOST DIRECT ON
SELECT ON !FSO AND NOT HOST DIRECT
SELECT ON !FSI AND NOT HOST DIRECT
SELECT ON !FS2 AND NOT HOST DIRECT

x-y
HOST DIRECT
X-Y LEFT NIBBLE

X-Y
HOST DIRECT
X-Y RIGHT NIBBLE

X-Y 2 WORD
HOST DIRECT

Appendix B

IBM PC TMS34061 to TMS4161 CAS Decode

U47 device P20LS

CAS H I,CASLO,CASCTLO,CASCTL 1 ,AS,A9,A1 0,A11 ,A12
A 13,A 14,A 15,CASCTL2
CAS7,CAS6,CAS5,CAS4,CAS3,CAS2,CAS1,CASO

!CASO=«!CASLO&A15&CASCTLO&CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&CASCTL2)#
(!CASLO&!CASCTLO&CASCTLl&CASCTL2)#
(! CASHI))

!CASl=«!CASLO&A14&CASCTLO&CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&CASCTL2)#
(!CASLO&CASCTLO&!CASCTLl&CASCTL2)#
(! CASHI))

!CAS2=«!CASLO&A13&CASCTLO&CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&CASCTL2)#
(!CASLO&!CASCTLO&CASCTLl&CASCTL2)#
(! CASHI))

!CAS3=«!CASLO&A12&CASCTLO&CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&CASCTL2)#
(!CASLO&CASCTLO&!CASCTLl&CASCTL2)#
(! CASHI))

!CAS4=«!CASLO&All&CASCTLO&CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&CASCTL2)#
(!CASLO&!CASCTLO&CASCTLl&CASCTL2)#
(! CASHI))

!CAS5=«!CASLO&AIO&CASCTLO&CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&CASCTL2)#
(!CASLO&CASCTLO&!CASCTLl&CASCTL2)#
(! CASHI))

!CAS6=«!CASLO&A9&CASCTLO&CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&CASCTL2)#
(!CASLO&!CASCTLO&CASCTLl&CASCTL2)#
(! CASHI))

!CAS7=«!CASLO&A8&CASCTLO&CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&!CASCTL2)#
(!CASLO&!CASCTLO&!CASCTLl&CASCTL2)#
(!CASLO&CASCTLO&!CASCTLl&CASCTL2)#
(! CASHI))

pin 1,2,3,4,5,6,7,8,9
pin 10,11,13,14
pin 15,16,17,18,19,20,21,22

X-y 2 WORD MASK WITH A15
HOST DIRECT
X-Y
X-Y RIGHT NIBBLE
SR TRANSFER

X-Y 2 WORD MASK WITH A14
HOST DIRECT
X-Y
X-Y LEFT NIBBLE
SR TRANSFER

X-Y 2 WORD MASK WITH A13
HOST DIRECT
X-Y
X-Y RIGHT NIBBLE
SR TRANSFER

X-Y 2 WORD MASK WITH A12
HOST DIRECT
X-Y
X-Y LEFT NIBBLE
SR TRANSFER

X-Y 2 WORD MASK WITH All
HOST DIRECT
X-Y
X-Y RIGHT NIBBLE
SR TRANSFER

X-Y 2 WORD MASK WITH AIO
HOST DIRECT
X-Y
X-Y LEFT NIBBLE
SR TRANSFER

X-Y 2 WORD MASK WITH A9
HOST DIRECT
X-Y
X-Y RIGHT NIBBLE
SR TRANSFER

X-Y 2 WORD MASK WITH AS
HOST DIRECT
X-Y
X-Y LEFT NIBBLE
SR TRANSFER

8-3

Appendix B

TMS34070 Palette Controller

U45 device P16L8

CASOPTO,CASOPT1,A8,A7,A6,A5,A4,A3,A2 pin 1,2,3,4,5,6,7,8,9
A1,CSYNC,HSYNC,CMD,VSYNC,P1,ADDEC,PO,PMODE pin 11,12,13,14,15,16,17,18,19

!PMODE=({!VSYNC&!Pl&!PO)#
(!PO&Pl»

PASS VSYNC TO MODE PIN
MODE PIN LOW

!ADDEC={!CASOPTO&CASOPT1&A8&A7&A6&A5&A4&IA3&!CMD) SELECT ON PO AND Pl

!PO={{!ADDEC&!A2&!Al)#
(IADDEC&!PO&A2&Al)#
(ADDEC&IPO)#
(!ADDEC&!PO&!A2&Al»

!Pl=«!ADDEC&!A2&Al)#
(IADDEC&!Pl&A2&Al)#
(ADDEC&!Pl)#
(!ADDEC&!Pl&!A2&!Al»

ICSYNC=({!HSYNC&VSYNC)#
(! VSYNC&HSYNC))

8-4

RESET PO ON ADD SELECT
HOLD !PO ON Pl OPERATION
HOLD !PO ON NO ADD SELECT
HOLD !PO ON Pl OPERATION

RESET Pl ON ADD SELECT
HOLD· IPl ON PO OPERATION
HOLD !Pl ON NO ADD SELECT
HOLD !Pl ON PO OPERATION

COMPOSITE SYNC

(')
I

~f:~
Pl-AI&
PI-RS
PI-RS
!'I-A?
!"I-AS
"1-A9

~i:ii8
~t:A~~
~l:Ud !"I-R \

~I: ~
PI-R21
PI-R2E1
!'1-IUg
PI-Iua
!'1-Rl7
Pl-AlS
Pl-RIS
PHU
PHHS
Pi-AU

I"I-B2I

1"1-Bll

Pl-912

Pl-Rll

1'1-825

1"1-A18

1"1-82

VClK
VCLKI
SrfCLK

0'

...

"ALlint

~
~

ME .. '"' It MEHR.B

RE.

ITlI J82
~. ~le5 'ICC

, I R9 J
~, ~

OM

~. ROTB
, "0',

~ II

"
, "''''

a~l. 0' 00.9 ,L 8 n

' " , ' · . ,
, : " · ; .

'SO

L~ Jm
~

r,mm-

~'f • H

.. ." :17 ," ." ... " lIS OIl

':: m~ II:: Uqa : 1
I!:!.--

J

'.'om ~UI ALE
,IL 01 Ie
." CI2 :1: osJ.u.
~:~ UI,IS::~
. :: ~~
'---J@s' A21

'! ;

<ASOm l~
~mF ." :~c .. ." ,"

'1:
I ~;

II UijS ,It I
s :~~
'---

IT
" :~~ •• ,.n ::
~ . ..

':: :::2
,,~ :::' .. 'M ::~ D

'"
~

~ THS31l861 -.. ~ un H- RRSS .. :: :::~ I~ ~ ..
l:~XR .. "" :'J 9: '\ "",

'"" ,,~

" C~HI ,."" tUM!

iii g: CAStO

'" "" 11MI -"- U4.3
~~~ y,,,,, 

vnw 
lISTM .""" ~ 1 ~--l! """ 
,co, 

~'""" 

"~ ~ ~. ,,~ 

VClK 

II 

- "" fESI9TOI.F1ICI · , 

· U.8 
, 

· '---

.~~ U 01 1 
II iii :: :HF=mF 
II!IGt~ 

a ~~ : p.c:::tm:; 
11 ~~, U47 
11,\ I~:! 

CA'CTlZ 

~ 

~ ,[,,~= • • 

~ 
un • 

7"".8 
UII1 u SCLI(1 

~ 1211111111\.' 

-.~ 

~ 

D_BUS 

A..JlUS 

CTRL_BUS 

SYNC..JlUS 

ORTREN 

BLRNK< 

PM ODE 
CSTNC 

0 

en 
(") 
:T 
CD 
3 
Q) 
.-+ --(") 
en 



() 
I 

N 

PI-B3 :3 
PI-B29 

PI-B31~~-l--l--~-~--~-~--~~ 
PI-BIB 
PI-Bl 

ORTRENo:===============================================rt1~==~ PMOOE <> 

vee 

~~,-~eL~K~lN~2 _____ ~ r IJUI 

Pl-83Q <>-____ ----'O=5:.:.e ___ 1~,;;;,,.:.--O:::5"'e-"IN'-1 

C-BUSo-________________________________________ ~c~~~u~s ______ _< 

vee 

.-----------~=_-~ P3-1 
.-------'="'---0 P3-2 

~"---o P3-3 

R19 

P3-4 
P3-5 

P3-7 
P3-et 
P3-9 

PP3-6 

'k'---.!1' 5).o'-t--"'"""'-"---'l.SJ»'------,--------<> SRCLK 

.-_____ ....J r--------~ SRLORD 

.---------0 VCLK 

rr;====~~~ ~------~ SOEe. 

,-------<> SOEI* 

r------~ VCLK* 
un' 

.. '" 

~·1"~~~2 lR 11,1AS1S7 

f 1 :: Ir.~:~,~~~~~~~========l~~======= P2-3 l1·~"E~~'ij~: H !I P2-Ll 
~ II :: P2-S 

BLRNKli <>-________________________ ~====::lijl ~EL US1 I 11e-'.''-JO-5-------'-,.-.-5-'.-C------<D ~~=~ 
.--___ ~H~O~RS~'~NC~ ____ _<>P2_8 

CSTNC<>-----------------------------, 

HSl'NC 

STNC-BUSo--------------------------' 

--<> P2-? 

F P2- 2 
P2-1 

l> 
'C 
'C 
CD 
::l 
Q. 
)( 

o 



n 
I 

W 

CJlUS 

SRCLK 
SRLOAD 

Me, 5~19!! ~. 

~ SIR 
2 

3011 19 
~, 

i 5111 1 , 
~19C 1'82 6 . . 7 TH51.1161 stC~ ,. 
m~ AS. 

RIllE-

"''' 17 AS. 
y ... 

g~: S Lila 

~ : Ul 
DLB " : U2 , 
".0 ~ .... '7.r:-
~ 

, .. " . " , PAl , 
1 "R . r;; 198 '" 

,~ ! 'I' , ~HIC PR2 . 7 THSI!161 SICf!L==T ,. 
]g~8~ ". A/Qt. 

"'" 17 AS. 

~P""Itli"'c=!Jg~: 
~~ US 

OS, II L-;;c--
~ 

/t':"'::"===:::li "'* L·C • U'-7 
'7.t:­
~ 

.... 5 SO. R '" . 
'" , , 

Soiln ro, 
i '" 5 

~19C PD2 , 
, , 7 T"'S1,I161 SIC~ ,. 

~~ , AS. 
'VUrM 

tASS 17 AS. 

~~9. g~~ 

~ : U9 
01.8 .. ~ 
".0 

'"' Ull .. .. "k:-
~ 

'M .. SO, '" , ". , "SOi!ftl '" , SIB . ~ClI1C PC2 

5 
7 THSIJ161 SIC !!f----I . S. ~ppt3 
I'I/IIE_ 

"52 , 
S. ... 

eLK 

~= U13 

V1t:'"::"'::=::::!!i:Cl"I:: U JL.j 

~5 
~6 

I.:.....-

, .. , SOA 9A "' , 

, 

I SIR , 
~lgl "' i 

5 
'Sot SIC f'F2 , 

7 TMSLj161 SIC rr:::=:.=::r . , ,. 
1W~ ,. 

I'I/lIh 
CASS 17 AS. 

;~~!: 0 .. 

'" 
~ : U 1 7 

01.B ... 
: U18 I 

".0 ~9 .... '"";;"[:'-

~ 

" . 
1 , 

51" 
SIR 

~=U21 ......-c--

~~"E::==:::f"""1 

U22 

--t"'::"===:::li ~,,~:c U23 . ~ 

~~~= .. ======.~ ""~L U2~ 
I.:.....-

AJlUSo---~~-t------------------------~~~-----------------------'-t+-------------------------'

, .. ~19A ""
I SIR

~ ~ .. ~,

"SoC lilt !'H2 .
7 TMSl,i161 SIC~ . 5 ..

~~ RS.
R/Qf.

CRS1 17 AS.

~~E!. J:
~
~ U25

01.8
\l,B : U26 ~7 ~8
~

-, ... ' SIR

.
'THSIUSl

~U!!L

~E31r.;", ...
17 AS.

vt'"::'::' =::li1!J:B U 3 G

~1
rt~='='====~~~~:D U32 .!-.-

CTRLJlUSc-----~~--------------------------~~r_--------------------------'-t_--------------------------, O-BUSo-______ -' ____________ ~ __ ------------~------------------__________ ~~ __________________________ __'

»
"0
"0
CD
~
0.
><
(')

Index
B

block diagram 1-2

c
clearing the screen 5-16

E

expansion bus 3-10
interface to TMS34061 4-2

F

frame buffer 3-5

H

interface to TMS34061 4-5
interface to'video output 4-6

timing 4-7

horizontal scrolling 5-10

I

interrupts 3-10

J

jumpers
features enabled 3-2
location 3 -2
sample configurations 3-12

M

memory map 3-4
memory organization 3-5, 5-8
memory read/write PC bus timing 4-4

p

PAL equations 8-1
PAL U40 4-2
PAL U45 4-5
PAL U47 4-5
PAL U48 4-2
palette 5-20

CPU interface 4-5
initializing 5-22
repeat mode 5-23
screen mapping 5-21

pixel replication zoom 5-12
power consumption 3-12
P2 3-11
P3 3-11

R

register select address lines 3-6
registers 3-5, 3-6

initializing 5-2
repeat mode 5-23

s
schematics C-3
sh ift reg isters

control 5-7
organization 5-8
transfers

addressing 3-10
clearing the screen 5-16
cycles 3-9
initiating 5-9
vertical scrolling 5-18

Index-1

Index

v
vector drawing 5-14
vertical screen flip 5-19
vertical scrolling 5-18
video output connectors P2, f
video palette mode 3-4, 4-5.

Index-2

• TEXAS
INSTRUMENTS

Printed in U.S.A. ~PPU019A

