-

CMOS

Logic Circuits

for

Design Engineers

Third Edition

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Information contained herein supersedes previously published data on CMOS logic circuits from Tl , including data book CC-417.

Copyright © 1975
Texas Instruments Incorporated

TABLE OF CONTENTS

PAGE
Alphanumeric Index 5
Interchangeability Guide 6
Glossary 8
Logic Graphic Symbols 11
Explanation of Function Tables 16
Introduction 18
"B" Series Information 19
" B " Series Common Electrical Specifications 24
TF4000B, TP4000B* Dual 3-Input NOR Gates plus Inverters 26
TF4001B, TP4001B Quad 2-Input NOR Gates 26
TF4002B, TP4002B* Dual 4-Input NOR Gates 26
TF4009B, TP4009B Hex Inverting Buffers/Converters 27
TF4010B, TP4010B Hex Noninverting Buffers/Converters 27
TF4011B, TP4011B Quad 2-Input NAND Gates 29
TF4012B, TP4012B* Dual 4-Input NAND Gates 29
TF4013B, TP4013B Dual D-Type Edge-Triggered Flip-Flops (with Clear and Preset) 30
TF4014B, TP4014B* 8-Bit Static Shift Registers 31
TF4015B, TP4015B* Dual 4-Bit Static Shift Registers 33
TF4016B, TP4016B Quad Bilateral Switches 34
Presettable Divide-by-N Counters 37
TF4021B, TP4021B* 8-Bit Static Shift Registers 39
TF4023B, TP4023B* Triple 3-Input NAND Gates 41
TF4025B, TP4025B* Triple 3-Input NOR Gates 41
TF4029B, TP4029B* Presettable Up/Down Binary/Decade Counters 42
TF4030B, TP4030B Quad Exclusive-C. 7 Gates 44
TF4035B, TP4035B* 4-Bit Parallel-In/F. rallel-Out Shift Registers 45
TF4042B, TP4042B Quad D-Type Latches 47
TF4043B, TP4043B Quad S-R Latches with 3-State Outputs 48
TF4044B, TP4044B Quad $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ Latches with 3-State Outputs 48
TF4049B, TP4049B Hex Inverting Buffers/Converters 50
Hex Noninverting Buffers/Converters 50
8-Channel Analog Multiplexers/Demultiplexers 52
TF4052B, TP4052B Dual 4-Channel Analog Multiplexers/Demultiplexers 52
TF4053B, TP4053B Triple 2-Channel Analog Multiplexers/Demultiplexers 52
Hex Inverting Buffers 55
Quad Exclusive-OR Gates 56
TF4071B, TP4071B Quad 2-Input OR Gates 57
TF4072B, TP4072B* Dual 4-Input OR Gates 57
TF4073B, TP4073B* Triple 3-Input AND Gates 57
TF4075B, TP4075B* Triple 3-Input OR Gates 57
TF4081B, TP4081B Quad 2-Input AND Gates 57
TF4082B, TP4082B* Dual 4-Input AND Gates 57
TF4085B, TP4085B* Dual 3-Wide 2-2-1-Input AND-OR-Invert Gates 57
TF4376B, TP4376B Quad S-R Latches 58
TF4377B, TP4377B Quad S-R Latches 59
" A " Series Information 60
" A " Series Common Electrical Specifications 62
TF4000A, TP4000A Dual 3-Input NOR Gates plus Inverters 64
TF4001 A, TP4001A Quad 2-Input NOR Gates 64
TF4002A, TP4002A Dual 4-Input NOR Gates 64
TF4007A, TP4007A Dual Complementary Pairs plus Inverters 65
TF4008A, TP4008A Four-Bit Full Adders 67
TF4009A, TP4009A Hex Inverting Buffers/Converters 69
TF4010A, TP4010A Hex Noninverting Buffers/Converters 69
TF4011A, TP4011A Quad 2-Input NAND Gates 71
TF4012A, TP4012A Dual 4-Input NAND Gates 72

[^0]
TABLE OF CONTENTS (Continued)

PAGE
TF4013A, TP4013A Dual D-Type Edge-Triggered Flip-Flops (with Clear and Preset) 73
TF4014A, TP4014A 8-Bit Static Shift Registers 75
TF4015A, TP4015A Dual 4-Bit Static Shift Registers 77TF4017A, TP4017A
TF4018A, TP4018A
TF4019A, TP4019A
TF4020A, TP4020ATF4022A TP4022A22A, TP4022A
TF4023A, TP4023A
F4024A, TP4024ATF4025A, TP4025ATF4028A, TP4028ATF4029A, TP4029A
TF4030A, TP4030ATF4042A, TP4042A
TF4043A, TP4043ATF4044A, TP4044ATF4049A, TP4049ATF4050A, TP4050ATF4051A, TP4051ATF4052A, TP4052ATF4053A, TP4053ATF4301A, TP4301ATF4302A, TP4302ATF4303A, TP4303ATF4304A, TP4304ATF4311A, TP4311ATF4315A, TP4315ATF4316A, TP4316ATF4320A, TP4320ATF4321A, TP4321ATF4360A, TP4360ATF4361A, TP4361ATF4362A, TP4362ATF4363A, TP4363ATF4370A, TP4370ATF4376A, TP4376ATF4377A, TP4377A
Quad Bilateral Switches 79
Decade Counters/Dividers 82
Presettable Divide-by-N Counters 85
Quad AND.OR Select Gates 87
Asynchronous 14-Bit Binary Counters 89
8-Bit Static Shift Registers 91
Octal Counters/Dividers 93
Triple 3-Input NAND Gates 96
Asynchronous 7-Bit Binary Counters 97
Triple 3-Input NOR Gates 99
Dual J-K Flip-Flops (with Preset and Clear) 100
BCD-to-Decimal Decoders 102
Presettable Up/Down Binary/Decade Counters 104
Quad Exclusive-OR Gates 109
Asynchronous 12-Bit Binary Counters 111
Quad D-Type Latches 113
Quad S-R Latches with 3-State Outputs 115
Quad $\bar{S}-\bar{R}$ Latches with 3-State Outputs 115
Hex Inverting Buffers/Converters 117
Hex Noninverting Buffers/Converters 117
8-Channel Analog Multiplexers/Demultiplexers 119
Dual 4-Channel Analog Multiplexers/Demultiplexers 119
Triple 2-Channel Analog Multiplexers/Demultiplexers 119
Quad 2-Input NOR Buffers 122
4-2-3-2-Input AND-OR-Invert Gates 123
4-2-4-1-Input AND-OR-Invert Gates 123
Hex Schmitt-Trigger Inverters 124
Quad 2-Input NAND Buffers 125
Hex Inverting Buffers 126
Quad Bilateral Switches 127
16-Channel Data Selectors with 3-State Outputs 130
Dual 8-Channel Data Selectors with 3-State Outputs 132
Synchronous Decade Counters with Direct Clear 134
Synchronous 4-Bit Binary Counters with Direct Clear 134
Fully Synchronous Decade Counters 134
Fully Synchronous 4-Bit Binary Counters 134
Quad D-Type Edge-Triggered Flip-Flops 139
141TF4380A, TP4380A*Quad S-R Latches141
143TF4512A TPIF4518A, TP4̄5i8ATF4518A, TP4518aTF4519A, TP4519ATF4520A, TP4520ATF4522A, TP4522A
Quad Exclusive-OR Gate
147
147
8-Channel Data Selectors with 3-State Outputs 149
Duai Decade Counters 152
4-Bit AND-OR Select Gates 154
Dual Binary Counters 156
Decade Divide-by-N Counters 158
TF4526A, TP4526A 4-Bit Binary Divide-by-N Counters 158
TF4531A, TP4531A 12-Bit Parity Trees 161
TF4581A, TP4581A Arithmetic Logic Units/Function Generators 162
TF4582A, TP4582A Look-Ahead Carry Generators 167
Parameter Measurement Information 170
Mechanical Data and Ordering Instructions 171

[^1]
ALPHANUMERIC INDEX

TYPE NUMBER	PAGE						
TF4000A	64	TF4044B	48	TP4000A	64	TP4044B	48
TF40008*	26	TF4049A	117	TP4000B*	26	TP4049A	117
TF4001A	64	TF4049B	50	TP4001A	64	TP4049B	50
TF4001B	26	TF4050A	117	TP4001B	26	TP4050A	117
TF4002A	64	TF4050B	50	TP4002A	64	TP4050B	50
TF4002B*	26	TF4051A	119	TP4002B*	26	TP4051A	119
TF4007A	65	TF4051B	52	TP4007A	65	TP4051B	52
TF4008A	67	TF4052A	119	TP4008A	67	TP4052A	119
TF4009A	69	TF4052B	52	TP4009A	69	TP4052B	52
TF4009B	27	TF4053A	119	TP4009B	27	TP4053A	119
TF4010A	69	TF4053B	52	TP4010A	69	TP4053B	52
TF4010B	27	TF4069B	55	TP4010B	27	TP4069B	55
TF4011A	71	TF4070B	56	TP4011A	71	TP4070B	56
TF4011B	29	TF4071B	57	TP4011B	29	TP4071B	57
TF4012A	72	TF4072B*	57	TP4012A	72	TP4072B*	57
TF4012B*	29	TF4073B*	57	TP4012B*	29	TP4073B*	57
TF4013A	73	TF4075B*	57	TP4013A	73	TP4075B*	57
TF4013B	30	TF4081B	57	TP4013B	30	TP4081B	57
TF4014A	75	TF4082B*	57	TP4014A	75	TP4082B*	57
TF4014B*	31	TF4085B*	57	TP4014B*	31	TP4085B*	57
TF4015A	77	TF4301A	122	TP4015A	77	TP4301A	122
TF4015B*	33	TF4302A	123	TP4015B*	33	TP4302A	123
TF4016A	79	TF4303A	123	TP4016A	79	TP4303A	123
TF4016B	34	TF4304A	124	TP4016B	34	TP4304A	124
TF4017A	82	TF4311A	125	TP4017A	82	TP4311A	125
TF4018A	85	TF4315A	126	TP4018A	85	TP4315A	126
TF4018B	37	TF4316A	127	TP4018B	37	TP4316A	127
TF4019A	87	TF4320A	130	TP4019A	87	TP4320A	130
TF4020A	89	TF4321A	132	TP4020A	89	TP4321A	132
TF4021A	91	TF4360A	134	TP4021A	91	TP4360A	134
TF4021B*	39	TF4361A	134	TP4021B*	39	TP4361A	134
TF4022A	93	TF4362A	134	TP4022A	93	TP4362A	134
TF4023A	96	TF4363A	134	TP4023A	96	TP4363A	134
TF4023B*	41	TF4370A	139	TP4023B*	41	TP4370A	139
TF4024A	97	TF4376A	141	TP4024A	97	TP4376A	141
TF4025A	99	TF4376B	58	TP4025A	99	TP4376B	58
TF4025B*	41	TF4377A	141	TP4025B*	41	TP4377A	141
TF4027A	100	TF4377B	59	TP4027A	100	TP4377B	59
TF4028A	102	TF4380A*	143	TP4028A	102	TP4380A*	143
TF4029A	104	TF4507A	147	TP4029A	104	TP4507A	147
TF4029B*	42	TF4512A	149	TP4029B*	42	TP4512A	149
TF4030A	109	TF4518A	152	TP4030A	109	TP4518A	152
TF4030B	44	TF4519A	154	TP4030B	44	TP4519A	154
TF4035B*	45	TF4520A	156	TP4035B*	45	TP4520A	156
TF4040A	111	TF4522A	158	TP4040A	111	TP4522A	158
TF4042A	113	TF4526A	158	TP4042A	113	TP4526A	158
TF4042B	47	TF4531A	161	TP4042B	47	TP4531A	161
TF4043A	115	TF4581A	162	TP4043A	115	TP4581A	162
TF4043B	48	TF4582A	167	TP4043B	48	TP4582A	167
TF4044A	115			TP4044A	115		

*To be announced

Direct replacements were based on similarity of electrical and mechanical characteristics as shown in currently published data. Interchangeability in particular applications is not guaranteed. Before using a device as a substitute, the user should compare the specifications of the substitute device with the specifications of the original.

Texas Instruments makes no warranty as to the information furnished and buyer assumes all risk in the use thereof. No liability is assumed for damages resulting from the use of the information contained in this list.

MOTOROLA INTERCHANGEABILITY

TEMPERATURE RANGE AND		MOTOROLA		TI
		MC14		TP4___AN
PACKAGE COMBINATION EQUIVALENTS		MC14		TP4__AJ
		MC14		TF4___AJ
MOTOROLA	TI DIRECT		MOTOROLA	TI DIRECT
TYPE	REPLACEMENT		TYPE	REPLACEMENT
MC14000_	T_4000A_		MC14029	T_4029A
MC14001	T_4001A		MC14030	T_4030A
MC14002	T_4002A		MC14040	T_4040A
MC14007	T_4007A		MC14042	T_4042A
MC14008_-	T_4008A_		MC14043	T_4043A_
MC14009	T_-4009A_		MC14044	T_4044A_
MC14010	T_4010A_		MC14049	T_4049A_
MC14011	T_4011A_		MC14050	T_4050A
MC14012 _-	T_4012A		MC14051 _-	T_4051A
MC14013 _	T_4013A_		MC14052	T_4052A_
MC14014	T_4014A_		MC14053	T_4053A
MC14015	T_4015A_		MC14507 _-	T_4507A
M NCW 14010	T_4016n_		MC14512	T. 4512A
MC14017	T_4017A		MC14518	T_4518A
MC14018	T_4018A		MC14519	T_4519A
MC14019	T_4019A		MC14520	T_4520A
MC14020	T_4020A		MC14522	T_4522A
MC14021	T_4021A		MC14526_-	T_4526A_
MC14022	T_4022A		MC14531	T_4531A
MC14023	T_4023A		MC14581_	T_4581A
MC14024	T_4024A_		MC14582_-	T_4582A_
MC14025	T_4025A_			
MC14027 _-	T_4027A			
MC14028_-	T_4028A_			

CMOS
InTERCHANGEABILITY GUIDE

RCA INTERCHANGEABILITY

Package and Temperature Range			
White Ceramic DIP			
D	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		
E	Plastic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	
F	Frit-Seal Ceramic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	
K	Ceramic Flatpack	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	
Y	Frit-Seal Ceramic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	

$\begin{gathered} \text { TEMPERATURE RANGE } \\ \text { AND } \\ \text { PACKAGE COMBINATION EQUIVALENTS } \end{gathered}$		$\begin{aligned} & \text { RCA } \\ & \hline \text { CD4__AE } \\ & \text { CD4__AF } \\ & \text { CD4__AY } \end{aligned}$	
RCA	TI DIRECT	RCA	TI DIRECT
TYPE	REPLACEMENT	TYPE	REPLACEMENT
CD4000A_	T_4000A_	CD4022A_	T_4022A_
CD4001A	T_4001A	CD4023A	T_4023A
CD4002A_	T_4002A_	CD4024A_	T_4024A_
CD4007A	T_4007A	CD4025A	T_4025A_
CD4008A	T_4008A	CD4027A	T_4027A
CD4009A	T_4009A	CD4028A	T_4028A
CD4010A	T_4010A	CD4029A	T_4029A_
CD4011A	T_4011A_	CD4030A	T_4030A_
CD4012A	T_4012A_	CD4040A	T_4040A
CD4013A	T_4013 ${ }_{\text {- }}$	CD4042A_	T-4042A
CD4014A	T_4014A_	CD4043A	T_4043A-
CD4015A	T_4015A_	CD4044A	T_4044A -
CD4016A_	T_4016A_	CD4049 ${ }_{\text {_ }}$	T_4049 ${ }_{-}$
CD4017A	T_4017A	CD4050A_	T_4050A_
CD4018A	T_4018A	CD4051A	T_4051A
CD4019A_	T_4019A_	CD4052A	T_4052A
CD4020A	T_4020A_	CD4053A	T_4053A
CD4021A_	T_4021A	CD4518A_	T_4518A
		CD4520A	T_4520A_

GLOSSARY

LETTER SYMBOLS, TERMS, AND DEFINITIONS

LETTER SYMBOLS, TERMS, AND DEFINITIONS

These symbols, terms, and definitions are in accordance with those currently agreed upon by the JEDEC Council of the Electronic Industries Association (EIA) for use in the USA and by the International Electrotechnical Commission (IEC) for international use. The definitions are grouped into sections applying to voltages, currents, switching characteristics, and classification of circuit complexity.

voltages

VIH High-level input voltage
An input voltage level within the more positive (less negative) of the two ranges of values used to represent the binary variables. A minimum value is specified that is the least-positive (most-negative) value of high-level input voltage for which operation of the logic element within specification limits is guaranteed.

VIL Low-level input voltage
An input voltage level within the less positive (more negative) of the two ranges of values used to represent the binary variables. A maximum value is specified that is the most-positive (least-negative) value of low-level input voltage for which operation of the logic element within specification limits is guaranteed.

VOH High-level output voltage

The voltage at an output terminal with input conditions applied that according to the product specification will establish a high level at the output.

VOL Low-level output voltage
The voltage at an output terminal with input conditions applied that according to the product specification will establish a low level at the output.
$\mathbf{V}_{\mathbf{T}+}$ Positive-going threshold voltage
The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage rises from a level below the negative-going threshold voltage, V_{T}..
$\mathbf{V}_{\mathbf{T}}$ - Negative-going threshold voltage
The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage falls from a level above the positive-going threshold voltage, $\mathrm{V}_{\mathrm{T}+}$.

CURRENTS

ICC, IDD, IEE, ISS supply current
The current into*, respectively, the $V_{C C}, V_{D D}, V_{E E}$, or $V_{S S}$ supply terminal of an integrated circuit.

IIH High-level input current
The current into* an input when a high-level voitage is applied to that input.

IIL Low-level input current
The current into* an input when a low-level voltage is applied to that input.
IOH High-level output current
The current into* an output with input conditions applied that according to the product specification will establish a high level at the output.

GLOSSARY
 LETTER SYMBOLS, TERMS, AND DEFINITIONS

IOL Low-level output current

The current into* an output with input conditions applied that according to the product specification will establish a low level at the output.

IOZ Off-state (high-impedance-state) output current (of a three-state output) The current into* an output having three-state capability with input conditions applied that according to the product specification will establish the high-impedance state at the output.

SWITCHING CHARACTERISTICS

$f_{\text {max }}$ Maximum clock frequency

The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic level at the output with input conditions established that should cause changes of output logic level in accordance with the specification.
t_{a} Access time (of a memory)
The time between the application of a specific input pulse and the availability of valid data signals at an output.
th Hold time
The interval during which a signal is retained at a specified input terminal after an active transition occurs at another specified input terminal.
NOTES: 1. The hold time is the actual time between two events and may be insufficient to accomplish the intended result. A minimum value is specified that is the shortest interval for which correct operation of the logic element is guaranteed.
2. The hold time may have a negative value in which case the minimum limit defines the longest interval (between the release of data and the active transition) for which correct operation of the logic element is guaranteed.

$t_{h}(\min)$ Minimum hold time

The shortest hold time for which correct operation is obtained.

tPHL Propagation delay time, high-to-low-level output

The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level.

tPHZ Output disable time (of a three-state output) from high level

The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined high level to a high-impedance (off) state.
tPLH Propagation delay time, low-to-high-level output
The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined low level to the defined high level.
tpLZ Output disable time (of a three-state output) from low level
The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined low level to a high-impedance (off) state.
tPZH Output enable time (of a three-state output) to high level
The time between the specified reference points on the input and output voltage waveforms with the three-state ${ }^{*}$ output changing from a high-impedance (off) state to the defined high level.

[^2]
GLOSSARY

LETTER SYMBOLS, TERMS, AND DEFINITIONS

tpZL Output enable time (of a three-state output) to low level

The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined low-level.
$t_{\text {su }}$ Setup time
The time interval between the application of a signal that is maintained at a specified input terminal and a consecutive active transition at another specified input terminal.
NOTES: 1. The setup time is the actual time between two events and may be insufficient to accomplish the setup. A minimum value is specified that is the shortest interval for which correct operation of the logic element is guaranteed.
2. The setup time may have a negative value in which case the minimum limit defines the longest interval (between the active transition and the application of the other signal) for which correct operation of the logic element is guaranteed.

$\mathrm{t}_{\text {su }}$ (min) Minimum setup time

The shortest setup time for which correct operation is obtained.

tTLH Transition time, low-to-high-level output

The time between a specified low-level voltage and a specified high-level voltage on a waveform that is changing from the defined low level to the defined high level.

tTHL Transition time, high-to-low-level output

The time between a specified high-level voltage and a specified low-level voltage on a waveform that is changing from the defined high level to the defined low level.
$\mathbf{t}_{\mathrm{w}} \quad$ Average pulse width
The time between 50-percent-amplitude points (or other specified reference points) on the leading and trailing edges of a pulse.
$t_{w(m i n)}$ Minimum pulse width
The shortest pulse width for which correct operation is obtained.

CLASSIFICATION OF CIRCUIT COMPLEXITY

Gate equivalent circuit
A basic unit-of-measure of relative digital-circuit complexity. The number of gate equivalent circuits is that number of individual logic gates that would have to be interconnected to perform the same function.

LSI Large-scale integration

A concept whereby a complete major subsystem or system function is fabricated as a single microcircuit. In this context a major subsystem or system, whether logical or linear, is considered to be one that contains 100 or more equivalent gates or circuitry of similar complexity.

MSI Medium-scale integration

A concept whereby a complete subsystem function is fabricated as a single microcircuit. The subsystem or system is smaller than for LSI, but whether digital or linear, is considered to be one that contains 12 or more equivalent gates or circuitry of similar complexity.

SSI Small-scale integration
Integrated circuits of less complexity than medium-scale integration (MSI).

LOGIC GRAPHIC SYMBOLS

The logic graphic symbols used in this book are in accordance with American National Standard Graphic Symbols for Logic Diagrams (Two-State Devices) ANSI Y32.14-1973 (IEEE Std. 91-1973) which supersedes ASA Y32.14-1962, MIL-STD-806B, and MIL-STD-806C. The following is only a brief explanation of the more common symbols used in this book.

basic logic concepts

The binary numbers 1 and 0 are used in pure logic where 1 represents true, yes, or active and 0 represents false, no, or inactive. These terms should not be confused with the physical quantity (e.g., voltage) that may be used to implement the logic, nor should the term "active" be confused with a level that turns a device on or off. A truth table for a relationship in logic shows (implicitly or explicitly) all the combinations of true and false input conditions and the result (output). There are only two basic logic relationships, AND and OR. The following illustrations assume two inputs (A and B), but these can be generalized to apply to more than two inputs.

AND $\quad Y$ is true if and only if A is true and B is true (or more
generally, if all inputs are true).
$Y=1$ if and only if $A=1$ and $B=1$.
$Y=A \cdot B$
TRUTH TABLE

A	B	Y
1	1	1
1	0	0
0	1	0
0	0	0

OR
Y is true if and only if A is true or B is true (or more generally, if one or more input(s) is (are) true.
$Y=1$ if and only if $A=1$ or $B=1$.
$Y=A+B$

TRUTH TABLE

A	B	Y
1	1	1
1	0	1
0	1	1
0	0	0

SYMBOLS

Y32.14-1973 continues the use of both distinctiveshape and rectangular symbols for the simpler logic functions. Both forms are shown here for AND and OR; however, throughout the rest of this section, and in the data sheets in this book, usually only the distinctive shapes will be used for these functions. The rectangular symbols are most useful when making up complex combinations of logic functions.

CMOS

LOGIC GRAPHIC SYMBOLS

negation

In logic symbology, the presence of the negation indication symbol \bigcirc provides for the representation of logic function inputs and outputs in terms independent of their physical values, the 0 -state of the input or output being the 1 -state of the symbol referred to by the symbol description.

EXAMPLE 1

TRUTH TABLE

A	B	Z
1	1	0
1	0	1
0	1	1
0	0	1

EXAMPLE 2

TRUTH TABLE

A	B	Z
1	1	0
1	0	1
0	1	1
0	0	1

EXAMPLE 3

TRUTH TABLE

A	B	Z
1	1	0
1	0	0
0	1	0
0	0	1

EXAMPLE 4

TRUTH TABLE

A	B	Z
1	1	0
1	0	0
0	1	0
0	0	1

Example 1 says that Z is not true if A is true and B is true or that Z is true if A and B are not both true. $\bar{Z}=A B$ or $Z=\overline{A B}$. This is frequently referred to as NAND (for NOT AND).
Example 2 says that Z is true if A is not true or if B is not true. $Z=\bar{A}+\bar{B}$. Note that this truth table is identical to that of Example 1 . The logic equation is merely a De Morgan's transformation of the equations in Example 1. The symbols are equivalent.
Example $3, \bar{Z}=A+B$ or $Z=\overline{A+B}$, and Example $4, Z=\bar{A} \cdot \bar{B}$, also share a common truth table and are equivalent transformations of each other. The NOT OR form (Example 3) is frequently referred to as NOR.

logic implementation and polarity indication

Devices that can perform the basic logic functions, AND and OR, are called gates. Any device that can perform one of these functions can also be used to perform the other if the relationship of the input and output voltage levels to the logic variables 1 and 0 is redefined suitably.

In describing the operation of electronic logic devices, the symbol H is used to represent a "high level," which is a voltage within the more-positive (less-negative) of the two ranges of voltages used to represent the binary variables. L is used to represent a "low level," which is a voltage within the less-positive (more-negative) range.

A function table for a device shows (implicitly or explicitly) all the combinations of input conditions and the resulting output conditions.

In graphic symbols, inputs or outputs that are active when at the high level are shown without polarity indication. The polarity indicator symbol Δ denotes that the active state of an input or output with respect to the symbol to which it is attached is the low level.

EXAMPLE 5

Assume two devices having the following function tables.

DEVICE \#1 FUNCTION TABLE

A	B	Y
H	H	H
H	L	L
L	H	L
L	L	L

DEVICE \#2 FUNCTION TABLE

A	B	Y
H	H	H
H	L	H
L	H	H
L	L	L

By assigning the relationships $H=1, L=0$ at both input and output, Device \#1 can perform the AND function and Device \#2 can perform the OR function. Such a consistent assignment is referred to as positive logic. The corresponding logic symbols would be:

DEVICE \#1

DEVICE \#2

Alternatively, by assigning the relationships $H=0, L=1$ at both input and output, Device \#1 can perform the OR function and Device \#2 can perform the AND function. Such a consistent assignment is referred to as negative logic. The corresponding logic symbols would be:

DEVICE \#1

DEVICE \#2

The use of the polarity indicator symbol (Δ) automatically invokes a mixed-logic convention. That is, positive logic is used at the inputs and outputs that do not have polarity indicators, negative logic is used at the inputs and outputs that have polarity indicators.

EXAMPLE 6 FUNCTION TABLE

A	B	Z
H	H	L
H	L	H
L	H	H
L	L	H

This may be shown either of two ways:

Note the equivalence of these symbols to examples 1 and 2 and the fact that the function table is a positive-logic translation $1 \mathrm{H}=1$, $L=0$) of the NAND truth table, and also note that the function table is the negative-logic translation ($\mathrm{H}=0, \mathrm{~L}=1$) of the NOR truth table, given in Example 3.

EXAMPLE 7 FUNCTION TABLE

A	B	Z
H	H	L
H	L	L
L	H	L
L	L	H

This may be shown either of two ways:

Note the equivalence of these symbols to examples 3 and 4 and the fact that the function table is a positive-logic translation $(H=1$, $\mathrm{L}=0$) of the NOR truth table, and also note that the function table is the negative-logic translation $(H=0, L=1)$ of the NAND truth table, given in Example 1.

It should be noted that one can easily convert from the symbology of positive logic merely by substituting a polarity indicator (Δ) for each negation indicator (O) while leaving the distinctive shapes alone. To convert from the symbology of negative logic, a polarity indicator (\triangle) is substituted for each negation indicator (O) and the OR shape is substituted for the AND shape or vice versa.

CMOS

LOGIC GRAPHIC SYMBOLS

choice of AND/OR symbols

The preceding material stated and demonstrated that any device that can perform OR logic can also perform AND logic and vice versa. De Morgan's transformation is illustrated in Examples 1 through 7. The rules of the transformation are:

1. At each input or output having a negation (0) or polarity (\triangle) indicator, delete the indicator.
2. At each input or output not having an indicator, add a negation (\circ) or polarity (\triangle) indicator.
3. Substitute the AND symbol (\square) for the OR symbol (D) or vice versa.

These steps do not alter the assumed convention; positive logic stays positive, negative logic stays negative, and mixed logic stays mixed.

The choice of symbol may be influenced by these considerations: (1) The operation being performed may best be understood as AND or OR. (2) In a function more complex than a basic gate, the inputs will usually be considered as inherently active high or active low (e.g., the J and \bar{K} inputs of a $J-\bar{K}$ flip-flop are active high and active low, respectively). (3) In a chain of logic, understanding and the writing of logic equations are often facilitated if active-low or negated outputs feed into active-low or negated inputs.

other symbols

Dynamic input activated by transition from a low level to a high level. The opposite transition has no effect at the output.

Dynamic input activated by transition from a high level to a low level. The opposite transition has no effect at the output.

Exclusive OR function. The output will assume its indicated active level if and only if one and only one of the two inputs assumes its indicated active level.

Inverting function. The output is low if the input is high and it is high if the input is low. The two symbols shown are equivalent.

Noninverting function. The output is high if the input is high and it is low if the input is low. The two symbols shown are equivalent.

Transmission gate. Serves as a closed switch between lines 1 and 2 only when lines 3 and 4 are active, i.e., low and high, respectively. Complementary signals are always presented to lines 3 and 4.

Bilateral switch. When the switch is on, signals can be transmitted in either direction.

control blocks

Selector control block. These symbols are used with an array of OR symbols to provide a point of placement for selection (S) or gating (G) lines. The selection lines enable the input designated $0,1, \ldots . n$ of each $O R$ function by means of a binary code where $S 0$ is the least-significant digit. If the 1 level of these lines is low, polarity indicators (Δ) will be used. The gating lines have an AND relation with the respective input of each OR function: G1 with the inputs numbered $1, G 2$ with the inputs numbered 2 , and so forth. If the enabling levels of these lines is low, polarity indicators (Δ) will be used. For example applications, see '4051A and '4321A for the first symbol; '4019A and '4519A for the second symbol.

Output selector control block. This symbol is used with a block symbol having multiple outputs to form a decoder. The selection lines enable the output designated $0,1, \ldots, n$ of each block by means of a binary code where SO is the least significant digit. If the 1 level of these lines is low, polarity indicators (Δ) will be used. For example application of this symbol, see '4028A.

Register control block. This symbol is used with an associated array of flip-flop symbols to provide a point of placement for common function lines, such as a common clear.

Shift register control block. These symbols are used with an array of flip-flop symbols to form a shift register. An active transition at the inputs causes left or right shifting as indicated. For example applications of this symbol, see '4014A, '4015A, and '4021A.

Counter control block. This symbol is used with an array of flip-flops or other circuits serving as a binary or decade counter. An active transition at the +1 or -1 input causes the counter to increment one count upward or downward, respectively. An active transition at the ± 1 input causes the counter to increment one count upward or downward depending on the input at an up/down control. For example applications of these symbols, see '4017A, '4029A, '4360A, and '4522A.

EXPLANATION OF FUNCTION TABLES

The following symbols are now being used in function tables on TI data sheets:
$H=$ high level (steady state)
$\mathrm{L}=$ low level (steady state)
$\uparrow=$ transition from low to high level
$\downarrow=$ transition from high to low level
$X=$ irrelevant (any input, including transitions)
a.. $h=$ the level of steady-state inputs at inputs A through H respectively
$Q_{0}=$ level of O before the indicated steady-state input conditions were establsihed
$\overline{\mathrm{O}}_{0}=$ complement of Q_{0} or level of $\overline{\mathrm{Q}}$ before the indicated steady-state input conditions were established
$\mathbf{Q}_{\mathrm{n}}=$ level of \mathbf{Q} before the most recent active transition indicated by \downarrow or \uparrow

TOGGLE $=$ each output changes to the complement of its previous level on each active transition indicated by \downarrow or \uparrow.

If, in the input columns, a row contains only the symbols H, L, and/or X, this means the indicated output is valid whenever the input configuration is achieved and regardless of the sequence in which it is achieved. The output persists so long as the input configuration is maintained.

If, in the input columns, a row contains H, L, and/or X together with \uparrow and/or \downarrow, this means the output is valid whenever the input configuration is achieved but the transition(s) must occur following the achievement of the steady-state levels. If the output is shown as a level $\left(H, L, Q_{0}\right.$, or $\left.\overline{\mathrm{O}}_{0}\right)$, it persists so long as the steady-state input levels and the levels that terminate indicated transitions are maintained. Unless otherwise indicated, input transitions in the opposite direction to those shown have no effect at the output. If the output is shown as a pulse, \square or \downarrow, the pulse follows the indicated input transition and persists for an interval dependent on the circuit.)

The most complex function tables in this book are those of the shift registers. These embody all of the symbols used in any of the other function tables, plus more. Below is the function table of an 8-bit static shift register, e.g. type TF4021.

function table

INPUTS				INTERNAL OUTPUTS (2 OF 5)		OUTPUTS		
$\begin{gathered} \text { CONTROL } \\ \text { P/S } \end{gathered}$	CLOCK	$\begin{gathered} \text { PARALLEL } \\ \text { A-H } \end{gathered}$	SERIAL			$\mathbf{O F}_{\mathbf{F}}$	$\mathbf{O}_{\mathbf{G}}$	O_{H}
				$\mathbf{Q}_{\mathbf{A}}$	a_{B}			
H	X	a-h	X	a	b	f	h	h
L	\uparrow	x	H	H	$\mathrm{a}_{\text {An }}$	Q_{En}	$Q_{\text {F }}$	O_{Gn}
L	\uparrow	x	L	L	$Q_{\text {An }}$	Q_{En}	Q_{Fn}	Q_{Gn}
L	L	x	X	$\mathrm{Q}_{\text {A0 }}$	O_{BO}	Q_{FO}	$\mathrm{O}_{\mathrm{G} 0}$	O_{HO}

The first line of the table represents asynchronous parallel loading of the register and says that if P / \bar{S} is high then, without regard to the serial input or the clock, the data entered at A will be at internal output Q_{A}, data entered at B will be at Q_{B}, and so forth.

The second and third lines represent the loading of high-and low-level data, respectively, from the serial input and the shifting of previously entered data one bit; data previously at Q_{A} is now at Q_{B}, the previous levels of $\mathrm{Q}_{E}, \mathrm{Q}_{\mathrm{F}}$, and Q_{G} and now at Q_{F}, Q_{E}, and Q_{H}, respectively, and the data previously at Q_{H} is no longer in the register. This entry of serial data and shift takes place on the low-to-high transition of the clock when P / S is low and the levels at inputs A through H have no effect.

The fourth line simply states that so long as the clock remains low while P / S is low, no other input has any effect and the outputs maintain the levels they assumed on the last rising transition of the clock.

Since only the rising transition of the clock has been shown to be active, the fourth line implicitly shows that no further change in the outputs will occur while the clock remains high or on the high-to-low transition of the clock.

CMOS LOGIC CIRCUITS

INTRODUCTION

This booklet contains descriptive information on CMOS integrated circuits manufactured by Texas Instruments. Included are data sheets providing electrical and switching characteristics. The circuits designated with 40XXA numbers are plug-in replacements for the RCA family of CMOS devices. The 43XXA devices are unique Texas Instruments functions. The 45XXA devices are plug-in replacements for the Motorola family of CMOS devices.

Circuits designated with an " A " suffix are those devices having an operating voltage range of 3 to 15 volts with specifications at 5 to 10 volts.

The circuits designated with a " B " suffix are those devices whose voltage range is 3 to 18 volts with specifications at 5,10 , and 15 volts. Additionally the data sheets on the " B " parts more clearly define the product in a system-oriented manner. The specific areas where the " B " data sheets are more descriptive than the " A " data sheets are:

- Input and Output Characteristics
- Noise Immunity
- Drive Capability
- Specifications at 15 volts

The " B " series (including all " B " series data sheets) is presented first, then the " A " series; for most type numbers there is both an " A " series device and a " B " series device. Within each series the data sheets are arranged in type-number sequence.

Texas Instruments CMOS offers the design engineer:

- Choice of two packages ...

Plastic dual-in-line
Ceramic hermetically sealed dual-in-line

- Choice of temperature ranges . . .

Series TF ... $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ (full military range)
Series TP . . $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

- Protective network on each input
- Low power dissipation (quiescent)
- High noise immunity
- Threshold voltage, input and supply current stability
- Easy interface capability to

TTL (including low-power and low-power Schottky)
Linear
N-Channei ivios
P-Channel MOS

SERIES '4000B
 GENERAL INFORMATION

"B" SERIES INFORMATION

BUFFERED CIRCUITS

Most 4XXXXB digital circuits will have double- or triple-buffered output stages to attain:

- Uniform dynamic performance
- Uniform input characteristics
- Uniform output characteristics
- Improved noise immunity

Figure 1 shows typical three-input NOR, OR, and NAND gate circuits. The input transistor sizes are minimized to reduce input capacitance and are buffered from the large output transistors, which are designed to give symmetrical output characteristics.

positive logic:
$Y=\overline{A+B+C}$ or $Y=\bar{A} \bar{B} \bar{C}$

FIGURE 1-DOUBLE- AND TRIPLE-BUFFERED CMOS CIRCUITS

SERIES '4000B
 GENERAL INFORMATION

INPUT PROTECTION

Input protection networks have been standardized to the two configurations below:

CONFIGURATION 1

Configuration 1 is used on the whole family except for the '4049B and '4050B, which use configuration 2 . In each case the diodes to V_{SS} have a reverse breakdown of approximately 22 to 28 volts. These networks are incorporated as protection against occassional electrostatic overstress. It is not recommended that units be subjected to continuously repeated overstress. CMOS is much less sensitive to electrostatic overstress than other MOS technologies; however, care should be taken in handling these networks much the same as is required for other high-impedance integrated circuits:

1) Equipment should be properly grounded.
2) Work surfaces should be electrically conductive and connected to earth ground.
3) Handling should be minimized.

INPUT CHARACTERISTICS

For input voltages between $V_{S S}$ and $V_{D D}$ the protective networks are in reverse-biased, low-current states. Typically the input current at $25^{\circ} \mathrm{C}$ will be on the order of a few picoamps. Because such small currents are difficult to measure, inputs are specified at only $V_{D D}=15$ volts. The maximum limit is the sum of all inputs simultaneously measured in parallel.

The 4 XXXB devices have input capacitances of typically 3 to 5 pF .

OUTPUT CHARACTERISTICS

Digital CMOS inputs represent such small loads to CMOS driving units that the outputs will typically equal either VSS or $\mathrm{V}_{D D}$ in a quiescent logic state. However for most system applications, one must specify the logic output levels under a load to indicate interface capabilities of the output to other circuits, the output transient drive capability, and the susceptability to noise. It is intended to guarantee a standard "B" series output to drive one Low-Power Schottky TTL input and to have nearly symetrical output impedances. For these reasons the output source and sink currents are specified at output voltages that are symetrically related; that is at $V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-0.4 \mathrm{~V}$ and $1 / 2 \mathrm{~V} D \mathrm{for}$ I_{OH} and $\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ and $1 / 2 \mathrm{~V}_{\mathrm{DD}}$ for I OL .

SERIES '4000B
 GENERAL INFORMATION

NOISE IMMUNITY

Noise immunity is the inherent ability of a device to receive electrical noise at its inputs without propagating signals that would cause erroneous logic levels subsequently in the system. Noise immunity does not imply that no output transient will occur. It does mean that the amplitude of such a transient will be reduced as it is propagated through the system. The " A " series noise immunity is typically 30% of $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$. Because the " B " series has internal buffers, this noise immunity is increased to typically 45% of the supply voltage. Noise margin is a specific measure of noise immunity under specific conditions of load, supply voltage, and temperature. High-level noise margin is defined as $\mathrm{V}_{\mathrm{OH}} \min -\mathrm{V}_{\mathrm{IH}} \min$ and low-level noise margin is defined as $\mathrm{V}_{\mathrm{IL}} \max -\mathrm{V}_{\mathrm{OL}}$ max, where the following definitions apply:
$V_{I H}$ min $\begin{aligned} & \text { The minimum value of high-level input voltage for which operation of the logic element within } \\ & \text { specification limits is guaranteed. }\end{aligned}$
$V_{I L}$ max The maximum value of low-level input voltage for which operation of the logic element within
specification limits is guaranteed.

Historically the CMOS industry has applied these definitions of noise margins under the conditions of no output load with the units stressed one input at a time while the other inputs are at V_{DD} or V_{SS}. A more realistic system application would require all inputs to be stressed simultaneously in a worst case combination and the outputs to be loaded. Under guaranteed data sheet conditions of $V_{\mathrm{OH}} \mathrm{min}, \mathrm{V}_{\mathrm{IH}}$ min, V_{IL} max, and V_{OL} max, Texas Instruments guarantees worst-case noise margins of:

LOGIC LEVEL	$\frac{\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}}{\text { High }}$		$\frac{\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}}{0.6 \mathrm{~V}}$
Low		$\frac{1.5 \mathrm{~V}}{}$	$\frac{\mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}}{1.5 \mathrm{~V}}$
		1.5 V	1.5 V

These noise margins are equivalent to the following under conditions of no load and one input stressed at a time.

$\frac{\text { LOGIC LEVEL }}{\text { High }}$	$\frac{\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}}{1.5 \mathrm{~V}}$	$\frac{\mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}}{3.0 \mathrm{~V}}$	$\frac{\mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}}{4.0 \mathrm{~V}}$
Low	1.5 V	3.0 V	4.0 V

SERIES '4000B

GENERAL INFORMATION

POWER DISSIPATION

CMOS power dissipation is defined primarly by two contributing factors; a steady-state "leakage" current contribution and dynamic power dissipation. The dynamic power is normally the major factor and consists of two components: the capacitive term ($\mathrm{CV} \mathbf{2 f f}_{\mathrm{f}}$) and the "through" current, which results when both the N -channel and the P-channel transistors are simultaneously on. The curves of Figure 2 show CMOS power of a two-input NOR circuit as compared to equivalent circuits in the three most popular TTL families. From this comparison one can clearly see that CMOS offers the optimum power versus frequency for system frequencies less than 100 kHz . From 1 MHz up, the trade-off favors Low-Power Schottky TTL.

CMOS quiescent supply current specified in subsequent detailed specifications is primarily reverse current of diodes and off-state current of MOS transistors. Since CMOS logic functions consist of series and parallel combinations of MOS transistors, one must measure the reverse current in sufficient logic states to ensure that all junctions and transistors are stressed. For example a two-input NOR gate would require an IDD measurement with both inputs low to stress both n-channel transistors. Then, one must apply a high, low combination to stress one p-channel transistor followed by a low, high combination to stress the other. This method of measurement is being used on all Texas Instruments CMOS products.

SPECIFICATION GROUPING

The products in this book are classified into two groups each having common characteristics. The first group (SSI, small-scale integration) comprises the basic gate functions, buffers, and small analog functions, the second group (CSSI, complex small-scale integration, and MSI, medium-scale integration) comprises the dual flip-flops and the more complex functions. The type numbers in each group of the " B " series are shown below.

GROUP 1 (SSI)	GROUP 2 (CSSI and MSI)
40008*	4013B
4001B	4014 ${ }^{\text {* }}$
4002B*	4015B*
4009B	4018B
4010B	40218*
4011B	40298*
4012B*	4035B*
4016B	4042B
40238 ${ }^{\text {* }}$	4043B
4025 ${ }^{\text {* }}$	4044B
4030B	4051B
4049B	4052B
4050B	4053B
4069B	4376B
4070B	4377B
4071B	
4072B*	
4073B*	
4075B*	
4081B	
4082B ${ }^{\text {* }}$	
4085B*	

[^3]

Figure 2

SERIES '4000B
 COMMON ELECTRICAL SPECIFICATIONS

SEPTEMBER 1975

The following electrical specifications apply for most series ' 4000 B CMOS products. Each individual product specification references the appropriate sections of this common specification and lists exceptions if there are any.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, $V_{D D}($ see Note 1) . 18 V

Input current . $\pm 10 \mathrm{~mA}$
Continuous total dissipation (see Note 2) . 200 mW
Operating free-air temperature range: TF4000B Series $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
TP4000B Series $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
NOTES: 1. Throughout this page, the following page, and the individual product specifications, voltage values are with respect to the V SS terminal unless otherwise noted.
2. Power dissipation averaged over a $\mathbf{1}$-second interval must fall within the continuous dissipation rating.

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, V_{DD} (see Note 3)		3	18	V
Input voltage, V_{1}		0	VDD	V
Operating free-air temperature, T_{A}	TF4000B Series	-55	125	C
	TP4000B Series	-40	85	${ }^{\circ} \mathrm{C}$
Rise time, any input, t_{r}			15	$\mu \mathrm{s}$
Fall time, any input, t_{f}			15	$\mu \mathrm{s}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)
TF4000B Series

PARAMETER		TEST CONDITIONS		$V_{\text {DD }}=5 \mathrm{~V}$	$V_{\text {DD }}=10 \mathrm{~V}$	$V_{\text {DD }}=15 \mathrm{~V}$	UNIT		
		MIN MAX	MIN MAX	MIN MAX					
High-level input voltage						4	8	12	V
Low-level input voltage				1	2	3	V		
High-level output voltage		$V_{I H}=V_{\text {IH }} \min , V_{\text {IL }}=V_{\text {IL }}$ max, See Note 3	$\mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{OH}} \mathrm{min}$	4.6	9.5	13.5	V		
Low-level output voltage			${ }^{1} \mathrm{O}=1 \mathrm{OL}^{\text {min }}$	0.4	0.5	1.5	V		
High-level output current		$V_{I H}=V_{\text {IH }}$ min, $V_{I L}=V_{I L}$ max, $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}$ min	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-0.5	-1.1	-3.8	mA		
		$T_{A}=25^{\circ} \mathrm{C}$	-0.4	-0.9	-3				
		$\mathrm{T}_{A}=125^{\circ} \mathrm{C}$	-0.4	-0.65	-2.3				
		$\begin{aligned} & V_{I H}=V_{I H} \min , \quad V_{I L}=V_{I L} \text { max }, \\ & V_{O}=1 / 2 V_{D D} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-2	-7.5	-11			
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-1.6	-6	-9				
		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-1.2	-4	-6				
Low-level output current			$\left\{\begin{array}{l} V_{i H}=V_{i i} \min , V_{I L}=V_{1 L} \max \\ V_{O}=V_{O L} \max \end{array}\right.$	$T_{A}=-55^{\circ} \mathrm{C}$	0.5	1.1	3.8	mA	
		$T_{A}=25^{\circ} \mathrm{C}$		0.4	0.9	3			
		$\mathrm{T}_{A}=125^{\circ} \mathrm{C}$		0.4	0.65	2.3			
		$V_{I H}=V_{I H} \min , V_{I L}=V_{I L}$ max, $V_{O}=1 / 2 V_{D D}$	$T_{A}=-55^{\circ} \mathrm{C}$	2	7.5	11			
		$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	1.6	6	9				
		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	1.2	4	6				
Input current							± 1	$\mu \mathrm{A}$	
Quiescent supply current	$\begin{aligned} & \text { Group } 1^{\dagger} \\ & \text { products } \end{aligned}$		$V_{1}=V_{D D} \text { or } 0 V .$ All logic states, No load	$T_{A}=-55^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$	0.5	1	2	$\mu \mathrm{A}$	
		$T_{A}=125^{\circ} \mathrm{C}$		30	60	120			
	Group 2^{\dagger} products	$T_{A}=-55^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$		5	10	20			
		$T_{A}=125^{\circ} \mathrm{C}$		300	600	1200			

[^4]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)
TP4000B Series

PARAMETER		TEST CONDITIONS		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$	UNIT		
		MIN MAX	MIN MAX	MIN MAX					
High-level input voltage						4	8	12	V
Low-level input voltage				1	2	3	V		
High-level output voltage		$V_{I H}=V_{I H} \min , V_{I L}=V_{I L}$ max, See Note 3	$\mathrm{I}^{\prime}=1 \mathrm{OH}$ min	4.6	9.5	13.5	V		
Low-level output voltage			${ }^{1} \mathrm{O}=1 \mathrm{OL}$ min	0.4	0.5	1.5	V		
High-level output current		$\left\{\begin{array}{l} v_{I H}=v_{I H} \min , \quad v_{I L}=v_{I L} \max , \\ v_{O}=v_{O H} \min \end{array}\right.$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	-0.45	-1	-3.4	mA		
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.4	-0.9	-3				
		$\mathrm{T}^{\mathrm{A}}=85^{\circ} \mathrm{C}$	-0.4	-0.75	-2.7				
		$\begin{aligned} & V_{I H}=V_{I H} \min , V_{I L}=V_{I L} \max , \\ & V_{O}=V_{2} V_{D D} \end{aligned}$	$T_{A}=-40^{\circ} \mathrm{C}$	-1.8	-6.7	-10			
		$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	-1.6	-6	-9				
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-1.3	-5	-7.2				
Low-level output current			$V_{I H}=V_{I H} \min , V_{I L}=V_{I L}$ max, $V_{O}=V_{O L}$ max	$T_{A}=-40^{\circ} \mathrm{C}$	0.45	1	3.4	mA	
		$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		0.4	0.9	3			
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		0.4	0.75	2.7			
		$\begin{aligned} & v_{I H}=v_{I H} \min , V_{I L}=V_{I L} \max , \\ & v_{O}=1 / 2 V_{D D} \end{aligned}$	$T_{A}=-40^{\circ} \mathrm{C}$	1.8	6.7	10			
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.6	6	9				
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	1.3	5	7.2				
Input current			$V_{1}=V_{D D}$ or 0 V				± 1	$\mu \mathrm{A}$	
IDD Quiescent or supply ${ }^{-}$Iss current	Group 1^{\dagger}		$V_{1}=v_{D D} \text { or } 0 \mathrm{~V}$ All logic states, No load	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$	5	10	20	$\mu \mathrm{A}$	
	products	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		70	140	280			
	Group 2^{\dagger}	$\mathrm{T}^{\prime}=-40^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$		50	100	200			
	products	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		700	1400	2800			

NOTE 3: The output voltage limits are guaranteed for any appropriate combination of high and low inputs.
${ }^{\dagger}$ See group designation on individual product specifications and page $\mathbf{2 2}$ for a list of all products by group.

J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, greup !

NC-No internal connection

TF4002B, TP4002B ${ }^{\diamond}$
J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$V_{D D}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$		$V_{D D}=15 \mathrm{~V}$		UNIT
		TYP MAX	TYP	MAX	TYP	MAX	
tPLH Propagation delay time, low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	175	50		40		ns
tPHL Propagation delay time, high-to-low-level output		175	50		40		
${ }^{\text {t }}$ TLH Transition time, low-to-high-level output		95	35		30		
tTHL Transition time, high-to-low-level output		95	35		30		

NOTE 1: See load circuit and voltage waveforms on page 170.
${ }^{\circ}$ Future products to be announced.

DUAL-IN-LINE PACKAGE (TOP VIEW)
TF4009B, TP4009B

NC-No internal connection
TF4010B, TP4010B

NC-No internal connection
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24 and below	Page 24	Pages 24 and 25, group 1, except as on following page

absolute maximum ratings over operating free-air temperature range

Minimum rise time of supply voltages . $10 \mu \mathrm{~s}$	

NOTE 1: If $V_{\text {CC }}$ is allowed to exceed $V_{D D}$, the device may latch up and draw sufficient current to cause permanent damage.

TYPES TF4009B, TF4010B, TP4009B, TP4010B HEX INVERTING AND NONINVERTING BUFFERS/CONVERTERS
electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}$ TF4009B and TF1010B

TP4009B and TP4010B

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$V_{D D}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$		$V_{\text {DD }}=15 \mathrm{~V}$		UNIT	
		TYP MAX	TYP	MAX	TYP	MAX			
tPLH	Propagation delay time, low-to-high-level output		$\begin{array}{ll} V_{C C}=V_{D D}, & C_{L}=50 p F \\ R_{L}=200 \mathrm{k} \Omega, & \text { See Note } 2 \end{array}$	55	40		35		ns
${ }^{\text {tPHL }}$	Propayation delay time, high-telow-lovel output	50		28		23			
tTLH	Transition time, low-to-high-level output	135		110		100			
${ }^{\text {t }}$ THL	Transition time, high-to-low-level output	30		28		25			
tPLH	Propagation delay time, low-to-high-level output	$\begin{aligned} & V_{C C}=1 / 2 V_{D D}, C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega, \text { See Note } 2 \end{aligned}$		25				ns	
tPHL	Propagation delay time, high-to-low-level output			25					

NOTE 2: See load circuit and voltage waveforms on page 170.

'4011B . . . Quad 2-Input NAND Gates
'4012B . . . Dual 4-Input NAND Gates \diamond

TF4011B, TP4011B
J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

TF4012B, TP4012B ${ }^{\diamond}$
J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 1

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$		$V_{D D}=15 \mathrm{~V}$		UNIT
		TYP MAX	TYP	MAX	TYP	MAX	
tPLH Propagation delay time, low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ See Note 1	175	50		40		ns
tPHL Propagation delay time, high-to-low-level output		175	50		40		
${ }^{\text {t TLH }}$ Transition time, low-to-high-level output		95	35		30		
		95	35		30		

NOTE 1: See load circuit and voltage waveforms on page 170.
\diamond Future product to be announced.

- Toggle Rate . . . 12 MHz Typical at $V_{D D}=15 \mathrm{~V}$

description

These circuits are dual D-type transition-operated master-slave flip-flops with buffered outputs, independent direct overriding preset and clear inputs, and D and clock inputs. While the clock is low, the data at the D input is entered into the master section, which is isolated from the slave section. On the rising transition of the clock, the D input is disabled and data previously set up in the master section is transferred to the slave section and appears in true form at the Q output.

Presetting and clearing are independent of the clock and are accomplished by a high-level voltage at the respective input. The $\overline{\mathrm{Q}}$ output is complementary to the Q output except for the nonstable situation that exists when both preset and clear inputs are simultaneously high.

FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS				OUTPUTS	
PRESET	CLEAR	CK	D	Q	$\overline{\mathbf{Q}}$
H	L	X	X	H	L
L	H	x	X	L	H
H	H	x	X	H^{*}	H^{*}
L	L	\uparrow	L	L	H
L	L	\uparrow	H	H	L
L	L	L	X	Q_{0}	\bar{Q}_{0}

See explanation of function tables on pages 16 and 17.
*This configuration is nonstable; that is, it will not presist when preset and clear return to their inactive (low) level.

DUAL-IN-LINE PACKAGE (TOP VIEW)

functional block diagram

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 2

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$V_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$V_{D D}=15 \mathrm{~V}$		UNIT
		TYP MAX	TYP	MAX	TYP	MAX	
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	4	10		12		MHz
tPLH Propagation delay time, low-to-high-level output from clock, preset, or clear		225	95		85		ns
TPHL Propagation delay time, high-to-low-level output from clock, preset, or clear		225	95		85		ns
tTLH Transition time, low-to-high-level output		95	35		30		ns
tTHL Transition time, high-to-low-level output		95	35		30		ns
$t_{w(\min)} \begin{aligned} & \text { Minimum pulse width, clock high, clock low, } \\ & \text { preset, or clear } \end{aligned}$		125	50		40		ns
${ }^{\text {stu }}$ (min) ${ }^{\text {minimum setup time }}$		25	10		8		ns
th(min) Minimum hold time		0	0		0		ns

NOTE 1: See load circuit and voltage waveforms on page 170.

- Synchronous Parallel or Serial Input, Serial Output
- Parallel Outputs from Sixth, Seventh, and Eighth Bits
- Maximum Clock Frequency . . . 5 MHz Typical at 10 V

description

These 8 -bit synchronous registers have a single serial input and parallel-in access to each stage. D-type master-slave flip-flops are used for each stage with parallel access to the outputs of bits F, G, and H.

Both serial and parallel entry are made synchronously on the low-to-high transition of the clock input and under the control of the parallel-load/serial-shift input, P / \bar{S}. When the P / \bar{S} input is high, data is broadside loaded into the register from the parallel inputs. When the P / \bar{S} input is low, data is entered at the serial input and each bit shifts one bit position in the direction Q_{A} through O_{H}.

The TF4021B and TP4021B are similar to these registers, except for having asynchronous parallel inputs.

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 2

FUNCTION TABLE

INPUTS				INTERNAL OUTPUTS (2 of 5)		OUTPUTS		
$\begin{gathered} \text { CONTROL } \\ \text { P/S } \end{gathered}$	CLOCK	$\begin{gathered} \text { PARALLEL } \\ \text { A-H } \end{gathered}$	SERIAL			$\mathbf{O F}_{\mathbf{F}}$	O_{G}	$\mathrm{O}_{\mathbf{H}}$
				$\mathrm{O}_{\mathbf{A}}$	O_{B}			
H	\uparrow	a-h	X	a	b	f	g	h
L	\uparrow	x	H	H	$\mathrm{Q}_{\text {An }}$	Q_{En}	Q_{Fn}	O_{Gn}
L	\uparrow	X	L	L	$\mathrm{Q}_{\text {An }}$	$Q_{\text {En }}$	$Q_{\text {F }}$	Q_{Gn}
X	L	X	X	$\mathrm{Q}_{\text {AO }}$	O_{BO}	Q_{FO}	$\mathrm{Q}_{\mathrm{G} 0}$	$\mathrm{OHO}^{\text {H0}}$

See explanation of function tables on pages 16 and 17.
functional block diagram

TYPES TF4014B, TP4014B

8-BIT STATIC SHIFT REGISTERS

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$V_{D D}=15 \mathrm{~V}$		UNIT
		TYP MAX	TYP	MAX	TYP	MAX	
$\mathrm{f}_{\max } \quad$ Maximum clock frequency	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ See Note 1	2.5	5		7		MHz
tPLH Propagation delay time, low-to-high-level output		300	125		90		ns
${ }^{\text {tPHL }}$ Propagation delay time, high-to-low-level output		300	125		90		ns
tTLH Transition time, low-to-high-level output		95	35		30		ns
tTHL Transition time, high-to-low-level output		95	35		30		ns
$\mathrm{t}_{\text {w }}(\mathrm{min})$ Minimum pulse width, clock high or clock low		200	100		100		ns
$\mathrm{t}_{\text {su}}(\mathrm{min})$ Minimum setup time		100	50		50		ns
$\mathrm{th}_{\mathrm{h}}(\mathrm{min})$ Minimum hold time		0	0		0		ns

NOTE 1: See load circuit and voltage waveforms on page 170.

FUTURE CMOS PRODUCT
TO BE ANNOUNCED

TYPES TP4015B, TP4015B DUAL 4-BIT STATIC SHIFT REGISTERS

SEPTEMBER 1975

- Maximum Clock Frequency . . . 5 MHz

Typical at 10 V

description

These dual 4 -bit static shift registers consist of two identical, independent, 4 -stage serial-input, paralleloutput registers. Each register has independent clock and clear inputs as well as a single serial data input. The register stages are D-type master-slave flip-flops with Q outputs available from each of the four bits on both registers. Data is shifted from one bit to the next during the low-to-high-level transition of the clock. A high level applied to the clear line sets all outputs of the associated registers to the low level.

FUNCTION TABLE
(EACH REGISTER)

INPUTS			OUTPUTS			
CLEAR	CLOCK	\mathbf{D}	$\mathbf{Q}_{\mathbf{A}}$	Q_{B}	Q_{C}	\mathbf{Q}_{D}
H	\times	X	L	L	L	L
L	\uparrow	L	L	Q_{An}	Q_{Bn}	Q_{Cn}
L	\uparrow	H	H	Q_{An}	Q_{Bn}	Q_{Cn}
L	L	X	Q_{AO}	Q_{BO}	Q_{CO}	Q_{DO}

See explanation of function tables on pages 16 and 17.

functional block diagram (each register)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 2

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$		UNIT	
			TYP MAX	TYP	MAX	TYP	MAX			
${ }^{f_{\text {max }}}$	Maximum clock frequency			$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	3	5		7		MHz
tPLH	Propagation delay time, low-to-high-level output from clock		250		100		80		ns	
tPHL	Propagation delay time, high-to-low-level output	from clock	250		100		80		ns	
		from clear	300		125		100			
t ${ }^{\text {TLH }}$	Transition time, low-to-high-level output		95		35		30		ns	
${ }^{\text {t }}$ THL	Transition time, high-to-low-level output		95		35		30		ns	
$\mathrm{t}_{\text {w }}(\mathrm{min})$ Minimum pulse width		clock high or low	165		100		75		ns	
		clear	125		50		50			
$\mathrm{t}_{\text {su }}(\min)$ Minimum setup time			100		50		50		ns	
th(min)	Minimum hold time		0		0		0		ns	

NOTE 1: See load circuit and voltage waveforms on page 170.

- Difference in ron between Switches in One Package Typically 10Ω when $V_{I}=V_{S S}$ or $V_{D D}$
- High Degree of Linearity . . $<0.5 \%$ Distortion Typical at 1 kHz
- Switches Can Transmit Signals in Either Direction at Frequencies of up to 50 MHz Typically
- Extremely Low Off-State Switch Current Resulting in Very High Effective Off-State Resistance . . . 10 pA Typical at $V_{D D}-V_{S S}=10 \mathrm{~V}$
- Maximum Control Input Frequency .. 10 MHz Typical at $V_{D D}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
- High On/Off Output Voltage Ratio . . 65 dB Typical
- Extremely High Control-Input Impedance (Control Circuit Isolated from Switch Circuit) ... $10^{12} \Omega$ Typical
- Low Crosstalk Between Switches . . . 50 dB Typical at $0.9 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
- Control Input Current . . . <10 pA Typical description

The '4016B is a quadruple bilateral switch constructed with P -channel and N -channel enhancement-type devices in a monolithic structure, and finds primary use where low power dissipation and/or high noise immunity is desired.
Applications include digital switching and multiplexing; analog-to-digital and digital-to-analog conversion; digital control of frequency, impedance, phase and analog-signal gain; signal gating; and use as a squelch control, chopper, modulator, demodulator, or commutating switch.
The P^{-}well of the analog transmission gate is connected to $\mathrm{V}_{\text {SS }}$ when the control input is low (gate off) and is switched to the analog input when the control input is high (gate on). This provides a more uniform on-state resistance with varying analog input voltages.
specifications

MAXIMUM		
RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	See the following page. Electrical characteristics on pages 24 and 25 do not apply.

TYPES TF4016B, TP4016B QUAD BILATERAL SWITCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) TF4016B

	PARAMETER	TEST CONDITIONS		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX		
$V_{\text {IH }}$	High-level control input voltage			3		4		4		V	
$V_{\text {IL }}$	Low-level control input voltage				0.9		0.9		0.9	V	
V OH	High-level output voltage	A at 0 V,$\mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A}$$\quad \mathrm{C}$ at $V_{\text {IL }}$ max,		4.5		9		12		V	
V_{OL}	Low-level output voltage	$\begin{array}{ll} \text { A at } 0 \mathrm{~V}, & \mathrm{C} \text { at } \mathrm{V}_{\mathrm{IH}} \text { min, } \\ \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A} & \\ \hline \end{array}$		0.5		1		1		V	
	Input-to-output off-state current	$\begin{aligned} & \mathrm{A} \text { at } 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \quad \mathrm{C} \text { at } 0 \mathrm{~V}, \\ & \mathrm{Y} \text { at } 5 \mathrm{~V} \end{aligned}$	$T_{A}=25^{\circ} \mathrm{C}$				± 125			nA	
Small-signal on-state resistance		$\begin{aligned} & \text { A at } V_{D D}, 1 / 2 V_{D D}, \text { or } 0 \mathrm{~V}, \\ & C \text { at } V_{D D}, \\ & R_{L}=10 \mathrm{k} \Omega \text { to } 1 / 2 V_{D D} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$				660		400	Ω	
		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$				960		600			
11	Input current		$\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$ or 0 V							± 1	$\frac{\mu \mathrm{A}}{\mu \mathrm{~A}}$
Total Quiescent Current ${ }^{\dagger}$		$\begin{aligned} & \mathrm{A} \text { at } 0 \mathrm{~V} \text { to } V_{D D}, \quad \mathrm{C} \text { at } 0 \mathrm{~V}, \\ & Y \text { at } 0 \mathrm{~V} \text { to } V_{D D} \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$		0.5		1		2		
		$T_{A}=125^{\circ} \mathrm{C}$		30		60		120			
		$\mathrm{A}=\mathrm{Y}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}},$ C at $V_{D D}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$		0.5		1		2	$\mu \mathrm{A}$	
		$T_{A}=125^{\circ} \mathrm{C}$		30		60		120			

TP4016B

${ }^{\dagger}$ This is the total of supply current, control input current, and input-to-output off-state current.

TYPES TF4016B, TP4016B QUAD BILATÉRAL SWITCHES

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER ${ }^{\text {d }}$	FROM(INPUT)	TO (OUTPUT)	TEST CONDITIONS		$V_{\text {DD }}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$	UNIT
					TYP MAX	TYP MAX	TYP MAX	
tple	A	Y	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega, \\ & \mathrm{C} \text { at } V_{D D}, \end{aligned}$	$C_{L}=50 \mathrm{pF},$ See Figure 1	30	15	12	ns
tpHL	A	Y			30	15	12	
tPLH	C	Y	$C_{L}=50 \mathrm{pF},$ See Figure 2	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 0 V	80	30	25	ns
tPHL	C	Y		$R_{L}=10 \mathrm{k} \Omega$ to $V_{D D}$	80	30	25	

$I^{t_{\text {PLH }}} \equiv$ Propagation delay time, low-to-high-level output
$t_{P H L} \equiv$ Propagation delay time, high-to-low-level output

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-PROPAGATION DELAY TIME, SWITCH INPUT A TO OUTPUT Y

FIGURE 2-PROPAGATION DELAY TIMES, CONTROL INPUT C TO OUTPUT Y

NOTES: A. Input pulses are supplied by generators having the following characteristics: $Z_{o u t}=50 \Omega, P R R=10 \mathrm{kHz}, \mathrm{t}_{\mathrm{r}} \leqslant 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$
B. C_{L} includes probe and jig capacitance.
C. The waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 10 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 1 \mathrm{M} \Omega$.

- Maximum Clock Frequency . . . 5 MHz

Typical at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
description
The '4018B consist of five Johnson counters, buffered $\overline{\mathrm{Q}}$ outputs from each stage, and preset control gating. Clear, preset enable, clock, feedback, and five parallel load inputs are provided.

A high clear signal asynchronously clears the counter so that all $\overline{\mathrm{O}}$ outputs are high. A high preset enable signal asynchronously loads the counter and the $\overline{\mathrm{Q}}$ outputs will take on the complements of the parallel inputs. The counter is advanced one count on the low-to-high transition of the clock input.

Various counter configurations may be implemented as follows:

dUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 2 2

Divide by	Connect These Outputs to Feedback Input	Via	Results from Each $\overline{\mathrm{Q}}$ Output (See Timing Diagram)
10	$\overline{\mathrm{Q}}_{\mathrm{E}}$	direct	5 counts high, 5 counts low
9	$\overline{\mathrm{Q}}_{\mathrm{D}}, \overline{\mathrm{a}}_{\mathrm{E}}$	AND gate	5 counts high, 4 counts low
8	$\overline{\mathrm{O}}_{\mathrm{D}}$	direct	4 counts high, 4 counts low
7	$\overline{\mathrm{Q}}_{\mathrm{C}}, \overline{\mathrm{O}}_{\mathrm{D}}$	AND gate	4 counts high, 3 counts low
6	$\overline{\mathrm{O}}_{\mathrm{C}}$	direct	3 counts high, 3 counts low
5	$\overline{\mathrm{O}}_{\mathrm{B}}, \overline{\mathrm{Q}}_{\mathrm{C}}$	AND gate	3 counts high, 2 counts low
4	$\overline{\mathrm{O}}_{\mathrm{B}}$	direct	2 counts high, 2 counts low
3	$\overline{\mathrm{O}}_{\mathrm{A}}, \overline{\mathrm{O}}_{\mathrm{B}}$	AND gate	2 counts high, 1 count low
2	$\overline{\mathrm{O}}_{\mathrm{A}}$	direct	1 count high, 1 count low

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER					$V_{\text {DD }}$	$=5 \mathrm{~V}$	$V_{\text {DD }}$	10 V	$V_{\text {DD }}$	15 V	UNIT MHz
				CONDITIONS	TYP	MAX	TYP	MAX	TYP	MAX	
$\mathrm{f}_{\text {max }}$	Maximum clock frequency			$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	2.5		5		7		
tPLH	Propagation delay time, low-to-high-level output from clock, clear, or preset enable		to $\overline{\mathrm{Q}}_{A}, \overline{\mathrm{Q}}_{\mathrm{B}}, \overline{\mathrm{Q}}_{C}, \overline{\mathrm{Q}}_{\mathrm{D}}$,		500		200		150		ns
			to $\overline{\mathrm{Q}}_{\mathrm{E}}$		350		125		100		
tPHL	Propagation delay time, high-to-low-level output from clock, clear, or preset enable		to $\overline{\mathrm{Q}}_{\mathrm{A}}, \overline{\mathrm{Q}}_{\mathrm{B}}, \overline{\mathrm{Q}}_{\mathrm{C}}, \overline{\mathrm{Q}}_{\mathrm{D}}$		500		200		150		ns
			to $\overline{\mathrm{Q}}_{\mathrm{E}}$		350		125		100		
t ${ }_{\text {TLH }}$	Transition time, low-to-high-level output				95		35		30		ns
${ }_{\text {t }}$	Transition time, high-to-low-level output				95		35		30		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{min})}$ Minimum pulse width			clock high or low		200		100		75		ns
			clear or preset enable		200		100		75		
${ }^{\text {t }}$ su(min) Minimum setup time		feedback input			75		75		65		ns
		clear or preset enable inactive state			300		100		100		
$\mathrm{t}_{\text {(}}(\min)$ Minimum hold time at feedback input	Minimum hold time at feedback input				0		0		0		ns

NOTE 1: See load circuit and voltage waveforms on page 170.

TYPES TF4018B, TP4018B PRESETTABLE DIVIDE-BY-N COUNTERS

functional block diagram

typical clear, count, and preset sequence
SHOWN IN DIVIDE-BY-TEN CONFIGURATION, $\overline{\mathrm{a}}_{\mathrm{E}}$ TIED DIRECTLY TO FEEDBACK INPUT

FUTURE CMOS PRODUCT TO BE ANNOUNCED

- Asynchronous Parallel or Synchronous Serial Input, Serial Output
- Parallel Outputs from Sixth, Seventh, and Eighth Bits
- Maximum Clock Frequency . . 5 MHz Typical at 10 V

description

These 8 -bit registers have a single serial input and parallel-in access to each stage. D-type master-slave flip-flops are used for each stage with parallel access to the outputs of bits F, G, and H .

When the parallel-load/serial-shift input, $\mathrm{P} / \overline{\mathrm{S}}$ is high, data is broadside loaded into the register from the parallel inputs independently of the clock. When the $\mathrm{P} / \overline{\mathrm{S}}$ input is low, data is synchronously entered at the serial input and each bit shifts one bit position in the direction Q_{A} toward O_{H}. Serial operations occur on the low-to-high transition of the clock input.

The TF4014B and TP4014B are similar to these registers, except for having synchronous parallel inputs.

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 2

function table

INPUTS				INTERNAL OUTPUTS (2 OF 5)		OUTPUTS		
CONTROL	CLOCK	$\begin{gathered} \text { PARALLEL } \\ \text { A-H } \end{gathered}$	SERIAL			$\mathbf{Q}_{\mathbf{F}}$	$\mathbf{Q}_{\mathbf{G}}$	O_{H}
P/S				$\mathbf{Q}_{\text {A }}$	O_{B}			
H	X	a-h	X	a	b	f	g	h
L	\uparrow	x	H	H	$\mathrm{Q}_{\text {An }}$	Q_{En}	$Q_{\text {Fn }}$	O_{Gn}
L	\uparrow	X	L	L	$\mathrm{O}_{\text {An }}$	$\mathrm{Q}_{\text {En }}$	Q_{Fn}	Q_{Gn}
L	L	\times	X	$\mathrm{Q}_{\text {A0 }}$	O_{BO}	Q_{FO}	Q_{GO}	O_{HO}

See explanation of function tables, pages 16 and 17.
functional block diagram

TYPES TF4021B, TP4021B
 8 -BIT STATIC SHIFT REGISTERS

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	$V_{\text {DD }}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$		UNIT	
			TYP	MAX	TYP	MAX	TYP	MAX			
$\mathrm{f}_{\text {max }}$	Maximum clock frequency			$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	2.5		5		7		MHz
tPLH	Propagation delay time, low-to-high-level output		300			125		75		ns	
tPHL	Propagation delay time, high-to-low-level output		300			125		75		ns	
t ${ }^{\text {tin }}$	Transition time, low-to-high-level output		95			35		30		ns	
${ }^{\text {t THL }}$	Transition time, high-to-low-level output		95			35		30		ns	
$t_{w}(\min)$	Minimum pulse width	clock high or low	200			100		100		ns	
		$\mathrm{P} / \overline{\mathrm{S}}$ high	200			100		100			
$\mathrm{t}_{\text {su }}(\mathrm{min})$	Minimum setup time		100			50		50		ns	
th (min)	Minimum hold time		0			0		0		ns	

NOTE 1: See load circuit and voltage waveforms on page 170.

'4023B . . . Triple 3-Input NAND Gates ${ }^{\diamond}$
'4025B . . . Triple 3-Input NOR Gates ${ }^{\diamond}$

TF4023B, TP4023B ${ }^{\circ}$
J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

TF4025B, TP4025B ${ }^{\circ}$ J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 1

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$V_{D D}=15 \mathrm{~V}$		UNIT	
		TYP	MAX	TYP	MAX	TYP	MAX			
tPLH	Propagation delay time, low-to-high-level output		$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	175		50		40		ns
tPHL	Propagation delay time, high-to-low-level output	175			50		40			
${ }^{\text {t }}$ TLH	Transition time, low-to-high-level output	95			35		30			
${ }_{\text {t }}$ THL	Transition time, high-to-low-level output	95			35		30			

NOTE 1: See load circuit and voltage waveforms on page 170.
${ }^{\circ}$ Future products to be announced.

- Medium Speed Operation . . . 5 MHz

Typical at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$

- Binary or Decade Up/Down Counting
- BCD Outputs in Decade Mode

description

The '4029B counter consists of a four-stage binary or BCD-decade up/down counter with provision for look-ahead carry in both counting modes. The inputs consist of a single clock, carry input (clock enable), binary/decade, up/down, preset enable, and four individual parallel data inputs. Four separate buffered data outputs and a carry output are provided.

A high at the preset-enable input allows information at the parallel inputs to preset the counter to any count independently of the clock. A low at each parallel input, when the preset-enable input is high, resets the counter to its zero count. The counter is advanced one count at the low-to-high transition of the clock when the carry input and preset-enable input are low. Advancement is inhibited when the carry input or preset-enable input is high. The carry output is normally high and goes low when the counter reaches its maximum count in the up mode or its minimum count in the down mode, provided the carry input is low. The carry input terminal must be connected to $\mathrm{V}_{\text {SS }}$ when not in use.

Binary counting is accomplished when the binary/ decade input is high; the counter counts in the decade mode when the binary/decade input is low. The counter counts up when the up/down input is high, and down when the up/down input is low.

Multiple packages can be connected in either a parallel-clocking or a ripple-clocking arrangement as shown in Figure 1 of the '4029A data. Parallel clocking provides synchronous control and hence faster response from all counting outputs. Ripple clocking permits longer clock input rise and fall times.

SUMMARY OF CONTROL INPUT FUNCTIONS (COMPLETE COUNTER)

CONTROL INPUT	LOGIC LEVEL	FUNCTION
Binary/Decade	H	Binary count
(B/D)	L	Decade count
Up/Down	H	Count up
(U/D)	L	Count down
Preset enable	H	Parallel load
(PE)	L	Enable counting
Carry input	H	Inhibit counting
$(\overline{\mathrm{C}})$	L	Enable counting

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 2

functional block diagram

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$V_{\text {DD }}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$		$V_{D D}=15 \mathrm{~V}$		UNIT	
		TYP MAX	TYP	MAX	TYP	MAX			
Maximum clock frequency			$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega, \\ & \text { See Note } 1 \end{aligned}$	2.5	5		7		MHz
Propagation delay time, low-to-high-leve! or high-to-low-level output	CK to any O	325		115		100		ns	
	CK to $\overline{\mathrm{CO}}$	425		150		125			
	$P E$ to any Q	325		115		100			
	PE to $\overline{\mathrm{CO}}$	425		150		125			
	$\overline{\mathrm{Cl}}$ to $\overline{\mathrm{CO}}$	175		50		45			
Transition time, low-to-high-level output		95		35		30		ns	
Transition time, high-to-low-level output		95		35		30		ns	
Minimum pulse width	CK high or low	200		100		75		ns	
	PE	115		80		80			
\qquad	B/D, U/ $\overline{\mathrm{D}}$, or Cl	325		115		100		ns	
	PE inactive state	325		115		100			
$\mathrm{th}_{\mathrm{h}}(\mathrm{min})$ Minimum hold time	$\mathrm{B} / \overline{\mathrm{D}}, \mathrm{U} / \overline{\mathrm{D}}$, or Cl	0		0		0		ns	

NOTE 1: See load circuit and voltage waveforms on page 170.

APPLICATIONS INCLUDE:

- Even- and Odd-Parity Generators and Checkers
- Logical Comparators
- Adders and Subtractors
- True/Complement Gating

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	L
H	L	H
L	H	H
H	H	L

$H=$ high level, $L=$ low level
functional block diagram (each gate)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 1

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

schematic (each gate)

$\square \ldots v_{D D}$ bus
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$V_{D D}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$		UNIT
		TYP MAAX	TYP	max	TYP	max	
tPLH Propagation delay time, low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega . \end{aligned}$ See Note 1	110	50		40		ns
tPHL Propagation delay time, high-to-low-level output		110	50		40		ns
tTLH Transition time, low-to-high-level output		95	35		30		ns
${ }^{\text {t THL }}$ Transition time, high-to-low-level output		95	35		30		ns

NOTE 1: See load circuit and voltage waveforms on page 170.

- $\mathbf{J} / \overline{\mathrm{K}}$ Serial Input to First Stage
description
These 4-bit synchronous registers have J- \bar{K} serial inputs and parallel access to each stage. D-type master-slave flip-flops are used for each stage with parallel access to the outputs of each stage.

Both serial and parallel entry are made synchronously on the low-to-high transition of the clock input and under the control of the parallel-load/serial-shift input, P / \bar{S}. When the P / \bar{S} input is high, data is broadside loaded into the register from the parallel inputs. When the P / \bar{S} is low, data is entered serially from the J and $\overline{\mathrm{K}}$ inputs and each bit shifts one bit position in the direction Q_{A} towards Q_{D}. The $J-\bar{K}$ inputs permit the first stage to perform as a $J-\bar{K}, D$-, or T-type flip-flop as shown in the function table.

When the true/complement input, $\mathrm{T} / \overline{\mathrm{C}}$, is high, data out is not inverted relative to the inputs, but when $\mathrm{T} / \overline{\mathrm{C}}$ is low, the data out is inverted.

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 2

function table

INPUTS									OUTPUTS ${ }^{\dagger}$			
CLEAR	P/S's	CLOCK		RA	CL	D		$\frac{1}{\mathrm{~K}}$	$\mathbf{O}_{\mathbf{A}}$	O_{B}	O_{C}	O_{D}
H	X	X	X	X	X	X	X	X	L	L	L	L
L	H	\uparrow	a	b	c	d	X	X	a	b	c	d
L	L	\uparrow	X	X	x	x	L	H	Q_{AO}	$\mathrm{Q}_{\text {A0 }}$	O_{Bn}	O_{Cn}
L	L	\uparrow	x	x	x	x	L	L	L	$\mathrm{Q}_{\text {An }}$	O_{Bn}	O_{Cn}
L	L	\uparrow	\times	X	x	x	H	H	H	$\mathrm{Q}_{\text {An }}$	O_{Bn}	Q_{Cn}
L	L	\uparrow	X	X	X	x	H	L	$\overline{\mathrm{Q}}_{\mathrm{An}}$	$\mathrm{Q}_{\text {An }}$	O_{Bn}	O_{Cn}
L	X	L	X	X	X	\times	X	X	$\mathrm{Q}_{\text {AO }}$	Q_{BO}	Q_{CO}	O_{DO}

${ }^{\dagger}$ All output levels shown assume T / \bar{C} is high. If T / \bar{C} goes low, the incernal operation of the register is not affected; however, when T / \bar{C} is low, all output levels will be the complement of the data originally entered and of what they would have been if $T / \overline{\mathrm{C}}$ had remained high.
See explanation of function tables, pages 16 and 17.

TYPES TF4035B, TP4035B
 4-BIT PARALLEL-IN/PARALLEL-OUT SHIFT REGISTERS

functional block diagram

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	$V_{D D}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$		$V_{D D}=15 \mathrm{~V}$		UNIT	
			TYP MAX	TYP	MAX	TYP	MAX			
${ }^{\text {f max }}$	Maximum clock frequency			$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$ See Note 1	2.5	5		7		MHz
tple	Propagation delay time, low-to-high-level output from clock or clear		250		100		80		ns	
tPHL	Propagation delay time, high-to-low-level output from clock or clear		250		100		80		ns	
${ }^{\text {T }}$ TLH	Transition time, low-to-high-level output		95		35		30		ns	
${ }^{\text {t }}$ THL	Transition time, high-to-low-level output		95		35		30		ns	
$\mathrm{t}_{\mathrm{w}}(\mathrm{min})$	Minimum pulse width	clock high or low	200		100		75		ns	
		clear	125		50		50			
$\mathrm{t}_{\text {su }}(\mathrm{min})$	Minimum setup time	parallel inputs	100		50		45		ns	
		J or \bar{K} inputs	250		100		80			
$t_{\text {L }}(\mathrm{min})$	Minimum hold time	parallel inputs	0		0		0		ns	
		J or \bar{K} inputs	0		0		0			

NOTE 1: See load circuit and voltage waveforms on page 170.

- Control and Polarity Inputs
- Complementary Outputs

description

The ' 4042 B is a quadruple D-type latch with common control and polarity inputs, C and P. Complementary buffered outputs are available from each latch.

When P is high, C determines the state of all the latches. If C is high, the latches pass data from their D inputs to their Q outputs and the data complement to their $\overline{\mathrm{Q}}$ outputs. If C is low, the data is latched.

When P is low, C still determines the state of all the latches, but now data is passed when C is low and is latched when C is high.

FUNCTION TABLE

P	C	FUNCTION
H	H	Pass data
H	L	Latch data
L	H	Latch data
L	L	Pass data

$H=$ high level, $L=$ low level

functional block diagram

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 2

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

NOTE 1: See load circuit and voltage waveforms on page 170.

- 3-State Outputs with Common Enable

description

The '4043B and '4044B are quadruple $S-R$ and $\bar{S} \cdot \bar{R}$ latches, respectively, with three-state outputs. Each latch has separate active-high ('4043B) or active-low ('4044B) set and reset inputs. The three-state outputs are controlled by a common output control. When high, this control permits each output to assume the state of the cross-coupled NOR-gate or NAND-gate latch. When the output control is low, all the outputs are in a high-impedance state.

> FUNCTION TABLES
> (EACH LATCH)
> TF4043B, TP4043B

OUTPUT CONTROL	INPUTS		$\begin{gathered} \text { OUTPUT } \\ \mathbf{0} \end{gathered}$
	S	R	
L	\times	X	$\mathrm{Hi}-\mathrm{Z}$
'H	L	L	No change
H	H	L	H
H	L	H	L
H	H	H	H^{*}

TF4044B, TP4044B

OUTPUT CONTROL	INPUTS		OUTPUT
	$\overline{\mathbf{S}}$	$\overline{\mathbf{R}}$	
L	X	X	Hi-Z
H	H	H	No change
H	L	H	H
H	H	L	L
H	L	L	L*

This output level is psuedo stable; that is, it may not persist when the S and R inputs return to their inactive (low) level or the S and \bar{R} inputs return to their inactive (high) level. See explanation of function tables, pages 16 and 17.

functional block diagrams

DUAL-IN-LINE PACKAGE (TOP VIEW) TF4043B, TP4043B

NC-No internal connection
TF4044B, TP4044B

NC-No internal connection

TF4044B, TP4044B

TYPES TF4043B, TF4044B, TP4043B, TP4044B

 QUAD S-R AND $\bar{S}-\bar{R}$ LATCHES WITH 3-STATE OUTPUTS
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 2, except as below

electrical characteristics over recommended operating free-air temperature range
TF4043B and TF4044B

PARAMETER		TEST CONDITIONS		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$	UNIT		
		MIN MAX	MIN MAX	MIN MAX					
${ }^{1} \mathrm{OH}$	High-level output current			$V_{\text {IH }}=V_{\text {IH }}$ min,	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-0.25	-0.55	-1.9	mA
		$V_{\text {IL }}=V_{\text {IL }}$ max,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.2	-0.45	-1.5			
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}$ min	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.2	-0.33	-1.2			
		$\begin{aligned} & V_{I H}=V_{I H} \min , \\ & V_{I L}=V_{I L} \max , \\ & V_{O}=1 / 2 V_{D D} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1	-3.7	-5.5			
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.8	-3	-4.5			
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.6	-2	-3			
'OL	Low-level output current	$\begin{aligned} & V_{I H}=V_{I H} \text { min }, \\ & V_{I L}=V_{I L} \text { max }, \\ & V_{O}=V_{O L} \text { max } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	0.4	0.8	1.9	mA		
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.3	0.6	1.5			
			$T_{A}=125^{\circ} \mathrm{C}$	0.2	0.45	1.2			
		$\begin{aligned} & V_{I H}=V_{I H} \text { min }, \\ & V_{I L}=V_{I L} \text { max }, \\ & V_{O}=1_{2 / 2} V_{D D} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	1	3.7	5.5			
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	3	4.5			
			$\mathrm{T}_{A}=125^{\circ} \mathrm{C}$	0.6	2	3			
${ }^{1} \mathrm{OZH}$	Off-state output current, high-level voltage applied	$\begin{aligned} & \text { OC at } V_{S S}, \\ & V_{O}=v_{D D} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$	-0.5	-1	-2	$\mu \mathrm{A}$		
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-7	-14	-28			
${ }^{1}$ OZL	Off-state output current, low-level voltage applied	$\begin{aligned} & \mathrm{OC} \text { at } \mathrm{V}_{\mathrm{SS}}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{OV} \end{aligned}$	$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$	0.5	1	2			
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	7	14	28			

TP4043B and TP4044B

PARAMETER		TEST CONDITIONS		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$V_{\text {DD }}=10 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$	UNIT		
		MIN MAX	MIN MAX	MIN MAX					
${ }^{1} \mathrm{OH}$	High-level output current			$V_{1 H}=V_{I H}$ min,	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	-0.22	-0.5	-1.7	mA
		$V_{\text {IL }}=V_{\text {IL }}$ max,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.2	-0.45	-1.5			
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}$ min	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-0.2	-0.37	-1.3			
		$\begin{aligned} & V_{I H}=V_{I H} \min , \\ & V_{I L}=V_{I L} \max , \\ & V_{O}=1 / 2 V_{D D} \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	-0.9	-3.3	-5			
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.8	-3	-4.5			
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-0.65	-2.5	-3.6			
${ }^{1} \mathrm{OL}$	Low-level output current	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {IH }}$ min,	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	0.35	0.75	1.7	mA		
		$V_{I L}=V_{\text {IL }}$ max,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.3	0.6	1.5			
		$V_{O}=V_{\text {OL }}$ max	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	0.25	0.5	1.3			
		$\begin{aligned} & V_{I H}=V_{I H} \min , \\ & V_{I L}=V_{I L} \text { max }, \\ & V_{O}=1 / 2 V_{D D} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	0.9	3.3	5			
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	3	4.5			
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	0.65	2.5	3.6			
${ }^{1} \mathrm{OZH}$	Off-state output current, high-level voltage applied	OC at $\mathrm{V}_{\text {SS }}$,	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$	-0.5	-1	-2	$\mu \mathrm{A}$		
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DO}}$	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-7	-14	-28			
IOZL	Off-state output current, low-level voltage applied	$\begin{aligned} & O C \text { at } V_{S S}, \\ & V_{O}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$	0.5	1	2			
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	7	14	28			

- High Current Sinking Capability
schematic (each buffer)

description
The '4049B and '4050B hex CMOS inverting and noninverting buffers may be used as current sinks or source drivers, hex CMOS drivers, or high-to-low-logic-level (e.g., CMOS to DTL or TTL) converters. Logic-level conversion is accomplished using only one supply voltage (VDD). The high-level input signal $\left(V_{\text {IH }}\right)$ can exceed the $V_{D D}$ supply voltage when this device is used for logic-level conversions. Table 1 shows the range of voltage levels that can be utilized in these applications. Conversions to logic levels greater than six volts are permitted provided that $V_{D D}$ is less than or equal to $V_{\text {IH }}$.

Since these devices require only one power supply, VDD, they should be used in place of the '4009B and '4010B in all current driver or logic-level conversion applications. They are interchangeable with '4009B and '1010B, respective!y, and can be substituted in existing as well as new designs. Pin 16 of the '4049B and '4050B is not internally connected; therefore, any external connection to this pin does not affect circuit operation.

FUNCTION	INPUT HIGH-LEVEL vOLTAGE RANGE	OUTPUT high-LEVEL VOLTAGE RANGE	POWER SUPPLY VOLTAGE RANGE ($V_{D D}$)
Level Shifter	3 to 18 V	3 to 6 V	3 to 6 V
Buffer	3 to 18 V	3 to 18 V	3 to 18 V

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)
TF4049B, TP4049B

NC-No internal connection

TF4050A, TP4050B

NC-No internal connection
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page24	Page 24	Pages 24 and 25, group 1, except as on following page

electrical characteristics over recommended operating free-air temperature range
TF4049B and TF4050B

TP4049B and TP4050B

PARAMETER	TEST CONDITIONS		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
$V_{I H} \begin{aligned} & \text { High-level } \\ & \text { input voltage }\end{aligned}$			4		8		12		V
$V_{\text {IL }}$ Low-leve!		TP4049B		1		2		2	V
VIL input voltage		TP4050B		1		2		3	
$\mathrm{V}_{\mathrm{OH}} \begin{aligned} & \text { High-level } \\ & \text { output voltage }\end{aligned}$	$V_{I H}=V_{I H}$ min, $V_{\text {IL }}=V_{I L}$ max, $\mathrm{I}_{\mathrm{O}}=0$		4.6		9.5		13.5		V
	$V_{I H}=V_{D D}, \quad V_{I L}=0, \quad I_{O}=I_{O H}$ min		4.6		9.5		13.5		
$\begin{array}{ll} \hline V_{O L} & \begin{array}{l} \text { Low-level } \\ \text { output voltage } \end{array} \\ \hline \end{array}$	$V_{I H}=V_{I H}$ min, $V_{\text {IL }}=V_{\text {IL }}$ max, $\mathrm{I}_{\mathrm{O}}=0$			0.4		0.5		1.5	V
	$V_{1 H}=V_{D D}, \quad V_{\text {IL }}=0, \quad I_{0}=10 \mathrm{l}$ min			0.4		0.5		1.5	
$\begin{array}{ll} \text { IOL } & \text { Low-level } \\ \text { output current } \end{array}$	$V_{\text {IH }}=V_{\text {IH }}$ min $, ~ V_{I L}=V_{1 L}{ }_{\text {max }}, V_{O}=V_{O L \max }$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	3.6		9.6		28		mA
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3.2		8		24		
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	2.5		6.6		19		
	$V_{I H}=V_{1 H} \min , V_{I L}=V_{I L} \max , V_{O}=1 / 2 V_{D D}$	$T_{A}=-40^{\circ} \mathrm{C}$	10		34		49		
		$T_{A}=25^{\circ} \mathrm{C}$	9.2		29		42		
		$T_{A}=85^{\circ} \mathrm{C}$	7.1		24		33		

'4049B switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$\begin{array}{\|l\|} \hline V_{D D}=5 V \\ T Y P M A X \\ \hline \end{array}$	$V_{D D}=10 \mathrm{~V} V_{D D}=15 \mathrm{~V}$				UNIT
			TYP	MAX	TYP	MAX	
tplH Propagation delay time, low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \\ & \text { See Note } 1 \end{aligned}$	80	50		40		ns
tPHL Propagation delay time, high-to-low-level output		30	20		15		ns
tTLH Transition time, low-to-high-level output		80	40		30		ns
tTHL Transition time, high-to-low-level output		35	25		20		ns

'4050B switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$V_{D D}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	$V_{\text {DD }}=15 \mathrm{~V}$	UNIT
tplH Propagation delay time, low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \\ & \text { See Note } 1 \end{aligned}$	100	60	45	ns
tPHL Propagation delay time, high-to-low-level output		70	40	30	ns
TTLH Transition time, low-to-high-level output		80	40	30	ns
${ }^{\text {t }}$ THL Transition time, high-to-low-level output		35	25	20	ns

NOTE 1: See load circuit and voltage waveforms on page 170.

- Difference in ron Between Switches in One Package Typically 5Ω at $V_{D D}-V_{E E}=15 \mathrm{~V}$
- High Degree of Linearity . . . $<0.1 \%$ Distortion Typical at $1 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=15 \mathrm{~V}$
- Switches Can Transmit Signals in Either Direction at Frequencies of up to 40 MHz Typically at $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=10 \mathrm{~V}$
- Extremely Low Off-State Switch Current Resulting in Very High Effective Off-State Resistance . . 10 pA Typical at $V_{D D}-V_{S S}=10 \mathrm{~V}$
- Low Crosstalk Between Switches . . . 40 dB Typical at $1 \mathrm{MHz}, R_{L}=1 \mathrm{k} \Omega$

description

These devices are analog multiplexers/demultiplexers incorporating built-in level shifting. Any combination of supply voltages is permissable provided that V_{SS} and $V_{E E}$ are each within the range of -3 to -18 volts with respect to $V_{D D}$. The level shifting is between $V_{\text {SS }}$ and $V_{E E}$. The control input range is $V_{S S}$ to $V_{D D}$ and the analog signal range is $V_{E E}$ to $V_{D D}$. The common situation of positive digital signals controlling the multiplexing of both positive and negative analog signals can be accommodated. The table indicates some of the possible combinations of supply, input, and output voltages.

TYPICAL SUPPLY AND SIGNAL VOLTAGES

V_{DD}	15 V	10 V	7.5 V	7.5 V
$\mathrm{~V}_{\mathrm{SS}}$	0 V	0 V	0 V	-7.5 V
$\mathrm{~V}_{\mathrm{EE}}$	0 V	-5 V	-7.5 V	-7.5 V
Control Inputs	0 to 15 V	0 to 10 V	0 to 7.5 V	-7.5 to 7.5 V
Analog Signa!s	0 to 15 V	-5 to 10 V	-7.5 to 7.5 V	-7.5 to 7.5 V

J OR N DUAL-IN-LINE PACKAGES

INTERNAL POWER SUPPLY CONNECTIONS

TYPES TF4051B, TF4052B, TF4053B, TP4051B, TP4052B, TP4053B ANALOG MULTIPLEXERS/DEMULTIPLEXERS

description (continued)

These digitally controlled bilateral analog switches have low on-state impedance and very low off-state current. When the inhibit input terminal is high, all channels are off.

The '4051B is a single eight-channel multiplexer having three binary control inputs ($\mathrm{SO}, \mathrm{S} 1$, and S2) and an inhibit input. The three binary signals select one of eight channels to be turned on.

The '4052B is a dual four-channel multiplexer having two binary control inputs (S0 and S1) and an inhibit input. The two binary signals select one of four channels in each of the two sections and the selected channels are respectively paired between the independent sections.

The '4053B is a triple two-channel multiplexer having three separate control inputs (1S, 2 S , and 3S) and a common inhibit input. Each input independently selects one of two channels in one of the three sections so that any of eight combinations may be selected.
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24 and below	Page 24	Pages 24 and 25, group 2, except as below. 1 OH and I OL do not apply

-4051B
FUNCTION TABLE

INPUTS				CHANNEL
INH	S2	S1	SO	TURNED ON
H	X	X	X	None
L	L	L	L	0
L	L	L	H	1
L	L	H	L	2
L	L	H	H	3
L	H	L	L	4
L	H	L	H	5
L	H	H	L	6
L	H	H	H	7

-4052B
FUNCTION TABLE
(EACH BILATERAL SWITCH)

INPUTS			CHANNEL
INH	S1	SO	TURNED ON
H	X	X	None
L	L	L	0
L	L	H	1
L	H	L	2
L	H	H	3

-4053B
FUNCTION TABLE
(EACH BILATERAL SWITCH)

INPUTS		CHANNEL
INH	S	TURNED ON
H	X	None
L	L	0
L	H	1

$H=$ high level, $L=$ low level, $X=$ irrelevant
absolute maximum ratings over operating free-air temperature range
Supply voltage V_{EE} (with respect to V_{DD})
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted), $\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER		TEST CONDITIONS		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$		UNIT		
		MIN	MAX	MIN	MAX	MIN	MAX					
V_{OH}	High-level output voltage			Control inputs at $V_{I H}$ min or $V_{I L}$ max, $1 / O$ at $0 \mathrm{~V}, \quad I_{\mathrm{O}}=10 \mu \mathrm{~A}$	Channel off,	4.6		9.5		13.5		V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	Control inputs at $V_{I H}$ min or $V_{I L}$ max, $1 / O$ at $0 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A}$	Channel on,		0.4		0.5		1.5	V		
	Input-to-output off-state current	Control inputs at 0 V or V_{DD}. $1 / O$ at $5 \mathrm{~V}, \quad \mathrm{O} / \mathrm{I}$ at 0 V to V_{DD}.	Channel off, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				± 125			nA		

TYPES TF4051B, TF4052B, TF4053B, TP4051B, TP4052B, TP4053B ANALOG MULTIPLEXERS/DEMULTIPLEXERS
on-state resistance at $25^{\circ} \mathrm{C}$ free-air temperature, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 0 V

	TEST CONDIT		TYP	MAX	UNIT
$V_{D D}=7.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{EE}}=-7.5 \mathrm{~V}$,	$V_{S S}=0 \mathrm{~V}$	80		Ω
$V_{D D}=15 \mathrm{~V}$,	$V_{E E}=0 \mathrm{~V}$,	$\mathrm{V}_{S S}=0 \mathrm{~V}$			
$V_{D D}=5 \mathrm{~V}$,	$V_{E E}=-5 \mathrm{~V}$,	$\mathrm{V}_{S S}=0 \mathrm{~V}$	120		Ω
$V_{D D}=10 \mathrm{~V}$,	$V_{E E}=0 \mathrm{~V}$,	$\mathrm{V}_{S S}=0 \mathrm{~V}$			
$V_{D D}=5 \mathrm{~V}$.	$\mathrm{V}_{\text {EE }}=0 \mathrm{~V}$,	$\mathrm{V}_{S S}=0 \mathrm{~V}$	270		Ω

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature, $\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER ${ }^{\text {I }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$V_{D D}=15 \mathrm{~V}$		UNIT
					TYP	MAX	TYP	MAX	TYP	MAX	
tPLH	O/l	1/0	$R_{\mathrm{L}}=10 \mathrm{k} \Omega, \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$		25		10		8		
tPHL	O/I	$1 / 0$			25		10		8		
tPLH	S	1/0	$C_{L}=50 \mathrm{pF},$ See Figure 2	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 0 V	400		200		170		ns
${ }_{\text {t }}$	S	1/0		$R_{L}=10 \mathrm{k} \Omega$ to V_{DD}	400		200		170		
tPLH	INH	1/0	$C_{L}=50 \mathrm{pF},$ See Figure 2	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 0 V	600		300		250		ns
tPHL	INH	1/0		$R_{L}=10 \mathrm{k} \Omega$ to V_{DD}	600		300		250		

$\|_{\text {tPLH } \equiv \text { Propagation delay time, low-to-high-level output }}$
${ }^{\text {tpHL }} \equiv$ Propagation delay time, high-to-low-level output.

FIGURE 2
NOTES: A. Input pulses are supplied by generators having the following characteristics: $Z_{o u t}=50 \Omega, P R R=10 \mathrm{kHz}, \mathrm{t}_{\mathrm{r}} \leqslant 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$.
B. C_{L} includes probe and jig capacitance.
C. The waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 20 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega$.

- Designed to be Interchangeable with RCA CD4069B
- Medium Speed Operation tPHL $=$ tPLH $=40$ ns typ at 10 V
schematic (each buffer)

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 1

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
tplH Propagation delay time, low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \\ & \text { See Note } 1 \end{aligned}$		125		80		70	ns
tpHL Propagation delay time, high-to-low-level output			125		80		70	
tTLH Transition time, low-to-high-level output			200		100		80	ns
${ }_{\text {t THL }}$ Transition time, high-to-low-level output			200		100		80	

NOTE 1: See load circuit and voltage waveforms on page 170.

APPLICATIONS INCLUDE:

- Even- and Odd-Parity Generators and Checkers
- Logical Comparators
- Adders and Subtractors
- True/Complement Gating

FUNCTION TABLE

INPUTS	OUTPUT
A	B
L	L
H	L
L	H
H	H

$H=$ high level, L = low level
functional block diagram (each gate)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 1

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

schematic (each gate)

D $\ldots v_{\text {DD }}$ bus
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$V_{D D}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$		$V D D=15 \mathrm{~V}$		UNIT
		TYP MAX	TYP	MAX	TYP	MAX	
tPLH Propagation delay time, low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ See Note 1	175	70		50		ns
tPHL Propagation delay time, high-to-low-level output		175	70		50		ns
${ }_{\text {T TLH }}$ Transition time, low-to-high-level output		100	50		40		ns
tTHL Transition time, high-to-low-level output		100	50		40		ns

NOTE 1: See load circuit and voltage waveforms on page 170.

- All Products Available in J or N Dual-In-Line Packages
'4071B . . . Quad 2-Input OR Gates
'4072B . . . Dual 4-Input OR Gates \diamond
'4073B . . Triple 3-Input AND Gates \diamond
'4075B . . Triple 3-Input OR Gates \diamond
'4081B . . . Quad 2-Input AND Gates
'4082B . . Dual 4-Input AND Gates \diamond
'4085B . . . Dual 3-Wide 2-2-1 Input AND-OR-Invert Gates ${ }^{\diamond}$

TF4072B, TP4072B (TOP VIEW) \diamond

NC-No internal connection
TF4081B, TP4081B (TOP VIEW)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 1

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$V_{\text {DD }}=5 \mathrm{~V}$	$V_{\text {DD }}=10 \mathrm{~V}$		$V_{\text {DD }}=15 \mathrm{~V}$		UNIT
		TYP MAX	TYP	MAX	TYP	MAX	
tPLH Propagation delay time, low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	225	65		50		ns
tPHL Propagation delay time, high-to-low-level output		225	65		50		
${ }^{\text {t }}$ LLH Transition time, low-to-high-level output		95	35		30		
tTHL Transition time, high-to-low-level output		95	35		30		

NOTE 1: See load circuit and voltage waveforms on page 170.
${ }^{\circ}$ Future products to be announced.

- Same as TF4043B and TP4043B except with Normal 2-State Totem-Pole Outputs

description

The '4376B is a quadruple S-R latch with normal two-state totem-pole outputs. Each latch has separate active-high set and reset inputs.

FUNCTION TABLE
(EACH LATCH)

INPUTS		OUTPUT
\mathbf{S}	R	
L	L	No change
H	L	H
L	H	L
H	H	H^{*}

*This output level is psuedo stable; that is, it may not persist when the S and R inputs return to their inactive (low) tevel.
See explanation of function tables, pages 16 and 17.
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 2

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection
functional block diagram (each latch)

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$V_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$		UNIT
		TYP	MAX	TYP	MAX	TYP	MAX	
tPLH Propagation delay time, low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	165		70		60		ns
tPHL Propagation delay time, high-to-low-level output		165		70		60		ns
tTLH Transition time, low-to-high-level output		85		30		25		ns
${ }^{\text {t }}$ HL Transition time, high-to-low-level output		85		30		25		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{min})}$ Minimum R and S pulse width		80		40°		35		ns

NOTE 1: See load circuit and voltage waveforms on page 170.

- Same as TF4044B and TP4044B except with Normal 2-State Totem-Pole Outputs

description

The '4377B is a quadruple $\overline{\mathrm{S}} \cdot \overline{\mathrm{R}}$ latch with normal two-state totem-pole outputs. Each latch has separate active-low set and reset inputs.

FUNCTION TABLE
(EACH LATCH)

INPUTS		OUTPUT
$\overline{\mathbf{S}}$	$\overline{\mathbf{R}}$	
H	H	No change
L	H	H
H	L	L
L	L	H *

*This output level is psuedo stable; that is, it may not persist when the \bar{S} and \bar{R} inputs return to their inactive (high) level. See explanation of function tables, pages 16 and 17.

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection
functional block diagram (each latch)
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 24	Page 24	Pages 24 and 25, group 2

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$V_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$		UNIT	
		TYP	MAX	TYP	MAX	TYP	MAX			
tPLH	Propagation delay time, low-to-high-level output		$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	165		70		60		ns
tPHL	Propagation delay time, high-to-low-level output	165			70		60		ns	
${ }^{\text {t }}$ TLH	Transition time, low-to-high-level output	85			30		25		ns	
${ }^{\text {t }}$ THL	Transition time, high-to-low-level output	85			30		25		ns	
$t_{\text {w }}$ (min)	Minimum $\overline{\mathrm{R}}$ and $\overline{\mathrm{S}}$ pulse width	80			40		35		ns	

NOTE 1: See load circuit and voltage waveforms on page 170.

SERIES '4000A
 GENERAL INFORMATION

"A" SERIES INFORMATION

INPUT PROTECTION

Input protection networks have been standardized to the three configurations below:

CONFIGURATION 2

CONFIGURATION 3

Configuration 1 is used on the whole family except for the '4049A and '4050A (which use configuration 2) and the '4518A and '4520A (which use configuration 3). In configurations 1 and 2 the diodes to $V_{S S}$ have a reverse breakdown of approximately 22 to 28 volts. In configuration 3 , the breakdown voltage of the zener diode is approximately 25 volts.. These networks are incorporated as protection against occassional electrostatic overstress. It is not recommended that units be subjected to continuously repeated overstress. CMOS is much less sensitive to electrostatic overstress than other MOS technologies; however, care should be taken in handling these networks much the same as is required for other high-impedance integrated circuits:

1) Equipment should be properly grounded.
2) Work surfaces should be electrically conductive and connected to earth ground.
3) Handling should be minimized.

INPUT CHARACTERISTICS

For input voltages between $V_{S S}$ and $V_{D D}$, the protective networks are in reverse-biased, low-current states. Typically, this reverse current is in the picoampere range at $25^{\circ} \mathrm{C}$. When quiescent supply current is measured, all inputs are connected in such a manner that the current through all the inputs is included. The input capacity is typically 3 to 7 pF except for the '4049A for which 15 pF is typical. All unused inputs must be connected to V_{SS} or V_{DD}, whichever is rappropriate.

OUTPUT CHARACTERISTICS

The data sheets should be consulted for drive capabilities. Typically, the dc fan-out to other CMOS is 50, but reduced switching speeds are caused by adding capacitive loading. TI data sheets specify switching speeds for $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or a typical load of 10 CMOS inputs. With 15 p F loads these devices switch at speeds similar to their respective RCA and Motorola equivalents.

NOISE MARGINS

The '4000A series is specified in such a manner as to measure noise immunity by applying $\mathrm{V}_{1 H}$ min or $\mathrm{V}_{\text {IL }}$ max to one input at a time while all other inputs are at V_{DD} or V_{SS}, as appropriate. The output is not loaded in this test and is allowed to deviate to the value of $\mathrm{V}_{\mathrm{OH}} \mathrm{min}$ or V_{OL} max in the data sheet.

SERIES '4000A
 GENERAL INFORMATION

SPECIFICATION GROUPING

The products in this book are classified into three groups each having common characteristics. The first group (SSI, small-scale integration) comprises the basic gate functions, the second group (CSSI, complex small-scale integration) comprises the dual flip-flops, buffers, and small analog functions, and the third group (MSI, medium-scale integration) comprises the more complex functions. The type numbers in each group of the " A " series are shown in the following table.

$\begin{aligned} & \text { GROUP } 1 \\ & \text { (SSI) } \end{aligned}$	GROUP 2 (CSSI)	GROUP 3 (MSI)
4000A	4009A	4008A
4001A	4010A	4014A
4002A	4013A	4015A
4007A	4016A	4017A
4011A	4019A	4018A
4012A	4027A	4020A
4023A	4030A	4021A
4025A	4049A	4022A
4301A	4050A	4024A
4302A	4304A	4028A
4303A	4316A	4029A
4311A	4507A	4040A
4315A	4519A	4042A
		4043A
		4044A
		4051A
		4052A
		4053A
		4320A
		4321A
		4360A
		4361A
		4362A
		4363A
		4370A
		4376A
		4377A
		4380A
		4512A
		4518A
		4520A
		4522A
		4526A
		4531A
		4581A
		4582A

[^5]
SERIES '4000A

COMMON ELECTRICAL SPECIFICATIONS
SEPTEMBER 1975

The following electrical specifications apply for most series '4000A CMOS products. Each individual product specification references the appropriate sections of this common specification and lists exceptions if there are any.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Throughout this page, the following page, and the individual product specifications, voltage values are with respect to the $V_{\text {SS }}$ terminal unless otherwise noted.
recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, $V_{D D}$	3	15	V
Input voltage, V_{1}	0	$V_{D D}$	V
Operating free-air temperature, T_{A}	TF4000A Series	-55	125
	${ }^{\circ} \mathrm{C}$		
Rise time, any input, t_{r}	-40	85	${ }^{\circ} \mathrm{C}$
Fall time, any input, f_{f}	15	$\mu \mathrm{~s}$	

electrical characteristics at $V_{D D}=5 \mathrm{~V}$ and 10 V

	PARAMETER		TEST CONDITIONS ${ }^{\dagger}$			TF4000A SERIES				TP4000A SERIES				UNIT			
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$									
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX							
$\mathrm{V}_{1} \mathrm{H}$	High－level input voltage							$\mathrm{T}_{\text {A }}=\mathrm{MIN}, 25^{\circ} \mathrm{C}$ or MAX	3.5		8		3.5		8		V
VIL	Low－level input voltage							$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}, 25^{\circ} \mathrm{C}$ ，or MAX		1.5		2		1.5		2	V
V_{OH}	High－level output voltage		$V_{\text {IH }}=$	$\mathrm{V}_{\text {IL }}=0, \mathrm{I}^{\prime}=0$	$\mathrm{T}_{A}=\mathrm{MIN}, 25^{\circ} \mathrm{C}$ ，or MAX	4.95		9.95		4.95		9.95		v			
			One inpu All other	$V_{I H} \min$ or $V_{I L}$ max， ts at $V_{D D}$ or $0 V, I_{0}=0$	$T_{A}=$ MIN， $25^{\circ} \mathrm{C}$ ，or MAX	4.5		9		4.5		9					
			$\mathrm{V}_{1 H}=\mathrm{V}^{\text {d }}$	$V_{\text {IL }}=0, I_{0}=1_{0 H}$ min	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}, 25^{\circ} \mathrm{C}$ ，or MAX	2.5		9.5		2.5		9.5					
V_{OL}	Low－level output voltage		$\mathrm{V}_{1 \mathrm{H}}=\mathrm{V}$	$V_{\text {IL }}=0, \mathrm{I}^{\prime}=0$	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}, 25^{\circ} \mathrm{C}$ ，or MAX		0.05		0.05		0.05		0.05	V			
			One inpu All other	$V_{\text {IH }} \min$ or $V_{\text {IL }}$ max， ts at $V_{D D}$ or $0 \mathrm{~V}, 1_{0}=0$	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}, 25^{\circ} \mathrm{C}$ ，or MAX		0.5		1		0.5		1				
			$\mathrm{V}_{\text {IH }}=\mathrm{V}$	$\mathrm{V}_{\mathrm{IL}}=0,1 \mathrm{O}=1 \mathrm{OL}$ min	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}, 25^{\circ} \mathrm{C}$ ，or MAX		0.4		0.5		0.4		0.5				
${ }^{\mathrm{IOH}}$	High－level output current		$v_{I H}=v_{D D}, v_{I L}=0, v_{O}=v_{O H}$ min		$T_{A}=$ MIN	－0．65		－0．65		－0．35		－0．3		mA			
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	－0．5		－0．5		－0．3		－0．25							
			$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	－0．35		－0．35		－0．25		－0．2							
${ }^{\prime} \mathrm{OL}$	Low－level output current				$V_{\text {IH }}=V_{\text {DD }}, \quad V_{I L}=0, V_{O}=V_{O L}$ max		$T_{A}=$ MIN	0.5		1.1		0.35		0.75		mA	
			$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	0.4		0.9		0.3		0.6							
			$\mathrm{T}_{A}=$ MAX	0.3		0.65		0.25		0.5							
IDD or $\left.\right\|^{-1} \mathrm{SS}$	Quiescent supply current	Group $1 \ddagger$ Products$\|$Group $2 \ddagger$ Products Group $3^{\ddagger} \ddagger$ Products			No load，$\quad V_{1}=V_{D D}$ or 0 V		$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$		0.05		0.1		0.5		5	$\mu \mathrm{A}$	
			$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$				3		6		15		30				
			$\mathrm{T}_{A}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$				1		2		10		20				
			$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$				60		120		140		280				
			$\mathrm{T}_{A}=$ MIN or $25^{\circ} \mathrm{C}$				5		10		50		100				
			$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$				300		600		700		1400				

electrical characteristics at $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			TF4000A SERIES	TP4000A SERIES		UNIT			
			MIN MAX	MIN	MAX							
11	Input current					$V_{1}=V_{D D}$ or 0 V		$\mathrm{T}_{\mathrm{A}}=$ MIN， $25^{\circ} \mathrm{C}$ ，or MAX	± 1		± 1	$\mu \mathrm{A}$
IDD Quiescent or supply or ISS current		Group 1 \ddagger	No load，	$\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$ or 0 V	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$	1		15	$\mu \mathrm{A}$			
		Products			$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	18		90				
		Group 2 ${ }^{\ddagger}$			$\mathrm{T}_{A}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$	6		60				
		Products			$\mathrm{T}_{A}=\mathrm{MAX}$	360		840				
		Group 3 \ddagger			$\mathrm{T}_{A}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$	30		300				
		Products			$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	1800		4200				

[^6]
CMOS LOGIC CIRCUITS

- Designed to be Interchangeable with RCA CD4000A, CD4001A, CD4002A, and CD4025A
- All Products Available in J or N Dual-in-Line Packages '4000 . . . Dual 3-Input NOR Gates Plus Inverters
'4001 . . . Quadruple 2-Input NOR Gates
'4002 . . . Dual 4-Input NOR Gates
'4025 . . . Triple 3-Input NOR Gates

typical schematics
inverter
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, Group 1

> NOR GATE

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TF4000A, TF4001A } \\ & \text { TF4002A, TF4025A } \end{aligned}$				$\begin{aligned} & \text { TP4000A, TP4001A } \\ & \text { TP4002A, TP4025A } \end{aligned}$				UNIT
		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$V_{\text {DD }}=\dot{5} \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tPLH Propagation delay time, low-to-high-level output	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \S, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1		150		100		200		130	ns
tPHL Propagation delay time, high-to-low-level output			150		100		200		130	ns
${ }^{\text {TTLH }}$ Transition time, low-to-high-level output			350		175		450		300	ns
${ }^{\text {t }}$ HL Transition time, high-to-low-level output			350		175		450		300	ns

§With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the RCA CD4000A, CD4001A, CD4002A, and CD4025A, respectively. NOTE 1: See load circuit and voltage waveforms on page 170.

- Designed to be Interchangeable with RCA CD4007A
schematic

electrical characteristics (see note 1)
$V_{D D}=5 \mathrm{~V}$ and 10 V

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		TF4007A		TP4007A		UNIT		
		$V_{D D}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	$V_{D D}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$					
		MIN MAX	MIN MAX	MIN MAX	MIN MAX					
IOH	High-level output current			$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {DD }}$,	$\mathrm{T}_{A}=\mathrm{MIN}$	-1.75	-1.35	-1.3	-0.65	mA
				$V_{\text {IL }}=0$,	$T_{A}=25^{\circ} \mathrm{C}$	-1.4	-1.1	-1.1	-0.55	
		$V_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}$ min	$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	-1	-0.75	-0.9	-0.45			
${ }^{1} \mathrm{OL}$	Low-level output current	$V_{\text {IH }}=V_{\text {DD }}$,	$T_{A}=$ MIN	0.75	1.6	0.35	1.2	mA		
		$V_{\text {IL }}=0$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.6	1.3	0.3	1			
		$V_{O}=V_{\text {OL }}$ max	$T_{A}=M A X$	0.4	0.95	0.25	0.8			
IDD or Quiescent supply current -ISS		$V_{1}=V_{D D}$ or 0,	$\mathrm{T}_{A}=$ MIN or $25^{\circ} \mathrm{C}$	0.05	0.1	0.5	1	$\mu \mathrm{A}$		
			$T_{A}=M A X$	3	6	15	30			

$V_{D D}=15 \mathrm{~V}$

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4007A		TP4007A		UNIT
			MIN	MAX	MIN	MAX	
IDD or Quiescent supply current -ISS	$V_{1}=V_{D D} \text { or } 0,$ No load	$\mathrm{T}_{\text {A }}=$ MIN or $25^{\circ} \mathrm{C}$		1		3	$\mu \mathrm{A}$
		$T_{A}=$ MAX		18		90	

[^7]
TYPES TF4007A, TP4007A
 DUAL COMPLEMENTARY PAIRS PLUS INVERTERS

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (see note 1)

PARAMETER	TEST CONDITIONS	TF4007A				TP4007A				UNIT
		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tPLH Propagation delay time, low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF} \S, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 2		110		90		135		125	ns
tPHL Propagation delay time, high-to-low-level output			110		90		135		125	ns
tTLH Transition time, low-to-high-level output			160		95		220		120	ns
${ }^{\text {THHL }}$ Transition time, high-to-low-level output			160		95		220		120	ns

§ with a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the RCA CD4007A.
NOTES: 1. All measurements are made with each pair of transistors connected to form an inverter
2. See load circuit and voltage waveforms on page 170.

TYPICAL APPLICATION DATA

high-sink-current driver

HIGH-SOURCE-CURRENT DRIVER

Texas Instruments
INCORPORAIED
post office box 5012 - dallas. texas 75222

If connol ossume any responsibility for any circuits shown
or represent that they are free from potent infringement.
texas instruments reserves the right to make changes at any ill in order to improve design and to supply the best product possibi

SEPTEMBER 1975

- Designed to be Interchangeable with RCA CD4008A
- High-Speed Operation
- Look-Ahead Carry Output

description

These full adders perform the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. The adders are designed so that logic levels of the input and output, including the carry, are in their true form. Thus the end-around carry is accomplished without the need for level inversion. These circuits feature full look ahead across four bits to achieve partial look-ahead performance with the economy of ripple carry.

FUNCTION TABLE

INPUTS					OUTPUTS	
A $_{\mathbf{i}}$	B $_{\mathbf{i}}$	C $_{\mathbf{i}-\mathbf{1}}$	C $_{\mathbf{i}}$			
L	L	L				
H	L	L	L			
L	H					
L	H	L	L			
H	H	L	H			
L	L	H	L			
H	L	H	H			
L	H	H	H			
H	H	H	H			

$H=$ high level; $L=$ low level;
$i=$ bit number $1,2,3$, or 4
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, group 3

functional block diagram

CMOS

LOGIC CIRCUITS

TYPES TF4009A, TF4010A, TP4009A, TP4010A HEX INVERTING AND NONINVERTING BUFFERS/CONVERTERS

- Designed to be Interchangeable with RCA CD4009A and RCA CD4010A
- High Current Sinking Capability . . 8 mA Minimum at $\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ description

The '4009A and '4010A hex CMOS inverting and noninverting buffers may be used as current sinks for source drivers, hex CMOS drivers, or CMOS to DTL or TTL logic-level converters. Conversion ranges are from CMOS logic operating at supply levels of 3 volts to 15 volts to DTL or TTL operating at supply levels of 3 volts to 15 volts. Conversion to logic output levels greater than 6 volts is permitted provided that the $V_{C C}$ supply voltage is not higher than the VDD supply voltage (see Note 1).
schematic (each buffer)

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)
TF4009A, TP4009A

NC-No internal connection

NC-No internal connection
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62 and below	Page 62	Page 63, Group 2, except as on following page

absolute maximum ratings over operating free-air temperature range

NOTE 1: If $V_{C C}$ is allowed to exceed $V_{D D}$, the device may latch up and draw sufficient current to cause permanent damage.
electrical characteristics, $V_{C C}=V_{D D}$
'4009A only

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	TF4009A		TP4009A		UNIT
		$V_{\text {DD }}=5 \mathrm{~V}$	$V_{\text {DD }}=10 \mathrm{~V}$	$V_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	
	$\mathrm{T}_{A}=$ MIN or $25^{\circ} \mathrm{C}$	1	2	1	2	
VIL Low-level input voitage	TA $=$ MAX	0.9	1.9	0.9	1.9	

${ }^{\prime} 4009 \mathrm{~A}$ and ${ }^{\prime} 4010 \mathrm{~A}$ at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and 10 V

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4009A, TF4010A				TP4009A, TP4010A				UNIT
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		$V_{\text {DD }}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
High-level output current	$V_{\text {IH }}=V_{\text {DD }}$.	$\mathrm{T}_{A}=\mathrm{MIN}$	-1.85		-0.9		-1.5		-0.75		mA
	$V_{I L}=0$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-1.25		-0.6		-1.25		-0.6		
	$V_{O}=V_{O H}$ min	$T_{A}=M A X$	-0.9		-0.4		-1		-0.5		
Low-level output current	$\begin{aligned} & V_{I H}=V_{D D}, \\ & V_{I L}=0, \\ & V_{O}=V_{O L} \max \end{aligned}$	$T_{A}=$ MIN	3.75		10		3.6		9.6		mA
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3		8		3		8		
		$T_{A}=M A X$	2.1		5.6		2.4		6.4		
Quiescent supply current	$V_{1}=V_{D D} \text { or } 0,$ No load	$T_{A}=$ MIN or $25^{\circ} \mathrm{C}$		0.3		0.5		3		5	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$		20		30		42		70	

'4009A and '4010A at $V_{D D}=15 \mathrm{~V}$

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4009A, TF4010A		TP4009A, TP4010A		UNIT
			MIN	MAX	MIN	MAX	
Quiescent supply current	$V_{1}=V_{D D} \text { or } 0$ No load	$\mathrm{T}_{A}=$ MIN or $25^{\circ} \mathrm{C}$		1.5		15	$\mu \mathrm{A}$
		$T_{A}=M A X$		90		210	

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4009A, TF4010A		TP4009A, TP4010A		UNIT
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	
Propagation delay time, ${ }^{\mathrm{t} P L H}$ low-to-high-level output	$\begin{aligned} & V_{C C}=V_{D D}, \\ & C_{L}=50 \mathrm{pF} \S \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 2	110	80	140	100	ns
tpHI Propagation delay time, high-to-low-level output		100	55	125	75	
Transition time. tTLH low-to-high-level output		270	220	350	270	ns
Transition time, tTHL high-to-low-level output		60	55	80	70	ns
${ }^{\mathrm{t} P L H}$ Propagation delay time, low-to-high-level output	$\begin{aligned} & V_{C C}=1 / 2 V_{D D} \\ & C_{L}=50 \mathrm{pF} \S \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ See Note 2		45		60	ns
$\begin{aligned} & \text { Propagation delay time, } \\ & \text { tPHL } \\ & \text { high-to-low-level output } \end{aligned}$			45		65	

[^8]JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, Group 1, except as below

electrical characteristics

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		TF4011A				TP4011A				UNIT		
		$V_{D D}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$							
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX					
${ }^{\mathrm{I} O H}$	High-level output current			$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {DD }}$,	$T_{A}=\mathrm{MIN}$	-0.65		-0.75		-0.35		-0.35		mA
				$V_{\text {IL }}=0$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.5		-0.6		-0.3		-0.3		
			$\mathrm{T}_{A}=\mathrm{MAX}$	-0.35		-0.4		-0.25		-0.25				
IOL	Low-level output current	$\begin{aligned} & V_{I H}=V_{D D}, \\ & V_{1 L}=0, \\ & V_{O}=V_{O L} \max \end{aligned}$	$\mathrm{T}_{A}=\mathrm{MIN}$	0.5		1.1		0.25		0.6		mA		
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.4		0.9		0.2		0.5				
			$\mathrm{T}^{\prime}=\mathrm{MAX}$	0.3		0.65		0.16		0.4				

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4011A				TP4011A				UNIT
		$V_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tPLH Propagation delay time, low-to-high-level output	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \S, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1		150		100		200		130	ns
tPHL Propagation delay time, high-to-low-level output			150		100		200		130	ns
${ }^{ \pm}$TLH Transition time, low-to-high-level output			350		175		450		300	ns
${ }^{\text {t }}$ THL Transition time, high-to-low-level output			350		175		450		300	ns

§ With a 15-pF load, these devices switch with times similar to those of the RCA CD4011A.
NOTE 1: See load circuit and voltage waveforms on page 170.

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection
specifications

MAXIMUM		
RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, Group 1, except as below

electrical characteristics

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4012A				TP4012A				UNIT
			$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
IOL Low-level output current	$\begin{aligned} & V_{I H}=V_{D D} \\ & V_{I L}=0 \\ & V_{O}=V_{O L} \max \end{aligned}$	$T_{A}=$ MIN	0.5		1.1		0.25		0.6		
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.4		0.9		0.2		0.5		mA
		$T_{A}=M A X$	0.3		0.65		0.18		0.4		

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TFuOTzA				TF4012A				UNIT
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tPLH Propagation delay time, low-to-high-level output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \S, \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1		150		80		200		110	ns
tPHL Propagation delay time, high-to-low-level output			250		150		400		200	ns
${ }^{\text {t }}$ LLH Transition time, low-to-high-level output			350		175		470		250	ns
${ }^{\text {t }}$ HL Transition ${ }^{\text {time, }}$ high-to-low-level output			500		300		670		400	ns

[^9]- Designed to be Interchangeable with RCA CD4013A
- Toggle Rate . . . 10 MHz Typical at $V_{D D}=10 \mathrm{~V}$

description

These circuits are dual D-type transition-operated master-slave flip-flops with buffered outputs, independent direct overriding preset and clear inputs, and D and clock inputs. While the clock is low, the data at the D input is entered into the master section which is isolated from the slave section. On the rising transition of the clock, the D input is disabled and data previously set up in the master section is transferred to the slave section and appears in true form at the Q output.

Presetting and clearing are independent of the clock and are accomplished by a high-level voltage at the respective input. The $\overline{\mathrm{Q}}$ output is complementary to the \mathbf{Q} output except for the nonstable situation that exists when both preset and clear inputs are simultaneously high.
functional block diagram (each flip-flop)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62 and on following page	Page 63, Group 2, except as on following page

function table (EACH FLIP-FLOP)					
INPUTS				OUTPUTS	
Preset	CLEAR	ck	D	o	$\overline{\mathrm{a}}$
H	L	x	\times	H	L
L	H	X	\times	L	H
H	:	x	x	H^{*}	H^{*}
L	L	1	L	L	H
L	L	1	H	H	L
L	L	L	\times	O_{0}	$\overline{\mathrm{a}}_{0}$

See explanation of function tables on pages 16 and 17.
*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (low) level.

TYPES TF4013A, TP4013A
 DUAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS

recommended operating conditions

		TF4013A				TP4013A				UNIT
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Pulse width, $t_{w}\left(C_{L}=50 \mathrm{pF}\right)$	Clock high or low	200		80		500		100		ns
	Preset or clear	250		100		500		125		
Sctup time, ${ }_{\text {su }}$		40		20		50		25		ns

electrical characteristics

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4013A				TP4013A				UNIT
			$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
High-level output current	$\begin{cases}V_{I H}=V_{D D}, & V_{I L}=0 \\ V_{O}=V_{O H} \text { min }\end{cases}$	$T_{A}=\mathrm{MIN}$	-0.65		-0.8		-0.35		-0.4		
		$T_{A}=25^{\circ} \mathrm{C}$	-0.5		-0.65		-0.3		-0.35		mA
		$T_{A}=$ MAX	-0.35		-0.45		-0.25		-0.3		
Low-level ${ }^{\text {IOL }}$ output current	$\begin{aligned} & V_{I H}=V_{D D} \\ & V_{O}=V_{O L} \text { max } \end{aligned}$	$T_{A}=$ MIN	0.5		1.25		0.35		0.75		
		$T^{\prime}=25^{\circ} \mathrm{C}$	0.4		1		0.3		0.6		mA
		$\mathrm{T}^{\prime} A=$ MAX	0.3		0.75		0.25		0.5		

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER \ddagger	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TF4013A				TP4013A				UNIT
				$V_{\text {DD }}=5$		$V_{D D}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			$\begin{aligned} & C_{L}=50 \mathrm{pF} \S, \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	2.5		7		1		5		MHz
tPLH or tPHL	Clock	Q or $\overline{\text { a }}$			420		185		550		250	ns
tPLH or tPHL	$\begin{aligned} & \text { Preset } \\ & \text { or Clear } \end{aligned}$	Q or $\overline{\mathrm{Q}}$			420		185		550		250	ns
${ }^{\text {t }}$ LLH or tTHL		Any			235		130		300		175	ns

$\ddagger_{f_{\text {max }}} \equiv$ Maximum clock frequency
${ }^{\text {tPLH }} \equiv$ Propagation delay time, low-to-high-level output
${ }^{\text {t }}$ PHL \equiv Propagation delay time, high-to-low-level output
${ }^{\text {t TLH }} \equiv$ Transition time, low-to-high-level output
${ }^{\mathrm{T}_{\mathrm{THL}}} \equiv$ Transition time, high-to-low-level output
§ With a 15 -pF load, these devices switch with times similar to those of the RCA CD4013A.
NOTE 1: See load circuit and voltage waveforms on page 170.

- Designed to be Interchangeable with RCA CD4014A
- Synchronous Parallel or Serial Input, Serial Output
- Parallel Outputs from Sixth, Seventh, and Eighth Bits
- Maximum Clock Frequency . . . 5 MHz Typical at 10 V

description

These 8 -bit synchronous registers have a single serial input and parallel-in access to each stage. D-type master-slave flip-flops are used for each stage with parallel access to the outputs of bits F, G, and H.

Both serial and parallel entry are made synchronously on the low-to-high transition of the clock input and under the control of the parallel-load/serial-shift input, $\mathrm{P} / \overline{\mathrm{S}}$. When the $\mathrm{P} / \stackrel{\rightharpoonup}{\mathrm{S}}$ input is high, data is broadside loaded into the register from the parallel inputs. When the $\mathrm{P} / \overline{\mathrm{S}}$ input is low, data is entered at the serial input and each bit shifts one bit position in the direction Q_{A} toward Q_{H}.

The TF4021A, and TP4021A are similar to these registers, except for having asynchronous parallel inputs.

FUNCTION TABLE

INPUTS				INTERNAL OUTPUTS (2 of 5)		OUTPUTS		
$\begin{gathered} \hline \text { CONTROL } \\ \mathrm{P} / \overline{\mathrm{S}} \\ \hline \end{gathered}$	CLOCK	$\begin{gathered} \text { PARALLEL } \\ \text { A.H } \\ \hline \end{gathered}$	SERIAL			$\mathbf{O F}_{\mathbf{F}}$	O_{G}	O_{H}
				a_{A}	O_{B}			
H	\uparrow	a-h	X	a	b	f	g	h
L	\uparrow	X	H	H	$Q_{\text {An }}$	O_{En}	Q_{Fn}	O_{G}
L	\uparrow	\times	L	L	$\mathrm{Q}_{\text {An }}$	O_{En}	Q_{Fn}	O_{Gn}
\times	L.	\times	X	$\mathrm{Q}_{\text {AO }}$	O_{BO}	O_{FO}	Q_{GO}	O_{HO}

See explanation of function tables, pages 16 and 17.
functional block diagram

Texas Instruments

TYPES TF4014A, TP4014A
 8-BIT STATIC SHIFT REGISTERS

recommended operating conditions

eiectrical characteristics

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		TF4014A				TP4014A				UNIT		
		$V_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$							
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX					
${ }^{1} \mathrm{OH}$	High-level output current			$V_{\text {IH }}=V_{\text {DD }}$,	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$	-0.25		-0.25		-0.12		-0.12		mA
				$V_{I L}=0$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.2		-0.2		-0.1		-0.1		
		$V_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}$ min	$\mathrm{T}_{A}=$ MAX	-0.14		-0.14		-0.08		-0.08				
IOL	Low-level output current	$\begin{aligned} & V_{I H}=v_{D D}, \\ & v_{I L}=0, \\ & v_{O}=v_{O L} \max \end{aligned}$	$T_{A}=M I N$	0.15		0.31		0.072		0.12		mA		
			$\mathrm{T}^{\text {A }}=25^{\circ} \mathrm{C}$	0.12		0.25		0.06		0.1				
			$\mathrm{T}_{A}=$ MAX	0.085		0.175		0.05		0.08				

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4014A				TP4014A				UNIT
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$\begin{aligned} & C_{L}=50 \mathrm{pF} \S \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	1		3		0.6		2.5		MHz
tPL Propagation delay time. low-to-high-level output			975		300		1300		400	ns
${ }^{\text {tPHL }} \begin{aligned} & \text { Propagation delay time, } \\ & \text { high-to-low-level output }\end{aligned}$			975		300		1300		400	ns
${ }^{\text {t }}$ TLH Transition time, low-to-high-level output			550		225		700		300	ns
${ }^{\text {T THL }}$ Transition time, high-to-low-level output			550		225		700		300	ns

[^10]- Designed to be Interchangeable with RCA CD4015A
- Maximum Clock Frequency . . . 5 MHz Typical at 10 V

description

These dual 4-bit static shift registers consist of two identical, independent, 4 -stage serial-input, paralleloutput registers. Each register has independent clock and clear inputs as well as a single serial data input. The register stages are D-type master-slave flip-flops with Q outputs available from each of the four bits on both registers. Data is shifted from one bit to the next during the low-to-high-level transition of the clock. A high level applied to the clear line sets all outputs of the associated register to the low level.
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL			
CHARACTERISTICS			$	$	Page 62
:---:					
Page 62 and on following page					
group 63,					

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

FUNCTION TABLE
(EACH REGISTER)

INPUTS			OUTPUTS			
CLEAR	CLOCK	D	$\mathrm{a}_{\mathbf{A}}$	\mathbf{O}_{B}	O_{C}	$\mathbf{O}_{\mathbf{D}}$
H	X	X	L	L	L	L
L	\uparrow	L	L	$\mathrm{Q}_{\text {An }}$	O_{Bn}	O_{Cn}
L	\uparrow	H	H	$\mathrm{Q}_{\text {An }}$	O_{Bn}	O_{Cn}
L	L	\times	O_{AO}	$\mathrm{O}_{\mathrm{B} 0}$	$\mathrm{a}_{\mathrm{C} 0}$	QDO

See explanation of function tables on pages 16 and 17.
functional block diagram (each register)

TEXAS INSTRUMENTS

TYPES TF4015A, TP4015A
 DUAL 4-BIT STATIC SHIFT REGISTERS

recommended operating conditions

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4015A				TP4015A				UNIT
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \S \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	1		3		0.6		2.5		MHz
Propagation delay time, low-to-high-level tPLH output from clock			750		225		1000		300	
Propagation delay time, high-to-low-level tPHL output from clock or clear			750		225		1000		300	
tTLH Transition time, low-to-high-level output			350		150		400		220	ns
tTHL Transition time, high-to-low-level output			350		150		400		220	ns

[^11]NOTE 1: See load circuit and voltage waveforms on page 170.

- Designed to be Interchangeable with Motorola MC14016A, Similar to RCA CD4016A (See TF4316A)
- Difference in ron between Switches in One Package Typically 10Ω when $V_{I}=V_{S S}$ or $V_{D D}$
- High Degree of Linearity . . . $<0.5 \%$ Distortion Typical at 1 kHz
- Switches Can Transmit Signals in Either Direction at Frequencies of up to 50 MHz Typically
- Extremely Low Off-State Switch Current Resulting in Very High Effective Off-State Resistance . . . 10 pA Typical at $V_{D D}-V_{S S}=10 \mathrm{~V}$
- Maximum Control Input Frequency . . 10 MHz Typical at $V_{D D}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
- High On/Off Output Voltage Ratio . . 65 dB Typical
- Extremely High Control-Input Impedance (Control Circuit Isolated from Switch Circuit) . . $10^{12} \Omega$ Typical
- Low Crosstalk Between Switches . . . 50 dB Typical at $0.9 \mathrm{MHz}, R_{\mathrm{L}}=1 \mathrm{k} \Omega$
- Control Input Current . . . $<10 \mathrm{pA}$ Typical description

The '4016A is a quadruple bilateral switch constructed with P-channel and N -channel enhancement-type devices in a monolithic structure, and finds primary use where low power dissipation and/or high noise immunity is desired.

Applications include digital switching and multiplexing; analog-to-digital and digital-to-analog conversion; digital control of frequency, impedance, phase and analog-signal gain; signal gating; and use as a squelch control, chopper, modulator, demodulator, or commutating switch.
The P^{-}well of the analog transmission gate is connected to $\mathrm{V}_{\text {SS }}$ when the control input is low (gate off) and is switched to the analog input when the control input is high (gate on). This provides a more uniform on-state resistance with varying analog input voltages.
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	See the following page. Page 63 does not apply.

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

TYPES TF4016A, TP4016A
 QUAD BILATERAL SWITCHES

electrical characteristics over recommended operating free-air temperature range
$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and 10 V

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		$V_{\text {DD }}=5$		TF4016A		TP4016A	UNIT		
			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$							
			MIN	MAX	MIN	MAX	MIN MAX			
$\mathrm{V}_{\text {IH }}$ High-level control input voltage					3		4		4	V
$V_{\text {IL }}$ Low-level control input voltage				0.9		0.9	0.9	V		
$\mathrm{V}_{\text {OH }}$ High-level output voltage	A at $0 V_{1} \quad$ C at $V_{\text {IL }}$	$10=10 \mu \mathrm{~A}$	4.5		9		9	V		
$\mathrm{V}_{\text {OL }}$ Low-level output voltage	A at 0 V , C at $\mathrm{V}_{1 \mathrm{H}}$	$10=10 \mu \mathrm{~A}$		0.5		1	1	V		
Input-to-output off-state current	$\begin{aligned} & \mathrm{A} \text { at } 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \quad \mathrm{C} \text { at } 0 \mathrm{~V}, \\ & Y \text { at } 5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				± 125	± 125	nA		
Total Quiescent Current ${ }^{\text {f }}$	A at $0 V$ to $V_{D D}, \quad C$ at $0 V$, Y at $0 V$ to $V_{D D}$	$\mathrm{T}_{A}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$				1	1	$\mu \mathrm{A}$		
		$T_{A}=$ MAX				60	16			
	$A=Y=0 V \text { to } V_{D D},$ C at $V_{D D}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$				1	1	$\mu \mathrm{A}$		
		$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$				60	16			

$$
v_{D D}=15 \mathrm{~V}
$$

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4016A		TP4016A		UNIT
			MIN	MAX	MIN	MAX	
II Input current	$\mathrm{V}_{1}=0$ or V_{DD}			± 1		± 1	$\mu \mathrm{A}$
Quiescent supply current	$V_{1}=V_{D D} \text { or } 0$ No load	$\mathrm{T}_{\text {A }}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$		3		3	$\mu \mathrm{A}$
		$T_{A}=M A X$		180		48	

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of free-air temperature specified under recommended operating conditions.
This is the total of supply current, control input current, and input-to-output off-state current.
on-state resistance at specified free-air temperature, C at $V_{D D}, R_{L}=10 \mathrm{k} \Omega$ to 0 V

TEST CONDITIONS			TF4016A		TP4016A		UNIT
			MIN	MAX	MIN	MAX	
$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & \mathrm{~A} \text { at } 5,0.25,-0.25 \text { or }-5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{S S}=-5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$		600		610	Ω
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		660		660	
		$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$		960		840	
$V_{D D}=7.5 \mathrm{~V}$ A at $7.5,0.25,-0.25$, or -7.5 V	$\mathrm{V}_{\mathrm{SS}}=-7.5 \mathrm{~V}$,	${ }^{\top}{ }^{\text {A }}$ = MIN		360		370	Ω
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		400		400	
		$\mathrm{T}_{\text {A }}=\mathrm{MAX}$		600		520	
$\begin{aligned} & V_{D D}=10 \mathrm{~V} \\ & A \text { at } 10,5.6 \text {, or } 0.25 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$,	$T_{A}=$ MIN		600		610	Ω
		$T_{A}=25^{\circ} \mathrm{C}$		660		660	
		$\mathrm{T}_{\text {A }}=\mathrm{MAX}$		960		840	
$\begin{aligned} & V_{D D}=15 \mathrm{~V} \\ & A \text { at } 15,9.3 \text {, or } 0.25 \mathrm{~V} \end{aligned}$	$V_{S S}=0 V_{\text {, }}$	$\mathrm{T}_{A}=\mathrm{MIN}$		360		370	Ω
		$T_{A}=2 b^{\circ} \mathrm{C}$		400		400	
		$\mathrm{T}_{A}=\mathrm{MAX}$		600		520	

TYPES TF4016A, TP4016A
 QUAD BILATERAL SWITCHES

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER \ddagger	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS		TF4016A				TP4016A				UNIT
					$V_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ §,		85		45		125		70	
tPHL	A	Y	C at $V_{D D}$,	See Figure 1		85		45		125		70	s
tPLH	C	Y	$C_{L}=50 \mathrm{pF}$ §,	$R_{L}=10 \mathrm{k} \Omega$ to 0 V		150		75		225		115	
tPHL	C	Y	See Figure 2	$R_{L}=10 \mathrm{k} \Omega$ to $V_{D D}$		150		75		225		115	

$\ddagger_{\text {tpLH }} \equiv$ Propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ Propagation delay time, high-to-low-level output
§With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the RCA CD4016A

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-PROPAGATION DELAY TIME, SWITCH INPUT A TO OUTPUT Y

FIGURE 2-PROPAGATION DELAY TIMES, CONTROL INPUT C TO OUTPUT Y

NOTES: A. Input pulses are supplied by generators having the following characteristics: $Z_{\text {out }}=50 \Omega, P R R=10 \mathrm{kHz}, \mathrm{t}_{\mathrm{r}} \leqslant 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$.
B. C_{L} includes probe and jig capacitance.
C. The waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 10 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega$.

- Designed to be Interchangeable with RCA CD4017A
- Medium-Speed Operation . . . 5 MHz Typical Maximum Clock Frequency at $V_{D D}=10 \mathrm{~V}$
- Fully Static Operation
- Carry Output for Cascading

description

The '4017A is a five-stage Johnson decade counter and an output decoder that converts the Johnson binary code to a decimal number. High-speed operation and spike-free outputs are obtained by use of the Johnson decade counter configuration.

The ten decoded outputs are normally low and go high only at their respective decimal time period. A high clear signal asynchronously clears the decade counter and sets the carry output and YO high. With enable low, the count is advanced on a low-to-high transition at the clock input. Alternatively if the clock input is high, the count is advanced on a high-to-low transition at enable. The carry output is high while. Y0, $\mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 3$, or Y 4 is high, then is low while $Y 5, Y 6, Y 7, Y 8$, or $Y 9$ is high.

This device can be used in frequency-division applications as well as decade-counter or decimal-decode display applications.

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM	RECOMMENDED OPERATING RATINGS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62 and below	Page 63, Group 3, except as on following page

recommended operating conditions

TYPES TF4077A, TP4017A DECADE COUNTERS/DIVIDERS

electrical characteristics

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			TF4017A				TP4017A				UNIT			
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$									
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX							
${ }^{\mathrm{O}} \mathrm{OH}$	High-level output-current	outputs				$\begin{array}{ll}V_{I H}=V_{D D}, & V_{I L}=0 \\ V_{O}=V_{O H} \text { min }\end{array}$		$\mathrm{T}_{\text {A }}=\mathrm{MIN}$	-120		-120		-85		-85		$\mu \mathrm{A}$
						$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-100		-100		-70		-70				
			$\mathrm{T}_{\mathrm{A}}=$ MAX	-70				-70		-55		-55					
		Carry output	$\mathrm{T}_{A}=\mathrm{MIN}$	-450				-450		-300		-300		$\mu \mathrm{A}$			
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-350				-350		-240		-240					
			$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	-250				-250		-200		-200					
${ }^{1} \mathrm{OL}$	Low-level output current	Y outputs	$V_{I H}=V_{D D}$,$V_{O}=V_{\text {OL }}$ max		$T_{A}=\mathrm{MIN}$			60		120		30		85		$\mu \mathrm{A}$	
					$T_{A}=25^{\circ} \mathrm{C}$	50		100		25		70					
					$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	35		70		20		55					
		Carry output			$T_{A}=$ MIN	185		450		95		300		$\mu \mathrm{A}$			
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	150		350		80		250					
					$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	105		250		65		200					

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER \ddagger	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TF4017A		TP4017A		UNIT
				$V_{D D}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$	$V_{D D}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	
				MIN MAX	MIN MAX	MIN MAX	MIN MAX	
$\mathrm{f}_{\text {max }}$			$\begin{aligned} & C_{L}=50 \mathrm{pF} \S \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$ See Note 1	1	3	0.6	2	MHz
tPLH	Clock or clear	Any Y output		2000	600	2500	750	ns
tPHL				2000	600	2500	750	ns
tPLH	Clock or clear	Carry output		1300	400	1600	500	ns
tPHL				1300	400	1600	500	
tTLH		Any Y output		1800	700	2400	900	ns
tTHL				1800	700	2400	900	
tTLH		Carry output		600	300	700	400	ns
${ }^{\text {t }}$ HL				600	300	700	400	¢

\ddagger_{f} max \equiv Maximum clock frequency
${ }^{\text {tpLH }} \equiv$ Propagation delav time, low-to-high-level output
$\mathrm{t}_{\mathrm{PHL}} \equiv$ Propagation delay time, high-to-low-level output
${ }^{\mathrm{t}}$ TLH \equiv Transition time, low-to-high-level output
${ }^{\text {t }}$ THL \equiv Transition time, high-to-low-level output
§With a 15-pF load, these devices switch with times similar to those of the RCA CD4017A.
NOTE 1: See load circuit and voltage waveforms on page 170.
functional block diagram

typical clear, count, and inhibit sequences

- Designed to be Interchangeable with RCA CD4018A
- Maximum Clock Frequency . . . 5 MHz Typical at $V_{D D}=10 \mathrm{~V}$

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62 and below	Page 63, group 3

description
The '4018A consist of five Johnson counters, buffered $\overline{\mathrm{Q}}$ outputs from each stage, and preset control gating. Clear, preset enable, clock, feedback, and five parallel load inputs are provided.

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

A high clear signal asynchronously clears the counter so that all $\overline{\mathrm{O}}$ outputs are high. A high preset enable signal asynchronously loads the counter and the $\overline{\mathrm{Q}}$ outputs will take on the complements of the parallel inputs. The counter is advanced one count on the low-to-high transition of the clock input.

Various counter configurations may be implemented as follows:

Divide by	Connect These Outputs to Feedback Input	Via	Results from Each $\overline{\mathrm{Q}}$ Output (See Timing Diagram)
10	$\overline{\mathrm{Q}}_{\mathrm{E}}$	direct	5 counts high, 5 counts low
9	$\overline{\mathrm{Q}}_{\mathrm{D}}, \overline{\mathrm{Q}}_{\mathrm{E}}$	AND gate	5 counts high, 4 counts low
8	$\overline{\mathrm{O}}_{\mathrm{D}}$	direct	4 counts high, 4 counts low
7	$\overline{\mathrm{Q}}_{\mathrm{C}}, \overline{\mathrm{Q}}_{\mathrm{D}}$	AND gate	4 counts high, 3 counts low
6	$\overline{\mathrm{O}}_{\mathrm{C}}$	direct	3 counts high, 3 counts low
5	$\overline{\mathrm{Q}}_{\mathrm{B}}, \overline{\mathrm{Q}}_{\mathrm{C}}$	AND gate	3 counts high, 2 counts low
4	$\overline{\mathrm{O}}_{\mathrm{B}}$	direct	2 counts high, 2 counts low
3	$\overline{\mathrm{Q}}_{\mathrm{A}}, \overline{\mathrm{Q}}_{\mathrm{B}}$	AND gate	2 counts high, 1 count low
2	$\overline{\mathrm{Q}}_{\mathrm{A}}$	direct	1 count high, 1 count low

recommended operating conditions

			TF4	18A			TP4	18A		
		V ${ }_{\text {DD }}$	5 V	VDD	10 V	V ${ }_{\text {DD }}$	$=5 \mathrm{~V}$	VDD	10 V	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Pulse width, $\mathrm{t}_{\text {w }}$	Clock high or low	500		170		830		250		ns
Pulse width, ${ }_{\text {w }}$	Clear or preset enable	500		170		830		250		ns
	Feedback	500		200		700		300		
Setup time, $\mathrm{t}_{\text {su }}$	Clear or preset enable inactive state	750		225		1000		275		ns

TYPES TF4018A, TP4018A

PRESETTABLE DIVIDE-BY-N COUNTERS
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER \ddagger	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TF4018A				TP4018A				UNIT
				$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$				1		3		0.6		2		MHz
${ }_{\text {tPLH }}$ or tPHL	Clock, clear,	$\overline{\mathrm{a}}_{\mathrm{A}}, \overline{\mathrm{O}}_{\mathrm{B}}, \overline{\mathrm{C}}_{\mathrm{C}}, \overline{\mathrm{O}}_{\mathrm{D}}$	$200 \mathrm{k} \Omega$		1375		475		1800		610	ns
tPLH or tPHL	preset enable	$\overline{\mathrm{O}}_{\mathrm{E}}$	See Note 1		1175		325		1500		410	ns
${ }^{\text {t TLH }}$ or TTHL		Any			350		150		400		225	ns

$\ddagger_{f_{\text {max }}} \equiv$ Maximum clock frequency
${ }^{t_{P L H}} \equiv$ Propagation delay time, low-to-high-level output
${ }^{t_{P H L}} \equiv$ Propagation delay time, high-to-low-level output
${ }^{\mathrm{t}}$ TLH \equiv Transition time, low-to-high level output
${ }^{\text {t }}$ THL \equiv Transition time, high-to-low-level output
§With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the RCA CD4018A
NOTE 1: See load circuit and voltage waveforms on page 170.
functional block diagram

typical clear, count, and preset sequence

CMOS

- Designed to be Interchangeable with RCA CD4019A

description

These devices consist of four AND-OR select gate configurations, each with two two-input AND gates driving a single two-input OR gate. Selection is determined by control inputs G1 and G2.

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, group 2, except as on following page

functional block diagram (each gate)

c
FUNCTION TABLE
(EACH GATE)

INPUTS			OUTPUT	
CONTROL	DATA	Y		
G1	G2	D1	D2	
L	L	X	X	L
H	L	H	X	H
H	L	L	X	L
L	H	X	H	H
L	H	X	L	L
H	H	H	X	H
H	H	X	H	H
H	H	L	L	L

$H=$ high level, $L=$ low level, $X=$ irrelevant

TYPES TF4019A, TP4019A
 QUAD AND-OR SELECT GATES

electrical characteristics

$V_{D D}=5 \mathrm{~V}$ and 10 V

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		TF4019A		TP4019A		UNIT		
		$V_{D D}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$	$V_{D D}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$					
		MIN MAX	MIN MAX	MIN MAX	MIN MAX					
${ }^{1} \mathrm{OH}$	High-level output current			$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{~V}_{\mathrm{IL}}=0, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}} \text { min } \end{aligned}$	$\mathrm{T}_{A}=\mathrm{MIN}$	-0.95	-0.95	-0.6	-0.6	
				$\mathrm{T}^{\prime}=25^{\circ} \mathrm{C}$	-0.7	-0.7	-0.5	-0.5	mA	
		$\mathrm{T}_{A}=\mathrm{MAX}$	-0.5		-0.5	-0.4	-0.4			
${ }^{\text {I OL }}$	Low-level output current	$\begin{aligned} & V_{I H}=V_{D D} \\ & V_{I L}=0, \\ & V_{\mathrm{O}}=V_{\mathrm{OL}} \max \end{aligned}$	$\mathrm{T}_{A}=\mathrm{MIN}$		0.6	0.9	0.37	0.8		
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.45	0.75	0.3	0.65	mA		
			$T_{A}=M A X$	0.3	0.55	0.23	0.5			
IDD or Quiescent supply current -Iss		$V_{1}=V_{D D} \text { or } 0,$ No load	$\mathrm{T}_{A}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$	5	10	50	100	μ		
		$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	300	600	700	1400	A			

$V_{D D}=15 \mathrm{~V}$

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4019A		TP4019A		UNIT
			MIN	MAX	MIN	MAX	
${ }^{1} \mathrm{DD}$ or Quiescent supply current -ISS	$v_{1}=v_{D D} \text { or } 0$ No load	$\mathrm{T}_{A}=$ MIN or $25^{\circ} \mathrm{C}$		30		300	$\mu \mathrm{A}$
		$T_{A}=$ MAX		1800		4200	

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4019A		TP4019A		UNIT
		$V_{D D}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$	$V_{D D}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	
Propagation delay time, tpLH low-to-high-level output		375	170	500	220	ns
tpHL Propagation delay time, high-to-low-level output	$R_{\mathrm{L}}=200 \mathrm{k} \Omega \text {, }$	375	170	500	220	ns
${ }_{\text {TLLH }}$ Transition time, low-to-high-level output		350	130	475	165	ns
t THL Transition time, high-to-low-level output		350	130	475	165	ns

§ With a 15-pF load, these devices switch with times similar to those of the RCA CD4019A.
NOTE 1: See load circuit and voltage waveforms on page 170.

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

- Designed to be Interchangeable with RCA CD4020A
- Maximum Clock Frequency . . . 7 MHz Typical at 10 V

description

The '4020A is an asynchronous 14 -stage binary counter designed with an input pulse-shaping circuit. The outputs of all stages except O_{B} and O_{C} are externally available. A high clear signal asynchronously clears the counter and resets all outputs low. The count is advanced on the high-to-low transition of the clock pulse. Applications include time-delay circuits, counter controls, and frequency-dividing circuits.

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62 and below	Page 63, group 3

recommended operating conditions

		TF4020A				TP4020A				UNIT
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Pulse width, ${ }_{\text {w }}$	Clock high or low	335		125		500		165		ns
Pulse width, ${ }_{\text {w }}$	Clear	2500		475		3000		550		ns

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TF4020A				TP4020A				UNIT
				$\mathrm{V}_{\text {DD }}=5$		$V_{D D}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$				1.5		4		1		3		MHz
tPLH or tPHL	Clock	$\mathrm{Q}_{\text {A }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ §,		775		300		850		350	ns
tPLH or tPHL	Clock	Q_{N}	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$,		5600		2000		8400		3000	ns
tPHL	Clear	Any	See Note 1		3200		850		3700		1000	ns
t ${ }^{\text {LLH }}$ or tTHL		Any			350		150		400		225	ns

[^12]${ }^{\text {t }}$ PLH \equiv Propagation delay time, low-to-high-level output
${ }^{t_{P H L}} \equiv$ Propagation delay time, high-to-low-level output
${ }^{\text {t }}$ TLH \equiv Transition time, low-to-high-level output
${ }^{\text {t }}$ THL \equiv Transition time, high-to-low-level output
§With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the RCA CD4020A.
NOTE 1: See load circuit and voltage waveforms on page 170.

TYPES TF4020A, TP4020A 14-BIT BINARY COUNTERS

functional block diagram

typical clear and count sequence

- Designed to be Interchangeable with RCA CD4021A
- Asynchronous Parallel or Synchronous Serial Input, Serial Output
- Parallel Outputs from Sixth, Seventh, and Eighth Bits
- Maximum Clock Frequency . . . 5 MHz Typical at 10 V description

These 8 -bit registers have a single serial input and parallel-in access to each stage. D-type master-slave flip-flops are used for each stage with paralle! access to the outputs of bits F, G, and H.

When the parallel-load/serial-shift input, $\mathrm{P} / \overline{\mathrm{S}}$, is high, data is broadside loaded into the register from the parallel inputs independently of the clock. When the $\mathrm{P} / \overline{\mathrm{S}}$ input is low, data is synchronously entered at the serial input and each bit shifts one bit position in the direction O_{A} toward O_{H}. Serial operations occur on the low-to-high transition of the clock input.

The TF4014A and TP4014A are similar to these registers, except for having synchronous parallel inputs.

JOR N
dUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM		
RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62 and on following page	Page 63, group 3, except as on following page

FUNCTION TABLE

INPUTS				INTERNAL OUTPUTS (2 OF 5)		OUTPUTS		
$\begin{gathered} \text { CONTROL } \\ \text { P/S } \end{gathered}$	CLOCK	$\begin{gathered} \text { PARALLEL } \\ \text { A.H } \end{gathered}$	SERIAL			$\mathbf{O F}_{F}$	$\mathbf{O}_{\mathbf{G}}$	$\mathbf{O}_{\mathbf{H}}$
				$\mathbf{O}_{\mathbf{A}}$	a_{B}			
H	X	a-h	X	a	b	f	g	h
L	\uparrow	x	H	H	$\mathbf{Q}_{\text {An }}$	Q_{En}	Q_{Fn}	Q_{Gn}
L	\uparrow	x	L	L	$\mathrm{O}_{\mathbf{A n}}$	Q_{En}	Q_{Fn}	Q_{Gn}
L	L	X	X	$\mathrm{O}_{\text {AO }}$	O_{BO}	O_{FO}	Q_{GO}	a_{HO}

See explanation of function tables, pages 16 and 17.

functional block diagram

TYPES TF4021A, TP4021A

8-BIT STATIC SHIFT REGISTERS

recommended operating conditions

		TF4021A				TP4021A				UNIT
		$V_{\text {DD }}$	=5V	VDD	10 V	V ${ }_{\text {DD }}$	5 V	$V_{\text {DD }}$	10 V	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Pulse width, $\mathbf{t}_{\mathbf{w}}$	Clock high or low	500		175		830		200		ns
	$\mathrm{P} / \overline{\mathrm{S}}$ high	500		175		830		200		ns
Setup time, $\mathrm{t}_{\text {su }}$		350		80		500		100		ns

electrical characteristics

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4021A		TP4021A		UNIT
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	$V_{D D}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	
			MIN MAX	MIN MAX	MIN MAX	MIN MAX	
High-level output current	$V_{\text {IH }}=V_{\text {DD }}$,	$T_{A}=\mathrm{MIN}$	-0.25	-0.25	-0.12	-0.12	
	$V_{I L}=0$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.2	-0.2	-0.1	-0.1	mA
	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}} \mathrm{min}$	$T_{A}=$ MAX	-0.14	-0.14	-0.08	-0.08	mA
Low-level output current	$\begin{aligned} & V_{I H}=V_{D D}, \\ & v_{I L}=0, \\ & v_{O}=v_{O L} \max \end{aligned}$	$T_{A}=$ MIN	0.15	0.31	0.072	0.12	
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12	0.25	0.06	0.1	
		$T_{A}=M A X$	0.085	0.175	0.05	0.08	

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4021A		TP4021A		UNIT
		$V_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$	$V_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	
${ }^{\text {max }}$ Maximum clock frequency	$\begin{aligned} & C_{L}=50 \mathrm{pF} \S \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$ See Note 1	1	3	0.6	2.5	MHz
tPLH $\begin{aligned} & \text { Propagation delay time, } \\ & \text { low-to-high-level output }\end{aligned}$		975	300	1300	400	ns
Propagation delay time, tPHL high-to-low-level output		975	300	1300	400	ns
${ }_{\text {T }}$ LHH Transition time, low-to-high-level output		550	225	700	300	ns
${ }^{\text {t }}$ HL Transition time, high-to-low-level output		550	225	700	300	ns

[^13]JOR N
dUAL-IN-LINE PACKAGE (TOP VIEW)

NC - No internal connection
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62 and below	Page 63, group 3, except as on following page

recommended operating conditions

electrical characteristics

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			TF4022A				TP4022A				UNIT			
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$V_{\text {DD }}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$									
			M! ${ }^{\text {N }}$	MAX	MIN	MAX	MIN	MAX	M!	MAX							
${ }^{1} \mathrm{OH}$	High-level output-current	$\left\lvert\, \begin{gathered} \mathrm{Y} \\ \text { outputs } \end{gathered}\right.$				$\begin{aligned} & V_{I H}=v_{D D} \\ & v_{O}=v_{O H} \text { min } \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$	-120		-120		-85		-85		
							$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-100		-100		-70		-70		$\mu \mathrm{A}$	
			$V_{\text {IL }}=0$,	$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	-70			-70		-55		-55					
		Carry output		$T_{A}=$ MIN	-450			-450		-300		-300					
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-350			-350		-240		-240		$\mu \mathrm{A}$			
				$\mathrm{T}_{A}=\mathrm{MAX}$	-250			-250		-200		-200					
${ }^{\text {IOL }}$	Low-level output current	outputs	$\begin{cases}V_{I H}=V_{D D}, & V_{I L}=0 \\ V_{O}=V_{O L} \max & \end{cases}$		$T_{A}=$ MIN		60		120		30		85				
					$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	50		100		25		70		$\mu \mathrm{A}$			
					$\mathrm{T}_{A}=\mathrm{MAX}$	35		70		20		55					
		Carry output			$T_{A}=$ MIN	185		450		95		300					
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	150		350		80		250		$\mu \mathrm{A}$			
					$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	105		250		65		200					

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER \ddagger	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	TF4022A				TP4022A				UNIT
				$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {f max }}$				1		3		0.6		2		MHz
tPLH	Clock or clear	Any A output	$\begin{aligned} & C_{L}=50 \mathrm{pF} \S \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1		2000		600		2500		750	
tPHL					2000		600		2500		750	
tPLH	Clock or clear	$\begin{gathered} \hline \text { Carry } \\ \text { output } \end{gathered}$			1300		400		1600		500	ns
tPHL					1300		400		1600		500	ns
${ }_{\text {t }}$ L LH		Any Y			1800		700		2400		900	
${ }_{\text {t }}^{\text {THL }}$					1800		700		2400		900	ns
${ }_{T}$ TLLH		Carry output			600		300		700		400	
${ }^{\text {T }}$ HLL					600		300		700		400	ns

$\ddagger f_{\text {max }} \equiv$ Maximum clock frequency
$t_{\mathrm{t}_{1}+\mathrm{H}} \equiv$ Propagation delay time, low-to-high-level output
$\mathrm{t}_{\mathrm{PH}} \equiv$ Propagation delay time, high-to-low-level output
${ }^{\mathrm{t}}$ TLH \equiv Transition time, low-to-high-level output
${ }^{\text {t }}$ THL \equiv Transition time, high-to-low-level output
§ With a 15 -pF load, these devices switch with times similar to those of the RCA CD4022A.
NOTE 1: See load circuit and voltage waveforms on page 170.

TYPES TF4022A, TP4022A OCTAL COUNTERS/DIVIDERS
functional block diagram

typical clear, count, and inhibit sequences

- Designed to be Interchangeable with RCA CD4023A
schematic (each gate)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, Group 1, except as below

electrical characteristics

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$			TF4023A				TP4023A				UNIT
				$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
High-level output current	$\begin{aligned} & V_{1 H}=v_{D D} \\ & V_{O}=V_{O H} \text { min } \end{aligned}$	$V_{\text {IL }}=0$,	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$	-0.65		-0.75		-0.35		-0.35		mA
			$\mathrm{T}^{\prime}=25^{\circ} \mathrm{C}$	-0.5		-0.6		-0.3		-0.3		
			$\mathrm{T}_{\text {A }}=\mathrm{MAX}$	-0.35		-0.4		-0.25		-0.25		
IOL $\begin{aligned} & \text { Low-level } \\ & \text { output current }\end{aligned}$	$\begin{aligned} & V_{I H}=V_{D D} \\ & V_{O}=V_{O L} \max \end{aligned}$	$V_{\text {IL }}=0$,	$\mathrm{T}_{A}=$ MIN	0.5		1.1		0.35		0.6		mA
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.4		0.9		0.3		0.5		
			$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	0.3		0.65		0.25		0.4		

${ }^{\dagger^{T}} A_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4023A				TP4023A				UNIT
		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {tPLH }}$ Propagation delay time,	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \S, \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1		150		80		200		110	ns
${ }^{\text {tPHI }}$ Propagation delay time, high-to-low-level output			150		80		200		110	ns
$\mathrm{t}_{\text {TLH }}$ Transition time, low-to-high-level output			350		175		470		250	ns
${ }^{\text {t }}$ HLL Transition time, high-to-low-level output			450		200		600		275	ns

[^14]NOTE 1: See load circuit and voltage waveforms on Page 170.

- Designed to be Interchangeable with RCA CD4024A
- Maximum Clock Frequency . . . 7 MHz Typical at 10 V
description
The '4024A is an asynchronous 7 -stage binary counter designed with an input pulse-shaping circuit. The outputs of all stages are available externally. A high clear signal asynchronously clears the counter and resets all outputs low. The count is advanced on the high-to-low transition of the clock pulse. Applications include time-delay circuits, counter controls, and frequency-dividing circuits.
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62 and on following page	Page 63, Group 3

functional block diagram

TYPES TF4024A, TP4024A
ASYNCHRONOUS 7-BIT BINARY COUNTERS

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER \ddagger	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	TF4024A				TP4024A				UNIT
				$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$				1.5		4		1		3		MHz
${ }^{\text {t PLH }}$ or tPHL	Clock	Q_{A}	$C_{L}=50 \mathrm{pF}$ §,		600		225		700		300	ns
${ }^{\text {tPLH }}$ or tPHL	Clock	Q_{G}	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$,		2000		700		3000		900	ns
${ }_{\text {tPHL }}$	Clear	Any	See Note 1		900		425		1000		525	ns
tTLH or tTHL		Any			350		150		400		225	ns

$\because_{\text {max }} \equiv$ Maximum clock frequency
${ }^{\boldsymbol{t}} \mathrm{PLH} \equiv$ Propagation delay time, low-to-high-level output
${ }^{t_{P H L}}=$ Propagation delay time, high-to-low-level output
$\mathrm{t}_{\mathrm{T} L \mathrm{H}} \equiv$ Transition time, low-to-high-level output
tTHL \cong Transition time, high-to-low-level output
§With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the RCA CD4024A.
NOTE 1: See load circuit and voltage waveforms on page 170.

- Designed to be Interchangeable with RCA CD4000A, CD4001A, CD4002A, and CD4025A
- All Products Available in J or N Dual-in-Line Packages '4000 . . . Dual 3-Input NOR Gates Plus Inverters
'4001 . . . Quadruple 2-Input NOR Gates
'4002 . . . Dual 4-Input NOR Gates
'4025 . . . Triple 3-Input NOR Gates

TF4000A, TP4000A (TOP VIEW)

typical schematics

INVERTER

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4000A, TF4001A TF4002A, TF4025A				TP4000A, TP4001A TP4002A, TP4025A				UNIT
		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tpLH Propagation delay time, low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF} \S \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1		150		100		200		130	ns
tpHL Propagation delay time, high-to-low-level output			150		100		200		130	ns
${ }^{\text {ITLH }}$ Transition time, low-to-high-level output			350		175		450		300	ns
tTHL Transition time, high-to-low-level output			350		175		450		300	ns

§With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the RCA CD4000A, CD 4001 A, CD4002A, and CD4025A, respectively. NOTE 1: See load circuit and voltage waveforms on page 170.

- Designed to be Interchangeable with RCA CD4027A
- Toggle Rate . . . 8 MHz Typical at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$

description

These circuits are dual J-K-type transition-operated master-slave flip-flops with buffered outputs, independent direct overriding preset and clear inputs, and J, K, and clock inputs. While the clock is low, the data at the J and K inputs is entered into the master section, which is isolated from the slave section. On the rising transition of the clock, the J and K inputs are disabled and data previously set up in the master section is transferred to the slave section. Circuit logic for various input configurations is shown in the function table.

Presetting and clearing are independent of the clock and are accomplished by a high-level voltage at the respective input. The $\overline{\mathrm{Q}}$ output is complementary to the O output except for the nonstable situation that exists when both preset and clear inputs are simultaneously high.

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62 and on following page	Page 63, Group 2, except as on following page

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

FUNCTION TABLE (EACH FLIP-FLOP)						
INPUTS					OUTPUTS	
PRESET	CLEAR	CK	J	K	Q	$\bar{\square}$
H	L	X	\times	X	H	L
L	H	X	X	x	L	H
H	H	X	\times	X	H^{*}	H^{*}
L	L	\uparrow	L	L	O_{0}	$\overline{\mathrm{O}}_{0}$
L	L	\dagger	H	L	H	L
L	L	\uparrow	L	H	L	H
L	L	\uparrow	H	H	TOG	GE
L	L	L	\times	X	O_{0}	$\overline{\mathrm{O}}_{0}$

See explanation of function tables on pages 16 and 17.

- This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (low) level.
functional block diagram

TYPES TF4027A, TP4027A DUAL J-K FLIP-FLOPS

recommended operating conditions

		TF4027A				TP4027A				UNIT
		$V_{\text {DD }}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Pulse width, ${ }_{\text {t }}$ w	Clock high or low	330		110		500		165		ns
	Preset or clear	200		80		300		120		
Setup time, ${ }_{\text {su }}$		150		50		200		75		ns

electrical characteristics

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4027A				TP4027A				UNIT
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
High-level output current	$\begin{array}{ll} V_{I H}=v_{D D}, & V_{I L}=0, \\ v_{O}=v_{O H} \text { min } & \end{array}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$	-0.65		-0.8		-0.35		-0.4		mA
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.5		-0.65		-0.3		-0.35		
		$T_{A}=M A X$	-0.35		-0.45		-0.25		-0.3		
$\begin{array}{ll} \text { IOL } & \begin{array}{l} \text { Low-level } \\ \text { output current } \end{array} \end{array}$	$\begin{array}{ll} V_{I H}=v_{D D}, & V_{I L}=0, \\ V_{O}=V_{O L} \text { max } & \end{array}$	$T_{A}=$ MIN	0.5		1.25		0.35		0.75		mA
		$T_{A}=25^{\circ} \mathrm{C}$	0.4		1		0.3		0.6		
		$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	0.3		0.75		0.25		0.5		

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER \ddagger	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TF4027A				TP4027A				UNIT
				$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$V_{\text {DD }}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \S \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	1.5		4.5		1		3		MHz
tPLH or tphl	Clock	Q or $\overline{\text { a }}$			420		185		550		250	ns
tPLH or tPHL	Preset or Clear	Q or ${ }^{\text {a }}$			320		185		450		250	ns
${ }^{\text {t }}$ TLH or ${ }^{\text {t }}$ HL		Any			235		130		300		175	ns

$\dagger \mathrm{f}_{\text {max }} \equiv$ Maximum clock frequency
$\mathrm{t}_{\mathrm{PLH}} \equiv$ Propagation detay time, low-to-high-level output
${ }^{t_{\text {PHL }}} \equiv$ Propagation delay time, high-to-low-level output
${ }^{\text {t }}$ TLH \equiv Transition time, low-to-high-level output
${ }^{\text {t }}$ THL \equiv Transition time, high-to-low-level output
§With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the RCA CD4027A.
NOTE 1: See load circuit and voltage waveforms on page 170.

TYPES TF4028A, TP4028A
 BCD-TO-DECIMAL DECODERS

- Designed to be Interchangeable with RCA CD4028A
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, group 3

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

FUNCTION TABLE

NO.	INPUTS	OUTPUTS									
	S3 S2 S1 S0	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9
0	L L L L	H	L	L	L	L	L	L	L	L	L
1	L L L H	L	H	L	L	L	L	L	L	L	L
2	L L H L	L	L	H	L	L	L	L	L	L	L
3	L L H H	L	L	L	H	L	L	L	L	L	L
4	L H L L	L	L	L	L	H	L	L	L	L	L
5	L H L H	L	L	L	L	L	H	L	L	L	L
6	LHHL	L	L	L	L	L	L	H	L	L	L
7	L H H H	L	L	L	L	L	L	L	H	L	L
8	H L L L	L	L	L	L	L	L	L	L.	H	L.
9	H L L H	L	L.	L	L	L	L	L	L	L	H
	H L HL	L	L	L	L	L	L	L	1	L	L
	H L H H	L	L	L	L	L	L	L	L	L	L
」	H H L L	L	L	L	L	L	L	L	L	L	L
\rangle	H H L H	L.	L	L	L	L	L	L	L	L	L
$\underline{2}$	H H H L	L	L	L	L	L	L	L	L	L	L
	H H H H	L	L	L	L	L	L	L	L	L	L

H high level, L low level

TYPES TF4028A, TP4028A BCD-TO-DECIMAL DECODERS

functional block diagram

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4028A				TP4028A				UNIT
		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Propagation delay time, tPLH low-to-high-level output	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \Omega, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1		630		250		900		400	ns
Propagation delay time, tPHL high-to-low-level output			630		250		900		400	ns
${ }^{\text {t }}$ LH Transition time, low-to-high-level output			300		150		400		220	ns
trHL Transition time, high-to-low-level output			300		150		400		220	ns

§With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the RCA CD4028A.
NOTE 1: See load circuit and voltage waveforms on page 170.

- Designed to be Interchangeable with RCA CD4029A
- Medium Speed Operation . . . 5 MHz Typical at $V_{D D}=10 \mathrm{~V}$
- Binary or Decade Up/Down Counting
- BCD Outputs in Decade Mode

description

The '4029A counter consists of a four-stage binary or BCD-decade up/down counter with provision for look-ahead carry in both counting modes. The inputs consist of a single clock, carry input (clock enable), binary/decade, up/down, preset enable, and four individual parallel data inputs. Four separate buffered data outputs and a carry output are provided.

A high at the preset-enable input allows information at the parallel inputs to preset the counter to any count independently of the clock. A low at each parallel input, when the preset-enable input is high, resets the counter to its zero count. The counter is advanced one count at the low-to-high transition of the clock when the carry input and preset-enable input are low. Advancement is inhibited when the carry input or preset-enable input is high. The carry output is normally high and goes low when the counter reaches its maximum count in the up mode or its minimum count in the down mode, provided the carry input is low. The carry input terminal must be connected to $V_{S S}$ when not in use.

Binary counting is accomplished when the binary/ decade input is high; the counter counts in the decade mode when the binary/decade input is low. The counter counts up when the up/down input is high, and down when the up/down input is low.

Multiple packages can be connected in either a parallel-clocking or a ripple-clocking arrangement as shown in Figure 1. Parallel clocking provides synchronous control and hence faster response from all counting outputs. Ripple clocking permits longer clock input rise and fall times.

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

SUMMARY OF CONTROL INPUT FUNCTIONS (COMPLETE COUNTER)

CONTROL INPUT	LOGIC LEVEL	FUNCTION
Binary/Decade	H	Binary count
$(\mathrm{B} / \overline{\mathrm{D})}$	L	Decade count
Up/Down	H	Count up
$(\mathrm{U} / \overline{\mathrm{D})}$	L	Count down
Preset enable	H	Parallel load
(PE)	L	Enable counting
Carry input	H	Inhibit counting
$(\overline{\mathrm{CI})}$	L	Enable counting

specification

MAXIMUM RATANGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHAAMACTERISTiCS
Page 62	Page 62 and on following page	Page 63, group 3, except as on following page

TYPES TF4029A, TP4029A
 PRESETTABLE UP/DOWN BINARY/DECADE COUNTERS

recommended operating conditions

		TF4029A				TP4029A				UNIT
		$V_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$V_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Clock high or low	340		170		500		250		
Pulse width, ${ }_{\text {w }}$	Preset enable	330		160		660		320		
	Binary/Decade	650		230		1300		460		
S	Up/Down	650		230		1300		460		
Setup time, ${ }_{\text {su }}$	Carry input	650		230		1300		460		ns
	Preset enable inactive state	650		230		1300		460		

electrical characteristics

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			TF4029A				TP4029A				UNIT			
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$									
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX							
${ }^{\mathrm{IOH}}$	High-level output-current	$\left\lvert\, \begin{gathered} \mathrm{Q} \\ \text { outputs } \end{gathered}\right.$				$\begin{aligned} & V_{I H}=V_{D D} \\ & V_{O}=V_{O H} \text { min } \end{aligned}$	$V_{\text {IL }}=0$,	$\mathrm{T}_{\text {A }}=\mathrm{MIN}$	-300		-300		-140		-140		$\mu \mathrm{A}$
						$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-200		-200		-100		-100			
			$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	-140				-140		-80		-80					
		Carry output	$\mathrm{T}_{A}=\mathrm{MIN}$	-150				-150		-70		-70		$\mu \mathrm{A}$			
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-100				-100		-50		-50					
			$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	-70				-70		-40		-40					
${ }^{\text {I OL }}$	Low-level output current		$\begin{cases}V_{I H}=V_{D D}, & V_{I L}=0 \\ V_{O}=V_{O L} \max & \end{cases}$		$\mathrm{T}_{A}=$ MIN		500		740		240		360		$\mu \mathrm{A}$		
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	400		600		200		300					
					$T_{A}=M A X$	280		420		160		240					
		Carry output			$\mathrm{T}_{A}=$ MIN	100		400		50		190		$\mu \mathrm{A}$			
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80		320		40		160					
					$\mathrm{T}_{A}=\mathrm{MAX}$	60		220		30		130					

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER \ddagger	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TF4029A				TP4029A				UNIT
				$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			$\begin{aligned} & C_{L}=50 \mathrm{pF} \S \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See load circuit and voltage waveforms on page 170.	1.5		3		1		2		MHz
tPLH or tPHL	Clock	Any 0 output			900		350		1800		700	ns
tPLH or tPHL	Clock	Carry output			1300		550		2600		1100	ns
${ }^{\text {tPLH }}$ or tPHL	Preset enable	Any 0 output			900		350		1800		700	ns
${ }^{\text {tPLH }}$ or tPHL	Preset enable	Carry output			1300		550		2600		1100	ns
tPLH or tPHL	Carry input	Carry output			800		350		1600		700	ns
${ }^{\mathrm{t}}$ TLH or ${ }^{\text {t }}$ THL		Any 0 output			450		225		900		450	ns
t ${ }^{\text {LLH }}$ or tTHL		Carry output			850		450		1700		900	ns

[^15]
FLIP-FL
typical count up, count down, inhibit, and preset sequences

typical count up, preset, count down, and inhibit sequences

TEXAS INSORTRUMMENTS

TYPES TF4029A, TP4029A
PRESETTABLE UP/DOWN BINARY/DECADE COUNTERS

NOTE A: The up/down control can be changed at any count. The only restriction is that in the ripple-clocked application, the clock input (including $\overline{\mathrm{Cl}}$) of the first counting stage must be high when the up/down control is changed.

FIGURE 1-CASCADING COUNTER PACKAGES
The ' 4029 clock and up/down inputs are used directly in most applications. In applications where clock-up and clock-down inputs are provided, conversion to the ' 4029 clock and up/down inputs can easily be realized by use of the circuit shawn below. The ' 4029 changes count on the low-to-high transitions of the clock-up or clock-down inputs. For the gate configuration shown below, when counting up the clock-down input must be maintained high and conversely, when counting down the clock-up input must be maintained high.

FIGURE 2-CONVERSION OF CLOCK-UP AND CLOCK-DOWN INPUT SIGNALS TO CLOCK AND UP/DOWN INPUT SIGNALS

- Designed to be Interchangeable with RCA CD4030A and Motorola MC14507
- Even- and Odd-Parity Generators and Checkers
- Logical Comparators
- Adders and Subtractors
- True/Complement Gating

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	L
H	L	H
L	H	H
H	H	L

$\mathrm{H}=$ high level, $\mathrm{L}=$ Iow level
functional block diagram (each gate)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, group 2, and on following page

schematic (each gate)

$0 \ldots v_{D D}$ bus

TYPES TF4030A, TP4030A
 QUAD EXCLUSIVE-OR GATES

electrical characteristics

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and 10 V

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4030A		TP4030A		UNIT
			$V_{\text {DD }}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	
			MIN MAX	MIN MAX	MIN MAX	MIN MAX	
High-ievel output current	$V_{\text {IH }}=V_{\text {DD }}$,	$T_{A}=\mathrm{MIN}$	-0.95	-0.95	-0.45	-0.45	mA
	$V_{1 L}=0$,	$\mathrm{T}^{1} \mathrm{~A}=25^{\circ} \mathrm{C}$	-0.65	-0.65	-0.32	-0.32	
	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}$ min	$T_{A}=M A X$	-0.45	-0.45	-0.25	-0.25	
Low-level output current	$V_{\text {IH }}=V_{\text {DD }}$,	$\mathrm{T}_{A}=\mathrm{MIN}$	0.75	1.5	0.35	0.7	mA
	$V_{I L}=0$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.6	1.2	0.3	0.6	
	$V_{\mathrm{O}}=V_{\text {OL }}$ max	$T_{A}=M A X$	0.45	0.9	0.25	0.5	
Quiescent supply current	$V_{1}=V_{\text {DD }}$ or 0,	$T_{A}=$ MIN or $25^{\circ} \mathrm{C}$	0.5	1	5	10	$\mu \mathrm{A}$
		$T_{A}=$ MAX	30	60	70	140	

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		TF4030A	

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4030A		TP4030A		UNIT
		$V_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	
tPLH Propagation delay time, low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF} \S \\ & R_{L}=200 \mathrm{k} \Omega . \end{aligned}$ See Note 1	350	175	475	250	ns
Propagation delay time, tPHL high-to-low-level output		350	175	475	250	ns
${ }^{\text {T }}$ LH Transition time, low-to-high-level output		300	150	450	225	ns
tTHL Transition time, high-to-low-level output		300	150	450	225	ns

§With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the RCA CD4030A and Motorola MC14507. NOTE 1: See load circuit and voltage waveforms on page 170.

- Designed to be Interchangeable with RCA CD4040A
- Maximum Clock Frequency . . . 7 MHz Typical at 10 V

description

The ' 4040 is an asynchronous 12 -stage binary counter designed with an input pulse-shaping circuit. The outputs of all stages are available externally. A high clear signal asynchronously clears the counter and resets all outputs low. The count is advanced on the high-to-low transition of the clock pulse. Applications include time delay circuits, counter controls, and frequency-dividing circuits.

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM		
RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62 and below	Page 63, group 3

recommended operating conditions

-		TF4040A				TP4040A				UNIT
		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Pulse width, $\mathrm{t}_{\text {w }}$	Clock high or low	335		110		500		125		ns
	Clear	1000		500		1250		600		ns

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER \ddagger	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TF4040A				TP4040A				UNIT
				$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			$\begin{aligned} & C_{L}=50 \mathrm{pF} \S, \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	1.5		4		1		3		MHz
${ }^{\text {tpLH }}$ or tPHL	Clock	$\mathrm{Q}_{\text {A }}$			775		300		850		350	ns
${ }^{\text {tPLH }}$ or ${ }^{\text {tPHL }}$	Clock	Q_{L}			5000		1800		7500		2700	ns
tPHL	Clear	Any			1200		475		1800		725	ns
t TLH or t ${ }^{\text {THL }}$		Any			350		150		400		225	ns

[^16]functional block diagram

OUTPUTS NOT SHOWN
(6) Q_{C}
(3) Q_{E}
(4) $Q_{G} \quad$ (12) Q_{I}
(5) O_{D}
(2) Q_{F}
(13) O_{H}
(14) Q_{j}
typical clear and count sequence

When P is low, C still determines the state of all the latches, but now data is passed when C is low and is latched when C is high.

FUNCTION TABLE		
P	C	FUNCTION
H	H	Pass data
H	L	Latch data
L	H	Latch data
L	L	Pass data

$H=$ high level, $L=$ low level
functional block diagram

recommended operating conditions

electrical characteristics
$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and 10 V

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4042A				TP4042A				UNIT
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$I_{D D}$	$V_{1}=V_{D D}$ or 0,	$T_{A}=$ MIN, or $25^{\circ} \mathrm{C}$		1		2		10		20	A
${ }^{-1} \text { SS }$		$T_{A}=$ MAX		60		120		140		280	

$V_{D D}=15 \mathrm{~V}$

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4042A		TP4042A		UNIT
			MIN	MAX	MIN	MAX	
${ }^{1} D D$ or Quiescent supply current ${ }^{-1}$ SS	$V_{1}=V_{\text {DD }}$ or 0,	$\mathrm{T}^{\prime}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$		6		60	$\mu \mathrm{A}$
	No load	$T_{A}=$ MAX		360		840	

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4042A				TP4042A				UNIT
		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {tPLH }} \begin{aligned} & \text { Propagation delay time, } \\ & \text { low-to-high-level output }\end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \S, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1		475		200		600		300	ns
tPHL Propagation delay time, tPHL high-to-low-level output			475		200		600		300	ns
tTLH Transition time, low-to-high-level output			350		150		400		220	ns
${ }^{\text {t }}$ HL Transition time, high-to-low-level output			350		150		400		220	ns

[^17]- Designed to be Interchangeable with RCA CD4043A and CD4044A
- 3-State Outputs with Common Enable
description
The '4043A and '4044A are quadruple S-R and $\bar{S}-\bar{R}$ latches, respectively, with three-state outputs. Each latch has separate active-high ('4043A) or active-low ('4044A) set and reset inputs. The three-state outputs are controlled by a common output control. When high, this control permits each output to assume the state of the cross-coupled NOR-gate or NAND-gate latch. When the output control is low, all the outputs are in a high-impedance state.

FUNCTION TABLES
(EACH LATCH)
TF4043A, TP4043B

OUTPUT CONTROL	INPUTS		OUTPUT
	S	R	
L	X	X	Hi-Z
H	L	L	No change
H	H	L	H
H	L	H	L
H	H	H	H^{*}

TF4044A, TP4044A

OUTPUT	INPUTS		OUTPUT
	$\overline{\mathrm{S}}$	$\overline{\mathrm{R}}$	Q
L	X	X	$\mathrm{Hi}-\mathrm{Z}$
H	H	H	No change
H	L	H	H
H	H	L	L
H	L	L	$\mathrm{~L}^{*}$

*This output leve! is psuedo stable; that is, it may not persist when the S and R inputs return to their inactive (low) level or the S and \bar{R} inputs return to their inactive (high) level. See explanation of function tables, pages 16 and 17.
functional block diagrams
TF4043A, TP4043A

DUAL-IN-LINE PACKAGE (TOP VIEW)
TF4043A, TP4043A

NC-No internal connection
TF4044A, TP4044A

NC-No internal connection

TF4044A, TP4044A

TYPES TF4043A, TF4044A, TP4043A, TP4044A
 OUAD S-R AND S-̄̄ LATCHES WITH 3-STATE OUTPUTS

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62 and below	Page 63, group 3, except as below

recommended operating conditions

	TF4043A, TF4044A				TP4043A, TP4044A				UNIT
	$V_{D D}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Pulse width, set or reset, $\mathrm{t}_{\text {w }}$	200		100		225		110		ns

electrical characteristics

$$
V_{D D}=5 \mathrm{~V} \text { and } 10 \mathrm{~V}
$$

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4043A, TF4044A		TP4043A, TP4044A		UNIT
			$V_{D D}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	$V_{D D}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	
			MIN MAX	MIN MAX	MIN MAX	MIN MAX	
$\mathrm{I}^{\mathrm{O}} \mathrm{OZH} \begin{aligned} & \text { Off-state output current, } \\ & \text { high-level voltage applied }\end{aligned}$	OC at $\mathrm{V}_{\text {SS }}$,	$\mathrm{T}_{A}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$	0.05	0.1	0.5	1	$\mu \mathrm{A}$
	$V_{O}=V_{D D}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	3	6	7	14	
IOZL Off-state output current,	OC at $\mathrm{V}_{\text {SS }}$,	$T_{A}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$	-0.05	-0.1	-0.5	-1	$\mu \mathrm{A}$
	$V_{O}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	-3	-6	-7	-14	
IDD or Quiescent supply current - Iss	$\mathrm{V}_{\mathbf{1}}=\mathrm{V}_{\text {DD }}$ or 0,	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$, or $25^{\circ} \mathrm{C}$	1	2	10	20	$\mu \mathrm{A}$
	No load	$T_{A}=$ MAX	60	120	140	280	

$$
V_{D D}=15 \mathrm{~V}
$$

PARAMETER	TEST CONDITIONS		TF4043A, TF4044A		TP4043A, TP4044A		UNIT
			MIN	MAX	MIN	MAX	
Quiescent supply current	$V_{1}=V_{D D} \text { or } 0$ No load	$T_{A}=\operatorname{MIN}$ or $25^{\circ} \mathrm{C}$		6		60	$\mu \mathrm{A}$
		$T_{A}=$ MAX		360		840	

${ }^{t_{A}}{ }_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4043A, TF4044A				TP4043A, TP4044A				UNIT
		$V_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tPLH $\begin{aligned} & \text { Propagation delay time, } \\ & \text { low-to-high-level output }\end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \S \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1		525		250		600		310	ns
Propagation delay time, tPHL high-to-low-level output			525		250		600		310	ns
tTLH Transition time, low-to-high-level output			350		150		400		220	ns
tTHL Transition time, high-to-low-level output			350		150		400		220	ns

[^18]- Designed to be Interchangeable with RCA CD4049A and RCA CD4050A
- High Current Sinking Capability . . 8 mA Minimum at $\mathrm{VOL}_{\mathrm{OL}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ schematic (each buffer)

description
The '4049A and '4050A hex CMOS inverting and noninverting buffers may be used as current sinks or source drivers, hex CMOS drivers, or high-to-low-logic-level (e.g., CMOS to DTL or TTL) converters. Logic-level conversion is accomplished using only one supply voltage ($V_{D D}$). The high-level input signal $\left(\mathrm{V}_{1 \mathrm{H}}\right)$ can exceed the V_{DD} supply voltage when this device is used for logic-level conversions. Table 1 shows the range of voltage levels that can be utilized in these applications. Conversions to logic levels greater than six volts are permitted provided that $V_{D D}$ is less than or equal to $V_{I H}$.

Since these devices require only one power supply, $V_{D D}$, they should be used in place of the '4009A and '4010A in all current driver or logic-level conversion applications. They are interchangeable with '4009A and '4010A, respectively, and can be substituted in existing as well as new designs. Pin 16 of the '4049A and '4050A is not internally connected; therefore, any external connection to this pin does not affect circuit operation.

TABLE 1

	TABLE 1		
FUNCTION INPUT VOLTAGEL RANGE OUTPUT HIGH-LEVEL VOLTAGE RANGEPOWER SUPPLY VOLTAGE RANGE (VDD)			
Level Shifter	3 to 15 V	3 to 6 V	3 to 6 V
Buffer	3 to 15 V	3 to 15 V	3 to 15 V

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW) TF4049A, TP4049A

TF4050A, TP4050A

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, group 2, except as on following page

TYPES TF4049A, TF4050A, TP4049A, TP4050A HEX INVERTING AND NONINVERTING BUFFERS

electrical characteristics

'4049 only

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	TF4049A		TP4049A		UNIT
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$V_{\text {DD }}=10 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	
	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$	1	2	1	2	\checkmark
VIL Low-level input voltage	$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	0.9	1.9	0.9	1.9	\checkmark

$\cdot 4049 \mathrm{~A}$ and ${ }^{\prime} 4050 \mathrm{~A}$ at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and 10 V

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4050A		TP4050A		UNIT
			$V_{\text {DD }}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	$V_{\text {DD }}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	
			MIN MAX	MIN MAX	MIN MAX	MIN MAX	
High-level output current	$\begin{aligned} & V_{\mathrm{IH}}=V_{\mathrm{DD}}, \\ & V_{\mathrm{IL}}=0, \\ & V_{\mathrm{O}}=V_{\mathrm{OH}} \mathrm{~min} \end{aligned}$	$\mathrm{T}_{\text {A }}=\mathrm{MIN}$	-1.85	-1.85	-1.5	-1.5	mA
		$T^{T}=25^{\circ} \mathrm{C}$	-1.25	-1.25	-1.25	-1.25	
		$T_{A}=$ MAX	-0.9	-0.9	-1	-1	
Low-level output current	$\begin{aligned} & V_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{~V}_{\mathrm{IL}}=0, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OL}} \end{aligned}$	$T_{A}=\mathrm{MIN}$	3.75	10	3.6	9.6	mA
		$T_{A}=25^{\circ} \mathrm{C}$	3	8	3	8	
		$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	2.1	5.6	2.5	6.6	
Quiescent supply current	$V_{1}=V_{D D} \text { or } 0$ No load	$T_{A}=$ MIN or $25^{\circ} \mathrm{C}$	0.3	0.5	3	5	$\mu \mathrm{A}$
		$T_{A}=M A X$	20	30	42	70	

${ }^{\prime} 4049 \mathrm{~A}$ and ${ }^{\prime} 4050 \mathrm{~A}$ at $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4049A, TF4050A		TP4049A, TP4050A		UNIT
			MIN	MAX	MIN	MAX	
IDD or Quiescent supply current -ISS	$v_{I}=v_{D D} \text { or } 0,$ No load	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$		1.5		15	$\mu \mathrm{A}$
		$T_{A}=$ MAX		90		210	

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
'4049A switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4049A				TP4049A				UNIT
		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tPLH $\begin{aligned} & \text { Propagation delay time, } \\ & \text { low-to-high-level output }\end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \S, \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1		120		95		160		125	ns
${ }^{\text {tPHL }} \begin{aligned} & \text { Propagation delay time, } \\ & \text { high-to-low-level output }\end{aligned}$			100		55		125		75	ns
${ }^{\text {t }}$ TLH Transition time, low-to-high-level output			170		85		225		120	ns
tTHL Transition time, high-to-fow-level output			70		55		90		75	ns

'4050A switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4050A				TP4050A				UNIT
		$V_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Propagation delay time, ${ }^{1}$ PLH low-to-high-level output	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \S, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1		180		125		250		160	ns
Propagation delay time, tPHL high-to-low-level output			155		80		200		110	ns
tTLH Transition time, low-to-high-level output			170		85		225		120	ns
${ }^{\text {t }}$ THL Transition time, high-to-low-level output			70		55		90		75	ns

§With a 15 -pF load, these devices switch with times similar to those of the RCA CD4049A and RCA CD4050A respectively.
NOTE 1: See load circuit and voltage waveforms on page 170.

- Designed to be Interchangeable with RCA CD4051A, CD4052A, and CD4053A
- Difference in ron Between Switches in One Package Typically 5Ω at $V_{D D}-V_{E E}=15 \mathrm{~V}$
- High Degree of Linearity . . . $<0.1 \%$ Distortion Typical at $1 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=15 \mathrm{~V}$
- Switches Can Transmit Signals in Either Direction at Frequencies of up to 40 MHz Typically at $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=10 \mathrm{~V}$
- Extremely Low Off-State Switch Current Resulting in Very High Effective Off-State Resistance . . . 10 pA Typical at $\mathrm{V}_{\text {DD }}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}$
- Low Crosstalk Between Switches . . . 40 dB Typical at $1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$

description

These devices are analog multiplexers/demultiplexers incorporating built-in level shifting. Any combination of supply voltages is permissable provided that V_{SS} and $V_{E E}$ are each within the range of -3 to -15 volts with respect to $V_{D D}$. The level shifting is between $V_{S S}$ and $V_{E E}$. The control input range is $V_{S S}$ to $V_{D D}$ and the analog signal range is $V_{E E}$ to $V_{D D}$. The common situation of positive digital signals controlling the multiplexing of both positive and negative analog signals can be accommodated. The table indicates some of the possible combinations of supply, input, and output voltages.

TYPICAL SUPPLY AND SIGNAL VOLTAGES

V_{DD}	15 V	10 V	7.5 V	7.5 V
$\mathrm{~V}_{\mathrm{SS}}$	0 V	0 V	0 V	-7.5 V
$\mathrm{~V}_{\mathrm{EE}}$	0 V	-5 V	-7.5 V	-7.5 V
Control Inputs	0 to 15 V	0 to 10 V	0 to 7.5 V	-7.5 to 7.5 V
Analog Signals	0 to 15 V	-5 to 10 V	-7.5 to 7.5 V	-7.5 to 7.5 V

INTERNAL POWER SUPPLY CONNECTIONS

TYPES TF4051A, TF4052A, TF4053A, TP4051A, TP4052A, TP4053A ANALOG MULTIPLEXERS/DEMULTIPLEXERS

description (continued)

These digitally controlled bilateral analog switches have low on-state impedance and very low off-state current. When the inhibit input terminal is high, all channels are off.

The '4051A is a single eight-channel multiplexer having three binary control inputs ($\mathrm{SO}, \mathrm{S} 1$, and S2) and an inhibit input. The three binary signals select one of eight channels to be turned on.

The ' 4052 A is a dual four-channel multiplexer having two binary control inputs (S0 and S1) and an inhibit input. The two binary signals select one of four channels in each of the two sections and the selected channels are respectively paired between the independent sections.

The ' 4053 A is a triple two-channel multiplexer having three separate control inputs (1S, 2S, and $3 S$) and a common inhibit input. Each input independently selects one of two channels in one of the three sections so that any of eight combinations may be selected.
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62 and below	Page 62	Page 63, group 3, except as below. IOH and IOL do not apply.

absolute maximum ratings over operating free-air temperature range
Supply voltage V_{EE} (with respect to V_{DD})
$-15 \mathrm{~V}$
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted),
$V_{E E}=V_{S S}=0 V$

PARAMETER	TEST CONDITIONS		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		UNIT
			MIN	MAX	MIN	MAX	
V_{OH} High-level output voltage	Control inputs at $\mathrm{V}_{\text {IH }}$ min or $\mathrm{V}_{\text {IL }}$ max, $1 / O$ at $0 \mathrm{~V}, \quad I_{\mathrm{O}}=10 \mu \mathrm{~A}$	Channel off,	4.5		9		V
VOL Low-level output voltage	Control inputs at $V_{I H}$ min or $V_{I L}$ max, $1 / O$ at $0 \mathrm{~V}, \quad I_{0}=10 \mu \mathrm{~A}$	Channel on,		0.5		1	V
Input-to-output off-state current	Control inputs at 0 V or $V_{D D}$. I / O at $5 \mathrm{~V}, \quad \mathrm{O} / \mathrm{I}$ at 0 V to V_{DD}.	Channel off, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				± 125	nA

TYPES TF4051A, TF4052A, TF4053A, TP4051A, TP4052A, TP4053A ANALOG MULTIPLEXERS/DEMULTIPLEXERS

on-state resistance at $25^{\circ} \mathrm{C}$ free-air temperature, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 0 V

	TEST CONDITIONS	TYP	MAX	UNIT
$V_{D D}=7.5 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{EE}}=-7.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	80	
$\mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$		
$\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	120	
$\mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$		
$\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	270	

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature, $\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TO	TEST CONDTIONS		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		UNIT
		(OUTPUT)			TYP	MAX	TYP	MAX	
tPLH	O/I	1/O	$R_{L}=10 \mathrm{k} \Omega,$ See Figure 1,	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & V_{E E}=V_{S S}=0 \mathrm{~V} \end{aligned}$	25		10		ns
tPHL	O/I	1/0			25		10		
tPLH	S	$1 / 0$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$ See Figure 2	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 0 V	400		200		ns
tpHL	S	1/0		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to V_{DD}	400		200		
tPLH	INH	1/0	$\begin{array}{ll}R_{L}=10 \mathrm{k} \Omega, & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \text { See Figure 2 }\end{array}$		600		300		ns
tPHL	INH	1/0			600		300		

$\|_{\mathrm{t}_{\mathrm{PLH}}}=$ Propagation delay time, low-to-high-level output.
${ }^{\text {tphL }} \equiv$ Propagation delay time, high-to-low-level output.
PARAMETER MEASUREMENT

TEST CIRCUIT
 UNDER TEST)

VOLTAGE WAVEFORMS

FIGURE 2
NOTES: A. Input pulses are supplied by generators having the following characteristics: $Z_{\text {out }}=50 \Omega, P R R=10 \mathrm{kHz}, \mathrm{t}_{\mathrm{r}} \leqslant 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$ B. C_{L} includes probe and jig capacitance.
C. The waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 20 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega$.

- Buffer Circuit Designed to be Plug-In Replacement for RCA CD4001A
- Improved Static and Dynamic Drive Characteristics
specifications

MAXIMUM		
RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, group 1, and below

schematic (each buffer)

electrical characteristics

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		TF4301A				TP4301A				UNIT		
		$V_{D D}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$		$V_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$							
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX					
IOL	Low-level output current			$V_{\text {IH }}=V_{\text {DD }}$,	$\mathrm{T}_{A}=\mathrm{MIN}$	2		4		1.6		3.2		
				$V_{\text {IL }}=0$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.6		3.2		1.3		2.6		mA
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {OL }}$ max	$\mathrm{T}_{A}=\mathrm{MAX}$	1.1		2.2		0.9		1.8				

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4301A				TP4301A				UNIT
		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tPLH $\begin{aligned} & \text { Propagation delay time, } \\ & \text { low-to-high-level output }\end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1		120		80		160		110	ns
Propagation delay time, tPHL high-to-low-level output			100		70		130		100	ns
tTLH Transition time, low-to-high-level output			300		150		400		200	ns
tTHL Transition time, high-to-low-level output			220		110		300		150	ns

NOTE 1: See load circuit and voltage waveforms on page 170.

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW) TF4302A, TP4302A

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)
TF4303A, TP4303A

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, group 1

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4302A, TF4303A				TP4302A, TP4303A				UNIT
		$V_{\text {DD }}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Propagation delay time, tPLH low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ See Note 1		500		200		675		275	ns
Propagation delay time, tPHL high-to-low-level output			500		200		675		275	ns
tTLH Transition time, low-to-high-level output			350		150		400		225	ns
tTHL Transition time, high-to-low-level output			350		150		400		225	ns

NOTE 1: See load circuit and voltage waveforms on page 170.

- No External Components Required for Schmitt Trigger Action
- No Limit on Input Rise and Fall Times
- Typical Hysteresis . . . 0.6 V at
$V_{D D}=5 \mathrm{~V}, 2 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
description
These circuits are hex inverting Schmitt triggers for use where low power dissipation and/or high noise immunity is desired. Applications include the speedup of a slow waveform edge in interface receivers, level detectors, etc.

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, group 2 except as below

electrical characteristics (see note 1)

PARAMETER	TEST CONDITIONS		TF4304A				TP4304A				UNIT
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\mathrm{T}+} \begin{aligned} & \text { Positive-going } \\ & \text { threshold voltage } \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.3	3.5	4.5	7	2.3	3.5	4.5	7	V
$v_{T}-\begin{aligned} & \text { Negative-going } \\ & \text { threshold voltage } \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.5	2.7	3	5.5	1.5	2.7	3	5.5	V
IDD	$V_{1}=0$ or $V_{\text {DD }}$,	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$		0.5		1		5		10	
-Iss	No load	$T_{A}=M A X$		30		60		70		140	

${ }^{t^{T}}{ }_{A}=$ MIN or MAX refers to the respective values of free-air temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4304A				TP4304A				UNIT
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
${ }^{T} \mathrm{PL}$ Propagation delay time, low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 2		630		250		900		400	ns
tPHL Propagation delay time, tpHL high-to-low-level output			630		250		900		400	ns
${ }^{\text {t }}$ L.H Transition time, low-to-high-level oufput			350		150		400		225	ns
${ }^{\text {t THL }}$ Transition time, high-to-low-level output			350		150		400		225	ns

NOTES: 1. When testing $V_{O H}$ at $T_{A}=25^{\circ} C, V_{T+}$ min and $V_{T-m i n ~ r e p l a c e ~} V_{1 L}$ max. When testing $V_{O L}$ at $T_{A}=25^{\circ} C, V_{T+} m a x$ and V_{T} _ max replace $V_{I H}$ min. Minimum and maximum levels of V_{T+} are set by applying an input voltage below $V_{I L}$ max and then increasing it to the specified level. Minimum and maximum levels of V_{T-} are set by applying an input voltage above $V_{I H}$ min and then decreasing it to the specified level.
2. See load circuit and voltage waveforms on page 170.

- Buffer Circuit Designed to be Plug-In Replacement for RCA CD4011A
- Improved Static and Dynamic Drive Characteristics
schematic (each buffer)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, group 1, except as below

electrical characteristics

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		TF4311A				TP4311A				UNIT		
		$V_{D D}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$							
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX					
${ }^{\mathrm{I} O H}$	High-level output current			$V_{\text {IH }}=V_{\text {DD }}$,	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$	-0.65		-0.75		-0.35		-0.35		mA
				$V_{\text {IL }}=0$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.5		-0.6		-0.3		-0.3		
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}$ min	$\mathrm{T}_{A}=\mathrm{MAX}$	-0.35		-0.4		-0.25		-0.25				
${ }^{1} \mathrm{OL}$	Low-level output current	$\begin{aligned} & V_{I H}=V_{D D} \\ & V_{I L}=0, \\ & V_{O}=V_{O L} \max \end{aligned}$	$\mathrm{T}_{A}=\mathrm{MIN}$	1		2		0.8		1.6		mA		
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.75		1.6		0.65		1.3				
			$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	0.55		1.1		0.45		0.9				

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4311A		TP4311A		UNIT
		$V_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$	$V_{D D}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	
Propagation delay time, tPLH low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	100	70	130	100	ns
tPHL $\begin{aligned} & \text { Propagation delay time, } \\ & \text { high-to-low-level output }\end{aligned}$		120	80	160	110	ns
tTLH Transition time, low-to-high-level output		220	110	300	150	ns
${ }^{\text {t }}$ THL Transition time, high-to-low-level output		300	150	400	200	ns

NOTE 1: See load circuit and voltage waveforms on page 170.
dUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM		
RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, group 1

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4315A				TP4315A				UNIT
		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Propagation delay time, tpLH low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1		135		75		180		100	ns
Propagation delay time, tPHL. high-to-low-level output			135		75		180		100	ns
${ }^{\text {t }}$ LLH Transition time, low-to-high-level output			350		150		400		220	ns
t THL Transition time, high-to-low-level output			350		150		400		220	ns

NOTE 1: See load circuit and voltage waveforms on page 170.

- Designed to be Interchangeable with RCA CD4016A
- Difference in ron between Switches in One Package Typically 10Ω when $V_{I}=V_{S S}$ or $V_{D D}$
- High Degree of Linearity . . . $<0.5 \%$ Distortion Typical at 1 kHz
- Switches Can Transmit Signals in Either Direction at Frequencies of up to 50 MHz Typically
- Extremely Low Off-State Switch Current Resulting in Very High Effective Off-State Resistance . . . 10 pA Typical at $V_{D D}-V_{S S}=10 \mathrm{~V}$
- Maximum Control Input Frequency . . . 10 MHz Typical at $V_{D D}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
- High On/Off Output Voltage Ratio . . . 65 dB Typical
- Extremely High Control-Input Impedance (Control Circuit Isolated from Switch Circuit) . . $10^{12} \Omega$ Typical
- Low Crosstalk Between Switches . . . 50 dB Typical at $0.9 \mathrm{MHz}, R_{L}=1 \mathrm{k} \Omega$
- Control Input Current . . . <10 pA Typical description

The '4316A is a quadruple bilateral switch constructed with P-channel and N-channel enhancement-type devices in a monolithic structure, and finds primary use where low power dissipation and/or high noise immunity is desired.

Applications include digital switching and multiplexing; analog-to-digital and digital-to-analog conversion; digital control of frequency, impedance, phase and analog-signal gain; signal gating; and use as a squelch control, chopper, modulator, demodulator, or commutating switch.

The P^{-}well is permanently connected to V_{SS}. This results in a higher average on-state resistance than the '4016A has but lower transient current into input A.

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	See the following page. Page 63 does not apply.

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

schematic (each switch)

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and 10 V

$V_{D D}=15 \mathrm{~V}$

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4016A	TP4016A	UNIT
			MIN MAX	MIN MAX	
II Input current	$V_{1}=0$ or $V_{D D}$		± 1	± 1	$\mu \mathrm{A}$
IDDor Quiescent supply current-ISS	$V_{I}=V_{D D} \text { or } 0,$ No load	$\mathrm{T}_{A}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$	3	3	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	180	48	

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of free-air temperature specified under recommended operating conditions.
IThis is the total of supply current, control input current, and input-to output off-state current.
on-state resistance at specified free-air temperature, C at $V_{D D}, R_{L}=10 \mathrm{k} \Omega$ to 0 V

TEST CONDITIONS ${ }^{\dagger}$				TF4316A	TP4316A	UNIT
				MIN MAX	MIN MAX	
			$T_{A}=\mathrm{MIN}$	600	610	
		A at 5 V or -5 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	660	660	Ω
	$V_{S S}=-5 \mathrm{~V}$		$T_{A}=$ MAX	960	840	
V	- -5		$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$	1870	1900	
		A at 0.25 V or -0.25 V	$\mathrm{T}^{\prime}=25^{\circ} \mathrm{C}$	2000	2000	Ω
			$\mathrm{T}_{A}=\mathrm{MAX}$	2600	2380	
			$T_{A}=$ MIN	360	370	
		A at 7.5 V or -7.5 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	400	400	Ω
$V_{D D}=7.5 \mathrm{~V}$,	$\mathrm{V}_{\text {SS }}=-7.5 \mathrm{~V}$		$T_{A}=$ MAX	600	520	
$V_{\text {DD }}=7.5 \mathrm{~V}$	$\mathrm{VSS}=-7.5 \mathrm{~V}$		$T_{A}=$ MIN	775	790	
		A at 0.25 V or -0.25 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	850	850	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{MAX}$	1230	1080	
			$\mathrm{T}_{A}=\mathrm{MIN}$	600	610	
		A at 10 V or 0.25 V	$\mathrm{T}_{\triangle}=25^{\circ} \mathrm{C}$	660	660	Ω
DD $=$	= 0 V		$T_{A}=$ MAX	960	840	
DD	=0V		$\mathrm{T}_{A}=\mathrm{MIN}$	1870	1900	
		A at 5.6 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2000	2000	Ω
			$T_{A}=M A X$	2600	2380	
$V_{D D}=15 \mathrm{~V}$,	$V_{S S}=0 \mathrm{~V}$	A at 15 V or 0.25 V	$\mathrm{T}_{A}=\mathrm{MIN}$	360	370	Ω
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	400	400	
			$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	600	520	
		A at 9.3 V	$\mathrm{T}^{\prime} \mathrm{T}^{\prime}=\mathrm{MIN}$	775	790	Ω
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	850	850	
			$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	1230	1080	

[^19]
TYPES TF4316A, TP4316A QUAD BILATERAL SWITCHES

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		UNIT
					TYP	MAX	TYP	MAX	
tPLH	A	Y	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega, \\ & C \text { at } V_{D D} . \end{aligned}$	$C_{L}=50 \mathrm{pF},$ See Figure 1	30		15		ns
tPHL	A	Y			30		15		
tPLH	C	Y	$C_{L}=50 \mathrm{pF},$ See Figure 2	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 0 V	80		30		ns
tPHL	C	Y		$R_{L}=10 \mathrm{k} \Omega$ to V_{DD}	80		30		

$\ddagger_{\text {PLH }} \equiv$ Propagation delay time, low-to-high-level output
${ }^{\text {t P PHL }} \equiv$ Propagation delay time, high-to-low-level output

PARAMETER MEASUREMENT INFORMATION

Figure 1-PROPAGAtion delay time, switch input a to output y

FIGURE 2-PROPAGATION DELAY TIMES, CONTROL INPUT C TO OUTPUT Y

NOTES: A. Input pulses are supplied by generators having the following characteristics: $Z_{\text {out }}=50 \Omega, P R R=10 \mathrm{kHz}, \mathrm{t}_{\mathrm{r}} \leqslant 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$.
B. C_{L} includes probe and jig capacitance
C. The waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 10 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega$.

- 3-State Output

description
These circuits are single 16 -channel data selectors having four digital select inputs, $\mathrm{S} 0, \mathrm{~S} 1, \mathrm{~S} 2$, and S 3 , and an output control. When the output control is low, the output will be in the high-impedance (off) state. Applications of this device include signal multiplexing, data routing, and number sequence generation.
function table

INPUTS					OUTPUT
OUTPUT CONTROL	S3	S2	S1	S0	
L	X	X	X	X	Z
H	L	L	L	L	D0
H	L	L	L	H	D1
H	L	L	H	L	D2
H	L	L	H	H	D3
H	L	H	L	L	D4
H	L	H	L	H	D5
H	L	H	H	L	D6
H	L	H	H	H	D7
H	H	L	L	L	D8
H	H	L	L	H	D9
H	H	L	H	L	D10
H	H	L	H	H	D11
H	H	H	L	L	D12
H	H	H	L	H	D13
H	H	H	H	L	D14
H	H	H	H	H	D15

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, group 3, and below

$H=$ high level, $L=$ low level, $X=$ irrelevant, $Z=$ high-impedance (off) D0 . . D15 $=$ the logic level of the indicated D input.
electrical characteristics

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		TF4320A		TP4320A		UNIT		
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$	$V_{\text {DD }}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$					
		MIN MAX	MIN MAX	MIN MAX	MIN MAX					
${ }^{1} \mathrm{OH}$	High-level output current			$\begin{aligned} & v_{I H}=v_{D D}, v_{I L}=0, \\ & v_{O}=v_{O H}, \end{aligned}$	$T_{A}=$ MIN	-0.5	-0.5	-0.25	-0.25	
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.4	-0.4	-0.2	-0.2	mA	
		$T_{A}=$ MAX	-0.3		-0.3	-0.17	-0.17			
${ }^{\text {IOL }}$	Low-level output current	$\begin{aligned} & V_{I H}=V_{D D}, \quad V_{I L}=0 \\ & V_{O}=V_{O L} \max \end{aligned}$	$T_{A}=$ MIN		0.3	0.6	0.2	0.35		
			$T_{A}=25^{\circ} \mathrm{C}$	0.25	0.5	0.15	0.3	mA		
			$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	0.2	0.4	0.12	0.25			
${ }^{\prime} \mathrm{OZH}$	Off-state output current, high-level voltage applied	OC at $V_{\text {SS }}$,	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$	0.05	0.1	0.5	1			
		$V_{O}=V_{\text {DD }}$	$T_{A}=M A X$	3	6	7	14			
IOZL	Off-state output current, low-level voltage applied	OC at $\mathrm{V}_{\text {SS }}$,	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$	-0.05	-0.1	-0.5	-1	A		
		$V_{O}=0 \mathrm{~V}$	$T_{A}=$ MAX	-3	-6	-7	-14			

[^20]TVPES TF4320A, TP4320A
16-CHANNEL DATA SELECTORS WITH 3-STATE OUTPUTS
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4320A		TP4320A		UNIT
		$V_{D D}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	
Propagation delay time, tPLH low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	750	325	1000	375	ns
${ }^{\text {tPHL }} \begin{aligned} & \text { Propagation delay time, } \\ & \text { high-to-low-level output }\end{aligned}$		750	325	1000	375	ns
t ${ }_{\text {TLH }}$ Transition time, low-to-high-level output		500	250	600	300	ns
${ }^{\text {t }}$ HHL Transition time, high-to-low-level output		500	250	600	300	ns
tPZH Output enable time to high level	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$ See Note 1	430	150	500	200	ns
tPZL Output enable time to low level		250	130	300	170	
tPHZ Output disable time from high level		260	170	320	240	
tplZ Output disable time from low level		160	140	220	200	ns

NOTE 1: See load circuit and voltage waveforms on page 170.
functional block diagram

iexas instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

- 3-State Output
description
These circuits are dual 8-channel data selectors having three digital select inputs, $\mathrm{S} 0, \mathrm{~S} 1$, and S 2 , and an output control. When the output control is low, both outputs will be in the high-impedance (off) state. Applications of this device include signal multiplexing, data routing, and number sequence generation.

FUNCTION TABLE (EACH SELECTOR)

INPUTS				
OUTPUT	SELECT			
OUNTPUT Y				
CONTROL	S2	S1	SO	
L	X	X	X	Z
H	L	L	L	D0
H	L	L	H	D1
H	L	H	L	D2
H	L	H	H	D3
H	H	L	L	D4
H	H	L	H	D5
H	H	H	L	D6
H	H	H	H	D7

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant, $\mathrm{Z}=$ high-impedance (off). DO $\ldots \mathrm{D} 7=$ the logic level of the indicated D input.

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, group 3, and below

electrical characteristics

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		TF4321A		TP4321A		UNIT		
		$V_{D D}=5 \mathrm{~V}$	$V_{\text {DD }}=10 \mathrm{~V}$	$V_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$					
		MIN MAX	MIN MAX	MIN MAX	MIN . MAX					
${ }^{1} \mathrm{OH}$	High-level output current			$\begin{aligned} & V_{I H}=V_{D D}, \quad V_{I L}=0, \\ & V_{O}=V_{O H} \text { min } \end{aligned}$	${ }^{T} A=M 1 N$	-0.5	-0.5	-0.25	-0.25	
				$T_{A}=25^{\circ} \mathrm{C}$	-0.4	-0.4	-0.2	-0.2	mA	
		$T_{A}=$ MAX	-0.3		-0.3	-0.17	-0.17			
${ }^{1} \mathrm{OL}$	Low-level output current	$\begin{aligned} & V_{I H}=V_{D D}, \quad V_{I L}=0, \\ & v_{O}=V_{O L} \max \end{aligned}$	$T_{A}=$ MIN		0.3	0.6	0.2	0.35		
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.25	0.5	0.15	0.3	mA		
			$T_{A}=$ MAX	0.2	0.4	0.12	0.25			
${ }^{1} \mathrm{OZH}$	Off-state output current, high-ievei voltage applied	OC at $V_{\text {SS }}$,	$T_{A}=$ MIN or $25^{\circ} \mathrm{C}$	0.05	0.1	0.5	1			
		$V_{O}=V_{\text {DD }}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	3	6	7	14			
${ }^{\prime} \mathrm{OZL}$	Off-state output current, low-level voltage applied	OC at $\mathrm{V}_{\text {SS }}$,	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$	-0.05	-0.1	-0.5	-1	4		
			$T_{A}=$ MAX	-3	-6	-7	-14			

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.

TYPES TF4321A, TP4321A DUAL 8-CHANNEL DATA SELECTORS WITH 3-STATE OUTPUTS

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4321A				TP4321A				UNIT
		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Propagation delay time, tple low-to-high-level output	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$ See Note 1		750		325		1000		375	ns
tPHL Propagation delay time,			750		325		1000		375	ns
tTLH Transition time, low-to-high-level output			500		250		600		300	ns
${ }^{\text {t }}$ THL Transition time, high-to-low-level output			500		250		600		300	ns
tPZH Output enable time to high level	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$ See Note 1		430		150		500		200	ns
${ }^{\text {tPZL }}$ Output enable time to low level			250		130		300		170	
tPHZ Output disable time from high level			260		170		320		240	ns
tplZ Output disable time from low level			160		140		220		200	

NOTE 1: See load circuit and voltage waveforms on page 170.
functional block diagram

'4360A DECADE COUNTER WITH ASYNCHRONOUS CLEAR '4361A BINARY COUNTER WITH ASYNCHRONOUS CLEAR '4362A DECADE COUNTER WITH SYNCHRONOUS CLEAR '4363A BINARY COUNTER WITH SYNCHRONOUS CLEAR

- Designed to be Interchangeable with National Semiconductor MM54C160, MM74C160, MM54C161, MM74C161, MM54C162, MM74C162, MM54C163, and MM74C163
- Counting Rate . . 8 MHz

Typical at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$

description

These synchronous presettable up counters feature an internal carry look-ahead for cascading packages without additional gating in high-speed counting systems.

A low level at the load input disables the counter and causes the outputs to agree with the setup data after the next low-to-high transition of the clock. The clear function of the '4360A and '4361A is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of the clock, load, or enable inputs. The clear function of the '4362A and '4363A is synchronous and a low level at the clear input sets all four outputs low after the next low-to-high transition of the clock regardless of the levels of the load or enable inputs. Both count-enable inputs (P and T) must be high to count, and T is fed forward to enable the ripple-carry output. The ripple-carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the Q_{A} output. This high-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at the enable P or T inputs are allowed regardless of the !eve! of the clock input.

JORN
dUAL-IN-LINE PACKAGE (TOP VIEW)

-4360A DECADE COUNTER WITH ASYNCHRONOUS CLEAR

'4362A decade counters are similar; however, the clear is synchronous as shown for the ' 4363 A binary counters at right.

'4363A BINARY COUNTER WITH SYNCHRONOUS CLEAR
'4361A binary counters are similar; however, the clear is direct (asynchronous) as shown for the '4360A decade counters at left.

TYPES TF4360A THRU TF4363A, TP4360A THRU TP4363A SYNCHRONOUS 4-BIT DECADE AND BINARY COUNTERS

'4360A AND '4362A DECADE COUNTERS
typical clear, preset, count, and inhibit sequences

Illustrated below is the following sequence:

1. Clear output to zero ('4360A is asynchronous, ' 4362 A is synchronous)
2. Preset to BCD seven
3. Count to eight, nine, zero, one, two, and three
4. Inhibit

TYPES TF4360A THRU TF4363A, TP4360A THRU TP4363A SYNCHRONOUS 4-BIT DECADE AND BINARY COUNTERS

'4361A AND '4363A BINARY COUNTERS
typical clear, preset, count, and inhibit sequences

Illustrated below is the following sequence:

1. Clear outputs to zero (' 4361 A is asynchronous, ' 4363 A is synchronous)
2. Preset to binary twelve
3. Count to thirteen, fourteen fifteen, zero, one, and two
4. Inhibit

TF4360A THRU TF4363A, TP4360A THRU TP4363A SYNCHRONOUS 4-BIT DECADE AND BINARY COUNTERS

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62 and below	Page 63, group 3

recommended operating conditions

			$\begin{aligned} & 4360 A \\ & 4362 A \end{aligned}$	$\begin{aligned} & \text { TF436 } \\ & \text { TF436 } \end{aligned}$			$\begin{aligned} & 4360 A \\ & 4362 A \end{aligned}$	$\begin{aligned} & \text { TP436 } \\ & \text { TP436 } \end{aligned}$		UNIT
		V ${ }_{\text {DD }}$	$=5 \mathrm{~V}$	VDD	10 V	VDD	$=5 \mathrm{~V}$	VDD	10 V	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Width of clock pulse, $\mathrm{t}_{\text {w }}$ (clock)	Clock high or low	200		90		300		150		ns
	Data or load	200		80		300		110		
Setup time, $\mathrm{t}_{\text {su }}$	Enable P or T	375		150		500		200		ns
	Clear ${ }^{\circ}$	250		100		350		135		

${ }^{\circ}$ This applies only for '4362A and '4363A, which have synchronous clear inputs.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER \ddagger	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	$\begin{aligned} & \text { TF4360A, TF4361A } \\ & \text { TF4362A, TF4363A } \end{aligned}$				TP4360A, TP4361A TP4362A, TP4363A				UNIT
				$V_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	1		3		0.6		2.5		MHz
tple	Clock	Any 0			550		200		750		275	
tPHL					550		200		750		275	
tPLH	Clock	Ripple-carry output			650		250		850		350	
tPHL					650		250		850		350	
tPLH	Enable T	Ripple-carry output			350		175		490		240	ns
tpHL					350		175		490		240	
tPHL ${ }^{\text {a }}$	Clear	Any Q			400		250		550		350	ns
${ }^{\text {t }}$ L HH		Any			300		150		400		220	ns
${ }^{\text {T }}$ HL					300		150		400		220	

$\ddagger_{f_{\text {max }}} \equiv$ Maximum clock frequency
${ }_{\mathrm{t}}^{\mathrm{t}} \mathrm{LH}$ H \equiv Propagation delay time, low-to-high-level output
${ }^{\text {t PHL }} \equiv$ Propagation delay time, high-to-low-level output
${ }^{\text {t }}$ TLH \equiv Transition time, low-to-high-level output
${ }^{\text {t }}$ THL \equiv Transition time, high-to-low-level output
${ }^{\square}$ This applies only for ' 4360 A and ' 4361 A , which have asynchronous clear inputs.
NOTE 1: See load circuit and voltage waveforms on page 170.

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

- Maximum Clock Frequency . . . 10 MHz Typical at 10 V

description

These circuits are quad D-type transition-operated master-slave flip-flops with buffered outputs, common direct overriding clear input, and D and clock inputs. While the clock is low, the data at the D input is entered into the master section, which is isolated from the slave section. On the rising transition of the clock, the D input is disabled and data previously set up in the master section is transferred to the slave section and appears in true form at the Q output and in complementary form at the $\overline{\mathrm{Q}}$ output.

Clearing is independent of the clock and is accomplished by a high-level voltage at the clear input.
specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 63 and on following page	Page 63, group 3

functional block diagram (each flip-flop)

TYPES TF4370A, TP4370A
QUAD D-TYPE EDGE-TRIGGERED FLIP-FLOPS
recommended operating conditions

		TF4370A				TP4370A				UNIT
		$V_{D D}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Pulse width, $\mathrm{t}_{\text {w }}$	Clock high or low	200		80		500		100		ns
	Clear	250		100		500		125		ns
Setup time, $\mathrm{t}_{\text {su }}$		60		20		120		30		ns

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER \ddagger	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TF4370A				TP4370A				UNIT
				$V_{\text {DD }}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		$V_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$				2.5		7		1		5		MHz
tPLH or tPHL	Clock	Any Q or $\overline{\mathrm{Q}}$	$\mathrm{L}=50 \mathrm{pF} \text {, }$		475		185		500		235	ns
tPLH or tPHL	Clear	Any Q or $\overline{\mathrm{Q}}$			475		185		550		235	ns
${ }^{\text {t }}$ TLH or $\mathrm{T}^{\text {THL }}$		Any			350		150		400		220	ns

[^21]- Same as TF4043A, TF4044A, TP4043A, and TP4044A, Respectively, except with Normal 2-State Totem-Pole Outputs

description

The '4376 and '4377A are quadruple S-R and $\bar{S}-\bar{R}$ latches, respectively, with normal two-state totempole outputs. Each latch has separate active-high ('4376A) or active-low ('4377A) set and reset inputs.

FUNCTION TABLES (EACH LATCH)					
TF4376A, TP4376A			INPUTS		OUTPUT
:---:	:---:	:---:			
S	R	Q			
L	L	No change			
H	L	H			
L	H	L			
H	H	H*			

TF4377A, TP4377A

INPUTS		OUTPUT
$\overline{\mathbf{S}}$	$\overline{\mathbf{R}}$	
H	H	No change
L	H	H
H	L	L
L	L	L*

*This output level is psuedo stable; that is, it may not persist when the S and R inputs return to their inactive (low) level or the \bar{S} and \bar{R} inputs return to their inactive (high) level. See explanation of function tables, pages 16 and 17.
specifications

MAXIMUM		
RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62 and below	Page 63, group 3, except as on following page

functional block diagrams (each latch)

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)
TF4376A, TP4376A

NC-No internal connection

TF4377A, TP4377A

NC-No internal connection

TF4377A, TP4377A

TYPES TF4376A, TF4377A, TP4376A, TP4377A
QUAD S-R AND $\bar{S}-\overline{\mathrm{R}}$ LATCHES
recommended operating conditions

	TF4376A, TF4377A				TP4376A, TP4377A				UNIT
	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Pulse width, set or reset, $\mathrm{t}_{\text {w }}$	200		100		225		110		ns

electrical characteristics
$V_{D D}=5 \mathrm{~V}$ and 10 V

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4376A, TF4377A		TP4376A, TP4377A		UNIT
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	$V_{\text {DD }}=10 \mathrm{~V}$	
			MIN MAX	MIN MAX	MIN MAX	MIN MAX	
IDD	$V_{1}=V_{\text {DD }}$ or 0,	$T_{A}=$ MIN or $25^{\circ} \mathrm{C}$	1	2	10	20	
-Iss	No load	$T_{A}=\mathrm{MAX}$	60	120	140	280	

$V_{D D}=15 \mathrm{~V}$

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4376A, TF4377A	TP4376A, TP4377A	UNIT
			MIN MAX	MIN MAX	
${ }^{I} \mathrm{DD}$ or Quiescent supply current $-\operatorname{lss}$	$V_{1}=V_{\text {DD }}$ or 0,	$\mathrm{T}_{\text {A }}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$	6	60	$\mu \mathrm{A}$
	No load	$T_{A}=$ MAX	360	840	

${ }^{1} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4376A, TF4377A		TP4376A, TP4377A		UNIT
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	
$t_{\text {PLH }}$ Propagation delay time, low-to-high-level output		500	235	575	300	ns
${ }^{\text {tPHL }} \begin{aligned} & \text { Propagation delay time, } \\ & \text { high-to-low-level output }\end{aligned}$	$R_{\mathrm{L}}=200 \mathrm{k} \Omega,$	500	235	575	300	ns
ITLH Transition time, low-to-high-level output		325	135	375	200	ns
${ }^{\text {THL }}$ Transition time, high-to-low-level output		325	135	375	200	ns

NOTE 1: See load circuit and voltage waveforms on page 170.

- Static Memory
- Fully Decoded, Organized as 256 Words of 1 Bit Each
- Multiple Chip Enables
- 3-State Output
- High-Speed Operation

description

This 256-bit active-element memory is a monolithic CMOS array organized as 256 words of one bit each. It is fully decoded and has three gated chip-enable inputs to simplify decoding required to achieve the desired system organization. At least one chip enable input must be high whenever the address is changed to avoid erroneous alteration of stored data. The -4380A features a three-state output to facilitate word expansion.

write cycle

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

Information to be stored in the memory is written into the selected address location when all chip-enable inputs and the read/write input are low. While the read/write input is low, the output is in the high-impedance state. When a number of outputs are bus-connected, this high-impedance output state will neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up if desired.

read cycle

The complement of information applied at the data input during the wirte cycle is available at the output when the read/write input is high and the three chip-enable inputs are low. When any one of the chip-enable inputs is high, the output will be in the high-impedance state.

FUNCTION TABLE

FUNCTION	INPUTS		OUTPUT
	CHIP ENABLE	READ/ WRITE	
	LLL	L	High Impedance
Read	LLL	H	Complement of Data Entered
Inhibit	HXX	X	High Impedance

$H=$ high level, $L=$ low level, $X=$ irrelevant,
$L L L=$ all $\overline{C E}$ inputs low.
$\mathrm{HXX}=$ one or more $\overline{\mathrm{CE}}$ inputs high.

TYPES TF4380A, TP4380A
 256-BIT RANDOM-ACCESS MEMORIES WITH 3-STATE OUTPUTS

functional block diagram

DETAIL 1
2 ROWS SHOWN OF 8

DETAIL 2
1 CELL SHOWN OF 256

DETAIL 3 2 ROWS SHOWN OF 8

TYPES TF4380A, TP4380A 256-BIT RANDOM-ACCESS MEMORIES WITH 3-STATE OUTPUTS

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62 and below	Page 63, group 3 except as below

recommended operating conditions (see figures 1, 2, and 3)

			TF4	80A			TP4	80A		
		V ${ }_{\text {DD }}$	5 V	VDD	10 V	VDD	5 V	$V_{\text {DD }}$	10 V	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Write	lse width, $\mathrm{t}_{\text {w }}$ (wr)	*		*		*		*		ns
	Address before $\overline{\mathrm{CE}}$ low, $\mathrm{t}_{\text {su }}(\mathrm{ad})$	*		*		*		*		
	Data before end of write, $\mathrm{t}_{\text {su }}(\mathrm{da})$	*		*		*		*		ns
	Read before $\overline{\mathrm{CE}}$ low, $\mathrm{t}_{\text {su }}(\mathrm{rd})$	*		*		*		*		
	Address after $\overline{\mathrm{CE}}$ high, $\mathrm{t}_{\mathrm{h}}(\mathrm{ad})$	*		*		*		*		
	Data after end of write, th (da)	*		*		*		*		ns
	Read after $\overline{\mathrm{CE}}$ high, th(rd)	*		*		*		*		

electrical characteristics

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		TF4380A				TP4380A				UNIT		
		$V_{D D}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$							
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX					
${ }^{\mathrm{I} O H}$	High-level output current			$V_{I H}=V_{\text {DD }}$,	$T_{A}=M 1 N$	*		*		*		*		mA
				$V_{I L}=0$,	$T_{A}=25^{\circ} \mathrm{C}$	*		*		*		*		
		$V_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}$ min	$T_{A}=$ MAX	*		*		*		*				
IOL	Low-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{IL}}=0, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OL}} \end{aligned}$	$T_{A}=\mathrm{MIN}$	*		*		*		*		mA		
			$T_{A}=25^{\circ} \mathrm{C}$	*		*		*		*				
			$T_{A} \doteq \mathrm{MAX}$	*		*		*		*				

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4380A				TP4380A				UNIT
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$t_{\mathrm{a}}(\mathrm{CE})$ Access times from chip enable	$C_{L}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$,		*		*		*		*	ns
tPXZ Output disable time	See Figures 1 and 3 and Note 1		*		*		*		*	ns

[^22]
PARAMETER MEASUREMENT INFORMATION

FIGURE 1-READ CYCLE VOLTAGE WAVEFORMS

FIGURE 2-WIRTE CYCLE VOLTAGE WAVEFORMS

FIGURE 3-READ-WRITE (READ, MODIFY WRITE) CYCLE VOLTAGE WAVEFORMS

NOTE: The effective width of the write pulse is the interval in which $\mathrm{R} / \overline{\mathrm{W}}$ and $\overline{\mathrm{CE}}$ are simultaneously low. The data setup and hold times are with respect to the low-to-high transition of either $\mathrm{R} / \overline{\mathrm{W}}$ or $\overline{\mathrm{CE}}$, whichever occurs first.

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, group 2, and on following page

schematic (each gate)

$\nabla \cdots v_{\text {do }}$ us

TYPES TF4507A, TP4507A
 QUAD EXCLUSIVE-OR GATES

electrical characteristics
$V_{D D}=5 \mathrm{~V}$ and 10 V

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		TF4507A		TP4507A		UNIT		
		$V_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	$V_{\text {DD }}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$					
		MIN MAX	MIN MAX	MIN MAX	MIN MAX					
${ }^{1} \mathrm{OH}$	High-level output current			$\begin{aligned} & V_{I H}=V_{D D} \\ & V_{I L}-0, \\ & V_{\mathrm{O}}=V_{O H} \text { min } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$	-0.95	-0.95	-0.45	-0.45	mA
				$\mathrm{T}^{\prime} \mathrm{A}=25^{\circ} \mathrm{C}$	-0.65	-0.65	-0.32	-0.32		
		$\mathrm{T}_{A}=\mathrm{MAX}$	-0.45		-0.45	-0.25	-0.25			
${ }^{1} \mathrm{OL}$	Low-level output current	$\begin{aligned} & V_{I H}=V_{D D} \\ & V_{I L}=0, \\ & V_{O}=V_{O L} \max \end{aligned}$	$T_{A}=$ MIN		0.75	1.5	0.35	0.7	mA	
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.6	1.2	0.3	0.6			
			$T_{A}=$ MAX	0.45	0.9	0.25	0.5			
IDD or$-\mathrm{I} \mathrm{SS}$	Quiescent supply current	$v_{1}=v_{D D} \text { or } 0 .$ No load	$\mathrm{T}_{A}=$ MIN or $25^{\circ} \mathrm{C}$	0.5	1	5	10	$\mu \mathrm{A}$		
			TA $=$ MAX	30	60	70	140			

$V_{D D}=15 \mathrm{~V}$

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	TF4507A		TP4507A		UNIT
		MIN	MAX	MIN	MAX	
Quiescent supply current	$\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$ or 0, $\mathrm{T}_{\text {A }}=$ MIN or $25^{\circ} \mathrm{C}$		3		30	$\mu \mathrm{A}$
	No load $\quad T_{A}=$ MAX		180		420	

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4507A		TP4507A		UNIT
		$V_{\text {DD }}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	$V_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	
${ }^{\text {tPLH }}$ Propagation delay time,	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \S, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	350	175	475	250	ns
tpHL Propagation delay time, .high-to-low-level output		350	175	475	250	ns
${ }^{\text {T }}$ LLH Transition time, low-to-high-level output		300	150	450	225	ns
${ }^{\text {t }}$ HLL Transition time, high-to-low-level output		300	150	450	225	ns

WWith a 15 -pF load, these devices switch with times similar to those of the Motorola MC14507 and RCA CD4030A.
NOTE 1: See load circuit and voltage waveforms on page 170.

- Designed to be Interchangeable with Motorola MC14512
description

These circuits are single 8 -channel data selectors having three digital select inputs, S0, S1, and S2, an enable input, \bar{E}, and an output control. When the output control, $\overline{\mathrm{OC}}$, is high, the output will be in the high-impedance (off) state. Applications of this device include signal multiplexing, data routing, and number sequence generation.

specifications

MAXIMUM	RECOMMENDED RATINGS OPERATING	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, group 3, and below

electrical characteristics

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4512A		TP4512A		UNIT
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$V_{\text {DD }}=10 \mathrm{~V}$	
			MIN MAX	MIN MAX	MIN MAX	MIN MAX	
Off-state output current,	$\overline{O C}$ at $V_{D D}$,	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$	0.05	0.1	0.5	1	$\mu \mathrm{A}$
$\mathrm{OZH}_{\text {high-level voltage applied }}$	$V_{O}=V_{D D}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	3	6	7	14	
Off-state output current,	$\overline{O C}$ at $V_{D D}$,	$\mathrm{T}_{A}=$ MIN or $25^{\circ} \mathrm{C}$	-0.05	-0.1	-0.5	-1	A
OZL low-level voltage applied	$V_{0}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	-3	-6	-7	-14	

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.

TYPES TF4512A, TP4512A
 8-CHANNEL DATA SELECTORS WITH 3-STATE OUTPUTS

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4512A				TP4512A				UNIT
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\text { tPLH } \begin{aligned} & \text { Propagation delay time, } \\ & \text { low-to-high-level output } \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \S \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1		750		325		1000		375	ns
$\begin{gathered} \text { Propagation delay time, } \\ \text { tpHL } \\ \text { high-to-low-level output } \end{gathered}$			750		325		1000		375	ns
tTLH Transition time, low-to-high-level output			500		250		600		300	ns
tTHL Transition time, high-to-low-level output			500		250		600		300	ns
tPZH Output enable time to high level	$\begin{aligned} & C_{L}=50 \mathrm{pFI}, \\ & R_{L}=10 \mathrm{k} \Omega, \end{aligned}$ See Note 1		430		150		500		200	ns
tPZL Output enable time to low level			250		130		300		170	
tPHZ Output disable time from high level			260		170		320		240	ns
tPLZ Output disable time from low level			160		140		220		200	

§With a 15 -pF load, these devices switch with times similar to those of the Motorola MC14512.
If With a $15-\mathrm{pF}, 1-\mathrm{k} \Omega$ load, these devices switch with times similar to those of the Motorola MC14512. NOTE 1: See load circuit and voltage waveforms on page 170.
functional block diagram

TYPES TF4512A, TP4512A 8-CHANNEL DATA SELECTORS WITH 3-STATE OUTPUTS

TYPICAL APPLICATION DATA

The output terminals of several '4512A 8-bit data selectors can be connected to a single data bus as shown. One output is placed in the active state (output control low) and the remaining outputs are disabled (output controls high). The number of outputs, N, that may be connected to a bus line is determined from the output drive current $I_{O H}$ or $I_{O L}$, the off-state output current, IOZH or IOZL, and load current required to drive the bus line (including fan-out to other device inputs), IL.N can be calculated for the high-level and low-level logic states, respectively, by:

- Designed to be Interchangeable with Motorola MC14518
- Medium-Speed Operation . . . 6 MHz Typical Maximum Clock Frequency at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$

description

The '4518A dual decade counter consists of two identical, independent synchronous 4 -stage counters. The counter stages are D-type flip-flops with interchangeable clock and enable lines. With enable high, the count is advanced on a low-to-high transition at the clock input. Alternatively, if the clock input is low, the count is advanced on a high-to-low transition at enable. If clock is high or enable is low, changes at the other input (enable or clock) have no effect. A high clear signal asynchronously clears the counters and resets all outputs low.

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62 and on following page	Page 63, group 3

functional block diagram

TYPES TF4518A, TP4518A DUAL DECADE COUNTERS

typical clear, count, and inhibit sequences

recommended operating conditions

		TF4518A				TP4518A				UNIT
		V ${ }_{\text {DD }}$	$=5 \mathrm{~V}$	$V_{\text {DD }}$	$=10 \mathrm{~V}$	$V_{\text {DD }}$	$=5 \mathrm{~V}$	$V_{\text {DD }}$	10 V	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Pulse width, t_{w}	Clock high or low	200		100		300		120		ns
	Clear	325		100		500		125		ns
Enable setup time, $\mathrm{t}_{\text {su }}$		440		220		660		260		ns

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER \ddagger	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TF4518A				TP4518A				UNIT
				$V_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			$\begin{aligned} & C_{L}=50 \mathrm{pF} \S \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega, \end{aligned}$ See Note 1	1.5		3		1		2.5		MHz
${ }^{\text {tPLH }}$ or tPHL	Clock or enable	Any 0			825		300		1200		410	ns
tPHL	Clear	All			825		300		1200		410	ns
t ${ }^{\text {che }}$ or t ${ }^{\text {THL }}$		All			350		150		400		220	ns

$\ddagger_{f_{\text {max }}} \equiv$ Maximum clock frequency
${ }^{t^{\text {max }}}$ PLH \equiv Propagation delay time, low-to-high-level output

${ }^{\mathrm{t}}$ TLH \equiv Transition time, low-to-high-level output
${ }^{\text {t }}$ THL \equiv Transition time, high-to-low-level output
§With a 15-pF load, these devices switch with times similar to those of the Motorola MC14518.
NOTE 1: See load circuit and voltage waveforms on page 170.

- Designed to be Interchangeable with Motorola MC14519

FUNCTION TABLE				
INPUTS OUTPUT CONTROL DATA Y G1 G2 D1 D2				
H	L	X	X	L
H	L	H	X	H
L	X	L		
L	H	X	H	H
H	L			
H	H	L	L	H
H	H	H	L	L
H	H	L	H	L
H	H	H	H	H

$H=$ high level, $L=$ low level, $X=$ irrelevant

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM RATINGS	RECOMMENDED OPERATING CONDITIONS	ELECTRICAL CHARACTERISTICS
Page 62	Page 62	Page 63, group 2

functional block diagram

TYPES TF4519A, TP4519A
 4-BIT AND-OR SELECT GATES

electrical characteristics
$V_{D D}=5 \mathrm{~V}$ and 10 V

PARAMETER	TEST CONDITIONS		TF4519A				TP4519A				UNIT
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
IDD		$T_{A}=$ MIN or $25^{\circ} \mathrm{C}$		0.5		1		5		10	
-Iss	No load	$T_{A}=M A X$		30		60		150		300	

$V_{D D}=15 \mathrm{~V}$

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4519A		TP4519A		UNIT
			MIN	MAX	MIN	MAX	
```IDD or Quiescent supply current -lss```	$V_{1}=V_{D D}$ or 0,	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$		3		30	$\mu \mathrm{A}$
	No load	$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$		180		900	

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4519A				TP4519A				UNIT
		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {tPLH }}$ ( $\begin{aligned} & \text { Propagation delay time, } \\ & \text { low-to-high-level output }\end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \S \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$   See Note 1		450		225		600		300	ns
Propagation delay time, tPHL high-to-low-level output			450		225		600		300	ns
$\mathrm{t}_{\text {TLH }}$ Transition time, low-to-high-level output			350		150		400		220	ns
${ }^{\text {t }}$ HHL Transition time, high-to-low-level output			350		150		400		220	ns

§With a 15-pF load, these devices switch with times similar to those of the Motorola MC14519.
NOTE 1: See load circuit and voltage waveforms on page 170.

- Designed to be Interchangeable with Motorola MC14520
- Medium-Speed Operation . . . 6 MHz Typical Maximum Clock Frequency at $V_{D D}=10 \mathrm{~V}$


## description

The '4520A dual binary counter consists of two identical, independent, synchronous 4 -stage counters. The counter stages are D-type flip-flops with interchangeable clock and enable lines. With enable high, the count is advanced on a low-to-high transition at the clock input. Alternatively, if the clock input is low, the count is advanced on a high-to-low transition at enable. If clock is high or enable is low, changes at the other input (enable or clock) have no effect. A high clear signal asynchronously clears the counters and resets all outputs low.

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM   RATINGS	RECOMMENDED   OPERATING   CONDITIONS	ELECTRICAL   CHARACTERISTICS
Page 62	Page 62   and on   following page	Page 63,   group 3

functional block diagram


> TYPES TF4520A, TP4520A DUAL BINARY COUNTERS
typical clear, count, and inhibit sequences

recommended operating conditions

		TF4520A				TP4520A				UNIT
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		$V_{\text {DD }}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Pulse width, $\mathrm{t}_{\text {w }}$	Clock high or low	200		100		300		120		ns
	Clear	325		100		500		125		ns
Enable setup time, $\mathrm{t}_{\text {su }}$		440		220		660		260		ns

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER $\ddagger$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TF4520A				TP4520A				UNIT
				$V_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$			$\begin{aligned} & C_{L}=50 \mathrm{pF} \S \\ & R_{L}=200 \mathrm{k} \Omega, \end{aligned}$   See Note 1	1.5		3		1.		2.5		MHz
${ }^{\text {tPLH }}$ or tPHL	Clock or enable	Any 0			825		300		1200		410	ns
tPHL	Clear	All			825		300		1200		410	ns
${ }^{\text {t }}$ L ${ }^{\text {ch or t }}$ THL		All			350		150		400		220	ns

$\ddagger_{\text {max }} \equiv$ Maximum clock frequency
${ }_{t} \mathrm{~m}_{\mathrm{PL}} \mathrm{LH} \equiv$ Propagation delay time, low-to-high-level output
${ }^{\text {tpHL }} \equiv$ Propagation delay time, high-to-low-level output
${ }^{\text {t }}$ TLH $\equiv$ Transition time, low-to-high-level output
${ }^{\text {t }}$ THL . $\equiv$ Transition time, high-to-low-level output
§With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the Motorola MC14520.
NOTE 1: See load circuit and voltage waveforms on page 170.

- Designed to be Interchangeable with Motorola MC14522, MC14526
- Maximum Clock Frequency . . . 5 MHz Typical at 10 V
description
The '4522A and '4526A are presettable decade and binary down counters with a decoded zero-state output for divide-by- N applications. While the counter is at minimum count (all outputs low), the zerocount output will be high if the cascade feedback input is high, otherwise, it remains low. The counters may be preset by taking preset enable (PE) high after setting up the desired data at the parallel inputs A, B, C , and D. Parallel loading is asynchronous and the clock input has no effect while PE is high. The count is decreased by 1 on the low-to-high transition of the clock but the clock signal is only effective if the inhibit input is low. Transitions of the inhibit input from high to low should be made while the clock is low in order to avoid causing one extra down count triggered by the inhibit transition. A high clear signal asynchronously clears the counter and resets all outputs low.

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

specifications

MAXIMUM   RATINGS	RECOMMENDED   OPERATING   CONDITIONS	ELECTRICAL   CHARACTERISTICS
Page 62	Page 62   and below	Page 63,   group 3

Applications include frequency synthesizers, phase-locked loops, and other frequency-division applications.
recommended operating conditions

		TF4522A, TF4526A				TP4522A, TP4526A				UNIT
		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Pulse width, $\mathrm{t}_{\text {w }}$	Clock high or low	250		100		300		150		ns
	Preset enable	250		100		300		150		ns
	Clear	300		250		350		300		ns
Data hold time after preset enable		125		50		150		75		ns

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER $\ddagger$	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	TEST CONDIT! ${ }^{\text {CoNS }}$	TF4522A, TF4526A				TP4522A, TP4526A				UNIT
				$V_{\text {VE }}=5 \mathrm{~V}$		$V_{\text {OD }}=10 \mathrm{~V}$		$V_{D E}=5 V$		$\mathrm{V}_{\text {DO }}=10 \mathrm{~V}$		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$				1.5		3		1		2.5		MHz
tPLH or tPHL	A, B, C, D	Q	$R_{L}=200 \mathrm{k} \Omega$		1000		425		1300		550	ns
${ }^{\text {tPLH }}$ or ${ }^{\text {t }}$ PHL	Clock	Zero-count	See Note 1		450		350		600		450	ns
${ }^{\text {t }}$ L H or ${ }^{\text {t }}$ THL		Any			500		250		600		300	ns

$\ddagger_{f_{\text {max }}} \equiv$ Maximum clock frequency
${ }^{\text {t }}$ PLH $\equiv$ Propagation delay time, low-to-high-level output
${ }^{\text {tpHL }} \equiv$ Propagation delay time, high-to-low-level output
${ }^{\mathbf{t}}$ TLH $\equiv$ Transition time, low-to-high-level output
${ }^{\mathrm{t}} \mathrm{THL} \equiv$ Transition time, high-to-low-level output
§With a 15-pF load, these devices switch with times similar to those of the Motorola MC14522 and MC14526.
NOTE 1: See load circuit and voltage waveforms on page 170.
functional block diagram

*THE dotted lines and gates are omitted on the '4526A


TYPES TF4522A, TF4526A, TP4522A, TP4526A DECADE AND BINARY DIVIDE-BY-N COUNTERS


CF has effect only during the zero count. It is shown changing as if driven by the zero output of a more significant bit in a divide-by-12 cascade.

A sequence for the '4526A binary counter would be similar except that 15 (HHHH) instead of 9 (HLLH) would follow 0 (LLLL), with counting down proceeding from there.


- Designed to be Interchangeable with Motorola MC14531


## description

These circuits consist of 12 data-bit inputs (A thru L ), an even or odd parity selection input ( $\mathrm{E} / \mathrm{O}$ ) and an output. The parity selection input can be considered as an additional bit. With an even number of inputs (including E/O) high, the output is low; with an odd number high, the output is high. Words of greater than 12 bits can be accomodated by cascading other '4351A devices by using the E/O input.

Applications include checking or including a redundant (parity) bit of a word for error detection/ correction systems, controlling remote digital sensors or switches (digital event detection/correction), or use as a multiple input adder without carries.

## ACKAGE (TOP VIEW)


functional block diagram

specifications

MAXIMUM   RATINGS	RECOMMENDED   OPERATING   CONDITIONS	ELECTRICAL   CHARACTERISTICS
Page 62	Page 62	Page 63,   group 3

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER $\ddagger$		TEST CONDITIONS	TF4531A			TP4531A				UNIT	
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$V_{\text {DD }}=10 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V}$		$V_{D D}=10 \mathrm{~V}$				
		MIN MAX	MIN	MAX	MIN	MAX	MIN	MAX			
tPLH or tPHL	from A-L		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ §,	1050		425		1500		635	ns
	from E/O		$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$,	675		275		950		410	
${ }^{\text {t }}$ LLH or ${ }^{\text {T THL }}$		See Note 1	350		150		400		220	ns	

[^23]- Designed to be Interchangeable with Motorola MC14581
- All Outputs Buffered
- Full Look-Ahead for High-Speed Operations on Long Words
- Arithmetic Operating Modes:

Addition
Subtraction
Shift Operand A One Position Magnitude Comparison
Plus Twelve Other Arithmetic Operations

- Logic Function Modes:

Exclusive-OR
Comparator
AND, NAND, OR, NOR
Plus Ten Other Logic Operations
description
The TF4581A and TP4581A are arithmetic logic units (ALU)/function generators that have a complexity of 89 equivalent gates on a monolithic chip. These circuits perform 16 binary arithmetic operations on two 4 -bit words as shown in Tables 1 and 2. These operations are selected by the four function-select lines (S0, S1, S2, S3) and include addition, subtraction, decrement, and straight transfer. When performing arithmetic manipulations, the internal carries . must be enabled by applying a low-level voltage to the mode control input ( $M$ ). A full carry look-ahead scheme is made available in these devices for fast, simultaneous carry generation by means of two cascade-outputs (pins 15 and 17) for the four bits in the package. When used in conjunction with the TF4582A or TP4582A full carry look-ahead circuits, high-speed arithmetic operations can be performed. The method of cascading ' 4582 circuits and these ALU's to provide multi-level full carry look ahead is illustrated under typical applications data for the '4582A.

If high speed is not of importance, a ripple-carry input $\left(\mathrm{C}_{n}\right)$ and a ripple-carry output ( $\mathrm{C}_{n}+4$ ) are available. However, the ripple-carry delay has also been minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.

The '4581A will accommodate active-low or active high data if the pin designations are interpreted as follows:

PIN NUMBER	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 3}$	$\mathbf{7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 7}$
Active-low data (Table 1)	$\overline{\mathrm{A}}_{0}$	$\overline{\mathrm{~B}}_{0}$	$\overline{\mathrm{~A}}_{1}$	$\overline{\mathrm{~B}}_{1}$	$\overline{\mathrm{~A}}_{2}$	$\overline{\mathrm{~B}}_{2}$	$\overline{\mathrm{~A}}_{3}$	$\overline{\mathrm{~B}}_{3}$	$\overline{\mathrm{~F}}_{0}$	$\overline{\mathrm{~F}}_{1}$	$\overline{\mathrm{~F}}_{2}$	$\overline{\mathrm{~F}}_{3}$	$\mathrm{C}_{n}$	$\mathrm{C}_{n+4}$	$\overline{\mathrm{P}}$	$\overline{\mathrm{G}}$
Active-high data (Table 2)	$\mathrm{A}_{0}$	$\mathrm{~B}_{0}$	$\mathrm{~A}_{1}$	$\mathrm{~B}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~B}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~B}_{3}$	$\mathrm{~F}_{0}$	$\mathrm{~F}_{1}$	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\overline{\mathrm{C}}_{n}$	$\overline{\mathrm{C}}_{n}+4$	P	G

Subtraction is accomplished by 1 's complement addition where the 1 's complement of the subtrahend is generated internally. The resultant output is $A-B-1$, which requires an end-around or forced carry to provide $A-B$.

## TYPES TF4581A, TP4581A ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

## description (continued)

The ' 4581 A can also be utilized as a comparator. The $A=B$ output is internally decoded from the function outputs ( $\bar{F} 0$, $\bar{F} 1, \bar{F} 2, \bar{F} 3$ ) so that when two words of equal magnitude are applied at the $\bar{A}$ and $\bar{B}$ inputs, it will assume a high level to indicate equality $(A=B)$. The $A L U$ should be in the subtract mode with $C_{n}=H$ when performing this comparison. The carry output ( $C_{n+4}$ ) can also be used to supply relative magnitude information. Again, the ALU should be placed in the subtract mode by placing the function select inputs $S 3, S 2, S 1, S 0$ at $L, H, H, L$, respectively.

INPUT $\mathrm{C}_{\mathbf{n}}$	OUTPUT $\mathrm{C}_{\mathbf{n}+4}$	ACTIVE-LOW DATA   (FIGURE 1)	ACTIVE-HIGH DATA   (FIGURE 2)
H	H	$\mathrm{A} \geqslant \mathrm{B}$	$\mathrm{A} \leqslant \mathrm{B}$
H	L	$\mathrm{A}<\mathrm{B}$	$\mathrm{A}>\mathrm{B}$
L	H	$\mathrm{A}>\mathrm{B}$	$\mathrm{A}<\mathrm{B}$
L	L	$\mathrm{A} \leqslant \mathrm{B}$	$\mathrm{A} \geqslant \mathrm{B}$

These circuits have been designed to not only incorporate all of the designer's requirements for arithmetic operations, but also to provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four function-select inputs (S0, S1, S2, S3) with the mode-control input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in Tables 1 and 2 and include exclusive-OR, NAND, AND, NOR, and OR functions.

## signal designations

The '4581A and '4582A can be used with the signal designations of either Figure 1 or Figure 2. The polarity indicators $(\infty)$ and the bars over the terminal letter symbols (e.g., $\overline{\mathrm{C}}$ ) each indicate that the associated input or output is active with respect to the selected function of the device when that input or output is low. That is, a low at $\overline{\mathrm{C}}$ means "do carry" while a high means "do not carry".

The logic functions and arithmetic operations obtained with signal designations of Figure 1 are given in Table 1; those obtained with signal designations of Figure 2 are given in Table 2. Because the terminals have been renamed between Figures 1 and 2, the equations in both tables are actually in positive logic. For negative logic, the equations in Table 1 may be used with the terminal nomenclature of Figure 2 or the equations of Table 2 may be used with the terminal nomenclature of Figure 1.

## TVPES TF\&581A, TP\&581A <br> ARITHNAETIC LOGIC UAITS/FUNCTION GENERATORS

signal designations (continued)


FIGURE 1
(Use with Table 1 for positive logic, with Table 2 for negative logic)

TABLE 1

SELECTION	ACTIVE-LOW DATA		
	$\mathrm{M}=\mathrm{H}$	$\mathrm{M}=\mathrm{L} ;$ ARITHME	IIC OPERATIONS
S3 S2 S1 So	LOGIC FUNCTIONS	$C_{n}=L$   (no carry)	$C_{n}=H$   (with carry)
L L L L	$F=\bar{A}$	$F=A$ MINUS 1	$F=A$
L L L H	$F=\overline{A B}$	$F=A B$ MINUS 1	$F=A B$
L L H L	$F=\bar{A}+B$	$F=A \bar{B}$ MINUS 1	$F=A \bar{B}$
L L H H	$F=1$	$F=$ MINUS 1 (2's COMP)	$\mathrm{F}=\mathrm{ZERO}$
L H L L	$F=\overline{A+B}$	$F=A P L U S(A+\bar{B})$	$F=A$ PLUS $(A+\bar{B})$ PLUS 1
L H L H	$F=\bar{B}$	$F=A B$ PLUS $(A+\bar{B})$	$F=A B P L U S ~(A+\bar{B}) P$ PLUS 1
L H H L	$F=\overline{A \oplus B}$	$F=A$ MINUS $B$ MİNUS 1	$F=A$ MINUS $B$
L H H H	$F=A+\bar{B}$	$F=A+\bar{B}$	$F=(A+\bar{B})$ PLUS 1
H L L L	$F=\bar{A} B$	$F=A \operatorname{PLUS}(\mathrm{~A}+\mathrm{B})$	$F=A P L U S(A+B) P L U S 1$
$H$ L L H	$F=A \oplus B$	$F=A P L U S B$	$F=A$ PLUS B PLUS 1
H L H L	$F=B$	$F=A \bar{B}$ PLUS $(A+B)$	$F=A \bar{B} P$ LUS $(A+B) P L U S ~ 1$
H L H H	$F=A+B$	$F=(A+B)$	$F=(A+B) P L U S$;
H H L L	$F=0$	$F=A P L U S A *$	$F=A P L U S$ A PLUS 1
H H L H	$F=A \bar{B}$	$F=A B$ PLUS $A$	$F=A B$ PLUS A PLUS 1
H H H L	$F=A B$	$F=A \bar{B}$ PLUS $A$	$F=A \bar{B}$ PLUS A PLUS 1
H $\mathrm{H} \quad \mathrm{H} \quad \mathrm{H}$	$F=A$	$F=A$	$F=A$ PLUS 1



FIGURE 2
(Use with Table 2 for positive logic, with Table 1 for negative logic)

TABLE 2

SELECTION	ACTIVE-HIGH DATA		
	$\mathrm{M}=\mathrm{H}$	$\mathrm{M}=\mathrm{L}$; ARITHME	TIC OPERATIONS
S3 S2 S1 So	LOGIC   FUNCTIONS	$\overline{C_{n}}=H$   (no carry)	$\bar{C}_{n}=L$   (with carry)
L L L L	$\mathrm{F}=\overline{\mathrm{A}}$	$F=A$	$F=A P L U S$ 1
L L L H	$F=\overline{A+B}$	$F=A+B$	$F=(A+B) P L U S 1$
L L. H	$F=\bar{A} B$	$F=A+\bar{B}$	$F=(A+\bar{B})$ PLUS 1
L L H H	$=0$	$F=$ MINUS 1 (2's COMPL)	$\mathrm{F}=\mathrm{ZERO}$
L H L L	$F=\overline{A B}$	$F=A P L U S A \bar{B}$	$F=A P L U S A \bar{B}$ PLUS 1
L H L H	$\mathrm{F}=\overline{\mathrm{B}}$	$F=(A+B) P L U S A \bar{B}$	$F=(A+B) P L U S A \bar{B}$ PLUS 1
L H H	$F=A \oplus B$	F = A MINUS B MINUS 1	$F=A$ MINUS $B$
L H H H	$F=A \bar{B}$	$F=A \bar{B}$ MINUS 1	$F=A \bar{B}$
H L	= $\bar{A}+\mathrm{B}$	$F=A P L U S A B$	$F=A$ PLUS AB PLUS 1
H L L	$F=\overline{A \oplus B}$	$F=A P L U S B$	$F=A P L U S B P L U S ~ 1 . ~$
H L H	$F=B$	$F=(A+\bar{B})$ PLUS $A B$	$F=(A+\bar{B})$ PLUS AB PLUS
H L H H	$\mathrm{F}=\mathrm{A}$	$F=A B$ MINUS 1	$F=A B$
H H L	$F=1$	$F=A P L U S A^{*}$	$F=A P L U S A P L U S ~ 1 ~$
H H L H	$F=A+\bar{B}$	$F=(A+B) P L U S A$	$F=(A+B)$ PLUS A PLUS 1
H H H	$F=A+B$	$F=(A+\bar{B})$ PLUS $A$	$F=(A+\bar{B})$ PLUS A PLUS 1
H H H H	$\mathrm{F}=\mathrm{A}$	F = A MINUS 1	$F=A$

- Each bit is shifted to the next more significant position

TYPES TF4581A, TP4581A ARITHMETIC LOGIC UNITS/FUNCTION GENERATOAS


## specifications

MAXIMUM		
RATINGS	RECOMMENDED   OPERATING   CONDITIONS	ELECTRICAL   CHARACTERISTICS
Page 62	Page 62	Page 63,   group 3

switching characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ §, $\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$ (See Note 1)

PARAMETER $\ddagger$	FROM	то	MODE ${ }^{\text {P }}$	TF4581A		TP4581A		UNIT
				$V_{\text {DD }}=5 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$	$V_{D D}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	
				MIN MAX	MIN MAX	MIN MAX	MIN MAX	
tPLH or tPHL	Sum In ( $\overline{\mathrm{A}} 0$ )	Sum Out   (Any $\bar{F}$ )	Add	1200	425	2200	810	ns
${ }^{\text {tPLH }}$ or tPHL	Sum In ( $\overline{\mathrm{A}} 0$ )	$\overline{\mathbf{P}}$	Add	825	300	1500	560	ns
tPLH or tPHL	Sum In ( $\bar{B} 0$ )	$\overline{\mathrm{G}}$	Add	825	300	1500	560	ns
tPLH or tPHL	Sum In ( $\overline{\mathrm{B}} 0$ )	$\mathrm{C}_{\mathrm{n}+4}$	Add	1200	425	1900	710	ns
${ }^{\text {tPLH }}$ or tPHL	$\mathrm{C}_{n}$	Sum Out   (Any $\bar{F}$ )	Add	625	235	1200	460	ns
tPLH or tPHL	$\mathrm{C}_{\mathrm{n}}$	$\mathrm{C}_{\mathrm{n}+4}$	Add	550	210	950	380	ns
${ }^{\text {t PLH }}$ or tPHL	Sum In ( $\overline{\mathrm{A}} 0$ )	$A=B$	Sub	1700	575	3200	1100	ns
tPLH or tphi	Sum In   (All $\bar{B}$ )	Sum Out (Any $\overline{\mathrm{F}}$ )	Exclusive OR	1200	425	1900	710	ns
${ }^{\text {t }}$ LLH or ${ }^{\text {t }}$ THL		Any	Any	350	150	400	220	ns

TEST SETUP TABLE

FROM	TO	MODE ${ }^{\text {I }}$	CONNECTION OF OTHER INPUTS	
			To V ${ }_{\text {SS }}$	To VDD
Sum $\ln (\overline{\mathrm{A}} 0$ )	Sum Out (Any F)	Add	Remaining $\bar{A}, C_{n}$	All $\bar{B}$
Sum $\ln (\overline{\mathrm{A}} 0)$	$\overline{\bar{p}}$	Add	Remaining $\bar{A}, C_{n}$	All $\bar{B}$
Sum In ( $\overline{\mathrm{B}} 0$ )	$\overline{\mathrm{G}}$	Add	All $\bar{A}, C_{n}$	Remaining $\bar{B}$
Sum In ( $\overline{\mathrm{B}} \mathrm{O}$ )	$\mathrm{C}_{\mathrm{n}+4}$	Add	All $\bar{A}, C_{n}$	Remaining $\overline{\mathbf{B}}$
$\mathrm{C}_{\mathrm{n}}$	Sum Out (Any $\bar{F}$ )	Add	All $\bar{A}$	All $\bar{B}$
$\mathrm{C}_{n}$	$\mathrm{C}_{\mathrm{n}+4}$	Add	All $\bar{A}$	All $\bar{B}$
Sum $\ln (\overline{\mathrm{A}} 0)$	$\mathrm{A}=\mathrm{B}$	Sub	All $\bar{B}$, Remaining $A$	$\mathrm{C}_{n}$
Sum $\ln (\mathrm{All} \overline{\mathrm{B}})$	Sum Out (Any F)	Exclusive OR	All $\bar{A}$	M

$\ddagger_{\mathrm{PLH}} \equiv$ Propagation delay time, low-to-high-level output
$t_{\text {PHL }} \equiv$ Propagation delay time, high-to-low-level output
${ }^{\text {t }}$ TLH $\equiv$ Transition time, low-to-high-level output
${ }^{\text {t }}$ THL $\equiv$ Transition time, high-to-low-level output
§With a $15-\mathrm{pF}$ load, these devices switch with times similar to those _: Motorola MC14581.
IF For Add mode: $M=0 \mathrm{~V}, \mathrm{~S} 3=\mathrm{V}_{\mathrm{DD}}, \mathrm{S} 2=0 \mathrm{~V}, \mathrm{Si}=0 \mathrm{~V}, S 0=\mathrm{V}_{\mathrm{DD}}$
For Subtract mode: $M=0 \mathrm{~V}, \mathrm{S3}=0 \mathrm{~V}, \mathrm{S2}=\mathrm{V}_{\mathrm{DD}}, \mathrm{S} 1=\mathrm{V}_{\mathrm{DD}}, \mathrm{SO}=0 \mathrm{~V}$
Exclusive-OR mode: $M=V_{D D}, S 3=V_{D D}, S 2=0 \mathrm{~V}, S 1=0 \mathrm{~V}, S 0=V_{D D}$
NOTE 1: See load circuit and voltage waveforms on page 170.

DUAL-IN-LINE PACKAGE (TOP VIEW)
 logic unit (ALU), these generators provide high-speed carry look-ahead capability for any word length. Each '4582A generates the look-ahead (anticipated carry) across a group of four ALU's and, in addition, other carry look-ahead circuits may be employed to anticipate carry across sections of four look-ahead packages up to $n$-bits. The method of cascading '4582A circuits to perform multi-level look-ahead is illustrated under typical application data.

Carry input and outputs of the '4581A ALU are in their true form and the carry propagate $(\overline{\mathrm{P}})$ and carry generate $(\overline{\mathrm{G}})$ are in negated form; therefore, the carry functions (inputs, outputs, generate, and propagate) of the look-ahead generators are implemented in the compatible forms for direct connection to the ALU. Reinterpretations of carry functions explained on the '4581A data sheet are also applicable to and compatible with the look-ahead generator. Positive logic equations for the '4582A are:

$$
\begin{aligned}
& \mathrm{Cn}+\mathrm{x}=\mathrm{G} 0+\mathrm{P} 0 \mathrm{C} n \\
& \mathrm{C}+\mathrm{y}=\mathrm{G} 1+\mathrm{G} 0 P 1+\mathrm{P} 1 \mathrm{P} 0 \mathrm{C}_{n} \\
& \mathrm{C}+\mathrm{z}=\mathrm{G} 2+\mathrm{G} 1 \mathrm{P} 2+\mathrm{GOP} 2 \mathrm{P} 1+\mathrm{P} 2 \mathrm{P} 1 \mathrm{P} 0 \mathrm{Cn} \\
& \overline{\mathrm{G}}=\overline{\mathrm{G} 3+\mathrm{G} 2 \mathrm{P} 3+\mathrm{G} 1 \mathrm{P} 3 P 2+\mathrm{GOP} 3 \mathrm{P} 2 \mathrm{P} 1} \\
& \overline{\mathrm{P}}=\overline{\mathrm{P} 3 P 2 \mathrm{P} 1 \mathrm{PO}}
\end{aligned}
$$

## specifications

MAXIMUM   RATINGS	RECOMMENDED   OPERATING   CONDITIONS	ELECTRICAL   CHARACTERISTICS
Page 62	Page 62	Page 63,   group 3,   except as   on page 169

TYPES TF4582A, TP4582A
LOOK-AHEAD CARRY GENERATORS

FUNCTION TABLE FOR $\mathrm{C}_{\mathrm{n}+\mathrm{x}}$ OUTPUT

INPUTS	OUTPUT
$\overline{\mathrm{G} 0} \overline{\mathrm{P}} 0^{\mathrm{Cn}}$	$\mathrm{C}_{\mathrm{n}+}$
L $\times$ X	H
$X \quad \mathrm{~L}$ H	H
All other combinations	L

FUNCTION TABLE
FOR $\mathrm{C}_{\mathrm{n}+\mathrm{y}}$ OUTPUT


FUNCTION TABLE FOR $\overline{\mathrm{P}}$ OUTPUT

INPUTS	$\begin{array}{\|c} \hline \text { OUTPUT } \\ \bar{P} \end{array}$
$\begin{array}{lllll}\overline{\mathrm{P}} 3 & \overline{\mathrm{P}} 2 & \overline{\mathrm{P}} 1 & \overline{\mathrm{P}} 0\end{array}$	
L L L L	L
All other combinations	H

FUNCTION TABLE FOR $\mathrm{C}_{\mathrm{n}+\mathrm{z}}$ OUTPUT

INPUTS							OUTPUT$C_{n+z}$
$L$ $X$ $X$ $X$ $X$ $X$ $X$   $X$ $L$ $X$ $L$ $X$ $X$ $X$   $X$ $X$ $L$ $L$ $L$ $X$ $X$   $X$ $X$ $X$ $L$ $L$ $L$ $H$   $~$ All other combinations							H
							H
							H
							H

FUNCTION TABLE FOR $\bar{G}$ OUTPUT

INPUTS							$\begin{gathered} \text { OUTPUT } \\ \overline{\mathbf{G}} \end{gathered}$	
$L$ $X$ $X$ $X$ $X$ $X$ $X$   $X$ $L$ $X$ $X$ $L$ $X$ $X$   $X$ $X$ $L$ $X$ $L$ $L$ $X$   $X$ $X$ $X$ $L$ $L$ $L$ $L$   $~ A l l ~ o t h e r ~ c o m b i n a t i o n s ~$								L
								L
								L
								L
								H

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant Any inputs not shown in a given table are irrelevant with respect to that output.
functional block diagram


## TYPES TF4582A, TP4582A <br> LOOK-AHEAD CARRY GENERATORS

## electrical characteristics

$V_{D D}=5$ and 10 V

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4582A		TP4582A		UNIT
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$V_{\text {DD }}=10 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	$V_{D D}=10 \mathrm{~V}$	
			MIN MAX	MIN MAX	MIN MAX	MIN MAX	
IDD	$V_{1}=V_{\text {DD }}$ or 0,	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$	0.5	1	5	10	
${ }^{-1} \mathrm{SS}$	No load	$\mathrm{T}_{\text {A }}=\mathrm{MAX}$	30	60	150	300	

$V_{D D}=15 \mathrm{~V}$

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TF4582A		TP4582A		UNIT
			MIN	MAX	MIN	MAX	
IDD   or Quiescent supply current -Iss	$v_{1}=v_{D D} \text { or } 0$   No load	$\mathrm{T}_{A}=\mathrm{MIN}$ or $25^{\circ} \mathrm{C}$		3		30	$\mu \mathrm{A}$
		$T_{A}=$ MAX		180		900	

${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TF4582A				TP4582A				UNIT
		$V_{D D}=5 \mathrm{~V}$		$V_{\text {DD }}=10 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Propagation delay time,   tPLH low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF} \S \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$   See Note 1		550		225		950		410	ns
$\begin{aligned} & \text { Propagation delay time, } \\ & \text { tPHL } \\ & \text { high-to-low-level output } \end{aligned}$			550		225		950		410	ns
${ }^{\text {t }}$ L.H Transition time, low-to-high-level output			350		150		400		220	ns
${ }^{\text {t }}$ THL Transition time, high-to-low-level output			350		150		400		220	ns

§With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the Motorola MC14582.
NOTE 1: See load circuit and voltage waveforms on page 170.

## TYPICAL APPLICATION DATA


$\bar{A}$ and $\bar{B}$ inputs and $\bar{F}$ outputs of ' 4581 A are not shown.

64-BIT ALU, FULL-CARRY LOOK-AHEAD IN THREE LEVELS

## CMOS LOGIC CIRCUITS

## PARAMETER MEASUREMENT INFORMATION



LOAD CIRCUIT FOR PROPAGATION DELAY AND TRANSITION TIMES


LOAD CIRCUIT FOR ENABLE AND DISABLE
TIMES OF THREE-STATE OUTPUTS

NOTES: A. The waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 10 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega$.


NOTES: C. Input pulse is supplied by a generator having the following characteristics: $Z_{\text {out }}=50 \Omega, P R R=10 \mathrm{kHz}, \mathrm{t}_{\mathrm{r}} \leqslant 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$.
D. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
$E$. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.

## CMOS ORDERING INSTRUCTIONS AND MECHANICAL DATA

general
All CMOS circuits in this book are available in the ceramic dual-in-line package (outline J). Circuits with type number prefix TP are also available in the plastic dual-in-line package (outline N). Factory orders for these circuits should include a three-part type number as explained in the following example.


## CMOS ORDERING INSTRUCTIONS AND MECHANICAL DATA

J ceramic dual-in-line packages (inch dimensions, see page 174 for metric dimensions)
These hermetically sealed dual-in-line packages consist of a ceramic base, ceramic cap, and a 14-, 16-, or 24-lead frame. The packages are intended for insertion in mounting-hole rows on 0.300 -inch or 0.600 -inch centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ('"bright-dipped") leads require no additional cleaning or processing when used in soldered assembly.
(INCH)

## CMOS ORDERING INSTRUCTIONS AND MECHANICAL DATA

## N plastic dual-in-line packages (inch dimensions, see page 175 for metric dimensions)

These dual-in-line packages consist of a circuit mounted on a 14 -, 16-, or 24 -lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. The packages are intended for insertion in mounting-hole rows on 0.300 -inch or 0.600 -inch centers. Once the leads are compressed and inserted, sufficient tension is provided.to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly.
(

## CMOS ORDERING INSTRUCTIONS AND MECHANICAL DATA

J ceramic dual-in-line packages (metric dimensions, see page 172 for inch dimensions)
These hermetically sealed dual-in-line packages consist of a ceramic base, ceramic cap, and a 14-, 16-, or 24 -lead frame The packages are intended for insertion in mounting-hole rows on $7.62-\mathrm{mm}$ or $15.24-\mathrm{mm}$ centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when used in soldered assembly.


## CMOS ORDERING INSTRUCTIONS AND MECHANICAL DATA

N plastic dual-in-line packages (metric dimensions, see page 173 for inch dimensions)
These dual-in-line packages consist of a circuit mounted on a 14-, 16-, or 24-lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. The packages are intended for insertion in mounting-hole rows on $7.62-\mathrm{mm}$ or $15.24-\mathrm{mm}$ centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly.
(

## TI worldwide sales offices




[^0]:    *To be announced.

[^1]:    *To be announced.

[^2]:    * Current out of a terminal is given as a negative value.

[^3]:    - Future products to be announced

[^4]:    NOTE 3: The output voltage limits are guaranteed for any appropriate combination of high and low inputs.
    ${ }^{\dagger}$ See group designation on individual product specifications and page 22 for a list of all products by group.

[^5]:    *Future products to be announced

[^6]:    ${ }^{\dagger} \top_{A}=$ MIN or MAX refers to the respective value specified under recommended operating conditions．
    $\ddagger$ See group designation on individual product specifications and page 61 for a list of all products by group．

[^7]:    ${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.
    NOTE 1: All measurements are made with each pair of transistors connected to form an inverter.

[^8]:    §With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the RCA CD4009A and RCA CD 4010A respectively.
    NOTE 2: See load circuit and voltage waveforms on page 170.

[^9]:    §With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the RCA CD4012A.
    NOT.E 1: See load circuit and voltage waveforms on page 170.

[^10]:    §With a 15-pF load, these devices switch with times similar to those of the RCA CD4014A.
    NOTE 1: See load circuit and voltage waveforms on page 170.

[^11]:    § With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the RCA CD4015A.

[^12]:    $\ddagger_{f_{\text {max }}} \equiv$ Maximum clock frequency

[^13]:    § With a 15-pF load, these devices switch with times similar to those of the RCA CD4014A.
    NOTE 1: See load circuit and voltage waveforms on page 170.

[^14]:    §With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the RCA CD4023A.

[^15]:    $\ddagger f_{\text {max }} \equiv$ Maximum clock frequency
    ${ }^{\text {tpLH }} \equiv$ Propagation delay time, low-to-high-level output
    ${ }^{t_{P H L}} \equiv$ Propagation delay time, high-to-low-level output
    ${ }^{\text {t }}$ TLH $\equiv$ Transition time, low-to-high-level output
    ${ }^{\text {t }}$ THL $\xlongequal{\cong}$ Transition time, high-to-low-level output
    §With a $15-\mathrm{pF}$ load, these devices switch with times similar to those of the RCA CD4029A.

[^16]:    $\ddagger f_{\text {max }} \equiv$ Maximum clock frequency
    ${ }^{\mathrm{t}} \mathrm{PLH} \equiv$ Propagation delay time, low-to-high-level output
    ${ }^{\text {t PHL }} \equiv$ Propagation delay time, high-to-low-level output
    ${ }^{\text {t }}$ TLH $\equiv$ Transition time, low-to-high-level output
    ${ }^{\text {t }}$ THL $\equiv$ Transition time, high-to-low-level output
    §With a 15-pF load, these devices switch with times similar to those of the RCA CD4040A.
    NOTE 1: See load circuit and voltage waveforms on page 170.

[^17]:    §With a 15-pF load, these devices switch with times similar to those of the RCA CD4042A.
    NOTE 1: See load circuit and voltage waveforms on page 170.

[^18]:    §With a 15 -pF load, these devices switch with times similar to those of the RCA CD4043A and CD4044A.
    NOTE 1: See load circuit and voltage waveforms on page 170.

[^19]:    ${ }^{\dagger} T_{A}=$ MIN or MAX refers to the respective values of free-air temperature specified under recommended operating conditions.

[^20]:    $\dagger_{T_{A}}=$ MIN or MAX refers to the respective values of temperature specified under recommended operating conditions.

[^21]:    $\ddagger_{f_{\text {max }}} \equiv$ Maximum clock frequency
    $t_{\text {PLH }} \equiv$ Propagation delay time, low-to-high-level output
    $t_{\text {PHL }} \equiv$ Propagation delay time, high-to-low-level output
    tTLH $\equiv$ Transition time, low-to-high-level output
    ${ }^{\text {T}}$ THL $\equiv$ Transition time, high-to-low-level output
    NOTE 1: See load circuit and voltage waveforms on page 170.

[^22]:    *These specifications for this product have not been determined. It is planned to specify values where asterisks appear above.
    NOTE 1: See load circuit on page 170.

[^23]:    $\dot{\Psi}_{\text {tpLH }} \equiv$ Propagation delay time, low-to-high-level output
    $t_{\text {PHL }} \equiv$ Propagation delay time, high-to-low-level output
    ${ }^{\text {tTLH }} \equiv$ Transition time, low-to-high-level output
    ${ }^{\text {t }}$ THL $\equiv$ Transition time, high-to-low-level output
    §With a 15-pF load, these devices switch with times similar to those of the Motorola MC14531.
    NOTE 1: See load circuit and voltage waveforms on page 170.

