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INTRODUCTION

Texas Instruments has developed and is manufacturing a family of microprocessor
products and systems based on the architecture of its 990 minicomputer. The purpose of
this book is to present enough factual information about the 9900 and the family of
devices and systems surrounding it to serve not only as a guide for deciding to use the
9900 in an application, but also as the primary reference for design and programming
activities. The book is much more than a data book or a collection of application notes. It
contains basic concepts, presents methods and techniques, and most important of all,
shows how the architecture of the 9900, substantially superior to other microprocessor
architectures, can be translated into cost effective applications.

The time investment you make in learning how to use the 9900 will inevitably produce
substantial benefits because your designs will be advanced well beyond other
microprocessor systems; they will be expandable, flexible, easily upgraded and will not
be obsolescent. The capital investment in programming systems will bring powerful
computing equipment and software, tools to your design team that will have them out-
distancing the competition in a very short time.

In reading this book, you will see the 9900 product as more than a single
microprocessor. You will find a family of processors, peripherals, boards, minicomputers
and systems all based on a single architectural concept called memory-to-memory
architecture. It is this basic principle which, when fully understood at the fundamental
level, will help you understand why and how the 9900 can be used to implement
outstanding products. In addition, you will see why Texas Instruments has made the
commitment to the continued support of the 9900 family in both hardware and software.
New microprocessors and peripheral devices will retain and complement the basic
architectural features—the 16-bit word length, the instruction set, the I/O techniques.
etc. Texas Instruments software support goes beyond the standard assembler, editor,
linker and PROM programmer software. New design tools such as POWER BASIC
and PASCAL are now available. These powerful software products bring structured
programming disciplines into focus and help you to attain an advanced programming
capability.

All in all, the book is a collection of useful factual material which should be of
substantial benefit to anyone considering designing with microprocessors. For those who
have very limited exposure to designing with semiconductor products, the next few
sections will be helpful because the theme of “more functions at lower cost” is
demonstrated. These ideas lead to the basic philosophy that designing with standard
hardware — semiconductor LSI products which are programmable — is the most
economical procedure, and should be carefully considered for every new electronic
product.
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S
THE IMPACT OF SEMICONDUCTORS

In the short thirty years since the invention of the transistor (the first semicondu¢tor

device to exhibit amplification), there have been more inventions and more scientific and 1<
engineering accomplishments than in all time previous. The field of digital electronics

(especially computers) has been the greatest contributor of new products for these

accomplishments and, therefore, has become one of the most rapidly growing industries.
Manufacturers of semiconductor components (transistors, integrated circuits,

microprocessors and memories) have been providing the building blocks, and the

equipment manufacturers have been taking advantage of the opportunity by developing

the most sophisticated systems that are economically feasible.

In his keynote address to the 1977 National Computer Conference, Mark Shepherd,
Chairman of the Board of Texas Instruments, made the following points:

“Until 1971, the semiconductor industry was in the circuits business.
Semiconductor circuits, complex though they were, constituted only a fraction of an
entire system. The one-chip calculator developed in 1971 was the first significant
complete system. Since then many calculators and watches have been developed
where the entire system function is accomplished by one or a few semiconductor
chips. These were custom chips because the technology did now allow any reserve
computing power for other applications.

“The semiconductor industry has now entered an era where the entire system
function of an end product can be accomplished by a few semiconductor chips, or a
single chip, with enough versatility to permit adaptation to many different
applications through programming.

“This change carries enormous implications for the system designer. 1) The lead time
for system implementation is shortened because no special chip development is
required. 2) The development cost will be low because it will be limited to software
(which may be executed in hardware). 3) The required degree of electronic
sophistication on the part of the user is much less. To achieve these advantages the
system designer must be prepared to use standard products produced in large

volume rather than custom devices.

“The functional equivalent of a medium-scale computer (Figure /-1) cost $30,000
in the early 1960s. Its cost equivalent has now dropped to $4,000 and is projected
to be at less than $100 by 1985, penetrating the personal cost threshold. As this is
accomplished, greater challenges will be encountered in the cost of sales, service,
and maintenance, requiring that we learn to incorporate self-diagnostic and self-
repair functions into our systems.”
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Figure 1-1. Cost of Medium Scale Computer

(M. Shepherd, 1977 NCC)
The cost of the hardware components for a typical digital system has been decreasing
with time because new and more powerful semiconductor devices have been developed.
Equally important is the fact that the development cost for the typical digital system
hardware has also been decreasing. Figure /-2 illustrates how impressive this cost
reduction has been. Contrast the figures of 7-8 million dollars in the early fifties with 8-9
thousand dollars in the late seventies; digital system development cost has been reduced
by a factor of one thousand in a period of 25 years! An extension of this trend indicates
that typical system hardware development cost will be approximately $1,000 by 1985.
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How has this been accomplished? Figure 7-3 shows what has been happening. As the
number of components per chip of silicon increases, the development cost for each chip
also increases. For a semiconductor manufacturer, volume production is required to
offset the development cost. Semiconductor devices are therefore being batched fabricated
— a few hundred, a few thousand per chip — and this means lower cost per active

element group or AEG. (An AEG is defined as a logic gate, flip-flop, or a memory cell.)
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Figure 1-3. Evolution of Semiconductor Technology

Figure 1-4 shows the chronology of semiconductor device development. An AEG in the
early 1950’s consisted of one or two transistors, several resistors, a capacitor or two, and
some area of a printed circuit board to hold the parts together as an assembly. Early
integrated circuits contained about 10 AEG’s. Then medium scale integration achieved
up to 100 AEG’s per chip and large scale integration reached 1,000 AEG’s per chip.

At this point (the late 1960’s), the semiconductor technologists had apparently reached
an impasse. If they continued to increase the number of AEG’s per chip the high degree
of specialization would preclude volume production, and the benefits of LSI would be
lost. In fact, the only area in which LSI appeared to be feasible was in memories —
primarily read/write memories now called RAM’s. Read only memories (ROM’s) and
programmable read only memories (PROM’s) were not required until later (as you will
see). But the semiconductor technologists continued their thrust toward greater numbers
of AEG’s per chip, focusing primarily on memory products.

There was one other product which appeared to be feasible (in 1970) — a single-chip
calculator. Here was an opportunity to stretch the imagination to greater degrees of
achievement. At the producibility level of about 1,000 AEG’s per chip, all of the
functions of a microcomputer could be built on one chip — and the application certainly
had the required volume potential. So custom LSI found a niche in the form of the hand-
held calculator.
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Figure 1-4. Stages in Evolution of Digital Semiconductor Circuitry.

(G. McH horter, Understanding Digital Electronics, Texas Instruments Inc., Dallas, Texas, 1978)
From the very beginning the designers of the single chip microcomputer envisioned new
and varied applications of this device, so it was made with a ROM for instructions and
RAM for data. It was programmable, at least it was “‘mask programmable.” And as we
witness the growth of this segment of the semiconductor market, we see a host of
dedicated applications for single chip microcomputers such as controllers for microwave
ovens, sewing machines, and other appliances.

By designing a “standard” chip that could be programmed to do a variety of jobs,
semiconductor technologists repeated the step taken by the inventors of the first
programmable machine — the first computer — in the late 1940’s. The first digital
computer was a stored program digital calculating machine. Programming provided
versatility and variety of applications. Similarly, programmable single chip, LSI
semiconductor devices — microcomputers — gave LSI variety of applicability.

The next logical step in the evolution of LSI was the design of the general purpose
microprocessor, a computer CPU on a chip. By interfacing the microprocessor to a
memory — a set of chips arranged to provide as much storage as needed — one can build
larger, more powerful microcomputers which can replace special purpose hardwired
logic. In fact, general purpose hardware that is programmable provides multichip
applicability of LSI technology.
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With this breakthrough in the concept of LSI application, the semiconductor
technologists have been motivated to continue to increase the number of AEG’s per
device. Figure 1-5 projects the growth of AEG’s per chip to over 10° by 1985 — a level
sufficient for a single chip 32-bit microcomputer. The 16-bit microprocessor and 4K
RAM require about 50,000 AEG’s. RAM’s of 16K and 64K bits requiring up to
100,000 AEG’s are not unrealistic extensions of the trends; they are real products
rapidly moving into the marketplace. New advances are being made in semiconductor
process technology to achieve the packing densities needed for the future. As Figure 1-5
indicates, optical techniques for defining regions and interconnections reach a resolution
limit at about 10° AEG’s. E-beam and X-ray technology will be required to further
increase component density.
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Figure 1-5. Semiconductor Chip Complexity
(M. Shepherd, 1977 NCC)
The impact of programmable semiconductor devices is shown in Figure /-6. Prior to
1972, semiconductor devices were designed as czrcusts. Now they are being designed as
systemns or at least subsystems. As the number of AEG’s/chip continues its rise, driving
down the cost of CPU and memory devices, unlimited opportunity is being created for
an unbelievable variety of new products.

Figure 1-7 shows that a dramatic change is anticipated in the rate of AEG cost reduction
with time due to the impact of microprocessors. Functions (AEG’s) costing $1.00 in
1966 were obtained for around 5 cents in 1976. In fact, the cost per AEG is projected to
be less than a tenth of a cent by 1985.
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Memory costs (on a per bit basis) are diminishing, too. Following the projected trends
for the cost of AEG’s, RAM cost is forecast to be less than .05 cents per bit by 1982
(Frgure 1-8). The need for various memory types has now been established. Programs
for microcomputers are stored in non-volatile memories such as ROM’s, PROM’s and
EPROM’s. ROM’s are mask programmable by the manufacturer and are best suited for
high volume applications. PROM’s are programmable after the devices are completely
packaged. Either the manufacturer, the distributor or the user may store the desired
program (or data) in a PROM. PROM’s are suited for medium volume to low volume
applications. EPROM’s are erasable and so find use during prototyping and development
cycles. They are also used in applications where software must be periodically changed,
upgraded, or modified in any way. Other memory technologies such as CCD’s (charge
coupled device) and bubbles will be used for mass storage requirements where speed is
not critical.
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Figure I-8. Memory Cost Comparison

(M. Shepherd, 1977 NCC)
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The effect of modern semiconductor technology has been to alter the roles of the
component manufacturer and the OEM (original equipment manufacturer). Component
manufacturers are continuing to produce batch-fabricated semiconductor products. But
the economic benefit — the low cost per AEG — of batch fabricated semiconductor
devices with high functional density cannot be realized except through applications
which are program controlled. The component manufacturer must therefore provide
programming support via PDS’s (program development systems) and software products
to enable the OEM to develop applications programs. Thus increased development cost
of high functional density devices is found not only in improved process technology and
in the design of LSI masks, but also in the attendant software support products. And
volume production is required to offset these costs.

The role of the OEM is undergoing a corresponding shift. Component costs and the
assembly cost of hardware have been sharply reduced. Table /-1 demonstrates the
evolutionary steps in hardware costs. The cost improvement ratio of each step as
compared with the previous step is dramatic: overall, it is 600:1.

Table 1-1. System Cost Reduction

TOTAL COST
COMPONENTS COMPONENTS + COST IMPROVEMENT

EVOLUTIONARY STEP TO ASSEMBLE ASSEMBLY COST RATIO
DISCRETES 20000-30000 6000-9000 -

IC'S (GATES & FLIP FLOPS) 350-500 600-900 101

IC’S + MSI 125-150 250-450 2,5:1
MICROPROCESSORS 7-10 120-190 21
MICROCOMPUTERS 1 6-12 121

While hardware costs are decreasing, the software costs, as a percentage of the overall
design effort, are increasing. Figure /-9 illustrates the relationship of hardware to
software costs in product development and the change in emphasis. In the 1950’s
computers were only used in large-scale business and scientific applications. OEM’s had
no opportunity to use computing power in their systems. When minicomputers were
introduced in the 1960’s, OEM’s found applications in process control and small business
EDP functions, and therefore had to provide some special programs for their use. With
the advent of microprocessors in the 1970’s, the software component of the development
cost increased further, and this trend can easily be forecast into the 1980’s — less than
25% of the development cost of most products will be for hardware.
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Figure 1-9. Increasing % of Software Development Cost

Development costs are changing — becoming more software oriented — and this has a
strong impact on overall product cost. In any product design, the development cost is
amortized over some production quantity, and this affects the price of the product. But
developing soffware to achieve any design goal is less expensive than developing
hardware to do the same thing. Therefore, the fota/ development cost for “equivalent
systems’ is decreasing (perhaps by as much as 15-20% per year).

The development of programmable semiconductors has been a major accomplishment
equivalent in importance to the inventions of the transistor, the integrated circuit, and
the stored program computer.

The trends appear to be well established. The number of AEG’s per chip will be
increasing by at least 75% per year for at least another two decades. As a result, AEG
cost will decline by about 50% per year and RAM cost per bit will decline by about 20%
per year. The computing power of LSI devices will increase while the price will continue
to decrease. The impact will be felt in all walks of life.

APPLICATIONS OF PROGRAMMABLE SEMICONDUCTORS

The application of programmable semiconductors can be considered as an extension of
the application of computers. All applications of LSI semiconductor devices are as
computers because microprocessors, microcomputers and programmable LSI peripheral
chips are programmed to perform the special functions required for each application. All
the elements of a computer — ALU, control, memory and I/O — are present.

As the price of computing power decreases, the number of applications increases. The
number of computers of any given type being applied is inversely proportional to the cost
(Figure 1-10). As of 1976 there were relatively few systems in the $100-$10000 range.
But microcomputers are changing this. Applications are being found in new designs of
digital electronic systems, in products previously using electro-mechanical devices, and

in new products which previously were not economically feasible.
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Figure 1-10. U.S. Installed Computer Base—1976
(M. Shepherd, 1977 NCC)
While some people may feel that the number of computers cannot exceed the number of
“programmers’ (approximately one million according to Figure 1-10), it is evident that
all designers of products which use microcomputers will acquire the necessary
programming skills to achieve the desired end product results.

SINGLE CHip MICROCOMPUTER APPLICATIONS

Single chip microcomputers are being used in the small, dedicated, high volume
applications such as calculators, microwave ovens, and general appliance controllers. As
the computing power of single chip devices increases, the range of applications will
obviously expand. Early devices contained about 1K bytes of memory. New devices with
2K bytes of ROM for instructions and small amounts (256 bytes) of RAM for data have
been built and designed into more complex applications. One example is a terminal
controller using the TMS 9940 microcomputer with one support chip; this is described
in Chapter 9.
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MuLti-Cxip MICROCOMPUTER APPLICATIONS

The application areas which involve the greatest number of designers and programmers

by far are those using a multi-chip approach — a microprocessor, memory sized to the 14
application, and peripheral interface devices. Limitations are much less in multi-chip

systems than for single chip microcomputers. Designs can be accomplished using the

general purpose microcomputer boards which have been designed to be applied to a

variety of end products. Or the designer can start with individual LSI devices and build a

special microcomputer for each application.

The list of applications for microprocessors is long and continues to grow. But a few of
the representative areas are these:

Instrumentation

Test Equipment

Industrial Process Control

Point-of-sale Terminals

Cash Registers

Typewriter/ Word Processing Equipment
CRT Terminals

Vending Machines

TV Games

Automobile Engine Ignition Controllers
General Automotive Products

CB Equipment

Communications Controllers
Educational Toys

Personal Computers

Special Dedicated EDP Functions

In each application standard programmable semiconductor LSI devices are used to sense
input information, process the information according to special procedures (algorithms),
and send information to external devices for display, printing, physical control devices,
etc. Obviously the need for interface circuits is great. They cover specific functions such
as A/D converters, D/A converters, transducers, and special display drivers, etc., as
well as standard digital circuits for buftering, multiplexing, latching, etc. Figure 7-11
shows conceptually how the elements of the microcomputer are arranged for any
application.
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BUILDING A MICROPROCESSOR BASED SYSTEM

Given an application idea, how does one proceed toward designing a product in which a
microprocessor is the central control device? The design steps may be diagrammed in
great detail, but the most important steps are these.

1. System Specifications — The system requirements include electrical specifications for
each input and output, timing details, and overall performance logic.

2. Division into small subsystems — By defining small, easily managed tasks, the
hardware and software requirements can be measured, and design can be scheduled.

3. Decisions for hardware and software — This is the appropriate design point at which
the tradeoff between hardware and software solutions for each task is evaluated. For
economy, the best solution may appear to be software, but there may be a penalty in
performance.

4. Hardware and software design — Here the two design activities may be carried out in
parallel. The microcomputer parts are assembled on one or more breadboards and tested
for signal flow. Software is developed using a software development system (a computer
with appropriate peripherals and programs). Software testing may be done to provide
algorithm functionality.

5. System integration — Ultimately, the hardware must be tested under program control.
At this point the programs must be loaded into the system memory (usually PROM or
EPROM) for testing. Often special logic analyzers and other computer based diagnostic
tools are needed to debug the complete system (see the description of the AMPL system
in Chapters 2 and 7).

It is clear from the foregoing list of steps that a thorough understanding of the hardware
components and a knowledge of programming is required to design with
microprocessors and microcomputers. But this is not difficult to acquire. By learning the
names of standard building blocks and software packages, you will have taken a major
step toward understanding what you read about them.

Basic Harpware COMPONENTS

Since the hardware for digital systems is being standardized, the basic elements and their
functions can easily be studied. Comparisons of similar devices from various
manufacturers must be made and design tradeoffs evaluated. Here are the basic building
blocks, what they do, and how they are used.
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Microprocessor or CPU

This fundamental chip contains the Arithmetic and Logic Unit (ALU) which basically
performs addition and comparisons between two numbers. Temporary storage registers
are available to hold numbers (called operands) and addresses (memory location
numbers) which identify or point to instructions and data. Sometimes the ALU is used to
calculate addresses by arithmetic operations on certain register contents. The
microprocessor must also contain timing and control circuitry to direct all activities in an
orderly step-by-step procedure. The actual control functions are determined by decoding
and executing instructions. Instruction execution is a special type of operation on
information which comes from memory. The memory stores numerical values which
may be interpreted by the processor in one of two ways. Either the number is an
instruction, which will direct the sequence of operations over the next few clock cycles,
or it is data to be operated upon either arithmetically or logically.

Memory

The main memory of a microcomputer holds the program and data for the system.
Because semiconductor RAM devices are volatile (that is, all data is lost when power is
removed), it is desirable to use ROM devices (Real Only Memory or non-volatile
memory) for the program and RAM for data. ROM devices are programmed
(information stored in the cells) by means of a metalization pattern or mask at the time
of chip fabrication. Programmable read only memories (PROM’s) may be programmed
by the manufacturer or the user because information is stored by burning small metalic
fuse links via the application of electric current. Programming is performed on the
device after it has been packaged. EPROM’s are non-volatile read-only memories which
may be erased, usually via the application of ultraviolet light. These devices are

~ especially useful in prototyping and system development during which program changes

are frequent.

Memory devices are designed for cascading so that any size memory may-be obtained by
adding more devices. Capacities of 4K bits per chip are common; devices with 64K bits
per chip are not far away.

Input/Output

For the input and output function — interfacing the microprocessor-memory
combination to the “outside world” — usually consists of a variety of devices including
programmable LSI devices. Examples of interface requirements are as follows:

1. For communication of digital information over a pair of wires, conversion from 8-bit
bytes (parallel) to single bits sent in sequence (serial) is required. The I/0O device must
receive a number of bits, hold them in a register and then shift them serially to a
transmission line. The reverse procedure, serial to parallel conversion, must be
performed for receiving information from the transmission line. Since the clock rates,

1-16 9900 FAMILY SYSTEMS DESIGN



In Systom Design BUILDING A
¥stom Desig MICROPROCESSOR BASED SYSTEM

start and stop characters, and “handshaking” requirements can be complex in
communications networks, the protocol is designed into the TMS 9902 and TMS 9903
programmable communications controllers (see Chapter 8 for details).

2. Man-machine interfacing may consist of arrays of switches and indicators or may be
performed via a terminal such as a teletype (T'TY) or a video display terminal (VDT).
Arrays of switches are connected to microcomputers via multiplexers. The address bus
may be used to select one of the switches for sampling at any given moment. Addressable
latches are useful in supplying on-off data to arrays of indicators. The address bus is
again used to select one specific display device (a single lamp) to be turned on (or off)

in a given computer cycle. Terminal interfacing can be accomplished via a serial data
interface such as the TMS 9902 (see Chapter 9 — example using the TM 990/100M
board).

3. The broad category of analog (continuously variable) inputs and outputs requires
converters (A/D and D/A) to obtain digital information on the computer side of the
interface. Input signals from transducers or output signals to actuators (positioners)
require this type of conversion.

Connecting the 1/0 devices to the CPU and addressing them may present problems in
some microcomputer systems. The 9900 solves the problem by providing two types of
general purpose I/0. Memory mapped 1/0 allows a set of memory addresses to identify
the I/0 devices (as though they were words of memory), while the communications
register unit (CRU) provides a separate 1/O port specially designed to interface single
bit devices, communications devices, standard computer peripherals, etc. Unique to the
9900 architecture, the CRU interface is a powerful and versatile I/O technique; it is
easily utilized via the special LSI peripheral supports circuits (such as the TMS 9901, 2,
and 3, and the TIM 9905 and 6).

The rules for interconnecting the various elements of the microcomputer include
loading specifications and signal level limitations. In observing these rules the designer
will occasionally use a few standard devices to reduce loading or perform level shifting.
Generally, the addition of such devices is an insignificant part of the overall design.
(Details for hardware interfacing are given in Chapter 4.)

PrOGRAMMING FOR MicrocoM PUTERS

The writing of programs — often called software development — is the companion
activity to hardware breadboarding and testing in computer systems. But software is
substantially more flexible than hardware because it consists primarily of ideas,
documented in strings of characters on a page, or in 1’s and 0’s in 2 memory. In fact,
until a program is actually loaded into a memory, it is truly a set of ideas on paper, hence
the contrasting name, software.
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In developing the individual hardware components of a microcomputer, designers
usually subdivide the activities into small, easily managed tasks. These tasks are
performed sequentially by one designer or simultaneously by several members of a
design team. The same is true of software design. Small, easily defined and understood
sub-programs are given as individual assignments to the programmers on the design
team.

The disciplines for programming are set up so that each sub-program stands alone, yet
couples to the other sub-programs in a harmonious manner. But the overall plan begins
at the top (a program to handle all sub-programs) and expands to several lower levels (a
“Christmas tree” of programs). This is known as ““‘top-down programming”’, and it is a
form of structured programming.

The term structured programming means that discipline in programming in which each
program module implements an algorithm with a single entry point, a single exit point
and a definitive result for each possible input. Each module must contain its own buffer
area so that it cannot alter procedures or data of other modules. (In some cases common
buffers are allowed, but complex rules for their use are needed.)

How is programming done? What equipment is needed? And what support can you get
from a microcomputer manufacturer? First, there is a preparation phase in which the
designer and/or programmer must become familiar with the instruction set and the
architectural elements of the microcomputer selected for the design. The second phase
involves writing selected short program segments to gain insight into the memory
requirements and the execution speed of various sub-programs. Then the main body of
the program may be developed.

Writing programs means writing code; writing program steps which must be executed in
sequence. Usually these steps are written in a mnemonic language which uses one to four
letters as operation codes, and strings of other characters to designate the operand (the
number to be operated upon). These program steps must be translated and ‘“‘assembled”
into a set of 1’s and 0’s — the machine language executable by the microcomputer — by
a special program development computer.

The programmer writes the program on paper. Then he enters the program steps via a
keyboard into the program development system (PDS), and directs the PDS to
“assemble’ the instruction into machine code. The output from the PDS is a set of
numbers which represent the program steps, and a listing of the input and output codes.

Obviously the PDS uses some special programs (software) for performing the tasks
outlined. The programmer writes source code statements, submits them to the PDS via a
program called the editor, then uses the assembler program to produce object code — the
machine code used by the microcomputer. Errors in the program statements are printed
along with the object code listing. Errors are corrected by editing the source code (via
the editor) and resubmitting it to the assembler.
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After a number of program modules are complete, a set of two or more may be *“linked”
together as a single program. This is done by submitting object code programs to the

linker. The output from the linker is a single program which may be loaded into the
microcomputer.

The list of support software is just beginning.

The following outline of software products describes the program development cycle
further.

Program development software
Editor — for entering and changing source code
Assembler — for conversion from symbols and mnemonics into machine code
Linker — for connecting several programs into one
PROM programmer — for loading numbers (programs) into PROMs

Program testing software
Debug routines — for testing programs
AMPL system software — for testing programs and the interaction with the
hardware

Software available for use with user programs

Monitor — for checking status of all program modules

Executive — for overall control

Operating system — for operating peripheral devices

Library (utility) programs — for performing special mathematical conversions
and calculations

High level language software for program development
PASCAL — for structured programming
POWER-BASIC — for ease of programming in BASIC language
FORTRAN — for general computer problem solving

This partial list of software is intended as a categorical outline which should indicate the
level of support one finds in the areas of software development. To comprehend the
value of any or all of these software products, you must work with them and develop a
few programs for microcomputers.

The obvious difficulty with software evaluation is that few designers can afford the
capital investment for a large PDS to properly evaluate each of the alternative paths for
software development. But Texas Instruments has developed a variety of program
development systems. Some of these are very economical and readily available. They
were designed specifically for product and programming evaluation and for initial design.

You will find descriptions and approximate prices for each PDS in Chapter 2.
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WHIcH MICROPROCESSOR OR MICROCOMPUTER TO USE

You may be convinced that designing with programmable semiconductors is the best
design philosophy, and you may be attempting to evaluate the various products on the
market. But a significant decision point has been reached: “which microprocessor or
microcomputer is best for my application?”” The selection of the proper device is based
on many factors, some of which are not related to architecture or instruction execution
speed.

Selection of a microcomputer or microprocessor usually means selection of one primary
vendor (and sometimes one or more second sources) who manufactures the product and
the compatible peripheral devices. It also means the purchase of a program development
system designed especially for the specific microprocessor. Selection of one device means
a commitment to using that device for future designs. Changing to another
microprocessor is costly both in hardware and in the development of programming skills.
Selection criteria for a microprocessor may be summarized as follows:

1. The microprocessor must be versatile so that it can be used in many applications.

2. The vendor must provide a comprehensive set of support and peripheral circuits.

3. One PDS should serve the programming activity for a significant period of time.

4. The cost of the devices and the PDS must be economically attractive.

5. The performance of the microprocessor must be sufficient to meet the design goals.
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Texas Instruments 9900 family of components and software systems clearly meets these

selection criteria. Careful evaluation of the price/performance tradeofls between the

various microprocessor products on the market will reveal superior adaptability of the 14
9900 family to any product design. The selection criteria applied to the 9900 family may

be summarized thus.

1. Versatility has been achieved by providing a family of processors using one basic 16-bit
architecture. Both 16- and 8-bit versions are available as well as a single chip
microcomputer. Instead of trying to apply a single microcomputer to a broad scope of
applications, the designer may select from the 9900 family the most appropriate

microprocessor for each application. Programming and software support is the same for
all.

2. Numerous support devices are available from Texas Instruments, and new products
are introduced regularly. Chapter 8 contains detailed data sheets for many of them.

3. A single PDS from Texas Instruments can provide programming support for all of the
processors in the 9900 family. The powerful support software streamlines program
development. And programs written for one microcomputer may be used on another.
Software compatibility of the processor family is one of the primary benefits of designing

with the 9900.

4. Product pricing of the microprocessors, peripheral devices and PDS’s is economically
attractive. Designing multiple applications from the same components and using the
same development tools means even greater economic benefit.

5. The 16-bit architecture — especially the bus width and the register size — enables the
9900 family of processors to achieve outstanding performance. Performance is measured
by throughput and computing power, not by clock speed alone.

A complete evaluation of the 9900 in each of the above categories is not possible in so
few words. But one specific feature of the product family should be included as a part of
the evaluation. Memory-to-memory architecture, a unique computer concept developed
by Texas Instruments for the 9900 minicomputer, is an outstanding feature because it
enables the 9900 to achieve the most cost effective product development. The story of
the evolution of this architecture will help you understand its importance.
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EVOLUTION OF MEMORY-TO-MEMORY ARCHITECTURE

All things change with time, and computers are no exception. An evolutionary process
has been at work in computer design since the beginning. Early machines were designed
around a single accumulator which served as the focal point of most of the instructions.
Steps such as load the accimulator (LDA), add to the accumulator (ADD), and store the
accumulator (STA) were common in programs written for such machines. (The
instruction mnemonics used here are simply illustrative and are not intended to be
identified with any specific computer or microprocessor.) But there was a fundamental
limitation—the bottleneck effect of forcing all transactions to be performed via a single
accumulator (Figure 1-12).

PROCESSOR LDA X MEMORY

/%\

ACCUMULATOR

STAY

Figure 1-12. Single Accumulator Architecture
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As circuit elements became less expensive, especially through the introduction of

integrated circuits, multiple accumulator architectures emerged (Figure 1-13). A and B
accumulators were the focal points of expanded instruction sets which allowed loading

either accumulator (LDA, LDB), adding to either accumulator (ADA, ADB), and

storing either accumulator (STA, STB). With this design came the increased use of an
accumulator for holding the address of an operand, adding flexibility and power to the
instruction set and to the architecture.

It should be clear at this point that the instructions, the dictionary of words used by a
computer to implement the ideas of the programmer, are as much a part of the
architectural fabric as the registers, the control unit or the bus structure. In fact, by
implementing instructions as strings of microinstructions stored in an on-chip control
ROM, microprocessor designers have created the opportunity for increasing instruction
set power through microprogramming.

PROCESSOR MEMORY
LDB X
/_-\
ACCUMULATORA| |L—"] ~
K ADB Y X

ACCUMULATOR B \

h 7

__sBY

Figure 1-13. Multiple Accumulator Architecture

The next major step in the architectural evolution was the design of machines based on a
set of general registers which could be used as accumulators for numerical operations or
for storage of operand addresses (Figure 1-14). The expanded capabilities allowed
increased flexibility not only in arithmetic functions but also, and more importantly, in
the generation of operand addresses via indirect addressing, and indexed addressing.
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Figure 1-14. General Register Architecture

Perhaps it is well to digress for a moment and explain these terms. Indirect addressing
allows a register to serve as a pointer to identify specific elements in a table or an array
of data (Figure I-15). Instructions for an arithmetic operation may be used over and
over, with the pointer (or pointers) being adjusted to access different values for each
pass. In indexed addressing, the instruction contains a base value while an index register
holds the displacement value (Figure 7-16). The base value locates the table, and the
index register contains the number of the element in the table (one, two, three, etc.).
The base value must be added to the contents of the index register to obtain the actual

memory address.

1
\\

PROCESSOR
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B
C
D X1 -
E Y1 >
F
G
H

MEMORY

7
~—

X0
X1
X2

YO
Y1
Y2

Registers D and E contain the addresses of operands X1 and Y1. D and E may be incremented
to address sequential elements in tables.

Figure 1-13. Indirect Addressing
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X0 is the address of the first element in the table.
X1 is obtained by adding X0 to the 1 in the index register.
The index register may be incremented to address sequential entries in the table.

Figure 1-16. Indexed Addressing

The general register architectures were made economically feasible by the expanded
capabilities of integrated circuits through the technological advancements of Medium
scale integration (MSI) and large scale integration (LSI) (Figure 1-17). As more and
more circuits were implemented on a chip, it became feasible to expand from two
accumulators, to a general register file, to the general register file on a single LSI
microprocessor chip.

In discussing LSI, one must not fail to recognize that the single most important impact
of LSI is in the development of memories. More bits per unit area of silicon means
higher capacity and lower cost, generally without sacrificing speed. The advent of
microprocessors was the natural evolutionary step in the utilization of memory for a
greater variety of logic and control applications.

LSI MICROPROCESSOR

CONTROL

ALU

REGISTER FILE

Figure 1-17. LSI Microprocessor

9900 FAMILY SYSTEMS DESIGN 1-25



) 1

Basic Decisions
In System Design

EVOLUTION OF

MEMORY-TO-MEMORY ARCHITECTURE
... .. ]
In looking toward the future of memories and microprocessors, the technologists see the
implementation of an ever increasing number of memory cells and microprocessor

calculation and control functions on an ever-shrinking area of silicon (Figure 1-18).

Registers and memory cells are virtually identical in their implementation at this point,

so the words register and memory no longer connote high speed and low speed storage. In

fact, memory speed is rapidly approaching register speed (Figure 1-19).
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Figure 1-18. Trend in Gates per Chip

In view of this convergence of memory speed and register speed, the architects of the
990 minicomputer (from which the 9900 is derived) envisioned an architecture in which
the instructions are written with respect to memory words rather than registers. The
architectural concept, called memory-to-memory architecture, was the basis for a new
computer design in which all memory reference instructions operate on one or two
words of memory and store the result before going on to the next instruction.

There were actually two major reasons for developing such an architecture. First, since
all instructions would reference words of memory and complete their cycles by placing
results in memory, there would be no requirement for register-save operations in a
multitask or interrupt processing environment. Second, while this approach might at first
be slightly slower in some cases, the architects envisioned that the technological
evolution would continue to narrow the gap between register speed and memory speed,
and in the long run this minor disadvantage would vanish.
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Figure 1-19. Ratio of Memory Speed to Register Speed

Another important advantage of this new architecture, often overlooked, appears to be
an even stronger and more important justification for the development of this radical
departure from conventional computer architectures. When one instruction can identify
two memory words or operands, perform an operation, and store the result in memory,
it will replace common sequences such as LDA, ADA, STA found in the instruction
sequences of all accumulator-based machines. Furthermore, a single instruction can
access additional memory words for use in addressing operands and can even increment
pointers and employ index registers all as a part of its execution sequence. If a single
instruction can do all this, then the writing of instruction sequences, programming, must
be substantially easier. Fewer lines of code are required. (In data manipulation and
address computation sequences, the reduction is typically 3:1.) Support software, such as
monitors, executives, and operating systems can be smaller, easier to use and understand,
and will consume less memory.

For these reasons, benchmarks written to compare the 9900 architecture with
conventional register file based microprocessors show the advantage of the 9900’s
memory-to-memory architecture in three important categories: the number of bytes of
memory required, execution speed, and the number of instructions written to accomplish
a given task (Figure 1-20). The 9900 comes out ahead in all three categories.
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Program memory Assembler Execution time
requirements (bytes) statements (microseconds)
9900 A B C |9%00 A B C | 9%00 A B C
Input/output handler 24 38 28 17 9 14 17 7 71 164 79 49
Character search 22 24 20 18 8 10 9 8 661 1636 760 808
Computer go to 12 12 17 14 5 5 11 8 98 352 145 145
Vector addition:

An=<+Bn=Cn(16) 20 30 29 46 5 14 20 22 | 537 2098 1098 1866
Vector addition:

An—~Bn =Cy (8) 20 32 23 40 5 15 14 22 | 537 2108 738 936
Shift right 5 bits 10 6 19 20 3 3 12 9 22 56 137 81
Move block 14 18 16 34 4 9 9 16 | 537 1750 1262 2246

Totals 122 160 152 189 | 39 70 92 92 | 2464 8154 4219 6131

Figure 1-20. Benchmark Comparison of 9900 vs. Other Microprocessors

One final note about architecture. Memory-to-memory architecture and instructions in
the 9900 do not sacrifice the concept of “‘registers” as they are conceived in the
architectures with general register organizations. The general “‘register file” is
conceptually retained as a block of sixteen words of memory (Figure 7-21). Over two
thirds of the instructions in the 9900 refer in one way or another to this “‘register file” in
much the same way as prior architectures referenced the general register file in the
CPU. Thus, base addresses, subroutine linkage and interrupt save operations can all be
accomplished via the “register-file-in-memory” concept.

By using memory for the register file, the advanced memory-to-memory architecture
allows new programming flexibility. There is a way to identify multiple register files in
9900 based systems (Figure 1-22). Each basic process can have its own set of “registers.”
There is no limit (except memory size) to the number of “registers” available for use in
programming the functions of a particular application.

The memory-to-memory architecture of the 990 and 9900 products is clearly
revolutionary and innovative. Programming effort for the 9900 is typically less than half
that for any other microprocessor currently available because the instructions operate on
words of memory and store results automatically. This means not only that programs
consume less memory, but execution speed (for the 16-bit processors) is faster than that
of other processors.
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Figure 1-21. Register File in Memory
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GETTING UP TO SPEED ON MICROPROCESSORS

By now you may be convinced that this book contains a great amount of information
about microprocessors and microcomputers, but you may feel that you are not as well
prepared to understand it as you would like to be. This section has the answer. Here are
the steps you should take to learn about microprocessors and microcomputers. The
knowledge gained will help you in all new designs and will be especially helpful in
designing with the 9900 family of processors and peripherals.

Few people have had the opportunity to learn about microcomputers in college. In fact,
schools and colleges exist primarily to teach you sow to learn, and not to teach you
everything you need to know to do a particular job. Your effectiveness i performing
any job is directly related to your willingness to acquire new specialized knowledge in
your particular field. This book will serve as one source of specialized knowledge in the
field of microcomputers, but it is focused on the 9900 family. And you may require
additional education in this field before achieving a full understanding of the material
presented.

It may be that knowledge of MOS and I’L technologies is needed for a clearer
understanding of interfacing techniques. Basic computer fundamentals, such as storage of
data and programs and the sequential operations may be an area you would like to study.
It could be that you feel a need to improve your understanding of programming and the
concepts of building programs via the modular approach. The list of specialized areas
within the field of microcomputer technology can be quite long.

Technology advances so rapidly today that it seems virtually impossible to keep up,
much less catch up. But you can do both, and without spending an inordinate amount of
time. To acquire specialized knowledge in any field, you should devote 30 minutes a day
to reading books or periodicals which contain the information you need. Advising you on
the implementation of such a program is not the intent of this section. You know where
you are and where you are going. What you need is a clear path or plan of action to
achieve the goal: the acquisition of specialized knowledge about microprocessors and
microcomputers.

The first step is to find authoritative texts on the various subjects in the field. This
chapter contains a bibliography of texts and periodicals from which to begin your search
for new information. Get your hands on these books and articles. Review them for
general content and readability, then decide which ones are best suited to your needs. Set
up a plan to read one or more of these books in a definite period of time, devoting a
scheduled, uninterrupted period of 30 minutes a day to this program. Take notes while
you are reading and (if the book belongs to you) underline the information which is
especially important to you.
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As you are getting up to speed, you will become aware of certain periodicals that contain
articles most directly suited to your background and experience. Subscribe to one or
more of these or be sure to obtain each issue as it is published so that you are not only
reading about fundamentals, but current topics, the latest improvements in devices and
systems.

Set up the goal, the plan of action; and then, above all, form the habit of reading for 30
minutes a day. Few people can set up such a plan, and fewer still can continue to execute
it for long periods of time. But if you persist, you can learn, not just one, but @/ facets of
design with microprocessors and microcomputers, and in time you will achieve the success
you desire.
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THE 9900 FAMILY — WHAT IS IT?

The 9900 Family is a compatible set of microprocessors, microcomputers, microcomputer
modules, and minicomputers. It is supported with peripheral devices, development
systems, and software. It provides a designer with a system solution having built-in
protection against technological obsolescence. The family features true software
compatibility, I/O bus compatibility and price/performance ratios which encompass a
wide range of applications. The family is designed with a unique flexible architecture

to allow technological changes to be easily incorporated while minimizing the impact
these changes have on an overall system design.

FAMILY OVERVIEW

Tue HARDWARE FAMILY

Figure 2-1 is a diagram of the 9900 Family members. The spectrum of microprocessors and
microcomputer products available in a variety of formats is shown in Figures 2-2 and 2-3. In
the first part of Figure 2-1, the microprocessors or microcomputers are combined with
microcomputer support components (Figure 2-3) to form systems. These systems also
include I1/0 interface, read-only and random access memory, and additional support
components such as timing circuits and expanded memory decode .

The family also includes microcomputer board modules containing the 9900
microprocessors and peripheral components (Figure 2-4). As shown in the second part of
Figure 2-1, these modules can be used for product evaluation, combined for system
development or applied directly as end equipment components.

When applications require minicomputers, completely assembled units can be purchased
and installed. The software will be fully compatible with any associated microprocessor and
microcomputer system. Figure 2-5 gives a brief overview of the minicomputers.

These three levels of compatible hardware — the TMS9900 family parts, the TM990
microcomputer modules, and the 990 minicomputers — provide the flexibility to obtain an
optimum match with the user’s system application.

THE SOFTWARE AND DEVELOPMENT SYSTEMS SUPPORT

New products cannot be made without design, development, test and debug. Development
support for all of the levels is shown in Figure 2-1, including:

A. Product documentation

B. Software (or firmware)

C. Software development systems
D. Prototyping systems.

Software and development and prototyping systems are outlined in Figure 2-6.
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Figure 2-1. The 9900 Family

MULTIPLE-CHIP SYSTEMS  16-BIT DATA BUS

6-BIT DATA BUS 1 —16BIT1/0 BUS
1 —16-BIT1/0 BUS 64 PINS
SINGLE-CHIP SYSTEM 8-BIT DATA BUS 40 PINS
1—16-BITI/OBUS
40 PINS

1-16-BIT1/0 BUS
40 PINS

Msl,
LSl &
16-BIT VLSl IC

CPU PERIPHERALS

16-BIT MSI,
CPU LSl &

TMS9985 VLSIIC
PERIPHERALS

MS!,
16-BIT LS! &
CPU VSuIIC
PERIPHERALS

TMS9900
SBP99S00A

INTERNAL
MEMORy | ADD-ON
P MEMORY

BYTES 65K

16-BIT
SINGLE-CHIP
MICROCOMPUTER

TMS9980A
TMS9981

ADD-ON
MEMORY
16K

TMS9940E/M
(EPROM/
MASKED ROM)

Figure 2-2. 9900 Family CPUs
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CPU’s
TMS9900 NMOS 16-Bit Microprocessor, 64 Pins
TMS9900-40 Higher Frequency Version 9900
SBP9900A PL Extended Temperature Range 9900
TMS9980A/ 40-Pin, NMOS 16-Bit Microprocessor with 8-Bit Data Bus. 9981 has
9981 XTAL Oscillator
TMS9985 40-Pin, NMOS 16-Bit Microprocessor with Single 5V Supply and
256-Bits of RAM
TMS9940E 40-Pin, NMOS Single Chip Microcomputer, EPROM Version
TMS9940M 40-Pin, NMOS Single Chip Microcomputer, Mask Version

PERIPHERAL DEVICES

TMS9901
TMS9901-40
TMS9902
TMS9902-40
TMS9903

TMS9908

Programmable Systems Interface
Higher Frequency Version of 9901
Asynchronous Communications Controller
Higher Frequency Version of 9902
Synchronous Communications Controller
TMS9904 4-Phase Clock Driver
TMS9905 8 to 1 Multiplexer
TMS9906 8-Bit Latch

TMS9907 8 to 3 Priority Encoder
8 to 3 Priority Encoder w/Tri-State Outputs
TMS9909 Floppy Disk Controller

TMSQ914 GPIB Adapter

TMS9915 Dynamic RAM Controller Chip Set
TMS9916 92K Magnetic Bubble Memory Controller
TMS9922 250K Magnetic Bubble Controller
TMS9923 250K Magnetic Bubble Controller
TMS9927 Video Timer/Controller

TMS9932 Combination ROM/RAM Memory

SBP9960 |/0 Expander

SBP9961 Interrupt-Controller/ Timer
SBP9964 SBP9900A Timing Generator
SBP9965 Peripheral interface Adapter

TMS9911 Direct Memory Access Controiler
ADD-ON MEMORY
ROMS EPROMS DYNAMIC RAMS
TMS4700—1024 X 8 TMS2508 —1024 X 8 TMS4027—4096 X 1
*TMS4710—1024 X 8 TMS2708 —1024 X8 TMS4050—4096 X 1
TMS4732—4096 X 8 TMS271.08 —1024 X 8 TMS4051—4096 X 1
SBP8316—2048 X 8 TMS2516 —2048 X 8 TMS4060—4096 X 1
SBP9818—2048 X 8 TMS2716 —2048 X 8 TMS4116—16,384 X 1
TMS2532 —4096 X 8 TMS4164— 65,536 X 1
*Character Generator—ASCI!
**PROMS STATIC RAMS
SN745287— 256 X 4 TMS4008 —1024 X 8 TMS4043-2 — 256X 4
SN748471— 256 X 8 TMS4016 —2048X 8 TMS4044 —4096 X 1
SN745472— 512X 8 TMS4033 —1024 X 1 TMS40L44 —4096 X 1
SN745474— 512X 8 TMS4034 —1024 X1 TMS4045 —1024 X 4
SN748476—1024 X 4 TMS4035 —1024 X 1 TMS40L45 —1024 X 4
SN745478—1024 X 84 TMS4036-2 — 64X8 TMS4046 —4096 X 1
) TMS4039-2 — 256X 4 . TMS40L46 —4096 X 1
AEquivalent to TMS4042-2 — 256X 4  TMS4047 —1024 X 4
SN7452708 TMS40L47 —1024 X 4
**Also available
in 54 series

Figure 2-3. Microcomputer Support Components
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MICROCOMPUTER MODULES

TM890/100M
TM990/101M
TM990/101M-10
TM990/180
TM990/189

TM980/201
TM990/206

Microcomputer, 1-4K EPROM

Microcomputer, 1-4K ROM, 1K-2K RAM

Microcomputer, 1-4K ROM, 1K-2K RAM, Evaluation POWER BASIC®
Microcomputer, (8-Bit Data Bus), 1-2K ROM, 256-1K RAM
Microcomputer, University Microcomputer Module

Memory Expansion Module, 4K-16K ROM, 2K-8K RAM
Memory Expansion Module, 4K-8K RAM

TM990/301 Microterminal
TM990/302 Software Development Module
TM990/310 /0 Expansion Module

TM990/401* TIBUG® Monitor in EPROM

TM990/402* Line-by-Line Assembler in EPROM

TM990/450* Evaluation POWER BASIC® —8K Bytes in EPROM

TM990/451% Development POWER BASIC—12K Bytes in EPROM

TM990/452* Development POWER BASIC Software Enhancement—4K Bytes in EPROM

TM990/501-521 Chassis, Cable and Power Supply Accessories

*FIRMWARE

Figure 2-4. TM990 Board Modules and Software Support

Software is provided in EPROM (firmware) to operate with the assembled microcomputer
modules. It is provided on either “floppy” diskette or on disk pack for use with the
minicomputers, and is distributed on magnetic tape for use on in-house computing

equipment.

In addition to the development systems available directly from Texas Instruments, a
Fortran-IV cross-support package with assembler and simulator is provided by TI for
those desiring to use in-house computing equipment. GE, National-CSS and
Tymeshare provide similar capabilities on a timeshared basis.

POWER BASIC and PASCAL software systems have just been introduced and will
continue to be expanded in the future.

Hardware and software for development and production use is available in appropriate
system sizes to support individual designers as well as large design teams.

9900 FAMILY SYSTEMS DESIGN
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CS990/4 e A 990/4 Minicomputer with 4K words of RAM
e Expanded memory controller with 4K words of RAM
e 733 ASR ROM Loader
e 733 ASR Data Terminal
e Necessary chassis, power supply, and packaging
FS990/4 o Model 990/4 Minicomputer with 48K bytes of parity memory in a 13-slot chassis with
programmer panel and floppy disk loader/self-test ROM
e Model 911 Video Display Terminal (1920 character) with dual port controlier
e Dual FD8OO floppy disk drives
e Attractive, office-style single-bay desk enclosure
e Licensed TX990/TXDS Terminal Executive Development System Software with one-year
software subscription service
FS990/10 e Model 990/10 Minicomputer with 64K bytes of error-correcting memory and mapping in a
13-slot chassis with programmer panel and floppy disk loader/self-test ROM
e Model 911 Video Display Terminal (1920 character) with dual port controller
e Dual FD800 floppy disk drives
e Attractive, office-style single-bay desk enclosure
e Licensed TX990/TXDS Terminal Executive Development System Software with one-year
software subscription service
DS990/10 e Model 990/10 Minicomputer with mapping, 128K bytes of error-correcting memory in a
13-slot chassis with programmer panel and disk loader ROM
Model 911 Video Display Terminal (1920 character) with dual-port controller
Licensed copy of DX10 Operating System on compatible disk media, with one-year software
subscription service
e DS10 disk drive featuring 9.4M bytes of formatted mass storage, partitioned into one
4,7M-byte fixed disc and a 5440-type removable 4.7M-byte top-loading disk cartridge
Options:
One additional DS10 disk drive with 9.4M bytes of formatted mass storage, in deskmount,
rackmount, or quietized pedestal version

Figure 2-5. 990 Minicomputers
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PRODUCT DOCUMENTATION

9900 Family Systems Design and
Data Book
9900 Software Design Handbook
TM990 System Design Handbook
990 Computer Family Systems Handbook
Product Data Manuals
Product User’s Guides
Product Brochures
Application Notes
Application Sheets

SOFTWARE AND FIRMWARE

TM990/401
TM990/402
TMSW101MT
ROM Utility
TM990/450
TM990/451
TM990/452

TMSW201F/D
TMSW301F/D

TIBUG Monitor in EPROM
Line-by-Line Assembler in EPROM
ANSI-Fortran Cross-Support Assembler, Simulator and

Evaluation POWER BASIC —8K Bytes in EPROM
Development POWER BASIC — 12K Bytes in EPROM
Development POWER BASIC Software Enhancement
Package — 4K Bytes in EPROM

Configurable POWER BASIC in FS990 Diskette
TIPMX — TI PASCAL Executive Components Library

SOFTWARE DEVELOPMENT

SUPPORT SOFTWARE

TM990/302 Software Development Module

TM990/40DS  Software Development system for
TMS9940 Microcomputer

CS990/4 Single User Software Development
System (Cassette Based), uses
PX990 software.

FS990/4 Software Development system
(Floppy Disk)

FS990/10 Software Development System
(Floppy Disk)

DS990/10 Disk Based 990/10 with Macro
Assembler

Edit, Assembler, Load, Debug, PROM Programming

Assembler, Debug Monitor, Trial-in-System Emulator, PROM

Programmer
Text Editor, Assembler, Linking Loader, Debug Monitor,
PROM Programmer

Source Editor, Assembler, Link Editor, PROM Programmer

Same as 990/4, expandable to DS System

Source Editor, Link Editor, Debug, Librarian, and High-Level
Language such as FORTRAN, BASIC, PASCAL, and COBOL

MICROPROCESSOR PROTOTYPING LAB FOR DESIGN AND DEVELOPMENT

AMPL  FS990 with video display and dual floppy diskettes includes TX990/TXDS system software — Text Editor,
Assembler, and Link Utility — and has an in-circuit Emulator Module and a Logic-State Trace Module for

proposed system emulation and analysis.

TIMESHARE SYSTEMS

GE, NCSS,
Tymeshare

Assembler, Simulator, ROM Ultilities

Figure 2-6. The 9900 Family Software and Development Systems
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TypicAL APPLICATIONS

The range of applications for microprocessors and microcomputers expands each day;
Figure 2-7 provides a broad scope of the applications extending from those that can be
satisfied with single-chip microcomputers to those requiring high performance multichip
systems. The market tends to be characterized by lower performance, high volume
single-chip systems, and higher performance, low volume multichip systems.

As shown in Figure 2-7, the spectrum of applications is satisfied throughout by 9900 Family
members. The single-chip 16-bit microcomputer, the TMS 9940, is used where there is
large volume, because it has the lowest cost, yet achieves outstanding performance. At the
other end are the system with the 16-bit TMS 9900 and SBP 9900A CPUs, the

specially designed family peripherals, and add-on memory. For maximum system
performance, the bit slice SN74S481 units are available. For in-between

performance limits there are the 16-bit CPUs using 8-bit data buses. The TMS
9980A/81 has lower cost, and the TMS 9985 will accommodate largcr memory for
extended applications. Both processors use the more economical 40-pin package.
Applications in the low and medium performance range include simple instruments,
computer peripherals, cash registers and controls for manufacturing.

At the higher performance end, a myriad of products that are emulating many
computer-like functions — data terminals, point-of-sale terminals, data acquisition systems,
process control systems, military systems — are all gaining performance at lower cost by
using microprocessor multichip systems.

SN74S481 COMPUTERS

(Bt Slice) INTELLIGENT GRAPHICS

TMS9900-40 GRAPHIC SYSTEMS

TMS9900 WORD PROCESSING

DATA TERMINALS

SBP9900A MILITARY SYSTEMS

A MEDICAL DIAGNOSTICS
MICROCOMPUTERS
TMS2985 POS DATA COLLECTION
PROCESS CONTROL
PATIENT MONITORS
TMS9981 NUMERICAL CONTROL
TMS9980A - METERING CONTROLS
SECURITY SYSTEMS
PROTOTYPING
8 MANUFACTURING CONTROLS
z TMS9940E MEDICAL INSTRUMENTATION GAMES
s AUTOMOTIVE
S COMPUTER TERMINALS
E INSTRUMENTS
g TMS9940M CASH REGISTERS
CALCULATORS
VOLUME »

Figure 2-7. Application Spectrum
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Figure 2-8 details further the applications for single-chip and multiple-chip systems.

SINGLE-CHIP
MICROCOMPUTER MULTIPLE-CHIP SYSTEMS
Gas Pump Control Video Controllers CPU’s-Microcomputer
Alarm Systems Telephone Switching Computer Peripherals
Paging Systems Word Processing Equipment Intelligent Terminals
Sorters Manufacturing Material Handlers Tape Drive Controls
Vending Machines Electronic Musical Instruments Graphic Terminals
Microwave Ovens Small Business/Financial Systems Communications Network
Appliance Control Factory Automation Communications Processing
Power Tools Instrumentation Data Concentration
Utility Meter Monitoring Data Acquisition Input Terminals
Environmental Controls Machine Controls General Purpose Terminals
Automotive Medical Equipment
Games Security Systems
Cryptography Machine Tool Controls

Process Controls
Navigation Equipment
Metering Controls

Figure 2-8. Applications

HARDWARE SELECTION

To reduce the range of detail which must be considered in a given system design, it is often
possible to make a definite choice between the three hardware design levels; designing with
individual components, designing with prefabricated modules, and designing with
minicomputer subsystems. The criteria upon which this choice is based include the number
of units to be manufactured per design, complexity of design, performance requirements,
special feature requirements, microprocessor system design expertise available, and the
importance placed on product introduction — the time to the market place. General
tendencies of these decisions are known although the particular choice may be skewed by
other considerations. Here are a number of examples.

In terms of production volume, users tend to incorporate minicomputers in their designs up
to a volume of 50 to 100 identical systems per year. They tend to use prefabricated
modules if the volume is below 500 to 2000 systems per year, and for higher volume, they
tend to develop from the component level right from the start. Simple systems may not be
able to stand the cost of a minicomputer at any volume, while even at much higher
volumes, performance requirements may force the utilization of a disk-based
minicomputer. When system specifications require special features, this often forces the use
of modules even at low volumes. However, the need for maintenance capability may force
the use of minicomputers or prefabricated modules for system construction at extremely
large volumes. A firm with expert microprocessor design teams would tend to maximize its
value-added by designing from the component level, while a firm without hardware
designers would look for completely prefabricated systems.

9900 FAMILY SYSTEMS DESIGN 2-9
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Finally, product introduction priorities often call for a compromise approach because of an

urgent need to get a product to market ahead of competition. It is often ideal to enter the

market with prefabricated systems and switch to in-house fabrication as the system is

accepted and sales volume builds.

Tue ComponNent Route: CPU

In the beginning your product selection decisions are tied entirely to the central processor.
A very real danger at this point is choosing a processor which is not optimum for the
design. Either the cost will be greater than desired, or the processor will not quite meet the
required performance. In the TMS9900 Family, each processor is uniquely tuned to its
applications environment while maintaining a common architecture, input/output system
and instruction set. This commonality allows a simple move up or down the performance
scale with a minimum of redesign (See Figure 2-9).

The single packaged CPUs divide into microprocessors and a microcomputer. The
TMS 9940 microcomputer is available either with EPROM or with mask
programmable ROM.

Microprocessors Microcomputer
TMS9900 TMS9980A/81 TMS9940 E/M
TMS9900-40 TMS9985
SBP9900A
The basic architecture of each is shown in Figure 2-10.
CRITERIA SYSTEM CHOICE FAMILY PRODUCTS USED
HIGHEST MULTIPACKAGE 1. TMS9900, SBP9S00A
PERFORMANCE 2. Microcomputer peripherals
for1/0
3. TIM9904 for clock
4. ROM, EPROM
5. RAM
TRADEOFF FOR A. MINIMUM PACKAGES 1. TMS9980A/81 (with clock)
BEST COST AT 2. Microcomputer peripherals
PERFORMANCE for 170
REQUIRED 3. Combined ROM & RAM
B. MINIMUM PACKAGES 1. TMS9985 (with clock and RAM)
2. Microcomputer peripherals
for1/0
3. ROM
LOWEST COST SINGLE PACKAGE 1.TMS9940 Microcomputer with on
board 1/0, Clock, ROM & RAM,
Timer

Figure 2-9. Cost/ Performance Trade-off
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Figure 2-10. Basic Architecture of 9900 Family
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CPU Selection

Selecting a CPU for an application requires a study of the CPU characteristics to see
which one fits best. Figure 2-11 provides key characteristics of the 9900 Family CPUs as
well as a bit-slice version (SN54/745481) for the ultimate in performance.

DEVICE SN545481 SBP9900A  TMS9900/ TMS9980A/ TMS9985 TMS9940E/M
SN745481 TMS9900-40 TMS9981
FEATURE Note 1
Number of bytes 65K 65K 65K 16K 65K 2K EPROM/128 RAM
addressable 256 onchip 2K,128 RAM/128 RAM
Number of Interrupts 16 16 16 5 5 4
Number of Pins 48/chip 64 64 40 40 40
Power Supply +5 Resistor +12, £5 +12, £5 +5 +5
Requirements Programmable
Note 2
Technology Schottky TTL 1L NMOS NMOS NMOS NMO0S
Environmental
(Temperature,°C) —551t0 125 —5510125 0to 70 0to 70 0to70 0to70
Clock Rate 10MHz 3MHz 3.3MHz/4MHz 10MHz 5MHz 5MHz
Relative Thruput 6 09 1.0/1.3 0.6 065—0.8 1.2
Note 3

Number of Address 15 15 15 14 16 Note 4
Bus Lines
Number of Data 16 16 16 8 8 Note 4
Bus Lines
Clock SN545124 SN54LS124 TIM9904 On Chip On Chip On Chip

Note 1: Based on four slices microcoded to duplicate TMS9900.

Note 2: Voltage for the SBP9900A is 1.5 to 30 volts with a series resistor.

Note 3: Relative thruput is 0.65 with off-chip RAM and 0.8 with on-chip RAM.

Note 4: No external memory or data bus. 32 general purpose |70 pins 10 of which provide 256 bit CRU /0 expansion if desired.

Figure 2-11. Key Characteristics of 9900 Family CPUs
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Figure 2-12 provides, in a “quick look™ format, four specifications of the family members
that are usually important to all applications — the directly addressable memory, the data
bus length, the operating temperature, and the package size.

Figure 2-13 plots the relative thruput of the 9900 Family microprocessors and
microcomputers. The thruput, estimated by calculating execution times for a given
benchmark program, is plotted relative to the performance of the TMS9900. 30% more
thruput is obtained using the TMS9900-40. The thruput of the SBP9900A is 90% of the
TMS9900. Both of these processors operate with a full 16-bit data bus and are in 64-pin
packages. As mentioned previously, ultimate performance is obtained by using a bit-slice
microprocessor. A relative thruput of six is shown for four SN54/745481 bit-slice packages
microcoded to duplicate a TMS9900.

, DIRECT ADDRESSABLE MEMORY CAPABILITY DATA BUS LENGTH
16—
MEMORY BITS
BYTES
8 ——
A A
I [l
}
SBP9900A  TMS9900 9940 9980A/81 9985 SBP9900A TMS9900 9940 9980A/81 9985
CcPU'S cPU's
A2K EPROM/ROM
128 BYTE RAM A MICROCOMPUTER, DATA BUS NOT AVAILABLE
ON-CHIP
125° - 64—
OPERATING TEMPERATURE PACKAGE SIZE
100° -
R O —— PINS
TEMP
°C
ool BB W — 404~
-85 & 1 Il \ L I
T ] T T T
SBP9900A TMS9900 9940  9980A/81 9985 SBP9J00A TMS9900 9940  9980A/81 9985
CcPU'S CPU'S

Figure 2-12: “Quick Look” at 9900 Family CPU's
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6 4
q
2L
RELATIVE
THRUPUT
1.0+
0.5 =+
SN54/745481
BIT-SLICE APPROACH TMS8900-40 TMS9940 TMS9985
SBP9S00A TMS9900 TMS9980A/81

Figure 2-13. Thruput of 9900 Family CPU’S

Cost reduction can be realized via 40-pin packaging. This is accomplished by changing the
external operating configuration to an 8-bit format even though the internal processor is a
16-bit processor. This causes a reduction in thruput — the thruput of the 9980A/81 and
9985 is reduced to 60% to 80% of the TMS9900 — because a byte organized memory is
required and the number of memory accesses will obviously be increased. The

advantage, of course, is that family software can be used even though the 8-bit
configuration is used. Note that the 9940 microcomputer thruput is 20% greater than

the TMS9900. Excellent performance is obtained from this single-chip microcomputer.

The 9980A/81 is designed for the lowest system cost for full family performance while the
9985 spans the link between microprocessor and microcomputer by offering RAM memory
on board.

Flexible I/0

The TMS9900 provides non-multiplexed parallel I/O and memory control for maximum
performance when needed, with full 16-bit address and data bus. It also has a separate serial
bus to allow use of minimum cost, maximum funtionality peripherals for relatively slow
170 processes which will tolerate the reduced speed. This is the Communications

Register Unit, CRU.

2-14 9900 FAMILY SYSTEMS DESIGN
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Family Members Fitted to the Application

The TMS9980A/81 and the TMS9985 multiplex the data bus for reduced cost and

package size at some sacrifice in performance. The TIMS9940 is the least expensive

approach for those applications which will tolerate the limitations of a single-chip. It

provides full computer capabilities, albeit of a limited range, on a single integrated circuit.

By not taking the address and data bus off-chip, buffer time delays are eliminated resulting

in higher performance within a limited memory range (2K EPROM/ROM, 128 bytes 24
RAM). For those applications requiring better temperature or reliability performance than

that available from NMOS processors, the SBP9900A provides the same sophisticated

processor functions as the TMS9900 over military and industrial temperature and

specification ranges.

Interrupt Flexibility

The 9900 Family provides fully prioritized, vectored interrupts as well as software
vectored interrupts for maximum flexibility.

Abvantaces oF 9900 Famiy CPUs
True Compatibility

The greatest advantage of using the 9900 Family as mentioned earlier, is the fact that it is a
truly compatible family. Many so-called families of CPUs are not truly compatible in
instruction set, in I/O interfacing, or in architecture. The 9900 Family attains
compatibility in all three areas. It is difficult and expensive to move from the use of one
microcomputer family to the use of another. Of equal importance, in non-compatible
families, it is often just as expensive to move from one member to another. When faced
with such a move, serious consideration should be given the 9900 family, because doing so
can eliminate most of the trauma of future moves, and quite possibly ease the present one.

Lower Costs

As seen in Chapter 1, while system costs are dropping at a 15% to 20% yearly rate,
software costs are actually rising. Thus, a family that provides the same and more
capabilities with less programming saves software costs. The sophisticated
memory-to-memory instruction set of the 9900 Family eases assembly language
programming, at the same time reducing the memory storage requirement and
increasing execution speed.

9900 FAMILY SYSTEMS DESIGN 2-15
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Instruction Set

Instruction sets are inherently difficult to compare. Figure 2-14 is a relatively simple way.
It gives three numbers for each of three representative microprocessor families. The
second number is the number of instructions used by manufacturers when advertising their
product. In many cases it has little to do with the power of the instruction set. The first
number is the number of distinct functions included in the instruction set. It represents to a
certain extent the uniqueness of the instruction set. In the 8080 and 6800 families,
instructions which take care of redundant actions solved automatically by the 9900 Family
are not included. The third number represents combinations. Many advertised instructions
are obtained by giving a separate name to particular combinations of the basic functions and
addressing modes. Many of these are possible. The last set of numbers shows the result of
taking the third number to its extreme and listing all possible combinations for each of the
families. 62,235 are possible for the 9900 Family. The number of possible combinations is
derived from the fact that certain instructions leave several bits unspecified to allow for a
variety of addressing modes. In the 9900, 12 instructions (Add, Subtract, etc.) leave 12 bits
unspecified, so there are 4096 (2'?) variations of each, times 12, or 49,152 combinations.
Eight-bit instruction sets simply do not allow this degree of flexibility.

PROCESSOR
INSTRUCTIONS 8080 6800 9900
DISTINCT 27 26 36
ADVERTISED 78 72 69
COMBINATIONS 237 169 | 62,235

Figure 2-14. Instruction Set Comparison

Memory-to-Memory Architecture

Memory-to-memory architecture means high speed context switching in interrupt
processing and in subroutine processing. All processors must save the contents of the CPU
registers as a prerequisite to processing an interrupt service routine. The register contents
to be saved include the PC (program counter), ST (Status register), and one or more
general registers. For the 9900, the registers to be saved are only the PC, ST and WP
(workspace pointer).
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Tue CoMmpoNENT RouTe: PERIPHERALS

Microcomputer component peripherals perform functions that assist the CPU in a

microprocessor or microcomputer system. Data communications through serial data links in

a synchronous or asynchronous mode; parallel input and output interfaces for general

purpose 1/0, instrument communications, direct memory access or mass storage control;

and display control and memory expansion and control are some of the present

peripheral functions provided as shown below. 24

FAMILY UNITS—INTERFACING TECHNIQUES

Serial 1/0 for Data Communications

Asynchronous Communications Controller TMS9902
4 MHz Version TMS9902-40
Synchronous Communications Controller TMS9903
Parallel 170
General Purpose
Programmable Systems Interface TMS9901
4 MHz Version TMS 9901-40
170 Expander SBP9960
Interrupt—Controller/ Timer SBP9961
Instrument Communications
General Purpose Interface Bus Adapter TMS9914
Direct Memory Access .
Direct Memory Access Controller TMS9911
Mass Storage
Floppy Disk Controller TMS9909
CRT Display (Memory Mapped 1/0)
Video Timer/Controller TMS9927
Memory
Combination ROM/RAM Memory TMS9932

Memory Control
Dynamic RAM Controller Chip Set

Refresh Timing Controller TIM9915A
Memory Timing Controller TIM9915B
Multiplexer/Latch TIM9915C
FAMILY UNITS—SUPPORT LOGIC
Four-Phase Clock Driver TIM9904
8 to 1 Multiplexer TIM9905
8-Bit Latch TIM9906
8 to 3 Priority Encoder TIM9907
8 to 3 Priority Encoder W/Three State Outputs TIM9908
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Significant progress has been made in implementing these important functions in
high-functional-density designs for the 9900 Family. This integration will continue in the
future. It provides cost-effective package substitutions for multiple standard TTL

units. The result is reduced assembly costs and materials, increased reliability, and shorter
time from design to production.

As the key features of the microcomputer component peripherals are reviewed, note these
points: (1) Many of the peripherals units are as complex or even more complex than the
CPUs they support; (2) Many of the peripheral units are designed to be programmable
providing outstanding flexibility to vary their use in system applications. Such design trends
reinforce the systems concept of the future—that standard hardware will be used but varied
in use by software; (3) Family units will drive two TTL loads, allowing direct interface to
low-power Schottky, standard TTL, and even standard Schottky circuits, eliminating the
need for many special purpose peripherals which do little else than provide this interface.

Interface Techniques

A computer must be controlled by a person or another machine to be useful. It must be
programmed to accept inputs, process data, and give results as outputs. It will do only what
it is programmed to do (barring malfunction). Output results must be acted upon otherwise
the computer manipulations are worthless. Peripheral components form the required
systematic interface between the computer and the outside world and range in functional
capability from the general purpose to highly specialized units.

The interface of a microcomputer or microprocessor system to external inputs and outputs
is by serial or parallel data lines. Two parallel and two serial techniques are used. The
parallel techniques include direct memory access and CPU controlled I/0. The serial
techniques include asynchronous and synchronous serial I/O. A final technique called
interrupt is used to alert the processor of a change in external conditions.

Serial 1/ 0 for Data Communications

Serial I/O for data communications is handled through the TMS9902 and TMS9903. The
TMS9902 and TMS9902-40 are for asynchronous serial data that is established around the
'RS232C protocol and the TMS9903 is for synchronous data, designed for any high-speed
communications protocol. CPU control of these devices, as show in Figure 2-15 via the
Communications Register Unit, allows their construction in small, plug-compatible packages.

Parallel I/0

GENERAL PURPOSE

General purpose parallel I/O and interrupt control along with an on-chip timer are
provided by the TMS9901 and TMS9901-40, as shown in Figure 2-15. The same functions
are served in I’L for extended temperature range operation by the SBP9960 and SBP9961.
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Figure 2-15. Microcomputer Component Peripherals for 1/O Interface
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A significant advantage of the 9900/9901 parallel I/0O interface through the CRU is the
ability to transfer fields of from 1 to 16 bits of data as inputs or outputs under the command
of one instruction and to modify this structure from instruction to instruction. Additionally,
use of the CRU allows implementation of multiple functions in the TMS9901.

MEMORY-MAPPED

Since the CRU is essentially a time-division multiplexed serial port, speed critical
applications may require a faster parallel technique. Memory-mapping, the treatment of a
parallel I/O port as if it were a memory location, provides this technique. With the
memory-to-memory architecture of the 9900 Family; direct manipulation of such an 1/O
port is practical. The dual-TTL drive of the 9900 Family allows economical construction
of memory-mapped 1/0 ports using standard TTL or LS (Low-Power Schottky)
components.
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GPIB—GENERAL PURPOSE INTERFACE BUS

In 1975 the IEEE defined a very precise electrical and mechanical protocol designated the
IEEE 488 Interface Bus, or commonly known as a General Purpose Interface Bus (GPIB).
This protocol allows direct connection of instruments and processors supplied by various
manufacturers. The TMS9914 General Purpose Interface Bus Adapter either directly, or
under software control, adapts all the capabilities of the GPIB to a microprocessor bus
including talker, listener, controller and control passer. This is a general purpose
component and will work quite well with any microprocessor, although it is complemented
by the speed and power of the 9900 Family.

DMA—DIRECT MEMORY ACCESS

Many I/0 devices can be made more effective if transfer rates can be increased beyond the
8 microseconds required for a typical memory-mapped transfer. The GPIB mentioned
above, for instance, allows data transfers at rates up to a million bytes per second. The
TMS9911 Direct Memory Access Controller allows low cost implementation of two such
super high speed ports. The TMS9911 itself is controlled by the CPU via the CRU bus,
until one of the DMA channels takes control long enough to process a DMA transfer
(either single or block) between 1/0 port and memory.

FLOPPY DISK

For those applications requiring more storage space than is convenient or economical in a
microcomputer, a mass storage device is needed. Floppy disk units provide the benefits of
fast access, reliable mass storage using a portable, easily stored media. Interfacing these
units to microprocessors is greatly simplified by the TMS9909 Floppy Disk Controller.
This device will control up to four floppy disk units using standard or minifloppies, single,
double, or triple density, hard or soft sectors. It is also capable of full IBM compatibility
(including double-sided, double density at the same time). This is a general purpose
component and will work quite well with any microprocessor. It is a memory-mapped
device and will also interface easily to a DMA controller such as the TMS9911. The
"TMS9909 can be programmed for:

1. Data encoding formats

2. Number and type of diskette drives
3. Stepper motor control rates

4. Number of sectors and tracks

It can perform the following functions:

1. Step to any track on the diskette

2. Format tracks (set initial conditions on diskette)
3. Read and write diskette data

4. Send status to the host system
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CRT CONTROL

The TIMS9927 video timer/controller is a memory-mapped device which contains all of
the logic necessary to generate all the timing signals for display of video data on CRT
monitors, standard or not, and interlaced or not.

This video timer/controller has nine 8-bit registers used for programming; seven for
horizontal and vertical formatting and two for the cursor character and address. All the 2 <
functions for generating the timing signals for video data display are programmable:

1. Characters per row

2. Data rows per frame

3. Raster scans per data row
4. Raster scans per frame

All timing functions are implemented on the chip except the dot generation and dot
counting which operate at video frequency. A character generator and shift register are
used to shift out video data. The control registers can be loaded by the microprocessor or
from PROM. This is a general purpose part for use with any microprocessor.

MEMORY

Contained in the microcomputer component peripherals is a unit for memory expansion,
the TMS9932, a combination ROM/RAM memory unit with 1920 bytes of ROM and
128 bytes of RAM. It contains the same key features that characterize the 9900 Family
support memory.

MEMORY CONTROL

The TIMO9915 chip set consists of 3 packages, a 16-pin Refresh Timing Controller
(TIM9915A), a 16-pin Memory Timing Control (TIM9915B), and a 28-pin Multiplexer/
Latch with tri-state outputs (TIMO9915C). This chip set becomes the complete packaged set for
4K to 64K of dynamic RAM memory, and provides all the timing and control signals necessary to
interface dynamic RAM memory and make it appear as static RAM.

Clock and Support Logic

Four-Phase Clock Generator/ Driver

Microprocessor and microcomputer systems require clock generators and drivers for the
timing control of the system. The TMS9904 is such a unit. An oscillator which can be
crystal or inductance controlled provides the basic timing source. Four high-level clock
phases provide the 9900 microprocessor timing. Four additional TTL-level clocks can be
used to time memory or other control functions in a 9900 system.
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Support Logic

Common TTL MSI peripherals included in the 9900 Family of microcomputer components
are:

TIM9905 8 to 1 Multiplexer
TIM9906 8-Bit Latch
TIM9907 8 to 3 Priority Encoder
TIM9908 8 to 3 Priority Encoder w/Tri-State Outputs
The reason, of course, is that they are standard units for accomplishing the following tasks:

1. Parallel-to-Serial Conversion

2. Multiplexing from N-lines to one line

3. Providing multiple data selectors

4. Providing bus interface from multiple sources
5. Encoding 10 line decimal to 4 line BCD

6. Encoding 8 lines to 3 lines

All units are fabricated using standard low-power Schottky TTL technology in 16-pin
packages. They have tri-state output drivers to interface directly with a system bus and are
fully compatible with all TTL interfaces.

Cost Effectiveness of NMOS LSI Pefipherals

Figure 2-16 clearly demonstrates the cost effectiveness of the specially designed CRU
microcomputer component peripherals. The replacement of large numbers of less complex
packages provides a significant reduction in cost due to simplified design, layout, assembly
and testing, besides the reduced material costs.

In addition, there are major contributions to improving the reliability of the system just by
reducing the number of packages and the associated solder connections and assembly
connections external to the IC.

FUNCTION UNIT USED SSI AND MSI
PACKAGES REPLACED
INTERRUPTS
TMS9901
AND 1/0 23
ASYNCHRONOUS S "
SERIAL COMMUNICATIONS
SYNCHRONOUS
SERIAL COMMUNICATIONS TMS9903 100

Figure 2-16. System Package Reduction Using Microcomputer Component Peripherals
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CRU Interface

In the features for the 9900 Family, the Communications Register Unit interface provides:
1. The most cost effective I/O for low and medium speed peripherals via the
instruction driven serial data link.
2. Completely separate address space.
3. A choice of transferring fields of 1 to 16 bits per instruction.

The CRU serial data link is an effective mechanism for operation-per-instruction I/O. The
CRU interface is simpler and therefore less expensive than memory-mapped 1/0. In
applications where there are many I1/0 transfers of one or two bits, the CRU serial data
link provides execution times that are better than for memory-mapped 1/O, which always
transfers 8 or 16 bits at a time.

One way of demonstrating the cost effectiveness of the CRU is shown in Figure 2-17.
Package pins per function are less using the CRU interface and the 9900 Family units.
Thus, costs are saved over memory-mapping in implementing the example I/O functions
shown.

CRU MEMORY MAPPED
FUNCTION PINS PINS
8-Bit Output 16 (TIM9906) 24
UART 18 (TMS9902) 24-40
USRT 20 (TMS9903) 24-40

Figure 2-17. CRU vs Memory Mapped I/ O — Package Pins Required Per Function

Tue CompoNENT RoOUTE: MEMORY

Semiconductor memory is the most natural storage media to add to a 9900 system. It has
fast access times, an interface that is completely compatible with the microprocessor or
microcomputer, and high-density storage per package. Texas Instruments offers a broad
spectrum of storage media products in support of the 9900 Family as shown in Figure 2-18,
2-19 and 2-20. These products encompass dynamic and static random access memory, mask
programmable read-only memory, fused-link programmable read-only memory, and
eraseable programmable read-only memory.
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Figure 2-18. Matrix of Memory Products
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DYNAMIC RAMS

*PKG.

TYPE ORGAN. TECH PINS ACCESS TIME-ns | Po-mW POWER TEMP
TMS4027 4096 X 1 NMOS 16 150-200 460 | +5V, =5V, +12V 0°C-70°C
TMS4050 4096 X 1 NMOS 18 200-300 420 | +58V, =5V, +12V 0°C-70°C
TMS4051 4096 X 1 NMOS 18 250-300 460 | +5V, -5V, +12V 0°C-70°C
TMS4060 4096 X 1 NMOS 22 150-300 400 | +5V, =5V, +12V 0°C-70°C
TMS4116 16,384 X1 NMOS 16 100-200 462 | +5V, =5V, +12V 0°C-70°C
TMS4164 65,536 X 1 NMOS 16 100-150 200 | +5V 0°C-70°C
*MAXIMUM

STATIC RAMS
ACCESS *PKG.

TYPE ORGAN. TECH. PINS TIME-ns Po-mw POWER TEMP.
TMS4008 1024 X 8 NMOS 24 150-450 450 +5V 0°C-70°C
TMS4016 2048 X8 NMOS 24 150-450 495 +5V 0°C-70°C
TMS4033 1024 X 1 NMOS 16 450 368 +5V 0°C-70°C
TMS4034, 35 1024 X1 NMOS 16 650-1000 368 +5V 0°C-70°C
TMS4036-2 64X8 NMOS 20 450-1000 450 +5V 0°C-70°C
TMS4039-2 256 X 4 NMOS 22 450-1000 368 +5V 0°C-70°C
TMS4042-2 256 X 4 NMOS 18 450-1000 368 +5V 0°C-70°C
TMS4043-2 256 X 4 NMOS 16 450-1000 368 +5V 0°C-70°C
TMS4044 4096 X 1 NMOS 18 150-450 440 +5v 0°C-70°C
TMS40144 4096 X 1 NMOS 18 200-450 275 +5V 0°C-70°C
TMS4045 1024 X 4 NMOS 18 200-450 495 +5V 0°C-70°C
TMS40L45 1024 X 4 NMOS 18 200-450 300 +5V 0°C-70°C
TMS4046 4096 X 1 NMOS 20 150-450 440 +5V 0°C-70°C
TMS401.46 4096 X 1 NMOS 20 200-450 275 +5V 0°C-70°C
TMS4047 1024 X 4 NMOS 20 150-450 495 +5V 0°C-70°C
TMS40L47 1024 X4 NMOS 20 200-450 300 +5V 0°C-70°C
*MAXIMUM

Figure 2-19. Dynamic and Static RAM in Support of 9900 Family
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READ ONLY MEMORIES
ROM
PKG.
TYPE ORGAN. TECH. PINS ACCESS TIME-ns ~ Po-mW POWER TEMP.
TMS4700 1024 X8  NMOS 24 450 *580 +5V, =5V, +12V 0°C-70°C
ATMS4710 1024 X8 NMOS 24 450 *580 +5V, -5V, +12V 0°C-70°C
TMS4732 4096 X 8 NMOS 24 450 *788 +5V 0°C-70°C
0°C-70°C
SBP8316 2048 X8 2L 24 650 500 +5V —55°Cto +125°C
(1.5V-30V) 0°C-70°C
SBP9818 2048 X 8 2L 24 200 500 500 MA —55°Cto +125°C
AcCharacter Generator
*MAXIMUM
PROMS
PKG.

TYPE ORGAN. TECH. PINS ACCESSTIME-ns  Po-mW POWER TEMP.
SN54/745287 256 X4 TTL(s) 16 42 ' *708 +5V SN54: 0°C-70°C
SN54/745471 256 X8 TTL(s) 20 50 *814 +5V SN74: —55°Cto +125°C
SN54/74S472 512X 8 TTL(S) 20 55 *814 +5V “
SN54/745474 512X8  TTL(s) 24 55 *814 +5V "
SN54/745476 1024 X4 TTL(s) 18 35 *735 +5V “
SN54/745478  1024X8  TTL(s) 24 45 600 +5V “
SN54/7452708 1024 X8  TITL(s) 24 45 600 +5V "
*MAXIMUM
EPROMS

*PKG.

TYPE ORGAN. TECH. PIN ACCESS TIME-ns Po-mW POWER TEMP.
TMS2508 1024 X 8 NMOS 24 350 500 +5V 0°C-70°C
TMS2708 1024 X8 NMOS 24 350-450 800 +5V, =5V, +12V 0°C-70°C
TMS27L08 1024 X 8 NMOS 24 450 475 +5V, =5V, +12V 0°C-70°C
TMS2516 2048 X 8 NMOS 24 450 525 +5V 0°C-70°C
TMS2716 2048 X 8 NMOS 24 450 595 +5V, =5V, +12V 0°C-70°C
TMS2532 4096 X 8 NMOS 24 450 840 +5V 0°C-70°C
*MAXIMUM

Figure 2-20. Read Only Memory in Support of 9900 Family
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Standard Memory and Compatibility

A very important characteristic of the 9900 Family is that it uses standard semiconductor
memory not memory that depends on a custom multiplexed or latched bus. The full range
of MOS, TTL, I’L. and ECL memories are shown in Figure 2-18. Many of these units that
support the 9900 Family are pin-compatible for ease in conversion from development
systems to production systems.

As an example, during development, package flexibility is provided. SRAM
Initially, a static RAM is used; then EPROM’s can be substituted as the EPROM
system design stabilizes, and when the system is proven and in volume ROM

production, mask ROM can be substituted.

Here is an example of the socket compatibility:

MEMORY SIZE SRAM EPROM PROM ROM
1K X 8 4008 2508 SN7452708/478
1K X 8 2708 SN7452708/478 4700
2K X 8 4016 2516 SBP8316, SBP9818
4K X 8 2532 4732

(All of these devices can fit a single socket.)

Even if the memory units are not completely compatible, due to power supplies or control
pins, simple jumpers can be used to maintain socket compatibility.

Read-Only Memory: Costs and Flexibility

Figure 2-21 shows the characteristics of read-only memories and their cost per bit vs.
design flexibility. Mask programmable read-only memory is lowest cost per bit but also has
no flexibility. It is used for high volume production after a design is proved to be correct
and no changes are expected. PROMs have excellent performance and have more
flexibility because programming is done after they are manufactured. However, once
programmed they cannot be changed. PROMs cost somewhat more than ROMs because
they use more real estate. EPROM has much more flexibility because design changes are
done quickly and because it is reuseable, but EPROM costs more to manufacture than
ROM or PROM because it is eraseable. EAROM is also indicated in Figure 2-21. This is
really ““read mostly”” memory, because it can be erased in a relatively short period of time
(microseconds), but once programmed again, it acts like fixed storage. EAROMs as a
practical product are still a bit in the future. The flexibility of EPROM s is well worth the
added cost. This is especially true when used as a prototyping tool. -~
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A. READ-ONLY MEMORY CHARACTERISTICS

ROM PROM EPROM EAROM
COST (RANK) 1 2 3 4
PROGRAM TIME WEEKS MINUTES MINUTES MICROSECONDS
SETUP CHARGE YES NO NO NO
REUSABILITY NO NO YES YES
SPEED FAST VERY FAST MEDIUM SLOW

B. READ-ONLY MEMORY COST/BIT VS FLEXIBILITY

® EAROM

RELATIVE ¢ EPROM
COST/BIT

® PROM

® ROM

RELATIVE FLEXIBILITY =——————————3>
Figure 2-21. Read-Only Memory Overview

Tue CompPONENT RouTE: MisceELLANEOUS COMPONENTS

Included in the full support of the 9900 Family is the large array of SSI, MSI and linear
integrated circuits. Information on all components manufactured by Texas Instruments may
be found in the following data books:

Power Data Book LCC4041
TTL Data Book (Second Edition) LCC4112
TTL Data Book (2nd Edition Supplement) LCC4162
Transistor and Diode Data Book LCC4131
Semiconductor Memories Data Book LCC4200
Optoelectronics Data Book (Fourth Edition) LCC4230
Optoelectronics Data Book (Fifth Edition) LCC4410
Linear Control Circuits Data Book LCC4241
Bipolar Microcomputer Components Data Book LCC4270
Interface Circuits Data Book LCC4330
Electro Optical Components LCC4340
Voltage Regulator Handbook LCC4350
MOS Memory — 1978 LCC4380
9900 Family Systems Design Book LCC4400
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Correspondence and inquiries about these books should be directed to:

Texas Instruments Incorporated
P.O. Box 225012, M/S 54
Dallas, Texas 75265

(214) 238-3894

Most of the above are concerned with SSI and MSI integrated circuits. The following is a
list of additional guides to discrete components.

Optoelectronics Master Selection Guide CL-346 1978
Discrete Semiconductor Master Selection Guide CL-347 1978

Correspondence and inquiries about these units should be directed to:

Texas Instruments Incorporated
P.O. Box 225012, M/S 308
Dallas, Texas 75265

(214) 238-2011

Tue MobuLar Route: MicrRocomMPUTER MODULES

TM990 microcomputer modules are preassembled, pre-tested, ready-to-use combinations
of 9900 Family components which are available to meet the needs of the microprocessor and
microcomputer systems designers.

An overview of the TM990 microcomputer module product line, divided into the product
series, is shown in Figure 2-22. A summary of key parameters are given in Tables 2-1, 2-2
and 2-3. The series ranges from microcomputers to expansion boards for memory and I/0,
to software support in read-only memory (EPROM), to the accessories required to
interconnect the modules. An 170 microterminal, TM990/301, is a low-cost terminal for
system development included in the 300 series. A module of I/O and memory for software
development, the TM990/302, is included in the 300 series and will be discussed further in
the software support section.

The additional software products, TIBUG Monitor (TM990/401), Line-by-Line
Assembler (TM990/402), and the POWER BASIC units (TM990/450, 451, and 452)

will also be discussed in the software support section.
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Figure 2-22. TM990 Microcomputer Module Series
The Application

Microcomputer modules are for the system designer who wants to:

1.

2,

3.
4.

5.
6.

Apply and evaluate a 9900 Family microcomputer without taking the time for
all the engineering, planning, assembly and testing needed to design and
assemble the equivalent microcomputer system.

Free himself from design details to concentrate on speeding an end product to
market.

Expand memory of an existing 9900 Family system.

Assemble a low-cost software development system to edit, assemble, load and
debug programs for PROMs.

Expand a university course with low-cost hands-on hardware.

Evaluate POWER BASIC programs and apply them to microcomputer
systems.

A Special Product

A special product in the microcomputer module series is the TM990/189 University

Board. It is

designed primarily as a learning tool for the engineer, student or hobbyist. It

aids in the instruction of microcomputer fundamentals, machine and assembly language
programming and microcomputer interfacing. A tutorial text and a list of assembly

procedures

are included. More information is found in Chapter 8.
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TM990/100 SERIES—MICROCOMPUTER MODULES

Prioritized
Serial Parallel vectored
Product CPU EPROM (Bytes) RAM (Bytes) 1/0 ports 1/0 Lines interrupts Timers
TM390/100M-1 TMS9900 2K (2708) 512 1 RS232C 16 16 2
(Contains TIBUG Monitor) Expandable to 1K~ 1TTY
Expandable to 8K (2716)
TM990/100M-2 TMS9900 2K (2708) Blank 512 1RS232C . 16 16 2
Expandable to 8K (2716) Expandable to 1K or
1 Differential
ling driver
TM390/100M-3 TMS9900 8K (2716) Blank 1K 1 RS232C 16 16 2
or
1 Differential
line driver
TM990/101M-1 TMS9900 2K (2708) 2K Port A 16 16 3
(Contains TIBUG Monitor) Expandableto4K  RS232C
Expandable to 8K (2716) or
Y
Port B
RS232C or
Modem
TM390/101M-2 TMS9900 2K (2708) Blank 2K Port A 16 16 3
Expandable to 8K (2716) Expandable to4K  RS232C or
Multidrop
PortB
RS232C or Modem
TM990/101M-3 TMS9900 8K (2716) Blank 4K Port A 16 16 3
RS232C or TTY
PortB
RS232C or Modem
TM990/180M-1 TMS9980 2K (2708) 512 1RS232C 16 16 2
(Contains TIBUG Monitor) Expandableto 1K or 1TTY
_Expandable to 4K
TM990/180M-3 TMS9980 4K (2708) Blank K 1RS232C or 16 16 2
1 Differential line driver
TM990/189 TMS9980 4K Expandable 1K 1RS232C or 16 Special features:
to 6K v audio cassette and
acoustical indicator
TM 990/200 Series—MEMORY EXPANSION
PRODUCT MEMORY TYPE MEMORY SIZE (BYTES)
TM990/201-41 EPROM/Static RAM 8K EPROM, 4K RAM
TM990/201-42 EPROM/Static RAM 16K EPROM, 8K RAM
TM990/201-43 EPROM/Static RAM 32K EPROM, 16K RAM
TM990/206-41 Static RAM 8K RAM
TM990/206-42 Static RAM 16K RAM
TM990/203A* Dynamic RAM 16/32/64K RAM

*Available second quarter 1979

Table 2-1. Key Parameters of TM990/100 and 200 Series
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Table 2-2. Key Parameters of TM 990/ 300 Series Modules
TM 990/300 Series—I/0, 1/0-MEMORY EXPANSION

170

PRODUCT DESCRIPTION FEATURES

TM990/301 Microterminal Displays Data and Address

170, MEMORY (For Software Development)

PRODUCT DESCRIPTION FEATURES

TM990/302 Software development module used in conjunction Dual audio cassette interface, 2K X 16 RAM, 4K X 16
with TM990/100M or TM390/101M for software EPROM, and EPROM programming
development system

170 EXPANSION

PRODUCT PROGRAMMABLE 1/0, INTERRUPT LINES DEDICATED INTERRUPTS TIMERS

TM930/310 48 lines programmable as inputs, outputs or up to 27 unlatched interrupts six (3+, 3—) edge 3

detect latches

Table 2-3. Key Parameters of TM990/ 400 and 500 Series
TM 990/400 SERIES—ROM BASED FIRMWARE

Product Description Medium Utilized in
TM990/401-1 TIBUG Menitor 2708 (2) TM990/100M-X
TM390/101M-X
TM990/401-2 TIBUG Monitor 2708 (2) TM990/ 180M-X
TM990/402-1 Line by Line Assembler 2708 (2) TM990/100M-X
TM990/101M-X
TM990/402-2 Line by Line Assembler 2708 (1) TM990/180M-X
TM990/450 8K Byte Evaluation BASIC 2716 (4) TM390/100M-X
TM990/101M-X
TM390/451 12K Byte Development BASIC 2716 (6) TM990/100M-X (Four 2716’s on TM990/100, two 2716's on Memory Expansion
Board (TM990/201-XX) or Software Development Board
(TM990/302)
TM990/101M-X (Four 2716's on TM990/101, two 2716's on Memory Expansion
Board (TM990/201-XX) or Software Development Board
(TM990/302)
TM990/452 4K Byte Enhancements to 2716 (2) TM990/302
Development BASIC
TM 990/500 SERIES—ACCESSORIES
Card cage
Product No. of slots Slot spacing Outside dimensions
TM390/510 4 1" 5"H, 12.5"W, 8D
TM990/520 8 75" 8.25"H, 12.5"W, 8"D
Power supply
Input Requirements Output
Product Frequency Voltage +5V +12V —12V_ +45V(EPROM programming voltage)
TM990/518 57-63 Hz 115/230+ 10% 6.0A 0.9A 0.9A 0.1A
TM990/519 57-63Hz 1027132V ‘ 2A V250 mA 180 mA
Universal prototyping boards
Product Description Capacity
TM990/512 Unpopulated board for use with wirewrap 16 pairs of 50 pin columns that
or solder sockets. accept .3 or .4 centers
TM990/513 Wire-wrap board populated with 16 pairs of 50 pin columns that
gold plated pins accept .3 or .4 centers
2-32
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Analog 1/0 expansion

To aid in providing the interface between analog and digital signals several companies are
supplying products that complement the 9900 microcomputer components family. Key

parameters of a number of these products are shown in Table 2-4.

A/D and D/A Converters

A/D Input Input D/A Voltage  Current
Input Voltage Current  Throughput  Programmable Output Output Loop +5V
Product  Resolution Channels Range Range Rates Gain Channels  Range Outputs  Requirements Codes
RT1-1240-S  12Bits 16SE, 8 Diff +5V, +10V. 0-50mA 40K Chan/sec 1,248 0 1.4A Binary,
Expandableto  +5V, =10V . Offset Binary,
32SE, 16 Diff Two's
complement
T240R 7 7 0 0 0 1-1000 0 — 0 G
1241-8 " " " " " 1248 2 45V, 410V 4-20mA " "
+25V, £5V
+ 10V
1241-R " H v v v 1-1000 2 " 4-20mA ! "
RT 1242 “ 0 - —  10psec-Setting - 4 ” = " “
RT 1243 " 0 - - " - 8 " — "’ "
Analog Devices—Route 11ndustrial Park, P.0. Box 280, Norwood, Massachusetts 02062, (617) 329-4700
A/D Input Input D/A Voltage  Current
Input Voltage Current ~ Throughput Programmable Output Output Loop +5V
Product  Resolution Channels Range Range Rates Gain Channels  Range Outputs  Requirements Codes
ANDS 1001 12 16SE/8 Dift +5V,+10V  0-50mA 30K Chan/sec - 0 - - 700 mA Binary,
Expandableto  £5V, £ 10V Offset Binary,
645E/32 Dift Two's
complement
ANDS 1002 15Bit 1-4 +20mv, £40mv =~ - 10 samples/ - 0 - - - "
+Sign Bit =+ 80mv thermo- sec
couples,
ANDS 2001 12 0 - - 10 sec - 1-4 45V, +10V 4-20mA - "
Setting +5V, 10V
ANDS 3001 12 16SE/8Diff  +5V,+10V  0-50mA 30K Chan/sec - 2 " 4-20mA - "
£5V, £ 10V

Analogic—Audubon Road, Wakefield, Massachusetts 01880, (617) 246-0300

Table 2-4. Key Parameters for Analog conversion units for 1/O Expansion
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Tue MiNicoMpUTER RouTE

For large system applications in which the computer system is a small portion of total
system costs, use of prepackaged OEM minicomputers as system components provides a
number of advantages. A full complement of system and applications software is readily
available for immediate use on the machine, including assemblers, linkers, editors,
operating systems, high level languages, a variety of utility packages, many applications
packages, and much, much more.

Texas Instruments Digital Systems Group manufactures two minicomputers which are
compatible with the TMS9900. The first is the 990/4 minicomputer which uses the
TMS9900 as its central processing unit. It utilizes the CRU for control of peripheral
devices making this system directly compatible with the 9900 Family. The second
minicomputer implements the CPU in TTL, maintaining upward compatibility with the
9900 Family. This unit, the 990/10 uses a DMA peripheral device interface called
TILINE™ for control of high speed peripherals such as magnetic tape units and moving
head disk drives, and provides extended addressing capability.

A complete discussion of the use of these systems as OEM system components is beyond
the scope of this book, but further information may be obtained by writing:

Texas Instruments Incorporated

Digital Systems Group

P.O. Box 1444

Houston, Texas 77001

Attention: Market Communications M/S 784

or contact your local TI sales office or distributor system center listed in the appendix.

The 990 Computer Family Systems Handbook, the 1978 Catalog of the 990 Computer
Family, and the 990 Computer Family Price List provide detailed information on the
use of 990 computers as OEM system components.

A SELECTION PROCESS

Criteria for selecting a microprocessor, microcomputer, microcomputer component
g P ) 7 puter, P p
peripheral, or a minicomputer for a system application are listed in Figure 2-23. System

performance, cost, reliability, and delivery may also depend on the vendor that designs and
supports the products used.
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MPU ARCHITECTURE

Word Size
Number of Instructions
Address Bus Length
Data Bus Length
170 Bus Length
Clock Rate
Benchmark Performance
(Selected Functions)
Arithmetic Capability
Multiply
Divide

170 CAPABILITY AND PERIPHERAL CIRCUITS

Parallel |/0
How Many Bits
Data Rate
Programmability
Drive Required

Serial 170

Asynchronous
Synchronous
Baud Rate
EIA

Current Loop

Timers and Event Counters
Interval
Max Count
Interrupts
Number
Masking
DMA
Channels
Chaining Required
Other Interfaces

Floppy Disk
Analog
Keyboard
CRT

Tape

MPU (other specifications)

Package
Temperature Range
Supply Voltages
Power Consumption
Special Reliability
Unit Costs

(Selected Volumes)

System Environmental

Supply Voltages
Temperature Range
Power Consumption
Special Reliability
Special Size

Support

Technical Documentation
Hardware Development Support
Emulators
Testers
Evaluation Modules

Software

Assemblers

Text Editors
Simulators

Utilities

Application Libraries
High-level language

Software Development

Systems
Cross-Support
Dedicated

Figure 2-23. Selection Criteria for Microprocessor, Microcomputer Systems

9900 FAMILY SYSTEMS DESIGN

2-35

24



> 2

9900 FAMILY SOFTWARE Product
AND DEVELOPMENT SYSTEMS y

Vendor Selection

One way of evaluating a vendor is to make a list of items similar to the selection criteria for
system components. Some of the same items from this list, especially in the support area,
can be included. Additional items for consideration are shown in Figure 2-24,

DOCUMENTATION CREDIBILITY -
Product Reputation
Support Systems Investment
Applications Financial Status
MANUFACTURING CAPABILITY CUSTOMER SUPPORT
Facilities Application Engineers
Product Levels Distribution
Backlog Hot Lines

Figure 2-24. Vendor Criteria

Setting weights for each item and summing these for individual vendors allows a direct
comparison. The total number accumulated for each vendor establishes a vendor rating.

9900 FAMILY SOFTWARE AND DEVELOPMENT SYSTEMS

IMPORTANCE OF SOFTWARE

As described in Chapter 1 (Figure 1-9), the term software is used to describe the programs
and documented ideas which allow small amounts of general purpose hardware
(microprocessors, memory, peripherals) to replace large amounts of special purpose
hardware. The costs for software are becoming a much larger percentage of the total
system development cost. These costs are primarily incurred prior to production of a
system. For large volume systems the share of these one-time costs attributed to each

unit is small since the total software costs are divided by a very large number.
Correspondingly, when the volume of units produced is low, the software cost per unit
will be quite high. This factor, coupled with a lack of familiarity, has led many users to
underestimate software development costs.

Since software now commands 80% of the design effort of complete systems, and since
many software tasks are common to the industry, the level of software support from a
vendor can have tremendous impact on total system design cost. Perhaps more importantly,
availability of a wide variety of system and application software packages can drastically
shorten design time and speed the product to market.
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SorTWARE DEVELOPMENT SySTEMS

Development of software requires equipment — program or software development systems.
As a system designer makes a decision to use a microprocessor or microcompnter, all
design avenues seem to focus on software development. Questions naturally arise, “How
can I do software ‘breadboarding’ and program testing?”’; “How can I arrive at a final
program and be assured that it is correct?” and “Can it be done economically”?

Figure 2-25 illustrates cost versus capability for each of the program development systems
that support the 9900 Family. Lower cost systems tend to have lower capability. The
choice of a program development system depends on many factors. Some examples are:
(1) Capital Status — capital availability determines whether a firm can consider the
sophisticated emulator systems which boost designer productivity. (2) Equipment on
Hand — availability of a terminal, line printer, or EPROM programmer or other
useable equipment would likely reduce the required level of investment. (3) Equipment
Longevity — How long the equipment will be used may allow division of the cost of the
equipment over several projects. (4) System Complexity — Highly complex applications
often require the best development tools possible; therefore, the most sophisticated
system is required or the job can’t be done. (5) Production quantities — High volume
applications can more easily bear the cost of top-of-the-line development equipment; the
corresponding increase in productivity made possible by this equipment, increases design
efficiency. (6) In-House Computer Capability — Availability of in-house computer support
makes development via cross-support an efhicient alternative.

A brief description of the program development systems follows:

Program Development Systems

1. TM990/189—  University Board. (Price: less than $350) This board provides an
inexpensive means of evaluating the 9900 Family and learning about microprocessors in
general. It comes with a debug monitor and assembler. Key features include full
alphanumeric keyboard; display via 10 seven-segment digits; 16-bit parallel, RS232, TTY,
and audio cassette interface; and a tutorial text and hardware reference manual. (See
Chapter 8.)

2. TM990/100M— Microcomputer with line-by-line assembler
TM990/301— Microterminal for programming (combined price: less than $500)

(Figure 2-26). These components are described i detail in Chapters 3 and 8. Basic
program benchmarks may be written and tested with the 9900 microcomputer. A terminal
such as a 743 KSR may be connected to the board and additional development software
used. (This technique is described in Chapter 9.)
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24 ITM990ly101M,/302| ‘
A e
ITM990/189|
0
SYSTEM CAPABILITY ————>
(DESIGN PRODUCTIVITY)
1. Initial Evaluation 1. Détailed System Analysis
2.0ne Time User 2.Long Term Use
3. Small Firm 3. Large Experienced Firm
4. Minimum Capital Investment 4. Large Complex System

Figure 2-25. Cost vs. System Capability for 9900 Family Program Development Systems
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Figure 2-26. TM990/100M Microcomputer with TM990/301 Microterminal
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3. TM990/302— Microcomputer board (price: less than $600)

Software is on the board in the form of EPROM devices for editor, assembler, linker,
debugger, and EPROM programmer functions. A terminal and one or two cassette
recorders are needed to complete a very powerful, yet very low cost program
development system. The /302 is a companion to (or extension of) the TM990/100M
or /101M board. (Figure 2-27).

4. TM990/40DS— TMS9940 development system (price: less than $2800) containing an
EPROM programmer for the TMS9940E, Debug Monitor, Assembler and Trial
In-System Emulation; the /40DS provides development capability and emulation of most of
the TMS9940’s operations (Figure 2-28).

5. CS990/4—  990/4 minicomputer with a 733 ASR dual cassette terminal (price: less
than $6000) (Figure 2-29).
Program development software is available on cassettes to perform every task outlined

previously.

6. FS990/4— 990/4 minicomputer, terminal, and dual floppy disk storage unit (price: less
than $12,000) ( Figure 2-30).

Complete program development system with peripheral add-on capacity.

7. FS990/AMPL—  Same as FS990 but with AMPL hardware and software added (price:
less than $20,000) (Figure 2-31).

The primary advantage of the AMPL system is the complete hardware debugging
capability via the AMPL software and 9900 emulator and trace functions.

8. F5990/10— 990/10 minicomputer (Figure 2-32), terminal, and dual floppy disk
storage unit (base system starts at $15,000).

Complete program development system which can be upgraded to include
moving-head disk mass storage. AMPL is available as an option.

9. DS990/10—  990/10 minicomputer (Figure 2-33), terminal, moving head-disk mass
storage with complete multi-user system software (base system starts at $25,000). Supports
Macro-Assembler, FORTRAN, BASIC, PASCAL and COBOL.
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HOST/MASTER
COMPUTER
(OPTIONAL)

PROGRAMMER
MODULE

24

F——F--1 CASSETTE
PLAYER

100M/101M

L ___

POWER
SUPPLY

1510 CARD CAGE

Figure 2-27. TM990/302 Program Development System

Figure 2-28. TM990/40DS cables and card chassis
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911 VIDEQ DISPLAY
TERMINAL
810 LINE PRINTER

FD800 FLOPPY
DISC UNIT

PROGRAMMER PANEL
(990/4 CPU WITH
MINIMUM OF 48K
BYTES OF MEMORY)

Figure 2-30. FS990 Software Development System
(with optional printer)
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MODEL 810 VIDEO DISPLAY
PRINTER TERMINAL

TYPICAL TARGET
SYSTEM

TMS 9900
TARGET
CONNECTOR

CABLE TO
EMULATOR

BUFFER
MODULE

MODEL
990
COMPUTER

Figure 2-31. Typical AMPL Microprocessor Prototyping Laboratory
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Figure 2-33. DS§990/10 Minicomputer System
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Which Program Development System to Use

The choice of a program development system requires evaluation of an application’s
specific requirements. The lowest cost system (TM 990/100M board and /301
microterminal) will allow a very basic level of programming, and is suitable for writing
short routines to test algorithms or evaluate execution speed. Since labels are not allowed
and there is no editing program to help add or delete program steps, programming is
relatively difficult.

By adding the TM990/302 Software Development Module (with the TM990/100M or
101M) programming becomes much easier. An editor program helps you modify the
program steps, the assembler allows labels, and the other elements—debug, EPROM
programmer, relocating loader, and 170 handlers—add substantial programming flexibility.
A programmer might well evaluate this system as being an order of magnitude better than
the /100M board alone. It is best suited for one designer working on a single prototype.

But there are limitations to the /302. The system depends on cassette recorders for storage
of development software and user programs. And cassettes are slow. The number of times
per day that a programmer can make a change in his program, process it through the
system, and test the results is generally in the range of three to five.

The number of program change cycles per day can be increased by purchasing a CS990
system. This digital cassette based software development system, being more versatile, can
increase daily program iterations to about ten. Two or three programmers can use a single
system comfortably.

The FS990/4 system uses floppy disk storage to further improve flexibility. Daily program
iterations can be over 20. Because program turnaround is fast, a single FS990 system is
_often used by several programmers.

By adding AMPL hardware and software the FS990 system can be upgraded to an AMPL
prototyping system. Hardware testing may be performed under program control.

The chart shown in Figure 2-34 shows the different levels of sophistication of program
development systems that can be used with each 9900 CPU.
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SELECTED PROCESSOR TMS9900/ TMS9980A/
SBP9900A TMS9981 TMS9985 TMS9940
MINIMUM SYSTEM TM990/100M TM990/189 TM390/185 TM990/140
TM990/101M TM990/180
TM990/302
MEDIUM SYSTEM CS990/4 CS990/4 CS990/4 TM990/40DS
LARGE SYSTEM FS990/4 FS990/4 FS990/4 FS990/4
AMPL AMPL AMPL AMPL
FS990/10 FS990/10 FS990/10 FS990/10
MAXIMUM CAPABILITY DS990/10 DS990/10 DS990/10 DS990/10
TIMESHARE
TMSW101MT X X X X
GE, NCSS, Tymeshare X X X X

Figure 2-34. Program Development Systems for Each 9900 Family CPU

Timeshare

Timeshare users approach software development in one of two ways. Either they purchase
and install the TMSW 101MT cross-support package on an in-house computer, or they

lease access to a similar package on a commercial timeshare system such as GE

TERMINET, NCSS, and TYMSHARE. Both approaches provide a 9900 cross-assembler
compatible with the FS990 prototype development system. Both also provide a simulator
and ROM utility. In-house users often interface the ROM utility directly to EPROM
programmers. Otherwise several printout formats are available to match standard ROM

and PROM order techniques.

The timeshare approach provides high-level development capability at minimum initial
cost. It does, however, incur large operating costs, especially when using commercial

systems.

SuPPORT SOFTWARE AND FIRMWARE

"The program development systems and the 9900 Family of components are supported
by a full line of software. The chart shown in Figure 2-35 summarizes the capability of

the program development system software.
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PDS CROSS-
SUPPORT DX990
PROGRAM STEP TMSW101MT TM990/302 | TM990/40DS | PX990 | TX990 | FS990 AMPL{W/AMPL
EDIT X X X X X X
ASSEMBLE X X X X X X MACRO
LINK X X X X X
LOAD CREATES X X X X X X
LOAD MODULE
DEBUG X X X X X X X
EMULATOR X X X
LOGIC TRACE X X
SIMULATOR X
READ-ONLY
MEMORY ROM X X X X
PROGRAM-
MING PROM X X X X X X X

Figure 2-35. 9900 Family Software Development System Capabilities

Additional software and firmware are as follows:

TM990/401 — TIBUG Monitor

The TMS990/401 TIBUG Monitor is a comprehensive, interactive debug monitor in
EPROM included in the basic price of the TM990 CPU modules. TIBUG includes 13
user commands plus six user accessible utilities and operates with 110, 300, 1200 and 2400
baud terminals. The basic TIBUG functions include:

1. Inspect/change the following: CRU, memory locations, program counter,
workspace pointer, status register, workspace registers.
2. Execute user programs under breakpoint in single or multiple steps.

TM990/402 — Line-by-Line Assembler (LBLA)

TM990/402 is a line-by-line assembler which is supplied pre-programmed in EPROM for
immediate system use. By allowing the entry of instructions in mnemonic form and
performing simple address resolution calculations with a displacement range of + 254 to

— 256 bytes, the assembler is an extremely powerful tool for assembly language input of
short programs or easy patching of long programs.

POWER BASIC High-Level Language

POWER BASIC, an easy-to-use extension of the original BASIC language, is highly
suitable for the majority of industrial control applications. It greatly simplifies the solution
of complex system problems and eliminates unnecessary design details.
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POWER BASIC can be used for a general system implementation language as well as for
information processing. It is also versatile enough to solve problems in real-time control of
events while improving programmer efficiency in implementing complex algorithms.

The performance of POWER BASIC is outstanding — 2 to 3 times faster than any existing
8-bit microcomputer-oriented BASIC. In effect, you get minicomputer performance at
microcomputer cost.

Other advantages of POWER BASIC include:

Full string processing capability
Multidimensional arrays

13-digit arithmetic accuracy

Automatic minimum memory configuration

POWER BASIC language interpreters are available in economical yet versatile packages
shown in Table 2-5.

Table 2-5. POWER BASIC Firmware

PART NO. MEDIA NAME DESCRIPTION
TM990/450 EPROM device Evaluation Reduced memory version (8K byte)
kit POWER BASIC designed to offer evaluation tools for
exploring POWER BASIC applications.
TM990/101M-10 *TM990/101M ROM kit executes standalone on TM990/
100M, 101M modules.
TM990/451 EPROM device Development Expanded memory version (12K byte)
kit POWER BASIC providing capability for design,

development, and debug of POWER

BASIC programs. Executes onTM930/201 or
302 module interfaced with TM990/100M,
101M CPU modules.

TM990/452 EPROM device Enhancement of Provides EPROM programming, dual
kit Development audio cassette handling, and 1/0 utilities
POWER BASIC for TMS990/302.
Software
Package
TMSW201F FS990 Configurable Fully expanded version including complete
diskette POWER BASIC diskette file support and a configurator

program which reduces the size of
POWER BASIC programs for execution.

*Contained in TM990/101M Module
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PASCAL High-Level Language
TIPMX Executive Components Library in PASCAL

TIPMX is a configuration of software processes that provides executive functions such as
multitask priority scheduling, interrupt servicing, and inter-process communication. It
relieves the programmer of the necessity to develop these processes. TIPMX also supports,
but is not limited by, PASCAL data structures and program structures.

A tailored TIPMX is configured by selecting desired processes from a library of system
and run-time support modules. These processes are link-edited to form a supervisory
nucleus which is loaded into EPROM memory to enhance its speed, efficiency and
reliability.

PASCAL, FORTRAN or Assembly Language processes then execute under the auspices
of this tailored TIPMX executive.
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PURPOSE

Remember the common saying, ““What you’ve always wanted to know about subject X,
but were always afraid to try.” The same applies, and probably especially so, to persons
who have contact with the world of digital electronics; who have heard about computers
and minicomputers and-even operated them; who have seen and experienced the
advances made in the functional capabilities and low cost of digital integrated circuits by
owning and operating handheld calculators; who have worked around and even built
electronic equipment; who have heard about microprocessors and their amazing
capabilities — but have not tried them.

If you are one of these people, this chapter is for you, for in it we want to help you try
out a microprocessor, work it together, operate it, have success with it. In this way we
hope to demonstrate that microprocessor systems are not that difficult to use. That, even
though they require an understanding of a new side of electronic system design —
“software” — if a base of understanding is established, and if an engineering approach is
followed, there is no need to fear getting involved.

So that’s the purpose of this first encounter — to get your hands on a 9900
microprocessor system and operate it.

WHERE TO BEGIN

It would be very easy to be satisfied with a paper example for a first encounter,
however, it has been demonstrated that a great deal more is learned by actually having
the physical equipment and doing something with it. Therefore, this first encounter
example requires that specific pieces of equipment be purchased.

However, the purchase is not to be in vain. The first encounter has been chosen so that
is may be followed with more extensive applications described in Chapter 9.
Applications that will help to bring understanding of the 9900 microprocessor system to
the point that actual control applications, akin to automating an assembly line, can be
implemented. Outputting control of ac and dc voltage for motors or solenoids and
producing controlled logic level signals are examples. In this way, useful outcomes are
being accomplished, the equipment is being expanded, and problem solutions are
demonstrated. At all times, of course, the base foundation of knowledge about
microprocessor systems is growing.

To get underway then, purchase the following items from your industrial electronics
distributor that handles Texas Instruments Incorporated products.
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Getting Your Hands on a 9900

Quantity  Part # Description
1 TM990/100M-1 TMS9900 microcomputer module with TIBUG
(Assembly No. monitor in two TMS 2708 EPROM’s and EIA
999211-0001) or TTY serial I/O jumpers option.
(see Figure 3-1)
1 TM990/301 ‘Microterminal
(see Figure 3-2)
1 TIH431121-50 or 100 pin, 0.125” c-c, wire-wrap PCB edge
Amphenol 225-804-50  connector (or equivalent solder terminal
or unit)
Viking 3VH50/9NO5
or Elco
00-6064-100-061-001
1 TIH421121-20 or 40 pin, 0.1” c-c, wire-wrap PCB edge connector

Viking 3VH20/1JNDS5 (or equivalent solder terminal unit)

In addition, some small electronic parts to interconnect the light emitting diode displays
that will be used will be needed. These are listed later on so you may want to continue to
read further before purchasing the module and microterminal so that all necessary parts
can be obtained at the same time.

WHAT YOU HAVE

In Figure 3-3 is shown a generalized computer system, it has a CPU (central processing
unit) which contains an arithmetic and logic unit (ALU), all the control and timing
circuits, and interface circuits to the other major parts. It has a memory unit. It has some
peripheral units for inputting data such as tape machines, disk memories, terminals and
keyboards. It has output units such as printers, CRT screens, tape machines, disk
memories.

The TM990/100M-1 microcomputer shown in Figure 3-/ is a miniature version of this
computer system as shown in Figure 3-4. It has a CPU centered around the TMS9900
microprocessor, a memory unit — in this case a random access memory (RAM) and a

read only memory (ROM). It does not have the input/output units indicated in Figure 3-3
but it does have circuitry (TMS9901, 9902) for interface to such units. The TMS9901
will handle parallel input/output data and single bit addressed data as will be shown in

this first encounter. The TMS9902 handles serial input/output data interface either
through an EIA RS232 interface or a TTY interface. A more complete interconnection of
the components of the microcomputer is shown in the block diagram of Figure 3-5. The
physical position of these units on the board is identified in Figure 3-1.
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Figure 3-1. TM 990/ 100M-1 Microcomputer
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Figure 3-2. TM 990/301 Microterminal

Just think, a complete microcomputer with: 1) 256 16-bit words of random access
memory to hold program steps and program data, expandable to 512 words; 2) 1024 16-
bit words of read only memory which contains pre-programmed routines (TIBUG
Monitor) that provides the steps necessary for the TM990/100M-1 microcomputer to
accept input instructions and data and to provide output data. This ROM capability can
be expanded to 4096 words to provide program flexibility; 3) input/output interface
that can handle 16 parallel lines expandable to 4096 and an interface for serial characters
of 5-8 bits at a programmable data rate; 4) an input terminal to input the sequence of
steps to solve a problem — the program. ‘

GETTING IT TOGETHER

Of course, in order to operate the microprocessor system, it must be put together. It
must be interconnected.

What function will it perform? The first encounter application is shown in Figure 3-6. The
microcomputer will be used to provide basic logic level outputs to turn on and off, in
sequence, light emitting diode segments of a 7 segment numeric display element, the
TIL303. This will demonstrate the “software’” techniques used to provide dc logic

levels at the I/O interface which through proper drivers can later be used to control
solenoids, motors, relays, lights, etc.

In the first encounter application, the microterminal shown in Figure 3-2 will be used to
input the instructions and data required to perform the function.
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Recall that a light emitting diode (LED) is made of semiconductor material and emits
light when a current is passed through it in the correct direction. Each segment of the
7-segment display is a separate LED. Four segments of the display will turn on in the
sequence f, b, e, ¢ at a slow or a fast rate depending on the position of a switch, as shown
in Figure 3-6. Each segment will first be turned on, then a short delay, then off, then a
short delay. The sequence is continued with the next segment; proceeding around
through 4 segments and then starting over again. The rate is varied by changing the
delay in the sequence. The switch position controls the delay.

A 7-segment display is used because of its ready availability and its dual-in-line package.
Only 4 of the segments will be programmed into the sequence although driver capability
will be provided for 6 segments. This allows flexibility for the person doing the first
encounter to experiment on their own to include the remaining 2 segments. A next step
would be to provide an additional driver. In this way all 7 segments of the display can be
included.

Here’s what’s required to provide the segment display. Figure 3-7 shows the integrated
circuit driver package for the LED segments, the SN74HOS5N. The physical package
and a schematic are shown. It contains 6 open collector inverters, each capable of
“sinking” 20 ma. A 14- or 16-pin dual-in-line socket is required. A wire-wrap one is
shown. However, it could be a solder terminal unit just as well.

Figure 3-8 shows the 7-segment display physical package and schematic and a 14- or 16-pin
DIP socket for interconnection. 100 ohm resistors for limiting current through the
LEDs are also required.

CPU

ALU
ARITHMETIC
AND
LOGIC UNIT

CONTROL AND -
INPUT C> CENTRAL TIMING <—:—:> ouTRU

MEMORY

Figure 3-3. Generalized Computer
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PARALLEL INPUT/OUTPUT
INTERFACE AND BUFFERING

CPU

ALU
CONTROL AND
CENTRAL TIMING

9900
MICROPROCESSOR
SERIAL INPUT/OUTPUT
INTERFACE AND BUFFERING

CENTRAL TIMING

9904
CLOCK 9902

ROM

RAM
256 X 16 (EPROM)
1K X 16

Figure 3-4. Miniature Computer System on TM 990/ 100M-1 Module
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TTL BUFFERS

TTY OR
R$232
wicace | | nen

110
CONNECTOR

BUS
CONNECTOR

TERMINAL
CONNECTOR

P3 & P4

P1 P2

Figure 3-5. TM 990/100M-1 Block Diagram
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POWER SUPPLY
+5V  +12V —12V GND

LOGIC LEVEL INPUT PERIODICALLY
TESTED BY THE MICROCOMPUTER
*ELEMENTS
TM 990/100M AS SHOWN
MICROCOMPUTER
a
—— ] f b
r l
{ g
| TMS 9901 e c
| PROGRAMMABLE
T™ 990/301 SYSTEMS d
MICROTERMINAL | INTERFACE
|
| SEVEN
| SEGMENT
DISPLAY
LOGIC LEVEL INVERTERS
OUTPUTS UNDER USED AS LED SEGMENT

CONTROL OF MICROCOMPUTER DRIVERS

Figure 3-6. The First Encounter Task

All of the components of Figure 3-7 and 3-8 are wired together on a separate printed circuit
board as shown in Figure 3-9. The Radio Shack #276-152 board provides individual
plated surfaces around holes to make it easy to anchor components and to interconnect
all components with wire-wrap. J4, the 40 pin wire-wrap PCB edge connector accepts
the edge connections of P4 on the TM990/100M-1 board shown in Figure 3-1. After
wiring this connector, put a piece of tape across the top of this connector so that it is
correctly oriented before the board is plugged in; or the same can be done here as for P,
discussed a little later. Note also on Figure 3-1 that there is an area on the 990/100M-1
board for prototyping. The components of Fzgure 3-9 may be wired in this area rather
than using a separate printed circuit board. Using a separate board allows this area to be
used for more permanent components for a specific dedicated application of the
990/100M module.
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A. SN74HO5N
SIX INVERTER IN1
DRIVERS
14 PIN PLASTIC PKG.

ouT1

ouT2

IN3

ouT 3

GND

1 E ™ :114 VCC (+5V)
2 [: :I 13 IN6

3 D ]12 ouT 6
4|: ; Dn N5

5 E]m ouT 5

6 ? :I 9 IN4
7[ | | 8 outa

C. SCHEMATIC OF SN74HO05N
(TOP VIEW)

COMPONENT PARTS

1 — SN 74H05N HEX DRIVER

B. 14—16 PIN DIP SOCKET

(EACH DRIVER CAPABLE OF SINKING 20 MA.)

(WIRE-WRAP OR SOLDER TERMINALS) 1 — 14 OR 16 PIN DIP SOCKET
(RADIO SHACK # 276-1993, 94)
(TI # 811604 M&C — 16 PIN WIRE-WRAP)

Figure 3-7. LED Driver Parts

TOP VIEW ; —r
A. TIL303 7 SEGMENT NUMERICAL DISPLAY P
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a1 E ¢ > 14b
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Vee2 [: 13Vee
13 [: E ‘-/,4 12
P 1009 ] 1002 | 1002 ] 1002] 1002 | 1008
g4 ¢4 11
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5 :,{' 10 D.P.
D. 100 OHM RESISTORS 1/4 W
P
e6 [ He-e—4 PP | oc
-~
Pl
Vee? [ ] b | 8d
I’-‘l
C. SCHEMATIC OF TIL303
COMPONENT PARTS

B. 14 OR 16 PIN DIP SOCKET
(WIRE-WRAP OR SOLDER TERMINALS)

1 — 7 SEGMENT DISPLAY TIL303

1 — 14 OR 16 PIN DIP PACKAGE
(C-811604 M&C — 16 PIN WIRE WRAP)
(RADIO SHACK — 276 — 1993, 94)

6 — 100 OHM RESISTORS, 1/4 W

Figure 3-8. Segment Display Parts
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14 \ \ | TIL303
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-— it R LR
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— 100 9100 €3 100Q
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- 1/0 n
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1 8 l
PRINTED GIRCUIT BOARD |
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o )
r sLow

20 22 18 14 16 |40-PIN WIRE WRAP
PCB EDGE CONNECTOR =

Ja

B. SCHEMATIC

Figure 3-9. The Output Board

Following is a complete list of the parts, tools and supplies required. This is the list that
was referred to earlier. Check carefully that all necessary parts are purchased.

PARTS LIST
A, Microcomputer

1 —"TM990/100M-1 TMS9900 Microcomputer module with TIBUG

monitor in two TMS 2708 EPROM’s and EIA
or TTY serial I/O jumper option.

B. 1erminal
1 —TM990/301 Microterminal
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C.

Output

1 — Hex LED Driver
1 — 7 Segment Display
2 — 14 or 16 Pin Dip Sockets

6 — 100 ohm Resistors, ¥4 W

1 — Switch, Toggle or Slide,
SPST or DPST

1 —J4, 40 pin, 0.1 c-,
wire-wrap
PCB Edge Connector
(or equiv. solder
terminal unit)

1 — Printed Circuit Board

SN74HO5N

TIL303

TI wire-wrap; 16 Pin — C-811604 M&C;
Radio Shack wire-wrap; 14 Pin 276-1993;
16 Pin 276-1994

TIH421121-20

Viking 3VH20/1JND5

Radio Shack #276-152

Bus Connector (Use for Power in First Encounter)

1 — J1,100-pin, 0.125" c-c,
wire-wrap
PCB Edge Connector
(or equiv. solder
terminal unit)

Power Supplies — Regulated

TIH431121-50

AMPHENOL 225-804-50
Viking 3VH50/9N05
Elco 00-6064-100-061-001

Voltage Regulation Current
+5V +3% 1.3A
+12V *+3% 0.2A
- 12V +3% 0.1A
Tools

Wire-wrap connector tool Soldering Iron

Wire-wrap disconnecting tool

Wire stripper (30 G) Long-nose pliers
Diagonal cutter
VOM, DVM, DMM

General Supplies

Wire (30 G Kynar)

Solder

Plugs and jacks for power supply connections

Note the power supplies required, the voltages, currents, and regulation. Assure that
there is a common ground between all units.
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(Electronic shops or laboratories might have available individual LEDs, therefore,
Figure 3-10 is provided in case this alternate method of display is chosen. The necessary
drivers and resistors are identified. The necessary substitutions can be made on Figure 3-9.)

After wiring the output board, what remains is to supply power to the board. This is
accomplished through P1 on the 990/100M-1 board. Figure 3-11 shows how the edge
connector is wired to supply power. Be careful to use the correct pins as numbered on
P1 on the board; these pin numbers may not correspond to the number on the particular edge
connector used. Label the top side of the edge connector “TOP” and the bottom
“TURN OVER.” This will prevent incorrect connection of power to board. Wire the
connector pins so that the top and bottom connections on the board are used to supply
power, e.g., 1 & 2 for ground; 3 & 4 for +5V; 73 & 74 for —12V; and 75 & 76 for

+ 12V. Plugs or jacks may be placed on the end of the power supply wires to make easy
interface. With both the P1 and P4 connectors and the output board wired, the total
system is ready for interconnection.

v 314 1A
2y 2 :]w 6Y

g 330 ]330 2]330 2330 @
2A sd 312 6A

oo 4[] ] 11 Ve orVee B.  LIGHT EMITTING DIODES C. 330 OHM RESISTORS
:l 10 5A

TIL209 174 W
3n 5 Eb
av e[ ]9 sy

n 7|: 8 aA

A. SN75492N

MOS-LED DRIVER
(OPEN COLLECTOR)

COMPONENTS PARTS

1 — SN75492N DRIVER

1 —14-16 PIN DIP SOCKET
4 —TIL209 LED'S

4 — 330 2 RESISTORS

D. SCHEMATIC

Figure 3-10. Alternative LED Output Display
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UNPACKING AND CHECKING THE MICROCOMPUTER (TM990/100M-1)

It is very important to realize that the microcomputer module has MOS (metal-
oxide-semiconductor) integrated circuits on it. These circuits are particularly sensitive to
static charge and can be damaged permanently if such charge is discharged through their
internal circuitry. Therefore, make sure to ground out all body static charge to
workbench, table, desk or the like before handling the microcomputer board or any
components that go onto it.

After unpacking the TM990/100M-1 module from its carton and examining it for any
damage due to shipping, compare it to Figure 3-12 to determine the correct location of all
parts. Additional detail is available in the user’s guide shipped with the board. Make sure
that EPROM TIBUG Monitor (TM990/401-1) units are in the U42 and U44 positions
on the board. Make sure that the RAM integrated circuits are in the U32, 34, 36, and
38 positions.

V!

T™ 99/100M

oonotinonafnooofinoondooooBooondonoodoidoiooooioonot

EDGE CONNECTOR

UUTTT T TTuuTuru T rouom

18 AWG INSULATED STRANDED WIRE

BANANA PLUGS
(succesr COLOR coomc)

THESE AS PER TABLE -12v

VOLTAGE P1PIN® SUGGESTED PLUG COLORS
+5V 3,4 RED
+12v 75,76 BLUE
—12v 73,74 GREEN
GND 1,2 BLACK .

*ON BOARD, ODD-NUMBERED PADS ARE DIRECTLY BENEATH EVEN-NUMBERED PADS.

Figure 3-11. Power Supply Hookup for 990/100M-1 Microcomputer

CAUTION: Before connecting the power supply to Pl, use a volt-ohmmeter
to verify that correct voltages are present as shown in Figure 3-11.
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Compare the board to Figure 3-12 & 3-13. Make sure that the jumpers are in the following
positions:

JumpER PosrTion JumpER Posrion
J1 P1-18 J4 08, 08
J2 2708 J7 EIA

J3 08, 08 1)8! OPEN

They assure that memory locations are identified correctly and that the microterminal
interfaces correctly.

CONNECTING THE MICROTERMINAL TM990/301

The microterminal (Figure 3-2) should be examined to verify there is no damage due to
shipment. It will be connected to the microcomputer through P2 on Figure 3-12. Jumpers
J13,J14, and J15 must be installed on the TM990/100M-1 board in order to supply
power to the microterminal. Using the extra jumpers provided, short pins on the board

at J13, J14, and J15 (Figure 3-13). Attach the plug on the microterminal cable to the P2
connector on the board.

OPERATING THE MICROCOMPUTER

Check once more that all wiring is correct for the output board (Figure 3-9), the power
connector (Figure 3-11) and the jumpers, then follow these steps:

Step 1 Begin with connectors to P1 or P4 disconnected

Step 2 Turn on power supplies and verify that all voltages are correct at the
connector for P1. Turn off power supplies.

Step 3 Connect the power supply connector to P1. Make sure edge connector
has the word “TOP” showing. Turn on — 12V supply first, then
+ 12V, then +5V.

Step 4 Verify the voltages of + 5V, —12V and + 12V on the board printed
wiring connections near the edge of the beard between P2 and P3.
Adjust power supplies or verify trouble if these are not correct.

Step 5 Verify the voltages of these terminals:
J13 +5V
J14 +12V
J1s5 - 12V

If these are incorrect, correct the problem.

Step 6 Turn off power supplies. With the top edge of connector for P4 in
correct position, connect output board to P4, turn on power supplies in
same sequence as before, — 12V, +12V, +5V.

The total setup should now look like Figure 3-74 and the microcomputer is now ready to
perform the task; all that’s required is to tell it what to do.
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J13

MICROTERMINAL

J14 USE

J15

AfMP “206584-2 7§38

PeS000000600066006008 2L SPARE JUMPERS
POGOOOTCOOLOLABOOBBDD J16, J17, J18
P8 2888800000000000000 412 MULTIDROP
POOCOCOCOOOO000000000 INTERFACE
.ot...l'.o......lunn.l

J11 (170

MULTIDROP
INTERFACE

J7 (EIA MULTIDROP
SELECT)

TMS 2708/16
— 2 EPROM
SELECT

Figure 3-13. Jumpers used on TM 990/ 100M-1 Board for Option Selection
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Figure 3-14. Total System Connected
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TELLING THE MICROCOMPUTER WHAT TO DO

The microcomputer is told what to do through the microterminal keyboard. This is
shown in Figure 3-15. Initial conditions are necessary so Stgp 7 starts everything at an
initial point.

Step 7 Figure 3-1 and Figure 3-12 identify the RESET switch. Switch it all the way
to the right (facing the toggle). Now depress the CLR (clear) key on
the microterminal. Nothing will be on the display but to verify that it is
working, press several of the number keys. The numbers pressed will
appear in the display. Now press the CLR key again on the

microterminal.

As we depress selected keys on the microterminal, the microcomputer is being given
instructions — a step by step sequence of things to do to perform the first encounter
task. The microcomputer is being programmed to do a job.

In order for the microcomputer to do its task according to the instructions given, it must
also do many things dictated by other instructions that are stored in sequence in the
TIBUG Monitor read-only memory (ROM). The program that performs the first
encounter task is stored in the random access memory of the microcomputer and used in
sequence. As a result, as the microcomputer accomplishes the task for which it is

programmed, it performs each of the steps dictated by the “main program” in the RAM
and by TIBUG in ROM.

There are only a few keys used on the microterminal for the first encounter. Identify
these on Figure 3-15 and on the microterminal. Three of these are: .(enter memory
address) is used to display a specific memory address and give the user the ability to
change the contents of that location. (enter memory data) changes the contents of
the memory location and (enter memory data and increment) changes the contents
of the memory location and advances the address by two.

Note that Figure 3-15 identifies the information given by the display. There are two banks
of 4 digits each that are displayed. The left 4 digits display the address register (memory
address) and the right 4 digits display the data in the data register (data to be stored in
memory, being read from memory, or being operated on by the microcomputer). It is of
no concern at the moment but both of these 4 digit registers are identifying the value of
their data in hexadecimal code. Suffice it to say at this time that each hexadecimal digit
represents 4 bits of data for a number that has a value represented by 16 bits. Each
hexadecimal digit can have at any one time an alphanumeric value of any one of the
following: 0, 1, 2, 3,4, 5,6, 7, 8,9, A, B, C, D, E, F. The decimal value of these
numbers are shown in Figure 3-16 as they occur in the place value position of the 4 bit
display. Hexadecimal numbers will be identified with a subscript of 16 in the text, e.g.,
02E0,¢ or 0100, whenever there is need to avoid confusion.
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plays address register informa-
tion and the right bank displays
data registers.

Figure 3-15. Microterminal Keyboard and Display

Every program starts at a particular place in the RAM memory. The first encounter
program will start at memory location identified by the hexadecimal address FEQO. This
is a 16 bit address which in machine code looks like this: 1111 1110 0000 0000

(F=15; E=14; 0=0; 0=0) and from Figure 3-16 has a decimal value of

61,440 + 3584 + 0+ 0=65,024. The program starts at memory location 65,024.

To start the sequence of instruction steps for out first encounter, the starting address is
entered and the (enter memory address) key is depressed on the microterminal.
This is program Step 2 in Step 8. To help verify the steps the display data is also

recorded.

Step 8

KEYsTROKES

0. CR

1. (£] (0] [0]
2.
3. (0] Ce] (@]

ADDRESS

FEOO
FEOO

Display

Darta

FE00
XXXX (X=Don’t care)
02E0
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This keystroke at Step 3 is a hexadecimal code — an instruction — that is telling the
microcomputer to load a register with data. The data, however, is at the next address
location. Therefore, with the next keystroke (enter memory data and increment),
the instruction 02EO is stored at address location FEQO and the next memory address for
an instruction is brought into the display by incrementing (advancing) the FEOO address
by 2 (the reason for advancing by 2 will become clear as more is learned about the 9900
microprocessor). '

Step 9
KrySTROKE ADDRESS Dara
4, FE02 XXXX
MSB LSB
16° 16° 16! 16°
BITS {0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HEX DEC HEX DEC HEX DEC HEX DEC
0 0 0 0 0 0 0 (6]
1 4 096 1 256 1 16 1 1
2 8 192 2. 512 2 324 2 2
3 12 288 3 768 3 48 3 3
4 16 384 4 1024 4 64 4 4
5 20 480 5 1280 5 80 5 5
6 24 576 6 1 536 6 96 6 6
7 28 672 7 1792 7 112 7 7
8 32 768 8 2 048 8 128 8 8
9 36 864 9 2 304 9 144 9 9
A 40 960 A 2 560 A 160 A 10
B 45 056 B 2 816 B 176 B 1
C 49 152 C 3072 C 192 C 12
D 53 248 D 3 328 D 208 D 13
E 57 344 E 3584 E 224 E 14
F 61 440 F 3 840 F 240 F 15

To convert a number from hexadecimal, add the decimal equivalents for each hexadecimal digit. For example,
7A82,; would equal in decimal 28,672 + 2,560 + 128 + 2. To convert decimal to hexadecimal find the
nearest number in the above table less than or equal to the number being converted. Set down the hexadecimal
equivalent then subtract its decimal number from the original decimal number. Using the remainder(s), repeat
this process. For example:

31,3621 =7000,s + 269010 7000

2,69010 =AOO|6 + 1 3010 AOO

13010=8016 + 210 80

210=2s6 2
7A82;6

Figure 3-16. Place Value of Hexadecimal Digits in Significant Bit Positions
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Program Step 4 of operating Step 9 shows this. Memory location identified by address

FEO2 is now ready for the data that will be put into the register identified by the

instruction 02EQ at location FEQO. The data is FF20.

5. (£l [2] [©] FEQ2 FF20
6. FEO04 XXXX

Program Step 6 has now advanced to the next memory location which is awaiting the
next instruction which is keystroked in by program Szep 7.

7. (0] Co] (11 FE04 0201

Step 10
Continue now to program steps through the end of the program. Note how the address
memory location advances by 2 each time is pressed. This is how the program will
be followed when it is run. The starting address FEOO will be loaded into the program
counter. The program counter will then count by 2 and advance the microcomputer
through each program step as the instructions are completed.

KEYSTROKE ADDRESS Dara
8. FE06 XXXX
9. [F1 (&1 21 [&] FE06 FE2E
10. FEO08 XXXX
11. [0 2] [0 FEO08 020C
12. FEOA XXXX
13. 0o [ (2] [@] FEOA 0120
14. FEOC XXXX
15. O (@] [o] [0] FEOC *1d00
16. FEOE XXXX
17. (o] Ce] (2] (O] FEOE 0691
18. FE10 XXXX
19. (O [e] (@] 0] FE10 1E00
20. FE12 XXXX
21. (01 6] o] 11 FE12 0691
22. FE14 XXXX
23. O (@] (671 (O] FE14 *1d01
24. FE16 XXXX
25. (o] (61 o] (11 FE16 0691
26. FE18 XXXX
27. OO (8] (0] O] FE18 1E01
28. FE1A XXXX
29, [0] (61 (571 11 FE1A 0691
30. FE1C XXXX
31. OO [¢] (@] 2] FE1C *1d02

*As displayed on 301 Terminal
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KEYSTROKE ADDRESS Dara
32. FEIE XXXX
33. [0] 6] 9] [0 FE1E 0691
34. FE20 XXXX
35. [ 2] (0] 2] FE20 1E02
36. FE22 XXXX
37. 0] 6] (91 (O FE22 . 0691
38. FE24 XXXX
39. O] (@] 0] [3] FE24 *1d03
40. FE26 XXXX
41. o] [&] (=] (1] FE26 0691
42. FE28 XXXX
43, [1] (€] [0] FE28 1E03
44, FE2A XXXX
45, [o] 6] o] (O FE2A 0691
46. FE2C XXXX
47. 1] @] [E] FE2C 10EF
48. FE2E XXXX
49, (11 (o] [4] FE2E 1F04
50. FE30 XXXX
51. 07 3] 0] (5] FE30 1305
52. FE32 XXXX
53. [0] (2] (0] (2] FE32 0203
54. : FE34 ‘ XXXX
55. CF] ’ FE34 FFFF
56. FE36 XXXX
57. 0] [Ce] [0] (3] FE36 0603
58. FE38 XXXX
59. ] [e] (7] [E] FE38 16FE
60. FE3A XXXX
61. (0] [2] (5] FE3A *045b
62. FE3C A XXXX
63. [0] 2] (0] 3] FE3C 0203
64. FE3E XXXX
65. 7] FE3E 3FFF
66. FE40 XXXX
67. [0] [6] (o] FE40 0603
68. FE42 XXXX
69. 01 [e] [F] [E] FE42 16FE
70. FE44 XXXX
71. [0] &7 (5] FE44 *045b
72. FE46 XXXX
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Step 11

All the program steps are now entered. It remains to run the program, that is, send the
microcomputer through its sequenced steps to determine if it will accomplish the task.

Recall, that the system must be set to the initial conditions and to the starting point.
This means that the system must start at memory address FEOO because that is where the
first instruction is located.

Inside the microcomputer there is a register (a temporary storage location for 16 bits)
that always contains the address of an instruction. It was previously noted that as the
memory location of instructions was incremented by 2 as the program was entered, so
also will the program counter be incremented by 2 by the microcomputer to go to the
next instruction. Therefore, the initial conditions are accomplished by loading the
program counter with the address location FEQO. This is accomplished by an key
on the microterminal. The (enter program counter) key changes the value of the
program counter. It will enter into the program counter the value that is in the data
register of the microterminal display.

The (display program counter) key on the microterminal is depressed to determine
if the correct value has been entered into the program counter because it displays the
current value of the program counter.

The key is depressed to begin execution of the program starting with the address
in the program counter.

To run the program, go through Steps 7 thru 5.

KeysTROKE ADDRESS Darta

1. - —

2. Ce] [o] [o] — FEO00

3. [EPC — : FEQO

4. — FEO00

5. — run
VOILA!

The first encounter task is being accomplished. Switching the toggle switch will change
the rate of the segment display.

Under program control output logic levels on a set of output lines have been et to a
“1”, held for a time, set to a “0”, held for a time, etc. in a particular sequence. The delay
between ““1s” and “0s” also is under program control. Such output levels then have been
interfaced to driver circuits to accomplish a given task — in this case lighting LED
segments of a display.
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Step 12

To stop the program, depress . The RESET switch on the microcomputer could
also be pressed. (However, in doing so, to return to the program, go through the initial
five steps of running the program at the end of operating Stgp 70.) The program may be
started again by depressing after it was halted by

Step 13

If for some reason the first encounter task is not being accomplished after completing
Step 10, the program can be checked by entering FE0O, the beginning address and
depress . The contents of memory and the instruction at FEQO will be displayed.
Each memory location can then be examined by depressing and reading the display.
In this manner, the program can be examined for an error. When the error is located,
the correct data can be entered as it was in the original program and is pressed. The
program can then be run by returning to the initial sequence of operating Step /1.

The program may be entered at any valid address by entering the address and pressing
and then proceeding step by step with [, There is no need to go back to the
beginning address each time.

HOW WAS IT DONE?

The question naturally arises — how was this task accomplished by the microcomputer,
and more importantly, how was the task taken from idea to the actual program? How
does one know what to tell the microcomputer to do?

Of course, this will take a great deal of study of this book and much operation of
systems, starting with the TM990/100M-1 microcomputer. The way the idea is turned
into a program for the first encounter is covered in the remaining part of this chapter.
This is a good foundation for building knowledge of the 9900 microprocessor, applying
the 990/100M microcomputer to many other tasks, and understanding the use of the
9900 in solving other types of problems.
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BACK TO BASICS

The process of understanding how the task was taken from idea to instructions for the
microcomputer begins by returning to some basic concepts to assure that these are
understood.

Recall that Figure 3-4 identified the functional blocks of our microcomputer. The central
processing unit includes the 9900 microprocessor. Examining Figure 3-5 further and the
functional block diagram of Figure 3-17 shows that the 990/100M microcomputer is bus
oriented. Recall that a bus is one or more conductors running in parallel which are used
for sending information. The 9900 microprocessor sends an address to memory, to
identify data required, on the 15-bit address bus. It receives data from memory on a
16-bit data bus. It should be noted that the same 15-bit address bus goes to the
input/output interface units. The address bus is used either to send an address to memory
or an address to input/output, not both at the same time. When the signal MEMEN is a
logic low, the address bus is for memory. If the address bus is not for memory then it can
be used by I/0. When the address is for 1/0, the selection of which lines will be inputs
or outputs is under control of the 9900.

“h

SERIAL
ASYNCH

ADDRESS BUS 15 BITS

- ses. A
LEVEL R A #
1/0 =—— | gnier ™S

9902 <:
ACC AO-A14
T = M DBIN r CONTROL

MEMEN
HOLD
HOLDA
READY
WAIT ROM RAM

(CRU)
CRUIN

CRUOUT
CRUCLK
TMS9900
CPU

170

D0-D15

S>3 tests  patasus

PSI

ICOIC3
INTERRUPTS I RTRES IAO

(INTERRUPT CODE)

RESET LOAD ¢1 ¢4 ~—{>--- BUFFER

— [

CLOCK GENERATOR
—3 AND CONTROL
¢ TMS 9904

Figure 3-17. Functional Diagram of TM 990/100M-1 Microcomputer
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Therefore, lines to accept data as input, or to deliver output data are selected by address
bits in the same fashion that address bits locate data in a memory.

Examination of the architecture of the 9900 microcomputer in Figure 3-18 reveals, as in
Figure 3-17, the address bus, the data bus, signals for the CRU (the Communications
Register Unit is an I/0 interface for the 9900 architecture), signals for interrupt,
control signals and master timing signals. Each of these are external signals. Further
examination of internal parts is required to expand on more basic concepts, with
empbhasis on the ones that are used for the first encounter task.

REGISTERS

Recall that a register is a temporary storage unit for digital information. Inside the 9900
there are these types of registers: a memory address register, a source data register (data
register), an instruction register, an interrupt register, some auxiliary registers like T}
and T, and the registers that will be most applicable to the first encounter — the
program counter, the workspace register, the status register and a shift register used as
part of the hardware to select the input and output terminals. Additional parts include:

1) the ALU — it is the arithmetic and logic unit that performs arithmetic functions, logic
and comparisons. 2) Multiplexers that direct the data over the correct path as a result of
signals from the control ROM and control circuitry. 3) Timing circuits so that all
operations are synchronized by the master timing.

Every time a piece of information is required to be stored in memory or retrieved
(fetched) from memory, the memory must be told where the data is located or to be
located. The memory address register holds the address to be put on the address bus for
this purpose.

Data fetched from memory is received either by the source data register and distributed
by the 9900 microprocessor as required, or by the instruction register when it is an
instruction. The instruction is decoded and transmitted to the control ROM which
sequences through microinstructions previously programmed into the control ROM to
execute the instruction. The instruction might be “Increment register 1 by two”.
Instruction steps take the data from register 1 to the ALU which adds “2” and returns
the data to register 1.
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INTERRUPT
CODE ADDRESS BUS
INTREQ  1C0-IC3
AD-A14
/'ET
C )
~
(———ﬂ 16 16
\4}
d 16 C INTERRUPT 34
REGISTER MEMORY
INSTRUCTION ADDRESS
REGISTER REGISTER
T L—s ~/1e\r
16 T2
16
CONTROL PROGRAM COUNTER
ROM
WORKSPACE REGISTER STATUS
REGISTER
16
5
: w -
T .
R
o
L
CONTROL
16 16
OID — o] >~ A B
HOLDA
{OAD — =] ALU
we F
READY — CONTROL
WAIT  ~a—qp LOGIC
MEWER )
DBIN i
RESET — =t
1AQ
c:ucu( - )
CRU 4
— _/
$1-p4 _| 16
MASTER SHIFT T6
TIMING COUNTER
SOURCE DATA }
REGISTER
SHIFT REGISTER

16

D0-D15 CRUIN

CRU
DATA BUS

Figure 3-18. Architecture of 9900 Microprocessor

CRUOUT
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Two registers of significant concern for the first encounter task are the status register
and the workspace register. The status register is just what the name implies. The 9900
microprocessor continually checks on how things are going (the status) by following

instructions that command it to check various bits of the status register. Figure 3-19 shows
the bits of the status register.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

STO | ST1 | ST2 | ST3 | ST4 | ST5 | ST6 not used (=0) ST12 ST13 ST14 ST15
L> | A> = [od (o] P X Interrupt Mask

Figure 3-19. Status Register

Each bit of the first 7 bits is concerned with identifying that a particular operation or
event has or has not occurred as shown here.

Brr Purrose Bir Purpose

0 Logical Greater Than 4 Overflow

1 Arithmetic Greater Than 5 Parity

2 Equal 6 XOP

3 Carry 12-15 Interrupt Mask

The last 4 bits are concerned with the interrupt signals and a priority code associated
with the interrupts.

The first encounter uses bit 2, the “equals” status bit to change the time delay in the
LED sequence.

‘WORKSPACE

The workspace register is the same as the other registers, but it is used in a special way.
As the 9900 microprocessor and the microcomputer step through program instructions,
there is a need to have more registers than those available on the 9900. Instead of
providing these registers in the 9900, a file of registers is set up in memory and a
reference to this file saved in the workspace register. One of the rules in setting up this
file is that it will always contain 16 registers in 16 contiguous (one following another in
sequence) memory words. The workspace register on the 9900 is called the workspace
pointer because, as shown in Figure 3-20, it contains the address of the first memory word
in the contiguous register file, referred to for the application of the 9900 and in this
book as “workspace registers” or just “‘workspace”. The register file can be located
anywhere within RAM that seems appropriate. In the total available memory space,
there are certain reserved spaces for RAM, others for ROM, and others for special
instructions. Therefore, the register file can only be set up in certain portions of
memory. So, where 0200;6 to 021E,; are the 16 locations shown in Figure 3-20a, with
the workspace pointer being 0200, the file could have started at 0300,¢ and extended to
031E;s as long as these are allowable locations in the overall memory matrix. The
workspace pointer would contain 0300, in the second case.
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MEMORY

MEMORY
ADDRESS (HEXADECIMAL)

01FC
4

O1FE

F———————— — —

Figure 3-20a. Workspace Registers

FILE REGISTER 0

FILE REGISTER 7

9300
WORKSPACE POINTER
[0 2 o o]
(WORKSPACE REGISTER) f
WORKSPACE POINTER
0 2 0 016
INSTRUCTION
REGISTER
(SAYS | NEED
DATA FROM REGISTER 7)
|-> 2x7 + /
ADDRESS
BUS

Y

Figure 3-20b. Locating Specific Register

0200
0202
0204
0206
0208
020A

020C

FILE OF REGISTERS
[— CALLED
WORKSPACE

020E
0210
0212
0214
0216
0218
021A
021C
021E

0220
0222
0224

0200,

020E,,
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To locate a specific register in the workspace file, the 9900 microprocessor adds the
register number to the workspace pointer address to obtain the address of the specific
register in the file that is required. (It actually adds 2R, where R is the register number,

so that the addresses advance by even numbers. The odd number addresses are used

when the word contents are to be processed in 8-bit bytes.) For example, if register 7
contains the information required by the 9900 microprocessor, then the address 020E in
Figure 3-20a is obtained by adding 14 to the workspace pointer at 0200;¢. This is shown in
Figure 3-20b. In like fashion, if the workspace pointer contained 0300,4, then adding 14 to
0300, gives 030E,¢ the address of register 7, the 7th register down in the file.

Recall that to accomplish the first encounter task, logic levels on output lines had to be
settoa ‘“1” or a ‘‘0” in order for the LED drivers to turn on or turn-off the LED
segment respectively. Recall, also, that the particular output lines could be selected. To
understand how this is done, refer to Figure 3-21. This figure is divided into three
bounded regions; the TMS 9900, Memory, and the TMS 9901. The output line from
the 9900 microprocessor that will do the setting is the line “CRUOUT.” It is coupled
to the TMS 9901, the programmable systems interface.

The TMS 9901 contains more functional parts to handle the interrupt code and
interrupt input signals but for now the part that is important is that shown in Figure 3-21.
The portion shown is a demultiplexer. The data appearing at CRUOUT is strobed by
CRUCLK into latches feeding the output pins. The particular latch and the particular
output line is selected by the code that exists on the select bit lines Sy, S,, S,, S;, and S,,
which, as shown in Figure 3-21, are the address lines A, through A,,. The code on S,
through S,, and the CRU logic selects the output latch and line that is to be set. The “1”
or “0” on CRUOUT does the setting. The latching occurs when CRUCLK strobes

the data in.

SBZ AND SBO INSTRUCTIONS

Enough basics have now been covered to begin understanding several of the important
instructions for the first encounter task. Figure 3-27 will again be used and will be followed
from left to right and top to bottom starting with the upper left corner. At a particular
step in the program, controlled by the program counter, the instruction address (the bit
contents of the program counter) is sent to memory over the address bus to obtain the
instruction. Memory is read and the instruction is received by the 9900 on the data bus
and placed in the instruction register. Via the control ROM and the control logic, the
instruction is interpreted as an SBO instruction — “set CRU bit to one.” The 9900 is
designed so that it generates the correct S-S, address for the TMS9901 that selects the
output line to be set to a “1” by the instruction. However, as indicated in Fzgure 3-21, first
an ALU operation must occur before the correct address is obtained. The ALU adds the
contents of one of the registers in the file, workspace register 12 (WR12), to a portion

of the instruction, SBO. This portion of the SBO instruction is identified as DISP
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(meaning displacement) in Figure 3-21. It identifies the specific line to be used in the 9901
for the output. Eight bits are used for the signed displacement (7 and a sign). Bits 3
through 14 are used from the workspace register 12.

After the ALU operation, the address is sent out on the address bus. Because the
MEMEN line is not active, this tells the 9901 that the address is for 1/0. All 15
address bits are there; however, only A; through A, are used for the effective CRU
address. Ay, through Ay, provide S, through S, for the 9901, while bits A, through A,
are used for decoding additional I/0 as shown in Figure 3-17. Ao, Ay, and A; are set to
zero for all CRU data transfer operations.

TMS 9900 | MEMORY

—
R e—

&
g

l I TMS 9901 i
I P.C. | } ADDRESS l »| INSTRUCTION ]
I BUS | | I |
I \] T DATABUS I
LR, l oP | DISP I | I
| y I | l
| CONTROL | | I
l ROM |
l \ | WORKSPACE REGISTER
ADDRESS ! j | -1 l
| s : i wRi2 {— !
CONTROL !
oaic [ ! 3 1 I CRU [ } '
| —a N~ LOGIC | 71
| = H
I | P EI l
y | | R {
l \ﬁLU | DATABUS l : 170 I
SET TO + I | |
I “I'" FOR SBO l Lo
10 ] \ |
| “0O" FOR SBZ ADDRESS BUS AAu o ‘
' EFFECTIVE CRU BIT ADDRESS . ’ o
l (ONLY BITS 3-14 FROM WR12 USED) l s o
' P
I CRUOUT I 1 - | O |
' I N P, 0
\
I CRUCLK ‘ } > AN i - |
‘ ~> P, —o0
_ - |
l l CE I — ©
( P, -0 |

a
|
|

Figure 3-21. CRU Concept — Single Bit Output SBO or SBZ on CRUOUT.
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1/O SeLEcTION

The codes required on S, through S, that select a specific output or input in the 9901

are shown in Figure 3-22. To make it convenient, the P, line will be used for bit zero of
the output or input, P, for bit one, P, for bit 2, P, for bit 3 and P, for bit 4. Therefore,
to select the line for Py, the code on S, through S, must be 1 0000. Rather than starting
at select bit 0, the output sequence is started at select bit 16. Adding 32,, (base ten) to
the contents of the file register 12 accomplishes this. This is 104 in Hex code times two,
to shift it into bits 3 through 14.

What do the contents of register 12 indicate? They identify the particular 9901 used.
Referring back to Figure 3-17, it is noted that several I/O units are connected to the
address bus of the microcomputer TM990/100M-1. In order for the decoder to activate
the correct CE signal to enable the right I/O, a base address is assigned to each I/0O
unit. The software base address for the 9901 on the microcomputer is 0100,5. The
hardware base address is 0080,.

Figure 3-23 summarizes the AL U operation. Workspace register 12 contains the software
base address of the 9901 on board the microcomputer. The signed displacement of + 10, is
located in the instruction register as part of the SBO instruction. These two pieces are
added together by the ALU and the result placed in the address register. Note that the
ALU uses only the bits from 3 to 14 of the software base address to get the hardware

base address, adds the displacement, and that the effective CRU address is bits O through
14. Bit 15 becomes a “don’t care” bit.

SELECT

BIT So S, S, S, Ss - INPUTS OUTPUTS
0 0 0 0 0 0

15 0 1 1 1 1
16 1 0 0 0 0 PoIN P,OUT
17 1 0 0 0 1 PyIN P,0UT
18 1 0 0 1 0 P,IN P,OUT
19 1 0 0 1 1 PyIN P,OUT
20 1 0 1 0 0 PaIN P,OUT
21 1 0 1 0 1 PsIN PsOUT
22 1 0 1 1 ] PeIN P,OUT
23 1 0 1 1 1 P;IN P,0UT
24 1 1 0 0 0 PgIN P,OUT
25 1 1 0 0 1 PsIN POUT
26 1 1 0 1 0 PN P1,OUT
27 1 1 0 1 1 PhiIN PLOUT
28 1 1 1 0 0 P12IN P1,0UT
29 1 1 1 0 1 PysIN P1;0UT
30 1 1 1 1 0 PN P,,OUT
31 1 1 1 1 1 PisIN P\sOUT

Figure 3-22. 1/ 0O Selection in TMS 9901
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1B Lo ADDRESS
BIT NO. o 1 2 | 5 6 7|a 9 10 11l12 13 14 15
iunooEnnnonEn Do ao .
A THRU A, I ( ASE ADDRESS)

PORTION 0080,
USED BY ALU I 0 l 0 | 0 LOJ ! LOJ 0 I OJ °.| ﬂ ° I ® | (HARDWARE BASE ADDRESS)

SIGNED lB 9 10 11 |12 13 14

=
DISPLACEMENT | I o I o : 0 0 o o
OF +10,, 1ol
ADDED WHAT'S IN SIGN BIT POSITION
8 1S EXTENDED THRU MSB
1 203 4 9 1011 12 13 14 15
ADDRESS “1 0090, (CRU BIT ADDRESS)
REGISTER l Olol(’ iclol lo | Ol T11 r Iolol X} (BITSOTHRU 14)
SETT EFFECTIVE CRU ADDRESS
CRU (?PE%A?!OOF:\II-S\LL . NEW SOFTWARE
__________________________ BASE ADDRESS
r al | )
WR12 1 0 y 1 | 2 ( 0 | o120,
R e e e L Jd

(BITSO THRU 15)

Figure 3-23. Generating the Output Line Address for the 9901

Recall that the software base address assigned to the 9901 is 01004 but this is to be
changed by the added displacement of 10,,. If all of WR 12 were used, the sum would
be 0110;6. Because the signed displacement addition occurs with bit 15 neglected, the
effective CRU address sent to the 9901 for bits A, through Ay, is 0090y, the hardware
base address of 0080, plus the 10, displacement. Had bit 15 not been neglected, the
sum would appear as shifted over one bit position or 0120,.

Additional displacement will have to be added to the 10,4 displacement to obtain the
correct code for P;, P, and P, shown in Figure 3-22. To be able to add a displacement of
“0” for the zero bit, 1 for the one bit, 2 for the two bit, 120, is used as the software
base address in workspace register 12 right from the start.

From the past discussion, it should be quite clear now that one of the 32 outputs or
inputs can be selected by including this information with the SBO instruction, and that a
particular 9901 (if there were more than one) is selected by programming the correct
base address into the workspace register 12.

Referring back to Figure 3-21, a SBZ — “Set CRU bit to Zero” — instruction is the same
as the SBO instruction except that the output latch is now set to a “0” rather than a “1”.
Note in particular in both of these instructions that only one bit is set at a time. An
instruction must be included for each bit to be set when using SBO and SBZ.
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TB INSTRUCTION

Besides setting logic levels on output pins, an additional system requirement for the first
encounter task is to receive an input on an input line. One way of accomplishing this is
to have the 9900 microprocessor look at a selected input line, bring the information
present at a specified time into the 9900 and then examine the information, or test it, to
determine if the information was a ““1” or a *‘0”. The TB instruction, “Test CRU Bit”,
accomplishes bringing the information into the 9900. Subsequent instructions are added
to determine if the information was a “1” or a “0”.

RST1

I TMS9900 | MEMORY | TMS9901 |
I ADDRESS | |
P.C. ‘ INST. ADDR. FL > INSTRUGTION J |
| BUS | 1 -
f DATA BUS | |
l |.RA[ opP I DIsP ] l I ‘
l Y I l ‘
| CONTROL |
l ROM l | |
Y | WORKSPACE REGISTER I l
| ADDRESS : 7 0
! WR12
|
| CONTROL BUS é 1; | | o | l
LOGIC CRU T
l e Loaic Ll
| I el |
l |
1 l 170 | l
ALU I ' |
DATA BUS
+ = I | | l
| | |
' . ADDRESS BUS Ahu | o4 [ '
LOAD BIT 2 WITH | EFFECTIVE CRU BIT ADDRESS i
I \éﬁ-UEOF INPUT I (ONLY BITS 3-14 FROM WR12 USED) l P, o} l
A P o
IBIT o1 2 3. 15 l l s P, —0 l
~
l | CRUIN ) — P, —0 ‘
| l o
I STATUS REGISTER _ l P,
CE
| | 1 |

|

Figure 3-24. CRU Concept-Single Bit TB Input on CRUIN
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The selection of the particular line in the I/O unit is the first concern. Figure 3-24 shows
that this is done in the same way as just explained for the SBO and SBZ instructions.
The same portions of the 9901 are used as for the SBO or SBZ instructions except now
these portions are a data selector. Data is selected from one of multiple input lines and
sent to the 9900 microprocessor along the CRUIN line. The value of the information

on the line is placed in bit 2 position of the status register. As discussed previously for
the status register, instructions must follow the TB instruction that will examine bit 2 of
the status register to determine what to do if this bit is a “1” and what to do if it is a
“0”. Conditional jump instructions are used to make the decision based on the value of
the data. Note again that this is done one bit at a time.

Accomplishing a TB instruction requires that a base address be given for the particular
input or output line desired. This hardware base address adjusted to a software base
address is placed in workspace register 12. With the TB instruction, a displacement is
given that identifies the particular line which needs to be sampled. This again is the same
as for SBO. The line selected provides data straight through to the CRUIN line — there
are no latches, as with the output data.

Thus, the basic concepts studied have shown the means of getting data to the output and
bringing data in from an input — one bit at a time. They have shown how data is located,
read, transferred, stored, and operated on arithmetically. With this, it should be possible
now to get the first encounter idea into a sequence of steps — a program for the
microcomputer to follow.

IDEA TO FLOWCHART

Bringing the idea from concept to program begins with a concept level diagram as
shown in Figure 3-25. It has been decided that the microcomputer is to do the first
encounter task; turn on and off 4 lights in sequence, with a time delay between each

light activation.
LOGICAL 1 A S TIME DELAY
FAST CONTROLLED BY S1
,SLow

S1

LOGICALO =
MICROCOMPUTER LeHTs —{A
1/0 PO . oFF I_.il Al Al

f—
110 P1 . OFF I A I [_‘
L ey RS [12]
ON
oo [1 [l

TIME ——»

Figure 3-25. Concept Level Diagram
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The time delay is to be under control of an external switch.
Understanding the basic concepts of the microcomputer led to the discussion that output
lines could be selected and set to standard T'TL logic levels to control drivers that would
light the lights. In like fashion, a standard TTL logic level signal could be brought to
the microcomputer as an input and examined. With this information, a decision could be

made to vary the time delay. If the input is a ““1,” the lights would go on and off at a fast
sequence. If the input is a “0,” the sequence rate would be slow.

Obviously, other mechanical decisions also were made, such as:

1) The lights would be segments of a 7 segment light emitting diode numerical display
because of the compatible packaging and ease of availability.

2) The microcomputer output pins, I/O identification and light number to 7 segment
display segment were set as follows:

9901

990/100M 1/0 Light No. Display Segment Note
P, Connector

20 P, 1 f

22 P, 2 b

14 P, 3 e

16 P; 4 C

18 P, to S,

(These pin identifications are obtained from the schematics in the TM990/100M User’s
Guide and data sheet information on the TIL303.)

The microterminal TM990/301 was selected as the unit to use for communication with
the microcomputer because of its low cost and ease of use. Terminals such asa TTY and
a 743 KSR can be used and an application shown in Chapter 9 takes up this type
interface.

FLOWCHARTS

The problem solution proceeds from concept to program by constructing a well defined
flowchart to follow in an organized fashion while generating the sequence of steps
required for the microcomputer to complete the task. Figure 3-26 is such a flowchart of
the first encounter task.

3-36 9900 FAMILY SYSTEMS DESIGN



A First Encounter:
Getting Your Hands on a 9900

FLOWCHARTS

Vi

INITIATE

TURN ON
LAMP #1

WAIT

TURN OFF
LAMP #1

WAIT

y

TURN ON
LAMP #2

WAIT

TURN OFF
LAMP #2

|

WAIT

TURN ON
LAMP #3

WAIT

TURN OFF
LAMP #3

WAIT

}

TURN ON
LAMP #4

WAIT

TURN OFF
LAMP #4

l

WAIT

Figure 3-26. Flowchart
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From START, which requires initial conditions, and a signal to begin — INITIATE —
the task is diagrammed. Each light is turned on, the time delay occurs, the light is turned
off, the time delay occurs, the next light is turned on, etc. The sequence continues until
all lights have been turned on and off and the program begins again.

‘WAIT SuBROUTINE

Note the time delay is identified as WAIT and it occurs over and over again in the
sequence. Because of this, separate steps will be written for this sequence only one time
rather than repeating it over and over in the program. In this manner, the main

sequence of steps, the main program, can be directed to this identified set of steps, called
a subroutine, by an instruction. The main program is then said to branch to the subroutine
until it completes the steps in the subroutine, then it returns to the main program.

In simpler terms, the WAIT block of the flowchart requires a given number of program
steps, say X. WAIT occurs 8 times in the flowchart. Instead of rewriting the X steps

8 times in the program, the X steps are written once, glven the name WAIT, and
referred to 8 times.

Because WAIT is a subroutine, a separate flowchart (Figure 3-27) is generated for it. In
addition, the time delay is to be varied by the switch S,, therefore, different steps are
followed if the switch is “‘on” with a value of a logical ““1” or “off” with a value of a
logical *0”. Note that when the subroutine WAIT is encountered, the first thing that
occurs is to find out the position of the switch. Is it a logical “1” or a logical “0?” A
decision is made on the basis of what is found. “Yes, the switch is on,” (logical “1”")
makes the time delay short and the sequence fast. “No, the switch is off,” (logical “0”)
makes the time delay long and the sequence slow.

There are a number of ways to provide a time delay. This flowchart uses one of the
simplest — load a register with a number, keep subtracting one (decrementing) from the
number until the number is zero. The number of cycles it takes to get the number to
zero times the time for each cycle is the time delay. Larger numbers, longer counts,
provide longer delays.

Each arm of the flowchart contains the same type of sequence, loading the number;
decrementing; checking for zero; if not zero, jumping back and decrementing again; if
zero, returning to the main program. Note that in the flowchart there is a branch
decision and a branch decision with a jump back or a loop. The program runs in this loop
until it comes to a condition where it can get out of the loop or “exit from the loop.”
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SUBROUTINE JumP

Special things happen when a subroutine such as WAIT is encountered in the main
program. Figure 3-28 diagrams the steps. The main program has executed from Step 7 to
Step 5. At Step 6, the computer encounters the instruction telling it to branch to
subroutine A and do subroutine A. Therefore, in order to return to the correct location
in the main program after executing the subroutine, the branch instruction at Stgp 6 also-
tells the computer to remember the address of Step 7.

34

TIME YES 1S NO

SWITCH ON?
w \/ o

LOAD LOAD
DECREMENTER DECREMENTER
WITH WITH
3FFF,, FFFF,
TIME 2 TIME 1
-t -
/ i
DECREMENT DECREMENT

RETURN TO
PROGRAM

RETURNTO
PROGRAM

Figure 3-27. WAIT Subroutine

9900 FAMILY SYSTEMS DESIGN 3-39



>3

FLOWCHARTS A First Encounter:

Getting Your Hands on a 9900

The subroutine is executed through Step 4-8. Whereupon the computer encounters an
instruction at Step 4-9 that tells it to return to the Step 7 address which it remembered at
Step 6. In this fashion, each subroutine can be executed and program control returned to
the main program. Of course, there are branches that can occur from a subroutine to
another subroutine but the principle is the same.

MAIN
PROGRAM SUBROUTINE A

STEP 1

STEP A-1

A-2

A-3

A-4

BRANCH TO A-5
SUBROUTINE A

A-6

A-7

A-8

[Se]

GO BACK
10 TO MAIN A9
PROGRAM

Figure 3-28. Branch to Subroutine

The instruction from the TM990/100M microcomputer instruction set that accomplishes
the branch to a subroutine is called Branch and Link. This is called a “subroutine jump”
instruction and will be identified by the letters BL and some additional information that
tells the location of the address of the first instruction of the subroutine. In addition,

recall that a register file is to be set up for general registers. Well, register 11 of this file
(WR 11) is the storage place used to remember the main program address that is
returned to after executing the subroutine.

The return instruction from the subroutine used is called an unconditional branch
instruction. It is identified by Branch. Since the contents of register 11 must be returned
to the program counter to return from a subroutine, this instruction will be identified

as B*11. Note that the file register 11 must be reserved for this use by the programmer,
otherwise its contents are likely to be changed at the wrong time and the computer
misled into a wrong sequence.
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A Loop WrraiN THE WAIT SuBROUTINE

Within the WAIT subroutine is another common reoccurring concept — a loop.
However, before examining this program sequence further, it would be beneficial to
clearly understand the meaning of the blocks in the flow charts. The general meaning of
the most commonly used blocks is shown in Figure 3-29. There is a symbol for the entry to
or exit from a program (or for an off-page connection). This is identified with an
appropriate symbol or label — START and STOP in this example. Rectangles identify
operations. Inside the rectangle is an appropriate abbreviated statement to describe the
operation. Decisions are identified with a diamond. Since programmed logic occurs in
sequence, these blocks are relatively simple. A two-state decision answers a question of
yes or no, true or false, etc. A three-state decision answers a comparison question of
greater than, equal to, or less than (of course, there could be further mixtures of these).
So decision blocks have appropriate questions identifying them.

In the WAIT subroutine of Figure 3-27, the first decision is “Is the switch ON?,” and the
consequences have already been discussed. The second decision has the question “The

quantity examined — is it equal to zero?”” Within this program sequence, if the quantity
is not equal to zero, then the program goes through the same path again.

ENTRY
START START (OFF PAGE CONNECTION)
> -<
ABBREVIATED ABBREVIATED
STATEMENT STATEMENT
OPERATION

QUESTION
(2-STATE)

COMPARE
(3-STATE)

DECISION

SUBPROGRAM LABEL

EXIT
(OFF PAGE CONNECTION)

Figure 3-29. Common Flow Chart Blocks
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The program loop is accomplished by a branch instruction from the instruction set called
a conditional jump instruction. The conditional jump causes the microcomputer program
to branch to a specified program step depending on the condition of certain bits in the
status register. Recall in Figure 3-19 that the status bits were identified and that the
“equals bit” — bit 2 — was going to be used to change the time delay sequence.
Therefore, the decision block in the program is really asking, “Is bit 2 of the status
register set to a “17?”

The status bit 2 is set to 1 by the program step before the decision block in Figure

3-27 — the decrement step. An instruction Decrement (by One) causes a named file
register to have one subtracted from its contents, comparison of the result to zero and the
setting of the appropriate status bits (0-4) of the status register. When the register
contents are equal to zero, the “equals” status bit (2) will be set to a “1”.

When the status bit 2 is not set to a ““1”’, the program must return to the

decrement instruction and subtract one again from the register. JNE (label) is the
conditional jump instruction that will be used to accomplish the loop. It is activated
by the “equals bit” being “0”. The program will jump to a point ahead of the
decrement step which will be identified with an appropriate label. In the program this
label must be included with the JNE (Jump if not equal) instruction.

A similar type of conditional jump instruction is used to answer the question of the
switch in the first decision block of the WAIT subroutine. However, in this case,
Jump if Equal (JEQ (label) ), with the appropriate label will be used. Now the
conditional jump will occur if the equal bit is set to a “1”. Recall, this is the type
instruction previously referred to that must follow the TB instruction so that the status
bit can be examined and a decision made.

The number of steps in the decrement block is now the only remaining portion of the
subroutine which has not been discussed.

LOADING A REGISTER FOR THE TIME DELAY

Assume that the switch is “ON”” in the WAIT routine. A logical “1” is the input to the
microcomputer. The TB instruction identifies the logical “1” and it sets the equals bit 2

of the status register to a “1” as previously described. The JEQ instruction jumps to a
selected (labeled) instruction which loads a selected file register with a number, 3FFF.

As a 16 bit binary number, it is 0011 1111 1111 1111. No jump occurs in the program if the
switch is inputting a logical “0”. The program just proceeds to the next step.
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Well, how does the data get loaded into the selected file register? Simply enough with a
load instruction which is one of the data transfer instructions. Load Immediate (file
register number), 3FFF,¢ will tell the microcomputer to load the hexadecimal number
3FFF,; into the selected register. What actually happens is that two memory words must
be used for this instruction. The first word provides the operation code and register
number and the second word the operand or data to be operated on. For the addressing
mode used for the Load Immediate instruction, the word following the instruction LI 3,
will contain the data to be put into register 3, 3FFF,,. The programmer must
remember that a memory word location (PC + 2) is used for the 3FFF,; data when the
instruction is located at PC.

Following on then, new data is placed into the same register by a new Load Immediate
instruction. For example, for a longer time delay, the file register R3 is loaded with
FFFF,¢. The instruction LI 3, FFFF,¢ accomplishes this.

WHERE DOES THE PROGRAM START?

Most of the information is now in hand to write the program. The question is, “Where
does the program start”’? Recall that when the program was entered into the
microcomputer through the microterminal, FE00,; was chosen as the starting memory
location. How was this decided?

The first step in the decision is to determine what words are available in memory —
what addresses can be used.

Figure 3-30 is reproduced from the TM 990/100M Users Guide. There are address
locations from 0000, to FFFE,; for 65,536 bytes (8-bit pieces), or 32,768 16-bit word
locations. This is commonly called the address space. Word address locations move by an
increment of 2, byte locations by 1. The incrementing of the program counter by 2 was
previously noted. This is the reason.

Recall that the TM 990/100M microcomputer has 256 16-bit words of RAM into
which the program is going to be placed and it also has 1024 16-bit words of ROM, or
EPROM in this case. The EPROM is the TIBUG monitor that provides the necessary
pre-programmed instructions that were referred to for accepting input and output data.

The 256 words of RAM occupy address space from FE00,s to FFFE,; as shown in
Figure 3-30. The EPROM address space is from 0000, through 07FE,s which is
address space that is dedicated for this purpose and not available for change by the first
encounter program. Notice that within this space are interrupt and XOP vectors. These
are of no concern at this time.

Since not all the available memory sockets are filled, address space from 0800,, through
FDFE,; does not have memory cells — it is unpopulated.
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It would seem that all the address spaces in RAM from FEQ0,; to FFFE; are

available. However, as shown in Figure 3-30, 40 words of RAM must be reserved

for use by the TIBUG monitor and additional space is necessary for interrupts. Thus,

the available space is from FEQO,s to FF66,¢.

Obviously, some analysis of the possible length of the program in number of steps must
be made, as well as some estimate of the number of file register blocks of 16
(workspaces) that will be used. This will determine whether adequate address space is
available or whether additional memory space must be populated.

The first encounter assumptions are as follows:

1. The program will be less than 96 steps long — 96 words or 192 bytes.

2. Only one workspace will be required. (16 contiguous words)
MEMORY
ADDRESS
1 x
INTERRUPT VECTORS § e [~~~ — =~ — —— 7
0040
DEDICATED XOP VECTORS 007E EPROM
MEMORY TMS 2708
008
11 BUG 0 1KX16
MONITOR
O7FE
0800
EPROM
FFe8 INT 3 Z T™MS 2708
_______________ }WPA"r FF68 OFFE TKX16
FF88 2WORD INST AT FF88 1000
FF8C INT4 ~
_____________ WP AT FF8C
FFAG 2-WORD INST AT FFAC e
FFBO, ~
~
~
~._ FBFE
FC00
S RAM
~ TMS 4042-2
™~ 256 X 16
USER FDFE ~
~ AVAILABLE( =
~< RAM RAM
~~ - TMS 4042-2
~ . - 256 X 16
S N SO N
~
FFFE{ /]

RESERVED 40 WORDS FOR
TIBUG MONITOR WORKSPACE
FILES AND RESTART VECTORS
AT FFFC AND FFFE

Figure 3-30. Memory Map

BYTE 0000
BYTE 0001

FIRST
1048
WORD
EPROM

SECOND
1048
WORD
EPROM

MEMORY
EXPANSION
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On this basis, the starting address of the program is chosen as FE00,s. The workspace
file register could have been chosen to start at 16 words away from FF66,,. However,
since there is plenty of space, it is placed at FF20,,, leaving the room from FEQO,, to

FF1E,; as the spacefor the program (144 words).

WRITING THE PROGRAM

Refer now to the flowchart in Figure 3-26 as the basis for writing the program. To help in
the organization of the program, a form shown in Table 3-1 will be used. Note that

it has a column for addresses, for machine code, for a label, for the assembly language
statement and for comments. Each of these columns will be filled in as needed as the
program is developed. Not all columns will have an entry when the program is complete.
The machine code will be the last column completed. Of particular importance, especially
for later references, or reference by another programmer, will be the comments column.
Keep referring to Table 3-1 after each program step to note the comments and see the
program develop.

Figure 3-26 indicates that the first step in the program is to be an initializing statement.
The location of the file register (workspace) used must be identified by loading the
workspace pointer with the address FF20,,. The program must at all times know where
the file registers are in memory for it will use these registers for obtaining data or
addresses.

Reference to Chapter 5 and 6 shows there is a load instruction for the workspace
pointer, LWPI, Load Workspace Pointer Immediate. Recall that the immediate
addressing requires two words. Therefore, Step 1 of the program at address FE00,¢ is
shown as:

Step A MC L ASSY LANG.
1 FEOQO LWPI >FF20

and Step 2 has the operand to be loaded. The greater than (>) sign identifies the data as
hexadecimal.

The program must be able to branch to the subroutine WAIT when that routine is
called by the program. Therefore, the starting address of the WAIT subroutine must be
loaded into a file register which then will be referenced when the address is needed. Step
3 of the program accomplishes this with a Load Immediate instruction and register 1 is
chosen to hold the address. Note that the program address is incrementing by two. Step
Jis:

Step A MC L ASSY. LANG
3 FEO4 LI 1,>XXXX
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Note that the specific address cannot be put in at this time — not until the location is
known. Step 4 is the step for loading the operand.

Recall that a reference needs to be established for the particular 9901 I/O interface unit
to be used by the microcomputer. This was referred to as the CRU base address for the
chosen 9901. Register 12 of the file register is the one that must contain the CRU base
address, therefore, it must be loaded with 0120,,, the software base address of the 9901 in
the TM990/100M microcomputer. Step 5 of the program is for this purpose.

Step A MC L Assy. Lang.
5 FEO8 LI 12, >0120

Again Step 6 must be added because of the immediate addressing.

All initial conditions are now complete and the flowchart now moves to the start of the
light sequence. Light # 1 must be turned on. Recall from Figure 3-25 that light # 1 is
connected to I/0 output 0 (P,). Therefore, I/0-0 on the 9901 must be set to a “1”. This
is accomplished with the SBO instruction of $t¢p 7. Recall, this instruction was

previously discussed in detail. Stgp 7 looks like this:

Step A MC L Assy. Lang.
7 FEOC BEGIN SBO 0

Note that this instruction is labeled BEGIN. This is done because the program will
jump back to this address location after the complete sequence of the first encounter task
is completed. The label BEGIN provides an easy reference to this location.

WAIT SUBROUTINE CALL

The first encounter task as defined now requires the light # 1 be held on for the time
delay represented by the subroutine WAIT. Therefore, the program must be directed
to the first address of the subroutine. This first address is contained in the file register 1
(workspace register 1) because Stgp 3 and Step 4 accomplished this.

Recall the discussion on the WAIT subroutine (Figure 3-28). The main program must be
directed to the subroutine (the main program “calls” the subroutine) but it must also
remember where it is in the main program so it can return to the correct location. The
Branch and Link to register 1 of Step 8 accomplishes this.

Step A MC L Assy. Lang.
8 FEOE BL *1
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At the same time the address of the next step in the program, Stgp 9 is being saved in
register 11.

However, note that there is a new symbol in the assembly language instruction. The
asterisk (*) means that an indirect addressing mode is used. That means that file register
1 (WR1) does not contain operand information but contains the address of an operand to
be used for further processing. That is exactly what has been put into register 1 — the
address of the first instruction of the WAIT subroutine. Therefore, an indirect
addressing mode is used.

Why is that important? When the machine code for an instruction is constructed a little
later (this will be done by hand but normally it would be done by a computer under
control of a program called an assembler), an identifying code for the addressing mode
must be used in the format for each instruction.

Figure 3-31 shows how the 16 bits of the machine code are arranged for the various

types of instructions. Much more discussion of these formats is contained in Chapters 5 and
6. For the purpose here, format 6 is the one of particular interest for the Branch and Link
instruction. Note that for format 6 the first 10 bits are for the operation code, bits 10 and
11 are a T field, and bits 12 thru 15 are an S field for identifying the address of the source
information. Note that the code for T; defines the addressing mode for the instruction. 01
will be entered in this field for bits 10 and 11 for the Branch and Link instruction because
this is the code for indirect addressing. 0001 will be the code for the S field because register
1 contains the source address.

RETURN FROM WAIT SUBROUTINE

The end of the subroutine will return the microcomputer to the main program at Step 9
because this is the address saved in register 11. Szep 9, according to the flowchart of
Figure 3-26, must now turn light # 1 off. The instruction is:

Step A MC L Assy. Lang.
9 FE10 SBZ 0

Since I/0 port 0 was set to a “1” in order to turn the light on, now it is set to a “‘0” to
turn the light off. '

Time delay subroutine WAIT is called for again for the next step and again the Branch
and Link instruction is used. Thus, Step 70 15:

Step A MC L Asy. Lang.
10 FE12 BL *1

9900 FAMILY SYSTEMS DESIGN 3-47

34



p 3

WAIT SUBROUTINE A First Encounter:

Getting Your Hands on a 9900

Upon return from the WAIT subroutine light #?2 is turned on, the WAIT routine
occurs, light #2 is turned off, the WAIT routine occurs and the process continues until
light #4 is turned off and the time delay is complete. These steps are shown in Table 3-1
and carry the program through Step 22.

The program will return to Stgp 23 after the time delay. The flowchart indicates a return
to the beginning of the sequence. Recall that this was labeled BEGIN. Therefore, Step 23
is a jump instruction that jumps the program back to the address of the instruction

labeled BEGIN. The assembly language instruction is simple enough:

Step A MC L Assy. Lang.
23 FE2C JMP BEGIN

This instruction is called an unconditional jump instruction because there are no
decisions involved — just the direction to “go to”” a specified place. There is no return
instruction address saved in register 11 and no testing of status bits.

All the program steps in the flowchart of Figure 3-26 are now complete. What remains is
to define the steps in the subroutine WAIT. Figure 3-27 is used for this purpose.

WAIT SUBROUTINE

The address at Stgp 24, FE2E,s, is the one that must be loaded into register 1 at Step 3
because it is the first instruction of the subroutine. The flowchart identifies this step as a
decision block. Is the switch on for a logical “1” or is it off for a logical “0’?

The input line must be tested to determine this. A TB instruction, examining I/0 pm
P,, is used for this purpose. This instruction is Step 24

Step A MC L Asy. Lang.
24 FE2E TB 4

This is the Test Bit instruction discussed previously. Recall that when the input line is
tested by the instruction it sets the “equals” bit, bit 2 of the status register to the value
of the input.

In order to make the decision called for in the flowchart, an instruction that examines bit
2 of the status register must follow. This will be a conditional jump instruction because if

- the status bitis a “1”, the time delay is to be the shortest and the sequence fast.

Correspondingly, the sequence would be slow and the time delay long for a status bit 2
of “0”. Chapters 5 and 6 identify the jump instructions. JEQ is the one selected which
says that the program will jump to a new location if the “equals” bit is set to a “1”,
otherwise, the program will continue on to the next step. The instruction is:
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Step A MC L  Asy Lang.
25 FE30 JEQ TIME

Convenient labels have been placed on the flowchart of Figure 3-27. The branch jumped
to in Step 25 is labeled TIME. This branch will be executed in a moment. For now,
assume that the “equals” bit is set to “0” and the program continues. The next step is to
load a register so that it can be decremented to produce the time delay. In this branch,
this must be the largest value for the longest delay and the slowest sequence. Another
file register must be selected. Register 3 is chosen and the load instruction is as follows:

Step A MC L Assy. Lang.
26 FE32 LI3, >FFFF

This is the same as previous Load Immediate instructions and another word must be
allowed for the value to be loaded. Thus, Stgp 27 at FE34.

One must now be subtracted from the value. There is an instruction called Decrement
(by one) and, of course, it must tell what value to be decremented. In this case, the
contents of R3. Thus, Szep 28 is:

Step A MC L Assy. Lang.
28 FE3 TIME1 DEC 3

The flowchart shows the decrement as an operation. In addition, as mentioned
previously, the value in register 3 is compared to zero and the greater than, equal, carry or
overflow status bits are set accordingly. This is found in the discussion on the
instructions in Chapter 5 and 6.

The decision that follows is made on the basis again of examining the “‘equals’ bit. The
flow chart shows that if the “equals” bit is not set, the program will loop back and be
decremented again as previously discussed. Therefore, a label, TIME 1, is placed on the
instruction at FE36 to tell the program the location of the jump.

The jump occurs this time if the “equals” bit is not set, using the instruction Jump if
Not Equal, and looks like:

Step A MC L Assy. Lang.
29  FE38 JNE TIME1
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.|
When the file register has been decremented to zero, the equals bit will be set and the
program is ready to return to the main program. Recall that register 11 contains the

address (location) for the return. The branch instruction used for the return is Branch

and Step 30 is:

Step A MC L Asy. Lang.
30 FE3A B *11

Note this again is an indirect addressing mode.

TIME BRANCH

The only remaining portion of the flowchart that must be programmed is the TIME
branch.

In this branch, the time delay is shorter to make the sequence faster. R3, the same
register, is loaded with a smaller value, 3FFF,¢. Again a Load Immediate instruction
shown in Step 37 is used.

Step A MC L Assy. Lang.
31 FE3C TIME LI3, >3FFF

This step is labeled with TIME, and will be the location jumped to from Stgp 25. Step 32
is the extra word required.

The register must again be decremented, therefore, the instruction is the same type as
Step 28. However, the label for the location to jump to is now TIMEZ2. Step 33 is:

Step A MC L Assy. Lang.
33 FEA40 TIME?2 DEC 3

The same jump instruction is used in this branch as for Step 29 except the label is now
TIME 2. Therefore, Step 34 is:

Step A MC L Assy. Lang.
34  FE42 JNE TIME?2?

When the equals bit is set, the program must return to the main program as with
the other branch. The same return instruction as Step 30 is used, as shown in Step 35.

Step A MC L Asy. Lang.
35  FE44 B *11

The total program is now complete in assembly language. It is shown in Table 3-1.
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Table 3-1. Assembly Language Program.
(Source Code Statements)

Hex
Hex Machine Op

Step | Address Code Label Code Operand Comments.

1. | FEOO LWPI > FF20 Load workspace pointer

2. | FEO2 with FF20,,

3. | FEO4 LI 1, >FE2E | Load R1

4. | FEO6 with 1st Address of WAIT

5. | FEO8 L1 12, >0102| Load R12

6. | FEOA with base address of 9901, 0120,

7. | FEOC BEGIN | SBO 0 Set 170 P, (segment f) equal to one

8. | FEOE BL *1 Branch to address in R1 (saves

next address in R11)

9. | FE10 SBZ 0 Set I/0 P, (segment f) equal to zero

10. | FE12 BL *1 Branch to address in R1 (saves
. next address in R11)

11. | FE14 SBO 1 Set |/0 P, (segment b) equal to one
12. | FE16 BL *1 Branch to address in R1
13. | FE18 sBz 1 Set |/0 P, equal to zero
14. | FE1A BL *1 Branch to address in R1
15. | FE1C SBO 2 Set 170 P, (segment e) equal to one
16. | FE1E BL *1 Branch to address in R1
17. | FE20 SBZ 2 Set 1/0 P, equal to zero
18. | FE22 BL 1 Branch to address in Rt
19. | FE24 SBO 3 Set I/0 P, (segment c) equal to one
20. | FE26 BL *1 Branch to address in R1
21. | FE28 SBZ 3 Set 1/0 P, to equal to zero
22. | FE2A BL *1 Branch to address in R1
23. | FE2C JMP BEGIN Jump to BEGIN
24. | FE2E WAIT B8 4 TestI/OP,fora‘1" ora 0"
25. | FEG0 JEQ TIME If equals bit is set (**1""), jump to TIME
26. | FE32 LI 3, >FFFF | Load R3
27. | FE34 with FFFF,,
28. | FE36 TIME1 DEC 3 Decrement R3
29. | FE38 JNE TIME1 Jump to TIME 1 if equals bit is not set
30. | FE3A B *11 Return to main program (by way of R11)
31. | FE3C TIME L 3, >3FFF | Load R3
32. | FE3E with 3FFF,,
33. | FE40 TIME2 DEC 3 Decrement R3
34, | FE42 JNE TIME2 Jump to TIME 2 if equals bit is not set
35. | FE44 B *11 Return to main program (by way of R11)
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Normally the next step in programming (shown in 7able 3-2) would be done by

a computer as mentioned previously. However, in order to demonstrate what an
Assembler Program would do and because the program input to the TM990/100M
microcomputer is through the microterminal, which requires the machine code, it will be
a good exercise to demonstrate how to develop the machine code. If this is of no interest,
this portion of the discussion can be bypassed and a jump made to the summary.

As mentioned previously in Figure 3-31, there is a set format for the 16 bits of machine
code that must be generated for each instruction. The formats used for the first
encounter task are shown in Figure 3-32 for reference. Each instruction has an operation
code (OP CODE) and then additional information is required in the various fields of the
format. A complete discussion of the format for each instruction can be found in Chapter
6. Figure 3-33 lists the instructions used in the first encounter.

The same programming form will be used as before which is summarized to this point in
Table 3-1. The machine code will be filled in and several other changes made and the
result will be the final program of Table 3-2. As before, continue to refer to Table 3-2 as
the machine code is developed.

IMMEDIATE INSTRUCTIONS

The coding begins at Szep 7. LWPI is an immediate instruction. Therefore, the format 8
of Figure 3-32 is used. There are two words to this instruction; the second one containing
the immediate value to be loaded. In the first word, the op code occupies bits 0 through
10; register numbers, where the immediate value is going to be placed, occupy bits 12
thru 15. Bit 11 is not used. The op code is obtained from Figure 3-33 for the LWPI
instruction. The filled out instruction would look like this. ~

0123[4567/891011]{121314 15

Binary — 00000010111 0 00 0 O

Op Code — 0 2 E 0

Machine — 0 2 E 0
Code

LWPI is a special case of format 8. Bits 11-15 are not used and as such could contain
anything. They are don’t care conditions. Therefore, the machine code is 02E0. This
is entered into Table 3-2 on the same line as LWPI as Step /. Step 2 is the immediate

value FF20, therefore, the machine code is FF20,,.
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FORMAT (USE)
ol1]2l3l4a]s]ef7]s]9]io]11]12]13]14]15

1 (ARITH) OPCODE [ B To | D Ts | S

2 (JUMP) OP CODE [__SIGNED DISPLACEMENT*

3 (LOGICAL) OP CODE | D T | S

4 (CRU) OP CODE | [ 7 ] S

5 (SHIFT) OP CODE | C w

6 (PROGRAM) OP CODE || S

7 (CONTROL) OP CODE NOT USED

8 (IMMEDIATE) OP CODE Inu] w

IMMEDIATE VALUE
9 (MPY, DIV.XOP) OP CODE | D | 7 | S
34

KEY

B=BYTE INDICATOR
(1=BYTE, 0 = WORD)

Ty = D ADDR. MODIFICATION

D = DESTINATION ADDR.

Ts=S ADDR. MODIFICATION

FORMAT
2
(JUMP)

6
(PROGRAM)

8
(IMMEDIATE)

NOTES:

Ts

S = SOURCE ADDRESS
W =
NU = NOT USED

SOURCE ADDRESS MODIFICATION

WORKSPACE (FILE) REGISTER NO.

S=SOURCE ADDR.

C=XFR OR SHIFT LENGTH (COUNT)

W =WORKSPACE REGISTER NO.

* = SIGNED DISPLACEMENT OF —128 TO + 127 WORDS
NU =NOT USED

Figure 3-31. Instruction Formats

| 01 23lase 708910 11]12 13 14 15|

| S i i

[ Op Code [ Signed Displacement -——-I
I Op Code o T } s |
I Inul _.l
I Op Code lNUI W

| +—————— IMMEDIATE VALUE ————|

CODES FOR Tg FIELD ADDRESSING MODE

00 REGISTER
01 INDIRECT
10 INDEXED (S OR D+0)

SYMBOLIC (DIRECT, S ORD=10)
INDIRECT WITH AUTO INCREMENT

SIGNED DISPLACEMENT CAN BE

—128 TO + 127 WORDS

Figure 3-32. Formats used for First Encounter
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In like fashion, the instructions at Step 3 and Step 5 are immediate instructions, use the
same format, and are coded with the appropriate register numbers. Step 4 and Step 6 are
the immediate values to be loaded.

Note, however, that when the program was first prepared, the first address of the

WAIT subroutine was not known. Now, it is known. It is substituted for the XXXX in
Table 3-1 at Step 3. Thus, the address of Stgp 24, FE2E is placed after the “greater than”
symbol.

The op code for LI is 0200, and since register 1 is used for Stgp 3, the machine code is
0201, while for Step 5 it is 020C because register 12 is being loaded. The machine code
for Step 4 is the value FE2E,¢ and for Step 6 it is 0120,.

InsTrUCTIONS SBO, SBZ

The instruction SBO at Stegp 7 uses a different format. This is format 2 in Figure 3-32. It
has the op code in bits O through 7 and the signed displacement that was discussed
previously when the 9901 I/0 unit program was examined. Recall that the CRU base
address was arranged so that the bit number is the value that is put in for the signed
displacement.

The op code for SBO from Figure 3-33 is 1D00,6 and with the first bit being zero, the
machine code is:

0123l4567/891011]1213 14 15|

Binary — 000111010000 000 O

Op Code — 1 D 0 0

Machine — 1 D 0 0

Code
HEX RESULT COMPARE
MNEMONIC OP CODE FORMAT TO ZERO INSTRUCTION
LWPI 02E0 8 N LOAD IMMEDIATE TO WORKSPACE POINTER
LI 0200 8 N LOAD IMMEDIATE
BL 0680 6 N BRANCH AND LINK (WR11)
B 0440 6 N BRANCH
DEC 0600 6 Y DECREMENT (BY ONE)
SBO 1D00 2 N SET CRU BIT TO ONE
SBzZ 1E00 2 N SET CRU BIT TO ZERO
B 1FC0 2 N TEST CRU BIT
JEQ 1300 2 N JUMP EQUAL (ST2=1)
JMP 1000 2 N JUMP UNCONDITIONAL
JNE 1600 2 N JUMP NOT EQUAL (ST2 = 0)
(§T2=0)

Figure 3-33. Instructions used for First Encounter.
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The other SBO instructions can be machine coded accordingly using the appropriate bit
number. Therefore, Step 17 is 1D01,, Step 15 is 1D02, and Step 79 is 1D03,s.

Similarly, using the op code of 1E00,, for the SBZ instructions and the appropriate bit
number, Step 9 is 1E00yq, Step 13 is 1E01,q, Step 17 is 1E02,6, and Step 21 is 1E03 6.

InsTrUCTION BL

Now Step 8 brings in another new format. For the BL instruction, it is format 6. Bits 0

thru 9 contain the op code. Bits 12 through 15 are the address of the source data. Tsis a

field that modifies the source address and it contains the two bits that code the

addressing mode that is being used. Recall BL *1 uses indirect addressing. Therefore,

from Figure 3-32 'Ts would be 01 for these 2 bits. It’s important to remember that this 3 4
modifies the op code into a different number for the machine code as shown below.

012345678910 11|12 13 14 15 |

Op Code — 0 6 8 0
Binary — 00000110100 O O 0 0 O
Ts — 01

S — 0 001
Machine — 00000110100 1 0 0 0 1
Code—

(Binary)

Machine — 0 6 9 1
Code—

(Hex)

Thus, the machine code is 0691, and can be placed in Step 8, 10, 12, 14, 16, 18, 20 and
22, since register 1 is used in each case.

MiscELLANEOUS INSTRUCTIONS

Because the jump instructions fall into a class that needs special discussion, the remaining
instructions will be coded first.

Step 26 and Step 31 are LI instructions like Step 3 and Step 5 — the code is
0203, in this case because register 3 is being used. Don’t forget the values of FFFF,
for Step 27 and 3FFF; for Step 32.

The TB instruction has an op code of 1F00,, and a format 2. It is just like the SBO and
SBZ so that the bit must be used for the displacement. Bit 4 causes a displacement of 4,
therefore, the machine code is 1F04,¢. This is Step 24.
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A branch instruction similar to BL, but does not save the next address in register 11, is
the instruction B. It is using the contents of register 11 for a return to the main
program. The op code for B is 0440,. It uses an indirect addressing mode so Ts =01
and S is 1011 for register 11. The machine code results as follows:

012345678910 11]12 13 14 15|

Op Code — 0 4 4 0
0000010001 00 0 0 O O

Ts - 01

S — 1

Machine — 0000010001 01 1

Code

(Binary)

Machine — 0 4 5 B

Code

(Hex)

It is entered at Stgp 30 and 35.

011
011

The only remaining instruction besides the jump instructions is the decrement

instruction DEC. From Figure 3-33 the op code is 0600, and the format is 6. Register 3 is
being used, therefore, S is 0011. The addressing mode is a register mode so Ts is 00 and
there is no modification of the op code. The machine code is then 0603, for Stgp 28 and 33.

Jump INsTRUCTIONS

Jump instructions use format 2 of Figure 3-32 which has an op code for bits O through 7
and a signed displacement in bits 8 through 15. The signed displacement means the
number of program addresses that the program must move to arrive at the required
address. For example, let

A; =present address of jump instruction

Ap =destination address of jump instruction

then,
1.) AJ +2DISP= AD

since the program moves by increments of 2.

However, for the 9900 microprocessor in the TM990/100M microcomputer, the jump
instruction signed displacement must be calculated from the address following the
address of the jump instruction or A; + 2. Therefore, equation (1) becomes,
2) (A;+2)+2DISP=A,
Solving for DISP, gives
3.) Ap—(A,;+2)=DISP
—= =
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Recall that in preparing the program of Table 3-1 labels were used for instructions so that
easy reference could be made to the desired destination address for a jump instruction.
Step 23 at FE2C,; is the first jump instruction. The destination is the label BEGIN
which is located at address FEOC,s. Applying equation (3) gives (in Hex)

4.) DISP=FEOC — (FE2C+2)

2
5.) DISP=FE0C—-FE2E
2
Now,
FEOC
—FE2E
— 0022,
Therefore,
6-) DISP = —2= - 1116

2

This means that in the jump instruction the program moves back 11,4 steps or 17
decimal steps.

Now, since this is a negative number, a two’s complement must be used for the code,
thus

—0011
COMPLEMENT FFEE
ADD ONE +0001

2’S COMPLEMENT FFEF

Now, only the 8 least significant bits are used along with the op code of Figure 3-33.
JMP of Step 23 has an op code of 1000,,. Therefore, the machine code is:

0123]4567(891011[1213 14 15|

Op Code - 1 0 0 0
Displacement — E F
Machine - 1 0 E F
Code

This machine code is entered at Step 23.
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Step 25 has a JEQ instruction. A; is FE30,6. The instruction says to jump to TIME
which has an address of FE3C at Step 3/, therefore, Ap =FE3C. Applying equation (3)

gives, again in hexadecimal;

FE3C—FE32

DISP = 3

10
=75 = S

JEQ has an op-code of 1300 and the machine code then becomes:

0123|4567]|891011/1213 14 15|

Op Code - 1 3 0 0
Displacement — 0 S
Machine Code— 1 3 0 5

Step 25 then has 1305 as the machine code.

The remaining jump instructions, JNE at Steps 29 and 34 have an op code of 1600,,.
Calculating the displacement from Szgp 29 to Step 28 and from Step 34 to Step 33,
obviously is —02,5. The complement of — 02 is FFFD and the twos complement is
FFFE. Thus the machine code is:

0123{4567]891011{1213 14 15|

Op Code - 1 6 0 0 i
Displacement — F E
Machine Code— 1 6 F E

Even though the labels jumped to for Steps 29 and 34 are different, the displacement is
the same and, therefore, the machine code entered at these steps is the same, 16FE,.
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TABLE 3-2

Every step is now coded and the program is complete. This is the program that was
entered into the microcomputer via the terminal to accomplish the first encounter task.

Only one comment remains. If the Table 3-7 program were run on a computer under the
direction of an assembler program, certain symbols used for directives to the assembler
would have to be used. The § symbol could have been used to indicate the fact that a
displacement is to be made from the jump instruction address which was identified in
equation (3) as A;. The instruction then would contain the $ symbol followed by the
necessary displacement in hexadecimal. For this reason the instructions at Step 23, 25,

29, and 34 would have looked as follows: 34
Step A MC L Assy. Lang.
23 FE2C 10EF JMP $—17
25 FE30 1305 JEQS$+5
29 FE38 16FE JNE §-2
34 FE42 16FE JNE §-2
SUMMARY

It has been a long discussion. However, a great deal of material has been covered and

many basic concepts developed. The facts and procedures presented should provide a

solid foundation for expanding an understanding of the 9900 Family of microprocessors and
microcomputer component peripherals and the microcomputers which use it. Hopefully,
enough examples have been presented with the first encounter task that with a minimum

of effort, new real applications of the TM990/100M board can be implemented. A few
simple ones that can be implemented immediately with the present setup would be:

A. Wire-up the necessary drivers and resistors to drive all seven-segments of
the display and write a new program to make the numbers 1, 2, 3, 4, 5,
6,7, 8,9, 0 come up in sequence.

B. Write a program that uses the 7 segment display numbers so that they
spell a word when read up-side down.

Maybe more memory will be required, but that is easy to add to the TM990/100M.

The next step is to implement the logic levels at the output pins into real applications of
controlling dc and ac voltages for control applications. An extended application in
Chapter 9 using this same TM990/100M board setup shows how this can be done.
Persons interested can follow right into this application example to gain more insight
into the details of the 9900 family of components explained in detail in the following
chapters.
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Table 3-2. Assembly Language Program.

(With Machine Code)
Hex
Hex | Machine Op

Step | Address Code Label Code Operand Comments.

1. |FEOO |O2EO LWPI >FF20 Load workspace pointer

2. |FEO2 |FF20 with FF20,,

3. |FEO4 (0201 LI 1, >FE2E Load R1

4. |FEO6 |FE2E with 1st address of WAIT

5. {FE0O8 |[020C LI 12, >0102 |Load 12

6. |FECA 0120 with base address of 9901,0120,,

7. |FEOC |1D00 |BEGIN |SBO 0 Set I/0 P, (segment f) equal to one

8. |FEOE |0691 BL *1 Branch to address in R1, (saves

next address in R11)

9. {FE10 |1EOO sBz 0 Set I/0 P, (segment f) equal to zero

10. |FE12 |0691 BL *1 Branch to address in R1
(saves next address in R11)
11. [(FE14 |1DO0O1 SBO 1 Set 1/0 P, (segment b) equal to one
12. |FE16 [0691 BL *1 Branch to address in R1
13. [FE18 |1EO1 SBz 1 Set 1/0 P, equal to zero
14. |FE1A {0691 BL *1 Branch to address in R1
15, |FE1C |1D02 SBO 2 Set [/0 P, (segment e) to one
16. [FE1E 0691 BL *1 Branch to address in R1
17. |FE20 [1E02 sSBzZ 2 Set 1/0 P, equal to zero
18. |{FE22 |0691 BL *1 Branch to address in R1
19 [FE24 |1DO03 SBO 3 Set I/0 P, (segment c) equal to one
20. |FE26 (0691 BL *1 Branch to address in Rt
21. |FE28 |1EO3 SBz 3 Set 170 P, equal to zero
22. |FE2A |0691 BL *q Branch to address in R1
23.. |FE2C |10EF JMP BEGIN Jump to BEGIN
24. {FE2E (1F04 |WAIT |TB 4 TestI/OP, fora ‘1" ora ‘0"
25. [FE30 |1305 JEQ TIME If equals bit is set ('1""), jump to TIME
26. [FE32 {0203 LI 3, >FFFF Load R3
27. |FE34 |FFFF with FFFF,,
28. |FE36 (0603 |TIME1 [DEC 3 Decrement R3
29. |FE38 |16FE JNE TIME1 Jump to TIME1 if equals bit is not set
30. |FESA |045B B *11 Return to main program (by way of 11)
31. |FE3C (0203 |(TIME (LI 3, >3FFF Load R3
.32, |FE3E |3FFF with 3FFF

33. |FE40 |0603 |TIME2 | DEC 3 Decrement R3
34. |FE42 |16FE JNE TIME2 Jump to TIME2 if equals bit is not set
35. |FE44 |045B B *11 Return to main program (by way of R11)

3-60 9900 FAMILY SYSTEMS DESIGN



CHAPTER 4

Hardware Design:
Architecture and

Interfacing Techniques
44




INTRODUCTION Hardware Design:

Architecture and
Interfacing Techniques

B
INTRODUCTION

Describing the 9900 system from a hardware standpoint clearly requires detailed
descriptions of a large number of design features as well as the interaction between the
9900 and peripheral circuits. In this chapter, material is arranged to develop a 9900
system from the viewpoint of the 9900 microprocessor chip. In the architecture section,
the concepts of instruction fetch and decode, the memory-to-microprocessor bus
structures, and memory partitioning (the use of volatile and non-volatile memories) are
explained. Other topics include descriptions of the registers on the microprocessor chip
and the working registers, the concept of memory-to-memory architecture, timing and
descriptions of interface signals.

A special section covers memory in detail, especially the controls and timing, multichip
memory structure, static and dynamic RAM, and DMA (direct memory access).

Following the architecture and memory sections are sections devoted to the instruction
set, design considerations for input/output techniques especially in CRU development,
the interrupt structure and electrical requirements.

A special section devoted to the unique features of the single chip microcomputer, the
TMS9940, is included at the end of the chapter.

Information in this chapter flows from the most basic fundamentals to an understanding
of the more complex design features of the 9900 and the chip family. When very specific
and detailed information regarding pin assignments and speed is given, the TMS9900
device specifications are used. These examples will give direction and illustration for
interpreting the data sheet information found in Chapter 8.

The 9900 family of 16-bit microprocessors includes several device types each aimed at a
specific market segment. The same basic architecture and instruction set are mmaintained
throughout. Consider first the single-chip microprocessor which consists of an ALU
(arithmetic and logic unit), a few registers, and instruction handling circuitry (Figure
4-7). There is no memory on the chip for instructions and data so it must be interfaced to
memory devices, usually RAM for data (and instructions which must be modified) and
ROM, PROM, or EPROM for instructions (Figure 4-2). It is often desirable to store
instructions in a non-volatile memory to eliminate the requirement for loading the
program into memory immediately following application of power. This is especially
important in dedicated applications where the program is fixed and power off-on cycles
are common occurrences.

The microprocessor is connected to memory devices and external input/output (1/0)
devices via sets of signals or busses (Fzgure 4-2). An address bus selects a word of
memory. The contents of this word will be transferred to or from the microprocessor via
the data bus. Control signals required to effect the transfer of information between the
microprocessor and the memory are grouped into a control bus.
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Figure 4-1. The 9900 Microprocessor

The interface to external devices (I/O) may be accomplished by using the address, data
and control busses. This technique is known as parallel 170 or memory mapped 1/0
because data is transferred in parallel and the 1/0 devices occupy locations in the
memory address space.

ADDRESS BUS

INSTRUCTION
MEMORY
9900 CONTROL BUS
DATA
MEMORY

DATA BUS

Figure 4-2. 9900 Microprocessor and Memory
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The extension of parallel I/0 is direct memory access (DMA). External hardware is
employed to act as a separate special purpose processor for transferring large blocks of
contiguous memory words to or from an external device (such as a disc memory). Once
such a transfer is set up (via a string of instructions in the program), the DMA controller
automatically synchronizes the transfer of data between the external device and memory,
sharing the buses timewise with the microprocessor.

The 9900 architecture includes one other important I/O technique. Designed primarily
for single bit I/O transfers, the communications register unit (CRU) provides a

powerful alternative to parallel, memory mapped 1/O (Figure 4-3). The address bus is
used to select one of 4096 individual input or output bits in the CRU address space.
During the execution of one of the single bit CRU instructions, the processor transfers
one bit in or out. Multiple bit instructions are also available which provide for transfer of
up to sixteen bits via a single CRU operation.

While this chapter describes primarily the basic TMS9900 16-bit microprocessor, all of
the 9900 family CPU’s are covered in detail in the Product Data chapter.

U

BIT
ORIENTED PARALLEL
N s600 vevon A

(CRU)

ADDRESS BUS

CONTROL BUS

DATA BUS

Figure 4-3. 9900 Bus Architecture
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An overview is given here to establish design paths for microprocessor systems. Listed
below are the processors in the 9900 family.

Device Technology  Description

TMS 9900 N-MOS 16-bit CPU 3 MHz

"TMS 9900-40 N-MOS  16-bit CPU 4 MHz

SBP 9900A I’L 16-bit CPU —55° to 125°C

TMS 9980A/81 N-MOS 16-bit CPU 40-pin package

TMS 9985 N-MOS 16-bit CPU 40-pin package

TMS 9940 N-MOS 16-bit CPU with 2 k on-chip ROM

General purpose applications are designed around the TMS9900 device. The same is
true for systems with severe environmental specs; however, a transition to the
SBP9900A is made after the design is complete and the software completely debugged.
The TMS9980A/81 and the TMS9985 are used where the 40-pin package is
advantageous and a slightly slower speed is acceptable. The TMS9940 is a single-chip

microcomputer for small special purpose controllers.

At the end of this chapter and in the Product Data chapter there is detailed design

data for application of the LSI (large scale integration) peripheral support circuits in the
9900 family which are available for use in 9900 microprocessor-based systems. But in
order to read and understand the data presented in this chapter and in this book, an
understanding of the basic fundamentals of microprocessors is needed.

ARCHITECTURE

Basic MicropProCESSOR CHIP

The 9900 is an advanced 16-bit LSI microprocessor with minicomputer-like architecture
and instructions. It is easy to understand and easy to use. Consider first the
microprocessor device itself (Figure 4-4). Operations are carried out with a set of
dedicated registers, an ALU, and instruction handling circuits. As clock signals are
applied, the processor will fetch an instruction word from a memory (external to the
chip), will execute it, fetch another instruction, execute it and so on. In each case the
instruction is saved in an instruction register (IR) on the chip. The decode circuit sets up
the appropriate controls based on the content of the instruction register for a multi-step
execution phase. A memory address register (MAR) is used to hold address information
on the address bus. The ALU and the other registers perform their specified functions
during the execute phase of the instruction cycle.

MICROPROCESSOR REGISTERS

There are three registers on the 9900 chip which are the key architectural features of
the microprocessor (Figure 4-5). They are the workspace pointer (WP), the program
counter (PC), and the status register (ST).
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INSTRUCTION

DECODE
o

CONTROL

l IR ' | ST I

ALU

Figure 4-4. 9900 Functional Elements
Workspace Pointer

The general purpose registers for the 9900 are implemented as blocks of memory called
workspaces. A workspace consists of 16 contiguous words of memory, but are

general registers to the user. The workspace pointer on the 9900 chip holds the address
of the first word in the workspace. After initializing the content of the WP at the
beginning of a program (or subprogram), the programmer may concentrate on writing a
program using the registers to hold data words or to address data elsewhere in memory.

WORKSPACE POINTER

PROGRAM COUNTER

STATUS REGISTER

Figure 4-5. Three Important Registers
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Program Counter

The program counter (PC) in the 9900 is used in the conventional way to locate the next
instruction to be executed. As each instruction is executed, the program counter is
incremented to the next consecutive word address. Because word addresses are even
numbers in the 9900, the program counter is incremented by two in order to address
sequential instructions. If the instruction to be executed occupies two or three memory
words, the program counter will be incremented to generate sequential (even) addresses
to access the required number of words. At the end of execution the PC is incremented
to the next even address which is the location of the next instruction. If the instruction to
be executed is a jump or branch instruction, the program counter is loaded with a new
address and program execution continues starting with the instruction at that location in
memory.

Figure 4-6 shows the program counter pointing to (addressing) instruction words in the
program. Starting with location (x) the instructions are performed in sequence until a
jump is encountered at (y). Processing resumes sequentially starting at location (z) which
was the address specified by the jump instruction to be placed in the program counter.

Status Register

The status register (ST) is the basis for decision making during program execution.
Individual bits of the ST are set as flags as the result of instructions. They may thereafter
be tested in the execution of conditional jump instructions. Figure 4-7 shows the status

register and its flag bits.
) PROGRAM IN MEMORY

—— “JUMP TO z"

Figure 4-6. Program Counter Operation
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Equal

Carry

Overflow

Parity

XOP Instruction Being Executed
12-15 | Interrupt Mask

o hHhwN—=O

Figure 4-7. Status Register

The first three bits are set as a result of comparisons. Some instructions identify two
operands (numbers) to be compared. If the first is greater than the second, the “greater
than” bit should be set. In the 9900 there are two such conditions. First, the logical-
greater-than bit considers 16-bit words as positive integers and the comparison is made
accordingly. Second, the arithmetic-greater-than bit is set as the result of a comparison of
two numbers which are considered in two’s complement form. For example: consider the
numbers A and B below as the numbers in the compare instruction C A, B:

A 1000 1110 1100 0101
B 0110 1010 1100 1101

If they are 16-bit positive integers, it is clear from the most significant bits (MSB) that A
is greater than B, and the logical-greater-than bit of the status register should be set to
one. But as two’s complement numbers, A is negative (MSB=1) and B is positive.
Therefore the arithmetic-greater-than bit must be made zero (A is not greater than B).
Since the processor has no way of knowing how the designer has used the memory words
for data (integers or two’s complement), two status bits must be provided for decision
making. The designer can select the appropriate conditional jump instruction (testing
status bit 0 or 1) because he knows what the data format is.

Status bit 2, the equal bit, is set if the two words compared are equal.

In many instructions, only one number is involved or a new number is determined as the
result of an arithmetic operation. For these instructions status bits 0, 1 and 2 are set as
the result of comparisons against zero; that is, if the single number or answer obtained is
greater than zero or equal to zero.
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MEMORY-TO-MEMORY ARCHITECTURE

The 9900 family of processors employs memory-to-memory architecture in the
execution of instructions. Memory-to-memory architecture is that computer
organization and instruction set which enables direct modification of memory data via a
single instruction. That is, a single instruction can fetch one or two operands from
memory, perform an arithmetic or logical operation, and also store the result in
memory. In doing so, some of the on-chip registers are used as temporary buffers in
much the same manner as an accumulator is used in other systems. ut instructions to
load an accumulator and store the accumulator are rarely necessary in memory-
to-memory architecture. A single 9900 instruction (arithmetic or logical) does

the work of two or more instructions in other systems.

Figure 4-8 describes the technique used by the 9900 to locate words in memory as
“registers” in the workspace. Additional information is included for reference purposes.
Registers 1-15 may be used for indexing (see the description of this addressing mode in
Chapter 5 and 6). Register 0 may be used for a shift count. Registers 11 and 13-15 are
used for subroutine techniques. Register 12 is a base value for CRU instructions. These
special uses of the workspace registers are stated here as an initial evaluation of the
register set. Program control and CRU instructions make use of the contents of registers
11-15; therefore, programmers and systems designers must be aware that while use of
these registers is not restricted to their special functions, they should be used with
caution in performing other functions.

The use of these workspaces in an actual application is best described in the

Software Design chapter. But the step-by-step execution of the instructions is of concern
in hardware design because of the execution speed and the techniques for handling
interrupts.

Instruction cycles in the 9900 require memory access not only for the instruction words
but also for operand addresses and actual operands (or numbers to be operated upon.) A
simple add instruction requires at least four memory cycles: one to fetch the instruction,
two to access the two numbers to be added, and one to store the result. As will be
explained in detail later in this chapter, the execution of an add instruction may require
as many as eight memory cycles (because of the addressing mode.) The execution steps
are not the same for all instructions. There is, in fact, substantial variation of execution
steps within any one instruction due to addressing. Tables and charts are provided in this
chapter to explain the execution time of each instruction.
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MEMORY
ADDRESS REGISTER
[workspace poinTER] [} wp+00 0 T 0 — OPTIONAL SHIFT
WP + 02 1 T COUNT
WP + 04 2
WP + 06 3
WP +08 4
we +0A 5
WP +0C 3
WP + 0E 7 DATA INDEX
W10 2 on CAPABILITY
we + 12 9 ADDRESSES
we +1a 10
WP + 16 1 11 — BL RETURN ADDRESS
we +18 12 12 — CRU BASE ADDRESS
WP + 1A 13 13 — SAVED WP
WP + 1€ 14 14 — SAVED PC
WP + 1E 15 A J_ 15 — SAVED ST

Figure 4-8. 9900 Workspace Registers

There is one additional concept regarding microprocessor and memory interfacing to be
introduced at this time: it is the way in which data is stored in the memory. Figure 4-9
shows the bit numbering for a general 16-bit data word or instruction. Instructions and
16-bit data words are always located at even addresses. Since the memory is byte
addressable, even and odd bytes are the left and right half words in the 16-bit memory
organization and have even or odd addresses respectively. Memories for the TMS9900
and SBP9900A contain 16 bits per word, while the other processors in the family use 8-
bit memory structures. But all use the same addressing concept: a 16-bit address
describing a 64k-byte address space.

LSB
0 LlZJ?J4J5L6|7|8 9'10 11712]13—[14[15
SIGN
\ BIT -/

\V4
MEMORY WORD (EVEN ADDRESS)

MSB LSB _MsB LSB

l0|12|3456789101112131415
N
\SE;IGTN v AS'B?T 7

V
EVEN BYTE ODD BYTE

Figure 4-9. Word and Byte Formats
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CONTEXT, SWITCHING

One of the more important advantages of the workspace architecture of the

9900 is the fact that “register save and restore’ operations are greatly simplified. In any
interrupt processing system, provisions must be made to perform an orderly transition
into a new program segment in response to an interrupt. In other microprocessor
systems, the first few instructions of an interrupt service routine perform the steps of
saving register contents in memory, and then loading new values into the registers.

In the 9900, an interrupt cycle starts with a hardware operation to save the contents of
the three key registers, the WP, PC and ST. In addition, the WP and PC must be loaded
with new numbers. Figures 4-10 and 4-11 show an example of the technique. Prior to the
interrupt, the WP Jocates the workspace (pointing to 0800), the PC locates the current
instruction (pointing to 0100), and the ST contains the status as a result of the execution
of the current instruction (e.g., 4000). At the end of execution, the processor tests for an
interrupt condition and finding it, performs a context switch as follows.

Step 1. The new WP value is fetched from the appropriate interrupt vector location in
the first 32 words of memory. This identifies the location of the workspace assigned to
the interrupt service routine.

Step 2. The current values of the WP, PC and ST registers are stored in the new
workspace — ST in R15, PC in R14, WP in R13 in that order. After this, the new PC
value is fetched from memory (the second location of the two-word interrupt vector) and
loaded into the PC.

9900 MEMORY

wp 0800
/ PROGRAM A
PC 0100

PROGRAM B
ST 4000
WORKSPACE A
WORKSPACE B

Figure 4-10. Before Context Switch

9900 FAMILY SYSTEMS DESIGN 411

44



>4

MEMORY

Hardware Design:
Architecture and
Interfacing Techniques

9900 MEMORY
WP 0820
PROGRAM A
PC | 0200 ! »
PROGRAM B
s ]
WORKSPACE A

WORKSPACE B

0800

0102

4000

Figure 4-11. After Context Switch

R13
R14
R15

Step 3. With the context switch completed, processing resumes with the first instruction

in the interrupt service routine.

Processing continues in this mode until, at the end of the interrupt routine, an RTWP
instruction is encountered. A “reverse” context switch now occurs to return to the
previous program. Since R13, 14 and 15 contain the control register contents for the
previous program, they are now transferred to the CPU which loads them into the WP,
PC and ST. Processing resumes from the point at which the interrupt occurred.

The obvious advantage of context switching is the reduced register-save register-restore
operations required by microprocessors in an interrupt environment. The context switch
is also used as a subroutine technique. This is described in Chapters 5 and 6, but the
important fact is that context switching is, to the designer, a single step, when in fact

several steps are performed by the microprocessor.

MEMORY

The 9900 is easily interfaced to any of the standard types of semiconductor memory
devices. Texas Instruments provides masked ROMs, field-programmable ROMs
(PROMs), and erasable PROMs (EPROMs) for non-volatile program and data storage.
RAMs are available in sizes from a 64 x 8 static RAM to the 64K dynamic RAMs for
use as a temporary program and data storage. 9900-compatible memory devices are

listed in Chapter 2.
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Mgemory ORGANIZATION
The 9900 instructions build a 16-bit address word which describes a 64K x 8 bit address
space. A memory map for the 9900 is shown in Figure 4-12.

MEMORY
AREA DEFINITION ADDRESSg MEMORY CONTENT
0 15
”~
0000 WP LEVEL O INTERRUPT
RESET VECTOR
0002 PC  LEVEL O INTERRUPT
0004 WP LEVEL 1 INTERRUPT
. 0006 PC LEVEL 1 INTERRUPT
INTERRUPT VECTORS
003C WP LEVEL 15 INTERRUPT
003E PC LEVEL 15 INTERRUPT
~
é 0040 WP XOPO
0042 PC XOPO
XOP SOFTWARE TRAP VECTORS é
007C WP XOP 15
007E PC XOP 15
~
re
0080
[ ]
L]
[ ]
GENERAL MEMORY AREA
GENERAL MEMORY FOR
PROGRAM, DATA, AND g MAY BE ANY
WORKSPACE REGISTERS COMBINATION OF
PROGRAM SPACE
OR WORKSPACE
[ ]
o
.
LOAD SIGNAL VECTOR FFFC WP LOAD FUNCTION
FFFE PC LOAD FUNCTION

Figure 4-12. TMS 9900 Dedicated Memory Addresses
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RESET Vector

The first two memory words are reserved for storage of the RESET vector. The
RESET vector is used to load the new WP and PC whenever the CPU RESET signal
occurs. The first word contains the new WP, which is the starting address of the RESET
workspace. The second word contains the new PC, which is the starting address of the
RESET service routine.

Interrupt Vectors

The next thirty memory words, 0004,5 through 003E,; are reserved for storage of the
interrupt transfer vectors for levels 1 through 15. Each interrupt level uses a word for
the workspace pointer (WP) and a word for the starting address of the service routine
(PC). If an interrupt level is not used within a system, then the corresponding two
memory words can be used for program or data storage.

Software Trap Vectors

The next thirty-two memory words, 0040, through 007E,,, are used for extended-
operation software trap vectors. When the CPU executes one of the 16 extended
operations (XOPs), the program traps through the corresponding vector. Two words are
reserved for each trap vector, with one word for the WP and one word for the PC. If an
XOP instruction is not used, the corresponding vector words can be used for program or
data storage.

LOAD Vector

The last two memory words FFFC,; and FFFE,, are reserved for the LOAD vector,
with one word for the WP and one word for the PC. The LOAD vector is used
whenever the CPU LOAD signal is active (low).

Transfer Vector Storage

The transfer vectors can be stored either in ROM or RAM, but either the RESET or
LOAD vector should be in non-volatile memory and should point to a program in
non-volatile storage to ensure proper system start-up. The restart routine should
initialize any vector which is in RAM. The program can then manipulate the
RAM-based vectors to alter workspace assignments or service routine entry points,
while ROM-based vectors are fixed and cannot be altered.
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MEemory CONTROL SIGNALS

The 9900 uses three signals to control the use of the data bus and address bus during
memory read or write cycles. Memory enable (MEMEN) is active low during all
memory cycles.

Data bus in (DBIN) is active high during memory read cycles and indicates that the
CPU has disabled the output data buffers.

Write enable (WE) is active low during memory write cycles and has timing
compatible with the read/write (R/W) control signal for many standard RAMs.

Memory Read Cycle

Figure 4-13 illustrates the timing for a memory read machine cycle with no wait states.
At the beginning of the machine cycle, MEMEN and DBIN become active and the
valid address is output on A0-A14. D0-D15 output drivers are disabled to avoid
conflicts with input data. WE remains high for the entire machine cycle. The READY
input is sampled on @1 of clock cycle 1, and must be high if no wait states are desired.
Data is sampled on @1 of clock cycle 2, and set-up and hold timing requirements must be
observed. A memory-read cycle is never followed by a memory-write cycle, and D0-D15
output drivers remain disabled for at least one additional clock cycle.

Memory Write Cycle

Figure 4-14 illustrates the timing for a memory write machine cycle with no wait states.
MEMEN becomes active, and valid address and data are output at the beginning of the
machine cycle. DBIN remains inactive for the complete cycle. WE goes low on ® 1 of
clock cycle 1 and goes high on ®1 of clock cycle 2, meeting the address and data set-up
and hold timing requirements for the static RAM:s listed in Chapter 2. For no wait
states, READY must be high during @1 of clock cycle 1.

Read/Write Control with DBIN

In some memory systems, particularly with dynamic RAMs, it may be desirable to have
READ and WRITE control signals active during the full memory cycle. Figure 4-15
shows how the WRITE signal can be generated. Note that DBIN is high only for
READ cycles; therefore, MEMEN can be NORed with DBIN to yield a WRITE
signal which is high only during memory write operations.

Slow Memory Control

Although most memories operate with the 9900 at the full system speed, some memories
cannot properly respond within the minimum access time determined by the system
clock. The system clock could be slowed down in order to lengthen the access time but
the system through-put would be adversely affected since non-memory and other
memory reference cycles would be unnecessarily longer. The READY and WAIT
signals are used instead to synchronize the CPU with slow memories. The timing for
memory-read and memory-write cycles with wait states is shown in Figures 4-16 and 4-17.
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Figure 4-13. Memory-Read Cycle Timing
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MEMEN

DBIN READ
TMS 9900 |
WRITE
D——

Figure 4-15. Read/ Write Control Using MEMEN and DBIN

The READY input is tested on @1 of clock cycle 1 of memory-read and memory-write
cycles. If READY = 1, no wait states are used and the data transfer is completed on the
next clock cycle. If READY = 0, the processor enters the wait state on the next clock
cycle and all memory control, address, and data signals maintain their current levels. The
WAIT output goes high on ®3 to indicate that a wait state has been entered. While in
the wait state, the processor continues to sample READY on ¢ 1, and remains in the wait
state until READY = 1. When READY =1 the processor progresses to clock cycle 2
and the data transfer is completed. WAIT goes low on ¢ 3. It is important to note that
READY is only tested during @ 1, of clock cycle 1 of memory-read and memory-write
cycles and wait states, and the specified set-up and hold timing requirements must be
met; at any other time the READY input may assume any value. The effect of inserting
wait states into memory access cycles is to extend the minimum allowable access time by
one clock period for each wait state.

Wit State: Control

Figure 4-18 illustrates the connection of the WAIT output to the READY input to
generate one wait state for a selected memory segment. The address decode circuity
generates an active low signal (SLOMEM = 0) whenever the slow memory is addressed.
For example, if memory addresses 8000, — FFFE; select slow memory,

SLOMEM = A0. If one wait state is required for all memory, WAIT may be connected
directly to READY, causing one wait state to be generated on each memory-read or
memory-write machine cycle. Referring again to Figures 4-16 and 4-/7 note that the
WAIT output satisfies all of the timing requirements for the READY input for a single

- wait state. The address decode signal is active only when a particular set of memory

locations has been addressed. Figure 4-19 illustrates the generation of two wait states for
selected memory by simply delaying propagation of the WAIT output to the READY
input one clock cycle with a D-type flip-flop. The rising edge of @ 2TTL is assumed to

- be coincident with the falling edge of the ¢2 clock input to the TMS 9900.
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Figure 4-16. Memory-Read Cycle With One Wait State
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—CLOCK CYCLE 1—»}«—— WAIT STATE——»{«——CLOCK CYCLE 2—|

N [ [ I L

02 [ 1 1L I B

o e T e D e B
" ! ] | — I
DBIN : : : :

' |
. | | ST
A0-A14 I:l II VALID ADDRESS : |X
DO0-D15 k : VALID WRITE DATA : :X;

| | I

READY XXX XX XXXXXXXXX POXXXXXX] DON'T CARE
1 ' |
WAIT X | -/ ; \

Figure 4-17. Memory-Write Cycle With One Wait State

ADDRESS >
ADDRESS
SLOMEM DECODE
SLOMEM
TMS 9900 O——F——0
READY
WAIT l

Figure 4-18. Single Wait State for Slow Memory
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ADDRESS —
ADDRESS
SLOMEN DECODE
TMS 9900 o SLOMEM 4
READY
WAIT D Q l
®2TTL—

Figure 4-19. Double Wait States for Slow Memory

Memory Access Time Calculation

Maximum allowable memory access time for the TMS 9900 can be determined with the
aid of Figure 4-20. Memory control and address signals are output on @2 of clock cycle 1,
and are stable 20 ns (tpLy, tery) afterwards. Data from memory must be valid 40 ns (t5,)
before the leading edge of ®1 during clock cycle 2. Therefore, memory access time may
be expressed by the equation:

tace=(1.75+n) tey — tpLu — tr — tey

where n equals the number of wait states in the memory-read cycle. Assigning worst-case
specified values for tpryu (20ns), t, (12ns), and ty, (40 ns), and assuming 3 MHz
operation:

_ (175+n) _

= "g003 2"

Access time is further reduced by address decoding, control signal gating, and address
and data bus buffering, when used. Thus, for a known access time for a given device, the
number of required wait states can be determined.

For example, a TMS 4042-2 RAM has a 450 nanosecond access time and does not
require any wait states. A TIMS 4042 has a 1000.nanosecond access time and requires
two wait states. Propagation delays caused by address or data buffers should be added to
the nominal device access time in order to determine the effective access time.
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Figure 4-20. Memory Access Timing Calculation

9900 FAMILY SYSTEMS DESIGN

4-22



Hardware Design: MEMORY

Architecture and
Interfacing Techniques

... - ]
Static MEMORY

Static RAMs and PROMs are easily interfaced to the 9900. A 9900 memory system
using the TMS 4042-2 256 X 4 static RAM and the TMS 2708 1K X 8 EPROM is
shown in Figure 4-21.

Address

The most-significant address bit, A0, is used to select either the EPROMs or the RAMs
during memory cycles. When AOQ is low, the EPROMs are selected, and when A0 is
high, the RAMs are selected. Address lines Al through A4 are not used since the full
address space of the TMS 9900 is not required in the example. The lower address bits
select internal RAM or EPROM cells. Other memory systems can fully decode the
address word for maximum memory expansion.

Control Signals

Since DBIN is also used to select the EPROMs during memory-write cycles, the
EPROMs cannot inadvertently be selected and placed into output mode while the CPU
is also in the output mode on the data bus. MEMEN is used to select the RAMs during
either read or write cycles, and WE is used to select the read/write mode. DBIN is also
used to control the RAM output bus drivers.

The 9900 outputs WE three clock phases after the address, data, and MEMEN are

output. As a result, the address, data, and enable-hold times are easily met. WE is

enabled for one clock cycle and satisfies the minimum write pulse width requirement of

300 nanoseconds. Finally, WE is disabled one clock phase before the address, data, and
other control signals and meets the TMS 4042-2 50-nanosecond minimum data and address
hold time.

Loading
The loads on the CPU and memory outputs are well below the maximum rated loads. As
a result no buffering is required for the memory system in Figure 4-21. The TMS 4042-2

and the TMS 2708 access times are low enough to eliminate the need for wait states, and
the CPU READY input is connected to Vo.

The minimum high-level input voltage of the TMS 2708 is 3 volts while the maximum
high-output voltage for the TMS 9900 is 2.4 volts at the maximum specified loading.
For the system in Figure 4-21, the loads on the CPU and memory outputs are well below
the maximum rated load. At this loading, the TMS9900 output voltage exceeds 3 volts,
so pull-up resisters are not needed.

There are many other Texas Instruments static memories compatible with the TMS
9900. Most memory devices do not require wait states when used with the TMS 9900 at
3 MHz.
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Figure 4-21. TMS 9900 Static Memory System
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Dynamic MEMORY

Memory applications requiring large bit storage can use 4K, 16K or 64K dynamic memories
for low cost, low power consumption, and high bit density. TMS 9900 systems requiring
4K words or more of RAM, can economically use the 4096-bit TMS 4051, the 16,384-

bit TMS 4116, or any of the other dynamic RAMs covered in Chapter 2.

Refresh

The dynamic RAMs must be refreshed periodically to avoid the loss of stored data. The
RAM data cells are organized into a matrix of rows and columns with on-chip gating to

select the addressed bit. Refresh of the 4K RAM cell matrix is accomplished by

performing a memory cycle of each of the 64 row addresses every 2 milliseconds or less.

The 16K RAM has 128 row addresses. Performing a memory cycle at any cell on a row
refreshes all cells in the row, thus allowing the use of arbitrary column address during refresh.

Refresh Modes

There are several dynamic memory refresh techniques which can be used for a TMS
9900 system. If the system periodically accesses at least one cell of each row every 2
milliseconds, then no additional refresh circuitry is required. A CRT controller which
periodically refreshes the display, illustrates this concept.

Refresh control logic is included wherever the system cannot otherwise ensure that all
rows are refreshed every 2 milliseconds. The dynamic memory in such TMS 9900
systems can be refreshed in the block, cycle stealing, or transparent mode.

Block Refresh.

The block mode of refresh halts the CPU every 2 milliseconds and sequentially refreshes
each of the rows. The block technique halts execution for a 128 (4K) or 256 (16K) clock
cycle periods every 2 milliseconds. Some TMS 9900 systems cannot use this technique
because of the possibility of slow response to priority interrupts or because of

the effect of the delay during critical timing or 170 routines.

Cycle Stealing.

The cycle stealing mode of refresh “steals” a cycle from the system periodically to
refresh one row. The refresh interval is determined by the maximum refresh time and
the number of rows to be refreshed. The 4K dynamic RAMs have 64 rows to be
refreshed every 2 milliseconds and thus require a maximum cycle stealing interval of
31.2 microseconds.
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A cycle stealing refresh controller for the TMS 4051 4K dynamic RAM is shown in
Figure 4-22. The refresh timer generates the refresh signal (RFPLS) every 30
microseconds. The refresh request signal (RFREQ) is true until the refresh cycle is
completed. The refresh grant signal (RFGNT) goes high during the next CPU clock
cycle in which the CPU is not accessing the dynamic memory. The refresh memory
cycle takes two clock cycles to complete after RFGNT is true. During the second clock
cycle, however, the CPU can attempt to access the dynamic memory since the CPU is
not synchronized to the refresh controller. If the CPU does access memory during the
last clock cycle of the refresh memory cycle, the refresh controller makes the memory
not-ready for the remainder of the refresh memory cycle, and the CPU enters a wait
state during this interval. The dynamic memory row address during the refresh memory
cycle is the output of a modulo-64 counter. The counter is incremented each refresh
cycle in order to refresh the rows sequentially.

MEMORY | Hardware Design:

The dynamic memory timing controller generates the proper chip enable timing for
both CPU and refresh initiated memory cycles. The timing controller can be easily
modified to operate with other dynamic RAMs.

Since the TMS 9900 performs no more than three consecutive memory cycles, the
refresh request will be granted in a maximum of three memory cycles. Some systems
may have block DMA, which uses HOLD. RFREQ can be used in such systems to
disable HOLDA temporarily in order to perform a refresh memory cycle if the DMA
block transfer is relatively long (greater than 30 microseconds). The cycle stealing mode
“steals” clock cycles only when the CPU attempts to access the dynamic memory during
the last half of the refresh cycle. Even if this interference occurs during each refresh
cycle, a maximum of 64 clock cycles are “stolen” for refresh every 2 milliseconds.

Transparent Refresh.

The transparent refresh mode eliminates this interference by synchronizing the refresh
cycle to the CPU memory cycle. The rising edge of MEMEN marks the end of a
memory cycle immediately preceding a non-memory cycle. The MEMEN rising edge
can initiate a refresh cycle with no interference with memory cycles. The refresh
requirement does not interfere with the system throughput since only non-memory
cycles are used for the refresh cycles. The worst-case TMS 9900 instruction execution
sequence (all divides) will guarantee the complete refresh of a 4K or 16K dynamic RAM
within 2 milliseconds.
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While the transparent refresh mode eliminates refresh-related system performance
degradation, the system power consumption can be higher since the RAMs are refreshed
more often than required. As many as one-half of the CPU machine cycles can be refresh
cycles, resulting in multiple refresh cycles for each row during the refresh interval. This
situation can be corrected by adding a timer to determine the start of the refresh interval
and an overflow detector for the refresh row counter. When every row has been
refreshed during an interval, the refresh circuit is disabled until the beginning of the
next interval. Since each row is refreshed only once, the system power consumption is
reduced to a minimum.

Direct memory access using HOLD should guarantee that sufficient non-memory cycles
are available for refresh during large block transfers. An additional refresh timer can be
used to block HOLDA in order to provide periodic refresh cycles.

BurFERED MEMORY

The TMS 9900 outputs can drive approximately two standard TTL inputs and 200
picofarads. Higher capacitive loads may be driven, but with increased rise and fall times.
Many small memory systems can thus be directly connected to the CPU without buffer
circuits. Larger memory systems, however, may require external bipolar buffers to drive
the address or data buses because of increased loading. Texas Instruments manufactures a
number of buffer circuits compatible with the TMS 9900. The SN74L.5241
noninverting-octal buffer with three-state outputs is an example of a buffer circuit.

A TMS 9900 memory system with address and data bus buffering is shown in Figure 4-
23. The system consists of sets of four 256 X 4 memory devices in parallel to provide the
16-bit data word. The four sets of four devices provide a total of 1024 words of memory.
The memory devices can be the TMS 4042-2 NMOS static RAM.

The SN745412 octal buffer/latch is designed to provide a minimum high-level output
voltage of 3.65 V. Buffered TMS 9900 memory systems containing the TMS 4700
ROM or the TMS 2708 EPROM, for example, require input voltages in excess of the
output voltages of many buffer circuits. The SN745412 can be used to buffer the
memories without the pull-up resistors needed for buffers.

MEeMORY PariTy

Parity or other error detection/correction schemes are often used to minimize the
effects of memory errors. Error detection schemes such as parity are used to indicate the
presence of bad data, while error correction schemes correct single or multiple errors.
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L _______________________________________________________________________________________]
The SN741.5280 parity generator/checker can be used to implement memory parity in

a TMS 9900 system. The system in Figure 4-24 uses two SN74LS280 circuits to

generate and to check the odd-memory parity. During memory write cycles, the

generated parity bit is output to bit D16 of the memory. During memory read cycles,

the parity is checked and an interrupt, PARERR, is generated if the parity is even.

It should be noted that the faulty memory word will have already been used by the CPU
as an op code, address, or data before the interrupt is generated. This can cause trouble
in determining the exact location of the error. For example, an error in bit 8 of the CLR
op code will cause the CPU to branch unconditionally. When the interrupt is serviced,
there would then be no linkage to the part of the program at which the error occurred.
A diagnostic routine can often isolate such errors by scanning the memory and checking
parity under program control. Such a parity error in the diagnostic itself can be
extremely difficult to isolate.

An external address latch clocked at IAQ can be used to retain program linkage under
the above circumstances. When the parity error is detected, the address latch is frozen,
thus pointing to the address of the instruction during which the parity error occurred.

MEemory Layour

It is generally advantageous to lay out memory devices as arrays in the system. The
advantages are twofold. First, positioning the devices in an orderly fashion simplifies
identification of a particular memory element when troubleshooting. Second, and most
important, layout of memory arrays simplifies layout, shortens interconnections, and
generally allows a more compact and efficient utilization of board space. Crosstalk
between adjacent lines in memory arrays is minimized by running address and data lines
parallel to each other, and by running chip enable signals perpendicular to the address
lines.

Memory devices, particularly dynamic RAMs generally require substantially greater
supply currents when addressed than otherwise. It is therefore important that all power
and ground paths be as wide as possible to memory arrays. Furthermore, in order to
avoid spikes in supply voltages, it is advisable to decouple supply voltages with capacitors
as close as possible to the pins of the memory devices. As an example, a system
containing a 4K x 16-bit array of TMS 4051s should contain one 15 uF and one 0.05 uF
capacitor for each set of four memory devices; with the large capacitors decoupling Vpp,
and the small capacitors decoupling Vgg.
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INSTRUCTION EXECUTION

Execution time for an instruction is a function of the clock frequency, the number of
clock cycles, the number of memory accesses and the number of wait states if required
for slower memories. The following tables list the number of clock cycles required to
execute each instruction if no wait states are required. The number of memory accesses
isalso given so that the extra clock cycles can be calculated for the number of wait states
required. A wait state is entered when the ready signal from the memory does not go
high within one clock period after initiation of a memory cycle. For example: The clock
frequency for the TMS 9900 is 3 MHz. From the calculation of maximum access time
for no wait states, the memory access time must be less than 512 ns. One wait state (of
333 ns duration) will be required for memories with access times between 512 ns and
845 ns, two wait states will be required if the access time is between 845 ns and 1.178 p
sec, and so on.

TiMiNG

From Figure 4-25, the first execution time table, an add instruction (A) using direct
register addressing for both operands requires 14 clock cycles if there are no wait states
required. For other addressing modes, the number of clock cycles increases to a
maximum of 30. If the memory requires one wait state per access, an additional four
clock periods will be required since there are four memory cycles in the execution of an
add instruction. For the TMS 9900 running at 3 MHz, 14 clock periods will take 4.667
microseconds; 30 clock periods will take 10.0 microseconds. The number of memory
cycles is from 4 up to 8 depending upon addressing mode (3 to 7 for compare, C). Use
the tables in the following manner. Assuming one wait state, a clock frequency of 3
MHz, and an instruction with complex addressing, the tables can be used to determine
the execution time for the instruction

A *R1, @ LIST

is 26 clock cycles for fetch and execution and 6 clock cycles for wait states, or 32 x .333
microseconds which is 10.667 microseconds.

Figures 4-26, 27 and 28 give the rest of the execution time data, always by number of
clock cycles (assuming no wait states) and memory cycles.
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INSTRUCTION EXECUTION

INSTRUCTIONS A, Cy, S, SOC, SZC, MOV

Destination Source Address
Address R *R *R + @LIST @TABLE (R)
R 14 18 22 22 22
*R 18 22 26 26 26
Clock *R+ 22 26 30 30 30
Cycles @LIST 22 26 30 30 30
@TABLE (R) 22 26 30 30 30
R 4 5 6 5 6
*R 5 6 7 6 7
Memory *R+ 6 7 8 7 8
Cycles @LIST 5 6 7 6 7
@TABLE (R) 6 7 8 7 8
R 3 4 5 4 5
tMemory *R 4 5 6 5 6
Cycles *R 4 5 6 7 6 7
for C @LIST 4 5 6 5 6
instr. @TABLE (R) 5 5 6 7 6
Figure 4-25.
INSTRUCTIONS: AB, CB+{, SB. SOCB, SZCB, MOVB
Destination Source Address
Address R *R *R 4+ @LIST @TABLE (R)
R 14 18 20 22 22
*R 18 22 24 26 26
Clock *R+ 20 24 26 28 28
Cycles @LIST 22 26 28 28 28
@TABLE (R) 22 26 28 28 28
R 4 5 6 5 6
*R 5 6 7 6 7
Memory *R+ 6 7 8 7 8
Cycles @LIST 5 6 7 6 7
@TABLE (R) 6 7 8 7 8
R 3 4 5 4 5
+tMemory *R 4 5 6 5 6
Cycles *R+ 5 6 7 6 7
for CB @LIST 4 5 6 5 6
instr. @TABLE (R) 5 6 7 6 7
Figure 4-26.
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INSTRUCTIONS LDCR, STCR

LDCR

Addressing Bit Count, C

Mode 1 2 3 4 5 6 7 8|9 101112131415 0
R 22 24 26 28 30 32 34 36|38 40 42 44 46 48 50 52
*R 26 28 30 32 34 36 38 40{42 44 46 48 50 52 54 56
Clock * 28 30 32 34 36 38 40 42|46 48 50 52 54 56 58 60
Cycles @LIST 30 32 34 36 38 40 42 44|46 48 50 52 54 56 58 60
@TABLE (R) 30 32 34 36 38 40 42 44|46 48 50 52 54 56 58 60

R 3 3

*R 4 4

Memory *R+ 5 5

Cycles @LIST 4 4

@TABLE (R) 5 5

STCR -
4 Addressing Bit Count, C

> Mode 1 2 3 4 5 6 7 8|9 1011 1213 14 15 0
R 42 42 42 42 42 42 42 44158 58 58 58 58 58 58 60
*R 46 46 46 46 46 46 46 48|62 62 62 62 62 62 62 64
Clock *R+ 48 48 48 48 48 48 48 50|66 66 66 66 66 66 66 68
Cycles @LIST 50 50 50 50 50 50 50 52|66 66 66 66 66 66 66 68
@TABLE (R) 50 50 50 50 50 50 50 52|66 66 66 66 66 66 66 68

R 4 4

*R 5 5

Memory *R.. 6 6

Cycles @LIST 5 5

@TABLE (R) 6 6

Figure 4-27.
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Clock Cycles Memory Cycles
Instruction R i*R[*R+ | @LIST, | @TABLE (R) | R | *R | *R+| @LIST | @TABLE (R)

ABS MSB=0 12116 20 20 20 21 3| 4 3 4

MSB =1 14118 | 22 22 22 3| 4 5 4 5
B 8{12| 16 16 16 21 3| 4 3 4
BL 12116 | 20 20 20 3| 4 5 4 5
BLWP 26|30 | 34 34 34 6| 7 8 7 8
CLR 10| 14| 18 18 18 3} 4 5 4 5
DEC 1014 18 18 18 3| 4 5 4 5
DECT 10| 14| 18 18 18 3| 4 5 4 5
INC 10(14] 18 18 18 3| 4 5 4 5
INCT 10|14 ] 18 18 18 3| 4 5 4 5
INV 10|14 18 18 18 3| 4 5 4 5
NEG 121164 20 20 20 3| 4 5 4 5
SETO 10| 141 18 18 18 3] 4 5 4 5
SWPB 1014 18 18 18 3| 4 5 4 5
XOP 36|40 44 44 44 8| 9 8 9 8
XOR 14118 22 22 22 41 5 6 5 6

Figure 4-28.

Cycric OPERATION

-An example of a machine cycle sequence is illustrated in Figure 4-29. For an add
instruction the machine cycles alternate between memory cycles and ALU cycles. The
first cycle is always a memory read cycle to fetch the instruction and the second is always
an ALU cycle to decode the instruction. Each machine cycle requires two clock cycles,
thus the 7 machine cycles shown for the add instruction require 14 clock cycles.

AR1, R2
1 Memory Read Instruction Fetch
2 ALU Decode Opcode
3 Memory Read Fetch (WR1)
4 ALU Set Up
5 Memory Read Fetch (WR2)
6 ALU Addition
7 Memory Write Store Resultin WR2 and

Increment PC

Figure 4-29. Machine Cycles for an Add Instruction

9900 FAMILY SYSTEMS DESIGN 4-35

44



>4

INSTRUCTION EXECUTION Hardware Design:

Architecture and
Interfacing Techniques

The 9900 performs its functions under control of a 4-phase clock and, fundamentally,
performs instruction fetch and execution cycles. Figure 4-30 illustrates the step-by-step
procedure the 9900 uses to execute an add instruction. From previous cycles, the
workspace pointer has been loaded with the number 0800, and the program counter
contains the number 0100.

Step 1. The first step in any instruction cycle is to fetch the instruction. This is
accomplished by gating the content of the program counter into the memory address
register. The output of the memory address register is the address bus which is
connected to the memory. In this case, word number 0100 is read from the memory and
placed in the instruction register on the 9900 chip. From this point, the ones and zeros
of the instruction register control the sequence of microcode stored in the microcontrol
read only memory on the 9900 chip. These microsteps become the execution phase of
the instruction.

Step 2. At this point, the microcontrol shifts to the execution of an add instruction; the
first operand must be obtained from memory. In order to do this, the workspace pointer
and a portion of the instruction word (the source operand register number) are added
together via the ALU and placed in the memory address register.

Step 3. The address 0802 is the result (in this example), and being supplied to the
memory produces on the data bus the content of memory word 0802 which is the binary
equivalent of 25. This number must be stored in a temporary register on the 9900 chip,
in this case the T1 register.

Step 4. Now a second operand must be fetched. Again the workspace pointer is added to
the content of that portion of the instruction word which is the destination register
identifier. The sum of these two is 0804 for register two, and this number is placed in
memory address register and goes out on the address bus.

Step 5. Memory word 0804 is read and the number 10 is brought into the 9900 chip.
The register which stores the second operand is called the source data register or S
register.

Step 6. At this point the two operands have been loaded into registers on the 9900 chip
and may be added by the ALU to produce the result. Register T'1 containing 25 is added
to the register S which contains 10 and the sum, 35, replaces the 10 in the S register and
is placed on the data bus via the S register.

Step 7. The address bus still contains the number 0804 which was the address of the
second operand and is the location in memory where the result is to be stored. So at this
point in the cycle, a memory write cycle is initiated and the binary equivalent of 35 is
stored in memory location 0804. At the conclusion of this memory cycle the program
counter is incremented by two to point to the next sequential memory word, which is the
instruction to be executed next.
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CPU l MEMORY
PC MAR INSTRUCTION
0100, B 0100, ! 1010 | 0000 1000 | ooo1

CYCLE 1:
FETCH

INSTRUCTION (

1010 00 0010 00 0001

)

44

INSTR. REGISTER

WP IR
0800, 1010 00 0010 00 0001
X2
ALU
CYCLE 2
SET-UP
MAR 0802

Figure 4-30a. Add Instruction Cycle
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CPU | MEMORY
MAR ll OPERAND
0802, » 0000 0000 0010 0101
CYCLE 3: l
FETCH I J
FIRST |
OPERAND {
T 0025, |
wp IR |
0800, 1010 | 00 0010 00 | 0001 I
CYCLE 4:
X2 I
SET-UP
ALU I
MAR 08044 I

Figure 4-30b. Add Instruction Cycle
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CPU | MEMORY
MAR | OPERAND
080415 | | 0000 0000 0001 0000
CYCLE 5: [
FETCH
SECOND ’ l J
OPERAND { |
s 001044 l
]
T S (BEFORE) |
0025, 00104 '
CYCLE 6: I
ADD I
ALU |
0035, S (AFTER) I
PC MAR I RESULT
0102y, 0804, P 0000 0000 0011 0101
CYCLE 7: | }
STORE (
RESULT ) |
s 003545 I

Figure 4-30c. Add Instruction Cycle
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After all steps have been done, the processor checks to see if there is any pending

interrupt operations to be performed and, if not, fetches the next instruction and the

cycle continues. In the event that an interrupt signal were present, the processor would
proceed to the appropriate interrupt service routine and continue execution from that

point. Interrupts are described in detail in a special section of this chapter.

Each operation performed by the 9900 consists of a sequence of machine cycles. In each
machine cycle the processor performs a data transfer with memory or with CRU and/or
an arithmetic or logical operation internally with the ALU. A detailed discussion of the
machine cycles for each instruction is included at the end of the chapter.

Each ALU machine cycle is two clock cycles long. In an ALU cycle no external data
transfer occurs, but the ALU performs an arithmetic or logical operation on two
operands contained internally. The function of the memory read cycle is to transfer a
word of data contained in the memory to the processor. An ALU operation may be
performed during the memory read cycle. Memory read cycles are a minimum of two
clock cycles long. The memory write cycle is identical to the memory read cycle except
that data is written rather than read from memory.

Each CRU output machine cycle is two clock cycles long. In addition to outputting a bit
of CRU data, an ALU operation may also be performed internally. The CRU input
cycle is identical to the CRU output cycle except that one bit of data is input rather than
output.

Machine Cycle Limits

Table 4-1 lists information which will be useful for system design. The maximum number
of consecutive memory-read cycles is used to calculate the maximum latency for the
"TMS 9900 to enter the hold state since the hold state is only entered from ALU, CRU
input, or CRU output machine cycles. The minimum frequency of consecutive memory/
non-memory cycle sequences occurs when the DIV instruction is executed. This number
is used to ensure that the refresh rate meets specifications when the transparent-refresh
mode described in the memory section is used since memory is refreshed in this mode
each time an ALU or CRU cycle follows a memory cycle. Figure 4-31 shows the logic to
generate a pulse for each memory access cycle. Consecutive cycle timing is shown in
Figure 4-32.
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Table 4-1. Machine Cycle Limits

MINIMUM MAXIMUM

Consecutive Memory Read Cycles 1
Consecutive Memory Write Cycles 1
Consecutive ALU Cycles 1
Consecutive CRU Cycles 1

Frequency of Consecutive 5 pairs
memory/non-memory cycle (64 machine
pairs (used for transparent cycles during
refresh) DIV.)

vCccC

10K

3
1
51
16

MEMEN

PaTTL
WAIT ——Q

Q
"4

Q p———— MEMCY

ol

[

Figure 4-31. Memory Cycle Pulse Generation
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MEMEN —\ X /-
READY "\ /

WArT /S

wemey — /N / ~N__
Figure 4-32. Memory Cycle Pulse Timing
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INPUT/OUTPUT

The 9900 has three I/0 modes: direct memory access (DMA), memory mapped, and
communications register unit (CRU). This multi-mode capability enables the designer to
optimize a 9900 I/0 system to match a specific application. One or all modes can be
used, as shown in Figure 4-33.

ADDRESS BUS

1 U

SYSTEM
MEMORY

MEMORY
MAPPED

1/0

MEMORY

.L/L CONTROL

e N

DMA CONTROL

DATA BUS /

& COMMUNICATIONS REGISTER UNIT - CRU
¢ MEMORY MAPPED I/0
® DIRECT MEMORY ACCESS - DMA

Figure 4-33. 9900 I/ O Capability

DirecT MEMORY ACCESS

DMA is used for high-speed block data transfer when CPU interaction is undesirable or
not required. The DMA control circuitry can be relatively complex and expensive when
compared to other I/O methods. However, a special interface device, the TMS 9911, is
available for DMA control.

The 9900 controls CRU-based 1/0 transfers between the memory and peripheral
devices. Data must pass through the CPU during these program-driven I/O transfers,
and the CPU may need to be synchronized with the I/O device by interrupts or status-
bit polling.

Some 1/0 devices, such as disk units, transfer large amounts of data to or from memory.
Program driven 1/0 can require relatively large response times, high program
overhead, or complex programming techniques. Consequently, direct memory access
(DMA) is used to permit the I/0 device to transfer data to or from memory without
CPU intervention. DMA can result in a high I/O response time and system throughput,
especially for block data transfers. The DMA control circuitry is somewhat more
expensive and complex than the economical CRU 1/0 circuitry and should therefore be
used only when required.
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The 9900-based DMA can occur in the same modes as dynamic memory refresh: block, or
cycle stealing. The block and cycle stealing modes, however, use the CPU HOLD
capability and are more commonly used. The I/0O device holds HOLD active (low) when a
DMA transfer needs to occur. At the beginning of the next available non-memory cycle,
the CPU enters the hold state and raises HOLDA to acknowledge the HOLD request.
The maximum latency time between the hold request and the hold acknowledge is equal to
three clock cycles plus three memory cycles. The minimum latency time is equal to one
clock cycle. A 3-megahertz system with no wait cycles has a maximum hold latency of nine
clock cycles or 3 microseconds and a minimum hold latency of one clock cycle or 0.3
microseconds.

When HOLDA goes high, the CPU address bus, data bus, DBIN, MEMEN, and WE
are in the high-impedance state to allow the I/0 device to use the memory bus. The 1/0
device must then generate the proper address, data, and control signals and timing to
transfer data to or from the memory as shown in Figure 4-34. Thus the DMA device has
control of the memory bus when the TMS 9900 enters the hold state (HOLDA = 1),
and may perform memory accesses without intervention by the microprocessor. Since
DMA operations, in effect remove the 9900 from control while memory accesses are
being performed, no further discussion is provided in this manual. Because the lines
shown in Figure 4-34 go into high impedance when HOLDA = 1, the DMA controller
must force these signals to the proper levels. The I/0 device can use the memory bus
for one transfer (cycle-stealing mode) or for multiple transfers (block mode). At the end
of the DMA transfer, the I/O device releases HOLD and normal CPU operation
proceeds. The 9900 HOLD and HOLDA timing are shown in-Figure 4-35.

MEemory Marppep 1/0

Memory mapped I/0 permits I/O data to be addressed as memory with parallel data
transfer through the system data bus. Memory mapped 1/O requires a memory bus
compatible interface; that is, the device is addressed in the same manner as a memory,

thus the interface is identical to that of memory. Figure 4-36 shows a memory mapped 1/0
interface with eight latched outputs and eight buffered inputs. In using memory

mapped 1/O for output only, care must be taken in developing the output device strobe

to ensure it is not enabled during the initial read of the memory address, since the 9900
family of processors first reads, then writes data to a memory location in write

operations. This can be effectively accomplished by using the processor write control
signal WE in decoding the output address.
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Figure 4-35. HOLD and HOLDA Timing
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Figure 4-36. 8-Bit Memory Mapped I/ O Interface

CommunicatioN Recister Unit (CRU)

CRU I/0 uses a dedicated bit addressable interface for I/O. The CRU instructions permit
transfer of one to sixteen bits. The CRU interface requires fewer interface signals than

the memory interface and can be expanded without affecting the memory system. In the
majority of applications, CRU I/0 is superior to memory mapped I/O as a result of the
powerful bit manipulation capability, flexible field lengths, and simple bus structure.

The CRU bit manipulation instructions eliminate the masking instructions required to
isolate a bit in memory mapped I/0. The CRU multiple-bit instructions allow the use of
1/0 fields not identical to the memory word size, thus permitting optimal use of the

170 interface. Therefore, the CRU minimizes the size and complexity of the I/O
control programs, while increasing system throughput.

The CRU does not utilize the memory data bus. This can reduce the complexity of
printed circuit board layouts for most systems. The standard 16-pin CRU 1/O devices
are less expensive and easier to insert than larger, specially designed, memory mapped
170 devices. The smaller I/0 devices are possible as a result of the bit addressable CRU
bus which eliminates the need for multiple pins dedicated to a parallel-data bus with
multiple control lines. System costs are lower because of simplified circuit layouts,
increased density, and lower component costs.

9900 FAMILY SYSTEMS DESIGN 4-45



INPUT/ OUTP UT Hardware Design:

Architecture and
Interfacing Techniques

CRU Interface

The interface between the 9900 and CRU devices consists of address bus lines A0-A14,
and the three control lines, CRUIN, CRUOUT, and CRUCLK as shown in Figure 4-33.
A0-A2 indicate whether data is to be transferred and A3-A14 contain the address of the
selected bit for data transfers; therefore, up to 2'* or 4,096 bits of input and 4,096 bits of
output may be individually addressed. CRU operations and memory-data transfers both
use A0-A14; however, these operations are performed independently, thus no conflict
arises. The MEMEN line may be used to distinguish between CRU and memory cycles.

CRU Interface Logic

CRU based 1/0 interfaces are easily implemented using either CRU peripheral devices
such as the TMS 9901 or the TMS 9902, or TTL multiplexers and addressable latches,
such as the TIM 9905 (SN74LS251) and the TIM 9906 (SN74LS259). These I/0

circuits can be easily cascaded with the addition of simple address decoding logic.

TTL Outputs. The TIM 9906 (SN74LS259) octal-addressable latch can be used for
CRU outputs. The latch outputs are stable and are altered only when the CRUCLK is
pulsed during a CRU output transfer. Each addressable latch is enabled only when
addressed as determined by the upper address bits. The least-significant address bits
(A12-A14) determine which of the eight outputs of the selected latch is to be set equal to
CRUOUT during CRUCLK, and shown in Figure 4-37.

MEMORY <

K A9- AN
K A12-A14

L

A0-A14 ABC ¢ OTHER ABC
SN74LS138 | ° CRU
. OUTPUT .
CIRCUITS | _ —>
CRUCLK G1 7 s il d
2
TMS 9900 Qr— a
G24 G88 SN74LS259 5
(TIM 9906) Q3+—> °
>0 4
= Q4> g:.v
Q
CRUOUT »l D as—> ;
RESET b= * =0 CLEAR a6—> =
| T | ol |
RESET

Figure 4-37. Latched CRU Interface
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Figure 4-38. Multiplexer CRU Interface

TTL Inputs. The SN74LS151 and TIM 9905 (SN74LS251) octal multiplexers are used
for CRU inputs as shown in Figure 4-38. The multiplexers are continuously enabled with
CRUIN equal to the addressed input. The TIM 9905 should be used for larger systems
since its three-state outputs permit simple “wire-ORing” of parallel-input multiplexers.

Expanding CRU 170

A CRU interface with eight inputs and eight outputs is shown in Figure 4-39 using the
TMS 9901. An expanded interface with 16 inputs and 16 outputs is shown in Figure 4-
40 using TTL devices. The CRU inputs and outputs can be expanded up to 4096 inputs
and 4096 outputs by decoding the complete CRU address. Larger 1/O requirements can
be satisfied by using memory mapped I/O or by using a CRU bank switch, which is set
and reset under program control. When reset, the lower CRU 1/0 bank is selected, and
when set, the upper CRU 1/0 bank is selected. In actual system applications, however,
only the exact number of interface bits required need to be implemented. It is not
necessary to have a 16-bit CRU output register to interface a 10-bit device.

CRU Machine Cycles

Each CRU operation consists of one or more CRU output or CRU input machine cycles,
each of which is two clock cycles long. As shown in Table 4-2, five instructions (LDCR,
STCR, SBO, SBZ, TB) transfer data to or from the 9900 with CRU machine cycles, and
five external control instructions (IDLE, RSET, CKOF, CKON, LREX) generate
control signals with CRU output machine cycles.

INPUTS
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Figure 4-39. 8-Bit CRU Interface
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Figure 4-40. 16-Bit CRU Interface
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Table 4-2. Instructions Generating CRU Cycles

NUMBER OF TYPE OF DATA
INSTRUCTION | ~pycycLes | crucycLes | A%A? | TRANSFER
LDCR 1-16 Output 000 Yes
STCR 1-16 Input 000 Yes
SBO 1 Output 000 Yes
SBZ 1 Output 000 Yes
TB 1 Input 000 Yes
IDLE 1 Output 010 No
RSET 1 Output 011 No
CKOF 1 Output 101 No
CKON 1 Output 110 No
LREX 1 Ouput 111 No

Figure 4-41 shows the timing for CRU owuzput machine cycles. Address (A0-A14) and

" data (CRUOUT) are output on ¢2 of clock cycle 1. One clock cycle later, the 9900
outputs a pulse on CRUCLK for %2 clock cycle. Thus, CRUCLK can be used as a strobe,
since address and data are stable during the pulse. Referring again to Table 4-2, it is
important to note that output data is transferred only when A0-A2=000. Otherwise, no
data transfer should occur, and A0-A2 should be decoded to determine which external
control instruction is being executed. These external control instructions may be used to
perform simple control operations. The generation of control strobes for external
instructions and a data transfer strobe (OUTCLK) is illustrated in Figure 4-42. If none
of the external control instructions is used, A0-A2 need not be decoded for data transfer
since they will always equal 000.

CLOCK CLOCK
CYCLE 1 | CYCLE 2

1 | I | l l

TN I B |
¢3 I I I l I
o mn_ M

AO0-A14 CRU BIT ADDRESS n
CRUCLK I I

OUTPUT
OPERATION

crRUOUT ") CRUDATAOUT n__X
Figure 4-41. CRU Output Machine Cycle Timing
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Figure 4-42. CRU Control Strobe Generation

The timing for CRU #nput machine cycles is shown in Figure 4-43. The address is output
at the beginning of the first clock cycle. The CRUIN data input is sampled on ¢1 of
clock cycle 2. Thus, CRU input is accomplished by simply multiplexing the addressed bit
onto the CRUIN input. AO-A2 will always be 000, and may be ignored. CRU input
machine cycles cannot be differentiated from ALU cycles by external logic, thus no
operations (such as clearing interrupts) other than CRU input should be performed
during CRU input machine cycles.

INPUT

CLOCK l CLOCK

CYCLE 1 CYCLE 2
o1 T I Il
62 J1 1M 11
03 S B N I E I
o4 I M M

A0-A14  T)(TCRUADDRESSm X

2

<]

- 2 VYV CAAN/
E caun  RQRDONTEAREXXX % XXX
[+4 INPUT VALID

g INPUT BIT m

Figure 4-43. CRU Input Machine Cycle Timing
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CRU Data Transfer

In order to transfer data from a memory location to an external latch in the
Communications Register Unit, or to transfer data from a CRU multiplexer to memory,
special instructions must be used. The CRU instructions are:

SBO Set bit to one (output)

SBZ Set bit to zero (output)

TB Test bit (input)

LDCR Load n bits to CRU (output)
STCR Receive n bits from CRU (input)

These instructions always use the address bus to identify the bit or bits to be transferred,
but they make the actual transfer of data over the dedicated CRU lines, CRUIN and-
CRUOUT. Addressing of the CRU bits is accomplished by adding a portion of the
instruction word to a CRU base address register. The use of such a base address
technique allows one program segment to service any number of identical I/0 devices.
For example: five TMS 9902’s each with its own assigned base address can be

operated from a single program, provided the base address register is properly set at the
beginning. In the 9900, workspace register 12 is the CRU software base address register.
All CRU instructions use the contents of this register in addressing individual CRU bits.

The CRU hardware base address is defined by bits 3-14 of the current WR12 when
CRU data transfer is performed. Bits 0-2 and bit 15 of WR12 are ignored for CRU
address determination.

For single-bit CRU instructions (SBO, SBZ, TB), the address of the CRU bit to or from
which data is transferred is determined as shown in Figure 4-44. Bits 8-15 of the machine
code instruction contain a signed displacement. This signed displacement is added to the
CRU hardware base address (bits 3-14 of WR12). The result of this addition is output

- on A3-A14 during the CRU output or the CRU input machine cycle.

For example, assume the instruction “SBO 9” is executed when WR12 contains a value

of 1040y, The machine code for “SBO 9 is 1D09;, and the signed displacement is

0009;¢. The CRU hardware base address is 0820, (bits 0-2 and bit 15 are ignored).

Thus, the effective CRU bit address is 0820, + 0009, = 08294, and this value is output on
A0-A14 during the CRU output machine cycle.

As a second example, assume that the instruction TB — 32 is executed when
WR12=100,¢. The effective CRU address is 80;5. (CRU hardware base) + FFEQO,4
(signed displacement) = 60,5. Thus, the TB — 32 instruction in this example causes the
value of the CRU input bit at address 60,5 to be transferred to bit 2 of the status register.
This bit is tested in the execution of the JEQ or JNE instructions; if it is a one, the PC
will be loaded with a new value (JEQ instruction).
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Figure 4-44. TMS 9900 Single-Bit CRU Address Development

LDCR Instruction

The LDCR may transfer from 1 to 16 bits of output data with each instruction. Output
of each bit is performed by a CRU output machine cycle; thus, the number of CRU
output machine cycles performed by an LDCR instruction is equal to the number of bits
to be transferred.

As an example, assume that the instruction “LDCR @600,10” is executed, and that
WR12=800,; and the memory word at address 600 contains the bit pattern shown in
Figure 4-45. In the first CRU output machine cycle the least significant bit of the
operand (a) is output on CRUOUT. In each successive machine cycle the address is
incremented by one and the next least-significant bit of the operand is output on
CRUOUT, until 10 bits have been output. It is important to note that the CRU base
address is unaltered by the LDCR instruction, even though the address is incremented as
each successive bit is output.

STCR Instruction

The STCR instructionucauses from 1 to 16 bits of CRU data to be transferred into
memory: Each bit is input by a CRU 1nput machine cycle.

Consider the circuit shown in Figure 4-46. The CRU interface logic multiplexes input
signals m-t onto the CRUIN line for addresses 200,-207,¢. If WR12=400,, when the
instruction “STCR @ 602,6” is executed, the operation is performed as shown in Figure
4-47. At the end of the instruction, the six LSBs of memory byte 602 are loaded with m-
r. The upper bits of the operand are forced to zero.
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Figure 4-45. Multiple-Bit CRU Output
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Figure 4-46. Example CRU Input Circuit
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Figure 4-47. Multiple-Bit CRU Input

CRU Paper Tape Reader Interface

CRU interface circuits are used to interface data and control lines from external devices
to the 9900. This section describes an example interface from a paper tape reader.
The paper tape reader is assumed to have the following characteristics:

L. It generates a TTL-level active-high signal (SPROCKET HOLE) on detection of
a sprocket hole on the paper tape.

2. It generates an 8-bit TTL active-low data which stays valid during SPROCKET
HOLE = 1.

3. It responds to a TTL-level active-high command (Paper Tape RUN) signal by
turning on when PTRUN = 1 and turning off when PTRUN = 0.
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Figure 4-48 illustrates the circuitry to interface the reader to the CRU. The interface is
selected when PTRSEL = 0; PTRSEL is decoded from the A0-A11 address outputs
from the 9900. Thus, the output of the SN74L.S251 is active only when PTRSEL = 0,
otherwise, the output is in high impedance and other devices may drive CRUIN. The
data inputs are selected by A12-A14 and inverted, resulting in active high data input on
CRUIN. The positive transition of SPROCKET HOLE causes PTRINT to go low.
PTRINT is the active low interrupt from the interface. PTRINT is set high, clearing
the interrupt, whenever a CRU output machine cycle is executed and the address causes
PTRSEL to be active. When a one is output, PTRUN is set, enabling the reader, and
the reader is disabled when a zero is output to the device. Thus, any time PTRUN is set
or reset, the interrupt is automatically cleared.
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Figure 4-48. Paper Tape Reader Interface
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The software routine in Figure 4-49 controls the paper-tape reader interface described

above. It is a re-entrant procedure that can be shared by several readers. The

assumptions are that:

1. Each reader has its own workspace which is set up on the trap location for that
reader’s interrupt.

2. The workspace registers are allocated as shown in Figure 4-50.

3. The CRU input bits 0-7 (relative to CRU base) are reader data. CRU output bit O
controls PTRUN and clears the interrupt.

4. The most significant byte of R9= End of File Code.
5. R10=Overflow Count
6. R11 = Data Table Pointer Address.

The procedure has two entry points. It is entered by a calling routine at PTRBEG to
start the reader and it returns control to that routine. It is entered at PTRINT via
interrupt to read a character. The return in this case is to the interrupted program.

The control program may be used by any number of paper-tape reader interfaces, as
long as each interface has a separate interrupt level and workspace. As each reader issues
an interrupt, the 9900 will process the interrupt beginning at location PTRINT.
However, the workspace unique to the interrupting device is used. The organization of
memory to control two paper tape readers is shown in Figure 4-50. The interrupt-
transfer vector causes the appropriate WP value to be loaded. In both cases PTRINT,
the entry point for the control program, is loaded into the PC.

PTRINT STCR *R11,8
CcB *R11+, R9
JEQ PTREND
DEC R10
JEQ PTREND
PTRBEG SBO PTRUN
RTWP
PTREND SBZ PTRUN
] R10, MAXCOUNT
RTWP

Figure 4-49. Paper Tape Reader Control Program
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Figure 4-50. Software Configuration for Two Paper Tape Readers with Common Control Program

Burroughs SELF-SCAN Display Interface

This section describes a TMS9900 CRU interface to a Burroughs SELF-SCAN® panel
display model SS30132-0070. The display panel has a 32-position, single-row character
array with a repertoire of 128 characters.

The panel display operates in a serial-shift mode in which characters are shifted into the
panel one at a time. Characters are shifted in right-to-left and can be shifted or
backspaced left-to-right. A clear pulse erases the display.
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The CRU display interface is shown in Figure 4-5/ and a display control subroutine is
shown in Figure 4-52. The subroutine is called by one of two XOP instructions, XOP0
and XOP1. The calling routine passes the address and length of the output string in
registers 8 and 9 of its workspace. The two XOP subroutines share the same workspace
and perform the same function except that XOP1 clears the panel display first. The
backspace feature is not used. The panel display is blanked during character entry.

MEMORY

4N

AD A14
-
<
>4 CRUCLK
CRUOUT
TMS 9900
< <« cpPU
- -
q a
~ N
o o
& *
N \
ABC G D ABC G D
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(TIM 9906) (TIM 9906) —» cCRUIN
Q7 Q1 Qo Q7 Q6 Q504 Q3 Q2 Q1 QO
6/
OTHER
CRU
OUTPUTS
Y Y Y ¥ )
BLANK =~ CLEARB B B B B B B DATA
T 64 3216 8 4 2 1 TAKEN
= PRESENT
5V —— DISPLAY MODEL
-2V —| $530132—0070
120V — ]

Figure 4-51. Display Control Interface
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INTERRUPTS
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Wait for Data Taken

Decrement Count
Loop Until Through
Unblank Panel
Return

Figure 4-52. Burroughs SELF-SCAN® Display Control Program

INTERRUPTS

The TMS 9900 provides fifteen maskable interrupt levels in addition to the RESET and
LOAD functions. The CPU has a priority ranking system to resolve conflicts between
simultaneous interrupts and a level mask to disable lower priority interrupts. Once an
interrupt is recognized, the CPU performs a vectored context switch to the interrupt

service routine. The RESET and LOAD functions are initiated by external input

signals.

9900 FAMILY SYSTEMS DESIGN

4-59



P 4

INTERRUPTS Hardware Design:

Architecture and

Interfacing Techniques
-]

RESET

The RESET signal is normally used to initialize the CPU following a power-up. When
active (low), the RESET signal inhibits WE and CRUCLLK, places the CPU memory
bus and control signals in a high-impedance state, and resets the CPU. When the
RESET signal is released, the CPU fetches the restart vector from locations 0000 and
0002, stores the old WP, PC, and ST into the new workspace, resets all status bits to
zero and starts execution at the new PC. The RESET signal must be held active for a
minimum of three clock cycles. The RESET machine cycle sequence is shown in Figure
4-53.

A convenient method of generating the RESET signal is to use the Schmitt-triggered D-
input of the TIM9904 clock generator. An RC network connected to the D-input
maintains an active RESET signal for a short time immediately following the power-on,
as shown in Figure 4-54.

CYCLE TYPE FUNCTION
* * Loop While Reset is Active
ALU Set Up
2 ALU Set Up
3 Memory Fetch New WP, Move Status To
T Reg, Clear Status
4 ALU Set Up
5 Memory Store Status
6 ALU Set Up
7 Memory Store PC
8 ALU Set Up
9 Memory Store WP
10 ALU Set Up
1 Memory Fetch New PC
12 ALU Set Up MAR for Next
Instruction

Figure 4-53. RESET Machine Cycles
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Figure 4-54. RESET Generation

Loap

The LOAD signal is normally used to implement a restart ROM loader or front panel
functions. When active (low), the LOAD signal causes the CPU to perform a non-
maskable interrupt. The LOAD signal can be used to terminate a CPU idle state.

The LOAD signal should be active for one instruction period. Since there is no standard
TMS 9900 instruction period, IAQ should be used to determine instruction boundaries.
If the LOAD signal is active during the time that the RESET signal is released, the
CPU will perform the LOAD function immediately after the RESET function is
completed. The CPU performs the LOAD function by fetching the LOAD vector from
addresses FFFC,; and FFFE, storing the old WP, PC, and ST in the new workspace,
and starting the LOAD service routine at the new PC, as shown in Figure 4-55.

An example of the use of the LOAD signal is a bootstrap ROM loader. When the
LOAD signal is enabled, the CPU enters the service routine, transfers a program from
peripheral storage to RAM, and then transfers control to the loaded program.

Figure 4-56 illustrates the generation of the LOAD signal for one instruction period.
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CYCLE TYPE FUNCTION
1 ALU Set Up
2 Memory Read Fetch New WP
3 ALU Set Up
4 Memory Write Store Status
5 ALU Set Up
6 Memory Write Store PC
7 ALU Set Up
8 Memory Write Store WP
9 ALU Set Up
10 Memory Read Fetch New PC
1 ALU Set UP MAR for Next

Instruction

Figure 4-55. LOAD Machine Cycle Sequence

+5 +5

o Q
+5 — D Q D Q
TMS 9900
%SN74LS74 %SN74LS74 cPU
LOADCK —> Q > a LOAD
cL cL
? Y s
1AQ

Figure 4-56. LOAD Generation

4-62

9900 FAMILY SYSTEMS DESIGN



Hardware Design: » INTERRUP TS

Architecture and
Interfacing Techniques

|
Basic MacHINE CycLE

The interrelationship between the LOAD and RESET signals and the general
operation of the 9900 and execution of instructions may best be shown by the flow
diagram in Figure 4-57. An orderly starting procedure involves the holding of the
RESET line low when power is applied to the chip. After application of power and after
the clock has begun to run, the internal instruction control circuitry checks to see if the
RESET line is held low, and, if the answer is “yes”, will stay in a loop as shown in the
diagram. When the RESET line goes high, it is no longer active and a level zero
interrupt is taken in which the RESET vector, the numbers to fill the workspace pointer
and program counter registers, are fetched from memory locations zero and two.
Furthermore, the previous values of the workspace pointer, program counter and status
register are stored in the new workspace, although these values are random numbers
immediately following power up. Following this, the interrupt mask is set to zero to
mask all other interrupts.

The next decision is regarding the LOAD line. If this particular line is active, or low,
then immediately there will be another context switch in which the LOAD vector will
be brought in from the last two locations in memory, FFFC,; and FFFE,;, and loaded
into the workspace pointer and program counter respectively. If the LOAD is not
active, the 9900 proceeds directly to an instruction acquisition cycle. In either case, the
very next step is to fetch the instruction from the memory and execute it.

Following this, the program counter is updated and a sequence of checks made regarding
the LOAD, XOP, and interrupt conditions. First is the check for the LOAD line. If this
is active, the LOAD context switch will occur. If not, there will be a test to see if the
instruction just executed was an XOP or BLWP. If not, the interrupt request line will be
checked. If there is not an interrupt request, and the last instruction was not an idle
instruction, the machine may proceed to fetch the next instruction and continue.

In the event that the last instruction executed was an XOP or BLWP, the 9900 will
ignore the interrupt request line and will proceed to fetch a new instruction. This insures
that at least one instruction of a subprogram that is entered via a context switch will be
executed before another context switch may occur, such as an interrupt. In the event
that the interrupt request line is active following the execution of a normal instruction, a
test is made to determine that the interrupt is valid, that is to say, “Is the interrupt mask
set to allow this interrupt.” If the interrupt is not allowed, the processor proceeds to
fetch the next instruction. In the event that it is allowed, a context switch will be made
and the interrupt vector from the appropriate locations in the first 32 words of memory
will be fetched and the workspace pointer and program counter will be loaded with the
new numbers. As a part of this context switch, the interrupt mask is set to a level one
less than the interrupt just taken. This is to insure that no lower priority interrupt may
occur during the servicing of the current interrupt cycle. Notice further that in this
diagram that the logic is such that at least one instruction of any subprogram will be
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executed immediately following a context switch. The only exception to this is the
simultaneous presence of RESET and LOAD signals. Finally, the idle instruction will
suspend instruction execution in the 9900 until an interrupt, RESET or LOAD signal
occurs,

MASKABLE INTERRUPTS

The TMS 9900 has 16 interrupt levels with the lower 15 priority levels used for
maskable interrupts. The maskable interrupts are prioritized and have transfer vectors
similar to the RESET and LOAD vectors.

Interrupt Service

A pending interrupt of unmasked priority level is serviced at the end of the current
instruction cycle with two exceptions. The first instruction of a RESET, LOAD, or
interrupt service routine is executed before the CPU tests the INTREQ signal. The
interrupt is also inhibited for one instruction if the current instruction is a branch and
load workspace pointer instruction (BLWP) or an extended operation (XOP). The one
instruction delay permits one instruction to be completed before an interrupt context
switch can occur. A LIMI instruction can be used as the first instruction in a routine to
lock out higher priority maskable interrupts.

_ The pending interrupt request should remain active until recognized by the CPU during

the service routine. The interrupt request should then be cleared under program control.
The CRU bit manipulation instructions can be used to recognize and clear the interrupt
request.

The interrupt context switch causes the interrupt vector to be fetched, the old WP, PC,
and ST to be saved in the new workspace, and the new WP and PC to be loaded. Bits
12-15 of ST are loaded with a value of one less than the level of the interrupt being
serviced. The old WP, PC, and ST are stored in the new workspace registers 13, 14, and
15. When the return instruction is executed, the old WP, PC, and ST are restéred to the
CPU. Since the ST contains the interrupt mask, the old interrupt level is also restored.
Consequently, all interrupt service routines should terminate with the return instruction
in order to restore the CPU to its state before the interrupt.

The linkage between two interrupt service routines is shown in Figure 4-58 and the
interrupt machine cycle sequence is shown in Figure 4-59.
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INSTRUCTION
ACQUISITION
RESET SIGNAL
CAUSES IMMEDIATE \
ENTRY HERE INSTRUCTION
EXECUTION
UPDATE PC
Y LOAD
ACTIVE?
GET RESET VECTOR
(WP AND PC) 4‘
FROM LOCATION 0, 2
jvTORE PREVIOUS PC, XOP OR BLWP %
P, AND ST IN NEW INSTRUCTION? o
WORKSPACE. SET
INTERRUPT MASK
(ST12—-ST15)= 0
INTERRUPT?
LOAD (INTREQ
ACTIVE? ACTIVE)
INTERRUPT N
VALID? (ICO-IC3<
\ T12-ST15)
GET LOAD VECTOR
(WP AND PC) FROM
LOCATION FFFCqg,
FFFEqg GET INTERRUPT LEVEL IDLE
STORE PREVIOUS PC, VECTOR (WP AND PC) INSTRUCTION?
WP, AND ST IN NEW STORE PREVIOUS PC,
WORKSPACE. SET WP, AND ST IN NEW
INTERRUPT MASK moTF:z';SRPSIETEMSAEsTK (ST12
(ST12 - ST15) =0 —ST15) TO LEVEL —1

Figure 4-57. TMS 9900 CPU Flow Chart
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. ]
Interrupt Signals

The TMS 9900 has five inputs that control maskable interrupts. The INTREQ signal is
active (low) when a maskable interrupt is pending. If INTREQ is active at the end of
the instruction cycle, the CPU compares the priority code on ICO through IC3 to the
interrupt mask (ST12-ST15). If the interrupt code of the pending interrupt is equal to
or less than the current interrupt mask, the CPU executes a vectored interrupt;
otherwise, the interrupt request is ignored. The interrupt priority codes are shown in
Table 4-3. Note that the level-0 interrupt code should not be used for external interrupts
since level 0 is reserved for RESET.

. TMS 9900
| e ® |
> PROGRAM A w ® ]
GENERAL MEMORY L ST (8) J

PROGRAM B

GENERAL MEMORY

WRO0
WR1

WORKSPACE B
| wriz- wp (A
WR14 . PC (A)
WR15. ST  (A)

GENERAL MEMORY

Y

WRO

WORKSPACE A

WR15

Figure 4-58. Interrupt Linkage
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CYCLE TYPE FUNCTION

1 ALU Set Up
2 Memory Read Fetch New WP
3 ALU Set Up
4 Memory Write Store Status
5 ALU Set Up
6 Memory Write Store PC
7 ALU Set Up
8 Memory Write Store WP
9 ALU Set Up

10 Memory Read Fetch New PC

11 ALU Set Up MAR for Next

Instruction
Figure 4-59. Interrupt Processing Machine Cycle Sequence 4

Figure 4-60 illustrates the use of the TMS 9901 programmable system interface for
generation of the interrupt code from individual interrupt input lines. The TMS 9901
provides six dedicated and nine programmable latched, synchronized, and prioritized
interrupts, complete with individual enabling/disabling masks. Synchronization prevents
transition of ICO-IC3 while the code is being read. A single-interrupt system with an
arbitrarily chosen level-7 code is shown in Figure 4-61. The single-interrupt input does
not need to be synchronized since the hardwired interrupt code is always stable.

Interrupt Masking

The TMS 9900 uses a four-bit field in the status register, ST12 through ST15, to
determine the current interrupt priority level. The interrupt mask is automatically
loaded with a value of one less than the level of the maskable interrupt being serviced.
The interrupt mask is also affected by the load interrupt mask instruction (LIMI).

Since the interrupt mask is compared to the external interrupt code before an interrupt
is recognized, an interrupt service routine will not be halted due to another interrupt of
lower or equal priority unless a LIMI instruction is used to alter the interrupt mask. The
LIMI instruction can be used to alter the interrupt-mask level in order to disable
intervening interrupt levels. At the end of the service routine, a return (RTWP)
restores the interrupt mask to its value before the current interrupt occurred.
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TiM 9904

Q CLOCK GENERATOR
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™S
9900
CPU

A10
All
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A13
A4

RESET

Vee
B‘“I
#3
CRU -
AC - A9 DECODE =
™S

s1

CRUOUT

CRUCLK

CRUIN

RST1

Figure 4-60. System With 15 External Interrupts

Table 4-3. Interrupt Priority Codes

9901

PSI SYSTEM
S0 INTERRUPTS
S2
sS4

Vector Location Interrupt Mask Values To Interrupt
Interrupt Level {(Memory Address Device A Enable Resp Interrupts Codes
in Hex) (ST12 thru ST15) 1CO thru IC3

{Highest priority) 0 00 Reset 0 through F* 0000
1 04 External device 1 through F 0001

2 08 2 through F 0010

3 oc 3 through F 0011

4 10 4 through F 0100

5 14 6 through F 0101

6 18 6 through F 0110

7 1Cc 7 through F o111

8 20 8 through F 1000

9 24 9 through F 1001

10 28 A through F 1010

11 2C 8 through F 1011

12 30 C through F 1100

13 34 D through F 1101

14 38 4 Eand F 1110

(Lowest priority) 15 3C External device F only 1M1

*Level 0 can not be disabled.
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INTREQ

_:r‘ ico

INTERRUPT

TMS 9900

IC1

+5 Ic2

1C3

44

Figure 4-61. Single-Interrupt System

Note that the TMS 9900 actually generates the interrupt vector address using IC0-IC3
five clock cycles after it has sampled INTREQ and four clock cycles after it has
compared the interrupt code to the interrupt mask in the status register. Thus, interrupt
sources which have individual masking capability can cause erroneous operation if a
command to the device to mask the interrupt occurs at a time when the interrupt is
active and just after the TMS 9900 has sampled INTREQ but before the vector address
has been generated using ICO-IC3. ‘

The individual interrupt masking operation can be easily allowed if the masking
instruction is placed in a short subroutine which masks all interrupts with a LIMI 0
instruction before individually masking the interrupt at the device, as shown in
Figure 4-62.
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INCORRECT
XXX
SBO 0 SET MASK (INTERRUPT CAN OCCUR
DURING SBO CAUSING ERRONEOUS
YYY OPERATION)
CORRECT
XXX
BLWP 9 (WR9) = ADDRESS OF SBW
(WR10) = ADDRESS OF SB1
XXXX
SB1 LIMI ] CLEAR STATUS MASK TO INHIBIT INTERRUPTS
Mov @24(13),12 MOVE CRU BASE ADDRESS TO WR12
SBO 0 SET MASK
RTWP RETURN
SBW BSS 32 SUBROUTINE WORKSPACE

Figure 4-62. External Interrupt Clearing Routine

Interrupt Processing Example

The routine in Figure 4-63 illustrates the use of the LIMI instruction as a privileged or
non-interruptable instruction. The level-5 routine sets a CRU bit and then loops until a
corresponding CRU bit is true. The first instruction in the routine is completed before a
higher priority interrupt can be recognized. The LIMI instruction, however, raises the
CPU priority level to level 0 in order to disable all other maskable interrupts.
Consequently, the level-5 routine will run to completion unless a RESET signal or a
LOAD signal is generated. At the end of the routine, the RTWP instruction restores
the CPU to its state before the level-5 interrupt occurred.

Level 5 LiMI 0 Disable Maskable INTREQs
SBO ACK Set CRU Output Bit

Loop TB RDY Test CRU iInput Bit
JNE LOOP Loop Until Input True
RTWP Return

Figure 4-63. LIMI Instruction Routine
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ELECTRICAL REQUIREMENTS

UNDERSTANDING THE ELECTRICAL SPECIFICATIONS

A description of the interface to the 9900 would be incomplete without a set of
specifications for the electrical signals which perform the functions described in the
previous sections. Each pin of the 9900 may be characterized with a set of minimum and
maximum voltage and current levels. In many cases, the switching characteristics, the

rate of transition from the high state to the low state is also important. The detailed
electrical specifications for each of the processors in the 9900 family are given in the
Product Data chapter. A brief statement about the basic concepts of device characterization
and data sheet specification is of value to designers with limited exposure to microprocessor
and semiconductor memory products.

Specifications are given in two ways. First, absolute maximum ratings are given which
simply define the limits of stress which the chip can withstand without damage. (Figure 4-
64 shows the absolute maximum ratings for the TMS 9900.) The normal design
specification is the recommended operating conditions table (Figure 4-65) which specifies
power supply limits, signal voltage levels, and the operating temperature range. In
reading these two tables it is necessary to read the explanatory notes, one of which points
out that the absolute maximum power supply voltages are specified with respect to the
chip substrate or Vgg (pin 1). In the normal operating conditions, all voltages are
specified with respect to the Vgs or ground (pins 26, 40). The four voltages given, Vg,
Ve, Voo, and Vs are not actually four power supplies, but three power supplies: + 5V,
—5V, and + 12V, with Vg being the ground or reference point.

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)*

Supply voltage, Vg (seeNote1) . . . . . . . . . . . . . . . . . . . . ... .-03tw20V
Supply voltage, Vpp (seeNote 1) . . . . . . . . . . . . . . . . . . . . . . . .-03tw20V
Supply voltage, Vgg fseeNote 1) . . . . . . . . . . . . . . . . . . .. ... .-03t020V
All input voltages {see Note 1} . . . . . . . . . . . . . . . . . . . . . . . . .-03w020V
Output voltage (with respecttoVsgs) . . . . . . . . . . . . . . . . . . . . . .. =2Vto?7V
Continuous power dissipation . . . . . . . . . . e e e e e e e e e s 2w
Operating free-air temperature range . . . . . . . . . . . . . « « . . . . .. . .0Ct70C
Storage temperaturerange. . . . . . . . . . . + +« . « . . . . . . . . . . .-B5°Cto150°C

*Stresses beyond those listed under ‘‘Apsolute Maximum Ratings’’ mév cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions beyond those indicated in the “Recommended Operating Conditions’*
section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Under absolute maximum ratings voltage values are with respect to the most negative supply, Vgg (substrate), unless otherwise

noted. Throughout the remainder of this section, voitage values are with respect to Vgg.

Figure 4-64. Absolute Maximum Ratings
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RECOMMENDED OPERATING CONDITIONS

MIN NOM MAX UNIT
Supply voltage, Vg —5.25 -5 -4.75 \%
Supply voltage, Ve 4.75 5 5.25 \
Supply voltage, Vpp 11.4 12 12.6 i
Supply voltage, Vgg [¢] \
High-level input voltage, V| (all inputs except clocks) 2.2 24 Vcctt \
High-level clock input voltage, ViH(e) VpD-2 VpD v
Low-level input voltage, V| (all inputs except clocks) -1 0.4 0.8 v
Low-level clock input voltage, V|| (¢} —0.3 0.3 0.6 \
Operating free-air temperature, T 0 70 C

Figure 4-65. Recommended Operating Conditions

Input signals should be in the range from 2.2V to 6V (assuming Vc is 5V) for the high
level, the nominal design point being at 2.4V. Low level input voltage should be below
0.6V (but not less than —0.3V.) These specifications are not the same as the standard
TTL specifications as far as the “worst case” design criteria are concerned. Care should
be exercised when interfacing the 9900 with T'TL circuits that loading of the TTL
devices does not produce input voltages to the 9900 which are outside the specified
range.

The clock signal voltages are substantially different from the TTL standard; however,
the TMS 9904 is available to provide these signals.

The electrical characteristics specification, Figure 4-66. defines the current into or out of
the 9900 chip at the operating voltage levels. The input current, I, is specified for four
groups of input signals over a range of input voltages. For example, the input current for
any input op the data bus (when reading data from the memory) is nominally % 50
microamps over the input voltage range from OV to 5V (when Vg is 5V). The current is
negative (flowing out of the 9900) for low levels, and positive (into the 9900) for high
levels. For “worst case” design the maximum values should be used.

Voltage specifications on the output pins show how the 9900 output devices drive
external circuits. For the high level, Voy, the voltage will be at least 2.4V but may go as
high as 5V (Vec) under the condition of output current of 0.4 mA. (Currents flowing out
of the chip are shown as negative values.) When an output signal is at the low state, the
output voltage, Vo, will be no greater than 0.65V when the current flowing into the
chipis 3.2 mA. Although the I-V characteristic of the output circuit is nonlinear, a
second data point is given: if the current is 2 mA, the voltage will be no greater than
0.50V. These numbers tell the designer what the output drive circuit current sinking
capability is. Two standard TTL loads (1.6 mA each) can be accommodated, but the Vo,
level, as specified, may be as high as at 0.65V (the standard TTL specification for
outputs is Vor, 0.4V.)

4.72 9900 FAMILY SYSTEMS DESIGN



ELECTRICAL REQUIREMENTS

Hardware Design:
Architecture and
Interfacing Techniques

ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS
(UNLESS OTHERWISE NOTED)

PARAMETER TEST CONDITIONS MIN TYPt MAX UNIT
Data bus during DBIN Vi =VggtoVee +50 +100
WE, MEMEN, DBIN, Address Vi v v 50 100
= to H +
1] Input current | bus, Data bus during HOLDA : S8 cc A
Clock * Vi=-03t0126 V +25 +75
Any other inputs V) =Vgsto Ve 1 10
VOH High-level output voltage 10=-04mA 2.4 Vee \
10=32mA 0.65
Low-level output voltage N
VoL P 9 To-2mA 0.50
IgB Supply current from Vgg 0.1 1 mA
lce Supply current from Vge 50 75 mA
IpD Supply current from Vpp 25 45 mA
Input capacitance (any inputs except Vgg = -5, f=1MHz,
C; v P g~ ~5 f 10 15 oF
clock and data bus) unmeasured pins at Vgg
Ci(»1) Clock-1 input capacitance Vg = =5, f=1MHz, 100 150 pF
unmeasured pins at Vgg 4{
= f=
Citp2) Clock-2 input capacitance Ves = =5, ) 1MHz, 150 200 pF
unmeasured pins at Vgg
Vgg = — = 1MHz,
Ci(p3) Clock-3 input capacitance 8B 5 f ! z 100 150 pF
unmeasured pins at Vgg
Ci(pa) Clock-4 input capacitance Ves = -5, f=1MHz, 100 150 pF
unmeasured pins at Vgg
vgg = -5, f=1MHz,
Cps Data bus capacitance BB ) 15 25 pF
unmeasured pins at Vgg
Output capacitance (any output except vgg =—5, f=1MHz,
Co . 10 15 pF
data bus) unmeasured pins at Vgg

TAll typical values are at T = 25°C and nominal voltages.
*D.C. Component of Operating Clock

Figure 4-66. Electrical Characteristics

The timing of the various signals on the TMS 9900 chip is shown in Figure 4-67. The
fundamental propagation time from a clock phase pulse (leading edge) to the specified
output is given as t, and is typically 20 ns but is never more than 40 ns (worst case). The
parameters tp, and t,uy, are the propagation delays from the appropriate clock signal to
the low-to-high transition of the output (t,.u) or the high-to-low transition of the output
(touL). For example, the WE signal makes its high-to-low transition 20 ns after ¢1 clock,
and makes a low-to-high transition 20 ns after the next ¢1 clock. Most of the output
signals make transitions 20 ns after the ¢2 clock, and remain valid until the next 02
clock.

Additional information regarding design constraints based on the electrical specifications
is given in the next section.
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SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

tpLLH or tpHL Propagation delay time, clocks to outputs CL =200 pF 20 ns

INPUT

CLOCK o1

CLOCK ¢2

CLOCK ¢3

CLOCK ¢4

CRUCLK OUTPUT

WE OUTPUT

WAIT QUTPUT

MEMEN

DBIN

SRR
—’I‘m"-‘ —-|‘h *4—

I l 9.4V l | 9.4v
0.7v 07V |
[

9.4v

[
| 9.4v
I
|

|
"—tPLH(C) | —-.I I‘—‘?HL(C)

L
|
0.4V

|

|

|

9.4V '
}| \ |

|

|

|

|

[

S IR N B

I
|
|
l
I
|
[
|
|

|

|

|

|

|

I

|

]

|

/— ZAV | | |
—.i ten(C) ! !
r_ —s] !‘— tr{C) ]

| |

|

|

|

|

I

|

|

24V
0.av | &; .
I | | —» r-tm(m
tpHL(c)_’I jo— I L
I f'Z.AV |
[l 04V
1
|
L
' J
tau(C) OR tm(C)—>| |~ tn(C) OR th(C) —> 1 [—
| /F !
|
tnn(B) OR tr(B) —| |

<

|
. AN\ FZ ’ \ \Y
wcemen s BTN nir Al

Figure 4-67. Switching Characteristics
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DetarLep ELectricaL INTERFACE SpEciFicaTions (TMS 9900)

This section reviews the TMS 9900 electrical requirements, including the system clock
generation and interface signal characteristics. The “TMS9900 Data Manual”
(Chapter 8) should be used for minimum and maximum values.

TMS 9900 Clock Generation

The TMS 9900 requires a non-overlapping four-phase clock system with high-level
MOS drivers. Additional TTL outputs are typically required for external signal
synchronization or for dynamic memory controllers. A single-chip clock driver, the TIM
9904, can be used to produce these clock signals. An alternative clock generator uses
standard TTL logic circuits and discrete components.

The TMS 9900 requires four non-overlapping 12V clocks. The clock frequency can

vary from 2 to 3 Megahertz. The clock rise and fall times must not exceed

100 nanoseconds and must be 10 to 15 nanoseconds for higher frequencies in

order to satisfy clock pulse width requirements. While the clocks must not overlap, the 4 <
delay time between clocks must not exceed 50 microseconds at lower frequencies. The

typical clock timing for 3 MHz is illustrated in Figure 4-68.

333 ns

~X_

/7

Figure 4-68. TMS 9900 Typical Clock Timing
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TIM 9904 Clock Generator

The TIM 9904 (SN74LS362) is a single-chip clock generator and driver for use with
the TMS 9900. The TIM 9904 contains a crystal-controlled oscillator, waveshaping
circuitry, a synchronizing flip-flop, and quad MOS/TTL drivers as shown in Figure 4-69.

The clock frequency is selected by either an external crystal or by an external TTL-
level oscillator input. Crystal operation requires a 16X input crystal frequency since the
TIM 9904 divides the input frequency for waveshaping. For 3-megahertz operation, a
48-megahertz crystal is required. The LC tank inputs permit the use of overtone
crystals. The LC network values are determined by the network resonant frequency:

1

2m/LC

For less precise frequency control, a capacitor can be used instead of the crystal.

The external-oscillator input can be used instead of the crystal input. The oscillator input
frequency is 4X the output frequency. A 12-megahertz input oscillator frequency is
required for a 3-megahertz output frequency. A 4X TTL-compatible oscillator output
(OSCOUT) is provided in order to permit the derivation of other system timing signals
from the crystal or oscillator frequency source.

The oscillator frequency is divided by four to provide the proper frequency for each of
the 4-clock phases. A high-level MOS output and an inverted TTL-compatible output is
provided by each clock phase. The MOS-level clocks are used for the TMS 9900 CPU
while the TTL clocks are used for system timing.

The D-type flip-flop is clocked by ¢3 and can be used to synchronize external signals

- such as a RESET. The Schmitt-triggered input permits the use of an external RC

network for power-on RESET generation. The RC values are dependent on the power
supply rise time and should hold RESET low for at least three clock cycles after the
supply voltages reach the minimum voltages.

All' TIM 9904 TTL-compatible outputs have standard short circuit protection. The
high-level MOS clock outputs, however, do not have short circuit protection.
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Figure 4-69. TIM 9904 Clock Generator
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This driver uses inexpensive 2N3703s and 2N3704s and broad tolerance passive
components. Resistor tolerances can be 10% with capacitor variations as much as 20%
without affecting its performance noticeably. It shows very little sensitivity to transistor
variations and its propagation times are largely unaffected by output capacitive loading.
It produces rise times in the 10-12 ns region with fall times from 8-10 ns, driving 200 pF
capacitive loads. Propagation times for this driver are such that it produces an output
pulse that is wider than its input pulse. This driver can easily be used at 3 megahertz
without special selection of components. It does have the disadvantage of taking nine
discrete components per driver, but if assembly costs are prohibitive, these can be
reduced by using two Q2T2222 and two Q2T2905 transistor packs. The Q2T2222 is
basically four NPN transistors of the 2N2222 type while the Q2T2905 has four PNP,
2N2905 type transistors in single 14-pin dual-in-line packages. Thus, all four drivers can
be built using two packages each of these quad packs.

TMS 9900 Signal Interfacing

The non-clock CPU inputs and outputs are TTL compatible and can be used with
bipolar circuits without external pull-up resistors or level shifters. The TMS 9900 inputs
are high impendance to minimize loading on peripheral circuits. The TMS 9900 outputs
can drive approximately two TTL loads, thus eliminating the need for buffer circuits in
many systems.

Switching Levels

The TMS 9900 input switch levels are compatible with most MOS and TTL circuits
and do not require pull-up resistors to reach the required high-level input switching
voltage. The TMS 9900 output levels can drive most MOS and bipolar inputs. Some
typical switching levels are shown in Table 4-4.

Table 4-4. Switch Levels

SWITCHING
LEVEL T™S | TMS ™S SN | SN
(v) 9900 [ 2708 | 4042-2 | 74XX|74LSXX
V|H min 22 | 3.0 2.2 20 | 20
Vi max 06 | 0.65 0.65 08 | 0.7
VoH* min 24 |37 2.2 24 | 2.7
VoL max 0.5 | 045 0.45 0.5 | 0.5

*Vou exceeds 2.4 V as shown in Figure 4-70.
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Interfacing Techniques

It should be noted that some MOS circuits such as the TMS 4700 ROM and the TMS
2708 EPROM have a minimum high-level input voltage of 3 V to 3.3 V, which exceeds
the TMS 9900 minimum high-level output voltage of 2.4 V. The TMS 9900 high-level
output voltage exceeds 3.3 V; however, longer transition times as shown in Figure 4-70
are required.

Loading

The TMS 9900 has high-impedance inputs to minimize loading on the system buses.
The CPU data bus presents a maximum current load of £ 100 pA when DBIN is high.

WE, MEMEN, and DBIN cause a maximum current load of £ 100 pA during HOLDA.

Otherwise, the TMS 9900 inputs present a current load of only % 10 pA. The data bus
inputs have a 25-picofarad input capacitance, and all other non-clock inputs have a 15-
picofarad input capacitance.

The TMS 9900 outputs can drive approximately two standard TTL loads. Since most
memory devices have high-impedance inputs, the CPU can drive small memory systems
without address or data buffers. If the bus load exceeds the equivalent of two TTL unit
loads, external buffers are required.

The TMS 9900 output switching characteristics are determined for approximately 200
picofarads. Higher capacitive loads can be driven with degraded switching characteristics
as shown in Figure 4-71.

VOH

TA=70 C

C|=200pF

40 50 60 TPLH
PHL(ns) NSEC

Figure 4-70. tovy vs Vou Tpical Output Levels

9900 FAMILY SYSTEMS DESIGN

479

44



>4

ELECTRICAL REQUIREMENTS Hardware Design:

Architecture and
Interfacing Techniques

75

T 1 LI T

100 200 300 400
CL

. Figure 4-71. tpo vs Load Capacitance (Typical)

Recommended Interface Logic

The TMS 9900 is compatible with the logic from any of the common TTL logic
families. The Texas Instruments low-power Schottky logic circuits are, however,
recommended for use in microprocessor systems. The SN74LSXX circuits have higher
impedance inputs than standard TTL, allowing more circuits to be used without
buffering. The SN74LSXX gates also consume less power at similar switching speeds.
Texas Instruments has a wide assortment of bipolar support circuits which can be used
with the TMS 9900, as shown in Table 4-5. Note that five circuits which are
particularly useful in many applications have been dual symbolized with TIM 99XX
numbers for easy reference.

There are a number of buffer circuits available for use in TMS 9900 systems. The
SN745241 and SN741.5241 non-inverting octal buffers with three-state outputs can be
used as memory address drivers or as bidirectional data transceivers. The SN745240 and
SN74LS240 are similar, but with inverted outputs. The SN74L.5241 can be used as
either a memory-address buffer or as a transceiver for bidirectional data transfers. The
use of a single circuit type for both functions can result in a lower inventory and parts
cost. The buffer switching times can be derated for higher capacitive loading as required.

System Layout

The pin assignments of the TMS 9900 are such that sets of signals (data bus, address
bus, interrupt port, etc.) are grouped together. The layout of a printed circuit board can
be simplified by taking advantage of these groups by locating associated circuitry
(address buffers, interrupt processing hardware, etc.) as close as possible to the TMS
9900 interface. Shortened conductor runs result in minimal noise and compact and
eflicient utilization of printed circuit board area.
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It is particularly important that the drivers for $1—¢4 be located as close as possible to

the inputs of the TMS 9900, since these signals have fast rise and fall times while driving
fairly high capacitance over a wide voltage range. The 12 volt supply to the clock drivers
should be decoupled with both high (15uF) and low (0.05uF) value capacitors in order to

filter out high and lower frequency variations in supply voltage.

DEVICE

SN74125
SN74126
SN741.5240
SN74L5241
SN74L5242
SN74LS243
SN745240
SN745241
SN74365
SN74366
SN74367
SN74368

SN74L.5259 (TIM9306)
SN74LS373
SN74LS412

SN74LS151
SN74LS251 (TIM9905)

SN74148 (TIM 9907)
SN74LS348 (TIM9908)
SN74LS74

SN74LS174
SN74LS175

SN74LS837

SN74LS362 (TIM9904)

Table 4-5. TMS 9900 Bipolar Support Circuits

BUFFERS (3-STATE)

FUNCTION

QUAD Inverting Buffer

QUAD Inverting Buffer

OCTAL Inverting Buffer/Transceiver
OCTAL Noninverting Buffer/Transceiver
OCTAL Inverting Transceiver

OCTAL Noninverting Transceiver
OCTAL Inverting Buffer/Transceiver
OCTAL Noninverting Buffer/Transceiver
Hex Noninverting Buffer

Hex Inverting Buffer

Hex Noninverting Buffer

Hex Inverting Buffer

LATCHES
OCTAL Addressable Latch
OCTAL Transparent Latch (3-state)
OCTAL 1/O Port (3-state)

DATA MULTIPLEXERS

OCTAL Multiplexer
OCTAL Multiplexer {3-state)

OTHER SUPPORT CIRCUITS

7

Priority Encoder

Priority Encoder

Dual D-type flip-flop

Hex D-type flip-flop

Qual D-type flip-flop
QUAD 2-Input nand Buffers
Clock Generator

PACKAGE

14
14
20
20
14
14
20
20
16
16
16
16

16
20
24

16
16

16
16
14
16
16
14
20
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TMS 9940 Hardware Design
MICROCOMPUTER Intertacing Techniques

All voltage inputs to the TMS 9900 should be decoupled at the device. Particular
attention should be paid to the + 5 volt supply. All data and address lines are switched
simultaneously. The worst-case condition occurs when all data and address signals switch
to a low level simultaneously and they are each sinking 3.2 mA. It is thus possible for the
supply current to vary nearly 100 mA over a 20 ns interval. Careful attention must be
paid by the designer to avoid supply voltage spiking. The exact values for capacitors
should be determined empirically, based on actual system layout and drive requirements.

TMS 9940 MICROCOMPUTER

The TMS9940 is a microcomputer chip in a 40-pin package which includes all of the
elements of a computer, that is, memory, I/O and utilities in addition to ALU and
control. Useful in a wide variety of dedicated control functions, it contains a 2k X 8
EPROM program memory and a 128 X 8 RAM for data, a 14 bit interval timer, and a
multiprocessor system interface. Although the memory organization on chip is in 8 bit
bytes, the instructions are the same 16-bit instructions of the 9900 family.

While most of the instructions are identical to the instruction set of the 9900, there are
68 instructions in the 9940 set (as opposed to 69 in the TMS9900) 