
Family Systems Design

and Data Book

1st Edition

Basic Decisions in System Design

Product Selection Guide

A First Encounter:
Getting Your Hands on a 9900

Hardware Design:
Architecture and Interfacing Techniques

Software Design:
Programming Methods and Techniques

Instruction Set

Program Development: Software Commands
Descriptions and Formats

Product Data Book

Applications

Glossary, Appendix

1<11111

6...._

9900 Family Products

PRODUCT AND AVAILABILITY INFORMATION:

• Contact a TI Sales Office or authorized Distributor.

Additional copies of the 9900 Family System Design Book LCC4400:

• Contact an authorized distributor, or
send purchase order to:

Texas Instruments Incorporated
P.O. Box 225012 M/S 54
Dallas, Texas 7 5265

Complete worldwide listing of TI Sales Offices and Distributors
in the appendix on pages A-15 and A-16.

11

9900
Family Systems
Design
and Data Book

.\f . • '" • . . • - -

LCC4400
97049-118-NI

- .

FIRST EDITION

By:

William D. Simpson, MSEE, Staff Consultant

Gerald Luecke, MSEE, Manager of Technical
Product Development

Don L. Cannon, PhD., Staff Consultant

David H. Clemens, Staff Consultant

Texas Instruments Learning Center

and

The Engineering Staff of Texas Instruments Incorporated

TEXAS INSTRUMENTS
INCORPORATED

P.O. Box 1443 M/S 6404
Houston, Texas 77001

Printed in U.S.A.

iii

Acknowledgement:

Many members of the engineering and marketing staff of Texas
Instruments Incorporated have contributed previously authored
materials for the content of this book. The contributions, which are
significant but are too numerous to identify individually, have been
edited and combined with original authored material into the present
book written by the Texas Instruments Learning Center and its staff
consultants.

A final review and edit was done by the 9900 Family marketing and
engineering staffs.

Design and artwork by:

Schenck, Plunk & Deason

ISBN 0-89512-026-7
Library of Congress Catalog Number: 78-058005

IMPORTANT

Texas Instruments makes no warranty, either express or implied,
including but not limited to any implied warranties of
merchantability and fitness for a particular purpose, regarding these
materials and makes such materials available solely on an "as-is" basis.

In no event shall Texas Instruments be liable to anyone for special,
collateral, incidental, or consequential damages in connection with or
arising out of the purchase or use of these materials and the sole and
exclusive liability to Texas Instruments, regardless of the form of
action, shall not exceed the purchase price of this book.

Copyright CJ 1978 Te?'as Instruments Incorporated. All rights reserved.

Unless otherwise noted, this publication, or parts thereof, may not be reproduced in
any form by photographic, electrostatic, mechanical, or any other method, for any
use, including information storage and retrieval.

For condition of use and permission to use materials contained herein for publication
in other than the English language, apply to Texas Instruments Incorporated.

For permissions and other rights under this copyright, please write Texas
Instruments Learning Center, P.O. Box 225012 MS-54, Dallas, Texas 75265.

iv 9900 FAMILY SYSTEMS DESIGN

Chapter 1. Basic Decisions in System Design ..

Introduction .
The Impact of Semiconductors
Applications of Programmable Semiconductors.

Single-Chip Microcomputer Applications .
Multi-Chip Microcomputer Applications

Building a Microprocessor Based System
Basic Hardware Components
Programming for Microcomputers
Which Microprocessor or Microcomputer to Use ..

Evolution of Memory-to-Memory Architecture
Getting up to Speed on Microprocessors
Bibliography . . .

Books
Articles
List of Periodicals to be Monitored.

Chapter 2. Product Selection Guide .

The 9900 Family - What Is It?
Family Overview

The Hardware Family
The Software and Development Systems Support
Typical Applications

Hardware Selection
The Component Route: CPU .

CPU Selection.
Flexible 1/0
Family Members Fitted to the Application

Interrupt Flexibility
Advantages of 9900 Family CPUs .

True Compatibility .
Lower Costs
Instruction Set
Memory-to-Memory Architecture .

The Component Route: Peripherals . . .
Interface Techniques

Serial 1/0 for Data Communications
ParalleU/O

Clock and Support Logic
Cost Effectiveness of NMOS LSI

CRU Interface
The Component Route: Memory
The Component Route: Miscellaneous Components.
The Modular Route: Microcomputer Modules .

The Minicomputer Route

9900 FAMILY SYSTEMS DESIGN

TABLE OF CONTENTS

. ... 1-1

.1-2

.1-3

.1-11
. .. 1-12
... 1-13

. 1-15

. 1-15

. 1-17

. 1-20
... 1-22

. 1-30

. 1-31

. 1-31

. 1-32

. 1-32

. . 2-1

. 2-2

. 2-2

. 2-2

. 2-2

. 2-8

. 2-9

. . 2-10

. 2-12

. 2-14

. 2-15

. 2-15

. 2-15

. 2-15

. 2-15

. 2-16

. 2-16

. 2-17
. ... 2-18

. 2-18
. . 2-18
. . 2-21

. 2-22

. 2-23

. 2-23

. 2-28

. 2-29

. 2-34

T-1

TABLE OF CONTENTS

9900 Family Software and Development Systems
Importance of Software
Software Development Systems.
Support Software and Firmware

Chapter 3. A First Encounter:

. 2-36

. 2-36

. 2-37

. 2-46

Getting Your Hands on a 9900 3-1

Purpose ...
Where to Begin
What You Have
Getting It Together.
Unpacking and Checking the Microcomputer (TM 990/lOOM-1) .
Connecting the Microterminal TM 990/301 .
Operating the Microcomputer
Telling the Microcomputer What to Do ..
How Was It Done? ..
Back to Basics

Registers
Workspace

SBZ and SBO Instructions.
1/0 Selection .

TB Instruction. . . .
Idea to Flowchart . .
Flow Charts

WAIT Subroutine ..
Subroutine Jump
A Loop Within the WAIT Subroutine

Loading a Register for the Time Delay
Where Does the Program Start?
Writing the Program
WAIT Subroutine Call.
Return from WAIT Subroutine.
Writing the Machine Code . .

Immediate Instructions.
Instructions SBO, SBZ . .
Instruction BL.
Miscellaneous Instructions.
Jump Instructions

Summary
Assembly Language Program: Table 3-2 .

Chapter 4. Hardware Design:
Architecture and Interfacing Techniques

Introduction
Architecture

T-2

Basic Microprocessor Chip ...
Microprocessor Registers
Memory-to-Memory Architecture .
Context Switching

. . 3-2
. 3-2

. . 3-3
. 3-5
. 3-13
. 3-15
. 3-15
. 3-18
. 3-24
. 3-25
. 3-26
. 3-28
. 3-30
. 3-32
. 3-34
. 3-35
. 3-36
. 3-38
. 3-39
. 3-41
. 3-42
. 3-43
. 3-45
. 3-46
. 3-47

.. 3-52
. 3-52

.. 3-54

.. 3-55
. 3-55
. 3-56
. 3-59

. . 3-60

. 4-1

.4-2

.4-5

.4-5

.4-5

.4-9

.4-11

9900 FAMILY SYSTEMS DESIGN

Memory
Memory Organization ..
Memory Control Signals .
Static Memory. . .
Dynamic Memory.
Buffered Memory .
Memory Parity .
Memory Layout.

Instruction Execution

Timing ..
Cyclic Operation

Input/Output
Direct Memory Access.
Memory Mapped II 0 . .
Communications Register Unit (CRU) ..

CRU Interface
CRU Interface Logic.
Expanding CRU 1/0.
CRU Machine Cycles
CRU Data Transfer. .
CRU Paper Tape Reader Interface
Burroughs SELF-SCAN Display Interface ..

Interrupts .
Reset
Load
Basic Machine Cycle .
Maskable Interrupts .

Interrupt Service ..
Interrupt Signals ..

Interrupt Masking .
Interrupt Processing Example ..

Electrical Requirements
Understanding the Electrical Specifications ...
Detailed Electrical Interface Specifications (TMS 9900) .

TMS 9900 Clock Generation .
TMS 9900 Signal Interfacing

TMS 9940 Microcomputer
Pin Assignments and Functional Control
Interrupts
Decrementer.
CRU Implementation.
Multiprocessor System Interface (MPS!)

Summary

9900 FAMILY SYSTEMS DESIGN

TABLE OF CONTENTS

. 4-12

. 4-13

. 4-15

. 4-23

.4-25

. 4-28

.4-28

.4-30

. 4-32

.4-32

.4-35

.4-42

. 4-42

.4-43

.4-45

.4-46

.4-46
.4-47
.4-47
. 4-51

. 4-54
.4-57
. 4-59
.4-60
.4-61
.4-63
.4-64

. .. 4-64
.4-66
.4-67
. 4-70
. 4-71

. .4-71
. 4-75

.4-75

. 4-78
. .. 4-82

. 4-83
. .. 4-83
. .. 4-86
. .. 4-86

. 4-87
. .. 4-88

T-3

TABLE OF CONTENTS

Complete Listing of Machine Cycles. 4-89
Machine Cycles . 4-89
9900 Machine Cycle Sequences . 4-90
Terms and Definitions . 4-90
Data Derivation Sequences . 4-91

Workspace Register ... 4-91
Workspace Register Indirect .. 4-91
Workspace Register Indirect Auto-Increment (Byte Operand) 4-91
Workspace Register Indirect Auto-Increment (Word Operand) 4-91
Symbolic .. 4-92
Indexed . 4-92

Instruction Execution Sequences ... 4-92
A, AB, C, CB, S, SB, SOC, SOCB, SZC, SZCB, MOV,

MOVB, COC, CZC, XOR 4-92
MPY (multiply) .. 4-93
DIV (divide) .. 4-94
XOP : 4-94
CLR, SETO, INV, NEG, INC, INCT, DEC, DECT, SWPB 4-95
ABS .. 4-95
x .. 4-96
B ... 4-96
BL .. .' ... 4-96
BLWP ... 4-97
LDCR ... 4-97
STCR .. 4-98
SBZ, SBO . 4-99
TB ... 4-99
JEQ, JGT, JH, JHE, JL, JLE, JLT, JMP, JNC, JNE,

JNO,JOC,JOP .. 4-99
SRA, SLA, SRL, SRC .. 4-100
AI, ANDI, ORI. ... 4-100
CI .. 4-101
LI .. 4-101
LWPI .. 4-101
LIMI .. 4-101
STWP, STST . 4-102
CKON, CKOF, LREX, RSET 4-102
IDLE .. 4-102
RTWP ... 4-103

Machine-Cycle Sequences in Response to External Stimuli 4-103
RESET .. 4-103
LOAD ... 4-104
Interrupts ... 4-105

Timing . 4-105

T-4 9900 FAMILY SYSTEMS DESIGN

TABLE OF CONTENTS

Chapter 5. Software Design:
Programming Methods and Techniques .

9900 Architecture
Instruction Register and Cycle
Program Counter (PC) .. .
Status Register (ST)
Workspace Pointer (WP)
Program Environment or Context .

Memory Organization
ROM/RAM Partitioning .
Reserved Memory

Workspace Utilization
The Workspace Concept and Uses.

Dedicated Areas of Workspaces
Workspace Location

Subroutine Techniques . . .
Types of Subroutines
Parameter Passing
Multiple Level Shared Workspace Subroutines.
Shared Workspace Mapping.
Re-entrant Programming

Programming Tasks
Initialization
Masking and Testing . .
Arithmetic Operations ..

Input/Output
Memory Mapped Input/Output
CRU Input/Output
Input/Output Methods .. .

Chapter 6. Instruction Set .

Software Features of the 9900 ...
Processor Registers and System Memory .

Program Counter .

Workspace ...
Status Register . .

Addressing Modes
Workspace Register Addressing ..
Workspace Register Indirect Addressing .
Workspace Register Indirect Addressing with Autoincrement ..
Symbolic or Direct Addressing
Indexed Addressing.
Special Addressing Modes

Assembly Language Programming Information . . .
Assembly Language Formats
Terms and Symbols
Survey of the 9900 Instruction Set .

9900 FAMILY SYSTEMS DESIGN

. 5-1

.5-2

. 5-4

.5-6

. 5-7

. 5-8

. 5-9
. .5-10

.5-11

. 5-11
. . 5-12

. .. 5-12

. 5-15
..... 5-17

. 5-19

. 5-19

.5-25

. 5-28

. 5-28

.5-30

.5-33
. .. 5-33

.5-35
... 5-38

.5-43

.5-43

.5-44

.5-45

. 6-1

. 6-2

. 6-2

. 6-3

. 6-3

. 6-4

.6-6
. 6-6
. 6-6
. 6-6

. 6-7

. 6-8

.6-8

.6-10

. 6-10
. .. 6-11

...... 6-13

T-5

TABLE OF CONTENTS

Instruction Descriptions 6-16

T-6

Data Transfer Instructions. ... 6-18
LI Load Immediate. 6-18
LIMI Load Interrupt Mask Immediate 6-18
LWPI Load Workspace Pointer Immediate 6-19
MOV Move Word 6-19
MOVB Move Byte 6-20
SWPB Swap Bytes 6-21
STST Store Status 6-21
STWP Store Workspace Pointer 6-22

Arithmetic Instructions ... 6-23
A Add Words. 6-23
AB Add Bytes 6-24
AI Add Immediate 6-25
S Subtract Words 6-25
SB Subtract Bytes 6-26
INC Increment ... 6-27
INCT Increment by Two 6-27

DEC
DECT
NEG
ABS
MPY
DIV

Decrement
Decrement by Two

·Negate
Absolute Value
Multiply .. .
Divide

.... 6-28
.. 6-28

.... 6-29
......... 6-29

.... 6-30
......... 6~31

Comparison Instructions 6-32
C Compare Words 6-32
CB Compare Bytes
CI Compare Immediate
COC Compare Ones Corresponding
CZC Compare Zeroes Corresponding

Logic Instructions
ANDI AND Immediate
ORI
XOR
INV
CLR
SETO

OR Immediate
Exclusive OR
Invert
Clear
Set to One

SOC Set Ones Corresponding
SOCB Set Ones Corresponding, Byte ...
SZC Set to Zeroes Corresponding
SZCB Set to Zeroes Corresponding, Bytes

Shift Instructions .
SRA Shift Right Arithmetic .
SLA Shift Left Arithmetic
SRL Shift Right Logical .
SRC Shift Right Circular.

. 6-33
. ... 6-34
.... 6-34
. ... 6-35
.... 6-36

. 6-36
. .6-37
.. 6-38
.. 6-38
.. 6-39

.... 6-39

.... 6-40
........... 6-40
.6-41
. 6-42
. 6-43
. 6-43

.6-44
. ... 6-45

. 6-45

9900 FAMILY SYSTEMS DESIGN

Unconditional Branch Instructions
B Branch
BL Branch and Link.

TABLE OF CONTENTS

. .. 6-46
. 6-46

. .. 6-47
BLWP Branch and Load Workspace Pointer .. 6-48
XOP Extended Operation . 6-49
RTWP Return with Workspace Pointer . 6-50
JMP Unconditional Jump. . 6-50
X Execute. 6-51

Conditional Jump Instructions. 6-52
JH, JL, JHE, JLE, JCT, JLT, JEQ, JNE,
JOC, JNC, JNO, JOP

CRU Instructions
SBO Set Bit to Logic One

. 6-52

. 6-53
... 6-53

SBZ Set Bit to Logic Zero .. 6-54
TB Test Bit.
LDCR Load CRU ..
STCR Store CRU

Control Instructions
LREX, CKOF, CKON, RSET, IDLE,

Special Features of the 9940
LIIM Load Immediate Interrupt Mask .
XOP Extended Operation
DCA Decimal Correct Addition

DCS Decimal Correct Subtraction

Chapter 7. Program Development: Software Commands -
Descriptions and Formats

Introduction
Assembly Language Programming: Formats and Directives .

Assembly Language Application
Assembly Language Formats
Terms and Symbols .

Assembler Directives.
Program Linkable Directives . .
Assembler Output
9900 Reference Data
TM990/ 402 Line-by-Line Assembler User's Guide

General.
Installation .
Operation

Setup
Inputs to Assembler

Exiting to the. Monitor ..
Pseudo-Instructions. . . .

TIBUG Monitor
TM990/302 Software Development Board
TXDS Commands for FS990 Software Development System . .
AMPL Reference Data
POWER BASIC MP 307.
Cross Support

9900 FAMILY SYSTEMS DESIGN

. .. 6-54
. 6-55
. 6-57
. 6-58
. 6-58
. 6-59
.6-59

. . 6-60
. 6-61

. 6-62

. 7-1

. 7-2
. . 7-3
. . 7-4
. . 7-4

. .. 7-6
. . 7-8
.. 7-15

. 7-15
. 7-17

. 7-25
. 7-26

. 7-26
... 7-27

. 7-27
. 7-27

. 7-32

. 7-32

. 7-33

. 7-37

. 7-43

. 7-50

. 7-66

. 7-76

T-7

TABLE OF CONTENTS

Chapter 8. Product Data Book ,. ... 8-1

Introduction 8-2

Family Description .. 8-2

Common Key Features. 8-3
Key Features of Specific Devices . 8-4
Organization of CPU Data Manuals and Instruction Set 8-5

TMS 9900 . 8-6

Architecture . 8-7

TMS 9900 Electrical Specifications . 8-24

TMS 9900-40 Electrical Specifications 8-28

SBP 9900A .. 8-30

Architecture .
Interfacing
Power Source

Electrical Specifications · · · · · · · · · · · · · · ·

TMS 9980A/TMS 9981
Architecture .
Electrical Specifications

TMS 9940

Architecture
Instruction Set.

EPROM Programming

Test Function .

Electrical Specifications .

Design Support

TMS 9985 - A Summary

9900 Instruction Set

Peripheral and Interface Circuits

TMS 9901 Programmable Systems Interface

TMS 9902 Asynchronous Communications Controller . . .

TMS 9903 Synchronous Communications Controller .

TIM 9904 Four-Phase Clock Generator Driver

TIM 9905 Data Selectors/Multiplexers

TIM 9906 8-Bit Addressable Latches
TIM 9907 8-Line-to-3-Line Priority Encoder .

TIM 9908 8-Line-to-3-Line Priority Encoder .

TMS 9909 Floppy Disk Controller
TMS 9911 Direct Memory Access Controller

TMS 9914 General Purpose Interface Bus Adapter

TMS 9915 Memory Timing (and Refresh) Controller Chip Set

TMS 9927 Video Timer/Controller.
TMS 9932 Combination ROM/RAM Memory

TMS 3064 65,536-Bit CCD Memory

TMS 6011 Asynchronous Data Interface (UART)

.. 8-31
. 8-47

. 8-50

. 8-52

. 8-56
. . 8-58

...... 8-82
... 8-85

. .. 8-87

. .. 8-103

. .. 8-106

............ 8-109
.. 8-109

. . 8-111

.. 8-113

. 8-125

. . 8-137

. . 8-138

. . 8-160

. .. 8-194
. 8-249

. 8-263

. 8-266
. .. 8-269

. .. 8-274

. . 8-277

... 8-282

........ 8-288

. 8-296

. 8-297
........ 8-302

. .. 8-307

. 8-307

T-8 9900 FAMILY SYSTEMS DESIGN

TABLE OF CONTENTS

SBP 9960 1/0 Expander ... 8-308
SBP 9961 Interrupt Controller/Timer 8-316
SBP 9964 Timing Controller for the SBP 9900A 8-329
SBP 9965 Peripheral Interface Adapter 8-330

TM 990 Series Microcomputer Modules 8-331

TM 990/lOOM Microcomputer .. 8-338
TM 990/101 Microcomputer. .. 8-342
TM 990/180 Microcomputer. .. 8-346
TM990/201 Memory Expansion Board 8-351
TM 990/206 Expansion Memory Board 8-356

TM 990/310 1/0 Expansion Module 8-360

TM990/301 Microterminal ... 8-364

TM990/401 TIBUG ... 8-368

TM 990/ 402 Line-by-Line Assembler 8-369
TM 990/ 500 Accessories ... 8-370

TM 990/189 University Microcomputer Board 8-373
Memory . 8-3 7 5

Dynamic Random-Access Memory (RAM) 8-376

Static Random-Access Memory (RAM) 8-380
Read-Only Memory (ROM) ... 8-384
Programmable ROM .. 8-387
Eraseable Programmable ROM " : 8-389

Mechanical Data ... 8-391

Software .. 8-397
TMSWlOlMT Transportable Cross-Support 8-398
TM 990/302 Software Development Board 8-400
TM 990/ 40DS Design Aid for TMS 9940 Microcomputer 8-406

TM 990/450, 451, 452, TMSW201F POWER BASIC Family 8-409

Chapter 9. Applications ... 9-1

A Simulated Industrial Control Application (With TM990/100M
Microcomputer and 5MT 1/0 Modules) 9-3

A Low Cost Data Terminal . 9-7 5
TMS 9900 Floppy Disk Controller 9-89

Glossary ... G-1

Appendix .. A-1

9900 FAMILY SYSTEMS DESIGN T-9

CHAPTER 1

Basic Decisions
In System Design

1~

~1

INTRODUCTION

INTRODUCTION

Basic Decisions
In System Design

Texas Instruments has developed and is manufacturing a family of microprocessor
products and systems based on the architecture of its 990 minicomputer. The purpose of
this book is to present enough factual information about the 9900 and the family of
devices and systems surrounding it to serve not only as a guide for deciding to use the
9900 in an application, but also as the primary reference for design and programming
activities. The book is much more than a data book or a collection of application notes. It
contains basic concepts, presents methods and techniques, and most important of all,
shows how the architecture of the 9900, substantially superior to other microprocessor
architectures, can be translated into cost effective applications.

The time investment you make in learning how to use the 9900 will inevitably produce
substantial benefits because your designs will be advanced well beyond other
microprocessor systems; they will be expandable, flexible, easily upgraded and will not
be obsolescent. The capital investment in programming systems will bring powerful
computing equipment and software. tools to your design team that will have them out
distancing the competition in a very short time.

In reading this book, you _will see the 9900 product as more than a single
microprocessor. You will find a family of processors, peripherals, boards, minicomputers
and systems all based on a single architectural concept called memory-to-memory
architecture. It is this basic principle which, when fully understood at the fundamental
level, will help you understand why and how the 9900 can be used to implement
outstanding products. In addition, you will see why Texas Instruments has made the
commitment to the continued support of the 9900 family in both hardware and software.
New microprocessors and peripheral devices will retain and complement the basic
architectural features-the 16-bit word length, the instruction set, the I/ 0 techniques.
etc. Texas Instruments software support goes beyond the standard assembler, editor,
linker and PROM programmer software. New design tools such as POWER BASIC
and PASCAL are now available. These powerful software products bring structured
programming disciplines into focus and help you to attain an advanced programming
capability.

All in all, the book is a collection of useful factual material which should be of
substantial benefit to anyone considering designing with microprocessors. For those who
have very limited exposure to designing with semiconductor products, the next few
sections will be helpful because the theme of "more functions at lower cost" is
demonstrated. These ideas lead to the basic philosophy that designing with standard
hardware - semiconductor LSI products which are programmable - is the most
economical procedure, and should be carefully considered for every new electronic
product.

1-2 9900 FAMILY SYSTEMS DESIGN

Basic Decisions
In System Design

THE IMPACT OF SEMICONDUCTORS

THE IMPACT OF SEMICONDUCTORS

In the short thirty years since the invention of the transistor (the first semiconductor
device to exhibit amplification), there have been more inventions and more scientific and 1 <111111111

engineering accomplishments than in all time previous. The field of digital electronics
(especially computers) has been the greatest contributor of new products for these
accomplishments and, therefore, has become one of the most rapidly growing industries.
Manufacturers of semiconductor components (transistors, integrated circuits,
microprocessors and memories) have been providing the building blocks, and the
equipment manufacturers have been taking advantage of the opportunity by developing
the most sophisticated systems that are economically feasible.

In his keynote address to the 1977 National Computer Conference, Mark Shepherd,
Chairman of the Board of Texas Instruments, made the following points:

"Until 1971, the semiconductor industry was in the circuits business.
Semiconductor circuits, complex though they were, constituted only a fraction of an
entire system. The one-chip calculator developed in 1971 was the first significant
complete system. Since then many calculators and watches have been developed
where the entire system function is accomplished by one or a few semiconductor
chips. These were custom chips because the technology did now allow any reserve
computing power for other applications.

"The semiconductor industry has now entered an era where the entire system
function of an end product can be accomplished by a few semiconductor chips, or a
single chip, with enough versatility to permit adaptation to many different
applications through programming.

"This change carries enormous implications for the system designer. 1) The lead time
for system implementation is shortened because no special chip development is
required. 2) The development cost will be low because it will be limited to software
(which may be executed in hardware). 3) The required degree of electronic
sophistication on the part of the user is much less. To achieve these advantages the
system designer must be prepared to use standard products produced in large
volume rather than custom devices.

"The functional equivalent of a medium-scale computer (Figure 1-1) cost $30,000
in the early 1960s. Its cost equivalent has now dropped to $4,000 and is projected
to be at less than $100 by 1985, penetrating the personal cost threshold. As this is
accomplished, greater challenges will be encountered in the cost of sales, service,
and maintenance, requiring that we learn to incorporate self-diagnostic and self
repair functions into our systems."

9900 FAMILY SYSTEMS DESIGN 1-3

~1

THE IMPACT OF SEMICONDUCTORS Basic Decisions
In System Design

Cf)
a:
<t:
_J
_J

0
0

~
0
0

100,000 1-----+-----+-----+-----+------+------1

~ 10,000 l-----+--~...!::----+----1----+----l

~-' 1,000 ----+------+-----+----' l',..-----+------1

' ' ' 100---4-----+-----t-------l----~-~>-------I

1960 1965 1970 1975 1980 1985

Figure 1-1. Cost of Medium Scale Computer
(M. Shepherd, 1977 NCC)

The cost of the hardware components for a typical digital system has been decreasing
with time because new and more powerful semiconductor devices have been developed.
Equally important is the fact that the development cost for the typical digital system
hardware has also been decreasing. Figure 1-2 illustrates how impressive this cost
reduction has been. Contrast the figures of 7-8 million dollars in the early fifties with 8-9
thousand dollars in the late seventies; digital system development cost has been reduced
by a factor of one thousand in a period of 25 years! An extension of this trend indicates
that typical system hardware development cost will be approximately $1,000 by 1985.

1-4

1-
(j)

0

$10 MEG

o $1 MEG 1----4-----...,,.,._-+------+-------11----1

MICROPROCESSOR'

' ' ' $1K.__ _ _._ ____ ~ ____ ..__ ___ __J.___~

1950 1960 1970 1980

Figure 1-2. Typical Digital System Hardware Development Cost at OEM Manufacturer

9900 FAMILY SYSTEMS DESIGN

Basic Decisions
In System Design

THE IMPACT OF SEMICONDUCTORS

How has this been accomplished? Figure 1-3 shows what has been happening. As the
number of components per chip of silicon increases, the development cost for each chip
also increases. For a semiconductor manufacturer, volume production is required to 1 <1111111

offset the development cost. Semiconductor devices are therefore being batched fabricated
- a few hundred, a few thousand per chip - and this means lower cost per active
element group or AEG. (An AEG is defined as a logic gate, flip-flop, or a memory cell.)

Cl.

J:
0
I-

0: 5
wO
Cl. 0:
en O

(.'.) 0
WW
<(f-:

<(
0:
(9
w
I-
~

100,000

10,000

1,000

100

10

1960 1970 1980

Figure 1-3. Evolution of Semiconductor Technology

100

10

1-
(f)

0
0
1-
z
w
2
(l..

0
_J
w
> w
0
w
>
~
_J
w
a:

Figure 1-4 shows the chronology of semiconductor device development. An AEG in the
early 1950's consisted of one or two transistors, several resistors, a capacitor or two, and
some area of a printed circuit board to hold the parts together as an assembly. Early
integrated circuits contained about 10 AEG's. Then medium scale integration achieved
up to 100 AEG's per chip and large scale integration reached 1,000 AEG's per chip.

At this point (the late 1960's), the semiconductor technologists had apparently reached
an impasse. If they continued to increase the number of AEG's per chip the high degree
of specialization would preclude volume production, and the benefits of LSI would be
lost. In fact, the only area in which LSI appeared to be feasible was in memories -
primarily read/write memories now called RAM's. Read only memories (ROM's) and
programmable read only memories (PROM's) were not required until later (as you will
see). But the semiconductor technologists continued their thrust toward greater numbers
of AEG's per chip, focusing primarily on memory products.

There was one other product which appeared to be feasible (in 1970) - a single-chip
calculator. Here was an opportunity to stretch the imagination to greater degrees of
achievement. At the producibility level of about 1,000 AEG's per chip, all of the
functions of a microcomputer could be built on one chip - and the application certainly
had the required volume potential. So custom LSI found a niche in the form of the hand
held calculator.

9900 FAl\IILY SYSTEMS DESIGN 1-5

~1

THE IMPACT OF SEMICONDUCTORS Basic Decisions
In System Design

EARLY 19SO'S

EARLY 1960'S

MIDDLE 1960'S

LATE 1960'S

D
EARLY 1970'$:

"VERY LARGE
SCALE INTEGRATION''

(More than about 1000 gates:
Complete system or

"DISCRETE"
DEVICES
(Transistor::;)

"SMALL-SCALE
INTEGRATION"

(Up to about 12 gates)

''MEDIUM-SCALE
INTEGRATION"
(Up to about 100 gates:
Building-blocks such as
counters, adders, etc.)

SPECIAL ICs MADE JUST several subsystems) ICs THAT CAN BE PROGRAMMED
FOR ONE SYSTEM DESIGN TO SUIT MANY DIFFERENT SYSTEMS:

''MICROPROCESSORS''

Figure 1-4. Stages in Evolution of Digital Semiconductor Circuitry.
(G. McWhorter, Understanding Digital Electronics, Texas Instruments Inc., Dallas, Texas, 1978)

From the very beginning the designers of the single chip microcomputer envisioned new
and varied applications of this device, so it was made with a ROM for instructions and
RAM for data. It wasprograf!lmable, at least it was "mask programmable." And as we
witness the growth of this segment of the semiconductor market, we see a host of
dedicated applications for single chip microcomputers such as controllers for microwave
ovens, sewing machines, and other appliances.

By designing a "standard" chip that could be programmed to do a variety of jobs,
semiconductor technologists repeated the step taken by the inventors of the first
programmable machine - the first computer...:.. in the late 1940's. The first digital
computer was a stored program digital calculating machine. Programming provided
versatility and variety of applications. Similarly, programmable single chip, LSI
semiconductor devices - microcomputers - gave LSI variety of applicability.

The next logical step in the evolution of LSI was the design of the general purpose
microprocessor, a computer CPU on a chip. By interfacing the microprocessor to a
memory - a set of chips arranged to provide as much storage as needed - one can build
larger, more powerful microcomputers which can replace special purpose hardwired
logic. In fact, general purpose hardware that is programmable provides multichip
applicability of LSI technology.

1-6 9900 FAMILY SYSTEMS DESIGN

Basic Decisions
In System Design

THE IMPACT OF SEMICONDUCTORS

With this breakthrough in the concept of LSI application, the semiconductor
technologists have been motivated to continue to increase the number of AEG's per
device. Figure 1-5 projects the growth of AEG's per chip to over 106 by 1985 - a level 1 <111111

sufficient for a single chip 32-bit microcomputer. The 16-bit microprocessor and 4K
RAM require about 50,000 AEG's. RAM's of 16K and 64K bits requiring up to
100,000 AEG's are not unrealistic extensions of the trends; they are real products
rapidly moving into the marketplace. New advances are being made in semiconductor
process technology to achieve the packing densities needed for the future. As Figure 1-5
indicates, optical techniques for defining regions and interconnections reach a resolution
limit at about 105 AEG's. E-beam and X-ray technology will be required to further
increase component density.

Cl..

I
0
er:
w
Cl..
CJ)
Cl..
::::>
0
er:
(.')

1-z
w
2
w
_J

w
w
>
~
0
<(

1011

RESOLUTION LIMITS

109 _____________________ _..,....
E-BEAM _.,,..

107 ----------------;;--.,,,...-
64K RAM _,,-

16K RAM i ~t 32-BIT
10s OPTICAL-- -----~-'i"// MICROCOMPUTER, -- - - - - - - - - -=""/ e 1 OOOK-BIT MEMORY

1-CHIP 4K RAM e t
103 CALCULATOR l 16-BIT MICROCOMPUTER,

32K-BIT MEMORY

10

1960 1970

16-BIT
MICROPROCESSOR

1980 1990

Figure 1-5. Semiconductor Chip Complexity
(M Shepherd, 1977 NCC)

The impact of programmable semiconductor devices is shown in Figure 1-6. Prior to
1972, semiconductor devices were designed as circuits. Now they are being designed as
systems or at least subsystems. As the number of AEG's/ chip continues its rise, driving
down the cost of CPU and memory devices, unlimited opportunity is being created for
an unbelievable variety of new products.

Figure 1-7 shows that a dramatic change is anticipated in the rate of AEG cost reduction
with time due to the impact of microprocessors. Functions (AEG's) costing $1.00 in
1966 were obtained for around 5 cents in 197 6. In fact, the cost per AEG is projected to
be less than a tenth of a cent by 1985.

9900 FAMILY SYSTEMS DESIGN 1-7

~1

THE IMPACT OF SEMICONDUCTORS Basic Decisions
In System Design

1 Ob

105
TIL ICs

104

Cl..

I: 103 0
a:
w
0...
(/) 102
(9
w
<(

10

0.1

1960 1965

'67
$10.00

1.00

(9
w
<(

a:
w
0...
Cf)

0.10 a:
<(
_J
_J

0
0

0.01

1-8

'68

1K RAM

4K RAM

·I SYSTEMS

1970 1975 1980

Figure 1-6. Distributed Semiconductor Power

'69

103

(M. Shepherd, 1977 NCC)

'71 '73

104

'75 '77

ASSEMBLED TTL

/ LOGIC GROUP

105

CUMULATIVE AEGs (MILLIONS)

1985

79

1 Ob

Figure 1-7. Cost Per AEG for TTL and Microprocessor
(M. Shepherd, 1977 NCC)

105

104
0
0
(f)
--i

+O
103 $:"Tl

mm
$:0
o~
:IJ~
-<r
r-...m

102 ~ z
--i
0
-0
c

10

'82 '85

107

9900 FAMILY SYSTEMS DESIGN

Basic Decisions
In System Design

THE IMPACT OF SEMICONDUCTORS

Memory costs (on a per bit basis) are diminishing, too. Following the projected trends
for the cost of AEG's, RAM cost is forecast to be less than .05 cents per bit by 1982
(Figure 1-8). The need for various memory types has now been established. Programs 1 <111111111

for microcomputers are stored in non-volatile memories such as ROM's, PROM's and
EPROM's. ROM's are mask programmable by the manufacturer and are best suited for
high volume applications. PROM's are programmable after the devices are completely
packaged. Either the manufacturer, the distributor or the user may store the desired
program (or data) in a PROM. PROM's are suited for medium volume to low volume
applications. EPROM's are erasable and so find use during prototyping and development
cycles. They are also used in applications where software must be periodically changed,
upgraded, or modified in any way. Other memory technologies such as CCD's (charge
coupled device) and bubbles will be used for mass storage requirements where speed is
not critical.

30

25

20

I-
15 m

a:
w
0....
CJ)
I-

10 z
w
0

.05

0
'72 '74

9900 FAMILY SYSTEMS DESIGN

ROM

DYNAMIC RAM

'76 '78 '80

Figure 1-8. Memory Cost Comparison
(M. Shepherd, 1977 NCC)

'82 '84

1-9

THE IMPACT OF SEMICONDUCTORS Basic Decisions
In System Design

The effect of modern semiconductor technology has been to alter the roles of the
component manufacturer and the OEM (original equipment manufacturer). Component

~ 1 manufacturers are continuing to produce batch-fabricated semiconductor products. But
the economic benefit - the low cost per AEG - of batch fabricated semiconductor
devices with high functional density cannot be realized except through applications
which are program controlled. The component manufacturer must therefore provide
programming support via PDS's (program development systems) and software products
to enable the OEM to develop applications programs. Thus increased development cost
of high functional density devices is found not only in improved process technology and
in the design of LSI masks, but also in the attendant software support products. And
volume production is required to offset these costs.

The role of the OEM is undergoing a corresponding shift. Component costs and the
assembly cost of hardware have been sharply reduced. Table 1-1 demonstrates the
evolutionary steps in hardware costs. The cost improvement ratio of each step as
compared with the previous step is dramatic: overall, it is 600: 1.

Table 1-1. System Cost Reduction

TOTAL COST

COMPONENTS COMPONENTS+ COST IMPROVEMENT

EVOLUTIONARY STEP TO ASSEMBLE ASSEMBLY COST RATIO

DISCRETES 20000-30000 6000-9000 -
!C'S (GATES & FLIP FLOPS) 350-500 600-900 10:1
IC'S+MSI 125-150 250-450 2,5:1
MICROPROCESSORS 7-10 120-190 2:1
MICROCOMPUTERS 1 6-12 12:1

While hardware costs are decreasing, the software costs, as a percentage of the overall
design effort, are increasing. Figure 1-9 illustrates the relationship of hardware to
software costs in product development and the change in emphasis. In the 1950's
computers were only used in large-scale business and scientific applications. OEM's had
no opportunity to use computing power in their systems. When minicomputers were
introduced in the 1960's, OEM's found applications in process control and small business
EDP functions, and therefore had to provide some special programs for their use. With
the advent of microprocessors in the 1970's, t~e software component of the development
cost increased further, and this trend can easily be forecast into the 1980' s - less than
25% of the development cost of most products will be for hardware.

1-10 9900 FAMILY SYSTEMS DESIGN

APPLICATIONS OF Basic Decisions
In System Design PROGRAMMABLE SEMICONDUCTORS

100%

SOFTWARE
CJ)
I- 75% SOFTWARE CJ)

0
0 SOFTWARE
> 50% HARDWARE w
0 HARDWARE
.....J ;:;
0

25%
HARDWARE

I-

HARDWARE

1950's 1960's 1970's 1980's

Figure 1-9. Increasing% of Software Development Cost

Development costs are changing - becoming more software oriented - and this has a
strong impact on overall product cost. In any product design, the development cost is
amortized over some production quantity, and this affects the price of the product. But
developing software to achieve any design goal is less expensive than developing
hardware to do the same thing. Therefore, the total development cost for "equivalent
systems" is decreasing (perhaps by as much as 15-20% per year).

The development of prograf!lmable semiconductors has been a major accomplishment
equivalent in importance to the inventions of the transistor, the integrated circuit, and
the stored program computer.

The trends appear to be well established. The number of AEG's per chip will be
increasing by at least 7 5% per year for at least another two decades. As a result, AEG
cost will decline by about 50% per year and RAM cost per bit will decline by about 20%
per year. The computing power of LSI devices will increase while the price will continue
to decrease. The impact will be felt in all walks of life.

APPLICATIONS OF PROGRAMMABLE SEMICONDUCTORS

The application of programmable semiconductors can be considered as an extension of
the application of computers. All applications of LSI semiconductor devices are as
computers because microprocessors, microcomputers and programmable LSI peripheral
chips are programmed to perform the special functions required for each application. All
the elements of a computer - ALU, control, memory and 1/0 - are present.

As the price of computing power decreases, the number of applications increases. The
number of computers of any given type being applied is inversely proportional to the cost
(Figure 1-10). As of 1976 there were relatively few systems in the $100-$10000 range.
But microcomputers are changing this. Applications are being found in new designs of
digital electronic systems, in products previously using electro-mechanical devices, and
in new products which previously were not economically feasible.

9900 FAMILY SYSTEMS DESIGN 1-11

1 <4111

~1

APPLICATIONS OF
PROGRAMMABLE SEMICONDUCTORS

Basic Decisions
In System Design

UNITS

100M

10M

1M SMALL BUSINESS
COMPUTERS NUMBER OF PROGRAMMERS

"'... • ---.-----
100K

10K

1K

MAINFRAME
COMPUTERS -

\
"-....

10M 1M 100K

\
INTELLIGENT
TERMINALS

MINICOMPUTERS

10K 1K

AVG. SYSTEM PRICE (DOLLARS)

Figure 1-10. U.S. Installed Computer Base-1976
(M. Shepherd, 1977 NCC)

\
PROGRAMMABLE
CALCULATORS

100

While some people may feel that the number of computers cannot exceed the number of
"programmers" (approximately one million according to Figure 1-10), it is evident that
all designers of products which use microcomputers will acquire the necessary
programming skills to achieve the desired end product results.

SINGLE CHIP MICROCOMPUTER APPLICATIONS

Single chip microcomputers are being used in the small, dedicated, high volume
applications such as calculators, microwave ovens, and general appliance controllers. As
the computing power of single chip devices increases, the range of applications will
obviously expand. Early devices contained about lK bytes of memory. New devices with
2K bytes of ROM for instructions and small amounts (256 bytes) of RAM for data have
been built and designed into more complex applications. One example is a terminal
controller using the TMS 9940 microcomputer with one support chip; this is described
in Chapter 9.

10

1-12 9900 FAMILY SYSTEMS DESIGN

APPLICATIONS OF Basic Decisions
In System Design PROGRAMMABLE SEMICONDUCTORS

MULTI-CHIP MICROCOMPUTER APPLICATIONS

The application areas which involve the greatest number of designers and programmers
by far are those using a multi-chip approach - a microprocessor, memory sized to the Iii
application, and peripheral interface devices. Limitations are much less in multi-chip
systems than for single chip microcomputers. Designs can be accomplished using the
general purpose microcomputer boards which have been designed to be applied to a
variety of end products. Or the designer can start with individual LSI devices and build a
special microcomputer for each application.

The list of applications for microprocessors is long and continues to grow. But a few of
the representative areas are these:

Instrumentation
Test Equipment
Industrial Process Control
Point-of-sale Terminals
Cash Registers
Typewriter/Word Processing Equipment
CRT Terminals
Vending Machines
TV Games
Automobile Engine Ignition Controllers
General Automotive Products
CB Equipment
Communications Controllers
Educational Toys
Personal Computers
Special Dedicated EDP Functions

In each application standard programmable semiconductor LSI devices are used to sense
input information, process the information according to special procedures (algorithms),
and send information to external devices for display, printing, physical control devices,
etc. Obviously the need for interface circuits is great. They cover specific functions such
as AID converters, DI A converters, transducers, and special display drivers, etc., as
well as standard digital circuits for buffering, multiplexing, latching, etc. Figure 1-11
shows conceptually how the elements of the microcomputer are arranged for any
application.

9900 FAMILY SYSTEMS DESIGN 1-13

~1

APPLICATIONS OF
PROGRAMMABLE SEMICONDUCTORS

L_

>a:
0
:::?:
w
:::?:

(')
Ox
_J :::J

~:::?:
<(

(/)
t
:::J
()_
t
:::J
0
(')
0
_J
<(
z
<(

<(

0

(/)
t
:::J
()_

~
_J

~
(5
0

ffi~
:<::o..
O:::i
0..(f)

(/)
a:
0
(/)

z
w
(/)

(/)
t
:::J
()_
t
:::J
0
_J

~
(5
0

(/)
_J

0
a:
tz
0
0

,
·I

~ I
in
a:
w
t
:::J
()_

:::?:
0
0
0
a:
0
~

_J

Basic Decisions
In System Design

Figure 1-11. Microprocessor Applications in Process Control Systems

1-14 9900 FAMILY SYSTEMS DESIGN

BUILDING A Basic Decisions
In System Design MICROPROCESSOR BASED SYSTEM

BUILDING A MICROPROCESSOR BASED SYSTEM

Given an application idea, how does one proceed toward designing a product in which a
microprocessor is the central control device? The design steps may be diagrammed in
great detail, but the most important steps are these.

1. System Specifications - The system requirements include electrical specifications for
each input and output, timing details, and overall performance logic.

2. Division into small subsystems - By defining small, easily managed tasks, the
hardware and software requirements can be measured, and design can be scheduled.

3. Decisions for hardware and software - This is the appropriate design point at which
the tradeoff between hardware and software solutions for each task is evaluated. For
economy, the best solution may appear to be software, but there may be a penalty in
performance.

4. Hardware and software design - Here the two design activities may be carried out in
parallel. The microcomputer parts are assembled on one or more breadboards and tested
for signal flow. Software is developed using a software development system (a computer
with appropriate peripherals and programs). Software testing may be done to provide
algorithm functionality.

5. System integration - Ultimately, the hardware must be tested under program control.
At this point the programs must be loaded into the system memory (usually PROM or
EPROM) for testing. Often special logic analyzers and other computer based diagnostic
tools are needed to debug the complete system (see the description of the AMPL system
in Chapters 2 and 7).

It is clear from the foregoing list of steps that a thorough understanding of the hardware
components and a knowledge of programming is required to design with
microprocessors and microcomputers. But this is not difficult to acquire. By learning the
names of standard building blocks and software packages, you will have taken a major
step toward understanding what you read about them.

BASIC HARDWARE COMPONENTS

Since the hardware for digital systems is being standardized, the basic elements and their
functions can easily be studied. Comparisons of similar devices from various
manufacturers must be made and design tradeoffs evaluated. Here are the basic building
blocks, what they do, and how they are used.

9900 FAMILY SYSTEMS DESIGN 1-15

1..-

~1

BUILDING A
MICROPROCESSOR BASED SYSTEM

Microprocessor or CPU

Basic Decisions
In System Design

This fundamental chip contains the Arithmetic and Logic Unit (ALU) which basically
performs addition and comparisons between two numbers. Temporary storage registers
are available to hold numbers (called operands) and addresses (memory location
numbers) which identify or point to instructions and data. Sometimes the ALU is used to
calculate addresses by arithmetic operations on certain register contents. The
microprocessor must also contain timing and control circuitry to direct all activities in an
orderly step-by-step procedure. The actual control functions are determined by decoding
and executing instructions. Instruction execution is a special type of operation on
information which comes from memory. The memory stores numerical values which
may be interpreted by the processor in one of two ways. Either the number is an
instruction, which will direct the sequence of operations over the next few clock cycles,
or it is data to be operated upon either arithmetically or logically.

Memory

The main memory of a microcomputer holds the program and data for the system.
Because semiconductor RAM devices are volatile (that is, all data is lost when power is
removed), it is desirable to use ROM devices (Real Only Memory or non-volatile
memory) for the program and RAM for data. ROM devices are programmed
(information stored in the cells) by means of a metalization pattern or mask at the time
of chip fabrication. Programmable read only memories (PROM's) may be programmed
by the manufacturer or the user because information is stored by burning small metalic
fuse links via the application of electric current. Programming is performed on the
device after it has been packaged. EPROM's are non-volatile read-only memories which
may be erased, usually via the application of ultraviolet light. These devices are
especially useful in prototyping and system development during which program changes
are frequent.

Memory devices are designed for cascading so that any size memory may be obtained by
adding more devices. Capacities of 4K bits per chip are common; devices with 64K bits
per chip are not far away.

Input/Output

For the input and output function - interfacing the microprocessor-memory
combination to the "outside world" - usually consists of a variety of devices including
programmable LSI devices. Examples of interface requirements are as follows:

1. For communication of digital information over a pair of wires, conversion from 8-bit
bytes (parallel) to single bits sent in sequence (serial) is required. The I/O device must
receive a number of bits, hold them in a register and then shift them serially to a
transmission line. The reverse procedure, serial to parallel conversion, must be
performed for receiving information from the transmission line. Since the clock rates,

1-16 9900 FAMILY SYSTEMS DESIGN

BUILDING A Basic Decisions
In System Design

MICROPROCESSOR BASED SYSTEM

start and stop characters, and "handshaking" requirements can be complex in
communications networks, the protocol is designed into the TMS 9902 and TMS 9903
programmable communications controllers (see Chapter 8 for details).

2. Man-machine interfacing may consist of arrays of switches and indicators or may be
performed via a terminal such as a teletype (TTY) or a video display terminal (VDT).
Arrays of switches are connected to microcomputers via multiplexers. The address bus
may be used to select one of the switches for sampling at any given moment. Addressable
latches are useful in supplying on-off data to arrays of indicators. The address bus is
again used to select one specific display device (a single lamp) to be turned on (or oft)
in a given computer cycle. Terminal interfacing can be accomplished via a serial data
interface such as the TMS 9902 (see Chapter 9 - example using the TM 990/lOOM
board).

3. The broad category of analog (continuously variable) inputs and outputs requires
converters (A/D and D/ A) to obtain digital information on the computer side of the
interface. Input signals from transducers or output signals to actuators (positioners)
require this type of conversion.

Connecting the I/ 0 devices to the CPU and addressing them may present problems in
some microcomputer systems. The 9900 solves the problem by providing two types of
general purpose I/ 0. Memory mapped I/ 0 allows a set of memory addresses to identify
the I/O devices (as though they were words of memory), while the communications
register unit (CRU) provides a separate I/O port specially designed to interface single
bit devices, communications devices, standard computer peripherals, etc. Unique to the
9900 architecture, the CRU interface is a powerful and versatile I/O technique; it is
easily utilized via the special LSI peripheral supports circuits (such as the TMS 9901, 2,
and 3, and the TIM 9905 and 6).

The rules for interconnecting the various elements of the microcomputer include
loading specifications and signal level limitations. In observing these rules the designer
will occasionally use a few standard devices to reduce loading or perform level shifting.
Generally, the addition of such devices is an insignificant part of the overall design.
(Details for hardware interfacing are given in Chapter 4.)

PROGRAMMING FOR MICROCOMPUTERS

The writing of programs - often called software development - is the companion
activity to hardware breadboarding and testing in computer systems. But software is
substantially more flexible than hardware because it consists primarily of ideas,
documented in strings of characters on a page, or in l's and O's in a memory. In fact,
until a program is actually loaded into a memory, it is truly a set of ideas on paper, hence
the contrasting name, software.

9900 FAMILY SYSTEMS DESIGN 1-17

1..il

BUILDING A
MICROPROCESSOR BASED SYSTEM

Basic Decisions
In System Design

In developing the individual hardware components of a microcomputer, designers
usually subdivide the activities into small, easily managed tasks. These tasks are

~ 1 performed sequentially by one designer or simultaneously by several members of a
design team. The same is true of software design. Small, easily defined and understood
sub-programs are given as individual assignments to the programmers on the design
team.

The disciplines for programming are set up so that each sub-program stands alone, yet
couples to the other sub-programs in a harmonious manner. But the overall plan begins
at the top (a program to handle all sub-programs) and expands to several lower levels (a
"Christmas tree" of programs). This is known as "top-down programming", and it is a
form of structured programming.

The term structured programming means that discipline in programming in which each
program module implements an algorithm with a single entry point, a single exit point
and a definitive result for each possible input. Each module must contain its own buffer
area so that it cannot alter procedures or data of other modules. (In some cases common
buffers are allowed, but complex rules for their use are needed.)

How is programming done? What equipment is needed? And what support can you get
from a microcomputer manufacturer? First, there is a preparation phase in which the
designer and/ or programmer must become familiar with the instruction set and the
architectural elements of the microcomputer selected for the design. The second phase
involves writing selected short program segments to gain insight into the memory
requirements and the execution speed of various sub-programs. Then the main body of
the program may be developed.

Writing programs means writing code; writing program steps which must be executed in
sequence. Usually these steps are written in a mnemonic language which uses one to four
letters as operation codes, and strings of other characters to designate the operand (the
number to be operated upon). These program steps must be translated and "assembled"
into a set of 1 'sand O's - the machine language executable by the microcomputer - by
a special program development computer.

The programmer writes the program on paper. Then he enters the program steps via a
keyboard into the program development system (PDS), and directs the PDS to
"assemble" the instruction into machine code. The output from the PDS is a set of
numbers which represent the program steps, and a listing of the input and output codes.

Obviously the PDS uses some special programs (software) for performing the tasks
outlined. The programmer writes source code statements, submits them to the PDS via a
program called the editor, then uses the assembler program to produce object code - the
machine code used by the microcomputer. Errors in the program statements are printed
along with the object code listing. Errors are corrected by editing the source code (via
the editor) and resubmitting it to the assembler.

1-18 9900 FAMILY SYSTEMS DESIGN

BUILDING A Basic Decisions
In System Design

MICROPROCESSOR BASED SYSTEM

After a number of program modules are complete, a set of two or more may be "linked"
together as a single program. This is done by submitting object code programs to the
linker. The output from the linker is a single program which may be loaded into the 1 <111111111

microcomputer.

The list of support software is just beginning.

The following outline of software products describes the program development cycle
further.

Program development software
Editor - for entering and changing source code
Assembler - for conversion from symbols and mnemonics into machine code
Linker - for connecting several programs into one
PROM programmer - for loading numbers (programs) into PROMs

Program testing software
Debug routines - for testing programs
AMPL system software - for testing programs and the interaction with the

hardware

Software available for use with user programs
Monitor - for checking status of all program modules
Executive - for overall control
Operating system - for operating peripheral devices
Library (utility) programs - for performing special mathematical conversions

and calculations
High level language software for program development

PASCAL - for structured programming
POWER-BASIC - for ease of programming in BASIC language

FORTRAN - for general computer problem solvi?g

This partial list of software is intended as a categorical outline which should indicate the
level of support one finds in the areas of software development. To comprehend the
value of any or all of these software products, you must work with them and develop a
few programs for microcomputers.

The obvious difficulty with software evaluation is that few designers can afford the
capital investment for a large PDS to properly evaluate each of the alternative paths for
software development. But Texas Instruments has developed a variety of program
development systems. Some of these are very economical and readily available. They
were designed specifically for product and programming evaluation and for initial design.

You will find descriptions and approximate prices for each PDS in Chapter 2.

9900 FAMILY SYSTEMS DESIGN 1-19

~1

BUILDING A
MICROPROCESSOR BASED SYSTEM

WmcH MICROPROCESSOR OR MICROCOMPUTER TO UsE

Basic Decisions
In System Design

You may be convinced that designing with programmable semiconductors is the best
design philosophy, and you may be attempting to evaluate the various products on the
market. But a significant decision point has been reached: "which microprocessor or
microcomputer is best for my application?" The selection of the proper device is based
on many factors, some of which are not related to architecture or instruction execution
speed.

Selection of a microcomputer or microprocessor usually means selection of one primary
vendor (and sometimes one or more second sources) who manufactures the product and
the compatible peripheral devices. It also means the purchase of a program development
system designed especially for the specific microprocessor. Selection of one device means
a commitment to using that device for future designs. Changing to another
microprocessor is costly both in hardware and in the development of programming skills.

Selection criteria for a microprocessor may be summarized as follows:

1. The microprocessor must be versatile so that it can be used in many applications.

2. The vendor must provide a comprehensive set of support and peripheral circuits.

3. One PDS should serve the programming activity for a significant period of time.

4. The cost of the devices and the PDS must be economically attractive.

5. The performance of the microprocessor must be sufficient to meet the design goals.

1-20 9900 FAMILY SYSTEMS DESIGN

BUILDING A Basic Decisions
In System Design MICROPROCESSOR BASED SYSTEM

Texas Instruments 9900 family of components and software systems clearly meets these
selection criteria. Careful evaluation of the price/performance tradeoffs between the
various microprocessor products on the market will reveal superior adaptability of the 1
9900 family to any product design. The selection criteria applied to the 9900 family may
be summarized thus.

1. Versatility has been achieved by providing a family of processors using one basic 16-bit
architecture. Both 16- and 8-bit versions are available as well as a single chip
microcomputer. Instead of trying to apply a single microcomputer to a broad scope of
applications, the designer may select from the 9900 family the most appropriate
microprocessor for each application. Programming and software support is the same for
all.

2. Numerous support devices are available from Texas Instruments, and new products
are introduced regularly. Chapter 8 contains detailed data sheets for many of them.

3. A single PDS from Texas Instruments can provide programming support for all of the
processors in the 9900 family. The powerful support software streamlines program
development. And programs written for one microcomputer may be used on another.
Software compatibility of the processor family is one of the primary benefits of designing
with the 9900.

4. Product pricing of the microprocessors, peripheral devices and PDS's is economically
attractive. Designing multiple applications from the same components and using the
same development tools means even greater economic benefit.

5. The 16-bit architecture - especially the bus width and the register size - enables the
9900 family of processors to achieve outstanding performance. Performance is measured
by throughput and computing power, not by clock speed alone.

A complete evaluation of the 9900 in each of the above categories is not possible in so
few words. But one specific feature of the product family should be included as a part of
the evaluation. Memory-to-memory architecture, a unique computer concept developed
by Texas Instruments for the 9900 minicomputer, is an outstanding feature because it
enables the 9900 to achieve the most cost effective product development. The story of
the evolution of this architecture will help you understand its importance.

9900 FAMILY SYSTEMS DESIGN 1-21

~1

EVOLUTION OF
MEMORY-TO-MEMORY ARCHITECTURE

EVOLUTION OF MEMORY-TO-MEMORY ARCHITECTURE

Basic Decisions
In System Design

All things change with time, and computers are no exception. An evolutionary process
has been at work in computer design since the beginning. Early machines were designed
around a single accumulator which served as the focal point of most of the instructions.
Steps such as load the accumulator (LDA), add to the accumulator (ADD), and store the
accumulator (STA) were common in programs written for such machines. (The
instruction mnemonics used here are simply illustrative and are not intended to be
identified with any specific computer or microprocessor.) But there was a fundamental
limitation-the bottleneck effect of forcing all transactions to be performed via a single
accumulator (Figure 1-12).

PROCESSOR

Figure 1-12. Single Accumulator Architecture

1-22 9900 FAMILY SYSTEMS DESIGN

EVOLUTION OF Basic Decisions
In System Design MEMORY-TO-MEMORY ARCHITECTURE

As circuit elements became less expensive, especially through the introduction of
integrated circuits, multiple accumulator architectures emerged (Figure 1-13). A and B
accumulators were the focal points of expanded instruction sets which allowed loading
either accumulator (LDA, LDB), adding to either accumulator (ADA, ADB), and
storing either accumulator (STA, STB). With this design came the increased use of an
accumulator for holding the address of an operand, adding flexibility and power to the
instruction set and to the architecture.

It should be clear at this point that the instructions, the dictionary of words used by a
computer to implement the ideas of the programmer, are as much a part of the
architectural fabric as the registers, the control unit or the bus structure. In fact, by
implementing instructions as strings of microinstructions stored in an on-chip control
ROM, microprocessor designers have created the opportunity for increasing. instruction
set power through microprogramming.

PROCESSOR MEMORY

Figure 1-13. Multiple Accumulator Architecture

The next major step in the architectural evolution was the design of machines based on a
set of general registers which could be used as accumulators for numerical operations or
for storage of operand addresses (Figure 1-14). The expanded capabilities allowed
increased flexibility not only in arithmetic functions but also, and more importantly, in
the generation of operand addresses via indirect addressing, and indexed addressing.

9900 FAMILY SYSTEMS DESIGN 1-23

1~

.... 1

EVOLUTION OF
MEMORY-TO-MEMORY ARCHITECTURE

A

B

c
D
E

F
G

H

Figure 1-14. General Register Architecture

Basic Decisions
In System Design

x

y

Perhaps it is well to digress for a moment and explain these terms. Indirect addressing
allows' a register to serve as a pointer to identify specific elements in a table or an array
of data (Figure 1-15). Instructions for an arithmetic operation may be used over and
over, with the pointer (or pointers) being adjusted to access different values for each
pass. In indexed addressing, the instruction contains a base value while an index register
holds the displacement value (Figure 1-16). The base value locates the table, and the
index register contains the number of the element in the table (one, two, three, etc.).
The base value must be added to the contents of the index register to obtain the actual
memory address.

1-24

PROCESSOR MEMORY

A

B

c
D X1
E Y1

F YO
G f--------------~

Y1
H r----------------1

Y2
1----------------~

Registers D and E contain the addresses of operands X1 and Y1. D and E may be incremented
to address sequential elements in tables.

Figure 1-15. Indirect Addressing

9900 FAMILY SYSTEMS DESIGN

EVOLUTION OF Basic Decisions
In System Design

MEMORY-TO-MEMORY ARCHITECTURE

XO

INDEX REGISTER

XO is the address of the first element in the table.

X1 is obtained by adding XO to the 1 in the index register.

The index register may be incremented to address sequential entries in the table.

Figure 1-16. Indexed Addressing

The general register architectures were made economically feasible by the expanded
capabilities of integrated circuits through the technological advancements of Medium
scale integration (MSI) and large scale integration (LSI) (Figure 1-17). As more and
more circuits were implemented on a chip, it became feasible to expand from two
accumulators, to a general register file, to the general register file on a single LSI
microprocessor chip.

In discussing LSI, one must not fail to recognize that the single most important impact
of LSI is in the development of memories. More bits per unit area of silicon means
higher capacity and lower cost, generally without sacrificing speed. The advent of
microprocessors was the natural evolutionary step in the utilization of memory for a
greater variety of logic and control applications.

REGISTER FILE

Figure 1-17. LSI Microprocessor

9900 FAMILY SYSTEMS DESIGN 1-25

1~

_....1

EVOLUTION OF
MEMORY-TO-MEMORY ARCHITECTURE

Basic Decisions
In System Design

In looking toward the future of memories and microprocessors, the technologists see the
implementation of an ever increasing number of memory cells and microprocessor
calculation and control functions on an ever-shrinking area of silicon (Figure 1-18).
Registers and memory cells are virtually identical in their implementation at this point,
so the words register and memory no longer connote high speed and low speed storage. In
fact, memory speed is rapidly approaching register speed (Figure 1-19).

CL
I
0
a:
w
CL
Cf)
w
~
(.!)

:ft=

100K

10K

1K

100

10
64 65 66 67 68 69 70 71 72 73 7 4 75 76 77 78

YEAR

Figure 1-18. Trend in Gates per Chip

In view of this convergence of memory speed and register speed, the architects of the
990 minicomputer (from which the 9900 is derived) envisioned an architecture in which
the instructions are written with respect to memory words rather than registers. The
architectural concept, called memory-to-memory architecture, was the basis for a new
computer design in which all memory reference instructions operate on one or two
words of memory and store the result before going on to the next instruction.

There were actually two major reasons for developing such an architecture. First, since
all instructions would reference words of memory and complete their cycles by placing
results in memory, there would be no requirement for register-save operations in a
multitask or interrupt processing environment. Second, while this approach might at first
be slightly slower in some cases, the architects envisioned that the technological
evolution would continue to narrow the gap between register speed and memory speed,
and in the long run this minor disadvantage would vanish.

1-26 9900 FAMILY SYSTEMS DESIGN

EVOLUTION OF Basic Decisions
In System Design

MEMORY-TO-MEMORY ARCHITECTURE

9

8

7

6

5

4

3

2

RATIO OF MEMORY SPEED
TO REGISTER SPEED

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

YEAR

Figure 1-19. Ratio of Memory Speed to Register Speed

Another important advantage of this new architecture, often overlooked, appears to be
an even stronger and more important justification for the development of this radical
departure from conventional computer architectures. When one instruction can identify
two memory words or operands, perform an operation, and store the result in memory,
it will replace common sequences such as LDA, ADA, STA found in the instruction
sequences of all accumulator-based machines. Furthermore, a single instruction can
access additional memory words for use in addressing operands and can even increment
pointers and employ index registers all as a part of its execution sequence. If a single
instruction can do all this, then the writing of instruction sequences, programming, must
be substantially easier. Fewer lines of code are required. (In data manipulation and
address computation sequences, the reduction is typically 3: 1.) Support software, such as
monitors, executives, and operating systems can be smaller, easier to use and understand,
and will consume less memory.

For these reasons, benchmarks written to compare the 9900 architecture with
conventional register file based microprocessors show the advantage of the 9900's
memory-to-memory architecture in three important categories: the number of bytes of
memory required, execution speed, and the number of instructions written to accomplish
a given task (Figure 1-20). The 9900 comes out ahead in all three categories.

9900 FAMILY SYSTEMS DESIGN 1-27

1...-

~1

EVOLUTION OF
MEMORY-TO-MEMORY ARCHITECTUR~

Basic Decisions
In System Design

Program memory Assembler Execution time
requirements (bytes) statements (microseconds)

9900 A B c 9900 A B c 9900 A B

Input/output handler 24 38 28 17 9 14 17 7 71 154 79

Character search 22 24 20 18 8 10 9 8 661 1636 760

Computer go to 12 12 17 14 5 5 11 8 98 362 145

Vector addition:
AN--BN = CN(1 6) 20 30 29 46 5 14 20 22 537 2098 1098

Vector addition:
Aw-BN = CN (8) 20 32 23 40 5 15 14 22 537 2108 738

Shift right 5 bits 10 6 19 20 3 3 12 9 22 56 137

Move block 14 18 16 34 4 9 9 16 537 1750 1262

Totals 122 160 152 189 39 70 92 92 2464 8154 4219

Figure 1-20. Benchmark Comparison of 9900 vs. Other Microprocessors

One final note about architecture. Memory-to-memory architecture and instructions in
the 9900 do not sacrifice the concept of "registers" as they are conceived in the
architectures with general register organizations. The general "register file" is
conceptually retained as a block of sixteen words of memory (Figure 1-21). Over two
thirds of the instructions in the 9900 refer in one way or another to this "register file" in
much the same way as prior architectures referenced the general register file in the
CPU. Thus, base addresses, subroutine linkage and interrupt save operations can all be
accomplished via the "register-file-in-memory" concept.

By using memory for the register file, the advanced memory-to-memory architecture
allows new programming flexibility. There is a way to identify multiple register files in
9900 based systems (Figure 1-22). Each basic process can have its own set of "registers."
There is no limit (except memory size) to the number of "registers" available for use in

programming the functions _of a particular application.

The memory-to-memory architecture of the 990 and 9900 products is clearly
revolutionary and innovative. Programming effort for the 9900 is typically less than half
that for any other microprocessor currently available because the instructions operate on
words of memory and store results automatically. This means not only that programs
consume less memory, but execution speed (for the 16-bit processors) is faster than that
of other processors.

c

49

808

145

1866

936

81

2246

6131

1-28 9900 FAMILY SYSTEMS DESIGN

EVOLUTION OF Basic Decisions
,In System Design MEMORY-TO-MEMORY ARCHITECTURE

9900
MICRO

PROCESSOR

PROGRAM
MEMORY

REGISTER
FILE

DATA
MEMORY

Figure 1-21. Register File in Memory

.-------------. I
9900

MICRO
PROCESSOR

.___________. \

PROGRAM
MEMORY

REGISTER
FILE

1
REGISTER

FILE
2

REGISTER
FILE

3

DATA
MEMORY

Figure 1-22. Multiple Register Files in Memory

9900 FAMILY SYSTEMS DESIGN 1-29

1~

~1

GETTING UP TO SPEED
ON MICROPROCESSORS

GETTING UP TO SPEED ON MICROPROCESSORS

Basic Decisions
In System Design

By now you may be convinced that this book contains a great amount of information
about microprocessors and microcomputers, but you may feel that you are not as well
prepared to understand it as you would like to be. This section has the answer. Here are
the steps you should take to learn about microprocessors and microcomputers. The
knowledge gained will help you in all new designs and will be especially helpful in
designing with the 9900 family of processors and peripherals.

Few people have had the opportunity to learn about microcomputers in college. In fact,
schools and colleges exist primarily to teach you how to learn, and not to teach you
everything you need to know to do a particular job. Your effectiveness in;performing
any job is directly related to your willingness to acquire new specialized knowledge in
your particular field. This book will serve as one source of specialized knowledge in the
field of microcomputers, but it is focused on the 9900 family. And you may require
additional education in this field before achieving a full understanding of the material
presented.

It may be that knowledge of MOS and I2L technologies is needed for a clearer
understanding of interfacing techniques. Basic computer fundamentals, such as storage of
data and programs and the sequential operations may be an area you would like to study.
It could be that you feel a need to improve your understanding of programming and the
concepts of building programs via the modular approach. The list of specialized areas
within the field of microcomputer technology can be quite long.

Technology advances so rapidly today that it seems virtually impossible to keep up,
much less catch up. But you can do both, and without spending an inordinate amount of
time. To acquire specialized knowledge in any field, you should devote 30 minutes a day
to reading books or periodicals which contain the information you need. Advising you on
the implementation of such a program is not the intent of this section. You know where
you are and where you are going. What you need is a clear path or plan of action to
achieve the goal: the acquisition of specialized knowledge about microprocessors and
microcomputers.

The first step is to find authoritative texts on the various subjects in the field. This
chapter contains a bibliography of texts and periodicals from which to begin your search
for new information. Get your hands on these books and articles. Review them for
general content and readability, then decide which ones are best suited to your needs. Set
up a plan to read one or more of these books in a definite period of time, devoting a
scheduled, uninterrupted period of 30 minutes a day to this program. Take notes while
you are reading and (if the book belongs to you) underline the information which is
especially important to you.

1-30 9900 FAMILY SYSTEMS DESIGN

Basic Decisions
In System Design

BIBLIOGRAPHY

As you are getting up to speed, you will become aware of certain periodicals that contain
articles most directly suited to your background and experience. Subscribe to one or
more of these or be sure to obtain each issue as it is published so that you are not only 1 ~
reading about fundamentals, but current topics, the latest improvements in devices and
systems.

Set up the goal, the plan of action; and then, above all, form the habit of reading for 30
minutes a day. Few people can set up such a plan, and fewer still can continue to execute
it for long periods of time. But if you persist, you can learn, not just one, but al! facets of
design with microprocessors and microcomputers, and in time you will achieve the success
you desire.

BIBLIOGRAPHY

Boo Ks

Altman, L., Microprocessors, Electronics Book Series, McGraw-Hill, 1975

Bartree, T. C., I. L. Lebow, and I. S. Reed, Theory and Design of Digital Machines,

McGraw-Hill, 1969

Bibbero, R., Microprocessors in Instruments and Control, John Wiley, 1977

Blakeslee, Thomas R., Digital Design with Standard MS! and LSI, John Wiley, 1973

Gear, C. William, Computer Organization and Programming, McGraw-Hill, 1969

Greenfield, Joseph D., Practical Digital Design Using !C's, John Wiley, 1977

Hansen, P.B., The Architecture of Concurrent Programs, Prentice-Hall, Inc., 1977

Hansen, P.B., Operating System Principles, Prentice-Hall, Inc., 1973

Knuth, D. E. The Art of Computer Programming, VOL I, Fundamental Algorithms, 2nd
Edition, Addison-Wesley, 1973.

Knuth, D.E. The Art of Computer Programming, VOL II, Semi-Numerical Algorithms,
Addison-Wesley, 1969

Knuth, D.E. The Art of Computer Programming, VOL III, Sorting and Searching,
Addison-Wesley, 1973.

Luecke, G., J. Mize, W. Carr, Semiconductor Memory Design and Application, McGraw
Hill, 1973

Malrino, A., Digital Computer Electronics, McGraw-Hill, 1977

McWhorter, G;, Understanding Digital Electronics, Texas Instruments Learning Center,
1976

Morris, R. L., J. D. Miller, Designing with TTL Intergrated Circuits, McGraw-Hill, 1971

9900 FAMILY SYSTEMS DESIGN 1-31

~1

BIB LI OG RAPHY Basic Decisions
In System Design

Norris, B., Power Transmission and TTL Integrated-Circuit Applications, McGraw-Hill,
1977

Silver, G., Computer Algorithms and Flowcharting, McGraw-Hill, 1975

Sloan, M.E., Computer Hardware and Organization, Science Research Associates, Inc.,
1976

Solomon, L., Getting Involved with Your Own Computer; A Guide for Beginners, Ridley
Enslow Publishing, 1977

Soucek, B., Microprocessors and Microcomputers, John Wiley, 1976

Torrero, E., Microprocessors, New Directions for Designers, Electronic Design, Hayden,
1975

Wester, John G. and William D. Simpson, Software Design for Microprocessors, Texas
Instruments Learning Center, 1976

Williams, Gerald E., Digital Technology, Science Research Associates, Inc., 1977

Zaks, R., Microprocessors: From Chips to Systems, Sybex, 1977

Staff of the Texas Instruments Learning Center, Understanding Solid-State Electronics,
3rd Edition, Texas Instruments Learning Center, 1978

ARTICLES

Barna, Arpad, and Dan I. Porat, "Integrated Circuits in Digital Electronics': John Wiley,
1973

Reid-Green, K.S., ''A Short History of Computing", Byte, Vol. 3, No. 7,July 1978

Special Issue on Microelectronics, "Scientific American': Vol. 23 7, No. 3, September
1977

Electronic Business, ''New Rules in an Old Game': Vol. 18, No. 6, June 1978

LIST OF PERIODICALS TO BE MONITORED

ACM Computing Surveys, The Survey and Tutorial Journal of the Association for Computing
Machinery, ACM, Inc., Mt. Royal and Guilford Avenues, Baltimore, MD 21202

EDN, Cahners Publishing Co., 270 St. Paul St., Denver, Colorado 80206

Electronics, McGraw-Hill Inc., 1221 Avenue of the Americas, New York, N.Y. 10020

Electronics Design, Hayden Publishing Co., 50 Essex St., Rochelle Park, N.J. 07662

IEEE Spectrum, The Institute of Electrical and Electronics Engineers, Inc., 345 East 4 7
Street, New York, N.Y. 10017

Interface Age, McPheters, Wolfe & Jones, 16704 Marquardt Avenue, Cerritos, CA
90701

1-32 9900 FAMILY SYSTEMS DESIGN

CHAPTER2

Product
Selection Guide

THE 9900 FAMILY -
WHAT IS IT?

THE 9900 FAMILY - WHAT IS IT?

Product
Selection Guide

The 9900 Family is a compatible set of microprocessors, microcomputers, microcomputer
modules, and minicomputers. It is supported with peripheral devices, development
systems, and software. It provides a designer with a system solution having built-in
protection against technological obsolescence. The family features true software
compatibility, 1/0 bus compatibility and price/performance ratios which encompass a
wide range of applications. The family is designed with a unique flexible architecture
to allow technological changes to be easily incorporated while minimizing the impact
these changes have on an overall system design.

FAMILY OVERVIEW

THE HARDWARE FAMILY

Figure 2-1 is a diagram of the 9900 Family members. The spectrum of microprocessors and
microcomputer products available in a variety of formats is shown in Figures 2-2 and 2-3. In
the first part of Figure 2-1, the microprocessors or microcomputers are combined with
microcomputer support components (Figure 2-3) to form systems. These systems also
include 1/0 interface, read-only and random access memory, and additional support
components such as timing circuits and expanded memory decode .

The family also includes microcomputer board modules containing the 9900
microprocessors and peripheral components (Figure 2-4). As shown in the second part of
Figure 2-1, these modules can be used for product evaluation, combined for system
development or applied directly as end equipment components.

When applications require minicomputers, completely assembled units can be purchased
and installed. The software will be fully compatible with any associated microprocessor and
microcomputer system. Figure 2-5 gives a brief overview of the minicomputers.

These three levels of compatible hardware - the TMS9900 family parts, the TM990
microcomputer modules, and the 990 minicomputers - provide the flexibility to obtain an
optimum match with the user's system application.

THE SoFTW ARE AND DEVELOPMENT SYSTEMS SuPPORT

New products cannot be made without design, development, test and debug. Development
support for all of the levels is shown in Figure 2-1, including:

A. Product documentation
B. Software (or firmware)
C. Software development systems
D~ Prototyping systems.

Software and development and prototyping systems are outlined in Figure 2-6.

2-2 9900 FAMILY SYSTEMS DESIGN

Product
Selection Guide

SINGLE-CHIP SYSTEM

1 - 16-BIT 1/0 BUS
40 PINS

16-BIT
SINGLE-CHIP

MICROCOMPUTER

TMS9940E/M
(EPROM/

MASKED ROM)

FAMILY OVERVIEW

MINICOMPUTERS

Figure 2-1. The 9900 Family

8-BIT DATA BUS
1 - 16-BIT 1/0 BUS
40 PINS

MULTIPLE-CHIP SYSTEMS

8-BIT DATA BUS
1 - 16-BIT 1/0 BUS
40 PINS

Figure 2-2. 9900 Family CPUs

16-BIT DATA BUS
1 - 16-BIT 1/0 BUS

64 PINS

9900 FAMILY SYSTEMS DESIGN 2-3

2~

FAMILY OVERVIEW

CPU's

Product
Selection Guide

TMS9900
TMS9900-40
SBP9900A
TMS9980A/

NMOS 16-Bit Microprocessor, 64 Pins
Higher Frequency Version 9900
12L Extended Temperature Range 9900

9981
TMS9985

40-Pin, NMOS 16-Bit Microprocessor with 8-Bit Data Bus. 9981 has
XTAL Oscillator

40-Pin, NMOS 16-Bit Microprocessor with Single 5V Supply and
256-Bits of RAM

TMS9940E
TMS9940M

40-Pin, NMOS Single Chip Microcomputer, EPROM Version
40-Pin, NMOS Single Chip Microcomputer, Mask Version

PERIPHERAL DEVICES

TMS9901
TMS9901-40
TMS9902
TMS9902-40
TMS9903
TMS9904
TMS9905
TMS9906
TMS9907
TMS9908
TMS9909
TMS9911

Programmable Systems Interface
Higher Frequency Version of 9901
Asynchronous Communications Controller
Higher Frequency Version of 9902
Synchronous Communications Controller
4-Phase Clock Driver
8 to 1 Multiplexer
8-Bit Latch
8 to 3 Priority Encoder
8 to 3 Priority Encoder w /Tri-State Outputs
Floppy Disk Controller
Direct Memory Access Controller

TMS9914
TMS9915
TMS9916
TMS9922
TMS9923
TMS9927
TMS9932
SBP9960
SBP9961
SBP9964
SBP9965

GPIB Adapter
Dynamic RAM Controller Chip Set
92K Magnetic Bubble Memory Controller
250K Magnetic Bubble Controller
250K Magnetic Bubble Controller
Video Timer I Controller
Combination ROM/RAM Memory
1/0 Expander
Interrupt-Controller /Timer
SBP9900A Timing Generator
Peripheral Interface Adapter

ADD-ON MEMORY

2-4

ROMS

TMS4 700-1 024 X 8
':'TMS4710-1024 X 8
TMS4 732-4096 X 8
SBP8316-2048 X 8
SBP9818-2048 X 8

':'Character Generator-ASCII

·:·':'PROMS

SN74S287- 256 X 4
SN74S471- 256 X 8
SN74S472- 512 X 8
SN74S474- 512 X 8
SN74S476-1024 X 4
SN74S478-1024 X 9.6.

.6.Equivalent to
SN74S2708

·:·•:•Also available
in 54 series

EPROMS

TMS2508
TMS2708
TMS27L08
TMS2516
TMS2716
TMS2532

TMS4008
TMS4016
TMS4033
TMS4034
TMS4035
TMS4036-2
TMS4039-2
TMS4042-2

-1024 x 8
-1024 x 8
-1024 x 8
-2048 x 8
-2048 x 8
-4096 x 8

DYNAMIC RAMS

TMS4027 -4096 X 1
TMS4050-4096 X 1
TMS4051-4096 X 1
TMS4060-4096 X 1
TMS4116-16,384 X 1
TMS4164- 65,536 X 1

STATIC RAMS

-1024 x 8 TMS4043-2 - 256 x 4
-2048 x 8 TMS4044 -4096 x 1
-1024 x 1 TMS40L44 -4096 x 1
-1024 x 1 TMS4045 -1024 x 4
-1024 x 1 TMS40L45 -1024 x 4
- 64 x 8 TMS4046 -4096 x 1
- 256 x 4 . TMS40L46 -4096 x 1
- 256 x 4 TMS4047 -1024 x 4

TMS40L47 -1024 x 4

Figure 2-3. Microcomputer Support Components

9900 FAMILY SYSTEMS DESIGN

Product
Selection Guide

FAMILY OVERVIEW

TM990/100M
TM990/101M
TM990/101 M-10
TM990/180
TM990/189

TM990/201
TM990/206

MICROCOMPUTER MODULES

Microcomputer, 1-4K EPROM
Microcomputer, 1-4K ROM, 1 K-2K RAM
Microcomputer, 1-4K ROM, 1 K-2K RAM, Evaluation POWER BASIC@
Microcomputer, (8-Bit Data Bus), 1-2K ROM, 256-1 KRAM
Microcomputer, University Microcomputer Module

Memory Expansion Module, 4K-16K ROM, 2K-8K RAM
Memory Expansion Module, 4K-8K RAM

TM990/301 Microterminal
TM990/302 Software Development Module
TM990/310 1/0 Expansion Module

TM990/401 '~ TIBUG@ Monitor in EPROM
TM990/ 402':' Line-by-Line Assembler in EPROM
TM990/ 450':' Evaluation POWER BASIC@ -8K Bytes in EPROM
TM990/451 ':' Development POWER BASIC-12K Bytes in EPROM
TM990/452':' Development POWER BASIC Software Enhancement-4K Bytes in EPROM

TM990/501-521 Chassis, Cable and Power Supply Accessories

~'FIRMWARE

Figure 2-4. TM990 Board Modules and Software Support

Software is provided in EPROM (firmware) to oper.ate with the assembled microcomputer
modules. It is provided on either "floppy" diskette or on disk pack for use with the
minicomputers, and is distributed on magnetic tape for use on in-house computing
equipment.

In addition to the development systems available directly from Texas Instruments, a
Fortran-IV cross-support package with assembler and simulator is provided by TI for
those desiring to use in-house computing equipment. GE, National-CSS and
Tymeshare provide similar capabilities on a timeshared basis.

POWER BASIC and PASCAL software systems have just been introduced and will
continue to be expanded in the future.

Hardware and software for development and production use is available in appropriate
system sizes to support individual designers as well as large design teams.

9900 FAMILY SYSTEMS DESIGN 2-5

FAMILY OVERVIEW Product
Selection Guide

2-6

CS990/4 • A 990/4 Minicomputer with 4K words of RAM
• Expanded memory controller with 4K words of RAM
• 733 ASR ROM Loader
• 733 ASR Data Terminal
• Necessary chassis, power supply, and packaging

FS990/ 4 • Model 990/ 4 Minicomputer with 48K bytes of parity memory in a 13-slot chassis with
programmer panel and floppy disk loader /self-test ROM

• Model 911 Video Display Terminal (1920 character) with dual port controller
• Dual FD800 floppy disk drives
• Attractive, office-style single-bay desk enclosure
• Licensed TX990/TXDS Terminal Executive Development System Software with one-year

software subscription service

FS990/ 10 • Model 990/1 O Minicomputer with 64K bytes of error-correcting memory and mapping in a
13-slot chassis with programmer panel and floppy disk loader I self-test ROM

• Model 911 Video Display Terminal (1920 character) with dual port controller
• Dual FD800 floppy disk drives
• Attractive, office-style single-bay desk enclosure
• Licensed TX990/TXDS Terminal Executive Development System Software with one-year

software subscription service

DS990/ 1 O • Model 990/1 O Minicomputer with mapping, 128K bytes of error-correcting memory in a
13-slot chassis with programmer panel and disk loader ROM

• Model 911 Video Display Terminal (1920 character) with dual-port controller
• Licensed copy of DX10 Operating System on compatible disk media, with one-year software

subscription service
• DS10 disk drive featuring 9.4M bytes of formatted mass storage, partitioned into one

4.7M-byte fixed disc and a 5440-type removable 4.7M-byte top-loading disk cartridge

Options:
One additional DS1 O disk drive with 9.4M bytes of formatted mass storage, in deskmount,
rackmount, or quietized pedestal version

Figure 2-5. 990 Minicomputers

9900 FAMILY SYSTEMS DESIGN

Product
Selection Guide

TM990/401
TM990/402
TMSW101MT

TM990/450
TM990/451
TM990/452

TMSW201F/D
TMSW301 F/D

FAMILY OVERVIEW

PRODUCT DOCUMENTATION

9900 Family Systems Design and
Data Book

9900 Software Design Handbook
TM990 System Design Handbook
990 Computer Family Systems Handbook
Product Data Manuals
Product User's Guides
Product Brochures
Application Notes
Application Sheets

SOFTWARE AND FIRMWARE

TIBUG Monitor in EPROM
Line-by-Line Assembler in EPROM
ANSI-Fortran Cross-Support Assembler, Simulator and
ROM Utility
Evaluation POWER BASIC -SK Bytes in EPROM
Development POWER BASIC - 12K Bytes in EPROM
Development POWER BASIC Software Enhancement
Package - 4K Bytes in EPROM
Configurable POWER BASIC in FS990 Diskette
TIPMX - Tl PASCAL Executive Components Library

SOFTWARE DEVELOPMENT SUPPORT SOFTWARE

TM990/302 Software Development Module Edit, Assembler, Load, Debug, PROM Programming
TM990/40DS Software Development system for Assembler, Debug Monitor, Trial-in-System Emulator, PROM

TMS9940 Microcomputer Programmer
CS990/4 Single User Software Development Text Editor, Assembler, Linking Loader, Debug Monitor,

System (Cassette Based), uses PROM Programmer
PX990 software.

FS990/4 Software Development system Source Editor, Assembler, Link Editor, PROM Programmer
(Floppy Disk)

FS990/10 Software Development System Same as 990/4, e'xpandable to OS System
(Floppy Disk)

DS990/10 Disk Based 990/1 O with Macro Source Editor, Link Editor, Debug, Librarian, and High-Level
Assembler Language such as FORTRAN, BASIC, PASCAL, and COBOL

MICROPROCESSOR PROTOTYPING LAB FOR DESIGN AND DEVELOPMENT

AMPL FS990 with video display and dual floppy diskettes includes TX990/TXDS system software - Text Editor,
Assembler, and Link Utility - and has an in-circuit Emulator Module and a Logic-State Trace Module for
proposed system emulation and analysis.

GE, NCSS,
Tymeshare

TIMESHARE SYSTEMS
Assembler, Simulator, ROM Utilities

Figure 2-6. The 9900 Family Software and Development Systems

9900 FAMILY SYSTEMS DESIGN 2-7

~2

FAMILY OVERVIEW

TYPICAL APPLICATIONS

Product
Selection Gulde

The range of applications for microprocessors and microcomputers expands each day;
Figure 2-7 provides a broad scope of the applications extending from those that can be
satisfied with single-chip microcomputers to those requiring high performance multichip
systems. The market tends to be characterized by lower performance, high volume
single-chip systems, and higher performance, low volume multichip systems.

As shown in Figure 2-7, the spectrum of applications is satisfied throughout by 9900 Family
members. The single-chip 16-bit microcomputer, the TMS 9940, is used where there is
large volume, because it has the lowest cost, yet achieves outstanding performance. At the

other end are the system with the 16-bit TMS 9900 and SBP 9900A CPUs, the
specially designed family peripherals, and add-on memory. For maximum system
performance, the bit slice SN74S481 units are available. For in-between
performance limits there are the 16-bit CPUs using 8-bit data buses. The TMS
9980A/81 has lower cost, and the TMS 9985 will accommodate larger memory for
extended applications. Both proc~ssors use the more economical 40-pin package.
Applications in the low and medium performance range include simple instruments,
computer peripherals, cash registers and controls for manufacturing.

At the higher performance end, a myriad of products that are emulating many
computer-like functions - data terminals, point-of-sale terminals, data acquisition systems,
process control systems, military systems - are all gaining performance at lower cost by
using microprocessor multichip systems.

2-8

w
0
z
<(

~
a:
0
LL
a: w
a..

SN74S481

(Bit Slice)
TMS9900-40

TMS9900

SBP9900A

TMS9985

TMS9981

TMS9980A

TMS9940E

TMS9940M

COMPUTERS

INTELLIGENT GRAPHICS

GRAPHIC SYSTEMS

WORD PROCESSING

DATA TERMINALS

MILITARY SYSTEMS
MEDICAL DIAGNOSTICS

MICROCOMPUTERS

POS DATA COLLECTION

PROCESS CONTROL

PATIENT MONITORS

NUMERICAL CONTROL

METERING CONTROLS

SECURITY SYSTEMS
PROTOTYPING

MANUFACTURING CONTROLS

MEDICAL INSTRUMENTATION

VOLUME --------1~

GAMES

AUTOMOTIVE

COMPUTER TERMINALS

INSTRUMENTS

CASH REGISTERS

CALCULATORS

Figure 2-7. Application Spectrum

9900 FAMILY SYSTEMS DESIGN

Product
Selection Guide

HARDWARE SELECTION

Figure 2-8 details further the applications for single-chip and multiple-chip systems.

SINGLE-CHIP

MICROCOMPUTER

Gas Pump Control
Alarm Systems
Paging Systems
Sorters
Vending Machines
Microwave Ovens
Appliance Control
Power Tools
Utility Meter Monitoring
Environmental Controls
Automotive
Games
Cryptography
Process Controls
Navigation Equipment
Metering Controls

HARDWARE SELECTION

MULTIPLE-CHIP SYSTEMS

Video Controllers
Telephone Switching
Word Processing Equipment
Manufactbring Material Handlers
Electronic Musical Instruments
Small Business/Financial Systems
Factory Automation
Instrumentation
Data Acquisition
Machine Controls
Medical Equipment
Security Systems
Machine Tool Controls

Figure 2-8. Applications

CPU's-Microcomputer
Computer Peripherals
Intelligent Terminals
Tape Drive Controls
Graphic Terminals
Communications Network

Communications Processing
Data Concentration
Input Terminals

General Purpose Terminals

To reduce the range of detail which must be considered in a given system design, it is often
possible to make a definite choice between the three hardware design levels; designing with
individual components, designing with prefabricated modules, and designing with
minicomputer subsystems. The criteria upon which this choice is based include the number
of units to be manufactured per design, complexity of design, performance requirements,
special feature requirements, microprocessor system design expertise available, and the
importance placed on product introduction - the time to the market place. General
tendencies of these decisions are known although the particular choice may be skewed by
other considerations. Here are a number of examples.

In terms of production volume, users tend to incorporate minicomputers in their designs up
to a volume of 50 to 100 identical systems per year. They tend to use prefabricated
modules if the volume is below 500 to 2000 systems per year, and for higher volume, they
tend to develop from the component level right from the start. Simple systems may not be
able to stand the cost of a minicomputer at any volume, while even at prnch higher
volumes, performance requirements may force the utilization of a disk-based
minicomputer. When system specifications require special features, this often forces the use
of modules even at low volumes. However, the need for maintenance capability may force
the use of minicomputers or prefabricated modules for system construction at extremely
large volumes. A firm with expert microprocessor design teams would tend to maximize its
value-added by designing from the component level, while a firm without hardware
designers would look for completely prefabricated systems.

9900 FAMILY SYSTEMS DESIGN 2-9

2....-

~2

HARDWARE SELECTION Product
Selection Guide

Finally, product introduction priorities often call for a compromise approach because of an
urgent need to get a product to market ahead of competition. It is often ideal to enter the
market with prefabricated systems an<l switch to in-house fabrication as the system is
accepted and sales volume builds.

TttE CoMPONENT RouTE: CPU

In the beginning your product selection decisions are tied entirely to the central processor.
A very real danger at this point is choosing a processor which is not optimum for the
design. Either the cost will be greater than desired, or the processor will not quite meet the
required performance. In the TMS9900 Family, each processor is uniquely tuned to its
applications environment while maintaining a common architecture, input/ output system
and instruction set. This commonality allows a simple move up or down the performance
scale with a minimum of redesign (See Figure 2- 9).

The single packaged CPUs divide into microprocessors and a microcomputer. The
TMS 9940 microcomputer is available either with EPROM or with mask
programmable ROM.

Microprocessors

TMS9900 TMS9980A/81
TMS9900-40 TMS9985
SBP9900A

Microcomputer
TMS9940 E/M

The basic architecture of each is shown in Figure 2-10.

CRITERIA SYSTEM CHOICE FAMILY PRODUCTS USED

HIGHEST MULTI PACKAGE 1.TMS9900,SBP9900A
PERFORMANCE 2. Microcomputer peripherals

for 1/0
3. TIM9904 for clock
4. ROM, EPROM
5. RAM

TRADEOFF FOR A. MINIMUM PACKAGES 1. TMS9980A/81 (with clock)
BEST COST AT 2. Microcomputer peripherals
PERFORMANCE for 1/0
REQUIRED 3. Combined ROM & RAM

B. MINIMUM PACKAGES 1 . TMS9985 (with clock and RAM)
2. Microcomputer peripherals

for 1/0
3. ROM

LOWEST COST SINGLE PACKAGE 1 . TMS9940 Microcomputer with on
board 1/0, Clock, ROM & RAM,
Timer

Figure 2-9. Cost I Performance Trade-off

2-10 9900 FAMILY SYSTEMS DESIGN

Product
Selection Guide

A. TMS 9900 FAMILY MICROPROCESSORS

B. TMS9940 MICROCOMPUTER

T1 T2 PC WP

CONTROL CLK PWR
LINES

MPSI

INTERRUPT

DECREM 1-------~r1
FLAGS

HARDWARE SELECTION

M
A

32

AO-A15

CRUIN

CRUOUT

D0-015

110 PORTS

Figure 2-10. Basic Architecture of 9900 Family

9900 FAMILY SYSTEMS DESIGN 2-11

2

IJllii-2

HARDWARE SELECTION Product
Selection Gulde

CPU Selection

Selecting a CPU for an application requires a study of the CPU characteristics to see
which one fits best. Figure 2-11 provides key characteristics of the 9900 Family CPUs as
well as a bit-slice version (SN54/74S48i) for the ultimate in performance.

SN54S481 SBP9900A TMS9900/
SN74S481 TMS9900-40

Note 1

Number of bytes 65K 65K 65K
addressable

Number of Interrupts 16 16 16

Number of Pins 48/chip 64 64

Power Supply +5 Resistor +12, ±5
Requirements Programmable

Note 2

Technology SchottkyTIL 12L NMOS

Environmental
(Temperature, ° C) -55 to 125 -55to125 Oto 70

Clock Rate 10MHz 3M Hz 3.3MHz/4MHz

Relative Thruput 6 0.9 1.0/1.3

Number of Address 15 15 15
Bus Lines

Number of Data 16 16 16
Bus Lines

Clock SN54S124 SN54LS124 TIM9904

Note 1 : Based on four slices microcoded to duplicate TMS9900.
Note 2: Voltage for the SBP9900A is 1.5 to 30 volts with a series resistor.
Note 3: Relative thruput is 0.65 with off-chip RAM and 0.8 with on-chip RAM.

TMS9980A/ TMS9985
TMS9981

16K 65K
256 on chip

5 5

40 40

+12, ± 5 +5

NMOS NMOS

Oto 70 o to 70

10MHz 5MHz

0.6 0.65-0.8
Note 3

14 16

8 8

On Chip On Chip

TMS9940E/M

2K EPROM/128 RAM
- -- ·- --

2K,128 RAM/128 RAM

4

40

+5

NMOS

Oto 70

5MHz

1.2

Note 4

Note 4

On Chip

Note 4: No external memory or data bus. 32 general purpose 1/0 pins 10 of which provide 256 bit CRU 1/0 expansion if desired.

Figure 2-11. Key Characteristics of 9900 Family CPUs

2-12 9900 FAMILY SYSTEMS DESIGN

Product
Selection Gulde

HARDWARE SELECTION

Figure 2-12 provides, in a "quick look" format, four specifications of the family members
that are usually important to all applications - the directly addressable memory, the data
bus length, the operating temperature, and the package size.

Figure 2-13 plots the relative thruput of the 9900 Family microprocessors and
microcomputers. The thruput, estimated by calculating execution times for a given
benchmark program, is plotted relative to the performance of the TMS9900. 30% more 2-111111111

thruput is obtained using the TMS9900-40. The thruput of the SBP9900A is 90% of the
TMS9900. Both of these processors operate with a full 16-bit data bus and are in 64-pin
packages. As mentioned previously, ultimate performance is obtained by using a bit-slice
microprocessor. A relative thruput of six is shown for four SN54/74S481 bit-slice packages
microcoded to duplicate a TMS9900.

65K

MEMORY
BYTES

16K

125°

100°

70°

TEMP
oc

oo

-55°

DIRECT ADDRESSABLE MEMORY CAPABILITY

SBP9900A TMS9900 9940 9980A/81 9985

Li2K EPROM/ROM
128 BYTE RAM
ON-CHIP

CPU'S

OPERATING TEMPERATURE

---r-1--I]
--- -- -- -

SBP9900A TMS9900 9940 9980A/81 9985

CPU'S

DATA BUS LENGTH

16

BITS

8

SBP9900A TMS9900 9940 9980A/81 9985

CPU'S

Li MICROCOMPUTER, DATA BUS NOT AVAILABLE

64

PACKAGE SIZE

PINS

40

SBP9900A TMS9900 9940 9980A/81 9985

CPU'S

Figure 2-12 "Quick Look" at 9900 Family CPU's

9900 FAMILY SYSTEMS DESIGN 2-13

~2

HARDWARE SELECTION

RELATIVE
THRUPUT

6

1.0

0.5

SN54/74S481
BIT-SLICE APPROACH TMS9900-40

SBP9900A

TMS9940 TMS9985

TMS9900 TMS9980A/81

Product
Selection Guide

Figure 2-13. Thruput of 9900 Family CPU'S

Cost reduction can be realized via 40-pin packaging. This is accomplished by changing the
external operating configuration to an 8-bit format even though the internal processor is a
16-bit processor. This causes a reduction in thruput - the thruput of the 9980A/81 and
9985 is reduced to 60% to 80% of the TMS9900 - because a byte organized memory is
required and the number of memory accesses will obviously be increased. The
advantage, of course, is that family software can be used even though the 8-bit
configuration is used. Note that the 9940 microcomputer thruput is 20% greater than
the TMS9900. Excellent performance is obtained from this single-chip microcomputer.

The 9980A/8 l is designed for the lowest system cost for full family performance while the
9985 spans the link between microprocessor and microcomputer by offering RAM memory
on board.

Flexible 1/0

The TMS9900 provides non-multiplexed parallel 1/0 and memory control for maximum
performance when needed, with full 16-bit address and data bus. It also has a separate serial
bus to allow use of minimum cost, maximum funtionality peripherals for relatively slow
I/ 0 processes which will tolerate the reduced speed. This is the Communications
Register Unit, CRU.

2-14 9900 FAMILY SYSTEMS DESIGN

Product
Selection Gulde

HARDWARE SELECTION

Family Members Fitted to the Application

The TMS9980A/81 and the TMS9985 multiplex the data bus for reduced cost and
package size at some sacrifice in performance. The TMS9940 is the least expensive
approach for those applications which will tolerate the limitations of a single-chip. It
provides full computer capabilities, albeit of a limited range, on a single integrated circuit.
By not taking the address and data bus off-chip, buffer time delays are eliminated resulting

2
,.......

in higher performance within a limited memory range (2K EPROM/ROM, 128 bytes ...,...
RAM). For those applications requiring better temperature or reliability performance than
that available from NMOS processors, the SBP9900A provides the same sophisticated
processor functions as the TMS9900 over military and industrial temperature and
specification ranges.

Interrupt Flexibility

The 9900 Family provides fully prioritized, vectored interrupts as well as software
vectored interrupts for maximum flexibility.

AnvANTAGES OF 9900 FAMILY CPUs

True Compatibility

The greatest advantage of using the 9900 Family as mentioned earlier, is the fact that it is a
truly compatible family. Many so-called families of CPUs are not truly compatible in
instruction set, in 1/0 interfacing, or in architecture. The 9900 Family attains
compatibility in all three areas. It is difficult and expensive to move from the use of one
microcomputer family to the use of another. Of equal importance, in non-compatible
families, it is often just as expensive to move from one member to another. When faced
with such a move, serious consideration should be given the 9900 family, because doing so
can eliminate most of the trauma of future moves, and quite possibly ease the present one.

Lower Costs

As seen in Chapter 1, while system costs are dropping at a 15% to 20% yearly rate,
software costs are actually rising. Thus, a family that provides the same and more
capabilities with less programming saves software costs. The sophisticated
memory-to-memory instruction set of the 9900 Family eases assembly language
programming, at the same time reducing the memory storage requirement and
increasing execution speed.

9900 FAMILY SYSTEMS DESIGN 2-15

HARDWARE SELECTION

Instruction Set

Product
Selection Gulde

Instruction sets are inherently difficult to compare. Figure 2-14 is a relatively simple way.
It gives three numbers for each of three representative microprocessor families. The
second number is the number of instructions used by manufacturers when advertising their
product. In many cases it has little to do with the power of the instruction set. The first
number is the number of distinct functions included in the instruction set. It represents to a
certain extent the uniqueness of the instruction set. In the 8080 and 6800 families,
instructions which take care ofredundant actions solved automatically by the 9900 Family
are not included. The third number represents combinations. Many advertised instructions
are obtained by giving a separate name to particular combinations of the basic functions and
addressing modes. Many of these are possible. The last set of numbers shows the result of
taking the third number to its extreme and listing all possible combinations for each of the
families. 62,235 are possible for the 9900 Family. The number of possible combinations is
derived from the fact that certain instructions leave several bits unspecified to allow for a
variety of addressing modes. In the 9900, 12 instructions (Add, Subtract, etc.) leave 12 bits
unspecified, so there are 4096 (2 12

) variations of each, times 12, or 49,152 combinations.
Eight-bit instruction sets simply do not allow this degree of flexibility.

PROCESSOR

INSTRUCTIONS 8080 6800 9900

DISTINCT 27 26 36
ADVERTISED 78 72 69
COMBINATIONS 237 169 62,235

Figure 2-14. Instruction Set Comparison

Memory-to-Memory Architecture

Memory-to-memory architecture means high speed context switching in interrupt
processing and in subroutine processing. All processors must save the contents of the CPU
registers as a prerequisite to processing an interrupt service routine. The register contents
to be saved include the PC (program counter), ST (Status register), and one or more
general registers. For the 9900, the registers to be saved are only the PC, ST and WP
(workspace pointer).

2-16 9900 FAMILY SYSTEMS DESIGN

Product
Selection Guide

HARDWARE SELECTION

THE COMPONENT RouTE: PERIPHERALS

Microcomputer component peripherals perform functions that assist the CPU in a
microprocessor or microcomputer system. Data communications through serial data links in
a synchronous or asynchronous mode; parallel input and output interfaces for general
purpose I/O, instrument communications, direct memory access or mass storage control;
and display control and memory expansion and control are some of the present
peripheral functions provided as shown below. 2

FAMILY UNITS-INTERFACING TECHNIQUES

Serial I/O for Data Communications

Asynchronous Communications Controller
4 MHz Version

Synchronous Communications Controller
Parallel I/O

General Purpose
Programmable Systems Interface

4 MHz Version
II 0 Expander
Interrupt-Controller /Timer

Instrument Communications
General Purpose Interface Bus Adapter

Direct Memory Access
Direct Memory Access Controller

Mass Storage
Floppy Disk Controller

CRT Display (Memory Mapped I/O)
Video Timer I Controller

Memory

Combination ROM/RAM Memory
Memory Control

Dynamic RAM Controller Chip Set
Refresh Timing Controller
Memory Timing Controller
Multiplexer /Latch

FAMILY UNITS-SUPPORT LOGIC

Four-Phase Clock Driver
8 to 1 Multiplexer
8-Bit Latch
8 to 3 Priority Encoder
8 to 3 Priority Encoder W /Three State Outputs

9900 FAMILY SYSTEMS DESIGN

TMS9902
TMS9902-40
TMS9903

TMS9901
TMS 9901-40
SBP9960
SBP9961

TMS9914

TMS9911

TMS9909

TMS9927

TMS9932

TIM9915A
TIM9915B
TIM9915C

TIM9904
TIM9905
TIM9906
TIM9907
TIM9908

2-17

~2

HARDWARE SELECTION Product
Selection Gulde

Significant progress has been made in implementing these important functions in
high-functional-density designs for the 9900 Family. This integration will continue in the
future. It provides cost-effective package substitutions for multiple standard TTL
units. The result is reduced assembly costs and materials, increased reliability, and shorter
time from design to production.

As the key features of the microcomputer component peripherals are reviewed, note these
points: (1) Many of the peripherals units are as complex or even more complex than the
CPUs they support; (2) Many of the peripheral units are designed to be prograt!lmable
providing outstanding flexibility to vary their use in system applications. Such design trends
reinforce the systems concept of the future-that standard hardware will be used but varied
in use by software; (3) Family units will drive two TTL loads, allowing direct interface to
low-power Schottky, standard TTL, and even standard Schottky circuits, eliminating the
need for many special purpose peripherals which do little else than provide this interface.

Interface Techniques

A computer must be controlled by a person or another machine to be useful. It must be
programmed to accept inputs, process data, and give results as outputs. It will do only what
it is programmed to do (barring malfunction). Output results must be acted upon otherwise
the computer manipulations are worthless. Peripheral components form the required
systematic interface between the computer and the outside world and range in functional
capability from the general purpose to highly specialized units.

The interface of a microcomputer or microprocessor system to external inputs and outputs

is by serial or parallel data lines. Two parallel and two serial techniques are used. The
parallel techniques include direct memory access and CPU controlled 1/0. The serial
techniques include asynchronous and synchronous serial 1/0. A final technique called
interrupt is used to alert the processor of a change in external conditions.

Serial I I 0 for Data Communications

Serial 1/0 for data communications is handled through the TMS9902 and TMS9903. The
TMS9902 and TMS9902-40 are for asynchronous serial data that is established around the
· RS232C protocol and the TMS9903 is for synchronous data, designed for any high-speed
communications protocol. CPU control of these devices, as show in Figure 2-15 via the
Communications Register Unit, allows their construction in small, plug-compatible packages.

Parallel I I 0

GENERAL PURPOSE

General purpose parallel 1/0 and interrupt control along with an on-chip timer are
provided by the TMS9901 and TMS9901-40, as shown in Figure 2-15. The same functions
are served in FL for extended temperature range operation by the SBP9960 and SBP996 l.

2-18 9900 FAMILY SYSTEMS DESIGN

Product
Selection Gulde

HARDWARE SELECTION

PARALLEL 1/0

INTERRUPTS {
1/0

SERIAL 1/0

ASYNCHRONOUS {
SERIAL DATA

SYNCHRONOUS {
SERIAL DATA

,--~

/----.
---~

TMS9901

(OR 9901-40)
PSI

PROGRAMMABLE
SYSTEMS

INTERFACE

TMS9902
ACC

ASYNCHRONOUS
COMMUNICATIONS

CONTROLLER

(INCLUDES TIMER)

TMS9903
sec

SYNCHRONOUS
COMMUNICATIONS

CONTROLLER

(INCLUDES TIMER)

SYSTEM CLOCKS

1-----~---'I

TIM9904
(IF NEEDED)

cj>1-cj>4

INT l/F

ADDRESS

9900
FAMILY

CPU

->---+---< CRUOUT
~-~ CRUCLK

CRUIN

Figure 2-15. Microcomputer Component Peripherals for I I 0 Interface

A significant advantage of the 9900/9901parallel1/0 interface through the CRU is the
ability to transfer fields of from 1 to 16 bits of data as inputs or outputs under the command
of one instruction and to modify this structure from instruction to instruction. Additionally,
use of the CRU allows implementation of multiple functions in the TMS9901.

MEMORY-MAPPED

Since the CRU is essentially a time-division multiplexed serial port, speed critical
applications may require a faster parallel technique. Memory-mapping, the treatment of a
parallel 1/0 port as if it were a memory location, provides this technique. With the
memory-to-memory architecture of the 9900 Family; direct manipulation of such an 1/0
port is practical. The dual-TTL drive of the 9900 Family allows economical construction
of memory-mapped I/O ports using standard TTL or LS (Low-Power Schottky)
components.

9900 FAMILY SYSTEMS DESIGN 2-19

2<11111

HARDWARE SELECTION

GPIB-GENERAL PURPOSE INTERFACE BUS

Product
Selection Guide

In 197 5 the IEEE defined a very precise electrical and mechanical protocol designated the
IEEE 488 Interface Bus, or commonly known as a General Purpose Interface Bus (GPIB).
This protocol allows direct connection of instruments and processors supplied by various
manufacturers. The TMS9914 General Purpose Interface Bus Adapter either directly, or
under software control, adapts all the capabilities of the GPIB to a microprocessor bus
including talker, listener, controller and control passer. This is a general purpose
component and will work quite well with any microprocessor, although it is complemented
by the speed and power of the 9900 Family.

DMA-DIRECT MEMORY ACCESS

Many 1/0 devices can be made more effective if transfer rates can be increased beyond the
8 microseconds required for a typical memory-mapped transfer. The GPIB mentioned
above, for instance, allows data transfers at rates up to a million bytes per second. The
TMS9911 Direct Memory Access Controller allows low cost implementation of two such
super high speed ports. The TMS9911 itself is controlled by the CPU via the CRU bus,
until one of the DMA channels takes control long enough to process a DMA transfer
(either single or block) between 1/0 port and memory.

FLOPPY DISK

For those applications requiring more storage space than is convenient or economical in a
microcomputer, a mass storage device is needed. Floppy disk units provide the benefits of
fast access, reliable mass storage using a portable, easily stored media. Interfacing these
units to microprocessors is greatly simplified by the TMS9909 Floppy Disk Controller.
This device will control up to four floppy disk units using standard or minifloppies, single,
double, or triple density, hard or soft sectors. It is also capable offull IBM compatibility
(including double-sided, double density at the same time). This is a general purpose
component and will work quite well with any microprocessor. It is a memory-mapped
device and will also interface easily to a DMA controller such as the TMS991 l. The
TMS9909 can be programmed for:

1. Data encoding formats
2. Number and type of diskette drives
3. Stepper motor control rates
4. Number of sectors and tracks

It can perform the following functions:

1. Step to any track on the diskette
2. Format tracks (set initial conditions on diskette)
3. Read and write diskette data
4. Send status to the host system

2-20 9900 FAMILY SYSTEMS DESIGN

Product
Selection Guide

HARDWARE SELECTION

CRT CONTROL

The TMS992 7 video timer I controller is a memory-mapped device which contains all of
the logic necessary to generate all the timing signals for display of video data on CRT
monitors, standard or not, and interlaced or not.

This video timer I controller has nine 8-bit registers used for programming; seven for
horizontal and vertical formatting and two for the cursor character and address. All the
functions for generating the timing signals for video data display are programmable:

1. Characters per row
2. Data rows per frame
3. Raster scans per data row
4. Raster scans per frame

All timing functions are implemented on the chip except the dot generation and dot
counting which operate at video frequency. A character generator and shift register are
used to shift out video data. The control registers can be loaded by the microprocessor or
from PROM. This is a general purpose part for use with any microprocessor.

MEMORY

Contained in the microcomputer component peripherals is a unit for memory expansion,
the TMS9932, a combination ROM/RAM memory unit with 1920 bytes of ROM and
128 bytes of RAM. It contains the same key features that characterize the 9900 Family
support memory.

MEMORY CONTROL

The TIM9915 chip set consists of 3 packages, a 16-pin Refresh Timing Controller
(TIM9915A), a 16-pin Memory Timing Control (TIM9915B), and a 28-pin Multiplexer/
Latch with tri-state outputs (TIM9915C). This chip set becomes the complete.packaged set for
4K to 64K of dynamic RAM memory, and provides all the timing and control signals necessary to
interface dynamic RAM memory and make it appear as static RAM

Clock and Support Logic

Four-Phase Clock Generator I Driver

Microprocessor and microcomputer systems require clock generators and drivers for the
timing control of the system. The TMS9904 is such a unit. An oscillator which can be
crystal or inductance controlled provides the basic timing source. Four high-level clock
phases provide the 9900 microprocessor timing. Four additional TTL-level clocks can be
used to time memory or other control functions in a 9900 system.

9900 FAMILY SYSTEMS DESIGN 2-21

HARDWARE SELECTION

Support Logic

Product
Selection Gulde

Common TTL MSI peripherals included in the 9900 Family of microcomputer components
are:

TIM9905 8 to 1 Multiplexer
TIM9906 8-Bit Latch
TIM9907 8 to 3 Priority Encoder
TIM9908 8 to 3 Priority Encoder w /Tri-State Outputs

The reason, of course, is that they are standard units for accomplishing the following tasks:

1. Parallel-to-Serial Conversion
2. Multiplexing from N-lines to one line
3. Providing multiple data selectors
4. Providing bus interface from multiple sources
5. Encoding 10 line decimal to 4 line BCD
6. Encoding 8 lines to 3 lines

All units are fabricated using standard low-power Schottky TTL technology in 16-pin
packages. They have tri-state output drivers to interface directly with a system bus and are
fully compatible with all TTL interfaces.

Cost Effectiveness of NMOS LSI Peripherals

Figure 2-16 clearly demonstrates the cost effectiveness of the specially designed CRU
microcomputer component peripherals. The replacement of large numbers of less complex
packages provides a significant reduction in cost due to simplified design, layout, assembly
and testing, besides the reduced material costs.

In addition, there are major contributions to improving the reliability of the system just by
reducing the number of packages and the associated solder connections and assembly
connections external to the IC.

FUNCTION UNIT USED
SSI AND MSI

PACKAGES REPLACED

INTERRUPTS TMS9901 23
AND 1/0

ASYNCHRONOUS
TMS9902 45

SERIAL COMMUNICATIONS

SYNCHRONOUS
TMS9903

SERIAL COMMUNICATIONS 100

Figure 2-16. System Package Reduction Using Microcomputer Component Peripherals

2-22 9900 FAMILY SYSTEMS DESIGN

Product
Selection Gulde

HARDWARE SELECTION

CR U Interface

In the features for the 9900 Family, the Communications Register Unit interface provides:
1. The most cost effective 1/0 for low and medium speed peripherals via the

instruction driven serial data link.
2. Completely separate address space.
3. A choice of transferring fields of 1 to 16 bits per instruction.

The CRU serial data link is an effective mechanism for operation-per-instruction 110. The
CRU interface is simpler and therefore less expensive than memory-mapped 1/0. In
applications where there are many 1/0 transfers of one or two bits, the CRU serial data
link provides execution times that are better than for memory-mapped 1/0, which always
transfers 8 or 16 bits at a time.

One way of demonstrating the cost effectiveness of the CRU is shown in Figure 2-17.
Package pins per function are less using the CRU interface and the 9900 Family units.
Thus, costs are saved over memory-mapping in implementing the example 1/0 functions
shown.

CRU MEMORY MAPPED
FUNCTION PINS PINS

8-Bit Output 16 (TIM9906) 24
UART 18 (TMS9902) 24-40
USRT 20 (TMS9903) 24-40

Ft'gure 2-17. CRU vs Memory Mapped 110 - Package Pins Required Per Function

THE COMPONENT RouTE: MEMORY

Semiconductor memory is the most natural storage media to add to a 9900 system. It has
fast access times, an interface that is completely compatible with the microprocessor or
microcomputer, and high-density storage per package. Texas Instruments offers a broad
spectrum of storage media products in support of the 9900 Family as shown in Figure 2-1~
2-19 and 2-20. These products encompass dynamic and static random access memory, mask
programmable read-only memory, fused-link programmable read-only memory, and
eraseable programmable read-only memory.

9900 FAMILY SYSTEMS DESIGN 2-23

I

2~

~2

HARDWARE SELECTION

WORDS
BITS PER WORD

2 4

RAMs

16
SN54174S189
SN5417 4S289

'QA.

32

RAMs
SN10140

64 SN10142 ,.
SN10148

?-c_;,'O

128

s\~
RAMs

RAMs
,. .

TMS 4039, TMS 4042, TMS .4043
SN10144 '"

,,.
SN7 4S207 SN7 4S208

256 SN5417 4S20'f RO Ms PRO Ms
SN54J74S301 SN54174187 SN54174S2B7

SN54174S387

/···,,.
. \O'ZJ .. ROMs

SN5417 4S270
512 SN54/.~4S370

RAMs RAMs PROMs. •
TMS 1103 TMS 4033·· TMS 4045 SN74S476

1024 TMS 4034 TMS 4035 TMS 40L45. ,. . SN74S477
TMS 4062TMS 4063 · .. TMS 4047
SN14S209 SN74S309 , TMS 40L47

2048

4096

8192

16384

32768

65536 Figure 2-18. Matrix of Memory Products

ROM
SN5417488A
PROMS
SN54174188A
SN54/74S188
~N54174S28B

RAM
TMS 4036
PROM
SN54174186

ROMs
SN54/74S271
SN54174S371

PROMs
SN54174S472
SN5417 4S4 73
SN54 /7 4S4 7 4

• SN5417 4S4 75

RAM
TMS 4008

EPROMs
TMS 2508 ·
TMS 2708

·TMS27L08

RAM
TMS 4016

EPROMs
TMS 2516

,.TMS 2716

ROM
TMS 4732

Product
Selection Guide

8

PROMS
SN5417 4S4 70
SN54174S471

RO Ms
TMS 4700
TMS 4710
PRO Ms
SN74S478
SN74S2708

ROMs
)MS4800
SBP 8316
SBP 9818

PROM
SN74S452

2-24 9900 FAMILY SYSTEMS DESIGN

Product
Selection Guide

TYPE ORGAN.

TMS4027 4096 x 1
TMS4050 4096 x 1
TMS4051 4096 x 1
TMS4060 4096 x 1
TMS4116 16,384x1
TMS4164 65,536 x 1

'~MAXIMUM

TYPE ORGAN.

TMS4008 1024 x 8
TMS4016 2048 x 8
TMS4033 1024 x 1
TMS4034, 35 1024 x 1
TMS4036-2 64 x 8
TMS4039-2 256 X4
TMS4042-2 256 X4
TMS4043-2 256 X4
TMS4044 4096 x 1
TMS40L44 4096 x 1
TMS4045 1024 x 4
TMS40L45 1024 x 4
TMS4046 4096 x 1
TMS40L46 4096 x 1
TMS4047 1024 X4
TMS40L47 1024 X4

*MAXIMUM

TECH PINS

NMOS 16
NMOS 18
NMOS 18
NMOS 22
NMOS 16
NMOS 16

TECH.

NMOS
NMOS
NMOS
NMOS
NMOS
NMOS
NMOS
NMOS
NMOS
NMOS
NMOS
NMOS
NMOS
NMOS
NMOS
NMOS

HARDWARE SELECTION

DYNAMIC RAMS

':'PKG.
ACCESS TIME-ns Po-mW POWER TEMP

150-200 460 +5V, -5V, +12V 0°C-70°C
200-300 420 +5V, -5V, +12V 0°C-70°C
250-300 460 +5V, -5V, +12V 0°C-70°C
150-300 400 +5V, -5V, +12V 0°C-70°C
100-200 462 +5V, -5V, +12V 0°C-70°C
100-150 200 +5V 0°C-70°C

STATIC RAMS

ACCESS ':'PKG.
PINS TIME-ns Po-mW POWER TEMP.

24 150-450 450 +5V 0°C-70°C
24 150-450 495 +5V 0°C-70°C
16 450 368 +5v 0°C-70°C
16 650-1000 368 +5V 0°C-70°C
20 450-1000 450 +5V 0°C-70°C
22 450-1000 368 +5V 0°C-70°C
18 450-1000 368 +5V 0°C-70°C
16 450-1000 368 +5V 0°C-70°C
18 150-450 440 +5v 0°C-70°C
18 200-450 275 +5V 0°C-70°C
18 200-450 495 +5V 0°C-70°C
18 200-450 300 +5V 0°C-70°C
20 150-450 440 +5V 0°C-70°C
20 200-450 275 +5V 0°C-70°C
20 150-450 495 +5V 0°C-70°C
20 200-450 300 +5V 0°C-70°C

Figure 2-19. Dynamic and Static RAM in Support of 9900 Family

9900 FAMILY SYSTEMS DESIGN 2-25

2~

... 2

HARDWARE SELECTION

READ ONLY MEMORIES

ROM

PKG.
TYPE ORGAN. TECH. PINS ACCESS TIME-ns Po-mW

TMS4700 1024 x 8 NMOS 24 450 *580
.6. TMS4710 1024 x 8 NMOS 24 450 *580

TMS4732 4096 x 8 NMOS 24 450 *788

SBP8316 2048 X8 12L 24 650 500

SBP9818 2048 X8 12L 24 200 500

.6.Character Generator
*MAXIMUM

PROMS

PKG.
TYPE ORGAN. TECH. PINS ACCESS TIME-ns Po-mW

SN54/74S287 256X4 TIL(s) 16 42 *708
SN54/74S471 256 X8 TIL(s) 20 50

0

*814
SN54/74S472 512 x 8 TIL(s) 20 55 *814
SN54/74S474 512 x 8 TIL(s) 24 55 *814
SN54/74S476 1024 X4 TIL(s) 18 35 *735
SN54/74S478 1024 x 8 TIL(s) 24 45 600
SN54/74S2708 1024 x 8 TIL(s) 24 45 600

*MAXIMUM

EPROMS

*PKG.
TYPE ORGAN. TECH. PIN ACCESS TIME-ns Po-mW

TMS2508 1024 x 8 NMOS 24 350 500
TMS2708 1024 x 8 NMOS 24 350-450 800
TMS27L08 1024 x 8 NMOS 24 450 475
TMS2516 2048 x 8 NMOS 24 450 525
TMS2716 2048 x 8 NMOS 24 450 595
TMS2532 4096 x 8 NMOS 24 450 840

*MAXIMUM

POWER

+5V, -5V, + 12V
+5V, -5V, + 12v
+5V

+5v
(1.5V-30V)
500 MA

POWER

+5v SN54:

Product
Selection Gulde

TEMP.

0°C-70°C
0°C-70°C
0°C-70°C
0°C-70°C

-55°C to +125°C
0°C-70°C

-55°C to +125°C

TEMP.

0°C-70°C
+5v SN74: -55°C to +125°C
+5v
+5V
+5v
+5V
+5V

POWER TEMP.

+5V 0°C-70°C
+5V, -5V, + 12V 0°C-70°C
+5V, -5V, +12V 0°C-70°C
+5v 0°C-70°C
+5V, -5V, +12V 0°C-70°C
+5V 0°C-70°C

Figure 2-20. Read Only Memory in Support of 9900 Family

2-26 9900 FAMILY SYSTEMS DESIGN

Product
Selection Guide

HARDWARE SELECTION

Standard Memory and Compatibility

A very important characteristic of the 9900 Family is that it uses standard semiconductor
memory not memory that depends on a custom multiplexed or latched bus. The full range
of MOS, TTL, FL and ECL memories are shown in Figure 2-18. Many of these units that
support the 9900 Family are pin-compatible for ease in conversion from development
systems to production systems.

As an example, during development, package flexibility is provided.
Initially, a static RAM is used; then EPROM's can be substituted as the
system design stabilizes, and when the system is proven and in volume
production, mask ROM can be substituted.

Here is an example of the socket compatibility:

MEMORY SIZE SRAM EPROM PROM ROM

lK X 8 4008 2508 SN74S2708/478
lK X 8 2708 SN74S2708/ 4 78 4700

SRAM
+

EPROM
+

ROM

2K x 8 4016
4K X 8

2516
2532

SBP8316, SBP9818
4732

(All of these devices can fit a single socket.)

Even if the memory units are not completely compatible, due to power supplies or control
pins, simple jumpers can be used to maintain socket compatibility.

Read-Only Memory: Costs and Flexibility

Figure 2-21 shows the characteristics of read-only memories and their cost per bit vs.
design flexibility. Mask programmable read-only memory is lowest cost per bit but also has
no flexibility. It is used for high volume production after a design is proved to be correct
and no changes are expected. PROMs have excellent performance and have more
flexibility because programming is done after they are manufactured. However, once
programmed they cannot be changed. PROMs cost somewhat more than ROMs because
they use more real estate. EPROM has much more flexibility because design changes are
done quickly and because it is reuseable, but EPROM costs more to manufacture than
ROM or PROM because it is eraseable. EAROM is also indicated in Figure 2-21. This is
really "read mostly" memory, because it can be erased in a relatively short period of time
(microseconds), but once programmed again, it acts like fixed storage. EAROMs as a
practical product are still a bit in the future. The flexibility of EPROMs is well worth the
added cost. This is especially true when used as a prototyping tool.

9900 FAMILY SYSTEMS DESIGN 2-27

2~

HARDWARE SELECTION

COST (RANK)

PROGRAM TIME

SETUP CHARGE

REUSABILITY

SPEED

RELATIVE
COST/BIT

A. READ-ONLY MEMORY CHARACTERISTICS

ROM PROM EPROM

1 2 3
WEEKS MINUTES MINUTES

YES NO NO

NO NO YES

FAST VERY FAST MEDIUM

B. READ-ONLY MEMORY COST /BIT VS FLEXIBILITY

• EAROM

e EPROM

e PROM

•ROM

RELATIVE FLEXIBILITY -------'-

Figure 2-21. Read-Only Memory Overview

THE COMPONENT ROUTE: MISCELLANEOUS COMPONENTS

Product
Selection Guide

EAR OM

4

MICROSECONDS

NO

YES

SLOW

Included in the full support of the 9900 Family is the large array of SSI, MSI and linear
integrated circuits. Information on all components manufactured by Texas Instruments may
be found in the following data books:

2-28

Power Data Book
TTL Data Book (Second Edition)
TTL Data Book (2nd Edition Supplement)
Transistor and Diode Data Book
Semiconductor Memories Data Book
Optoelectronics Data Book (Fourth Edition)
Optoelectronics Data Book (Fifth Edition)
Linear Control Circuits Data Book
Bipolar Microcomputer Components Data Book
Interface Circuits Data Book
Electro Optical Components
Voltage Regulator Handbook
MOS Memory - 1978
9900 Family Systems Design Book

LCC4041
LCC4112
LCC4162
LCC4131
LCC4200
LCC4230
LCC4410
LCC4241
LCC4270
LCC4330
LCC4340
LCC4350
LCC4380
LCC4400

9900 FAMILY SYSTEMS DESIGN

Product
Selection Guide

HARDWARE SELECTION

Correspondence and inquiries about these books should be directed to:

Texas Instruments Incorporated
P.O. Box 225012, M/S 54
Dallas, Texas 7 5265
(214) 238-3894

Most of the above are concerned with SSI and MSI integrated circuits. The following is a 2 <111111

list of additional guides to discrete components.

Optoelectronics Master Selection Guide
Discrete Semiconductor Master Selection Guide

CL-346
CL-347

1978
1978

Correspondence and inquiries about these units should be directed to:

Texas Instruments Incorporated
P.O. Box 225012, M/S 308
Dallas, Texas 7 5265
(214) 238-2011

THE MoDULAR RouTE: M1cROCOMPUTER MODULES

TM990 microcomputer modules are preassembled, pre-tested, ready-to-use combinations
of 9900 Family components which are available to meet the needs of the microprocessor and
microcomputer systems designers.

An overview of the TM990 microcomputer module product line, divided into the product
series, is shown in Figure 2-22. A summary of key parameters are given in Tables 2-1, 2-2
and 2-3. The series ranges from microcomputers to expansion boards for memory and I/O,
to software support in read-only memory (EPROM), to the accessories required to
interconnect the modules. An IiO microterminal, TM990/301, is a low-cost terminal for
system development included in the 300 series. A module ofl/O and memory for software
development, the TM990/302, is included in the 300 series and will be discussed further in
the software support section.

The additional software products, TIBUG Monitor (TM990/401), Line-by-Line
Assembler (TM990/402), and the POWER BASIC units (TM990/450, 451, and 452)
will also be discussed in the software support section.

9900 FAMILY SYSTEMS DESIGN 2-29

~2

HARDWARE SELECTION Product
Selection Guide

r-------------------1
~~~!ES ! I MEMORY I I MEMORY I I MEMORY I I MEMORY I i ~;~~~ioN 

L_ ---------- --------J r----------------, 
~~~!ES : G I MEMORY I G : MICROCOMPUTERS 

L ___ - - -- --------- -1

300
SERIES

r------------------1
i G !110
t--------------------1 OR

l I MEMORY I G G G l ~~~~~~g~v
L---------- ------- -- __ ..J

r-------------1
400 1 I
SERIES I ROM BASED FIRMWARE I

L._ ___ - --- ------ _J

r---------1
~~~IES : ACCESSORIES . I 

L----------...1 
Figure 2-22. TM990 Microcomputer Module Series 

The Application 

Microcomputer modules are for the system designer who wants to: 

1. Apply and evaluate a 9900 Family microcomputer without taking the time for 
all the engineering, planning, assembly and testing needed to design and 
assemble the equivalent microcomputer system. 

2. Free himself from design details to concentrate on speeding an end product to 
market. 

3. Expand memory of an existing 9900 Family system. 
4. Assemble a low-cost software development system to edit, assemble, load and 

debug programs for PROMs. 
· 5. Expand a university course with low-cost hands-on hardware. 

6. Evaluate POWER BASIC programs and apply them to microcomputer 
systems. 

A Special Product 

A special product in the microcomputer module series is the TM990/189 University 
Board. It is designed primarily as a learning tool for the engineer, student or hobbyist. It 
aids in the instruction of microcomputer fundamentals, machine and assembly language 
programming and microcomputer interfacing. A tutorial text and a list of assembly 
procedures are included. More information is found in Chapter 8. 

2-30 9900 FAMILY SYSTEMS DESIGN 



Product 
Selection Guide 

TM990/100 SERIES-MICROCOMPUTER MODULES 

Product CPU EPROM (Bytes) 
TM990/100M-1 TMS9900 2K (270B) 

(Contains TIBUG Monitor) 
Expandable to BK (2716) 

TM990/100M-2 TMS9900 2K (270B) Blank 
Expandable to BK (2716) 

TM990/100M-3 TMS9900 BK (2716) Blank 

TM990/101M-1 TMS9900 2K (2708) 
(Contains TIBUG Monitor) 
Expandable to BK (2716) 

TM990/101M-2 TMS9900 2K (270B) Blank 
Expandable to BK (2716) 

TM990/101M-3 TMS9900 BK (2716) Blank 

TM990/1BOM-1 TMS99BO 2K (270B) 
(Contains TIBUG Monitor) 
Ex andable to 4K 

TM990/1BOM-3 TMS99BO 4K (270B) Blank 

TM990/1B9 TMS99BO 4K Expandable 
to 6K 

TM 990/200 Series-MEMORY EXPANSION 

PRODUCT 
TM990/201-41 
TM990/201-42 
TM990/201-43 
TM990/206-41 
TM990/206-42 
TM990/203A* 
*Available second quarter 1979 

MEMORY TYPE 
EPROM/Static RAM 
EPROM/Static RAM 
EPROM/Static RAM 
Static RAM 
Static RAM 
Dynamic RAM 

RAM (Bytes) 
512 

Expandable to 1K 

512 
Expandable to 1K 

1K 

2K 
Expandable to 4K 

2K 
Expandable to 4K 

4K 

512 
Expandable to 1K 

1K 

1K 

HARDWARE SELECTION 

Serial Parallel 

1/0 ports 1/0 Lines 
1 RS232C 16 
1 TTY 

1 RS232C 16 
or 

1 Differential 
line driver 
1 RS232C 16 

or 
1 Differential 
line driver 
Port A 16 
RS232C 

or 
TTY 
Port B 
RS232C or 
Modem 
Port A 16 
RS232C or 
Multidrop 
Port B 
RS232C or Modem 
Port A 16 
RS232C or TTY 
Port B 
RS232C or Modem 
1 RS232C 16 
or 1 TTY 

1 RS232C or 16 
1 Differential line driver 
1 RS232C or 16 
TTY 

MEMORY SIZE (BYTES) 
BK EPROM, 4K RAM 

16K EPROM, BK RAM 
32K EPROM, 16K RAM 
BKRAM 

16K RAM 
16/32/64K RAM 

Prioritized 
vectored 

interrupts Timers 
16 2 

16 

16 

16 

16 

16 

16 

16 

Special features: 
audio cassette and 
acoustical indicator 

Table 2-1. Key Parameters of TM990/ JOO and 200 Series 

9900 FAMILY SYSTEMS DESIGN 2-31 

2<fj 



... z 

HARDWARE SELECTION Product 
Selection Gulde 

Table 2-2. Key Parameters of TM 9901 JOO Series Modules 

TM 990/300 Series-1/0, 1/0-MEMORY EXPANSION 

1/0 
PRODUCT DESCRIPTION FEATURES 
TM990/301 Microterminal Displays Data and Address 

1/0, MEMORY (For Software Development) 

PRODUCT 
TM990/302 

1/0 EXPANSION 

PRODUCT 
TM990/310 

DESCRIPTION 
Software development module used in conjunction 
with TM990/100M or TM990/101M for software 
development system 

PROGRAMMABLE 1/0, INTERRUPT LINES 
48 lines programmable as inputs, outputs or up to 27 unlatched interrupts 

FEATURES 
Dual audio cassette interface, 2K X 16 RAM, 4K X 16 
EPROM, and EPROM programming 

DEDICATED INTERRUPTS 
six (3+, 3-) edge 

detect latches 

TIMERS 

Table 2-3. Key Parameters of TM990 I 400 and 500 Series 

TM 990/400 SERIES-ROM BASED FIRMWARE 

Product Description 
TM990/401-1 TIBUG Monitor 

TM990/401-2 TIBUG Monitor 
TM990/402-1 Line by Line Assembler 

TM990/402-2 Line by Line Assembler 
TM990/450 BK Byle Evaluation BASIC 

Medium 
2708 (2) 

2708 (2) 
2708 (2) 

2708 (1) 
2716(4) 

Utilized in 
TM990/100M-X 
TM990/101M-X 
TM990/180M-X 
TM990/100M-X 
TM990/101M-X 
TM990/180M-X 
TM990/100M-X 
TM990/101M-X 

TM990/451 12K Byte Development BASIC 2716(6) TM990/100M-X (Four 2716's on TM990/100, two 2716's on Memory Expansion 
Board (TM990/201-XX) or Software Development Board 
(TM990/302) 

TM990/452 4K Byte Enhancements to 
Development BASIC 

TM 990/500 SERIES-ACCESSORIES 

Card cage 

2716 (2) 

TM990/101M-X (Four 2716's on TM990/101, two 2716's on Memory Expansion 
Board (TM990/201-XX) or Software Development Board 
(TM990/302) 

TM990/302 

Product No. of slots Slot spacing Outside dimensions 
TM990/510 
TM990/520 

Power supply 

Input Requirements 

Product Frequency 
TM990/518 57-63 Hz 

TM990/519 57-63 Hz 

Universal prototyping boards 

Product 

TM990/512 

TM990/513 

2-32 

Voltage +5V 
115/230± 10% 6.0A 

102/132V 2A 

Description 

Unpopulated board for use with wirewrap 
or solder sockets. 

Wire-wrap board populated with 
gold plated pins 

1" 
.75" 

+12V 
0.9A 

250mA 

5"H, 12.5"W, B"D 
8.25"H, 12.5"W, B"D 

Output 

-12V +45V (EPROM programming voltage) 
0.9A 0.1A 

180mA 

Capacity 

16 pairs of 50 pin columns that 
accept .3 or .4 centers 

16 pairs of 50 pin columns that 
accept .3 or .4 centers 

9900 FAMILY SYSTEMS DESIGN 



Product 
Selection Guide 

Analog I/O expansion 

HARDWARE SELECTION 

To aid in providing the interface between analog and digital signals several companies are 
supplying products that complement the 9900 microcomputer components family. Key 
parameters of a number of these products are shown in Table 2-4. 

AID and D/ A Converters 

AID Input Input 
Input Voltage Current Throughput Programmable 

Product Resolution Channels Range Range Rates Gain 

RT1-1240-S 12 Bits 16SE, 8 Diff +5V, +10V 0-50mA 40K Chan/sec 1,2,4,8 
Expandable to ±5V, ± 10V 
32SE, 16 Dill 

1240-R 1-1000 
1241-S 1,2,4,8 

1241-R 1-1000 
RT 1242 10 µsec· Setting 
RT 1243 

Analog Devices-Route 1 Industrial Park, P.O. Box 280, Norwood, Massachusetts 02062, (617) 329-4700 

AID Input Input 
Input Voltage Current Throughput Programmable 

Product Resolution Channels Range Range Rates Gain 

ANDS 1001 12 16SE/B Dill +5V, +10V 0-50mA 30K Chan/sec 
Expandable to ±5V, ± 10V 
64SE/32 Dill 

ANDS 1002 15 Bit 1-4 ± 20mv, ± 40mv 10 samples/ 
+Sign Bit ± BOmv thermo- sec 

couple?, 

ANDS2001 12 10 µsec 
Setting 

ANDS 3001 12 16SE/8 Diff +5V, +10V 0-50mA 30K Chan/ sec 
±5V, ± 10V 

Analogic-Audubon Road, Wakefield, Massachusetts 01880, (617) 246-0300 

DIA 
Output 

Channels 

DIA 
Output 

Channels 

Voltage 
Output 
Range 

Current 
Loop +5V 

Outputs Requirements 

1.4A 

Codes 

Binary, 
Offset Binary, 

Two's 
comp~;ment 

+5V, + 10V 4-20mA 
±2.5V, ±5V 

±10V 

Voltage 
Output 
Range 

4-20mA 

Current 
Loop +5V 

Outputs Requirements Codes 

700 mA Binary, 
Offset Binary, 

Two's 
complement 

1-4 +5V, +10V 4-20mA 
±5V, ±10V 

4-20mA 

Table 2-4. Key Parameters for Analog conversion units for I I 0 Expansion 

9900 FAMILY SYSTEMS DESIGN 2-33 



~2 

HARDWARE SELECTION 

THE MINICOMPUTER RouTE 

Product 
Selection Guide 

For large system applications in which the computer system is a small portion of total 
system costs, use of prepackaged OEM minicomputers as system components provides a 
number of advantages. A full complement of system and applications software is readily 
available for immediate use on the machine, including assemblers, linkers, editors, 
operating systems, high level languages, a variety of utility packages, many applications 
packages, and much, much more. 

Texas Instruments Digital Systems Group manufactures two minicomputers which are 
compatible with the TMS9900. The first is the 990/ 4 minicomputer which uses the 
TMS9900 as its central processing unit. It utilizes the CRU for control of peripheral 
devices making this system directly compatible with the 9900 Family. The second 
minicomputer implements the CPU in TTL, maintaining upward compatibility with the 
9900 Family. This unit, the 990/ 10 uses a DMA peripheral device interface called 
TILINE'" for control of high speed peripherals such as magnetic tape units and moving 
head disk drives, and provides extended addressing capability. 

A complete discussion of the use of these systems as OEM system components is beyond 
the scope of this book, but further information may be obtained by writing: 

Texas Instruments Incorporated 
Digital Systems Group 
P. 0. Box 1444 
Houston, Texas 77001 
Attention: Market Communications MIS 784 

or contact your local TI sales office or distributor system center listed in the appendix. 

The 990 Computer Family Systems Handbook, the 1978 Catalog of the 990 Computer 
Family, and the 990 Computer Family Price List provide detailed information on the 
use of 990 computers as OEM system components. 

A SELECTION PROCESS 

Criteria for selecting a microprocessor, microcomputer, microcomputer component 
peripheral, or a minicomputer for a system application are listed in Figure 2-23. System 
performance, cost, reliability, and delivery may also depend on the vendor that designs and 
supports the products used. 

2-34 9900 FAMILY SYSTEMS DESIGN 



Product 
Selection Guide 

MPU ARCHITECTURE 

Word Size 
Number of Instructions 
Address Bus Length 
Data Bus Length 
I /O Bus Length 
Clock Rate 
Benchmark Performance 

(Selected Functions) 
Arithmetic Capability 

Multiply 
Divide 

1/0 CAPABILITY AND PERIPHERAL CIRCUITS 

Parallel 1/0 

How Many Bits 
Data Rate 
Programmability 
Drive Required 

Serial 1/0 

Asynchronous 
Synchronous 
Baud Rate 
EIA 
Current Loop 

Timers and Event Counters 

Interval 
Max Count 

Interrupts 

Number 
Masking 

DMA 

Channels 
Chaining Required 

Other Interfaces 

Floppy Disk 
Analog 
Keyboard 
CRT 
Tape 

HARDWARE SELECTION 

MPU (other specifications) 

Package 
Temperature Range 
Supply Voltages 
Power Consumption 
Special Reliability 
Unit Costs 

(Selected Volumes) 

System Environmental 

Supply Voltages 
Temperature Range 
Power Consumption 
Special Reliability 
Special Size 

Support 

Technical Documentation 
Hardware Development Support 

Emulators 
Testers 
Evaluation Modules 

Software 

Assemblers 
Text Editors 
Simulators 
Utilities 
Application Libraries 
High-level language 

Software Development 

Systems 
Cross-Support 
Dedicated 

Figure 2-23. Selection Criteria for Microprocessor, Microcomputer Systems 

9900 FAMILY SYSTEMS DESIGN 2-35 



.... 2 

9900 FAMILY SOFTWARE 
AND DEVELOPMENT SYSTEMS 

Vendor Selection 

Product 
Selection Gulde 

One way of evaluating a vendor is to make a list of items similar to the selection criteria for 
system components. Some of the same items from this list, especially in the support area, 
can be included. Additional items for consideration are shown in Figure 2-24 . 

DOCUMENTATION 

Product 
Support Systems 
Applications 

MANUFACTURING CAPABILITY 

Facilities 
Product Levels 
Backlog 

CREDIBILITY 

Reputation 
Investment 
Financial Status 

CUSTOMER SUPPORT 

Application Engineers 
Distribution 
Hot Lines 

Figure 2-24. Vendor Criteria 

Setting weights for each item and summing these for individual vendors allows a direct 
comparison. The total number accumulated for each vendor establishes a vendor rating. 

9900 FAMILY SOFTWARE AND DEVELOPMENT SYSTEMS 

IMPORTANCE OF SoFTw ARE 

As described in Chapter 1(Figure1-9), the term software is used to describe the programs 
and documented ideas which allow small amounts of general purpose hardware 
(microprocessors, memory, peripherals) to replace large amounts of special purpose 
hardware. The costs for software are becoming a much larger percentage of the total 
system development cost. These costs are primarily incurred prior to production of a 
system. For large volume systems the share of these one-time costs attributed to each 
unit is small since the total software costs are divided by a very large number. 
Correspondingly, when the volume of units produced is low, the software cost per unit 
will be quite high. This factor, coupled with a lack of familiarity, has led many users to 
underestimate software development costs. 

Since software now commands 80% of the design effort of complete systems, and since 
many software tasks are common to the industry, the level of software support from a 
vendor can have tremendous impact on total system design cost. Perhaps more importantly, 
availability of a wide variety of system and application software packages can drastically 
shorten design time and speed the product to market. 

2-36 9900 FAMILY SYSTEMS DESIGN 



9900 FAMILY SOFTWARE Product 
Selection Gulde 

AND DEVELOPMENT SYSTEMS 

SoFTWARE DEVELOPMENT SYSTEMS 

Development of software requires equipment - program or software development systems. 
As a system designer makes a decision to use a microprocessor or microcomputer, all 
design avenues seem to focus on software development. Questions naturally arise, "How 
can I do software 'breadboarding' and program testing?", "How can I arrive at a final 
program and be assured that it is correct?" and "Can it be done economically"? 

Figure 2-25 illustrates cost versus capability for each of the program development systems 
that support the 9900 Family. Lower cost systems tend to have lower capability. The 

choice of a program development system depends on many factors. Some examples are: 
( 1) Capital Status - capital availability determines whether a firm can consider the 
sophisticated emulator systems which boost designer productivity. (2) Equipment on 
Hand - availability of a terminal, line printer, or EPROM programmer or other 
useable equipment would likely reduce the required level of investment. (3) Equipment 
Longevi(v - How long the equipment will be used may allow division of the cost of the 
equipment over several projects. (4) System Complexi(v - Highly complex applications 
often require the best development tools possible; therefore, the most sophisticated 
system is required or the job can't be done. (5) Production quantities - High volume 
applications can more easily bear the cost of top-of-the-line development equipment; the 
corresponding increase in productivity made possible by this equipment, increases design 
efficiency. (6) In-House Computer Capability - Availability of in-house computer support 
makes development via cross-support an efficient alternative. 

A brief description of the program development systems follows: 

Program Development Systems 

1. TM990/189- University Board. (Price: less than $350) This board provides an 
inexpensive means of evaluating the 9900 Family and learning about microprocessors in 
general. It comes with a debug monitor and assembler. Key features include full 
alphanumeric keyboard; display via 10 seven-segment digits; 16-bit parallel, RS232, TTY, 
and audio cassette interface; and a tutorial text and hardware reference manual. (See 
Chapter 8.) 

2. TM990/ 100M
TM990/301-

Microcomputer with line-by-line assembler 
Microterminal for programming (combined price: less than $500) 

(Figure 2-26). These components are described i·1 detail in Chapters 3 and 8. Basic 
program benchmarks may be written and tested with the 9900 microcomputer. A terminal 
such as a 743 KSR may be connected to the board and additional development software 
used. (This technique is described in Chapter 9.) 

9900 FAMILY SYSTEMS DESIGN 2-37 



... 2 

9900 FAMILY SOFTWARE 
AND DEVELOPMENT SYSTEMS 

Product 
Selection Guide 

25 
~ 

~~~ , ..... D-s9_9_01_10....,I 

"-'o I FS990/10 I
15

f

10

PRICE
($K) 4

3 ITM990/40DSj

I TM990/101 M,/3021

I TM990/1 OOM,/3011

TM990/189

SYSTEM CAPABILITY ---

Q
(DESIGN PRODUCTIVITY)

Q
1. Initial Evaluation 1 . Detailed System Analysis
2. One Time User 2. Long Term Use
3. Small Firm 3. Large Experienced Firm
4. Minimum Capital Investment 4. Large Complex System

Figure 2-25. Cost vs. System Capability for 9900 Family Program Development Systems

2-38 9900 FAMILY SYSTEMS DESIGN

Product
Selection Gulde

9900 FAMILY SOFTWARE
AND DEVELOPMENT SYSTEMS

• ,,,, •: •· ····:···'j.
• • • • • •· •. :·1 •••••••• ••••• 11,,,111

I I I

Figure 2-26. TM990/ JOOM Microcomputer with TM990/ 301 Microterminal

9900 FAMILY SYSTEMS DESIGN 2-39

2

~2

9900 FAMILY SOFTWARE
AND DEVELOPMENT SYSTEMS

3. TM990/302- Microcomputer board (price: less than $600)

Product
Selection Gulde

Software is on the board in the form of EPROM devices for editor, assembler, linker,
debugger, and EPROM programmer functions. A terminal and one or two cassette
recorders are needed to complete a very powerful, yet very low cost program
development system. The /302 is a companion to (or extension of) the TM990/100M
or I lOlM board. (Figure 2-27).

4. TM990/ 40DS- TMS9940 development system (price: less than $2800) containing an
EPROM programmer for the TMS9940E, Debug Monitor, Assembler and Trial
In-System Emulation; the I 40DS provides development capability and emulation of most of
the TMS9940's operations (Figure 2-28).

5. CS990/ 4- 990/ 4 minicomputer with a 733 ASR dual cassette terminal (price: less
than $6000) (Figure 2-29).

Program development software is available on cassettes to perform every task outlined
previously.

6. FS990/ 4- 990/ 4 minicomputer, terminal, and dual floppy disk storage unit (price: less
than $12,000) 1Figure 2-30).

Complete program development system with peripheral add-on capacity.

7. FS990/ AMPL- Same as FS990 but with AMPL hardware and software added (price:
less than $20,000) (Figure 2-31).

The primary advantage of the AMPL system is the complete hardware debugging
capability via the AMPL software and 9900 emulator and trace functions.

8. FS990/ 10- 990/ 10 minicomputer (Figure 2-32), terminal, and dual floppy disk
storage unit (base system starts at $15,000).

Complete program development system which can be upgraded to include
moving-head disk mass storage. AMPL is available as an option.

9. DS990/10- 990/10 minicomputer (Figure 2-33), terminal, moving head-disk mass
storage with complete multi-user system software (base system starts at $25,000). Supports
Macro-Assembler, FORTRAN, BASIC, PASCAL and COBOL.

2-40 9900 FAMILY SYSTEMS DESIGN

9900 FAMILY SOFTWARE Product
Selection Guide AND DEVELOPMENT SYSTEMS

li1 -
. ·!

: I J L--J_L ___ _

HOST /MASTER
COMPUTER
(OPTIONAL)

PROGRAMMER
MODULE 1

EPROM

100M/101M
L ___ _

POWER
SUPPLY

1510 CARD CAGE

AUDIO
__

1
CASSETTE

I PLAYER

302

_ _ _J

Figure 2-27. TM990/ 302 Program Development System

Figure 2-28. TM990/ 40DS cables and card chassis

9900 FAMILY SYSTEMS DESIGN 2-41

..... 2

9900 FAMILY SOFTWARE
AND DEVELOPMENT SYSTEMS

911 VIDEO DISPLAY
TERMINAL

. . ' -- - ---;- ~~ -
~-.., -· _,_ ~ - -~

Figure2-29. CS 99014 Software System

Figure 2-30. FS990 Software Development System
(with optional printer)

Product
Selection Gulde

PROGRAMMER PANEL
(990/4 CPU WITH
MINIMUM OF 48K
BYTES OF MEMORY)

2-42 9900 FAMILY SYSTEMS DESIGN

Product
Selection Guide

MODEL 810 VIDEO DISPLAY

PRINTER ~EAMINAL

9900 FAMILY SOFTWARE
AND DEVELOPMENT SYSTEMS

TYPICAL TARGET
SYSTEM

TMS 9900

BUFFER
MODULE

DUAL
FLOPPY
DISC

MODEL
990
COMPUTER

Figure 2-31. Typical AMPL Microprocessor Prototyping Laboratory

9900 FAMILY SYSTEMS DESIGN 2-43

.... 2

9900 FAMILY SOFTWARE
AND DEVELOPMENT SYSTEMS

Figure 2-32. FS990/ JO Minicomputer System

Figure 2-33. DS990/ JO Minicomputer System

Product
Selection Guide

2-44 9900 FAMILY SYSTEMS DESIGN

9900 FAMILY SOFTWARE Product
Selection Guide

AND DEVELOPMENT SYSTEMS

Which Program Development System to Use

The choice of a program development system requires evaluation of an application's
specific requirements. The lowest cost system (TM 990/ lOOM board and /301
microterminal) will allow a very basic level of programming, and is suitable for writing
short routines to test algorithms or evaluate execution speed. Since labels are not allowed
and there is no editing program to help add or delete program steps, programming is
relatively difficult. 2

By adding the TM990/302 Software Development Module (with the TM990/100M or
lOlM) programming becomes much easier. An editor program helps you modify the
program steps, the assembler allows labels, and the other elements-debug, EPROM
programmer, relocating loader, and I/O handlers-add substantial programming flexibility.
A programmer might well evaluate this system as being an order of magnitude better than
the I lOOM board alone. It is best suited for one designer working on a single prototype. '

But there are limitations to the /302. The system depends on cassette recorders for storage
of development software and user programs. And cassettes are slow. The number of times
per day that a programmer can make a change in his program, process it through the
system, and test the results is generally in the range of three to five.

The number of program change cycles per day can be increased by purchasing a CS990
system. This digital cassette based software development system, being more versatile, can
increase daily program iterations to about ten. Two or three programmers can use a single
system comfortably.

The FS990/4 system uses floppy disk storage to further improve flexibility. Daily program
iterations can be over 20. Because program turnaround is fast, a single FS990 system is
often used by several programmers.

By adding AMPL hardware and software the FS990 system can be upgraded to an AMPL
prototyping system. Hardware testing may be performed under program control.

The chart shown in Figure 2-34 shows the different levels of sophistication of program
development systems that can be used with each 9900 CPU.

9900 FAMILY SYSTEMS DESIGN 2-45

9900 FAMILY SOFTWARE
AND DEVELOPMENT SYSTEMS

SELECTED PROCESSOR TMS9900/ TMS9980A/
SBP9900A TMS9981

MINIMUM SYSTEM TM990/100M TM990/189
TM990/101M TM990/180
TM990/302

MEDIUM SYSTEM CS990/4 CS990/4

LARGE SYSTEM FS990/4 FS990/4
AMPL AMPL
FS990/10 FS990/10

MAXIMUM CAPABILITY DS990/10 DS990/10

TIMESHARE
TMSW101MT x x
GE, NCSS, Tymeshare x x

TMS9985

TM990/185

CS990/4

FS990/4
AMPL
FS990/10

DS990/10

x
x

Product
Selection Gulde

TMS9940

TM990/140

TM990/40DS

FS990/4
AMPL
FS990/10

DS990/10

x
x

Figure 2-34. Program Development Systems for Each 9900 Family CPU

Timeshare

Timeshare users approach software development in one of two ways. Either they purchase
and install the TMSWlOlMT cross-support package on an in-house computer, or they
lease access to a similar package on a commercial timeshare system such as GE
TERMINET, NCSS, and TYMSHARE. Both approaches provide a 9900 cross-assembler
compatible with the FS990 prototype development system. Both also provide a simulator
and ROM utility. In-house users often interface the ROM utility directly to EPROM
programmers. Otherwise several printout formats are available to match standard ROM
and PROM order techniques.

The timeshare approach provides high-level development capability at minimum initial
cost. It does, however, incur large operating costs, especially when using commercial
systems.

SUPPORT SoFTWARE AND FIRMWARE

The program development systems and the 9900 Family of components are supported
by a full line of software. The chart shown in Figure 2-35 summarizes the capability of
the program development system software.

2-46 9900 FAMILY SYSTEMS DESIGN

9900 FAMILY SOFTWARE Product
Selection Gulde AND DEVELOPMENT SYSTEMS

CROSS-

~ SUPPORT DX990
p TMSW101MT TM990/302 TM990/40DS PX990 TX990 FS990 AMPL W/AMPL
EDIT x x x x x x
ASSEMBLE x x x x x x MACRO
LINK x x x x x
LOAD CREATES x x x x x x

LOAD MODULE
DEBUG x x x x x x x
lEMULATOR x x x
j LOGIC TRACE x x

SIMULATOR x
READ-ONLY

ROM x x x x
MEMORY
PROGRAM- x x x x x x x
MING PROM

Figure 2-35. 9900 Family Software Development System Capabilities

Additional software and firmware are as follows:

TM990/401 - TIBUG Monitor

The TMS990/401 TIBUG Monitor is a comprehensive, interactive debug monitor in
EPROM included in the basic price of the TM990 CPU modules. TIBUG includes 13
user commands plus six user accessible utilities and operates with 110, 300, 1200 and 2400
baud terminals. The basic TIBUG functions include:

1. Inspect/ change the following: CRU, memory locations, program counter,
workspace pointer, status register, workspace registers.

2. Execute user programs under breakpoint in single or multiple steps.

TM990/402 - Line-by-Line Assembler (LBLA)

TM990/ 402 is a line-by-line assembler which is supplied pre-programmed in EPROM for
immediate system use. By allowing the entry of instructions in mnemonic form and
performing simple address resolution calculations with a displacement range of+ 254 to
- 256 bytes, the assembler is an extremely powerful tool for assembly language input of
short programs 07 easy patching of long programs.

POWER BASIC High-Level Language

POWER BASIC, an easy-to-use extension of the original BASIC language, is highly
suitable for the majority of industrial control applications. It greatly simplifies the solution
of complex system problems and eliminates unnecessary design details.

9900 FAMILY SYSTEMS DESIGN 2-47

9900 FAMILY SOFTWARE
AND DEVELOPMENT SYSTEMS

Product
Selection Guide

POWER BASIC can be used for a general system implementation language as well as for
information processing. It is also versatile enough to solve problems in real-time control of
events while improving programmer efficiency in implementing complex algorithms.

The performance of POWER BASIC is outstanding - 2 to 3 times faster than any existing
8-bit microcomputer-oriented BASIC. In effect, you get minicomputer performance at
microcomputer cost.

Other advantages of POWER BASIC include:

Full string processing capability
Multidimensional arrays
13-digit arithmetic accuracy
Automatic minimum memory configuration

POWER BASIC language interpreters are available in economical yet versatile packages
shown in Table 2-5.

Table 2-5. POWER BASIC Firmware

PART NO.

TM990/450

TM990/101M-10

TM990/451

TM990/452

TMSW201F

MEDIA

EPROM device
kit

*TM990/101M

EPROM device
kit

EPROM device
kit

FS990
diskette

*Contained in TM990/101 M Module

2-48

NAME

Evaluation
POWER BASIC

Development
POWER BASIC

Enhancement of
Development
POWER BASIC
Software

Package

Configurable
POWER BASIC

DESCRIPTION

Reduced memory version (BK byte)
designed to offer evaluation tools for
exploring POWER BASIC applications.
ROM kit executes standalone on TM990 I
1 QOM, 101 M modules.

Expanded memory version (12K byte)
providing capability for design,
development, and debug of POWER
BASIC programs. Executes onTM990/201 or
302 module interfaced with TM990/1 QOM,
101 M CPU modules.

Provides EPROM programming, dual
audio cassette handling, and I /0 utilities
for TMS990/302.

Fully expanded version including complete
diskette file support and a configurator
program which reduces the size of
POWER BASIC programs for execution.

9900 FAMILY SYSTEMS DESIGN

9900 FAMILY SOFTWARE Product
Selection Guide

AND DEVELOPMENT SYSTEMS

PASCAL High-Level Language

TIPMX Executive Components Library in PASCAL

TIPMX is a configuration of software processes that provides executive functions such as
multitask priority scheduling, interrupt servicing, and inter-process communication. It
relieves the programmer of the necessity to develop these processes. TIPMX also supports,
but is not limited by, PASCAL data structures and program structures. 2 ...-

A tailored TIPMX is configured by selecting desired processes from a library of system
and run-time support modules. These processes are link-edited to form a supervisory
nucleus which is loaded into EPROM memory to enhance its speed, efficiency and
reliability.

PASCAL, FORTRAN or Assembly Language processes then execute under the auspices
of this tailored TIPMX executive.

9900 FAMILY SYSTEMS DESIGN 2-49

CHAPTER3

A First Encounter:
Getting Your Hands on a 9900

3

PURPOSE/
WHERE TO BEGIN

PURPOSE

A First Encounter:
Getting Your Hands on a 9900

Remember the common saying, "What you've always wanted to know about subject X,
but were always afraid to try." The same applies, and probably especially so, to persons
who have contact with the world of digital electronics; who have heard about computers
and minicomputers and·even operated them; who have seen and experienced the
advances made in the functional capabilities and low cost of digital integrated circuits by
owning and operating handheld calculators; who have worked around and even built
electronic equipment; who have heard about microprocessors and their amazing
capabilities - but have not tried them.

If you are one of these people, this chapter is for you, for in it we want to help you try
out a microprocessor, work it together, operate it, have success with it. In this way we
hope to demonstrate that microprocessor systems are not that difficult to use. That, even
though they require an understanding of a new side of electronic system design -
"software" - if a base of understanding is established, and if an engineering approach is
followed, there is no need to fear getting involved.

So that's the purpose of this first encounter - to get your hands on a 9900
microprocessor system and operate it.

WHERE TO BEGIN

It would be very easy to be satisfied with a paper example for a first encounter,
however, it has been demonstrated that a great deal more is learned by actually having
the physical equipment and doing something with it. Therefore, this first encounter
example requires that specific pieces of equipment be purchased.

However, the purchase is not to be in vain. The first encounter has been chosen so that
is may be followed with more extensive applications described in Chapter 9.
Applications that will help to bring understanding of the 9900 microprocessor system to
the point that actual control applications, akin to automating an assembly line, can be
implemented. Outputting control of ac and de voltage for motors or solenoids and
producing controlled logic level signals are examples. In this way, useful outcomes are
being accomplished, the equipment is being expanded, and problem solutions are
demonstrated. At all times, of course, the base foundation of knowledge about
microprocessor systems is growing.

To get underway then, purchase the following items from your industrial electronics
distributor that handles Texas Instruments Incorporated products.

3-2 9900 FAMILY SYSTEMS DESIGN

A First Encounter: WHAT YOU HAVE
Getting Your Hands on a 9900

Quantity

1

1

1

Part#

TM990/ lOOM-1
(Assembly No.
999211-0001)
(see Figure 3-1)

TM990/301
(see Figure 3-2)

TIH431121-50 or
Amphenol 225-804-50

or
Viking 3VH50/9N05

or Elco
00-6064-100-061-001

Description

TMS9900 microcomputer module with TIBUG
monitor in two TMS 2708 EPROM's and EIA
or TTY serial I/O jumpers option.

· Microterminal

100 pin, 0.125" c-c, wire-wrap PCB edge
connector (or equivalent solder terminal
unit)

1 TIH421121-20 or 40 pin, 0.1" c-c, wire-wrap PCB edge connector
Viking 3VH20/1JND5 (or equivalent solder terminal unit)

In addition, some small electronic parts to interconnect the light emitting diode displays.
that will be used will be needed. These are listed later on so you may want to continue to
read further before purchasing the module and microterminal so that all necessary parts
can be obtained at the same time.

WHAT YOU HAVE

In Figure 3-3 is shown a generalized computer system, it has a CPU (central processing
unit) which contains an arithmetic and logic unit (ALU), all the control and timing
circuits, and interface circuits to the other major parts. It has a memory unit. It has some
peripheral units for inputting data such as tape machines, disk memories, terminals and
keyboards. It has output units such as printers, CRT screens, tape machines, disk
memories.

The TM990/ lOOM-1 microcomputer shown in Figure 3-1 is a miniature version of this
computer system as shown in Figure 3-4. It has a CPU centered around the TMS9900
microprocessor, a memory unit - in this case a random access memory (RAM) and a
read only memory (ROM). It does not have the input/ output units indicated in Figure 3-3

but it does have circuitry (TMS9901, 9902) for interface to such units. The TMS9901
will handle parallel input/output data and single bit addressed data as will be shown in
this first encounter. The TMS9902 handles serial input/output data interface either
through an EIA RS232 interface or a TTY interface. A more complete interconnection of
the components of the microcomputer is shown in the block diagram of Figure 3-5. The
physical position of these units on the board is identified in Figure 3-1.

9900 FAMILY SYSTEMS DESIGN 3-3

3<411111

WHAT YOU HAVE

N
Cl.

0:
0
CJ)
CJ)
UJ u
0
0:
Cl.
0
0: u
~
0
0
Cl'l
Cl'l
CJ)

~
I-

::c u
I-

~
I-
UJ

~
0:

A First Encounter:
Getting Your Hands on a 9900

('.)
:J
CD
i==
(/)

~g
0 c:
8~
CJ)

~
0
0:
Cl.
UJ

(/)

~
<(
0:

ci z
>-
_J

CD
~
UJ
CJ)
CJ)
<(

0:
UJ
_J
_J

0
0:
I-z
0 u
~
_J
UJ
_J
_J
<(
0:
<(
Cl.

0
Cl'l
Cl'l
CJ)

~
I-

Figure 3-1. TM 990 I 1 OOM-1 Microcomputer

3-4 9900 FAMILY SYSTEMS DESIGN

A First Encounter: GETTING IT TOGETHER
Getting Your Hands on a 9900

;~·Tu-'s INSTl(UMtf.n '

' '

Figure J-2. TM 9901301 Microterminal

Just think, a complete microcomputer with: 1) 256 16-bit words of random access
memory to hold program steps and program data, expandable to 512 words; 2) 1024 16-
bit words of read only memory which contains pre-programmed routines (TIBUG
Monitor) that provides the steps necessary for the TM990/100M-1 microcomputer to
accept input instructions and data and to provide output data. This ROM capability can
be expanded to 4096 words to provide program flexibility; 3) input/output interface
that can handle 16 parallel lines expandable to 4096 and an interface for serial characters
of 5-8 bits at a programmable data rate; 4) an input terminal to input the sequence of
steps to solve a problem - the program.

GETTING IT TOGETHER

Of course, in order to operate the microprocessor system, it must be put together. It
must be interconnected.

What function will it perform? The first encounter application is shown in Figure 3-6. The
microcomputer will be used to provide basic logic level outputs to turn on and off, in
sequence, light emitting diode segments of a 7 segment numeric display element, the
TIL303. This will demonstrate the "software" ~echniques used to provide de logic
levels at the I/O interface which through proper drivers can later be used to control
solenoids, motors, relays, lights, etc.

In the first encounter application, the microterminal shown in Figure 3-2 will be used to
input the instructions and data required to perform the function.

9900 FAMILY SYSTEMS DESIGN 3-5

GETTING IT TOGETHER A First Encounter:
Getting Your Hands on a 9900

Recall that a light emitting diode (LED) is made of semiconductor material and emits
light when a current is passed through it in the correct direction. Each segment of the
7-segment display is a separate LED. Four segments of the display will turn on in the
sequence f, b, e, c at a slow or a fast rate depending on the position of a switch, as shown
in Figure 3-6. Each segment will first be turned on, then a short delay, then off, then a
short delay. The sequence is continued with the next segment; proceeding around
through 4 segments and then starting over again. The rate is varied by changing the
delay in the sequence. The switch position controls the delay.

A 7-segment display is used because of its ready availability and its dual-in-line package.
Only 4 of the segments will be programmed into the sequence although driver capability
will be provided for 6 segments. This allows flexibility for the person doing the first
encounter to experiment on their own to include the remaining 2 segments. A next step
would be to provide an additional driver. In this way all 7 segments of the display can be
included.

Here's what's required to provide the segment display. Figure 3-7 shows the integrated
circuit driver package for the LED segments, the SN74H05N. The physical package
and a schematic are shown. It contains 6 open collector inverters, each capable of
"sinking" 20 ma. A 14- or 16-pin dual-in-line socket is required. A wire-wrap one is
shown. However, it could be a solder terminal unit just as well.

Figure 3-8 shows the 7-segment display physical package and schematic and a 14- or 16-pin
DIP socket for interconnection. 100 ohm resistors for limiting current through the
LEDs are also required.

INPUT

3-6

CPU

ALU
ARITHMETIC

AND
LOGIC UNIT

CONTROL AND
CENTRAL TIMING

MEMORY

OUTPUT

Figure 3-3. Generalized Computer

9900 FAMILY SYSTEMS DESIGN

A First Encounter: GETTING IT TOGETHER
Getting Your Hands on a 9900

PARALLEL INPUT/OUTPUT
INTERFACE AND BUFFERING

RAM
256 x 16

CPU

ALU
CONTROL AND

CENTRAL TIMING

9900
MICROPROCESSOR

CENTRAL TIMING

9904
CLOCK

ROM
(EPROM)
1K X 16

SERIAL INPUT /OUTPUT
INTERFACE AND BUFFERING

Figure 3-4. Miniature Computer System on TM 9901 lOOM-1 Module

TMS 9901
PSI

1/0
CONNECTOR

P3 & P4 P1

TIM 9904
CLOCK

TMS 9902
ACC

D 48MHz

P2

Figure 3-5. TM 990 I 1 OOM-1 Block Diagram

9900 FAMILY SYSTEMS DESIGN 3-7

~3

GETTING IT TOGETHER A First Encounter:

TM 9901301
MICROTERMINAL

Getting Your Hands on a 9900

POWER SUPPLY

+5V + 12V -12V GND

TM 990/100M
MICROCOMPUTER

r-- ---
1

I TMS 9901

LOGIC LEVEL INPUT PERIODICALLY
TESTED BY THE MICROCOMPUTER

+5V

I PROGRAMMABLE

I I ~;~~~~;E l-'-----i------1

I
I
I

LOGIC LEVEL
OUTPUTS UNDER
CONTROL OF MICROCOMPUTER

Figure 3-6. The First Encounter Task

INVERTERS

"ELEMENTS
AS SHOWN

SEVEN
SEGMENT
DISPLAY

USED AS LED SEGMENT
DRIVERS

All of the components of Figure 3-7 and 3-8 are wired together on a separate printed circuit
board as shown in Figure 3-9. The Radio Shack # 276-152 board provides individual
plated surfaces around holes to make it easy to anchor components and to interconnect
all components with wire-wrap. J4, the 40 pin wire-wrap PCB edge connector accepts
the edge connections of P4 on the TM990/ lOOM-1 board shown in Figure 3-1. After
wiring this connector, put a piece of tape across the top of this connector so that it is
correctly oriented before the board is plugged in; or the same can be done here as for P1

discussed a little later. Note also on Figure 3-1 that there is an area on the 990/lOOM-1
board for prototyping. The components of Figure 3-9 may be wired in this area rather
than using a separate printed circuit board. Using a separate board allows this area to be
used for more permanent components for a specific dedicated application of the
990/lOOM module.

3-8 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

A. SN74H05N
SIX INVERTER
DRIVERS
14 PIN PLASTIC PKG.

B. 14-16 PIN DIP SOCKET
(WIRE-WRAP OR SOLDER TERMINALS)

TOP VIEW
A. TIL303 7 SEGMENT NUMERICAL DISPLAY

B. 14 OR 16 PIN DIP SOCKET
(WIRE-WRAP OR SOLDER TERMINALS)

GETTING IT TOGETHER

IN 1

OUT 1

IN 2

OUT 2 4

IN 3 5

OUT 3 6

GND

C. SCHEMATIC OF SN74H05N
(TOP VIEW)

COMPONENT PARTS

1 - SN 74H05N HEX DRIVER
(EACH DRIVER CAPABLE OF SINKING 20 MA.)

1 - 14 OR 16 PIN DIP SOCKET
(RADIO SHACK # 276-1993, 94)
(Tl # 811604 M&C - 16 PIN WIRE-WRAP)

14 VCC (+ 5V)

13 IN 6

12 OUT6

11 IN 5

10 OUT 5

IN 4

8 OUT4

Figure 3-7. LED Driver Parts

a 1

Vee2

I 3

g4

e6

Vee?

14 b

13Vee

!1000!1000!1000!1oon!1000 !1000
12

11

10 D.P.
D. 100 OHM RESISTORS 1 /4 W

9c

8d

C. SCHEMATIC OF TIL303

COMPONENT PARTS

1 - 7 SEGMENT DISPLAY TIL303

1 -14 OR 16 PIN DIP PACKAGE
(C-811604 M&C - 16 PIN WIRE WRAP)
(RADIO SHACK- 276 -1993, 94)

6 -100 OHM RESISTORS, 1 /4 W

Figure 3-8. Segment Display Parts

9900 FAMILY SYSTEMS DESIGN 3-9

3 ..

GETTING IT TOGETHER A First Encounter:
Getting Your Hands on a 9900

J4

S1

C5b I

SN74H05N TIL 303

PRINTED CIRCUIT BOARD
RADIO SHACK # 276-152

A. LAYOUT

+5V

GND

J4

1/0
BIT

0

3

+5V

13 --...,
I
I 7 SEGMENT

" I DISPLAY
" I TIL303

"...... __,
9

100 Q

14
r-

4 6 8

1

1 I

-------,
I
I

I
31

I SN74H05N

I

sl

91
I

I
I
I
I
I
I
I

L-----·----- __,
7

S
1

FAST

SLOW

20 22 18 14 16 40-PIN WIRE WRAP
PCB EDGE CONNECTOR

B. SCHEMATIC

+5V

Figure 3-9. The Output Board

Following is a complete list of the parts, tools and supplies required. This is the list that
was referred to earlier. Check carefully that all necessary parts are purchased.

A. Microcomputer

1- TM990/100M-1

B. Terminal

1 - TM990/301

3-10

PARTS LIST

TMS9900 Microcomputer module with TIBUG
monitor in two TMS 2708 EPROM's and EIA
or TTY serial 1/0 jumper option.

Micro terminal

9900 FAMILY SYSTEMS DESIGN

A First Encounter: GETTING IT TOGETHER
Getting Your Hands on a 9900

C. Output

1 - Hex LED Driver
1 - 7 Segment Display
2 - 14 or 16 Pin Dip Sockets

6 - 100 ohm Resistors, Y-i W
1 - Switch, Toggle or Slide,

SPSTorDPST
1 - J4, 40 pin, 0.1" c-c,

wire-wrap
PCB Edge Connector
(or equiv. solder
terminal unit)

1 - Printed Circuit Board

SN74H05N
TIL303
TI wire-wrap; 16 Pin - C-811604 M&C;
Radio Shack wire-wrap; 14 Pin 276-1993;
16 Pin 276-1994

TIH421121-20

Viking 3VH20/ 1JND5

Radio Shack #276-152

D. Bus Connector (Use for Power in First Encounter)

1- Jl, 100-pin,0.125"c-c, TIH431121-50
wire-wrap
PCB Edge Connector
(or equiv. solder
terminal unit)

E. Power Supplies - Regulated

Voltage
+5V
+12V
-12V

F. Tools

Regulation
+3%
+3%
+3%

Current

1.3A
0.2A
O.lA

Wire-wrap connector tool
Wire-wrap disconnecting tool
Wire stripper (30 G)

G. General Supplies

Wire (30 G Kynar)
Solder

AMPHENOL 225-804-50
Viking 3VH50/9N05
Elco 00-6064-100-061-001

Soldering Iron

Long-nose pliers
Diagonal cutter
VOM, DVM, DMM

Plugs and jacks for power supply connections

Note the power supplies required, the voltages, currents, and regulation. Assure that
there is a common ground between all units.

9900 FAMILY SYSTEMS DESIGN 3-11

3 ...

llJiii.3

GETTING IT TOGETHER A First Encounter:
Getting Your Hands on a 9900

(Electronic shops or laboratories might have available individual LEDs, therefore,
Figure 3-10 is provided in case this alternate method of display is chosen. The necessary
drivers and resistors are identified. The necessary substitutions can be made on Figure 3-9.)

After wiring the output board, what remains is to supply power to the board. This is
accomplished through Pl on the 990/lOOM-l board. Figure 3-11 shows how the edge
connector is wired to supply power. Be careful to use the correct pins as numbered on
Pl on the board; these pin numbers may not correspond to the number on the particular edge
connector used. Label the top side of the edge connector "TOP" and the bottom
"TURN OVER." This will prevent incorrect connection of power to board. Wire the
connector pins so that the top and bottom connections on the board are used to supply
power, e.g., 1 & 2 for ground; 3 & 4 for +5V; 73 & 74 for -12V; and 75 & 76 for
+ 12V. Plugs or jacks may be placed on the end of the power supply wires to make easy
interface. With both the Pl and P4 connectors and the output board wired, the total
system is ready for interconnection.

1Y

2Y

2A 3

GND 4

3A

3Y

4Y

3-12

A. SN7S492N

MOS-LED DRIVER
(OPEN COLLECTOR)

14 1A

13 6Y

12 6A

11VssorV~c

10 SA

SY

8 4A

COMPONENTS PARTS

1 - SN7S492N DRIVER

1 - 14-16 PIN DIP SOCKET

4 - TIL209 LED'S

4 - 330 fl RESISTORS

B. LIGHT EMITIING DIODES
TIL209

C. 330 OHM RESISTORS
1/4 w

------<-----11t------- + SV

3 s 8

D. SCHEMATIC

14

330 fl

-,
I
I SN7S492N
I

Figure 3-10. Alternative LED Output Display

9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

UNPACKING AND CHECKING THE
MICROCOMPUTER (TM 990/lOOM-1)

UNPACKING AND CHECKING THE MICROCOMPUTER (TM990/100M-1)

It is very important to realize that the microcomputer module has MOS (metal
oxide-semiconductor) integrated circuits on it. These circuits are particularly sensitive to
static charge and can be damaged permanently if such charge is discharged through their
internal circuitry. Therefore, make sure to ground out all body static charge to
workbench, table, desk or the like before handling the microcomputer board or any
components that go onto it.

After unpacking the TM990/100M-1 module from its carton and examining it for any
damage due to shipping, compare it to Figure 3-12 to determine the correct location of all
parts. Additional detail is available in the user's guide shipped with the board. Make sure 3<1111111

that EPROM TIBUG Monitor (TM990/401-1) units are in the U42 and U44 positions
on the board. Make sure that the RAM integrated circuits are in the U32, 34, 36, and
38 positions.

0> z in

" +
2 4

TM99/100M
P1 CONNECTOR i:: i::

lTOPI 'j +
10 20 30 40 50 60 70 74 76 80 90 100

DDDDDDDDDDDDDDDDDDDDDODDDDDDDDODDDODODDDOOOODOODDO

EDGE CONNECTOR

BANANA PLUGS

(SUGGEST COLOR CODING)
THESE AS PER TABLE

VOLTAGE P1 PIN* SUGGESTED PLUG COLORS

+5V 3,4 RED

+12V 75, 76 BLUE

-12V 73, 74 GREEN

GND 1, 2 BLACK

*ON BOARD, ODD-NUMBERED PADS ARE DIRECTLY BENEATH EVEN-NUMBERED PADS.

Figure 3-11. Power Supply Hookup for 9901 lOOM-1 Microcomputer

CAUTION Before connecting the power supply to Pl, use a volt-ohmmeter
to venfY that correct voltages are present as shown in Figure J-11.

9900 FAMILY SYSTEMS DESIGN 3-13

..... 3

UNPACKING AND CHECKING THE
MICROCOMPUTER (TM 990/lOOM-1)

a:
UJ
_J
_J

0
a:
!z:
0
t)

Cf) Z N
:::io c...
Oi= z <(
og
a: z
I::>
t):::?
z :::?

~8

<(
UJ
a:
<(

c...
<(
a:
~
UJ
a:
~

I

C'l c...

'<t c...

a:
UJ
_J
_J

0 a:
I-z
0
t)

A First Encounter:
Getting Your Hands on a 9900

N
0
O'l
O'l
(/)

:::?
I-
0
I-
a:
0
CXl

a:
a:
0
I-
t)
UJ
z
z
0
()

0
I-
'<t
I-
?;

0
O'l
O'l
(/)

:::?
I-
(/)
UJ
I-a: ::::>

0 0
(/) a:
(/)
UJ :::;
t)
0 a:
[l_

0
a:
t)

~
0
0
O'l
O'l
(/)

:::?
I-

Figure 3-12. TM 9901 JOOM-1 Module as Shipped

3-14 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

CONNECTING THE MICROTERMINAL/
OPERATING THE MICROCOMPUTER

Compare the board to Figure 3-12 & 3-13. Make sure that the jumpers are in the following
positions:

jUMPER POSITION JUMPER POSITION
Jl Pl-18 J4 08,08

J2 2708 J7 EIA

J3 08,08 Jl1 OPEN

They assure that memory locations are identified correctly and that the microterminal
interfaces correctly.

CONNECTING THE MICROTERMINAL TM990/301

The microterminal (Figure 3-2) should be examined to verify there is no damage due to
shipment. It will be connected to the microcomputer through P2 on Figure 3-12. Jumpers
J13, J14, and J15 must be installed on the TM990/100M-1 board in order to supply
power to the microterminal. Using the extra jumpers provided, short pins on the board
at J13, J14, and J15 (Figure 3-13). Attach the plug on the microterminal cable to the P2
connector on the board.

OPERATING THE MICROCOMPUTER

Check once more that all wiring is correct for the output board (Figure 3-9), the power
connector (Figure 3-11) and the jumpers, then follow these steps:

Step 1 Begin with connectors to Pl or P4 disconnected

Step 2 Turn on power supplies and verify that all voltages are correct at the
connector for Pl. Turn off power supplies.

Step 3 Connect the power supply connector to Pl. Make sure edge connector
has the word "TOP" showing. Turn on ~ 12V supply first, then

Step 4

Step 5

Step 6

+ 12V, then + 5V.

Verify the voltages of+ 5V, -12V, and + 12V on the board printed
wiring connections near the edge of the board between P2 and P3.
Adjust power supplies or verify trouble if these are not correct.

Verify the voltages of these terminals:
J13 +5V
Jl4 + 12V
J15 -12V

If these are incorrect, correct the problem.

Turn off power supplies. With the top edge of connector for P4 in
correct position, connect output board to P4, turn on power supplies in
same sequence as before, -12V, + 12V, +5V.

The total setup should now look like Figure 3-14 and the microcomputer is now ready to
perform the task; all that's required is to tell it what to do.

9900 FAMILY SYSTEMS DESIGN 3-15

~3

CONNECTING THE MICROTERMINAL/
OPERATING THE MICROCOMPUTER

A First Encounter:
Getting Your Hands on a 9900

3-16

--------- J13

-----J14

---J15

MICROTERMINAL
USE

........ J10

........ J9
--Ja
--J6
-Js

MULTIDROP
INTERFACE

TMS 2708/16
EPROM
SELECT

Figure 3-13. Jumpers used on TM 9901 JOOM-1 Board for Option Selection

9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

9900 FAMILY SYSTEMS DESIGN

CONNECTING THE MICROTERMINAL/
OPERATING THE MICROCOMPUTER

Figure 3-14. Total System Connected

0
a:

~
5
5
0

3-17

3...-

TELLING THE MICROCOMPUTER
WHAT TO DO

A First Encounter:
Getting Your Hands on a 9900

TELLING THE MICROCOMPUTER WHAT TO DO

The microcomputer is told what to do through the microterminal keyboard. This is
shown in Figure 3-15. Initial conditions are necessary so Step 7 starts everything at an
initial point.

Step 7 Figure 3-1 and Figure 3-12 identify the RESET switch. Switch it all the way
to the right (facing the toggle). Now depress the CLR (clear) key on
the microterminal. Nothing will be on the display but to verify that it is
working, press several of the number keys. The numbers pressed will
appear in the display. Now press the CLR key again on the
micro terminal.

As we depress selected keys on the microterminal, the microcomputer is being given
instructions - a step by step sequence of things to do to perform the first encounter
task. The microcomputer is being programmed to do a job.

In order for the microcomputer to do its task according to the instructions given, it must
also do many things dictated by other instructions that are stored in sequence in the
TIBUG Monitor read-only memory (ROM). The program that performs the first
encounter task is stored in the random access memory of the microcomputer and used in
sequence. As a result, as the microcomputer accomplishes the task for which it is
programmed, it performs each of the steps dictated by the "main program" in the RAM
and by TIBUG in ROM.

There are only a few keys used on the microterminal for the first encounter. Identify
these on Figure 3-15 and on the microterminal. Three of these are: ™. (enter memory
address) is used to display a specific memory address and give the user the ability to
change the contents of that location. ~ (enter memory data) changes the contents of
the memory location and ~(enter memory data and increment) changes the contents
of the memory location and advances the address by two.

Note that Figure 3-15 identifies the information given by the display. There are two banks
of 4 digits each that are displayed. The left 4 digits display the address register (memory
address) and the right 4 digits display the data in the data register (data to be stored in
memory, being read from memory, or being operated on by the microcomputer). It is of
no concern at the moment but both of these 4 digit registers are identifymg the value of
their data in hexadecimal code. Suffice it to say at this time that each hexadecimal digit
represents 4 bits of data for a number that has a value represented by 16 bits. Each
hexadecimal digit can have at any one time an alphanumeric value of any one of the
following: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. The decimal value of these
numbers are shown in Figure 3-16 as they occur in the place value position of the 4 bit
display. Hexadecimal numbers will be identified with a subscript of 16 in the text, e.g.,
02E016 or 010016 whenever there is need to avoid confusion.

3-18 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

TELLING THE MICROCOMPUTER
WHAT TO DO

ADDRESS DATA

~~, TEXAS INSTRUMENTS

Microterminal
TM 990/301

H/S D•H H•D RUN

DDDDD
EWP EPC EST ECRU

DDDDD
DWP DPC DST DCRU

DDDDD
EMA EMO EMDI CLR

DDDDD
0 1 2 3

DDDDD
4 5 6 7

DDDDD
8 9 A B

DDDDD
C D E F/-

D DD DD

The display of the microterminal
is divided into two 4 hexadecimal
digit banks. The left bank dis
plays address register informa
tion and the right bank displays
data registers.

Figure 3-15. Microterminal Keyboard and Display

Every program starts at a particular place in the RAM memory. The first encounter
program will start at memory location identified by the hexadecimal address FEOO. This
is a 16 bit address which in machine code looks like this: 1111 1110 0000 0000
(F = 15; E = 14; 0 = O; 0 = 0) and from Figure 3-16 has a decimal value of
61,440 + 3584 + 0 + 0 = 65,024. The program starts at memory location 65,024.

To start the sequence of instruction steps for out first encounter, the starting address is
entered and the ~ (enter memory address) key is depressed on the microterminal.
This is program Step 2 in Step 8. To help verify the steps the display data is also
recorded.

Step 8

KEYSTROKES

0.M
i. mm mm
2. ~
3. mm m rn

9900 FAMILY SYSTEMS DESIGN

ADDRESS

FEOO
FEOO

Display

DATA

FEOO
XXXX (X = Don't care)
02EO

3-19

3 ...

~3

A First Encounter: TELLING THE MICROCOMPUTER
WHAT TO DO Getting Your Hands on a 9900

This keystroke at Step 3 is a hexadecimal code - an instruction - that is telling the
microcomputer to load a register with data. The data, however, is at the next address
location. Therefore, with the next keystroke ~ (enter memory data and increment),
the instruction 02EO is stored at address location FEOO and the next memory address for
an instruction is brought into the display by incrementing (advancing) the FEOO address
by 2 (the reason for advancing by 2 will become clear as more is learned about the 9900
microprocessor).

Step 9

KEYSTROKE An DRESS DATA

4.~ FE02 xx xx

MSB

163 162 161 16°

BITS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4 096 1 256 1 16 1 1
2 8 192 2 512 2 32 2 2
3 12 288 3 768 3 48 3 3
4 16 384 4 1 024 4 64 4 4
5 20 480 5 1 280 5 80 5 5
6 24 576 6 1 536 6 96 6 6
7 28 672 7 1 792 7 112 7 7
8 32 768 8 2 048 8 128 8 8
9 36 864 9 2 304 9 144 9 9
A 40 960 A 2 560 A 160 A 10
B 45 056 B 2 816 B 176 B 11
c 49 152 c 3 072 c 192 c 12
D 53 248 D 3 328 D 208 D 13
E 57 344 E 3 584 E 224 E 14
F 61 440 F 3 840 F 240 F 15

LSB

15

To convert a number from hexadecimal, add the decimal equivalents for each hexadecimal digit. For example,
7A8216 would equal in decimal 28,672 + 2,560 + 128 + 2. To convert decimal to hexadecimal find the
nearest number in the above table less than or equal to the number being converted. Set down the hexadecimal

equivalent then subtract its decimal number from the original decimal number. Using the remainder(s), repeat
this process. For example:

3-20

31,36210 = 700016 + 269010
2,69010 =A0016 + 13010

13010 = 8016 + 210
210= 216

7000
AOO

80
2

7A8216

Figure 3-16. Place Value of Hexadecimal Digits in Significant Bit Positions

9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

TELLING THE MICROCOMPUTER
WHAT TO DO

Program Step 4 of operating Step 9 shows this. Memory location identified by address
FE02 is now ready for the data that will be put into the register identified by the
instruction 02EO at location FEOO. The data is FF20.

5. mm m w
6.~

FE02
FE04

FF20
xx xx

Program Step 6 has now advanced to the next memory location which is awaiting the
next instruction which is keystroked in by program Step 7.

1. w m w m
Step JO

FE04 0201

Continue now to program steps through the end of the program. Note how the address
memory location advances by 2 each time ~ is pressed. This is how the program will
be followed when it is run. The starting address FEOO will be loaded into the program
counter. The program counter will then count by 2 and advance the microcomputer
through each program step as the instructions are completed.

KEYSTROKE ADDRESS DATA

8. ~ FE06 xx xx
9.mmmm FE06 FE2E

10. ~ FE08 xx xx
11. w m w m FE08 020C
12. ~ FEOA xxxx
u. w m m w FEOA 0120
14. ~ FEOC xxxx
15. m m w w FEOC *ldOO
16. ~ FEOE xxxx
11. w mm m FEOE 0691
18. ~ FElO xx xx
19. m m w w FElO lEOO
20. ~ FE12 xx xx
2i. w m m m FE12 0691
22. ~ FE14 xxxx
23. m m w m FE14 *ldOl
24. ~ FE16 xx xx
25. w m m m FE16 0691
26. ~ FE18 xx xx
21. m m w m FE18 lEOl
28. ~ FElA xxxx
29. w m m m FElA 0691
30. ~ FElC xx xx
31. m m w m FElC *ld02

*As displayed on 301 Terminal

9900 FAMILY SYSTEMS DESIGN 3-21

3...-

TELLING THE MICROCOMPUTER A First Encounter:

WHAT TO DO Getting Your Hands on a 9900

KEYSTROKE An DRESS DATA

32. ~ FElE xx xx
33. w w rn DJ FElE 0691
34. ~ FE20 xx xx
35. DJ rn w rn FE20 1E02
36. ~ FE22 xx xx
37. w w rn DJ FE22 0691
38. ~ FE24 xx xx
39. DJ rn w rn FE24 *ld03
40.~ FE26 xx xx

.... 3 4 L w w rn DJ FE26 0691
42. ~ FE28 xxxx
43. DJ rn w rn FE28 1E03
44.~ FE2A xx xx
45. w w rn DJ FE2A 0691
46. ~ FE2C xx xx
47. DJ [[] ITJ ITJ FE2C lOEF
48. ~ FE2E xx xx
49. DJ rn w rn FE2E 1F04
50.~ FE30 xx xx
51. DJ rn w rn FE30 1305
52. ~ FE32 xx xx
53. w rn w rn FE32 0203
54.~ FE34 xx xx
55. ITJ ITJ ITJ ITJ . FE34 FFFF
56.~ FE36 xx xx
57. w w w rn FE36 0603
58.~ FE38 xx xx
59. DJ []] ITJ ITJ FE38 16FE
60.~ FE3A xx xx
6 L w rn rn m FE3A *045b
62.~ FE3C xx xx
63. w rn w rn FE3C 0203
64.~ FE3E xx xx
65. rn rn rn rn FE3E 3FFF
66.~ FE40 xx xx
67. w w w rn FE40 0603
68.~ FE42 xx xx
69. DJ []] ITJ ITJ FE42 16FE
70.~ FE44 xx xx
7 L w rn rn m FE44 *045b
72.~ FE46 xx xx

3-22 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

TELLING THE MICROCOMPUTER
WHAT TO DO

Step 11

All the program steps are now entered. It remains to run the program, that is, send the
microcomputer through its sequenced steps to determine if it will accomplish the task.

Recall, that the system must be set to the initial conditions and to the starting point.
This means that the system must start at memory address FEOO because that is where the
first instruction is located.

Inside the microcomputer there is a register (a temporary storage location for 16 bits)
that always contains the address of an instruction. It was previously noted that as the
memory location of instructions was incremented by 2 as the program was entered, so
also will the program counter be incremented by 2 by the microcomputer to go to the
next instruction. Therefore, the initial conditions are accomplished by loading the
program counter with the address location FEOO. This is accomplished by an ~ key
on the microterminal. The ~ (enter program counter) key changes the value of the
program counter. It will enter into the program counter the value that is in the data
register of the microterminal display.

The ~ (display program counter) key on the microterminal is depressed to determine
if the correct value has been entered into the program counter because it displays the
current value of the program counter.

The @IBJ key is depressed to begin execution of the program starting with the address
in the program counter.

To run the program, go through Steps 1 thru 5.
KEYSTROKE An DRESS

1. [fill]

2. mm rn rn
3.~
4.~
5. [@HJ

VO ILA!

DATA

FEOO
FEOO
FEOO
run

The first encounter task is being accomplished. Switching the toggle switch will change
the rate of the segment display.

Under program control output logic levels on a set of output lines have been set to a
"1", held for a time, set to a "O", held for a time, etc. in a particular sequence. The delay
between "ls" and "Os" also is under program control. Such output levels then have been
interfaced to driver circuits to accomplish a given task - in this case lighting LED
segments of a display.

9900 FAMILY SYSTEMS DESIGN 3-23

3...-

HOW WAS IT DONE? A First Encounter:
Getting Your Hands on a 9900

Step 12

To stop the program, depress ill@ . The RESET switch on the microcomputer could
also be pressed. (However, in doing so, to return to the program, go through the initial
five steps of running the program at the end of operating Step 10.) The program may be
started again by depressing ~ after it was halted by M

Step 13

If for some reason the first encounter task is not being accomplished after completing
Step JO, the program can be checked by entering FEOO, the beginning address and
depress ~ . The contents of memory and the instruction at FEOO will be displayed.

~ 3 Each memory location can then be examined by depressing ~ and reading the display.
In this manner, the program can be examined for an error. When the error is located,
the correct data can be entered as it was in the original program and I@ is pressed. The
program can then be run by returning to the initial sequence of operating Step 11.

The program may be entered at any valid address by entering the address and pressing
~ and then proceeding step by step with ~. There is no need to go back to the
beginning address each time.

HOW WAS IT DONE?

The question naturally arises - how was this task accomplished by the microcomputer,
and more importantly, how was the task taken from idea to the actual program? How
does one know what to tell the microcomputer to do?

Of course, this will take a great deal of study of this book and much operation of
systems, starting with the TM990/100M-1 microcomputer. The way the idea is turned
into a program for the first encounter is covered in the remaining part of this chapter.
This is a good foundation for building knowledge of the 9900 microprocessor, applying
the 990/ lOOM microcomputer to many other tasks, and understanding the use of the
9900 in solving other types of problems.

3-24 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

BACK TO BASICS

BACK TO BASICS

The process of understanding how the task was taken from idea to instructions for the
microcomputer begins by returning to some basic concepts to assure that these are
understood.

Recall that Figure 3-4 identified the functional blocks of our microcomputer. The central
processing unit includes the 9900 microprocessor. Examining Figure 3-5 further and the
functional block diagram of Figure 3-17 shows that the 990/lOOM microcomputer is bus
oriented. Recall that a bus is one or more conductors running in parallel which are used
for sending information. The 9900 microprocessor sends an address to memory, to
identify data required, on the 15-bit address bus. It receives data from memory on a 3<11(

16-bit data bus. It should be noted that the same 15-bit address bus goes to the
input/output interface units. The address bus is used either to send an address to memory
or an address to input I output, not both at the same time. When the signal MEMEN is a
logic low, the address bus is for memory. If the address bus is not for memory then it can
be used by I/O. When the address is for I/O, the selection of which lines will be inputs
or outputs is under control of the 9900.

ADDRESS BUS 15 BITS

(CRU)
CRUIN
CRUOUT
CRUCLK

IAO

-{>---- BUFFER

<!>3

Figure 3-17. Functional Diagram of TM 990 I 1 OOM-1 Microcomputer

9900 FAMILY SYSTEMS DESIGN 3-25

BACK TO BASICS A First Encounter:
Getting Your Hands on a 9900

Therefore, lines to accept data as input, or to deliver output data are selected by address
bits in the same fashion that address bits locate data in a memory.

Examination of the architecture of the 9900 microcomputer in Figure 3-18 reveals, as in
Figure 3-17, the address bus, the data bus, signals for the CRU (the Communications
Register Unit is an I/O interface for the 9900 architecture), signals for interrupt,
control signals and master timing signals. Each of these are external signals. Further
examination of internal parts is required to expand on more basic concepts, with
emphasis on the ones that are used for the first encounter task.

REGISTERS

Recall that a register is a temporary storage unit for digital information. Inside the 9900
there are these types of registers: a memory address register, a source data register (data
register), an instruction register, an interrupt register, some auxiliary registers like T 1

and T2, and the registers that will be most applicable to the first encounter - the
program counter, the workspace register, the status register and a shift register used as
part of the hardware to select the input and output terminals. Additional parts include:
1) the ALU - it is the arithmetic and logic unit that performs arithmetic functions, logic
and comparisons. 2) Multiplexers that direct the data over the correct path as a result of
signals from the control ROM and control circuitry. 3) Timing circuits so that all
operations are synchronized by the master timing.

Every time a piece of information is required to be stored in memory or retrieved
(fetched) from memory, the memory must be told where the data is located or to be
located. The memory address register holds the address to be put on the address bus for
this purpose.

Data fetched from memory is received either by the source data register and distributed
by the 9900 microprocessor as required, or by the instruction register when it is an
instruction. The instruction is decoded and transmitted to the control ROM which
sequences through microinstructions previously programmed into the control ROM to
execute the instruction. The instruction might be "Increment register 1 by two".
Instruction steps take the data from register 1 to the ALU which adds "2" and returns
the data to register 1.

3-26 9900 FAMILY SYSTEMS DESIGN

A First Encounter: BACK TO BASICS
Getting Your Hands on a 9900

CONTROL

HOLD

HOLDA
LOAD

wr
READY

CONTROL
WAIT

LOGIC
~

OBIN

RESET

IAG

CRUCLK

'cRu

cpl-4>4

MASTER
TIMING

Tl

T2

PROGRAM COUNTER

WORKSPACE REGISTER

A

ALU

D0-015

DATA BUS

INTERRUPT
CODE ADDRESS BUS

INTREO ICO-ICJ

CRUIN

CRU

AO-A14

15

MEMORY
ADDRESS
REGISTER

16

CRUOUT

Figure 3-18. Architecture of 9900 Microprocessor

9900 FAMILY SYSTEMS DESIGN 3-27

... 3

BACK TO BASICS A First Encounter:
Getting Your Hands on a 9900

Two registers of significant concern for the first encounter task are the status register
and the workspace register. The status register is just what the name implies. The 9900
microprocessor continually checks on how things are going (the status) by following
instructions that command it to check various bits of the status register. Figure 3-19 shows
the bits of the status register.

0 2 3 4 5 6

STO ST1 ST2 ST3 ST4 STS ST6

L> A> c 0 p x

7 8 9 10 11 12 13 14 15

not used (=0) ST12 ST13 ST14 ST15
Interrupt Mask

Figure 3-19. Status Register

Each bit of the first 7 bits is concerned with identifying that a particular operation or
event has or has not occurred as shown here.

BIT PURPOSE BIT PURPOSE

0
1
2
3

Logical Greater Than
Arithmetic Greater Than
Equal
Carry

4
5
6
12-15

Overflow
Parity
XOP
Interrupt Mask

The last 4 bits are concerned with the interrupt signals and a priority code associated
with the interrupts.

The first encounter uses bit 2, the "equals" status bit to change the time delay in the
LED sequence.

WORKSPACE

The workspace register is the same as the other registers, but it is used in a special way.
As the 9900 microprocessor and the microcomputer step through program instructions,
there is a need to have more registers than those available on the 9900. Instead of
providing these registers in the 9900, a file of registers is set up in memory and a
reference to this file saved in the workspace register. One of the rules in setting up this
file is that it will always contain 16 registers in 16 contiguous (one following another in
sequence) memory words. The workspace register on the 9900 is called the workspace
pointer because, as shown in Figure 3-20, it contains the address of the first memory word
in the contiguous register file, referred to for the application of the 9900 and in this
book as "workspace registers" or just "workspace". The i;egister file can be located

anywhere within RAM that seems appropriate. In the total available memory space,
there are certain reserved spaces for RAM, others for ROM, and others for special
instructions. Therefore, the register file can only be set up in certain portions of
memory. So, where 020016 to 021E16 are the 16 locations shown in Ft'gurr; 3-20a, with
the workspace pointer being 020016 , the file could have started at 030016 and extended to
03 lE16 as long as these are allowable locations in the overall memory matrix. The
workspace pointer would contain 030016 in the second case.

3-28 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

9900

WORKSPACE POINTER

o 2 o 01b I
(WORKSPACE REGISTER)

WORKSPACE POINTER

0

INSTRUCTION
REGISTER

(SAYS I NEED
DATA FROM REGISTER 7)

L. 2x7

ADDRESS
BUS

BACK TO BASICS

MEMORY
MEMORY ---- ---- ADDRESS (HEXADECIMAL)

-- --------
01FC

1------------
01FE

FILE REGISTER 0 0200

II 0202

II 0204

II 3 0206

II 4 0208

020A

6 020C

II 7 020E

8 0210

0212

10 0214

11 0216

12 0218

13 021A

II 14 021C

15 021E

--------- --
~----------~

Figure 3-20a. Workspace Registers

0220

0222

0224

FILE REGISTER 0 020016

FILE REGISTER

FILE OF REGISTERS
CALLED
WORKSPACE

Figure 3-20b. Locating Specific Register

9900 FAMILY SYSTEMS DESIGN 3-29

3~

SBZANDSBO
INSTRUCTIONS

A First Encounter:
Getting Your Hands on a 9900

To locate a specific register in the workspace file, the 9900 microprocessor adds the
register number to the workspace pointer address to obtain the address of the specific
register in the file that is required. (It actually adds 2R, where R is the register number,
so that the addresses advance by even numbers_. The odd number addresses are used
when the word contents are to be processed in 8-bit bytes.) For example, if register 7
contains the information required by the 9900 microprocessor, then the address 020E in
Figure 3-20a is obtained by adding 14 to the workspace pointer at 020016 • This is shown in
Figure 3-20b. In like fashion, if the workspace pointer contained 030016 , then adding 14 to
030016 gives 030E16 the address ofregister 7, the 7th register down in the file.

Recall that to accomplish the first encounter task, logic levels on output lines had to be
set to a "1" or a '.'O" in order for the LED drivers to turn on or turn-off the LED
segment respectively. Recall, also, that the particular output lines could be selected. To
understand how this is done, refer to Figure 3-21. This figure is divided into three
bounded regions; the TMS 9900, Memory, and the TMS 9901. The output line from
the 9900 microprocessor that will do the setting is the line "CRUOUT." It is coupled
to the TMS 9901, the programmable systems interface.

The TMS 9901 contains more functional parts to handle the interrupt code and
interrupt input signals but for now the part that is important is that shown in Figure 3-21.
The portion shown is a demultiplexer. The data appearing at CRUOUT is strobed by
CRUCLK into latches feeding the output pins. The particular latch and the particular
output line is selected by the code that exists on the select bit lines S0 , S1 , S2 , S3 , and S4 ,

which, as shown in Fi/ure 3-21, are the address lines A10 through A14 • The code on S0

through S4 , and the CRU logic selects the output latch and line that is to be set. The "1"
or "O" on CRUOUT does the setting. The latching occurs when CRUCLK strobes
the data in.

SBZ AND SBO INSTRUCTIONS

Enough basics have now been covered to begin understanding several of the important
instructions for the first encounter task. Figure '3-21 will again be used and will be followed
from left to right and top to bottom starting with the upper left corner. At a particular
step in the program, controlled by the program counter, the instruction address (the bit
contents of the program counter) is sent to memory over the address bus to obtain the
instruction. Memory is read and the instruction is received by the 9900 on the data bus
and placed in the instruction register. Via the control ROM and the control logic, the
instruction is interpreted as an SBO instruction - "set CRU bit to one." The 9900 is
designed so that it generates the correct S0-S4 address for the TMS9901 that selects the
output line to be set to a "1" by the instruction. However, as indicated in Figure 3-21, first
an ALU operation must occur before the correct address is obtained. The ALU adds the
contents of one of the registers in the file, workspace register 12 (WR12), to a portion
of the instruction, SBO. This portion of the SBO instruction is identified as DISP

3-30 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

SBZANDSBO
INSTRUCTIONS

(meaning displacement) in Figure 3-21. It identifies the specific line to be used in the 9901
for the output. Eight bits are used for the signed displacement (7 and a sign). Bits 3
through 14 are used from the workspace register 12.

After the ALU operation, the address is sent out on the address bus. Because the
MEMEN line is not active, this tells the 9901 that the address is for I/O. All 15
address bits are there; however, only A3 through Ai4 are used for the effective CRU
address. Aio through Ai4 provide S0 through S4 for the 9901, while bits Ao through A9
are used for decoding additional l/O as shown in Figure 3-17. Ao, Ai, and A2 are set to
zero for all CRU data transfer operations.

I TMS 9900 I MEMORY

I P.C.

I
I l.R.

I
I
I
I
I
I

OP

CONTROL
ROM

CONTROL
LOGIC

SET TO
"I" FOR SBO
TO
"O" FORSBZ

DISP

CRUOUT

CRUCLK

ADDRESS
INSTRUCTION

BUS

DATA BUS

ADDRESS

BUS
I

WORKSPACE REGISTER

WR12

3 14

~

DATA BUS

ADDRESS BUS

EFFECTIVE CRU BIT ADDRESS
(ONLY BITS 3-14 FROM WR12 USED)

A"-A"

CRU
LOGIC

TMS 9901

0
T
H
E
R

1/0

Figure 3-21. CR U Concept - Single Bit Output SBO or SBZ on CR UOUT.

9900 FAMILY SYSTEMS DESIGN 3-31

3-c

... 3

SBZANDSBO
INSTRUCTIONS

I/O SELECTION

A First Encounter:
Getting Your Hands on a 9900

The codes required on S0 through S4 that select a specific output or input in the 9901
are shown in Figure 3-22. To make it convenient, the P0 line will be used for bit zero of
the output or input,.P1 for bit one, P2 for bit 2, P3 for bit 3 and P4 for bit 4. Therefore,
to select the line for P0 , the code on S0 through S4 must be 1 0000. Rather than starting
at select bit 0, the output sequence is started at select bit 16. Adding 3210 (base ten) to
the contents of the file register 12 accomplishes this. This is 1016 in Hex code times two,
to shift it into bits 3 through 14.

What do the contents of register 12 indicate? They identify the particular 9901 used.
Referring back to Figure 3-17, it is noted that several I/O units are connected to the
address bus of the microcomputer TM990/ lOOM-1. In order for the decoder to activate
the correct CE signal to enable the right I/O, a base address is assigned to each I/O
unit. The software base address for the 9901 on the microcomputer is 010016 • The
hardware base address is 008016 •

Figure 3-23 summarizes the ALU operation. Workspace register 12 contains the software
base address of the 9901 on board the microcomputer. The signed displacement of+ 1016 is
located in the instruction register as part of the SBO instruction. These two pieces are
added together by the ALU and the result placed in the address register. Note that the
ALU uses only the bits from 3 to 14 of the software base address to get the hardware
base address, adds the displacement, and that the effective CRU address is bits 0 through
14. Bit 15 becomes a "don't care" bit.

SELECT
BIT

9

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

31

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

1

0

1

0

0

0

1

0

1

0

1

INPUTS

PolN

P1IN

P2IN

P3IN

P4IN

PslN

P61N

P1IN

Pa IN

P9IN

P10IN

P11IN

P12IN

P13IN

P1 41N

P1slN

OUTPUTS

PoOUT

P10UT

P20UT

P30UT

P40UT

PsOUT

P60UT

P10UT

Pa OUT

P90UT

P1 00UT

P11 0UT

P120UT

P130UT

P140UT

P1sOUT

Figure 3-22. 110 Selection in TMS 9901

3-32 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

SBZAND SBO
INSTRUCTIONS

MSB LSB

BITNO. 0 3 I 4 6 1 I s 9 10 11 I 12 13 14 15
ADDRESS

WR12 I o I o I o I o I o I o I o I I o I o I o I o I o I o I o I o I 0100 ..

I I
(SOFTWARE BASE ADDRESS)

------- A, THRU A,. -------

PORTION
USED BY ALU I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 0 I 0 . I 0 I 0 I 0 I ~~!~;WARE BASE ADDRESS)

SIGNED I 8 9 10 11 I 12 13 14 15

g~~~g~MENT C~I~ro-r; I 0 I 0 I 0 I 1 I 0 I 0 I 0 I 0 I
ADDED WHAT'S IN SIGN BIT POSITION

8 IS EXTENDED THRU MSB

o 2 I 3 4 5 6 I 1 a 9 10 I 11 12 13 14 15

ADDRESS
REGISTER I 0 I 0 I 0 I I I I I I I I I I I I I --1 009016 (CRU BIT ADDRESS)

. . . 0 0 0 0 1 0 0 1 O O O o_:J (BITSOTHRU14)

SET TO "O" FOR ALL EFFECTIVE CRU ADDRESS NEW SOFTWARE

~~~~~12:N~I- ______ 
1 
_______ 

1 
_____ 1 BASE ADDRESS 

WR 12 I 0 I 1 I 2 I 0 I 0120,. 
L---- - --'-------'--- ----.L ---- __ ...J 

(BITS 0 THRU 15) 

Figure 3-23. Generating the Output Line Address for the 9901 

Recall that the software base address assigned to the 9901 is 010016 but this is to be 
changed by the added displacement of 1016. If all of WR 12 were used, the sum would 
be 011016. Because the signed displacement addition occurs with bit 15 neglected, the 
effective CRU address sent to the 9901 for bits A0 through A14 is 009016 , the hardware 
base address of 008016 plus the 1016 displacement. Had bit 15 not been neglected, the 
sum would appear as shifted over one bit position or 012016. 

Additional displacement will have to be added to the 1016 displacement to obtain the 
correct code for P1 , P2 and P3 shown in Figure 3-22. To be able to add a displacement of 
"O" for the zero bit, 1 for the one bit, i for the two bit, 12016 is used as the software 
base address in workspace register 12 right from the start. 

From the past discussion, it should be quite clear now that one of the 32 outputs or 
inputs can be selected by including this information with the SBO instruction, and that a 
particular 9901 (if there were more than one) is selected by programming the correct 
base address into the workspace register 12. 

Referring back to Figure 3-21, a SBZ - "Set CRU bit to Zero" - instruction is the same 
as the SBO instruction except that the output latch is now set to a "O" rather than a "l". 
Note in particular in both of these instructions that only one bit is set at a time. An 
instruction must be included for each bit to be set when using SBO and SBZ. 

9900 FAMILY SYSTEMS DESIGN 3-33 

3<11111 



.... 3 

TB INSTRUCTION A First Encounter: 
Getting Your Hands on a 9900 

TB INSTRUCTION 

Besides setting logic levels on output pins, an additional system requirement for the first 
encounter task is to receive an input on an input line. One way of accomplishing this is 
to have the 9900 microprocessor look at a selected input line, bring the information 
present at a specified time into the 9900 and then examine the information, or test it, to 
determine if the information was a "1" or a "O". The TB instruction, "Test CRU Bit", 
accomplishes bringing the information into the 9900. Subsequent instructions are added 
to determine if the information was a " 1" or a "O" . 

TMS9900 MEMORY TMS9901 

ADDRESS 
P.C. INST. ADDR. 

BUS 
INSTRUCTION 

l.R. DISP 

I DATA BUS 

CONTROL 
ROM 

WORKSPACE REGISTER I ADDRESS I WR12 

,--, 
BUS I 

I 
CONTROL I 0 I LOGIC 3 14 CRU I T 

~ I 
LOGIC H I 

I E I 

I 
I R I 

1
110 I 

DATA BUS I I : 
I I 

ADDRESS BUS A,,-A,. I I 
SO-S4 I I LOAD BIT 2 WITH EFFECTIVE CRU BIT ADDRESS 

VALUE OF INPUT (ONLY BITS 3-14 FROM WR12 USED) 
BIT 

BIT 0 1 2 3". 

I I I I I CRUIN 

STATUS REGISTER 

CE 

RSTl -;p 

Figure 3-24. CR U Concept-Single Bit TB Input on CR UIN 

3-34 9900 FAMILY SYSTEMS DESIGN 



A First Encounter: IDEA TO FLOWCHART 
Getting Your Hands on a 9900 

The selection of the particular line in the 1/0 unit is the first concern. Figure 3-24 shows 
that this is done in the same way as just explained for the SBO and SBZ instructions. 
The same portions of the 9901 are used as for the SBO or SBZ instructions except now 
these portions are a data selector. Data is selected from one of multiple input lines and 
sent to the 9900 microprocessor along the CRUIN line. The value of the information 
on the line is placed in bit 2 position of the status register. As discussed previously for 
the status register, instructions must follow the TB instruction that will examine bit 2 of 
the status register to determine what to do if this bit is a '' 1" and what to do if it is a 
"O". Conditional jump instructions are used to make the decision based on the value of 
the data. Note again that this is done one bit at a time. 

Accomplishing a TB instruction requires that a base address be given for the particular 3 <111111 

input or output line desired. This hardware base address adjusted to a software base 
address is placed in workspace register 12. With the TB instruction, a displacement is 
given that identifies the particular line which needs to be sampled. This again is the same 
as for SBO. The line selected provides data straight through to the CRUIN line - there 
are no latches, as with the output data. 

Thus, the basic concepts studied have shown the means of getting data to the output and 
bringing data in from an input - one bit at a time. They have shown how data is located, 
read, transferred, stored, and operated on arithmetically. With this, it should be possible 
now to get the first encounter idea into a sequence of steps - a programfor the 
microcomputer to follow. 

IDEA TO FLOWCHART 

Bringing the idea from concept to program begins with a concept level diagram as 
shown in Figure 3-25. It has been decided that the microcomputer is to do the first 
encounter task; turn on and off 4 lights in sequence, with a time delay between each 
light activation. 

MICROCOMPUTER 

1/0 PO 

1/.0 P1 

1/0 P2 

1/0 P3 

LOGICAL 1 

~ 
S1 ..l.. 

LOGICAL 0 -;r 

LIGHTS 

A IS TIME DELAY 
CONTROLLED BY S1 

TIME___. 

Figure 3-25. Concept Level Diagram 

9900 FAMILY SYSTEMS DESIGN 3-35 



FLOWCHARTS A First Encounter: 
Getting Your Hands on a 9900 

The time delay is to be under control of an external switch. 

Understanding the basic concepts of the microcomputer led to the discussion that output 
lines could be selected and set to standard TIL logic levels to control drivers that would 
light the lights. In like fashion, a standard TIL logic level signal could be brought to 
the microcomputer as an input and examined. With this information, a decision could be 
made to vary the time delay. If the input is a "1," the lights would go on and off at a fast 
sequence. If the input is a "O," the sequence rate would be slow. 

Obviously, other mechanical decisions also were made, such as: 

1) The lights would be segments of a 7 segment light emitting diode numerical display 
... 3 because of the compatible packaging and ease of availability. 

2) The microcomputer output pins, I/O identification and light number to 7 segment 
display segment were set as follows: 

9901 
990/JOOM 110 Light No. Display Segment Note 

P4 Connector 
20 Po 1 f 
22 P1 2 b 
14 P2 3 e 
16 p3 4 c 
18 p4 

(These pin identifications are obtained from the schematics in the TM990/ lOOM User's 
Guide and data sheet information on the TIL303.) 

The microterminal TM990/301 was selected as the unit to use for communication with 
the microcomputer because of its low cost and ease of use. Terminals such as a TTY and 
a 743 KSR can be used and an application shown in Chapter 9 takes up this type 
interface. 

FLOWCHARTS 

The problem solution proceeds from concept to program by constructing a well defined 
flowchart to follow in an organized fashion while generating the sequence of steps 
required for the microcomputer to complete the task. Figure 3-26 is such a flowchart of 
the first encounter task. 

3-36 9900 FAMILY SYSTEMS DESIGN 



A First Encounter: 
Getting Your Hands on a 9900 

FLOWCHARTS 

y 
t 

INITIATE WAIT 

L_ 
_r 

TURN ON TURN ON 
LAMP #1 LAMP #3 

l 
WAIT WAIT 

I 
TURN OFF TURN OFF 
LAMP #1 LAMP #3 

1 WAIT 

WAIT WAIT • 

l 
TURN ON TURN ON 
LAMP #2 LAMP #4 

l 
WAIT WAIT 

l 
TURN OFF TURN OFF 

LAMP #2 LAMP #4 

l 
Figure 3-26. Flowchart 

9900 FAMILY SYSTEMS DESIGN 3-37 



~3 

FLOWCHARTS A First Encounter: 
Getting Your Hands on a 9900 

From START, which requires initial conditions, and a signal to begin - INITIATE -
the task is diagrammed. Each light is turned on, the time delay occurs, the light is turned 
off, the time delay occurs, the next light is turned on, etc. The sequence continues until 
all lights have been turned on and off and the program begins again. 

w AIT SUBROUTINE 

Note the time delay is identified as WAIT and it occurs over and over again in the 
sequence. Because of this, separate steps will be written for this sequence only one time 
rather than repeating it over and over in the program. In this manner, the main 
sequence of steps, the main program, can be directed to this identified set of steps, called 
a subroutine, by an instruction. The main program is then said to branch to the subroutine 
until it completes the steps in the subroutine, then it returns to the main program. 

In simpler terms, the WAIT block of the flowchart requires a given number of program 
steps, say X. WAIT occurs 8 times in the flowchart. Instead of rewriting the X steps 
8 times in the program, the X steps are written once, given the name WAIT, and 
referred to 8 times. 

Because WAIT is a subroutine, a separate flowchart (Figure 3-27) is generated for it. In 
addition, the time delay is to be varied by the switch S1 , therefore, different steps are 
followed if the switch is "on" with a value of a logical "1" or "off" with a value of a 
logical "O". Note that when the subroutine WAIT is encountered, the first thing that 
occurs is to find out the position of the switch. Is it a logical "1" or a logical "O?" A 
decision is made on the basis of what is found. "Yes, the switch is on," (logical "1") 
makes the time delay short and the sequence fast. "No, the switch is off," (logical "O") 
makes the time delay long and the sequence slow: 

There are a number of ways to provide a time delay. This flowchart uses one of the 
simplest - load a register with a number, keep subtracting one (decrementing) from the 
number until the number is zero. The number of cycles it takes to get the number to 
zero times the time for each cycle is the time delay. Larger numbers, longer counts, 
provide longer delays. 

Each arm of the flowchart contains the same type of sequence, loading the number; 
decrementing; checking for zero; if not zero, jumping back and decrementing again; if 
zero, returning to the main program. Note that in the flowchart there is a branch 
decision and a branch decision with a jump back or a loop. The program runs in this loop 
until it comes to a condition where it can get out of the loop or "exit from the loop." 

3-38 9900 FAMILY SYSTEMS DESIGN 



A First Encounter: FLOWCHARTS 
Getting Your Hands on a 9900 

SUBROUTINE ]UMP 

Special things happen when a subroutine such as WAIT is encountered in the main 
program. Figure 3-28 diagrams the steps. The main program has executed from Step 1 to 
Step 5. At Step 6, the computer encounters the instruction telling it to branch to 
subroutine A and do subroutine A. Therefore, in order to return to the correct location 
in the main program after executing the subroutine, the branch instruction at Step 6 also· 
tells the computer to remember the address of Step 7. 

TIME 

LOAD 
DEC REMENTER 

WITH 
3FFF,. 

YES 

"1" 

NO 

"O" 

LOAD 
DECREMENTER 

WITH 
FFFF,. 

TIME2 TIME 1 

DECREMENT DECREMENT 

NO NO 

Figure 3-27. WAIT Subroutine 

9900 FAMILY SYSTEMS DESIGN 3-39 

3...ill 



~3 

FLOWCHARTS A First Encounter: 
Getting Your Hands on a 9900 

The subroutine is executed through Step A-8. Whereupon the computer encounters an 
instruction at Step A-9 that tells it to return to the Step 7 address which it remembered at 
Step 6. In this fashion, each subroutine can be executed and program control returned to 
the main program. Of course, there are branches that can occur from a subroutine to 
another subroutine but the principle is the same. 

STEP 1 

3 

4 

6 

8 

9 

10 

11 

MAIN 
PROGRAM 

BRANCH TO 
SUBROUTINE A 

SUBROUTINE A 

STEP A-1 

A-2 

A-3 

A-4 

A-5 

A-6 

A-7 

A-8 

GO BACK 
TO MAIN A-9 

PROGRAM 

Figure 3-28. Branch to Subroutine 

The instruction from the TM990/ IOOM microcomputer instruction set that accomplishes 
the branch to a subroutine is called Branch and Link. This is called a "subroutine jump" 
instruction and will be identified by the letters BL and some additional information that 
tells the location of the address of the first instruction of the subroutine. In addition, 
recall that a register file is to be set up for general registers. Well, register 11 of this file 
(WR 11) is the storage place used to remember the main program· address that is 
returned to after executing the subroutine. 

The return instruction from the subroutine used is called an unconditional branch 
instruction. It is identified by Branch. Since the contents of register 11 must be returned 
to the program counter to return from a subroutine, this instruction will be identified 
as B * 11. Note that the file register 11 must be reserved for this use by the programmer, 
otherwise its contents are likely to be changed at the wrong time and the computer 
misled into a wrong sequence. 

3-40 9900 FAMILY SYSTEMS DESIGN 



A First Encounter: FLOWCHARTS 
Getting Your Hands on a 9900 

A Loop WITHIN THE WAIT SUBROUTINE 

Within the WAIT subroutine is another common reoccurring concept - a loop. 
However, before examining this program sequence further, it would be beneficial to 
clearly understand the meaning of the blocks in the flow charts. The general meaning of 
the most commonly used blocks is shown in Figure 3-29. There is a symbol for the entry to 
or exit from a program (or for an off-page connection). This is identified with an 
appropriate symbol or label - START and STOP in this example. Rectangles identify 
operations. Inside the rectangle is an appropriate abbreviated statement to describe the 
operation. Decisions are identified with a diamond. Since programmed logic occurs in 
sequence, these blocks are relatively simple. A two-state decision answers a question of 
yes or no, true or false, etc. A three-state decision answers a comparison question of 3 ..... 
greater than, equal to, or less than (of course, there could be further mixtures of these). 
So decision blocks have appropriate questions identifying them. 

In the WAIT subroutine of Figure 3-27, the first decision is "Is the switch ON?," and the 
consequences have already been discussed. The second decision has the question "The 

quantity examined - is it equal to zero?" Within this program sequence, if the quantity 
is not equal to zero, then the program goes through the same path again. 

ABBREVIATED 
STATEMENT 

YES 

ABBREVIATED 
STATEMENT 

Figure 3-29. Common Flow Chart Blocks 

9900 FAMILY SYSTEMS DESIGN 

ENTRY 
(OFF PAGE CONNECTION) 

OPERATION 

DECISION 

SUBPROGRAM LABEL 

EXIT 
(OFF PAGE CONNECTION) 

3-41 



.... 3 

LOADING A REGISTER 
FOR THE TIME DELAY 

A First Encounter: 
Getting Your Hands on a 9900 

The program loop is accomplished by a branch instruction from the instruction set called 
a conditional jump instruction. The conditional jump causes the microcomputer program 
to branch to a specified program step depending on the condition of certain bits in the 
status register. Recall in Figure 3-19 that the status bits were identified and that the 
"equals bit" - bit 2 - was going to be used to change the time delay sequence. 
Therefore, the decision block in the program is really asking, "Is bit 2 of the status 
register set to a "1"?" 

The status bit 2 is set to 1 by the program step before the decision block in Figure 
3-27 - the decrement step. An instruction Decrement (by One) causes a named file 
register to have one subtracted from its contents, comparison of the result to zero and the 
setting of the appropriate status bits (0-4) of the status register. When the register 
contents are equal to zero, the "equals" status bit (2) will be set to a "1". 

When the status bit 2 is not set to a "1 ", the program must return to the 
decrement instruction and subtract one again from the register. JNE (label) is the 
conditional jump instruction that will be used to accomplish the loop. It is activated 
by the "equals bit" being "O". The program will jump to a point ahead of the 
decrement step which will be identified with an appropriate label. In the program this 
label must be included with the JNE (Jump if not equal) instruction. 

A similar type of conditional jump instruction is used to answer the question of the 
switch in the first decision block of the WAIT subroutine. However, in this case, 
Jump if Equal OEQ (label)), with the appropriate label will be used. Now the 
conditional jump will occur if the equal bit is set to a "1 ". Recall, this is the type 
instruction previously referred to that must follow the TB instruction so that the status 
bit can be examined and a decision made. 

The number of steps in the decrement block is now the only remaining portion of the 
subroutine which has not been discussed. 

LOADING A REGISTER FOR THE TIME DELAY 

Assume that the switch is "ON" in the WAIT routine. A logical "1" is the input to the 
microcomputer. The TB instruction identifies the logical "1" and it sets the equals bit 2 
of the status register to a "1" as previously described. The JEQ instruction jumps to a 
selected (labeled) instruction which loads a selected file register with a number, 3FFF16 • 

As a 16 bit binary number, it is 0011 1111 1111 1111. No jump occurs in the program if the 
switch is inputting a logical "O". The program just proceeds to the next step. 

3-42 9900 FAMILY SYSTEMS DESIGN 



A First Encounter: 
Getting Your Hands on a 9900 

WHERE DOES THE 
PROGRAM START? 

Well, how does the data get loaded into the selected file register? Simply enough with a 
load instruction which is one of the data transfer instructions. Load Immediate (file 
register number), 3FFF16 will tell the microcomputer to load the hexadecimal number 
3FFF16 into the selected register. What actually happens is that two memory words must 
be used for this instruction. The first word provides the operation code and register 
number and the second word the operand or data to be operated on. For the addressing 
mode used for the Load Immediate instruction, the word following the instruction LI 3, 
will contain the data to be put into register 3, 3FFF16 • The programmer must 
remember that a memory word location (PC+ 2) is used for the 3FFF16 data when the 
instruction is located at PC. 

Following on then, new data is placed into the same register by a new Load Immediate 
instruction. For example, for a longer time delay, the file register R3 is loaded with 
FFFF16 • The instruction LI 3, FFFF16 accomplishes this. 

WHERE DOES THE PROGRAM START? 
Most of the information is now in hand to write the program. The question is, "Where 
does the program start"? Recall that when the program was entered into the 
microcomputer through the microterminal, FE0016 was chosen as the starting memory 
location. How was this decided? 

The first step in the decision is to determine what words are available in memory -
what addresses can be used. 

Figure 3-30 is reproduced from the TM 990/lOOM Users Guide. There are address 
locations from 000016 to FFFE16 for 65,536 bytes (8-bit pieces), or 32,768 16-bit word 
locations. This is commonly called the address space. Word address locations move by an 
increment of 2, byte locations by 1. The incrementing of the program counter by 2 was 
previously noted. This is the reason. 

Recall that the TM 990/lOOM microcomputer has 256 16-bit words of RAM into 
which the program is going to be placed and it also has 1024 16-bit words of ROM, or 
EPROM in this case. The EPROM is the TIBUG monitor that provides the necessary 
pre-programmed instructions that were referred to for accepting input and output data. 

The 256 words of RAM occupy address space from FE0016 to FFFE16 as shown in 
Figure 3-30. The EPROM address space is from 000016 through 07FE16 which is 
address space that is dedicated for this purpose and not available for change by the first 
encounter program. Notice that within this space are interrupt and XOP vectors. These 
are of no concern at this time. 

Since not all the available memory sockets are filled, address space from 080016 through 
FDFE16 does not have memory cells - it is unpopulated. 

9900 FAMILY SYSTEMS DESIGN 3-43 

3.,.. 



WHERE DOES THE 
PROGRAM START? 

A First Encounter: 
Getting Your Hands on a 9900 

It would seem that all the address spaces in RAM from FE0016 to FFFE16 are 
available. However, as shown in Figure J-30, 40 words of RAM must be reserved 
for use by the TIBUG monitor and additional space is necessary for interrupts. Thus, 
the available space is from FE0016 to FF6616 • 

Obviously, some analysis of the possible length of the program in number of steps must 
be made, as well as some estimate of the number of file register blocks of 16 
(workspaces) that will be used. This will determine whether adequate address space is 
available or whether additional memory space must be populated. 

The first encounter assumptions are as follows: 

..... 3 1. The program will be less than 96 steps long - 96 words or 192 bytes. 

2. Only one workspace will be required. (16 contiguous words) 

MEMORY 
ADDRESS 

DEDICATED 
MEMORY 

) 

INTERRUPT VECTORS 1=~ 
XOP VECTORS 0040 

007E 

Tl BUG lOOSO 
MONITOR 

FF68 

FF88---_-_-_-_-_-_-_-_-_-_-_-_--l 
FFBC 

~~:o:'.'l------------1 
FFFE1-:-----+-----___J -

....... 

} 
INT3, 
WP AT FF68 
2-WORD INST AT FF88 

} 

INT4 ....._ 
WP AT FF8C 
2-WORD INST AT FFAC 

' 

07FE 

0800 

OFFE 

1000 

-- ............................. 

USER 
AVAILABLE FDFE 

RAM 

3-44 

-....... 
........ ....... ....... ....... ....... 

RESERVED 40 WORDS FOR 
TIBUG MONITOR WORKSPACE 
FILES AND RESTART VECTORS 
AT FFFC AND FFFE 

Figure 3-30. Memory Map 

---- BYTE 0000 

EPROM 
TMS2708 
1KX16 

EPROM 
TMS2708 
1KX16 

• 
• 
• 

RAM 
TMS4042·2 

256 x 16 

...... 
RAM 

TMS4042·2 
256 x 16 ...... ' 

BYTE 0001 

FIRST 
1048 
WORD 
EPROM 

) SECOND 
~ 1048 
( WORD 
) EPROM 

l MEMORY j EXPANSION 

} SECOND 
( 256 
('WORD 
J RAM 

! 
~ST 
WORD 
RAM 

9900 FAMILY SYSTEMS DESIGN 



A First Encounter: WRITING THE PROGRAM 
Getting Your Hands on a 9900 

On this basis, the starting address of the program is chosen as FE0016 . The workspace 
file register could have been chosen to start at 16 words away from FF6616 • However, 
since there is plenty of space, it is placed at FF2016, leaving the room from FE0016 to 
FFlE16 as the space for the program (144 words): 

WRITING THE PROGRAM 

Refer now to the flowchart in Figure 3-26 as the basis for writing the program. To help in 
the organization of the program, a form shown in Table 3-1 will be used. Note that 
it has a column for addresses, for machine code, for a label, for the assembly language 
statement and for comments. Each of these columns will be filled in as needed as the 3 <Clll 

program is developed. Not all columns will have an entry when the program is complete. 
The machine code will be the last column completed. Of particular importance, especially 
for later references, or reference by another programmer, will be the comments column. 
Keep referring to Table 3-1 after each program step to note the comments and see the 
program develop. 

Figure 3-26 indicates that the first step in the program is to be an initializing statement. 
The location of the file register (workspace) used must be identified by loading the 
workspace pointer with the address FF2016. The program must at all times know where 
the file registers are in memory for it will use these registers for obtaining data or 
addresses. 

Reference to Chapter 5 and 6 shows there is a load instruction for the workspace 
pointer, LWPI, Load Workspace Pointer Immediate. Recall that the immediate 
addressing requires two words. Therefore, Step 1 of the program at address FE0016 is 
shown as: 

Step 
1 

A 
FEOO 

MC L ASSY LANG. 
LWPI >FF20 

and Step 2 has the operand to be loaded. The greater than (>) sign identifies the data as 
hexadecimal. 

The program must be able to branch to the subroutine WAIT when that routine is 
called by the program. Therefore, the starting address of the WAIT subroutine must be 
loaded into a file register which then will be referenced when the address is needed. Step 
3 of the program accomplishes this with a Load Immediate instruction and register 1 is 
chosen to hold the address. Note that the program address is incrementing by two. Step 
3 is: 

Step 
-3-

9900 FAMILY SYSTEMS DESIGN 

MC L ASSY. LANG 
LI 1,>XXXX 

3-45 



~3 

WAIT SUBROUTINE CALL A First Encounter: 
Getting Your Hands on a 9900 

Note that the specific address cannot be put in at this time - not until the location is 
known. Step 4 is the step for loading the operand. 

Recall that a reference needs to be established for the particular 9901 1/0 interface unit 
to be used by the microcomputer. This was referred to as the CRU base address for the 
chosen 9901. Register 12 of the file register is the one that must contain the CRU base 
address, therefore, it must be loaded with 012016 , the software base address of the 9901 in 
the TM990/100M microcomputer. Step 5 of the program is for this purpose. 

Step 
-5-

MC L Assy. Lang. 

LI 12, >0120 

Again Step 6 must be added because of the immediate addressing. 

All initial conditions are now complete and the flowchart now moves to the start of the 
light sequence. Light # 1 must be turned on. Recall from Figure 3-25 that light # 1 is 
connected to 1/0 output 0 (P0 ). Therefore, 1/0-0 on the 9901 must be set to a "l". This 
is accomplished with the SBO instruction of Step 7. Recall, this instruction was 
previously discussed in detail. Step 7 looks like this: 

Step 
-7-

MC L 
BEGIN 

Assy. Lang. 
SBOO 

Note that this instruction is labeled BEGIN. This is done because the program will 
jump back to this address location after the complete sequence of the first encounter task 
is completed. The label BEGIN provides an easy reference to this location. 

WAIT SUBROUTINE CALL 

The first encounter task as defined now requires the light # 1 be held on for the time 
delay represented by the subroutine WAIT. Therefore, the program must be directed 
to the first address of the subroutine. This first address is contained in the file register 1 
(workspace register 1) because Step J and Step 4 accomplished this. 

Recall the discussion on the WAIT subroutine (Figure 3-28). The main program must be 
directed to the subroutine (the main program "calls" the subroutine) but it must also 
remember where it is in the main program so it can return to the correct location. The 
Branch and Link to register 1 of Step 8 accomplishes this. 

3-46 

Step 
8 

A 
FEOE 

MC L Assy. Lang. 
BL *1 

9900 FAMILY SYSTEMS DESIGN 



A First Encounter: 
Getting Your Hands on a 9900 

RETURN FROM 
WAIT SUBROUTINE 

At the same time the address of the next step in the program, Step 9 is being saved in 
register 11. 

However, note that there is a new symbol in the assembly language instruction. The 
asterisk (*) means that an indirect addressing mode is used. That means that file register 
1 (WRl) does not contain operand information but contains the address of an operand to 
be used for further processing. That is exactly what has been put into register 1 - the 
address of the first instruction of the WAIT subroutine. Therefore, an indirect 
addressing mode is used. 

Why is that important? When the machine code for an instruction is constructed a little 
later (this will be done by hand but normally it would be done by a computer under 
control of a program called an assembler), an identifying code for the addressing mode 
must be used in the format for each instruction. 

Figure 3-31 shows how the 16 bits of the machine code are arranged for the various 
types of instructions. Much more discussion of these formats is contained in Chapters 5 and 
6. For the purpose here, format 6 is the one of particular interest for the Branch and Link 
instruction. Note that for format 6 the first 10 bits are for the operation code, bits 10 and 
11 are a Ts field, and bits 12 thru 15 are an S field for identifying the address of the source 
information. Note that the code for Ts defines the addressing mode for the instruction. 01 
will be entered in this field for bits 10 and 11 for the Branch and Link instruction because 
this is the code for indirect addressing. 0001 will be the code for the S field because register 
1 contains the source address. 

RETURN FROM WAIT SUBROUTINE 

The end of the subroutine will return the microcomputer to the main program at Step 9 
because this is the address saved in register 11. Step 9, according to the flowchart of 
Figure 3-26, must now turn light # 1 off. The instruction is: 

Step A MC L Assy. Lang. 
-9- FElO SBZO 

Since I I 0 port 0 was set to a "1" in order to turn the light on, now it is set to a "O" to 
turn the light off. • 

Time delay subroutine WAIT is called for again for the next step and again the Branch 
and Link instruction is used. Thus, Step 10 is: 

Step 
10 

A 
FE12 

9900 FAMILY SYSTEMS DESIGN 

MC L Assy. Lang. 
BL *1 

3-47 



~3 

WAIT SUBROUTINE A First Encounter: 
Getting Your Hands on a 9900 

Upon return from the WAIT subroutine light # 2 is turned on, the WAIT routine 
occurs, light # 2 is turned off, the WAIT routine occurs and the process continues until 
light # 4 is turned off and the time delay is complete. These steps are shown in Table 3-1 
and carry the program through Step 22. 

The program will return to Step 23 after the time delay. The flowchart indicates a return 
to the beginning of the sequence. Recall that this was labeled BEGIN. Therefore, Step 23 
is a jump instruction that jumps the program back to the address of the instruction 
labeled BEGIN. The assembly language instruction is simple enough: 

Step 
23 

MC L Assy. Lang. 
JMPBEGIN 

This instruction is called an unconditional jump instruction because there are no 
decisions involved - just the direction to "go to" a specified place. There is no return 
instruction address saved in register 11 and no testing of status bits. 

All the program steps in the flowchart of Figure 3-26 are now complete. What remains is 
to define the steps in the subroutine WAIT. Figure 3-27 is used for this purpose. 

WAIT SUBROUTINE 

The address at Step 24, FE2E16 , is the one that must be loaded into register 1 at Step 3 
because it is the first instruction of the subroutine. The flowchart identifies this step as a 
decision block. Is the switch on for a logical "1" or is it off for a logical "O"? 
The input line must be tested to determine this. A TB instruction, examining 1/0 pin 
P4 , is used for this purpose. This instruction is Step 24: 

Step 
24 

A 
FE2E 

MC L Assy. Lang. 
TB4 

This is the Test Bit instruction discussed previously. Recall that when the input line is 
tested by the instruction it sets the "equals" bit, bit 2 of the status register to the value 
of the input. 

In order to make the decision called for in the flowchart, an instruction that e.xamines bit 
2 of the status register must follow. This will be a conditional jump instruction because if 
the status bit is a "l'', the time delay is to be the shortest and the sequence fast. 
Correspondingly, the sequence would be slow and the time delay long for a status bit 2 
of "O". Chapters 5 and 6 identify the jump instructions. JEQ is the one selected which 
says that the program will jump to a new location if the "equals" bit is set to a "1", 
otherwise, the program will continue on to the next step. The instruction is: 

3-48 9900 FAMILY SYSTEMS DESIGN 



A First Encounter: 
Getting Your Hands on a 9900 

WAIT SUBROUTINE 

Step A MC 
25 FEJO 

L Assy. Lang. 
JEQTIME 

Convenient labels have been placed on the flowchart of Figure 3-27. The branch jumped 
to in Step 25 is labeled TIME. This branch will be executed in a moment. For now, 
assume that the "equals" bit is set to "O" and the program continues. The next step is to 
load a register so that it can be decremented to produce the time delay. In this branch, 
this must be the largest value for the longest delay and the slowest sequence. Another 
file register must be selected. Register 3 is chosen and the load instruction is as follows: 

Step 
26 

A 
FE32 

MC L Assy. Lang. 
LI 3, >FFFF 

This is the same as previous Load Immediate instructions and another word must be 
allowed for the value to be loaded. Thus, Step 27 at FE34. 

One must now be subtracted from the value. There is an instruction called Decrement 
(by one) and, of course, it must tell what value to be decremented. In this case, the 
contents of R3. Thus, Step 28 is: 

Step A MC L Assy. Lang. 
·zr FE3 TIMEl DEC3 

The flowchart shows the decrement as an operation. In addition, as mentioned 
previously, the value in register 3 is compared to zero and the greater than, equal, carry or 
overflow status bits are set accordingly. This is found in the discussion on the 
instructions in Chapter 5 and 6. 

The decision that follows is made on the basis again of examining the "equals" bit. The 
flow chart shows that if the "equals" bit is not set, the program will loop back and be 
decremented again as previously discussed. Therefore, a label, TIME 1, is placed on the 
instruction at FE36 to tell the program the location of the jump. 

The jump occurs this time if the "equals" bit is not set, using the instruction Jump if 
Not Equal, and looks like: 

Step A MC L Assy. Lang. 
29 FE38 JNE TIMEl 

9900 FAMILY SYSTEMS DESIGN 3-49 

3..._ 



~3 

WAIT SUBROUTINE A First Encounter: 
Getting Your Hands on a 9900 

When the file register has been decremented to zero, the equals bit will be set and the 
program is ready to return to the main program. Recall that register 11 contains the 
address (location) for the return. The branch instruction used for the return is Branch 
and Step 30 is: 

Step A MC L Assy. Lang. 
31) FE3A B *11 

Note this again is an indirect addressing mode. 

TIME BRANCH 

The only remaining portion of the flowchart that must be programmed is the TIME 
branch. 

In this branch, the time delay is shorter to make the sequence faster. R3, the same 
register, is loaded with a smaller value, 3FFF16 • Again a Load Immediate instruction 
shown in Step 31 is used. 

Step 
31 

MC L Assy. Lang. 
TIME LI3, > 3FFF 

This step is labeled with TIME, and will be the location jumped to from Step 25. Step 32 
is the extra word required. 

The register must again be decremented, therefore, the instruction is the same type as 
Step 28. However, the label for the location to jump to is now TIME2. Step 33 is: 

Step A MC L Assy. Lang. 
33 FE40 TIME2 DEC 3 

The same jump instruction is used in this branch as for Step 29 except the label is now 
TIME 2. Therefore, Step 3 4 is: 

Step A MC L Assy. Lang. 
34 FE42 JNE TIME2 

When the equals bit is set, the program must return to the main program as with 
the other branch. The same return instruction as Step 30 is used, as shown in Step 35. 

Step A MC L Assy. Lang. 
~ FE44 B *11 

The total program is now complete in assembly language. It is shown in Table 3-1. 

3-50 9900 FAMILY SYSTEMS DESIGN 



A First Encounter: 
Getting Your Hands on a 9900 

TABLE 3-1 
ASSEMBLY LANGUAGE PROGRAM 

Table 3-1. Assembly Language Program. 

(Source Code Statements) 
Hex 

Hex Machine Op 
Step Address Code Label Code Operand Comments. 

1. FEDD LWPI > FF2D Load workspace pointer 
2. FED2 with FF2D 16 

3. FE04 LI 1, > FE2E Load R1 
4. FED6 with 1st Address of WAIT 
5. FEDS LI 12, >D102 Load R12 
6. FEDA with base address of 99D1, 012D 16 

7. FEDC BEGIN SBO D Set I /0 P0 (segment f) equal to one 
8. FEDE BL ::: 1 Branch to address in R1 (saves 

next address in R11) 
9. FE1D SBZ D Set 110 P0 (segment f) equal to zero 

1 D. FE12 BL ::: 1 Branch to address in R1 (saves 
next address in R11) 

11. FE14 SBO ' 1 Set 1/0 P1 (segment b) equal to one 
12. FE16 BL ::: 1 Branch to address in R 1 
13. FE18 SBZ 1 Set I /0 P 1 equal to zero 
14. FE1A BL ::: 1 Branch to address in R1 
15. FE1C SBO 2 Set 110 P2 (segment e) equal to one 
16. FE1E BL ::: 1 Branch to address in R 1 
17. FE2D SBZ 2 Set 1/0 P2 equal to zero 
18. FE22 BL ::: 1 Branch to address in R1 
19. FE24 SBO 3 Set I /0 P3 (segment c) equal to one 
2D. FE26 BL ::: 1 Branch to address in R 1 
21. FE28 SBZ 3 Set 1/0 P3 to equal to zero 
22. FE2A BL ::: 1 Branch to address in R1 
23. FE2C JMP BEGIN Jump to BEGIN 
24. FE2E WAIT TB 4 Test 1/0 P4 for a "1" or a "D" 
25. FE3D JEQ TIME If equals bit is set ("1 "), jump to TIME 
26. FE32 LI 3, >FFFF Load R3 
27. FE34 with FFFF 16 

28. FE36 TIME1 DEC 3 Decrement R3 
29. FE38 JNE TIME1 Jump to TIME 1 if equals bit is not set 
3D. FE3A B ::: 11 Return to main program (by way of R11) 
31. FE3C TIME LI 3, >3FFF Load R3 
32. FE3E with 3FFF 16 

33. FE40 TIME2 DEC 3 Decrement R3 
34. FE42 JNE TIME2 Jump to TIME 2 if equals bit is not set 
35. FE44 B ::: 11 Return to main program (by way of R11) 

9900 FAMILY SYSTEMS DESIGN 3-51 

3 .... 



WRITING 
THE MACHINE CODE 

A First Encounter: 
Getting Your Hands on a 9900 

WRITING THE MACHINE CODE 

Normally the next step in programming (shown in Table 3-2) would be done by 
a computer as mentioned previously. However, in order to demonstrate what an 
Assembler Program would do and because the program input to the TM990/ lOOM 
microcomputer is through the microterminal, which requires the machine code, it will be 
a good exercise to demonstrate how to develop the machine code. If this is of no interest, 
this portion of the discussion can be bypassed and a jump made to the summary. 

As mentioned previously in Figure 3-31, there is a set format for the 16 bits of machine 
code that must be generated for each instruction. The formats used for the first 

..... 3 encounter task are shown in Figure 3-32 for reference. Each instruction has an operation 
code (OP CODE) and then additional information is required in the various fields of the 
format. A complete discussion of the format for each instruction can be found in Chapter 
6. Figure 3-33 lists the instructions used in the first encounter. 

The same programming form will be used as before which is summarized to this point in 
Table 3-1. The machine code will be filled in and several other changes made and the 
result will be the final program of Table 3-2. As before, continue to refer to Table 3-2 as 
the machine code is developed. 

IMMEDIATE INSTRUCTIONS 

The coding begins at Step 1. L WPI is an immediate instruction. Therefore, the format 8 
of Figure 3-32 is used. There are two words to this instruction; the second one containing 
the immediate value to be loaded. In the first word, the op code occupies bits 0 through 
10; register numbers, where the immediate value is going to be placed, occupy bits 12 
thru 15. Bit 11 is not used. The op code is obtained from Figure 3-33 for the LWPI 
instruction. The filled out instruction would look like this. 

Binary 
Op Code -
Machine -

Code 

0 1 2 3 I 4 5 6 7 I 8 9 10 11I12 13 14 15 
00000010111 0 0 0 0 0 

0 2 E 0 
0 2 E 0 

LWPI is a special case of format 8. Bits 11-15 are not used and as such could contain 
anything. They are don't care conditions. Therefore, the machine code is 02EO. This 
is entered into Table 3-2 on the same line as LWPI as Step 1. Step 2 is the immediate 
value FF20, therefore, the machine code is FF2016 • 

3-52 9900 FAMILY SYSTEMS DESIGN 



A First Encounter: WRITING 
Getting Your Hands on a 9900 

THE MACHINE CODE 

FORMAT (USE) 

oj 1j 2J 3 I 4 Is I e I 7 I 8 I 9 l10l11 l12l13l1411s 
OPCODE}Bl To 1 D 1 Ts l S 1 (ARITH) 

2 (JUMP) 

3 (LOGICAL) 

4 (CRU) 

5 (SHIFT) 

6 (PROGRAM) 

7 (CONTROL) 

8 (IMMEDIATE) 

OP CODE ] SIGNED DISPLACEMENT* 

OP CODE J D j Is_ j S 

OP CODE l C ] Ts ] S 

OPCODE I c w 
OP CODE ] Is_ ] S 

OP CODE NOT USED 

OP CODE 

IMMEDIATE VALUE 

9 (MPY, DIV,XOP) "----O_P_C_O_D_E __ T_.__ __ D __ ...... T_T..:.s__.1.__ __ s __ __, 

NOTES: 

KEY 

B =BYTE INDICATOR S =SOURCE ADDR. 

(1 =BYTE, 0 =WORD) 

T0 = D ADDR. MODIFICATION 

D =DESTINATION ADDR. 

Ts= S ADDR. MODIFICATION 

C = XFR OR SHIFT LENGTH (COUNT) 

W =WORKSPACE REGISTER NO. 

"=SIGNED DISPLACEMENT OF -128 TO + 127 WORDS 

NU= NOT USED 

FORMAT 

2 
(JUMP) 

6 
(PROGRAM) 

8 
(IMMEDIATE) 

Figure 3-31. Instruction Formats 

I o 1 2 3 I 4 s e 7 I 8 9 1 o 11 I 12 13 14 1 s I 

I-Op Code -1- Signed Displacement -4 
I-Op Code ___ _. Ts j-s-1 

I-Op Code----NU 1---w-! 
-----IMMEDIATE VALUE------

CODES FORTS FIELD 

00 

ADDRESSING MODE 

T, = SOURCE ADDRESS MODIFICATION 01 
REGISTER 

INDIRECT 
S = SOURCE ADDRESS 
W = WORKSPACE (FILE) REGISTER NO. 
NU = NOT USED 

SIGNED DISPLACEMENT CAN BE 
-128 TO + 127 WORDS 

10 
10 
11 

INDEXED (SOR D7'0) 

SYMBOLIC (DIRECT, S OR D = 0) 

INDIRECT WITH AUTO INCREMENT 

Figure 3-32. Formats used for First Encounter 

9900 FAMILY SYSTEMS DESIGN 3-53 



WRITING A First Encounter: 

THE MACHINE CODE Getting Your Hands on a 9900 

In like fashion, the instructions at Step 3 and Step 5 are immediate instructions, use the 
same format, and are coded with the appropriate register numbers. Step 4 and Step 6 are 
the immediate values to be loaded. 

Note, however, that when the program was first prepared, the first address of the 
WAIT subroutine was not known. Now, it is known. It is substituted for the XXXX in 
Table 3-1 at Step 3. Thus, the address of Step 24, FE2E is placed after the "greater than" 
symbol. 

The op code for LI is 020016 and since register 1 is used for Step 3, the machine code is 
020116 while for Step 5 it is 020C because register 12 is being loaded. The machine code 

~ 3 for Step 4 is the value FE2E16 and for Step 6 it is 012016 • 

INSTRUCTIONS SBO, SBZ 

The instruction SBO at Step 7 uses a different format. This is format 2 in Figure 3-32. It 
has the op code in bits 0 through 7 and the signed displacement that was discussed 
previously when the 99011/0 unit program was examined. Recall that the CRU base 
address was arranged so that the bit number is the value that is put in for the signed 
displacement. 

The op code for SBO from Figure 3-33 is 1D0016 and with the first bit being zero, the 
machine code is: 

Binary 
Op Code -
Machine -

Code 

HEX 

o 1 2 3 I 4 s 6 1 I s 9 10 11 I 12 13 14 1s I 
00011101 000 0 0 0 0 0 

1 D 0 0 
1 D 0 0 

RESULT COMPARE 
MNEMONIC OP CODE FORMAT TO ZERO INSTRUCTION 

LWPI 02EO 8 N LOAD IMMEDIATE TO WORKSPACE POINTER 

LI 0200 8 N LOAD IMMEDIATE 

BL 0680 6 N BRANCH AND LINK (WR11) 

B 0440 6 N BRANCH 

DEC 0600 6 y DECREMENT (BY ONE) 

SBO 1000 2 N SET CRU BIT TO ONE 

SBZ 1EOO 2 N SET CRU BIT TO ZERO 

TB 1FOO 2 N TESTCRU BIT 

JEO 1300 2 N JUMP EQUAL (ST2 = 1) 

JMP 1000 2 N JUMP UNCONDITIONAL 

JNE 1600 2 N JUMP NOT EQUAL (ST2 = 0) 

(ST2=0) 

Figure 3-33. Instructions used for First Encounter. 

3-54 9900 FAMILY SYSTEMS DESIGN 



A First Encounter: WRITING 
Getting Your Hands on a 9900 

THE MACHINE CODE 

The other SBO instructions can be machine coded accordingly using the appropriate bit 
number. Therefore, Step 11is1D0116 , Step 15 is 1D0216 and Step 19 is 1D0316 • 

Similarly, using the op code of 1£0016 for the SBZ instructions and the appropriate bit 
number, Step 9 is 1£0016 , Step 13 is 1£0116 , Step 17 is 1£0216 , and Step 21 is 1£0316 • 

INSTRUCTION BL 

Now Step 8 brings in another new format. For the BL instruction, it is format 6. Bits 0 
thru 9 contain the op code. Bits 12 through 15 are the address of the source data. Ts is a 
field that modifies the source address and it contains the two bits that code the 
addressing mode that is being used. Recall BL * 1 uses indirect addressing. Therefore, 
from Figure 3-32 Ts would be 01 for these 2 bits. It's important to remember that this 
modifies the op code into a different number for the machine code as shown below. 

Op Code 
Binary 
Ts 
s 
Machine 
Code-
(Binary) 
Machine 
Code-
(Hex) 

o 1 2 3 \4 5 6 7 \8 9 10 11112 u 14 15 I 
0 6 8 0 

0000011010 0 0 0 0 0 0 
0 1 

0 0 0 1 
0000011010 0 1 0 0 0 1 

0 6 9 1 

Thus, the machine code is 069116 and can be placed in Step 8, 10, 12, 14, 16, 18, 20 and 
22, since register 1 is used in each case. 

MiscELLANEOUS INSTRUCTIONS 

Because the jump instructions fall into a class that needs special discussion, the remaining 
instructions will be coded first. 

Step 26 and Step 31 are LI instructions like Step 3 and Step 5 - the code is 
020316 in this case because register 3 is being used. Don't forget the values of FFFF16 

for Step 27 and 3FFF16 for Step 32. 

The TB instruction has an op code of 1F0016 and a format 2. It is just like the SBO and 
SBZ so that the bit must be used for the displacement. Bit 4 causes a displacement of 4, 
therefore, the machine code is 1F0416 • This is Step 24. 

9900 FAMILY SYSTEMS DESIGN 3-55 



~3 

WRITING A First Encounter: 

THE MACHINE CODE Getting Your Hands on a 9900 

A branch instruction similar to BL, but does not save the next address in register 11, is 
the instruction B. It is using the contents of register 11 for a return to the main 
program. The op code for Bis 044016 • It uses an indirect addressing mode so Ts= 01 
and S is 1011 for register 11. The machine code results as follows: 

0 1 2 314 5 6 718 9 10 11112 13 14 15 I 
Op Code 

Ts 
s 
Machine 
Code 
(Binary) 
Machine 
Code 
(Hex) 

It is entered at Step 30 and 35. 

0 4 4 
0000010001 

0000010001 

0 4 5 

0 
0 0 0 0 0 0 
0 1 

1 0 1 1 
0 1 1 0 1 1 

B 

The only remaining instruction besides the jump instructions is the decrement 
instruction DEC. From Figure 3-33 the op code is 060016 and the format is 6. Register 3 is 
being used, therefore, Sis 0011. The addressing mode is a register mode so Ts is 00 and 
there is no modification of the op code. The machine code is then 060316 for Step 28 and 33. 

}UMP INSTRUCTIONS 

Jump instructions use format 2 of Figure 3-32 which has an op code for bits 0 through 7 
and a signed displacement in bits 8 through 15. The signed displacement means the 
·number of program addresses that the program must move to arrive at the required 
address. For example, let 

then, 

AJ =present address of jump instruction 
An = destination address of jump instruction 

1.) AJ + 2 D ISP =An 

since the program moves by increments of 2. 

However, for the 9900 microprocessor in the TM990/ lOOM microcomputer, the jump 
instruction signed displacement must be calculated from the address following the 
address of the jump instruction or AJ + 2. Therefore, equation (1) becomes, 

2.) (AJ + 2) + 2 DISP=An 

Solving for DISP, gives 

3-56 

3.) An-(AJ+2)=DISP 
2 

9900 FAMILY SYSTEMS DESIGN 



A First Encounter: WRITING 
Getting Your Hands on a 9900 THE MACHINE CODE 

Recall that in preparing the program of Table 3-1 labels were used for instructions so that 
easy reference could be made to the desired destination address for a jump instruction. 
Step 23 at FE2C16 is the first jump instruction. The destination is the label BEGIN 
which is located at address FEOC16 • Applying equation (3) gives (in Hex) 

4.) DISP = FEOC - (FE2C + 2) 
2 

5.) DISP=FEOC-FE2E 
2 

Now, 
FEOC 

-FE2E 

-002216 

Therefore, 

6.) DISP= -22:;::: -1116 

2 

This means that in the jump instruction the program mov(.!s back 1116 steps or 17 
decimal steps. 

Now, since this is a negative number, a two's complement must be used for the code, 
thus 

COMPLEMENT 
ADD ONE 

2'S COMPLEMENT 

-0011 
FFEE 

+0001 
FFEF 

Now, only the 8 least significant bits are used along with the op code of Figure 3-33. 
JMP of Step 23 has an op code of 100016 . Therefore, the machine code is: 

Op Code 
Displacement-

Machine 
Code 

0 1 2 3 I 4 5 6 7 I 8 9 10 11112 13 14 15 I 
1 0 0 0 

E F 
~~~~~~~~~~~~~~ 

1 0 E F

This machine code is entered at Step 2 3.

9900 FAMILY SYSTEMS DESIGN 3-57

3,...

WRITING A First Encounter:

THE MACHINE CODE Getting Your Hands on a 9900

Step 25 has a JEQ instruction. AJ is FE3016. The instruction says to jump to TIME
which has an address ofFE3C at Step 31, therefore, An= FE3C. Applying equation (3)
gives, again in hexadecimal;

DISP = FE3C ~ FE32 = 1
2
0 = 516

JEQ has an op-code of 1300 and the machine code then becomes:

o 1 2 3 I 4 5 6 7 I 8 9 10 11112 13 14 15 I
Op Code 1 3 0 0
Displacement - ________ 0 _____ 5 __
Machine Code- 1 3 0 5

Step 25 then has 1305 as the machine code.

The remaining jump instructions, JNE at Steps 29 and 34 have an op code of 160016.
Calculating the displacement from Step 29 to Step 28 and from Step 34 to Step 33,
obviously is - 0216 • The complement of - 02 is FFFD and the twos complement is
FFFE. Thus the machine.code is:

o 1 2 3 \ 4 s 6 7 \ 8 9 10 11112 13 14 15 I
Op Code 1 6 0 0 .
Displacement - ________ F _____ E __
Machine Code- 1 6 F E

Even though the labels jumped to for Steps 29 and 34 are different, the displacement is
the same and, therefore, the machine code entered at these steps is the same, 16FE16.

3-58 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

SUMMARY

TABLE 3-2

Every step is now coded and the program is complete. This is the program that was
entered into the microcomputer via the terminal to accomplish the first encounter task.

Only one comment remains. If the Table 3-1 program were run on a computer under the
direction of an assembler program, certain symbols used for directives to the assembler
would have to be used. The $ symbol could have been used to indicate the fact that a
displacement is to be made from the jump instruction address which was identified in
equation (3) as AJ. The instruction then would contain the $ symbol followed by the
necessary displacement in hexadecimal. For this reason the instructions at Step 23, 2 5,
29, and 34 would have looked as follows:

Step A MC
n-- FE2C lOEF
25 FE30 1305
29
34

SUMMARY

FE38
FE42

16FE
16FE

L Assy. Lang.
JMP $-17°
JEQ $+5
JNE $-2
JNE $-2

It has been a long discussion. However, a great deal of material has been covered and
many basic concepts developed. The facts and procedures presented should provide a
solid foundation for expanding an understanding of the 9900 Family of microprocessors and
microcomputer component peripherals and the microcomputers which use it. Hopefully,
enough examples have been presented with the first encounter task that with a minimum
of effort, new real applications of the TM990/ lOOM board can be implemented. A few
simple ones that can be implemented immediately with the present setup would be:

A. Wire-up the necessary drivers and resistors to drive all seven-segments of
the display and write a new program to make the numbers 1, 2, 3, 4, 5,
6, 7, 8, 9, 0 come up in sequence.

B. Write a program that uses the 7 segment display numbers so that they
spell a word when read up-side down.

Maybe more memory will be required, but that is easy to add to the TM990/100M.

The next step is to implement the logic levels at the output pins into real applications of
controlling de and ac voltages for control applications. An extended application in
Chapter 9 using this same TM990/ lOOM board setup shows how this can be done.
Persons interested can follow right into this application example to gain more insight
into the details of the 9900 family of components explained in detail in the following
chapters.

9900 FAMILY SYSTEMS DESIGN 3-59

3

TABLE 3-2:
ASSEMBLY LANGUAGE PROGRAM

Hex
Hex Machine

Step Address Code

1. FEOO 02EO
2. FE02 FF20
3. FE04 0201
4. FE06 FE2E
5. FE08 020C
6. FEOA 0120
7. FEOC 1000
8. FEOE 0691

9. FE10 1 EOO
10. FE12 0691

11 . FE14 1001
12. FE16 0691
13. FE18 1 E01
14. FE1A 0691
15. FE1C 1002
16. FE1E 0691
17. FE20 1 E02
18. FE22 0691
19 FE24 1003
20. FE26 0691
21. FE28 1 E03
22. FE2A 0691
23 .. FE2C 1 OEF
24. FE2E 1 F04
25. FE30 1305
26. FE32 0203
27. FE34 FFFF
28. FE36 0603
29. FE38 16FE
30. FE3A 0458
31. FE3C 0203

. 32. FE3E 3FFF
33. FE40 0603
34. FE42 16FE
35. FE44 0458

3-60

Table 3-2. Assembly Language Program.

(With Machine Code)

Op
Label Code Operand Comments.

LWPI >FF20 Load workspace pointer
with FF20 16

LI 1, >FE2E Load R1
with 1st address of WAIT

LI 12, >0102 Load 12
with base address of 9901, 01201 6

BEGIN SBO 0 Set 1/0 P0 (segment f) equal to one
BL •:< 1 Branch to address in R1, (saves

next address in R11)
SBZ 0 Set I /0 P 0 (segment f) equal to zero
BL •:< 1 Branch to address in R1

(saves next address in R 11)
SBO 1 Set 1/0 P1 (segment b) equal to one
BL ::: 1 Branch to address in R1
SBZ 1 Set 1/0 P1 equal to zero
BL •:< 1 Branch to address in R1
SBO 2 Set 1/0 P2 (segment e) to one
BL •:< 1 Branch to address in R1
SBZ 2 Set 1/0 P2 equal to zero
BL •:• 1 Branch to address in R1
SBO 3 Set 1/0 P3 (segment c) equal to one
BL •:• 1 Branch to address in R1
SBZ 3 Set 1/0 P3 equal to zero
BL •:< 1 Branch to address in R1
JMP BEGIN Jump to BEGIN

WAIT TB 4 Test 1/0 P4 for a "1" or a "O"
JEO TIME If equals bit is set ("1 "),jump to TIME
LI 3, >FFFF Load R3

with FFFF 16
TIME1 DEC 3 Decrement R3

JNE TIME1 Jump to TIME1 if equals bit is not set
8 •:•11 Return to main program (by way of 11)

TIME LI 3, >3FFF Load R3
with 3FFF 16

TIME2 DEC 3 Decrement R3
JNE TIME2 Jump to TIME2 if equals bit is not set
8 •:< 11 Return to main program (by way of R11)

9900 FAMILY SYSTEMS DESIGN

CHAPTER4

Hardware Design:
Architecture and
Interfacing Techniques

t :~::·::::::erawww:.awwws .xwwwuxu;.wwwoxm JPJ&.mr,; as z.

:I/I~ .,., " '' " ; ' " • ' ' ' < •I j' '~ '\ ' ~ _., , " '"I I l ' ' ,\:

INTRODUCTION

INTRODUCTION

Hardware Design:
Architecture and
Interfacing Techniques

Describing the 9900 system from a hardware standpoint clearly requires detailed
descriptions of a large number of design features as well as the interaction between the
9900 and peripheral circuits. In this chapter, material is arranged to develop a 9900
system from the viewpoint of the 9900 microprocessor chip. In the architecture section,
the concepts of instruction fetch and decode, the memory-to-microprocessor bus
structures, and memory partitioning (the use of volatile and non-volatile memories) are
explained. Other topics include descriptions of the registers on the microprocessor chip
and the working registers, the concept of memory-to-memory architecture, timing and
descriptions of interface signals.

A special section covers memory in detail, especially the controls and timing, multichip
memory structure, static and dynamic RAM, and DMA (direct memory access).

Following the architecture and memory sections are sections devoted to the instruction
set, design considerations for input/ output techniques especially in CRU development,
the interrupt structure and electrical requirements.

A special section devoted to the unique features of the single chip microcomputer, the
TMS9940, is included at the end of the chapter.

Information in this chapter flows from the most basic fundamentals to an understanding
of the more complex design features of the 9900 and the chip family. When very specific
and detailed information regarding pin assignments and speed is given, the TMS9900
device specifications are used. These examples will give direction and illustration for
interpreting the data sheet information found in Chapter 8.

The 9900 family of 16-bit microprocessors includes several device types each aimed at a
specific market segment. The same basic architecture and instruction set are maintained
throughout. Consider first the single-chip microprocessor which consists of an ALU
(arithmetic and logic unit), a few registers, and instruction handling circuitry (Figure
4-1). There is no memory on the chip for instructions and data so it must be interfaced to
memory devices, usually RAM for data (and instructions which must be modified) and
ROM, PROM, or EPROM for instructions (Figure 4-2). It is often desirable to store
instructions in a non-volatile memory to eliminate the requirement for loading the
program into memory immediately following application of power. This is especially
important in dedicated applications where the program is fixed and power off-on cycles
are common occurrences.

The microprocessor is connected to memory devices and external input/ output (I/O)
devices via sets of signals or busses (Figure 4-2). An address bus selects a word of
memory. The contents of this word will be transferred to or from the microprocessor via
the data bus. Control signals required to effect the transfer of information between the
microprocessor and the memory are grouped into a control bus.

4-2 9900 FAMILY SYSTEMS DESIGN

Hardware Design: INTRODUCTION
Architecture and
Interfacing Techniques

DEDICATED
I REGISTERS

I
I
I

INSTRUCTION I
HANDLING 1-- - - - - ----,
CIRCUITRY I

I
I
I

ALU

Figure 4-1. The 9900 Microprocessor

The interface to external devices (1/0) may be accomplished by using the address, data
and control busses. This technique is known as parallel 1/0 or memory mapped 1/0
because data is transferred in parallel and the 1/0 devices occupy locations in the
memory address space.

ADDRESS BUS

9900 CONTROL BUS

DATA BUS

INSTRUCTION
MEMORY

DATA
MEMORY

Figure 4-2. 9900 Microprocessor and Memory

9900 FAMILY SYSTEMS DESIGN 4-3

INTRODUCTION Hardware Design:
Architecture and
Interfacing Techniques

The extension of parallel I/O is direct memory access (DMA). External hardware is
employed to act as a separate special purpose processor for transferring large blocks of
contiguous memory words to or from an external device (such as a disc memory). Once
such a transfer is set up (via a string of instructions in the program), the DMA controller
automatically synchronizes the transfer of data between the external device and memory,
sharing the buses timewise with the microprocessor.

The 9900 architecture includes one other important 1/0 technique. Designed primarily
for single bit 1/0 transfers, the communications register unit (CRU) provides a
powerful alternative to parallel, memory mapped 1/0 (Figure 4-3). The address bus is
used to select one of 4096 individual input or output bits in the CRU address space.
During the execution of one of the single bit CRU instructions, the processor transfers
one bit in or out. Multiple bit instructions are also available which provide for transfer of
up to sixteen bits via a single CRU operation.

While this chapter describes primarily the basic TMS9900 16-bit microprocessor, all of
the 9900 family CPU's are covered in detail in the Product Data chapter.

4-4

BIT
ORIENTED

1/0
(CRU)

ADDRESS BUS

9900 MEMORY

CONTROL BUS

DATA BUS

Figure 4-3. 9900 Bus Architecture

PARALLEL
1/0

9900 FAMILY SYSTEMS DESIGN

Hardware Design: ARCHITECTURE
Architecture and
Interfacing Techniques

An overview is given here to establish design paths for microprocessor systems. Listed
below are the processors in.the 9900 family.
Device Technology Description
TMS 9900 N-MOS 16-bit CPU 3 MHz
TMS 9900-40 N-MOS 16-bit CPU 4 MHz
SBP 9900A PL 16-bit CPU -55° to 125°C
TMS 9980A/8 l N-MOS 16-bit CPU 40-pin package
TMS 9985 N-MOS 16-bit CPU 40-pin package
TMS 9940 N-MOS 16-bit CPU with 2 k on-chip ROM

General purpose applications are designed around the TMS9900 device. The same is
true for systems with severe environmental specs; however, a transition to the
SBP9900A is made after the design is complete and the software completely debugged.
The TMS9980A/81 and the TMS9985 are used where the 40-pin package is
advantageous and a slightly slower speed is acceptable. The TMS9940 is a single-chip
microcomputer for small special purpose controllers. 4....-

At the end of this chapter and in the Product Data chapter there is detailed design
data for application of the LSI (large scale integration) peripheral support circuits in the
9900 family which are available for use in 9900 microprocessor-based systems. But in
order to read and understand the data presented in this chapter and in this book, an
understanding of the basic fundamentals of microprocessors is needed.

ARCHITECTURE

BASIC MICROPROCESSOR CHIP

The 9900 is an advanced 16-bit LSI microprocessor with minicomputer-like architecture
and irn~tructions. It is easy to understand and easy to use. Consider first the
microprocessor device itself (Figure 4-4). Operations are carried out with a set of
dedicated registers, an ALU, and instruction handling circuits. As clock signals are
applied, the processor will fetch an instruction word from a memory (external to the
chip), will execute it, fetch another instruction, execute it and so on. In each case the
instruction is saved in an instruction register (IR) on the chip. The decode circuit sets up
the appropriate controls based on the content of the instruction register for a multi-step
execution phase. A memory address register (MAR) is used to hold address information
on the address bus. The ALU and the other registers perform their specified functions
during the execute phase of the instruction cycle.

MICROPROCESSOR REGISTERS

There are three registers on the 9900 chip which are the key architectural features of
the microprocessor (Figure 4-5). They are the workspace pointer (WP), the program
counter (PC), and the status register (ST).

9900 FAMILY SYSTEMS DESIGN 4-5

ARCHITECTURE

MAR

INSTRUCTION
DECODE WP AND

CONTROL

PC

IR ST

[] s

Figure 4-4. 9900 Functional Elements
Workspace Pointer

Hardware Design:
Architecture and
Interfacing Techniques

The general purpose registers for the 9900 are implemented as blocks of memory called
workspaces. A workspace consists of 16 contiguous words of memory, but are
general registers to the user. The workspace pointer on the 9900 chip holds the address
of the first word in the workspace. After initializing the content of the WP at the
beginning of a program (or subprogram), the programmer may concentrate on writing a
program using the registers to hold data words or to address data elsewhere in memory.

WORKSPACE POINTER

PROGRAM COUNTER

STATUS REGISTER

Figure 4-5. Three Important Registers

4-6 9900 FAMILY SYSTEMS DE'.SIGN

Hardware Design:
Architecture and
Interfacing Techniques

ARCHITECTURE

Program Counter

The program counter (PC) in the 9900 is used in the conventional way to locate the next
instruction to be executed. As each instruction is executed, the program counter is
incremented to the next consecutive word address. Because word addresses are even
numbers in the 9900, the program counter is incremented by two in_ order to address
sequential instructions. If the instruction to be executed occupies two or three memory
words, the program counter will be incremented to generate sequential (even) addresses
to access the required number of words. At the end of execution the PC is incremented
to the next even address which is the location of the next instruction. If the instruction to
be executed is a jump or branch instruction, the program counter is loaded with a new
address and program execution continues starting with the instruction at that location in
memory.

Figure 4-6 shows the program counter pointing to (addressing) instruction words in the
program. Starting with location (x) the instructions are performed in sequence until a
jump is encountered at (y). Processing_resumes sequentially starting at location (z) which 4,...
was the address specified by the jump instruction to be placed in the program counter.

Status Register

The status register (ST) is the basis for decision making during program execution.
Individual bits of the ST are set as flags as the result of instructions. They may thereafter
be tested in the execution of conditional jump instructions. Figure 4-7 shows the status
register and its flag bits.

PROGRAM IN MEMORY

PC

"JUMP TO z"

Figure 4-6. Program Counter Operation

9900 FAMILY SYSTEMS DESIGN 4-7

ARCHITECTURE

0 2 3 4 5 6 7 8 9 10

RESERVED

Bit Function

0 Logical "Greater Than"
1 Arithmetic "Greater Than"
2 Equal
3 Carry
4 Overflow
5 Parity
6 XOP Instruction Being Executed

12-15 Interrupt Mask

Figure 4-7. Status Register

11

Hardware Design:
Architecture and
Interfacing Techniques

12 13 14 15

The first three bits are set as a result of comparisons. Some instructions identify two
operands (numbers) to be compared. If the first is greater than the second, the "greater
than" bit should be set. In the 9900 there are two such conditions. First, the logical
greater-than bit considers 16-bit words as positive integers and the comparison is made
accordingly. Second, the arithmetic-greater-than bit is set as the result of a comparison of
two numbers which are considered in two's complement form. For example: consider the
numbers A and B below as the numbers in the compare instruction C A, B:

A 1000 1110 1100 0101

B 0110 1010 1100 1101

If they are 16-bit positive integers, it is clear from the most significant bits (MSB) that A
is greater than B, and the logical-greater-than bit of the status register should be set to
one. But as two's complement numbers, A is negative (MSB = 1) and Bis positive.
Therefore the arithmetic-greater-than bit must be made zero (A is not greater than B).
Since the processor has no way of knowing how the designer has used the memory words
for data (integers or two's complement), two status bits must be provided for decision
making. The designer can select the appropriate conditional jump instruction (testing
status bit 0 or 1) because he knows what the data format is.

Status bit 2, the equal bit, is set if the two words compared are equal.

In many instructions, only one number is involved or a new number is determined as the
result of an arithmetic operation. For these instructions status bits 0, 1 and 2 are set as
the result of comparisons against zero; that is, if the single number or answer obtained is
greater than zero or equal to zero.

4-8 9900 FAMILY SYSTEMS DESIGN

Hardware Design: ARCHITECTURE
Architecture and
Interfacing Techniques

MEMORY-TO-MEMORY ARCHITECTURE

The 9900 family of processors employs memory-to-memory architecture in the
execution of instructions. Memory-to-memory architecture is that computer
organization and instruction set which enables direct modification of memory data via a
single instruction. That is, a single instruction can fetch one or two operands from
memory, perform an arithmetic or logical operation, and also store the result in
memory. In doing so, some of the on-chip registers are used as temporary buffers in
much the same manner as an accumulator is used in other systems. but instructions to
load an accumulator and store the accumulator are rarely necessary in memory
to-memory architecture. A single 9900 instruction (arithmetic or logical) does
the work of two or more instructions in other systems.

Figure 4-8 describes the technique used by the 9900 to locate words in memory as
"registers" in the workspace. Additional information is included for reference purposes.
Registers 1-15 may be used for indexing (see the description of this addressing mode in
Chapter 5 and 6). Register 0 may be used for a shift count. Registers 11 and 13-15 are
used for subroutine techniques. Register 12 is a base value for CRU instructions. These
special uses of the workspace registers are stated here as an initial evaluation of the
register set. Program control and CRU instructions make use of the contents of registers
11-15; therefore, programmers and systems designers must be aware that while use of
these registers is not restricted to their special functions, they should be used with
caution in performing other functions.

The use of these workspaces in an actual application is best described in the
Software Design chapter. But the step-by-step execution of the instructions is of concern
in hardware design because of the execution speed and the techniques for handling
interrupts.

Instruction cycles in the 9900 require memory access not only for the instruction words
but also for operand addresses and actual operands (or numbers to be operated upon.) A
simple add instruction requires at least four memory cycles: one to fetch the instruction,
two to access the two numbers to be added, and one to store the result. As will be
explained in detail later in this chapter, the execution of an add instruction may require
as many as eight memory cycles (because of the addressing mode.) The execution steps
are not the same for all instructions. There is, in fact, substantial variation of execution
steps within any one instruction due to addressing. Tables and charts are provided in this
chapter to explain the execution time of each instruction.

9900 FAMILY SYSTEMS DESIGN 4-9

ARCHITECTURE

MEMORY

ADDRESS

I WORKSPACE POINTER I Q WP+ 00

WP +02

WP+ 04

WP +06

WP+OS

WP+OA

WP +OC

WP +OE

WP+ 10

WP+ 12

WP+ 14

WP+ 16

WP+ 18

WP+ 1A

WP+ 1C

WP+ 1E

REGISTER USE

REGISTER

0

1

2

3

4

5

6

7 DATA
INDEX

8

9

10

11

12

13

14

15

Figure 4-8. 9900 Workspace Registers

Hardware Design:
Architecture and
Interfacing Techniques

0 - OPTIONAL SHIFT

COUNT

11 - BL RETURN ADDRESS

12 - CRU BASE ADDRESS

13 - SAVED WP

14 - SAVED PC

15 - SAVED ST

There is one additional concept regarding microp~ocessor and memory interfacing to be
introduced at this time: it is the way in which data is stored in the memory. Figure 4-9
shows the bit numbering for a general 16-bit data word or instruction. Instructions and
16-bit data words are always located at even addresses. Since the memory is byte
addressable, even and odd bytes are the left and right half word~ in the 16-bit memory
organization and have even or odd addresses respectively. Memories for the TMS9900
and SBP9900A contain 16 bits perword, while the other processors in the family use 8-
bit memory structures. But all use the same addressing concept: a 16-bit address
describing a 64k-byte address space.

4-10

MSB LSB

I o I 2 3 4 5 6 7 s 9 I 10 , ,, I 12 I 13 I 14 I 1s I
SIGN
BIT

MSB

I 0 I
SIGN

\BIT

MEMORY WORD (EVEN ADDRESSI

LSB MSB LSB

2 3 14 I 5 6 I 7 I s I 9 I 10 I 11 I 12 I 13 j 14 I 1s j
SIGN

I "BIT v v
EVEN BYTE ODD BYTE

Figure 4-9. Word and Byte Formats

9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

ARCHITECTURE

CONTEXT SWITCHING

One of the more important advantages of the workspace architecture of the
9900 is the fact that "register save and restore" operations are greatly simplified. In any
interrupt processing system, provisions must be made to perform an orderly transition
into a new program segment in response to an interrupt. In other microprocessor
systems, the first few instructions of an interrupt service routine perform the steps of
saving register contents in memory, and then loading new values into the registers.

In the 9900, an interrupt cycle starts with a hardware operation to save the contents of
the three key registers, the WP, PC and ST. In addition, the WP and PC must be loaded
with new numbers. Figures 4-10 and 4-11 show an example of the technique. Prior to the
interrupt, the WP locates the workspace (pointing to 0800), the PC locates the current
instruction (pointing to 0100), and the ST contains the status as a result of the execution
of the current instruction (e.g., 4000). At the end of execution, the processor tests for an
interrupt condition and finding it, performs a context switch as follows.

Step 1. The new WP value is fetched from the appropriate interrupt vector location in
the first 3 2 words of memory. This identifies the location of the workspace assigned to
the interrupt service routine.

Step 2. The current values of the WP, PC and ST registers are stored in the new
workspace - ST in R15, PC in R14, WP in R13 in that order. After this, the new PC
value is fetched from memory (the second location of the two-word interrupt vector) and
loaded into the PC.

9900 MEMORY

WP 0800
PROGRAM A

PC 0100

PROGRAM B

ST I 4000

WORKSPACE A

WORKSPACE B

Figure 4-10. Before Context Switch

9900 FAMILY SYSTEMS DESIGN 4-11

MEMORY

WP l

PC [

ST I

9900 MEMORY

0820

~ PROGRAM A

0200 ...
PROGRAM B

I

WORKSPACE A

~

WORKSPACE B

0800
0102
4000

Figure 4-11. After Context Switch

Hardware Design:
Architecture and
Interfacing Techniques

R13
R14
R15

Step 3. With the context switch completed, processing resumes with the first instruction
in the interrupt service routine.

Processing continues in this mode until, at the end of the interrupt routine, an RTWP
instruction is encountered. A "reverse" context switch now occurs to return to the
previous program. Since R13, 14 and 15 contain the control register contents for the
previous program, they are now transferred to the CPU which loads them into the WP,
PC and ST. Processing resumes from the point at which the interrupt occurred.

The obvious advantage of context switching is the reduced register-save register-restore
operations required by microprocessors in an interrupt environment. The context switch
is also used as a subroutine technique. This is described in Chapters 5 and 6, but the
important fact is that context switching is, to the designer, a single step, when in fact
several steps are performed by the microprocessor.

MEMORY

The 9900 is easily interfaced to any of the standard types of semiconductor memory
devices. Texas Instruments provides masked ROMs, field-programmable ROMs
(PROMs), and erasable PROMs (EPROMs) for non-volatile program and data storage.
RAMs are available in sizes from a 64 x 8 static RAM to the 64K dynamic RAMs for
use as a temporary program and data storage. 9900-compatible memory devices are
listed in Chapter 2.

4-12 9900 FAMILY SYSTEMS DESIGN

Hardware Design: MEMORY
Architecture and
Interfacing Techniques

MEMORY ORGANIZATION

The 9900 instructions build a 16-bit address word which describes a 64K x 8 bit address
space. A memory map for the 9900 is shown in Figure 4-12.

AREA DEFINITION

RESET VECTOR {
INTERRUPT VECTORS

XOP SOFTWARE TRAP VECTORS

GENERAL MEMORY FOR

PROGRAM, DATA, AND

WORKSPACE REGISTERS

LOAD SIGNAL VECTOR {

MEMORY

ADDRESS15

0000

0002

0004

0006

003C

003E

0040

0042

007C

007E

0080

FFFC

FFFE

0

MEMORY CONTENT

WP LEVEL 0 INTERRUPT

PC LEVEL 0 INTERRUPT

WP LEVEL 1 INTERRUPT

PC LEVEL 1 INTERRUPT

WP LEVEL151NTERRUPT

PC LEVEL151NTERRUPT

WP XOPO

PC XOPO

WP XOP 15

PC XOP 15

•
•
•

GENERAL MEMORY AREA

MAY BE ANY

COMBINATION OF

PROGRAM SPACE

OR WORKSPACE

•
•

WP LOAD FUNCTION

PC LOAD FUNCTION

Figure 4-12. TMS 9900 Dedicated Memory Addresses

9900 FAMILY SYSTEMS DESIGN

15

4-13

MEMORY

RESET Vector

Hardware Design:
Architecture and
Interfacing Techniques

The first two memory words are reserved for storage of the RESET vector. The
RESET vector is used to load the new WP and PC whenever the CPU RESET signal
occurs. The first word contains the new WP, which is the starting address of the RESET
workspace. The second word contains the new PC, which is the starting address of the
RESET service routine.

Interrupt Vectors

The next thirty memory words, 000416 through 003E16 are reserved for storage of the
interrupt transfer vectors for levels 1 through 15. Each interrupt level uses a word for
the workspace pointer (WP) and a word for the starting address of the service routine
(PC). If an interrupdevel is not used within a system, then the corresponding two
memory words can be used for program or data storage.

Software Trap Vectors

· 4 The next thirty-two memory words, 004016 through 007E16, are used for extended
operation software trap vectors. When the CPU executes one of the 16 extended
operations (XOPs), the program traps through the corresponding vector. Two words are
reserved for each trap vector, with one word for the WP and one word for the PC. If an
XOP instruction is not used, the corresponding vector words can be used for program or
data storage.

LOAD Vector

The last two memory words FFFC16 and FFFE16 are reserved for the LOAD vector,
with one word for the WP and one word for the PC. The LOAD vector is used
whenever the CPU LOAD signal is active (low).

Transfer Vector Storage

The transfer vectors can be stored either in ROM or RAM, but either the RESET or
LOAD vector should be in non-volatile memory and should point to a program in
non-volatile storage to ensure proper system start-up. The restart routine should
initialize any vector which is in RAM. The program can then manipulate the
RAM-based vectors to alter workspace assignments or service routine entry points,
while ROM-based vectors are fixed and cannot be altered.

4-14 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

MEMORY CONTROL SIGNALS

MEMORY

The 9900 uses three signals to control the use of the data bus and address bus during
memory read or write cycles. Memory enable (MEMEN) is active low during all
memory cycles.

Data bus in (DBIN) is active high during memory read cycles and indicates that the
CPU has disabled the output data buffers.

Write enable (WE) is active low during memory write cycles and has timing
compatible with the read/write (R/W) control signal for many standard RAMs.

Memory Read Cycle

Figure 4-13 illustrates the timing for a memory read machine cycle with no wait states.
At the beginning of the machine cycle, MEMEN and DBIN become active and the
valid address is output on AO-Al4. DO-D15 output drivers are disabled to avoid
conflicts with input data. WE remains high for the entire machine cycle. The READY 4<1111

input is sampled on C/J 1 of clock cycle 1, and must be high if no wait states are desired.
Data is sampled on C/J 1 of clock cycle 2, and set-up and hold timing requirements must be
observed. A memory-read cycle is never followed by a memory-write cycle, and DO-D15
output drivers remain disabled for at least one additional clock cycle.

Memory Write Cycle

Figure 4-14 illustrates the timing for a memory write machine cycle with no wait states.
MEMEN becomes active, and valid address and data are output at the beginning of the
machine cycle. DBIN remains inactive for the complete cycle. WE goes low on C/J 1 of
clock cycle 1 and goes high on C/J 1 of clock cycle 2, meeting the address and data set-up
and hold timing requirements for the static RAMs listed in Chapter 2. For no wait
states, READY must be high during C/J 1 of clock cycle 1.

Read/Write Control with DBIN

In some memory systems, particularly with dynamic RAMs, it may be desirable to have
READ and WRITE control signals active during the full memory cycle. Figure 4-15
shows how the WRITE signal can be generated. Note that DBIN is high only for
READ cycles; therefore, MEMEN can be NORed with DBIN to yield a WRITE
signal which is high only during memory write operations.

Slow Memory Control"

Although most memories operate with the 9900 at the full system speed, some memories
cannot properly respond within the minimum access time determined by the system
clock. The system clock could be slowed down in order to lengthen the access time but
the system through-put would be adversely affected since non-memory and other
memory reference cycles would be unnecessarily longer. The READY and WAIT
signals are used instead to synchronize the CPU with slow memories. The timing for
memory-read and memory-write cycles with wait states is shown in Figures 4-16 and 4-17.

9900 FAMILY SYSTEMS DESIGN 4-15

MEMORY

1
N
w
.J
u
>

..,.4 u
~
u
0
.J
u

i
w
.J
u
> u
~
u
0
.J
u

l

4-16

--- --- --

--- --- ---

--- --- -

II

--

--

z
Cii
c

--

I~

~
w
a:
c
c
<(

c
.J
<C
>

w
c
0
:11: ...
::::>
Q.
z

C<(- ...
.J <(

~c

w
c
0
:11: ...
::::>
Q.
z

0
c

Hardware Design:
Architecture and
Interfacing Techniques

> c
<C
w
a:

Figure 4-13. Memory-Read Cycle Timing

9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

N
w
...I
u
> u
~
u
0
...I
u

w
...I
u
> u
~
u
0
...I
u

J_

Ii z
al
c I~

Figure 4-14. Memory-Write Cycle Timing

9900 FAMILY SYSTEMS DESIGN

> c
~
UJ
cc

MEMORY

4-17

MEMORY

OBIN t-----+-------------READ
TMS 9900

-
Hardware Design:
Architecture and
Interfacing Techniques

11-----WRITE

Figure 4-15. Read/ Write Control Using MEMEN and DBIN

The READY input is tested on 1> 1 of clock cycle 1 of memory-read and memory-write
cycles. If READY= 1, no wait states are used and the data transfer is completed on the
next clock cycle. If READY= 0, the processor enters the wait state on the next clock
cycle and all memory control, address, and data signals maintain their current levels. The
WAIT output goes high on ¢ 3 to indicate that a wait state has been entered. While in
the wait state, the processor continues to sample READY on ¢ 1, and remains in the wait
state until READY= 1. When READY= 1 the processor progresses to clock cycle 2
and the data transfer is completed. WAIT goes low on ¢ 3. It is important to note that
READY is only tested during¢ 1, of clock cycle 1 of memory-read and memory-write
cycles and wait states, and the specified set-up and hold timing requirements must be
met; at any other time the READY input may assume any value. The effect of inserting
wait states into memory access cycles is to extend the minimum allowable access time by
one clock period for each wait state.

Wait State:Control

Figure 4-18 illustrates the connection of the WAIT output to the READY input to
generate one wait state for a selected memory segment. The address decode circuity
generates an active low signal (SLOMEM = 0) whenever the slow memory is addressed.
For example, if memory addresses 800016 - FFFE16 select slow memory,
SLOMEM =AO. If one wait state is required for all memory, WAIT may be connected
directly to READY, causing one wait state to be generated on each memory-read or
memory-write machine cycle. Referring again to Figures 4-16 and 4-17 note that the
WAIT output satisfies all of the timing requirements for the READY input for a single
wait state. The address decode signal is active only when a particular set of memory
locations has been addressed. Figure 4-19 illustrates the generation of two wait states for
selected memory by simply delaying propagation of the WAIT output to the READY
input one clock cycle with a D-type flip-flop. The rising edge of¢ 2TTL is assumed to
be coincident with the falling edge of the ¢ 2 clock input to the TMS 9900.

4-18 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

i
N
w
.J
(.J

> u
~
(.J
0
.J
(.J

t
w
1-
<t
1-
(/)

!::
<t s:

I
w
.J
(.J

>
(.J

~
(.J
0
.J
(.J

i

I! z
iii
c I~

(/)
en
w
a:
c
c
<(

c
:i
~

w
c
0
~
....
::::>
a.
z

w
c
0
~
....
::::>
a.
~

LO ...
c
0
c

Figure 4-16. Memory-Read Cycle With One Wait State

9900 FAMILY SYSTEMS DESIGN

> c
<(
w
a:

MEMORY

4-19

.. 4

MEMORY Hardware Design:

<t>1

<t>2

<t>3

rt>4

ME'MEN

OBIN

WI

AO-A14

D0-015

READY

WAIT

4-20

~CLOCK CYCLE 1 WAIT STATE

n n
n n

I

~

I
I

~ VALID ADDRESS

I

~ VALID WRITE DATA

I

)()(XXXXXXXXXXX IXXXXXXXXXI
I

Architecture and
Interfacing Techniques

CLOCK CYCLE 2---..j

n
n

I v

I
l

c
I

c
I

lXXXXX?Z>e·r €A:R5<XXXXX

\

Figure 4-17. Memory-Write Cycle With One Wait State

ADDRESS._,_---------•1

TMS 9900
READY--~

WAIT---------'

ADDRESS
DECODE

Figure 4-18. Single Wait State for Slow Memory

9900 FAMILY SYSTEMS DESIGN

Hardware Design: MEMORY
Architecture and
Interfacing Techniques

ADDRESS 1-----------.... 1

TMS 9900
READYt---~

WAITi----~

ADDRESS
DECODE

Figure 4-19. Double Wait States/or Slow Memory

Memory Access Time Calculation

Maximum allowable memory access time for the TMS 9900 can be determined with the
aid of Figure 4-20. Memory control and address signals are output on ¢ 2 of clock cycle 1,
and are stable 20 ns (tPLH, tPHL) afterwards. Data from memory must be valid 40 ns (tsu)
before the leading edge of¢ 1 during clock cycle 2. Therefore, memory access time may
be expressed by the equation:

tacc < (1. 7 5 + n) tcy - tPLH - tr - tsu

where n equals the number of wait states in the memory-read cycle. Assigning worst-case
specified values for tPLn (20ns), tr (12ns), and tsu (40 ns), and assuming 3 MHz
operation:

< (1.75 +n) _
72 tacc - 0.003 ns

Access time is further reduced by address decoding, control signal gating, and address
and data bus buffering, when used. Thus, for a known access time for a given device, the
number of required wait states can be determined.

For example, a TMS 4042-2 RAM has a 450 nanosecond access time and does not
require any wait states. A TMS 4042 has a lOOO_nanosecond access time and requires
two wait states. Propagation delays caused by address or data buffers should be added to
the nominal device access time in order to determine the effective access time.

9900 FAMILY SYSTEMS DESIGN 4-21

MEMORY

4-22

w
..I
0 > >
0 .9

l1
:I:
..I
Q.. ..

I!

(/)
(/)
w
a:
c
c
<t

c
..I
<t
>

-t
---+ ~

<t __ j >

z
Cii
c

T

Ln ...
c
6 c

Hardware Design:
Architecture and
Interfacing Techniques

(,)
(,)

.,.ra

Figure 4-20. Memory Access Timing Calculation

9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

MEMORY

STATIC MEMORY

Static RAMs and PROMs are easily interfaced to the 9900. A 9900 memory system
using the TMS 4042-2 256 X 4 static RAM and the TMS 2708 lK X 8 EPROM is
shown in Figure 4-21.

Address

The most-significant address bit, AO, is used to select either the EPROMs or the RAMs
during memory cycles. When AO is low, the EPROMs are selected, and when AO is
high, the RAMs are selected. Address lines Al through A4 are not used since the full
address space of the TMS 9900 is not required in the example. The lower address bits
select internal RAM or EPROM cells. Other memory systems can fully decode the
address word for maximum memory expansion.

Control Signals

Since DBIN is also used to select the EPROMs during memory-write cycles, the 4~

EPROMs cannot inadvertently be selected and placed into output mode while the CPU
is also in the output mode on the data bus. MEMEN is used to select the RAMs during
either read or write cycles, and WE is used to select the read/write mode. DBIN is also
used to control the RAM output bus drivers.

The 9900 outputs WE three clock phases after the address, data, and MEMEN are
output. As a result, the address, data, and enable-hold times are easily met. WE is
enabled for one clock cycle and satisfies the minimum write pulse width requirement of
300 nanoseconds. Finally, WE is disabled one clock phase before the address, data, and
other control signals and meets the TMS 4042-2 SO-nanosecond minimum data and address
hold time.

Loading

The loads on the CPU and memory outputs are well below the maximum rated loads. As
a result no buffering is required for the memory system in Figure 4-21. The TMS 4042-2
and the TMS 2708 access times are low enough to eliminate the need for wait states, and
the CPU READY input is connected to V cc·

The minimum high-level input voltage of the TMS 2708 is 3 volts while the maximum
high-output voltage for the TMS 9900 is 2.4 volts at the maximum specified loading.
For the system in Figure 4-21, the loads on the CPU and memory outputs are well below
the maximum rated load. At this loading, the TMS9900 output voltage exceeds 3 volts,
so pull-up resisters are not needed.

There are many other Texas Instruments static memories compatible with the TMS
9900. Most memory devices do not require wait states when used with the TMS 9900 at
3 MHz.

9900 FAMILY SYSTEMS DESIGN 4-23

MEMORY

4-24

..--.--_1>.llJLli·nJ:VI i 1~0---~ 1----~

~19 ~
--IE i I~ r-

g;:rK St·l:LO ___ ___.

1~0---~ I---+--+--<
j IEo---~ !-------+--<

----QIE ~ '~---~ t---<

g;:r

.--.--Ji!:'-'-~---~ i 1c;'!'l'\------l ----+---
~ IE't'" -- r---+-----<

----ulE ~ r:cc:::ia;;----1 t---<

t- g !......,..--=-I~"'-"A'
v

..--..--"~L·~Lv..,.. i lo~-----i t----i---t---

~ 1&1,o---~ ~
.,...__-QIE § '~c:::J(J f------1

! 0 ~11'---....,,.,rif<!.
:::.- X"Q!;;,...

Hardware Design:
Architecture and
Interfacing Techniques

Figure 4-21. TMS 9900 Static Memory System

9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

MEMORY

DYNAMIC MEMORY

Memory applications requiring large bit storage can use 4K, 16K or 64K dynamic memories
for low cost, low power consumption, and high bit density. TMS 9900 systems requiring
4K words or more of RAM, can economically use the 4096-bit TMS 4051, the 16,384-
bit TMS 4116, or any of the other dynamic RAMs covered in Chapter 2.

Refresh

The dynamic RAMs must be refreshed periodically to avoid the loss of stored data. The
RAM data cells are organized into a matrix of rows and columns with on-chip gating to
select the addressed bit. Refresh of the 4K RAM cell matrix is accomplished by
performing a memory cycle of each of the 64 row addresses every 2 milliseconds or less.
The 16K RAM has 128 row addresses. Performing a memory cycle at any cell on a row
refreshes all cells in the row, thus allowing the use of arbitrary column address during refresh.

Refresh Modes

There are several dynamic memory refresh techniques which can be used for a TMS
9900 system. If the system periodically accesses at least one cell of each row every 2
milliseconds, then no additional refresh circuitry is required. A CRT controller which
periodically refreshes the display, illustrates this concept.

Refresh control logic is included wherever the system cannot otherwise ensure that all
rows are refreshed every 2 milliseconds. The dynamic memory in such TMS 9900
systems can be refreshed in the block, cycle stealing, or transparent mode.

Block Refresh.

The block mode of refresh halts the CPU every 2 milliseconds and sequentially refreshes
each of the rows. The block technique halts executio_n for a 128 (4K) or 256 (16K) clock
cycle periods every 2 milliseconds. Some TMS 9900 systems cannot use this technique
because of the possibility of slow response to priority interrupts or because of
the effect of the delay during critical timing or 1/0 routines.

Cycle Stealing.

The cycle stealing mode of refresh "steals" a cycle from the system periodically to
refresh one row. The refresh interval is determined.by the maximum refresh time and
the number of rows to be refreshed. The 4 K dynamic RAMs have 64 rows to be
refreshed every 2 milliseconds and thus require a maximum cycle stealing interval of
31. 2 microseconds.

9900 FAMILY SYSTEMS DESIGN 4-25

MEMORY Hardware Design:
Architecture and
Interfacing Techniques

A cycle stealing refresh controller for the TMS 4051 4K dynamic RAM is shown in
Figure 4-22. The refresh timer generates the refresh signal (RFPLS) every 30
microseconds. The refresh request signal (RFREQ) is true until the refresh cycle is
completed. The refresh grant signal (RFGNT) goes high during the next CPU clock
cycle in which the CPU is not accessing the dynamic memory. The refresh memory
cycle takes two clock cycles to complete after RFGNT is true. During the second clock
cycle, however, the CPU can attempt to access the dynamic memory since the CPU is
not synchronized to the refresh controller. If the CPU does access memory during the
last clock cycle of the refresh memory cycle, the refresh controller makes the memory
not-ready for the remainder of the refresh memory cycle, and the CPU enters a wait
state during this interval. The dynamic memory row address during the refresh memory
cycle is the output of a modulo-64 counter. The counter is incremented each refresh
cycle in order to refresh the rows sequentially.

The dynamic memory timing controller generates the proper chip enable timing for
both CPU and refresh initiated memory cycles. The timing controller can be easily
modified to operate with other dynamic RAMs.

Since the TMS 9900 performs no more than three consecutive memory cycles, the
refresh request will be granted in a maximum of three memory cycles. Some systems
may have block DMA, which uses HOLD. RFREQ can be used in such systems to
disable HOLDA temporarily in order to perform a refresh memory cycle if the DMA
block transfer is relatively long (greater than 30 microseconds). The cycle stealing mode
"steals" clock cycles only when the CPU attempts to access the dynamic memory during
the last half of the refresh cycle. Even if this interference occurs during each refresh
cycle, a maximum of 64 clock cycles are "stolen" for refresh every 2 milliseconds.

Transparent Refresh.

The transparent refresh mode eliminates this interference by synchronizing the refresh
cycle to the CPU memory cycle. The rising edge of MEMEN marks the end of a
memory cycle immediately preceding a non-memory cycle. The MEMEN rising edge
can initiate a refresh cycle with no interference with memory cycles. The refresh
requirement does not interfere with the system throughput since only non-memory
cycles are used for the refresh cycles. The worst-case TMS 9900 instruction execution
sequence (all divides) will guarantee the complete refresh of a 4K or 16K dynamic RAM
within 2 milliseconds.

4-26 9900 FAMILY SYSTEMS DESIGN

'° '° 0
0
"!'j
;:i;.
3::

~
VJ
--< ~ VJ

~·]
tT'l ~
3:: ~ VJ

~ t:J
tT'l ~ VJ

cs
~ z
~
I

V)

~
~

~ crq

S'
~
~
~
(:)·

~

~
~
~
~ s..
~

"":

~
V)

~
<:::::> v-.
~

~

N
-...)

+5
__,. _,.

TIM 9904

,, ,2 93 o;J4

OBIN

AOl--------f

READY

TMSWOO 1A

2QA

:ZOB

SN74LS241

A9-A14 /
1A,

2A
A1-A8

~

R"rnNr

2G 1G

RFA10

RFA9

+5

4 8

) / ---~~:· ~~i / :;1
SN74LS241

+5

RAM A9 - RAM A14 l
A1-A8

RAM ADDRESS LINES

~ •

PR
RFGNT

-·iiFGNT

Ri'ii l RAM

~ CONTROL

CE

:i' l> :::c
(j) c; ~
::::. :T Q.

~ ;: ==
-· n D>
~ 2' CD
-4 CD c
~ D> m s ace·
:E ~
c
CD en

3:
tTj

3:
0

~

MEMORY Hardware Design:
Architecture and
Interfacing Techniques

While the transparent refresh mode eliminates refresh-related system performance
degradation, the system power consumption can be higher since the RAMs are refreshed
more often than required. As many as one-half of the CPU machine cycles can be refresh
cycles, resulting in multiple refresh cycles for each row during the refresh interval. This
situation can be corrected by adding a timer to determine the start of the refresh interval
and an overflow detector for the refresh row counter. When every row has been
refreshed during an interval, the refresh circuit is disabled until the beginning of the
next interval. Since each row is refreshed only once, the system power consumption is
reduced to a minimum.

Direct memory access using HOLD should guarantee that sufficient non-memory cycles
are available for refresh during large block transfers. An additional refresh timer can be
used to block HOLDA in order to provide periodic refresh cycles.

BUFFERED MEMORY

~ 4 The TMS 9900 outputs can drive approximately two standard TTL inputs and 200
picofarads. Higher capacitive loads may be driven, but with increased rise and fall times.
Many small memory systems can thus be directly connected to the CPU without buffer
circuits. Larger memory systems, however, may require external bipolar buffers to drive
the address or data buses because of increased loading. Texas Instruments manufactures a
number of buffer circuits compatible with the TMS 9900. The SN74LS241
noninverting-octal buffer with three-state outputs is an example of a buffer circuit.

A TMS 9900 memory system with address and data bus buffering is shown in Figure 4-
23. The system consists of sets of four 256 X 4 memory devices in parallel to provide the
16-bit data word. The four sets of four devices provide a total of 1024 words of memory.
The memory devices can be the TMS 4042-2 NMOS static RAM.

The SN74S412 octal buffer/latch is designed to provide a minimum high-level output
voltage of 3.65 V. Buffered TMS 9900 memory systems containing the TMS 4 700
ROM or the TMS 2708 EPROM, for example, require input voltages in excess of the
output voltages of many buffer circuits. The SN74S412 can be used to buffer the
memories without the pull-up resistors needed for buffers.

MEMORY p ARITY

Parity or other error detection/ correction schemes are often used to minimize the
effects of memory errors. Error detection schemes such as parity are used to indicate the
presence of bad data, while error correction schemes correct single or multiple errors.

4-28 9900 FAMILY SYSTEMS DESIGN

'° '° 0
0

'Tl
>
3::

~
(fl

-<
(fl ...,
tTl
3::
(fl

0
tTl
(fl

0
z

t-
N

'°

~
~-
::
~
~

~
O::l

~
~
~

~
~
~

~
@
§::

~ :.:·
~
~
~
.........
~

~

AO-A14 *5

TMS 9f!OO

~

~fG ~ A7B(A14B T T I
2G 1Y-8r 7

8
T

4
_ 1A-8A

~ SN74LS139

7f ~
A5:

0
G

VJ

A·H

CS D0-31+1

A-H

cs 00-3 ~

A·H ~A-H . .

WE~------, WEA
rTics oo-3H
~A-H

fTi cs 00-314

L--:1A-H

cs 00--3 cs D0--3~

rl~J··
.J\~~~ A·H

. . . .
~A-H

2K
WEB

11~··
2K

11~-----
Llcs oo-31-

....
WEC n lcs 00-J~

~A-H
cs 00-3 cs 00-3

A-H A-H A-H

2K +5

q~--~
WED

. . . .

CS 00-3 CS D0-3 CS D0-3 CS 00-3~
A·H A-H A·H A-H

OBIN

1G

]
2G

J: I I J: 1
1Cr rn 2G 2G

---] l
1G 2G

D0-015 1A/2Y 2A/1Y 1A/2Y 2A/1Y 1A/2Y 2A/1Y 1A/2Y 2A/1Y ~

• R/W TMS 4043-2 SN74LS241 SN74LS241 SN74LS241 SN74LS241
or ~ SN74S287

**IF SWITCH IS OPEN,
RAMs ARE USED.

~ ..

5" l> :::c
i g. ~
;- -· Q.
n ;- ::e
-· n m ,g c ii)
-t ii) c
CD Q) CD

g. [iE·
:::I :::::s .s· ..
c
CD
Ill

~
tT'.l
~
0

~

MEMORY Hardware Design:
Architecture and
Interfacing Techniques

The SN74LS280 parity generator/checker can be used to implement memory parity in
a TMS 9900 system. The system in Figure 4-24 uses two SN74LS280 circuits to
generate and to check the odd-memory parity. During memory write cycles, the
generated parity bit is output to bit D16 of the memory. During memory read cycles,
the parity is checked and an interrupt, PARERR, is generated if the parity is even.

It should be noted that the faulty memory word will have already been used by the CPU
as an op code, address, or data before the interrupt is generated. This can cause trouble
in determining the exact location of the error. For example, an error in bit 8 of the CLR
op code will cause the CPU to branch unconditionally. When the interrupt is serviced,
there would then be no linkage to the part of the program at which the error occurred.
A diagnostic routine can often isolate such errors by scanning the memory and checking
parity under program control. Such a parity error in the diagnostic itself can be
extremely difficult to isolate.

IJlli> 4 An external address latch clocked at IAQ can be used to retain program linkage under
the above circumstances. When the parity error is detected, the address latch is frozen,
thus pointing to the address of the instruction during which the parity error occurred.

MEMORY LAYOUT

It is generally advantageous to lay out memory devices as arrays in the system. The
advantages are twofold. First, positioning the devices in an orderly fashion simplifies
identification of a particular memory element when troubleshooting. Second, and most
important, layout of memory arrays simplifies layout, shortens interconnections, and
generally allows a more compact and efficient utilization of board space. Crosstalk
between adjacent lines in memory arrays is minimized by running address and data lines
parallel to each other, and by running chip enable signals perpendicular to the address
lines.

Memory devices, particularly dynamic RAMs generally require substantially greater
supply currents when addressed than otherwise. It is therefore important that all power
and ground paths be as wide as possible to memory arrays. Furthermore, in order to
avoid spikes in supply voltages, it is advisable to decouple supply voltages with capacitors
as close as possible to the pins of the memory devices. As an example, a system
containing a 4K x 16-bit array ofTMS 4051s should contain one 15 µF and one 0.05 µF
capacitor for each set of four memory devices; with the large capacitors decoupling Vnn,
and the small capacitors decoupling V BB·

4-30 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

> a:
0
~
w
~

... ~
in (Q

~
cc
6 ~ c

in ...
9
8

~ ~

- r <(
0

~
Cl)
..J
qo

__). " ~
z

,...r--f
Cl)

9
0
c

L~ in ...
9
tO c

0
~ '7

tO
N

tO Cl) -,. -I
qo

" z
Cl)

0
0
m
m :::>
Cll

c..
CJ

::E
I-

10

c c ~ q
> in
!: +
a:
<(

c c..

J L ~ c ~
0 "'".

l
0 10

~ -(J p-~
c A

A c ...
z -e.
w
> w

z
iii

~

c --
~

~

Figure 4-24. Memory Parity Generator Checker

9900 FAMILY SYSTEMS DESIGN

MEMORY

Cl)
w
I-
<(p- I-
Cl)

I-
<(

a: ~
-I 0
CJ z
a: •
<(
c..

a:
a:
w
a:
<(
ll.

I-c.. ..J
:::> 0 CJ
a: a: -a: I- C!J
wzO
I- 0 ..J
~CJ

4-31

INSTRUCTION EXECUTION

INSTRUCTION EXECUTION

Hardware Design:
Architecture and
Interfacing Techniques

Execution time for an instruction is a function of the clock frequency, the number of
clock cycles, the number of memory accesses and the number of wait states if required
for slower memories. The following tables list the number of clock cycles required to
execute each instruction if no wait states are required. The number of memory accesses
is also given so that the extra clock cycles can be calculated for the number of wait states
required. A wait state is entered when the ready signal from the memory does not go
high within one clock period after initiation of a memory cycle. For example: The clock
frequency for the TMS 9900 is 3 MHz. From the calculation of maximum access time
for no wait states, the memory access time must be less than 512 ns. One wait state (of
3.33 ns duration) will be required for memories with access times between 512 ns and
845 ns, two wait states will be required if the access time is between 845 ns and 1.178 µ
sec, and so on.

TIMING

From Figure 4-25, the first execution time table, an add instruction (A) using direct
register addressing for both operands requires 14 clock cycles if there are no wait states
required. For other addressing modes, the number of clock cycles increases to a
maximum of 30. If the memory requires one wait state per access, an additional four
clock periods will be required since there are four memory cycles in the execution of an
add instruction. For the TMS 9900 running at 3 MHz, 14 clock periods will take 4.667
microseconds; 30 clock periods will take 10.0 microseconds. The number of memory
cycles is from 4 up to 8 depending upon addressing mode (3 to 7 for compare, C). Use
the tables in the following manner. Assuming one wait state, a clock frequency of 3
MHz, and an instruction with complex addressing, the tables can be used to determine
the execution time for the instruction

A *Rl,@ LIST

is 26 clock cycles for fetch and execution and 6 clock cycles for wait states, or 32 x .333
microseconds which is 10.667 microseconds.

Figures 4-26, 27 and 28 give the rest of the execution time data, always by number of
clock cycles (assuming no wait states) and memory cycles.

4-32 9900 FAMILY SYSTEMS DESIGN

Hardware Design: INSTRUCTION EXECUTION
Architecture and
Interfacing Techniques

INSTRUCTIONS A, Ct, S, SOC, SZC, MOV

Destination Source Address
Address R "'R ':'R+ @LIST

R 14 18 22 22
':'R 18 22 26 26

Clock ':'R+ 22 26 30 30
Cycles @LIST 22 26 30 30

@TABLE (R) 22 26 30 30

R 4 5 6 5
':'R 5 6 7 6

Memory "'R+ 6 7 8 7
Cycles @LIST 5 6 7 6

@TABLE (R) 6 7 8 7

R 3 4 5 4
tMemory ':'R 4 5 6 5
Cycles ':'R+ 5 6 7 6
for C @LIST 4 5 6 5
instr. @TABLE (R) 5 5 6 7

Figure 4-25.

INSTRUCTIONS: AB, CBtt, SB. SOCB, SZCB, MOVB

Destination Source Address
Address R ':'R ':'R+ @LIST

R 14 18 20 22
·~R 18 22 24 26

Clock ':'R+ 20 24 26 28
Cycles @LIST 22 26 28 28

@TABLE (R) 22 26 28 28

R 4 5 6 5
':'R 5 6 7 6

Memory ':'R+ 6 7 8 7
Cycles @LIST 5 6 7 6

@TABLE (R) 6 7 8 7

R 3 4 5 4
ttMemory ':'R 4 5 6 5

Cycles '~R + 5 6 7 6
for CB @LIST 4 5 6 5
instr. @TABLE (R) 5 6 7 6

Figure 4-26.

9900 FAMILY SYSTEMS DESIGN

@TABLE (R)

22
26
30
30
30

6
7
8
7
8

5
6
7
6
6

@TABLE (R)

22
26
28
28
28

6
7
8
7
8

5
6
7
6
7

4-33

INSTRUCTION EXECUTION Hardware Design:
Architecture and
Interfacing Techniques

INSTRUCTIONS LDCR, STCR

LDCR
Bit Count, C Addressing

Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

R 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
':'R 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56

Clock ~·R + 28 30 32 34 36 38 40 42 46 48 50 52 54 56 58 60
Cycles @LIST 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

@TABLE (R) 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

R 3 3
':'R 4 4

Memory ':'R+ 5 5
Cycles @LIST 4 4

@TABLE (R) 5 5

STCR
Bit Count, C Addressing

Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

R 42 42 42 42 42 42 42 44 58 58 58 58 58 58 58 60
':'R 46 46 46 46 46 46 46 48 62 62 62 62 62 62 62 64

Clock ·:·R+ 48 48 48 48 48 48 48 50 66 66 66 66 66 66 66 68
Cycles @LIST 50 50 50 50 50 50 50 52 66 66 66 66 66 66 66 68

@TABLE (R) 50 50 50 50 50 50 50 52 66 66 66 66 66 66 66 68

R 4 4
':'R 5 5

Memory ':'R .. 6 6
Cycles @LIST 5 5

@TABLE (R) 6 6

Figure 4-27.

4-34 9900 FAMILY SYSTEMS DESIGN

Hardware Design: INSTRUCTION EXECUTION
Arcllitecture and
Interfacing Techniques

Clock Cycles Memory Cycles

Instruction R •:•R ·:·R+ @LIST, @TABLE (R) R •:•R •:•R+ @LIST @TABLE (R)

ABS MSB=O 12 16 20 20 20 2 3 4 3 4
MSB= 1 14 18 22 22 22 3 4 5 4 5

B 8 12 16 16 16 2 3 4 3 4
BL 12 16 20 20 20 3 4 5 4 5
BLWP 26 30 34 34 34 6 7 8 7 8
CLR 10 14 18 18 18 3 4 5 4 5
DEC 10 14 18 18 18 3 4 5 4 5
DECT 10 14 18 18 18 3 4 5 4 5
INC 10 14 18 18 18 3 4 5 4 5
INCT 10 14 18 18 18 3 4 5 4 5
INV 10 14 18 18 18 3 4 5 4 5
NEG 12 16 20 20 20 3 4 5 4 5
SETO 10 14 18 18 18 3 4 5 4 5
SWPB 10 14 18 18 18 3 4 5 4 5
XOP 36 40 44 44 44 8 9 8 9 8
XOR 14 18 22 22 22 4 5 6 5 6

Figure 4-28.

CYCLIC OPERATION

·An example of a machine cycle sequence is illustrated in Figure 4-29. For an add
instruction the machine cycles alternate between memory cycles and ALU cycles. The
first cycle is always a memory read cycle to fetch the instruction and the second is always
an ALU cycle to decode the instruction. Each machine cycle requires two clock cycles,
thus the 7 machine cycles shown for the add instruction require 14 clock cycles.

1
2
3·
4
5
6
7

A R1, R2

Memory Read
ALU
Memory Read
ALU
Memory Read
ALU
Memory Write

Instruction Fetch
Decode Opcode
Fetch (WR1)
Set Up
Fetch (WR2)
Addition
Store Result in WR2 and

Increment PC

Figure 4-29. Machine Cycles for an Add Instruction

9900 FAMILY SYSTEMS DESIGN 4-35

INSTRUCTION EXECUTION Hardware Design:
Architecture and
Interfacing Techniques

The 9900 performs its functions under control of a 4-phase clock and, fundamentally,
performs instruction fetch and execution cycles. Figure 4-30 illustrates the step-by-step
procedure the 9900 uses to execute an add instruction. From previous cycles, the
workspace pointer has been loaded with the number 0800, and the program counter
contains the number 0100.

Step 1. The first step in any instruction cycle is to fetch the instruction. This is
accomplished by gating the content of the program counter into the memory address
register. The output of the memory address register is the address bus which is
connected to the memory. In this case, word number 0100 is read from the memory and
placed in the instruction register on the 9900 chip. From this point, the ones and zeros
of the instruction register control the sequence of microcode stored in the microcontrol
read only memory on the 9900 chip. These microsteps become the execution phase of
the instruction.

~ 4 Step 2. At this point, the microcontrol shifts to the execution of an add instruction; the
first operand must be obtained from memory. In order to do this, the workspace pointer
and a portion of the instruction word (the source operand register number) are added
together via the ALU and placed in the memory address register.

Step 3. The address 0802 is the result (in this example), and being supplied to the
memory produces on the data bus the content of memory word 0802 which is the binary
equivalent of 25. This number must be stored in a temporary register on the 9900 chip,
in this case the Tl register.

Step 4. Now a second operand must be fetched. Again the workspace pointer is added to
the content of that portion of the instruction word which is the destination register
identifier. The sum of these two is 0804 for register two, and this number is placed in
memory address register and goes out on the address bus.

Step 5. Memory word 0804 is read and the number 10 is brought into the 9900 chip.
The register which stores the second operand is called the source data register or S
register.

Step 6. At this point the two operands have been loaded into registers on the 9900 chip
and may be added by the ALU to produce the result. Register Tl containing 25 is added
to the register S which contains 10 and the sum, 35, replaces the 10 in the S register and
is placed on the data bus via the S register.

Step 7. The address bus still contains the number 0804 which was the address of the
second operand and is the location in memory where the result is to be stored. So at this
point in the cycle, a memory write cycle is initiated and the binary equivalent of 35 is
stored in memory location 0804. At the conclusion of this memory cycle the program
counter is incremented by two to point to the next sequential memory word, which is the
instruction to be executed next.

4-36 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

CYCLE 1:

FETCH

INSTRUCTION

PC

1010 00

CPU

MAR

•I __ 0_10_0_16 _ _,

00 0001

INSTR. REGISTER

WP IR

080016 1010 00 0010

ALU

CYCLE 2:

SET-UP

MAR 08021 6

INSTRUCTION EXECUTION

MEMORY

INSTRUCTION

.-11010 0000 1000 0001

Figure 4-JOa. Add Instruction Cycle

9900 FAMILY SYSTEMS DESIGN 4-37

INSTRUCTION EXECUTION

CYCLE 3:

FETCH

FIRST

OPERAND

CYCLE 4:

SET-UP

WP

MAR

CPU

MAR

.___o_s_o2_16
_ _:------11•~1 0000

T1 002516

JR

1010 00 0010

X2

ALU

Figure 4-JOb. Add /nstructiof? Cycle

Hardware Design:
Architecture and
Interfacing Techniques

MEMORY

OPERAND

0000 0010 0101

4-38 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

CYCLE 5:

FETCH

SECOND

OPERAND

CYCLE 6:

ADD

CYCLE 7:

STORE

RESULT

T1

PC

010216

CPU

ALU

9900 FAMILY SYSTEMS DESIGN

INSTRUCTION EXECUTION

MEMORY

MAR OPERAND

...__o_so_4_1b_;---t--.. 1 0000
0000 0001 0000

s 00101b

S (BEFORE)

S (AFTER)

MAR RESULT

080416 ~I 0000 0000 I 0011 0101

f
(

SB
Figure 4-JOc. Add Instruction Cycle

4-39

INSTRUCTION EXECUTION Hardware Design:
Architecture and
Interfacing Techniques

After all steps have been done, the processor checks to see if there is any pending
interrupt operations to be performed and, if not, fetches the next instruction and the
cycle continues. In the event that an interrupt signal were present, the processor would
proceed to the appropriate interrupt service routine and continue execution from that
point. Interrupts are described in detail in a special section of this chapter.

Each operation performed by the 9900 consists of a sequence of machine cycles. In each
machine cycle the processor performs a data transfer with memory or with CRU and/or
an arithmetic or logical operation internally with the ALU. A detailed discussion of the
machine cycles for each instruction is included at the end of the chapter.

Each ALU machine cycle is two clock cycles long. In an ALU cycle no external data
transfer occurs, but the ALU performs an arithmetic or logical operation on two
operands contained internally. The function of the memory read cycle is to transfer a
word of data contained in the memory to the processor. An ALU operation may be
performed during the memory read cycle. Memory read cycles are a minimum of two
clock cycles long. The memory write cycle is identical to the memory read cycle except
that data is written rather than read from memory.

Each CRU output machine cycle is two clock cycles long. In addition to outputting a bit
of CRU data, an ALU operation may also be performed internally. The CRU input
cycle is identical to the CRU output cycle except that one bit of data is input rather than
output.

Machine Cycle Limits

Table 4-1 lists information which will be useful for system design. The maximum number
of consecutive memory-read cycles is used to calculate the maximum latency for the
TMS 9900 to enter the hold state since the hold state is only entered from ALU, CRU
input, or CRU output machine cycles. The minimum frequency of consecutive memory I
non-memory cycle sequences occurs when the DIV instruction is executed. This number
is used to ensure that the refresh rate meets specifications when the transparent-refresh
mode described in the memory section is used since memory is refreshed in this mode
each time an ALU or CRU cycle follows a memory cycle. Figure 4-31 shows the logic to
generate a pulse for each memory access cycle. Consecutive cycle timing is shown in
Figure 4-32.

4-40 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

INSTRUCTION EXECUTION

Consecutive Memory Read Cycles
Consecutive Memory Write Cycles
Consecutive ALU Cycles
Consecutive CRU Cycles

Frequency of Consecutive
memory I non-memory cycle
pairs (used for transparent
refresh)

MEMEN

~TTL

WAIT

Table 4-1. Machine Cycle Limits

vcc

MINIMUM

5 pairs

1
1

(64 machine
cycles during
DIV.)

MAXIMUM
3
1

51
16

Qt---- MEMCY

11------t K Q 1----....,

Figure 4-31. Memory Cycle Pulse Generation

MEMEN

READY ~------------------._

WAIT

MEMCY ----...J

Figure 4-32. Memory Cycle Pulse Timing

9900 FAMILY SYSTEMS DESIGN 4-41

INPUT /OUTPUT

INPUT /OUTPUT

Hardware Design:
Architecture and
Interfacing Techniques

The 9900 has three 1/0 modes: direct memory access (DMA), memory mapped, and
communications register unit (CRU). This multi-mode capability enables the designer to
optimize a 9900 1/0 system to match a specific application. One or all modes can be
used, as shown in Figure 4-33.

CRU
RUCLK

RUOUT

TMS 9900

DIRECT MEMORY ACCESS

ADDRESS BUS

SYSTEM
MEMORY

MEMORY
MAPPED

1/0

• COMMUNICATIONS REGISTER UNIT· CRU
• MEMORY MAPPED 110
• DIRECT MEMORY ACCESS· OMA

Figure 4-33. 9900 I I 0 Capability

OMA

DMA is used for high-speed block data transfer when CPU interaction is undesirable or
not required. The DMA control circuitry can be relatively complex and expensive when
compared to other 1/0 methods. However, a special interface device, the TMS 9911, is
available for DMA control.

The 9900 controls CRU-based 1/0 transfers between the memory and peripheral
devices. Data must pass through the CPU during these program-driven 1/0 transfers,
and the CPU may need to be synchronized with the 1/0 device by interrupts or status
bit polling.

Some 1/0 devices, such as disk units, transfer large amounts of data to or from memory.
Program driven 1/0 can require relatively large response times, high program
overhead, or complex programming techniques. Consequently, direct memory access
(DMA) is used to permit the 1/0 device to transfer data to or from memory without
CPU intervention. DMA can result in a high 1/0 response time and system throughput,
especially for block data transfers. The DMA control circuitry is somewhat more
expensive and complex than the economical CRU 1/0 circuitry and should therefore be
used only when required.

4-42 9900 FAMILY SYSTEMS DESIGN

Hardware Design: INPUT /OUTPUT
Architecture and
Interfacing Techniques

The 9900-based DMA can occur in the same modes as dynamic memory refresh: block, or
cycle stealing. The block and cycle stealing modes, however, use the CPU HOLD
capability and are more commonly used. The I/O device holds HOLD active (low) when a
DMA transfer needs to occur. At the beginning of the next available non-memory cycle,
the CPU enters the hold state and raises HOLDA to acknowledge the HOLD request.
The maximum latency time between the hold request and the hold acknowledge is equal to
three clock cycles plus three memory cycles. The minimum latency time is equal to one
clock cycle. A 3-megahertz system with no wait cycles has a maximum hold latency of nine
clock cycles or 3 microseconds and a minimum hold latency of one clock cycle or 0.3
microseconds.

When HOLDA goes high, the CPU address bus, data bus, DBIN, MEMEN, and WE
are in the high-impedance state to allow the 1/0 device to use the memory bus. The 1/0
device must then generate the proper address, data, and control signals and timing to
transfer data to or from the memory as shown in Figure 4-34. Thus the DMA device has 4
control of the memory bus when the TMS 9900 enters the hold state (HOLDA= 1),
and may perform memory accesses without intervention by the microprocessor. Since
DMA operations, in effect remove the 9900 from control while memory accesses are
being performed, no further discussion is provided in this manual. Because the lines
shown in Figure 4-34 go into high impedance when HOLDA= 1, the DMA controller
must force these signals to the proper levels. The 1/0 device can use the memory bus
for one transfer (cycle-stealing mode) or for multiple transfers (block mode). At the end
of the DMA transfer, the 110 device releases HOLD and normal CPU operation
proceeds. The 9900 HOLD and HOLDA timing are shown in-Figure 4-35.

MEMORY MAPPED I I 0

Memory mapped 1/0 permits 1/0 data to be addressed as memory with parallel data
transfer through the system data bus. Memory mapped 1/0 requires a memory bus
compatible interface; that is, the device is addressed in the same manner as a memory,
thus the interface is identical to that of memory. Figure 4-36 shows a memory mapped 1/0
interface with eight latched outputs and eight buffered inputs. In using memory
mapped 1/0 for output only, care must be taken in developing the output device strobe
to ensure it is not enabled during the initial read of the memory address, since the 9900
family of processors first reads, then writes data to a memory location in write
operations. This can be effectively accomplished by using the processor write control
signal WE in decoding the output address.

9900 FAMILY SYSTEMS DESIGN 4-43

INPUT /OUTPUT

AO-A14

D0-015

MEMEN

OBIN

WE

WAIT

READY

TMS 9900

HOLD REQUEST

HOLDA GRANT

.,
•2

~~'----

CRU

1 --
7

......

R rl}rt R
ADDRESS DATA MEMEN OBIN

""OMA 3-STATE CONTROL
OMA CONTROLLER

Figure 4.,.34. DMA Bus Control

Hardware Design:
Architecture and
Interfacing Techniques

SYSTEM

MEMORY

rt
WE

AO-A14 :::X'----------J---- c=::=::
roo1s :::JC.---------t------y----~i.:L----~ ~-------------<c:==:==

WE

081111

READY I I I I I I I j1

WAIT

Hi-Z

I I
HOLDA ---------...+-----------I

4-44

I I
I

'4---MAX 9 • 'M CLOCK---..4
I - W•NO OFWAITSTATES _J
~MIN I CLOCK CYCLE.___,....,

I I

Figure 4-35. HOLD and HOLDA Timing

9900 FAMILY SYSTEMS DESIGN

Hardware Design: INPUT /OUTPUT
Architecture and
Interfacing Techniques

FROM
TMS9900

WE

OBIN

D0-07

~ SN74LS139

A 0

B

SN74LS37'4

10-80

E

SN74LS244

/'-----t1V1-1V4, 1A1-1A4, 1----.

8 LATCHED AND
BUFFERED OUTPUTS

2 '----2Y1·2Y4 2A1·2A4 8 BUFFERED INPUTS

ADDRESS 5EVsEL
G 3

DECODE 1G 2G

Figure 4-36. 8-Bit Memory Mapped 110 Interface

COMMUNICATION REGISTER UNIT (CRU)

CRU 1/0 uses a dedicated bit addressable interface for 1/0. The CRU instructions permit
transfer of one to sixteen bits. The CRU interface requires fewer interface signals than
the memory interface and can be expanded without affecting the memory system. In the
majority of applications, CRU 1/0 is superior to memory mapped 1/0 as a result of the
powerful bit manipulation capability, flexible field lengths, and simple bus structure.

The CRU bit manipulation instructions eliminate the masking instructions required to
isolate a bit in memory mapped 1/0. The CRU multiple-bit instructions allow the use of
1/0 fields not identical to the memory word size, thus permitting optimal use of the
1/0 interface. Therefore, the CRU minimizes the size and complexity of the I/O
control programs, while increasing system throughput.

The CRU does not utilize the memory data bus. This can reduce the complexity of
printed circuit board layouts for most systems. The standard 16-pin CRU 1/0 devices
are le~s expensive and easier to insert than larger, specially designed, memory mapped
1/0 devices. The smaller 1/0 devices are possible as a result of the bit addressable CRU
bus which eliminates the need for multiple pins dedicated to a parallel-data bus with
multiple control lines. System costs are lower because of simplified circuit layouts,
increased density, and lower component costs.

9900 FAMILY SYSTEMS DESIGN 4-45

INPUT /OUTPUT Hardware Design:
Architecture and
Interfacing Techniques

CRU Interface

The interface between the 9900 and CRU devices consists of address bus lines AO-A14,
and the three control lines, CRUIN, CRUOUT, and CRUCLK as shown in Figure 4-33.
AO-A2 indicate whether data is to be transferred and A3-Al 4 contain the address of the
selected bit for data transfers; therefore, up to 212 or 4,096 bits of input and 4,096 bits of
output may be individually addressed. CRU operations and memory-data transfers both
use AO-A14; however, these operations are performed independently, thus no conflict
arises. The MEMEN line may be used to distinguish between CRU and memory cycles.

CR U Interface Logic

CRU based 1/0 interfaces are easily implemented using either CRU peripheral devices
such as the TMS 9901 or the TMS 9902, or TTL multiplexers and addressable latches,
such as the TIM 9905 (SN74LS251) and the TIM 9906 (SN74LS259). These 1/0
circuits can be easily cascaded with the addition of simple address decoding logic .

...,.4 TTL Outputs. The TIM 9906 (SN74LS259) octal-addressable latch can be used for
CRU outputs. The latch outputs are stable and are altered only when the CRUCLK is
pulsed during a CRU output transfer. Each addressable latch is enabled only when
addressed as determined by the upper address bits. The least-significant address bits
(A12-A14) determine which of the eight outputs of the selected latch is to be set equal to
CRUOUT during CRUCLK, and shown in Figure 4-37.

MEMORY

CRUCLK t---------

TMS 9900

ABC 0
SN74LS138

6

G1 7

G2A GSB

} OTHER
ABC

CRU
OUTPUT ao CIRCUITS s 01

02
SN74LS259

Q3

Cl)

5
a.
::>
0

CRUOUTt-----t1--------------------11~

RESET ~f--.+-------------a----~

ITIM 99061

D

CLEAR

04

as
Q6

co 0
w
J:
u
ct
-'

07

RESET

Figure 4-37. Latched CR U Interface

4-46 9900 FAMILY SYSTEMS DESIGN

Hardware Design: INPUT /OUTPUT
Architecture and
Interfacing Techniques

MEMORY

TMS 9900

ABC O

SN74LS138
6

OTHER ABC

0 }
CRU

INPUT
CIRCUITS

+s--1 G1 7 o------.-n s
G2A ffi SN74LS151 2

OR
SN74LS251

3

(TIM9905) 4

CRUIN ------------------1 Y 5

6

7

Figure 4-38. Multiplexer CR U Interface

CCI

TTL Inputs. The SN74LS151 and TIM 9905 (SN74LS251) octal multiplexers are used
for CRU inputs as shown in Figure 4.;J8. The multiplexers are continuously enabled with
CRUIN equal to the addressed input. The TIM 9905 should be used for larger systems
since its three-state outputs permit simple "wire-ORing" of parallel-input multiplexers.

Expanding CRU I/O

A CRU interface with eight inputs and eight outputs is shown in Figure 4-39 using the
TMS 9901. An expanded interface with 16 inputs and 16 outputs is shown in Figure 4-
40 using TTL devices. The CRU inputs and outputs can be expanded up to 4096 inputs
and 4096 outputs by decoding the complete CRU address. Larger I/O requirements can
be satisfied by using memory mapped 1/0 or by using a CRU bank switch, which is set
and reset under program control. When reset, the lower CRU I/O bank is selected, and
when set, the upper CRU I/O bank is selected. In actual system applications, however,
only the exact number of interface bits required need to be implemented. It is not
necessary to have a 16-bit CRU output register to interface a 10-bit device.

CRU Machine Cycles

Each CRU operation consists of one or more CRU output or CRU input machine cycles,
each of which is two clock cycles long. As shown in Table 4-2, five instructions (LDCR,
STCR, SBO, SBZ, TB) transfer data to or from the 9900 with CRU machine cycles, and
five external control instructions (IDLE, RSET, CKOF, CKON, LREX) generate
control signals with CRU output machine cycles.

9900 FAMILY SYSTEMS DESIGN 4-47

INPUT /OUTPUT

CRUCLK

CRUOUT

CRUIN

A10-A14

INTERRUPT 1/F

INTERRUPTS (61 TMS 9901

0 7 0 7

•••••• ---81NPUTS 8 OUTPUTS

Figure 4-39. 8-Bit CRU Interface

A11

A11

y D

SN74LS251 SN74LS251 SN74LS259
ITIM99051 (TIM 99051 (TIM 99061

0 7 0 7 00 07 ao

J . + J t ,/

INPUTS INPUTS OUTPUTS
8-15 0-7 0-7

Hardware Design:
Architecture and
Interfacing Techniques

TMS 9900

ADDRESS

> a:
0
:E
w
:E

1----------tCRUIN

1-----------tCRUOUT

G

SN74LS259
(TIM99061

OUTPUTS
8-15

D

07

TMS9900
CPU

Figure 4-40. 16-Bit CRU Interface

4-48 9900 FAMILY SYSTEMS DESIGN

Hardware Design: INPUT /OUTPUT
Architecture and
Interfacing Techniques

Table 4-2. Instructions Generating CR U Cycles

INSTRUCTION
NUMBER OF TYPE OF

AO-A2
CRU CYCLES CRU CYCLES

LDCR 1-16 Output 000
STCR 1-16 Input 000
SBO 1 Output 000
SBZ 1 Output 000
TB 1 Input 000
IDLE 1 Output 010
RSET 1 Output 0 1 1
CKOF 1 Output 101
CKON 1 Output 1 1 0
LREX 1 Ou put 1 1 1

DATA
TRANSFER

Yes
Yes
Yes
Yes
Yes
No
No
No
No
No

Figure 4-41 shows the timing for CRU output machine cycles. Address (AO-A14) and
data (CRUOUT) are output on c[>2 of clock cycle 1. One clock cycle later, the 9900 4.._.
outputs a pulse on CRUCLK for V2 clock cycle. Thus, CRUCLK can be used as a strobe,
since address and data are stable during the pulse. Referring again to Table 4-2, it is
important to note that output data is transferred only when AO-A2 = 000. Otherwise, no
data transfer should occur, and AO-A2 should be decoded to determine which external
control instruction is being executed. These external control instructions may be used to
perform simple control operations. The generation of control strobes for external
instructions and a data transfer strobe (OUTCLK) is illustrated in Figure 4-42. If none
of the external control instructions is used, AO-A2 need not be decoded for data transfer
since they will always equal 000.

z
5~
I!:~
Sf

I
CLOCK I CLOCK I

CYCLE 1 CYCLE 2

<i>1 1.__I1.___JL_
<1>2 _fL__fL__J'L
<i>3J""L_J"1.._
<i>4 _fL__f"L_

AO· A14 :::><' CRU BIT ADDRESS n x:
CRUCLK ----.Jll._ __

O CRUOUT :x CRU DATA OUT n x::
Figure 4-41. CR U Output Machine Cycle Timing

9900 FAMILY SYSTEMS DESIGN 4-49

INPUT /OUTPUT

TO MEMORY AND CRU

15

Y7
5 3 A

B
AO·A14 AO-A2 c

SN74LS138
TMS 9900

CRUCLK Gl

G2A G2B

Figure 4-42. CR U Control Strobe Generation

Hardware Design:
Architecture and
Interfacing Techniques

LREX

CirnF

CRON

RSE'r
mrr
OUTCLK (TO CRU)

The timing for CRU input machine cycles is shown in Figure 4-43. The address is output
at the beginning of the first clock cycle. The CRUIN data input is sampled on <f>l of
clock cycle 2. Thus, CRU input is accomplished by simply multiplexing the addressed bit
onto the CRUIN input. AO-A2 will always be 000, and may be ignored. CRU input
machine cycles cannot be differentiated from ALU cycles by external logic, thus no
operations (such as clearing interrupts) other than CRU input should be performed
during CRU input machine cycles.

4-50

AO· A14

z
0

I- j::
~ ct CRUIN
~ ffi

Q.

0

I CLOCK I CLOCK I
CYCLE 1 CYCLE 2

l____fl__Jl__
S1__f1___fl__
__n____fL_Jl_
__JL.....__JL__

~
~Lji)3--

INPUT BIT m

Figure 4-43. CR U Input Machine Cycle Timing

9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

INPUT /OUTPUT

CRU Data Transfer

In order to transfer data from a memory location to an external latch in the
Communications Register Unit, or to transfer data from a CRU multiplexer to memory,
special instructions must be used. The CRU instructions are:

SBO Set bit to one (output)
SBZ Set bit to zero (output)
TB Test bit (input)
LDCR Load n bits to.CRU (output)
STCR Receive n bits from CRU (input)

These instructions always use the address bus to identify the bit or bits to be transferred,
but they make the actual transfer of data over the dedicated CRU lines, CRUIN and
CRUOUT. Addressing of the CRU bits is accomplished by adding a portion of the
instruction word to a CRU base address register. The use of such a base address
technique allows one program segment to service any number of identical 1/0 devices.
For example: five TMS 9902's each with its own assigned base address can be
operated from a single program, provided the base address register is properly set at the
beginning. In the 9900, workspace register 12 is the CRU software base address register.
All CRU instructions use the contents of this register in addressing individual CRU bits.

The CRU hardware base address is defined by bits 3-14 of the current WR12 when
CRU data transfer is performed. Bits 0-2 and bit 15 of WR12 are ignored for CRU
address determination.

For single-bit CRU instructions (SBO, SBZ, TB), the address of the CRU bit to or from
which data is transferred is determined as shown in Figure 4-44. Bits 8-15 of the machine
code instruction contain a signed displacement. This signed displacement is added to the
CRU hardware base address (bits 3-14 ofWR12). The result of this addition is output
on A3-A14 during the CRU output or the CRU input machine cycle.

For example, assume the instruction "SBO 9" is executed when WR12 contains a value
of 104016• The machine code for "SBO 9" is 1D0916 and the signed displacement is
000916 • The CRU hardware base address is 082016 (bits 0-2 and bit 15 are ignored).
Thus, the effective CRU bit address is 082016 + 000916 = 082916 , and this value is output on
AO-A14 during the CRU output machine cycle.

As a second example, assume that the instruction TB - 32 is executed when
WR12 = 10016 • The effective CRU address is 8016 • (CRU hardware base)+ FFE016

(signed displacement)= 6016 • Thus, the TB - 32 instruction in this example causes the
value of the CRU input bit at address 6016 to be transferred to bit 2 of the status register.
This bit is tested in the execution of the JEQ or JNE instructions; if it is a one, the PC
will be loaded with a new value (JEQ instruction).

9900 FAMILY SYSTEMS DESIGN 4-51

INPUT /OUTPUT Hardware Design:

SOFTWARE
BASE
ADDRESS

I 8 I 2 I 0

Architecture and
Interfacing Techniques

---- HARDWARE
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 BASE

I x I x I x I 1 1 o
DON'T CARE

I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 0 I 0 I 0 I x I W12

+
ADDRESS

8 9 10 11 12 13 14 15

, , , , I: I 0 I 0 I 0 I 1 I 0 I 0 I 1 I
BIT 8 SIGN J l
EXTENDED '""-?

I I I I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

I ol olo I 1 I 0 I 0 I 0 I 0 I 0 I 1I0 I 1I0I0 I 1 I

'---v----A--------~v,-------~/
SET TO ZERO EFFECTIVE CRU BIT ADDRESS
FOR ALL CRU
OPERATIONS

SIGNED
DISPLACEMENT

ADDRESS BUS

Figure 4-44. TMS 9900 Single-Bit CR U Address Development

LDCR Instruction

The LDCR may transfer from 1 to 16 bits of output data with each instruction. Output
of each bit is performed by a CRU output machine cycle; thus, the number of CRU
output machine cycles performed by an LDCR instruction is equal to the number of bits
to be transferred.

As an example, assume that the instruction "LDCR @600,10" is executed, and that
WR12 = 80016 and the memory word at address 600 contains the bit pattern shown in
Figure 4-45. In the first CRU output machine cycle the least significant bit of the
operand (a) is output on CRUOUT. In each successive machine cycle the address is
incremented by one and the next least-significant bit of the operand is output on
CRUOUT, until 10 bits have been output. It is important to note that the CRU base
address is unaltered by the LDCR instruction, even though the address is incremented as
each successive bit is output.

STCR Instruction

The STCR instruction causes from 1 to 16 bits of CRU data to be transferred into
memory. Each bit is input by a CRU input machine cycle.

Consider the circuit shown in Figure 4-46. The CRU interface logic multiplexes input
signals m-t onto the CRUIN line for addresses 200w20716 • If WR12 = 40016 when the
instruction "STCR@ 602,6" is executed, the operation is performed as shown in Figure
4-47. At the end of the instruction, the six LSBs of memory byte 602 are loaded with m
r. The upper bits of the operand are forced to zero.

4-52 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

Memory Address 600 ""l p_o __ n _m __ 1 _k_i __,i,,....&-,I h_g_f_e_d __ c_b _ _,_I
~ 7 8 15

AO· A14

CRUOUT

CRUCLK

WR12 I 0 0 0 0

0

1 o o o lo o o o o o
7 8

4 0 0

CRU Base Address= 40015

o o I
15

Figure 4-45. Multiple-Bit CR U Output

A3

_M

A5 SN74LS251

A6 ITIM9905)

A7 ~ SEL200 _1' J DO

Ail I Dl

A9 A14
A D2

AlO A13 B DJ

All A12 c D4

D5

~
CRUIN y D6

D7

Figure 4-46. Example CR U Input Circuit

9900 FAMILY SYSTEMS DESIGN

INPUT /OUTPUT

m

0

p

q

4-53

INPUT /OUTPUT

WR12 I 0

0

Hardware Design:
Architecture and
Interfacing Techniques

o o o o 1 o olo o o o o o o ol
7 8 15

2 0 0

CRU BASE ADDRESS =- 20016

AO A14 ~ 200 x 201 x 202 x 203 x 204 x 205 x==
CRUIN m

MEMORY I 0

ADDRESS 602 O

n 0 p q

O r q p o n ml
7

Figure 4-47. Multiple-Bit CR U Input

CRU Paper Tape Reader Interface

CRU interface circuits are used to interface data and control lines from external devices
to the 9900. This section describes an example interface from a paper tape reader.
The paper tape reader is assumed to have the following characteristics:

1. It generates a TTL-level active-high signal (SPROCKET HOLE) on detection of
a sprocket hole on the paper tape.

2. It generates an 8-bit TTL active-low data which stays valid during SPROCKET
HOLE= 1.

3. It responds to a TTL-level active-high command (Paper Tape RUN) signal by
turning on when PTRUN = 1 and turning off when PTRUN = 0.

4-54 9900 FAMILY SYSTEMS DESIGN

Hardware Design: INPUT /OUTPUT
Architecture and
Interfacing Techniques

Figure 4-48 illustrates the circuitry to interface the reader to the CRU. The interface is
selected when PTRSEL = O; PTRSEL is decoded from the AO-All address outputs
from the 9900. Thus, the output of the SN74LS251 is active only when PTRSEL = 0;
otherwise, the output is in high impedance and other devices may drive CRUIN. The
data inputs are selected by Al2-Al4 and inverted, resulting in active high data input on
CRUIN. The positive transition of SPROCKET HOLE causes PTRINT to go low.
PTRINT is the active low interrupt from the interface. PTRINT is set high, clearing
the interrupt, whenever a CRU output machine cycle is executed and the address causes
PTRSEL to be active. When a one is output, PTRUN is set, enabling the reader, and
the reader is disabled when a zero is output to the device. Thus, any time PTRUN is set
or reset, the interrupt is automatically cleared.

DA TAO

DATA1

DATA2
DATA INPUTS DATA3
FROM PAPER

DATA4

+5

___ P_T_R_U_N_---4 Q PR D CRUOUT

~
SN74LS74
a

CLR

+5

DO

01

02 w
SN74LS251

D3

D4
TIM 99051

PTRSEL CRU l/F

CRUIN

TAPE READER
DATA5 05 s }

DECODED PAPER

n--1----------PT_R~S_E,--.L TAPE READER ADDRESS
(DECODED FROM AO- A11)

DATA6

DATA7

+5

D6

07
c B A

..__ __ 4-______ A_13__ ADDRESS BUS
A14 }

D a
y,

SN74LS74

A12

SPROCKET HOLE -------u }

PAPER TAPE READER
INTERRUPT

Ot----+-------PT_R_l_N_T_ (TO INTERRUPT
CLR PROCESSOR)

Figure 4-48. Paper Tape Reader Interface

9900 FAMILY SYSTEMS DESIGN 4-55

INPUT /OUTPUT Hardware Design:
Architecture and
Interfacing Techniques

The software routine in Figure 4-49 controls the paper-tape reader interface described
above. It is a re-entrant procedure that can be shared by several readers. The
assumptions are that:

1. Each reader has its own workspace which is set up on the trap location for that
reader's interrupt.

2. The workspace registers are allocated as shown in Figure 4-50.

3. The CRU input bits 0-7 (relative to CRU base) are reader data. CRU output bit 0
controls PTRUN and clears the interrupt.

4. The most significant byte of R9 =End of File Code.

5. R 10 = Overflow Count

6. Rl 1 =Data Table Pointer Address.

The procedure has two entry points. It is entered by a calling routine at PTRBEG to
~4 start the reader and it returns control to that routine. It is entered at PTRINT via

interrupt to read a character. The return in this case is to the interrupted program.

The control program may be used by any number of paper-tape reader interfaces, as
long as each interface has a separate interrupt level and workspace. As each reader issues
an interrupt, the 9900 will process the interrupt beginning at location PTRINT.
However, the workspace unique to the interrupting device is used. The organization of
memory to control two paper tape readers is shown in Figure 4-50. The interrupt
transfer vector causes the appropriate WP value to be loaded. In both cases PTRINT,
the entry point for the control program, is loaded into the PC.

PTRINT STCR *R11, 8

CB *R11+, R9

JEQ PTREND

DEC R10

JEQ PTREND

PTRBEG SBO PTRUN

RTWP

PTREND SBZ PT RUN

LI R10, MAXCOUNT

RTWP

Figure 4-49. Paper Tape Reader Control Program

4-56 9900 FAMILY SYSTEMS DESIGN

Hardware Design: INPUT /OUTPUT
Architecture and
Interfacing Techniques

MEMORY ADDRESS MEMORY CONTENTS

LEVEL 4 WP 16 PTRWPl

LEVEL 4 PC 18 PTRINT

LEVEL 5 WP 20 PTRWP2

LEVEL 5 PC 22 PTRINT

.._..___
1--

I-

CRU

I I

l LEVEL 4 INT I I
I I

1~ LEVEL 5 INT I I
I I

..... r--
i--

t-- }~ PAPER TAPE
t--

READER 1 t--
t-- (PTRll
t--

PTRINT ~ I- t--..__

PAPER TAPE I I

READER CONTROL I I
PROGRAM I I

I I
I I

PTRWP2

UJ
u

N <!

i } PAPER TAPE f4-- .~ READER2

(PTR21

a: a.. PTRWP2+24
I- C/l
a.. ::.<:

WR12 (PTR2 CRU BASEi - I I
a:
0 WR13 (RETURN WP) I I
~

WR 14 (RETURN PC) I I

WR15 (RETURN STI

PTRWPl

UJ
u

oc
<!
a..
C/l PTRWP1+24 I- ::.<:

tl.. a:
WR12 (PTRl CRU BASEi ..._

0
~

WR13 (RETURN WP)

WR 14 (RETURN PCl

WR15 (RETURN ST)

Figure 4-50. Software Configuration for Two Paper Tape Readers with Common Control Program

Burroughs SELF-SCAN Display Interface

This section describes a TMS9900 CRU interface to a Burroughs SELF-SCAN® panel
display model SS30132-0070. The display panel has a 32-position, single-row character
array with a repertoire of 128 characters.

The panel display operates in a serial-shift mode in which characters are shifted into the
panel one at a time. Characters are shifted in right-to-left and can be shifted or
backspaced left-to-right. A clear pulse erases the display.

9900 FAMILY SYSTEMS DESIGN 4-57

~4

INPUT /OUTPUT Hardware Design:
Architecture and
Interfacing Techniques

The CRU display interface is shown in Figure 4-51 and a display control subroutine is
shown in Figure 4-52. The subroutine is called by one of two XOP instructions, XOPO
and XOPl. The calling routine passes the address an~ length of the output string in
registers 8 and 9 of its workspace. The two XOP subroutines share the same workspace
and perform the same function except that XOPl clears the panel display first. The
backspace feature is not used. The panel display is blanked during character entry.

4-58

'I:!' 9 ~
N

:t
:2 +
ABC G D

SN74LS259
ITIM 99061

07 01 00

OTHER _:I
CRU
OUTPUTS

MEMORY

1
AO A14

~
r.-~-+--+-~--4a-~~~~~~--CRUOUT

~ 9 er:
N

;t v r
ABC G D

SN74LS259
(TIM 9906)

07 06 05 04 03 02 01 00

TMS 9900
CPU

~ CRUIN

BLANK CLEAR B B B B B B B DATA
TAKEN

-
r- DATA 64 32 16 8 4 2 1

...l... PRESENT

+5V
-12V-

-120V-

DISPLAY MODEL
SS30132-0070

Figure 4-51. Display Control Interface

9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

INTERRUPTS

EIGHT EOU 16

NINE EOU 18

RXOP1 SBZ 7 Clear Panel

LI R1I11

LOOP1 DEC R1 Delay >67µsec

JNE LOOP1

SBO 7

RXOP2 SBO 9 Blank Panel

MOV @EIGHT (13),1 Load Address (Old R8-R 1)

MOV @NINE (13),2 Load Length (Old R9-R2)

LOOP2 LDCR *1+ ,7 Output Char

SBO 8 Data Present

WAIT TB 0 Wait for Data Taken

JEQ Wait

SBZ 8

DEC 2 Decrement Count

JNE LOOP2 Loop Until Through

SBZ 9 Unblank Panel

RTWP Return

Figure 4-52. Burroughs SELF-SCAN® Display Control Program

INTERRUPTS

The TMS 9900 provides fifteen maskable interrupt levels in addition to the RESET and
LOAD functions. The CPU has a priority ranking system to resolve conflicts between
simultaneous interrupts and a level mask to disable lower priority interrupts. Once an
interrupt is recognized, the CPU performs a vectored context switch to the interrupt
service routine. The RESET and LOAD functions are initiated by external input
signals.

9900 FAMILY SYSTEMS DESIGN 4-59

4'411111

INTERRUPTS

RESET

Hardware Design:
Architecture and
Interfacing Techniques

The RESET signal is normally used to initialize the CPU following a power-up. When
active (low), the RESET signal inhibits WE and CRUCLK, places the CPU memory
bus and control signals in a high-impedance state, and resets the CPU. When the
RESET signal is released, the CPU fetches the restart vector from locations 0000 and
0002, stores the old WP, PC, and ST into the new workspace, resets all status bits to
zero and starts execution at the new PC. The RESET signal must be held _active for a
minimum of three clock cycles. The RESET machine cycle sequence is shown in Figure
4-53.

A convenient method of generating the RESET signal is to use the Schmitt-triggered D
input of the TIM9904 clock generator. An RC network connected to the D-input
maintains an active RESET signal for a short time immediately following the power-on,
as shown in Figure 4-5 4.

CYCLE TYPE FUNCTION

Loop While Reset is Active

1 ALU Set Up

2 ALU Set Up

3 Memory Fetch New WP, Move Status To

T Reg, Clear Status

4 ALU Set Up

5 Memory Store Status

6 ALU Set Up

7 Memory Store PC

8 ALU Set Up

9 Memory Store WP

10 ALU Set Up

11 Memory Fetch New PC

12 ALU Set Up MAR for Next

Instruction

Figure 4-53. RESET Machine Cycles

4-60 9900 FAMILY SYSTEMS DESIGN

Hardware Design: INTERRUPTS
Architecture and
Interfacing Techniques

RESET _L

l T a
._,

L
I

c

LOAD

+5

~ > R

D

TIM 9904
(SN74LS362)

CLOCK TMS 9900
GENERATOR CPU

a RE5ET

Figure 4-54. RESET Generation

*RAND C VALUES SHOULD
BE CALCULATED AS FUNCTION
OF Vee RISE TIME.

The LOAD signal is normally used to implement a restart ROM loader or front panel
functions. When active (low), the LOAD signal causes the CPU to perform a non
maskable interrupt. The LOAD signal can be used to terminate a CPU idle state.

The LO AD signal should be active for one instruction period. Since there is no standard
TMS 9900 instruction period, IAQ should be used to determine instruction boundaries.
If the LOAD signal is active during the time that the RESET signal is released, the
CPU will perform the LOAD function immediately after the RESET function is
completed. The CPU performs the LOAD function by fetching the LOAD vector from
addresses FFFC16 and FFFE16, storing the old WP, PC, and ST in the new workspace,
and starting the LOAD service routine at the new PC, as shown in Figure 4-55.

An example of the use of the LOAD signal is a bootstrap ROM loader. When the
LOAD signal is enabled, the CPU enters the service routine, transfers a program from
peripheral storage to RAM, and then transfers control to the loaded program.

Figure 4-56 illustrates the generation of the LOAD signal for one instruction period.

9900 FAMILY SYSTEMS DESIGN 4-61

INTERRUPTS

·4

+5 ---- D

LOADCK -i>

4-62

CYCLE TYPE

ALU

2 Memory Read

3 ALU

4 Memory Write

5 ALU

6 Memory Write

7 ALU

8 Memory Write

9 ALU

10 Memory Read

11 ALU

FUNCTION

Set Up

Fetch New WP

Set Up

Store Status

Set Up

Store PC

Set Up

Store WP

Set Up

Fetch New PC

Set Up MAR for Next

Instruction

Hardware Design:
Architecture and
Interfacing Techniques

Figure 4-55. LOAD Machine Cycle Sequence

+5
.~. _Q_

a D a

Y..SN74LS74
TMS 9900

Y..SN74LS74 CPU

a a LOAD
CL CL

I~ ? +5

IAQ

Figure 4-56. LOAD Generation

9900 FAMILY SYSTEMS DESIGN

Hardware Design: INTERRUPTS
Architecture and
Interfacing Techniques

BASIC MACHINE CYCLE

The interrelationship between the LOAD and RESET signals and the general
operation of the 9900 and execution of instructions may best be shown by the flow
diagram in Figure 4-57. An orderly starting procedure involves the holding of the
RESET line low when power is applied to the chip. After application of power and after
the clock has begun to run, the internal instruction control circuitry checks to see if the
RESET line is held low, and, if the answer is "yes", will stay in a loop as shown in the
diagram. When the RESET line goes high, it is no longer active and a level zero
interrupt is taken in which the RESET vector, the numbers to fill the workspace pointer
and program counter registers, are fetched from memory locations zero and two.
Furthermore, the previous values of the workspace pointer, program counter and status
register are stored in the new workspace, although these values are random numbers
immediately following power up. Following this, the interrupt mask is set to zero to
mask all other interrupts.

The next decision is regarding the LOAD line. If this particular line is active, or low,
then immediately there will be another context switch in which the LOAD vector will
be brought in from the last two locations in memory, FFFC16 and FFFE16 , and loaded
into the workspace pointer and program counter respectively. If the LOAD is not
active, the 9900 proceeds directly to an instruction acquisition cycle. In either case, the
very next step is to fetch the instruction from the memory and execute it.

Following this, the program counter is updated and a sequence of checks made regarding
the LOAD, XOP, and interrupt conditions. First is the check for the LOAD line. If this
is active, the LOAD context switch will occur. If not, there will be a test to see if the
instruction just executed was an XOP or BLWP. If not, the interrupt request line will be
checked. If there is not an interrupt request, and the last instruction was not an idle
instruction, the machine may proceed to fetch the next instruction and continue.

In the event that the last instruction executed was an XOP or BLWP, the 9900 will
ignore the interrupt request line and will proceed to fetch a new instruction. This insures
that at least one instruction of a subprogram that is entered via a context switch will be
executed before another context switch may occur, such as an interrupt. In the event
that the interrupt request line is active following the execution of a normal instruction, a
test is made to determine that the interrupt is valid, that is to say, "Is the interrupt mask
set to allow this interrupt." If the interrupt is not allowed, the processor proceeds to
fetch the next instruction. In the event that it is allowed, a context switch will be made
and the interrupt vector from the appropriate locations in the first 32 words of memory
will be fetched and the workspace pointer and program counter will be loaded with the
new numbers. As a part of this context switch, the interrupt mask is set to a level one
less than the interrupt just taken. This is to insure that no lower priority interrupt may
occur during the servicing of the current interrupt cycle. Notice further that in this
diagram that the logic is such that at least one instruction of any subprogram will be

9900 FAMILY SYSTEMS DESIGN 4-63

INTERRUPTS Hardware Design:
Architecture and
Interfacing Techniques

executed immediately following a context switch. The only exception to this is the
simultaneous presence of RESET and LOAD signals. Finally, the idle instruction will
suspend instruction execution in the 9900 until an interrupt, RESET or LOAD signal
occurs.

MASKABLE INTERRUPTS

The TMS 9900 has 16 interrupt levels with the lower 15 priority levels used for
maskable interrupts. The maskable interrupts are prioritized and have transfer vectors
similar to the RESET and LO AD vectors.

Inte.rrupt Service

A pending interrupt of unmasked priority level is serviced at the end of the current
instruction cycle with two exceptions. The first instruction of a RESET, LOAD, or
interrupt service routine is executed before the CPU tests the INTREQ signal. The
interrupt is also inhibited for one instruction if the current instruction is a branch and

~ 4 load workspace pointer instruction (BLWP) or an extended operation (XOP). The one
instruction delay permits one instruction to be completed before an interrupt context
switch can occur. A LIMI instruction can be used as the first instruction in a routine to
lock out higher priority maskable interrupts.

The pending interrupt request should remain active until recognized by the CPU during
the service routine. The interrupt request should then be cleared under program control.
The CRU bit manipulation instructions can be used to recognize and clear the interrupt
request.

The interrupt context switch causes the interrupt vector to be fetched, the old WP, PC,
and ST to be saved in the new workspace, and the new WP and PC to be loaded. Bits
12-15 of ST are loaded with a value of one less than the level of the interrupt being
serviced. The old WP, PC, and ST are stored in the new workspace registers 13, 14, and
15. When the return instruction is executed, the old WP, PC, and ST are restored to the
CPU. Since the ST contains the interrupt mask, the old interrupt level is also restored.
Consequently, all interrupt service routines should terminate with the return instruction
in order to restore the CPU to its state before the interrupt.

The linkage between two interrupt service routines is shown in Figure 4-58 and the
interrupt machine cycle sequence is shown in Figure 4-59.

4-64 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

RESET SIGNAL
CAUSES IMMEDIATE

ENTRY HERE

GET RESET VECTOR

(WP AND PCI

FROM LOCATION 0, 2

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE. SET

INTERRUPT MASK
(ST12-ST15)= 0

N

y

GET LOAD VECTOR

(WP AND PC) FROM

LOCATION FFFC15.

FFFE15

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE. SET

INTERRUPT MASK

(ST12 - ST15) = 0

y

INSTRUCTION

ACQUISITION

INSTRUCTION

GET INTERRUPT LEVEL

VECTOR (WP AND PC)

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE. SET
INTERRUPT MASK (ST12
-ST15) TO LEVEL-1

Figure 4-57. TMS 9900 CPU Flow Chart

9900 FAMILY SYSTEMS DESIGN

INTERRUPTS

y

N

N

4-65

INTERRUPTS

Interrupt Signals

Hardware Design:
Architecture and
Interfacing Techniques

The TMS 9900 has five inputs that control maskable interrupts. The INTREQ signal is
active (low) when a maskable interrupt is pending. If INTREQ is active at the end of
the instruction cycle, the CPU compares the priority code on ICO through IC3 to the
interrupt mask (ST12-ST15). If the interrupt code of the pending interrupt is equal to
or less than the current interrupt mask, the CPU executes a vectored interrupt;
otherwise, the interrupt request is ignored. The interrupt priority codes are shown in
Table 4-3. Note that the level-0 interrupt code should not be used for external interrupts
since level 0 is reserved for RESET.

TMS 9900

vi PC (Bl I
PROGRAM A I l/JV1 WP (Bl

I GENERAL MEMORY I ST (Bl

PROGRAM B

GENERAL MEMORY

WRO

WR1

WORKSPACE B

r-- WR13 - WP (Al

WR14 · PC (Al

WR15 · ST (Al

GENERAL MEMORY

~: WRO

WORKSPACE A

WR15

Figure 4-58. Interrupt Linkage

4-66 9900 FAMILY SYSTEMS DESIGN

Hardware Design: INTERRUPTS
Architecture and
Interfacing Techniques

CYCLE

1

2

3

4

5

6

7

8

9

10

11

TYPE FUNCTION

ALU Set Up

Memory Read Fetch New WP

ALU Set Up

Memory Write Store Status

ALU Set Up

Memory Write Store PC

ALU Set Up

Memory Write Store WP

ALU Set Up

Memory Read Fetch New PC

ALU Set Up MAR for Next

Instruction

Figure 4-59. Interrupt Processing Machine Cycle Sequence

Figure 4-60 illustrates the use of the TMS 9901 programmable system interface for
g~neration of the interrupt code from individual interrupt input lines. The TMS 9901
provides six dedicated and nine programmable latched, synchronized, and prioritized
interrupts, complete with individual enabling/disabling masks. Synchronization prevents
transition oflCO-IC3 while the code is being read. A single-interrupt system with an
arbitrarily chosen level-7 code is shown in Figure 4-61. The single-interrupt input does
not need to be synchronized since the hardwired interrupt code is always stable.

Interrupt Masking

The TMS 9900 uses a four-bit field in the status register, ST12 through ST15, to
determine the current interrupt priority level. The interrupt mask is automatically
loaded with a value of one less than the level of the maskable interrupt being serviced.
The interrupt ma'sk is also affected by the load interrupt mask instruction (LIMI).

Since the interrupt mask is compared to the external interrupt code before an interrupt
is recognized, an interrupt service routine will not be halted due to another interrupt of
lower or equal priority unless a LIMI instruction is used to alter the interrupt mask. The
LIMI instruction can be used to alter the interrupt-mask level in order to disable
intervening interrupt levels. At the end of the service routine, a return (RTWP)
restores the interrupt mask to its value before the current interrupt occurred.

9900 FAMILY SYSTEMS DESIGN 4-67

4~

·4

INTERRUPTS Hardware Design:

4-68

-"vvv
~Vee

D

1~,, TIM 9904
Q CLOCK GENERATOR

- ~
~3

D
~

CRU

~1-~ AO-A9 DECODE

TMS

9900

CPU

A10

A11

A12

A13

A14
CRUOUT

CRUCLK

CRUIN

RESET

~
i---...i CE

TMS

9901

PSI

so
~ SI

S2

S3

S4

-
RST1

~
~

Architecture and
Interfacing Techniques

s YSTEM

TERRUPTS IN

1/0 PORT~-

Figure 4-60. System With 15 External Interrupts

Table 4-3. Interrupt Priority Codes

Vector Location Interrupt Mask Values To Interrupt
Interrupt Level (Memory Address Device Assignment Enable Respective Interrupts Codes

In Hex) (ST12 thru ST15) ICO thru IC3

(Highest priority) 0 00 Reset 0 through F* 0000
1 04 External device 1 through F 0001
2 08 2 through F 0010
3 QC 3 through F 0011
4 10 4 through F 0100
5 14 5 through F 0101
6 18 6 through F 0110
7 1C 7 through F 0111
8 20 8 through F 1000
9 24 9 through F 1001

10 28 A through F 1010
11 2C B through F 1011
12 30 C through F 1100
13 34 D through F 1101
14 38 E and F 1110

(Lowest priority) 15 3C External device F only 1111

*Level 0 can not be disabled.

9900 FAMILY SYSTEMS DESIGN

Hardware Design: INTERRUPTS
Architecture and
Interfacing Techniques

INTERRUPT ----1 INTREO

ICO

TMS 9900

IC1

+5 IC2

IC3

Figure 4-61. Single-Interrupt System

Note that the TMS 9900 actually generates the interrupt vector address using ICO-IC3
five clock cycles after it has sampled INTREQ and four clock cycles after it has
compared the interrupt code to the interrupt mask in the status register. Thus, interrupt
sources which have individual masking capability can cause erroneous operation if a
command to the device to mask the interrupt occurs at a time when the interrupt is
active and just after the TMS 9900 has sampled INTREQ but before the vector address
has been generated using ICO-IC3.

The individual interrupt masking operation can be easily allowed if the masking
instruction is placed in a short subroutine which masks all interrupts with a LIMI 0
instruction before individually masking the interrupt at the device, as shown in
Figure 4-62.

9900 FAMILY SYSTEMS DESIGN 4-69

~4

INTERRUPTS

INCORRECT

xxx

SBO

yyy

CORRECT ---

xxx

BLWP

xx xx

SBl LIMI

MOV

SBO

RTWP

SBW BSS

0

9

0

@24(13), 12

0

32

SET MASK (INTERRUPT CAN OCCUR

DURING SBO CAUSING ERRONEOUS

OPERATION)

(WR9) = ADDRESS OF SBW

(WR10) = ADDRESS OF SBl

Hardware Design:
Architecture and
Interfacing Techniques

CLEAR STATUS MASK TO INHIBIT INTERRUPTS

MOVE CRU BASE ADDRESS TO WR12

SET MASK

RETURN

SUBROUTINE WORKSPACE

Figure 4-62. External Interrupt Clearing Routine

Interrupt Processing Example

The routine in Figure 4-63 illustrates the use of the LIMI instruction as a privileged or
non-interruptable instruction. The level-5 routine sets a CRU bit and then loops until a
corresponding CRU bit is true. The first instruction in the routine is completed before a
higher priority interrupt can be recognized. The LIMI instruction, however, raises the
CPU priority level to level 0 in order to disable all other maskable interrupts.
Consequently, the level-5 routine will run to completion unless a RESET signal or a
LOAD signal is generated. At the end of the routine, the RTWP instruction restores
the CPU to its state before the level-5 interrupt occurred.

Level 5 LIMI 0 Disable Maskable INTREOs

SBO ACK Set CRU Output Bit

Loop TB ROY Test CRU Input Bit

JNE LOOP Loop Until Input True

RTWP Return

Figure 4-63. LIM/ Instruction Routine

4-70 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

ELECTRICAL REQUIREMENTS

ELECTRICAL REQUIREMENTS

U ND ERST ANDING THE ELECTRICAL SPECIFICATIONS

A description of the interface to the 9900 would be incomplete without a set of
specifications for the electrical signals which perform the functions described in the
previous sections. Each pin of the 9900 may be characterized with a set of minimum and
maximum voltage and current levels. In many cases, the switching characteristics, the
rate of transition from the high state to the low state is also important. The detailed
electrical specifications for each of the processors in the 9900 family are given in the
Product Data chapter. A brief statement about the basic concepts of device characterization
and data sheet specification is of value to designers with limited exposure to microprocessor
and semiconductor memory products.

Specifications are given in two ways. First, absolute maximum ratings are given which
simply define the limits of stress which the chip can withstand without damage. (Figure 4-
64 shows the absolute maximum ratings for the TMS 9900.) The normal design 4 ..
specification is the recommended operating conditions table (Figure 4-65) which specifies
power supply limits, signal voltage levels, and the operating temperature range. In
reading these two tables it is necessary to read the explanatory notes, one of which points
out that the absolute maximum power supply voltages are specified with respect to the
chip substrate or VBB (pin 1). In the normal operating conditions, all voltages are
specified with respect to the V ss or ground (pins 26, 40). The four voltages given, V BB,

V cc, V DD, and V ss are not actually four power supplies, but three power supplies: + 5V,
-5V, and + 12V, with Vss being the ground or reference point.

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)*

Supply voltage, Vee (see Note 1)
Supply voltage, Voo (see Note 1)
Supply voltage, Vss lsee Note 1)
All input voltages (see Note 1) .
Output voltage (with respect to Vssl
Continuous power dissipation
Operating free-air temperature range
Storage temperature range

. -0.3 to 20 V

. -0.3 to 20 V

. -0.3 to 20 V

. -0.3 to 20 V
-2 V to 7 V

... 1.2W

. 0°C to 70°C
. -55°C to 150°C

•Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and

functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions"

section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Under absolute maximum ratings voltage values are with respect to the most negative supply, V99 (substrate), unless otherwise

noted. Throughout the remainder of this section, voltage values are with respect to V55.

Figure 4-64. Absolute Maximum Ratings

9900 FAMILY SYSTEMS DESIGN 4-71

ELECTRICAL REQUIREMENTS Hardware Design:
Architecture and
Interfacing Techniques

RECOMMENDED OPERATING CONDITIONS

MIN NOM MAX UNIT

Supply voltage, Vss -5.25 -5 -4.75 v
Supply voltage, Vee 4.75 5 5.25 v
Supply voltage, Voo 11.4 12 12.6 v
Supply voltage, Vss 0 v
High-level input voltage, V1H (all inputs except clocks) 2.2 2.4 Vee+1 v
High-level clock input voltage, V1H(¢) Voo-2 Voo v
Low-level input voltage, V1L (all inputs except clocks) -1 0.4 0.8 v
Low-level clock input voltage, Vi L..!.<2._) -0.3 0.3 0.6 v
Operating free-air temperature, TA 0 70

Figure 4-65. Recommended Operating Conditions

Input signals should be in the range from 2.2V to 6V (assuming V cc is 5V) for the high
.4 level, the nominal design point being at 2.4V. Low level input voltage should be below

0.6V (but not less than - 0.3V.) These specifications are not the same as the standard
TTL specifications as far as the "worst case" design criteria are concerned. Care should
be exercised when interfacing the 9900 with TTL circuits that loading of the TTL
devices does not produce input voltages to the 9900 which are outside the specified
range.

The clock signal voltages are substantially different from the TTL standard; however,
the TMS 9904 is available to provide these signals.

e

The electrical characteristics specification, Figure 4-66. defines the current into or out of
the 9900 chip at the operating voltage levels. The input current, Ii, is specified for four
groups of input signals over a range of input voltages. For example, the input current for
any input on the data bus (when reading data from the memory) is nominally ± 50
microamps over the input voltage range from OV to SV (when V cc is 5V). The current is
negative (flowing out of the 9900) for low levels, and positive (into the 9900) for high
levels. For "worst case" design the maximum values should be used.

Voltage specifications on the output pins show how the 9900 output devices drive
external circuits. For the high level, VoH, the voltage will be at least 2.4V but may go as
high as 5V (V cc) under the condition of output current of 0.4 mA. (Currents flowing out
of the chip are shown as negative values.) When an output signal is at the low state, the
output voltage, V oL, will be no greater than 0.65V when the current flowing into the
chip is 3.2 mA. Although the 1-V characteristic of the output circuit is nonlinear, a
second data point is given: if the current is 2 mA, the voltage will be no greater than
0.50V. These numbers tell the designer what the output drive circuit current sinking
capability is. Two standard TTL loads (1.6 mA each) can be accommodated, but the VoL
level, as specified, may be as high as at 0.65V (the standard TTL specification for
outputs is VoL 0.4V.)

4-72 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

ELECTRICAL REQUIREMENTS

ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS
(UNLESS OTHERWISE NOTED)

PARAMETER

Data bus during OBIN

WE, MEMEN, OBIN, Address

11 Input current bus, Data bus during HOLDA

Clock•

Any other inputs

VoH Higb-level output voltage

VoL Low-level output voltage

iss Supply current from Vss

'cc Supply current from Vee

loo Supply current from Voo

Ci
Input capacitance (any inputs except

clock and data bus)

Ci(ci1) Clock-1 input capacitance

Ci(o2) Clock-2 input capacitance

Ci(.;>3) Clock-3 input capacitance

Ci(<,'>4) Clock-4 input capacitance

Cos Data bus capacitance

Ca
Output capacitance (any output except

data bus)

t All typical values are at TA= 25°C and nominal voltages.
•o.c. Component of Operating Clock

TEST CONDITIONS

v, = Vss to Vee

v1 = Vss 10 Vee

V1 = -0.3 to 12.6 V

VJ_~ V...s_s_ to V....c.c_

lo= -0.4 mA

lo=3.2mA

lo= 2 mA

Vss = -5, f = 1MHz,

unmeasured pins at Vss

Vss = -5, f = 1MHz,

unmeasured pins at Vss

Vss = -5, f = 1MHz,

unmeasured pins at \/SS

Vss = -5, f = 1MHz,

unmeasured pins at Vss

Vss = -5, f = 1MHz,

unmeasured pins at Vss

Vss = -5, f = 1MHz,

unmeasured pins at Vss

Vss = -5, f = 1MHz,

unmeasured pins at Vss

Figure 4-66. Electrical Characteristics

MIN TY Pt MAX

±50 ± 100

±50 ±100

±25 ±75

± 1 ± 10

2.4 Vee

0.65

0.50

0.1 1

50 75

25 45

10 15

100 150

150 200

100 150

100 150

15 25

10 15

The timing of the various signals on the TMS 9900 chip is shown in Figure 4-67. The
fundamental propagation time from a clock phase pulse (leading edge) to the specified
output is given as tP and is typically 20 ns but is never more than 40 ns (worst case). The
parameters tpLH and tpHL are the propagation delays from the appropriate clock signal to
the low-to-high transition of the output (tpLH) or the high-to-low transition of the output
(tpHL)· For example, the WE signal makes its high-to-low transition 20 ns after </>1 clock,
and makes a low-to-high transition 20 ns after the next </> 1 clock. Most of the output
signals make transitions 20 ns after the </>2 clock, and remain valid until the next 02
clock.

Additional information regarding design constraints based on the electrical specifications
is given in the next section.

9900 FAMILY SYSTEMS DESIGN

UNIT

µA

v

v

mA

mA

mA

pF

pF

pF

pF

pF

pF

pF

4-73

ELECTRICAL REQUIREMENTS Hardware Design:
Architecture and
Interfacing Techniques

SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

tPLH or tPHL Propagation delay time, clocks to outputs CL= 200 pF 20 ns

INPUT

CLOCK ¢1

CLOCK ¢2

CLOCK <1>3

CLOCK </l4

CRUCLK OUTPUT

WE OUTPUT
0.4V

WAIT OUTPUT

OBIN

Figure 4-67. Switching Characteristics

4-74 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

ELECTRICAL REQUIREMENTS

DETAILED ELECTRICAL INTERFACE SPECIFICATIONS (TMS 9900)

This section reviews the TMS 9900 electrical requirements, including the system clock
generation and interface signal characteristics. The "TMS9900 Data Manual"
(Chapter 8) should be used for minimum and maximum values.

TMS 9900 Clock Generation

The TMS 9900 requires a non-overlapping four-phase clock system with high-level
MOS drivers. Additional TTL outputs are typically required for external signal
synchronization or for dynamic memory controllers. A single-chip clock driver, the TIM
9904, can be used to produce these clock signals. An alternative clock generator uses
standard TTL logic circuits and discrete components.

The TMS 9900 requires four non-overlapping 12V clocks. The clock frequency can
vary from 2 to 3 Megahertz. The clock rise and fall times must not exceed
100 nanoseconds and must be 10 to 15 nanoseconds for higher frequencies in
order to satisfy clock pulse width requirements. While the clocks must not overlap, the
delay time between clocks must not exceed 5 0 microseconds at lower frequencies. The
typical clock timing for 3 MHz is illustrated in Figure 4-68.

333 ns

I.,. 83 ns----.1 I

., _Jr····:\ ! r-
1 I 15ns-.j -~~--1 ~~~--~----------~~~~----~------ I

I I I I I I I
15ns~ 14- I ~ I

I I I 111 \ I
<1>2 I I I

I I I I_._ __ _
5ns~ ~

¢3 ______ / \~-
¢4 ---.----JI \ ____

Figure 4-68. TMS 9900 Typical Clock Timing

9900 FAMILY SYSTEMS DESIGN 4-75

ELECTRICAL REQUIREMENTS

TIM 9904 Clock Generator

Hardware Design:
Architecture and
Interfacing Techniques

The TIM 9904 (SN74LS362) is a single-chip clock generator and driver for use with
the TMS 9900. The TIM 9904 contains a crystal-controlled oscillator, waveshaping
circuitry, a synchronizing flip-flop, and quad MOS/TTL drivers as shown in Figure 4-69.

The clock frequency is selected by either an external crystal or by an external TTL
level oscillator input. Crystal operation requires a 16X input crystal frequency since the
TIM 9904 divides the input frequency for waveshaping. For 3-megahertz operation, a
48-megahertz crystal is required. The LC tank inputs permit the use of overtone
crystals. The LC network values are determined by the network resonant frequency:

1
f

For less precise frequency control, a capacitor can be used instead of the crystal.

The external-oscillator input can be used instead of the crystal input. The oscillator input
frequency is 4X the output frequency. A 12-megahertz input oscillator frequency is
required for a 3-megahertz output frequency. A 4X TTL-compatible oscillator output
(OSCO UT) is provided in order to permit the derivation of other system timing signals
from the crystal or oscillator frequency source.

The oscillator frequency is divided by four to provide the proper frequency for each of
the 4-clock phases. A high-level MOS output and an inverted TTL-compatible output is
provided by each clock phase. The MOS-level clocks are used for the TMS 9900 CPU
while the TTL clocks are used for system timing.

The D-type flip-flop is clocked by cp3 and can be used to synchronize external signals
such as a RESET. The Schmitt-triggered input permits the use of an external RC
network for power-on RESET generation. The RC values are dependent on the power
supply rise time and should hold RESET low for at least three clock cycles after the
supply voltages reach the minimum voltages.

All TIM 9904 TTL-compatible outputs have standard short circuit protection. The
high-level MOS clock outputs, however, do not have short circuit protection.

4-76 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

TANK2

XTAL

TANK1 -·-

111 121 1181 1191

OSCILLATOR

DC')--+-----~

151

ELECTRICAL REQUIREMENTS

OSCIN

i-------1CK 0

120) (131

v~o1 v~oz

5 VOLT 12 VOLT

Figure 4-69. TIM 9904 Clock Generator

12 VOL r
SECTION

I - --,

>-------+---< J <Pl (TTLJ

1151

141

9900 FAMILY SYSTEMS DESIGN 4-77

ELECTRICAL REQUIREMENTS Hardware Design:
Architecture and
Interfacing Techniques

This driver uses inexpensive 2N3 703s and 2N3 704s and broad tolerance passive
components. Resistor tolerances can be 10% with capacitor variations as much as 20%
without affecting its performance noticeably. It shows very little sensitivity to transistor
variations and its propagation times are largely unaffected by output capacitive loading.
It produces rise times in the 10-12 ns region with fall times from 8-10 ns, driving 200 pF
capacitive loads. Propagation times for this driver are such that it produces an output
pulse that is wider than its input pulse. This driver can easily be used at 3 megahertz
without special selection of components. It does have the disadvantage of taking nine
discrete components per driver, but if assembly costs are prohibitive, these can be
reduced by using two Q2T2222 and two Q2T2905 transistor packs. The Q2T2222 is
basically four NPN transistors of the 2N2222 type while the Q2T2905 has four PNP,
2N2905 type transistors in single 14-pin dual-in-line packages. Thus, all four drivers can
be built using two packages each of these quad packs.

TMS 9900 Signal Interfacing

The non-clock CPU inputs and outputs are TTL compatible and can be used with
bipolar circuits without external pull-up resistors or level shifters. The TMS 9900 inputs
are high impendance to minimize loading on peripheral circuits. The TMS 9900 outputs
can drive approximately two TTL loads, thus eliminating the need for buffer circuits in
many systems.

Switching Levels

The TMS 9900 input switch levels are compatible with most MOS and TTL circuits
and do not require pull-up resistors to reach the required high-level input switching
voltage. The TMS 9900 output levels can drive most MOS and bipolar inputs. Some
typical switching levels are shown in Table 4-4.

Table 4-4. Switch Levels

SWITCHING
LEVEL TMS TMS TMS SN SN

(V) 9900 2708 4042-2 74XX 74LSXX

V1H min 2.2 3.0 2.2 2.0 2.0

V1L max 0.6 0.65 0.65 0.8 0.7

VoH* min 2.4 3.7 2.2 2.4 2.7

VoL max 0.5 0.45 0.45 0.5 0.5

•VoH exceeds 2.4 Vas shown in Figure 4-70.

4-78 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

ELECTRICAL REQUIREMENTS

It should be noted that some MOS circuits such as the TMS 4 700 ROM and the TMS
2708 EPROM have a minimum high-level input voltage of 3 V to 3.3 V, which exceeds
the TMS 9900 minimum high-level output voltage of 2.4 V. The TMS 9900 high-level
output voltage exceeds 3.3 V; however, longer transition times as shown in Figure 4-70
are required.

Loading

The TMS 9900 has high-impedance inputs to minimize loading on the system buses.
The CPU data bus presents a maximum current load of ± 100 µA when DBIN is high.
WE, MEMEN, and DBIN cause a maximum current load of± 100 µA during HOLDA.
Otherwise, the TMS 9900 inputs present a current load of only ± 10 µA. The data bus
inputs have a 25-picofarad input capacitance, and all other non-clock inputs have a 15-
picofarad input capacitance.

The TMS 9900 outputs can drive approximately two standard TTL ioads. Since most
memory devices have high-impedance inputs, the CPU can drive small memory systems 4<11111111

without address or data buffers. If the bus load exceeds the equivalent of two TTL unit
loads, external buffers are required.

The TMS 9900 output switching characteristics are determined for approximately 200
picofarads. Higher capacitive loads can be driven with degraded switching characteristics
as shown in Figure 4- 71.

VQH
4

3

2

CL =200pF

20 30 40
tPHL(ns)

50 60 TPLH
NSEC

Figure 4-70. tPLH vs VoH Typical Output Levels

9900 FAMILY SYSTEMS DESIGN 4-79

ELECTRICAL REQUIREMENTS

75

50

25

100 200 300 400

Hardware Design:
Architecture and
Interfacing Techniques

Figure 4-71. tpo vs Load Capacitance (Typical)

Recommended Interface Logic

The TMS 9900 is compatible with the logic from any of the common TTL logic
families. The Texas Instruments low-power Schottky logic circuits are, however,
recommended for use in microprocessor systems. The SN74LSXX circuits have higher
impedance inputs than standard TTL, allowing more circuits to be used without
buffering. The SN74LSXX gates also consume less power at similar switching speeds.
Texas Instruments has a wide assortment of bipolar support circuits which can be used
with the TMS 9900, as shown in Table 4-5. Note that five circuits which are
particularly useful in many applications have been dual symbolized with TIM 99XX
numbers for easy reference.

There are a number of buffer circuits available for use in TMS 9900 systems. The
SN74S241 and SN74LS241 non-inverting octal buffers with thr~e-state outputs can be
used as memory address drivers or as bidirectional data transceivers. The SN7 4S240 and
SN74LS240 are similar, but with inverted outputs. The SN74LS241 can be used as
either a memory-address buffer or as a transceiver for bidirectional data transfers. The
use of a single circuit type for both functions can result in a lower inventory and parts
cost. The buffer switching times can be derated for higher capacitive loading as required.

System Layout

The pin assignments of the TMS 9900 are such that sets of signals (data bus, address
bus, interrupt port, etc.) are grouped together. The layout of a printed circuit board can
be simplified by taking advantage of these groups by locating· associated circuitry
(address buffers, interrupt processing hardware, etc.) as close as possible to the TMS
9900 interface. Shortened conductor runs result in minimal noise and compact and
efficient utilization of printed circuit board area.

4-80 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

ELECTRICAL REQUIREMENTS

It is particularly important that the drivers for </>1-</>4 be located as close as possible to
the inputs of the TMS 9900, since these signals have fast rise and fall times while driving
fairly high capacitance over a wide voltage range. The 12 volt supply to the clock drivers
should be decoupled with both high (15µF) and low (0.05µF) value capacitors in order to
filter out high and lower frequency variations in supply voltage.

Table 4-5. TMS 9900 Bipolar Support Circuits

DEVICE

SN74125
SN74126
SN74LS240
SN74LS241
SN74LS242
SN74LS243
SN74S240
SN74S241
SN74365
SN74366
SN74367
SN74368

SN74LS259 (TIM9906)
SN74LS373
SN74LS412

SN74LS151
SN74LS251 (TIM9905)

SN74148 (TIM 9907)
SN74LS348 (TIM9908)
SN74LS74
SN74LS174
SN74LS175
SN74LS37
SN74LS362 (TIM9904)

9900 FAMILY SYSTEMS DESIGN

BUFFERS (3-STATE)

FUNCTION

QUAD Inverting Buffer
QUAD Inverting Buffer
OCTAL Inverting Buffer/Transceiver
OCT AL Noninverting Buffer/Transceiver
OCTAL Inverting Transceiver
OCT AL Noninverting Transceiver
OCT AL Inverting Buffer/Transceiver
OCT AL Noninverting Buffer/Transceiver
Hex Noninverting Buffer
Hex Inverting Buffer
Hex Noninverting Buffer
Hex Inverting Buffer

LATCHES

OCT AL Addressable Latch
OCT AL Transparent Latch (3-state)
OCT AL 1/0 Port (3-state)

DATA MULTIPLEXERS

OCT AL Multiplexer
OCT AL Multiplexer (3·state)

OTHER SUPPORT CIRCUITS

Priority Encoder
Priority Encoder
Dual D·type flip-flop
Hex D·type flip·flop
Qual D·type flip-flop
QUAD 2·1 nput nand Buffers
Clock Generator

PACKAGE

14
14
20
20
14
14
20
20
16
16
16
16

16
20
24

16
16

16
16
14
16
16
14
20

4-81

TMS 9940
MICROCOMPUTER

Hardware Design
Architecture and
Interfacing Techniques

All voltage inputs to the TMS 9900 should be decoupled at the device. Particular
attention should be paid to the + 5 volt supply. All data and address lines are switched
simultaneously. The worst-case condition occurs when all data and address signals switch
to a low level simultaneously and they are each sinking 3.2 mA. It is thus possible for the
supply current to vary nearly 100 mA over a 20 ns interval. Careful attention must be
paid by the designer to avoid supply voltage spiking. The exact values for capacitors
should be determined empirically, based on actual system layout and drive requirements.

TMS 9940 MICROCOMPUTER

The TMS9940 is a microcomputer chip in a 40-pin package which includes all of the
elements of a computer, that is, memory, 1/0 and utilities in addition to ALU and
control. Useful in a wide variety of dedicated control functions, it contains a 2k X 8
EPROM program memory and a 128 X 8 RAM for data, a 14 bit interval timer, and a
multiprocessor system interface. Although the memory organization on chip is in 8 bit

~4 bytes, the instructions are the same 16-bit instructions of the 9900 family.

While most of the instructions are identical to the instruction set of the 9900, there are
68 instructions in the 9940 set (as opposed to 69 in the TMS9900) including three new
ones. The differences in the instruction set are illustrated by the following list of
instructions.

DCA Decimal Correct for BCD add } DCS Decimal Correct for BCD subtract
LIIM Load Interrupt mask

Added Instructions

RSET

l l CKOF
(external instructions in 9900)

CKON
LREX

Deleted Instructions

IDLE Put processor into the idle state } Hardware in the 9940

The first three of the instructions in the above list are new instructions and are unique to
the 9940 microcomputer. The DCA and DCS instructions perform decimal correct for
BCD arithmetic. The LIIM instruction is a single word instruction to load the interrupt
mask. (This instruction should be contrasted with the LIMI instruction of the 9900 set
which performs the same function but occupies two memory words.) The idle
instruction, an external instruction in the 9900 set, is now implemented in hardware.
Four instructions in the list are not implemented in the 9940; they are external
instructions in the 9900 set.

4-82 9900 FAMILY SYSTEMS DESIGN

Hardware Design
Architecture and
Interfacing Techniques

TMS 9940
MICROCOMPUTER

PIN Ass1GNMENTS AND FUNCTIONAL CoNTROL

One of the most extraordinary features of the TMS9940 is the I/O structure in which
3 2 pins of the 40-pin package are software assignable. That is, they do not perform
single, predefined, hard-wired functions, but instead are under the control of the
programmer in structuring input/output functions. Table 4-6 lists the functions of four
specific bits in the CRU which are called configuration bits. Because these four bits are
assigned specific locations in the CRU output field and are therefore addressable and
accessible via CRU output instructions, the pins of the package may be dynamically
reassigned during program execution.

Table 4-6. Configuration Bit Functions

Configuration Bit

0

2

3

Function

External CRU expansion

Multiprocessor

Clock output for sync

Power down

Table 4-7 describes the way these four configuration bits assign the individual general
purpose I/O pins to specific functions. In effect, each of the pins may serve two or three
functions, as described in the table. Table 4-8 defines the functions of addressable CRU
locations. The first 256 locations, addresses 000 through OFF, are for external expansion
of the general I/Oto an additional 245 (256 less 11 used for expansion). It is important
to note here that these 256 bits are two fields of 256 bits each, one for input and one for
output. Addresses 100 through 17F are not used, and address 180 through lDF are used
internally.

Notice in Table 4-8 that CRU addresses 183, 184, 185 and 186 locate the four
configuration bits. It is via the setting or resetting of these individual bits that the I/O
configuration is established.

Four other significant features should be pointed out.
One: The interrupt structure includes four levels of interrupt as opposed to the 16-level
interrupt capability of the general 9900 microprocessor group.
Two: There is an on-chip timer, or event counter.
Three: 32 bits of CRU I/O are implemented on the chip. (Addresses lEO-lEFF)
Four: A multiprocessor system interface is constructed as part of the CRU I/O.

INTERRUPTS

The four interrupt levels are shown in the table below.

LevelO
Level 1

Reset
General Interrupt 1

9900 FAMILY SYSTEMS DESIGN

Level 2
Level 3

Decrementer
General Interrupt 2

4-83

TMS 9940
MICROCOMPUTER

Pin

23

24

2S

26

27

28

29

30

18

17

16

Pin

14

11

Pin

IS

Pin

10

9

8

4-84

Table 4-7. Configuration Bit Effects by Pin

Configuration bit 0 (CR U Expansion)

0 1

PO (general I/ 0) Al

Pl A2

P2 A3

P3 A4

P4 AS

PS A6

P6 A7

P7 A8

P8 CRUIN

P9 CRUOUT

PIO CRUCLK

Configuration bit 1 (Multiprocessor)

0 1

-
Pl I TC (Clock)

P12 TD (Data)

Configuration bit 2 (Sync)

0 1

P13 cf> (Clock)

Configuration bit J (Power Down)

0 1

P14 HLD

--
PIS HLDA

P16 IDLE

Hardware Design
Architecture and
Interfacing Techniques

9900 FAMILY SYSTEMS DESIGN

Hardware Design TMS 9940
Architecture and

MICROCOMPUTER Interfacing Techniques

Table 4-8. Functions of CR U Address

CR U Addresses Contents of RJ 2 Input Output

000-0FF 000-lFE CRU Expansion CRU Expansion
100-17F 200-2FE NA NA
180 300 Test for Interrupt 1
181 302 Test for Decrementer Clear Decrementer

Interrupt
182 304 Test for Interrupt 2
183 306 Set Configuration Bit 0
184 308 Set Configuration Bit 1
185 30A Set Configuration Bit 2
186 30C Set Configuration Bit 3
187-18F 30E-31E NA NA
190-19D 320-33A Read Decrementer Value Load Decrementer Value
19E 33C TE (Timer /Event Cntr)
19F 33E
lAO-lAF 340-35E Read MPS! Value Load MPS! Value
lBO-lBF 360-37E Read Flag Register Set Flag Register
lCO-lDF 380-3BE Set 1/0 Direction for PO-P31
lEO-lFF 3C0-3FE PO-P31 Input Data PO-P31 Output Data

The 9940 implements interrupts using the same context switch concept of the 9900.
Thus, the interrupt vectors for the four interrupt levels must be stored in the first 16
words of the 9940's program memory. As is described in a subsequent paragraph, the
decrementer acts like a counter in an external piece of hardware in that after the
contents of the circuit have been decremented to zero an interrupt signals the processor
to perform a context switch and perform whatever function was programmed as the
service routine for the decrementer. The reset, INT 1, and INT 2 interrupt signals are
available to external hardware.

Since there is no INTREQ (interrupt request) signal input for the 9940, an interrupt
input must be set and remain set until acknowledged. In fact, the acknowledgement of an
interrupt must include instructions to reset holding flip-flops (if used) via CRU
operations.

In the 9940, the interrupt input may be masked (as in all 9900 processors) but there are
specific CRU bits which, if tested, will reveal pending interrupts which are not being
serviced. Thus, the programmer may wish to mask interrupts but still be aware (via TB
instructions to CRU locations 180, 181and182 as shown in Table 4-8) of the interrupt
input status.

9900 FAMILY SYSTEMS DESIGN 4-85

4~

TMS 9940
MICROCOMPUTER

Hardware Design
Architecture and
Interfacing Techniques

DEC REMENTER

A timer/event counter is implemented on the 9940.chip to introduce interrupts after a
predefined time period or number of events. A set of dedicated CRU addresses define
the location of decrementer input and output registers. A value may be loaded into the
decrementer via an LDCR instruction which loads CRU locations 19016 - 19D16 •

Likewise, the current value of the decrementer may be read via an STCR instruction
identifying the same CRU field.

When the decrementer contents count down to zero, an interrupt is issued. The context
switch thus activated automatically clears the interrupt request.

As a timer, the decrementer counts down at the rate of 1I30 of the oscillator frequency.
With a clock frequency of 5 MHz, the time interval for counting is six microseconds.

As an event counter, the decrementer is first loaded with a value and it then counts down
(one bit for each positive transition on pin 7) until it reaches zero. An interrupt is then
issued.

c Ru IMPLEMENTATION

One of the most important features of the 9940 is the manner in which the CRU is used
to perform pin assignments and functional control as well as input and output. The major
impact is that the external devices and some of the internal devices are under direct
control of the programmer via CRU instructions. The major emphasis (see Table 4-7) is
as follows.

4-86

3 2 bits of input - on-chip multiplexer
32 bits of output - on-chip flip-flops
32-bit register defining signal direction (in or out) for the assignable pins
16-bit flag register - may be written or read
14-bit "clock" register-for loading the decrementer
14-bit "read" register-for reading the decrementer
16-bit shift register for receiving instructions in a multiprocessor application, or

used for sending 16-bit information over the MPSI data line to other processors
14-bit decrementer (used as a timer or counter)
256-bit CRU expansion (input and output)

9900 FAMILY SYSTEMS DESIGN

Hardware Design
Architecture and
Interfacing Techniques

TMS 9940
MICROCOMPUTER

Pin assignments may be explained by showing the basic application concept, that of using
the 32 bits of internal CRU. Here the only decision is one of signal direction. It is
possible to set the configuration once during initialization and never change it. But this
limits the total number of I/O signals to 32. It is permissible to change the signal
direction of each pin as needed, thus obtaining full utilization of the 3 2 inputs and 3 2
outputs. The pins themselves (labelled PO-P31 in Table 4-8) serve as a dynamically
configurable bidirectional CRU port. Data is addressed in the CRU address field lEO to
lFF. Direction control is established by writing a logical one for output or zero for input
to the appropriate address(es) in the CR U field 1 C0-1 D F. Reading the addresses
assigned for output is permissible and allows the program to interrogate or determine
the status of the on-chip CRU output flip-flops

Functional assignments of the first 18 I/O signals may be accomplished as a
"configuring" of the pins. As shown in Table 4-8, eighteen additional signals may pass
through the pins corresponding to PO-Pl 7. By setting configuration bit 0 for example,
signals PO-PlO are no longer available to external hardware. Instead, the CRU
expansion signals, Al-A8 and CRU controls, are available. Configuring may be
accomplished by the following code.

LI R12,>200

SBO >83

Set CR U hardware base address at 10016

Add 8316 to set CRU bit 18316

(The LI instruction must set R12 to two times the hardware base address because the
LSB is ignored.)

MULTIPROCESSOR SYSTEM INTERFACE (MPSI)

A two-wire communication technique is provided so that the 9940 may exchange 16-bit
data and/ or instructions with. other CPU's in a multiprocessor application. This
capability allows the RAM to be used as an instruction memory for short subprograms
downloaded from another processor. Since the technique is based on the CRU concept,
the 9940 will easily interface with the processors in the 9900 family. In order to use this
feature, configuration bit 1 must first be set via

LI R12, >200
SBO >84

Then the information flows in from an external processor and is clocked by the external
processor so that this operation is completely transparent to the CPU. The sender must
interrupt the receiver to cause reading of the input word via

LI R12, > 340

STCR @BUFF, 0

Address the MPSI register

Store 16 bits in memory location BUFF

Refer to Table 4-7 for CRU addresses of this and other functions.

9900 FAMILY SYSTEMS DESIGN 4-87

TMS 9940
MICROCOMPUTER

Hardware Design:
Architecture and
Interfacing Techniques

To send data out over the MPSI the 9940 must first have configuration bit 1 set, and
then it simply executes

LDCR @BUFF, 0
to send out 16 bits of data from memory location BUFF. The switch into and out of
"send" status is automatic.

Table 4-9. TMS 9940 Configurable Pins

CRU CRU
Pin General Address Address/or Alternate Configuration CRUAddress

Number 110 Data 110 Direction Control Function Bit of Conjig. Bit

23 PO lEO lCO Al 0 183
24 Pl lEl lCl A2 0 183
2S P2 1E2 1C2 A3 0 183
26 P3 1E3 1C3 A4 0 183
27 P4 1E4 1C4 AS 0 183
28 PS lES lCS A6 0 183
29 P6 1E6 1C6 A7 0 183
30 P7 1E7 1C7 A8 0 183
18 P8 1E8 1C8 CRUIN 0 183
17 P9 1E9 1C9 CRUOUT 0 183
16 PIO lEA lCA CRUCLK 0 183

-
14 Pl! lEB lCB TC 1 184
11 Pl2 !EC ICC TD 1 184
IS Pl3 lED lCD L 2 18S
10 Pl4 IEE ICE HLD 3 186

--
9 PIS lEF lCF HLDA 3 186 --
8 Pl6 lFO IDO IDLE 3 186
7 Pl7 lFl IDl EC - 19E
6 Pl8 1F2 ID2
s Pl9 1F3 ID3
4 P20 lF4 ID4
3 P21 IFS IDS
2 P22 1F6 ID6
1 P23 1F7 ID7
31 P24 1F8 ID8
32 P2S 1F9 ID9
33 P26 lFA IDA
34 P27 lFB IDB
3S P28 lFC IDC
36 P29 l,FD IDD
38 P30 lFE IDE
39 P31 lFF IDF

SUMMARY

The 9940 is a powerful member of the 9900 family with execution techniques which are
actually faster than the TMS9900. In fact, because of its higher speed clock (5 MHz)
and a fast on-chip execution microcycle for register location, the average throughput is
20% faster than the standard 9900 devices. The assignability of the package pins via
software adds a new dimension to microprocessor technology for improved flexibility and
performance.

For detailed information on this part, see the 9940 section of Chapter 8.

4-88 9900 FAMILY SYSTEMS DESIGN

Hardware Design: MACHINE CYCLES
Architecture and
Interfacing Techniques

COMPLETE LISTING OF MACHINE CYCLES

In order to complete the description of instruction execution, the individual instruction
execution cycles are given in this section. Each machine cycle consists of two or more
clock cycles (depending upon addressing mode) as defined herein. (Note: These machine
cycles apply equally to the TMS 9980A/81 microprocessor, with the exception of the
memory cycle as detailed below.) The 9900 family machine cycles are divided into three
categories described in the following paragraphs.

MACHINE CYCLES

ALU Cycle

The ALU cycle performs an internal operation of the microprocessor. The memory
interface control signals and CRU interface control signals are not affected by the
execution of an ALU cycle, which takes two clock cycles to execute.

Memory Cycle

The memory cycle primarily performs a data transfer between the microprocessor and
the external memory device. Appropriate memory bus control signals are generated by
the microprocessor as a result of a memory cycle execution. The memory cycle takes
2 + W (where Wis the number of wait states) clock cycles to execute.

In the TMS 9980A/81, which has an 8-bit data bus, the memory cycle is composed of
two data transfers to move a complete 16-bit word. The TMS 9980A/8 l memory cycle
takes 4 + 2W (where Wis the number of wait states) clock cycles to execute. For the
TMS.9980A/81 the following machine cycle sequences replace the memory sequences
used in the instruction discussion.
CYCLE

Memory read/write

2 Memory read/write

CRU Cycle

AB
DB
AB
DB

Address of most significant byte (A 13 = 0)
Most significant byte
Address ofleast significant byte (A13=1)
Least significant byte

The CRU cycle performs a bit transfer between the microprocessor and I/O devices. It
takes two clock cycles to execute. The address of the CRU bit is set up during the first
clock cycle. For an input operation the CRUIN Jine is sampled by the microprocessor
during the second clock cycle. For an output operation the data bit is set up on the
CRUOUT line at the same time the address is set up. The CRUCLK line is pulsed
during the second clock cycle of the CRU output cycle. Please refer to the specific 99XX
microprocessor data manual for timing diagrams.

9900 FAMILY SYSTEMS DESIGN 4-89

MACHINE CYCLES Hardware Design:
Architecture and
Interfacing Techniques

The 9900 executes its operations under the control of a microprogrammed control
ROM. Each microinstruction specifies a machine cycle. A microprogram specifies a
sequence of machine cycles. The 9900 executes a specific sequence of machine cycles for
a specific operation. These sequences are detailed on the following pages. The
information can be used by the systems designers to determine the bus contents and
other interface behavior at various instants during a certain 9900 operation. This
description is maintained at the address bus (AD) and data bus (DB) levels.

9900 MACHINE CYCLE SEQUENCES

Most 9900 instructions execution consists of two parts: 1) the data derivation and 2)
operation execution. The data derivation sequence depends on the addressing mode for
the data. Since the addressing modes are common to all instructions, the data derivation
sequence is the same for the same addressing mode, regardless of the instruction.
Therefore, the data derivation sequences are described first. These are then referred to
in appropriate sequence in the instruction execution description.

TERMS AND DEFINITIONS

The following terms are used in describing the instructions of the 9900:
TERM DEFINITION
B Byte Indicator (1 =byte, 0 =word)
C Bit count
D Destination address register
DA Destination address
IOP Immediate operand
PC Program counter
Result Result of operation performed by instruction
S Source address register
SA Source address
ST Status register
STn Bit n of status register
SD Source data register internal to the TMS 9900 microprocessor*
W Works pace register
SRn Workspace register n
(n) Contents of n
Ns Number of machine cycles to derive source operand
Nd Number of machine cycles to derive destination operand
AB Address Bus of the TMS 9900
DB Data Bus of the TMS 9900
NC No change from previous cycle

*Note: The contents of the SD register remain latched at the last value written by the processor unless changed by
the ALU. Therefore, during all memory read or ALU machine cycles the SD register and hence the data bus will
contain the operand last written to the data bus by the CPU or the results of the last ALU cycle to have loaded the
SD register.

4-90 9900 FAMILY SYSTEMS DESIGN

Hardware Design: MACHINE CYCLES
Architecture and
Interfacing Techniques

DATA DERIVATION SEQUENCE

Workspace Register

CYCLE TYPE
Memory read

Workspace Register Indirect

CYCLE TYPE
1 Memory read

2 ALU

3 Memory read

DESCRIPTION
AB Workspace register address
DB = Operand

DESCRIPTION
AB Workspace register address
DB Workspace register contents
AB NC
DB SD
AB Workspace register content
DB Operand

Workspace Register Indirect Auto-Increment (Byte-Operand)

CYCLE TYPE DESCRIPTION
Memory read AB Workspace register address

DB Workspace register contents
2 ALU AB NC

DB SD
3 Memory write AB Wotkspace register address

DB (WRn)+l
4 Memory read AB Workspace register contents

DB Operand

Workspace Register Indirect Auto-Increment (Word Operand)
CYCLE TYPE DESCRIPTION

1 Memory read AB Workspace register address
DB Workspace register contents

2 ALU AB NC
DB SD

3 ALU AB NC
DB SD

4 Memory write AB Workspace register address
DB (WRn)+2

5 Memory read AB Workspace register contents
DB Operand

9900 FAMILY SYSTEMS DESIGN 4-91

~4

MACHINE CYCLES

Symbolic
CYCLE TYPE

ALU

2 ALU

3 Memory read

4 ALU

5 Memory read

Indexed

CYCLE TYPE
1 Memory read

2 ALU

3 Memory read

4 ALU

5 Memory read

INSTRUCTION EXECUTION SEQUENCE

Hardware Design:
Architecture and
Interfacing Techniques

DESCRIPTION
AB NC
DB SD
AB NC
DB SD
AB PC+2
DB Symbolic address
AB NC
DB 000016
AB Symbolic address
DB Operand

DESCRIPTION
AB Works pace register address
DB Workspace register contents
AB NC
DB SD
AB PC+2
DB Symbolic address
AB PC+2
DB Workspace register contents
AB Symbolic address+ (WRn)
DB Operand

A, AB, C, CB, S, SB, SOC, SOCB, SZC, SZCB, MOV, MOVB, COC, CZC, XOR

CYCLE TYPE DESCRIPTION
Memory read AB PC

DB Instruction
2 ALU AB NC

DB SD
Ns Insert appropriate sequence for source data (Note 1)

addressing mode, from the data derivation
sequences

3+Ns ALU AB= NC
DB= SD

Nd Insert appropriate sequence for destination (Note 2, 3)
data addressing mode from the data
derivation sequences

4+Ns+Nd ALU AB NC
DB SD

5+Ns+Nd Memory write AB DA (Note4)
DB Result

4-92 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

MACHINE CYCLES

NOTES:

1) Since the memory operations of the 9900 microprocessor family fetch or store 16-bit
words, the source and the destination data fetched for byte operations are 16-bit
words. The ALU operates on the specified bytes of these words and modifies the
appropriate byte in the destination word. The adjacent byte in the destination word
remains unaltered. At the completion of the instruction, the destination word,
consisting of the modified byte and the adjacent unmodified byte, is stored in a single
memory write operation.

2) For MOVB instruction the destination data word (16 bits) is fetched. The specified
byte in the destination word is replaced with the specified byte of the source-data
word. The resultant destination word is then stored at the destination address.

3) For MOV instruction the destination data word (16 bits) is fetched although not used.
4) For C, CB, COC, CZC instructions cycle 5 + Ns + Nct above is an ALU cycle with

AB=DA and DB=SD.

MPY (Multiply)
CYCLE

2

Ns

3+Ns

4+Ns

5+Ns

6+Ns

7+Ns

24+Ns

25+Ns

26+Ns

TYPE
Memory read

DESCRIPTION
AB PC
DB

ALU AB
DB

Insert appropriate data derivation sequence
according to the source data (multiplier)
addressing mode
ALU AB

DB
Memory read AB

DB
ALU AB

DB
ALU AB

Instruction
NC
SD

NC
SD
Workspace register address
Workspace register contents
NC
SD
NC

DB Multiplier

16ALU

Memory write

ALU

Memory write

Multiply the two operands
AB NC
DB
AB
DB
AB
DB
AB
DB

MSH of partial product
Works pace register address
MSH of the product
DA+2
MSH of product
DA+2
LSH of the product

9900 FAMILY SYSTEMS DESIGN 4-93

~4

MACHINE CYCLES

DIV (Divide)
CYCLE

1

2

Ns

TYPE
Memory read

ALU

Insert appropriate data derivation sequence
according to the source data (divisor)
addressing mode

DESCRIPTION
AB PC
DB Instruction
AB NC
DB SD

Hardware Design:
Architecture and
Interfacing Techniques

3+Ns ALU AB NC

4+Ns

S+Ns

6+Ns

7+Ns

B+Ns

9+Ns

lO+Ns+Ni

11 +Ns+Ni

12+Ns+Ni

13+Ns+Ni

XOP
CYCLE

Ns

3+Ns

4+Ns

S+Ns

6+Ns

4-94

Memory read

ALU

ALU

Memory read

ALU

ALU

Divide sequence consisting of Ni cycles
where 48:S:Ni:S:32. Ni is data dependent
ALU

Memory write

ALU

Memory write

TYPE
Memory read

ALU

Insert appropriate data derivation sequence
according to the source data addressing
mode
ALU

ALU

ALU

Memory read

DB SD
AB Address of workspace register
DB Contents of workspace register
(Check overflow)
AB= NC
DB = Divisor
(Skip if overflow to next instruction fetch)
AB NC
DB SD
AB DA+2
DB Contents of DA+ 2
AB NC
DB SD
AB NC
DB SD
AB NC
DB SD
AB NC
DB SD
AB Workspace register address
DB Quotient
AB DA+2
DB Quotient
AB DA+2
DB Remainder

DESCRIPTION
AB = PC
DB = Instruction
Instruction decode AB
DB= SD

AB NC
DB SD
AB NC
DB SA
AB NC
DB SD
AB 401s+4 x D

NC

DB New workspace pointer

9900 FAMILY SYSTEMS DESIGN

Hardware Design: MACHINE CYCLES
Architecture and
Interfacing Techniques

CYCLE TYPE

7+Ns ALU

8+Ns Memory write

9+Ns ALU

lO+Ns Memory write

ll+Ns ALU

12+Ns Memory write

13+Ns ALU

14+Ns Memory write

15+Ns ALU

16+Ns Memory read

17+Ns ALU

DESCRIPTION

AB NC
DB SA
AB Address of WRl 1
DB SA
AB Address ofWR15
DB SA
AB Address of workspace register 15
DB Status register contents
AB NC
DB PC+2
AB Address of workspace register 14
DB PC+2
AB Address ofWR13
DB SD
AB Address of workspace register 13
DB WP
AB NC
DB SD
AB 4216 +4xD
DB New PC
AB NC
DB SD

CLR, SETO, INV, NEG, INC, INCT, DEC, DECT, SWPB
CYCLE

2

Ns

3+Ns

4+Ns

TYPE
Memory read

ALU

Insert appropriate data derivation sequence
according to the source data addressing
mode

DESCRIPTION
AB PC
DB Instruction
AB NC
DB SD

ALU AB NC
SD DB

Memory write AB Source data address
DB Modified source data

Note: The operand is fetched for CLR and SETO although not used.
ABS
CYCLE

1

2

Ns

3+Ns

4+Ns

TYPE
Memory read

ALU

Insert appropriate data derivation sequence
according to the source data addressing
mode
ALU

ALU

9900 FAMILY SYSTEMS DESIGN

DESCRIPTION
AB PC
DB Instruction
AB NC
DB SD

Test source data
AB= NC
DB= SD
Jump to 5' + Ns if data positive
AB NC
DB = SD

4-95

4...-

~4

MACHINE CYCLES

CYCLE

S+ns

TYPE

ALU

DESCRIPTION

Negate source
AB NC
DB SD

Hardware Design:
Architecture and
Interfacing Techniques

6+Ns Memory write AB Source data address

S'+Ns

x
CYCLE

1

2

Ns

3+Ns

ALU

TYPE
Memory read

ALU

Insert the appropriate data derivation
sequence according to the source data
addressing mode
ALU

DB Modified source data
AB NC
DB SD

DESCRIPTION
AB PC
DB Instruction
AB NC
DB SD

AB
DB

NC
SD

Note: Add sequence for the instruction specified by the operand.
B
CYCLE

2

Ns

3+Ns

TYPE
Memory read

ALU

Insert appropriate data derivation sequence
according to the source data addressing
mode

DESCRIPTION
AB PC
DB Instruction
AB NC
DB SD

ALU AB NC
SD DB

Note: The source data is fetched, although it is not used.
BL
CYCLE

1

2

Ns

3+Ns

4+Ns

S+Ns

TYPE
Memory read

ALU

Insert appropriate data derivation sequence
according to the source data addressing
mode

DESCRIPTION
AB PC
DB Instruction
AB NC
DB SD

ALU AB NC
SD DB

ALU AB
DB

Memory write AB
DB

Address ofWRl l
SD
Address of WRl 1
PC+2

Note: The source data is fetched although it is not used.

4-96 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

BLWP
CYCLE TYPE

1 Memory read

2 ALU

Ns Insert appropriate data derivation sequence
according to the source data addressing mode

3+Ns ALU

4+Ns ALU

5+Ns Memory write

6+Ns ALU

7+Ns Memory write

S+Ns ALU

9+Ns Memory write

lO+Ns ALU

ll+Ns Memory read

12+Ns ALU

LDCR
CYCLE TYPE

Memory read

2 ALU

Ns Insert appropriate data derivation sequence
3+Ns ALU

4+Ns ALU

5+Ns ALU

6+Ns ALU

7+Ns Memory read

S+Ns ALU

c Shift next bit onto CRUOUT line.
Enable CRUCLK. Increment CRU bit
address on AB. Iterate this sequence C
times, where C is number of bits to be
transferred.

9+Ns+C ALU

9900 FAMILY SYSTEMS DESIGN

MACHINE CYCLES

DESCRIPTION
AB PC
DB Instruction
AB NC
DB SD

AB NC
DB SD
AB Address ofWR15
DB NC
AB Address of workspace register 15
DB Status register contents
AB NC
DB PC+2
AB Address of workspace register 14
DB PC+2
AB Address or workspace register 13 4<11\f
DB SD
AB Address of workspace register 13
DB WP
AB NC
DB SD
AB Address of new PC
DB New PC
AB NC
DB SD

DESCRIPTION
AB PC
DB Instruction
AB NC
DB SD

AB NC
DB SD
AB NC
DB SD
AB Address ofWR12
DB SD
AB Address ofWR12
DB SD
AB Address of WR12
DB Contents ofWR12
AB NC
DB SD
AB Address + 2 Increments C Times
DB SD

AB NC
DB SD

4-97

~4

MACHINE CYCLES

STCR
CYCLE TYPE

Memory read

2 ALU

Ns Insert appropriate data derivation sequence
according to the source data addressing
mode

3+Ns ALU

4+Ns Memory read

S+Ns ALU

6+Ns ALU

c Input selected CRU bit. Increment CRU
bit address. Iterate this sequence C times
where C is the number of CRU bits to be
input.

7+Ns+C ALU

8+Ns+C ALU

C' Right adjust (with zero fill) byte (if C<8)
or word (if 8 < C < 16).

C' = 8-C-1 if C::::; 8
= 16-C if 8 < C::::; 16

9+Ns+C+C' ALU

lO+Ns+C+C' ALU

11 +Ns+C+C' ALU

12+Ns+C+C' Memory write

Hardware Design:
Architecture and
Interfacing Techniques

DESCRIPTION
AB PC
DB Instruction
AB NC
DB SD

AB NC
DB SD
AB Address ofWR12
DB Contents ofWR12
AB NC
DB SD
AB NC
DB SD
AB Address + 2 C times
DB SD

AB NC
DB SD
AB NC
DB SD
AB NC
DB SD

AB NC
DB SD
AB NC
DB SD
AB Source address
DB SD
AB Source address
DB l/O data

Note: For STCR instruction the 16-bit word at the source address is fetched. If the
number of CRU bits to be transferred is < 8, the CRU data is right justified (with zero
fill) in the specified byte of the source word and source data word thus modified is then
stored back in memory. If the bits to be transferred is > 8 then the source data fetched
is not used. The CRU data in this case is right justified in 16-bit word which is then
stored at the source address.

4-98 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

SBZ, SBO
CYCLE TYPE

1 Memory read

2 ALU

3 ALU

4 Memory read

5 ALU

6 CRU

TB
CYCLE TYPE

1 Memory read

2 ALU

3 ALU

4 Memory read

5 ALU

6 CRU

MACHINE CYCLES

DESCRIPTION
AB PC
DB Instruction
AB NC
DB SD
AB NC
DB SD
AB Address ofWR12
DB Contents of WR12
AB NC
DB SD
Set CRUOUT = 0 for SBZ

= 1 for SBO
AB= CRU Bit Address
Enable CRUCLK

DESCRIPTION
AB PC
DB Instruction
AB NC
DB SD
AB NC
DB SD
AB Address ofWR12
DB Contents ofWR12
AB NC
DB SD
Set ST(2) = CRUIN
AB Address ofCRU bit
DB = SD

JEQ, JGT, JH, JHE, JL, JLE, JLT, JMP, JNC, JNE, JNO, JOC, JOP
CYCLE

2

3

4

5

TYPE
Memory read

ALU

ALU

ALU

ALU

9900 FAMILY SYSTEMS DESIGN

DESCRIPTION
AB
DB
AB
DB

PC
Instruction
NC
SD

Skip to cycle # 5 if TMS 9900 status satisfies
the specified jump con,dition
AB NC
DB SD
AB NC
DB
AB
DB

Displacement value
NC
SD

4-99

I

4.,..

MACHINE CYCLES

SRA, SLA, SRL, SRC
CYCLE TYPE

Memory read

2 ALU

3 Memory read

4 ALU

5 ALU

6 Memory read

7 ALU

~4
8 ALU

9

c Shift the contents of the specified
workspace register in the specified
direction by the specified number of bits.
Set appropriate status bits.

9+C Memory write

lO+C ALU

AI, ANDI, ORI
CYCLE TYPE

1 Memory read

2 ALU

3 ALU

4 Memory read

5 Memory read

6 ALU

7 Memory write

4-100

DESCRIPTION
AB PC
DB Instruction
AB NC
DB SD

Hardware Design:
Architecture and
Interfacing Techniques

AB Address of the workspace register
DB Contents of the workspace register
Skip to cycle #9 if C =I= 0
C = Shift count
AB NC
DB SD
AB NC
DB SD
AB Address ofWRO

DB Contents ofWRO
AB Source address
DB SD
AB NC
DB SD
AB NC
DB SD

AB = Address of the workspace register
DB = Result
Increment PC
AB NC
DB= SD

DESCRIPTION
AB PC
DB Instruction
AB NC
DB SD
AB NC
DB SD
AB Address of workspace register
DB Contents of workspace register
AB PC+2
DB Immediate operand
AB NC
DB SD
AB Address of workspace register
DB Result of instruction

9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and

MACHINE CYCLES
Interfacing Techniques

CI
CYCLE TYPE DESCRIPTION

1 Memory read AB PC
DB Instruction

2 ALU AB NC
DB NC

3 Memory read AB Address of workspace register
DB Contents of workspace register

4 ALU AB NC
DB SD

5 Memory read AB PC+2
DB Immediate operand

6 ALU AB NC
DB SD

7 ALU AB NC
DB SD

LI
CYCLE TYPE DESCRIPTION 4 1 Memory read AB PC

DB Instruction
2 ALU AB NC

DB SD
3 ALU AB NC

DB SD
4 Memory read AB PC+2

DB Immediate operand
5 ALU AB Address of workspace register

DB SD
6 Memory write AB Address of workspace register

DB
LWPI

Immediate operand

CYCLE TYPE DESCRIPTION
1 Memory read AB PC

DB Instruction
2 ALU AB NC

DB SD
3 ALU AB NC

DB SD
4 Memory read AB PC+2

DB Immediate operand
5 ALU AB NC

DB SD
LIMI
CYCLE TYPE DESCRIPTION

1 Memory read AB PC
DB Instruction

2 ALU AB NC
DB SD

3 ALU AB NC
DB SD

4 Memory read AB PC+2
DB Immediate data

9900 FAMILY SYSTEMS DESIGN 4-101

MACHINE CYCLES Hardware Design:
Architecture and
Interfacing Techniques

CYCLE TYPE DESCRIPTION

5 ALU AB NC
DB SD

6 ALU AB NC
DB SD

7 ALU AB NC
DB SD

STWP,STST
CYCLE TYPE DESCRIPTION

Memory read AB PC
DB Instruction

2 ALU AB NC
DB SD

3 ALU AB Address of workspace register
DB sp

4 Memory write AB Address of the workspace register
DB TMS 9900 internal register contents

..... 4 (WP or ST)

CKON, CKOF, LREX, RSET
CYCLE TYPE DESCRIPTION

Memory read AB PC
DB Instruction

2 ALU AB NC
DB SD

ALU AB NC
DB SD

4 CRU Enable CRUCLK
AB External instruction code
DB SD

5 ALU AB NC
DB SD

6 ALU AB NC
DB SD

IDLE
CYCLE TYPE DESCRIPTION

Memory read AB PC
DB Instruction

AJ-.U AB NC
DB SD

ALU AB NC
DB SD

4 CRU Enable CRUCLK
AB Idle code
DB SD

5 ALU AB NC
DB SD

6 ALU AB NC
DB NC

4-102 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

MACHINE CYCLES

RTWP
CYCLE TYPE DESCRIPTION

1 Memory read AB PC
DB Instruction

2 ALU AB NC
DB SD

3 ALU WP+30
4 Memory read AB Address ofWR15

DB StatusoLD
5 Memory read AB Address of WR 14

DB PCoLD
6 Memory read AB Address ofWR13

DB WPoLD
7 ALU AB NC

DB SD

MACHINE-CYCLE SEQUENCE IN RESPONSE TO EXTERNAL STIMULI

RESET

CYCLE TYPE DESCRIPTION
1* ALU AB NC

DB SD
2 ALU AB NC

DB SD
3 ALU AB 0

DB 0
4 Memory read AB 0

DB Workspace pointer
5 ALU AB NC

DB Status
6 Memory write AB Address of WR15

DB Contents of Status register
7 ALU AB NC

DB PC
8 Memory write AB Address of workspace r~gister 14

DB PC+2
9 ALU AB Address ofWR13

DB SD
10 Memory write AB Address of workspace register 13

DB WP
11 ALU AB NC

DB SD
12 Memory read AB 2

DB New PC
13 ALU AB NC

DB SD

*Occurs immediately after RESET is released following a minimum 3 cycle RESET

9900 FAMILY SYSTEMS DESIGN 4-103

4<1111

MACHINE CYCLES Hardware Design:
Architecture and
Interfacing Techniques

LOAD

CYCLE TYPE DESCRIPTION
1* ALU AB NC

DB SD
Memory read AB FFFC16

DB Contents of FFFC16

ALU AB NC
DB Status

4 Memory write AB Address of WR15
DB Contents of status register

5 ALU AB NC
DB PC

6 Memory write AB Address of WR 14
DB PC+2

ALU AB Address of WR 13
DB SD

Memory write AB Address of workspace register 13

~4
DB WP

9 ALU AB NC
DB SD

10 Memory read AB FFFE
DB New PC

11 ALU AB NC
DB SD

*Occurs immediately after last clock cycle of preceding instruction.

Psuedo Instructions

NOP

Same asJMP

RT

Same as B with indirect thru Register 11.

4-104 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

MACHINE CYCLES

Interrupts

CYCLE TYPE DESCRIPTION
1* ALU AB NC

DB SD
2 Memory read AB Address of interrupt vector

DB WP
3 ALU AB NC

DB Status
4 Memory write AB Address of WR15

DB Status
5 ALU AB NC

DB PC
6 Memory write AB Address of WR 14

DB PC+2
7 ALU AB Address ofWR13

DB SD
8 Memory write AB Address of WR 13

DB WP
9 ALU AB NC

DB SD
10 Memory read AB Address of second word of interrupt

vector
DB New PC

11 ALU AB NC
DB SD

*Occurs immediately after last clock cycle of preceding instruction

TIMING

The timing of the ALU, CRU, and memory cycles is shown in Figures 4-77, 78 and 79.
Figure 4-80 shows the TMS9980A/81 memory cycle.

-----ALU CYCLE -------.-..- ALU CYCLE --------~

WRITE READ
ALU INTERNAL
RESULT REGISTERS/ ALU OPERATION
INTO CONST ANTS
INTERNAL ONTO
REGISTERS ALU

INPUT
BUSES

WRITE !READ
ALU INTERNAL
RESULT REGISTERS/ ALU OPERATION
INTO CONSTANTS
INTERNAL ONTO
REGISTERS ALU

INPUT
BUSES

Figure 4-77. ALU Cycle

9900 FAMILY SYSTEMS DESIGN 4-105

4~

MACHINE CYCLES Hardware Design:

I,. CRU CYCLE I
OUTPUT

. ,
I I

Ti I T2 I Ti
I I

T2

I CRU CYCLE , ..
INPUT

I
I Ti
I

T2

Architecture and
Interfacing Techniques

I
• I

Ti

I I
CRUOUT ---: x I x __ ----.---1; ;_-...,..-x

I I

! I I
I lr\1 I, I
I I I I 1 I
I I I 1 I

CRUCLK

I 1 I : I

CRUIN :xxXxxxxxXxxxxXxxxxxXxxxxX:Xxxxxl)xxxxxXzx __ --.--
1 I I I 9
I I I I I I I
1 1 I I I I I

'4. A's ='.X I I x I : x : '.
I

I
I
I

Figure 4-78. CR U Cycle.

READ
Tl MEMORY CYCLE T

2

WRITE
MEMORY CYCLE

Tl T2

MEMEN ~-------"-----------X~-----------'--
Ao · A14 ~-----V-AL_1o _________ x\.-_____ vA_L_10 _____ ..;.__

I I
OBIN _l__j I \._ __________ ...;..._

WE I I I \. ~
I I I ___/1
I I 1 I

READY J\-'-----1',------------.\ { _____;..
1

_

I I I
CE

WAIT ---'--------"-------~-------,...-------"-

DATA Do· 015

Figure 4-79. TMS 9900 Memory Cycle (No Wait States)

4-106 9900 FAMILY SYSTEMS DESIGN

Hardware Design: MACHINE CYCLES
Architecture and
Interfacing Techniques

------WRITE ------t•Ml•11------

A13

AO-A12 ===:x-----~---------~.....Jx_~ _______________ x ___ ~~-

OBIN

READY

DO. 07 ===x- CPU WRITE DATA x CPU WRITE DATA x INPUT MODE I RD\ INPUT MODE I RD \ INPUT

Figure 4-80. TMS 9980A I 81 Memory Cycle (No Wait States)

9900 FAMILY SYSTEMS DESIGN 4-107

CHAPTERS

Software Design:
Programming Methods
and Techniques

9900 ARCHITECTURE

9900 ARCHITECTURE

Software Design:
Programming Methods
and Techniques

The 9900 system is illustrated in Figure 5-1. The major subsystems are the 9900
processor, the memory for program and data storage, and input and output devices for
external communicatioii and control. The processor controls the fetching of data and
instructions from memory or input devices and the transferring of data from one location
to another. The data and instructions are transferred 16 bits at a time in groups called
words. These words are addressed or located by signals on the 15 address lines Ao
through A14 (called the address bus). A 15 binary bit address will select one of 32, 768
memory words.

1
l I l •

INPUT
MEMORY AND

OUTPUT v-

> ?"\
Ai-A14

ADDRESS DATAAND

INSTRUCTIONS

A.

9900

Do-Dis

Figure 5-1. General 9900 System Structure

)
DATA TO AND

FROM EXTERNAL
SYSTEMS

Internally, the processor generates a 16 bit address but the least significant bit, A15 , is not
sent to the memory. Each word is further broken down into two 8 bit groups called
bytes as shown in Figure 5-2. The first 8 bit byte of a word is located at an even address
(A15 = 0). The second 8 bit byte is located at an odd address (A15 = 1). The byte selection
is done internally in the processor once the full 16 bit data word is obtained from one of
the 32, 768 word locations in memory. Byte addressing is used only on instructions that
perform byte operations; most 9900 instructions are word operations.

The processor contains certain basic elements as shown in Figure 5-3. The timing and
control section is of primary interest to the hardware designer who must make certain
that all system events occur in the correct order and at the correct time. The software
designer is interested in what operations the ALU provides and the registers that
determine the instruction and data addresses. These registers are the program counter,
the status register, and the workspace pointer. In addition, the instruction register is of
interest in understanding the basic instruction cycle of the processor. The 9900 contains
other registers such as data address registers, ALU scratchpad registers, and so on. The
processor also provides hardware to decode instructions, control the ALU operation, and
to control the CRU input and outputs. These components all work together to provide
the basic instruction fetch and execution cycle of the processor.

5-2 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

9900 ARCHITECTURE

MOST SIGNIFICANT
8 BIT BYTE

(EVEN ADDRESS, A, 5 = 0)

II

LEAST SIGNIFICANT
8 BIT BYTE

(ODD ADDRESS, A1s = 1)

I

I 0 I 1 2 3 4
1

s
1

6
1 1ls'9 1

10
1

11
1

12
1

13
1

14
1
1sj

MOST I
SIGNIFICANT

BIT

16 BIT WORD
(ADDRESSED BY 14 MOST

SIGNIFICANT ADDRESS BITS)

\ LEAST
SIGNIFICANT

BIT

Figure 5-2. 9900 Words and Bytes

DATA
ADDRESS

WORKSPACE POINTER
WP REGISTER

(16 BITS)

DECODER AND
TIMING

INSTRUCTION
REGISTER IR

INSTRUCTIONS

ADDRESS LINES
(15 BITS)

INSTRUCTION
ADDRESS

PROGRAM COUNTER
PC REGISTER

(16 BITS)

STATUS REGISTER
ST

ARITHMETIC-LOGIC
UNIT ALU

DATA

DATA LINES

Figure 5-3. Basic 9900 Elements.

9900 FAMILY SYSTEMS DESIGN S-3

9900 ARCHITECTURE

INSTRUCTION REGISTER AND CYCLE

Software Design:
Programming Methods
and Techniques

The instruction cycle that is performed over and over again by the processor consists of
the following basic operations:

1) Instruction Fetch - the contents of the program counter are sent out on the address
lines and a memory read is performed. The 16 bit instruction operation code word is
sent from the memory along the data lines D0 through D15 and is latched in the
processor instruction register.

2) Instruction Execution - The instruction is decoded and executed. Usually, the address
of the data to be operated on (source data) is generated and a memory read cycle is
performed to get the data into the processor. Then a destination address is generated
and a memory write cycle is performed to store the result of the operation at a de.sired
destination memory location.

3) The contents of the program counter are changed to indicate the address of the next
instruction and the processor returns to the instruction fetch operation.

This sequence is repeated continually as long as power is supplied to the processor.

The number of memory references required in the instruction operation depends on the
format that is used for the instruction. Instructions can have one of 9 such formats as
illustrated in Figure 5-4. The instruction code indicates to the processor how many
memory references are required to get all the information needed by the instruction.
The first memory read obtains the instruction code which determines which operation is
to be performed and how the data is located. A second and possibly a third memory read
may be required to obtain values or addresses for the data to be used in this operation.
An immediate instruction (format 8) consists of two successive memory words: the first
for the instruction code and a second word that contains the data constant to be used.
Other instruction formats contain a Ts and/ or a T d field to indicate the existence of data
addresses as part of the instruction. If a Ts or Ta two bit field contains a 102 , the address
of the source or destination locations or both will be contained in the one or two memory
locations immediately following the instruction code word as illustrated in Figure 5-5.
In these cases, one or two additional memory reads are required to fetch these addresses
for use by the instruction to locate data in memory. Obviously, the more memory
references required to get all of the instruction, the longer the execution time for that
instruction. The programmer also needs to be aware of the number of words of memory
required for each instruction in order to estimate program memory requirements.

S-4 9900 FAMILY SYSTEMS DESIGN

Software Design: 9900 ARCHITECTURE
Programming Methods
and Techniques

Instruction
Format

1 (Arithmetic)

2 Qump/CRU)

3 (Logical)

4 (CRU)

5 (Shift)

6 (Program)

7 (Control)

8 (Immediate)

9 (Multiply,
Divide, &

Instruction Coding Fields*

D s

CODE DISPLACEMENT

CODE D Ts s

CODE c Ts s

CODE c w

CODE Ts s

CODE 0000

CODE I 00 I w

CODE D Ts s

Extended Operation)

*The Fields are defined as follows:
CODE - Indicates the bits defining the operation code
B - Byte/Word Indicator (Single bit)
D - Workspace Register of the destination code (4 bits)
T d - Addressing mode of the destination operand (2 bits)
S - Workspace Register of the source operand (4 bits)
Ts - Addressing mode of the source operand (2 bits)
C - Shift or Bit count (4 bits)
W - Indicates Workspace Register to be used (4 bits)

Figure 5-4. 9900 Instruction Formats

9900 FAMILY SYSTEMS DESIGN 5-5

5<1111

I

9900 ARCHITECTURE Software Design:
Programming Methods
and Techniques

ADDRESS WORD ADDRESS WORD

Td Ts Td Ts

(PC) CODE I 10 I D I 00 I s (PC) CODE I 10 I D I 10 I s

(PC)+ 2 SOURCE DATA ADDRESS (PC)+ 2 SOURCE DATA ADDRESS

(PC)+ 4 NEXT INSTRUCTION (PC)+ 4 DESTINATION ADDRESS

(PC)+ 6 NEXT INSTRUCTION

TWO WORD INSTRUCTION THREE WORD INSTRUCTION

(PC) MEANS: CONTENTS OF THE PROGRAM COUNTER

Figure 5-5. Example Memory Requirements far Format 1 Instroctions.

PROGRAM COUNTER (PC)

The program counter, abbreviated PC, contains the address of the instruction to be
executed as illustrated in Figure 5-6. Normally, after executing an instruction, the
contents of the program counter are incremented by two to locate the next instruction
word in sequence in memory. The programmer can control the contents of the program
counter (and thus control w.here the next instruction is to be found) by using branch or
jump instructions. These instructions offer the alternatives of taking the next instruction
in sequence or jumping to another part of program memory for the next instruction.

5-6

PROGRAM COUNTER

ADDRESS OF THE INSTRUCTION
MEMORY

READ SIGNAL

Figure 5-6. Purpose of the Program Counter

INSIDE
PROCESSOR

OUTSIDE
PROCESSOR

9900 FAMILY SYSTEMS DESIGN

Software Design: 9900 ARCHITECTURE
Programming Methods
and Techniques

STATUS REGISTER (ST)

The purpose of the status register is to store the general arithmetic and logic conditions
that result from the execution of each instruction. This information lets the programmer
know if the last operation caused a result equal to or greater than some reference
number (often zero). It includes the information regarding the sign of the result (was it a
negative or a positive number), the parity of the result (an odd or even number of one
bits), and if a carry or overflow occurred (indicating that the 16 bit word length was
insufficient to hold the result). The status register also contains a 4 bit code known as the
interrupt mask which defines which of 16 hardware subsystem interrupt signals will be
recognized and responded to by the processor. The information contained in the status
register is defined in Figure 5- 7.

Status
Register

Bit

0

2
3

4

5

6

7-11

12-15

LGT

AGT

EQ
c

ov

OP

x

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I I

Interrupt
Mask

Logical Greater Than - set in a comparison of an unsigned number with a
smaller unsigned number.
Arthmetic Greater Than - set when one signed number is compared with
another that is less positive (nearer to -32,768).
Equal - set when the two words or two bytes being compared are equal.
CatTy - set by carry out of most significant bit of a word or byte in a shift or
arithmetic operation.
Overflow - set when the result of an arthmetic operation is too large or too
small to be correctly represented in 2's complement form. OV is set in
addition if the most significant bit of the two operands are equal and the
most significant bit of the sum is different from the destination operand
most significant bit. OV is set in subtraction if the most significant bits of
the operands are not equal and the most significant bit of the result is
different from the most significant bit of the destination operand. In single
operand instructions affecting OV, the OV is set if the most significant bit
of the operand is changed by the instruction.
Odd Paniy - set when there is an odd number of bits set to one in the
result.
Extended Operation - set when the PC and WP registers have been to set
to values of the transfer vector words during the execution of an extended
operation.
Reserved for special Model 990/10 computer applications.

IntetTupt Mask - All interrupts of level equal to or less than mask value are
enabled.

Figure 5-7. TMS9900 Status Register Contents

9900 FAMILY SYSTEMS DESIGN 5-7

9900 ARCHITECTURE

WORKSPACE POINTER (WP)

Software Design:
Programming Methods
and Techniques

This register addresses the first word in a group of 16 consecutive memory words called
a workspace as illustrated in Figur~ 5-8. These workspace words are called workspace
registers and are treated by the processor as if they were registers on the processor chip.
These workspace registers can be used as accumulators for arithmetic operations or for
storage of often used data. When the workspace register contains the data used by the
instruction, the Ts or Tct fields in the instruction format (see Figure 5-4) are 00. This
way of locating instruction operands is an addressing mode called workspace register
addressing. The workspace register can also be used to store the address of the data to be
used instead of storing the data itself. In this case the Ts or Tct fields of the instruction
code or format will be 01. This type of addressing (method of data location) is known as
register indirect addressing. Workspace registers 1 through 15 can also be used to store
the base addres·s to which an offset will be added to determine a data address. This type
of addressing is called indexed addressing and the Ts or T ct fields for this type of
addressing will be a 10.

Some of the workspace registers are reserved for specific tasks as shown in Figure 5-8. If
a certain type of subroutine branch called a branch and link (BL) is performed, register
11 is used to save the contents of the program counter at the time of the branch. In
another type of subroutine branch, the branch and link workspace (BLWP) instruction,
registers 13, 14, and 15, are used to save the values of WP, PC, and ST registers,
respective! y, that were in the processor at the time the branch instruction occurred.
These registers then allow the programmer to return to the situation or program context
that existed prior to the branch. Register 12 is used to form the address of certain input
and output bits that make up part of the communications register unit (CRU) subsystem.

MEMORY

ADDRESS

I WORKSPACE POINTER 1 l) WP+ 00

WP +02

WP +04

WP +06

WP +08

WP+OA

WP +OC

WP+OE

WP+ 10

WP+ 12

WP+ 14

WP+ 16

WP+ 18

WP+ 1A

WP+ 1C

WP+ 1E

REGISTER

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

REGISTER USE

-------------OPTIONALSHIFT

COUNT

DATA
INDEX

OR

ADDRESSES CAPA~BILITY

---1---------BLRETURNADDRESS
--------- ----CRU BASE ADDRESS

-------------SAVED WP

-------------SAVED PC

---- ---------SAVEDST

Figure 5-8. 9900 Workspace Structure

5-8 9900 FAMILY SYSTEMS DESIGN

Software Design: 9900 ARCHITECTURE
Programming Methods
and Techniques

The relationships between the workspace registers and the instruction operations must
be understood by the programmer to effectively utilize the 9900. Much of the
addressing of data involves the use of workspace registers and branch and input/ output
instructions must use the dedicated registers 11 through 15. The use of the workspace in
performing the basic program functions offered by the 9900 will be covered in detail
throughout this chapter.

PROGRAM ENVIRONMENT OR CONTEXT

The contents of the three processor registers (PC, WP, and ST) completely define the
status of the system program at any given time. As illustrated in Figur~ 5-9, the program
counter keeps track of that part of the system program currently being executed by
specifying the current instruction location. The status register keeps track of the logical
and arithmetic conditions that result from the execution of each instruction. The
workspace pointer keeps track of the location in memory of the sixteen general purpose
workspace registers currently being used by the program. The contents of the processor
and workspace registers define the current program environment or context of the
system. A change in the contents of these registers will change the environment to a new
part of program memory and a new workspace area. Thus, the system will be switched to
a new environment or program context by such a change. Similarly, by restoring the
contents of PC, WP, and ST to original values, the program environment will be
switched back to the original context and continue executing in the original program
environment.

MEMORY

PC I

l
CURRENT
PROGRAM

SUBPROGRAM SEGMENT
BEING

WPI

I~
EXECUTED

ST I I t CURRENT
WORKSPACE WORKSPACE

BEING USED

Figure 5-9. Program Context

9900 FAMILY SYSTEMS DESIGN 5-9

~s

MEMORY ORGANIZATION

MEMORY ORGANIZATION

Software Design:
Programming Methods
and Techniques

The 9900 system memory must provide storage locations for the system program and
subprograms and storage for system data. Since the physical devices used for storing
instructions are often a different type of memory device from those used to store data,
the program is usually stored in consecutive blocks of memory separate from the blocks
of data. This is illustrated in Figure 5-10. Also shown in Figure 5-10 are groups of
memory locations that must be reserved for program and workspace addresses used by
certain subprograms. Thus, the memory is subdivided into three types of storage
locations: program memory, data memory, and reserved or dedicated memory.

PROCESSOR
REGISTERS

PROGRAM
COUNTER

STATUS
REGISTER

WORKSPACE
POINTER

5-10

ADDRESS

000016

003E16

004016

OO?E16

008016

">

)

')

MEMORY

INTERRUPT
TRANSFER
VECTORS

EXTENDED
OPERATION
TRANSFER
VECTORS

INSTRUCTIONS
OF

PROGRAM
MODULE 1

PROGRAM
MODULE 2

WORKSPACE
1

WORKSPACE
2

DATA GROUP
1

DATA GROUP
2

WORKSPACE
3

LOAD
TRANSFER

VECTOR

)

">

"'

RESERVED
MEMORY

LOCATIONS

PROGRAM
STORAGE

I

ROM

RAM

Figure 5-10. 9900 Memory Organization

9900 FAMILY SYSTEMS DESIGN

Software Design: MEMORY ORGANIZATION
Programming Methods
and Techniques

RAM/ROM PARTITIONING

The program storage should be non-volatile so that the system program is not lost when
the system power is turned off. Further, it is often desirable for the program memory to
be a read-only memory or ROM. High volume read-only memory devices are mask
programmable by the manufacturer. Alternatively, the program storage can be placed in
a programmable read only memory (PROM). These devices may be economically
programmed in smaller quantities. Programming may be performed by the user or by
the distributor of the devices. Since both PROM and ROM devices provide word
storage in consecutive addresses and the processor executes programs by going through
instructions in sequence, the instructions that comprise a given subprogram should be
placed in consecutive addresses in a block of memory words called a program module. It
is not necessary that all program modules be adjacent to each other in memory, though
certainly it is reasonable to do so.

System data storage, excluding input/ output registers, provide storage for data being
processed by the system program. These storage locations are usually located in
consecutive blocks of memory. Since the data memory must provide both read and write
capability, it is often called read-write memory. A more common terminology is random
access memory or RAM, though this is somewhat misleading, since the program
memory in ROM may also be randomly accessed. S <I

The range of addresses that are assigned to the RAM storage locations and those that are
assigned to the ROM locations are somewhat arbitrary. The reserved locations are the
first locations in program memory, so that part of the ROM addresses are these reserved
location areas. Often hardware considerations such as the simplification of the address
decoding circuitry may decide the range of addresses that are used for each type of
memory.

RESERVED MEMORY

The program modules, workspaces, and general data storage can generally be placed
anywhere in memory, as long as the following reserved locations are preserved:
1) The first 32 words of memory (addresses 0 through 3£16) are reserved for interrupt

transfer vectors.

2) The next 32 words of memory (addresses 4016 through 7E16) are reserved for
extended operation transfer vectors.

3) The last two words of memory (addresses FFFC16 and FFFF16) are reserved for a load
or reset transfer vector.

These transfer vectors provide storage for a value to. be placed in the workspace pointer
and a value to be placed in the program counter in order to switch the program context
from its current environment to a subprogram and new workspace. This new
subprogram and workspace context is used to respond to a hardware interrupt signal, a
hardware reset signal, or an instruction called an extended operation (XOP).

9900 FAMILY SYSTEMS DESIGN 5-11

WORKSPACE UTILIZATION

WORKSPACE UTILIZATION

TttE WORKSPACE CONCEPT AND USES

Software Design:
Programming Methods
and Techniques

The advanced memory-to-memory architecture of the 9900 affords multiple register files
in main memory for efficient data manipulation and flexible subroutine linkage. The
usage of the workspace must follow certain constraints for optimum performance. Each
workspace is a contiguous block of 16 words in main memory. All 16 general purpose
registers are available to the programmer for use in any of four ways:

1) Operand Registers - to contain data for arithmetic and logical operations.
2) Accumulators - to store intermediate results of arithmetic operations.
3) Address Registers - to specify memory location of operands.
4) Index Registers - to provide an offset from a base address to define an operand

location.

The workspace pointer in the processor contains the address of workspace register 0.
The address of any workspace register R is:

Memory Address of Register R = (WP) + 2R
where (WP) means the contents of the workspace pointer.

When a workspace register is specified as an operand in an instruction, (workspace
register addressing mode) the workspace register contains binary data for use by the
instruction. As an example, consider the addition of the data in register 5 to the data in
register 6. The instruction format is:

A 5,6

with address calculations of:

REGISTER 5

(PC) - - - ~ ADD INSTRUCTION I- _.T ..f!V.!> __:!- ~x~ >l~ __ o_P_ER_A_ND _ ___,

I

I REGISTER 6
~ _ <w_r)_+_2~ ---L _____ ~__ __... ~ ACCUMULATOR

which is interpreted as follows:
1) The contents of the program counter addresses the instruction in ROM.
2) The instruction indicates workspace register addressing causing the calculation of the

workspace addresses to locate the data to be used by the instruction (contained in
registers 5 and 6) in RAM.

5-12 9900 FAMILY SYSTEMS DESIGN

Software Design: WORKSPACE UTILIZATION
Programming Methods
and Techniques

The resulting hardware operation with the data thus located is:

H !ltt

~~-RE_G_IST_E_R_5~~'------....
~ (ACCUMULATOR)

~~R_E_G_IST_E_R_6~~1_____.,,..

In this example, register 5 is functioning as an operand and register 6 is functioning as an
accumulator. The difference between an operand and an accumulator register is that
operands remain unchanged by an operation, while accumulators assume new values, the
result of the operations.

The contents of a workspace register may be the address of an operand or an
accumulator in main memory. Address registers are accessed through workspace register
indirect addressing, with or without autoincrementing. If autoincrementing is not used,
the content of the workspace register (the address of the data) is not changed by the
operation. If autoincrementing is used, the address contained in the workspace register is
incremented by one for byte operations and by two for word operations. An example of
an addition instruction in which both the operand and the accumulator are specified by

H

register indirect addressing is: 5 <i
A *5,*6

with the address computations:

REGISTER 5

(PC)--1 ADD INSTRUCTION I- ~, ~Cl!!)~ ~x~ OPERAND 1--1 OPERAND
ADDRESS

I MEMORY
I REGISTER 6 LOCATION

I (WP)+ 2x6
ACCUMULATOR --~ t...----- ACCUMULATOR

ADDRESS

MEMORY
LOCATION

with the resulting hardware operation:

REGISTER 5

OPERAND ADDRESS I- - -~.__o_P_E_RA_N_D _ __.I -----..
---~ REGISTER 6

ACCUMULATOR
ADDRESS

- -. ~~-A-C-C-UM_U_L-AT_O_R~I
1_ _____ ~ I I

L------------------~

The contents of the address registers are not changed in execution since
autoincrementing is not used.

9900 FAMILY SYSTEMS DESIGN

I·

5-13

WORKSPACE UTILIZATION Software Design:
Programming Methods
and Techniques

Autoincrementing is often used when accessing structured data and data arrays. To
add this feature to this example, the following format would be used:

A *5 +, *6+

which would result in the same events as described for standard workspace register
indirect addressing with the addition of an incrementing by two of the contents of the
address register 5 and 6:

REGISTER 5

(WP) + 2x5 - - - ~ OPERAND ADDRESS I- -- -1 - •- ~ OPERAND JN MEMORY j

+ ' cp.------J
I
2

0.-----.
REGISTER 6 I 11

ACCUMULATOR IN
(WP) + 2x6 - - - ..j ACCUMULATOR ADDRESS I- - - - MEMORY

The addresses are modified (incremented by two) after the operand and accumulator
addressing operations are completed.

When the workspace register is used as an index register, its contents specify an offset
from a base address. The sum of this offset and the base address contained in the
instruction defines the memory location of program data. Workspace registers act as
index registers when the indexed addressing mode is used. The only restriction on the
use of workspace registers as index registers is that register 0 cannot be used as an index
register. An example of using register 5 as an indirect address register for the operand
and register 6 as an index register for addressing the accumulator would be:

A *5, @BASE (6)

The binary address BASE is the second word of the two word add instruction, with
address calculations as follows:

(PC) ---.i

CPC) + 2 - - - •I

5-14

REGISTER 5

r -!_W~ ~ ::5 - -1._ __ ~_6~-~-~~-D _ _,r-
ADD IN Sf RUCTION I

l (WP) + 2x6 REGISTER 6
I- _._ - - - - - ACCUMULATOR
I OFFSET INDEX

BASE ~ALUE I :
L-----------4-------

OPERAND IN MEMORY

ACCUMULATOR
LOCATION IN MEMORY

9900 FAMILY SYSTEMS DESIGN

Software Design: WORKSPACE UTILIZATION
Programming Methods
and Techniques

The operand data is added to the accumulator data and the sum is stored in the
accumulator location.

DEDICATED AREAS OF WORKSPACES

Any register of a workspace may be used as a general purpose register (with the
exception of register 0 not being available as an index register). A few of the registers
are used by 9900 hardware in certain ways, and the software designer must observe
these constraints to assure the integrity of stored data and program and hardware
linkages. Figure 5-11 shows the way the workspace is viewed by the hardware.

WP REGISTER

MEMORY

ADDRESS

0 5 0 0 1~~~~--
(HEXADECIMAL)

0500

0502

0504

0506

0508

050A

050C

050E

0510

0512

0514

0516

0518

051A

051C

051E

l SHIFT
COUNT

EFFECTIVE_ADDRESS (XOP)
PC CONTENTS (BL)

CRU BASE ADDRESS

WP REGISTER CONTENTS

PC CONTENTS

ST REGISTER CONTENTS

Figure 5-11. Reserved Areas of 9900 Workspaces

WR 0

WR1

WR2

WR3

WR4

WR5

WR6

WR?

WR8

WR9

WR 10

WR 11

WR 12

WR13

WR14

WR 15

An examination of Figure 5-11 reveals the following areas that may have to be reserved
in a workspace:

Registers 13, 14, and 15 - Context Switches

These three workspace registers are loaded with current values of the workspace
pointer, program counter, and status register with each context switch. A context switch
occurs in response to an interrupt or in executing a BLWP or XOP instruction. When
an RTWP return instruction is executed, the processor restores these values to the
processor registers from the last three workspace registers. To insure that this return
linkage is not destroyed, the programmer must insure that subprogram operations or
subsequent context switches do not alter the contents of registers 13, 14, or 15.

9900 FAMILY SYSTEMS DESIGN 5-15

5~
I

WORKSPACE UTILIZATION

Register 0 - Shift Instruction

Software Design:
Programming Methods
and Techniques

Bits 12 through 15 of register 0 may specify a bit count for shift instructions. The 9900
shift instructions have the format:

OPCODE R, SCNT

where the OPCODE is one of the shift instruction mnemonics SLA, SRC, SRL, or
SRA, R is the operand register, and SCNT specifies the number of bit position to be
shifted. When SCNT is zero, bits 12 through 15 of register 0 specifies the shift count. If
both SCNT and bits 12 through 15 of register 0 are zero, a 16 bit shift will occur.

Register 11 - XOP and BL Instructions

Register 11 is used to save address information in extended operation instructions (XOP)
and Branch and Link subroutine jump (BL) instructions. The BL instruction provides a
means of subroutine linkage without the overhead of a context switch. Previous contents
of register 11 are replaced with the program counter contents when a BL occurs. Return
to the calling procedure is accomplished with the RT pseudo-instruction or by an
indirect branch B * 11. No critical data should be stored in register 11 if a BL
instruction is to be executed.

In the case of the extended operation instruction, an address is passed to register 11
during the XOP context switch. For example:

XOP VAR, OPNUM

OPNUM is the XOP number and locates the XOP transfer vector in main memory
through the formula:

Transfer Vector Address = 4016 + 4 X OPNUM

The effective address of the source operand VAR is placed into register 11 of the XOP
workspace. Even if VAR is not provided, register 11 contents will be altered by
executing an XOP instruction.

Register 12 - CRU Bit Addressing

The 9900 communications register unit (CRU) is a direct command-driven 1/0
interface. The five CRU instructions (SBO, SBZ, TB, LDCR, and STCR) all depend on
the presence of a CRU hardware base address in bits 3 through 14 of workspace
register 12. None of these instructions alter the content of register 12.

5-16 9900 FAMILY SYSTEMS DESIGN

Software Design: WORKSPACE UTILIZATION
Programming Methods
and Techniques

WORKSPACE LOCATION

Workspaces may be located anywhere in main memory. In practice, 66 words of
memory are reserved to implement necessary hardware functions (transfer vectors).
Workspaces and data may be stored in any other memory area, known as general
memory. The memory locations reserved for 9900 transfer vectors for interrupts and
extended operation instructions are memory addresses 000016 through 007Ern. The last
two words of memory (addresses FFFC16 and FFFE16) are reserved for a load function
transfer vector, so the last data or instruction word can occur at address FFFA16.

Within general addresses 008016 through FFF A16 , workspaces can be independent, or
used in common by different program segments or subprograms. To reduce memory
requirements of a software system, routines can share workspaces. The effect of a BL
call to a subroutine is illustrated in Figure 5-12. The program counter is changed to
fetch the instructions from the subroutine, but the workspace pointer is not changed,
which results in a workspace shared by the called and the calling procedures.

GENERAL
MEMORY

PROGRAM

SUBROUTINE

WORKSPACE

9900
BEFORE

___ c_AL_L _____ /_ I PROGRAM COUNTER I
AFTER

/
/

/
/

,¥/

/
/

/

/

WORKSPACE POINTER I

STATUS REGISTER

Figure 5-12. Shared Workspace Subroutine Call

9900 FAMILY SYSTEMS DESIGN 5-17

·S

WORKSPACE UTILIZATION Software Design:
Programming Methods
and Techniques

When a routine requires the use of a large number of workspace registers; an
independent workspace will be needed for that routine. In some cases, independent
workspaces are used for routines when little common data is needed. When workspaces
have no common memory words, parameter or data passing can be done by using the old
program counter and workspace pointer. For example, in a context switch, which saves
the old workspace pointer in the new workspace register 13, any of the old workspace
registers can be accessed by referring to the contents of the new register 13. The
contents of register 13 addresses the o1d workspace register 0. The use of register 13 as
an index register allows the programmer access to any other of the old workspace
registers. Thus, to access old register 0 as an operand in an add instruction, the following
instruction would be used:

A *13,7

This instruction specifies the contents of old register 0 (addressed by the contents of new
register 13) as an operand and new register 7 as an accumulator. To address old register
10, the following indexed addressing approach could be used:

A @20(13),7

This instruction adds 20 to the contents of new register 13 to generate the address of old
workspace register 10, which is then used as an operand in the add operation. The effect
of a context switch in providing an independent workspace is illustrated in Figure 5-13.

RO

R15

RO

R15

5-18

GENERAL
MEMORY

PROGRAM A

WORKSPACE A

PROGRAM B

WORKSPACE B

BEFORE
CONTEXT
SWITCH

/
/

/"AFTER
/ CONTEXT

/ / SWITCH

/
/

/
/

/

9900

/ I PROGRAM COUNTER

I WORKSPACE POINTER / ,____ ___ ____,

STATUS REGISTER

Figure 5-13. Independent Workspaces

9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

SUBROUTINE TECHNIQUES

SUBROUTINE TECHNIQUES

Software systems are implemented with a set of subprograms, usually subroutines.
Subroutines offer several advantages over incorporation of all code into a large main
program:
1) Repetition of code is reduced. Modular coding of repeated processes saves memory

requirements of software.
2) Documentation is simplified. The clarity of complex programs is enhanced by

breaking the overall task into manageable subsystems.
3) Debugging time is reduced. A complicated system can be made functional one module

at a time.

These advantages point out the importance of understanding the characteristics of 9900
subroutine calls. The most important characteristics are the way the subroutine linkages
back to the calling program are handled and the way parameters are passed between the
calling program and the subroutine. The linkage procedures for the types of subroutine
calls are discussed first.

TYPES OF SUBROUTINES

Three types of subroutine calls are used with the 9900. The following table summarizes
the calls and returns for each type: S <(J

Call to Subroutine

Mnemonic
BL

BLWP

XOP

Meaning
Branch & Link

Branch & Link
Workspace Pointer
Extended Operation

9900 FAMILY SYSTEMS DESIGN

Return to Calling Procedure

Mnemonic
RT or
B *11
RTWP

RTWP

Meaning
Return

Return with
Workspace Pointer
Return with
Workspace Pointer

5-19

Software Design: SUBROUTINE TECHNIQUES
Programming Methods
and Techniques

The branch and link instruction is a fast transfer to a routine that shares the workspace
with the calling procedure. Execution of a BL causes the contents of the program
counter to be stored in workspace register 11. The new program counter value is the
single argument of the BL instruction. An example of a typical BL instruction is:

PT BL @SUBl

SUBl is the label of the first instruction of the subroutine being called. After execution
of the BL instruction, program flow will continue at the symbolic address SUB 1. Upon
execution of the BL instruction, the update value of the program counter (address
PT+ 4) is stored in workspace 11 (PT is the symbolic address of the BL instruction).
This process of a shared workspace subroutine call is illustrated in Figure 5-14. Return to
the calling procedure is through the RT pseudo-instruction which is equivalent to the
indirect branch;

B *11

Since the BL instruction always reloads Workspace register 11, special steps must be
taken to insure that the critical return address is not overstored. Generally, register 11
should not be used to save a variable whose value will be needed after a BL instruction
occurs. Similarly, after a BL instruction has been executed (and before a RT instruction
has been executed), register 11 cannot be used by any instruction that would change the
contents of register 11, such as using register 11 as an accumulator or executing another
BL instruction. If multiple levels of BL calls are to be used, a push-down stack must be
established to save intermediate return linkage. Techniques for setting up a stack are
discussed under the topics of multiple level subroutine calls and reentrancy.

GENERAL
MEMORY

9900

MAIN l PROGRAM /' / ._I _P_R_o_GR_A_M_c_o_u_NT_E_R __.JI-~-,

f-
WORKSPACE

5-20

SUBROUTINE

i
REGISTER 0

REGISTER 11

REGISTER 15

/

_.,. _,.., I

/ / I WORKSPACE POINTER I ,,..,. ,,..,. _,.., /.,,,._ _______ __. I
.# // I

// I
/ / STATUS REGISTER I

// t
$/ I

I
I
I

·--------------------~ OLD PC VALUE

-- BEFOREBL

-- - AFTER BL

Figure 5-14. Effects of BL Instruction

9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

SUBROUTINE TECHNIQUES

The branch and load workspace pointer (BLWP) is a subroutine call that initiates a
context switch. When a context switch occurs, the programming environment is changed
to allow the subroutine to use a new register file (workspace). BLWP has the following
effect as illustrated in Figure 5-15:

1) A transfer vector located by the argument of the BLWP instruction supplies a new
workspace pointer value and program counter value.

2) The old values of WP, PC, and ST are saved in registers 13, 14, and 15, respectively,
of the new workspace.

3) Execution proceeds in the subroutine using the new PC value.

The 9900 format for a typical BLWP using Symbolic addressing is:
PCL BLWP @TVAL

where PCL is an arbitrary label and the symbolic address of the location of the BLWP
instruction in general memory. TVAL is the symbolic address of the transfer vector,
which in turn provides new values for the workspace pointer and the program counter.
The contents of workspace register 13 through 15 of the new workspace are reserved
for storage of the return linkage. Since the BLWP can store return linkage in an
independent workspace, multiple subroutine levels may be implemented without a
return stack as long as no two subroutines use the same workspace (transfer vector).
Although the example in Figure 5-15 uses symbolic addressing mode, other addressing
modes can be used.

9900 FAMILY SYSTEMS DESIGN 5-21

SUBROUTINE TECHNIQUES Software Design:
Programming Methods
and Techniques

GENERAL
MEMORY

{

TVAL NEW WP VALUE
TRANSFER i----------1\

VECTOR NEW PC VALUE \
TVAL + 2 (SUB1) \

i----------1 ' '\
........

KEY:

--- BEFORE BLWP

- - - AFTER BLWP

MAIN
PROGRAM

SUBROUTINE
PROGRAM

WORKSPACE
FOR MAIN
PROGRAM

\'-

\

\

\
\

\ ~I I 1----BL_W_P_@_TV_A_L_----1--------'----- . PROGRAM COUNTER - - --.-,

\ / I
\ ./

\/ I
/ \

./ ./ \ STATUS REGISTER I- •-1 I

1
SUB11---------l .//./ \\

1

, I
$./ /~l ___ __.I-..., I I ~ WORKSPACE POINTER _ I

/ I I I
RTWP /

/ I I I
// I I f

// I ~ I
// I I I

/ v I I
i---------l >< / 1 I I

RO I
I I I

I 9900

1 I I
WORKSPACE I

FOR SUB- R13 ... - - - - - - - ~L~P- - - - - - - - _J I
ROUTINE R141-------------1..._ - - _ ...:._ __ ~L~~ ________ _j_ J

R15
~ _______ OLDS2._ _______ j

Figure 5-15. Execution of BLWP Instruction (BLWP @TVAL)

5-22 9900 FAMILY SYSTEMS DESIGN

Software Design: SUBROUTINE TECHNIQUES
Programming Methods
and Techniques

. !™ q i

Extendeµ operation instructi~ms (XOP) offer a means of expanding the 9900 instruction
set. The implementation of an XOP is similar to the execution of a BLWP; the
instructions tjiffer only in the location of the transfer vector and in the parameter passing
feature offered by the XOP. The execution of an XOP is illustrated in Figure 5-16 and
consists of the following events:

1) Identify the XQP number (N) and locate a transfer vector in memory at the address
004016 + 4X N.

2) Use the transfer vector word one as the new workspace pointer value and the second
word of the vector as the new program counter value.

3) Save the old contents of WP, PC, and ST in new workspace registers 13, 14, and is,
respectively.

4) Store the effective address of the source operand in new workspace register 11.

Thus, XOP initiates a context switch with the added benefit of direct passr!zg of a parameter
address to the new workspace (register 11). By using an assembler directive DXOP,
the user can define a mnemonic string to present one of the 16 XOP transfer
vectors. This mnemonic can then be used in the program as a user defined instruction,
improving the clarity of the program coding. For example, to define XOP 15 as the
mnemonic SAMPL, the following directive can be used:

DXOP SAMPL, 15

Then, instead of using the standard XOP entry in the program:
XOP @PARAM, 15

The programmer can insert the newly defined mnemonic:
SAMPL @PARAM

The XOP call is a software trap to a user-defined routine~ It functions as though the
routine were a single instruction added to the 9900 set of operation codes, hence the
name "extended operation."

9900 FAMILY SYSTEMS DESIGN S-23

SUBROUTINE TECHNIQUES Software Design:
Programming Methods
and Techniques

0000

0040

RESERVED
MEMORY

KEY:

-- BEFORE XOP

- - AFTERXOP

40 + 4 x 15 = 007C NEW WP VALUE

007E
NEW PC VALUE

(SUB2)

GENERAL
MEMORY

" _,
~--

" " -- 9900

, . PROGRAM COUNTER .

MAIN I PROGRAM XOP @PARAM, 15

", - ..,..,,,.1 I- - - -1 " .___ ______ ___,

" ~

I- - , ,__ ______ __, I STATUS REGISTER

I

I
I
I

I

su~~~~~NE !"""' t----------
RTWP

=1 =W==OR=K=S=PA=C=E=P=O=IN=TE=R==i- 1

PR~~~AM
WORKSPACE

XOP15
WORKSPACE

5-24

PA RAM

1
RO

R15

RO

SOURCE OPERAND
ADDRESS

1-------------1

I . /
I /
I I
(/

11
;/ I

I f
I I

JI I

I
Rl 1 STORES SOURCE ADDRESS .._ - - - 1

I
I

/·
I

I

I
I
I
I
I
I t I I

R13 ... - - - - - - - - - ~LD ~p - - - - - - - - - I t
R141----------1. _ - ______ ~ ~D~ _________ JI_
Rl 5 .,_ - - - - - - - - - Q.LD....§T - - - - - - - - -

Figure 5-16. Execution of XOP Instruction (XOP @PARAM, 15)

9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

SUBROUTINE TECHNIQUES

p ARAMETER p ASSING

Most subroutines require access to data generated by the calling procedure. Different
subroutine call types mandate different parameter passing techniques. All three types of
subroutine calls, BL, BLWP, and XOP, transfer the old contents of the program counter to
the called procedure. This return linkage provides a powerful tool for parameter
passing as illustrated in Figure 5-17. A parameter list can be assembled in a block of
words following the call and accessed through the old program counter by workspace
register indirect autoincrement addressing. Regardless of the number of parameters used
in any given call, the program counter must be incremented past the whole list, so that
the return will be to the next instruction in the calling program. A subroutine call using
only one of two passed parameters is shown in the following example:

0200 BL @ANG Call Subroutine ANG
0202 FLAGl
0204 FLAG2

0600 ANG
0602
0604
0606
0608
060A FIRSTEQ

DATA
DATA

MOV
c
JEQ
INCT
B

> 0 Parameter 1 is 000016
> 1 Parameter 2 is 000116

*11 + ,3
3,2
FIRSTEQ
Rll
*11

Move Parameter 1 into R3
Compare Parameter 1 to contents of R2
Try next test if equal
Move Return PC past parameter 2
Return

The subroutine ANG checks the first parameter against the contents of R2. If an
inequality is found, the branch to continue the routine at FIRSTEQ is not taken. The
move instruction which loaded parameter 1 into the workspace increments the program
counter in Rll by 2 so that register 11 now points to parameter 2. The INCT
instruction is required to increment the program counter value in Rl 1 past parameter 2
to point to the next instruction in the calling program.

When parameters are passed in this way using the program counter, good programming
practice dictates that they be constants or addresses only and not variables. Variable
quantities should be stored in memory external to program code. To 'nest' variable data
in program code causes in-line code modification, which would produce code that would
be inoperative if stored in ROM. ·

The example above dealt with the BL subroutine call, though the same technique can
be applied to BLWP or XOP calls. These calls store the program counter in workspace
register 14, so the indirect address register must be 14 instead of 11.

9900 FAMILY SYSTEMS DESIGN 5-25

Software Design: SUBROUTINE TECHNIQUES
Programming Methods
and Techniques

KEY:

---- BEFORE CALL

- - - - AFTER CALL

GENERAL
MEMORY

AUTOINCREMENT INDIRECT
ADDRESS

9900

MAIN
PROGRAM

SUBROUTINE CALL ---.._ /
/

PROGRAM COUNTER ~ - i
PARAMETER 1

'
PARAMETER 2 \ /

\ /
NEXT INSTRUCTION

._,\~/
/

/
/

I/
I/

/'
/"

WORKSPACE POINTER
I
I
I

SUBROUTINE 1
PROGRAM

FIRST INSTRUCTION .$ / 'I I/
~

EXECUTION OF *11 + (BL CALL) I
I I/

Y"

or * 14 + (CONTEXT SWITCH) I

SUBROUTINE
WORKSPACE

RO

OLD PC VALUE

'/"
/

7 ~DDRESS OF NEXT PARAMETE

/" +

/2
OLD

STORED INS
;

/ WORKSPACE: R1
R14 FOR BLWP OR

PC

R

UBPROGRAM
1 FOR BL CALL:

XOP OR INTERRUPT
~-------

Figure 5-17. Parameter Passing Using Old Program Counter Value.

Another method of parameter passing is used when a context switch occurs. Both BLWP
and XOP cause the old contents of the workspace pointer to be stored in the new
workspace register 13. By using register 13 in the called procedure, access is gained to
parameters'in the old workspace as illustrated in Figure 5-18. Direct a~cess to old
register 0 is provided, but to use other parts of the old workspace, indexed addressing
provides the most convenient access to old registers 1 through 15 without changing the
old workspace pointer value~ For example, to move the contents of old workspace
register 2 to new workspace register 5, the following instruction can be used:

MOV @R2*2(13),R$

which causes the address of the operand to be the contents of register 13 plus 4, which is
the address of old workspace register 2. Similarly, to move the contents of old workspace
register 7 to old workspace register 6:

MOV @R7*2(13), @R6*2(13)

I
I
I
I
I _,

5-26 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

SUBROUTINE TECHNIQUES

MAIN
PROGRAM

GENERAL MEMORY

SUBROUTINE CALL

NEXT INSTRUCTION

FIRST INSTRUCTION
--~·-

KEY:

--- BEFORE CALL

AFTER CALL

--- - INDEXED ADDRESSING

9900

- -1 PROGRAM COUNTER

SUBROUTINE I
/I._ _w_o_R_Ks_P_1\c_E_P_o_1N_TE_R__.I- - 1

/
/ I

/ I
/

RO

R1 / I
// I MAIN PROGRAM R2

WORKSPACE
R3

i--~~~~--1....____ / I
,..........._~ I

/ , /coLD WP) + 6 = ADDRESS OF OLD R3 I

I
1------------< JI'/ R GENERATED BY ~~~~D ADDRESSING' I

SUBROUTINE RO , 2' (OLD REGISTER NUMBER) :I

WORKSPACE / = 2x3 TO ACCESS OLD R3

R13 t-----OL_D_W_P-VA-L-UE---1~ - - - - - - - OLD WP VALUE- - - - - - _j

Figure 5-18. Parameter Passing through Old Workspace Pointer

A final type of parameter passing applies only to XOP context switches. The single
argument of an XOP call specifies the effective address of a source operand. This form
of parameter passing avoids the risk of changing the old PC and WP. The overhead of
changing the WP and PC pointers is also avoided to increase execution speed. As an
example, if XOP 9 has been defined as FADD by a DXOP directive, the call:

FADD @LIST

causes the address stored at location LIST to be placed in register 11 of the subroutine
workspace. Then, workspace register indirect addressing can access the parameter. For
example, if in the FADD subroutine it is desired that the parameter be incremented by
two, the following instruction would be used.

INCT *11

The use of the parameter through its address in register 11 is straightforward and
doesn't interfere with the return linkage. This type of parameter passing has already
been illustrated in Figure 5-16.

9900 FAMILY SYSTEMS DESIGN 5-27

SUBROUTINE TECHNIQUES

MULTIPLE LEVEL SHARED WORKSPACE SUBROUTINES

Software Design:
Programming Methods
and Techniques

Since the BL instruction always reloads the workspace register 11, special steps must be
taken to insure that the information in register 11 is not overstored. In the case of
multiple levels of BL called subroutines, routines which call other routines before
returning to the main program, a pushdown stack should be established to save
intermediate return linkage. To create a return linkage stack for multiple levels of
subroutines which share a workspace, the following procedure is employed:
1) Allocate one workspace register to the stack pointer function.
2) For each subroutine, "push" the contents of workspace register 11 before the next

call, and "pop" the stack to restore the register 11 contents after each call is
complete.

An example of a stack manipulation code following this procedure to push and pop
return linkage is as follows, with register 5 acting as a stack pointer:

Subroutine code before next level call

DECT 5 Decrement Stack Pointer } Push Operation
MOV 11, *5 Load return PC onto Stack

BL @SUBNXT Call next level of subroutine

MOV *5+, 11 After return, restore current

! return address and restore
stack pointer Pop Operation

This code allows the current subroutine to call subroutine SUBNXT without destroying
the current subroutine's return linkage. The main program employs a standard BL call,
and the lowest level routine would not use the stack, since its register 11 would not be
replaced with a subsequent BL call. An example of this stack operation procedure with 3
nested subroutines is illustrated in Figure 5-19.

SHARED WoRKSPACE MAPPING

Software systems for small computers must efficiently utilize available memory. This
section presents an organized technique for sharing workspaces between subroutines to
reduce system memory requirements.

5-28 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

SUBROUTINE TECHNIQUES

CONTROL
PROGRAM

~j
BL

@SUB1 ___. SUB1

PUSH R11

TO STACK
TO SAVE

LINK 1

BL

@SUB2

POP STACK

TO RESTORE
LINK 1 TO

R11

RET

ms f I j a I

__..SUB2

PUSH R11
TO STACK
TO SAVE

LINK 2

BL

@SUB3

TO RESTORE

R11

--1>-SUB3

POPSTACK Ii
LINK 2 TO 1

I 1--------1 LINK 3 1---R-ET----t

RET

Figure 5-19. Stack Operations in Nested Subroutines.

The first step in system development is to write a main program and its associated
subroutines with totally independent workspaces. Avoidance of shared workspaces at the
start can prevent the undesirable aspect of destruction of critical data, including return
linkage.

After independent software is written, the programmer begins the process of identifying
potential shared workspaces. First, the relationship between called and calling
procedures is summarized graphically as shown in Figure 5-20. This graph represents the
fact that procedure A can call either procedure B or C. Procedure B may call Dor E,
while E can call Dor G, and so on throughout the graph. Having identified routine
relationships, Figure 5-20 can be changed to a form that reflects subroutine levels. All
procedures at the same level are called from a higher level and may call routines at a
lower level.

9900 FAMILY SYSTEMS DESIGN 5-29

SUBROUTINE TECHNIQUES Software Design:
Programming Methods
and Techniques

Thus, Figure 5-20 would be changed to the form illustrated in Figure 5-21. This
information is equivalent to the information contained in Figure 5-20, but it clarifies the
relationship between procedures. The routines on a particular level can never call
another routine at the same or at a higher level. Thus, all routines at the same level can
share a common workspace since return linkage will not be overstored by a subsequent
call. Therefore, for the example described in Figures 5-20 and 5-21, five independent
workspaces will suffice for a software system of eight procedures, saving 3 workspaces or
48 words of memory. By employing this simple technique, the software designer can
write efficient code with an assurance of the integrety of return linkage.

Figure 5-20. Graphical Representation of Interrelation of Calls

RE-ENTRANT PROGRAMMING

Re-entrant programming is a technique that allows one set of program code to be
executed on multiple data sets concurrently. To be re-entrant, program code must have
the following characteristics:
1) All data contained in a re-entrant routine must be common to all procedures which

call it, and must be read-only to all using procedures.
2) All data unique to calling routines must be stored and used in a workspace unique to

the calling procedure.
3) Re-entrant code must not alter data or instructions within its code during execution.

Re-entrant coding is a general programming technique that has many applications.
Device service routines which control the operations of several similar units should be
re-entrant. By passing a CRU base address with other unique data to a re-entrant service
subprogram, any one of a group of calling procedures can access such a multi-purpose
I/O routine, thereby saving system memory requirements. This is a case in which one
routine is used for several applications at random time intervals. A re-entrant subroutine
is so loosely coupled to its calling procedure that a re-entrant routine can be interrupted
during execution, used on different data, and return to complete the original process
without losing data integrity. Since re-entrant code is immune to problems with data
resulting from interrupts, it finds application in interrupt service routines, commonly
called procedures, in a multiprogramming environment such as assemblers or in real
time control applications.

5-30 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

SUBROUTINE TECHNIQUES

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

Figure 5-21. Levels of Subroutine Calls

Figure 5-22 illustrates a program flow in which subroutine A must be re-entrant. The
alternative to writing subroutine A in re-entrant code is to make two copies of A, one for
each time A can be executed concurrently. The re-entrant approach is more efficient in
memory usage than is the multiple copy approach. In this program flow, the main
program calls its first level subroutine which in turn calls subroutine A as a second level
subroutine. During execution of routine A, an interrupt occurs, which in this example
the interrupt handler program sequence calls several routines, including routine A. If A 5 <1111111111

employs re-entrant programming, the same words of code can implement routine A for
both parts of the program flow.

MAIN
PROGRAM r-----,

I I

I
PROGRAM I INTERRUPT

SUBROUTINES I HANDLER

INTERRUPT

I
I _____ _J

RETURN

Figure 5-22. Interrupt Requiring Re-entrant Programming

As an example of re-entrant coding, consider the problem of forming a starting and an
ending address for a block of data to be operated on by a subroutine. Register 1 is to
hold the starting address, register 2 is to hold the ending address, and register 3 is to
hold the current data address within the block.

9900 FAMILY SYSTEMS DESIGN 5-31

SUBROUTINE TECHNIQUES Software Design:
Programming Methods
and Techniques

This structure is in a subroutine that must be re-entrant, i.e., one that can be called
concurrently by two different program segments as illustrated in Figure 5-22. Different
program segments that use this subroutine will probably be dealing with blocks at
different starting addresses and of different sizes. For example, the main program stream
may be operating on a block of 10 words starting at address 100016 while the interrupt
handler may have to operate on a 32 word block starting at address 200016 • Forming the
starting and ending addresses as follows:

BLKLN EQU

LI
LI
A

32
1,> 1000
2,2*BLKLN
1,2

Load Rl with starting address
Load R2 with 2x (words in block)
Form end address for block (101416)

would not result in re-entrant code. This sequence would be correct for the main
program stream but is not correct for the interrupt handler stream. The code can be
made to work for both streams by not placing the load immediates in the subroutine
itself but by placing them in the program stream that calls the subroutine. Then, when
either the main program or the interrupt handler gets ready to call the subroutine, the
starting address and ending address can be established within the workspace for that
environment. The subroutine can then concentrate on' performing its manipulations,.
without being concerned with the address initialization process. Suppose that this
addressing scheme is used in a subroutine that clears a block of memory words. Figure 5-
23 shows the re-entrant and non-re-entrant forms of this subroutine. The re-entrant
form can be used in the situation of Figure 5-22 since execution depends on the
workspace being used. The subroutine can be executing with the registers 1 through 3
of the main program when an interrupt occurs. The interrupt handler uses a different
workspace so when it calls the CLEAR subroutine, new starting and ending addresses
are used, without affecting where the subroutine was in the main program execution.
Then, when the subroutine and interrupt handler have been executed and the context is
switched back to the main program, the subroutine will continue executing with the
values in registers 2 and 3 of the main program environment.

This is not true of the non-re-entrant code. By moving the contents of the interrupt
register 1 to the FIN location, the number of blocks to be cleared by the main program
execution CLEAR subroutine could be changed, if the interrupt occurs after the
MOV 1, @FIN instruction. Because the value FIN is unique for each calling
program or computed in the subroutine, the code may not properly be re-entered. That
is, it should not be used when an interrupting procedure may execute the same code.
The re-entrant version could be used by any number of interrupting procedures without
affecting execution results in either the main program or the interrupting program
environments. Entrance to the routine would be performed by executing a
BL@ CLRLUP.

5-32 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

PROGRAMMING TASKS

COM

PRET

Re-Entrant Coding

MOV 1,3 Set R3 at first address of block

A 1,2 Compute end address and place in R2

c

JH
CLR
JMP
B

3,2

PRET
*3+
COM
*11

Address past end?

If so, return
Else, clear word and go to next address
Jump to continue clearing
Return

Non-Re-entrant Coding

CLRLUP MOV 1,3 Set R3 at first address of block

COM

PRET

MOV

A

c

JH
CLR
JMP
B

l,@FIN

2,@FIN

3,@FIN

PRET
*3+
COM
*11

Set up first address in FIN

Compute final address and store at FIN

Address past end?

If so, return
Else, clear word and go to next address
Jump to continue clearing
Return

Figure 5-23. Subroutine Example of Re-entrant Coding.

PROGRAMMING TASKS

The programming techniques of workspace and subroutine usage, program loops,
macros, and data representation must be applied to the development of programs and
subprograms to perform the basic system functions of state initialization, pattern
recognition, arithmetic, and input/ output. Each of these system functions represents a
programming task that involves programming structures peculiar to each function. This
section discusses the basic requirements of the software for each function and presents
some of the programming approaches that are used to meet those requirements.

INITIALIZATION

When the system is first turned on, the first few instructions encountered must initialize
the state of the system to a desired predetermined starting state. The system
initialization procedure is usually started by the RESET or LOAD functions. Similarly,
as the system enters a subprogram or a new program sequence, the state of certain
memory locations must be initialized to a desired starting state. Further, in developing
the software, the transfer vectors and other program constants must be initialized by the
assembly language software. The assembly language directives available for this purpose
include the equate (EQU) and the data (DATA) directives. The application of these
directives to the problem of initializing the reserved memory locations and program
constants are covered in detail under the assembler directive discussion in Chapter 7.

9900 FAMILY SYSTEMS DESIGN 5-33.

PROGRAMMING TASKS Software Design:
Programming Methods
and Techniques

Usually the first part of any program is the initialization of the system. The LWPI
instruction is used to initialize the workspace pointer (WP register) to define the
location of the 16 workspace registers. If the workspace of a program sequence is to be
located at a starting address of 40016 , the following instruction will initialize the
workspace pointer to that value:

LWPI >0400

Under the interrupts discussion the use of the LIMI (load interrupt mask immediate)
instruction to esta?lish which interrupts would be responded to was covered. For
example, if the programmer wants to disable all interrupts above level 7 for a program
segment, the following instruction must be used at the first of the segment:

LIMI 7

Similarly, the load immediate (LI) instruction is used to initialize values in workspace
registers. The LI can be followed by MOV instructions to further initialize other
memory locations. As an example, to initialize register 3 and memory location TEST to
the value OOFF 16, the following instructions can be used:

LI 3, >OOFF
MOV 3,@TEST

In some initialization sequences several registers have to be initialized to the same value,
such as zero. For example, if 10 consecutive memory words starting at location 100016

are to be cleared (zeroed) then a program loop is suggested. One possible
implementation of this initialization task would be:

LOOP

LI 2,> 1000 Set R2 to the starting address 100016

LI 3, > 1 OOA Set R3 to the address past the last data location to
be cleared

CLR
c

JNE

*2+
2,3

LOOP

Clear data, increment the address by two
Is address past the 10th data location

If not jump to LOOP to continue clears
else go the next sequence of instructions

In this data initialization program segment, like most program segments, registers must
be initialized to establish program limits, addresses, and other conditions. In this
sequence register 2 was initialized to the starting data address and register 3 was
initialized to indicate the first word address after the 10th data word to be cleared. Had
this loop been implemented with a loop counter, the register acting as a loop counter
would have been initialized to 10.

5-34 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

PROGRAMMING TASKS

Generally, most program initialization tasks can be handled by using a combination of
the techniques presented in this section. The immediate load instructions are the most
commonly used operations in performing the initialization operation, followed by the use
of assembler initialization directives to establish vectors and other data constant
initialization.

MASKING AND TESTING

In many cases only certain portions of a word are of interest. The program segment may
be examining or modifying a single bit or a group of bits. The bits that are not involved
in the operation must be masked off so that they will not affect status bits and thus affect
program decisions. There are several ways of approaching this masking and single bit
testing problem.

If a single 1/0 bit is to be examined or modified, the simplest approach is to use the CRU
single bit instruction SBO, SBZ, or TB to perform the desired operation. This is
possible only if the hardware has been set up to address the desired bit as a CRU bit. If
the bit is not accessible through CRU addressing, one of the selective masking
instructions must be used. The set to ones or zeroes instructions (SOC, SOCB, SZC, and
SZCB) can be used to selectively set or clear bits. The compare ones or zeroes
corresponding instructions (COC and CZC) can be used to test selected bits. Of course 5-111111

these instructions can be used to test or change single or multiple bits. An alternative
single bit approach is to use the circulate instruction (SRC) to get the desired bit into the
carry status bit for examination or changing.

To see how these non-CRU masking instructions are used, consider the task of
examining the value of bit 12 of the data of workspace register 1. The mask is contained
in location MASK which will contain all zeroes in all bits except for bit 12 which will
contain a one. Thus, location MASK will contain 000816 • Then, the instruction:

CZC @MASK, 1

will set the equal status bit if bit 12 of Rl contains a zero. The instruction:
COC @MASK, 1

will set the equal status bit if bit 12 of Rl contains a one. In these cases, the JEQ or JNE
instructions can be used to test the equal status bit after the comparison.

Alternatively, the instruction:
SRC 1,4

will cause bit 12 to be in the carry flip flop. However, this instruction will change the
contents of Rl by moving all bits to the right 4 positions. The JC or JNC instructions
are used to test the bit value in the carry status bit.

9900 FAMILY SYSTEMS DESIGN 5-35

PROGRAMMING TASKS Software Design:
Programming Methods
and Techniques

To selectively set bit 12 of Rl, any of the following instructions could be used:
ORI l,>0008
SOC @MASK,l

To selectively clear bit 12 of Rl, either or the following instructions could be used:
ANDI l,> FFF7

or:
SZC @MASK,l

If groups of bits are to be changed or examined, the above techniques can be used if all
bits are to be ones or zeroes. For example, if bit 13 ofregister 2 is to be tested, the
following instructions would jump to point Pl in the program if bit 13 of R2 is one:

ANDI 2,> 0004 Zero all bits but bit 13 of R2; compare to 0

JNE Pl If EQ = 0, bit 13 was one and jump to point Pl

A more complicated test would be to check bits 13 and 15 of R3. A jump to P2 is to be
made if both of these bits are one. The following instructions would accomplish this test
and program decision:

HS DATA

coc
JEQ

5

@H5,3
P2

Compare to 5 to see if both bits are one.
If they are, jump to point P2.

Thus, a combination of masks (ANDI) compares, and conditional jumps can be used to
examine all features of system words and react appropriately.

If a group of bits is to be examined or modified arithmetically, a slightly different
approach may be used. If for example the least four bits of Rl are to be compared to 8,
one approach would be to provide a copy of the R 1 contents in R2. Then the first 12 bits

· of R2 are zeroed with:
ANDI 2,>000F

S-36 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

PROGRAMMING TASKS

or with: SZC @MASKl,2 where the contents of location MASKl are FFF016 • Then,
the contents of R2 can be compared to 8. The entire sequence would then be:

Pl

MOV
ANDI
CI
JLT

1,2
2,>F
2,8
Pl

Sequence of instructions
to handle case where least
four bits of Rl (and R2) are
greater than or equal to 8

Sequence of instructions
to handle case where least
four bits of Rl (and R2) are
less than 8

This technique is useful in Decimal to Binary or Binary to Decimal number conversion
and in implementing BCD (Binary Coded Decimal) arithmetic.

Of the techniques that can be used in masking and testing, the ANDI, ORI, SOC, and
SZC instructions change the word they operate on. The Compare techniques, CZC and
COC, do not affect the words being operated on but they do affect the status bits. Often,
when part of a word is modified (such as portion of the word is zeroed by an ANDI
instruction) the word must later be reassembled after all bit group operations have been
completed. The programmer should see that such operations are performed on copies of
the word so that further masking operations use the original word. As an example, if a
word is to be broken down into four bit groups (to implement BCD arithmetic), at least
four copies of the word are required or four accumulators must be used. If register 1
contains the master copy, and registers 2 through 5 contain the four bit groups, the
following sequence of instructions would generate the desired four bit groupings in the
four accumulators from the master copy in register 1:

MOV @MASTER,1
MOV 1,2
MOV 1,3
MOV 1,4
MOV 1,5
ANDI 2,> OOOF
ANDI 3,> OOFO
ANDI 4,> OFOO
ANDI 5,> FOOO

9900 FAMILY SYSTEMS DESIGN

Move word to be separated into Rl
Move a copy of the word into
accumulators R2 through RS

Mask all but least four bits in R2
Mask all but next four bits in R3
Mask all but next four bits in R4
Mask all but most significant four bits in RS

S-37

PROGRAMMING TASKS Software Design:
Programming Methods
and Techniques

With this program sequence, the original word can be broken into bit groups for further
testing and modification. Rl still contains the original word for reference and further
manipulation. However, by using ANDI mask instructions, several memory words are
required to hold intermediate results. This would not have been necessary if compare
(selective bit) instn-!ctions had been used. The specific application usually dictates which
approach is to be used.

ARITHMETIC OPERA TIO NS

Basic arithmetic can be performed with addition and subtraction, though certain
operations such as multi-word arithmetic require the use of shift instructions and
conditional branch instructions such as the jump on carry or jump on greater than.

Multi-Precision Arithmetic

The 9900 arithmetic instructions perform mathematical functions on 16 bit words. For
applications that require a greater numerical accuracy or a larger number (the 16 bit
word can hold a magnitude number from 0 to 65 ,535), multiple word numbers must be
used. The basic arithmetic instructions must then be used in such a way as to implement
the desired mathematical functions on these multiple word numbers. This section deals
with techniques for treating several words as a single binary value, that is, extended
precision arithmetic.

A 16 bit two's complement word can represent a signed value in the range - 32, 768 to
+ 32,767. The negate (NEG) and absolute value (ABS) instructions provide fast
conversion between positive and negative 16 bit words. For sign conversion on binary
values represented by multiple words, special conversion techniques are required. The
process for converting a three word positive value to its negative or two's complement
value is shown in Figure 5-24. The three word number is stored in registers 0, 1, and 2
of the workspace. The complementing procedure is to form the one's complement of the
three word number using the invert (INV) instruction and then to add 1 to the result.
The JNC instructions in the program check to see if a carry is to be propagated from a
less significant word to a more significant word in the process of adding one to the three
word number. If carries occur, the addition is handled by the increment (INC)
instruction. Conversion of a number to its absolute value is accomplished by checking
the sign bit (most significant bit) and executing the negate routine (COMP) on negative
values.

5-38 9900 FAMILY SYSTEMS DESIGN

Software Design: PROGRAMMING TASKS
Programming Methods
and Techniques

Memory Structure

Register 0 Register 1

Procedure:

Register 2

1) Form l's complement of A, using the invert (INV) instruction.

= A (48 bit number)

2) Convert the l's complement of A to the two's complement of A by adding 1 to the l's complement of A.
2's complement of A = l's complement of A + 1

Program:

COMP INV
INV
NEG

JNC
INC

JNC
INC

EXIT RT

0

2
EXIT
1
EXIT
0

Complement contents of RO
Complement contents of Rl
Negate contents of R2

If no carry operation is complete, return
If carry, add one to contents of Rl
If no carry operation is complete, return
If carry, add one to contents of RO
Return

Figure 5-24. Process to form the Negative of A(-A).

The process of adding or subtracting two multi-word numbers is to perform the 5 -1111

operation on the least significant words, then on the next most significant words with the
previous carry or borrow, and so on until the complete result is formed. Subtraction
could be performed by first using the negate procedure of Figure 5-24 on the value to be
subtracted and then adding this two's complement result to the other number.

Multiple word multiplication can be handled by using the 9900 multiply (MPY)
instruction to provide 3 2 bit partial products and then adding all partial products to
achieve the final desired product. The procedure is illustrated in Figure 5-2 5 for
multiplication of one 3 2 bit number by a second 32 bit number. The multiplication of a
16 bit number by a second 16 bit number is performed by the MPY instruction. Thus,
four applications of the MPY would form the required four partial products. Then, by
adding these products in the correct positions, the 64 bit product is formed. The basic
memory structure used by the example in Figure 5-2 5 can be understood by looking at
the operation of the MPY instruction. The accumulator or destination operand must be a
workspace register. Then, the product is stored in two successive workspace registers,
the most significant 16 bits in the destination workspace register and the least significant
16 bits in the next workspace register. The source operand which specifies the multiplier
may be specified with any addressing mode, though the example of Figure 5-25 uses
register addressing for this operand. Thus, the instruction:

MPY 1,8

multiples the contents of register 1 by the contents of register 8 and places the 32 bit
product in registers 8 and 9. While the multiplier register 1 contents are unchanged, the
multiplicand register 8 contents are changed to the most significant part of the product.

9900 FAMILY SYSTEMS DESIGN S-39

PROGRAMMING TASKS Software Design:
Programming Methods
and Techniques

Thus, there must be several copies of each multiplicand to be able to form several partial
products. In 32 bit by 32 bit multiplication, there are two multipliers (Bo in register 0
and B1 in register 1) and two multiplicands. Since each multiplicand is involved in two
partial products, there must be two copies of each multiplicand. In Figure 5-2~ the copies
of the Ao multiplicand are saved in registers 4 and 6 and the copies of the A1

multiplicand are saved in registers 2 and 8. Then, the following four MPY instructions
form the four required partial products:

MULTMPY
MPY
MPY
MPY

1,8
1,4
0,2
0,6

Form the A1xB1 product in R8 and R9
Form the B1xA0 product in R4 and RS
Form the B0xA1 product in R2 and R3
Form the B0xA0 product in R6 and R7

Which can be followed by the additions to form the complete 64 bit product in registers
6 through 9:

PO

Pl

P2

FIN

A
JNC
INC
A
JNC
INC
A
JNC
INC
A
JNC
INC
RT

3,5
PO
7
5,8
Pl
7
2,4
P2
6
4,7
FIN
6

return

Add two of three 16 bit groups in positions 216 to 231

If no carry, add in R8 contents
If carry, add one to R7 accumulator
Finish adding 216 to 231 bits
If no carry, procede to next position adds
If carry, add one to R 7 accumulator
Add part of 232 to 247 bits in R2 and R4
If no carry, procede to rest of addition
If carry, add 1 to R6 accumulator
Finish adding 232 to 247 bits
If no carry, operation is complete
If carry, add one to R6 accumulator

The process illustrated by Figure 5-25 is for multiplication of two 32 bit magnitude
numbers. Multiplication of negative numbers can be handled with the same program by
converting all numbers to their absolute value, saving the sign. Then, after the
magnitude multiplication is complete, the sign of the product is the exclusive OR of the
multiplier and multiplicand sign bits. If desired, the product can be complemented or
negated and stored in two's complement form.

5-40 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

PROGRAMMING TASKS

Basis of Procedure:

A x B = (A.ix216 + A1) x (B0x216 + B1) =

Where multiplying by 2n implies shifting the number n positions to the left with respect to a number multiplied by
2° or 1.

Memory Structure:
263 247 231 21s

I I I

I I
I

I I
I I R4,R6 I R2,RB

I 11 Ao 111 A,

I
I I

I I RO

Ii I
R1

I x lj Bo 81

I initial conditions I I
I RB R9

20

I I : I I I
A1 xB1 Partial I 1 I Product (MPY 1, B) I

I I I R2 I R3 I I l I A1 xB0 Partial 111 Product 11 (MPY 0, 2)
I +

I I I I R4 I R5 I I + l I AoxB, Partial j I I Product I 1
(MPY1,4)

I I I I R6 I R7

I: I
+'I AoxBo Partial 11 I Product I I I sum all partial products

I R6 I R7 I RB I R9 I
I I 111 111 1

1
1 11

I I I I
64 Bit Product

Figure 5-25. Multiple Precision Multiplication

9900 FAMILY SYSTEMS DESIGN 5-41

s-.

PROGRAMMING TASKS

Floating Point Arithmetic

Software Design:
Programming Methods
and Techniques

If the system requires the ability to represent fractional numerical quantities instead of
integer numbers, a method must be defined that will provide for the location of the radix
point of such numbers. Just ~s the decimal point of 7 5.39 defines a quantity:

7xl01 + 5x10° + 3x10-1 + 9x10- 2

the binary point in 101.01 defines a quantity:

lx22 + Ox21 + lx2° + Ox2-1 + lx2- 2

Although a group of bits can be configured in many ways to define a floating point number,
most floating point representations share the following characteristics:

1) Floating point numbers are represented as a fraction and an exponent (mantissa and
characteristic).

2) The fraction is by convention normalized to lie in the range Y2< F< 1, e.g., the
binary point lies to the left of the first one bit.

3) The exponent defines the power of 2 by which the fraction is multiplied to evaluate
the floating point number.

Possible floating point representatives include:

8 BIT EXPONENT FRACTION FRACTION

24 BIT FRACTION

and:

16 BIT EXPONENT MU~TIPLE WORD FRA~TION

When addition or subtraction of two floating point numbers is performed, the following
operations must be performed:
1) Equalize exponents; increment the exponent of the smaller quantity until it is the

same as the larger exponent. With each exponent increment, shift the corresponding
fraction to the right with zero fill from the left.

5-42 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

INPUT /OUTPUT

2) Add or subtract the fractions as required. If a carry results from an addition, the sum
fraction is shifted right, shifting the carry into the fraction, and the exponent is
incremented. If the difference resulting from the subtraction is not normalized (zero
in first bit position) the fraction must be shifted left until a one is in the leftmost
position. With each left shift, the resultant exponent is decremented.

Floating point multiplication can be performed by multiplying the fractions and adding
the exponents. Similarly, floating point division can be performed by dividing the
fractions and subtracting the exponents. After such an operation the fraction must be
normalized and the exponents must be checked for overflow or underflow. Signed
numbers can be handled in the same way that the multiplication of signed integers is
handled.

INPUT /OUTPUT

The most fundamental and necessary instructions of a processor are its input and output
instructions and techniques. Without input and output, the system would not be able to
control or communicate with the external world, and as a result would be of no use.
There are two general ways of implementing input and output operations. One obvious
approach is to use special input and output instructions that are interpreted by the
hardware to apply to the input and output devices. The 9900 instructions that provide 5_
this capability are the CRU or communications register unit instructions (SBO, SBZ,
TB, LDCR, and STCR) and the input and output hardware that respond to these
instructions make up the communications register unit. Another approach to inputting
and outputting information is to simply treat the input and output devices as one of the
system memory locations, in which case any of the 9900 instructions can be used in
accessing these locations. This approach is called memory mapped input/ output, since
the devices are assigned a portion of the available memory addresses, and the hardware
must decode the appropriate address to activate a given device. Each of these approaches
has its advantages and disadvantages, and the programmer must be aware of these trade-
offs in order to provide an optimum approach to system input/output.

MEMORY MAPPED INPUT I OUTPUT

The principle advantages of using memory mapped input/ output are:
1) The full instruction set is available for manipulating the data in the input/output

device.
2) The hardware is straightforward, since address decoding and device timing signals are

required for RAM and ROM memory anyway and these can be simply extended to
handle the 1/0 subsystem as well.

3) Transfers of information are made 8 or 16 bits at a time, offering a high bit rate
transfer.

9900 FAMILY SYSTEMS DESIGN S-43

INPUT /OUTPUT

The disadvantages of memory mapped I/Oare:

Software Design:
Programming Methods
and Techniques

1) Since some of the 'memory' locations are being used by input or output devices, less
memory is available for instructions and general data storage.

2) Bit transfers must be made 8 or 16 bits at a time. This is wasteful if a given device can
handle a single or a few bits at a time.

3) It is a more expensive technique in terms of pinouts, board space, and layout time.
4) The hardware interface must accomodate the full width memory bus.

The most commonly used instruction in memory mapped I/O operation is the MOV
instruction to effect data transfers. However, it is quite possible to set up an input
output subsystem as general purpose storage or as a workspace and perform shifts,
additions, multiplications, logical operations, and so on, on the data contained in the I/O
subsystem.

Generally, if I/O transfers are to be made 8 or 16 bits at a time and if the system is not
memory bound (memory is needed for program and system data), memory mapped I/O
is often used. Certainly, if performing arithmetic, logic, or other instructions directly on
input/output data is required or advantageous, memory mapped I/O must be used. If
single or multiple bit transfers are all that is required, and transfer rate is not critical,
then memory mapped I/O has no advantage over CRU I/O. CRU I/O hardware is
normally simpler and less expensive.

CR u INPUT I OUTPUT

The CRU instructions provide for single bit transfers with the SBO (set bit to one), SBZ
(set bit to zero), and TB (test bit) instructions. Multiple bit transfers with the bits
transferred one at a time are possible using the LDCR (load communications register)
and STCR (store communications register) instructions. The advantages of the CRU
instruction approach to I/Oare:
1) Any number of bits (up to 16) can be transferred with the appropriate CRU

instruction. Thus, the designer can set up the data transfer to exactly meet the
requirements of the subsystem being serviced. This is especially useful in control
situations where single sense bits are to be examined and single on-off output control
signals are needed.

2) No memory locations are used by the subsystem. The CRU instructions can access
4096 input and 4096 output bits (which is equivalent to 256 data words) in addition to
the 65,536 memory bytes.

The disadvantages of the CRU I/O are:
1) Only data transfers are provided. Arithmetic, logical or other operations must be

performed on the data after it has been moved to one of the general data storage
locations in RAM.

2) The hardware must include the capability to decode and implement the CRU
transfers; however, the added IC complexity is more than offset by reduced package size.

3) Single bit transfer speed may be too slow for some applications.

5-44 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

INPUT /OUTPUT

INPUT I OUTPUT METHODS

There are three ways that an input/ output transfer can be handled- or initiated. The
processor can be interrupted, causing the program to jump to a subroutine that handles
the input/ output task. The program can encounter. an instruction to transfer data from
an input location or to an output location, for the purpose of displaying results, actuating
control elements, or inputting system status. The processor can be bypassed entirely and
the data transferred directly to or from system memory, using direct memory access.

Interrupt Driver Input/Output

If the timing of input/ output transfer is to be controlled by an external system, then the
interrupt driven I/ 0 method must be used. This approach is used in inputting data when
the time of input is random. The external system inputs the data and signals the
processor with an interrupt to indicate that data is in one of the 9900 system input
registers. The 9900 responds by performing a context switch to a subprogram that will
process the data in that register. The interrupt driven approach may also be used in
outputting data when the processor needs to know when the data has been taken by an
external system. Once the external system takes the data, it can signal the processor with
an interrupt signal. The processor responds by performing a context switch to a
subprogram that will then send more data to that output location. 5
The interrupt driven I/ 0 procedure provides a mechanism of implementing a
communications sequence known as handshaking. This communications protocol is
illustrated in Figure 5-26. In the input mode, the data-present signal latches the 9900
system input register and serves as the interrupt signal. If desired the processor's reading
of the contents of that register can be used to generate the data-taken signal. Upon
receiving the data taken signal, the external system can then send more data to the 9900
system. In the output mode, the register write operation that sends data to the output
register in the 9900 system can be used as a data-present signal to the external system.
When the external system takes this data, it can use an interrupt signal to notify the
9900 that the register is ready to receive more data.

The interrupt driven approach has the main advantage of providing a means of setting
up a handshaking communications with another system. It can handle data
communications that occur at random or unpredictable times. The main disadvantage of
this type of I/O is that it does involve the processor, slowing down its work on main
system programs and subprograms. Further, since a context switch is involved in
responding to an interrupt, such an approach may require more memory than one of the
other two approaches.

9900 FAMILY SYSTEMS DESIGN 5-45

INPUT /OUTPUT

INTERRUPT

r l 9900 INPUT

SYSTEM REGISTER

READ
REGISTER
SIGNAL

-- DATA-PRESENT ~

~ DATA
!\,.

DATA-TAKEN

......
~

Software Design:
Programming Methods
and Techniques

EXTERNAL SYSTEM

Figure 5-26a. Handshaking Input Transfer.

INTERRUPT -- DATA-TAKEN -
9900 [OUTPUT j \ EXTERNAL

DATA
SYSTEM REGISTER V' SYSTEM

OUTPUT WRITE DATA-PRESENT --SIGNAL
~

Figure 5-26b. Handshaking Output Transfer.

Programmed Input/ Output

The simplest method of I/O is the programmed l/O. The times and conditions under
which inputs and outputs are to occur are controlled by the system program. For
example, the processor may update a display memory whenever the display is to be
changed. The program determines the new information to be displayed and then outputs
this information to the display storage locations. Similarly, the program may require
information about the status of a subsystem in order to determine subsequent operations.
Such status may be the condition of threshold detectors, the status of serial data
transmission or reception, or some other system condition. When the program
encounters a point at which it needs to check such status words, it simply inputs the
desired word. Of course, as in all l/O methods, the input or output operations can be
handled by either CRU instructions or through standard MOV or other instructions in
memory mapped II 0 devices.

The programmed input/output method is a high speed, low hardware cost approach to
input/output, since no subroutine overhead is involved. However, it does not handle
the random input situation very well, unless the program is devoted solely to waiting for
the next signal input to occur. Even then, the program may not check for input
occurrence and perform the desired input instruction before the external system sends
new data, destroying the old data.

5-46 9900 FAMILY SYSTEMS DESIGN

CHAPTER6

Instruction Set
6~

SOFTWARE FEATURES
OFTHE9900

SOFTWARE FEATURES OF THE 9900

Instruction Set

In order to understand the operation of the 9900 instructions, the basic software features
of the 9900 must be understood. These features include the processor-memory
interrelationships, the available addressing modes, the terminology and formats used in
the 9900 assembly language, and the interrupt and subroutine procedures used by the
9900.

PROCESSOR REGISTERS AND SYSTEM MEMORY

There are three registers in the 9900 that are of interest to the programmer; their
functions are illustrated in Figure 6-1:

Program Counter-This register contains the address of the instruction to be executed by
the 9900. This instruction address can point to or locate an instruction anywhere in
system memory, though instructions normally are not placed in the first 64 words of
memory. These locations are reserved for interrupt and extended operation transfer
vectors.

Workspace Pointer-This register contains the address of the first word of a group of 16
consecutive words of memory called a workspace. The workspace can be located
anywhere in memory that is not already dedicated to transfer vector or program storage.
These 16 workspace words are called workspace registers 0 through 15, and are treated
by the 9900 processor as data registers much as other processors treat on-chip data
registers for high access storage requirements.

"'6 Status Register-The status register stores the summary of the results of processor
operations, including such information as the arithmetic or logical relation of the result

. to some reference data, whether or not the result can be completely contained in a 16-bit
data word, and the parity of the result. The last bits of the status register contain the
system interrupt mask which determines which interrupts will be responded to.

These three 16-bit registers completely define the current state of the processor: what
part of the overall program is being executed, where the general purpose workspace is
located in memory, and what the current status of operations and the interrupt system
is. This information completely defines the current program environment or context of
the system. A change in the program counter contents and workspace register contents
switches the program environment or context to a new part of program memory with a
new workspace area. Performing such a context switch or change in program
environment is a very efficient method of handling subroutine jumps to subprograms that
require the use of a majority of the workspace registers.

6-2 9900 FAMILY SYSTEMS DESIGN

Instruction Set SOFTWARE FEATURES
OFTHE9900

Program Counter

Figure 6-1 illustrates the use of the three processor registers. The program counter is
the pointer which locates the instruction to be executed. All instructions require one or
more 16-bit words and are always located at even addresses. Multiple word instructions
include one 16-bit operation word and one or two 16-bit operand addresses. Two of the
processors in the 9900 family (TMS9900, SBP9900) employ a 16-bit data bus and
receive the instructions 16 bits at a time. The other processors (TMS9980A/81,
TMS9985, TMS9940) use an 8-bit data bus and require extra memory cycles to fetch
instructions. In both cases the even and odd bytes are located at even and odd addresses
respectively as illustrated in Figure 6-2. In addition, data may be stored as 16-bit words
located at even addresses or as 8-bit bytes at either even or odd addresses.

Workspace

The workspace is a set of 16 contiguous words of memory, the first of which is located
by the workspace pointer. The individual 16-bit words, called workspace registers, are
located at even addresses (see Figure 6-1). All of the registers are available for use as
general registers; however, some instructions make use of certain registers as illustrated
in Figure 6-3. Care should be exercised when using these registers for data or addresses
not related to their special functions.

9900 PROCESSOR
REGISTERS

PROGRAM COUNTER

WORKSPACE POINTER
16 BITS

STATUS REGISTER
16 BITS

~'-v-"
STATUS INTERRUPT

MASK

A0 THROUGH Ai 4

(ADDRESS OF
INSTRUCTION)

A0 THROUGH A14

(ADDRESS OF
WORKSPACE
REGISTER 0)

SYSTEM
MEMORY

(16 BIT WORDS)

TRANSFER I
VECTORS

(64 WORDS)

PROGRAM

RO

R1

R15

'T
16

WORD

32,768
WORDS

WORK-
SPACE

j

Figure 6-1. 9900 System Memory and Processor Registers.

9900 FAMILY SYSTEMS DESIGN 6-3

6 ..

.. 6

SOFTWARE FEATURES
OFTHE9900

Status Register

Instruction Set

The status register contents for the 9900 are defined in Figure 6-4. The 9900 interrupt
mask is a 4-bit code, allowing the specification of 16 levels of interrupt. Interrupt levels
equal to or less than the mask value will be acknowledged and responded to by the 9900.
The 9940 status register is similar, except the interrupt mask occupies bits 14 and 15 of
the status register, providing for four interrupt levels in the 9940.

6-4

DATA
OR

ADDR

0

t

MOST SIGNIFICANT
8 BIT BYTE

(EVEN ADDRESS, A1s = 0)

4 6
I

7 I 8
I

LEAST SIGNIFICANT
8 BIT BYTE

(ODD ADDRESS, A1s = 1)

9 10 11 12 13 14 151

t
MOST

SIGNIFICANT
BIT

LEAST
SIGNIFICANT

BIT

INDEX
CAPABILITY

16 BIT WORD
(ADDRESSED BY 15 MOST

SIGNIFICANT ADDRESS BITS)

Figure 6-2. Word and Byte Definition.

WORKSPACE

I SHIFT
COUNT

RTN ADDR

CRU BASE

STOREDWSP

STORED PC

STORED ST

PROCESSOR REGISTERS

WORKSPACE POINTER (WP)

o /'- - - - - - - - - - - - - I ADDRESS OF FIRST

\,-- - - - - - - - - - - --'WORD OF WORKSPACE

PROGRAM COUNTER (PC)

I I

~ ADDRESS OF INSTRUCTION

STATUS REGISTER (ST)

SUMMARY OF EFFECT OF
PROGRAM OPERATIONS

(SEE FIGURE 6-4)

11 BL SUBROUTINE CALL RETURN ADDRESS

12 CRU BASE

13 LOG. OF CALLING PROG. WORK SPACE

14 LOG. OF NEXT WORD AFTER CALL

15 STATUS OF CALLING PROGRAM

Figure 6-3. Workspace Register Utilization.

9900 FAMILY SYSTEMS DESIGN

Instruction Set SOFTWARE FEATURES
OFTHE9900

Status
Register

Bit

2 3 4 5 6 7 8 9 10 11 12 "13 14 15

L> A> EO C OV OP X INTERRUPT
MASK

0 LGT - Logical Greater Than-set in a comparison of an unsigned number with a smaller
unsigned number.

AGT - An.thmetic Greater Than-set when one signed number is compared with another that
is less positive (nearer to -32,768).

2 EQ - Equal-set when the two words or two bytes being compared are equal.

3 C Carry-set by carry out of most significant bit of a word or byte in a shift or
arithmetic operation.

4 OV

5 OP

6 x

7-11

12-15

Overflow-set when the result of an arithmetic; operation is too large or too small to
be correctly represented in 2's complement form.OV is set in addition ifthe most
significant bit of the two operands are equal and the most significant bit of the sum is
different from the destination operand most significant bit. OV is set in subtraction if
the most significant bits of the operands are not equal and the most significant bit of
the result is different from the most significant bit of the destination operand. In
single operand instructions affecting OV, the OV is set if the most significant bit of
the operand is changed by the instruction.

Odd Pan'ty-set when there is an odd number of bits set to one in the result.

Extended Operation-set when the PC and WP registers have been to set to values of
the transfer vector words during the execution of an extended operation.

Reserved for special Model 990/ 10 computer applications.

Interrupt Mask-All interrupts of level equal to or less than mask value are enabled.

Figure 6-4. 9900 Status Register Contents

9900 FAMILY SYSTEMS DESIGN 6-5

6..il

... 6

SOFTWARE FEATURES
OFTHE9900

ADDRESSING MODES

Instruction Set

The 9900 supports five general purpose addressing modes or methods of specifying the
location of a memory word:

Workspace Register Addressing

The data or address to be used by the instruction is contained in the workspace register
number specified in the operand field of the instruction. For example, if the programmer
wishes to decrement the contents of workspace register 2, the format of the decrement
instruction would be:

DEC 2

The memory address of the word to be used by the instruction is computed as follows:

REGISTER R

(PC)~(WP)+2R~

This type of addressing is used to access the often used data contained in the workspace.

Workspace Register Indirect Addressing

The address of the data to be used by the instruction is contained in the workspace
register specified in the operand field (the workspace register number is preceded by an
asterisk). This type of addressing is used to establish data counters so the programmer
can sequence through data stored in successive locations in memory. If register 3
contains the address of the data word to be used, the following instruction would be used
to clear (CLR) that data word:

CLR *3

In this instruction the contents of register 3 would not be changed, but the data word
addressed by the contents of register 3 would be cleared (set to all zeroes - 00016). The
word address is computed as follows for this type of addressing:

REGISTER R

__ _..,_I OPERAND

Workspace Register Indirect Addressing With Autoincrement-

This addressing mode locates the data word in the same way that workspace register
indirect addressing does, with the added feature of incrementing the contents of the
address register after the instruction has been completed. The address in the register is
incremented by one if a byte operation is performed and by two if a word operation is
performed. Thus, to set up a true data counter to clear a group of successive words in
memory whose address will be contained in register 3, the following instruction would
be used:

CLR *3+

6-6 9900 FAMILY SYSTEMS DESIGN

Instruction Set SOFTWARE FEATURES
OFTHE9900

where the asterisk(*) indicates the workspace register indirect addressing feature and
the plus (+) indicates the autoincrementing feature. With this type of addressing, the
following computations occur:

REGISTER R

(PC) (WP)+ 2R

Symbolic or Direct Addressing

OPERAND

WORD+2
BYTE+ 1

The address of the memory word is contained in the operand field of the instruction and
is contained in program memory (ROM) in the word immediately following the
operation code word for the instruction. For example, to clear the memory word at
address 100016 , the following format would be used:

CLR @>1000

where the at sign (@) indicates direct addressing and the greater than (>) sign indicates
a base 16 (hexadecimal) constant. Alternatively, the data word to be cleared could be
named with a symbolic name such as COUNT and then the instruction would be:

CLR @COUNT

and if COUNT is later equated to 100016 , this instruction would clear the data word
at address 100016 • The instruction would occupy two words of program memory:

(PC) 04C016 Operation Code for Clear

(PC)+ 2 Address of Data

The address of the memory word is thus contained in the instruction itself and is located
by the program counter. Since this address is part of the instruction, it cannot be
modified by the program. As a result, this type of addressing is used for program
variables that occupy a single memory word such as program counters, data masks, and
so on. The address computations for direct addressing are as follows:

(PC)~

(PC)+2~ ADDRESS H OPERAND

9900 FAMILY SYSTEMS DESIGN 6-7

SOFTWARE FEATURES
OFTHE9900

Indexed Addressing

Instruction Set

Indexed addressing is a combination of symbolic and register indirect addressing. It
provides for address modification since part of the address is contained in the workspace
register used as an index register. Registers 1 through 15 can be used as index registers.
The memory word address is obtained by adding the contents of the index register
specified to the constant contained in the instruction:

(PC)

(PC)+2

INSTRUCTION

BASE
ADDRESS

(WP)+

2R

REGISTER R

INDEXED
VALUE

OPERAND

Thus, to locate the data word whose address is two words down from the address
contained in register 5, and to clear this memory word, the following instruction is used:

CLR @4(5)

This instruction will cause the processor to add 4 to the contents of register 5 to
generate the desired address. Alternatively, a symbolic name could be used for the
instruction constant:

CLR @DISP(5)

with the value for the symbol DISP defined elsewhere in the assembly language
program.

Special Addressing Modes

Three additional types of special purpose addressing are used by the 9900.

Immediate Addressing

Immediate addressing instructions contain the data to be used as a part of the instruction.
In these instructions the first word is the instruction operation code and the second word
of the instruction is the data to be used:

(PC) -...J INSTRUCTION

(PC)+ 2 -1 IMMEDIATE VALUE

6-8 9900 FAMILY SYSTEMS DESIGN

Instruction Set SOFTWARE FEATURES
OFTHE9900

Program Counter Relative Addressing

Conditional branch or jump instructions use a form of program counter relative
addressing. In such instructions the address of the instruction to be branched to is
relative to the location of the branch instruction. The instruction includes a signed
displacement with a value between - 128 and + 127. The branch address is the value of
the program counter plus two plus twice the displacement. For example, if LOOP is the
label at location 1016 and the instruction:

JMP LOOP

is at location 1816, the displacement in the instruction machine code generated by the
assembler will be - 5 or FB16. This value is obtained by adding two to the current
program counter:

1816+2=1A16

and subtracting from this result the location of LOOP:

1A16 -1016 = A16 = 10 decimal.

The displacement of 5 is one-half this value of 10 and it is negative since LOOP is 5
words prior to the 1816 + 2 location.

CR U Addressing

CRU addressing uses the number contained in bits 3 through 14 of register 12 to form a
hardware base address:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I I I I I I I I I I I I

R12

CRU Hardware Base address= Contents of R12 divided by 2

Thus if R12 contains 040016 (the software base address), bits 3 through 14 will be
020016. This hardware base address is used to indicate the starting CRU bit address for
multiple bit CRU transfer instructions (STCR and LDCR). It is added to the
displacement contained in single bit CRU instructions (TB, SBO, SBZ) to form the
CRU bit address for these instructions. For example, to set CRU bit 208 to a one, with
register 12 containing 40016, the following CRU instruction would be used:

SBO 8

so that the CRU bit address is 20016 + 8. = 20816 •

9900 FAMILY SYSTEMS DESIGN 6-9

ASSEMBLY LANGUAGE
PROGRAMMING INFORMATION

ASSEMBLY LANGUAGE PROGRAMMING INFORMATION t

Instruction Set

In order to understand the instruction descriptions and applications the assembly
language nomenclature must be understood. Assembly language is a readily understood
language in which the 9900 instructions can be written. The machine code that results
from the assembly of ptograms written in this language is called object code. Such object
code may be absolute or relocatable, depending on the assembly language coding.
Relocatable code is that which can be loaded into any block of memory desired, without
reassembling or without changing program operation. Such code has its address
information relative to the first instruction of the assembly language program so that
once a loader program specifies the location of this first instruction, the address of all
instructions are adjusted to be consistent with this location. Absolute code contains
absolute addresses which cannot be changed by the loader or any operation other than
reassembling the program. Generally, relocatable code is preferable since it allows the
program modules to be located anywhere in memory of the final system.

AssEMBLY LANGUAGE FORMATS

The general assembly language source statements consist of four fields as follows:

LABEL MNEMONIC OPERANDS COMMENT

The first three fields must occur within the first 60 character positions of the source
record. At least one blank must be inserted between fields.

Label Field

· 6 The label consists of from one to six characters, beginning with an alphabetic character
in character position one of the source record. The label field is terminated by at least
one blank. When the assembler encounters a label in an instruction it assigns the current
value of the location counter to the label symbol. This is the value associated with the
label symbol and is the address of the instruction in memory. If a label is not used,
character position 1 may be a blank, or an asterisk.

Mnemonic or Opcode Field

This field contains the mnemonic code of one of the instructions, one of the assembly
language directives, or a symbol representing one of the program defined operations.
This field begins after the last blank following the label field. Examples of instruction
mnemonics include A for addition and MOV for data movement. The mnemonic field is
required since it identifies which operation is to be performed.

Operands Field

The operands specify the memory locations of the data to be used by the instruction.
This field begins following the last blank that follows the mnemonic field. The memory
locations can be specified by using constants, symbols, or expressions, to describe one of
several addressing modes available. These are summarized in Figure 6-5.

tExcerpts from Model 990computer TMS 9900 Microprocessor Assembly Language Programmer's Guide.

6-10 9900 FAMILY SYSTEMS DESIGN

-0

I
5' -0

0 en
0 2 'Tl
;i:.. a
~ c;·

~
:::s

Type of Operand Memory Location MOV Instruction Result Tdor T. en
rJl Addressing Fonnat Specified Example Coding Field Code

!!.
-<
rJl,
t'I'.l Workspace n Workspace Register n MOV 3,5 R3-R5 00
~
rJl Register Rn
t:l
t'I'.l Workspace *n Address given by the MOV *3,*5 M(R3) - M(R5) 01 rJl

0 Register contents of workspace
z Indirect register n

~
M(Rn)

~· Workspace *n+ As in register Indirect; MOV *3+,*5+ M(R3) - M(R5) 11
~

~ Register address register Rn is R3+2-R3

9'- Indirect, incremented after the R5+2-R5
$Jt Autoincrement operation (by one for

~ byte operations, by two 1-rj >
for word operations) ~(/) §= ocn

~ Symbolic @exp Address is given by MOV @ONE,@10 M(ONE) - M(lO) 10 ()~
~- Memory value of exp. ~~
~

M(exp) ;pto
~ Indexed @exp(n) Address is the sum of the MOV @2(3), @DP(5) M(R3 + 2) - M(R5 +DP) 10 ~~
""' Memory contents of Rn and the ~~ value of exp ~;p

M(Rn+exp) Zz
Notes:

I
()()
~c

n is the number of the workspace register: O~n~ 15; n may not be 0 for indexed addressing. z>
~Cl

exp is a symbol, number, or expression ~~ The T d and T. fields are two bit portions of the instruction machine code. There are also S and D four bit fields,
which are filled in with the four bit code for n. n is 0 for symbolic or direct addressing. ~

~
~

~I I 0
z

"" ...

..-6

ASSEMBLY LANGUAGE
PROGRAMMING INFORMATION

Comments Field

Instruction Set

Comments can be entered after the last blank that follows the operands field. If the first
character position of the source statement contains an asterisk (*), the entire source
statement is a comment. Comments are listed in the source portion of the assembler
listing, but have no affect on the object code.

TERMS AND SYMBOLS

Symbols are used in the label field, the operator field, and the operand field. A symbol is
a string of alphanumeric characters, beginning with an alphabetic character.

Terms are used in the operand fields of instructions and assembler directives. A term is a
decimal or hexadecimal constant, an absolute assembly-time constant, or a label having
an absolute value. Expressions can also be used in the operand fields of instructions and
assembler directives.

Constants

Constants can be decimal integers (written as a string of numerals) in the range of
-32,768 to + 65,535. For example:

257

Constants can also be hexadecimal integers (a string of hexadecimal digits preceded by
>). For example:

>09AF

ASCII character constants can be used by enclosing the desired character string in single
quotes. For example:

'DX'= 445816 'R'+005216

Throughout this book the subscript 16 is used to denote base 16 numbers. For
example, the hexadecimal number 09AF will be written 09AF16•

Symbols

Symbols must begin with an alphabetic character and contain no blanks. Only the first six
characters of a symbol are processed by the assembler.

The assembler predefines the dollar sign ($) to represent the current location in the
program.

A given symbol can be used as a label only once, since it is the symbolic name of the
address of the instruction. Symbols defined with the DXOP directive are used in the
OPCODE field. Any symbol in the OPERANDS field must have been used as a label or
defined by a REF directive.

6-12 9900 FAMILY SYSTEMS DESIGN

Instruction Set ASSEMBLY LANGUAGE
PROGRAMMING INFORMATION

Expressions

Expressio'ns are used in the OPERANDS fields of assembly language statements. An
expression is a term or a series of terms separated by the following arithmetic
operations:

+ addition

- subtraction

* multiplication

I division

The operator precedence is +, - , *, I (left to right).

The expression must not contain any imbedded blanks or extended operation defined
(DXOP directive defined) symbols. Unary minus (a minus sign in front of a number or
symbol) is performed first and then the expression is evaluated from left to right. An
example of the use of the unary minus in an expression is:

LABEL+TABLE+ (-INC)

which has the effect of the expression:

LABEL+ TABLE - INC

The relocatability of an expression is a function of the relocatability of the symbols and
constants that make up the expression. An expression is relocatable when the number of
relocatable symbols or constants added to the expression is one greater than the number 6<1111

of relocatable symbols or constants subtracted from the expressions. All other
expressions are absolute. The expression given earlier would be relocatable if the three
symbols in the expression are all relocatable.

The following are examples of valid expressions.

BLUE+l

2*16+ RED

440/2-RED

SURVEY OF THE 9900 INSTRUCTION SET

The 9900 instructions can be grouped into the following general categories: data
transfer, arithmetic, comparison, logical, shift, branch, and CR U input/ output
operations. The list of all instructions and their effect on status bits is given in
Figure 6-6.

9900 FAMILY SYSTEMS DESIGN 6-13

ASSEMBLY LANGUAGE Instruction Set

PROGRAMMING INFORMATION

Mnemonic L>'A> EQ c OV OP x Mnemonic L> A> EQ c ov OP x
A x x x x x DIV x
AB x x x x x x IDLE
ABS x x x x x INC x x x x x
AI x x x x x INCT x x x x x
ANDI x x x INV x x x
B JEQ
BL]GT
BLWP JH
c x x x JHE
CB x x x x JL
CI x x x JLE
CKOF JLT
CKON JMP
CLR JNC
coc x JNE
czc x JNO
DEC x x x x x JOC
DECT x x x x x]OP
LDCR x x x SBZ
LI x x x SETO
LIMI SLA x x x x x
LREX soc x x x
LWPI SOCB x x x x
MOV x x x SRA x x x x
MOVB x x x x SRC x x x x
MPY SRL x x x x

... 6 NEG x x x x x STCR x x x
ORI x x x STST
RSET STWP
RTWP x x x x x x x SWPB
s x x x x x szc x x x
SB x x x x x x SZCB x x x x
SBO TB x

x 2 2 2 2 2 2 2
XOP 2 2 2 2 2 2 2
XOR x x x

Notes: 1. When an LDCR or STCR instruction transfers eight bits or less, the OP bit is set or reset as in byte
instructions. Otherwise these instructions do not affect the OP bit.

2. The X instruction does not affect any status bit; the instruction executed by the X instruction sets status
bits normally for that instruction. When an XOP instruction is implemented by software, the XOP bit is
set, and the subroutine sets status bits normally.

Figure 6-6. Status Bits Affected by Instructions

6-14 9900 FAMILY SYSTEMS DESIGN

Instruction Set ASSEMBLY LANGUAGE
PROGRAMMING INFORMATION

Data Transfer Instructions

Load- used to initialize processor or workspace registers to a desired value.

Move- used to move words or bytes from one memory location to another.

Store- used to store the status or workspace pointer registers in a workspace register.

Arithmetic Instructions

Addition and Subtraction-perform addition or subtraction of signed or unsigned binary
words or bytes stored in memory.

Negate and Absolute Value-changes the sign or takes the absolute value of data words in
memory.

Increment and Decrement-Adds or subtracts 1or2 from the specified data words in
memory.

Multiply-Performs unsigned integer multiplication of a word in memory with a
workspace register word to form a 32 bit product stored in two successive workspace
register locations.

Divide-Divides a 32 bit unsigned integer dividend (contained in two successive
workspace registers) by a memory word with the 16 bit quotient and 16 bit remainder
stored in place of the dividend.

Compare Instructions

These instructions provide for masked or unmasked comparison of one memory word or
byte to another or a workspace register word to a 16 bit constant.

Logical Instructions

OR and AND-masked or unmasked OR and AND operations on corresponding bits of
two memory words. A workspace register word can be ORed or ANDed with a 16 bit
constant.

Complement and Clear - The bits of a selected memory word can be complemented, or
cleared or set to ones.

Exclusive OR-A workspace register word can be exclusive ORed with another
memory word on a bit by bit basis.

Set Bits Corresponding-Set bits to one (SOC) or to zero (SZC) whose positions
correspond to one positions in a reference word.

9900 FAMILY SYSTEMS DESIGN 6-15

6~

.. 6

ASSEMBLY LANGUAGE
PROGRAMMING INFORMATION

Shift Instructions

Instruction Set

A workspace register can be shifted arithmetically or logically to the right. The registers
can be shifted to the left (filling in vacated positions with zeroes) or circulated to the
right. The shifts and circulates can be from 1 to 16 bit positions.

Branch Instructions

The branch instructions and the JMP Gump) instruction unconditionally branch to
different parts of the program memory. If a branch occurs, the PC register will be
changed to the value specified by the operand of the branch instruction. In subroutine
branching the old value of the PC is saved when the branch occurs and then is restored
when the return instruction is executed. The conditional jump instructions test certain
status bits to determine if jump is to occur. When a jump is made' the PC is loaded with
the sum of its previous value and a displacement value specified in the operand portion of
the instruction.

Control/CRU Instructions

These instructions provide for transferring data to and from the communications register
input/output unit (CRU) using the CRUIN, CRUOUT and CRUCLK pins of the 9900.

INSTRUCTION DESCRIPTIONS

The information provided for each instruction in the next section of this chapter is as
follows:

Name of the instruction.

Mnemonic for the instruction.

Assembly language and machine code formats.

Description of the operation of the instruction.

Effect of the instruction on the Status Bits.

Examples.

Applications.

The format descriptions and examples are written without the label or comment fields
for simplicity. Labels and comments fields can be used in any instruction if desired.

6-16 9900 FAMILY SYSTEMS DESIGN

Instruction Set ASSEMBLY LANGUAGE
PROGRAMMING INFORMATION

Each instruction involves one or two operand fields which are written with the following
symbols:

G-Any addressing mode is permitted except I (Immediate).

R-Workspace register addressing.

exp-A symbol or expression used to indicate a location.

value-a value to be used in immediate addressing.

cnt-A count value for shifts and CRU instructions.

CRU-CRU (Communications Register Unit) bit addressing.

The instruction operation is described in written and equation form. In the equation
form, an arrow(--) is used to indicate a transfer of data and a colon (:) is used to indicate a
comparison. In comparisons, the operands are not-changed. In transfers, the source
operand (indicated with the subscripts) is not changed while the destination operand
(indicated with the subscript d) is changed. For operands specified by the symbol G, the
M(G) nomenclature is used to denote the memory word specified by G. MB(G) is used
to denote the memory byte specified by G. Thus, transferring the memory word
contents addressed by Gs to the memory word location specified by Gd and comparing
the source (Gs) data to zero during the transfer, can be described as:

M(Gs) - M(Gd)

M(Gs):O

which is the operation performed by the MOV instruction:

MOV

A specific example of this instruction could be:

MOV @ONE,3

which moves the contents of the memory word addressed by the value of the symbol
ONE to the contents of workspace register 3:

M(ONE)-R3

M(ONE): 0

9900 FAMILY SYSTEMS DESIGN 6-17

6

Instruction Set

DATA TRANSFER INSTRUCTIONS

The MOV instructions are used to transfer data from one part of the system to another
part. The LOAD instructions are us~d to initialize registers to desired values. The
STORE instructions provide for saving the status register (ST) or the workspace
pointer (WP) in a spec;ified workspace register.

LOAD IMMEDIATE

Format: LI R,value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

.1 0 I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 0 I 0 I 0 I I ~ I
(0200+R)

0:5R:515

Operation: The 16 bit data value in the word immediately following the instruction is
loaded into the specified workspace register R.

value-R
immediate operand: 0

Affect on Status: LGT,AGT, EQ

Examples: LI 7,5 5 -R7

LI 8,>FF OOFF16 -R8

LI

Applications: The LI instruction is used to initialize a workspace register with a program
constant such as a counter value or data mask.

LOAD INTERRUPT MASK IMMEDIATE LIMI
Format: LIMI value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 1 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I (0300)

Operation The low order 4 bit value (bits 12-15) in the word immediately following the
instruction is loaded into the interrupt mask portion of the status register:

BITS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ST I I I I I I I I I I I I I I I I

Ajfec~ on Status: Interrupt mask code only

Example: LIMI 5

Enables interrupt levels 0 through 5

4 BIT VALUE

Application: The LIMI instruction is used to initialize the interrupt mask to control
which system interrupts will be recognized.

6-18 9900 FAMILY SYSTEMS DESIGN

Instruction Set LWP~ov
LOAD WORKSPACE POINTER IMMEDIATE LWPI
Format: LWPI value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 1 I 1 I 0 I 0 I 0 I 0 I 0 I (02EO)

Operation: The 16 bit value contained in the word immediately following the instruction
is loaded into the workspace pointer (WP):

value~WP

Affect on Status: None

Example: LWPI >0500

Causes 050016 to be loaded into the WP.

Application: L WPI is used to establish the workspace memory area for a section of the
program.

MOVEWoRn MOV
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 1 I 1 I 0 I 0 I ~ d I I ~ I I ;s I I ~ I I (C---)

Operation: The word in the location specified by Gs is transferred to the location
specified by Gd, without affecting the data stored in the Gs location. During the transfer, 6.....il
the word (Gs data) is compared to 0 with the result of the comparison stored in the status I

register:
M(G.)- M(Gd)
M(G.):O

Status Bits Affected: LGT, AGT, and EQ

Examples: MOV
MOV
MOV
MOV
MOV

R1,R3 R1-R3, R1:0
*R1,R3 M(R1)-R3, M(R1):0
@ONES,*1 M(ONES)-M(R1), M(ONES):O
@2(5),3 M(R5 + 2)-R3, M(R5 + 2):0
*R1 +,*R2+ M(R1)-M(R2), M(R1):0,

(R1)+2-R1, (R2)+2-R2

Application: MOV is used to transfer data from one part of the system to another part.

9900 FAMILY SYSTEMS DESIGN 6-19

~6

.MOVB
Instruction Set

MOVE BYTE MOVB
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 1 I 1 I 0 I 1 I ~d I I ~ I I ~s I I ~ I (D---)

Operation: The Byte addressed by Gs is transferred to the byte location specified by Gd.
If G is workspace register addressing, the most significant byte is selected. Otherwise,
even addresses select the most significant byte; odd addresses select the least significant
byte. During the transfer, the source byte is compared to zero and the results of the
comparison are stored in the status register.

MB(Gs)---+-MB(Gd)
MB(G.):O

Status Bits Affected· LGT, AGT, EQ, OP

Examples: MOV8 @>1C14,3
MOV8 *8,4

These instructions would have the following example affects:
Memory
Location

1C14
R3
RS

2123
R4

The underlined data are the bytes selected.

Contents
Initially

2016
5428
2123
1040
OAOC

Contents
After Transfer

2016
2028
2123
1040
400C

Application: MOVB is used to transfer 8 bit bytes from one byte location to another.

6-20 9900 FAMILY SYSTEMS DESIGN

Instruction Set

SWPB/srsT
SWAP BYTES SWPB
Format: SWPB G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 0 I 0 I 0 I 1 I 1 I 0 I 1 I 1 I ~s I I ~ I (06CO +Ts 'S)

Operation: The most significant byte and the least significant bytes of the word at the
memory location specified by G are exchanged.

Affect on Status: None

Before After

Example: SWPB 3 R3 Contents: F302 02F3

Application: Used to interchange bytes if needed for subsequent byte operations.

STORE STATUS

Format: STST R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo
1

o
1

o
1

o
1

o
1

o
1

1

1

o
1

1
1

1

1

o
1

ol
1

~
1 (02CO+R)

0:5R:515

STST

Operation: The contents of the status register are stored in the workspace register
specified:

ST-R

Affect on Status: None

Example: STST 3 ST is transferred to R3

Application: STST is used to save the status for later reference.

9900 FAMILY SYSTEMS DESIGN 6-21

6--

~6

STWP
STORE WoRKSPACE POINTER

Format: STWP R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
1
o

1
o

1
o

1
o

1
o

1
1

1
o

1
1

1
o

1
1

1

ol '~
1

I (02AO+R)

0:5R:515

Instruction Set

STWP

Operation: The contents of the workspace pointer are stored in the workspace register
specified:

WP-R

Affect on Status: None

Example: STWP 3 WP is transferred into R3

Appliation: STWP is used to save the workspace pointer for later reference.

6-22 9900 FAMILY SYSTEMS DESIGN

Instruction Set

ARITHMETIC INSTRUCTIONS

These instructions perform the following basic arithmetic operations: addition (byte or
word), subtraction (byte or word), multiplication, division, negation, and absolute value.
More complicated mathematical functions must be developed using these basic
operations. The basic instruction set will be adequate for many system requirements.

Ann WoRDS A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 1 I 0 I 1 I 0 I ~ d I I ~ I I ; s I I ~ I I (A---)

Operation: The data located at the address specified by Gs is added to the data located at
the address specified by Gd. The resulting sum is placed in the Gd location and is
compared to zero:

M(G.) + M(Gd) - M(Gd)
M(G.) + M(Gd):O

Status Bits Affected: LGT, AGT, EQ, C, OV

Examples: A
A

5,@TABLE R5 + M(TABLE) -M(TABLE)
3, *2 R3 + M(R2) -M(R2)

with the sums compared to 0 in each case. Binary addition affects on status bits can be
understood by studying the following examples:

M(Gs) M(G<J) Sum LGT ACT** EQ c OV*

1000 0001 1001 1 1 0 0 0
FOOD 1000 0000 0 0 1 1 0
FOOD 8000 7000 1 1 0 1 1
4000 4000 8000 1 0 0 0 1

*OV (overflow) is set if the most significant bit of the sum is different from the most
significant bit of M(Gd) and the most significant bit of both operands are equal.

** AGT (arithmetic greater than) is set if the most significant bit of the sum is zero and if
EQ (equal) is 0.

Application: Binary addition is the basic arithmetic operation required to generate many
mathematical functions. This instruction can be used to develop programs to do
multiword addition, decimal addition, code conversion, and so on.

9900 FAMILY SYSTEMS DESIGN

A

6 ...

6-23

Instruction Set

AB
Ann BYTES AB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 1 I 0 I 1 I 1 I ;d I I 6 I I Ts I I ~ I I (B---)

Operation: The source byte addressed by Gs is added to the destination byte addressed by
Ga and the sum byte is placed in the Gct byte location. Recall that even addresses select
the most significant byte and odd addresses select the least significant byte. The sum
byte is compared to 0.

MB(Gs) + MB(Gd)~ MB(Gd)
MB(Gs) + MB(Gct):O

Status Bits Affected- LGT, AGT, EQ, C, OV, OP

Example: AB 3,*4+ R3+MB(R4)-MB(R4), R4+2-R4
AB @TAB,5 MB(TAB) + R5- R5

To see how the AB works, the following example should be studied:
AB @>2120,@>2123

Memory
Location

2120
2123

Data Before
Addition

F320
2106

Data After
Addition

F320
21F9

,,. 6 The underlined entries are the addressed and changed bytes.

Application: AB is one of the byte operations available on the 9900. These can be
useful when dealing with subsystems or data that use 8 bit units, such as ASCII codes.

6-24 9900 FAMILY SYSTEMS DESIGN

Instruction Set

Ann IMMEDIATE

Format: Al R,Value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo
1

0
1

0
1

0
1

0
1
o

1
1

1
o

1
o

1
o

1
1

1
ol

1
~

1 (0220+ R)

O:sR:s 15

Operation: The 16 bit value contained in the word immediately following the instruction
is added to the contents of the workspace register specified.

R+Value-R, R+Value:O

Status Bits Affected· LGT, AGT, EQ, C, OV

Example: Al 6, > C
Adds C16 to the contents of workspace register 6. If R6 contains 100016 , then the
instruction will change its contents to 100C16 , and the LGT and AGT status bits will be
set.

Application: This instruction is used to add a constant to a workspace register. Such an
operation is useful for adding a constant displacement to an address contained in the
workspace register.

SUBTRACT w ORDS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 1I1.1 0 I ~d I I 6 I I ;s I I ~ I I (6---)

Operation: The source 16 bit data (location specified by Gs) is subtracted from the
destination data (location specified by Gd) with the result placed in the destination
location Gd. The result is compared to 0.

M(Gd) - M(Gs)-M(Gd)
M(Gd) - M(G.):O

Status Bits Affected· LGT, AGT, EQ, C, OV

Examples: S @OLDVAL,@NEWVAL

would yield the following example results:

Memory
Location
OLDVAL
NEWVAL

Before Subtraction
Contents

1225
8223

After Subtraction
Contents

1225
6FFE (8223·1225)

All status bits affected would be set to 1 except equal which would be reset to 0.

Application: Provides 16 bit binary subtraction.

9900 FAMILY SYSTEMS DESIGN

s
6~

6-25

SB
Instruction Set

SUBTRACT BYTES SB
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 1 I 1 I 1 I ~ d I I ~ I I ~s I I ~ I I (7---)

Operation: The source byte addressed by Gs is subtracted from the destination byte
addressed by Gd with the result placed in byte location Gd. The result is compared to 0.
Even addresses select the most significant byte and odd addresses select the least
significant byte. If workspace register addressing is used, the most significant byte of the
register is used.

MB(Gd) - MB(Gs) -MB(Gd)
MB(Gd)- MB(Gs):O

Status Bits Affected: LGT,AGT,C,EQ,OV,OP
Format: SB *6+,1 R1 -MB(R6)-R1

R1 - MB(R6):0
R6+1-R6

This operation would have the following example result:

Memory Contents Before
Location Instruction

R6
1210
R1

1210
3123
1344

Contents After
Instruction

121E
4123
F044

~ 6 The underlined entries indicated the addressed and changed bytes. The LGT (logical
greater than) status bit would be set to 1 while the other status bits affected would be 0.

Application: SB provides byte subtraction when 8 bit operations are required by the
system.

6-26 9900 FAMILY SYSTEMS DESIGN

Instruction Set

IN9'1NCT
INCREMENT INC
Format: INC G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 1 I 0 I ;s I I ~ I (05--)

Operation:· The data located at the address indicated by G is incremented and the result is
placed in the G location and compared to 0.

M(G) + 1 - M(G)
M(G) + 1 : 0

Status Bits Affected: LGT, AGT, EQ, C, OV

Examples: INC
INC

@TABL
1

M(TABL) + 1 - M(T ABL)
(R1)+1-R1

Application: INC is used to increment byte addresses and to increment byte counters.
Autoincrementing addressing on byte instructions automatically includes this operation.

INCREMENT BY Two INCT
Format: INCT G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 1 I 1 I ~s I I ~ I (05--)

Operation: Two is added to the data at the location specified by G and the result is stored
at the G location and is compared to 0: 6<1111111

M(G) + 2 - M(G)
M(G) + 2: 0

Status Bits Affected: LGT, AGT, EQ, C, OV

Example: INCT 5 (R5)+2-R5

Application: This can be used to increment word addresses, though autoincrementing on
word instructions does this automatically.

9900 FAMILY SYSTEMS DESIGN 6-27

... 6

Instruction Set

DECREMENT DEC
Format: DEC G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I 0 I 0 I 0 I 0 I 0 I 1 I 1 I 0 I 0 I 0 I ~s I I ~ I I (06--)

Operation: One is subtracted from the data at the location specified by G, the result is
stored at that location and is compared to 0:

M(G) - 1 --M(G)
M(G)-1 : 0

Status Bits Affected· LGT, AGT, EQ, C, OV

Example: DEC @TABL M(TABL) - 1 - M(TABL)

Application: This instruction is most often used to decrement byte counters or to work
through byte addresses in descending order.

DECREMENT BY Two DECT
Format: DECT G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 0 I 0 I 0 I 1 I 1 I 0 I 0 I 1 I is I I ~ I I (06--)

Operation: Two is subtracted from the data at the location specified by G and the result is
stored at that location and is compared to 0:

M(G) - 2 - M(G)
M(G)-2: 0

Status Bits Affected- LGT, AGT, EQ, C, OV

Example: DECT 3 (R3)-2-R3

Application: This instruction is used to decrement word counters and to work through
word addresses in descending order.

6-28 9900 FAMILY SYSTEMS DESIGN

Instruction Set

NEGATE NEG
Format: NEG G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 0 I 0 I ~s I I ~ I (05--)

Operation: The data at the address specified by G is replaced by its two's complement.
The result is compared to 0:

-M(G)-M(G)
- M(G): 0

Status Bits Affected- LGT, AGT, EQ, C, OV (OV set only when operand= 800016)

Example: NEG 5 -(R5)- RS

If RS contained A34 216 , this instruction would cause the RS contents to changed to
SCBE16 and will cause the LGT and AGT status bits to be set to 1.

Application: NEG is used to form the 2's complement of 16 bit numbers.

ABSOLUTE v ALUE ABS
Format: ABS G

0/1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 0 I 0 I 0 I 1 I 1 I 1 I 0 I 1 I ~s I I ~ I (07---)

Operation: The data at the address specified by G is compared to 0. Then the
absolute value of this data is placed in the G location:

M(G): 0
IM(G)I - M(G)

Status Bits Affected· LGT, AGT, EQ, OV (OV set only when.operand= 800016)

Example: ABS @LIST(7) IM(R7 + LIST)I- M(R7 +LIST)

If the data at R7 +LIST is FF3C16 , it will be changed to OOC416 and LGT will be
set to 1.

Application: This instruction is used to test the data in location G and then replace
the data by its absolute value. This could be used for unsigned arithmetic
algorithms such as multiplication.

9900 FAMILY SYSTEMS DESIGN 6-29

6

... 6

MPV
MULTIPLY

Format: MPV Gs,Rd
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I 0 I 0 I 1 I 1 I 1 I 0 I I ~ I I ~s I I ~ I I (3---)

Operation: The 16 bit data at the address designated by Gs is multiplied by the 16
bit data contained in the specified workspace register R. The unsigned binary
product (32 bits) is placed in workspace registers Rand R + 1:

Gs

MULTIPLIER x MULTIPLICAND

PRODUCT ::5 FFFE0001,.

Affect on Status: None

Example: MPV @NEW,5

Instruction Set

MPV

If the data at location NEW is OOOS16 and RS contains 001216 , this instruction will
cause RS to contain 000016 and R6 to contain OOSA16 •

Application: MPY can be used to perform 16 bit by 16 bit binary multiplication.
Several such 32 bit subproducts can be combined in such a way to perform
multiplication involving larger multipliers and multiplicands such as a 32 bit by 32 bit
multiplication.

6-30 9900 FAMILY SYSTEMS DESIGN

Instruction Set

DIVIDE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 1 I 1 I 1 I 1 I I ~ I I ~s I I ~ I (3---)

Operation: The 3 2 bit number contained in workspace registers Ri and Ri + 1 is
divided by the 16 bit data contained at the address specified by Gs. The workspace
register Ri then contains the quotient and workspace Ri + 1 contains the 16 bit
remainder. The division will occur only if the divisor at G is greater than the data
contained in Ri:

M(G)

QUOTIENT REMAINDER DIVISOR

DIVIDEND

Affect on Status: Overflow (OV) is set if the divisor is less than the data contained in
Ri. If OV is set, Ri and Ri + 1 are not changed.

Example: DIV @LOC,2

If R2 contains 0 and R3 contains OOOD16 and the data at address LOC is 000516,

this instruction will cause R2 to contain 000216 and R3 to contain 000316 • OV
would be 0.

Application: DIV provides basic binary division of a 32 bit number by a 16 bit
number.

9900 FAMILY SYSTEMS DESIGN

DIV

DIV

6...._

6-31

~6

c Instruction Set

COMPARISON INSTRUCTIONS

These instructions are used to test words or bytes by comparing them with a
reference constant or with another word or byte. Such operations are used in
certain types of division algorithms, number conversion, and in recognition of
input command or limit conditions.

COMPARE WORDS

0 1 2 3 . 4 5 6 7 8 9 10 11 12 13 14 15

I 1 I 0 I 0 I 0 I ~d I I ~ I I ~s I I ~ I (8---)

Operation: The 2's complement 16 bit data addressed by Gs is compared to the 2's
complement 16 bit data addressed by Gd. The contents of both locations remain
unchanged.

M(Gs) : M(Gd)

Status Bits Affected: LGT, AGT, EQ

Example: C @T1,2

This instruction has the following example results:
Data at Data in Results of Comparison

Location T 1 R2 LGT ACT EQ
FFFF 0000
7FFF 0000
8000 0000
8000 7FFF
7FFF 7FFF
7FFF 8000

1
1
1
1
0
0

0
1
0
0
0
1

0
0
0
0
1
0

c

Application: The need to compare two words occurs in such system functions as division,
number conversion, and pattern recognition.

6-32 9900 FAMILY SYSTEMS DESIGN

Instruction Set

COMPARE BYTES

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 1 I 0 I 0 I 1 I T~ I I ~ I I ~s I I ~ I I (9---)

Operation: The 2's complement 8 bit byte addressed by Gs is compared to the 2's
complement 8 bit byte addressed by Gct:

MB(Gs) : MB(Gd)

Status Bits Affected: LGT, AGT,EQ,OP

OP (odd parity) is based on the number of bits in the source byte.

Example: CB 1,*2

with the typical results of (assuming R2 addresses an odd byte):

Rl data
FFFF
7FOO
8000
8000
7FOO

M(R2) Data
FFOO
FFOO
FFOO
FF7F
007F

LGT
1
1
1
1
0

The underlined entries indicate the byte addressed.

Results of Comparison
ACT EQ

0 0
1 0
0 0
0 0
0 1

OP
0
1
1
1
1

Application: In cases where 8 bit operations are required, CB provides a means of
performing byte comparisons for special conversion and recognition problems.

9900 FAMILY SYSTEMS DESIGN

CB

CB

6~

6-33

_...6

Clfoc Instruction Set

COMPARE IMMEDIATE

Format: Cl R, Value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo
1

o
1

o
1

o
1

o
1

o
1

1
1

o
1

1
1

o
1

o
1

ol
1

~
1 (0280+R)

0:5R:515

Cl

Operation: CI compares the specified workspace register contents to the value contained
in the word immediately following the instruction:

R: Value

Status Bits Affected· LGT, AGT, EQ

Example: Cl 9, > F330

If R9 contains 2183 16 , the equal (EQ) and logical greater than (LGT) bits will be 0 and
arithmetic greater than (AGT) will be set to 1.

Application: CI is used to test data to see if system or program limits have been met or
exceeded or to recognize command words.

COMPARE ONES CORRESPONDING coc
Format: COC GsiR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 1 I 0 I 0 I 0 I I ~ I I ~s I I ~ I I (2---)

Operation: The data in the location addressed by Gs act as a mask for the bits to be tested
in workspace register R. That is, only the bit position that contain ones in the Gs data
will be checked in R. Then, if R contains ones in all the bit positi~ns selected by the Gs
data, the equal (EQ) status bit will be set to 1.

Status Bits Affected- EQ

Example: COC @TESTBIT, 8

If R8 contains E30616 a~d location TESTBIT contains C 10216 ,

TESTBIT Mask= _1100 000! 0000 0010
RS = 1110 0011 0000 0110

equal (EQ) would be set to 1 since everywhere the test mask data contains a 1
(underlined positions), R8 also contains a 1.

Application: COC is used to selectively test groups of bits to check the status of certain
sub-systems or to examine certain aspects of data words.

6-34 9900 FAMILY SYSTEMS DESIGN

Instruction Set czc
COMPARE ZEROES CORRESPONDING czc
Format: CZC GsiR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 1 I 0 I 0 I 1 I I ~ I I ;s I I ~ I I (2---)

Operation: The data located in the address specified by Gs act as a mask for the bits to be
tested in the specified workspace register R. That is, only the bit positions that contain
ones in the Gs data are the bit positions to be checked in R. Then if R contains zeroes in
all the selected bit positions, the equal (EQ) status bit will be set to 1.

Status Bits Affected· EQ

Examples: CZC @TESTBIT,8

If the TESTBIT location contains the value Cl0216 and the R8 location contains 230116 ,

TESTBIT Data= 1100 0001 0000 0010
RB = 0010 00110000 0001 - x -

the equal status bit would be reset to zero since not all the bits of R8 (note the X
position) are zero in the positions that the TESTBIT data contains ones.

Application: Similar to the COC instruction.

9900 FAMILY SYSTEMS DESIGN 6-35

6~

.. 6

ANDI
Instruction Set

LOGIC INSTRUCTIONS

The logic instructions allow the processor to perform boolean logic for the system.
Since AND, OR, INVERT, and Exclusive OR (XOR) are available, any boolean
function can be performed on system data.

AND IMMEDIATE

Format: ANDI R,Value
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 1 I 0 I 0 I I ~ I I ~!~;1~

ANDI

Operation: The bits of the specified workspace register R are logically ANDed with the
corresponding bits of the 16 bit binary constant value contained in the word immediately
following the instruction. The 16 bit result is compared to zero and is placed in the
register R:

R AND Value~R
R AND Value : 0

Recall that the AND operation results in 1 only if both inputs are 1.

Status Bits Affected· LGT, AGT, EQ

Example: ANDI 0, > 6D03

If workspace register 0 contains D2AB16, then (D2AB) AND (6D03) is 400316 :

Value= 0110 1101 0000 0011
RO = 1101 0010 1010 1011

RO AND Value= 0100 0000 0000 0011 = 40031 6

This value is placed in RO. The LGT and AGT status bits are set to 1.

Application: ANDI is used to zero all bits that are not of interest and leave the selected
bits (those with ones in Value) unchanged. This can be used to test single bits or isolate
portions of the word, such as a four bit group.

6-36 9900 FAMILY SYSTEMS DESIGN

Instruction Set

0 R IMMEDIATE

Format: ORI R,Value
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I ~ I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 1 I 1 I 0 I I ~ I I (0260 + R)

. . . O:SR:S 15

Operation: The bits of the specified workspace register Rare ORed with the
corresponding bits of the 16 bit binary constant contained in the word immediately
following instruction. The 16 bit result is placed in Rand is compared to zero:

R OR Value-R
R OR Value: 0

Recall that the OR operation results in a 1 if either of the inputs is a 1.
Status Bits Affected: LGT, AGT, EQ
Example: ORI 5,>6003

If RS contained D2AB16, then RS will be changed to FFAB16 :

R5 = 1101 0010 1010 1011
Value= 0110 1101 0000 0011

1111 1111 1010 1011 = FFAB16 = R5 OR Value

with LGT being set to 1.

Application: Used to.implement the OR logic in the system.

9900 FAMILY SYSTEMS DESIGN

ORI

ORI

6

6-37

... 6

XORfiNv
Instruction Set

EXCLUSIVE 0 R

Format: XOR
XOR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Io Io I 1 Io ' 1 Io I I ~ I I ~s I I 's I I (2---)

Operation: The exclu;ive OR is performed between corresponding bits of the data
addressed by Gs and the contents of workspace register Ri. The result is placed in
workspace register Ri and is compared to 0:

M(Gs) XOR Rd - Rd
M(Gs) XOR Rd : 0

Status Bits Affected· LGT, AGT, EQ

Example: XOR @CHANGE,2

If location CHANGE contains 6D0316 and R2 contains D2AA16, R2 will be changed to
BFA916:

CHANGE Data= 0110
R2 = 1101

M(CHANGE) XOR R2 = 1011

1101
0010
1111

0000
1010
1010

0011
1010
1001· = BFA91 6

and the LGT status bit will be set to 1. Note that the exclusive OR operation will result
in a 1 if only one of the inputs is a 1.

Application: XOR is used to implement the exclusive OR logic for the system.

INVERT INV
Format: INV G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I

1 1 1 1 1 1 1 1 1

1

1

1

r 1 1

1
0 0 0 0 0 1 0 1 0 1 Ts S (05--)

Operation: The bits of the data addressed by G are replaced by their complement. The
result is compared to 0 and is stored at the G location:

M(G)-M(G)
M(G): 0

Status Bits Affected· LGT, AGT, EQ

Example: INV 11

If Rl 1 contains OOFF16, the instruction would change the contents to FF0016 , causing the
LGT status bit to set to 1.

Application: INV is used to form the l's complement of 16 bit binary numbers, or to
invert system data.

6-38 9900 FAMILY SYSTEMS DESIGN

Instruction Set

CLR/SETO
CLEAR

Format: CLR G
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 1 I 1 I ~s I I ~ I I (04--)

Operation: 000016 is placed in the memory location specified by G.

000016 - M(G)

Affect on Status: None
Example: CLR •:=11

would clear the contents of the location addressed by the contents of Rl 1, that is:
000016 - M(R11)

Application: CLR is used to set problem arguments to 0 and to initialize memory
locations to zero during system start-up operations.

CLR

SET To ONE
Format: SETO G SETO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 0 I 0 I 0 I 1 I 1 I 1 I 0 I 0 I ~s I I ~ I I (07--)

Operation: FFFF16 is placed in the memory location specified by G: FFFF16 - M(G)

Affect on Status: None

Example: SETO 11

would cause all bits of Rll to be 1.

Application: Similar to CLR

9900 FAMILY SYSTEMS DESIGN 6-39

6...a
I

... 6

80%ocB
Instruction Set

SET ONES CORRESPONDING soc
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I I I I I I I I I I I I I I I I I 1 1 1 0 T d D Ts S (E---)

Operation: This instruction performs the OR operation between corresponding bits of
the data addressed by Gs and the data addressed by Gd. The result is compared to 0 and
is placed in the Gd location:

M(Gs) OR M(Gd) -M(Gct)
M(Gs) OR M(Gct) : 0

Status Bits Affected: LGT, AGT, EQ

Example: SOC 3,@NEW

If location NEW contains AAAA16 and R3 contains FF0016 , the contents at location
NEW will be changed to FF AA16 and the LGT status bit will be set to 1.

Application: Provides the OR function between any two words in memory.

SET ONES CORRESPONDING, BYTE

Format: SOCB GsiGd

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I 1 I 1 I 1 I 1 I ~d I I b I I ~s I I ~ I I (F---)

SOCB

Operation: The logical OR is performed between corresponding bits of the byte
addressed by Gs and the byte addressed by Gd with the result compared to 0 and placed
in location Gd:

MB(Gs) OR MB(Gct) -MB(Gct)
MB(Gs) OR MB(Gct): 0

Status Bits Affected· LGT, AGT, EQ, OP

Example: SOCB 5,8

If RS contains F01316 and R8 contains AA2416 , the most significant byte of R8 will be
changed to F A16 so that R8 will contain F A2416 and the LGT status bit will be set to 1.

Application: The SOCB provides the logical OR function on system bytes.

6-40 9900 FAMILY SYSTEMS DESIGN

Instruction Set szc
SET TO ZEROES CORRESPONDING szc

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 1 I 0 I 0 I ~d I I ~ I I ~s I I ~ I I (4---)

Operation: The data addressed by Gs forms a mask for this operation. The bits in the
destination data (addressed by Gct) that correspond to the one bits of the source data
(addressed by Gs) are cleared. The result is compared to zero and is stored in the Gct
location.

M(Gs) AND M(Gd) - M(Gct)
M(Gs) AND M(Gct): 0

Status Bits Affected: LGT, AGT, EQ

Example: SZC 5,3

If RS contains 6D0316 and R3 contains D2AA16, this instruction will cause the R3
contents to change to 92A816:

R5 (Mask)= OUO U010000 OOU
R3 = 1101 0010 1010 1010

Result= 1001 001Q1010 1000 = 92A816

with the LGT status bit set. The underlined entries indicate which bits are to be cleared.

Application: SZC allows the programmer to selectively clear bits of data words. For
example, when an interrupt has been serviced, the interrupt request bit can be cleared by
using the SZC instruction.

9900 FAMILY SYSTEMS DESIGN 6-41

6~

~6

SZCB
SET TO ZEROES CORRESPONDING, BYTES

Format: SZCB GsGd

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 1 I 0 I 1 , • ~d I I ~ I I ~s I I ~ I I (5---)

Instruction Set

SZCB

Operation: The byte addressed by Gs will provide a mask for clearing certain bits of the
byte addressed by Gd. The bits in the Gd byte that will be cleared are the bits that are
one in the Gs byte. The result is compared to zero and is placed in the Gd byte:

MB(G.) AND MB(Gd)-MB(Gd)
MB(G.) AND MB(Gd): 0

Status Bits Affected: LGT, AGT, EQ, OP

Example: SZCB @BITS,@TEST

If location BITS is an odd address which locates the data 18F016 , and location TEST
contains an even address which locates the data AA2416 , the instruction will clear the first
four bits of TEST data changing it to OA2416 •

Application: Provides selective clearing of bits of system bytes.

6-42 9900 FAMILY SYSTEMS DESIGN

Instruction Set

SRA
SHIFT INSTRUCTIONS

These instructions are used to perform simple binary multiplication and division on
words in memory and to rearrange the location of bits in the word in order to examine a
given bit with the carry (C) status bit.

SHIFT RIGHT ARITHMETIC SRA
Format: SRA R,Cnt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 0 I I ~ I I I ~ I (08--)

Operation: The contents of the specified workspace register R are shifted right Cnt
times, filling the vacated bit position with the sign (most significant bit) bit: The shifted
number is compared to zero:

0 15

~
I

R

Status Bits Affected· LGT, AGT, EQ, C

Number of Shifts: Cnt (number contained in the instruction from 0 to 15) specifies the
number of bits shifted unless Cnt is zero in which case the shift count is taken from the
four least significant bits of workspace register 0. If both Cnt and these four bits are 0, a
16 bit position shift is performed. 6...il

Example: SRA 5,2 Shift R5 2 bit positions right
SRA 7,0

If RO least four bits contain 616, then the second instruction will cause register 7 to be
shifted 6 bit positions (Cnt in that instruction is 0):

If R7 Before Shift = 1011 1010 1010 1010 = BAAA 16

R7 After Shift ~ 1111 1110 1110 1010 = FEEA16
If RS Before Shift = 0101 0101 0101 0101 = SSSS16

RS After Shift = 0001 0101 0101 0101 = 1 SSS16

After the R7 shift the LGT would be set, and Carry= 1
After the RS shift LGT and AGT would be set and Carry= 0

Application: SRA provides binary division by zcnt.

9900 FAMILY SYSTEMS DESIGN 6-43

.-.6

SLA
Instruction Set

SHIFT LEFT ARITHMETIC SLA
Format: SLA R,Cnt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 0 I I ~ I I I ~ I (QA--)

Operation: The· contents of workspace register R are shifted left Cnt times (or if Cnt = 0,
the number of times specified by the least four bits of RO) filling the vacated positions
with zeroes. The carry contains the value of the last bit shifted out to the left and the
shifted number is compared to zero:

15

R 0

Status Bits Affected: LGT, AGT, EQ, C, OV

Example: SLA 10,5

If workspace register 10 contains 13 5 716 the instruction would change its contents to
6AE016 , causing the arithmetic greater than (AGT), logical greater than (LGT), and
overflow (OV) bits to set. Carry would be zero, the value of the last bit shifted.

Application: SLA performs binary multiplication by 2cnt

6-44 9900 FAMILY SYSTEMS DESIGN

Instruction Set SRLfsRc
SHIFT RIGHT LOGICAL SRL
Format: SRL R,Cnt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 1 I I ~ I I I ~ I (09--)

Operation: The contents of the workspace register specified by Rare shifted right Cnt
times (or if Cnt = 0, the number of times specified by the least four bits or RO) filling in
the vacated positions with zeroes. The carry contains the value of the last bit shifted out
to the right and the shifted number is compared to zero:

0 R

Status Bits Affected· LGT, AGT, ea, C

Example: SRL 0,3

If RO contained FFEF 16 , the contents would become lFFD16 with the AGT, LGT, and
C bits set to 1:

RO Before Shift = 1111 1111 1110 1111 = FFEF 16

RO After Shift = 0001 1111 1111 1101 = 1 FF016

Application: Performs binary division by 2cn t

SHIFT RIGHT CIRCULAR

Format: SRC R,Cnt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 1 I I ~ I I I ~ I (OB--)

SRC

Operation: On each shift the bit shifted out of bit 15 is shifted back into bit 0. Carry
contains the value of the last bit shifted and the shifted number is compared to 0. The
number of shifts to be performed is the number Cnt, or if Cnt = 0, the number contained
in the least significant four bits of RO:

~--0-R ~15~

Status Bits Affected· LGT, AGT, ea, C

Example: SRC 2,7

If R2 initially contains FFEF16 , then after the shift it will contain DFFF16 with LGT and
C set to 1.

R2 Before Shift= 1111 1111 111.Q.1111 = FFEF16

R2 After Shift = 1101 1111 1111 1111 = DFFF16

Application: SRC can be used to examine a certain bit in the data word, change the
location of 4 bit groups, or swap bytes.

9900 FAMILY SYSTEMS DESIGN 6-45

6 ...

... 6

B
Instruction Set

UNCONDITIONAL BRANCH INSTRUCTIONS

These instructions give the programmer the capability of choosing to perform the next
instruction in sequence or to go to some other part of the memory to get the next
instruction to be executed. The branch can be a subroutine type of branch, in which case
the programmer can return to the point from which the branch occurred.

BRANCH B
Format: B Gs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I o I o I o I o I o I 1 I o I o I o I 1 I ;s I I 's I (04--)

Operation: The Gs address is placed in the program counter, causing the next instruction
to be obtained from the location specified by Gs.

A !feet on Status: None

Example: B ,, 3

If R3 contains 21 CC16 , then the next instruction will be obtained from location 21 CC16 •

Application: This instruction is used to jump to another part of the program when the
current task has been completed .

6-46 9900 FAMILY SYSTEMS DESIGN

Instruction Set BL
BRANCH AND LINK BL
Format: BL Gs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I o I o I o I o I o I 1 I 1 I o I 1 I o I ~s I I 's I (06--)

Operation: The source address Gs is placed in the program counter and the address of the
instruction following the BL instruction is saved in workspace regis~er 11.

Gs-PC
(Old PC)-R11

Affect on Status: None

Example: BL @TRAN

Assume the BL instruction is located at 320016 and the value assigned to TRAN is
200016 • PC will be loaded with the value 200016 (TRAN) and Rl 1 will be loaded with
the value 320216 (old PC value).

Application: This is a shared workspace subroutine jump. Both the main program and the
subroutine use the same workspace registers. To get back to the main program at the
branch point, the following branch instruction can be used at the end of the subroutine:

B •:•11

which causes the Rll contents (old PC value) to be loaded into the program counter.

9900 FAMILY SYSTEMS DESIGN 6-47

6

BLWP
Instruction Set

BRANCH AND LOAD WORKSPACE POINTER BLWP
Format: BLWP Gs

0 1 2 ~ 4 5 6 7 8 9 10 11 12 13 14 15 I o I o I o I o ' o I 1 I o I o I o I o I ~s I I 's I I (04--)

Operation: The word specified by the source Gs is loaded into the workspace pointer
(WP) and the next word in memory (Gs + 2) is loaded into the program counter (PC) to
cause the branch. The old workspace pointer is stored in the new workspace register 13,
the old PC value is stored in the new workspace register 14, and the status register is
stored in new workspace register 15:

M(Gs)-WP
M(Gs +2)~PC
(Old WP)--+-New R13
(Old PC)--+- New R14
(Old ST)-New R15

Affect on Status: None

Example: BLWP o:c3

Assuming that R3 contains 210016 and location 210016 contains 050016 and location
210216 contains 010016 , this instruction causes WP to be loaded with 050016 and PC to
be loaded with 010016 • Then, location 051A16 will be loaded with the old WP value, the
old PC value will be saved in location 051 C16 , and the status (ST) will be saved in location

,.. 6 051 E16 • The next instruction will be taken from address 010016 and the subroutine
workspace will begin at 050016 (RO). BLWP and XOP do not test IREQ at the end of
instruction execution.

Application: This is a context switch subroutine jump with the transfer vector location
specified by Gs. It uses a new workspace to save the old values of WP, PC, and ST (in
the last three registers). The advantage of this subroutine jump over the BL jump is that
the subroutine gets its own workspace and the main program workspace contents are not
disturbed by subroutine operations.

6-48 9900 FAMILY SYSTEMS DESIGN

Instruction Set XOP
- . 6·

EXTENDED OPERATION XOP
Format: XOP G51 n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 1 I 0 I 1 I 1 I I ~ I I ~s I I ~ I I (2---)

Operation: n specifies which extended operation transfer vector is to be used in the
context switch branch from XOP to the corresponding subprogram. The effective
address Gs is placed in Rl 1 of the subprogram workspace in order to pass an argument
or data location to the subprogram:

M(n x 4 + 004016)-WP
M(n x 4 + 004216) - PC
(Old WP) - New R13
(Old PC) - New R14
(Old ST)-New R15
Gs-NewR11

Affect on Status: Extended Operation (X) bit is set.

Example: XOP •:•1,2

Assume Rl contains 07 5016 • WP is loaded with the word at address 4816 (first part of
transfer vector for extended operation 2) and PC is loaded with the word at address 4A16 •

If location 4816 contains 020016 , this will be the address of RO of the subprogram
workspace. Thus, location 023616 (new R11) will be loaded with 075016 (contents of Rl
in main program), location 023A16 (new Rl3) will be loaded with the old WP value,
location 023C16 will be loaded with the old PC value, and location 023E16 (new R15) will
be loaded with the old status value:

M(4816)-WP
M(4A16)-PC
(Old WP)- M(023A16)

(Old PC)-M(023C16)

(Old ST)-M(023E16)

075016 - M(023616)

New R13
New R14

New R15
New R11

Application: This can be used to define a subprogram that can be called by a single
instruction. As a result, the programmer can define special purpose instructions to
augment the standard 9900 instruction set.

9900 FAMILY SYSTEMS DESIGN

' tli

6-49

6~

RTWP~MP
Instruction Set

RETURN WITH WORKSPACE POINTER RTWP
Format: RTWP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 1 I 1 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I (0380)

Operation: This is a return from a context switch subroutine. It occurs by restoring the
WP, PC, and ST register contents by transferring the contents of subroutine workspace
registers R13, Rl4, and R15, into the WP, PC, and ST registers, respectively.

R13-WP
R14-PC
R15-ST

Status Bits Affected: All (ST receives the contents of R15)

Application: This is used to return from subprograms that were reached by a transfer
vector operation such as an interrupt, extended operation, or BL WP instruction.

UNCONDITIONAL }UMP

Format: JMP EXP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 0 I 1 I 0 I 0 I 0 I 0 I I I I Di~P I I I (10--)

.,.. 6 Operation: The signed displacement defined by EXP is added to the current contents of
the program counter to generate the new value of the program counter. The location
jumped to must be within -128 to + 127 words of the present location.

Affect on Status: None

Example: J MP THERE

If this instruction is located at 001816 and THERE is the label of the instruction located
at 001016 , then the Exp value placed in the object code would be FB (for -5). Since the
Assembler makes this computation, the programmer only needs to place the appropriate
label or expression in the operand field of the instruction.

Application: If the subprogram to be jumped to is within 128 words of the JMP
instruction location, the unconditional JMP is preferred over the unconditional branch
since only one memory word (and one memory reference) is required for the JMP while
two memory words and two memory cycles are required for the B instruction. Thus, the
JMP instruction can be implemented faster and with less memory cost than can the B
instruction.

6-50 9900 FAMILY SYSTEMS DESIGN

Instruction Set

EXECUTE

Format: X Gs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 1 '. 0 I ~s I I ~ I (04--)

Operation: The instruction located at the address specified by Gs is executed.

Status Eris Affected· Depends on the instruction executed

Example: X * 11

If Rl 1 contains 200016 and location 200016 contains the instruction for CLR 2 then this
execute instruction would clear the contents of register 2 to zero.

Application: Xis useful when the instruction to be executed is dependent on a variable
factor.

9900 FAMILY SYSTEMS DESIGN

x
x

6

6-51

JH, JL, JHE, JLE, JGT, JLT,
JEQ, JNE, JOG, JNG, JNO, JOP

Instruction Set

CONDITIONAL JUMP INSTRUCTIONS

These instructions perform a branching operation only if certain status bits meet the
conditions required by the jump. These instructions allow decision making to be
incorporated into the program. The conditional jump instruction mnemonics are
summarized in Table 6-1 along with the status bit conditions that are tested by these
instructions.

Format: Mnemonic Exp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 0 I 1 I I C~DE I I I I I Dl~P I I I (1---)

JH
JL
JHE
JLE
JGT
JLT
JEQ
JNE
JOG

Operation: If the condition indicated by the branch mnemonic is true, the jump will occur JNG
using relative addressing as was used in the unconditional JMP instruction. That is, the JNO
Exp defines a displacement that is added to the current value of the program counter to JOP
determine the location of the next instruction, which must be within 128 words of the
jump instruction.

Effect on Status Bits: None

Example: C
JNE

R1,R2
LOOP

The first instruction compares the contents of registers one and two. If they are not
equal, EQ = 0 and the JNE instruction causes the branch to LOOP to be taken. If Rl

. 6 and R2 are equal, EQ = 1 and the branch is not taken.

Table 6-1. Status Bits Tested by Instructions

Mnemonic L> A> EQ c OV OP Jump if CODE*

JH x x L> • EQ= 1 B
JL x x L>+EQ=O A
JHE x x L>+EQ=l 4
JLE x x L>+EQ=l 2
JGT x A>=l 5
JLT x x A> +EQ=O 1
JEQ x EQ=l 3
JNE x EQ=O 6
JOC x C=l 8
JNC x C=O 7
JNO x OV=O 9
JOP x OP=l c

Note: In the Jump if column, a logical equation is shown in which • means the AND operation, +
means the OR operation, and a line over a term means negation or inversion.

*CODE is entered in the CODE field of the OPCODE to generate the machine code for the instruction.

Application: Most algorithms and programs with loop counters require these instructions
to decide which sequence of instructions to do next.

6-52 9900 FAMILY SYSTEMS DESIGN

Instruction Set

SBO
CRU INSTRUCTIONS

The communications register unit (CRU) performs single and multiple bit programmed
input/ output for the microcomputer. All input consists of reading CRU line logic levels
into memory, and all output consists of setting CRU output lines to bit values from a
word or byte of memory. The CRU provides a maximum of 4096 input and 4096 output
lines that may be individually selected by a 12 bit address which is located in bits 3
through 14 of workspace register 12. This address is the hardware base address for
all CRU communications.

SET BIT TO LOGIC ONE SBO
Format: SBO disp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I .o ' o ' o ' 1 ' 1 ' 1 ' o ' 1 J ' ' ' o1~P ' ' ' (10--)

Operation: The CRU bit at disp plus the hardware base address is set to one. The hardware
base address is bits 3 through 14 of workspace register 12. The value disp is a signed
displacement.

1 - Bit (disp +base address)

Affect on Status: None

Example: SBO 15

If R12 contains a software base address of 020016 so that the hardware base address is
010016 (the hardware base address is one-half the value of the contents of R12
excluding bits 0, 1 and 2), the above instruction would set CRU line OlOF16 to a 1.

Application: Output a one on a single bit CRU line.

9900 FAMILY SYSTEMS DESIGN 6-53

6 ...

... 6

Instruction Set

SET BIT TO LOGIC ZERO SBZ
Format: SBZ dlsp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 0 I 1 I 1 I 1 I 1 I 0 I I I I D;SP I I I (1 E--)

Operation: The CRU bit at disp plus the base address is reset to zero. The hardware
base address is bits 3 through 14 of workspace register 12. The value disp is a signed
displacement.

o- Bit (disp +hardware base address)

Affect on Status: None

Example: SBZ 2

If R12 contains 000016 , the hardware base address is 0 so that the instruction would reset
CRU line 000216 to zero.

Application: Output a zero on a single bit CRU line.

TEST BIT TB
Format: TB disp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I o I o ' o ' 1 ' 1 I 1 I 1 ' 1 I I I ' o:sP I ' I (lF--)

Operation: The CRU bit at disp plus the base address is read by setting the value of the
equal (EQ) status bit to the value of the bit on the CRU line. The hardware base address is
bits 3 through 14 of workspace register 12. The value disp is a signed displacement.

Bit (disp +hardware base address) ____.. EQ

Status Bits Affected: EQ

Example: TB 4

IfR12 contains 014016, the hardware base address is A016 (which is one-half of014016):

R12 Contents= OOOQ 0001 0100 0000

Note that the underlined hardware base address is OA016 • Equal (EQ) would be made equal
to the logic level on CRU line OA016 + 4 = CRU line OA416 •

Application: Input the CRU bit selected.

6-54 9900 FAMILY SYSTEMS DESIGN

Instruction Set

LDCR
LOAD CRU LDCR
Format: LDCR Gs,Cnt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 1 I 1 I 0 I 0 I I ~ I I ~s I I ~ I (3---)

Operation: Cnt specifies the number of bits to be transferred from the data located at the
address specified by Gs, with the first bit transferred from the least significant bit of this
data, the next bit from the next least significant bit and so on. If Cnt = 0, the
number of bits transferred is 16. If the number of bits to be transferred is one to eight,
the source address is a byte address. If the number of bits to be transferred is 9 to 16,
the source address is a word address. The source data is compared to zero before the
transfer. The destination of the first bit is the CRU line specified by the hardware base
address, the second bit is transferred to the CRU line specified by the hardware base
address + 1, and so on.

Status Bits Affected: LGT, AGT, EQ

OP (odd parity) with transfer of 8 or less bits.

Example: LDCR @TOM,8

Since 8 bits are transferred, TOM is a byte address. If TOM is an even number, the
most significant byte is addressed. If R12 contains 008016, the hardware base address is
004016 which is the CRU lirie that will receive the first bit transferred. 004116 will be the
address of the next bit transferred, and so on to the last (8th) bit transferred to CRU line
004716 • This transfer is shown in Figure 6-7.

MEMORY
ADDRESS

TOM

0

l 0 0

2 3 4 5 6

1 1 0 1 0 0

1

X= NOT USED

9 10 11 12 13 14 15

x x x x x x x xj

__..
- ...
_..
-~

.......

......

......
~

-"" --
__.. --
~

LDCR @TOM,8 TOM is an even address

Figure 6-7. LDCR byte transfer

9900 FAMILY SYSTEMS DESIGN

CRU LINES

3F

40

41

42

43

44

45

46

0 47

48

6-55

6 ...

~6

LDCR
Instruction Set

Application: The LDCR provides a number of bits (from 1 to 16) to be transferred from
a memory word or byte to successive CRU lines, starting at the hardware base address line;
the transfer begins with the least significant bit of the source field and continues to
successive! y more significant bits. A further example of word versus byte transfers is given
in Figure 6-8, in which a 9 bit (word addressed source) transfer is shown.

6-56

MEMORY
ADDRESS

TOM l
0

x

2 3 4 5 6 8 9 10 11 12 13 14 15

x x x x x x 1 0 1 0 1 0 1 1 1 J
l

X= NOT USED

LDCR @TOM,9

Figure 6-8. LDCR Word transfer

CRU LINES

3F

40 -
_.... 41

42
_,.

0 43
_,. --
-- 44

..... 0 45

46
_,. --

0 47
_,. --
.... 48

49

9900 FAMILY SYSTEMS DESIGN

Instruction Set

STCR
STORE CRU STCR
Format: STCR Gs,Cnt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 I 0 I 1 I 1 I 0 I 1 I I ~ r I ~s I I ~ I I (3---)

Operation: Cnt specifies the number of bits to be transferred from successive CRU lines

(starting at the hardware base address) to the location specified by Gs, beginning with the
least significant bit position and transferring successive bits to successively more significant
bits. If the number of bits transferred is 8 or less, Gs is a byte address. Otherwise, Gs is a
word address. If Cnt = 0, 16 bits are transferred. The bits transferred are compared to
zero. If the transfer does not fill the entire memory word, the unfilled bits are reset to
zero.

Status Bits Affected: LGT, AGT, EQ

OP for transfers of 8 bits or less

Example: STCR 2, 7

Since 7 bits are to be transferred this is a byte transfer so that the bits will be transferred
to the most significant byte of R2. Figure 6-9 illustrates this transfer assuming that R12
contains 9016 so that the hardware base address is 4816 for the first bit to be transferred.

Note: Bits 8-15 are unchanged if transfer is less than 8 bits.

01234 5 6 8 9 10 11 12 13 14 15

R2 l 0 1 0 1 1 0 1 0 x x x x x x x x j
,,. + '

1

• ~ 1
CRU LINES

47

0 48

49

0 4A

48

4C

0 40

4E

X NOT USED 4F

BIT 0 SET TO ZERO

STCR 2,7

Figure 6-9. STCR Example

9900 FAMILY SYSTEMS DESIGN 6-57

6..i

6

CONTROL INSTRUCTIONS Instruction Set

CONTROL INSTRUCTIONS

The control instructions are primarily applicable to the Model 990 Computer. These
instructions are RSET (Reset), IDLE, CKOF (Clock off), CKON (Clock on), LREX
(restart). The Model'990/ 10 also supports the long distance addressing instructions:
LDS (Load long distance source) and LDD (Long distance destination). The use of these
instructions are covered in the appropriate Model 990 computer programmer's manuals.

The control instructions have an affect on the 9900 signals on the address lines during
the CRU Clock as shown below:

Instruction Ao Ai A2 OP CODE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LREX H H H jo
1

o
1

o
1

o
1

o
1

o
1

1
1

1
1

1
1

1
1

1

1

o
1

o
1

o
1

o
1

ol

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CKOF H H L jo
1

0

1

0

1

0

1

0

1

o
1

1

1

1
1

1
1

1

1

o
1

o
1

o
1

o
1

o
1

ol

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CKON H L H lo
1

o
1

o
1

o
1

o
1

o
1

1

1

1

1

1

1

o
1

1

1

o
1

o
1

o
1

o
1

ol

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RSET L H H jo
1

0

1

0

1

0

1

0

1

o
1

1

1

1

1

o
1

1

1

1

1

o
1

o
1

o
1

o
1

ol

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IDLE L H L lo
1

o
1

o
1

o
1

o
1

o
1

1

1

1

1

o
1

1

1

o
1

o
1

o
1

o
1

o
1

ol

CRU L L L

{03EO)

(03CO)

(03AO)

(0360)

(0340)

The IDLE instruction puts the 9900 in the idle condition and causes a CRUCLK output
every six clock cycles to indicate this state. The processor can be removed from the idle
state by 1) a RESET signal, 2) any interrupt that is enabled, or 3) a LOAD signal.

For the 9900 the above instructions are referred to as external instructions, since
external hardware can be designed to respond to these signals. The address signals Ao,
Ai, and A2 can be decoded and the instructions used to control external hardware.

6-58 9900 FAMILY SYSTEMS DESIGN

Instruction Set SPECIAL FEATURES
OF THE 9940

SPECIAL FEATURES OF THE 9940

The 9940 instruction set includes the instructions already presented. Two of these
instructions are slightly different for the 9940. These are the extended operation and the
load interrupt mask immediate instructions. There are two new arithmetic instructions
that provide for binary coded decimal (BCD) addition and subtraction. The 9940 uses
extended operations 0 through 3 to generate the load interrupt mask and the decimal
arithmetic instructions. Thus, the 9940 extended operations 4 through 15 are available
to the programmer.

LOAD IMMEDIATE INTERRUPT MAsK LllM
Format: LllM n

Q:::;n:::;3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I
I I I I I I I I I I I I I I I I

0 0 1 0 1 1 0 0 1 0 0 0 0 0 n (2C8-)

Operation: The interrupt mask bits 14 and 15 of the status register are loaded with n.
Subsequent to this instruction, interrupt levels greater than n will be ignored by the
processor, and interrupts of level nor less will be responded to by the processor.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ST I I I I I I I I I I I I I I I I I

Status Bits Affected- Interrupt Mask (Bits 14 and 15)

Example: LllM 2

This operation will load the interrupt mask with 2, that is bit 14 would be set to a 1
and bit 15 would be reset to zero. This would disable interrupts of level 3, but would
enable other interrupt levels.

Application: This instruction is used to control the 9940 interrupt system.

9900 FAMILY SYSTEMS DESIGN 6-59

6

.. 6

XOP
Instruction Set

EXTENDED OPERATION XOP
Format: XOP Gs,n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I I I I I I I I I I I I I I I I I
0 0 1 0 1 1 D Ts S (2---)

Operation: n specifies the extended operation transfer vector to be used in the context
switch to the extended operation subprogram. The TMS9940 restricts the range of n
(4::s;n< 15) so that there are only 12 XOP's available. This is because the first four
are used by the processor to implement the LIIM, DCA, and DCS instructions. The
transfer vector procedure for the programmer-defined extended operations is:.

M(4016 + 4xn)- (WP)
M(4216 + 4xn)- (PC)
G. (New WR11)
(Old WP) (New WR13)
(Old PC) (New WR14)
(Old ST) (New WR15)

Status Bits Affected: None

Example and Applications: XOP *1,4

This instruction will cause an extended operation 4 to occur with the new workspace
register 11 containing the address found in workspace register 1. The new WP value
will be obtained from 4016 + 4 X 4 = 5016 and the new PC value will be obtained from
5216.

6-60 9900 FAMILY SYSTEMS DESIGN

Instruction Set

DCA
DECIMAL CORRECT ADDITION DCA
Format: DCA Gs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I o I o I 1 I o I 1 I 1 I o I o I o I o I ;s I I Is I I (2C--)

Operation: The byte addressed by Gs is corrected according to the table given in Figure
6-10. This operation is a processor defined extended operation with n = 0 so that the
sequence of events described under the XOP discussion will occur in executing this
instruction.

Status Bits Affected: LGT, AGT, EQ, C, P, and DC (Digit Carry).

Example: DCA *10

This instruction would cause the byte addressed by the contents of the current
workspace register 10 to be decimal adjusted in accordance with the truth table of Figure
6-10.

Application: This instruction is used immediately after the binary addition of two bytes
(AB instruction) to correct any decimal digits outside the BCD code range of00002

through 10012 • It also keeps decimal addition accurate by responding to digit carries. For
example, if 816 is added to 816 in BCD addition, 1616 should be generated. However, if
this operation is performed with binary addition, 1016 results:

0 0 0 0
+ 0 0 0 0

0 0 0
0 0 0

0 0 0 1 0 0 0 0 Digit Carry= 1

The DCA detects the digit carry and adds 01102 to the least significant digit to get the
correct 1616·

9900 FAMILY SYSTEMS DESIGN 6-61

6

DCS
Instruction Set

DECIMAL CORRECT SUBTRACTION DCS
Format: DCS Gs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I I I I I I I I I I I I I I I I I
0 0 1 0 1 1 0 0 0 1 Ts S (2C--)

Operation: The byte addressed by Gs is corrected according to the table given in Figure
6-10. This instruction is a processor defined extended operation with n = 1, so that the
sequence of events described under extended operation will occur in executing this
instruction.

Status Bits Affected: LGT, AGT, EQ, C, P, and DC

Example: DCS 3

This instruction would cause the most significant byte of register 3 to be corrected in
accordance with the truth table of Figure 6-10.

Application: As in the DCA instruction, this instruction extends the 9940 capability to
include decimal subtraction. The programmer first performs binary subtraction on bytes
(the SB instruction) and then immediately performs the DCS operation on the result
byte to correct the result so that it is within the BCD code range 00002 through 10012 •

c
0
0
0
1
1
1
0
0
0
0
0
1
1

6-62

0 7
I x i Y I
MSB LSB

BYTE BEFORE EXECUTION
x DC y c

X<10 0 Y<10 0
X<10 1 Y<10 0
X<9 0 Y~10 0
X<10 0 Y<10 1
X<10 1 Y<10 1
X<10 0 Y2:::10 1
X~10 0 Y<10 1
Z~10 1 Y<10 1
X~9 0 Y2=10 1

x 0 y -
x 1 y -
x 0 y -
x 1 y -

8-BIT BYTE CONTAINING RESULT
OF BINARY ADD OR SUBTRACT
OF 2 BCD DIGITS

BYTE AFTER DCA
x DC y c
x 0 y -
x 0 Y+6 -

X+1 1 Y+6 -
X+6 0 y -
X+6 0 Y16 -
X+7 1 Y+6 -
X+6 0 y -
X+6 0 Y+6 -
X+7 1 Y+6 -

- - - 0

- - - 0

- - - 1

- - - 1

BYTE AFTER DCS
x DC y

- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -

X+10 1 Y+10

x+ 10 0 y

x 1 Y+10
x 0 y

Figure 6-10. Result of DCA and DCS Instructions of the 9940.

9900 FAMILY SYSTEMS DESIGN

CHAPTER 7

Program Development:
Software Commands-
Descriptions and Formats

7.,.

·7

INTRODUCTION

INTRODUCTION

Program Development:
Software Commands -
Description and Formats

The purpose of this chapter is to provide reference data for the various software
development systems available for the 9900 family of microprocessors and microcomputers.

Table 7-1 lists the sections in the chapter. One or more cards are made for those sections
marked with a bullet. The section on Assembly Language programming describes the
basic format for coding instructions and assembler directives. It is a general topic,
applicable to all of the programming systems.

Explanation of the terms, mnemonics instruction execution rules, etc. can be found in
Chapters, 4, 5, and 6.

The complete TM 990/402 Line-by-Line Assembler User's Guide is included because this
EPROM resident software is used in Chapter 9. It should serve as an illustration of the need
for some form of an assembler in writing even the simplest programs. Contrast the
programming efforts of Chapter 3 with the programming efforts for the extended
applications of Chapter 9, and you will appreciate the power of this LBL assembler.

Reference material for the other programming systems is in the form of lists of commands
and their syntax. These pages are not stand-alone documents. Software documentation is
supplied with each of the programming systems and is required for full explanations of the
commands and their use. Experienced designers always need assistance in recalling exact
command mnemonics and their formats. Thus, this chapter supports you in any
programming environment by appropriate reminders.

7-2

Table 7-1

Assembly language programming and
assembler directives

• 9900 Reference Data
TM 990/ 402 Line-by-Line Assembler

• TIBUG Monitor
• TM 990/302 Software Development board

• TXDS Commands for the FS 990 PDS
• AMPL Reference data
• POWER BASIC Commands
• Cross Support reference data

Assembler
Simulator
Utilities

9900 FAMILY SYSTEMS DESIGN

Assembly Language Programming:
Formats and Directives

1
· ¥ · i!WH&PB# HfH H-i'l#UP J.%§1)Hfi'#H ¥44 ;g 4 .if 7 ...

ASSEMBLY LANGUAGE
PROGRAMMING

ASSEMBLY LANGUAGE PROGRAMMING

Program Development:
Software Commands -
Description and Formats

An assembly language is a computer oriented language for writing programs. The
TMS9900 recognizes instructions in the form of 16 bit (or longer) binary numbers, called
instruction or operation codes (Opcodes). Programs could be written directly in these
binary codes, but it is a tedious effort, requiring frequent reference to code tables. It is
simpler to use names for the instructions, and write the programs as a sequence of these
easily recognizable names (called mnemonics). Then, once the program is written in
mnemonic or assembly language form, it can be converted to the corresponding binary
coded form (machine language form). The assembler programs described here indicate
parts of PX9ASM, TXMIRA and SDSMAC, which operate on cassette, floppy disc, and
moving head disc systems respectively. Several other assemblers are available from TI
which provide fewer features, but operate with much smaller memory requirements.

AssEMBLY LANGUAGE APPLICATION

The assembly language programming and program verificati~n through simulation or
execution are the main elements involved in developing microprocessor programs. The
overall program development effort consists of the following steps:

Define the problem.
• Flowchart the solution to the problem.
• Write the assembly language program for the flowchart.
• Execute the Assembler to generate the machine code.
• Correct any format errors indicated by the Assembler.
• Execute the corrected machine code program on a TMS9900 computer or on a

Simulator to verify program operation.

This program development sequence is defined in flowchart form in Figur~ 7-1.

~ 7 AssEMBLY LANGUAGE FORMATS

The general assembly language source statements consists of four fields as follows:

LABEL MNEMONIC OPERANDS COMMENT

The first three fields must occur within the first 60 character positions of the source record.
At least one blank must be inserted between fields.

Label Field

The label consists of from one to six characters, beginning with an alphabetic character in
character position one of the source record. The label field is terminated by at least one
blank. When the assembler encounters a label in an instruction it assigns the current value
of the location counter to the label symbol. This is the value associated with the label
symbol and is the address of the instruction in memory. If a label is not used, character
position 1 must be a blank.

7-4 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

DEFINE
PROBLEM

FLOWCHART
SOLUTION

CONVERT
FLOWCHART

TO
ASSEMBLY
LANGUAGE
PROGRAM

EXECUTE
ASSEMBLER

NO

EXECUTE OR
SIMULATE THE

PROGRAM

YES

l
DEVELOPMENT

COMPLETE

YES

ASSEMBLY LANGUAGE
PROGRAMMING

CORRECT
PROGRAM

CORRECT
PROGRAM

Figure 7-1. Program Development Flowchart

9900 FAMILY SYSTEMS DESIGN 7-5

7 ...

·7

ASSEMBLY LANGUAGE
PROGRAMMING

Mnemonic or Opcode Field

Program Development:
Software Commands -
Description and Formats

This field contains the mnemonic code of one of the instructions, one of the assembly
language directives, or a symbol representing one of the program defined operations. This
field begins after the last blank following the label field. Examples of instruction mnemonics
include A for addition and MOV for data movement. The mnemonic field is required since
it identifies which operation is to be performed.

Operands Field

The operands specify the memory locations of the data to be used by the instruction. This
field begins following the last blank that follows the mnemonic field. The memory locations
can be specified by using constants, symbols, or expressions, to describe one of several
addressing modes available.

Comment Field

Comments can be entered after the last blank that follows the operands field. If the first
character position of the source statement contains an asterisk (*), the entire source
statement is a comment. Comments are listed in the source portion of the Assembler listing,
but have no affect on the object code.

TERMS AND SYMBOLS

Symbols are used in the label field, the operator field, and the operand field. A symbol is a
string of alphanumeric characters, beginning with an alphabetic character.
Terms are used in the operand fields of instructions and assembler directives. A term is a
decimal or hexadecimal constant, an absolute assembly-time constant, or a label having an
absolute value. Expressions can also be used in the operand fields of instructions and
assembler directives.

Constants

Constants can be decimal integers (written as a string of numerals) in the range of - 32, 768
to +65,535. For example:

257
Constants can also be hexadecimal integers (a string of hexadecimal digits preceded by >).
For example:

>09AF
ASCII character constants can be used by enclosing the desired character string in single
quotes. For example:

'DX'
Throughout this book the subscript 16 is used to denote base 16 numbers. For example,
the hexadecimal number 09AF is written 09AF16 •

7-6 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

ASSEMBLY LANGUAGE
PROGRAMMING

Symbols

Symbols must begin with an alphabetic character and contain no blanks. Only the first six
characters of a symbol are processed by the Assembler.

The Assembler predefines the dollar sign ($) to represent the current location in the
program. The symbols RO through R15 are used to represent workspace registers 0
through 15, respectively.

A given symbol can be used as a label only once, since it is the symbolic name of the
address of the instruction. Symbols defined with the DXOP directive are used in the
OPCODE field. Any symbol in the OPERANDS field must have been used as a label or
defined by a REF directive.

Expressions

Expressions are used in the OPERANDS fields of assembly language statements. An
expression is a constant, a symbol, or a series of constants and symbols separated by the
following arithmetic operators:

+ addition
- subtraction
* multiplication
I division

Unary minus is performed first and then the expression is evaluated from left to right. A
unary minus is a minus sign (negation) in front of a number or a symbol.

The expression must not contain any imbedded blanks or extended operation defined
(DXOP directive) symbols.

The multiplication and division operations must be used on absolute code symbols. The 7 <I
result of evaluating the expression up to the multiplication or division operator must be an
absolute value. There must not be more than one more relocatable symbol added to an
expression than are subtracted from it.

The following are examples of valid expressions:

BLUE+ 1 The sum of the value of symbol BLUE plus 1.

GREEN - 4 The result of subtracting 4 from the value of symbol GREEN.

2* 16 +RED The sum of 32 and the value of symbol RED.

440/2- RED 220 minus the value of symbol RED.

9900 FAMILY SYSTEMS DESIGN 7-7

ASSEMBLER DIRECTIVES

ASSEMBLER DIRECTIVES

GENERAL INFORMATION

Program Development:
Software Commands -
Description and Formats

The assembler directives are used to assign values to program symbolic names, address
locations, and data. There are directives to set up linkage between program modules and to
control output format, titles, and listings.
The assembler directives take the general form of:

LABEL DIRECTIVE EXPRESSION COMMENT

The LABEL field begins in column one and extends to the first blank. It is optional on all
directives except the EQU directive which requires a label. There is no label in the
OPTION directive. When no label is present, the first character position in the field must
be a blank. When a label is used (except in an EQU directive) the label is assigned the
current value of the location counter.

The two required directives are:

IDT Assign a name to the program
END Terminate assembly

The most commonly used optional directives are:

EQU
RORG
BYTE
DATA
TEXT

Assign a value to a label or a data name.
Relocatable Origin
Assign values to successive bytes of memory
Assign 16 bit values to successive memory words
Assign ASCII values to successive bytes of memory

Other directives include:

7-8

AORG
DORG
BSS
BES
DXOP
NOP
RT
PAGE
TITL
LIST
UNL
OPTION
DEF
REF

Absolute (non-relocatable) Origin
Dummy Origin
Define bytes of storage beginning with symbol
Define bytes of storage space ending with symbol
Define an extended operation
No operation Pseudo-instruction
Return from subroutine Pseudo-instruction
Skip to new page before continuing listing
Define title for page headings
Allows listing of source statements
Prevents listing of source statements
Selects output option to be used
Define symbol for external reference
Reference to an external source

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

ASSEMBLER DIRECTIVES

REQUIRED DIRECTIVES

Two directives must be supplied to identify the beginning and end of the assembly language
program. The IDT directive must be the first statement and the END directive must be
the last statement in the assembly language program.

Program Identifier IDT
This directive assigns a name to the program and must precede any directive that generates
object code. The basic format is:

IDT 'Name'

The name is the program name consisting of up to 8 characters. As an example, if a
program is to be named Convert, the basic directive would be:

IDT 'CONVERT'

The name is printed only when the directive is printed in the source listing.

Program End END
This directive terminates the assembly. Any source statement following this directive is
ignored. The basic format is:

END

INITIALIZATION DIRECTIVES

These directives are used to establish values for program symbols and constants.

Define Assembly-Time Constant EQU
Equate is used to assign values to program symbols. The symbol to be defined is placed in
the label field and the value or expression is placed in the Expression field:

Symbol EQ U Expression

The symbol can represent an address or a program parameter. This directive allows the
program to be written in general symbolic form. The equate directive is used to set up
the symbol values for a specific program application.

9900 FAMILY SYSTEMS DESIGN 7-9

7,,.

ASSEMBLER DIRECTIVES

The following are examples of the use of the Equate directive:

TIME
N
VAR

EQU
EQU
EQU

Initialize Memory

HOURS+5
8
>8000

Program Development:
Software Commands -
Description and Formats

BYTE
DATA
TEXT

These directives provide for initialization of successive 8 bit bytes of memory with
numerical data (BYTE directive) or with ASCII character codes (TEXT directive). The
DATA directive provides for the initialization of successive 16 bit words with numerical
data.

The formats are the same for all three directives:

Directive Expression-list

The Label and Comment are optional. The expression or value list contains the data entries
for the 8 bit bytes (BYTE directive), or the 16 bit words (DATA directive), or a character
string enclosed in quotes (TEXT directive).

Examples of the use and effects of these directives are shown in Figure 7-2.

PROGRAM LocA TION DIRECTIVES

These directives affect the location counter by causing the instructions to be located in
specified areas of memory.

Origin Directives

AORG
RORG
DORG

These directives set the address of the next instruction to the value listed in the expression
field of the directive:

Directive Expression

The expression field is required on all except the RORG directive. It is a value or an
expression (containing only previously defined symbols). This value is the address of the
next instruction and is the value that is assigned to the label (if any) and to the location
counter. The AORG and DORG expressions must result in an absolute value and contain
no character constants.

7-10 9900 FAMILY SYSTEMS DESIGN

Program Development: ASSEMBLER DIRECTIVES
Software Commands -
Description and Formats

Example Directives:

KONS

WDl

MSGl

BYTE > 10, -1, 'A', 'B', N + 3

AFFECTS ON
MEMORY

LOCATION

KONS
KONS+2
KNOS+4

WDl
WD1+2
WD1+4
WD1+6
WD1+8

MSGl
MSG1+2
MSG1+4
MSG1+6

DATA >OlFF, 3200, -'AF', 8, N + > 1000

TEXT 'EXAMPLE'

MEMORY DATA: RESULTING DATA
DIRECTIVE (BINARY FORM)

ENTRY

>10,-1 0001 0000 1111 1111
'A', 'B' 0100 0001 0100 0010
N+3 0000 1011 x x

>OlFF 0000 0001 1111 1111
3200 0000 1100 1000 0000
-'AF' 1011 1110 1011 1010

8 0000 0000 0000 1000
N+>lOOO 0001 0000 0000 1000

'EX' 0100 0101 0101 1000
'AM' 0100 0001 0101 1101
'PL' 0101 0000 0100 1100
'E' 0100 0101 x x

RESULTING DATA
(HEXADECIMAL)

1 OFF
4142
OB--

OlFF
OC80
BEBA
0008
1008

4558
414D
504C
4E--

XX(--) is original unaltered data in this location. N is assumed to be previously defined as 8.

Figure 7-2. Initialization Directive Examples

The AORG directive causes this value to be absolute and fixed. For example:

AORG > 1000 + X

If X has been previously defined to have an absolute value of 6, the next instruction would
be unalterably located at the address 100616 • If a label had been included, it would have
been assigned this same value.

The RORG directive causes this value to be relative or relocatable so that subsequent
operations by the assembler or simulator can relocate the block of instructions to any
desired area of memory. Thus, a relocatable block of instructions occupying memory
locations 100016 to 102016 could be moved by subsequent simulator (or other software)
operations to locations 200016 to 202016 • An example RORG statement is:

SEGl RORG > 1000

9900 FAMILY SYSTEMS DESIGN 7-11

... 7

ASSEMBLER DIRECTIVES Program Development:
Software Commands -
Description and Formats

This directive would cause SEG 1 and the value of the location counter (address of the next
instruction) to be set to 100016 • This and all subsequent locations are relocatable.

SEG2 RORG

This directive would cause subsequent instructions to be at relocatable addresses. SEG 2 and
the address of the next instruction would be set to the value of the location counter.

The DORG directive causes the instructions to be listed but the assembler does not
gen~rate object code that can be passed on to simulators or other subsystems. However,
symbols defined in the dummy section would then be legitimate symbols for use in the
AORG or RORG program sections. For example:

DORGO

The labels with the subsequent dummy section of instructions will be assigned values
relative to the start of the section (the instruction immediately following this directive). No
object code would be generated for this section.

An RORG directive is used after a DORG or AORG section to cause the subsequent
instructions to be relocatable object code. If no origin directives are included in the
assembly language program, all object code is relocatable starting at (referenced to) an
address of 0.

STORAGE ALLOCATION DIRECTIVES

BES
BSS

These directives reserve a block of memory (range of addresses) for data storage by
advancing the location counter by the amount specified in the expression field. Thus, the
instruction after the directive will be at an address equal to the expression value plus the
address of the instruction just before the directive .

Basic Formats:

BES Expression

BSS Expression

If a label is included in the BSS directive it is assigned the value of the location counter at
the first_ byte if the storage block. If the label is included in the BES directive it is
assigned the value of the location counter for the instruction after the block.

The Expression designates the number of bytes to be reserved for storage. It is a value or
an expression containing no character constants. Expressions must contain only previously
defined symbols and result in an absolute value.

7-12 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

ASSEMBLER DIRECTIVES

Examples:

BUFFl BES > 10

A 16 byte buffer is provided. Had the location counter contained the value 10016 (FF16 was
the address of the previous instruction), the new value of the location counter would be
11016 , and this would be the value assigned to the symbol BUFFl. The next instruction
after the buffer would be at address 11015.

BUFF2 BSS 20

If the previous instruction is located at FF16, BUFF2 will be assigned the value 10016 , and
the next instruction will be located at 11416 • A 20 byte area of storage with addresses 10016

through 11316 has been reserved.

Word Boundary EVEN
This directive causes the location counter to be set to the next even address (beginning of
the next word) if it currently contains an odd address. The basic format is:

EVEN

The label is assigned the value of the location counter prior to the EVEN directive.

PROGRAM LISTING CONTROL DIRECTIVES

These directives control the printer, titling, and listing provided by the assembler.

Output Options OPTION
The basic format of this directive is:

OPTION Keyword-list

No label is permitted. The keywords control the listing as follows:

Keyword

XREF
OBJ
SYMT

Example:

Listing

Print a cross reference listing.
Print a hexadecimal listing of the object code.
Print a symbol table with the object code.

OPTION XREF,SYMT
Print a cross reference listing and the symbol table with the object code.

9900 FAMILY SYSTEMS DESIGN 7-13

ASSEMBLER DIRECTIVES

Advance Page

Program Development:
Software Commands -
Description and Formats

PAGE
This directive causes the assembly listing to continue at the top of the next page. The basic
format is:

PAGE

Page Title

This directive specifies the title to be printed at the top of each page of the assembler
listing. The basic format is:

TITL 'String'

The String is the title enclosed in single quotes. For example:

TITL 'REPORT GENERATOR'

Source Listing Control

TITL

LIST
UNL

These directives control the printing of the source listing. UNL inhibits the printing of the
source listing: LIST restores the listing. The basic formats are:

UNL

LIST

Extended Operation Definition

This directive names an extended operation. I ts format is:

DXOP SYMBOL, Term

DXOP

The symbol is the desired name of the extended operation. Term is the corresponding
number of the extended operation. For example:

DXOP DADD,13

defines DADD as extended operation 13. Once DADD has been so defined, it can be used
as the name of a new operation, just as if it were one of the standard instruction mnemonics.

7-14 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

ASSEMBLER OUTPUT

Program Linkage Directives

These directives enable program modules to be assembled separately and then integrated
into an executable program.

External Definition DEF
This directive makes one or more symbols available to other programs for reference. Its
basic format is:

DEF Symbol-list

Symbol-list contains the symbols to be defined by the program being assembled. For
example:

DEF ENTER, ANS

causes the assembler to include the Symbols ENTER and ANS in the object code so that
they are available to other programs. When DEF does not precede the source statements
that contain the symbols, the assembler identifies the symbols as multi-defined symbols.

External Reference REF
This directive provides access to symbols defined in other programs. The basic format is:

REF Symbol-list

The Symbol-list contains the symbols to be included in the object code and used in the
operand fields of subsequent source statements. For example:

REF ARG1,ARG2

causes the symbols ARG 1 and ARG2 to be included in the object code so that the
corresponding address can be obtained from other programs.

Note: If a REF symbol is the first operand of a DATA directive causing the value of the 7.,..
symbol to be in 0 absolute location, the symbol will not be linked correctly in location 0.

ASSEMBLER OUTPUT

INTRODUCTION

The types of information provided by Assemblers include:

- Shows the source statements and the resulting object code.
- Errors in the assembly language program are indicated.
- Summarizes the label-definitions and program references.

Source Listing
Error Messages
Cross Reference
Object Code - Shows the object code in a tagged record format to be passed on

to a computer or simulator for execution.

9900 FAMILY SYSTEMS DESIGN 7-15

.,,,.7

ASSEMBLER OUTPUT

SOURCE LISTING

Program Development:
Software Commands -
Description and Formats

Assemblers produce a source listing showing the source statements and the resulting object
code. A typical listing is shown in Figure 7-3.

0229 -::-

0230 -::- DEMONSTRATE EXTERNAL REFERENCE LINKING
0231 ~~-

0232 REF EXTR
0233 02BC RORG
0234 02BC CB20 MDV @EXTR, @EXTR

02BE 0000
0290 028E'

0235 0292 28EO XOR @EXTR, 3
0294 0290'

0236 8000 AORG >BODO
0237 BODO 3220 LDCR @EXTR. 8

B002 0294'
0238 B004 0420 BLWP @EXTR

BOOS B002
0239 BOOB 0223 Al 3,EXTR

BODA BOOS
0240 BOOC 38AO MPY @EXTR, 2

BOOE BODA
0241 029S RORG
0242 029S C820 MDV @EXTR, @EXTR

0298 BOOE
029A 0298'

0243 029C 28EO XOR @EXTR, 3
029E 029A'

0244 CODD AORG >CODD
0245 CODD 3220 LDCR @EXTR, 8

C002 029E'
0246 C004 0420 BLWP @EXTR

coos C002
0247 coos 0223 Al 3. EXTR

CODA coos
0248 cooc 38AO MPY @EXTR, 2

CODE CODA

Figure 7-3. Typical Source Listing.

The first line available in a listing is the title line which will be blank unless a TITL
directive has been used. After this line, a line for each source statement is printed. For
example:

0018 0156
0158
015A

C820
012B'
0003

In this case the source statement:

MOV @INIT+3,@3

MOV @INIT+3,@3

produces 3 lines of object code. The source statement number 18 applies to the entire 3
line entry. Each line has its own location counter value (0156, 0158, and 015A). C820 is
the OPCODE for MOV with symbolic memory addressing.

012B' is the value for INIT+ 3. 0003 is for the direct address 3. The apostrophe(') after
012B indicates this address is program-relocatable. Source statements are numbered
sequentially, whether they are listed or not (listing could be prevented by using the
UNLIST directive).

7-16 9900 FAMILY SYSTEMS DESIGN

9900
Ref ere nee Data

9900
REFERENCE DATA

INSTRUCTION FORMAT

Program Development:
Software Commands -
Description and Formats

FORMAT (USE)
1 (ARITH)
2 (JUMP)

OJ 1J2J3J4J5J6J7l8l9J10l11J12J13j14j15
OP CODE j BJ To l D l Ts s

KEY

3 (LOGICAL)
4 (CRU)
5 (SHIFT)
6 (PROGRAM)
7 (CONTROL)

8 (IMMEDIATE)
9 (MPY,DIV,XOP)

B =BYTE INDICATOR
(1 =BYTE, 0 =WORD)

T0 = D ADDR, MODIFICATION
D =DESTINATION ADDR.
Ts= ADDR. MODIFICATION

To/Ts FIELD

CODE

00: REGISTER
01: INDIRECT
10: INDEXED (SOR D* 0)

l SIGNED DISPLACEMENP
OP CODE I D l Ts
OP CODE l c l Ts
OP CODE l c
OP CODE l Ts
OP CODE]
OP CODE JNU

IMMEDIATE VALUE
OP CODE 1 D 1 Ts

S =SOURCE ADDR.
C = XFR OR SHIFT LENGTH (COUNT)
W =WORKSPACE REGISTER NO.

s s-
w
s

NOT USED
w

s

':'=SIGNED DISPLACEMENT OF - 128 TO + 127 WORDS
NU= NOT USED

EFFECTIVE ADDRESS

WP + 2 • [S OR DJ
(WP + 2 · [S OR DJ)

MNEMONIC

Rn
':'Rn

1 0: SYMBOLIC (DIRECT, S OR D = 0)
11: INDIRECT WITH AUTO INCREMENT

(WP+ 2 • [S OR DJ)+ (PC); PC+ PC+ 2
(PC); PC + PC + 2
(WP + 2 ·[SOR DJ); INCREMENT EFF. ADDR.

NUM (Rn)
NUM
':'Rn+

STATUS REGISTER

0 2 3 4 5 6 7 11 12 15

0 - LOGICAL GREATER THAN
1 - ARITHMETIC GREATER THAN
2 - EQUAL/TB INDICATOR
3 - CARRY FROM MSB
4- OVERFLOW

7-18

RESERVED I INT~~~~PT I

5 - PARITY (ODD NO. OF BITS SET)
6 - XOP IN PROGRESS

INTERRUPT MASK
F =ALL INTERRUPTS ENABLED
0 =ONLY LEVEL 0 ENABLED

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

INTERRUPTS

TRAP ADDR

TRAP ADDR +2

9900
REFERENCE DATA

WP

PC

LEVEL ID TRAP ADDR LEVEL ID TRAP ADDR
0
1
2
3
4
5
6
7

RESET
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL

0000
0004
0008
oooc
0010
0014
0018
001C

8
9

10
11
12
13
14
15

EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL

0020
0024
0028
002C
0030
0034
0038
003C

NOTES: 1) XOP VECTORS 0-15 OCCUPY MEMORY LOCATIONS 0040-007C
2) LOAD VECTOR OCCUPIES MEMORY LOCATIONS FFFC-FFFF

BLWP TRANSFERS
WP+ NEWW13
PC+NEWW14
ST+NEWW15

RTWP TRANSFERS
CURRENT W13 +WP
CURRENT W14 +PC
CURRENT W15 +ST

INSTRUCTIONS BY MNEMONIC

RESULT
COMPARED

MNEMONIC OP CODE FORMAT TO ZERO
A AOOO 1 y
AB. BOOO 1 y
ABS 0740 6 y
Al 0220 8 y
ANDI 0240 8 y
B 0440 6 N
BL 0680 6 N
BLWP 0400 6 N
c 8000 1 N
CB 9000 1 N
Cl 0280 8 N
CKOF 03CO 7 N
CKON 03AO 7 N
CLR 04CO 6 N
coc 2000 3 N
czc 2400 3 N
DEC 0600 6 y
DECT 0640 6 y
DIV 3COO 9 N
IDLE 0340 7 N
INC 0580 6 y
INCT OSCO 6 y
INV 0540 6 y
JEO 1300 2 N

9900 FAMILY SYSTEMS DESIGN

BL TRANSFER
PC+ W11

XOP TRANSFER
EFF. ADDR. +NEW W11

WP+ NEWW13
PC+ NEW W14
ST+ NEWW15
1 + ST6

STATUS
AFFECTED INSTRUCTIONS

0-4 ADD(WORD)
0-5 ADD(BYTE)
0-4 ABSOLUTE VALUE
0-4 ADD IMMEDIATE
0-2 AND IMMEDIATE

BRANCH
BRANCH AND LINK (W11)
BRANCH LOAD WORKSPACE POINTER

0-2 COMPARE (WORD)
0-2,5 COMPARE (BYTE)
0-2 COMPARE IMMEDIATE

EXTERNAL CONTROL
EXTERNAL CONTROL
CLEAR OPERAND

2 COMPARE ONES CORRESPONDING
2 COMPARE ZEROES CORRESPONDING

0-4 DECREMENT (BY ONE)
0-4 DECREMENT (BY TWO)

4 DIVIDE
COMPUTER IDLE

0-4 INCREMENT (BY ONE)
0-4 INCREMENT (BY TWO)
0-2 INVERT (ONES COMPLEMENT)

JUMP EQUAL (ST2 = 1)

7-19

I ,

9900 Program DevelopmE.nt:

REFERENCE DATA
Software Commands -
Description and Formats

INSTRUCTIONS BY MNEMONIC

JGT 1500 2 N JUMP GREATER THAN (ST1 = 1)
JH 1800 2 N JUMP HIGH (STO = 1 AND ST2 = 0)
JHE 1400 2 N JUMP HIGH OR EQUAL (STOOR ST2 = 1)
JL 1AOO 2 N JUMP LOW (STO AND ST2 = 0)
JLE 1200 2 N JUMP LOW OR EQUAL (STO = 0 OR ST2=1)
JLT 1100 2 N JUMP LESS THAN (ST1 AND ST2 = 0)
JMP 1000 2 N JUMP UNCONDITIONAL
JNC 1700 2 N JUMP NO CARRY ~ST3 = O}
JNE 1600 2 N JUMP NOT EQUAL (ST2 = 0)
JNO 1900 2 N JUMP NO OVERFLOW (ST4 = 0)
JOC 1800 2 N JUMP ON CARRY (ST3=1)
JOP 1 coo 2 N JUMP ODD PARITY (ST5 = 1)
LDCR 3000 4 y 0-2,5 LOAD CRU
LI 0200 8 N 0-2 LOAD IMMEDIATE
LIMI 0300 8 N 12-15 LOAD IMMEDIATE TO INTERRUPT MASK
LREX 03EO 7 N 12-15 EXTERNAL CONTROL
LWPI 02EO 8 N LOAD IMMEDIATE TO WORKSPACE POINTER
MOV cooo 1 y 0-2 MOVE (WORD)
MOVB DOOO 1 y 0-2,5 MOVE (BYTE)
MPY 3800 9 N MULTIPLY
NEG 0500 6 y 0-4 NEGATE (TWO'S COMPLEMENT)
ORI 0260 8 y 0-2 OR IMMEDIATE
RSET 0360 7 N 12-15 EXTERNAL CONTROL
RTWP 0380 7 N 0-6,12-15 RETURN WORKSPACE POINTER
s 6000 1 y 0-4 SUBTRACT (WORD)
SB 7000 1 y 0-5 SUBTRACT (BYTE)
SBO 1000 2 N SET CRU BIT TO ONE
SBZ 1 EOO 2 N SET CRU BIT TO ZERO
SETO 0700 6 N SET ONES
SLA OAOO 5 y 0-4 SHIFT LEFT (ZERO FILL)
soc EOOO 1 y 0-2 SET ONES CORRESPONDING (WORD)
SOCB FOOO 1 y 0-2,5 SET ONES CORRESPONDING (BYTE)
SRA 0800 5 y 0-3 SHIFT RIGHT (MSB EXTENDED)

~7 SRC 0800 5 y 0-3 SHIFT RIGHT CIRCULAR
SRL 0900 5 y 0-3 SHIFT RIGHT (LEADING ZERO FILL)
STCR 3400 4 y 0-2,5 STORE FROM CRU
STST 02CO 8 N STORE STATUS REGISTER
STWP 02AO 8 N STORE WORKSPACE POINTER
SWPB 06CO 6 N SWAP BYTES
szc 4000 1 y 0-2 SET ZEROES CORRESPONDING (WORD)
SZCB 5000 1 y 0-2,5 SET ZEREOS CORRESPONDING (BYTE)
TB 1 FOO 2 N 2 TEST CRU BIT
x 0480 6 N EXECUTE
XOP 2COO 9 N 6 EXTENDED OPERATION
XOR 2800 3 y 0-2 EXCLUSIVE OR
DCA 2COO 9 N 0-3,5,7 DECIMAL CORRECT ADD
DCS 2COO 9 N 0-3,5,7 DECIMAL CORRECT SUB
LllM 2COO 9 N 14,15 LOAD INTERRUPT MASK

ILLEGAL OP CODES 0000-01 FF;0320-033F;0780-07FF;OCOO-OFFF

7-20 9900 FAMILY SYSTEMS DESIGN

Program Development: 9900
Software Commands - REFERENCE DATA Description and Formats

INSTRUCTIONS BY OP CODE

OP CODE MNEMONIC OP CODE MNEMONIC
0000-01 FF ILLEGAL 1000 JMP
0200 LI 1100 JLT
0220 Al 1200 JLE
0240 ANDI 1300 JEO
0260 ORI 1400 JHE
0280 Cl 1500 JGT
02AO STWP 1600 JNE
02CO STST 1700 JNC
02EO LWPI 1800 JOG
0300 LIMI 1900 JNO
0320-033F ILLEGAL 1AOO JL
0340 IDLE 1800 JH
0360 RSET 1COO JOP
0380 RTWP 1000 SBO
03AO CKON 1 EOO SBZ
03CO CKOF 1 FOO TB
03EO LREX 2000 coc
0400 BLWP 2400 czc
0440 B 2800 XOR
0480 x 2COO XOP
04CO CLR 3000 LDCR
0500 NEG 3400 STCR
0540 INV 3800 MPY
0580 INC 3COO DIV
OSCO INCT 4000 szc
0600 DEC 5000 SZCB
0640 DECT 6000 s
0680 BL 7000 SB
06CO SWPB 8000 c
0700 SETO 9000 CB
0740 ABS AOOO A
0780-07FF ILLEGAL BOOO AB
0800 SRA cooo MOV 7~
0900 SRL DOOO MOVB
OAOO SLA EOOO soc
OBOO SRC FOOD SOCB
ocoo ILLEGAL

PSEUDO-INSTRUCTIONS

MNEMONIC PSEUDO-INSTRUCTIONS CODE GENERATED

NOP NO OPERATION 1000
RT RETURN 045B

9900 FAMILY SYSTEMS DESIGN 7-21

.,7

9900 Program Development:

REFERENCE DATA Software Commands -
Description and Formats

PIN DESCRIPTIONS

PIN# FUNCTION PIN# FUNCTION PIN # FUNCTION
1 Vss 23 A1 44 03
2 Vee 24 AO 45 04
3 WAIT 25 q,4 46 05
4 LOAD 26 Vss 47 06
5 HOLDA 27 Voo 48 07
6 RESET 28 q,3 49 . 08
7 IAQ 29 OBIN 50 09
8 <P 1 30 CRUOUT 51 010
9 q,2 31 CRUIN 52 011

10 A14 32 INTREO 53 012
11 A13 33 IC3 54 013
12 A12 34 IC2 55 014
13 A11 35 IC1 56 015
14 A10 36 ICO 57 NC
15 A9 37 NC 58 NC
16 A8 38 NC 59 NC
17 A7 39 NC 60 CRUCLK
18 A6 40 NC 61 WE
19 A5 41 DO 62 READY
20 A4 42 01 63 MEMEN
21 A3 43 02 64 HOLD
22 A2

ASSEMBLER DIRECTIVES

MNEMONIC
AORG
BES
BSS
BYTE
DATA
DEF
DORG
DXOP
END
EOU
EVEN
IDT
LIST
PAGE
REF
RORG
TEXT
TITL
UNL

7-22

DIRECTIVE
ABSOLUTE ORIGIN
BLOCK ENDING WITH SYMBOL
BLOCK STARTING WITH SYMBOL
INITIALIZE BYTE
INITIALIZE WORD
EXTERNAL DEFINITION
DUMMY ORIGIN
DEFINE EXTENDED OPERATION
PROGRAM END
DEFINITE ASSEMBLY - TIME CONSTANT
WORD BOUNDARY
PROGRAM IDENTIFIER
LIST SOURCE
PAGE EJECT
EXTERNAL REFERENCE
RELOCATABLE ORIGIN
INITIALIZE TEXT
PAGE TITLE
NO SOURCE LIST

9900 FAMILY SYSTEMS DESIGN

Program Development: 9900
Software Commands - REFERENCE DATA Description and Formats

USASCll/HOLLERITH CHARACTER CODE
USASCll USASCll

CHAR. (HEXADECIMAL) HOLLERITH'~ CHAR. (HEXADECIMAL2 HOLLERITH.:,
NUL 00 3 33 3
SOH 01 4 34 4
STX 02 5 35 5
ETX 03 6 36 6
EOT 04 7 37 7
ENO 05 8 38 8
ACK 06 9 39 9
BEL 07 3A 2-8
BS 08 3B 11-6-8
HT 09 < 3C 12-4-8
LF QA 30 6-8
VT OB > 3E 0-6-8
FF OC ? 3F 0-7-8
CR OD @ 40 4-8
so OE Ala 41161 12- ~
SI OF Bib 42162 12-2
OLE 10 Cle 43163 12-3
DC1 11 Did 44164 12-4
DC2 12 Ele 45164 12-5
DC3 13 F If 46166 12-6
DC4 14 Gig 47167 12-7
NAK 15 Hlh 48168 12-8
SYN 16 Iii 49169 12-9
ETB 17 JI j 4Al6A 11-1
CAN 18 Klk 4Bl6B 11-2
EM 19 Lii 4Cl6C 11-3
SUB 1A Mlm 40160 11-4
ESC 1B Nin 4El6E 11-5
FS 1C Olo 4Fl6F 11-6
GS 1D Pip 50170 11-7
RS 1E Olq 51171 11-8
us 1F Rlr 52172 11-9
SPACE 20 BLANK Sis 53173 0-2 7 ...

21 11-2-8 T It 54174 0-3
22 7-8 Ulu 55175 0-4

23 3-8 Viv 56176 0-5
$ 24 11-3-8 Wlw 57177 0-6
% 25 0-4-8 Xix 58178 0-7
& 26 12 Yly 59179 0-8

27 5-8 Zlz 5A/7A 0-9
28 12-5-8 [5B 12-2-8
29 11-5-8 \ 5C
2A 11-4-8] 50 12-7-8

+ 2B 12-6-8 /\ 5E 11-7-8
2C 0-3-8 SF 0-5-8
20 11 60
2E 12-3-8 { 7B

I 2F 0-1 > 7C
0 30 0 70
1 31 1 7E
2 32 2 DEL 7F

•PUNCH IN CARD ROWS

9900 FAMILY SYSTEMS DESIGN 7-23

~7

9900
REFERENCE DATA

HEX-DECIMAL TABLE

EVEN BYTE
HEX DEC HEX DEC

0 0 0 0
1 4,096 1 256
2 8,192 2 512
3 12,288 3 768
4 16,384 4 1,024
5 20,480 5 1,280
6 24,576 6 1,536
7 28,672 7 1,792
8 32,766 8 2,048
9 36,864 9 2,304
A 40,960 A 2,560
B 45,066 B 2,816
c 49,152 c 3,072
D 53,248 D 3,328
E 57,344 E 3,584
F 61 ,440 F 3,840

HEX DEC
0 0
1 16
2 32
3 48
4 64
5 80
6 96
7 112
8 128
9 144
A 160
B 176
c 192
D 208
E 224
F 240

Program Development:
Software Commands -
Description and Formats

ODD BYTE
HEX DEC

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
A 10
B 11
c 12
D 13
E 14
F 15

OBJECT RECORD FORMAT AND CODE

TAG 1 ST FIELD 2ND FIELD (WHEN REQUIRED)

6 OR 8 CHARACTERS (USASCI I)
.___ ___ 4 CHARACTERS (HEX USASCll)

1 CHARACTER (HEX USASCll)

TAG FIRST FIELD SECOND FIELD MEANING

0 LENGTH OF ALL PROGRAM ID PROGRAM START
RELOCATABLE CODE (8-C HARACTER)

1 ADDRESS (NOT USED) ABSOLUTE ENTRY ADDRESS
2 ADDRESS (NOT USED) RELOCATABLE ENTRY ADDRESS
3 LOCATION OF LAST 6 CHARACTER EXTERNAL REFERENCE LAST USED

APPEARANCE OF SYMBOL SYMBOL IN RELOCATABLE CODE
4 LOCATION OF LAST 6 CHARACTER EXTERNAL REFERENCE LAST USED

APPEARANCE OF SYMBOL SYMBOL IN ABSOLUTE CODE
5 LOCATION 6 CHARACTER RELOCATABLE EXTERNAL DEFINITION

SYMBOL
6 LOCATION 6 CHARACTER ABSOLUTE EXTERNAL DEFINITION

SYMBOL
7 CHECKSUM FOR (NOT USED) CHECKSUM

CURRENT RECORD
8 ANY VALUE (NOT USED) IGNORE CHECKSUM VALUE
9 LOAD ADDRESS (NOT USED) ABSOLUTE LOAD ADDRESS
A LOAD SDDRESS (NOT USED) RELOCATABLE LOAD ADDRESS
B DATA (NOT USED) ABSOLUTE DATA
c DATA (NOT USED) RELOCATABLE DATA
D LOAD BIAS (NOT USED) LOAD BIAS OR OFFSET

(NOT A PART OF ASSEMBLER OUTPUT)
E ILLEGAL
F (NOT USED) (NOT USED) END OF RECORD

7-24 9900 FAMILY SYSTEMS DESIGN

TM990/402
Line-by-Line
Assembler
User's Guide

7

~7

TM 990/402 LINE-BY-LINE
ASSEMBLER USER'S GUIDE

Program Development:
Software Commands
Description and Formats

GENERAL

The TM 990/402 Line-By-Line Assembler (LBLA) is a standalone program that
assembles into object code the 69 instructions used by the TM 990/100M/101M/180M
microcomputers. Comments can be a part of the source statement; however, assembler
directives are not recognized. Assembler TM 990/402-1 consists of two EPROM's and
supports the TM 990/lOOM microcomputer. TM 990/ 402-2 consists of one EPROM
and supports the TM 990/180M microcomputer.

INSTALLATION

Remove the TMS 2708 chip(s) from the package and install as follows (see Figure 1):

(1) Turn off power to the TM 990/lXXM microcomputer.

(2) Place the chip(s) into the proper socket(s) as shown in Figure 1. The shaded
components in Figure 1 denote the LBLA EPROM's correctly placed in their sockets.
The corresponding socket number (UXX number) is marked on the EPROM.

NOTES

1. Place the TMS 2708(s) into the socket(s) with pin 1 in the lower left corner as
denoted by a 1 on the board and on the EPROM. Be careful to prevent
bending of the pins.

2. Do not r.emove EPROM's containing the monitor as shown in Figure 1. The
monitor is used by the assembler.

(3) Verify proper positioning in the sockets. Apply power to the microcomputer board.

7-26

U•:Fi•J}
~f CQJ I}
U43-/\:)<>·)::·· }

·················Ill· ·.·•·•·• ,••••.•••... •••<Y ... :<> ... •·<•:·:·.···

u·~p [QJ I}
0

(a) ON TM 990/100M

LBLA

TIBUG
MONITOR

LBLA

TIBUG
MONITOR

""D
"~P tQJ I
"~P [QJ I
"~P [QJ I

(bl ON TM 990/180M

0

}

NOT
REQUIRED

} LBLA

TIBUG
MONITOR

Figure 1. Placement of TMS 2708 Eprom's

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands
Description and Formats

TM 990/402 LINE-BY-LINE
ASSEMBLER USER'S GUIDE

OPERATION

SETUP

NOTE
The examples in this guide use memory addresses obtainable in RAM on the TM 990/
lOOM microcomputer. To exemplify the TM 990/180M addressing scheme, the reader
should substitute a 3 for the F in the most significant digit (left most) of a four-digit
memory address in the following examples (e.g., 3EE016 for FEE016).

• With the Line-By-Line Assembler EPROMs installed, call up the monitor by pressing
the RESET switch in the upper left corner of the board and then pressing the A key at
the terminal.

•Invoke the R keyboard command and set the Program Counter (PC) to 09£616 • This is
the memory address entry point for the Line-By-Line Assembler.

•Invoke the E (execute) command. The assembler will execute and print the memory
address (M.A.) FE0016 for the TM 990/100 or 3£0016 for the TM 990/180M. The
printhead will space to the assembly language opcode input column and wait for input
from the keyboard.

INPUTS To AssEMBLER

?R
W=OBA4
P=OOOF
?E
FEOO

9E6 ----- LBLA ENTRY ADDRESS

The Line-By-Line Assembler accepts assembly language inputs from a terminal. As each
instruction is input, the assembler interprets it, places the resulting machine code in an
absolute address, and prints the machine code (in hexadecimal) next to its absolute address:

FEOO 02EO LWPI >FEBO SET UP WORKSPACE ADDRESS
FE02 FEBO
FE04 0200 LI R0,10 SET UP COUNTER VALUE
FEOB OOOA
FEDS 0201 LI R1 .>FEAO ADDRESS OF VALUES IN R1
FEOA FEAO
FEOC 0202 LI R2,>FEBO ADDRESS OF STORAGE AREA IN R2
FEDE FEBO
FE10 CCB1 MDV +R1 + ,+R2+ MOVE VALUES TO STORAGE AREA
FE12 0600 DEC RO DECREMENT COUNTER
FE14 1301 JEQ >FE18 EXIT IF COUNTER = ZERO
FE16 10FC JMP >FE10 LOOP BACK UNTIL 10 VALUES MOVED
FE18

9900 FAMILY SYSTEMS DESIGN 7-27

7 ..
I

~7

TM 990/402 LINE-BY-LINE
ASSEMBLER USER'S GUIDE

Program Development:
Software Commands
Description and Formats

Use only one space between the mnemonic and the operand. If you use the comment field,
use at least one space between the operand and comment. If no comment is used, complete
the instruction with a space and carriage return. If a comment is used, only a carriage
return is required.
No loader tags are created; code is loaded in contiguous memory addresses by the
assembler. The location can be changed as desired (explained in paragraph 3.2.2).
Labels cannot be used. Addressing is by byte displacement Qump instructions) or by
absolute memory address.

NOTE
Be aware that the workspace for the TIBUG monitor begins in RAM at address FFB016

for the TM 990/lOOM and begins at address 3FB016 for the TM 990/180M.
Understand that assembled object code should not be entered at or above these
addresses.

Program Preparation

Set up your program using flow charts with code written on a coding pad. Do not use
assembler directives.

Changing Absolute Load Address

Code is located at the address written on the assembler output. When initialized, the
assembler loads code contiguously starting at M.A. FE0016 (3E0016 for TM 990/180M).
This address can be changed at any time during assembly by typing a slash (/)followed by
the desired M.A.:

FEBO 8081 C R1 ,R2 COMPARE VALUES
FE82 1301 JEQ >FE86 IF EQUAL. SKIP ERROR ROUTINE
FE84 06AO BL @>FF20 OTHERWISE DO ERROR ROUTINE
FE86 FF20
FESS /FF20 CHANGE ADDRESS

FF20 2FAO XOP @>FF26,14 SEND ERROR MESSAGE [See TIBUG Monitor)
FF22 FF26
FF24 0458 B +R11 RETURN TO CALLING PROGRAM
FF26 DADD +>DADD
FF28 4552 $ERROR FOUND
FF2A 524F
FF2C 5220
FF2E 464F
FF30 554E
FF32 4420
FF34 0000 +0000
FF36 /FESS ~CHANGE ADDRESS

FE86

Note that this is similar to using an AORG (absolute origin) 990 assembler directive.

7-28 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands
Description and Formats

TM 990/402 LINE-BY-LINE
ASSEMBLER USER'S GUIDE

Entering Instructions

Any of the 69 instructions applicable to the TM 990/ lXXM microcomputers can be
interpreted by the Line-By-Line Assembler. The following apply:

(1) Place one space between instruction mnemonic and operand.

(2) Terminate entire instruction with a space and a carriage return. Lines with comments
need only a carriage return. Character strings require two carriage returns.

(3) Do not use labels; addressing is through byte displacement Qump instructions) or
absolute addresses:

FEBC
FCBE
FE90
FE92
FE94
FE9B

1B07
10EB
CBA2
FD20
FE10

JNE $+1B
JMP >FEBO
MDV @>FD20[R2). @>FE10[R2)

(4) Register numbers are in decimal and can be predefined (preceded by an R):

FE9B 020C LI 12,>DOO
FE98 ODDO
FE9A 020D LI R 13, > FFFF
FE9C FFFF
FE9E

(5) Jump instruction operand can be$+ n, $-n, or> M where n is a decimal value of
bytes (+ 256> n> -254) and Mis a memory address in hexadecimal. The dollar sign
must be followed by a sign and number OMP $is not allowed).

FE20 1304 JEQ $+10 EXIT
FE22 1304 JEQ $+>A EXIT
FE24 1304 JEQ $+%1010 EXIT
FE2B 1304 JEQ >FE30 EXIT
FE28 10FF JMP $+0 LOOP AT THIS ADDRESS[> FE28)
FE2A 10FF JMP $-0 LOOP AT THIS ADDRESS

(6) Absolute numerical values can be in binary, decimal, or hexadecimal.

• Binary values are preceded by a percent sign(%). One to 16 ones and zeroes can
follow; unspecified bits on the left will be zero filled:

FE58
FE5A
FE5C
FE5E
FEBO

0204 LI R4, %10101010
OOAA
OOOA +%1010
FFFB -%1010

9900 FAMILY SYSTEMS DESIGN

>AA IN R4

DATA STATEMENT
DATA STATEMENT

7-29

7.,.

~7

TM 990/402 LINE-BY-LINE
ASSEMBLER USER'S GUIDE

Program Development:
Software Commands
Description and Formats

• Decimal values have no prefix in an operand:

FE6C
FE6E
FE70
FE72
FE74
FE76
FE78
FE7A
FE7C
FE7E

0205
0064
0206
8000
8000
8000
7FFF
8001
FFFF

LI R5,100

LI R6,32768

+32768
-32768
+32767
-32767
-1

LOAD COUNTER

SET LIMIT

• Hexadecimal values are preceded by the greater-than sign(>):

FE7E
FEBO
FE82
FE84
FE86

NOTE

02EO LWPl>FFOO
FFOO
FFFF +>FFFF
0001 +>FFFF

SET WP ADDRESS

DATA STATEMENT
DATA STATEMENT

In operands, absolute value must be unsigned values only. However, there is a
method for using the assembler to compute and assemble a negative value; this
method is especially useful with the immediate instructions (e.g., AI, CI, LI). Enter
the instruction using the negative value. The assembled value will be all zeroes in
the last assembled word. Use the slash command (paragraph 3.2.2) to assemble at
the previous address, then enter the negative value as a data statement as shown in
the following example:

FE1A 0201 LI R1,->100 -USE SIGNED OPERAND

FE1C 0000 - SIGNED NUMBER ASSEMBLIES AS 0000 (IN M.A.>FE1C)

FE1E /FE1C - SET OBJECT LOAD ADDRESS TO PREVIOUS ADDRESS

FE1C FFOO ->100 - - >100(>FFOO) NOW IN M.A.>FE1 C

FE1E

(7) Absolute addresses are used instead of labels:

FEAO
FEA2
FEA4
FEA6
FEAB

7-30

CB20
FE10
FEDD
16FC

MDV

JNE

@>FE10,@>FEDO MOVE TO STORAGE

>FEAO LOOP BACK TO MOVE INSTRUCTION

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands
Description and Formats

TM 990/402 LINE-BY-LINE
ASSEMBLER USER'S GUIDE

(8) Character strings are preceded by a dollar sign and are terminated with two carriage
returns.

FF10
FF12
FF14
FF16
FF18
FF1A

4142
4344
2020
2031
3233
3320

$ABCD 1233

- UNUSED RIGHT BYTE FILLED WITH>20 (SPACE)

(9) Character strings of one or two characters can be designated by encoding the string in
quotes. If not part of an operand, a plus or minus sign must precede the value. If the
string is larger than two characters, the last two characters are interpreted.

FEAA 3132 +'12' CHARACTERS ONE AND TWO
FEAC oooc +12 VALUE OF POSITIVE TWELVE
FEAE FFF4 -12 VALUE OF NEGATIVE TWELVE
FEBO 0000 + +FOLLOWED BY CTRL KEY AND NULL KEY PRESSED
FEB2 0202 LIR2, 'ABCD'1 ASSEMBLED LAST TWO CHARACTERS [C AND D)
FEB4 4344
FEB6 0202 LI R2, 'E' CHARACTER E IN RIGHT BYTE
FEB8 0045
FEBA 0202 LI R2,>E VALUE >E IN RIGHT BYTE
FEBC DODE
FEBE

(10) Signed numerical values of up to 16 bits can be designated by preceding the value with
a plus or minus sign. If more than 16 bits are entered in binary or hexadecimal, the last
16 bits entered are used. If more than 16 bits are entered in decimal, the assembled
value is the same as the remainder had the number between divided by 215 (65,53610).

FE18
FE1A
FE1C
FE1E
FE20
FE22
FE24
FE26
FE28
FE2A
FE2C
FE2E

DOFF
FF01
AAEE
8000
8001
0000
FFFF
0000
8000
8001
7FFF

+ 0ro11111111QQQQQQ0011111111
- 0ffi11111111QQQQQQQQ11111111
+>AAAAAAEE
+32768
+32769
+65536
+131071
+131072
-32768
-32767
-32769

9900 FAMILY SYSTEMS DESIGN 7-31

~7

TM 990/402 LINE-BY-LINE
ASSEMBLER USER'S GUIDE

ERRORS

Program Development:
Software Commands
Description and Formats

When the assembler detects an error, it types an error symbol and readies the terminal for
re-entering data at the same memory address. The following error symbols are used:

• D (Displacement error). The jump instruction destination is more than + 256 or - 254
bytes away.

FF38
FF38
FF38
FF3A

JNC
JNC

1708 JNC

$+300•D
>FOOO+D
>FF50

• R (Range error). The operand is out of range for its field:

FF30
FE30
FF32

LI
0204 LI
DOCS

R44.~R
R4,200

• S (Syntax error). The instruction syntax was incorrect:

FF34
FF34
FF34
FF36

MOZ+S i INCORRECT MNEMONICS

MOS+S 5
CB02 MDV R2, @>FEBO
FEBO

EXITING TO THE MONITOR

Return control to monitor by pressing the escape (ESC) key.

PSEUDO-INSTRUCTIONS

The TM 990/ 402 also interprets two pseudo-instructions. These pseudo-instructions are
not additional instructions but actually are additional mnemonics that conveniently
represent two members of the instruction set:

• The NOP mnemonic can be used in place of a JMP $ + 2 instruction which is
essentially a no-op (no operation). This can be used to replace an existing instruction in
memory, or it can be included in code to force additional execution time in a routine.
Both NOP and JMP $ + 2 assemble to the machine code 100016 •

•The RT mnemonic can be used in place of a B *Rl l instruction which is a common
return from a branch and link (BL) subroutine. Both RT and B *Rl 1 assemble to the
machine code 045B16 •

Note the following examples:

7-32

FEDD 1000 JMP $+2
FE02 1000 NOP
FE04 0458 B +R11
FEOB 0458 RT

JUMP TO NEXT INSTRUCTION
ALSO ASSEMBLES TO > 1000
RETURN COMMAND
ALSO A RETURN COMMAND

9900 FAMILY SYSTEMS DESIGN

TIBUG
Monitor

7.,.

TIBUG
MONITOR

TIBUG COMMANDS

INPUT

B
c
D
E
F
H
L
M

RESULTS

Execute under Breakpoint
CRU Inspect/Change
Dump Memory to Cassette/Paper Tape
Execute
Find Word/Byte in Memory
Hex Arithmetic
Load Memory from Cassette/Paper Tape
Memory Inspect/Change

Program Development:
Software Commands
Description and Formats

R Inspect/Change User WP, PC, and ST Registers
s Execute in Step Mode
T 1200 Baud Terminal
w Inspect/Change Current User Workspace

COMMAND SYNTAX CONVENTIONS

CONVENTION

7-34

SYMBOL EXPLANATION

< > Items to be supplied by the user. The term within the angle brackets is a generic
term.

[] Optional Item - May be included or omitted at the user's discretion. Items not
included in brackets are required.

{ }
- (CR)

/\

LF

R or Rn

WP

PC

ST

One of several optional items must be chosen.

Carriage Return

Space Bar

Line Feed

Register (n = 0 to 15)

Current User Workspace Pointer contents

Current User Program Counter contents

Current User Status Register contents

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands
Description and Formats

USER ACCESSIBLE UTILITIES

'

XOP FUNCTION

8 Write 1 Hexadecimal Charter to Terminal

9 Read Hexadecimal Word from Terminal

10 Write 4 Hexadecimal Characters to Terminal
11 Echo Character
12 Write 1 Character to Terminal
13 Read 1 Character from Terminal
14 Write Message to Terminal

NOTE
All characters are in ASCII code.

TIBUG ERROR MESSAGES

ERROR CONDITION

0 Invalid tag detected by the loader.
1 Checksum error detected by the loader.
2 Invalid termination character detected.

TIBUG
MONITOR

3 Null input field detected by the dump routine.
4 Invalid command entered.

9900 FAMILY SYSTEMS DESIGN 7-35

TIBUG
MONITOR

COMMAND

Execute under Breakpoint (B)

CRU Inspect/Change (C)

Dump Memory to Cassette/Paper Tape (D)

SYNTAX

B<address> <(CR)>

Program Development:
Software Commands
Description and Formats

C<base address>{ 0 }<count><(CR)>

r-MONITOR PROMPT

D<start address>{ 0 }<stop address>{ 0 }<entry address>{ 0 }IDT= <name></\>

Execute Command (E)

Find Command (F)

Hexadecimal Arithmetic (H)

E

F<start address> { 0 }<stop
address> {/';-}<value> {(CR)}

H< number 1 > {/';-}<number 2> <(CR)>

Load Memory from Cassette or Paper Tape (L) L<bias><(CR)>

Memory Inspect/Change, Memory Dump (M)

Inspect/Change User WP,PC, and ST
Registers (R)

Execute In Single Step Mode (S)

Tl 733 ASR Baud Rate (T)

Inspect/Change User Workspace (W)

7-36

Memory Inspect/Change Syntax
M<address> <(CR)>

Memory Dump Syntax
M<start address>{/';- }<stop
address> <(CR)>

R<(CR)>

s
T
W [Register Number] <(CR)>

9900 FAMILY SYSTEMS DESIGN

TM 990/302
Software Development Board

·7

TM990/302 SOFTWARE
DEVELOPMENT BOARD

EPROM's which may be programmed by the '302

2708

2716
2516
2532
9940

SOFTWARE COMPONENTS

Executive

Text Editor

Symbolic Assembler

Debug Package

EPROM Programmer

Relocating Loader

EIA Interface

I /0 Scheduler /Handler

LUNO ASSIGNMENTS

Device

Dummy

Terminal (LOG)

Audio Cassette 1

Audio Cassette 2

Second EIA Connector

Memory

7-38

Access Command

(CR)

TE

SA

DP

EP

RL

El
SR

Logical Unit No.

0

2

3
4

5

Program Development:
Software Commands -
Description and Formats

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

TM990/302 SOFTWARE
DEVELOPMENT BOARD

SOFTWARE COMPONENT CALLS

Text Editor

Symbolic Assembler
Debug Package
EPROM Programmer

Relocating Loader

Set Baud Rate
Escape

TEXT EDITOR COMMANDS

D Delete lines n thru m

TEJD(input device),(output device)
SA~(source device), (object device), (listing device)

DP~(output device)
EP

RLJD(input device)

SRJzj(nnnn)
ESC (return to executive)

I Insert at line n with optional auto increment by r:n

K Keep buffer and print new top line in the buffer

G Get buffer and print new bottom line in the buffer

P Print lines n thru m

0 Flush the input file until end of input file and return to executive

R Resequence input to output, n is initialized line # and m is the increment

COMMAND SYNTAX

Delete Lines n thru m (Rn,m)

Insert After Line n with optional

D (starting line #)[,(ending line #)]

I (line number after which new

auto increment by m (ln,m) data is entered) [,(auto increment value)]

Get Buffer (G)

Keep Buffer (K)

Print lines n thru m (Pn,m)

Quit Text Editor (0)

Resequence Output (Rn,m)

9900 FAMILY SYSTEMS DESIGN

G

K

P (first line #to be printed)

[,(last line # to be printed)]

Q

R (initial line number) [,(increment value)]

7-39

7"4

TM990/302 SOFTWARE
DEVELOPMENT BOARD

ASSEMBLER DIRECTIVES

AORG

BSS

BYTE

DXOP

END

EQU

DATA

EVEN

IDT

TEXT

[label]~AORGt6(value).l6[comment]

[label]Y,BSS,t6(value).t1[comment]

[label],t1BYTEtz5(value),(value),(value), ,tD[comment]

[label]~DXOP~(symbol),(value).l6[comment]

[label]tbEND~(symbol)~[comment]

[label].l6EOU ~(expression),tD[comment]

[label]~DATA16(exp),(exp), ... ,t6[comment]

[label]~EVEN~[comment]

[label]~IDTb(string).l6[comment]

[label]~TEXT~(-), 'string'~[comment)

DEBUG Package

Verb Command

SB Set Software Breakpoint and Execute

IM Inspect/Change Memory

IC Inspect/Change CRU

IR Inspect/Change MPU Registers

ST Set Software Trace

Program Development:
Software Commands -
Description and Formats

RU Single Step for 1 or more instructions with or without trace

OM Dump Memory

.,. 7 DEBUG COMMANDS

Set Breakpoint and Execute

Inspect/Change Memory

lnspectiChange CRU

Inspect/Change MPU registers

Set Software Trace

Run 1 or more Instructions

·Dump Memory

7-40

SB.tD(address)

IM,tD(address)

ICJD(CRU base addr.)(no. of bits)

IR

ST~(O or 1)

RU~(no. of instructions in decimal)

DM~(starting addr.),(ending addr.)

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

EPROM PROGRAMMING CRU ASSIGNMENTS

CRU BASE ADDRESS 16 INPUT /OUTPUT

1710 1/0
1712 1/0

1714 1/0
1716 1/0

1718 1/0

171A 1/0
171C 1/0
171E 1/0
1720 0
1722 0
1724 0
1726 0
1728 0
172A 0
172C 0
172E 0

1730 0
1732 0

1734 0
1736 0

1738 0
173A 0

173E 0

EPROM PROGRAMMING RESPONSES

PP = Program EPROM

RE= Read EPROM to Memory

CE = Compare EPROM to Memory

Memory Bounds: MEM BOS? (start addr.),(stop addr.)

EPROM Start addr: EPROM START? (start addr.)

Programming Mode: MODE? P(parallel) or l(in line)

Starting Byte: ST byte? (0 or 1 if P above)

9900 FAMILY SYSTEMS DESIGN

TM990/302 SOFTWARE
DEVELOPMENT BOARD

FUNCTION

EPROM DATA BIT 0

EPROM DATA BIT 7

EPROM ADDRESS LSB

EPROM ADDRESS MSB

EPROM PROGRAM ENABLE

EPROM PROGRAMMING PULSE 7.,.

7-41

~1

TM990/302 SOFTWARE
DEVELOPMENT BOARD

PREDEFINED CRU ADDRESSES FOR 1/0 DEVICES

Device

Users Terminal (9902)

Timer (9901)

EIA
1

Interface (9902)

Recorder 1 Forward

Recorder 2 Forward/9940 Flag 1

Recorder 2 Write Data/9940 Flag 2

Recorder 1 Read Data/9940 Flag 3

Personality Card Code Bit 0

Personality Card Code Bit 1

Personality Card Code Bit 2

Switch Code Bit

EPROM Data

EPROM Address

EPROM Program Enable

EPROM Programming Pulse

7-42

Program Development:
Software Commands -
Description and Formats

CRU Address

8016

10016

18016

170016

170216

170416

170616

170816

170A16

170C16

170E16

171016 - 171 E16

172016 - 173816

173A16

173C16

9900 FAMILY SYSTEMS DESIGN

TXDS Commands
for FS 990 Software
Development System

7·

7

TXDS SUPPORT MANUALS

Examples of manuals available in support of the TXDS System:

TXDS PROGRAMMER'S GUIDE (#946258-9701)

Program Development:
Software Commands -
Description and Formats

This manual enables the user to employ the Terminal Executive Development System
(TXDS) in conjunction with the TX990 Operating System and the Model 990/4 and
990/10 Computer System hardware configuration to develop, improve, change, or maintain
(1) the user's customized Operating System and the user's applications programs or (2) any
other type of user-produced programs (e.g., the user's own supervisor call processors or the
user's own utility programs). It is assumed the reader is familiar with the Model 990
Computer System assembly language and the concepts of the TX990 Operating System.

The sections and appendixes of this manual are organized as follows:

Introduction - Provides a general description of the TXDS utility programs and
their-capabilities. Also includes a description of the control functions of the TXDS
Control Program.

II Loading and Executing a Program - Provides a step-by-step procedure for loading
and executing (1) each of the TXDS and TX990 Operating System utility
programs and (2) a user program. Also describes the TXDS Control Program and
how to correctly respond to its prompts.

III Verification of Operation - Provides several short step-by-step procedures to
checkout proper operation of the TXDS software.

IV Creating and Editing Program Source Code - Describes the capabilities of the
TXEDIT utility program and how the user can employ those capa~ilities to edit or
generate the text of source programs and object programs.

V Assembling Source Programs - Describes how the user can employ the TXMIRA
utility program to assemble source files (i.e., source code programs).

VI TX990 Cross Reference (TXXREF) Utility Program - Describes how the user
can employ the TXXREF utility program to produce a listing of each user-defined
symbol in a 990 assembly source program along with the line numbers on which
the symbol is defined and all of the line numbers on which the symbol is
referenced.

VII Linking Object Modules - Describes how the user can employ the TXDS Linker
utility program to form a single object module from a set of independently
assembled object modules (in the form of object code or compressed object code.)

VIII TXDS Copy Concatenate (TXCCAT) Utility Program - Describes how the user
can employ the TXCCAT utility program to copy one to three files to a single
output file.

IX TXDS Standalone Debug Monitor (TXDBUG) Utility Program - Describes how
the user can employ the TXDBUG utility program to debug programs which have
been designed to operate in a "standalone" situation without support of an
operating system.

7-44 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

TXDS SUPPORT MANUALS

X TXDS PROM (TXPROM) Programmer Utility Program - Describes how the
user can employ the TXPROM programming utility program to control the
Programming Module (PROM) hardware to make customized ROMs containing
user-created data or programs.

XI TXDS BNPF /High Low (BNPFHL) Dump Utility Program - Describes how
the user can employ the BNPFHL utility program to produce a BNPF or high/
low file format.

XII TXDS IBM Diskette Conversion Utility (IBMUTL) Program - Describes how
the user can employ the IBMUTL utility program to transfer standard IBM
formatted diskette datasets to TX990 Operating System files and to transfer
TX990 Operating System files to standard IBM-formatted diskette datasets.

XIII TXDS Assign and Release LUNO Utility Program - Describes how the operator
can assign and release LUNOs in systems which do not include OCP.

A Glossary - Clarifies selected words used in this TX990 Operating System
Programmer's Guide.

B Compressed Object Code Format - Describes the compressed object code format.

C Task State Codes - Lists and describes the task state codes.

D 1/0 Error Codes - List and describes the I/O error codes available to the user,
when coding a program, for printout or display on a terminal device.

The following documents contain additional information related to the TX990 Operating
System and are referenced herein this manual:

TITLE

Model 990 Computer TX990 Operating System Programmer's Guide

Model 990 Computer TMS9900 Microprocessor Assembly Language Programmer's Guide

Model 990 Computer Model FD800 Floppy Disc System Installation and Operation

Model 990 Computer Model 913 CRT Display Terminal Installation and Operation

Model 990 Computer Model 911 Video Display Terminal Installation and Operation

Model 990 Computer Model 7 33 ASR I KSR Data Terminal Installation and Operation

Model 990 Computer Model 804 Card Reader Installation and Operation

Model 990 Computer Models 306 and 588 Line Printers Installation and Operation

Model 990 Computer PR OM Programming Module Installation and Operation

990 Computer Family Systems Handbook

Model 990 Computer Communications Systems Installation and Operation

9900 FAMILY SYSTEMS DESIGN

PART NUMBER

946259-9701

943441-9701

945253-9701

943457-9701

943423-9701

945259-9701

945262-9701

945261-9701

945258-9701

945250-9701

945409-9701

7-45

7 ...

TXDS COMMANDS FOR FS 990
SOFTWARE DEVELOPMENT SYSTEM

Program Development:
Software Commands -
Description and Formats

List of Commands and Special Keys/Characters

COMMAND SYNTAX

SL

SN

SP

SM

ST

D

u

T

B

c

M

R

F

L

p

7-46

DESCRIPTION

SETUP COMMANDS

Start Line Numbers (SL) command causes line numbers to
be printed with each line of text.

Stop Line Numbers (SN) comman causes line numbers not
to be printed.

Set Print Margin (SP) command sets the right boundary for
print display.

Set Margin (SM) for Find command sets the left and right
boundaries for the Find command.

Set Tabs (ST) command sets up to five tab stops.

PRINTER-MOVEMENT COMMANDS

Down (D) command moves the pointer down toward the
bottom of the buffer.

Up (U) command moves the pointer up towards the first line
in the buffer.

Top (T) command moves the pointer to the first line in the
buffer.

Bottom (B) command moves the pointer to the last line in the
buffer.

EDIT COMMANDS

Change (C) command removes lines from the buffer and
inserts new ones in thelr place. The new lines are input from
the terminal.

Insert (I) command takes input from the terminal and places
the new lines into the buffer.

Move (M) command moves lines from one place in the buffer
to another.

Remove (R) command deletes lines from the buffer.

Find string (F) command searches for the first occurrence of
a character string in a line and replaces it with another string
of characters.

PRINT COMMANDS

Limits (L) command causes the first line and the last line to
be displayed.

Print (P) command displays lines of text.

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

TXDS COMMANDS FOR FS 990
SOFTWARE DEVELOPMENT SYSTEM

List of Commands and Special Keys/Characters (Continued)

COMMAND SYNTAX

K

Q

E

Tor C

CTRL-H

RUB OUT

CTRL-1

ESC/RESET

position keys

DELETE LINE

TAB

DESCRIPTION

OUTPUT COMMANDS

Keep (K) command takes lines of text out of the buffer and
puts them in the output file.

Quit (Q) command takes lines of text out of the buffer or the
input files and puts them in the output file.

An (E) command terminates without writing an EOF to the
output file.

TERMINATE-SEQUENCE COMMANDS

Allows the user to make multiple single directional editing
passes on a source or object program.

SPECIAL KEYS/CHARACTERS

Pressing the control key and the H key simultaneously on the
hard copy terminal causes the terminal to backspace a
character to enable rewriting over an entered
character-error.

The RUB OUT key causes the line just entered to be deleted
so that a new line can replace it.

Pressing the control (CTRL) key and the I key
simultaneously on a hard-copy terminal causes a tab stop to
be entered in the input string, although only one space will
be echoed on the terminal.

Pressing the ESCape or RESET key on the system console
causes a display to be aborted.

When using a VDT, only the left position key (-) and the
right(-) position key are recognized. The up and down
position keys cause garbage to be entered into the input
string. The left position key causes characters to be deleted
from the character string; a right position key causes
whatever was under the cursor to be entered.

DELETE LINE on a VDT acts the same as a RUB OUT on a
hardcopy terminal.

A SPACE character is echoed. The TAB is interpreted by the
text editor and spaces are inserted to fill the text line to the
next TAB setting.

9900 FAMILY SYSTEMS DESIGN 7-47

7"'-

TXDS COMMANDS FOR FS 990
SOFTWARE DEVELOPMENT SYSTEM

Program Development:
Software Commands -
Description and Formats

TXMIRA Options

OPTION

Mnnnnn

x
L
T

s
c

TXLINK Options

OPTION

Mnnnnn

c
laaaaaaaa
p

L

DESCRIPTION

Overrides memory size default; default is 2400 bytes

Produce cross-reference

Produce assembly listing

Expand TEXT code on listing

Produce sorted symbol list

Produce compressed object output where n is a decimal digit

DESCRIPTION

Override default memory size, default is 11800 bytes.

Compressed object output.

IDT for linked object.

Partial link desired.

Print load map and symbol list.

Note: n is a decimal digit and a is an alphanumeric character.

TXCCAT Options

OPTION

TRnnnn

Flnnnn

SKnnnn

LFnn

Slnn

NL

RI

RO

DESCRIPTION

Truncate record to length nnnn.

Fix records to size nnnn by padding with blanks or by
truncation.

Skip nnnn input records, prior to output.

List file, page length= nn, default= 55.

Space lines on listing, nn =space count, default= 0.

Number lines on listing.

Do not rewind input on open.

Do not rewind output on open.

Note: n is a decimal digit and the maximum field size is given by the number of n's.

7-48 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

TXDS COMMANDS FOR FS 990
SOFTWARE DEVELOPMENT SYSTEM

TXDBUG Keyboard Commands

DEBUG Commands

IC

IM

IR

IS

IW

MC

MM

MR

MW

SB

SP

SR

SS

ST

CB

CP

CR

cs

Inspect Communications Register Unit (CRU)

Inspect Memory

Inspect AU Register (WP, PC, ST)

Inspect Snapshot

Inspect Workspace Registers

Modify Communications Register Unit (CRU)

Modify Memory

Modify Registers

Modify Workspace Registers

Set Breakpoint

Set H /W Write Protect Option

Set Trace Region

Set Snapshot

Set Trace

Clear Breakpoint

Clear H /W Write Protect Option

Clear Trace Region

Clear Snapshot

9900 FAMILY SYSTEMS DESIGN 7-49

7-.

AMPL
Reference Data

Program Development:
Software Commands -
Description and Formats

AMPL
REFERENCE DATA

EXPLANATION OF THE NOTATION USED IN THIS CARD

Optional
Items

Notation

[item]

Explanation

Bracketed item may be omitted.

Exactly one item must be selected.
from the items in braces. {

item 1}
item 2

Substitution ex pr
'file'

Any expression may be used.
File or device name required.

Repetition

Required

item ...

<item>

A list of items may be used.

Replace with item.

CHARACTER SET

Type

Special

Characters

RETURN SPACE
!"$/()':' +'
-. I:;<
>?@

Numerals O - 9

Letters A - Z,a - z

Use

Any printable character may be used in a quoted
string. RETURN terminates line and statement. ";"
may separate statements. SPACE separates adjacent
numbers and identifiers.

NOTE: All AMPL reserved words use only upper case (UPPER CASE LOCK).

SYMBOL NAMES

Type Example Definition

System RO Up to four alphanumeric characters; all system
ETRC symbols are predefined.

User-defined USRVAR Up to six alphanumeric characters; assignment defines
X3 a variable.
BRKADR ARRAY statement defines an array.
GO PROC/FUNC statement defines a procedure/function.

Program IDT. Up to six alphanumeric characters. Period after IDT
label . DEF and before DEF labels, defined by LOAD command .

CONSTANTS

Type Example Range

Decimal 10833 1 ... 32767

Hexadecimal 02A51, >2A51 >0 ... >FFFF

Octal 125121 !O ... !177777

Binary < 10101001010001 <0 ... <1111111111111111

ASCII 11:::0"

Instruction #XOR ':'R1 ,R9 #

Keyword IAO See keyword constanttable.

9900 FAMILY SYSTEMS DESIGN 7-51

7~

~7

AMPL
REFERENCE DATA

EXPRESSIONS

Type

Subexpression

Identity

Negation

Target memory

Proc/Func
Argument

Proc/Func
local variable

Multiplication

Division

Remainder

Addition

Subtraction

Example

(expr)

+ expr

- expr

@addr

ARG expr

LOG expr

expr1 '~expr2

expr1 I expr2

expr1 MOD EXPR2

expr1 + expr2

expr1 - expr2

Definition

Value of <expr>.

Program Development:
Software Commands -
Description and Formats

Two's complement of <expr>.

<addr> used as word address into emulator or
target memory.

Argument in position <expr> of call list; ARGO
is number of arguments in list.

Word <ex pr> of local variable array; LOG O is
length of local variable array.

Signed product (warning on overflow).

Signed quotient (warning on divide by zero).

Signed remainder of division (warning on divide
by zero).

Signed sum.

Signed difference.

NOTE: Result of relational operator is either FALSE (0) or TRUE (-1).

Equality expr1 EQ expr2 16-bit comparison.
expr1 NE expr2

Arithmetic expr1 LT expr2 Signed, 16-bit comparison.
inequality expr1 LE expr2

expr1 GT expr2
expr1 GE expr2

Logical expr1 LO expr2 Unsigned, 16-bit comparison.
inequality expr1 LOE expr2

expr1 HI expr2
expr1 HIE expr2

Complement NOT expr 16-bit one's complement.

Conjunction expr1 AND expr2 16-bit booleah AND.
expr 1 NANO expr2 16-bit boolean not AND.

Disjunction expr1 OR expr2 16-bit boolean OR.
expr1 XOR expr2 16-bit boolean exclusive OR.

NOTE: Operators are given in order of precedence, highest to lowest. Solid lines separate
precedence groups; within each group, precedence is equal and evaluation is left to
right. Evaluation results in a 16-bit integer value.

7-52 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

UNSIGNED ARITHMETIC

Syntax

MPY (expr1, expr2)

DIV (divisor, dividend)

MOR

ARRAY DEFINITION

ARRAY name(expr1 [,expr2]), ...

DISPLAY STATEMENTS

expr[:f ... f]

'LITERAL STRING'

Definition

AMPL
REFERENCE DATA

Low-order 16 bits of unsigned product.
<expr1 > ':' <expr2>; high order 16 in MOR.

Unsigned quotient of 32-bit number (MOR,
<dividend>) over <divisor>; remainder in
MOR.

High-order 16-bits of MPY product and of DIV
dividend; remainder of DIV; unsigned carry of +
and-.

User <name> (previously undefined or name of
deleted array) is defined as one- or
two-dimension array.

Value of expression

Literal string

add1 [TO addr2] [:f ... f]? [:f ... f] Target memory

Format specification I [:f ... f]
ASCII A set default G octal O[i]
binary B[i] hexadecimal H[i] symbolic s
decimal D[i] instruction I unsigned U[i]
name= E newline N[j] space X[j]

Note: 1<=i<=9 field width 'i' digits, then two blanks
i=O default field width, no trailing blanks
1<=j< =9 repeat T times
j=O repeat 1 O times

Response to display /modify mode(?):
forward step RETURN,+
back step
exit

DISASSEMBLER

Instruction

operands

DST

SRC

replace contents
open new address
change display

Destination address.

Source address.

<expr>
@<addr>
:f ... f

NOTE: Additional instructions of the TMS9940 (DCA, DCS, LllM, SM) will assemble correctly
(# DCA t.'RC1 #) but will disassemble as XOP instructions. See TMS9940
specifications for details.

9900 FAMILY SYSTEMS DESIGN 7-53

7~

·7

AMPL
REFERENCE DATA

ASSIGNMENT STATEMENTS

Type

Variable

Target memory

Proc/Func
argument

Command local

Array

Example

sym = expr

@addr = expr

ARG n =expr

LOC n = expr

A[(i1 [,i2])] = e

Definition

Program Development:
Software Commands -
Description and Formats

User-defined or writable system symbol or REF
program label.

Put value of <expr> at target <addr>

Local copy of argument in position <n> of call
list.

Word < n > of local storage array.

User defined array name; zero, one, or two index
expressions.

NOTE: Precedence of@, ARG, and LOC may require parenthesis around following
expression.

COMPOUND STATEMENTS

Syntax

BEGIN statements END

CONTROL STATEMENTS

IF expr
THEN s1
[ELSE s2]

CASE expr OF
expr 1 ::s1;

exprn::sn
[ELSE s]

END

WHILE expr
DO statement

REPEAT statement
UNTIL expr

FOR var= expr1 TO expr 2[BY
expr3]

DO statement

ESCAPE

7-54

Definition

Statements are executed sequentially. Use in
place of any single statement syntax.

<s1 > is executed if <expr> is TRUE (nonzero).
Otherwise, <s2> is executed, if included.

Statement <si> at first label expression <expr>
equal to <expr> is executed. If none, statement
<s> is executed, if included.

While <expr> is TRUE (nonzero), <statement> is
executed.

<statement> is executed. If <expr> FALSE (zero),
<statement> is executed until <expr> is TRUE.

Value of <expr1 > is assigned to <var>.
<statement> is executed until <var> is equal to
<expr2>; <expr3> is added to <var>, and
<statement> repeated. Default value of <exp3> is
1 .

Exit from innermost enclosing WHILE, REPEAT, or
FOR statement.

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

AMPL
REFERENCE DATA

PROCEDURE/FUNCTION/FORM DEFINITION

PROC name [(args[,locs])] statements END

FUNG name [(args[,locs])] statements END

RETURN [expr]

FORM name 'prompt' [= [{constant }]] ; ...
'string'

PROCEDURE/FUNCTION CALLS

proc name [(expr, ...)]

func name [(expr, ...)]

User-defined <name> (previously
undefined or deleted procedure/function)
is bound to <statements>. ·
< args> is the required number of
arguments.
< locs > is the size of local storage array.

Pass control back to calling statement. In a
procedure, <expr> is ignored. In a
function, value of <expr> replaces the
function call in the calling expression.

END

<name> must be a previously defined
procedure or function, semicolon required
between prompts.

User-defined or system procedure/function
with list of argument expressions.

Command definition determines number of
arguments required. Some system
commands require quoted strings as
arguments.

NOTE: Procedure/functions with defined FORM when called with no arguments will prompt
for arguments using the FORM.

example FORM:

COMMENTARY ENTRY

PROMPT 1 =default value
PROMPT 2=
PROMPT 3 ':' =

FORM control function keys:

Next prompt:

Previous prompt:
First prompt:
Erase value:

Redisplay default:
Duplicate previous value:
Complete form:
Abort form:

9900 FAMILY SYSTEMS DESIGN

comment, not a prompt required argument,
with default value required argument, must
enter value default given if value not
entered

TAB,!,-+FIELD,
SKIP, RETURN
!,~FIELD

HOME
ERASE FIELD,
ERASE INPUT
INSERT LINE
F4
ENTER
CMD

7-55

7 ..

AMPL
REFERENCE DATA

Program Development:
Software Commands -
Description and Formats

INPUT /OUTPUT COMMANDS

Syntax
HCRB

Definition

HCRR (offset.width)
HCRW (offset,width,value)

Host computer CRU base address.
Read host computer CRU field.
Write <value> into host CRU field.

(~'file' })
COPY tedit id

({

'file'})

LIST ~~:
NL

unit=OPEN

AMPL input from 'file'
AMPL input from edit buffer

Initialize listing device or file. Disable listing output.
Enable listing output. Close listing device or file with
EOF.

Print newline.

no arguments - list all open units and edit buffers.
initialize 'file' I <edit id> 1/0 unit

0 - device 10, file IN only
IN - for input only
OUT - for output only
10 - for input/output
REWIND - position to beginning of file
EXTEND - position to end of file
SEQ - auto-create sequential file
REL - auto-create rel-rec file

• 7 event-READ [(un{ { g IRECT} [, { g RAPH }

7-56

[' { ~~6 ' j ~row l [' l ~col J [' s col]] I J]])]
REL [,rec # J

no arguments - read console
Read record from (unit)

O - issue read ASCII
DIRECT - issue read direct
GRAPH - read graphics on 922 VDT
VDT - read in cursor positioning mode

f row - field start row
f col - field start column
s col - cursor start column

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

AMPL
REFERENCE DATA

INPUT /OUTPUT COMMANDS (continued)

SEO - read sequentially
REL - read sepecified record
rec # - record number to read
<event> /256 =cursor column after read if VDT
<event> AND 255 =event key value if VDT,
else >OD for end of record,
> 13 for end of file.

value= EVAL [(unit)] Evaluate expression in <unit> 's buffer;

DPLY [(unit)]

okay=MOVE
(from unit,
to unit)

REW[(unit)]

if no <unit>, READ/EVAL the console.

AMPL display unit for output to <unit>;
if no <unit>, to console.

Move contents of <from unit> 's buffer to <to unit> 's buffer
<okay> = O if moved

= > FFFF if too big and not moved.

Rewind (unit) - repositions, file clears console
no argument - clears console

Cursor ~ WRIT (unit [, { glRECT} [, { &RAPH} J

[' {~~6 '{?row} [, [f col]J}]])
REL [, rec # J

no arguments - write console
Write record to (unit),

O - issue write ASCII
DIRECT - issue write direct
GRAPH - write graphics on 911 VDT
VDT - write in cursor positioning mode

f row - field start row
f col - field start column

SEO - write sequentially
REL - read specified record
rec # - record number to read
<cursor> /256 =cursor column after write if VDT

CLSE (unit [, { EOF } J Release I /0 <unit>,
UNLOAD EOF - write end-of-file mark

UNLOAD - unload unit

9900 FAMILY SYSTEMS DESIGN 7-57

7.,.

AMPL Program Development:

REFERENCE DATA
Software Commands -
Description and Formats

SYSTEM SYMBOLS

V - variable F - function P - procedure

CLR p - clear MOEL P - symbols
CLSE p - 1/0 close MOR V - arithmetic
COPY p - copy MIN v - minutes
GRUB v - CRU base MOVE F - 1/0 buffer
CRUR F - CRU read MPY F - multiply
CRUW p - CRU write MSYM p - symbols
DAY v - day NL p - newline
DBUF p - delete buffer OPEN F - 1/0 open
DELE p - delete symbol PC v - registers
DIV F - divide RO-R15 v - registers
DPLY p - display READ F - 1/0 read
DR p - registers REW p - 1/0 rewind
DST v - destination RSTR p - restore
DUMP p - dump SAVE p - save
EBRK p - emulator SEC v - seconds
ECLK v - emulator SRC v - source
EDIT F - edit ST v - register
EHLT F - emulator TBRK p - trace module
EINT p - emulator TEVT p - trace module
EMEM v - emulator THLT F - trace module
ERUN p - emulator TINT p - trace module
EST F - emulator TNCE v - trace module
ETB F - emulator TNE v - trace module
ETBH F - emulator TRUN p - trace module
ETBO v - emulator TST F - trace module

~7 ETRC p - emulator TTB F - trace module
ETYP v - emulator TTBH F - trace module
EVAL F - evaluate TTBN v - trace module
EXIT P - exit AMPL TTBO v - trace module
HCRB V - host CRU TTRC p - trace module
HCRR F - CRU read USYM p - user symbols
HCRW P - CRU write VRFY P - verify
HR V - hour WAIT F - delay AMPL
IOR1 v -1/0 WP v +register
KEEP p - keep edit WRIT P - 1/0 write
LIST p - list YR v - year
LOAD p - load object

7-58 9900 FAMILY SYSTEMS DESIGN

Program Development: AMPL
Software Commands - REFERENCE DATA Description and Formats

EDIT

Syntax Definition

{ 'file' } Create edit buffer with 'file'. Edit existing buffer.
edit id = EDIT[(edit id [,record])] No argument creates an empty buffer.

KEEP (edit id, 'file') Save edit buffer onto 'file' and delete edit buffer.

DBU F (edit id) Delete edit buffer.

EDIT CONTROL FUNCTION KEYS

911 913 CONTROL
Function KEY KEY CHARACTER

edit/ compose mode F7 F7 v
quit edit mode CMD HELP x

roll up F1 F1 A
roll down F2 F2 B
set tab F3 F3 c
clear tab F4 F4 D
tab TAB (shift SKIP) TAB I
back tab FIELD BACK TAB T

newline RETURN NEWLINE RETURN
insert line unlabeled gray INSERT LINE 0
delete line ERASE INPUT DELETE LINE N
erase line ERASE FIELD CLEAR w
truncate line SKIP SET K
insert character INS CHAR INSERT CHAR
delete character DEL CHAR DELETE CHAR

cursor up l u 7"'-
cursor down l J
cursor right ~ ~ R
cursor left

I,- H

top of screen HOME HOME

9900 FAMILY SYSTEMS DESIGN 7-59

~7

AMPL
REFERENCE DATA

Program Development:
Software Commands -
Description and Formats

GENERAL COMMANDS

Syntax

USYM

DELE ('name')

SAVE ('file')

RSTR ('file')

CLR

MSYM

MOEL

EXIT

TIMING

YR
DAY
HR
MIN
SEC

WAIT (expr)

Definition

List all user symbols, procedures, functions, and arrays.

Delete user procedure, function, or array.

Save all user defined symbols, functions, and arrays on 'file'.

Restore user defined symbols, procedures, functions, and arrays
from 'file'.

Delete all user symbols, procedures, functions and arrays.

List object program labels.

Delete all object program labels.

Exit from AMPL back to operating system.

Year (1976 to 1999)
Julian day (1 to 366)
Hour (0 to 23)
Minute (0 to 59)
Second (0 to 59)

Suspend AMPL for <expr>':'50 milliseconds (<expr> = 20 is
one second).

TARGET MEMORY COMMANDS

EMEM Emulator memory mapping: 9900/9980 map BK
bytes (0-> 1 FFF)

LOAD ('file'[,bias[,IDT] [+DEF] [+REF]]]):

VRFY ('file' [,bias])

DUMP ('file' ,low,high[,start])

7-60

9940 define RAM and ROM sizes.

Load object program by bias and enter program
labels into table.

Verify object program, listing differences between
object and target memory.

Dump program from target <low> to <high>
in nonrelocatable format.

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

EMULATOR CONTROL COMMANDS

Syntax

EINT ('EMOn' L\6}L 'TMOn']])

ECLK

ETYP

ETRC ({ ~~X} [,count[,low,high]])
IAO

EBRK ({ 2~} [+ILLA] [,address]. ..)

ERUN

EST

EHLT

ETBH (index[,{~~}])
IAQ

ETB (index)

ETBO, ETBN

9900 FAMILY SYSTEMS DESIGN

AMPL
REFERENCE DATA

Definition

Initialize Emulator device, clock O =prototype/
1 =emulator.

Processor clock.

Processor type:
-1 = TMS9940, 0 = SBP9900,
1 = TMS9900, 2 = TMS9980.

Trace qualifier, completion break count
(OFF-255), address range.

Address breakpoint(s) (ILLA only valid for
TMS9940).

Run emulation at PC, WP, ST.

Emulation status (3 LSBits): HOLD, IDLE,
Running

Halt emulation, return status.

Indexed bus signal from buffer. (TRUE if
expression matches).

Indexed address from trace buffer.

Emulator Trace buffer limits: Oldest, Newest
sample indices.

7-61

7

AMPL
REFERENCE DATA

TRACE MODULE CONTROL

Syntax Definition
TINT ('TMOn') Initialize trace module.

TTRC ([INT] {[±Qof~~Q1][±Q2][±Q3]} [,count[, JON }rn
[± IAQ][± OBIN] ~OFF

Program Development:
Software Commands -
Description and Formats

Qualify data samples, trace completion counter (OFF-255), latch
option on D0-03.

TEVT ({[±DO] [±01~~~02] [±03]}[,value[,mask]])
[± IAQ] [±OBIN)

EXT

Qualify 00-03 event (or EXTernal), <value> and <mask> for
04-019.

TBRK (count [,<delay>[,INV] [+EDGE]]])

TRUN

TST

THLT

TNE

Set event counter (OFF-FFFF), set delay counter (OFF-244),
count INVerted/EDGE events.

Start Trace module tracing.

Trace module status (3 LSB's), event occurred, trace full, tracing.

Halt trace module, return status.

Number of events since last TRUN.

TNCE Number of event count overflows.
TTBH (index[, 1 [±DO] [± 01][± 02] [± 03]}])

[± IAQ][± OBIN]

D0-03 of indexed samples, (TRUE if expression matches).

TTB (<index>) 04-019 indexed samples (data bus)

~ 7 TTBO, TTBN Trace module trace buffer limits: Oldest, Newest sample indices.

TRACE MODULE INTERCONNECT TO EMULATOR

QO

DO

Q1 ,01, IAQ

Q2,D2,DBIN

Q3

03, External Event

04-019

External Clock

Control Cable

7-62

Memory address bit 15 (TMS9940 only).

Byte memory cycle (TMS9940 only).

Instruction Acquisition.

DataBuslN = MR(read), MW= -DBIN(write).

Emulator trace qualifier and range (ETRC).

Emulator address breakpoint (EBRK).

Emulator data bus (bits 0-15).

Emulator memory cycle clock.

Synchronizes emulation and tracing. Trace module will halt
emulator for EINT ('EMOn', clock 'TMOn').

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

TARGET REGISTERS

PC,WP,ST

RO-R15

DR

CRU READ/WRITE

GRUB

CRUR (offset.width)

Processor registers.

Workspace registers.

Display all registers.

CRU interface base address.

Read target CRU field.

CRUW (offset,width,value); Write <value> into target CRU field

KEYWORDS

ARG
ARRAY
BEGIN
BY
CASE
DO
ELSE
END
ESCAPE
FOR

KEYWORD CONSTANTS

DO
01
02
03
OBIN
DEF
DIRECT
EDGE
EOF
ETBN

FORM
FUNG
IF
LOC
MOD
NULL
OF
PROC
REPEAT
RETURN

EXT
EXTEND
GRAPH
IAQ
IAQX
IDT
ILLA
IN
INT
INV

9900 FAMILY SYSTEMS DESIGN

THEN
TO
UNTIL
WHILE
AND
NANO
OR
XOR
NOT
EO

10
MA
MR
MW
N
OFF
ON
OUT
00
01

AMPL
REFERENCE DATA

GE
GT
HI
HIE
LE
LO
LOE
LT
NE

02
03
REF
REL
REWIND
SEQ
UNLOAD
VDT
y

7-63

I

7"4

AMPL
REFERENCE DATA

ERROR MESSAGES

0 - ! UNDEFINED ERROR CODE !

1 - 110 ERROR, OS ERROR CODE RETURNED

2 - INSUFFICIENT MEMORY TO CONTINUE

3 - ! SEGMENT VIOLATION !

4 - 1/0 ERROR: INVALID UNIT ID

5 -1/0 ERROR: READ/WRITE VIOLATION

6 -1/0 ERROR: INSUFFICIENT MEMORY FOR OPEN

7 - ! DELETE UNIT CONTROL BLOCKS ERROR !

8 - TOO MANY IDT DEF /REF SYMBOLS IN LOAD

9 - EXCEEDED 15 LOAD OPERATIONS SINCE LAST CLR

10 - CANNOT ALLOCATE MEMORY FOR USER SYMBOL TABLE

11 - ! ERROR IN 1/0 UNIT CHAIN POINTERS!

12 - OVERLAY ERROR

101 - VARIABLE CANNOT BE READ

102 - VARIABLE CANNOT BE WRITTEN

103 - SYMBOL IS UNDEFINED

104 - ! INVALID CODEGEN BRANCH TABLE INDEX !

105 - INSUFFICIENT MEMORY TO COMPILE STATEMENT

. 106 - SYMBOL IS DEFINED; CANNOT BE REDEFINED

107 - INSUFFICIENT MEMORY TO COMPILE PROC/FUNC

108 - INPUT RECORD CANNOT BE CLASSIFIED

109 - INPUT STRING EXCEEDS MAXIMUM ALLOWED LENGTH

110 - ! INVALID SCANNER BRANCH TABLE INDEX !

_., 7 111 - UNRECOGNIZABLE INPUT ITEM

112 - ! UNDEFINED OPERATOR !

114 - SYMBOL NOT AN IDT /DEF /REF LOAD SYMBOL

115 - USER SYMBOL TABLE FULL

116 - CONSTANT EXCEEDS 16 BITS

117 - SYNTAX ERROR

118 - ! INVALID KEYWORD STRING LENGTH !

119 - SYNTAX ERROR IN ONE-L.INE-ASSEMBLY STATEMENT

120 - INCORRECT NUMBER OF ARRAY SUBSCRIPTS

121 - ESCAPE SPECIFIED OUTSIDE A LOOP CONSTRUCT

122 - ARRAY REDEFINED WITH INCORRECT SUBSCRIPTS

Program Development:
Software Commands -
Description and Formats

NOTE: A hexadecimal number is also printed with some error messages. Refer to the AMPL

System Operation Guide for complete explanation.

7-64 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

AMPL
REFERENCE DATA

ERROR MESSAGES

201 - SYMBOL NOT FOUND TO DELETE

202 - SYMBOL CANNOT BE DELETED

203 - INVALID DISPLAY FORMAT CHARACTER FOLLOWING:

204 - NO LIST DEVICE ASSIGNED

205 - EMULATOR 1/0 ERROR CODE RETURNED

209 - INVALID INDEX INTO EMULATOR TRACE BUFFER

210 - !CANNOT ALLOCATE FORM CURRENT VALUE SEGMENT!

211 - INSUFFICIENT MEMORY TO SAVE FORM PARAMETERS

214 - INVALID RESTORE FILE

215 - INSUFFICIENT MEMORY TO COMPLETE THE RESTORE

216 - BAD TRACE OR COMPARISON MODE SELECTED

219 - TRACE MODULE 1/0 ERROR CODE RETURNED

220 - CANNOT EDIT ON THIS DEVICE TYPE

221 - TRACE INTERFACE CHANGE ILLEGAL WHILE TRACING

222 - INVALID INDEX INTO TRACE MODULE BUFFER

223 - INSUFFICIENT ARGUMENTS IN PROC/FUNC CALL

224 - STACK OVERFLOW; DELETE PROC/FUNC/ ARRAY

225 - DELETED PROC/FUNC/ ARRAY REFERENCED

226 - INSUFFICIENT ARGUMENTS IN FORM FOR PROC/FUNC

227 - ! INVALID FORM SEGMENT ID !

228 - ! INVALID FORM CURRENT VALUE SEGMENT ID !

229 - INVALID CHARACTER IN LOAD FILE

230 - CHECKSUM ERROR IN LOAD FILE

231 - ARITHMETIC OVERFLOW

233 - PROC/FUNC CALL ARGUMENT OUT OF RANGE

234 - INVALID "ARG" OR "LOC" INDEX FOR WRITING

235 - INVALID "ARG" OR "LOC" INDEX FOR READING

237 - ARRAY ALREADY DEFINED

238 - INVALID ARRAY DIMENSION

240 - REFERENCE TO UNDECLARED ARRAY

241 - INVALID ARRAY SUBSCRIPT

242 - ! ERROR ARRAY SEGMENT LENGTH !

243 - DELETED IDT I DEF I REF LOAD SYMBOL REFERENCED

244 - ALL IDT /DEF /REF LOAD SYMBOLS DELETED

245 - INVALID DEVICE TYPE TO "EINT" OR "TINT"

NOTE: Error messages withing exclamation marks(!) are AMPL internal system errors.

Contact Texas Instruments if problem persists.

·9900 FAMILY SYSTEMS DESIGN 7-65

POWER BASIC
MP307

Program Development: POWER BASIC
MP 307

Software Commands -
Description and Formats

REFERENCE CARD FOR DEVELOPMENT AND EVALUATION BASIC

This card contains a summary of all POWER BASICt statements and commands for
Development and Evaluation BASIC. An explanation preceded by an asterisk C') indicates
the statement or command is not supported by Evaluation BASIC. A* indicates the
statement is supported only by the Development BASIC software enhancement package.

COMMANDS

CONtinue

LIST

LOAD

NEW

':'Execution continues from last break.

LIST the user's POWER BASIC program. In LIST will list from specified line number
through end of program or until ESC key is struck.

Reads a previously recorded POWER BASIC program from an auxiliary device or
configures POWER BASIC to execute a BASIC program in EPROM.
LOAD reads program from 733ASR digital cassette.
LOAD 1 or LOAD 2 * reads program from audio cassette drive No. 1 or No. 2.
LOAD <address>• configures POWER BASIC to execute BASIC program in
EPROM at specified address.

Prepare for entry of NEW POWER BASIC program or set the lower RAM memory
bound after auto-sizing.
NEW clears pointers of POWER BASIC and prepares for entry of new program.
NEW <address>':' sets the lower RAM memory bound used by POWER BASIC
after auto-sizing or power-up.

PROGRAM

Program current POWER BASIC application program into EPROM. *

RUN

Begin program execution at the lowest line number.

SAVEn (n is interpreted as in LOADn command)

SIZE

Record current user program on auxiliary device.

Display current program size, variable space allocated, and available memory in
bytes.

t Trademark of Texas Instruments

9900 FAMILY SYSTEMS DESIGN 7-67

7...._

POWER BASIC
MP 307

EDITING

Program Development:
Software Commands -
Description and Formats

The phrase "(ctrl)" indicates that the user holds down the control key while depressing
the key corresponding to the character immediately following.

Enter edited line.
':'Insert n blanks.

':'Delete n characters.

Backspace one character.
Forward space one character.

(CR)

(ctrl)ln
(ctrl)Dn

(ctrl)H
(ctrl)F
ln(ctrl)E

(ctrl)T
Display for editing source line indicated by line number (In).

Toggle from one partition to the other partition (only in
Evaluation BASIC).

(esc)

(Rubout) or (DEL)

Cancel input line or break program execution.

Backspace and delete character.

STATEMENTS

lnBAUD <exp 1,> <exp 2>
':'sets baud rate of serial 1/0 port(s).

lnBASE <(exp)>

Sets CRU base address for subsequent CRU operations

lnCALL Name <subroutine address>[, <var 1 >, <var 2>, <var 3>, <var 4>]
':'Transfers to external subroutines. If variable is contained in parentheses, the
address will be passed; otherwise, the value will be passed.

lnDATA {<exp><string const>}[{<exp><string cons!>}]···

defines internal data block.

In DEF FN<x>[(<arg 1 > [, arg 2] [, arg 3])] =<exp>
':'Defines user arithmetic function.

lnDIM <var (dim[, dim] ...)> [,]

Allocates user variable space for dimensioned or array variables.
In END

Terminates program execution and returns to edit mode.

In ERROR< In>

':'Specifies a subroutine that will be called via a GOSUB statement when an error
occurs.

In ESCAPE
lnNOESC

7-68

':'Enables or disables the excape key to interrupt program execution (always
enabled in Evaluation BASIC).

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands - ·
Description and Formats

POWER BASIC
MP307

lnFOR <sim-var> =<exp> TO <exp> [STEP <exp>]
lnNEXT <sim-var>

Open and close program loop. Both identify the same control variable. FOR assigns
starting, ending, and optionally stepping values.

lnGOSUB<ln>
Transfer of control to an internal subroutine beginning at the specified line.

In POP
•:•Removal of most previous return address from GOSUB stack without an execution
transfer.

In RETURN
Return from internal subroutine.

lnGOTO<ln>
Transfers program execution to specified line number.

lnlF<exp> THEN<statement>
In ELSE< statement>

Causes conditional execution of the statement following THEN. ':'ELSE statements
execute when IF condition is false.

In I MASK< LEVEL>
•:•Set interrupt mask of TMS 9900 processor to specified level.

In TRAP< level> TO< In>
•:•Assign interrupt level to interrupt subroutine.

lnlRTN
•:•Return from BASIC interrupt service routine.

lnlNPUT ~var> [{}var> l · · · [UJ
Accesses numeric constants and strings from the keyboard into variables in the
INPUT list.

In [LET] <var>= <exp>
Evaluates and assigns values to variables or array elements.

{
<var>J lnON THEN GOTO In [,In] ...
<exp>

lnON THEN GOSUB In [,In] ... {
<var>}
<exp>

•:•Transfers execution to the line number specified by the expression or variable.

lnPRINT <exp> [,exp] ...
Print (format free) the evaluated expressions.

lnRANDOM [exp]
•:•set the seed to the specified expression value.

1 READ {<nun:ieric var>J [' { <nu~eric var> lJ ...
n <string var> <string var> j

Assigns values from the internal data list to variables or array elements.

9900 FAMILY SYSTEMS DESIGN 7-69

..... 7

POWER BASIC
MP 307

lnREM [text]

lnser~s comments.

lnRESTOR [exp]

Program Development:
Software Commands -
Description and Formats

Without an argument, resets pointer to beginning of data sequence; with an
argument, resets pointer to line number specified.

lnSTOP
Terminates program execution and returns to Edit mode.

lnTIME

Sets, displays, or stores the 24 hour time of day clock.
lnTIME <exp>, <exp>, <exp>
Sets and starts clock.
lnTIME <string-var>
Enables storing clock time into a string variable.
In TIME
Prints clock time as HR:MN:SD.

lnUNIT <exp>
':'Designates device(s) to receive all printed output.

FUNCTIONS

ABS <(exp)>

ASC <(string-var)>

ATN <(exp)>
BIT <(var, exp)>

BIT <(var, exp 1)> =<exp 2>

COS >(exp)>

CRB <(exp)>

CRB <(exp 1)> =<(exp 2)>

CRF <(exp)>

CRF <(exp 1)>=<(exp 2)>

EXP <(exp)>

INP <(exp)>

7-70

':'Absolute value of expression.

':'Returns decimal ASCII code for first character of
string variable.

Arctangent of expression in radians.
':'Reads or modifies any bit within· a variable.

Returns a 1 if bit is set and O if not set.
Selected bit is set to 1 if assigned value is non-zero
and to zero if the assigned value is zero .

Cosine of the expression in radians.

Reads CRU bit as selected by CRU base+ exp. Exp is
valid for - 127 thru 128.

Sets or resets CRU bit as selected by CRU base+ exp
1. If exp 2 is non-zero, the bit will be set, else reset.
Exp 1 is valid for - 127 thru 128.

Reads n CRU bits as selected by CRU base where exp
evaluates to n. Exp·is valid for O thru 15. If exp= 0, 16
bits will be read.

Sfores exp 1 bits of exp 2 to CRU lines as selected by
CRU BASE. Exp 1 if valid for 0 thru 15. If exp 1 = 0, 16
bits will be stored.

':'Raise the constant e to the power of the evaluated
expression.

Returns the signed integer portion of the expression.

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

LOG <(exp)>.

MEM <(exp)>

MEM <(exp 1)> =<(exp 2)>

MCH <(string 1), (string 2)>

NYK <(exp)>

RND

SIN <(exp)>
SOR <(exp)>
SRH <(string 1), (string 2)>

SYS <(exp)>

TIC <(exp)>

STRINGS

ASCII Character

Conversion Function

Assignment

Character Match
Function

Character Search
Function

Concatenate

9900 FAMILY SYSTEMS DESIGN

POWER BASIC
MP 307

':'Returns natural logarithm of the expression.

Reads byte from user memory at address specified by
exp. Exp must be in the integer range, (0 to 65535).

Stores byte exp 2 into user memory specified by exp
1. Exp 1 and exp 2 must be in the integer range.
':'Returns the number of characters to which the two
strings agree.
Conditionally samples the keyboard in run time mode.
If exp < >0, return decimal value of last key struck
and clear key register. (0 if no key struck.)
If exp= 0, return a 1 if the last key struck has the same
decimal value as the expression. Clear key register if
TRUE, else return 0 if FALSE.

Returns a random number between O and 1.
Sine of the expression in radians.
Square root of expression.
':'Return the position of string 1 in string 2, O if not
found.

':'Obtains system parameters generated during
program execution. Example: SYS(O) =INPUT control
character, SYS(1) =Error code number, SYS(2) =error
line number.
Returns the number of time tics less the expression
value. One TIC equals 40 milliseconds (1 /25 second).

ASC (string-var)

':'Convert first character of string to ASCII numeric
representation.

. {<string-var> }
<string-var> = <string-constant>

Store string into string-var ending with a null.

MCH (<string 1 >, <string 2>)
':'Return the number of characters to which the 2
strings agree.

SRH (<string 1 >, <string 2>)
':'Return the position of string 1 in string 2. Zero is
returned if not found.

<string-var>=

{ <str~ng-var> } +{<string-var> }[+ {·. ·}]
<string-constant> <string-constant>

7-71

.... 7

POWER BASIC
MP 307

Convert to ASCII

Convert to Binary

Deletion

Insertion

Pick

Replace

String Length
Function

INPUT OPTIONS

string-var

#exp

%exp

?<In>

7-72

Program Development:
Software Commands -
Description and Formats

<string-var>= <exp>
<string-var> = #<string>, <exp>
':'Convert exp to ASCII characters ending with a null.
string specifies a formatted conversion.

<var 1 >=<string>, <var 2>
•:•convert string into binary equivalent. Var 2 receives
the delimiting non-numeric character in first byte.
<String-var>= /<exp>
•:•Delete exp characters from string-var.

<string-var> =I <string>

':'Pick byte into string-var.

. { <string""var> } .
<string-var>= <string-constant> ' <exp>

Pick number of characters specified by exp into
string-var ending with a nulL

<string-var>= { <str~ng-var> } . <exp>
<string-constant> '

Replace number of characters specified by exp of
string-var with string.
<var>= LEN <(string-var)>
<var> =LEN "string"
':'Return the length of string.

Prompt with colon and Input character data.
Example: INPUT $A
Delimit expressions. Example A, B
Suppress prompting or CR LF if at end of line.
Examples: INPUT ;A

INPUT A;

Allow a maximum of exp characters to be entered.
Example: INPUT # 1 "Y or N';$1

•:•Must enter exactly exp number of characters.
Example: INPUT %4"CODE"C
::•upon an invalid input or entry of a control character,
a GOSUB is performed to the line #. SYS(O) will be
equal to - 1 if there was an invalid input. Otherwise,
SYS(O) will equal the decimal equivalent of the control
character.
Example: INPUT ?1 OO;A

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands -
Description and Formats

OUTPUT OPTIONS

TAB <(exp)>
string
#exp

#,exp

#;exp

<hex value>

#string

9900 FAMILY SYSTEMS DESIGN

POWER BASIC
MP 307

Delimit expressions or suppress CR LF if at end of line.
Examples: PRINT A; B

PRINT A;
Tab to next print field. Example: PRINT A, B

Tab to exp column. Example: PRINT TAB (50);A
Print string or string-var. Example: PRINT "Hl";$A(O)
':'Print exp as hexadecimal in free format.
Example: PRINT # 123
':'Print exp as hexadecimal in byte format.
Example: PRINT # ,50
':'Print exp as hexadecimal in word format.
Example: PRINT # ,A
':'Direct output of ASCII codes. Example: PRINT
"<OD> <OA>"

*Print under specified format where:
PRINT # "9999"1
9 =digit holder
PRINT # "000-00-0000"SS
O = digit holder or force 0
PRINT # "$$$,$$$.OO"DLR
$ = digit holder and floats $
PRINT # "SSS.0000"4':'ATN1
S =digit holder and floats sign
PRINT #"<<<.00>"1
< =digit holder and float on negative
>number
PRINT # "990.99E"N
E = sign holder after decimal
PRINT # "990.99"N
. =decimal point specifier

PRINT # "999,990.99"N
, =suppressed if before significant digit
PRINT # "999,990/\ 00"1
/\ =translates to decimal point
PRINT #"HI= 99"1
any other character is printed.

7-73

POWER BASIC
MP 307

GENERAL INFORMATION

ARITHMETIC OPERATIONS

A=B
A-B

A+ B, $A+ $B
NB
A/B

AAB
-A
+A
LOGICAL OPERATORS

LNOT A

ALAND B
ALOR B

ALXOR B

RELATIONAL OPERATORS

1 ifTRUE and 0 if FALSE

A=B

A= =B

A<B
A<=B

A>B

A>=B

A<>B
NOTA

AAND B
AOR B

OPERATOR PRECEDENCE

1. Expressions in parentheses

2. Exponentiation and negation
3. ':',/

4. + -
'

5. <=,<>
6. >=,<

7-74

Assignment
Negation or subtraction
Addition or string concatenation

Multiplication
Division

Exponentiation
Unary Minus
Unary Plus

':'1 's complement of integer.
':'Bit wise AND.
':'Bit wise OR.

':'Bit wise exclusive OR.

TRUE if equal, else FALSE.

Program Development:
Software Commands
Description and Formats

':'TRUE if approximately equal (1 E-7), else FALSE

TRUE if less than, else FALSE.
TRUE if less than or equal, else FALSE.

TRUE if greater than, else FALSE.

TRUE if greater than or equal, else FALSE.

TRUE if not equal, else FALSE.
':'TRUE if zero, else FALSE.

':'TRUE if both non-zero, else FALSE.
':'TRUE if either non-zero, else FALSE.

7. =,>
8. = =, LXOR
9. NOT, LNOT

10. AND, LAND
11 . OR, LOR
12. (=)ASSIGNMENT

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands
Description and Formats

SPECIAL CHARACTERS

Separates statements typed on same line.

POWER BASIC
MP307

Tail remark used for comments after program statement
Equivalent to PRINT.

ERROR CODES

1 =
2=
3=
4=
5=
6=
7=
8=
9=

10=
11 =
12 =

SYNTAX ERROR
UNMATCHED PARENTHESIS
INVALID LINE NUMBER
ILLEGAL VARIABLE NAME

TOO MANY VARIABLES

ILLEGAL CHARACTER
EXPECTING OPERATOR
ILLEGAL FUNCTION NAME
ILLEGAL FUNCTION ARGUMENT
STORAGE OVERFLOW
ST ACK OVERFLOW
STACK UNDERFLOW

13 = NO SUCH LINE NUMBER
14 = EXPECTING STRING VARIABLE
15 = INVALID SCREEN COMMAND
16 = EXPECTING DIMENSIONED VARIABLE
17 = SUBSCRIPT OUT OF RANGE
18 = TWO FEW SUBSCRIPTS
19 = TOO MANY SUBSCRIPTS
20 = EXPECTING SIMPLE VARIABLE

37=
38=
39=
40=
41 =
42=
43=
44=
45=
46=

21 = DIGITS OLJT OF RANGE (0< # of digits < 12)
22 = EXPECTING VARIABLE
23 = READ OUT OF DATA

24 = READ TYPE DIFFERS FROM DATA TYPE
25 = SQUARE ROOT OF NEGATIVE NUMBER
26 = LOG OF NON-POSITIVE NUMBER
27 = EXPRESSION TOO COMPLEX
28 = DIVISION BY ZERO
29 = FLOATING POINT OVERFLOW
30 ==:; FIX ERROR
31 :::;: FOR WITHOUT NEXT
32 = NEXT WITHOUT FOR
33 = EXP FUNCTION HAS INVALID ARGUMENT
34 = UNNORMALIZED NUMBER
35 = PARAMETER ERROR
36 = M!SSING ASSIGNMENT OPERATOR

9900 FAMILY SY~TEMS DESIGN

ILLEGAL DELIMITER
UNDEFINED FUNCTION
UNDIMENSIONED VARIABLE
UNDERFINED VARIABLE
EXPANSION EPROM NOT INSTALLED
INTERRUPT W /0 TRAP
INVALID BAUD RATE
TAPE READ ERROR
EPROM VERIFY ERROR
INVALID DEVICE NUMBER

7-75

7"'4

Cross Support
..-7

Program Development:
Software Commands -
Description and Formats

ASSEMBLER FILES

The Cross Assembler data base which is assigned to PUNIT, is read by the FORTRAN
program as the first file at execution time. It is the actual Cross Assembler program written in
internal code, and it is suggested that it be assigned to a permanent disk file.

INTERNAL DEFAULT DEVICE RECORD
NAME UNIT TYPE LENGTH FUNCTION

IUNIT 5 CR,CS 80 TMS 9900 Source Input
MT,DF

LUNIT 6 CS,MT 80 Listing Output

OUNIT 7 CS,MT 80 TMS9900 Object Output

SUNIT 10 MT,DF 80 Assembly Scratch

PUNIT 11 CR,CS 80 Data Base INPUT

CR-CARD READER; CS-CASSETTE TAPE; MT -MAGNETIC TAPE; DF-DISKFILE; CP-
CARD PUNCH; LP-LINE PRINTER

CROSS ASSEMBLER SYSTEM FILES

9900 FAMILY SYSTEMS DESIGN 7-77

7"4
I

~7

ASSEMBLER DIRECTIVES Program Development:
Software Commands -
Description and Formats

AORG places the expression value in the location counter, and defines the succeeding
locations as absolute.

ABSOLUTE ORIGIN AORG
Syntax Definition:

[<label>]~ ... AORGps ... <wd-exp>,t.1 ... [<comment>]

RORG places the expression value in the location counter, and defines the succeeding
locations as relocatable.

RELOCATABLE ORIGIN RORG
Syntax Definition:

[< label>.tD ... RORGl1 ... [<exp>]~ ... [<comment>]
DORG places the expression value in the location counter, and defines the succeeding
locations as a dummy section. No object code is generated in a dummy section.

DUMMY ORIGIN DORG
Syntax Definition:

<label>.tD ... DORG~ ... <exp>lzS ... [<comment>]
SSS first assigns the label, if present, and increments the location counter by the value of the
expression.

BLOCK STARTING WITH SYMBOL BSS
Syntax Definition:

[<label>].t6 ... BSSJ25 ... <wd-exp>Jzj ... [<comment>]

SSS first increments the location counter by the value of the expression, and then assigns
the label, if present.

BLOCK ENDING WITH SYMBOL

Syntax Definition:
[<label>],tD ... BES,tD ... <wd-exp>pj ... [<comment>]

EOU assigns an assembly-time constant to the label.

DEFINE ASSEMBLY-TIME CONSTANT

Syntax Definition:

<label>pj ... EQU~ ... <exp>lzS ... [<comment>]

BES

EQU

EVEN first assigns the label, if present, and then aligns the location counter on a word
boundary (even address).

WORD BOUNDARY EVEN
Syntax Definition:

[<label>]ji? ... EVENpj ... [<comment>]

OPTIONS allows cross referencing when XREF is specified, and allows printing of the
symbol table when SYMT is present.

OUTPUT OPTIONS OPTION
Syntax Definition:

JD . .. OPTION~ ... <keyword>[,<keyword>] ... ~ ... [<comment>]

7-78 9900 FAMILY SYSTEMS DESIGN

Program Development: ASSEMBLER DIRECTIVES
Software Commands -
Description and Formats

IDT assigns a name to the program, and must precede any code-generating directive or
instruction.

PROGRAM IDENTIFIER IDT
Syntax Definition:

[<label> W ... IDTFS ... <string> ID . .. [<comment>]

TITL supplies a string to be printed at the top of each subsequent source listing page.

PAGE TITLE TITL
Syntax Definition:

[<label> W ... TITL~ ... <string>!z5 ... [<comment>]
LIST restores printing of the source listing.

LIST SOURCE

Syntax Definition:

[<label>]16 ... LIST!D ... [<comment>]

UNL inhibits printing of the source listing.
NO SOURCE LIST

Syntax Definition:

[<label>]\ti ... UNL!zS ... [<comment>]

PAGE directs the assembler to continue the source listing on the next page.

PAGE EJECT

Syntax Definition:

[<label>]lb ... PAGE!D ... [<comment>]

LIST

UNL

PAGE

BYTE places expres~ons in successive bytes, optionally assigning the label the address of
the first byte. ·

INITIALIZE BYTE BYTE
Syntax Definition:

[<label>]!D ... BYTE.l:) ... <exp>[,<exp>] ... ID .. . [<comment>]

DATA places expressions in successive words, optionally assigning the label the address 7"4
of the first word.

INITIALIZE WORD DATA
Syntax Definition:

[<label>]l6 ... DATAP5 ... <exp>[,<exp>] ... P5 ... [<comment>]

TEXT places characters in successive bytes, arithmetically negating the last character, and
optionally assigns the label the address of the first character.

INITIALIZE TEXT TEXT
Syntax Definition:

[<label>]~ ... TEXT~ ... [...,...]<string>}i1 ... [<comment>]

9900 FAMILY SYSTEMS DESIGN 7-79

~7

ASSEMBLER DIRECTIVES Program Development:
Software Commands -
Description and Formats

DEF makes symbols available to other programs as external references.

EXTERNAL DEFINITION

Syntax Definition:

[<label>]}1 ... DEFl?5 ... <symbol> [,<symbol>] ... Jzj ..• [<comment>]

REF directs the assembler to look externally for symbols.

EXTERNAL REFERENCE

Syntax Definition:

[<label>]tz5 ... REF,l6 ... <symbol>[,<symbol>] ... tz5 . .. [<comment>]

DXOP assigns an extended operation to a symbol.

DEF

REF

DEFINE EXTENDED OPERATIONS DXOP
Syntax Definition:

[<label>]tz5 ... DXOP~ ... <symbol>,<term>}1 ... [<comment>]

END terminates the assembly

PROGRAM END END
Syntax Definition:

[<label>]~ ... END~ ... [<symbol>]~ ... [<comment>]
NOP places a no-operation code in the object file.

NO OPERATION NOP
Syntax Definition:

[<label>]~ ... NOP~ ... [<comment>]
RT assembles as a return from subroutine by substituting a branch through register 11.

RETURN RT
Syntax Definition:

[<label> Jtz5 ... RT}1 ... [<comment>]

7-80 9900 FAMILY SYSTEMS DESIGN

SIMULATOR FILES

SIMULATOR FILES

INTERNAL DEFAULT DEVICE RECORD FUNCTION WHERE
NAME UNIT TYPE LENGTH USED

INCOPY 4 MT,DF 80' Batch copy file c
INCOM 5 TE,CR 80 Simulation command c

MT,DF
OUTPRT 6 MT,DF 80 or Listing output L,C,R
OUTTRC TE,CR 136

INLOD 10 TE,CR 80 Linker commands L
MT,DF

OUTCOM 11 TE,LP 80 or Prompts and error msg. L
136 for linker output

OUTSAV 17 MT,CP
OF

80 Absolute object L,S

INSCR 20 MT,DF 136 Input scratch file C,R,S
OUTSCR 21 MT,DF 136 Output scratch file L,C,R

Device type legend
TE-terminal; CR-card reader; MT -magnetic tape; OF-disk file; CP-card punch

Where used legend
L-link processor; C-command processor; R-run processor; S-save processor

In addition to the above unit number assignments, the user must also assign unique
FORTRAN logical unit numbers to each TMS9900 object code module to be included in
the LINK processor.

9900 FAMILY SYSTEMS DESIGN 7-81

~7

SIMULATOR DIRECTIVES

SIMULATOR DIRECTIVES

Program Development:
Software Commands
Description and Formats

ORIGIN COMMAND. The "ORIGIN" command can be used to specify where relocatable
code is to be loaded.

ORIGIN hex-number

INCLUDE COMMAND. The "INCLUDE" command directs the loader to load an object
module from a data set (e.g., card reader, disc, tape). The data set must be a sequential
data set and may contain one or more object modules. At least one "INCLUDE"
command should be used in the LINK processor command stream. The format for the
command is as follows:

INCLUDE n

ENTRY COMMAND. The "ENTRY" command specifies the program entry point to the
loader. The format for the command is as follows:

ENTRY name

SUMMARY OF CONTROL LANGUAGE STATEMENTS

The formats of the control statements for the "COMMAND" processor are shown below, with
a brief description following:

[label] {~UN} [*] {~OR} n [{~~OM} i1 J [{i0}}2 [,label]

[label] { iRACE} [list]

[label] { N8iRACE} [list]

[label] rn~FER } [list]

[label] {N8~EFER} [list]

[label] { ~LTER } [list]

[label] {N8~LTER} [list]

[label] { ~ROTECT} [list]

Specifies where to start and stop simulation.
Control passes to statement at label operand
when a breakpoint occurs.

Specifies locations to be traced.

Disables trace for specified locations.

Specifies locations for reference breakpoint.

Disables reference breakpoint at specified
locations.

Specifies locations for alteration breakpoint.

Disables alteration breakpoint at specified
locations.

Specifies areas for memory protection.

[label] IF (logical expression) label Conditional transfer of control program.

[label] { jUMP} label Unconditional transfer of control program.

[label] { i:ME} [n] Prints the value of 9900 time and optionally sets
a new value.

[lab_el] { 8isPLAY} [DJ {g~U} [register list] Prints contents of registers.

[label] {glSPLAY} [8] {~EMORY} list Prints contents of memory.

7-82 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands
Description and Formats

[label] 181sPLAYI rnYMBOJ:ymbol] ~umber

ID l ICR t {:NPUT } . [label]) DISPLAY j)CRUJ 0 list
OUTPUT

[label] rnET { gPU} register-value list

[label] {~ET} {~EMORY} location-value list

[label] rnET }{\NT} level, n1 [,n2,n3]

[label] rnND \

F

SIMULATOR DIRECTIVES

Prints values from symbol table.

Prints CRU values.

Places values into registers.

Places values into memory.

Sets up one or more interrupts.

Disables breakpoints and traces, and initializes
simulation. Passes control to next control
statement.

FIRST
L
LAST
A

[data] Defines input lines and fields, and supplies data
for program being simulated.

ALL

[label] { 8uTPUT} {n1 ~o n2}

[label] { gg~~ECT} list

[label] { gONVERT} expression list

{~ATCH1
[label] {toAD}

[label] {gtocK } t

[label] {~EMORY} {~~M} rnEAD}
ROM

[label] {~~VE}
[label] jW } n

lWIDTH

9900 FAMILY SYSTEMS DESIGN

Defines output lines and fields, or prints output of
program being simulated.

Connects input CRU lines to output CRU lines.

Evaluates and prints values of expressions in
decimal and hexadecimal form.

Specifies batch mode.

Loads Wp and PC from locations FFFC16 and
FFFE16·
Specify clock period.

Define available memory. Default is 32K RAM.

Create absolute object module.

Specifies number of columns available for
printing.

7-83

7"'-

·7

SIMULATOR DIRECTIVES Program Development:
Software Commands
Description and Formats

MONITOR COMPLETION CODES

The simulator signals completion by executing and writing an appropriate STOP I
statement, where I takes on one of the following values:

CODE MEANING

0 Normal completion
1 Abnormal completion from LNKPRC
2 Premature EOF

-If this error occurs it indicates that a premature EOF was encountered while
attempting to reposition the BATCH command file.

3 Internal error; invalid label value
4 Roll memory overflow
5 Loader error

-If this error occurs it means an attempt was made to load an object file into
simulated memory and it failed causing termination of the link processor.

8 Abnormal completion from LOADER
9 Abnormal completion from CMDPRC
99 Internal error

-Illegal completion from CMDPRC
Internal error

999 Internal error
-Illegal parameter passed to WRITER

If an error of 99 or 999 results, an internal error has occurred and the error should be
reported to TEXAS INSTRUMENTS INC.

7-84 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands
Description and Formats

SIMULATOR ERRORS

LINK PROCESSOR ERRORS

CODE

L01
L02
L03
L04
L05
L06
L09
L13
L14
L18
L19
L21
L22
L24
L25
L26
L27
L28
L29
L30

MESSAGE

Load not completed
Multiply defined external symbol (name)
Empty object file on unit
Attempt to load undefined memory
Tag D follows tag O
Invalid tag character
Undefined external memory
Empty memory on save
(name) not in external symbol table
Maximum memory size exceeded
Missing end
Checksum error (computed value)
Odd origin value specified-even value used
Ref chain loop
Object module does not start with tag O
Odd value (value) specified for tag (tag) even value used
Missing F tag in record (number)
Bad REF chain for (name)
Bad object format in object module
Illegal hex digit in field (digit)

COMMAND PROCESSOR ERRORS

CODE CODE
NUMBER NAME MESSAGE NUMBER NAME MESSAGE

1 BADCHR Bad character 18 RANGE Range error
2 BADCMD Unrecognizable command 19 SYNTAX Syntax error
3 BADIGT Bad digit. 20 TOOMNY Too many values
4 BAD MOD Bad module name 21 UN DEF Undefined symbol
5 BADREG Bad register mnemonic
6 BAD VAL Bad value
7 CRUSPC CRU specification error
8 FL DC NT Too few/many fields
9 HITEOF Hit EOF

10 HITEOL Hit end-of-line
11 MEMDEF Undefined
12 MISSEQ Missing equal sign
13 NO DATA No data found
14 NOROL No data rolls available
15 NOS ET Set not performed
16 NOTIMP Command not implemented
17 ORDER Command out of order

9900 FAMILY SYSTEMS DESIGN 7-85

7-<t

SIMULATOR ERRORS

RUN PROCESSOR ERRORS

CODE

1
2
3
4
5
6
7
8
9

10
11
12
13, 14
15
16
17,18,19
20
21
22
23
24
25
26
27
28

MESSAGE

PC interrupt vector entry in undefined memory
WP interrupt vector entry in undefined memory
Register out of address space (WP 65502)
Registers in undefined memory
Registers in ROM
PC interrupt vector refer breakpoint
WP interrupt vector refer breakpoint
Register alter breakpoint
Register protect breakpoint
Register refer breakpoint
Undefined opcode
Undefined memory reference
Unused
PC refer breakpoint
Unimplemented opcode
Unused
Destination address in undefined memory
Destination refer breakpoint
Destination alter breakpoint
Destination ROM breakpoint
Unused
Source address in undefined memory
Source refer breakpoint
Source alter breakpoint
Source ROM breakpoint

Program Development:
Software Commands
Description and Formats

7-86 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands
Description and Formats

TMSUTL

TMSUTL

CONCEPT

TMSUTL is a general purpose ultility program that accepts as input Tl microprocessor
object format, PROM manufacturing formats, or ROM manufacturing formats. This data is
syntax checked, output options are gathered, the input data converted and an output file
is produced.

/
/

/
Cf)

0 __J
z I- Cf)

0 <{ :::i <{
L Cf) x L.1..

L L w L
0 I- I-

u

z__J~
9oz
~g:~ _J

:::iZW <{
LO~ i= -Ur z Cf) Cf)

LU
::J
a
LU
UJ

~i- WW w
__JI- a: a: ro :::i

0 w I- <{ __J

0 :::i ti:O L <{ a... UC/J
0 ~ g~ a:
__J 0 wa:

a:O wUJ
ztu
Ow

' a~ ' ' a: Cf) <:(

' w I- 0

'
Cfl__J UJO C/J ro I (jjW OL

~ a: w zz
UC/J

CJ) Cl.. oo
<{ _J Ui=

<{ >- i= z a: a:
0 <{ <{

i= a: Cl..
Cl.. a:i a:
0 ::::JO

t ~i- ~i-
w ~i-u
a: I :::i
0 I Cf)

I

9900 FAMILY SYSTEMS DESIGN 7-87

7...a

~7

TMSUTL

INPUT, OUTPUT CONTROL CARD FORMATS

GENERAL DESCRIPTION

INPUT frmt [addr1 addr2] [WIDTH= x] [PARTITION= y]

frmt is the format number (integer 1-12).

Program Development:
Software Commands
Description and Formats

addr1 is the starting address where input data is to be stored.

addr2 is the maximum address where data is to be stored.

x is the bit width of the input words.

y

OUTPUT

num

addr1

addr2

x

y

num

is the number of input data set partitions 1 Y 4

addr1 addr2 WIDTH= x PARTITION= y

is the format number (integer 1-12).

is the minimum address to be output.

is the maximum address to be output.

is the bit width of an output word.

EOF-End of COMMAND FILE indicator

AVAILABLE FORMATS

FORMAT # FORMAT

Hexadecimal # 1 (PROM)

2 Hexadecimal # 2 (ROM)

3 BNPF

4 271 & 371 ROM/HILO of prototyping System

5 TMS8080/TMS1000 Absolute Object from
SIM8080/SIM1000 Loader /Simulator

6 TMS1000 Absolute ROM Object from Assembler

7 TMS1000 Listed Absolute Object

8 TMS1000 OPLA Data

9 TMS9900 Standard Absolute Object of Cross
Support System (Assembler or Loader /Simulator) &
Prototyping System

10 TMS9900 Compressed Absolute Object of
Prototyping System

11 Tl4700 ROM

12 Tl4800 ROM

INPUT

x
x
x
x
x

x
x
x
x

x

x
x

OUTPUT

x
x
x
x
x

x
x

x

x

x
x

7-88 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands
Description and Formats

TMSUTL FORMAT PATHS

Output Format ---+-

1) Hexadecimal # 2
(PROM)

2) Hexadecimal # 2
(ROM)

3) BNPF

4) 271 & 371 ROM/
HILO of Prototyping
System

TMSUTL

2 3 4 5 6 7 8 9 10 11 12

YES YES YES YES NO NO YES NO NO NO YES YES

YES YES YES YES NO NO YES NO NO NO YES YES

YES YES YES YES YES YES YES NO YES YES YES YES

YES YES YES YES NO NO YES NO NO NO YES YES

5) TMS1000 I TMS8080 YES YES YES YES YES YES YES NO NO NO YES YES
Absolute Object from
Loader /Simulator

6) TMS1000 Absolute YES YES YES YES YES YES YES NO NO NO YES YES
ROM Objects from
Assembler for
masking

7) TMS 1 000 Listed
Absolute Object

YES YES YES YES YES YES YES NO NO NO YES YES

8) TMS1000 OPLA Data YES YES YES NO NO NO NO NO NO NO NO NO

9) TMS9900 Standard
Absolute Object of
Cross Support System
(Assembler or
Loader /Simulator) &
Prototyping System

YES YES YES YES NO NO NO NO YES YES YES YES

1 0) TMS9900 YES YES YES YES NO NO NO NO YES YES YES YES
Compressed Absolute
Object of Protoyping
System

11) Tl4700 ROM YES YES YES YES YES NO YES NO NO NO YES YES

1 2) Tl4800 ROM YES YES YES YES YES NO YES NO NO NO YES YES

9900 FAMILY SYSTEMS DESIGN 7-89

7

TMSUTL

DATA DELIMITERS

Program Development:
Software Commands
Description and Formats

The following is a table of data delimiters or end-of-module records for Input Data.

FORMAT#

1 . Hex format 1

2. Hex format 2

3. BNPF

4. 271 /371 ROM and HILO of Prototyping System

5. TMS8080/TMS1000 Absolute Object from

Loader /Simulator

6. TMS1000 Absolute ROM Object

7. TMS1000 Listed Absolute Object

8. TMS1000 OPLA Data

9. TMS9900 Standard Absolute Object

10. TMS9900 Binary Compressed Absolute Object

11. Tl4700 ROM

1 2. Tl4800 ROM

ADDRESS RANGES FOR FORMATS

FORMAT# FORMAT

1
2

3

Hexadecimal # 1 (PROM)
Hexadecimal # 2 (ROM)

BNPF

TYPES

End of file record (:00)

Trailer record - "END OF TEXT"
(hollerith code 12-9-3) character
followed by 79 non-blank characters
(without asterisks)

End of file record ($ in column 1)

End of file record ($END)

End record (+END)

End of file record ($END)

End of file record ($END)

End of file record ($END)

End of module record (:)

End of file record ($END)

End of file record ($END)

End of file record ($END)

ADDRESS RANGE

(0-FFFF)H
None

None

4 271 & 371 ROM/HILO of Prototyping System None

5

6

7

8

9

10

11

12

7-90

TMS8080/TMS1000 Absolute Object from Loader I (0-255)
Simulator

TMS1000 Absolute ROM Object

TMS1000 Listed Absolute ObJect

TMS1000 OPLA Data

TMS9900 Standard Absolute Object

TMS9900 Compressed Absolute Object

T14700 ROM

Tl4800 ROM

(0-800)H

(0-1 Chapter 0-15 page 0-3F
location)H

(0-1 F)H

(0-FFFF)H

(0-FFFF)H

(0-400)H

(0-400)H

9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands
Description and Formats

INPUT AND OUTPUT WIDTHS FOR FORMATS

FORMAT#

1

2

3
4

5

6
7

8

9

10

11

12

FORMAT

Hexadecimal # 1 (PROM)

Hexadecimal # 2 (ROM)

BNPF

271 & 371 ROM/HILO of Prototyping System

TMS8080/TMS1000 Absolute Object from Loader I
Simulator

TMS1000 Objectfrom Assembler

TMS1000 Listed Absolute Object

TMS1000 OPLA Data

TMS9900 Standard Absolute Object

TMS9900 Compressed Absolute Object

Tl4700 ROM

Tl4800 ROM

FILES DEFINITIONS & DESCRIPTIONS

FT05F001

CTLUNT

Input file for control cards.

Input file for data.

FILES
TMSUTL

INTOT

TMSUTL

WIDTH (BITS)

8

8
2 or 4 or 8 or 16

4 or 8

8

8
8

8 or 16

16

16

8
4 or 8

CT LUNT

INUNT

INTIN Intermediate file for storage of input data. It must be a rewindable file with a
logical record length of 80 bytes.

INTOT

OTUNT

LSTUNT

MRGUNT

Intermediate file for storage of internal data. It must be a rewindable file with
a logical record length of 80 bytes.

Output file for translated data.

Print file for listing of data and error messages.

Intermediate file for storage of internal data. It must be a rewindable file with
a logical record length of 80 bytes.

9900 FAMILY SYSTEMS DESIGN 7-91

7

TMSUTL Program Development:
Software Commands
Description and Formats

TMSUTL ERROR MESSAGES

•·• INPUT CONTROL CARD MISSING. Input control card missing or misplaced; it should be
the first control card.

·•• INVALID CONTROL CARD FIELD. Control card has an invalid field. Dollar signs point to
the beginning and the end of the field.

••· OUTPUT FORMAT INCOMPATIBLE WITH INPUT FORMAT. The output format specified can
not be converted from the input format specified.

···OUTPUT FORMAT MISSING. Output control card missing or misplaced; it should follow the
Input card.

••• ADDR2 ADDR1 OR BOTH NOT SPECIFIED. Either minimum or maximum address is
invalid. Addr1 must be less than or equal to Addr2.

···WIDTH INVALID FOR 1/0 FORMAT SPECIFIED. For the format specified the bit width is
invalid.

·•• PARTITION ERR. The Input bit width times the number of input partitions is not equal to the
width times the number of output partitions.

···ERROR DETECTED ON INPUT CARD. The format of a data card is invalid, check the field
pointed to by the dollar signs.

••• INPUT OUT OF SEQUENCE. The addresses of the input data are not in sequential order.

··· # OF WORDS INPUT FOR CURRENT PARTITION NOT EQUAL TO THAT IN PREVIOUS
PARTITION. The number of words input for each partition is not equal. Check the input
data.

···ADDRESS OUT OF RANGE. Either Addr1 or Addr2 is out of range or the address read on
the input data is out of range of the format specified.

STOP CODES

2

3

STOP CODES

90
91

92

93
94

95

7-92

ERROR

Input data error. (A message describing the error is output before
this is issued.)

Format not implemented yet in EOF.

Format not implemented yet in TRANS.

ERROR

DECHEX unable to find H or blank.

Data will not fit in card field passed to AFORMT.
Invalid format number in EOF.

Invalid width passed to INWORD.

SHFTR called with invalid arguments.

TRANS called with an invalid format number.

9900 FAMILY SYSTEMS DESIGN

CHAPTERS

Product Data Book
g ..

·8

INTRODUCTION Product Data Book

R TMS 9900 TMS 9900-40 SBP 9900A TMS 9980AI TMS 9985 TMS 9940
TMS 9981

Number of bytes 65k 65k 16k 65k 2kEPROM
addressable 256 RAM 128 RAM

Number of Interrupts 16 16 5 5 4

Number of Pins 64 64 40 40 40

Power Supply +5, -5, +12 500Ma +5, +5 +5
Requirements (Note 1)

Technology N-MOS 12L N-MOS N-MOS N-MOS

Environmental 0-70°C -55-125°C 0-70°C 0-70°C 0-70°C
(Temperature)

Clock Rate 3.3 MHz 4MHz 3MHz lOMHz 5MHz 5MHz

Relative Thruput 1.0 1.3 0.9 0.6 0.65-0.8 1.2
(Note2)

Number of Address 15 15 14 16 (NoteJ)
Bus Lines

Number of Data Bus 16 16 8 8 (Note J)
Lines

Clock TIM 9904 SN54LS124 On chip On chip On chip

Note 1: Voitage for the SBP 9900A is 1.5 to 30 volts with a series resistor.
Note 2: The relative thruput is 0.65 with an off-chip RAM and 0.8 with an on-chip RAM.
Note J: There are 3 2 general purpose pins which can be programmed for 1/0. While the memory and data buses

are not available, 8 address bits are accessible for CRU 1/0 expansion.

FAMILY DESCRIPTION

The TMS 9900 micrprocessor is a single-chip 16-bit central processing unit (CPU) produced using N-channel
silicon-gate MOS technology. The instruction set of the TMS 9900 includes the capabilities
offered by full minicomputers. The unique memory-to-memory architecture features multiple register files,
resident in memory, which allow faster response to interrupts and increased programming flexibility. The
separate bus structure simplifies the system design effort. Texas Instruments provides a compatible set of MOS
and TTL memory and logic function circuits to be used with a TMS 9900 system. The system is fully supported
by software and a complete prototyping system.

There is a TMS 9900-40 part designed for 4-MHz operation. Refer to the separate "-40" (dash forty) electrical
specification tables for exact characteristics.

8-2 9900 FAMILY SYSTEMS DESIGN

Product Data Book INTRODUCTION

The SBP 9900A is basically the same as the TMS 9900 but it employs I2L technology to enhance environmental
specifications. It is a static, bipolar microprocessor operating from a single phase clock over the frequency
range from 0 to 3 MHz. The 1/0 is fully TTL compatible so that no special peripheral circuits are required.
The power supply is specified as a single input injector current which may be varied over the range from
10 mA to 1 A with a corresponding change in speed (described in the specific SBP 9900A section). The
architecture is the same for the SBP 9900A as the TMS 9900 with minor differences in clock and control lines.

Software compatibility with other 9900 microprocessor family members provides a common body of
hardware/software within Texas Instruments 990 minicomputer family.
The TMS 9980A/TMS 9981 is another software-compatible member of Tl's 9900 family of
microprocessors. Designed to minimize the system cost for smaller systems, the TMS 9980A/TMS 9981 is
a single-chip 16-bit central processing unit (CPU) which has an 8-bit data bus, on-chip clock, and is packaged
in a 40-pin package. The instruction set of the TMS 9980A/TMS 9981 includes the capabilities offered by full
minicomputers and is exactly the same as the 9900's.

The TMS 9940 is a single-chip, 16-bit microprocessor containing a CPU, memory (RAM and
EPROM/ROM), and extensive I/O. Except for four instructions which do not apply to the TMS 9940
microcomputer configuration, the TMS 9940 instruction set matches that of the TMS 9900 and includes
capabilities offered by minicomputers. In addition, the TMS 9940 instruction set includes two instructions which
facilitate manipulation of binary coded decimal (BCD) data, and a single-word load-interrupt-mask (LIIM)
instruction.
The unique memory-to-memory architecture features multiple register files, resident in the RAM, which
allow faster response to interrupts and increased programming flexibility. The memory consists of 128 bytes
of RAM and 2048 bytes of EPROM. The TMS 9940 implements four levels of interrupts including an internal
decrementer which can be programmed as a timer or an event counter. All members of the TMS 9900 family
of peripheral circuits are compatible with the TMS 9940. The TMS 9940 is fully supported by software and
hardware development systems and by factory applications engineers and technical answering services.

The TMS 9985 is a software compatible member of Tl's 9900 family of microprocessors and microcomputers and
contains a 16-bit CPU, 256 bytes of RAM, on chip timer/ event counter, external 16-bit address bus and 8-bit data
bus, and is in a 40-pin package. The instruction set of the TMS 9985 includes the capabilities offered by full
minicomputers and is exactly the same as the TMS 9940 microcomputer's. The unique memory-to-memory
architecture features multiple register files, resident in memory, which allows faster response to interrupts and
increased programming flexibility. In addition, the TMS 9985 has excellent I/O flexibility with CRU, memory
mapped I/0 and direct memory access.

COMMON .KEY FEATURES

• 16-Bit Architecture
• 69 Powerful Instructions Include:

Multiply and Divide
5 Addressing Modes
Bit, Byte, and Word Addressing
One, Two and Three Word Instructions

• Rapid Hardware Context Switching
• Multiple 16-Word Register Files (Workspaces) Reside in Memory
• Separate 110, Memory and Interrupt Bus Structures
• Programmed and DMA 1/0 Capability
• Communications Register Unit (CRU) for Low and Medium Speed Devices
• Efficient Memory-to-Memory Architecture
• Extended Operations (XOP) Feature Allows Users to Augment the Instruction Set
• Maskable Vectored Priority Interrupts for Multiprogramming Requirements
• Software Compatib1e with 990 Minicomputer Family

9900 FAMILY SYSTEMS DESIGN 8-3

g ...

INTRODUCTION Product Data Book

KEY FEATURES OF SPECIFIC DEVICES

TMS 9900
• 3.3-MHz Speed (4.0 MHz Speed for the TMS 9900-40)
• Up to 65,536 Bytes of Memory
• 16 Prioritized Interrupts
• 64-Pin Package
• N-Channel Silicon-Gate Technology
• 0-70°C Ambient Temperature Range
• Directly TTL Compatible 1/0

SBP9900A
• 3-MHz Speed
• Up to 65,536 Bytes of Memory
• 16 Prioritized Interrupts
• 64-Pin Package
• FL Technology
• -55 to 125°C Ambient Temperature Range
• Single de Power Supply
• Directly TTL Compatible 1/0

TMS 9980A I TMS9981
• 10-MHz Speed
• Up to 16,384 Bytes of Memory
• 8-Bit Memory Data Bus
• 4 Prioritized Interrupts
• On-Chip 4-Phase Clock Generator
• 40-Pin Package
• N-Channel Silicon-Gate Technology
• 0-70°C Ambient Temperature Range

TMS 9980A I TMS 9981 Differences

The TMS 9980A and the TMS 9981, although very similar, have several differences of which the user should
be aware.
1. The TMS 9980A requires a V88 supply (pin 21) while the TMS 9981 has an internal charge pump to
generate Vas from Vee and Voo·
2. The TMS 9981 has an optional on-chip crystal oscillator in ~ddition to the external clock mode of the
TMS 9980A.
3. The pin-outs are not the same for DO-D7, INTO-INT2, and !f>3.

TMS 9985

• 5-MHz Speed
..,_g • Up to 65,536 Bytes of Memory

• 8-Bit Memory Data Bus
• 5 Prioritized Interrupts
• 40-Pin Package
• N-Channel Silicon-Gate Technology
• 0-70 ° C Ambient Temperature Range
• On Chip Timer /Event Counter
• 25 6 Bits of RAM on Chip
• Separate Memory, 1/0 and Interrupt Bus Structures
• On Chip Programmable Flags (16)
• Multiprocessor System Interface
• Singie 5-Volt Supply
• Speed Selected Versions

8-4 9900 FAMILY SYSTEMS DESIGN

Product Data Book INTRODUCTION

TMS 9940

• 5-MHz Speed
• 2048 Bytes of EPROM or ROM
• 128 Bytes of RAM
• 4 Prioritized Interrupts
• 40-Pin Package
• N-Channel Silicon-Gate Technology
• 0-70°C Ambient Temperature Range
o On-Chip Timer /Event Counter
o 32 Bits General Purpose I/0
o 25 6 Bits I/ 0 Expansion
• Multiprocessor System Interface.
• Single 5-Volt Power Supply
• Power Down Capability for Low Standby Power
• Easy Test Function
• Offered as either an EPROM device as a mask ROM device
• Speed Selected Versions

Organization of CPU Data Manuals and Instruction Set

Data manuals for the five CPU's in the 9900 family are reproduced in this section with the TMS 9900 first,
followed by the SBP 9900A, TMS 9980A/81, and TMS 9940 data manuals. Following this there is an abbreviated
version of the TMS 9985 manual. Since the information regarding the instruction set is common to all of the
CPU's, it has been removed from the individual manuals and is printed at the end of this section.

9900 FAMILY SYSTEMS DESIGN 8-5

g ..

TMS 9900
8 ----------------

Product Data Book TMS 9900
INTRODUCTION

1. INTRODUCTION

1.1 DESCRIPTION

The TMS 9900 microprocessor is a single-chip 16-bit central processing unit (CPU) produced using N-channel
silicon-gate MOS technology (see Figure 1). The instruction set of the TMS 9900 includes the capabilities offered by
full minicomputers. The unique memory-to-memory architecture features multiple register files, resident in memory,
which allow faster response to interrupts and increased programming flexibility. The separate bus structure simplifies
the system design effort. Texas Instruments provides a compatible set of MOS and TTL memory and logic function
circuits to be used with a TMS 9900 system. The system is fully supported by software and a complete prototyping
system.

1.2 KEY FEATURES

• 16-Bit Instruction Word

• Full Minicomputer Instruction Set Capability Including Multiply and Divide

• Up to 65,536 Bytes of Memory

• 3.3 - MHz Speed

• Advanced Memory-to-Memory Architecture

• Separate Memory, 1/0, and Interrupt-Bus Structures

• 16 General Registers

• 16 Prioritized Interrupts

• Programmed and OMA 1/0 Capability

• N-Channel Silicon-Gate Technology

2. ARCHITECTURE

The memory word of the TMS 9900 is 16 bits long. Each word is also defined as 2 bytes of 8 bits. The instruction set
of the TMS 9900 allows both word and byte operands. Thus, all memory locations are on even address boundaries and
byte instructions can address either the even or odd byte. The memory space is 65,536 bytes or 32,768 words. The word
and byte formats are shown below.

MSB LSB

2 3 4 5 6 7

MEMORY WORD (EVEN ADDRESS)

MSB LSB MSB

lol 2 3 4 5 sl1lsl
'SdfTN ,..--------" S~~t' --------' -----------~v,......_ _____ ""'v-

EVEN svTE ODD BYTE

2.1 REGISTERS AND MEMORY

The TMS 9900 employs an advanced memory·to·memory architecture. Blocks of memory designated as workspace
replace internal-hardware registers with program-data registers. The TMS 9900 memory map is shown in Figure 2. The
first 32 words are used for interrupt trap vectors. The. next contiguous block of 32 memory words is used by the
extended operation (XOP) instruction for trap vectors. The last two memory words, FFFC15 and FFFE15. are used for
the trap vector of the LOAD signal. The remaining memory is then available for programs, data, and workspace
registers. If desired, any of the special i)reas may also be used as general memory,

9900 FAMILY SYSTEMS DESIGN 8-7

TMS 9900 Product Data Book

ARCHITECTURE

fR5CTi
HOLDA

COAD
wr

READY

WAIT
Mrnrn

OBIN

RESET

IAQ

CRUCLK

8-8

CONTROL
LOGIC

DO-D15

Tl

T2

PROGRAM COUNTER

~KSP.ACE PONTER

A

ALU

FIGURE 1 - ARCHITECTURE

iiiffRETI ICO IC3

CRUIN

AO-A14

15

MEMORY
ADDRESS
REGISTER

16

CRUOUT

9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9900
ARCHITECTURE

AREA DEFINITION

INTERRUPT VECTORS

XOP SOFTWARE TRAP VECTORS

GENERAL MEMORY FOR

PROGRAM, DATA, AND

WORKSPACE REGISTERS

LOAD SIGNAL VECTOR {

MEMORY

ADDRESS15

0000

0002

0004

0006

003C

003E

0040

0042

007C

007E

0080

FFFC

FFFE

0

<'

~"

FIGURE 2 - MEMORY MAP

MEMORY CONTENT

15

WP LEVEL 0 INTERRUPT

PC LEVEL 0 INTERRUPT

WP LEVEL 1 INTERRUPT

PC LEVEL 1 INTERRUPT

<
WP LEVEL151NTERRUPT

PC LEVEL151NTERRUPT

WP XOPO

PC XOPO

.?

WP XOP 15

PC XOP 15

•
•
•

GENERAL MEMORY AREA

MAY BE ANY

COMBINATION OF

PROGRAM SPACE

OR WORKSPACE

•
•

WP LOAD FUNCTION

PC LOAD FUNCTION

Three internal registers are accessible to the user. The program counter (PC) contains the address of the ·instruction
following the current instruction being executed. This address is referenced by the processor to fetch the next
instruction from 'memory and is then automatically incremented. The status register (ST) contains.the present state of
the processor and will be further defined in the Instruction Set section. The workspace pointer (WP) contains the
address of the first word in the currently active set of workspace registers.

A workspace-register file occupies 16 contiguous memory words in the general memory area (see Figure 2). Each
workspace register may hold data or addresses and function as operand registers, accumulators, address registers, or

9900 FAMILY SYSTEMS DESIGN 8-9

TMS 9900
ARCHITECTURE

Product Data Book

index registers. During instruction execution, the processor addresses any register in the workspace by adding the
register number to the contents of the workspace pointer and initiating a memory request for the word. The
relationship between the workspace pointer and its corresponding workspace is shown below.

GENERAL MEMORY

PROGRAM A TMS 9900

PC (Al

WORKSPACE REGISTER 0 WP (Al

WORKSPACE A

ST (Al

WORKSPACE REGISTER 15

PROGRAM B

WORKSPACE B

The workspace concept is particularly valuable during operations that require a context switch, which is a change from
one program environment to another (as in the case of an interrupt) or to a subroutine. Such an operation, using a
conventional multi-register arrangement, requires that at least part of the contents of the register file be stored and
reloaded .. A memory cycle is required to store or fetch each word. By exchanging the program counter, status register,
and workspace pointer, the TMS 9900 accomplishes a complete context switch with only three store cycles and three
fetch cycles. After the switch the workspace pointer contains the starting address of a new 16-word workspace in
memory for use in the new routine. A corresponding time saving occurs when the original context is restored.
Instructions in the TMS 9900 that result in a context switch include:

1. Branch and Load Workspace Pointer (BLWP)

2.

3.

Return from Subroutine (RTWP)

Extended Operation (XOP).

Device interrupts, RESET, and LOAD also cause a context switch by forcing the processor to trap to a service
subroutine.

2.2 INTERRUPTS

8-10

The TMS 9900 employs 16 interrupt levels with the highest priority level 0 and lowest level 15. Level 0 is reserved for
the RESET function and all other levels may be used for external devices. The external levels may also be shared by
several device interrupts, depending upon system requirements.

The TMS 9900 continuously compares the interrupt code (ICO through IC3) with the interrupt mask contained in
status-register bits 12 through 15. When the level of the pending interrupt is less than or equal to the enabling mask
level (higher or equal priority interrupt), the processor recognizes the interrupt and initiates a context switch following

9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9900
ARCHITECTURE

co·mpletion of the currently executing instruction. The processor fetches the new context WP and PC from the
interrupt vector locations. Then, the previous context WP, PC, and ST are stored in workspace registers 13, 14, and 15,
respectively, of the new workspace. The TMS 9900 then forces the interrupt mask to a value that is one less than the
level of the interrupt being serviced, except for level-zero interrupt, which loads zero into the mask. This allows only
interrupts of higher priority to interrupt a service routine. The processor also inhibits interrupts until the first
instruction of the service routine has been executed to preserve program linkage should a higher priority interrupt
occur. All interrupt requests should remain active until recognized by the processor in the device-service routine. The
individual service routines must reset the interrupt requests before the routine is complete.

If a higher priority interrupt occurs, a second context switch occurs to service the higher priority interrupt. When that
routine is complete, a return instruction (RTWP) restores the first service routine parameters to. the processor to
complete processing of the lower-priority interrupt. All interrupt subroutines should terminate with the return
instruction to restore original program parameters. The interrupt-vector locations, device assignment, enabl_ing-mask
value, and the interrupt code are shown in Table 1.

Vector Location
Interrupt Level (Memory Address

In Hex)

(Highest priority) 0 00

1 04

2 08

3 oc
4 10

5 14

6 18

7 1C

8 20

9 24

10 28

11 2C

12 30

13 34

14 38

(Lowest priority) 15 3C

•Level 0 can not be disabled.

TABLE 1

INTERRUPT LEVEL DATA

Device Assignment

Reset

External device

~

External device

Interrupt Mask Values To

Enable Respective Interrupts

(ST12thru ST15)

0 through F*

1 through F

2 through F

3 through F

4 through F

5 through F

6 through F

7 through F

8 through F

9 through F

A through F

B through F

C through F

D through F

E and F

F only

Interrupt

Codes

ICO thru IC3

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

The TMS 9900 interrupt interface utilizes standard TTL components as shown in Figure 3. Note that for eight or less
external interrupts a single SN74148 is required and for one external interrupt INTREQ is used as the interrupt signal
with a hard-wired code ICO through IC3.

2.3 INPUT/OUTPUT

The TMS 9900 utilizes a versatile direct command-driven 1/0 interface designated as the communications-register unit
(CRU). The CRU provides up to 4096 directly addressable input bits and 4096 directly addressable output bits. Both
input and output bits can be addressed individually or in fields of from 1 to 16 bits. The TMS 9900 employs \hree
dedicated 1/0 pins (CRUIN, CRUOUT, and CRUCLK) and 12 bits (A3 through A14) of the address bus to interface
with the CRU system. The processor instructions that drive the CRU interface can set, reset, or test any bit in th.e CRU
array or move between memory and CRU data fields.

9900 FAMILY SYSTEMS DESIGN 8-11

·8

TMS 9900
ARCHITECTURE

Product Data Book

INTERRUPT SIGNAL 1

(highest priority)

I

I
I

I
I
I

INTERRUPT SIGNAL 15

(lowest priority)

Vee

El

SN74148
(TIM9907)

0

SN7408

SN7408
GS

A2 D-------'

A1 o---------'

FIGURE 3 - TMS 9900 INTERRUPT INTERFACE

TMS9900

2.4 SINGLE•BIT CRU OPERATIONS

The TMS 9900 performs three single-bit CRU functions: test bit (TB), set bit to one (SBO), and set bit to zero (SBZ).
To identify the bit to be operated upon, the TMS 9900 develops a CRU-bit address and places it on the address bus, A3
to A14.

For the two output operations (SBO and SBZ), the processor also generates a CRUCLK pulse, indicating an output
operation to the CRU device, and places bit 7 of the instruction word on the CRUOUT line to accomplish the specified
operation (bit 7 is a one for SBO and a zero for SBZ). A test-bit instruction transfers the addressed CRU bit from the

CRUIN input line to bit 2 of the status register (EQUAL).

The TMS 9900 develops a CRU-bit address for the single-bit operations from the software base address contained in

workspace register 12 and the signed displacement count contained in bits 8 through 15 of the instruction. The

displacement allows two's complement addressing from base minus 128 bits through base plus 127 bits. The
hardware base address, bits 3 through 14 of W1 2, is added to the signed displacement specified in the instruction

and the result is loaded onto the address bus. Figure 4 illustrates the development of a single-bit CRU address.

2.5 MULTIPLE-BIT CRU OPERATIONS

8-12

The TMS 9900 performs two multiple-bit CRU operations: store communications register (STCR) and load
communications register (LDCR). Both operations perform a data transfer from the CRU-to-memory or from
memory-to-CRU as illustrated in Figure 5. Although the figure illustrates a full 16-bit transfer operation, any number of
bits from 1 through 16 may be involved. The LDCR instruction fetches a word from memory and right-shifts it to
serially transfer it to CR U output bits. If the LDCR involves eight or fewer bits, those bits come from the right-justified
field within the addressed byte of the memory word. If the LDCR involves nine or more bits, those bits come from the
right-justified field within the whole memory word. When transferred to the CRU interface, each successive bit receives
an address that is sequentially greater than the address for the previous bit. This addressing mechanism results in an
order reversal of the bits; that is, bit 15 of the memory word (or bit 7) becomes the lowest addressed bit in the CRU
and bit 0 becomes the highest addressed bit in the CRU field.

An STCR instruction transfers data from the CRU to memory. If the operation involves a byte or less transfer, the
transferred data will be stored right-justified in the memory byte with leading bits set to zero. If the operation involves
from nine to 16 bits, the transferred data is stored right-justified in the memory word with leading bits set to zero.

9900 FAMILY SYSTEMS DESIGN

Product Data Book

0 2

DON'T CARE

0 2

SET TO ZERO
FOR ALL CRU
OPERATIONS

N

N+1

N+14

N+15

CRU
INPUT
BITS

TMS 9900
ARCHITECTURE

1-------- SOFTWARE BASE ADDRESS ---------4
3 4 5 6 7 8 9 10 11 12 13 14 15

------ HARDWARE BASE ADDRESS -------1

+
8 9 10 11 12 13 14 15

' '''
I I I ;,;

BIT 8 SIGN
EXTENDED u

3 4 5 6 7 8 9 10 11 12 13 14

EFFECTIVE CRU BIT ADDRESS

FIGURE 4 - TMS 9900 SINGLE-BIT CRU ADDRESS DEVELOPMENT

INPUT (STCRI

EFFECTIVE MEMORY ADDRESS 14

OUTPUT (LDCRI

SIGNED
DISPLACEMENT

ADDRESS BUS

CRU
OUTPUT

BITS

N

N+1

N+14

N+15

N =BIT SPECIFIED BY CRU BASE REGISTER

FIGURE 5 - TMS 9900 LDCR/STCR DATA TRANSFERS

When the input from the CRU device is complete, the first bit from the CRU is the least-significant-bit position in the
memory word or byte.

Figure 6 illustrates how to implement a 16-bit input and a 16-bit output register in the CRU interface. CRU addresses
are decoded as needed to implement up to 256 such 16-bit interface registers. In system application, however, only the
exact number of interface bits needed to interface specific peripheral devices are implemented. It is not necessary to
have a 16-bit interface register to interface an 8-bit device.

9900 FAMILY SYSTEMS DESIGN 8-13

g ..

TMS 9900
ARCHITECTURE

Product Data Book

12 BITS

cp3TTL + 5V 6 SO-S5
GND

~

16 .------"""'
BITS

INTERRUPT
PRIORITY

OBIN 1-----.---i

IN_ ____ ...,..,
LOGIC WE t-------i---4

16
BITS

' TMS 9901

G PROG TIMER I
~ TMS 9900

CPU

OUT v-----.-. 1/0
CONTROL LOGIC

"

FIGURE 6 - TMS 9900 16-BIT INPUT/OUTPUT INTERFACE

2.6 EXTERNAL INSTRUCTIONS

8-14

The TMS 9900 has five external instructions that allow user-defined external functions to be initiated under program
control. These instructions are CKON, CKOF, RSET, IDLE, and LREX. These mnemonics, except for IDLE, relate to
functions implemented in the 990 minicomputer and do not restrict use of the instructions to initiate various
user-defined functions. IDLE also causes the TMS 9900 to enter the idle state and remain until an interrupt, RESET, or
LOAD occurs. When any of these five instructions are executed by the TMS 9900, a unique 3-bit code appears on the
most-significant 3 bits of the address bus (AO through A2) along with a CRUCLK pulse. When the TMS 9900 is in an
idle state, the 3-bit code and CRUCLK pulses occur repeatedly until the idle st?te is terminated. The codes are:

EXTERNAL INSTRUCTION AO Al A2

LREX H H H

CKOF H H L

CKON H L H

RSET L H H

IDLE L H L

Figure 7 illustrates typical external decode logic to implement these instructions. Note that a signal is generated to
inhibit CRU decodes during external instructions.

9900 FAMILY SYSTEMS DESIGN

Product Data Book

TO MEMORY ANO CRU

15

15

TMS9900

A0·A14

CRUCLK

CRU CLOCK SIGNAL

YO Y7
SN74LS138

Y6
A

B vs

c
Y3

G1 G2A G2BV 2

TMS 9900
ARCHITECTURE

INTERNALL V DEFINED

}
TO USER DEFINED EXTERl'I

in-.......,..____ INSTRUCTION LOGIC

n-__;,;;;;=---} INTERNALLY DEFINED

--~...-~--~--~-

CKOF

CKON

A 0 A1 A2

H

H

H

L

L

H

FIGURE 7 - EXTERNAL INSTRUCTION DECODE LOGIC

2. 7 LOAD FUNCTION

The LOAD signal allows cold-start ROM loaders and front panels to be implemented for the TMS 9900. When active,
LOAD causes the TMS 9900 to initiate an interrupt sequence immediately following the instruction being executed.
Memory location FFFC is used to obtain the vector (WP and PC). The old PC, WP and ST are loaded into the new
workspace and the interrupt mask is set to 0000. Then, program execution resumes using the new PC and WP.

9900 FAMILY SYSTEMS DESIGN 8-15

I s

TMS 9900
ARCHITECTURE

RESET SIGNAL
CAUSES I MME DIA TE

ENTRY HERE

GET RESET VECTOR

(WP AND PC)

FROM LOCATION 0, 2

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE. SET

INTERRUPT MASK
(ST12--ST15) = 0

N

y

GET LOAD VECTOR

(WP AND PC) FROM

LOCATION FFFC16•

FFFE16

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE. SET

INTERRUPT MASK

(ST12 - ST15) = 0

y

INSTRUCTION

ACQUISITION

INSTRUCTION

GET INTERRUPT LEVEL

VECTOR (WP AND ~C)

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE. SET
INTERRUPT MASK (ST12
-ST15) TO LEVEL - 1

Product Data Book

y

N

N

FIGURE 8 -TMS 9900 CPU FLOW CHART

8-16 9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9900
ARCHITECTURE

2.8 TMS 9900 PIN DESCRIPTION

Table 2 defines the TMS 9900 pin assignments and describes the function of each pin.

TABLE 2

TMS 9900 PIN ASSIGNMENTS AND FUNCTIONS

SIGNATURE PIN 1/0 DESCRIPTION TMS 9900 PIN ASSIGNMENTS

AO (MSB)

A1

A2

A3

A4

A5

AS

A7

AS

A9

A10

A11

A12

A13

A14 (LSB)

DO (MSBI

D1

D2

D3

04

D5

D6

D7
DB

D9

D10

D11

D12

D13

D14

D15 (LSBI

V99

Vee
vDD
Vss

¢1

¢2

¢3

<t>4

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

2,59

27

26,40

8

9

28

25

ADDRESS BUS

OUT AO through A 14 comprise the address bus.

OUT This 3-state bus provides the m!!mory

OUT address vector to the external-memory

OUT system when MEMEN is active and 1/0-bit

OUT addresses and external-instruction addresses

OUT to the 1/0 system when MEMEN is inactive.

OUT The address bus assumes the high-impedance

OUT state when HOLDA is active.

bUT
OUT

OUT

OUT

OUT

OUT

OUT

DATA BUS

1/0 DO through D15 comprise the bidirectional

1/0 3-state data bus. This bus transfers memory

1/0 data to (when writing) and from (when

1/0 reading) the external-memory system when

1/0 MEMEN is active. The data bus assumes the

1/0 high-impedance state when HOLDA is

1/0 active.

1/0

1/0

1/0

1/0

1/0

1/0

1/0

1/0

1/0

POWER SUPPLIES
Supply voltage (-5 V NOMI

Vee 1
Vee 2

WAIT 3

LOAD 4

HOLDA 5

RESET 6

IAQ 7
¢1 8

<1>2 9
A14 10

A13 11

A12 12
A11 13

A10 14

A9 15

AB 16
A7 17

A6 18

A5 19

A4 20

A3 21

A2 22

A1 23

AO 24

¢4 25

Vss 26

vDD 21

¢3 28

OBIN 29

CRUOUT 30

CRUIN 31

INTREQ 32

D

NC - No Internal connection

Supply voltage (5 V NOMI. Pins 2 and 59 must be connected in parallel.

Supply voltage (12 V NOMI

Ground reference. Pins 26 and 40 must be connected in parallel.

CLOCKS

IN Phase-1 clock

IN Phase-2 clock

IN Phase-3 clock

IN Phase-4 clock

9900 FAMILY SYSTEMS DESIGN

64 HOLD

63 MEMEN

62 READY

61 WE

60 CRUCLK

59 Vee
58 NC

57 NC

56 D15

55 D14

54 013

53 D12
52 011

51 010

50 09

49 08

48 07

47 06

46 05

45 04

44 03

43 D2
42 D1

41 DO

40 Vss

39 NC

38 NC

37 NC

36 ICO

35 IC1

34 IC2

33 IC3

8-17

g ...

~8

TMS 9900
ARCHITECTURE

Product Data Book

SIGNATURE PIN

OBIN 29

MEMEN 63

WE 61

CRUCLK 60

CRUIN 31

CRUOUT 30

INTREQ 32

ICO (MSB) 36

IC1 35

IC2 34

IC3 (LSB) 33

HOLD 64

HOLDA 5

READY 62

WAIT 3

1/0

OUT

OUT

OUT

OUT

IN

OUT

IN

IN

IN

IN

!N

IN

OUT

IN

OUT

TABLE 2 (CONTINUED)

DESCRIPTION

BUS CONTROL

Data bus in. When active (high), OBIN indicates that the TMS 9900 ha~ its output buffers to

allow the memory to place memory-read dat~ on the data bus during MEMEN. OBIN remains low in

all other cases except when HOLDA is active.

Memory enable. When active Oo~I. MEMEN indicates t~at the address bus contains a memory address.

Write enable. When active !low), WE indicates that memory-write data is available from the TMS 9900

to be written into memory.

CRU clock. When active (high), CRUCLK indicates that external interface logic should sample the

output data on CRUOUT or ~hould decode external instructions on AO through A2.

CRU data in. CRUIN, normally driven by 3~tate or open-collector devices, receives input data from

external interface logic. When the processor executes a STCR or TB instruction, it samples CRUIN for

t~e level of the CRU inp~t bi! specified by the address bus (A3 through A 141.

CRU data out. Serial 1/0 data appears ~n the CRUOUT line when a!l LDCR, SBZ, or SBO instruction

is executed. The data on CRUOUT sl')ould be sampled by e'5ternal 1/0 interface logic when CRUCLK

goes active (high).

INTERRUPT CONTROL

Interrupt request. When active (low), iNTREa indicates that a~ external interrupt is requested. If

INTREO !s active, the processor loads thf! data on the interrupt-code-input lines ICO through IC3 into

the internal interrupt-code-storage register. The c~de is compare<! to t~e interrupt mask bits of the

status register. If equal or higher priority than the en~bled interrupi levf!I !interrupt code equal or less

than status register bits 12 through 15) the T~ interrupt sequenc~ is initiated. If the

comparison fails, the proces5?r ignores the request. INTREO should remain active and the processor

will continue to sample ICO through IC3 until the program enables~ sufficiently lo~ prior!tv to accept

the request interrupt.

Interrupt codes. ICO is the MSB of the interrupt code, which is s~mpled when iNTREo is active. W~en
ICO thro1,Jgh IC3 are LLLH, the highest external-priority interrupt is being requested and whe~ H!:fHH,

the lowest-priority interrupt is being requf!S!ed.

MEMORY ~ONTROL

Hold. When actiVf! (low), HOiJ5' indicates to the processor that ~n exter~al controller (e.g., [)MA

device) desires t~ utilize the address and data buses to tra!'lsfer data to or from memory. The

TMS 9900 enters the hold state following a hold signal when it has completed its present memory

cycle.* The processor then places the addreu and data buses i~ thf! high·i~pedance stat~ (~long ~!th
WE, MEMEN, and OBIN) and responds ~ith a hold-ackn~wled~ signal (HOLPAI. When HOLD js

removed, the processor returns t!> normal oper~tion.

Hold acknowledge. When active (high), HOLDA indicates that the processor is in thf! hold state and

the ad~ress and data buses and me!'lory c~ntrol outp~~·s (WE, MEMEN, ~nd DBI~), are in the

high-impedance state.

Ready. When active (high), READY indicates that memory w\11 be ready to read or write d'-lring the

next clock cy~le. Whf!n not-ready js indicated during a memory operation, the TMS 9900 !'!1!ers a wait

state and suspf!nds intern~Loperation until the memory systems indic~te ready.

Wait. When active (high), WAIT indicates that the TMS 9900 has entered a wait state beca~se ~fa

not-ready condition frol"fl memory.

•it the cycle following the present memory cycle is also a memory cycle, It, too, is completed before the TMS9900 enters the hold state. The
ma~imum number of consec~tive mer:n()rY cycles i~ three.

8-+8 9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9900
ARCHITECTURE

SIGNATURE PIN 1/0

TABLE 2 (CONCLUDED)

DESCRIPTION

IAQ 7 OUT

LOAD 4 IN

TIMING AND CONTROL

Instruction acquisition. IAQ is active (high) during any memory cycle when the TMS 9900 is acquiring an

instruction. IAQ can be used to detect illegal op codes.

Load. When active (low), LOAD causes the TMS 9900 to execute a nonmaskable interrupt with memory

address FFFC15 containing the trap vector (WP and PC). The load sequence begins after the instruction

being executed is completed. LOAD will also terminate an idle state. If LOAD is active during the time
RESET is released, then the LOAD trap will occur after the RESET function is completed."'LOAD should

remain active for one instruction period. IAQ can be used to determine instruction boundaries. This signal

can be used to implement cold-start ROM loaders. Additionally, front-panel routines can be implemented

using CRU bits as front-panel-interface signals and software-<:ontrol routines to control the panel

operations.

RESET 6 IN Reset. When active (low), RESET causes the processor to be reset and inhibits We and CRUCLK. When

RESET is released, the TMS 9900 then initiates a level-zero interrupt sequence that acquires WP and PC·

from locations 0000 an~. sets all status register bits to zero, and starts execution. RESET will also

terminate an idle state. RESET must be held active for a minimum of three clock cycles.

2.9 TIMING

2.9.1 MEMORY

A basic memory read and write cycle is shown in Figure 9. The read cycle is shown with no wait states and the write
cycle is shown with one wait state.

MEMEN goes active (low) during each memory cycle. At the same time that MEMEN is active, the memory address
appears on the address bus bits AO through A14. If the cycle is a memory-read cycle, OBIN will go active (high) at the
same time MEMEN and AO through A 14 become valid. The memory-write signal WE will remain inactive (high) during
a read cycle. If the read cycle is also an instruction acquisition cycle, IAO will go active (high) during the cycle.

The READY signal, which allows extended memory cycles, is shown high during <f>l·of the second clock cycle of the
read operation. This indicates to the TMS 9900 that .memory-read data will be valid during ¢1 of the next clock cycle.
If READY is low during ¢1, then the TMS 9900 enters a wait state suspending internal operation until a READY is
sensed during a subsequent </>1. The memory read data is then sampled by the TMS 9900 during the next ¢1, which
completes the memory-read cycle.

At the end of the read cycle, MEMEN and OBIN go inactive (high and low, respectively). The address bus may also
change at this time, however, the data bus remains in the input mode for one clock cycle after the read cycle.

A write cycle is similar to the read cycle with the exception that WE goes active (low) as shown and valid write data
appears on the data bus at the same time the address appears. The write cycle is shown as an example of a
one-wait-state memory cycle. READY is low during </>1 resulting in the WAIT signal shown.

2.9.2 HOLD

Other interfaces may utilize the TMS 9900 memory bus by using the hold operation (illustrated in Figure- 10) of the
TMS 9900. When HOLD is active (low). the TMS 9900 enters the hold state at the next available non-memory cycle.
Considering that there can be a maximum of three consecutive memory cycles, the maxim.um delay between HOLD
going active to HOLDA going active (high) could be tc(<f>) (for setup) + (6 + 3W) tc(<f>) + tc(¢) (delay for HOLDA),
where W is the number of wait states per memory cyc;le and tc(<f>) is the clock cycle time. When the TMS 99~ has
entered the hold state, HOLDA goes active (high) and AO through A15, DO through 015 OBIN, MEMEN, and WE go
into a high-impedance state to allow other devices to use the memory buses. When HOLD goes inactive (high), the
TMS 9900 resumes processing as shown. If hold occurs during a CRU operation, the TMS 9900 uses an extra clock
cycle (after the removal of the HOLD signal) to reassert the CRU address providing the normal setup times for the CRU
bit transfer that was interrupted.

9900 FAMILY SYSTEMS DESIGN 8-19

TMS 9900
ARCHITECTURE

Product Data Book

2.9.3 CRU

<1>2

.p3

CRU interface timing is shown in Figure 11. The timing for transferring two bits out and one bit in is shown. These
transfers would occur during the execution of a CRU instruction. The other cycles of the instruction execution are not
illustrated. To output a CRU bit, the CRU-bit address is placed on the address bus AO through A 14 and the actual bit
data on CRUOUT. During the second clock cycle a CRU pulse is supplied by CRUCLK. This process is repeated until
the number of bits specified by the instruction are completed.

The CRU input operation is similar in that the bit address appears on AO through A 14. During the subsequent cycle the
TMS 9900 accepts the bit input data as shown. No CRUCLK pulses occur during a CRU input operation.

MEMEN ~------JI

OBIN

WE

AOA14

READY

WAIT

00-015

IAO

I

I

------f~ VAUD AD°"'" : x ~ VAUD ADD""'

X)C§~~l~A:R!XlOOO' '«>00000(?~1·f~~R:~ I

I

~-
™i~'If~R:Em

I I I I

CPU DRIVEN INPUT MODE

_____ _, SHOWN ASSUMING THIS

CYCLE IS AN INSTRUCTION

~ ACQUISITIO'N CYCLE

MEMORY READ CYCLE WITH NO WAITS

INPUT CPU DRIVEN CPU WRITE DATA CPU DRIVEN

MEMORY WRITE CYCLE WITH ONE WAIT

RD= READ DATA

FIGURE 9 - TMS 9900 MEMORY BUS TIMING

8-20 9900 FAMILY SYSTEMS DESIGN

Product Data Book

N
0

M
v

I~

I~

9900 FAMILY SYSTEMS DESIGN

z
iii
0 I~

>
0
ct
w
cc

ct
0
...I
0
:c

TMS 9900
ARCHITECTURE

CJ
2
j:
ct
0
..I
LI.
Cl) ...
::i
I!:
::i
0
a:
0
~
LU g
a:
a.

8-21

I

8<4111

~I

z
~o
:> -a. ~
~ ct
:> a: ow

a.
0

:g ~ ~

<:>1

<:>2

c,'!3

·:>4

AO-A15

CRUCLK

CRUOUT

0 :> ~
0 a. ct
'Tl ~ ffi CRUIN

~ &
~

~
VJ
>-<
VJ ...,
M
~
VJ

tj
M
VJ

cs z

I I I I

11 I -I

I I I I

I I I

UNKNOWN

...
00

I I I I I I I I I I

I I I I I I I I I

I I I I I I I I I I I I

I I I I I I I I I I I

CRU BIT ADDRESS n CRU ADDRESS n + 1

CRU OUTPUT

FIGURE 11 -TMS 9900 CRU INTERFACE TIMING

I

I

I I

I I

I I] I I

I I I I I I -I

I I I I I I I I

I I I I I I

\ I INPUT BIT m

v
CRU INPUT

I

I

I

I

I

>~
::0 ~ n Cf)

0:: '°
~'°
~o
tI:l 0
n
~ c
::0
tr:l

"'O
0
a.
c
2.
c
II)

S'
m
0
0
~

Product Data Book TMS 9900
INSTRUCTION EXECUTION TIMES

3.6 TMS 9900 INSTRUCTION EXECUTION TIMES

Instruction execution times for the TMS 9900 are a function of:

1) Clock cycle time, tc(tjl)

2) Addressing mode used where operands have multiple addressing mode capability

3) Number of wait states required per memory access.

Table 3 lists the number of clock cycles and memory accesses required to execute each TMS 9900 instruction. For
instructions with multiple addressing modes for either or both operands, the table lists the number of clock cycles and
memory accesses with all operands addressed in the workspace-register mode. To determine the additional number of
clock cycles and memory accesses required for modified addressing, add the appropriate values from the referenced
tables. The total instruction-execution time for an instruction is:

T = tc(tjl)(C+(W•M))

where:
T =total instruction execution time;
tc(tjl) =clock cycle time;
C =number of clock cycles for instruction execution plus address modification;
W = number of required wait states per memory access for instruction execution plus address

modification;
M = number of memory accesses.

CLOCK MEMORY
INSTRUCTION CYCLES ACCESS

c M
A 14 4
AB 14 4
ABS (MSB = 01 12 2

(MSB = 1) 14 3
Al 14 4
ANDI 14 4
B 8 2
BL 12 3
BLWP 26 6
c 14 3
CB 14 3
Cl 14 3
CKOF 12 1
CKON 12 1
CLR 10 3
coc 14 3
czc 14 3
DEC 10 3
DECT 10 3
DIV (ST4 is set) 16 3
DIV (ST4 is reset) 97-124 6
IDLE 12 1
INC 10 3
INCT 10 3
INV 10 3
Jump (PC is

changed) 10 1
(PC is not

changed) 8 1
LDCR (C = 01 52 3

(1.;,C.;8) 20+2C 3
(9 <C<15l 20+2C 3

LI, 12 3
LIMI 16 2
LREX 12 1

R"ESE'f function 26 5
LOAD function 22 5
Interrupt context

switch 22 5

TABLE 3

INSTRUCTION EXECUTION TIMES

ADDRESS
MODIFICATIONt INSTRUCTION
SOURCE DEST

A A LWPI
B B MOV
A - MOVB
A - MPY

- - NEG
- - ORI
A - RSET
A - RTWP
A - s
A A SB -
B B SBO

- - SBZ

- - SETO

- - Shilt (C;eO)

A - (C=O, Bits 12-15
A - of WRO=Ol
A - (C=O. Bits 12-15
A - of WRP=N;eO)
A - soc
A - SOCB
A - STCR (C=Ol

- - (1<;C<7l

A - (C=Bl

A - (9"C•15l
A - STST

STWP
- - SWPB

szc
- - SZCB
A - TB
B - x ••
A - XOP
- - XOR

- -
- -

- -
- -

- -

~ l """"'"''°"""'' 0000-0lFF,0320-
033 F ,OCOO-OF FF,
0780-07FF

CLOCK
CYCLES

c
10
14
14
52
12
14
12
14
14
14
12
12
10

12+2C

52

20+2N
14
14
60
42
44
58

8
8

10
14
14
12
8

36
14

6

•Execution time is dependent upon the partial quotient after each clock cycle during execution.

MEMORY ADDRESS
ACCESS MODIFICATIONt

M SOURCE DEST
2 - -
4 A A
4 B B
5 A -
3 A -
4 - -
1 - -
4 - -
4 A A
4 B B
2 - -
2 - -

3 A -
3 - -

4 - -

4 - -
4 A A
4 B 8
4 A -
4 B -
4 B -
4 A -
2 - -
2 - -
3 A -
4 A A
4 8 8
2 - -
2 A -
8 A -
4 A -

1 - -

••Execution time is added to the execution time of the instruction located at the source address minus 4 clock cycles and 1 memory accass time.
tTha letters A and B refer to the respective tables that follow,

9900 FAMILY SYSTEMS DESIGN 8-23

I

8~

TMS 9900 Product Data Book

ELECTRICAL SPECIFICATIONS

ADDRESS MODIFICATION -TABLE A ADDRESS MODIFICATION -TABLE B

CLOCK MEMORY CLOCK MEMORY

ADDRESSING MODE CYCLES ACCESSES ADDRESSING MODE CYCLES ACCESSES

c M _C_ M

WR (Ts or To= 00) 0 0 WR (Ts or To = 00) 0 0

WR indirect (Ts or To= 01 l 4 1 WR indirect (Ts or To= 01 I 4 1

WR ind I rect auto- WR indirect auto-

increment (Ts or To = 11) 8 2 increment ITs or To= 111 6 2

Symbolic (Ts or To= 10, Symbolic (Ts or To= 10,

Sor 0 = 0) 8 1 Sor 0 = 0) 8 1

Indexed (Ts or To= 10, Indexed (Ts or To= 10,
Sor 0 "# 0) 8. 2 Sor 0 "# 01 8 2

As an example, the instruction MOVB is used in a system with tc(,P) = 0.333 µsand no wait states are required to access
memory. Both operands are addressed in the workspace register mode:

T = tc(,P)(C+(W•M)) = 0.333 (14+(0•4)) = 4.662 µs

If two wait states per memory access were required, the execution time is:

T = 0.333 (14+(2•4)) µs = 7 .326 µs.

If the source operand was addressed in the symbolic mode and two wait states were required:

T = tc(,P)(C+(W•M))
c = 14 + 8 = 22
M=4+1=5

T = 0.333 (22+(2*5)) µs = 10.656 µs.

4. TMS 9900 ELECTRICAL SPECIFICATIONS

4.1 ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)*

Supply voltage, Vee (see Note 1)
Supply voltage, Voo (see Note 1)
Supply voltage, Vss (see Note 1)
All input voltages (see Note 1)
Output voltage (with respect to Vssl
Continuous power dissipation
Operating free-air temperature range
Storage temperature range .

. -0.3 to 20 V
-0.3 to 20 V
-0.3 to 20 V
-0.3 to 20 V
-2 V to 7 V

1.2W
0°C to 70°C

. -55°C to 150°C

•stresses beyond those listed under ''Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and

functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions"

section of this specification Is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliabllltV,

NOTE 1: Under absolute maximum ratings voltage values are with respect to the most negative supply, v 88 !substrate), unless otherwise

noted, Throughout the remainder of this section, voltage values are with respect to V55.

8-24 9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9900
ELECTRICAL SPECIFICATIONS

4.2 RECOMMENDED OPERATING CONDITIONS

MIN NOM MAX UNIT

Supply voltage, Vee -5.25 -5 -4.75 v
Supply voltage, Vee 4.75 5 5.25 v
Supply voltage, Voo 11.4 12 12.6 v
Supply voltage, Vss 0 v
High-level input voltage, V1H (all inputs except clocks) 2.2 2.4 Vee+1 v
High-level clock input voltage, V1H~ Voo-2 Voo v
Low-level input voltage, V1L (all inputs except clocks) -1 0.4 0.8 v
Low-level clock input voltage, V1 L~ -0.3 0.3 0.6 v
Operating free-air temperature, TA 0 70 oe

4.3 ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS
(UNLESS OTHERWISE NOTED)

PARAMETER

Data bus during OBIN

WE, MEMEN, OBIN, Address

11 Input current bus, Data bus during HOLDA

Clock

Any other inputs

VoH High-level output voltage

Vol Low-level output voltage

lee(avl Supply current from Vee

lcc(avl Supply current from Vee

loo(avl Supply current from Voo

Ci
Input capacitance (any inputs except

clock and data bus)

Ci(qi1) Clock-1 input capacitance

Ci(qi2) Clock-2 input capacitance

Ci(<t>31 Clock-3 input capacitance

Ci(</>41 Clock-4 input capacitance

Coe Data bus capacitance

t All typical values are at TA= 25° C and nominal voltages.
•o.C. Component of Operating Clock

9900 FAMILY SYSTEMS DESIGN

TEST CONDITIONS

v1 = Vss to Vee

v1 = Vss to Vee

Vi= -0.3 to 12.6 V

VJ.= V.ss_ to V.c.c_

lo= -0.4 mA

lo=3.2mA

lo= 2 mA

Vee= -5, f = 1MHz,

unmeasured pins at Vss

Vee= -5, f = 1MHz,

unmeasured pins at Vss

Vee= -5, f = 1MHz,

unmeasured pins at Vss

Vee= -5, f = 1MHz,

unmeasured pins at Vss

Vee= -5, f = 1MHz,

unmeasured pins at Vss

Vee= -5, f = 1MHz,

unmeasured pins at Vss

MIN rvpt MAX UNIT

±50 ±100

±50 ±100
µA

±25 ±75

±1 ±10

2.4 Vee v
0.65 v
0.50

0.1 1 mA*

50 75 mA*

25 45 mA*

10 15 pF

100 150 pF

150 200 pF

100 150 pF

100 150 pF

15 25 pF

8-25

TMS 9900 Product Data Book

ELECTRICAL SPECIFICATIONS

4.4 TIMING REQUIREMENTS OVER RJLL RANGE OF RECOMMENDED OPERATING CONDfTIONS

PARAMETER MIN NOM MAX UNIT

tc(</>) Clock cycle time 300 333 500 ns

tr(</>) Clock rise time 5 12 ns

%1>1 Clock fall time 10 12 ns

tw(</>) Clock pulse width, high level 40 45 100 ns

ts(</>) Clock spacing, time between any two adjacent clock pulses 0 5 ns

tel(<!>) Time between rising edge valid any two adjacent clock pulses 73 83 ns

tsu Data or control setup time before clock 1 30 ns

th Data hold time after clock 1 10 ns

4.5 SWITCHING CHARACTERISTICS OVER RJLL RANGE OF RECOMMENDED OPERATING CONDIT10NS

PARAMETBI
TEST ,..,. lYP MAX UNIT

COM>rT10NS

tPLH (8) or tPHL (8) All other outputs
CL= 200pF

20 40 ns

tPLH (C) or tPHL (C) Propagation delay CRUCU<, WE, MEMEN, WAIT, OBIN 30 ns

-------tc(</>)--------

_ ____,/

FIGURE 12 - CLOCK TIMING

8-26 9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9900
ELECTRICAL SPECIFICATIONS

INPUTS

~ALI~-_'jJO/OOllO!WfilO!l!llll,~~~1Hh~'OOO!llllO!OOIOOOIOO
!--- tsu -J 14- th..j

_JI \~f
¢1 I \ _____________ ___,,/i \ _______ _

I I
I

¢2 j /: \~--_.......__~/: \~--
.¢3

¢41

CRUClK

~

WE

WAIT

OBIN

tPlH(Cl--j
I
I
I

!
I i
r4"""" I

\ tPHl(Cl1

~
I
I
I
I

J

i-

I
I

-i
I

1

:

...._----------;-: ___ _,f: \

f: _,
!

:.-tPlH(CI

t

I
I

---------+------Ti ___ _,/ i I
\

f--tPHl(CI

\
tPlH(Cl-+i f.-

I

I
I
I
I
!

i
I
I
I

-l

All OTHER OUTPUTS --l :__t (Bl OR t (Bl 1/111/11/lllllfllllltt. PLH PHL

FIGURE 13-SIGNAL TIMING

9900 FAMILY SYSTEMS DESIGN

\

8-27

TMS 9900-40
ELECTRICAL SPECIFICATIONS

TMS 9900-40 ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)*

Supply voltage, Vee (see Note 1)

Supply voltage, V00 (see Note 1)

Supply voltage, V55 (see Note 1) .

All input voltages (see Note 1) ..

Output voltage (with respect to Vss)

Continuous power dissipation ...

Operating free-air temperature range

Storage temperature range

Product Data Book

-0.3 to 20 V

-0.3 to 20 V

-0.3 to 20 V

-0.3 to 20 V

. -2 V to 7 V
1.2W

. 0°C to 70°C

-55°C to 150°C

•stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and

functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this

specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect qevice reliability.

NOTE 1: Under absolute maximum ratings voltage values are with respect to the most negative supply, Vee (substrate), unless otherwise noted.

Throughout the remainder of this section, voltage values are with respect to Vss·

RECOMMENDED OPERATING CONDITIONS

Supply voltage, Vee
Supply voltage, Vee

Supply Voltage, V0 o

Supply voltage, Vss

High-level input volrage, V1H (all inputs except clocks)

High-level clock input voltage, V1H(¢)

Low-level input voltage, V1L (all inputs except clocks)

Low-level clock input voltage, Vil(¢)

Operating free-air temperature, TA

DESIGN GOAL

This document describes the design specifi
cations for a product under development.
Texas Instruments reserves the right to
change these specifications in any manner,
without notice.

8-28

MIN NOM MAX UNIT

-5.25 -5 -4.75 v
4.75 5 5.25 v
11.4 12 12.6 v

0 v
2.2 2.4 Vee+1 v

Voo-2 Voo v
-1 0.4 0.8 v

-0.3 0.3 0.6 v
0 70 oc

9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9900-40
ELECTRICAL SPECIFICATIONS

ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS
(UNLESS OTHERWISE NOTED)

PARAMETER

Data bus during OBIN

WE, MEMEN, OBIN, Ad-

1, Input current dress bus, Data bus during

HOLDA

Clock*

Any other inputs

VoH High-level output voltage

VOL Low-level output voltage

la8 (av) Supply current from Vee

lee(av) Supply current from Vee

loo(av) Supply current from V00

C;
Input Capacitance {any inputs except

clock and data bus)

Ct<P1J Clock-1 input capacitance

C11<1>2J Clock-2 input capacitance

C;1<f>3l Cloek-3 input capacitance

C;(<f>4) Clock-4 input capacitance

Cos Data bus capacitance

tAll typical values are at TA=25°C and nominal voltages.

*D.C. component of operating clock.

TEST CONDITIONS MIN TY Pt

V,=Vss to Vee ±50

V1=Vss to Vee ±50

V1= -0.3 to 12.6 V ± 25

V1=Vss to Vee ±1

lo= -0.4 mA 2.4

10 =3.2 mA

lo=2 mA

0.1

50

25

f= 1 MHz, Vas= -5 V, 10

unmeasured pins at Vss

f= 1 MHz, Vss=-5 V, 100

unmeasured pins at V55

f= 1 MHz, V88=-5 V, 150

unmeasured pins at Vss

f= 1 MHz, Vs 8=-5 V, 100

unmeasured pins at V55

f= 1 MHz, Vss=-5 V, 100

unmeasured pins at Vss

f= 1 MHz, V8s=-5 V, 15

unmeasured pins at V55

TIMING REQUIREMENTS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS

PARAMETER MIN NOM

tc{<f>) Clock cycle time 2.40 2.50
tr{<f>) Clock rise time 5 12

t1{<t>) Clock fall time 10 12

tw{<f>) Pulse width, high level 33
t,(<f>) Clock spacing, time between any two 0 45

adjacent clock pulses

to{o) Time between rising edges, valid between 55 63
any two adjacent clock pulses

tsu Data or control setup time before clock <t>1 25
th Data hold time after clock <t>1 10

MAX

± 100

±100

±75

±10

Vee
0.65

0.50

1

75

45

15

150

200

150

150

25

MAX

SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS

PARAMETER TEST CONDITIONS MIN TYP MAX

tPLH{c) or tPHL{c) propagation 20 20

delay CRUCLK, WE, MEMEN, WAIT, OBIN CL= 200pF

tPLH{B) or tpHL{B) all other outputs 30 30

DESIGN GOAL

See page 8-28 for Design Goal

9900 FAMILY SYSTEMS DESIGN

UNIT

µA

mA

mA

mA

pF

pF

pF

pF

pF

pF

pF

UNIT

ns
ns

ns

ns

ns

ns

ns

ns

UNIT

ns

ns

8-29

SBP 9900A
~8 -----------------

Product Data Book SBP 9900A
ARCHITECTURE

HOLD

HOLDA

LOAD

wr
READY

WAIT
FJmElii

OBIN

RESET

IAQ

CvCEND
CRUCLK

CLK

CONTROL
LOGIC

D0-015

9900 FAMILY SYSTEMS DESIGN

ii'JfREO ICO IC3

T1

T2

PROGRAM COUNTER

WORKSPACE REGISTER

A

ALU

CRUIN

Figure 1. SEP 9900A Architecture.

AO-A14

15

MEMORY
ADDRESS
REGISTER

16

CRUOUT

8-31

SBP 9900A
ARCHITECTURE

RESET SIGNAL
CAUSES IMMEDIATE

ENTRY HERE

GET RESET VECTOR

(WP AND PC)

FROM LOCATION 0, 2

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE. SET

INTERRUPT MASK
(ST12-ST151 = 0

N

y

GET LOAD VECTOR

(WP AND PC) FROM

LOCATION FFFC15.

FFFE15

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE. SET

INTERRUPT MASK

(ST12 - ST15l = 0

y

INSTRUCTION

ACQUISITION

GET INTERRUPT LEVEL

VECTOR (WP AND PCI

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE. SET
INTERRUPT MASK (ST12
-ST15l TO LEVEL - 1

Product Data Book

y

N

N

Figure 2. 9900 CPU Flow Chart

8-32 9900 FAMILY SYSTEMS DESIGN

Product Data Book SBP 9900A
ARCHITECTURE

ARCHITECTURE

The Memory word of the 9900 is 16 bits long. Each word is also defined as 2 bytes of 8 bits. The instruction
set of the 9900 allows both word and byte operands. Thus, all memory locations are on even address boundaries
and byte instructions can address either the even or odd byte. The memory space is 65,536 bytes or 32,768
words. The word and byte formats are shown below.

REGISTERS AND MEMORY

MSB LSB

I o I , I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 l 10 1,, I 12 I 13 I 14 I 1s I
SIGN
BIT

MSB

SIGN
BIT

MEMORY WORD IEVEN ADDRESS!

EVEN BYTE

SIGN
BIT

LSB

ODD BYTE

The 9900 family employs an advanced memory-to-memory architecture. Blocks of memory designated as
workspace replace internal-hardware registers with program-data registers.

Three internal registers are accessible to the user. The program counter (PC) contains the address of the
instruction following the current instruction being executed. This address is referenced by the processor to
fetch the next instruction from memory and is then automatically incremented. The status register (ST) contains
the present state of the processor. The workspace pointer (WP) contains the address of the first word in the
currently active set of workspace registers.

A workspace-register file occupies 16 contiguous memory words in the general memory area (see Figure 3).
Each workspace register may hold data or addresses and function as operand registers, accumulators, address
registers, or index registers. During instruction execution, the processor addresses any given register in the workspace
by adding the register number to the contents of the workspace pointer and initiating a memory request for
the word. The relationship between the workspace pointer and its corresponding workspace is shown below.

GENERAL MEMORY

PROGRAM A , _____
H PC (A) J

I
I

I J WP (Al J WORKSPACE REGISTER 0 ~

I ,~

!---------------- I I
WORKSPACE A

I I I

t---------------- I
I

/ I ST (A) I WORKSPACE REGISTER 15 I
I I

I I
I I

I I
I I

I I
I I

I
I

PROGRAM B I
I

I
I

I
I

I

WORKSPACE REGISTER 0 ~

~--------------~
WORKSPACE B

t---------------~
WORKSPACE REGISTER 15

9900 FAMILY SYSTEMS DESIGN 8-33

"' 00

00
I

I MEMORY w
.+>. AREA DEFINITION AD~ MEMORY CONTENT

0000 WP LEVEL 0 INTERRUPT

0002 PC LEVEL 0 INTERRUPT

0004 WP LEVEL 1 INTERRUPT

0006 PC LEVEL 1 INTERRUPT
INTERRUPT VECTORS

l ?
OOJC WP LEVEL151NTERRUPT

OOJE PC LEVEL 15 INTERRUPT

0040 WP XOPO

0042 PC XOP 0

I
XOPSOFTWARETRAPVECTORS

i I 007C
~

?
WP XOP 15

~
l 007E

~ (0080 ;:;

PC XOP 15

c
~ •
~ "'S

•
•

GENERAL MEMORY AREA

GENERAL MEMORY FOR

PROGRAM, DATA.ANO

-0 I WORKSPACE REGISTERS

'°

MAY BE ANY

COMBINATION OF

PROGRAM SPACE
0
0

OR WORKSPACE

'T:l • > • ::::

~I LOAD SIGNAL VECTOR { FFFC

FFFE

t'I'.l

WP LOAD FUNCTION

PC LOAD FUNCTION

::::
C/l

0
t'I'.l
C/l

23
z

15

.::

"'i

"

I
I

I
I

I

\
\
\
\
\
\

I
I

I

I
I

I

I GENERAL MEMORY

,' 1------------1
PROGRAM A

WORKSPACE REGISTER 0

WORKSPACE A

WORKSPACE REGISTER 15

PROGRAM B

I
I

I
I

I
I

I

I
I

I
I

I

I
I

I
I

I
I

I

I
I

I
I I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

---------~' \
\
\
\
\
\
\
\
\
\
\

WORKSPACE REGISTER 0

WORKSPACE B

WORKSPACE REGISTER 15

'1-----------1

TMS 9900

PC (A)

I
WP (A) ,.___ _____ ~

I

I ST (A) I

~en
~ t;O n i-o
::c '° ~'°
~8
~~ n
~ c
~
~

"ti
0
a.
c
2.
c
D>
iii
m
0
0
;ii;"

Product Data Book SBP 9900A
ARCHITECTURE

INTERRUPTS

The architecture of the 9900 family allows vectoring of 16 interrupts. These interrupts are assigned levels from
0 to 15. The interrupt at level 0 has the highest priority and the interrupt at level 15 has the lowest priority.
The 9900 implements all 16 interrupt levels. Level 0 is reserved for RESET function.

The 9900 continuously compares the interrupt code with the interrupt mask contained in the status-register.
When the level of the pending interrupt is less than or equal to the enabling mask level (higher or equal

priority interrupt), the processor recognizes the interrupt and initiates a context switch following completion
of the currently executing instruction. The processor fetches the new context WP and PC from the interrupt
vector locations. Then, the previous context WP, PC, and ST are stored in workspace registers 13, 14, and
15, respectively, of the new workspace. The 9900 then forces the interrupt mask to a value that is one less
than the level of the interrupt being serviced, except for level-zero interrupt, which loads zero into the mask.
This allows only interrupts of higher priority to interrupt a service routine. The processor also inhibits interrupts
until the first instruction of the service routine has been executed to preserve program linkage should a higher
priority interrupt occur. All interrupt requests should remain active until recognized by the processor in the
device-service routine. The individual service routines must reset the interrupt requests before the routine is
complete.

If a higher priority interrupt occurs, a second context switch occurs to service the higher priority interrupt.
When that routine is complete, a return instruction (RTWP) restores the first service routine parameters to
the processor to complete processing of the lower-priority interrupt. All interrupt subroutines should terminate
with the return instruction to restore original program parameters. The interrupt-vector locations, device
assignment, enabling-mask value, and the interrupt code are shown in Table 1.

Table 1. Interrupt Level Data

Vector Location Interrupt Mask Values To Interrupt

Interrupt Level (Memory Address Device Assignment Enable Respective Interrupts Codes

In Hex) (ST12 thru ST15) ICO thru IC3

(Highest priority) 0 00 Reset 0 through F* 0000

1 04 External device 1 through F 0001

2 08 2 through F 0010

3 OC 3th rough F 0011

4 10 4 through F 0100

5 14 5 through F 0101

6 18 6 through F 0110

7 1C 7 through F 0111

8 20 8 through F 1000

9 24 9 through F 1001

10 28 A through F 1010

11 2C B through F 1011

12 30 C through F 1100

13 34 D through F 1101

14 38 • E and F 1110

(Lowest priority) 15 3C External device F only 1111

•Level 0 can not be disabled.

The 9900 interrupt interface utilizes the TMS 9901 Programmable Systems Interface as shown in Figure 4.

9900 FAMILY SYSTEMS DESIGN 8-35

~s

SBP 9900A
ARCHITECTURE

12 BITS

q,3 TTL GND + 5 V

INTERRUPT SIGNAL 1

" (highest priority)

I INTERRUPT

I
PRIORITY

LOGIC

I '\J
TMS 9901

G INTERRUPT SIGNAL 15
PROG TIMER (lowest priority)

INPUT I 0uTPUT

~

)

ADDRESS BUS

OBIN

INTREO WE

ICO

9900
IC1

IC2

D0-015
IC3

CLOCK
GENERATOR

TIM 9904
(74LS362)

Figure 4. 9900 Interrupt Intetface

Product Data Book

15 BITS

DATA BUS 16 BITS

The 9900 Utilizes a versatile direct command-driven 1/0 interface designated as the communications-register
unit (CRU). The CRU provides up to 4096 directly addressable input bits and 4096 directly addressable output
bits. Both input and output bits can be addressed individually or in fields of from 1 to 16 bits. The 9900 employs
three dedicated 110 pins (CRUIN, CRUOUT, and CRUCLK) and certain bits of the address bus to interface with
the CRU system. The processor instructions that drive the CRU interface can set, reset, or test any bit in the CRU
array or move between memory.and CRU data fields.

8-36 9900 FAMILY SYSTEMS DESIGN

Product Data Book SBP 9900A
ARCHITECTURE

SINGLE-BIT CRU OPERATIONS

The 9900 performs three single-bit CRU functions: test bit (TB), set bit to one (SBO), and set bit to zero
(SBZ). To identify the bit to be operated upon, the 9900 develops a CRU-bit address and places it on the
address bus, A3 to A 14.

For the two output operations (SBO and SBZ), the processor also generates a CRUCLK pulse, indicating an
output operation to the CRU device, and places bit 7 of the instruction word on the CRUOUT line
to accomplish the specified operation (bit 7 is a one for SBO and a zero for SBZ). A test-bit instruction transfers the
addressed CRU bit from the CRUIN input line to bit 2 of the status register (EQUAL).

The 9900 develops a CRU-bit address for the single-bit operations from the software base address contained in
workspace register 12 and the signed displacement count contained in bits 8 through 15 of the instruction.
The displacement allows two's complement addressing from base minus 128 bits through base plus 127 bits.
The hardware base address, bits 3 through 14 of WR12, is added to the signed displacement specified in the
instruction and the result is loaded onto the address bus. Figure 5 illustrates the development of a single-bit CRU
address.

I SOFlWARE BASE ADDRESS -------.....

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

l.__x l _x _.__x ..__I __._~...____...____.___.___.__.........__..__......__~' -x I w12

DON'T CAREi 1------- HAR+E BASE ADDRESS -------11
8 9 10 11 12 13 14 15

''''
I I I

;;;

BIT 8 SIGN
EXTENDED u

0 2 3 4 5 6 7 8 9 10 11 12 13 14

0

'-v--'_ ________ ,. ______ _
SET TO ZERO
FOR ALL CRU
OPERATIONS

9900 FAMILY SYSTEMS DESIGN

EFFECTIVE CRU BIT ADDRESS

Figure 5. Single-Bit CR U Address Development

SIGNED
DISPLACEMENT

ADDRESS BUS

8-37

~s

SBP 9900A
ARCHITECTURE

MULTIPLE-Brr CRU OPERATIONS

Product Data Book

The 9900 performs two multiple-bit CRU operations: store communications register (STCR) and load
communications register (LDCR). Both operations perform a data transfer from the CRU-to-memory or from
memory-to-CRU as illustrated in Figure 6. Although the figure illustrates a full 16-bit transfer operation,
any number of bits from 1 to 16 may be involved. The LDCR instruction fetches a word from memory and
right-shifts it to serially transfer it to CRU output bits. If the LDCR involves eight or fewer bits, those bits
come from the right-justified field within the addressed byte of the memory word. If the LDCR involves nine
or more bits, those bits come from the right-justified field within the whole memory. When transferred
to the CRU interface, each successive bit receives an address that is sequentially greater than the address for
the previous bit. This addressing mechanism results in an order reversal of the bits, that is, bit 15 of the memory
word (or bit 7) becomes the lowest addressed bit in the CRU and bit 0 becomes the highest addressed bit
in the CR U field.

An STRC instruction transfers data from the CRU to memory. If the operation involves a byte or less transfer,
the transferred data will be stored right-justified in the memory byte with leading bits set to zero. If the
operation involves from nine to 16 bits, the transferred data is stored right-justified in the memory word with
leading bits set to zero.

N

N+1

N+14

N+15

CRU
INPUT
BITS

INPUT (STCR)

EFFECTIVE MEMORY ADDRESS 14

OUTPUT (LDCRI

N =BIT SPECIFIED BY CRU BASE REGISTER

Figure 6. 9900 LDCR I STRC Data Transfers

CRU
OUTPUT

BITS

N

N+1

N+14

N+15

When the input from the CRU device is complete, _the first bit from the CRU is the least-significant-bit position
in the memory word or byte.

Figure 7 illustrates how to implement a 16-bit input and a 16-bit output register in the CRU interface using the
TMS 9901. CRU addresses are decoded as needed to implement up to 256 such 16-bit interface registers. In
system application, however, only the exact number of interface bits needed to interface specific peripheral devices
are implemented. It is not necessary to have a 16-bit interface register to interface an 8-bit device.

8-38 9900 FAMILY SYSTEMS DESIGN

Product Data Book SBP 9900A
ARCHITECTURE

16
BITS IN .__ ___ J

16
BITS
OUT v----T""'

EXTERNAL INSTRUCTIONS

SBP
9960

CRUOUT

CRUCLK

SBP 9900A
CPU

D0-015

CLOCK GENERATOR
TIM 9904

(74LS362)

Figure 7. SEP 9900A 16-bit Input/Output Interface

The 9900 has five external instructions that allow user-defined external functions to be initiated under program
control. These instructions are CKON, CKOF, RSET, IDLE, and LREX. These mnemonics, except for IDLE,
relate to functions implemented in the 9900 minicomputer and do not restrict use of the instructions to initiate
various user-defined functions. IDLE also causes the 9900 to enter the idle state and remain until an interrupt,
RESET, or LOAD occurs. When any of these five instructions are executed by the 9900, a unique 3-bit code
appears on the address bus along with a CRUCLK pulse. The user must provide external hardware to decode this 3
bit code and implement this external function. When the 9900 is in an idle state, the 3-bit code and CRUCLK
pulses occur repeatedly until the idle state is terminated. The codes are:

EXTERNAL INSTRUCTION AO A1 A2

LREX H H H

CKOF H H L

CKON H L H

RSET L H H

IDLE L H L

9900 FAMILY SYSTEMS DESIGN 8-39

g ...

SBP 9900A
ARCHITECTURE

Product Data Book

Figure 8 illustrates typical external decode logic to implement these instructions. Note CRUCLK to the CRU
is inhibited during external instructions.

TO MEMORY AND CRU

YO LREX
Y7

SN74LS138 Y6
CKOF TO USER A
CKON

DEFINED
B Y5 EXTERNAL

CPU ADDRESS BUS c RESET INSTRUCTION
Y3

LOGIC

G2B y 2
IDLE

G1 G2A

CRUCLK

- -=-

Figure 8. External Instruction Decode Logic

LoAD FUNCTION

The LOAD signal allows cold-start ROM loaders and front panels to be implemented for the 9900. When
active, LOAD causes the 9900 to initiate an interrupt sequence immediately following the instruction being
executed. A memory location is used to obtain the vector (WP and PC). The old PC, WP and ST are loaded
into the new workspace and the interrupt mask is set to 0000. Then, program execution resumes using the
new PC and WP.

8-40 9900 FAMILY SYSTEMS DESIGN

Product Data Book SBP 9900A
PIN DESCRIPTION

SBP 9900A PIN DESCRIPTION

Table 2 describes the function of each SBP 9900A pin, and Figure 9 illustrates their assigned locations.

SIGNATURE PIN

AO (MSB)

A14 (LSB)

DO (MSB)

D15 (LSB)

INJ
INJ
INJ
INJ

GND
GND
GND
GND

CLOCK

OBIN

24

10

41

56

9
26
40
57

2
27
28

8

29

63

61

Table 2. 9900 Pin Assignments and Functions

1/0 DESCRIPTION

ADDRESS BUS
OUT AO (MSB) through A 14 (LSB) comprise the

address bus. This open-collector bus pro
vides the memory-address vector to the
external-memory system when MEMEN is
active, and 1/0-bit addresses to the 1/0
system when MEMEN is inactive. When
HOLDA is active, the address bus is pulled
to the logic level HIGH state by the individ
ual pull-up resistors tied to each respective

OUT open-collector output.

DATA BUS
1/0 DO (MSB) through D15 (LSB) comprise the

bidirectional open-collector data bus. This
bus transfers memory data to (when writ
ing) and from (when reading) the external
memory system when MEMEN is active.
When HOLDA is active, the data bus is
pulled to the logic level HIGH state by the
individual pull-up resistors tied to each

1/0 respective open-collector output.

IN

POWER SUPPLY
Injector-Supply-Current
Injector-Supply-Current
I njector·Supply-Current
Injector-Supply-Current

Ground Reference
Ground Reference
Ground Reference
Ground Reference

CLOCK
CLOCK

BUS CONTROL
OUT DATA BUS IN. When active (pulled to logic

level HIGH). OBIN indicates that the SBP
9900 A has disabled its output buffers to
allow the memory to place memory-read
data on the data bus during MEMEN. OBIN
remains at logic level LOW in all other cases
except when HOLDA is active (pulled to
logic level HIGH).

Figure 9. SEP 9900A Pin Assignments.

GND

GND 2

WAIT 3

LOAD 4

HOLDA 5

RESET 6
IAQ 7

CLOCK 8

INJ 9
A14 10

A13 11

A12 12

A11 13

A10 14

A9 15

AB 16

A7 17

A6 18

A5 19

A4 20

A3 21

A2 22

A1 23

AO 24

NC 25

INJ 26

GND 27

GND 28

OBIN 29

CRUOUT 30

CRUIN 31

INTREO 32

NC-No internal connection

64 HOLD

63 MEMEN

62 READY

61 WE

60 CRUCLK

59 CYCEND

58 NC

57 INJ

56 D15

55 014

54 D13

53 D12

52 D11

51 D10

50 D9

49 DB

48 D7

47 D6

46 D5

45 04

44 D3

43 02

42 D1

41 DO

40 INJ

39 NC

38 NC

37 NC

36 ICO

35 IC1

34 IC2

33 IC3

OUT MEMORY ENABLE. When active (logic level LOW). MEMEN indicates that the address bus contains a memory
address.

OUT WRITE ENABLE. When active (logic level LOW), WE indicates that the SBP 9900A data bus is outputting data to
be written into memory.

9900 FAMILY SYSTEMS DESIGN 8-41

~s

SBP 9900A Product Data Book

PIN DESCRIPTION

SIGNATURE PIN

CRUCLK 60

CRUIN 31

CRUOUT 30

32

ICO (MSB) 36

ICO (LSB) 33

64

HOLDA

READY 62

WAIT

IAQ

CYCEND 59

LOAD 4

8-42

1/0

OUT

IN

OUT

IN

IN

IN

IN

OUT

IN

OUT

IN

OUT

IN

Table 2. (Continued)

DESCRIPTION

COMMUNICATIONS-REGISTER-UNIT (CRU) CLOCK. When active (pulled to logic level HIGH), CRUCLK indi

cates to the external interface logic the presence of output data on CRUOUT, or the presence of an encoded

external instruction on AO through A2.

CRU DATA IN. CRUIN, normally driven by 3-state or open-collector devices, receives input data from the external
interface logic. When the SBP 9900A executes a STCR or TB instruction, it samples CRUIN for the level of the

CRU input bit specified by the address bus (A3 through A 14).

CRU DATA OUT. CRUOUT outputs serial data when the SBP 9900A executes a LDCR, SBZ. SBO instruction.

The data on CRUOUT should be sampled by the external interface logic when CR'UCLK goes active (pulled to
logic level HIGH).

INTERRUPT CONTROL
INTERRUPT REQUEST. When active (logic level LOW), INTREQ indicates that an external interrupt is requesting
service. If INTREQ is active, the SBP 9900A loads the data on the interrupt-code input-lines ICO through IC3

into the internal interrupt-code storage register. The code is then compared to the interrupt mask bits of the
status register. If equal or higher priority than the enabled interrupt level (interrupt code equal or less than status
register bits 12 through 15), the SBP 9900A initiates the interrupt sequence. If the comparison fails, the SBP
9900A ignores the interrupt request. In that case. INTREQ should be held active. The SBP 9900A will continue
to sample ICO through IC3 until the program enables a sufficiently low interrupt-level to accept the requesting
interrupt.

INTERRUPT CODES ICO (MSB) through IC3 (LSB). receiving an interrupt identify code. are sampled by the SBP
9900A when INTREQ is active (logic level LOW). When ICO through IC3 are LLLH. the higher priority external
interrupt is requesting service; when HHHH. the lowest priority external interrupt is requesting service.

MEMORY CONTROL
When active (logic level LOW), HOLD indicates to the SBP 9900A that an external controller (e.g .. DMA device)

desires to use both the address bus and data bus to transfer data to or from memory. In response. the SBP
9900A enters the hold state after completion of its present memory cycle. The SBP 9900A then allows its
address bus, data bus, WE, MEMEN, DBIN. and HOLDA facilities to be pulled to the logic level HIGH state.

When HOLD is deactivated, the SBB 9900A returns to normal operation from the point at which it was stopped.

HOLD ACKNOWLEDGE. When active (pulled to logic level HIGH). HOLDA indicates that the SBP 9900A is in
the hold state and that its address bus. data bus. WE. MEMEN. and OBIN facilities are pulled to the logic level
HIGH state.

When active (logic level HIGH). READY indicates that the memory will be ready to read or write during the next
clock cycle. When not-ready is indicated during a memory operation, the SBP 9900A enters a wait state and
suspends internal operation until the memory systems activate READY.

When active (pulled to logic level HIGH), WAIT indicates that the SBP 9900A has entered a wait state in

response to a not-ready condition from memory.

TIMING AND CONTROL
INSTRUCTION ACQUISITION. IAQ is active (pulled to logic level HIGH) during any SBP 9900A initiated instruc
tion acquisition memory cycle. Consequently, IAQ may be used to facilitate detection of illegal op codes.

CYCLE END. When active (logic level LOW). CYCEND indicates that the SBP 9900A will initiate a new microin

struction cycle on the low-to-high transition of the next CLOCK.

When active (logic level LOW), LOAD causes the SBP 9900A to execute a nonmaskable interrupt with memory

addresses FFFC,. and FFFE,. containing the associated trap vectors IY'JP and PC). The load sequence is initiated
after the instruction being executed is completed. LOAD will also terminate an idle state. If LOAD is active during
the time RESET is active, the LOAD trap will occur after the RESET function is completed. LOAD should remain
active for one instruction execution period (IAQ may be used to monitor instruction boundaries). LOAD may be

9900 FAMILY SYSTEMS DESIGN

Product Data Book SBP 9900A
TIMING

SIGNATURE PIN 1/0

LOAD (Cont.)

Table 2. (Continued)

DESCRIPTION

used to implement cold-start ROM loaders. Additionally. front-panel routines may be implemented using CRU

bits as front-panel-interface signals, and software-control routines to direct the panel operations.

RESET IN When active (logic level LOW), RESET causes the SBP 9900A to reset itself and inhibit WE and CRUCLK. When

RESET is released, the SBP 9900A initiates a level-zero interrupt sequence acquiring the WP and PC trap vectors
from memory locations 0000,. and 0002,., sets all status register bits to logic level LOW, and then fetches the

first instruction of the reset program environment. RESET must be held active for a minimum of three CLOCK

cycles.

TIMING

SBP 9900A MEMORY

The SBP 9900A basic memory timing for a memory-read cycle with no wait states, and a memory-write cycle with
one wait state, is as shown in Figure 10. During each memory-read or memory-write cycle, MEMEN becomes
active (logic level LOW) along with valid memory-address data appearing on the address bus (AO through A14).

CLOCK

CYCLE
END

OBIN

AO-A14

READY

WAIT

I I
I I -------:x VALID ADDRESSX x VALID ADDRESS x ____ _

$®j?n;b:@w ~~2E·U;€e:~ I W:~]11!!®
~-----y--__________ : _________ 1 _____ ;---\ ____ : ____ _

DO-D15 CPU DRIVEN INPUT MODE CPU WRITE DATA CPU Df'llVEN

IAQ
I V Shown Aaumlng

_____ ,., this cycle is an in·

ltruction acquisition

cycle

MEMORY READ CYCLE WITH
NO WAITS

RD• READ DATA

MEMORY WRITE CYCLE WITH ONE WRITE

Figure JO. SEP 9900A Memory Bus Timing

In the case of a memory-read cycle, DBIN becomes active (pulled to logic level HIGH) at the same time
memory-address data becomes valid; the memory write strobe WE remains inactive (pulled to logic level HIGH). If
the memory-read cycle is initiated for acquisition of an instruction, IAQ becomes active (pulled to logic level
HIGH) at the same time MEMEN becomes active. At the end of a memory-read cycle, MEMEN and DBIN
together become inactive. At this time, though the address may change, the data bus remains in the input mode
until terminated by the next high-to-low transition of the clock.

9900 FAMILY SYSTEMS DESIGN 8-43

~s

SBP 9900A
TIMING

Product Data Book

In the case of a memory-write cycle, WE becomes active (logic level LOW) with the first high-to-low transition of
the clock after MEMEN becomes active; OBIN remains inactive. At the end of a memory-write cycle, WE and
MEMEN together become inactive.

During either a memory-read or a memory-write operation, READY may be used to extend the duration of the
associated memory cycle such that the speed of the memory system may be coordinated with the speed of the SBP
9900A. If READY is inactive (logic level LOW) during the first low-to-high transition of the clock after MEMEN
becomes active, the SBP 9900A will enter a wait state suspending further progress of the memory cycle. The first
low-to-high transition of the clock after READY becomes active terminates the wait state and.allows normal
completion of the memory cycle.

SBP 9900A How

The SBP 9900A hold facilities allow both the '9900A and external devices to share a common memory. To gain
memory-bus control, an external device requiring direct memory access (OMA) sends a hold request (HOLD) to
the SBP 9900A. When the next available non-memory cycle occurs, the SBP 9900A enters a hold state and signals
its surrender of the memory-bus to the external device via a hold acknowledge (HOLDA). Receiving the hold
acknowledgement, the external device proceeds to utilize the common memory. After its memory requirements
have been satisfied, the external device returns memory-bus control to the SBP 9900A by releasing HOLD.

When HOLD becomes active (logic level LOW), the SBP 9900A enters a hold state at the beginning of the next
available non-memory cycle as shown below. Upon entering a hold state, HOLDA becomes active (pulled to logic
level HIGH) with the following signals pulled to a HIGH logic level by the individual pull-up resistors tied to each
respective open-collector output: OBIN, MEMEN, WE, AO through A14, and DO through 015. When HOLD
becomes inactive, the SPB 9900A exits the hold state and regains memory-bus control. If HOLD becomes active
during a CRU operation, the SBP 9900A uses an extra clock cycle after the deactivation of HOLD to reassert the
CRU address thereby providing the normal setup time for the CRU-bit transfer.

CLOCK

CYCLE
END

MnMN

AO-A14

D0-015

OBIN

~

READY

WAIT

HOLDA

Harn _______ 11

Figure 11. SEP 9900A Hold Timing

8-44 9900 FAi\'IILY SYSTEMS DESIGN

Product Data Book SBP 9900A
TIMING

SBP 9900A CRU

The transfer of two data-bits from memory to a peripheral CRU device, and the transfer of one data-bit from a
peripheral CRU device to memory, is shown in Figure 12. To transfer a data-bit to a peripheral CRU device, the
SBP 9900A outputs the corresponding CRU-bit-address on address bus bits A3 through A14 and the respective
data-bit on CRUOUT. During the second clock cycle of the operation, the SBP 9900A outputs a pulse, on
CRUCLK, indicating to the peripheral CRU device the presence of a data-bit. This process is repeated until
transfer of the entire field of data-bits specified by the CRU instruction has been accomplished. To transfer a
data-bit from a peripheral CRU device, the SBP 9900A outputs the corresponding CRU-bit-Address on address
bus bits A3 through Al4 and receives the respective data-bit on CRUIN. No CRUCLK pulses occur during a
CRU input operation.

CLOCK

CYCLE
END

AO-A15

CRUCLK

CRUOUT

CRUIN

LJU
I

~
I
I
I

UNKNOWN I

'~

I I
I I
I I

1----..... '(< CRU ADDRESS M «=
I I

I : I

I I I I --....,x x v-1 1 x _______ x=
I ('-Sf I

I I I
I ~ I XXXXXXX> €or£T ~R!~ fx><> €oN) ~~R~:><><>0UC
I I I INPUT VALID I
I I INPUT BIT M I

CRU OUTPUT CRUINPUT

Figure 12. SEP 9900A CR U Interface Timing

MICROINSTRUCTION CYCLE

The SBP 9900 includes circuitry which will indicate the completion of a microinstruction cycle. Designated as the
CYCEND function, it provides CPU status that can simplify system design. The CYCEND output will go to a low
logic level as a result of the low-to-high transition of each clock pulse which initiates the last clock of a
microinstruction.

9900 FAMILY SYSTEMS DESIGN 8-45

SBP 9900A
INSTRUCTION EXECUTION TIMES

SBP 9900A INSTRUCTION EXECUTION TIMES

Instruction execution times for the SBP 9900A are a function of:

1) Clock cycle time, tc(<f>)
2) Addressing mode used where operands have multiple addressing mode capability
3) Number of wait states required per memory access.

Product Data Book

Table 3 lists the number of clock cycles and memory accesses required to execute each SBP 9900A instruction.
For instructions with multiple addressing modes for either or both operands, the table lists the number of clock
cycles and memory accesses with all operands addressed in the workspace-register mode. To determine the
additional number of clock cycles and memory accesses required for modified addressing, add the appropriate values
from the referenced tables. The total instruction-execution time for an instruction is:

T=tc(<f>) (C+ W•M)
where:

T =total instruction execution time;
tc(<f>) =clock cycle time;
C =number of clock cycles fbr instruction execution plus address modification;
W =number of required wait states per memory access for instruction execution plus address modification;
M ~number of memory accesses.

Table 3. Instruction Execution Times

CLOCK MEMORY ADDRESS CLOCK MEMORY ADDRESS
INSTRUCTION CYCLES ACCESS -MODIFICATIONt INSTRUCTION CYCLES ACCESS MODIFICATIONt

c M SOURCE DEST c M SOURCE DEST
A 14 4 A A LWPI 10 2 - -
AB 14 4 B B MOV 14 4 A A
ABS IMSB = 0) 12 2 A - MOVB 14 4 B B

IMSB r.1) 14 3 A - MPV 52 5 A -
Al 14 4 - - NEG 12 3 A -
ANDI 14 4 - - ORI 14 4 - -
B 8 2 A - RSET 12 1 - -
BL 12 3 A - RTWP 14 4 - -
BLWP 26 6 A - s 14 4 A A
c 14 3 A A SB 14 4 B B
CB 14 3 8 8 SBO 12 2 - -
Cl 14 3 - - SBZ 12 2 - -
CKOF 12 1 - - SETO 10 3 A -
CKON 12 1 - - Shilt (C,.01 12+2C 3 - -
CLR 10 3 A - IC=O, Bits 12-15
coc 14 3 A - of WRO=OI 52 4 - -
czc 14 3 A - (C=O, Bits 12-15
DEC 10 3 A - of WRP~N,.01 20+2N 4 - -
DECT 10 3 A - soc 14 4 A A
DIV (ST4 is setl 16 3 A - SOCB 14 4 B B
DIV IST4 is reset) 9:1·124 6 A - STCR (C=OI 60 4 A -
IDLE 12 ,1 - - (1<C<71 42 4 B -
INC 10 3 A - (C=SI 44 4 B -
INCT 10 3 A - 19.;c.;151 58 4 A -
INV 10 3 A - STST 8 2 - -
Jump (PC is STWP 8 2 - -

changed I 10 1 - - SWPB 10 3 A -
IPC is not szc 14 4 A A
changed) 8 1 - - SZCB 14 4 B 8

LDCR IC= 01 52 3 A - TB 12 2 - -
(1<eC.;:81 20+2C 3 B - x •• 8 2 A -
(9<C•:151 20+2C 3 A - XOP 36 8 A -

LI 12 3 - - XOR 14 4 A -
LIMI 14 2 - -
I.REX 12 1 - -

RESET function 26 5 - - Undefined op codes
LOAD function 22 5 - -
Interrupt context

0000-01 FF ,0320·
6 1 - -

033F,OCOO-OFFF,
switch 22 5 - - 0780-07FF

•Execution time Is dependent upon the partial quotient after each clock cycle during execution.
••Execution time is added to the execution time of the Instruction located at the source address minus 4 clock cycles and 1 memory access time.
tThe letters A and B refer to the respective tables that follow.

8-46 9900 FAMILY SYSTEMS DESIGN

Product Data Book SBP 9900A
INTERFACING

Table A. Address Modification Table B. Address Modification

CLOCK MEMORY CLOCK MEMORY

ADDRESSING MODE CYCLES ACCESSES ADDRESSING MODE CYCLES ACCESSES

c M c

WR (Ts or To= 00) 0 0 WR (Ts or To= 00) 0

WR indirect (Ts or To= 01 l 4 1 WR indirect (Ts or To= 01 l 4

WR indirect auto- WR indirect auto-

increment (Ts or To= 11 l 8 2 increment (Ts or To= 11 l 6

Symbolic (Ts or To= 10, Symbolic (Ts or To= 10,

Sor 0 = 0) 8 1 Sor 0 = 0) 8

Indexed (Ts or To= 10, Indexed (Ts or To= 10,
Sor 0 if= 0) 8 2 Sor 0 if= 0) 8

As an example, the instruction MOVB is used in a system with tc(cf>) = 0.333 µsand no wait states are required to
access memory. Both operands are addressed in the workspace register mode:

T=t,,(cp) (C + W•M) =0.333 (14 +0•4) µs=4.662 µs.

If two wait states per memory access were required, the execution time is:

T=0.333 (14+2·4) µs=7.326=µs.

If the source operand was addressed in the symbolic mode and two wait states were required:

T = t,,(cp) (C + W•M)
C=14+8=22
M=4+1=5

T = 0.333 (22 + 2•5) µs = 10.656 µs.

INTERFACING

The input/output (I/O) accommodations have been designed for TTL compatibility. Direct interfacing,
supportable by the entire families of catalog devices, is shown in Figure 13.

8
BITS

IN

8
BITS
OUT

~ .. ~:,.,'K..-' ___ _,

~ ~ 9 ~ ~
SN -- CRUOUT 9 ~ ~

54LS259::K~A::.:::_:_:_:_. 0 I'\\ ~
v 0 ROM

\.; ~------------icRUCLK A 'jsN54S472

" ~ INTERRUPT CODE \J

RAM

~ SN545400

M

0

1

2

1

2

...---.,_ _ __:~.=.:..::.:..:.:::...:....::.::::.::..::..._...i..---.) 1: ICO·IC3 I
SN541~,.....---------~=.-iiNTR'Eci ,A,__ ___ ~.L!_.__ _______ .._ ____ _,..')

~ INTERRUPT REQUEST l-1 DO-D16 K DATA BUS 16 BITS
"\j CLOCK '~..-------------------y•/

9900 FAMILY SYSTEMS DESIGN

1
CLOCK
GENERATOR

Figure 13. Typical SEP 9900.11 System

8-47

8·

~8

SBP 9900A
INTERFACING

INPUT CIRCUIT

Product Data Book

The input circuit used on the SBP 9900A is basically an RTL configuration which has been modified for TTL
compatibility as shown in Figure 14A. An input-clamping diode is incorporated to limit negative excursions
(ringing) when the SBP 9900A is on the receiving end of a transmission line; an input switching threshold of
nominally + 1.5 volts has been specified for improved noise immunity. This threshold is achieved via two resistors
which function as a voltage divider to increase the one V BE threshold of the FL input transistor to + 1.5 volts. Since
this input circuit is independent of injector current, input threshold compatibility is maintained over the entire
speed/power performance range.

8-48

A. EQUIVALENT OF EACH INPUT

R eq.
INPUT----"'""''----

R eq.

CLOCK OR PCCiN: R eq ... 5Kn
ALL OTHERS : R eq ... 10Kn

B. TYPICAL OF ALL
OUTPUTS

C. EQUIVALENT OF EACH INPUT/OUTPUT

INPUT/OUTPUT

10Kfl

Figure 14. Schematics of Equivalent Inputs, Outputs, Inputs/Outputs

500µA

400µA

300µA

200JJ:A
I-

ffi
a:

1001'A a: a
~
!:

-5mA

-10mA

-15mA

-20mA

1Jc-s~mA
1--TA•25° C

~

-4 -3 -2 -1

INPUT CURRENT
¥1

INPUT VOLTAGE

JT/ 17 Y/ ~~~-8 #-,., ~

c.; C('o"'~<c;-+--

J.L'7 ~ l\ G? ~ ~~~LOAD ~

r l T~SHOLD
20K0 LOAD
LINE

V1 ·INPUT VOLTAGE

Figure 15. Typical Input Characteristics

9900 FAMILY SYSTEMS DESIGN

Product Data Book SBP 9900A
INTERFACING

The input circuit characteristics for input current versus input voltage are shown in Figure 15. The lOK and 20K
ohm load lines and threshold knee at + 1.5 volts provide a high-impedance characteristic to reduce input loading
and improve the low-logic level input noise immunity over some standard TTL inputs. Full compatibility is
maintained with virtually all 5 volt logic families even when the SBP 9900A is powered down (injector current
reduced).

Sourcing Inputs

The inputs may be sourced directly by most 5 volt logic families. Five volt functions which feature internal pull-up
resistors at their outputs require no external interface components; five volt functions which feature open-collector
outputs generally require external pull-up resistors.

Terminating Unused Inputs

Inputs which are selected to be hardwired to a logic-level low may be connected directly to ground. Inputs which
are selected to be hardwired to a logic-level high must be tied, via a current limiting (pull-up) resistor, to a
logic-level-high low-impedance voltage source such as V cc· A single transient protecting resistor may be utilized
common to (N) inputs.

OUTPUT CIRCUIT

The output circuit selected for the SBP 9900A is an injected open-collector transistor shown in Figure l 4B. Since
this transistor is injected, output sourcing capability is directly related to injector current. In other words, the
number of loads which may be sourced by an SBP 9900A output is directly reduced as injector current is reduced.

The output circuit characteristic for logic-level low output voltage (VoL) versus logic-level low output current (loL)
is shown in Figure 16. At ;ated injector current, the SBP 9900A output circuit offers a low-level output voltage
of typically 220 m V.

400 T

OUTPUT VOLTAGE
vs

OUTPUT CURRENT

Ice'" 500mA

350 1-- TA a25°C

>
E
I 300

w
CJ
<(250 ...
.J
0
> 200 ...
::J
a. ...
::J 150
0
I

~

~
~

~

~
0 100 >

50

0
5 10 15 20 25

lo - OUTPUT CURRENT - mA

Figure 16. Typical Output Characteristics

9900 FAMILY SYSTEMS DESIGN 8-49

SBP 9900A
POWER SOURCE

Product Data Book

The output circuit characteristics for 1) logic-level high output voltage (Von) and current (Ion), 2) rise times, and 3)
next stage input noise immunity, are a function of the load circuit being sourced. The load circuit may be either:

A) the direct input, if no source current is required, of a five-volt logic family function,

or, for greater noise immunity and improved rise times,

B) the direct input of a five-volt logic family function in conjunction with a discrete pull-up resistor.

When a discrete pull-up resistor (RL) is utilized, the fanout requirements placed on a particular SBP 9900A output
restrict both the maximum and minimum value of RL.

POWER SOURCE

FL is a current-injected logic. When placed across a curve tracer, the processor will resemble a silicon.switching
diode. Any voltage or current source capable of supplying the desired current at the injector mode voltage required
will suffice. A dry-cell battery, a 5-volt TTL power supply, a programmable current supply (for
power-up/power-down operation) - literally whatever power source is convenient can be used for most cases. For
example, if a 5-volt TTL power supply is to be used, a series dropping resistor would be connected between the
5-volt supply and the injector pins of the FL device, as illustrated in Figure 17, to select the desired operating
current.

An alternate solution utilizes the Texas Instruments TL497 switching-regulator as illustrated in Figure 18.

+VsuPPLV

RoROP

r-------
1
I
I
I
I
I

SBP 9900A

L _____ _,_

GENERAL FORMULA (OHM'S LAW)

RoROP. VsuPPL v - Vee
•cc

I __ J

EXAMPLE FOR VsUPPLV • 5V, AND Ice• 500 mA:

5 -1.05 3.96
RoROP =--- = __ ., 7.9 OHMS

0.5 0.5

Figure 17. Injector Current Calculations

8-50

r-
1

I
I
I
L_

5-30V de

TL497

600 mA@ 1.05 V

SBP
9900A

..;.. -,
I
I
I

_J

Figure 18. Switching-Regulator Injector Source

9900 FAMILY SYSTEMS DESIGN

Product Data Book SBP 9900A
POWER SOURCE

Operating from a constant current power source, the SBP 9900A may be powered-up/powered-down with
complete maintenance of data integrity to execute instructions over a speed/power range spanning several orders
of user-selectable injector-supply-current range as illustrated in Figure 19.

Figures 20 and21 show the typical injector node voltages which occur across the temperature and injector
current ranges.

Q
0
~
w
Q.

:.:::
0

10000 ns

g 1000 ns
CJ
..I
<
CJ
ii:
> ...

>
E
J.
CJ

~
0
>
w
0
0 z
~
0
t;
w ..,
:1!':

~
...I
C(
0
a:
~
I

100 ns

lOmA 100mA
INJECTOR CURRENT

1000mA

Figure 19. SBP 9900A Clock Penod vs. Injector Current

1200..__-~t--..f--~=---....... =--+---+---I----+---~
r-r--+--

1100 t----1---+--+--+---+--+-~-....,t---.J~-"""'

9001----+---+---+---+---+---+---t----I

lcc=SOO mA
8001----+----+----~+----+----+----+----i----1

J 700..._ __ .__ __ .__ __ .__ __ .__ __ ..._ __ .__ __ .._____,

-75 -50 -25 0 25 50 75 100 125

Figure 20. SBP 9900A Injector Node Voltage vs. Free-Air Temperature

9900 FAMILY SYSTEMS DESIGN 8-51

8<11

SBP 9900A Product Data Book

ELECTRICAL SPECIFICATIONS

1.6

>
I w

CJ 1.4 ~
0
>
w
Q
0 1.2 z
ci:
0

~
F

L
17

T, = 2s 0 c L~

~
I-
0 w .., 1.0
~
<
0
ii:
> 0.8 I-
I
u

>

y

~
v

-"'
L

V'
0.6

0 200 400 600 800 1000

Figure 21. SEP 9900A Injector Node Voltage vs. Injector Current

ELECTRICAL SPECIFICATIONS

SBP 9900A REcoMMENDED 0rERATING CoNDITIONS, UNLESS OrttERWISE NoTED Ice= 500 MA

MIN NOM MAX UNIT

Supply current, I cc 450 500 550 mA

High-level output voltage, VoH 5.5 v
Low-level output current, loL 20 mA

Clock frequency; fclock 0 2 MHz

High (67%) (V1H = 2.5 V maxi 330
Width of clock pulse, tw

Low (33%1 170
ns

Clock rise time, tr 10 ns

Clock fall time, tf 10 ns

HOLD 21ot

READY 140t

Setup time, tsu (see Figure 24)
DO - 015 a5t

CRUIN 65t
ns

INTREO 25t

ICO- IC3 25t

HOLD 25t

READY 65t

Hold time, th (see Figure 24)
DO - D15 65t

CRUIN 55t
ns

INTREO sot

ICO- IC3 sot

Operating free-air temperature, TA
SBP SSOO M/N -55 125 oc
SBP SSOOE -40 85

tRlslng edge of clock pulse Is reference.

8-52 9900 F-AMILY SYSTEMS DESIGN

Product Data Book SBP 9900A
ELECTRICAL SPECIFICATIONS

SBP 9900A ELECTRICAL CHARACTERISTICS (OvER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE, UNLESS

OTHERWISE NOTED)

PARAMETER TEST CONDITIONSt

V1H High-level input voltage

V1L Low-level input voltage

VIK Input clamp voltage Ice= MIN, l1=-12mA

loH High-level output current
Ice= 500 mA, V1H = 2 V

V1L = 0.8 V, VoH = 5.5 V

Vol Low-level output voltage
Ice= 500 mA, V1H = 2 V

V1L = 0.8 V, loL = 20 mA

J
Clock

11 Input current
All other inputs

Ice= 500 mA, V1=2.4 v

t For conditions shown as MAX, use the appropriate value specified under recommended operating conditions.
:l:All typical values are at I CC= 500 mA, TA= 25° C.

MIN TYP:I:

2

480

240

SBP 9900A SWITCHING CHARACTERISTICS, (lee= NOM, TA= RECOMMENDED OPERATING FREE-AIR TEMPERATURE

RANGE UNLESS OTHERWISE NoTED) SEE Figures 22 AND 23.

PARAMETER FROM TO TEST CONDITIONS MIN TYP:I:

fmax MAXIMUM CLOCK FREQUENCY 2

tPLH or tPHL CLOCK ADDRESS BUS (AO - A14) 170

tPLH or tPHL CLOCK DATA BUS (DO - D15) 170

tPLH or tPHL CLOCK WRITE ENABLE (WE) 220

tpu~ or tPHL CLOCK CYCLE END (CYCEND) 170

tPLH or tPHL CLOCK DATA BUS IN (OBIN) 190

tPLH or tPHL CLOCK MEMORY ENABLE (MEMEN) CL= 150 pF, RL = 280 .11 155

tPLH or tPHL CLOCK CRU CLOCK (CRUCLK) 187

tPLH or tPHL CLOCK CRU DATA OUT (CRUOUTl 210

tPLH or tPHL CLOCK HOLD ACKNOWLEDGE (HLDA) 320

tPLH or tPHL CLOCK WAIT 155

tPLH or tPHL CLOCK INSTRUCTION ACQUISITION (1AQ) 155

+All typical values are at 25°C.

9900 FAMILY SYSTEMS DESIGN

MAX

0.8

-1.5

400

0.4

600

300

MAX

225

265

295

225

250

205

280

265

410

210

210

UNIT

v
v
v

µA

v

µA

UNIT

MHz

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

8-53

SBP 9900A Product Data Book

ELECTRICAL SPECIFICATIONS

8-54

CLOCK

INPUTS

CRUCLK

ALL
OTHER

OUTPUTS

tsu

I I I _J 1--tt,
-.j !-- I w I

I
I I -.j ~tPLH -.J

I
i Yi

I
I I
I I
I I
I t tPLH~

I tPHL_,

I r-tPLH
I

:~
I J

Figure 22. Switching Times - Voltage Waveforms

Vee"' s v

FROM ANY
OUTPUT

Figure 23. Switching Times Load Circuits

~tPHL

i
I

f
x

9900 FAMILY SYSTEMS DESIGN

Product Data Book SBP 9900A
ELECTRICAL SPECIFICATIONS

CLOCK FREQUENCY vs. TEMPERATURE

Stability of the operational frequency over the full temperature range of -55°C to 125°C is illustrated in
Figure 24. The effects of temperature on clock frequency are nil above 0°C. Below 0 °C the effects are typically less
than -8% with respect to the typical performance.

w
CJ z
<
:::ii:
cc
0
u.
a:
w
a.
CJ
c:i::
..J
<
CJ a:
>
I-
I
~

._!J

+20%

+15%

+10%

+5%

0

-5%

-10%

-15%

-20%

A·C PERFORMANCE
vs

FREE-AIR TEMPERATURE

'S.TVPICAL fck

1.......-i y
v

-75 -50 -25 0 25 50 75 100 125

TA - Free-Air Temperature - °C

Figure 24. SBP 9900.d d-C Performance vs. Temperature

9900 FAMILY SYSTEMS DESIGN 8-55

TMS 9980A/
TMS 9981

~s ------------------

Product Data Book

1. INTRODUCTION

1.1 DESCRIPTION

TMS 9980A/9981
INTRODUCTION

The TMS 9980A/TMS 9981 is a software-compatible member of Tl's 9900 family of microprocessors. Designed to
minimize the system cost for smaller systems, the TMS 9980A/TMS 9981 is a single-chip 16-bit central processing unit
(CPU) which has an 8-bit data bus, on-chip clock, and is packaged in a 40-pin package (see Figure 1). The instruction
set of the TMS 9980A/TMS 9981 includes the capabilities offered by full minicomputers and is exactly the same as the
9900's. The unique memory-to-memory architecture features multiple register files, resident in memory, which allow
faster response to interrupts and increased programming flexibility. The separate bus structure simplifies the system
design effort. Texas Instruments provides a compatible set of MOS and TTL memory and logic function circuits to be
used with a TMS 9980A/TMS 9981 system.

1.2 KEY FEATURES

• 16-Bit Instruction Word

• Full Minicomputer Instruction Set Capability Including Multiply and Divide

• Up to 16,384 Bytes of Memory

• 8-Bit Memory Data Bus

• Advanced Memory-to-Memory Architecture

• Separate Memory, 1/0, and Interrupt-Bus Structures

• 16 General Registers

• 4 Prioritized Interrupts

• Programmed and OMA 1/0 Capability

• On-Chip 4-Phase Clock Generator

• 40-Pin Package

• N-Channel Silicon-Gate Technology

1.3 TMS 9980A/TMS 9981 DIFFERENCES

The TMS 9980A and the TMS 9981 although very similar, have several differences which user should be aware.

1. The TMS 9980A requires a VBB supply (pin 21) while the TMS 9981 has an internal charge pump to
generate VBB from Vee and Voo.

2. The TMS 9981 has an optional on-chip crystal oscillator in addition to the external clock mode of the
TMS9980A.

3. The pin-outs are not compatible for D0-07, I NT0-1 NT2, and 1)3.

9900 FAMILY SYSTEMS DESIGN 8-57

TMS 9980A/9981
ARCHITECTURE

HciLD
HOLDA

WE" CONTROL
LOGIC,

READY

MEMiN AND

OBIN CLOCK

~
GENERATOR

IAO

CRUCLK

OSCO UT

~ (9981 ONLY)

CKIN

8-58

T1

T2

PROGRAM COUNTER

WORKSPACE REGISTER

A

ALU

16

00-07

FIGURE 1 - ARCHITECTURE

ICO-IC2

CRUIN

Product Data Book

AO·A13
(CRUOUTI

MEMORY
ADDRESS
REGISTER

16

9900 FAMILY SYSTEMS DESIGN

Product Data Book

2. ARCHITECTURE

TMS 9980A/9981
ARCHITECTURE

The memory for the TMS 9980A/TMS 9981 is addressable in 8-bit bytes. A word is defined as 16 bits or 2 consecutive
bytes in memory. The words are restricted to be on even address boun9aries, i.e., the most-significant half (8 bits)
resides at even address and the least-significant half resides at the subsequent odd address. A byte can reside at even or
odd address. The word and byte formats are shown below.

EVEN ADDRESS

ODD ADDRESS

EVEN ADDRESS

ODD ADDRESS

MSB
OR

SIGN
BIT

0

8

MSB
OR

SIGN
BIT

0

0

21 REGISTERS AND MEMORY

1 2 3

9 10 11

1 2 3

1 2 3

4 5 6

12 13 14

4 5 6

4 5 6

7

15

I LSB I

LSB I
7

7

} WORD
FORMAT

BYTE
FORMAT

The TMS 9980A/TMS 9981 employs an advanced memory-to-memory architecture. Blocks of memory designated as
workspace replace internal hardware registers with program-data registers. The TMS 9980A/TMS 9981 memory map is
shown in Figure 2. The first two words (4 bytes) are used for RESET trap vector. Addresses 000415 through 001315
are used for interrupt vectors. Addresses 0040 through 007F are used for the extended operation (XOP) instruction
trap vectors. The last four bytes at address 3FFC15 to 3FFF are used for trap vector for the LOAD function.

The remaining memory is available for programs, data, and workspace registers. If desired, any of the special areas may
also be used as general memory.

Three internal registers are accessible to the user. The program counter (PC) contains the address of the instruction
following the current instruction being executed. This address is referenced by the processor to fetch the next
instruction from memory and is then automatically incremented. The status register (ST) contains the present state of
the processor and will be further defined in Section 3.4. The workspace pointer (WP) contains the address of the first
word in the currently active set of workspace registers.

r
9900 FAMILY SYSTEMS DESIGN 8-59

~s

TMS 9980A/9981
ARCHITECTURE

RESET VECTOR {

INTERRUPT
VECTORS

XOP SOFTWARE
TRAP VECTORS

{ LOAD SIGNAL
VECTOR

8-60

0 0 0 0

0 0 0 1

0 0 0 2

0 0 0 3

0 0 0 4

0 0 0 5

0 0 0 6

0 0 0 7

~

0 0 1 0

0 0 1 1

0 0 1 2

0 0 1 3

4' GENERAL
MEMORY AREA

0 0 4 0

0 0 4 1

0 0 4 2

0 0 4 3

. .,,.
0 0 7 c
0 0 7 D

0 0 7 E

0 Q. 7 F . •
GENERAL

.....:~ MEMORY
AREA

3 F F C

3 F F D

3 F F E

3 F F F

FIGURE 2 - MEMORY MAP

Product Data Book

WP
LEVEL 0
INTERRUPT

PC

WP
LEVEL 1 .
INTERRUPT

..:~

~

4

PC

LEVEL 4
INTERRUPT

} :: } XOP 0

} :: } XOP 15

""7

}wP
} PC

9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9980A/9981
ARCHITECTURE

A workspace-register file occupies 16 contiguous memory words in the general memory area. Each workspace register
may hold data or addresses and function as operand registers, accumulators, address registers, or index registers. During
instruction execution, the processor addresses any register in the workspace by adding the register number to the
contents of the workspace pointer and initiating a memory request for the word. The relationship between the
workspace pointer and its corresponding workspace is shown below.

GENERAL MEMORY

PROGRAM A r------_
H] PC (Al

'" '7

WORKSPACE REGISTER 0
_f

WP (A) J _.
l

WORKSPACE A

I ST (Al I
WORKSPACE REGISTER 15

~ ..::ii"'

PROGRAM B

~ "'7

WORKSPACE B

The workspace concept is particularly valuable during operations that require a context switch, which is a change from
one program environment to another (as in the case of an interrupt or call to a subroutine). Such an operation, using a
conventional multi-register arrangement, requires that at least part of the contents of the register file be stored and
reloaded. A memory cycle is required to store or fetch each word. By exchanging the program counter, status register,
and workspace pointer, the TMS 9980A/TMS 9981 accomplishes a complete context switch with only six store cycles
and six fetch cycles. After the switch the workspace pointer contains the starting address of a new 16-word workspace
in memory for use in the new routine. A corresponding time saving occurs when the original context is restored.
Instructions in the TMS 9980A/TMS 9981 that result in a context switch include:

1. Branch and Load Workspace Pointer (BLWP)

2. Return from Subroutine (RTWP)

3. Extended Operation (XOP)

Device interrupts, RESET, and LOAD also cause a context switch by forcing the processor to trap to a service

subroutine.

9900 FAMILY SYSTEMS DESIGN 8-61

TMS 9980A/9981
ARCHITECTURE

Product Data Book

2.2 INTERRUPTS

8-62

The architecture of the 9900 family allows vectoring of 16 interrupts. These interrupts are assigned levels from 0 to 15.
The interrupt at level 0 has the highest priority and the interrupt at level 15 has the lowest priority. The TMS 9900
implements all 16 interrupt levels. The TMS 9980A/TMS 9981 implements only 5 levels (level 0 and levels 1 through
4). Level 0 is reserved for RESET function.

Levels 1 through 4 may be used for external devices. The external levels may also be shared by several device interrupts,
depending upon system requirements. The TMS 9980A/TMS 9981 continuously compares the interrupt code (ICO
through IC2) with the interrupt mask contained in status·register bits 12 through 15. When the level of the pending
interrupt is less than or equal to the enabling mask level (higher or equal priority interrupt), the processor recognizes
the interrupt and initiates a context switch following completion of the currently executing instruction. The processor
fetches the new context WP and PC from the interrupt vector locations. Then, the previous context WP, PC, and ST are
stored in workspace registers 13, 14, and 15, respectively, of the new workspace. The TMS 9980A/TMS 9981 then
forces the interrupt mask to a value that is one less than the level of the interrupt being serviced. This allows only
interrupts of higher priority to interrupt a service routine. The processor also inhibits interrupts until the first
instruction of the service routine has been executed to allow modification of interrupt mask if needed (to mask out
certain· interrupts). All interrupt requests should remain active until recognized by the processor in the device·service
routine. The individual service routines must reset the interrupt requests before the routine is complete. The interrupt
code (ICO-IC2) may change asynchronously within the constraints specified in Section 2.10.4.

If a higher priority interrupt occurs, a second context switch occurs to service the higher-priority interrupt. When that
routine is complete, a return instruction (RTWP) restores the first service routine parameters to the processor to
complete processing of the lower-priority interrupt. All interrupt subroutines should terminate with the return
instruction to restore original program parameters. The interrupt-vector locations, device assignment, enabling mask
value and the interrupt code are shown in Table 1.

INTERRUPT

CODE FUNCTION

(ICO-IC2l

1 1 0 Level 4

1 0 1 Level 3

1 0 0 Level 2

0 1 1 Level 1

0 0 1 Reset

0 1 0 Load

0 0 0 Reset

1 1 1 No-Op

TABLE 1

INTERRUPT LEVEL DATA

VECTOR LOCATION

(MEMORY ADDRESS DEVICE ASSIGNMENT

IN HEX)

0 0 1 0 External Device

0 0 0 c External Device

0 0 0 8 External Device

0 0 0 4 External Device

0 0 0 0 Reset Stimulus

3 F F C Load Stimulus

0 0 0 0 Reset Stimulus

----- -----

INTERRUPT MASK VALUES

TO ENABLE

(ST12 THROUGH ST15)

4 Through F

3 Through F

2 Through F

1 Through F

Don't Care

Don't Care

Don't Care

Note that RESET and LOAD functions are also encoded on the interrupt code input lines. Figure 3 illustrates some of
the possible configurations. To real!ze RESET and one interrupt no external component is needed. If LOAD is also
needed, a three input AND gate is wired as shown. If the system requires more than one interrupt, a single SN74148
(TIM 9907) is required.

9900 FAMILY SYSTEMS DESIGN

Product Data Book

RESET

LEVEL4

LOAD

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

2.3 INPUT/O_UTPUT

L
~

vcc

+--a
_,., -
,..
~

_,..,
~

_1'

--...
__,.. ...

L....q

LEVEL 1
ICO

IC1

RESET
IC2

TMS 9980A/
LOAD

TMS 9981

[!
E1

7

6

5 A2 h
I"'"

4 A1 h
I"'"

3 AO h
I"'"

2

1

SN74148
(TIM 9907)

FIGURE 3 - TMS 9980A/TMS 9981 INTERRUPT INTERFACE

TMS 9980A/9981
ARCHITECTURE

ICO

IC1

IC2
TMS 9980A/

TMS 9981

ICO

IC1

IC2

TMS 9980A/
TMS 9981

The TMS 9980A/TMS 9981 utilizes a versatile direct command-driven 1/0 interface designated as the communications
register unit (CRU). The CRU provides up to 2,048 directly addressable output bits. Both input and output bits can be
addressed individually or in fields of from 1 to 16 bits. The TMS 9980A/TMS 9981 employs CRUIN, CRUCLK, and
A13 (for CRUOUT) and 11 bits (A2-A12) of the address bus to interface with the CRU system. The processor
instructions that drive the CRU interface can set, reset, or test any bit in the CRU array or move between memory and
CRU data fields.

2.4 SINGLE-BIT CRU OPERATIONS

The TMS 9980A/TMS 9981 performs three single-bit CRU functions: test bit (TB), set bit to one (SBO), and set bit to
zero (SBZ). To identify the bit to be operated upon, the TMS 9980A/TMS 9981 develops a CRU-bit address and places
it on the address bus, A2 to A 12.

For the two output operations (SBO and SBZ). the processor also generates a CRUCLK pulse, indicating an output
operation to the CRU device and places bit 7 of the instruction word on the A 13 line to accomplish the specified

9900 FAMILY SYSTEMS DESIGN 8-63

·8

TMS 9980A/9981
ARCHITECTURE

Product Data Book

operation (bit 7 is a one for SBO and a zero for SBZ). A test-bit instruction transfers the addressed CRU bit from the
CRUIN input line to bit 2 of the status register (EQUAL).

The TMS 9980A/TMS 9981 develops a hardware base address for the single-bit operations from the software base

address contained in workspace register 12 and the signed displacement count contained in bits 8 through 1 5 of the

instruction. The displacement allows two's complement addressing from base minus 128 bits through base plus 127

bits. The hardware base address (bits 4 through 14 of WR 1 2) is added to the signed displacement specified in the

instruction and the result is loaded into the address bus. Figure 4 illustrates the development of a single-bit CRU

address. SOFTWARE BASE ADDRESS

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x x x x x I W12

DON'T CARE HARDWARE BASE ADDRESS

+
8 9 10 11 12 13 14 15

I I I I I SIGNED

\~~ ~)
DISPLACEMENT

BIT 8 SIGN v EXTENDED

0 2 3 4 5 6 7 8 9 10 11 12 13

I I I I ADDRESS
BUS

~) _CRUOUT y
SET TO ZERO EFFECTIVE CRU BIT ADDRESS
FOR ALL CRU
OPERATIONS

FIGURE 4 - TMS 9980A/TMS 9981 SINGLE-BIT CRU ADDRESS DEVELOPMENT

2.5 MULTIPLE-BIT CRU OPERATIONS

8-64

The TMS 9980A/TMS 9981 performs two multiple-bit CRU operations: store communications register (STCR) and
load communications register (LDCR). Both operations perform a data transfer from the CRU-to-memory or from
memory-to-CRU as illustrated in Figure 5. Although the figure illustrates a full 16-bit transfer operation, any number of
bits from 1 through 16 may be involved. The LDCR instruction fetches a word from memory and right-shifts it to
serially transfer it to CRU output bits. If the LDCR involves eight or fewer bits, those bits come from the right-justified
field within the addressed byte of the memory word. If the LDCR involves nine or more bits, those bits come from the
right-justified field within the whole memory word. When transferred to the CRU interface, each successive bit receives
an address that is sequentially greater than the address for the previous bit. This addressing mechanism results in an
order reversal of the bits; that is, bit 15 of the memory word (or bit 7) becomes the lowest addressed bit in the CRU
and bit 0 becomes the highest addressed bit in the CRU field.

An STCR instruction transfers data from the CRU to memory. If the operation involves a byte or less transfer, the
transferred data will be stored right-justified in the memory byte with leading bits set to zero. If the operation involves
from nine to 16 bits, the transferred data is stored right-justified in the memory word with leading bits set to zero.

When the input from the CRU device is complete, the first bit from the CRU is the least-significant-bit position in the

memory word or byte.

9900 FAMILY SYSTEMS DESIGN

Product Data Book

CRUINPUT
BITS

N

N+1

N+14

N+15

INPUT (STCR)

EFFECTIVE
MEMORY ADDRESS

OUTPUT (LDCR)

N =BIT SPECIFIED BY CRU BASE REGISTER

14

TMS 9980A/9981
ARCHITECTURE

CRU OUTPUT
BITS

N

N+1

N+14

N+15

FIGURE 5 -TMS 9980A/TMS 9981 LDCR/STCR DATA TRANSFERS

Figure 6 illustrates how to implement a 16-bit input and a 16-bit output register in the CRU interface. CRU addresses
are decoded as needed to implement up to 128 such 16-bit interface registers. In system application, however, only the
exact number of interface bits needed to interface specific peripheral devices are implemented. It is not necessary to
have a 16-bit interface register to interface an 8-bit device.

2.6 EXTERNAL INSTRUCTIONS

The TMS 9980A/TMS 9981 has five external instructions that allow user-defined external functions to be initiated
under program control. These instructions are CKON, CKOF, RSET, IDLE, and LREX. These mnemonics, except for
ID LE, relate to functions implemented in the 990 minicomputer and do not restrict use of the instructions to initiate
various user-defined functions. IDLE also causes the TMS 9980A/TMS 9981 to enter the idle state and remain until an
interrupt, RESET, or LOAD occurs. When any of these five instructions are executed by the TMS 9980A/TMS 9981, a
unique 3-bit code appears on the address bus, bits A 13, AO, and A 1, along with a CRUCLK pulse. When the
TMS 9980A/TMS 9981 is in an idle state, the 3-bit code and CRUCLK pulses occur repeatedly until the idle state is
terminated. The codes are:

EXTERNAL INSTRUCTION A13 AO A1

LREX H H H

CKOF H H L

CKON H L H

RSET L H H

IDLE L H L

CRU INSTRUCTIONS H/L L L

9900 FAMILY SYSTEMS DESIGN 8-65

TMS 9980A/9981
ARCHITECTURE

(f)
::J
en
(f)
(f)
w
a:
0
0
<(

l!')
U)

0
Cf)

~ I~ en
0

~
::J
a:
u

Product Data Book

<(~
0 co co CJ)
mm

:>:'.'. men
(f) ~

_J

~ f- u
f- ::J

a:
u

FIGURE 6-TMS9980A/998116-BIT INPUT/OUTPUT INTERFACE

8-66 9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9980A/9981
ARCHITECTURE

Note that during external instructions bits (A2-A 12) of the address bus may have any of the possible binary patterns.

Since these bits (A2-A12) are used as CRU addresses, CRUCLK to the CRU must be gated with a decode of 0 on AO
and A 1 to avoid erroneous strobe to CRU bits during external instruction execution.

Figure 7 illustrates typical external decode logic to implement these instructions. Note CRUCLK to the CRU is
inhibited during external instructions.

TO MEMORY

YO Y4

SN74LS138
14 3 A

TMS 9980A/9981 B

AO -A13 A13, AO, A1 c

G1 G2A

CRUCLK

FIGURE 7 - EXTERNAL INSTRUCTION DECODE LOGIC

2.7 NON-MASKABLE INTERRUPTS

2.7.1 LOAD Function

Y7
LREX

Y6
CKOF

Y5
CKON

Y3 RESET

IDLE

CRUCLK
TO CRU

TO USER
DEFINED
EXTERNAL
INSTRUCTION
LOGIC

The LOAD stimulus is an unmaskable interrupt that allows cold-start ROM loaders and front panels to be implemented

for the TMS 9980A/TMS 9981. When the TMS 9980A/TMS 9981 decodes LOAD on ICO-IC2 lines, it initiates an

interrupt sequence immediately following the instruction being executed. Memory location 3FFC is used to obtain the
vector (WP and PC). The old PC, WP, and ST are loaded into the new workspace and the interrupt mask is set to 0000.

Then the program execution resumes using the new PC and WP. Recognition of LOAD by the processor will also
terminate the idle condition. External stimulus for LOAD must be held active (on ICO-IC2) for one instruction period
by using I AO signal.

2.7.2 RESET

When the TMS 9980A/TMS 9981 recognizes a RESET on ICO-IC2, it resets and inhibits WE and CRUCLK. Upon 8
removal of the RESET code, the TMS 9980A/TMS 9981 initiates a level-zero interrupt sequence that acquires WP and

PC from location 0000 and 0002, sets all status register bits to zero and starts execution. Recognition of RESET by the

processor will also terminate an idle state. External stimulus for RESET must be held active for a minimum of three
clock cycles.

9900 FAMILY SYSTEMS DESIGN 8-67

TMS 9980A/9981
ARCHITECTURE

GET RESET VECTOR
(WP AND PC)

FROM LOCATION O. 2

STORE PREVIOUS PC,
WP, AND ST IN NEW

WORKSPACE. SET
INTERRUPT MASK
(ST12-ST15) = 0

N

y

GET LOAD VECTOR
(WP AND PC)

FROM LOCATION

3FFC16,3FFF16

STORE PREVIOUS PC,

WP, AND ST IN NEW
WORKSPACE. SET
INTERRUPT MASK

(ST12-ST151 = 0

y

INSTRUCTION
ACOUISTION

INSTRUCTION
EXECUTION

GET INTERRUPT LEVEL
VECTOR (WP AND PC)
STORE PREVIOUS PC,

WP, AND ST IN NEW
WORKSPACE. SET

INTERRUPT MASK (ST12
-ST15) TO LEVEL - 1

Product Data Book

y

N

N

N

FIGURE 8 - TMS 9980A/TMS 9981 CPU FLOW CHART

8-68 9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9980A/9981
ARCHITECTURE

2.8 TMS 9980A PIN DESCRIPTION

Table 2 defines the TMS 9980A pin assignments and describes the function of each pin.

SIGNATURE

AO (MSB)
A1
A2

PIN

17
16
15

A3 14
A4 13
A5 12
A6 11
A7 10
AB 9
A9 8
A10 7
A11 6
A12 5
A13/CRUOUT 4

DO (MSB) 26
01 27
02 28
03 29
04 30
05 31
06 32
07 (LSB) 33

Vas
Vee
Voo
Vss

CKIN

OBIN

21
20
36
35

34

22

18

1/0

OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT

1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0

IN

OUT

OUT

TABLE 2

TMS 9980A PIN ASSIGNMENTS AND FUNCTIONS

DESCRIPTION TMS 9980A PIN ASSIGNMENTS

ADDRESS BUS
AO through A 13 comprise the address bus.
This 3-state bus provides the memory
address vector to the external-memory sys
tem when MEMEN is active and 1/0-bit
addresses and external-instruction addresses
to the 1/0 system when MEMEN is inactive.
The address bus assumes the high-impedance
state when HOLDA is active.

CRUOUT
Serial 1/0 data appears on A 13 when an
LDCR, SBZ and SBO instruction is execu
ted. This data should be sampled by the 1/0
interface logic when CRUCLK goes active
(high). One bit of the external instruction
code appears on A 13 during external in
struction execution.

DATA BUS
DO through 07 comprise the bidirectional
3-state data bus. This bus transfers memory
data to (when writing) and from (when
reading) the external-memory system when
MEMEN is active. The data bus assumes the
high-impedance state when HOLDA is
active.

POWER SUPPLIES
Supply voltage (-SV NOM)
Supply voltage (5 V NOM)
Supply voltage (12 V NOM)
Ground reference

HOLD

HOLDA 2

IAQ 3

A 13/CRUOUT 4

A12 5

A11 6

A10 7

A9 8

AB 9

A7 10

A6 11

AS 12

A4 13

A3 14

A2 15

A1 16

AO 17

OBIN 18

CRUIN 19

Vee 20

CLOCKS

40 MEMEN

39 READY

38 WE

37 CRUCLK

36 vDD

35 Vss
34 CKIN

33 07

32 06

31 05

30 04

29 03

28 02

27 01

26 DO

25 INT 0

24 INT 1

23 INT 2

22 ~
21 v88

Clock In. A TTL compatible input used to generate the internal 4-phase clock. CKI N frequency is 4 times the
desired system frequency.

Clock phase 3 (¢3) inverted; used as a timing reference.

BUS CONTROL

Data bus in. When active (high), OBIN indicates that the TMS 9980A has disabled its output buffers to allow
the memory to place memory-read data on the data bus during MEMEN. DBI N remains low in all other cases
except when HOLDA is active at which time it is in the high-impedance state.

9900 FAMILY SYSTEMS DESIGN 8-69

TMS 9980A/9981
ARCHITECTURE

Product Data Book

SIGNATURE PIN

MEMEN 40

WE 38

CRUCLK 37

CRUIN 19

INT2 23
INT1 24

INTO 25

HOLD-

HOLDA 2

READY 39

IAQ 3

1/0

OUT

OUT

OUT

IN

IN
IN
IN

IN

OUT

IN

OUT

TABLE 2 (CONTINUED)

DESCRIPTION

Memory enable. When active (low), MEMEN indicates that the address bus contains a memory address. When
HOLDA is active, MEMEN is In the high Impedance state.

Write enable. When active (low), WE indicates that memory-write data is available from the TMS 9980 to be
written into memory. When HOLDA is active, WE is in the high-impedance state.

CRU clock. When active (high), CRUCLK indicates that external interface logic should sample the output
data on CRUOUT or should decode external instructions on AO, A 1, A 13.

CRU data in. CRUIN, normally driven by 3-state or open-collector devices, receives input data from external
interluce logic. When the processor executes a STCR or TB instruction, it samples CRUIN for the level of the
CRU input bit specified by the address bus (A2 through A121.

Interrupt code. Refer to Section 2.2 for detailed description.

MEMORY CONTROL
Hold. When active (low), HOLD indicates to the processor that an external controller (e.g., OMA device)
desires to utilize the address and data buses to transfer data to or from memory. The TMS 9980A enters the
hold state following a hold signal when it has completed its present memory cycle.• The processor then
places the address and data buses in the high-impedance state (along with WE, MEMEN, and OBIN) and
responds with a hold-acknowledge signal (HOLDA). When HOLD is removed, the processor returns to normal
operation.

Hold acknowledge. When active (high), HOLDA indicates that the processor is in the hold state and the
address and data buses and memory control outputs (WE, MEMEN, and OBIN) are in the high-impedance
state.

Ready. When active (high), READY indicates that memory will be ready to read or write during the next
clock cycle. When r;iot-ready is indicated during a memory operation, the TMS 9980A enters a wait state and
suspends internal operation until the memory systems indicated ready.

TIMING AND CONTROL
Instruction acquisition. IAQ is active (high) during any memory cycle when the TMS 9980A is acquiring an
instruction. IAQ can be used to detect illegal op codes. It may also be used to synchronize LOAD stimulus.

'If the cycle following the present memory cycle is also a memory cycle it, too, is completed before TMS 9980 enters hold state.

8-70 9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9980A/9981
ARCHITECTURE

2.9 TMS 9981 PIN DESCRIPTION

Table 3 defines the TMS 9981 pin assignments and describes the function of each pin.

SIGNATURE PIN

AO(MSB)
A1
A2
A3
A4
AS
A6
A7
AS
A9
A10
A11

17
16
15
14
13
12
11
10
9
8
7
6

A12 5
A13/CRUOUT 4

DO(MSB)
01
02
03
04
05
06
07 (LSB)

Vee
Voo
Vss

CKIN
OSCO UT

OBIN

25
26
27
28
29
30
31
32

20
36
35

34
33

21

18

1/0

OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT

1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0

IN
OUT

OUT

OUT

TABLE 3

TMS 9981 PIN ASSIGNMENTS AND FUNCTIONS

DESCRIPTION
TMS 9981 PIN ASSIGNMENTS

ADDRESS BUS
AO through A 13 comprise the address bus.
This 3-state bus provides the memory
address vector to the external-memory sys
tem when MEMEN is active and 1/0-bit
addresses and external-instruction addresses
to the 1/0 system when MEME1'ii is inactive.
The address bus assumes the high-impedance
state when HOLDA is active.

CRUOUT
Serial 1/0 data appears on A 13 when an
LDCR, SBZ and SBO instruction is execu
ted. This data should be sampled by the 1/0
interface logic when CRUCLK goes active
(high). One bit of the external instruction
code appears on A 13 during external in
struction execution.

DATA BUS
DO through 07 comprise the bidirectional
3-state data bus. This bus transfers memory
data to (when writing) and from (when
reading) the external-memory system when
i\ifEMEN is active. The data bus assumes the
high-impedance state when HOLDA is
active.

POWER SUPPLIES
Supply voltage (5 V NOMI
Supply voltage (12 V NOMI
Ground reference

HOLD

HOLDA 2

IAQ 3

A 13/CRUOUT 4

A12 5

A11 6

A10 7

A9 8

AB 9

A7 10

AG 11

AS 12

A4 13

A3 14

A2 15

A1 16

AO 17

OBIN 18

CRUIN 19

Vee 20

CLOCKS

40 MEMEN

39 READY

38 WE

37 CRUCLK

36 v00

35 Vss

34 CKIN

33 OSCOUT

32 07

31 06

30 05

29 04

28 03

02

01

DO 0

INTO

INT 1

INT2

¢3

Clock In and Oscillator Out. These pins may be used in either of two modes to generate the internal 4-phase
clock. In mode 1 a crystal of 4 times the desired system frequency is connected between CKIN and OSCOUT
(see Figure 13). In mode 2 OSCOUT is left floating arid CKIN is driven by a TTL compatible source whose
frequency is 4 times the desired system frequency.

Clock phase 3 (<J>3l inverted; used as a timing reference.

BUS CONTROL
Data bus in. When active (high), OBIN indicates that the TMS 9981 has disabled its output buffers to allow
the memory to place memory-read data on the data bus during~. OBIN remains low in all other cases
except when HOLDA is active at which time it is in the high-impedance state.

9900 FAMILY SYSTEMS DESIGN 8-71

TMS 9980A/9981
ARCHITECTURE

Product Data Book

SIGNATURE PIN 1/0

MEME1\I 40 OUT

WE 38 OUT

CRUCLK 37 OUT

CRUIN 19 IN

INT2 22 IN
INT1 23 IN
INTO 24 IN

IN

HOLDA 2 OUT

READY 39 IN

IAQ 3 OUT

TABLE 3 (CONTINUED)

DESCRIPTION

Memory enable. When active (low), MEMEN indicates that the address bus contains a memory address. When
HOLDA is active, MEMEN is In the high-impedance state.

Write enable. When active (low). WE indicates that memory-write data is available from the TMS 9981 to be
written into memory. When HOLDA is active, WE is in the high-impedance state.

CRU clock. When active (high). CRUCLK indicates that external interface logic should sample the output
data on CRUOUT or should decode external instructions on AO, A 1, A 13.

CRU data in. CRUIN, normally driven by 3-state or open-collector devices, receives input data from external
interface logic. When the processor executes a STCR or TB instruction, it samples CRUIN for the level of the
CRU input bit specified by the address bus (A2 through A12).

Interrupt code. Refer to Section 2.2 for detailed description.

M~MORY CONTROL
Hold. When active (low). HOLD indicates to the processor that an external controller (e.g., OMA device)
desires to utilize the address and data buses to transfer data to or from memory. The TMS 9981 enters the
hold state following a hold signal when it has completed its present memory cycle.* The processor then
places the address and data buses in the high-impedance state (along with WE, ~.and OBIN) and
responds with a hold-acknowledge signal (HOLDA). When RTIID is removed, the processor returns to normal
operation.

Hold acknowledge. When active (high), HOLDA indicates that the processor is in the hold state and the
address and data buses and memory control outputs <WE,~. and OBIN) are in the high-impedance
state.

Ready. When active (high). READY indicates that memory will be ready to read or write during the next
clock cycle. When not-ready is indicated during a memory operation, the TMS 9981 enters a wait state and
suspends internal operation until the memory systems indicated ready.

TIMING AND CONTROL
Instruction acquisition. IAQ is active (high) during any memory cycle when the TMS 9981 is acqumng an
instruction. IAQ can be used to detect illegal op codes. It may also be used to synchronize LOAD stimulus.

• 1 f the cycle following the present memory cycle is also a memory cycle it, too, is completed before TMS 9981 enters hold state.

2.10 TIMING

2.10.1 Memory

8-72

Basic memory read and write cycles are shown in Figures 9a and 9b. Figure 9a shows a read and a write cycle with no
wait states while Figure 9b shows a read and a write cycle for a memory requiring one wait state.

MEMEN goes active (low) during each memory cycle. At the same time that MEMEN is active, the memory address
appears on the address bits AO through A 13. Since the TMS 9980A/TMS 9981 has an 8-bit data bus, every memory
operation consists of two consecutive memory cycles. Address bit A 13 is 0 for the first of the two cycles and goes to 1
for the second. If the cycle is a memory-read cycle, OBIN will go active (high) at the same time MEMEN and AO
through A 13 become valid. The memory-write (WE) signal remains inactive during a read cycle.

The READY signal allows extended memory cycle as shown in Figure 9b.

9900 FAMILY SYSTEMS DESIGN

Product Data Book

c
ct w -- - - -a:

w ...
a:
s::

- -

II
M N z I~ < < in

~ c
~
ct

9900 FAMILY SYSTEMS DESIGN

-

-

TMS 9980A/9981
ARCHITECTURE

w
c
0
:: ... u; ::>
Cl. w
~

...
< ... -- en ...
< s:
0

w ~
c t!)
0 z
:: :IE ... j:: ::>
Cl. en
~ ::>

m
> a:
0
::

ct w ... :E
< a; c
w en

en ... en a:
== s:: ...

::> <
0.. 0
u ~

cn
en :: ...

< I ... IQ

< cn
c w
w a: ... ::>
a: t!)

s:: u::
::>
Cl. u

> " c c
ct 0 w
a: c

8-73

8<1

~8

TMS 9980A/9981
ARCHITECTURE

c
< w
cc

w
I-a: ::: --

1: II

8-74

M N z I~ < < cc
c

0
<

I
-t -t-

I I
> c
< w
a:

Product Data Book

c
a:

w
c
0
:;:
I-
:::> a.
!:

w
c
0
:;:
I-
:::>
a.
!:

<
I-
< c
w
I-
a: :::
:::>
a.
u

< I-
< c
w
I-a: :::
:::>
a.
u

" c
0
c

w
::
Cl)

....
ct
== w z
9
Cl
z
:ii
j::
Cl)

:>
m
> a:
0
:!
~
i
GI
en
~
< 0
CCI en
GI
en
:E
I

.Q
en
w
a:
:>
Cl
u:

9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9980A/9981
ARCHITECTURE

At the end of the read cycle, MEMEN and OBIN go inactive (high and low respectively). The address bus also changes
at this time, however, the data bus remains in the input mode for one clock cycle after the read cycle.

A write cycle is similar to read cycle except that WE goes active (low) as shown and valid write data appears on the data
bus at the same time the address appears.

2.10.2 HOLD

Other interfaces may utilize the TMS 9980A/TMS 9981 memory bus by using the hold operation (illustrated in Figure
10) of the TMS 9980A/TMS 9981. When HOLD is active (low), the TMS 9980A/TMS 9981 enters the hold state at the
next available non-memory cycle clock period. When the TMS 9980A/TMS 9981 has entered the hold state HOLDA
goes active (high), AO through A13, DO through 07, OBIN, MEMEN, and WE go into high-impedance state to allow
other devices to use the memory buses. When HOLD goes inactive, TMS 9980A/TMS 9981 resumes processing as
shown. Considering that there can be a maximum of 6 consecutive memory operations, the maximum delay between
HOLD going active to HOLDA going active (high) could be tc(¢) (for set up) + (12 + 6 W) tc(¢) (delay for HOLDA),
where W is the number of wait states per memory cycle and tc(¢) is the clock cycle time. If hold occurs during a CRU
operation, the TMS 9980A/TMS 9981 uses an extra clock cycle (after the removal of the HOLD signal) to reassert the
CRU address providing the normal setup times for the CRU bit transfer that was interrupted.

2.10.3 CRU

CRU interface timing is shown in Figure 11. The timing for transferring two bits out and one bit in is shown. These

transfers would occur during the execution of a CRU instruction. The other cycles of the instruction execution are not
illustrated. To output a CRU bit, the CRU-bit address is placed on the address bus A2throughA12 and the actual bit
data on A13. During the second clock cycle a CRU pulse is supplied by CRUCLK. This process is repeated until the

number of bits specified by the instruction are completed.

The CRU input operation is similar in that the bit address appears on A2 through A 12. During the subsequent cycle,
the TMS 9980A/TMS 9981 accepts the bit input data as shown. No CRUCLK pulses occur during a CRU input

operation.

2.10.4 Interrupt Code (ICO-IC2)

The TMS 9980A/TMS 9981 uses 4 phase clock (¢1, ¢2, ¢3, and ¢4) for timing and control of the internal operations.

ICO-IC2 are sampled during ¢4 and then during ¢2.

If these two successive samples are equal, the code is accepted and latched for internal use on the subsequent ¢1. In
systems with simple interrupt structures this allows the interrupt code to change asynchronously without the
TMS 9980A/TMS 9981 accepting erroneous codes. Figure 3 shows systems with a single level of external interrupt
implemented that would require no external timing. When implementing multiple external interrupts, as in the bottom
diagram of Figure 3, external synchronization of interrupt requests is required. See Figure 12 for a timing diagram. In
systems with more than one external interrupt, the interrupts should be synchronized with the ¢3 output of the

TMS 9980A/TMS 9981 to avoid code transitions on successive sample cycles. This synchronization ensures that the

TMS 9980A/TMS 9981 will service only the proper active interrupt level. 8<1111111111

9900 FAMILY SYSTEMS DESIGN 8-75

TMS 9980A/9981
ARCHITECTURE

Ii
M

<

8-76

0
<

z
a:i
c

> c
< w
a: I~

Product Data Book

(!J
z
~
<
0
..J
u.
(/)

:>
Cll

> a:
0
:E
w
:E
a:
0
~
w
u

-~

< c
..J
0
J:

Cl.

(!J
z
~
j:::
c
..J
0
J: ...
Cl)
en
en
(/)

:E
I-

~
0
Cl)
en
en
(/)

:E
t-
i

~
w
a:
:>
(!J

u:

9900 FAMILY SYSTEMS DESIGN

-0
-0
0
0

'Tl
;p
$:

~
Ul
-<
Ul ...,
tTl
$:
Ul

tJ
tTl
Ul

0 z

lfJ
-._)

-._)

z
.... S!
:::>
a. <(
.... a:
:::> w
0 a.

0

<P 3

A2 -A12

CRUCLK

A 13(CRUOUT)

z
.... S!
:::>
a. <(
z a:
- w a.

0

CRUIN

UNKNOWN h; ~ CRUADDRESSm >t==
I I I
I I I

__ ___,_
1
____,II n I u 1

I I I
1 I I

UNKNOWN CRU DATA OUT n ~: x~,--U-N-KN_O_W_N_x±=

I
I I

~~~~~~~~~~~~~~'O'O'O'O'~:?O'~J'O"l:~:foc~~~~'t"X7~~' ''~~ 

00 
A 

CRU OUTPUT CRU INPUT 

FIGURE 11-TMS9980A/TMS 9981 CRU INTERFACE TIMING 

"'O 
0 
c. 
c a 
c 
D> 
iii 
m 
0 
0 
';II!:' 

>~ 
~3: n '(f) 

::c "° ~'° 
~00 
tTJ 0 n> 
~ .......... 

c~ 
~00 
tTJ ....... 



TMS 9980A/9981 
ARCHITECTURE 

0 N 

I~ 
!:! !:! 

8-78 

.J 
< 2 (/) 
a: !lli: 
w tJ 
I- 0 
2 .J 
- tJ 

Product Data Book 

Cl 
2 
~ 
j: 
w 
c 
0 
u 
l
a.. 
::::> 
a: 
a: 
w 
I-
~ 
I 

:::! 
w 
a: 
::::> 
Cl 
ii: 

9900 FAMILY SYSTEMS DESIGN 



Product Data Book TMS 9980A/TMS 9981 
INSTRUCTION EXECUTION TIMES 

3.6 TMS 9980A/TMS 9981 INSTRUCTION EXECUTION TIMES 

Instruction execution times for the TMS 9980A/TMS 9981 are a function of: 

1) Clock cycle time, tc(</.>) 

2) Addressin.g mode used where operands have multiple addressing mode capability 

3) Number of wait states required per memory access. 

Table 4 lists the number of clock cycles and memory accesses required to execute each TMS 9980A/TMS 9981 instruc
tion. For instructions with multiple addressing modes for either or both operands, Table 4 lists the number of clock 
cycles and memory accesses with all operands addressed in the workspace-register mode. To determine the additional 
number of clock cycles and memory accesses required for modified addressing, add the appropriate values from the 
referenced tables. The total instruction-execution time for an instruction is: 

T= tc(¢) (C+W•M) 

where: 

T = total instruction time; 

tc(</.>) =clock cycle time; 

C = number of clock cycles for instruction execution plus address modification; 

W = number of required wait states per memory access for instruction execution plus address modification; 

M = number of memory accesses. 

As an example, the instruction MOVB is used in a system with tc(¢)= 0.400,us and no wait states are required to access 

memory. Both operands are addressed in the workspace register mode: 

T = tc(¢) (C+W·Ml = 0.400 (22+0·8) = 8.8µs. 

If two wait states per memory access were required, the execution time is: 

T = 0.400 (22 + 2•8) µs = 15.2 µs. 

If the source operand was addressed in the symbolic mode and two wait states were required: 

T = tc(¢) (C+W•M) 

c = 22 + 10 = 32 

M=8+2=10 

T = 0.400 (32 + 2 • 10) = 20.8 µs. 

9900 FAMILY SYSTEMS DESIGN 8-79 



TMS 9980A/TMS 9981 
INSTRUCTION EXECUTION TIMES 

INSTRUCTION 

A 
AB 
ABS (MSB = 0) 

(MSB = 1) 
Al 
ANDI 
B 
BL 
BLWP 
c 
CB 
Cl 
CKOF 
CKON 
CLR 
coc 
czc 
DEC 
DECT 
DIV (ST4 is set) 
DIV (ST4 is reset)* 
IDLE 
INC 
INCT 
INV 
Jump (PC is changed) 

(PC is not changed) 
LDCR (C = 0) 

(1<C<8) 
(9<C<15) 

LI 
LIMI 
LREX 
LWPI 
MOV 
MOVB 
MPY 
NEG 
ORI 
RSET 
RTWP 
s 
SB 
SBO 
SBZ 
SETO 
Shift (C * 0) 

(C *o. Bits 12-15 
ofWRO = 0) 

(C = 0, Bits 12-15 
of WRP = N * 0) 

soc 
socs 
STCR (C = 0) 

(1<C<7) 
(C = 8) 
(9.;;c.;;15) 

TABLE 4 

INSTRUCTION EXECUTION TIMES 

CLOCK CYCLES MEMORY ACCESS 
c M 
22 8 
22 8 
16 4 
20 6 
22 8 
22 8 
12 4 
18 6 
38 12 
20 6 
20 6 
20 6 
14 2 
14 2 
16 6 
20 6 
20 6 
16 6 
16 6 
22 6 

104-136 12 
14 2 
16 6 
16 6 
16 6 
12 2 
10 2 
58 6 

26+2C 6 
26+2C 6 

18 6 
22 6 
14 2 
14 4 
22 8 
22 8 
62 10 
18 6 
22 8 
14 2 
22 8 
22 8 
22 8 
16 4 
16 4 
16 6 

18+2C 6 

60 8 

28+2N 8 
22 8 
22 8 
68 8 
50 8 
52 8 
66 8 

Product Data Book 

ADDRESS MODIFICATION*** 
SOURCE DESTINATION 

A A 
B B 
A -
A -
- -

- -
A -
A -
A -
A A 
B B 
- -
- -
- -
A -
A -
A -
A -
A -
A -
A -
- -
A -
A -
A -
- -
- -
A -
B -
A -
- -
- -
- -
- -
A A 
B B 
A -
A -
- -
- -
- -
A A 

B B 

- -
- -
A -
- -· 

- -

- -
A A 

B B 
A -
B -
B -
A -

•Execution time is dependent upon the partial quotient after each clock cycle during execution. 

•••The letters A and B refer to the respective tables that follow. 

8-80 9900 FAMILY SYSTEMS DESIGN 



Product Data Book TMS 9980A/TMS 9981 
INSTRUCTION EXECUTION TIMES 

TABLE 4 (CONTINUED) 

INSTRUCTION 
CLOCK CYCLES MEMORY ACCESS ADDRESS MODIFICATION*** 

c M SOURCE DESTINATION 
STST 12 4 - -
STWP 12 4 - -
SWPB 16 6 A -
szc 22 8 A A 
SZCB 22 8 B B 
TB 16 4 - -
X** 12 4 A -
XOP 52 16 A -
XOR 22 8 A -

RESET function 36 10 - -
LOAD function 32 10 - -
Interrupt context switch 32 10 - -
Undefined op codes: 

0000-01 FF, 0320 8 2 - -
033F, OCOO-OFFF, 
0780-07FF 

••Execution time is added to the execution time of the instruction located at the source address. 
•••The letters A and B refer to the respective tables that follow. 

ADDRESS MODIFICATION -TABLE A 

ADDRESSING MODE 
CLOCK CYCLES MEMORY ACCESSES 

c M 

WR (Ts or To= 001 0 0 

WR indirect (Ts or To = 01 I 6 2 

WR indirect auto-increment (Ts or To= 11 I 12 4 

Symbolic (T5 or To= 10, Sor D = 0) 10 2 

Indexed ITs or To= 10, Sor D * OI 12 4 

ADDRESS MODIFICATION -TABLE B 

ADDRESSING MODE 
CLOCK CYCLES MEMORY ACCESSES 

c M 

WR ITs or To= 00) 0 0 

WR indirect ITs or To= 01) 6 2 

WR indirect auto-increment (Ts or To= 11 I 10 4 

Symbolic (Ts or To= 10, Sor D = 0) 10 2 

Indexed (Ts or To= 10, Sor D * 0) 12 4 

9900 FAMILY SYSTEMS DESIGN 8-81 

g .. 



TMS 9980A/TMS 9981 
ELECTRICAL SPECIF! CATI 0 NS 

4. TMS 9980A/TMS 9981 ELECTRICAL SPECIFICATIONS 

4.1 ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE 
(UNLESS OTHERWISE NOTED)* 

Supply voltage, Vee (see Note 1) 
Supply voltage, Voo (see Note 1) 

Supply voltage, Vss (see Note 1) (9980A only) 
All input voltages (see Note 1) 
Output voltage (see Note 1) 
Continuous power dissipation 
Operating free·air temperature range 
Storage temperature range 

Product Data Book 

-0.3 to 15 V 
-0.3 to 15 V 
-5.25 to 0 V 
-0.3 to 15 V 
-2 V to 7 V 

1.4 w 
0°C to 70°C 

-55°C to 150°C 

•stresses beyond those listed under "'Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and 
functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" 
section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 

NOTE 1: Under absolute maximum ratings voltage values are with respect to v55. 

4.2 RECOMMENDED OPERATING CONDITIONS 

MIN NOM MAX UNIT 
Supply voltage, VBB (9980A only) -5.25 -5 -4.75 v 
Supply voltage, Vee 4.75 5 5.25 v 
Supply voltage, Voo 11.4 12 12.6 v 
Supply voltage, Vss 0 v 
High-level input voltage, Vm 2.2 2.4 Vee+1 v 
Low-level input voltage, Vi L -1 0.4 0.8 v 
Operating free-air temperature, TA 0 20 70 oc 

4.3 ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS 
(UNLESS OTHERWISE NOTED) 

PARAMETER TEST CONDITIONS MIN TYP* MAX UNIT 

Data bus during OBIN v1 = Vss to Vee ±75 

WE, MEMEN, OBIN 
±75 µA 11 Input current v1 = Vss to Vee 

during HOLDA 

Any other inputs Vi= Vss to Vee ±10 

VoH High-level output voltage lo= -0.4 mA 2.4 v 

lo= 2 mA 0,5 v Vol Low-level output voltage 
lo= 3.2 mA 0.65 

IBB Supply current from VBB (9980A Only) 1 mA 

O"c 50 60 
Ice Supply current from Vee 

70°C 
mA 

40 50 

0°C 70 80 
loo Supply current from Voo 

70°C 
mA 

65 75 

Input capacitance (any inputs f = 1 MHz, unmeasured 
15 pF C1 

except data bus) pins at Vss 

Cos Data bus capacitance 
f = 1 MHz, unmeasured 

25 pF 
pins at Vss 

Output capacitance (any output f = 1 MHz, unmeasured 
15 pF Co 

except data bus) pins at Vss 

•Al I typical values are at TA = 25°C and nominal voltages. 

8-82 9900 FAMILY SYSTEMS DESIGN 



Product Data Book 

4.4 CLOCK CHARACTERISTICS 

TMS 9980A/TMS 9981 
ELECTRICAL SPECIFICATIONS 

The TMS 9980A and TMS 9981 have an internal 4-phase clock generator/driver. This is driven by an external TTL 
compatible signal to control the phase generation. In addition, the TMS 9981 provides an output (OSCOUT) that in 
conjunction with CKIN forms an on-chip crystal oscillator. This oscillator requires an external crystal and two 
capacitors as shown in Figure 13. The external signal or crystal must be 4 times the desired system frequency. 

TMS 9981 
CKIN OSCOUT 

D 
CRYSTAL 

FIGURE 13 - CRYSTAL OSCILATOR CIFICUIT 

4.4.1 Internal Crystal Oscillator (9981 Only) 

The internal crystal oscillator is used as shown in Figure 13. The crystal should be a fundamental series resonant type. 
C1 and C2 represent the total capacitance on these pins including strays and parasitics. 

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 

Crystal frequency 0°C-70°C 6 10 MHZ 
C1,C2 0°C-70°C 10 15 25 _pf 

4.4.2 External Clock 

The external clock on the TMS 9980A and optional on the TMS 9981, uses the CKI N pin. In this mode the OSCO UT 
pin of the TMS 9981 must be left floating. The external clock source must conform to the following specifications. 

PARAMETER MIN TYP MAX UNIT 

fext External source frequency* 6 10 MHz 
VH External source high level 2.2 v 
VL External source low level 0.8 v 
Tr/Tf External source rise/fall time 10 ns 

TwH External source high level pulse width 40 ns 

TwL External source low level pulse width 40 ns 

0 This allows a system speed of 1.5 MHz to 2 MHz. 

9900 FAMILY SYSTEMS DESIGN 8-83 

g,.. 



TMS 9980A/TMS 9981 
ELECTRICAL SPECIFICATIONS 

Product Data Book 

4.5 SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS 

The timing of all the inputs and outputs are controlled by the internal 4 phase clock; thus all timings are based on the 
width of one phase of the internal clock. This is 1/f(CKIN) (whether driven or from a crystal). This is also Y..fsystem. In 
the following table this phase time is denoted tw. 

All external signals are with reference to ¢3 (see Figure 14). 

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 

tr(¢3) Rise time of ¢3 3 5 10 ns 

tf(¢3) Fall time of ¢3 5 7.5 15 ns 

tw(¢3) Pulse width of ¢3 tw=1/f(CKIN) tw-15 tw-10 tw+10 ns 

tsu Data or control setup time• =~fsystem tw-30 ns 

th Data hold time• 2ttw+10 ns 

tPHL(W'EJ Propagation delay time WE high to low CL= 200pf tw-10 tw tw+20 ns 

tPLH(WE) Propagation delay time WE low to high tw tw+10 tw+30 ns 
tPHL(CRUCLK) Propagation delay time, CRUCLK high to low -20 -10 +10 ns 

tPLH(CRUCLK) Propagation delay time, CRUCLK low to high 2tw-10 2tw 2tw+20 ns 

tov Delay time from output valid to ¢3 low tw-50 tw-30 ns 

tox Delay time from output invalid to ¢3 low tw-20 tw ns 

•All inputs except I CO-I C2 must be synchronized to meet these requirements. IC0-1 C2 may change asynchronously. See section 2. 10.4. 

""'=j=··"'f '"" ~ 1ir-----
I I 

INPUTS 
~ ~-;;; =-·h-= .. 1 I 

_______ v_A_L_•_o __ __, 

I 

--' _r-_'_'"' 1 
.____..._,-i f tPHL 

-
__ r-_·P-LH --..Jr , , . 

CRUCLK . I 

- 1 '4---•ov,<1>3L I 
i~'~~~~~~--~~x~Lj 

OTHER 8&S&S8&\/ 
OUTPUTS~ ________ v_A_L_•o ________ __, 

FIGURE 14 - EXTERNAL SIGNAL TIMING DIAGRAM 

8-84 9900 FAMILY SYSTEMS DESIGN 



TMS 9940 
----------------- s .... 



TMS9940 
INTRODUCTION 

INTRODUCTION 

DESCRIPTION 

Product Data Book 

The TMS 9940 is a single-chip, 16-bit microcomputer containing a CPU, memory (RAM and EPROM/ROM), 
and extensive 1/0. Except for four instructions that do not apply to the TMS 9940 microcomputer configuration, 
the TMS 9940 instruction set matches that of the TMS 9900 and includes capabilities offered by minicomputers. 
In addition, the TMS 9940 instruction set includes two instructions that facilitate manipulation of binary coded 
decimal (BCD) data, and a single-word load-interrupt-mask (LIIM) instruction. 

The unique memory-to-memory architecture features multiple register files, resident in the RAM, which allow 
faster response to interrupts and increased programming flexibility. The memory consists of 128 bytes of RAM 
and 2048 bytes ofEPROM/ROM. The TMS 9940 implements four levels of interrupts, including an internal 
decrementer which can be programmed as a timer or an event counter. All members of the TMS 9900 family of 
peripheral circuits are compatible with the TMS 9940. The TMS 9940 is fully supported by software and 

hardware development systems. The TMS 9940 is fully supported by factory applications engineers and technical 
answering services. 

KEY FEATURES 

• 16-bit instruction word; 
• Minicomputer instruction set including multiply and divide; 
• 2048 bytes ofEPROM (TMS 9940E)/ROM (TMS 9940M) on chip; 
• 128 bytes of RAM on chip; 
• 16 general purpose registers; 
• 4 prioritized interrupts; 
• On-chip timer I event counter; 
• 32 bits general purpose I/O Ports; 
• 256 bits 1/0 expansion; 
• Easy test function ; 
• Multiprocessor system interface; 
• Power down capability for low stand-by power; 
• Five speed ranges for maximum performance; 
• N-channel silicon gate MOS, 5 volt power supply; 
• An EPROM device, the TMS 9940E, is contained in a 40-pin, 600-mil, dual-in-line ceramic package with 

quartz lid; 
• A mask ROM device, the TMS 9940M, is contained in a 40-pin, 600-mil, dual-in-line plastic or ceramic 

package. 

8-86 

PARTS IDENTIFICATION 

OSCILLATOR 

EPROM DEVICE 
MASK- FREQUENCY. 

ROM DEVICE MHz 
(NOM) 

TMS 9940E TMS 9940M 5 
TMS 9940E-40 TMS 9940M-40 4 
TMS 9940E-30 TMS 9940M-30 3 
TMS 9940E-20 TMS 9940M-20 2 
TMS 9940E-1 0 TMS 9940M-1 0 1 

NOTE: An additional MPXXXX number is used to identify custom ROM codes 
for TMS 9940M devices. 

9900 FAMILY SYSTEMS DESIGN 



'° '° 0 
0 
'Tj 

> 
~ 

t; 
\fl 
><:: 

~ 
tT1 
~ 
\fl 

0 
tT1 
\fl 

0 z 

Cf' 
00 
--i 

~ 
~ 
:-. 

~ 
V) 

'O 
'O 
4" 
c::, 

~ 
;::\ 
;:::.. 
~
~ 
::::-

~ 

0 
CRUCLK 

CRUIN 

HOLDA ---HOLD 

IDLE CONTROL 

EC 
LOGIC 
AND 

INT1/TST CLOCK 
INT2/PROG GEN. 

RST/PE 
...... 

XTAL1 ..... 
XTAL2 ...... 

7 

CONTROL 
ROM 

F 
INSTRUCTION 

REGISTER 

CRUIN 

CRUOUT 

TC 
~ TD 

MPSI 

CK h 

-~ 
DEC h 

lr-1 FLAG t---., 

ff~A I 
PC 

__J 

0 
a: 
f--
z 
0 
u 

'------ f--

\ 

I A 

CB VALUE 

00 
A 

CBO 
CB1 
CB2 
CB3 
TE 

t 
.. 

B c -y 

J 

0 

i/O=PO-P10 
1/0=>P11-P12 
1/0 = P13 
l/O=P14-16 
FREO(XTAL) ~ 30 => 

Decrementer CLK 

~A ti. 
AND V 

..... 1/0 I\ PO-P32 

9 C2~ l' 
/' 

[ CBO-CB3 

16 

[ MA l 
l WP SD j 

<"'?-
16 

~~~ 
-1.-..

I-----' r SHIFT J ADDR

16 COUNT

4
s RAM

ALU 12S x s

:~~ 16

9
DIN DOUT

(r
[STATUS J

.t s
~

s

1

A 1 - AS= PO - P7, CRUIN =PS, CRUOUT => P9, CRUCLK = P10
TC=>P11, TD=P12
0= P13
HOLD=> P14, HOLDA=> P15, IDLE=> P16
P17(1NPUT) => Decrementer CLK

""\

16

'~
ADDR

EPROM
OR

ROM
204S x s

DOUT

"'D
0
c.
c
~
c
I))

S'
m
0
0
';1;'

>~
~~ nl'J)
::t '°
~'°
~~
trl 0
n
~ c
~
trl

TMS 9940
ARCHITECTURE

ARCHITECTURE

Product Data Book

Memory for the TMS 9940 is organized in 8-bit bytes. The processors are nevertheless 16-bit processors
requiring two memory accesses for each 16-bit word. A word is defined as 16 bits or two consecutive bytes in
memory. The words are restricted to be on even address boundaries, i.e., the most significant half (8 bits) resides at
even address and the least significant half resides at the subsequent odd address. A byte can reside at even or odd
addresses. The word and byte formats are shown below.

EVEN ADDRESS

ODD ADDRESS

I
EVEN ADDRESS

ODD ADDRESS

REGISTERS AND MEMORY

MSB
OR

SIGN
BIT

0

8

MSB

OR

SIGN
BIT

0

0

1 2 3

9 10 11

1 2 3

1 2 3

4 5 6

12 13 14

4 1 5 6

4 T 5 6

7

15

I LSB I

LSB I
7

7

WORD
FORMAT

BYTE

FORMAT

The TMS 9940 employs an advanced memory-to-memory architecture where blocks of memory designated
as workspaces replace dedicated hardware registers with program-data registers. The TMS 9940 memory map
is shown in Figure 2. The 2k x 8 EPROM/ROM is assigned memory addresses 000016 through 07FF16 ,

and the 128 x 8 RAM is assigned memory addresses 830016 through 837F16 •

The first eight words in the EPROM/ROM (addresses 000016 through OOOF16) are used for the interrupt
vectors, and 24 words (address~s 005016 through 007F16) are used for the extended operation (XOP) instruction
trap vectors. The remaining memory is available for programs, data, and workspace registers. If desired, any
of the special areas may also be used as general EPROM/ROM memory.

Three machine registers are accessible to the user. The 15-bit program counter (PC) contains the address of
the instruction following the current instruction being executed. This address is referenced by the processor
to fetch the next instruction from memory and is then automatically incremented. The 16-bit status register
(ST) contains the present state of the processor. The 11-bit workspace register (WP) points to the first word
in the currently active set of workspace registers.

The workspace-register files are nonoverlapping and contain 16 contiguous memory words. Each workspace
register may hold data or an address, and function as an operand register, accumulator, address register, or index
register. During instruction execution, the processor addresses any register in the workspace by concatenating
the 11-bit WP value (bits 0 to 10) with two times the specified register number (bits 11 to 15) as shown below.
WP addresses in RAM will be one of four values: 830016 , 832016 , 834016 , and 836016 •

0 10 11 15

WP ADDRESS 2XR NO.

8-88 990Q FAMILY SYSTEMS DESIGN

Product Data Book TMS 9940
ARCHITECTURE

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

OOOA

0008

oooc
0000

OOOE

OOOF

0050

0051

0052

0053

007C

0070

007E

007F

07FF

8300

8301

837F

: } RESET VECTOR

WP } '"'""'"
PC

VECTOR

WP
} OECREMENTER

VECTOR
PC

WP EPROM/ROM } '"'""'" VECTOR
PC

}: } XOP4
VECTOR

i~} XOP 15

PC VECTOR

Figure 2. TMS 9940 Memory Map

Up to four nonoverlapping workspaces can be defined in the RAM. The relationship between the workspace
pointer value and its corresponding workspace are shown below:

9900 FAMILY SYSTEMS DESIGN

RAM ADDRESS SPACE

8300

831F
~------

8320

833F
~------

8340

8355

r------..,
8360

837F

8-89

TMS 9940
ARCHITECTURE

Product Data Book

The workspace concept is particularly valuable during operations that require a context switch, which is a change
from one program environment to another (as in the case of an interrupt or call to a subroutine). Such an operation,
using a conventional multi-register arrangement, requires that at least part of the contents of the register file be
stored and reloaded. The TMS 9940, however, can accomplish a complete context switch simply by exchanging the
values in the PC, ST, and WP. Instructions in the TMS 9940 that result in a context switch include:

1. Branch and Load Workspace Pointer (BLWP);

2. Return from Subroutine (RTWP);

3. Extended Operation (XOP).

RESET, the decrementer interrupt, and the external device interrupts (INTl and INT2) also cause a context
switch by forcing the processor to trap to a service subroutine.

INTERRUPTS

The TMS9940 implements four hardware interrupt levels. The highest priority interrupt level (level 0) is
reserved for the RESET function followed by a user defined external interrupt INTl (level 1), the decrementer
(level 2), and the second user defined external interrupt INT2 (level 3). The RESET function will be accepted
whenever it goes active (e.g., in the middle of an instruction), whereas all other levels are accepted at the end of the
presently executing instruction.

The TMS9940 external interrupt interface consists of three discrete input lines (RESET, INTl, INT2). The
input levels are standard TTL levels and the signals require no external synchronization.

The TMS9940 continuously compares the value of the highest priority active interrupt level with the interrupt
mask contained in status register bits 14 and 15. When the level of the pending interrupt is less than or equal to the
enabling mask value (higher or equal priority interrupt), the processor recognizes the interrupt and initiates a
context switch. The processor fetches the new context WP and PC from the interrupt vector locations and stores
the previous context WP into R13, PC into R14, and ST into R15, of the new workspace. The interrupt mask is
loaded with a value that is one less than the interrupt level being serviced (NOTE: RESET forces the mask value
to zero) so that only higher priority interrupts will be recognized during the service routine. The processor also
inhibits interrupts until the first instruction of the service routine has been executed to preserve program linkage
should a higher priority interrupt occur.

RESET must be held active for a minimum of five clock cycles to guarantee recognition. When RESET is
removed the status register and configuration word are set to zero and a level zero interrupt is initiated.

The decrementer interrupt is discussed in detail in a later section. If the decrementer is programmed as an external
event counter with a start value of 1, Pl 7 /EC will function as a positive edge-triggered interrupt input.

External device interrupt requests are priority level sensitive and, if masked out, must remain active until
recognized by the processor executing in the device service routine. The individual service routines must reset the
interrupt mask and request before the service routine is complete. A typical schematic to latch in an interrupt

.,. 8 requests is shown below:

INTERRUPT _n_
REQUEST

CK 1.. __ I
D

L 5

CLEAR

INTERRUPT

8-90

TMS
9940

9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9940
ARCHITECTURE

If a higher priority interrupt becomes active during a service routine, a second context switch occurs to service
the higher priority interrupt. When that routine is complete, a return instruction (RTWP) restores the first service
routine parameters to the processor to complete processing of the lower priority interrupt. All interrupt service
routines should end with the return instruction to restore original program parameters. The interrupt-vector
locations, device assignments, and enabling-mask values are shown on Table 1.

Table 1. Interrupt Level Data

Vector Location Device
Interrupt Mask Value

Interrupt Level
(Memory Address In Hex) Assignment

To Enable Respective

Interrupts ST14 & ST15

(Highest Priority) 0 0000 Reset 0 through 3*

1 0004 External 1 through 3

Device

2 0008 Decrementer 2 and 3

(Lowest Priority) 3 oooc External 3 only

Device

*Level 0 cannot be disabled.

As shown in Table 3, the positive-logic value of the interrupt pins may be read by CRU instructions even though
the interrupt may be masked.

INPUT I OUTPUT

The TMS9940 has a communications register unit (CRU) drive I/O interface. The I/O features implemented on
a single 3 2-bit channel (PO to P3 l) are:

• General Purpose I/O: The·32-bits (PO to P31) of individually controlled I/O data.
• I/O Expansion Via CRU: 256 user configured external I/Obits (PO to PlO).
• Multiprocessor System Interface (Pl l and Pl2): A register for passing commands/ data between processors.
• External event counter (Pl 7).
•Power Down

The system engmeer·s flexibility in the TMS9940 applications is extended greatly by software I/O structuring.
The key element is only four bits, called configuration bits (CB), contained in the configuration control register.
This register holds the multiplexer control that selects optional ~odes for 17 of the 3 2 I/ 0. terminals. The
configuration bits controlling these modes are as follows:

Configuration Bit
CBO
CB 1
CB 2
CB 3

Function Controllers.
CRU I/O Expansion
Multiprocessor System Interface
External synchronization (Clock output)
Power down and hold Logic

The decrementer used as an event counter has its input available from Pl 7 continuously and does not need a
configuration bit to control it.

Generally, a dedicated control system will need only one configuration set up; however, the flexibility allows for
multiple configurations dynamically changing for more I/O capacity.

9900 FAMILY SYSTEMS DESIGN 8-91

g ...

TMS 9940
ARCHITECTURE

Product Data Book

The TMS9940 allows the user to configure part of the 1/0 pins as special functions for system applications. The
configurable pins are shown in Table 2.

Table 2. Con.figuration Bit Effects

PIN
CONFIGURATION BIT (CB)

l/O
MODE

NAME
CRU BIT EFFECT OF CB BIT

NO. NO. CB=1
(HEX) 0 1

PO/A1 (MSB) 23 0 183 PO A1 OUT
P1/A2 24 0 183 P1 A2 OUT
P2/A3 25 0 183 P2 A3 OUT
P3/A4 26 0 183 P3 A4 OUT

CRU
P4/A5 27 0 183 P4 A5 OUT
P5/A6 28 0 183 P5 A6 OUT

Expansion
P6/A7 29 0 183 P6 A7 OUT
P7/A8 30 0 183 P7 AB OUT
PS/CRUIN 18 0 183 PB CRUIN IN
P9/CRUOUT 17 0 183 P9 CRUOUT OUT
PlO/CRUCLK 16 0 183 P10 CRUCLK OUT

MPSI
Pll/TC 14 1 184 Pl 1 TC 110
P12/TD 11 1 184 P12 TD 1/0

SYNC Pl 31"¢ 15 2 185 P13 -;;; OUT

Power P14/HLD 10 3 186 f>14 HLD IN
Down & Pl 5/HLDA 9 3 186 P15 HLDA OUT
Hold Pl 6/IDLE 8 3 186 P16 IDLE OUT

Note: Pl 7 is continuously available if the decrementer is used as an event counter.

That is, CBO controls the 1/0 Expansion Channel, CBl controls the MPSI, CB2 allows a clock output, and
CB3 configures HLD, HLDA, and IDLE for power down. Application of RESET forces the configuration bits to
zero, the all 1/0 line condition. The configuration can then be changed by outputting the desired bit value to the
designated CRU address. (See Table J.)

Communications Register Unit (CRU)

The CRU is a bit-oriented 1/0 interface through which both input and output bits can be directly addressed
individually, or in fields of from 1 to 16 bits. The processor instructions that drive the CRU interface can set,

• 8 reset, or test any bit in the CRU array or move between memory and CRU data fields. The CRU bit address
assignments for all 1/0 and dedicated functions are shown in Table J.

CRU instructions that manipulate external data are the only instructions which send CRUCLK pulses out of
terminal 16. .

8-92 9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9940
ARCHITECTURE

Table 3. CR U Bit Address Assignments

CRU Bit Address CRU Read Data CRU Write Data

000 1/0 Expansion 1/0 Expansion
j l l

OFF 1/0 Expansion 1/0 Expansion

180 INT1 -
181 Decrementer Interrupt Clear Oecrementer Interrupt

182 INT2 -
183 - Configuration Bit 0

184 - Configuration Bit 1

185 - Configuration Bit 2

186 - Configuration Bit 3

190 Oecrementer (LSB) Decrementer (LSB)

l l I

190 Decrementer (MSB) Decrementer (MSB)

19E - TIC (See Decrementer)

1 = Timer, 0 = Counter

1AO MPSI (LSB) MPSI (LSB)

l I I

1AF MPSI (MSB) MPSI (MSB)

1 BO FLAG 0 FLAG 0

I I

1BF FLAG F FLAG F

1CO - PO Direction

I (1=0UT,O=IN)

I

1 OF - P31 Direction

(1 = OUT, 0 = IN)

1EO PO DATA PO DATA

l I I

1 FF P31 DATA P31 DATA

Note: CRU addresses not listed above are not usable.

Single-Bit CR U Operations

The TMS9940 performs three single-bit CRU functions: test bit (TB), set bit to one (SBO), and set bit to zero
(SBZ). To identify the bit to be operated upon, the TMS9940 develops a CRU-bit address and places it on the
address bus.

For the two output operations (SBO and SBZ) the processor also generates a CRUCLK pulse, indicating an output
operation to the CRU device, and places bit 7 of the instruction word on the CRUOUT line to accomplish the
specified operation (bit 7 is a one for SBO and a zero for SBZ). A test-bit instruction transfers the addressed CRU
bit from the CRUIN input line to bit 2 of the status register (EQUAL).

9900 FAMILY SYSTEMS DESIGN 8-93

TMS 9940
ARCHITECTURE

Product Data Book

The TMS 9940 develops a hardware base address for the single-bit operations from the software base address
contained in workspace register 12 and the signed displacement count contained in bits 8 through 15 of the
instruction. The displacement allows two's complement addressing from base minus 128 bits through base plus 127
bits. The hardware base address (bits 6 through 14 ofWR12) is added to the signed displacement specified in the
instruction, and the result is loaded onto the address bus. Figur~ 3 illustrates the development of a single-bit CRU
address for the SBO, SBZ, and TB instruction.

r--- SOFTWARE BASE ADDRESS ---i
I s 1 s 9 10 11 12 13 14 15 I
I I I I I I I I x I W12

I--- HARDWARE BASE ADDRESS

I +
I
I

BIT 8 SIGN
EXTENDED

I

I
I

8 9 10

I Ao A1 A2 A3

I I

11

I
~
A4

12 13

A5 A6

I
14 15

I SIGNED
DISPLACEMENT

A7 As

ADDRESS
BUS

EFFECTIVE CRU BIT ADDRESS

Figure 3. TMS9940 Single-Bit CR U Address Development

Multiple-Bit CR U Operations

The TMS9940 performs two multiple-bit CRU operations: store communications register (STCR) and load
communications register (LDCR). Both operations perform a data transfer from the CRU-to-memory or from
memory-to-CRU as illustrated in Figure 4. Although the figure illustrates a full 16-bit transfer operation, any
number of bits from 1 through 16 may be involved. The LDCR instruction fetches a word from memory and
right-shifts it to transfer it serially to CRU output bits. If the LDCR involves eight or fewer bits, those bits come
from the right-justified field within the addressed byte of the memory word. If the LDCR involves nine or more
bits, those bits come from the right-justified field within the whole memory word. When transferred to the CRU
interface, each successive bit receives an address that is sequentially greater than the address for the previous bit.
This addressing mechanism results in an order reversal of the bits; this is, bit 15 of the memory word (or bit 7)
becomes the lowest addressed bit in the CRU, and bit 0 becomes the highest bit in the CRU field.

An STCR instruction transfers data from the CR U to memory. If the operation involves a byte or less transfer, the
transferred data will be stored right-justified in the memory byte with leading bits set to zero. if the operation
involves from 9 to 16 bits, the transferred data is stored right-justified in the memory word with leading bits set
to zero.

When the inp~t from the CRU device is complete, the first bit from the CRU is in the least-significant'-bit position
in the memory word or byte.

8-94 9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9940
ARCHITECTURE

CRUINPUT
BITS

N
N+1

N + 14
N + 15

General Purpose I/ 0

INPUT (STCR)

EFFECTIVE
MEMORY ADDRESS _ _..... ___ - - - - - - ------

OUTPUT (LDCR)

N =BIT SPECIFIED BY CRU BASE REGISTER

Figure 4. TMS9940 LDCR I STCR Data Transfers

CRU OUTPUT
BITS

N
N+1

N + 14
N + 15

The TMS9940 contains 32 I/O pins which can be used as individually controlled I/O lines with each line
independently programmed as an input or output. RESET forces all I/O lines to the input mode until programmed,
by an I/O command. Once programmed, the line will stay in the designated state until it is reprogrammed or
RESET again becomes active. Reading a line will input data present on the pin without affecting its direction.
The lines can be accessed individually by the single bit CRU instructions (SBO, SBZ, TB) or in groups of 1to16
by the multiple bit CRU instructions (STCR, LDCR). The I/O data and direction bits are accessed through
dedicated bit addresses as shown in Table 3.

When an I/O port is programmed t~ be an input, the previous output data is reset to zero. Thus the data direction
and configuration bits should be set first, then the desired output data is set by the appropriate CRU instruction.
The equivalent logic for the output control of ports 1 7 to 31 is shown below.

CRU OUT

DIRECTION ADDRESS

CRUCLK

CL

oi------'

DIRECTION LATCH

9900 FAMILY SYSTEMS DESIGN

1 =OUTPUT 0 =INPUT

CL

D

TO DATA-IN MIX

PORT

8-95

·8

TMS 9940
ARCHITECTURE

1/0 Expansion

Product Data Book

The TMS9940 allows direct 1/0 expansion for up to 256 bits by use of a standard 9900 family CRU interface.
110 lines PO-PIO can be configured as an 8-bit address bus (Al-A8), CRUIN, CRUOUT, and CRUCLK to
interface to any CRU based peripheral. (See the configuration section for details.)

Figure 5 illustrates how to implement a system containing a TMS9901 programmable system interface, a
TMS9902 asynchronous communications controller, and a TMS9903 synchronous communications controller.

1/0

ASYNCHRONOUS
SERiAL DATA

SYNCHRONOUS
SERIAL DATA

8-96

{

{

TMS 9901 TMS 9940

ADDRESS

CRUCLK

CRU OUT

CRUIN

TMS 9902
ACC

Figure 5. TMS 9940 Input/Output Expansion Interface

9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9940
ARCHITECTURE

Multiprocessor System Interface (MPSI)

The MPSI is a two-wire interface for transferring data in a multiple processor system. Since the TMS9940 can
execute instructions out of its RAM, the MPSI allows the capability of efficiently downloading instruction
sequences which can then be executed. Thus, multiple processor systems can reconfigure themselves in system
applications. The MPSI can also be used to transfer data to be operated on, such as in a master-slave situation with
the master distributing tasks to the slaves.

For multiple TMS9940 systems the MPSI is connected as shown. Additional CPU's can be connected simply by
"wire ORing" to the MPSI signals.

A block diagram of the internal MPSI logic is shown in Figure 6.

The protocol of the system is such that all devices are "receivers" except when actually transmitting data (the
"sender" mode). The TD input signal feeds a 16-bit shift register that is clocked by the TC input to allow 16 bits
of data to be shifted into the shift register completely transparent to the rest of the CPU operation. After the data
has been sent, the "sender" interrupts the "receiver" (through a normal interrupt input) so that the "receiver" can
execute an STCR instruction to input its MPSI data from its dedicated MPSI CRU bit addresses (see Table 3).
As nf'.eded, the "receiver" can then interrupt the "sender" to acknowledge receipt and/ or request new data.

To become a "sender" the TMS9940 executes an LDCR instruction to the dedicated MPSI CRU addresses.
Automatically, the TD signal switches to the output mode to send data, and the TC signal sends out the CRUCLK
strobe. After completion of the instruction, TD and TC again revert to the input mode to switch the device back
to "receiver" status.

The MPSI is compatible with the standard 9900 family CRU interface. An example illustrating the TMS9940 and
TMS9900 communicating through the MPSI is shown in Figure 7.

1----~-- Tc

CRU CRU
CLK OUT

Figure 6. MPS! Block Diagram

9900 FAMILY SYSTEMS DESIGN 8-97

·8

TMS 9940
ARCHITECTURE

+5V '74
a

CK

INT
TD

OUT
TMS TC
9940

Product Data Book

INT
TMS TMS
9901 9900

OUT

CRU
OUT ADDRESS

SELECT

(A) ONE-WAY COMMUNICATION; TMS 9900 DOWNLOADS TO TMS 9940

+5V

8-98

'74
Ot---- INT

TMS
9901

. .__ ____ -i OUT

.....------.. OUT

EC TD

OUT

TMS
9940

TC

(B) TWO-WAY COMMUNICATION

TMS
9900

CRUIN

CRUCLK

MUX

S/R

ADDRESS
SELECT

Figure 7. TMS 9900 and TMS9940 Communication through MPS!

9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9940
ARCHITECTURE

DECREMENTER (TIMER/EVENT COUNTER)

The TMS9940 contains a 14-bit decrementing register which can function as a programmable real-time clock, an
event timer, or an external event counter. A block diagram of the timer/counter is shown below.

SYSTEM
CLOCK

FREQUENCY
1/15

CRUOUT CLOCK REGISTER

TE

P17/EC

DECREMENTER
INTERRUPT

CRUIN READ REGISTER

When RESET is active, a zero value is forced into the clock register to disable the decrementer. Writing a
non-zero value into the clock register through the dedicated CRU bit addresses (bits 19016 to l 9D16 as shown in
Table J) enables the decrementer to start at the programmed value, count down to zero at a rate equal to system
oscillator x 1/30, issue an interrupt, and restart at the programmed value. The interrupt is then automatically
cleared by the interrupt context switch.

The decrementer is programmed to function as a timer or event counter by a dedicated Timer Enable CRU bit,
TE (see Table J). Writing a one (1) into TE will program the decrementer as a timer, and a zero will program
the decrementer as an event counter.

When programmed as a timer, the decrementer can function as an interval timer simply by loading the proper start
value in CRU bits 19016 to l 9D16 • The decrementer will then issue interrupts at the chosen interval.

The decrementer can also be used as an event timer when programmed as a timer by reading the timer values
through the dedicated CRU bit addresses at the start and stop points of the event of interest and 'comparing the
two values. The difference will be a direct measurement of the elapsed time.

When programmed as an event counter, the decrementer functions as above except that pin Pl 7 /EC is the clock
input instead of the system clock. A positive edge transition on Pl 7 /EC will decrement the count. When the count
reaches zero, the decrementer is reloaded with the programmed start value and an interrupt is issued. Note that
Pl 7 /EC can function as a positive edge-triggered interrupt by loading a start value of-one.

FLAG REGISTER

The TMS9940 incorporates a 16-bit flag register internally. Each of the bits is under program control and can be
SET, RESET, and TESTED. The bits are accessed through dedicated CRU bit addresses and utilize the CRU
instructions (LDCR, STCR, TB, SBO, SBZ) or control. The CRU bit addresses assignments for the flag register
are shown in Table J.

9900 FAMILY SYSTEMS DESIGN 8-99

TMS 9940
ARCHITECTURE

PowER DowN

Product Data Book

Applications which have low duty cycles (for example, those which are human interactive) and/or require low
power dissipation, can make use of the power down capability to lower average power. The TMS9940 is powered
by two separate power supplies: (1) V cc1 , which powers the RAM and interrupt logic, and (2) V cc2 , which powers
the rest of the circuitry. A diagram showing the way to connect power to use the power down feature is shown
below.

POWER
SUPPLY
SWITCH

r-
1
I
I
I
L-

-,
I , ______ _
I
I

- .J

I

VCC1

IDLE

VCC2

HLD

In the above circ11it when the IDLE instruction is executed, a low value will be output on IDLE to open the power
supply switch. Inputting an interrupt into the CPU will force the processor out of IDLE and drive IDLE HIGH,
which will close the switch and power up the rest of the circuitry. The HLD input is a Schmitt Trigger input which
will keep the CPU stopped until V cc2 has settled. The particular values of R and C chosen are system dependent.

To use the power down feature configuration bit (CB) 3 must be set to a 1 to enable (low) HLD, HLDA, and IDLE.
Execution of the IDLE instruction will disable the decrementer interrupt (level 2) and INT2 (level 3) and the
processor can be powered down with the circuit shown in the figure. External lows to either RST or INTl can be
used to force the CPU out of the IDLE state; however, if the processor was powered down, INTl must be used to
maintain RAM data integrity as the RAM write latches temporarily float during RESET. If decrementer CB is
equal to a zero when IDLE is executed, the decrementer interrupt and INT2 are not disabled and the CPU
cannot be powered down.

HoLD AND HoLD ACKNOWLEDGE

Multiple processor operation may require temporary suspension of operation of one microcomputer (e.g., where
both microcomputers access common devices through the general purpose 1/0 lines). This could entail a
"master/slave" situation. One microcomputer (master) can place the other (slave) on hold by activating the slaves'
HLD line. When in the hold state, the slave issues HLDA. When the master deactivates the slaves' HLD line, the
slave leaves the hold state. Configuration bit 3 must be a one at the slave so that its HLD pin will be active.

SYNCHRONIZATION MoDE (-;j,)

A clock output for use with external hardware is available on terminal 15, p13;-;p, When configured in the sync
mode (see Table 2), P 13 /~ sends out the internal clock that is half of the oscillator frequency.

8-100 9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9940
ARCHITECTURE

TMS9940 TERMINAL ASSIGNMENTS

Table 4 defines the TMS9940 pin assignments and describes the function of each pin.

SIGNATURE

XTALl

XTAL2

RST/PE

INTl /TST

INT2/PROG

PO/Al

P1 I A2

P2/A3

P3/A4

P4/A5

P5/A6

P6/A7

P7/A8

PIN

21

22

12

13

40

20

19

37

23

24

25

26

27

28

29

30

Table 4. TMS9940 Pin Assignments and Functions

1/0 DESCRIPTION

IN Crystal input pin for control of internal

oscillator.

IN Crystal input pin for control of internal

oscillator. Also input pin for external

oscillator.

Supply voltage (+ 5 V). The internal RAM

and interrupt logic are powered by this

supply.

Supply voltage (+ 5V). All logic except the

RAM and interrupt logic are powered by

this supply.

Ground reference.

IN RESET /Program Enable. When active low

(Schmitt Trigger Input, V") the RESET

sequence is initiated. RESET must be held

active for a minimum of five clock cycles.

When active high (VIP) the EPROM

programming function is enabled.

P23

P22

P21

P20

P19

P18

P17/EC

P16/i1ilE

P15tH'Lci'A

P141'H'Lci 10

P12/TD 11

Vcc1 12

Vcc2 13

P11/TC 14

P13/0 15

P10/CRUCLK 16

P9/CRUOUT 17

P8/CRUIN 18

TNi"iiTST 19

AsT/PE 20

(See EROM Programming Section for detailed description.)

40 Vss

39 P31

38 P30

37 'i'NTiiPRDG

36 P29

35 P28

34 P27

33 P26

32 P25
31 P24

30 P7/A8

29 P6/A7

28 P5/A6

27 P4/A5

26 P3/A4

25 P2/A3

24 P1/A2

23 PO/A1

22 XTAL2

21 XTAL1

IN Interrupt 1 /TEST. When active low (V") external device interrupt 1 is active. When active high (V,,)

the device is switched into the test mode (see TEST FUNCTION Section for detailed description).

IN Interrupt 2/PROGRAM PULSE. When active low (V,c) and RST /PE is not active high, external device

interrupt 2 is active. When RST I PE is active high (VIP), INT2 I PROG becomes the programming pulse

input for EPROM programming. (See Programming Section for description.)

1/0 General Purpose I /0 lines. PO-P7 can also be configured as the address bus (A 1 is MSB) of the 1/0

expansion channel (see Configuration Section for details).

9900 FAMILY SYSTEMS DESIGN 8-101

~s

TMS 9940
ARCHITECTURE

Product Data Book

Table 4. TMS 9940 Pin Assignments and Functions (Continued)

SIGNATURE PIN 1/0 DESCRIPTION

P8/CRUIN 18 1/0 General Purpose 1/0 Line. P8 can also be configured as the CRUI N data input signal for the I/ 0

expansion channel (see I /O Section for configuration details).

P9/CRUOUT 17 1/0 General Purpose I /O Line. P9 can also be configured as the CRUOUT data output signal for the I /O

expansion channel (see I/ 0 Section for ·configuration detai Is).

PlO/CRUCLK 16 1/0 General Purpose I /O Line. P 10 can also be configured as the CRUCLK data strobe output signal for

the I /O expansion channel (see I/ 0 Section for configuration detai Is).

Pl 1 /TC 14 1/0 General Purpose I /O Line. P 11 can also be configured as the transfer clock for the Multiprocessor

System Interface (see I /O Section for configuration details).

P12/TD 11 1/0 General Purpose I /O Line. P 12 can also be configured as the transfer data signal for the

Multiprocessor System Interface (see 1/0 Section for configuration details).

P13/~ 15 1/0 General Purpose I /O Line. P 13 can also be configured as a clock output signal (see 1/0 Section for

configuration details).

P14/HLD 10 1/0 General Purpose I /O Line. P 14 can also be configured as the HOLD (active low) Schmitt Trigger

input to force the processor to stop until HOLD returns to the inactive state. (See 1/0 Section for

configuration detai Is.)

P15/HLDA 9 1/0 General Purpose I /O Line. P 15 can also be configured as the Hold Acknowledge output (active low).

When the processor enters the HOLD state, HOLDA becomes active. (See 1/0 Section for

configuration details.)

Pl 6/IDLE 8 1/0 General Purpose I /0. Pl 6 can also be configured as the IDLE output signal (active low) for power

down. (See 1/0 Section for configuration details.)

P17/EC 7 1/0 General Purpose I /O Line. P 17 can also be programmed as the event counter input. The

decrementer will decrement on each positive transition of EC. (See Decrementer Section for

programming details.)

P18 6 1/0 General Purpose I /O Line

P19 5 1/0 General Purpose I /0 Line

P20 4 1/0 General Purpose I /0 Line

P21 3 1/0 General Purpose I /0 Line

P22 2 1/0 General Purpose 1/0 Line

P23 1/0 General Purpose I /O Line

P24 31 1/0 General Purpose I /O Line

8-102 9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9940
INSTRUCTION SET

Table 4. TMS 9940 Pin Assignments and Functions (Concluded)

SIGNATURE PIN 1/0 DESCRIPTION

P25 32 1/0 General Purpose I /0 Line

P26 33 1/0 General Purpose I I 0 Line

P27 34 1/0 General Purpose I I 0 Line

P28 35 1/0 General Purpose I I 0 Line

P29 36 1/0 General Purpose I /0 Line

P30 38 1/0 General Purpose I /0 Line

P31 39 1/0 General Purpose I I 0 Line

TMS9940 INSTRUCTION SET

DEFINITION

Each instruction of the TMS9940 set performs one of the following operations:
o Arithmetic, logical, comparison, or manipulation operations on data;
o Loading or storage of machine registers (program counter, workspace pointer, or status);
o Data transfer between memory and external devices via the CRU;
o Control functions.

This instruction set is identical to that of the TMS9900 with the following exceptions:
o Instructions added (as dedicated XOP's 0 to 3);

-DCA -LIIM -DCS
o Instructions deleted

-RSET -CKOF
-CKON -LREX

A complete listing of the instructions and addressing modes is found in a later section.

TMS9940 INSTRUCTION EXECUTION TIMES

Instruction execution times for the TMS9940 are a function of:
1. Clock cycle time, tc(cf>) = 2 • tcy where tcy ;::'1/0scillator Frequency (fosc)
2. Addressing mode used where operands have multiple addressing mode capability.

Table 5 lists the number of clock cycles required to execute each TMS9940 instruction. For instructions with
multiple addressing modes for either or both operands, the table lists the number of clock cycles with all operands
addressed in the workspace register mode. To determine the additional number of clock cycles required for
modified addressing, add the appropriate values from Table A. The total instruction execution time for an
instruction is

T=tc (cf>)· C

where,
T = total instruction time
t0 (cf>) =clock cycle time
C =number of clock cycles required for instruction execution plus address modification.

9900 FAMILY SYSTEMS DESIGN 8-103

TMS 9940
INSTRUCTION SET

INSTRUCTION

A
AB
ABS (MSB = 0)

(MSB = 1)
Al
ANDI
B
BL
BLWP
c
CB
Cl
CLR
coc
czc
DCA
DCS
DEC
DECT
DIV (ST 4 is SET)
DIV (ST 4 is RESET)*
IDLE
INC
INCT
INV
JUMP
LDCR (C = 0)

c1 ::;c::;a)
(9::;C::; 15)

LI
LllM

8-104

Product Data Book

Table 5. TMS 9940 lnstroction Execution Times

CLOCK CYCLES ADDRESS MODIFICATION

10 See Table A
7 See Table A

12 See Table A
12 See Table A
12
12
8 See Table A
10 See Table A
20 See Table A
10 See Table A
7 See Table A

12
8 See Table A
10 See Table A
10 See Table A
7 See Table A
7 See Table A
8 See Table A
8 See Table A
14 See Table A

128 See Table A
10
8 See Table A
8 See Table A
8 See Table A
6

42 See Table A
8+2C See Table A
10+2C See Table A

12
10

9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9940
INSTRUCTION SET

Table 5. TMS 9940 Instruction Execution Times (Continued)

INSTRUCTION CLOCK CYCLES ADDRESS MODIFICATION

LIMI 14
LWPI 12
MOV 8 See Table A
MOVB 6 See Table A
MPY 82 See Table A
NEG 10 See Table A
ORI 12
RTWP 14 See Table A
s 10 See Table A
SB 7 See Table A
SBO 10
SBZ 10
SETO 8 See Table A
SHIFT (C = 0) 12 +2N

(C=O, BITS 12-15 of WRO =0) 46
(C = 0, BITS 12-15 of WRO

= Ni=O) 14 +2N
soc 10 See Table A
SOCB 7 See Table A
STRC (C = 0) 46 5'ee Table A

(1 :::;C:'.S8) 29 See Table A
(9:'.SC:'.S15) 46 See Table

STST 8
STWP 8
SWPB 8 See Table A
szc 10 See Table A
SZCB 7 See Table A
TB 10
X'~':' 6 See Table A
XOP 26 See Table A
XOR 10 See Table A
Reset Function 16
Interrupt Context Switch 16

'~Execution time is dependent on the partial quotient after each clock cycle during execution.
':":'Execution time is added to the execution time of the instruction located at the source address.

9900 FAMILY SYSTEMS DESIGN 8-105

~8

TMS 9940£ Product Data Book

EPROM PROGRAMMING

ADDRESSING MODE

WR (Ts or Td = 00)

WR indirect (Ts or Td = 01)

TABLE A

ADDRESS MODIFICATION

WR indirect auto increment (Ts or Td = 11)

Symbolic (Ts or Td =10, S or D = 0)

Indexed (Ts or Td =10, S or D =I:- 0)

TMS9940E EPROM PROGRAMMING

ERASURE

CLOCK CYCLES (C)

0

2

4

6

8

Before programming, the TMS9940E is erased by exposing the chip through the transparent lid to high intensity
ultraviolet light (wavelength: 2S37 angstroms). The recommended exposure is 10 watt-seconds per square
centimeter. This can be obtained by, for instance, 20 to 30 minutes exposure of a filterless Model SS2 shortwave
UV lamp about 2.S centimeters above the EPROM. After exposure all bits are in the "O" state.

PROGRAMMING

The TMS9940E should be initialized by RESET before the programming sequence begins. The EPROM
consists of 16K bits of program memory organized as 2K bytes (8 bits) located at (starting) address 000016 • Data is
transferred into the CPU for programming through P24(MSB)-P31 (LSB). Taking the PE signal active high
(V1r) initializes the internal address pointer of 000016 and inputs the first byte of data (see Figure 8). After a
minimum delay of 40 clock cycles, PROG can be. applied (V1r, SO ms) and the data present on P24-P31 updated to
the next byte. Tha falling edge of PROG inputs the new byte of data to the next location and after a minimum
delay of 2S clock cycles the PROG pulse can be applied again. This sequence is continued until the entire 2K bytes
have been programmed. Note that the memory is programmed in sequence starting at 000016 , and the input data
must be valid at the rising edge of PE or falling edge of PROG.

PROGRAMMING/TEST FUNCTION ELECTRICAL CHARACTERISTICS

PARAMETER MIN l NOM l MAX

tr TST, PE, PROG input rise time 100

tf TST, PE, PROG input fall time 100

tsu Input data setup time to rising edge of PE, TST or to falling edge of PR OG 0
th Input data hold time past rising edge of PE, TST 80 tc(¢)
th(P-da) Input data hold time past falling edge of PROG SO tc(¢)
th(P-PE,T) PE, TST input hold time past falling edge of PROG 0
tsu(P-PE,T) PROG input setup time to rising edge of PE, TST 0
th(T-PL) PROG input pulse low past rising edge ofTST, PE 80 tc(¢1
tw(PL) PROG input pulse width low so tc(cp)
tw(PHP) PROG input pulse width high in the programing mode so
tw(PHT) PROG input pulse width high in the test mode 4 tc(¢>l

NOTE: Timing diagrams in Figure 8.

UNIT

ns
ns
ns
ns
ns
ns
ns
ns
ns
ms
ns

8-106 9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS9940E
EPROM PROGRAMMING

.:

Q. ::i: _, ::i: _, Q. ::i: _,
> > > > > > > >

... "' Q. I-

I~ "' 0

Figure 8. EPROM Programming Timing Diagram

9900 FAMILY SYSTEMS DESIGN 8-107

TMS9940E Product Data Book

EPROM PROGRAMMING

:[_ ___ _
j__ _____ _

T.
]. I :i

a..
}

[_____ [
J_ _____ _

f
I
a..
} T

J

T 11
~ a!
ui ...:.

J_ ____ j_ ____ l
,- --1----1

:I UJ.
~ a.. - ~

L ~8

L ::c ::c c ::c 8
> > > > > > > c CZ: 0 ~ Iii Ii Ii

Figure 9. Test Function Timing Diagram

8-108 9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9940
ELECTRICAL SPECIFICATIONS

TEST FUNCTION

This test function allows loading a program into the RAM area of the TMS9940 through pins P24 through P31.
This program can then be executed, and the results of this execution used to verify operation of the TMS9940.
The program could Lnclude error messages as well as a successful completion message sent to a peripheral device
accessed through the CRU.

The processor should be initialized by RESET before any test sequence begins. Data is directly loaded in sequence
into the RAM through P24 (MSB)-P31 (LSB). Taking the TEST signal active high (V1p) initializes the internal
address pointer to 830016 (starting address of RAM) and inputs the first byte of data (see Figure 9). After a
minimum delay of 40 clock cycles PROG can be applied (Vm, 4 clock cycles minimum) and the data present on
P24-P31 updated to the next byte. The falling edge of PROG inputs the new byte of data to the next location
and, after a minimum delay of 25 clock cycles, PROG can be applied again. This sequence is continued until the
desired data has been loaded into the RAM. Taking TEST inactive will then jump the processor to the address
specified by the last 16 bits loaded. Note that the RAM is loaded in sequence starting at 830016, and the input data
must be valid at the rising edge ofTST or on the falling edge of PROG.

TMS9940 ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS OVER OPERATING

FREE-AIR TEMPERATURE RANGE(UNLESS 0rHERWISE NOTED)*

Supply Voltage, V cc1 t . . .
Supply Voltage, V cc2 . • .

Programming Voltage, PE
All Input Voltages
Output Voltage
Continuous Power Dissipation.
Operating Free-Air Temperature Range.
Storage Temperature Range

-0.3 to 20 V
-0.3 to 20 V
-0.3 to 35 V
-0.3 to 20 V

.. -2 to 7 V

.... 1.5 watt
0°C to 70°C

-55°C to 150°C

*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of
this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

tAU voltage values are with respect to V88 •

RECOMMENDED OPERATING CONDITIONS

PARAMETER MIN lNOM l MAX UNIT

Supply voltage, Vcc1 5 v
Supply voltage, Vcc2 5 v
Supply voltage, Vss 0 v
High-level input voltage, VI H 2.0 v
Low-level input voltage, V1 L 0.8 v
Program/test input voltage, V1p 26 v
Operating free-air temperature, TA 0 +70 oc

9900 FAMILY SYSTEMS DESIGN 8-109

~8

TMS 9940 Product Data Book

ELECTRICAL SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

PARAMETER
TEST CONDITIONS MIN I NOMI MAX UNITS

11 input current, all inputs v 1 = v55 to Vee ±10 µA

VoH• high-level output voltage, all outputs lo= -0.4 mA 2.4 v
Vol• low-level output voltage, all outputs 10 = 2 mA 0.4 v
lcc1, supply current from V cc1 10 mA

lcc2, supply current from Vcc2 150 mA

c 1, input capacitance, all inputs f = 1 MHz unmeasured pins at Vss 15 pF

Co, output capacitance, all outputs f = 1 MHz unmeasured pins at v55 15 pF

CLOCK CHARACTERISTICS

The TMS 9940 has an internal oscillator and a two-phase clock generator controlled by an external or crystal. The user
may also disable the oscillator and directly inject a frequency source into the XTAL2 input. The crystal frequency
and the external frequency source must be double the desired system CLOCK frequency.

Internal Oscillator

The internal oscillator is enabled by connecting a crystal across XTAL 1 and XTAL 2. The system CLOCK
frequency 1 ltc<<:>h is one-half the crystal oscillator frequency, fosc·

PARAMETER TEST CONDITIONS MIN TYP MAX

fosc, TMS 9940E, TMS 9940M .5 5.0 5.12

fosc, TMS 9940E-40, TMS 9940M-40 .5 4.0 4.10

fosc, TMS 9940E-30, TMS 9940M-30 0°C:::ST:::S + 70°C .5 3.0 3.07

fosc, TMS 9940E-20, TMS 9940M-20 .5 2.0 2.05

fosc, TMS 9940E-10, TMS 9940M-10 .5 1.0 1.02

Note: tcy := llfosc

UNITS

MHz

MHz

MHz

MHz

MHz

8-110 9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS 9940
DESIGN SUPPORT

TMS 9940 DESIGN SUPPORT

PRocRAM SUPPORT TooL'>

Table 6 defines four of the major program development methods available for the TMS 9940 microcomputer.
Each program development product supports assembly language programming, options 1 and 2 support hardware
emulation for target system evaluation.

Table 6. TMS 9940 Program Support

OPTION SYSTEM HOST COMPUTER ASSEMBLER EMULATION SUPPLIER

1 TM 990/40DS 16 - Bit Tl Microcomputer Yes. Yes, Semiconductor

Low Cost TM990/40DS Line-By-Line Non-Real Group

Standalone User Supplied Terminal (Non Symbolic) Time -Tl-

Development System (TTY, Tl 733, or Tl 745)

2 AMPLSystem 16- Bit Tl Minicomputer, Yes, Yes. Digital

(Advanced Microprocessor FS 990/4 TX MIRA, Real-Time Systems

Prototyping Laboratory) (Includes Terminal) Full Assembly Group

-Tl-

3 TMSWIOIT User - Supplied

Trans portable - 16-Bit Minicomputer Yes, Semiconductor
FORTRAN Source, or larger Full Assembly No Group

Cross - Support (eg. 32-BitMainframe) -Tl-

Software Package User Supplied 1/0

4 Timeshare Yes, G.E.

Timeshare 32 - Bit Mainframe Macro Assembly No N.C.S.S.

User Supplied 1/0 And Full Assembly TYMS HARE

Options 3 and 4 support compatible computer simulation based on the TMS 9900 microprocessor; thus, functional
instruction simulation without TMS 9400 timing or I/O data is possible.

To determine the most cost-effective tool, the second column relates to the computer equipment required.
Timeshare has a repeating cost to consider, whereas, the remainder are one-time investments.

To assemble short program modules via option 1, the Line-By-Line Assembler is the fastest method available. It
interactively provides mnemonic-to-object assembly, excluding symbolic addressing references. Standalone program
debug is then performed through the terminal keyboard.

The bulk of the TMS 9940 instruction set is identical to the TMS 9900 assembly language. Available cross
assemblers are:

• PX9 ASM on the CS 990/4 cassette development system

o TXMIRA on the FS 990/4 floppy disk development system

• SYSMAC on the DS 990/ 10

o TMS 9900 cross-assembler (available on several timesharing networks).

9900 FAMILY SYSTEMS DESIGN 8-111

TMS9940 Product Data Book

DESIGN SUPPORT

Three instructions on the TMS 9940 are not found on TMS 9900 assemblers: DCA, DCS, and LIIM. However,
these mnemonics are made acceptable by the 'DXOP' assembler directive. The 'DXOP' assembler directive is
available on all of the above mentioned assemblers. The DXOP function is to define a label for a specific XOP
value. The directive should appear at the beginning of the source life. The following listing shows how the DCA,
DCS, and LIIM mnemonics are defined using the DXOP directive, and a short sample program using the three
instructions. Note that the DXOP directives are used prior to using the instructions.

SAMPLE TXMIRA
9940 SAMPLE PROGRAM

0002
0003
0004
0005
0006 0000 A081 START
0007 0002 2C02
0008 0004 1 002
0009 0006 6081 STARTS
0010 0008 2C42
0011 OOOA 2C82 QUIT
0012 oooc 0380
0013

0000 ERRORS

DXOP
DXOP
DXOP
IDT
AB
DCA
JMP
SB
DCB
LllM
RTWP
END

FACTORY PROGRAMMING -TMS 9940M

DCA,O
DCS,1
LllM,2
'SAMPLE'
R1,R2
2
QUIT
R1,R2
R2
R2
GO HOME
START

PAGE 0001

DEFINE XOP 0 AS DCA
DEFINE XOP 1 AS DCS.
DEFINE XOP 2 AS LllM

ADD REGISTERS 1 AND 2 TOGETHER
CORRECT THE RESULT FOR BCD.
GO TO CLEAN UP.
SUBTRACT REGISTER 1 FROM 2.
CORRECT THE RESULT FOR BCD.
LOAD NEW INTERRUPT MASK.

Produced from any of the program support tools, a TI standard TMS 9900 family object format is
accepted for factory programming. The absolute object form with a custom MPXXXX number in the program
identifier field are acceptable. The object file can be sent and subsequently verified through a timeshare transmission
or TI 733 - compatible digital cassettes (punched cards, paper tape, FS 990 floppy discs are also accepted) when
developed on the TM 990/ 4005 or non-TI designed support tools, a user can send a master TMS 9940E device
containing the code to be produced in volume.

UsER PROGRAMMING - TMS 9940E

The TM 990/ 40DS low-cost development system can program, verify, and download TMS 9940E devices. A TI
designed test program or user defined programs (modifying the TIBUGII resident monitor) also provide functional
testing on the development system. Refer to the Test Function section for a detailed description.

A programmer module is an accessory to FS 990 minicomputers. The program, verify and download functions
work together with the sophisticated AMPL package in FS 990/ 4 systems.

CusTOM APPLICATIONS

Through a staff of experienced application programmers and microprocessor specialists, Texas Instruments will,
upon request, assist customers in evaluating applications, in training designers to program the TMS 9940, and in
simulating programs. TI will also contract to write programs to customer's specifications.

8-112 9900 FAMILY SYSTEMS DESIGN

TMS 9985
----------------- 8~

~8

TMS 9985
INTRODUCTION

INTRODUCTION

DESCRIPTION

Product Data Book

The TMS 9985 is a software compatible member of Tl's 9900 family of microprocessors and microcomputers and
contains a 16-bit CPU, 256 bytes of RAM, on chip timer/event counter, external 16-bit address bus and 8-bit
data bus, and is packaged in a 40-pin package. The instruction set of the TMS 9985 includes the capabilities offered
by full minicomputers and is exactly the same as the TMS 9940 microcomputer's. The unique memory-to-memory
architecture features multiple register files, resident in memory, which allows faster response to interrupts and
increased programming flexibility. The separate bus structure (see Figure 8-46) simplifies the system design effort.
All members of the TMS 9900 family of peripheral circuits are compatible with the TMS 9985. The TMS 9985
is fully supported by software and hardware development systems.

KEY FEATURES DIFFERENT FROM THE TMS 9900

• 5-MHz Speed • Separate Memory, 1/0 and Interrupt Bus Structures
• 8-Bit Memory Data Bus • On Chip Programmable Flags (16)
• 5 Prioritized Interrupts • Multiprocessor System Interface
• 40-Pin Package • Single 5-Volt Supply
• On Chip Timer/Event Counter • Speed Selected Versions
• 256 Bits of RAM on Chip

DIFFERENCES BETWEEN THE TMS 9985 AND THE TMS 9940

The TMS 9985 is so similar to the TMS 9940 that only the differences are
described here.

Key Features Different from the TMS 9940

• 5-MHz Speed
• Up to 65,536 Bytes of Memory
• 256 Bytes of RAM On Chip
• 8-Bit Memory Data Bus
• Separate Memory, 1/0 and Interrupt Bus Structures
• 5 Prioritized Interrupts

ARCHITECTURE

Registers and Memory

See the TMS 9940.

INTERRUPTS

The TMS 9985 implements five hardware interrupt level. Interrupt level data is shown in Table 1.

Table 1. Interrupt Level Data

INT. MASK VALUE TO
VECTOR LOCATION ENABLE RESPECTIVE

INTERRUPT (MEMORY ADDRESS DEVICE INTERNAL STATUS
LEVEL IN HEX) ASSIGNMENT REGISTERS 14 AND 15

(Highest
Priority) 0 0000 RESET OTHROUGH 3*

1 FFFC LOAD OTHROUGH 3*

2 0004 EXTERNAL DEV 1THROUGH3

3 0008 DECREMENTER 2AND3
4 oooc EXTERNAL DEV 30NLY

* RESET AND LOAD CAN NOT BE DISABLED

8-114 9900 FAMILY SYSTEMS DESIGN

'° '° 0
0
'T'j
;p
$'.

~
r:Jl
-<
r:Jl ..,
~
$'.
r:Jl

0
~
r:Jl

cs
z

~
......
Vl

~
~
~

~
Vj

'O
'O

~
~ g.,
~·
~
~

0
CRUCLK

CRUIN

IAO/HLDA

RDY/HLD

MEMEN

WE

DBIN

INT1
1NT2/EC

LOAD

RSf
XTAL1

XTAL2

CONTROL
LOGIC
AND

CLOCK
GEN. I CK

I ~;

INSTRUCTION
REGISTER

CRUIN

CRUOUT

00 •

16

ADDR

RAM
128 x 8

DIN DOUT

16

ADDR

RAM
128 x 8

DIN DOUT

A15/CRUOUT

A2·A14

A1/TD

Ao/TC

Do·D7

"'C
0
a.
c
2.
c
Q)

S'
m
0
0
;II;"

>~
~~ ncn
::r: "°
j.oo.4 "° ~00
t'ij Vl
n
~ c
~
t'ij

.... s

TMS 9985
ARCHITECTURE

INPUT I OUTPUT

The TMS 9985 supports four types of 1/0 channels:
1. Communications Register Unit (CRU)
2. Memory Mapped (MM)
3. Direct Memory Access (DMA)
4. The Multiprocessor System Interface (MPSI)

Product Data Book

The CRU and MPSI are much the same as those in the TMS 9940. See the TMS 9940 for a discussion of the
decrementer and flag register.

Memory Mapped 110 Channel

Memory Mapped 1/0 is a byte oriented 1/0 interface through which input or output bytes can be directly
addressed. The interface is defined to exist in memory address space and is accessed as if it were a memory'location.
All processor instructions that access memory can be used to drive the Memory Mapped interface, and thus,

·arithmetic and logical operations can be performed directly on MM 1/0. Figure 1 illustrates how to implement
a 1 byte input and 1 byte output MM register.

Direc~ Memory Access (DMA)

Direct Memory Access (DMA) is a block oriented 1/0 interface through which blocks of data can be moved into
and out of the system memory under external control. The external controller applies HOLD to initiate a DMA
request. HOLD is sampled during nonmemory cycles and, when detected, forces the TMS 9985 to enter a hold
state. The processor places the address and data buses into the high impedance state and responds with a hold
acknowledge signal (HOLDA). When HOLD is removed the TMS 9985 will then return to normal operation.
Fi;[ure 2 shows how to implement a DMA system using the TMS 9911 DMA controller. The maximum latency
time between a HOLD request and a HOLDA response is equal to 3 7 clock cycles. The DMA channel cannot be
used to move data into or out of the internal RAM.

FROM
TMS 9985

WE

OBIN

ADDRESS
DECODE DEVSEL

8-116

00-07

1 12 SN? 4LS139

A 0

B

G 3

SN74LS347

SN74LS241

1 G 2G

Q

E l r------11 I 1

8 LATCHED AND
BUFFERED OUTPUTS

8 BUFFERED
INPUTS

Figure 2. 8-Bit Memory mapped 110 Interface

9900 FAMILY SYSTEMS DESIGN

Product Data Book

z
iii
0

I~

r--.
0
0
0

CJ)

:::i
aJ
CJ)
CJ)
w
a:
0
0
~

CJ)

:::i
aJ
~

~
0

45w 1M

co

II

lo
w
_J
w

~

TMS 9985
ARCHITECTURE

? " (

::2: >w a:
I- 0
(f)::2;
>- w
(f)::2:

>-
0
~
w
a:

>->->-~ aJ
_(N ~ '<t..Q. '<t1

x
:::i
::2:

c 9 " !' ~ ..
~(IJ~(IJ~(IJ
-r- T""" N C\J ('I') C'J

1-
>
'<t

"19MP':

II ~.....____,(~~~~~~~~-........ '~~~~~~~~~~~~-.h ~
z~~~--'-+--~-+-~~~~~-r~

tu
CJ)
w
a:

iii
01--~-+-~--+~~~~~~+-~-t---"

l
w

k:s:

Figure J. TMS 9985 DMA Intetface Using the TMS 9911 DMA Controller

9900 FAMILY SYSTEMS DESIGN

_J

~ x

8-117

TMS 9985
ARCHITECTURE

Product Data Book

SYSTEM CONFIGURATION

The TMS 9985 allows the user to configure part of the pins as special functions for system applications. The
configurable pins are shown below.

Pin Name

AO/TC
Al/TD

Configuration Bit Configuration
OUTPUT INPUT

AO TC

Al TD

TMS 9985 PIN DESCRIPTION

SIGNATURE

XTAL1

XTAL2

vcc

VSS

Cj)"

INT2/EC

LOAD

AO/Tc

A1/TD

8-118

1/0

IN

IN

OUT

IN

IN

IN

IN

1/0

1/0

DESCRIPTION

Crystal input pin for control of internal oscil

lator.

Crystal input pin for control of internal oscil

lator. Also input pin for external oscillator.

Supply voltage (+ 5 volts)

Ground reference

Clock output signal. The frequency of (i; is Vi
of the oscillator input frequency.

RESET. When active (LOW), (Schmitt Trig

ger input) the RESET sequence is initiated.

RESET must be held active for a minimum of

five clock cycles.

INTERRUPT 1. When active (LOW), external

device interrupt 1 is active.

INTERRUPT 2/EVENT COUNTER. When

active (LOW), external device interrupt 2

03
04

05

06

07
CRUIN

CRUCLK

iAQ/HOLDA

RST

INT1

INT2/EC

vcc
MEMEN

LOAD

OBIN

WE

RDY/HLD

AO/TC

A1/TD

XTAL1

02
01

DO

A14

A13

A12

A11

A10

A9

AB

A7

AG

AS

A4

A3

A2

A15/CRUOUT

-;p
VSS

XTAL2

is active. When the decrementer is programmed as an event counter (T /C=O), a positive transition

on INT2/ECwill decrement the count.

LOAD. when active (LOW), LOAD causes the TMS 9985 to execute a non maskable interrupt with memory

address FFFC,6 containing the trap vector (WP and PC). The load sequence begins after the instruction being

executed is completed. LOAD will also terminate an idle state. If LOAD is active during the time RES'Ei is

released, then the LOAD.trap will occur after the RESET function is completed. LOAD should remain active

for one instruction period. IAQ can be used to determine instruction boundaries.

ADDRESS BIT 0/TRANSFER CLOCK when configured as address, AO is the MSB of the 16 bit memory

address bus and the 15 bit CRU address bus. When configured for the MPSI, TC is the transfer clock Line

(See I /0 Section for configuration details).

ADDRESS BIT 1 /TRANSFER DATA. When configured as address, A 1 is the 2nd most significant bit of the

16 bit memory address bus and the 15 bit CRU address bus. When configured for the MPSI, TD is the

transfer data line (See 1/0 Section for configuration details).

9900 FAMILY SYSTEMS DESIGN

Product Data Book

SIGNATURE

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15/

CRUOUT

DO

01

02

03

04

05

06

07

OBIN

MEMEN

WE

CRUIN

CRUCLK

RDY/HLD

IAQ/HOLDA

1/0

OUT

OUT

1/0

OUT

OUT

OUT

IN

OUT

IN

OUT

DESCRIPTION

TMS9985
ARCHITECTURE

ADDRESS BUS. A2 is the 3rd most significant bit of the 16 bit memory address bus and the 15 bit CRU

address bus. A 14 is the 2nd least significant bit of the 16 bit memory address bus and the LSB of the 15 bit

CR U address bus. The address bus assumes the high impedance state when holda is active.

ADDRESS BIT 15/CRU OUTPUT DATA. A 15/CRUOUT is the LSB of the 16 bit memory address bus and

the output data line for CRU output instructions. A 15/CRUOUT assumes the high impedance state when

HOLDA is active.

DATA BUS. DO is the MSB of the 8 bit data bus, and 07 is the LSB. This bus transfers data to (when writing)

and from (when reading) the external memory system when MEMEN is active. The data bus assumes the

high impedance state when HOLDA is active.

DATA BUS IN. When active (HIGH), OBIN indicates that the TMS 9985 has disabled its output buffers to
allow the external memory to place memory-read data on the data bus during M EMEN. OBIN remains low in

all other cases.

MEMORY ENABLE. When active (LOW), MEMEN indicates that the address bus contains an external memory

address, the READY /HOLD input is sampling READY, and the IAQ/HOLDA output is outputting IAQ.

WRITE ENABLE. When active (LOW), WE indicates that memory write data is available from the TMS 9985

to be written into external memory during MEMEN. WE remains high in all other cases.

CRU DATA IN. CRUIN is the input data line for CRU input instructions and is sampled during the TB

instruction.

CRU CLOCK. When active (HIGH), CRUCLK indicates that the external interface logic should sample the

output data on CRUOUT.

READY/HOLD. When MEMEN is active the RDY/HLD input sample READY; when MEMEN is inactive,

HOLD is sampled. When active (HIGH), READY indicates that external memory will be ready to read or write

with no additional wait states. When not-ready is indicated during an external memory operation the TMS

9985 enters a wait state and suspends internal operation until the memory systems indicate ready. When

active (LOW), HOLD indicates to the processor that an external controller desires to utilize the address and

data buses to transfer data to or from external memory. Following a hold signal, the TMS 9985 enters a hold

state at the next memory cycle. The processor places the address and data buses in the high impedance state

and responds with a hold acknowledge signal (HOLDA). When HOLD is removed, the TMS 9985 returns to

normal operation.

INSTRUCTION ACQUISITION /HOLD ACKNOWLEDGE. When MEMEN is active the IAQ/HLDA line outputs

IAQ; when MEMEN is inactive HOLDA is output. IAQ is active (HIGH), during any memory cycle when the

TMS 9985 is acquiring an instruction. HOLDA is active (HIGH) when the processor is in the hold state and

the address and data buses are in the high impedance state.

9900 FAMILY SYSTEMS DESIGN 8-119

_...8

TMS 9985
ARCHITECTURE

TIMING

Memory

Product Data Book

Basic memory read and write cycles are shown in Figures 4 and 5. Figure 4 shows read and write cycles with no wait
states while Figure 5 shows read and write cycles for a memory requiring one or two wait states.

MEMEN goes active (LOW) during each memory. At the same time that MEMEN is active, the memory
address appears on the address bus (AO through A15). If the cycle is a memory read cycle, OBIN will be active
(HIGH) and the data present on the data bus (DO through D7) will be input into the processor. If the cycle is a
memory write cycle, WE will go active (LOW) and data will be input by the CPU onto the data bus. At the end of
the cycle MEMEN and DBIN or WE will go inactive.

Hold

Other interfaces may utilize the TMS 9985 memory bus by using the hold operation (illustrated in Figure 6).
The external HOLD input is sampled during nonmemory cycles and when active (LOW), forces the TMS 9985 to
enter the hold state. The processor places the address and data buses into the high impedance state to allow other
devices to use the memory buses, and outputs the hold acknowledge signal (HOLDA, active HIGH). When
HOLD goes inactive, the TMS 9985 resumes processing as shown. The maximum latency time between a HOLD
request and a HOLDA response is equal to 3 7 clock cycles.

CRU

CRU interface timing is shown in Figure 7. The timing for transferring two bits out and one bit in is shown.
These transfers would occur during the execution of a CRU instruction. The other cycles of the instruction
execution are not illustrated. To output a CRU bit, the CRU-bit address is placed on the address bus AO through
Al4 and the actual bit data on A15/CRUOUT. During the second clock cycle a CRU pulse is supplied by
CRUCLK. This process is repeated until the number of bits specified by the instruction are completed.

The CRU input operation is similar in that the bit address appears on AO through A14.

During the subsequent cycle, the TMS 9985 accepts the bit input data as shown. No CRUCLK pulses occur during
a CRU input operation.

8-120 9900 FAMILY SYSTEMS DESIGN

Product Data Book TMS9985
ARCHITECTURE

cplNTERNAL

"4)1NTERNAL

ADDRESS BUS

READY/HOLD

MEMEN

OBIN

WE

DATA BUS

IAO/HOLDA

</>INTERNAL

~INTERNAL

ADDRESS BUS

READY/HOLD

MEMEN

OBIN

WE

DATA BUS

READ

I

READ

I

WRITE

----X X I X
I
I
I I
I I

--i I II
I
I

1
I

WRITE

x

READ

XI
I
I

__J.--------., L_J I 1 I
I I '--~--~~-+-~~--~~----__.

I I I I I
1 L
I

I 1 1 I 1._I ----+-'11 I L__U
I 1 I I I I I I

- - - -:- - -<!)-- - -L--¢- - ~1--0U-T-: - ~ OUT :

I I I I . I I
1 I I I I

__ _..I.__. I I I I I I I

Figure 4. TMS 9985 Memory Bus Timing (no wait states)

I
I

1--L-~
I
I

READ (1 WAIT STATE)

I

READ (2 WAIT STATES) WRITE (1 WAIT STATE)

I I I
-x I x I I x

I I I

'1
I

11 I I
I I I

I I I I
I I I

_J I LJ I

" I I I
I I I I I IL____j____J I I I
I I I I I I I I

L - _J ----<¥= -_L - - __; + - - +- ----<§>= ~ OUT

I I I I I

F1:i:11re 5. TMS 9985 Memory Bus Timing (with wait states)

9900 FAMILY SYSTEMS DESIGN 8-121

I

8

TMS 9985
ARCHITECTURE

Product Data Book

MEMORY READ HOLD MEMORY WRITE HOLD

</>INTERNAL

I I
'$INTERNAL

ADDRESS BUS
I I I

-x------'------'------'~----1- - - -K""X '--

READY/HOLD I I I
MEMEN ---, I I

· I I

OBIN

WE

DATA BUS

IAQ/HOLDA

I I
_J I I

I I I I
I I I 1 l_I ---~-1---
1 I I 1 I I

----1- -©- --!---L- -+-- - J_ - - _J....--0-UT---~ L -- --
1 I I I I I 1 I
I I I I I I I
I I I I I ~-1-----1 _ ___,!

Figure 6. TMS 9985 Hold Timing

</>INTERNAL

~INTERNAL I

ADDRESS BUS

CRUCLK

CRUOUT

CRUIN

------x x--1~~-
1 I I
I I

__,111..__ _______ : II cc I
I I I I ____ , __

OUT I I OUT I (I x IUNKNOWNI x I

: I I I I I I I I
zmzmvzznzzyzzzzzzv11zzz~azuz4ou17111mzfm IN : vzozqmmz

Ft'gure 7. TMS 9985 CR U Interface Timing

8-122 9900 FAMILY SYSTEMS DESIGN

9900 Instruction Set

9900 INSTRUCTION SET Product Data Book

9900 INSTRUCTION SET

DEFINITION

Each 9900 instruction performs one of the following operations:
• Arithmetic, logical, comparison, or manipulation operations on data
• Loading or storage of internal registers {program counter, workspace pointer, or status)
• Data transfer between memory and external devices via the CRU
• Control functions.

ADDRESSING MODES

The 9900 instructions contain a variety of available modes for addressing random-memory data (e.g., program
parameters and flags), or formatted memory data (character strings, data lists, etc.). The following figures
graphically describe the derivation of the effective address for each addressing mode. The applicability of
addressing modes to particular instructions is described in the Instructions Section along with the description
of the operations performed by the instruction. The symbols following the names of the addressing modes
[R, *R, *R +,@LABEL, or@ TABLE (R)] are the general forms used by 9900 assemblers to select
the addressing mode for· register R.

WORKSPACE REGISTER ADDRESSING R

Workspace Register R contains the operand.

Register R

(PC)~WP)+2R_, Operand

WORKSPACE REGISTER INDIRECT ADDRESSING *R

Workspace Register R contains the address of the operand.

Register R

(PC)~WP)+2R-.j Address H~ __ o_p_er_a_n_d _ __,

WORKSPACE REGISTER INDIRECT AUTO INCREMENT ADDRESSING *R +
Workspace Register R contains the address of the operand. After acquiring the operand, the contents of
workspace register R are incremented.

(PC)~WP)+2R

8-124 9900 FAMILY SYSTEMS DESIGN

Product Data Book 9900 INSTRUCTION SET

SYMBOLIC (DIRECT) ADDRESSING @LABEL

The word following the instruction contains the address of the operand.

(PC)

(PC)+2

Instruction

,__ __ L_ab_e_1 __ ~-----•~~l __ o_p_e_ra_n_d_~

INDEXED ADDRESSING @ TABLE (R)

The word following the instruction contains the base address. Workspace register R conatins the index value.
The sum of the base address and the index value results in the effective address of the operand.

(PC)~WP)+2R

(PC)+2 Table

IMMEDIATE ADDRESSING

The word following the instruction contains the operand.

(PC)

(PC)+2

Instruction

Operand

PROGRAM COUNTER RELATIVE ADDRESSING

Register R

Index Value
Effective

Operand
Address

The 8-bit signed displacement in the right byte (bits 8 through 15) of the instruction is multiplied by 2 and
added to the updated contents of the program counter. The result is placed in the PC.

Jump Instruction

Program Counter OP CODE DISP

Address next memory word

CRU RELATIVE ADDRESSING

The 8-bit signed displacement in the right byte of the instruction is added to the CRU base address (bits
3 through 14 of the workspace register 12). The result is the CRU address of the selected CRU bit.

Instruction

(PC) OP CODE DISP

0 7 8 15
CRU Bit

+ 1-----·
Register 12 Address

(WP)+2·12 CRU Base Add

0 2 3 1415

9900 FAMILY SYSTEMS DESIGN 8-125

8
I

9900 INSTRUCTION SET Product Data Book

TERMS AND DEFINITIONS

The following terms are used in describing the instructions of the 9900:

TERM DEFINITION

B Byte indicator (1=byte, 0 =word)

c Bit count

D Destination address register

DA Destination address

IOP Immediate operand

LSB(n) Least significant (right most) bit of (n)

MSB(n) Most significant (left most) bit of (n)

N Don't care

PC Program counter

Result Result of operation performed by instruction

s Source address register

SA Source address

ST Status register

STn Bit n of status register

To Destination address modifier

Ts Source address modifier

w Workspace register

WRn Workspace register n

(n) Contents of n

a~b a is transferred to b

lnl Absolute value of n

+ Arithmetic addition

- Arithmetic subtraction

AND Logical AND

OR Logical OR

© Logical exclusive OR

i1 Logical complement of n

STATUS REGISTER

The status register contains the interrupt mask level and information pertaining to the instruction operation.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

STO ST1 ST2 ST3 ST4 ST5 ST6 not used (=0) ST12 ST13 ST14 ST15

L> A> c 0 p x Interrupt Mask

BIT NAME INSTRUCTION CONDITION TO SET BIT TO 1

STO LOGICAL C,CB If MSB(SA) = 1 and MSB(DA) = 0, or if MSB(SA) = MSB(DA)

GREATER and MSB of [(DA)-(SA)) = 1

THAN Cl If MSB(W) = 1 and MSB of IOP = 0, or if MSB(W) = MSB of

IOP and MSB of [IOP-(W)) = 1

ABS If (SA)* 0

All Others If result* 0

ST1 ARITHMETIC C,CB If MSB(SA) = 0 and MSB(DA) = 1, or if MSB(SA) = MSB(DA)

GREATER and MSB of [(DA)-(SA)) = 1

THAN Cl If MSB(W) = 0 and MSB of IOP = 1, or if MSB(W) = MSB of

IOP and MSB of [IOP-(W)) = 1

ABS If MSB(SA) = 0 and (SA) * 0

All Others If MSB of result= 0 and result * 0

8-126 9900 FAMILY SYSTEMS DESIGN

Product Data Book 9900 INSTRUCTION SET

BIT NAME INSTRUCTION CONDITION TO SET BIT TO 1

ST2 EQUAL C,CB If (SA) = (DA)

C1 If (W) = IOP

coc If (SA) and (DA) = 0

czc If (SA) and (DA) = 0

TB If CRUIN = 1

ABS If (SA)= 0

All others If result = 0

ST3 CARRY A, AB, ABS, Al, DEC,

DECT, INC, INCT, If CARRY OUT= 1

NEG,S, SB

SLA, SRA, SRC, SRL If last bit shifted out= 1

ST4 OVERFLOW A,AB If MSB(SA) = MSB(DA) and MSB of result*- MSB(DA)

Al If MSB(W) = MSB of IOP and MSB of result*- MSB(W)

S,SB If MSB(SA) *- MSB(DA) and MSB of result*- MSB(DA)

DEC,DECT If MSB(SA) = 1 and MSB of result= 0

INC, INCT If MSB(SA) = 0 and MSB of result = 1

SLA If MSB changes during shift

DIV If MSB(SA) = 0 and MSB(DA) = 1, or if MSB(SA) = MSB(DA)

and MSB of [(DA)-(SA)] = 0

ABS, NEG If (SA) = 800015

ST5 PARITY CB,MOVB If (SA) has odd number of 1 's

LDCR,STCR If 1 .;; C .;; 8 and (SA) has odd number of 1 's

AB, SB, SOCB, SZCB If result has odd number of 1 's

ST6 XOP XOP If XOP instruction is executed

ST12-ST15 INTERRUPT LIMI If corresponding bit of IOP is 1

MASK RTWP If corresponding bit of WR 15 is 1

The TMS 9940 has a slightly different arrangement of its status register. Note that the first six status bits
are the same as for the TMS 9900.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

STO STl ST2 ST3 ST4 ST5 not ST7 ST14 ST15

L> A> = c 0 p used
DC

not used (=0) INTERRUPT
(= 0) MASK

ST7 DIGIT A.ABS.Al.DEC, If carry out of least significatn BCD Digit of most

CARRY DECT,INC,INCT significant byte= 1

NEG,S

AB,DCA.DCS,SB If carry out of least significant BCD Digit= 1

ST14-ST15 INTERRUPT LllM If corresponding bit of S is 1

MASK LIMI If corresponding bit of IOP is 1

RTWP If corresponding bit of WR 13 is 1

9900 FAMILY SYSTEMS DESIGN 8-127

8'411
I

9900 INSTRUCTION SET Product Data Book

INSTRUCTIONS

DuAL OPERAND INSTRUCTIONS WITH MULTIPLE ADDRESSING MoDES FOR SouRcE AND DESTINATION OPERAND

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General format: OP CODE B To D Ts s

If B = 1 the operands are bytes and the operand addresses are byte addresses. If B = 0 the operands are words
and the operand addresses are word addresses.

The addressing mode for each operand is determined by the T field of that operand.

Ts OR To SOR D ADDRESSING MODE NOTES

00 0, 1, ... 15 Workspace register 1

01 0, 1, ... 15 Workspace register indirect

10 0 Symbolic 4

10 1, 2, ... 15 Indexed 2,4

11 0, 1, ... 15 Workspace register indirect auto-increment 3

Notes: 1. When a workspace register is the operand of a byte instruction (bit 3=1), the left byte (bits 0 through
7) is the operand and the right byte (bits 8 through 15) is unchanged.

2. Workspace register 0 may not be used for indexing.
3. The workspace register is incremented by 1 for byte instructions (bit 3=1) and is incremented

by 2 for word instructions (bit 3 = 0).
4. When Ts= T 0 =10, two words are required in addition to the instruction word. The first

word is the source operand base address and the second word is the destination operand base address.

OP CODE B
RESULT STATUS

MNEMONIC MEANING COMPARED BITS DESCRIPTION
0 1 2 3

TOO AFFECTED

A 1 0 1 0 Add Yes 0-4 (SA)+(DA) ~(DA)

AB 1 0 1 1 Add bytes Yes 0-5 (SA)+(DAI ~(DAI

c 1 0 0 0 Compare No 0-2 Compare (SA) to (DA) and set

appropriate status bits

CB 1 0 0 1 Compare bytes No 0-2,5 Compare (SA) to (DA) and set

appropriate status bits

s 0 1 1 0 Subtract Yes 0-4 (DA) - (SA) ~(DA)

SB 0 1 1 1 Subtract bytes Yes 0-5 (DA) - (SA)~ (DA)

soc 1 1 1 0 Set ones corresponding Yes 0-2 (DA) OR (SAi ~(DAI

SOCB 1 1 1 1 Set ones corresponding bytes Yes 0-2,5 (DA) OR (SA)~ (DA)

szc 0 1 0 0 Set zeroes corresponding Yes 0-2 (DA) AND (SA)~ (DA)

SZCB 0 1 0 1 Set zeroes corresponding bytes Yes 0-2,5 (DA) AND (SA)~ (DA)

MOV 1 1 0 0 Move Yes 0-2 (SA)~(DA)

MOVB 1 1 0 1 Move bytes Yes 0-2,5 (SA)~(DA)

8-128 9900 FAMILY SYSTEMS DESIGN

Product Data Book 9900 INSTRUCTION SET

DUAL OPERAND INSTRUCTIONS WITH MULTIPLE ADDRESSING MODES FOR THE SOURCE OPERAND AND WORKSPACE

REGISTER ADDRESSING FOR THE DESTINATION

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General format: OP CODE D Ts s

The addressing mode for the source operand is determined by the Ts field.

Ts s ADDRESSING MODE NOTES

00 0, 1, ... 15 Workspace register

01 o. 1, ... 15 Workspace register indirect

10 0 Symbolic

10 1, 2, ... 15 Indexed 1

11 0, 1, ... 15 Workspace register indirect auto increment 2

Notes: 1. Workspace register 0 may not be used for indexing.
2. The workspace register is incremented by 2.

OP CODE
RESULT

MNEMONIC
0 1 2 3 4 5

MEANING COMPARED

TO 0

coc 0 0 1 0 0 0 Compare ones No

corresponding

czc 0 0 1 0 0 1 Compare zeros No

corresponding

XOR 0 0 1 0 1 0 Exclusive OR Yes

MPV 0 0 1 1 1 0 Multiply No

DIV 0 0 1 1 1 1 Divide No

9900 FAMILY SYSTEMS DESIGN

STATUS

BITS DESCRIPTION

AFFECTED

2 Test (D) to determine if 1's are in each bit

position where 1 's are in (SA). If so, set ST2.

2 Test (D) to determine if O's are in each bit

position where 1 's are in (SA). If so, set ST2.

0-2 (D) <±)(SA)-+ (D)

Multiply unsigned (D) by unsigned (SA) and

place unsigned 32-bit product in D (most

significant) and D+1 (least significant). If WR15

is D, the next word in memory after WR15 will

be used for the least significant half of the

product.

4 If unsigned (SA) is less than or equal to unsigned

(D), perform no operation and set ST4. Otherwise,

divide unsigned (D) and (0+1) by unsigned

(SA). Quotient--> (D), remainder--> (0+1). If

D = 15, the next word in memory after WR 15

will be used for the remainder.

8-129

9900 INSTRUCTION SET Product Data Book

EXTENDED OPERATION (XOP) INSTRUCTION

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General format: OP CODE D Ts s

The Ts and S fields provide multiple mode addressing capability for the source operand. When the XOP is
executed, ST6 is set and the following transfers occur:

(401s +4D)~(WP)
(4216 +4D)~(PC)

SA~(new WRll)
(old WP)~(new WR 13)
(old PC)~(new WR 14)
(old ST)~(new WR 15)

The TMS 9900 does not test interrupt requests (INTREQ) upon completion of the XOP instruction. The
TMS 9980A/TMS 9981 tests for reset and load but does not test for interrupt requests (INTREQ) upon
completion of the XOP instruction.

The TMS 9940 has the same general format for extended operations as the TMS 9900 with the differences
described below.

RESULT STATUS
D FIELD

MNEMONIC MEANING COMPARED BITS DESCRIPTION
6789

TO ZERO? AFFECTED

DCA 0000 Decimal Yes 0-3,5,7 The byte specified by SA is corrected to

Correct form 2 BCD digits as shown in Table 4

Addition

DCS 0001 Decimal Yes 0-3,5,7 The byte specified by SA is corrected to

Correct form 2 BCD digits as shown in Table 4

Subtraction

LllM 001X Load No 14,15 Ts must equal 0. S, Bits 14 and 15-+ST

Interrupt 14 and ST 15.

Mask

XOP 0 1 xx General No - (4016 + 40) -+(WP)

1 0 xx XOP (4216 + 40)-+ (PC);

11 xx SA-+(NewWR11);

(Old WP)-+ (New WR 13);

(Old PC)-+ (New WR 14);

(Old ST) -+(NewWR 15);

Following execution of an XOP instruc-

tion, the TMS 9940 inhibits interrupt

levels 1,2, and 3 until one more instruc-

tion is executed.

8-130 9900 FAMILY SYSTEMS DESIGN

Product Data Book 9900 INSTRUCTION SET

BYTE BEFORE EXECUTION

c x DC

0 X<10 0
0 X<10 1

0 X<9 0
1 X<10 0

1 X<10 1
1 X<10 0
0 X"?.10 0
0 Z"?.10 1

0 X"?.9 0

0 x 0

0 x 1
1 x 0
1 x 1

SINGLE OPERAND INSTRUCTIONS

0 2

General format:

RESULT OF DCA AND DCS INSTRUCTIONS

0
I x
MSB

y

Y<10
Y<10
Y"?.10
Y<10

Y<10
Y"?.10

Y<10
Y<10

Y"?.10
y
y
y
y

3

y I

LSB

8-BIT BYTE CONTAINING RESULT
OF BINARY ADD OR SUBTRACT
OF 2 BCD DIGITS

BYTE AFTER DCA

c x DC y c
0 x 0 y -
0 x 0 Y+6 -
0 X+1 1 Y+6 -
1 X+6 0 y -
1 X+6 0 Y16 -
1 X+7 1 Y+6 -
1 X+6 0 y -
1 X+6 0 Y+6 -
1 X+7 1 Y+6 -
- - - - 0

- - - - 0

- - - - 1

- - - - 1

4 5 6 7 8 9 10

OP CODE Ts

11

The T 8 and S fields provide multiple mode addressing capability for the source operand.

9900 FAMILY SYSTEMS DESIGN

BYTE AFTER DCS
x DC y

- - -
- - -
- - -
- - -
- - -
- - -

- - -

- - -
- - -

x+ 10 1 Y+10

X+10 0 y

x 1 Y+10

x 0 y

12 13 14 15

s

8-131

..,.g

9900 INSTRUCTION SET Product Data Book

RESULT STATUS
OP CODE

MNEMONIC MEANING COMPARED BITS DESCRIPTION
0 1 2 3 4 5 6 7 8 9

TOO AFFECTED

B 0 0 0 0 0 1 0 0 0 1 Branch No - SA-> (PC)

BL 0 0 0 0 0 1 1 0 1 0 Branch and link No - (PC)-+ (WR11); SA -+(PC)

BLWP 0 0 0 0 0 1 0 0 0 0 Branch and load No - (SA) -+ (WP); (SA+2) -+ (PC);

workspace pointer (old WP)-+ (new WR 13);

(old PC)-+(newWR14);

(old ST)-+ (new WR15);

the interrupt input (INTREQ) is not

tested upon completion of the

BLWP instruction.

The TMS 9980A/TMS 9981 tests for

reset and load but does not test for

interrupt requests (INTREQ) upon

completion of the XOP instruction.

CLR 0 0 0 0 0 1 0 0 1 1 Clear operand No - Q-+ (SA)

SETO 0 0 0 0 0 1 1 1 0 0 Set to ones No - FFFF1s-+ (SA)

INV 0 0 0 0 0 1 0 1 0 1 Invert Yes 0-2 (SA)-+ (SA)

NEG 0 0 0 0 0 1 0 1 0 0 Negate Yes 0-4 -(SA)-+ (SA)

ABS 0 0 0 0 0 1 1 1 0 1 Absolute value* No 04 l(SA)i-+ (SA)

SWPB 0 0 0 0 0 1 1 0 1 1 Swap bytes No - (SA), bits 0 thru 7-+ (SA), bits

8 thru 15; (SA), bits 8 thru 15-+

(SA), bits 0 thru 7.

INC 0 0 0 0 0 1 0 1 1 0 Increment Yes 0-4 (SA)+ 1-+ (SA)

INCT 0 0 0 0 0 1 0 1 1 1 Increment by two Yes 04 (SA)+ 2-+ (SA)

DEC 0 0 0 0 0 1 1 0 0 0 Decrement Yes 04 (SA) - 1-+ (SA)

DECT 0 0 0 0 0 1 1 0 0 1 Decrement by two Yes 04 (SA) - 2-+(SA)

xt 0 0 0 0 0 1 0 0 1 0 Execute No - Execute the instruction at SA.

•Operand is compared to zero for status bit.
t If additional memory words for the execute instruction are required to define the operands of the instruction located at SA, these words

will be accessed from PC and the PC will be updated accordingly. The instruction acquisition signal (IAO) will not be true when the 9900
accesses the instruction at SA. Status bits are affected in the normal manner for the instruction executed.

CRU MULTIPLE-Brr INSTRUCTIONS

0 2 3 4 5 6 7 8 9 10 11 12 13 14

General format: OPCODE c Ts s

The C field specifies the number of bits to be transferred. If C = 0, 16 bits will be transferred. The CRU
base register (WR 12, bits 3 through 14) defines the starting CRU bit address. The bits are transferred serially
and the CRU address is incremented with each bit transfer, although the contents of WR 12 is not affected.
T 8 and S provide multiple mode addressing capability for the source operand. If 8 or fewer bits are transferred
(C = 1 through 8), the source address is a byte address. If 9 or more bits are transferred (C = 0, 9 through
15), the source address is a word address. If the source is addressed in the workspace register indirect auto
increment mode, the workspace register is incremented by 1 if C = 1 through 8, and is incremented by 2
otherwise.

15

8-132 9900 FAMILY SYSTEMS DESIGN

Product Data Book 9900 INSTRUCTION SET

RESULT STATUS
OP CODE

MNEMONIC MEANING COMPARED BITS DESCRIPTION
0 1 2 3 4 5

TOO AFFECTED

LDCR 0 0 1 1 0 0 Load communcation Yes 0-2.st Beginning with LSB of (SA), transfer the

register specified number of bits from (SA) to

the CRU.

STCR 0 0 1 1 0 1 Store communcation Yes 0-2.st Beginning with LSB of (SA), transfer the

register specified number of bits from the CRU to

(SA). Load unfilled bit positions with 0.

tsT5 is affected only if 1 .;; C.;; 8.

CRU SINGLE-BIT INSTRUCTIONS

.o 2 3 4 5 6 7 s 9 10 11 12 13 14 15

General format: OP CODE SIGNED DISPLACEMENT

CRU relative addressing is used to address the selected CRU bit.

STATUS
OP CODE

MNEMONIC MEANING BITS DESCRIPTION
0 1 2 3 4 5 6 7

AFFECTED

SBO 0 0 0 1 1 1 0 1 Set bit to one - Set the selected CRU output bit to 1.

SBZ 0 0 0 1 1 1 1 0 Set bit to zero - Set the selected CRU output bit to 0.

TB 0 0 0 1 1 1 1 1 Test bit 2 If the selected CR U input bit = 1, set ST2.

JUMP INSTRUCTIONS

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General format: OP CODE DISPLACEMENT

Jump instructions cause the PC to be loaded with the value selected by PC relative addressing if the bits
of ST are at specified values. Otherwise, no operation occurs and the next instruction is executed since PC
points to the next instruction. The displacement field is a word count to be added to PC. Thus, the jump
instruction has a range of -128 to 127 words from memory-word address following the jump instruction. No
ST bits are affected by jump instruction.

9900 FAMILY SYSTEMS DESIGN 8-133

9900 INSTRUCTION SET Product Data Book

OP CODE
MEANING ST CONDITION TO LOAD PC MNEMONIC

0 1 2 3 4 5 6 7

JEQ 0 0 0 1 0 0 1 1 Jump equal ST2 = 1

JGT 0 0 0 1 0 1 0 1 Jump greater than ST1=1

JH 0 0 0 1 1 0 1 1 Jump high STO = 1 and ST2 = 0

JHE 0 0 0 1 0 1 0 0 Jump high or equal STO = 1 or ST2 = 1

JL 0 0 0 1 1 0 1 0 Jump low STO = 0 and ST2 = 0

JLE 0 0 0 1 0 0 1 0 Jump low or equal STO = 0 or ST2 = 1

JLT 0 0 0 1 0 0 0 1 Jump less than ST1 = 0 and ST2 = 0

JMP 0 0 0 1 0 0 0 0 Jump unconditional unconditional

JNC 0 0 0 1 0 1 1 1 Jump no carry ST3 = 0

JNE 0 0 0 1 0 1 1 0 Jump not equal ST2 = 0

JNO 0 0 0 1 1 0 0 1 Jump no overflow ST4 = 0

JOC 0 0 0 1 L 0 0 0 Jump on carry ST3 = 1

JOP 0 0 0 1 1 1 0 0 Jump odd parity ST5 = 1

SHIFT INSTRUCTIONS

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General format: OP CODE c w

If C=O, bits 12 through 14 ofWRO contain the shift count. lfC=O and bits 12 through 15 ofWRO=O,
the shift count is 16.

RESULT STATUS
OP CODE

MNEMONIC MEANING COMPARED BITS DESCRIPTION
0 1 2 3 4 5 6 7

TOO AFFECTED

SLA 0 0 0 0 1 0 1 0 Shift left arithmetic Yes 0-4 Shift (W) left. Fill vacated bit

positions with 0.

SRA 0 0 0 0 1 0 0 0 Shift right arithmetic Yes 0-3 Shift (W) right. Fill vacated bit

positions with original MSB of (W).

SRC 0 0 0 0 1 0 1 1 Shift right circular Yes 0-3 Shift (W) right. Shift previous LSB

into MSB.

SRL 0 0 0 0 1 0 0 1 Shift right logical Yes 0-3 Shift (W) right. Fill vacated bit

positions with O's.

IMMEDIATE REGISTER INSTRUCTIONS

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General format: . OP CODE N w
IOP

RESULT STATUS
OP CODE

MNEMONIC MEANING COMPARED BITS DESCRIPTION
0 1 2 3 4 5 6 7 8 9 10

TOO AFFECTED

Al 0 0 0 0 0 0 1 0 0 0 1 Add immediate Yes 0-4 (W) + IOP~(W)

ANDI 0 0 0 0 0 0 1 0 0 1 0 AND immediate Yes 0-2 (W) AND IOP~ (W)

Cl 0 0 0 0 0 0 1 0 1 0 0 Compare Yes 0-2 Compare (W) to IOP and set

immediate appropria~e status bits

LI 0 0 0 0 0 0 1 0 0 0 0 Load immediate Yes 0-2 IOP~(W)

ORI 0 0 0 0 0 0 1 0 0 1 1 OR immediate Yes 0-2 (W) OR IOP ~ (W)

8-134 9900 FAMILY SYSTEMS DESIGN

Product Data Book 9900 INSTRUCTION SET

INTERNAL REGISTER LOAD IMMEDIATE INSTRUCTIONS

0 2 3 4 5 6 7 8 .. 9 10 11 12 13 14 15

General format:
OP CODE N

IOP

OPCODE
MNEMONIC MEANING DESCRIPTION

0 1 2 3 4 5 6 7 8 9 10

LWPI 0 0 0 0 0 0 1 0 1 1 1 Load workspace pointer immediate IOP-+ (WP), no ST bits affected

LIMI 0 0 0 0 0 0 1 1 0 0 0 Load interrupt mask IOP, bits 12 thru 15 -+STl 2

thru ST15

INTERNAL REGISTER STORE INSTRUCTIONS

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General format: OP CODE N w

No ST bits are affected.

OP CODE
MNEMONIC MEANING DESCRIPTION

0 1 2 3 4 5 6 7 8 9 10

STST 0 0 0 0 0 0 1 0 1 1 0 Store status register (ST)-+ (W)

STWP 0 0 0 0 0 0 1 0 1 0 1 Store workspace pointer (WP)-+(W)

RETURN WORKSPACE POINTER (RTWP) INSTRUCTION

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General format: 0 0 0 0 0 0 0 0 N

The RTWP instruction causes the following transfers to occur:
(WR 15)~(ST)
(WR 14)~(PC)
(WR 13)~(WP)

g ...

EXTERNAL INSTRUCTIONS

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General format: OP CODE N

9900 FAMILY SYSTEMS DESIGN 8-135

9900 INSTRUCTION SET Product Data Book

External instructions cause the three most-significant address lines (AO through A2) to be set to the
below-described levels and the CRUCLK line to be pulsed, allowing external control functions to be initiated.

STATUS ADDRESS
OPCODE

MNEMONIC MEANING BITS DESCRIPTION BUS
0 1 2 3 4 5 6 7 8 9 10

AFFECTED AO A1

IDLE 0000001 1 0 1 0 Idle Suspend TMS 9900 L H

instruction execution until

an interrupt, LOAD, or

RESET occurs

RSET 0 0 0 0 0 0 1 1 0 1 1 Reset 12-15 o-+ ST12 thru ST15 L H

CKOF 0 0 0 0 0 0 1 1 1 1 0 User defined --- H H

CKON 0 0 0 0 0 0 1 1 1 0 1 User defined --- H L

LREX 0 0 0 0 0 0 1 1 1 1 1 User defined --- H H

IDLE INSTRUCTION - TMS 9940

0 2 3 4 5 6 7 8 9 10 11 12 13 14

General format: OPCODE N

The IDLE instruction stops the TMS 9940 until an interrupt or RESET occurs. See the Power Down section
for use of the IDLE instruction.

A2

L

H

L

H

H

15

8-136 9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

·8

TMS 9901 JL, NL Peripheral
and Interface-Circuits PROGRAMMABLE SYSTEMS INTERFACE

1. INTRODUCTION

1.1 DESCRIPTION

1.2

1.3

8-138

The TMS 9901 Programmable Systems Interface (PSI) is a multifunctional component designed to provide
low cost interrupt and 1/0 ports and an interval timer for TMS 9900-family microprocessor systems. The
TMS 9901 is fabricated using N-channel silicon-gate MOS technology. The TMS 9901 is TTL-compatible on
all inputs and outputs, including the power supply (+5 V) and single-phase clock.

KEY FEATURES

• Low Cost
• 9900-Family Peripheral
• Performs Interrupt and 1/0 Interface functions:

- Six Dedicated Interrupt Lines
- Seven Dedicated 1/0 Lines
- Nine Programmable Lines as 1/0 or Interrupt
- Up to 15 Interrupt Lines
- Up to 22 Input Lines
- Up to 16 Output Lines

• Easily Cascaded for Expansion
• Interval or Event Timer

• Single 5 V Power Supply
A II ·--· ··- __ _. """· ___ ... _ ..,..-r1 ""'-----•!LI -
• ••• •••r--•- -·•-,_.,...._ •, I I._ "'Vlllt'Y"IMIV

• Standard 40-Pin Plastic or Ceramic Package
• N-Channel Silicon-Gate MOS Technology .

APPLICATION OVERVIEW

The following example of a typical application may help introduce the user to the TMS 9901 PSI. Figure 1 is a
block diagram of a typical application. Each of the ideas presented below is described in more detail in later
sections of this manual.

The TMS 9901 PSI interfaces to the CPU through the Communications Register Unit (CRU) and the interrupt
control lines as shown in Figure 1. The TMS 9901 occupies 32 bits of CRU input and output space. The five
least significant bits of address bus are connected to the S lines of the PSI to address one of the 32 CRU bits of
the TMS 9901. The most significant bits of the address bus are decoded on CRU cycles to select the PSI by
taking its chip enable (CE) line active (LOW).

Interrupt inputs to the TMS 9901 PSI are synchronized with~. inverted, and then ANDed with the appropriate
mask bit. Once every~ clock time, the prioritizer looks at the 15 interrupt input AND gates and generates the
interrupt control code. The interrupt control code and the interrupt request line constitute the interrupt
interface to the CPU.

After reset all 1/0 ports are programmed as inputs. By writing to any 1/0 port, that port will be programmed as
an output port until another reset occurs, either software or hardware. Data at the input pins is buffered on to
the TMS 9901. Data to the output ports is latched and then buffered off-chip by the PS l's MOS-to-TTL buffers.

The interval timer on the TMS 9901 is accessed by writing a ONE to select bit zero, (control bit) which puts
the PSI CRU interface in the clock mode. Once in the clock mode the 14-bit clock contents can be read or
written. Writing to the clock register will reinitialize the clock and cause it to start decrementing. When the
clock counts to zero, it will cause an interrupt and reload to its initial value. Reading the clock contents
permits the user to see the decrementer contents at that point in time just before entering the clock mode.
The clock read register is not updated when the PSI is in the clock mode.

9900 FAMILY SYSTEMS DESIGN

Peripheral TMS 9901 JL, NL
and Interface Circuits

PROGRAMMABLE SYSTEMS INTERFACE

I DEDICATED
1/0 PORTS

PROGRAMMABLE
LINES AS 1/0 OR

INTERRUPTS

6 DEDICATED
INTERRUPT

LINES

2. ARCHITECTURE

--------'-'A.;;;.;DD;;.;,RESS BUS AO- A14

CRU

TMS 9900

CPU

l iNIB

IC0-IC3

FIGURE 1- TYPICAL TMS 9901 PROGRAMMABLE
SYSTEM INTERFACE (PSll APPLICATION

DATA BUS

SYSTEM

MEMORY

DO ~015

The architecture of the TMS 9901 Programmable Systems Interface (PSI) is designed to provide the user
maximum flexibility when designating system 1/0 ports and interrupts. The TMS 9901 can be divided into four
subsystems: CRU interface, interrupt interface, input/output interface, and interval timer. Figure 2 is a
general block diagram of the TMS 9901 internal architecture. Each of the subsystems of the PSI is discussed
in detail in subsequent paragraphs.

2.1 CRU Interface

The CPU communicates with the TMS 9901 PSI via the CRU. The TMS 9901 occupies 32 bits in CRU read
space and 32 bits in CRU write space. Table 1 shows the mapping for CRU bit addresses to TMS 9901
functions.

The CRU interface consists of five address select lines (SO-S4), chip enable (CE), and the three CRU lines
(CRUIN, CRUOUT, CRUCLK). The select lines (SO-S4) are connected to the five least significant bits of the
address bus; for a TMS 9900 system SO-S4 are connected to A10-A14, respectively. Chip enable (CE) is
generated by decoding the most significant bits of the address bus on CRU cycles; for a 9900 based system
address bits 0-9 would be decoded. When CE goes active (LOW), the five select lines point to the CRU bit
being accessed. When CE is inactive (HIGH), the PSl's CRU interface is disabled.

NOTE

When CE is inactive (HIGH) the 9901 sets its CRUIN pin to high impedance and
disables CRUCLK from coming on chip. This means that CRUIN can be used as an
OR tied bus. When CE is high the 9901 will still see the select lines, but no command
action is taken.

In the case of a write operation, the TMS 9901 strobes data off the CRUOUT line with CRUCLK. For a read
operation, the data is sent to the CPU on the CRUIN line.

9900 FAMILY SYSTEMS DESIGN 8-139

.... g

TMS 9901 JL, NL
PROGRAMMABLE SYSTEMS INTERFACE

INTERRUPT
CODE

INTERFACE

Kr

A

PRIORITIZER
AND

ENCODER
(15 to 41

INTERVAL
TIMER

CRU
LOGIC

1
I
I
I
l

v-
f'v-1

~
I(

....----
MR
A E

S G

v1-K I
s Iv! T

~ 14--

~

...-

~

FIGURE 2-TMS 9901 PSI BLOCK DIAGRAM

GROUP
1

BUFFERS

GROUP
2

BUFFERS

GROUP
3 ·--r""--.......... _, ,...,

~

Peripheral
and lnterf ace Circuits

~

i'NT7/P15

INTB/P14

INT9/P13

INT10/P12

INT11/P11

fN'fi2/P10

INT13/P9

INT14/PB

INT15/P7

P6

P5

P4

Pl

----P2

---•Pl
i.-----+-1PO

Several TMS 9901 devices may be cascaded to expand 1/0 and interrupt handling capability simply by
connecting all CRU and address select lines in parallel and providing each device with a unique chip enable
signal: the chip enable (CE) is generated by decoding the high-order address bits (AO-A9) on CRU cycles .

For those unfamiliar with the CRU concept, the following is a discussion of how to build a CRU interface. The
CRU is a bit addressable (4096 bits), synchronous, serial interface over which a single instruction can transfer
'between one and 16 bits serially. Each one of the 4096 bits of the CRU space has a unique address and can
be read and written to. During multi-bit CRU transfers, the CRU address is incremented at the beginning of
each CRU cycle to point to the next consecutive CRU bit.

8-140 9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

TMS 9901 JL, NL
PROGRAMMABLE SYSTEMS INTERFACE

TABLE 1

SELECT BIT ASSIGNMENTS

SELECT BIT So SI sl S3 S4 CRU Read Data CRU Write Data

0 0 0 0 0 0 CONTROL BIT(1) CONTROL BIT(1)

1 0 0 0 -o 1 INT1/CLK 1(2) Mask 1/CLK1 (3)

2 0 0 0 0 INT2/CLK2 Mask 2/CLK2

3 0 0 0 INT3/CLK3 Mask 3/CLK3

4 0 0 0 0 INT4/CLK4 Mask 4/CLK4

5 0 0 0 1 INT5/CLK5 Mask 5/CLK5

6 0 0 0 INT6/CLK6 Mask 6/CLK6

7 0 0 1 1 INT7/CLK7 Mask 7/CLK7

s 0 0 0 0 INTS/CLKS Mask S/CLKS
g 0 0 0 1 INTg/CLKg Mask g/CLKg

10 0 0 0 INT10/CLK 10 Mask 10/CLK10

11 0 0 1 1 INT11/CLK11 Mask 11/CLK11

12 0 0 0 INT12/CLK 12 Mask 12/CLK 12

13 0 0 1 INT13/CLK13 Mask 13/CLK 13

14 0 1 0 INT14/CLK 14 Mask 14/CLK14

15 0 1 1 1 INT15/INTREQ (7 l Mask 15/RST2(4)

16 0 0 0 0 PO lnput(5) PO Output(6)

17 0 0 0 1 P1 Input P1 Output

1S 0 0 0 P2 Input P2 Output
1g 0 0 1 1 P3 Input P3 Output

20 0 0 0 P4 Input P4 Output

21 0 0 P5 Input P5 Output

22 0 0 P6 Input P6 Output

23 0 1 1 P7 Input P7 Output

24 0 0 0 PS Input PS Output

25 0 0 pg Input pg Output

26 0 0 P10 Input P10 Output

27 0 1 1 P11 Input P11 Output

2S 0 0 P12 Input P12 Output
2g 0 1 P13 Input P13 Output

30 0 P14 Input P14 Output

31 P15 Input P15 Output

NOTES:

(1) O Interrupt Mode 1 =Clock Mode

(2) Data present on INT input pin (or clock value) will be read regardless of mask value.

(3) While in the Interrupt Mode (Control Bit= 0) writing a "1" into mask will enable interrupt; a "O" will disable.

8 (4) Writing a zero to bit 15 while in the clock mode (Control Bit x 1) executes a software reset of the 1/0 pins.

(5) Data present on the pin will be read. Output data can be read without affecting the data.

(6) Writing data to the port will program the port to the output mode and output the data.

(7) INTREO is the inverted status of the""i"N'TREO pin.

9900 FAMILY SYSTEMS DESIGN 8-141

8

TMS 9901 JL, NL Peripheral
and Interface Circuits

PROGRAMMABLE SYSTEMS INTERFACE

When a 99XX CPU executes a CRU Instruction, the processor uses the contents of workspace register 12 as
a base address. (Refer to the 9900 Microprocessor Data Manual for a complete discussion on how CRU
addresses are derived.) The CRU address is brought out on the 15-bit address bus; this means that the least
significant bit of R12 is not brought out of the CPU. During CRU cycles, the memory control lines (MEMEN,
WE, and OBIN) are all inactive; MEMEN being inactive (HIGH) indicates the address is not a memory address
and therefore is a CRU address or external instruction code. Also, when MEMEN is inactive (HIGH) and a
valid address is present, address bits AO-A2 must all be zero to constitute a valid CRU address; if address bits
AO-A2 are other than all zeros, they are indicating an external instruction code. In summary, address bits
A3-A 14 contain the CRU address to be decoded, address bits AO-A2 must be zero and MEMEN must be
inactive (HIGH) to indicate a CRU cycle .

. 2.2 Interrupt Interface

2.3

8-142

A block diagram of the interrupt control section is shown in Figure 3. The interrupt inputs (six dedicated,
INT1-INT6, and nine programmable) are sampled on the falling edge of"'¢ and latched onto the chip for one"'¢
time by the SYNC LATCH, each "°;j; time. The output of the sync latch is inverted (interrupts are LOW active)
and ANDed with its respective mask bit (MASK = 1, INTERRUPT ENABLED). On the rising edge of ;j;, the
prioritizer and encoder senses the masked interrupts and produces a four-bit encoding of the highest priority
interrupt present (see Tables 2 and 3). The four-bit prioritized code and INTREQ are latched off-chip with a
sync latch on the falling edge of the next~. which ensures proper synchronization to the processor.

Once an interrupt goes active (LOW), it should stay active until the appropriate interrupt service routine
explicitly turns off the interrupt. If an interrupt is allowed to go inactive before the interrupt service routine is
entered, an erroneous interrupt code could be sent to the processor. A total of five clock cycles occur between
tin::: ti111c ii1c Cru ~d111µi~~ u1~ ~ 11ne ana me ume it samp1es me lljU-lt.;::i Imes. t-or example, it an
interrupt is active and the CPU recognizes that an interrupt is pending, but before the CPU can sample the
interrupt control lines the interrupt goes inactive, the interrupt control lines will contain an incorrect code.

The interrupt mask bits on the TMS 9901 PSI are individually set or reset under software contro!. Any unused
interrupt line should have its associated mask disabled to avoid false interrupts: To do this, the control bit
(CRU bit zero), is first set to a zero for interrupt mode operation. Writing to TMS 9901 CRU bits 1-15 will
enable or disable interrupts 1-15, respectively. Writing a one to an interrupt mask will enable that interrupt;
writing a zero will disable that interrupt. Upon application of RST1 (power-up reset), all mask bits are reset
(LOW), the interrupt code is forced to all zeros, and INTREQ is held HIGH. Reading TMS 9901 CRU bits 1-15
indicates the status of the respective interrupt inputs; thus, the designer can employ the unused (disabled)
interrupt input lines as data inputs (true data in).

Input/Output Interface

A block diagram of the TMS 9901 1/0 interface is shown in Figure 4. Up to 16 individually controlled, 1/0 ports
are available (seven dedicated, PO-P6, and nine programmable) and, as discussed above, the unused
dedicated interrupt lines also can be used as input lines (true data in). Thus the 9901 can be configured to
have more than 16 inputs. RST1 (power-up reset) will program all 1/0 ports to input mode. Writing data to a
port will automatically switch that port to the output mode. Once programmed as an output, a port will remain
in output mode until RST1 or RST2 (command bit) is executed. An output port can be read and indicates the
present state of the pin. A pin programmed to the output mode cannot be used as an input pin: Applying an
input current to an output pin may cause damage to the TMS 9901. The TMS 9901 outputs are latched and
buffered off-chip, and inputs are buffered onto the chip. The output buffers are MOS-to-TTL buffers and can
drive two standard TTL loads.

9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

TMS 9901 JL, NL
PROGRAMMABLE SYSTEMS INTERFACE

- - - - - - ,:;

u
G
0
...J

:::>
a:
u

:::? -- --- < a:
CJ
<
0
~
u
0 _,
al
z
0
t= u

~ w
(J)

:::> _,
a: 0 u a:

I-z
0 u
I-a.
:>
a:
a:
w
I-cc
~ w

00 iii zo ,; a. <t: u
z ...
w 0

en
en
(J)

:::?
I-
I

M

,:; w
a:
:>
CJ
ii:

U I U I U I U I U I
zU zU zU zU zU
>- I- >- I- ~~ >- I- >- I-(./) < (./) < (./) :J (./) :J

...J ...J

g ..

'~
0 N ("')

~ ~ ~ ~

9900 FAMILY SYSTEMS DESIGN 8-143

~s

TMS 9901 JL, NL Peripheral

PROGRAMMABLE SYSTEMS INTERFACE and Interface Circuits

INTERRUPT/STATE

RST 1

INT 1

INT 2

INT 3/CLOCK

INT 4

INT 5

INT 6
-
INT 7
-
INT 8
-
INT 9
-
INT 10

INT 11

INT 12
-
INT 13

INT 14

INT 15
11i1n 11111-r,-,....,...., in.,...

INTERRUPT

CODE FUNCTION

(ICO-IC2)

1 1 0 Level 4

1 0 1 Level 3

1 0 0 Level 2

0 1 1 Level 1

0 0 1 Reset

0 1 0 Load
0 0 0 Reset

1 1 1 No-Op

8-144

TABLE 2

INTERRUPT CODE GENERATION

PRIORITY lco 1c1 1c2
- 0 0 0

1 (HIGHEST) 0 0 0

2. 0 0 1

3 0 0 1

4 0 1 0

5 0 1 0

6 0 1 1

7 0 1 1

8 1 0 0

9 1 0 0

10 1 0 1

11 1 0 1

12 1 1 0

13 1 1 0

14 1 1 1

15 (LOWEST) 1 1 1

TABLE 3

TMS 9980A OR TMS 9981 INTERRUPT LEVEL DATA

VECTOR LOCATION

(MEMORY ADDRESS DEVICE ASSIGNMENT

IN HEX)

0 0 1 0 External Device

0 0 0 c External Device

0 0 0 8 External Device

0 0 0 4 External Device

0 0 0 0 Reset Stimulus

3 F F c Load Stimulus

0 0 0 0 Reset Stimulus

------ ------

lc3 INTREO

0 1

1 0

0 0

1 0

0 0

1 0

0 0

1 0

0 0

1 0

0 0

1 0

0 0

1 0

0 0

1 0

INTERRUPT MASK VALUES

TO ENABLE

(ST12 THROUGH ST15)

4 Through F

3 Through F

2 Through F

1 Through F

Don't Care

Don't Care

Don't Care

9900 FAMILY SYSTEMS DESIGN

Perlpheral TMS 9901 JL, NL
and Interface Circuits PROGRAMMABLE SYSTEMS INTERFACE

CRU
INTERFACE

CRU
LOGIC

1/0
CONTROL

DATA
LATCH

1/0
CONTROL

DATA
LATCH

FIGURE 4-TMS 99011/0 INTERFACE SECTION

EQUIVALENT OF 1/0 INPUTS EQUIVALENT OF!J/0 OUTPUTS

Vee

INPUT

o---------..t

FIGURE 5 - INPUT AND OUTPUT EQUIVALENTS

9900 FAMILY SYSTEMS DESIGN

1/0 PORTS
(PO-P15 MAXI

8-145

g ..

8

TMS 9901 JL, NL Peripheral
and Interface Circuits

PROGRAMMABLE SYSTEMS INTERFACE

2.4 Programmable Ports

A total of nine pins (INT7/P15-INT15/P7) on the TMS 9901 are user-programmable as either 1/0 ports or
interrupts. These pins will assume all characteristics of the type pin they are programmed to be (as described
in Sections 2.2 and 2.3). Any pin which is not being used for interrupt should have the appropriate interrupt
mask disabled (mask = O) to avoid erroneous interrupts to the CPU. To program one of the pins as an
interrupt, its interrupt mask simply is enabled and the line may be used as if it were one of the dedicated
interrupt lines. To program a pin as an 1/0 port, disable the interrupt mask and use that pin as if it were one of
the dedicated 1/0 ports.

2.5 Interval Timer

8-146

Figure 6 is a block diagram of the TMS 9901 interval timer section. The clock consists of a 14-bit counter that
decrements at a rate of f(~)/64 (at 3 MHz this results in a maximum interval of 349 milliseconds with a
resolution-of 21.3 microseconds). The clock can be used as either an interval timer or an event timer. To
access the clock, select bit zero (control bit) must be set to a one. The clock is enabled to cause interrupts by
writing a nonzero value to it and is the!!. disabled from interrupting by writin.g zero to it or by a RST1. The clock
starts operating at no more than two cf> times after it is loaded. When the clock decrementer is running, it will
decrement down to zero and issue a level-3 interrupt. The decrementer, when it becomes zero, will also be
reloaded from the clock register and decrementing will start again. (The zero state is counted as any other
decrementer state.) The decrementer always runs, but it will not issue interrupts unless enabled; of course,
the contents of the unenabled clock read register are meaningless.

CRU
LOGIC

CLOCK REGISTER

DEC ::Q CLOCK
.--------INTERRUPT

CLK
CLOCK DECREMENTER

CLK

READ REGISTER

CLOCK MODE

11¢1
64 ---------1

FIGURE 6-TMS9901 INTERVAL TIMER SECTION

9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

TMS 9901 JL, NL
PROGRAMMABLE SYSTEMS INTERFACE

The clock is accessed by writing a one into the control bit (TMS 9901 CRU bit zero) to force CRU bits 1-15 to
clock mode. Writing a nonzero value into the clock register then enables the clock and sets its time period.
When the clock is enabled, it interrupts on level 3 and external level-3 interrupts are disabled. The mask for
level 3 in the PSI must be set to a one so that the processor will see the clock interrupt. When the clock
interrupt is active, the clock mask (mask bit 3) must be written into with either a one or zero to clear 'he
interrupt; writing a zero also disables further interrupts.

If a new clock value is required, a new 14-bit clock start value can be programmed by executing a CRU write
operation to the clock register. During programming, the decrementer is restarted with the current start value
after each start value bit is written. A timer restart is easily implemented by writing a single bit to any of the
clock bits. The clock is disabled by RST1 (power up reset) or by writing a zero value into the clock register;
RST2 does not affect the clock.

The clock read register is updated every time the decrementer decrements when the TMS 9901 is not in clock
mode. There are two methods to leave the clock mode: first, a zero is written to the control bit; or second, a
TMS 9901 select bit greaterthan15 is accessed. Note that when CE is inactive(HIGH),the PSI is not disabled
from seeing the select lines. As the CPU is addressing memory, A 10-A 14 could very easily have a value of 15
or greater - A 10-A 14 are connected to the select lines; therefore, the TMS 9901 interval timer section can
"think" it is out of clock mode and update the clock read register. Very simply, this means that a value cannot
be locked into the clock read register by writing a one to CRU select bit zero (the control bit). The 99of must
be out of clock mode for at least one timer period to ensure that the contents of the clock read register has
been updated. This means that to read the most recent contents of the decrementer, just before reading, the
TMS 9901 must not be in the clock mode. The only sure way to manipulate clock mode is to use the control
bit (select bit zero). When clock mode is reentered to access the clock read register, updating of the
read register will cease. This is done so that the contents of the clock read register will not change while it is
being accessed.

2.6 Power-Up Considerations

During hardware reset, RST1 must be active (LOW) for a minimum of two clock cycles to force the TMS 9901
into a known state. RST1 will disable all interrupts, disable the clock, program all 1/0 ports to the input mode,
and force ICO-IC3 to all zeros with INTREQ held HIGH. The system software must enable the appropriate
interrupts, program the clock, and configure the 1/0 ports as required. After initial power-up the TMS 9901 is
accessed only as needed to service the clock, enable (disable) interrupts, or read (write) data to the 1/0 ports.
The 1/0 ports can be reconfigured by use of the RST2 software reset command bit.

9900 FAMILY SYSTEMS DESIGN 8-147

... s

TMS 9901 JL, NL Peripheral
and Interface Circuits

PROGRAMMABLE SYSTEMS INTERFACE

2. 7 Pin Descriptions

Table 4 defines the TMS 9901 pin assignments and describes the function of each pin.

SIGNATURE PIN 1/0

INTREQ 11 OUT

ICO (MSB) 15 OUT
I Cl 14 OUT
IC2 13 OUT
IC3 (LSB) 12 OUT

CE 5 IN

so 39 IN
Sl 36 IN

S2 35 IN

S3 25 IN
<:A .., .. 11\1

CRUIN 4 OUT

CRUOUT 2 IN

CRUCLK 3 IN

R°S"fl IN

Vee 40

Vss 16

~ 10 IN

TNTl 17 IN

iNi2 18 IN

fNT3 9 IN

INl4 8 IN

fNT5 7 IN

Jl\IT6 6 IN

INT7/ P15 34 1/0
INT8/ P14 33 1/0
1Ni9/ P13 32 1/0
ll'i!T10/P12 31 1/0
ffi!Tl 1/Pl 1 30 1/0
1Ni12/P10 29 1/0
fNT13/P9 28 1/0
INT14/P8 27 1/0
INT15/P7 23 1/0

PO 38 1/0
Pl 37 1/0
P2 26 1/0
P3 22 1/0
P4 21 1/0
P5 20 1/0
P6 19 1/0

8-148

TABLE4

TMS 9901 PIN ASSIGNMENTS AND FUNCTIONS

DESCRIPTION

INTERRUPT Request. When active (low)

~ indicates that an enabled interrupt Rsn 1 ~ u 40 Vee

has been received. fliJ'fITTO will stay active eRUOUT 2 [39 so

until all enabled interrupt inputs are re· eRUeLK 3 38 PO

moved. eRUIN 4 37 P1

Interrupt Code lines. ICO-IC3 output the "CE s.., 36 S1

binary code corresponding to the highest 006 6 ~ 35 S2

priority enabled interrupt. If no enabled INT5 7 34 M7/P15

interrupts are active ICO-IC3 = (1,1,1,1). INT4 8 33 008/P14

Chip Enable. When active (low) data may be
INT3 9 32 M9/P13

transferred through the CRU interface to
¢ 10 31 iiifr10/P12

the CPU. CE has no effect on the interrupt
rNl"REa 11 30 INT11/P11

1e3 12 29 0012/P10
control section. J 28 M13/P9 1e2 13
Address select lines. The data bit being

1e1 14 j 27 INT14/P8
accessed by the CRU interface is specified

1eo 15 J 26 P2
by the 5-bit code appearing on SO-S4.

16 J 25 SJ Vss

iNT1 17 ~ 24 S4

INT2

:~1 I~::
INll:J/I'/

CRU data in (to CPU). Data specified by P6 Pl
SO-S4 is transmitted to the CPU by CRUIN.

PS P4
When CE is not active CRUIN is in a high-
impedance state.

CRU data out (from CPU). When CE is active, data present on the CRUOUT input will be sampled during

CRUCLK and written into the command bit specified by SO-S4.

CRU Clock (from CPU). CRUCLK specifies th<it valid data is present on the CRUOUT line.

Power Up Reset. When active (low) RST1 resets all interrupt masks to "O", resets ICO - IC3 = (0, 0, O, 0),
INTERQ = 1 disables the clock, and programs all 1/0 ports to inputs. RSTl has a Schmitt-triger input tn
allow implementation with an RC circuit as shown in Figure 7.

Supply Voltage. +5 V nominal.

Ground Reference

System clock (~3 in TMS 9900 system, CK OUT in TMS 9980 system!.

. Group 1, interrupt inputs.

When active (Low) the signal is ANDed with its corresponding
mask bit and if enabled sent to the interrupt control section.

ii'JTlhas highest priority.

Group 2, programmable interrupt (active low) or 1/0 pins (true logic). Each pin is individually programmable as

an interrupt, an input port, or an output port.

Group 3, 1/0 ports (true logic). Each pin is individually programmable as an input port or an output port.

9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

TMS 9901 JL, NL
PROGRAMMABLE SYSTEMS INTERFACE

3. APPLICATIONS

3.1 Hardware Interface

Figure 7 illustrates the use of a TMS 9901 PSI in a TMS 9900 system. The TIM 9904 clock generator/driver
syncs the RESET for both the TMS 9901 and the CPU. The RC circuit on the TIM 9904 provides the power-up
and pushbutton RESET input to the clock chip. Address lines AO-A9 are decoded on CRU cycles to select the
TMS 9901. Address lines A 10-A 14 are sent directly to PSI select lines SO-S4, respectively, to select which
TMS 9901 CRU bit is to be accessed.

Figure 8 illustrates the use of a TMS 9901 with a TMS 9985 CPU. No TIM 9904 is needed with the TMS 9985,
so the reset circuitry is connected directly to the system reset line. The clock (-;j;} then comes from the
TMS 9985. All other circuitry is identical to the TMS 9900 system.

TIM 9904
Q CLOCK GENERATOR

0
<j>l -<j>4

TMS
9900
CPU

A10

A11

A12

A13

A14

~

RESET

9900 FAMILY SYSTEMS DESIGN

--"v 'V "'Vee

D

~~I'
;3 .--

) CRU
<P

AO-A9 DECODE I----- CE'
TMS
9901
PSI

so
S1

S2

.... SJ

.... S4
CRUOUT
CRUCLK

CRUIN

.... R"S"fi

FIGURE 7-TMS 9900/TMS 9901 INTERFACE

K
k

s YSTEM
TERRUPTS IN

1/0 PORTS

8-149

8~

I

·8

TMS 9901 JL, NL· Peripheral
and Interface Circuits

PROGR~AMMABLF SYSTFMS INTFRFACF

TMS
9985
CPU

A10

All

A12

A13

A14

"¢

RESET

~-~

A0-A9 :)

CRU
DECODE i--- -

CE

TMS
9901
PSI

so
Sl

S2

~ SJ

~ S4
CRUOUT

CRUCLK

CRUIN

¢
RSTl

J\1\1' '"'Vee

-

FIGURE 8-TMS 9985/TMS 9901 INTERFACE

K
K

s YSTEM
TERRUPTS IN

1/0 PORTS

3.2 Software Interface

8-150

Figure 9 lists the TMS 9900 code needed to control the TMS 9901 PSI. The code initializes the PSI to an
eight-bit input port, an eight-bit output port, and enables interrupt levels 1-6. The six dedicated interrupt pins
are all used for interrupts; their mask bits are set ON. The nine programmable pins are all used as 1/0 ports;
mask bits 7-15 remain reset. PO-P7 are programmed as an eight-bit output port, and P8-P15 are programmed
as an eight-bit input port.

Some code is added to read the contents of the clock read-register. The SBZ instruction takes the TMS 9901
out of clock mode long enough for the clock read register to be updated with the most recent decrementer
value. When clock mode is reentered, the decrementer will cease updating the clock read-register so that the
contents of the register will not be changing during a read operation.

The second section of code is typical code found in a clock interrupt service routine. All interrupts initially are
disabled by the routine. These functions are not necessary, but are usually done to ensure system integrity.
The interrupt mask should be restored as soon as the sensitive processing is complete. The interrupt is
counted in the variable COUNT and is then cleared by writing a one to mask bit 3. If a zero is written to mask bit
3 to clear the interrupt, clock interrupt will be disabled from that point onward, but the clock will continue to run.

9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

TMS 9901 JL, NL
PROGRAMMABLE SYSTEMS INTERFACE

ASSUMPTION:

• System uses clock at maximum interval (349 msec@ 3MHz)

• Interrupts 1-6 are used

• Eight bits are used as an output port, PO -P7

• Eight bits are used as an input port, P8 - Pl 5

• RSTl (power-up reset) has been applied

• The most significant byte of R 1 contains data to be output.

LI R 12, PSI BAS Set up CR U base to point to 9901
LDCR @CLKSET, 0 16-bit transfer, set clock to max interval

LDCR @INTSET, 7 Enter interrupt mode and enable interrupts 1 - 6

LI R12, PSIBAS+32 Set CRU base to 1/0 ports - output
LDCR Rl, 8 Output byte from R 1, program ports 0 - 7 as output

LI R12, PSIBAS+48 Set CRU base to 1/0 ports - input
STCR R2,8 Store a byte from input port into MSBT of R2

LI R12, PSIBAS Set CRU base to 9901
SBZ 0 Leave clock mode so decremented contents can be latched
INCT R12 Set CR U base to clock read register
SBO -1 Enter clock mode
STCR R3, 14 Read 14-bit clock read register contents into R3

CL KS ET DATA >FFFF
INTSET BYTE >7E

CLKINT $ Clock interrupt service routine - levp: 3
LIMI 0 Disable interrupts at CPU
INC @COUNT Count the clock interrupt
LI R12, PSIBAS Set CR U base to point to 9901 s~
SBZ 0 Enter interrupt mode

SBO 3 Clear clock interrupt

FIGURE 9 - TMS 9900 SAMPLE SOFTWARE TO CONTROL THE TMS 9901

9900 FAMILY SYSTEMS DESIGN 8-151

TMS 9901 JL, NL Peripheral
and Interface Circuits

DD~r"D I\ l\/fl\tf I\ DT D CVC'T'L'l\tfC Tl\.T'T'L'DL'A r'D
.1. .1.'-'-''-1" J.'-.£1..H'.1.H'.1.£1.LJLL u .1. u .1. LH'.1.u .1.l ~ .1. LJ.'\...1.'£1\....IL

3.3 Interval Timer Application

8-152

A TM 990/1 OOM microcomputer board application in which every 1 O seconds a specific task must be
performed is described below. The TMS 9901 clock is set to interrupt every 333.33 milliseconds. This is
accomplished by programming the 14-bit clock register to 300916 (15,62~ 0). The TM 990/100M micro
computer board system clock runs at 3 MHz, giving a clock resolution of 21.33 microseconds. A decrementer
period of 21.33 microseconds multiplied by 15,625 periods until interrupt gives 333.33 milliseconds between
interrupts. The interrupt service routine must count 30 interrupts before 1 O seconds elapses:

f(cp)
f(DEC)=

64
,

1 64
T(DEC)=--= = 21.3333 µs

f (DEC) 3,000,000

Figure 1 O is a flowchart of the software required to perform the above application, and Figure 11 is a listing of
the code. Following the flowchart, the main routine sets up all initial conditions for the 9901 and clock service
routine. The interrupt service routine decrements a counter in R2 which was initialized to 30. When the
counter in R2 decrements to zero, 1 O seconds have elapsed, and the work portion of the service routine is
entered. Note carefully that the work portion of the service routine takes longer than 333.33 ms which is the
time between clock interrupts from the 9901. Therefore, recursive interrupts are going to occur and some
facility must be provided to handle them. Loading a new workspace pointer and transferring the saved WP,
PC, and ST (R13-R15) from the interrupt workspace to the new workspace allows one level of recursion.

9900 FAMILY SYSTEMS DESIGN

-0
-0
0
0

'T'l ;....
3:::

~
rJJ
>-<:

~
tTl
3:::
rJJ

0
tTl
rJJ

G z

~
.......
tn
w

START

SET UP 9901 CLOCK
AND INTERRUPTS

CLOCK= >3009

R2 = 30

MAIN
PROGRAM INTERRUPTS

•THIS BRANCH REQUIRES LONGER TO EXECUTE THAN
THE INTERRUPT TIME (333.3 ms); THEREFORE, CODE
TO ALLOW ONE LEVEL OF RECURSION IS INCLUDED

CLEAR
INTERRUPT
FOR CLOCK

RETURN

NO

LEVEL 3

INTERRUPTS

DECREMENT
R2

INTERRUPTS

FIGURE 10-TMS9901 INTERVAL TIMER APPLICATION FLOWCHART

00 ...

YES

SET R2 = 30

LOAD WP

TRANSFER
SAVED R13- R15

FROM INTERRUPT
WORKSPACE

CLEAR

INTERRUPT

FOR CLOCK

SUBROUTINE

RETURN

I».,,
::J (!)
Q. ::::!.
-"C
::J ::J"
-(!)
(!)""
:::::. m
I» -
0
(!)

(")

~-
c
s=

~~
~~
Oen
Cl "°
~8
~~
~J~

~z
Oj~
~
tT'.1
en
~
en
~
tT'.1
~
en -z
~
tT'.1
~

~ n
tT'.1

TMS 9901 JL, NL
DDr\r'D L\ l\!Tl\!T t\ OT v CVC'rVl\!TC Tl\.T'rVDVt\ rv
.I. .1."-'-''-' .1.'\....I. ~.1.l'.l..1.l'.1...1. ~JJ..1.....1..1.....1 IJ .I. IJ .I. ..1.....1.1.l'.J.IJ .J..1.J. ..l...J.1.'-.J.'.l ~'--I.I . ..:..

rEOO 02EO
f t:.02 t=F•:::U
~·c.04 020C
t= t:. 06 t.11 uo
FE. o::: 021::.0
FEOii t=F6:::
FEUC 0•:'.01
FE. OE. ?A13
FE! I) 020E'.
FE.12 OOlE
FE14 o•-:·oc
FE16 Ul 00
FE1:3 :33Cl
FE1A 1EOO
~E.lC 1[I03

FD U2EO
FD FF 00
FD 0:3 00
FD 0 (I 0:3

Ll.1.IF'l >FF20

LI ~'.12' > 1 00

L..1.1.IP I .>Ff 6;::

L.I ;;:'.1 ' >7'A13

Ll r;;·2' 30

LI ~'.1 ·~·'
:- 1 no

LDCR Pl ' 15
:.;:BZ 0
:s:.E:LJ 3

Ll.1.IF-' I .>rFOO

L It'll ::::

DEVICE INITIALIZATION

9901 CRU BASE ADDRESS

INTERRUPT 3 WDRKSPAC~

DHTA FOR 333.33MS CLOCK

30 X 333.33MS = lOSEC

9901 CPU BASE ADDRESS

LOAD ·::;i·=.io 1 CLOCK
SET 9901 TO INTERRUPT MODE
UNMASK INTERRUPT 3

MAIN PROGRAM

MAIN PROGRAM WORKSPACE

ENABLE I r-n 0-3

Peripheral
and Interface Circuits

~--~INTERRUPTS

MAIN PROGRAM

NOTE: This code was assembled using the TM 990/402 line-by-line assembler.

FIGURE 11-INTERVAL TIMER

8-154 9900 FAMILY SYSTEMS DESIGN

Peripheral TMS 9901 JL, NL
and Interface Circuits

PROGRAMMABLE SYSTEMS INTERFACE

FTIHO 0.::.02
'..:-11::::~=:· i:::::02
rD::::4 1 DO:::
;::ri·:::t:-. o::::::::o
F fl::::::: 0202
F 11::::A OUlE
FD:=:C U460
FD::::i::. i::c::io

Dt::C 2
.JEO FD::::~

:s:BO
RHIP
LI p·-· . c. ~ 30

B ;J.1.>FC:::o

INTERRUPT 3 SERVICE ROUTINE
(WP= FF68)

COUNT DOWN 30 IN R2
IF ZERO THEN JUMP
CLEAR 9901 CLOCK INTEPRUPT
PETUr;.ni ro I rHERRUPTED ROUT I NE
RELOAD R2 FDR 10 SEC COUNT DOWN

BRANCH TO SUBROUTINE

ROUTINE TO BE PERFORMED EVERY 10 SECONDS, IT TAKES
LONGER THAN 333.33 MS WHICH IS 9901 CLOCK PERIOD'

FC80 02EO
FC:32 FF20
FC::::4 C:360
FC:36 FF:3E'.
FC:3:3 C:3AO
FC8A FF:34
FC8C C3EO
FC:::E FF:36
FC90 1 [10:3
FC92 0300
FC'~4 0 IJ 0:3

U1.IPI .>FF20 WORKSPACE FOR SUBROUTINE

MDV @.>FF82,R13 TRANSFER SAVED wp~pc,sT ~ROM

MDV ~>FF84,R14 INT 3 WORKSPACE

MD'•,•' ;;1> FF:36, R 15

:s:t:o ::::
LI P11 :3

CLEAR 9901 CLOCK INTERRUPT
HiftBLE UH 0-3

SUBROUTINE

ii>EC 0 RH.IP

FIGURE 11-(CONCLUDEDI

9900 FAMILY SYSTEMS DESIGN 8-155

I

g..-

TMS 9901 JL, NL
T\T\~f""1T\ "l\/fl\/f" nT T:' C'"'\TC',.,....T:'l\lfC' Tl\.T,.,....r.nni\ r'-T:'
r KV\J.1\..ftlVllVlfiDLC u .l u l. ClVl.u 11 ~ l. C.1\...['fi_.,C

4. TMS 9901 ELECTRICAL SPECIFICATIONS

Peripheral
and Interface Circuits

4.1 Absolute Maximum Ratings Over Operating Free Air Temperature Range (Unless Otherwise Noted)*

Supply voltage, Vee . -0.3 v to 1 o v
All inputs and output voltages . -0.3 V to 1 O V
Continuous power dissipation . 0.85 W
Operating free-air temperature range . 0°C to 70°C
Storage temperature range . -65°C to 150°C

"Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of
the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to
absolute maximum rated conditions for extended periods may affect device reliability.

4.2 Recommended Operating Conditions*

PARAMETER MIN NOM

Supply voltage, Vee 4.75

Supply voltage, Vss

High-level input voltage, V1H 2.0

Low-level input voltage, V1L Vss-.3

Operating free-air temperature, TA 0

4.3 Eit:clricc:si Ciiurc:sclerislics Over Fuii Range oi Recommendt:d Op.::rating Conditions
(Unless Otherwise Noted)*

PARAMETER TEST CONDITIONS MIN

IQH = -100µA 2.4
VQH High level output voltage

IQH = -200µA 2.2

VQL Low level output voltage loL = 3.2mA Vss

11 Input current (any input) V1 = OVtoVee

ICC(av) Average supply current from Vee lc(<t>) = 330 ns, TA= 70°e

C1 Small signal input capacitance, any input f= 1 MHz

4.4 Timing Requirements Over Full Range of Operating Conditions

PARAMETER MIN

tc(<f>) Clock cycle time 300

tr(<f>) Clock rise time 5

%1>) Clock fall time 10

tw.J.tHl Clock pulse width (high level) 225

tw(<f.il) Clock pulse width (low level) 45

tw(Ce) CRUCLK pulse width 100

tsu1 Setup time for CE, SO-S4, or CRUOUT before CRUCLK 100

tsu2 Setup time for interrupt before ~low 60

tsu3 Setup time for inputs before valid CRUIN 200

th Hold time for CE, SO-S4, or CRUOUT after CRUCLK 60

*NOTE: All voltage values are referenced to V55.

5.0

0

TYP

TYP

333

185

MAX UNIT

5.25 v
v

Vee v
0.8 v
70 oe

MAX UNIT

Vee v
Vee v

0.4 v
±100 µA

150 mA

15 pF

MAX UNIT

2000 ns

40 ns

40 ns

ns

300 ns

ns

ns

ns

ns

ns

8-156 9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

TMS 9901 JL, NL
PROGRAMMABLE SYSTEMS INTERFACE

4.5 Switching Characteristics Over Full Range of Recommended Operating Conditions

PARAMETER TEST CONDmON MIN TYP MAX UNIT

11&1 Propagation delay, CE to valid CRUIN CL= 100pF 300 ns

11&2 Propagation delay, SO-S4 to valid CRUIN CL= 100pF 320 ns

l_i&3 Propagation delay, q; low to valid iN'T'REO, ICO-IC3 CL= 100pF 110 ns

tpd Propagation delay, C1mCrR to valid data out (PO-P15) CL= 100pF 300 ns

lw(<f>L) -l I_ tr(<b) -J t.....J l- If(</>) '--- le(</>)

~~~--tj-~~---.1\_j= i..J 
r I I I Ii- fw(<J>H) -II 

lsu2--J i I -I I- lsu2 

-,N-T-.E-R-R-UP-T---\~1---------------------------'lr--------------------------------~ 

v 
I 

I I 
-I I- lpd3 lpd3 --I I--

-, N-T_R_E_Q ________________________ ..... ~~' -------------------------1---1~ 

.... I·----~· I~ tsu1 
____ 1 I ______ I-- tpd1 ---j 

CE \~' ____ :...__ __ / t_I ---------
1 

-1 l-tw(CC) 

CRUCLK J; - \r--------
I I I 

-I tsu1 I- j... th -I r- toc12 ---J 
~'!fllll:l/J..r-TT~r'P"'lr----VA __ Ll_D_A_D_D_R_E_SS ___ Wl/lllllllJ.._v_A_L_l_D_A_D_D_R_E_SS ______________ ~x 

SO-S4 I I I I 
I I 
1 I I r- lsu3 -J 

rNT1-INT15 PO-P1s I I I 
. I I I 

~------.....,...,V_A_L_ID_l_N_P-UT __ D_A-TA------x 

I I I I 

CRUIN I I I 

~----V-A_L_I D--CR_U_l_N _____ x 

j-tsu1-l r- th -J _™___ VALID DATA 

CRUOUT 

NOTE 1: ALL TIMING MEASUREMENTS ARE FROM 10% and 90% POINTS. 

FIGURE 12-SWITCHING CHARACTERISTICS 

9900 FAMILY SYSTEMS DESIGN 8-157 



~8 

TMS 9901-40 JL, NL 
DDr\r'D A l\tfl\tf L\ lH R ~V<;;:.'T'Rl\tf~ Tl\.T'T'RRRA rR 
.J.. .1.'-~'-J.l.'-..l..1...LT.J...ll'.J....1..1...J.J~~ U .&. U .&. ~J..T.&.U .&.J...., ..I.. ~.&.'-..I.. .L.&..._,..__, 

Peripheral 
and Interface Circuits 

5. TMS 9901-40 ELECTRICAL SPECIFICATIONS 

5.1 ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE AIR TEMPERATURE RANGE 
(UNLESS OTHERWISE NOTED)* 

Supply voltages, Vee . . . . . 
All input and output voltages 
Continuous power dissipation 
Operating free-air temperature range 
Storage temperature range . . .... 

-0.3Vto10V 
-0.3 V to 10 V 
..... 0.90W 
. 0°c to 70°C 

- 65°C to 150°C 

•stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and 
functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of 
this specification is not implied. Exposure to absolute maximum rated conditions for extended period may affect device reliability. 

5.2 RECOMMENDED OPERATING CONDITIONS 

MIN NOM 

Supply voltage, Vee 4.75 5 

Supply voltage, Vss 0 

High-input voltage, V1H 2.0 2.4 

Low-level input voltage, V1L Vss-.3 0.4 

Operating free-air temperature, TA 0 

5.3 ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING 
CONDITIONS (UNLESS OTHERWISE NOTED) 

PARAMETER TEST CONDITIONS MIN 

loH= -100µ.A 2.4 
VoH High level output voltage 

loH = -200µ.A 2.2 

VOL Low level output voltage IOL = 3.2 mA Vss 

11 Input current (any input) V1=0 V to Vee 

lcqav) Average supply current from Vee tc(</>) = 330 ns, TA= 25°C 

c, Small Signal Input Capacitance, any input f= 1 MHz 

5.4 TIMING REQUIREMENTS OVER FULL RANGE OF OPERATING CONDITIONS 

PARAMETER 

tc(q>) Clock cycle time 

t,(</>) Clock rise time 

t1(</>) Clock fall time 

tw(</>L) Clock pulse width (low level) 

tw(</>H) Clock pulse width (high level) 

tw(CC) CRUCLK pulse width 

tsul Setup time for SO-S4, CE, or CRUOUT before CRUCLK 

tsu2 Setup time, interrupt before </>low 

lsu3 Setup time for inputs before valid CRUIN 

th Hold time for CE, SO-S4, or CRUOUT after CRUCLK 

DESIGN GOAL 

This document describes the design specifi
cations for a product under development. 
Texas Instruments reserves the right to 
change these specifications in any manner, 
without notice. 

MIN 

240 

5 

10 

40 

180 

80 

80 

50 

180 

50 

TYP 

NOM 

250 

125 

80 

50 

180 

50 

MAX UNIT 

5.25 v 
v 

Vee v 
0.8 v 
70 oc 

MAX ·UNIT 

Vee v 
Vee v 
0.4 µ.A 

± 100 v 
150 mA 

15 mF 

MAX UNIT 

667 ns 

40 ns 

40 ns 

300 ns 

ns 

ns 

ns 

ns 

ns 

ns 

8-158 9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9901-40 JL, NL 
and Interface Circuits PROGRAMMABLE SYSTEMS INTERFACE 

5.5 SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING 
CONDITIONS 

PARAMETER 

tpo1 propagation delay, CE to Valid CRUIN 

tpo2 propagation delay, SO-S4 to Valid CRUIN 

tpol propagation delay,</> low to Valid INTREQ, ICO-IC3 

!po propagation delay, CRUCLK to Valid Data Out (PO-P15) 

DESIGN GOAL 

This document describes the design specifi
cations for a product under development. 
Texas Instruments reserves the right to 
change these specifications in any manner, 
without notice. 

9900 FAMILY SYSTEMS DESIGN 

TEST CONDITIONS MIN TYP 

220 

240 
CL= 100pF 

80 

200 

MAX UNIT 

220 ns 

240 ns 

80 ns 

200 ns 

8-159 

I 

8 ... 



TMS 9902 JL, NL Peripheral 
and Interface Circuits 

t1 <;;;.Vl\.Tr rrYMl\!lT Tl\.TTr t\'TTnN' rnN'TRnT T FR 
.J.. .... ......, ..&. .L .... '-"". '-' '-J' .L ........ .L ".a. "--"' J.. ~ ..... '-' ~ ... .a.. .a. ........,. J.. .. .._, """" '-' ............ .&. ............... ..__.__,,,,....._. ... -

1. INTRODUCTION 

1.1 DESCRIPTION 

The TMS 9902 Asynchronous Communications Controller (ACC) is a peripheral device designed for use with 
the Texas Instruments 9900 family of microproce~sors. The TMS 9902 is fabricated using N-channel, silicon 
gate, MOS technology. The TMS 9902 is TTL-compatible on all inputs and outputs, including the power 
supply ( +5 V) and single-phase clock. The TMS 9902 ACC provides an interface between a microprocessor 
and a serial, asynchronous, communications channel. The ACC performs the timing and data serialization 
and deserialization functions, facilitating microprocessor control of the asynchronous channel. The 
TMS 9902 ACC accepts EIA Standard RS-232-C protocol. 

1.2 KEY FEATURES 

• Low Cost, Serial, Asynchronous Interface 

• Programmable, Five- to Eight-Bit, 1/0 Character Length 

• Programmable 1, 1 V2, and 2 Stop Bits 

• Even, Odd, or No Parity 

• Fully Programmable, Data Rate Generation 

• Interval Timer with Resolution from 64 to 16,320 Microseconds 

• TTL-Compatibility, Including Power Supply 

• Standard 18-Pin Plastic or Ceramic Package 

• N-Channel, Silicon Gate Technology 

1.3 TYPICAL APPLICATION 

8-160 

Figure 1 shows a general block diagram of a system incorporating a TMS 9902 ACC. Following is a tutorial 
discussion of this application. Subsequent sections of this Data Manual detail most aspects of TMS 9902 use. 

The TMS 9902 interfaces with the CPU through the communications register unit (CAU). The CAU interface 
consists of five address select lines (SO-S4), chip enable (CE), and three CRU lines (CAUIN, CAUOUT, 
CAUCLK). An additional input to the CPU is the ACC interrupt line (INT). The TMS 9902 occupies 32 bits of 
CAU space; each of the 32 bits are selected individually by processor address lines A 10-A 14 which are 
connected to the ACC select lines SO-S4, respectively. Chip enable (CE) is generated by decoding address 
lines AO-A9 for CRU cycles. Under certain conditions the TMS 9902 causes interrupts. The interrupt logic 
shown in Figure 1 can be a TMS 9901. 

The ACC interfaces to the asynchronous communications channel on five lines: request to send (ATS), data 
~et ready (DSA), clear to send (CTS), serial transmit data (XOUT), and serial receive data (RIN). The request 
to send (ATS) goes active (LOW) whenever the transmitter is activated. However, before data transmission 
begins, the clear to send (CTS) input must be active. The data set ready (DSA) input does not affect the 
receiver or transmitter. When DSR or CTS changes level, an interrupt is generated. 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9902 JL, NL 
and Interface Circuits 

ASYNC. COMMUNICATIONS CONTROLLER 

SERIAL [ 
ASYNCHRONOUS 

INTERFACE 

LEVEL 
SHIFTERS 

TMS 9902 
ASYNCHRONOUS 

COMMUNICATIONS 
CONTROLLER 

ADDRESS BUS AO-A 14 

CRU 

;;3ffi_ TIM 9904 
,___ __ _____. CLOCK 

GENERATOR 

INTERRUPT 
LOGIC 

FIGURE 1. TYPICAL APPLICATION, TMS 9902 ASYNCHRONOUS 
COMMUNICATION CONTROLLER (ACC) 

2. ARCHITECTURE 

TMS 9900 

CENTRAL 
PROCESSING 
UNIT ICPUI 

The TMS 9902 asynchronous communications controller (ACC) is designed to provide a low cost, serial, 
asynchronous interface to the 9900 family of microprocessors. The TMS 9902 ACC is diagrammed in Figure 
2. The ACC has five main subsections: CRU interface, transmitter section, receiver section, interval timer, 
and interrupt section. 

2.1 CRU INTERFACE 

The communications register unit (CRU) is the means by which the CPU communicates with the TMS 9902 
ACC. The ACC occupies 32 bits of CRU read and write space. Figure 3 illustrates the CRU interface between 
a TMS 9902 and a TMS 9900 CPU; Figure 4 illustrates the CRU Interface for a TMS 9980A or 9981 CPU. The 
CRU lines are tied directly to each other as shown in Figures 3 and 4. The least significant bits of the address 
bus are connected to the select lines. In a TMS 9900 CPU system A14-A10 are connected to S4-SO 
respectively. The most significant address bits are decoded to select the TMS 9902 via the chip enable (CE) 
signal. When CE is inactive (HIGH), t~e CRU interface of the 9901 is disabled. 

NOTE 

When CE is inactive (HIGH) the 9902 sets its CRUIN pin to high impedance and 
disables CRUCLK from coming on chip. This means the CRUIN line can be used as 
an OR-tied bus. The 9902 is still able to see the select lines even when CE is high. 

For those unfamiliar with the CRU concept, the following is a discussion of how to build a CRU interface. The 
CRU is a bit addressable (4096 bits), synchronous, serial interface over which a single instruction can transfer 
between one and 16 bits serially. Each one of the 4096 bits of the CRU space has a unique address and can 
be read and written to. During multi-bit CRU transfers, the CRU address is incremented at the beginning of 
each CRU cycle to point to the next consecutive CRU bit. 

9900 FAMILY SYSTEMS DESIGN 8-161 



~ 
I-' 
O' 
N 

'° '° 0 
0 

"I'l 
~ 

~ 
~ 
rJl 
....:: 
~ 
tT1 
3: 
rJl 

t::J 
tT1 
rJl 

() 
z 

SO - S4 

RIN 

c 
R 
u 

N 

T 

R 
F 
A 
c 

.. 
00 

ADDRESS 

DECODE 
BITS 

TIMER 

CONTROL 

RECEIVER 

BUFFER 
REGISTER 

INTERVAL 
TIMER 

RECEIVER 
DATA RATE 

REGISTER 

RECEIVER 

CONTROL 

RECEIVER 

SHIFT 
REGISTER 

~TTL 

CLOCK 
GENERATOR 

TRANSMIT 

BUFFER 
REGISTER 

FIGURE 2. TMS 9902 ASYNCHRONOUS COMMUNICATIONS 
CONTROLLER (ACC) BLOCK DIJ1GRAM 

DSR, RTS, 

AND CTS 
CONTROL 

INTERRUPT 
LOGIC 

TRANSMIT 

OUTPUT 
LATCH 

:;x;;i.~ 
en '7 
•-< ~ 
~z en 
h~ 
. 0 
('lN 
0'--4 
~~J-4 
~~ z 
(~ r4 
~ :z 
·~ n 
~);;. :.., 
~~ 

0 
'.2 
en 
n 
0 
'.Z 
1-3 
:~ 
0 
I~ 
1--4 
I~ 
:~ 

I» "Cl 
:I CD 
Q. ::!. 
-"C 
:I '::I' 
- CD CD -. 
::::. I» 
I» -n 
CD 

Q 
r; 
=. 
c;; 



Peripheral 
and Interface Circuits 

TMS 9902 JL, NL 
ASYNC. COMMUNICATIONS CONTROLLER 

TMS 9902 ACC TMS 9900 CPU 

¢p c/>3TTL FROM TIM 9904 

CRUCLK -- CRUCLK -
CRUOUT -- CRUOUT -

CRUIN ..... CRUIN 

so -- AlO -
Sl ... All 

S2 -- Al2 

S3 ... Al3 

S4 ~ Al4 

CE ""- <{oEcooEM AO-A9 I'-'-

FIGURE 3. TMS 9902 - TMS 9900 CRU INTERFACE 

TMS 9902 ACC TMS 9980A OR 9981 CPU 

45"h --I'-'~ -0 ¢)3 

CRUCLK -- CRUCLK 

CRUOUT -- A13/CRUOUT 

CRUIN ~ CRUIN ~ 

so ~ AB 
Sl -- A9 

S2 -- AlO 

S3 -- All 

S4 ... Al2 -
CEp 1DECODEK= AO-A7 

FIGURE 4. TMS 9902 - TMS 9980A OR 9981 CRU INTERFACE 

9900 FAMILY SYSTEMS DESIGN 8-163 



TMS 9902 JL, NL Peripheral 
and Interface Circuits 

.A.SYNC. C01\11\1UNICATIONS CONTROLLFR 

When a 9900 CPU executes a CRU Instruction, the processor uses the contents of workspace register 12 as 
a base address. (Refer to the 9900 Microprocessor Data Manual for a complete discussion on how CRU 
addresses are derived.) The CRU address is brought out on the 15-bit address bus; this means that the least 
significant bit of R12 is not brought out of the CPU. During CRU cycles, the memory control lines (MEMEN, 
WE, and OBIN) are all inactive; MEMEN being inactive (HIGH) indicates the address is not a memory address 
and therefore is a CRU address or external instruction code. Also, when MEMEN is inactive (HIGH) and a 
valid address is present, address bits AO-A2. must all be zero to constitute a valid CRU address; if addres$ bits 
AO-A2. are other than all zeros, they are indicating an external instruction code. In summary, address bits 
A3-A14 contain the CRU address to be decoded, address bits AO-A2. must be zero and MEMEN must be 
inactive (HIGH) to indicate a CRU cycle. 

2.1.1 CPU OUTPUT FOR CRU 

The TMS 9902 ACC occupies 32 bits of output CRU space, of which 23 bits are used: 31 and 21-0. These 23 
bits are employed by the CPU to communicate command and control information to the TMS 9902. Table 1 
shows the mapping between CRU address select (S lines) and ACC functions. Each CRU addressable output 
bit on the TMS 9902 is described in detail following Table 1. 

TABLE 1 

TMS 9902 ACC OUTPUT BIT ADDRESS ASSIGNMENTS 

ADDRE552 
ADDRESS10 NAME DESCRIPTION 

SO S1 S2 S3 54 

1 1 1 1 1 

1 0 1 0 1 

1 0 1 0 0 

1 0 0 1 1 

1 0 0 1 0 

1 0 0 0 1 

1 0 0 0 0 

0 1 1 1 1 

0 1 1 1 0 

0 1 1 0 1 

0 1 1 0 0 

0 1 0 1 1 

Bit 31 (RESET)-:-

Bit 30-Bit 22 -

8-164 

31 

30-22 

21 

20 

19 

18 

17 

16 

15 

14 

13 

12 

11 

10-0 

RESET Reset device. 

Not used. 

DSCENB Data Set Status Change Interrupt Enable. 

TIMENB Timer Interrupt Enable 

XBIENB Transmitter Interrupt Enable 

RIENB Receiver Interrupt Enable 

BR KON Break On 

RTSON Request to Send On 

TSTMD Test Mode 

LDCTRL Load Control Register 

LDIR Load Interval Register 

LRDR Load Receiver Data Rate Register 

LXDR Load Transmit Data Rate Register 

Control, Interval, Receive Oata Rate, Transmit Data Rate, 

and Transmit Buffer Registers 

Reset. Writing a one or zero to bit 31 causes the device to reset, consequently 
disabling all interrupts, initializing the transmitter and receiver, setting RTS 
inactive (HIGH), setting all register load control flags (LDCTRL, LDIR, LRDR, 
and LXDR) to a logic one level, and resetting the BREAK flag. No other input or 
output operations should be performed for 11 '(ij clock cycles after issuing the 
RESET command. 

Not used. 

9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

INTERRUPT 
ENABLE 
DSCENB 
TIMENB 
XIENB 
RIENB 

Bit 21 (DSCENB) -

Bit 20 (TIMENB} -

Bit 19 (XBIENB) -

Bit 18 (RIENB) -

Bit 17 (BRKON) -

Bit 16 (RTSON) -

Bit 15 (TSTMD)-

TMS 9902 JL, NL 
ASYNC. COMMUNICATIONS CONTROLLER 

SELECT INTERRUPT INTERRUPT 
BIT FLAG ENABLED 
21 DSCH DSC INT 
20 TIMELP TIMINT 
19 XBRE XINT 
18 RBRL RINT 

Data Set Change Interrupt Enable. Writing a one to bit 21 causes the INT 
output to be active (LOW) whenever DSCH (Data Set Status Change) is a logic 
one. Writing a zero to bit 21 causes DSCH interrupts to be disabled. Writing 
either a one or zero to bit 21 causes DSCH to reset. (Refer also to Section 2.5). 

Timer Interrupt Enable. Writing a one to bit 20 causes the INT output to be 
active whenever TIMELP (Timer Elapsed) is a logic one. Writing a zero to bit 
2o causes TIMELP interrupts to be disabled. Writing either a one or zero to bit 
20 causes TIMELP and TIME RR (Timer Error) to reset. (Refer also to Sections 
2.4 and 2.5.) 

Transmit Buffer Interrupt Enable. Writing a one to bit 19 causes the INT 
output to be active whenever XBRE (Transmit Buffer Register Empty) is a logic 
one. Writing a zero to bit 19 causes XBRE interrupts to be disabled. The state 
of XBRE is not affected by writing to bit 19. (Refer also to Sections 2.2 and 2.5.) 

Receiver Interrupt Enable. Writing a one to bit 18 causes the INT output to be 
active whenever RBRL (Receiver Buffer Register Loaded) is a logic one. 
Writing a zero to bit 18 disables RBRL interrupts. Writing either a one or zero to 
bit 18 causes RBRL to reset. (Refer also to Sections 2.3 and 2.5.) 

Break On. Writing a one to bit 17 causes the XOUT (Transmitter Serial Data 
Output) to go to a logic zero whenever the transmitter is active and the 
Transmit Buffer Register (XBR) and the Transmit Shift Register (XSR) are 
empty. While BRKON is set, loading of characters into the XBR is inhibited. 
Writing a zero to bit 17 causes BRKON to reset and the transmitter to resume 
normal operation. 

Request To Send On. Writing a one to bit 16 causes the ATS output to be 
active (LOW). Writing a zero to bit 16 causes ATS to go to a logic one after the 
XSR (Transmit Shift Register) and XBR (Transmit Buffer Register) are empty, 
and BRKON is reset. Thus, the ATS output does not become inactive (HIGH) 
until after character transmission is completed. 

Test Mode. Writing a one to bit 15 causes ATS to be internally connected to 
CTS, XOUT to be internally connected to RIN, DSR to be internally held LOW, 
and the Interval Timer to operate 32 times its normal rate. Writing a zero to bit 
15 re-enables normal device operation. There seldom is reason to enter the 
test mode under normal circumstances, but this function is useful for diag
nostic and inspection purposes. 

~ 

Bits 14-11 - Register Load Control Flags. Output bits 14-11 control which of the five 
registers are loaded when writing to bits 10-0. The flags are prioritized as 
shown in Table 2. 

9900 FAMILY SYSTEMS DESIGN 8-165 

I 

8~ 
I 



~8 

TMS 9902 JL, NL Peripheral 
and Interface Circuits 

.LL\.._SYNC. COl\11\1UNIC.ATIONS CONTROLLFR 

8-166 

TABLE 2 

TMS 9902 ACC REGISTER LOAD SELECTION 

REGISTER LOAD CONTROL FLAG 

STATUS REGISTER ENABLED 

LDCTRL LDIR LRDR LXDR 

1 x x x Control Register 

0 1 x x Interval Register 

0 0 1 x Receive Data Rate Register * 

0 0 x 1 Transmit Data Rate Register * 

0 0 0 0 Transmit Buffer Register 

·11 both LRDR and LXDR bits are set, both registers are loaded, assuming LDCTRL and LDIR are disabled; if only one of these registers is to be 
loaded, only that register bit is set, and the other register bit reset. 

Bit 14 (LDCTRL)-

Bit 13 (LDIR)-

Bit 12 (LRDR) -

Bit 11 (LXDR) -

Load Control Register. Writing a one to bit 14 causes LDCTRL to be set to a 
logic one. When LDCTRL = 1, any data written to bits 0-7 is directed to the 
Control Register. Note that LDCTRL is also set to a logic one when a one or 
zero is written to bit 31 (RESET). Writing a zero to bit 14 causes LDCTRL to 
reset to a logic zero, disabling loading of the Control Register. LDCTRL is also 
automatically reset to logic zero when a datum is written to bit 7 of the Control 
Register, reset normally occurs as the last bit is written when loading the 
Control Register with a LDCR instruction. 

Load Interval Register. Writing a one to bit 13 causes LDIR to set to a logic 
one. 'v-Vhen LDIR - 1 and LDCTRL == 0, any data written to bit~ 0-7 iz d!rected 
to the Interval Register. Note that LDIR is also set to a logic one when a datum 
is written to bit 31 (RESET); however, Interval Register loading is not enabled 
until LDCTRL is set to a logic zero. Writing a zero to bit 13 causes LOIA to be 
reset to logic zero, disabling loading of the Interval Register. LDIR is also 
automatically reset to logic zero when a datum is written to bit 7 of the Interval 
Register; reset normally occurs as the last bit is written when loading the 
Interval Register with a LDCR instruction. 

Load Receive Data Rate Register. Writing a one to bit 12 causes LRDR to set 
to a logic one. When LRDR = 1, LDIR = O, and LDCTRL = 0, any data written 
to bits 0-1 O is directed to the Receive Data Rate Register. Note that LRDR is 
also set to a logic one when a datum is written to bit 31 (RESET); however, 
Receive Data Rate Register loading is not enabled until LDCTRL and LDIR are 
set to a logic zero. Writing a zero bit to 12 causes LRDR to reset to a logic zero, 
disabling loading of the Receive Data Rate Register. LRDR is also automati
cally reset to logic zero when a datum is written to bit 10 of the Receive Data 
Rate Register; reset normally occurs as the last bit is written when loading the 
Receive Data Rate Register with a LDCR instruction. 

Load Transmit Data Rate Register. Writing a one to bit 11 causes LXDR to 
set to a logic one. When LXDR = 1, LDIR = O, and LDCTRL = 0, any data 
written to bits 0-10 is directed to the Transmit Data Rate Register. Note that 
loading of both the Receive and Transmit Data Rate Registers is enabled 
when LDCTRL = 0, LDIR = 0, LRDR = 1, and LXDR = 1 ; thus these two 
registers may be loaded simultaneously when data is received and transmitted 
at the same rate. LXDR is also set to a logic one when a datum is written to bit 
31 (RESET); however, Transmit Data Rate Register loading is not enabled 
until LDCTRL and LDIR are to logic zero. Writing a zero to bit 11 causes LXDR 
to reset to logic zero, consequently disabling loading of the Transmit Data Rate 
Register. Since bit 11 is the next bit addressed after loading the Transmit Data 
Rate Register, the register may be loaded and the LXDR flag reset with a 
single LDCR instruction where 12 bits (Bits 0-11) are written and a zero is 
written to Bit 11 . 

9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

Bits .14-11 (All Zeros)-

Bits 10-0 (Data) -

2.1.2 REGISTERS 

2 .. 1.2.1 Control Register 

TMS 9902 JL, NL 
ASYNC. COMMUNICATIONS CONTROLLER 

Load Transmit Buffer Register. See Section 2.1.2.5. 

Data. Information written to bits 10-0 is loaded into the controlling registers qS 
indicated by LDCTRL, LOIA, LADA, and LXDR (see Table 2). The different 
register bits are described in Section 2.1.2 below. 

The Control Register is loaded to select character length, device clock operation, parity, and the number of 
stop bits for the transmitter; control register loading occurs when LDCTRL is active (see Table 2). Table 3 
shows the bit address assignments for the Control Register. 

ADDRESS10 
7 

6 

5 

4 

3 

2 

1 

0 

6 

SBSI SBS2 

MSB 

Bits 7 and 6 
(SBS1 and SBS2)-

TABLE 3 

CONTROL REGISTER BIT ADDRESS ASSIGNMENTS 

NAME DESCRIPTION 

SBS1 
} - Stop Bit Select 

SBS2 

PENB Parity Enable 

PODD Odd Parity Select 

CLK4M ¢Input Divide Select 

- Not Used 

RCL1 } -character Length Select 
RCLO 

5 4 3 2 0 

PENB PODD CLK4M NOT USED RCL 1 RCLO 

LSB 

Stop Bit Selection. The number of stop bits to be appended to each trans
mitter character is selected by bits 7 and 6 of the Control Register as shown 
below. The receiver only tests for a single stop bit, regardless of the status of 
bits 7 and 6. 

STOP BIT SELECTION 

SBS1 SBS2 NUMBER OF TRANSMITTED 

BIT 7 BIT 6 STOP BITS 

0 

0 

1 

1 

Bits 5 and 4 
(PENS and PODD) -

9900 FAMILY SYSTEMS DESIGN 

0 rn 
1 2 

0 1 

1 1 

Parity. Selection. The type of parity generated for transmission and detected 
for reception is selected by bits 5 and 4 of the Control· Register as shown 
below. When parity is enabled (PENB = 1 ), the.parity bit is transmitted and 
received in addition to the number of bits selected for the character length. Odd 
parity is such that the total number of ones in the character and parity bit, 
exclusive of stop bit(s), will be odd. For even parity, the total number of ones 
will be even. 

8-167 



TMS 9902 JL, NL Peripheral 

ASYNC. COMMUNICATIONS CONTROLLER 
and Interface Circuits 

8-168 

Bit 3 (CLK4M) -

PARITY SELECTION 

PENB PODD 
PARITY 

BITS BIT 4 

0 0 None 

0 1 None 

1 0 Even 

1 1 Odd 

-;j;lnput Divide Select.The ";finput to the TMS 9902 ACC is used to generate 
internal dynamic logic clocking and to establish the time base for the Interval 
Timer, Transmitter, and Receiver. The <;>input is internally divided by either 3 
or 4 to generate the two-phase internal clocks required for MOS logic, and to 
establish the basic internal operating frequency (fint) and internal clock period 
(tint). When bit 3 of the Control Register is set to a logic one (CLK4M = 1 ), (j)is 
internally divided by 4, and when CLK4M = 0, (i;is divided by 3. For example, 
when f ;f = 3 MHz, as in a standard 3 MHz TMS 9900 system, and CLK4M = 0, 
;;>"is internally divided by 3 to generate an internal clock period tint of 1 µs. The 
figure below shows the operation of the internal clock divider circuitry. The 
internal clock frequency should be no greater than 1.1 MHz; thus, when f;j; > 
3.3 MHz, CLK4M should be set to a logic one. 

{ 

c/>1 int } "¢ External Input n=4 if CLK4m=1 ~ 
tn to internal logic 

Bits 1 and O 
(RCL 1 and RCLO) -

- n=3 if CLK4m=O c/>2 int ...._______....------· . 

. t¢ 
fmt=

n 

INTERNAL CLOCK DIVIDER CIRCUITRY 

I n 
tint= - = f-;;: 

fint 'I' 

Character Length Select. The number of data bits in each transmitted and 
received character is determined by bits 1 and O of the Control Register as 
shown below: 

CHARACTER LENGTH SELECTION 

RCL1 RCLO CHARACTER 

BIT 1 BITO LENGTH 

0 0 5 Bits 

0 1 6 Bits 

1 0 7 Bits 

1 1 8 Bits 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9902 JL, NL 
and Interface Circuits ASYNC. COMMUNICATIONS CONTROLLER 

2.1.2.2 Interval Register 

The Interval Register is enabled for loading when LDCTRL = O and LOIA= 1 (see Table 2). Th.e Interval 
Register is used to select the rate at which interrupts are generated by the TMS 9902 Interval Timer. The 
figure below shows the bit assignments for the Interval Register when enabjing for loading. 

7 6 5 4 3 2 0 

TMR7 TMR6 TMR5 TMR4 TMR3 TMR2 TMR1 TMRO 

MSB LSB 
INTERVAL REGISTER BIT ADDRESS ASSIGNMENTS 

The figure below illustrates the establishment of the interval for the Interval Timer. For example, if the Interval 
Register is loaded with a value of 8015 (12810) the interval at which Timer Interrupts are generated is litvl = 
lint· 64 · M = (1 µs) (64) (128) = 8.192 ms when tint = 1 µs. lint= n/f(f) where n = 4 if CLK4M = 1, 3 if CLK4M 
=0. 

</>int ~1 .;- rn TIME LP 
signal ~ 64 rn = (TMR7-TMRO) .. 
frequency fint fint/64 

fint/(64) (m) 

time tint (64) tint (64)(m)(tintl 

TIME INTERVAL SELECTION 

2.1.2.3 Receive Data Rate Register 

The Receive Data Rate Register (RDA) is enabled for loading when LDCTRL = 0, LDIR = 0, and LADA = 1 
(see Table 2). The Receive Data Rate Register is used ~o select the bit rat~ at which data is received_. The 
diagram shows the bit address assignments for the Receive Data Rate Register when enabled for loading. 

10 9 8 6 5 4 3 2 0 

RDR9 RDRB RDR7 RDR6 RDR5 RDR4 RDR3 RDR2 RDR1 RDRO 

MSB LSB 

RECEIVE DATA RATE REGISTER BIT ADDRESS ASSIGNMENTS 

The diagram below illustrates the manner in which the receive data rate is established. Basically, two 
programmable counters are used to determine the interval for half the bit period of receive data. The first 
counter divides the internal system clock frequency (fint> by either 8 (RDV8 = 1) or 1 (RDVB = O). The 
second counter has ten stages and may be programmed to divide its input signal by any value from 1 (RDR9 
- ADRO = 0000000001) to 1023 (RDR9 - RDRO = 1111111111). The frequency of the output of the 
second counter (frhbt) is double the receive-data rate. For example, assume the Receive Data Rate 
Register is loaded with a value of 11000111000; RDV8 = 1, and RDR9 - RDAO = 1000111000 = 23815 = 
56810. Thus, for fint = 1 MHz, (see Control Register, bit 3) the receive data rate = frcv = [(1 x 106 + 8) + 
568] + 2 = 110.04 bits per second. 

9900 FAMILY SYSTEMS DESIGN 8-169 



TMS 9902 JL, NL Peripheral 
and Interface Circuits ASYNC. COMMUNICATIONS CONTROLLER 

signal 

frequency 

fint 
7m 7n 

m=B(RDV8=1) n = (RDR9 - RDRO) 

or m = 1 (RDVB = 0) 

m 

RECEIVE DATA RATE SELECTION 

fRHBT ..... 

fint 
-- =fRHBT 

(m) (n) 

72 

Quantitatively, the receive-data rate fRCV is described by the following algebraic expression: 

~HITT ~~ ~~ 
frcv = -2 - = (2) (m) (n) = (2) (aRDVB) (RDR9 - RDRO) 

frcv 

fRHBT 

2 

2.1.2.4 Transmit Data Rate Register 

The Transmit Data Rate Register (XDR) is enabled for loading when LDCTRL = O, LDIR = 0, and LXDR = 1 
(see Table 2). The Transmit Data Rate Register is used to select the data for the transmitter. The figure below 
shows the bit address assignments for the Transmit Data Rate Register when enabled for loading. 

10 9 8 7 6 5 4 3 2 0 

XDVB XDR9 XDRB XDR7 XDR6 XDR5 XDR4 XDR3 XDR2 XDR1 XDRO 

MSB LSB 

The transmit data rate is selected with the Transmit Data Rate Register in the same manner the receive data 
rate is selected with the Receive Data Rate Register. The algebraic Expression for the Transmit Data Rate 
fxmt is 

fxHBT fint 
f xmt = --2- = (2) (aXDVB) (XDR9-XDRO) 

For example, if the Transmit Data Rate Register is loaded with a value of 00110100001; XDVB = O, and XDR9 
- XDRO = 1A115 = 41710, if fint = 1 MHz the transmit data rate = f xmt = [(1 x 106 -:- 1) -:- 417] -:- 2 = 
1199.0 bits per second. 

~ 8 2.1.2.5 Transmit Buffer Register 

8-170 

The Transmit Buffer Register (XBR) is enabled for loading when LDCTRL = O, LDIR = O, LRDR = O, LXDR = 
0, and BRKON = O (see Table 2). The Transmit Buffer Register is used to store·the next character to be 
transmitted. When the transmitter is active, the contents of the Transmit Buffer Register are transferred to the 
Transmit Shift Register (XSR) each time the previous character has been completely transmitted (XSR 
becomes empty). The bit address assignments for the Transmit Buffer Register are shown below: 

6 5 4 3 2 0 

XBR7 XBR6 XBR5 XBR4 XBR3 XBR2 XBR1 XBRO 

MSB LSB 

TRANSMIT BUFFER REGISTER BIT ADDRESS ASSIGNMENTS 

9900 FAMILY SYSTEMS DESIGN 



'° '° 0 
0 

'Tl 
;;i.. 

§; 
t< 
VJ 
-< 
VJ ...., 
tTl 
~ 
VJ 

t:l 
tTl 
VJ 

cs z 

90 -'-1 

31 

RESET 

15 

TSTMD 

30 29 28 

14 13 12 

LDCTRL I LDIR LRDR 

x x 

x 

x 

TABLE 4. CRU OUTPUT BIT ADDRESS ASSIGNMENTS 

27 

11 

LXDR 

x 

x 

x 

26 25 24 23 22 21 20 19 18 17 16 

NOT USED DSCENB I TIMENB I XBIENB I RIENB I BRKON I RTSON 

10 

CONTROL, INTERVAL, RECEIVE DATA RATE, TRANSMIT DATA RATE, AND TRANSMIT BUFFER REGISTERS 

RDR9 RDR8 

CONTROL REGISTER 

~ SBS2 I PENB I PODD I CLK4M I I RCL 1 I RCLO I 
~ 
I Stop Bits I Parity font = 

00 1-1/2 ox 
01 1 O even !jp/(3+CLK4MI 

1X 11 odd 

INTERVAL REGISTER 

'-----v---J 
Character Length 

00 

01 

10 

11 

~ TMR 6 I TMR5 I TMR4 I TMRJ I TMR2 I TMR1 I TMRO I 

I I I I r 
TMR 

T1TVL = tont X 64 X TMR 

I I 
RECEIVE DATA RATE REGISTER 

RDR7 RDR6 RDR5 RDR4 RDR3 RDR2 RDR1 RDRO 

I I I I I RDR I 
f,cv = font -;- 8 RDVB -;- RDR -;- 2 

I I I 
TRANSMIT DATA RATE REGISTER 

[ XDV8 I XDR9 [ XDR8 [ XDR7 [ XDR6 I XDR5 I XDR4 I XDR3 I XDR2 I XDR1 I XDRO I 

I I I I I XOR 

fxmt = font -;- 8 XDVB -;- XDR -;- 2 

I I I 
TRANSMIT BUFFER REGISTER 

i-XBR7 I XBR6 I XBR5 I XBR4 I XBR3 I XBR2 I XBR1 I XBRO I 

NOTE 1 LOADING OF THE BIT INDICATED BY~CAUSES THE LOAD CONTROL 
FLAG FOR THAT REGISTER TO RESET AUTOMATICALLY. 

00 • 

QI 'ti 
::3 CD 
c. ::?. 
-"C 
j ::r 
- CD 
CD "" ::. QI 
QI -
0 
CD 

9. 
n 
=· iii 

~~ 
(f) a: 
~(f) 
Z-..o n-..o 
. 0 
(JN 
Qf.-4 
a:-..~ 
a:z 
c~ 
z 
~ 

n 
~ 
~ 

0 
z 
(f) 

n 
0 
z 
~ 
~ 
0 
~ 
~ 
tr:l 
~ 



TMS 9902 JL, NL Peripheral 
and Interface Circuits 

ASYNC. COMMUNICATIONS CONTROLLER 

All eight bits should be transferred into the register, regardless of the selected character length. The 
extraneous high order bits will be ignored for transmission purposes; however, loading of bit 7 is internally 
detected which causes the Transmit Buffer Register Empty (XBRE) status flag to reset. 

2.1.3 INPUT TO CPU FOR CRU 

The TMS 9902 ACC occupies 32 bits of input CRU space. The CPU reads the 32 bits from the ACC to sense 
the status of the device. Table 5 shows the mapping between CRU bit address and TMS 9902 read data. 
Each CRU addressable read bit is described following Table 5. 

Status and data information is read from the ACC using CE, SO-S4, and CRUIN. The following figure 
illustrates the relationship of the signals used to access four bits of data from the ACC. 

SO-S4 don't care n n+1 n+2 n+3 don't care 

CRUIN 
Hi- Z 

bit n bit n + 1 bit n + 2 ( bit n + 3 
Hi-Z 

ACC DATA ACCESS SIGNAL TIMING 

TABLE 5 

TMS 9902 ACC INPUT BIT ADDRESS ASSIGNMENTS 

ADDRESS2 
NAME ADDRESS10 DESCRIPTION 

so Sl S2 S3 S4 

1 1 1 1 1 31 INT Interrupt 
1 1 1 1 0 30 FLAG Register Load Control Flag Set 
1 1 1 0 1 29 OSCH Data Set Status Change 
1 1 1 0 0 28 CTS Clear to Send 
1 1 0 1 1 27 DSR Data Set Ready 

. 
1 1 0 1 0 26 ATS Request to Send 
1 1 0 0 1 25 TIMELP Timer Elapsed 
1 1 0 0 0 24 TIM ERR Timer Error 
1 0 1 1 1 23 XSRE Transmit Shift Register Empty 
1 0 1 1 0 22 XBRE Transmit Buffer Register Empty 
1 0 1 0 1 21 RBRL Receive Buffer Register Loaded 
1 0 1 0 0 20 DSCINT Data Set Status Change Interrupt (DSCH. DSCENB) 
1 0 0 1 1 19 TIMINT Timer Interrupt (TIME LP• TIMENB) 
1 0 0 1 0 18 - Not Used (always = 0) 
1 0 0 0 1 17 XBINT Transmitter Interrupt (_XBRE • XBI ENB) 
1 0 0 0 0 16 RBINT Receiver Interrupt (RBRL •RIENB) 
0 1 1 1 1 15 RIN Receive Input 
0 1 1 1 0 14 RSBD Receive Start Bit Detect 
0 1 1 0 1 13 RFBD Receive Full Bit Detect 
0 1 1 0 0 12 RFER Receive Framing Error 
0 1 0 1 1 11 ROVER Receive Overrun Error 
0 1 0 1 0 10 APER Receive Parity Error 
0 1 0 0 1 9 RCVERR Receive Error 
0 1 0 0 0 8 - Not Used (always= 0) 

7-0 RBR7-RBRO Receive Buffer Register (Received Data) 

8-172 9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

Bit 31 (INT)-

Bit 30 (FLAG) -

Bit 29 (DSCH) -

Bit 28 (CTS) -

Bit 27 (DSR)-

Bit 26 (RTS) -

Bit 25 (TIMELP) -

Bit 24 (TIMERR) -

Bit 23 (XSRE) -

Bit 22 (XBRE) -

Bit 21 (RBRL)-

TMS 9902 JL, NL 
ASYNC. COMMUNICATIONS CONTROLLER 

INT = DSC INT (Data Set Status Change Interrupt) + TIM INT (Timer Interrupt) 
+ XBINT (Transmitter Interrupt) + RBINT (Receiver Interrupt). The interrupt 
output (INT) is active (LOW) when this status signal is a logic one. (Refer also 
to Section 2.6.) 

FLAG = LDCTRL + LDIR + LRDR + LXDR + BRKON. When any of the 
register load control flags or BRKON is set, FLAG= 1 (see Section 2.1.1 ). 

Data Set Status Change. DSCH is set when the DSR or CTS input changes 
state. To ensure recognition of the state change, DSR or CTS must remain 
stable in its new state for a minimum of two internal clock cycles. DSCH is reset 
by an output to bit 21 (DSCENB). 

Clear To Send. The CTS signal indicates the inverted status of the CTS 
device input. · 

Data Set Ready. The DSR signal indicates the inverted status of the DSR 
device input. 

Request To·Send. The RTS signal indicates the inverted status of the RTS 
device output. 

Timer Elapsed. TIMELP is set each time the Interval Timer decrements to 0. 
TIMELP is reset by an output to bit 20 (TIMENB). 

Timer Error. TIM ERR is set whenever the Interval Timer decrements to O and 
TIMELP (Timer Elapsed) is already set, indicating that the occurrence of 
TIMELP was not recognized and cleared by the CPU before subsequent 
intervals elapsed. TIMERR is reset by an output to bit 20 (TIMENB, Timer 
Interrupt Enable). 

Transmit Shift Register Empty. When XSRE = 1, no data is currently being 
transmitted and the XOUT output is at logic one unless BRKON (see Section 
2.1.1) is set. When XSRE = 0, transmission of data is in progress. 

Transmit Buffer Register Empty. When XBRE = 1, the transmit buffer 
register does not contain the next character to be transmitted. XBRE is set 
each time the contents of the transmit buffer.register are transferred to the 
transmit shift register, XBRE is reset by an output to bit 7 of the transmit buffer 
register (XBR7), indicating that a character has been loaded. 

Receive Buffer Register Loaded. RBRL is set when a complete character 
has been assembled in the receive shift register, and the character is trans
ferred to the receive buffer register. RBRL is re~et by an output to bit 18 
(RIENB, Receiver Interrupt Enable). 

Bit 20 (DSCINT)- Data Set Status Change Interrupt. DSCINT = DSCH (Data Set Status 
Change)AND DSCENB(Data Set Status Change Interrupt Enable). DSCINT 
indicates the presence of an enabled interrupt caused by the changing of state 
of DSR or CTS. . 

Bit 19 (TIMINT)- Timer Interrupt. TIMINT = TIMELP (Timer Elapsed) AND TIMENB (Timer 
Interrupt Enable). TIMINT indicates the presence of an enabled interrupt 
caused by the interval timer. 

9900 FAMILY SYSTEMS DESIGN 8-173 



TMS 9902 JL, NL Peripheral 

ASYNC. COMMUNTCATTONS CONTROLLF.R and Interface Circuits 

8-174 

Bit 17 (XBINT) -

Bit 16 (RBINT) -

Bit 15 (RIN)

Bit 14 (RSBD)-

Bit 13 (RFBD) -

Bit 12 (RFER) -

Bit 11 (ROVER) -

Bit 10 (APER) -

Bit 9 (RCVERR) -

Bit 7-Bit 0 
(RBR7-RBRO)-

Transmitter Interrupt. XBINT = XBRE (Transmit Buffer Register Empty) 
AND XBIENB (Transmit Buffer Interrupt Enable). XBINT indicates the pres
ence of an enabled interrupt caused by the transmitter. 

Receiver Interrupt. RBINT = RBRL (Receive Buffer Register Loaded) AND 
RIENB (Receiver Interrupt Enable). RBINT indicates the presence of an 
enabled interrupt caused by the receiver. 

Receive Input. RIN indicates the status of the RIN input to the device. 

Receive Start Bit Detect. RSBD is set a half bit time after the 1-to-O transition 
of RIN, indicating the start bit of a character. If RIN is not still O at such time, 
RSBD is reset. Otherwise, RSBD remains true until the complete character 
has been received. This bit is normally used only for testing purposes. 

Receive Full Bit Detect. RFBD is set one bit time after RSBD is set to indicate 
the sample point for the first data bit of the received character. RSBD is reset 
when the character has been completely received. This bit is normally used 
only for testing purposes. 

Receive Framing Error. RFER is set when a character is received in which 
the stop bit, which should be a logic one, is a logic zero. RFER should only be 
read when RBRL (Receive Buffer Register Loaded) is a one. RFER is reset 
\.uhon ~ rh'!ar'!al"'tor u1i+h +hn "'"rrnM t"+,..." '°''+ i,... .. ~--;· ,_,., 
•• ,,....,,, - ...,.,,_,_....,"....,' ••111.11 "''"" vv11vv""""'"'t' UI' '"" l\.ifV\,;IV~U. 

Receive Overrun Error. ROVER is set when a new character is received 
before the RBRL (Receive Buffer Register Loaded) flag is reset, indicating that 
the CPU failed to read the previous character and reset RBRL before the 
present character is completely received. ROVER is reset when a character is 
received and RBRL is O when the character is transferred to the receive buffer 
register. 

Receive Parity Error. APER is set when a character is received in which the 
parity is incorrect. APER is reset when a character with correct parity is 
received. 

Receive Error. RCVERR = RFER (Receive Framing Error) + ROVER 
(Receiver Overrun Error) + APER (Receive Parity Error). The RCVERR 
signal indicates the . presence of an error in the most recently received 
character. 

Receive Buffer Register. The Receive Buffer Register contains the most 
recently received character. For character lengths of fewer than eight bits, the 
character is right-justified, with unused most significant bit(s) all zero( es). The 
presence of valid data in the Receive Buffer Register is indicated when RBRL 
(Receive Buffer Register Loaded) is a logic one. 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9902 JL, NL 
and Interface Circuits ASYNC. COMMUNICATIONS CONTROLLER 

2.2 TRANSMITTER OPERATION 

The operation of the transmitter is diagrammed in Figure 5. The transmitter is initialized by issuing the RESET 
command (output to bit 31), which causes the internal signals XSRE (Transmit Shift Register Empty) and 
XBRE (Transmit Buffer Register Empty) to set, and BRKON to reset. Device outputs ATS and XOUT are set, 
placing the transmitter in its idle state. When RTSON (Request-to-Send On) is set by the CPU, the ATS output 
becomes active (LOW) and the transmitter becomes active when the CTS input goes LOW. 

2.2.1 Data Transmission 

If the Transmit Buffer Register contains a character, transmission begins. The contents of the Transmit Buffer 
Register are transferred to the Transmit Shift Register, causing XSRE to reset and XBRE to set. The first bit 
transmitted (start bit) is always a logic zero. Subsequently, the character is shifted out, LSB first. Only the 
number of bits specified by RCL 1 and RCLO (character length select) of the Control Register are shifted. If 
parity is enabled, the correct parity bit is next transmitted. Finally the stop bit(s) selected by SBS1 and SBSO of 
the Control Register are transmitted. Stop bits are always logic one. XSRE is set to indicate that no 
transmission is in progress, and the transmitter again tests XBRE to determine if the CPU has yet loaded the 
next character. The timing for a transmitted character is shown below. 

XOUT 

NUMBER 
OF BITS 

o I I 
I I 
I 1 I 

2.2.2 BREAK Transmission 

PARITY STOP 
I BIT I BITISI 

TRANSMITTED CHARACTER I I 

I I 

5, 6, 7, OR 8 
I I I 
IO OR 111. 1-1/2, OR 21 

TRANSMITTED CHARACTER TIMING 

The BREAK message is transmitted only if XBRE = 1, CTS = 0, and BRKON = 1. After transmission of the 
BREAK message begins, loading of the Transmit Buffer Register is inhibited and XOUT is reset. When 
BRKON is reset by the CPU, XOUT is set and normal operation continues. It is important to note that 
characters loaded into the Transmit Buffer Register are transmitted prior to the BREAK message, regardless 
of whether or not the character has been loaded into the Transmit Shift Register before BRKON is set. Any 
character to be transmitted subsequent to transmission of the BREAK message may not be loaded into the 
Transmit Buffer Register until after BRKON is reset. 

2.2.3 Transmission Termination 

Whenever XSRE = 1 and BRKON = o the transmitter is idle, with XOUT set to one. If RTSON is reset at this 
time, the ATS device output will go inactive (HIGH), disabling further data transmission until RTSON is again 
set. ATS will not go inactive, however, until any characters loaded into the Transmit Buffer Register prior to 
resetting RTSON are transmitted and BRKON = 0. 

9900 FAMILY SYSTEMS DESIGN 8-175 



8 

TMS 9902 JL, NL 
A ~VNr rnl\!Tl\!TT Tl\.TTr L\TTrYl\.T<;;;'. rrYl\.TTDr\T T VD 

A.&...._,..&..&. .. '-"'• '-"'-'.J..'f'..&.J..•..&.'-.../J.. "".&.'-".J....lr...&. .l..'-.J..1. ... ....., '-"'-J..1. ... .I.. .l..'-'-J.L.....J.L....JL...J.1.'-

SET XSRE 

SET XBRE 

SET XOUT 

DISABLE RTS 

RESET BR KON 

XBR -xsR 

RESET XSRE 

SET XBRE 

XMIT START 

BIT IXOUT=O) 

XMIT STOP 
BITIS) IXOUT=l) 

SET XSRE 

DISABLE RTS 

SET XOUT 

FIGURE 5. TMS 9902 TRANSMITTER OPERATION 

Peripheral 
and Interface Circuits 

8-176 9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9902 JL, NL 
and Interface Circuits ASYNC. COMMUNICATIONS CONTROLLER 

2.3 RECEIVER OPERATION 

2.3.1 Receiver Initialization 

Operation of the TMS 9902 receiver is diagrammed in Figure 6. The receiver is initialized whenever the CPU 
issues the RESET command. The RBRL (Receive Buffer Register Loaded) flag is reset to indicate that no 
character is currently in the Receive Buffer Register, and the RSBD (Receive Start Bit Detect) and RFBD 
(Receive Full Bit Detect) flags are reset. The receiver remains in the inactive state until a one to zero transition 
is detected on the RIN device input. 

2.3.2 Start Bit Detection 

The receiver delays a half bit time and again samples RIN to ensure that a valid start bit has been detected. If 
RIN = O after the half-bit delay, RSBD is set and data reception begins. If RIN = 1, no data reception occurs. 

2.3.3 Data Reception 

In addition to verifying the valid start bit, the half-bit delay after the one-to-zero transition also establishes the 
sample point for all subsequent data bits in a valid received character. Theoretically, the sample point is in the 
center of each bit cell, thus maximizing the limits of acceptable distortion of data cells. After the first full bit 
delay the least significant data bit is received and RFBD is set. The receiver continues to delay one-bit 
intervals and sample RIN until the selected number of bits are received. If parity is enabled, one additional bit 
is read for parity. After an additional bit delay, the received character is transferred to the Receive Buffer 
Register, RBRL is set, ROVER (Receive Overrun Error) and RPER (Receive Parity Error) are loaded with 
appropriate values, and RIN is tested for a valid stop bit. If RIN = 1, the stop bit is valid. RFER (Receive 
Framing Error), RSBD, and RFBD are reset, and the receiver waits for the next start bit to begin reception of 
the next character. 

If RIN = O when the stop bit is sampled, RFER is set to indicate the occurrence of a framing error. RSBD and 
RFBD are reset, but sampling for the start bit of the next character does not begin until RIN = 1. The timing for 
a received character is depicted below. 

PARITY 

ISTARTI I BIT I STOP I 
RECEIVED DATA I I BIT 

I I J BIT : 

RIN l~.--.-----11...._...-~_,__..__,...__,.....__,__,.....--.-..__--.-__,.....--.-__,.----1...._..--_,__ __ ~ 
SAMPLE POINTS I + 

LSB ILSB•l I 
+ + t + 

I MSB I 
+ 

I 
t + + + t 

I 
I 

NUMBER OF BITS I 1 

9900 FAMILY SYSTEMS DESIGN 

5, 6, 7, OR 8 

RECEIVED CHARACTER TIMING 

I 
I 

I I 
IOOR 11 

8-177 



TMS 9902 JL, NL 
A ~VNr rnMMT Tl\.TTr A'T'T()l\T"- rnl\T'T''D()T T R'D 

... _....,_ .&. .. ......, • .....,""""",a..'t'.a,,l.'t'.&'-'.&. ..... '"" .......... .&.'-'.&. ... ~'-"'-'.&. .. .a. .L'-'-'A-J.L.J.A-1.&.'-

Peripheral 
and Interface Circuits 

RESET RBRL 

DELAY 1 BIT 

RESET RSBD UPDATE PARITY 

RESET RFBD 

DELAY 1 BIT 

SET ROVER 

RESET ROVER 

DELAY 1/2 BIT SET RBRL 

SET RSBD 

NO 

SET RPER 

RESET RPER 

DELAY 1 BIT 

SET RFBD 
NO 

SAMPLE BIT SET RFER 

.. g RESET RFER 

FIGURE 6. TMS 9902 RECEIVER OPERATION 

8-178 9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9902 JL, NL 
and Interface Circuits 

ASYNC. COMMUNICATIONS CONTROLLER 

2.4 INTERVAL TIMER OPERATION 

A flowchart of the operation of the Interval Timer is shown in Figure 7. Execution of the RESET command by 
the CPU causes TIMELP (Timer Elapsed) and TIMERR (Timer Error) to reset and LDIR (Load Interval 
Register) to set. Resetting LDIR causes the contents of the Interval Register to be loaded into the Interval 
Timer, thus beginning the selected time interval. The timer is decremented every 64 internal clock cycles 
(every two internal clock cycles when in Test Mode) until it reaches zero, at which time the Interval Timer is 
reloaded by the Interval Register and TIMELP is set. If TIMELP was already set, TIM ERR is set to indicate that 
TIMELP was not cleared by the CPU before the next time period elapsed. Each time LDIR is reset, the 
contents of the Interval Register are loaded into the Interval Timer; thus restarting the timer (refer also to 
Section 2.1.2.2). · 

LDIR 
RESET 

LOAD INTERVAL 
REGISTER INTO 

INTERVAL 
TIMER 

SET TIMERR 

FIGURE 7. TMS 9902 INTERVAL TIMER OPERATION 

INTERVAL TIMER SELECTION 

9900 FAMILY SYSTEMS DESIGN 8-179 

I 

8~1 



·8 

TMS 9902JL, NL Peripheral 
and Interface Circuits 

ASYNC. COMMUNICATIONS CONTROLLER 

2.5 INTERRUPTS 

The interrupt output (INT) is active (LOW) when any of the following conditions occurs and the corresponding 
interrupt has been enabled on the TMS 9902 by the CPU: 

(1) DSR or CTS changes levels (DSCH = 1 ); 

(2) a character has been received and stored in the Receive Buffer Register (RBRL = 1); 

(3) the Transmit Buffer Register is empty (XBRE = 1 ); or 

(4) the selected time interval has elapsed (TIMELP = 1). 

DSCH 
DSC INT 

DSCENB 

RBRL 
RINT 

RIENB 

CRU 
XBRE STATUS 

XINT LINES XIENB 

TIMELP 
TIMINT 

TIMENB 

INT 

INT 
OUTPUT 

FIGURE 8. M OUTPUT GENERATION 

Figure 8 illustrates the logical equivalent of the ACC interrupt section. Table 6 lists the actions necessary to 
clear those conditions of the TMS 9902 that cause interrupts. 

TABLE6 

TMS 9902 INTERRUPT CLEARING 

MNEMONIC CAUSE ACTION TO RESET 

DSCINT CTS or DSR change state Write a bit to DSCENB (bit 21)* 

RINT Rec1eve Buffer Full Write a bit to RIENB (bit 18) * 

XINT Transmit Buffer Register Empty Load Transmit Buffer 

TIMINT Timer Elapsed Write a bit fa TIMENB (bit 20)* 

"Writing a zero to clear the interrupt will clear the interrupt and disable further interrupts. 

8-180 9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

TMS 9902 JL, NL 
ASYNC. COMMUNICATIONS CONTROLLER 

2.6 TMS 9902 TERMINAL ASSIGNMENTS AND FUNCTIONS 

SIGNATURE PIN 110 

0 

XOUT 2 0 

RIN 3 

CRUIN 4 0 

RTS 5 0 

CTS 6 

DSR 7 

CRUOUT 8 

Vss 9 

S4 (LSB) 10 
S3 11 
S2 12 
S1 13 
so 14 

CRUCLK 15 

7j;" 16 

CE 17 

Vee 18 

DESCRIPTION 

Interrupt - when active (LOW), the INT output 
indicates that at least one of the interrupt condi
tions has occurred. 

Transmitter Serial Data Output line - XOUT, 
remains inactive (HIGH) when TMS 9902 is not 
transmitting. 

Receiver Serial Data Input Line - RCV must be 
held in the inactive (HIGH) state when not receiv
ing data. A transition from HIGH to LOW acti
vates the receiver circuitry. 

Serial data output pin from TMS 9902 to CRUIN 
input pin of the CPU. 

Request-to-Send output from TMS 9902 to 
modem. RTS is enabled by the CPU and remains 
active (LOW) during transmission from the 
TMS9902. 

Clear-to-Send input from modem to TMS 9902. 
When active (LOW), it enables the transmitter 
section of TMS 9902. 

INT 

XOUT 

RIN 

CRUIN 

CTS 

-DSR 

CRUOUT 

Vss 

TMS9902 
18-PIN PACKAGE 

Vee 

CE 

CRUCLK 

so 

S1 

S2 

S3 

S4 

Data Set Ready input from modem to TMS 9902. DSR generates an interrupt when it changes state. 

Serial data input line to TMS 9902 from CRUOUT line of the CPU. 

Ground reference voltage. 

Address Select Lines. The data bit being accessed by the CPU interface is specified by the 5-bit code 
appearing on SO-S4. 

CRU Clock. When active (HIGH), indicates valid data on the CRUOUT line for the 9902. 

TILClock. 

Chip Enable -when CE is inactive (HIGH), TMS 9902 CRU interface is disabled. CF=!UIN remains 
at high-impedance when CE is inactive (HIGH). 

Supply voltage ( +5 V nominal). 

9900 FAMILY SYSTEMS DESIGN 8-181 

8· 



·8 

TMS 9902 JL, NL Peripheral 
and Interface Circuits 

ASYNC. COMMUNICATIONS CONTROLLF.R 

3. DEVICE APPLICATION 

This section describes the software interface between the CPU and the TMS 9902 ACC and discusses some 
of the design considerations in the use of this device for asynchronous communications applications. 

3.1 DEVICE INITIALIZATION 

The ACC is initialized by the RESET command from the CPU (output bit 31 ), followed by loading the Control, 
Interval, Receive Data Rate, and Transmit Data Rate registers. Assume that the value to be loaded into the 
CRU Base Register (register 12) in order to point to bit O is 004015. In this application characters have seven 
bits of data plus even parity and one stop bit. The -;;;input to the ACC is a 3 MHz signal. The ACC divides this 
signal frequency by three to generate an internal clock frequency of 1 MHz. An interrupt is generated by the 
Interval Timer every 1.6 milliseconds when timer interrupts are enabled. The transmitter operates at a data 
rate of 300 bits per second, and the receiver operates at 1200 bits per second. 

NOTE 

To operate both the transmitter and receiver at 300 bits per second, delete the 
"LDCR @RDA, 11" instruction (see below), and the "LDCR @XOR, 12" instruction 
will cause both data rate registers to be loaded and LADA and LXDR to reset. 

3.1.1 Initialization Program 

8-182 

The initialization program for the configuration described above is shown below. The RESET command 
disables all interrupts, initializes all controllers, and sets the four register load control flags (LDCTRL, LOIA, 
LADA, and LXDR). Loading the last bit of each of the registers causes the load control flag to reset 
automatically. 

CNTRL 
INTVL 
RDA 
XOR 

LI 
SBO 
LDCR 
LDCR 
LDCR 
LDCR 

BYTE 
BYTE 
DATA 
DATA 

R12,>40 
31 
@ CNTRL,8 
@ INTVL,8 
@ RDR,11 
@XDR,12 

>A2 
1600/64 
>1A1 
>400 

INITIALIZE CRU BASE 
RESET COMMAND 
LOAD CONTROL AND RESET LDCTRL 
LOAD INTERVAL AND RESET LOIA 
LOAD RDA AND RESET LADA 
LOAD XOR AND RESET LXDR 

The RESET command initializes all subcontrollers, disables interrupts, and sets LDCTRL, LOIA, LADA, and 
LXDR, enabling loading of the control register. 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9902 JL, NL 
and Interface Circuits 

ASYNC. COMMUNICATIONS CONTROLLER 

3.1.2 Control Register 

The options listed in Table 3 in Section 2.1.2.1 are selected by loading the value shown below. 

7 

MSB 
VALUE 

6 5 4 3 2 0 

LSB 

•lo " 1 .. lo ~L -o L o7 .:T CHA:~: ER 

tfJ DI VI DE-BY -3 

EVEN PARITY 

1 STOP BIT 

3.1.3 Interval Register 

3.1.4 

To set up the interval register to generate an interrupt every 1.6 milliseconds, load the value into the interval 
register to specify the number of 64-microsecond increments in the total interval desired. 

7 6 5 4 3 2 0 

TMR7 TMR6 TMR5 TMR4 TMR3 TMR2 TMR1 TMRO 

0 0 0 0 0 

L 1915= 2510 

25 X 64 MICROSECONDS= 1.6 MILLISECONDS 

Receive Data Rate Register 

To set the data rate for the receiver to 1200 bits per second, load the value into the Receive Data Rate register 
as shown below: 

9900 FAMILY SYSTEMS DESIGN 8-183 



~s 

TMS 9902 JL, NL Peripheral 
and Interface Circuits 

ASYNC. COMMUNICATIONS CONTROLLER 

3.1.5 Transmit Data Rate Register 

To program the data rate for the transmitterfor300 bits per second, load the following value into the Transmit 
Data Rate register: 

10 9 8 7 6 5 4 3 2 0 

XDV8 XDR9 XDR8 XDR7 XDR6 XDRS XDR4 XDRJ XDR2 XDR1 XDRO 

1 0 0 0 0 0 0 0 
'-y-l~~~~~~~~~~~~y---~~~~~~~~-

L L 00015 = 208 

9XDV8 = 8 

1 X 106 7 8 7 208 + 2 = 300.48 BITS PER SECOND 

3.2 DATA TRANSMISSION 

8-184 

The subroutine shown below demonstrates a simple loop for transmitting a block of data. 

LI RO, LISTAD INITIALIZE LIST POINTER 
LI R1, COUNT INITIALIZE BLOCK COUNT 
LI R12, CRUBAS INITIALIZE CRU BASE 
SBO 16 TURN ON TRANSMITTER 

XMTLP TB 22 WAIT FOR XBRE = 1 
JNE XMTLP 
LDCR *R0+,8 LOAD CHARACTER INCREMENT POINTER 

RESETXBRE 
DEC R1 DECREMENT COUNT 
JNE XMTLP LOOP IF NOT COMPLETE 
SBZ 16 TURN OFF TRANSMITTER 

After initializing the list pointer, block count, and CRU base address, RTSON is set to cause the transmitter 
and the ATS output to become active. Data transmission does not begin, however, until the CTS input 
becomes active. After the final character is loaded into the Transmit Buffer register, RTSON is reset. The 
transmitter and the ATS output do not become inactive until the final character is transmitted. 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9902 JL, NL 
and Interface Circuits 

ASYNC. COMMUNICATIONS CONTROLLER 

3.3 DATA RECEPTION 

3.4 

The following software will cause a block of data to be received and stored in memory. 

CARR ET BYTE >OD 
RCVBLK LI R2, RCVLST INITIALIZE LIST COUNT 

LI R3,MXRCNT INITIALIZE MAX COUNT 
LI R4, GARRET SET UP END OF BLOCK CHARACTER 

RCVLP TB 21 WAIT FOR RBRL = 1 
JNE RCVLP 
STCR *R2,8 STORE CHARACTER 
SBZ 18 RESETRBRL 
DEC R3 DECREMENT COUNT 
JEQ RCVEND END IF COUNT = 0 
CB *R2+,R4 COMPARE TO EOB CHARACTER, INCREMENT 

POINTER 
JNE RCVLP LOOP IF NOT COMPLETE 

RCVEND RT END OF SUBROUTINE 

REGISTER LOADING AFTER INITIALIZATION 

The Control, Interval, and Data Rate registers may be reloaded after initialization. For example, it may be 
desirable to change the interval of the timer. Assume that the interval is to be changed to 10.24 milliseconds; 
the instruction sequence is: 

INTVL2 

SBO 
LDCR 

BYTE 

13 
@ INTVL2,8 

10240/64 

SET LOAD CONTROL FLAG 
LOAD REGISTER, RESET FLAG 

When transmitter interrupts are enabled, caution should be exercised to ensure that a transmitter interrupt 
does not occur while the load control flag is set. For example, if a transmitter interrupt occurs between 
execution of the "SBO 13" and the next instruction, the transmit buffer is not enabled for loading when the 
Transmitter Interrupt service routine is entered because the LDIR flag is set. This situation may be avoided by 
the following sequence: 

ITVCPC 

ITVCHG 
INTVL2 

BLWP 

LIMI 
MOV 
SBO 
LDCR 
RTWP 

DATA 
BYTE 

@ITVCHG 

0 
@ 24(R13),R12 
13 
@INTVL2,8 

ACCWP, ITVCPC 
10240/64 

CALL SUBROUTINE 

MASK ALL INTERRUPTS 
LOAD CRU BASE ADDRESS 
SET FLAG 
LOAD REGISTER AND RESET FLAG 
RESTORE MASK AND RETURN 

In this case all interrupts are masked, ensuring that all interrupts are disabled while the load control flag is set. 

9900 FAMILY SYSTEMS DESIGN 8-185 

8 



·8 

TMS 9902 JL, NL Peripheral 
and Interface Circuits ASYNC. COMMUNICATIONS CONTROLLER 

3.5 INTERFACE TO A DATA TERMINAL 

Following is a discussion of the TMS 9902 interface to a Tl Model 733 data terminal as implemented on the 
TM 990/100M microcomputer module. Figure 9 diagrams the hardware interface, and Table 7 lists the 
software interface. The 733 data terminal is an ASCII-code, serial, asynchronous, EIA device equipped with a 
keyboard, thermal printer, and digital cassette tape. 

3.5.1 Hardware Interface 

The hardware interface between the TMS 9902 and the 733 data terminal is shown in Figure 9. The . 
asynchronous communication conforms to EIA Standard RS-232-C. The 75188 and 75189 performs the 
necessary level shifting between TTL levels and RS-232-C levels. The ACC chip enable (9902SEL) signal 
comes from decode circuitry which looks at AO-A9 on CRU cycles. The interrupt output (INT) of the TMS 9902 
is sent to the TMS 9901 for prioritization and encoding. When the 9902 is communicating with a terminal, the 
ATS pin can be connected to the CTS pin because the terminal will always be in the clear-to-send (CTS) 
condition. 

3.5.2 Software 

8-186 

The software required to initialize, read from, and write to the TMS 9902 ACC is listed in Table 7. These 
routines are taken directly from TIBUG (TM 990/402-1) which is the monitor that runs on the TM 990/100M 
boards. The coding shown is part of a routine entered because of a power-up reset. Before this section of 
code was entered, not shown, R12 is set to the correct value of the TMS 9902 CRU base address. The baud 
rate is detected by measuring the start bit length when an "A" is entered via the keyboard. The variable 
COUNT is incremented every time the SPLOOP loop is executed. When a zero is seen at 9902 bit 15 (RIN) 
the start bits are finished being received. The value of COUNT is then compared against a table of known 
values in TABLE to determine the baud rate. 

TIBUG assumes that all 1200-baud data terminals are Tl Model 733 data terminals. The Tl Model 733 
communicates at 1200 baud, but prints at 300 baud; this means that bits travel the communications.line at 
1200 baud, but the spacing between characters is 300 baud. A wait loop is included in the write character 
routine to handle this spacing requirement. The TIBUG T command is used to indicate that a 1200 baud 
terminal is true 1200 baud; i.e., not a Tl 733. 

This code is taken from the middle of TIBUG; thus constructs and symbols are used which are not defined 
here. Lines 261and262 of the code contain XOP calls. The READ OPCODE is really a call to XOP 13 and the 
MESG opcode is a call to XOP 14, which in turn calls XOP 12. This can be figured out if the assembled code 
for these opcodes is examined. Following is a list of EQU statements that appear at the beginning of TIBUG, 
but are not shown here: 

COUNT 
POINT 
LINK 
CRUBAS 

EQU 
EOU 
EQU 
EOU 

3 
7 

11 
12 

Once again, these values could easily be obtained by looking at the assembled code for the statement in 
which the symbol is used. 

9900 FAMILY SYSTEMS DESIGN 



-0 
-0 
0 
0 

'T'.I 
;;t> 
2::: 

~ 
(fl 

.....::: 
U'l ..., 
t'Tj 

2::: 
(fl 

~ 
t'Tj 
(fl 

cs z 

~ 
I--' 
00 
-....! 

Vee 

TMS 

9900 
CPU 

~q; TNT 
31 CRUIN 4 TMS 9902 

30 CRUOUT 8 ACC 
XOUT 

60 CRUCLK 15 

14 ATS 
A10 

14 so 

13 13 Sl CTS 
All 

12 12 
A12 S2 

A13 
11 11 

SJ 

A14 lO 10 S4 

17 -
CE 

RIN 

+5V~ Vee 

Vss DSR 

9902SEL 

1 

) 

TO 9901 INTERRUPT 

INPUTS 

Y. 75188 

NC 

8 9 
.£T 

75189 

-=-

10 

NC 

3 2 
..IT 

75189 

FIGURE 9. INTERFACE TO A 733 DATA TERMINAL 

00 

1 1 Pf10TECTIVE GROUND 

2 2 
TRANSMIT DAT A 

3 3 

+12 v 5 5 CTS 

6 5 DSR 

7 SIGNAL GND 

0 REQUEST TO SEND 

DATA TERMINAL 
1 

7J 20 
READY 

(IA RS 232 c 

: I 733 
DATA 

TERMINAL 

20 

Q) 'ti 
::I CD 
c. ::::. 
-i:J ::s :::T 
- CD CD -. 
::::::. Q) 
Ill -
0 
CD 

Q 
c; 
=· u; 

>~ 
CJ)~ 
~CJ) 
z'° ('ho 
. 0 
nN 
o~ 
~J~ 

~z 
c~ 
z 
~ 

n 
~ 
~ 

0 z 
CJ) 

n 
0 z 
~ 
~ 
0 
~ 
~ 
tiJ 
~ 



TMS 9902 JL, NL 
ASYNC. COMMUNICATIONS CONTROLLER 

Peripheral 
and Interface Circuits 

TABLE7 

TMS 9902 SOFTWARE 

TI BUG 
***COMMAND SEARCH AND SYSTEM INZ*** 

o· 
+' ~<v ~~ 

<v~ ~<v c.P 
<v~ ~~ <v() 

~ g;.'<; ~v 

4- ()() ~ 
'?' ~Cj 

(1~:::31 'i" * 
0::·::::2 * INITIALIZE TM'.:S1·:.102 FOH: *BAUD RATE 
02:33 * *7 BI TS l(:HARACTER 
0:·::=:4 * *EVEN PARITY 
02:~:5 * *2 '.3TOP BITS 
o:'.:31:.. * *F'CILLED OPERATION 
02:37 * 
02:3:::: Ol.~·F. 1D1 F ::;BO ::::: 1 RE.::;ET TM::;;.::-,902 UARl 

02:39 0160 :3220 LDCR @CR,::: INIT IALIZt: fMS9'i02 CUNrRIJL REG 
01~.2 01 A4,. 

0240 0164 1EOD s~z 1 :::: [10 NOT IN"f INTERVAL REG 
0241 0166 04C:3 CLR COUNT R£::3ET LOOP U]IJNT 
0242 0168 1FOF TSTSP TB 15 SPACE? 
024:3 016A 1:3i:i:: .JEGI T:3TSP NO, .JUMP BACI< 
0244 016(: 0583 SPLOOP INC COUNT TIME THE s·rARl Bll 
0245 016E 1FOF TB 15 FALL. OIJT ON A MAHI< 
0246 0170 1l:.FD ,.JNE SPLOOP 
0247 * 
0248 * TABLE SEARCH FOR BAUD RATE 
0249 * 
0250 0172 0207 LI POINT.TABLE SET POINTER TO TABLE 

0174 0194" 
025J 0176 8DC3 BDLOOP c COUNT,*POINT+ MATCH? 
0252 0178 1202 .JL.E MATCH YE:3, SET BAUD RATE 
0253 017A 05C7 INCT POINT NO, UPDATE POINTER 
0254 017C lOFC .JMP BDLOOP 
0255 017E" MATCH EQU $ 

0256 017E 3317 LDCR *POINT, 12 INT. REC./XMT. DATA RAlE 
0257 0180 C1D7 MOV *POINT.POINT 
0258 0182 0287 CI POINT.>1AO 1200 BAUD °7' 

0184 01AO 
0259 0186 1602 .JNE BANNER LEAVE ASR FLAG ALON[ 
0260 0188 0720 SETO @ASR SET 7:3:3ASR FLAG 

018A FFF4 

·8 0261 018C 2F45 BANNER READ CHAR 
0262 018E 2FAO MESG @LOGON PRINT LO(; ON MESSAGE 

0190 022B" 
0263 0192 10DC .JMP .JMMONT TO TOP OF MONITOR 
0264 0194 0040 TABLE DATA )40,)00 2400 BAUD 

0196 OODO 
0265 0198 0070 DATA >70,>1AO 1200 BAUD 

019A 01AO 
0266 019C 0200 DATA >200,)4(10 ::::oo BAUD 

019E 0400 
0267 01AO 0400 DATA )400,)638 110 BAUD 

01A2 06:3:3 
0268 01A4 62 CR BYTE )62 

8-188 9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9902 JL, NL 
and Interface Circuits 

ASYNC. COMMUNICATIONS CONTROLLER 

THUi(; TABLE 7 (Continued) 

**• WRITE CHARACTER *** 

029(1 
0291 
(1292 
029:3 
0294 
029!':i 
029~. 

0297 
0298 
0299 
03(10 
0301 
0302 0186 020A 

0188 OEA6 
0303 OlBA 020C 

OlBC 0080 
0304 OlBE 1D10 
0:305 01CO 1F16 
030~. 01 C2 16F9 
0307 01C4 3218 
0308 01C6 D2DB 
0309 01C8 1Et0 
0310 01CA 0988 
0:311 OlCC 028B 

01CE OOOD 
0312 OlDO 1608 
0313 0102 OA3A 
0314 0104 1F16 
0315 01D6 16FE 
031~· 01D8 1F17 
1):317 01DA 16FC 
0318 01DC 060A 
0:319 01DE 16FE 
0320 01EO 0380 
0:321 01E2 C2EO 

01E4 FFF6 
0322 01E6 1303 
0:323 01 E8 C2EO 

01EA FFF4 
0324 OlEC 16F3 
0325 01EE 0380 

TIBIJG 

********************************************* 
* WRITE CHARACTER -- XOP R. 12 

* 
* 

NORMAL RE.Tl IRN 

* TRANSMIT THE CHARACTER IN THE LEFT BYTE: Of' 
* USER REGISTER R. IF THE CHARACTER IS A 
* CARRIAGE RETURN. THE ROUTINE WAITS U1Q MSE.C FOR 
* THF. CARRIAGE TO RE·HJRN. IF TUE TF.RMINAL IS 
* A 733ASR AS DENOTED IN THE T COMMAND. EACH 
*CHARACTER IS PADDED WITH 25 t1StC lO R£DUCE 
* THE TRANSFER RATE TO 300 BAUD. 
********************************************•*** 
WENTRY LI R10.3750 

LI 
' 

SBO 
TB 
.JNE 
LDCR 
MOVB 
SBZ 
SRL 
CI 

.JNE 
SLA 

WLOOP1 TB 
.JNE 
TB 
.JNE 

WLOOP2 DEC 
.JNE 

CRUBAS.>80 

16 
22 
WENT RY 
*LINK.8 
•LINK. LINK 
16 
LINK.8 
LINK. ::.~oooo 

ASR733 
R10.3 

WUJOPl 
23 
WLOOP'l 
RlO 
WLOOP2 

SET CRU BASE REG. 

SET RTSON 
TRANSMIT BUFFER RF.G. EMPTY? 
NO. WAIT UNTIL IT JS 
CHARACTER TO UART 

RF.SF.T RTSON 

CARRIAGE RF.TURN 

NO. SKIP 

WAIT FOR XMISSION TO END 

WAIT LOOP 

RTWP 
ASR733 MOV @DUMPFG.LINK IN DUMP ROUTINE ? 

.JEQ WEXIT 
MOV <!ASR.l.INK 

,.JNE WLOOPl 
WEXIT RTWP 

YES.IGNORE ASR FLAG 
ASR7:33 ? 

YES. WAIT 3 NULLS 

*** READ CHARACTER *** 

0271 
0272 
1)27:3 
0274 
0275 
0276 
0277 
0278 
0279 
0280 
0281 01A6 020(: 

01A8 0080 
0282 OlAA 1F15 
(1"283 01AC ·16FC 
0284 01AE 04DB 
0285 0181) :361B 
0286 01B2 1E12 
0287 0184 1)3:30 

********************************•***•*****••****• 
*READ C~ARACTER -- XOP R.13 

* 
* 

NORMAL RETURN 

* READ WAITS FOR A CHARACTER TO BE ASSEMBLED IN 
* THE UART. THE CHARACTER IS PL.ACED IN ntE LEFT 
* BYTE OF USER REGISTER R. THE RIGHT BYTE IS 
* ZEROED. ALL ERRORS ARt:: IGNORED. 
***********•************************************* 

* RENTRY LI CRUBAS,)80 SET CRU BASE REG. 

TB 21 
.JNE RE::NTRY 
CLR *LINK 
STCR *LtNK. 8 
SBZ 18 
RTWP 

RECEIVE BUFFER REG. FULL? 
NO. LOOP 

9900 FAMILY SYSTEMS DESIGN 8-189 



·8 

Peripheral TMS 9902 JL, NL 
ASYNC. COMMUNICATIONS CONTROLLER 

and Interface Circuits 

4. TMS 9902 ELECTRICAL SPECIFICATIONS 

4.1 Absolute Maximum Ratings Over Operating Free Air Temperature Range (Unless Otherwise Noted) * 

Supply voltage, Vee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 1 o V 
All inputs and output voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 10 V 
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.55 W 
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C 
Storage temperature range ....................... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65°C to 150°C 

•stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of 
the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to 
absolute maximum rated conditions for extended periods may affect device reliability. 

4.2 Recommended Operating Conditions * 

PARAMETER MIN NOM 

Supply voltage, Vee 4.75 

Supply voltage, Vss 

High-level input voltage, V1H 2.0 

Low-level input voltage, V1L Vss-.3 

Operating free-air temperature, TA 0 

4.3 Electrical Characteristics Over Full Range of Recommended Operating Conditions 
(Unless OthArwi~ N'-'t~} * 

PARAMETER TEST CONDmONS MIN 

VoH High level output voltage 
IQH = -100µ.A 2.4 

IQH = -200µA 2.2 

Vol Low level output voltage loL = 3.2mA Vss 

11 Input current (any input) v1 = ovtoVcc 

tcc(avl Average supply current from Vee lc(c/l) = 330 ns, TA= 70°C 

Ci Small signal input capacitance, any input f= 1 MHz 

4.4 Timing Requirements Over Full Range of Operating Conditions 

PARAMETER MIN 

le(¢) Clock cycle time 300 

tr(<f>) Clock rise time 5 

tf(<f>) Clock fall time 10 

tw~f!L Clock pulse width (high level) 225 

tw(<f>L) Clock pulse width (low level) 45 

tw(CC) CRUCLK pulse width 100 

tsu1 Setup time for CE before CRUCLK 150 

tsu2 Setup time for SO-S4, or CRUOUT before CRUCLK 180 

th Hold time for CE, SO-S4, or CRUOUT after CRUCLK 60 

*NOTE: All voltage values are referenced to V55 . 

5.0 

0 

TYP 

TYP 

333 

185 

MAX UNIT 

5.25 v 
v 

Vee v 
0.8 v 
70 oc 

MAX UNIT 

Vee v 
Vee v 

0.4 v 
±10 µA 

100 mA 

15 pF 

MAX UNIT 

667 ns 

40 ns 

40 ns 

ns 

ns 

ns 

ns 

ns 

ns 

8-190 9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9902 JL, NL 
and Interface Circuits 

ASYNC. COMMUNICATIONS CONTROLLER 

4.5 Switching Characteristics Over Full Range of Recommended Operating Conditions 

PARAMETER 
TEST 

CONDITION 
MIN TYP MAX 

tpd1 Propagation delay, CE to valid CRUIN CL= 100pF 300 

tpd2 Propagation delay, SO-S4 to valid CRUIN CL= 100pF 320 

----- lc(<,'.>)-----.-f 

I==== lw(<t>Hl •I 
90% ---------... 

10% 

\ ___ ~/ 
tsu1-HI 1'4•--<•-1-th I• •i lpd1 

-----. CRUBITADDRESSn CRUBITADDRESSn+1 I ~ 
"-----,-I ~.-, 'h 1w(CC)---1-I t---t- th I 

90~11 n I : 

------'----' ------- I ' I-------;-------
---·I I· ·I lh 

..__cR_u_D_A_T_A_o_uT_n__,x '""DATA""'"" c 
DON'T CARE 

SWITCHING CHARACTERISTICS 

NOTE: ALL SWITCHING TIMES ARE ASSUMED TO BE AT 10% OR 90% VALUES. 

EQUIVALENT OF 1/0 INPUTS 

Vee Vee 

INPUT 

o________.l 
I~ 
1 

-= 

INPUT AND OUTPUT EQUIVALENTS 

9900 FAMILY SYSTEMS DESIGN 

UNKNOWN 

r- lpd2 -I 
DON'T CARE 

VALID 
INPUT 
BIT m 

EQUIVALENT OF 1/0 OUTPUTS 

Vee 

) 
J-~~T 

J! 
1 

UNIT 

ns 

ns 

8-191 

8 



8 

TMS 9902-40 JL, NL Peripheral 

ASYNC. COMMUNICATIONS CONTROLLER and Interface Circuits 

5. TMS 9902-40 ELECTRICAL SPECIFICATIONS 

5.1 ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE AIR TEMPERATURE RANGE 
(UNLESS OTHERWISE NOTED)* 

Supply voltage, Vee ........ . 
All Inputs and Output Voltages .. 
Continuous Power Dissipation ... 
Operating Free-Air Temperature Range 
Storage Temperature Range ...... . 

-0.3Vto10 V 
-0.3 V to 10 V 
. ..... 0.6W 
. 0°c to 70°C 

- 65°C to 150°C 

0 Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating 

only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating 

Conditions" section of this specification is not implied. Exposure to Absolute Maximum Rated conditions for extended periods may 

affect device reliability. 

5.2 RECOMMENDED OPERATING CONDITIONS 

MIN NOM MAX 

Supply voltage, Vee 4.75 5 5.25 

Supply voltage, Vss 0 

High-level input voltage, V1H 2.0 2.4 Vee 

Lew-level input voitage, V1L Vss-.3 U.4 0.8 

Operating free-air temperature, TA 0 70 

5.3 ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING 
CONDITIONS (UNLESS OTHERWISE NOTED) 

PARAMETERS TEST CONDITIONS MIN TYP MAX 

loH- -100µA 2.4 · Vee 
VoH High-level output voltage 

loH= -200µA 2.2 Vee 

Vol Low-level output voltage loL =3.2 mA 0.4 

11 Input current (any input) V1= OVto Vee ±10 

lee(AV) Average supply current from Vee tc(</>) = 330 ns, TA =25°C 100 

C1 Small Signal Input 

Capacitance, any input 
f=1 MHz 15 

UNIT 

v 
v 
v 
v 
oc 

UNIT 

v 

v 
µ.A 

mA 

pF 

5.4 TIMING REQUIREMENTS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS 

PARAMETER 

1c(<!>) Clock cycle time 

t,(q,) Clock rise time 

t1(</>) Clock fall time 

tw(</>H) Clock pulse width (high level) 

tw(</>L) Clock pulse width (low level) 

tw(CC) CRUCLK pulse width 

tsu1 Setup time for CE before CRUCLK 

tsu2 Setup time for SO-S4 or CRUOUT before CRUCLK 

th Hold time for CE, SO-S4, or CRUOUT after CRUCLK 

DESIGN GOAL 
This document describes the design specifi
cations for a product under development. 
Texas Instruments reserves the right to 
change these specifications in any manner, 
without notice. 

8-192 

MIN TYP MAX UNIT 

240 250 667 ns 

8 40 ns 

10 40 ns 

180 ns 

40 ns 

80 ns 

110 110 ns 

150 150 ns 

50 50 ns 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9902-40 JL, NL 
and Interface Circuits ASYNC. COMMUNICATIONS CONTROLLER 

5.5 SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING 
CONDITIONS 

PARAMETERS 

tpo1 Propagation delay, CE to valid CRUIN 

tpo2 Propagation delay, SO-S4 to valid CRUIN 

DESIGN GOAL 

This document describes the design specifi
cations for a product under development. 
Texas Instruments reserves the right to 
change these specifications in any manner, 
without notice. 

9900 FAMILY SYSTEMS DESIGN 

TEST CONDITIONS MIN TYP 

220 
CL= 100pF 

240 

MAX UNIT 

220 ns 

240 ns 

8-193 

8· 



TMS 9903 JL, NL . 
SYNC. COMMUNICATIONS CONTROLLER 

Peripheral 
and Interface Circuits 

1. INTRODUCTION 

1.1 DESCRIPTION 

The TMS 9903 Synchronous Communications Controller (SCC) is a 20 pin peripheral device for the Texas 
Instruments TMS 9900 family of microprocessors. The TMS 9903 is TIL compatible on all inputs and outputs, 
including the power supply ( +5V) and single phase clock. The SCC provides an interface between the 
microprocessor and a serial synchronous or asynchronous channel, performing data serialization and 
deserialization, facilitating microprocessor control of the communications channel. The TMS 9903 is fabri
cated using N-channel, silicon gate, MOS technology. 

1.2 KEY FEATURES 

• DC to 250 kilobits per second (kb/s) data rate, half or full duplex 

• Dynamic character length selection 

• Multiple line protocol capabilities: SDLC, Bi-Sync, HDLC, ADCCP 

• Programmable CYCLIC-redundancy-check (CRC) generation and detection 

• Interface to unclocked or NAZI data 

• Programmable sync registers 

• Interval timer with resolution from 64-16,320 microseconds (µs) 

• Automatic zero insert and delete for SDLC, HDLC 

• Fully TIL-compatible, including single +5 V power supply and clock 

• Standard 20-pin plastic or ceramic package 

1.3 TYPICAL APPLICATION 

8-194 

Figure 1 shows a general block diagram of a TMS 9900 based system incorporating a TMS 9903 SCC; Figure 
2 is a similar diagram depicting a TMS 9980A or TMS 9981 based system. Following is an introductory 
discussion of the 9900 based application. Subsequent sections of this Data Manual detail most aspects of 
TMS 9903 usage. 

The TMS 9903 interfaces with the CPU through the communications register unit (CRU). The CRU interface 
consists of five address select lines (SO-S4), chip enable (CE), and three CRU lines (CRUIN, CRUOUT, 
CRUCLK). An additional input to the CPU is the SCC interrupt line (INT). The TMS 9903 occupies 32 bits of 
CRU space; each of the 32 bits are selected individually by processor address lines A10-A14 which are 
connected to SCC select lines SO-S4, respectively. Chip enable (CE) is generated by decoding address 
lines AO-A9 for CRU cycles. Under certain conditions the TMS 9903 causes interrupts, the SCC INT line is 
sent to the TMS 9901 for prioritization and enc~ding. 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9903 JL, NL 
and Interface Circuits 

SYNC. COMMUNICATIONS CONTROLLER 

SERIAL f 
SYNCHRONOUS/ 

ASYNCHRONOUS 
INTERFACE 

1/0 

INTERRUPTS 

LEVEL 
SHIFTING 

TMS 9901 
PSI 

TMS 9903 
sec 

~ TIM9904 
.---------t CLOCK 

GENERATOR 

TMS 9900 
CPU 

FIGURE 1. TMS 9903 SYNCHRONOUS COMMUNICATION CONTROLLER IN A TMS 9900 SYSTEM 

1/0 

TMS 9901 
PSI 

INTERRUPTS 

TMS9980 A 
OR 

TMS 9981 
CPU 

SERIAL f 
SYNCHRONOUS/ LEVEL TMS 9903 

ASYNCHRONOUS SHIFTING sec 
INTERFACE SO-S4 

ADDRESS 

FIGURE 2. TMS 9903 SYNCHRONOUS COMMUNICATION CONTROLLER IN A TMS 9980 A, 9981, SYSTEM 

9900 FAMILY SYSTEMS DESIGN 

MEMORY 
INTERFACE 

MEMORY 
INTERFACE 

8-195 

8-c 



TMS 9903 JL, NL Peripheral 
and lnterf ace Circuits SYNC. COMMUNICATIONS CONTROLLER 

The SCC interfaces to the synchronous communications channel on seven lines: request to send (ATS), data 
set ready (DSR), clear to send (CTS), serial transmit data (XOUT), seriai receive data (RIN), receiver clock 
(SCA), and transmitter clock (SGT). The request to send (RTS) goes active (LOW) wheriever the transmitter 
is activated. However, before data transmission begins, the clear to send (CTS) input must be active. The 
data set ready (DSR) input does not affect the receiver or transmitter. When DSR, CTS, or automatic 
request-to-send (RTSAUT) changes level, an interrupt is generated, if enabled. 

The TMS 9903 is capable of six different modes of operation, including two asynchronous modes. Standard 
synchronous protocols such as SDLC, HDLC, Bi-Sync, and ADCCP can be directly implemented on the SCC. 

2. ARCHITECTURE 

The TMS 9903 synchronous communications controller (SCC) is designed to provide a low cost, serial, 
synchronous or asynchronous interface to the 9900 family of microprocessors. A block diagram for the TMS 
9903 is shown in Figure 3. The sec has five main subsections: CRU interface, transmitter section, receiver 
section, interval timer, and interrupt section. 

2.1 CRU INTERFACE 

8-196 

The communications register unit (CRU) is the means by which the CPU communicates with the TMS 9903 
SCC. The SCC occupies 32 bits of CRU read and write space. Figure 4 illustrates the CRU interface between 
a TMS 9903 and a TMS 9900 CPU; Figure 5 illustrates the CRU interface for a TMS 9980A or TMS 9981 CPU. 
The CRU lines are tied directly to each other as shown in Figures 4 and 5. The least significant bits of the 
address bus are connected to the select lines. In a TMS 9900 CPU system A14-A10 are connected to 
S4-SO respectively. The most significant address bits are decoded to select the TMS 9903 via the chip 
enable (CE) signal. When CE is inactive (HIGH), the SCC CRU interface is disabled. 

NOTE 
When CE is inactive (high) the 9903 places the CRUIN line in its high impedence 
state and disables CRUCLK from coming on chip. Thus CRUIN can be used as an 
OR tied bus. CE being inactive will not disable the select lines from coming on chip, 
although no device action is taken. 

For those unfamiliar with the CRU concept, the following is a discussion of how to build a CRU interface. The 
CRU is a bit addressable (4096 bits), synchronous, serial interface over which a single instruction can transfer 
between one and 16 bits serially. Each one of the 4096 bits of the CRU space has a unique address and can 
be read and written to. During multi-bit CRU transfers, the CRU address is incremented at the beginning of 
each CRU cycle to point to the next consecutive CRU bit. 

When a 99XX CPU executes a CRU Instruction, the processor uses the contents of workspace register 12 as 
a base address. (Refer to the 9900 Microprocessor Data Manual for a complete discussion on how CRU 
addresses are derived.) The CRU address is brought out on the 15-bit address bus; this means that the least 
significant bit of R12 is not brought out of the CPU. During CRU cycles.the memory control lines 
(MEMEN,WE, and OBIN) are all inactive; MEMEN being inactive (HIGH) indicates the address is not a 
memory address and therefore is a CRU address or external instruction code. Also, when MEMEN is inactive 
(HIGH) and a valid address is present, address bits AO-A2 must all be zero to constitute a valid CRU 
address; if address bits AO-A2 are other than all zeros, they are indicating an external instruction code. In 
summary, address bits A3-A14 contain the CRU address to be decoded, address bits AO-A2 must be zero 
and MEMEN must be inactive (HIGH) to indicate a CRU cycle. 

9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and lnterf ace Circuits 

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

CLOCK SCR 
GENERATOR LOGIC 

</>1 <1>2 

RECEIVE 
MASK 

REGISTER 

INTERRUPT 
LOGIC 

RECEIVE 
HOLOING 

TRANSMIT 
REGISTER 

OUTPUT 
CONTROL LATCH 
REGISTER 

REC. CHAR. 
SELECT 

RECEIVE 
SHIFT 

REGISTER 

XMT/REC 
CRC 

CONTROL 

FIGURE 3. TMS 9903 SYNCl'!RONOUS COMMUNICATION CONTROLLER BLOCK DIAGRAM 

9900 FAMILY SYSTEMS DESIGN 8-197 



TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

Peripheral 
and lnterf ace Circuits 

TMS 9903 sec TMS 9900 CPU 

¢ p.--¢3TTL FROM TIM 9904 

CRUCLK CRUCLK 

CRUOUT -- CRUOUT 

CRUIN CRUIN 

so -- A10 

S1 - A11 

S2 A12 

S3 - A13 

S4 A14 

CE M DECODE K= AO-A9 

FIGURE 4. TMS 9903 CONTROL SIGNALS (TMS 9900 SYSTEM) 

TMS 9903 sec TMS 9980A or 9981 

¢p -0 ¢3 

CRUCLK CRUCLK 

CRUOUT - A13 

CRUIN ..... CRUIN 

so AB 

S1 - A9 

S2 ~ A10 

S3 A11 

S4 ~ A12 

CE H DECODE~ AO-A7 

FIGURE 5. TMS 9903 CONTROL SIGNALS (TMS 9980A Qr 9981 SYSTEM) 

8-198 9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

TABLE 1. TMS 9903 OUTPUT SELECT BIT ASSIGNMENTS 

MODE 
DESCRIPTION ADDRESS NAME 

0 1 2 3 5 6 

31 RESET x x x x x x Reset Device 

30 CLRXMT (1) x x x x x x Clear Transmitter 

CLRRCV·(O) x x x x x x Clear Receiver 

29 CLXCRC (1) x x x x x x Clear Transmit CRC Register 

CLRCRC(O) x x x x x x Clear Receive CRC Register 

28 - x x x x Not used 

XZINH x Transmit Zero Insertion Inhibit 

RSYNDL x Receive Sync Character Delete 

27 LDSYN2 x x x x Load Sync Character Register 2 

- x x Not Used 

26 - x x x Not Used 

RHRRD x Receive Holding Register Read 

LDSYN1 x x Load Sync Character Register 1 

25 LXBC x x x x x x Load Transmit Buffer and Transmit CRC Register 

24 LXCRC x x x x x x Load Transmit CRC Register 

23 XPRNT x x x Transparent 

- x Not Used 

BR KON x x Break On 

22 XAINB x x Transmitter Abort Interrupt Enable 

x x x x Not Used -
21 DSCENB x x x x x x Data Set Status Change Interrupt Enable 

20 TIMENB x x x x x x Timer Interrupt Enable 

19 XBIENB x x x x x x Transmitter Buffer Register Empty Interrupt Enable 

18 RIENB x X·X x x x Receiver Interrupt Enable 

17 ATS x x x x x x Request To Send 

16 XMTON x x x x x x Transmitter On 

15 TSTMD x x x x x x Test Mode 

14 LDCTRL x x x x x x Load Control Register 

13 LDIR x x x x x x Load Interval Register 

12 LRCRC x x x x x x Load Receive CRC Reoister 
11-0 DATA Data To Selected Regisrer 

9900 FAMILY SYSTEMS DESIGN 8-199 



r>8 

TMS 9903 JL, NL Peripheral 

SYNC. COMMUNICATIONS CONTROLLER 
and Interface Circuits 

2.1.1 CPU Output for CRU 

The TMS 9903 SCC occupies 32 bits of output CRU space, of which all are used. These bits are employed by 
the CPU to communicate command and control information to the TMS 9903. Table 1 shows the mapping 
between CRU address select (S lines) and SCC functions by operational mode; modes 4 and 7 are not 
implemented. Each CRU addressable output bit on the TMS 9903 is described in detail following Table 1. 

Bit 31 
All modes (RESET)-

Bit30 
All modes (CLRXMT)-

(CLRRCV)-

Bit29 
All modes (CLXCRC)-

(CLRCRC)-

Bit28 
Modes 0, 2, 5, 6 

Modes 1 (XZINH)-

Mode 3 (RSYNDL)-

Bit27 
Modes 0, 1, 2, 3 (LDSYN2)-

Modes 5, 6 

8-200 

Reset. Writing a one or zero to bit 31 causes the device to reset, disabling all 
interrupts, initializing all controllers, and resetting all flags except LDCTRL and 
XBRE which are set. 

Clear Transmitter. Writing a one to bit 30 initializes the transmitter and 
disables transmit interrupts. 

Clear Receiver. Writing a zero to bit 30 initializes the receiver and clears all 
receive interrupts. 

Clear Transmit CRC Register (XCRC). Writing a one to bit 29 in all modes 
clears the XCRC register to all zeros. 

Clear Receive CRC Register (RCRC). Writing a zero to bit 29 in all modes 
clears the RCRC register to all zeros. 

Not Used. 

Transmit Zero Insertion Inhibit. Writing a one to bit 28 in mode 1 causes the 
contents of the transmit buffer register (XBR) to be transmitted without the 
insertion of a zero after five consecutive ones. Writing a zero to bit 28 in mode 1 
causes the transmitter to insert a zero after five consecutive ones are trans
mitted. 

Received Sync Character Delete. Writing a one to bit 28 in mode 3 causes 
received characters which are identical to the contents of sync character 
register 1 (SYNC1) to be ignored. This function is disabled when XPRNT (bit 
23) is set. Writing a zero to bit 28 in mode 3 causes RSYNDL to be reset. 

Load Sync Character Register 2. Writing a one to bit 27 in mode 0, 1, 2, or 3 
enables loading of sync character register 2 (SYNC2) from output bit ad
dresses 0-9. Writing a zero to bit 27 in mode 0, 1, 2, 3 resets LDSYN2. 

Not Used. 

9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

Bit26 
Modes 0, 5, 6 

Mode 1 (RHRRD)-

Modes 2, 3 (LO SYN 1 )-

Bit25 
All modes (LXBC)-

Bit24 
All modes (LXCRC)-

Bit23 
Mode 0 (XPRNT)-

Mode 1 (XPRNT)-

Mode2 

Mode 3 (XPRNT)-

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

Not Used. 

Receive Holding Register Read. Writing a one to bit 26 in mode 1 enables 
reading of the receive-holding register (AHR) contents at input bit addresses 
0-15. Writing a zero to bit 26 in mode 1 resets RHRRD, RHRL (receive 
holding register loaded), RHROV (receive holding register overrun), and 
AZER (receive zero error). 

Load Sync Character Register 1. Writing a one to bit 26 in mode 2 .or 3 
enables loading of sync character register 1 (SYNC1) from output bit ad
dresses 0-9. Writing a zero to bit 26 in mode 2 or 3 resets LDSYN1. 

Load Transmit Buffer and CRC Register. Writing a one to bit 25 in all modes 
enables loading of XBR (transmit buffer register) and XCRC (transmit CRC 
register) from output bit addresses 0-8, and enables reading of XCRC at input 
bit addresses 0-15. Writing a zero to bit 25 in all modes resets LXBC an XBRE 
(transmit buffer register empty). 

Load Transmit CRC Register. Writing a one to bit 24 in all modes enables 
loading the XCRC register from output bit addresses 0-9, and enables 
reading XCRC at input bit addresses 0-15. Writing a zero to bit 24 in all modes 
resets LXCRC. 

Transparent. Writing a one to bit 23 in mode O causes the contents of SYNC2 
to be transmitted whenever no data is available and the transmitter is active. 
Writing a zero to bit 23 in mode 0 causes the transmitter abort signal (XABRT) 
to set and transmitter operation to be suspended when no data is available and 
the transmitter is active. 

Transparent. Writing a one to bit 23 in mode 1 causes the contents of SYNC2 
to be transmitted without zero insertion when no data is available and the 
transmitter is active. Writing a zero to bit 23 in mode 1 causes XABRT to be set 
and transmit operations to be suspended when no data is available. 

Not Used. 

Transparent. Writing a one to bit 23 in mode 3 causes fill sequence of 
(contents of SYNC2) followed by (contents of SYNC1) to be transmitted when 
no data is available. Writing a zero to bit 23 in mode 3 causes the fill sequence 
of (contents of SYNC1) followed by (contents of SYNC1) to be transmitted 
when no data is available. 

Modes 5 and 6 (BRKON)- Break ON. Writing a one to bit 23 in mode 5 or 6 causes the output to go to a 
constant zero level when no data is available and the transmitter is active. 
Writing a zero to bit 23 in mode 5 and 6 causes BRKON to be reset. The 
transmit buffer register should not be loaded during transmission of a break. 

9900 FAMILY SYSTEMS DESIGN 8-201 

g.,. 
I 



TMS 9903 JL, NL Peripheral 

SYNC. COMMUNICATIONS CONTROLLER 
and Interface Circuits 

INTERRUPT SELECT 
ENABLE BIT 
XAIENB 22 
OSCENB 21 
TIMENB 20 
XBIENB 19 
RIENB 18 
RIENB 18 
RIENB 18 

Refer to Section 2.6 

Bit22 
Modes 0 and 1 (XAIENB)-

Modes 2, 3, 5 and 6 

Bit 21 
All modes (DSCENB)-

Bit20 
All modes (TIMENB)-

Bit 19 
All modes (XBIENB)-

Bit 18 
Modes 0, 2, 3, 5, 6 (RIENB)-

Mode 1 (AIENB)-

Bit 17 
All modes (ATS)-

8-202 

INTERRUPT ENABLE FLAGS 

INTERRUPT INTERRUPT 
DESCRIPTION 

FLAG NAME 
XABRT XAINT Transmitter Abort 
DSCH DSC INT Data Set Status Change (CTS, ATS, RTSAUT) 

TIMELP TIMINT Timer Elapsed 
XBAE XBINT Transmit Buffer Register Empty 
RBRL RINT Receiver Buffer Register Loaded 
AHAL AINT Receiver Holding Register Loaded 

RABAT RINT Receiver Abort 

Transmitter Abort Interrupt Enable. Writing a one to bit 22 in mode O or 1 
resets XABRT (transmitter abort) and enables XABRT interrupts. Writing a 
zero to bit 22 in mode O or 1 resets XABRT and disables XABRT interrupts. 

Not Used. 

Data Set Status Change Interrupt Enable. Writing a one to bit 21 in all modes 
resets DSCH (data set status change) and enables DSCH interrupts. Writing a 
zero to bit 21 in all modes resets DSCH and disables DSCH interrupts. 

Timer Interrupt Enable. Writing a one to bit 20 in all modes resets TIMELP 
(timer elapsed) and TIMERR (timer error) and enables TIMELP interrupts. 
Writing a zero to bit 20 in all modes resets TIMELP and TIM ERR and disables 
TIMELP interrupts. 

Transmit Buffer Register Empty Interrupt Enable. Writing a one to bit 19 in 
all modes enables XBRE interrupts. Writing a zero to bit 19 in all modes 
disables XBRE interrupts. 

Receiver Interrupt Enable. Writing a one to bit 18 in mode 0, 2, 3, 5, or 6 
resets RBRL (receive buffer register loaded) and ROVER (receiver overrun), 
and enables RBRL interrupts. Writing a zero to bit 18 in mode 0, 2, 3, 5, 6 
resets RBRL and ROVER, and disables RBRL interrupts. 

Receiver Interrupt Enable. Writing a one to bit 18 in mode 1 resets ABRL, 
RFLDT, ROVER, and RABAT (receiver abort), and enables RBRL, RABAT, 
and RHRL (receive holding register loaded) interrupts. Writing a zero to bit 18 
in mode 1 resets RBAL, RFLDT, ROVER, and RABAT, and disables RBRL, 
RABAT, and AHAL interrupts. 

Request to Send. Writing a one to bit 17 in all modes resets the ATS output 
and disables automatic control of ATS by the internal RTSAUT (automatic 
ATS control) signal. Writing a zero to bit 17 in all modes sets the ATS output 
HIGH and disables automatic control by RTSAUT. 

9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuit& 

Bit 16 
All modes (XMTON)-

Bit 15 
All modes (TSTMO)-

FLAG~ 
CRUOUT 

BIT ADDRESS 

LDSYN2 27 

LDSYN1 26 

LXBC 25 

LXCRC 24 

LDCTRL 14 

LDIR 13 

LRCRC 12 

None -

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

Transmitter On. Writing a one to bit 16 in all modes enables data trans
mission. Writing a zero to bit .16 in all modes disables data transmission when 
no data is available. 

Test Mode. Writing a one to bit 15 in all modes causes the timer to decrement 
at 32 times the normal rate, and internally connects XOUT to RIN, RTSAUT to 
GTS, and SGR to SGT. SGT is internally generated at the frequency to which 
TIMELP is set. Writing a zero to bit 15 in all modes resets TSTMO and enables 
normal device operation. The test mode should not be used in a loop config
uration of mode 1; test mode is useful for testing and inspection purposes. 

TABLE 2. REGISTER LOAD CONTROL FLAGS 

REGISTER LOADED BITS/REGISTER 

Sync Register 2 (SYNC2) 10 

Sync Register 1 (SYNC1) 10 

Xmt CRC Register (XCRC) and Xmt Buffer Reg. (XBR) 9 
XCRC 10 

Control Register (CTRL) 12 

Interval Register 8 
Receive CRC Register (RCRC) 10 

XBR 9 

"It is recommended that no more than one register load control flag be set at any one time. 

Bit 14 
All modes (LOGTRL)-

Bit 13 

All modes (LOIA)-

Bit 12 
All modes (LRGRG)-

9900 FAMILY SYSTEMS DESIGN 

Load Control Register. Writing a one to bit 14 in all modes enables the 
loading of the control register from output bit addresses 0-11. Writing a zero 
to bit 14 in all modes resets LOGTRL. When a bit is written to select bit 11 
(when loading the control register), the LOGTAL flag is automatically reset. 

Load Interval Register. Writing a one to bit 13 in all modes enables the 
loading of the interval register from output bit addresses 0-7. Writing a zero 
to bit 13 in all modes resets LOIA and causes the contents of the interval 
register to be loaded into the interval timer. 

Load Receive CRC Register. Writing a one to bit 12 in all modes enables the 
loading of the receive GAG register from output bit addresses 0-9, and 
enables reading the AGRG (receive GAG register) on input bit addresses 
0-15. Writing a zero to bit 12 in all modes resets LRGRC. 

8-203 



~8 

TMS 9903 JL, NL Peripheral 
and Interface Circuits 

C'Tl\.Tf'"" /'""Al\tfl\tfTTl\.TTl'""J\,.,.....TAl\.TC" r"'°'l\.T,.,.....Tl'°'T T T:'Tl 
u .l. l ~v. v\JlV.UVJ.Ul ~J.vrl..J. J.\Jl ~v '-1Vl ~ J. 1'..VLLL1'.. 

2.1.2 Control and Data Registers 

Loading of the internal control and data registers is controlled by one of the single bit control function flags 
described in Section 2.1.1 and summarized in Table 2. The registers must be carefully loaded to ensure that 
no more than one flag is set at a time. Unlike the TMS 9902, when the MSB of a register is loaded, the load flag 
is not automatically reset except for the control register which is the only register which will automatically reset 
the load flag when the MSB of the register is written to. 

The TMS 9903 SCC is capable of performing dynamic character length operations. The receive character 
length is set by bits 2-0 of the control register. Transmitted character and sync character registers are 
maintained internally to determine the character length. The length of the character to be transmitted is 
determined by the number of bits loaded into the transmit buffer register before the transmit buffer register 
empty flag is reset. Similarly, the character length of the two sync registers is determined by the number of bits 
loaded into the most recently loaded SYNC character. Thus, for transmission purposes the length of the two 
SYNC characters is the same. NOTE: When the receiver is comparing received data to SYNC1, only the 
number of bits selected as the receive character length are compared [i.e., RSCL (2-0) plus parity, if 
enabled]. 

2. 1.2. 1 Control Register 

11 

The control register is loaded to select the mode, configuration, CRC polynomial, received character length, 
data rate clock, and internal device clock rates of the TMS 9903. Table 3 shows the bit address assignments 
for the control register. 

TABLE 3. CONTROL REGISTER BIT ADDRESS ASSIGNMENTS 

ADDRESS 
NAME DESCRIPTION 

(SO-S4) 

11 DRCK32 32X Data Rate Clock 

10 CRC1 

9 CRCO 
CRC Polynomial Select 

8 MDSL2 

7 MDSL1 Mode Select 

6 MDSLO 

5 CSL1 
Configuration Select 

4 CSLO 

3 CLK4M 4X System Clock Select 

2 RSCL2 

1 RSCL1 Receive Character Length Select 

0 RSCLO 

10 9 8 7 6 5 4 3 2 0 

DRCK32 CRC1 CRCO MDSL2 MDSL 1 MDSLO CLS1 CLSO CLK4M RSCL2 RSCL 1 RSC LO 

MSB LSB 
CONTROL REGISTER BIT ADDRESS 

8-204 9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

Bit 11 
Modes 0, 1, 2, 3 (DRGK32)-

Modes 5, 6 (DRGK32)-

All modes 

Bits 10 and 9 
All modes (GRG1 and GRGO)-

CRC CRC1 

0 0 

1 0 

2 1 

3 1 

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

32X Data Rate Clock. Setting control bit 11 to one in mode 0, 1, 2, or 3 sets the 
SGT frequency at 32 times the transmit-data rate and the SGR frequency at 
32 times the receive-data rate. SGR is set to resync on every transition of 
RIN. Also, if bit 11 is a one, zero-complementing NRZI data encoding is used 
(to send a one, the signal remains in the same state; to send a zero, the signal 
changes state). Setting bit 11 to zero in mode 0, 1, 2, or 3 causes the receive 
data to be sampled on every zero-to-one transition of SGR, and the transmit 
data to be shifted out on the one-to-zero transition of SGT. DRGK32 should 
always be reset when in a loop configuration of mode 1. 

32X Data Rate Clock. Setting control bit 11 to one in mode 5 or 6 sets the SGT 
frequency to 32 times the transmit data rate, and the SGR frequency to 32 
times the receive data rate. SGR is resynched on every start bit received. 
Setting control bit 11 to zero in mode 5 or 6 causes receive data to be sampled 
on the zero-to-one transition of SGR, and transmit data to be shifted out on 
the one-to-zero transition of SGT. 

Setting control bit 11 to a one or zero resets LDGTRL (load control register). 
The control register is the only register that resets its load flag in this fashion. 

CRC Polynomial Select. The polynomial used in the generation of the trans
mit and receive CRC's is selected by bits 1 O and 9 of the control register, as 
shown below. 

CRC POLYNOMIAL BIT SELECT 

CRCO NAME POLYNOMIAL 

0 CRC-16 x1s+x1s+x2+1 

1 CRCC-12 1 x 12+X 11 +X 3+X2+X+1 

0 REV. CRCC-16 X' 6+X"+X+1 

1 CRC-CCITT x1s+x12+xs+1 

"NOTE: When using CRCC-12, the four most-significant bits of the CRC register will contain data that must be masked to assure validity of CRC comparisons. 

9900 FAMILY SYSTEMS DESIGN 8-205 



..,.g 

TMS 9903 JL, NL Peripheral 

SYNC. COMMUNICATIONS CONTROLLFR 
and Interface Circuits 

Bits 8, 7 and 6 
All modes (MDSL2, MDSL 1, 
MDSLO) 

MODE MDSL2 MDSL1 

0 0 0 

1 0 0 

2 0 1 

3 0 1 

4 1 0 

5 1 0 

6 1 1 

7 1 1 

Bits5and4 
All modes (CSL 1, CSLO)-

Mode Select. The mode of operation for the transmitter and receiver is 
selected by bits 8, 7, and 6 of the control register as shown below. 

MODE BIT SELECT 

MDSLO 
EXAMPLE 

SYNC CHARACTER FILL-CHARACTER 
PROTOCOL 

0 

1 

0 

1 

0 

1 

0 

1 

GENERAL NONE (SYNC2) or NONE 

SDLC 7E1s (SYNC2) or NONE 

GENERAL (SYNC1) (SYNC2) 

Bl-SYNC (SYNC1-SYNC1) (5YNC1-SYNC1) or (SYNC2-5YNC1) 

NOT USED 

ASYNCHRONOUS OPERATION WITH TWO STOP BITS 

ASYNCHRONOUS OPERATION WITH ONE STOP BIT 

NOT USED 

Configuration Select. The configuration of the transmitter and receiver within 
each mode is set by bits 5 and 4 of the control register, as shown below. CSL 1 
is forced to zero on RESET. 

TRANSMIT/RECEIVE CONFIGURATION BIT SELECT 

CONFIGURATION CSL1 CSLO 
MODE 

0 1 2 3 5 6 
DESCRIPTION 

0 0 0 x x x x x No Parity Generation or Detection 

x SDLC Normal (Non-Loop) 

1 0 1 x x x x x No Parity Generation or Detection 
x SDLC Loop Master 

>2 
1 0 x x x x x Even Parity Generated on Transmission and 

Detected on Reception 
x SDLC Loop Slave - Pending Synchronization 

3 1 1 x x x x x Odd Parity Generated on Transmission and 

Detected on Reception 
x SDLC Loop Slave - Active 

8-206 9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

Bit3 
All modes (CKL4M)-

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

Input Divide Select. The ';j) input to the TMS 9903 SCC is used to generate 
internal dynamic logic clocking and to establish the time base for the interval 
timer. The Cf input is internally divided by either 3 or 4 to generate the 
two phase internal clocks required for MOS logic, and to establish the basic 
internal operating frequency (fint) and internal clock period (tint). When bit 3 of 
the control register is set to a logic one (CLK4M = 1 ), ~is internally divided by 
4, and when CLK4M = 0, 4)is divided by 3. For example, when f(/) = 3 MHz, (as 
in a standard 3 MHz TMS 9900 system) and CLK4M = O,~is internally divided 
by 3 to generate an internal clock period lint of 1 µs. The figure below shows 
the operation of the internal clock divider circuitry. The internal clock frequency 
should be no greater than 1.1 MHz; thus, when f-;;; > 3.3 MHz, CLK4M should 
be set to a logic one. 

"'i External Input---~ +n { 
n = 4 if CLK4m = 1 
n = 3 if CLK4m = 0 

¢1 int i 
j 

to internal logic 

.__ _________ _:-----~ ¢2 int 

INTERNAL CLOCK DIVIDER CIRCUITRY 

Bits 2, 1, and O 

fint = t'¢ 
n 

I n 
tint=-= -

fint f¢ 

All modes (RSCL2, RSCL 1, 
and RSCLO) 

Received Character Length Select. The number of data bits in each 
received character is determined by bits 2, 1, and O of the control register, as 
shown below. 

RECEIVE CHARACTER LENGTH SELECTION 

RSCL2 RSCL1 RSC LO BITS/CHAR. 

0 0 0 5 

0 0 1 6 

0 1 0 7 

0 1 1 8 

1 0 0 9 

2. 1.2.2 Interval Register 

The interval register is enabled for loading whenever LOIA = 1. The interval register is used to select the rate 
at which timer interrupts are generated by the SCC interval timer. The figure below shows the bit-address 
assignments for the interval register when enabled for loading. 

7 6 5 4 3 2 0 

I TMR 7 I TMR 6 I TMR 5 I TMR 4 I TMR 3 I TMR 2 I TMR 1 TMR 0 

MSB LSB 

INTERNAL-REGISTER BIT ADDRESSES 

9900 FAMILY SYSTEMS DESIGN 8-207 



TMS 9903 JL, NL Peripheral 
and Interface Circuits CV1'Tr' r'r\l\lfl\!TT T1'TTr' /\""rlr\l\.TC f"""{"')l\.T""rD("')T T DD 

u ..&. J. .... '-". '-" '-" J.,, ..l.J.,, ..I. \J J. .... ..I. '-".l .1. ..I. ..I.'-" J. .... t.J '--''--' l ~ ..l .1. '\.. '--' ..l....J..l....J..l....J.1. '\.. 

The figure below illustrates the establishment of the interval for the timer. For example, if the interval register 
is loaded with a value of 4015(6410) with tint = 1 µs, the interval at which the timer decrements to zero and 
interrupts the CPU is 

tinterval = tint x 64 x M 
= (1 µs) x 64 x 64 
= 4.096ms 

¢;nt __J + 
64 H.__ ____ -:-_m----~~---'•- TIME LP --, . - m=(TMR7-TMRO) 

A0001472 

TIME INTERVAL SELECTION 

2. 1.2.3 Receive CRC Register 

The receive CRC register is enabled for loading when LAC RC = 1. The receive CRC register is used to verify 
data integrity in the synchronous communication channel. When LRCRC is set, output to bit address 0-9 
updates the contents of the receive CRC register according to the CRC polynomial selected by the control 
register. Also, when LRCRC is set, the receive CRC register can be read on CRU input addresses 0-15. 
When read, the MSB of the register is read first, and the LSB is read last. The receive CRC register block 
diagram is shown in Figure 6. 

NOTE 
Single bits of the CRC registers cannot be accessed. As individual bits are sent to or 
read from the CRC registers, they are shifted in or out, respectively, of the register 
from CRC bit 16. 

2. 1.2.4 Transmit CRC Register 

The transmit CRC register is enabled for loading when either LXCRC = 1 (load transmit CRC register) or 
LXBC = 1 (load transmit buffer register and transmit CRC register). When either LXBC or LXCRC is set, 
output to bit addresses 0-9 updates the contents of the transmit CRC register according to the CRC 
polynomial selected by the control register. When set, the LXBC or LXCRC flag selects the transmit CRC 
register contents to be read by the CPU at input addresses 0-15. LXBC and LXCRC flags are reset by a 
command from the CPU. 

Operation of the transmit CRC register is analogous to that of the receive CRC register shown in Figure 6. 

~ 8 2. 1.2.5 Sync Character Register 1 

Sync character register 1 is enabled for loading when LDSYN 1 = 1. The sync character register 1 is used for 
synchronization and as a fill sequence for the transmitter. When LDSYN1 is set, output to bit addresses 0-9 
is loaded into sync character register 1. The LDSYN1 flag is reset by a command from the CPU. 

2.1.2.6 Sync Character Register 2 

8-208 

Sync character register 2 is enabled for loading whenever LDSYN2 = 1 . The contents of sync character 
register 2 are used for a fill sequence for the transmitter. When LDSYN2 is set, output to bit addresses 0-9 is 
loaded into sync character register 2. The LDSYN2 flag is reset by a command from the CPU. 

9900 FAMILY SYSTEMS DESIGN 



'° '° 0 
0 

'Tl 
>-
3'.: 

~ 
VJ 
>-<: 
VJ ...., 
tI'l 
3:: 
VJ 

0 
tI'l 
VJ 

cs 
z 

'f 
N 
0 

'° 

RCRC (15) 

~ 
FROM CONTROL 
REGISTER 

\__ 

RCRC (14) RCRC (13) RCRC (12) RCRC (11) RCRC (10) 

RCRC (7) RCRC (6) RCRC (5) RCRC (4) RCRC (3) RCRC (2) RCRC (1) 

FIGURE 6. RECEIVE CRC REGISTER DIAGRAM 

00 

8. 

RCRC (9) 

RCRC (0) 

RCRC (8) 

CLRCRC 

RC RCS 

·1----- CRUOUT 

RCRC 

I I CLRCRC 

e RC RCS 

CLK qR 

TYPICAL 
LATCH 1-16 

a 

D.> "'ti 
::I CD 
a.~
-'O 
:::::I :::::I" 
- CD CD -. 
::::. D.> 
D.> -n 
CD 

9. 
c:; 
5 . 
Cii 

en~ 
~ s;: 
Zen 
0'° 
n '° 08 
~~ 
~J~ 
cZ 
z~ 
~ 

n 
~ 
~ 

0 
z 
en 
n 
0 z 
~ 
~ 
0 
~ 
~ 
tT'.l 
~ 



Peripheral 
and Interface Circuits 

2.1.2.7 Transmit Buffer Register 

Two conditions enable the transmit buffer register for loading. If all flags are zero or if LXBC = 1, the transmit 
buffer register is enabled for loading. The transmit buffer is used for the storage of the next character to be 
transmitted. When the transmitter is active, the contents of the transmit buffer register are transferred to the 
transmit shift register when the previous character has been completely transmitted. When LXBC is set, the 
output to bit addresses 0-8 loaded into the transmit buffer register simultaneously updates the contents of 
the transmit CRC register, according to the CRC polynomial selected by the control register. Also, when 
LXBC is set, the transmit CRC register contents are enabled for reading on input-bit addresses 0-15. The 
LXBC flag is reset by a command from the CPU. 

8 7 6 5 4 3 2 0 

XBR 8 XBR 7 XBR 6 XBR 5 XBR 4 XBR 3 XBR 2 XBR 1 XBR 0 

MSB LSB 

TRANSMIT BUFFER REGISTER BIT ADDRESSES 

TABLE 4. CRU OUTPUT SELECT BIT ASSIGNMENTS 

ADDR 
LDCTRL 

= 1 

LDSYN1 

= 1 

LDSYN2 

= 1 

LDIR 

= 1 

LRCRC 
= 1 

LXCRC 

= 1 

LXBC 
= 1 

ADDR 
FLAGS=O 

2.1.3 

8-210 

11 

10 

9 

8 
7 

6 

5 

4 

3 

2 
1 

0 

DRCK32 

CRC(l) 

CRC(O) 

MDSL(2) 

MDSL(l) 

MDSL(O) 

CSL(l) 

CSL(O) 

CLK4M 

RSCL(2) 

RSCL(1) 

RSCL(O) 

S20D(9) 

II 
S10D(O) S20D(O) IROD(O) RCRC(O) XCRC(O) XCRC(O) XBR(O) XBR(O) 

Status and Data Input to CPU 

Status and data information is read from the SCC by the CPU on the CRUIN line whenever CE is active 
(LOW). The input bit is selected from one of 32 input bit addresses using the five address lines SO-S4. When 
CE is high, CRUIN is in its high-impedance state, permitting the CRUIN control line to be wire-ORed with 
other input devices. The following figure illustrates the relationships of the signals used to access· data from 
the SCC. Table 5 describes the input select bit address assignments of the SCC. Following Table 5 is a 
detailed discussion of each bit. Addresses 0-15 can be read as shown only when all load flags are reset. 

SO-S4 DON_'_T_c_A_R_E~l.__ __ " __ _._ __ n_+_1__. ___ n+_2 __ _._ __ n+_3 __ .A.-._n_+_4 __ ..__o_o_N_'T __ C_A_R_E __ _ 

HI· z Hl·z 
do CRUIN 

TMS 9903 DATA ACCESS SIGNALS 

9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

TABLE 5. TMS 9903 INPUT BIT ADDRESS ASSIGNMENTS 

ADDRESS NAME 
0 1 

MODE 
DESCRIPTION 

2 3 5 6 

31 INT x x x x x x Interrupt 

30 FLAG x x x x x x Any Register Load Control Flag Set 

29 DSCH x x x x x x Data Set Status Change 

28 CTS x x x x x x Clear to Send 

27 DSR x x x x x x Data Set Ready 

26 RT SA UT x x x x x x Automatic Request to Send 

25 TIME LP x x x x x x Timer Elapsed 

24 TIMERR x x x x x x Timer Error 

23 XABRT x x Transmitter Abort 

- x x x x Not Used 

22 XBRE x x x x x x Transmit Buffer Register Empty 

21 RBRL x x x x x x Receive Buffer Register Loaded 

20 DSC INT x x x x x x Data Set Status Change Interrupt 

19 TIMINT x x x x x x Timer Interrupt 

18 XAINT x x Transmit Abort Interrupt 

- x x x x Not Used (Always = 0) 

17 XBINT x x x x x x Transmit Buffer Interrupt 

16 RINT x x x x x x Receiver Interrupt 

15 RIN x x x x x x Receiver Input 

14 RABAT x Receive Abort 

- x x x Not Used (Always = O) 

RSBD x x Receive Start Bit Detect 

13 RHRL x Receive Holding Register Loaded 

-- x x x Not Used (Always = 0) 

RFBD x x Receive Full Bit Detect 

12 RHROV x Receive Holding Register Overrun 

-- x x x Not Used (Always = 0) 

RFER x x Receive Framing Error 

11 ROVER x x x x x x Receive Overrun 

10 APER x x x x x Receive Parity Error 

AZER x Receive Zero Error 

9 RCVERR x x x x x Receive Error 

RFLDT x Receive Flag Detect 

8-0 RBR x x x x x x Receive Buffer Register (Received Data) 

9900 FAMILY SYSTEMS DESIGN 8-211 



TMS 9903 JL, NL Peripheral 

SYNC. COMMUNICATIONS CONTROLLFR and Interface Circuits 

Bit31 
All modes (INT)-

Bit30 
All modes (FLAG)-

Bit29 
All modes (OSCH)-

Bit28 
All modes (CTS)-

Bit27 
All modes (DSA)-

Bit26 
All modes (RTSAUT)-

Bit25 
All modes (TIMELP)-

Bit24 
All modes (TIMERA)-

Bit23 
Modes 0, 1 (XABRT)-

Modes 2, 3, 5, 6 

Bit22 
All modes (XBAE)-

8-212 

Interrupt. All modes INT = DSCINT + TIMINT + ABINT + XAINT + XBINT. 
The interrupt output control line (INT) is active when this status signal is a logic 
one. 

Register Load Control Flag Set. In all modes FLAG= LDCTAL + LDSYN1 
+ LDSYN2 + LOIA + LACAC + LXBC + LXCAC. Flag = 1 when any of the 
register load control flags is set. 

Data Set Status Change. In all modes DSCH is set when the DSA or CTS. 
inputs, or ATSAUT changes state. To ensure recognition of the state change, 
DSA or CTS must remain stable in its new state for a minimum of two internal 
clock cycles. DSCH is reset by an output to output bit 21 (DSCENB). 

Clear To Send. The CTS signal indicates the inverted status of the CTS 
device input in all modes. 

Data Set Ready. The DSA signal indicates the inverted status of the DSR 
device input in all modes. 

Automatic Request to Send. The ATSAUT signal indicates the output status 
of ATSAUT, the automatic ATS controller in all modes. 

Timer Elapsed. The TIMELP signal is set in all modes each time the interval 
timer decrements to 0. TIME LP is reset by an output to output bit 20 (TIMENB). 

Timer Error. The TIMEAA signal is set in all modes when the selected time 
interval elapses and TIMELP is already set. TIMELP is reset by an output to 
output bit address 20 (TIMENB). 

Transmitter Abort. The XABAT signal is set by the transmitter in modes 0 and 
1 when no data is available for transmission and no provisions have been 
made to identify a fill sequence (i.e., XPANT is not set). XABAT is reset by an 
output to output bit address 22 (XAIENB). 

Not Used. 

Transmit Buffer Register Empty. The XBAE signal is set in all modes when 
the transmit buffer register (XBA) contents are transmitted to the transmit shift 
register (XSA) and when the transmitter is initialized. XBREis reset by a zero 
output to output bit 25 (LXBC). 

9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

Bit21 
All modes (RBRL)-

Bit20 
All modes (DSCINT)-

Bit 19 
All modes (TIMINT)-

Bit 18 
Modes 0, 1 (XAINT)-

Modes 2, 3, 5, 6 

Bit 17 
All modes (XBINT)-

Bit 16 
All modes (RINT)-

Bit 15 
All modes (RIN)-

Bit 14 
Mode 1 (RABAT)-

Modes 5, 6 (RSBD)-

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

Receive Buffer Register Loaded. The RBRL signal is set in all modes when a 
complete character has been transferred from the receive shift register (RSA) 
to the RBR. RBRL is reset by an output to output bit 18 (RIENB). 

Data Set Status Change Interrupt. In all modes DSCINT = DSCH (input bit 
29) AND DSCENB (output bit 21). DSCINT indicates the presence of an 
enabled interrupt caused by the change in status of DSR, RTSAUT, or CTS. 

Timer Interrupt. In all modes TIMINT = TIMELP (input bit 25) AND TIMENB 
(output bit 20). TIMINT indicates the presence of an enabled interrupt caused 
by the interval timer. 

Transmit Abort Interrupt. In modes O and 1 XAINT = XABRT (input bit 23) 
AND XAIENB (output bit 22). XAINT indicates the presence of an enabled 
interrupt caused by a transmitter abort. 

Not Used. 

Transmit Buffer Interrupt. In all modes XBINT = XBRE (input bit 22) AND 
XMTON (output bit 16) AND XBIENB (output bit 19). XBINT indicates the 
presence of an enabled interrupt caused by an empty transmit-buffer. 

Receiver Interrupt. In all modes RINT = [RBRL (input bit 21) OR AHAL (input 
bit 13) OR RABAT (input bit 14)] AND RIENB (output bit 18). RINT indicates 
the presence of an enabled interrupt caused by a loaded receive buffer or a 
loaded receive holding register or a receiver abort (mode 1 only). 

Receiver Input. In all modes RIN indicates the status of the RIN input to the 
device. 

Receiver Abort. RABAT is set in mode 1 when a flag sequence (01111110) 
has been previously detected and seven consecutive ones are received. 
RABAT is reset by an output to output bit address 18 (RIENB). 

Receive Start Bit Detect. In modes 5 and 6 RIN is sampled one half-bit time g.........il 
after the·one-to-zero transition of RIN. If RIN is still zero at such time, RSBD is ...,..... 
set, indicating the start of a character. RSBD remains true until the complete 
character has been received. If RIN is not zero at the half-bit time, RSBD 
remains reset and the receiver waits for the next one-to-zero transition of RIN. 
This bit is normally used for testing purposes. 

Modes 0, 2, 3 Not Used, (always equals zero) 

9900 FAMILY SYSTEMS DESIGN 8-213 



TMS 9903 JL, NL Peripheral 

CV1'Tr rrYl\!Tl\!TT Tl\.TTr ATTnl\.T~ rnl\.TTROT T FR 
U.&..J..~'-"• '--"'-'J.."..&..J..•.&.'-'.l. "111..&.'-"'.L.a..&..i.'-'..&. ,........, ..._...........,.. .................. _ ___.__.___. __ 

and Interface Circuits 

Bit 13 
Mode 1 (RHRL)-

Modes 5, 6 (RFBO)-

Modes o, 2, 3-

Bit 12 
Mode 1 (RHROV)-

Modes 5, 6 (RFER)-

Modes 0, 2, 3 

Bit 11 
All modes (ROVER)-

Bit 10 
Modes 0, 2, ~. 5, 6 (RPER)-

Mode 1 (RZER)-

Bit 9 
Modes 0, 2, 3, 5, 6 (RCVERR)-

Mode 1 (RFLDT)-

Bit 8 - Bit O 
All modes (RBR8-RBRO)-

8-214 

Receive Holding Register Loaded. RHRL is se~ in mode 1 when the receiver 
has received a complete frame. RHRL is reset by the output of a zero to output 
bit address 26, RHRRD (receive holding register read). 

Receive Full Bit Detect. RFBD is set in modes 5 and 6 one full bit time after 
RSBD is set to indicate the sampling point for the first data bit of the received 
character. RFBD is reset when the character has been completely received. 
This bit is normally used for testing purposes. 

Not Used (always equals zero). 

Receive Holding Register Overrun. RHROV is set in mode 1 when the 
contents of the RHR are altered before RHRL is reset. RHROV is reset by the 
output of a zero to output bit address 26 (RHRRO). 

Receive Framing Error. RFER is set in modes 5 and 6 when a character is 
received in which the stop bit, which should be a logic one, is a logic zero. 
RFER should only be read when RBRL (input bit 21) is a logic one. RFER is 
reset when a character with the correct stop bit is received. 

Not Used (always equals zero). 

Receiver Overrun. ROVER is set in all modes when the RBR (receive buffer 
register) is loaded with a new character before RBRL is reset, indicating that 
the CPU failed to read the previous character and reset RBRL before the 
present character is completely received. ROVER is reset when a character is 
received and RBRL = O when the character is transferred to the RBR or an 
output to output bit address 18 (RIENB). 

Receive Parity Error. RPER is set in mode 0, 2, 3, 5, and 6 when the character 
transferred to the RBR was received with incorrect parity. RPER is reset when 
a character with correct parity is transferred to the RBR. 

Receive Zero Error. RZER is set in mode 1 when the last five bits received 
prior to the FLAG character (7E 16) are all ones without being followed by a 
zero. RZER is reset by resetting RHRRD (Receiver Hold Register Read). 

Receive Error. In modes 0, 2, 3, 5, and 6 RCVERR = ROVER OR RPER OR 
RFER. RCVERR indicates the presence of an error in the most recently 
received character. 

Receive Flag Detect. RFLDT is set in mode 1 when the FLAG character 
(7E 16) is detected in the input stream. RFLDT is reset by an output to output bit 
address 18 (RIENB). RFLDT is also set when RABAT is set. 

Receive Buffer Register. The receive-buffer register contains the most re
cently received complete character. For received character lengths of fewer 
than nine bits, the character is right justified to the LSB position (RBRO), with 
unused most-significant bit(s) all zero(s). The presence of data in the RBR is 
indicated when RBRL is a logic one. 

9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

TABLE 6. CRU INPUT ADDRESS ASSIGNMENTS 

ADDA 
0 1 

MODE 

2 3 5/6 
NAME 

31 x x x x x INT 

30 x x x x x FLAG 

29 x x x x x DSCH 

28 x x x x x CTS 

27 x x x x x DSR 

26 x x x x x AT SA UT 

25 x x x x x TIMELP 

24 x x x x x TIM ERR 

x x XABAT 
23 x x x ~ 
22 x x x x x XBRE 

21 x x x x x ASAL 

20 x x x x x DSC INT 

19 x x x x x TIMINT 

x x XAINT 
18 x x x ~ 
17 x x x x x XBINT 

16 x x x x x RINT 

MODE ALL LAC AC LXCAC LXBC AHAAD 
ADDA 

FLAGS=O = 1 = 1 0 1 2 3 5/6 = 1 = 1 

15 x x x x x AIN RCRC(15) XCRC(15) XCRC(15) RHA(15) 

~ 
-.- --,.- -r-

x x x 
14 x RABAT 

x RSBD 

x x x ~ 
13 x AHAL 

x RFBD 

x x x ~ 
12 x RHROV 

x RFER 

11 x x x x x ROVER 

x x x x APER 
10 x AZER 

x x x x RCVERR 
9 x RF LDT 

8 x x x x x RBA8 

7 x x x x x 

I 
6 x x x x x 
5 x x x x x 
4 x x x x x 
3 x x x x x 
2 x x x x x 
1 x x x x x _.....__ _.__ _..._ 

~ 0 x x x x x RBAO RCRC(O) XCRC(O) XCRC(O) 

9900 FAMILY SYSTEMS DESIGN 8-215 



~8 

TMS 9903 JL, NL Peripheral 
and lnterf ace Circuits 

SYNC. COl\11V!UN!CATIONS CONTROLLER 

2.2 GENERAL TRANSMITTER DESCRIPTION 

2.2.1 Transmitter Hardware Configuration 

8-216 

Figure 7 is a block diagram of the transmitter section of the TMS 9903 SCC. Either the XBR (transmitter buffer 
register), SYNC1, or SYNC2 may be loaded into the XSR (transmitter shift register). The LSB of the XSR 
(XSRLSB) is buffered and output as an external signal XOUT (in mode 1 loop slave configuration RIN is 
retransmitted prior to synchronization). Two internal registers-XSYNCL (transmitter sync character length) 
and XSCL (transmitter shift register character length) - are maintained to determine the number of bits per 
character in XBR, SYNC1, and SYNC2. Since the SYNC1 and SYNC2 registers are of the same length, but 
not necessarily the same length as the XBR register, the address of the last or highest order bit loaded into 
both registers is stored in the XSYNCL register, and XSCL contains the number of bits loaded into the XBR 
register. The XBR register may contain a different length character each time it is loaded. The XBCNT 
(transmitter bit count) register is loaded with the contents of either XSYNCL or XSCL each time a character is 
loaded into the XSR. The XPAR (transmitter parity) register serially accumulates the parity of each character 
and, when enabled, appends the correct parity bit to the transmitted character. The XOCNT (transmitter ones 
count) register is used in mode 1 operation to accumulate the number of 
consecutive ones transmitted. The SCTX signal is generated as a synchronous signal of one interval clock 
cycle each time a bit is to be shifted. If DRCK32 is reset, or CTS is inactive (HIGH), SCTX is generated on 
every one-to-zero transition of SCT. In the divide-by-32 mode (DRCK32 = 1) if CTS goes from one to zero 
while SCT is high, transmission will begin on the second one-to-zero transition of SCT. The transmitter output, 
XOUT, will then be updated on every 32nd one-to-zero transition of SCT thereafter. On every one-to-zero 

CRU 
l/F 

DRCK32 

RTS 

XSCL 

XSVNCL 

SVNC1 

SVNC2 

XBR 

TRANSMIT 
CONTROL 

LOGIC 

XSR 

XBCNT 

FROM RECEIVER 

RIN SCR 

XSRLSB XOUT 

---------• SELECT 

SCTX 

RTSAUT 

SCTX 
CONTROL 

RTS 
CONTROL 

FIGURE 7.·TMS 9903 sec TRANSMITTER BLOCK DIAGRAM 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9903 JL, NL 
and Interface Circuits SYNC. COMMUNICATIONS CONTROLLER 

transition of SCT, the ATS signal is updated by the internal, automatic request-to-send signal, (RTSAUT) 
unless outpu! bit address 17 (ATS) is addressed. If ATS is addressed the ATS signal is controlled by the level 
of.output bit 17 .until 'either the RESET or CLRXMT (clear transmitter) command is issued. - -~---

2.2.2 Transmitter Initialization 

Figure 8 is the flowchart for transmitter initialization. The transmitter is reset to the inactive state when the 
RESET or CLRXMT commands are issued. To ensure that the control bits are properly loaded into the 
transmitter, issue CLRXMT after loading the control register the first time. The transmitter remains inactive 
until the XMTON command is set, enabling transmission and raising RTSAUT. When the CTS command is 
set to logic one, data transmission begins and continues until the final character is transmitted after XMTON is 
reset. (Refer also to Figure 13) 

RST RTSAUT 

RST XMTON 

RST XABRT 

RST XZINH 

SET XBRE 

CLR XBCNT 

CLR XOCNT 

FIGURE 8. TRANSMITTER INITIALIZATION 

2.3 GENERAL RECEIVER DESCRIPTION 

2.3.1 Receiver Hardware Configuration 

Figure 9 is a block diagram of the receiver section of the TMS 9903. The value of control register bit 11 - 32X 
data rate clock (DRCK32) - determines the sampling point for RIN. For DRCK32 = O, RIN is sampled on 
every zero-to-one transition .of SCR. For DRCK32 = 1, RIN is sampled every 32nd SCA beginning with the 
zero-to-one transition of the 16th SCA after synchronization. The received character is assembled in the 
receive shift register (RSA) according to the length specified in control register bits 2, 1,0-receive character 
length select (RSCL). The value of RSCL is transferred to the RBCNT (receiver bit count) register when the 
contents of the RSA are transferred to the receive buffer register (RBR). This double buffering of the received 
character and the character length provide variable character length capability. The character length may be 
altered any time prior to the transfer of the next received character to the RBR. In all modes of operation 
except mode 1, the parity checker is updated with each bit shifted into the RSR. If parity is enabled, the 
receiver compares the assembled parity bit to the received parity bit, and then sets it to zero when the 

9900 FAMILY SYSTEMS DESIGN 8-217 

8<1 



TMS 9903 JL, NL Peripheral 
and Interface Circuits CVl\.Tr' r'lll\lfl\/JT Tl\.Tlr' A'T"'Tlll\.TC r'lll\.T'T"'DAT T VD u .1. 1 'Oij '-'· '-1'-.J l\' .1.1v.1.LJ1 "j .1. '-'~ .1. .1. '-.J l "j "-' '-1'-.J l "j .1. .I.'\.. '-.J .1....J.1....J.1....J.I. '-

2.3.2 

8-218 

character is transferred to the RBR. When the character is transferred to the RBR the receive buffer register 
loaded flag RBRL is set. If RBRL was set already, the receiver overrun flag ROVER is set. Incorrect received 
parity will set the parity error flag (APER) in all but mode 1 operation. Note that parity generation and detection 
is not available in mode 1 operation. The comparator and sync character r.egister SYNC1 are utilized in the 
several modes to provide flag and sync character detection. For a detailed discussion of each operation, see 
the discussion of the particular mode of operation desired. 

DRCK32 

CRU 
INTERFACE 

~ FLAGS 

RIN ___________ _....._..-.. 

CRU 
INTERFACE 

RECEIVER 
BUFFER 

REGISTER 

___ _, SYNC REG. 1 ._,___ __ ____ 

SCR 
LOGIC 

RECEIVER 
CONTROL 

RECEIVER 
MASK 

REGISTER 

RECEIVER 
HOLDING 
REGISTER 

RECEIVER 
CHAR. SELECT 

RECEIVER 
SHIFT 
REG 

COMPARATOR...__ __ __. 

FIGURE 9. TMS 9903 RECEIVER BLOCK DIAGRAM 

Receiver Initialization 

The receiver is initialized by the RESET and CLRRCV (clear receiver) commands from the CPU. This causes 
the receive mask register (used in mode 1 operation only) to be initialized to all ones, the receive shift register 
and parity to be initialized, and all receiver-related flags to be reset. 

Initializing the RSR sets the N-1 least-significant bits to logic one and sets the MSB (bit N) to logic zero, where 
N is the number of bits per character. The detection of the zero shifted out of the RSR signals the assembly of 
a complete character. For this reason the CLRRCV command should be issued after loading the control 
register to assure the correct assembly of the first character received after loading. 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9903 JL, NL 
and Interface Circuits 

SYNC. COMMUNICATIONS CONTROLLER 

2.4 TRANSMITTER AND RECEIVER OPERATION 

The TMS 9903 has six different operational modes (0, 1, 2, 3, 5, and-6). Following is a detail discussion for 
each mode of the transmitter and receiver operations. 

2.4.1 Mode 0 Operations 

2.4.1. 1 Transmitter Operation 

Figure 1 O is a flowchart for mode O transmitter operation. If parity is enabled, the parity bit is appended to the 
transmitted character. When the character has been shifted out and no data is available (XBRE = 1 ), the 
transmitter will either abort operation or transmit the contents of SYNC2, depending on the value of XPRNT 
(transparent). Note that parity is not generated when SYNC2 is transmitted; therefore, if parity is desired, the 
correct parity bit must be appended to the sync character when it is loaded into SYNC2. 

SET RTSAUT 

RST RTSAUT 

7F-+XSR 

XBR-+XSR 

0 XSCL-+XBCNT 

SET XBRE SVNC2-XSR SET XABRT 

XSVNCL- XBCNT 7F-+XSR 

XPAR-+XOUT TRANSMIT XSR TRANSMIT 7 ONES 

TRANSMIT XSR 

FIGURE 10. MODE 0 TRANSMITTER OPERATION 

9900 FAMILY SYSTEMS DESIGN 8-219 

8~ 

I 



.... s 

TMS 9903 JL, NL Peripheral 
and Interface Circuits SYNC. COl\1l\1UNICATIONS CONTROLLER 

2.4.1.2 Mode O Receiver Operation 

8-220 

Figure 11 is a flowchart for mode O receiver operation. This mode is the basic subset of receiver operation for 
all modes. The general description of receiver operation described in Section 2.3. above applies to mode O 
operation. 

RST RBRL 

RST ROVER 

RST RPER 

INIT RSR 

INIT RPAR 

RSCL-RBCNT 

RSR-RBR SHF RSR 

RPAR-RPER UPD RPAR 

RSCL-RBCNT 

INIT RSR 

INIT RPAR 

SET RBRL 

SET ROVER 

FIGURE 11. MODE 0 RECEIVER OPERATION 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9903 JL, NL 
and Interface Circuits 

SYNC. COMMUNICATIONS CONTROLLER 

2.4.2 Mode 1 Operation 

2.4.2. 1 Mode 1 Transmitter Operation 

Figure 12 is a flowchart of transmitter operation in mode 1. Beginning transmission varies slightly, depending 
on the configuration selected with control register bits 5 and 4, the configuration select (CSL 1, CSLO). 

RST RTSAUT SETRTSAUT 

7F-XSR 

RST XINSRT 

XBR-XSR 
SET XABRT 

XSCL-XBCNT 
SYNC2 -• XSR 7F-XSR 

SET XBRE 
XSYNCL -XBCNT CLR & DISABLE XOCNT 

RST XZINH 

ENABLE XOCNT CLR&DISABLE XOCNT 

TRANSMIT XSR 

FIGURE 12. MODE 1 TRANSMITTER OPERATION 

9900 FAMILY SYSTEMS DESIGN 8-221 



TMS 9903 JL, NL 
c·vl\.Tr" r"l\l\tfl\tfT Tl\.TTI'"" A'T"Tl\l\.TC r'l\1\.T'T"Dl\T T VD u .J. 1 "'I\._,. '--''-' 1v.1.1v.1.u1 ... .1. \._,.[""1.1. .1. '-' 1 "11.J '-''-' 1 ... .J.. .J.. '-'-' .l...J.l...J.l...JJ. '-

Peripheral 
and Interface Circuits 

2.4.2.1.1 Normal and Loop Master (CSL 1 = O) Operation. The operation of the transmitter is the same when 
CSL 1 = O, regardless of the status of CSLO. When XMTON is set, RTSAUT becomes active and data 
transmission begins with CTS = 1. As each character is transferred from XBR to XSR, the XZINH flag is 
tested. If XZINH = 1, XOCNT is cleared and zero-insertion is disabled. If XZINH = 0, a zero bit will be 
inserted after each fifth consecutive transmitted one. If XBRE = 1 when a character is to be loaded into the 
XSR, the transmitter will either abort (when XPRNT = 0) or transmit the contents of SYNC2 (when XPRNT 
= 1 ). When SYNC2 is transmitted, XOCNT is cleared and disabled, prohibiting zero-insertion. If the 
transmitter aborts, the XABRT flag is set and a minimum of seven ones are transmitted.The transmitter will 
remain inactive until XABRT is cleared. 

2.4.2.1.2 Loop Slave (Pending Synchronization) (CSL 1 = 1, CSLO = 0) Operation. As a loop slave the device 
must first synchronize itself to the communication line before actively transmitting data. Initially, the line is 
monitored to search for an end-of-poll (EOP = 11111110) character, which occurs when RABDT = 1. At 
this time, if XMTON = 1, the transmitter introduces a single-bit delay by retransmitting the final one, and 
subsequently retransmitting each received data bit. The logic associated with XOUT is shown in Figure 13. 
When XINSRT = 1 and XDELA Y = 1, XOUT = RIN. When XINSRT is reset by detection of an EOP, RIN is 
delayed a single bit-time before being transmitted on XOUT. 

(:>---xour 

FIGURE 13. XOUT SELECT LOGIC 

2.4.2.1.3 Loop Slave (Active) (CSL1 = 1, CSLO = 1) Operation. After loop synchronization has been.achieved, 
transmission may begin by first detecting an EOP (11111110). The> last one is inverted to provide the 
beginning flag of the transmitted frame, and normal data transmission begins. 

2.4.2.2 Mode 1 Receiver Operation 

Figure 14 is a flowchart of the mode 1 receiver operation and Figure 15 shows the register circuitry used to 
perform these operations. As described in Section 2.3.2 above, executing the RESET or CLRRCV 
commands resets all flags, initializes the receiver registers, and loads all ones into the mask register. 

2.4.2.2.1 Synchronization. Each bit time (SCRX = 1) data is shifted into RMSK. When a FLAG character bit pattern 
of 7E 16 is detected (RFLG = 1 ), the receiver achieves synchronization and the bit pattern 0011111112 is 
loaded into the nine-bit RSR. 

8-222 9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and lnterf ace Circuits 

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

RST RABRT 

RST RBRL 

RST RHRL 

RST ROVER 

RST RHROV 

7FFF~RHR 

RSCL-RBCNT 

RHRL-RHROV 

FIGURE 14. MODE 1 RECEIVER OPERATION (PAGE 1 OF 2) 

9900 FAMILY SYSTEMS DESIGN 8-223 



TMS 9903 JL, NL 
C"'T1'. T r'I r'I'°' l\ Al\ AT Tl\. TT r" A 'T"'T '°' 1'. TC r"A 1'. T'T"'D AT T DD 
0.ll"I\..,,. \..,,\..JlV.11V.1U1~.lvl"l..1. .1.\..Jl"lju v\Jl"i .1. n.\JLLDH. 

RBRL-ROVER 

SET RBRL 

RSCL-RBCNT 

RSR-RBR 

INIT RSA 

RBRL-ROVER 

SHF RMSK R510-+-RZER 

RSRL-RBRL 

RSR-RBR 

SET AHAL 

SHF AHR 

SHF RSA 

0 

INC ROCNT CLR ROCNT 

RBRL-ROVER 

R51D-RZER 

RSRL-RBRL 

RSR-..RBR 

SET RHRL 

FIGURE 14. MODE 1 RECEIVER OPERATION (PAGE 2 OF 2) 

Peripheral 
and Interface Circuits 

F 

8-224 9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and lnterf ace Circuits 

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

RSCL RBCNT 

RHR 

ROCNT 
R510 

RFLG 

RABOT 

FIGURE 15. MODE 1 RECEIVER CIRCUITRY 

2.4.2.2.2 Eight-Bit Delay. Each bit time, RIN is shifted into RMSK, and RSR is shifted right until RSRO = 0. This sets 
RSRL, indicating eight bits have been shifted. If the FLAG pattern is detected again, the eight-bit delay is 
repeated. The FLAG pattern consists of six consecutive ones (01111110). If more than six consecutive 
ones are detected in RMSK, RABDT is set to a one and the receiver aborts. FLAG patterns, abort patterns, 
and zeroes generated by five-ones-zero insertion are all deleted from the serial bit stream before being 
shifted into RHR. 

2.4.2.2.3 16 + (RSCL) Bit Delay. After the eight-bit delay, the RHR (receiver holding register) is loaded with 7FFF 16 
and the RSR is loaded with all ones. The contents of RSCL (receive character length select field of the 
control register) are loaded into RBCNT (receive bit count register), which selects which bit of the RSR is 
the MSB. Each bit time, RIN is shifted into RMSK. When R51 D = 1 (five consecutive ones detected), the 
next bit- the inserted zero bit- is not shifted from RMSKO to RHR15; otherwise, RMSKO is shifted into 
RHR15, RHR is shifted right, RHRO is shifted into the selected MSB of RSR, and RSR is shifted right. This 8<111111

1 

operation continues until RSRL = 1, indicating that the delay has been completed, and RMSK, RHR, and 
RSR all contain valid data. The fully assembled character is then transferred from the RSR to the receive 
buffer register (RBR) and the receive buffer register loaded flag (RBRL) is set. 

2.4.2.2.4 Character Assembly. Each time RSRL = 1, RSCL is transferred to RBCNT, RSR to RBR, RBRL is set; 
and RSR is initialized to all ones except for the MSB of the selected character length. That is, for a seven-bit 
character, RSR is loaded with 0001111112. Data is shifted through RMSK, RHR, and RSR each bit time, 
performing zero-deletion until a FLAG pattern or an abort sequence is detected. 

2.4.2.2.5 Receiver Abort. When the receiver detects the abort pattern, RAB RT is set and control returns to the initial 
state where the FLAG pattern is required for synchronization. 

9900 FAMILY SYSTEMS DESIGN 8-225 



TMS 9903 JL, NL Peripheral 
and Interface Circuits CVl\.Tr' r'f\l\Al\AT Tl\.Tlr' /\'T'Tfll\.TC r'fll\.T'T'Dfll T VD 

IJ .1. 1 .... '-' • '-' '--' 1 ".1.1" .1. \..) 1 .... .1. '-' },_ .i.. .1. .1. '--' 1 .... IJ '-' '--' 1 .... .1. .1. '\.. '-.J .1....J.1....J .1....J .1. '\.. 

2.4.2.2.6 Flag Detection. After entry into character assembly, the receive operation continues until a flag is 
detected, indicating the end of a frame. When this occurs, several operations are performed: 

(1) RSA is transferred to RBR. 
(2) If RBRL is set, ROVER is set. 
(3) If ASAL = 1, RBRL is set. 
(4) AHAL is set. 
(5), Control returns to the eight-bit delay described in paragraph 2.4.2.2.2 above. 

Thus, AHAL is set whenever the end of a frame is detected. If a complete character is received, RBRL is 
set; otherwise RBRL is not set and the number of bits received can be determined by shifting the contents 
of RBR right until the first zero is shifted out. After the receive CRC register (RCRC) is updated with the 
most recently received data, AHR may be compared with RCRC to determine if the received CRC 
contained in RHR matches the expected CRC contained in RCRC. If AZER (receiver zero error) = 1, it 
indicates a zero was not appended to the last five consecutive ones received. This occurs only if the last 13 
received bits are "01111110111112''. 

2.4.2.2.7 Variable Receive Character Length. Since the advanced data communication control protocol 
(ADCCP) permits variable length characters in the same frame, the receiver double-buffers the received 
character length. Each time RSA is transferred to RBR, RSCL is transferred to RBCNT. Thus, RSCL (bits 
2-0 of the control register) may be altered any time before the next character is transferred into RBR as long 
as a minimum setup time of two internal clocks is met. 

2.4.2.2.8 Loop Master Operation. When the TMS 9903 is configured to operate as a loop master (CSL 1 = 0, CSLO 
= 1 ), the EOP character (111111102, or RABDT = 1) is interpreted in the same manner as the FLAG 
character with respect to terminating frame reception. However, a FLAG must be received before 
synchronization occurs for the reception of the next frame. 

2.4.3 

2.4.3.1 

2.4.3.2 

2.4.4 

2.4.4.1 

8-226 

Mode 2 Operation 

Mode 2 Transmitter Operation 

Figure 16 is a flowchart of mode 2 transmitter operation. If parity is enabled, the parity bit is appended to the 
transmitted character. When the character has been shifted out and no data is available (XBRE = 1 ), the 
contents of SYNC2 are transmitted without parity. If parity is required for the sync character, it must be 
appended to the character when it is loaded into SYNC2. 

Mode 2 Receiver Operation 

Figure 17 is a flowchart of mode 2 receiver operation. In mode 2 operation, after initialization, the receiver 
assembles a character in the RSA and compares it to the sync character contained in SYNC1. Once the 
RSA receives the sync character, receiver operation is similar to that of mode O receiver operation 
discussed in Section 2.4.1.2 above. 

Mode 3 Operation 

Mode 3 Transmitter Operation 

Figure 18 is a flowchart of mode 3 transmitter operation. If parity generation is enabled, the correct parity bit 
is assembled as the character is shifted out of the XSR and appended as the last bit. When the character 
has been transmitted and no further data is available (XBRE = 1 ), and XPRNT = O, the contents of SYNC1 
are loaded and shifted out twice to give a fill sequence of SYNC1 -SYNC1. If XPRNT = 1 and XBRE = 1, 
the contents of SYNC2 are loaded and shifted, followed by the contents of SYNC1, giving a fill sequence of 
SYNC2- SYNC1. 

9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

SET RTSAUT 

XBR-->XSR SYNC2--> XSR 

0 XSCL-->XBCNT XSYNCL-->XBCNT 

SET XBRE 

RST RTSAUT 

TRANSMIT XSR TRANSMIT XSR 
7F-->XSR 

XPAR -+XOUT 

FIGURE 16. MODE 2 TRANSMITTER OPERATION 

2.4.4.2 Mode 3 Receiver Operation 

2.4.5 

Figure 19 is a flowchart of mode 3 receiver operation. In mode 3 operation, after initialization, the receiver 
assembles two consecutive SYNC1 characters before returning to mode O operation. 

Mode 5 and 6 Operation 

Although the TMS 9903 is designed primarily for synchronous communication control, it can be used for 
asynchronous operation if it is set to operate in mode 5 or 6, and if external baud rate clocks are provided 
for both SCR and SGT. Mode 5 is asynchronous operation with one start and two stop bits, while mode 6 is 
asynchronous operation with one start and one stop bit. 

9900 FAMILY SYSTEMS DESIGN 8-227 



Peripheral 
and Interface Circuits 

RST RBRL 

RST ROVER 

RST APER 

INIT RSR 

INIT RPAR 

RSCL-+RBCNT 

SHF RSR 
RSR-+RBR SHF RSA 

RPAR-+RPER UPD RPAR 

RSC L -+R BCNT 

SHF RSR 
INIT RSR 

INIT RPAR 

SET RBRL 

SET ROVER 

INIT RSA 

INIT RPAR SHF RSA 

RSCL-+RBCNT 

FIGURE 17. MODE 2 RECEIVER OPERATION 

8-228 9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9903 JL, NL 
and Interface Circuits SYNC. COMMUNICATIONS CONTROLLER 

I-
::> 
<( 
Cl) 

I-
a: 
I-
w 
Cl) 

tI: 
Cl) 

x 
t __ _.N 

u 
z 
> 
Cl) 

a: 
Cl) 

x 
t u z 
> 
Cl) 

a: 
Cl) 

x 
t 
a: 
Cll x 

9900 FAMILY SYSTEMS DESIGN 

I-z 
u co 
x 
t 
...J 
u 
Cl) 

x 

I-z 
u co x 
t 
...J 
u z 
> 
Cl) 

x 

w 
a: 
co 
x 
I-
w 
Cl) 

0 

I
:> 
<( 
I
C/) 

a: 
I
C/) 

a: 

a: 
Cl) 

x 
I-
i 
Cl) 

z 
<( 
a: 
I-

a: 
Cl) 

x 
I-
i 
Cl) 

z 
<( 
a: 
I-

a: 
~ 
t u. 
""" 

I- a: z Cl) 
a: u x 
Cl) co x x I-
t t i u ...J Cl) 

u z z z <( > > a: Cl) Cl) I-x 

2 
0 
j:: 
<C 
a: 
w 
c. 
0 
a: 

I- w 
::> I-
0 ..... 
x :E t (/) 
a: 2 
<( <C c. a: x ..... 

M 
w 
c 
0 
:ii: 

~ 
w 
a: 
::> 
e,, 
u:: 

8-229 

g,. 



TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

Peripheral 
and lnterf ace Circuits 

RST RBRL 

RST ROVER 

RST RPER 

INIT RSR 

INIT RPAR 

RSCL~RBCNT 

SHF RSR 

INIT RSR 

INIT RPAR 

RSCL~RBCNT 

SHF RSR 

SHF RSR 

UPD RPAR 

RSR _.. RBR RSCL _.. RBCNT 

INIT RSR 

INIT RPAR 
INIT RSR 

INIT RSR 

RSCL~RBCNT 
INIT RPAR 

SET RBRL 

FIGURE 19. MODE 3 RECEIVER OPERATION 

8-230 9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9903 JL, NL 
and Interface Circuits 

SYNC. COMMUNICATIONS CONTROLLER 

2.4.5.1 

2.4.5.2 

Mode 5 and 6 Transmitter Operation 

Operation of the transmitter in modes 5 and 6 is described .in the Figure 20 flowchart. The transmitter is 
initialized by issuing the RESET or CLRXMT commands, which cause the internal signals XBRE to be set 
and XMTON to be reset. Device outputs ATS and XOUT are set, placing the transmitter in the inactive 
state. When XMTON is set by the CPU, the ATS output becomes active. Transmission then begins when 
CTS becomes active. 

If BRKON is set, the character in transmission is completed; any character in the XBR is loaded into the 
XSR and transmitted; and XOUT is set to zero. Further loading of XBR should be avoided until BRKON is 
reset. If BR KON = 0, XOUT is set to logic one when the transmitter completes the current transmission and 
no further data is loaded into XBR. 

Mode 5 and 6 Receiver Operation 

Figure 21 is a flowchart of mode 5 or 6 receiver operation. The receiver is initialized when the RESET or 
CLRRCV command is issued in mode 5 or 6. The RBRL flag is reset to indicate that no character is in the 
RBR, and the RSBD and RFBD flags are reset. The receiver remains inactive until a one-to-zero transition 
of the RIN device-input is detected which sets SBD. 

AST RTSAUT 

7F _,.XSR 

0 

XBR -+XSR 

XSCL-+ XBCNT 

SET XBRE 

TRANSMIT 
START BIT 
(XOUT = 0) 

TRANSMIT XSR 

XPAR -xouT 

TRANSMIT 
STOP BIT(S) 
(XOUT= 1) 

1 -+XOUT 

FIGURE 20. MODE 5 OR 6 TRANSMITTER OPERATION 

0 _,.XOUT 

0 

9900 FAMILY SYSTEMS DESIGN 8-231 



TMS 9903 JL, NL Peripheral 

SYNC. COMMUNICATIONS CONTROLLER 
and Interface Circuits 

0 

8-232 

RST RBRL 
RST ROVER 
RST RPER 
RST RFER 

RSCL -RBCNT 

RST SBD 
RST RSBD 
RST RFBD 
INIT RPAR 
INIT RSR 

0 

RSR -RBR 

RPAR ~RPER 

SET RBRL 

NO 

RESET RFER SET RFER 

FIGURE 21. MODE 5 OR 6 RECEIVER OPERATION 

9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

2.4.5.2.1 Start Bit Detect. The receiver delays one-half bit time from SBD being set and again samples RIN to 
ensure that a valid start bit has been detected. If RIN = O after the half-bit delay, RSBD (receive start bit 
detect) is set and data reception begins. If RIN = 1, no data reception occurs. SBD and RSBD are reset and 
wait for the next one-to-zero transition of RIN. 

2.4.5.2.2 Data Reception. In addition to verfying the valid start bit, the half-bit delay after the one-to-zero transition 
also establishes the sample point for all subsequent data bits in this character. Theoretically, the sample 
point is in the center of each bit cell, thus maximizing the limits of acceptable distortion of data cells. After 
the first full bit delay the least significant data bit is received and RFBD is set. The receiver continu~s to 
delay one-bit intervals and samples RIN until the selected number of bits are received. If parity is enabled, 
one additional bit is read for parity. After an additional bit delay, the received character is transferred to the 
receive buffer register, RBRL is set, ROVER and RPER are loaded with appropriate values, and RIN is 
tested for a valid stop bit. If RIN = 1, the stop bit is valid. RFER, RSBD, and RFBD are reset and the 
receiver waits for the next start bit to begin reception of the next character. 

If RIN = O when the stop bit is sampled, RFER is set to indicate the occurrence of a framing error. RSBD 
and RFBD are reset, but sampling for the start bit of the next character does not begin until RIN = 1. 

2.5 INTERVAL TIMER SECTION 

</> 

EXTERNAL 
CLOCK 

A block diagram of the interval timer is shown in Figure 22. When the load interval register flag (LDIR) is set, 
output to CRU bit addresses 0-7 is loaded into the interval register. The LDIR flag is reset by a command 
from the CRU. After LDIR is reset, the contents of the interval register are loaded into the interval timer, and 
the interval timer is enabled. The interval timer is decremented at the rate of the prescaler output. When the 
interval timer decrements to O, the TIMELP flag is set and the contents of the interval register are reloaded 
into the interval timer. If TIMELP has not been cleared by the CPU by the time that the interval timer 
decrements to zero again, the TIMERR flag is set (the zero state is counted the same as other counter 
states). A flowchart for interval timer operation is illustrated in Figure 23. 

INTERNAL CLOCK 
GENERATOR 

+3 (CLK4M=Ol OR 
+4 (CLK4M=1) 

INTERNAL 
CLOCK 

PRE-SCALER 
1-------:i +64 (TESTMD=O) OR 

+2 (TESTMD=1) 

TIMERR 

TIMELP 

INTERVAL TIMER 
8-BIT COUNT 

DOWN COUNTER 

INTERVAL 
REGISTER 

8 BITS 

LOIA 

FIGURE 22. INTERVAL TIMER BLOCK DIAGRAM 

CRU l/F 

9900 FAMILY SYSTEMS DESIGN 8-233 



TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

YES 

SET TIMERR 

RESET TIMELP 

RESET TIMERR 

DECREMENT 
TIMER 

SET TIMELP 

LOAD INTERVAL 
REGISTER INTO 

INTERVAL TIMER 

Peripheral 
and Interface Circuits 

SET LDIR 

LOAD 
INTERVAL 
REGISTER 

FIGURE 23. INTERVAL TIMER OPERATION 

2.5.1 Time Interval Programming 

. 8 The rate at which the interval timer sets TIMELP during normal operation is determined by the value loaded 
into the interval register. In normal operation (TSTMD = 0), the prescaler output has a frequency 1 /64 of the 
internal system clock. Thus, when a standard 3- or 4-MHz external clock is used to generate a 1-MHz internal 
clock, the interval timer is decremented once every 64 microseconds. The interval register selects the number 
of 64-microsecond intervals contained in each interval timer period. Thus, the interval may range from 64 
microseconds (interval register = 0115) to 16,320 microseconds (interval register = FF 15) in 64-
microsecond increments. 

2.5.2 Test Mode Interval Timer Operation 

8-234 

When TSTMD = 1, the prescaler divides the internal system clock frequency by two rather than by 64, 
causing the interval timer to operate at 32 times the rate at which it operates when TSTMD = 0 for identical 
interval register contents. 

9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

2.6 INTERRUPTS 

The interrupt-output control line (INT) is active (low) when any of the following conditions occur and the 
corresponding interrupt has been enabled by the CPU: 

1) DSCH = 1. DSCH (data set status change) is set when DSR, CTS, or RTSAUT changes levels 

2) TIMELP = 1. TIMELP (timer elapsed) is set when the selected time interval has elapsed. 

3) XBRE = 1. XBRE (transmit buffer register empty) is set when the transmit buffer register is empty. 

4) XABRT = 1. XABRT (transmitter abort) is set in mode O and 1 when no data is available for 
transmission, no provision is made for a fill character, and XMTON is turned ON. 

5) RBRL = 1. RBRL (receive buffer register loaded) is set when a complete character is transferred 
from the receive shift register to the receive buffer register. 

6) RHRL = 1. RHRL (receive holding register loaded) is set in mode 1 when the receiver receives a 
complete frame. 

7) RABAT = 1. RABAT (receive abort) is set in mode 1 when the FLAG character is detected and 
seven consecutive ones are received. 

Interrupts are enabled in the SCC by writing a one to the associated enable bit (see Section 2.1.1 ). Figure 24 
shows the logical equivalent of the TMS 9903 interrupt circuitry 

DSCH 

DSCENB 
DSCINT 

TIME LP 

TIMENB 
TIMINT 

XBRE 

XBIEMB XBINT 

XMTON 

XABRT 

XAJNT CRU STATUS 
XAIENB INPUT BITS 

RBRL 

RIENB 

RHRL 
RINT 

RIENB 

RABRT 

RIENB INT 

INT 
OUTPUT 

NOTE: See Tables 1 and 5 for input and output signal definitions. 

FIGURE 24. INTERRUPT GENERATION LOGIC 

9900 FAMILY SYSTEMS DESIGN 8-235 

8'4 



·8 

TMS 9903 JL, NL Peripheral 

SYNC. COMMUNICATIONS CONTROLLER and Interface Circuits 

2.7 TMS 9903 TERMINAL ASSIGNMENTS AND FUNCTIONS 

SIGNATURE 

XOUT 
RIN 
CRUIN 

CRUOUT 

Vss 
SCT 
SCA 
S4(LSB) 
S3 
S2 
S1 
SO(MSB) 
CRUCLK 
";]; 
CE 

Vee 

PIN 

2 
3 
4 

5 

6 

7 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
'19 

20 

1/0 

OUT 

OUT 
IN 
OUT 

OUT 

IN 

IN 

IN 
IN 
IN 
IN 
IN 
IN 
IN 
IN 
IN 
IN 
IN 
IN 

IN 

3. DEVICE APPLICATION 

DESCRIPTION 

Interrupt. When active (low), the INT out
put indicates that at least one of the inter

TMS 9903 PIN ASSIGNMENTS 

rupt conditions has occurred. 
Transmitter serial data output line. 
Receiver serial data input line. 

20 PIN DUAL-IN-LINE PACKAGE 
(TOP VIEW) 

Serial Data Output line fromTMS 9903 to 
CRUIN input line of the CPU. 
Request to Send output from TMS 9903 to 
modem. This output is enabled by the 
CPU and remains active (low) during data 
transmission from TMS 9903. 
Clear-to-Send input from modem to 
TMS 9903. When active (low), it enables 
the transmitter section of the TMS 9903. 
Data Set Ready input from modem to 
TMS 9903. This input generates an inter
rupt when going On or Off. 

INT 1 

XOUT 2 

RIN 3 

CRUIN 4 

CTS 6 

DSR 7 

CRUOUT 8 

Vss 9 

scr 10 

Serial data input line to TMS 9903 from CRUOUT line of the CPU. 
Ground Reference Voltage. 
Transmit Clock- Transmitter data is shifted out on one-to-zero transition of SCT. 

20 Vee 

18 . <I> 

CRUCLK 

16 so 
15 S1 

S2 

13 SJ 

12 S4 

11 SCR 

Receiver Clock- Receiver serial data (RIN) is sampled at zero-to-one transition of SCA. 
Address bus SO-S4 are the lines that are addressed by the CPU to select a particular TMS 9903 
function. 

CRU Clock. When active (high), TMS 9903 samples the input data on CRUOUT line. 
TTL Clock. 
Chip Enable-When CE is inactive (high), the TMS 9903 address decoding is inhibitied. CRUIN 
remains at high impedance when CE is inactive (high). 
Supply voltage ( + 5 V nominal). 

This section describes the software interface between the CPU and the TMS 9903 and discusses some of the 
design considerations in the use of this device in synchronous and asynchronous communications 
applications. 

3.1 DEVICE INITIALIZATION 

8-236 

The following discussions assume that the value to be loaded into the CRU base register (register 12) in order 
to point to bit 0 is 004016. and the <P input to the SCC is a 4-MHz signal. The SCC divides this signal by four to 
generate an internal clock frequency of 1 MHz. An interrupt is generated by the interval timer every 1.6 
milliseconds when timer interrupts are enabled. 

When power is applied, the SCC must be initialized by the CPU with the instruction sequence shown below. 
The actual data (i.e., CTRL) loaded into the control register and specific initialization requirements are 
application-dependent and are further described in the following discussions of individual mode operations. 

I 
9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and lnterf ace Circuits 

RESET EQU 
CLRRCV EQU 
CLRXMT EQU 
CTRL DATA 

LI R12,>40 
SBO RESET 

LDCR CTRL, 12 
SBZ CLRRCV 
SBO CLRXMT 

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

31 
30 
30 
>XXXX 

Initialize CRU Base. 
Issue RESET command which resets the TMS 9903 an.d sets 
the LDCTRL-Load Control Register-flag. 
Load the control register, automatically resetting LDCTRL. 
Initialize Receiver. 
Initialize Transmitter. 

The RESET command resets all flags (other than LDCTRL}, resets all output bits, and disables all interrupts. 
The contents of the XBR, XCRC, RCRC, AHR, RBR, SYNC1, SYNC2, and the interval register are 
unaffected. 

The receiver should be initialized with the CLRRCV command after the control register is loaded to ensure 
that the receiver logic will assemble the first received character at the proper length. 

The transmitter should be initialized with the CLRXMT command after the control register is loaded to ensure 
that the transmitter logic will operate according to the flowchart for the selected mode. 

3.1.1 Mode O Operation 

Mode 0 operation is the most unstructured of the TMS 9903 operating modes, placing all synchronization and 
control requirements on the CPU. It functions as the basic subset of all other modes of operation and, as such, 
can be used in essentially any control protocol the user desires, limited only by the ability of the user software 
to provide the necessary control. The following instruction sequence will set the TMS 9903 to operate in mode 
0. 

RESET 
CLRRCV 
CLRXMT 
LDSYN2 
XPRNT 

SYNC2 
CTLFLD 

EQU 
EQU 
EOU 
EQU 
EOU 

LI 
SBO 
LDCR 
SBZ 
SBO 
SBO 
LDCR 
SBZ 

BYTE 
DATA 

9900 FAMILY SYSTEMS DESIGN 

31 
30 
30 
27 
23 

R12,>40 
RESET 
@CTLFLD,12 
CLRRCV 
CLRXMT 
LDSYN2 
@SYNC2,8 
LDSYN2 

>16 
>002A 

Initialize CRU Base. 
Reset device and set LDCTRL. 
Load Control Register and Reset LDCTRL. 
Initialize Receiver. 
Initialize Transmitter 

Load Sync Character Register 2. 

ASCII Sync Character 

8-237 



~s 

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

Peripheral 
and Interface Circuits 

MEMORY ADDRESS CTLFLD Ix Ix Ix Ix I 0 I 0 I 0 I 0 I 0 I 0 , , I 0, , I 0 , , I 0 I 
~ __.. -- ---- --8 ~ 0 > 8 a: 
d u w I- -' <( 

<( ~ g ~ NCJ Q 
~ CJ ::E a. :c !::: 
c z ::E m 
x ~ ~ ~ 

X=DON'T CARE 

3.1.2 Mode 1 Operation 

Mode 1 operation is selected to support the synchronous data link control (SDLC) protocol. SDLC supports 
full duplex communication links and places no constraints on the communications codes involved in informa
tion transfer. SDLC operation is initialized with the software shown below. This software sets the TMS 9903 to 
operate in mode 1 with eight-bit characters. The TMS 9903 further allows SDLC operation in several 
configurations - point-to-point, multipoint, loop master, loop slave, etc. In this case, operation is in the 
point-to-point configuration as set up by the configuration select bits shown. As in the case described for 
Bi-Sync operation, user software will then handle message preparation, transmission, reception, and ac
countability, while the TMS 9903 message link handles synchronization and control. 

RESET EQU 31 
CLRRCV EQU 30 
CLRXMT EQU 30 
LDSYN2 EQU 27 
CLXCRC EQU 29 
CLRCRC EQU 29 
LXCRC EQU 24 
LRCRC EQU 12 

LI R12,>40 
SBO RESET Reset Device 
LDCR @CTLFLD,12 Load Control Register 
SBZ CLRRCV Initialize Receiver 
SBO CLRXMT Initialize Transmitter 

SBO LDSYN2 Load Fill Character Into Sync 
LDCR @SYNC2,8 Character Register 2 
SBZ LDSYN2 
SBO CLXCRC Clear XMT CRC Register to all zeroes 
SBZ CLRCRC Clear RCV CRC Register to all zeroes 
SBO LXCRC 
LDCR @ INIB1,8 Initialize Transmit 
LDCR @ INIB2,8 CRC Registers to all Ones 
SBZ LXCRC 
SBO LRCRC 
LDCR @ INIB1,8 Initialize Receive CRC 
LDCR @ INIB2,8 Registers to all Ones 
SBZ LRCRC 

SYNC2 BYTE >11 
CTLFLD DATA >004B Sync Character 
INIB1 BYTE >57 
INIB2 BYTE >15 

8-238 9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9903 JL, NL 
and Interface Circuits 

SYNC. COMMUNICATIONS CONTROLLER 

MEMORY ADDRESS CTLFLD Ix I x Ix Ix I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 1 I 0 I 1 I 1 I 
:ii:: ------ -·-8 ~ 1-ZN:i.:: en 
.... w ~ e ~8 ~ 
u 8 g ~ ~· ~ .,d 5 
~ 5 ::i;; ::i;;o§ ::i;; 1-
<1: CCl- 0 w -
c ~tzu: Iii : 
x 5 ~ ~ 

a. u 

X•DON'T CARE 

3.1.3 Mode 2 Operation 

Mode 2 operation provides the framework for a general communication link control protocol using a character 
contained in SYNC1 for initial synchronization, and a character contained in SYNC2 for a fill sequence in the 
absence·of data to be transmitted (XBRE = 1 ). The instruction sequence shown below will initialize the TMS 
9903 to operate in mode 2. 

RESET 
CLRRCV 
CLRXMT 
LDSYN2 
LDSYN1 

SYNC1 
SYNC2 
CTLFLD 

EQU 
EQU 
EQU 
EQU 
EQU 

LI 
SBO 
LDCR 
SBZ 
SBO 

1SBO 
LDCR 
SBZ 
SBO 
LDCR 
SBZ 

BYTE 
BYTE 
DATA 

9900 FAMILY SYSTEMS DESIGN 

31 
30 
30 
27 
26 

R12,>40 Initialize CRU Base 
RESET Reset SCC and set LDCTRL 
@ CTLFLD, 12 Load Control Register and Reset LDCTRL 
CLRRCV Initialize Receiver 
CLRXMT Initialize Transmitter 

LDSYN2 } 
@ SYNC2,8 Load Fill Character in SYNC2 
LDSYN2 

LDSYN1 } 
@ SYNC1 ,8 Load Sync Character in SYNC1 
LDSYN1 

>16 
>11 
>OOAA 

8-239 

8·' 

I 



8 

TMS 9903 JL, NL Peripheral 
and lnterf ace Circuits 

SYNC. COMMUNICATIONS CONTROLLER 

MEMORY ADDRESS CTLFLD 

X•DON"T CARE 

3.1.4 Mode 3 Operation 

8-240 

One of the most common synchronous data link control protocols now in use is Bi-Sync, which uses a fixed 
character length set of data and control characters and half-duplex operation. Bi-Sync operation is invoked 
with the software shown below. The software instructions shown load the control register with bits set to 
initialize the TMS 9903 to operate in mode 3 with received character length of seven bits and odd parity. 

Note that transmitted character length is determined dynamically from the length of the character loaded into 
the transmit buffer. Hence, transmitting fixed seven-bit characters from the CPU to the TMS 9903, with odd 
parity generation selected and enabled, automatically generates the fixed length eight-bit characters required 
for Bi-Sync transmission. In normal operation the TMS 9903 will automatically insert SYN characters into the 
bit stream (from the SYNC1 register) whenever the transmitter buffer is empty and no character has been 
loaded by the CPU. In receive operation with RSYNDL set, the TMS 9903 will delete all SYN characters 
embedded in the received character stream. 

RESET 
CLRRCV 
CLRXMT 
RSYNDL 
LDSYN2 
LDSYN1 

SYNC1 
SYNC2 
CTLFLD 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

LI 
SBO 

LDCR 

SBZ 
SBO 
SBO 
LDCR 
SBZ 
SBO 
LDCR 
SBZ 
SBO 

BYTE 
BYTE 
DATA 

31 
30 
30 
28 
27 
26 

R12,>40 
RESET Issue Reset Command and Set Load 

Control Flag LDCTRL 
@ CTLFLD, 12 Load Control Register with 12 Bits, the 

Last of Which Resets LDCTRL 
CLRRCV Initialize the Receiver 

~~::~~ ,8 r ~:~:li:::~:~a:;:::er 
LDSYN1 
LDSYN2 
@ SYNC2,8 Load SYNC2 Register 
LDSYN2 
RSYNDL Set RCVR to Delete SYNC Characters 

(XPRNT = 1 will Override RSYNDL) 

>16 
>10 
>OOFA 

ASCII "SYN" Character 
ASCII "OLE" Character 
Sets TMS 9903 for Mode 3, Odd Parity, 7 Bit Characters 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9903 JL, NL 
and lnterf ace Circuits 

SYNC. COMMUNICATIONS CONTROLLER 

MEMORY ADDRESS CTLFLD 

X=DON'T CARE 

If the capability to utilize all bit combinations of the eight-bit data field is required, control bit XPRNT can be set 
for transparent operations. This will cause the SYNC1-SYNC1 fill sequence (i.e., normally SYN-SYN) to be 
replaced with SYNC2-SYNC1 (i.e., OLE SYN). Note that in transparent operation, more software is required 
to ensure that all data-link control commands are preceded by the OLE (data-link escape) character. 

User software routines then will handle the preparation, transmission, reception, and accountability of 
individual messages, with link synchronization and control done by the TMS 9903. 

3.1.5 Mode 5 and 6 Operation 

Modes 5 and 6 are the asynchronous operation modes of the TMS 9903. Mode 5 provides operation with one 
start and two stop bits, and mode 6 with one start and one stop bit. The software shown below will initialize the 
TMS 9903 into mode 5 or 6 asynchronous operation mode, depending upon the mode select bits. Loading the 
control register with the contents of memory address CTFL01 selects mode 5 and CTFL02 selects mode 6. 

RESET 
CLRRCV 
CLRXMT 

CTFL01 
CTFLD2 

EQU 
EQU 
EQU 

LI 
SBO 
LOCR 
SBZ 
SBO 

DATA 
DATA 

9900 FAMILY SYSTEMS DESIGN 

31 
30 
30 

R12,>40 
RESET 
@ CTFLOX,12 
CLRRCV 
CLRXMT 

>016A 
>01AA 

Initialize CRU Base 
Reset SCC and Set LDCTRL 
Load Control Register and Reset LDCR 
Initialize Receiver 
Initialize Transmitter 

8-241 

gJ 



·8 

TMS 9903 JL, NL Peripheral 

SYNC. COMMUNICATIONS CONTROLLER and Interface Circuits 

MEMORY ADDRESS CTFLD1 

MEMORY ADDRESS CTFLD2 

X•DON'T CARE 

3.1.6 Interval Timer Operation 

8-242 

The software shown below will set up the interval timer to generate an interrupt every 1.6 milliseconds. The 
value loaded into the interval register specifies the number of 64-microsecond increments in the total interval. 

TIMENB EQU 20 
LOIA EQU 13 
INTVL BYTE >19 1915 = 2510. 25 x 64 µ.s = 1.6 ms 

SBO LOIA Set Load Interval Register Flag 
LOCR @ INTVL,8 Load IA with 25 Increments 
SBZ LOIA Reset LOIA 
SBO TIMENB Enable Interval Timer Interrupts 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9903 JL, NL 
and Interface Circuits 

SYNC. COMMUNICATIONS CONTROLLER 

3.2 DATA TRANSMISSION 

The software* shown below demonstrates a representative subroutine for transmitting a block of data. 

LI RO,LISTAD Initialize List Pointer 
LI R1,COUNT Initialize Block Count 
LI R12,CRUBAS Initialize CRU BASE 
SBO XMTON Turn on Transmitter (XMTON = 16) 

XMTLP TB XBRE Xmit Buff er Empty? 
JNE XMTLP No, Wait 
SBO LXBC 

Load Transmit Buffer, Transmit CRC 
Register, and Increment Pointer 

LDCR *R0+,8 
SBZ LXBC Reset XBRE (LXBC = 25) 
DEC R1 Decrement Counter 
JNE XMTLP Loop If Not Complete 
SBO LXCRC SetLXCRCto 
STCR R3,0 Read Transmit CRC 
SBZ LXCRC ResetLXCRC 
SWPB R3 
TB XBRE 
JNE $-1 
LDCR R3,8 
SBZ LXBC 
SWPB R3 
TB XBRE 
JNE $-1 
LDCR R3,8 
SBZ LXBC 
SBZ XMTON Turn Off Transmitter 

After initializing the list pointer, block count, and CRU base address, XMTON is set, enabling data trans
mission. The internal automatic ATS signal (RTSAUT) becomes active and transmission begins when CTS 
becomes active. Each character to be transmitted is loaded with the LXBC flag set to load the transmit buffer 
and to update simultaneously the transmit CRC register. If the CRC register is not in use, the characters can 
be loaded with no flags set, which will then load only the transmit buffer. After the last character is transmitted, 
the accumulated CRC is read from the SCC and transmitted, and XMTON is reset. The transmitter and ATS 
become inactive upon completion of transmission of the last character. Note that ATS can be CPU-controlled 
by setting and resetting ATS (bit address 17). This disables the RTSAUT signal until the transmitter is reset by 
the RESET or CLRXMT command. 

'The software in these examples represents generalized routines. Specific details will vary with the mode of operation selected. 

9900 FAMILY SYSTEMS DESIGN 8-243 



8 

TMS 9903 JL, NL Peripheral 
and lnterf ace Circuits 

SYNC. COMMUNICATIONS CONTROLLER 

3.3 DATA RECEPTION 

8-244 

The software shown below will cause a block of data to be received and stored in memory. 

LI R1,TEMPT Initialize Working Storage 
LI R2,RCLST Initialize List Address 
LI R3,MAXCNT Initialize Max Count 
LI R4,>0DOO Initialize End of Block Character (ASCII CR) 

RCVLP TB 21 Test for RBRL = 1 
JNE RCVLP 
STCR *R2,8 Store Character 
SBZ 18 Reset RBRL 
SBO 12 SetLRCRCto 
LDCR *R2,8 Update Receive CRC Register 
SBZ 12 Reset LRCRC 
DEC R3 Decrement Count 
JEQ RCVEND End if Count = 0 
CB *R2+,R4 Compare to EOB Character and Increment Point 
JNE RCVLP Loop If Not Complete 

RCVEND TB 21 Test For RBRL = 1 
JNE RCVEND 
STCR R1,8 Store Transmitted CRC Value 
SBZ 18 Reset RBRL 
SWPB R1 Swap CRC Bytes 
TB 21 Test for RBRL = 1 
JNE $-1 
STCR R1,8 Store Transmitted CRC Value 
SBZ 18 Reset RBRL 
SBO 12 SetLRCRCto 
STCR R6,0 Read Receive CRC Register 
SBZ 12 ResetLRCRC 
c R1,R6 If Received CRC Not Equal to 
JNE ERR Expected CRC, Jump to Error Routine 
RTWP Else Return 

The above routine receives the block of data and compares the received CRC block check to the value 
accumulated in the receive CRC register. Note that in mode 1 operation the RCVEND instructions to read the 
received CRC could be replaced with: 

RCVEND SBO 26 SetRHRRD 
STCR R1,0 Read the Receive Holding Register 
SBZ 26 Reset RHRRD 
SBO 12 SetLRCRC 
STCR R6,0 Read Receive CRC Register 
SBZ 12 Reset LRCRC 
c R1,R6 Compare 
JNE ERR Jump to Error Routine If Not Equal 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TMS 9903 JL, NL 
and Interface Circuits SYNC. COMMUNICATIONS CONTROLLER 

3.4 REGISTER LOADING AFTER INITIALIZATION 

The interval register may be reloaded after initialization. For example, to change the interval of the timer to 
10.24 milliseconds, the instruction sequence is 

INTVL2 

SBO 
LDCR 
SBZ 

BYTE 

13 
@INTVL2,8 
13 

10240/64 

Set Load Control Flag 
Load Register 
Reset Flag 

Caution should be exercised when transmitter interrupts are enabled to ensure that the transmitter interrupt 
does not occur while the load control flag is set. For example, if the transmitter interrupts between execution of 
the "SBO 13" and the next instruction, the transmit buffer is not enabled for loading when the transmitter 
interrupt service routine is entered because the LDIR flag is set. This situation may be avoided by the 
following sequence: 

ITVCPC 

ITV CHG 
INTVL2 

BLWP 

LIMI 
MOV 
SBO 
LDCR 
SBZ 
RTWP 

DATA 
BYTE 

@ITVCHG Call Subroutine 

O Mask All Interrupts 
@ 24(R13),R12 Load CRU Base Address 
13 Set Flag 
@ INTVL2,8 Load Register 
13 Reset Flag 

Restore Mask and Return 

ACCWP,ITVCPC 
10240/64 

In this case all interrupts are masked, ensuring that all interrupts are disabled while the load control flag 

EQUIVALENT OF OUTPUTS EQUIVALENT OF INPUTS 

Vee Vee Vee 

_J 

_J INPUT I I a,____[ ~1 

9900 FAMILY SYSTEMS DESIGN 8-245 



8 

Peripheral TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

and Interface Circuits 

4. TMS 9903 ELECTRICAL SPECIFICATIONS 

4.1 ABSOLUTE MAXIMUM RATING OVER OPERATING FREE AIR TEMPERATURE RANGE 
(UNLESS OTHERWISE NOTED)* 

Supply voltage, Vee ................. ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 1 o V 
All inputs and output voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . -0.3 V to 20 V 
Continuous power dissipation ............................................................ 0.7W 
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C 
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65°C to 150°C 

"Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of 
the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to 
absolute maximum rated conditions for extended periods may affect device reliability. 

4.2 RECOMMENDED OPERATING CONDITIONS 

PARAMETER MIN NOM MAX 

Supply voltage, Vee 4.75 5 5.25 

S~volt1:!9.e. V!=:!=: 0 

High-level input voltage, V1H 2.2 2.4 Vee 
Low-level i~ut voltage, VJL V,.-.3 0.4 0.8 

Operating free-air temperature, TA 0 70 

4.3 ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING 
CONDITIONS (UNLESS OTHERWISE NOTED) 

PARAMETER TEST CONDITIONS MIN TYP MAX 

11 Input current (any input) V1=0VtoVcc -10 10 

VoH High-level output volta,Qe 
IQH = -100 µ.A 2.4 3 

!mi= -400 µ.A 2 

Vol Low-level output voltage loL =3.2mA 0.4 

ICC( av) Average supply current from Vee Operating at lc(<f,) = 250 ns, TA= 25°C 100 

Ci Capacitance, any input f = 1 MHz, all other pins at O V 15 

UNIT 

v 
v 
v 
v 
oc 

UNIT 

µ.A 

v 
v 

mA 

pF 

8-246 9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

TMS 9903 JL, NL 
SYNC. COMMUNICATIONS CONTROLLER 

4.4 TIMING REQUIREMENTS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS 

PARAMETER MIN TYP MAX UNIT 

lc(<f>) Clock cycle time 333 2000 ns 

tr(<f>) Tiock nse time 12 ns 

tf(<f>) Clock fall time 12 ns 

tw~Hl Pulse width, clock high 240 ns 

tw~L) Pulse width, clock low 55 ns 

tw(CC) CRUCLK pulse width 100 ns 

tsu(ad) Address setup time, CRUOUT before CRUCLK 220 ns 

tsu(CF) Chip enable setup time before CRUCLK 180 ns 

th(ad) Address hold time, CE and CRUOUT after CRUCLK 80 ns 

th(CI) Hold time, CRUIN after address 20 ns 

lcl(adCI) Delay time, address to CRUIN valid 400 ns 

0TTL 

}.....______ __ /~ 
'•"tfEll f-- U'hlCll 

CRU·BIT ,---C-R-U--8---IT ~ 
ADDRESS" ADDRESS o+1 I ~ SO-S4 UNKNOWN 

tsu(ad) ___ _____._ 
tw(CCI _, I"' • I th(CI) 

90% 
I 
l~-,-~~~r~~~~~~~~~~-

k-th(CI) 

CRUCLK 

tw("')~ 
CRUOUT 

CRUIN 

FIGURE 25. TIMING DIAGRAM 

9900 FAMILY SYSTEMS DESIGN 8-247 



TMS 9903 JL, NL Peripheral 

SYNC. COMMUNICATIONS CONTROLLER 
and Interface Circuits 

SCR 
OR 
SCT 

RIN 

RECEIVE DATA 

SAMPLE PULSE 

TRANSMIT DATA 

SHIFT PULSE 

XOUT 

n 

PARAMETER 

tgog Receiver/transmit data clock cycle time 

lw(<f>H) Clock pulse width (high level) 

lw(<f>lJ Clock pulse width (low level) 

Ir Rise time 

tf Fall time 

tsu Setup time for AIN before SCA 

th Hold time for RIN after SCA 

tel Delay time, SCT to valid XOUT 

n n {\_ 

n n 

VALID DAT.A VALID VALID DATA DATA 

MIN TYP MAX UNIT 

4 ns 

2 ns 
-z ns 

12 ns 

12 ns 

250 ns 

SIT ns 

400 ns 

FIGURE 26. RECEIVE/TRANSMIT DATA CLOCK TIMING DIAGRAM 

8-248 9900 FAMILY SYSTEMS DESIGN 



Peripheral TIM 9904 
and Interface Circuits 

FOUR-PHASE CLOCK GENERATOR/DRIVER 

1. INTRODUCTION 

1.1 Description 

The TIM 9904 four-phase clock generator/driver (SN74LS362) is a 20-pin dual-in-line package 
peripheral device desig~ed for use with the Texas Instruments TMS 9900 microprocessor family 
and other microprocessors. The TIM 9904 internal oscillator can be controlled by a fundamental or 
overtone crystal, or capacitor and a tank circuit, or an external oscillator. The TIM 9904 is fabricated 
using low-power Schottky technology and is available in both plastic and ceramic packages. 

1.2 Key Features 

• Clock generator/driver for the TMS 9900 or other microprocessors 
• MOS and TTL four-phase outputs 
• Self-contained oscillator can be crystal- or tank-controlled 
• External oscillator can be used 
• Clocked D-type flip-flop with Schmitt-trigger input for reset signal synchronization. 
• Standard 20 pin plastic and ceramic package 

2. ARCHITECTURE 

The TIM 9904 clock generator/driver (Figure 1) comprises an oscillator, a divide-by-four counter, a 
second divide-by-four-counter with gating to generate four clock phases, high-level (12-volt) output 
drivers, low-level (5-volt) complementary output drivers, and a D-type flip-flop controlled by an 
external signal and a cf>3 clock. The four high-level clock phases provide clock inputs to a TMS 9900 
(or other) microprocessor. The four complementary TTL-level clocks can be used to time memory or 
other logic functions in a TMS 9900 computer system. The D-type flip-flop can be used, for example, 
to provide a reset signal to a TMS 9900, timed by cf>3, on receipt of an input to the FFD input from 
power turn-on or a manual switch closure. Other applications are possible. A safety feature 
incorporated in the cf> outputs causes the cf> outputs to go low if an open occurs in the Vee supply 
common to TIM 9904 and TMS 9900, thus protecting the TMS 9900. 

The frequency of the internal oscillator can be established by a quartz crystal or a capacitor and LC 
circuit. Either a fundamental or overtone crystal may be used. The LC circuit connected to the tank 
inputs selects the desired crystal overtone or establishes the internal oscillator frequency when a 8 <111111 

capacitor is used instead of a crystal. An LC circuit must always be used at the tank inputs when I 

using the internal oscillator. An external oscillator may be used, if desired. 

9900 FAMILY SYSTEMS DESIGN 8-249 



·8 

TIM 9904 Peripheral 

FOUR-PHASE CLOCK GENERATOR/DRIVER · 
and Interface Circuits 

TANK 1 
(1) 

(2) 
TANK2 

(18) 
XTAL1 

(19) 
XTAL 2 

( 17) 
OSCIN 

D 

D 

FFD 

8-250 

OSCILLATOR CK 

0 

l12V sEcTio~-, 
I I 

Q I 
CK I 

0 I 
I 

Q I 
CK 

I 

Q L ____ J 

D Q 

CK 

FIGURE 1-TIM 9904 CLOCK GENERATOR/DRIVER FUNCTION 
BLOCK DIAGRAM 

OSCO UT 

(12) 
¢1 

( 11) 
r/>2 

(8) 
¢3 

(9) 
<;14 

(14) 
q'>l TTL 

(15) 
¢2 TTL 

(7) 
rp3TTL 

(6) 
¢4 TTL 

(4) 
FFQ 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TIM 9904 
and Interface Circuits FOUR-PHASE CLOCK GENERATOR/DRIVER 

3. DEVICE OPERATION 

Connected to a TMS 9900 as shown in Figure 2, the TIM 9904 oscillator operates with a quartz 
crystal and an LC circuit connected to the tank terminals. For operation of the TMS 9900 micro
processor at 3 MHz, the frequency reference requires a resonant frequency of 48 MHz (16 x 
3 MHz). The quartz crystal used as a frequency reference should be designed for series-mode 
operation with a resistance in the 20- to 75-ohm range, and be capable of a minimum 2-mW power 
dissipation. Typical frequency tolerance is ±0.005 percent. For 48-MHz operation a third-overtone 
crystal is used. The inductance L connected across the tank terminals should be 0.47 µH ± 10 
percent, and the capacitance C (including board capacity) should be 22 pF ± 5 percent. The LC 
circuit should be tuned to the third-overtone crystal frequency for best results. The tank circuit 
should be physically located as close as possible to the TMS devices 9904. 

XTAL 1 R 
c/>1 c/>1 

D XTAL 2 c/>2 R c/>2 TIM 9904 TMS 9900 
TANK 1 CLOCK MICROPROCESSOR 

DRIVER c/>3 R c/>3 

c/>4 R c/>4 

OSCIN 

1 kll 

Vee Vo GND GND 
-----.. 1 

f5 V >J2V 

FIGURE 2-TIM 9904, CRYSTAL-CONTROLLED OPERATION 

A 0.1-µF capacitor can be substituted for the quartz crystal. With a capacitor rather than a crystal, 
the LC tuned circuit establishes the operating frequencies. LC component values for operation at 
any frequency can be computed from f osc = 1 I (27TVLC) where f osc is the oscillator frequency, Lis 
the inductance value in henries, and C is the capacitance value in farads. 

When the internal oscillator is used, OSCIN should be connected to Vee through a resistor (1 kn 
nominal), and an LC tank circuit must be connected to the tank inputs except when a fundamental 
crystal is being used. An external oscillator can be used by connecting it to OSCIN and disabling 
the internal oscillator by connecting the crystal terminals to Vee and leaving the tank inputs open. g..,.. 
The external oscillator must have a frequency four times the desired output clock frequency and a 
25 percent duty cycle. The first low-level external clock pulse will preset the divide-by-four counter, 
allowing the external oscillator signal to directly drive the phase generator. Figure 3 is a timing 
diagram illustrating operation with an external oscillator. 

Resistors between the TIM 9904 cb 1, $2, $3, and $4 outputs and the corresponding clock input 
terminals of the TMS 9900 should be in the 10- 20-ohm range (see Figure 2). The purpose of the 
resistors is to minimize overshoot and undershoot. The required resistance value is dependent on 
circuit layout; clock signal interconnections should be as short as possible. 

9900 FAMILY SYSTEMS DESIGN 8-251 



·8 

TIM 9904 Peripheral 

FOUR-PHASE CLOCK GENERATOR/DRIVER and Interface Circuits 

OSCIN 

¢1 "--
¢2 

¢3 

¢4 

FIGURE 3-EXTERNAL OSCILLATOR TIMING FOR USE WITH TIM 9904 

The 0-type flip-flop associated with TIM 9904 pins FFD and FFQ can be used to provide a power-on 
reset and a manual reset to the TMS 9900 as shown in Figure 4. A Schmitt-trigger circuit driving the 
D input generates a fast-rising waveform when the input voltage rises to a specific value. At power 
turn-on, voltage across the 0.1 µF capacitor in Figure 4 will rise towards V CC· This circuit provides a 
delay that resets the TMS 9900 after V CC has stabilized. An optional manual reset switch can be 
connected to the delay circuit to reset the TMS 9900 at any time. The TMS 9900 HOLD signal could 

- alternately be actuated by FFD. 

8-252 

The ground terminals GND1 and GND2 normally should be connected together and to system 
ground. 

Vee 

100 !! FFD 

r;;~~-
1 MANUAL I l RESET 0.1 µF i SWITCH °=" 

TIM 9904 

FFQ TMS 9900 

Q -------1 MICROPROCESSOR 
RESET 

FIGURE 4-POWER·ON RESET 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TIM 9904 
and Interface Circuits FOUR-PHASE CLOCK GENERATOR/DRIVER 

4. DEVICE APPLICATION 

4.1 Modes of Operation 

The TIM 9904 may be used in one of the following modes to provide clocking for the TMS 9900 or 
other microprocessor: 

• Overtone operation - overtone crystal; tank-circuit bandpass filters the selected 
harmonic 

• Fundamental operation -fundamental crystal; tank circuit not required 
• Tank-controlled operation- no crystal; frequency determined as resonant frequency of 

the tank circuit 
• Externally-controlled operation - internal oscillator disabled; TIL input signal 

determines frequency. 

4. 1. 1 Overtone Operation 

Overtone operation is used when crystal-stabilized, high-frequency (f cy > 1.5 MHz) clocking is 
required. The crystal is operated at a harmonic of its fundamental frequency, and the tank-circuit 
bandpass filters the crystal frequency so as to select the desired harmonic. For example, if 3-MHz 
operation is required (f cy = 3 MHz), f osc must be 48 MHz. Since fundamental crystals are 
generally not available with frequencies above approximately 24 MHz, a 48-MHz, third-overtone 
crystal may be employed. The tank circuit should have a resonant frequency of 48 MHz to 
bandpass filter the third overtone. 

The resonant frequency is determined by the equation: 

1 
fres 

27TVLC 

The PRESET /OSCIN input is held at high. Figure 5 typifies the connection of components for 
overtone operation. 

OVERTONE 
XTAL D 

c 

4.7 kH 

XTAL 1 

XTAL 2 

TANK 1 

TANK 2 

PRESET 

OSelN 

TIM 9904 

tose::. IXTAL = 16 f cy = ---
211 vu: 

lose= 4 lose ouT 

0.5 MHz < fey < 3MHz 

FIGURE 5-0VERTONE OPERATION 

9900 FAMILY SYSTEMS DESIGN 8-253 



~s 

TIM 9904 Peripheral 

FOUR-PHASE CLOCK GENERATOR/DRIVER 
and Interface Circuits 

4. 1.2 Fundamental Operation 

If a crystal is available with a fundamental frequency 16 times the required fey• a tank circuit is not 
required and the TANK1 and TANK2 inputs are connected to each other through a 100-ohm 
resistor, as shown in Figure 6. The PRESET /OSelN input is held at high level. 

lose~ lxTAL = 16 fey 

1osc ~ 4 1ose OUT 

0.5 MHz <tcy <3 MHz 

XTAL 1 

FUNDAMENTAL 
D XTAL TIM 9904 

XTAL 2 

TANK 1 

100 H 

TANK 2 

4.7 kH PRESET/ 
+5 v OSC IN 

FIGURE 6-FUNDAMENTAL·FREOUENCY CRYSTAL OPERATION 

4.1.3 Tank Controlled Operation 

8-254 

For applications in which crystal quality stability is not needed, the crystal may be replaced with a 
0.1-µ,F capacitor and fosc = fres = 1/(2 7TYLe). Slight variations with changing Vee and 
temperature can be expected. Tank-controlled operation interconnections are shown in Figure 7. 

lose - 16 f cy -

2rr yl_-c 
tose 4 tose OUT 

O.!J MHz <fey < 3 MHz 

XTAL 1 

0.1 µF 

XTAL 2 

4.7 kH 
PRESET/ 

+ 5 v ---"F'\f'<,...---< JI 

OSe IN 

FIGURE 7-TANK-CONTROLLED FREQUENCY OPERATION 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TIM 9904 
and Interface Circuits 

FOUR-PHASE CLOCK GENERATOR/DRIVER 

4. 1. 4 Externally Controlled Operation 

If a TTL signal is available with the appropriate frequency and waveform, such signal may be 
connected to the PRESET /OSCIN input of the TIM 9904 as shown in Figure 8. The internal 
oscillator is disabled by leaving tank inputs open and by connecting the crystal inputs to V CC· 

Vee XTAL 1 

Vee XTAL 2 

TIM 9904 
NC TANK 1 

NC TANK 2 

_,... PRESET/ 
OSCIN ..... 

OSCIN 

fosCIN = f cy __ 

fosCIN = foscOUT· OSCOUT = OSCIN 

0.5 MHz <t cy <3 MHz 

FIGURE 8-EXTERNALLY-CONTROLLED OPERATION 

4.2 Component Selection 

The criterion for selecting the values of the discrete components to be used with the TIM 9904 are 
recommended in this section. 

4.2.1 Crystal 

The following crystal specifications are suggested. 
• Series resonant, 20- to 75- ohm series resistance, 2-mW maximum 

power dissipation. 

• fxTAL = 16 fey 
• For f cy = 3 MHz, specify 48 MHz, third overtone 
• Suggested stability: 0.05 percent from 0° to 70°C. 

4.2.2 Tank Circuit 

Because the value of the capacitance will be in the picofarad range, board capacity must be 
considered when selecting component values for the LC tank circuit. The board capacitance (Cs) 
will be additive to the device capacitance (C0 ), as shown in Figure 9. Board capacitance may be 
computed in the following manner: 

9900 FAMILY SYSTEMS DESIGN 8-255 



~8 

TIM 9904 Peripheral 

FOUR-PHASE CLOCK GENERATOR/DRIVER and Interface Circuits 

8-256 

(1) Connect devices to the TIM 9904 as shown in Figure 5. To ensure that f cy ~ 3 MHz, 
select values for L and c0 such that 

----~48MHz 

27TVLC0 
(2) Measure the frequency (fey) of one of the TTL clock outputs (c/>1, c/>2, c/>3, or c/>4). 

(3) Since fosc = 16 f cy = 
1 1 

2 7TVLC 2 7T v'~L...,...,(C,,_s_+..__,,..Co-..,.) 

Cs can be determined from the equation: 

Cs 1 - Co 
L · (32 7T F cy )2 

For example, assume that L = 0.5 µHand c0 = 22 pF: 

1 
47.987 MHz< 48 MHz 

27T v'LCD 
F cy is determined to be 2.413 MHz. Therefore: 

Cs -
1 c0 

1 
- 22 x 10- 12 farad 

L · (32 7T F cy )2 0.5x1Q-fi · (32 7T · 2.413x10n)2 

Cs= 11.98 pF = 12 pF. 

In order to obtain fres = 48 MHz using 0.5 µH, C =Cs+ c0 = 22 pF;thus, c0 must be 10 pFwith 
a board capacitance of 12 pF. When using the tank circuit in overtone operation, the f res should 
be within 5 percent of f osc• requiring that the product of LC should be within 1 O percent of the ideal 
values for f res = fosc· This may. be accomplished by using devices with nominal values so that 
fosc= 1 /(2nv'[C), and with 5 percent tolerances. 

For the above example with Cs = 12 pF: 

L = 0.5 µH ± 5 percent 

C = 10 pF ± 5 percent 

thus providing a comfortable margin for deviations of component value on a production basis. 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TIM 9904 
and Interface Circuits FOUR-PHASE CLOCK GENERATOR/DRIVER 

L Cs 
.------------~TANK1 

TIM 9904 

FIGURE 9-EFFECT OF BOARD ON TANK CIRCUIT RESONANT FREQUENCY 

4.2.3 Series Resistors 

Resistors with values on the order of 10 to 22-ohms should be installed between the cphp4 outputs 
of the TIM 9904 and the corresponding inputs of TMS 9900. These serve two purposes: 

• Reduce overshoot and ringing 
• Protect the drivers from overvoltage and undervoltage signals. 

Connect the resistors as illustrated in Figure 9. 

TIM 9904 TMS 9900 

</> 1 l------'V'l.J"v------1 </> 1 

10H~A~22!1 

</>2 </>2 

</>3 </>3 

</>4 </>4 

FIGURE 10-SERIES MOS CLOCK RESISTORS 

9900 FAMILY SYSTEMS DESIGN 8-257 



TIM 9904 
FOUR-PHASE CLOCK GENERATOR/DRIVER 

Peripheral 
and Interface Circuits 

4.3 TIM 9904 Terminal Assignments 

SIGNATURE PIN 1/0 DESCRIPTION 

TANK 1 Tank circuit connection 

20 
TANK2 2 Tank circuit connection 

2 
GND 1 3 Ground reference 

3 
FFQ 4 0 Output of D flip-flop 

4 

FFD 5 D Input to Schmitt triggered flip-flop 

'J,4TTL 6 0 TTL Phase 4 inverted 
15 

J,3 TTL 7 0 TTL Phase 3 inverted 
14 ~ <1>1 TTL 

</>3 8 0 MOS Phase 3 13 oJ Voe 

</>4 9 0 MOS Phase4 12 ci] <1>1 

GND2 10 Ground reference GND 2 LJ 10 11 ~ <1>2 

</>2 11 0 MOS Phase 2 

</>1 12 0 MOS Phase 1 

Voo 13 Supply voltage: 12 V nominal 

J,1 TTL 14 0 TTL Phase 1 inverted 

J,2 TTL 15 0 TTL Phase 2 inverted 

OSCO UT 16 0 Oscillator output 

OSCIN 17 TTL external oscillator input 

XTAL1 18 Crystal 

XTAL2 19 Crystal 

Vee 20 Supply voltage. 5 V nominal 

~8 

8-258 9900 FAMILY SYSTEMS DESIGN 



Peripheral TIM 9904 
and Interface Circuits FOUR-PHASE CLOCK GENERATOR/DRIVER 

5. ELECTRICAL SPECIFICATIONS 

5.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range (Unless Otherwise 
Noted) 

Supply voltage: V CC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V 
v00 (see Note 1) .................................................. 13 V 

Input voltage: OSCIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V 
FFD ....................................................... -0.5Vto7V 

Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C 
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65°C to 150°C 

NOTE 1: Voltage values are with respect to the network ground terminals connected together 

5.2 Recommended Operating Conditions 

MIN NOM MAX UNIT 

Supply voltages 
Vee 4.75 5 5.25 v 
Voo 11.4 12 12.6 v 
¢1, ¢2, ¢3,¢4 -100 µA 

High-level output current, I OH 
All others -400 µA 

¢1,¢2,¢3,¢4 4 mA 
Low-level output current, IQL 

All others 8 mA 

Internal oscillator frequency, fosc 48 54 MHz 

External oscillator pulse width, tw(osc) 25 ns 

Setup time, F FD input (with respect to falling edge of ¢3), tsu 50 ns 

Hold time, FFD input (with respect to falling edge of ¢3). th -30 ns 

Operating free-air temperature, TA 0 70 oe 

9900 FAMILY SYSTEMS DESIGN 8-259 



TIM 9904 Peripheral 

FOUR-PHASE CLOCK GENERATOR/DRIVER and Interface Circuits 

5.3 Electrical Characteristics Over Recommended Operating Free-Air Temperature Range 
(Unless Otherwise Noted) 

PARAMETER TEST CONDITIONS MIN TYPt MAX 

V1H High-level input voltage 2 

Low-level FFO 0.5 
V1L 

input voltage OSCIN 0.8 

VH - VT- HysterP.s1s FFO 0.4 0.8 

V1K Input clamp voltage Vee= 4.75 v, v 00 = 11.4 v, l1=-18rnA -1.5 

VoH 
High-level <Pl' <t>2, •t>3, q,4 Vee= 4.75 v, IQH · --100 µA Voo-·2 v 00-1.5 Voo· 

output voltage Other outputs Yoo= 11.4 v to 12.6 v loH=··400µA 2.7 3.4 

<t>1. ct>2. ¢3, 04 IOL = 4 mA 0.25 0.4 
Low-level 

Vol Vee= 4.75 v. v 00 = 11.4 v IOL"4rnA 0.25 0.4 
output voltage Other outputs 

loL~8mA 0.35 0.5 

Input current at FFO Vi= 7 v 0.1 
11 Vee= 5.25 v, v 00 = 12-.6 v 

maximum input voltage OSCIN Vi= 5.5 v 0.3 

High-level FFO 20 
l1H 

OSCIN 
Vee = 5.25 v. v 00 =12.6v, V1=2.7V 

60 input current 

Low-level FFO -0.4 
11 L 

input current OSCIN 
Vee= 5.25 v. v 00 = 12.6 v. v 1 = o.4 v 

-3.2 

Short-circuit All except 
ios 

output current+ 
Vee= 5.25 v -20 -100 

<t>1. <t>2. <t>3, ¢4 

ice Supply current from Vee 
Vee= 5.25 v. FFO and OSCIN at GNO, 

105 175 
Outputs open 

loo Supply current from Voo 
Vee= 5.25 v. v 00 =12.6v, 

12 20 
FFO and OSCIN at GNO, Outputs open 

1 All typical values are at Vee= 5 V, Voo = 12 V, TA= 2s'e. 

UNIT 

v 
t---

v 

v 

v 

v 

mA 

mA 

µA 

mA 

mA 

mA 

mA 

tNot more than one output should be shorted at a time. and duration of the short circuit should not exceed one second. Outputs <Pl, <1>2, ¢3, 

and <1>4 do not have short-circuit protection. 

OSCIN 

osc 

OSCOUT 

¢1 

¢2 

¢4 _____________ ~ 

8-260 

~, 

FFD 

FFQ- - - - - - - - - - - -.----------------------------,~--------

to--~ 

TIME 

TYPICAL PHASE RELATIONSHIPS OF INPUTS AND OUTPUTS (INTERNAL OSC) 

9900 FAMILY SYSTEMS DESIGN 



Peripheral TIM 9904 
and Interface Circuits 

FOUR-PHASE CLOCK GENERATOR/DRIVER 

5.4 Switching Characteristics, TA= 25°C, Vcc1 = 5 V, Vcc2 = 12 V, fosc= 48 MHz 

PARAMETER TEST CONDITIONS 

lout Output frequency, any <P or¢ TTL 

lout Output frequency, OSCOUT 

le(</>) Cycle time. any¢ output 

lr(<t>) Rise time, any ct> output 

lf(t/l) Fall time, any <t> output 

lw(<t>) Pulse width, any <P output high 

t<:>1L.<P2H Delay time, <Pl low to </>2 hiqh 

l,J>2L, <P3H Delay time. </>2 low to ,,13 high 

t<t>JL <P4H Delay time. Q:.l low to <IA h1qh 

tq,4L, <t>1H Delay t11ne,<1>4 low to•,11 high Output loads: 

t.p1H,<t>2H Delay time, <Pl hiqh to •/l2 high ~11,<P3.<t>4: lOOpF toGND 

t</l2H, <P3H Del;iy time, 1>2 hi4h to •t>J high ¢2: 200 pF to GND 

t<P3H, <P4H Delay time, <P3 hi<Jh to <1>4 h1qh Others: RL=2kH, 

t,1>4H, <;>1H OP lay time, <P4 high to <Pl h1qh CL: 15 r>F 

t<t>H. <PTL Delay time, <Pn high to '·~n r fl low 

t9L, <t>TH Delay time, <l>n low to •t>n fTL. h1qh 

t<t>3L,OH Delay time, <t>3 low to F FQ output high 

1rp3L, OL Delay time, <P3 low to F FO output low 

t,pl, OSOH Delay time, tJi low to OSCO UT high 

'<t>H, OSOL Delay time, FFQ high to OSCOUT low 

EQUIVALENT OF D INPUT EQUIVALENT OF OSCIN INPUT 

EQUIVALENT OF 

TANK INPUTS 

Vee------

GND 1 

9900 FAMILY SYSTEMS DESIGN 

Vee-------

INPUT 

GND 1 

TYPICAL OF 

¢1, ¢2, <P3 AND <t>4 OUTPUTS 

SCHEMATICS OF INPUTS AND OUTPUTS 

MIN TYP MAX 

3 

12 

330 333 340 

-5 20 

10 14 20 

40 55 70 

0 5 15 

0 5 15 

0 5 15 

0 5 15 

73 83 96 

73 83 96 

73 83 96 

73 83 96 

-14 -4 6 
-29 -19 -9 

-18 -8 2 

-19 -9 1 

-30 -20 -10 

-27 -17 -7 

EQUIVALENT OF XTAL 1 AND 

XTAL 2 INPUTS 

GND1 

TYPICAL OF OSCOUT, Q, AND 

ALL di TTL OUTPUTS 

------'---Vee 

GND1 

UNIT 

MHz 

MHz 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

8-261 

8 .... 
I 



TIM 9904 
FOUR-PHASE CLOCK GENERATOR/DRIVER 

Peripheral 
and Interface Circuits 

lcc;1 

'~ ~4 v A"~2~ vl f- '··4H,..,1H ~ 
cl•w,, .)\:.:o..:..7..:.v-i--1 ________ ,;..._ __ ....:o;;;..;. 7~vJ \'-----------------

"" -i... t .. , .~ .,.,, i H- "'""''" ,....-v'tl 
¢ 2 

1
1•1L, .;>2H~ ~\'l'--~I -----'----+: ______ __,/ ~'-· -----------

1 : t;: tq,3H, ',•4H -+l I I 

</> 3 

¢4 

I -1--i 94 v j I 1 

'·:•;L, "''
3
H 11o.7 v . 1-,;....o._1_v-l-l--+-I __________ Io_. 1_v--1 

I 
I 
I 

0.7 v 0.1 v 

l I 
\_j hLJ -l r'"•L,<.•TH: 

l1\H,1'>TL ___.ii l,...--~1-------------,w:I 
<!2 1.3Vu 1.3V 

1 
I I 

0.1 v 

;p 3 Wll I \_jj 
I 
I 

¢4 I 
I 

OSCO UT I 
I 
I 

--+-I t Sl I ...,_._ 

\_j I 
l4JH. ?SOL -J 1-

'•:•L. OSOL-f----1 I 
I I 
I I 

1.3 v 1.3 v 

\_[ 

I -..I th 14'-
: 11 ----

-~:-~_u_r _________ 1_.3_,vf I \~1-3_v __________ __,/ \~-....:--~/ 
t,;,3L.OH 4--+j-----------------.:...1•~•' 1

•:>3l,OL 

~~~~~~P~U~T ____________ __,/ 13V 13V\~----
SWITCHING CHARACTERISTICS, VOLTAGE WAVEFORMS

8-262 9900 FAMILY SYSTEMS DESIGN

TYPES SN54251, SN54LS251, SN54S251,
SN74251, SN74LS251 (TIM9905), SN74S251
DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

• Three-State Versions of '151, 'LS151, 'S151

• Three-State Outputs Interface Directly with
System Bus

• Perform Parallel-to-Serial Conversion

• Permit Multiplexing from N-lines to One Line

• Complementary Outputs Provide True and
Inverted Data

• Fully Compatible with Most TTL and DTL
Circuits

MAX NO. TYPICAL AVG PROP TYPICAL

TYPE OF COMMON DELAY TIME POWER

OUTPUTS (DTOYI DISSIPATION

SN54251 49 17 ns 250mW

SN74251 129 17 ns 250mW

SN54LS251 49 17 ns 35mW

SN74LS251 129 17 ns 35mW

SN54S251 39 8 ns 275mW

SN745251 129 8 ns 275mW

description

These monolithic data selectors/multiplexers contain
full on-chip binary decoding to select one-of-eight
data sources and feature a strobe-controlled three
state output. The strobe must be at a low logic level
to enable these devices. The three-state outputs per
mit a number of outputs to be connected to a com
mon bus. When the strobe input is high, both outputs
are in a high-impedance state in which both the upper
and lower transistors of each totem-pole output are
off, and the output neither drives nor loads the bus
significantly. When the strobe is low, the outputs are
activated and operate as standard TTL totem-pole
outputs.

To minimize the possibility t~at two outputs will
attempt to take a common bus to opposite logic
levels, the output control circuitry is designed so that
the 'average output disable time is shorter than the
average output enable time. The SN54251 and
SN74251 have output clamp diodes to attenuate
reflections on the bus line.

9900 FAMILY SYSTEMS DESIGN

SN54251, SN54L5251, SN54S251 ••• J OR W PACKAGE
SN74251, SN74LS251, SN54S251 ••• J OR N PACKAGE

(TOPVIEWI

~~STROBE GND

DATA INPUTS OUTPUTS

positive logic: see function table

functional block diagram

DATA{·:::: II~~~~;~ I~-!.>....._-<!/--~

,_,,.,__, -1':> -<j~----"'

FUNCTION TABLE

INPUTS OUTPUTS

SELECT STROBE

c B A s
y

x x x H z
L L L L DO

L L H L D1

L H L L D2

L H H L D3

H L L L D4

H L- H L 05

H H L L 06

H H H L 07

H •high logic level, L =·low~oglc level
X =Irrelevant, Z = high Impedance (off)

w

z
i50
01
02
63
54
55
i56
07

DO, 01 .•. 07 • the level of the respective 0 Input

8-263

~8

TYPES SN 54LS251, SN74LS251 (TIM9905)
DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V cc (see Note 1) 7V
7V

5.5V
-55°C to 125°C

0°C to 70°C
-65°C to 150°C

Input voltage
Off-state output voltage
Operating free-air temperature range: SN54LS251

SN74LS251
Storage temperature range

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

Supply voltage, Vee

High-level output current, loH

Low-level output current, loL

Operating free-air temperature, TA

SN54LS251

MIN NOM MAX

4.5 5 5.5

-1

4

-55 125

SN74LS251
UNIT

MIN NOM MAX

4.75 5 5.25 v
-2.6 mA

8 mA

0 70 oc

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

TEST CONDITIONSt
SN54LS251 SN74LS251

PARAMETER
TYP+ TYP:I:

UNIT
MIN MAX MIN MAX

V1H High-level input voltage 2 2 v
V1L Low-level input voltage 0.7· 0.8 v
V1K Input clamp voltage Vee= MIN, 11 = -18 mA -1.5 -1.5 v

VoH High-level output voltage
Vee= MIN, V1H = 2 V,

2.4 3.4 2.4 3.1 v
V1L =MAX, IQH =MAX

Vee= MIN, loL = 4 mA 0.25 0.4 0.25 0.4
VoL Low-level voltage V1H=2V, v

V1L =VIL max IQL =8 mA 0.35 0.5

Off-state (high-impedance-state) Vee= MAX, Vo=2.7V 20 20
loz

V1H = 2 V Vo= 0.4 V -20 -20
µA

output current

11 Input cuHent at maximum input voltage Vee= MAX, V1 = 7 V 0.1 0.1 mA

l1H High-level input current Vee= MAX, V1 = 2.7 v 20 20 µA

l1L Low-level input current Vee= MAX, v, = 0.4 v -0.4 -0.4 mA

los Short-circuit output current~ Vee= MAX -30 -130 -30 -130 mA

Vee= MAX, Condition A 6.1 10 6.1 10
'cc Supply current mA

See Note 3 Condition B 7.1 12 7.1 12

tFor conditions shown as l\/llN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
+All typical values are at Vee = 5 V, TA= 25°C.
~Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 3: Ice is measured with the outputs open and all data and select inputs at 4.5 V under the following conditions:
A. Strobe grounded.
B. Strobe at 4.5 V.

8-264 9900 FAMILY SYSTEMS DESIGN

TYPES SN54LS251, SN74LS251 (TIM9905)
DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

switching characteristics, Vee= 5 V, TA= 25°e

PARAMETER~
FROM

(INPUT)

tPLH A, B, or C

tPHL (4 levels)

IPLH A, B, or C

IPHL (3 levels)

tPLH Any D
tPHL

tPLH Any D
tPHL

tzH
Strobe

tzL

tzH
Strobe

tzL

tHz
Strobe

tLz

tHz
Strobe

tLz

~ tp LH =Propagation delay time, low-to-high-level output

tpH L =Propagation delay time, high-to-low-level output

tzH =Output enable time to high level

tzL =Output enable time to low level
tHz =Output disable time from high level

tLz =Output disable time from low level

NOTE 4: See load circuits and waveforms on page 3-11.

schematics of inputs and outputs

EQUIVALENT OF EACH INPUT

Vee~~--, -~

~ Req

A, B, e, S: Req = 20 kU NOM

DO thru 07: Req = 17 kn NOM

9900 FAMILY SYSTEMS DESIGN

TO

(OUTPUT)

y

w

y

w

y

w

y

w

TEST CONDITIONS MIN TYP

29

28

20

21

CL=15pF, 17

RL=2kn,
18

See Note 4 10

9

30

26

17

24

30
CL=5pF,

15
RL=2kn,

37
See Note 4

15

TYPICAL OF BOTH OUTPUTS

----Vee
100 n NOM

OUTPUT

MAX UNIT

45
ns

45

33
ns

33

28
ns

28

15
ns

15

45
ns

40

27
ns

40

45 ns
25

55
ns

25

8-265

TYPES SN54259, SN54LS259, SN74259, SN74LS259 (TIM9906)
8-BIT ADDRESSABLE LATCHES .

• 8-Bit Parallel-Out Storage Register
Performs Serial-to-Parallel Conversion With
Storage

• Asynchronous Parallel Clear
• Active High Decoder
• Enable/Disable Input Simplifies Expansion
• Direct Replacement for Fairchild 9334
• Expandable for N-Bit Applications
• Four Distinct Functional Modes
• Typical Propagation Delay Times:

'259 'LS259
Enable-to-Output. . . 12 17
Data-to-Output 12 18
Address-to-Output . . 16 20
Clear-to-Output 16 20

• Fan-Out
IOL (Sink Current)

'259 16 mA
SN54LS259 4 mA
SN74LS259 8 mA

IOH (Source Current)
'259 -0.8 mA
'LS259 -0.4 mA

• Typical Ice
'259 60 mA
'LS259 22 mA

description

8-266

These 8-bit addressable latches are designed for
general purpose storage applications in digital sys
tems. Specific uses include working registers, serial
holding registers, and active-high decoders or demul
tiplexers. They are multifunctional devices capable of
storing single-line data in eight addressable latches,
and being a 1-of-8 decoder or demultiplexer with
active-high outputs.

Four 'distinct modes of operation are selectable by
controlling the clear and enable inputs as enumerated
in the function table. In the addressable-latch mode,
data at the data-in terminal is written into the
addressed latch. The addressed latch will follow the
data input with all unaddressed latches remaining in
their previous states. In the memory mode, all latches
remain in their previous states and are unaffected by
the data or address inputs. To eliminate the possibil
ity of entering erroneous data in the latches, the
enable should be held high (inactive) while the
address lines are changing. In the 1-of-8 decoding or
demultiplexing mode, the addressed output will
follow the level of the D input with all other outputs
low. In the clear mode, all outputs are low and
unaffected by the address and data inputs.

SN54259, SN54LS259 ••• J OR W PACKAGE
SN74259, SN74LS259 ••• J OR N PACKAGE

(TOP VIEW)

EN· DATA
CLEAR ABLE IN

OUTPUTS -----07 06 Cl5 04

A B C 00 01 02 03 GND -------~
LATCH SEL OUTPUTS

logic: see function table

FUNCTION TABLE

OUTPUT OF EACH
INPUTS

ADDRESSED OTHER FUNCTION
CLEAR G

LATCH OUTPUT

H L D QiO Addressable Latch

H H OjQ QiO Memory

L L D L 8-Line Demultiplexer

L H L L Clear

LATCH SELECTION TABLE

SELECT INPUTS LATCH

c B A ADDRESSED

L L L 0

L L H 1

L H L 2

L H H 3

H L L 4

H L H 5

H H L 6

H H H 7

H =high level, L '==low level

D =the level at the data input

Oio =the level of Qi (i = 0, 1, ... 7, as appropriate) before the indi
cated steady-state input conditions were established.

9900 FAMILY SYSTEMS DESIGN

TYPES SN54259, SN54LS259, SN74259, SN74LS259 (TIM9906)
8-BIT ADDRESSABLE LATCHES

schematic of inputs and outputs
'259

EQUIVALENT OF EACH INPUT

Latch select, data in, or clear: Req = 4 kn NOM
Enable: Req = 2.2 kn NOM

'LS259

EQUIVALENT OF EACH INPUT

Req = 17 kn NOM

'2q9

TYPICAL OF ALL OUTPUTS

--------Vee
100 n NOM

'LS259

TYPICAL OF ALL OUTPUTS

--------Vee
120 n NOM

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage (see Note 1)
Input voltage: SN54259, SN74259 . .

SN54LS259, SN74LS259
Operating free-air temperature range: SN54259, SN54LS259

SN74259,SN74LS259
Storage temperature range

NOTE 1: Voltage values are with respect to network ground terminal.

9900 FAMILY SYSTEMS DESIGN

. 7V
5.5 v
. 7 v

-55°C to 125°C
. 0°C to 70°C
-65°C to 150°C

8-267

..,.g

TYPES SN54LS259, SN74LS259 (TIM9906)
8-BIT ADDRESSABLE LATCHES

recommended operating conditions

Supply voltage, Vee

High-level output current, IOH

Low-level output current, ~

Width of clear or enable pulse, tw

Setup time, t1u
Data

Address

Hold time, th
Data

Address

Operating free-air temperature, TA

tThe arrow Indicates that the rising edge of the enable pulse Is used for reference.

SN54LS259

MIN NOM MAX

4.5 5 5.5

-400

4

15

1sT

15t

ot

ot

-55 125

SN74LS259

MIN NOM MAX
UNIT

4.75 5 5.25 v
-400 µA

8 mA
15 ns

1st

15t
ns

ot

ot
ns

0 70 oc

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

TEST CONDITIONSt
SN54LS259 SN74LS259

PARAMETER
MIN TYPt MAX MIN

V1H High level input voltage 2 2

V1L Low level input voltage 0.7

V1K Input clamp voltage Vee= MIN, 11 = -18 mA -1.5

VoH High-level output voltage
Vee= MIN,

V1L=V1L max,

V1H = 2 V

IOH = -0.4 mA
2.5 3.4 2.7

Vee= MIN, V1H = 2 V, lloL=4mA 0.25 0.4
VoL Low-level output voltage

V1L = V1L 1max, jloL=8mA

11
Input current at maximum

input voltage
Vee= MAX, Vi =7 v 0.1

l1H High-level input current Vee= MAX, V1=2.7 v 20

l1L Low-level input current Vee= MAX, V1=0.4 v -0.4

las Short-circuit output current§ Vee= MAX -20 -100 -20

Ice Supply current Vee= MAX, See Note 2 22 36

tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
tA11 typical values are at Vee= 5 V, TA= 25°C.
§Not more than one output should be shorted at a time, and duration short-circuit should not exceed one second.
NOTE 2: Ice ,;measured with the Inputs grounded and the outputs open.

switching characteristics, Vee= 5 V, TA= 25°e

FROM TO
PARAMETER TEST CONDITIONS MIN TYP

(INPUT) (OUTPUT)

tPHL Clear Any Q

tPLH Data Anya
tPHL

tPLH Address Any a
tPHL

tPLH Enable Any Q
tPHL

tpLH =propagation delay time, low-to-high-level output
tPHL =propagation delay time, high-to-low-level output
NOTE 3: Load circuit is show.non page 3-11. •

17

20
CL= 15 pF, 13
RL = 2 kn, 24
See Note 3 18

22

15

TYPt MAX

0.8

-1.5

3.4

0.25 0.4

0.35 0.5

0.1

20

-0.4

-100

22 36

MAX

27

32

21

38

29

35

24

UNIT

v
v
v

v

v

mA

µA

mA

mA

mA

UNIT

ns

ns

ns

ns

8-268 9900 FAMILY SYSTEMS DESIGN

TYPES SN54147, SN54148, SN54LS147, SN54LS148,
SN74147, SN74148 (TIM9907) SN74LS147, SN74LS148
10-LINE-T0-4-LINE AND 8-LINE-T0-3-LINE PRIORITY ENCODERS

'147, 'LS147

o Encodes 10-Line Decimal to 4-line BCD

o Applications Include:

Keyboard Encoding
Range Selection

'148, 'LS148

o Encodes 8 Data Lines to 3-Line Binary (Octal)

o Applications Include:

N-Bit Encoding
Code Converters and Generators

TYPICAL TYPICAL

TYPE DATA POWER

DELAY DISSIPATION

'147 10 ns 225mW

'148 10 ns 190mW

'LS147 15 ns 60mW

'LS148 15 ns 60mW

description

These TTL encoders feature priority decoding of the
inputs to ensure that only the highest-order data line
is encoded. The '147 and 'LS147 encode nine data
lines to four-line (8-4-2-1) BCD. The implied decimal
zero condition requires no input condition as zero is
encoded when all nine data lines are at a high logic
level. The '148 and 'LS148 encode eight data lines to
three-line (4-2-1) binary (octal). Cascading circuitry
(enable input El and enable output EO) has been
provided to allow octal expansion without the need
for external circuitry. For all types, data inputs and
outputs are active at the low logic level. All inputs are
buffered to represent one normalized Series 54/74 or
54LS/74LS load, respectively.

1 2 3 4

H H H H

x x x x
x x x x
x x x x
x x x x
x x x x
x x x L

x x L H

x L H H

L H H H

'147, 'LS147

FUNCTION TABLE

INPUTS

5 6 7 8 9

H H H H H

x x x x L

x x x L H

x x L H H

x L H H H

L H H H H

H H H H H

H H H H H

H H H H H

H H H H H

OUTPUTS

D c B

H H H

L H H

L H H

H L L

H L L

H L H

H L H

H H L

H H L

H H H

H =high logic level, L =low logic level, X =irrelevant

9900 FAMILY SYSTEMS DESIGN

A

H

L

H

L

H

L

H

L

H

L

El

H

L

L

L

L

L

L

L

L

L

SN54147, SN54LS147 •.. J OR W PACKAGE
SN74147, SN74LS147 .•. J OR N PACKAGE

(TOP VIEW)

positive logic: see function table

NC- No internal connecti<'n

0

x
H

x
x
x
x
x
x
x
L

SN54148, SN54LS148 ..• J OR W PACKAGE
SN74148, SN74LS148 ... JORN PACKAGE

(TOP VIEW)

OUTPUTS INPUTS
rro"-c;s. ~ ou~~uT

1 2

x x
H H

x x
x x
x x
x x
x x
x L

L H

H H

positive logic: see function table

'148, 'LS148

FUNCTION TABLE

INPUTS

3 4 5 6 7

x x x x x
H H H H H

x x x x L

x x x L H

x x L H H

x L H H H

L H H H H

H H H H H

H H H H H

H H H H H

OUTPUTS

A2 Al AO GS

H H H H

H H H H

L L L L

L L H L

L H L L

L H H L

H L L L

H L H L

H H L L

H H H L

EO

H

L

H

H

H

H

H

H

H

H

8-269

TYPES SN54147, SN54148, SN54LS147, SN54LS148,
SN74147, SN74148 (TIM9907), SN74LS147, SN74LS148
10-LINE-T0-4-LINE AND 8-LINE-T0-3-LINE PRIORITY ENCODERS

functional block diagrams

8-270 9900 FAMILY SYSTEMS DESIGN

TYPES SN54147, SN54148, SN54LS147, SN54LS148
SN74147, SN74148, (TIM9907) SN74LS147, SN74LS148
10-LINE-T0-4-LINE AND 8-LINE-T0-3-LINE PRIORITY ENCODERS

schematics of inputs and outputs

EQUIVALENT OF EACH INPUT

Vee -----ci.----

INPUT

0 input ('148): Req = 2 kn NOM
All other inputs: Req = 4 kn NOM

'147, '148

'LS147, 'LS148

EQUIVALENT OF ALL INPUTS

Vee~--------

'LS148 inputs 1 thru 7: Req = 9 kn NOM

All other inputs: Req = 18 kn NOM

TYPICAL OF ALL OUTPUTS

-----41:1----vec

OUTPUT

TYPICAL OF ALL OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, Vee (see Note 1) . 7 v
5.5 v
. 7 v
5.5 v

Input voltage: '147, '148
'LS147, 'LS148

lnteremitter voltage: '148 only (see Note 2)
Operating free-air temperature range: SN54'. SN54LS Circuits

SN74'. SN74LS Circuits
Storage temperature range

NOTES: 1. Voltage values, except intermitter voltage, are with respect to network ground terminal.

-55°C to 125°C
0°C to 70°C

-65°C to 150°C

2. This is the voltage between two emitters of a multiple-emitter transistor. For '148 circuits, this rating applies between any two of
the eight data lines, 0 through 7.

recommended operating conditions

SN54' SN74' SN54LS' SN74LS'

MIN
UNIT

NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX

Supply voltage, Vee 4.5 5 5.5 4.75 5 5.25 4.5 5 5.5 4.75 5 5.25 v
High-level output current, IOH -800 -800 -400 -400 µA

Low-level output current, IOL 16 16 4 8 mA

Operating free-air temperature, TA -55 125 0 70 -55 125 0 70 "e

9900 FAMILY SYSTEMS DESIGN 8-271

TYPES SN54147, SN54148, SN54LS147, SN54LS148
SN74147, SN74148, (TIM9907) SN74LS147, SN74LS148
10-LINE-T0-4-LINE AND 8-LINE-T0-3-LINE PRIORITY ENCODERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

'147 '148
PARAMETER TEST CONDITIONSt UNIT

MIN TYPt MAX MIN TYPt MAX

V1H High-level input voltage 2 2 v
Vil low-level input voltage 0.8 0.8 v
VIK Input clamp voltage Vee= MIN, 11 = -12 mA -1.5 -1.5 v

VoH High-level output voltage
Vee= MIN, V1H = 2 V,

Vil= 0.8 V, IQH = -800 µA
2.4 3.3 2.4 3.3 v

Vol low-level output voltage
Vee= MIN, V1H = 2 V,

0.2 0.4 0.2 0.4 v
V1L = 0.8 V, lol=16mA

11 Input current at maximum input voltage Vee= MAX, V1 = 5.5 V 1 1 mA

0 input 40
l1H High-level input current

Any input except 0
Vee= MAX, V1 = 2.4 v

40 80
µA

0 input -1.6
l1L low-level input current Vee= MAX, V1 = 0.4 v mA

Any input except 0 -1.6 -3.2

ios Short-circuit output current~ Vee= MAX -35 -85 -35 -85 mA

Vee= MAX, 1Condition 1 50 70 40 60 mA
Ice Supply current

See Note 3 lCondition 2 35 55 mA 42 62

NOTE 3: For '147, Ice (condition 1) is measured with input 7 grounded, other inputs and outputs open; Ice (condition 2) is measured with
all inputs and outputs open. For' 148, Ice (condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open;

Ice (condition 2) is measured with all inputs and outputs open.
t For conditions shown as MIN or MAX, use the a~propriate value specified under recommended operating conditions.

:!:All typical values are at Vee= 5 V, TA= 25 C.
~Not more than one output should be shorted at a time.

SN54147, SN74147 switching characteristics, Vee= 5 V, TA= 2s0 e

PARAMETER 4'
FROM TO

llNPUTI (OUTPUT I
WAVEFORM TEST CONDITIONS MIN

tPLH In-phase
Any Any CL= 15pF,

tPHL output

tPLH Out-of-phase
AL= 400 H,

Any Any
output

See Note 4
tPHL

SN54148, SN74148 switching characteristics, Vee= 5 V, TA= 25°e

PARAMETER 4 FROM TO

llNPUTI (OUTPUTI
WAVEFORM TEST CONDITIONS MIN

tPLH
0 thru 7 AO, Al, or A2

In-phase

tPHl output

tPLH
0 thru 7 AO, Al, or A2

Out-of-phase

tPHL output

tPLH
0 thru 7

Out·Of·phase
EO

tPHL output
CL= 15pF,

'PLH In-phase
Othru 7 GS AL= 400 H,

tPHL output
See Note 4

tPLH
El AO, Al, or A2

In-phase

tPHL output

tPLH
El GS

In-phase

tPHL output

'PLH
El EO

In-phase

tPHL output

~ tPLH....: propagation delay time, low· to high-level output
tPHL ·propagation delay time, high·tO low level output

NOTE 4: Load circuits and waveforms are shown on page 3-10,

TYP MAX UNIT

9 14
ns

7 11

13 19
ns

12 19

TYP MAX UNIT

10 15
ns

9 14

13 19
ns

12 19

6 10
ns

14 25

18 30
ns

14 25

10 15
ns

10 15

8 12
ns

10 15

10 15
ns

17 30

8-272 9900 FAMILY SYSTEMS DESIGN

TYPES SN54147, SN54148, SN54LS147, SN54LS148
SN74147, SN74148, (TIM9907) SN74LS147, SN74LS148
10-LINE-T0-4-LINE AND 8-LINE-T0-3-LINE PRIORITY ENCODERS

TYPICAL APPLICATION DATA

16-LINE DATA

,,-~~~~~~~~~~~~~~--A.~~~~~--------~--------/

0 2 3 4 5 6

SN54148/SN74148,
SN54LS148/SN74LS148

r- ---
1
I
I L _____ _

7 El 0 2 3 4 5 6 7 El

SN54148/SN74148,
SN54LS148/SN74LS148

SN5400/SN7400
SN54LSOO/SN74LSOO

-,
I
I
I

_J

PRIORITY
FLAG

ENABLE

Full 4-bit binary 16-line-to-4-line encoding can be implemented as shown above. The enable input must be low to
enable the function. Decoding with 2-input NAND gates produces true (active-high) data for the 4-line binary outputs.
If active-low data is required, the SN5408/SN7408 or SN54LS08/SN74LS08 AND gate may be used, respectively.

9900 FAMILY SYSTEMS DESIGN 8-273

TYPES SN54LS348, SN74LS348 (TIM9908)
8-LINE-T0-3-LINE PRIORITY ENCODERS WITH 3-STATE OUTPUTS

o 3-State Outputs Drive Bus Lines Directly

• Encodes 8 Data Lines to 3-Line Binary (Octal)

• Applications Include:
N-Bit Encoding
Code Converters and Generators

• Typical Data Delay ... 15 ns

• Typical Power Dissipation ... 60 mW

description

SN54LS348 •.. J OR W PACKAGE
SN74LS348 •.. J OR N PACKAGE

(TOP VIEW)

positive logic: see function table

These TTL encoders feature priority decoding of the

inputs to ensure that only the highest-order data line
is encoded. The 'LS348 circuits encode eight data
lines to three-line (4-2-1) binary (octal). Cascading

circuitry (enable input El and enable output EO) has

been provided to allow octal expansion. Outputs AO,
A 1, and A2 are implemented in three-state logic for

easy expansion up to 64 lines without the need for
external circuitry. See Typical Application Data.

functional block diagram

FUNCTION TABLE

INPUTS OUTPUTS

El 0 1 2 3 4 5 6 7 A2 A1 AO

H x x x x x x x x z z z
L H H H H H H H H z z z
L x x x x x x x L L L L

L x x x x x x L H L L H

L x x x x x L H H L H L

L x x x x L H H H L H H

L x x x L H H H H H L L

L x x L H H H H H H L H

L x L H H H H H H H H L

L L H H H H H H H H H H

H =high logic level, L =low logic level, X =irrelevant

Z = high-impedance state

schematic of inputs and outputs

8-274

EQUIVALENT OF EACH INPUT

Vee-----

Inputs 1 thru 7: Req = 9 kn NOM
All others: Req = 18 kn NOM

GS EO

H H

H L

L H

L H

L H

L H

L H

L H

L H

L H

TYPICAL OF OUTPUTS
AO, A1, A2

Vee

OUTPUT

TYPICAL OF OUTPUTS
EO, ES

9900 FAMILY SYSTEMS DESIGN

TYPES SN54LS348, SN74LS348 (TIM9908)
8-LINE-T0-3-LINE PRIORITY ENCODERS WITH 3-STATE OUTPUTS

absolute maximum ratings ·over operating free-air temperature range (unless otherwise noted)

Supply voltage, Vee (see Note 1)
Input voltage
Operating free-air temperature range: SN54LS348

SN74LS348
Storage temperature range

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

Supply voltage, Vee

High-level output current, IQH

Low-level output current, IQL

Operating free-air temperature, TA

AO, Al, A2

EO,GS

AO, Al, A2

EO,GS

SN54LS348

MIN NOM MAX

4.5 5 5.5

-1

-400

12

4

-55 125

..... 7V

..... 7 v
-55°C to 125°C

0°C to 70°C
-65°C to 150°C

SN74LS348
UNIT

MIN NOM MAX

4.75 5 5.25 v
-2.6 mA

-400 µA

24 mA

8 mA

0 70 oe

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

TEST CONDITIONSt
SN54LS348 SN74LS348

PARAMETER
TY Pt TY Pt

UNIT
MIN MAX MIN MAX

V1H High-level input voltage 2 2 v
V1L Low-level input voltage 0.7 0.8 v
V1K Input clamp voltage Vee= MIN, 11 = -18 mA -1.5 -1.5 v

High-level AO, Al, A?.
Vee= MIN, loH = -1 mA 2.4 3.1

VoH
output voltage '

V1H=2V, loH = ,2.6 mA 2.4 3.1 v
EO,GS V1L = V1Lmax loH = -400µA 2.5 3.4 2.7 3.4

AO, Al, A2
loL=12mA 0.25 0.4 0.25 0.4

Low-level
Vee= MIN,

loL = 24 mA 0.35 0.5
Vol

Output voltage
V1H=2V, v

loL = 4 mA 0.25 0.4 0.25 0.4
EO,GS V1L = V1Lmax

loL = 8 mA 0.35 0.5

loz
Off-State (high-impedance

AO, Al, A2
Vee= MAX, Vo=2.7V 20 20

state) output current V1H = 2 V Vo= 0.4 V -20 -20
µA

11
Input current at maximum Inputs 1 thru 7 0.2 0.2

input voltage All other inputs
Vee= MAX, V1=7 V mA

0.1 0.1

l1H High-level input current
Inputs 1 thru 7 40 40

All other inputs
Vee= MAX, V1=2.7V

20 20
µA

l1L Low-level input current
Inputs 1 thru 7 -0.B -0.8

All other inputs
Vee= MAX, V1=0.4 V mA

-0.4 -0.4

las ~hort·drcuit output current§
Outputs AO, A 1, A2 -30 -130 -30 -130

Outputs EO, GS
Vee= MAX mA

-20 -100 -20 -100

ice Supply current
Vee= MAX, Condition 1 13 25 13 25

See Note 2 Condition 2 12
mA

23 12 23

NOTE 2: Ice (condition 1) is measured with inputs 7 and El grounded, other inputs and outputs open. Ice (condition 2) is measured with all
inputs and outputs open.

tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
tAll typical values are at Vee= 5 V, TA= 25°C.
§Not more than one outc;ut should be shorted at a time.

9900 FAMILY SYSTEMS DESIGN 8-275

8~

~s

TYPES SN54LS48, SN74LS348 (TIM9908)
8-LINE-T0-3-LINE PRIORITY ENCODERS WITH 3-STATE OUTPUTS

switching characteristics, Vee= 5 V, TA= 25°C

FROM TO
PARAMETER11 WAVEFORM TEST CONDITIONS MIN TYP MAX

(INPUT) (OUTPUT)

tPLH
0 thru 7 AO, A1, or A2

tPHL

tPLH
0 thru 7 AO, A1, or A2

tPHL

tPZH
El AO, A1, or A2

tPZL

tPLH
0 thru 7 EO

tPHL

tPLH
0 thru 7 GS

tPHL

tPLH
El GS

tPHL

tPLH
El EO

tPHL

tPHZ
El AO, A1, or A2

tPLZ

11 tPLH =propagation delay time, low-to-high-level output

tpH L = propagation delay time, high-to-low-level output

tpzH = output enable time to high level

tpzL =output enable time to low level

tpHz = output disable time from high level

tpLz =output disable time from low level

NOTE 3: Load circuits and waveforms are shown on page 3-11.

In-phase

output

Out-of-phase
CL=45pF,

RL=667f2,
output

See Note 3

Out-of-phase

output

In-phase
CL=15pF

oytput

In-phase
RL=2kf2,

See Note 3
output

In-phase

output

CL= 5 pF

RL=667f2

TYPICAL APPLICATION DATA

UP TO 64 LINES

11 17

20 30

23 35

23 35

25 39

24 41

11 18

26 40

38 55

9 21

11 17

14 36

17 21

25 40

18 27

23 35

,.-. ... ,.A~_
~' '~

EO

AO

LSB

2 3 4 5 6 0123456 01 23456

'LS348 El EO 'LS348 El EO 'LS348 El

A1 A2 GS AO Al A2 GS A2 GS

01234567

EO 'LS348 El

GS

MSB

FIGURE 1-PRIORITY ENCODER WITH UP TO 64 INPUTS.

ENABLE
INPUT

STROBE
OUTPUT

UNIT

ns

ns

ns

ns

ns

ns

ns

ns

8-276 9900 FAMILY SYSTEMS DESIGN

Peripheral TMS 9909 NL, JL
and Interface Circuits

FLOPPY DISK CONTROLLER
+ i. **

990/9900 FAMILY MICROCOMPUTER COMPONENTS

o Supports up to 4 Double-Sided Drives
& Single Density (FM) or
0 Double-Density (MFM or M2FM)
e IBM 3740- and 2D-compatible

and custom formats
0 Programmable Stepper-Moto~ and

Data Transfer Rates

DESCRIPTION

0 Write Precompensation
• 5-Inch or 8-Inch Diskettes
0 Soft- and Hard-Sector Compatible
0 Internal Phase Acquisition and
0 Address Mark Detection

The TMS 9909 Floppy Disk Controller (FDC) is designed to provide complete subsystem integration of a floppy
diskette mass storage capability. The FDC is a general purpose peripheral device for microprocessor systems and is
programmable by the CPU for data encoding formats, number and type of diskette drives, etc. This FDC
programmability offers control for the interface between most host systems and virtually any floppy disk drive
produced.

The FDC performs the following functions:

8 Step to any track on the diskette
•Format tracks (initialize)
0 Read and write diskette data
• Send status to host system.

The TMS 9909 Floppy Disk Controller is designed to provide high-level processing features for data transfer using
single- and double-density formats. Integration of the FDC system is state-of-the-art, producing maximum
performance with minimized hardware complexity, low component count and reduced system cost.

CE
WE

OBIN MEMORY
TIMING

SO-S2

RESET
INT

B
u
F
F
E
R

ACCRQ
OMA

ACCGR CONTROL

XTAL1
CLOCK

XTAL2 GEN.

9900 FAMILY SYSTEMS DESIGN

PARAMETER
STATUS

RAM

MICRO
INSTRUCTION

ROM

MICROCONTROLLER

8

DISK
CONTROL

DISK
STATUS

SEPARATOR l/F

READ
CHANNEL

CRC

WRITE
CHANNEL

Figure 1. Functional Block Diagram

SEL

DSELO

DSEL1

SIDE

STEP

15iR
LOW CUR

HD LOAD

INDEX

SECTOR

TRACKOo
DRVRDY

WRITE PROT

HBCC

ODEN

RDATA

RCLK

8-277

8...a

I

TMS 9909 NL, JL Peripheral

FLOPPY DISK CONTROLLER
and Interface Circuits

TMS
9900

µP

8-278

CRUIN

CRUOUT

CRUCLK __,,,

4 r
T

TMS
9901
PSI

RESET f INTERRUPT CODE __ _.__ ___ >-,.....

)

OBIN

/ 16
'\..-

DB0-15

TMS
9911

DMAC

ACCRQ

,_-t--------------lWE
---~"'"'CE

TMS
9909
FDC

,_-----------+----.l OBIN

A

SELECTS

DATA BUS ,-------r-:-:-8--,/.~L..----.J
I T DB0-7 "'V /'). ~'------------

......-- -r---1'\ CE
DISKETTE DRIVE 1/0

L_/ ADDR ~
j-v DECODE

~------'

SEMICONDUCTOR
MEMORY

SO-S2

Figure 2-TMS 9900 Microcomputer
System incorporating the TMS 9909

Floppy Disk Controller

9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

TMS 9909 NL, JL

OMA {~ HANDSHAKE ACCRQ

MEMORY { ::IN
CONTROL -_-----1~

WE
-----I~ I

DATA BUS

DESTINATION
SELECT

INTERRUPT
INT

INITIALIZE
RESET

CRYSTAL
~ XTAL1

XTAL 2

+5V
POWER

GND
GROUND

FLOPPY DISK CONTROLLER

PIN
DESCRIPTION

TMS 9909
FLOPPY DISK
CONTROLLER

SEL

DSELO

DSEL1 DRIVE
ACTIVATION

~ TRACK f---------J POSITION

~} DRIVE STATUS

DRVRDY

WRITE
CHANNEL

TMS 9909 PIN FUNCTIONS

Signature

DBIN

WE

Data Bus
DB0-7

SO-S2

INT

RESET

XTALl

XTAL2

+5V
GND

I I 0 Description

0 To activate the DMA channel, the FDC asserts ACCESS REQUEST.

The DMA channel responds with ACCESS GRANT when transfer is to begin.

CHIP ENABLE serves to enable command and parameter input and status output to the host
system.

Data Bus In specifies the direction of data flow between the host system and FDC.

WRITE ENABLE pulses provide a window for data input to the FDC.

1/0 The data bus is used to transfer information between the host system's data bus and the FDC's
command, parameter and status registers.

I To access data the host system must select a desination register using SO-S2.

0 Upon completion of an operation or detection of an error, the FDC issues an interrupt to the
host.

I

0

When the system powers up, a pulse on the reset line puts the FDC in its initialized state.

A 6-MHz crystal is connected between XTALl and XTAL2 to generate timing for the TMS
9909.

Alternately, a 6-MHz reference can be connected to XTAL2 with the XTALl pin unconnected.

FDC power supply.

System ground connection.

9900 FAMILY SYSTEMS DESIGN 8-279

~s

TMS 9909 NL, JL Peripheral
and Interface Circuits

FLOPPY DISK CONTROLLER

Signature 110

LWC/DDEN 0

STEP 0
DIRECTION 0

SEL 0

DSELO 0
DSELl 0

SIDE 0

INDEX

SECTOR

TRKOO

WP ROT

DRVRDY

RDATA I
RCLK I

HBCC 0

WTDATA 0

WTGAT 0

Description

LOW WRITE CURRENT is active when the track written is greater than 43, (programmable)
for drives which reduce current on the inner tracks.

DOUBLE DENSITY is output to the data separator during read operations.

STEP pulses are issued by the FDC to move the selected drive's read/write head in the specified
DIRECTION, which is a level to define STEP-IN or STEP-OUT.

SELECT is activated when DSELO and 1 contain an active drive address.

DRIVE SELECT 0 and 1 are encoded lines for up to four system drives to activate their control
and 1/0 lines.

SIDE select determines the side of a dual-sided diskette used.

Drive Status Lines Go Active On th~ Following Conditions:

The INDEX hole in the diskette is aligned with the diskette's index hole sensor.

For hard-sectored diskettes, the SECTOR hole in the diskette is aligned with the diskette drive's
sector hole sensor.

Selected drive's head is at its maximum radius (TRACK ZERO).

WRITE PROTECT, when active (low) indicates a read-only diskette has been selected.

DRIVE READY, indicates drive is powered up, door is closed, and diskette is properly installed.

Data from the disk comes into the FDC via the READ DATA line.
READ CLOCK is a pulse synchronized to diskette clock and data half bit-cells.

The HALF BIT-CELL CLOCK at two times the transfer rate, is used to start the data separator
near data synchronization. Also, HBBC can be used to change write precompensation timing.

The data to be written on the floppy disk is transmitted on the WRITE DATA line.

WRITE GATE is true during data output to the diskette drive.

PROGRAM DESCRIPTION

The TMS 9909 Floppy Disk Controller is designed for ease of use. To execute a given command, the user writes a
command code and parameter list to the FDC's eight-bit data port. When the last parameter has been transferred,
the FDC begins command execution as an independent processor.

Setup for FDC commands proceeds as follows. The TMS 9909 is allocated eight memory addresses by the host
system, all of which decode into a common chip enable. Selection of the base address with no offset (i.e., SO, Sl,
S2 = 000) gives the host write-only access to the COMMAND REGISTER and read-only access to the STATUS
REGISTER. To initiate a command, the host checks the FDC's status for an idle condition, then writes a
COMMAND CODE to the COMMAND REGISTER. Next a list of parameters is written into FDC RAM at
SO-S2 address > 0. After transfer of parameters is complete, command execution begins.

Track accessing is very flexible with the TMS 9909. Programmable stepper-motor control rates are loaded into the
FDC during the RECALIBRATE and ASSIGN RATES command. RECALIBRATE moves the heads of selected
drives to track 00. Read, write and write format commands include a parameter indicating the new physical track to
seek.

During READ and WRITE sequences, the FDC transfers data between the selected diskette drive and system
memory. Memory addressing and timing for data transfer are supervised by a Direct Memory Access Controller
like the TMS 9911. The number of sectors of diskette data transferred is programmable from one up to an entire
track. OMA handshake is activated for each byte of READ or WRITE data, every 16µs at a 500 k bits per second
transfer rate.

8-280 9900 FAMILY SYSTEMS DESIGN

Peripheral TMS 9909 NL, JL
and Interface Circuits

FLOPPY DISK CONTROLLER

Formatting diskettes is another capability of the TMS 9909. After the host CPU writes the command FORMAT
TRACK and its associated parameters, the FDC activates its DMA handshake to acquire the contents and length of
each field of the user's format. Since the host system provides the length and contents of each format field,
specifying an address mark and a fill byte or all sector contents, the user has unlimited flexibility in selecting a
format. Formatting IBM-compatible single- and double-density diskettes is straightforward, as is customizing
formats to provide optimized interleaving for real-time applications.

An eight-bit status register can be read at the address of the command input register at any time by the CPU. The
primary status register provides operating status including:

0 Command execution in progress
0 Diskette drive not ready
0 Selected drive at track 00
Q CRC error
0 Data underflow I overflow
0 ID not found, etc.

After the command in progress has completed its task, the contents of the FDC's internal RAM may be read (in the
same way as parameters were written earlier) to provide detailed status information.

Completion of the command in progress, available to host system software in the status register, is signalled in
hardware by the INTERRUPT pin of the TMS 9909. Any FDC command can be aborted by the host CPU by
hardware activation of the RESET pin, or in software by writing an ABORT command to the command register.

The command macros of the TMS 9909 floppy disk controller are sufficiently powerful to fulfill the needs of most
microcomputer systems on a stand-alone basis. For large micro/minicomputer systems, the modular commands can
be combined for preprocessing by a dedicated microcomputer, such as the TMS 9985, to provide a sophisticated file
management subsystem.

TMS 9909 FLOPPY DISK CONTROLLER COMMANDS

Type

Controller
State
Commands

Format
Initialization
Commands

Drive
Control
Commands

Command

Reset Controller

Abort Execution

Clear Interrupt

Function

Initialize FDC internal state and output pins

Terminate active command. (At sector end for writes)

Deactivate INT pin, acknowledging command completion

Assign ID Attributes Define address marks and contents of ID fields.

Assign Fill and Sync Define fill byte (one is written after end of sector) and sync byte (for phase
acquisition) for current format.

Recalibrate Drives,
Assign Rates

Define stepper rates and restore selected drives to track zero.

Seek, Check and
Read Data

Seek physical track, locate desired ID (unless unformatted, i.e., Read ID) and
transfer sectors (hard or soft) of diskette data to host system.

Seek, Check and
Write Data

Seek and Write
Format

9900 FAMILY SYSTEMS DESIGN

Seek physical track and write sectors of data on a formatted diskette, hard or soft
sector. Low write current and/ or precompensation are selectable.

Seek physical track and write format fields on a whole track or single hard sector.

8-281

TMS9911 JL, NL Peripheral

DIRECT MEMORY ACCESS CONTROLLER and Interface Circuits

• Generation of All Memory Control Signals • Memory Address and Limit Registers for Each Channel
• Supports 2 Independent OMA Devices • Automatic Interrupt Generation
• Cascadeable to Multiple OMA Channels • Operates Under Program Control of the Microprocessor Unit.

DESCRIPTION

The TMS9911 DMAC is an LSI member of the 9900 family of microprocessors and support peripherals. The
DMAC is used in 9900 microprocessor systems where devices other than a single CPU require direct access to
memory. The DMAC g~nerates memory control signals and sequential memory addresses for two OMA channels (i.e.,
two independent OMA devices), allowing these devices to access memory autonomously with respect to the CPU.
Multiple DMAC's may be used to extend the number of OMA channels beyond two. The interfaces of the DMAC to
the CPU, system memory, and OMA peripheral devices are defined in such a manner as to require a minimum amount
of additional electronics.

By using the CRU for set up and status of the TMS9911, a OMA controller has been configured in a 40-pin package
with no data bus at all. The TMS9911 provides an easy-to-use cost effective method for implementing Direct Memory
Access for 9900-family peripherals.

8-282

OMA DEVICE CONTROLS
ACCRO
ACCGR
DMACC

AO-A15

CONTROL PIN
BUFFERS

MEMORY CONTROLS
WE, MEMCY, MEMEN

OBIN, READY

CE CRU I 0

CPU CONTROLS
HOLD, HOLDA

iNf RESET

Figure 1. TMS 9911 Functional Block Diagram

9900 FAMILY SYSTEMS DESIGN

-0
-0
0
0

'T1
>
3::
r
>-<:
CfJ
>-<:
CfJ ...,
t'IJ
3::
CfJ

0
t'IJ
CfJ

cs
ZI

00
N
00
w

~
~
~

~
VJ
'O

J
'O
c:::i
~

~
VJ
\0
\0
.......
.......

~
~
;:i
t:x:i
E:;

~
~ ;:;
c
::!
::! a

II~
ENBIN ~

EN BOUT
~

_r.
~

HOLDA ...
HOLD _r<,

.._ INT
TMS
9901 -- INT

TI I

TMS
9900
CPU

..,.

3
CRU

-

00
A

READY

--
h.
I"

MEMEN

OBIN

h. WE
t-'"

HOLD _r.

"'
HOLDA_.

ENBIN _,... -

l ~ c'>

TMS 9911
DMAC

> ' --0- c:r ;Y

' >
_l I

---., . ,
..

~ --..
~

;

~' _Q_ 6_ 6

TMS 9911
DMAC

ACCROO
-0 OMA

PERI PH

AC CG RO DEVICE
,.. 0 ~"'-'

P--

A D

i... _ ACCRQ1 .r-,..,.... "' OMA P===i>
PERI PH.

i... ACCGR1 DEVICE
1'

t-' ~ 1

"' ""

ADDRESS BUS

_l__l_ J L _l

DATA BUS
t--

t--

t--

t--1

,__...,

0

h ACCR02
'"' TMS 9909
"' FLOPPY DISK

ACCGR2
CONTROLLER

h .f', (DMAPD2) t-' -

)
_J

)
READY

MEMEN SYSTEM MEMORY
MEMCY -

"·"'
OBIN

~ ·~

o K

1

2

SELECTS 3 x

DISK CONTROL BUS

J

DJ "'C
:l CD
Q. ::!.
-"C
:l ::r
- CD CD -.
::::. DJ
I» -
0
CD

Q
n
=· u;

u~
~~
~C/)
tTl "° n'°
~

.........

~~
t'TlJ-~

~z
o~

~
~ n
n
tTl
C/)
C/)

n
0 z
~
~
0
~
~
tTl
~

~s

TMS9911 JL, NL Peripheral
and Interface Circuits

DIRECT MEMORY ACCESS CONTROLLER

(16) ADDRESS

(4)CRU

{

CE

CRUIN

-----------1-
TMS 9911

DMAC

ACCESS (5)
CONTROL

(5) MEMORY
CONTROL

(1) INTERRUPT

(1) RESET

CLOCK

NOTE: PIN NUMBERS ARE
TO BE ASSIGNED

TMS 9911 DMAC Pin Descnption

TMS 9911 PIN FUNCTIONS

Signature

AO(MSB)
Al
AZ
A3
A4
AS
A6
A7
A8
A9

AlO
All
A12
A13
A14

A15(LSB)

CE

8-284

I I 0 Description

OUT
OUT
OUT
OUT

OUT
OUT
OUT
OUT
OUT
1/0
1/0
1/0
1/0
1/0

OUT

IN

ADDRESS BUS
AO through A15 comprise the Address Bus. The address bus outputs the memory address to
or from which data is to be transferred while the DMAC accesses memory. AO-A15 outputs
are at high-impedance while the DMAC is not accessing memory. A10-A14 are inputs to the
DMAC, selecting the address of the bit to or from which the CPU is transferring data via the
CRU. Although A15 is not normally implemented in TMS 9900 systems, this line may be
used to select which half of the 16-bit data word is to be loaded when the DMA device is
transferring a single byte.

CRUINTERFACE

Chip Enable. CE is low when the CPU is transferring data to or from the DMAC via the
CRU. The oth~r CRU lines are ignored when CE is high. CE is normally generated by
decoding a particular range of CRU addresses from the high order address lines AO-A9, and
should not be low when memory accesses are being performed.

9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

TMS9911 JL, NL
DIRECT MEMORY ACCESS CONTROLLER

Signature

CRUIN

CRUOUT

CRUCLK

MEMEN

DBIN

WE

READY

MEMCY

ACCRQO

ACCGRO

ACCRQl

ACCGRl

DMACC

I I 0 Description

OUT CRU Input Data (to the CPU from the DMAC). CRUIN is at high impedance when CE is
high. When CE is low, CRUIN contains the value of the bit addressed by A10-Al4 to be
read by the CPU.

IN

IN

CRU Output Data (from the CPU to the DMAC). CRUOUT contains the value of the
datum to be transferred to the DMAC by the CPU during CRU operations.

CRU Output Data Clock. CRUCLK strobes the datum contained on CRUOUT to the bit
addressed by A 10-A 14 when CE is low.

MEMORY CONTROL

OUT Memory Enable. MEMEN is at high impedance except when the DMAC is accessing
memory. When MEMEN is low, 1 memory cycle is in progress and no other device may
access memory until the cycle is completed.

OUT Memory Data Read Enable. DBIN is at high-impedance except when the DMAC is
accessing memory. During DMAC memory cycles DBIN indicates the direction of memory
data transfer; i.e. DBIN = 1 for memory read and= 0 for memory write operations.

OUT Write Enable. WE is at high impedance except when the DMAC is accessing memory. The
timing for WE is identical to that of the WE output of the 9900 CPU's. WE performs the
function of strobing data from a DMA device into memory during DMA.

IN Memory Transfer Ready. READY is sampled at the end of each clock cycle during each
DMAC memory cycle. If READY= 0, the memory cycle is extended an additional clock
cycle and READY is sampled again until READY= 1, at which time the memory cycle
continues to completion.

1/0 Memory Cycle. MEMCY is at high impedance except when the DMAC is accessing
memory. MEMCY is low during all but the last clock cycle of each DMAC memory cycle.
As an input, MEMCY is used to avoid bus conflicts during DMAC-to-DMAC control
transfer.

DMA DEVICE HANDSHAKE

IN DMA Device - Access Request. ACCRQO is asserted by the DMA device connected to
channel 0 when it wishes to access memory.

OUT DMA Device 0 Access Granted. ACCGRO is active while the DMAC is performing a data
transfer between memory and the DMA device connected to Channel 0.

IN DMA Device 1 Access Request. ACCRQl provides the identical function for DMA Device
1 as does ACCRQO for DMA Device 0.

OUT DMA Device 1 Access Granted. ACCGRl provides the identical function for DMA Device
1 as does ACCGRO for DMA Device 0.

OUT DMA accessing memory is active when the system buses are under DMA control.
DMACC can be used to control the drive direction of bidirectional buffers (when required)
such that A10-A14, MEMCY and HOLD are outputs when DMACC is active.

9900 FAMILY SYSTEMS DESIGN 8-285

TMS9911 JL, NL Peripheral
and Interface Circuits DIRECT MEMORY ACCESS CONTROLLER

Signature

HOLD

HOLDA

EN BIN

ENBOUT

RESET

vcc
GND

8-286

I I 0 Description

INTERRUPT OUTPUT

OUT Interrupt Output. INT is low when either channel has transferred the specified number of
bytes of data and the interrupt for that channel is enabled.

DMACONTROL

1/0 Hold Request. HOLD is an open-drain output which may be tied to other DMACs as an
input to the CPU. HOLD becomes active when one of the Access Request signals is active
and the channel corresponding to the access request is enabled. As an input, HOLD is used
to set the internal HOLD condition by the equation: HOLD J(INT) =ACCRQn*
(HOLD+ HOLDA).

IN Hold Acknowledge. HOLDA is asserted by the CPU to indicate that it is entering the Hold
state to allow a DMAC to access memory. It becomes active in response to the HOLD signal.

IN Enable Input. ENBIN must be low in order for the DMAC to access memory. When
ENBIN = 1, a higher priority device is contending for access, thus inhibiting the DMAC
from granting access.

OUT Enable Output. ENBOUT is active only when ENBIN =O and neither channel is enabled.
and requesting access. EN BOUT is connected to the ENBIN input of the DMAC of next
lower priority.

IN

IN

IN

IN

CLOCK SIGNALS

Clock Input. When the DMAC is used with a TMS 9900 Microprocessor this signal is
provided by the <f>l output of the TIM 9904 Clock Generator. In a 9980 system this signal is
connected to the CK OUT output of the TMS 9980, and HOLD should be sychronized to
avoid changing during cf> 1.

DEVICE RESET

Device Reset. When RESET is active, the DMAC is reset to a known state where both
DMA channel!> are disabled. (MAR= LAR = 0, All status bits inactive,
CHSEL = CnASEL = 0).

5 Volts DC±5%

0 Volt reference. Pin 21 provides ground for the TMS 9911 logic. Pin 3 2 is the ground for
signal buffers.

9900 FAMILY SYSTEMS DESIGN

Peripheral TMS9911 JL, NL
and Interface Circuits DIRECT MEMORY ACCESS CONTROLLER

PROGRAM DESCRIPTION

Each of the 2 channels of the DMAC has two 16-bit registers: a Memory Address Register (MAR), and a Last
Address Register (LAR). The Memory Address Register contains the memory address which the next memory cycle
by that channel will access. After each memory access is completed, the Memory Address Register is automatically
updated to the address for the next memory access. As the Memory Address Register is incremented, it is compared
to the value contained in the Last Address Register. If the comparison is true, a status bit and (if enabled) an
interrupt to the CPU are activated, indicating that the desired block of data has been transferred.

Each access requires that the DMAC gain control of the System Memory Bus. When the DMAC has control of the
bus, no other DMAC or the CPU may perform a memory operation until the DMAC completes its memory cycle.
Each memory access is performed by generating the necessary address and control signals to transfer a byte or word
of data between system memory and the DMA peripheral device connected to the active channel.

The sequence of operations for using the TMS9911 DMAC is as follows: The host CPU sets up the control registers
of the DMAC through the system's serial communication channel, the CRU.

At system power-up, the host must put the DMAC into an initialized state. This can be done with hardware by
activating the DMAC's RESET pin, or through software addressing the CRU output bit SWRST (software reset).

The channel to be used for the current DMA transfer is selected by setting the CHSEL (channel select) CRU bit.
Two independent channels are implemented on each TMS9911 chip with an automatic priority of CHO> CH 1.
When more than two DMA channels are required in a system, multiple TMS9911 circuits can be used.with
priority established using the ENBIN/ENBOUT chain, as shown in the system diagram.

The DMAC can control the transfer of sixteen-bit words or eight-bit bytes. The mode of operation is selected using
the WRDSLn CRU bit. When byte mode is chosen, address bit A15 changes with each transfer. Memory systems
which allow byte transfers must implement A15.

Having established the operational mode of this channel, the host CPU sets up the contents of the Memory Address
Register and Last Address Register. Access to the MAR or LAR is gained by setting the sense of the CnASEL CRU
bit. Thus the user executes a Set Bit One to CnASEL and LDCR for the sixteen bits of the MAR. Execution of
another sixteen-bit LDCR sets up the contents of the LAR and the DMAC channel is configured to run.

If an interrupt should be issued by the DMAC when its operation is complete the IENB CRU bit for this channel
must be set. Interrupts from TMS991 l's are processed by the TMS9901 Programmable Systems Interface as shown
in the system diagram. Alternately, interrupts of DMAC's can be wire-ORed and the CPU can poll DMAC channels
to locate the active OPCOMP CRU bit.

The DMAC channel cannot begin to function until a final CRU bit, CHENBn, is set. Operation of the DMA channel
is then under direct control of the ACCRQ/ ACCGR handshake.

Each ACCRQ by the DMA peripheral device causes the DMAC to gain memory bus control through the HOLD/
HOLDA handshake with the host CPU. ACCRQ may be held active continually by the DMA device, but is normally
released after each transfer or block of transfers.

Termination of DMA channel activity can occur several ways. Though the host CPU can reset the DMAC or clear its
CHENBn CRU bit, normal DMA termination occurs when the contents of the Memory Address Register equals 'that
of the Last Address Register. Transfer does not occur to the LAR address. LAR is computed for the transfer of n
bytes as follows:

LAR =MAR+ n

Hence ifMAR = 4 and 6 bytes are to be transferred, LAR = 10 and the last transfer is to address 9.

Status of the TMS9911 can be read through the CRU. CRU status input bits inform the host of the state of CRU
output bits and provide a method for checking operation completeness by software.

9900 FAMILY SYSTEMS DESIGN 8-287

8·

TMS 9914 GENERAL PURPOSE
INTERFACE BUS ADAPTER

990/9900 FAMILY MICROCOMPUTER COMPONENTS

e IEEE Std. 488-1975 Compatible • Serial and Parallel Polling
• Source and Acceptor Handshake • Device Clear
• Complete Talker and Listener Functions with • Device Trigger

Peripheral
and Interface Circuits

Extended Addressing
G Controller and System Controller Capability

0 Compatible with TMS 9911 DMA Controller
•Single +5 V Power Supply

• Service Request 0 Interfaces directly to SN75160I1 /2 Transceivers
• Remote and Local with Lockout

DESCRIPTION

The TMS 9914 General Purpose Interface Bus Adapter is a microprocessor controlled versatile device which enables
the designer to implement all of the functions or a subset described in the IEEE Std. 48 8-19 7 5. Using this standard, a
variety of instruments can be interconnected and remotely or automatically programmed and controlled. The TMS
9914 is fabricated with N-channel silicon-gate technology and is completely TTL compatible on all inputs and outputs
including the power supply (+ 5 V). It needs a single phase clock (nominally 5 MHz) which may be independent of the
microprocessor system clock and, therefore, it can easily be interfaced with most microprocessors. The general purpose
interface bus adapter (GP IBA) performs the majority of the functions contained in IEEE STd. 488-197 5 and is
versatile enough to allow software implementation of those sections not directly implemented in hardware.

HOLD HOLDA

TMS 9900

8-288

CRUIN
CRUOUT
CRUCLK

INT CODE

TMS 9901
PSI

ADDRESS BUS

DATA BUS

TMS 9911
DMAC

ACCRO ACCGR

~-T--r---r--..--./

TMS 9914
GPIBA

CONTROL

MEMORY INl ER FACE

Figure 1. Typical System Interconnect

BUS
TRANS
CEIVERS

''GENERAL PURPOSE INTERFACE BUS

9900 FAMILY SYSTEMS DESIGN

-0
-0
0
0

'Tl
;...
a:
~
(fl

-<
(fl

-l
t'T:l
a:
(fl

0
t'T:l
(fl

0 z

""' :.;;

l

~ ;::
~
N

~
Vj

\Q

~
-t...
V)

::i·
'S
~
~
b:i
~
~
i:J
~-

~
~

RS0-2

CE

INT

ADD~
STATUS

REGISTER
ADDRESS
DECODE

INTERRUPT
LOGIC

~-----
INTERRUPT
STATUS 0

INTERRUPT

MASKO

INTERRUPT
STATUS 1

INTERRUPT

MASK 1

IEEE 488 BUS MANAGEMENT LINES

I ~ BUS
STATUS

IEEE 488
STATE

DIAGRAM
&

CONTROL
LOGIC

AUXILIARY
COMMAND

DECODE

COMPARE
LOGIC

ADDRESS

MULTILINE
MESSAGE
DECODE

IEEE 488 BUS DATA LINES

SERIAL
POLL

PARALLEL
POLL

DATA
IN

DATA
OUT

'-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~DATA~B~U~S~~~~~~~~~~~~~~~~~~~~~~~~~~~~

00
"'

Q) "ti
::l (I)
a.~
-"C
::l ::::r
-(I)
(I) ...
:::1. Q)
Q) -
n
(I)

Q
0
5.
c;;

......... ~

z~
~ en
trJ '°
~'°
~~
no
trJ trJ
to z c trJ
en ~
~~
t:H·~

~~

~~
trJ ~
~o

(/')

tij

11-8

TMS 9914 GENERAL PURPOSE
INTERFACE BUS ADAPTER

Peripheral
and Interface Circuits

Name

0101
through
DI08

DAV

NRFD

NDAC

ATN

IFC

REN

SRQ

EOI

CONTROLLER

TE

DO through 07

RSO through RS2

OBIN

WE

CE

INT

ACCRQ

Table 1. Pin Description

I I 0 Description

1/0 DATA 1/0 lines: aliow data transfer between the TMS 9914
and the IEEE 488 data bus.

PIN OUTS
1/0 DATA VALID: Handshake Line. Sent by source device to indicate TO BE

to acceptor~ that there is valid data on the IEEE bus data lines. ASSIGNED
1/0 NOT READY FOR DATA: Handshake Line. Sent by the acceptor

to the source device to indicate when it is ready for a new byte of data.

1/0 DATA NOT ACCEPTED: Handshake Line. Sent by acceptor to source device to indicate
when it has accepted the current byte on the data bus.

1/0 ATTENTION: Management Line. Sent by the controller. When ATN is asserted, the
information on the data lines is interpreted as commands, sent by the controller ... When ATN
is false, the data lines carry data.

1/0 INTERFACE CLEAR. Management Line. Sent by system controller to set the interface
system, portions of which are contained in all interconnected devices in a known quiescent state.
System controller assumes control. Open drain output with internal pullup.

1/0 REMOTE ENABLE: Management Line. Sent by system controller and is used in conjunction
with other messages to select between two alternate sources of programming data, e.g. via
interface or front panel. Open drain output with internal pullup.

1/0 SERVICE REQUEST: Management Line. Issued by a device on the bus to the controller to
indicate a need for service.

1/0 END OR IDENTIFY: Management Line. If ATN is false, this signal is sent by the "talker"
to indicate the end of a multiple byte transfer. If sent by the controller with ATN true, this will
perform the parallel polling sequence.

0

0

1/0

I

0

0

Bus transceiver control line. Indicates that the device is the controller.

TALK ENABLE: Bus transceiver control line. Indicates the direction of data transfer on the
data bus.

Data 1/0 lines that allow transfer of data between TMS 9914 and the microprocessor.

Address lines through which the TMS 9914 registers can be accessed by the mi~roprocessor.

When true (high) OBIN indicates to the TMS 9914 that the microprocessor is about to read
from one of its registers. When false, that the microprocessor is about to write to one of its
registers.

WRITE ENABLE: indicates to the TMS 9914 that one of its registers is being written to.

CHIP ENABLE: selects and enables the TMS 9914 for an microprocessor data transfer.

INT: Open drain output. Sent to microprocessor to indicate the occurrence of an event on
the bus requiring service.

ACCESS REQUEST: Signal to TMS 9911 OMA controller requesting OMA.

NOTE: The names of the IEEE bus lines have been maintained, and are therefore negative logic signals.

8-290 9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

TMS 9914 GENERAL PURPOSE
INTERFACE BUS ADAPTER

FUNCTIONAL DESCRIPTION

The TMS 9914 interfaces to the CPU with an eight-bit bidirectional data bus, three register select lines, two DMA
control lines, reset and interrupt request lines, a OBIN and a WE line.

The internal architecture of the TMS 9914 is arranged into 13 registers, there being seven WRITE and six READ
registers. Some are actually address ports through which cufrent status can be obtained. Table 2 lists these registers and
their addresses. The microporcessor accesses a TMS 9914 register by supplying the correct register address in
conjunction with WE and OBIN. The CE is used to enable the address decode.

NAME
INTERRUPT STATUS 0

INTERRUPT MASK 0

INTERRUPT STATUS 1

INTERRUPT MASK 1

ADDRESS STATUS

BUS STATUS

AUXILIARY COMMAND

ADDRESS SWITCH

ADDRESS

SERIAL POLL

COMMAND PASS
THROUGH

PARALLEL POLL

DATA IN

DATA OUT

Tabk 2. TMS 9914 Registers and Addresses

TYPE
R

w
R

w
R

R

w
R

w
w

R

w
R

w

RS2

0

0

0

0

0

0

0

RS1 RSO

0 0

0 0

0

0

1

0

0

0

1

0

1

0

0

0

0

OBIN

1

0

1

0

1

0

0

0

1

0

0

NOTE: The Address Switch register is external to the TMS 9914

WE

0

1

0

1

0

1

0

0

1

0

0

In OMA operation the TMS 9911 supplies the memory address but not the peripheral device address (i.e., RS0-2, CE)
are not supplied). When the TMS 9914 sets ACCRQ low true, it is either because of a byte input or a byte output, and
this will happen whether or not OMA transfer will take place. If in response to ACCRQ an ACCGR (access granted) is
received, the ACCRQ will be reset and a DMA transfer will take place between the system memory and either the
Data In or Data Out register. If the data transfer is with the microprocessor and if the microprocessor addresses either 8-c
the Data In or Data Out register, the ACCRQ line will be reset. Note that in OMA mode the sense of OBIN is
inverted.

Table 3 lists the commands which are directly handled by the TMS 9914, and those which require intervention by the
microprocessor for their implementation.

9900 FAMILY SYSTEMS DESIGN 8-291

TMS 9914 GENERAL PURPOSE Peripheral

INTERFACE BUS ADAPTER and Interface Circuits

Table 3. Remote Multiple Message Coding

00 r--- '° V) '1"" M N
0 0 0 0 0 0 0 0
cs cs cs cs cs cs cs cs Note

Addressed Command Group ACG x 0 0 0 x x x x AC
Device Clear DCL x 0 0 0 1 0 0 UC
Group Execute Trigger GET x 0 0 0 1 0 0 0 AC

Go To Local GTL x 0 0 0 0 0 0 1 AC

Listen Address Group LAG x 0 1 x x x x x AD

Local Lock Out LLO x 0 0 0 0 0 UC
My Listen Address MLA x 0 L L L L L AD

My Talk Address MTA x 0 T T T T T AD 2
My Secondary Address MSA x s s s s s SE 3,4

Other Secondary Address OSA SE 4,5

Other Talk Address OTA TAG•MTA AD

Primary Command Group PCG 6
Parallel Poll Configure PPC x 0 0 0 0 1 0 1 AC 7
Parallel Poll Enable PPE x 0 s p p p SE 8,9
Parallel Poll Disable PPD x 1 D D D D SE 8, 10
Parallel Poll U nconfigure PPU x 0 0 1 0 1 0 1 UC 11
Secondary Command Group SCG x 1 1 x x x x x SE

Selected Device Clear SDC x 0 0 0 0 1 0 0 AC
Serial Poll Disable SPD x 0 0 0 0 UC

Serial Poll Enable SPE x 0 0 0 0 0 UC
Take Control TCT x 0 0 0 1 0 0 1 AC 12
Talk Address Group TAG x 0 x x x x x AD

Universal Command Group UCG x 0 0 x x x x UC
Unlisten UNL x 0 1 AD
Untalk UNT x 0 AD

Symbols: AC -Addressed Command
AD -Address (Talk or Listen)
UC- Universal Command
SE - Secondary (Command or Address)

0 - Logical Zero (high level on IEEE Bus; Low level within 9914).

... g 1 - Logical One (Low level on IEEE Bus; High level within 9914) .
X- Don't Care (received message)
X - Must Not Drive (transmitted message)

8-292 9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

TMS 9914 GENERAL PURPOSE
INTERFACE BUS ADAPTER

IN ff91 ,.(, t.H\f.§ H'i'·,,.l.fi '*' i\ I Ii

Notes to Table 3:

1. LL LL L: Represents the coding for the device listen address.
2. TT T TT: Represents the coding for the device talk address.
3. SSS SS: Represents the coding for the device secondary address.
4. Secondary addresses will be handled via address pass through.
5. OSA will be handled as an invalid secondary address pass through by the MPU.
6. PCG = ACG v UCG v LAG v TAG
7. PPC will be handled in software by the MPU via Unrecognized Address Command Group pass through.
8. PPE, PPD will be handled via pass through next secondary feature.
9. SP PP represents the sense and bit for remote configurable parallel poll.

10. D DD D specify don't care bits that must be sent all zeroes, but need not be decoded by receiving device.
11. PPU is handled via Unrecognized Universal Command Group pass through.
12. TCT will be handled via Unrecognized Addressed Command Group pass through. However, in this case, the

device must be in TADS before the pass through will occur.

Interrupt Status Registers 0 and 1

INTO INTl BI BO END SPAS RLC MAC

GET UUCG UACG APT DCAS MA SRQ IFC

INTO An interrupt occurred in register 0 GET A Group Execute Trigger has occurred
INTl An interrupt occurred in register 1 UUCG An Undefined Universal Command has
BI A byte has been received been received
BO A byte has been output UACG An Undefined Addressed Command has
END An EOI occurred with ATN false been received. This bit will also be set on
SPAS Serial Poll Active State has occurred with receipt of a secondary command when the

rsv set in the Serial Poll register pts feature in the Auxiliary Command
RLC A REMOTE/LOCAL change has register is utilized.

occurred APT A secondary address has occurred
MAC An address change has ocr.urred DCAS Device Clear Active State has occurred

MA My Address (MLAVMTA)·SPSM
SRQ A Service Request has been received

IFC An IFC has been received

INTO is the logical OR of each bit of Interrupt Status Register 0 ANDed with the respective bit of Interrupt Mask
Register 0. INTl is the same but applies to Interrupt Mask and Status Register 1. Reading either Interrupt Status
Register will also clear it. The INT line will be cleared only when the interrupt status register which caused the
interrupt is read.

Interrupt Mask Registers 0 and 1

BI BO END IFC RLC MAC

GET UUCG UACG APT DCAS MA SRQ SPAS

The Interrupt Mask Registers 0 and 1 correspond to the Interrupt Status Registers 0 and 1 respectively, with the
exception ofINTO and INTL

Address Status Register

LADS TADS
REM LLO ATN LPAS TPAS v v ulpa

LACS TACS

':JLJUU FAMILY SYSTEMS DESIGN 8-293

TMS 9914 GENERAL PURPOSE
INTERFACE BUS ADAPTER

Peripheral
and Interface Circuits

The Address Status Register is used to convey the addressed state of the talker/listener and the remote/local and local
lockout coiidition. This information is derived from the TMS 9914 internal logic states at the time of reading. The ulpa
bit is used for dual addressing and indicates the state of the LSB of the bus at last primary addressed time.

Bus Status Register

I ATN I DAV NDAC NRFD EOI SRQ IFC REN

The Bus Status Register allows the microprocessor to obtain the current status of the IEEE 488 Bus Management
Lines.

Auxiliary Command Register

I C/S C><J><I f4 I f3 f2 fl fO

The Auxiliary Command Register allows control of additional features on chip and provides a means of inputting some
of the local messages to the interface functions. Table 4 lists these messages and commands. If C/S = 1, the feature will
be set and if C/S = 0, the feature will be cleared. If C/S =NA, it should be sent as zero.

Function

Chip Reset

Release ACDS holdoff

Release RFD holdoff

Holdoff on all data

Holdoff on EOI only

Set new byte available false

Force group execute trigger

Return to local

Return to local immediate

Send EOI with next byte

Listen only

Talk only

Take control synchronously

Take control asynchronously

Go to standby

Request parallel poll

Send interface clear

Send remote enable

Request contol

Release control

Disable all interrupts

Pass through next secondary

Set Tl delay

8-294

Mnemonic

rst

dacr

rhfd

hdfa

hdfe

nbaf

fget

rt!

rtli

feoi

Ion

ton

tcs

tea

gts

rpp

sic

sre

rqc

rlc

dai

pts

std!

Table 4. Auxiliary Commands

C/S

0/1

0/1

NA

0/1

0/1

NA

0/1

0/1

0

NA

0/1

0/1

NA

NA

NA

0/1

0/1

0/1

NA

NA

0/1

NA

0/1

f 4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

f3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

f2

0

0

0

0

0

0

0

0

0

0

0

0

fl

0

0

0

0

0

0

0

0

0

0

0

0

JO

0

0

0

1

0

0

1

0

0

0

0

1

0

0

9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

TMS 9914 GENERAL PURPOSE
INTERFACE BUS ADAPTER

Address Register

edpa

edpa

dal

dal dat AS A4

enable dual primary addressing

disable the listen function

A3 A2 Al

dat
Al-AS

disable the talk function
primary device address

The Address Switch Register corresponds to the Address Register. A power-up RESET or a rst command with C/S = 1
will leave the chip in a totally idle state. At this point, the Address Switch Register is read and the value is written
into the Address Register. The reset condition is then cleared by sending rst with C/S = 0.

Serial Poll Register

I S8 I rsv I S6 SS S4 S3 S2 Sl

The Serial Poll register is used to establish the status byte that is sent out when the controller conducts a serial poll. Bits
1 through 6 and 8 contain status information, while bit 7, rsv, is used to enable the SRQ line and to indicate to the
controller which device(s) was responsible for making a service request.

Command Pass Through Register

DI08 DI07 DI06 I DIOS DI04 DI03 DI02 DIOl

The Command Pass Through Register is used to pass through to the microprocessor any commands or secondary
addresses that are not automatically handled in the TMS 9914.

Parallel Poll Register

PP8 PP7 PP6 PPS PP4 PP3 PP2 PPl

This register contains the status bit that is output when the controller conducts a parallel poll.

Data-In Register

I DI08 I DI07 DI06 DIOS DI04 DI03 DI02 DIOl

The data-in register is used to move data from the interface bus when the chip is addressed as a listener. Upon receipt
of a data byte, the chip will hold NRFD true until the microprocessor reads the data-in register, when NRFD will be
set false automatically.

Data-Out Register

I DI08 I DI07 DI06 DIOS DI04 DI03 DI02 DIOl

The data-out register is used to move data from the TMS 9914 onto the IEEE std 488-197 S data bus.

After sending a byte out on the bus, the device can take part in a new handshake only after a new byte is placed in the
data-out register, when it will be able to send DAV true again.

9900 FAMILY SYSTEMS DESIGN 8-295

g ..

Peripheral TIM 9915 - MEMORY TIMING
(AND REFRESH) CONTROLLER CHIP SET

and Interface Circuits

Features ofTIM 9915:

•Controls the operation of 4K/16K/64K Dynamic
RAMs

• Creates Static RAM Appearance
• Generation and Synchronization of

- RAS, CAS, clocks (and precharge)
- \VE Signal
- Address Multiplexing
- Refresh (multiple modes)

• Works over wide range of memory speeds
- Access from 120 ns up to refresh limits
- Even faster with precision R/C's

• Performs multiple memory cycles
- Read, Early Write, Read/Write, RMW

• Page-Mode Operation for all memory cycle types
• Selectable Refresh Modes

- Transparent
- Cycle Steal
- Burst Mode

• Refresh Violation Detection
- Automatic Burst Mode on violation
acknowledgement

•Simple Asynchronous START Clock
e Extended CAS Data Hold Control via CASH OLD
• All system outputs are

• Bus Drivers (24mA guaranteed)
•Tri-State

RAH CAH CASL PRCHG

FROM CPU

FROM CPU.

NOTES: Transparent Refresh Interface for Popular Microprocessors.

DESIGN GOAL

TMS 9900

Z80 "MREF" ·= REF

8080A M1 • T4 = REF

8085 M1 • T4 = REF

~~REF

~-i9:.LJ

LATCH
!TRI-STATE
OUTPUTS!
128PINSI

This document describes the design specifications for a product under development. Texas Instruments reserves the right to change these

specifications in any manner, without notice.

TO MEMORY

8-296 9900 FAMILY SYSTEMS DESIGN

Peripheral TMS 9927JL,NL
and Interface Circuits

VIDEO TIMER/CONTROLLER

990/9900 FAMILY MICROCOMPUTER COMPONENTS

• Second sourced by SMC as CRT5027
• TTL Compatibility
• Standard and Non-standard CRT Monitor Capability
• Scrolling Capability
• Interlaced and Non-interlaced Formatting
• Fully Programmable Display Format

Characters per data row
Data rows per frame
Raster scans per data row
Raster scans per frame

DESCRIPTION

• Fully Programmable Monitor Format
Blanking
Horizontal sync
Vertical sync
Composite sync

o Two Programming Methods
Processor controlled
PROM on data bus

• Generation of Cursor Video
• N-channel Silicon-Gate Technology

The TMS9927 is a single-chip video timer and controller produced using N-channel silicon-gate MOS technology.
This 40-pin package contains the logic to generate all the timing signals for display of video data on standard or
nonstandard CRT monitors in both interlaced or noninterlaced format. The only function not on the chip is the dot
counter; which, due to high video frequencies, cannot easily be implemented with MOS technology. All the inputs
and outputs are TTL compatible.

There are nine 8-bit control registers which are user programmable (see Table 1). Seven of the control registers are for
horizontal and vertical formatting and two are for cursor address.

VIDEO DOT ----1~
CLOCK

74160

DOT
COUNTER

1--___ o_o_T_c_o_u_NT_E_R_C_A_R_R_Y ____ ----tDCC

.----------1 DR0-5

..----------t H0-7

TMS 9927
VTC

8 BITS DATA D0-9

4 BITS SELECT S0-3

HORZ SYNC

VERT SYNC

COMPOSITE SYNC

BLANKING

VIDEO

AO-A14
9900 R0-2

ADDRESS BUS

DATA BUS

DO-D15
TO SYSTEM

DO-D7

TO SYSTEM

CRU

CHAR. ADDRESS

10

DUAL-PORT
REFRESH
MEMORY
1K X 8

7-BIT ASCII TMS 4710
CHARACTER
GENERATOR

Figure J. T;pical System Interconnect

9900 FAMILY SYSTEMS DESIGN

RASTER
SCAN

COUNTER

VIDEO DOT
CLOCK

SHIFT REGISTER
74LS166 0

8-297

00
t'...>

"° 00

'° '° 0
0

'Tl
;:.,.
$:

~
CFl
-<
CFl
o-j
tTJ
$:
CFl.

0
tTJ
CFl

0 z

?
~
!'-l

~
V)

\Q

~
'-l

:::i:.
~
::-:
~

~
~

DO-D7

...
00

ADDRESS
DECODE

LINE
COUNT

REGISTER

CHAR/ROW
REGISTER

HSYNC~

SYtlC
WIDTH

REGISTER

SYtlC
DELAY

REGISTER

CURSOR

CHARACTER
COUNTER

COMPARATOR

COMPARATOR

H ADDRESS I)icoMPARATOR
REGISTER

t--:-~~~~~~~~~~~~~~~~~~~~~~~~~~~,,..,.,.,-~~~H~l~Hl--1_
HSY NC ~

SCANS/
FRAME

REGISTER

VERTICAL

DATA START 1-------.
REGISTER

COMPARATOR

COMPARATOR

SCANS/DATA I ·~ COMPARATOR
ROW

REGISTER

LAST DATA I ''
ROW

REGISTER

DATA
ROWS/FRAME

REGISTER 1------.

CURSOR
V ADDRESS ,/
REGISTER

DATA
ROW

COUNTER

COMPARATOR

COMPARATOR
BL

<~
~~
OUJ
t'Ij '° 0-..o
~N
~-...)

a(?
t'Ij"'
~z
........ ~
(')

0
z
~
~
0
~
~
t'Ij
~

Q) '1J
~ C1>
Q, ~.
-"C
~ ::r
-(1)
C1> ...
:::::. Q)
Q) -
0
C1>

Q
c:;
5.
iii

Peripheral TMS 9927JL,NL
and Interface Circuits

VIDEO TIMER/CONTROLLER
: ''

TMS 9927 PIN FUNCTIONS

Signature 110 Description

00-7 1/0 Data bus. Input bus for control words from
microprocessor or PROM. Bidirectional bus for cursor S1 S2

address. so S3

cs H7 cs Signals chip that it is being addressed RO 4 37 H6

S0-3 Register- address bits for selecting one of seven control R1 36 H5

registers or either of the cursor address registers Vss 35 H4

R2 34 H3
OS Strobes 00-7 into the appropriate register or outputs R3 ~ 33 H2

the cursor character address or cursor line address onto OS 32 H1

the data bus CSYN 10 31 HO/ORO

DCC

H7-l 0

R0-2 0

HO/ORO 0

R3 0

DRl-5 0

BL 0

HSYN 0

VSYN 0

CSYN 0

Vee PS

VDD PS

Vss PS

Carry from off chip dot counter establishing basic
VSYN 11 30 DR1

Dec 12 29 DR2
character clock rate.

Voo 13 28 DR3

Character counter outputs. Vee 14 27 DR4

Three most significant bits of the Scan Counter: row
HSYN 15 26 DR5

CRV 16 25 07
select inputs to character generator. BL 17 24 06

Pin definition is user programmable. Output is MSB of DO 18 23 05

Character Counter if M SB of Characters/Data Row 01 19 22 04

word is a "l ",otherwise output is MSB of Data Row 02 20 21 03

Counter

Least significant bit of the scan counter. In interlaced mode this bit defines the odd or even
field. In this way, odd scan lines of the character font are selected during the odd field and
even scans during the even field

Data Row counter outputs

Defines non active portion of horizontal and vertical scans.

Initiates horizontal retrace

Initiates vertical retrace

Active in non-interlaced mode only. Provides a true RS-170 composite sync waveform.

+ 5 volt Power Supply

+ 12 volt Power Supply

Ground reference

FUNCTIONAL DESCRIPTION

APPLICATION ORIENTED UsE

The TMS9927 interfaces to the central processor unit, if one is used, through the communications register unit
(CRU) via a TMS9901, as shown in Figure 2, or it functions as a mapped memory device. The TMS9901 converts 8
bits of serial CRU data to parallel data to feed the TMS9927 data bus for loading the control registers. The CPU,
using the CR U, decodes the high order bits of the address for the TMS992 7 chip select and the four low order bits are
connected directly to the TMS9927 Video Timer and Controller (VTC) for control register select. The character
column (Hl-H7) and row lines (0Rl-DR5)combine to address the refresh RAM. The refresh RAM outputs the
seven-bit ASCII code for the character to be displayed to the character generator, the TMS4 710. The character
generator uses the raster scan counter (RO-R2) to select which row of the dot matrix to output. A shift register then
shifts the dot informatio1'. out to the video terminal at the dot frequency.

The TMS9927 does have a self-load function as shown in Figure J. It is accomplished by putting the self-load
command on the VTC select lines and strobing DATA STROBE (OS). This causes the TMS9927 to output address
information on its row select lines to the control PROM (74S288). The outputs of the control PROM are loaded into
the VTC control registers. There are two types of self-load: processor and non processor. The non processor self-load
automatically starts the timing chain after load is completed. Processor self-load only causes a self-load and then waits
for the start command from the processor. The select signals to the VTC which cause self-load should be applied for
the entire duration of self-load.

9900 FAMILY SYSTEMS DESIGN 8-299

TMS 9927JL,NL Peripheral
and Interface Circuits

VIDEO TIMER/CONTROLLER

so

0
0
0
0
0
0
0
0

SJ

0
0
0
0

0
0
0

0

S2

0
0

1
0
0

0
0

0
0

SJ

0
1
0
1
0
1
0

0
1
0

0
1
0

Table 1. Select Decodes

Command

Load Control Register 0
Load Control Register 1
Load Control Register 2
Load Control Register 3
Load Control Register 4
Load Control Register 5
Load Control Register 6
Processor Self Load

Read Cursor Row Address
Read Cursor Character Address

Description

See Table 2

Command from processor instructing TMS 9927 to enter Self
Load Mode

Reset Resets timing chain to top left of page. Reset is latched on chip
by OS and counters are held until released by start command.

Up Scroll Increments address of first displayed data row on page. ie; prior
to receipt of scroll command-top line = 0, bottom line = 2 3.
After receipt of Scroll Command-top line = 1, bottom

Load Cursor Character Address
Load Cursor Row Address
Start Timing Chain

Non-Processor Self Load

line =O.

Receipt of this command after a Reset or Processor Self Load
command will release the timing chain approximately one scan
line later. In applications requiring synchronous operation of
more than one TMS9927 the dot counter carry should be held
low during the OS for this command.
Device will begin self load via PROM when OS goes low. The
1111 command should be maintained on S0-3 long enough to
guarantee self load (Scan counter should cycle through at least
once). Self load is automatically terminated and timing chain
initiated when the all "1 's" condition is removed, independent of
OS. For synchronous operation of more than one TMS 992 7,
the Dot Counter Carry should be held low when this command is
removed.

Note: During Seif Load, the scan counter states corresponding to the nine load command addresses will load the appropriate
~ 8 register. Therefore if reseting of the cursor X and Y position registers is required via se!f load the PR OM words for

address 1100 and 1101 should be programmed as all zeros.

8-300 9900 FAMILY SYSTEMS DESIGN

Peripheral TMS 9927JL,NL
and Interface Circuits

VIDEO TIMER/CONTROLLER

SELFLOAD

(FROM SYSTEM)

ARCHITECTURE

GENERAL

"Y"\-----------------1 s,, 9927

32 x 8 ROM
74S288

8 BIT
DATA BUS

A0-2

A3

A4

+5

Figure 3. Self load Command

S1

S2

s,
cs

R1-3

ROW SELECT
TO CHARACTER GENERATOR

The functional block illustrates the architecture of the TMS9927 video timer and controller. The architecture is
designed to be as general as possible so that by programming the control registers properly almost any raster scan
CRT can be controlled with this chip.

SELECT LINES

Lines SO-S3 are the select lines. They select the control register for loading via the data bus (DB0-087) and also select
control functions for the device (see Table!). The bit assignments for the nine control registers are given in Table 2.
Notice that the cursor line address and the character address can both be read; therefore, the TMS9927 data bus must
be bidirectional.

HORIZONTAL
CHARACTER COUNT

Table 2. TMS 9927 Control Registers.

SKEW BITS DATA ROWS/FRAME LAST DISPLAYED DATA ROW

REG 0 I ~ I 1 I 2 I 3 l 4 I 5 I 6 I I REG 3 _I Dt~1 I _2 _._I ~__..___.__.._I ~__.I REG 6
_j

0__.l___._l _2 _._I __._I __.i__.___._I 7__.

1

I
MODE INTERLACED/ HSYNC WIDTH H SYNC DELAY SCAN LINES/FRAME

NON INTERLACED ! C::~ i
REG 1 I o I ; I l I ~ I sTI7 I REG 4 I ; I

CURSOR CHARACTER ADDRESS
I

I 17 I REG 7 I ;_.l___._I __._I __.___.l__.___._l __.~ I
SCANS/DATA ROW CHARACTERS/DATA ROW VERTICAL DATA START CURSOR ROW ADDRESS

REG 2 1 I i I ! I IT]} I REG s j ~ I i I I ~ I REG 8 .__I 0_._l _1_I -~ .__I 3_.._l _4 ..._i 5__._l _6 _._I _..~ I

9900 FAMILY SYSTEMS DESIGN 8-301

Peripheral TMS 9932 JC, NC
COMBINATION ROM/RAM MEMORY

and Interface Circuits

G Single 5 Volt Power Supply, ± 10%
C> 15,360 Bits Read Only Memory
0 1024 Bits Random-Access Memory
0 All Inputs and Outputs TTL Compatible

(No Pull-Up Resistors Needed)
0 Maximum Access Time - 400 ns
0 Maximum Cycle Time - 400 ns
G Low Power Dissipation of 300 mW (Typical)
0 Programmable Chip Select and Output Enable

Buffers for Expansion
0 N-MOS Silicon-Gate Technology
0 Standard 0°C to 70°C Temperature Range

DESCRIPTION

24-Pin Cerami'c and Plastic
Dual-in-line Packages

(Top View)

A7

A6

A5

A4 4

A3

A2

A1

AO

01

02 10

03 11

Vss 12

24 Vee

23 AB

22 A9

21 A10

20 cs

19 OE

18 R/W

17 08

16 07

15 06

14 05

13 04

The TMS 9932 is a 15,360 bit read only memory and a 1024 bit random access memory organized as 1920 words
of 8 bit length ROM and 128 words of8 bit length RAM. The highest 128 addresses will access the RAM, while
the lower 1920 addresses access the ROM.

The device is fabricated using N-channel silicon gate technology and is completely static, allowing simple interfacing
to bipolar and other MOS circuitry with a minimum system parts count.

All inputs can be driven by 7400 series TTL circuits without the use of any external pull-up resistors. Similarly,
each output can drive up to two 7400 series TTL circuits without external resistors.

The data outputs are tri-state for OR tying multiple devices on a common bus. A logical zero on the chip select (CS)
or the output enable input (OE) forces the input/output buffers into the high impedance state. Chip select and
read/write input (RW) allow data to be written into the RAM while automatically forcing the 1/0 buffers into the
high impedance state.

The device is supplied in 24 pin dual-in-line plastic and ceramic packages designed for insertion in mounting hole
rows on 600-mil centers.

The device is designed for operation over a commercial temperature range from 0°C to 70°C.

OPERATION

ADDRESS (Ao - A10)

..... o- o The 11-bit positive-logic address is decoded on-chip to select one of 2048 wor<ls of 8-bit lt:ngth in the memory
array. Addresses 0 to 1919 are ROM addresses; addresses 1920 to 204 7 are RAM addresses. A 0 is the least
significant bit and A10 is the most-significant bit of the word addresses.

CHIP SELECT (CS)

Chip select can be programmed at the factory at the same time the ROM is programmed to be active with either a
high or low input signal. This allows for system expansion to use more than one ROM/RAM circuit. When chip
select is disabled, data cannot be written into the RAM and the outputs are in the high-impedance state.

Mom SELECT (R/W)

The R/\V input must be high during read and low during write operations to the RAM. Prior to an address
change, R/W must be in the read state and must remain in that state for a minimum period to eliminate the
possibility of data being written into an unwanted position.

8-302 9900 FAMILY SYSTEMS DESIGN

Peripheral TMS 9932 JC, NC
and Interface Circuits COMBINATION ROM/RAM MEMORY

OUTPUT ENABLE (OE)

The output enable input can be programmed, during mask fabrication, to be active with either a high or a low input
signal. When output enable is active, all eight outputs are enabled and the eight-bit addressed word can be read.
When output enable is not active, all eight outputs are in a high-impedance state.

DATA INPUT/OUTPUT (1101 -1/08)

The common input/output terminals are used for both read and write operations. During a write cycle, data must
be set up a minimum time before R/W goes to the read state (high) to ensure that correct data will enter the
addressed memory cell. Also, input data must be held a minimum time after the rise of R/W.

The output buffers are controlled by output enable and chip select. To read data, output enable and chip select must
be valid.

1-
::>
a..
~

83
w
a:
0
0
<(

OE

cs

AO l TO
A7

AB { TO
A10

x
DECODER

y
DECODER

DATA INPUT/OUTPUT

OUTPUT
ENABLE

OUTPUT
BUFFER

ROM/RAM
SELECT
LOGIC

128 x 8
RAM

ARRAY

R/W cs

INPUT
CONTROL

RAM DATA
INPUT

CONTROL
LOGIC

R/W

FUNCTION TABLE

OE OPERATION

L H H Write into RAM (1/01 to 1/08 = ?)

9900 FAMILY SYSTEMS DESIGN

L H L Write into RAM (l/01to1/08.= Z)

H H H Ream ROM at RAM

x L x Device disabled (l/01 to 1/08 = Z)

x x 0 Output disabled (1/01to1/08 = Z)

L =LOW, H =HIGH, X =DON'T CARE, Z =HIGH IMPEDANCE,?= INDETERMINATE

Functional Block Diagram

8-303

TMS 9932 JC, NC
COMBINATION ROM/RAM MEMORY

Peripheral
and Interface Circuits

ABsoLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR lEMPERATURE RANGE (UNLESS OTHERWISE NoTED)*

Supply voltage, V cc(see Note 1)
Input voltage (any input) (see Note 1).
Continuous power dissipation
Operating free-air temperature range
Storage temperature range

. -0.5 to 7 V

. -0.5 to 7 V
1W

. O 0 to 70°C
.-55°C to 150°C

•stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only

and functional operation of the device at these or any other conditions beyond those indicated in the· 'Recommended Operating Conditions"

section of this specification is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Voltage values are with respect to the ground terminal.

RECOMMENDED OPERATING CONDITIONS

PARAMETER
0°c - 70°C

UNIT
NIN NOM MAX

Supply voltage, Vee 4.5 5 5.5 v
High-level input voltage, V1H 2 Vee v
Low-level input voltage, V1L(see Note 2) -0.5 0.8 v
Read cycle time, tqrdJ 400 ns

Write cycle time, lc(w) 400 ns

Write pulse width, tw1wl 250 ns

Address setup time, 1su(AJ 120 ns

Chip select setup time, tsu1cs) 350 ns

Data setup time 1 su10) 300 ns

Address hold time, th(AJ 30 ns

Data hold time, ~(D) 30 ns

Operating free-air temperature, TA 0 70 c

NOTE 2: The algebraic convention where the most negative limit is designated as minimum is used in this data sheet for logic voltage levels

only.

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE (UNLESS OTHERWISE NOTED)

PARAMETER TEST CONDITIONS MIN TYP 1 MAX UNIT

VoH High-level output voltage loH= ~ 1 50µA, Vee=4.5 V 2.4 v
Vol Low-level output voltage IOL=3.2mA Vee= 5.5 V 0.45 v
11 Input current V1=0 to 5.25 V 10 µA

loZH Off state output current, high-level 15

voltage applied
CS at 2.0 V, Vo=4 V µA

lozL Off-state output current, low-level -50

voltage applied
CS at 2.0 V, Vo=0.45 V µA

Vee= 5.5 V l TA=0°C to 70°C 55
Ice Supply current from Vee J TA= -40° to 125°C 55

mA
lo=O mA

C1 Input capacitance
V1=0 V, TA=25°C

4 pF
f=1 MHz

Co Output capacitance
Vo=O V, TA=25°C

10 pF
f=1 MHz

1All typical values are at Vee= 5 V, TA= 25 ° C.

8-304 9900 FAMILY SYSTEMS DESIGN

Peripheral TMS 9932 JC,NC
and Interface Circuits

COMBINATION ROM/RAM MEMORY

SWITCHING CHARACTERISTICS 0vER RECOMMENDED SUPPLY VOLTAGE RANGE, 2 SERIES 74 TTL LOAD, CL = 100 PF

0° - 70°C
PARAMETER

MIN TYP MAX

ta(A) Access time from address 400

ta1csi Access time from chip select 300

ta(OE) Access time from output enable 100

tov(A) Previous output data valid after address change 40
tpxz Output disable time from output enable (see Note 3) 150

NOTE 3: This parameter defines the delay for the I /0 bus to enter the input mode

READ CYCLE TIMING

ADDRESS, AO-A10

CHIP SELECT, CS

OUTPUT ENABLE, OE

INPUT/OUTPUT,
1/01-1/08

WRITE CYCLE TIMING

ADDRESS, AO-A10

READ/WRITE, R/W

CHIP SELECT, CS

OUTPUT ENABLE, OE

INPUT /OUTPUT,

1/01-1/08

,. ~~ ~1
~~~~~~~~~~A-D_D_R_E_S_S_V_A_L_l_D~~~~~~~-.....\.!/ 

-J0 f'----
1 

l ~ t~CS)_, : 
I \'----____,/ tov(A) __,..., .. ~ .. 1 

I ~OE) 1111 ., ,I ... 111--- tpxz • 1 

I I I 
-~~~~~'K :----- . DATA VALID -~ I· ~ad) ___ .,, ,____ __ _ 

_J 

~~,,=:1~ 
DATA VALID. XXXX>< 

UNIT 

ns 

ns 

ns 

ns 

ns 

NOTE: FOR MEASURING TIMING REQUIREMENTS AND CHARACTERISTICS V1H=2.0V1, V1L=0.50V,t,=t1=20ns AND ALL TIMING POINTS 

ARE 50% POINTS. 

9900 FAMILY SYSTEMS DESIGN 8-305 



.... o 

.... 0 

TMS 9932 JC,NC Peripheral 
and Interface Circuit~ 

COMBINATION ROM/RAM MEMORY 

SOFTWARE PACKAGE 

The TMS 9932 is a fixed program memory in which the programming is performed by TI at the factory during the 
manufacturing cycle to the specific customer inputs supp.lied in the format shown. The device is organized as 1920 
8 bit words with address locations numbered 0 to 1919. Any 8 bit word can be coded as a 2 digit hexadecimal 
number between 00 and FF. All stored words and addresses in the format are coded in hexadecimal numbers. In 
coding, all binary words must be in positive logic before conversion to hexadecimal. 1/01 is considered the least 
significant bit and 1/08 the most significant bit. Addresses input AO is least significant and AlO is most significant. 

Every card should include the TI Customer Device Number in the form MP XXXX-XXX (8 digit number to be 
assigned by TI) in columns 71 through 80. 

Output enable is customer programmable. Every card should include in column 70 a 1 if the output is to be enabled 
with ahigh level input at OE or a 0 for enabling with a low level input. 

The 1920 coded words must be supplied on 120 cards with 16 two digit hex numbers per card. 

CARD 

CARD 

120 

8-306 

COLUMN 

1-9 BLANK 

10 :(ASCII character colon) 

11-12 10 (specifies 16 words per card) 

13 BLANK 

14-16 Hex address of 1st word on 1st card (0th word, address normally 000) 

17-18 BLANK 

19-20 0th word in Hex 

49-50 

51-69 

70 

71-80 

COLUMN 

1-9 

10 

11-12 

13 

14-16 

17-18 

19-20 

49-50 

51-69 

70 

71-80 

15th word in Hex 

BLANK 

Output Enable (OE) Active State 

Customer Device Number 

HEXADECIMAL INFORMATION 

BLANK 

:(ASCII character colon) 

10 

BLANK 

Hex address of 1st word on 120th card (1904th word, address normally 770) 

BLANK 

1904th word in Hex 

1919th word in Hex 

BLANK 

Output Enable (OE) Active State 

Customer Device Number 

9900 FAMILY SYSTEMS DESIGN 



MOS 
LSI 

• 65,536 x 1 Organization 
(16 Addressable 4096-Bit Loops) 

• Performance: 
LATENCY READ OR READ, 
TIME AT WRITE MODIFY 

S MHz CYCLE WRITE CYCLE 
(MAX) (MIN) (MIN) 

820 µs 200 ns 300 ns 

• Full TTL Compatibility (No Pull-up 
Resistors Required) on All Inputs 
Except <P 1, ¢2, and Chip Enable 

• Low Power Dissipation: 
280 mW Operating (Typical@ 5 MHz) 
25 mW Recirculating (Typical @ 1 MHz) 
<1 mW Standby (Typical) 

• Two-Phase CCD Clocks 
• N-Channel Silicon-Gate Technology 
• 16-Pin, 400-Mil Dual-in-Line Package 

TMS 6011 JC, NC 

TMS 3064 JL 
65,536-BIT CCD MEMORY 

16-PIN CERAMIC 
DUAL-IN-LINE PACKAGE 

Vss 1 16 Vee 

01 2 15 CE 

DO 3 14 Rfii 

AJ 4 13 cs 

A2 5 12 ¢1 

Ai 6 11 ¢2 

Ao 7 10 N/C 

VssB 9 Voo 

MOS 

ASYNCHRONOUS DATA INTERFACE (UART) LSI 

• Transmits, Receives, and Formats Data 40.PIN CERAMIC AND PLASTIC 

0 Full-Duplex or Half-Duplex Operation DUAL-IN-LINE PACKAGES 
(TOP VIEW) 

• Operation from DC to 200 kHz 

• Static Logic Vss 1 40 TC 

Buffered Parallel Inputs and Outputs VGG 2 39 PS 
0 

Voo 3 38 WLS1 
• Programmable Word Lengths ... 5, 6, 7, 8 Bits ROD 4 37 WLS2 
0 Programmable Information Rate ROS s 36 SBS 

• Programmable Parity Generation/Verification R07 6 35 Pl 

• Programmable Parity Inhibit R06 7 34 CRL 

0 Automatic Data Formatting ROS s 33 TIS 

Automatic Status Generation 
R04 9 32 Tl7 • R03 10 31 Tl6 

0 3-State Push-Pull Buffers R02 11 30 TIS 

• Low-Threshold Technology R01 12 29 Tl4 

0 Standard Power Supplies ... 5 V, -12 V PE 13 28 T13 

• Full TTL Compatibility ... No External FE 14 27 Tl2 

Components OE 1S 26 Tl1 

SFD 16 2S TO 

RC 17 24 TRE 

ORR 1S 23 TBRL 

DR 19 22 TBRE 

RI 20 21 MR 

9900 FAMILY SYSTEMS DESIGN 8-307 

8~ 



SBP 9960 1/0 EXPANDER 

990/9900 FAMILY MICROCOMPUTER COMPONENTS 

0 SBP /TMS 9900 Series Microprocessor Family Peripheral 
• 16 Individual, Single-Bit, Software Configurable 1/0 Ports 
0 20/ 40 mA Current Sinking Outputs 
• 2 8-Pin Package 
G Software Compatible with TMS 9901 when used in conjunction with SBP 9961 
0 TTL Compatible 1/0 
0 Wide Ambient Temperature Operation 

- SBP 9960CJ: 0°C to + 70°C 
-SBP 9960EJ: -40°C to +85°C 
- SBP 9960MJ:-55°C to+ 125°C 
- SBP 9960NJ: -55°C to + 125°C (with high-reliability processing) 

O FL Technology 
- Constant Current Power Source 
- Fully Static Operation 
- Single Phase Edge-Triggering Clock 
- Wide Temperature Stability 

DESCRIPTION 

Peripheral 
and Interface Circuits 

The SBP 9960 CRU 1/0 Expander is a ruggedized monolithic software-configuration input/output device 
fabricated with oxide separated Integrated Injection Logic (FL) technology. The SBP 9960 provides a flexible and 
efficient Communications Register Unit (CRU) based interface between the SBP /TMS 9900 series Family of 
Microprocessors and auxiliary systems functions ranging from bit-oriented sensors and actuatore to byte/word/n
bit-field oriented peripherals. 

Under software control, each of the SBP 9960s sixteen individual single-bit 1/0 ports may be configured to either 
the input or output mode .. I2L technology enables the SBP 9960s static logic, and TTL compatible 110, to operate 
over a very wide ambient temperature range from a single d-c power source with output current sink capability up 
to 40 mA. When the SBP 9960 is used in conjunction with the SBP 9961 FL Interrupt-Controller/Timer, the 
SBP 9960/SBP 9961 pair form an I2L systems alternate to the N-channel MOS TMS 9901 Programmable 
Systems Interface device while maintaining strict compatibility with existing software handlers developed in support 
of the TMS 9901. 

8-308 9900 FAMILY SYSTEMS DESIGN 



Peripheral 
and Interface Circuits 

SBP 99601/0 EXPANDER 

SBP 9960 PIN ASSIGNMENTS AND FUNCTIONS 

Signature Pin 110 Description 

so 6 IN ADDRESS SELECT LINES. The data bit being accessed by the CRU 
Sl 7 IN interface is specified by the 5-bit code appearing on SO-S4. 
S2 8 IN 
S3 9 IN 
S4 10 IN 

CRUIN 4 OUT CRU DATA IN (to CPU). Data specified by SO-S4 is transmitted to the CPU 
by CRUIN. When CE is not active, CRUIN is pulled to logic-level high. 

CRUOUT 2 IN CRU DATA OUT (from CPU). When CE is active data present on the 
CRUOUT input will be strobed by CRUCLK and written into the CRU bit 
specified by SO-S4. 

CRUCLK 3 IN CRU CLOCK (from CPU). CRUCLK specifies that valid data is present on 
the CRUOUT line. 

RESET IN POWER-UP RESET. When active (low), RESET forces all I/O's (PO-P15) 
to input mode. 

CE 5 IN CHIP ENABLE. When-active (low), data may be bidirectionally transferred 
between the SBP 9960 and the CPU. 

INJ 28 Supply Current 

GND 14 Ground Reference 

PO 27 I/O I/O pins 
Pl 26 IIO 
P2 25 I/O 
P3 24 I/O RESET 1 0 28 INJ 

P4 23 I/O CRUOUT 2 27 PO 

PS 22 I/O 
P6 21 I/O CRUCLK 3 26 P1 

P7 20 I/O CRUIN 4 25 P2 

P8 19 IIO CE 5 24 P3 

P9 18 I/O 

D PlO 17 I/O 
so 6 P4 

Pll 16 I/O S1 7 P5 

P12 15 I/O S2 8 

P13 13 I/O 
S3 9 

P14 12 I/O 
P7 

P15 11 I/O S4 10 19 PB 

P15 11 18 P9 

P14 12 P10 8-<tl 
P13 13 16 P11 

GND 14 15 P12 

9900 FAMILY SYSTEMS DESIGN 8-309 



SBP 9960 I/O EXPANDER Peripheral 
and Interface Circuits 

FUNCTIONAL DESCRIPTION 

SBP 9960/CPU INTERFACE 

The SBP 9960 communicates with the CPU through the Communications Register Unit (CRU) interface as shown 
in Figures 1 a~ 3. The SBP 9960s CRU interface consists of: a) five CRU address select lines (SO-S4), b) a single 
chip enable (CE), c) a 9960 to CPU serial data-bit line (CRUIN), d) a CPU to 9960 serial data-bit line (CRUOUT), 
and e) a CPU to 9960 serial data-bit clock (CRUCLK). When CE is activated (logic level low), SO-S4 select a 
specific single-bit 1/0 port as inJicated in Table 1. In the case of an SBP 9960 write operation, the datum is 
transferred from the CPU to the SBP 9960 via the CRUOUT line. The CRUOUT datum is strobed into the 
selected single-bit port by CRUCLK. In the case of a SBP 9960 read operation, the selected single-bit port is 
sampled by the CPU via the CRUIN line. 

ce 

90 
w S1 (.) 

ct u. S2 
:> a: 
D. w S3 (.) !z 

:> S4 
a: 
(.) 

CRUCLK 

CRUIN 

1 ~ CONTROL 

~ FF 
.... 0 B -- ...... 

AST u -- D 15 F 
~ E 

)-- A 
F 

c E -- r __ Q ___ • -- v R 
~ 

~ -- I D s 
I E I ~ 
I + I 

-\ I 16 ~ 
I 
I 

-/ L -. ___ J 
31 

A 

PO 

RUOUT ..... T -
c 
H 

~ .... 
E 
s -- ..... p 15 

Figure 1. 

8-310 9900 FAMILY SYSTEMS DESIGN 



Peripheral SBP 9960 I/O EXPANDER 
and Interface Circuits 

CRU BIT ASSIGNMENTS 

Table 1 describes the SBP 9960's CRU bit assignments. Note that CRU bits 1-14 have been reserved for the SBP 
9961 thereby insuring software compatibility between the SBP 9960/SBP9961 pair and the TMS 9901. 

INPUT I OUTPUT 

One of sixteen SBP 9960, single-bit, combination open-collector-output/resister-divider-input 1/0 ports is 
conversationally represented in Figure 2. As a direct result of the open-collector output structure, the data flow 
direction through the port is determined by the stored logic-level of the associated output-register bit in 
combination with the data flow direction of the external device serviced by the port. When the ouput-register bit 
(Q) is at logic-level high, the corresponding package pin (P) is essentially floating and therefore free to be externally 
pulled to either the high or low logic-level. In other words, when Q is at logic-level high, the ports data flow 
direction can be either inward, where an external device pulls P to the high or low logic-level; or the data flow 
direction can be outward, where an external resistor (R) both pulls P to logic-level high and sources current drive 
into the inputs of external devices. When Q is at logic-level low, the ports unconditional data flow direction is 
outward, where P has the capacity to sink 20/40*mA of current from external devices. Q can be reset to logic-level 
low through CPU execution of a SET BIT TO ZERO (SBZ) instruction; Q can be set to logic-level high through: 
1) a hardware initiated reset (RESET), 2) a software initiated reset (RST : CRU BIT 15) preceded by setting the 
control (CRU BIT 0) to logic-level high, or 3) CPU execution of a SET BIT TO ONE (SBO) instruction. Note 
that both RESET and RST affect all sixteen single-bit 1/0 ports while CPU execution of either an SBO or SBZ 
instruction can be targeted at ari individual single-bit port independent of uninvolved ports. Once the data flow 
direction has been established for each single-bit port, CPU communication with the external devices driven or 
sensed by each individual port is effected through execution of the CR U instructions: LDCR, STCR, SBO, SBZ, 
and TM. 

SBP 9960 

1OF16 

CRUIN 
Vee 

p 
CRUOUT --+-...... t-...._--t EXTERNAL 

DEVICE 

1OF16 
1OF16 

CRUCLK _____ ...... __ CLK 

PRS 

RST 

FIGURE 2. 1of16Single-Bit110 Ports 

*Outputs PO, Pl, P2, and P3 have extended current sink capability to 40 mA 

9900 FAMILY SYSTEMS DESIGN 8-311 



SBP 9960 I/0 EXPANDER Peripheral 

SYSTEM OPERATION 

and Interface Circuits 

Table 1. SEP 9960 CR U Bit Assignments 

CRU BIT so S1 S2 S3 S4 CRU READ DATA CRU WRITE DATA 

0 0 0 0 0 0 Control Bit Control Bit 

1-14 Note 1 Note 1 

15 0 1 1 1 1 "1" No Operation/ 

RST (2) 

16 1 0 0 0 0 PO lnput(3) PO Output(4l 

17 1 0 0 0 1 Pl ~ Pl ~ 

18 1 0 0 1 0 P2 P2 

lg 1 0 0 1 1 P3 P3 

20 1 0 1 0 0 P4 P4 

21 1 0 1 0 1 P5 P5 

22 1 0 1 1 0 P6 P6 

23 1 0 1 1 1 P7 P7 

24 1 1 0 0 0 P8 P8 

25 1 1 0 0 1 pg pg 

26 1 1 0 1 0 P10 PlO 

27 1 1 0 1 1 P11 P11 

28 1 1 1 0 0 P12 P12 

2g 1 1 1 0 1 P13 P13 

30 1 1 1 1 0 P14 , P14 • 
31 1 1 1 1 1 P15 lnput(3) Pl 5 Output(4) 

NOTES: (1) Bits 1-14 resfirved for SBP 9961 Interval Timer/Interrupt Controller 
(2) Writing a zero t~ bit 15 while CONTROL= 1 executes a software 

reset of the 1/0 ports. 
(3) Data present on the port will be read without affecting the data. 
(4) Writing data to the port will both program the port to the output 

mode and output the data. 
(5) These outputs are provided with extended sink-current capability 

to 40 mA. 

(5) 

(5) 

(5) 

(5) 

During a typical power-up sequence of a SBP 9960-based system, RESET should be activated (logic-level low) to 
force the SBP 9960 to the state where each of the sixteen individual single-bit 110 ports is in the input mode. 
System software should then configure each single-bit port as required. If a given port must be reconfigured from 
the input to output mode after power-up, the associated output- register bit must be set to logic-level high through 

1111o... o CPU execution of an SBO instruction . 
..... 0 

SBP 9960/SBP 9961 EMULATION OF THE TMS 9901 

Figure 3 shows the system configuration of a SBP 9960 functioning in conjunction with a SBP 9961 in emulation of 
a TMS 9901. Note the common connection of: a) the individual chip enables, and b) the CRU interface lines. For a 
complete description of the SBP 9961 and the TMS 9901 refer respectively to the SEP 9961 Interrupt-Controller/ 
Timer Data Manual and the TMS 9901 Prograf!lmab/e Systems Interface Data Manual. 

8-312 9900 FAMILY SYSTEMS DESIGN 



Peripheral SBP 9960 I/O EXPANDER 
and Interface Circuits 

16-BITS CONTIGUOUS 110 

,~~~~~~~-----~~~~~-~..,,......., 

~ ~ 
~ ~ + - - - - - - - - - - - - -t 

J l 
SBP 9960 

CRU 1/0 EXPANDER 

~ 
~ I-
...I z ::::> 
u 0 
::::> :::> ::::> 

I~ ~ iii N M v cc a: cc 
(/) (/) (/) u CJ u 

Ol r---
< ~ I ~ ~ ~ • ~ ~ ~ 
I 

0 w 
< c p ~. 

0 
u w 

:i c 
I 

0 

:i ----
(/) v .L .L .L .L ./ 
::::> '\ '\ . '\ '\ '\ 

(/) 
aJ 

::::> (/) 
(/) 

aJ w 
< cc 
I- c 
< c 

r 
.c < 

~ • , .. ~ ~ . . , ~ ~ 

::::> ~ v ~ z t---- I~ 0 u; N M v ~ z I-

:i ...I ::::> INTREQ (/) (/) (/) (/) ...I 5 ::::> a. 0 u ::::> g CT - CJ 0 u 
I I ::::> cc ::::> cc ::::> 

(/) u -- u w 0 0 cc cc - - a: a: 
0 < u u N u u 

a: ~ w -
(/) ... 
0 

I~ 
-0 SBP 9961 Ol 0 

Ol ~- INTERRUPT - CONTROLLEfVTIMER 

~ j_ 1 
I ------ - - ~ - -~ 
I~ 
\. ~ 

""' 
SYSTEM INTERRUPTS 

Figure 3. SEP 99601 SBP9961 System Configuration 

9900 FAMILY SYSTEMS DESIGN 8-313 



... o 

... 0 

SBP 9960 I/O EXPANDER Peripheral 
and Interface Circuits 

ELECTRICAL SPECIFICATIONS 

RECOMMENDED OPERATING CONDITIONS, UNLESS OTHERWISE NOTED Ice= 70 mA 

PARAMETER MIN NOM MAX UNIT 

Supply current, Ice 63 70 77 mA 

High-level output voltage, VoH 5.5 v 
Low-level output current, IQL 20t mA 

1 SBP 9960MJ, SBP 9960NJ -55 125 

Operating free-air temperature, TA SBP 9960EJ -40 85 oC 

l SBP 9960CJ 0 70 

t 40 mA on extended drive outputs PO, Pl, P2, and P3 

ELECTRICAL CHARACTERISTICS (OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE, UNLESS OTHERWISE NOTED) 

PARAMETER TEST CONDITIONSt MIN 

V1H High-level input voltage 2 

V1L Low-level input voltage 

V1K Input clamp voltage Ice= MIN, 11 = -12 mA 

loH High-level output current 
Ice= 70 mA, V1H=2V, 

V1L = 0.8 V, VoH = 5.5 V 

VoL Low-level output voltage 
Ice= 70 mA, V1H=2V, 

V1L = 0.8 V, loL = 20 mA (40 mA§) 

11 Input current Ice= 70 mA, V1 = 2.4 V 

t For conditions shown as MAX, use the appropriate value specified under recommended operating conditions. 
l All typical values ;ire at I CC= 70 mA, TA = 25°C. 
§Extended drive outputs only. 

TIMING REQUIREMENTS OVER FULL RANGE OF OPERATING CONDITIONS 

PARAMETER MIN 

tsu1 Setup time for SO-S4, CE, or CRUOUT before CRUCLK 

tsu 2 Setup time, input before valid CRUIN 
·-· -----

tw(CRUCLK) CRU clock pulse width 

th Hold time for Address or Data 

SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS 

[ PARAMETER 1 TEST CONDITIONS MIN 

[ tpo 
Propagation delay, SO-S4 or CE 1 CL = 100 pF, R L ~ 300 .n 
to valid CRUIN 

TY Pt MAX UNIT 

v 
0.8 v 

-1.5 v 

400 µA 

0.5 v 

225 µA 

NOM MAX UNIT 

200 ns 

200 ns 

100 ns 

0 ns 

TYP MAX UNIT 

300 ns 

8-314 9900 FAMILY SYSTEMS DESIGN 



Peripheral SBP 9960 I/O EXPANDER 
and Interface Circuits 

i.-1su1~ 
J :I .------.1-c-'PD ----1~~1 
~..._. __ ___.f \..._ ___ I ----

1 

~ I 
I I 1-- lw(CRUCLKI 

c_Ru_cL_K __ __,~-----)~~~~~~~~~~~~~~~~-
1 I I 

~~~-.,~--l-su_1 __ ~-------~--1_h_~~~ ................. ....,....~~~1_•':.:.::::_1_po _______ •_I __________________ ----. 

~ VALID ADDRESS ~ VALID ADDRESS : x
S0-54 I

I
I I I ~lsu2~

_____ V_A_L-ID_l_IN_P_U_T_D_AT_A ____________ _,x

iNT1-iNTi5. PO--P15: I
I I I

~-----V-A-Ll_D_C_R_U-IN------~x

CHUIN I
I I I I

____ [4" 'su 1., ~ lh~_.,_.......,.....,_,........._._..._..,..............,........,._.._...._..,__-.......,. -.-

'tt!fl!lfJ. VALID DATA

CRUOUT

NOTE I; ALL TINllNCi MEASUREMENTS ARE FROM 111% and llO'll. POINTS

SWITCHING CHARACTERISTICS

INPUT, OUTPUT, AND INPUT /OUTPUT STRUCTURES

A. EQUIVALENT OF EACH INPUT B. TYPICAL OF ALL
OUTPUTS

C. EQUIVALENT OF EACH INPUT/OUTPUT

INPUT/OUTPUT

10K.Q
INPUT_,.__,,""',.._ __ -1

10K.Q
--s:-OUTPUT

9900 FAMILY SYSTEMS DESIGN 8-315

.... 8

SBP 9961
INTERRUPT-CONTROLLER/TIMER

990/9900 FAMILY MICROCOMPUTER COMPONENTS

• SBP /TMS 9900 Series Microprocessor Family Peripheral
• 15 Dedicated, Maskable, Prioritized, Encoded Interrupts
• 20 mA Current Sinking Outputs
• 40-Pin Package
• Independently Clocked 14-Bit Interval/Event Timer
• Software Compatible with TMS 9901 when used in conjunction with SBP 9960
• TTL Compatible 1/0
• Wide Ambient Temperature Operation

- SBP 9961CJ: 0°C to +70°C
- SBP 9961EJ: -40°C to + 85°C
- SBP 9961MJ: -55°C to + 125°C
- SBP 99.61NJ: -55°C to + 125°C (with high-reliability processing)

• PL Technology
- Constant Current Power Source
- Fully Static Operation
- Single Phase Edge-Triggering Clock
- Wide Temperature Stability

DESCRIPTION

Peripheral
and Interface Circuits

The SBP 9961 Interrupt-Controller/Timer is a ruggedized, monothlithic, Communications Register Unit (CRU)
programmable, multifunction systems support device fabricated with oxide separated Integrated Injection Logic
(I2L) technology. The SBP 9961 provides the SBP/TMS 9900 series.Family of Microprocessors with. a flexible
independently clocked interval/event timer plus maskable prioritized interrupt encoding capability. I2L technology·
enables the SBP 9961s static logic, and TTL compatible 110, to operate over a very wide ambient temperature
range from a single d-c power source. When the SBP 9961 is used in conjunction with the PL SBP 9960 CRU 1/0
Expander, the SBP 9961/SBP 9960 pair form an FL systems alternate to the N-channel MOS TMS 9901
Programmable Systems Interface device while maintaining strict compatibility with existing software handlers
developed in support of the TMS 9901.

SBP 9961 PIN ASSIGNMENTS AND FUNCTIONS

Signature Pin 110 Description

so 33 IN ADDRESS SELECT LINES. The data bit being accessed by the CRU interface
Sl 35 IN is specified by the 4-bit code appearing on Sl-S4. SO is used as the high order select
S2 31 IN line when the SBP 9961 is used with the SBP 9960 in emulation of the TMS
S3 34 IN 9901. Otherwise, tie SO to logic-level low.
S4 32 IN

CRUIN 28 OUT CRU DATA IN (to CPU). Data specified by SO-S4 is transmitted to the CPU by
CRUIN. When CE is not active, CRUIN is logic-level high.

CRUOUT 17 IN CRU DATA OUT (from CPU). When CE is active, data present on the
CRUOUT input will be sampled during CRUCLK and written into the CRU bit
specified by SO-S4.

CRUCLK IN. CRU CLOCK (from CPU). CRUCLK specifies that valid data is present on the
CRUOUT line.

RESET 38 IN POWER-UP RESET. When active (low), RESET forces all interrupt masks to
"O", and disables the clock.

CE 2 IN CHIP ENABLE. \Vhen active (low), data transfers may occur between the CPU
and the SBP 9961.

8-316 9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

Signature Pin 110

TIMCLK 11 IN

TDZ 30 OUT

ICO 3 OUT
I Cl 4 OUT
IC2 5 OUT
IC3 6 OUT

INTREQ 7 OUT

CLOCK 9 IN

!fil__ 40
GND 19,20
Vee 37
INTl 12 IN
INT2 13 IN
INT3 21 IN
INT4 14 IN
INT5 15 IN
INT6 16 IN
INT7 18 IN
INT8 8 IN
INT9 10 IN
INTlO 22 IN
INTll 23 IN
INT12 25 IN
INT13 26 IN
INT14 27 IN
INT15 29 IN

SBP 9961
INTERRUPT-CONTROLLER/TIMER

CRUCLK 40 INJ

CE 39 NC

ICO 3 38 RESET

IC1 4 37 Vee
IC2 5 36 NC

IC3 6 35 S1

INTREQ 7 34 SJ

INTB 8 33 so
CLOCK 9 32 S4

INT9 10 31 S2

TIMCLK 11 30 TDZ

INTI 12 29 INT15

INT2 13 28 CRUIN

INT4 14 27 INT14

INT5 15 26 INT13

INT6 16 25 iNT12

CRUOUT 17 24 NC

INT7 18 23 INT11

GND 19 22 INT10

GND 20 21 INT3

Descnption

TIMER CLOCK IN. External clock used for the timer decrementer. May be
externally tied to the CLOCK input pin.

TIMER DECREMENTER EQUALS ZERO. Low active pulse indicating that
the timers decrementer contains a value of zero (all logic-level lows).

INTERRUPT CODE LINES (to CPU). ICO (MSB) through IC3 output the
binary code corresponding to the highest priority enabled interrupt most recently
asserted.

INTERRUPT REQUEST (to CPU). When active (low), INTREQ indicates to
the CPU that an enabled interrupt has been asserted, prioritizea and encoded.

CPU SYSTEM CLOCK. Used by the SBP 9961 to synchronize the interrupt
interface (INTREQ, ICO-IC3) to the CPU.
Supply Current
Ground Reference
Common voltage return/reference for all 1/0 pull-up resistors.
INTERRUPT INPUTS. When active (low), the signal is ANDed with its
corresponding mask bit and if enabled sent to the interrupt control section. INTl
has highest priority.

9900 FAMILY SYSTEMS DESIGN 8-317

SBP 9961
INTERRUPT-CONTROLLER/TIMER

FUNCTIONAL DESCRIPTION

SBP 9961/CPU INTERFACE

Peripheral
and Interface Circuits

The SBP 9961 communicates with the CPU through the Communications Register Unit (CRU) interface as shown
in Figures 1and4. The SBP 9961s CRU interface consists of: a) five CRU address select lines (SO-S4), b) a single
chip enable (CE), c) a 9961 to CPU serial data-bit line (CRUIN), d) a CPU to 9961 serial data-bit line (CRUOUT),
and e) a CPU to 9961 serial data-bit clock (CRUCLK). When CE is activated (logic-level low), SO-S4 selects a
specific CRU-bit function as indicated in Table 1. In the case of a SBP 9961 write operation, the datum is
transferred from the CPU to the SBP 9961 via the CRUOUT line. The CRUOUT datum is strobed into the
selected 9961 CRU-bit function by CRUCLK. In the case of a SBP 9961 read operation, the selected CRU-bit
function is sampled by the CPU via the CRUIN line.

Table 1. CR U Bit Assignments

CRU BIT so 51 52 S3 54 CRU READ DATA CRU WRITE DATA

0 o!41 0 0 0 0 Control Bit Control Bit(1 I

1 0 0 0 0 1 INT1/TIM1(2) Mask1/TIM1 (3)

2 0 0 0 1 0 INT2/TIM2 Mask2/TIM2

3 0 0 0 1 1 INT3/TIM3 Mask3/TIM3

4 0 0 1 0 0 INT4/TIM4 Mask4/TIM4

5 0 0 1 0 1 INT5/TIM5 Mask5/TIM5

6 0 0 1 1 0 INT6/TIM6 Mask6/TIM6

7 0 0 1 1 1 INT7/TIM7 Mask7/TIM7

8 0 1 0 0 0 INTB/TIM8 Mask8/TIM8

9 0 1 0 0 1 INT9/TIM9 Mask9/TIM9

10 0 1 0 1 0 INT10/TIM10 Mask10/TIM10

11 0 1 0 1 1 . INT11/TIM11 Mask11/TIM11

12 0 1 1 0 0 fi\JT12'/TIM 12 Mask12/TIM12

13 0 1 1 0 1 INT13/TIM13 Mask13/TIM13

14 0 1 1 1 1 INT14/TIM14 Mask14/TIM14

15 0 1 1 1 1 INT15/INTREQ Mask 15

NOTES: (1) 0 =Interrupt Mode; 1 = TIMCLK Mode.
(2) Data present on INT Input (or timer value) wlll be read regardless of mask value.

(3) Whlle In the Interrupt Mode (Control Bit= 0), writing a "1" into a mask wlll enable interrupt,
"O" wlll disable.

(4) When the SBP 9961/SBP 9960 pair are used In emulation of the TMS 9901, SO Is used to

distinguish between activation of the 9961 (SO= 0) v.s. the 9960 (SO= 1).

INTERRUPT CONTROL

~ 8 A block diagram of the SBP 9961s interrupt control section is shown in Figure 2. The interrupt inputs arc sampled
on i:he positive-going edge of CLOCK and are ANDed with their respective mask bits. If an interrupt input is
active (low) and enabled (MASK= 1), the signal is passed through the priority encoder where the highest priority
signal is encoded into a 4-bit binary word as shown in Table 2. This word, along with an interrupt request, is then
output to the CPU on the positive-going edge of the next CLOCK.

The output signals will remain valid until either the corresponding interrupt input is removed, the interrupt is
,disabled (MASK= 0), or a higher priority enabled interrupt becomes active. When the highest priority enabled
interrupt is removed, the code corresponding to the next highest priority enabled interrupt is output. If no enabled
interrupt is active, INTREQ will be pulled to logic-level high with ICO-IC3 retaining the last asserted interrupt
code. RESET (power-up reset) will force the interrupt code ICO-IC3 to (0,0,0,0) with INTREQ pulled high, and
will reset all mask bits low (interrupts disabled). Individual interrupts can be subsequently enabled (disabled) by
programming the appropriate mask bits. Unused interrupt inputs may be used as data inputs by disabling the
interrupt (MASK= 0).

8-318 9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

I~

I
I
L

~ ;;

.f

::::> LL.

a: -u

N M
Cl) Cl)

"""""

a:
w
t
z
w
~
w
a:
0
w
c

~

38V.:ll:::l31NI nl:::l8
nd8

SBP 9961
INTERRUPT-CONTROLLER/TIMER

~ z t-
..J 5 ::::>
0 0 ::::> a: ::::> a: (.J a: 0 (.J ---

SYSTEM INTERRUPTS

-------------!~ ------ I~

::iE<(llllll:: a:wO-llll-WCI:

I~
Q § N M
~ ~ ~

38V.:ll:::l31NI ldnl:::ll:::l31NI
nd8

~
0
0
..J
CJ -

Figure 1. SEP 9961 Block Diagram

9900 FAMILY SYSTEMS DESIGN 8-319

.... Q .. u

SBP 9961
INTERRUPT-CONTROLLER/TIMER

INTERRUPT INPUTS
(15MAX) -------------- --------------

I~

Peripheral
and Interface Circuits

- - - - - - - - - - - - r-----f------·

Cl)
a::
w
~
z
0
a::
J:
0 z
>
Cl)

8-320

I~

a::
w a::
N w
~cc -zo a:: ct 0
0 z a: w
a.

T
-----------------------......-----------==--------38 V~~31Nlldn~~31NI

nd8

Figure 2. Interrupt Control Logic

~
0
0
.J
0

::::> w
a: CJ
0 II(

LI.
a:
w
I-
!

9900 FAMILY SYSTEMS DESIGN

Peripheral
and lnterf ace Circuits

SBP 9961
INTERRUPT-CONTROLLER/TIMER

Table 2. Interrupt Code Generation

INTERRUPT /STATE PRIORITY lco lc1 I c2 lc3 INTREQ

INT 1 1 (HIGHEST) 0 0 0 1 0
-
INT 2 2 0 0 1 0 0

003/TIMER 3 0 0 1 1 0

INT 4 4 0 1 0 0 0
INT 5 5 0 1 0 1 0
INT 6 6 0 1 1 0 0
INT 7 7 0 1 1 1 0
INT 8 8 1 0 0 0 0

INT 9 9 1 0 0 1 0
-
INT 10 10 1 0 1 0 0
INT 11 11 1 0 1 1 0
INT 12 12 1 1 0 0 0

INT 13 13 1 1 0 1 0
-
INT 14 14 1 1 1 0 0
-
INT 15 15 (LOWEST) 1 1 1 1 0
NO INTERRUPT - Note 1 Note 1 Note 1 Note 1 1

(1) ICO-IC3 hold the level code of the previous interrupt

INTERVAL TIMER

The SBP 9961s interval/ event timer, shown in Figure 3, has the following operational features:

a) Independent clock input TIMCLK
b) Programmable 14-bit decrementer
c) Time-reaches-zero level-3 interrupt
cl) Timer reaches zero output pulse TDZ
e) Able to read the current decremented value and therefore function as an event timer
f) Able to determine the SBP 9961s operating mode and value of INTREQ.

The SBP 9961 has an independent timer clock input, TIMCLK, which allows the user to define an interval timer
clock frequency other than that of the CPU. This, however, does not preclude the user option of connecting
TIMCLK to the CPUs CLOCK input and therefore running the interval timer at the CPUs clock frequency. The
typical operating range ofTIMCLK is 0-5 MHz.

The timer's CRU control bits are shown in Table 1. The SBP 9961 is placed into the timer-access mode by writing
a logic-level high to the control bit located at CRU address zero. CRU bits 1-14 are then used to initiate the write-
register with the desired start count. Writing a non-zero value to the write-register a) enables the decrementer, b) g.,...
programs the third priority interrupt (INT3) as the timer interrupt, and c) disables the influence of external
interrupts on the INT3 input pin. A single LDCR instruction can be used to accomplish the above initialization
operation. After the write-register has been initialized with the desired start count, the timer begins decrementing
toward zero. Upon reaching zero, the timer issues the level-3 interrupt, outputs the timer-zero pulse TDZ, and
restarts itself with the write-register value. Since the timer interrupt is latched, clearing that interrupt is
accomplished by writing either a logic-level low or high to the respective interrupt mask bit at CRU address three.
The CRUCLK that accompanies that write operation is the stimulus which resets the timer's interrupt latch.
However, in order to retain the current mask value, the appropriate SBZ or SBO CRU-write instruction must be
executed unless the mask value itself is to be changed. At any point in the timer's decrement sequence, a timer
restart can be accomplished by either reinitiating the entire write-register with an LDCR instruction, or by writing
to any individual write-register bit with an SBZ or SBO instruction.

9900 FAMILY SYSTEMS DESIGN 8-321

SBP 9961
INTERRUPT-CONTROLLER/TIMER

CRU
INTERFACE

CRU
LOGIC

WRITE REGISTER

DECREMENTER

READ REGISTER

Figure 3. Interval I Event Timer

DEC= 0

Peripheral
and Interface Circuits

TIMER
INTERf'.IUPT

TIMER ZERO DETECT

If the control bit is at logic-level low, the timer's read-register is updated with the current decrementer value after
each decrement operation (once every 64 TIMCLK clocks); if the control bit is at logic-level high (timer-access
mcx:le), the read-register retains its current value therby ensuring that the read-register is not changed in the event a
CRU read operation is executing during a decrement operation. Consequently, the current value of the timer's
decrementer can be interrogated by 1) placing the SBP 9961 into the timer-access mode, and 2) performing a CRU
read operation on the timer's read-register through execution of an STCR instruction. The timer, then, can
function as an event timer by reading the elapsed time between software events as shown in Table 3. Note that ·
when accessing the timer, all interrupts should be disabled. The timer is disabled by either RESET (power-up
reset) or by writing all zeroes to the write-register.

SBP 9961 STATUS

The SBP 996 ls status can be determined by reading the value of the control bit located at CRU address zero. If the
control bit has a logic-level low value, then the interrupt masks may be changed and data on the interrupt inputs
may be read. However, access to the interval timer is inhibited. If the control bit has a logic-level high value, then
the timer may be initiated, restarted, or read. Also, reading CRU address fifteen gives the status ofINTREQ where
logic-level low indicates activation.

8-322 9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

SBP 9961
INTERRUPT-CONTROLLER/TIMER

Table 3. Software Examples

ASSUMPTIONS:
- Total of 6 interrupts are used
- RESET has been applied
- System uses timer at maximum interval

LI R12,CRUBAS
LDCR @X,O

Setup CRU Base Address to point to 9961
Program Timer with maximum interval

SYSTEM
SETUP

LDCR @Y,7 Re-enter interrupt mode and enable top 6 interrupts

CLKPC

(X)------FFFF
(Y) 7FXX

BLWP CLKVCT

LIMI 0
LI R12, CRUBASE+1

SBO -1
STCR R4, 14

Save Interrupt Mask

Disable Interrupts
Set up CR U base

Set 9961 [.nto timer-access mode
Store read register into R4

Process Timer Value

SBZ -1 Re-enter Interrupt Mode (i.e., Exit Timer-Access Mode)
RTWP Restore Interrupt Mask

CLKUCT DATA CLKWP,CLKPC

SYSTEM OPERATION

During power-up, RESET should be activated (low) to force the SBP 9961 into a known state. RESET will disable
all interrupts, disable the timer, and force ICO-IC3 to (0,0,0,0) with INTREQ pulled high. System software should
then enable the proper interrupts and program the timer (if used). (See Table 3 for an example.) After initial power
up, the SBP 9961 is accessed only as needed to service the timer and enable or disable interrupts.

Figure 4 shows SBP 9961s system configuration. Figure 5 shows the use of a SBP 9961 with a SBP 9960 CRU
I/ 0 expander in emulation of the TMS 9901. (See TMS 9901 Systems lntetface Data Manual.)

9900 FAMILY SYSTEMS DESIGN 8-323

SBP 9961
INTERRUPT-CONTROLLER/TIMER

Peripheral
and Interface Circuits

SYSTEM INTERRUPTS -- -----------
I~ I~

,
L966 d8S

CLOCK~

~ ~I~ M
u u ~ ~

•
-

~
u

~-
:E
i'.= ct

h.
I ,...,

0 ~w

P- --}
z

4' wO 0
~ a: 0 c;; cu P- --cw z

ct c ct
P--- - - a..

x w

en c-
:::>

en a:i

:::> ~

~
a:i w
ct a:
I- 0
ct Q
c ct

, • •
en

11

~ ~ I-
w ..J :::> :::>
a: u 0

:::> :::> a: :::> w a.. a: u a: en CJ CJ ()
0 ~ 0
O'I u
O'I 0 _,

u

•

I~
Figure 4. SEP 9961 System Con.figuration

8-324 9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits-

~

ot

:i
I

0

:i
V""'

Ol----
< h I

Cl)
,._,

0 Cl) w

~--~ < we

~ a: 0
0 CJ P--- Cl) ow en <0 < :::> P--- ~ en al

en L::- w :::> en
al w
< a:
I- 0

Ii < 0 0 <

r ~

I- z ~
:::> 3 ..J

Cl) 0 u
w :::> a: :::>

u a: a: :::> a:
CJ w u

Cl) Q.

0 u
0
Ol
Ol

SBP 9961
INTERRUPT-CONTROLLER/TIMER

•
1~1C3 _.._
~IC2 ~

IC1 ...-

ICO

0
Q.

~

16-BITS CONTIGUOUS 1/0

t

SBP 9960
CRU 1/0 EXPANDER

I- ~
:::> z ..J
0 3 u
:::> :::>

I~ 0 c;; N M -0- a: a: a:
en en en Cl) u u u

~ JJJ. •
""\ ' ' ,,

~ ' Ir Ir Ir ' '
I~ 0 c;; N M -0- I- z ~

Cl) Cl) Cl) Cl) :::> 3 ..J
0 u
:::> a: :::>
a: u a:
u u

SBP 9961
~ ~ INTERRUPT-CONTROLLER/ u u

~

~

Ii~

1~~
INTREQ 0 -- ..J

:;; TIMER
CJ t=

-
~
u ---------
0
..J
u

I~ ~
~

SYSTEM INTERRUPTS

Figure 5. SEP 9961 Con.figuration with SEP 9960

9900 FAMILY SYSTEMS DESIGN 8-325

·8

Peripheral SBP 9961
INTERRUPT-CONTROLLER/TIMER

and Interface Circuits

ELECTRICAL SPECIFICATIONS

REcoMMENDED OPERATING CONDITIONS, UNLESS OTHERWISE NOTED Ice= 130mA

PARAMETER MIN NOM MAX

Supi;ily current, Ice 115 130 145

High-level output voltage, VoH 5.5

Low-level output current, IOL 20

1 SBP 9961MJ, SBP 9961NJ -55 125

Operating free-air temperature, TA l SBP 9961EJ -40 85

l SBP 9961CJ 0 70

ELECTRICAL CHARACTERISTICS (0\IER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE, UNLESS OTHERWISE

NOTED)

PARAMETER TEST CONDITIONSt MIN

V1H High-level input voltage 2

V1L Low-level input voltage

V1K Input clamp voltage Ice= MIN, l1=-12mA

loH High-level output current
Ice= 130 mA, V1H=2V,

V1L = 0.8 V, VoH = 5.5 V

Vol Low-level output voltage
Ice= 130 mA, V1H=2V,

VJL = 0.8 V, loL = 20 mA

11 Input current Ice= 130 mA, V1 = 2.4 V

t For conditions shown as MAX, use the appropriate value specified under recommended operating conditions
t Al I typical values are at I CC = 130 mA, TA = 25°C.

TIMING REQUIREMENTS OVER FULL RANGE OF OPERATING CONDITIONS

PARAMETER MIN

tc Clock cycle time 333

tr Clock rise time

tf Clock fall time

twL Clock pulse low width 111

twH Clock pulse high width 222

tsu1 Setup time for S0-54, CE, or CRUOUT before CRUCLK

tsu2 Setup time, input before valid CRUIN

tsu3 Setup time, interrupt before clock high

tw(CRUCLK) CRU clock pulse width

th Address hold time

tTC TIMCLK cycle time

SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS

PARAMETER TEST CONDITIONS MIN

tpo1
Propagation delay, t CLOCK to valid

CL=25pF,RL=5Kn
INTREQ, ICO-IC3

tpoz
Propagation delay, SO-S4 or CE

to valid CRUIN
CL= 25 pF, RL = 5K n

TY Pt MAX

0.8

-1.5

400

0.5

180

NOM MAX

10 20

10 20

200

200

60

100

80

200

TYP MAX

150

330

UNIT

mA

v
mA

oC

UNIT

v
v
v

µA

v

µA

UNIT

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

UNIT

ns

ns

8-326 9900 FAMILY SYSTEMS DESIGN

Peripheral
and Interface Circuits

SBP 9961
INTERRUPT-CONTROLLER/TIMER

tw ~ f-4- tr .,1 '1..,. ~ ~ tf I~ tc _..,J
I I I '1 I I

C--LO_C_K----~--~~~--~----~:\.J K_J..------------.~

I i l~tw(<,'.>Hl---..jl I
I I I

tsu3~ t-- I -1 ~ t su3

INTERRUPT \~_i _________ : _____ ,~------------------~
I I

.j f-4- tPD1 tPD1--, 1.-

\..____ __ ___,I I
f-tsu1.J

CE

J :I 1'4--tpo2-____,•-1

\ __ ~~-/-~\~~~-1~~~-
I

---H :~ tw(CRUCLKl

c_R_u_cL_K ___ ~1~~--,~~~~~~~~~~~~~~~~~~~~~~~-
I I I

~~t_su_1 __ ~-------~--t_h_~"""'~ ,.......,.......,n~1~•':.:.::::_t_p_o_2--------l ____ ---:----------------------,
...,~.........,.......,...,m VALIDADDRESS ~ VALIDADDRESS : x
S0-54 I I I

I I
I I I ~----•s~u_2_--+i_,..------------------~

VALID! INPUT DATA x
INT1-INT15, PO-P15 I I I

I I
I I I I.--~~~~~~~---.

VALID CRUIN x
CRUIN I I

I I I I
r-~'s_u_1-i _________ ~ ___ 'h _ _.,..., __... __... "l'""T"'l"T"l,.,....,.~T"T"",......,CTT-r-rTT1nn-rrTTTT:r-MrrrTTT

.-~m'"ll"T"m VALID DATA -

CRUOUT~
NOTE t: ALL TIMING MEASUREMENTS ARE FROM 10% and 901' POINTS

Switching Characteristics

9900 FAMILY SYSTEMS DESIGN 8-327

8<C
I

SBP 9961
INTERRUPT-CONTROLLER/TIMER

INPUT AND OUTPUT STRUCTURES

A. EQUIVALENT OF EACH INPUT

8-328

B. TYPICAL OF ALL
OUTPUTS

Vee

5K

OUTPUT

Peripheral
and lnterf ace Circuits

9900 FAMILY SYSTEMS DESIGN

Peripheral SBP 9964
and Interface Circuits TIMING CONTROLLER for the SBP 9900A

990/9900 FAMILY MICROCOMPUTER COMPONENTS

• 14-Bit Interval Timer-Event Counter
• RESET and LOAD Synchronization
• SBP 9900A Clock Generation
• 20-Pin Package
•TTL Compatible Open-Collector 110

Description

The SBP 9964 is an SBP 9900A peripheral support device which performs general timing and synchronization
functions usually implemented with SSI TTL packages.

Internal to the SBP 9964 is a 14-bit interval timer-event counter, an SBP 9900A clock generator and an SBP
9900A RESET and LOAD signal synchronizer. The interval timer-event counter communicates with the SBP
9900A through the SBP 9900A's Communication Register Unit (CRU) 1/0 interface. The interval timer-event
counter may be efficiently applied to a variety of applications in which the interval between external events, the
number of external events, or the initiation of periodic events is desired. RESET and LOAD synchronizers provide
for SBP 9900A compatible synchronization of these signals from asynchronously applied external signals.

TIMCLK

so
S1

S2
S3 CRU MODE

CRUCLK
l/F SELECT

CRUIN

CRUOUT

OSC-+----
SBP 9900A

CLOCK GENERATOR

RST-+-----------11~

L6 --------------~

RESET AND
LOAD

SYNCHRONIZATION

IAO

Figure 1. Functional Block Diagram

DESIGN GOAL

This document describes the design specifi
cations for a product under development.
Texas Instruments reserves the right to
change these specifications in any manner,
without notice.

9900 FAMILY SYSTEMS DESIGN 8-329

8

SBP 9965 Peripheral

PERIPHERAL INTERFACE ADAPTER and Interface Circuits

990/9900 FAMILY MICROCOMPUTER COMPONENTS

• Microprocessor Memory-Mapped 110 Peripheral Interface
• Dual 8-Bit Input/Output Peripheral Ports
• Internal Mask Registers and Associated Comfare Logic for Character/Data Recognition
• TTL Compatible Open-Collector 110
• 40-Pin Package

Description

The SBP 9965 Peripheral Interface Adapter is a byte oriented, parallel memory-mapped, input/ output interface
which interfaces to microprocessor CPU's through the memory bus. Two 8-bit 110 ports with independent
handshake lines are provided which allow a variety of byte oriented peripheral devices to be efficiently interfaced to
the CPU. High data rates are effected through parallel transfers of data between the CPU and the peripheral
device.

Two internal mask registers, one associated with each 110 port, may compare logic which flags the CPU whenever
an equal condition exists between 110 and mask register data. This feature is useful for byte string searches or
control character recognition.

{ PORTA
HANDSHAKE

{ PORTB
HANDSHAKE

DESIGN GOAL

This document describes the design specifi
cations for a product under development.
Texas Instruments reserves the right to
change these specifications in any manner,
without notice.

8-330

OBIN

Figure 1. Function Block Diagram

r-

l Cf PORTA
6 1/0
Cf

r-

l CD
CL PORTB
6 1/0 CD
CL

9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

8·

INTRODUCTION

GENERAL

TM 990 I 1 OOM Microcomputer Module
with TM 9901301 Microterminal

TM 990 Series
Microcomputer Modules

The TM 990 microcomputer modules are a series of low cost TMS 9900 family
microcomputers, assembled on a single printed circuit board. The TMS 9900 16-bit
NMOS microcomputer and the TMS 9980, a software compatible 8-bit data bus
microprocessor, will be the CPU's for the initial board systems. The TM 990
microcomputers offer a new level of hardware capability incorporating all of the powerful
TMS 9900 LSI components. Whether a single CPU unit with on board memory and
self contained 1/0 or an expanded multiboard system is needed, the application can be

· 8 implemented at the lowest possible systems cost. With its broad line of semiconductor
products, Texas Instruments manufactures most of the components utilized on the
modules and thus is able to exercise quality control before and after the assembly of
the system. This and high volume production ensure that the highest level of reliability
and the maximum possible cost savings are passed along to the OEM.

8-332 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

INTRODUCTION

At the heart of any of these systems is, of course, the software compatibility of the entire
990/9900 family. This product line fits squarely into that level of hardware/software
integration between the flexibility of the TMS 9900 family component level application
and the complete prepackaged system nature of the 990/ 4 and 990/ 10 minicomputers.
The common instruction set enables the engineer to base hardware decisions solely on
considerations of time, design, effort, and cost goals w.ithout concern for future
compatibility of products or the ability to change his level of integration of the current
product should initial considerations change.

The CPU boards, in particular, provide ready-to-use units for the evaluation of 9900
family component and software capability, especially when incorporated with the TM
990/301 microterminal. The OEM will find that these modules provide the best path
to market in a time-critical application or in an application whose volume is difficult to
assess. In most cases the modules will continue to be the best systems answer for such
applications, but if it should not, TI will supply all necessary schematics and artwork
to assist in the transition. The modules are completely supported by the AMPL *
prototyping system. This floppy disc system, described more fully in another part of this
book, has capabilities which make it invaluable for program development and debug as
well as for a final systems test unit.

*Trademark of Texas Instruments Incorporated.

9900 FAMILY SYSTEMS DESIGN 8-333

·8

TM 990/lOOM, TM 990/101, TM 990/180M
MICROCOMPUTERS

MICROCOMPUTER MODULES

TM 990 Series
Microcomputer Modules

The TM 990/100, TM 990/101, and TM 990/180 CPU modules come complete with
on-board memory and I/O interface. Each 7Vz x 11-inch (190 x 279 mm) board comes
with lk x 16 bits of TMS 2708 EPROM capability that can be expanded to 2k x 16
bits using TMS 2708's or 4k x 16 bits utilizing the jumper-selectable TMS 2716 option
on the TM 990/100 and TM 990/101 modules. Static RAM capacity is 256 x 16 (lk
x 16 for the TM 990/101) expandable to 512 x 16 (2k x 16 for the TM 990/101).
Sixteen bits of parallel I/O are implemented on all three CPU's, as is a RS-232 or TTY
serial interface. The TMS 9901, which performs the parallel I/O interface, also enables
the user to implement the full interrupt capability of the processor. The TMS 9901 and
the TMS 9902 (and for the TM 990/ 101, another TMS 9902 or a TMS 9903), which
handle the serial 1/0 interface, each have programmable interval timers incorporated
on-chip, thereby automatically providing the module user with two interval timers for
the TM 990/100 and TM 990/180, and three interval timers for the TM 990/101.
The TM 990/101 has two serial 1/0 parts. The bus structure of the CPU modules
makes it possible to expand the system beyond the single board level. Memory, 110,
and special purpose controller boards may be added along with the TM 990/ 510 card
cage for larger system applications.

EIA or teletype terminals can be optionally selected by the user and a differential line
driver can be added as a factory option. Additionally, the TM 990/301 microterminal
is an extremely low cost hexadecimal terminal option. The microterminal will execute
the TIBUG monitor commands and can be used as a computer front panel.

8-334 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

TM990/100M

e TMS 9900 16-bit CPU
• Up to 512 x 16 bits of

RAM, TMS 4042-2
(2111-1)

• Up to 2k words of
EPROM using TMS
2708 or 4k words using
TMS 2716

e TMS 9901
programmable system
interface

• TMS 9902 asynchronous
communications
controller

• EIA or TTY terminal
interface option

• Prototyping area for
custom applications

• Fully expandable bus
structure

• Designed to fit the TM
990/ 510 card cage

• TIB U G operating
monitor

9900 FAMILY SYSTEMS DESIGN

TM 990/lOOM, TM 990/101, TM 990/180M
MICROCOMPUTERS

TM 9901101 TM9901180

e TMS 9900 16-bit CPU e TMS 9980 16-bit CPU
• Up to 2k x 16 bits of • Up to lk x 8 bits of

RAM, TMS 4045-45 RAM TMS 4045-45
• Up to 2k words of • Up to 4k bytes of

EPROM using TMS EPROM using TMS
2708 or 4k words using 2708
TMS 2716 e TMS 9901

• DMA to on-board programmable system
memory interface

e TMS 9901 • TMS 9902 asynchronous
programmable system communications
interface controller

• Two serial 1/0 ports, • EIA or TTY terminal
using TMS 9902 interface option
asynchronous • Prototyping area for
communications customer applications
controllers • Fully expandable bus

8 Three programmable structure
interval timers • Designed to fit the TM

• Edge Triggered 990/ 510 card cage
Interrupt, with software • TIBUG operating
reset monitor

• CRU addressable L.E.D.
and DIP switch for
custom applications

• Designed to fit the TM
990/ 510 card cage

8-335

8

TM 990/lOOM, TM 990/101, TM 990/180M
MICROCOMPUTERS

SPECIFICATIONS

CPU:
Instruction set
Bit operation
System clock

TM990/100M

TMS9900
69 instructions
8, 16, or 32 bits
3 MHz

TM 9901101

TMS9900
69 instructions
8, 16, or 32 bits
3 MHz

Interrupts 16 levels-15 may be external 16 levels-15 may be
external

Interval timers

TMS9901
TMS 9902
TMS 9903

Two (in TMS 9901 and
TMS9902)

MAXIMl'M
RF-~OL\ITION INTERVAL

Memory: 16-bit word configuration
On-board EPROM/ROM lk words, expandable to

4k
On-board RAM

Off-board expansion

Input/Output
Parallel:

Serial:

Baud rates: (bps)

Interfaces
Bus: Data and address

Control
Parallel 110 and interrupts
Serial 1/0

256 words, expandable to
S12
Up to 32 k words

16 lines, expandable to 4k

Asynchronous Controller,
TMS 9902
5-8 bits/character
Programmable data
rate, stop bits, parity

7 5 300 2400 19,200
110 600 4800 3 8,400
150 1200 9600

3-state, TTL compatible
TTL-compatible
TTL-compatible
RS-232, 20-mA current
loop, or differential line
driver

Three (in TMS 9901,
TMS 9902, and TMS
9903, or in TMS 9901
and two TMS 9902's)

MAXIMUM
R~~'iOLllTION INTERVAL

,144 m'

lhA m'

Jli.4 m'

16-bit word configuration
lk words, expandable to

4k
lk words, expandable to

2k
Up to 32k words

16 lines (7 dedicated and 9
that may be
programmed as inputs,
outputs, or interrupts)
expandable to 4k

Serial Port A:
Asynchronous
Controller, TMS 9902

Serial Port B:
Asynchronous
Controller, TMS 9902,
or Synchronous
Controller, TMS 9903
5-8 bits/ character
Programmable data
rate, stop bits, parity

110 600 4800 19,200
150 1200 9600 38,400
300 2400

3-state, TfL-compatible
TTL-compatible
TTL-compatible
Port A; RS-232C, 20-mA

current loop, or
RS-232C Multidrop

Port B: RS-232C terminal,
or modem with optional
cable

TM 990 Serles
Microcomputer Modules

TM 990/lBOM

TMS 9980
69 instructions
8, 16, or 32 bits
2.5 MHz

6 levels-4 may be external

Two (in TMS 9901 and
TMS 9902)

MAXIMl 1M
R~~'iOLl'TION INTERVAL

25.h µ ..

ih.~ µ~

414 m'

14."7 m..,

8-bit byte configuration
2k bytes, expandable to 4k

512 bytes, expandable to 1 k

Up to 16k bytes

16 lines, expandable to 2k

Asynchronous controller,
TMS 9902
5-8 bits/character
Programmable data rate,
stop bits parity

7 s 300 2400 19,200
110 600 4800 38,400
150 1200 9600

3-state, TrL compatible
TTL-compatible
TTL-compatible
RS-232, 20-mA current

loop, or differential line
driver

8-336 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

TM 990/lOOM, TM 990/101, TM 990/180M
MICROCOMPUTERS

TM990/JOOM TM990/JOI TM 990//80M

Expansion Prototyping Space for one 40-pin DIP Not applicable Space for one 40-pin DIP
Area and four 16-pin DI P's and four 16-pin DI P's

Software Tl BUG monitor TIBUG monitor TIBUG monitor
self-contained in EPROM self-contained in self-contained in
(TM990/401-1) EPROM EPROM

(TM 990/401-3) (TM 990/401-2)

Mating Connectors
Bus: 100-pin, 0.125-inch

(3,18-mm) centers
Parallel l/O: 40-pin, 0.100-

inch (2,54-mm) centers
Serial l/O: 25-pin (male)

Tl H4311211-50 (Solder tail), Tl H4311 l l-50 (Wire wrap), or Viking 3VH50

Power Requirements

Operating Temperature
Range

Physical Characateristics:
Width
Height
Depth
Board thickness
Weight

Terminations
l/O and Interrupt

READY B and HOLD B

Tl H421121-20, 3M 3464-0001, or Viking 3VH2011JN5

Cannon DB-25P, Cinch DB-25P, or ITT DB-25P

5V± 3% 1.3A
12V± 3% 0.2A

-12V± 3% 0.lA

0°C to 70°C

lK RAM 2K RAM
lK EPROM 2K EPROM

5V± 3% l.6A
12V± 3% 0.2A

-12V±3% 0.2A
- 5V regulated on board
from -12V

0°C to 70°C

1.8A
0.4A
OJA

11 inches (279 mm)
7.5 inches (190 mm)

11 inches (279 mm)
7.5 inches (190 mm)
0.5 inch (12.7 mm)
0.062 inch (1,58 mm)
1 pound (0.45 kg)

0.062 inch (1,58 mm)

4.7 kO
5VVVV\r0

10 kO
5v-./VV'v-O

2200
5V~

3300~

ORDERING INFORMATION

5V± 3% 1.3A
12V± 3% 0.2A

-12V± 3% 0.lA

0°C to 70°C

11 inches (279 mm)
7.5 inches (190 mm)

0.062 mm (1,58 mm)

4.7 kO
5V-./VV'v-O

TM 990/lOOM-l -TMS 9900 microcomputer board with TIBUG monitor in two TMS 2708 EPROM's and
EIA or TTY serial I/O jumper option.

TM 990/ lOOM-2 -TMS 9900 microcomputer board with unprogrammed TMS 2708 EPROM's and EIA or
differential line driver jumper option.

TM 990/lOOM-3 -TMS 9900 microcomputer board with fully expanded memory (four TMS 2716 EPROM's
and eight TMS 4042-2 RAM's) and EIA or differential line driver jumper option.

TM 990/180M-l -TMS 9980 CPU board with TIBUG monitor in two TMS 2708 EPROM's and EIA or
TTY serial I/O jumper option.

TM 990/180M-3 -TMS 9980 CPU board with four unprogrammed TMS 2708 EPROM's, eight TMS 4042
RAM's, and EIA or differential line driver jumper option.

TMS990/101M OPTIONS

TM990/ 101-1TMS9900 microcomputer board with TIBUG monitor in two TMS 2708 EPROM's and TTY, EIA
and microterminal on the local serial port. The remote serial port supports synfh\.onous/asynchronous
communications.

TM990/ 101-2 TMS 9900 microcomputer board with unprogrammed TMS 2708 EPROM's and multidrop, EIA and
microterminal options on the local serial port. The remote serial port supports synchronous/
asynchronous communications.

TM990/ 101-3 TMS 9900 microcomputer board with fully expanded memory (four TMS 2716 EPROM 'sand eight
TMS 4045-45 RAM 's) and TTY, EIA and microterminal options on the local serial port. The remote
serial port supports synchronous/asynchronous communications.

9900 FAMILY SYSTEMS DESIGN 8-337

TM 990/ lOOM MICROCOMPUTER

PARALLEL 110 --------~---------.
CONNECTORS

BUS CONNECTOR.............._--------~

TM 990 Serles
Microcomputer Modules

-SERIALl/O
CONNECTOR

TMS9902
ASYNCHRONOUS

- COMMUNICATIONS
CONTROLLER

EPROM

The TM 990/lOOM is an assembled, tested microcomputer module utilizing the
powerful, NMOS 16-bit, TMS 9900 microprocessor as its CPU. With RAM and
ROM/EPROM included on board as well as programmable serial and parallel I/O, the
TM 990/lOOM is a powerful single-board microcomputer. Since all address, data, and
control lines are brought to the board connectors, the board can be expanded to use
the entire capabilities of the TMS 9900 in larger systems.

OPERATION

The TM 990/lOOM microcomputer is a software compatible member of the TMS
9900/990 family. The TMS 9900 is used as a CPU to provide 16 bits of processing
power with a minicomputer instruction set which includes multiply and divide. The TM
990/lOOM module is designed for 3 MHz operation, utilizing the full 16 levels of
prioritized interrupts and the advanced memory-to-memory architecture of the TMS
9900. Additionally, the bus structures are set up to take advantage of the full 64K byte
memory addressing capability of the 9900 and the nonmultiplexed memory, I/O and
interrupt buses.

8-338 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

TM 990/lOOM MICROCOMPUTER

MEMORY

The on-board memory includes both an EPROM/ROM section and a static RAM
section. Four sockets are available for TMS 2708, TMS 2716 EPROM or TMS 4 700,
TMS 4 732 ROM operation. The assembled price includes two TMS 2708's, or lK
words. Using the available jumper option, all four sockets can be populated with TMS
2716's, providing a maximum on-board EPROM capability of 4K words. The static RAM
area consists of two 256-word banks of memory. Four TMS 4042-2 (TMS 2111-1) are
populated and four additional sockets are included. The cycle time of this memory section
is 0.667 microseconds. The address map is shown in Figure 1; the minimum area of
EPROM RAM area may not be used for off-board expansion. DMA control lines are
also accessible on the bus.

INTERRUPTS AND TIMERS

Fifteen maskable interrupts plus the reset and load trap vectors are implemented. Table
1 shows the implementation. The TMS 9901 handles all 15 external interrupts which
can be generated from either the bus connector or the I/O bus. The TMS 9901 enables
each level to be individually maskable under program control. Additionally, level 3 can
be programmed to use the interval timer in the TMS 9901. Level 4 can be generated from
the TMS 9902 as an interval timer or for three other serial interface conditions (see
the TMS 9902 Data Manual). Two programmable timers, therefore, are available on
board.

0000 1K X 16
2708

0800 1KX16
2708

1000

2000

OFF-BOARD
EXPANSION

MEMORY

FCOO 256 x 16
4042-2

FFOO 256 x 16
4042-2

Figure 1. Memory Address Map.

9900 FAMILY SYSTEMS DESIGN 8-339

·8

TM 990/lOOM MICROCOMPUTERS TM 990 Series
Microcomputer Modules

I/O

The serial I/O and the parallel I/O are handled over the dedicated I/O bus of the TMS
9900, the communications register unit (CRU). Table 2 lists the address assignments
within the dedicated 4K CRU address space. The TMS 9902 acts as the controller for
this asynchronous serial interface. The character length, baud rate (7 5 to 38,400), and
parity and stop bits are programmable. Three optional types of interface are supported:

• EIA

• 20 mA neutral current loop TTY

• Private wire differential line driver I receiver .

The TM 990/lOOM board is delivered complete with a 25-pin RS-232 type female
connector, and is jumper selectable to support EIA or TTY operation. The differential
line driver is normally unpopulated (see Options). Also, the TMS 9903 synchronous
communications controller can be utilized since the TMS 9902/9903 are socket
compatible.

INTERRUPT

LEVEL
FUNCTION

0 Reset or PRES

1 External Device

2 External Device

3 Clock or External

4 Serial Int. or Ext.

5-15 External Devices

Load Restart

Table 1. Interrupts.

BASE ADDRESS
CRU BIT NUMBER FUNCTION

(REGISTER 12)

008016 4016 ,.. 5F16 On-Board Serial 1/0 Port (TMS 9902)

010016 8016 =J;. 9F 16 On-Board 16 1/0 Parallel Interface,

Interrupt Status Register, Interrupt

Mask Register, and Interval Timer

(TMS 9901)

000016 0016 -!' 3F16

! Reserved for On-Card
OOC016 6016 ,_, 7F1s

Expansion
014016 A016 sa: FF16

20016 10016 J11i FFF16 Off-Board CRU

Table 2. CR U Address Map.

8-340 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

TM 990/lOOM MICROCOMPUTERS

The parallel I/O is handled by the TMS 9901; 16 parallel lines are all interfaced to
the top edge connector which has 40 pins on 0.100 inch (2.54 mm) centers. Additionally,
eight parallel lines are interfaced to the bus connectors. The programmable features of
the TMS 9901 permit configuring these lines as I/O lines or interrupts (refer to the
TMS 9901 Data Manual). All I/O lines are equipped with pullup resistors.

TIBUG

The TIBUG monitor TM 990/401-1 is normally supplied preprogrammed in the
populated TMS 2708 EPROM's (see Options). Its operation is described in the User's
Manual or the TM 990 Series literature.

PROTOTYPING AREA

The prototyping area is large enough to accommodate one 40-pin DIP (0.6 inch 15,24
mm centers) plus four 16-pin DIP's (0.3 inch 7 ,62 mm centers).

OPTIONS

The TM 990/lOOM-1 board is equipped with two TMS 2708's preprogrammed with
the TIBUG monitor, and the serial I/O is jumper selectable as EIA port or a TTY
interface. The TM 990/lOOM-2 board is populated with two blank EPROM's, and a
private wire differential line driver interface is populated instead of the TTY interface.
The TM 990/lOOM-3 board is delivered with the maximum memory expansion (512
words of RAM and 4K words of unprogrammed EPROM) and the differential line driver.
Other software or accessories, such as the line by line assembler and the microterminal,
may be ordered under separate part numbers.

TMS 9901
PSI

1/0
CONNECTOR

TIM 9904
CLOCK

RESET

256 x 16
RAM

1K X 16
EPROM

TMS 9902
ACC

D 48MHz

~
1-------,
I 256 X 16 1 ---, RAM I
L.------1

r-;-K-x-~i6·~-1

----~ JK x 16 I
1--~,!;!£.M __ ,J

Figure 2. TM 9901 JOOM Block Diagram

9900 FAMILY SYSTEMS DESIGN 8-341

I

g,... I

I

8

TM 990/101 MICROCOMPUTER

PARALLEL 1/0 ----------.
CONNECTOR

TIM 9904
CLOCK

TMS 9901
PARALLEL 1/0
CONTROLLER

TM 990 Series
Microcomputer Modules

....----------SERIAL 1/0
CONNECTORS

The TM 9901101 microcomputer is a member of Texas Instruments line of OEM
computer products which take full advantage of Texas Instruments broad based
semiconductor technology to provide economical, computer-based solutions for OEM,
applications. The CPU, clock, memory, 1/0, and bus interface are all contained on a
single 7Y2 x 11 inch (190,5 x 279 mm) printed circuit board.

OPERATION

The TMS 9900 microprocessor is the heart of the TM 990/101. This 16-bit CPU
features a memory to memory architecture and a minicomputer instruction set which
includes hardware multiply and divide. A total of eight addressing modes, including
indirect and pre-indexed addressing, provide pmverful software capabilities while the
TMS 9900's two-address architecture makes a memory-to-memory add possible without
having to load register pairs with addresses or using a dedicated accumulators. The TMS
9900's instruction set is upward compatible with the TI 990 minicomputer family. The
TMS 9900 addresses 32K 16-bit words of memory. In addition to DMA and memory
mapped 1/0, the TMS 9900 performs 1/0 functions on a separate data structure called
the Communications Register Unit (CRU). The CRU consists of 4096 output bits and
4096 input bits. Each bit is separately addressable. Five instructions enable the
programmer to perform both single and multibit CRU operations.

8-342 9900 FAMILY SYSTEMS DESIGN

TM 990 Serles
Microcomputer Modules

TM 990/101 MICROCOMPUTER

MEMORY

The TM 990/101 microcomputer contains up to 4K bytes of static RAM (TMS 4045)
on-board. All positions are socketed. Sockets are provided for up to 8K bytes of EPROM
(TMS 2716). Convenient jumper options also allow utilization of TMS 2708 lK x 8
bit EPROM's. Provisions are included for deconfiguration of either or both on-board
RAM and on-board EPROM, if desired, when used with other TM 990 series Memory
Expansion boards. A jumper-selectable wait state for the EPROM is also included.

All memory device locations are socketed. A PROM controls memory address decoding.
The RAM is decoded as one bank but the two EPROM pairs are decoded as separate
banks, allowing custom placement of EPROM. Such a custom decoding scheme can be
done by obtaining a blank SN74S287 PROM, and programming it properly.

CONFIGURATION MEMORY MAP ALTERNATE MEMORY MAP

RAM. bank 2 FOOOwF7FE 00001e-07FE1e

RAM, bank 1 F8001e·FFFE1e 08001e·OFFE1e

EPROM, all TMS 2708* 00001e-OFFE1e F0001e-FFFE1e

EPROM, all TMS 2716* 00001e- l FFE1e E0001e-FFFE1e

*Jumper selectable

INTERRUPTS AND TIMERS

Seventeen interrupt inputs are available on the TM 9901101. All interrupts trap through
vectors in memory. Two interrupts are non-maskable interrupts while the others are
maskable. There are three interrupt sources on board: Serial I/O Port A, Serial I/O
Port B, and the TMS 9901 interval timer. Interrupt 6 may be triggered on either a
positive or negative transition. All other interrupts are active low. The 15 maskable
interrupts are also automatically prioritized by the microprocessor.

INTERRUPT LEVEL VECTOR DESCRIPTION

PRES 0 0000-000215 Unmaskable, active low.

RESTART LOAD FFFCwFFFE1e Unmaskable, active low. May

be activated by software (LREX).

INT1-INT5 1-5 0004w00161s Maskable, dedicated, active low.

INT6 6 OOl 81e·OOl A1e Maskable, dedicated(+) or(-)

edge detect or active low.

INT7-INT15 7-15 001 C1e-003E1s Maskable, active low. May be

programmed as interrupt, input,

or output.

9900 FAMILY SYSTEMS DESIGN 8-343

TM 990/lOlM MICROCOMPUTERS

I/O

TM 990 Series
Microcomputer Modules

The TM 9901101 contains up to 16 programmable I/O lines controlled by a TMS 9901
Programmable Systems Interface. Seven lines are dedicated I/ 0 lines while 9 lines may
be programmed as either I/O or interrupt inputs. The 16 I/O lines appear on a 40-pin ·
edge connector which mates with ribbon cable or round cable.

Two serial interfaces are available on the TM 990/101. Each port is controlled by a
TMS 9902 Asynchronous Communications Controller. Serial communications rates of up
to 38,400 baud may be maintained. Port A is compatible with the serial I/O port on
the TM 990/100 microcomputer. Port A supports EIA compatible terminals as well as
20 mA neutral current loop teletypes. Port A also supports Tl's TM 990/301
Microterminal. A version of the TM 990/101 supports a differential line driver-receiver
communications interface in place of the TTY interface. This multidrop interface
supports 9600 baud serial communications at distances of up to 10,000 ft. on shielded
twisted pairs. Serial Port B supports communications with EIA compatible terminals as
well as popular modems such as Bell Type 103] and 212A, using an optional modem
cable.

TM 990/101 memory and I/O capacity may be increased by adding Texas Instruments
standard I/O and memory expansion cards. Memory may be expanded to 60K bytes by
the addition of the TM 990/201 memory expansion boards, leaving 4K bytes open for
memory mapped I/O. Parallel I/O and interrupt expansion capability may be increased
by the addition of the TM 990/310 48-I/O Data Module.

The development cycle for TM 990/101 based products may be significantly reduced
by using Texas Instruments Advanced Microprocessor Prototyping System (AMPL).
TMS 9900 emulation as well as 10 MHz trace capability are featured. This floppy disk
based software development system permits programs to be edited, assembled, linked,
loaded, and executed much faster than conventional paper tape or cassette based systems.
TMS 9900 emulation allows development and debugging of software directly on the TM
990/101 while monitoring and controlling this environment from the AMPL prototyping
system.

8-344 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

TMS 9901
PSI

1/0
CONNECTOR

9900 FAMILY SYSTEMS DESIGN

TM 990/lOlM MICROCOMPUTERS

MPU
TIM 9940
CLOCK

RESET

lK X 16
RAM

lK X 16
EPROM

TMS 9902
ACC

PORT A

RS·232·C
MODEM

48 MHz

)
r-----~

---~ lK x 16 I
t_~~~-J

DMA
CONTROL

r------i
I 1K X 16 or I

----i 3K x 16 I
L _ _E!_R2~_J

L. E. D.

5 SW DIP

PORT B

RS·232·C
TTY MULTYDROP
MICROTERMI NAL

TM 9901101 Block Diagram

8-345

8..,,.
I

TM 990/180M MICROCOMPUTER

PARALLEL 1/0 --------.....---------..
CONNECTORS

TMS 9980 _
MICROPROCESSOR

BUS CONNECTOR ~""'-----------J

TM 990 Series
Microcomputer Modules

~--- SERIAL 1/0
CONNECTOR

TMS9902
:-' ASYNCHRONOUS

COMMUNICATIONS
CONTROLLER

EPROM

RAM

The TM 990/180M is an assembled, tested microcomputer module utilizing the NMOS
16-bit TMS 9980 microprocessor as its CPU. The TMS 9980 utilizes an eight bit data bus
which may be the most cost effective solution for smaller byte-dedicated operations. With
RAM and ROM/EPROM included on board as well as programmable serial and parallel
110, the TM 990/180M is a powerful single-board microcomputer. Since all address, data,
and control lines are brought to the board connectors, the board can be expanded to use the
entire capabilities of the TMS 9980.

OPERATION

The TM 990/180M microcomputer module is a software compatible member of the TMS
9900/990 family. The TMS 9980 is used as a CPU to provide 16 bits of processing power
with a minicomputer instruction set which includes multiply and divide. The TM
990/.180M module is designed for 2.5 MHz operation, utilizing the full six levels of
prioritized interrupts and the advanced memory-to-memory architecture of the TMS 9980.
Additionally, the bus structures are set up to take advantage of the full 16K byte memory
addressing capability of the TMS 9980 and the nonmultiplexed memory, 1/0 and interrupt
buses. The bus structure is compatible with the other boards of the TM 990 series such as
the TM 990/lOOM board.

8-346 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

:rMs 9901
PSI

1/0
CONNECTOR

TMS 9980
MPU

TTL
BUFFERS

TM 990/180M MICROCOMPUTER

CLOCK

RESET

512 x 8
RAM

2048x8
EPROM

TMS 9902
ACC

.... ------,
---~ 512X8 I :_ __ '!.A~ __ j

,-------,
___ _; 2048x8 I

L-~~o~- J

• OR DIFFERENTIAL LINE
DRIVER INTERFACE

Figure 2. TM 9901180M Block Diagram

MEMORY

The on-board memory includes both an EPROM/ROM section and a static RAM section.
Four sockets are available for TMS 2708 EPROM or TMS 4 700 ROM operation. The
assembled price includes two TMS 2708's or 2K bytes. The static RAM area consists of
four 256 byte banks of memory. Four TMS 4042-2 (TMS 2111-1) are populated, and four
more sockets are included. The cycle time of this memory section is 1.33 microseconds.
The memory address map is shown in Figure 1.

0000
2K x 8 TMS2708

POPULATED

0800
2Kx8 TMS2708

ON-BOARD
EXPANSION

AREA
1000

OFF-BOARD
EXPANSION

MEMORY

3COO
512x 8 TMS4042-2

ON-BOARD
EXPANSION

AREA

3EOO
512 x 8 TMS 4042-2

POPULATED Figure 1. Memory Address Map

9900 FAMILY SYSTEMS DESIGN 8-347

s~
I

TM 990/180M MICROCOMPUTER

INTERRUPTS AND TIMERS

TM 990 Series
Microcomputer Modules

Four maskable interrupts plus the reset and load trap vectors are implemented. Table 1
shows the implementation. The TMS 9901 handles all four external interrupts which can
be generated from either the bus connector or the I/O bus. The TMS 9901 enables each
level to be individually maskable under program control. Additionally, level 3 can be
programmed to use the interval timer in the TMS 9901. Level 4 can be generated as an
interrupt from the TMS 9902. One of the functions that will cause this interrupt is the
interval timer. Two programmable timers, therefore, are available on board.

LEVEL TRAP VECTOR

FROM TMS 9901 LOCATION
FUNCTION

1 000016 Reset pushbutton or PRES from the chassis backplane connector.

2 3FFC16 Software (LREX) or RESTART from the chassis backplane connector.

3 000416 Real Time Clock (TMS 9901) or external device.

4 000816 Serial interface (TMS 9902) or external device.

5 OOOC16 External device.

6 001016 External device.

Table 1. TMS 9980 Interrupts

INPUT /OUTPUT

The Serial I/O and the parallel I/O are handled over the dedicated I/O bus of the TMS
9900 or the communications register unit (CRU). Table 2 lists the address assignments
within the dedicated 4K CRU address space. The TMS 9902 acts as the controller for this
asynchronous serial interface. The character length, baud rate (75 to 38,400), parity
and stop bits are programmable. Three optional types of interface are supported:

·8 e EIA
Q 20 mA neutral current loop TTY
• Private wire differential line driver I receiver.

8-348 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

TM 990/180M MICROCOMPUTER

BASE ADDRESS CRU BIT NUMBER FUNCTION

000016 00016 03F16 Reserved for on-board CRU

Expansion

008016 04016 --.. 05F16 On-board serial 1/0 (TMS 9902)

OOC016 06016 ~ 07F16 Reserved for on-board CRU

Expansion

010016 08016 09F16 On-board parallel 1/0 interface

interrupt status register, interrupt

mask register, interval timer

(TMS 9901)

014016 OA016 r OFF16 Reserved for on-board CRU

Expansion

020016 10016 3FF16 Off-board CRU

Table 2. CR U Address Map

The TM 990/180M board is delivered complete with a 25-pin RS-232 type female
connector, and is jumper selectable to support EIA or TIY operation. The differential line
driver is normally unpopulated (see Options). Also, the TMS 9903 synchronous
communications controller can be utilized, since the TMS 9902/9903 are socket
compatible.

The parallel 1/0 is handled by the TMS 9901; 16 parallel lines are all interfaced to the top
edge connector which has 40 pins on 0.100 inch (2,54 mm) centers. Additionally, eight
parallel lines are interfaced to the bus connectors. The programmable features of the TMS
9901 permit these lines to be set up as 1/0 lines or interrupts (refer to the TMS 9901
Data Manual). All 1/0 lines are equipped with pullup resistors.

TIBUG

The TIBUG monitor TM 990/401-2 is normally supplied preprogrammed in the
populated TMS 2708 EPROM's (see Options). Its operation is described in the TIBUG
User's Manual or the TM 990-series literature.

9900 FAMILY SYSTEMS DESIGN 8-349

TM 990/180M MICROCOMPUTER

PROTOTYPING AREA

TM 990 Series
Microcomputer Modules

The prototyping area is large enough to accommodate one 40-pin DIP (0.6 inch 15,24 mm
centers) plus four 16-pin DIP's (0.3 inch 7,62 mm centers).

OPTIONS

The TM 990/180M-1 board is equipped with two TMS 2708 EPROM's preprogrammed
with the TIBUG monitor, and the serial I/O is jumper selectable as an EIA port or a TTY
interface. The TM 990/180M-3 board is populated with four TMS 2708 EPROM's
(unprogrammed), eight TMS 4042-2 RAM's, and a private wire differential line driver
interface instead of the TTY interface. Other software or accessories, such as the line by
line assembler and the microterminal, may be ordered under separate part numbers.

8-350 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

TM 990/201 MEMORY
EXPANSION BOARD

TMS 4045
STATIC RAM

BUS CONNECTOR

TMS 2716
EPROM __ __.

The TM 990/201 is an assembled, tested, memory expansion board designed for use with
TMS 9900-based microcomputer modules such as the TM 990/lOOM. The TM 990/201
contains both static RAM and EPROM memory, expandable to a maximum configuration
of 8K x 16 bit words of RAM and 16K x 16 bit words of EPROM. The TM 990/201 does
not support the TMS 9980-based TM 990/180M microcomputer.

FEATURES

8 Bus-compatible with the TM 990/ lOOM microcomputer module
• 4K words TMS 2716 EPROM, expandable to 16K words
• 2K words TMS 4045 static RAM, expandable to 8K words
e 1 microsecond cycle time (3MHz)
• TTL-compatible interface
• Designed to fit the TM 990 I 510 card cage.

9900 FAMILY SYSTEMS DESIGN 8-351

8
I

TM 990/201 MEMORY
EXPANSION BOARD

16K X 16
EPROM

MEMORY

.. --- -

ADDRESS
DECODE & TIMING

LOGIC

• ~

• 1

TTL BUFFERS

• ~ •
• , •

SK X 16
STATIC RAM

MEMORY

J

•

TM 990 Series
Microcomputer Modules

[TM 990 BUS CONNECTOR J

DESCRIPTION

The TM 990/201 memory expansion board is a member of Texas Instruments' line of
OEM computer products which takes advantage of Texas Instruments' broad based
semiconductor technology to provide economical, computer based solutions for OEM
applications. The memory expansion board is contained on a 7llz x 11 inch printed circuit
board which is fully compatible with the TM 990 board format.

The TM 990/201 features up to 8K x 16 bits of static RAM and up to 16K x 16 bits of
EPROM. The static RAM array is composed of Texas Instruments TMS 4045, lK x 4
static memory devices. The EPROM array comprises Texas Instruments TMS 2716, 2K x
8 EPROM devices. The static RAM array is arranged into four banks of memory, each 2K
x 16. The EPROM array is likewise arranged into eight banks, each 2K x 16. Both
memory arrays are socketed for convenient memory expansion. The TM 990/201 -41 is
half socketed, ahd the TM 990/201 -42 and TM 990/201 -43 are fully socketed.

The TM 990/201 memory controller logic provides the timing and memory mapping
functions necessary to interface the TM 990/201 to 16-bit TM 990/l:XX series
microcomputers. The memory map is switch selectable for both the RAM and EPROM
arrays. Sixteen convenient memory map configurations are possible for each array, and the
maps are configured on 2K word address boundaries. The map logic also is designed to
accommodate customized memory maps.

8-352 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

TM 990/201 MEMORY
EXPANSION BOARD

The TM 990/201 -4X family of memory expansion boards is populated with TMS
4045-45 static RAM's and TMS 2716 EPROM's. Both devices offer 450 nsec access time;
consequently, each memory cycle to the TM 990/201. is extended one clock cycle by the
insertion of a WAIT state. If faster static RAM' s are utilized in the RAM array, the
WAIT state in RAM memory cycles can be conveniently removed using only a jumper.

OPTIONS

The TM 990/201 is available in the following three versions.

MEMORY POPULATED
MEMORY EXPANSION AREA

MODEL NO. (EXTRA SOCKETS PROVIDED)

EPROM RAM EPROM RAM

TM 990/201 -41 4K x 16 2K x 16 4K x 16 2K x 16

TM 990/201 -42 BK x 16 4K x 16 BK x 16 4K x 16

TM 990/201 -43 16K x 16 BK x 16 - -

MEMORY CONFIGURATION

Figures 1and2 show the memory configurations of RAM and EPROM available on the
TM 990/201 memory expansion board.

9900 FAMILY SYSTEMS DESIGN 8-353

I

8~

TM 990/201 MEMORY
EXPANSION BOARD

~TCH
NO.

HEX MICROCOMPUTER
5

A().AJ MEMORY MEMORY MAP 8
(HEXI ADDRESS /100 7

8

0
OOQG.

EPROM
OFFF

1
100(). EPROM
1FFF IEXPAN.I

2
200().

2FFF

3
3000-
JFFF

4
400().

4FFF

5
500().

5FFF

6
6000-
8FFF

7
700().

7FFF

8
800().

SFFF

9
9000.
9FFF

A
AOQ().
AFFF

B
BOO().

BFFF

c cooo.
CFFF

D
[)()()().

DFFF

E
EOOO· MAPPED
EFFF 1/0

F
FOO().

FFFF RAM

'OFF• 1,0N• O

0 1

ON OFF
ON ON
ON ON
ON ON

DIP SWITCH CODES"

2 3 4 5 6 7 8 9

ON OFF ON OFF ON OFF ON OFF
OFF OFF ON ON OFF OFF ON ON
ON ON OFF OFF OFF OFF ON ON
ON ON ON ON ON ON OFF OFF

A

ON
OFF
ON
OFF

TM 990 Series
Microcomputer Modules

B c D E F HEX

OFF ON OFF ON OFF
OFF ON ON OFF OFF
ON OFF OFF OFF OFF
OFF OFF OFF OFF OFF

Figure 1. TM 9901201 Ram Decode Configurations

8-354 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

~ITCH
NO.

HEX MICROCOMPUTER 1
AG-Al MEMORY MEMORY MAP 2
IHEXI ADDRESS /100 J

4

0
0000.

EPROM
OFFF

1
100()._ EPROM
1FFF IEXPAN.I

2
200().

2Fff

J
JOO().

JFFF

4
4000-
4Fff

5
5000-
SFFF

8
8000-
8FFF

7
700().

7FFF

8
8000-
BFFF

9
9000.
9FFF

A
AOQ().

AFFF

B
8000-
BFFF

c COO().

CFFF

D
()()()().

DFFF

E
EOQ(). MAPPED
EFFF 1/0

F
FOO().

FFFF RAM

"OFF• 1, ON• 0

0 1 2

ON OFF ON
ON ON OFF

ON ON ON

ON ON ON

J 4 5

OFF ON OFF
OFF ON ON
ON OFF Off
ON ON ON

TM 990/201 MEMORY
EXPANSION BOARD

SWITCH CODES"

6 7 8 9 A B c D E f HEX

ON OFF ON OFF ON OFF ON OFF ON OFF
OFF OFF ON ON OFF OFF ON ON OFF OFF
OFF OFF ON ON ON ON OFF Off OFF OFF
ON ON OFF OFF OFF OFF OFF OFF OFF OFF

Figure 2 TM 9901201 Eprom Decode Con.figurations

9900 FAMILY SYSTEMS DESIGN 8-355

TM 990/206 EXPANSION
MEMORY BOARD

BUS CONNECTOR

TM 990 Serles
Microcomputer Modules

The TM 990/206 is an assembled, tested, RAM expansion memory board designed for use
with TMS 9900-based microcomputer modules such as the TM 990/ lOOM. The TM
990/206 contains static RAM memory devices up to a maximum configuration of 8K x 16
words. The TM 990/206 is similar to the popular TM 990/201 memory board, but only
the RAM section is populated. The TM 990/206 does not support the TMS 9980-based
TM 990/180M microcomputer.

FEATURES:

C> Bus compatible with the TM 990/lOOM microcomputer module
~ 8 e 4K words of TMS 4045 static RAM, expandable to 8K words

• lµsec cycle time (3 MHz)
• TTL-compatible interface
• Designed to fit the TM 990/ 510 card cage.

8-356 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

TM 990/206 EXPANSION
MEMORY BOARD

16K X 16
ADDRESS

STATIC RAM
DECODE

MEMORY
& TIMING

LOGIC

•

t

[TTL BUFFERS]

l TM 990/100M BUS CONNECTOR]

DESCRIPTION

The TM 990/206 expansion memory board is a member of Texas Instruments' line of
OEM computer products which take advantage of Texas Instruments' broad based
semiconductor technology to provide economical, computer based solutions for OEM
applications. The memory expansion board is contained on a 7Y2 x 11 inch printed circuit
board which is fully compatible with the· TM 990 board format.

The TM 990/206 features up to 8K x 16 static RAM. The RAM array is composed of
Texas Instruments TMS 4045-45 lK x 4 static memory devices. The array is configured
into four banks of memory, each bank consisting of 2K words. The RAM array is fully
socketed for convenient memory expansion.

The memory controller logic provide-s the timing and memory mapping functions
necessary to interface the TM 990/206 to 16-bit TM 990/ lXX series microcomputers.
Sixteen convenient, switch selectable, memory map configurations are possible. All maps
are configured on 2K word address boundaries.

The TM 990/206-4X family of memory expansion boards is populated with TMS 4045-45
static RAM's, featuring an access time of 450 nsec. For operation with a TM 990/ lOOM
microcomputer, each memory cycle to the TM 990/206 is extended one clock cycle by the
insertion of a WAIT state. If faster static RAM's are utilized, the WAIT state can be
conveniently removed with a jumper.

9900 FAMILY SYSTEMS DESIGN 8-357

TM 990/206 EXPANSION
MEMORY BOARD

OPTIONS

The TM 990/206 is available in two versions:

Model

TM 990/206-41
TM 990/206-42

RAM Population

4KX16
8KX16

MEMORY CONFIGURATION

TM 990 Series
Microcomputer Modules

Expansion Area Addtiional Sockets

4KX16

Figure 1 shows the possible memory configurations for the RAM areas available on the
TM 990/206.

~TCH SWITCH CODES•

NO. 0 1 2 3 4 5 6 7 8 9 A B c D E F HEX

HEX MICROCOMPUTER 5 ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF
AD-Al MEMORY MEMORY MAP 6 ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF
IHEXI ADDRESS 7 ON ON ON ON OFF OFF OFF OFF ON ON ON ON 0FF OFF OFF OFF

/100 8 ON ON ON ON ON ON ON ON OFF OFF OFF OFF OFF OFF (!FF OFF

0000. "' 0 EPROM .- c
OFFF

~
a:
0

1000. EPROM ~
1

1FFF (EXPAN.I
N ~ Riil.KO .., --"' 2

2000- c
2FFF a: RBLKO Riil.Ki

3000-
~--1 1---

3
3FFF l:i

4
4000-
4FFF --5000-

5
5FFF RllLK4

6000- I
6

6FFF l
7

7000-
7FFF

8
aooo.
BFFF

9
9000.
9FFF

A
ADDO-
AFFF

B
BODO-
BFFF

~-

c
cooo.
CFFF

D
[)()()().

DFFF

E
EOOO· MAPPED
EFFF 1/0

F
FOOD-
FFFF RAM

•OFF• 1,0N • 0

Figure 1. TM 9901206-4X Ram Decode Configuration

8-358 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

TM 990/206 EXPANSION
MEMORY BOARD

SPECIFICATIONS

TM 9901201 TM 9901206

Memory Configuration TMS 4045-45, lK x 4 static RAM TMS 4045-45, lK x 4 static RAM
TMS 2716, 2K x 8 EPROM

Typical Power Requirements
for Various Model Numbers -41 -42 -43 -41 -42

5V ±5% LOA l.4A 2.15A 1.3A 2.15A
12V ±5% 0.16A 0.225A 0.475A Not required Not required
-12V ±5% 0.05A 0.125A 0.225A Not required Not required

Cycle Time
Memory Device Access

450 ns 300 ns 200 ns 150 ns Time
Memory Cycle Time

1.0 µs 0.667 µ.s 0.667 µ.s 0.667 µ.s @3MHz

Bus Interface
Data and Address Three-state TTL-compatible
Control TTL-compatible

Mating Connector
100 pin, 0.125 inch TI H431111-50 (wire wrap), TI H431121-50 (solder tail), or
(3, 17 5 mm) centers Viking 3VH50/ICN5 (pierced tail)

Operating Temperature 0°C to 70°C
Range

Physical Characteristics
Width 11 inches (279,4 mm)
Height 7V2 inches (190,5 mm)
Board thickness 0.062 inch (1,57 5 mm)
Component height 0.40 inch (10,16 mm)

ORDERING INFORMATION

TM 990/201-41

TM 990/201-42

TM 990/201-43

TM 990/206-41
TM 990/206-42

4K x 16 EPROM, 2K x 16 RAM, half socketed

8K EPROM, 4K RAM, fully socketed

16K EPROM, SK RAM, fully socketed

4K x 16 RAM, sockets for 8K x 16 memory
SK x 16 RAM, fully socketed

9900 FAMILY SYSTEMS DESIGN 8-359

TM 990/3101/0 EXPANSION MODULE TM 990 Serles
Microcomputer Modules

TMS 9901

The TM 990/310 is a fully assembled, fully tested, input/output expansion module
compatible with all TM 990 family microcomputer modules. The TM 990/310 offers a
maximum 1/0 expansion capability of 48 1/0 points, programmable as either inputs or
outputs.

FEATURES

• Compatible with the TM 990 microcomputer module CRU bus
• Designed to fit the TM 990/ 510 card cage
• Inputs/ outputs are TTL-compatible
• May be used with solder, wire wrap, or ribbon cable edge connectors
• Up to 27 1/0 lines may be programmed as prioritized, unlatched interrupts
• Three (+) and three (-) edge-triggered and latched, prioritized interrupt inputs

are provided (in addition to 48 I/ 0 lines)
• Contains three real-time clocks (or event timers)
9 1/0 lines are provided with echo-back feature

OPERATION

The TM 990/310 input/ output expansion module is implemented using the TM 990
printed circuit format. The TM 990/310 uses three TMS 9901 LSI, programmable,
systems interface chips to control 1/0. The extreme versatility and low cost of the TM
990/310 module makes it usable in a wide variety of 110 applications. Inputs and outputs
may be mixed in any proportion, and any number of interrupts may be utilized, up to a
maximum of 33. The interrupt priority encoding scheme also permits use of the module as
an interrupt expander for the TM 990/ lOOM microcomputer family.

8-360 9900 FAMILY SYSTEMS DESIGN

TM 990 Serles
Microcomputer Modules

TM 990/310 I/O EXPANSION MODULE

The TM 990/310 expansion module contains three 1/0 logic groups, each of which
interfaces to separate connectors with 16 1/0 lines. (Signal and ground are routed for each
1/0 line, and each line is equipped with pullup resistors.) Each 1/0 group may be
programmed as 16 inputs, 16 outputs, nine interrupts, or any combination thereof. Each of
the output lines is equipped with an echo-back feature which enables the user to read back
each bit as it is written to a given output point. In addition, each connector contains a rising
edge detect interrupt input and a falling edge detect interrupt input, along with + 5 volts,
+ 12 volts, and -12 volts power supply connections.

Vee

PULLUP ~
RESISTORS~

EDGE

~
GROUP1

..L2 INTERRUPT DETECT BUFFERS PRIORITY
LATCHES (INPUT/ v LOGIC

INTERRUPT)
~

v2
~

Vee
t---'

>
~ PULLUP
~RESISTORS

~ GROUP2 9 BUFFERS 19 _L - 7 --.. (INPUT/ -, ~ CRU
OUTPUT/ INTERFACE

INTERRUPT)
,_., LOGIC

1/0
CONNECTOR Vee

(40PIN) iJl'I

~ PULLUP 1i
~

~RESISTORS
~

-- I7 ,
-- Vee GROUP3 REAL· ~

BUFFERS ... +12V (INPUT/ 14-- TIME

OUTPUT) CLOCK

v
~ 7

ECHO· --~ BACK ~

LOGIC

TM 9901310 Expansion Module, 16110 Lines,
Logic Group Block Diagram

(One of three groups)

9900 FAMILY SYSTEMS DESIGN

t--

TM990
BUS

CONNECTOR

14--i

~ INTERRUPT

~ CRU

8-361

.... s

TM 990/310 I/O EXPANSION MODULE

ADDRESSING

TM 990 Series
Microcomputer Modules

The TM 990/310 1/0 expansion module is addressed via the dedicated CRU interface
over the system bus connector. Each I/Obit can be addressed individually; or up to 16
parallel ports can be addressed. Each 16-bit I/Oline logic group has an addressing block of
64 bits, and each group can be stacked back to back. Each connector appears exactly the
same; the functions and relative addresses for one TM 990/310 is shown below. The CRU
address map permits addressing of 4K individual addresses. Any CRU bit beginning with
10016 can be addressed; the first FF 16 bits are dedicated to the microcomputer module.

00

10

20

Cl)
30

Cl)
40 w

a:
c 50 c
<(

60 w
> 70 ~
<(

80 -I
w
a: 90

AO

BO

co

8-362

FUNCTION

INTERRUPT MASK/TIMER

16 1/0 BITS

INTERRUPT CLEAR

ECHO BACK

INTERRUPT MASK/TIMER

16 1/0 BITS

INTERRUPT CLEAR

ECHO BACK

INTERRUPT MASK/TIMER

16 1/0 BITS

INTERRUPT CLEAR

ECHO BACK

CRU ADDRESS MAP

CONNECTOR
P2

CONNECTOR
P3

CONNECTOR
P4

9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

SPECIFICATIONS

Input/Output

Interrupts

Interval Timers
Resolution
Maximum interval (for 3 MHz CPU

clock)

Input Levels
High-level input voltage
Low-level input voltage
Maximum input voltage range
Input current

Edge Detect Interrupts
Positive-going threshold voltage
Negative-going threshold voltage
Hysteresis
Maximum input voltage range
High-level input current
Low-level input current

Outputs
High-level output voltage

Low-level output voltage

Input/Output Connectors
40 Pin (3 each)

100 pin

Power Requirements

Temperature Range
Operating
Storage

Physical Characteristics
Width
Height
Board thickness
Component height

9900 FAMILY SYSTEMS DESIGN

TM 990/310 I/O EXPANSION MODULE

48 bits programmed as inputs, outputs, or
up to 27 unlatched interrupts

33 maximum [six are (+)or (-)
edge-detect latches] output of priority
encoders may be jumpered to three
levels of the 15 external TM 990
interrupts levels.

Three 14-bit timers
21.3µs
349µs

2.0 V nominal
0.8 V nominal
- 0.3 V to + 10 V
10 kO (± 10%) pullup to Vee

1.9 V maximum
0.5 V minimum
0.4 V minimum, 0.8 V typical
-0.3 V to +5.5 V
- 1.29 mA maximum at 2. 7 V
- 2.85 mA maximum at 0.4 V

2 .4 V minimum at - 200 µA
2.0 V minimum at -600 µA
0.4 V maximum at 2.2 mA

TI H31120 (wire wrap), Viking
3 VH2011JN5 (solder tail), 3M 3464-0001
(ribbon cable), or equivalents.

TI H43111150 (wire wrap), TI H431121-50
(solder tail), Viking 3 VH50/ICN5 (pierced
tail), or TM 990/ 510 card cage

5 V ± 5%, 800 mA (typical)

0°c to 70°C
-65°C to 150°C

11 inches (279,4 mm)
7V2 inches (190,5 mm)
0.062 inch (1,575 mm)
0.5 inch (12,7 mm) maximum

8-363

.... s

TM 990/301 MICROTERMINAL

s •

FEATURES

(I) Hexadecimal pushbutton keyboard
0 Register, Memory, or CRU Display and entry keys
0 Operations under TIBUG monitor
0 4 digit hexadecimal display of address and data
0 Execution, single instruction and conversion keys

TM 990 Serles
Microcomputer Modules

The TM 990/301 is a microterminal designed to interface with the TM 990 series of
microcomputer modules. The microterminal's communications link to the TM 990 CPU
module is via the EIA type cable and the serial terminal interface. The TM 990/301
performs the front panel functions of the microcomputer system, giving the programmer
the ability to display and change register and memory information. This low cost terminal
offers the capability to enter short programs in hexadecimal or alter a section of a longer
sequence.

8-364 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

TM 990/301 MICROTERMINAL

OPERATION

The TM 990/301 operates under control of the TM 990/401 TIBUG monitor. Th~ data
rate utilized is 110 baud. Once the CPU board is initialized, depressing the clear (CLR)
key transfers TIBUG monitor control to the microterminal. The TIBUG software will
enter a wait routine unless performing a function defined by the microterminal. Depressing
the run (RUN) key will cause the CPU module to begin program execution and it will
ignore other key depressions until the halt (HALT /SIE) key is depressed. If the CPU is
halted, depression of the single instruction execution key (HALT /SIE) causes execution of
the next instruction.

The display of the microterminal is divided into two 4 hexadecimal digit banks. The left
bank displays address register information and the right bank displays data registers (see
Figure 1).

KEY

CLR

RUN

HALT/SIE

0-F

EPC

DPC

EST

DST

EWP

DWP

EMA

EMD

FUNCTION

Clear - blank all displays - initialize software

Run - TM 990 CPU begins program execution; "RUN" is displayed in
data digits.

Halt/Single Instruction Execution - If in run mode, halts CPU execution
- address of next instruction displayed in address digits. If CPU is halted,
one single instruction will be executed. Address display indicates address
of next instruction; data display indicates contents of that location.

Hexadecimal digits (0-15) - data entry. FI - also indicates negative.

Enter Program Counter - Enter 4 digits, key depressions alters active
program counter, data display indicates entered value.

Display Program Counter - Active PC register indicated in data display.

Enter Status Register - Enter 4 digits - key depressions alters active
status register data display indicates entered value.

Display Status Register - Active status register indicated in data display.

Enter Workspace Pointer - Enter 4 digits - key depression alters active
workspace pointer - data display indicates entered value.

Display Workspace Pointer - Active WP indicated in data displayed.

Enter Memory Address - Enter 4 digits - key depression will shift
display of digit from data display to address display. Contents of the new
memory address will then be indicated in the data display.

Enter Memory Data - After EMA function has been executed, enter 4
digits - the data display indicates the new data - key depression alters the
data at the displayed memory address.

9900 FAMILY SYSTEMS DESIGN 8-365

. TM 990/301 MICROTERMINAL TM 990 Series
Microcomputer Modules

KEY

EMDI

DCRU

ECRU

H-D

D-H

8-366

FUNCTION

Enter Memory Data/Increment - Functions the same as EMD - after
key depression of EMDI and data update the address display will
automatically increment by 2 and the new addresses contents will be
indicated by the data display. To increment the address register without
altering data contents, depress EMDI key without entering new digit
information.

Display CRU Data - Enter 4 digits - the first digit specifies the CRU bit
count; the remaining 3 digits specify the CRU address. Key depression
shifts the entered digits to the address display and indicates the contents of
that address in the data display. All 16 bits will be displayed.

Enter CRU Data - After DCRU function has been executed, enter 4
digits - the new data is now indicated by the data display - key
depression alters the data at the specified CRU address - only the number
of bits specified will be altered.

Hexadecimal to Decimal Conversion - Enter 4 digits - key depression
will indicate the decimal equivalent in 5 rightmost display digits.

Decimal to Hexadecimal Conversion - Enter 6 digits - the first digit
designates the sign FI - =negative, 0 = positive) the remaining 5 are
decimal data - key depression displays hexadecimal equivalent in 4 right
digits.

9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

TM 990/301 MICROTERMINAL

SPECIFICATIONS

Display
8 digit hexadecimal display
4 left digits indicate address register
4 right digits indicate data register

Keyboard
16 data keys
16 function keys
8 keys not connected

Interface: Serial Asynchronous Interface
Signals Include

/HALT
TERMINAL DATA IN
TERMINAL DATA OUT
+ 12 v
GND
-12 v
+s

Power Requirements: Supplied through cable
+ 12 V@ SO mA
-12 V@ 20 mA
- 5 V@ 150 mA

ADDRESS DATA

~· TEXASINSTRUMENTS

Microterminal
TM 990/301

H/S D•H H.O RUN

DDDDD
EWP EPC EST ECRU

DDDDD
DWP DPC DST DCRU

DDDDD
EMA EMO EMDI CLR

DDDDD
0 1 2 3

DDDDD
4 5 6 7

DDDDD
8 9 A B

DDDDCJ
C D E F/-

D DD DD

Operating Temperature Range
0°C to 50°C

Figure 1. Microterminal Keyboard and Display.

Physical Dimensions
Height: 5.8 inches
Width: 3.2 inches
Thickness: 1. 3 8 inches
Cable Length: 6 ft.

Ordering Information
TM 900/301

Microterminal compatible with all TM 990 series
Microcomputer modules.

9900 FAMILY SYSTEMS DESIGN 8-367

8~
I

TM 990/401 TIBUG

TIBUG

TM 990 Series
Microcomputer Modules

TM 990/401 (TIBUG) is a comprehensive, interactive debug monitor which is included in
the b:;isic price of the CPU modules. (The OEM optionally may order the board with blank
EPROM). TIBUG includes 13 user commands plus six user accessible utilities. TIBUG
operates with 110, 300, 1200, and 2400 baud terminals. The user's manual for each CPU
board includes a complete description of the use ofTIBUG as well as a complete listing of
the monitor. The TM 990/ lOOM board TIBUG software is slightly different from the
TM 990/180M board TIBUG software. Therefore, the TM 990/401-1 software is
compatible with the TM 990/lOOM board, and the TM 990/401-2 software is compatible
with the TM 990/180M board, and the TM 990/401-3 is compatible with the
TM 990/ 10 lM board.

TIBUG Commands

B Executive and breakpoint on a specified address.
C Inspect/ change the communications register unit.
D Dump memory to cassette or paper tape in 990 compatible tag format compatible

with PX990, the TMS 9900 software development system.
E Execute
F Find word/byte
H Hexadecimal arithmetic
L Load memory from cassette or paper tape (compatible with TMS 9900 prototyping

system formats).
M Inspect/ change memory
R Inspect/change user program counter, workspace pointer, and status register.
S Execute user program in single/multiple steps.
W Inspect/ change user register file.

User Accessible Utilities

8-368

9 Read a character from the UART
9 Write a character to the UART
9 Hexadecimal numeric input
e Four-digit hexadecimal numeric output
8 Single-digit hexadecimal numeric output
• ASCII message output

9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

TM 990/402 LINE BY
LINE ASSEMBLER

Line By Line Assembler

TM 990/402 is a line by line assembler supplied preprogrammed into a TMS 2708
EPROM Kit for immediate use in the system. These EPROM's insert into the extra
sockets not required for the TIBUG monitor. It is an extremely useful tool for assembly
language input of short programs or easy patching of longer programs.

The line by line assembler can be directly accessed from the TIBUG monitor by utilizing
the "R" command and entering the proper program counter value. A complete User's
Manual is included with the TMS 990/ 402 and a source listing can also be obtained. The
TM 990/402-1 software is compatible with both the TM 990/lOOM and TM 990/lOlM
board, and the TM 990/ 402-2 software is compatible with the TM 990/ 180M board.

Line By Line Assembler Input Commands

$ Convert symbolic. constants from ASCII to hexadecimal and store in memory.
+ ,- Enter numeric constant
I Change program counter
ESC Return control to monitor

Assembly Instruction.

Enter the instruction mnemonic and operand field - all allowable TMS 9900 instructions
and addressing modes are recognized. Displacements are allowed on either an absolute
basis or relative with respect to the current instruction designated by $-n. The
displacement range is + 254, -256 bytes.

Assembler Error Messages

*S Syntax error
*D Displacement error jump target address
*R Range error - current field has erroneous input

9900 FAMILY SYSTEMS DESIGN 8-369

TM 990/ 500 ACCESSORIES

CARD CAGE

TM 990 Series
Microcomputer Modules

The TM 990/ 510 is an OEM card cage with four slots on 1 inch centers. The backpanel
contains the address bus, data bus, interrupt and control lines to permit memory, I/O and
DMA expansion of CPU modules. A 10-terminal barrier strip is mounted on the backpanel
to permit connection of the following signals as the system requires:

0 Reset 0 ± 12V
0 Restart 0 ± 15 V
0 Power Down Interrupt 0 GND
o ±5V

The outside dimensions of the OEM card cage are 5 inches (127 MM) high, 12.5 inches
(317,5mm) wide, and .8 inches (203,2 mm) deep.

TM 9901510 OEM Card Cage

8-370 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

TM 990/ 500 ACCESSORIES

EXTENDER BOARD

The TM 990/ 511 is a connector bus compatible extender board. The extender board has
a printed circuit tab and a connector with card guide at its edges.

PROTOTYPING BOARD

The TM 990/ 512 is a universal prototyping card. The printed circuit board is designed to
accommodate 0.3, 0.4, 0.6 and 0.9 inch (7,62, 16,16, 15,24, and 22,86 mm) wide, dual in
line, IC packages or their equivalent soldertail or wirewrap sockets. The TM 990/ 512 has
GND and 5 V planes, two power strips for ± 12 V, plus two power strips for
user-selectable voltage option.

CONNECTORS AND CABLES

The bottom edge bus connector is a 100-pin printed circuit tap on 0.125 inch (3, 17 5 mm)
centers, compatible with the TM 990 bus specification. Two top edge, 40-pin, printed
circuit tab connectors for I/O or interrupt are on 0.10 (2,54 mm) centers. Additionally, the
CPU modules come mounted with a 25-pin EIA connector, and the universal prototyping
boards have space for mounting the same. The TM 990/ 501 is a connector kit offered for
all of the connectors. The parts supplied in this kit are readily available, multisource
connectors. The connectors available through TI as part of the TM 990/ 501 kit are

9900 FAMILY SYSTEMS DESIGN 8-371

r>8

TM 990/ 500 ACCESSORIES

QTY Descn"ption

1 25 pin male connector

1 40 pin solder eyelet female edge connector

1 100 pin solder wire wrap female edge
connector

1 Hood for 25 pin connector

TM 990 Series
Microcomputer Modules

Part Number

AMP DB-25P or ITT Cannon DB-25P

Viking 3VH2011JN5 or TI H421121-20

Viking 3VH50/1CN5 or TI H431111-50

AMP 2064 78-3

Various cable kits are also offered. TM 990 I 5 02 is a general purpose EIA cable
compatible with terminals which have female RS-232 connectors. TM 990/ 503 is an EIA
cable compatible with 743 KSR or 745 terminals. The TM 990/504 is a standard current
loop TTY cable. The TM 990/ 505 is compatible with the 733 ASR.

8-372 9900 FAMILY SYSTEMS DESIGN

TM 990 Series
Microcomputer Modules

TM990/189 UNIVERSITY
MICROCOMPUTER BOARD

TM990/ 189 University Microcomputer Board

The TM990/189 is a self-contained microcomputer system (available in kit form or fully
assembled and tested) which is designed primarily as a learning tool for the engineer,
student or hobbyist. It can be used as an aid in the instruction of microcomputer
fundamentals, machine and assembly level language programming and microcomputer
interfacing as well as demonstrating the power of the 9900 family 16-bit architecture. The
board utilizes the powerful NMOS 16 bit TMS 9980 microprocessor as its CPU.
Additionally, this extremely economical board has the following exciting features: 8<!
SOFTWARE

8 Unibug-user interactive software debug monitor, ROM resident.
8 Line by Line Assembler with forward references-assembles 9900 instructions into

machine level code and allows for the use of labels.

9900 FAMILY SYSTEMS DESIGN 8-373

~s

TM990/189 UNIVERSITY
MICROCOMPUTER BOARD

TEXTS

TM 990 Series
Microcomputer Modules

0 Tutorial text-suitable as a 3-hour university course outline or as a stand-alone self-paced
programmed learning text. Includes experiments, applications, problems and solutions.

e Hardware reference manual-describes theory of operations, connection of hardware
options (for example, expansion memory, 1/0 expansion, audio cassette interface, and
RS232C or TTY options) and kit assembly procedures.

8 System Design Handbook-design handbook featuring application and design references
to all members of the TMS 9900 family.

HARDWARE

e Power Supply-included as a standard or available as an option.
• Display-10 digit seven segment display.
• Keyboard-45 keys, full alpha-numeric keyboard.
• ROM-4K bytes of dedicated ROM, sockets for additional 2k on-board expansion.
0 RAM-lK bytes RAM including sockets for additional lK on-board expansion.
0 Memory Expansion-50-pin connector provided to expand memory to 16K bytes.
0 I/ 0 Expansion-50-pin connector is provided with all standard CPU bus signals

accessible, including extra pins for user-defined functions.
0 EIA Connector-25-pin standard EIA connector is provided for interface to RS232C or

20 mA TTY loop.
e DMA-Direct Memory Access. HOLD and HOLD ACKNOWLEDGE are brought

out to external pins. .
• Visual Indicators-7 LEDis are provided: 3 dedicated and 4 user-defined.
e Acoustical Indicator-Piezoelectric disk for audio reference.
0 Audio Cassette-single audio cassette interface.
• I/0-16 1/0 lines are provided.

ORDERING INFORMATION

TM990/189 K
TM990/189 M
TM990/519

8-374

Kit form less power supply
Assembled and tested microcomputer module.
Power supply for TM990/189 Kor TM990/189 M including all

interconnecting cables.

9900 FAMILY SYSTEMS DESIGN

Memory
g ..

TMS 402 7 JL, NL
4096-BIT DYNAMIC RANDOM-ACCESS MEMORY

MOS
LSI

• 4096 X 1 Organization

• Industry Standard 16-Pin 300-Mil Package
Configuration

• 10% Tolerance on All Supplies

• All Inputs Including Clocks TTL Compatible

• Three-State Fully TTL-Compatible Output
Latched and Valid Into Next Cycle

• 3 Performance Ranges:
ACCESS ACCESS READ

TIME TIME OR

ROW COLUMN WRITE

ADDRESS ADDRESS CYCLE

(MAXI IMAX) (MIN)

TMS 4027-15 150 ns 100 ns 320 ns

TMS 4027-20 200 ns 135 ns 375 ns

TMS 4027-25 250 ns 165 ns 375 ns

READ,

MODIFY-

WRITEt

CYCLE

(MIN)

330 ns

420 ns

480 ns

• Page-Mode Operation for Faster Access Time

• Low-Power Dissipation
-Operating 460 mW (max)
- Standby 27 mW (max)

• 1-T Cell Design, N-Channel Silicon-Gate
Technology

• Refresh time: 2 ms

8-376

16-PIN CERAMIC
DUAL-IN-LINE PACKAGE

(TOP VIEW)

Vee 16 Vss

D 2 15 CAS

w 3 14 DATA OUT

RAS 4 13 s
AO 5 12 AJ

A2 6 11 A4

A1 7 10 AS

VDD 8 9 Vee

PIN NAMES

AO-A5 Address Inputs

CAS Column address strobe

D Data input

DATA OUT Data output

RAS Row address strobe

s Chip select

w Write enable

Vss -5 V power supply

Vee +5 V power supply

vDD +12 V power supply

Vss 0 V ground

9900 FAMILY SYSTEMS DESIGN

TMS 4050 JL, NL MOS
LSI

4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

• 4096 x 1 Organization
o 18-Pin 300-Mil Package Configuration
• Multiplexed Data Input/Output
• 3 Performance Ranges:

ACCESS
TIME
(MAX)

READ OR
WRITE
CYCLE
(MIN)

READ,
MODIFY
WRITE
CYCLE
(MIN)

TMS 4050 300 ns 470 ns 730 ns
TMS 4050-1 250 ns 430 ns 660 ns
TMS 4050-2 200 ns 400 ns 600 ns

• Full TTL Compatibility on All Inputs
(No Pull-up Resistors Needed)

• Registers for Addresses Provided on Chip
• Open-Drain Output Buffer
• Single Low-Capacitance Clock
• Low-Power Dissipation

- 420 mW Operating (Typical)
- 0.1 mW Standby (Typical)

• N-Channel Silicon-Gate Technology

• Refresh time: 2 ms or less

9900 FAMILY SYSTEMS DESIGN

18-PIN CERAMIC AND PLASTIC
DUAL-IN-LINE PACKAGES

(TOP VIEWI

Voo + 12V power supply

Vss OV ground
Vee - 5V power supply

8-377

TMS 4051 JL, NL
4096-BIT DYNAMIC RANDOM ACCESS MEMORIES

• 4096 x 1 Organization

• 18-Pin 309-Mil Package Configuration
18-PIN CERAMIC AND PLASTIC

• Single Low-Capacitance TTL-Compatible Clock DUAL-IN-LINE PACKAGES

• Multiplexed Data Input/Output (TOP VIEW)

• 2 Performance Ranges:
READ, Vee 18 Vss

READ OR MODIFY
ACCESS WRITE WRITE 1/0 17 A11

TIME CYCLE CYCLE
(MAX) (MIN) (MIN) AO 16 A10

TMS 4051 300 ns 470 ns 730 ns
A1 15 A9

TMS 4051-1 250 ns 430 ns 660 ns

Full TTL Compatibility on All Inputs
A2 14 AB •

(No Pull-up Resistors Needed Except with CE) R/W A7

• Registers for Addresses Provided on Chip
0 Open-Drain Output Buffer CE 12 A6

• Low-Power Dissipation
A3 11 AS

- 460 mW Operating (Typical)
- 60 mW Standby nypical) A4 10 vDD

• N-Channel Silicon-Gate Technology
Voo + 12V power supply

• Refresh time: 2 ms or less Vss OV ground

Vee - 5V power supply

TMS 4060 JL, NL
4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

o 4096 x 1 Organization
o 3 Performance Ranges:

READ,

ACCESS
READ OR MODIFY

WRITE WRITE
TIME CYCLE CYCLE
(MAX) (MIN) (MIN)

TMS 4060 300 ns 470 ns 710 ns
TMS 4060-1 250 ns 430 ns 640 ns
TMS 4060-2 200 ns 400 ns 580 ns

• Full TTL Compatibility on All Inputs Except CE
(No Pull-Up Resistors Needed)

o Low Power Dissipation
- 400 mW Operating (Typical)
- 0.2 mW Standby (Typical)

• Single Low-Capacitance Clock
• N-Channel Silicon-Gate Technology
• 22-Pin 400-Mil Dual-in-Line Package
o Refresh time: 2 ms or less

Vea

A9

A10

A11

cs

DI

DO

AO

A1

A2

Vee

22-PIN CERAMIC AND PLASTIC
DUAL-IN-LINE PACKAGES

(TOP VIEWI

1 • 22 Vss

2 21 AB

3 20 A7

4 19 A6

5 18 VDo

6 17 CE

16 N/C

8 15 AS

9 14 A4

10 13 AJ

11 12 R/W

Vee + 5V power supply

Vss OV ground
Voo + 12V power supply
Vee - 5V power supply

MOS
LSI

MOS
LSI

8-378 9900 FAMILY SYSTEMS DESIGN

TMS 4116JL MOS
LSI

16,384-BIT DYNAMIC RANDOM-ACCESS MEMORY

• 16,384 X 1 Organization

• 10% Tolerance on All Supplies

• All Inputs Including Clocks TTL Compatible

• Unlatched Three-State Fully TTL-Compatible
Output

• 3 Performance Ranges:
ACCESS ACCESS READ

TIME TIME OR
ROW COLUMN WRITE

ADDRESS ADDRESS CYCLE
(MAX) (MAX) (MIN)

TMS 4116-15 150 ns 100 ns 375 ns
TMS 4116-20 200 ns 135 ns 375 ns
TMS 4116-25 250 ns 165 ns 410 ns

• Page-Mode Operation for Faster Access Time

• Common 1/0 Capability with "Early Write"
Feature

• Low-Power Dissipation
- Operating 462 mW (max)
- Standby 20 mW (max)

• 1-T Cell Design, N-Channel Silicon-Gate
Technology

• 16-Pin 300-Mil Package Configuration

o Refresh time: 2 ms or less

9900 FAMILY SYSTEMS DESIGN

READ,
MODIFY-
WRITEt
CYCLE
(MIN)

375 ns
375 ns
515 ns

A0-A6

CAS

D

Q

RAS

16-PIN CERAMIC
DUAL-IN-LINE PACKAGE

(TOP VIEW)

Vss 16 Vss

D 2 15 CAS

w 3 14 a

RAS 4 13 AG

AO 5 12 A3

A2 6 11 A4

A1 7 10 AS

VoD 8 9 Vee

PIN NOMENCLATURE

Address Inputs w Write Enable

Column address strobe V99 -5 V power supply

Data input Vee +5 V power supply

Data output vDD +12 V power supply

Row address strobe Vss 0 V ground

8-379

TMS 4016 JL, NL
2048-WORD BY 8-BIT STATIC RAM

o 2K x 8 Organization

• Single +5 V Supply(± 10% Tolerance)

• Fully Static Operation (No Clocks, No
Refresh)

o JEDEC Proposed Standard Pinout

o 24-Pin 600 Mil Package Configuration

o Plug-in Compatible with 16K 5V EPROMs

• 8-Bit Output for Use in IVlicroprocessor
Based Systems

• Max Access/Min Cycle Times Down to
150 ns

• Tri-State Outputs with CS for Or-ties

• OE Eliminates Need for External Bus
Buffers

o Common 1/0 Capability

o All Inputs and Outputs Fully TTL
Compatible

e Fanout to Series 74, Series 745, or Series
74LS TTL Loads

o N-Channel Silicon-Gate Technology

• Power Dissipation Under 495 mW Max

o Guaranteed de Noise Immunity of 400 mV
with Standard TTL Loads

description

A7

A6

A5

A4

A3

A2

A1

AO

001

002

003

Vss

TMS 4016
24-PIN CERAMIC AND PLASTIC

DUAL·IN·LINE PACKAGE
(TOP VIEW)

24

2 23

3 22

4 21

5 20

6 19

7 18

8 17

9 16

10 15

11 14

12 13

PIN NOMENCLATURE

AO-A10 Addresses

MOS
LSI

Vee
AB

A9

w
OE

AlO

cs
008

007

006

005

004

D01·D08 Data In/Data Out

cs Chip Select

OE Output Enable

w Write Enable

Vss Ground

Vee +5 V Supply --

The TMS 4016 static random-access memory is organized as 2048 words of 8 bits each. Fabricated using
proven N-channel, silicon-gate MOS technology, the TMS 4016 operates at high speeds and draws less
power per bit than 4K static RAMs. It is fully compatible with Series 74, 74S, or 74LS TTL. Its static design
means that no refresh clocking circuitry is needed and timing requirements are simplified. Access time is
equal to cycle time. A chip select control is provided for controlling the flow of data-in and data-out and
an output enable function is included in order to eliminate the need for external bus buffers.

Of special importance is that the TMS 4016 static RAM has the same standardized pinout as Tl's
compatible EPROM family. This, along with other compatible fe<:1turcs, makes the TMS 4016 diiectly
plug-in compatible with the TMS 2516 (or other 16K 5V EPROMs). No modifications are needed. This
allows the microprocessor system designer complete flexibility in partitioning his memory board
between read/write and non-volatile storage. A more detailed explanation of this compatibility is given
on the reverse side.

PREVIEW
This document contains the design
specifications for a product under
development. Specifications may
be changed in any manner without
notice.

8-380 9900 FAMILY SYSTEMS DESIGN

MOS
LSI

TMS 4033, 4034, 4035, 4039, 4042, 4043, JL, NL
1024-BIT AND TMS 4036 NL 512-BIT STATIC RAMs

• No clocks - No refresh

• Input/Output fully TTL compatible

o Three-state output for OR-Tie capability

• Single 5-volt supply

o Simple, fully decoded addressing

• Reliability, same process as Tl's industry

standard 4K RAMs

• Economy, high volume production techniques

and choice of plastic or ceramic packaging

o Super low standby power (typical 2-3 mW)

• Wide range of speeds for design optimization
• Easy to use 8-bit byte organization (64 x 8)

plus industry standard 256 x 4 and 1024 x 1

TMS 4036

20 PIN PLASTIC
DUAL IN LINE PACKAGES

(TOP VIEW)

1/07 1/06

AS 1/05

AO NC

1/04

A2 OE

GND Vee

A4 C"E

A3 RM<

1100 1103

1101 1102

o 64 x 8 Organization
o 250 mW Typical power

dissipation
o On-chip multiplexed 1/0

for microprocessor
oriented systems

P1r1 Number

TMS 4036 NL

TMS 4036 1 NL
TMS 4036·2 NL

Max. Acc•u/
M1n.Cvcle

1000 ns

650 ns

450 ns

TIVIS 4042

18 6~~~~~~~~~ ~~g:AL6'~;:1c o 256 x 4 Organization

AJ

A2

Al

AO

AS

A6

A7

GND

(TOP v1Ewi o 175 mW Typical power

dissipation
o Common 1/0 for Bus-

oriented systems

TMS 4042/2111 JL, NL

TMS 4042 1/2111 2 JL. NL

TMS 4042 212111 1 JL, NL

Max.Acceu,/

Min.Cycle

1000 ns

650 ns
450 ns

9900 FA_MILY SYSTEMS DESIGN

TMS 4033, TMS 4034, TMS 4035

16-PIN CERAMIC AND PLASTIC
DUAL-IN-LINE PACKAGES

(TOP VIEW)
o 1024 x 4 x 1 Organiza

tion
A6

AS

R/W

Al

A2

AJ

A4

AO

A7

AB

o 225 mW Typical power
dissipation

A9

CE
Pert Number

DATA OUT

TMS 4033/2102-1 JL, NL
DATA IN TMS 4034/2102·2 JL, NL

TMS 4035/2102 JL, NL

Vee

GND

TMS4039

Mu. Acceu/
Min. Cycle

450 ns

650 ns
1000 ns

22P1N CERAMI~ AND PLAp1c o 256 x 4 Organization
DUAL-i~-rb 1PNv 1 ~~.ifKAG s o 175 mW Typical power

AJ

A2

Al

AO

AS

A6

A7

GND

Dll

D01

012

Vee

A4

RM

Cel

ae
CE2

D04

Dl4

D03

Dl3

002

dissipation
o Separate input and

output
o 2 chip enables for maxi

mum control

TMS 4039/2101 JL. NL
TMS 4039-1/2101 2 JL, NL
TMS 4039 2/2101 1 JL, NL

Max. Acceul
Min.Cycle

1000 ns
650 ns
450 ns

TMS 4043

1660~~~~"[_~~~ ~~8i!ALt~J1c o 256 x 4 Organization

AJ

A2

A1

AO

A5

(TOP v1Ewl o 175 mW Typical power

Vee

RlW

1/04

I/OJ

1/02

1/01

dissipation
o Provides common 1/0

and highest packing
density

Part Number

TMS 4043/2112 JL, NL
TMS 4043 112112 2 JL, NL

TMS 4043 2 JL, NL

Mu. Acc•u/
Min. Cycle

650 ns

450ns

8-381

g .. '
I

TMS 4044 JL, NL; TMS 40L44 JL, NL; TMS 4046 JL, NL;
TMS 40L46 JL, NL 4096-WORD BY 1-BIT STATIC RAMs

MOS
LSI

• 4096 x 1 Organization

• Single +5 V Supply (±10% Tolerance)

• High Density 300-mil 18- and 20-Pin Pack
ages

• Fully Static Operation (No Clocks, No Re
fresh, No Timing Strobe)

• 4 Performance Ranges:
ACCESS READ OR WRITE

TMS 4044/L44-45, TMS 4046/L46-45
TMS 4044/L44-25, TMS 4046/L46-25
TMS 4044/L44-20, TMS 4046/L46-20
TMS 4044-15, TMS 4046-15

TIME CYCLE
(MAX) (MIN)
450 ns 450 ns
250 ns 250 ns
200 ns 200 ns
150 ns 150 ns

• 400 mV Guaranteed DC Noise Immunity with
Standard TTL Loads - No Pull-Up Resistors Re
quired

• Common 110 Capability

• 3-State Outputs and Chip Select Control for OR
Tie Capablllty

• Fan-Out to 2 Series 74, 1 Series 74S, or 8
Series 74LS TTL Loads

• Low Power Dissipation
MAX MAX

(OPERATING) (STANDBY)

TMS4044 440mW 156mW
TMS40L44 275mW 96mW

TMS4046 440mW 13mW

TMS40L46 275mW 13mW

8-382

Ao-A11
D

Q

s

TMS 4044/TMS 40L44
18-PIN CERAMIC AND PLASTIC

DUAL-IN-LINE PACKAGES
(TOP VIEW)

TMS 4046/TMS 40L46
20-PIN CERAMIC AND PLASTIC

DUAL-IN-LINE PACKAGES
(TOP VIEW)

PIN NAMES

Addresses

Data In

Data Out

Chip Select

Vee (TMS 4044/L44) +SVSupply

Vcc1 (TMS 4046/L46)
+5 VSupply

(array only)

Vcc2 (TMS 4046/L46)
+SVSupply

(periphery only)

Vss Ground

w Write Enable

9900 FAMILY SYSTEMS DESIGN

MOS
LSI

TMS 40L45 JL, NL; TMS 40L4 7 JL, NL
1024-WORD BY 4-BIT STATIC RAMs

• 1024 x 4 Organization

• Single 10% Tolerance 5-V Supply

• High Density 300-mil 18- and 20-Pin Packages

• Fully Static Operation (No Clocks, No Refresh,
No Timing Strobe)

• 3 Performance Ranges:
ACCESS READ OR WRITE

TIME CYCLE
(MAXI (MIN)

TMS 40L45-25, TMS 40L47-25 250 ns 250 ns
TMS 40L45-30, TMS 40L47-30 300 ns 300 ns
TMS 40L45-45, TMS 40L47-45 450 ns 450 ns

• 400-mV Guaranteed Noise Immunity With
Standard TTL Loads - No Pull-Up Resistors
Required

• Common 1/0 With Three-State Outputs and Chip
Select Control for OR-Tie Capability

• Fan-Out to 1 Series 74 or 74S TTL Load - No
Pull-Up Resistors Required

• Low Power Dissipation
250 mW *Typical

370 mW *Maximum
o Standby Power Dissipation (TMS 40L47)

12 mW Typical
24 mW Maximum

PIN NAMES

Ao· Ag Addresses

l/01·l/04 Data input/output

OE Output Enable

s Chip Select

Vee (TMS 40L45) +5-V Supply

Vcc1 (TMS 40L47)
+5-V Supply

(array only)

Vcc2 (TMS 40L47)
+5·V Supply

(periphery only)

Vss Ground

w Write Enable

9900 FAMILY SYSTEMS DESIGN

TMS40L45
1S·PIN CERAMIC AND PLASTIC

DUAL-IN·LINE PACKAGES
(TOP VIEW)

Vee

A1

As

Ag

1101

1/02

1/03

s 1/04

w

TMS40L47
20-PIN CERAMIC AND PLASTIC

DUAL-IN-LINE PACKAGES
(TOP VIEW)

Vcc1

Vcc2

A1

As

Ag

1/01

1/02

1/03

1/04

w

8-383

·8

TMS 4 700 JL, NL
1024-WORD BY 8-BIT READ-ONLY MEMORY

o 1024 x 8 Organization

• All Inputs and Outputs TTL-Compatible

• Maximum Access Time . . . 450 ns

o Minimum Cycle Time ... 450 ns

• Typical Power Dissipation ... 310 mW

• 3-State Outputs for OR-Ties

• Output Enable Control

• Silicon-Gate Technology

o 8-Bit Output for use in Microprocessor

Based Systems

• Pin-compatible with TMS 2708, TMS 27L08,

and Intel 2308
o Inputs require external pull-up

resistors for TTL-compatibility

TMS 4 732 JL, _NL

A7

A6

A5

A4

A3

A2

A1

AO

01

02

03

Vss

24·PIN CERAMIC AND PLASTIC
DUAL·IN·LINE PACKAGES

(TOP VIEW)

1 24

23

3 22

4 21

5 20

6 t9

7 18

8 17

9 16

10 15

11 14

12 13

Vee - 5V power supply

Vee + 5V power supply

Voo + 12V power supply

Vss OV ground

4096-WORD BY 8-BIT READ-ONLY MEMORY

• 4096 x 8 Organization 24-PIN CERAMIC AND PLASTIC
DUAL-IN·LINE PACKAGES

• All Inputs and Outputs TTL-Compatible (TOP VIEW)

• Fully Static (No Clocks, No Refresh)
A7 24

• Single 5 V Power Supply A6 2 23

• Maximum Access Time ... 450 ns A5 3 22

• Minimum Cycle Time ... 450 ns A4 4 21

• Typical Power Dissipation ... 580 mW A3 5 20

• 3-State Outputs for OR-Ties A2 s 19

• Pin Compatible with TMS 4700, TMS 2708
A1 7 18

and Intel 83168 AO 8 17

• Two Output Enable Controls for Chip Select 01 9 16

Flexibility Q2 10 15

• N-Channel Silicon-Gate Technology Q3 11 14

Vss 12 13

Vee

AB

A9

Vee

OE1

VDD

OE2 or OE2

08

07

06

05

04

Vee

AB

A9

MOS
LSI

MOS
LSI

CS2or Cs2

Cs1 or CS1

MIU

A11

as

07

06

05

04

8-384 9900 FAMILY SYSTEMS DESIGN

MOS
LSI

TMS 4710 JL, NL COMPLETE ASCII CHARACTER
SET GENERATOR 5x7 CHARACTER, 8x8 BLOCK

• TMS 4710 (Standard TMS 4700 BK ROM)

• Full Upper and Lower Case ASCII
Character Generator

• Ideal for Video Terminal Applications
• Fully Static Operation

• Block Size 8 x 8

• Character Size 5 x 7

• 1024 x 8 Organization

o All Inputs and Outputs TTL-Compatible

• Maximum Access Time ... 450 ns

• Minimum Cycle Time ... 450 ns

• Typical Power Dissipation ... 310 mW

• 3-State Outputs for OR-Ties

• Output Enable Control

o Silicon-Gate Technology

o 8-Bit Output for use in Microprocessor
Based Systems

9900 FAMILY SYSTEMS DESIGN

A7

AG

AS

A4

A3

A2

A1

AO

01

02

03

Vss

24-PIN CERAMIC AND PLASTIC
DUAL·IN-LINE PACKAGES

(TOP VIEWI

1 24 Vee

2 23 AB

3 22 A9

4 21 Vss

5 20 OE1

6 19 VDD

7 18 OE2 or OE2

8 17 08

9 16 07

10 15 06

11 14 05

12 13 04

8-385

8

TYPES SBP 8316, SBP 9818
16,384 FL READ-ONLY MEMORIES

• Mask Programmable 12L ROM

• Fully TTL Compatible Inputs/Outputs

• Programmable Options Include:
u User Selectable Speed/Power Operation:

- Wide Range for Injector Current Supply
Operation (SBP 9818)

- Resistor Options for 5-Volt Supply
Operation (SBP 8316)

o Choice of Outputs:
- Open-Collector for Vee or INJ Operation
- Internal 10K n Pull-Up Resistors to Vee

(SBP 8316)
u Choose Any Combination of Up to 3 Boolean

Variables for Chip Select or 2 Boolean Variables
with Latched Outputs

• Industry Standard Pin Assignments in 24-Pin
Plastic or C-DIP Packages

• Choice of Temperature Ranges:
1 1 SBP 8316CN, SBP 981 BCN for 0 to 70° C

Applications
u SBP 8316MJ, SBP 9818MJ for -55°C to

125° C Applications
• Single+ 5-V power supply for the

SBP8316
• Injector current of 500 mA maximum

for the SPB9818

8-386

AD H 1

AD G 2

AD F 3

AD E 4

ADD 5

ADC 6

AD B 7

AD A 8

DO 1 9

DO 2 10

DO 3 11

GND 12

J OR N PACKAGE
(TOP VIEW)

BIPOLAR
MEMORIES

24 Vcc/INJ

23 AD I

22 AD J

21 S3/S3/G

20 Sl/Sl

19 AD K

18 S2/S2

17 DO 8

16 DO 7

15 DO 6

14 DO 5

13 DO 4

FIGURE 1

ADDRESS ACCESS TIMING
vs.

100µ1 INJECTOR CURRENT

10µ1

',

1 µ1 •,

1 mA 10 mA 100mA 1 A

Irr. - INJECTOR CURRENT

9900 FAMILY SYSTEMS DESIGN

SERIES 54S/74S SCHOTTKY
PRO Ms

PROGRAMMABLE READ-ONLY MEMORIES

• Titanium-Tungsten {Ti-W) Fuse Links for o
Fast, Low-Voltage, Reliable Programming

• All Schottky-Clamped PROM's Offer: •
Fast Chip Select to Simplify System Decode
Choice of Three-State or Open-Collector Outputs
P-N-P Inputs for Reduced Loading on
System Buffers/Drivers

• Single 5-V power supply

TYPE NUMBER (PACKAGES) BIT SIZE

-55° C to .125u C o"c to 10°c (ORGANIZATION)

SN54S188(J, WI SN74S188(J, NI 256 bits

SN54S288(J, W) SN74S288(J, NI (32 W x 8 Bl

SN54S287(J, WI SN74S287(J, NI 1024 bits

SN54S387(J, WI SN74S387(J, NI (256W x 4 Bl

SN54S470(J) SN74S470(J, NI 2048 bits

SN54S471 (J) SN74S471 (J, N) (256 W x 8 Bl

SN54S472(J) SN74S472(J, NI 4096 bits

SN54S473(J) SN74S473(J, N) (512Wx8B)

SN54S474(J, WI SN74S474(J, NI 4096 bits

SN54S475(J, W) SN74S475(J, N) (512Wx8B)

Full Decoding and Chip Select Simplify
System Design

Applications Include:
Microprogramming/Firmware Loaders
Code Converters/Character Generators
Translators/Emulators
Address Mapping/Look-Up Tables

TYPICAL PERFORMANCE
OUTPUT

ADDRESS POWER
CONFIGURATION

ACCESS TIME DISSIPATION

open-collector
25 ns 400mW

three-state

three-state
42 ns 500 mW

open-collector

open-collector
50 ns 550 mW

three-state

three-state
55 ns

open-collector
600mW

three-state
55 ns

open-collector
600 mW

256 BITS 1024 BITS 2048 BITS 4096 BITS 4096 BITS
(32 WORDS BY 8 BITS) (256 WORDS BY 4 BITS) (256 WORDS BY 8 BITS) (512 WORDS BY 8 BITS)

'S188, 'S288 'S287, 'S387 '$470, 'S471 '$472, '$473

DO 1 1 16 Vee Vee AO A 1 20 Vee

DO 2 2(15 s 15 AD H AD B 2 19 AD H

DO J Jl 'J14 ADE 14 52 ADC J 18 AD G

DO 4 4l 113 ADD 13 s 1 ADD . 17 AD F

DO 5 Sr._ 112 AD e AD A 5< 112 DO 1 AO E 5 16 s2
DO 6 6(.)11 AD B AD B 6r._)11 DO 2 DO 1 6 15 s 1 DO 1 6

DO 7 7(. 10 AD A ADC 7: '110 DO 3 DO 2 7 14 DOB

GND Br._ '19 DOB GND B!)9 DO 4 DO 3 8 13 DO 7

DD 4 9 12 006 DO 4 9

GND 10 ,, 005 GND 10

Pin assignments for all of these memories are the same for all packages.

9900 FAMILY SYSTEMS DESIGN

20 vee

19 AD I

18 AO H

17 ADG

16 AD F

15 s
14 DOB

13 DO 7

12 DO 6

11 DO 5

(512 WORDS BY 8 BITS)
'$474, '$475

8-387

g ..
I

SERIES 54S/74S
PROGRAMMABLE READ-ONLY MEMORIES

SCHOTTKY
PRO Ms

o Titanium-Tungsten (Ti-W) Fuse Links for Fast
Low-Voltage Reliable Programming

• Full Decoding and Chip Select Simplify
System Design

0 Single 5-V power supply

• Fast Chip Select to Simplify System Decode

TYPE NUMBER (PACKAGES)
BIT SIZE

-55°C to 125°C 0°C to 70°C (ORGANIZATION)

SN54S476(J) SN74S476(J,N) 4096 bits

SN54S477(J) SN74S477(J,N) 1024 W x 4 B

SN54S478(J) SN74S478(J,N) 8192 bits

SN54S479(J) SN74S479(J,N) 1024 W x 8 B

• Choice of Three-State or Open Collector
Outputs

• PNP Inputs for Reduced Loading on System
Buffers/Drivers

• Applications Include:
Microprogramming/Firmware Loaders
Code Converters/Character Generators
Translators/Emulators
Address Mapping/Look-Up Tables

TYPICAL PERFORMANCE
OUTPUT

ACCESS TIMES POWER
CONFIGURATION

ADDRESS SELECT DISSIPATION

three-state
35 ns

open-collector
15 ns 475mW

three-state
45 ns 20 ns 600mW

open-collector

SN54S/74S476 3-S OUTPUTS
SN54S/74S477 0-C OUTPUTS

4096 BITS

SN54S/74S478 3-S OUTPUTS
SN54S/74S479 0-C OUTPUTS

8192 BITS
(1024 WORDS BY 4 BITS)

'S476, 'S477

ADG 1 18 Vee
AD F 2 17 ADH

ADE 3 16 ADI

ADD 4 15 ADJ

ADA 5 14 D01

AD B 6 13 D02
ADC 7 12 D03

s1 8 11 D04

GND 9 10 s2

(1024 WORDS BY 8 BITS)

'S478, 'S479

AD ~I 1 24 Vee

AD G 2 23 AD I

AD F 3 22 ADJ

AD E 4 21 s 1

ADD 5 20 s 2

AD e 6 19 s 3

AD B 7 18 s 4

AD A 8 17 DO 8

DO 1 9 16 DO 7

DO 2 10 15 DO 6

DO 3 11 14 DO 5

GND 12 13 DO 4

·8 MAXIMUM DELAY TIMES
TYPE ADDRESS EN DISABLE

SN54S' 75 ns 40 ns 40 ns
SN74S' 60 ns 30 ns 30 ns

8-388 9900 FAMILY SYSTEMS DESIGN

MOS
LSI

TMS 2708 JL, TMS 27L08 AND TMS 2716 JL
8K AND 16K ERASABLE PROGRAMMABLE ROMs

.. ,,
o 2708 JL and 27L08 JL - 1024 X 8

Organization

• 2716 JL 2048 X 8 Organization

o All Inputs and Outputs Fully
TTL-Compatible

o Static Operation (No Clocks, No Refresh)

o Maximum Access Time ... 450 ns

o Minimum Cycle Time ... 450 ns

o 3-State Outputs for OR-Ties

o N-Channel Silicon-Gate Technology

• 8-Bit Output for Use in Microprocessor-Based
Systems

o Low Power
TMS 27L08 ••• 245 mW (Typical)
TMS 2716 ... 315 mW (Typical)

o 10% Power Supply Tolerance (TMS 27L08
Only)

o Plug-Compatible Pin-Outs Allowing Inter
changeability/Upgrade to 16K With Minimum
Board Change

'TMS 2516JL

'Lil I ¥6¥ ff * '

24-PIN CERAMIC
DUAL-IN-LINE PACKAGE

(TOP VIEW)

A7 24 Vee•

A6 2' 23 AB

A5 3 22 A9

A4 4 21 Vee

A3 5

0
20 CS(PE)*

A2 6 19 VDo

A1 7 18 Program*

AO B 17 as

01 9 16 07

Q2 10 15 06

Q3 11 14 as

Vss 12 13 04

*For 2716 JL Only: Pin:
18 B (Program)

20 A10
24 Vee (PE)

Vss - 5V power supply

Vee + 5V power supply

Voo + 12V power supply

Vss OV ground

16K ERASABLE PROGRAMMABLE READ-ONLY MEMORIES

24-PIN CERAMIC
o 2048 x 8 Organization DUAL-IN-LINE PACKAGE

o Single +5 V Power Supply (TOP VIEWI

o All Inputs and Outputs Fully TTL· A7 24 Vee
Compatible

A6 2

I

23 AB
• Maximum Access Time ... 450 ns
o Minimum Cycle Time ... 450 ns A5 3 22 A9

o 3-State Outputs for OR-Ties A4 4 - 21 Vpp

o 8-Bit Output for Use in Microprocessor A3 5 g 20 cs
Based Systems

A2 6 19 A10
o N-Channel Silicon-Gate Technology
o Low Power: 525 mW Maximum Active A1 7 18 PD/PROGRAM

Power AO 8 17 OB

132 mW Maximum Standby Power
01 9 16 07

o Guaranteed d.c. Noise Immunity with
06

Standard TTL Loads - No Pull-Up
02 10 15

Resistors Required 03 11 14 05

• Interchangeable with Intel 2716 Vss 12 13 04

9900 FAMILY SYSTEMS DESIGN 8-389

8-c

TMS 2532JL MOS

32K ERASABLE PROGRAMMABLE ROMs
LSI

24-PIN CERAMIC
• 4096x8 Organization DUAL-IN-LINE PACKAGE
•Single +5V Power Supply (TOP VIEW)
• Pin Compatible with all SK and

16K EPROMs A7 24 Vee
• Plug-in Compatible with the

TMS 4732 32K ROM AG 2 23 AB

•All Inputs and Outputs Fully
AS 3 22 A9

TTL Compatible
• Static Operation (No Clocks, A4 4 21 Vpp

No Refresh)
• Maximum Access Time ... 450ns A3 5 g 20 PD/PGM

• Minimum Cycle Time ... 450ns
• 3-State Outputs for OR-Ties A2 6 19 A10

• 8 Bit Output for Use in
A1 7 18 A11

Microprocessor Based Systems
• N-Channel Silicon-Gate

AO 8 17 QB
Technology

• Low Power: 840mW Maximum Active Q1 9 16 Q7
132mW Maximum Standby

• Guaranteed DC Noise Immunity with Q2 10 15 QG
Standard TTL Loads-No Pull-Up

Q3 14 Resistors Required 11 Q5

• Interchangeable with Intel 2716
Vss 12 13 Q4

8

8-390 9900 FAMILY SYSTEMS DESIGN

Mechanical Data

9900 FAMILY SYSTEMS DESIGN 8-391

MECHANICAL DATA Mechanical Data

NUMBERING SYSTEM

Factory orders for circuits should include the complete part-type numbers.

Example: TM S 4030

(TI Prefix) f
Product Status 1------'

S Standard devices
X Prototype or experiement
C Custom designs

N L

(Package)

F Flat
J Ceramic dual-in-line
N Plastic dual-in-line
U U nencapsulated

(beam lead, etc.)

30

Speed (Access Time)**

-15 150 ns -30
-20 200 ns -45
-25 250 ns

Temperature Range

Uni ue Product Identification Number*

MANUFACTURING INFORMATION

C -25°C to 85°C
L 0°C to 70°C
M - 5 5 ° C to 125 ° C
R -55°C to 85°C
S Special range

Die-attach is by standard gold silicon eutectic or by conductive epoxy.

Thermal compression gold wire bonding is used on plastic packaged circuits. Typical bond strength is 5 grams.
Bond s~rength is monitored on a lot-to-lot basis. Any bond strength of less than 2 grams causes rejection of the
entire lot of devices. On hermetic devices either thermal compression or ultrasonic wire bonding is used. All
hermetic MOS LSI devices produced by TI are capable of withstanding 5 x 10- 1 atm cc/sec inspection and may be
screened to 5 x 10-s atm cc/sec fine leak, if desired by the customer, for special applications.

All packages are capable of withstanding a shock of 3000 g. All packages except the 64-pin package are capable of
passing a 20,000 g acceleration (centrifuge) test at the Y-axis. Final specifications for the 64-pin package are not
available at this printing. Pin strength is measured by a pin-shearing test. All pins are able to withstand the
application of a force of 6 pounds at 45 ° in the peel-off direction.

DUAL-IN-LINE PACKAGES

A pin-to-pin spacing of 100 mils has been selected for standard dual-in-line packages.

TI uses two basic types of hermetically sealed ceramic dual-in-line packages. The first type is the side-brazed
package cap and tin-plated leads. The second is the cerdip which consists of a ceramic base and cap sealed with a
low-temperature glass and tin-plated leads.

*Inclusion of an "L" within the identification number indicates the device operates in the low power range (e.g., 27L08, 40L45).

•*On some parts DRAMs {-I 250 ns
-2 200 ns

SRAMS {-! 650 ns
-2 450 ns

9900 { -30 3MHz
FAMILY -40 4 MHz

300 ns
450 ns

8-392 9900 FAMILY SYSTEMS DESIGN

Mechanical Data MECHANICAL DATA

The following dual-in-line packages are available in plastic or ceramic:

Distance Between Rows Number of Pins

300 mils
8 10 16 18 20 22 24 28 40

400 mils Xt Xt x x x
600 mils

x
x x

CERAMIC PACKAGES WITH SIDE-BRAZED LEADS AND METAL OR EPOXY OR GLASS LID SEAL

<t.
0.200 (5,08)

MAX !Al 0.02i,~·511 1r0.07011,78)MAX

SEATINGSe•r·~a . t----+-~-
- PLANET ,

_..J~ 0.011 ± 0.003
(0,279 ± 0,076)

r-o-1 (0,457 ± 0,076)
0.100

0.125 (3,17)
MIN

I I.- _JI.- O.D18 ± 0.003 J
(2,54)
NOM 0.070 (1,78) MAX f4--

x

NOTES: a. This minimum spacing is valid for printed circuit board mounting with 0.033 (0,84) diameter holes for the leads.
b. All linear dimensions are in inches and parenthetically in millimeters. Inch dimensions govern.

~ 16 18 20 22 24 28 40

A± 0.010 (0,26) 0.300 (7,62) 0.300 (7,62) 0.300 (7,62) 0.400 (10,16) 0.600 (15,24) 0.600 (15.24) 0.600 (15,24)

B MAX 0.840 (21,4) 0.910(23,1) 1.020 (25,9) 1.100 (28,0) 1,290 (32,8) 1.415 (36,0) 2.020 (51,3)

c NOM 0.290 (7,4) 0.290 (7,4) 0.290 (7,4) 0.390 (9,9) 0.590 (15,0) 0.590 (15,0) 0.590 (15,0)

9900 FAMILY SYSTEMS DESIGN 8-393

MECHANICAL DATA Mechanical Data

CERDIP PACKAGES

0.020 10,51)

MIN~---------.---,-

00~~ ~t~~r·~:'"' ~ t 0.070 (1,78) PIN SPACING O.Q70 11,78)
O.Q18 ± 0.003 MAX 0.100 12,54) MAX
10,457 i 0,076) NOM

ALL LINEAR DIMENSIONS ARE IN INCHES AND PARENTHETICALLY IN MILLIMETERS. INCH DIMENSIONS GOVERN.

~ M 16 18 20 22 24 28 40

A± 0.010 I0,26) 0.300 (7,62) 0.300 (7 ,62) 0.300 (7,62) 0.400 (10, 16) 0.600 (15,24) 0.600 (1 5,24) 0.600 (15,24)

B MAX 0.785 (20,0) 0.920 (23.4) 1.070 (27,2) 1.100 (28,0) 1,290 (32,8) 1.460 (37,1) 2.090 (53.1)

c MAX 0.288 (7,3) 0.288 (7,3) 0.288 (7,3) 0.388 (9,86) 0.560 (14,21 0.560 (14,21 0.560 (14,21

PLASTIC PACKAGES

\,:] '

~-'"""'"':~m~~~===~~ ,===I oo===. ,R~~08)
... "·""' ·~ ,.,,, '"·"'JI [LI j I j 0.12513,17)

-11 (0,279' 0.076) NOM r...l 1---i MIN

O.Q18' 0.003 0.070 ll,79l PIN SPACING 0.070 11,78)
I0,457 ' 0,076) MAX 0.100 (2,54) MAX

NOM

ALL LINEAR DIMENSIONS ARE IN INCHES AND PARENTHETICALLY IN MILLIMETERS. INCH DIMENSIONS GOVERN.

~ M 8 16 18 20 22 24 28 40

A; 0.010 (0,26) 0.300 (7,621 0.300 (7,621 0.300 (7,621 0.300 (7,62) 0.400 (10,16) 0.600 (15,24) 0.600 (15,24) 0.600 (15,24)

B MAX 0.390 (9,91 0.870 (22,1) 0.920 (23.4) 1.070 (27 ,2) 1.100 (28,0) 1.290 (32,81 1 .440 (36,6) 2.090 (53,11

c NOM 0.250 (6.41 0.250 (6.4) 0.250 (6.4) 0.265 (6,7) 0.350 (8,91 0.550 (14,0) 0.550 (14,01 0.550 (14,0I

8-394 9900 FAMILY SYSTEMS DESIGN

Mechanical Data MECHANICAL DATA

CERAMIC PACKAGES WITH ToP-BRAZED OR SmE-BRAZED LEADS AND METAL OR EPOXY OR GLASS Lm SEAL

INDEX MARK

rt. 0.900 ± 0.020 <t. I (22,86± 0,51)~ 0.020 (0,51) MIN 0.20015,08) MAX]

(ti 1 SEATING _ _..r--.->19
~ ___ __,PLANE • ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ m1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~h

o.oio 10.2541 NOM _.... r I L ~ I- -JI.-, _J l...,
O.l

201
3

.0l MIN ~ 0.050 (1,27) NOM 0.017' 0.003 0.050, 0.020

PIN SPACING 0.100 12.54) T.P. I0.432' 0,076) (1,27, 0,51)
(See Note Al

ALL LINEAR DIMENSIONS ARE IN INCHES AND PARENTHETICALLY IN MILLIMETERS, INCH DIMENSIONS GOVERN.

8·

9900 FAMILY SYSTEMS DESIGN 8-395

·8

Software

~8

TMSW 101MT
TMS 9900 TRANSPORTABLE CROSS-SUPPORT

• TMS 9900 Cross Assembler
• TMS 9900 Simulator
•ROM Utility

SOURCE
PROGRAM

TMS 9900
CROSS

ASSEMBLER

OUT
PUT

TMS 9900 CROSS ASSEMBLER DESCRIPTION

Figure I

TMS 9900
SIMULATOR

PROTOTYPING
SYSTEM

Software

YES

Tl
MANUFACTURING

Before the advent of assemblers and other programming aids, the computer programmer was required to manually
generate the particular bit patterns that constitute a program. This tedious task is now performed by
symbolic assembler program such as the TMS 9900 Assembler. The Assembler permits the programmer to
refer to data, memory addresses and machine actions symbolically when creating a source program. The TMS 9900
Assembly Language source is translated by the TMS 9900 Cross Assembler into relocatable linkable TMS 9900
Object module format. Both the source input and the object output are fully compatible with the FS 990 Prototype
Development System and nationally available timesharing services (GE, NCSS, and TYMSHARE).

TMS 9900 SIMULATOR DESCRIPTION

The TMS 9900 Simulator is compatible with and has extensions to the Simulator on GE, NCSS, and
TYMS HARE. The Simulator runs either in batch mode or in an interactive mode for maximum effectiveness. The
microprocessor system simulation is specified by the designer from a keyboard/display device in the interactive mode.
The output, such as instruction trace can be viewed on a CRT or printed ou_t when in the batch mode.

The Simulator accepts object modules plus "link-control" statements from the Assembler as shown in Figure 1. Then
the load module plus debug and control statements are sent to a "Run Processor" that performs the application
program's execution. By executing instructions in software just as the TMS 9900 microprocessor executes instructions
in hardware, the program logic is verified and the performance is measured. To set up a target system's characteristics,
control language statements initialize memory, 1/0 ports, 1/0 linkages, and processor clock frequency. The control
language also allows multiple breakpoints,' full instruction trace, snapshots, memory and register inspection/ changes.
Interrupt controls and total run/ stop commands are also provided. By exercising total software control, a program can
be thoroughly checked before the hardware is running.

8-398 9900 FAMILY SYSTEMS DESIGN

Software TMSW 101MT
TMS 9900 TRANSPORTABLE CROSS-SUPPORT

TMS UTL, ROM UTILITY DESCRIPTION

When the application program has been satisfactorily verified, the object module is accessed by the ROM Utility
program, TMS UTL, for translation into a format acceptable for production of a gate placement program (prepatory to
mass production). Alternatively, the utility can generate a BNPF or hexadecimal formatted file that is an input to a
PROM programmer (Data 110, etc.) to produce a PROM or EPROM version of the program. In all, there are 12
acceptable input formats and 12 output formats in support of the TMS 9900 microprocessors. Table I indicates
the valid input/ output translations supported by the utility for the TMS 9900.

Table I - TMS UTL Format Paths

AVAILABLE OUTPUT FORMAT

AVAILABLE INPUT FROM 1 2 3 4 5 6 7

1) Hexadecimal #2 (PROM) YES YES YES YES NO NO YES

2) Hexadecimal #2 (ROM) YES YES YES YES NO NO YES

3) BNPF YES YES YES YES YES YES YES

4) SN74S271 & SN74S371 ROM/HILO Format YES YES YES YES NO NO YES

5) TMS 9900 Standard Absolute Object of
Cross Support System (Assembler or YES YES YES YES YES YES YES
Loader/Simulator) & Prototyping
System

6) TMS 9900 Compressed Absolute Object YES YES YES YES YES YES YES
of Prototyping System

7) TMS 4 700 ROM YES YES YES YES NO NO YES

8) TMS 4800 ROM YES YES YES YES NO NO YES

OPERATING ENVIRONMENT

The programs are written to conform to ANSI STANDARD X3.0 (1966) 16-bit FORTRAN and are designed to
execute on any minicomputer with the following minimum characterics.

o ANSI STANDARD X3.0 (1966) 16-bit FORTRAN Compiler
o Two's compliment arithmetic

8

YES

YES

YES

YES

YES

YES

YES

YES

o Disc capacity for up to 7 simultaneously active sequential files, with two being in rewindable and re-readable media
o A 16k to 20k word user program memory partition

PACKAGING

The TMS 9900 Transportable Cross Support package is composed of three distinct products: TMS 9900 Cross
Assembler, Simulator, and ROM Utility. The part number for the package is TMSW lOlMT. The product name is
TMS 9900 Transponable Cross-Suppot1 Software. TMSW 101 Tis manufactured only on half inch, 9 track PE encoded
(IBM compatible) magnetic tape recorded at 1600 BPI. The tape is unlabeled, unblocked, with 80 ASCII bytes per data
record and contains 128 files. The first file on the tape is a data file which contains a one-time description for each file on
the tape. Each file is terminated by an EOF mark except for the last file which is terminated with a double EOF to
indicate end-oflogical tape.

Included in the shipping package is a User Manual for each of the three programs and an Installation Manual
(4 manuals, total).

9900 FAMILY SYSTEMS DESIGN 8-399

84
I

TM 990/302
SOFTWARE DEVELOPMENT BOARD

• Dual or Single audio-cassette interface
• EPROM programming options:

TMS 9940, TMS 2716, TMS 2708,
TMS 2532, TMS 2516

• Software development aids residing in ROM:
Symbolic Assembler
Text Editor
EPROM programmer
Relocating loader
1/0 Scheduler/Handler
Debugger

• Optional POWER BASIC development software
residing in EPROM (16k bytes)

e 4K X 16 EPROM or preprogrammed ROM
• 2K X 16 RAM
o Memory expandability for additional performance

(TM 990/201 or TM 990/206 memory expansion
boards)

• EIA communication with other computers

DESCRIPTION

Software

The TM 990/302 is an assembled, tested module for developing assembly language software to be used on 990/9900
family microprocessor based systems. The TM 990/302, a bus-compatible member of the TM 990 microcomputer
module family, provides dual audio cassette interfaces, both static RAM and ROM memory, and hardware circuitry for
the programming of read-only memory devices. Used in conjunction with either the TM 990/lOOM or TM 990/
lOlM microcomputer modules, the TM 990/302 provides a complete standalone software development system
offering support for program generation, editing, assembly, debugging, and EPROM programming at an extremely
attractive cost. Figure 1 is a system block diagram of the TM 990/302. The TM 9901100 and TM 990/101 memory
map incorporating the Software Development Board ROM and RAM are shown in Figure 2.

8-400 9900 FAMILY SYSTEMS DESIGN

'° I
en

'° 2. 0
0 i
'Tl Q)

;:i;. (D
3:::

~ I I
MEMORY ENABLE

~
MEMORY BACKPLANE DIP

(r
WAIT en SWITCH WAIT SIGNAL

-< LOGIC
en ...,
[Ij

3:::
en
tJ
[Ij

I ~1~
MEMORY

I) J -~
RAM

ADDRESS
(

MEMORY h I BACKPLANE
DECODING DATA DATE BUS ::::

~
:--

~
EPROM

EPROM
ENABLE·

MEMORY BACKPLANE
ADDRESS MEMORY CRUIN SIGNAL

ifJ ~ 'C
'C LINES CONTROL
~ ~ $: -.....

USER SUPPLIED (.,.., BACKPLANE

~ ADDRESS LINES VOLTAGE

~'° ~ MEMORY ~~ ~ AND CRU
CRU DATA AND CONTROL SIGNALS

>~ ~
ADDRESS AND
CONTROL EPROM PERSONALITY ~o ::: PROGRAMMER CARD ,..,

EPROM PROGRAMMER SELECT t"I'jN ~ BUFFER c·

~ CRU CRU CIRCUITRY
tj

b;:, ADDRESS DATA MOTOR CONTROL
<::;-- DECODING LOGIC RECORDE::l NO 1 t"I'j
~ A RELAY < t:J RECORDER SELECT t"I'j
~· MOTOR CONTROL ~ ~ RECORDER NO. 2

0 ~ A RELAY

RECORDER ~
WRITE DATA $:

M
RECORDER

I z
A LOW PASS I READ DA~A

~ FILTER

co
0
>

~I I ~ tj

00 ...

... s

TM 990/302
SOFTWARE DEVELOPMENT BOARD

HEX
ADDRESS

0000

2000

TM 990/100M RAM

TM 990/302 RAM

OPTIONAL
EXPANSION RAM

(TM 990/201 /2031206)

EOOO ._ _________ _

TM 990/302 EPROM
FFFF_ _________ __.

(A) TM 990/100M AND TM 990/302
MEMORY ADDRESS MAP

HEX
ADDRESS

0000

1000

2000

EOOO

FFFF

TM 990/101 RAM

TM 990/302 RAM

OPTIONAL
EXPANSION RAM

(TM990/2011203/206)

TM 990/302 EPROM

(8) TM 990/101 MAND TM 990/302
MEMORY ADDRESS MAP

Figure 2. System Memory Map

SOFTWARE

Figure 3 is a typical software development cycle using the TM 990/302 Software Development board.

SOURCE TEXT EDITING

Software

The text editor provides the means for initial source code entry or program update. Initial source inputs will be from
the user's terminal. Source programs on audio cassette will be updated with changes made from the user's terminal.
The size of the text editor buffer is determined at initialization as a function of the total available RAM.

The text editor operates on the source code text in a line mode. Text editor commands with their respective functions
are:

D

I

K

G
p

Q

R

Delete lines n thru m

Insert at linen with optional line-number autoincrement by m

Keep (store) buffer and print new top line in the buffer

Get buffer and print new bottom line of the buffer

Print lines n thru m

Flush the input file until end of input file and return to executive.

Resequence output line numbers, n is initial line number and m is the increment.

To create or update the source program, the text.editor provides manipulation of individual lines of code and entry with
automatic line number indexing. The designer may delete, insert, print, resequence, and interactively check 9900
instruction syntax from his keyboard. The text editor handles programs of any length by segmenting the code into
"buffer" blocks. It controls buffer loading and storage into cassette-tape memory. The buffer is enlarged by plugging in
memory-expansion cards, which also expand the amount of target system memory available for execution.

8-402 9900 FAMILY SYSTEMS DESIGN

Software TM 990/302
SOFTWARE DEVELOPMENT BOARD

TEXT
EDITOR

INITIAL INPUT,
EDITING

....._ ___ ...,.... ___ _:-------- 00 SOURCE TAPE

YES

NO

9900 FAMILY SYSTEMS DESIGN

ASSEMBLER

RELOCATING
LOADER

DEBUGGING
PROGRAM

SAVE OBJECT
ON CASSETTE

PROGRAM
EPROM

PLACE EPROM
IN TARGET
SYSTEM

LISTING,
ERRORS

14--------1 U-0 OBJECT INPUT

INTERACTIVE
CQNTROL OF
EXEUTION

Figure 3. Typical Software Development Execution

8-403

... g

TM 990/302 Software

SOFTWARE DEVELOPMENT BOARD

ASSEMBLING SOURCE

The next step· in program development is a two-pass assembly ofTMS 9900, SBP 9900, TMS 9980, TMS 9985,
TMS 9940 instruction sets into absolute standard 9900 object code. This two-pass assembler allows four-character
symbolic addressing. The assembly listing output, including error messages, is_ routed to a user chosen device.

DEBUGGING

Seven debug commands aid program development after the loader program puts the assembled object into memory.
Multi-step trace, software breakpoints and data inspection changes are featured.

Debug Commands:

SB Set software breakpoint and execute

IM Inspect/change memory

IC Inspect/change CRU

IR Inspect/ change registers

RU Record Program Execution Path Change

ST Single step for 1 or more instructions with or without trace

DM Dump memory to specified cassette in object format

EPROM PROGRAMMING

After debug, the EPROM programmer can be invoked to program EPROM's, read back EPROM's into memory, or
compare EPROM contents to memory. Byte and word serial formats are available. The EPROM programmer is able
to program the following EPROMS: 2708, 2716, 2516, 2532, and 9940.

HARDWARE FEATURES

• Two audio cassette interfaces
• 4K X 16 programmed ROM's
• 2K x 16 RAM
• One decode PROM for upgrading TM 990/ lOOM microcomputer board RAM maps
• TMS 2716, TMS 2708, TMS 2532, TMS 2516 and TMS 9940 EPROM programming personality

card.

When the TM 990/ 302 board is used as a software development system, the equipment configuration could include:

•
•
•
•

•
•
=

TM 990/ 302 Software Development Board
A TM 990/lOOM or TM 9901101 microcomputer board
TM 990/510/520 (4 or 8 slot) card cage
User supplied power supply: + 12V, + 5V, - 12V, + 30V to + 52V (for EPROM Programmer) TM
990/ 518 Power Supply
User supplied audio cassette player I recorder
.Power Basic Interpreter (16k byte) optional
User supplied terminal: current loop TTY, TI silent 700, or equivalent.

Table 1 lists the hardware characteristics of the development system when used with either of the two microcomputer
boards.

, I

8-404 9900 FAMILY SYSTEMS DESIGN

Software TM 990/302
SOFTWARE DEVELOPMENT BOARD

Table 1. TM 9901302 System Specifications

Item TM 9901302 with TM 9901 JOOM TM 9901302 with TM 990/JOJM

Microprocessor TMS 9900, 16 bit TMS 9900, 16 bit
Timers 2 3
Serial ASCII 1(110-19,200 baud) 2(110-19,200 baud)
1/0 ports 1 16-bit port 1 16-bit port
RAM (min-max) 2.25K-2.25K words 4K words
Non-volatile 5K-8K words ROM 4K-8K words ROM
memory
Programmable 2708, 2716,2516 2708, 2716, 2516
memories 2532,9940 2532,9940
Cassette interfaces 2 2
Operating Temperature 0-55 °C 0-55°C

Physical Characteristics

Width: 11 inches (279.4mm)
Height: 71/2 inches (190:5mm)

Power Requirements

+5V I.SA
-12V 50mA
+ 12V 50mA
30-52V lOOmA EPROM programming voltage

Ordering Information

TM 990/ 302 Software Development Board

I

8<i

9900 FAMILY SYSTEMS DESIGN 8-405

~8

TM 990/40DS
DESIGN AID FOR TMS 9940 MICROCOMPUTER

r ""'"'""'"'mm
_mm"mm~

1 MS 9940

a Texas Instruments
I TM 990/4005

• EPROM Programmer for TMS 9940E
•Assembler
• Debug Monitor
• Trial in System Emulation
•Can be used with EPROM and/or Mask ROM Version ofTMS 9940

DESCRIPTION

Software

e
I

RE START

The TM 990/40DS is a low cost development system for the first 16-bit single-component microcomputer, the TMS
9940. To make the TM990 I 40DS as cost effective as possible, the traditional front panel assembly of lights and
switches is not used. Instead an input/output system is provided which enables the programmer to use a standard EIA
terminal such as an ASR-33 Teletype or a Texas Instruments Silent 700 terminal. The TM 990/40DS helps the
programmer:

• Generate executable software
• Program this software to be on the EPROM version of the TMS 9940, and
e Test the program to be in the user's target system using the Trial In-system Emulation (TISE) Feature.

SOFTWARE GENERATION

To help generate the software the TM 990/40DS features an assembler and monitor. The Line by Line Assembler
(LBLA) is a single pass assembler that assembles the user's program written in TMS 9940 instructions and stores
machine code in memory. As each source line is assembled, the resulting machine code is placed in the user's RAM on
the TM 990/ 40DS. The user can then implement the TIBUG II monitor to test and debug the software prior to using
the EPROM programmer.

TIBUG II is a debug monitor which provides an inte.ractive interface between the user and the TM 990/40DS. The
TIBUG II monitor provides software routines that accomplish special tasks. These routines, listed in Table I, facilitate
software development using the TM 990/ 40DS. All communications with TIBUG II occur via a 20mA current loop
or RS-232-C device.

8-406 9900 FAMILY SYSTEMS DESIGN

Software TM 990/40DS
DESIGN AID FOR TMS 9940 MICROCOMPUTER

PROGRAMMING THE EPROM OF THE TMS 9940

This is accomplished by three of the TIBUG II commands: PI>,, CP, and VP. These are described in Table I. These
commands allow for the programming of the EPROM from the user's RAM memory of the TM 990/ 40DS, the
copying from the TMS 9940E EPROM to the RAM memory, and the verification of the EPROM and RAM
memories.

TRIAL IN-SYSTEM EMULATION (TISE)

Once the user's program has been assembled and debugged using the TM 990/40DS TIBUG II monitor, the
pr0gram can be tested in the user's target system using the TISE feature of the TM 990/ 40DS. This feature allows
emulation of most of the TMS 9940's operations, utilizing the TM 990/ 40DS memory. Using TISE, a three-foot 40-
conductor cable is connected to the edge connector of the TM 990/40DS. The other end of the cable contains a 40-pin
male connector that is plugged into the user's system at the socket that will contain the TMS 9940.

Table I - TI BUG II Commands

Command Descnption

ZA Assembler - used to call up the Line by Line Assembler.

LP Load Object Program from cassette/ paper tape into the TM 990/ 40DS user memory.

DP Dump the TM 990/40DS memory onto cassette/paper tape in TMS 9900 absolute object format.

SB Set Breakpoint. This command sets breakpoints that allow programs to be executed from one
memory address to another. From 1 to 16 addresses can be entered as breakpoints. When a
breakpoint address occurs, execution stops and contents of the Program Counter, Status Register and
the Workspace Pointer are displayed.

CB Clear Breakpoint. Clears breakpoints previously set.

IM Inspect/Change Memory, Memory Dump. Memory inspect/change "opens" a memory location,
displays it, and gives the option of changing the data in the location. Memory dump directs a display
of memory contents from "start address" to "stop address".

IR Inspect/Change Hardware Registers (Workspace Pointer, Program Counter, Status Register).
These three registers are displayed and may be changed.

IW Inspect/Change user workspace. This command is used to display contents of the entire workspace
register file or display one register at a time allowing the user to change the register contents.

IC Inspect/Change CRU. The CRU register is displayed and may be changed. NOTE: The CRU is a
bit oriented 1/0 interface through which both input and output bits can be directly addressed
individually or in fields of 1 to 16.

FB Find Byte in memory. A memory field is searched for a value. The memory addresses that contain the
value are printed out.

FW Find Word in memory. Same as Find Byte in memory except the value is a word.

DH Decimal to Hexadecimal conversion provides the user the capability of converting. decimal numbers to
hexadecimal.

HD Hexadecimal to Decimal conversion, provides user the capability of converting hexadecimal numbers
to decimal.

HA Hexadecimal Arithmetic. Two hexadecimal numbers are entered and their sum and difference are
printed out.

PP Program EPROM. Used to load the TMS 9940's EPROM area with the user's program.

9900 FAMILY SYSTEMS DESIGN 8-407

8~
I

TM 990/40DS Software

DESIGN AID FOR TMS 9940 MICROCOMPUTER

Command Descnption

CP Copy EPROM program. The contents of the EPRG:>M section of the TMS 9940 is transferred into
the user's RAM area of the TM 990/40DS.

VP Verify PROM. The contents of the EPROM of the TMS 9940 is compared to the contents of the
user's RAM area in the TM 990/ 40DS. This v~rifies that the· correct program is in .the TMS 9940.

MV Move Block of memory. A starting and ending address is given for the block of memory to be
transferred along with the starting address of the destination.

EX Execute. Following execution of this command, program execution begins at the value presently in
the program counter.

RU Run in multistep mode. From 1 to 64K instruction executions followed with WP, PC, Status
Printout.

HE Help command. This command brings up a listing of all the TIBUG II commands as reference for
the user.

TM Texas Instruments 733 ASR run at 1200 Baud. This command is used to alert TIBUG II that the
terminal being used is a 1200 Baud terminal other than a Texas Instruments 7 33 ASR,

TT Self Test. The self test is a software routine used to test the TMS 9940s. The routine is loaded into
the TMS 9940's RAM space and executed by the TM 990/ 40DS. Once completed, the program
transmits the results of the test to the system terminal.

TM 990/40DS PARTS LIST

The TM 990/ 40DS consists of 3 boards (described below), a TM 990/ 510 card cage, power supply, Trial In-System
Evaluation (TISE) cable, EPROM programmer cable, a serial interface cable, and a chassis.

Three boards make up the TM 990/40DS System (See Figure 1). First is the TM 990/lOOM-4 microcomputer board
with lk X 8 bits of RAM and 8k X 8 bits of EPROM. This board is the central processing unit which controls I/ 0 to
the emulator boards and also to peripheral devices.

The two emulator boards are the TM 990/901 and TM 990/902 which handle the emulator functions of the TM
990/ 40DS during software development.

ORDERING INFORMATION TM 990/40DS
DESIGN AID FOR TMS 9940 MICROCOMPUTER

The TM 990/40DS may be ordered through any TI authorized distributors under the following Part Number: TM
990/40DS.

8-408

~---
DATA
TERMINAL

TRIAL
IN-SYSTEM
EVALUATION
(TISE) PLUGGED INTO
USER'S TARGET SYSTEM

TM 990/40DS CONTAINING:
• TIVI 990/100M-4 CPU BOARD
• 1 & 2 EMULATOR BOARDS

32- BIT
1/0 PORT

CRU
INTERFACE

Figure 1. TM 990140DS System Diagram

PROM
PROGRAMMING

9900 FAMILY SYSTEMS DESIGN

Software Tl\.1990/450,451,452,Tl\.1SVV201F
POVVER BASIC FAMILY

POWER BASIC FEATURES

• Software Based in ROM or Floppy Diskettes

• For Use with Single or Multi-Board Systems

• Bit, Character and Word
Oriented 1/0

• Multiple Process Execution

• Interprocess Communication
through Common Variables

A FAMILY OF PRODUCTS

• Automatic Minimum Memory
Configuration

• Real Time Clock and Interrupt
Processing

• Extended Arithmetic Capability
• Multi-Dimensional Arrays
• Multi-Argument Functions
• 48 Bit Real Precision

The POWER BASIC Family is a set of software that edits and translates BASIC language statements into 9900
instructions and executes these statements to solve a particular algorithm.

Texas Instruments family of POWER BASIC language interpreters brings the features of BASIC to the
industrial user of microprocessors providing a selection of products to meet the requirements for evaluation,
development, and application in economical yet versatile packages. These additions continue the development
of a comprehensive line of software development tools to support 990/9900 family components and systems
to meet a wide range of application requirements.

The POWER BASIC family members are provided in read-only memory devices and on floppy diskettes. They
can operate on a variety of hardware configurations ranging from stand-alone component based systems using
9900 family microprocessors to full-feature minicomputers such as the FS990. Figure 1 illustrates the solution
of real world problems in real time provided by a TM990/101M-10 module.

(OPTIONAL)

OBJECT
FILE

OBSERVATIONS

T

ACTUATOR
OUTPUTS ----t

R
15 L E A

D N IN~ I s
T L I~~ 0 A
R T I~ R

0 IE y
R

EPROM I

____ FINAL

PROGRAM

RAM

TM9901101 M-10

Figure 1. Real World Problem-Solving in Real Time
with a TM990/ JOJM-10 Module

9900 FAMILY SYSTEMS DESIGN 8-409

8<11111
I

Tl\1990/450,451,452, Tl\1S\V201F
PO\VER BASIC FA1\1ILY

APPLICATIONS

Software

POWER BASIC is used to solve problems in data acquisition and control, data communications, information
analysis, and sequencing of external events. Current applications include: intrusion alarm monitoring, navigational
computation, numerical control, data reduction and analysis, inventory and payroll management, point-of-sale
accounting, simulation and forecasting, and data base manipulation. Also used for education in programming
and the structure of algorithmic processes.

APPLICATION FEATURES

POWER BASIC FOR INCREASED SPEED

• TI Breaks the 20 Second Barrier

The 16 bit architecture and instruction set of the
9900 family of microprocessors is well suited for
efficient execution of POWER BASIC programs.
Results compared with benchmark programs
reported in KILOBAUD magazine (October, 1977)
show POWER BASIC to be faster than all others
reported - less than 20 seconds on benchmark 7.

POWER BASIC FOR FLEXIBLE 1/0

• Direct Manipulation of I/ 0 and Memory

Control of information into and out of a 9900 family
microprocessor based system is easily accomplished
using a special variety of assignment statements
supported by POWER BASIC. Internal and
external data and control signals may be received and
transmitted by the application program using a
special set of POWER BASIC system defined
functions. These special functions, as well as
assembly language subroutines, support direct
manipulation of either CRU or memory-map
interfaced devices. In many cases, use of the system
defined memory and CR U functions will be adequate
substitutes for assembly language, improving the
reliability of the application program by using
pre-tested software and increasing the productivity of
the design engineer.

8-410

POWER BASIC FOR CosT EFFECTIVENESS

• Single Board, ROM Resident, Configurable

For production systems written in POWER BASIC,
a CONFIGURATOR program is provided which
analyzes the POWER BASIC application program
and produce.s a minimum memory load module for
that application.

Insertion of assembly language subroutines provides
additional problem solving flexibility.

POWER BASIC FOR MuLn-PRocEssrNG (EvAL. BASIC)

• Multiple Process Execution and Communication

Within the POWER BASIC command and control
structure, special provision has been made for
independent execution of programs through a
FOREGROUND/BACKGROUND mode switch.
Once a program has been started in the
FOREGROUND mode, a switch can be activated to
provide a new program environment while relegating
the currently executing POWER BASIC application
program to the BACKGROUND mode of operation.
After this has been accomplished, communication
between FOREGROUND and BACKGROUND
programs is supported through the use of shared
dedicated variables. These unique variables may be
modified and tested by either program independently,

offering full capabilities for interaction and control.

9900 FAMILY SYSTEMS DESIGN

Software TM990/450, 451, 452, TMSW201F
POWER BASIC FAMILY

POWER BASIC FAMILY MEMBERS

Part No.

TM990/450

TM990/101M-10

TM990/451

TM990/452

TMSW201F

Media

EPROM device
kit
TM990/101M

ROM device
kit

EPROM device
kit

FS990
diskette

A REAL SOLUTION TO A PROBLEM

Name

Evaluation POWER
BASIC

Development POWER
BASIC

Development BASIC
Software Enhancement

package

Configurable POWER
BASIC

Descnption

Reduced memory version (8K Byte)
designed to offer evaluation tools for
exploring POWER BASIC
applications. ROM kit executes
stand-alone on TM990/100M, lOlM
modules.

Expanded memory version (12K Byte)
providing capability for design,
development, debug, and complete
programming of POWER BASIC
programs. Executes on TM990/ 302
module interfaced with
TM990/100M, 101M CPU modules.

Enhancements (4K byte) to
Development POWER BASIC.
Provides utilities for use with TM990/
302 module (EPROM programmer,
cassette interfaces, etc.). Executes on
TM990/302 module interfaced with
TM990/101M CPU or with TM990/
lOOM CPU and TM990/100M CPU
and TM990/201 Memory module.

Fully expanded version including
complete diskette file support and a
CONFIGURATOR program which
reduces the size of POWER BASIC
programs for execution.

To the industrial designer of microprocessor based electronic equipment, Texas Instruments POWER BASIC
Family offers a versatile alternative to the use of assembly language in implementing application programs.
Designed to provide a selection of products to meet a broad range of feature and cost requirements, POWER
BASIC delivers productivity improvements and architecture independence which impact development costs and
minimize project risks. Packed with improved features, POWER BASIC makes the solution of complex system
problems a straight-forward process, eliminating unnecessary design details, while providing the kind of
performance mandated by state-of-the-art semiconductor technology and minicomputer architecture.

Texas Instruments is committed to provide the most advanced microprocessor system devdopment tools, making
the 990/9900 family of microprocessors the low risk choice for designers of electronic equipment. The TI
PO\VER BASIC Family reaffirms that commitment and is indicative of the quality support which the user
can expect from Texas Instruments in the future.

Additional details on the individual products which comprise the POWER BASIC Family are available from
your Texas Instruments sales representative and authorized distributors.

9900 FAMILY SYSTEMS DESIGN 8-411

CHAPTER9

Applications

~9

INTRODUCTION Applications

This chapter is devoted to examples of applications of the 9900 family of components.
Throughout this book many details of the 9900 family of CPU's, peripherals,
microcomputer modules, software and software development system support have been
discussed. However, these have been somewhat isolated general discussions and not
directed to a particular application. This chapter has solutions of specific problems - from
the beginning concept to the final ITlachine code - to give you examples of how someone
else has approached the problem and to help you understand the concepts behind the
approach and the details of the solution.

Three applications are included. They are:

1. A SIMULATED INDUSTRIAL CONTROL APPLICATION

A 9900 microprocessor based microcomputer is used in a system simulating the
control of industrial manufacturing processes. Solutions to the problems of
interfacing between industrial power levels and computer logic levels, both at
the input and the output, are demonstrated, as well as basic concepts of
computer control.

2. A LOW-COST DATA TERMINAL

Direct comparison is made showing how the characteristics of the 9940 single chip 16-
bit microcomputer are used to significantly reduce the package count of an intelligent
terminal designed with an 8080 8-bit processor. At the same time the performance
cost ratio of the end equipment is improved.

3. A FLOPPY DISK CONTROLLER

9-2

The design of a complex system used for the control of a floppy diskette memory is
described. All the details of how a 9900 family microprocessor is used to arrive at a
problem solution are included.

9900 FAMILY SYSTEMS DESIGN

A Simulated Industrial
Control Application

INTRODUCTION

INTRODUCTION

A simulated
industrial control
application

Controlling motors, relays, solenoids, actuators; sensing limit switches, photo-electric
outputs, push-button switches are real world problems encountered in controlling industrial
manufacturing. This application simulates such conditions. It develops the application of a
TMS9900 microprocessor (using the 990/lOOM microcomputer module of Chapter 3) and
interconnecting hardware to automating industrial control requirements. This example
includes the description of interface hardware to couple industrial power levels to and from
the microcomputer system. It illustrates the use of an EIA/TTY terminal for interactive
program entry and control, a line-by-line assembler for inexpensive program assembly, and
the techniques of interrupt driven processing.

No motors, actuators, or solenoids are actually being controlled, but by sensing switches for
logical voltage inputs and by turning lights on and off, the industrial control inputs and
loads are simulated and the means demonstrated to accomplish the control.

As a logical extension of the first encounter application of Chapter 3, this application is
written for "hands-on" operation to develop basic concepts and show that the 9900 family
of microprocessors is ideally suited for industrial control applications. Each program step
is described as the subprograms are developed and the total program is assembled into
machine code.

Excitement comes from actually getting a microprocessor system doing useful things. This
application is designed for that purpose. Let it demonstrate how easy it is to begin applying
the 9900 family of microprocessors.

INITIAL SYSTEM SETUP WITH AN EIA TERMINAL

To begin, look at Figures 1and6. The system uses the same TM990/100M-1
microcomputer module shown in Figure 3-12 and interconnected in Figure 3-14. It is a
complete microcomputer with 256 16-bit words of RAM, 1024 16-bit words of ROM,
and interface circuits to handle parallel and serial I/O. In Figure 3-14 it has power supplied
to it through Pl, the 100 pin edge connector as specified in Figure 3-17. P2 interconnects
the TM990/301 microterminal which is being used as an input terminal for programming,
editing, and debugging. The output board (Figure 3-9) with a 7 segment LED display is
connected to the microcomputer through P4. The program (Table 3-2) sequenced the
elements f, b, e and c of the LED display on and off, either fast or slow, depending on the
position of the control switch.

~ 9 Table 3-2 was "assembled-by-hand." In the examples that follow, a ROM resident
"line-by-line" assembler will be used. This is a low-cost, effective way of providing machine
code. However, a different terminal is required so that print out of the code can be
obtained. Therefore, in this application the microterminal attached to the TM990/100M
microcomputer is replaced with a keyboard terminal with EIA/TTY interconnection.
Refer to Figure 1.

9-4 9900 FAMILY SYSTEMS DESIGN

A simulated
Industrial control
application

9900 FAMILY SYSTEMS DESIGN

INITIAL SYSTEM SETUP
WITH AN EIA TERMINAL

Figure 1. Picture of System Set-up

9-5

9~

~9

INITIAL SYSTEM SETUP
WITH AN EIA TERMINAL

A simulated
industrial control
application

A 743 KSR terminal is chosen for this purpose. A special cable is required to interface the
terminal to the microcomputer through P2. The cable connections are as follows:

TM 9901 JOOM-1 7 43 Terminal
P2Pin Pl Pin Description

1 9 Protective Gnd
2 13 Transmit data
3 12 Receive data
7 1 Signal Gnd
8 11 Request to send

20 15 Data Terminal Ready

If a preassembled cable is desired, a TM990/ 503 can be purchased for the purpose.

If the TM990/ lOOM-1 microcomputer was used for the Chapter 3 First Encounter,
power was supplied to the microterminal from the TM990/ lOOM module by jumpers
installed across the pins J13, J14 and J15 (Figure 3-12 and 3-13). These should now be
removed; the microterminal disconnected from P2; and the 743 KSR terminal connected
to P2 with the referenced cable. Connect ac power to the 743 terminal with a separate
cord. Return the jumpers to the spare positions on the board J16, Jl 7, and J18 (Figure
3-13). If Pl is to be wired to supply power, use Figure 3-17 for the connections. Figure 1
shows the 743 terminal in place instead of the microterminal. It also shows the I/O
interface components that will be used for this application connected to P4. If familiar
with a 743 terminal, skip the next discussion and go on to the description of the I/O
interface components (5MT interface modules).

For those not familiar with the operation of a 743 terminal, reconnect the output board
of Figure 3-9 to P4 and proceed thru the following steps:

1. Turn on the power supplies, the -12V, + 12V and + 5V, in that order.
2. Turn on the terminal and place it "on line."
3. The system is now ready to receive a program.
4. The terminal uses the TIBUG interactive monitor (TM990/401-1) resident on the

TM990/100l\1-1 in the U42 and U44 sockets. It must be initialized. To do this,
press the RESET toggle switch on the TM990/100M (Figur~ 1) and the character
"A" or a carriage return (CR) on the terminal. The terminal responds:

TIBUG REV.A
?

5. The question mark is the TIBUG prompt symbol saying "what's next?" To enter
code or data into memory, press the M (Memory Inspect and Change) command
key followed by the address in Memory where the program or routine is to start
followed by a (CR). The terminal printout looks like this:

?M FEDD (CR]

9-6 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

INITIAL SYSTEM SETUP
WITH AN EIA TERMINAL

6. TIBUG responds with the address and the data located at that address such as:

FEOO=ABCO

If the data is not correct and is to be changed, type in the correct data and press either
of these options:

A. (CR) to return to TIBUG
B. The space bar to increment to the next memory word location.
C. A minus (-) character to return to the previous word location.

The complete sequence is illustrated here:
?M FEDD (CR)
FEOD=ABCO
FED2=3DD4
FED4=FC36
FED2=FF2D
FED4=FC36
FED6=DD32
?

D2EO (Space)
FF2D (Space)

(minus]~<

(Space)
D2D1 (Space)

(CR)
-:<requires pressing "NUM" key

7. After an Mand the starting address FEOO and a (CR), the total program of Table 3-2,
should be entered by entering the correct machine code at each address and then
pressing the space bar. At the end of the program, exit the memory inspect and
change mode by pressing (CR). The terminal responds with the familiar"?". If an
error occurs, press (CR), then M and the address at whicH the error occurred; then
repeat the input code.

8. Now the program is ready to run. However, the workspace pointer and the program
counter may have to be_set; at least the program counter, because it controls where the
program starts. The register inspect and change command R is pressed. TIBUG
responds with the contents of the workspace pointer. Press the space bar and TIBUG
comes back with the program counter contents. Either of these can be changed in the
same manner as memory.

Change the contents of the PC to the first address of the program to be run, then
type a (CR) and the program is ready to be executed. The total routine looks like this:

?R
W = DD2D (Space)
P=OB46 FEDD (CR)
?

The program counter is now set at the starting address of the program of Table 3-2,
FEOO. Usually as the program proceeds, it will set the workspace pointer as needed;
thus, no change is made to Win the above routine.

9900 FAMILY SYSTEMS DESIGN 9-7

9

SIMULATING CONTROL
OF AN ASSEMBLY LINE

9. The Execute Command, E, runs the program:.
?E

A simulated
Industrial control
application

It runs until the RESET switch is pressed. After RESET, the program counter must be
reset to FEOO. This is done with a (CR), then R, then (Space), then FEOO, then (CR),
then E to start again.

The necessary details of interfacing and operating the 7 43 KSR have now been covered.
Further information on commands may be obtained by referring to the TM990/ lOOM
user's guide. Operation with a 745 KSR acoustical terminal is possible but an EIA/
auxiliary coupler cable kit (Part #983856) must be obtained from a TI Digital Systems
Division distributor.

SIMULATING CONTROL OF AN ASSEMBLY LINE

Coupling the KSR- 745 terminal to the TM990/ lOOM microcomputer provides a more
interactive terminal than the 301 microterminal so that the hardware can be expanded to
simulate general kinds of input and output requirements encountered in light
manufacturing assembly lines. In addition, the "assembling" of the program is made
easier by using a "line-by-line" assembler, which requires an EIA compatible terminal
for this interaction.

Now, obviously, the output board shown in Figure 3-9, which contained only simple
logic level inverters and an LED display, will not be adequate to provide the reaction
power levels that are required for the simulated application. Therefore, new interface
modules are needed.

5MT INTERFACE MODULES

A means must be provided in the system to change input signals from push buttons, limit
switches, cam switches, or transducers that are at voltage levels of 90-132 volts ac or 3 to
28 volts de to standard TTL low-level logic signals between 0 and + 5 volts.

In like fashion, means must also be provided in the hardware system to change the
low-level logic output signals into power signals up to 28 volts de or 90 to 132 volts ac.
The concept is shown in Figure 2.

Texas Instruments supplies modules which meet these requirements. They are called the
5MT I/O modules that are part of a 5TI Control system. A simplified set of
specifications for the basic modules is contained in Table I .

..,.. 9 The I/O modules are solid-state devices incorporating optical coupler isolation between
input and output of 1500 volts for excellent noise immunity. Internal protection is
provided to guard against external voltage transients. Each module has an LED status

9-8 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

SIMULATING CONTROL
OF AN ASSEMBLY LINE

indicator located at the low-level logic side of the module to help in set-up and
troubleshooting. The 1/0 modules operate from 0-60° C and are designed for 100
million operations. The modules are shown in Figure 3 with a 5MT43 mounting base
which accepts 16 plug-in modules and provides all of the wiring terminals. A logic
interface module which mounts on the 5MT mounting base is also shown in Figure 3. It
provides a serial interface between the 5MT mounting base and a 5TI sequencer. It is
not necessary for this application, but is very necessary if other 5TI components are
interconnected in the system.

INPUT
MODULE

OUTPUT
MODULE -" >

INPUT

A

90-132VAC

3-28VDC

CATALOG NO.

5MT11-A05L

5MT12-40AL

5MT13-D03L

5MT14-30CL

5MT43

OUTPUT

B

LOW-LEVEL LOGIC

LOW-LEVEL LOGIC

INPUT

c
LOW-LEVEL LOGIC

LOW-LEVEL LOGIC

Figure 2. Input/Output Modules

TYPE OF RATING
DEVICE

VOLTAGE CURRENT

AC Input 90-132 Vac Input Voltage 35mAMax

AC Output 90-132 Vac Output Voltage 3 Amps
Continuous (40°C)

DC Input 3-28 Vdc Input Voltage 30mAMax

DC Output 10-28 Vdc Output Voltage lAmp
Continuous (60°C)

Mounting Base Holds
Up to 16 Modules

Table 1. SMT Module Selection Table

9900 FAMILY SYSTEMS DESIGN

OUTPUT

D

90-132VAC

3-28VDC

TURN
ON

TIME
(ms)

8Typ.
8.3 Max

4Max

2Max

TURN
OFF

TIME
(ms)

12 Typ.
8.3 Max

4Max

2 Max

9-9

9

~9

SIMULATING CONTROL
OF AN ASSEMBLY LINE

A simulated
industrial control
application

Figure 3. I I 0 Modules and Mounting Base

The 5MT43 mounting base interfaces with the TM 990/lOOM-1 microcomputer with a
cable to P4, the same 40 pin edge connector that was used for the output board of Figure
3-9. The cable connections and hardware required are shown in Figure 4. This cable may
be wired from scratch or a TM 990/ 507 cable can be purchased for the purpose. With
this cable in place 01 to the 5MT43 base and J4 to P4 on the TM 990/ lOOM
microcomputer module), the major components will be ready to simulate the industrial
application. Of course, the additional parts must be purchased:

9-10

1- 5MT43 Mounting Base
2 - 5MT11-A05L Input Modules
2 - 5MT12-40AL Output Modules
2 - 5MT13-D03L Input Modules
2 - 5MT14-30CL Output Modules
1 - TM990 I 5 07 Cable (or this can be fabricated as per Figure 4)

(Equivalent circuits of 5MT modules are provided in Figure 5 in case these are
to be simulated.)

9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

WIRE LIST

J1 J4 SIGNAL
1 10 MODULE 5
2 18 MODULE 4
3 14 MODULE 2
4 20 MODULE 0
5 24 MODULE 7
6 28 MODULE 9
7 32 MODULE 11
8 36 MODULE 13
9 40 MODULE 15

10 13 GROUND 2
11 19 GROUND 0
12 9 GROUND 5
13 23 GROUND 7
14 27 GROUND 9
15 31 GROUND 11
16 35 GROUND13
17 39 GROUND15
21 16 MODULE 3
22 22 MODULE 1
23 12 MODULE 6
24 26 MODULE 8
25 30 MODULE 10
26 34 MODULE 12
27 38 MODULE 14
28 15 GROUND 3
29 21 GROUND 1
30 17 GROUND 4
31 11 GROUND 6
32 25 GROUND 8
33 29 GROUND10
34 33 GROUND12
35 37 GROUND14

SIMULATING CONTROL
OF AN ASSEMBLY LINE

J1
37 PIN "D" TYPE CONNECTOR, FEMALE TYPE
AMP 205-209-1
TRW 6 INCH DC375

PIN 36

MODULE Vee
(7-9 Vdc@ .6A)

WIRE - #26 GA,
STRANDED

COMMON GROUND --
PINS 9, 11, 13, 15, 17
19. 21. 23, 25, 27, 29.
31, 33, 35, 37, 39

J4
40 PIN

0.100 C-C, PCB EDGE CONNECTOR
Tl 421121-50 (WIRE WRAP)
Tl 421111-50 (SOLDER TAIL)

6' ±3"
(Ullrn)

~ #24 GA., STRANDED FOR MODULE Vee
(7 - 9Vctc@.6A)

VIKING 3VH20/1 JN5

TERMINATION CAN BE #6
SPADE LUG, BANANA PLUG, ETC.

Figure 4. SMT Interface Cable

9900 FAMILY SYSTEMS DESIGN 9-11

9.,..

~9

SIMULATING CONTROL
OF AN ASSEMBLY LINE

A simulated
industrial control
application

9-12

ae IN

90-132 Vae
35MA

6 -9Vde

1K

130K

Vee(+) o-----f".ll---'V'"'----.

0.2 ~16ma
2- 9Vde

V;n

1K

3-28Vde
30ma

LED

0.001mfd.
5MT11 -A05L- AC INPUT MODULE

Vee (+)

~
LED

Vo VH - 9Vde max

VL -0.4Vde@ 6ma

Vee(-)

ae LINE

DRIVE
CKT

TRIAC
1----"""l--l-

ae LOAD
.__ _____ _,., 90-132Vae

10meg

0.001mfd

5MT12 - 40AL -- AC OUTPUT MODULE

LED

3 Amps max@
40°C

Vo + VH 5-28 Vde max
1---------"'

V, 0.4Vde@ 16 ma

de IN 0------------' Vee(-)

10meg

0.001mfd.

5MT13 - D03L DC INPUT MODULE de OUT(+)
+ 10-28Vde

6-9Vde 330rl
Vee(+) o--~:)t----"\/V\,--------. OCI

2.4-15Vde

V;n

LED

1K

r------- 1
I :-..... I

I :
L ___ -----l

10meg

10K

Vee(-) o------+-~.._----J

5MT14 - 30CL DC OUTPUT MODULE

de LOAD VH 10-28Vde max
1--------0 VL@1OV1 Amp typ.

0°-60°C

de OUT(-)

Figure 5. Equivalent Circuits for 5MT Modules

9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

SIMULATING CONTROL
OF AN ASSEMBLY LINE

DEMONSTRATION EXAMPLE

The industrial control example, shown in concept form in the block diagram of Figure 6
is intended to give the reader an insight into the use of a microcomputer based system.
Even though no motors, actuators, solenoids, positioning valves, etc. are actually
energized, the application demonstrates the means to do it. It also uses real world
control voltages in its operation. There will be three modes of operation. To add
interest, the system will be programmed so that the user can select the mode of
operation.

In the first mode of operation (Figure 6), the system is to be programmed to accept
inputs and switch a corresponding output according to the state of the input. Switches
are going to apply input industrial level de voltages to the de input modules and input
industrial level ac voltages to the ac input modules. Output lights powered by industrial
level de and ac voltages will be activated corresponding to the state of the input signal.
Such a mode of operation simulates switch closures on the assembly line requesting an
output reaction.

TM990/100M
MICROCOMPUTER

743
KSR

TERMINAL

USER CAN SELECT THESE MODES
OF OPERATION:

MODE 1 - ACCEPT SIGNALS ON INPUTS
1, 2, 3, 4 AND ENERGIZE
CORRESPONDING OUTPUT

MODE 2 - LOADS WILL BE TURNED ON
AND OFF IN TIMED SEQUENCE

USER EXITS FROM MODE 1 AND MODE 2
BY PRESSING A KEY ON TERMINAL

MODE 3 - TIBUG MONITOR FOR PROGRAM
ENTRY, EDIT AND DEBUG

9900 FAMILY SYSTEMS DESIGN

TM990/310
1/0

EXPANSION

16 1/0 PORTS

2
INPUTS

3

4
5MT
1/0

MODULES

OUTPUTS

4

=-=-=--=--=--= => 1G 1/0 POnrn

=---=--=-= ==> 161/0 PORTS

)'-o..-- 3-28Vde

S-0--- 3-28Vde

S-0--- 90-132Vae

S-0--- 90-132Vae

de LOAD

ae LOAD

de LOAD

ae LOAD

Figure 6. Application Block Diagram

9-13

9~

SIMULATING CONTROL
OF AN ASSEMBLY LINE

A simulated
Industrial control
appllcatlon

The second mode of operation is very similar to the light sequence of Chapter 3.
However, with the 5MT modules controlling either + 12Vdc light bulbs or l lOVac
light bulbs, it demonstrates a different means of timed sequence control. It uses the real
time clock in the TMS9901 in the microcomputer module for a much greater precision.
The system is to be programmed so the time can be varied easily. There is to be an
added feature in the first and second mode. The system has a routine that allows the user
to choose the mode of operation by selecting a key on the keyboard.

A third mode returns the system to the TIBUG interactive monitor. In this mode, the
program can be edited, debugged or added to and initial conditions can be changed.

Lets see how this can be accomplished.

THE TM990/100M MICROCOMPUTER MODULE

Figure 7 is a much more detailed block diagram of the TM990/ lOOM microcomputer.
Four areas are of particular interest:

1. More details on the TMS9901;
2. Details on the TMS9902-this device was not discussed at all in Chapter 3;
3. The addition of a TM990/310 module to the system to obtain l/O expansion;

and
4. Expansion of resident RAM and ROM.

Note in particular that the TM990/ lOOM-1 comes populated with 256 words of RAM
and lK words of ROM (which is the TIBUG EPROM resident monitor). Also note the
address bus goes to the I/O interface units. Thus, I/O is selected with addresses in the
same fashion as memory words. In addition, the four busses-address, control, data and
CRU are available for off-board expansion. This is the way I/O expansion through the
TM990/310 module is controlled. 512 words of RAM can be provided on the board.
Further expansion is possible with off-board memory. Additional ROM, expandable on
the board to 4K, will be used when the line-by-line assembler (LBLA) is used.

TMS9901

The TMS9901, programmable system interface, shown in Figure 7 was previously
shown in the block diagram of Figure 3-17. Only one portion of it was used to control
output signals and detect an input signal. Now all of the functions will be examined in
~~-~ ,.J~ .. ~:1
.lllVl"" U\....lalle

• 9 The block diagram of the TMS9901 in Figure 8 will be used to identify the major
functions.

9-14 9900 FAMILY SYSTEMS DESIGN

"' "' 0
0

'Tl
;:...
$'.'.

~
Cfl

-<
Cfl,
tTl
$'.'.
Cfl

tl
tTl

~I

'P
tn

,,
~-
:::
~
~

P1

~ P1

'C
'C
\;:::, P2
..........
........
\;:::,

~
b::l
C"'
~
t;,

JJ•
i.::s
~

S1

~
PRES

RESTART

'° ...

RESET/LOAD
LOGIC

SYSTEM
CLOCK

TMS9904 --,

RESET

r==°
~

-
¢1

¢2

8

CENTRAL
PROCESSOR

UNIT

r--

0 INTERRUPT
CODE

MEMORY 1/0
SELECT

CONTROLLER

r- ------,
L WIRE. WRAP I

- , AREA I

--~-~ff~~
PC

RAM

SELECT

"' li:

f

P3

t
:>
a:
ffi ...
~

ffi

MONITOR ROM SELECT

EXPANSION ROM SELECT

RAM ARRAY
512X16 BITS

r-----,
I SERIAL 1/0 I
I INTERFACE I
L _____ J

~ '--------!

P2

ROM ARRAY
2K X 16 BITS

BUFFERS FOR
OFF BOARD
EXPANSION

P1

~ :;· J>
"C c. en
-C -· c;· en 3
Ql ::::- c
=iii" iii o-
:::J 0 l'D

0 c.
a
~

o~
~~
>c
z~

>~ en ~ cnz
~o
co n
~~
~~
~~
Zo
t:r:1~

SIMULATING CONTROL
OF AN ASSEMBLY LINE

A simulated
industrial control
application

First of all, since the TMS9901 is a programmable systems interface, as shown in Figure
7, it is designed to handle parallel input and output signals. The input signals are either
data inputs or special signals called interrupts. Interrupts are special signals because they
interrupt the main program routine of the microcomputer and ask for service from the
microcomputer to do some selected priority subroutine or subprogram. In Figure 8, the
data output paths and input paths and the interrupt paths are identified. The 22 pins are
programmable and divide into three groups as follows:

Table 1. Programmable Pin Functions

GROUP NAME IN OUT INT COMMENT

1. INT 1 x x Principally inputs but may be used
INT2 x x as interrupts
INT 3 x x
INT4 x x
INT 5 x x
INT6 x x

2. INT 7 /P15 x x x Fully programmable as inputs,
INT 8/P14 x x x outputs or interrupts
INT 9/P13 x x x
INT 10/P12 x x x
INT 11/Pll x x x
INT 12/PlO x x x
INT 13/P9 x x x
INT 14/PS x x x
INT 15/P7 x x x

3. P6 x x Programmable as inputs or outputs.
PS x x
P4 x x
P3 x x
P2 x x
Pl x x
PO x x

In addition to the input/output function, the TMS9901 also has incorporated a clock
function. This was identified in Figure 8, but is further detailed in Figure 9. This real
time clock will be used in this application as an interval timer for the Mode 2 light
sequence. To provide this function, the clock register is loaded with a value, Gust like in
rh'lnt<>r 1\, hnnr<>u<>r """'"' ..),.,.,,. .. ,,.,...:~ .. ,,. .. n ~~n .. :~nll .. .nl~~-~~~-•- -L•-- ;._ ;_ l __ .J_..l "("IT! ___ _ -··-r·- ... - ,, - 'l''t' - 'I'_ ... , ,._, "'',, J,. """5.1..J\.""'.I. U.\A ... VJ.J.J.U.\..1'-'U.l.l J '-''-''-'l. \..IJll'-'lll...., Cl.I l.\,..I J.l. • ..., 1uaU\...U. y y 11\...11

~ 9 it has decremented to zero, an interrupt signal is sent out to be processed by the
interrupt path of the TMS9901. It won't be used for this application, but an elapsed
time counter can be implemented by reading the value of the clock read register
(Figure 9) periodically to determine how much time has elapsed from an established
start.

9-16 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

---~ (

~-<
~ I

COOE l"r - L:NTERRUPT VL

- 1-----------~

CRU
INTERFACE

INPUTS
&

OUTPUTS

REAL
TIME

CLOCK

\ 1--

SIMULATING CONTROL
OF AN ASSEMBLY LINE

,,..-----------~"

GROUP
1

BUFFERS

GROUP
2

BUFFERS

......--- INT7/P15

~-- INTB/P14

--- INT9/P13

--- INT10/P12

INT11/P11

fNfi2/P10

INT13/P9

i"NT14iPB

INT15/P7

-
P6

PS

P4

PJ

P2

'~~I
~I
~ I I - I

I
I

Figure 8. TMS 9901 Block Diagram

CRU
LOGIC

9900 FAMILY SYSTEMS DESIGN

CLOCK REGISTER

DEC=O CLOCK
~------- INTERRUPT

CLK
CLOCK DECREMENTER o----------,

CLK

READ REGISTER

CLOCK MODE

Figure 9. Real Time Clock

9-17·

9~

SIMULATING CONTROL
OF AN ASSEMBLY LINE

INTERFACE WITH THE 9900

A simulated
industrial control
application

It is important to understand the communications channels between the TMS 9901 and
the 9900 microprocessor in the microcomputer. Basic concepts need to developed to
understand how the algorithm for this application is programmed.

The communications channels are shown in Figure 10. They are ·presented in somewhat
different form than shown previous! y in Chapter 3.

The main data link between the 9900 and the 9901 and subsequent inputs and outputs is
via a serial data link. The line CRUIN transfers data from the 9901 to the 9900 in serial
format. Again in serial format, the line CRUOUT transfers data from the 9900 to the
9901'. The transfer of data out is synchronized by the signal CRUCLK, which comes
from the 9900 and specifies that data is valid on the CRUOUT line. Remember that
CRU means Communications Register Unit.

In order to manipulate data from the CRU to and from the inputs and outputs and the
real time clock of the 9901, five CRU instructions are included in the instruction set.
They are:

1. SBO
2. SBZ
3.
4.
5.

TB
LDCR
STCR

Set bit to one
Set bit to zero
Test bit
Load CRU Register
Store CRU Register

In Chapter 3, it was demonstrated how individual bits could be selected and set to a "1"
or a "O" by using the SBO and SBZ instructions. If this hasn't been reviewed, it would
be helpful to do so.

Not only can individual bits be manipulated, but data can also be transferred in blocks of
from one to 16 bits. The multiple bit instructions LDCR, "Load CRU Register", and
STCR, "Store CRU Register", are used for this purpose. Since this application requires
the use of these multiple-bit instructions, further time will be spent explaining them in
more detail.

Basic Concepts

Figure 11 summarizes the basic concept of the programmable input-output capability of
9 the 9900 family. In this example, a microcomputer, the TM990/ lOOM, which contains a

9901, and a TM990/310 module, which contains 3 additional 9901's are used. Such an
arrangement expands the I/O capabilities by 48 inputs or outputs.

Industrial control applications like the one that is being simulated normally require many
inputs and outputs. Much more capability is available because I/O could be expanded to
4096 ports by adding more units and continuing the example of Figure 11.

9-18 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

SIMULATING CONTROL
OF AN ASSEMBLY LINE

y -0 Vee

D 1~,, TIM 9904
Q CLOCK GENERATOR

T3 ~

il
~

CRU
<1>1-</>4 AO-A9 DECODE

TMS
9900
CPU

A10
A11
A12

-
t----1 CE

~ so
S1
S2

-;p

TMS
9901
PSI K SY STEM

TERRUPTS IN

A13 S3 K 1/0 PORTS

A14
CRUOUT

S4
~

CRUCLK

CRUIN
~

-- -
RESET ~ RST1

Figure JO. TMS 9900-TMS 9901 Interface

As shown, the data moves over CRUIN and CRUOUT in a serial format from the 9900
to the 9901, or vice versa. When the instruction LDCR is used, the data is flowing from
the 9900 to the 9901 over CRUOUT. The first bit to arrive serially (the least significant
bit) is latched in the zero bit position of the 9901 determined by the CRU select bit,
subsequent bits that arrive are then placed in bits, 1, 2, 3-12, 13, 14, 15 at each
CRUCLK pulse. Such is the case if 16-bits are being processed. Any number of bits
from 1 to 16 may be processed at the user's discretion. When flowing out on CRUOUT,
the transfer rate is determined by CRUCLK. When flowing in on CRUIN, the 9900
microprocessor transfers the data present on the inputs during </>1 of clock cycle 2 of
the machine cycles.

What determines where the bit position starts? The select bits on S0-S4 in the 9901
(Figure 10 and 11) are distributed as A10 thru A14 from the 9900. Since this address is
distributed to each 9901 shown, and since CRUOUT goes to each 9901, the data out 9..c
would tend to be latched in each 9901. This is prevented by the chip enable (CE) signal.
The only CE that is active low is the one decoded from the corresponding base address
for the correct 9901. Bits Ao thru A9 provide the additional address information. For
example, if in Ftgure 11 the 9901 on the TM990/100M board is to be used for the 1/0,
then hardware base address 008016 is used. If the second 9901 on the TM990/310
module is used, the hardware base address is 014016 •

9900 FAMILY SYSTEMS DESIGN 9-19

·9

SIMULATING CONTROL
OF AN ASSEMBLY LINE

A simulated
1ndustrial control
application

9-20

--------,

TMS
9900

I
MEMORY 1/0

SELECT
CONTROLLER

<r
i-- c

A:,-A14

,----------------1

- I l/OSELECT
CONTROLLER l I

I
I
I
I
I

CONTROL 1----1
SIGNALS I

I
I
I

CRUIN 14-------.!

CRUOUT 1-------1--1

CRUCLK_~-1--1

j
J

TMS
9901

TMS
9901

A K INTERRUPTS

"

TMS
9901

A
/ INTERRUPTS
v

A I
K INTERRUPTS
v

v"

I
I
I
I
I"

I\ 1/0
0180,. v 1-v

1------.I

I
1vt-/~----J"' I
" 1/0

0140,. •v -v I ______ ______. I

c1 'JI VA _1'. I cJr " 1/0
0100,. 1v' -----.,/ I * w V , CE ~-<..e:i__ ____ ___, v

1 1 ~ ~<v«:-«:'- 1 234 I

! i

11
/* : __ ~"'"'~ __ .,l~~~l~I~ __ J

I : I ~/ ,A~._1___ SWITCH SETTINGS DETERMINE --+-- _,..~ INTERRUPTS BASE ADDRESS OF FIRST 9901 ON
\ ~ "j TM990/310

TMS \ ~ I
9901 \ ~ ;11

1'
\ 4 1/0
, 3 Vil

HARDWARE \ ~ I
BASE - 0080,. ~~O

ADDRESS L------~ I
TM990/100M _J

Figure 11. Basic Concept of Programmable I I 0

9900 FAMILY SYSTEMS DESIGN

A simulated
Industrial control
application

SIMULATING CONTROL
OF AN ASSEMBLY LINE

In Figure 3-23, for the single bit instructions SBO, SBZ, and TB, the effective CRU bit
address is obtained by adding a signed displacement to the 9901 base address. For the
multiple bit instructions, the effective CRU bit address is computed in the same way;
however, the base address is the address of the first bit. From there, the address is
incremented by the number of multiple bits to be transferred. The LDCR instruction
format contains a C field which specifies the number of multiple bits to be transferred.
For example:

LDCR Rl,9

would instruct the microcomputer to send out (output) the 9 least significant bits of
register Rl. The 9 would be in the C field of the instruction format. Before the LDCR
instruction in the program, there is an instruction that loaded the software base address
of the particular 9901 to be used into the correct workspace register 12. Recall that
WR12 is the register where the software base address is always located for a CRU
instruction. This will become clearer as a specific example is discussed later. What is
important is that the software base address for the 9901 must be loaded into workspace
register 12. However, this is not completely straightforward. For example, if the 9901
on the TM990/100M microcomputer is to be addressed with a LDCR or STCR
instruction, the 008016 hardware base address must be displaced to the software base
address 010016 when it is loaded into WR12. This is necessary because bit 15 of WR12
is not used in the calculation of the effective CRU bit address. The concept, described in
Figure 3-23, is shown again in Figure 12.

It is probably obvious that the STCR instruction operates in the reverse of the LDCR.
The data from the input pins on the selected 9901 is incremented bit by bit and sent to
the CRU in the 9900 over CRUIN. The final result of a STCR instruction is that the
9900 processor stores the input data in RAM in a specified location called out in the
instruction. In like fashion, when LDCR is used the data transferred to the output is
obtained from a RAM location called out in the instruction. This is a distinct advantage
in that it need not be a register. The specifics on the data transfers are shown in
Figure 13.

o 1 2 3 I 4 s 6 1 I a 9 10 11 I 12 13 14 1s I
BA~~F~~~:ss I o I o I o I o I o I o I o I 1 I o I o I o I o I o j o I o j o j wR1 2

9901
HARDWARE

BASE ADDRESS

(ADDRESS OF
FIRST BIT

TOBE
PROCESSED)

0 0

Ao-------:-----:--------------------·A14I

[~J~I~~I o 1 o 1 o I o I 1 I o I o I o I o I o I o I o [~]
o I o I a I o I

"SET TO ZERO FOR A CRU DATA TRANSFER INSTRUCTION

Figure 12. 9901 Base Address

9900 FAMILY SYSTEMS DESIGN 9-21

9 ..

SIMULATING CONTROL
OF AN ASSEMBLY LINE

N

CRUINPUT
BITS

N + 1

N + 14
N + 15

Interrupts

INPUT (STCR)

OUTPUT (LDCR)

N =BIT SPECIFIED BY CRU BASE REGISTER

Figure 13. LDCR/STCR Data Transfers

A simulated
industrial control
application

CRU OUTPUT
BITS

N
N+1

N + 14
N + 15

Another form of input is the special one called interrupt, so named because it asks the
microcomputer to interrupt the program routine presently in process.

In Figure 8, it was pointed out that there are only certain lines on which an interrupt is
accepted. Group 1 of the 9901 pins may be used for 6 interrupts. Up to 15 interrupt signals
can be programmed by using Group 2 pins.

What value do interrupts have? First, they allow external events to interrupt the current
program so that the program can provide service to an external device. In so doing certain
pieces of data must be saved in order to return to the same point in the program that was
interrupted. This allows the program to continue correctly after the interrupt has been
serviced. Secondly, interrupts provide quick response. Third, they provide a priority to be
established for time critical events. Certain interrupts are more important than others. The
user decides the priority. To set up priorities for interrupt signals, a means is provided to
honor the priority established. In the 9900 system family, this is called enabling a valid

9 interrupt through a "masking" of interrupts.

9-22 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

SIMULATING CONTROL
OF AN ASSEMBLY LINE

Masking means to enable or disable. Figure 14 shows that the TM990/ lOOM
microcomputer module has two levels of masking. One mask must be enabled to pass
the interrupt signals through the 9901 and another must be enabled at the 9900
microprocessor. The value in bits 12, 13, 14 and 15 of the status register set the priority
level of the interrupt mask in the 9900. Any interrupt equal to or higher than the
priority level is enabled and allowed to interrupt the microcomputer.

Masking

Figure 15 is a block diagram of the 9901 control logic illustrating how the masking is
accomplished. In order to enable an interrupt, MASK must equal 1 for the particular
interrupt pin. When several interrupts are present at the same time, the control logic
encodes the enabled interrupt inputs and sends to the 9900 microprocessor a code that
represents the highest level of interrupt that has been enabled. INT 1 is the highest
level, INT 2 is next and so on down to 15. In addition, an INTREQ active low signal is
also sent to the 9900. The code sent on lines ICO through IC3 is shown in Table 2. Level
zero is used by RESET and will be covered later.

TMS 9900
TMS 9901

--- INT 1
INTREO --

- _.
CE -

STATUS REGISTER
M

LIMI
INSTRUCTION ~H ST12, 13, 14, 15 J K

A
ICO-IC3

A V INTERRUPTS s
K

) BIT ADDRESS ~
CRU

CRUOUT
_ ... LOGIC -- INT15

CRUCLK ---- CRUIN
MASK #1

MASK #2

Figure 14. Interrupt Masking

9900 FAMILY SYSTEMS DESIGN 9-23

9.,..

~9

SIMULATING CONTROL
OF AN ASSEMBLY LINE

INTREO SYNC
LATCH

SYNC
ICO

LATCH

PRIORITIZER
AND

SYNC ENCODER
IC1 LATCH

IC2 SYNC
LATCH

SYNC
IC3 LATCH

fir

CRU
INTERFACE

15

Figure 15. Interrupt Control Logic

A simulated
industrial control
application

SYNC
LATCH

CRU LOGIC

The code on ICO thru IC3 is compared to the status bits ST12, 13, 14 and 15 in the
status register of the 9900. The priority level loaded into the interrupt mask of the 9900
enables that level and all higher priority levels as well. If the interrupt level set up in
ST12, 13, 14 and 15 is higher than the interrupt level received, the interrupt is not
enabled. If the interrupt received is higher in level than the priority level, then the
interrupt is enabled and all higher level interrupts as well. This is shown in Figure 16.

9-24 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

SIMULATING CONTROL
OF AN ASSEMBLY LINE

The code on ICO-IC3 is as follows:

Table 2. Interrupt Code Generation

INTERRUPT/ STATE PRIORITY !CO !CJ IC2 !CJ INTREQ

INT 1 1 (HIGHEST) 0 0 0 1 0
INT2 2 0 0 1 0 0
INT 3/CLOCK 3 0 0 1 1 0
rnT4 4 0 1 0 0 0
INT 5 5 0 1 0 1 0
INT6 6 0 1 1 0 0
INT7 7 0 1 1 1 0
INT 8 8 1 0 0 0 0
INT9 9 1 0 0 1 0
INT 10 10 1 0 1 0 0
INT 11 11 1 0 1 1 0
INT 12 12 1 1 0 0 0
INT 13 13 1 1 0 1 0
INT 14 14 1 1 1 0 0
INT 15 15 (LOWEST) 1 1 1 1 0
NO INTERRUPT 1 1 1 1 1

The output signals will remain valid until the corresponding interrupt input is removed,
or an interrupt service routine disables (MASK= 0), or a higher priority enabled
interrupt becomes active. When the highest priority enabled interrupt is removed, the
code corresponding to the next highest priority enabled interrupt is output. If no
enabled interrupt is active, all CPU interface lines (INTREQ, ICO-IC3) are held high.

STATUS REGISTER

NOT ENABLED

I o o

ENABLED

ALL LEVELS ABOVE 8 ARE ENABLED, LEVEL 4 RECEIVED

o o I

AFTER ENABLE OF LEVEL 4

I o o 1 I

Figure 16. Interrupt Mask at 9900

9900 FAMILY SYSTEMS DESIGN 9-25

9.-

·9

SIMULATING CONTROL
OF AN ASSEMBLY LINE

A simulated
industrial control
application

Remember to enable an interrupt, say INT 1, a "1" must be placed in the latch
(MASK= 1) for the CRU bit (pin) associated with that interrupt. Likewise, to disable an
interrupt, a "O" must be placed in the latch (MASK= 0) associated with the pin
receiving the particular interrupt.

To mask any of the interrupts from 1 through 15, the 9901 must be in the interrupt
mode. The zero select bit of the 9901 is the control bit for this. As shown in Figure 23,
if this control bit is a zero, the 9901 is in the interrupt mode. If it is a "1 ", the 9901 is in
the clock mode.

Enabling or disabling the mask in the 9901 for the interrupts may be accomplished by
individual bit instructions SBO and SBZ or by a multiple bit LDCR instruction.

All masks can be disabled simultaneously by performing a hardware (RESET) or
software (RST 2) reset.

Signals appearing on the inputs to the 9901 will be accepted as interrupt signals by the
9901 if the masks are enabled. The priority code for the highest priority level interrupt
simultaneously received will be sent to the 9900 via the code lines, ICO-IC3, as well as
the signal INTREQ. If the interrupt mask in the 9900 has the level enabled, the
interrupt is accepted and serviced.

Saving Items on Interrupt

When an interrupt occurs, data pertinent to the "state of the machine" must be saved.
This provides a return to the interrupted program so that the program can continue to
execute properly. For example, when an interrupt occurs, the CPU suspends its current
program routine to do the subroutine called for by the interrupt. How does it do this? As
any program executes, the "state of the machine" at any time is determined by the value
in the program counter, the value in the workspace pointer, the value in the status
register, and the contents of the registers in the workspace register file. Each of these is
saved through a "context switch" when an interrupt occurs. Full details are available in
Chapter 4. A brief summary will be covered here for convenience.

9-26 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

SIMULATING CONTROL
OF AN ASSEMBLY LINE

Interrupt Fectors - Context Switching

To execute an interrupt, here's what happens. There are special places in memory
reserved for the address that contains a new workspace pointer for a given interrupt. In
addition, in the next word following there is a new program counter value. These special
places in memory are called interr.upt vector traps and the two addresses - one for
workspace and the other for the program counter - have the name "interrupt vector."

Figure 17 illustrated the process. A valid interrupt is received and its level points to its
vector. The vector contains a new workspace pointer and a new program counter value.
The program shifts and points to the new workspace. In the new workspace, the
microprocessor stores the old workspace pointer in R13, the old program counter in
Rl 4 and the old status register in R15. These old contents are always put in the same
place in the new workspace - R13, Rl 4 and R15.

After all this occurs, the program counter with its new value executes the il!terrupt
subroutine. The last instruction in this subroutine, RTWP, is an instruction to return to
the interrupted routine. RTWP - "Return with Workspace Pointer" - returns to the
interrupted routine by loading the contents of R13 into the workspace pointer
(R13-WP), R14 into the program counter (R14- PC), and R15 into the status register
(R15--ST) and then executes the instruction pointed to by the program counter. In so
doing, the system has returned to the interrupted program at the point of interruption
and begins execution using the old workspace. This is illustrated in Figure 18.

Note: When the interrupt priority level comes into the 9900 and the interrupt is
enabled, ~ number one less than the interrupt level received is placed in the interrupt
mask in the status register as shown in Figure 16 to prevent lower level interrupts from
occurring during the servicing of the present interrupt. If a higher priority interrupt
occurs, a second interrupt context switch takes place after at least one instruction is
executed for the first interrupt routine. This means that an interrupt service routine may
begin with a LIMI instruction which can load an interrupt mask in the 9900 which
disables other interrupts. Completion of the second interrupt passes control back to the
first interrupt using the RTWP instruction.

9900 FAMILY SYSTEMS DESIGN 9-27

9 ...

.. 9

SIMULATING CONTROL
OF AN ASSEMBLY LINE

VALID
INTERRUPT

l TRAP ADORE~
NEW WP ..

TRAP ADDRESS + 2 NEW PC

.-..

__.,, -

A simulated
industrial control
application

INTERRUPT-
SERVICE
ROUTINE
PROGRAM

RO

NEW WORKSPACE

1----------

i-----------

R13 - OLD WORKSPACE POINTER

R14 - OLD PROGRAM COUNTER

R15 - OLD STATUS REGISTER

Figure 17. Interrupt Context Switch -New Workspace
and Saving Old WP, PC, and ST Data

INTERRUPT ROUTINE (EXAMPLE)

Step

9. MOV R2, >FDCO
10. JNE LOOP 2
11. RTWP

RO

INTERRUPT
SERVICE
ROUTINE
WORKSPACE

R13-0LDWP

R14 - OLD PC

R15- OLD ST

I
I
L_

9900 CPU

WORKSPACE POINTER

PROGRAM COUNTER

STATUS REGISTER

Figure 18. Interrupt Context Switch Returning to Interrupted Program

9-28 9900 FAMILY SYSTEMS DESIGN

A simulated
Industrial control
application

SIMULATING CONTROL
OF AN ASSEMBLY LINE

Memory Map and Interrupt Vectors

In Figure 19, the memory map of the TM990/100M microcomputer module is shown.
Note that the first words of memory from hexadecimal addresses 000016 to 07FE16 are
dedicated memory. Addresses 000016 to 003E16 are reserved for the 16 interrupt transfer
vectors. These are detailed further in Figure 20. Each interrupt vector has two words of
memory - one for the workspace pointer, one for the program counter.

There are two interrupt vectors, INT 3 and INT 4 that will be of particular interest for
they have important use in the program for this application.

Notice that interrupt 0 in Figure 20 is used for RESET and that values have already
been placed in the vector locations for interrupt 3 and interrupt 4.

When an INT 3 level is received, it points to the interrupt 3 vector. The context switch
occurs and at OOOC16 it obtains the value FF6816 for the workspace pointer and at OOOE16

the value FF8816 for the program counter. The context switch operations store the old
context registers in the new workspace pointed to by FF6816. Then the interrupt service
routine begins by executing the instruction pointed to by FF8816. Since there are valid
reserved locations for only two memory words at the FF88 16 location, the instruction
pointed to by FF8816 and FF8A16 must branch to another section of memory where the
remaining interrupt service routine is located.

A similar sequence of events occurs when an INT 4 level interrupt signal is received,
except that the workspace pointer value is FF8C16 and the program counter value is
FFAC16 •

The remaining interrupt vectors do not have values. These would be programmed into
EPROM locations by the user as the need arises.

For the interrupt 3 and 4 service routines, 16-word workspaces are provided, pointed to
by FF6816 and FF8C16. These are reserved and must be noted by the programmer.

The microcomputer must always start from initial conditions. These are usually started
by a reset. The vector space required for the initial value of the workspace pointer
and the program counter resides in the reserved memory spaces 000016 for WP and
000216 for PC, as shown in Figure 20. The 16 interrupt vectors at 000016 to 003E16 are in
read only memory and cannot be changed unless the read only memory is
reprogrammed.

As the extended application program is written, it must be remembered that the TIBUG
monitor needs workspaces. The space from FFB016 to FFFB16 is reserved for this
purpose. This is noted because this space cannot be used for data or program memory in
the application.

9900 FAMILY SYSTEMS DESIGN 9-29

9~

SIMULATING CONTROL
OF AN ASSEMBLY LINE

A simulated
industrial control
application

,---- BYTE 0000
MEMORY

ADDRESS~-~"--~---"---.

INTERRUPT VECTORS 1~:~
XOP VECTORS 0040

007E DEDICATED
MEMORY

TIBUG 10080

MONITOR
07FE

FFG~ f} INT3 WP AT FF68
~~:~ ------------- }~N~~R~INSTATFF88

--------- __ WPAT FF8C
FFA 2-WORD INST AT FFAC
FFBO "-..
FFFE '

' ' - '--- '

--............. -......
......

.......
.......

RESERVED 40 WORDS FOR
TIBUG MONITOR WORKSPACE

0800

OFFE

1000

FBFE

FILES AND RESTART (LOAD) VECTORS
AT FFFC AND FFFE

Figure 19. Memory Map

EPROM
TMS2708
1KX16

EPROM
TMS2708
1KX16

•
•
•

RAM
TMS4042·2

256 x 16

' RAM
TMS4042·2

256 x 16 ' '

M.A.
0000

0002

0004

0006

WP

PC
} INTERRUPT 0 VECTORS (RESET)

oooc
OOOE

0010

0012

003C

003E

'Ii

WP

PC } INTERRUPT 1 VECTORS

•) • •
FF68

FF88 } INTERRUPT 3 VECTORS

FF8C

FFAC } INTERRUPT 4 VECTORS

• • •
WP

PC
} INTERRUPT 15 VECTORS

Figure 20. Interrupt Trap Locations

BYTE 0001

~
FIRST
1024
WORD
EPROM

} SECOND
(1024
(WORD
J EPROM*

l MEMORY

~ EXPANSION

} SECOND
(256
(WORD
J RAM*

FIRST
256
WORD
RAM

9-30 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

Extended Operations (XOP's)

SIMULATING CONTROL
OF AN ASSEMBLY LINE

Refer to Figure 19 which shows the read-only memory space reserved for software
interrupt vectors. Memory words from 004016 to 007£16 are XOP vectors. As with
interrupts, each XOP vector has a word containing a workspace pointer value and a next
word containing a program counter value.

XOP instructions point to XOP vectors which point to new workspace pointer and
program counter values in a similar way to what was just described for interrupts.

An instruction calling for an XOP (extended operation) is a means of switching from the
main program to a subroutine. It has a special calling sequence and it functions as though
the routine were a single instruction added to the 9900 set of operation codes, hence the
name "extended operation".

For example, the TIBUG monitor in the microcomputer contains seven XOP routines
that perform input/ output functions with the terminal. These are as follows:

XOP Description
8 Write one hexadecimal character to terminal
9 Read hexadecimal word from terminal

10 Write 4 hexadecimal characters to terminal
11 Echo character
12 Write one character to terminal
13 Read one character from terminal
14 Write message to terminal

Two of these XOPs are used in the extended application example. XOP 11 is used to
read a character from the terminal and at the same time print it at the terminal. XOP 14
is used to print out instructions to explain how the program operates. Some of these
XOPs call other XOPs. Further detail on XOPs can be obtained in Chapter 5 and 6.

Printing a Message

A message at the beginning of the program which will be developed for this application
tells the user to select the mode of operation. XOP 14 is used to write the message. The
instruction

XOP @MSGl,14

is used. XOP 14 identifies that the subtask is "Write message to terminal". A context
switch takes place. The vector at location 14 of the reserved XOP vector memory space 9..,.
provides the WP and the PC values. The PC value provides the first subtask instruction
and the subroutine continues until the subtask is complete and the program returns to
the main program.

9900 FAMILY SYSTEMS DESIGN 9-31

SIMULATING CONTROL
OF AN ASSEMBLY LINE

A simulated
industrial control
application

Suppose the message identified with the label MSGl is "THIS IS A SAMPLE." Its
coding would look like the following:

LINE ADDRESS CODE MESSAGE ASCII CODE

0 MSG1 5448 $THIS IS A SAMPLE. A 41
E 45

4953 H 48
I 49

2 2049 L 4C
M 4D

3 5320 p 50
s 53

4 4120 T 54

5 5341

6 4D50 SPACE (SP) 20
7 4C45 LINE FEED (LF) DA
8 2E20
9 ODOA +>ODOA CARRIAGE RETURN (CR) OD

10 DODO +>ODDO ·(PERIOD) 2E

Note that line 9 contains a carriage return and a line feed and has the code ODOA. The
message beginning at location MSG 1 is preceded by a dollar sign and terminated with a
byte containing all binary zeroes. The + > ODOA is a code recognized by the
line-by-line assembler that is loaded directly into memory. It is initiated by typing the (+)
before the desired number. The dollar sign indicates that a comment is being entered.
Such XOPs are very useful in calling subroutines prepared to accomplish specific
terminal functions.

Selecting a Mode

XOP 11 will be used to make the choice of the mode of operation. ECHO
CHARACTER means that whatever key is pressed on the terminal will be read into a
designated workspace register and then sent back from the register and printed on the
terminal.

The one instruction,

XOP RS,11

· 9 accomplishes this. If a key is pressed, the terminal reads the character, places it in
workspace register 5 and then prints the character on the terminal. The XOP subroutine
was provided by the TIBUG monitor but it all was accomplished with one instruction -
thus, the "extended operation."

9-32 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

TMS9902

TMS9902

The TMS9902, asynchronous communications controller provides an interface between
the EIA terminal (serial asynchronous communications channel) and the 9900 in the
TM990/ 100M microcomputer module. The block diagram of the microcomputer was
shown in Figure 7. A simplified one is shown in Figure 2la. Note that the interface to
the CPU (TMS9900) is the same as for the 9901. Note also the line INT 4 going from
the 9902 to the 9901; this interrupt line will be important in this application.

All of the discussion that pertained to the 9901 and the addressing of the I/O bits also
applies to the 9902. It has the same address bits A10-A14 used for addressing the CRU
bits inside the 9902 through S0-S4 • It has the same CRU control bus signals for
communication over the CR U serial data link.

A base address and CE select the 9902 over other I/O units that might be available in
the system (in this case, only 9901s are present). The hardware base address 004016

identifies the 9902 contained in the microcomputer. The software base address of 008016

is loaded into WR12. This is added to the appropriate displacement to arrive at the
effective CRU bit address desired as described for the 9901.

In this extended application, pressing a key on the terminal while the system is in moue
1 or mode 2 will switch the system back to the command mode. The user then selects a
new mode of operation. This is a common way to use a terminal and the 9902 must be
programmed to accomplish it. The arrangement is as shown in Figure 2la.

First, the 9902 must recognize that a character has been generated by the terminal and
received by the 9902. Second, the output signal line INT from the 9902 must be
enabled so it can pass the signal to the 9901 input INT 4. SinC;e the 9901 receives this
signal as an interrupt, then interrupt masks at the 9901 and the 9900 must be enabled.
With these steps accomplished, the main program of the processor is interrupted and the
operation mode is shifted.

Ftgur~ 21 b shows that INT will be active in the receive mode if RBRL = 1 and
RIENB = 1. RBRL will be a "1" when the Receive Buffer Register has received a
character and stored it. This happens when a key is pressed. The 9902 is enabled by
making RIENB (Receiver Interrupt Enable) a "1". Figure 22 identifies that CRU bit 18
must be made a "1" to make RIENB = 1. A CRU SBO instruction with a displacement
of 18 will set CRU bit 18 to a "1" if the software base address has previously been
loaded in WR12.

Since INT4 is the desired interrupt level, it is enabled in the 9900 by placing this level in
its interrupt mask. This is accomplished with an instruction LIMI 4 which loads the
value 4 into the status register.

9900 FAMILY SYSTEMS DESIGN 9-33

9<111

~9

TMS9902 A simulated
industrial control
application

With the INT4 enabled at the 9901 by placing a "1" in the CRU bit mask
corresponding to the input for INT4, the 9901 sends the interrupt code to the 9900
over ICO-IC3 when the INT signal is received from the 9902. Since INT4 is enabled in
the 9900, the signal path is complete ·and the operating mode shifts.

INT4 executes a context switch and finds its new workspace pointer is FF8C16 and its
new PC is FFAC16 •

In all the discussion, only the enabling of interrupts has been covered. It must be
stressed that similar instructions in many cases must be included in the programming
to disable an interrupt once it has been enabled.

CRU

TMS TMS
9902 9901

1/0 SIGNALS

EIA
INTREO

INT 4
TERMINAL

INT
ICO-IC3

P2

(00401b)

CE tcE

ADDRESS

Figure 2Ja. Simplified Block Diagram Showing TMS 9902 Interface

DSCH

DSCENB

RBRL

RIENB

XBRE

XIENB

TIMELP

TIMENB

DSC INT

RINT

XINT

TIMINT

INT

CRU
STATUS

LINES

TMS
9900

>--------OUTPUT

Figure 21 b. INT Output Generation

9-34 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

ADDRESS2

SO S1 S2 S3 S4

1 1 1 1 1

1 0 1 0 1

1 0 1 0 0

1 0 0 1 1

1 0 0 1 0

1 0 0 0 1

1 0 0 0 0

0 1 1 1 1

0 1 1 1 0

0 1 1 0 1

0 1 1 0 0

0 1 0 1 1

ADDRESS10 NAME

31 RESET

30-22

21 DSCENB

20 TIMENB

19 XBIENB

18 RIENB

17 BR KON

16 RTSON

15 TSTMD

14 LDCTRL

13 LOIA

12 LADA

11 LXDR

10-0

PROGRAMMING
THE 9901 I/O

DESCRIPTION

Reset device.

Not used.

Data Set Status Change Interrupt Enable.

Timer Interrupt Enable

Transmitter Interrupt Enable

Receiver Interrupt Enable

Break On

Request to Send On

Test Mode

Load Control Register

Load Interval Register

Load Receiver Data Rate Register

Load Transmit Data Rate Register

Control, Interval, Receive Data Rate, Transmit Data Rate,

and Transmit Buffer Registers

Figure 22. TMS 9902 ACC Output Bit Address Assignments

PROGRAMMING THE 9901 I/O

The discussion, previously quite general, now gets more specific, focusing on how the
program will have to be written to satisfy the requirements of the application. Since all
input and output signals must go through the 9901, let's begin there. Refer to Figure 23.

Note that there are multiple functions for the pins on the 9901. The pins are referenced
to establish the link between Group 1, Group 2 and Group 3 which were mentioned
previously in the text. Note that all the functions are referenced to a select bit number
from 0 to 31. Select bit zero is addressed when the 9901 base address is called. For
example, the instruction:

SBOO

addresses select bit zero in the 9901 and will set this bit, called the control bit, to a "l".
Because it was bit zero, there was no additional displacement value added to the base
address. However, as was done in Chapter 3, 1016 will be added to the 9901 hardware
base address in the microcomputer when P0 thru P15 are being used as data inputs and
data outputs. This makes the base address point to select bit 16 as indicated in Figurt; 23.
It makes the assignment of 1/0 bit 0 correspond to P0 , bit 1 to P1 , bit 2 to P2, etc.

Figure 23 shows how select bit zero, the control bit, controls the mode of the 9901. 9"'4
When it is a "O", the 9901 is in the interrupt mode; when it is a "1", the 9901 is in the
clock mode. The 9901 must be in the interrupt mode to mask interrupt inputs; it must be
in the clock mode to use the internal clock.

9900 FAMILY SYSTEMS DESIGN 9-35

PROGRAMMING
THE 9901 I/O

NOTES SELECT
BIT

ggo1 MODE

Base 0
Address (control bit)

1
2
3
4
5
6
7
B
g

10
11
12
13
14
15

1/0
Ports- 16
Address 17

1B
1g
20
21
22
23
24
25
26
27
28
2g
30
31

~9 ':'COMMON

so S1 S2
S3 S4

00000

0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

~INVERTED FROM INTREO

PIN NO.

17
1B
g

B
7
6

':'34
':'33
':'32
':'31
':'30
,:,2g

':'2B
':'27
':'23

3B
37
26
22
21
20
1g

':'23
':'27
':'2B
,:,2g

':'30
':'31
':'32
':'33
':'34

PIN FUNCTION WHEN
BEING READ BY A
CRU INSTRUCTION

INTERRUPT CLOCK

0 1

INT 1 CLK 1
INT 2 CLK 2
INT 3 CLK 3
INT 4 CLK 4
INT 5 CLK 5
INT 6 CLK 6
INT 7 CLK 7
INT B CLK B
INT g CLK g
INT 10 CLK 10
INT 11 CLK 11
INT 12 CLK 12
INT 13 CLK 13
INT 14 CLK 14
INT 15 ~INTREO

PO INPUT
P1 INPUT
P2 INPUT
P3 INPUT
P4 INPUT
P5 INPUT
P6 INPUT
P7 INPUT
PB INPUT
pg INPUT
P10 INPUT
P11 INPUT
P12 INPUT
P13 INPUT
P14 INPUT
P15 INPUT

A simulated
Industrial control
application

PIN FUNCTION WHEN
BEING SET OR
"WRITTEN TO" BY A
CRU INSTRUCTION

INTERRUPT CLOCK

0 1

MASK 1 CLK 1
MASK 2 CLK 2
MASK 3 CLK 3
MASK 4 CLK 4
MASK 5 CLK 5
MASK 6 CLK 6
MASK 7 CLK 7
MASK B CLK B
MASK g CLK g

MASK10 CLK10
MASK 11 CLK 11
MASK 12 CLK 12
MASK 13 CLK 13
MASK14 CLK 14
MASK 15 RST 2

PO OUTPUT
P1 OUTPUT
P2 OUTPUT
P3 OUTPUT
P4 OUTPUT
P5 OUTPUT
P6 OUTPUT
P7 OUTPUT
PB OUTPUT
pg OUTPUT
P10 OUTPUT
P11 OUTPUT
P12 OUTPUT
P13 OUTPUT
P14 OUTPUT
P15 OUTPUT

Figure 23. 9901 Select Bit Assignments

9-36 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

PROGRAMMING
THE 9901 I/O

INTERRUPT MODE

Select bit outputs 1 through 15 become MASK bits 1 through 15 when writing to these
bits to enable (MASK= 1) or disable (MASK= 0) interrupts. Enabled interrupts
received on the inputs will be decoded by the prioritizer and encoder of Figure 15.

CLOCK MODE

To set or read the self-contained clock, the 9901 must be in the clock mode. Using the
CRU, the clock is set to a total count by writing a value to select bits 1 through 14.

Reading the clock is accomplished by a CRU instruction to read select bits 1 through 14.
Another read instruction without switching the 9901 out of the clock mode will read the
same value.

The clock is reset by writing a zero value to the clock or by a system reset.

In the clock mode, select bits 1through14 become CLK bits 1through14.

DATA INPUTS AND OUTPUTS

Select bits 16 through 31 are used for data inputs and outputs. All I/O pins are set to
the input mode by a reset. To set a select bit as an output, just write data to that pin.
The data will be latched and can be read with a CRU read instruction without affecting
the data. Once an I/O port is programmed to be an output, it can only be programmed
as an input by a hardware or software reset. This can be done two ways.

1. Receiving a hardware reset, RESET.
(Operating the RESET switch on the microcomputer.)

2. Writing a "O'' to select bit 15 of the 9901 while in the clock mode will cause a
software RST2 and force all I/ 0 ports to the input mode.

The status of the 9901 can be evaluated by checking (reading) the control bit. Testing
select bit 15 in the interrupt mode can indicate if an interrupt has been received. If one
has, INTREQ will be high because INTREQ is low.

After a hardware RESET, or a software reset RST2, all interrupts INTl through INT15
are disabled, all I/O ports will be in the input mode, the code on ICO-IC3 will be 0000,
INTREQ will be high and the 9901 will be in the interrupt mode.

9900 FAMILY SYSTEMS DESIGN 9-37

9"4

~9

PROGRAMMING
THE 9901 I/O

ExAMPLES OF PROGRAMMING

Setting the Control Bit

A simulated
industrial control
application

If the interrupt and clock modes of the 9901 are to be controlled, load the base address
in WR12 (10016 for 9901 on microcomputer board) and set select bit zero to the
respective value:

LI R12,>100
SBZ 0
SBO 0

LOADS> 100 INTO WR12
9901 TO INTERRUPT MODE
9901 TO CLOCK MODE

Enabling or Disabling Interrupt Level

Interrupt levels are enabled or disabled by setting the MASK to a "1" or a "O" value,
respectively. As an example, after a reset, the 9901 would be in the interrupt mode. Now
interrupts 2, 5, 6 and 8 are to be enabled. The instruction:

LDCRR2,9

will do this as shown in Figure 24. The contents of workspace register 2, 016416 from bit
15 thru 7 are read into select bits 0 thru 8 to enable interrupt levels 2, 5, 6 and 8. Of
course, WR12 had to be loaded with the software base address using a

LI R12,> 100

instruction, as an example, and WR2 would have been loaded in a similar fashion.

In like fashion, the same levels could be disabled by writing "O" to bits 2, 5, 6 and 8
with an LDCR instruction, or programming a software RST2, or by using the single bit
CR U instructions.

9-38

BIT NO. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

WR12

1>01001

ENABLED

WR2

. I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 1 I 0 I 0 I 1 I 0 I 0 I CRU OUTPUT

15 14 13 12 11 1 0 9 8 7 6 5 4 3 2 1 0 SELECT BIT

x x x x

Figure 24. Enabling Interrupt Levels 2, 5, 6 and 8 with an LDCR Instruction

9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

PROGRAMMING
THE 9901 I/O

For example,

SBZ2
SBZS
SBZ6
SBZ 8

would set each bit to a "O". Previously WR12 was set to 010016 to reference the 9901
on the microcomputer module.

Setting the Output Bits

Similar single bit or LDCR CRU instructions can be used to set the output bits.

LDCR R2, 0 would read out the value of WR2 to the output pins P0 through P15 (the 0
in the LDCR R2, 0 means all 16 bits will be written to the output). WR12 has
previously been loaded with 012016 • This is shown in Figure 25.

A routine of loading 9901 I/O INPUTS and storing 9901 I/O OUTPUTS with a 743
KSR terminal would look like the following, after pressing the RESET toggle switch on
the microcomputer module and a carriage return on the terminal:

TIBUG REV A
?M FEDD (CR)

ADDRESS OP CODE MNEMONIC COMMENT
FEOO=XXXX 02EO (SP) LWPI >FF20 ;WP=>FF20
FE02=XXXX FF20 [SP)
FE04=XXXX 020C [SP) LI R12,>120 ;9901 SOFTWARE BASE

ADDRESS = > 1 20
FE06=XXXX 0120 [SP)
FE08=XXXX 0200 [SP) LI RO,>FOFO ;CRU DATA
FEOA=XXXX FOFO [SP)
FEOC=XXXX 3000 [SP) LDCR RO,O LOAD 9901 1/0

PORTS WITH RO
FEOE=XXXX 3400 [SP) STCR RO,O STORE 9901 I /0

PORTS IN RO
FE10=XXXX 0460 [SP) B @>80 ;RETURN TO TIBUG
FE12=XXXX 0080 [CR)
?

The XXXX shown are don't care contents at the respective memory addresses which are
changed as the op codes are entered. (SP) is a space bar command and (CR) is a carriage 9-<I
return.

9900 FAMILY SYSTEMS DESIGN 9-39

.,..9

PROGRAMMING
THE 99011/0

A simulated
industrial control
application

BIT NO. 0 1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15

0 I I 6 I 4 I
WR2

WR12

I >01201

CRU OUTPUT

SELECT BIT 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

9901 OUTPUT P15 P,. P,, P,, P,, Pio P, P, P, P, P, P, P, P, P, P,

Figure 25. Output From WR 2 with LDCR Instruction

PROGRAMMING THE 9901 CLOCK

In Figure 9, the clock function of the 9901 was described. The clock register must be
loaded with a value to set its total count and enable the clock. When the register is
decremented to zero, it generates a level 3 interrupt (INT 3) as the elapsed time signal.

Access is gained to the clock by setting select bit zero to a "1" which puts the 9901 in
the clock mode. All select bits 1 thru 15 are then in the clock mode and become the
access for setting the clock count. CLK bit 15 is used for software reset. Therefore, the clock
count is set by the value on select bits 1 through 14. An example is shown in Figurt(26.
The maximum value that can be loaded into 14 bits (all ones) would be 16,383. The rate
at which the clock decrements the value is f(cf>)/64. If f is 3 MHz, then the rate is
approximately 46,87 5 Hz. The time interval is equal to the value in the clock register
times 1/46,875. With the maximum value, the maximum interval is 349 milliseconds.

If 25 millisecond intervals are required, then the clock register would have to be loaded
with 46,875 X 0.025=1172. This is equivalent to 049416 • The least significant bit of
the register value must be a 1 to set the control bit, therefore 049416 is moved over a bit
position and the register is loaded with 092916 • A LDCR instruction is used for loading
the value and the sequence of steps is shown in Figure 26 .

The software is as follows:

9-40

LI R12,>0100
LI R1 .>0929
LDCR R1 ,15

;SET 9901 ON MODULE SOFTWARE ADDRESS=>0100
;LOAD CLOCK VALUE INTO R1, SET CLOCK MODE
;MOVE TIMER VALUE AND CONTROL BIT TO 9901

9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

PROGRAMMING
THE 9901 I/O

2 0 9

12 1~ 9

14 151 0 5 6 9 10 11 8 3 4

Rl N 0 0 0 0 0 0 0 0 0 >0929

~--- CLKl TO CLK14=>0494=117210 ----~
1172/46,875Hz = 25ms

CRU TMS 9901 HEX
ADDR ASSIGNMENT VALUE

80 1 =CLOCK MODE

81 CLKl

0 82 CLK2

CLK3

0

0

0

0

0

0

0

BE CLK14
WR12 NOTE:

~
THE FIRST SERIAL INPUT FROM CRU (A ONE IN BIT 15 OF R1) SETS CLOCK MODE. 0 BF
LAST INPUT TO CLOCK REGISTER (CLK14) STARTS THE CLOCK.

Figure 26. Enabling and Triggering TMS 9901 Interval Timer

Enabling Clock Interrupt

When the clock decrements to zero, a level 3 interrupt is given. The interrupt level 3
mask needs to be enabled on the 9901 and the 9900 CPU. The interrupt mask on the
9901 is enabled by setting the control bit to a logical "O" (interrupt mode) and then
setting select bit 3 to a "1" (write a "1" to bit 3). The interrupt mask on the 9900 is
enabled by loading the appropriate value (in this case, 3) into the interrupt mask. When
3 is loaded into the 9900 with a LIMI 3 instruction, all higher priority levels are also
enabled.

The software is:

LI R12,>0100
SBZ 0
SBO 3
LIMI 3

9900 FAMILY SYSTEMS DESIGN

;SET BASE ADDRESS TO 9901 ON BOARD, >0100
;9901 TO INTERRUPT MODE
;ENABLE INTERRUPT 3 AT 9901
;LOAD 9900 INTERRUPT MASK

4

9

9-41

FROM BASIC CONCEPTS
TO PROGRAM

A simulated
Industrial control
application

PuTTING SOME PIECES TOGETHER

Some of the pieces can now be combined to provide a larger program. It looks like this:

LI R12,>0100
CLR RO
LI R1 ,>0929
LDCR R1,15
SBZ 0
SBO 3
LIMI 3

LOOP 2 Cl RO, > FFFF
JNE LOOP 2

;SET SOFTWARE BASE ADDRESS OF 9901=0100
;INITIALIZE INTERRUPT INDICATOR, RO SET TO ZERO
;CLOCK COUNT 0494 AND CLOCK MODE IN R1
;SET CLOCK COUNT ENABLE TIMER
;9901 TO INTERRUPT MODE
;ENABLE INT 3 AT 9901
;LOAD 9900 INTERRUPT· MASK
;HAS INT 3 OCCURED?
;IF NO, GO TO LOOP 2

When the timer gives an interrupt 3, a context switch occurs; the interrupt 3 vector PC
points to FF8816 which contains an instruction to get to the interrupt routine:

B @CLKINT ;BRANCH TO INTERRUPT ROUTINE IDENTIFIED BY CLK INT

The branch then takes the program to:
CLKINT LI R12,>0100 ;SET SOFTWARE BASE ADDRESS OF 9901=0100

SBZ 3 ;DISABLE INTERRUPT 3
SETO ~~R13 ;SET PREVIOUS RO TO FFFF
RTWP ;RETURN TO PROGRAM

Thus, if an interrupt 3 has not occured, the program remains in Loop 2 until it does.
When INT 3 occurs a context switch to the interrupt subroutine causes RO to be
changed from all zeros to all ones. RO will now equal FFFF 16 and the program proceeds
to the step after JNE Loop 2, which, as will be seen later, is a count down.

FROM BASIC CONCEPTS TO PROGRAM

As with the Chapter 3 application, converting the idea to program starts with solidifying
the basic concept, then developing acceptable flow charts, and then programming the
algorithm for the problem solution. As with hard-wired logic design, the place to start is
with a. block diagram. The one used in Figure 6 will be expanded with a bit more detail
and will be the concept diagram (Figure 27).

The terminal, the microcomputer module and the interface modules with their
respective inputs and outputs will constitute the system. Later on the TM900/310
module will be added to show the 1/0 expansion capability. This will only involve
plugging the interface modules into one of the additional 9901 outputs on the 310 board

~ 9 (P4 in this case) and changing the CRU base address to select the chosen 9901. It will be
assumed that the power and all interconnections have also been made through Pl to the
microcomputer and 310 module as shown in Figure 27. There is a special power

9-42 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

FROM BASIC CONCEPTS
TO PROGRAM

supply required for supplying the interface modules. This is the + 8V shown in Figure
27. 1 lOVac is supplied separately for the terminal and the industrial level voltages of 12
volts de and llOVac are supplied separately, as they would be in a user facility.

The physical arrangement of the interface modules is important to the program for the
problem solution. Therefore, 1/0 positions 0 thru 7 are identified. Positions 0 thru 3 are
input positions; positions 4 thru 7 are output positions. Signals received on input position
0 will cause reaction at output position 4. Correspondingly for input 1 and output 5,
input 2 and output 6, and input 3 and output 7. Thus, the program will be written to
sense input 1 and set output 5 to correspond.

Switches Sl through S4 represent industrial level input voltages, either de or ac. Lights
Ll and L3 represent industrial de loads; L2 and L4 represent industrial ac loads.

TM990/100M
MICROCOMPUTER

P2

743
KSR

TERMINAL

MODE 1. READ AN INPUT AND SET A
CORRESPONDING OUTPUT.

MODE 2. TURN ON LIGHTS IN SEQUENCE.

MODE 3. Tl BUG MONITOR FOR DEBUG
EDIT AND NEW PROGRAM DATA.

COMMAND MODE

SELECT THE MODE DESIRED

INTERRUPT MODE

INTERRUPT MODE 1 AND MODE 2
BY PRESSING KEY ON TERMINAL

9900 FAMILY SYSTEMS DESIGN

-12V, + 12V, +5V

110Vae

de
P.S.

TM990/507

+BV
+ l. J-t-+----1

+
c~----itr

'O

de

P.S.

P1

TM990/310

1/0
EXPANSION

P2

P3

------1\
------v
- - - -~-1\
-----v

P4 - - - ---..\

----' I
I I
I I
I I
I I ____________ .) I

- - - ------ - _,,,

INPUT
MODULES

OUTPUT
MODULES

J

P1 ~

D
c

D
c

A
c

A
c

D
c

A
c

D
c

A
c

, ~ E I
I§ N
~()
() ()
'O ro

0

S1

I
N

I
N

I
N

0
u
T

0
u
T

0
u
T

0
u
T

+ 12Vde

110Vae LINE L2

COMM

Figure 27. Concept Flow Diagram

9-43

I

9~

I

~9

FROM BASIC CONCEPTS
TO PROGRAM

Fww CHARTS FOR THE PROGRAM

A simulated
industrial control
application

Software design is really little different from hardware design in the execution of good
engineering practice.

The task from overall concept stage is divided into subsystems - in the case of software,
subprograms or subroutines. Figure 28 identifies subprograms for the extended
application which are detailed in flow charts so that basic functions can be identified.

The flow charts are separated according to the functions that are to be implemented.
Operation in Mode 1 simulates sensing four industrial level inputs 0 through 3 and
reacting to these inputs by providing output voltages to four corresponding loads, 4
through 7. The flow chart identifies that inputs will be sensed and a corresponding
output will be set to match the input state or value.

The four output loads, in this case light bulbs, will be turned on and off in sequence and
held in each of these states for a set time (variable by the program). This is Mode 2
operation. The flow chart shows the major functions. After all four lights are turned off
and on, the sequence starts over. The clock in the 9901 will be used to provide the time
interval.

There is an operating Mode 3 but it will be contained in the mode called the
COMMAND Mode. In Mode 3 the operation of the system is under the control of the
TIBUG Monitor which is contained in the lK words of EPROM resident in the
microcomputer. It is used for inputting the original program and editing and changing
the program as the need may be.

The flow chart for the Command Mode starts with initial setup of the system. Certain
registers and certain locations in memory are loaded with data used throughout the
program. A print-out of general information and specific instructions follows. Since the
user will make a choice, instructions identify that a one (1) key is to be pressed on the
terminal to operate in Mode 1; a two (2) key to operate in Mode 2; and a Q for Mode 3.
The character pressed by the user is then examined and the appropriate operating mode
selected. If none of the operating mode characters are received the system waits in the
command mode until one is received.

On the flow chart for the COMMAND mode A and B connect with the respective
points on the MODE 1 and MODE 2 flow charts.

Recall that the system is to have a provision for the user to command an escape from the
continuous operation in Mode 1 or Mode 2. This happens by interrupting Mode 1 or
Mode 2 operation by pressing a key on the terminal. The first blocks in the flowcharts of
l\10DE 1 and MODE 2 provide the means for accomplishing the interrupt. When a
key is pressed on the terminal, this initiates an interrupt signal output from the 9902.
This interrupt must be enabled to pass to the 9901 and the 9900 so that it will cause the
return to the COMMAND MODE. The generation of the signal in the 9902 is
flowcharted under the heading INTERRUPT MODE of Figure 28.

9-44 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

MODE 1

ENABLE
INTERRUPT
TO PERMIT
MODE EXIT

SENSE INPUTS
1OR2

OR 3 OR 4

SET OUTPUTS
4 OR 5 OR

6 OR 7
LIKE INPUT
SENSED

INTERRUPT MODE

READ
CHARACTER

FROM TERMINAL

OUTPUT
INTERRUPT IF

INTERRUPT
ENABLED

MODE 2

ENABLE
INTERRUPT
TO PERMIT
MODE EXIT

TURN OFF
ALL LIGHTS

EXCEPT
OUTPUT N

HOLD FOR
TIME INTERVAL

TURN OFF
OUTPUT N + 1

OR N+2
OR N +3, ETC.

NO

TURN ON
OUTPUT N + 1
OR N+2 OR
N+3,ETC.

FROM BASIC CONCEPTS
TO PROGRAM

INITIAL
CONDITIONS

COMMAND MODE

PRINT
INSTRUCTIONS

Figure 28.Function Level Flow Charts

9900 FAMILY SYSTEMS DESIGN 9-45

9~

..... 9

FROM BASIC CONCEPTS
TO PROGRAM

WRITING THE PROGRAM

Memory Space

A simulated
industrial control
application

All elements are now in place to write the program. First, it is n~cessary to decide what
locations are to be used in memory for the program, for the workspace and for data.
Refer to Figure 29.

For this application more memory space is required than for Chapter 3's First
Encounter. Thus, additional RAM units are installed on the microcomputer board at
locations U33, U35, U37 and U39 (4042 Units). This expands the available RAM space
to FC0016 and this is the location for the start of the program.

Incidentally, while available memory is being discussed, note the address of the TIBUG
monitor, 008016 • This memory location must be referenced when returning to the
TIBUG Monitor in Mode 3. The TIBUG workspace located at FFB016 has already
been discussed. This space must be reserved.

One more point - the second lK of EPROM starting at location 080016 will be
populated with the Line-by-Line Assembler (LBLA) resident in EPROM. This will be
used for assembly of the program. The socket locations on the board are U43 and U45
and the product number is TM990/402-l. Normally, the LBLA would start
assemblying at address FE0016 , however, by using a /FCOO command the start location
is changed to FC0016 •

The Command Mode

A more complete flow chart is shown in Figure JO for the Command Mode. The
program begins with initialization of registers. When writing the first draft of the
program, labels are used for ease of writing. For later drafts and when a LBLA is used,
the labels are replaced with actual addresses. INPUT! will be the label for the start of
Mode 1. BLINKR will be the label for the start of Mode 2. COMODE labels the
message that asks the user to select the mode .

9-46 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

FROM BASIC CONCEPTS
TO PROGRAM

MEMORY
ADDRESS

~---BYTE 0000

BYTE 0001

DEDICATED
MEMORY

INTERRUPT VECTORS i~:~ ...---77""----,.-----,.,...___,

XOP VECTORS 0040 EPROM oo7 E TMS 2708

TIBUG I 0080 1 K x 16 !
FIRST
1024
WORD
EPROM

FF68

==~~,__-_-_-_-_-_-_-_-_-_-_-_-_----l

==:o.s------------1
FFFE~---~--------J

ADDRESS (HEX)

0000-0003
OOOC-OOOF
0010-0013
0040-0047
0060-00?F
0080-0?FF
FFBO-FFFB
FFFC-FFFF

MONITOR
07FE

0800

WP AT FF68 }

INT 3,

2-WORD INST AT FF88
OFFE

1000

WP AT FF8C }

INT4_

2-WORD INST AT FFAC
'-...

''-... FBFE

'~coo
......

USER
AVAILABLE FDFE

RAM FEOO

-.......
........

LBLA EPROM
TMS2708
1KX16

•
•
•

RAM
TMS4042·2

256 x 16

......
RAM

TMS4042-2
256x16

FFFE -........---,,,.."'--------'

RESERVED40WORDSFOR
TIBUG MONITOR WORKSPACE

) SECOND
(1024
(WORD
) EPROM*

~ MEMORY j EXPANSION

) SECOND
(256
(WORD
) RAM*

1

FIRST
256
WORD
RAM

FILES AND RESTART (LOAD) VECTORS
AT FFFC AND FFFE

*STANDARD FOR BOARDS WITH
ASSEMBLY NO. 999211-0003;
OPTIONAL FOR OTHER BOARDS

DEDICATED MEMORY

PURPOSE

Level zero interrupt vector (RESET)
iNT3 vectors (TMS 9901 timer)
INT4 vectors (TMS9902 timer)
Vectors for XOP's O and 1 (Microterminal 1/0)
Vectors for XOP's 8 to 15 (TIBUG utilities)
TIBUG monitor
Four overlapping monitor workspaces
Restart (load) vector

Figure 29. Memory Map with Fully Populated 990/ JOOM-l Module

9900 FAMILY SYSTEMS DESIGN 9-47

9 ...

FROM BASIC CONCEPTS
TO PROGRAM
4* ; .,.,;, q.9&.iijfl. ~·11 tH' '

The Command Mode program is as follows:

COUNT
BASE1
BASE2
START

COMO DE

+>929
+>100
+>120
LWPI >FF20
LI R1,>1EOO
LI R2,>1DOO
LI R3,>1 FOO
XOP @MSG1, 14
XOP @MSG2, 14
XOP R7, 11
Cl R7.>3100
JEQ INPUT1
Cl R7,>3200
JEQ BLINKA
Cl R7,>5100
JNE COMODE
B @>80

;SET UP 9901 CLOCK
;SET UP 9901 CRU BASE
;SET UP 9901 1/0 BASE
;SET WP AT FF20
;SBZ OP CODE TO R1
;SBO OP CODE TO R2
;TB OP CODE TO R3
;PRINT HEADER @MSG1
;ASK FOR MODE WITH MSG2
;READ CHAR FROM TER TO R7
;IS CHAR A 1?
;IF YES GO TO MODE 1
;IS CHAR A 2?
;IF YES TO TO MODE 2
;IS CHAR A Q?
;IF NO KEEP LOOPING
;IF YES GO TO TIBUG

A simulated
industrial control
application

te M

To initialize registers, the values for the TMS 9901 clock interval, TMS 9901 CRU
software base address and TMS 9901 I/O software base address are loaded directly into
memory spaces by using a (+) in front of the data. 092916 is placed in the 9901 for a
25ms interval. Recall that the module 9901 has a base address of 010016 for select bit
zero and 012016 so that select bit 16 activates PO when input or output bit 0 is addressed,
as discussed previously. Note that the workspace is set up at FF2016 •

The machine codes for SBZ, SBO and TB are loaded into workspace registers one, two
and three, respectively. As discussed previously, an XOP 14 is used to print the header
and instructions for use of the program. The messages are labeled with MSG 1 and
MSG2 and are located at the end of the program and will be discussed later. Next an
XOP is used to read a character from the terminal and load the ASCII code into R 7.
This is then compared with the ASCII codes for the number one, two and the letter Q to
determine the character. Depending on what character is received, the program jumps to
the proper area in memory to execute the correct mode of operation. The entry point to
the TIBUG monitor is 008016 and a branch to this location will execute the monitor.

Mode 1 Operation

Figure 31 shows the flow chart for Mode 1 Operation. The label INPUT! begins the
operation. The first function sets up the system so that the 9902 will generate an

..... 9 interrupt when a received character fills the receiver buffer (RBRL = 1). Recall that the
interrupt generated by the 9902 must be enabled by making RIENB = 1. This is
accon1plished by making the 9902 select bit 18 equal to "1 ". The enabled interrupt from
the 9902 is wired to the INT4 input of the 9901. Thus, as previously discussed, level 4
interrupts must be enabled both at the 9901 and the 9900.

9-48 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application
I\.··, e 5 ii I ft f i I

The software looks like this:

INPUT1 RSET
LIMI 4
LI R12,>80
STCR R7,0
SBO 18
MDV @BASE1,R12
SBO 4

PRESS KEY
ON

TERMINAL

FROM BASIC CONCEPTS
TO PROGRAM

: PUT 9901 INTO INPUT MODE
: ENABLE 9900 INT1-INT4
: LOAD R12•w /9902 BASE ADDR
; CLEAR 9902 RCV BUFFER
: ENABLE 9902 RCV INT
; SET 9901 BASE ADDR TO > 100
; ENABLE 9902 INT AT 9901

INITIALIZE
REGISTERS

PRINT HEADER
AND

INSTRUCTION

TMS 9902
INTERRUPT

Figure 30. Command Mode

9900 FAMILY SYSTEMS DESIGN 9-49

9~

~9

FROM BASIC CONCEPTS
TO PROGRAM

e +

A simulated
industrial control
application

First the 9901 is reset to put it into the input mode. Then the 9900 interrupt mask is set
to 4 to allow interrupts 1 thru 4 to be acknowledged. To enable select bit 18 of the
9902, the software base address is loaded into WR12 and an SBO 18 instruction sets the
bit to "1" for the enable. The 9902 receiver buffer is read into R 7 with the STCR
instruction which resets the buffer for receipt of a character. WR12 is set with the
software base address for the 9901, and then select bit 4 is set to a "1 ". These steps
enable the 9901 interrupt level 4 to clear the complete path for generating an interrupt
when a character is received from the terminal.

9-50

SET UP TMS 9902
INTERRUPT

(RIENB)

SET UP 9901
110 CRU BASE

ADDRESS

PUT
SBZ (N+4)

INSTRUCTION
INTO R5

EXECUTE
INSTRUCTION

IN R5

YES

NO

PUT SBO (N + 4)
INSTRUCTION

INTO R5

N>: ~~~~~~~~~--'

~

Figure 31. Mode 1 Operation

9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

FROM BASIC CONCEPTS
TO PROGRAM

CHECKING THE INPUTS-SETTING THE OUTPUTS

Figur~ 31 shows that with N = 0 the CRU is testing the zero input bit of the 9901. If it is
a "1 ", then the N + 4 bit (I/ 0 bit 4) will be set to a "1" to correspond. One will be
added to N (0 + 1=1), which will be less than 3 and the cycle is repeated: the second
time with N = 1, the next time with N = 2 and the next with N = 3. With N = 3, N + 1
will be greater than three and everything is reinitialized and the se_quence starts over
with input bit zero again. So the procedure is to check each input bit and set the
corresponding output bit. The software is as follows:

INIT1

INDEX1

LOW

XE CUTE

HIGH

MDV @BASE2,R12
CLR R4

MDV R4,R5
SOC R3,R4
X R4
JEQ HIGH
MDV R5,R4
Al R5.>4
SOC R1 ,R5
X R5
INC R4
Cl R4.>3
JGT INIT1
JMP INDEX1
MDV R5,R4
Al R5.>4
SOC R2,R5
JMP XECUTE

; SET 9901 BASE ADDR TO > 120
; R4 CONTAINS CRU BIT TO BE
; TESTED
; MOVE CRU BIT TO R5
; R4 CONTAINS TB INST [R3)
; EXECUTE TB SPECIFIED BY R4
; IF CRU BIT= 1 GO TO HIGH
; RELOAD CRU BIT INTO R4
; SHIFT CRU BIT OVER BY 4
; R5 CONTAINS SBZ OP CODE [R1)
; EXECUTE OP CODE SPECIFIED BY R5
; INCREMENT TO NEXT CRU BIT
; IS CRU BIT >3?
: IF YES REINITIALIZE
; START TESTING NEXT CRU BIT
; RELOAD CRU BIT INTO R4
; SHIFT CRU BIT OVER 4
; R5 CONTAINS SBO OP CODE [R2)
; GO EXECUTE SBO INST

Input bits 0-3 correspond to output bits 4-7 respectively. R4 contains the value of the
select bit to be tested (the program starts with bit zero). R4 is moved to RS to preserve
the contents of R4. R3 contains the machine code for TB. Actually it contains the
machine code for the instruction TB 0 (Test bit 0). By doing a set ones correspondence
(SOC) between R3 and R4, the machine code for the TB instruction is combined with
the value of the select bit to be tested so that R4 contains the instruction - "test the
select bit previously specified by R4." More specifically, R4 =TB (R4).

An X of R4 will execute this instruction. Using this procedure allows R4 to contain the
bit position separate from the TB instruction which is in R3. The bit position in R4 or
RS can also be combined with the SBO and SBZ op codes located in R2 and Rl to allow
execution of the SBO or SBZ instructions on the select bits specified by R4 or RS. The
procedure is the same as for the TB instruction. 9-<a
If the bit tested is a zero, R4 is reloaded from RS with the original value of the select bit
to be tested, which is still in RS. RS plus 4 is combined with Rl using a SOC Rl, RS
instruction. The selected output bit will be set to zero when the resulting SBZ
instruction in RS is executed. Thus, an N + 4 output is set to zero, if the corresponding
N bit was a zero.

9900 FAMILY SYSTEMS DESIGN 9-51

~9

FROM BASIC CONCEPTS
TO PROGRAM

A simulated
industrial control
application

R4 is incremented to the next bit and is tested to determine if its value is greater than 3.
When it is not, the program jumps to label INDEXl and tests the next bit in the same
sequence as the first and sets the corresponding output bit. Now, suppose this bit is a
"1" instead of a "O" as for the preceding bit. The program jumps to the label HIGH,
reloads R4, adds 4 to RS, and now executes an SOC R2, RS to set the N + 4 output to
one when the SBO instruction in RS is executed.

When input bit 3 is tested, the test of R4 + 1 will show its value is greater than 3 and the
program is reinitialized and the procedure starts over. To exit the loop, any key on the
keyboard is pressed which produces a level 4 interrupt. The level 4 interrupt comes
from the 9902 and the system enters the command mode as shown in Figure JO.

Mode 2 Operation (Figure 32)

Mode 2 operation sequences the loads simulated by light bulbs. The flowchart is shown
in Figur~ 32. It has a time interval of 2Sms set up by the 9901 real time clock. A
program loop multiples the 2Sms times R6 to obtain the total time interval; with R6 = 4,
each total time interval is lOOms. The time interval can also be varied by changing the
initial value 092916 set into the clock register of the 9901. The value in R4 determines
the number of light bulbs (loads) that are going to be turned on, held for lOOms, turned
off, and started through the sequence again. As with mode 1, pressing a key on the
terminal causes a return to the Command Mode.

It is worthy to note, even though the 9901 is in the input mode when reset, outputs 4,S,6
and 7 are such that all light bulbs are on. Thus, the function of turning off outputs S, 6
and 7 and leaving 4 on starts the program after the CRU base address is set. In actual
industrial applications it may be necessary to put additional inverters between the output
of the microcomputer and the SMT modules so that the reset condition has all loads off.

Recall that when the 9901 clock register is decremented to zero it puts out a INT3
signal. This interrupt causes a context switch to occur and sets the old workspace RO to
FFFF16 • When this happens the time interval has ended.

Interrupt 4 from TMS 9902

The software for Mode 2 starts as follows to set up the interrupt 4 from the 9902:
BLINKA RSET ; SET 9901 TO THE INPUT MODE

LIMI 4 ; ENABLE 9900 INT1-INT4
LI R12,>80 ; SET UP 9902 BASE ADDA
STCR R7 ,0 ; CLEAR 9902 RCV BUFFER
SBO 18 ; ENABLE 9902 RCV INT

,..........,,, . T"'-. T T 1'rr. TT 7 ~ . . 1 A A A 1 . . 1 • , 1 1 , , 1 1 _ 1 _ . A
l ne reset at nLll'l 1\..K sets tne 'J'JU l ro tne mput mooe anu turn~ un rm:: 1oaus on outputs "'t,

5,6and7.

9-52 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

SET UP
TM9902

INTERRUPT

SET UP 9901
1/0 CRU BASE

ADDRESS

TURN OFF
LAMPS AT 1/0

PORTS 5, 6, & 7

R4-4

R6=4

SETUP
AND START

9901 CLOCK

9900 FAMILY SYSTEMS DESIGN

FROM BASIC CONCEPTS
TO PROGRAM

R6= R6-1

No

TURN OFF
LAMP AT 1/0
PORT=(R4)

R4=R4+1

YES

TURN ON
LAMP AT 1/0
PORT=(R4)

RO= FFFF

Figure 32. Mode 2 Operation

9-53

9 ...

~9

FROM BASIC CONCEPTS
TO PROGRAM

A simulated
industrial control
application

The next 7 instructions after the 9901 software base address is set at 012016 are concerned
with turning off outputs 5, 6 and 7. These start with INT2 and continue through the next 6
instructions after LOOP 1.

INT2
LOOP1

Lamp 4 remains on.

MDV @BASE2, R12
LI R4,>5
MDV R4,R5
SOC R1 ,R5
X R5
INC R4
Cl R4,>8
JNE LOOP1

; SET 9901 BASE ADDR = > 120
; R4 CONTAINS CRU BIT POS 5
; MDV POS 5 TO R5
; R5 CONTAINS SBZ OP CODE (R1)
; EXECUTE SBZ SPECIFIED BY (R5)
; R4=R4+1
; HAS CRU BIT 7 BEEN SET=O?
; IF NO GO TO LOOP 1

Register 4 must now be loaded with the output position frol]l which the sequence starts-in
this case 4.

LI R4,>4 ; SET OUTPUT BASE BIT

Timing Loop

R6 is set equal to 4 so that the overall time interval is lOOrns. This starts the timing loop at
INDEX2. The 5 instructions following TIMER set up the 9901 clock to count a 25ms
interval and then cause a level 3 interrupt. Note that the 9901 must be put into the
interrupt mode and the level 3 interrupt enabled. Since the 9902 interrupt signal comes in
on interrupt level 4, it is convenient to enable it at this same time. The loop is such that it
loops 4 times. Each loop is controlled by the interval timer of the TMS9901. The
TMS9901 timer is set and started when loaded with the value at the label COUNT. The
clock decrements until it hits zero and then it gives a level 3 interrupt. The interrupt
service routine begins at FF8816 as directed by the level 3 vector. It sets RO to FFFF16 and
returns to the program. The program will be in a continuous loop (Loop 2) checking RO
for an indication that an interrupt has occured. When the time interval is complete, the I/O
bit dictated by R4 is turned off. R4 is incremented and checked to see if it is equal to 8.
If not, the I/Obit position of the new R4 is turned on and the sequence restarts. If
R4 + 1=8, then the program jumps back to BLINKR and starts over causing R4 to be
reset to 4 and to restart the sequence.

9-54 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

FROM BASIC CONCEPTS
TO PROGRAM

The software looks like this:

INDEX 2
TIMER

LOOP2

LI RB.>4
MOV @BASE1,R12
CLR RO
LDCR @COUNT, 15
SBZ 0
SBO 3
SBO 4
Cl RD.>FFFF
JNE LOOP2
DEC RB
JNE TIMER
MDV @BASE2.R12
MDV R4,R5
SOC R1 ,R5
X R5
INC R4
Cl R4.>9
JEQ BLINKA
MDV R4,R5
SOC R2,R5
X R5
JMP INDEX2

OVERALL LOOP COUNT= 1 OOms
SET CRU BASE ADDR OF 9901 = > 100
INITIALIZE INT3 INDICATOR
LOAD TIMER AND START COUNT
9901 TO INTERRUPT MODE
ENABLE INT3 AT 9901
ENABLE 9902 INT AT 9901
HAS INT3 OCCURRED?
IF NO GO TO LOOP2
RB=RB-1
IF RB=D GO TO TIMER
SET 9901 BASE ADDR = > 120
MDV CRU BIT TO R5
[R5) = SBZ [R5)
EXECUTE SBZ SPECIFIED BY [R5)
R4=R4+1
IS R4=9?
IF YES RESTART SEQUENCE
R4=R5
[R5) = SBO [R5)
EXECUTE SBO SPECIFIED BY [R5)
RESTART TIMING CYCLE AT INDEX 2

9902 Interrupt Service Routing

This interrupt service routine is the one resulting from a level 4 interrupt generated by
the 9902. It starts at INTREC. As discussed previously, when the interrupt occurs, the
program counter points to FFAC16 , the reserved space, where it finds an instruction
directing it to INTREC. This instruction looks like this:

ADDRESS INSTRUCTION

FFAC B @INTREC ; GO TO INT4 SERVICE ROUTINE

The routine first disables the 9901 timer interrupt level 3, then disables the 9902
interrupt at the 9902 (Set select bit 18 = 0) and finally loads the address of COMODE
into the old PC, so that when an RTWP (return with workspace pointer) is executed,
the program returns to the command mode. The software is as follows:

INTREC MDV @BASE1,R12 ; SET 9901 BASE ADDR = > 1 OD
SBZ 3 ; DISABLE INT3 AT 9901
SRL R12. 1 ; SET BASE ADDR=>BO FOR 9902
SBZ 18 ; DISABLE 9902 INT
STOR R7. 0 ; READ 9902 RCV BUFFER [CLEARS)
LI R14, COMODE ; LOAD ADDR OF CO MODE INTO PC
RTWP ; RETURN TO 5MT ROUTINE

9900 FAMILY SYSTEMS DESIGN 9-55

9~

... 9

FROM BASIC CONCEPTS
TO PROGRAM

9901 Clock Interrupt Service Routine

A simulated
industrial control
application

When the clock decrements to zero it generates a level 3 interrupt. The routine to
service this interrupt starts at CLKINT. The level 3 interrupt context switch provides a
new PC at FF8816 which directs the program to CLKINT. This instruction looks like
this:

ADDRESS INSTRUCTION

FFBB B @CLKINT ; GO TO INT3 SERVICE ROUTINE

Here, after setting the software base address of the 9901 to 010016 , INT3 is disabled and
RO of the previous workspace is set to FFFF16 • A RTWP instruction then returns the
processor to the interrupted routine.

The software is as follows:
CLKINT LI R12,> 100

SBZ 3
SETO .;:-R13
RTWP

; SET 9901 BASE ADDR
; DISABLE INT3 AT 9901
; SET PREVIOUS RO=> FFFF
; RETURN TO INTERRUPTED ROUTINE

Message Routines

The remaining routines that must be included in the program are the messages at MSG 1
and MSG2. In order to program the message, a$ sign is used at the beginning of each
line and each message is terminated with a zero byte. The ASCII code for a carriage
return - line feed is ODOA16 and is included in the instruction format.

Each character must be coded with the appropriate ASCII code and placed into bytes of
memory. A typical example is shown; however, the individual character codes have not
been listed. This can be seen on the LBLA listing.

MSGI

9-56

$5MT 1/0 DEMONSTRATION ROUTINE
+>ODOA
$MODE 1 - INPUTS 0-3 SWITCH OUTPUTS
$4-7 RESPECTIVELY
+>ODOA
$MODE 2 - OUTPUTS 4-7 ARE SWITCHED SEQUENTIALLY
+>ODOA
$A Q RETURNS CONTROL TO THE TIBUG MONITOR
+>ODOA
$A CARRIAGE RETURN DURING MODE 1 OR 2
$OPERATION RETURNS THE USER TO THE
+>ODOA
$CONTROL MODE
+>ODOA
t->0000
+>ODOA
$SELECT MODE 1 , 2 or Q

+>ODOA
+>0000

9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

SYSTEM OPERATION

SYSTEM OPERATION

With program in hand, it is time to connect the hardware to prove out the complete
program. Refer to the block diagram of Figure 27.

The terminal and its cable have been previously connected to P2 of the microcomputer
module. Pl has the same power supply connections as for Chapter 3 supplying - 12V,
+ 12V, + 5V and ground. The full connections will be added to Pl to interface with Pl
on the TM990/310 1/0 expansion board. However, for now, operations will be only
with the microcomputer and the 5MT 1/0 modules. Connection to the modules is made
through the cable of Figure 4 and P4 on the microcomputer and Pl on the 5MT43
module base. There is a separate wire from the Jl connector to provide + 8 volts to the
5MT modules. This + 8 volts must supply 0.6A worst case if all the positions in the
5MT43 base are populated. This supply ground must be common with the microcomputer

module ground and isolated from the + 12 V industrial control voltage supply ground

The + 12V for the industrial control level voltages must supply 200mA. This must have
a minus terminal free of chassis ground, otherwise its case will be at ac line voltage when the
5MT I I 0 module ac power cord is connected

Light bulbs that are rated at 80 mA at 14 V de are used for the de loads. Standard 110
Vac light bulbs and sockets are used for the ac loads. A separate ac power cord is
connected to the 5MT43 base for the ac power. The industrial level power (both de and
ac) is and must be isolated from the de power for the microcomputer module and low-level logic

+ 8 V power source of the 5MT interface modules.

A summary of the parts list and power supply requirements follows:

SYSTEM p ARTS LIST

o TM990/100M-l board
o TM990/310 48 1/0 board (optional)
o 5MT43 base*
o 2 - 5MT1 l-A05L AC input modules*
o 2 - 5MT12-40AL AC output modules*
o 2 - 5MT13-D03L DC input modules*
o 2 - 5MT14-30CL DC output modules*
o 5MT interface cable-TM990/ 507
o 743 KSR terminal
o TM 990/ 503 cable assembly for Terminal
• 4 - TMS 4042-2 (or 2111-1) 256 x 4 RAM's
*In case your local distributor does not have these parts, the address from which they can be ordered is:

Industrial Controls Order Entry
MIS 12-38
34 Forrest St.
Attleboro, Mass. 02703
Phone: (617) 222-2800

9900 FAMILY SYSTEMS DESIGN 9-57

9<l

..,.9

SYSTEM OPERATION A simulated
industrial control
application

• Line-by-line assembler TM990/402-l (in two TMS 2708 EPROM's)
•Power supplies for Microcomputer and I/O Expansion (TM990/ 518)

Voltage

+5V
+12V

REG

±3%
±3%

I 1 OOM Current

l.3A
O.lA

w I 310 Module Current

-12V ±3% 0.2A

2.lA
0.lA
0.2A

o Industrial Control Level Power Supplies

Voltage

+8Vdc
+ 12Vdc
1 lOVac

REG

±5%
±5%

Current

0.6A
0.2A
lA

• 4 Toggle switches, SPST o Power cord
• 2 de lamps and sockets (14V - 80mA) • 14 and 18 AW G insulated stranded wire
• 2 ac lamps and sockets (130V - 30 W)

Equipment Hookup

Follow these steps in making the system interconnections;

9-58

Step 1-

Step2-

Step J -

JUMPERS

J15
J14
J13
Jl2
11 1 J

Jl0,9,8
J7
J6,5
J4,3,2
Jl

Verify that the power supply connections to Pl are correct for
-12V, + 12V and + 5V. Refer to Figure 3-11 or to the TM990/
lOOM user's guide Figure 2-1. Don't turn on any power supplies.
It may be desirable to make all the connections from Pl of the
TM990/ lOOM to Pl of the TM990/310 at this time. Refer to
Table 6 for these connections. Some reprogramming because of
power shutdown will be required if this is not done.

Verify that the 743 KSR terminal is connected to P2 with the
TM990/ 503 cable. AC power is supplied to the terminal with a
separate cord.

Special connections must now be made at the jumpers on the
TM990/ 100M microcomputer. The jumper positions are shown
in Chapter 3, Figures 12 and 1 J. Make sure of the following
jumper connections.

INTERCONNECTION

Disconnected
Disconnected
Disconnected
N.A.
Disconnected
N.A.
EIA position
N.A.
In 08, or 2708 Position
9902

COMMENT

Power for TM990/301
Microterminal, not
required for 743 KSR
For multiple boards
For ASR 745
For multiple boards

For multiple boards
For 2708 EPROMS
This will likely need to
be positioned

9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

Step 4 -

Step 5 -

Step 6 -

Step 7

Step 8 -

Step 9 -

Step 10-

Step 11 -

Step 12-

SYSTEM OPERATION

As mentioned previously, the RAM on the TM990/100M should be
fully populated for this example. Make sure that 4-TMS 4042-2's
have been inserted in U33, U35, U37 and U39 with the # 1 pin
towards the TMS 9900. The LBLA which is in two TMS 2708
EPROM's should have also been inserted in U43 and U45 with the
1 pin towards the TMS 9900. The higher order byte (bits 0-7)
must be in U45. It is quite difficult to insert these packages in the
sockets the first time so it must be done carefully. Rocking the
packages will help.

Install the 5MT modules in the 5MT43 base as shown in Figure 33.
Be sure modules are in the proper order. This arrangement will show
de input controlling de output, de input-ac output, ac input-de
output and ac input - ac output. Connect the wiring as shown. Be
sure to use heavy gage (14 AWG) insulated wire for the ac
connections. 18 AWG can be used for de power connections. NOTE
THAT AC LINE IS CONNECTED TO DC COMMON Two
screw connections on the base are available for each module as shown
in Figurf! 33. All connections to the 5MT modules are to the
right-hand leads when facing the terminals and Pl is on the left. Be
sure to screw down the locking screw to ensure good connections.

Connect Jl of the cable of Figure 4 to the 5MT43 base. Connect the
+ 8V lead to the power supply and its ground to the common ground
lead on J4 of the cable of Figure 4. DO NOT CONNECT THIS
GROUND TO THE DC COMMON OF THE INDUSTRIAL
CONTROL LEVEL POWER SUPPLY OF FIGURE 33.

Connect the + 12Vdc industrial power supply. Don't plug in the
1 lOVac power cord.

Turn on the + 8V and + 12V supply and verify that the de input and
output 5MT modules are connected correctly. Use J4 for test
voltages.

Plug-in the ac power cord for the 5MT modules and verify that the
ac input and output modules are interconnected correctly. The
LED's on the modules will be useful for this.

Unplug accord, turn off+ 12V and + 8V supplies.

Connect J4 of the cable from the 5MT43 base to P4 on the TM990/
lOOM module.

Turn on the power supplies for the microcomputer in this order:
- 12V, + 12V, + 5V.

9900 FAMILY SYSTEMS DESIGN 9-59

9<1

~9

SYSTEM OPERATION

+BVdc

-+ 12Vdc

L__

AC
LINE

3 PRONG PLUG

120 Vac

I
I
I

__ J

#2ACLAMP

#4 AC LAMP

-----.Ac
COMMON

___ _,

5MT13 D03L

DC INPUT
MODULE

5MT13 D03L
DC INPUT
MODULE

5MT11 A05L
AC INPUT
MODULE

5MT11 A05L
AC INPUT
MODULE

5MT14 30CL
DC OUTPUT

MODULE

5MT12 40AL

AC OUTPUT
MODULE

5MT14 30CL
DC OUTPUT

MODULE

5MT12 40AL

AC OUTPUT
MODULE

A simulated
industrial control
application

r::-
0

:::! ~
00
om
~m
..__ :::!
~ t::.,
mw
:::! _J
I- CD
0 <{
I- ()

a:
o~
I- w
()CJ)
w <{
z CD
zw
0 _J
() ::i

0 wo
(L :::!
~z
00
zw
- _J
(L <{

t- :::!
(")~

Figure 33. 5MT I I 0 Module Wiring

9-60 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

SYSTEM OPERATION

Turn on the terminal. Make sure it is "ON LINE." Step 13 -

Step 14 - Turn on the + 8V supply for the SMT modules; then the industrial
level + 12Vdc and then plug in the power cord for the llOVac.

Step 15 - Press the RESET switch on the microcomputer. All the light bulbs
will be lit since a RESET latches 1/0 pins on the microcomputer in
the "1" state.

The microcomputer system is now ready to be programmed.

LOADING THE PROGRAM

The program as it was developed will now be loaded into RAM in the microcomputer.
Instead of assembling the program by hand, the line-by-line assembler contained in
EPROM will be used. It works with the EIA terminal and the TIBUG monitor.

The LBLA is a stand alone program that assembles into object code the 69 instructions
used by the TM 990/lOOM microcomputer. To initialize the LBLA, the TIBUG
monitor must first be brought up. This is done by switching the reset switch on the TM
990/lOOM module and pressing the carriage return (CR) on the terminal. The terminal
will respond with:

TIBUG REV. A.
?

The question mark is the TIBUG prompt.

Now an R is typed to inspect/ change the WP, PC and ST registers. The LBLA
program begins at location 09E616 * so this is the value that is to be loaded into the PC.
After typing an R the terminal prints out the value of the WP. This can be changed by
typing the new value and a space or it can be left alone by typing just a space. The
terminal will then print the value of the PC. The same procedure as for the WP applies
except that ST is printed if a space is typed. A CR after the WP or PC value will cause
the TIBUG prompt to be printed, or a space or CR after the ST is printed will do the
same.

Loading 09E616 into the PC looks like this:
?R [CR]
W=FFCB [SP]
P=D1A6 D9E6 [CR]
?

Once the PC has been loaded, executing the program will initialize the LBLA. Pressing
the E key accomplishes this. The LBLA responds with an address. That address can be 9<111
changed to the starting address of the program by typing a slash (/) and the new address
and a CR.

?E
FEDD
FCDD

/FCDD [CR]

*This value may change depending on the version of LBLA. Early versions had 09E816 as entry point.

9900 FAMILY SYSTEMS DESIGN 9-61

SYSTEM OPERATION A simulated
industrial control
application

The program can then be entered using the machine instructions. The LBLA accepts
assembly language inputs from a terminal. As each instruction is input, the assembler
interprets it, places the resulting machine code in an absolute address, and prints the
machine code (in hexadecimal) next to its absolute address as shown in Figure 34.

MEMORY ADDRESS OF ASSEMBLED MACHINE CODE

!
MACHINE CODE ASSEMBLED BY ASSEMBLER

f!_
INSTRUCTION MNEMONIC

ONE SPACE (MAXIMUM)

OPERANDS

1 AT LEAST ONE SPACE(MINIMUM)
y ,-COMMENTS

FEDD 02EO LWPI >FEBO : SET UP WORKSPACE ADDRESS
FE02 FEBO
FE04 0200 LI RO, 10 ; SET UP COUNTER VALUE
FEDS
FEDS
FEOA
FEOC
FEDE
FE10
FE12
FE14
FE16
FE18

OOOA
0201
FEAO
0202
FEBO
CCB1
0600
1301
1DFC

LI R1,>FEAO

LI R2,>FEBO

MOV -:~R1 +.~~R2+

DEC RD
JEQ >FE18
JMP >FE10

ADDRESS OF VALUES IN R1

ADDRESS OF STORAGE AREA IN R2

MOVE VALUES TO STORAGE AREA
DECREMENT COUNTER
EXIT IF COUNTER=ZERO
LOOP BACK UNTIL 10 VALUES MOVED

Figure 34. LELA Format

Only one space is used between the mnemonic and the operand. If comments are used, use at
least one space between the operand and the start of the comment. If no comment is used
complete the instruction with a space and a carriage return. If a comment is used, only a
carriage· return is required.

Note that to load a hex value directly into a memory location a (+) is used. (see Start of
Program, Table 4.) Also a string of characters is preceded by a dollar sign ($) and
terminated with two carriage returns-CR (Example shown under-Message Routines).
To change the address location being loaded, type a slash (/) and the address desired. To
exit from the LBLA and return to the TIBUG monitor, press the ESC key on the
terminal. The terminal will then give the TIBUG prompt-a question mark.

Labels cannot be used with the LBLA. However, in the program of Table 4, the left side
is the assembled program with LBLA and the right side is for a comparison to the labels
and the comments that were previously used on each of the pieces of the program as it
was developed on the preceding pages.

Remember to press the ESC when the last program address location is reached. This
returns control to the TIBUG monitor.

9-62 9900 FAMILY SYSTEMS DESIGN

A simulated SYSTEM OPERATION
industrial control
application

'1<! 't .:!J

Table 4. Final Program

LBLA Labels Comments
?R
W=FFBO
P=0168 09E6
?E
FOOD /FCOO
FCOO 0929 +>929 COUNT SET UP 9901 CLOCK
FC02 0100 +>100 BASE 1 SET UP 9901 CRU BASE
FC04 0120 +>120 BASE 2 SET UP 9901 1/0 BASE
FC06 02EO LWPI >FF20 START SET WP AT FF20
FC08 FF20
FCOA 0201 LI R1 .>1 EDD SBZ OP CODE TO R1
FCOC 1EDO
FCOE 0202 LI R2,>1DDO SBO OP CODE TO R2
FC10 1000
FC12 0203 LI R3,> 1FOO TB OP CODE TO R3
FC14 1FOO
FC16 2FAO XOP @>FCF2,14 PRINT HEADER @MSG1
FC18 FCF2
FC1A 2FAO XOP @>FE00,14 CO MODE ASK FOR MODE WITH MSG2
FC1C FEDD
FC1E 2EC7 XOP R7,11 READ CHAR FROM TER TO R7
FC20 0287 Cl R7,>3100 IS CHAR A 1?
FC22 3100
FC24 1308 JEQ >FC36 IF YES GO TO MODE 1
FC26 0287 Cl R7,>3200 IS CHAR A 2?
FC28 3200
FC2A 1325 JEQ >FC76 IF YES GO TO MODE 2
FC2C 0287 Cl R7,>5100 IS CHAR A Q?
FC2E 5100
FC30 16F4 JNE >FC1A IF NO KEEP LOOPING
FC32 0460 B @>0080 IF YES GO TO TIBUG
FC34 0080
FC36 0360 RSET INPUT1 PUT 9901 INTO INPUT MODE
FC38 0300 LIMI 4 ENABLE 9900 INT1-INT4
FC3A 0004
FC3C 020C LI R12,>0080 LOAD R12 W /9902 BASE ADDR
FC3E 0080
FC40 3407 STCR R7,0 CLEAR 9902 RCV BUFFER
FC42 1012 SBO 18 ENABLE 9902 RCV INT
FC44 C320 MDV @>FC02,R12 SET 9901 BASE ADDR TO > 100
FC46 FC02
FC48 1004 SBO 4 ENABLE 9902 INT AT 9901
FC4A C320 MDV @>FC04,R12 SET 9901 BASE ADDR TO > 120
FC4C FC04
FC4E 04C4 CLR R4 INIT1 R4 CONTAINS CRU BIT TO BE TESTED
FC50 C144 MDV R4,R5 INDEX1 MOVE CRU BIT TO R5
FC52 E103 soc R3,R4 R4 CONTAINS TB INST [R3]
FC54 0484 x R4 EXECUTE TB SPECIFIED BY R4
FC56 130A JEQ >FC6C IF CRU BIT= 1 GO TO HIGH 9-<i
FC58 C105 MDV R5,R4 LOW RELOAD CRU BIT INTO R4
FC5A 0225 Al R5,>4 SHIFT CRU BIT OVER BY 4
FC5C 0004
FC5E E141 soc R1 ,R5 R5 CONTAINS SBZ OP CODE [R1]
FC60 0485 x R5 XECUTE EXECUTE OP CODE SPECIFIED BY R5
FC62 0584 INC R4 INCREMENT TO NEXT CRU BIT
FC64 0284 Cl R4,>3 IS CRU BIT > 3?
FC66 0003

9900 FAMILY SYSTEMS DESIGN 9-63

SYSTEM OPERATION A simulated
industrial control
application

FC68 15F2 JGT >FC4E IF YES REINITIALIZE
FCBA 1DF2 JMP >FC50 START TESTING NEXT CRU BIT
FCBC C105 MDV R5,R4 HIGH RELOAD CRU BIT INTO R4
FCBE 0225 Al R5,>4 SHIFT CRU BIT OVER 4
FC70 0004
FC72 E142 soc R2,R5 R5 CONTAINS SBO OP CODE [R2]
FC74 10F5 JMP >FC60 GO EXECUTE SBO INST
FC76 0360 RSET BLINKA SET 9901 TO INPUT MODE
FC78 0300 LIMI 4 ENABLE 9900 INT1-INT4
FC7A 0004
FC7C 020C LI R12,>80 SET UP 9902 BASE ADDR
FC7E 0080
FC80 3407 STCR R7,0 CLEAR 9902 RCV BUFFER
FC82 1D12 SBO 18 ENABLE 9902 RCV INT
FC84 C320 MDV @>FC04,R12 SET 9901 BASE ADDR = > 120
FC86 FC04
FC88 0204 LI R4.>5 INT2 R4 CONTAINS CRU BIT POS 5
FC8A 0005
FC8C C144 MDV R4,R5 LOOP1 MDV POS 5 TO R5
FC8E E141 soc R1 ,R5 R5 CONTAINS SBZ OP CODE [R1]
FC90 0485 x R5 EXECUTE SBZ SPECIFIED BY [R5]
FC92 0584 INC R4 R4=R4+1
FC94 0284 Cl R4,>8 HAS CRU BIT 7 BEEN SET=D?
FC96 0008
FC98 16F9 JNE >FC8C IF NO GO TO LOOP1
FC9A 0204 LI R4,>4 SET OUTPUT BASE BIT
FC9C 0004
FC9E 0206 LI RB.>4 INDEX2 OVERALL LOOP COUNT= 1 OOMS
FCAO 0004
FCA2 C320 MDV @>FC02,R12 TIMER SET CRU BASE ADDR OF 9901 = > 1 DO
FCA4 FC02
FCAB 04CO CLR RO INITIALIZE INT3 INDICATOR
FCA8 33EO LDCR @>FC00,15 LOAD TIMER AND START COUNT
FCAA FCOO
FCAC 1EOO SBZ 0 9901 TO INTERRUPT MODE
FCAE 1D03 SBO 3 ENABLE INT3 AT 9901
FCBO 1D04 SBO 4 ENABLE 9902 INT AT 9901
FCB2 0280 Cl RD.>FFFF LOOP2 HAS INT3 OCCURRED?
FCB4 FFFF
FCBB 16FD JNE >FCB2 IF NO GO TO LOOP2
FCB8 0606 DEC RB R6=R6-1
FCBA 16F3 JNE >FCA2 IF R6=0 GO TO TIMER
FCBC C320 MDV @>FC04,R12 SET 9901 BASE ADDR = > 120
FCBE FC04
FCCO C144 MDV R4,R5 MDV CRU BIT TO R5
FCC2 E141 soc R1 ,R5 [R5] = SBZ [R5]
FCC4 0485 x R5 EXECUTE SBZ SPECIFIED BY [R5]
FCC6 0584 INC R4 R4=R4+1
FCC8 0284 Cl R4.>9 IS R4=9?
FCCA 0009
FCCC 13D4 JEQ >FC76 IF YES RESTART SEQUENCE

... 9 FCCE C144 MDV R4,R5 R4=R5
FCDO E142 soc R2,R5 [R5] = SBO [R5]
FCD2 0485 x R5 EXECUTE SBO SPECIFIED BY [R5]
FCD4 1CJE4 J~v1P >FC9E RESTART T!~v~!NG CYCLE AT !NDEX2
FCDB C320 MDV @>FC02,R12 INTREC SET 9901 BASE ADDR = > 100
FCD8 FC02
FCDA 1E03 SBZ 3 DISABLE INT3 AT 9901
FCDC 091C SRL R12,1 SET BASE ADDR = > 80 FOR 9902
FCDE 1E12 SBZ 18 DISABLE 9902 INT

9-64 9900 FAMILY SYSTEMS DESIGN

A simulated SYSTEM OPERATION
industrial control
application

FCEO 3407 STCR R7,0 READ 9902 RCV BUFFER [CLEARS]
FCE2 020E LI R14,>FC1A LOAD ADDR OF COMODE INTO PC
FCE4 FC1A
FCE6 0380 RTWP RETURN TO 5MT ROUTINE
FCE8 020C LI R12,>100 CLKINT SFT 9901 BASE ADDR
FCEA 0100
FCEC 1E03 SBZ 3 DISABLE INT3 AT 9901
FCEE 071D SETO -:~R13 SET PREVIOUS RO=>FFFF
FCFO 0380 RTWP RETURN TO INTERRUPTED ROUTINE
FCF2 /FF88
FF88 0460 B @>FCE8 GO TO INT3 SERVICE ROUTINE @CLKINT
FF8A FCE8
FFBC /FFAC
FFAC 0460 B @>FCD6 GO TO INT4 SERVICE ROUTINE @INTREC
FFAE FCD6
FFBO /FCF2
FCF2 354D $5MT 1/0 DEMONSTRATION ROUTINE
FCF4 5420
FCF6 492F
FCFB 4F20
FCFA 4445
FCFC 4D4F
FCFE 4E53
FOOD 5452
F002 4154
FD04 494F
F006 4E20
FOOS 524F
FOOA 5554
FOOC 494E
FOOE 4520
FD10 ODOA +>ODOA
FD12 4D4F $MODE 1 - INPUTS 0-3 SWITCH OUTPUTS
F014 4445
FD16 2031
FD18 202D
F01A 2049
F01 C 4E50
FD1E 5554
FD20 5320
F022 302D
FD24 3320
FD26 5357
FD28 4954
F02A 4348
FD2C 204F
F02E 5554
FD30 5055
F032 5453
FD34 2020
F036 342D $4-7 RESPECTIVELY.
F038 3720 94
F03A 5245
FD3C 5350
FD3E 4543
FD40 5449
F042 5645
FD44 4C59
FD46 2E20
FD48 ODOA +>ODOA

9900 FAMILY SYSTEMS DESIGN 9-65

SYSTEM OPERATION

FD4A 404F $MODE 2 - OUTPUTS 4-7 ARE SWITCHED SEQUENTIALLY.
FD4C 4445
FD4E 2032
FD50 2020
FD52 "204F
FD54 5554
FD56 5055
FD58 5453
FD5A 2034
FD5C 2037
FD5E 2041
FDBO 5245
FD62 2053
FD64 5749
FD66 5443
FOBS 4845
FDBA 4420
FDBC 5345
FDBE 5155
FD70 454E
FD72 5449
FD74 414C
FD76 4C59
FD78 2E20
FD7A ODOA +>ODOA
FD7C 4120 $A Q RETURNS CONTROL TO THE TIBUG MONITOR
FD7E 5120
FDBO 5245
FD82 5455
FD84 524E
FDBB 5320
FOBS 434F
FDBA 4E54
FDBC 524F
FDBE 4C20
FD90 544F
FD92 2054
FD94 4845
FD96 2054
FD98 4942
FD9A 5547
FD9C 2040
FD9E 4F4E
FDAO 4954
FDA2 4F52
FDA:4 ODOA +>ODOA
FDA6 4120 $A CARRIAGE RETURN DURING MODE 1 OR 2 OPERATION
FDAB 4341
FDAA 5252
FDAC 4941
FDAE 4745
FDBO 2052
FDB2 4554
FDB4 5552
FOB6 4E20
FOBS 4455
FDBA 5249
FDBC 4E47
FDBE 2040

A simulated
Industrial control
application

9-66 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

FOCD
FOC2
FOC4
FOCB
FOCS
FOCA
FOCC
FDCE
FOOD
FOD2
FDD4
FODB
FOOS
FODA
FODC
FODE
FOED
FOE2
FDE4
FOEB
FOES
FDEA
FOEC
FDEE
FOFD
FDF2
FOF4
FDFB
FDFS
FOFA
FOFC
FOFE
FEDD
FED2
FED4
FEDB
FEDS
FEDA
FEDC
FEDE
FE10
FE12
FE14
FE16
FE1S
FE1A
FE1C

4F44
452D
312D
4F52
2D32
2D4F
5D45
5241
5449
4F4E
5245
5455
524E
532D
544S
452D
5553
4552
2D54
4F2D
544S
452D
DDDA
434F
4E54
524F
4C2D
404F
4445
2E2D
DDDA
DDDD
DDDA
5345
4C45
4354
2D4D
4F44
452D
312C
2D32
2D4F
522D
512D
ODDA
DODO

$RETURNS THE USER TO THE

+>DDDA
$CONTROL MODE.

+>DDDA,
+>0000
+>DDDA
$SELECT MODE 1 I 2 OR Q

+>DDDA
+>ODDD

9900 FAMILY SYSTEMS DESIGN

SYSTEM OPERATION

9~

9-67

·9

I/O EXPANSION
WITH THE TM990/310

RUNNING THE PROGRAM

A simulated
industrial control
application

To execute the program, the PC needs to be set to the starting address. This is done by
typing an R to enter the inspect/change mode of TIBUG. The WP will be printed. A
space will give the PC and here the new PC should be entered. A CR will return to
TIBUG and the prompt will be given. Typing an E will cause the program to begin
executing. The following is an example of this:

?R
W=FFFE (SP]
P = 006C FCOO (CR]
?E

The program will begin by requesting a mode of operation from the user. Typing a "1"
will get mode 1 and the state of outputs can be changed by changing the input toggle
switches. Pressing a key will cause a return to the command mode. Pressing a 2, switches
to mode 2 and the light sequence. Pressing a key returns to the command mode.
Pressing a Q on the terminal returns the system to the TIBUG and specific address
locations could be inspected for contents, etc.

Debugging

Because of the hard copy given by the terminal, looking for mistakes is made easier. If
the program is stuck in a loop, the reset switch on the TM990/ lOOM board can be
switched. When in the LBLA use a slash(/) and a new address to change the address.
When in TIBUG use the memory inspect/ cha.nge (M) command to change th~ address.
The TM990/100M user's guide gives the TIBUG commands and the TM990/402
LBLA user's guide gives the LBLA commands .. These are also given in Chapter 7.

I/O EXPANSION WITH THE TM990/310

What remains now is to show the I/O expansion through the use of the
TM990/310 module. As shown in Figure 35, there are three additional 9901 'son
the /310 module. The 9901's signals are connected to edge connections P2, P3, and P4,
respectively, and are shown in Table 5.

All of the pins on the connector to Pl on the 900/lOOM-1 microcomputer module must
now be connected to Pl on the TM990/310 module (if not made previously). These are
shown in Table 6. Such a power down requires the program to be re-entered.

9-68 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

P1

I/O EXPANSION
WITH THE TM990/310

Table 5. 9901 Pin-Outs on TM990/ 310.

P2, P J, P4 Pin Number Signature

20 PO
22 Pl
14 P2
16 P3
18 P4
10 PS
12 P6
24 INT15/P7
26 INT14/P8
28 INT13/P9
30 INT12/P10
32 INTll/Pll
34 INT10/P12
36 INT9/P13
38 INT8/Pl4
40 INT7 /Pl5

6 Neg. Edge Triggered INTS
8 Pos. Edge Triggered INT6
1 + 12V
2 -12V
3 +sv
4 Spare

All remaining pins Ground

P4 P3 P2

Figure JS. TM 9901310110 Expansion Module

9900 FAMILY SYSTEMS DESIGN 9-69

9 ...

9

1/0 EXPANSION
WITH THE TM990/310

P1
PIN SIGNAL

33 DO
34 01
35 02
36 03
37 04
38 05
39 06
40 07
41 08
42 09
43 010
44 011
45 012
46 013
47 014
48 015
57 AO
58 A1
59 A2
60 A3
61 A4
62 A5
63 A6
64 A?
65 A8
66 A9
67 A10
68 A 11
69 A12
70 A13

9-70

Table 6. P 1 Connections

P1
PIN SIGNAL

71 A14
72 A15
22 ¢1
24 <1>3
92 HOLD
86 HOLDA
82 OBIN
26 CLK
80 MEMEN
84 MEMCYC
78 WE
90 READY
87 CRUCLK
30 CRUOUT
29 CRUIN
19 IAO
94 PRES
88 IORST
16 INT1
13 INT2
15 INT3
18 INT4
17 INT5
20 INT6
6 INT?
5 INT8
8 INT9
7 INT10
10 INT11
9 INT12

P1
PIN

12
11
14
28
3
4

97
98
75
76
73
74
1
2

21
23
25
27
31
77
79
81
83
85
89
91
99
100
93

A simulated
industrial control
application

SIGNAL

--
INT13
INT14
INT15
EXTCLK
+5V
+5V
+5V
+5V
+ 12V
+ 12V
-12V
-12V
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GNG
GND
GND
GND
GND
GND
RESTART

9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

I/O EXPANSION
WITH THE TM990/310

USING THE TM990/310 BOARD

The TMS 9901s on the TM990/310 board are accessed in the same manner as the
TMS9901 on the TM990/100M board except the CRU base addresses differ. These
hardware base addresses are user selectable by a DIP switch that is on the TM990/310
board. The position of the switch and the corresponding addresses are given in Figure 36.
The first column of addresses are the actual CRU hardware addresses and the second
column is the software address that is to be loaded into workspace register 12 to access the
appropriate TMS 9901. The addresses shown correspond to the first TMS 9901 on the
TM990/310 board and the positions on the DIP switch. The addresses to be loaded into
workspace register 12 for the second TMS9901 are obtained by adding 8016 to the
addresses of the first TMS 9901. The addresses for the third TMS 9901 are obtained by
adding 8016 to the addresses of the second TMS 9901 (or 10016 to the addresses of the first
TMS 9901). For example, if Sl was set to.binary 4, workspace register 12 would be loaded
with: 080016 to access the first TMS 9901, 088016 to access the second TMS 9901, or
090016 to access the third TMS 9901. The first TMS 9901 corresponds to the P2 pins, the
second to the P3 pins, and the third to the P4 pins.

Switch all S 1 positions on so the hardware base address 0100 is used for the I 310 to
correspond to the example in Figure 11. The third 9901 will be used so the software base
address to be loaded in the program will be 030016 and the I/O software base address will
be 032016 • The connection to the SMT 110 modules will be thru P4 on the TM990/310
as shown in Figures 27 and 35. This connection should be made at this time.

CHANGING THE PROGRAM

To change the program, the software address at the labels BASE 1 and BASE 2 needs to be
changed. In the assembled program, these are at FC02 and FC04. The TIBUG monitor
mode is obtained. A memory inspect/ change (M) command to address FC02 will allow a
change of the contents at that address to 030016 • A space obtains address FC04 and its
contents can be changed to 032016 • However, when this change is made, the 9901 in the
TM990/ lOOM module no longer is enabled to receive the keyboard interrupt from the
9902 and, thus, the mode operation cannot be interrupted. Additional program changes
must be made at FC4416 , FCA216 , and FCD616 to continue to enable the 9901 INT4 in
the module.

More sophisticated program changes could be made but one pattern that can be used for
such changes is as follows:

1. (CR)
2. R
3. [SP]
4. 09E6 [CR)
5. E
6. /FC44 (SP) [CR]
7. LI R12,>0100 [SP) (CR)

9900 FAMILY SYSTEMS DESIGN

CARRIAGE RETURN TO MONITOR
OBTAIN WORKSPACE POINTER
OBTAIN PROGRAM COUNTER
SET PC FOR LBLA
EXECUTE LBLA
GO TO FC44
LOAD SOFTWARE BASE ADDRESS FOR
9901 ON MODULE

9-71

9...S

I/0 EXPANSION
WITH THE TM990/310

2 3 4

A simulated
industrial control
application

Up indicates on ~u u u ~~ S1

Down indicates off

S1 Switch Settings Binary TM990/310 Module Register 12
1 2 3 4 Equal CRU Base Address Contents (Hex)

(Hex)

ON ON ON ON 0 0100 0200
ON ON ON OFF 1 01CO 0380
ON ON OFF ON 2 0280 0500
ON ON OFF OFF 3 0340 0680
ON OFF ON ON 4 0400 0800
ON OFF ON OFF 5 04CO 0980
ON OFF OFF ON 6 0580 OBOO
ON OFF OFF OFF 7 0640 OC80
OFF ON ON ON 8 0700 OEOO
OFF ON ON OFF 9 07CO OF80
OFF ON OFF ON A 0880 1100
OFF ON OFF OFF B 0940 1280
OFF OFF ON ON c OAOO 1400
OFF OFF ON OFF 0 OACO 1580
OFF OFF OFF ON E NOT USED NOT USED
OFF OFF OFF OFF F NOT USED NOT USED

Figure 36. Programming Base Address of TM 9901310 Module

9-72 9900 FAMILY SYSTEMS DESIGN

A simulated
industrial control
application

FUTURE EXTENSIONS

On the terminal the routine looks like this:
Q

?R
W=FF2D
P=FC1 A D9E6
?E
FEDD /FC44
FC44 D2DC LI R12,> 1 DD
FC46 D1DD
FC48

The same program change must be made at FCA2 and FCD6. When these are made,
return to TIBUG by pressing the ESC key. The memory location just changed can be
checked with the M command and the memory location.

To run the program, press the R key (it gives the WP) then (SP) to get the PC. Change
the PC to FC0016 and execute the program by pressing (CR) and the E key.

Incidentally, after these program changes, the only thing that needs to be done to change
the 5MT 1/0 to the microcomputer module connector P4 is to change the original
software base addresses at FC02 = > 0100 and FC04 = > 0120. No other changes need be
made.

FUTURE EXTENSIONS

Now that the system is available there are endless variations that can be accomplished.
Here are some that come to mind immediately:

1. Change the time interval on Mode 2 by:
a. Changing the value in R6
b. Changing the value loaded into the clock register

2. Add more modules to the 5MT43 and program a different input-output relationship.

3. Reprogram so that the program itself shifts the SMT I/Oto the /310 module if a /310
is present. Otherwise, the interface would remain on P4 of the microcomputer module.

4. Expand to more modules thru the TM990/310 modules.

5. Investigate how interrupts come through the TM990/310 module to the processor.
There are some special linkages that must be connected on the I 310 module to choose
the interrupts that will come through the /310 to the processor.

9900 FAMILY SYSTEMS DESIGN 9-73

~9

CONCLUSION

CONCLUSION

A simulated
industrial control
application

It has been quite an experience starting at the first encounter and proceeding to
the point where a microcomputer system is up and running and capable of being
programmed to sense and control real-world industrial level energy. Components are
available to easily apply the systems to many varieties of problem solutions.

Continue the learning process by finding real things to do with the system. Build on it to
use it to its full capability and then add to it or replace it with a larger system to expand
the applications. And remember, all the software that has been learned will be applicable
to the new system applications, to different 9900 family members, and to new family
members to be added in the future. Common compatible software is a real advantage.
It's built into the 9900 family, so build on it. Good Luck.

9-74 9900 FAMILY SYSTEMS DESIGN

A Low Cost
Data Terminal

INTRODUCTION/
MICROCOMPUTER ARCHITECTURES

ABSTRACT

A Low Cost
Data Terminal

The architecture of the TMS 9940 Microcomputer is briefly reviewed. The
microcomputer portion of a data terminal which currently employs the TMS 8080A
Microprocessor is described. An equivalent design, which significantly reduces the chip
count by using the TMS 9940 Microcomputer, is discussed in detail. Software
comparisons between the two systems are made. A cost analysis of the two designs is
discussed.

INTRODUCTION

As the complexity of LSI (large scale integration) electronics continues to increase, the
system designer gains more and more freedom in designing low cost systems. One
example of this capability is the Texas Instruments (Tl) Model 745 Electronic Data
Terminal, first introduced by TI in 197 5. The Model 7 45 is a self-contained compact,
telecommunications terminal which uses the thermal printing technique to achieve silent
operation. The Model 745 features a 58 key, TTY33-compatible modular keyboard
with integral numeric keypad, carrier detect indicator, two-key rollover, and key
debounce circuitry. The Model 745 is capable of operating in full or half duplex modes
at 10 or 30 characters per second, using a character set and code compatible with the
American Standard Code for Information Interchange (ASCII).

The particular design of the Model 7 45 Data Terminal was made possible by the use of a
microcomputer system as its controller. The Model 745 incorporates a TMS 8080A
Microprocessor as the CPU of the Microcomputer. The purpose of this paper is to show
how the Model 745 Terminal could be simplified even further by utilizing the newest
addition to the 990/9900 Computer family: the TMS 9940 Microcomputer.

MICROCOMPUTER ARCHITECTURES

TMS 8080A MICROPROCESSOR

The TMS 8080A is an eight-bit general purpose Microprocessor (Figure 1). The
TMS 8080A chip contains seven registers and has a 7 8-instruction repertoire. The chip
requires three power supplies l + 12, ±5Vdc) and accepts a two-phase high-level clock
input. The TMS 8080A features 64K byte addressing of off-chip memory, and is
packaged in a 40-pin package.

9-76 9900 FAMILY SYSTEMS DESIGN

A Low Cost
Data Terminal

~
w Cll
a: ::>
cal
c
ct

....
c~
u a:
al a:

0
u

a:
w a:
Cw

.... a:
zO
ct
.... ct
Cll a: zw oz uw

Cl

a: w
0 Cll

J: t; u:
Cl w
- a: ::c

a:
w a:
Cw

MICROCOMPUTER
ARCHITECTURE

a:
w

> Cll

8
a:

a: w
c;> ~ =
:: Cl ow
.... a:

- a: a: w
w
.... z
Zw
w:::i'
:::!' w
w a:
a: u
Uw
~o

Figure 1. TMS 8080A Functional Block Diagram

9900 FAMILY SYSTEMS DESIGN 9-77

9

MICROCOMPUTER
ARCHITECTURE

TMS 9940 MICROCOMPUTER

A Low Cost
Data Terminal

The TMS 9940 is a 16-bit general purpose, single-chip microcomputer (Figure 2).
The TMS 9940 contains 2K bytes of ROM (or EPROM) and 128 bytes of RAM, along
with a programmable timer/event counter. The 9940 is software-compatible with the
990/9900 family of microprocessors/minicomputers, and executes 68 instructions. The
TMS 9940 requires a single 5-volt power supply and incorporates an (external) crystal
controlled oscillator on the chip. The circuit has 32 bits of general purpose 1/0
(expandable to 256 bits), and is housed in a 40-pin package.

(!>
z

~ ~ { PE a: c(

~ 8 PROG

cc
~

9-78

+5V

MEMORY

ROM: 2kx8

RAM: 128><8

+5V
5MHz

D

--- t/0 LINES

,___ _____~ CRU
________ __, ADDRESS

Figure 2. 1MS 9940 Functional Block Diagram

9900 FAMILY SYSTEMS DESIGN

A Low Cost
Data Terminal

HARDWARE DESIGN

HARDWARE DESIGN

A functional block diagram of the Model 745 Data Terminal is shown in Figure 3. The
control electronics monitor all terminal inputs and generate all necessary timing and
control signals to effect data transfers, cause printhead and paper motion, and create
printable characters through the thermal printhead. Each block of the diagram is
discussed separately below.

EIA INTERFACE

LINE FEED
DRIVE

BELL DRIVE

t------------------+t MECHANISM

LINE FEED

BELL

CONTROL DRIVE MECHANISM

ELECTRONICS ~--------------------------t

PRINTHEAD_ ___________ _, DRIVE ---M PRINTHEAD

KEYBOARD

Figure 3. Model 745 Data Terminal Functional Block Diagram

9900 FAMILY SYSTEMS DESIGN 9-79

HARDWARE DESIGN

KEYBOARD

A Low Cost
Data Terminal

The Model 745 keyboard is a TTY33-compatible, alphanumeric keyboard with an
integral numeric keypad. The keyboard is equipped with 54 single-action keys, four
alternate action switches, and an indicator lamp which signals that the data carrier signal
is being received by the terminal. The control electronics must generate control signals
to scan the keyboard and debounce key switch depressions. When a key depression is
detected during a scan, the character is encoded and the appropriate action is taken by
the terminal. Each scan is total so as to detect possible multiple key depressions. When
simultaneous depressions are detected during a scan, neither key is acted upon. This
scanning/ de bounce technique effects a two-key rollover with lockout.

PRINTHEAD

The printhead consists of a five by seven dot matrix of 35 heating elements (Figure 4)
mounted on a monolithic chip. The chip is mounted on a heatsink, and is connected to
the printhead drive electronics through a flexible ribbon cable. Upon receipt of a
character from the keyboard or the communications line, the control electronics must
generate the appropriate control signals to form the selected character utilizing the five
by seven dot matrix format. The PRINT signal is switched on; then the matrix data is
transferred to the printhead one column at a time. Each of the 35 heating elements on
the printhead contains an SCR which controls the heating current. When both X and Y
inputs are positive to a given element, the SCR energizes and remains on (approximately
10 msec) until PRINT is switched off.

The X and Y address drivers are implemented on two SN98614 linear integrated
circuits, each of which consists of six driver circuits. Each driver circuit has a low power
TTL-AND input stage and a totem-pole, power transistor output stage. The drivers are
enabled by the signal LDPRHD.

PRINTHEAD LIFT

The printhead is lifted to relieve pressure upon the paper during line feed and carriage
return operations. The control electronics must generate a signal (LFTHD) to control
the solenoid which lifts the printhead.

MECHANISM

Horizontal movement of the printhead is controlled by a three-phase 15-degree stepping
motor. An optical sensor is mounted on the motor shaft to provide feedback for the

., 9 control of stepping motion during printing and slew motion during carriage return. The
print/step cycle operates synchronously up to 35 characters per second. The control
electronics must output five signals to control the motor. The STEP and FAST signals
are used to control the current in the motor windings; and PHA, PHB, and PHC are
drive signals for the three motor phases. The mechanism drive electronics converts these
TTL logic level signals into the closed loop controller de current required by the motor.

9-80 9900 FAMILY SYSTEMS DESIGN

A Low Cost
Data Terminal

HARDWARE DESIGN

The optical sensor provides data on motor position so that the control electronics
"know" when to apply braking to change phases, or to make other decisions concerning
motion of the printhead carriage. The sensor consists of a 24-position slotted.wheel
which interrupts a light path between an IR emitting diode and a photosensitive
transistor. The sensor issues pulses to the control electronics as the slots interrupt the
light path.

BELL

A buzzer (a piezoelectric disc) produces an audible signal at a nominal frequency of 3.2
kHz. Upon receipt of the BEL character from the keyboard or communications line, the
control electronics must generate a timed signal (250 ± 25 msec) to produce the sound.

ROWS

COLUMNS

MATRIX
ADDRESS

LINES

YD7

YDS

YD5

YD4

YD3

YD2

YD1

XD1

XD2

XD3

XD4

XD5

J

TEMPERA TU
COMPENSATI

DIODE

RE
NG

c'=! r--
c
E

B

N ote

This view sh ows the printhead

the paper (from

e of printhead).

as it rests on

heatsink sid

Figure 4. Printhead Matrix Address Lines

9900 FAMILY SYSTEMS DESIGN 9-81

9 ...

HARDWARE DESIGN

LINE FEED

A Low Cost
Data Terminal

Vertical movement of the paper is controlled by the line feed solenoid which is
mechanically coupled to a rachet mechanism. To advance the paper one line, the control
electronics must lift the printhead and output a timed signal (15 msec) followed by an off
period of 16.8 msec to the line feed solenoid.

EIA lNTERF ACE

The control electronics must transmit and receive asynchronous serial data in accord
with ANSI Standard for Character Structure and Parity Sense, X3 .16-1966 and ANSI
Standard/or Bit Sequence, X3.15-1967. The TTL-level signals RCVD and XD are
converted to standard EIA RS-232-C levels in the EIA interface.

CONTROL ELECTRONICS

The control electronics function is performed by an interrupt driven, stored program
microcomputer. As aforementioned the system requirements for the microcomputer 1/0
consist of:

Keyboard:
Printhead:
Mechanism:
Bell:
Linefeed:
EIA Interface:

Matrix scan lines
Print data (12),LDPRHD,PRINT,LFTHD
Step,FAST,PHA,PHB,PHC,SENSOR
BELL
LNFD
RCVD,XD

The microcomputer must generate these signals in the specified times and sequences to
control the system.

TMS 8080A MICROCOMPUTER SYSTEM

A schematic of the microcomputer design using the TMS 8080A Microprocessor is
shown in Figure 5. The complete design requires 1 7 integrated circuits, 41 resistors,
one crystal, and one capacitor. The memory consists of 2K bytes of ROM (two TMS
4700's) and 64 bytes of RAM (one TMS 4036). The TMS 5501 is an 8080A peripheral
I/O controller which contains a universal asynchronous receiver/transmitter,
programmable timers, interrupt prioritization and control, an eight-bit input port, and an
eight-bit output port. The eight-bit output port is expanded by using TTL components
(7406, 74174, 74175) to provide the necessary number of direct outputs for the
keyboard and latched outputs for the static outputs. The input port is expanded using 2-
to-1 multiplexers (74157) to permit elimination of diodes from the keyboard matrix.
Data is sent to the printhead over 12 bits of the address bus by loading the data into the
HL registers, and then executing a dummy MOVM instruction while the 74109 JK flip
flop outputs the LDPRHD strobe signal. The 74S138, 3-to-8 decoder generates the
required chip selects for the various components. The SENSOR input feeds into the
TMS 5501 interrupt logic to interface to the TMS 8080A.

9-82 9900 FAMILY SYSTEMS DESIGN

'° CHIP

I
Cl>

'° 0 COUNT ~b 0

'Tl -I :e
;;;.. ~o
3'.: 41 RESISTORS TMS 8080A 1 3 0

F I l -·en
1 CAPACITOR TIM 8224 1 :l -

-< ~
Cfl 1 CRYSTAL TMS 4700 2
-<
Cfl TMS 4036 ...,
tTl TMS 5501

3'.:

rA ~
--· ... I SYNC~ K '109 I LOAD 745138 1

Cfl ROM3- <,)l CK PRINTHEAD
t:l 74109 1 '138

tTl 7406 3 CTRL1-
~ CS1-Cfl

() ~ 74157 2
z ~· 74174 ;::::

~ 74175
. I I I p I I ' CS2-

$Jl 7432 I

~
7404 1 16 R/W 12

TOTAL 17
PRINTHEAD
DATA

V:i '06

~ 8
Oo '174 l===i MOTOR

~ 8224 ..._________ CONTROL

~
vcc

c-i·

~

1 I I I I Ddu~
I I " I I Us I~ C') z p PRINTHEAD

c RsT I 'a '175 LINEFEED

~ BELL
;::::
~ I WAIT ::c ~ '06

~ - [>o >
"' -
~ READY ~
~ J t)

Ii('109

~ STSB
CK

KEYBOARD ~
tr:l
t)
tr:l r:n
~

~I e 0
z

'° IA

FIRMWARE DESIGN

TMS 9940 MICROCOMPUTER SYSTEM

A Low Cost
Data Terminal

A schematic of the microcomputer design using the TMS 9940 Microcomputer is shown
in Figure 6. The complete design requires two integrated circuits, 18 resistors, one
crystal, one capacitor and 16 diodes. The internal memory of the TMS 9940 provides
2K bytes of ROM and 128 bytes of RAM. The TMS 9902 Asynchronous
Communications Controller is a TMS 9900-family peripheral which contains a universal
asynchronous receiver/transmitter and a programmable timer. The 32 I/O lines
provided by the TMS 9940 interface to all the I/O functions with 10 lines software
multiplexed between the keyboard scan, TMS 9902 control, and printhead data. When
Pl 4 through P20 are in the input mode, the keyboard is scanned by sequentially raising
Pl through PlO high (with the others being held low) while switching Pl4 through P20
to the output mode and outputting high signals, isolates Pl through PlO so that they can
be used for other purposes. The LDPRHD signal is divided into two signals
(LDPRHDl and LDPRHD2) to obtain an output current sink needed for the
SN98614's. The two interrupt inputs are used by the SENSOR input (highest priority)
and the INT output from the TMS 9902.

FIRMWARE DESIGN

A block diagram of the Model 745 firmware, Figure 7, shows that the system firmware
can be divided into three major sections: (1) keyboard scanning and encoding, (2)
printhead control, and (3) internal data control. The keyboard and printhead routines
represent the major portion of the system: the data control routine is used to direct
character processing between the keyboard, the printhead, and the EIA interface.

KEYBOARD ROUTINE

The keyboard is viewed by the control electronics as a matrix of key switches, with all
keyboard scanning, debouncing, and encoding done by the microcomputer. The
keyboard is scanned once each 4.3 msec. When a key depression is detected, the
character is encoded by the addition of a constant number to the row/ column number of
the key to provide the ASCII code, and the appropriate action is taken by the terminal.
(Note: In the numeric mode a look-up table is used to provide the ASCII code).

After a depression is detected, 12 msec are allowed for all contact-make bounce to settle
out and then scanning resumes at 4.3-msec intervals. No other key depressions are
processed by the terminal until the first depression is released. When this occurs, 12
msec are allowed for contact-break bounce, then the keyboard scan again resumes at 4.3-
msec intervals. Each scan is a complete scan so that multiple key depressions may be
detected. When simultaneous depressions are detected, neither key is acted upon, thus
effecting a two-key-rollover-with-lockout operation.

9-84 9900 FAMILY SYSTEMS DESIGN

A Low Cost
Data Terminal

FIRMWARE DESIGN

!z<i:
f ~ --------

+--)
.---- It'.!

r-- I-&

5
~

l

....

IN - Q - N.., .. in co" co"' Q N.., ..

~1:::: -c:CLCLA.A.CLG..A.Q..A.A.A:A:A: O:i-----

N
0
C)
C)

z
a:
l

L.---j 0. t") - CL - &n 1-------i~-

~~MO ~-cot--~~+--+~~

~NO> ~ -"
~NCO ~ - co
~ N" 0 ~ -"'
~NCO ..;!' ~NO

C)
~Nin > C)

~ ~ N .. ~
~NM

~NN

~N-

I~

~~H11 Yo~

Figure 6. TMS 9940 Microcomputer System

9900 FAMILY SYSTEMS DESIGN

..- .- CD CO ..- ..-

......

> ~

~ >
I ,

9-85

II

I

9'4111

~9

FIRMWARE DESIGN

PRINTHEAD CONTROL

A Low Cost
Data Terminal

The microcomputer positions the printhead horizontally by timing different levels of
current through the phase windings of the stepping motor. The print/step cycle operates
asynchronously up to 35 CPS, with the cycle time divided into three basic segments:
settle (11.3 msec), print (10 msec), and step (7.2 msec). Slew time for a full 80 columns
is a maximum of 195 msec with backspace operations performed in one character-time.
An automatic carriage return/line feed is executed upon receipt of the 81st character in
a line. Upon applying power the printhead is backspaced to the left margin.

Fault detection methods are used by the microcomputer to prevent damage during
power cycling conditions, obstruction of printhead motion, or loss of optical sensor
signal. During the print segment, the microcomputer energizes the printhead voltage
(PRINT), indexes into the dot matrix table (part of the 2K of ROM) by the ASCII
character value, chooses the appropriate dot pattern, and loads the printhead one column
at a time. The printhead is loaded during the first 200 µsec of PRINT; the PRINT
signal remains on for 10 msec to allow the thermal sensitive paper to convert.

9-86

POWER-UP

BACKSPACE
SUBROUTINE f--

l
CARRIAGE

RETURN
SUBROUTINE

J
CHARACTER
ANALYZER
ROUTINE

J l L

PRINT/STEP
SUBROUTINE

KEYBOARD
SCANNER

1 1
DATA CONTROL

LINE FEED
t--1 SUBROUTINE

J

BELL
SUBROUTINE

1

RECEIVER

J

1
TRANSMITTER

Figure 7. Model 745Firmware Structure

9900 FAMILY SYSTEMS DESIGN

A Low Cost
Data Terminal

FIRMWARE DESIGN

The step segment steps the printhead one column by using two timers and the sensor.
One timer is used to control pulse widths for the FAST and STEP pulses. These pulses
control the amount of current in both the leading and lagging winding of the stepper
motor, thus controlling the torque generated by the motor. The sensor signals the
beginning of braking. The second timer is used to time the total step and is divided into
two segments: The first verifies that the sensor occurred, and the second segment defines
the end of the step. The use of the second timer makes the step time independent of when
the sensor interrupt occurs so that the microcomputer can compensate for varying
friction loads on the printhead.

The carriage return operation will slew the head to column one under control of the
microcomputer using two timers and the sensor input. The step current remains on
during the entire carriage return to develop high torques in the motor. One timer is used
to control the fast pulse, thus controlling the current in the lagging phase of the stepper
motor. The second timer is used as a reference to which to compare the sensor
information, and this comparison results in the microcomputer accelerating or
decelerating the motor to maintain control of printhead speed.

FIRMWARE IMPLEMENTATION

Table 1 lists the number of instructions and memory bytes required to implement the
system firmware for both the TMS 8080A and the TMS 9940. The three major sections
[(1) keyboard routine, (2) printhead control, and (3) data control] are listed separately,
along with the dot pattern table for the five by seven printhead matrix. The number of
memory bytes required for each system is 2048 (the number available) and the number
of instructions required is 867 for the TMS 8080A and 584 for the TMS 9940.

Table 1. System Firmware Implementation

TMS8080A TMS 9940
Microprocessor Microcomputer

Routine Number of Number of
Instructions Bytes Instructions Bytes

Keyboard 260 486 178 472
Printhead 411 855· 291 884
Control 196 367 115 352
Dot Pattern - 340 - 340

TOTAL 867 2048 584 2048

9900 FAMILY SYSTEMS DESIGN 9-87

9~

.,.9

COST ANALYSIS A Low Cost
Data Terminal

COST ANALYSIS

Table 2 illustrates the component cost for the two microcomputer systems, assuming a
production level of 10,000 units. The component cost of the TMS 8080A System is
$48.81, and the cost of the TMS 9940 System is $22.78. In addition, other cost
reductions will be realized from savings in incoming test (17 I C's versus two IC's), PC
board area (approximately 45 square inches versus 6 square inches), and associated
assembly labor and overhead. In total a significant overall cost savings will be realized in
the recurring cost of the end product.

Table 2 Component Cost Analysis

TMS 8080A System $48.81

TMS 9940 System $22.78

"

9-88 9900 FAMILY SYSTEMS DESIGN

TMS 9900
Floppy Disk Controller

9~

... 9

TABLE OF CONTENTS TMS 9900
Floppy Disk
Controller

SECTION TITLE PAGE

I. INTRODUCTION 9-93

II. SYSTEM DESCRIPTION .. 9-94
2.1 Data Terminal . 9-94
2.2 Floppy Disk Drive ... 9-96

2.2.1 Floppy Disk . 9-96
2.2.2 Physical Data Structure. 9-98
2.2.3 Encoding Technique 9-98
2.2.4 Track Format .. 9-98
2.2.5 Cyclic Redundancy Check Character . 9-98
2.2.6 Reading Data .. 9-101
2.2.7 Writing Data .. 9-101
2.2.8 Track Formatting 9-101
2.2.9 Floppy Disk Timing 9-102

III. HARDWARE DESCRIPTION 9-103
3 .1 Clock Generation and Reset. 9-103
3.2 CPU ... 9-104
3.3 Memory Control .. 9-104
3.4 Disk Read/Write Select .. 9-105
3.5 Storage Memory .. 9-105
3.6 Program Memory .. 9-107
3.7 Control I/O ... 9-108
3.8 Floppy Disk Drive Interface 9-108
3.9 Index Pulse Synchronization 9-109
3.10 Read Pulse Synchronization 9-110
3.11 Bit Detector ... 9-110
3.12 Bit Counter ... 9-110
3.13 Write Control and Data .. 9-111
3 .14 Data Shift Register . 9-111
3.15 Clock Shift Register .. 9-112

IV. DISKETTE DATA TRANSFER 9-113
4.1 Disk Write Operations ... 9-113
4.2 Disk Read Operations ... 9-116

4.2.1 Clock and Data Bit Detection 9-116
4.2.2 Clock/Data Separation 9-120
4.2.3 Byte Synchronization 9-120
4.2.4 Reading Disk Data 9-121

4.3 Read/Write Logic Combination 9-121

V. SOFTWARE .. 9-126
5.1 Sofr.v;ire Interface Summary _ _ _ _ _ _ _______ ... 9-126
5.2 Control Software .. 9-126

5.2.1 Floppy Disk Control Program 9-128
5.2.2 Operator Commands 9-128

VI. SUMMARY ... 9-130

9-90 9900 FAMILY SYSTEMS DESIGN

TMS 9900
Floppy Disk
Controller

FIGURE TITLE

LIST OF ILLUSTRATIONS

PAGE

1. TMS 9900 Floppy Disk Controller System 9- 94
2. TI 733 KSR Terminal. 9-94
3. Data Transmission Format ... 9-95
4. Terminal Interface . 9-95
5. Floppy Disk Drive . 9-97
6. Diskette Envelope and Diskett . 9-97
7. FM Data Pattern .1011. 9-98
8. Track Recording Format .. 9-99
9. Hardware CRC Generation. 9-100

10. Clock Generation and Reset 9-103
11. TMS 9900 CPU ... 9-104
12. Memory Control 9-104
13. Disk Read/Write Select ... 9-105
14. Storage Memory ... 9-106
15. Program Memory .. 9-107
16. Control 1/0 · .. 9-108
17. Floppy Disk Drive Interface .. 9-109
18. Index Pulse Synchronization .. 9-109
19. INDSYN Timing 9-110
20. Read Pulse Synchronization. .. 9-110
21. Bit Detector. .. 9-111
22. Bit Counter .. 9-111
23. Write Control and Data ... 9-112
24. Data Shift Register. 9-112
25. Clock Shift Register ... 9-112
26. Write Timing. 9-115
2 7. Bit Shifting . 9-116
28. Bit Detection Timing and Logic 9-118
29. Clock/Data Separation Timing. .. 9-121
30. Disk Read Timing 9-122
31. Memory Address Assignments. ... 9-127
32. Floppy Disk Control Program 9-131

9900 FAMILY SYSTEMS DESIGN 9-91

9~

..... 9

LIST OF TABLES TMS 9900
Floppy Disk
Controller

TABLES TITLE PAGE

1. RS-232C Signal Levels . 9-96
2. Memory Address Assignments 9-105
3. Write Clock Patterns . 9-114
4. Bit Shift Direction .. 9-117
5. Worst-Case Pattern Load Values. .. 9-119
6. Data Mask ... 9-119
7. Bit Detector Counter Load Values 9-120
8. CRU Address Assignments ... 9-126
9. Operator Commands ... 9-128

10. Command Entry Parameters .. 9-128
11. Command Summary ... 9-129

9-92 9900 FAMILY SYSTEMS DESIGN

TMS 9900
Floppy Disk
Controller

SECTION I

INTRODUCTION

INTRODUCTION

This application report describes a TMS 9900 microprocessor system which controls a floppy disk drive and
interfaces to an RS-232C type terminal. In addition to providing useful information for the design of a
similar system, this application report also shows many of the design considerations for any TMS 9900
microprocessor system design.

The floppy disk is rapidly becoming the most widely accepted bulk storage medium for microprocessor
systems. Using standard encoding techniques, a single floppy disk will contain in excess of 400K bytes of
unformatted data. Access time to a random record of data is vastly superior to serial media such as cassettes
and cartridges, and the medium is both non-volatile and removable.

The use of a microprocessor in the floppy-disk controller or "formatter" is desirable for a number of
reasons. The number and cost of components is reduced: this design contains 24 integrated circuits. while
random-logic designs typically contain more than 100. The commands from the user interface (in this case.
the terminal) to the controller may be more sophisticated. relying on the microprocessor to intrepret the
commands. The microprocessor also enables the controller to perform diagnostic functions. both on the
controller itself and on its associated drives, not available with a random-logic system.

The Texas Instruments TMS 9900 microprocessor is particularly well-suited to this application. The
TMS 9900 is a 16-bit microprocessor capable of performing operations on single bits. bytes. and words. The
CRU provides an economical port for bit-oriented input/output, while the parallel memory bus is available
for high-speed data. The speed of operation of the TMS 9900 minimizes additional hardware requirements.
The powerful memory-to-memory instruction set and large number of available registers simplify software.
both in terms of number of assembly language statements and total program memory requirements.

9900 FAMILY SYSTEMS DESIGN 9-93

9.,.

.,...9

SYSTEM DESCRIPTION

SECTION II

SYSTEM DESCRIPTION

Figure l illustrates the relationship of the system
elements. Commands are entered by the user at the
terminal. These commands are serially transmitted
to the controller. The controller interprets the
commands and performs the operations specified,
such as stepping the read/write head of the drive to
a particular track, and reading or writing selected
data.

733 KSR

A0001277

ODDO~ ~ ODDO I!
~DODD

DODO
TMS 9900 - BASED

FLOPPY DISK
CONTROLLER

TMS 9900
Floppy Disk
Controller

FLOPPY DISK
DRIVE

Figure 1. TMS 9900 Floppy Disk
Controller System

2.1 DATA TERMINAL

The terminal used in this design is the Texas Instruments 733 KSR Silent Electronic Data Terminal (see
Figure 2). Slight modifications to the software will allow the use of virtually any RS-232 terminal.

Figure 2. TI 733 KSR Terminal

9-94 9900 FAMILY SYSTEMS DESIGN

TMS 9900
Floppy Disk
Controller

SYSTEM DESCRIPTION

The 733 KSR consists of a keyboard, printer, and a serial-communication line to the controller. The
keyboard enables the operator to enter control commands and data for storage on floppy disc. The printer
is used for echoing operator entries, data printout, and reporting of operational errors. The serial interface
is full duplex, allowing data transmission both to and from the data terminal simultaneousiy.

Characters entered on the keyboard are transmitted to the controller in 7-bit ASCII code using
asynchronous format, and characters to be printed are sent from the controller to the terminal in the same
way. Transmission speed is 300 baud. The format for data transmission is shown in Figure 3.

0 LSB

--+ 3.3 ms. 4'

A0001279

LSB+3
LSB+1 LSB+2 MS8:J MSB- 2 MSB-1 MSB

Figure 3. Data Transmission Format

EVEN
PARITY

The line idle condition is represented by a logic one. When a character is to be transmitted. the ASCII
character is preceded by a zero bit, followed by the 7-bit ASCII code, even parity bit, and the logic-one
stop bit. Any amount of idle time may separate consecutive characters by maintaining the logic-one level.
Reading data is accomplished by continuously monitoring the line for the one-to-zero transition at the
beginning of the start bit. After delaying one-half bit time (1.67 ms) the line is again sampled to ensure that
the start bit is valid. If so, the line is sampled each bit time (3.33 ms) until all of the bits of the character
have been sampled. The initial one-half bit delay causes subsequent samples to be taken at the theoretical
center of each bit, thus providing a margin for distortion due to time base differences between the
transmitter and receiver.

The control signals for the terminal are shown in Figure 4.

TERMINAL CONTROLLER

DTR

DSR -- DTRE

RTS

CTS --
DCD -- RTSE

XMTD ~ RCVDE

RCVD XMTDE

A0001280

Figure 4. Terminal Interface

9900 FAMILY SYSTEMS DESIGN 9-95

9~

~9

SYSTEM DESCRIPTION TMS 9900
Floppy Disk
Controller

Detailed description of the signals is provided in Electronics Industries Association Standard RS-232C. The
signals used in this design are briefly described below.

DTRE - Data Terminal Ready is always on when power is applied to the controller, enabling
operation of the serial interface by the terminal.

RTSE - Request to Send is on when a character is transmitted from the controller to the terminal.

XMTDE - Transmitted Data from the controller to the terminal.

RCVDE - Received Data from the terminal to the controller.

Signal levels conform to EIA Standard RS-232C, as shown in Table 1.

Table 1. RS-232C Signal Levels

Voltage Level
Data Control

(XMTDE,RCVDE) (DTRE,RTSE)

-25 to -3 voe 1 OFF
+3 to +25 voe 0 ON

The other important parameter for interfacing to the terminal is the amount of time required for a carriage
return by the printer, which is 200 ms maximum for the 733 KSR.

2.2 FLOPPY-DISK DRIVE

The floppy-disk drive (Figure 5) is the electromechanical unit in which the recording medium, the floppy
disk is inserted. The drive contains the electronics which control the rotation of the floppy disk, the reading
and writing of data, and the positioning of the read/write head to select a particular track on the diskette.

2.2.1 Floppy Disk

The floppy disk, or diskette, is the recording medium (see Figure 6). It is enclosed in a plastic protective
envelope which keeps foreign particles away from the recording surface. The inner material <?f the envelope
is specially treated to minimize friction and static electricity discharge. The read/write head opening enables
the head to come in contact with the recording surface. The index-access hole enables detection of the
index hole.

When the index hole in the diskette becomes aligned with the index-access hole, an optical sensor generates
the index puise, providing a reference point for the beginning of each track. There are 77 concentric tracks
for recording data. A particular track is accessed by moving the read/write head radially until the desired
track is located.

9-96 9900 FAMILY SYSTEMS DESIGN

TMS 9900
Floppy Disk
Controller

-.....
/

/
/

I
I

-.......

I

0 \
\
\

\

'

....
' '

/

' /
............

DISKETTE ENVELOPE

A0001282

SYSTEM DESCRIPTION

Figure S. Floppy Disk Drive

TRACK 00

TRACK 76

INDEX

\ ACCESS HOLE

\
\ R/W HEAD DISKETTE

OPENING

I
I

I
I PROTECTIVE

/
ENVELOPE

Figure 6. Diskette Envelope and Diskette

9900 FAMILY SYSTEMS DESIGN 9-97

9 ...

SYSTEM DESCRIPTION

2.2.2 Physical Data Structure

TMS 9900
Floppy Disk
Controller

The 77 tracks on a diskette are numbered from 00 (outermost) to 76 (innermost). Each track is subdivided
into 26 sectors, or records, numbered sequentially from I to 26. Each sector consists of two fields: the ID
field, which contains sector identification (track and sector number) and the data field, which contains 128
bytes of data.

2.2.3 Encoding Techni9ue

The encoding technique used for representation of data on the diskette is a form of frequency modulation
(FM), as shown in Figure 7. Each bit period is 4 microseconds long, resulting in a data-transfer rate of 250K
bits per second. A pulse occurs at the beginning of each normal bit period. This pulse is called the clock
pulse. If the data bit is a one, a pulse will occur also in the middle of the bit period, 2 µs after the clock bit.
If the data bit is a zero, no pulse occurs in the middle of the bit period.

f-- BIT PERIOD -----1

f---2µ1 --l

4 µ1
A0001283

c IQ I
L-.J

c

Figure 7. FM Data Pattern 1011

c

Selected clock bits are deleted in special characters called marks. The absence of the clock bits results in
unique sequences, used for synchronization at the beginning of fields.

2.2.4 Track Format

Each track is formatted to provide 26 "soft" sectors. The term soft sectoring means that the beginning of
each sector is encoded on the medium through a unique bit sequence. Each of the sectors is separated by a
gap of dummy data. ~ach of the two fields (ID and data) in each sector are also separated by a gap. The
first byte of each field is a mark in which the clock pattern for the byte is C7 16 rather than FF 16. The
organization of data and clock bits on each track is shown in Figure 8.

2.2.5 Cyclic Redundancy Check Character

The last two bytes at the end of each ID and data field comprise the 16-bit cyclic redundancy check
character (CRC). The CRC is generated by performing modulo-2 division on the data portion of the entire
field (including the mark) by the polynomial X 16 + X 12 + xS + l. Before generation of the CRC begins,

~ 9 the initial value is FFFF 16.

The anaiogous hardware operation is illustrated in Figure 9. All flip-flops are initially set to one. Each data
bit in the field, beginning with the MSB of the mark byte, is shifted into the logic at DATAIN. The previous

9-98 9900 FAMILY SYSTEMS DESIGN

-0
-0
0
0

~
>
:::::

~
Ul
--<
~
tTl
:::::
Ul

0
tTl
Ul

cs
z

'° -b
'°

"° A.

INDEX
_J-

FORMAT

~
POST

TRACIC
ID

ID
DATA

DATA
ID

ID
DATA

DATA INDEX GAP 1 FIELD FIELD FIELD FIELD
GAP

MARK
1

GAP
1

GAP
2

GAP
2

GAP

~
POST INDEX GAP -46 BYTES, DATA .. 00, CLOCK .. FF15

TRACK MARK - 1 BYTE, DATA• FC15. CLOCK• D715

GAP 1 - 32 BYTES, DATA• 00, CLOCK• FF15

2 3 4

ID FIELD -7 BYTES: CLOCK C715 FF15 FF15 FF15

DATA FE15
TRACK

00
SECTOR

NUMBER NUMBER

IDGAP -17 BYTES, DATA= 00, CLOCK• FF15

1 2-129 130 131 ~ ~

DATA FIELD - 131 BYTES: CLOCK C715 FF15 FF15 FF15

FB15 OR DATA CRC1 CRC2
F815

DATA

DATA GAP - 33 BYTES, DATA• 00, CLOCK .. FF15

PRE INUEX GAP - 241 BYTES, DATA"' 00, CLOCK• FF15

A0001284

Figure 8. Track Recording Format

II:

ID
ID

DATA
FIELD

GAP
FIELD

26 26

:-

5 6

FF15 FF15

00 CRC1

DATA
PRE

GAP
INDEX
GAP

7

FF15

CRC2

0.,, -t
0 0 s::
::l "C (/)
~ "C co
2. '< co -co
~ u;o

""

en
~ en
~
tT'.1
~
t:1
t:r:1 en
n
~
~
~
0
z

~9

SYSTEM DESCRIPTION

:Ill:
u

iiO u
a:

' (J

~I ::c
en

9-100

~

:?

~

~
N
u
a:

::: (J

~

en

CIO

"
CCI

It)

• u
a:

M (J

N

0

TMS 9900
Floppy Disk
Controller

c
0 ·::
~
~ c
~
u
~
u
~
ell
~
'E
~

°' ~ ...
~

9900 FAMILY SYSTEMS DESIGN

TMS 9900
Floppy Disk
Controller

SYSTEM DESCRIPTION

MSB is exclusive ORed with the new input bit to generate a feedback term. This feedback term is stored in
the LSB of the register, and is also exclusive ORed with other terms of the CRC. After all data bits of the
field have been shifted in, the value in the register is the CRC. The most-significant byte is CRC 1 and the
least-significant byte is CRC2.

When reading the field, the identical operation is performed, presetting all flip-flops and shifting in all data
bits. When reading, it is convenient to also shift in the CRC, causing the resultant value in the register to
finally become all zeroes.

In this design, the CRC is calculated by software; however, the algorithm is identical.

2.2.6 Reading Data

The procedure for reading diskette data is as follows:

1. Search the serial-bit string for the ID mark (clock = C7 l 6• data = FE 16).

2. Read the next four bytes to determine if the desired sector has been located. If not, return to 1.

3. Read the CRC for the ID field and compare it to the expected value. If incorrect, report error
and/or return to 1.

4. Search the serial-bit string for either the data mark (clock
deleted-data mark (clock= C716• data= F816).

5. Read the next 128 bytes and save.

C7 l6• data FB 16) or the

6. Read the CRC for the data field and compare it to the expected value. If incorrect, report error
and/or return to 1.

Normally, if the process is not completed before two index pulses are detected, indicating a complete
diskette revolution, the try has failed. Either a retry will be performed, or an error is reported.

2.2.7 Writing Data

When writing data, the sector is located as in steps 1 through 3 above. Then, the ID gap, the data field
complete with CRC, and a pad byte (data= 0, clock= FF l 6) are written.

2.2.8 Track Formatting

The formatting process consists of writing all of the gaps, track mark, ID fields, and data fields, putting
dummy data into the data bytes of the data field. After a track is formatted, only the ID gap, data field,

9900 FAMILY SYSTEMS DESIGN 9-101

9~

~9

SYSTEM DESCRIPTION TMS 9900
Floppy Disk
Controller

and the first byte of the data gap are altered when updating sectors. The number of bytes in the pre-index
gap will possibly vary slightly, due to variations in the speed of revolution of the diskette.

2.2.9 Floppy-Disk Timing

Several important timing parameters pertain to the operation of the disk drive:

Bit transfer rate
Track-to-track stepping time
Settling time (before read/write)
Rotational speed
Head load time (before read/write)

250,000 bits/second
10 milliseconds
10 milliseconds
360 RPM ±2%
35 milliseconds

Thus, data is transferred at a rate of 250K bits/second, or 3 l.25K bytes/second ±2%. Stepping the head
each track position requires 10 ms. An additional 10 ms delay must be observed after the final step before
reliable data may be written or read. A delay of 35 ms must occur after the head is loaded (ROY = 0)
before reliable data may be written or read.

9-102 9900 FAMILY SYSTEMS DESIGN

TMS 9900
Floppy Disk
Controller

HARDWARE DESCRIPTION

SECTION III

HARDWARE DESCRIPTION

A complete logic diagram of the system is contained in the center of this report. The operation of each
section is described separately.

3.1 CLOCK GENERATION AND RESET

The TIM 9904 is used to generate the 4-phase MOS clocks for the TMS 9900 (see Figure I 0). Ten ohm
resistors are connected in series to the clock lines for damping. The TIM 9904 should always be located
physically close to the TMS 9900 to minimize the length of the conductor run for the MOS clocks. The ¢3
TTL-level output is used in the synchronous disk read/write control logic.

10 ¢1

10

¢1 ¢2 ¢3 ¢4

T1 a mrr
¢1

TIM 9904 ¢2
2

¢3 ¢3-

Y1 ¢4

D
RESET IN 100

Y2 D

48 MHz OSCTN

0.1 I 4.7K

+5
A0001286 +5

Figure 10. Clock Generation and Reset

9900 FAMILY SYSTEMS DESIGN 9-103

9.-

HARDWARE DESCRIPTION TMS 9900
Floppy Disk
Controller

A 48 MHz, third overtone crystal causes the clock frequency to be 3 MHz. The inductor of the LC tank
circuit need not be variable; however, in wire-wrap prototypes the capacitance due to interconnect is
difficult to predict. The OSCIN input is held high to disable the external clock input.

The RC input to the Schmitt-D input provides power-on detection. The RESETIN input is connected to an
external pushbutton. The l 00 ohm series resistor reduces contact arcing, thereby extending switch life.

3.2 CPU

The TMS 9900 requires a mm1mum of external logic. Note that both the data and address buses are
connected directly to the memory and disk read/write control logic without buffering as shown in Figure
11. This is due to the ability of the TMS 9900 outputs to sink up to 3.2 mA with 200 pF capacitive load.

The READY input is used to synchronize data
transfers to and from the disk read/write control
logic, eliminating the need for buff er registers. The
HOLD, LOAD, and interrupt functions are not
used in this design and are tied to their inactive
(high) level.

3.3 MEMORY CONTROL

Memory control logic, shown in Figure 1 2, consists
of a simple decode of the high-order address lines,
enabled by MEMEN. Memory enabling signals are
generated for EPROM (ROMSEL-), RAM (RAM
SEL-), and the disk interface (DISKSEL-). Table
2 shows the memory address assignments.

% 74LS139

AO B

A1 A

1/8 74LS240

OBIN

WE

, 9 A0001287

9-104

OBIN-

Figure 12. Memory Control

READY

+5
READY

TMS 9900
CPU

OBIN
OBIN i-----

WE WE

AO-A14
AO-A14

D0-015
D0-015

9900 FAMILY SYSTEMS DESIGN

TMS 9900
Floppy Disk
Controller

HARDWARE DESCRIPTION

Table 2. Memory Address Assignments

Signal AO A1
Address

Function
Actually

Space Used

ROMS EL- 0 0 000-3FFF EPROM 000-07FF
DISKSEL- 0 1 4000-7FFF Disk 7F8E-7FFE
RAMSEL- 1 0 8000-BFFF RAM 8000-81FF

1 1 COOO-FFFF Not Used

Each of the enabling signals will be active when a memory cycle is being performed (MEMEN = 0) accessing
its address space.

3.4 DISK READ/WRITE SELECT

The DISKSEL signal is further decoded to generate separate select lines for disk read (DISKRD-) and disk
write (DISKWT-) operations.

DISKRD- = (DISKSEL) (OBIN) (A 14-), and
DISKWT- = (DISKSEL) (OBIN-) (Al4).

DISKSEL-

D_B_IN_-__ B

A14
A

A0001289

Y.z 74LS139 Disk read and write operations are specified by
different addresses, and are selected only when the
OBIN signal is at the proper level for the direction
of transfer (see Figure 13). This is required because
of the sequence of machine cycles performed by
the TMS 9900 when performing a memory-write
operation. In the MOV instruction, the CPU first
fetches the contents of the memory location to be
altered, then replaces this value with the source
operand. In this design, the disk read and write

Figure 13. Disk Read/Write Select

operations are controlled by the READY line to synchronize data transfers. If read and write signals were
not generated separately, there would be ambiguity with respect to the type of operation desired.

This applies to all memory-mapped interfaces in TMS 9900 systems, i.e., the MOV instruction will cause a
read operation to precede the write operation to the specified destination address.

3.5 STORAGE MEMORY

Storage memory, shown in Figure 14, is used for implementing workspace registers, maintenance of 9.,,..
software pointers and counters, and buffering of a full sector of data.

9900 FAMILY SYSTEMS DESIGN 9-105

...

'°

~I I

TMS4042-2 TMS 4042-2 TMS4042-2

:™•-22 61 ~H
A7

H
A7

H A7

G
AS

G
AS

G
012 F 04 F 04 F 04 F 04 -

E 03 05 E 03 09 E 03 013 E 03
0 02 02

0 0 02 0 02
03 n•c c 01 c 01 c c

~B CST B CTI B B
A ~ A ~ A A
E R/W O'F R/W OE RIW aE

·:;~u o... l WE LL i I J • l t I J l l t I J I I i

-0
D0-015~~~~~~~~~~L__~~~~~~~--~~L_~~~~~~~~~~L-~~~~~~~~~~

<§; I A0001290
0

'T:l
;:i;.

3'.:

~
VJ
--<
VJ ...,
tTl
$'.
VJ

0
tTl
(fl

cs
z

Figure 14. Storage Memory

::t
;:i;;i.
~
tj

~
~
tTj

tj
tTj
en
n
~
~

~
~
~

0
z

0.,, -t
0 0 3:
::!. 'tJ en
0 ~CD
=c CD
~in g
~

TMS 9900
Floppy Disk
Controller

HARDWARE DESCRIPTION

This design utilizes four TMS 4042-2 RAMs, resulting in a 256-word array of RAM for temporary storage.
This 256-word array may be addressed at locations 8000-BFFF, causing each memory location to be
multiply defined (e.g., memory address 8000 selects the same word as memory address 8200). For
simplificity, RAM will be referred to only as locations 8000-81 FF.

Access times for the TMS 4042-2 are sufficiently fast to allow the TMS 9900 to access RAM without any
wait states, thus READY will always be true when RAM is addressed. The output enable (OE) inputs
require that the DBIN output from the TMS 9900 be inverted to gate RAM onto the data bus. The WE
output from the TMS 9900 is directly compatible with the R/W input. Data and address lines are connected
directly to the CPU.

3.6 PROGRAM MEMORY

Program memory (Figure 15) is used for storage of the machine code program to be executed by the
TMS 9900. Also, constants, the RESET vector and XOP vectors are contained in this space.

A5-A14

""" ' D0-015

ROMSEL-1 ROM!EL- ' ' TM~2708 TMs_k1oe

t-.. A5 A9
~

I\.. A5 ~
A9

~ A&
AB DO ./ " A& D8 ...-1 OB AB OB

" A7 A7 07 01 .) I\.. A7 .Di ./ A7 07
t-.. AB

A6 02 ./ "
AB 010 .) 06 A6 06

"
A9 A5 05 03 ...-1 " A9 ·05 011 .) A5

~ A10 A4 04 04 ...-1 " A10 012 .) A4 04

"
A11

A3 05 .."'1 ~ A11 013 ...-1 03 A3 03

"
A12

A2 06 .."'1 t-.. A12
1~2 014 ...-1 02 02

~ A13
A1 07 / " A13

jA1
015 ./ 01 01

'
A14

AO " A14
AO

PROG PROG

I J_
A0001291

Figure 15. Program Memory

Two TMS 2708 erasable programmable read-only memories (EPROMs) comprise the program memory for
this design, resulting in 1024 words of EPROM. EPROM is addressed at memory locations 0000-3FFF.
Since these addresses are multiply defined, EPROM will be described only as memory addresses 0000-07FF.
Access times for the TMS 2708 are such that no wait states are required.

9900 FAMILY SYSTEMS DESIGN 9-107

9,...

~9

HARDWARE DESCRIPTION

3.7 CONTROL 1/0

All of the control and status signals which require
individual testing, setting, or resetting are imple
mented on the CRU, the bit addressable 1/0 port
for the TMS 9900.

The benefits of using the CRU for these functions
is twofold. First, ei~ht bits of input and eight bits
of output can be implemented with two 16-pin
devices, which are substantially smaller and lower
in cost than if these functions were implemented
on the parallel-data bus. The second benefit is
increased software efficiency. Control and status
testing operations can be performed with single
one-word instructions, rather than the ORing,
ANDing, and maintenance of software images
necessary when performing single-bit 1/0 on the
memory bus.

Eight bits of output are implemented with the
TIM 9906 8-bit addressable latch. The CRUCLK
line must be inverted for input to the TIM 9906.
The eight input bits are implemented using the
TIM 9905 8-to-l multiplexer. Individual 1/0 bits
are selected using the three least-significant address
lines, A 12-A 14. The control 1/0 is illustrated in
Figure 16.

3.8 FLOPPY-DISK-DRIVE INTERFACE

1/8 74LS240
CRUCLK

A0001292

+5

TMS 9900
Floppy Disk
Controller

CLR 00 XMTOUT

CRUOUT D
01

ATS

02
~~~~ac 03 

A12 ----ic 
_A_1_3---i B 

_A_1_4---i A 

CRUIN y 

w 

_A_1_2--iC 

_A_1_3---i B 
A14 

----iA 

TIM 9905 

Figure 16. Control 1/0 

Q4 SEL 

as 
Q6i-;.."-=-

Q7 ...................... _ 

O RCVIN 

1 

2 
3 

4 
INDEX 

5 

6 
TRKOO 

7 
ROY 

All outputs to the drive are 7406 open-collector, high-voltage and current drivers. Pullups for the output 
signals are provided in the drive electronics. All inputs are terminated by 150 ohm pullup resistors to +5 
volts, and are buffered and inverted. All input and output signals are active low. 

SEL - Active when a stepping operation or a data transfer is being performed. 

RDY - Active when the disk is ready to perform a stepping or transfer operation (i.e., SEL = 0, 
diskette is in place, door is closed, power is furnished to the drive). 

STEP - A minimum l 0 µs pulse causes the read/write head to move one track position in the 
direction selected by STEPUP. 

9-108 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

HARDWARE DESCRIPTION 

STEPUP - When STEPUP = 0, the read/write head moves in one track position. When STEPUP = 1 , 
the head will move out (toward track 00). 

TRKOO - Active when the read/write head is located on the outermost track (track 00). 

INDEX - As the diskette rotates in the drive, the index pulse occurs once per revolution, providing.a 
reference point for the beginning of each track. 

WRITE ENABLE - This signal must be active a minimum of 4 µs before a write operation begins, and 
must be maintained active during the entire write operation. 

WRITE DATA - This signal contains a series of pulses representing the data to be written to the disk 
in the FM format previously described. 

READ DAT A - This signal contains a series of pulses representing the data to be read from the disk in 
the FM format previously described. 

Figure 1 7 illustrates the floppy-disk-drive interface. 

3.9 INDEX PULSE SYNCHRONIZATION 

Since the index pulse is a term in some of the 
expressions that are sampled by the CPU, it must 
be synchornous to the CPU. The circuit shown in 
Figure 18 generates a signal one ¢3 clock cycle 
long at the beginning of each index pulse from the 
drive. RDY will be inactive when the drive is 
turned off or the door is open, thus connection of 
RDY to the preset input of the flip-flop shown 
causes INDSYN to be active as long as RDY = 0 
(see Figure 19). Forcing INDSYN to be one when 
RDY = 0 prevents the CPU from remaining in a 
wait state when the drive is disabled during data 
transfer. 

ROY 

% 74LS74 
1/8 74LS24 

__ +s ___ o PR 

LR 

_S_E_L ____ [> SEt • 

_S_T_E_P __ ~ STEP • 

_ST_E_PU_P ___ [> STEPUP. 

%7406 

INDEX 1' 74LS240 

TR KOO 

ROY 

+5 

A0001293 

Figure 17. Floppy-Disk Drive Interface 

1' 74LS175 

0 
__ ,_N_o_xa __ 

0 a .,__l_N_D_SY_N __ 

+5 
A0001294 Figure 18. Index-Pulse Synchronization 

9900 FAMILY SYSTEMS DESIGN 9-109 



9 

HARDWARE DESCRIPTION TMS 9900 
Floppy Disk 
Controller 

¢3- ----u-i.nn_f 

INDXO 
r(l 

Al>V y 
INDSYN 

( rt' 
A0001295 

<\nn.n_n_J

--t-----1 
.____ __ ~,,,___ __ _ 

----~;-----
Figure 19. INDSYN Timing 

3.10 READ PULSE SYNCHRONIZATION 

The read-pulse synchronization logic, Figure 20, generates an active signal, BITIN, one clock cycle long 
each time a read pulse is detected during read operations. During write operations BITIN is maintained at a 
logic-one level. 

ROMOOE 

~ 74 LS74 
% 74LS175 

1/8 74LS24 
_+_5_--10 Q ~P:...x.11Lllf:E~0:=....----1o 

+5 
A0001296 

Figure 20. Read-Pulse Synchronization 

3.11 BIT DETECTOR 

The bit detector, Figure 21, consists of a 74LSl63 counter and random logic contained in PROM. During 
write operations, the counter is used to time the 2 µs spacing between clock bits and data bits. During read 
operations the bit detector is used to determine the time interval between successive read pulses. The key 
signal generated by the bit detector is BITTIME, which is active for one clock cycle every 2 µs during disk 
writing, and which is active each time a one or zero bit is detected during read operations. 

3.12 BIT COUNTER 

The bit counter, Figure 22, is a 74LSI 63 used to count the number of bits currently read or written during 
disk-data transfers. Each time a clock or data bit is detected or written (BITTIME = I) the bit counter is 

9-110 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

HARDWARE DESCRIPTION 

BITIN A 
ROMO DE B 
CLKO c 
DTAO 

D 
DTA7 

E 
CLK7 

745287 

01 TCNTLDB 

02 TCNTLDD 
BITTIME 

03 

74LS163 

EP 
----tET 
+5 

CLR 

BCNTA 
F 04 

~--------~o a 
G 

H 
1/8 74LS240 

A0001297 

Figure 21. Bit Detector 

incremented. The two key outputs are BCNT A and 
BCNT = 15. BCNTA is the least-significant bit of 
the counter and is used to alternately select clock 
(BCNT A = 0) and data (BCNT A = l) bits as the 
counter increments. BCNT A = 15 is active when a 
complete byte has been read or written. This signal 
establishes byte boundaries for the data and is used 
to synchronize the parallel data from the CPU to 
the serial-bit string and from the disk. 

BITTIME 

BITIN 

II 

4>3-

A0001298 

EP 

ET 

8 

BCLD-

CY 

LO 

74LS163 

CLR 

QA 
BCNTA 

ae 
Cle 
ao 

BCNT•15 
CY 

LO 

3.13 WRITE CONTROL AND DATA Figure 22. Bit Counter 

Writing to the diskette is controlled by WRITE ENABLE, which is the inverted and buffered WTMODE 
signal. WTMODE is active when a write operation has been initiated by the CPU. The WRITE DATA signal 
is a series of negative pulses representing FM data to be recorded on the diskette. Figure 23 illustrates write 
control and data. 

3.14 DAT A SHIFT REGISTER 

The data shift register, see Figure 24, is used for accumulation of data bits during read operations and 9· 
storage of data bits to be shifted out during write operations. Data is transferred to and from the CPU via 
the eight most-significant data lines (DO-D7). The data shift register is device type 74LS299. 

9900 FAMILY SYSTEMS DESIGN 9-111 



HARDWARE DESCRIPTION 

1' 74LS175 1/6 7406 

WR:A~ ~1 
WR TOTA 

1' 74LS175 1/6 7406 

WTMOO 

~ :I 
WTMOOE 

ct>3- ROMO OE 

~ WAITE ENABLE 
--~~~~~~~--~~~~--.,·-

A0001299 

Figure 23. Write Control and Data 

3.15 CLOCK SHIFT REGISTER 

TMS 9900 
Floppy Disk 
Controller 

The clock shift register, Figure 25, is used for accumulation of clock bits during read operations and storage 
of clock bits to be shifted out during write operations. The clock shift register is device type 74198, which 
has separate parallel inputs and outputs. Three address lines, A9-Al 1, are connected to the parallel inputs. 
As data is loaded into the data shift register during write operations, these three address lines select the 
clock pattern for that byte (i.e., C7 for ID and data marks, D7 for track mark, FF for normal data). The 
parallel outputs (CLKO-CLK7) are used to detect mark clock patterns during read operations. 

74198 
BITIN 

BITIN 74LS291 

+5 A 
R CLK7 

QA 
OTA7 07 

QA QA 

ae B Oe CLK& 

Cc c Oc CLK5 

A10 0 Oo CLK4 
A11 E Oe CLK3 

ao 04 

Oe 
03 

Of 
02 A9 f Of CLK2 

G· ~ 
CLK1 

H QH 
CLKO 

~ 
01 

QH DO 

ct>3- CLR 

11 so 
S1 so 

REG LO I 
I CLKSH 

A0001300 A0001301 

9 Figure 24. Data Shift Register Figure 25. Clock Shift Register 

9-112 ~900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

DISKETTE DATA TRANSFER 

SECTION IV 

DISKETTE DAT A TRANSFER 

The previous section described the various functional blocks in the TMS 9900 floppy-disk controller. 
However, detailed information was not provided with resp.ect to the logical relationships and timing of the 
control signal in the read/write control logic. 

Most of the read/write control logic varies in function depending on the direction of transfer. This section 
will describe the operation of the logic separately for read and write operations. After both operations have 
been completely described, the combined operation will be explained. 

4.1 DISK-WRITE OPERATIONS 

Disk writing is initiated by executing an instruction which writes data to the data shift register (i.e., when 
DISKWT- = 0). When this transfer occurs, READY is held low until a byte boundary occurs (BCNT = 15), 
then READY becomes active, permitting completion of the write cycle. In this way, the data transfers are 
synchronized to the serial bit string. 

To complete the transfer, READY must be active to the CPU, and the CLKSH, DTASH, and REGLD 
signals to the clock and data shift registers must be active to permit loading. READY = CLKSH = DT ASH = 
REGLD = (DISKWT) (Al3) (BCNT = 15) + ... 

The preceding equation indicates that the disk write must be performed with Al 3 = 1 for data transfer on 
byte boundaries. When formatting a track, the write operation must be synchronized with the index pulse, 
and the bit counter must be cleared regardless of its current state. When this type of write operation is to be 
performed, A 13 must be 0. 

READY = CLKSH = DTASH REGLD = (DISKWT) (Al3) (BCNT = 15) + (DISKWT) (Al3-) 
(INDSYN) + ... 

BCLR- = (DISKWT) (Al3-) (INDSYN) + ... 

As the data byte is loaded into the data shift register, address lines A9, AlO, and All select the clock 
pattern to be loaded into the clock shift register (see Table 3). 

9900 FAMILY SYSTEMS DESIGN 9-113 

9 ... ' 



·9 

DISKETTE DATA TRANSFER 

Table 3. Write Clock Patterns 

A9 A10 A11 

0 0 0 
0 0 1 
1 1 1 

Clock Pattern 

C7 (ID and Data Mark) 
D7 (Track Mark) 
FF (Normal Data) 

-

TMS 9900 
Floppy Disk 
Controller 

When the transfer is complete to the clock and data shift registers, the write mode (WTMODE) flip flop is 
set, causing WRITE ENABLE to become active. If another byte is not written at the next byte boundary, 
WTMODE is reset, causing the control logic to revert to the read mode (RDMODE = 1 ). Also, control 
reverts to read mode and the bit counter is cleared when the index pulse occurs and when no write 
operation synchronized to the index pulse is being performed. This is useful when formatting a track, since 
WRITE ENABLE will automatically be turned off when the second index pulse occurs. If an index pulse 
occurs during a write operation with Al 3 = 1, the CPU proceeds, but no data transfer takes place. 

WTMDD = (WTMODE) (BCNT = 15-) (INDSYN-) + (DISKWT) (Al3) (BCNT = 15) + (DISKWT) 
(A 13-) INDSYN) 

BCLR- = INDSYN + ... 

READY= (DISKWT) [(Al3) (BCNT = 15) + INDSYN)] + ... 

While WTMODE = I, write data is generated by alternately shifting out bits from the clock and data shift 
register every two microseconds. Shifting of the clock shift register occurs when CLKSH = I, and shifting of 
the data shift register when DTASH = I. The shift is enabled by BITTIME, which is active for one clock 
cycle every 2 µs by loading the counter with 1o10 each time TCNTCY = I. 

BITTIME = (WTMODE) (TCNTCY) + ... 

TCNTLDD = TCNTLDB = WTMODE + ... 

CLKSH = (DISKWT) [(Al3) (BCNT = 15) + (Al3-) (INDSYN)] + (WTMODE) (BCNTA-) 
(BITTIME) + ... 

DTASH = (DISKWT) [(Al 3) (BCNT = 15) +(Al 3-) (INDSYN)] + (WTMODE) (BCNTA) (BITTIME) 
+ ... 

WRTDTAD = (WTMODE) (BITTIME) [(CLKO) (BCNTA-) + (DTAO) (BCNTA)] 

On even bit counts (BCNTA = 0) clock bits are shifted, and on odd bits (BCNTA = 1) data bits are shifted, 
producing the desired interleaving of clock and data bits. (See Figure 26.) 

9-114 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

I 
!!I 
'G-

N 

~ 

w 
:::E 

~ 
I-z 

iii ~ 

9900 FAMILY SYSTEMS DESIGN 

~ 
II 
I-z 
~ 

.. ! a 13 .. 
·-g ·c 

0 
"Cl "Cl 

I w 

~ 
Q 

i en M 

i3 ~ ~ 

DISKETTE DATA TRANSFER 

,.. 
Q 

c( 
I-
c( 
Q 
w 
I-
a: 
:r: 

> 
Q 
c( 
w a: 

Q :I: _, en 
CJ ~ w _, 
a: CJ 

C)I) 
c: ·e 

E= 
Q> 

·c ;r; 
..D 
M 

Q> .. 
~ 
ti: 

:I: 

~ 
I-
Q. 

9-115 

91 
I 

I 



9 

DISKETTE DATA TRANSFER 

4.2 DISK READ OPERATIONS 

TMS 9900 
Floppy Disk 
Controller 

Any time disk write operations are not being performed, the read/write control logic defaults to the read 
mode (RDMODE = l ). The following functions are performed to enable the CPU to read diskette data: 

I. Conversion of FM to digital data; 

2. Separation of clock and data bits; 

3. Byte synchronization of the bit string; 

4. Assembly of the seria data into bytes to be ready by CPU. 

4.2'.l Clock and Data Bit Detection 

Clock and data bits read from the disk are represented as a series of pulses. Each logic one clock or data bit 
is simply a pulse. Logic zero data and clock bits are indicated by the absence of a pulse between two pulses 
separated by a full data period ( 4 µs). Under ideal circumstances, detection of zero bits could be achieved 
by simply measuring the time between pulses. If tP2-tp1 = 2 µs, no zero bit is present; and if tp2-tp1 = 
4 µs, a zero bit occurs between the two pulses. 

READ DATA 

1 ...... ----tp2-tp1-----.. - I 

tp1 tp2 

Three phenomena make.zero-bit detection more complex: 

l. Variations in rotational speed of the disk; 

2. Uncertainty of measured delays when using synchronous counters; 

3. Apparent positional distortion or "bit-shifting" resulting from the tendency of pulses to move 
away from adjacent pulses. 

Disk speed variations are typically specified at ±2% by diskette drive manufacturers. Figure 27 illustrates 
the bit shifting phenomenon: 

t-- 2 µ1 .. I• 4 µs .. I• 2 µs --t 
ENCODED PULSE STRING 1 1 

I 0 I 
I I 

---i f--- BIT ----f ~ 
READ PULSE STRING 

SHIFT 

A0001303 

9-116 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

DISKETTE DATA TRANSFER 

Pulses in the string have a tendency to move away from each other, and the closer together the pulses, the 
stronger the tendency to separate. A zero bit causes contiguous pulses to move toward each other, reducing 
pulse separation and complicating zero detection. 

The bit detector is used to generate the synchronous signal BITTIME, which is active when a one or zero bit 
has been detected. 

BITTIME = (RDMODE) (BITIN) + ... 

Detection of zero bits is accoi:nplished by measuring the time between successive pulses. When TCNTCY = 1 
and BITIN = 0, a zero bit is detected. 

BITTIME = (RDMODE) (BITIN + TCNTCY) + ... 

Data and clock bits could be detected by measuring the time between read pulses, and if this time is greater 
than 3 µs, a zero bit is present; otherwise, no zero bit is present. Since the read pulse is asynchronous to the 
system, the time between pulses can only be measured to an accuracy of 333 ns (±1 clock cycle). For exam
ple, if the counter in Figure 28 is loaded with seven, no zero will be detected if the time between pulses (tp2 
- tp1) is less than 3.0 µs, and a zero will always be detected if tp2 - tp 1 > 3.333 µs. If 3.0 µs < tP2 '-- tp 1 
< 3.333 µs, an ambiguity occurs in that a zero may or may not be detected; Similarly, if the counter is 
loaded with eight rather than seven, no zero bit will be detected if tp2 - tp1 < 2.667 µs, a zero bit will be 
detected if tp2 - tp1 > 3.0 µs, and the result is indeterminate if 2.667 µs < tp2 - tp 1 < 3.0 µs. Most 
floppy-disk drive manufacturers specify that the maximum shift for any bit is 500 ns. Thus, two 
consecutive 1 bits may be separated by nearly 3.0 µs, and two 1 bits separated by a zero bit may shift 
toward each other to result in a minimum separation of nearly 3.0 µs. The combined distortion of 
consecutive 1 bits never fully reaches 1 µs, but the 667 ns margin provided by loading the counter with 
either seven or eight does not provide for reliable, accurate reading of data. (See Figure 28.) 

As stated previously, adjacent 1 bits affect the direction of distortion of a particular 1 bit, with the closest 
pulses having the greatest effect. Empirical observation indicates that only the two bit positions on either 
side of a pulse have significant effect on a pulse, as shown in Table 4. 

Table 4. Bit Shift Direction 

Bit Bit Bit Direction of Bit Bit 
n-2 n-1 n Distortion n+1 n+2 For Bit n 

0 1 1 -+ 0 1 
0 1 1 - 1 0 
0 1 1 +- 1 1 
1 0 1 - 0 1 
1 0 1 +- 1 0 
1 0 1 +- 1 1 
1 1 1 -+ 0 1 
1 1 1 -+ 1 0 
1 1 1 - 1 1 

9900 FAMILY SYSTEMS DESIGN 9-117 



9 

DISKETTE DATA TRANSFER 

ONE 

ONE 
D 

Q P LSEQ D 

<1>38-

+llV 

--i I-- 333 "' 

<1>311-

PULSED 

BITIN 

TCNT I 7 I B e I 10 I 11 

BCNT • 15 

BITTIME 

ONE 

a,. 
09 

Cle 
QD 

CY 

TMS 9900 
Floppy Disk 
Controller 

TCNTCY 

12 13 14 111 I o I 1 I , I e 10 I 11 

BIT DETECTION TIMING AND LOGIC 
A0001304 

Figure 28. Bit Detection Timing and Logic 

The most difficult detection problem is that of differentiating between two contiguous 1 bits which are 
shifted away from each other (worst case 11) and two 1 bits separated by a zero bit where the 1 bits move 
toward each other (worst case 101 ). The worst case 11 occurs in the patterns 

+-

Pattern A 0 1 0 ,and 
Pattern B 0 0 1 

~ +-

The worst case 101 occurs in the patterns 

~ +-

Pattern C 0 0 ,and 
Pattern D 0 

~ +-

The timing logic is such that the period of uncertainty does not lie in the area where a severely distorted 
pulse will occur; that is, when the worst case 11 can occur, and tp2 - tp1 < 3.0 µs, the logic always 

9-118 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

DISKETTE DATA TRANSFER 

indicates that no zero was detected; when the worst case 101 can occur and tp2 - tp1 > 3.0 µs, a zero is 
always detected. To accomplish this, the value loaded into the counter is shown in Table 5. 

Table 5. Worst Case Pattern Load Values 

Pattern 
Bit Bit Bit Bit Bit Bit Load 

n-2 n-1 n n+1 n+2 n+3 Value 

A 0 1 1 1 1 0 7 
B 1 0 1 1 0 1 7 
c 0 1 1 0 1 1 8 

D 1 1 1 0 1 1 8 

When bit n is detected, the counter is loaded with the value shown, dependent upon the data pattern. 

Accommodation of patterns B and D are simple, since bits following that being sampled don't matter. 
Patterns A and C present the problem that, as the serial pulses are being read, the logic does not know what 
bits n+l, n+2, and n+3 are going to be. 

Further analysis of the data format reveals that patterns A and C occur only when an ID or data mark are 
being read, see Table 6. 

Clock 
Data 

Pattern A 

Table 6. Data Mark 

Pattern A can only occur at the beginning of an ID, data, or deleted data mark, and pattern C can only 
occur in a data mark. With pattern A, the first 0 is a data bit, and with pattern C, the first 0 is a clock bit. 
BCNT A selects whether the current 1 bit is to be shifted into the clock or data shift register. The previous 
two bits are CLK7 and DTA 7, the LS B's of the clock and data shift registers, and the order of these bits is 
determined by BCNTA. Using this information, the values loaded into the counter are as shown in Table 7. 

TCNTLDD = (RDMODE) ](CLK7) (DTA7) + (BCNTA-) (DTA7)] + ... 

TCNTLDB = (RDMODE) [(DTA7-) + (BCNTA) (CLK7-)] + ... 

The bit detector will thus adjust its count interval to accommodate the worst-case distortion which can 
occur for the anticipated data pattern. 

9900 FAMILY SYSTEMS DESIGN 9-119 



9 

DISKETTE DATA TRANSFER 

Table 7. Bit Detector Counter Load Values 

BCNTA CLK7 DTA7 

0 0 0 
0 0 1 
0 1 1 
0 1 0 
1 1 0 
1 1 1 
1 0 1 
1 0 0 

4.2.2 Clock/Data Separation 

Load Value 

Illegal 
8 
8 
7 
7 
8 
7 

Illegal 

TMS 9900 
Floppy Disk 
Controller 

Each time BlTTIME is active, a new clock or data bit is shifted in. The value of the clock or data bit is 
BITIN. Since clock and data bits are interleaved, the value of BITIN will be alternately shifted into the 
clock or data shift register each time BITTIME is active. This is accomplished by incrementing the bit 
counter each time BITTIME is active, causing BCNT A to toggle. The equations for shifting the clock and 
data shift registers are: 

CLKSH = (BIITIME) (BCNTA-) (RD MODE)+ ... 

DTASH = (BITTIME) (BCNT A) (RDMODE) + ... 

When four consecutive zeroes are detected in the clock shift register, the order in which bits go to the clock 
and data shift registers is reversed, since four consecutive zero clock bits never occur in the recording 
format used. This is accomplished by the control signal: 

BCLD- = (CLK4-) (CLKS-) (CLK6-) (CLK7-). 

When this signals becomes active, the bit counter is cleared to zero, and remains cleared until the next 1 bit 
is detected. This 1 bit is directed to the clock shift register, causing BCLD- to become inactive and normal 
operation is resumed. Synchronization is thus assured at the beginning of each ID and data field because 
each field is preceded by several bytes with all zero data bits and all one clock bits. 

The timing for clock/data separation is shown in Figure 29. 

4.2.3 Byte Synchronization 

Initial byte synchronization is achieved when reading an ID or data field by detecting the unique clock 
pattern of C7 l 6 which occurs only in ID and data marks. The mark detect signal is expressed by the 
equation: 

MRKDT = (CLKO) (CLKl) (CLK2-) (CLK3-) (CLK4-) (CLKS) (CLK6) (CLK7) 

9-120 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

DISKETTE DATA TRANSFER 

BITTIME 11 11 11 11 
BITIN 11 11 
BCNTA 

BCLD- 4 CONSECUTIVE CLOCK 0'1 ~~=~~~~~ATION I 

CLKSH 11 11 11 
OT ASH 

A0001305 
Figure 29. Clock/Data Separation Timing 

After the mark is detected, one additional BITTIME must occur, allowing the data bit to be shifted into the 
data shift register. 

4.2.4 Reading Disk Data 

Two types of disk reads may be performed. When reading an ID or data field, the first byte read is always 
the ID or data mark. This is accomplished by performing a disk read with Al 3 = 0. The READY input 
signal will not become active until MRKDT = 1 and BITTIME = 1. After the mark is read, byte 
synchronization is established and subsequent disk reads are performed with Al 3 = 1. In this case, READY 
becomes true at each byte boundary when BCNT = 15. 

READY= (DSKRD) [(BCNTA) (MRKDT) (BITTIME) (A13-) + (BCNT = 15) (Al3) + INDSYN]+ ... 

The addresses for the two types of disk reads are 7FF816 for reading marks, and 7FFC 16 for reading 
normal data. The INDSYN term of the above equation causes the read operation to be completed any time 
the index pulse is detected or when the disk becomes not ready. (See Figure 30.) 

4.3 READ/WRITE LOGIC COMBINATION 

This subsection summarizes the equations for the control lines resulting from the combination of the read 
and write control functions. 

BCLD-
BCLD- = (CLK4-) (CLK5-) (CLK6-) (CLK7-) 

BCLR-
BCLR- = (RDMODE) (MRKDT) (BCNTA) (BITIIME) + (INDSYN) 

9900 FAMILY SYSTEMS DESIGN 9-121 

9.,. 



DISKETTE DATA TRANSFER 

\!? 

~ . 
5 5 

i 'c 
-8 

0 

i 
& 

i 
i i 
j j e n 

l" 

l 

.. 9 
w 0 
2 I -c 
~ .... 

M z 
Ci < ~ 

9-122 

5 
~ 

i 
~ 

> I 0 c:c 
~ _, 
a: ~ 

TMS 9900 
Floppy Disk 
Controller 

00 
c: ·e 

E= 
"O 
~ 
4) 

~ 
~ 
.l!l 
Q 

0 
M 

~ 
= 00 
~ 

9900 FAMILY SYSTEMS DESIGN 



-0 
-0 
0 
0 
'"I'] 
;;... 
3: 

~ 
VJ 
....::: 
VJ ...., 
tr:1 
3: 
VJ 

tl 
tr:1 
VJ 

cs z 

'P ...... 
N 
w 

r:---CP_l!_ __ ;-l 

I 
I ME MEN 

I 

I 
!OBIN 

___ .L_l 

0 
RESET I 

~ ~ I 
" .:;; I 
Y1 ;i ·.'3- I 

.:;; I 
y~ D ------.,.--- ..;: RESETIN .. I 

A0001308 

'° A 

STORAGE MEMOfllY r::::.=.==..- - ----;::..:=:..=..,------.....==:....:;--------;i 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-= -= I 
---------------------~ 

~
---~°'!!"~L_!!F_ --, 

I 
I I 

I I RCVDE I 
• I 

+12 3.lK I 

'-~' ---------' 

U1 

U2 - TIMl904 
U3 - TIM '805 
Ut - TIM9ICI& 
l.15. I - TMS 27DI 
UJ.10 - TMS 4042·Z 

- ,_ 
U14,15 - 74LS11l 
U16 - 74LS115 
U17 - 741• 
u11. - 1uS240 
U11.ZO - 7"52S7 

U22 

U23 

Logic Diagram, TMS 9900 Floppy Disk Controller 
(Sheet 1 of 2) 

0 "Tl -t oos::: a. :g (/) 
0 '< CD 
=c CD 
~ c;;·8 
~ 

t) 
~ 

r:n 
~ 
rr:1 
~ 
~ 
rr:1 
t) 

~ 
~ 
~ 
~ 
> z r:n 
"'Ij 
rr:1 
~ 



'P 
....... 
N 
~ 

'° '° 0 
0 

'Tl 
> 
~ 

~ 
Cf) 

>-<'.! 

~ 
tTl 
~ 
Cfl 

0 
tTl 
Cfl 

23 z 

T 

-.c 

+5 

TCNTLDB •. IDTA7-I + ICLK7-llBCNTAI + IADMOOE-1 
TCNTLOO • CCLK71(DTA7J + (0TA7UBCNTA-I + (RDMODE-1 
BITTIME • ITCNTCYI + IBITINllAOMDDEI 
WATDTAD • IADMOOE-llTCNTCYl(ICLKOllBCNTA-l+iDTADllBCNTAI) 
BCLA- • IADMODEllMAKDTllBCNTAllBITTl"EI + llNDSYNI 
WTMOO • IADMOOE-llllCNT•15-lllNDSYN-I + (OISKWTllBCNT•151 

IA131 + IOISKWTlllNDSYNl(A13-I 
• CINDSYNI + IDISKRD-UDISKWT-J + 

IOISKADllA13-llMAKDTllBCNTAlllllTTIMEI + 
IA1311BCNT•151 

OT ASH • IBCNTAllBITTIME + IOISKWTllA1311BCNT•151 + 
IOISKWTllA13-lllNDSYNI 

AEGLO • IDISKWTllA1JllBCNT•151 + IDISKWTllA13-lllNDSYNI 
CLKSH • llCNTA-llBITTIMEI + IDISKWTllA1311BCNT•151 + 

IDISKWTllA13-ICINDSYNI 
BCLD- • ICLK4-llCLK5-llCLK6-llCLK7-I 
.MRKDT • ICLKDllCLK111CLK2-llCLK3-llCLK4-llCLK511CLK61 

ICLK71 

--------i ;::::....=.= - - - - -B~D~E~OA 

TCNTLDB 

BITTIM~ 

DATA SHIFT REGISTER 

i -:r: ,- _! _ I _ -
QA' QA 

Oe 

Cle 
Oo 

Oe 

Of 

CLA OG 
I 11 DTAO I a..· °" 

I 
I Lli' I I 

I 
_____________ J 

E!:£ 
CLK6 

CLKS 8 U20 I BCLD-c 01 
CLK• D 

02 
MRKOT 

CLKJ 
E 03 

~ 
CLK1 
~G 

H 
CS1 CS2 

Logic Diagram, TMS 9900 Floppy Disk Controller 
(Sheet 2 of 2) 

BCLA-

~---..., 

I 
I 
I 

lP 

ET U15 

LO 

QA I BCNTA I 

09 

Cle 

Oo I BCNT • 15 
CY 

tj 
~ 

en 
~ 
tI:1 
~ 
~ 
tI:1 
tj 

~ 
~ 
~ 
~ 
~ z en 
~ 
tI:1 
~ 

0 "T1 -4 
0 O'S: 
3:c en 
-. "'C CD 
2, '< CD 
(DC o 
-. ijjO 

;ii:' 



TMS 9900 
Floppy Disk 
Controller 

DISKETTE DATA TRANSFER 

BITIIME 
BITTIME = (WTMODE) (TCNTCY) + (RDMODE) [(BITIN) + (TCNTCY)] 

= (TCNTCY) + (RDMODE) (BITIN) 

CLKSH 
CLKSH = (DISKWT) [(Al3) (BCNT = 15) + (A13-) (INDSYN)] + (WTMODE) (BCNTA~) 

(BITTIME) + (RDMODE) (BCNTA-) (BITTIME) 
= (DISKWT) [(A13) (BCNT = 15) + (Al3-) (INDSYN)] + (BCNTA-) (BITTIME) 

DTASH 
DTASH = (DISKWT) [(A13) (BCNT= 15) + (A13-) (INDSYN)] + (WTMODE) (BCNTA) (BITTIME) 

+ (RDMODE) (BCNTA) (BITTIME) 
= (DISKWT) [(A13) (BCNT = 15) + (A13-) (INDSYN)] + (BCNTA) (BITTIME) 

MRKDT 
MRKDT = (CLKO) (CLKl) (CLK2-) (CLK3-) (CLK4-) (CLK5) (CLK6) (CLK7) 

READY 
READY = (DISKWT) [(Al3) (BCNT = 15) + (INDSYN)] + (DISKWT-) (DISKRD-) + (DISKRD) 

[(Al3) (BCNT = 15) + (INDSYN) + (A13-) (MRKDT) (BCNTA) (BITTIME)] 
= (DISKWT-) (DISKRD-) + (A13) (BCNT = 15) + (INDSYN) + (DISKRD) (A13-) 

(MRKDT) (BCNT A) (BITTIME) 

REGLD 
REGLD = (DISKWT) [(Al3) (BCNT = 15) + (A13-) (INDSYN)] 

TCNTLDB 
TCNTLDB = (WTMODE) + (RDMODE) [(DTA7-) + (BCNTA) (CLK7-)] 

= (WTMODE) + (DTA7-) + (BCNTA) (CLK7-) 

TCNTLDD 
TCNTLDD = (WTMODE) + (RDMODE) [(CLK7) (DTA7) + (BCNTA-) (DTA7)] 

= (WTMODE) + (CLK7) (DTA 7) + (BCNTA-) (DTA 7) 

WRTDTAD 
WRTDTAD = (WTMODE) (BITTIME) [(CLKO) (BCNTA-) +(DTAO) (BCNTA)] 

= (WTMODE) (TCNTCY) [(CLKO) (BCNTA-) + (DTAO) (BCNTA)] 

WTMDD 
WTMDD = (WTMODE) (BCNT = 15-) (INDSYN-) + (DISKWT) [(A13) (BCNT = 15) + (A13-) 

(INDSYN)] 

9900 FAMILY SYSTEMS DESIGN 9-125 

9~ 



SOFTWARE 

SECTION V 

SOFTWARE 

TMS 9900 
Floppy Disk 
Controller 

The software design of a microprocessor system is as important as its hardware design. In this system, 
several functions which are normally performed by hardware are instead done in software in order to 
reduce device count. Examples of hardware/software tradeoffs include timing, transmit/receive, and CRC 
calculation. 

5.1 SOFTWARE INTERFACE SUMMARY 

The memory map in Figure 31 shows the memory address assignments for program memory, storage 
memory and the floppy-disk interface. 

The CRU bit address assignments are summarized in Table 8 below. 

Table 8. CRU Address Assignments 

Bit 
Output Input 

Address 

0 XMTOUT RCVIN 
1 RTS-
2 
3 
4 SEL INDEX 
5 
6 STEP TR KOO 
7 STEPUP RDY 

5.2 CONTROL SOFTWARE 

Rather than providing individual examples of each individual control and data transfer function, all of the 
functions are combined to demonstrate complete system operation. The control software is modular, and 
the various subroutines may easily be adapted to different configurations of a TMS 9900 floppy-disk 

.,. 9 controller. 

9-126 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

ADDRESS 

0 0 0 0 

0 0 0 2 

0 0 0 4 

H 
~ 
~ 

7 F F 6 

7 F F 8 

7 F F A 

7 F F C 

7 F F E 

8 0 0 0 

A0001309 

FUNCTION 

RESET VECTOR 

TEXT STRINGS 

XOP VECTORS 

TEXT STRINGS, CONSTANTS, 
INSTRUCTIONS 

NOT USED 

WRITE ID OR DATA MARK, BYTE SYNC 

} NOT USED 

l 
WRITE TRACK MARK 

NOT USED 

READ DATA, MARK SYNC 

WRITE DATA, INDEX SYNC 

READ DATA, BYTE SYNC 

WRITE DATA, BYTE SYNC l WORKSPACES, DATA BUFFERS 

} NOT USED 

Figure 31. Memory Address Assignments 

9900 FAMILY SYSTEMS DESIGN 

SOFTWARE 

ARRAY 

PROGRAM MEMORY 

DISK l/F 

STORAGE 
MEMORY 

9-127 

9~ 



~9 

SOFTWARE 

5.2.1 Floppy-Disk Control Program 

TMS 9900 
Floppy Disk 
Controller 

This program contains the complete software for interfacing the TMS 9900 floppy-disk controller to both 
the RS-232 terminal and the floppy-disk drive. 

5.2.2 Operator Commands 

The commands listed in Table 9 are available to the terminal operator. These commands enable the user to 
write and read data to and from the diskette, format tracks, display and enter data from memory, and 
execute from a selected address. The user is able to load and execute diagnostics in addition to performing 
normal data transfer operations. When errors are encountered, error information is reported at the terminal. 

?WA 
?WJ:I 
?WD 
?BA 
?B.H 
?FM 
?MD 
?ME 
?MX 

Table 9. Operator Commands 

TRACK = ct il, 
TRACK= ct tl, 
TRACK= ct tl, 
TRACK = ct tl, 
TRACK = ct tl, 
TRACK= ct tl 
sadd eadd 
sadd 
sadd 

SECTOR =cs~. 
SECTOR =cs~. 
SECTOR= cs~ 
SECTOR =cs~. 
SECTOR =cs~. 
END TRACK= st et 

NUMBER= fil:i 
NUMBER= ill 
NUMBER= ill 
NUMBER= ill 
NUMBER= ill 

Underscored characters are entered by the user. All others are supplied by the controller. The lower case 
fields are hexadecimal values. If the users enters a blank into these fields, the default value is used by the 
controller. Entry of any non-printable character (e.g., Carriage Return, ESCape) during command entry 
causes the command to be aborted. Entry of a non-hexadecimal value in hexadecimal fields causes·the 
command to be aborted. 

Table l 0 lists the command entry parameters and Table 11 gives a summary of the commands. 

Table 10. Command Entry Parameters 

Parameter Definition Default Value Range 

ct Current track number - 00 ~ct~ 4C (7610) 
st Starting track number ct 00 ~st~4C 
cs Current sector number - 01~cs~1A (2610) 
SS Starting sector number cs 01~SS~1A 

sn Number of sectors 01 01 ~ sn ~ FF(2551Q) 
et Ending track number st st ~et ~4C 
5add Starting addre55 8000 - .JI' I I_.,, P""P""l""P"" u ""':: 5auu ""':: rrrr 
eadd Ending address sadd 0 ~ eadd ~ FFFF 

9-128 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

Command 

WA 

WH 

WD 

RA 

SOFTWARE 

Table 11. Command Summary 

Description 

Write ASCII. The ASCII character strings entered by the user are written sequentially onto the diskette. 
Each sector may be terminated, filling remaining bytes with 00, by entry of any non-printable character. 
(ASCII code< 2015) other than ESCape. Entry of ESCape aborts the command. 

Write Hexadecimal. Hexadecimal bytes entered by the user are written sequentially onto the diskette. 
Sector termination and abort are performed in the same way as for the WA command. 

Write Deleted Data. Same as WH command, except the Deleted Data Mark (Clock= C715 Data= F815) 
rather than the Data Mark (Clock= C715, Data= FB15) is written at the beginning of the Data Field. 

Read ASCII. The specified sectors are read and printed out as ASCII character strings. Each sector is 
printed beginning at a new line, and printing continues until the end of the sector, or until a 
non-printable ASCII character is encountered. When more than 80 characters are printed, the controller 
prints the eighty-first character in the first position of the next line. The command may be aborted at 
the end of any sector by depressing the BREAK key before the last character of the sector is printed. If 
a Deleted Data field is encountered, it is reported, and normal operation continues. 

RH Read Hexadecimal. The specified sectors are read and printed out as hexadecimal bytes, 16 bytes per 
line. The command may be aborted by depressing the BREAK key before the last character of any line 
is printed. If a Deleted Data field is encountered, it is reported and normal operation continues. 

FM Format Track. The specified tracks are completely rewritten with gaps, Track Marks, ID fields, and Data 
fields. All zero data is written into the 128 bytes of the data field. 

MD Memory Display. The contents of the specified memory addresses are printed out in hexadecimal byte 
format. The address of the first word of each line is printed, followed by 16 .bytes. The command may 
be aborted by depressing the BREAK key before the last character of any line is printed. 

ME Memory Enter. Beginning with the selected location, the memory address and contents are printed. If it 
is to be modified, the user enters a hexadecimal byte value which will be stored at that address. If the 
value is not to be changed, the user enters a blank character (SPACE bar). The address is then 
incremented and the process is repeated until a non-hex character is entered, terminating the command. 

MX The CPU begins execution at the selected memory location. 

Figure 32 shows the control software for the system described in this application report. 

9900 FAMILY SYSTEMS DESIGN 9-129 



.,.9 

SUMMARY 

SECTION VI 

SUMMARY 

TMS 9900 
Floppy Disk 
Controller 

This application report has provided a thorough discussion of the TMS 9900 floppy-disk controller 
hardware and software system design. The economy of the CRU and the high throughput capability of the 
memory bus result in an economical, powerful system. The memory-to-memory architecture of the 
TMS 9900, along with its powerful instruction set and addressing capability, make the TMS 9900 ideally 
suited for applications where large amounts of data manipulation are necessary. Also, software development 
time is optimized by the minimization of lines of code resulting from the memory-to-memory instructions 
and large number of working registers. 

It is likely that the designer using this application report will have requirements that are not addressed in 
this design. Variations in the sector length are accommodated with slight software modification. Higher 
density recording formats such as MFM and M2FM require changes in the bit detector and data-separation 
logic. Higher throughput can be achieved by using an LSI terminal interface such as the TMS 9902 
asynchronous communication controller and hardware CRC generation. Controlling multiple disks requires 
only the addition of drive select control lines. In short, variations on this design are easily implemented 
through slight hardware and software modifications . 

9-130 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

SUMMARY 

FLOPPY DISK CONTROL f'POGRAM f'AGE 001)1 

0002 
ooci:;: 
0004 
0005 
oooi:. 
0007 
000:::: 
ooo·::.i 
001 0 
0011 
0012 
001 ·;: 
0014 
0015 
0016 
0017 
001:3 
001 ·:i 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
oo.=::::: 
002'? 
01:r;:o 
oo::: 1 
003i=: 
oo;: ::.: 
00;:4 
0035 
oo;:i::. 
0037 
oo:;::::: 
oo:;:·:.i 
0040 
0041 
004;:;: 
004:;: 
0044 
0045 
0046 
0047 
01H:::: 
004'3 
OO':rU 

7FSE 
?F'?E 
7FFR 
?FFE 
?FF:::: 
7FFC 

:::: oc 0 
::::OF? 
:::: (If:':;:: 

:;:: OFt-1 
:::OFC 
:::OFF 
::: 1 00 
::: 1:~:0 
:::170 
:;:: 1::::0 
::=;: 1rl0 
:::: 1CO 
;:: 1EO 

IDT ··· FDCTF.:l ' . 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

FLOPPY DISK CONTROL PROGRAM 

DECEMBEP 21, 1 ·37.;:, 

THIS PROGRAM CONTAINS THE CONTROL SOFTWARE FOR THE 
:: .,·:s:TEM DESCR IBE.11 rn THE "HE ·:.i·:.io 0 FLOPF't' D !SK 
CDrHi':OL S:'lSTEM" APPLICATiml PEPOfH. THE Pf':OGRAM 
ALLOWS THE USER TO READ, WRITE, AND FORMAT DATA ON 
FLOPPY DISK. ADDITIONALLY' THE USER MAY ENTER, 
DISPLAY• AND INITIATE EXECUTION FROM 
ANY LOCATION IN MEMORY. IT IS ASSUMED THAT THE 
CONSOLE USED FOR COMMAND ENTRY AND DATA DISPLAY IS 
8 ;:oo BAUD, p:~:-2;:;:;:c T"i'PE TEF:MHlAL. THE C1JMMt=1t·ms 
USED IN INTERFACING THE TERMINAL OPERATOR 
INTERFACE TD THE CONTROLLER APE FULLY 
DES:CF.: !BED Hi SECT I Dr"l 5. 3 OF Tl-iE "HF: '=!900 
FLOPF"l DEV cmni::::oL :S.'l:S:TEM" APPLICATION 
r;:EPOPT. 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• DI ~:f::" TRAt·CFEF.: FW D F.' E :S: 5:E:S: 

• 
r·lPt:::i.r.IT €OU > ?F::::E DA TA f'lAf;;:K '.r.IF.: I TE 
TKM1 .• _IT E 1)U >7F9E fF.:t=iCK Mt:il;:K 1,_1i:;;: I TE 

Itffl::·::!.r.IT '.:OU >?FFA I r·rnE>:: ·s:\'tK: 1,_1p I TE 

DTAl.rlT EOU >?FFE B\'TE S'r'tlC 1 .• IP I TE 

M'"'KPD EOU ·::- 7FF::;: ~·lAF.·V S:YtK: i:;::EAD 

DTAF.'D EOU ·::-?FFC .E: ·,-'TE s:··.-llC PEAD 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• i:;::HM 

• 
:S:i'.:CBUF EOU 
IDFLD EC!U 
TKt-JUt·l EOU 
:Ecr·iur·1 ~OU 
IDCF:C EOU 
flTAFLD E1~11 I 
DT.:.tE:1.JF E•)U 
DTA•:RC EOU 
~[llolF'':o t:OU 
FD1.o.IP4 EC!U 
F [11.r.IP:?.: EOU 
FDl.rlf'2 EOU 
F[llolF' 1 EOU 

t:OiJATES 

::-::::oco 
·::-;::OF? 
>;:::(IF:~: 

> :;:: OFA 
>:::OFC 
>:::oi=-F 
> ::: 1 00 
>:::1:::0 
.> ::=: 17 0 
::-:::1;:::0 
> ::: 1 AO 
>:::1 c I) 
:>:::tEO 

CRC BUFFER FOP FORMATTING 
!fl i=IELD IMA1:;f 
T"''ACf::" r·iUMBEF.: 
~:'.::CTOP tKIMBt:F: 
CRC FOP ID FIELD 
D8TA FIELD IMAGE 
128 BYTE DATA BUFFER 
CRC FOR DAT8 FIELD 
1,JO~:K:S:F'ACE 5 
io.IOF:t::.S:PACE 4 
1.i.IL1~'.~<:~:PACE 3 
1,_IJPf::SPACE 2 
1.Jf:Wf::SPACE 

Figure 32. Floppy Disk Control Program (Sheet 1 of 28) 

9900 FAMILY SYSTEMS DESIGN 9-131 

9~ 



~9 

SUMMARY TMS 9900 
Floppy Disk 
Controller 

~LOPPY DISK CONTROL PROGRAM PfH;E 0002 

00:.2 
oos::: 
0054 
0055 
0056 
0057 
005::: 
005'? 
0060 
0061 
0062 
0063 
0064 
ooi::.5 
006..:. 
00.:.7 
oo.:.::: 
00.:.9 
0070 
0071 
0072 
0073 
0074 
0075 
007.:. 
0077 
007::: 
007'? 
oo:::o 
0o:::1 
00;:::2 
00:::::::: 
oc1;::4 
00:::5 
00:::6 
0087 
01Y:::=: 
0 •:i:::·;! 
01no 
0091 
00''.:12 
0093 
00'?4 
00·?5 
oo·::ii=.:. 
0097 
009::: 
00'?'? 

9-132 

0000 
0004 
000.:. 
0007 
0000 
0 001 
0004 
0000:. 
0007 

OOi='A 
01F4 
03E!:: 
75:~:0 

O":·DC 
14:::2 

0000 :::1i:::o 
0002 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• CPU EC!UATES 

• 
PW EOU 0 PECEI'./1=: Hi 
nmt::::-:: EOU 4 It'iDE::·:: PUL:S:E 
TF.:f<OO EOU 6 TRACK 00 I t'iD I CAT DR 
i;:[I\' EOU 7 DP IVE PEAD'·1' 
;:<OUT EOU 0 TPAtfS:t·1 IT OUT 
PTS EOU 1 PEOUEST TD :s:Et"iD 
::EL i::ou 4 [li;:IVE SELECT 
STEP EC!U E, HEAD STEP COtHROL 
::TEPUP EOU 7 STEP DI F.:ECT I Ot·f COtHROL 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• >::OP 

• 
D>::OF· 
D><DP 
D::<OP 
D::<OF· 
D>•:OF' 
D::·::LJF· 
[l;:-:;OP 
D::<OF' 
D':·::OP 
D::·::IJP 
[l:<OP 
D>::oP 
D>::Oi=' 
D:=<DF' 
D>::OF· 

EOUATES 

EPPT• 1 
IDF.:D,2 
n:sT.::.=: 
:: lt"iC, 4 
rr::on. ":· 
A>::MT, 6 
c;:::·c1 • 7 
CF.'CD, ::: 
TINC, ·~ 
i-WC2, 1 0 
t-l::<M2, 1 1 
t·fLHf, 12 
i;·Ecv. 13 
;:.::tH T, 14 
DUiY, 15 

EPPDR F.:EPORT 
i;:EAD ID FIELD 
::ET TPACK 
I tlCPEMEtH SECTOF.: 
::ELECT DR I VE Ot'f 
ASCII DATA TPANSMIT 
ID FIELD CRC CALCULATION 
DATA FIELD CPC CALCULHTION 
I tK:REt·1EtH TF:AO< 
i;;:ECE I VE t-IE;:-:; f:"r'TE 
TRAt-lSMIT HEX B"r'TE 
riElil L ItfE 
RECEIVE CHARACTER 
TRAt-lSMIT CHA~ACTER 
SOFTWARE TIME DELAY 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• TIME 

• 
HBDL\' EOU 
FBDLY EOU 
B2DL'l EOU 
F.:::::ODLY EOU 

• 
HSDL\' EOU 
HDLDL\' EOU 

COt·f :: TAt·fT·:: 

250 
500 
1 000 
30000 

1500 
5250 

HALF f:IT Cl.667 MS.1 
FULL BIT (3.333 MS.> 
2 f:ITS C6.667 MS.> 
CA~:i;: I AGE F.:ETUF.·t·f 
Cc'OO MS.) 
H€AD STEP ClO MS.) 
HEAD LOAD t35 MS.) 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
+ POWER ON PESET VECTOR 

• 
RSETVC DATA FDWP1,STA~T 

Figure 32. Floppy Disk Control Program (Sheet 2 of 28) 

9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

SUMMARY 

~LOPPY DISK CONTROL PROGRAM PAGE 0003 

0101 ···························~································ 0102 • 
01 03· • ERROR MESSAGES 
0104 • 
0105 0004 4·;. t·i I DM S:G TE:~T ,. ID r·mT FOIJt-fU"' 
0106 001 0 (II) f:r'TE I) 

0107 I) 011 44 t·iDMM:S:G TEXT "'DATA MARK NOT FOIJNU"' 
0108 0024 1)1) B'lTE I) 

0109 0025 44 NRDYM:S: TEXT ,.DRIVE NOT READY"' 
0110 0034 00 F:YTE 0 
0111 0035 43 CRCMSG TEXT "'CRCC ERROR"' 
0112 003F 00 BYTE 0 
0113 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
0114 • 
0115 • ::<OP './EC TORS· 
0116 • 
0117 0040 r=Fi=r= DATA -1,-1 

0042 FFl=F 
0118 0044 81EO DATA FDlo.IPl, ERPTPC 

004E. 
011 '3 0048 81CO DATA FDl,JP2, I DRDPC 

004A 
0120 004C 8180 DATA l=Dl.o.IP4, TK::;,:TPC 

004E 
0121 0050 81CO DATA FDl .• JP2, S: I t·it:PC 

0052 
0122 0054 :::ct80 DATA FDl.oJP4, DSOi"iPC 

005E. 
0123 0058 81CO DATA FD1.o.IP2, A>~MTPC 

OOSA 
0124 005C 81AO DAT'1 FD1.o.1p3, CRCIPC 

005E 
0125 0060 81AO DATA FDl.o.IP3,CRCDPC 

0062 
0126 0064 :31AO flATA FU1 .• IP3, TI t-iCPC 

0066 
0127 0068 81AO DATA t={l1 •. 1p3, H"1C2PC 

006A 
0128 OOE.C 81AO DF!TA FDl.1JP3, H>~r12PC 

006E 
012'3 0070 81AO Doi TA FU1J.1p3, NLHiPC 

0072 
01:30 0074 8180 DATA l='Dl.o.IP4, RECVPC 

0076 
0131 0078 81SO DATA l='Dl.o.IP4, XM I TPC 

007A 
o 13;:· 007C 8170 DATA FDl.o.IP5, DLAYf-'C 

007E 

Figure 32. Floppy Disk Control Program (Sheet 3 of 28) 

9900 FAMILY SYSTEMS DESIGN 9-133 

9~ 



..,.9 

SUMMARY TMS 9900 
Floppy Disk 
Controller 

FLOPPY DISK CONTROL PROGRAM PAGE 0004 

01:34 
013'5 
01:::.:. 
0137 
013.:: 
0139 
0140 
0141 
0142 
0143 
0144 
0145 
014E· 
0147 
014::: 
1114'3 
0150 
0151 
0152 
0153 
0154 
01'55 
015E. 
0157 
0158 
015'3 
0160 
01.:.1 
0162 
0163 
0164 
0165 
0 lt.:0 6 
0167 
0168 
016'3 
0170 
0171 
0172 
0173 
0174 
0175 
0176 
0177 
017::: 
017'3 
01 :::o 
01:::1 
01 :::2 
I) 1 :::::.:: 
IJ 184 

oo:::o 41 
0081 4i:;, 

0082 4D 
008:::: 1E: 
00:::4 20 
00:::5 3F 
00:::6 07 
0087 o::: 
008::: OD 
oo:::·::i OA 

008A 20 
0093 00 
00'?4 20 
00'?'? 00 
OO'?A 2C 
OOA4 00 
OOA5 2C 
OOAF 00 
OOE:O 20 
OOBB 00 
OOBC 44 
OOCE 00 

ooci= F::: 
OODO l=E 
00[11 FE: 
oon.:: i=c 

00[14 060E: 
007E••OOD4". 

0185 OOD6 16FE 
01::::6 00[1:::: 0380 

9-134 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• A:S: 1:: I I VALUES: 

• 
A:S:CI IA TE>=:T ·"A'' 
A:s:c I IF TE>=:T .-·i= .. · 

ASCI IM TE:=-::T ,.M,. 

f.SC B'lTE > 1 E: 
E:LAt·iK E:'lT£ '>20 
OUE:S:T B'lTE >3F 
BELL BYTE > 07 
E:ACf:::SP BYTE > o::: 
CAF.:F.:ET E:l''TE .>OD 
Lit·iEFD F.:YTE > OA 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• ADDITIDt'lAL TE:=·n t·1ESSA13E:S: 

• 
TKM:S:1;. TE:>::T Tt::::ACI=:: -

E:'lTE 0 
Et·mt·EG TE:=-\T END·" 

B'/TE 0 
S:CTM:S:1::; TE>::T 

... ·sECTOF.' -··· 

B'lTE 0 
r·iUMMSG TE:=n ... f'iUMF.:ER -

B'lT€ 0 
.=tDDM:S:G TE::<:r ADDRES:~: -··· 

B'lTE 0 
DLDM:~:G TE::.:;r ··'DELETED DATA FIELD'' 

BYTE 0 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• DISK MAF.'K cmnTt=HHS 

• 
DLDMF.'K B'lTE >F::: 
I Dl'1F'K B'lTE >FE 
DTP1F.'K BYTE >Ff: 
TKMF'K BYTE >FC 

EVEN 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 

SUBF'OUTINE: DLAY 

• CALLING SEQUENCE: DLAY ~COUNT 

• 
+ A S:OFTlilAt::::E LOOi= 1.1.I I LL E:E E::O::ECUTED THE NUt·1BER 
• OF TIM~S SPECIFIED BY THE CALLING PROGRAM. 
• EACH ITEPATION OF THE LOOP RESULTS IN A 
• DELAY OF ~.~f MICROSECONDS. 

• 
DLA\'PC DEC R 11 

.Jr·iF. DLA\'PC 
~:Tit.IP 

DECF.:EMEt·j T co urn 

LOOt=· IF NOT 0 
.;:ETUPN 

Figure 32. Floppy Disk Control Program (Sheet 4 of 28) 

9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

SUMMARY 

FLOPPY DISK CONTROL PROGRAM PA1:;E 0005 

01:38 
0 i::::9 
0190 
(I 1'j1 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• SUBROUTINE: RECV 
• 

0192 + CALLING SEQUENCE: RECV ~LOCATN 
0193 • 
0194 + A~ ASCII CHARACTER WITH CORRECT FORMATTING 
0195 + IS RECEIVED ANU THEN RETRANSMITTED 
0196 + AT 300 BAUD. THE RECEIVED CHARACTER IS STORED 
0197 + AT THE SPECIFIED LOCATION. 
0198 • 
0199 OODA 04CC QECVPC SET CRU BASE CLR 1''12 

0076++00DA'. 
0200 OODC lFOO RCV 
0201 OODE 13FE 
0202 OOEO 2FEO 

OOE2 OOFA 
0203 OOE4 lFOO 
0204 OOE6 1:3FA 
0205 OOE8 020A 

OOEA 003F 
0206 OOEC 2FEO ~CVLP 

OOEE 01F4 
0207 OOFO lFOO 
020::: OOF2 lE.--
0209 OOF4 026A 

OOF6 :::OOU 
0210 OOF::: O'jlA 

OOF2++1602 
0211 OOFA 1 :::FS 
0212 

0213 
0214 
0215 
0216 
0217 

OOF"C 
OOFE 
0100 
0102 
0104 

2FEO 
03E8 
1F00 
li:'..i::c 
D6CA 

F.'CVOFF 

• 
• 

TB 
.JEO 
DLAY 

TB 
._IEO 
LI 

DLA\' 

TB 
._ltJE 
OF.:I 

~:RL 

.JDC 
DLAV 

TB 
._ldE 
MJ\.'B 

F.:rn 
F.:C'·/ 
:i1HBDL\' 

F.·rn 
RCV 
F.:l o, >3F 

.}1FBDLt' 

RHl 
F.:CVOFF 
F.·1 o, >:::ooo 

,:;:·1 o, 1 

F.'C'·.·'LP 
.i•B,::DL\' 

;:Hi 
F.:C'·.·' 
!"10,+Pll 

TEST PECEIVE INPUT 
LOOP UNTIL PIN = 0 
DELAY ~ALF BIT TIME 

TEST RECEIVE INPUT 
IF RIN = o, VALID START BIT 
INITIALIZE ACCUMULATOP 

DELAY FULL BIT TIME 

TES~ RECEIVE INPUT 
SET MSB O~ ACCUMULRTOP 
Ir· Rm = 1 

SHIFT ACCUMULATOR 

IF CARRV, RECEl~E NEXT BIT 
DELAV 2 BIT TIMES 

TEST RECEIVE INPUT 
IF PIN = (I, FRAMING ERROR 
MOVE RECEIVED CHARACTER 
TO SPECIFIED LOCATION RND 
;:ETF.:Atf~:M IT . 

Figure 32. Floppy Disk Control Program (Sheet 5 of 28) 

9900 FAMILY SYSTEMS DESIGN 9-135 

9<411 



..,9 

SUMMARY TMS 9900 
Floppy Disk 
Controller 

FLOPPY DISK CONTROL PROGRAM 

0.::1 ·? 
02::0 
0221 
0222 
02.::::: 
0224 
0225 
0226 
0227 
022::: 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

S:UE:F.:OUT I t·iE: >=:MIT 

CALLING SEQUENCE: ~MIT ~LDCATN 

AN ~SCII CHARACTER WITH CORRECT FORMATTING 
AND EVEN PARITY IS TRANSMITTED AT 300 BAUD. 
THE LOCATION OF THE CHARACTER TO BE TRANS
MITTED IS SPECIFIED AS THE CALLING PARAMETER. 

0229 • 
0230 0106 04CC ~MITPC CLR R12 

OO?A++0106·" 
0231 010::: 020A 

0232 

02:::::: 
0234 
0235 
02:::i:. 

0237 
02:::::: 
023'? 
0240 
0241 
0242 
oc·4::: 

0244 

0 4 
0 4 
0 4 
0 4 

OlOA 000'3 
(I 1 oc 020'? 
0 l OE ::: 0 0 (1 

0110 D29E: 
0112 lC--
0114 04C9 
011 t=.:. 2A:::9 
0112••1C01 

011::: 1E01 
011 A Of:::: A 
011 c i:;;:--
011 E 1EOO 
0120 10--
012c' 1noo 
011C++i::::o2 
0124 .~:FE 0 
(I 1.::.:. 011=4 
0120••1001 
012::: 0'?1 A 
012A 1 i::.F::: 
012C 1DU1 
U12E o.::::::: (I 

LI 

LI F.:·?, >:::ooo 

t·lOVE: +F.· 11 , R 1 0 
._l'.JF' PAF=:AD._I 
CLF.' t<"? 

PARADJ XOR R9,R10 

• 
: t:::c ;;:: 1 o. ::: 

XMTLP1 _IOC XOUTON 
S:E:Z :<OUT 
._lt·lF' '.=<FJ::DL\' 

>=:CJUT1Jti :.F:IJ >:OUT 

XFBDLY DLAY ~FBDLY 

S.F.'L F: 1 0 • 1 
Y~i:: :-::MTLP 1 
::f:O r;::TS: 
i:;:•Ti.1JP 

llHTIALIZE CPU BASE 

INITIALIZE ACCUMULATOR 

INITIALIZE PARITY MASK 

!=ETCH CHARACTER 
It= ODD PARITY INVERT MSB 
ELSE, CLEAR PARITY MASK 
=<OF.: PAF.: IT\' MA:::;y· 

1.1.I I TH CriARACTEF: 
Tu;;::N Ori ;;::T :: 
i;::O TATE CHARACTEF.' 
TEST TRANSMIT BIT 
I I= o, ~:E ::ET >::OUT 
FHiD ::~:::IP 

EL.::E. ::ET ;:-:;our 

DELAY FULL BIT TIME 

SHll=T ACCUMULHTOR 1 BIT 
re ~OT ZERO. TRANSMIT N~XT BIT 

Figure 32. Floppy Disk Control Program (Sheet 6 of 28) 

9-136 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

SUMMARY 

FLOPPY DISK CONTROL PROGRAM F'AGE 0007 

0250 
0251 
0252 
o,=-5:::: 
0254 
0!:'.55 
0256 
0~:'.57 
025::: 
025'3 
0260 
02.:.1 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

0262 • 

SUBROUTINE: DSDN 

CALLING SEQUENCE: DSON 0 

THE FLOPPY DISK CRIVE IS SELECTED AND 
THE SELECT DELHY PERIOD IS EXECUTED. IF THE 
DEVICE IS NOT READY, AN ERROR MESSAGE IS 
PRINTED AND THE OPERATION IS ABORTED. 
OTHERWISE, CONTROL RETURNS TD THE CALLING 
P1''0GF.:AM. 

0263 0130 04CC DSDNPC CLR R12 INITIALIZE CRU BASE 
OOSE.+•0130'. 

02E.4 0132 1 D04 
0265 0134 2FEO 

0136 1482 
02E.6 01 ·3::: 1F07 
0267 013A D--
02.:.::: 013C 2C6 0 

013E 0025··· 
0269 • 

S:Bo :s:EL 
DLA'l :i1HDLDLY 

TB 1''[1\' 
._IE 0 D:s: Ot-lF.: T 
t::i:::PT ·i•t·lPDYMS 

0270 0140 0380 DSDNRT RTWP 
013A••1302 

SELECT Dt;:: I '"IE 
DELAY FOR HEAD LOAD 

TEST DRIVE STATUS 
I~ READY, NORMAL RETURN 
ELSE, ABORT A~D ?RINT 

E1':F.:oi;:: MES::S:A1:;E. 
, .. lO~:MAL i:::ETui:;,·t~ 

0271 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
o;=-72 
027::: 
0274 
0275 
027.:. 
0277 
027::: 
027'3 
o,:::::o 
02:::1 
02:::2 
02:::3 
0284 
02as 
02:::;;. 
02:::7 
02:::::: 
02:::·::.i 
02·;,.o 
02·;,. 1 0142" 

01~4 

:::1E 0 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• .. 
• 
• 
• 
• 
• 
~:TRt·lVC 

SUBROUTINE: HPC2 

CALLING SEQUENCE: HRC2 ~LDCATN 

A E:i....AtlK Is: T1':At·r:,:M I TTED At·rn ,=:. CHARACH:R:~: 

~RE RECEIVED. IF EIT~ER CHARACTER IS A 
BLANK• ND OPERATION IS PERFORMED AND THE 
tiOF.'r-lAL F'ETUPt-i l S E:=<ECUTED. IF T1o.IO H.E::<ADEC-
1 MAL VAL0ES AR~ ENTERED, THE HEXADECIMAL 
BYTE IS STO?ED HT THE LOCATION SPECIFIED 
AS THE CALLING PARAMETER. IF EITHER CHARACTER 
IS AN ESCAPE, CJ~TPOL IS ~ETURNED TO THE MAIN 
PR01:;F.:At·1 AT THE F'O I t"iT '·'H€PE OPE RAT OF.· COMMFtt·ffl:S. 
~RE REQUESTED. IC ANY QTHER CHARACTEP IS 
RECEIVED, NO OPERATION IS PERFORMED AND THE 
R€TU~N PC VALUE WILL BE THE CONTENTS OF REG
ISTER 10 OF THE CALLING PROGRAM • 

DAHt Ffllo.IP 1, TOP ":ETUf;;'t-i •· .. 'ECTOR 

0292 0146 2FAO HRC2PC XMIT @8LANK TF.:At-l ~:t·1 IT f:LFtt·w. 
I) 1 4 :;:: 0 1)::::4 .. · 

006A••0146··· 
0293 014A 04CA CLR R10 
0294 014C 0708 S~TD RB 
0295 014E 2F49 HRC2LP RECV P9 

CLEAR HEX ACCUMULATOR 
INITIALIZE CHARACTER COUNTER 
FETCH CHAi;:'ACTi::1': 
CIJ1·1;::·i:ii:;::E T'J E S:CAP'=. 

Figure 32. Floppy Disk Control Program (Sheet 7 of 28) 

9900 FAMILY SYSTEMS DESIGN 9-137 

9~ 



...,9 

SUMMARY 

F'LOPPY DISV CONTROL PPOGRAM 

0152 oo:::::::··· 
02'37 0154 1.:.--
o.::·::i::: 0156 04;::0 

015::: 0142"' 
02·::i·::i 015A •;:.:::09 t·mTES:C 

015C 00:;::4" 
0154••1602 

o:::oo 015E 13--
1}301 • 
0:::02 0160 (i;;::2·::i 

0162 DOOO 
0303 0164 1 1--
0304 016;;'.. 02:::9 

01;;:.::: OAOO 
0:::05 016A 1 1--
o:::o.:. 01;;.c 0229 

016.E -="?00 
0:::07 0170 0;:::::9 

0172 OAOO 
030::: 0174 1 1--
0309 0176 02:::·? 

017::: OFFF 
031 0 017A 15--
031 1 017C F2:::·? tlOHH._I 

OlE·A••l 1 o·:: 
0:::12 • 
0313 017E 05SS 
0314 01:::0 16--
0315 0 i :::2 OA4A 
0316 0184 1 Ot:4 
(1::: 17 01:::6 DE.CA H~:C2t'lD 

01:::0••1602 
1J::: i:::: • 
031 '? 01 :::::: o:::::: 0 HF.:C2F.'T 

OlSE++l ::: 14 
0320 01 :::A C3FtD HR1::2AB 

01 :::1:: 0014 
OlE.4+•1 1 12 
0174••1 1 OA 
017A••1507 

03c: 1 01 ·::E 1 OFC 

_tr·lE: r·mn::s:c 
BU1J>=· .i1F:TF:t·lVC 

CB f'•9, ;j)f:LAt·Jf:: 

JEO HP.C2RT 

AI F:9, ->3000 

·-'!... T H;:;::c2A'E: 
CI ~~·;. !' >AOO 

JL T ~lOHAJ 

AI F"?• -> 700 

CI ~:9, >AOO 

_IL T HF:1::2AB 
CI ;:;: .. :;i, >FFF 

Jo::iT HF'C2AB 
s·ocB F:O:,., R 1 0 

It'lC i:<::::: 
JHE HF:c.::nD 
~:LA F' 1 o, 4 
._IMP i-!F:C2LP 
MD'·/B i:;:: 1 (I, +F:l 1 

F:TlilF' 

MO\·' ::.120 (F: 1 '3':1 ' 

._IP1P f4P.C2PT 

f''. 14 

IF tlOT, COt'iT I NUE 
~LSE, ABORT COMMAND 

IF = BLAHK, RETURN 

TMS 9900 
Floppy Disk 
Controller 

ELSE, CONVERT TO HEXADECIMAL 
SUBTRACT ASCII BIAS 

IF LESS THAN >30, ABORT 
TEST FOP t'ltlMEF.: IC 

It= t·l1Jr-1E:PIC, SO:::IP 
ELSE, SUBTRACT ALPHA BIAS 

IF LESS THAN >41' ABORT 

COMPARE TO ASCII ~ 

IF GREATER THAN, ABORT 
STORE HEX VALUE IN 

ACCUMULATOR 
INCREMENT CHARACTE:R COUNT 
IF t·mT lh :s:K IP. 
SHit=T HEX ACCUMULATOR 
F"ETCH SECOND CHARACTER 
~TOF'E HE>: VALUE 

AT SPECIFIED LOCATION 
i:;:: E: TU F: t·i 

MODIFY F:ETUPt·i PC 

Figure 32. Floppy Disk Control Program (Sheet 8 of 28) 

9-138 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

SUMMARY 

FLOPPY DISK CONTROL PROGRAM ;:·AGE 0009 

00::.::::: 
0324. 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 

~UBROUTINE: HXM2 03,=:5 
0::26 
0327 
0328 

• 
• 
• 
• 
• 
• 
• 

CALLING SEQUENCE: H~M2 iLDCATN 

0·32·;. 
0~:30 

0331 

THE HEXADECIMAL EQUIVAL~NT OF THE VALUE CONTAINED 
IN THE LOCATION SPECIFIED BY THE PARAMETER IS 
TRANSMITTED, PRECEDED BY A BLANK 

0332 • 
0333 0190 2FAO HXM2PC XMIT ~BLANk 

0192 00::::4"" 
006E••0190'. 

0334 01 '34 D2'3E:: 
0335 0196 OE.AO 

01 ·3:3 
0336 019A OA4A 
0337 01 '3C 06A 0 

01 '3E 
033::: 01A0 03::: 0 

MDVB •Rl 1'1''10 
BL ,j)t-IE'.:·=:>=:MT 

S:LA r::10,4 
BL .j)HE::-:;::·::MT 

~:Tl.olP 

0339 01A2 C24A HEXXMT MDV R10,R9 
01'3:::++01A2·' 
019E••Olri2'' 

0340 01A4 0949 SRL ~9,4 

0341 01A6 0289 CI R9,>AOO 
OlAS OAOO 

0342 OlAA 11-- JLT NHADJ 
0343 OlAC 0229 AI R9,>700 

OlAE 0701) 
0344 OlBO 0229 NHADJ Fil R9,}3000 

01B2 3000 
Oli1A++1102 

0345 01B4 2FS9 XMIT R9 
0346 01B6 045B RT 

TF:At·E:M IT BLAt·W: 

FETCH BYTE 
TRANSMIT FIRST CHARACTER 

S:HIFT BlTE 
TR~NSMIT SECO~D CHARACTER 

F'ETUF.·t·i 
PlOVE' CHARACTEr:: 

SHIFT RIGHT 4 BITS 
TEST FOr;· tKIMER I•:: 

IF :s:o, S:KIP 
ELSE,ADD ALPHA BIAS 

ADD ASCII f;IA.S 

TRAriSMIT HEX ASCII CHARACTER 
~·ETu-.:r·i 

0347 
034::: 
034'3 
0350 
0351 
0352 
0:;:53 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

0~:54 

(1:35~1 

• 
• 
• 
• 
• 
• 
• 
• 

S:UB1':0UT I t·~E: t"il_ I f'i 

CALLING SEQUENCE: NLIN 0 

THE PRINTER IS ADVANCED TO THE BEGINNING 
OF THE t·iE>=:T L l t·it. 

0356 01B9 2FAO NLINPC XMIT ~C~RRET C:A~:i:::· I AGE F.:E TUF.:t~ 
01 BA 0 o:::::: ... 
0072++01B::: .. · 

0~:57 OlBC ;:'.FEO 
01.BE 75~:0 

1E:S::: 01C0 2FA 0 
01C2 00·::·3 .. · 

035'3 01 C4 I}~:::: I) 

CARRIAG~ RETURN DELAY 

LitiE FEED 

Figure 32. Floppy Disk Control Program (Sheet 9 of 28) 

9900 FAMILY SYSTEMS DESIGN 9-139 

9~ 



...,.9 

SUMMARY 

FLOPPY DISK CONTROL PROGRAM PA1:iE 0010 

TMS 9900 
Floppy Disk 
Controller 

0 ;:i:.1 
o:::.;.2 
o·:::i:.:::: 
0 ;:E.4 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

o~:.:.s 

o;:6::: 
o;:69 
0370 
0371 
0;:72 
o.;:73 
0;:74 
0::::75 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

CALLING SEQUENCE: IDRD 0 

EACH ID FIELD OF THE CURRENT DISKETTE TRACK 
IS QEAD UNTIL THE ID FIELD WITH THE CORRECT 
TRACK' SECTOR, 8ND CRC IS FOUND' AT WHICH 
TIME THE ROUTINE IS EXITED. IF THE COQRECT 
FIELD IS: t·mT FOut·m lilITHW A COMPLETE DIS:t::: 
PEVOLUTION CIE 8EFORE 2 INDEX PULSES ARE 
DETECTED), THE OPERATION IS ABORTED AND AN 
ERROR MESSAGE IS REPORTED. 

0376 01C6 2DCO IDRDPC CRCI 0 
004Ft++01CE···· 

UPDATE ID FIELD IMAGE CRC 

0377 01C8 2040 OSON 0 
0378 OlCA 0209 LI R9,2 

OlCC 0002 
0379 OlCE 020A IDMRD LI RlO,IDFLD 

01 DO ~::OF? 

0380 01D2 9EAO 
01 D4 ?FF::: 

o;:::: 1 
o.;:·::2 
03:::3 
0;:34 
o.~:::::~5 

o;::::.:. 
o=::::7 

o=:·=.io 
0=:·?1 
o;:·::i.:: 
o;:·:-i;: 
0394 

01D6 13--
01 n·:: lF.04 
OlDA 16F9 
OlDC o.:.o·=.i 
01 DE 16F7 
01 EU 2C60 
0 l E.:: 0004 .. · 
01E4 0209 
01 EE· 0006 
01D6++13U6 
OlE::: ·:..,:::~:A 

OlEA 7FFC 

Olt:C 1E.FO 
OlEE ·060'? 
OlFO 1E.Ft: 
01F2 1:i:3:~:0 

• 

MRf::.Ft-iD 

IDF'DLP 

• 

._I~!) MRKFND 
TB IHDE::·:: 
.Jrit: IDMRD 
DEC R'? 
Jrl~ IDMRD 
E1':PT .;:it-iI [lt·Ei::: 

LI ~ .. :-,., .:. 

Cf: +~' 1 t)+, .j:tDTFHo:'D 

Jf"it=.: I Dt-11''.D 
DEC P'? 
Jrie ID~'.DLP 
;;:•Ti.JP 

TURt·l ON DF.' I Vt: 
INITIALIZE INDEX PULSE COUNT 

SET POINTER TD ID FIELD 

COMPARE DISK BYTE TD 

f·1A1'·~::: CHHRACT EF.' 
IF MARK, CONTINUE 
ELSE, TEST FOR INDEX SIGNAL 
IF NO INDEX, REREAD DISK 
IF INDEX,DECREM~NT INDEX COUNT 
re NOT o, REREAD DISK 
ELSE, gEPDRT ID READ ERROR 

LOAD E"lTi::: COUtH 

8DMPARE DISK DATA 

TrJ ID FI ELI!) I MA1:iE 
IF NOT EQUAL, START OVER 
DECREMENT BYTE COUNT 
I~ NOT o, ~EAD NEXT BYTE 
ELS~, ID FOUND, RETURN 

Figure 32. Floppy Disk Control Program (Sheet 10 of 28) 

9-140 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

SUMMARY 

FLOPPY DISK CONTROL PROGRAM 

o::::·::i.:. 
0397 
I) :::·:,i;:: 

• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• SUBROUTINE: ERPT 

0399 
0400 
0401 
0402 
0403 
0404 
0405 
0406 

• 
• 
• 
• 
• 
• 
• 
• 

0407 • 
0408 01F4 2FOO ERPTPC 

0040:0 ++01F4·· 
0409 
041 0 

0411 

0412 

041 :~: 

0414 
C415 

0416 

01 FE. 
01 F::: 
OlFA 
OlFC 
OlFE 
0200 
020.::~ 

0204 
O;::OE. 
020::: 
020A 
020C 

2n·:H: 
2DA(1 
00::::11-· 
2EEO 
:::OF::: 
2DAO 
009A·· 
2EEO 
:::OFA 
1E04 
0420 
014E:'· 

• 

CALLING SEQUENCE: ERPT ~MESSAGE 

THE MESSAGE WHOSE ADDRESS IS CONTAINED IN Rll 
WHEN THE ROUTIN~ IS ENTERED IS PRINTED~ 
FOLLOWED BY THE CURRENT TRACK AND SECTOR 
NUMBER. THE DRIVE IS TURNED OFF AND CONTROL 
IS RETURNED TO THE COMMAND ENTRY PQOGRAM. 

NL It"i 0 

A::-=:MT •Fl 1 
A>=:tH :iHKMS:G 

H>=:r·12 ;:iT~:::nuM 

A::-=:rn :i1SCTMS:1::; 

H:=<t·12 .iisecr·~uM 

S:f:Z SEL 
BLl.•JP :i1F.:TP.r·ivc 

P~INT SELECTED MESSAGE 
QRINT TRACK MESSAGE 

PRINT TRACK NUMBER 

PRINT SECTOR MESSAGE 

PRINT SECTOR NUMBER 

TURN OFF DISK DRIVE 
RETURN TO COMMAND 

Figure 32. Floppy Disk Control Program (Sheet 11 of 28) 

9900 FAMILY SYSTEMS DESIGN 9-141 

9 ..... 



~9 

SUMMARY 

~LDPPY DISK CONTROL PROGRAM 

TMS 9900 
Floppy Disk 
Controller 

041::: 
041 '? 
0420 
0421 
0422 
0423 
0424 
0425 
0426 
0427 
042::: 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

0429 • 

SUBROUTINE: A~MT 

CALLING SEQUENCE: AXMT ~MESSAGE 

THE ASCII CHARACTER STRING, TME 
BE•::iitHHr·11:; ADDF'ES::;: OF lr.IH I CH I::;: CIJtHA HlED 
IN ;:;::11, J::;: TRAr·EMITTED. THE Et·m OF THE 
STRING IS INDICATED BY A NON-PRINTABLE 
CHAQACTEP CIE LESS THAh HEX 20) 

0430 020E 020A AXMTPC LI RlO,:~:O LOAD ~AX CHARACTERS 

04::: 1 
0432 
04.;:3 

04;:4 
0435 
04:::6 
04::7 
04:::::: 

04:::·? 
0440 
0441 
0442 
0443 

9-142 

0210 0050 
0 05A•• O;:: OE··· 

• 
0212 D27E: A><MTLP MOVB 
0214 ·:.i:::o·:.i CB 
0;::16 00:::4··· 
021 ::: 1 1-- JLT 
021A 2F:::·;i ;:.::t-11 T 

021C 060A DEC 
021E 16F9 ._llif. 
0;::20 ·;i:::1 B •::E: 
0222 oo::N··· 

• 
0224 1 1-- JI_ T 
Oc'26 c'.FOO til. I tl 
0;::2::: 1 OF4 _IMP 
022A o:::::: 0 A:O<MTRT PH.IP 
o.:: 1:::++1 1 o::: 
o.:::24•• 1 1 Oc' 

+F:l 1 +, P9 
F,·9, .i•E:LAr·lf:: 

~>=:MTPT 

R9 
t::: 1 0 
A>=:MTLP 
+F'.l 1 ' .~1E:Lfir-if: 

A"=·=:MTF.'T 
0 
A':.::MTLP 

F·EF'. LHJE 
~ETCH CHA;;'.'ACTEF.'. 
PRINTABLE CHAPACTEP? 

IF t·iOT, F.:ETIJF.'t"i 
~LSE' PRINT CHARACTER 
DECREMENT MAX CHAR COUNT 
IF NOT o, FETCH NEXT CHAR 
ELSE, IS NEXT CHAP 

;:::·;:;::I tHA E:LE' 
IF t·iiJT• ;:;::ETl_l;;::r·l 
t·J;::1,1 l_lf"iE 
PRINT PEST OF STRING 
STRING PRINTED, RETURN 

Figure 32. Floppy Disk Control Program (Sheet 12 of 28) 

9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

SUMMARY 

FLOPPY DISK CONTROL PROGRAM 

0445 
0446 
0447 
044::: 
0449 
0450 
0451 
0452 
0453 
0454 
0455 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

022C 
0;::2E 

020A 
:::0;=7 

OOSE••022C'. 
0456 023 0 02 09 

0232 0005 
(1457 0234 06A 0 

02:::6 

• 
• ~:Ut:F.'OUT I NE: CRC I 
• 
• CALLING SEQUENC~: CRCI 0 
• 
• THE CRC IS CALCULATED FDR THE ID FIELD IMAGE 
• CONTAINED IN MEMDF.'Y ~ND STORED IN THE LAST 2 
• BYTES OF THE FIELD. 
• 
C:F.:CIPC LI RlO,IDFLD SET UP ID FIELD POINTER 

LI SET UP ID FIELD COUNT 

BL .):•CRCALC CALCULHTE C1':C 

i;::Tl.i.IF' 045;:: 02::::::: o:::::::: 0 
045·:,i 
0460 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 

04.:.1 
04.:.2 
0463 
0464 
0465 
0466 
0467 

• ~:l_if;t;:OUT ItiE: ci;:·cn 
• 
• 
• 
• 
• 
• 

CALLING SEQUENCE: CRCD 0 

THi:: CFC E CFILCULATED FOP T~E DATA FI ELD P1ri1:3E 
CDNTA ItiED Pl MEMfJP'r' AHD :: TOF:ED ItJ THE LA:: T .:· 
BYTES OF THE FIELD. 

0468 • 
0469 023A 020A CRCDPC LI 

023C :::oF;:: 
S~T JP DATA FIELD POINTEF.' 

0 o.; . .;::+• 02::::A ,. 
0470 023E 0209 LI 

0:~4 0 0o:::1 
04 71 024C:: 06A 0 

0::44 
04 7 2 0240:. 1:r::::::: 0 

BL 

SET UP DATA FIELD COUNT 

CALCUUHE CF:C 

Figure 32. Floppy Disk Control Program (Sheet 13 of 28) 

9900 FAMILY SYSTEMS DESIGN 9-143 

9 .... 



~9 

SUMMARY 

FLOPPY DISK CONTROL PROGRAM PA1;iE 0014 

TMS 9900 
Floppy Disk 
Controller 

0474 
0475 
0476 
0477 
047::: 
047'? 
04:::0 
0481 
04:::2 
04:::3 
04:::4 
04:::::5 
04:::6 
04:::7 
04'::::: 
04'::9 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 
• 
• 
• 
• • 
• 
• 
• 
• 
• 
• 

0490 • 

CALLING SEQUENCE: LI 
LI 
BL 

;;::1 O• FLDADD 
r.::·:i • l=LDCtH 
0i 1CRCALC 

TYE CYCLIC REDUNDANCY CHECK CHARACTER <CRC) FOR 
THE l=IELD ADDRESSED BY RlO IS CALCULATED 
AND STORED IN TH~ LAST 2 BYTES OF THE 
FIELD. THE LENGTH OF THE FIELD <EXCLUDING CRC) 
IS SPECIFIED BY R9. THE CRC POLYNOMIAL IS 
X++16+X++12+X++5+1. BEFORE CRC CALCULATION 
BEGINS• THE PARTIAL CRC IS PRESET TO ~LL ONES. 
R7• R8• R9• AND R10 APE DESTROYED. 

0491 0248 0708 CRCALC SETO RB 
02:~:6+• 0.::4,:: ,. 

PRESET PARTIAL CRC 

(i4'?2 
0493 
04'34 
04'35 
04'96 
04'?7 
04'3::: 

04'3'3 
0500 
0501 
0:;02 
0503 
0504 
0505 
0506 
0507 
o::.o::::: 
0":10'? 

9-144 

01::44•• 024::: ·· 
024A 04C7 CRCLi=' 
024C Dll=A 
o.::4E 2A07 
Os'SO (: 1 c::: 
OE.'52 0947 
o::s4 2·~c;:: 

025.:. (1247 
o;=:s::: FFOO 
1:i:.::SA 0947 
025C .=:A07 
025E Of:77 
02;:.(I 2A07 
0262 oi:.c::: 
U264 060'? 
l);:'.66 lE.F 1 
026::: DE:::::: 
o.=:t.A o6c·::: 
026C Di:.:::::: 
026E 045:t: 

CLF.: R7 
MCJVB +F: 1 O+ • P7 
':-0: 0 ;;: F'7 , i:::: ::;:: 
t·11JV p::,, P? 
::h=:L F'7 • 4 
'.:-O:[]P i:;:·:::, F'7 
AHDI i:::'7• >l=FOO 

:RL F:?, 4 
,=·m P F:? , P ::;::: 
·::i;:'.1:· F'.7' 7 
,:-:;[Ji:;: F'.7• R::: 
::!.1.IF'B F:::::: 
fl~::: 1::: i:::: '=l 
._lt·~E CRCLP 
r·10'..01 B :;:::::, +P 1 O+ 
S: I 1.IP B F: ::: 
i"l'JVB R:::. +F:l (1 

i:;:T 

C~EAR SCPATCH REGISTER 
FETCH r-lE::<T B\' TE 
::.::o;:;:· t·~l'.:i.1.I B'/TE 11,i I TH CF:C 
~DVE TO SCRATCH REG 
SHil=T SCRATCH RIGHT 4 
XOR CPC WITH SCRATCH 
MASK OFF LOWEP BYTE 

SHil=T SCRATCH RIGHT 4 
XJR SCRATCH WITH CRC 
ROTATE SCRATCH RIGHT 7 
,:·::1J;:;:: sci::::ATCH 1 •. 1 I TH CF:C 
REVERSE BYTES IN CRC 
DECREMENT BYTE COUNT 
IF NOT n. !=ETCH NEXT BYTE 
o;:L S:E, TPAt·L§:FER 
1::i:::c TD TH~ ::1n1 
OF THE FIELD 
.;:·f::TUh'.'t·l 

Figure 32. Floppy Disk Control Program (Sheet 14 of 28) 

9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

SUMMARY 

FLOPPY DISK CONTROL PROGRAM PAGE 0015 

0511 
0512 
0513 
0514 
0515 
os1i:. 
0517 
051 :=: 
0519 
0520 
0521 
0522 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

SUBROUTINE: SINC 

CALLING SEQUENCE: SINC 0 

THE SECTOR NUMBER IS INCREMENTED BY 1. 
IF THE NEW VALUE IS GRERTER THAN 26, 
THE SECTOR NUMBER IS SET TD 1 AND 
THE TRACK NUMBER IS INCREMENTED, 
AND THE HEAD IS STEPPED TD THE NEXT TRACK. 

0523 0270 D2AO SINCPC MDVB ~SECNUM,RlO 
0272 SOFA 

FETCH SECTOR NUMBER 

0524 

0525 

0526 
0527 
0528 

0529 
0530 

050::1 

0 OS2•• 027 0 ... 
0274 022A 
027E. 0100 
0278 02SA 
027A lBOO 
027C 14--

027E DSOA 
02:::0 ~::OFA 

02:::2 0.3::::0 
02B4 2E40 
027C••1403 
028E. 020A 
0288 0100 

AI 

CI 

JHE 
• 
S:EC:,,:IT MDVB 

i:;;:Tl.1.IP 
:S:ECt·i:=<T Tit'K: 

LI 

r:::10,>100 

Rl o, 27•> 1 00 

SECt·i>=:T 

R 1 0, ;)1SECt'iU"1 

0 

h:: 1 O• >100 

ADD 1 TO SECTOR NUMBER 

COMPAf:::E TD 27 

IF HIGH DR EQUAL, 
I NCPEM9ff Ti:;;:ACK 
~ESTORE SECTOR NUMBER 

f':ETUt;;:N 
INCREMENT TRACK NUMBER 

LOAD NEW SECTOR NUMBER 

05::::2 
0533 
0534 
0535 
0536 
os::::? 
05~::::: 

0539 
0540 
0541 
0542 
0543 
0544 
0'545 
054E. 
0547 
054:::: 
0549 
OSSO 
0551 
0552 

02SA 1 OF9 ._IMF' :SEC:=< IT STORE SECTOR NUMBER 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

SUBROUTINE: TKST 

CALLING SEQUENCE: TKST ~TRACK 

THE READ/WRITE HEAD OF THE DISK DPIVE IS 
STEPPED TD THE TRACK NUMBER SPECIFIED BY THE 
LEFT BYTE OF Rll, UNLESS THE DISK IS NOT 
READY• IN WHICH CASE THE OPERATION IS ABORTED. 
I~ THE SPECIFIED TRACK IS OUT OF RANGE CIE 
GREATER THAN 76' THE HEAD IS STEPPED TO TRACK 
0. THE NEW TRACK NUMBER REPLACES THE OLD 
TRACK NUMBER IN MEMORY. IF THE NEW TRACK 
NUMBER IS TD BE o, THE TRACK IS STEPPED 
UNTIL THE TRKOO STATUS SIGNAL IS DETECTED. 
IF THE OLD TRACK NUMBER WAS o, THE HEAD IS 
STEPPED TD TRACk 0 BEFORE THE NEW STEPPING 
OPERATION BEGINS. 

0553 028C 04CC TKSTPC CLR R12 
004€++02SC·" 

INITIALIZE CRU BASE 

0554 028E 1D04 SBO SEL 
OS55 0290 2FEO DLAY ~HDLDLY 

0292 14:::;:: 

:~:ELECT Dt;;· I VE 
HEAD LOAD DELA'r' 

Figure 32. Floppy Disk Control Program (Sheet 15 of 28) 

9900 FAMILY SYSTEMS DESIGN 9-145 



~9 

SUMMARY 

FLOPF"r' DI Sf=:: CDtHPOL PF'OGF'AM 

0556 02'?4 1F07 TB 
0557 02'?6 13-- .JEO 
0558 029::: 2CE0 0 £PPT 

02'?A 0025··· 
055'31 02'?C C24E: TKCNTU MDV 

0296••1302 
0560 02'?E o·?:::·? :::F.:L 
0561 02AO 13-- .JEO 
o5E.2 02A2 02:::9 CI 

02A4 004C 
05E0 3 02AE. 12-- .JLE 
05E.4 02A::: 04C'? CLf''. 
0565 02AA OE.AO TKTOO f:L 

02AC 
02A0••1304 

05f.~. 02AE 1 0-- ._iMP 
0567 02BO D2AO Tl·:::t·EPO MOVB 

02B2 SOF=8 
02A6++1204 

o~;~,::;: 02B4 O"?:::A ::PL 
05f.·~ 02B6 tE.-- Jr-IE 
0570 02E:::: 06AO BL 

O,::'.BA 
0571 02BC S28':,t H"f"CF.:1 c 

02B6++1602 
05?2 • 
0573 02BE 1 1-- ._IL T 
0574 02CO 13-- JEO 
0575 02C2 1D07 ::t:o 
057.:. 02C4 os:::A HK: 
0:177 02CE. 1 0-- _IMP 

057::: 02c::: 1E07 ::TPOUT :::BZ 
02BE••1 1 04 

057'3 02CA OE.OR n:::c 
05:::0 02CC 06AO n::1:;0 BL 

02CE 
02cr:.+• 1 002 

os::: 1 02DO 1 OF=5 _lr•1F' 

0582 02D2 '-''=·'- ';-I H:STF'T Sl.1.IPB 
02AE••1 01 1 
02C 0+• 13 o::: 

os:::3 • 
05:::4 02D4 :::o MOVE: 

02D6 OF 
o'5·=:s 02D::: ;:::: ;;::fl.rlF' 

j;:'.f!Y 
Tf:::cr-iru 
,)1t·lP.D'/M :: 

Pl 1 ' P'? 

P·?, ::: 
nnoo 
F:·?, (t• 

n::n:Ro 
F."~ 
;)1T~:::CLF: 

H:::S:TPT 
.j)Tf::Jil_IM, F.: 1 

F.: 1 o, ::: 
n::tlZR 1 
;)1TKCLF.' 

F.:·::i, Pl 0 

S:TF'OUT 
TKS:TRT 
:·TEPUP 
Pl 0 
n::1:;1J 
·::TE PUP 

F' 1 I) 
,)1TVSTEP 

Tt::JlZP 1 
R'? 

R'?, ,)1Tf::·t·lUM 

(I 

CHECK DRIVE STATUS 
IF READY, CONTINUE 
£LSE, REPORT ERROR 

SAVE NEW TRACK NUMBER 

TO RIGHT BYTE OF R'? 
IF (I, CLEAR TRACK 

TMS 9900 
Floppy Disk 
Controller 

t-IEW TRACK NUMBER IN RANGE? 

IS ::o, :::f:'.IP 
ELSE, CLEAR NEW TPACK NUMBER 
STEP TO TPACf::" 00 

F:ETUF.'.N 
FETCH OLD TRACK t-IUMBER 

MOVE TO RIGHT BYTE 
IF tmr oo, CLJtHHlUE 
ELSE, STEP TD TRACK 00 

COMPARE NEW TRACK 

TO OLD TRACK NUMBER 
I~ LESS THAN, STEP OUT 1 TPACK 
IF EQUAL, RETURN 
ELSE, STEP IN 1 TRACK 
INCREMENT OLD TRACK 
STEP HEAD 
::ELECT STEP OUT 

D~CREMENT OLD TRACK 
:::TEP HEAD 

REPEAT FOR NEXT STEP 
MOVE NEW TRACK NUMBER 

TD LEFT BYTE 
UPDATE TRACK NUMBER 

F.:ETURt·l 

Figure 32. Floppy Disk Conti:ol Program (Sheet 16 of 28) 

9-146 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

SUMMARY 

FLOPPY DISK CONTROL PROGRAM PAGE 0017 

05:37 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

SUBROUTINE: TKCLR 

CALLING SEQUENCE: BL ;j)TKCLF.: 

THE READ/WRITE HEAD IS STEPPED OUT UNTIL 
THE TRKOO STATUS SIGNAL BECOMES ACTIVE. 
THE CONTENTS D~ RS AND ~11 ARE DESTROYED. 

058'3 
05'30 
05'31 
05'32 
05'3:3 
05'34 
05'35 
05'36 
05·::1"? 02DA C20B TKCLR MDV R11,RS SAVE RETURN LINKAGE 

05'3S 
05'3'3 
0600 
OE.O 1 
OE.02 
OE.03 

02AC•• 02DA ,. 
02BA••02DA' 
02DC 1F07 
02DE 16-
t:l2EO 1 F06 
02E2 16--
02E4 045S 
02E6 1E07 
02E2++1E0 0l 

06 04 02EE: 06A 0 
02EA 

0605 
OE.06 

0607 

060S 

02EC 1 OF? 
02EE 04CS 
02DE••1t.:.07 
02FO [1:30S 
02F2 SOF8 
02F4 2C60 
02F6 0025• .. 

H::CLP TB f:W'l 
._lt·lE TKCABT 
TB TP.1<00 
.Jr·E TK I cr-n 
B +f<:S 

TKICNT SBZ STEPUP 

BL .j)Tf:'.STEP 

._IMP Tf:'.CLP 
TKCABT CLP RS 

MOVB RS, ;j)ff:::t"itlM 

EF.:PT ;j)NRDYMS 

TEST DRIVE STATUS 
I~ NOT READY, ABORT 
TEST TRACK 00 STATUS SIGNAL 
IF NOT ACTIVE,CDNTINUE 
ELSE, F.:ETURt·l 
S:ET TD STEP OUT 

::TEP HEAD 

corn I NUE LOfJP 
SET TRACK 

tlUMBER TD 00 

REPORT ERROR AND ABORT 

0.:.0·3 
OE. 1 0 
0611 
0612 
0613 
OE. 14 
oi:. 15 
0616 
0617 
061 s 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
+ SUBROUTINE: TKSTEP 
• 
• 
• 
• 
• 
• 
• 

CALLING SEQUENCE: BL ;j)TKSTEP 

THE STEP PULSE IS GENERATED FOR 11.3 
MICROSECONDS AND THE HEAD STEP DELAY 
I::: OBSEF.'VED. 

061'3 02FS 1D06 TKSTEP SBD STEP 
02CE++02FS··· 

:::ET STEP SIGNAL 

02EA+• 02FS ,. 
0620 02FA 1000 
0621 02FC 1 EOE. 
OE.22 02FE 2FE 0 

0300 05DC 
0623 0302 ·o45B 

r-iOP 
SBZ ::TEP 
DLAY ,)1HSDL'/ 

RT 

DUMM\' DELA'/ 
RESET STEP SIGNAL 
DELAY FOR HEAD STEP 

Figure 32. Floppy Disk Control Program (Sheet 17 of 28) 

9900 FAMILY SYSTEMS DESIGN 9-147 

9 ... 



SUMMARY TMS 9900 
Floppy Disk 
Controller 

FLOPPY DISK CONTROL PROGRAM 

0625 
0626 
Ot.27 
0628 
062-3 
oo:;.30 
0631 
0632 
0633 
0634 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

SUBROUTINE: TINC 

CALLING SEQUENCE: TINC 0 

THE HEAD IS MOVED TD THE NEXT CONSECUTIVE 
POSITION. IF ON THE INNERMOST TRACK <76), 
THE HEAD IS MOVED TO TRACK 00. 

0635 0304 D2EO TINCPC MOVB ~TKNUM,Rll 
0306 80F8 

FETCH TRACK NUMBER 

0 066•• 03 04 ,-
0636 0308 022B 

030A 0100 
0637 030C 2CDB 
0638 030E 0380 
06:39 
0640 
0641 
0642 

H~-ST +Rl 1 
RT•.•.IP 

ADD 1 TD T~ACK NUMBER 

t·lO'·/E HEAI• 
~:ETIJRN 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• COMMAND CHARACTER LIST 
• 

0643 0.310 
lf0:.44 

57 CMDLST TEXT 'WAWHWDRARHFMMDMEMX' 

00:.45 
0646 
0647 0322 

0324 
0326 
0328 
032A 

064:?. 032C 

9-148 

o:::.:::E 
i):330 
0.332 

• 
• COMMAND ENTRY POINT TABLE 
• 
CMDENT DATA WTASCJ,WRTHEX,WRTDEL,RDASCJ,RDHEX 

Figure 32. Floppy Disk Control Program (Sheet 18 of 28) 

9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

SUMMARY 

FLOPPY DISK CONTROL PROGRAM PA15E 001'? 

0650 
0651 
0652 
065:=: 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 

POWER-ON RESET ENTRY POINT 

0654 0334 04CC START CLR R12 INITIALIZE CPU BASE 

0655 

0656 
0657 

0658 

0660 
0661 
0.: . .::.2 
oi:.i::.:;: 
0664 
OE.65 
0666 
OE.67 
0668 
0669 
0670 
0671 
OE.72 
OE.7:3 

ot:.74 

0675 

06?E. 
OE.77 
OE,?::: 
0.:.70:,. 
oi:.:::o 
06::: 1 
oi:.s.:: 

06S4 
OE.85 
06St::. 
06::::7 
oi:.:::::: 
06::::·:-:i 
06'?0 
0691 
OE.92 
06'?3 

0002••0334'" 
0336 020B 
033:::: 0300 
033R :=:20B 
0:;:3c 020B 
Cr33E 80F? 
0340 020A 
o.=:42 01 00 
0344 DEEO 
034E. ooDo-· 

0348 DECC 

034A DECC 
034C DECA 

034E D6CC 
0350 2CDC 
0352 1E04 

0354 2FOO 
0144••0354 ,. 

0:35E· 2FAO 
035:3 0085'" 
035A 2FAO 
035C 00:::6··· 
0:35E 2F4A 

03.:.0 OE.CA 
0362 2F4A 

0364 06CA 
03E0 E0 0:::08 
036::: 031 (I·' 
036A 020'? 
036C 0:::20 .. · 
03E0 E C1F8 
0370 1:=:F1 

0372 05C'? 
0374 :::lCA 

ci:;:?E. 16FB 
037::: c2s 1

;. 

03?A 020A 

• 
• 

• 

LI R11,">·=:oo 

LDCR R11'8 
LI R11, IDFLD 

LI Rl0,>100 

f'10VB R12, •R11+ 

t•10'·/B r:::12, •R11+ 
MD'·lB F.:1 (I, •R11+ 

MOVB R12,+R11 
n:::n •F.:12 
:s:BZ SEL 

LOAD CRU INITIALIZATION VALUE 

AND OUTPUT TD CPU 
SET ID FIELD IMAGE POINTER 

SET INITIAL SECTOR VALUE 

ID M8RK DAT8 PATTERN TD 

FIRST BYTE OF ID FIELD IMAGE 
0 TD .sEcmm BYTE 
(TRACI< f·lUMBER) 
0 TD TH I PD B'lTE 
01 TD FOURTH BYTE 
cs:~CTDR NUMBEF.'.) 
0 TD FIFTH B'lTE 
SET READ/WRITE HEAD TD TRACK 0 
TUR fl OFF DP I VE 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
TOP 

• 

• 

CMDLP 

• 

• 

• 

OPERATOR COMMAND REQUEST ENTRY POINT 

NLHl I) 

:=<MIT :}10IJEST 

'=·=:MIT :i1BELL 

F.:ECV RlO 

·s:l.1.IPB ~'.10 

F.:ECV F.:10 

:S:l.dF'B P 1 0 
LI !':8,CMDL:s:T 

LI 

t·1DV •F.·:::+, F.'7 
.JEO TOF' 

INCT F."? 
c r:: 1 0' F.:7 

.JtiE CMDLP 
MDV +R·;., F.:'? 

u F.:1 o, TOP 

PPINT PROMPTING MESSAGE 

<OUESflON MARK, BELL) 

QEAD FIRST CHARACTER 
iJF CiJMMAND 
SAVE IN RIGHT BYTE 
READ SECOND CHHPACTER 
OF CDMMAr·rn 
REVERSE CHARACTERS IN RIO 
SET COMMAND LIST PDINTEP 

SET COMMAND ENTRY POINTER 

FETCH COMMAND IN LIST 
IF LIST VALUE = Oi NOT 
8 LE15AL COMMAND 
INCREMENT ENTRY POINTER 
COMPARE ENTERED COMMAND 
TIJ LIST 
IF NOT EQUAL, REPEAT 
ELSE, COMMAND FOUND, 
FETCH ENTRY POINT 
COMMAND PROGRAM PETUPN 

Figure 32. Floppy Disk Control Program (Sheet 19 of 28) 

9900 FAMILY SYSTEMS DESIGN 9-149 



~ 9 

SUMMARY 

FLOPPY DEK COtHRDL PRQGF.:AM 

0:37C 0354'" 
0694 • 
0E.·::i5 1J;:?E '?SO? CB 

0:380 00·::2··· 
06'?6 • 
06'?7 03S2 13-- .JEC! 
o~.·;..::: 0:;::::4 2DAO A:=·=:MT 

038E. 00:3A··· 
oi::,·;.9 o:;:s::: D220 MO'·/E: 

038A 80F8 
0700 • 
0701 038C 2EC8 H'.=·=:M2 
0702 03:::E 2E8:3 Hf:::C2 
070:;: 03'?0 0288 CI 

o.~:·32 4[100 
0704 03'?4 14DF .JHE 
0705 03'?6 2cD::: TKST 
O?OE. 03'?::: 1E04 SBZ 
0707 03'?A ·;.:307 CB 

03'?C 0081 
,. 

0708 0:3'?E 16-- .Jr-JE 
07 O'? 0:3AO 045'? B 
071 0 03A2 2DAO SECFCH A:=·=:MT 

03A4 oo·::iw· 
03'?E••1E.01 

071 1 03A6 D1AO MDVB 
o;:A::: SOFA 

0712 03AA 2ECE. H>=:M2 
071 :;: 03AC 2E:::E. HF.'C2 
0714 03AE 02:3.:, CI 

03BO 01 00 
0715 03B2 1 1DO JLT 
071E· 03B4 02:::i:. CI 

03B6 1E:OO 
0717 o:;:F.:::: 14CD .JHE 
071::: 0:3t:A D:::o6 MOVE: 

03BC :::OFA 
071 '? 03BE 2DAO A>=:MT 

03CO OOA5'. 
0720 03C2 0205 LI 

03C4 01 00 
0721 03CE. 2E85 HF.:C2 
0722 o:;:c::: o·;.:::s S:f::•L 
072"3 03CA 13C4 .JEC! 
0724 03CC 045'? B 
0725 0:3CE 020::: ADDFCH LI 

03DO :::ooo 
0382••1325 

072E. 03D2 2E:::::: Hi':C2 
0727 cr;:[14 oi::.c:::: s:1 .• .1eF: 
072::: 03D6 2FAO ::.::1·1I T 

0:3D8 00:::7-· 
072'3 03DA 2ES::: HRC2 
0730 o:;:Di:: 06C8 S:l •. IPB 
07:;:1 03Df 045·? B 

R?, .j:iA:S:CI IM 

ADDFCH 
;j)T~<MS13 

;j:1Tf::JJUM, R8 

p::: 
RE: 
F.·:::, 77•256 

TOP 
•R8 
SEL 
J;::7, ;;:1A:s:cI IF 

SE:CFCH 
+i::::·::i 
.j)SCTr·1:s:G 

.j:iSEC:t-lUM •PE. 

P6 
PE. 
F.'E., > 1 00 

TOP 
F.'E., 27•256 

TOP 
P6, ;)1SECt·lUM 

;j)f·lUMM·s:1::; 

~'.5!1 > 1 00 

F.:5 
RS, :;: 
TOP 
•F:'? 
;;;;·:::' >::::oou 

F.:8 
t;:·:::: 
.;:1BACK:S:P 

F.:8 
F.'8 
•F.''? 

PAt3E 0020 

ADDRi:s:s: 
TEST FDR MD,ME, OR 

M>=: CDMMAt·lDS 

TMS 9900 
Floppy Disk 
Controller 

IF so, FETCH ADDRESS ENTRY 
PRINT TRACK MESSAGE 

FETCH CURRENT TPACK 

r·1UMBER 
PPINT TRACK NUMBER 
READ NEW TPACK NUMBER 
NEl .• I TPACK NUMBER LEGAL? 

IF rmr' Af:OF.:T 
STEP HEAD TD NEW TPACK 
TURrl OFF DP I VE 
FOF:t·lAT COMMAtHr?" 

IF rmT, cmn ItRIE 
ELSE, EXECUTE COMMAND 
PRINT SECTOR MESSAGE 

FETCH CUPRENT SECTOF.' 

PRI~T CURRENT SECTOR 
PEAD NElo.1 SECTDF.: nUMBER 
LESS THAM 1 

IF :S:O, ABORT 
GF.:EATEP THAt·l 2E.? 

IF ~:O, ABOF=::T 
UPDATE SECTdR NUMBEP 

PRINT NUMBER MESSAGE 

LOAD DEFAULT NUMBER 

;;::ERV tKIMBER 
MOVE TD RIGHT BYTE 
IF r-JUMBER = o, ABDPT 
E:=<ECUTE COMMAt·lD 
LOAD DEFAULT ADDPESS 

~EAD FIRST BYTE OF ADDRESS 
SRVE IN RIGHT BYTE 
BACKSPACE PRINTEQ 

REALI SECOND BYTE OF PDDPESS 
CORPECT ADDRESS BYTES 
E:=<ECUTE COMMAt-ill 

Figure 32. Floppy Disk Control Program (Sheet 20 of 28) 

9-150 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

SUMMARY 

FLOPPY DISK CONTROL PROGRAM PAGE 0021 

0733 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
0734 • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

COMMAND CONTROL PROGRAM: RDASCI,RDHEX 

THESE COMMANDS ENABLE THE OPERATOR TO ACCESS 
A SPECIFIED NUMBER OF SECTORS BEGINNING AT THE 
CURRENT TRACK AND SECTOR LOCATION, PRINTING 
THE CONTENTS OF EACH SECTOR IN EITHER ASCII (QAl 
OR HEXADECIMAL FORMAT (RH). IF A DELETED DATA 
FI ELD IS DETECT ED' IT IS REPORTED Ar·m READ rn1:; 
CONTINUES. IF THE ID FIELD OR DATA MARK ARE 
NOT FOUND, OR I~ A CRC ERROR OCCURS, THE ERROR 
IS REPORTED AND THE COMMAND is ABORTED. 

ENTRY PARAMETERS: F.:10 
F.? 
F.:5 

F.:ETURt·l ADDPESS 
COMMAND CHARACTERS 
NUMBER OF SECTORS 
TO PEAD 

07:;:5 
073E. 
073? 
073,::: 
073'3 
0740 
0741 
0742 
0743 
0744 
0745 
074E. 
0747 
074::;: 
0749 
0750 
0751 
075:::: 03EO' RDASCI EQU $ RA COMMAND ENTRY POINT 

0::::2::::++ 03E 0 ... 
0753 03EO' 

032A•• 03E 0 ,. 
0754 03E 0 06C7 
0755 03E2 o::: 06 

03E4 SOFF 
075E. 
0757 

0758 
0759 
0760 

0761 

07.:.2 
0763 
0764 
071'.:1 5 
O?E.6 
0767 
076:::: 

03E6 
o::::i::::::: 

03EA 
03EC 
1:i::::EE 
03FO 
03F2 

o·:::F4 

o:::FE. 
03F::;: 
tBFA 
03FC 
o:::FE 

020:::: 
7FFC 

2c:::: 0 
DDAO 
7FFS 
0200 
c11:i::::2 

DD9~::: 

0600 
16FD 
1E04 
'3;?.20 

0400 OODl". 
07E.9 0402 1::::--
077 0 04 04 •3::::2 0 

04 o.:. ::;: OFF 
04 o:::: 0 OCF ··· 

PDHE::·:: 

F.:EAD 

• 

• 

• 
F.:DLPL 1 
• 

EC!U 'f; 

.S:l.tJPB p-:> 
.I 

LI R6,DTAFLD 

u F:::::, DTARD 

IDF:D 0 
MO'.,·'B :i1MF.:KF.:[1, +F:6+ 

LI F:O, 130 

MOVB +i:<·::;:, +P6+ 

DEC F.·o 
.Jrlt: F.:DLPL 1 
S:BZ ::EL 
CB ,j)DTAFLD, :i.1Dlt'lF.:K 

._!EC! DMRKD~< 

CB ~DTAFLD,~DLDMRK 

0771 040A 13-- JEC! DDMXMT 
0772 040C 2C60 ERPT @NDMMSG 

040E 0011 ". 
07?3 0410 2FOO DDMXMT NLIN 0 

040A++l302 
0774 0412 2DAO AXMT @DLDMSG 

RH COMMAND ENTRY POINT 

SWAP COMMAND CHAR BYTES 
LOAD DATA FIELD IMAGE 

F'OltHER 
LOAD DISK DATA READ 

ADDF.:ESS: 
F.:EAD ID ~IELD 
F.'F.AD DATA MAF.:K 

REPEAT NEXT INSTRUCTION 

13 0 T lfo11::S 
MOVE DISK DATA TJ 
DATA FIELD It·18GE 

TUr':t'l 01='1=' DR I '·.JE 
NORMAL DATA MARK? 

IF SD' corn HlUE 
D~LETED DATA MA~K? 

IF ::o, :::f:::IP 
PRINT ERROR MESSAGE 

~EPORT DELETED DATA MARK 

Figure 32. Floppy Disk Control Program (Sheet 21 of 28) 

9900 FAMILY SYSTEMS DESIGN 9-151 

9 .... 



~9 

SUMMARY 

FLOPP\' Dn:v COtHPOL F'POGF'AM 

0414 OOBc··· 
0775 04 lf. C220 DMF.·f<OK 

04 i:::: :::: 1::::0 
0402++130'? 

077E. 041A 2EOO 
0777 041C ::::220 

041 E :::: 1:::0 
(1"('7::: 0420 13--
0779 0422 2Cf.O 

0424 003·:.··· 
07:::0 0426 2FOO F0 DF°F0 T 

0420++1::::0.:: 
07::: 1 042::: 04EO 

042A .:: 1::: 0 
0782 + 
0783 042C 0206 

042E ::: 1 00 
07:::4 + 
o?:::s 04~:0 ·;.:::07 

0432 oo:::o··· 
07:::6 0434 13--
07:::7 + 
07:::::: 0436 o;=:o·? 

04;:·:: ooo;:: 
07:::·? 043A 020::: H>=:PTLF· 

043C 001 0 
07'?0 043E 21=00 
07'? 1 0440 2ED6 H:=<F'LP 1 
07·~2 044E: 05:::6 
0793 0444 060::: 
07'?4 0446 16FC 
o?·~s 044::: 11=00 
07·:,.-:. 044A 1i:.:.--
07'~7 044C 060'? 
07'?::: 044E 16F5 
07•;.I;. 0450 1 0--
o:::oo 0452 2D'?t=::. AS:CIF'D 

0434++130E 
o~:: o 1 + 
0:::02 0454 2[10(1 t·i>='T::CT 

04'50++ 1 001 
o::::o;: 0456 lFOO 
0:::04 045::: 16--
o::: 0'5 045A 0.:.05 
O;::o6 045C lf.C2 
0:::07 045E 1E04 F'EADFH 

044A•• 160'? 
045:::•• 1.:.02 

o.:: o::: 04~.I) 04'5A 

MDV ;i1DTACF°C, F'8 

CPCD 0 
c ;i1DTACF·c, t<:::: 

JEO F:DPPT 
EPPT ;i1CPCt·1:::i::; 

tlLitl 0 

CLF: ;i1DTACPC 

LI F:6, DTABUI= 

CE: P7!1 .j)AS:C I IA 

._lcO AS:CIPD 

LI F."?' :=: 

LI ~'.::: ~ 16 

r-lUtl 0 
H>=:r·1E: +F.'6 
me F:~. 

DEC F:::: 
JtiE H:=<F'LP 1 
TB F:Hi 
._II ~i:: PEAD PT 
DEC f<"? 
._it·E H><PTLP 
_IMP n::-::T·::cr 
A:=<MT ·~:t;. 

·::n11:: 0 

TB F.0 Hl 
_n·ii:: PEADf:;:T 
DEC F'S 
_ltiE t:::EAD 
SBZ :·EL 

E: ~Pl 0 

0022 

FETCH PEAD CPC 

RECALCULATE ci:;:c 
CRC COPF:ECT? 

IF :rn con TI t·iUE 
ELSE, REPORT ERROR 

CLEAR END OF DATA 

I= I ELD IMA1::iE 
LOAD FIELD IMAGE 

F'OitHEP 
PA COMMAr·lD? 

II= so, PPINT IN ASCII 
l=OF'MAT 
LOAD LI t·iE •::ourn 

LOAD ~:lTE COUtH 

tiE1.i L li'lE 
PF'ItH D8TA B'lTE 
INCREMENT DATA FOINTEP 
DEC?EMENT BYTE COUNT 

TMS 9900 
Floppy Disk 
Controller 

IF NOT o, PRINT NEXT BYTE 
OPEPATOR INTERRUPT? 
IF SO, 8BOF:T 
DECREMENT LINE COUNT 
I~ NOT o, PPINT NEXT LINE 
COriT I t·iUE 
F'PitH DATA FIELD 

Itl A:CII 
UPDATE SECTOR NUMBER 

OPERATOR INTERRUPT? 
IF ::o, r=tf:[JF.·T 
DECREMENT SECTOR COUNT 
IF ~OT O• READ NEXT SECTOR 
T1_1r;:ti OFF flF· I '•/E 

i;:t::Tui:::ti 

Figure 32. Floppy Disk Control Program (Sheet 22 of 28) 

9-152 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

SUMMARY 

FLOPPY DISK CONTROL PROGRAM PAGE 0023 

0:31 0 
0;311 
0:::12 
0813 
0:~14 
0;=315 
OB16 
0817 
0.::1 ;3 
0:::1 ·3 
0:::20 
0:?.21 
0:322 
0:32:3 
0:::24 
0:325 
(L32E. 
(1:327 
(l;?.28 
0:::2·3 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

0;?.30 
0::::31 

0::::32 

0::::~:·3 

0::::34 
(1:::·35 

(1;;::;:6 
0::::37 

o::::;:::: 
0:::;:·3 
0::::4 0 
0;:'.:41 

0::::42 

0::::4::;: 
o::M4 
0:345 

0;::46 
ci::M7 

0;:'.:4::: 

0462 
0464 

D;320 
o oci=,. 

0466 :30FF 
0326••04E·2" 
04E.:3 1 o--

046A" 
0:3.:'.4•• 04E.A ,. 

046A [1::::20 
046C OOD1 .. · 

04.:.E ::::OFF 
0322••046A'' 
04?0 06C7 
0468••1 003 

0472 020:::: 
04?4 :31 00 

0476 0200 
047:::: 0040 
047A 04F::'.: 
fl47C 0600 
047E 1E.FD 
0480 020:::: 
04::::2 :::: 1 00 
04::;:4 '3807 
04;:::6 (1(1;?,(I··· 

04::;::::: 13--
04::'.:A Cl OR 
04::::c o;:::nA 
04::::::E 

04·=:.o 0209 
04·;..=· 000::: 
04'?4 0206 
04'?6 001 (I 

• 
• COMMAND CONTROL PROGRAM: WRTHEX,WTASCI,WTDDTA 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

THESE COMMANDS ENABLE THE OPERATOR TD WRITE 
A SPECIFIED NUMBER OF SECTOPS OF DATA BEGINNING 
AT THE CURRENT TRACK AND SECTOR LOCATION, IN 
EITHER A::CII (l,Jffi DR HEXADECIMAL r:1,1D,l,IH1 FORMAT. 
THE WD COMMAND CAUSES A DELETED DATA MARK TD 
PP.EC EDE THE, DATA, At·HI THE l,IA AtlD 11.IH COt1MAtf[rS; 
WRITE THE DATA MARK. IF THE ID FIELD OF 
ANY SECTOR IS NOT FOUND, AN ERROR IS 
REPORTED. 

• ENTRY PARAMETERS: RlO RETURN ADDRESS 

• 
• 
• 
• 
WRTDEL MDVB iDLDMRk,~DTAFLD 

JMF' 1.rJRITE 
1.rJRTHE:x: EOU ·1; 

1,_ITA:::c I MD'·/B ;)1[1Tt1RK, .;:iDTAFLD 

lr.IF.:ITE :::1.1.IF'B p-:> 
.I 

• 
1,1;;:I TLP LI F:::::' DTABUF 

• 
LI RO• .:-4 

1,1TLPL1 CLR +i;::::::+ 
DEC ;;·o 
JtfE li.ITLPL1 
LI i::·::::' DTABUF 

CB R?, .}1fi:1:1 IH 

JEO i.110:.:'TA:C 
~·10\1 ;;· 1 o, F.'4 
LI Pl (I, lrJTB;;·DY 

• 
LI ;;"?• ~=: 

11ITHLF'l LI ;'.6!1 1.:. 

R? COMMAND CHAPACTERS 
RS NUMBER OF SECTORS 

TO 1,JRI TE 

LOAD DELETED DATA MARK 

CtJtfT I t-flJE 
1.1.IH CDMMAt·m EtHP\' PD lflT 

LOAD DA TA MAPt< 

MOVE SECOND COMMAND 

CHARACTEP TO LEFT BYTE 
LOAD DHTA FIELD 

IM"i•~E PO ItHEP 
;;:EPEAT .:.4 TI ME: 

CLEA~ DATA BUFFER 

LJAD DATA BUl=l=ER POINTER 

IF SO, READ ASCII TRING 
;AVE QETIJRN ADDPES 
LOAD HPC2 SUB~DIJTI E 

PETUPr-l 8[1[1r;·i:: ::·:: 

LLJAD I_ ItlE COr_lrH 

LOAD f:'lTE 1:ourn 

Figure 32. Floppy Disk Control Program (Sheet 23 of 28) 

9900 FAMILY SYSTEMS DESIGN 9-153 

9~ 



~9 

SUMMARY 

FLDPP'r' DISY CDrHRDL PROGRAM 

0:349 049::: 2FOO t'lL I t·l 
0:350 049A 2E98 l.ITHLP2 Hi:;;:c2 
0851 04'3C 0588 INC 
0:::52 04'3E OE.06 DEC 
0:::53 04AO 16FC Jt·lE 
0:::54 04A2 060'3 DEC 
0855 04A4 16F7 Jt·lE 
0:::56 04A6 C284 l.1.ITBRD'l MDV 

048E••04A6'. 
o:=:s7 04A8 10-- ._IMP 

1);::58 04AA 0206 1.i.IRTA:S:C LI 
04AC 00:30 
04::::3••131 0 

085'7.I 04AE 2FOO f·lL It·l 
o::::i:.o 04BO 2F58 11.ITASLP RECV 
o:::i:.1 04B2 9:::18 CB 

04B4 0083'" 
08E0 2 04B6 1 :~:-- .JEO 
0863 048:3 138:3:=: CB 

04BA 0084•'' 
o:::i::A 04BC 1 1-- .JL T 
0::::.:.5 04BE (lf,(lf, DEC 
0::::66 04CO 1f.F7 .JNE 
0:::67 04C2 2EOO lt.ITCRCD CRCD 

04A8••100C 
04BC••1102 

OSE.:3 04C4 020'7.I LI 
04C6 7FFE 

o::::.::.-:i 04C8 0208 LI 
04CA 80FF 

0:::70 04CC 2C80 IIli::::D 
o:::7J 04CE 0200 LI 

04DO 001 0 
0:;:72 04[12 04D''.:I 1.o.ITLPL2 CLR 
0873 • 
0:::74 • 
0875 04D4 0600 DEC 
0:::76 04[1f, tf.FD .Jt·ff 
0877 04D::: n:::::::::: MD1·/B 

04DA 7F8E 
0:::7;:: 04DC 0200 LI 

04DE 00::::2 
0:;::79 04EO [167::: i.11TLPL3 MO'./F: 
o:::;::o 04E2 0600 DEC 
o:::::: 1 04E4 16FD .Jt·lE 
0::::::2 04E6 04[1'7.I CLR 
0;::::::: • 
0;:::::4 04E8 2DOO S:HlC 
o::::.::s 04EA 1E04 ::Bz 
0:::::::6 04EC o.:.os DEC 
0::::::7 04EE tf.Cl Jr·i.:: 
o;:::::::: 04FO 045A 1 .• IF: ITF.:T B 

04E:6•+131C 

(I 

•R8 
R.3 
R6 
l.t.ITHLP2 
F.:·::i 
1.o.ITHLP1 
F"4,R10 

l.ITCPCD 
F.:6, 12::: 

0 
•F:::: 
•F.·:::, 0i1ESC 

l.1.IF: I TF.:T 
•1::::8+, ;i'BLAt·w: 

11.ITCPCD 
P6 
1.i.ITA·S:l_F· 
0 

p9, DTAlo.IT 

P:::, DTAFLD 

0 
F·o, 16 

•P·;J 

PO 
1_,_ITl_F'l2 
•R8+, ;i1MPKl.1.ll 

t:::o, 1:::: 0 

+F.:::::+, •t<:9 
PO 
1.i.ITLPL:~: 

•R''.:I 

0 
S:EL 
r:;;:s 
1 • .11":1TLP 
+i:::'.1 (I 

PAGE 0024 

f·lEl1.I Llt·lE 
READ BYTE 

TMS 9900 
Floppy Disk 
Controller 

INCREMENT BUFFER POINTER 
DECREMENT BYTE COUNT 
IF NOT (I, READ NEXT BYTE 
DECREMENT LINE COUNT 
IF NOT (I, READ NEXT LINE 
RESTORE RETURN ADDRESS 

cmnir·wE 
LOAD CHARACTER COUNT 

tH::l.t.I LHlE 
READ CHRRACTEP· 
ESCAPE CHARACTER? 

IF ::0 • RETUF.:N 
f·iON-PR IN TABLE7 

IF so, END OF SECTOR 
DECREMENT CHARACTER COUNT 
IF NOT o, READ NEXT CHAP 
GENERATE DATA FIELD CRC 

DISK DATA WRITE ADDRESS 

DATA FIELD IMAGE POINTER 

READ ID FIELD 
i::::EF'EAT 1 .;:. TI ME::: 

W~ITE LAST 16 BYTES OF 
ID GAP CFIRST BYTE SKIPPED FDR 
BYTE :YNCHRDNIZATION) 

1.11:::: ITE DAT A MAF'I< 

Vi:PEAT 13 0 T Jl'•1E:s· 

i1.li;'.:ITE DATA FIELD 

REWRITE FIRST BYTE OF 
DATA GAP 
UPDATE SECTOR NUMBER 
TU;:;:'t"l OFF ni;:· I 1•/F. 
DECREMENT SECTOR COUNT 
IF r·mT 0, 1_,1,;:: ITE tlE::-(T SECTOF.' 
ELSE, F'ETURt-l 

Figure 32. Floppy Disk Control Program (Sheet 24 of 28) 

9-154 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

SUMMARY 

1t §I 

FLOPPY DISK CONTROL PROGRAM PAGE 0025 

08'30 
0891 
08'32 
0:::·33 
08'34 
0:::·35 
08·3.:. 
08'37 
o:::·38 
0:::·~9 

o·:.ioo 
0'301 
0·~02 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

COMMAND CONTROL PROGRAM: FORMAT 

THIS COMMAND ENABLES THE OPERATOR TO FORMAT 
A NUMBER OF TRACKS BEGINNING AT THE CURRENT 
AND SPECIFYING THE LAST TRACK. ALL GAPS, 
TRACK, ID, AND DATA MARKS, AND TRACK AND 
SECTOR NUMBERS ARE WRITTEN. THE DATA IN THE 
DATA FIELDS IS ~LL ZEROES. 

EtHR'l PARAMETERS:: RlO RETURN ADDRESS 

TRACK 

0903 04F2 2DAO FORMAT AXMT iENDMS:G 
04F4 0094,. 

PRINT END MESSAGE 

032C••04F2" 
o·:.io4 04F6 2DAO 

04F8 008A" 
o·:,i 05 04FA D26 0 

04FC 80F8 
o·:.io6 04FE 2EC9 
090? 0500 2E89 
o·~ o::: os 02 028·~ 

0504 4DOO 
o·:.i 0·3 o5 o.:. 14-
o·:H O 0508 0208 

OSOA :?,OFF 
o·~ 11 05 OC DE2 0 

050E OODl ,. 
(1'31::: 0510 0200 

0512 0040 
0913 0514 04F8 FFLPLl 
0'314 051E. 0600 
ll?l 5 051:?. lE.FD 
091E. 051A 2EOO 
0917 
09t:::: 051C 

051E 
0'319 
o·::i20 os20 
o·::i21 oc;.;::2 

0524 

052::: 

9:::0·;. 
;::OF::: 

1 1--
0208 
0100 

0207 
:::oc 0 

• 
FRMTLF' 

• 
FRMT1 

• 

0924 • 

A><MT .i•TKMS1:; 

MOVB :i•TkJlUM' R·~ 

H'.x:M2 R9 
HRC2 R9 
CI R9,77•256 

JHE l=RMTRT 
LI R8,DTAFLD 

MO'.,•'B .i•DTMRK, •R8+ 

LI F:0,64 

CLR •R8+ 
DEC 1''0 
JtlE FFLPLl 
Ci":CD 0 

CB p·~, .j)TKt·lUM 

_IL T FRMTF:T 
LI F.·:::' > 100 

LI P7!1 S:ECBUF 

0925 052A D808 FF:IDBL MOVB R8,~SECNUM 
052C :::OFA 

09.:::.:. 
o·;.27 
o·;.2::: 

0'52E 
0530 
os·:::2 
os:N 
os:::.::. 

• 
2[1C0 
CDEO 
:::OFC 
022::: 
01 00 

1::F.·C I 0 
MOV .i1 IDCPC, •P7+ 

A I F::::' 1 00 

PRINT TRACK MESSAGE 

FETCH TRACK NUMBER 

PRINT TRACK NUMBER 
READ LAST TRACK NUMBER 
LE1:;AL VALUE:> 

IF t·mT' ~ETURr·l 

LOAD DATA FIELD POINTER 

LOAD DATA MAF:k 

F:EPEAT 64 TI MES 

CLEAR DATA B~FFER 

CALCULATE THE CRC FOF: THE 
DATH FIELD 
LAS:T TRACK LES:S: 

THAN CURRENT TRACK~ 

IF S:O, F.:l::TUF:t·l 
LOAD INITIAL SECTOR 

'·/ALUE 
LOAD SECTOF: BUFFER 

>=·;] HHEF: 
UPDATE SECTOR 

ri1_iMF.:ER 
CALCULATE CRC FOR ID FIELD 
:AVE CRC IN BUFFER 

Figure 32. Floppy Disk Control Program (Sheet 25 of 28) 

9900 FAMILY SYSTEMS DESIGN 9-155 

9 ... 



~9 

SUMMARY 

l="LOPP\' DEV CDrHROL PPOGRAM 

0'?30 053::: 02::::::: 
053A 1BOO 

0'?31 053C 16F6 
0'?32 • 
0933 053E 0207 

0540 :::oco 
0'?34 • 
0'?35 0542 020::: 

0544 01 00 
09:~;6 • 
o·:.i:~:7 0546 2D40 
o·;i3::: 0548 0206 FMit"lD:>=: 

054A 7FFE 
0'?3'? 054C 04EO 

054E 7FFA 
0'?40 0550 0200 

0552 002D 
0941 0554 04D6 FFLPL2 
0'?42 • 
0943 0556 0600 
0'?44 055::'.: 16FD 
0'?45 O~o5A D:::20 

055C OOD2". 
055E 7'F'?E 

0'?4E. 0560 0200 :s:ECTLP 
0562 0020 

IJ?47 0564 04D6 FFLPL3 
0'?4::: 056E, 0600 
0'?49 osi:.:::: 1t:.FD 
O·?SO 056A [1:::2 0 

osi:.c OODO·" 
056E 7F:::E 

0'?51 0570 DSAO 
0572 ::: OF::: 

0·31:.2 0574 Ds:::c 
095:~: 057~· [15::::::: 
0'?54 0578 022::: 

057A 0100 
0'?55 057C DS:::c 
0'?56 057E D5B7 
0·357 0580 D5B7 
095::: 05:32 0200 

o5::H 001 1 
095'? os:::.:. 04D6 FFLPL4 
0'?60 058S 0600 
0961 0588 16FD 
0'?62 05:::c 0204 

05SE :::OFF 
0'?63 • 
0'?64 05'?0 D::::34 

os·~2 7F8E 
09E.5 oo:;·::i4 0200 

_os·:h:, 00::::2 
O'?E.6 os·;i:::: D'5B4 FFLF'L5 
096? o5·?A oi:.oo 

CI F.:8, 27•256 

.Jr·H: FRI DBL 

LI r:;::?, SECBUF 

LI p::;:, > 1 00 

DS:Ot"l 0 
LI t::;:E., DTAl.i.IT 

CLP ;j)It·lfl'.:·::l.o.IT 

LI i::::o,45 

CLR +R6 

DEC PO 
.Jt"IE FFLPL2 
MO\IB .j)Tf::}1FH<, ;;1n:.Ml.o.IT 

LI i::::o,32 

CLR +R6 
DEC i:::·o 
.Jt·lE FFLF'L:3 
MD 0

•••
0 B :JI I DMR~=::, :)1MF.'.f:::l.o.!T 

M0°·/B :j)Tf::Jll_IM, +Pt:. 

MDVB i::::12,+i::::6 
1°'10°·.·0B P:::, +R6 
AI i::::::::' > 1 00 

MDVB F'.12, +F.·E· 
MDVB +F.?+, +RE. 
MOVB +F.:7+, +P6 
LI i::::o, 17 

CLP +RE. 
DEC F.:O 
._lt"fE FFLF'L4 
LI R4,DTAFLD 

M0°·/B +R4+, ;)1MF.:t::1 . .n 

LI F.:o, 130 

M0'..·0B +i:::·4+, +F.:6 
DEC PO 

PtiGE 0 02E. 

IF MOT, REPEAT FOR 
t"lE:=<T SECTOR 
LOAD SECTOR BUFFER 

;:::·oitHER 
LORD INITIAL SECTOR 

t"lUMBER 
Tui::::n on DF.'I 0·/E 
D I:S:f::: DATA l.o.IF.: ITE 

WRITE 0 AT INDEX PULSE 

eEPEAT 45 T IME:s: 

TMS 9900 
Floppy Disk 
Controller 

WRITE PEST OF POST-INDEX 

1.oJF.: I TE TF.:ACK MA~·K 

F.:EPEAT 32 TIMES 

WRITE 32 BYTE GAP 

lo.IF.: I TE ID MARK 

lo.IP I TE TRACK NUMf:EF.: 

WRITE SECOND BYTE 
WRITE SECTOR NUMBER 
INCPEMENT SECTOR NUMBER 

~RITE FOURTH BYTE 
l.oJF.: I TE CRC 1 
1.o.I~: I TE CRC2 
~:EPEAT 1 7 T H1ES: 

lo.IF.: I TE ID GAP 

LOAD DATA FIELD 

IMA1'3E PO IrHEF.: 
Ioli''. I TE DATA MRF'K 

;.:EF'EAT t::: 0 TI MES 

WRITE DATA AND CRC 

Figure 32. Floppy Disk Control Program (Sheet 26 of 28) 

9-156 9900 FAMILY SYSTEMS DESIGN 



TMS 9900 
Floppy Disk 
Controller 

SUMMARY 

FLOPPY DISK CONTROL PROGRAM 

0·3i;:.:::: 
0·3i;:,9 
0970 

09?'1 
0972 
0'37:3 
0·374 
0'375 
0'376 
0·377 

05'3C 
05'3E 
USAO 
05A2 
05A4 
05A6 
05A:3 
OSAA· 
OSAC 
OSAE 
OSBO 

1E.FD 
04D6 
02:38 
2700 
1E.[ID 
04D6 
1F04 
16FD 
2E40 
1 OBE. 
1E04 

Jt-lE FFLPLS 
CLR +R6 
CI RS,>27+256 

.Jt"lE :~:ECTLP 

PREILP CLR 
TB 
._INE 
TINC 0 
._IMF' 

+R6 
INDE::-:; 
PF.:EILP 

FRMTLP 
SEL FRMTRT SBZ 

B +RlO 

PA(;E 0027 

1 .• JF.: I TE PAD BYTE 
LAST BYTE? 

IF NOT, FORMAT NEXT SECTOR 
WRITE PRE-INDEX GAP 
UtH IL HHIE:": 
F'ULSE OCCURS: 
STEP HEAD TD t"lEXT TRACK 
~ORMAT NEXT TRACK 
TURN OFF DF.'IVE 

PETUF.:t-i 

050.::.+•1454 
0520••1147 

0·37:;:: 05B2 045A 
0'379 
0980 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 

0'3S1 + COMMAND CONTROL PRDGRA~: EXECUT 
1)-3:32 
o·::i:::::::: 
0'384 
09:;::5 
0·3::::6 
o-:,.:::7 

• 
• 
• 
• 
• 
• 

09:3:3 • 

THIS COMMAND Et"lRBLES THE OPERATOR TD BEGIN 
EXECUTION OF A PROGRAM AT ANY LOCATION 
I t·i MEMDR'l. 

ENTRY PARAMETERS: F.::3 = E:tHF."l F'OltH 

09:39 05B4 0458 EXECUT B BRANCH TD ENTRY POINT 
0:3:32++ 05B4 ,. 

0990 
0991 
0'3'32 
0·39:~: 

0994 
0995 
09'3E. 
09'37 
0'39:::: 
0'399 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

COMMAND CONTROL PROGRAM: ENTER 

THIS COMMAND ENABLES THE OPERATOR TD ENTER 
DATA INTO SEQUENTIAL MEMDF.'Y LOCATIONS. 

CALLING PARAME:TE:F.'S: BEG I t-it-i I n1:; MEMORY 
l_OCATIDr'i 

1000 05B6 0209 ENTER LI 
05.E::::: 0 0 o:::: 

LOAD BYTE cour·1T 

0:33 O+• 05B6 ... 
1 001 OSBA 2FOO 
1 002 05BC 2EC:::: 
1 00:3 05BE 06CS 
1 004 OSCO 2FAO 

05C2 00:37"' 
1 005 05C4 2EC:::: 
1 006 05C6 06C:::: 
1 00?' 05C8 ~7:ED:::: 

1 (11):::: 05CA 2E%: 
1 (11)'3 05CC 0588 
1 01 0 OSCE 0609 
1 01 1 05DO DF2 
1 012 05D2 1 OFA 

f'iLit·i 0 
H>::M2 R:::: 
S:l . .JPB R:::: 
::<MIT ;~•BACK:S:P 

H>::M2 i::::::: 
:S:l..JF'B F.::::: 

EtHLF' H::·::M2 +F.·:::: 
HF.:C2 •F.::::: 
me i:::::: 
DEC p•3 
Jt::I) EtHEP 
._IMP EJiTLP 

tiEl.i.I LI t-iE 
PRINT FIRST BYTE OF ADDPESS 
~:EVEP:S:E B\'TE:S: 
BACKSPACE 

PPINT SECOt-iD BYTE OF ADDRESS 
t:;;·ESTOF.:E B'lTES 
PPINT MEMORY CONTENTS 
READ At-iD STORE NEW VALUE 
UPDATE ADDPESS POINTER 
DECREMENT BYTE COUNT 
IF O• t·iEli.1 LWE 
ELSE, FETCH NEXT BYTE 

Figure 32. Floppy Disk Control Program (Sheet 27 of 28) 

9900 FAMILY SYSTEMS DESIGN 9-157 



·9 

SUMMARY 

FLOPPY DISK CONTROL PROGRAM PAGE 0028 

TMS 9900 
Floppy Disk 
Controller 

1014 
101 s 
1016 
1017 
1 0 i:=: 
1019 
1020 
1021 
1022 
1023 
1024 
1025 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

05D4 C248 DUMP 
0:32E ++ 05D4 ,. 

1026 
1027 
1028 
1029 
1030 

1031 
1032 
11:r::::~: 

1034 
1035 

1036 
1037 
to:;::::: 

103'3 
1040 
1 041 
1042 
104:3 
1044 
1045 
104E. 
1047 
1 04:::: 
1049 
1050 
1 051 

05DE· 

05D8 
05DA 
OSDC 
OSDE 

05EO 
05E2 
05E4 
05E6 
05E8 
05EA 
05EC 
05EE 
OSFO 
05F2 
05F4 
05FE· 

05F8 
OSFA 
05FC 
05FE 

0600 
0.:002 
OE.04 

2E:::·3 

06C9 
2FAO 
0087·' 
2E:39 

06C'3 
2FOO 
020? 
001 0 
2EC8 
06C8 
2FAO 
00:::7-· 
2EC8 
1)6c:::: 
2ED:::: 
:::20·:.i 

13--
05:3S 
OE.07 
16FA 

lFOO 
1 ~:EF 
045A 

OSF::::++ 1 ::::OS 
1 os.:: 

0000 Ei:;:·F.:OF.:S 

AS:M....-TERM? T 

• 
• 

• 
DUMPLP 

DMPLP1 

• 

• 

DUMPIH 

COMMAND CONTROL PROGRAM: DUMP 

THIS COMMAND ENABLES THE OPERATOR TO 
DISPLAY THE CONTENTS OF MEMORY IN 
HEXADECIMAL FORMAT. 

CALLING PARAMETERS: 

MDV F.:8,R9 

HPC2 R'3 

S:l.rJP.B R9 
::·::t·1 IT .j)BACK:S:P 

HRC2 F.:·:.i 

·s:i.JPE: p•::. 

t-iLHi 0 
LI F.:7, 16 

H>'.M2 p:::: 
S1.o.IPB p•::. ··-· 
::·::MIT ;}1BACt::::S:P 

H::·::M2 RE: 
Sl.o.IPB F.::::: 
H::·::r·12 +RE: 
c i:;::·;., P8 

.JEO DUMP PT 
I r·IC F.::::: 
DEC P""' .( 

.JriE DMPLPl 

TB ":HI 
.Jt::O DUMPLP 
B +F.:10 

Et-ID 

F.'8 = BEGINrHNG 
i=tDDRES;S: 

LOAD DEFAULT Et·rn 

ADDF.:E:S:S 
READ FIRST BYTE OF 
Er·m ADDRE:s:s 
SAVE IN RIGHT BYTE 
BACKSPACE 

READ SECOND BYTE OF 
Er·m ADDF.:ES::S: 
Sl.1.IAP BYTE:~; 

tiEl.o.1 LINE 
LOAD .B'/TE COUt·1T 

PRINT FIRST BYTE OF ADDPESS 
F.:i=:VERSE .B"1'TES: 
.BACKSPACE PRINTER 

PPINT SECOND BYTE OF ADDRESS 
CORRECT ADDl<:E:s::s: 
PRINT MEMDPY CONTENTS 
CURRENT ADDRESS = LAST 
ADDF.·E:S::S: 
IF so, RETUF.:t"i 
lt"iCREMEt"iT ADDRESS 
DECREMEt"iT BYTE COUt"iT 
IF NOT o, PRINT NEXT 
B'lTE 
OPERATOR It"ITERRUPT7 
IF NOT, PRINT NEXT LINE 
ELSE, F.:ETUF.:M 

Figure 32. Floppy Disk Control Program (Sheet 28 of 28) 

9-158 9900 FAMILY SYSTEMS DESIGN 



Appendux arnd 
G~ossary 



~c 

GLOSSARY 

absolute address: 1. An address that is permanently assigned by the machine designer to a storage location. 2. A 
pattern of characters that identifies a unique storage location without further modification. 3. Synonymous with 
machine address, specific address. 

access time: The time interval between the request for information and the instant this information is available. 

accumulator: A device which stores a number and which, on receipt of another number, adds the two and stores the 
sum. 

address: An expression, usually numerical, which designates a specific location in a storage or memory device. 

address format: 1. The arrangement of the address parts of an instruction. The expression "plus-one" is frequently 
used to indicate that one of the addresses specifies the location of the next instruction to be executed, such as 
one-plus-one, two-plus-one, three-plus-one, four-plus-one. 2. The arrangement of the parts of a single address, such 
as those required for identifying channel, module, track, etc., in a disc system. 

address register: A register in which an address is stored. 

ALGOL: ALGOrithmic Language. A language primarily used to express computer programs by algorithms. 

algorithm: A term used by mathematicians to describe a set of procedures by which a given result is obtained. 

alphanumeric: Pertaining to a character set that contains letters, digits, and usually other characters such as 
punctuation marks. 

ALU: Arithmetic Logic Unit, a computational subsystem which performs the mathematical operations of a digital 
system. 

analog: Electric analog information is information represented by a variable property of electricity, such as voltage, 
current, amplitude of waves or pulses, or frequency of waves or pulses. Analog circuitry, also called "linear" 
circuitry, is circuitry that varies certain properties of electricity continuously and smoothly over a certain range, 
rather than switching suddenly between certain levels. 

AND: A logic operator having the property that if P is a statement, Q is a statement, R is a statement ... , then the 
AND of P, Q, R ... is true if all statements are true, false if any statement is false. P AND Q is often represented 
by P•Q or PQ. Synonymous with logical multiply. 

arithmetic shift: 1. A shift that does not affect the sign position. 2. A shift that is equivalent to the multiplication of 
a number by a positive or negative integral power of the radix. 

ASCII: (American National Standard Code for Information Interchange, 1968) The standard code, using a coded 
character set consisting of 7-bit coded characters (8 bits including parity check), used for information interchange 
among data processing systems, communication systems, and associated equipment. The ASCII set consists of 
control characters and graphic characters. Synonymous with USASCII. 

assemble: To prepare a machine language program from a symbolic language program by substituting absolute 
operation codes for symbolic operation codes and absolute or relocatable addresses for symbolic addresses. 

assembler: A computer program that assembles. 

asynchronous device: A device in which the speed of operation is not related to any frequency in th system to 
which it is connected. 

base: 1. a reference value. 2. A number that is multiplied by itself as many times as indicated by an exponent. 
3. Same as radix. 

base address: A given address from which an absolute address is derived by combination with a relative address. 

baud: A unit cf sign:i!ing speed equal to the nm-dber of disc1de conJii.iuns ur signai evems per second. For exampie, 
one baud equals one-half dot cycle per second in Morse code, one bit per second in a train of binary signals, and one 
3-bit value per second in a train of signals each of which can assume one of eight different states. 

BCD: Binary coded decimal notation. 

G-1 9900 FAMILY SYSTEMS DESIGN 



GLOSSARY 

benchmark problem: A problem used to evaluate the performance of hardware or software or both. 

binary: 1. Pertaining to a characteristic or property involving a selection, choice, or condition in which there are two 
possibilities. 2. Pertaining to the number representation system with a radix of two. 

binary coded decimal (BCD): A binary numbering system for coding decimal numbers in groups of 4 bits. The 
binary value of these 4-bit groups ranges from 0000 to 1001, and codes the decimal digits "O" through "9". To 
count to 9 takes 4 bits; to count to 99 takes two groups of 4 bits; to count to 999 takes three groups of 4 bits, etc. 

block diagram: A diagram of a system, instrument, or computer in which the principal parts are represented by 
suitable associated geometrical figures to show both the basic functions and the functional relationships among the 
parts. 

block transfer: The process of transmitting one or more blocks of data where the data are organized in such blocks. 

bootstrap: A technique or device designed to bring itself into a desired state by means of its own action, e.g., a 
machine routine whose first few instructions are sufficient to bring the rest of itself into the computer from an input 
device. 

borrow: An arithmetically negative carry. 

branch: 1. A set of instructions that is executed between two successive decision instructions. 2. To select a branch 
as in definition 1. 3. A direct path joining two nodes of a network or graph. 4. Loosely, a conditional jump. 

branching: A method of selecting, on the basis of results, the next operation to execute while the program is in 
progress. 

breakpoint: A place in a routine specified by an instruction, instruction digit, or other condition, where the routine 
may be interrupted by external intervention or by a monitor routine. 

buffer: An isolating circuit used to avoid reaction of a driven circuit on the corresponding driver circuit. Also, a 
storage device used to compensate for a difference in the rate of flow of information or the time of occurrence of 
events when transmitting information from one device to another. 

bus: One or more conductors used for transmitting signals or power. 

byte: A sequence of adjacent binary digits operated upon as a unit and usually shorter than a computer word. 
Usually 8 bits. 

carry: One or more digits, produced in connection with an arithmetic operation on one digit place of two or more 
numerals in positional notation, that are forwarded to another digit place for processing there. 

CCD: Charge-coupled device. A means for very dense serial-access storage of bits as tiny packets of electric charge 
moving along the surface of a semiconductor chip. 

central processor unit (CPU): Part of a computer system which contains the main storage, arithmetic unit, and 
special register groups. It performs arithmetic operations, controls instruction processing, and provides timing 
signals and other housekeeping operations. 

character: A letter, digit, or other symbol that is used as part of the organization, control, or representation of data. 
A character is often in the form of a spatial arrangement of adjacent or connected strokes. 

character check: A check that verifies the observance of rules for the formation of characters. 

check bit: A binary check digit, e.g., a parity bit. 

check digit: A digit used for purpose of performing a check. 

checkpoint: A place in a routine where a check or a recording of data for restart purposes, is performed. 

chip-enable input: A control input that when active permits operation of the integrated circuit for input, internal 
transfer, manipulation, refreshing, and/ or output of data and when inactive causes the integrated circuit to be in a 
reduced-power standby mode. 

9900 FAMILY SYSTEMS DESIGN 

. 

G-2 



·G 

GLOSSARY 

circulating register: A shift register in which data moved out of one end of the register are reentered into the other 
end as in a closed loop. 

clock: 1. A device that generates periodic signals used for synchronization. 2. A register whose content changes at 
regular intervals in such a way as to measure time. 

COBOL: (Common Business Oriented Language) A business data processing language. 

code: 1. A set of unambiguous rules specifying the way in which data may be represented, e.g., the set of 
correspondences in the standard code for information interchange. Synonymous with coding scheme. 2. In 
telecommunications, a system of rules and conventions according to which the signals representing data can be 
formed, transmitted, received, and processed. 3. In data processing, to represent data or a computer program in a 
symbolic form that can be accepted by a data processor. 

communication link: The physical means of connecting one location to another for the purpose of transmitting and 
receiving data. 

compile: To prepare a machine language program from a computer program written in another programming 
language by making use of the overall logic structure of the program, or generating more than one machine 
instruction for each symbolic statement, or both, as well as performing the function of an assembler. 

compiler: A program that compiles. 

complement: A number that can be derived from a specified number by subtracting it from a second specified 
number. For example, in radix notation, the second specified number may be a given power of the radix or one less 
than a given power of the radix. The negative of a number is often represented by its complement. 

computer: A data processor that can perform substantial computation, including numerous arithmetic or logic 
operations, without intervention by a human operator during the run. 

conditional jump: A jump that occurs if specified criteria are met. 

controller: Digital subsystem responsible for implementing "how" a system is to function. Not to be confused with 
"timing" as timing tells the system "when" to perform its function. 

counter: A circuit which counts input pulses and will give an output pulse after receiving a predetermined number 
of input pulses. 

CRU: Communications Register Unit: a command-driven bit addressable I/O interface. The processor instruction 
can set, reset, or test any bit in the CRU array or move data between the memory and CRU data fields. 

cycle: 1. An interval of space or time in which one set of events or phenomena is completed. 2. Any set of 
operations that is repeated regularly in the same sequence. The operations may be subject to variations on each 
repetition. 

data: 1. A representation of facts, concepts, or instructions in a formalized manner suitable for communication, 
interpretation, or processing by humans or automatic means. 2. Any representations such as characters or analog 
quantities to which meaning is or might be assigned. 

data bus: One method of input-output for a system where data are moved into or out of the digital system by way of 
a common bus connected to several wbsystems. 

data processing: The execution of a systematic sequence of operations performed upon data. Synonymous with 
information processing. 

data selector: A combinational building-block that routes data from one of several inputs to a single output, 
according to control signals. Also called "multiplexer." Two or more such one-bit selectors operating in parallel 
would he calleo a "twn-bit data selector," etc. 

debug: To detect, locate, and remove mistakes from a routine or malfunctions from a computer. Synonymous with 
troubleshoot. 

G-3 9900 FAMILY SYSTEMS DESIGN 



GLOSSARY 

decimal: 1. Pertaining to a characteristic or property involving a selection, choice, or condition in which there are 
ten possibilities. 2. Pertaining to the number representation system with a radix of ten. 

decimal digit: In decimal notation, one of the characters 0 through 9. 

decoder: A conversion circuit that accepts digital input information - in the memory case, binary address 
information - that appears as a small number of lines and selects and activates one line of a large number of output 
lines. 

digital: 1. Pertaining to data in the form of digits. 2. Contrast with analog. 3. Information in discrete or quantized 
form; not continuous. 

direct access: Pertaining to the process of obtaining data from, or placing data into, storage where the time 
required for such access is independent of the location of the data most recently obtained or placed in storage. 

direct addressing: Method of programming that has the address pointing to the location of data or the instruction 
that is to be used. 

direct memory access channel (OMA): A method of input-output for a system that uses a small processor whose 
sole task is that of controlling input-output. With DMA, data are moved into or out of the system without program 
intervention. 

double precision: Pertaining to the use of two computer words to represent a number 

dump: 1. To copy the contents of all or part of a storage, usually from an internal storage into an external storage. 
2. A process as in definition 1 above. 3. The data resulting from the process as in definition 1 above. 

duplex: In communications, pertaining to a simultaneous two-way independent transmission in both directions. 
Contrast with half duplex. Synonymous with full duplex. 

edge triggering: Activation of a circuit at the edge of the pulse as it begins its change. Circuits then trigger at the 
edge of the input pulse rather than sensing a level change. 

edit: To modify the form or format of data, e.g., to insert or delete characters such as page numbers or decimal 
points. 

effective address: The address that is derived by applying any specified indexing or indirect addressing results to 
the specified address and that is actually used to identify the current operand. 

emulate: To imitate one system with another such that the imitating system accepts the same data, executes the 
same programs, and achieves the same results as the imitated system. 

encode: To apply a set of unambiguous rules specifying the way in which data may be represented such that a 
subsequent decoding is possible. Synonymous with code. 

entry point: In a routine, any place to which control can be passed. 

EPROM: Eraseable and programmable read-only memory. An IC memory chip whose stored data can be read at 
random. The data can be erased and new data can be stored, but only by a special system other than the one in 
which the memory is used. 

erase: To obliterate information from a storage medium, e.g., to clear, to overwrite. 

error: Any discrepancy between a computed, observed, or measured quantity and the true, specified, or 
theoretically correct value or condition. 

exclusive-OR function: A modified form of the OR function which has a logic equation equal to the sum output of 
the half-adder. 

execute: That portion of a computer cycle during which a selected control word or instruction is accomplished. 

exponent: In a floating-point representation, the numeral, of a pair of numerals representing a number, that 
indicates the power to which the base is raised. 

9900 FAMILY SYSTEMS DESIGN G-4 

G 



G 

GLOSSARY 

family: A family of digital integrated circuits is a group of I Cs that use the same general design style for all gates, 
and processed during manufacture in much the same way, and whose input and output signals are all "compatible" 
with one another so that one can transmit to another. 

fetch: That portion of a computer cycle during which the next instruction is retrieved from memory. 

field: In a record, a specified area used for a particular category of data, e.g., a group of card columns used to 
represent a wage rate, a set of bit locations in a computer word used to express the address of the operand. 

first-in first-out (FIFO) memory: A memory from which data bytes or words can be read in the same order, but 
not necessarily at the same rate, as that of the data entry. 

fixed-point representation: A positional representation in which each number is represented by a single set of 
digits, the position of the radix point being fixed with respect to one end of the set, according to some convention. 

flag: 1. Any of various types of indicators used for identification, e.g., a wordmark. 2. A character that signals the 
occurrence of some condition, such as the end of a word. 3. Synonymous with mark, sentinel, tag. 

flip-flop (storage element): A circuit having two stable states and the capability of changing from one state to 
another with the application of a control signal and remaining in that state after removal of signals. 

flow chart: A graphical representation for definition, analysis, or solution of a problem, in which symbols are used 
to represent operations, data, flow, equipment, etc. 

format: The arrangement of data. 

FORTRAN: (FORmula TRANslating system) A language primarily used to express computer programs by 
arithmetic formulas. 

function: 1. A specific purpose of an entity, or its characteristic action. 2. In communications, a machine action such 
as a carriage return or line feed. 

gate: 1. A device having one output channel and one or more input channels, such that the output channel state is 
completely determined by the input channel states, except during switching transients. 2. A combinational logic 
element having at least one input channel. 3. An AND gate. 4. An OR gate. 

general-purpose computer: A computer that is designed to handle a wide variety of problems. 

generate: To produce a program by selection of subsets from a set of skeletal coding under the control of 
parameters. 

half duplex: In communications, pertaining to an alternate, one way at a time, independent transmission. Contrast 
with duplex. 

hardware: Physical equipment, as opposed to the computer program or method of use, e.g., mechanical, magnetic, 
electrical, or electronic devices. 

hold time: Hold time, th. The interval during which a signal is retained at a specified input terminal after an active 
transition occurs at another specified input terminal. 

immediate address: Pertaining to an instruction in which an address part contains the value of an operand rather 
than its address. Synonymous with zero-level address. 

indexed address: An address that is modified by the content of an index register prfor to or during the execution of 
a computer instruction. 

indexing: In computers, a method of address modification that is implemented by means of index registers. 

index register: A register whose content may be added to or subtracted from the operand address prior to or during 
the execution of a computer instruction. 

indirect addressing: Programming method that has the initial address being the storage location of a word that 
contains another address. This indirect address is then used to obtain the data to be operated upon. 

G-5 9900 FAMILY SYSTEMS DESIGN 



GLOSSARY 

s 

input/output devices (110): Computer hardware by which data is entered into a digital system or by which data 
are recorded for immediate or future use. 

instruction: A statement that specifies an operation and the values or locations of its operands. 

instruction cycle: The period of time during which a programmed system obeys a particular instruction. 

instruction register: A register that stores an instruction for execution. 

interface: A shared boundary. An interface might be a hardware component to link two devices or it might be a 
portion of storage or registers accessed by two or more computer programs. 

interrupt: To stop a process in such a way that it can be resumed. 

jump: A departure from the normal sequence of executing instructions in a computer. 

jump conditions: Conditions defined in a transition table that determine the changes of flip-flops from one state to 
another state. 

label: One or more characters used to identify a statement or an item of data in a computer program. 

language: A set of representations, conventions, and rules used to convey information. 

large scale integration (LSI): The simultaneous realization.of large area chips and optimum component packing 
density, resulting in 'cost reduction by maximizing the number of system connections done at the chip level. Circuit 
complexity above 100 gates. 

level: The degree of subordination in a hierarchy. 

linkage: In programming, coding that connects two separately coded routines. 

load: In programming, to enter data into storage or working registers. 

location: Any place in which data may be stored. 

logic diagram: A diagram that represents a logic design and sometimes the hardware implementation. 

logic shift: A shift that affects all positions. 

logic symbol: 1. A symbol used to represent a logic element graphically. 2. A symbol used to represent a logic 
operator. 

loop: A sequence of instructions that is executed repeatedly until a terminal condition prevails. 

LSB: Least significant bit. 

machine code: An operation code that a machine is designed to recognize. Usually expressed in ones and zeros. 

macroinstruction: An instruction in a source language that is equivalent to a specified sequence of machine 
instructions. 

macroprogramming: Programming with macroinstructions. 

magnetic bubble: A tiny moveable magnetized region formed under certain conditions in a thin film of magnetic 
garnet crystal fabricated similar to an IC. Such bubbles provide very dense serial-access storage of bits. 

magnetic drum: A right circular cylinder with a magnetic surface on which data can be stored by selective 
magnetization of portions of the curved surface. 

main storage: The general-purpose storage of a computer. Usually, main storage can be accessed directly by the 
operating registers. Contrast with auxiliary storage. 

mask: 1. A pattern of characters that is used to control the retention or elimination of portions of another pattern of 
characters. 2. A filter. 

microprocessor: An IC (or set of a few I Cs) that can be programmed with stored instructions to perform a wide 
variety of functions, consisting at least of a controller, some registers, and some sort of ALU (that is, the basic parts 
of a simple CPU.) 

9900 FAMILY SYSTEMS DESIGN G-6 

G .. 



GLOSSARY 

mnemonic symbol: A symbol chosen to assist the human memory, e.g., an abbreviation such as "mpy'' for 
"multiply". 

mo<lcm: (MOdulator - DEModulator) A device that modulates and demodulates signals transmitted over 
communication facilities. 

MSB: Most significant bit. 

multiplex: To interleave or simultaneously transmit two or more messages on a single channel. 

multiprocessing: 1. Pertaining to the simultaneous execution of two or more computer programs or sequences of 
instructions by a computer or computer network. 2. Loosely, parallel processing. 

multiprocessor: A computer employing two or more processing units under integrated control. 

multiprogramming: Pertaining to the concurrent execution of two or more programs by a computer. 

MUX: Multiplexer. 

NAND: A logic operator having the property that if P is a statement, Q is a statement, R is a statement, ... , then 
the NANO of P, Q, R, ... is true if at least one statement is false, false if all statements are true. Synonymous with 
NOT-AND, Sheffer stroke. 

nest: To imbed subroutines or data in other subroutines or data at a different hierarchical level such that the 
different levels of routines or data can be executed or accessed recursively. 

noise: Any signal that isn't supposed to be there. Electrical noise may be caused by small, irregular sparks when a 
switch is opened or closed. Or it may be caused by radio waves or by electric or magnetic fields generated by one 
wire and picked up by another. 

NOR: A logic operator having the property that if P is a statement, Q is a statement, R is a statement, ... , then the 
NOR of P, Q, R, ... is true if all statements are false, false if at least one statement is true. P NOR Q is often 
represented by a combination of"OR" and "NOT" symbols, such as (P+ Q). P NOR Q is also called "neither P 
nor Q". Synonymous with NOT-or. 

NOT: A logic operator having the property that if P is a statement, then the NOT of P is true if P is false, false if 
Pis true. The NOT of P is often represented by P. 

object code: Output from a compiler or assembler which is itself executable machine code or is suitable for 
processing to produce executable machine code. 

object language: The language to which a statement is translated. 

operand: That which is operated upon. An operand is usually identified by an address part of an instruction. 

operating system: Software which controls the execution of computer programs and which may provide scheduling, 
debugging, input/ output control, accounting, compilation, storage assignment, data management, and related 
services. 

operation: 1. A defined action, namely, the act of obtaining a result from one or more operands in accordance with a 
rule that completely specifies the result for any permissible combination of operands. 2. The set of such acts 
specified by such a rule, or the rule itself. 3. The act specified by a single computer instruction. 4. A program step 
undertaken or executed by a computer, e.g., addition, multiplication, extraction, comparison, shift, transfer. The 
operation is usually specified by the operator part of an instruction. 5. The specific action performed by a logic 
element. 

pack: To compress data in a storage medium by taking advantage of known characteristics of the data, in such a way 
that the original data can be recovered, e.g., to compress data in a storage medium by making use of bit or byte 
iocations that wouid otherwise go unused. 

parallel operation: The organization of data manipulating within circuitry wherein all the digits of a word are 
~ G transmitted simultaneously or separate lines in order to speed up operation. 

G-7 9900 FAMILY SYSTEMS DESICN 



GLOSSARY 

parity check: A check that tests whether the number of ones (or zeros) in an array of binary digits is odd or even. 
Synonymous with odd-even check. 
PC: Program counter. 

peripheral equipment: Units which work in conjunction with a computer but are not part of it. 

phase: The time interval for each clock "cycle" in a system may be divided into two or more "phases". The phases 
are defined by pulses in a separate network of wires for each phase. During a particular phase, the signal in that 
clock network is in the state defined as "active". The clock cycles are repeated over and over again, phase by phase. 
The phases provide a method of making several things happen in the proper order during one clock cycle. 

PLA (programmable logic array): An integrated circuit that employs ROM matrices to combine sum and product 
terms of logic networks. 

positive logic: Logic in which the more-positive voltage represents the "1" state; the less positive voltage 
represents the "O" state. 

priority interrupt: Designation given to method of providing some commands to have precedence over others thus 
giving one condition of operation priority over another. 

problem oriented language: A programming language designed for the convenient expression of a given class of 
problems. 

processor: 1. In hardware, a data processor. 2. In software, a computer program that includes the compiling, 
assembling, translating, and related functions for a specific programming language, COBOL processor, or 
FORTRAN processor. 

program: 1. A series of actions proposed in order to achieve a certain result. 2. Loosely, a routine. 3. To design, 
write, and test a program as in definition 1 above. 4. Loosely, to write a routine. 

programmable read only memory (PROM): A fixed program, read only, semiconductor memory storage element 
that can be programmed after packaging. 

PROM: Programmable read only memory. 

propagation delay: The time required for a change in logic level to be transmitted through an element or a chain of 
elements. 

pulse width: Pulse width, tw The time interval between specified reference points on the leading and trailing edges 
of the pulse waveform. 

pushdown list: A list that is constructed and maintained so that the item to be retrieved is the most recently stored 
item in the list, i.e., last in, first out. 

pushdown stack: A set of registers which implement a pushdown list. 

RAM: Random access memory. 

random access memory (RAM): A memory from which all information can be obtained at the output with 
approximately the same time delay by choosing an address randomly and without first searching through a vast 
amount of irrelevant data. 

read only memory (ROM) A fixed program semiconductor storage element that has been preprogrammed at the 
factory with a permanent program. 

real time: 1. Pertaining to the actual time during which a physical process transpires. 2. Pertaining to the 
performance of a computation during the actual time that the related physical process transpires, in order that 
results of the computation can be used in guiding the physical process. 

recovery time: Scnsc Rccovery time, tsR The time interval needed to switch a memory from a write mode to a read 
mode and to obtain valid data signals at the output. 

refresh: Mcthod which restores charge on capacitance which deteriorates because of leakage. 

9900 FAMILY SYSTEMS DESIGN G-8 

G .. 



~G 

GLOSSARY 

register: Temporary storage for digital data. 

Relative address: The number that specifies the difference between the absolute address and the base address. 

relocate: In computer programming, to move a routine from one portion of storage to another and to adjust the 
necessary address references so that the routine, in its new location, can be executed. 

ROM: Read only memory. 

routine: An ordered set of instructions that may have some general or frequent use. 

sequencing: Control method used to cause a set of steps to occur in a particular order. 

sequential logic systems: Digital system utilizing memory elements. 

serial: 1. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device 
or channel. 2. Pertaining to the sequencing of two or more processes. 3. Pertaining to the sequential processing of 
the individual parts of a whole such as the bits of a character or the characters of a word, using the same facilities of 
successive parts. 4. Contrast with parallel. 

serial operation: The organization of data manipulation within circuitry wherein the digits of a word are 
transmitted one at a time along a single line. The serial mode of operation is slower than parallel operation, but 
utilizes less complex circuitry. 

set-up time: The minimum amount of time that data must be present at an input to ensure data acceptance when 
the device is clocked. 

shift: A movement of data to the right or left. 

shift register: A register in which the stored data can be moved to the right or left. 

sign.and magnitude notation: A system of notation where binary numbers are represented by a sign-bit and one or 
more number bits: 

significant digit: A digit that is needed for a certain purpose, particularly one that must be kept to preserve a 
specific accuracy or presicion. 

sign position: A position, normally located at one end of a number, that contains an indication of the algebraic sign 
of the number. 

simulate: 1. To represent certain features of the behavior of a physical or abstract system by the behavior of 
another system. 2. To represent the functioning of a device, system, computer program by another, e.g., to 
represent the functioning of one computer by another, to represent the behavior of a physical system by the 
execution of a computer program, to represent a biological system by a mathematical model. 

simulator: A device, system, or computer program that represents certain features of the behavior of a physical or 
abstract system. 

software: A set of computer programs, procedures, and possibly associated documentation concerned with the 
operation of a data processing system, e.g., compilers, library routines, manuals, circuit diagrams. 

source language: The language from which a statement is translated. 

source program: A computer program written in a source language. 

state: The condition of an input or output of a circuit as to whether it is a logic "1" or a logic "O". The state of a 
circuit (gate or flip-flop) refers to its output. A flip-flop is said to be in the "1" state when its Q output is "1". A 
gate is in the "1" state when its output is "1 ". 

siaiic sturagt:: dt::mt::nb: Sturagt:: dt::mt::nts which contain sturagt:: cdls that rt::iain ilit::ir i11funmiiio11 as 1011g as pOWel 

is applied unless the information is altered by external excitation. 

stored program: A set of instructions in memory specifying the operations to be performed. 

G-9 9900 FAMILY SYSTEMS DESIGN 



GLOSSARY 

stored program computer: A computer controlled by internally stored instructions that can synthesize, store, and 
in some cases alter instruction as though they were data and that can subsequently execute these instructions. 

subroutine: A routine that can be part of another routine. 

synchronous: Refers to two or more things made to happen in a system at the same time, by means of a common 
clock signal. 

temporary storage: In programming, storage locations reserved for intermediate results. Synonymous with 
working storage. 

terminal: A point in a system or communication network at which data can either enter or leave. 

transmit: To send data from one location and to receive the data at another location. Synonymous with transfer 
definition 2, move. 

TTL: Bipolar semiconductor transistor-transistor coupled logic circuits. 

USASCII: United States of America Standard Code for Information Interchange. The standard code used by the 
United State for transmission of data. Sometimes simply referred to as the "as'ki" code. 

variable: A quantity that can assume any of a given set of values. 

volatile storage: A storage device in which stored data are lost when the applied power is removed. 

word: A character string or a bit string considered as an entity 

working storage: Same as temporary storage. 

WR: Working register. 

workspace: In the 9900, a set of 16 consecutive words of memory referred to by many of the instructions. 

write: To record data in a storage device or a data medium. The recording need not be permanent, such as the 
writing on a cathode ray tube display device. 

9900 FAMILY SYSTEMS DESIGN G-10 



~A 

APPENDIX 

0 

2 

3 

4 

s 
6 

7 

8 

9 

A 

B 

c 
0 

E 

F 

A-1 

2 3 

02 03 04 

03 04 OS 

04 OS 06 

OS 06 07 

06 07 08 

07 08 09 

08 09 OA 

09 OA OB 

OA OB OC 

OB OC OD 

OC OD OE 

OD OE OF 

OE OF 10 

OF 10 11 

10 11 12 

2 

3 

4 

s 
6 

7 

8 

9 

A 

B 

c 

0 

E 

F 

2 3 

04 06 

06 09 

08 oc 

OA OF 

oc 12 

OE lS 

10 18 

12 lB 

14 1E 

16 21 

18 24 

lA 27 

lC 2A 

1E 20 

Table K-1. Hexadecimal Arithmetic 

4 s 6 

OS 06 07 

06 07 08 

07 08 09 

08 09 OA 

09 OA OB 

OA OB OC 

OB OC OD 

OC OD OE 

OD OE OF 

OE OF 10 

OF 10 11 

10 11 12 

11 12 13 

12 13 14 

13 14 lS 

ADDITION TABLE 

7 8 9 

08 09 OA 

09 OA OB 

OA OB OC 

OB OC OD 

OC OD OE 

OD OE OF 

OE OF 10 

OF 10 11 

10 11 12 

11 12 13 

12 13 14 

13 14 lS 

14 lS 16 

lS 16 17 

16 17 18 

MULTIPLICATION TABLE 

4 s 6 

08 OA OC 

OC OF 12 

10 14 18 

14 19 1E 

18 lE 24 

lC 23 2A 

20 28 30 

24 2D 36 

28 32 3C 

2C 37 42 

30 3C 48 

34 41 4E 

38 46 S4 

7 8 9 

OE 10 12 

lS 18 1B 

lC 20 24 

23 28 20 

2A 30 36 

31 38 3F 

38 40 48 

3F 48 51 

46 SO SA 

4D SS 63 

S4 60 6C 

SB 68 7S 

62 70 7E 

3C 4B SA 69 78 87 

A B C 

OB OC OD 

OC OD OE 

OD OE OF 

OE OF 10 

OF 10 11 

10 11 12 

11 12 13 

12 13 14 

13 14 lS 

14 lS 16 

lS 16 17 

16 17 18 

17 18 19 

18 19 lA 

19 lA 1B 

A B C 

14 16 18 

lE 21 24 

28 2C 30 

32 37 3C 

3C 42 48 

46 4D S4 

so SS 60 

SA 63 6C 

64 6E 78 

6E 79 84 

78 84 90 

82 BF 9C 

BC 9A AB 

96 AS B4 

D E F 

OE OF 10 

OF 10 11 

10 11 12 

11 12 13 

12 13 14 

13 14 lS 

14 lS 16 

lS 16 17 

16 17 18 

17 18 19 

18 19 lA 

19 lA lB 

lA 1B lC 

lB lC 1D 

lC 1D 1E 

D E F 

lA lC lE 

27 2A 20 

34 38 3C 

41 46 4B 

4E S4 SA 

SB 62 69 

68 70 78 

7S 7E 87 

82 BC 96 

BF 9A AS 

9C AS B4 

A9 B6 C3 

B6 C4 D2 

C3 D2 El 

9900 FAMILY SYSTEMS DESIGN 



APPENDIX 

Table K-2. Table of Powers of I 610 

16" n 16-n 

0 0.10000 00000 00000 00000 x 10 

16 0.62500 00000 00000 00000 x 10- 1 

256 2 0.39062 50000 00000 00000 x: 10-2 

4 096 3 0.24414 06250 00000 00000 x 10-3 

65 536 4 0.15258 78906 25000 00000 x 10-4 

048 576 5 0.95367 43164 06250 00000 x 10-6 

16 777 216 6 0.59604 64477 53906 25000 x 10-7 

268 435 456 7 0.37252 90298 46191 40625 x 10-8 

4 294 967 296 8 0.23283 06436 53869 62891 x 10- 9 

68 719 476 736 9 0.14551 91522 83668 51807 x 10--10 

099 511 627 776 10 0.90949 47017 72928 23792 x 10-12 

17 592 186 044 416 11 0.56843 41886 08080 14870 x 10-13 

281 474 976 710 656 12 0.35527 13678 80050 09294 x 10-14 

4 503 599 627 370 496 13 0.22204 46049 25031 30808 x 10-15 

72 057 594 037 927 936 14 0.13877 78780 78144 56755 x 10-16 

152 921 504 606 846 976 15 0.86736 17379 88403 54721 x 10-18 

Table K-3. Table of Powers of 1016 

10" n 10-n 

0 1.0000 0000 0000 0000 
A 1 0.1999 9999 9999 999A 

64 2 0.28F5 C28F 5C28 F5C3 x 16-1 

3E8 3 0.4189 374B C6A7 EF9E x 16-2 

2710 4 0.68DB 8BAC 710C B296 x 16-3 

86AO 5 O.A7C5 AC47 1B47 8423 x 16-4 

F 4240 6 0.10C6 F7AO B5ED 8D37 x 16-4 

98 9680 7 0.1AD7 F29A BCAF 4858 x 16-5 

5F5 ElOO 8 0.2AF3 1DC4 6118 73BF x 16-6 

3B9A CAOO 9 0.4488 2FAO 9B5A 52CC x 16-7 

2 540B E400 10 0.6DF3 7F67 5EF6 EADF x 16-8 

17 4876 £800 11 O.AFEB FFOB C824 AAFF x 16-9 

EB D4A5 1000 12 0.1197 9981 2DEA 1119 x 16-9 

918 4E72 AOOO 13 0.1C25 C268 4976 81C2 x 16-10 

5AF3 107A 4000 14 0.2D09 3700 4257 3604 x 16-11 

3 807E A4C6 8000 15 0."480E BE7B 9058 5660 x 16-12 

23 86F2 6FC1 0000 16 0.734A CA5F 6226 FOAE x 16-13 

163 4578 5D8A 0000 17 O.B877 AA32 36A4 8449 x 16-14 

DEO B6B3 A764 0000 18 0.1272 5DDI D243 ABAI x 16-14 

8AC7 2304 89E8 0000 19 0.1D83 C94F B6D2 AC35 x 16-15 

A~ 

9900 FAMILY SYSTEMS DESIGN A-2 



APPENDIX 

Table K-4. Table of Powers of Two 

2" n 2-n 

1 0 1.0 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
32 5 0.031 25 
64 6 0.015 625 

128 7 0.007 812 5 

256 8 0.003 906 25 
512 9 0.001 953 125 

1 024 10 0.000 976 562 5 
2 048 11 0.000 488 281 25 

4 096 12 0.000 244 140 625 
8 192 13 0.000 122 070 312 5 

16 384 14 0.000 061 035 156 25 
32 768 15 0.000 030 517 578 125 

65 536 16 0.000 015 258 789 062 5 
131 072 17 0.000 007 629 394 531 25 
262 144 18 0.000 003 814 697 265 625 
524 288 19 0.000 001 907 348 632 812 5 

1 048 576 20 0.000 000 953 674 316 406 25 
2 097 152 21 0.000 000 476 837 158 203 125 
4 194 304 22 0.000 000 238 418 579 101 562 5 
8 .388 608 23 0.000 000 119 209 289 550 781 25 

16 777 216 24 0.000 000 059 604 644 775 390 625 
33 554 432 25 0.000 000 029 802 322 387 695 312 5 
67 108 864 26 0.000 000 014 901 161 193 847 656 25 

134 217 728 27 0.000 000 007 450 580 596 923 828 125 

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5 

~A 

A-3 9900 FAMILY SYSTEMS DESIGN 



APPENDIX 

Table K 5. Hexadecimal-Decimal Integer 
Conversion Table 

The table appearing on the following pages provides a means for direct conversion of decimal integers in the range 
ofO to 4095 and for hexadecimal integers in the range ofO to FFF. 

To convert numbers above those ranges, add table values to the figures below: 

Hexadecimal Decimal Hexadecimal Decimal 

01000 4096 20000 131 072 
02000 8 192 30 000 196 608 
03 000 12 288 40 000 262 144 
04 000 16 384 50 000 327 680 
05 000 20 480 60000 393 216 
06 000 24 576 70 000 458 752 
07 000 28 672 80000 524 288 
08 000 32 768 90 000 589 824 
09000 36 864 AOOOO 655 360 

OAOOO 40960 BOOOO 720 896 
OB 000 45 056 coooo 786 432 
ocooo 49 152 DODOO 851 968 
ODOOO 53 248 EOOOO 917 504 
OEOOO 57 344 FOOOO 983 040 
OFOOO 61440 100 000 I 048 576 
10000 65 536 200 000 2 097 152 
11000 69 632 300 000 3 145 728 
12 000 73 728 400 000 4 194 304 
13 000 77 824 500 000 5 242 880 
14000 81 920 600 000 6 291 456 
15 000 86 016 700 000 7 340 032 
16000 90 112 800 000 8 388 608 
17000 94 208 900 000 9 437 184 
18 000 98 304 AOOOOO 10 485 760 
19 000 102400 BOO 000 11534336 
lAOOO 106 496 coo 000 12 582 912 
IB 000 110 592 DOOOOO 13631488 
lCOOO 114 688 EOO 000 14 680 064 
IDOOO 118 784 FOO 000 15 728 640 
IE 000 122 880 I 000 000 16 777 216 
IFOOO 126 976 2 000 000 33 554 432 

<J<JOO FAMILY SYSTEMS DESIGN A-4 

A..._ 



~A 

APPENDIX 

Table K 5. Hexadecimal-Decimal Integer Conversion Table (Cont.) 

000 
010 
020 
030 

040 
050 
060 
070 

080 
090 
OAO 
OBO 

oco 
ODO 
OEO 
OFO 

100 
110 
120 
130 

140 
150 
160 
170 

180 
190 
lAO 
lBO 

lCO 
100 
lEO 
lFO 

200 
210 
220 
230 

240 
250 
260 
270 

280 
290 
2AO 
2BO 

2CO 
200 
2EO 
2FO 

A-5 

0 2 3 

0000 0001 0002 0003 
0016 0017 0018 0019 
0032 0033 0034 0035 
0048 0049 0050 0051 

0064 0065 0066 0067 
0080 0081 0082 0083 
0096 0097 0098 0099 
0112 0113 0114 0115 

0128 0129 0130 0131 
0144 0145 0146 0147 
0160 0161 0162 0163 
0176 0177 0178 0179 

0192 0193 0194 0195 
0208 0209 0210 0211 
0224 0225 0226 0227 
0240 0241 0242 0243 

0256 0257 0258 0259 
0272 0273 0274 0275 
0288 0289 0290 0291 
0304 0305 0306 0307 

0320 0321 0322 0323 
0336 0337 0338 0339 
0352 0353 0354 0355 
0368 0369 0370 0371 

0384 0385 0386 0387 
0400 0401 0402 0403 
0416 0417 0418 0419 
0432 0433 0434 0435 

0448 0449 0450 0451 
0464 0465 0466 0467 
0480 0481 0482 0483 
0496 0497 0498 0499 

0512 0513 0514 0515 
0528 0529 0530 0531 
0544 0545 0546 0547 
0560 0561 0562 0563 

0576 0577 0578 0579 
0592 0593 0594 0595 
0608 0609 0610 0611 
0624 0625 0626 0627 

0640 0641 0642 0643 
0656 0657 0658 0659 
0672 0673 0674 0675 
0688 0689 0690 0691 

0704 0705 0706 0707 
0720 0721 0722 0723 
0736 0737 0738 0739 
0752 0753 0754 0755 

4 5 6 7 

0004 0005 0006 0007 
0020 0021 0022 0023 
0036 0037 0038 0039 
0052 0053 0054 0055 

0068 0069 0070 0071 
0084 0085 0086 0087 
0100 0101 0102 0103 
0116 0117 0118 0119 

0132 0133 0134 0135 
0148 0149 0150 0151 
0164 0165 0166 0167 
0180 0181 0182 0183 

0196 0197 0198 0199 
0212 0213 0214 0215 
0228 0229 0230 0231 
0244 0245 0246 0247 

0260 0261 0262 0263 
0276 0277 0278 0279 
0292 0293 0294 0295 
0308 0309 0310 0311 

0324 0325 0326 0327 
0340 0341 0342 0343 
0356 0357 0358 0359 
0372 0373 0374 0375 

0388 0389 0390 0391 
0404 0405 0406 0407 
0420 0421 042·2 0423 
0436 0437 0438 0439 

0452 0453 0454 0455 
0468 0469 0470 0471 
0484 0485 0486 0487 
0500 0501 0502 0503 

0516 0517 0518 0519 
0532 0533 0534 0535 
0548 0549 0550 0551 
0564 0565 0566 0567 

0580 0581 0582 0583 
0596 0597 0598 0599 
0612 0613 0614 0615 
0628 0629 -0630 0631 

0644 0645 0646 0647 
0660 0661 0662 0663 
0676 0677 0678 0679 
0692 0693 0694 0695 

0708 0709 0710 0711 
0724 0725 0726 0727 
0740 0741 0742 0743 
0756 0757 0758 0759 

8 9 A B 

0008 0009 0010 0011 
0024 0025 0026 0027 
0040 0041 0042 0043 
0056 0057 0058 0059 

0072 0073 0074 0075 
0088 0089 0090 0091 
0104 0105 0106 0107 
0120 0121 0122 0123 

0136 0137 0138 0139 
0152 0153 0154 0155 
0168 0169 0170 0171 
0184 0185 0186 0187 

0200 0201 0202 0203 
0216 0217 0218 0219 
0232 0233 0234 0235 
0248 0249 0250 0251 

0264 0265 0266 0267 
0280 0281 0282 0283 
0296 0297 0298 0299 
0312 0313 0314 0315 

0328 0329 0330 0331 
0344 0345 0346 0347 
0360 0361 0362 0363 
0376 0377 0378 0379 

0392 0393 0394 0395 
0408 0409 0410 0411 
0424 0425 0426 0427 
0440 0441 0442 0443 

0456 0457 0458 0459 
0472 0473 0474 0475 
0488 0489 0490 0491 
0504 0505 0506 0507 

0529 0521 0522 0523 
0536 0537 0538 0539 
0552 0553 0554 0555 
0568 0569 0570 0571 

0584 0585 0586 0587 
0600 0601 0602 0603 
0616 0617 0618 0619 
0632 0633 0634 0635 

0648 0649 0650 0651 
0664 0665 0666 0667 
0680 0681 0682 0683 
0696 0697 0698 0699 

0712 0713 0714 0715 
0728 0729 0730 0731 
0744 0745 0746 0747 
0760 0761 0762 0763 

c D E F 

0012 0013 0014 0015 
0028 0029 0030 0031 
0044 0045 0046 0047 
0060 0061 0062 0063 

0076 0077 0078 0079 
0092 0093 0094 0095 
0108 0109 0110 0111 
0124 0125 0126 0127 

0140 0141 0142 0143 
0156 0157 0158 0159 
0172 0173 0174 0175 
0188 0189 0190 0191 

0204 0205 0206 0207 
0220 0221 0222 0223 
0236 0237 0238 0239 
0252 0253 0254 0255 

0268 0269 0270 0271 
0284 0285 0286 0287 
0300 0301 0302 0303 
0316 0317 0318 0319 

0332 0333 0334 0335 
0348 0349 0350 0351 
0364 0365 0366 0367 
0380 0381 0382 0383 

0396 0397 0398 0399 
0412 0413 0414 0415 
0428 0429 0430 0431 
0444 0445 0446 0447 

0460 0461 0462 0463 
0476 0477 0478 0479 
0492 0493 0494 0495 
0508 0509 0510 0511 

0524 0525 0526 0527 
0540 0541 0542 0543 
0556 0557 0558 0559 
0572 0573 0574 0575 

0588 0589 0590 0591 
0604 0605 0606 0607 
0620 0621 0622 0623 
0636 0637 0638 0639 

0652 0653 0654 0655 
0668 0669 0670 0671 
0684 0685 0686 0687 
0700 0701 0702 0703 

0716 0717 0718 0719 
0732 0733 0734 0735 
0748 0749 0750 0751 
0764 0765 0766 0767 

9900 FAMILY SYSTEMS DESIGN 



q ·§ '! 

Table K 5. Hexadecimal-Decimal Integer Conversion Table (Cont.) 

300 
310 
320 
330 

340 
350 
360 
370 

380 
390 
3AO 
3BO 

3CO 
300 
3EO 
3FO 

400 
410 
420 
430 

440 
450 
460 
-470 

-480 
490 
4AO 
4BO 

4CO 
400 
4EO 
4FO 

soo 
510 
520 
530 

540 
S50 
S60 
S70 

S80 
S90 
SAO 
3BO 

sco 
soo 
SEO 
SFO 

0 2 3 

0768 0769 0770 0771 
078-4 078S 0786 0787 
0800 0801 0802 0803 
0816 0817 0818 0819 

0832 0833 0834 083S 
0848 0849 0850 08Sl 
0864 086S 0866 0867 
0880 0881 0882 0883 

0896 0897 0898 0899 
0912 0913 0914 0915 
0928 0929 0930 0931 
094-4 0945 0946 0947 

0960 0961 0962 0963 
0976 0977 0978 0979 
0992 0993 0994 099S 
1008 1009 1010 1011 

1024 1025 0126 0127 
1040 1041 1042 1043 
1056 10S7 10S8 10S9 
1072 1073 1074 107S 

1088 1089 1090 1091 
1104 llOS 110~ 1107 
1120 1121 1122 1123 
1136 1137 1138 1139 

1152 11S3 11S4 llSS 
1168 1169 1170 1171 
1184 1185 1186 1187 
1200 1201 1202 1203 

1216 1217 1218 1219 
1232 1233 1234 123S 
1248 1249 12SO 12Sl 
1264 126S 1266 1267 

1280 1281 1282 1283 
1296 1297 1298 1299 
1312 1313 1314 131S 
1328 1329 1330 1331 

1344 134S 1346 1347 
1360 1361 1362 1363 
1376 1377 1378 1379 
1392 1393 1394 1395 

1408 1409 1410 1411 
1324 142S 1426 1427 
1440 14-41 1442 1443 
14S6 1-457 14S8 14S9 

1472 1473 1474 147S 
1488 1489 1490 1491 
1504 150S 1506 1507 
1520 1521 1522 1523 

9900 FAMILY SYSTEMS DESIGN 

4 5 6 7 

0772 0773 0774 077S 
0788 0789 0790 0791 
0804 0805 0806 0807 
0820 0821 0822 0823 

0836 0837 0838 0839 
0852 0853 0854 0855 
0868 0869 0870 0871 
0884 0885 0886 0887 

0900 0901 0902 0903 
0916 0917 0918 0919 
0932 0933 0934 093S 
0948 0949 0950 0951 

0964 0965 0966 0967 
0980 0981 0982 0983 
0996 0997 0998 0999 
1012 1013 1014 1015 

1028 1029 1030 1031 
1044 1045 1046 1047 
1060 1061 1062 1063 
1076 1077 1078 1079 

1092 1093 1094 1095 
1108 1109 1110 1111 
1124 1125 1126 1127 
1140 1141 1142 1143 

1156 1157 1158 1159 
1172 1173 1174 1175 
1188 1189 1190 1191 
1204 1205 1206 1207 

1220 1221 1222 1223 
1236 1237 1238 1239 
1252 1253 1254 1255 
1268 1269 1270 1271 

1284 1285 1286 1287 
1399 1301 1302 1303 
1316 1317 1318 1319 
1332 1333 1334 1335 

1348 1349 1350 1351 
1364 1365 1366 1367 
1380 1381 1382 1383 
1396 1397 1398 1399 

1412 1413 1414 1415 
1428 1429 1430 1431 
1444 1445 1446 1447 
1460 1461 1462 1463 

1476 1477 1478 1479 
1492 1493 1494 1495 
1508 1509 1510 1511 
1524 1515 1526 1527 

8 9 A B 

0776 0777 0778 0779 
0792 0793 0794 0795 
0808 0809 0810 0811 
0824 082S 0826 0827 

0840 0841 0842 0843 
0856 0857 0858 0859 
0872 0873 0874 087S 
0888 0889 0890 0891 

0904 0905 0906 0907 
0920 0921 0922 0923 
0936 0937 0938 0939 
0952 0953 0954 095S 

0968 0969 0970 0971 
0984 0985 0986 0987 
1000 1001 1002 1003 
1016 1017 1018 1019 

1032 1033 1034 1035 
1048 1049 1050 1051 
1064 106S 1066 1067 
1080 1081 1082 1083 

1096 1097 1098 1099 
1112 1113 1114 1115 
1128 1129 1130 1131 
1144 1145 1146 1147 

1160 1161 1162 1163 
1176 1177 1178 1179 
1192 1193 1194 1195 
1208 1209 1210 1211 

1224 1225 1226 1227 
1240 1241 1242 1243 
1256 1257 12S8 1259 
1272 1273 1274 1275 

1288 1289 1290 1291 
1304 1305 1306 1307 
1329 1321 1322 1323 
1336 1337 1338 1339 

1352 1353 1354 13S5 
1368 1369 1370 1371 
1384 1385 1386 1387 
1400 1401 1402 1403 

1416 1417 1418 1419 
1432 1433 1434 1435 
1448 1449 1450 1451 
1464 1465 1466 1467 

1480 1481 1482 1483 
1496 1497 1498 1499 
1512 1S13 1514 1515 
1528 1529 1530 1531 

APPENDIX 

c D E F 

0780 0781 0782 0783 
0796 0797 0798 0799 
0812 0813 0814 081S 
0828 0829 0830 0831 

0844 0845 0846 08-47 
0860 0861 0862 0863 
0876 0877 0878 0879 
0892 0893 0894 0895 

0908 0909 0910 0911 
0924 092S 0926 0927 
0940 0941 0942 0943 
0956 09S7 09S8 0959 

0972 0973 0974 0975 
0988 0989 0990 0991 
1004 1005 1006 1007 
1020 1021 1022 1023 

1036 1037 1038 1039 
1052 1053 1054 1055 
1068 1069 1070 1071 
1084 1085 1086 1087 

1100 1101 1102 1103 
1116 1117 1118 1119 
1132 1133 1134 1135 
1148 1149 1150 1151 

1164 1165 1166 1167 
1180 1181 1182 1183 
1196 1197 1198 1199 
1212 1213 1214 121S 

1228 1229 1230 1231 
1244 124S 1246 1247 
1260 1261 1262 1263 
1276 1277 1278 1279 

1291 1293 1294 1295 
1308 1309 1310 1311 
1324 1325 1326 1327 
1340 1341 1342 1343 

1356 1367 1358 1359 
1372 1373 1374 1375 
1388 1389 1390 1391 
1404 1405 1406 1407 

1429 1421 1422 1423 
1436 1437 1438 1439 
1452 1453 1454 1455 
1468 1469 1470 1471 

1484 1485 1486 1487 
lSOO lSOl 1S02 1503 
1S16 1517 1518 1519 
1532 1533 1534 1535 

A-6 

A-c 



APPENDIX 

Table KS. Hexadecimal-Decimal Integer Conversion Table (Cont.) 

0 2 3 4 5 6 7 8 9 A B c D E F 

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1592 1594 1595 1596 1597 1598 1599 

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
6BO 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 17231 1724 1725 1726 1727 

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
6DO 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 8102 1803 1804 1805 1806 1807 
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
720 1824 1825 1826 1827 1818 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1909 1902 1903 
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
7BO 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
7DO 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 '2025 2026 2027 2028 2029 2030 2031 
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
SAO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
8BO 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 

8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
8DO 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
SEO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 

~A 8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

A-7 9900 FAMILY SYSTEMS DESIGN 



Table K 5. Hexadecimal-Decimal Integer Conversion Table (Cont.) 

900 
910 
920 
930 

940 
950 
960 
970 

980 
990 
9AO 
9BO 

9CO 
900 
9EO 
9FO 

AOO 
AlO 
A20 
A30 

A40 
A50 
A60 
A70 

A80 
A90 
AAO 
ABO 

ACO 
ADO 
AEO 
AFO 

BOO 
BIO 
B20 
B30 

B40 
B50 
B60 
B70 

B80 
B90 
BAO 
BBO 

BCO 
BDO 
BEO 
BFO 

0 2 3 

2304 2305 2306 2307 
2320 2321 2322 2323 
2336 2337 2338 2339 
2352 2353 2354 2355 

2368 2369 2370 2371 
2384 2385 2386 2387 
2400 2401 2402 2403 
2416 2417 2418 2419 

2432 2433 2434 24351 
2448 2449 2450 2451 
2464 2465 2466 2467 
2480 2481 2482 2483 

2496 2497 2498 2499 
2512 2513 2514 2515 
2528 2529 2530 2531 
2544 2545 2546 2547 

2560 2561 2562 2563 
2576 2577 2578 2579 
2592 2593 2594 2595 
2608 2609 2610 2611 

2624 2625 2626 2627 
2640 2641 2642 2643 
2656 2657 2658 2659 
2672 2673 2674 2675 

2688 2689 2690 2691 
2704 2705 2706 2707 
2720 2721 2722 2723 
2736 2737 2738 2739 

2752 2753 2754 2755 
2768 2769 2770 2771 
2784 2785 2786 2787 
2800 2801 2802 2803 

2816 2817 2818 2819 
2832 2833 2834 2835 
2848 2849 2850 2851 
2864 2865 2866 2867 

2880 2881 2882 2883 
2896 2897 2898 2899 
2912 2913 2914 2915 
2928 2929 2930 2931 

2944 2945 2946 2947 
2960 2961 2962 2963 
2976 2977 2978 2979 
2992 2993 2994 2995 

3008 3009 3010 3011 
3024 3025 3026 3027 
3040 3041 3042 3043 
3056 3057 3058 3059 

<J<JOO FAMILY SYSTEMS DESIGN 

4 5 6 7 

2308 2309 2310 2311 
2324 2325 2326 2327 
2340 2341 2342 2343 
2356 2357 2358 2359 

2372 2373 2374 2375 
2388 2389 2390 2391 
2404 2405 2406 2407 
2420 2421 2422 2423 

2436 2437 2438 2439 
2452 2453 2454 2455 
2468 2469 2479 2471 
2484 2485 2486 2487 

2500 2501 2502 2503 
2516 2517 2518 2519 
2532 2533 2534 2535 
2548 2549 2550 2551 

2564 2565 2566 2567 
2580 2581 2582 2583 
2596 2597 2598 2599 
2612 2613 2614 2615 

2628 2629 2630 2631 
1644 2645 2646 2647 
2660 2661 2662 2663 
2676 2677 2678 2679 

2692 2693 2694 2695 
2708 2709 2710 2711 
2724 2725 2726 2727 
2740 2741 2742 2743 

2756 2757 2758 2759 
2772 2773 2774 2775 
2788 2789 2790 2791 
2804 2805 2806 2807 

2820 2821 2822 2823 
2836 2837 2838 2839 
2852 2853 2854 2855 
2868 2869 2870 2871 

2884 2885 2886 2887 
2900 2901 2902 2903 
2916 2917 2918 2919 
2932 2933 2934 2935 

2948 2949 2950 2951 
2964 2965 2966 2967 
2980 2981 2982 2983 
2996 2997 2998 2999 

3012 3013 3014 3015 
3028 3029 3030 3031 
3044 3045 3046 3047 
3060 3061 3062 3063 

8 9 A B 

2312 2313 2314 2315 
2328 2329 2330 2331 
2344 2345 2346 2347 
2360 2361 2362 2363 

2376 2377 2378 2379 
2392 2393 2394 2395 
2408 2409 2410 2411 
2424 2425 2426 2427 

2440 2441 244~ 2443 
2456 2457 2458 2459 
2472 2473 2474 2475 
2488 2489 2490 2491 

2504 2505 2506 2507 
2520 2521 2522 2523 
2536 2537 2538 2539 
2552 2553 2554 2555 

2568 2569 2570 2571 
2584 2585 2586 2587 
2600 2601 2602 2603 
2626 2617 2618 2619 

2632 2633 2634 2635 
2648 2649 2650 2651 
2664 2665 2666 2667 
2680 2631 2682 2683 

2696 2697 2698 2699 
2712 2713 2714 2715 
2728 2729 2730 2731 
2744 2745 2746 2747 

2760 2761 2762 2763 
2776 2777 2778 2779 
2792 2793 2794 2795 
2808 2809 2810 2811 

2824 2825 2826 2827 
2840 2841 2842 2843 
2856 2857 2858 2859 
2872 2873 2874 2875 

2888 2889 2890 2891 
2904 2905 2906 2907 
2920 2921 2922 2923 
2936 2937 2938 2939 

2952 2953 2954 2955 
2968 2969 2970 2971 
2984 2985 2986 2987 
3000 3001 3002 3003 

3016 3017 3018 3019 
3032 3033 3034 3035 
3048 3049 3050 3051 
3064 3065 3066 3067 

APPENDIX 

C D E F 

2316 2317 2318 2319 
2332 2333 2334 2335 
2348 2349 2350 2351 
2364 2365 2366 2367 

2380 2381 2382 2383 
3496 2397 2398 2399 
2412 2413 2414 2415 
2428 2429 2430 2431 

2444 2445 2446 2447 
2460 2461 2462 2463 
2476 2477 2478 2479 
2492 2493 2494 2495 

2508 2509 2510 2511 
2524 2525 2526 2527 
2540 2541 2542 2543 
2556 2557 2558 2559 

2572 2573 2574 2575 
2588 2589 2590 2591 
2604 2605 2606 2607 
2620 2621 2622 2623 

2636 2637 2638 2639 
2652 2653 2654 2655 
2668 2669 2670 2671 
2684 2685 2686 2687 

2700 2701 2702 2703 
2716 2717 2718 2719 
2732 2733 2734 2735 
2748 2749 2750 2751 

2764 2765 2766 2767 
2780 2781 2782 2783 
2796 2797 2798 2799 
2812 2813 2814 2815 

2828 2829 2830 2831 
2844 2845 2846 2847 
2860 2861 2862 2863 
2876 2877 2878 2879 

2892 2893 2894 2895 
2908 2909 2910 2911 
2924 2925 2926 2927 
2940 2941 2942 2943 

2956 2957 2958 2959 
2972 2973 2974 2975 
2988 2989 2990 2991 
3004 3005 3006 3007 

3020 3021 3022 3023 
3036 3037 3038 3039 
3052 3053 3054 3055 
3068 3069 3070 3071 

A-8 

A<111 



~A 

APPENDIX 

Table K-5. Hexadecimal-Decimal Integer Conversion Table (Cont.) 

coo 
C10 
C20 
C30 

C40 
cso 
C60 
C70 

cso 
C90 
CAO 
CBO 

cco 
CDO 
CEO 
CFO 

DOO 
DlO 
D20 
030 

040 
050 
060 
070 

D80 
D90 
DAO 
DBO 

DCO 
ODO 
DEO 
DFO 

EOO 
ElO 
E20 
E30 

E40 
ESO 
E60 
E70 

EBO 
E90 
EAO 
EBO 

A-9 

0 2 3 

3072 307 3 307 4 307 5 
3088 3089 3090 3091 
3104 3105 3106 3107 
3120 3121 3122 3123 

3136 3137 3138 3139 
3152 3153 3154 3155 
3168 3169 3170 3171 
3184 3185 3186 3187 

3200 3201 3202 3203 
3216 3217 3218 3219 
3232 3233 3234 3235 
3248 3249 3250 3251 

3264 3265 3266 3267 
3280 3281 3282 3283 
3296 3297 3298 3299 
3312 3313 3314 3315 

3328 3329 3330 3331 
3344 334 5 3346 334 7 
3360 3361 3362 3363 
3376 3377 3378 3379 

3392 3393 3394 3395 
3408 3409 3410 3411 
3424 3425 3426 3427 
3440 3441 3442 3443 

3456 3457 3458 3459 
3472 3473 3474 3475 
3488 3489 3490 3491 
3504 3505 3506 3507 

3520 3521 3522 3523 
3536 3537 3538 3539 
3552 3553 3554 3555 
3568 3569 3570 3571 

3584 3585 3586 3587 
3600 3601 3602 3603 
3616 3617 3618 3619 
3632 3633 3634 3635 

3648 3649 3650 3651 
3664 3665 3666 3667 
3680 3681 3682 3683 
3696 3697 3698 3699 

3712 3713 3714 3715 
3728 3729 3730 3731 
3744 3745 3746 3747 
3760 3761 3762 3763 

4 5 6 7 

3076 3077 3078 3079 
3092 3093 3094 3095 
3108 3109 3110 3111 
3124 3125 3126 3127 

3140 3141 3142 3143 
3156 3157 3158 3159 
3172 3173 3174 3175 
3188 3189 3190 3191 

3204 3205 3206 3207 
3220 3221 3222 3223 
3236 3237 3238 3239 
3252 3253 3254 3255 

3268 3269 3270 3271 
3284 3285 3286 3287 
3300 3301 3302 3303 
3316 3317 3318 3319 

3332 3333 3334 3335 
3348 3349 3350 3351 
3364 3365 3366 3367 
3380 3381 3382 3383 

3396 3397 3398 3399 
3412 3413 3414 3415 
3428 3429 3430 3431 
3444 344 s 3446 344 7 

3460 3461 3462 3463 
3476 3477 3478 3479 
3492 3493 3494 3495 
3508 3509 3510 3511 

3524 3525 3526 3527 
3540 3541 3542 3543 
3556 3557 3558 3559 
3572 3573 3574 3575 

3588 3589 3590 3591 
3604 3605 3606 3607 
3620 3621 3622 3623 
3636 3637 3638 3639 

3652 3653 3654 3655 
3668 3669 3670 3671 
3684 3685 3686 3687 
3700 3701 3702 3703 

3716 3717 3718 3719 
3732 3733 3734 3735 
3748 3749 3750 3751 
3764 3765 3766 3767 

8 9 A B 

3080 3081 3082 3083 
3096 3097 3098 3099 
3112 3113 3114 3115 
3128 3129 3130 3131 

3144 3145 3146 3147 
3160 3161 3162 3163 
3176 3177 3178 3179 
3192 3193 3194 3195 

3208 3209 3210 3211 
3224 3225 3226 3227 
3240 3241 3242 3243 
3256 3257 3258 3259 

3272 3273 3274 3275 
3288 3289 3290 3291 
3304 3305 3306 3307 
3320 3321 3322 3323 

3336 3337 3338 3339 
3352 3353 3354 3355 
3368 3369 3370 3371 
3384 3385 3386 3387 

3400 3401 3402 3.:+03 
3416 3417 3418 3419 
3432 3433 3434 3435 
3448 3449 3450 3451 

3464 3465 3466 3467 
3480 3481 3482 3483 
3496 3497 3498 3499 
3512 3513 3514 3515 

3528 3529 3530 3531 
3544 3545 3546 3547 
3560 3561 3562 3563 
3576 3577 3578 3579 

3592 3593 3594 3595 
3608 3609 3610 3611 
3624 3625 3626 3627 
3640 3641 3642 3643 

3656 3657 3658 3659 
3672 3673 3674 3675 
3688 3689 3690 3691 
3704 3705 3706 3707 

3720 3721 3722 3723 
3736 3737 3738 3739 
3752 3753 3754 3755 
3768 3769 3770 3771 

C D E F 

3084 3085 3086 3087 
3100 3101 3102 3103 
3116 3117 3118 3119 
3132 3133 3134 3135 

3148 3149 3150 3151 
3164 3165 3166 3167 
3180 3181 3182 3183 
3196 3197 3198 3199 

3212 3213 3214 3215 
3228 3229 3230 3231 
3244 3245 3246 3247 
3260 3261 3262 3263 

3276 3277 3278 3279 
3292 3293 3294 3295 
3308 3309 .3310 3311 
3324 3325 3326 3327 

3340 3341 3342 3343 
3356 3357 3358 3359 
3372 3373 3374 3375 
3388 3389 3390 3391 

3404 3405 3406 3407 
3420 3421 3422 3423 
3436 3437 3438 3439 
3452 3453 3454 3455 

3468 3469 3470 3471 
3484 3485 3486 3487 
3500 3501 3502 3503 
3516 3517 3518 3519 

3532 3533 3534 3535 
3548 3549 3550 3551 
3564 3565 3566 3567 
3580 3581 3582 3583 

3596 3597 3598 3599 
3612 3613 3614 3615 
3628 3629 3630 3631 
3644 3645 3646 3647 

3660 3661 3662 3663 
3676 3677 3678 3679 
3692 3693 3694 3695 
3708 3709 3710 3711 

3724 3725 3726 3727 
3740 3741 3742 3743 
3756 3757 3758 3759 
3772 3773 3774 3775 

9900 FAMILY SYSTEMS DESIGN 



Table KS. Hexadecimal-Decimal Integer Conversion Table (Cont.) 

ECO 
EDO 
EEO 
EFO 

FOO 
FlO 
F20 
F30 

F40 
F50 
F60 
F70 

F80 
F90 
FAO 
FBO 

FCO 
FDO 
FEO 
FFO 

0 2 3 

3776 3777 3778 3779 
3792 3793 3794 3795 
3808 3809 3810 3811 
3824 3825 3826 3827 

3840 3841 3842 3843 
3856 3857 3858 3859 
3872 3873 3874 3875 
3888 3889 3890 3891 

3904 3905 3906 3907 
3920 3921 3922 3923 
3936 3937 3938 3939 
3952 3953 3954 3955 

3968 3969 3970 3971 
3984 3985 3986 3987 
4000 4001 4002 4003 
4016 4017 4018 4019 

4032 4033 4034 4035 
4048 4049 4050 4051 
4064 4065 4066 4067 
4080 4081 4082 4083 

<J900 FAMILY SYSTEMS DESIGN 

4 5 6 7 

3780 3781 3782 3783 
3796 3797 3798 3799 
3812 3813 3814 3815 
3828 3829 3830 3831 

3844 3845 3846 3847 
3860 3861 3862 3863 
3876 3877 3878 3879 
3892 3893 3894 3895 

3908 3909 3910 3911 
3924 3925 3926 3927 
3940 3941 3942 3943 
3956 3957 3958 3959 

3972 3973 3974 3975 
3988 3989 3990 3991 
4004 4005 4006 4007 
4020 4021 4022 4023 

4036 4037 4038 4039 
4052 4053 4054 4055 
4068 4069 4070 4071 
4084 4085 4086 4087 

8 9 A B 

3784 3785 3786 3787 
3800 3801 3802 3803 
3816 3817 3818 3819 
3832 3833 3834 3835 

3848 3849 3850 3851 
3864 3865 3866 3867 
3880 .3881 3882 3883 
3896 3897 3898 3899 

.3912 3913 3914 3915 
3928 3929 3930 3931 
3944 3945 3946 3947 
3960 3961 3962 3963 

3976 3977 3978 3979 
3992 3993 3994 3995 
4008 4009 4010 4011 
4024 4025 4026 4027 

4040 4041 4042 4043 
4056 4057 4058 4059 
4072 4073 4074 4075 
4088 4089 4090 4091 

APPENDIX 

C D E F 

3788 3789 3790 3791 
3804 3805 3806 3807 
3820 3821 3822 3823 
3836 3837 3838 3839 

3852 3853 3854 3855 
3868 3869 3870 3871 
3884 3885 3886 3887 
3900 3901 3902 3903 

3916 3917 3918 3919 
3932 3933 3934 3935 
3948 3949 3950 3951 
3964 3965 3966 3967 

3980 3981 3982 3983 
3996 3997 3998 3999 
4012 4013 4014 4015 
4028 4029 4030 4031 

4044 4045 4046 404 7 
4060 4061 4062 4063 
4076 4077 4078 4079 
4092 4093 4094 4095 

A-10 

A~ 



APPENDIX 

Table K 6. Hexadecimal-Decimal Fraction Conversion Table 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.00 00 00 00 .00000 00000 .40 00 00 00 .25000 00000 .so 00 00 00 .50000 00000 .co 00 00 00 .75000 00000 

.01 00 00 00 .00390 62500 .41 00 00 00 .25390 62500 .Sl 00 00 00 .50390 62500 .Cl 00 00 00 .75390 62500 

.02 00 00 00 .007Sl 25000 .42 00 00 00 .257Sl 25000 .S2 00 00 00 .507Sl 25000 .C2 00 00 00 .757Sl 25000 

.03 00 00 00 .01171 S7500 .43 00 00 00 .26171 S7500 .S3 00 00 00 .51171 S7500 .C3 UO 00 00 .7617,1 S7500 

.04 00 00 00 .01562 50000 .44 00 00 00 .26562 50000 .S4 00 00 00 .51562 50000 .C4 00 00 00 .76562 50000 

.05 00 00 00 .01953 12500 .45 00 00 00 .26953 12500 .S5 00 00 00 .51953 12500 .CS Ou 00 00 .76953 12500 

.06 00 00 00 .02343 75000 .46 00 00 00 .27343 75000 .S6 00 00 00 .52343 75000 .C6 00 00 00 .77343 75000 

.07 00 00 00 .02734 37SOO .47 00 00 00 .27734 37SOO .S7 00 00 00 .S2734 37SOO .C7 00 00 00 .77734 37500 

.08 00 00 00 .0312S 00000 .4S 00 00 00 .2812S 00000 .SS 00 00 00 .5312S 00000 .cs 00 00 00 .7S12S 00000 

.09 00 00 00 .oJS lS 62SOO .49 00 00 00 .2SS 1S 62SOO .89 00 00 00 .S35 lS 62500 .C9 00 00 00 .7SS1S 62SOO 

.OA 00 00 00 .03906 2SOOO .4A 00 00 00 .2S906 2SOOO .SA 00 00 00 .53906 2SOOO .CA 00 00 00 .7S906 2SOOO 

.OB 00 00 00 .04296 S7SOO .4B 00 00 00 .29296 S7SOO .SB 00 00 00 .54296 S7500 .CB 00 00 00 .79296 S7500 

.oc 00 00 00 .046S7 soooo .4C 00 00 00 .296S7 soooo .SC 00 00 00 .546S7 50000 .cc 00 00 00 . 7968 7 50000 

.OD 00 00 00 .OS01S 12SOO .4D 00 00 00 .3007S 12SOO .SD Ou 00 00 .S501S 12500 .CD 00 00 00 .8007S 12S00 

.OE 00 00 00 .OS46S 1SOOO .4E 00 00 00 .3046S 75000 .SE 00 00 00 .55468 75000 .CE 00 00 00 .80468 75000 

.OF 00 00 00 .OSSS9 37SOO .4F 00 00 00 .308S9 37SOO .SF 00 00 00 .55 SS9 3 7 500 .CF 00 00 00 .80SS9 37500 

.10 00 00 00 .062SO 00000 .so 00 00 00 .312SO 00000 .90 00 00 00 .S62SO 00000 .DO 00 00 00 .Sl2SO 00000 

.11 00 00 00 .06640 62SOO .S l 00 00 00 .31640 62500 .91 00 00 00 .S6640 62500 .DI 00 00 00 .S1640 62SOO 

.12 00 00 00 .07031 2SOOO .S2 00 00 00 .32031 2SOOO .92 00 00 00 .S7031 25000 .D2 00 00 00 .S2031 2SOOO 

.13 00 00 00 .07421 87500 .S3 00 00 00 .32421 87500 .93 00 00 00 .S7421 87500 .D3 00 00 00 .S2421 87500 

.14 00 00 00 .07Sl2 soooo .S4 00 00 00 .32812 50000 .94 00 00 00 .57Sl2 50000 .D4 00 00 00 .S2S12 soooo 

.15 00 00 00 .OS203 12SOO .SS 00 00 00 .33203 12500 .9S 00 00 00 .5S203 12500 .D5 00 00 00 .S3203 12500 

.16 00 00 00 .08S93 1SOOO .S6 00 00 00 .33593 75000 .96 00 00 00 .SSS93 1SOOO .D6 00 00 00 .S3593 7SOOO 

.17 00 00 00 .OS9S4 37SOO .S1 00 00 00 .339S4 37SOO .97 00 00 00 .SS9S4 37500 .D7 00 00 00 .S3984 37SOO 

.18 00 00 00 .0937S 00000 .SS 00 00 00 .3437S 00000 .9S 00 00 00 .S9375 00000 .DS 00 00 00 .S437S 00000 

.19 00 00 00 .0976S 62SOO .S9 00 00 00 .34765 62500 .99 00 00 00 .S916S 62500 .D9 00 00 00 .S416S 62SOO 

.lA 00 00 00 .101S6 2SOOO .SA 00 00 00 .35156 2SOOO .9A 00 00 00 .60lS6 25000 .DAOO 00 00 .S51S6 2SOOO 

.lB 00 00 00 .10S46 S1SOO .SB 00 00 00 .3SS46 S1SOO .98 00 00 00 .60546 87500 .DB 00 00 00 .S5S46 s 1S00 

.lC 00 00 00 .10937 50000 .SC 00 00 00 .35937 50000 .9C 00 00 00 .60937 50000 .DC 00 00 00 .8S93 7 soooo 

.lD 00 00 00 .11328 12SOO .SD 00 00 00 .3632S 12500 .90 00 00 00 .6132S 12500 .DDOO 00 00 .8632S 12500 

.lE 00 00 00 .1171S 1SOOO .SE 00 00 00 .36718 75000 .9E 00 00 00 .6171S 7SOOO .DE 00 00 00 .8671S 1SOOO 

.lF 00 00 00 .12109 37SOO .SF 00 00 00 .37109 37SOO .9F 00 00 00 .62109 37500 .OF 00 00 00 .87109 37SOO 

.20 00 00 00 .12SOO 00000 .60 00 00 00 .37SOO 00000 .AO 00 00 00 .62500 00000 .EO 00 00 00 .S1SOO 00000 

.21 00 00 00 .12890 62SOO .61 00 00 00 .37S90 62500 .Al 00 00 00 .62S90 62500 .El 00 00 00 .S7S90 62SOO 

.22 00 00 00 .13281 2SOOO .62 00 00 00 .3S281 2S000 .A2 00 00 00 .632Sl 2SOOO .E2 00 00 00 .SS2Sl 25000 

.23 00 00 00 .13671 S7500 .63 00 00 00 .3S671 S7500 .A3 00 00 00 .63671 S7500 .E3 00 00 00 .8S671 87500 

.24 00 00 00 .14062 soooo .64 00 00 00 .39062 soooo .A4 00 00 00 .64062 soooo .E4 00 00 00 .S9062 50000 

.25 00 00 00 .144S3 12SOO .6S 00 00 00 .394S3 12500 .AS 00 00 00 .644S3 12SOO .Es oo oo·oo .894S3 12S00 

.26 00 00 00 .14S43 7SOOO .66 00 00 00 .39S43 7SOOO .A6 00 00 00 .64S43 7SOOO .E6 00 00 00 .S9843 7SOOO 

.27 00 00 00 .1S234 37SOO .67 00 00 00 .40234 37SOO .A7 00 00 00 .65234 37500 .E7 00 00 00 .90234 37SOO 

.28 00 00 00 .1S62S 00000 .6S 00 00 00 .4062S 00000 .AS 00 00 00 .6S62S 00000 .ES 00 00 00 .9062S 00000 

.29 00 00 00 .1601S 62SOO .69 00 00 00 .4101S 62SOO .A9 00 00 00 .6601S 62500 .E9 00 00 00 .9101S 62SOO 

.2A 00 00 00 .16406 2SOOO .6A 00 00 00 .41406 2SOOO .AA 00 00 00 .66406 25000 .EA 00 00 00 .91406 2SOOO 

.2B 000000 .16796 87SOO .6B 00 00 00 .41796 S7 500 .AB 00 00 00 .66796 S7500 .EB 00 00 00 .91796 S7S00 

.2C 00 00 00 .17187 soooo .6C 00 00 00 .421S7 50000 .AC 00 00 00 .671S7 soooc. .EC 00 00 00 .921S7 soooo 

.20 00 00 00 .17S78 12SOO .6D 00 00 00 .42S7S 12SOO .AD 00 00 00 .6757S 12500 .ED 00 00 00 .92S7S 12SOO 

.2E 00 00 00 .17968 7SOOO .6E 00 00 00 .4296S 1SOOO .AE 00 00 00 .6796S 75000 .EE 00 00 00 .9296S 1SOOO 

.2F 00 00 00 .1S3S9 37SOO .6F 00 00 00 .43359 37500 .AF 00 00 00 .6S3S9 37500 .EF 00 00 00 .933S9 37SOO 

.30 00 00 00 .187SO 00000 .70 00 00 00 .43750 00000 .BO 00 00 00 .6S7SO 00000 .FO 00 00 00 .93750 00000 

.31 00 00 00 .19140 62SOO .71 00 00 00 .44140 62500 .Bl 00 00 00 .69140 62500 .Fl 00 00 00 .94140 62500 

.32 00 00 00 .19531 25000 .72 00 00 00 .44531 25000 .B2 00 00 00 .69531 25000 .F2 00 00 00 .94S31 2SOOO 

.33 00 00 00 .19921 S7SOO .73 00 00 00 .44921 S7500 .B3 00 00 00 .69921 S7SOO .F3 00 00 00 .94921 87SOO 

.34 00 00 00 .20312 soooo .74 00 00 00 .45312 soooo .B4 00 00 00 .70312 soooo .F4 00 00 00 .95312 soooo 

.3S 00 00 00 .20703 12SOO .1S 00 00 00 .4S703 12SOO .BS 00 00 00 .70703 12SOO .FS 00 00 00 .9S703 12S00 

.36 00 00 00 .21093 1SOOO .76 00 00 00 .46093 75000 .B6 00 00 00 .71093 75000 .F6 00 00 00 .96093 1SOOO 

.37 00 00 00 .21484 37SOO .77 00 00 00 .46484 37 500 .87 00 00 00 .71484 37500 .F7 00 00 00 .96484 37500 

.38 00 00 00 .21875 00000 .7S 00 00 00 .4681S 00000 .88 00 00 00 .7187S 00000 .F8 00 00 00 .96875 00000 

.39 00 00 00 .2226S 62500 .79 00 00 00 .47265 62500 .B9 00 00 00 .72265 62SOO .F9 00 00 00 .97265 62SOO 

.3A 000000 .226S6 2SOOO .7A 00 00 00 .47656 25000 .BA 00 00 00 .72656 25000 .FA 00 00 00 .916S6 2S000 

.3B 000000 .23046 87SOO .78 uu 00 00 .4ii046 S75w 0 DD 
nn nn nn .73046 87500 .FB O'J OQ 00 _qR046 S7S00 
VV UV UV 

.3C 00 00 00 .23437 50000 .7C 00 00 00 .48437 50000 .BC 00 00 00 .73437 50000 .FC 00 00 00 .98437 soooo 

.30 000000 .23828 12SOO .7D 00 00 00 .48828 12500 .BD 00 00 00 .73828 12500 .FD 00 00 00 .98828 12SOO 

.3E 00 00 00 .24218 75000 .7E 00 00 00 .49218 1SOOO .BE 00 00 00 .74218 75000 .FE 00 00 00 .99218 1SOOO 

~A .3F 000000 .24609 37SOO .7F 00 00 00 .49609 37500 .BF 00 00 00 .74609 37500 .FF 00 00 00 .99609 37500 

A-11 9900 FAMILY SYSTEMS DESIGN 



APPENDIX 

Table K-6. Hexadecimal-Decimal Fraction Conversion Table (Cont.) 

I lexadccimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.00 00 00 00 .00000 00000 .00 40 00 00 .00097 6S62S .00 so 00 00 .0019S 312SO .00 co 00 00 .00292 96S7S 

.00 01 00 00 .00001 S2SS7 .00 41 00 00 .00099 1S212 .00 Sl 00 00 .00196 S3837 .00 Cl 00 00 .00294 49462 

.00 02 00 00 .00003 OS17S .00 42 00 00 .00100 70800 .00 S2 00 00 .0019S 3642S .00 C2 00 00 .00296 020SO 

.00 03 00 00 .00004 S7763 .00 43 00 00 .00102 233SS .00 S3 00 00 .00199 S9013 .00 C3 00 00 .00297 S463S 

.00 04 00 00 .00006 103S l .00 44 00 00 .00103 7S976 .00 S4 00 00 .00201 41601 .00 C4 00 00 .00299 07226 

.00 OS 00 00 .00007 62939 .00 4S 00 00 .OOlOS 2SS64 .00 SS 00 00 .00202 941S9 .00 cs 00 00' .00300 S9Sl4 

.00 06 00 00 .00009 1SS27 .00 46 00 00 .00106 SllS2 .00 S6 00 00 .00204 46777 .00 C6 00 00 .00302 12402 

.00 07 00 00 .00010 6SllS .00 47 00 00 .OOlOS 33740 .00 S7 00 00 .0020s 9936S .00 C7 00 00 .00303 64990 

.00 OS 00 00 .00012 20703 .00 4S 00 00 .00109 S632S .00 SS 00 00 .00207 Sl9S3 .00 cs 00 00 .0030S l 7S7S 

.00 09 00 00 .00013 73291 .00 49 00 00 .00111 3S916 .00 S9 00 00 .00209 04S4 l .00 C9 00 00 .00306 70166 

.00 OA 00 00 .OOOIS 2SS7S .00 4A 00 00 .00112 91S03 .00 SA 00 00 .00210 S712S .00 CA 00 00 .0030S 227S3 

.00 OB 00 00 .00016 7S466 .00 4B 00 00 .00114 44091 .00 SB 00 00 .00212 09716 .00 CB 00 00 .00309 7S34 l 

.00 oc 00 00 .OOOlS 310S4 .00 4C 00 00 .OOllS 96679 .00 SC 00 00 .00213 62304 .00 cc 00 00 .00311 27929 

.00 OD 00 00 .00019 S3642 .00 4D 00 00 .00117 49267 .00 SD 00 00 .0021S 14S92 .00 CD 00 00 .00312 80S 17 

.00 OE 00 00 .00021 36230 .00 4E 00 00 .00119 OlSSS .00 SE 00 00 .00216 674SO .00 CE 00 00 .00314 3310S 

.00 OF 00 00 .00022 S881S .00 4F 00 00 .00120 S444 3 .00 SF 00 00 .002 lS 20068 .00 CF 00 00 .003 IS 8S693 

.00 10 00 00 .00024 41406 .00 so 00 00 .00122 07031 .00 90 00 00 .00219 726S6 .00 DO 0000 .00317 3S28 l 

.00 11 00 00 .0002S 93994 .00 SI 00 00 .00123 S9619 .00 91 00 00 .00221 25 244 .00 Dl 00 00 .00318 90869 

.00 12 00 00 .00027 46S82 .00 S2 00 00 .0012S 12207 .00 92 00 00 .00222 77832 .00 D2 00 00 .00320 434S7 

.00 lJ 00 00 .0002S 99169 .00 S3 0000 .00126 64794 .00 93 00 00 .00224 30419 .00 D3 00 00 .00321 96044 

.00 14 00 00 .00030 Sl7S7 .00 S4 00 00 .0·0128 173S2 .00 94 00 00 .0022S 83007 .00 D4 00 00 .00323 48632 

.00 IS 00 00 .00032 0434S .00 SS 00 00 .00129 69970 .00 9S 00 00 .00227 3SS9S .00 DS 0000 .0032S 01220 

.00 16 00 00 .00033 S6933 .00 S6 00.00 .00131 22SSS .00 96 00 00 .00228 SS 1S3 .00 D6 00 00 .00326 S380S 

.00 17 00 00 .00035 09S21 .00 S7 00 00 .00132 7Sl46 .00 97 00 00 .00230 40771 .00 D7 00 00 .00328 063% 

.00 18 00 00 .00036 62109 .oo SS 00 00 .00134 27734 .00 9S 00 00 .00231 933S9 .00 DS 00 00 .00329 S898'4 

.00 19 00 00 .00038 14697 .00 S9 00 00 .0013S 80322 .00 99 00 00 .00233 4S947 .00 D9 00 00 .00331 11S72 

.00 IA 00 00 .00039 6728S .00 SA 0000 .00137 32910 .00 9A 00 00 .00234 98S 3S .00 DA 00 00 .00332 64160 

.00 IB 00 00 .00041 19873 .00 SB 00 00 .00138 8S49S .00 9B 00 00 .00236 51123 .00 DB 00 00 .00334 16748 

.00 lC 00 00 .00042 72460 .00 SC 00 00 .00140 380SS .00 9C 00 00 .00238 03710 .00 DC 00 00 .00335 69335 

.00 ID 00 00 .00044 2S048 .00 SD 00 00 .00141 90673 .00 9D 00 00 .00239 S6298 .00 DD 00 00 .00337 21923 

.00 lE 00 00 .00045 77636 .00 SE 00 00 .00143 43261 .00 9E 00 00 .00241 08886 .00 DE 00 00 .00338 74S ll 

.00 IF 00 00 .00047 30224 .00 SF 00 00 .00144 9SS49 .00 9F 00 00 .00242 61474 .00 DF 00 00 .00340 27099 

.00 20 00 00 .00048 82812 .00 60 00 00 .00146 4S437 .00 AO 00 00 .00244 14062 .00 EO 00 00 .00341 79687 

.00 21 00 00 .oooso 3S400 .00 61 00 00 .0014S 0102S .00 Al 00 00 .0024S 66650 .00 El 00 00 .00343 3227S 
',.00 22 00 00 .OOOSl S79SS .00 62 00 00 .00149 S3613 .00 A2 00 00 .00247 1923S .00 E2 00 00 .00344 S4S63 
.00 23 00 00 .OOOS3 40S76 .00 63 00 00 .00151 06201 .00 A3 00 00 .0024S 71826 .00 E3 00 00 .00346 374Sl 
.00 24 00 00 .OOOS4 93164 .00 64 00 00 .00152 5S7S9 .00 A4 00 00 .002SO 24414 .00 E4 00 00 .00347 90039 
.00 2S 00 00 .OOOS6 4S 7S l .00 65 00 00 .00154 11376 .00 AS 00 00 .002S l 77001 .00 ES 00 00 .00349 42626 
.00 26 00 00 .OOOS7 9S339 .00 66 00 00 .0015S 63964 .00 A6 00 00 .002S3 29S89 .00 E6 00 00 .003SO 9S214 
.00 27 00 00 .OOOS9 S0927 .00 67 00 00 .001S7 16SS2 .00 A7 00 00 .00254 821 77 .00 E7 00 00 .003S2 47S02 
.00 2S 00 00 .00061 03Sl5 .00 6S 00 00 .OOlSS 69140 .00 AS 00 00 .002S6 34 76S .00 ES 00 00 .003S4 00390 
.00 29 00 00 .00062 S6103 .00 69 00 00 .00160 21728 .00 A9 00 00 .002S7 S7353 .00 E9 00 00 .003SS 5297S 
.00 2A 00 00 .00064 08691 .00 6A 00 00 .00161 74316 .00 AA 00 00 .002S9 39941 .00 EA 00 00 .003S7 OSS66 
.00 2B 00 00 .00065 61279 .oo 6B 00 00 .00163 26904 .00 AB 00 00 .00260 92S 29 .00 EB 00 00 .00358 SS 1S4 
.00 2C 00 00 .00067 13S67 .00 6C 00 00 .00164 79492 .00 AC 00 00 .00262 45117 .00 EC 00 00 .00360 10742 
.00 2D 00 00 .0006S 664SS .00 6D 00 00 .00166 320SO .00 AD 00 00 .00263 97705 .00 ED 00 00 .00361 63330 
.00 2E 00 00 .00070 19042 .00 6E 00 00 .00167 S4667 .00 AE 00 00 .00265 S0292 .00 EE 00 00 .00363 1S9 l 7 
.00 2F 00 00 .00071 71630 .00 6F 00 00 .00169 372SS .00 AF 00 00 .00267 02880 .00 EF 00 00 .00364 6SSOS 

.00 30 00 00 .00073 2421S .00 70 00 00 .00170 S9S43 .00 BO 00 00 .0026S SS468 .00 FO 0000 .00366 21093 

.00 31 00 00 .00074 76S06 .00 71 00 00 .00172 42421 .00 Bl 00 00 .00270 OS056 .00 Fl 0000 .00367 736S l 

.00 32 00 00 .00076 29394 .00 72 00 00 .00173 9S019 .00 B2 00 00 .00271 60644 .00 F2 0000 .00369 26269 

.00 33 00 00 .00077 Sl9S2 .00 73 00 00 .0017S 47607 .00 B3 00 00 .00273 13232 .00 F3 0000 .00370 7SSS7 

.00 34 00 00 .00079 34S70 .00 74 00 00 .00177 0019S .00 B4 00 00 .00274 6S820 .00 F4 0000 .00372 3144S 

.00 3S 00 00 .oooso S71SS .00 7S 00 00 .0017S S27S3 .00 BS 00 00 .00276 1840S .00 FS 0000 .003 73 S4033 

.00 36 00 00 .00082 39746 .00 76 00 00 .OOlSO OS371 .00 B6 00 00 .00277 70996 .00 F6 00 00 .0037S 36621 

.00 37 00 00 .OOOS3 92333 .00 77 00 00 .OOlSl 579SS .00 B7 00 00 .00279 23SS3 .00 F7 0000 .1)()376 S9208 

.00 38 00 00 .0008S 44921 .00 7S 00 00 .001S3 10546 .00 B8 00 00 .002SO 76171 .00 F8 0000 .003 78 41796 

.00 39 00 00 .QOOS6 97S09 .00 79 00 00 .001S4 63134 .00 B9 0000 .002S2 2S7S9 .00 F9 0000 .00379 94384 

.00 3A 00 00 .0008S S0097 .00 7A 00 00 .00186 15722 .00 BA 00 00 .002S3 S 134 7 .00 FA 00 00 .003Sl 46972 

.00 3S 00 00 .00090 0268S .00 7B 00 00 .OOIS7 68310 .00 BB 00 00 ~002ss 3393S .00 FB 00 00 .00382 99S60 

.00 3C 00 00 .00091 SS273 .00 7C 00 00 .00189 20898 .00 BC 00 00 .002S6 86523 .00 FC 00 00 .00384 S2148 

.00 3D 00 00 .00093 07861 .00 7D 00 00 .00190 73486 .00 BO 00 00 .002S8 39111 .00 FD 00 00 .00386 04736 

.00 3E 00 00 .00094 60449 .00 7E 00 00 .00192 26074 .00 BE 00 00 .002S9 91699 .00 FE 00 00 .003S7 S7324 

.00 3F 00 00 .00096 1303 7 .00 7F 00 00 .00193 7S662 .00 BF 00 00 .00291 44287 .00 FF 00 00 .003S9 09912 A<llll!I 

<J<JOO FAMILY SYSTEMS DESIGN A-12 



APPENDIX 

Table K-6. Hexadecimal-Decimal Fraction Conversion Table (Cont.) 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.00 00 00 00 .00000 00000 .00 00 40 00 .00000 3Sl46 .00 00 so 00 .00000 76293 .00 00 co 00 .00001 14440 

.00 00 01 00 .00000 OOS96 .00 00 41 00 .00000 3S743 .00 00 Sl 00 .00000 76889 .00 00 Cl 00 .00001 1S036 

.00 00 02 00 .00000 01192 .00 00 42 00 .00000 39339 .00 00 S2 00 .00000 77486 .00 00 C2 00 .00001 1S633 

.00 00 03 00 .00000 Ol 7S8 .00 00 43 00 .00000 3993S .00 00 S3 00 .00000 7S082 .00 00 C3 00 .0000'1 16229 

.00 00 04 00 .00000 023S4 .00 00 44 00 .00000 40S31 .00 00 S4 00 .00000 78678 .00 00 C4 00 .00001 1682S .cm oo os 00 .00000 02980 .00 00 4S 00 .00000 41127 .00 00 SS 00 .00000 79274 .00 00 cs 00 .00001 17421 

.00 00 06 00 .00000 03S76 .00 00 46 00 .00000 41723 .00 00 86 00 .00000 79870 .00 00 C6 00 .00001 18017 

.00 00 U7 00 .00000 04172 .00 00 47 OU .00000 42319 .00 00 S7 00 .00000 S0466 .00 00 C7 00 .00001 18613 

.00 00 OS 00 .00000 04 76S .00 00 4S 00 .00000 4291S .00 00 SS 00 .00000 81062 .00 00 cs 00 .00001 19209 

.00 0009 00 .00000 OS364 .00 00 49 00 .00000 43Sll .00 00 S9 00 .00000 816S8 .00 Oll C9 00 .00001 19SOS 

.00 00 OA 00 .00000 OS960 .00 00 4A 00 .00000 44107 .00 00 SA 00 .00000 S22S4 .00 00 CA 00 .00001 20401 
,00 00 OB 00 .00000 06SS6 .00 00 4B 00 .00000 44 703 .00 00 SB 00 .00000 828SO .00 00 CB 00 .00001 20997 
.00 00 oc 00 .00000 071S2 .00 00 4C 00 .00000 4S299 .00 00 SC 00 .00000 S3446 .00 00 cc 00 .00001 21S93 
.00 00 OD 00 .00000 07748 .00 00 4D 00 .00000 4SS9S .00 00 80 00 .00000 S4042 .00 00 CD 00 .00001 221S9 
.00 00 OE 00 .00000 OS344 .00 00 4E 00 .00000 46491 .00 00 SE 00 .00000 S463S .00 00 CE 00 .00001 227SS 
.00 00 OF 00 .0000(1 0894U .00 00 4F 00 .00000 470S7 .00 00 SF 00 .00000 8S234 .00 OC CF 00 .00001 233S 1 

.00 00 10 OU .00000 09S36 .00 00 so 00 .00000 476S3 .00 00 90 00 .00000 SS830 .00 00 DO 00 .00001 23977 

.00 00 11 00 .00000 10132 .00 00 Sl 00 .00000 48279 .00 00 91 00 .00000 86426 .00 00 Dl 00 .00001 24S73 

.00 00 I2 00 .00000 1072S .00 00 S2 00 .00000 4SS7S .00 00 92 00 .00000 S7022 .00 00 02 00 .00001 2Sl69 

.00 00 13 00 .00000 11324 .00 00 S3 00 .00000 494 71 .00 00 93 00 .00000 S761S .00 00 D3 00 .00001 2S16S 

.00 00 14 00 .00000 11920 .00 00 S4 00 .00000 S0067 .00 00 94 00 .00000 88214 .00 00 D4 00 .00001 26361 .oo 00 IS 00 .00000 l 2S I6 .00 00 SS 00 .00000 S0663 .00 00 9S 00 .00000 8SS10 .00 00 DS 00 .00001 269S7 

.00 00 I6 00 .00000 I3113 .00 00 56 00 .00000 S 12S9 .00 00 96 uo .00000 S9406 .00 00 D6 00 .00001 21SS3 

.00 OU 17 00 .00000 13709 .00 00 S7 00 .00000 SIS56 .00 00 97 00 .00000 90003 .00 00 D7 00 .00001 2Sl49 

.00 00 IS 00 .00000 1430S .00 00 SS 00 .00000 S24S2 .00 00 9S 00 .00000 90S99 .00 00 DS 00 .00001 2S746 

.00 00 19 00 .00000 14901 .00 00 S9 00 .00000 S304S .00 00 99 00 .00000 9119S .00 00 D9 00 .00001 29342 

.00 00 IA 00 .oouoo 1S497 .00 00 SA 00 .00000 S3644 .00 00 9A 00 .00000 91791 .00 00 DAOO .00001 2993S 

.00 00 lH 00 .00000 16093 .00 00 SB 00 .00000 S4240 .00 00 9B 00 .00000 92387 .00 00 DB 00 .00001 30S34 

.00 00 IC 00 .oooou 16689 .00 00 SC 00 .00000 S4836 .00 00 9C 00 .00000 92983 .00 00 DCOO .00001 "'31130 

.0000·10 00 .00000 1 72SS .00 00 SD 00 .00000 SS432 .00 00 90 00 .00000 93S79 .00 00 DDOO .00001 J1'126 

.00 00 IE uo .00000 17S81 .00 00 SE 00 .00000 S602S .00 00 9E 00 .00000 9417S .00 00 DEOO .00001 32322 

.00 00 11 00 . 00000 l S4 77 .00 00 SF 00 .00000 56624 .00 00 9F 00 .00000 94 771 .00 00 DFOO" ·.oooot 32918 

.00 00 20 00 .00000 19073 .00 00 60 00 .00000 S7220 .00 00 AO 00 .00000 95367 .00 00 EO 00 .00001 33S14 

.00 00 21 00 .00000 19669 .00 00 61 00 .00000 S7816 .00 00 Al 00 .00000 9S963 .00 00 El 00 .00001 34110 

.00 00 22 00 .00000 2026S .00 00 62 00 .00000 SS412 .00 00 A2 00 .00000 96SS9 .00 00 E2 00 .00001 34706 

.00 00 23 00 .00000 20S61 .00 00 63 00 .00000 S9008 .00 00 A3 00 .00000 97155 .00 00 E3 00 .00001 3S302 

.00 00 24 00 .00000 214S7 .00 00 64 00 .00000 S9604 .00 00 A4 00 .00000 9775 1 .00 00 E4 00 .00001 35898 

.00 00 2S 00 .00000 220S3 .00 00 6S 00 .00000 60200 .00 00 AS 00 .00000 98347 .00 00 ES 00 .00001 36494 

.00 00 26 00 .00000 22649 .00 00 66 00 .00000 60796 .00 00 A6 .00 .00000 98943 .00 00 E6 00 .00001 37090 

.00 00 27 00 .00000 2324S .00 00 67 00 .00000 61392 .00 00 A7 00 .00000 99S39 .00 00 E7 00 .00001 37686 

.00 00 2B 00 .00000 23B41 .00 00 68 00 .00000 619B8 .00 00 AB 00 .00001 0013S .00 00 EB 00 .00001 3B282 

.00 00 29 00 .00000 24437 .00 00 69 00 .00000 62SB4 .00 00 A9 00 .00001 00731 .00 00 E9 00 .00001 3BB78 

.00 00 2A 00 .00000 2S033 .00 00 6A 00 .00000 631BO .00 00 AA 00 .00001 01327 .00 00 EAOO .00001 39474 

.00 00 2B 00 .00000 2S629 .00 00 6B 00 .00000 63776 .00 00 AB 00 .00001 01923 .00 00 EB 00 .00001 40070 

.00 00 2C 00 .00000 26226 .00 00 6C 00 .00000 64373 .00 00 AC 00 .00001 02Sl9 .00 00 EC 00 .00001 40666 

.00 00 2D 00 .00000 26822 .00 00 6D 00 .00000 64969 .00 00 AD 00 .00001 03116 .00 00 EDOO .00001 41263 

.00 00 2E 00 .00000 2741B .00 00 6E 00 .00000 6SS6S .. 00 00 AE 00 .00001 03712 .00 00 EE 00 .00001 41BS9 

.00 00 2F 00 .00000 2B014 .00 00 6F 00 .00000 61661 .00 00 AF 00 .00001 04308 .00 00 EF 00 .00001 424SS 

.00 00 30 00 .00000 28610 .00 00 iO 00 .00000 66757 .00 00 DO 00 .00001 04904 .00 00 FO 00 .00001 4 30S 1 .oo 00 31 00 .00000 29206 .00 00 71 00 .00000 673S3 .00 00 Bl 00 .00001 ossoo .00 00 Fl 00 .00001 4 3647 

.00 00 32 00 .00000 29B02 .00 00 72 00 .00000 67949 .00 00 B2 00 .00001 06096 .00 00 F2 00 .00001 44243 

.00 00 33 00 .00000 3039B .00 00 73 00 .00000 68S45 .00 00 B3 00 .00001 06692 .00 00 F3 00 .00001 44839 

.00 00 34 00 .00000 30994 .00 00 74 00 .00000 69141 .00 00 B4 00 .00001 07228 .00 00 F4 00 .00001 4S43S 

.00 00 3S 00 .00000 31S90 .00 00 1S 00 .00000 69737 .00 00 BS 00 .00001 07884 .00 00 FS 00 .00001 46031 

.00 00 36 00 .00000 32186 .00 00 76 00 .00000 70333 .oo 00 B6 00 .00001 08480 .00 00 F6 00 .00001 46627 

.00 00 37 00 .00000 32782 .00 00 77 00 .00000 70929 .00 00 B7 00 .00001 09076 .00 00 F7 00 .00001 47223 

.00 00 38 00 .00000 33378 .00 00 78 ()() .00000 71S2S .00 00 B8 00 .00001 09672 .00 00 F8 00 .00001 47819 

.00 00 39 00 .00000 33974 .00 00 79 00 .00000 7SI21 .00 00 B9 00 .00001 10268 .00 00 F9 00 .00001 4841S 

.UV. UV .JI'\. vv nnnl'V\ .., A ~"11\ .00 00 7A I\/\ .OOOQQ 727!7 .00 00 BA 00 ()0001 10864 .00 00 FAOO .00001 49011 .VVVV\I ..J""f..J IV 

.00 00 3B 00 .00000 3S 166 .00 00 7B 00 .00000 73313 .00 00 BB 00 .OOOOI l I460 .00 00 FB 00 .000()1 49607 

.00 00 JC 00 .00000 3S762 .00 00 7C 00 .00000 73909 .00 00 BC 00 .00001 120S6 .00 00 FC 00 .00001 S0203 

.00 00 3D 00 .00000 363S8 .00 ()() 70 00 .00000 74505 .00 00 BD 00 .00001 126S2 .00 00 EDOO .00001 S0799 

~A 
.00 00 3E 00 .00000 369S4 .00 00 7E 00 .00000 7Sl01 .00 00 BE 00 .00001 13248 .00 00 FE 00 .00001 S139S 
.00 00 3F 00 .00000 37SSO .00 00 7F 00 .00000 7S697 .00 00 BF 00 .00001 13844 .00 00 FF 00 .000{)1 s 1991 

A-13 9900 FAMILY SYSTEMS DESIGN 



APPENDIX 

Table K-6. Hexadecimal-Decimal Fraction Conversion Table (Cont.) 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.00 00 00 00 .00000 00000 .00 00 00 40 .00000 00149 .00 00 00 80 ;00000 00298 .00 00 00 co .00000 0044 7 

.00 00 00 01 .00000 00002 .00 00 00 41 .00000 00151 .00 00 00 81 .00000 00300 .00 00 00 Cl .00000 00449 

.00 00 00 02 .00000 00004 .00 00 00 42 .00000 00153 .00 00 00 82 .00000 00302 .00 00 00 C2 .00000 00451 

.00 00 00 03 .00000 00006 .00 00 00 43 .00000 00155 .00 00 00 83 .00000 00305 .00 00 00 CJ .00000 00454 

.00 00 00 04 .00000 00009 .00 00 00 44 .00000 00158 .00 00 00 S4 .00000 00307 .00 00 00 C4 .00000 00456 

.00 00 00 05 .00000 00011 .00 00 00 45 .00000 00160 .00 00 00 85 .00000 00309 .00 00 00 cs .00000 0045S 

.00 00 00 06 .00000 00013 .00 00 00 46 .00000 00162 .00 00 00 S6 .00000 00311 .00 00 00 C6 .00000 00461 

.00 00 00 07 .00000 00016 .00 00 00 47 .00000 00165 .00 00 00 S7 .00000 00314 .00 00 00 C7 .00000 00463 

.00 00 00 08 .00000 OOOlS .00 00 00 4S .00000 00167 .00 00 00 SS .00000 00316 .00 00 00 cs .00000 00465 

.00 00 00 09 .00000 00020 .00 00 00 49 .00000 00169 .00 00 00 S9 .00000 0031S .00 00 00 C9 .00000 00467 

.00 00 00 OA .. 00000 00023 .00 00 00 4A .00000 00172 .00 00 00 SA .00000 00321 .00 00 00 CA .00000 004 70 

.00 00 00 OB .00000 00025 .00 00 00 4B .00000 00174 .00 00 00 SB .00000 00323 .00 00 00 CB .00000 004 72 

.00 00 00 oc .00000 00027 .00 00 00 4C .00000 00176 .00 00 00 SC .00000 00325 .00 00 00 cc .00000 00474 

.00 00 00 OD .00000 00030 .00 00 00 4D .00000 00179 .00 00 00 SD .00000 00328 .00 00 00 CD .00000 004 77 

.00 00 00 OE .00000 00032 .00 00 00 4E .00000 OOlSl .00 00 00 SE .00000 00330 .00 00 00 CE .00000 004 79 

.00 00 00 OF .00000 00034 .00 00 00 4F .00000 001S3 .00 00 00 SF .00000 00332 .00 00 00 CF .00000 00481 

.00 00 00 10 .00000 00037 .00 00 00 50 .00000 001S6 .00 00 00 90 .00000 0033S .00 00 00 DO .00000 004S4 

.00 00 00 11 .00000 00039 .00 00 00 Sl .00000 00188 .00 00 00 91 .00000 00337 .00 00 00 Dl .00000 004S6 

.00 00 00 12 .00000 00041 .00 00 00 S2 .000()!1 00190 .00 00 00 92 .00000 00339 .00 00 00 D2 .00000 00488 

.00 00 00 13 .00000 00044 .00 00 00 53 .00000 00193 .00 00 00 93 .00000 00342 .00 00 00 D3 .00000 00491 

.00 00 00 14 .00000 00046 .00 00 00 54 .00000 00195 .00 00 00 94 .00000 00344 .00 00 00 D4 .00000 00493 

.00 00 00 15 .00000 0004S .00 00 00 SS .00000 00197 .00 00 00 95 .00000 00346 .00 00 00 DS .00000 0049S 

.00 00 00 16 .00000 0005 I .00 00 00 S6 .00000 00200 .00 00 00 96 .00000 00349 .00 00 00 D6 .00000 00498 

.00 00 00 17 .00000 00053 .00 00 00 57 .00000 00202 .00 00 00 97 .00000 003S I .00 00 00 D7 .00000 005 00 

.00 00 00 IS .00000 oooss .00 00 00 S8 .00000 002o4 .00 00 00 98 .00000 0035 3 .00 00 00 DB .00000 OOS02 

.00 00 00 19 .00000 00058 .00 00 00 59 .00000 00207 .00 00 00 99 .00000 003S6 .00 00 00 D9 .00000 oosos 

.00 00 00 IA .00000 00060 .00 00 00 SA .00000 00209 .00 00 00 9A .00000 0035S .00 00 00 DA .00000 OOS07 

.00 00 00 lB .00000 00062 .00 00 00 SB .00000 00211 .00 00 00 9B .00000 00360 .00 00 00 DB .00000 oos 09 

.00 00 00 IC .00000 0006S .00 00 00 SC .00000 00214 .00 00 00 9C .00000 00363 .00 00 00 DC .00000 oos 12 

.00 00 00 ID .00000 00067 .00 00 00 SD .00000 00216 .00 00 00 9D .00000 0036S .00 00 00 DD .00000 oos 14 

.00 00 00 IE .00000 00069 .00 00 00. SE .00000 0021S .00 00 00 9E .00000 00367 .00 00 00 DE .00000 oos 16 

.00 00 00 IF .00000 00072 .00 00 00 SF .00000 00221 .00 00 00 9F .00000 00370 .00 00 00 DF .00000. oos 19 

.00 00 00 20 .00000 00074 .00 00 00 60 .00000 00223 .00 00 00 AO .00000 00372 .. 00 00 00 EO .00000 00521 

.00 00 00 21 .00000 00076 .00 00 00 61 .00000 00225 .00 00 00 Al .00000 00374 .00 00 00 El .00000 OOS23 

.00 00 00 22 .00000 00079 .00 00 00 62 .00000 0922s .00 00 00 A2 .00000 00377 .00 00 00 E2 .. 00000 OOS26 

.00 00 00 23 .00000 00081 .00 00 00 63 .00000 00230 .00 00 00 A3 .00000 00379 .00 00 00 E3 .00000 OOS28 

.00 00 00 24 .00000 OOOS3 .00 00 00 64 .00000 00232 .00 oo, 00 A4 .00000 00381 .00 00 00 E4 .00000 oos 30 

.00 00 00 2S .00000 00086 .00 00 00 6S .00000 0023S .00 00 00 AS .00000 00384 .00 00 00 ES .00000 OOS33 

.00 00 00 26 .00000 oooss .00 00 00 66 .00000 00237 .00 00 00 A6 .00000 00386 .00 00 00 E6 .00000 oos 3S 

.00 00 00 27 .00000 00090 .00 00 00 67 .00000 00239 .00 00 00 A7 .00000 003S8 .00 00 00 E7 .00000 OOS37 

.00 00 00 28 .00000 00093 .00 00 00 6S .00000 00242 .00 00 00 AS .00000 00391 .00 00 00 ES .00000 OOS40 

.00 00 00 29 .00000 0009S .00 00 00 69 .00000 00244 .00 00 00 A9 .00000 00393 .00 00 00 E9 .00000 OOS42 

.00 00 00 2A .00000 00097 .00 00 00 6A .00000 00246 .00 00 00 AA .00000 0039S .00 00 00 EA .00000 OOS44 

.00 00 00 2B .00000 00100 .00 00 00 6B .00000 00249 .00 00 00 AB .00000 00398 .00 00 00 EB .00000 OOS4 7 

.00 00 00 2C .00000 00102 .00 00 00 6C .00000 00251 .00 00 00 AC .00000 00400 .00 00 00 EC .00000 OOS49 

.00 00 00 2D .00000 00104 .00 00 00 6D .00000 0025 3 .00 00 00 AD .00000 00402 .00 00 00 ED .00000 OOS51 

.00 00 00 2E .00000 00107 .00 00 00 6E .00000 002S6 .00 00 00 AE .00000 00405 .00 00 00 EE .00000 005S4 

.00 00 00 2F .00000 00109 .00 00 00 6F .00000 0025 8 .00 00 00 AF .00000 00407 .00 00 00 EF .00000 ooss6 

.00 00 00 30 . 00000 00111 .00 00 00 70 .00000 00260 .00 00 00 BO .00000 00409 .00 00 00 FO .00000 ooss 8 

.00 00 00 31 .00000 00114 .00 00 00 71 .00000 00263 .00 00 00 Bl .00000 00412 .00 00 00 Fl .00000 OOS61 

.00 00 00 32 .00000 00116 .00 00 00 72 .00000 00265 .00 00 00 Bl .00000 00414 .00 00 00 F2 .00000 OOS63 

.00 00 00 33 .00000 OOllS .00 00 00 73 .00000 00267 .00 00 00 B3 .00000 00416 .00 00 00 F3 .00000 OOS65 

.00 00 00 34 .00000 00121 .00 00 00 74 .00000 00270 .00 00 00 B4 .00000 00419 .00 00 00 F4 .00000 00568 

.00 00 00 3S .00000 00123 .00 00 00 15 .00000 00272 .00 00 00 BS .00000 00421 .00 00 00 FS .00000 00570 

.00 00 00 36 .00000 00125 .00 00 00 76 .00000 00274 .00 00 00 B6 .00000 00423 .00 00 00 F6 .00000 005 72 

.00 00 00 37 .00000 00128 .00 00 00 77 .00000 00277 .00 00 00 B7 .00000 00426 .00 00 00 F7 .00000 00575 

.00 00 00 38 .00000 00130 .00 00 00 78 .00000 00279 .00 00 00 BS .00000 00428 .00 00 00 F8 .00000 OOS77 

.00 00 00 39 .00000 00132 .00 00 00 79 .00000 002S l .00 00 00 B9 .00000 00430 .00 00 00 F9 .00000 00579 

.00 00 00 3A .00000 00135 .00 00 00 7A .00000 00284 .00 00 00 BA .00000 00433 .00 00 00 FA .00000 00582 

.00 00 00 3B .00000 0013 7 .00 00 00 7B .00000 00286 .00 00 00 BB .00000 00435 .00 00 00 FB .00000 OOS84 

.00 00 00 3C .00000 00139 .00 00 00 7C .00000 00288 .00 00 00 BC .00000 00437 .00 00 00 FC .00000 00586 

.00 00 00 3D .00000 00142 .00 00 00 7D .00000 00291 .00 00 00 BD .00000 00440 .00 00 00 FD .00000 00589 

.00 00 00 3E .00000 00144 .00 00 00 7E .00000 00293 .00 00 00 BE .00000 00442 .00 00 00 FE .00000 00591 A.._ .00 00 00 3F .00000 00146 .00 00 00 7F .00000 00295 .00 00 00 BF .00000 00444 .00 00 00 FF .00000 00593 

9900 FAMILY SYSTEMS DESIGN A-14 



TI WORLDWIDE 
SALES OFFICES 

ALABAMA: Hunlsville, 500 Wynn Drive. Suite 514. Huntsville 
AL 35805, (205) 837-7530 

ARIZONA: Phoenix, P 0 Box 35160. 8102 N 23rd Ave Suite 
A. Phoenix. AZ 85069. (602) 249-1313 

CALIFORNIA: El Segundo, 831 S Douglas SI. El Segundo. CA 
90245. (213) 973-2571, Irvine, 17620 Filch. Irvine. CA 92714. 
¥14) 545-5210. Sacramento, 1900 Poinl West Way. Suite 171. 

R~g~~~~~to. SC~t;5:15 S~~ 1 g:e9~9-t~b~~~ 0/Hli' m?9~~t 
Sunnyvale. PO Box 90.64. 77~ Palomar Ave . Sunnyvale. CA 
94086. (408) 732-1840 

COLORADO: Denver, 9725 E. Hampden St . Suite 301. Denver. 
co 80231, (303) 695-2800 

CONNECTICUT: Wallingford, 9 Barnes Industrial Park Rd . 
Barnes lndus1r1al Park. Wallingford. CT 06492. (203) 
269-0074 

FLORIDA: Clearwater, 2280 US Hwy 19 N . Suite 232. Clear
water, FL 33515, (813) 325-1861; Ft. Lauderdale, 2765 NW 
62nd St, Ft. Lauderdale. FL 33909. (305) 973-8502: Winier 
Park, 1850 Lee Rd . Suite 115. Winter Park. FL 32789. (305) 
644-3535 

GEORGIA: Anania, 3300 Northeast Expy. Building 9. Atlanta. 
GA 30341. (404) 452-4600 

~e~~~~s'.SiL ~gbi~t.ot"31W~~J~29~15 W Algonquin Arlington 

INDIANA: Ft. Wayne, 2020 Inwood Dr, Ft. Wayne, IN 46805. 

i~~;ln!~~i 1~1~i: !imar3~~M~~~5~5 Lynhurst. suite J-400 

ARGENTINA, Texas Instruments Argentina SA.I.CJ Km 
25, 5 Rula Panamencana Don Torcualo. C.C 2296, 1000-
Correo Cenlral, Buenos Aires. Argentina, 748-1141 

AUSTRALIA, Texas Instruments Australia ltd. Unit 1A, 5 By
field St.. P.O. Box 106, North Ryde, N.S.W. 2113, Sydney, 
Australia, 02-887-1122: 6th floor. 60 Albert Road, South 
Melbourne, 3004, Victoria, Australia, 699-5788 

AUSTRIA, Texas Instruments Ges m.b H Rennweg 17, 1030 
Vienna, Austria, 0222-724186 

BELGIUM, Texas lnslrumenls SIA Mercure ~nlre, Rakel
straat. Rue De La Fusee 100, 1130 Brussels, Belgium, 
02-7208000 

BRAZIL, Texas lnslrumenlos Electronicos do Brasil ltda Rua 
Padre Pereira De Andrade, 591 Cep-05469 Sao Paulo. Brazil, 
011-260-634 7 

DENMARK, Texas Instruments AID. Marielundvej 46E, 2730 
Herlev, Denmark, 02-917400. 

FINLAND, Texas Instruments Finland OY. Fressenkatu 6, P.L 
917, 00101Helsinki10, Finland, 80-408300 

FRANCE, Texas lnstrumenls France: La Boursidiere. Bat. A. 
R.N. 186, 92350 Le Plessis Robinson, France, 01-6302343, 
31 Quai Rambaud, 69002 Lyon. France. 078-373585; 1. Av. 
de la Chartreuse, 38240 Meylan. France. 076-904574: 9. 
Place de Bretange, 35000 Rennes. France, 099-795481; 

A-15 

MARYLAND: Baltimore 1 Rutherford Pl . 7133 Ruthertord Rd . 
Baltimore. MD 21207. (301) 944-8600 

MASSACHUSETTS: Waltham, 504 Totten Pond Rd . Waltham. 
MA 02154. (617) 890-7400 

MICHIGAN: Soulhfield, Central Park Plaza. 26211 Central Park 
Blvd , Suite 215. Southfield. Ml 48076. (313) 353-0830 

MINNESOTA: Edina, 7625 Parklawn. Edina. MN 55435. (612) 
830-1600 

MISSOURI: Kansas Cily, 8080 Ward Pkwy . Kansas City. MO 
~~1~ cin~~1.6 ~t 5~~~~~o~0s~.3}4o1ui(31 11)8~~ 9~~sci~ne. Industrial 

NEW JERSEY: Clark. 292 Terminal Ave West. Clark, NJ 
07066. (201) 574-9800 

~~~q~eEX~~O~f,\iu~~ir5~u~655~~~ 1 Alice NSE. Suite E. Albu-

NEW YDRK:·Easl Syracuse, 6700 Old Cullamer Rd . East Syr
acuse. NY 13057, (315) 463-9291: Endicoll, 112 Nanticoke
Ave, PO Box 618. Endicott. NY 13760. (607) 754-3900.
Melville, 1 Huntington Quadran~le. Suite 3C10. PO Box 2936.

~ve~v.111 ~o~cih1~~6~;e(tm ~~M1.0fs1Wm.Wtde·Jo0c1h~~1uet~
1210 Jefferson Rd . Rochester. NY 14623. (716) 424-5400

NORTH CAROLINA: Charlolle. 8 Woodlawn Green. Woodlawn
Rd , Charlotte. NC 28210. (704) 527-0930

OHIO: Beachwood, 23408 Commerce Park Rd . Beachwood.

~1~d:~~v2e· (g~~o~ 6~i~1°5°43~arJffi· 2~a-~m Bldg ·
4124

100-102 Alie de Barcelone, Residence L'Autay, 31000
Toulouse. France. 061-213032

GERMANY, Texas Instruments Deutschland GmbH Kurfuer·
stendamm 146, 1000 Berlin 31, Germany, 030-8927013; Ill
Hagen 43. Frankfurter Allee 6-8, 6236 Eschborn, Germany,
06196-43074; 4300 Essen, Germany, 0201-233551; Win·
terhuder Weg 8, 2000 Hamburg 76, Germany; 040-2201154;
Haggertystrasse 1, 8050 Fre1s1ng, Germany, 08161-801,
81ethorsl 4, 3000 Hanover 51, Germany, 0511-648021: Ara·
bellastrasse 13-15, 8000 Munich 81, Germany, 089-92341,

W87~~Wegf~~~: ;st~~~ se
8151~~ 5 ~ ~60"obJ!Jtig ~ ;i ~oa nJe r~9a~~:

0711-547001.

HONG KONG, Texas Instruments Asia ltd 902, Asian House.
1, Hennessy Rd., Hong Kong, 05-279041

ITALY, Texas Instruments Italia Spa Via Europa 38/44,
Cologno Monzese. Milan, Italy, 02-253-2451: Via Salaria
1319, 00138 Rome. Italy, 06-6917127: Via Montebello 27,
10124 Turin, Italy, 011-832276

~APt~FTe~:~115s~~n~~ilSA~~i:~~d: ~~c~~~:~~ei~~i~?K·u4:
Tokyo, Japan 107, 03-402-6171

KOREA, Texas Instruments Supply Company Room 301,
Kwang Poong Bldg., 24-1 Hwayang Dong, Sungdong-Ku,
Seoul, Korea, 446-1565

- @j

OKLAHOMA: Tulsa. 3105 E Skelly Dr. Suite 512. Tulsa. OK
74105. (918) 749-9547

OREGON: Beaverton, 6700 SW 105th St . Suite 110. Beaver
Ion. OR 97005. (503) 643-6758

TENNESSEE: Johnson Cily, P 0 Drawer 1255. Erwin Hwy.
Johnson City TN 37601. (615) 461-2129

TEXAS: Auslin, 12501 Research Bldg . P 0 Box 2909. Austin.
TX 78723. j512\ 250-7655: Dallas, PO Box 225012. Dallas.
TX 75265. 214 995-6531. Houston, 9000 Southwest Frwy.
Suite 400. ouston, TX 77036. (713) 778-6592

~J~2i.~~~1~W3~J~ii672 West 2100 South. Salt Lake City UT

VIRGINIA: Falrlax, 3001 Prosperity. Fa1r1ax, VA 22031. (703)
849-1400: Midlolhian, 13711 Sutter's Mill Circle. M1dloth1an.
VA 23113. (804) 744-1007

WASHINGTON: Redmond, 2723 152nd Ave . N E Bldg 6
(206) 881-3080. Redmond. WA 98052

CANADA: Ollawa. 436 McClaren St . Ottawa. Canada.
K2POM8. (613) 233-1177: Richmond Hill, 280 Centre St E .

E~~~~n~~dV1~~I s~4 CL~~1re~n~~~~e23~~ii fr~~6J g~~~~~8~w~':
St Laurent. Quebec. Canada H4S1R7. (514) 334-3635 K

MEXICO, Texas Instruments de Mexico S.A Poniente 116
#489, Col. Industrial Vallejo. Mexico City 15, D F, Mexico.
905-567 ·9200

NETHERLANDS, Texas Instruments Holland BV. Laan Van de
Helende Me esters 421 A, P 0 Box 283. 1180 AG Amstel
veen, Holland, 020-473391

NORWAY, Texas Instruments A/S Ryensvingen 15. Oslo 6.
Norway, 02-689487

PORTUGAL. Texas Instruments Equipamento Electron1co
LOA Rua Eng. Frederico Ulrich. 2650 Moreira Da Maia,
Douro, Portugal, 948-1003

SINGAPORE, Texas Instruments Asia Ltd. P 0 Box 2093,
990 Bendemeer Rd., Singapore 1, Republic of Singapore,
65-2581122

SPAIN, Texas Instruments Espana S.A Balmes 89, 12 Saree·
Iona 12. Spain

SWEDEN, Texas Instruments International Trade Corporation
(Sverigef1l1alen) Norra Hannvagen 3, Fack S-100 54 Stock
holm 39, Sweden, 08-235480

TAIWAN, Texas Instruments Taiwan ltd. 10th floor, Fu Shing
Bldg., 71 Sung-Kiang Rd., Taipei, Taiwan, Republic of
China.

UNITED KINGDOM, Texas Instruments ltd Manton Lane,
Bedford, England MK417PU, 0234-67466 E

9900 FAMILY SYSTEMS DESIGN

ALABAMA: Huntsville, Hall-Mark (205) 837-8700

ARIZONA: Phoenix, Kierultt Electronics (602) 243-4101; R.V
Weatherford (602) 272-7144; Tempe, Marshall Industries
(602) 968-6181; Tucson, Kierultt (602) 624-9986

CALIFORNIA: Anaheim, R.V. Weatherford (714) 634-9600;
Canoga Park, Marshall Industries (213) 999-5001;

C7h1W~~~~3~~~i1 (~~~t;~8M~~~a11cf ~~~s~~essa ·(!11
3 rum~

b141; El Segundo, Ti sugply (213) 973-5150; Glendale, R.V

~:r~~'.~o;~JWi 4 ~4~4o~~~:o8:01~t:r·s~~f 1~8d0~it~~:-mli
556-6400; Los Angeles, Kierultt Electronics (213) 725-0325;
RPS (213) 748-1271; Palo Alto, K1erultt Electronics (415)
968-6292; Pomona, R.V. Weatherford (714) 623-1261; Sacra
mento, Ti Supp~ (916) 924-8521; San Diego, Arrow Elec-

~~~~~sa1\71~~u~fri;:~~~4)KWa~~6i16~t~oCic~~~t1h4irf~~~-~~l~i 
~~~-t~ 4i~~ ~:.n~n~ta;3ac~ inRp:n ~i~t~:~g;d 4!~2-5J94a6J:·~5~~: 
nyvale, Arrow Electronics (408) 745-6600; Marshall lndus-

~~epspl~4flJ8 7~~21-~0~~5~Un~teE~e~~r~ni~~e~i~~ko~~~~g~689o6'.
Torrance, Wme Electronics (213) 3~0-0880; Tustin, K1erulf1
Electronics (714) 731-5711.

COLORADO: Denver, Arrow Electronics (303) 758-2100; Dip
lomat/Denver. (303) 740-8300; Kierulff Electronics (303)
371-6500; Englewood, R.V. Weatherford (303) 770-9762.

CONNECTICUT: Orange, M1lgray/Connecticut (203) 795·
0714; Wallingford, Arrow Electronics (203) 265-7741; Mar
shall Industries (203) 265-3822; Ti Supply (203) 281-4669

~t0r!~:~ ~~~:~:~~;~ DEf ~~t~oa~r~s0 %h65)d 9~~~~W?~i~1~:
mat/Ft. Lauderdale (305) 971-7160; Hall-Mark/Miami (305)

~~]~2g~Y .o ~~r~~o ·E~e~~;~;i~k:O ~~~~o 7~35~~ ~N5~io~g:
mat/Florida (305) 725-4520; St. ~fersburg, Kierultt ~ec
\%n5nj~_1tf 4r·1966; Winter Park, Milgray Electronics

GEORGIA: Norcross, Arrow Electronics (404) 449-8252; Mar
shall industries (404) 923-5750.

~~~~R~~: ~:l11~J~~~,~~i~~~~· 1~ 1 ~)PlJbg~56:6:~t2J~~:e B~~: 
lage, Kierulfl Electronics (31~) 640-0200; Chicago, Newark 
Electronics (312) 638-4411; Schaumburg, Arrow Electronics 
(312) 893-9420. 

INDIANA: Fl. Wayne, Ft. Wayne Electronics (219) 423-3422; 

~~:~:r~~fcoi'tJ1 grm~3~15;cy1og~cPsP 1 ~3i1lJo~~~l~~~~.Arrow 

1" 

IOWA: Cedar Rapids, Deeco (319) 365-7551. 

~~:;:;~ ~~~:~n. c~a~~~~;QJKiR;;~ai~~~ mm m:~m: 
Wichita, LCOMP inc. (316) 265-9507. 

MARYLAND: Bailmore, ArrJw Electronics (202) 737-1700. 
(3016 247-5200; Hall-Mark/Baltimore ~301~ 796-9300; Co-

~i~r!~iw~~~i~~t~t~~iclrla46U~~ 9 5-1 26; Rockville, 

MASSACHUSETTS: Billerica, Kierulff Electronics (617) 
667-8331; Burlington, Marshall industries (617) 272-8200; 

~;~l~:(s1j1) s9LI.ff~1jg~ 7t~~oE~i~t~on%0sb(~?t9fS.8i1g8: 
~!~H~~~~:N~:~r:r~1~~tr~~[g;ljj~)t~o5n~~&~~ 3~~~]~~~~: 
Diplomat (313) 477-3200, Grand Rapids, Newark Electronics 
(616) 241-6681. 

MINNESOTA: Edina, Arrow Electronics (612) 830-1800; 
Kierulfl Electronics (612) 835-4388; Minneapolis, Diplomat 
(612) 788-8601. 

~~~:~su~:: ~a[b~~~·1~;1~i<~~~~~s~it;o%s1~f 1i~1~~~0~?5~i 
Supply (81~) 753-4750; St. Louis, Arrow Electronics (314)
567-6888; LCOMP lnc.-St. Louis (314) 291-6200; Ti Supply
(314) 569-2258

NEW HAMPSHIRE: Manchester. Arrow Electronics (603)
668-6968.

NEW JERSEY: Camden, General Radio Supply (609)
964-8560; Cherry Hill, Hall-Mark (609) 424-0860; Clark, Tl
Supply (201) 382-6400; Clifton, Mars.Mii Industries (201)
340-1900; falrfleld, K1erulff Electronics (201) 575-6750;
lllarlton, M1lgray/Delaware Valley (609J 424-1300; Moores-

~~:n·E~~t~~nf~;c~r~Olls 7~6?.~8~5:-f~t~~;.a~~~~~~~~/N~~
Jersey (201) 785-1630.

m~45~~:x:~t~in:t\~~~1um~r~ni~;1(so5f 1m~g~2~~ ~~~;J
Components (505) 345-9981.

~Ee~p!~~ti~~~:eJ/~c~~~~~: 11(J~~)sm:s~~i/l J.~4 ·/~6~;
645-3986; Hauppauge, Arrow Electronics (516) 231-1000;
JACO (516) 273-5500; Llve~ool, Arrow/S(iracuse (315)
6~126i104°5°4;-~~8~~ m~~ch3e1s~~ r~ l; ~o02?Fio~he~:t!1re. R rR 10m~
b300; Rochester Radio Supply (716) 454-7800; Jarshall In
dustries (716) 235-7620.

NORTH CAROLINA: Raleigh, Arrow Electronics (919)
876-3132; Hall-Mark (919) 832-4465; Winston-Salem, Arrow
Electronics (919) 725-8711.

TI DISTRIBUTORS

t j I

OHIO: Centmllle, Arrow Electronics (513) 435-5563; Cleve
land .• Ti Suppl! ~216) 464-6100; Cincinnati, Graham Elec-

~g~~f~0~~1J~y1;n:1~~6b cE~:~~~~i~s ~;jjr~2~.91h3~: 1 ~1a~~
~:~~1~n1~~~1;~eJ (~W/ 4%~:}9~8t s~11~~1.a~~roH!l~~t~tro~f~1;
(216) 248-3990

~~1t'~a~~~~1J~ 1(~18r~~E~84esJ:W~i~~t~~: /§Jg/ ~rnf~:
OREGON: Beaverton, Almac/Stroum Electronics (503)
641-9070; Portland, Kierulfl Electronics (503) 641-9150.

PENNSYLVANIA: Pittsburgh, Arrow Electronics (412)
856-7000.

~~~~I~ ~~~~t~;~i~s C(~~lJ 09y1o~~tjAitaland (801) 486-4134; 

~8A5~~J:~:T~~~ tr1:~mA~~da,c/~~;~eudm C ~~gtor~~~~~ m~l 
763-2300, Kierultt Electronics (206) 575-4420; Tukwila, Ar
row Electronics (206) 575-0907. 

WISCONSIN: Oak Creek, Arrow Electronics (414) 764-6600; 
Hall-Mark/Milwaukee (414) 761-3000; Waukesha, Kierulfl 
Electronics (414) 784-8160. 

~1~~t~~~~;(~~~)Y 2~~-~4%~'.do~~f ~~1~;;1?tg~6~~~~ct~~~~~~ 
(416) 661-0220; Edmonton, Cam Gard Supply (403) 
426-1805; Halifax, Cam Gard Supply (902) 454-8581; Kam
loops, Cam Gard Supply (604) 372-3338; Moncion, Cam 
Gard Supp~ (506) 855-2200; Montreal, CESCO Electronics 

~5E1~M3E1;cfr~1~i~~t(6f 3r 1 ~~t~05J~~: (~~~r:~1~~:~~i~t%~~) 
820-8313; Quebec City, CESCO Electronics (418) 687-4231; 
Regina, Cam Gard Supply (306) 525-1317; Saskatoon, Cam 
Gard Sucply (306) 652-6424; Toronto, Future Electronics 

1i1~M1: Wr~3~1e~tar~~~c~v(~·4)c4a3~-5i~s~ ~1~~r~~g~~~~ 
Gard Supply (204) 786-8481. A 

TEXAS INSTRUMENTS 
INCORPORATED 

9900 FAMILY SYSTEMS DESIGN A-16 

I 

A<4 



~A 

CALCULATOR AIDS 

TI PROGRAMMER 

HEXADECIMAL AND OCTAL CALCULATOR/CONVERTER FOR COMPUTER 
PROGRAMMING PROFESSIONALS. 

Hexadecimal. Octal. Decimal. Texas Instruments new TI Programmer 
lets you perform fast, accurate conversions and calculations in any of 
these number bases " .. portable power you can apply right to the job, 
right where the job is. 

NUMBER BASE CONVERSIONS. 

Enter a number in base 8, 10 or 16. Then with a touch of a key, that 
number is quickly and accurately converted to either of the other 
number bases. Results appear instantly on the TI Programmer's bright, 
easy-to-read LED display. And a convenient mode indicator means you 
always know what number base you're operating in. 

NUMBER BASE CALCULATIONS. 

The TI Programmer quickly handies arithmetic computations, too - in all three bases. Immediate 
answers to binary computer problems ... giving you more time for important programming or 
troubleshooting tasks. 

IDEAL FOR USE WITH ANY SIZE COMPUTER. 

TI Programmer gives you 8-digit capacity in all bases ... capability to handle even IBM 370 problems 
with ease. And since the TI Programmer uses integer "two's complement" arithmetic in hexadecimal 
and octal bases, it operates naturally, just like the computer does. Decimal base features signed floating 
point arithmetic for convenience in day-to-day math. II I sCI key provides "one's complement" capability 
in HEX and OCT bases. 

For additonal flexibility in minicomputer and microcomputer work, the TI Programmer has the 
logical functions AND , OR , Exclusive OR !XOR! and Shift !SHFI . These functions operate bit 
by bit on numbers in HEX and OCT to give you the same capability provided by many computer 
instruction sets including the latest technology in mini/ micro systems ... and a unique tool for 
computer repair and digital logic design. 

VERSATILE THREE KEY MEMORY. 

Three key memory lets you store, recall or sum to memory contents. Parentheses provide the capability 
to specify the order of operation execution in a problem - with up to 4 pending operations. The TI 
Programmer even handles mixed number bases and combined logical and arithmetic operations; 
conversions and operations take place automatically in the order you specify. Constant mode allows 
constant operations with all arithmetic and logical operations. 

TI PROGRAMMER CAN BE A REAL TIME SA VL~ f:'OR YOU. 

Texas Instruments new TI Programmer does away with conversion tables and tedious longhand 
methods. Complete with vinyl carrying case, fast charge battery pack and AC adapter I charger, the TI 
Programmer can multiply the effectiveness of anyone involved with computer programming, program 
debugging or troubleshooting. 

A-17 9900 FAMILY SYSTEMS DESIGN 



CALCULATOR AIDS 

PROGRAMMABLE TI-57 

THE KEY PROGRAMMABLE SUPER SLIDE RULE CALCULATOR. 

With statistics and decision making capabilities to help solve repetitive problems. 
Eight multi-use memories provide addressable memory locations for you to store 
and recall data. Program memory stores 50 fully-merged steps for up to 150 
keystrokes. 

Once your program is built, it can be executed repeatedly by supplying new sets 
of variables. The calculator recalls the program for you and executes on command 
with each set of variables. 

Plus, functions of x, logarithmic functions, trigonometric functions, statistical 
functions, nine levels of parentheses, and up to four pending operations let you handle even complex 
problems with ease. And Tl's unique AOS™ algebraic operating system allows you to enter problems 
from left-to-right, exactly as they are stated algebraically. 

More than just a super slide ruler, TI-57 is the most powerful single-chip calculator ever produced! 

PROGRAMMABLE TI-58 
A POWERFUL PROGRAMMABLE CALCULATOR WITH PREPROGRAMMED Soun STATE 

SOFTWARE™ MODULES. 

The TI Programmable 58 is truly computer-like. Up to 480 program steps or 60 
memories to work with individually or to integrate with the Master Library module 
to deliver up to 5000 additional steps. 4 types of display testing with independent 
test or "t" register. 10 additional test registers directly available for: Looping, 
Increment, Decrement. 6 levels of subroutines. 72 useful labels. 2 modes of indirect 
addressing. 10 user flags available: Set, Reset, Test. 10 user defined label keys. Over 
170 functions and operations in scientific, engineering and statistical fields. 

Complete editing and error correction capabilities. Single-step and back-step keys let you review and 
revise your program. Insert and delete keys make it simple to add or remove instructions at any point in 
the program. 

PROGRAMMABLE TI-59 
A REVOLUTIONARY NEW ADVANCE IN PERSONAL PROGRAMMABLE CALCULATORS. 

An extraordinary card programmable calculator with plug-in Solid State SoftwareTM 
and magnetic card storage. You have all the features of the TI-58 plus ... up to 960 
program steps, or up to 100 memories, and magnetic card read/write capabiity so 
you can record your own programs and make them a part of your permanent 
personal library. The Master Library module simply plugs in. It includes 25 
different programs in key areas such as math, statistics, finance. Plus, blank 
magnetic cards let you write and record custom programs. 

The TI Programmable 59 is the most powerful handheld programmable in the 
world - more powerful and more versatile than some computers of the past decade. 

With the PC-lOOC printer/plotter - which allows you to print, list or trace your programs, plot 
curves and histograms, and print out alpha headings - the TI Programmable 58 and the TI 
Programmable..: S<) become even more flexible. 

<)<JOO FAMILY SYSTEMS DESIGN A-18 

A....il 







LCC4400 
97049-118-N I 

/,Mf) 
~ 

TEXAS INSTRUMENTS 
INCORPORATED Printed in U.S.A. 

1064 Pages 




