

TEXAS Instruments

Jle of Contents	Alphanumeric Index	GENERAL INFORMATION - Selection Guides - Glossary	1
		INTERCHANGEABILITY GUIDE	2
		MOS MEMORIES	3
		TTL MEMORIES	4
		ECL MEMORIES	5
		MICROPROCESSOR SUMMARY	6
	38510/MACH IV P	PROCUREMENT SPECIFICATION	7
	JAN MIL-M	-38510 INTEGRATED CIRCUITS	8
	IC SOCKETS AN	D INTERCONNECTION PANELS	9

TI worldwide sales offices

The
 Semiconductor Memory Data Book for
 Design Engineers

First Edition

Texas Instruments
INCORPORATED

MPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Information contained herein supercedes previously published data on these devices from T1.

INTRODUCTION

This book contains detailed specifications for 111 semiconductor memory integrated circuits manufactured and supplied worldwide by Texas Instruments. A continuous upgrading of process and design technology has resulted in a wide spectrum of memory products with information retrieval times from a few nanoseconds to a few microseconds. They cover the basic memory functions of serial storage, random-access mass storage, permanent read-only storage and programmable read-only storage of binary information. These LSI high-technology products include:

- 59 MOS Memory products to provide system economy and large storage capacity from:
- 11 state-of-the-art high-density single transistor cell 4096-bit RAM's designed specifically for mass storage systems
- 12 economical industry-standard 1024 -bit static RAM's for simplified application in small or medium size systems
- 24 different shift registers featuring highly efficient organizations for implementing serial and recirculating memories in data communications and display systems
- 43 TTL high-performance memories, 38 with Schottky clamping, including:
- 256-bit and 1024-bit RAM's featuring modified ${ }^{2} \mathrm{~L}$ cell design and single-level metalization to enhance reliability
- PROM's featuring Titanium-Tungsten fuse links for fast and reliable programming
- New high density 20-pin 2048-bit and 4096-bit PROM's for reduced board area and system cost
- 7 ECL ultra-high performance memories including:
- 5 RAM's with access times from 10 ns to 15 ns typically
- 1256 -bit PROM using Titanium-Tungsten fuse links with a typical access time of 15 ns

Also included are brief product descriptions of 4 microprocessor products from Texas Instruments, 3 manufactured with MOS technology and the other with Integrated Injection Logic ($1^{2} \mathrm{~L}$), a revolutionary new semiconductor technology. These new microprocessor products are directly compatible with most of the semiconductor memory products included in this book.

An eight-page glossary defines symbols and terms used with memory integrated circuits in accordance with current deliberations by the EIA/JEDEC (Electronic Industries Association) and IEC (International Electrotechnical Commission).

Ordering instructions and mechanical data for the package types available are given at the end of the section for each technology (MOS, TTL, and ECL).

The 38510/MACH IV Procurement Specification is included in its entirety and has been updated to include provisions for memory circuits and for the CMOS technology. A current listing of JAN MIL-M-38510 integrated circuits provideds cross-reference from circuit type number to 38510 slash sheet and from 38510 slash sheet to circuit type number. Also covered are the 4096 -bit RAMs processed to level III of the MACH IV specification.

The final section in the book is on IC sockets and interconnection panels. TI produces a complete line of these products, and their inclusion here provides a handy reference for the design engineer.

General Information

table of contents

Page
Alphanumeric Index 10
Selection Guides 11
Glossary 15
Interchangeability Guide 23
MOS Random Access Memories
TMS 1103, TMS 1103-1 1024-Bit (1024 X 1) Dynamic RAMs 36
TMS 4030, TMS 4030-1, TMS 4030-2 4096-Bit (4096 X 1) Dynamic RAMs 41
TMS 4033 1024-Bit (1024 X 1) Static RAM 49
TMS 4034 1024-Bit (1024 X 1) Static RAM 49
TMS 4035 1024-Bit (1024 X 1) Static RAM 49
TMS 4036, TMS 4036-1, TMS 4036-2 512-Bit (64×8) Static RAMs 53
TMS 4039, TMS 4039-1, TMS 4039-2 1024-Bit (256×4) Static RAMs 57
TMS 4042, TMS 4042-1, TMS 4042-2 1024-Bit (256×4) Static RAMs 61
TMS 4043, TMS 4043-1, TMS 4043-2 1024-Bit (256 X 4) Static RAMs 65
TMS 4050, TMS 4050-1, TMS 4050-2 4096-Bit (4096 X 1) Dynamic RAMs 69
TMS 4051, TMS 4051-1 4096-Bit (4096 X 1) Dynamic RAMs 77
TMS 4060, TMS 4060-1, TMS 4060-2 4096-Bit (4096 X 1) Dynamic RAMs 85
TMS 4062 1024-Bit (1024 X 1) Dynamic RAM 93
TMS 4063 1024-Bit (1024 X 1) Dynamic RAM 93
Extended Temperature Range and Hi-Rel 4096-Bit RAMs 101
MOS Read-Only Memories
TMS $250164 \times 5 \times 7$ Static USASCII Character Generator 105
TMS $410364 \times 5 \times 7$ Static USASCII Character Generator 106
TMS 4700 8192-Bit (1024 X 8) ROM 107
TMS 4800 16384-Bit (2048×8 or 4096×4) ROM 111
TMS 5001 Four-Mode Dynamic 90-Key Keyboard Encoder 117
MOS Shift Registers
TMS 3101 Dual 100-Bit Static Shift Register 123
TMS 3112 Hex 32-Bit Static Shift Register 124
TMS 3122 Hex 32-Bit Static Shift Register 124
TMS 3123 Hex 32-Bit Static Shift Register 124
TMS 3113 Dual 133-Bit Static Shift Register 128
TMS 3114 Dual 128-Bit Static Shift Register 128
TMS 3120 Quadruple 80-Bit Static Shift Register 131
TMS 3121 Quadruple 64-Bit Static Shift Register 131
TMS 3126 Dual 96-Bit Static Shift Register 134
TMS 3127 Dual 100-Bit Static Shift Register 134
TMS 3128 Dual 128-Bit Static Shift Register 134
TMS 3129 Dual 132-Bit Static Shift Register 134
TMS 3130 Dual 133-Bit Static Shift Register 134
TMS 3131 Dual 136-Bit Static Shift Register 134
TMS 3132 Dual 144-Bit Static Shift Register 134
TMS 3133 1024-Bit Static Shift Register 137
TMS 3135 - by 80-Bit Static Shift Register 140
TMS 3137 9- by 100-Bit Static Shift Register 140
TMS 3138 9-by 128 -Bit Static Shift Register 140
TMS 3139 9-by 132-Bit Static Shift Register 140
TMS 3140 9-by 133-Bit Static Shift Register 140
TMS 3401 512-Bit Dynamic Shift Register 143
TMS 3409 Quadruple 8-Bit Dynamic Shift Register 144
TMS 3417 Quadruple 64-Bit Dynamic Shift Register 144

TABLE OF CONTENTS

Page
Other MOS Circuits
TMS 4024 9- by 64-Bit Dynamic FIFO Memory 147
TMS 6011 Asynchronous Data Interface (UART) 152
Power Supplies, Interfaces, and Input/Output Circuits for MOS Memories 159
MOS Ordering Instructions and Mechanical Data 163
TTL Random-Access Read/Write Memories
SN54S189, SN74S189 64-Bit (16 X 4) RAMs with 3-State Outputs 172
SN54S201, SN74S201 256-Bit (256 X 1) RAMs with 3-State Outputs 172
SN74S209 1024-Bit (1024 \times 1) RAM with 3-State Output 172
SN54S289, SN74S289 64-Bit (16 X 4) RAMs with Open-Collector Outputs 172
SN54S301, SN74S301 256-Bit (256 X 1) RAMs with Open-Collector Outputs 172
SN74S309 1024-Bit (1024 X 1) RAM with Open-Collector Output 172
SN7489 64-Bit (16 X 4) RAM with Open-Collector Outputs 178
TTL Programmable Read-Only Memories
SN54186, SN74186 512-Bit (64 X 8) PROMs with Open-Collector Outputs 182
SN54188A, SN74188A 256-Bit (32 X 8) PROMs with Open-Collector Outputs 182
SN54S188, SN74S188 256-Bit (32×8) PROMs with Open-Collector Outputs 182
SN54S287, SN74S287 1024-Bit (256 X 4) PROMs with 3-State Outputs 182
SN54S288, SN74S288 256-Bit (32 X 8) PROMs with 3-State Outputs 182
SN54S387, SN74S387 1024-Bit (256 X 4) PROMs with Open-Collector Outputs 182
SN54S470, SN74S470 2048-Bit (256 X 8) PROMs with Open-Collector Outputs 182
SN54S471, SN74S471 2048-Bit (256 X 8) PROMs with 3-State Outputs 182
SN54S472, SN74S472 4096-Bit (512 X 8) PROMs with 3-State Outputs 182
SN54S473, SN74S473 4096-Bit (512×8) PROMs with Open-Collector Outputs 182
TTL Read-Only Memories
SN5488A, SN7488A 256-Bit (32×8) ROMs with Open-Collector Outputs 190
SN54187, SN74187 1024-Bit (256 X 4) ROMs with Open-Collector Outputs 190
SN54S270, SN74S270 2048-Bit (512 X 4) ROMs with Open-Collector Outputs 190
SN54S271, SN74S271 2048-Bit (256×8) ROMs with Open-Collector Outputs 190
SN54S370, SN74S370 2048-Bit (512 X 4) ROMs with 3-State Outputs 190
SN54S371, SN74S371 2048-Bit (256 X 8) ROMs with 3-State Outputs 190
TTL Ordering Instructions and Mechanical Data 198
ECL Memories
SN10139 256-Bit (32 X 8) Programmable Read-Only Memory 203
SN10140 64-Bit (64 X 1) Random-Access Memory 208
SN10142 64-Bit (64 X 1) Random-Access Memory 208
SN10148 64-Bit (64 X 1) Random-Access Memory 208
SN10144 256-Bit (256 X 1) Random-Access Memory 211
SN10145 64-Bit (16 X 4) Random-Access Memory 214
SN10147 128-Bit (128 X 1) Random-Access Memory 217
ECL Ordering Instructions and Mechanical Data 222
Microprocessors 223
38510/MACH IV Procurement Specification 229
JAN MIL-M-38510 Integrated Circuits 259
IC Sockets and Interconnection Panels 265

ALPHANUMERIC INDEX

*Extended Temperature Range and Hi -Rel (SMC) versions start on page 101.

RAMs, PROMs, ROMs SELECTION GUIDE

Numbers on shaded lines indicate overall complexity
Texas Instruments

POWER DISSIPATION PER BIT
memor

RAMs, PROMs, ROMs

SHIFT REGISTERS

SELECTION GUIDE

BITS PER REGISTER	REGISTERS PER PACKAGE				
	1	2	4	6	9
32				TMS 3112 TMS 3122 TMS 3123	
64			TMS 3121 TMS 3417		
80			TMS 3120 TMS 3409		TMS 3135
96		TMS 3126			
100		TMS 3101 TMS 3127			TMS 3137
128		TMS 3114 TMS 3128			TMS 3138
132		TMS 3129			TMS 3139
133		TMS 3113 TMS 3130			TMS 3140
136		TMS 3131			
144		TMS 3132			
512	TMS 3401				
1024	TMS 3133				

GLOSSARY MEMORY INTEGRATED CIRCUIT TERMS AND DEFINITIONS

INTRODUCTION

This glossary consists of three parts: (1) general concepts and types of memories, (2) operating conditions and characteristics (including letter symbols), and (3) graphic symbols and logic conventions. The terms, symbols, abbreviations, and definitions used with memory integrated circuits have not, as yet, been standardized. All are currently under consideration by the EIA/JEDEC (Electronic Industries Association) and the IEC (International Electrotechnical Commission). The following are as consistent with the past and future works of these organizations as is possible to anticipate at this time.

PART I-GENERAL CONCEPTS AND TYPES OF MEMORIES

Chip-Enable Input

A control input to an integrated circuit that, depending on the logic level applied to it, will either permit or prevent operation of the device for input, internal transfer, manipulation, refreshing, and output of data.
NOTES: 1. Retention of data by a static memory is not affected by the logic level of the chip-enable input.
2. See "Chip-Select Input."

Chip-Select Input, Output-Enable Input

A control input to an integrated circuit that, depending on the logic level applied to it, will either permit or prevent the output of data from the device.
NOTES: 1. A chip-select input usually differs from a chip-enable input in that the chip-select input does not necessarily prevent input and internal manipulation of data when it disables the output, while the chip-enable input has that broader function.
2. When disabled by a chip-enable or chip-select signal, the outputs will assume a low level, a high level, or a floating (high-impedance) state, depending on the design of the particular circuit.

Dynamic (Read/Write) Memory

A read/write memory in which the cells require the repetitive application of control signals in order to retain the data stored.
NOTES: 1. The words "read/write" may be omitted from the term when no misunderstanding will result.
2. Such repetitive application of the control signals is normally called a refresh operation.
3. A dynamic memory may use static addressing or sensing circuits.
4. This definition applies whether the control signals are generated inside or outside the integrated circuit.

First-In, First-Out (FIFO) Memory; Digital Storage Buffer

A memory from which data bytes or words can be read in the same order, but not necessarily at the same rate, as that of the data entry.

Last-In, First-Out (LIFO) Memory

A memory from which data bytes or words can be read with the order reversed from that of data entry.

Mask-Programmed Read-Only Memory

A read-only memory in which the data content of each cell is determined during manufacture by the use of a mask, the data content thereafter being unalterable.

Memory Cell

The smallest subdivision of a memory into which data has been or can be entered, in which it is or can be stored, and from which it can be retrieved.

GLOSSARY

MEMORY INTEGRATED CIRCUIT TERMS AND DEFINITIONS

Memory Integrated Circuit

An integrated circuit consisting of memory cells and usually including associated circuits such as those for address selection, amplifiers, etc.

Parallel Access

A feature of a memory by which all the bits of a byte or word are entered simultaneously at several inputs or retrieved simultaneously from several outputs.

Programmable Read-Only Memory (PROM)

A read-only memory that after being manufactured can have the data content of each memory cell altered once only.

Random-Access Memory (RAM)

A memory that provides access to any of its address locations in any desired sequence with similar nominal access time for each location.
NOTE: Although this term can be used with either read/write or read-only memories, it is often used by itself in referring to a read/write memory.

Read-Only Memory (ROM)

A memory intended to be read only.
NOTE: Unless otherwise qualified, the term "read-only memory" implies that the content is unalterable and defined by construction.

Read/Write Memory

A memory in which each cell may be selected by applying appropriate electronic input signals and the stored data may be either (a) sensed at appropriate output terminals, or (b) changed in response to other similar electronic input signals.

Reprogrammable Read-Only Memory

A read-only memory that after being manufactured can have the data content of each memory cell altered more than once.

Serial Access

A feature of a memory by which all the bits of a byte or word are entered sequentially at a single input or retrieved sequentially from a single output.

Static (Read/Write) Memory
A read/write memory in which the data is retained in the absence of control signals.
NOTES: 1. The words "read/write" may be omitted from the term when no misunderstanding will result.
2. A static memory may use dynamic addressing or sensing circuits.

Volatile Memory

A memory the data content of which is lost when power is removed.

GLOSSARY
 memory integrated circuit terms and definitions

PART II-OPERATING CONDITIONS AND CHARACTERISTICS (INCLUDING LETTER SYMBOLS)

The symbols for quantities involving time use upper and lower case letters according to the following historically evolved principles:
a. Time itself, is always represented by a lower case t.
b. Subscripts are lower case when one or more letters represent single words, e.g. d for delay, su for setup, rd for read, wr for write.
c. Multiple subscripts are upper case when each letter stands for a different word, e.g. CS for chip select, PLH for propagation delay from low to high, RMW for read, modify write.

Access Time

The time between the application of a specified input pulse during a read cycle and the availability of valid data signals at an output.

Example symbology:

$\mathrm{t}_{\mathrm{a}}(\mathrm{ad}, \mathrm{LH})$	Access time from address, low-to-high-level output
$\mathrm{t}_{\mathrm{a}}(\mathrm{ad}, \mathrm{HL})$	Access time from address, high-to-low-level output
$\mathrm{t}_{\mathrm{a}}(\mathrm{CE})$	Access time from chip enable
$\mathrm{t}_{\mathrm{a}}(\mathrm{CS})$	Access time from chip select

Current

High-level input current, $\mathbf{I}_{1 \mathrm{H}}$
The current into* an input when a high-level voltage is applied to that input.

High-level output current, I OH
The current into* an output with input conditions applied that according to the product specification will establish a high level at the output.

Low-level input current, IIL
The current into* an input when a low-level voltage is applied to that input.

Low-level output current, IOL
The current into* an output with input conditions applied that according to the product specification will establish a ow level at the output.

Off-state (high-impedance-state) output current (of a three-state output), IOZ
The current into* an output having three-state capability with input conditions applied that according to the product specification will establish the high-impedance state at the output.

Short-circuit output current, IOS

The current into* an output when the output is short-circuited to ground (or other specified potential) with input conditions applied to establish the output logic level farthest from ground potential (or other specified potential).

Supply current, ICC, IDD, IEE, IGG, ISS
The current into ${ }^{*}$, respectively, the $\mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{GG}}$, or V_{SS} supply terminal of an integrated circuit.

[^0]
GLOSSARY

MEMORY INTEGRATED CIRCUIT TERMS AND DEFINITIONS

Cycle Time

Read cycle time, $\mathbf{t}_{\mathbf{c}}(\mathrm{rd})$ (see note)
The time interval between the start of a read cycle and the start of the next cycle,
Read, modify write cycle time, $\mathrm{t}_{\mathbf{c}}$ (RMW) (see note)
The time interval between the start of a cycle in which the memory is read and new data is entered and the start of the next cycle.

Write cycle time, $\mathrm{t}_{\mathbf{c}}(\mathbf{w r})$ (see note)
The time interval between the start of a write cycle and the start of the next cycle.
NOTE: The read, write, or read, modify write cycle time is the actual interval between two impulses and may be insufficient for the completion of operations within the memory. A minimum value is specified that is the shortest time in which the memory will perform its read and/or write function correctly.

Data Valid Time

Data valid time with respect to chip select, tDV(CS)
The interval following chip deselection during which output data continues to be valid.

Data valid time with respect to address, tDV(ad)
The interval following an initial change of address during which data stored at the initial address continues to be valid at the output.

Delay Time

The time between the specified reference points on two waveforms.

Example symbology:

$\mathrm{t}_{\mathrm{d}}(\phi 1-\phi 2)$	Delay time, clock 1 to clock 2
$\mathrm{t}_{\mathrm{d}}(\mathrm{PH}-\mathrm{CEH})$	Delay time, precharge high to chip enable high

Hold Time

Hold time, t_{h}

The interval during which a signal is retained at a specified input terminal after an active transition occurs at another specified input terminal.
NOTES: 1. The hold time is the actual time between two events and may be insufficient to accomplish the intended result. A minimum value is specified that is the shortest interval for which correct operation of the logic element is guaranteed.
2. The hold time may have a negative value in which case the minimum limit defines the longest interval (between the release of data and the active transition) for which correct operation of the logic element is guaranteed.

Example symbology:

$t_{h}(\mathrm{ad})$	Address hold time
$t_{h}(d a)$	Data hold time
$t_{h}(\mathrm{rd})$	Read hold time
$t_{h}(\mathrm{wr})$	Write hold time
$t_{\mathrm{h}}(\mathrm{rs})$	Reset hold time

GLOSSARY
 MEMORY INTEGRATED CIRCUIT TERMS AND DEFINITIONS

Output Enable and Disable Time

Output enable time (of a three-state output) to high level, $\mathbf{t} \mathbf{P Z H}$ (or low level, tpZL)
The propagation delay time between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined high (or low) level.

Output enable time (of a three-state output) to high or low level, tpZX
The propagation delay time between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to either of the defined active levels (high or low).

Output disable time (of a three-state output) from high level, tpHZ (or low level, tpLZ)
The propagation delay time between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined high (or low) level to a high-impedance (off) state.

Output disable time (of a three-state output) from high or low level, tpXZ
The propagation delay time between the specified reference points on the input and output voltage waveforms with the three-state output changing from either of the defined active levels (high or low) to a high-impedance (off) state.

Propagation Time

Propagation delay time, tPD

The time between the specified reference points on the input and output voltage waveforms with the output changing from one defined level (high or low) to the other defined level.

Propagation delay time, low-to-high-level output, tPLH
The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined low level to the defined high level.

Propagation delay time, high-to-low-level output, tPHL
The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level.

Pulse Width

Pulse width, t_{w}
The time interval between specified reference points on the leading and trailing edges of the pulse waveform.
Example symbology:

$t_{W}(C E H)$	Pulse width, chip enable high
$t_{w}(C E L)$	Pulse width, chip enable low
$t_{w}(c \mid r)$	Clear pulse width
$t_{W}(C S)$	Chip-select pulse width
$t_{W}(\phi)$	Clock pulse width
$t_{W}(r s)$	Reset pulse width
$t_{w}(w r)$	Write pulse width

GLOSSARY

MEMORY INTEGRATED CIRCUIT TERMS AND DEFINITIONS

Recovery Time

Sense recovery time, tSR
The time interval needed to switch a memory from a write mode to a read mode and to obtain valid data signals at the output.

Write recovery time

The time interval between the termination of a write pulse and the initiation of a new cycle.

Refresh Time

Refresh time, trefresh $^{(s e e}$ note)

The time interval between successive signals that are intended to restore the level in a dynamic memory cell to its original level.
NOTE: The refresh time is the actual time between two refresh operations and may be insufficient to protect the stored data. A maximum value is specified that is the longest interval for which correct operation is guaranteed.

Setup Time

Setup time, $\mathrm{t}_{\text {su }}$

The time interval between the application of a signal that is maintained at a specified input terminal and a consecutive active transition at another specified input terminal.
NOTES: 1. The setup time is the actual time between two events and may be insufficient to accomplish the setup. A minimum value is specified that is the shortest interval for which correct operation of the logic element is guaranteed.
2. The setup time may have a negative value in which case the minimum limit defines the longest interval (between the active transition and the application of the other signal) for which correct operation of the logic element is guaranteed.

Example symbology:

$\mathrm{t}_{\text {su }}(\mathrm{ad})$	Address setup time
$\mathrm{t}_{\text {su }}(\mathrm{da)}$	Data setup time
$\mathrm{t}_{\text {su }}(\mathrm{rd})$	Read setup time
$\mathrm{t}_{\text {su }}(\mathrm{wr})$	Write setup time

Transition Time

Transition time, low-to-high-level, tTLH

The time between a specified low-level voltage and a specified high-level voltage on a waveform that is changing from the defined low level to the defined high level.

Transition time, high-to-low-level, tTHL
The time between a specified high-level voltage and a specified low-level voltage on a waveform that is changing from the defined high level to the defined low level.

Voltage

High-level input voltage, $\mathrm{V}_{\mathbf{I H}}$
An input voltage within the more positive (less negative) of the two ranges of values used to represent the binary variables.
NOTE: A minimum or B-limit value ($\mathrm{V}_{\mathrm{IHB}}, \mathrm{V}_{\mathrm{IH}}{ }^{\prime} \mathrm{B}$) is specified that is the least positive (most negative) value of high-level input voltage for which operation of the logic element within specification limits is guaranteed. For ECL circuits, a least-negative-limit value ($V_{I H A}$) is also specified.

GLOSSARY
 memory integrated circuit terms and definitions

High-level output voltage, $\mathrm{VOH}_{\mathrm{OH}}$
The voltage at an output terminal with input conditions applied that according to the product specification will establish a high level at the output.

Input clamp voltage, V_{IK}
An input voltage in a region of relatively low differential resistance that serves to limit the input voltage swing.

Low-level input voltage, $\mathrm{V}_{\text {IL }}$

An input voltage level within the less positive (more negative) of the two ranges of values used to represent the binary variables.
NOTE: A maximum or A-limit value (VILA or VIL'A) is specified that is the most positive (least negative) value of low-level input voltage for which operation of the logic element within specification limits is guaranteed. For ECL circuits, a most-negative-limit value (VILB) is also specified.

Low-level output voltage, V_{OL}
The voltage at an output terminal with input conditions applied that according to the product specification will establish a low level at the output.

PART III-GRAPHIC SYMBOLS AND LOGIC CONVENTIONS

All graphic symbols shown in this section are standard in the USA (ANSI and IEEE) and internationally (IEC).

Negation and Polarity Indication, Use of Bars

In this book, the logic negation symbol 0 and the polarity indicator Δ are used interchangeably to indicate:
a. A control input (e.g. chip select) that is active when it is at its low logic level.
b. A dynamic input (e.g. clock) that is active on its high-to-low transition.
c. A data input that is out of phase with a data output that is not marked with a negation symbol or polarity indicator.
d. A data output that is out of phase with a data input that is not marked with a negation symbol or polarity indicator.

NOTE: If both data input and output are marked with a negation symbol or polarity indicator, they are in phase with each other. When used with a memory, the terms "in phase," "out of phase," and "inverted" refer to the relationship between the level at the input when a particular data bit is entered and the level at the output when that same bit is retrieved, not to the input and output levels at a given instant.

These three symbols are equivalent and represent a noninverting function:

These four symbols are equivalent and represent an inverting function:

GLOSSARY

MEMORY INTEGRATED CIRCUIT TERMS AND DEFINITIONS

Letter abbreviations that represent inputs or outputs meeting criteria a, b, c, or d above are usually used with a bar.
Examples: $\overline{\mathrm{CS}}$ and $\overline{\mathrm{E}}$ represent chip-select and enable inputs that select and enable when low and do not select and enable when high. $\overline{\mathrm{DO}}$ represents a data output the signal levels of which are inverted (out of phase) with respect to data input DI.

Transistor Graphic Symbols

N-P-N BIPOLAR
TRANSISTOR

CHOTTKY-CLAMPED N-P-N BIPOLAR TRANSISTOR

P-N-P BIPOLAR TRANSISTOR
 DEPLETION-TYPE FIELD-EFFECT TRANSISTOR

N-CHANNEL MOS ENHANCEMENT-TYPE FIELD-EFFECT TRANSISTOR

P-CHANNEL MOS FIELD-EFFECT TRANSISTOR

P-CHANNEL MOS ENHANCEMENT-TYPE FIELD-EFFECT TRANSISTOR

Interchangeability Guide

INTERCHANGEABILITY GUIDE

Direct replacements were based on similarity of electrical and mechanical characteristics as shown in currently published data. Interchangeability in particular applications is not guaranteed. Before using a device as a substitute, the user should compare the specifications of the substitute device with the specifications of the original.

Texas Instruments makes no warranty as to the information furnished and buyer assumes all risk in the use thereof. No liability is assumed for damages resulting from the use of the information contained in this list.

ECL CIRCUITS

(alphabetically by manufacturers)

ECL package cross-reference:

Ceramic dual-in-line
Ceramic and metal dual-in-line
$\frac{T I}{J} \frac{\text { Fairchild }}{D} \frac{\text { Motorola }}{L} \frac{\text { Signetics }}{F}$

FAIRCHILD SEMICONDUCTOR

FSC	TI DIRECT TYPE
REPLACEMENT	
F10405	SN10147
F10410	SN10144

MOTOROLA

MOTOROLA TYPE	TI DIRECT REPLACEMENT
MMC10140	
MMC10142	SN10140
SN10142	
MMC10144	SN10144
MMC10145	SN10145
MMC10147	SN10147
MMC10148	SN10148
SIGNETICS	

SIGNETICS TYPE		TI DIRECT REPLACEMENT
S10139		SN10139
S10140		SN10140
S10144	SN10144	
S10145	SN10145	
S10148		SN10148

alphabetically by manufacturers)
ADVANCED MICRO DEVICES

AMD		TI DIRECT	RECOMMENDED	
TYPE	DESCRIPTION	REPLACEMENT	FOR NEW DESIGN	DESCRIPTION
AM 1002	2×128 SSR		TMS 3128/3138	2×128 SSR/9 $\times 128$ SSR
AM 1402A	4×256 DSR		TMS 3133	1×1024 SSR
AM 1403A	2×512 DSR		TMS 3133	1×1024 SSR
AM 1404A	1×1024 DSR		TMS 3133	1×1024 SSR
AM 1406	$2 \times 100 \mathrm{DSR}$		TMS 3127/3137	$2 \times 100 / 9 \times 100$ SSR
AM 1407	2×100 DSR		TMS 3127/3137	$2 \times 100 / 9 \times 100$ SSR
AM 2505	1×512 DSR		TMS 3133	1×1024 SSR
AM 2512	1×1024 DSR		TMS 3133	1×1024 SSR
AM 2521	2×128 SSR		TMS 3128/3138	2×128 SSR/9 $\times 128$ SSR
AM 2524	1×512 DSR		TMS 3133	1×1024 SSR
AM 2525	1×1024 DSR		TMS 3133	1×1024 SSR
AM 2533	1×1024 SSR	TMS 3133	TMS 3133	1×1024 SSR
AM 2803	2×512 DSR		TMS 3133	1×1024 SSR
AM 2804	1×1024 DSR		TMS 3133	1×1024 SSR
AM 2805	1×512 DSR		TMS 3133	1×1024 SSR
AM 2806	1×1024 DSR		TMS 3133	1×1024 SSR
AM 2807	1×512 DSR		TMS 3133	1×1024 SSR
AM 2808	1×1024 DSR		TMS 3133	1×1024 SSR
AM 2809	2×128 SSR		TMS 3128/3138	2×128 SSR/9 $\times 128$ SSR
AM 2810	2×128 SSR		TMS 3128/3138	2×128 SSR $/ 9 \times 128$ SSR
AM 2814	2×128 SSR	TMS 3114	TMS 3128	2×128 SSR
AM 2833	1×1024 SSR	TMS 3133	TMS 3133	1×1024 SSR
AM 2841	64×4 FIFO		TMS 4024	64×9 FIFO
AM 3114	2×128 SSR	TMS 3114	TMS 3128/3138	2×128 SSR/9 $\times 128$ SSR
AM 3341	64×4 FIFO		TMS 4024	64×9 FIFO
AM 4057	1×512 SSR		TMS 3133	1×1024 SSR
AM 5057	1×512 SSR		TMS 3133	1×1024 SSR
AM 9102	1×1024 SRAM	TMS 4034	TMS 4051	1×4096 DRAM
AM 9102A	1×1024 SRAM	TMS 4033	TMS 4051	1×4096 DRAM
AMERICAN MICROSYSTEMS INCORPORATED				

AMI	
TYPE	DESCRIPTION
S 1463	2×64 SSR
S 1670	2×100 SSR
S 1687	1×1024 DSR
S 1701	2×512 DSR
S 1709	$8 \times 13 \mathrm{FIFO}$
S 2103	1×1024 DRAM
S 2146	1×1024 DRAM
S 3102	1×1024 SRAM
S 3102A	1×1024 SRAM
S 3102B	1×1024 SRAM
S 3103	1×1024 DRAM

TI DIRECT
REPLACEMENT
TMS 4035
TMS 4033
TMS 4034

FOR NEW DESIGN	DESCRIPTION
TMS 3121	4×64 SSR
TMS 3127/3137	$2 \times 100 / 9 \times 100$ SSR
TMS 3133	1×1024 SSR
TMS 3133	1×1024 SSR
TMS 4024	64×9 FIFO
كTMS 4062/4063	1×1024 DRAM
TMS 4030	1×4096 DRAM
TMS 4062/4063	1×1024 DRAM
LTMS 4030	1×4096 DRAM
TMS 4051	1×4096 DRAM
TMS 4051	1×4096 DRAM
TMS 4051	1×4096 DRAM
TMS 4062/4063	1×1024 DRAM
LTMS 4050	1×4096 DRAM

AMI TYPE	DESCRIPTION	TI DIRECT	RECOMMENDED	
		REPLACEMENT	FOR NEW DESIGN	DESCRIPTION
S 4006	1×1024 DRAM		5 TMS 4062/4063	1×1024 DRAM
			LTMS 4050	1×4096 DRAM
S 4008	1×1024 DRAM		$\{$ TMS 4062/4063	1×1024 DRAM
			< TMS 4050	1×4096 DRAM
ELECTRONIC ARRAYS				
EA		TI DIRECT	RECOMMENDED	
TYPE	DESCRIPTION	REPLACEMENT	FOR NEW DESIGN	DESCRIPTION
EA 1004	$2 \times 100 \mathrm{SSR}$		TMS 3127/3137	$2 \times 100 / 9 \times 100$ SSR
EA 1005	2×100 SSR		TMS 3127/3137	$2 \times 100 / 9 \times 100$ SSR
EA 1008	2×80 SSR		TMS 3120/3135	$4 \times 80 / 9 \times 80$ SSR
EA 1009	2×80 SSR		TMS 3120/3135	$4 \times 80 / 9 \times 80$ SSR
EA 1012	2×50 SSR		TMS 3002	2×50 SSR
EA 1200	4×32 DSR		TMS 3122/23	6×32 SSR
EA 1201	4×32 DSR		TMS 3122/23	6×32 SSR
EA 1206	1×512 DSR		TMS 3133	1×1024 SSR
EA 1212	1×512 DSR		TMS 3133	1×1024 SSR
EA 1213	4×80 DSR		TMS 3120/3135	$4 \times 80 / 9 \times 80$ SSR
EA 1214	4×80 DSR		TMS 3120/3135	$4 \times 80 / 9 \times 80$ SSR
EA 2102	1×1024 SRAM	TMS 4035	TMS 4035	1×1024 SRAM
EA 3501	ASCII GEN		TMS 2501	ASCII GEN
EA 3701	ASCII GEN		TMS 4103	ASCII GEN
EA 4501	ASCII GEN		TMS 2501	ASCII GEN
EA 4800	8×2048 ROM	TMS 4800	TMS 4800	8×2048 ROM 4×4096 ROM
EA 4900	8×2048 ROM	TMS 4800	TMS 4800	$\begin{aligned} & 8 \times 2048 \text { ROM } \\ & 4 \times 4096 \text { ROM } \end{aligned}$

FAIRCHILD SEMICONDUCTOR

GENERAL INSTRUMENT

| GI |
| :--- | :--- |
| TYPE |\quad| DESCRIPTION | |
| :--- | :--- |
| SL-5-2100 | 2×128 SSR |
| SL-5-C2100 | $2 \times 100 \mathrm{SSR}$ |
| SL-5-4032 | 4×32 SSR |
| SL-6-2064 | 2×64 SSR |
| SL-9-1512 | 1×512 SSR |
| SL-9-4080 | $4 \times 80 \mathrm{SSR}$ |
| DL-9-1402A | 4×256 DSR |
| DL-9-1403A | 2×512 DSR |
| DL-9-1404A | 1×1024 DSR |
| DL-6-2100 | 2×100 DSR |
| DL-6-2128 | 2×128 DSR |
| RA-9-1103 | 1×1024 DRAM |
| AY-5-1012 | UART |

TI DIRECT REPLACEMENT	RECOMMENDED	DESCRIPTION
	TMS 3128/3138	2×128 SSR/9 $\times 128$ SSR
	TMS 3127/3137	$2 \times 100 / 9 \times 100 \mathrm{SSR}$
	TMS 3122	6×32 SSR
	TMS 3121	4×64 SSR
	TMS 3133	1×1024 SSR
	TMS 3120/3135	4×80 SSR $/ 9 \times 80$ SSR
	TMS 3133	1×1024 SSR
	TMS 3133	1×1024 SSR
	TMS 3133	1×1024 SSR
	TMS 3127/3137	$2 \times 100 / 9 \times 100 \mathrm{SSR}$
	TMS 3128/3138	2×128 SSR $/ 9 \times 128$ SSR
	¢TMS 4062/63	51×1024 DRAM
	LTMS 4050	1×4096 DRAM
TMS 6011	TMS 6011	UART

INTEL	
TYPE	DESCRIPTION
1103	1×1024 DRAM
1311/12/13	ASCII GEN
C1402A	4×256 DSR
C1403A	2×512 DSR
C1404A	1×1024 DSR
C1405A	1×512 DSR
1406/1506	8×100 DSR
1407/1507	2×100 SDR
2101	4×256 SRAM
2101-1	4×256 SRAM
2101-2	4×256 SRAM
2102-1	1×1024 SRAM
2102-2	1×1024 SRAM
2102	1×1024 SRAM
2111	4×256 SRAM
2111-1	4×256 SRAM
2111-2	4×256 SRAM
2112	4×256 SRAM
2112-2	4×256 SRAM
P2405	1×1024 DSR
2107A	1×4096 DRAM
8308	8×1024 ROM

TIDIRECT	RECOMMENDED	
REPLACEMENT	FOR NEW DESIGN	DESCRIPTION
TMS 1103	\%TMS 4050/4051	$\int 1 \times 4096$ DRAM
	<TMS4060	< 1×4096 DRAM
	TMS 2501	ASCII GEN
	TMS 3133	1×1024 SSR
	TMS 3133	1×1024 SSR
	TMS 3133	1×1024 SSR
	TMS 3133	1×1024 SSR
	TMS 3127/3137	$2 \times 100 / 9 \times 100$ SSR
	TMS 3127/3137	$2 \times 100 / 9 \times 100 \mathrm{SSR}$
TMS 4039	TMS 4039	4×256 SRAM
TMS 4039-2	TMS 4039-2	4×256 SRAM
TMS 4039-1	TMS 4039-1	4×256 SRAM
TMS 4033	TMS 4033	1×1024 SRAM
TMS 4034	TMS 4034	1×1024 SRAM
TMS 4035	TMS 4035	1×1024 SRAM
TMS 4042	TMS 4042	4×256 SRAM
TMS 4042-2	TMS 4042-2	4×256 SRAM
TMS 4042-1	TMS 4043-1	4×256 SRAM
TMS 4043	TMS 4043	4×256 SRAM
TMS 4043-1	TMS 4043-1	4×256 SRAM
	TMS 4043-2	
	TMS 3133	1×1024 SSR
TMS 4030/4060	TMS 4030/4060	1×4096 DRAM
TMS 4700	TMS 4700	8×1024 ROM

INTERCHANGEABILITY GUIDE

INTERSIL		INTERSIL		
		TI DIRECT	RECOMMENDED	
TYPE	DESCRIPTION	REPLACEMENT	FOR NEW DESIGN	DESCRIPTION
IM 7552	1×1024 SRAM	TMS 4035	TMS 4035/4051	1×1024 SRAM
IM 7552-2	1×1024 SRAM	TMS 4034	TMS 4034/4051	1×1024 SRAM
IM 7552-1	1×1024 SRAM	TMS 4033	TMS 4033/4051	1×1024 SRAM
IM 7702	4×256 DSR		TMS 3133	1×1024 SSR
IM 7703	$2 \times 512 \mathrm{DSR}$		TMS 3133	1×1024 SSR
IM 7704	1×1024 DSR		TMS 3133	1×1024 SSR
IM 7712	1×1024 DSR		TMS 3133	1×1024 SSR
IM 7722	1×1024 DSR		TMS 3133	1×1024 SSR
IM 7780	4×80 DSR	TMS 3409	TMS 3120/3135	$4 \times 80 \mathrm{DSR} / \mathrm{SSR} / 9 \times 80$ SSR
MOSTEK				
MOSTEK		TI DIRECT	RECOMMENDED	
TYPE	DESCRIPTION	REPLACEMENT	FOR NEW DESIGN	DESCRIPTION
1002	2×128 SSR		TMS 3128/3138	2×128 SSR/9 $\times 128$ SSR
1007	4×80 DSR	TMS 3409	TMS 3120/3135	4×80 DSR/SSR/9 $\times 80$ SSR
4096	1×4096 DRAM		TMS 4050/4060	1×4096 DRAM
4102P	$1 \times 1024-$ SRAM	TMS 4035	TMS 4051	1×1024 SRAM
4102P-1	1×1024 SRAM	TMS 4033	TMS 4051	1×1024 SRAM
NATIONAL SEMICONDUCTOR				
NATIONAL		TI DIRECT	RECOMMENDED	
TYPE	DESCRIPTION	REPLACEMENT	FOR NEW DESIGN	DESCRIPTION
MM 402/3	2×50 DSR		TMS 3002	8×50 SSR
MM 406/7	2×100 DSR		TMS 3127/3137	$2 \times 100 / 9 \times 100$ SSR
MM 1103	1×1024 DRAM	TMS 1103	TMS 4050	1×1024 DRAM
MM 1402A	4×256 DSR		TMS 3133	1×1024 SSR
MM 1403A	2×512 DSR		TMS 3133	1×1024 SSR
MM 1404A	1×1024 DSR		TMS 3133	1×1024 SSR
MM 2102	1×1024 SRAM	TMS 4035	TMS 4035	1×1024 SRAM
MM 4006A	2×100 DSR		TMS 3127/3137	$2 \times 100 / 9 \times 100$ SSR
MM 4013	1×1024 DSR		TMS 3133	1×1024 SSR
MM 4016	1×512 DSR		TMS 3133	1×1024 SSR
MM 4020	4×80 DSR		TMS 3120/3135	$4 \times 80 / 9 \times 80$ SSR
MM 4105	4×64 DSR		TMS 3121	4×64 SSR
MM 4052	2×80 SSR		TMS 3120/3135	$2 \times 80 / 9 \times 80$ SSR
MM 4053	8×100 SSR		TMS 3127/3137	$2 \times 100 / 9 \times 100$ SSR
MM 4056	2×256 SSR		TMS 3133	1×1024 SSR
MM 4057	1×512 SSR		TMS 3133	1×1024 SSR
MM 4060	2×128 SSR	TMS 3128	TMS 3128/3138	2×128 SSR/9 $\times 128$ SSR
MM 5058	1×1024 SSR	TMS 3133	TMS 3133	1×1024 SSR
MM 5260	1×1024 DRAM		$\left\{\begin{array}{l} \text { TMS 4062/63 } \\ \text { TMS 4050/4060 } \end{array}\right.$	$\begin{aligned} & -1 \times 1024 \text { DRAM } \\ & 1 \times 4096 \text { DRAM } \end{aligned}$

NATIONAL SEMICONDUCTOR

SIGNETICS				
SIGNETICS		TI DIRECT	RECOMMENDED	
TYPE	DESCRIPTION	REPLACEMENT	FOR NEW DESIGN	DESCRIPTION
1103	1×1024 DRAM	TMS 1103	5 TMS 4062/63	$\int 1 \times 1024$ DRAM
1103	1×1024 DRAM	TMS 1103	<TMS 4050/4060	< 1×4096 DRAM
2502	4×256 DSR		TMS 3133	1×1024 SSR
2503	2×512 DSR		TMS 3133	1×1024 SSR
2504	1×1024 DSR		TMS 3133	1×1024 SSR
2505	1×512 DSR		TMS 3133	1×1024 SSR
2506	2×100 DSR		TMS 3127/3137	$2 \times 100 / 9 \times 100$ SSR
2507	$2 \times 100 \mathrm{DSR}$		TMS 3127/3137	$2 \times 100 / 9 \times 100$ SSR
2510	$2 \times 100 \mathrm{SSR}$		TMS 3127/3137	$2 \times 100 / 9 \times 100 \mathrm{SSR}$
2512	1×1024 DSR		TMS 3133	1×1024 SSR
2513	2560 ROM		TMS 2501	2560 ASCII GEN
2517	2×100 DSR		TMS 3127/3137	$2 \times 100 / 9 \times 100 \mathrm{SSR}$
2518	6×32 SSR	TMS 3122	TMS 3122	6×32 SSR
2521	2×128 SSR	TMS 3128	TMS 3128/3138	2×128 SSR $/ 9 \times 128$ SSR
2522	2×132 SSR	TMS 3129	TMS 3129/3139	$2 \times 132 \mathrm{SSR} / 9 \times 132 \mathrm{SSR}$
2524	1×512 DSR		TMS 3133	1×1024 SSR
2525	1×1024 DSR		TMS 3133	1×1024 SSR
2532	4×80 SSR	TMS 3120	TMS 3120/3135	$4 \times 80 / 9 \times 80$ SSR
2533	1×1024 SSR	TMS 3133	TMS 3133	1×1024 SSR
2535	32×8 FIFO		TMS 4024	64×9 FIFO
2602	1×1024 SRAM	TMS 4035	TMS 4051	1×1024 SRAM
2602-1	1×1024 SRAM	TMS 4033	TMS 4051	1×1024 SRAM
		WESTERN DIGITAL		
WD		TI DIRECT	RECOMMENDED	
TYPE	DESCRIPTION	REPLACEMENT	FOR NEW DESIGN	DESCRIPTION
TR 1602	UART	TMS 6011	TMS 6011	UART
FR 1502E	40×9 FIFO		TMS 4024	64×9 FIFO

INTERCHANGEABILITY GUIDE

TTL MEMORIES
 (alphabetically by manufacturers)

ADVANCED MICRO DEVICES
Example of AMD order code:

FAIRCHILD SEMICONDUCTOR
Example of Fairchild order code:

INTERCHANGEABILITY GUIDE

HARRIS SEMICONDUCTOR
Example of Harris order code:

Example of Intel order code:

	Prefix		Type	Suffix		
	Package ${ }^{\text {T }}$					
C = CDIP (Metal lid)						
$\mathrm{D}=$ CDIP						
$\mathrm{P}=$ Plastic DIP						
INTEL TYPE	TI DIRECT REPLACEMENT	RECOMMENDED FOR NEW DESIGNS		INTEL TYPE	TI DIRECT REPLACEMENT	RECOMMENDED FOR NEW DESIGNS
3101	SN54S289/SN74S289	SN54S289/SN74S289		3110	SN74S309	SN74S209
3101A	SN54S289/SN74S289	SN54S289/SN74S289		3301A	SN54187/SN74187	SN54187/SN74187
3106	SN54S201/SN74S201	SN54S201/SN74S201		3304		SN54S473/SN74S473
3106A	SN54S201/SN74S201	SN54S201/SN74S201		3601	SN54S387/SN74S387	SN54S387/SN74S387
3107	SN54S301/SN74S301	SN54S301/SN74S301		3604		SN54S473/SN74S473
3107A	SN54S301/SN74S301	SN54S301/SN74S301		3624		SN54S472/SN74S472

INTERCHANGEABILITY GUIDE

INTERCHANGEABILITY GUIDE

MONOLITHIC MEMORIES, INC. (continued)							
MMI TYPE	TI DIRECT REPLACEMENT	RECOMMENDED FOR NEW DESIGNS	$\begin{gathered} \text { MMI } \\ \text { TYPE } \\ \hline \end{gathered}$	TI DIRECT REPLACEMENT	RECOMMENDED FOR NEW DESIGNS		
5530	SN54S301	SN54S301	6235		SN74S470		
5531	SN54S201	SN54S201	6300	SN74S387	SN74S387		
5560	SN54S289	SN54S289	6301	SN74S287	SN74S287		
5561	SN54S189	SN54S189	6305	(SN74S270 ROM)	SN74S470		
6200	SN74187	SN74187	6306	(SN74S370 ROM)	SN74S471		
6201	(SN74S387 PROM)	SN74S270	6330	SN74S188	SN74S188		
6205	SN74S270	SN74S270	6331	SN74S288	SN74S288		
6206	SN74S370	SN74S370	6335		SN74S470		
6210		SN74S470	6340		SN74S473		
6225		SN74S473	6530	SN74S301	SN74S301		
6230	SN7488A	SN7488A	6531	SN74S201	SN74S201		
6231	(SN74S188 PROM)	SN74S371	6560	SN74S289	SN74S289		
			6561	SN74S189	SN74S189		
NATIONAL SEMICONDUCTOR							
	Prefix	Type		Suffix			
	DM			${ }^{\mathrm{N}}$			
Digital Monolithic		$\frac{\text { Temperature Range }}{7=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}}$		Package			
		$\overline{\mathrm{D}}=\mathrm{Glass} / \mathrm{M}$	DIP				
		$8=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	F = Flat Package				
		N = Molded DIP					
NSC	TI DIRECT			RECOMMENDED	NSC	TI DIRECT	RECOMMENDED
TYPE	REPLACEMENT	FOR NEW DESIGNS	TYPE	REPLACEMENT	FOR NEW DESIGNS		
DM7573	SN54S387	SN54S387	DM8574	SN74S287	SN74S287		
DM7574	SN54S287	SN54S287	DM8577	SN74S188	SN74S188		
DM7577	SN54S188	SN54S188	DM8578	SN74S288	SN74S288		
DM7578	SN54S288	SN54S288	DM8582	SN74S301	SN74S301		
DM7595		SN54S473	DM8595		SN74S473		
DM7596		SN54S472	DM8596		SN74S472		
DM7597	SN54S370	SN54S370	DM8597	SN74S370	SN74S370		
DM7598		SN54S471	DM8598		SN74S471		
DM7599	SN54S189	SN54S189	DM8599	SN74S189	SN74S189		
DM7795		SN54S473	DM85S99	SN74S189	SN74S189		
DM7796		SN54S472	DM8795		SN74S473		
DM8573	SN74S387	SN74S387	DM8796		SN74S472		

INTERCHANGEABILITY GUIDE

signetics
Example of Signetics order code:

MOS
 Memories

- 1024×1-Bit Organization
- Low Power Dissipation
- Input Interface
- Fully Decoded, On-Chip Address Decode
- Static Charge Protection
- Output Interface
- OR-Tie Capability
- Address Access Time
- TMS 1103 JL, NL . . . 300 ns
- TMS 1103-1 JL, NL . . . 150 ns
- P-Channel Silicon-Gate Technology
- 18-Pin 300-Mil Dual-In-Line Packages

description

The TMS $1103 \mathrm{JL}, \mathrm{NL}$ and TMS 1103-1 JL, NL are monolithic random-access memory devices organized as 1024 one-bit words. Outputs may be OR-tied for simple memory expansion since a particular device can be activated by a chip-enable signal. Stored information is read nondestructively and all cells in any row are refreshed by addressing that row at least once every 2-milliseconds for the TMS 1103, 1-millisecond for the TMS 1103-1. These RAMs are fabricated with P-channel silicon-gate enhancement-type technology. Two power supplies and three control clock signals are required with address inputs decoded on the chip. The TMS 1103-1 is a faster-access version of the TMS 1103 with improved cycle times. The TMS 1103 and TMS 1103-1 are offered in both 18 -pin ceramic (JL suffix) and plastic (NL suffix) dual-in-line packages.

operation

addresses (A0-A9)
Address terminals are used to activate a particular cell in a 32×32 array. Each row address (A0-A4) and each column address ($A 5-A 9$) of 5 bits uniquely specify a 10 -bit address for a single memory cell. All address signals must be stable during transitions of the chip-enable, read/write, or data-in control signals.

chip enable ($\overline{\mathrm{CE}}$)

The chip-enable terminal enables one particular device of an array whose outputs are connected to a common data bus. Chip enable must be low during any read or write interval to allow data to enter or exit.
precharge ($\overline{\mathbf{P}}$)
The precharge terminal must be low at the start of any read or write cycle and remain low for a specified time interval after chip enable drops to a low. This overlap interval must be maintained between a specified minimum and maximum time in order to maintain the integrity of stored data.

read/write (R / \bar{W})

The read/write input terminal gates data out of or into the addressed memory cell. Read/write is low when data is written and high during a read interval.
data in (DI)
The data-in terminal connects the incoming data bus to the addressed cell for a write operation.
data out ($\overline{\mathrm{DO}}$)
Stored data appears at the data-out terminal as the complement of the data-in logic level. Information on the data-out terminal is sensed just prior to the rise of chip enable in a read-only cycle and prior to the fall of read/write in a read, modify write cycle.

TMS 1103 JL, NL; TMS 1103-1 JL, NL 1024-BIT DYNAMIC RANDOM-ACCESS MEMORIES

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Under absolute maximum ratings, voltage values are with respect to the most-positive supply voltage, V_{BB} (substrate). Throughout the remainder of this data sheet, voltage values are with respect to $V_{D D}$.
recommended operating conditions

PARAMETER	TMS 1103			TMS 1103.1			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V ${ }_{\text {DD }}$	0			0			V
Supply voltage, $\mathrm{V}_{\text {SS }}$	15.2	16	16.8	18	19	20	V
Supply voltage, $\mathrm{V}_{\mathrm{BB}}-\mathrm{V}_{\text {SS }}$ (see Note 2)	3		4	3		4	V
Operating free-air temperature, T_{A}	0		70	0		55	${ }^{\circ} \mathrm{C}$

NOTE 2. $\mathrm{V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}}$ supply should be applied at the same time as or before V_{SS}.
electrical characteristics at specified free-air temperatures
$\mathrm{V}_{\mathrm{SS}}=16.8 \mathrm{~V},\left(\mathrm{~V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}}\right)=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$ (TMS $\left.1103 \mathrm{JL}, \mathrm{NL}\right)$
$V_{S S}=20 \mathrm{~V},\left(\mathrm{~V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}}\right)=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}(T M S$ 1103-1 JL, NL)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	TMS 1103			TMS 1103-1			UNIT	
			MIN	TYP \ddagger	MAX	MIN	TYP\#	MAX			
$V_{\text {IH }}$	High-level input voltage			$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$	$\mathrm{V}_{\text {SS }}$-1		$\mathrm{V}_{\text {SS }}+1$	$\mathrm{V}_{\text {SS }}-1$		$\mathrm{V}_{\text {SS }}+1$	V
			$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$	$\mathrm{V}_{\text {SS }}-0.7$		$\mathrm{V}_{\mathrm{SS}}+1$	$\mathrm{V}_{\text {SS }}-1$		$v_{S S}+1$		
$V_{\text {IL }}$	Low-level input voltage fall addresses and data-in lines)		$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$	$\mathrm{V}_{\text {SS }}-17$		-14.2	$\mathrm{V}_{\text {SS }}-20$		SS -18	V	
			$\mathrm{T}_{A}=\mathrm{MAX}$	$\mathrm{V}_{\text {SS }}-17$		-14.5	$V_{\text {SS }}-20$		SS -18		
$V_{\text {IL }}$	Low-level input voltage (precharge, chipenable, and read/write inputs) (see Note 3)		$\mathrm{T}_{A}=\mathrm{MIN}$	$\mathrm{V}_{\text {SS }}-17$		-14.7	$\mathrm{V}_{\text {SS }}-20$		SS -18	V	
			$T_{A}=$ MAX	$\mathrm{V}_{\text {SS }}-17$		SS -15	$\mathrm{V}_{\text {SS }}-20$		SS -18		
VOH	High-level output voltage		$\mathrm{R}_{\mathrm{L}}=100 \Omega, \quad \mathrm{~T}_{\mathrm{A}}=25{ }^{\circ} \mathrm{C}$	60	90	500	115	130	900	mV	
			$\mathrm{R}_{\mathrm{L}}=100 \Omega, \quad \mathrm{~T}_{\mathrm{A}}=\mathrm{MAX}$	50	80	500	90	115	900		
1	Input current		$\mathrm{V}_{1}=0 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=$ MIN to MAX			1			10	$\mu \mathrm{A}$$\mu \mathrm{A}$	
${ }^{\mathrm{O}} \mathrm{OH}$	High-level output current		$\mathrm{R}_{\mathrm{L}}=100 \Omega, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	600	900	5000	1150	1130	9000		
			$\mathrm{R}_{\mathrm{L}}=100 \Omega, \quad \mathrm{~T}_{\mathrm{A}}=$ MAX	500	800	5000	900	1150	9000		
IO(off)	Off-state output current		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=$ MIN to MAX			1			10	$\mu \mathrm{A}$	
IBB	Supply current from $V_{B B}$		$\mathrm{T}_{\mathrm{A}}=$ MIN to MAX			100			100	$\mu \mathrm{A}$	
${ }^{\prime} \mathrm{DD}(1)$	Supply current from $V_{D D}$ during precharge pulse width		$\begin{aligned} & \text { All addresses }=0 \mathrm{~V}, \overline{\mathrm{CE}} \text { at } \mathrm{V}_{\mathrm{SS}}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{SS}} \\ & \text { Precharge }=0 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		37	56		45	60	mA	
IDD(2)	Supply current from $V_{D D}$ during precharge and chip-enable overlap		$\begin{aligned} & \text { All addresses }=0 \mathrm{~V}, \mathrm{CE} \text { at } 0 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{SS}} \\ & \text { Precharge }=0 \mathrm{~V}, \quad T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		38	59		50	68	mA	
${ }^{\text {I DD }}$ (3)	Supply current from VDD during precharge to end of chip enable		$\begin{aligned} & \text { Precharge }=\mathrm{V}_{\mathrm{SS}}, \quad \overline{\mathrm{CE}} \text { at } 0 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		5.5	11		8.5	11	$\mu \mathrm{A}$	
${ }^{\prime} \mathrm{DD}(4)$	Supply current from $V_{D D}$ during chip enable to precharge delay		$\begin{aligned} & \text { Precharge }=V_{\text {SS }}, \quad \overline{\mathrm{CE}} \text { at } \mathrm{V}_{\mathrm{SS}}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		3	4		3	4	mA	
${ }^{1} \mathrm{DD}(\mathrm{av})$	Average supply current from $V_{D D}$	TMS 1103	$\begin{array}{ll} \mathrm{t}_{\mathrm{w}(}(\overline{\mathrm{P}})=190 \mathrm{~ns}, \quad \mathrm{t}_{\mathrm{C}}=580 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$		17	25		20	23	mA	
		TMS 1103-1	$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\overline{\mathrm{P}})=105 \mathrm{~ns}, \quad \mathrm{t}_{\mathrm{C}}=340 \mathrm{~ns} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$								

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTE 3. The maximum values for $V_{I L}$ for precharge, chip-enable, and read/write of the TMS 1103 may be increased to $V_{S S}-14.2 \mathrm{~V}$ at $0^{\circ} \mathrm{C}$ and $\mathrm{V}_{S S}-14.5 \mathrm{~V}$ at $70^{\circ} \mathrm{C}$ (same values as those specified for the address and data-in lines) with a $40-\mathrm{ns}$ degradation (worst case) in $\mathrm{t}_{\mathrm{su}}(\mathrm{ad}-\overline{\mathrm{CE}}), \mathrm{t}_{\mathrm{d}}(\overline{\mathrm{P}} \mathrm{L} \cdot \overline{\mathrm{CE}} \mathrm{L}), \mathrm{t}_{\mathrm{c}}(\mathrm{rd}), \mathrm{t}_{\mathrm{c}}(\mathrm{RW}), \mathrm{t}_{\mathrm{a}(\mathrm{ad})}$, and $\mathrm{t}_{\mathrm{a}}(\overline{\mathrm{P}})$.

TMS 1103 JL, NL; TMS 1103-1 JL, NL 1024-BIT DYNAMIC RANDOM-ACCESS MEMORIES

dynamic electrical characteristics over operating free-air temperature range (unless otherwise noted)

$$
\begin{aligned}
& \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}, \mathrm{~V}_{S S}=16 \mathrm{~V} \pm 5 \%,\left(\mathrm{~V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}}\right)=3 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}(\mathrm{TMS} 1103 \mathrm{JL}, \mathrm{NL}) \\
& \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C}, \mathrm{~V}_{S S}=19 \mathrm{~V} \pm 5 \%,\left(\mathrm{~V}_{\mathrm{BB}}-\mathrm{V}_{S S}\right)=3 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}(\mathrm{TMS} 1103-1 \mathrm{JL}, \mathrm{NL})
\end{aligned}
$$

capacitance at $25^{\circ} \mathrm{C}$ free-air temperature

	CHARACTERISTICS	TEST CONDITIONS ${ }^{\dagger}$	PLASTIC PKG		CERAMIC PKG		UNIT
			TYP	MAX	TYP	MAX	
$\mathrm{C}_{\mathrm{i}(\mathrm{ad})}$	Address input capacitance	$V_{1}=V_{S S}$	5	7	10	12	pF
$\mathrm{C}_{i}(\overline{\mathrm{~F}})$	Precharge input capacitance	$V_{1}=V_{S S}$	15	18	16.5	19.5	pF
$\mathrm{C}_{\mathrm{i}}(\overline{\mathrm{CE}})$	Chip-enable input capacitance	$V_{1}=V_{S S}$	15	18	18	21	pF
$\mathrm{C}_{\mathrm{i}}(\mathrm{R} / \mathrm{W})$	Read/write input capacitance	$V_{1}=V_{S S}$	11	15	15.5	19.5	pF
$\mathrm{C}_{\text {i }}$ da)	Data input capacitance	$\overline{\mathrm{CE}}$ at $0 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{S S}$	4	5	6.5	7.5	pF
		$\overline{C E}$ at $V_{S S}, \quad V_{1}=V_{S S}$	2	4	5.6	6.5	
C_{0}	Data output capacitance	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	2	3	6	7	pF

$\dagger_{f}=1 \mathrm{MHz}$, and all unused pins are at ac ground.
read, write, and read, modify write cycle

PARAMETER		TEST CONDITIONS	TMS 1103		TMS 1103-1		UNIT	
		MIN	MAX	MIN	MAX			
${ }_{\mathrm{t}}$ (rfsh)	Refresh cycle time		$\begin{aligned} & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}(1103), \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}(1103-1), \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ & \mathrm{v}_{\text {ref }}=40 \mathrm{mV}(1103), \\ & \mathrm{v}_{\text {ref }}=80 \mathrm{mV}(1103-1) \end{aligned}$		2		1	ms
$\mathrm{t}_{\text {su }}$ (ad-CE)	Address-to-chip-enable setup time	115			30		ns	
t_{h} ($\overline{\mathrm{E}} \mathrm{E}-\mathrm{ad}$)	Chip-enable-to-address hold time	20			10		ns	
$\mathrm{t}_{\mathrm{d}}(\overline{\mathrm{P}} \mathrm{L}-\overline{\mathrm{C} E} \mathrm{~L})$	Precharge low to chip-enable low delay time	125			60		ns	
${ }^{\text {d }}$ d $(\overline{C E} \cdot \mathrm{H}-\bar{P} \mathrm{~L})$	Chip-enable high to precharge low delay time	85			40		ns	
$\mathrm{t}_{\mathrm{d}}(\overline{\mathrm{CE}} \mathrm{L}-\overline{\mathrm{P}} \mathrm{H}) 1$	Chip-enable low to precharge high delay time between low reference points	25		75	5	30	ns	
${ }^{\mathrm{t}} \mathrm{d}(\overline{\mathrm{CE}} \mathrm{L}-\overline{\mathrm{P}} \mathrm{H}) 2$	Chip-enable low to precharge high delay time between high reference points			140		85	ns	

read cycle

PARAMETER		TEST CONDITIONS	TMS 1103		TMS 1103-1		UNIT	
		MiN	MAX	MIN	MAX			
${ }^{\mathrm{t}} \mathrm{c}$ (rd)	Read cycle time		$\begin{aligned} & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}(1103), \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}(1103-1), \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ & \mathrm{v}_{\text {ref }}=40 \mathrm{mV}(1103), \\ & \mathrm{v}_{\text {ref }}=80 \mathrm{mV}(1103-1) \\ & \hline \end{aligned}$	480		300		ns
$\mathrm{t}_{\mathrm{d}}(\overline{\mathrm{P}} \mathrm{H}-\overline{\mathrm{CE}} \mathrm{H})$	Precharge high to chip-enable high delay time	165		500	115	500	ns	
${ }_{t p}(\overline{\mathrm{P}} \mathrm{H})$	Precharge high to output propagation delay time			120		75	ns	
$\mathrm{t}_{\mathrm{a} \text { (ad) }}$	Access time from address (see Note 4)	300			150		ns	
$\mathrm{ta}_{\mathrm{a}}(\mathrm{P})$	Access time from precharge (see Note 5)	310			180		ns	

NOTES:
4. $\mathrm{t}_{\mathrm{a}(\mathrm{ad})}=\mathrm{t}_{\mathrm{su}}(\mathrm{ad}-\overline{\mathrm{CE}})+\mathrm{t}_{\mathrm{f}}(\overline{\mathrm{CE}})+\mathrm{t}_{\mathrm{d}}(\overline{\mathrm{CE}} \mathrm{L}-\overline{\mathrm{P}} \mathrm{H}) 1+\mathrm{t}_{\mathrm{r}}(\overline{\mathrm{P}})+\mathrm{t}_{\mathrm{p}}(\overline{\mathrm{P}} \mathrm{H})$.
5. $t_{a}(\bar{P})=t_{d}(\bar{P} L-\overline{C E} L)+t_{f}(\overline{C E})+t_{d}(\overline{C E} L-\bar{P} H) 1+t_{r}(\bar{P})+t_{p}(\bar{P} H)$.
write or read, modify write cycle

PARAMETER		TEST CONDITIONS	TMS 1103		TMS 1103-1		UNIT	
		MIN	MAX	MiN	MAX			
$\mathrm{t}_{\mathrm{c}}(\mathrm{wr})$	Write cycle time		$\begin{aligned} & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}(1103), \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}(1103-1), \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ & \mathrm{v}_{\text {ref }}=40 \mathrm{mV}(1103), \\ & \mathrm{v}_{\text {ref }}=80 \mathrm{mV}(1103-1) \end{aligned}$	580		340		ns
${ }^{t} \mathrm{c}$ (RMW)	Read, modify write cycle time	580			340		ns	
${ }^{\text {t }}$ ($(\overline{\mathrm{P}} \mathrm{H}-\mathrm{wr}$)	Precharge high to write delay time	165		500	115	500	ns	
t_{w} (wr)	Write pulse width	50			20		ns	
${ }_{\text {t }}^{\text {su }}$ (wr)	Write setup time	80			20		ns	
$\mathrm{t}_{\text {su }}$ (da)	Data setup time	105			40		ns	
th(da)	Data hold time	10			10		ns	
${ }_{t} \mathbf{p}(\overline{\mathrm{P}} \mathrm{H})$	Precharge high to output propagation delay time			120		75	ns	
${ }^{\mathrm{t}} \mathrm{d}(\mathrm{wr}-\overline{\mathrm{CE}} \mathrm{H})$	Write to chip-enable high delay time	0			0		ns	

TMS 1103 JL, NL; TMS 1103-1 JL, NL
 1024-BIT DYNAMIC RANDOM-ACCESS MEMORIES

PARAMETER MEASUREMENT INFORMATION

NOTES:
A. The high-level time reference on each waveform except data out is $\mathrm{V}_{\mathrm{SS}}-2 \mathrm{~V}$.
B. The low-level time reference on each waveform except data out is $V_{D D}+2 \mathrm{~V}$.

FIGURE 1-READ CYCLE

NOTES:
A. The high-level time reference on each waveform except data out is $V_{S S}-2 \mathrm{~V}$.
B. The low-level time reference on each waveform except data out is $\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V}$.

FIGURE 2 - WRITE OR READ, MODIFY WRITE CYCLE

- 4096×1 Organization
- 3 Performance Ranges:

	ACCESS TIME (MAX)	READ OR WRITE CYCLE (MIN)	READ, MODIFY WRITE CYCLE (MIN)
TMS 4030	300 ns	470 ns	710 ns
TMS 4030-1	250 ns	430 ns	640 ns
TMS 4030-2	200 ns	400 ns	580 ns

- Full TTL Compatibility on All Inputs (No Pull-up Resistors Needed)
- Low Power Dissipation
- 400 mW Operating (Typical)
- 0.2 mW Standby (Typical)
- Single Low-Capacitance Clock
- N-Channel Silicon-Gate Technology
- 22-Pin 400-Mil Dual-in-Line Package
description

22-PIN CERAMIC AND PLASTIC
DUAL-IN-LINE PACKAGES

The TMS 4030 series is composed of high-speed dynamic 4096-bit MOS random-access memories, organized as 4096 one-bit words. N -channel silicon-gate technology is employed to optimize the speed/power/density trade-off. Three performance options are offered: 300 ns access for the TMS 4030, 250 ns access for the TMS 4030-1, and 200 ns for TMS 4030-2. These options allow the system designer to more closely match the memory performance to the capability of the arithmetic processor.
All inputs except the chip enable are fully TTL-compatible and require no pull-up resistors. The low capacitance of the address and control inputs precludes the need for specialized drivers. When driven by a Series 74 device, the guaranteed dc input noise immunity is 200 mV . The TTL-compatible buffer is guaranteed to drive two Series 74 TTL gates. The TMS 4030 series uses only one clock (chip enable) to simplify system design. The low-capacitance chip-enable input requires a positive voltage swing (12 volts), which can be driven by a variety of widely available drivers.

The typical power dissipation of these RAM's is 400 mW active and 0.2 mW standby. To retain data only 6 mW average power is required, which includes the power consumed to refresh the contents of the memory.

The TMS 4030 series is offered in both 22-pin ceramic (JL suffix) and plastic (NL suffix) dual-in-line packages. The series is guarantted for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. These packages are designed for insertion in mounting-hole rows on $0.400-\mathrm{mil}$ centers.

operation

chip select ($\overline{\mathrm{CS}}$)
The chip-select terminal, which can be driven from standard TTL circuits without an external pull-up resistor, affects the data-in, data-out and read/write inputs. The data input and data output terminals are enabled when chip select is low. Therefore, the read, write, and read, modify write operations are performed only when chip select is low. If the chip is to be selected for a given cycle, the chip-select input must be low on or before the rising edge of the chip enable. If the chip is not to be selected for a given cycle, chip select must be held high as long as chip enable is high. A register for the chip-select input is provided on the chip to reduce overhead and simplify system design.

chip enable (CE)

A single external clock input is required. All read, write, and read, modify write operations take place when the chip enable input is high. When the chip enable is low, the memory is in the low-power standby mode. No read/write operations can take place because the chip is automatically precharging.

TMS 4030 JL, NL; TMS 4030-1 JL, NL; TMS 4030-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

operation (continued)

mode select ($\mathrm{R} \overline{\mathrm{N}}$)

The read or write mode is selected through the read/write (R / \bar{W}) input. A logic high on the R / \bar{W} input selects the read mode and a logic low selects the write mode. The read/write terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected.

address (A0-A11)

All addresses must be stable on or before the rising edge of the chip-enable pulse. All address inputs can be driven from standard TTL circuits without pull-up resistors. Address registers are provided on chip to reduce overhead and simplify system design.

data-in (DI)

Data is written during a write or read, modify write cycle while the chip enable is high. The data-in terminal can be driven from standard TTL circuits without a pull-up resistor. There is no register on the data-in terminal.

data-out ($\overline{\mathrm{DO}}$)

The three-state output buffer provides direct TTL compatibility with a fan-out of two Series 74 TTL gates. The output is in the high-impedance (floating) state when the chip enable is low. It remains in the high-impedance state if the chip-select input is high when chip enable goes high and provided that chip select remains high as long as chip enable is high. If the chip select is set up low prior to the rise of chip enable and held low an interval after that rise, the output will be enabled as long as chip enable stays high regardless of subsequent changes in the level of chip select. A data-valid mode is always preceded by a low output state. Data-out is inverted from data-in.

refresh

Refresh must be performed every two milliseconds by cycling through the 64 addresses of the lower-order-address inputs, A0 through A5 (pins 8, 9, $10,13,14,15$), or by addressing every row within any 2 -millisecond period. Addressing any row refreshes all 64 bits in that row. The chip does not need to be selected during the refresh. If the chip is refreshed during a write mode, then chip select must be high. The column addresses (A6 through A11) can be indeterminate during refresh.

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE: Under absolute maximum ratings, voltage values are with respect to the most-negative supply voltage, $V_{B B}$ (substrate), unless otherv noted. Throughout the remainder of this data sheet, voltage values are with respect to $V_{S S}$

TMS 4030 JL , NL; TMS 4030-1 JL, NL; TMS 4030-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

recommended operating conditions (see Note)

PARAMETER	MIN	NOM MAX	UNIT
Supply voltage, V_{CC}	4.75	$5 \quad 5.25$	\checkmark
Supply voltage, $\mathrm{V}_{\text {DD }}$	11.4	$12-12.6$	V
Supply voltage, $\mathrm{V}_{\text {SS }}$		0	V
Supply voltage, V_{BB}	-2.7	-3 -3.3	V
High-level input voltage, V_{IH} (all inputs except chip enable)	2.2	5.25	V
High-level chip enable input voltage, $\mathrm{V}_{\text {IH }}(\mathrm{CE})$	$\mathrm{V}_{\mathrm{DD}}-0.6$	$\mathrm{V}_{\mathrm{DD}}+1.0$	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (all inputs except chip enable) (see Note)	-0.6	0.6	\checkmark
Low-level chip enable input voltage, $\mathrm{V}_{\text {IL }}$ (CE) (see Note)	-1	0.6	V
Refresh time, ${ }_{\text {refresh }}$		2	ms
Operating free-air temperature, T_{A}	0	70	${ }^{\circ}$

NOTE: The algebraic convention where the most negative limit is designated as minimum is used in this data sheet for logic voltage levels only.
electrical characteristics over full ranges of recommended operating conditions, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{I}_{0}=-2 \mathrm{~mA}$		2.4		V_{CC}	V
V_{OL}	Low-level output voltage	$\mathrm{I}_{\mathrm{O}}=3.2 \mathrm{~mA}$		$\mathrm{V}_{\text {SS }}$		0.4	V
11	Input current (all inputs except chip enable)	$\mathrm{V}_{1}=0$ to 5.25 V				10	$\mu \mathrm{A}$
1/(CE)	Chip enable input current	$\mathrm{V}_{1}=0$ to 13.2 V				2	$\mu \mathrm{A}$
${ }^{\text {I Oz }}$	High-impedance-state (off-state output current	$\mathrm{V}_{\mathrm{O}}=0$ to 5.25 V				10	$\mu \mathrm{A}$
ICC	Supply current from $V_{\text {CC }}$	2 Series 74 TTL loads				1	mA
IDD	Supply current from $V_{\text {DD }}$	$\mathrm{V}_{1 \mathrm{H}}(\mathrm{CE})=12.6 \mathrm{~V}$			30	60	mA
${ }^{\text {I D D }}$	Supply current from V_{DD}, standby	$\mathrm{V}_{\text {IL }}(\mathrm{CE})=0.6 \mathrm{~V}$			20	200	$\mu \mathrm{A}$
$1 \mathrm{DD}(\mathrm{av})$	Average supply current from $V_{D D}$ during read or write cycle	Minimum cycle time	TMS 4030		32		
			TMS 4030-1		35		mA
			TMS 4030-2		38		
IDD(av)	Average supply current from $V_{D D}$ during read, modify write cycle		TMS 4030		32		mA
			TMS 4030-1		35		
			TMS 4030-2		38		
$I_{\text {BB }}$	Supply current from $\mathrm{V}_{\text {BB }}$	$\begin{array}{ll} V_{\mathrm{BB}}=-3.3 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{DD}}=12.6 \mathrm{~V}, & \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \end{array}$			-5	-100	$\mu \mathrm{A}$

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
capacitance at $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}(\mathrm{CE})}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\text { }}$	MAX	UNIT
$\mathrm{C}_{\text {i }}$ (ad)	Input capacitance address inputs			5	7	pF
$\mathrm{C}_{i}(\mathrm{CE})$	Input capacitance clock input	$\mathrm{V}_{\text {I }}(\mathrm{CE})=10.8 \mathrm{~V}$		18	22	pF
		$V_{1(C E)}=-1.0 \mathrm{~V}$		23	27	
$\mathrm{C}_{\mathrm{i}}(\overline{\mathrm{CS}})$	Input capacitance chip select input			4	6	PF
C_{i} (data)	Input capacitance data input			4	6	PF
$\mathrm{C}_{\mathrm{i}}(\mathrm{R} / \overline{\mathrm{W}})$	Input capacitance read/write input			5	7	pF
C_{0}	Output capacitance			5	7	pF

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.

TMS 4030 JL, NL; TMS 4030-1 JL, NL; TMS 4030-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

read cycle timing requirements over recommended supply voltage range, $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4030		TMS 4030-1		TMS 4030-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {c }}$ (rd)	Read cycle time	470		430		400		ns
t_{w} (CEH)	Pulse width, chip enable high	300	4000	260	4000	230	4000	ns
${ }_{\text {t }}$ (CEL)	Pulse width, chip enable low	130		130		130		ns
$t_{\text {r }}(\mathrm{CE}$)	Chip-enable rise time		40		40		40	ns
${ }_{\mathrm{t}}^{\mathrm{f}}$ (CE)	Chip-enable fall time		40		40		40	ns
$\mathrm{t}_{\text {su }}$ (ad)	Address setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$\mathrm{t}_{\text {su }}$ (CS)	Chip-select setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$\mathrm{t}_{\text {su }}(\mathrm{rd})$	Read setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$t_{\text {t }}(\mathrm{ad})$	Address hold time	$150 \uparrow$		$150 \uparrow$		$150 \uparrow$		ns
$t_{\text {h }}(\overline{\mathrm{CS}})$	Chip-select hold time	$150 \uparrow$		$150 \uparrow$		$150 \uparrow$		ns
th(rd)	Read hold time	40】		40 \downarrow		$40 \downarrow$		ns

$\uparrow \downarrow$ The arrow indicates the edge of the chip enable pulse used for reference: \uparrow for the rising edge, \downarrow for the falling edge.
read cycle switching characteristics over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4030		TMS 4030-1		TMS 4030-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{ta}_{\mathrm{a}}(\mathrm{CE})$	Access time from chip enable ${ }^{\dagger}$		280		230		180	ns
$\mathrm{t}_{\mathrm{a} \text { (ad) }}$	Access time from address \dagger		300		250		200	ns
$\begin{array}{\|l\|} \hline \text { tPHZ or } \\ \text { tPLZ } \\ \hline \end{array}$	Output disable time from high or low level \ddagger	30		30		30		ns
${ }^{\text {tPZL }}$	Output enable time to low level \ddagger		250		200		150	ns

${ }^{\dagger}$ Test conditions: $C_{L}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}(C E)=20 \mathrm{~ns}$, Load $=1$ Series 74 TTL gate.
\ddagger Test conditions: $C_{L}=50 \mathrm{pF}$, Load $=1$ Series 74 TTL gate.
write cycle timing requirements over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4030		TMS 4030-1		TMS 4030-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
${ }_{t}$ (wr)	Write cycle time	470		430		400		ns
${ }^{\text {w }}$ (CEH)	Pulse width, chip enable high	300	4000	260	4000	230	4000	ns
${ }^{\text {w }}$ (CEL)	Pulse width, chip enable low	130		130		130		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{wr})$	Write pulse width	200		190		180		ns
$t_{r}(\mathrm{CE})$	Chip-enable rise time		40		40		40	ns
${ }_{\text {t }}$ (CE)	Chip-enable fall time		40		40		40	ns
$t_{\text {sulad) }}$	Address setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$t_{\text {su }}(\overline{\mathrm{CS}})$	Chip-select setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$t_{\text {su }}$ (da-wr)	Data-to-write setup time*	0		0		0		ns
$t_{\text {su }}$ (wr)	Write-pulse setup time	$240 \downarrow$		$220 \downarrow$		$210 \downarrow$		ns
th(ad)	Address hold time	$150 \uparrow$		$150 \uparrow$		$150 \uparrow$		ns
$t_{\text {h (}}^{\text {(}}$ (S $)$	Chip-select hold time	$150 \uparrow$		$150 \uparrow$		$150 \uparrow$		ns
$t_{\text {th }}$ (da)	Data hold time	$40 \downarrow$		40 \downarrow		40 \downarrow		ns

[^1]
TMS 4030 JL, NL; TMS 4030-1 JL, NL; TMS 4030-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

read cycle timing

NOTE: For the chipenable input, high and low timing points are 90% and 10% of $V_{\text {IH }}$ (CE). Other input timing points are 0.6 V (IOw) and 2.2 V (high). Output timing points are 0.4 V (low) and 2.4 V (high).
write cycle timing

NOTE: For the chip-enable input, high and low timing points are 90% and 10% of $V_{1 H}(C E)$. Other input timing points are 0.6 (10 and 2.2 V (high). Output timing points are $0.4 \mathrm{~V}(10 \mathrm{w})$ and 2.4 V (high). During the time from the rise of CE to the fall of $R / \bar{W}, R / \bar{W}$ is per mitted to change from high to low only.

TMS $4030 \mathrm{JL}, \mathrm{NL}$; TMS 4030-1 JL, NL; TMS 4030-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

read, modify write cycle timing requirements over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4030		TMS 4030-1		TMS 4030-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
t_{c} (RMW)	Read, modify write cycle time*	710		640		580		ns
$t_{\text {w }}$ (CEH)	Pulse width, chip enable high*	540	4000	470	4000	410	4000	ns
t_{w} (CEL)	Pulse width, chip enable low	130		130		130		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{wr})$	Write-pulse width	200		190		180		ns
$\mathrm{t}_{\text {r }}$ (CE)	Chip-enable rise time		40		40		40	ns
$\mathrm{t}_{\mathrm{f}}(\mathrm{CE})$	Chip-enable fall time		40		40		40	ns
$\mathrm{t}_{\text {su }}$ (ad)	Address setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$\mathrm{t}_{\text {su }}(\overline{\mathrm{CS}}$)	Chip-select setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$\mathrm{t}_{\text {su }}$ (da-wr)	Data-to-write setup time	0		0		0		ns
$\mathrm{t}_{\text {suld }}$ (rd)	Read pulse setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$\mathrm{t}_{\text {su }}$ (wr)	Write pulse setup time	$240 \downarrow$		$220 \downarrow$		210 \downarrow		ns
th (ad)	Address hold time	$150 \uparrow$		$150 \uparrow$		$150 \uparrow$		ns
$t_{\text {h }}(\overline{\mathrm{CS}})$	Chip-select hold time	$150 \uparrow$		$150 \uparrow$		$150 \uparrow$		ns
th(rd)	Read hold time	$280 \uparrow$		$230 \uparrow$		$180 \uparrow$		ns
$t_{\text {l }}$ (da)	Data hold time	40】		40 \downarrow		40 \downarrow		ns

$\uparrow \downarrow$ The arrow indicates the edge of the chip-enable pulse used for reference: \uparrow for the rising edge, \downarrow for the falling edge.

- Test conditions: $\mathrm{t}_{\mathrm{f}(\mathrm{rd})}=20 \mathrm{~ns}$.
read, modify write cycle switching characteristics over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4030		TMS 4030-1		TMS 4030-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
ta_{a} (CE)	Access time from chip enable \dagger		280		230		180	ns
$\mathrm{ta}_{\mathrm{a}}(\mathrm{ad})$	Access time from address \dagger		300		250		200	ns
tPLH	Propagation delay time, low-to-high level output from write pulse \ddagger	30		30		30		ns
tPHZ	Output disable time from high level \ddagger	30		30		30		ns
tPZL	Output enable time to low level \ddagger		250		200		150	ns

${ }^{\dagger}$ Test conditions: $C_{L}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}(\mathrm{CE})=20 \mathrm{~ns}$, Load $=1$ Series 74 TTL gate.
\ddagger Test Conditions: $C_{L}=50 \mathrm{pF}$, Load $=1$ Series 74 TTL gate.
read, modify write cycle timing

NOTE: For the chip enable input, high and low timing points are 90% and 10% of $V_{1 H(C E)}$. Other input timing points are 0.6 V (low) and $2.2 \vee$ (high). Output timing points are $0.4 \vee$ (low) and 2.4 V (high).

timing diagram conventions

TIMING DIAGRAM SYMBOL	INPUT FORCING FUNCTIONS	MEANING RESPONSE FUNCTIONS

TYPICAL WAVEFORMS

TMS 4030 JL, NL; TMS 4030-1 JL, NL; TMS 4030-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

- 1024×1-Bit Organization
- Static Operation (No Clocks, No Refresh)
- Input Interface

Fully Decoded
TTL Compatible
Static Charge Protection

- Output Interface

3-State
Fan-out 1 Series 74 TTL Load OR-Tie Capability

- Access Time

TMS 4033 JL, NL . . . 450 ns Max
TMS 4034 JL, NL . . . 650 ns Max
TMS 4035 JL, NL . . . 1000 ns Max

- Interchangeable with Intel 2102-1, 2102-2, and 2102 Respectively
- N-Channel Silicon-Gate Technology

description

operation

Addresses (A0-A9)

Address inputs are used to select individual storage locations within the RAM. Since the addresses are not latched, the address-valid time determines the cycle time during both the read and write cycle. Therefore, the address-valid time must be a minimum of 450 nanoseconds for the TMS 4033, 650 nanoseconds for the TMS 4034, and 1000 nanoseconds for the TMS 4035. The address inputs can be driven from standard Series $54 / 74$ TTL with no external pull-up resistors.

TMS 4033 JL, NL; TMS 4034 JL, NL; TMS 4035 JL, NL 1024-WORD BY 1-BIT STATIC RANDOM-ACCESS MEMORIES

operation (continued)

Chip Enable ($\overline{\mathrm{CE}}$)

The $\overline{\mathrm{CE}}$ input is used to enable the memory chip for a reading or writing operation. In a single-chip system, this pin can be hardwired to ground so that the chip is continuously enabled. For the read cycle, chip-enable low must extend past the address to ensure valid data for that address. Once the chip-enable goes high, the output buffer will immediately return to the high-impedance state. For the write cycle, chip-enable low must occur before the read/write input goes to the write state ensuring no ambiguity in the chip enabled for a particular write cycle. This input can be driven from Series 54/74 TTL with no external pull-up resistors.

Read/Write ($\mathrm{R} / \overline{\mathrm{W}}$)

In the write mode prior to an address change, $\mathrm{R} / \overline{\mathrm{W}}$ must be in the read state (high level) and must remain in that state for a minimum period to eliminate the possibility of data being written into an unwanted location. The read/write input is TTL compatible without external pull-up resistors.

Data in (DI)

The DI input accepts the input data during the write mode. During a write cycle, data must be valid for a minimum time period before the read/write input is brought to the read state ensuring that proper data will enter the location selected. To eliminate any data ambiguity, data must be held valid past the end of the write pulse.

Data Out (DO)

Data out is a three-state terminal controlled by the chip-enable input, which supplies output data during a read cycle. A high level on chipenable places the data-out terminal in the high-impedance state.

functional block diagram

FUNCTION TABLE

$\overline{C E}$	R/W	I/O
L	L	WRITE
L	H	READ
H	X	HIGH Z

H = HIGH LEVEL
L = LOW LEVEL

TMS 4033 JL, NL; TMS 4034 JL, NL; TMS 4035 JL, NL 1024-WORD BY 1-BIT STATIC RANDOM-ACCESS MEMORIES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

NOTE 1: Voltage values are with respect to the ground terminal.
*COMMENT: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

	MIN	NOM	MAX
Supply voltage, $V_{\text {CC }}$	4.75	5	5.25
Uligh-level input voltage, $\mathrm{V}_{\text {IH }}$	V		
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (see Note 2)	2.2	$\mathrm{~V}_{\mathrm{CC}}$	V
Operating free-air temperature, T_{A}	-0.3	0.65	V

NOTE 2: The algebraic convention where the most negative limit is designated as minimum is used in this data sheet for logic voltage levels only.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP ${ }^{\text {t }}$	MAX	UNIT
V OH	High-level output voltage	$1 \mathrm{OH}=-100 \mu \mathrm{~A}$,	$\mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}$	2.2			V
V_{OL}	Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=1.9 \mathrm{~mA}$,	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			0.45	V
1	Input current	$\mathrm{V}_{1}=0$ to 5.25 V				± 10	$\mu \mathrm{A}$
IOZH	Off-state output current, high-level voltage applied	CE at 2.2 V ,	$\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}$			10	$\mu \mathrm{A}$
IOZL	Off-state output current, low-level voltage applied	$\overline{\mathrm{CE}}$ at 2.2 V ,	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$		-10	-100	$\mu \mathrm{A}$
${ }^{\text {ICC }}$	Supply current from V C c	$V_{C C}=5.25 \mathrm{~V} \text {. }$ All inputs at 5.25 V	Data out open,		45	70	mA
C_{i}	Input capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,	$\mathrm{f}=1 \mathrm{MHz}$		3	5	pF
C_{0}	Output capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,	$f=1 \mathrm{MHz}$		7	10	pF

${ }^{\dagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
conditions for testing timing requirements
$\left.\begin{array}{lllllllllllllllllllllllllllll}\text { Input high levels } & .\end{array}\right) \quad . \quad 2.2 \mathrm{~V}$

TMS 4033 JL, NL; TMS 4034 JL, NL; TMS 4035 JL, NL 1024-WORD BY 1-BIT STATIC RANDOM-ACCESS MEMORIES
read cycle timing requirements over recommended supply voltage range, $\mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
(unless otherwise noted)

PARAMETER		TMS 4033			TMS 4034			TMS 4035			UNIT
		MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\text { }}$	MAX	
${ }^{\text {t }}$ (rd)	Read cycle time	450			650			1000			ns
$\mathrm{t}_{\mathrm{a}}(\mathrm{ad})$	Access time from address		300	450		450	650		500	1000	ns
$\mathrm{t}_{\mathrm{a}}\left(\overline{\mathrm{C}} \mathrm{E}^{\text {a }}\right.$	Access time from chip enable			200			300			500	ns
t DV(ad)	Previous output data valid from address	50			50			50			ns
tPHZ or tplz	Output disable time from chip enable	0		200	0		200	0		200	ns

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

ADDRESS

CHIP ENABLE

DATA OUT

write cycle timing requirements over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4033		TMS 4034		TMS 4035		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
	Write cycle time	450		650		1000		ns
t_{w} (wr)	Write pulse width	250		400		750		ns
$\mathrm{t}_{\text {su }}(\mathrm{ad})$	Address setup time	150		200		200		ns
$\mathrm{t}_{\text {su }}$ (CE)	Chip enable to write setup time	350		550		850		ns
$\mathrm{t}_{\text {su }}$ (da)	Data-in to write setup time	300		450		800		ns
${ }^{\text {th }}$ (ad)	Address hold time	50		50		50		ns
$t_{\text {h }}$ (da)	Data hold time	50		50		50		ns

- 64×8 Organization
- Static Operation (No Clocks, No Refresh)
- Compact 20-Pin 300-Mil Dual-in-Line Package
- 3 Performance Ranges:

	ACCESS TIME (MAX)	READ OR WRITE CYCLE (MIN)
TMS 4036	1000 ns	1000 ns
TMS 4036-1	650 ns	650 ns
TMS 4036-2	450 ns	450 ns

- Multiplexed Common Bus I/O
- Input Interface

Fully Decoded
TTL Compatible
Static Charge Protection

- Output Interface

3-State
Fan-Out 1 Series 74 TTL Load
OR-Tie Capability

- Power Dissipation . . . 450 mW Maximum
- N-Channel Silicon-Gate Technology
- 8-Bit Word Length Ideal for Microprocessor-Based Systems

description

This series of static random-access memories is organized as 64 words of 8 bits. Data inputs and outputs are multiplexed on an 8 -bit, bidirectional bus controlled by the combination of chip enable and output enable. Static design results in reduced overhead costs by elimination of refresh-clocking circuitry and by simplification of the timing requirements. In addition, all inputs and outputs are fully compatible with Series 74 TTL, including the single 5 -volt power supply. The TMS 4036 series is manufactured using TI's reliable N -channel silicon-gate technology to optimize the cost/performance relationship. Readout is nondestructive and the output data polarity is not inverted from data-in.

The TMS 4036 is offered in compact 20 -pin ceramic (JL suffix) and plastic (NL suffix) dual-in-line packages designed for insertion in mounting-hole rows on 300 -mil centers. The series is guaranteed for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

operation

addresses (A0-A5)
The 6 -bit address selects one of 648 -bit words. The address-valid time determines cycle time during both the read and write cycles. The address inputs can be driven directly from standard Series $54 / 74$ TTL with no external pull-up resistors required.

TMS 4036 JL, NL; TMS 4036-1 JL, NL; TMS 4036-2 JL, NL 64-WORD BY 8-BIT STATIC RANDOM-ACCESS MEMORIES

operation (continued)

chip enable ($\overline{\mathrm{CE}}$)
The $\overline{C E}$ terminal is used to enable a specific memory device. If $\overline{\mathrm{CE}}$ is low, the device is enabled for either a read or write cycle, depending on the state of the read/write and output-enable terminals. When $\overline{C E}$ is high, the I/O buffers are in the high-impedance state. $\overline{\mathrm{CE}}$ may be driven from Series 74 TTL. For a more complete understanding of $\overline{\mathrm{CE}}$, see the section on output enable.
read/write ($\mathrm{R} / \overline{\mathrm{W}}$)
The R / \bar{W} input must be high during read and low during write operations. Prior to an address change, R / \bar{W} must be in the read state and must remain in that state for a minimum period to eliminate the possibility of data being written into an unwanted position. The R/W input is TTL-compatible and does not require external resistors.

output enable (OE)

The output enable terminal controls the I/O buffer and determines whether the bus is in an input or output mode. When OE is low, the I/O terminals are in the input configuration; when OE is high, the I/O terminals are in the output configuration. The read cycle and write cycle timing diagrams show in detail the relation between $\overline{C E}, O E$, and the other signals (refer to the function table). This input is also compatible with Series 74 TTL circuits.
input/output buffer (1/00-1/07)
Each of these terminals interface directly with the external data bus and have the capability of being both an input and an output buffer. These buffers are controlled by a combination of $\overline{C E}$ and $O E$ as described in the output enable section. Each buffer is three-state and fully TTL compatible, both as an input and an output.

functional block diagram

TMS 4036 JL, NL; TMS 4036-1 JL, NL; TMS 4036-2 JL, NL 64-WORD BY 8-BIT STATIC RANDOM-ACCESS MEMORIES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

NOTES:

1. Voltage values are with respect to the ground terminal.
2. For all combinations of inputs, the I/O lines may be shorted to $V_{S S}$ or $V_{C C}$ for a period not to exceed five milliseconds.
*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

PARAMETER	TMS 4036			TMS 4036-1			TMS 4036-2			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.75	5	5.25	4.75	5	5.25	4.75	5	5.25	V
Supply voltage, $\mathrm{V}_{\text {SS }}$		0			0			0		V
High-level input voltage, $\mathrm{V}_{1 \mathrm{H}}$	2.2		V_{CC}	2.2		$\mathrm{V}_{\text {CC }}$	2.2		$\mathrm{V}_{\text {cc }}$	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (see Note 3)	-0.3		0.8	-0.3		0.8	-0.3		0.8	V
Read cycle time, $\mathrm{t}_{\mathrm{c}}(\mathrm{rd}$)	1000			650			450			ns
Write cycle time, $\mathrm{t}_{\mathrm{c}}(\mathrm{wr})$	1000			650			450			ns
Write pulse width, t_{w} (wr)	500			300			200			ns
Address setup time, $\mathrm{t}_{\text {su }}(\mathrm{ad})$	450			300			200			ns
Chip-enable setup time, $\mathrm{t}_{\text {su }}(\overline{\mathrm{CE}})$	700			500			400			ns
Data setup time, $\mathrm{t}_{\text {su }}$ (da)	600			400			300			ns
Address hold time, th (ad)	50			50			50			ns
Data hold time, $\mathrm{th}_{\text {(}}$ (da)	50			50			50			ns
Operating free-air temperature, T_{A}	0		70	0		70	0		70	${ }^{\circ} \mathrm{C}$

NOTE 3: The albegraic convention where the most negative limit is designated as minimum is used in this data sheet for logic voltage levels only.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$,	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	2.4	V
V_{OL}	Low-level output voltage	${ }^{1} \mathrm{OL}=1.9 \mathrm{~mA}$,	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	0.4	V
1/H	High-level input current into address, $\mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{CE}}$, or OE	$\mathrm{V}_{1}=5.25 \mathrm{~V}$		10	$\mu \mathrm{A}$
${ }^{1} \mathrm{OZH}$	Off-state output current, high-level voltage applied at $1 / 0$ terminal	$\begin{aligned} & V_{\mathrm{O}}=5.25 \mathrm{~V}, \\ & \frac{\mathrm{CE}}{} \text { at } 5.25 \mathrm{~V} \end{aligned}$	$O E$ at 0 V ,	10	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=5.25 \mathrm{~V}, \\ & \overline{\mathrm{CE}} \text { at } 2.2 \mathrm{~V} \end{aligned}$	OE at 5.25 V ,	10	
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=5.25 \mathrm{~V}, \\ & \overline{\mathrm{CE}} \text { at } 0 \mathrm{~V} \end{aligned}$	OE at 0.8 V ,	10	
IOZL	Off-state output current, low-level voltage applied at I/O terminal	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \\ & \overline{\mathrm{CE}} \text { at } 2.2 \mathrm{~V} \end{aligned}$	OE at 5.25 V ,	-100	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \\ & \bar{C}_{\mathrm{E}} \text { at } 0 \mathrm{~V} \end{aligned}$	$O E$ at 0.8 V ,	-100	
${ }^{\text {I CC }}$	Supply current from VCC			85	mA
C_{i}	Input capacitance	$\mathrm{f}=1 \mathrm{MHz}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	pF
$\mathrm{C}_{\mathrm{i} / \mathrm{o}}$	1/O terminal capacitance	$\mathrm{f}=1 \mathrm{MHz}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	20	pF

TMS 4036 JL, NL; TMS 4036-1 JL, NL; TMS 4036-2 JL, NL 64-WORD BY 8-BIT STATIC RANDOM-ACCESS MEMORIES

switching characteristics over recommended supply voltage ranges, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER	TMS 4036		TMS 4036-1			TMS 4036-2			UNIT
	MIN	TYP ${ }^{\text {¢ }}$ MAX	MIN	TYP ${ }^{\text {t }}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX	
$\mathrm{ta}_{\mathrm{a}}(\mathrm{ad})$ Access time from address		1000			650			450	ns
$\mathrm{t}_{\mathrm{a}}(\overline{\mathrm{CE}})$ Access time from chip enable		200			190			180	ns
$\mathrm{t}_{\mathrm{a}}(\mathrm{OE})$ Access time from output enable		200			190			180	ns
tPXZ Output disable time from chip enable	0	$60 \quad 200$	0	60	200	0	60	200	ns
tPXZ Output disable time from output enable (see Note 4)	0	$60 \quad 200$	0	60	200	0	60	200	ns

NOTE 4: This parameter defines the delay for the I/O bus to enter the input mode.
${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
read cycle timing

write cycle timing

NOTE: For measuring timing requirements and characteristics, $\mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.65 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and all timing points are 50% points.

- 256×4 Organization
- Static Operation (No Clocks, No Refresh)
- 3 Performance Ranges:

	ACCESS	READ OR WRITE
	TIME	CYCLE
	$\frac{\text { (MAX) }}{}$	(MIN)
TMS 4039	1000 ns	
TMS 4039-1	650 ns	650 ns
TMS 4039-2	450 ns	450 ns

- Input Interface

Fully Decoded
TTL-Compatible
Static Charge Protection

- Output Interface

Two Chip-Enable Inputs for OR-Tie Capability
Fan-out to 1 Series 74 TTL Load
3-State Outputs and Output Enable Control for Common I/O Data Bus Systems

- Power Dissipation . . . 175 mW Typical
- Organized for Microprocessor-Based Systems
- Interchangeable with Intel 2101, 2101-2, and 2101-1, Respectively
description
This series of static random-access memories is organized as 256 words of 4 bits. Static design results in reduced overhead costs by elimination of refresh-clocking circuitry and by simplification of timing requirements. All inputs and outputs are fully compatible with Series 74 TTL, including the single 5 -volt power supply. The TMS 4039 series is manufactured using TI's reliable N -channel enhancement-type silicon-gate technology to optimize the cost/performance relationship. Readout is nondestructive and output data is not inverted from data in.

The TMS 4039 series is offered in 22-pin dual-in-line ceramic (JL suffix) and plastic (NL suffix) packages designed for insertion in mounting-hole rows on 400 -mil centers. The series is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

operation

addresses (A0-A7)

The eight address inputs select one of 256 4-bit words. The address inputs can be driven directly from standard Series 54/74 TTL with no external pull-up resistors.
chip enable ($\overline{\mathrm{CE}} 1$ and CE2)
To enable the device, $\overline{C E} 1$ must be low and CE2 must be high. The two chip-enable terminals can be driven from a common source with an inverter or either terminal can be hard wired to its enabled level. When the memory is disabled, data cannot be entered and the outputs are in the high-impedance state.

TMS 4039 JL, NL; TMS 4039-1 JL, NL; TMS 4039-2 JL, NL 256-WORD BY 4-BIT STATIC RANDOM-ACCESS MEMORIES

operation (continued)

read/write ($\mathrm{R} / \overline{\mathrm{W}}$)
The $\mathrm{R} \overline{\mathrm{W}}$ input must be high during read and low during write operations. Prior to an address change, $\mathrm{R} \bar{W}$ must be in the read state and must remain in that state for a minimum period to eliminate the possibility of data being written into an unwanted position. The R / \bar{W} input is TTL-compatible and does not require external resistors.

output enable ($\overline{\mathrm{OE}}$)

The output enable must be low to read for when it is high the outputs are in the high-impedance state useful for OR-ties or common input/output operation. When the device is not used in the common-input/output configuration, the output enable terminal can be hard wired low.

data in (DI1-DI4)

The DI inputs accept input data during a write operation. During a write cycle, data must be set up a minimum time before R / \bar{W} goes to the read state (high) to ensure that correct data will enter the addressed memory cell. Also, input data must be held valid a minimum time after the rise of R / \bar{W}.

data out (D01-DO4)

Data out is a three-state terminal controlled by $\overline{\mathrm{OE}}, \overline{\mathrm{CE}} 1$, and CE2. To read data, $\overline{\mathrm{CE}} 1$ and $\overline{\mathrm{OE}}$ must be low with CE2 high. When $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}} 1$ goes high or CE 2 goes low, the output terminals are forced to the high-impedance state.

functional block diagram

TMS 4039 JL, NL; TMS 4039-1 JL, NL; TMS $4039-2$ JL, NL 256-WORD BY 4-BIT STATIC RANDOM-ACCESS MEMORIES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

NOTE 1: Voltage values are with respect to the ground terminal.
"Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

PARAMETER	TMS 4039			TMS 4039-1			TMS 4039-2			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.75	5	5.25	4.75	5	5.25	4.75	5	5.25	V
High-level input voltage, V_{1}	2.2		$V_{\text {CC }}$	2.2		$\mathrm{V}_{\text {CC }}$	2.2		V_{CC}	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (see Note 2)	-0.5		0.65	-0.5		0.65	-0.5		0.65	V
Read cycle time, $\mathrm{t}_{\mathrm{c} \text { (rd) }}$	1000			650			450			ns
Write cycle time, t_{c} (wr)	1000			650			450			ns
Write pulse width, t_{w} (wr)	800			450			300			ns
Address setup time, $\mathrm{t}_{\text {su }}(\mathrm{ad})$	150			150			100			ns
Chip-enable setup time, $\mathrm{t}_{\text {su }}$ (CE)	900			550			400			ns
Data setup time, $\mathrm{t}_{\text {su }}$ (da)	700			400			280			ns
Address hold time, $\mathrm{th}^{\text {(ad) }}$	50			50			50			ns
Data hold time, th(da)	100			100			100			ns
Operating free-air temperature, T_{A}	0		70	0		70	0		70	${ }^{\circ} \mathrm{C}$

NOTE 2: The al gebraic convention where the most negative limit is designated as minimum is used in this data sheet for logic voltage levels only. electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
V OH	High-level output voltage	$1 \mathrm{OH}=-150 \mu \mathrm{~A}$,	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	2.2			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$,	$V_{C C}=5.25 \mathrm{~V}$			0.45	V
$1 /$	Input current	$\mathrm{V}_{1}=0$ to 5.25 V				± 10	$\mu \mathrm{A}$
${ }^{1} \mathrm{OZH}$	Off-state output current, high-level voltage applied	CE at 2.2 V ,	$\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}$			15	$\mu \mathrm{A}$
${ }^{1} \mathrm{OZL}$	Off-state output current, low-level voltage applied	CE at 2.2 V ,	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$			-50	$\mu \mathrm{A}$
${ }^{\prime} \mathrm{Cc}$	Supply current from $\mathrm{V}_{\text {CC }}$	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V}, \\ & 10=0 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			60	mA
			$\mathrm{T}_{A}=0^{\circ} \mathrm{C}$			70	
C_{i}	Input capacitance	$\begin{array}{ll} V_{1}=0 \mathrm{~V}, & T_{A}=25^{\circ} \mathrm{C}, \\ f=1 \mathrm{MHz} & \end{array}$			4	8	pF
C_{0}	Output capacitance	$\begin{array}{ll} V_{O}=0 \mathrm{~V}, & T_{A}=25^{\circ} \mathrm{C}, \\ f=1 \mathrm{MHz} & \end{array}$			8	12	pF

${ }^{\dagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics over recommended supply voltage range, $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 1$ Series 74 TTL load, $C_{L}=100 \mathrm{pF}$

PARAMETER	TMS 4039	TMS 4039-1	TMS 4039-2		
		MIN	MAX	MIN	MAX
UNIT					
MIN	MAX				

NOTE 3: With the outputs OR-tied to the inputs, this parameter defines the delay for the $1 / O$ bus to enter the input mode.

TMS $4039 \mathrm{JL}, \mathrm{NL}$; TMS 4039-1 JL, NL; TMS 4039-2 JL, NL 256-WORD BY 4-BIT STATIC RANDOM-ACCESS MEMORIES
read cycle timing

ADDRESS, A0-A7

CHIP ENABLE 1, $\overline{C E} 1$

CHIP ENABLE 2, CE2

OUTPUT ENABLE, $\bar{O} \bar{E}$

DATA OUT, DO1-DO4

write cycle timing

ADDRESS, AO-A7

READ/WRITE, R/ \bar{W}

CHIP ENABLE 1, $\overline{\mathrm{CE}} 1$

CHIP ENABLE 2, CE2

OUTPUT ENABLE, $\overline{O E}$

DATA IN, DI1-DI4

NOTE: For measuring timing requirements and characteristics, $\mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.65 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}$ and all timing points are 50% points.

- 256×4 Organization
- Common I/O
- 18-Pin Package
- Static Operation (No Clocks, No Refresh)
- 3 Performance Ranges:

ACCESS	READ OR WRITE
TIME	CYCLE
(MAX)	(MIN)
1000 ns	1000 ns
650 ns	650 ns
450 ns	450 ns

- Input Interface

Fully Decoded
TTL-Compatible
Static Charge Protection

- Output Interface

Two Chip-Enable Inputs for OR-Tie Capability
Fan-out to 1 Series 74 TTL Load
3-State Outputs and Output Enable Control
for Common I/O Data Bus Systems

- Power Dissipation . . . 175 mW Typical
- Organized for Microprocessor-Based Systems
- Interchangeable with Intel 2111, 2111-2, and 2111-1, Respectively

description

Abstract

This series of static random-access memories is organized as 256 words of 4 bits. Static design results in reduced overhead costs by elimination of refresh-clocking circuitry and by simplification of timing requirements. The use of common input/output terminals, controlled by the chip enable and output enable terminals, allows the use of an 18-pin package and saves board space in comparison to the TMS 4039. The common input/outputs are fully compatible with Series 74 TTL. The device requires a single 5 -volt power supply. The TMS 4042 series is manufactured using TI's reliable N-channel enhancement-type silicon-gate technology to optimize the cost/performance relationship. Readout is nondestructive and output data is not inverted from data in.

The TMS 4042 series is offered in 18-pin dual-in-line ceramic (JL suffix) and plastic (NL suffix) packages designed for insertion in mounting-hole rows on $300-\mathrm{mil}$ centers. The series is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

operation

addresses (A0-A7)
The eight address inputs select one of 256 4-bit words. The address inputs can be driven directly from standard Series 54/74 TTL with no external pull-up resistors.
chip enable 1 and chip enable 2 ($\overline{\mathrm{CE}} 1$ and $\overline{\mathrm{CE}} 2$)
To enable the device, $\overline{\mathrm{CE}} 1$ and $\overline{\mathrm{CE}} 2$ must be low. The two chip-enable terminals can be driven from a common source or either terminal can be hard wired low. When the memory is disabled, data cannot be entered and the outputs are in the high-impedance state.

TMS 4042 JL, NL; TMS 4042-1 JL, NL; TMS 4042 -2 JL, NL 256-WORD BY 4-BIT STATIC RANDOM-ACCESS MEMORIES

operation (continued)

read/write ($\mathrm{R} / \overline{\mathrm{W}}$)

The R / \bar{W} input must be high during read and low during write operations. Prior to an address change, $\mathrm{R} \bar{W}$ must be in the read state and must remain in that state for a minimum period to eliminate the possibility of data being written into an unwanted position. The $\mathrm{R} / \overline{\mathrm{W}}$ input is TTL-compatible and does not require external resistors.
output enable ($\overline{O E}$)
The output enable must be low to read for when it is high the outputs are in the high-impedance state.

input/output (1/01-I/O4)

The common input/output terminals are used for both read and write operations. During a write cycle, data must be set up a minimum time before R / \bar{W} goes to the read state (high) to ensure that correct data will enter the addressed memory cell. Also, input data must be held valid a minimum time after the rise of R / W.

The output buffers are three-state and are controlled by $\overline{\mathrm{OE}}, \overline{\mathrm{CE}} 1$, and $\overline{\mathrm{CE}} 2$. The input buffers are controlled by $\mathrm{R} / \overline{\mathrm{W}}$, $\overline{\mathrm{CE}} 1$, and $\overline{\mathrm{CE}} 2$. To read data, $\overline{\mathrm{CE}} 1, \overline{\mathrm{CE}} 2$, and $\overline{\mathrm{OE}}$ must be low. If any one of these three inputs goes to the high level, the output terminals are forced to the high-impedance state. The common I/O terminals can be driven directly by Series 74 TTL and the buffers can drive Series 74 TTL circuits without external resistors.
functional block diagram

TMS 4042 JL, NL; TMS $4042-1$ JL, NL; TMS $4042-2$ JL, NL 256-WORD BY 4-BIT STATIC RANDOM-ACCESS MEMORIES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

NOTE 1: Voltage values are with respect to the ground terminal.
*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

PARAMETER	TMS 4042			TMS 4042-1			TMS 4042-2			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.75	5	5.25	4.75	5	5.25	4.75	5	5.25	V
High-level input voltage, $\mathrm{V}_{1 \mathrm{H}}$	2.2		V_{CC}	2.2		V_{CC}	2.2		V_{CC}	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (see Note 2)	-0.5		0.65	-0.5		0.65	-0.5		0.65	V
Read cycle time, $\mathrm{t}_{\mathrm{c}}(\mathrm{rd}$)	1000			650			450			ns
Write cycle time, $\mathrm{t}_{\text {c }}$ (wr)	1000			650			450			ns
Write pulse width, $\mathrm{t}_{\text {w }}$ (wr)	800			450			300			ns
Address setup time, $\mathrm{t}_{\text {su }}(\mathrm{ad})$	150			150			100			ns
Chip enable setup time, $\mathrm{t}_{\text {su }}(\overline{\mathrm{CE}})$	900			550			400			ns
Data setup time, $\mathrm{t}_{\text {sul }}$ (da)	700			400			280			ns
Address hold time, th (ad)	50			50			50			ns
Data hold time, th(da)	100			100			100			ns
Operating free-air temperature, $\mathrm{T}_{\text {A }}$	0		70	0		70	0		70	C

NOTE 2: The algebraic convention where the most negative limit is designated as minimum is used in this data sheet for logic voltage levels only.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP ${ }^{\text {t }}$	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=-150 \mu \mathrm{~A}$,	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	2.2			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$,	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			0.45	V
1	Input current	$\mathrm{V}_{1}=0$ to 5.25 V				± 10	$\mu \mathrm{A}$
${ }^{\text {I OZH }}$	Off-state output current, high-level voltage applied	$\overline{\mathrm{CE}}$ at 2.2 V ,	$\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}$			15	$\mu \mathrm{A}$
IOZL	Off-state output current, low-level voltage applied	$\widetilde{C E}$ at $2.2 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.45 \mathrm{~V}$				-50	$\mu \mathrm{A}$
${ }^{\text {I CC }}$	Supply current from $\mathrm{V}_{\text {cC }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			60	mA
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			70	
C_{i}	Input capacitance	$\begin{array}{ll} V_{1}=0 \mathrm{~V}, & T_{A}=25^{\circ} \mathrm{C}, \\ f=1 \mathrm{MHz} & \end{array}$			4	8	pF
C_{0}	Output capacitance	$\begin{aligned} & V_{O}=0 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,		10	15	pF

$\dagger_{\text {All typical values are at }} V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TMS 4042 JL, NL; TMS $4042-1$ JL, NL; TMS $4042-2$ JL, NL 256-WORD BY 4-BIT STATIC RANDOM-ACCESS MEMORIES

switching characteristics over recommended supply voltage range, $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, 1 Series 74 TTL load, $C_{L}=100 \mathrm{pF}$

	PARAMETER	TMS 4042		TMS 4042-1		TMS 4042-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
t_{a} (ad)	Access time from address		1000		650		450	ns
$\mathrm{ta}_{\mathrm{a}}(\overline{\mathrm{CE}})$	Access time from chip enable CE1 or CE2		800		400		350	ns
$\mathrm{t}_{\mathrm{a}}(\overline{\mathrm{OE}})$	Access time from output enable		700		350		300	ns
${ }^{t} \mathrm{DV}$ (ad)	Previous output data valid after address change	40		40		40		ns
tpXZ	Output disable time from output enable (see Note 3)	0	200	0	150	0	150	ns

NOTE 3: This parameter defines the delay for the I/O bus to enter the input mode.
read cycle timing

ADDRESS, AO-A7

CHIP ENABLE 1 AND
CHIP ENABLE 2, $\overline{\mathrm{CE}} 1, \overline{\mathrm{CE}} 2$

OUTPUT ENABLE, $\overline{O E}$

INPUT/OUTPUT, I/O1-I/O4

write cycle timing

ADDRESS, AO-A7

READ/WRITE, R/ \bar{W}

CHIP ENABLE 1 AND
CHIP ENABLE 2, $\overline{\mathrm{CE}} 1, \overline{\mathrm{C}} \mathbf{~} 2$

OUTPUT ENABLE, $\overline{O E}$

INPUT/OUTPUT, I/01-I/O4

NOTE: For measuring timing requirements and characteristics, $V_{I H}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.65 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and all timing points are 50% points.

- 256×4 Organization
- Common I/O
- 16-Pin Package
- Static Operation (No Clocks, No Refresh)
- 3 Performance Ranges:

	ACCESS TIME (MAX)	READ OR WRITE CYCLE (MIN)
TMS 4043 4043-1	1000 ns	
TMS 4043-2	650 ns	

- Input Interface

Fully Decoded
TTL-Compatible
Static Charge Protection

- Output Interface

Chip-Enable Input and 3-State Outputs for OR-Tie Capability in Common I/O Data Bus Systems
Fan-out to 1 Series 74 TTL Load

- Power Dissipation . . . 175 mW Typical
- Organized for Microprocessor-Based Systems
- TMS 4043 and TMS 4043-1 Are Interchangeable with Intel 2112 and 2112-2, Respectively

description

Abstract

This series of static random-access memories is organized as 256 words of 4 bits. Static design results in reduced overhead costs by elimination of refresh-clocking circuitry and by simplification of timing requirements. The use of common input/output terminals, controlled by the chip enable and read/write terminals, allows the use of a 16 -pin package and saves board space in comparison to the TMS 4039 or TMS 4042 . The common input/outputs are fully compatible with Series 74 TTL. The device requires a single 5 -volt power supply. The TMS 4043 series is manufactured using TI's reliable N -channel enhancement-type silicon-gate technology to optimize the costperformance relationship. Readout is nondestructive and output data is not inverted from data in.

The TMS 4043 series is offered in 16-pin dual-in-line ceramic (JL suffix) and plastic (NL suffix) packages designed for insertion in mounting-hole rows on 300 -mil centers. The series is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

operation

[^2]
TMS 4043 JL, NL; TMS 4043-1 JL, NL; TMS $4043-2$ JL, NL 256-WORD BY 4-BIT STATIC RANDOM-ACCESS MEMORIES

operation (continued)

read/write ($\mathrm{R} / \overline{\mathrm{W}}$)
The R / \bar{W} input must be high during read and low during write operations. Prior to an address change, $\mathrm{R} \overline{\mathcal{W}}$ must be in the read state and must remain in that state for a minimum period to eliminate the possibility of data being written into an unwanted position. The $\mathrm{R} / \overline{\mathrm{W}}$ input is TTL-compatible and does not require external resistors.

input/output (1/01-I/O4)

The common input/output terminals are used for both read and write operations. During a write cycle, data must be set up a minimum time before $\mathrm{R} / \overline{\mathrm{W}}$ goes to the read state (high) to ensure that correct data will enter the addressed memory cell. Also, input data must be held valid a minimum time after the rise of $\mathrm{R} \overline{\mathrm{W}}$.

The output buffers are three-state and they are controlled by $\overline{C E}$ and $R \bar{W}$. If $\overline{C E}$ goes high or $R \bar{N}$ goes low, the output terminals are forced to the high-impedance state. The input buffers are also controlled by $\overline{\mathrm{CE}}$ and $\mathrm{R} \overline{\mathrm{W}}$. To read data, $\overline{\mathrm{CE}}$ must be low and $\mathrm{R} / \overline{\mathrm{W}}$ high. The common I/O terminals can be driven directly by Series 74 TTL and the buffers can drive Series 74 TTL circuits without external resistors.
functional block diagram

TMS 4043 JL, NL; TMS 4043-1 JL, NL; TMS $4043-2$ JL, NL 256-WORD BY 4-BIT STATIC RANDOM-ACCESS MEMORIES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

NOTE 1: Voltage values are with respect to the ground terminal.
"Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

PARAMETER	TMS 4043			TMS 4043-1			TMS 4043-2			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.75	5	5.25	4.75	5	5.25	4.75	5	5.25	V
High-level input voltage, $\mathrm{V}_{\text {IH }}$	2.2		V_{CC}	2.2		V_{CC}	2.2		V_{CC}	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (see Note 2)	-0.5		0.65	-0.5		0.65	-0.5		0.65	V
Read cycle time, $\mathrm{t}_{\mathrm{c}}(\mathrm{rd})$	1000			650			450			ns
Write cycle time, t_{c} (wr)	1000			650			450			ns
Address setup time, $\mathrm{t}_{\text {su }}(\mathrm{ad})$	150			100			50			ns
Chip-enable setup time, $\mathrm{t}_{\text {su }}$ ($\overline{\mathrm{CE}}$)	0			0			0			ns
Data setup time, $\mathrm{t}_{\text {su }}$ (da)	600			300			150			ns
Address hold time, $\mathrm{th}^{\text {(ad) }}$	50			50			50			ns
Chip-enable hold time, $\mathrm{th}^{(}$($\overline{\mathrm{CE}}$)	0			0			0			ns
Data hold time, th (da)	100			50			50			ns
Operating free-air temperature, T_{A}	0		70	0		70	0		70	C

NOTE 2: The algebraic convention where the most negative limit is designated as minimum is used in this data sheet for logic voltage levels only.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP ${ }^{\text {¢ }}$	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=-150 \mu \mathrm{~A}$,	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	2.2			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	${ }^{1} \mathrm{OL}=2 \mathrm{~mA}$,	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			0.45	V
$1 /$	Input current	$\mathrm{V}_{1}=0$ to 5.25 V				± 10	$\mu \mathrm{A}$
IOZH	Off-state output current, high-level voltage applied	$\overline{\mathrm{CE}}$ at 2.2 V ,	$\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}$			15	$\mu \mathrm{A}$
IOZL	Off-state output current, low-level voltage applied	$\overline{\mathrm{CE}}$ at 2.2 V ,	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$			-50	$\mu \mathrm{A}$
ICC	Supply current from $\mathrm{V}_{\text {CC }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			60	mA
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			70	
C_{i}	Input capacitance	$\begin{array}{ll} V_{1}=0 \mathrm{~V}, & T_{A}=25^{\circ} \mathrm{C}, \\ f=1 \mathrm{MHz} & \end{array}$			4	8	pF
C_{0}	Output capacitance	$\begin{aligned} & V_{O}=0 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,		10	15	pF

${ }^{\dagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TMS 4043 JL, NL; TMS 4043-1 JL, NL; TMS 4043 -2 JL, NL 256-WORD BY 4-BIT STATIC RANDOM-ACCESS MEMORIES

switching characteristics over recommended supply voltage range, $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 1$ Series 74 TTL load, $C_{L}=100 \mathrm{pF}$

PARAMETER	TMS 4043		TMS 4043-1		TMS 4043-2		UNIT
	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{ta}_{\mathrm{a}}(\mathrm{ad})$ Access time from address		1000		650		450	ns
$\mathrm{t}_{\mathrm{a}}(\overline{\mathrm{CE}})$ Access time from chip enable		800		500		350	ns
tDV(ad) Previous output data valid after address change	40		40		40		ns
${ }^{\text {tPXZ }}$ (Output disable time from chip enable (see Note 3)	0	200	0	150	0	150	ns
tPXZ Output disable time from read/write (see Note 3)		200		200		200	ns

NOTE 3: This parameter defines the delay for the I/O bus to enter the input mode.

ADDRESS, AO-A7

CHIP ENABLE, $\overline{\mathrm{CE}}$

INPUT/OUTPUT, I/O1.I/O4

write cycle timing

ADDRESS, A0-A7

READ/WRITE, R/W

CHIP ENABLE, $\overline{\mathrm{CE}}$

NPUT/OUTPUT, I/01-I/O4

NOTE: For measuring timing requirements and characteristics, $V_{I H}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.65 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and all timing points are 50% points.

- 4096×1 Organization
- 18-Pin 300-Mil Package Configuration
- Multiplexed Data Input/Output
- 3 Performance Ranges:

TMS 4050	300 ns	470 ns	730 ns
TMS $4050-1$	250 ns	430 ns	660 ns
TMS 4050-2	200 ns	400 ns	600 ns

- Full TTL Compatibility on All Inputs
(No Pull-up Resistors Needed)
- Registers for Addresses Provided on Chip
- Open-Drain Output Buffer
- Single Low-Capacitance Clock
- Low-Power Dissipation
- 420 mW Operating (Typical)
- 0.1 mW Standby (Typical)
- N-Channel Silicon-Gate Technology

description

The TMS 4050 series is composed of high-speed dynamic 4096 -bit MOS random-access memories, organized as 4096 one-bit words. N -channel silicon-gate technology is employed to optimize the speed/power/density trade-off. Three performance options are offered: 300 ns access for the TMS 4050, 250 ns access for the TMS $4050-1$, and 200 ns for TMS 4050-2. These options allow the system designer to more closely match the memory performance to the capability of the arithmetic processor.

All inputs except the chip enable are fully TTL-compatible and require no pull-up resistors. The input buffers allow a minimum 200 mV noise margin when driven by a series 74 TTL device. The TTL-compatible open-drain buffer is guaranteed to drive 1 series 74 TTL gate. The low capacitance of the address and control inputs precludes the need for specialized drivers. The TMS 4050 series uses only one clock (chip enable) to simplify system design. The lowcapacitance chip-enable input requires a positive voltage swing (12 volts), which can be driven by a variety of widely available drivers. The data input and output are multiplexed to facilitate compatibility with a common bus system. A 12 line address is available, which minimizes external control logic and optimizes system performance.

The typical power dissipation of these RAM's is 420 mW active and 0.1 mW standby. To retain data only 6 mW average power is required, which includes the power consumed to refresh the contents of the memory.

The TMS 4050 series is offered in both 18 -pin ceramic (JL suffix) and plastic (NL suffix) dual-in-line packages. The series is guaranteed for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Packages are designed for insertion in mounting hole rows on 300 -mil centers.

operation

chip enable (CE)
A single external clock input is required. All read, write, and read, modify write operations take place when the chip enable input is high. When the chip enable is low, the memory is in the low-power standby mode and is not selected. No read/write operations can take place during the standby mode because the chip is deselected and is automatically precharging.

POST OFFICE BOX 5012 - DALLAS, TEXAS 75222

TMS 4050 JL, NL; TMS 4050-1 JL, NL; TMS 4050-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

operation (continued)

mode select ($\mathrm{R} / \overline{\mathrm{W}}$)
The read or write mode is selected through the read/write (R / \bar{W}) input. A logic high on the R / \bar{W} input selects the read mode and a logic low selects the write mode. The read/write terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected and the data output is disabled when the write mode is selected.

address (A0-A11)

All addresses must be stable on or before the rising edge of the chip-enable pulse. All address inputs can be driven from standard TTL circuits without pull-up resistors. Address registers are provided on chip to reduce overhead and simplify system design.

data input/output (I/O)

Data input and output are multiplexed on a common input/output terminal, which is controlled by the $\mathrm{R} / \overline{\mathrm{W}}$ input. Data is written during a write or read, modify write cycle while the chip enable is high. The I/O terminal requires connection to an external pull-up resistor since the output buffer has an open-drain configuration. The open-drain output buffer provides direct TTL sink compatibility with a fan-out of one Series 74 TTL gate. A low logic level results from conduction in the open-drain output buffer while a high level occurs with the buffer in its high-impedance state. Data written into the memory is read out in its true form.

refresh

Refresh of the cell matrix is accomplished by performing a memory cycle at each of the 64 row addresses (A0 through A5) every 2 milliseconds or less. Addressing any row refreshes all 64 bits in that row. The column addresses (A6 through A11) can be indeterminate during refresh.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

$$
\text { NOTE: 1. Under absolute maximum ratings, voltage values are with respect to the most-negative supply voltage, } V_{B B} \text { (substrate), unless }
$$ otherwise noted. Throughout the remainder of this data sheet, voltage values are with respect to $\mathrm{V}_{\text {SS }}$.

functional block diagram

TMS 4050 JL, NL; TMS 4050-1 JL, NL; TMS 4050-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

recommended operating conditions

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {DD }}$	11.4	12	12.6	V
Supply voltage, $\mathrm{V}_{\text {SS }}$		0		V
Supply voltage, V_{BB}	-4.5	-5	-5.5	V
High-level input voltage, $\mathrm{V}_{\text {IH }}$ (all inputs except chip enable)	2.2		5.5	V
High-level chip enable input voltage, $\mathrm{V}_{\text {IH }}$ (CE)	$V_{\text {DD }}-0.6$		$\mathrm{V}_{\text {DD }}+1$	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (all inputs except chip enable) (see Note 2)	-0.6		0.6	V
Low-level chip enable input voltage, $\mathrm{V}_{\text {IL }}(\mathrm{CE})$ (see Note 2)	-1		0.6	V
Refresh time, $\mathrm{t}_{\text {refresh }}$			2	ms
Operating free-air temperature, T_{A}	0		70	C

NOTE 2: The algebraic convention where the most negative limit is designated as minimum is used in this data sheet for logic voltage levels only.
electrical characteristics over full ranges of recommended operating conditions, $\mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
VOH	High-level output voltage	$\begin{aligned} & \mathrm{t}_{\mathrm{a}}=\text { guaranteed maximum access time, } \\ & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \text { to } 5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { Load }=1 \text { Series } 74 \mathrm{TTL} \text { gate } \end{aligned}$		2.4			V
V_{OL}	Low-level output voltage					0.4	V
${ }^{\text {IOL }}$	Low-level output current	$\mathrm{t}_{\mathrm{a}}=$ guaranteed maximum access time, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		5			mA
11	Input current (all inputs including 1/O except chip enable)	$V_{1}=-0.6$ to 5.5 V				10	$\mu \mathrm{A}$
I/(CE)	Chip enable input current	$\mathrm{V}_{1}=-1$ to 13.2 V				10	$\mu \mathrm{A}$
${ }^{\prime}$ DD	Supply current from VDD	$V_{1 H}(C E)=13.2 \mathrm{~V}$	$\begin{aligned} & \text { TMS4050 } \\ & \text { TMS4050-1 } \end{aligned}$		35	60	mA
			TMS4050-2		35	70	
IDD	Supply current from V ${ }_{\text {DD }}$, standby	$V_{\text {IL }}(C E)=0.6 \mathrm{~V}$			10	200	$\mu \mathrm{A}$
IDD(av)	Average supply current from $V_{D D}$ during read or write cycle	Minimum cycle timing	TMS 4050		32		
			TMS 4050-1		35		mA
			TMS 4050-2		38		
${ }^{\text {I }} \mathrm{DD}(\mathrm{av})$	Average supply current from $V_{D D}$ during read, modify write cycle		TMS 4050		32		mA
			TMS 4050-1		35		
			TMS 4050-2		38		
$I_{B B}$	Supply current from V_{BB}	$\begin{array}{ll} \mathrm{V}_{\mathrm{BB}}=-5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{DD}}=12.6 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} & \end{array}$			5	100	$\mu \mathrm{A}$

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
capacitance at $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}(\mathrm{CE})}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\text { }}$	MAX	UNIT
$\mathrm{C}_{\text {i }}$ ad)	Input capacitance address inputs			5	7	pF
$C_{i(C E)}$	Input capacitance clock input	$V_{\text {I }}(C E)=12 \mathrm{~V}$		24	28	pF
		$V_{\text {I }}(C E)=0 \mathrm{~V}$		29	33	
$\mathrm{C}_{\mathrm{i}(\mathrm{R} / \mathrm{W})}$	Input capacitance read/write input			5	7	pF
$\mathrm{C}_{(1 / \mathrm{O})}$	I/O terminal capacitance			7	9	pF

[^3]
TMS 4050 JL, NL; TMS 4050-1 JL, NL; TMS 4050-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

read cycle timing requirements over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4050		TMS 4050-1		TMS 4050-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{t}_{\mathrm{c}}(\mathrm{rd})$	Read cycle time	470		430		400		ns
t_{w} (CEH)	Pulse width, chip enable high	300	4000	260	4000	230	4000	ns
t_{w} (CEL)	Pulse width, chip enable low	130		130		130		ns
$\mathrm{tr}_{\text {r }}$ (CE)	Chip-enable rise time		40		40		40	ns
$\mathrm{t}_{\text {f }}(\mathrm{CE})$	Chip-enable fall time		40		40		40	ns
$\mathrm{t}_{\text {su }}(\mathrm{ad})$	Address setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$\mathrm{t}_{\text {su }}(\mathrm{rd}$)	Read setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
th(ad)	Address hold time	$150 \uparrow$		$150 \uparrow$		$150 \uparrow$		ns
th(rd)	Read hold time	40 \downarrow		40 \downarrow		40 \downarrow		ns

$\uparrow \downarrow$ The arrow indicates the edge of the chip-enable pulse used for reference: \uparrow for the rising edge, \downarrow for the falling edge.
read cycle switching characteristics over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4050		TMS 4050-1		TMS 4050-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{ta}_{\mathrm{a}}(\mathrm{CE})$	Access time from chip enable*		280		230		180	ns
$\mathrm{t}_{\mathrm{a}}(\mathrm{ad})$	Access time from addresses \dagger		300		250		200	ns
tPLH	Propagation delay time, low-to-high level output from chip enable*	40		40		40		ns

* Test conditions: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$ to 5.5 V , Load $=1$ Series 74 TTL gate.
${ }^{\dagger}$ Test conditions: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$ to 5.5 V , Load $=1$ Series 74 TTL gate, $\mathrm{t}_{\mathrm{r}}(\mathrm{CE})=20 \mathrm{~ns}$.
write cycle timing requirements over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4050		TMS 4050-1		TMS 4050-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{t}_{\mathrm{c}}(\mathrm{wr})$	Write cycle time	470		430		400		ns
${ }_{\text {t }}$ (CEH)	Pulse width, chip enable high	300	4000	260	4000	230	4000	ns
$\mathrm{t}_{\text {w }}$ (CEL)	Pulse width, chip enable low	130		130		130		ns
t_{w} (wr)	Write pulse width	200		190		180		ns
t_{r} (CE)	Chip-enable rise time		40		40		40	ns
$\mathrm{t}_{\mathrm{f}}(\mathrm{CE})$	Chipenable fall time		40		40		40	ns
$\mathrm{t}_{\text {su (ad) }}$	Address setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$\mathrm{t}_{\text {su }}$ (da-wr)	Data-to-write setup time*	0		0		0		ns
$\mathrm{t}_{\text {su }}$ (wr)	Write-pulse setup time	$240 \downarrow$		220 \downarrow		$210 \downarrow$		ns
$\mathrm{t}_{\text {d }}$ (CEH-wr)	Chipenable-high-to-write delay time ${ }^{\dagger}$		$40 \uparrow$		$40 \uparrow$		$40 \uparrow$	ns
th(ad)	Address hold time	150 \uparrow		$150 \uparrow$		$150 \uparrow$		ns
$\mathrm{th}_{\text {(}}$ da)	Data hold time	40ね		40 \downarrow		40 \downarrow		ns

$\uparrow \downarrow$ The arrow indicates the edge of the chip-enable pulse used for reference: \uparrow for the rising edge, \downarrow for the falling edge
*If R / \bar{W} is low before CE goes high, then $1 / O$ (data in) must be valid when CE goes high.
${ }^{\dagger}$ The write pulse must go low at least $t_{s u}(w r)$ minimum before CE_goes low. If R / \bar{W} remains high more than $t_{d}(C E H-w r)$ maximum (40 ns) after CE goes high, the data-in driver must be disabled until R/W goes low since additional power to overcome the output buffer may be required when writing in a high with some of the faster devices (see comments on Region 1 under read, modify write timing diagram).

TMS 4050 JL, NL; TMS 4050-1 JL, NL; TMS 4050-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

read or refresh cycle timing

NOTE: For the chip-enable input, high and low timing points are 3.0 V (high) and 1.0 V (low). Other input timing points are 0.6 V (low) and 2.2 V (high). Output timing points are 0.4 V (low) and 2.4 V (high).

For minimum cycle, $\operatorname{tr}_{\mathrm{r}}(\overline{\mathrm{CE}})$ and $\mathrm{t}_{\mathrm{f}}(\overline{\mathrm{CE}})$ are equal to 20 ns .
write cycle timing

[^4] required when writing in a high with some of the faster devices. During $t_{d}(C E H-w r), R / W$ is permitted to change from high to low only.

TMS 4050 JL, NL; TMS 4050-1 JL, NL; TMS 4050-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

read, modify write cycle timing requirements over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

	PARAMETER	TMS 4050		TMS 4050-1		TMS 4050-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
t_{c} (RMW)	Read, modify write cycle time ${ }^{\dagger}$	730		660		600		ns
t_{w} (CEH)	Pulse width, chip enable high ${ }^{\dagger}$	560	4000	$\checkmark 490$	4000	430	4000	ns
${ }^{t_{w} \text { (CEL) }}$	Pulse width, chip enable low	130		130		130		ns
t_{w} (wr)	Write pulse width	200		190		180		ns
$\mathrm{tr}_{\text {r }}(\mathrm{CE})$	Chip-enable rise time		40		40		40	ns
$\mathrm{t}_{\text {f }}(\mathrm{CE})$	Chipenable fall time		40		40		40	ns
$\mathrm{t}_{\text {d }}$ (wr-daL)	Write to data-in-low delay time		20		20		20	ns
$\mathrm{t}_{\text {su }}$ (ad)	Address setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$\mathrm{t}_{\text {su }}(\mathrm{daH})$	Data-in-high setup time	240 \downarrow		220 \downarrow		210 \downarrow		ns
$\mathrm{t}_{\text {su }}$ (rd)	Read-pulse setup time	O个		$0 \uparrow$		$0 \uparrow$		ns
$\mathrm{t}_{\text {su }}$ (wr)	Write-pulse setup time	240 \downarrow		220 \downarrow		210 \downarrow		ns
th(ad)	Address hold time	$150 \uparrow$		$150 \uparrow$		$150 \uparrow$		ns
$t_{h}(\mathrm{rd})$	Read hold time	$300 \uparrow$		$250 \uparrow$		$200 \uparrow$		ns
$t_{\text {h }}(\mathrm{da})$	Data hold time	40 \downarrow		40 \downarrow		40 \downarrow		ns

$\uparrow \downarrow$ The arrow indicates the edge of the chip-enable pulse for reference: \uparrow for the rising edge; \downarrow for the falling edge.
${ }^{\dagger}$ Test conditions: $\mathbf{t}_{\mathrm{f}(\mathrm{rd})}=\mathbf{2 0} \mathrm{ns}$.
read, modify write cycle switching characteristics over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4050		TMS 4050-1		TMS 4050-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{t}_{\mathrm{a}}(\mathrm{CE})$	Access time from chip enable*		280		230		180	ns
$\mathrm{t}_{\mathrm{a}}(\mathrm{ad})$	Access Time from addresses ${ }^{\dagger}$		300		250		200	ns

*Test conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$, Load $=1$ Series 74 TTL gate.
${ }^{\dagger}$ Test conditions: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$, Load $=1$ Series 74 TTL gate. $\mathrm{t}_{\mathrm{r}}(\mathrm{CE})=20 \mathrm{~ns}$.
read, modify write cycle timing

NOTE: For the chip enable input high and low timing points are 90% and 10% of $V_{I H(C E)}$. Other input timing points are 0.6 V (low) and 2.2 V (high). Output timing points are 0.4 V (low) and 2.4 V (high).

For minimum cycle, $\operatorname{tr}_{r}(C E)$ and $t_{f}(C E)$ are equal to 20 ns .
timing diagram conventions

TIMING DIAGRAM SYMBOL	MEANING	
	INPUT	OUTPUT
	FORCING FUNCTIONS	RESPONSE FUNCTIONS
	Must be steady high or low	Will be steady high or low
	High-to-low changes permitted	Will be changing from high to low sometime during designated interval
	Low-to-high changes permitted	Will be changing from low to high sometime during designated interval
	Don't care	State unknown or changing
	(Does not apply)	Center line is high-impedance off-state

TYPICAL WAVEFORMS

TMS 4050 JL, NL; TMS 4050-1 JL, NL; TMS 4050-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

TMS 4051 JL, NL; TMS 4051-1 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

BULLETIN NO. DL-S 7512256, MAY 1975

- 4096×1 Organization
- 18-Pin 300-Mil Package Configuration
- Single Low-Capacitance TTL-Compatible Clock
- Multiplexed Data Input/Output
- 2 Performance Ranges:

		READ OR	READ. MODIFY
	ACCESS	WRITE	WRITE
	TIME	CYCLE	CYCLE
	(MAX)	(MIN)	(MIN)
TMS 4051	300 ns	470 ns	730 ns
TMS 4051-1	250 ns	430 ns	660 ns

- Full TTL Compatibility on All Inputs (No Pull-up Resistors Needed Except with $\overline{\mathrm{CE}}$)
- Registers for Addresses Provided on Chip
- Open-Drain Output Buffer
- Low-Power Dissipation
-460 mW Operating (Typical)
- 60 mW Standby (Typical)

8-PIN CERAMIC AND PLASTIC
DUAL-IN-LINE PACKAGES
(TOP VIEW)

- N-Channe! Silicon-Gate Technology

description

The TMS 4051 series is composed of high-speed dynamic 4096-bit MOS random-access memories, organized as 4096 one-bit words. N-channel silicon-gate technology is employed to optimize the speed/power/density trade-off. Two performance options are offered: 300 ns access for the TMS 4051 and 250 ns access for the TMS 4051-1. These options allow the system designer to more closely match the memory performance to the capability of the arithmetic processor.

The address, data input/output, and read/write inputs can be driven directly from Series 74 TTL circuits. A 200-mV noise margin is guaranteed in this configuration, which eliminates the need for specialized drivers. The chip-enable input is TTL-compatible and can interface with a Series 74 TTL circuit as long as a pull-up resistor to $V_{C C}$ is employed in order to provide a high-level input voltage of 3 V minimum. The data input and output are multiplexed to facilitate compatibility with a common bus system. A 12 -line address is available, which minimizes external control logic and optimizes system performance.

The typical power dissipation of these RAM's is 460 mW active and 60 mW standby. To retain data only 70 mW average power is required, which includes the power consumed to refresh the contents of the memory.

The TMS 4051 series is offered in both 18-pin ceramic (JL suffix) and plastic (NL suffix) dual-in-line packages. The series is guaranteed for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Packages are designed for insertion in mounting-hole rows on $300-\mathrm{mil}$ centers.

operation

chip enable ($\overline{\mathrm{CE}}$)
A single external clock input is required. All read, write, and read, modify write operations take place when the chip enable input is low. When the chip enable is high, the memory is in the low-power standby mode and is not selected. No read/write operations can take place during the standby mode because the chip is deselected and is automatically precharging. The $\overline{\mathrm{CE}}$ input can be driven by a standard TTL circuit with a pull-up resistor.

operation (continued)

mode select ($\mathrm{R} / \overline{\mathrm{W}}$)

The read or write mode is selected through the read/write ($\mathrm{R} / \overline{\mathrm{W}}$) input. A logic high on the $\mathrm{R} / \overline{\mathrm{W}}$ input selects the read mode and a logic low selects the write mode. The read/write terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected and the data output is disabled when the write mode is selected.
address (A0-A11)
All addresses must be stable on or before the falling edge of the chip-enable pulse. All address inputs can be driven from standard TTL circuits without pull-up resistors. Address registers are provided on chip to reduce overhead and simplify system design.

data input/output (I/O)

Data input and output are multiplexed on a common input/output terminal, which is controlled by the R / \bar{W} input. Data is written during a write or read, modify write cycle while the chip enable is low. The I/O terminal requires connection to an external pull-up resistor since the output buffer has an open-drain configuration. The open-drain output buffer provides direct TTL sink compatibility with a fan-out of one Series 74 TTL gate. A low logic level results from conduction in the open-drain output buffer while a high level occurs with the buffer in its high-impedance state. Data written into the memory is read out in its true form.

refresh

Refresh of the cell matrix is accomplished by performing a memory cycle at each of the 64 row addresses (A0 through A5) every 2 milliseconds or less. Addressing any row refreshes all 64 bits in that row. The column addresses (A6 through A11) can be indeterminate during refresh.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE: 1. Under absolute maximum ratings, voltage values are with respect to the most-negative supply voltage, $V_{B B}$ (substrate), unless otherwise noted. Throughout the remainder of this data sheet, voltage values are with respect to V_{SS}.
functional block diagram

TMS 4051 JL, NL; TMS 4051-1 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

recommended operating conditions

PARAMETER		MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {DD }}$	-	11.4	12	12.6	V
Supply voltage, $\mathrm{V}_{\text {SS }}$			0		V
Supply voltage, V_{BB}		-4.5	-5	-5.5	V
High-level input voltage, V_{IH} (all inputs except chip enable)		2.2		5.5	V
High-level chip enable input voltage, $\mathrm{V}_{\text {IH }}(\overline{\mathrm{CE}})$		3		5.5	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (all inputs except chip enable) (see Note 2)		-0.6		0.6	V
Low-level chip enable input voltage, $\mathrm{V}_{\text {IL }}(\overline{\mathrm{CE}})$ (see Note 2)		-0.6		0.6	\checkmark
Refresh time, $\mathrm{t}_{\text {refresh }}$				2	ms
Operating free-air temperature, T_{A}		0		70	${ }^{\circ} \mathrm{C}$

NOTE 2: The algebraic convention where the most negative limit is designated as minimum is used in this data sheet for logic voltage levels only.
electrical characteristics over full ranges of recommended operating conditions, $\mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP ${ }^{\text {t }}$	MAX	UNIT
V_{OH}	High-level output voltage	$\begin{aligned} & \mathrm{t}_{\mathrm{a}}=\text { guaranteed maximum access time, } \\ & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \text { to } 5.5 \mathrm{~V}, \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { Load }=1 \text { Series } 74 \mathrm{TTL} \text { gate } \end{aligned}$		2.4			V
VOL	Low-level output voltage			V_{SS}		0.4	V
IOL	Low-level output current	$\begin{aligned} & \mathrm{t}_{\mathrm{a}}=\text { guaranteed } \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	un access time, $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	5			mA
11	Input current (all inputs including I/O except chip enable)	$V_{1}=-0.6$ to 5.5 V				10	$\mu \mathrm{A}$
II(CE)	Chip enable input current	$\mathrm{V}_{1}=-0.6$ to 5.5 V				10	$\mu \mathrm{A}$
${ }^{1} \mathrm{DD}$	Supply current from V ${ }_{\text {DD }}$	$\mathrm{V}_{\mathrm{IL}}(\overline{\mathrm{CE}})=0.6 \mathrm{~V}$			37	70	$m A$
IDD	Supply current from $\mathrm{V}_{\text {DD }}$, standby	$\mathrm{V}_{\mathrm{IH}(\overline{\mathrm{CE}})}=3.5 \mathrm{~V}$			5	8	mA
IDD(av)	Average supply current from $V_{D D}$ during read or write cycle	Minimum cycle timing	TMS 4051		45		mA
			TMS 4051-1		47		
IDD(av)	Average supply current from $V_{D D}$ during read, modify write cycle		TMS 4051		50		mA
			TMS 4051-1		54		
${ }^{\prime} \mathrm{BB}$	Supply current from V_{BB}	$\begin{aligned} & \mathrm{V}_{\mathrm{BB}}=-5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \end{aligned}$	$V_{D D}=12.6 \mathrm{~V}$		5	100	$\mu \mathrm{A}$

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
capacitance at $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}(\overline{\mathrm{CE}})=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, $\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER		MIN TYP ${ }^{\text {+ }}$	MAX	UNIT
$\mathrm{C}_{\mathrm{i}}(\mathrm{ad})$	Input capacitance address inputs	5	7	pF
$\mathrm{C}_{i}(\overline{\mathrm{CE}})$	Input capacitance clock input	5	7	pF
$\mathrm{C}_{\mathrm{i}}(\mathrm{R} / \overline{\mathrm{W}})$	Input capacitance read/write input	5	7	pF
$\mathrm{C}_{(1 / \mathrm{O})}$	I/O terminal capacitance	7	9	pF

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TMS 4051 JL, NL; TMS 4051-1 JL, NL
 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

read cycle timing requirements over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4051		TMS 4051-1		UNIT
		MIN	MAX	MIN	MAX	
${ }^{\text {c }}$ (rd)	Read cycle time	470		430		ns
$t_{w}(\overline{\mathrm{CE}} \mathrm{H})$	Pulse width, chip enable high	130		130		ns
$t_{w}(\overline{C E} L)$	Pulse width, chip enable low	300	4000	260	4000	ns
$\mathrm{t}_{\mathrm{r}}(\overline{\mathrm{CE}})$	Chipenable rise time		40		40	ns
$\mathrm{t}_{\mathrm{f}}(\overline{\mathrm{CE}})$	Chipenable fall time		40		40	ns
$\mathrm{t}_{\text {su }}$ (ad)	Address setup time	0 \downarrow		$0 \downarrow$		ns
${ }_{\text {t }}^{\text {su }}$ (rd)	Read setup time	- \downarrow		0 \downarrow		ns
$\mathrm{t}_{\mathrm{h}}(\mathrm{ad})$	Address hoid time	$180 \downarrow$		165 \downarrow		ns
th(rd)	Read hold time	$80 \uparrow$		$80 \uparrow$		

$\uparrow \downarrow$ The arrow indicates the edge of the chip-enable pulse used for reference: \uparrow for the rising edge, \downarrow for the falling edge.
read cycle switching characteristics over recommended supply voltage range, $\mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4051	TMS 4051-1	UNIT
		TYP ${ }^{\text {¢ }}$ MAX	TYP ${ }^{\text {¢ }}$ MAX	
$t_{a}(\overline{C E})$	Access time from chip enable \ddagger	280	230	ns
$\mathrm{t}_{\mathrm{a}}(\mathrm{ad})$	Access time from addresses*	300	250	ns
tPLH	Propagation delay time, low-to-high level output from chip enable \ddagger	60	60	ns

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
\ddagger Test conditions: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$ to 5.5 V , Load $=1$ Series 74 TTL gate.
*Test conditions: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$ to 5.5 V , Load $=1$ Series 74 TTL gate, $\mathrm{t}_{\mathrm{f}}(\overline{\mathrm{CE}})=20 \mathrm{~ns}$.
write cycle timing requirements over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4051		TMS 4051-1		UNIT
		MIN	MAX	MIN	MAX	
${ }^{\text {t }}$ (wr)	Write cycle time	470		430		ns
	Pulse width, chip enable high	130		130		ns
${ }^{\text {w }}$ ($(\overline{C E} \mathrm{~L}$)	Pulse width, chip enable low	300	4000	260	4000	ns
${ }_{\text {t }}$ (wr)	Write pulse width	200		190		ns
$\mathrm{tr}_{\mathbf{\prime}}(\overline{\mathrm{CE}})$	Chip-enable rise time		40		40	ns
$\mathrm{t}_{\mathrm{f}}(\overline{\mathrm{CE}})$	Chip-enable fall time		40		40	ns
$\mathrm{t}_{\text {su }}(\mathrm{ad})$	Address setup time	0】		0 \downarrow		ns
${ }^{\text {t }}$ su(da-wr)	Data-to-write setup time*	0		0		ns
$\mathrm{t}_{\text {su(wr) }}$	Write-pulse setup time	$240 \uparrow$		$220 \uparrow$		ns
$\mathrm{t}_{\mathrm{d}}(\overline{\mathrm{CE}} \mathrm{L}-\mathrm{wr})$	Chip-enable-low-to-write delay time \dagger		601		601	ns
$t_{\text {h }}(\mathrm{ad})$	Address hold time	$180 \downarrow$		165 \downarrow		ns
$t_{\text {h }}(\mathrm{da})$	Data hold time	$80 \uparrow$		$80 \uparrow$		ns

$\uparrow \downarrow$ The arrow indicates the edge of the chip-enable pulse used for reference: \uparrow for the rising edge, \downarrow for the falling edge.
*If $\mathrm{R} / \overline{\mathrm{W}}$ is low before $\overline{\mathrm{CE}}$ goes low, then I/O (data in) must be valid when $\overline{\mathrm{CE}}$ goes low.
†The write pulse must go low at least $t_{s u(w r)}$ minimum before $\overline{C E}$ goes high. If R / \bar{W} remains high more than $t_{d}(\overline{C E} L$-wr) maximum (60 ns) after $\overline{C E}$ goes low, the data-in driver must be disabled until R / \bar{W} goes low since additional power to overcome the output buffer may be required when writing in a high with some of the faster devices (see comments on Region 1 under read, modify write timing diagram).

TMS 4051 JL, NL; TMS 4051-1 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

read or refresh cycle timing

NOTE: For the chip-enable input, high and low timing points are 3.0 V (high) and 1.0 V (low). Other input timing points are 0.6 V (low) and 2.2 V (high). Output timing points are 0.4 V (low) and 2.4 V (high).

For minimum cycle, $\operatorname{tr}_{r}(\overline{\mathrm{CE}})$ and $\mathrm{t}_{\mathrm{f}}(\overline{\mathrm{CE}})$ are equal to 20 ns .
write cycle timing

NOTE: For the chip-enable input, high and low timing points are 3.0 V (high) and 1.0 V (low). Other timing points are 0.6 V (low) and 2.2 V (high). Output timing points are 0.4 V (low) and 2.4 V (high).
*The write pulse must go low at least $t_{\text {su }}(w r)$ minimum before $C E$ goes high. If R / \bar{W} remains high more than $t_{d}(\overline{C E} L-w r)$ maximum (60 ns) after $\overline{C E}$ goes low, the data-in driver must be disabled until R / \bar{W} goes low since additional power to overcome the output buffer may be required when writing in a high with some of the faster devices. During $t_{d}(\overline{C E} L-w r), R / \bar{W}$ is permitted to change from high to low only.

TMS 4051 JL, NL; TMS 4051-1 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

read, modify write cycle timing requirements over recommended supply voltage range, $\mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4051		TMS 4051-1		UNIT
		MIN	MAX	MIN	MAX	
t_{c} (RMW)	Read, modify write cycle time ${ }^{\dagger}$	730		660		ns
$\mathrm{t}_{\mathrm{w}}(\overline{\mathrm{CE}} \mathrm{H})$	Pulse width, chip enable high ${ }^{\dagger}$	130		130		ns
$t_{w}\left(\overline{C E}{ }^{\text {c }}\right.$)	Pulse width, chip enable low	560	4000	490	4000	ns
$\mathrm{t}_{\text {w }}(\mathrm{wr})$	Write pulse width	200		190		ns
$t_{r}(\overline{C E})$	Chip-enable rise time		40		40	ns
$\mathrm{t}_{\mathrm{f}}(\overline{\mathrm{C}} \overline{\mathrm{E}})$	Chip-enable fall time		40		40	ns
${ }^{\text {t }}$ ((wr-daL)	Write to data-in-low delay time		20		20	ns
$\mathrm{t}_{\text {su}}(\mathrm{ad})$	Address setup time	- \downarrow		0 \downarrow		ns
$t_{\text {su }}$ (daH)	Data-in-high setup time	$240 \uparrow$		$220 \uparrow$		ns
$\mathrm{t}_{\text {su }}(\mathrm{rd})$	Read-pulse setup time	O \downarrow		0 \downarrow		ns
$\mathrm{t}_{\text {su }}$ (wr)	Write-pulse setup time	$240 \uparrow$		$220 \uparrow$		ns
$t_{\text {h }}(\mathrm{ad})$	Address hold time	180 \downarrow		$165 \downarrow$		ns
th(rd)	Read hold time	320 \downarrow		270 \downarrow		ns
$t_{\text {h }}$ (da)	Data hold time	$80 \uparrow$		$80 \uparrow$		ns

$\uparrow \downarrow$ The arrow indicates the edge of the chip-enable pulse for reference: \uparrow for the rising edge; \downarrow for the falling edge.
${ }^{\dagger}$ Test conditions: $\mathrm{t}_{\mathrm{f}}(\mathrm{rd})=20 \mathrm{~ns}$.
read, modify write cycle swithcing characteristics over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4051		TMS 4051-1		UNIT
		MIN	MAX	MIN	MAX	
$\mathrm{ta}_{\mathrm{a}}(\overline{\mathrm{CE}})$	Access time from chip enable*		280		230	ns
$\mathrm{ta}_{\mathrm{a}}(\mathrm{ad})$	Access time from addresses ${ }^{\dagger}$		300		250	ns

*Test conditions: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$, Load $=1$ Series 74 TTL gate.
${ }^{\dagger}$ Test conditions: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=22 \mathrm{k} \Omega$, Load $=1$ Series 74 TTL gate, $\mathrm{t}_{\mathrm{f}}(\overline{\mathrm{CE}})=20 \mathrm{~ns}$.
read, modify write cycle timing

NOTE: For the chip enable input high and low timing points are 3.0 V (high) and 1.0 V (low). Other input timing points are 0.6 V (low) and 2.2 V (high). Output timing points are 0.4 V (low) and 2.4 V (high).

For minimum cycle, $\mathrm{t}_{\mathrm{r}}(\overline{\mathrm{CE}})$ and $\mathrm{t}_{\mathrm{f}}(\overline{\mathrm{CE}})$ are equal to 20 ns .

TMS 4051 JL, NL; TMS 4051-1 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

timing diagram conventions		
	MEANING	
TIMING DIAGRAM	INPUT	OUTPUT
SYMBOL	FORCING FUNCTIONS	RESPONSE FUNCTIONS
	Must be steady high or low	Will be steady high or low
	High-to-low changes permitted	Will be changing from high to low sometime during designated interval
	Low-to-high changes permitted	Will be changing from low to high sometime during designated interval
	Don't Care	State unknown or changing
	(Does not apply)	Center line is high-impedance off-state

TYPICAL WAVEFORMS

REFRESH TIME vs TEMPERATURE

ACCESS TIMES vs TEMPERATURE
 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

- 4096×1 Organization
- 3 Performance Ranges:

	$\begin{aligned} & \text { ACCESS } \\ & \text { TIME } \\ & \text { (MAX) } \\ & \hline \end{aligned}$	READ OR WRITE CYCLE (MIN)	READ, MODIFY WRITE CYCLE (MIN)
TMS 4060	300 ns	470 ns	710 ns
TMS 4060-1	250 ns	430 ns	640 ns
TMS 4060-2	200 ns	400 ns	580 ns

- Full TTL Compatibility on All Inputs (No Pull-up Resistors Needed)
- Low Power Dissipation
- 400 mW Operating (Typical)
- 0.2 mW Standby (Typical)
- Single Low-Capacitance Clock
- N-Channel Silicon-Gate Technology
- 22-Pin 400-Mil Dual-in-Line Package

description

22-PIN CERAMIC AND PLASTIC DUAL-IN-LINE PACKAGES
(TOP VIEW)

The TMS 4060 series is composed of high-speed dynamic 4096-bit MOS random-access memories, organized as 4096 one-bit words. N -channel silicon-gate technology is employed to optimize the speed/power/density trade-off. Three performance options are offered: 300 ns access for the TMS 4060, 250 ns access for the TMS $4060-1$, and 200 ns for TMS 4060-2. These options allow the system designer to more closely match the memory performance to the capability of the arithmetic processor.

All inputs except the chip enable are fully TTL-compatible and require no pull-up resistors. The low capacitance of the address and control inputs precludes the need for specialized drivers. When driven by a Series 74 device, the guaranteed dc input noise immunity is 200 mV . The TTL-compatible buffer is guaranteed to drive two Series 74 TTL gates. The TMS 4060 series uses only one clock (chip enable) to simplify system design. The low-capacitance chip-enable input requires a positive voltage swing (12 volts), which can be driven by a variety of widely available drivers.

The typical power dissipation of these RAM's is 400 mW active and 0.3 mW standby. To retain data only 6 mW average power is required, which includes the power consumed to refresh the contents of the memory.

The TMS 4060 series is offered in both 22 -pin ceramic (JL suffix) and plastic (NL suffix) dual-in-line packages. The series is guaranteed for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. These packages are designed for insertion in mounting-hole rows on 0.400 -mil centers.

operation

chip select ($\overline{\mathrm{CS}}$)
The chip-select terminal, which can be driven from standard TTL circuits without an external pull-up resistor, affects the data-in, data-out and read/write inputs. The data input and data output terminals are enabled when chip select is low. Therefore, the read, write, and read, modify write operations are performed only when chip select is low. If the chip is to be selected for a given cycle, the chip-select input must be low on or before the rising edge of the chip enable. If the chip is not to be selected for a given cycle, chip select must be held high as long as chip enable is high. A register for the chip-select input is provided on the chip to reduce overhead and simplify system design.
chip enable (CE)
A single external clock input is required. All read, write, and read, modify write operations take place when the chip enable input is high. When the chip enable is low, the memory is in the low-power standby mode. No read/write operations can take place because the chip is automatically precharging.

TMS 4060 JL, NL; TMS 4060-1 JL, NL; TMS 4060-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

operation (continued)

mode select ($\mathrm{R} \bar{W}$)
The read or write mode is selected through the read/write (R / \bar{W}) input. A logic high on the R / \bar{W} input selects the read mode and a logic low selects the write mode. The read/write terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected.
address (A0-A11)
All addresses must be stable on or before the rising edge of the chip-enable pulse. All address inputs can be driven from standard TTL circuits without pull-up resistors. Address registers are provided on chip to reduce overhead and simplify system design.
data-in (DI)
Data is written during a write or read, modify write cycle while the chip enable is high. The data-in terminal can be driven from standard TTL circuits without a pull-up resistor. There is no register on the data-in terminal.

data-out ($\overline{\mathrm{DO}}$)

The three-state output buffer provides direct TTL compatibility with a fan-out of two Series 74 TTL gates. The output is in the high-impedance (floating) state when the chip enable is low. It remains in the high-impedance state if the chip-select input is high when chip enable goes high and provided that chip select remains high as long as chip enable is high. If the chip select is set up low prior to the rise of chip enable and held low an interval after that rise, the output will be enabled as long as chip enable stays high regardless of subsequent changes in the level of chip select. A data-valid mode is always preceded by a low output state. Data-out is inverted from data-in.

refresh

Refresh must be performed every two milliseconds by cycling through the 64 addresses of the lower-order-address inputs, A0 through A5 (pins 8, 9, $10,13,14,15$), or by addressing every row within any 2 -millisecond period. Addressing any row refreshes all 64 bits in that row. The chip does not need to be selected during the refresh. If the chip is refreshed during a write mode, then chip select must be high. The column addresses (A6 through A11) can be indeterminate during refresh.

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
 noted. Throughout the remainder of this data sheet, voltage values are with respect to $V_{S S}$.

TMS 4060 JL, NL; TMS 4060-1 JL, NL; TMS 4060-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

recommended operating conditions (see Note)

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.75	5	5.25	V
Supply voltage, $\mathrm{V}_{\text {DD }}$	11.4	12	12.6	V
Supply voltage, $\mathrm{V}_{\text {SS }}$		0		V
Supply voltage, V_{BB}	-4.5	-5	-5.5	V
High-level input voltage, $\mathrm{V}_{\text {IH }}$ (all inputs except chip enable)	2.2		5.25	V
High-level chip enable input voltage, $\mathrm{V}_{1} \mathrm{H}(\mathrm{CE})$	$\mathrm{V}_{\text {DD }}-0.6$		D ${ }^{+1.0}$	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (all inputs except chip enable) (see Note)	-0.6		0.6	V
Low-level chip enable input voltage, $\mathrm{V}_{\text {IL }}(\mathrm{CE})$ (see Note)	-1		0.6	V
Refresh time, ${ }_{\text {refresh }}$			2	ms
Operating free-air temperature, T_{A}	0		70	C

NOTE: The algebraic convention where the most negative limit is designated as minimum is used in this data sheet for logic voltage levels only.
electrical characteristics over full ranges of recommended operating conditions, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP ${ }^{\text {t }}$	MAX	UNIT
VOH	High-level output voltage	$10=-2 \mathrm{~mA}$		2.4		V_{CC}	V
V_{OL}	Low-level output voltage	$\mathrm{I}_{\mathrm{O}}=3.2 \mathrm{~mA}$		$\mathrm{V}_{\text {SS }}$		0.4	V
11	Input current (alt inputs except chip enable)	$\mathrm{V}_{1}=0$ to 5.25 V				10	$\mu \mathrm{A}$
I/(CE)	Chip enable input current	$\mathrm{V}_{1}=0$ to 13.2 V				2	$\mu \mathrm{A}$
Ioz	High-impedance-state (off-state) output current	$\mathrm{V}_{\mathrm{O}}=0$ to 5.25 V				10	$\mu \mathrm{A}$
ICC	Supply current from VCC	2 Series 74 TTL loads				1	mA
1 DD	Supply current from $V_{\text {DD }}$	$\mathrm{V}_{1 H}(\mathrm{CE})=12.6 \mathrm{~V}$			30	60	mA
${ }^{\text {IDD }}$	Supply current from VDD, standby	$\mathrm{V}_{\text {IL }}(\mathrm{CE})=0.6 \mathrm{~V}$			20	200	$\mu \mathrm{A}$
${ }^{1}$ DD(av)	Average supply current from $V_{D D}$ during read or write cycle	Minimum cycle time	TMS 4060		32		
			TMS 4060-1		35		mA
			TMS 4060-2		38		
${ }^{1}$ DD(av)	Average supply current from $V_{D D}$ during read, modify write cycle		TMS 4060		32		mA
			TMS 4060-1		35		
			TMS 4060-2		38		
${ }^{\prime} \mathrm{BB}$	Supply current from $V_{\text {B }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{BB}}=-5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=12.6 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \end{aligned}$		-5	-100	$\mu \mathrm{A}$

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
capacitance at $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}(\mathrm{CE})}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$\mathrm{C}_{\text {i }}$ ad)	Input capacitance address inputs			5	7	pF
$\mathrm{C}_{i}(\mathrm{CE})$	Input capacitance clock input	$V_{\text {I }}(C E)=10.8 \mathrm{~V}$		18	22	pF
		$\mathrm{V}_{\text {(}}(\mathrm{CE})=-1.0 \mathrm{~V}$		23	27	
$\mathrm{C}_{i(\overline{C S})}$	Input capacitance chip select input			4	6	pF
$\mathrm{C}_{\mathrm{i} \text { (data) }}$	Input capacitance data input			4	6	pF
$\mathrm{C}_{\mathrm{i}}(\mathrm{R} / \bar{W})$	Input capacitance read/write input			5	7	pF
C_{0}	Output capacitance			5	7	pF

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TMS 4060 JL, NL; TMS 4060-1 JL, NL; TMS 4060-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

read cycle timing requirements over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4060		TMS 4060.1		TMS 4060-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{t}_{\mathrm{c}}(\mathrm{rd})$	Read cycle time	470		430		400		ns
${ }^{\text {w }}$ (CEH)	Pulse width, chip enable high	300	4000	260	4000	230	4000	ns
${ }^{\text {w }}$ (CEL)	Pulse width, chip enable low	130		130		130		ns
$\mathrm{tr}_{\mathrm{r}}(\mathrm{CE})$	Chip-enable rise time		40		40		40	ns
$\mathrm{t}_{\text {f }}$ (CE)	Chip-enable fall time		40		40		40	ns
$\mathrm{t}_{\text {su }}(\mathrm{ad})$	Address setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$t_{\text {su }}$ (CS)	Chip-select setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
${ }^{\text {t }}$ su(rd)	Read setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
th(ad)	Address hold time	$150 \uparrow$		$150 \uparrow$		$150 \uparrow$		ns
$\mathrm{th}_{\mathrm{h}}(\overline{\mathrm{CS}})$	Chip-select hold time	$150 \uparrow$		$150 \uparrow$		$150 \uparrow$		ns
th(rd)	Read hold time	40】		40 \downarrow		40 \downarrow		ns

$\uparrow \downarrow$ The arrow indicates the edge of the chip enable pulse used for reference: \uparrow for the rising edge, \downarrow for the falling edge.
read cycle switching characteristics over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4060		TMS 4060-1		TMS 4060-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{t}_{\mathrm{a}}(\mathrm{CE})$	Access time from chip enable ${ }^{\dagger}$		280		230		180	ns
$\mathrm{t}_{\mathrm{a}}(\mathrm{ad})$	Access time from address \dagger		300		250		200	ns
tpHz or tpLZ	Output disable time from high or low level \ddagger	30		30		30		ns
tPZL	Output enable time to low level \ddagger		250		200		150	ns

${ }^{\dagger}$ Test conditions: $C_{L}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}(C E)}=20 \mathrm{~ns}$, Load $=1$ Series 74 TTL gate.
\ddagger Test conditions: $C_{L}=50 \mathrm{pF}$, Load $=1$ Series 74 TTL gate.
write cycle timing requirements over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4060		TMS 4060-1		TMS 4060-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
t_{c} (wr)	Write cycle time	470		430		400		ns
t_{w} (CEH)	Pulse width, chip enable high	300	4000	260	4000	230	4000	ns
${ }^{\text {tw }}$ (CEL)	Pulse width, chip enable low	130		130		130		ns
t_{w} (wr)	Write pulse width	200		190		180		ns
$\mathrm{t}_{\mathrm{r}}(\mathrm{CE})$	Chip-enable rise time		40		40		40	ns
$t_{f}(C E)$	Chip-enable fall time		40		40		40	ns
$\mathrm{t}_{\text {su }}$ (ad)	Address setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$\mathrm{t}_{\text {su }}(\overline{\mathrm{CS}})$	Chip-select setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$\mathrm{t}_{\text {su }}$ (da-wr)	Data-to-write setup time*	0		0		0		ns
$\mathrm{t}_{\text {su }}$ (wr)	Write-pulse setup time	$240 \downarrow$		$220 \downarrow$		$210 \downarrow$		ns
th(ad)	Address hold time	$150 \uparrow$		$150 \uparrow$		$150 \uparrow$		ns
$\mathrm{th}_{\text {(}}^{\text {CS }}$)	Chip-select hold time	$150 \uparrow$		$150 \uparrow$		$150 \uparrow$		ns
${ }^{\text {th }}$ (da)	Data hold time	40 \downarrow		40】		40 \downarrow		ns

$\uparrow \downarrow$ The arrow indicates the edge of the chip enable pulse used for reference: \uparrow for the rising edge, \downarrow for the falling edge.

- If R / \bar{W} is low before CE goes high then DI must be valid when CE goes high.

TMS 4060 JL, NL; TMS 4060-1 JL, NL; TMS 4060-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

read cycle timing

NOTE: For the chip-enable input, high and low timing points are 90% and 10% of $V_{1 H}(C E)$. Other input timing points are 0.6 V (Iow) and 2.2 V (high). Output timing points are 0.4 V (low) and 2.4 V (high).
write cycle timing

NOTE: For the chip-enable input, high and low timing points are 90% and 10% of $V_{I H(C E)}$. Other input timing points are 0.6 V (Iow) and 2.2 V (high). Output timing points are 0.4 V (low) and 2.4 V (high). During the time from the rise of CE to the f all of R / \bar{W}, R / \bar{W} is per mitted to change from high to low only.

TMS 4060 JL, NL; TMS 4060-1 JL, NL; TMS 4060-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

read, modify write cycle timing requirements over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4060		TMS 4060-1		TMS 4060-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$t_{\text {c }}$ (RMW)	Read, modify write cycle time*	710		640		580		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{CEH})$	Pulse width, chip enable high*	540	4000	470	4000	410	4000	ns
$t_{\text {w }}$ (CEL)	Pulse width, chip enable low	130		130		130		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{wr})$	Write-pulse width	200		190		180		ns
$\mathrm{tr}_{\text {r }}$ (CE)	Chip-enable rise time		40		40		40	ns
$\mathrm{t}_{\mathrm{f}}(\mathrm{CE})$	Chip-enable fall time		40		40		40	ns
$\mathrm{t}_{\text {su }}$ (ad)	Address setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$\mathrm{t}_{\text {su }}(\overline{\mathrm{CS}})$	Chip-select setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$t_{\text {su }}$ (da-wr)	Data-to-write setup time	0		0		0		ns
$\mathrm{t}_{\text {su(rd) }}$	Read pulse setup time	$0 \uparrow$		$0 \uparrow$		$0 \uparrow$		ns
$t_{\text {su }}$ (wr)	Write pulse setup time	$240 \downarrow$		$220 \downarrow$		$210 \downarrow$		ns
$t_{h}(\mathrm{ad})$	Address hold time	$150 \uparrow$		$150 \uparrow$		$150 \uparrow$		ns
$t_{\text {h }}(\overline{\mathrm{CS}})$	Chip-select hold time	$150 \uparrow$		$150 \uparrow$		$150 \uparrow$		ns
$t_{\text {h }}$ (rd)	Read hold time	$280 \uparrow$		$230 \uparrow$		$180 \uparrow$		ns
$t_{\text {h }}$ (da)	Data hold time	40 \downarrow		40 \downarrow		$40 \downarrow$		ns

$\uparrow \downarrow$ The arrow indicates the edge of the chip-enable pulse used for reference: \uparrow for the rising edge, \downarrow for the falling edge.

- Test conditions: $\mathrm{t}_{\mathrm{f}(\mathrm{rd})}=20 \mathrm{~ns}$.
read, modify write cycle switching characteristics over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TMS 4060		TMS 4060-1		TMS 4060-2		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
t_{a} (CE)	Access time from chip enablet		280		230		180	ns
$\mathrm{t}_{\mathrm{a}}(\mathrm{ad})$	Access time from address \dagger		300		250		200	ns
${ }^{\text {tPLH }}$	Propagation delay time, low-to-high level output from write pulse \ddagger	30		30		30		ns
tPHZ	Output disable time from high level \ddagger	30		30		30		ns
${ }_{\text {tPZL }}$	Output enable time to low level \ddagger		250		200		150	ns

${ }^{\dagger}$ Test conditions: $C_{L}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}(\mathrm{CE})=20 \mathrm{~ns}$, Load $=1$ Series 74 TTL gate.
\ddagger Test conditions: $C_{L}=50 \mathrm{pF}$, Load $=1$ Series 74 TTL gate.
read, modify write cycle timing

NOTE: For the chip enable input, high and low timing points are 90% and 10% of $V_{I H(C E)}$. Other input timing points are 0.6 V (low) and $2.2 \vee$ (high). Output timing points are $0.4 \vee$ (low) and $2.4 \vee$ (high).

TMS 4060 JL, NL; TMS 4060-1 JL, NL; TMS 4060-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

timing diagram conventions

INPUT
FORCING FUNCTIONS

Must be steady high or low
High-to-low changes permitted

Low-to-high changes permitted

MEANING

INPUT	OUTPUT
FORCING FUNCTIONS	RESPONSE FUNCTIONS
Must be steady high or low	Will be steady high or low
High-to-low changes permitted	Will be changing from high to low sometime during designated interval
Low-to-high changes permitted	Will be changing from low to high sometime during designated interval
Don't care	State unknown or changing

Center line is high-impedance off-state

TYPICAL WAVEFORMS

TMS 4060 JL, NL; TMS 4060-1 JL, NL; TMS 4060-2 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORIES

REFRESH TIME vs TEMPERATURE

- 1024×1 Organization
- Access Time . . . 130 ns Maximum
- Cycle Time . . . 200 ns Maximum
- Low Power Dissipation: Operating . . . 120 mW Typical Standby . . 2 mW Typical
- Differential Output
- Wire-OR Capability
- Chip Select For Simplified Memory Expansion
- 22-Pin or 18-Pin Dual-In-Line Package

description

The TMS $4062 \mathrm{JL}, \mathrm{NL}$ and TMS $4063 \mathrm{JL}, \mathrm{NL}$ are high-speed, 1024-word by 1-bit, dynamic random-access memories fabricated on a single monolithic chip with P-channel enhancement-type MOS processing. The devices are designed for use in low-cost, high-performance memory applications. High performance and low power dissipation are achieved with a four-transistor storage cell and unique support circuitry. Low-capacitance inputs minimize driver-circuit power requirements, simplify TTL-to-MOS conversion, and reduce overall system costs.

The memory is fully decoded and its differential outputs can be OR-tied. The chip-select input allows the selection of individual components in large memory arrays. Stored information is nondestructively read and the differential output voltage is of the same polarity as the differential input voltage during the write operation. Since the memory is dynamic, it must be refreshed periodically.

The TMS 4062 is offered in 22-pin dual-in-line ceramic (JL suffix) and plastic (NL suffix) packages designed for insertion in mounting-hole rows on 400 -mil centers. The TMS 4063 is offered in 18-pin ceramic (JL suffix) and plastic (NL suffix) dual-in-line packages designed for insertion in mounting-hole rows on $300-\mathrm{mil}$ centers.

operation

Reset ($\overline{\mathrm{RS}}$)
Every device cycle begins with the reset pulse. When the reset input is low, the internal circuits are precharged and the address inverters are turned off. Address inputs must be valid and stable before reset goes high and must be held stable a minimum time after reset goes high to allow the row and column decoders to function.

1024-WORD BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORIES

operation (continued)

Clock and Chip-Select Clock ($\overline{\mathrm{CK}}, \overline{\mathrm{CS}}$)

The clock input is gated by the row decoders to activate a row the address of which is specified by AO-A4. The chip-select clock input is gated by the column decoders to select a column of address A5-A9. Thus, the clock and chip-select clock pulses, at the low level and along with a 10 -bit address, isolate a single memory cell and allow transfer of information to or from the input/output lines, which are also gated by the chip-select clock. After output data is read, the clock and chip-select clock must return to the high level before the start of the next cycle.

Address (A0-A9)

Addresses must be valid before reset goes high. The address inputs exhibit small input capacitances since these inputs are connected to the drains of MOS transistors that are turned off during the reset and clock pulses.

Data Input/Output (I/O)

Data is read or written through two input/output terminals that operate in a differential mode. To write, one I/O input is taken high while the other remains at $\mathrm{V}_{\text {REF }}$. During a later read cycle, the input that was taken high will source current while the other will not. The I/O terminals may be connected by resistors to $\mathrm{V}_{\text {REF }}$ for voltage sensing or directly to a current sense amplifier such as the SN75370. The I/O terminals are gated by chip select.

Refresh

Each cell must be refreshed at least once in every 2-millisecond period by cycling through the lower order row addresses (A0-A4) or by addressing each row at least once in that period. Addressing any row refreshes all 32 cells in that row. The chip-select clock need not be activated during refresh; however, the clock input must be cycled from high to low to high.

functional block diagram

TMS 4062 JL, NL; TMS 4063 JL, NL 1024-WORD BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORIES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

recommended operating conditions

PARAMETER	MIN	NOM MAX	UNIT
Supply voltage, $\mathrm{V}_{\mathrm{BB}}-\mathrm{V}_{\text {SS }}$ (see Notes 1 and 2)	2.3	2.512 .7	\checkmark
Supply voltage, $\mathrm{V}_{\text {DD }}$		0	V
Supply voltage, $\mathrm{V}_{\text {SS }}$	19	$20 \quad 21$	V
Supply voltage, $\mathrm{V}_{\text {REF }}$	6.6	$7 \quad 7.4$	V
High-level input voltage, all inputs, $\mathrm{V}_{1 \mathrm{H}}$	$\mathrm{V}_{\text {SS }}-2$	$\mathrm{V}_{\text {SS }}$	V
Low-level address input voltage, $\mathrm{V}_{\text {IL }}(\mathrm{ad})$ (see Note 3)	-2	$0 \quad 1$	\checkmark
Low-level input voltage at reset and both clocks, $\mathrm{V}_{\text {IL }}(\mathbf{r s}, \phi)$ (see Note 3).	-5	0 0.4	V
Low-level input voltage at I/O, $\mathrm{V}_{\mathrm{IL}}(\mathrm{I} / \mathrm{O})$	$V_{\text {REF }}-1$	$\mathrm{V}_{\text {REF }} \mathrm{V}_{\text {REF }}+1$	V
Refresh time, $\mathrm{t}_{\text {refresh }}$		2	ms
Operating free-air temperature, T_{A}	0	70	${ }^{\circ} \mathrm{C}$

NOTES: 1. Throughout this data sheet supply voltage values are with respect to $V_{D D}$, unless otherwise noted.
2. V_{BB} must be applied prior to V_{SS}.
3. The algebraic convention where the most positive limit is designated as maximum is used in this data sheet for logic voltage levels only.
electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
IODH High-level differential output current		100			$\mu \mathrm{A}$
II(ad) Address input current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}(0 \mathrm{~V})$			1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(} \mathrm{rs}, \phi)}$ Reset or either clock input current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}(0 \mathrm{~V})$			10	$\mu \mathrm{A}$
$I_{1(1 / O) ~ I / O ~ i n p u t ~ c u r r e n t ~}^{\text {a }}$	$V_{1}=V_{\text {REF }}$			2	$\mu \mathrm{A}$
I_{BB} Supply current from $\mathrm{V}_{\text {BB }}$	All inputs at $V_{\text {SS }}$			10	$\mu \mathrm{A}$
IREF Supply current from $\mathrm{V}_{\text {REF }}$	All inputs at $\mathrm{V}_{\text {SS }}$			10	$\mu \mathrm{A}$
${ }^{1} \mathrm{SS}(1)$ Supply current from $\mathrm{V}_{\text {SS }}$	All address and reset inputs at V_{SS}, (see Figure 1)			100	$\mu \mathrm{A}$
ISS(2) Supply current from $\mathrm{V}_{\text {SS }}$	Reset at $V_{D D}(0 \mathrm{~V})$.Clocks at V_{SS}. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		9	15	mA
$\begin{array}{ll} & \text { Peak supply current from } V_{S S} \\ \text { (see Note 4) } \end{array}$	Reset and both clocks at $V_{S S}$, All addresses at $\mathrm{V}_{\mathrm{DD}}(0 \mathrm{~V})$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		18	30	mA
ISS(4) Supply current from $\mathrm{V}_{\text {SS }}$	Reset at $V_{\text {SS }}$, All other inputs at $V_{D D}(0 \mathrm{~V})$			100	$\mu \mathrm{A}$
ISS(av) Average supply current from $\mathrm{V}_{\text {SS }}$	All supply voltages nominal, $\mathrm{t}_{\mathrm{C}}=290 \mathrm{~ns}$		6		mA

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTE 4: The steady-state value of $\operatorname{ISS}(3)$ is less than $100 \mu \mathrm{~A}$.

TMS 4062 JL, NL; TMS 4063 JL, NL

 1024-WORD BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORIES
capacitances over full ranges of recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	TYP ${ }^{\boldsymbol{\dagger}}$	MAX	UNIT
$\mathrm{C}_{\mathrm{i}(\mathrm{ad})}$	Input capacitance, address inputs	$\mathrm{V}_{\mathbf{1}}=\mathrm{V}_{\mathrm{SS}}, \quad \mathrm{f}=1 \mathrm{MHz}$	2.5	3.5
$\mathrm{C}_{\mathrm{i}}(\mathrm{rs})$	Input capacitance, reset inputs	$\mathrm{V}_{\mathbf{1}}=\mathrm{V}_{\mathrm{SS}}, \quad \mathrm{f}=1 \mathrm{MHz}$	pF	
$\mathrm{C}_{\mathrm{i}}(\phi)$	Input capacitance, both clock inputs	$\mathrm{V}_{\mathbf{1}}=\mathrm{V}_{\mathrm{SS}}, \quad \mathrm{f}=1 \mathrm{MHz}$	30	40
$\mathrm{C}_{(\mathrm{I} / \mathrm{O})}$	I / O terminal capacitance	$\mathrm{V}_{\mathbf{I}}=\mathrm{V}_{\mathrm{SS}}, \quad \mathrm{f}=1 \mathrm{MHz}$		

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.

TYPICAL DYNAMIC CURRENT WAVEFORMS

TMS 4062 JL, NL; TMS 4063 JL, NL 1024-WORD BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORIES

read cycle timing requirements over recommended supply voltage ranges, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
${ }^{t}$ c (rd)	Read cycle time	$\mathrm{V}_{1 \mathrm{~L}}(\mathrm{rs}, \phi)=0 \mathrm{~V}$	290		ns
		$\mathrm{V}_{1 \mathrm{~L}(\mathrm{rs}, \phi)}=-5 \mathrm{~V}$	200		
${ }_{\text {t }}$ (rs)	Pulse width, reset low	$V_{1 L}(\mathrm{rs}, \phi)=0 \mathrm{~V}$	90	2000	ns
		$\mathrm{V}_{(1 \mathrm{~L}(\mathrm{rs}, \phi)}=-5 \mathrm{~V}$	20	2000	
${ }^{t} w(\phi)$	Pulse width, either clock low	$\mathrm{V}_{\mathrm{IL}(\mathrm{rs}, \phi)}=0 \mathrm{~V}$	60	2000	ns
		$\mathrm{V}_{1 \mathrm{~L}(\mathrm{rs}, \phi)}=-5 \mathrm{~V}$	40	2000	
t_{r}	Rise time of reset or either clock			20	ns
t_{f}	Fall time of reset or either clock			20	ns
$\mathrm{t}_{\mathrm{d}}(\mathrm{rs}-\phi)$	Delay time, reset high to either clock		60	2000	ns
$\mathrm{t}_{\mathrm{d}}(\phi-\mathrm{rs}$)	Delay time, either clock high to reset		0		ns
$\mathrm{t}_{\text {su }}$ (ad)	Address setup time		0		ns
th (ad)	Address hold time		50		ns

read cycle switching characteristics over recommended supply voltage ranges, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$,
$R_{L}=400 \Omega, C_{L}=10 \mathrm{pF}$

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$\mathrm{ta}_{\mathrm{a}}(\mathrm{rs}$)	Access time from reset	$\mathrm{V}_{\text {IL }(\mathrm{rs}, \phi)}=0 \mathrm{~V}$	150	ns
		$\mathrm{V}_{1} \mathrm{~L}(\mathrm{rs}, \phi)=-5 \mathrm{~V}$	130	
$t_{p}(\phi)$	Propagation delay time to output	$\mathrm{V}_{1 \mathrm{~L}}(\mathrm{rs}, \phi)=0 \mathrm{~V}$	90	ns
		$\mathrm{V}_{1 \mathrm{~L}(\mathrm{rs}, \phi)}=-5 \mathrm{~V}$	70	

read cycle timing diagram

NOTE: All reference points on inputs are 90% and 10% points.

TMS 4062 JL, NL; TMS 4063 JL, NL

1024-WORD BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORIES

write cycle timing requirements over recommended supply voltage ranges, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
t_{c} (wr)	Write cycle time	$\mathrm{V}_{\mathrm{IL}(\mathrm{rs}, \phi)}=0 \mathrm{~V}$	290		ns
		$\mathrm{V}_{(1 \mathrm{~L}(\mathrm{rs}, \phi)}=-5 \mathrm{~V}$	200		
${ }^{\text {tw }}$ (rs)	Pulse width, reset low	$\mathrm{V}_{\text {IL }(\mathrm{rs}, \phi)}=0 \mathrm{~V}$	90	2000	ns
		$\mathrm{V}_{(\mathrm{LL}(\mathrm{rs}, \phi)}=-5 \mathrm{~V}$	20	2000	
$\mathrm{t}_{\mathrm{w}}(\phi)$	Pulse width, either clock low	$\mathrm{V}_{\mathrm{IL}(\mathrm{rs}, \phi)}=0 \mathrm{~V}$	60	2000	ns
		$\mathrm{V}_{\mathrm{IL}}(\mathrm{rs}, \phi)=-5 \mathrm{~V}$	40	2000	
t_{r}	Rise time of reset or either clock			20	ns
t_{f}	Fall time of reset or either clock			20	ns
$t_{\text {d }}(\mathrm{rs}-\phi)$	Delay time, reset high to either clock		60	2000	ns
$\mathrm{t}_{\mathrm{d}}(\phi-\mathrm{rs})$	Delay time, either clock high to reset		0		ns
$\mathrm{t}_{\text {su }}$ (ad)	Address setup time		0		ns
$t_{\text {su }}$ (da)	Data setup time	$\mathrm{V}_{\mathrm{IL}(\mathrm{rs}, \phi)}=0 \mathrm{~V}$	70		ns
		$\mathrm{V}_{\mathrm{IL}(\mathrm{rs}, \phi)}=-5 \mathrm{~V}$	60		
$t_{h}(\mathrm{ad})$	Address hold time		50		ns
th(da)	Data hold time		0		ns

write cycle timing diagram

RESET, $\overline{\text { RS }}$

CLOCK, $\overline{\text { CK OR }}$ CHIPSELECT CLOCK, $\overline{\text { CS }}$

ADDRESS, A0-A9

INPUT/OUTPUT,I/O

NOTE: All reference points on inputs are 90% and 10% points.

TMS 4062 JL, NL; TMS 4063 JL, NL 1024-WORD BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORIES

read, modify write cycle timing requirements over recommended supply voltage ranges, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
${ }^{t} \mathrm{c}$ (RMW)	Read, modify write cycle time	$\mathrm{V}_{\text {IL }(\mathrm{rs}, \phi)}=0 \mathrm{~V}$	370		ns
		$\mathrm{V}_{\mathrm{IL}(\mathrm{rs}, \phi)}=-5 \mathrm{~V}$	290		
$t_{w}(\mathrm{rs})$	Pulse width, reset low	$\mathrm{V}_{\text {IL }}(\mathrm{rs}, \phi)=0 \mathrm{~V}$	90	2000	ns
		$\mathrm{V}_{1 \mathrm{~L}(\mathrm{rs}, \phi)}=-5 \mathrm{~V}$	20	2000	
$t_{w}(\phi)$	Pulse width, either clock low	$\mathrm{V}_{\mathrm{IL}}(\mathrm{rs}, \phi)=0 \mathrm{~V}$	180	2000	ns
		$\mathrm{V}_{\mathrm{IL}(\mathrm{rs}, \phi)}=-5 \mathrm{~V}$	140	2000	
t_{r}	Rise time of reset or either clock			20	ns
t_{f}	Fall time of reset or either clock			20	ns
$\mathrm{t}_{\mathrm{d}}(\mathrm{rs}-\phi)$	Delay time, reset high to either clock		60	2000	ns
$t_{\text {d }}(\underline{\phi}-\mathrm{rs}$)	Delay time, either clock high to reset		0		ns
$\mathrm{t}_{\text {su }}(\mathrm{ad})$	Address setup time		0		ns
$\mathrm{t}_{\text {su }}$ (da)	Data setup time	$\mathrm{V}_{\text {IL }(\mathrm{rs}, \phi)}=0 \mathrm{~V}$	70		ns
		$\mathrm{V}_{\mathrm{IL}}(\mathrm{rs}, \phi)=-5 \mathrm{~V}$	60		
th (ad)	Address hold time		50		ns
th(da)	Data hold time		0	-	ns

read, modify write cycle switching characteristics over recommended supply voltage ranges,
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
$\mathrm{ta}_{\mathrm{a}}(\mathrm{rs}$)	Access time from reset	$\mathrm{V}_{\mathrm{IL}}(\mathrm{rs}, \phi)=0 \mathrm{~V}$	150		ns
		$\mathrm{V}_{(\mathrm{L}(\mathrm{rs}, \phi)}=-5 \mathrm{~V}$	130		
$t^{\mathrm{p}}(\boldsymbol{\phi})$	Propagation delay time to output	$\mathrm{V}_{1 \mathrm{~L}(\mathrm{rs}, \phi)}=0 \mathrm{~V}$	90		ns
		$\mathrm{V}_{(1 \mathrm{~L}(\mathrm{rs}, \phi)}=-5 \mathrm{~V}$	70		

read, modify write cycle timing diagram

NOTE: All reference points on inputs are 90% and 10% points.

TYPICAL CHARACTERISTICS

EXTENDED TEMPERATURE RANGE AND HI-REL DEVICES

- 4096×1 Organization
- Extended Temperature Range ($-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)
- SMC Type Processed to Class B of MIL-STD-883 per Level III of TI 38510/MACH-IV Program
- Maximum Access Time . . . 300 ns
- Minimum Read or Write Cycle . . . 470 ns
- Minimum Read, Modify Write Cycle: 710 ns (730 ns for TMS 4050)
- Full TTL Compatibility on All Inputs
(No Pull-Up Resistors Needed)
- Single Low-Capacitance Clock

description

The TMS 4030 JR, TMS 4050 JR, and TMS 4060 JR are extended temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$ versions of the TMS 4030 JL, TMS 4050 JL , and TMS 4060 JL . These devices are ideal for critical equipment applications in aerospace, industrial, and military environments.

The SMC 4030 JR, SMC 4050 JR, and SMC 4060 JR are also rated to operate from $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. These SMC devices are specifically processed and 100% screened to the requirements of Class B of MIL-STD-883 per level III of the Texas Instruments 38510/MACH-IV program.

The SMC series of 4096-bit RAMs receive the following special screening tests:
Precap visual method 2010.2
Stabilization bake
Temperature cycling
Centrifuge
Fine and gross leak
.
Burn-in for 168 hours at
$125^{\circ} \mathrm{C}$.

Final electrical testing at $25^{\circ} \mathrm{C}$ and high
temperatures

These two series of devices are offered only in ceramic (JR suffix) dual-in-line packages. The 22-pin package (TMS 4030, TMS 4060, SMC 4030, and SMC 4060) inserts in mounting-hole rows on $400-\mathrm{mil}$ centers. The 18 -pin package (TMS 4050, SMC 4050) is designed for insertion in mounting-hole rows on $300-\mathrm{mil}$ centers and is ideal for high-density applications.

TMS 4030 JR, TMS 4060 JR SMC 4030 JR, SMC 4060 JR 22-PIN CERAMIC DUAL-IN-LINE PACKAGE (TOP VIEW)

TMS 4050 JR, SMC 4050 JR 18-PIN CERAMIC DUAL-IN-LINE PACKAGE (TOP VIEW)

operation

For a complete description of the device operation see the appropriate data sheets on the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{JL}, \mathrm{NL}$ suffix) 4 K RAM products. All timing parameters on these extended-temperature range and high-reliability devices are identical with the associated 300 -ns-access-time commercial device types.

For detailed information on processing, refer to TI's MACH IV program and High-Reliability Microelectronics Procurement Specifications, MIL-STD-883.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
 otherwise noted. Throughout the remainder of this data sheet voltage values are with respect to $V_{S S}$.
functional block diagram

TMS 4030/SMC 4030, TMS 4060/SMC 4060

TMS 4050/SMC 4050

TMS 4030 JR, TMS 4060 JR
 SMC 4030 JR, SMC 4060 JR 4096-BIT RANDOM-ACCESS MEMORIES

recommended operating conditions

PARAMETER	TMS 4030 JR SMC 4030 JR			TMS 4060 JR SMC 4060 JR			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.75	5	5.25	4.75	5	5.25	V
Supply voltage, $\mathrm{V}_{\text {DD }}$	11.4	12	12.6	11.4	12	12.6	V
Supply voltage, $\mathrm{V}_{\text {SS }}$		0			0		V
Supply voltage, $\mathrm{V}_{\text {BB }}$	-2.7	-3	-3.3	-4.5	-5	-5.5	V
High-level input voltage, $\mathrm{V}_{\text {IH }}$ (all inputs except chip enable)	2.2		5.25	2.2		5.25	V
High-level chip enable input voltage, $\mathrm{V}_{\text {IH }}(\mathrm{CE})$	$V_{D D}-0.6$		$\mathrm{V}_{\text {DD }}+1$	$\mathrm{V}_{\mathrm{DD}}-0.6$		$\mathrm{V}_{\mathrm{DD}}+1$	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (all inputs except chip enable)	$-0.6{ }^{\dagger}$		0.6	$-0.6{ }^{\dagger}$		0.6	V
Low-level chip enable input voltage, $\mathrm{V}_{\text {IL }}(\mathrm{CE})$	-1^{\dagger}		0.6	$-1{ }^{\text {t }}$		0.6	V
Refresh time, trefresh			1			1	ms
Operating free-air temperature, T_{A}	-55		85	-55		85	C

${ }^{\dagger}$ The algebraic convention where the most negative limit is designated as minimum is used in this data sheet for logic voltage levels only.
electrical characteristics over full ranges of recommended operating conditions, $T_{A}=-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{I}_{\mathrm{O}}=-2 \mathrm{~mA}$	2.4		V_{CC}	V
V_{OL}	Low-level output voltage	$\mathrm{l}_{\mathrm{O}}=3.2 \mathrm{~mA}$	$\mathrm{V}_{\text {SS }}$		0.4	V
11	Input current (all inputs except chip enable)	$\mathrm{V}_{1}=0$ to 5.25 V			10	$\mu \mathrm{A}$
1 (CE)	Chip-enable input current	$\mathrm{V}_{1}=0$ to 13.2 V			2	$\mu \mathrm{A}$
Ioz	High-impedance-state (off-state) output current	$\mathrm{V}_{\mathrm{O}}=0$ to 5.25 V			10	$\mu \mathrm{A}$
ICC	Supply current from $\mathrm{V}_{\text {CC }}$	2 Series 74 TTL loads			1	mA
IDD	Supply current from $\mathrm{V}_{\text {DD }}$	$\mathrm{V}_{\text {IH(CE) }}=12.6 \mathrm{~V}$		30	80	mA
IDD	Supply current from VDD, standby	$\mathrm{V}_{\text {IL }}(\mathrm{CE})=0.6 \mathrm{~V}$		20	200	$\mu \mathrm{A}$
${ }^{\prime} \mathrm{DD}(\mathrm{av})$	Average supply current from $V_{D D}$ during read or write cycle	Minimum cycle time		32		mA
${ }^{\prime}$ DD ${ }^{\text {av }}$)	Average supply current from $V_{D D}$ during read, modify write cycle	Minimum cycle time		32		mA
${ }^{\prime} \mathrm{BB}$	Supply current from $\mathrm{V}_{\text {BB }}$	$\begin{array}{ll} V_{B B}=M A X \neq & V_{C C}=5.25 \mathrm{~V}, \\ V_{D D}=12.6 \mathrm{~V}, & V_{S S}=0 \mathrm{~V} \\ \hline \end{array}$		-5	-100	$\mu \mathrm{A}$

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger MAX $=-3.3 \vee$ for TMS 4030; -5.5 V for TMS 4060.
capacitance at $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=\mathrm{NOM}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}(\mathrm{CE})}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, $T_{A}=-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP ${ }^{\text { }}$	MAX	UNIT
$\mathrm{C}_{\text {i }}$ ad)	Input capacitance address inputs		5	7	pF
$\mathrm{C}_{\mathbf{i}}(\mathrm{CE})$	Input capacitance clock input	$\mathrm{V}_{\text {I }}(\mathrm{CE})=10.8 \mathrm{~V}$	18	22	pF
		$\mathrm{V}_{1(\mathrm{CE})}=-1 \mathrm{~V}$	23	27	
$\mathrm{C}_{\mathrm{i}}(\overline{\mathrm{CS}}$)	Input capacitance chip-select input		4	6	pF
$\mathrm{C}_{\mathrm{i} \text { (data) }}$	Input capacitance data input		4	6	pF
$\mathrm{C}_{\mathrm{i}}(\mathrm{R} / \overline{\mathrm{W}})$	Input capacitance read/write input		5	7	pF
C_{0}	Output capacitance		5	7	pF

[^5]
4096-BIT RANDOM-ACCESS MEMORIES

recommended operating conditions

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {DD }}$	11.4	12	12.6	V
Supply voltage, $\mathrm{V}_{\text {SS }}$		0		V
Supply voltage, V_{BB}	-4.5	-5	-5.5	V
High-level input voltage, V_{IH} (all inputs except chip enable)	2.2		5.5	V
High-level chipenable input voltage, $\mathrm{V}_{\text {IH }}(\mathrm{CE})$	$\mathrm{V}_{\mathrm{DD}}-0.6$		$\mathrm{V}_{\mathrm{DD}}+1$	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (all inputs except chip enable)	-0.6 ${ }^{\dagger}$		0.6	V
Low-level chip-enable input voltage, $\mathrm{V}_{\text {IL }}$ (CE)	-1 \dagger		0.6	V
Refresh time, ${ }_{\text {refresh }}$			1	ms
Operating free-air temperature, T_{A}	-55		85	C

${ }^{\dagger}$ The algebraic convention where the most negative limit is designated as minimum is used in this data sheet for logic voltage levels only.
electrical characteristics over full ranges of recommended operating conditions, $T_{A}=-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{t}_{\mathrm{a}}=$ guaranteed maximum access time, $R_{\mathrm{L}}=2.2 \mathrm{k} \Omega$ to $5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Load $=1$ Series 74 TTL gate	2.4			V
VOL	Low-level output voltage		$\mathrm{V}_{\text {SS }}$		0.4	V
IOL	Low-level output current	$\mathrm{t}_{\mathrm{a}}=$ guaranteed maximum access time, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	5			mA
1	Input current (all inputs including I/O except chip enable)	$\mathrm{V}_{1}=-0.6$ to 5.5 V			10	$\mu \mathrm{A}$
II(CE)	Chipenable input current	$\mathrm{V}_{1}=-1$ to 13.2 V			10	$\mu \mathrm{A}$
IDD	Supply current from V ${ }_{\text {DD }}$	$\mathrm{V}_{\text {IH }}(\mathrm{CE})=13.2 \mathrm{~V}$		35	80	mA
IDD	Supply current from VDD, standby	$\mathrm{V}_{\text {IL }}(\mathrm{CE})=0.6 \mathrm{~V}$		10	200	$\mu \mathrm{A}$
IDD(av)	Average supply current from $V_{D D}$ during read or write cycle	Minimum cycle timing		32		mA
IDD(av)	Average supply current from $V_{D D}$ during read, modify write cycle	Minimum cycle timing		32		mA
${ }^{1} \mathrm{BB}$	Supply current from $\mathrm{V}_{\text {BB }}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{BB}}=-5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{DD}}=12.6 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} & \end{array}$		5	100	$\mu \mathrm{A}$

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
capacitance at $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}(\mathrm{CE})}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, $T_{A}=-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\text { }}$	MAX	UNIT
$\mathrm{C}_{\mathrm{i} \text { (ad) }}$	Input capacitance address inputs			5	7	pF
$C_{\text {i }}(\mathrm{CE})$	Input capacitance clock input	$V_{1(C E)}=12 \mathrm{~V}$		24	28	pF
		$V_{1(C E)}=0 \mathrm{~V}$		29	33	
$\mathrm{C}_{\mathrm{i}}(\mathrm{R} / \bar{W})$	Input capacitance read/write input			5	7	pF
$\mathrm{C}_{(1 / \mathrm{O})}$	1/O terminal capacitance			7	9	pF

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

- Organization ... 64 Characters of 35 Bits in a

The TMS 2501 generates 64 USASCII characters for driving a 5×7 matrix display. All inputs can be driven directly from Series 74 TTL circuits and the 3 -state push-pull output buffers can drive Series 74 TTL circuits without external resistors. The 5 -bit row words appear on the odd-numbered outputs with 19 low and on the even-numbered outputs with 19 high. Outputs 01 and $02, \mathrm{O} 3$ and $\mathrm{O} 4, \ldots \mathrm{O}$ and 010 must be externally OR-tied in pairs. CS1 must be high and $\overline{\mathrm{CS}} 2$ low to enable the device.

The TMS 2501 is offered in 24-pin ceramic (JC suffix) or plastic (NC suffix) packages designed for insertion in mounting-hole rows on 600 -mil centers. The devices are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
functional block diagram

A complete data sheet for the TMS 2500 Series may be obtained by writing directly to:
Marketing and Information Services
Texas Instruments Incorporated
P.O. Box 5012 MS 308

Dallas, Texas 75222

- Organization . . . 64 Characters of 35 Bits in a 5×7 Matrix
- Access Time . . . 500 ns Typical
- Inputs and Outputs Fully TTL-Compatible
- 7-Bit Input Address
- Open-Drain Output Buffers
- Column Output (Five 7-Bit Columns in Sequence)
description

The TMS 4103 generates 64 USASCII characters for driving a 5×7 matrix display. Output buffers are open-drain and are capable of driving Series 74 TTL circuits without external resistors. All inputs can be driven directly from Series 74 TTL circuits.

The five 7 -bit column words appear on O 1 through O7 as column select inputs CA through CE are strobed in sequence with a high level pulse. The device is enabled with a high level on 17.

The TMS 4103 is offered in 28 -pin ceramic (JC suffix) or plastic (NC suffix) packages designed for insertion in mounting-hole rows on $600-\mathrm{mil}$ centers. The devices are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
functional block diagram

A complete data sheet for the TMS 4100 Series may be obtained by writing directly to:
Marketing and Information Services
Texas Instruments Incorporated
P.O. Box 5012 MS 308

Dallas, Texas 75222

- 1024×8 Organization
- All Inputs and Outputs TTL-Compatible
- Maximum Access Time . . . 450 ns
- Minimum Cycle Time . . . 450 ns
- Typical Power Dissipation . . . 310 mW
- 3-State Outputs for OR-Ties
- Output Enable Control
- Silicon-Gate Technology
- 8-Bit Output for use in Microprocessor

Based Systems

description

The TMS $4700 \mathrm{JL}, \mathrm{NL}$ is an 8,192-bit read-only memory organized as 1024 words of 8 -bit length. The device is fabricated using N-channel silicon-gate technology for high speed and simple interface with bipolar circuits. All inputs can be driven by Series 74 TTL circuits with the use of external pull-up resistors and each output can drive one Series 74 TTL circuit without external resistors. The data outputs are three-state for OR-tieing multiple devices on a common bus. Two output-enable controls, one customer programmable, allow data to be read. The option on output enable 2 is explained in the section "Software Package".

The TMS 4700 is designed for high-density fixed-memory applications such as logic-function generation and microprogramming. This ROM is supplied in 24 -pin dual-in-line ceramic (JL suffix) and plastic (NL suffix) packages designed for insertion in mounting-hole rows on 600-mil centers. The device is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

operation

address (A0-A9)

The address-valid interval determines the device cycle time. The 10 -bit positive-logic address is decoded on-chip to select one of 1024 words of 8 -bit length in the memory array. A0 is the least-significant bit and A9 the most-significant bit of the word address.

output enable ($\overline{\mathrm{OE}} 1$ and $O E 2^{\dagger}$)

$\overline{\mathrm{OE}} 1$ is active when it is low. OE2 can be programmed, during mask fabrication, to be active with a high or a low level input. When both output enables are active, all eight outputs are enabled and the eight-bit addressed word can be read. When either output enable is not active, all eight outputs are in a high-impedance state.

data out (01-08)

The eight outputs must be enabled by both output enable controls before the output word can be read. Data will remain valid until the address is changed or the outputs are disabled. When disabled, the three-state outputs are in a high-impedance state. The outputs will drive TTL circuits without external components.
${ }^{\dagger}$ Symbol OE2 assumes output enable 2 is programmed active high. If active low, the symbol would be $\overline{O E} 2$.

TMS 4700 JL, NL

1024-WORD BY 8-BIT READ-ONLY MEMORY

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

NOTE 1: Under absolute maximum ratings, voltage values are with respect to the normally most positive supply, $V_{B B}$ (substrate). Throughout the remainder of this data sheet voltage values are with respect to $V_{S S}$.
*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, V_{BB}	-4.75	-5	-5.25	V
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.75	5	5.25	V
Supply voltage, VDD	11.4	12	12.6	V
Supply voltage, $\mathrm{V}_{\text {SS }}$		0		V
High-level input voltage, $\mathrm{V}_{\text {IH }}$	3.3		V_{CC}	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$		0.8	V
Read cycle time, $\mathrm{t}_{\mathrm{c} \text { (rd) }}$	430			ns
Output-enable rise time, $\mathrm{t}_{\mathrm{r}}(\overline{\mathrm{OE}} 1)$ and $\mathrm{tr}_{\text {(}}$ (OE2)		10	20	ns
Output-enable fall time, $\mathrm{t}_{\mathrm{f}}(\overline{\mathrm{OE}} 1)$ and $\mathrm{t}_{\mathrm{f}}(\mathrm{OE} 2)$		10	20	ns
Operating free-air temperature, T_{A}	0		70	${ }^{\circ} \mathrm{C}$

TMS 4700 JL, NL 1024-WORD BY 8-BIT READ-ONLY MEMORY

electrical characteristics over recommended supply voltage ranges, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP ${ }^{\text {+ }}$	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{IOH}=-1 \mathrm{~mA}$	3.7			V
V_{OL}	Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$			0.45	V
$1 /$	Input current	$\mathrm{V}_{1}=0$ to 6.5 V			± 10	$\mu \mathrm{A}$
$I_{\text {BB }}$	Supply current from $V_{\text {BB }}$	Both output enables active	-0.1			mA
${ }^{\text {ICC }}$	Supply current from $\mathrm{V}_{\text {CC }}$		2			mA
${ }^{1} \mathrm{DD}$	Supply current from $V_{\text {DD }}$		25			mA
P_{D}	Power dissipation		310			mW

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal voltages.
switching characteristics over recommended supply voltage ranges, $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$\mathrm{ta}_{\mathrm{a}}(\mathrm{ad})$ Access time from address	$C_{L}=50 \mathrm{pF}$ 1 Series 74 TTL load	430	ns
$\mathrm{t}_{\mathrm{a}}(\overline{\mathrm{OE}} 1)$ Access time from output enable 1		90	ns
t_{a} (OE2) Access time from output enable 2		130	ns
tPXZ Output disable time from either chip enable		90	ns

voltage waveforms

NOTE: Timing points are 90% (high) and 10% (low).

TMS 4700 JL, NL
 1024-WORD BY 8-BIT READ-ONLY MEMORY

SOFTWARE PACKAGE

The TMS $4700 \mathrm{JL}, \mathrm{NL}$ is a fixed-program memory in which the programming is performed by TI at the factory during the manufacturing cycle to the specific customer inputs supplied in the format shown. The device is organized as 10248 -bit words with address locations numbered 0 to 1023 . Any 8 -bit word can be coded as a 2 -digit hexadecimal number between 00 and FF. All stored words and addresses in the following format are coded in hexadecimal numbers. In coding, all binary words must be in positive logic before conversion to hexadecimal. 01 is considered the least-significant bit and 08 the most-significant bit. For addresses A0 is least significant and A9 is most significant.

Every card should include the TI Custom Device Number in the form ZAXXXX (4-digit number to be assigned by TI) in columns 75 through 80.

Output enable 2 is customer programmable. Every card should include in column 74 a 1 if the output is to be enabled with a high-level input at $\overline{\mathrm{OE}} 2$ or a $\mathbf{0}$ for enabling with a low-level input.

The 1024 coded words must be supplied on 64 cards with 162 -digit hex numbers per card.

CARD	COLUMN	HEXADECIMAL INFORMATION
1	1-9	BLANK
	10	: (ASCII character colon)
	11-12	10 (specifies 16 words per card)
	13	BLANK
	14-16	Hex address of 1st word on 1st card (0th word, address normally 000)
	17-18	BLANK
	19-20	Oth word in Hex
	-	
	49-50	15th word in Hex
	51-73	BLANK
64	1-9	BLANK
	10	: (ASCII character colon)
	11-12	10
	13	BLANK
	14-16	Hex address of 1st word on 64th card (1008th word, address normally 3F0)
	17-18	BLANK
	19-20	1008th word in Hex
	49-50	1023rd word in Hex
	51-73	BLANK

- 2048×8 or 4096×4 Organization
- Total TTL-Compatibility
- Maximum Access Time . . . 700 ns
- Minimum Cycle Time . . . 1000 ns
- Typical Power Dissipation . . . 450 mW
- Open-Drain Output for Wire-OR Configurations
- 24-Pin 600-Mil Dual-in-Line Packages
- Two Chip-Enable Controls

description

The TMS $4800 \mathrm{JL}, \mathrm{NL}$ is a 16384 -bit read-only memory, organized as either 2048 words of 8 -bits or 4096 words of 4 -bits. All inputs are TTL-compatible. The eight open-drain outputs must be connected by pull-down resistors to an external negative supply to drive standard TTL circuits. Two output-enable terminals allow each 2048×4-bit array to be read independently as 4 -bit words or simultaneously as 8 -bit words.

Two devices can be OR-tied, with proper choice of programming on the output-enable terminals to be specified by the customer. Addresses may change up to 50 ns after the clock cycle begins. This allows TTL address-decoding circuits to synchronize on the rise of the clock and stabilize during this interval effectively shortening the device read-access time. The TMS 4800 is designed with P-channel enhancement-type technology for high-density, fixed-memory applications such as logic function generation and microprogramming. This ROM is supplied in a ceramic (JL suffix) or plastic (NL suffix) 24-pin package designed for insertion in mounting-hole rows on 600 -mil centers.

operation

address read (AR)

Address read constitutes the master timing signal of the device. After AR goes high, address and output enable inputs latch. The address-read clock is high during the address-valid and output-enable-valid intervals. Data out is valid both before and after AR goes low, since enabled outputs latch during the cycle.

address (A1-A11)

Any of the 2048 -word addresses are selected by an 11 -bit positive-logic binary word, A1 being the least-significant bit progressing through to A11, which is the most-significant bit. Address inputs can change up to 50 ns after the AR clock goes high and must remain valid 250 ns after AR goes high. This input latching feature allows the user to change address while data is being read. These system advantages result from latching of the internal address register during a short address-valid interval.

output enable (OE1 and OE2)

The ROM consists of two side-by-side 2048-word-by-4-bit arrays. OE1 enables output terminals 01 through O4 and OE2 outputs O5 through O8 with the two arrays being enabled independently. The user may choose any of four combinations by enabling with either a low or high level on OE1 or OE2. To read 8-bit words with a single address, both OE1 and OE2 must be enabled. For 8 -bit readout, two devices may be OR-tied to increase the effective size of the ROM system by programming complementary enable levels on corresponding device terminals.

TMS 4800 JL, NL
 16384-BIT READ-ONLY MEMORY

operation (continued)

Output terminals on a single device are OR-tied for a 4096-word x 4-bit organization as follows: O 1 to O ; O 2 to 06 ; O 3 to 07 ; and O 4 to 08 . Since the OE1 and OE2 inputs latch internally, the enable signals may change before or during the output data-valid interval. For additional information on OR-ties, see the section on Expanded Memory Configurations.

data out (01-08)

Outputs O 1 through O 4 are enabled by OE1 with outputs O 5 through O 8 enabled by OE2. Output transistors are open-drain and compatible with TTL circuits when connected to an external negative supply through a pull-down resistor. All outputs go low immediately after the rise of AR. A disabled output rises to a high level after a propagation delay following the fall of the AR clock if a high logic level was stored. If devices are OR-tied, an enabled output should be read before AR goes low in order to distinguish a stored high from a high coming from the OR-tied disabled output. Because the outputs latch, data on an enabled output remains valid until the next rise of the AR clock.

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*
Supply voltage, V_{GG} (see Note 1) -20 to 0.3 V
All input voltages (see Note 1) -20 to 0.3 V
Operating free-air temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
NOTE: 1. Under absolute maximum ratings, voltage values are with respect to $V_{S S}$ (substrate). Throughout the remainder of this data sheet voltage values are with respect to a floating ground.
"COMMENT: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

TMS 4800 JL, NL 16384-BIT READ-ONLY MEMORY

recommended operating conditions

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {SS }}$	4.75	5	5.25	V
Supply voltage, V_{GG}	-11	-12	-13	V
High-level input voltage, $\mathrm{V}_{\text {IH }}$ (all inputs)	$\mathrm{V}_{\text {SS }}-1.5$		$\mathrm{V}_{\text {SS }}$	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (all inputs) (see Note 2)	-4		0.6	V
Read cycle time, $\mathrm{t}_{\mathrm{c} \text { (rd) }}$	1000			ns
Pulse width, address read high, $t_{w}($ ARH $)$.	500		100000	ns
Pulse width, address read low, ${ }_{w}$ (ARL)	450			ns
Address-read rise time, tr_{r} (AR)			40	ns
Address-read fall time, $\mathrm{t}_{\mathrm{f}}(\mathrm{AR})$			40	ns
Address-read-high-to-address delay time, t_{d} (ARH-ad)			50	ns
Address-read-high-to-output-enable delay time, $\mathrm{t}_{\mathrm{d}}(\mathrm{ARH}-\mathrm{OE})$			50	ns
Address hold time, th(ad)	250			ns
Output-enable hold time, th(OE)	250			ns
Operating free-air temperature, T_{A}	0		70	C

NOTE 2. The algebraic convention where the most positive limit is designated as maximum is used in this data sheet for logic voltage levels only.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP \ddagger	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=2.4 \mathrm{~mA}$	2.5			V
${ }^{\text {I OL }}$	Low-level output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$			50	$\mu \mathrm{A}$
$1 /$	Input current (all inputs)	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$			1	$\mu \mathrm{A}$
Iss	Supply current from $\mathrm{V}_{\text {SS }}$			29	40	mA
IGG	Supply current from $\mathrm{VGG}_{\text {G }}$			-29	-40	mA

\ddagger All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
switching characteristics over recommended supply voltage range, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER		MIN	TYP \ddagger	MAX	UNIT
ta(ad)	Access time from address		550	700	ns
tpLH	Propagation delay time, low-to-high level output from address read (output disabled)	200			ns
${ }^{\text {tPD }}$	Propagation delay time from address read to data valid		600	750	ns

\ddagger Typical values are measured at $V_{S S}=5 \mathrm{~V}, V_{G G}=-12 \mathrm{~V}$, and $T_{A}=25^{\circ} \mathrm{C}$.
NOTES: 3. Enabled outputs remain valid until next AR pulse. Disabled outputs may be considered valid until 200 ns after the high-to-low transition of AR.
4. All rise and fall times are $\leqslant 20 \mathrm{~ns}$.

TMS 4800 JL, NL

16384-BIT READ-ONLY MEMORY

voltage waveforms

ADDRESS READ, AR

ADDRESS, AO-A11

OUTPUT ENABLE, OE1 OR OE2

OUTPUT, 01-O8, ENABLED

OUTPUT, 01-08, DISABLED

EXPANDED READ-ONLY MEMORY CONFIGURATIONS
$8 \mathrm{~K} \times 4$
$4 K \times 8$

WORDS	OE1	OE2	OE3	OE4
O-2048	E	D	D	D
$2049-4096$	D	E	D	D
$4097-6144$	D	D	E	D
$6145-8192$	D	D	D	E

NOTE: One device programmed to enable with $O E 1=O E 2=1$ Other device programmed to enable with OE1 $=0 E 2=0$

TMS 4800 JL, NL 16384-BIT READ-ONLY MEMORY

SOFTWARE PACKAGE

The TMS $4800 \mathrm{JL}, \mathrm{NL}$ is a fixed program memory in which the programming is performed by Tl , at the factory during the manufacturing cycle, to the specific customer inputs supplied in the format shown. The device is organized so that it can be used for storing either 2048 words of 8 bits or 4096 words of 4 bits. Words of 8 - or 4 -bit lengths are read by proper enable levels on OE1 and OE2. Output O1 is the least-significant bit in an 8-bit word, O 5 and O 1 in 4 -bit words. All addresses and stored words in either organization are coded in octal. Any address up to 2048 can be written as a 4-digit octal number. Any 8 -bit binary word can be converted to a 3-bit octal number. In coding, all binary words must be in positive logic and right justified before conversion to octal.

Every card must include the following coded information.
Column 73-OE1 enable code
Column 74-OE2 enable code
Columns 75-80 - TI CUSTOM DEVICE NUMBER ZAXXXX (4-DIGIT NUMBER ASSIGNED BY TI)

The output enable (OE) option is programmed on the chip with the customer pattern. A high voltage level enable is specified by a " 1 " in columns 73 or 74 , a low voltage level enable by a " 0 ".

2048-word by 8-bits

Code deck format -

Card	Column	Octal Information
1	1-4	Octal address (N) of 1st output word on 1st card
	5-7	1 st stored 8-bit word (in octal)
	8-10	2nd stored 8-bit word (in octal)
	50-52	16 th stored 8 -bit word (in octal)
2	1-4	Octal address ($\mathrm{N}+16$) of 1st output word on 2 nd card
	$5-7$	17th stored 8-bit word
	50-52	32nd stored 8-bit word
128	1-4	Octal address ($\mathrm{N}+2032$) of 1st output word on 128th card
	5-7	2033rd stored 8-bit word
	-	
	50-52	2048th stored 8-bit word

4096-word by 4-bits

Terminals OE1 and OE2 independently enable outputs 01.04 and $05-08$. Each enable terminal can be programmed to enable with a high or low level input.

To read only 4 bits simultaneously from either set of output terminals, the stored information must be coded as an 8 -bit positive logic binary word converted to octal. Each 4-bit binary word is right justified before forming the 8-bit word. In coding, words 1 and 2049, 2 and 2050, . . and 2048 and 4096 are combined ($08-05$ on the left of O4-O1) as 8 -bit words and converted to octal as in the case of the 2048 by 8 coding instructions. This coding format also requires 128 cards with 16 octal words (32 4-bit binary words) per card.

TMS 4800 JL, NL

16384-BIT READ-ONLY MEMORY

OUTPUT INTERFACE

single resistor TTL interface

MOS interface

TYPICAL CHARACTERISTICS

- ASCII Logical Bit-Pairing and Typewriter Codes
- ASR33 Teletype Code
- Baudot Paper Tape Punch Code
- N-Key Roll-Over or Lockout Mode
- Data-Ready Pulsed Output
- Internal Oscillator
- Latched Data Outputs
- Adjustable Key-Noise Protection
- Keyboard Column Leakage Compensation
- Compatible with Reed and Mechanical Switches
- TTL-Compatible Inputs and Outputs
- 10-Bit Output Words

description

The TMS 5001 NL is an MOS LSI dynamic encoder for use with standard keyboards having up to 90 keys. The encoder is pre-programmed to generate in positive logic two ANSI-standard codes - the logical bit pairing and the typewriter codes - the ASR33 teletype code, and the Baudot paper tape code. The device utilizes a 3600 -bit ROM $(40 \times 90$ organization), a 9 -row by 10 -column key-scanning matrix, driver and sense amplifier interface circuits, a control circuit, a shift-register memory, and an on-chip oscillator with frequency determined by an external resistor and capacitor.

The circuit can operate in the N -key roll-over or N -key lockout mode with external logic control. Key-make and key-break noise is ignored after initial key identification because scanning is terminated for a time interval that can be adjusted with another external capacitor at the delay-node terminal.

One of four key modes is selected by proper input levels at two mode-select terminals. A data-ready pulse is generated to indicate that a key is depressed, the binary word has been encoded, and that word is available at the I/O terminals.

The control inputs are compatible with Series 74 TTL circuits using pull-up resistors. Each data output can drive one Series 74 TTL circuit without external resistors.

The TMS 5001 NL is offered in a 40 -pin dual-in-line plastic (NL suffix) package designed for insertion in mounting-hole rows on 600 -mil centers. The device is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

operation

The TMS 5001 subsystem consists basically of an oscillator, row and column matrix scanners, a control section with memory, and a ROM with buffered outputs.

oscillator

The internal oscillator generates two internal clock signals at the oscillator frequency that control the precharge of the column inputs and drive the row and column scanning counters. The oscillator frequency is set by an external resistor connected between the resistor (RES) and common (COM) terminals and an external capacitor connected between the capacitor (CAP) and common (COM) terminals.

operation (continued)

row and column matrix scanners
The keyboard is connected to the column (C1-C10) inputs and the row ($\mathrm{R} 1-\mathrm{R} 9$) outputs. During one half of an oscillator cycle, the column inputs and row outputs are precharged to a negative voltage. In the next half-cycle, the modulo-10-counter column scanner enables one of the ten column-input gates and the modulo- 9 -counter row scanner allows one row to be connected to V_{SS} (nominally 5 V) through an MOS transistor having an impedance of about 600 ohms. If the keyboard switch for that row and column is closed, the column input line capacitance discharges through the MOS load to V_{SS}. At a voltage V_{SH} (near V_{SS}) the key closure is detected and scanning immediately stops. The row and column position is uniquely identified and stored as a single bit in a 90 -bit shift register (see control section). Any single key depression is detected within one keyboard scan cycle, which is 90 oscillator or clock cycles. Within one-half clock cycle after detection, the output word becomes valid at the data out (DO1-DO10) terminals.

In the roll-over mode, two clock cycles plus one delay-node interval after detection of a depressed key the scanning operation resumes and the next depressed-key location is detected and stored in the memory. Any new output word becomes valid one-half clock cycle after detection. If multiple keys are depressed simultaneously, the scanners will ultimately locate and store all locations in the memory and each output word will become valid in rapid sequence.

In the lockout mode as the delay node voltage drops through VSL, scanning does not resume until the first key is released and the first output remains valid until the second depressed key is detected. Thus the second and subsequent depressed keys are ignored until the first key is released.

In either mode when a key is released, scanning in the next cycle is halted when that key location is reached. The halt signal is obtained from the information in the memory identifying that key location. Key-release noise is therefore ignored until the delay node again precharges to V_{SL}. Then scanning resumes and the next depressed key is identified and its location stored in the memory.

control section

The delay node (DN) terminal voltage controls the time during which scanning stops after key detection. An external capacitor may be connected between $D N$ and $V_{D D}$ to lengthen this delay. Key-noise immunity can therefore be adjusted according to the key-switch characteristics.

A high-level data ready (DR) output pulse having a length of one clock cycle appears one-half clock cycle after the output data becomes valid to indicate that the encoded output word is available at the ten outputs.

The lockout/roll-over ($\mathrm{LO} / \overline{\mathrm{RO}}$) terminal places the device in the lockout operating mode when the LO/RO input is high or in the roll-over mode when LO/ $\overline{\mathrm{RO}}$ is low.

ROM and output buffers

The row counter output addresses the ROM to generate a unique 10-bit binary word for each of the four modes and each of the 90 key positions. One of the four modes is selected by combinations of high- and low-level inputs at the mode select terminals (MS1 and MS2) as shown in the Character Output Charts.

The data outputs (DO1-DO8) can drive Series 74 TTL circuits without external resistors. Output data becomes valid within one-half clock cycle after a key is detected.

In the lockout mode, output words are latched and data remains valid until all three of the following events occur: 1) the key is released, 2) the delay node precharges to $V_{S L}$ and scanning starts, and 3) a new key is depressed and detected.

In the roll-over mode, output data remains valid only until the delay node charges to V_{SL} and another key is detected. The DR pulse is generated within one cycle after key detection.

TMS 5001 NL 4-MODE DYNAMIC 90-KEY KEYBOARD ENCODER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

NOTE 1: Under absolute maximum ratings, voltage values are with respect to the normally most positive supply, $V_{S S}$ (substrate). Throughout the remainder of this data sheet voltage values are with respect to $V_{D D}$.
*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
functional block diagram

TMS 5001 NL

4-MODE DYNAMIC 90-KEY KEYBOARD ENCODER

recommended operating conditions

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {DD }}$	0			V
Supply voltage, V_{GG}	-11	-12	-13	V
Supply voltage, $\mathrm{V}_{\text {SS }}$	4.75	5	5.25	V
High-level input voltage (MS and LO/RO inputs), $\mathrm{V}_{1 \mathrm{H}}$	$\mathrm{V}_{\text {SS }}-1.6$		$\mathrm{V}_{\text {SS }}$	V
Low-level input voltage (MS and LO/ $\overline{\mathrm{RO}}$ inputs), $\mathrm{V}_{1 \mathrm{~L}}$	$\mathrm{V}_{\text {SS }}-3.9$			V
Oscillator frequency, fosc	10		100	kHz
Operating free-air temperature, T_{A}	0		70	C

electrical characteristics over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS	MIN	MAX
High-level sense voltage, V_{SH}		$\mathrm{V}_{\mathrm{SS}}-2.2$	$\mathrm{~V}_{\mathrm{SS}}$
Low-level sense voltage (see Note 2), V_{SL}		$\mathrm{V}_{\mathrm{SS}}-7.8$	V
High-level output voltage, data ready and DO outputs, V_{OH}		$\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{SS}}-1$
Low-level output voltage, data ready and DO outputs, V_{OL}	$\mathrm{I}_{\mathrm{SS}}=1.6 \mathrm{~mA}$	V	
Precharge voltage at column inputs (see Note 2)		0	0.5
Supply current from $\mathrm{V}_{\mathrm{GG}}, \mathrm{I}_{\mathrm{GG}}$		$\mathrm{V}_{\mathrm{GG}}+7.5$	V
Row or column line capacitance			-42

NOTE 2: The algebraic convention where the most positive (least negative) limit is designated as maximum is used in this data sheet for sense and precharge voltage levels only.

TYPICAL OPERATING CHARACTERISTICS

TYPEWRITER PAIRING

	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	MODE ${ }^{\dagger}$
R1	ESC	2	ETX	4	NUL	6	7	8	9	0	0
	ESC	@	ETX	\$	NUL	\wedge	\&	*	1	1	1
	ESC		ETX		NUL						2
	ESC	2	ETX	4	NUL	6	7	8	9	0	3
R2	1		3	R	5						0
	!		\#	R	\%						1
				DC2							2
	1		3	r	5						3
R3	-	w	E	F	T	Y	u	1	0	P	0
	0	w	E	F	T	Y	u	1	\bigcirc	P	1
	DC1	ETB	ENo	ACK	DC4	EM	NAK	HT	SI	DLE	2
	q	w	e	f	t	v	u	i	\bigcirc	p	3
R4	A	S	D	v	G	H	J	K	L		0
	A	s	D	V	G	H	J	K	L		1
	SOH	DC3	EOT	SYN	BEL	BS	LF	VT	FF		2
	a	s	d	\checkmark	9	h	j	k	1		3
R5	z	x	C	SP	B	N	M				0
	z	\times	c	SP	B	N	M				1
	SU8	CAN	ETX	SP	STX	so	CR				2
	z	\times	c	SP	b	n	m				3
R6	1	9	8	7	LF	/	-	1			0
	1	9	8	7	LF)	"	?	>	$<$	1
					LF						2
	1	9	8	7	LF	1	,	1	.	,	3
R7	\#	6	5	4	CR		1			;	0
	\#	6	5	4	CR		1			:	1
					CR						2
	\#	6	5	4	CR		1			;	3
R8	+	3	2	1	DEL						0
	+	3	2	1	DEL						1
					DEL						2
	+	3	2	1	DEL						3
R9		-	0		1			'	=	-	0
	-	-	0	-	!			\sim	+	-	1
					FS						2
	-	.	0	,	1			-	=	-	3

${ }^{\dagger}$ MODE MS1 MS2

LOGICAL BIT PAIRING

	C1.	C2	C3	C4	C5	C6	C7	C8	C9	C10	MODE
	ESC		ETX	4	NUL						0
$R 1$	ESC		ETX	\$	NUL						1
	ESC		ETX		NUL						2
	ESC		ETX	4	NUL						3
	1	2	3	R	5	6	7	8	9	0	0
R2	1	"	\#	R	\%	\&	,	1	1		1
				DC2							2
	1	2	3	r	5	6	7	8	9	0	3
	Q	w	E	F	${ }^{\top}$	Y	u	1	0	P	0
R3	0	w	E	F	T	Y	U	1	0	P	1
	DC1	ETB	ENa	ACK	DC4	EM	NAK	HT	sı	DLE	2
	q	w	e	f	t	v	u	i	o	p	3
	A	S	D	v	G	H	J	K	L		0
	A	s	D	V	G	H	J	K	L		1
R4R5	SOH	DC3	EOT	SYN	BEL	BS	LF	VT	FF		2
	a	s	d	\checkmark	9	h	i	k	1		3
	2	x	c	SP	B	N	M				0
	z	\times	c	SP	B	N	M				1
R5	SUB	CAN	ETX	SP	STX	so	CR				2
	z	\times	c	SP	b	n	m				3
	1	9	8	7	LF			1	-	,	0
	1	9	8	7	LF			?	>	<	1
R6					LF						2
	1	9	8	7	LF.			1	.	,	3
	\#	6	5	4	CR	1		:	;		0
R7	\#	6	5	4	CR	$\}$		-	+		1
					CR	Gs					2
	\#	6	5	4	CR	1		:	;		3
	+	3	2	1	DEL	-	I	@			0
R8	+	3	2	1	DEL	-	\{	-			1
					DEL	us	ESC	NUL			2
	+	3	2	1	DEL	-	1	@			3
	-	-	0	,	1	\wedge	-				0
R9		-	0		!	\sim	=				1
					FS	RS					2
		-	0	,	1	\wedge	-				3

${ }^{\dagger}{ }^{\text {MODE MS1 MS2 }}$

	L	MS2
1	L	H
2	H	L

${ }^{\dagger}$ MODE MS1 MS2

- DC to $2.5-\mathrm{MHz}$ Operation
- Static Configuration
- Inputs and Outputs Fully TTL-Compatible
- Push-Pull Output Buffers
- Power Supplies . . . $5 \mathrm{~V},-12 \mathrm{~V}$
- Low-Threshold Technology

description

The TMS 3101 LC, NC is a dual 100-bit static shift register with independent inputs and outputs for each register. Two external clocks are common to both registers. All inputs and outputs are fully compatible with Series 74 TTL and require no external resistors.

The TMS 3101 is offered in 10-pin TO-100 (LC suffix) and 16 -pin dual-in-line plastic (NL suffix) packages. The 16-pin package is designed for insertion in mounting-hole rows on 300 -mil centers.
applications

The TMS 3101 can be used in display, terminal, and card read/punch equipment.
functional block diagram

TO-100 HERMETICALLY SEALED PACKAGE
(TOP VIEW)

16-PIN PLASTIC DUAL-IN-LINE PACKAGE

A complete data sheet may be obtained by writing directly to:
Marketing and Information Services
Texas Instruments Incorporated
P.O. Box 5012 MS 308

Dallas, Texas 75222

TMS 3112 JC, NC; TMS 3122 JC, NC; TMS 3123 JC, NC HEX 32-BIT STATIC SHIFT REGISTERS

BULLETIN NO. DL-S 7512261, MAY 1975

- DC to $2-\mathrm{MHz}$ Operation
- Static Configuration
- Single TTL-Compatible Clock
- Inputs and Outputs are Fully TTL-Compatible
- Single-Ended (Open-Drain) Buffers
- On-Chip Recirculate Logic
- Gated-Output Control (TMS 3112, TMS 3123)
- Power Supplies . . $5 \mathrm{~V},-12 \mathrm{~V}$
- MOS Low-Threshold

P-Channel Technology

description

The TMS 3112, TMS 3122, and TMS 3123 JC, NC are 6 -channel by 32 -bit shift registers on a single monolithic chip with separate inputs and outputs and a common recirculate control. The TMS 3112 and TMS 3123 feature a common output gating control. The clock and all inputs can be driven directly from Series 74 TTL circuits and all outputs are capable of driving one Series 74 TTL circuit.

Cross-coupled inverters (flip-flops) are employed to implement each bit storage location. This static design allows input data rates from dc to 2 MHz and long-term data storage.

P-channel enhancement-type low-threshold processing has been employed to reduce power dissipation and provide simple interfaces with bipolar circuits.

The TMS 3122 and TMS 3123 are offered in 16-pin and 18 -pin dual-in-line packages, respectively. The TMS 3112 is offered in a 24 -pin dual-in-line package. All three devices are available in ceramic (JC suffix) or plastic (NC suffix) packages. The 16- and 18-pin packages are designed for insertion in mounting-hole rows on 300 -mil centers. These devices are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

applications

The TMS 3112, TMS 3122 and TMS 3123 can be used in printers, terminals, and peripheral (IBM System 3) applications where 32, 64, or 96 bits of serial storage are needed.

NOTE: The TMS 3122 and TMS 3123 are compatible pin for pin except for output gate control, which necessitates one extra pin.

TMS 3112 JC, NC; TMS 3122 JC, NC; TMS 3123 JC, NC HEX 32-BIT STATIC SHIFT REGISTERS

operation

Transfer of data into and out of the shift register occurs on the low-to-high transition of the clock. Input data must be set up a minimum time before the low-to-high transition and must be held for a minimum time after that transition. For long-term data storage, the clock must be maintained high, and in this mode the recirculate and data input levels may change without affecting the data output levels.

Recirculate occurs on the low-to-high clock transition with the recirculate control high. The recirculate control level must be set up a minimum time before this transition and held a minimum time after the transition. Data is entered with the recirculate control low. During recirculation, data is continuously available at the outputs when the output gate control is low. A high level on the output gate control forces all outputs low. Data inputs are inhibited during recirculation.

functional block diagram

FUNCTION TABLE

RECIRCULATE	INPUT	FUNCTION
H	L	Recirculate
H	H	Recirculate
L	L	L is written
L	H	H is written

$H=$ high level
L = low level

NOTE: TMS 3122 does not have output gating
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*
Supply voltage, V_{GG} (see Note 1) . -20 V to 0.3 V

Clock input voltage (see Note 1) . -20 V to 0.3 V
Data input voltage (see Note 1)
-20 V to 0.3 V
Operating free-air temperature range . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range . $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
NOTE 1: Under absolute maximum ratings, voltage values are with respect to the normally most-positive supply, $V_{S S}$ (substrate). Throughout the remainder of this data sheet voltage values are with respect to a floating ground.
*Comment: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

TMS 3112 JC, NC; TMS 3122 JC, NC; TMS 3123 JC, NC HEX 32-BIT STATIC SHIFT REGISTERS

recommended operating conditions

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, V_{GG}	-11	-12	-13	V
Supply voltage, $\mathrm{V}_{\text {SS }}$	4.75	5	5.25	V
High-level input voltage, $\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {SS }}-1.3$		$\mathrm{V}_{\text {SS }}$	V
High-level clock voltage, $\mathrm{V}_{\mathbf{I H}}(\phi)$	$\mathrm{V}_{\text {SS }}-1.3$		$V_{\text {SS }}$	V
Low-level input voltage, V_{1}			$V_{S S}-4$	V
Low-level clock voltage, $\mathrm{V}_{\mathrm{IL}}(\phi)$			$V_{S S}-4$	V
Clock pulse transition time, low-to-high-level, tTLH (ϕ)			5000	ns
Clock pulse transition time, high-to-low-level, t THL (ϕ)			5000	ns
Pulse width, clock high, $\mathrm{t}_{\mathrm{w}}(\phi H)$	300		∞	ns
Pulse width, clock low, $\mathrm{t}_{\text {w }}(\phi \mathrm{L})$	150		50000	ns
Recirculate pulse width, $\mathrm{t}_{\mathrm{w}}(\mathrm{rec})$	250			ns
Data setup time, $\mathrm{t}_{\text {sulda) }}$	60			ns
Recirculate setup time, $\mathrm{t}_{\text {su }}(\mathrm{rec})$	120			ns
Data hold time, th(da)	60			ns
Recirculate hold time, $\mathrm{th}(\mathrm{rec})$	100			ns
Clock frequency, f_{ϕ}	0		2	MHz
Operating free-air temperature, T_{A}	-25		85	${ }^{\circ} \mathrm{C}$

electrical characteristics under nominal operating conditions, $T_{A}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\text {t }}$	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{R}_{\mathrm{L}}=7.5 \mathrm{k} \Omega$ to V_{GG}	$\mathrm{V}_{\text {SS }}-1$			V
VOL	Low-level output voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=7.5 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{GG}}, \\ & \mathrm{I}_{\mathrm{OL}} \approx-1.6 \mathrm{~mA} \end{aligned}$			0.6	\checkmark
11	Input current (all inputs)	$\mathrm{V}_{1}=0 \mathrm{~V}$			-500	nA
${ }^{\text {IGG }}$	Supply current from V_{GG}	$\begin{aligned} & \text { Load = } 1 \text { TTL gate (see Note 2), } \\ & f=1 \mathrm{MHz}, \quad T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		-15	-25	mA
ISS	Supply current from $\mathrm{V}_{\text {SS }}$	Load = 1 TTL gate (see Note 2), $f=1 \mathrm{MHz}, \quad T_{A}=25^{\circ} \mathrm{C}$		25	30	mA
$P_{\text {D }}$	Power dissipation	Load $=1$ TTL gate (see Note 2), $\mathrm{f}=1 \mathrm{MHz}, \quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		425	500	mW
c_{i}	Input capacitance, all inputs except clock	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}, \quad \mathrm{f}=1 \mathrm{MHz}$		5	7	pF
$\mathrm{C}_{\mathrm{i}(\phi)}$	Clock input capacitance	$\mathrm{V}_{1(\phi)}=\mathrm{V}_{S S}, \quad \mathrm{f}=1 \mathrm{MHz}$		6	7	pF

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: For final test purposes, a worst-case TTL load is simulated by a load of $2.7 \mathrm{k} \Omega$ and a capacitance of 10 pF .
switching characteristics under nominal operating conditions, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\text { }}$	MAX	UNIT
${ }^{\text {tPLH }}$	Propagation delay time, low-to-highlevel output from clock	$\begin{aligned} & R_{\mathrm{L}}=7.5 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{GG}} \\ & \mathrm{C}_{\mathrm{L}}=70 \mathrm{pF} \end{aligned}$		350	440	ns
tPHL	Propagation delay time, high-to-lowlevel output from clock			350	440	ns
tPLH	Propagation delay time, low-to-highlevel output from output control	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=7.5 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{GG}} \\ & \mathrm{C}_{\mathrm{L}}=70 \mathrm{pF} \end{aligned}$		180	250	ns
tPHL	Propagation delay time, high-to-lowlevel output from output control			180	250	ns

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TMS 3112 JC, NC; TMS 3122 JC, NC; TMS 3123 JC, NC HEX 32-BIT STATIC SHIFT REGISTERS

voltage waveforms

NOTE: Measurements are made at 90% (high) and 10% (low) timing points.

- DC to 2-MHz Operation
- Static Configuration
- Single TTL-Compatible Clock
- Inputs and Outputs Fully TTL-Compatible
- On-Chip Recirculate Logic
- Power Supplies . . 5 V, -12 V
- Low-Threshold Technology

description

The TMS 3113 JC, NC and TMS 3114 JC, NC are dual static shift registers with independent input, output, and recirculate controls for each register. A single-phase clock is common to both registers. The clock and all inputs can be driven from Series 74 TTL circuits and each output can drive one Series 74 TTL circuit.

Three clocks are generated internally. Cross-coupled inverters (flip-flops) are employed to implement each bit storage location. This static design allows data rates from dc to 2 MHz and long-term data storage.

P-channel enhancement-type low-threshold processing has been employed to reduce power dissipation and provide simple interfaces with bipolar circuits.

The TMS 3113 and TMS 3114 are offered in 16 -pin dual-in-line ceramic (JC suffix) or plastic (NC suffix) packages designed for insertion in mounting-hole rows on 300 -mil centers. These devices are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

applications

The TMS 3113 and TMS 3114 can be used in printers, peripherals, and display equipment.

operation

Transfer of data into and out of the shift register occurs on the low-to-high transition of the clock. Input data must be set up a minimum time before the low-to-high transition and must be held for a minimum time after that transition. For long-term data storage, the clock must be maintained high, and in this mode the recirculate and data input levels may change without affecting the data output levels.

Data recirculation is accomplished by externally connecting each output to the corresponding input. Recirculate occurs on the low-to-high clock transition with the recirculate control high. The recirculate control level must be set up a minimum time before this transition and held a minimum time after the transition. Data is entered with the recirculate control low. During recirculation, data is continuously available at the outputs and data inputs are inhibited.

TMS 3113 JC, NC; TMS 3114 JC, NC DUAL 133-, 128-BIT STATIC SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

NOTE 1: Under absolute maximum ratings, voltage values are with respect to the normally most-positive supply, VSS (substrate). Throughout the remainder of this data sheet voltage values are with respect to $V_{D D}$.
*Comment: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions' section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, VDD		0		V
Supply voltage, $\mathrm{V}_{\text {GG }}$	-11	-12	-13	V
Supply voltage, $\mathrm{V}_{\text {SS }}$	4.75	5	5.25	V
High-level input voltage, $\mathrm{V}_{1 \mathrm{H}}$	3.5			V
High-level clock input voltage, $\mathrm{V}_{1 \mathrm{H}}(\phi)$	3.5			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$			0.6	V
Low-level clock input voltage, $\mathrm{V}_{\mathrm{IL}}(\phi)$			0.6	V
Clock pulse transition time, low-to-high-level, $\mathrm{t}_{\text {TLH }}(\phi)$		0.02	5	$\mu \mathrm{s}$
Clock pulse transition time, high-to-low-level, $\mathrm{tTHL}(\phi)$		0.02	5	$\mu \mathrm{s}$
Pulse width, clock high, $\mathrm{t}_{\mathrm{w}}(\phi \mathrm{H})$	330		∞	ns
Pulse width, clock low, $\mathrm{t}_{\mathrm{w}}(\phi \mathrm{L})$	130		50000	ns
Data setup time, $\mathrm{t}_{\text {sulda) }}$	100			ns
Recirculate setup time, $\mathrm{t}_{\text {su }}(\mathrm{rec})$	100			ns
Data hold time, th(da)	100			ns
Recirculate hold time, $\mathrm{th}^{(r e c}$)	150			ns
Clock frequency, \mathbf{f}_{ϕ}	0		2	MHz
Operating free-air temperature, T_{A}	-25		85	${ }^{\circ} \mathrm{C}$

TMS 3113 JC, NC; TMS 3114 JC, NC DUAL 133-, 128-BIT STATIC SHIFT REGISTERS
electrical characteristics under nominal operating conditions, $T_{A}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN TYP †	MAX	UNIT
V_{OH} High-level output voltage	$1 \mathrm{OH}^{\prime}=0.2 \mathrm{~mA}$	4		V
VOL Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$		0.5	V
II Input current (all inputs)	$\mathrm{V}_{1}=0.6 \mathrm{~V}$		-500	nA
$\mathrm{I}_{\mathrm{GG}} \quad$ Supply current from V_{GG}	Load = 1 TTL gate (see Note 2)	-17		mA
ISS Supply current from $\mathrm{V}_{\text {SS }}$	Load = 1 TTL gate (see Note 2)	32		mA
$\mathrm{P}_{\mathrm{D}} \quad$ Power dissipation	Load = 1 TTL gate (see Note 2)	360		mW
$\mathrm{C}_{\mathrm{i}} \quad$ Input capacitance, all inputs except clock	$\mathrm{V}_{1}=5 \mathrm{~V}, \quad f=1 \mathrm{MHz}$	8	12	pF
$\mathrm{C}_{\mathrm{i}(\phi)}$ Clock input capacitance	$\mathrm{V}_{(1 \phi)}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	9	13	pF

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: For final test purposes, a worst-case TTL load is simulated by a load of $2.7 \mathrm{k} \Omega$ and a capacitance of 10 pF .
switching characteristics under nominal operating conditions, $T_{A}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output from clock	```1 Series 74 TTL Load + 10 pF OR 10 M\Omega + 10 pF (MOS Load) (see Note 3)```		300	350	ns
tPHL	Propagation delay time, high-to-low-level output from clock			300	350	ns

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTE 3: For final test purposes, a worst-case TTL load is simulated by a load of $2.7 \mathrm{k} \Omega$ and a capacitance of 10 pF . A worst-case MOS load is simulated by a load of $10 \mathrm{M} \Omega$ and 10 pF . All loads are connected between output and V_{SS}.
voltage waveforms

NOTE: Timing points are at 90% (high) and 10% (low) unless otherwise noted.

- DC to $2.5-\mathrm{MHz}$ Operation
- Static Configuration
- Single TTL-Compatible Clock
- Inputs and Outputs Fully TTL-Compatible
- Push-Pull Output Buffers
- On-Chip Recirculate Logic
- Power Supplies . . $5 \mathrm{~V},-12 \mathrm{~V}$
- Low-Threshold MOS Technology
description

16-PIN CERAMIC AND PLASTIC
DUAL-IN-LINE PACKAGES

The TMS 3120 and TMS 3121 are quad 80 -bit and quad 64 -bit shift registers with independent inputs, outputs, and recirculate controls for each register. A single-phase clock is common to all registers. The clock and data inputs can be driven from Series 74 TTL circuits and the push-pull output buffers can drive one TTL load or low-level MOS loads without external pull-up resistors.

Cross-coupled inverters (flip-flops) are employed to implement each bit storage location. This static design allows input data rates from dc to 2.5 MHz and long-term data storage.

P-channel enhancement-type low-threshold processing has been employed to reduce power dissipation and provide simple interface with bipolar circuits.

The TMS 3120 and TMS 3121 are offered in 16-pin dual-in-line ceramic (JC suffix) or plastic (NC suffix) packages designed for insertion in mounting-hole rows on 300 -mil centers. These devices are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

applications

The TMS 3120 can be used in card punch, key-to-tape, key-to-disk, printer, and CRT display equipment for both 40 and 80 -column applications. The TMS 3121 is used in general purpose buffer memories.

operation

Transfer of data into and out of the shift register occurs on the high-to-low transition of the clock. Input data must be set up a minimum time before the high-to-low clock transition and must be held for a minimum time after that transition. For long term data storage, the clock must be maintained low, and in this mode the recirculate and data input levels may change without affecting the data output levels.

Recirculate occurs on the high-to-low clock transition with the recirculate control high. The recirculate control must be set up a minimum time before this transition and held a minimum time after the transition. Data is entered with the recirculate control low. During recirculation, data is continuously available at the output and the data input is inhibited.

TMS 3120 JC, NC; TMS 3121 JC, NC QUADRUPLE 80-, 64-BIT STATIC SHIFT REGISTERS

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

NOTE 1: Under absolute maximum ratings, voltage values are with respect to the normally most-positive supply, $V_{S S}$ (substrate). Throughout the remainder of this data sheet voltage values are with respect to $V_{D D}$.
*Comment: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {DD }}$		0		V
Supply voltage, V_{GG}	-11	-12	-13	V
Supply voltage, $\mathrm{V}_{\text {SS }}$	4.75	5	5.25	V
High-level input voltage, V_{1} H	$V_{\text {SS }}-1.6$			V
High-level clock input voltage, $\mathrm{V}_{1} \mathrm{H}(\phi)$	$\mathrm{V}_{\text {SS }}-1.6$			V
Low-level input voltage, VIL			0.8	V
Low-level clock input voltage, $\mathrm{V}_{\text {IL }}(\phi)$			0.8	V
Clock pulse transition time, low-to-high-level, tTLH (ϕ)			10	$\mu \mathrm{s}$
Clock pulse transition time, high-to-low-level, tTHL (ϕ)			10	$\mu \mathrm{s}$
Pulse width, clock high, $\mathrm{t}_{\mathrm{w}}(\phi \mathrm{H})$	200		100000	ns
Pulse width, clock low, $\mathrm{t}_{\mathrm{w}}(\phi \mathrm{L})$	200		∞	ns
Data setup time, $\mathrm{t}_{\text {su }}$ (da)	190			ns
Recirculate setup time, $\mathrm{t}_{\text {su }}(\mathrm{rec}$)	190			ns
Data hold time, th(da)	90			ns
Recirculate hold time, th(rec)	90			ns
Clock frequency, f_{ϕ} (see Note 2)	0		2.5	MHz
Operating free-air temperature, T_{A}	-25		85	${ }^{\circ} \mathrm{C}$

NOTE 2: For cascading, data input frequency $=2 \mathrm{MHz}$ maximum.

TMS 3120 JC, NC; TMS 3121 JC, NC QUADRUPLE 80-, 64-BIT STATIC SHIFT REGISTERS

electrical characteristics under nominal operating conditions, $T_{A}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP ${ }^{\text { }}$	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$	$\mathrm{V}_{S S}-1 \mathrm{~V}_{\text {SS }}-0.5$		V
V_{OL}	Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	0.2	0.4	V
$1 /$	Input current (all inputs)	$\mathrm{V}_{1}=0$		-0.1	$\mu \mathrm{A}$
I_{GG}	Supply current from V_{GG}	$\begin{aligned} & \text { Load }=1 \mathrm{TTL} \text { gate (see Note 3) } \\ & \mathrm{f}=1 \mathrm{MHz}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-10	-15	mA
ISS	Supply current from VSS	Load $=1$ TTL gate (see Note 3) $f=1 \mathrm{MHz}, \quad T_{A}=25^{\circ} \mathrm{C}$	30	35	mA
P_{D}	Power dissipation	Load = 1 TTL gate (see Note 3) $f=1 \mathrm{MHz}, \quad T_{A}=25^{\circ} \mathrm{C}$		355	mW
C_{i}	Input capacitance, all inputs except clock	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}, \quad f=1 \mathrm{MHz}$	3.5	5	pF
$\mathrm{C}_{\mathrm{i}}(\phi)$	Clock input capacitance	$V_{l(\phi)}=V_{\text {SS }} . \quad f=1 \mathrm{MHz}$	3.5	5	pF

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTE 3: For test purposes, a TTL load is simulated by a load of $2.7 \mathrm{k} \Omega$ and 20 pF between the output and V_{SS}.
switching characteristics under nominal operating conditions, $T_{A}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
tPLH	Propagation delay time, low-to-high-leve! output from clock	1 Series 74 TTL Load +10 pF (see Note 4)	100	400	ns
tPHL	Propagation delay time, high-to-low-level output from clock		100	400	ns
tPLH	Propagation delay time, high-to-low-level output from clock	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{M} \Omega \\ & C_{\mathrm{L}}=10 \mathrm{pF}(\mathrm{MOS} \text { Load }), \end{aligned}$ (see Note 4)	100	300	ns
tPHL	Propagation delay time, low-to-high-level output from clock		100	300	ns

NOTE 4: For final test purposes, a worst-case TTL load is simulated by a load of $2.7 \mathrm{k} \Omega$ and a capacitance of 10 pF . A worst-case MOS load is simulated by a load of $10 \mathrm{M} \Omega$ and 10 pF . All loads are connected between output and V_{SS}.
voltage waveforms

NOTE: For the clock input and output data, timing points are $\mathbf{9 0 \%}$ (high) and $\mathbf{1 0 \%}$ (low). All other timing points are at 50%.
iexas instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TEXAS INSTRRUMENTS
POST OFFICE BOX 5012 - DALLAS, TEXAS 75222

- DC to $2.5-\mathrm{MHz}$ Operation
- Static Configuration
- Single TTL-Compatible Clock
- Inputs and Outputs Fully TTL-Compatible
- Push-Pull Output Buffers
- On-Chip Recirculate Logic
- Power Supplies . . 5 V, -12 V
- Seven Standard Bit Lengths
description

This series is a family of MOS dual static shift registers. These circuits are monolithically constructed by use of thick-oxide techniques and P-channel enhancement-type transistors, which allow TTL-compatibility for ease of system design.

An on-chip clock generator provides three internal phases from a single external TTL-level clock. All inputs including the low-capacitance clock can be driven directly from Series 74 TTL circuits without the need for pull-up resistors. The push-pull outputs are compatible with Series 74 TTL and have a fan-out capability of one TTL load. A current limiter has been incorporated in the output buffers to reduce power dissipation when driving bipolar logic. No external components are needed for TTL interface.

Cross-coupled inverters (flip-flops) are employed to implement each bit storage location. This static design allows input data rates from dc to 2.5 MHz and long-term data storage. Recirculate logic has been incorporated on the chip to simplify system design.

These devices are offered in the TO-99 hermetically sealed package (suffix LC) and in the 8-pin dual-in-line plastic package (suffix NC). The 8 -pin dual-in-line package is designed for insertion in mounting-hole rows on 300 -mil centers. These devices are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

applications

Various bit lengths are offered to cover most computer peripheral applications such as printers, buffer memories, and CRT refresh memories.

operation

Transfer of data into and out of the shift registers occurs on the low-to-high transition of the clock. Input data must be set up a minimum time before the low-to-high clock transition and must be held for a minimum time after that transition. For long-term data storage, the clock must be maintained high, and in this mode the recirculate and data input levels may change without affecting the data output levels.

[^6]TMS 3126, 3127, 3128, 3129, 3130, 3131, 3132 LC, NC DUAL 96-, $100-128-132-133-136-144-$ BIT STATIC SHIFT REGISTERS
functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*
 only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating device reliability.

recommended operating conditions

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {GG }}$	-11	-12	-13	V
Supply voltage, $\mathrm{V}_{\text {SS }}$	4.5	5	5.5	V
High-level input voltage, $\mathrm{V}_{1} \mathrm{H}$	$\mathrm{V}_{\text {SS }}-1.8$			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$			SS -3.9	V
Clock pulse transition time, low-to-high level, t TLH (ϕ)		0.02	5	$\mu \mathrm{s}$
Clock pulse transition time, high-to-low level, t THL (ϕ)		0.02	5	$\mu \mathrm{s}$
Pulse width, clock high, $\mathrm{t}_{\mathrm{w}}(\phi \mathrm{H})$	300		∞	ns
Pulse width, clock low, $\mathrm{t}_{\mathrm{w}}(\phi \mathrm{L})$	100		000000	ns
Recirculate pulse width, $\mathrm{t}_{\mathrm{w}}(\mathrm{rec})$	125			ns
Data setup time, $\mathrm{t}_{\text {sul }}$ (da)	80			ns
Recirculate setup time, $\mathrm{t}_{\text {su }}(\mathrm{rec})$	100			ns
Data hold time, th(da)	80			ns
Recirculate hold time, th (rec)	25			ns
Clock frequency, f_{ϕ}	0		2.5	MHz
Operating free-air temperature, T_{A}	-25		85	${ }^{\circ} \mathrm{C}$

TMS 3126, 3127, 3128, 3129, 3130, 3131, 3132 LC, NC DUAL 96-, 100-, 128-, 132-, 133-, 136-, 144-BIT STATIC SHIFT REGISTERS
electrical characteristics under nominal operating conditions, $T_{A}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
(unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP ${ }^{\text { }}$	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=0.2 \mathrm{~mA}$		4			V
V_{OL}	Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$				0.4	V
$1 /$	Input current (all inputs)	$\mathrm{V}_{1}=0.8 \mathrm{~V}$				-500	nA
Ios	Short-circuit output current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GG}}=-11 \mathrm{~V}$			-10	mA
I_{GG}	Supply current from VGG	$\mathrm{f}=2.5 \mathrm{MHz}$,	1 TTL load (see Note 2)		-22	-30	mA
P_{D}	Power dissipation	$\mathrm{f}=2.5 \mathrm{MHz}$,	1 TTL load (see Note 2)		374	510	mW
C_{i}	Input capacitance, all inputs except clock	$\mathrm{V}_{1}=5 \mathrm{~V}$,	$\mathrm{f}=1 \mathrm{MHz}$		3.5	5	pF
$\mathrm{C}_{\mathrm{i}}(\mathrm{\phi})$	Clock input capacitance	$\mathrm{V}_{1(\phi)}=5 \mathrm{~V}$,	$\mathrm{f}=1 \mathrm{MHz}$		3.5	5	pF

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: For test purposes, a TTL load is simulated by a load of $2.7 \mathrm{k} \Omega$ and 20 pF between the output and V_{SS}.
switching characteristics under nominal operating conditions, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
tPLH	Propagation delay time, low-to-high- level output from clock	Load = 1 TTL gate (see Note 3)	250	ns
tPHLPropagation delay time, high-to-low- level output from clock		250	ns	

NOTE 3: For test purposes, a TTL load is simulated by a load of $2.7 \mathrm{k} \Omega$ and 20 pF between the output and V_{SS}.
voltage waveforms

NOTE: All timing measurements are made at 10% or 90% points.

- DC to $2-\mathrm{MHz}$ Operation
- Static Configuration
- Single TTL-Compatible Clock
- Inputs and Outputs Fully TTL-Compatible
- Push-Pull Output Buffers
- Power Supplies . . $5 \mathrm{~V},-12 \mathrm{~V}$
- MOS Low-Threshold P-Channel Technology

description

The TMS 3133 NC is a 1024-bit static shift register designed with on-chip pull-up resistors on the inputs and the low-capacitance clock. The input can be driven directly from Series 74 TTL circuits without the use of external components. The push-pull output buffer will drive a TTL or MOS load without external components.

Two input terminals are provided. Data can be entered in either input depending on the state of the input select control. Cross-coupled inverters (flip-flops) are employed to implement each bit storage location. This static design allows input data rates from dc to 2 MHz and long-term data storage.

Ion-implant depletion-type P-channel low-threshold processing has been employed to reduce power dissipation and provide simple interfaces with bipolar circuits.

The TMS 3133 NC is offered in an 8-pin plastic (NC suffix) package designed for insertion in mounting-hole rows on 300 -mil centers. The device is characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

applications

The TMS 3133 NC is ideally suited for applications requiring a long serial memory where ease of use and low overhead circuitry are required. These applications include low-cost sequential-access memories, CRT refresh memories, drum memory replacements, and delay lines.

operation

Transfer of data into and out of the shift register occurs on the high-to-low transition of the clock. Input data must be set up a minimum time before the high-to-low transition and must be held for a minimum time after that transition. For long-term data storage, the clock must be maintained low, and in this mode the input select and data input levels may change without affecting the data output levels.

Data recirculation is accomplished by externally connecting the output to either input. Recirculate occurs on the high-to-low clock transition with the input select control set to enter data at the input connected to the output. The input select control level must be set up a minimum time before this transition and held a minimum time after the transition. During recirculation, data is continuously available at the output and the unselected data input is inhibited.

TMS 3133 NC
 1024-BIT STATIC SHIFT REGISTER

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

NOTE 1: Under absolute maximum ratings, voltage values are with respect to the normally most-positive supply, VSS (substrate). Throughout the remainder of this data sheet voltage values are with respect to $V_{D D}$.
*Comment: Stresses beyond those listed under "Absolute Maximum Ratings"" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {DD }}$		0		V
Supply voltage, V_{GG}	-11	-12	-13	V
Supply voltage, $\mathrm{V}_{\text {SS }}$	4.75	5	5.25	V
High-level input voltage, $\mathrm{V}_{1 H}$ (see Note 2)	$V_{S S}-1.4$			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$			0.8	V
Clock pulse transition time, low-to-high-level, t TL.H(ϕ)			10	$\mu \mathrm{s}$
Clock pulse transition time, high-to-low-level, t TLH (ϕ)			10	$\mu \mathrm{S}$
Pulse width, clock high, $\mathrm{t}_{\mathrm{w}}(\phi \mathrm{H})$	200		100000	ns
Pulse width, clock low, $\mathrm{t}_{\text {w }}(\phi \mathrm{L})$	200		∞	ns
Data setup time, $\mathrm{t}_{\text {su }}$ (da)	100			ns
Input select setup time, $\mathrm{t}_{\text {su }}(\mathrm{sel}$)	100			ns
Data hold time, th (da)	100			ns
Input select hold time, th(sel)	100			ns
Clock frequency, \mathbf{f}_{ϕ}	0		2	MHz
Operating free-air temperature, T_{A}	-25		85	${ }^{\circ} \mathrm{C}$

NOTE 2: TTL compatibility of all inputs is ensured by incorporation of internal pull-up resistors on the chip.

TMS 3133 NC 1024-BIT STATIC SHIFT REGISTER

electrical characteristics under nominal operating conditions, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP ${ }^{\text { }}$	MAX	UNIT
V OH	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$	$\mathrm{V}_{\text {SS }}-1$	-0.5		V
V_{OL}	Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$		0.2	0.4	V
11	Input current (all inputs)	$\begin{array}{ll} \mathrm{V}_{1}=0 \mathrm{~V}, & \mathrm{~V}_{\mathrm{SS}}=5 \mathrm{~V}, \\ T_{A}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$			-0.8	mA
${ }^{\text {IGG }}$	Supply current from V_{GG}	$\mathrm{f}=1 \mathrm{MHz}$, Duty cycle $=50 \%$,		-10	-14	mA
ISS	Supply current from $\mathrm{V}_{\text {SS }}$	1 Series 74 TTL Load (see Note 3)		35	50	mA
P_{D}	Power dissipation	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		250	420	mW
C_{i}	Input capacitance	$V_{1}=V_{S S}, \quad f=1 \mathrm{MHz}$		5	7	pF

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 3: For final test purposes, a worst-case TTL load is simulated by a load of $2.7 \mathrm{k} \Omega$ and a capacitance of 10 pF .
switching characteristics under nominal operating conditions, $T_{A}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
Propagation delay time, low-to-high-level ${ }^{t}$ PLH output from clock	```1 Series 74 TTL Load + 10 pF, OR 10 M\Omega + 10 pF (MOS Load), (see Note 4)```	110	350	ns
Propagation delay time, high-to-low-level ${ }^{\text {t PHL }}$ output from clock		110	350	ns

NOTE 4: For final test purposes, a worst-case TTL load is simulated by a load of $2.7 \mathrm{k} \Omega$ and a capacitance of 10 pF . A worst-case MOS load is simulated by a load of $10 \mathrm{M} \Omega$ and 10 pF . All loads are connected between output and V_{SS}.
voltage waveforms

- DC to $1.5-\mathrm{MHz}$ Operation
- Static Configuration
- Single TTL-Compatible Clock
- Inputs and Outputs Fully TTL-Compatible
- Push-Pull Output Buffers
- On-Chip Recirculate Logic
- Master-Clear Pin
- Power Supplies . . . $5 \mathrm{~V},-12 \mathrm{~V}$
- MOS P-Channel Depletion-Type Technology

description

The TMS $3135,3137,3138,3139,3140$ JC, NC series is a family of MOS $9 \times N$ static shift registers fabricated by means of P-channel ion-implant depletion-load technology. The nine registers permit the use of eight-bit storage plus a marker or parity bit. The design incorporates on-chip pull-up resistors on all inputs including the low-capacitance clock, allowing all inputs to be driven directly from Series 74 TTL without the use of external components. The push-pull output buffer, tied between $V_{D D}$ and $V_{S S}$, will drive $T T L$ or MOS loads without the use of external components.

An on-chip generator provides three internal phases from the single external TTL clock. Cross-coupled inverters (flip-flops) are employed to implement each bit, providing for static operation as well as dynamic operation from dc to 1.5 MHz . Recirculate logic has been incorporated on the chip to simplify system design. A master-clear pin permits simultaneous clearing of all registers to a low logic level, again simplifying system design.

The TMS $3135,3137,3138,3139,3140$ series is offered in a dual-in-line 24 -pin ceramic (JC suffix) or plastic (NC suffix) package designed for insertion in mounting-hole rows on 600 -mil centers. These devices are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

applications

The TMS 3135, 3137, 3138, 3139, and 3140 can be used in printer, terminal, peripheral, CRT display, card punch, key-to-tape, key-to-disk, and general purpose buffer memory applications as replacements for two, four, or nine quad, dual, or single shift registers. Both component and board space cost savings result from higher replication of the serial storage function in a single package.

operation

Transfer of data into and out of the shift registers occurs on the high-to-low transition of the clock. Input data must be set up a minimum time before the high-to-low clock transition and must be held for a minimum time after that transition. For long-term data storage, the clock must be maintained low, and in this mode the recirculate and data input levels may change without affecting the data output levels.

Recirculate occurs on the high-to-low transition with the recirculate control low. The recirculate control must be set up a minimum time before this transition and held a minimum time after the transition. Data is entered with the recirculate control high. During recirculation, data is continuously available at the output and the data input is inhibited.

All nine registers are cleared simultaneously by a high-level pulse on the master-clear pin with the clock in either state. The master-clear input must be inactive (low) at least 250 ns prior to a low-to-high transition of the clock on which transfer of new data is to occur.

TMS 3135, 3137, 3138, 3139, 3140 JC, NC 9- BY 80-, 100-, 128-, 132-, 133-BIT STATIC SHIFT REGISTERS

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

NOTE 1: Under the remainder of this data sheet voltage values are with respect to $V_{D D}$. only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, VDD		0		V
Supply voltage, V_{GG}	-11	-12	-13	V
Supply voltage, $\mathrm{V}_{\text {SS }}$	4.75	5	5.25	V
High-level input voltage, $\mathrm{V}_{1 H}$ (see Note 2)	$\mathrm{V}_{\text {SS }}-1.4$			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (see Note 2)			0.8	V
Clock pulse transition time, low-to-high level, t THL (ϕ)			10	$\mu \mathrm{s}$
Clock pulse transition time, high-to-low level, t TLH (ϕ)			10	$\mu \mathrm{s}$
Pulse width, clock high, $\mathrm{t}_{\mathrm{w}}(\phi \mathrm{H})$	300		100000	ns
Pulse width, clock low, $\mathrm{t}_{\mathrm{w}}(\phi \mathrm{L})$	300		∞	ns
Width of clear pulse, $\mathrm{t}_{\text {w }}$ (clr)	40			$\mu \mathrm{s}$
Clear inactive-state setup time, $\mathrm{t}_{\text {su }}(\mathrm{cl} / \mathrm{rL}$)	250			ns
Data setup time, $\mathrm{t}_{\text {su }}$ (da)	100			ns
Recirculate setup time, $\mathrm{t}_{\text {su }}(\mathrm{rec})$	120			ns
Data hold time, th(da)	100			ns
Recirculate hold time, th(rec)	120			ns
Clock frequency, \mathbf{f}_{ϕ}	0		1.5	MHz
Operating free-air temperature, T_{A}	-25		85	${ }^{\circ} \mathrm{C}$

NOTE 2: TTL compatibility of all inputs is ensured by the incorporation of internal pull-up resistors on the chip.

TMS 3135, 3137, 3138, 3139, 3140 JC, NC
9- BY 80-, 100-, 128-, 132-, 133 -BIT STATIC SHIFT REGISTERS
electrical characteristics under nominal operating conditions, $T_{A}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP ${ }^{\text {t }}$	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{I}^{\mathrm{OH}}=100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{SS}}-1 \quad \mathrm{~V}_{\text {SS }}-0.5$		V
V_{OL}	Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	0.4	0.6	V
$1 /$	Input current (all inputs)	$\mathrm{V}_{1}=0$	-0.5	-0.8	mA
${ }^{\prime} \mathrm{GG}$	Supply current from V_{GG}	Load $=1$ TTL gate (see Note 3), $f=1 \mathrm{MHz}, \quad T_{A}=25^{\circ} \mathrm{C}$ Duty cycle $=50 \%$	-9	-12	mA
ISS	Supply current from ${ }_{\text {SS }}$	Load = 1 TTL gate (see Note 3), $f=1 \mathrm{MHz}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},$ Duty cycle $=50 \%$	45	60	mA
PD	Power dissipation	Load = 1 TTL gate (see Note 3), $f=1 \mathrm{MHz}, \quad T_{A}=25^{\circ} \mathrm{C}$, Duty cycle $=50 \%$	330	450	mW
C_{i}	Input capacitance, all inputs except clock	$V_{1}=V_{S S}, \quad f=1 \mathrm{MHz}$	5	7	pF
$\mathrm{C}_{\mathrm{i}(\phi)}$	Clock input capacitance	$\mathrm{V}_{\mathrm{I}(\phi)}=\mathrm{V}_{\text {SS }}, \quad \mathrm{f}=1 \mathrm{MHz}$	5	7	pF

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal operating conditions.
NOTE 3: For test purposes, a TTL load is simulated by a load of $2.7 \mathrm{k} \Omega$ and 20 pF between the output and V_{SS}.
switching characteristics under nominal operating conditions, $T_{A}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
tPLH $\begin{aligned} & \text { Propagation delay time, low-to-high- } \\ & \text { level output from clock }\end{aligned}$	$\begin{aligned} & 1 \text { Series } 74 \mathrm{TTL} \text { load }+10 \mathrm{pF} \\ & \text { or } \\ & R_{L}=10 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}(\mathrm{MOS} \text { load }) \end{aligned}$	110	550	ns
tPHL $\begin{aligned} & \text { Propagation delay time, high-to-low- } \\ & \text { level output from clock }\end{aligned}$		110	550	ns

voltage waveforms

NOTE: For the clock input and output data, timing points are 90% (high) and 10% (low). All other timing points are 50%.

- 1-kHz to $5-\mathrm{MHz}$ Operation
- Dynamic Configuration
- Inputs and Outputs Fully TTL-Compatible
- Push-Pull Output Buffers
- Power Supplies . . . $5 \mathrm{~V},-12 \mathrm{~V}$
- Low-Threshold Technology
description

The TMS 3401 LC, NC is a single 512-bit dynamic shift register designed for high speed and low power dissipation. The input and output are fully compatible with Series 74 TTL and require no external resistors.

The TMS 3401 is offered in 10-pin TO-100 (LC suffix) and 16 -pin dual-in-line plastic (NC suffix) packages. The 16 -pin package is designed for insertion in mounting-hole rows on 300 -mil centers.
applications
The TMS 3401 can be used in display, delay line, and long serial storage applications.
functional block diagram
 (TOP VIEW)

A complete data sheet may be obtained by writing directly to:
Marketing and Information Services
Texas Instruments Incorporation
P.O. Box 5012 MS 308

Dallas, Texas 75222

- $10-\mathrm{kHz}$ to $5-\mathrm{MHz}$ Operation
- Dynamic Configuration
- Single TTL-Compatible Clock
- Inputs and Outputs Fully TTL-Compatible
- On-Chip Recirculate Logic
- Power Supplies . . . $5 \mathrm{~V},-12 \mathrm{~V}$
- MOS Low-Threshold Self-Aligned-Gate Technology

description

The TMS 3409 and TMS 3417 are quad 80 -bit and quad 64 -bit shift registers, respectively, with independent inputs, outputs, and recirculate controls for each register. A single external clock signal generates two internal clock phases to each register. The clock and all inputs can be driven from Series 74 TTL circuits and all outputs can drive TTL circuits without the use of external resistors.

P-channel enhancement-type low-threshold processing with self-aligned gates has been employed to reduce power dissipation and provide simple interfaces with bipolar circuits.

The TMS 3409 and TMS 3417 are offered in 16 -pin dual-in-line ceramic (JC suffix) or plastic (NC suffix) packages designed for insertion in mounting-hole rows on $300-\mathrm{mil}$ centers. These devices are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

applications

The TMS 3409 and TMS 3417 can be used in terminals, CRT displays, key-to-tape, key-to-disk, and card-punch applications.

operation

Transfer of data into and out of the shift register occurs on the high-to-low transition of the clock with output data becoming valid after a specified propagation delay following that transition. Input data must be set up a minimum time before the high-to-low transition and must be held for a minimum time after that transition.

Recirculate occurs on the high-to-low clock transition with the recirculate control high. The recirculate control level must be set up a minimum time before this transition and held a minimum time after the transition. Data is entered with the recirculate control low. During recirculation, data is continuously available at the outputs and data inputs are inhibited.

TMS 3409 JC, NC; TMS 3417 JC, NC QUADRUPLE 80-, 64-BIT DYNAMIC SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

NOTE 1: Under absolute maximum ratings, voltage values are with respect to the normally most-positive supply, V_{SS} (substrate). Throughout the remainder of this data sheet voltage values are with respect to $V_{D D}$.
*Comment: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {DD }}$		0		V
Supply voltage, V_{GG}	-11	-12	-13	V
Supply voltage, V_{SS}	4.75	5	5.25	V
High-level input voltage, $\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {SS }}-2$		$\mathrm{V}_{\text {SS }}$	V
High-level clock input voltage, $\mathrm{V}_{1} \mathrm{H}(\phi)$	$\mathrm{V}_{\text {SS }}-2$		$\mathrm{V}_{\text {SS }}$	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$	0		0.8	V
Low-level clock input voltage, $\mathrm{V}_{\text {IL }}(\phi)$	0		0.4	V
Pulse width, clock high, $\mathrm{t}_{\text {w }}(\phi \mathrm{H})$	75		50000	ns
Pulse width, clock low, $\mathrm{t}_{\mathrm{w}}(\phi \mathrm{L})$	125		50000	ns
Data setup time, $\mathrm{t}_{\text {su }}$ (da)	50			ns
Recirculate setup time, $\mathrm{t}_{\text {su }}(\mathrm{rec})$	200			ns
Data hold time, th(da)	50			ns
Recirculate hold time, th(rec)	100			ns
Clock frequency, f_{ϕ}	0.01		5	MHz
Operating free-air temperature, T_{A}	-25		85	${ }^{\circ} \mathrm{C}$

TMS 3409 JC, NC; TMS 3417 JC, NC

QUADRUPLE 80-, 64-BIT DYNAMIC SHIFT REGISTERS

electrical characteristics under nominal operating conditions, $T_{A}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP ${ }^{\text {t }}$	MAX	UNIT
VOH	High-level output voltage	$\mathrm{l}^{\mathrm{OH}}=0.5 \mathrm{~mA}$	$\mathrm{V}_{\text {SS }}-1 \mathrm{~V}_{\text {SS }}-0.5$	$\mathrm{V}_{\text {SS }}$	V
V_{OL}	Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	0.3	0.4	V
11	Input current (all inputs)	$\mathrm{V}_{1}=0$		-100	nA
${ }^{\text {IGG }}$	Supply current from VGG	$\begin{aligned} & \text { Load = } 1 \mathrm{TTL} \text { gate (see Note } 2 \text {), } \\ & f=1 \mathrm{MHz} \end{aligned}$	-10	-12	mA
Iss	Supply current from VSS	$\begin{aligned} & \text { Load = } 1 \text { TTL gate (see Note } 2 \text {), } \\ & f=1 \mathrm{MHz} \end{aligned}$	33	47	mA
P_{D}	Power dissipation	$\begin{aligned} & \text { Load }=1 \text { TTL gate (see Note } 2 \text {), } \\ & f=1 \mathrm{MHz} \end{aligned}$	285	400	mW
C_{i}	Input capacitance, all inputs except clock	$V_{1}=V_{S S}, \quad f=1 \mathrm{MHz}$		10	pF
$\mathrm{C}_{\mathrm{i}(\phi)}$	Clock input capacitance	$\mathrm{V}_{(1 \phi)}=\mathrm{V}_{\text {SS }}, \quad \mathrm{f}=1 \mathrm{MHz}$		25	pF

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTE 2: For final test purposes, a worst-case TTL load is simulated by a load of $2.7 \mathrm{k} \Omega$ and a capacitance of 10 pF .
switching characteristics under nominal operating conditions, $T_{A}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
(unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output from clock	```1 Series 74 TTL Load + 10 pF OR \(10 \mathrm{M} \Omega+10 \mathrm{pF}\) (MOS Load) (see Note 3)```		100	160	ns
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level output from clock			100	160	ns
$\mathrm{t}_{\text {TLH }}$	Transition time, low-to-high-level output	1 Series 74 TTL Load + 10 pF (see Note 3)			- 60	ns
tTHL	Transition time, high-to-low-level output				50	ns

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTE 3: For final test purposes a worst-case TTL load is simulated by a load of $2.7 \mathrm{k} \Omega$ and a capacitance of 10 pF . A worst-case MOS load is simulated by a load of $10 \mathrm{M} \Omega$ and 10 pF . All loads are connected between output and V_{SS}.
voltage waveforms

NOTE 3. All timings are with respect to 50% points of transitions with the exception of clock transition times, which are measured at 90% (high) and 10\% (low).

LSI

- 64 Words of 9 Bits of Elastic Storage
- TTL-Compatibility on All Inputs Including Clocks
- 3-State Output Buffers
- 3 Control Inputs (Read, Write, Clear)
- DC to $250-\mathrm{kHz}$ Data Rate
- Status Outputs (Full, Empty)
- Synchronous and Asynchronous Operation
- 2-Cycle (4- $\mu \mathrm{s}$) Throughput
- Long-Term Data Retention
- Output Pins Directly Opposite Corresponding Inputs

description

The TMS 4024 JC, NC is a first-in, first-out digital storage buffer that will store up to 64 nine-bit words. The major components of the device include a 9×64 dynamic RAM, three shift counters, and comparison and control logic. A RAM-type organization results in minimal ripple-through time. Data written at the input when the RAM is empty is available at the output two clock cycles later. The input and output are completely independent of each other. Input and output timing can be dependent on the clock timing (synchronous mode) or can be operated independently (asynchronous mode). The dynamic RAM requires two-phase continuous clocking at a specified minimum frequency. The clocks can be driven directly from TTL logic.

Low-threshold, thick-oxide, MOS p-channel enhancement-type technology is employed to allow interfacing with TTL circuits without external components.

The TMS 4024 is suitable for many applications as an interface between systems clocked at different speeds and in keyboard buffers, data concentrators, etc.

This device is offered in 28-pin dual-in-line ceramic (JC suffix) and plastic (NC suffix) packages designed for insertion in mounting-hole rows on $600-\mathrm{mil}$ centers. The TMS 4024 is characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

operation (refer to diagram 'basic internal operation")

The TMS 4024 will process data at any desired rate from dc to one-half the continuous clock frequency with every other cycle used for automatic refresh. At a nominal 500 kHz clock rate the maximum data rate is 250 kHz . Data is processed in parallel format, word by word.

Writing and reading may be done either synchronously or asynchronously in relation to the clocks. Asynchronous operation is limited to data rates of less than one-third of the clock frequency. Read and write commands must have a minimum separation of one clock cycle.

A positive-going transition at the read or write input is recognized as a command and must occur a minimum time before the rise of clock 2 .

A write command causes the data present at the input to be transferred into the buffer. Data-in must be valid for the period during which clock 2 is low. For asynchronous operation, data-in must be valid for two periods after a write command is given because a write command may be given at any time in relation to the clock.

9×64 DIGITAL STORAGE BUFFER (FIFO)

operation (continued)

If both read and write inputs are brought to a high logic level, the read and write operations are disabled and the data outputs float. The data present in the RAM is retained while the read and write operations are disabled.

A clear command will clear all contents of the digital storage buffer, except for the output latches. When the clear input is brought to a high level, it invalidates all other commands. Completion of a clear operation is detected by a high level at the empty status output. The clear command should be synchronized with clock 2.

Status outputs (empty and full) are provided to avoid invalid operation and to facilitate cascading of the device. A high level at the full status output invalidates write commands and a high level at the empty status output invalidates read commands.
functional block diagram

DATA OUTPUTS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
 voltage values are with respect to a floating ground.

TMS 4024 JC, NC
 9×64 DIGITAL STORAGE BUFFER (FIFO)

recommended operating conditions

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {DD }}$ (see Note 2)	-4.75	-5	-5.25	\checkmark
Supply voltage, V_{GG} (see Note 2)	-10.8	-12	-13.2	V
Supply voltage, $\mathrm{V}_{\text {SS }}$ (see Note 2)	4.75	5	5.25	V
High-level input voltage, all inputs including clocks, $\mathrm{V}_{\text {IH }}$ (see Note 3)	$\mathrm{V}_{\text {SS }}-1.5$	3.5	$\mathrm{V}_{\text {SS }}$	V
Low-level input voltage, all inputs including clocks, $\mathrm{V}_{\text {IL }}$ (see Note 3)	-5.5	0	0.3	V
Clock pulse rise time, $\mathrm{t}_{\mathrm{r}}(\phi)$		25	50	ns
Clock pulse fall time, $\mathrm{t} f(\phi)$		25	50	ns
Clock-1 pulse width, $\mathrm{t}_{\text {w }}(\phi 1)$	400	700		ns
Clock-2 pulse width, $\mathrm{t}_{\mathrm{w}}(\phi 2)$	700	1000		ns
Read pulse width, $\mathrm{t}_{\mathrm{w}}(\mathrm{rd})$	300	2000		ns
Write pulse width, ${ }_{\text {w }}$ (wr)	300	2000		ns
Clear pulse width, $\mathrm{t}_{\text {w }}$ (clr)	1			ck cyc
Delay time, clock 1 to clock 2, $\mathrm{t}_{\mathrm{d}}(\phi 1-\phi 2)$	300			ns
Delay time, clock 2 to clock 1, $\mathrm{t}_{\mathrm{d}}(\phi 2-\phi 1)$	0	300		ns
Delay time, clock 2 to clock 1, plus clock-1 pulse width, $\mathrm{t}_{\mathrm{d}}(\phi 2-\phi 1)+\mathrm{t}_{\mathrm{w}}(\phi 1)$	1000			ns
Delay time, read to clock $2, \mathrm{t}_{\mathrm{d}}(\mathrm{rd}-\phi 2)$	400	600		ns
Delay time, write to clock 2 , $\mathrm{I}_{\mathrm{d}}(\mathrm{wr}-\phi 2)$	400	600		ns
Data setup time, $\mathrm{t}_{\text {su }}$ (da)	350			ns
Data hold time, $\mathrm{th}_{\text {(}}$ da)		350		ns
Data input frequency, $\mathrm{f}_{\text {data }}$	0		250	kHz
Clock frequency, f_{ϕ}	120		500	kHz
Operating free-air temperature, T_{A}	-25		85	${ }^{\circ}$

NOTES:
2. Voltage values are with respect to a floating ground.
3. The algebraic convention where the most negative limit is designated as minimum is used in this data sheet for logic voltage levels only.
4. Nominal timing is given for $500-\mathrm{kHz}$ operation.
electrical characteristics under nominal operating conditions, $T_{A}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP ${ }^{\text {d }}$	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	$\mathrm{V}_{S S}-1 \quad \mathrm{~V}_{S S}-0.5$	$\mathrm{V}_{\text {SS }}$	V
V_{OL}	Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$ (see Note 5)	0	0.4	V
11	Input current, all inputs including clocks			1000	nA
IDD (avg)	Average supply current from $V_{D D}$ (see Note 6)	MOS Ioad	-8		mA
IGG(avg)	Average supply current from V_{GG} (see Note 6)	MOS Ioad	-6		mA
P_{D}	Power dissipation	MOS load	182		mW
C_{i}	Input capacitance, all inputs including clock	$f=100 \mathrm{kHz}$	7		pF

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTES:
5. VOL is measured with a $1.5-\mathrm{k} \Omega$ resistor in series with the output and includes the drop across the resistor.
6. Typical values of $I_{D D}(\mathrm{avg})$ and $\mathrm{I}_{\mathrm{GG}}(\mathrm{avg})$ are -25 mA and -8 mA at $85^{\circ} \mathrm{C}$, each output driving a Series 74 TTL load with a $1.5-\mathrm{k} \Omega$ resistor in series, a 25% clock duty cycle ($\%$ of time clock is high) and a 75% output current duty cycle (\% of time outputs are low).
Typical values of ${ }^{1} \mathrm{DD}(\mathrm{avg})$ and $\mathrm{I}_{\mathrm{GG}}(\mathrm{avg})$ are -60 mA and -8 mA at $85^{\circ} \mathrm{C}$, each output driving a Series 74 TTL load with no resistor in series, a 25% clock duty cycle and all outputs low continuously.

TMS 4024 JC, NC

9×64 DIGITAL STORAGE BUFFER (FIFO)

switching characteristics under nominal operating conditions, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\text {t }}$	MAX	UNIT
tal ${ }_{\text {d }}$)	Access time from clock 1	1 Series 74 TTL load, 25 pF in parallel, $1.5 \mathrm{k} \Omega$ in series	400			ns
$\mathrm{ta}_{\mathrm{a}}(\phi 2)$	Access time from clock 2		950	1000	1200	ns
${ }^{\text {tPLH }}$	Propagation delay time, low-to-high level flag outputs from clock 2			400		ns

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
timing diagram and voltage waveforms

NOTE: Timing points are 90% (high) and 10% (low).
basic internal operation

TMS 4024 JC, NC 9×64 DIGITAL STORAGE BUFFER (FIFO)
interface circuits
a) TTL

$\cdot 1.5 \mathrm{k} \Omega$ resistor optional - the presence of this resistor helps to reduce power dissipation in the TMS 4024 while driving TTL.
b) MOS

TYPICAL CHARACTERISTICS

PROPAGATION DELAY TIMES FOR FULL OR EMPTY

NOTE: TTL load, $1.5 \mathrm{k} \Omega$ series resistor, all outputs low; MOS load, all outputs high.

- Transmits, Receives, and Formats Data
- Full-Duplex or Half-Duplex Operation
- Operation from DC to 200 kHz
- Static Logic
- Buffered Parallel Inputs and Outputs
- Programmable Word Lengths . . .5, 6, 7, 8 Bits
- Programmable Information Rate
- Programmable Parity Generation/Verification
- Programmable Parity Inhibit
- Automatic Data Formatting
- Automatic Status Generation
- 3-State Push-Pull Buffers
- Low-Threshold Technology
- Standard Power Supplies . . . 5 V, -12 V
- Full TTL Compatibility . . . No External Components

description

The TMS 6011 JC, NC is an MOS/LSI subsystem designed to provide the data interface between a serial communications link and data processing equipment such as a peripheral or a computer. The device is often referred to as an asynchronous data interface or as a universal asynchronous receiver/transmitter (UART).

40-PIN CERAMIC AND PLASTIC
DUAL-IN-LINE PACKAGES
(TOP VIEW)

The receiver section of the TMS 6011 will accept serial data from the transmission line and convert it to parallel data. The serial word will have start, data, and stop bits. Parity may be generated and verified. The receiver section will validate the received data transmission by checking proper start, parity, and stop bits, and will convert the data to parallel.

The transmitter section will accept parallel data, convert it to serial form, and generate the start, parity, and stop bits.
The TMS 6011 is a fully programmable circuit allowing maximum flexibility of operation, defined as follows:

- The receiver and transmitter sections are separate and can operate either in full-duplex (simultaneous transmission and reception) or in half-duplex mode (alternate transmission and reception).
- The data word may be externally selected to be 5, 6, 7, or 8 bits long.
- Baud rate is externally selected by the clock frequency. Clock frequency can vary between 0 and 200 kHz .
- Parity, which is generated in the transmit mode and verified in the receive mode, can be selected as either odd or even. It is also possible to disable the parity bit by inhibiting the parity generation and verification.
- The stop bit can be selected as either a single- or a double-bit stop.
- Static logic is used to maximize flexibility of operation and to simplify the task of the user. The data holding registers are static and will hold a data word until it is replaced by another word.
- Asynchronous operation allows the use of a single transmission line. The clock period has to be within $\pm 4 \%$ of $1 / 16$ of the time for one bit for the transmitter and/or receiver but no phase relationship is required.

[^7]
TMS 6011 JC, NC ASYNCHRONOUS DATA INTERFACE (UART)

description (continued)

The TMS 6011 can be used in a wide range of data handling equipment such as modems, peripherals, printers, data displays, and minicomputers. By taking full advantage of the latest MOS/LSI design and processing techniques, it has been possible to implement the entire transmit, receive, and format function necessary for digital data communication in a single package, avoiding the cumbersome circuitry previously necessary.

P-channel enhancement-type low-threshold technology permits the use of standard power supplies ($5 \mathrm{~V},-12 \mathrm{~V}$) as well as direct TTL interface. No external components are needed.

The TMS 6011 is offered in both 40-pin dual-in-line ceramic (JC suffix) and plastic (NC suffix) packages designed for insertion in mounting-hole rows on 600 -mil centers. The device is characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

operation

The operation can be best understood by visualizing the TMS 6011 as three separate sections: 1) common control, 2) transmitter, and 3) receiver. The transmitter and receiver sections are independent while the control section directs both receive and transmit.
common control section
The common control section will direct both the receiver and the transmitter sections.
The initialization of the TMS 6011 is performed through the Master Reset (MR) terminal. The MR terminal is strobed to a high level after power turn-on to reset all status and transmitter registers and to reset Transmitter Output (TO) to a high level. The Receiver Outputs (RO1-RO8) are not controlled by the MR terminal.

Status flags Parity Error, Framing Error, Overrun Error, Data Ready, and Transmitter Buffer Register Empty are disabled when the Status Flags Disable (SFD) is at a high level. When disabled, the status flags float (three-state buffers are in the high-impedance state). The Transmitter Register Empty (TRE) status flag is not a three-state output.

The number of bits per word is controlled by the Word Length Select 1 (WLS1) and Word Length Select 2 (WLS2) inputs. The word length may be $5,6,7$, or 8 bits. Selection is as follows:

WORD LENGTH		WLS1
		WLS2
		Low
7	High	Low
7	Low	High
8	High	High

The parity to be checked by the receiver and generated by the transmitter is determined by the Parity Select (PS) input. A high level on the PS input selects even parity and a low level selects odd parity.

The parity will not be checked or generated if a high level is applied to Parity Inhibit (PI); in this case the stop bit or bits will immediately follow the data bit.

When a high level is applied to PI, the Parity Error (PE) status flag is brought to a low level indicating a no-parity error because parity is disregarded in this mode.

To select either one or two stop bits, the Stop Bit(s) Select (SBS) terminal is used. A high level at this terminal will result in two stop bits while a low level will produce only one.

To load the control bits (WLS1, WLS2, PS, PI, and SBS) a high level is applied to the Control Register Load (CRL) terminal. This terminal may be strobed or hard wired to a high level.

operation (continued)

transmitter section
The transmitter section will accept data in parallel form, then serialize, format, and transmit the data in serial form.
Parallel input data is received through the Transmitter Inputs (TI1-TI8).
Serial output data is transmitted from the Transmitter Output (TO) terminal.
Input data is stored in the transmitter-buffer register. A low level at the Transmitter Buffer Register Load (TBRL) command terminal will load a word in the transmitter-buffer register. The length of this word is determined by Word Length Select 1 (WLS1) and Word Length Select 2 (WLS2). If a word of length greater than this appears at TI8 through TI1, only the least significant bits are accepted. The word is justified into the least significant bit, TI1.

The data is transferred to the transmitter register when the TBRL terminal goes from low to high. The loading of the transmitter register is delayed if the transmitter section is presently transmitting data. In this case the loading of the transmitter register is delayed until the transmission has been performed.

Output serial data (transmitted from the TO terminal) is clocked out by Transmitter Clock (TC). The clock rate is 16 times faster than the data rate.

The data is formatted as follows: start bit, data, parity bit, stop bits (1 or 2). Start bits, parity bits, and stop bits are generated by the TMS 6011. When no data is transmitted the output TO remains at a high level.

The start of transmission is defined as the transition of TO from a high to a low logic level.
Two flags are provided. A high level at the Transmitter Buffer Register Empty (TBRE) flag indicates that a word has been transferred to the transmitter/receiver and that the transmitter buffer register is now ready to accept a new word. A high level at the Transmitter Register Empty (TRE) flag indicates that the transmitter section has completed the transmission of a complete word including stop bits. The TRE flag will remain at a high level until the start of transmission of a new word.

Both the transmitter buffer register and the transmitter register are static and will perform long-term storage of data.

receiver section

The data is received in serial form at the Receiver Input (RI). The data from RI enters the receiver register at a point determined by the character length, the parity, and the number of stop bits. RI must be maintained high when no data is being received. The data is clocked by the Receiver Clock (RC). The clock rate is 16 times faster than the data rate.

Data is transferred from the receiver register to the receiver buffer register. The output data is then presented in parallel form at the eight Receiver Outputs (RO1 through RO8). The MOS output buffers used for the eight RO terminals are three-state push-pull output buffers that permit the wire-OR configuration through use of the Receiver Output Disable (ROD) terminal. When a high level is applied to ROD the RO outputs are floating. If the word length is less than 8 bits, the most significant bits will be at a low level. The output word is right justified. RO1 is the least significant bit and RO8 is the most significant bit.

A low level applied to the Data Ready Reset ($\overline{\mathrm{DRR}}$) terminal resets the Data Ready (DR) output to a low level.
Several flags are provided in the receiver section. There are three error flags (Parity Error, Framing Error, and Overrun Error) and a DR flag. These status flags may be disabled by a high level at the Status Flags Disable (SFD) terminal.

A high level at the Parity Error (PE) terminal indicates an error in parity.
A high level at the Framing Error (FE) terminal indicates a framing error that is an invalid or nonexistent stop bit in the received word.

TMS 6011 JC, NC ASYNCHRONOUS DATA INTERFACE (UART)

operation (continued)

A high level at the Overrun Error (OE) terminal indicates an overrun. An overrun occurs when the previous word has not been read, i.e., when the DR output has not been reset before the present data was transferred to the receiver buffer register.

A high level at the DR terminal indicates that a word has been received, stored in the receiver-buffer register and that the data is available at outputs RO1 through R08. The DR terminal can be reset through the $\overline{\mathbf{D R R}}$ terminal.

functional block diagram

TMS 6011 JC, NC
 ASYNCHRONOUS DATA INTERFACE (UART)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

NOTE 1: Under absolute maxi the remainder of this data sheet voltage values are with respect to $V_{D D}$.
*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

PARAMETER		MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {DD }}$			0		V
Supply voltage, V_{GG}		-11.5	-12	-12.5	V
Supply voltage, V_{SS}		4.75	5	5.25	V
High-level input voltage, all inputs, V_{IH} (see Notes 2 and 3)		$\mathrm{V}_{\text {SS }}-1.5$		SS +0.3	V
Low-level input voltage, all inputs, $\mathrm{V}_{\text {IL }}$ (see Notes 2 and 3)		-12		0.8	V
Pulse width, ${ }_{\text {w }}$	Clock	2.5			$\mu \mathrm{s}$
	Transmitter buffer register load	400			ns
	Control register load	250			ns
	Parity inhibit (see Notes 4 and 5)	400			ns
	Parity select (see Notes 4 and 5)	300			ns
	Word length select and stop bit select (see Notes 4 and 5)	300			ns
	Master reset	1.5			$\mu \mathrm{s}$
	Data ready reset	250			ns
Data setup time, $\mathrm{t}_{\text {su }}$ (da)		$10 \downarrow$			ns
Data hold time, th(da)		$20 \uparrow$			ns
Clock frequency, f_{ϕ} (see Note 6)		0		200	kHz
Operating free-air temperature, T_{A}		-25		85	${ }^{\circ} \mathrm{C}$

NOTES: 2. All data, clock, and command inputs have internal pull-up resistors to allow direct clocking by any TTL circuit.
3. The algebraic convention where the most negative limit is designated as minimum is used in this data sheet for logic voltage levels only.
4. Inputs to PI, PS, WLS1, WLS2, and SBS are normally static signals. A minimum pulse width has been indicated for possible pulsed operation.
5. All control signal pulses should be centered with respect to CRL to ensure maximum setup and hold time.
6. Clock frequency is 16 times the baud rate.
$\uparrow \downarrow$ The arrow indicates the edge of the $\overline{T B R L}$ pulse used for reference: \uparrow for the rising edge, \downarrow for the falling edge.
electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\text {t }}$	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{l}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	2.4			V
V_{OL}	Low-level output voltage	$1 \mathrm{OL}=1.6 \mathrm{~mA}$			0.6	V
$\mathrm{IIH}^{\text {I }}$	High-level input current, all inputs	$\mathrm{V}_{1}=5 \mathrm{~V}$			10	$\mu \mathrm{A}$
$1 / \mathrm{L}$	Low-level input current, all inputs	$\mathrm{V}_{1}=0 \mathrm{~V}$			-1.6	mA
IGG	Supply current from V_{GG}	All inputs at a high level		-7	-12	mA
ISS	Supply current from $\mathrm{V}_{\text {SS }}$	All inputs at a high level		20	30	mA
P_{D}	Power dissipation	All inputs at a high level		190	300	mW
C_{i}	Input capacitance, all inputs	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}, \quad \mathrm{f}=1 \mathrm{MHz}$		10	20	pF

[^8]
TMS 6011 JC, NC
 ASYNCHRONOUS DATA INTERFACE (UART)

switching characteristics over full ranges of recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN TYP ${ }^{\dagger}$	MAX	UNIT
tPHL Propagation delay time, high-to-low	1 Series 74 TTL load	800	1000	ns
$\begin{array}{ll} \hline \text { tPHL } & \text { Propagation delay time, high-to-low } \\ \text { level TBRE output from } \overline{\text { TBRL }} \end{array}$		800	1000	ns
tPZX Enable time, receiver output from ROD		300	500	ns
tPXZ Disable time, receiver output from ROD		300	500	ns
$\begin{aligned} & \text { Enable time, outputs PE, FE, OE, DR, or } \\ & \text { tPZX TBRE from SFD } \end{aligned}$		300	500	ns
$\begin{array}{ll} & \text { Disable time, outputs PE, FE, OE, DR, or } \\ \text { tPXZ } \end{array}$		300	500	ns

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$ and nominal voltages.
voltage waveforms

enable And disable times

NOTE: All enable, disable, and propagation delay times are referenced to the 90% or 10% points. All pulse widths are referenced to the 50% points.

TMS 6011 JC, NC

ASYNCHRONOUS DATA INTERFACE (UART)

operation timing diagram

${ }^{\dagger}$ Transmitter initially assumed inactive at start of diagram, shown for 8 level code and parity and 2 stops.
NOTES: 1. Bit time is 16 clock cycles.
2. If transmitter is inactive the start pulse will appear on line within one clock cycle of time data strobe occurs (see detail below).

3. Because transmitter is double buffered, another data strobe can occur anywhere during transmission of character 1.
4. TBRE goes to a low for a period of approximately one clock cycle following a $\overline{T B R L}$ pulse.

RECEIVER TIMING

NOTES: 1. This is the point at which the error condition is detected, if error occurs.
2. A high-to-low transition on the DR pin indicates that the contents of the receiver register has been transferred to the receiver buffer register and that the three error-flag signals are valid. Output data remains valid until the next word is transferred into the receiver buffer register.
3. The RI waveform illustrates an eight-bit word with parity and two stop bits. If parity is inhibited, the stop bits immediately follow the last data bit. For all word lengths, the data in the buffer register must be right justified, i.e., RO1 (pin 12) is the least significant bit.
4. Data sampling occurs at the center of each data bit (8 clock cycles after the beginning of the bit).

MOS MEMORY SYSTEM COMPATIBILITY

1) POWER SUPPLIES

In P-channel MOS Memories the substrate is normally biased positive with respect to the drain or source nodes. The substrate bias is normally negative for N -channel devices. In order to provide compatible interfaces with bipolar integrated circuits, power supply voltages are translated for most MOS Memory devices of recent design to maintain the recommended substrate bias conditions and to provide input and output voltage levels between ground (0 volts) and $V_{C C}(+5$ volts), the standard system supply voltage in equipment using TTL integrated circuits.

The chart below shows the recommended supply voltages for the MOS Memory devices in this catalog along with the symbols used for the various supply terminals.

MOS MEMORY NOMINAL POWER SUPPLY VOLTAGES AND TERMINAL SYMBOLOGY

MOS MEMORY SYSTEM COMPATIBILITY

2) INPUT COMPATIBILITY

Figure 1 illustrates how Series 74 TTL circuits are specified to guarantee that any Series 74 circuit will drive or can be driven by any other Series 74 circuit. The 0.4 -volt difference in output and input specifications is called the noise margin. These margins guarantee that any Series 74 circuit is compatible with any other Series 74 circuit and that the probability of false data inputs from spurious switching transients or induced voltage levels is minimized.

All Tl shift registers and most ROM's and RAM's are designed with inputs that can be driven directly without level-shifter or amplifier circuits. The phrase "'fully TTL-compatible" has been used to indicate that a MOS Memory device will drive or be driven by Series 74 circuits with adequate noise margins without the use of external pull-up or pull-down components. Some P-channel MOS Memories require a pull-up resistor on the input to meet the minimum input voltage high level, $\mathrm{V}_{\mathrm{IH}} \mathrm{min}$. Figure 2 illustrates the interface with TTL. In all cases, the input of the MOS circuit has a very high impedance. Therefore, TTL input compatibility is easily achieved.

SERIES 74 TTL INPUT AND
OUTPUT SPECIFICATIONS OUTPUT SPECIFICATIONS

*The value of the R resistor varies depending on speed-power requirements. In many cases this resistor is diffused on the MOS chip. For low-threshold MOS the resistor assures that the worst-case TTL output is pulled up to at least 3.5 V for proper MOS circuit operation.

FIGURE 2
3) OUTPUT COMPATIBILITY

Three types of buffers are commonly used on MOS devices:

- Open-drain
- Internal pull-up
- Push-pull
a) Open-drain and internal pull-up

The buffer is simply a current switch. In the "off" state the impedance of the buffer is extremely large, while in the "on" state it is typically under $1 \mathrm{k} \Omega$. A discrete resistor or an MOS transistor may be used as a load with an open-drain buffer. This resistor or transistor may be internal to the MOS circuit.

In every case compatibility with MOS is easily achieved. For instance, for an open-drain buffer with MOS:

R_{2} provides the necessary current sink for the TTL input; R_{1} is sometimes used to limit power dissipation or the positive excursion of the TTL input to +5 V . If R_{2} is on the chip, no external components may be necessary.

MOS MEMORY SYSTEM COMPATIBILITY

Two types are common. The unsaturated push-pull buffer is the most commonly used for low-threshold circuits since the smaller drain-source voltage permits the upper output transistor to operate in the unsaturated or low-resistance region of the I_{D} vs $V_{D S}$ characteristic curve. As a result, the output voltage swings near VDD without going negative and permits direct TTL compatibility without external components.

4) CLOCKS

Depending on the circuit type, there are different clock requirements:
No clocks - Static RAMs, ROMs, etc.
1 clock - with other clocks generated internally
2 clocks - most dynamic shift registers
a) One external clock

An internal circuit generates the clocks from a single outside clock signal. The outside clock signal has the same swing as the data input signal and the compatibility is identical (see preceeding paragraph 3).

Single-clock low-threshold MOS circuits will accept a TTL clock without adding components.
b) Two or four clocks

The clock signals must swing between $V_{S S}$ and $V_{G G}$. To go from a single-TTL-level clock to a multiple-MOS-level clock, two circuits are required: 1) a clock generator to generate the necessary clock pulses, and 2) a clock driver to bring the clock levels to the required values. In most cases only one clock circuit is needed for an entire MOS LSI system.

general

Electrical characteristics presented in this catalog, unless otherwise noted, apply for circuit type(s) listed in the page heading, regardless of package. Factory orders for circuits described should include the complete part-type numbers listed on each page.

MOS NUMBERING SYSTEM

manufacturing information

Alloying is performed in an inert atmosphere. A silicon gold eutectic is formed during the alloying operation.
Thermal compression bonding is used. Typical bond strength is 5 grams. Bond strength is monitored on a lot-to-lot basis. Any bond strength of less than 2 grams causes rejection of the entire lot of devices.

TI uses a low-temperature alloy brazing to seal ceramic packages. Metal-can packages are welded. Glass leaks are eliminated by testing in a fluorocarbon solution heated to $150^{\circ} \mathrm{C}$. Fine-leak elimination is performed through mass spectrometer techniques. All MOS LSI devices produced by TI are capable of withstanding $5 \times 10^{-7} \mathrm{ppm}$ fine-leak inspection, and may be screened to $5 \times 10^{-8} \mathrm{ppm}$ fine leak, if desired by the customer, for special applications.

All packages are capable of withstanding a shock of $3,000 \mathrm{G}$. All packages are capable of passing a $20,000-\mathrm{G}$ acceleration (centrifuge) test in the Y axis. Pin strength is measured by a pin-shearing test. All pins are able to withstand the application of a force of 6 pounds at 45° in the peel-off direction.

dual-in-line packages

A pin-to-pin spacing of 100 mils has been selected for all dual-in-line packages.
TI uses several hermetically sealed ceramic dual-in-line packages, each of which consist of a ceramic base, plated metal cap, and tin-plated leads.

The following dual-in-line packages are available in plastic or ceramic:

	8	10	16	18	22	24	28	40
	PIN							
300 mils between rows	X^{\dagger}	X^{\dagger}	X	X				
400 mils between rows					X	X^{\dagger}		
600 mils between rows						X	X	X

[^9]
MOS LSI MECHANICAL DATA

NOTES: A. Each pin centerline is located within 0.010 of its true longitudinal position.
B. All linear dimensions are in inches.

MOS LSI MECHANICAL DATA

40-PIN CERAMIC DUAL-IN-LINE PACKAGE

NOTES: A. Each pin centerline is located within 0.010 of its true longitudinal
position.
B. All linear dimensions are in inches.

NOTES: A. Each pin centerline is located within 0.010 of its true longitudinal position.
B. All linear dimensions are in inches.

MOS LSI MECHANICAL DATA

NOTES: A. Each pin centerline is located within 0.010 of its true longitudinal position.
B. All linear dimensions are in inches.

MOS LSI MECHANICAL DATA

For devices such as shift registers requiring few inputs and outputs, $T 1$ uses two metal-can packages.

TTL
 Memories

64 BITS (16 WORDS BY 4 BITS) 'S189, 'S289

256 BITS (256 WORDS BY 1 BIT) 'S201, 'S301

1024 BITS (1024 WORDS BY 1 BIT) SN74S209, SN74S309

Pin assignments for all of these memories are the same for all packages.

- Schottky-Clamped for High Performance
- Full On-Chip Decoding and Fast Chip-Enable Simplify System Decoding
- P-N-P Inputs Reduce Loading on System Buffers/Drivers
- Choice of 3-State or Open-Collector Outputs

TYPE NUMBER (PACKAGES)		TYPE OF OUTPUT(S)	BIT SIZE (ORGANIZATIONS)	TYPICAL ACCESS TIMES		WRITE CYCLE TIME	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			CHIP-SELECT	ADDRESS	SN54S'	SN74S'
SN54S189(J, W)	SN74S189(J, N)	3-State	$\begin{gathered} 64 \text { Bits } \\ (16 \mathrm{~W} \times 4 \mathrm{~B}) \end{gathered}$	12 ns	25 ns	25 ns	25 ns
SN54S289(J, W)	SN74S289(J, N)	Open-Collector					
SN54S201(J, W)	SN74S201(J, N)	3-State	$\begin{gathered} 256 \text { Bits } \\ (256 \mathrm{~W} \times 1 \mathrm{~B}) \end{gathered}$	13 ns	42 ns	100 ns	65 ns
SN54S301(J, W)	SN74S301(J, N)	Open-Collector					
	SN74S209(J, N)	3-State	$\begin{gathered} 1024 \text { Bits } \\ (1024 \mathrm{~W} \times 1 \mathrm{~B}) \end{gathered}$	20 ns	70 ns		150 ns
	SN74S309(J, N)	Open-Collector					

description

These monolithic TTL memories feature Schottky clamping for high performance, a fast chip-select access time to enhance decoding at the system level, and the 'S201 and 'S209 RAMs utilize inverted-cell memory elements to achieve high densities. The memories feature p -n-p input transistors that reduce the low-level input current requirement to a maximum of -0.25 milliamperes, only one-eighth that of a Series $54 \mathrm{~S} / 74 \mathrm{~S}$ standard load factor.

A three-state-output version and an open-collector-output version are offered for each of the three organizations. A three-state output offers the convenience of an open-collector output with the speed of a totem-pole output; it can be bus-connected to other similar outputs, yet it retains the fast rise time characteristic of the TTL totem-pole output. An open-collector output offers the capability of direct interface with a data line having a passive pull-up.

write cycle

Information to be stored in the memory is written into the selected address (AD) location when the chip-enable ($\overline{C E}$) and the read/write ($\mathrm{R} / \overline{\mathrm{w}}$) inputs are low. While the read/write input is low, the memory output(s) is(are) off (three-state $=\mathrm{Hi}-\mathrm{Z}$, open-collector $=$ high). When a number of outputs are bus-connected, this off state neither loads nor drives the data bus; however, it permits the bus line to be driven by other active outputs or a passive pull-up.
read cycle
Information stored in the memory (see function table for input/output phase relationship) is available at the output(s) when the read/write input is high and the chip-enable input(s) is(are) low. When one(or more) chip-enable input is(are) high, the output(s) will be off.

SERIES 54S/74S RANDOM-ACCESS READ/WRITE MEMORIES

FUNCTION TABLE

FUNCTION	INPUTS		OUTPUTS			
	CHIP ENABLE'	READ/ WRITE	'S189 'S201	'S289 'S301	SN74S209	SN74S309
Write	L	L	High Impedance	H	High Impedance	H
Read	L	H	Complement of Data Entered	Complement of Data Entered	Data Entered	Data Entered
Inhibit	H	X	High Impedance	H	High Impedance	H

$H=$ high level, $L=$ low level, $X=$ irrelevant
${ }^{\dagger}$ For chip-enable of 'S201 and 'S301: L = all $\overline{C E}$ inputs low, $H=$ one or more $\overline{C E}$ inputs high.
functional block diagrams

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

\downarrow, arrow indicates the transition of the read/write input used for reference: \uparrow for the low-to-high-transition, \downarrow for the high-to-low transition.

[^10]${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Duration of the short circuit should not exceed one second
${ }^{1} 1,=-18 \mathrm{~mA}$ for 's189 and 's201, -12 mA for 's209.
NOTE 2: For the 'S189 ICC is measured with the read/write and chip-enable inputs grounded, all other inputs at 4.5 V , and the outputs open.
For the 'S201 and SN74S209 ' CC is measured with all chip-enable inputs grounded, all other inputs at 4.5 V , and the output open.
recommended operating conditions

		SN54S289			SN74S289			SN54S301			SN74S301			SN74S309			UNIT
		MIN	NOM	MAX													
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	4.5	5	5.5	4.75	5	5.25	4.75	5	5.25	V
High-level output voltage, V_{OH}				5.5			5.5			5.5			5.5			5.5	V
Low-level output current, $\mathrm{I}^{\text {OL }}$				16			16			16			16			16	mA
Width of write pulse, $\mathrm{t}_{\text {w }}$ (wr) (see Figure 1)		25			25			100			65			130			ns
	Address before write pulse, $\mathrm{t}_{\text {su }}$ (ad)	0】			$0 \downarrow$			0 \downarrow			$0 \downarrow$			$10 \downarrow$			ns
	Chip enable before write pulse, $\mathrm{t}_{\text {su }}(\overline{\mathrm{CE}})$	0 \downarrow			$10 \downarrow$												
	Data before end of write pulse, $\mathrm{t}_{\text {suld }}$ (da)	$25 \uparrow$			$25 \uparrow$			$100 \uparrow$			$65 \uparrow$			$140 \uparrow$			
Hold time (see Figure 2)	Address after write pulse, th(ad)	$0 \uparrow$			$10 \uparrow$			ns									
	Chip enable after write pulse, $\mathrm{th}_{\mathrm{h}}(\overline{\mathrm{CE}})$	$0 \uparrow$			$10 \uparrow$												
	Data after write pulse, $\mathrm{th}^{\text {(da) }}$	$0 \uparrow$			$10 \uparrow$												
Operating free-air temperature, $\mathrm{T}_{\mathbf{A}}$		-55		125	0		70	-55		125	0		70	0		70	${ }^{\circ} \mathrm{C}$

$\uparrow \downarrow$ The arrow indicates the transition of the read/write input used for reference: \uparrow for the low-to-high-transition, \downarrow for the high-to-low transition.
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$			'S289			'S301			SN74S309			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
$\mathrm{V}_{\text {IH }} \quad$ High-level input voltage				2			2			2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage						0.8			0.8			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=$ MIN, $\mathrm{I}_{1}=$					-1.2			-1.2			-1.5	V
High-level output current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40			40			100	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$		$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			100			100			250	
Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ \hline \end{array}$		Series 54S'			0.5		0.38	0.5				V
			Series 74S'			0.45		0.38	0.45		0.38	0.45	
II \quad Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$					1			1			1	mA
$\mathrm{I}_{\mathrm{tH}} \quad$ High-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					25			25			25	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-250			-250			-250	$\mu \mathrm{A}$
${ }^{\text {I CC }}$ Supply current	$V_{C C}=M A X,$ See Note 3	Series 548'	$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}$			105			110				mA
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		75	105		100	140				
			$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$			105			155				
		Series 74S'	Full range		75	105		100	140		110	140	

${ }^{7}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{1} 11=-18 \mathrm{~mA}$ for 'S289 and 'S301, -12 mA for 'S309.
NOTE 3: For the 'S289 ICC is measured with the read/write and chip-enable inputs grounded, all other inputs at 4.5 V , and the outputs open For the 'S301 and SN74S309 ${ }^{\mathrm{I}} \mathrm{CC}$ is measured with all chip-enable inputs grounded, all other inputs at 4.5 V , and the output open.
switching characteristics over recommended operating ranges of T_{A} and $V_{C C}$ (unless otherwise noted) random-access memories with three-state outputs

PARAMETER			TEST CONDITIONS	SN54S189		SN74S189		SN54S201		SN74S201		SN74S209		UNIT	
			TYP \ddagger	MAX											
$t_{w}(\underline{w r, m i n})$	Minimum width of write pulse			$\begin{aligned} & C_{\mathrm{L}}=30 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \text { See Figure } 1 \end{aligned}$	15	25	15	25	40	100	40	65	65	85	ns
t_{a} (ad)	Access time from address		25		50	25	35	42	85	42	65	70	100	ns	
$\mathrm{ta}_{\mathrm{a}}(\overline{\text { C }}$ E $)$	Access time from chip enable (enable time)		12		25	12	17	13	40	13	30	20	40	ns	
${ }^{\text {t }}$ SR	Sense recovery time		22		40	22	35	20	50	20	40	20	40	ns	
tPXZ	Disable time from high or low level	from $\overline{\mathrm{CE}}$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L} 1}=300 \Omega \text {, }$ See Figure 1	12	25	12	17	9	30	9	20	15	30	ns	
		from R/W		12		12		13	45	13	35	25	40		

random-access memories with open-collector outputs

PARAMETER			TEST CONDITIONS	SN54S289		SN74S289		SN54S301		SN74S301		SN74S309		UNIT	
			TYP \ddagger	max	TYP \ddagger	MAX	TYP\#	max	TYP \ddagger	MAX	TYP \ddagger	MAX			
$\mathrm{t}_{\text {w }}(\mathrm{wr}, \mathrm{min}$)	Minimum width of write putse			$\begin{aligned} & C_{L}=30 \mathrm{pF}, \\ & R_{L 1}=300 \Omega, \\ & R_{L 2}=600 \Omega, \\ & \text { See Figure } 2 \end{aligned}$	15	25	15	25	40	100	40	65	65	85	ns
$\mathrm{ta}_{\text {a }}$ (ad)	Access time from address		25		50	25	35	42	85	42	65	70	100	ns	
$\mathrm{t}_{\mathrm{a}}(\overline{\text { CE }}$)	Access time from chip enable (enable time)		12		25	12	17	13	40	13	30	20	40	ns	
$\mathrm{t}_{\text {SR }}$	Sense recovery time		22		40	22	35	20	50	20	40	20	40	ns	
tpLH	Propagation delay time, low-to-high-level output (disable time)	from $\overline{\mathrm{CE}}$	12		25	12	17	8	30	8	20	15	30		
		from R/W	12			12		15	45	15	35	25	40	ns	

\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
schematics of inputs and outputs
'S189, 'S201, SN74S209,
'S289, 'S301, SN74S309

'S189, 'S201, SN74S209

'S289, 'S301, SN74S309

SERIES 54S/74S RANDOM-ACCESS READ/WRITE MEMORIES

NOTES: A. When measuring access times from address inputs, the chip enable input(s) is(are) low and the read/write is high
B. Waveform 1 is for the output with internal conditions such that the output is low except when disabled. Waveform 2 is for the output with internal conditions such that the output is high except when disabled.
C. When measuring access and disable times from chip enable input(s), the address inputs are steady-state and the read/write input is high.
D. Input waveforms are supplied by pulse generators having the following characteristics: $t_{r} \leqslant 2.5 \mathrm{~ns} . \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}, \mathrm{PRR} \leqslant 1 \mathrm{MHz}$, and $Z_{\text {out }} \approx 50 \Omega$.

FIGURE 1-TESTING RAM's WITH 3-STATE OUTPUTS

LOAD CIRCUIT

ACCESS TIME FROM ADDRESS INPUTS VOLTAGE WAVEFORMS

WRITE CYCLE VOLTAGE WAVEFORMS

ACCESS (ENABLE) TIME AND DISABLE TIME FROM CHIP ENABLE VOLTAGE WAVEFORMS
. When measuring access times from address inputs, the chip-enable input(s) is(are) low and the read/write input
C. When measuring access and disable times from chip-enable input(s), the address inputs are steady-state and the read/write input is high.
D. Input waveforms are supplied by pulse generators having the following characteristics: $t_{r} \leqslant 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}, \mathrm{PRR} \leqslant 1 \mathrm{MHz}$, and $Z_{\text {out }} \approx 50 \Omega$.

FIGURE 2-TESTING RAM's WITH OPEN-COLLECTOR OUTPUTS

- For Application as a "Scratch Pad" Memory with Nondestructive Read-Out
- Fully Decoded Memory Organized as 16 Words of Four Bits Each
- Fast Access Time . . . 33 ns Typical
- Diode-Clamped, Buffered Inputs
- Open-Collector Outputs Provide Wire-AND Capability
- Typical Power Dissipation . . . 375 mW
- Compatible with Most TTL and DTL Circuits

description

This 64-bit active-element memory is a monolithic, high-speed, transistor-transistor logic (TTL) array of 64 flip-flop memory cells organized in a matrix to provide 16 words of four bits each. Each of the 16 words is addressed in straight binary with full on-chip decoding.

The buffered memory inputs consist of four address lines, four data inputs, a write enable, and a memory enable for controlling the entry and access of data. The memory has open-collector outputs which may be wire-AND connected to permit expansion up to 4704 words of N -bit length without additional output buffering. Access time is typically 33 nanoseconds; power dissipation is typically 375 milliwatts.

$\overline{\text { ME }}$	$\overline{\text { WE }}$	OPERATION	CONDITION OF OUTPUTS
L	L	Write	Complement of Data Inputs
L	H	Read	Complement of Selected Word
H	L	Inhibit Storage	Complement of Data Inputs
H	H	Do Nothing	High

write operation

Information present at the data inputs is written into the memory by addressing the desired word and holding both the memory enable and write enable low. Since the internal output of the data input gate is common to the input of the sense amplifier, the sense output will assume the opposite state of the information at the data inputs when the write enable is low.

read operation

The complement of the information which has been written into the memory is nondestructively read out at the four sense outputs. This is accomplished by holding the memory enable low, the write enable high, and selecting the desired address.

schematics of inputs and outputs

TYPE SN7489

64-BIT RANDOM-ACCESS READ/WRITE MEMORY

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) 7 V
Input voltage (see Note 1) 5.5 V
High-level output voltage, V_{OH} (see Notes 1 and 2) 5.5 V
Operating free-air temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$Storage temperature range$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

NOTES: 1. Voltage values are with respect to network ground terminal
2. This is the maximum voltage that should be applied to any output when it is in the off state.
recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.75	5	5.25	V
Width of write-enable pulse, t_{w}	40			ns
Setup time, data input with respect to write enable, $\mathrm{t}_{\text {su }}$ (see Figure 1)	40			ns
Hold time, data input with respect to write enable, th (see Figure 1)	5			ns
Select input setup time with respect to write enable, $\mathrm{t}_{\text {su }}$	0			ns
Select input hold time after writing, th (see Figure 1)	5			ns
Operating free-air temperature, T_{A}	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	MIN TYP \ddagger MAX	UNIT
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2	V
$V_{\text {IL }}$ Low-level input voltage		0.8	V
$V_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$	-1.5	V
${ }^{\prime} \mathrm{OH}$ High-level output current	$\mathrm{V}_{\mathrm{CC}}=$ MIN, $\mathrm{V}_{\text {IH }}=2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$, $\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$	20	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	0.4	V
OL. L	$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$ $\mathrm{I}_{\text {l }} \mathrm{OL}=16 \mathrm{~mA}$	0.45	
II Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$	1	mA
${ }^{\text {IIH }}$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$	40	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} . \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$	-1.6	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad$ See Note 3	$75 \quad 105$	mA
C_{0} Off-state output capacitance	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=2.4 \mathrm{~V}, \\ \mathrm{f}=1 \mathrm{MHz} & \\ \hline \end{array}$	6.5	pF

NOTE 3: ICC is measured with the memory enable grounded, all other inputs at 4.5 V , and all outputs open
\dagger^{\dagger} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :--- | :--- | UNIT 1

PARAMETER MEASUREMENT INFORMATION

Write enable is high
READ CYCLE
WRITE CYCLE FROM WRITE ENABLE
NOTES: A. The input pulse generators have the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 10 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}, \mathrm{Z}_{\text {out }} \approx 50 \Omega$.
B. C_{L} includes probe and jig capacitance.

FIGURE 1-SWITCHING CHARACTERISTICS
TYPICAL CHARACTERISTICS

PRINTED IN U.SA.
II connol assume any responsibility for any circuits shown
or represent that they are free from patent inftingement.
TEXAS INSIRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY IIME IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCI POSSIBLE.

Texas Instruments
NCORPORATED
POST OFFICE BOX 5012 . DALLAS. TEXAS 75222

- Titanium-Tungsten (Ti-W) Fuse Links for Fast, Low-Voltage, Reliable Programming
- All Schottky-Clamped PROM's Offer:

Fast Chip Select to Simplify System Decode
Choice of Three-State or Open-Collector Outputs
P-N-P Inputs for Reduced Loading on
System Buffers/Drivers

- Full Decoding and Chip Select Simplify System Design
- Applications Include:

Microprogramming/Firmware Loaders Code Converters/Character Generators Translators/Emulators
Address Mapping/Look-Up Tables

TYPE NUMBER (PACKAGES)		BIT SIZE (ORGANIZATION)	output CONFIGURATION	TYPICAL ACCESS TIME (ns)	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			FROM ADDRESS	FROM CHIP SELECT
SN54186(J, W)	SN74186(J, N)	$\begin{gathered} 512 \text { bits } \\ (64 \mathrm{~W} \times 8 \mathrm{~B}) \end{gathered}$	open-collector	50	55
SN54188A (J, W)	SN74188A(J,N)		open-collector	30	34
SN54S188(J, W)	SN74S188(J, N)		open-collector	25	12
SN54S288(J, W)	SN74S288(J, N)		three-state	25	12
SN54S287(J, W)	SN74S287(J, N)	1024 bits	three-state	42	15
SN54S387(J, W)	SN74S387(J, N)	($256 \mathrm{~W} \times 4 \mathrm{~B}$)	open-collector	42	15
SN54S470(J)	SN74S470(J, N)	2048 bits	open-collector	50	20
SN54S471(J)	SN74S471(J, N)	($256 \mathrm{~W} \times 8 \mathrm{~B}$)	three-state	50	20
SN54S472(J)	SN74S472(J, N)	4096 bits	three-state	55	20
SN54S473(J)	SN74S473(J, N)	($512 \mathrm{~W} \times 8 \mathrm{~B}$)	open-collector	55	20

NC-No internal connection
${ }^{\dagger}$ TO is used for testing purposes.
The logic at TO is undefined.

description

These monolithic TTL programmable read-only memories (PROM's) feature titanium-tungsten (Ti-W) fuse links with each link designed to program in one millisecond or less. The Schottky-clamped versions of these PROM's offer considerable flexibility for upgrading existing designs or improving new designs as they feature full Schottky clamping for improved performance, low-current MOS-compatible p-n-p inputs, choice of bus-driving three-state or open-collector outputs, and improved chip-select access times.
The high-complexity 2048-and 4096-bit PROM's can be used to significantly improve system density for fixed memories as all are offered in the 20 -pin dual-in-line package having pin-row spacings of 0.300 inch.

SERIES 54/74, 54S/74S PROGRAMMABLE READ-ONLY MEMORIES

description (continued)

Data can be electronically programmed, as desired, at any bit location in accordance with the programming procedure specified. All PROM's, except the 'S287 and 'S387, are supplied with a low-logic-level output condition stored at each bit location. The programming procedure open-circuits Ti-W metal links, which reverses the stored logic level at selected locations. The procedure is irreversible; once altered, the output for that bit location is permanently programmed. Outputs never having been altered may later be programmed to supply the opposite output level. Operation of the unit within the recommended operating conditions will not alter the memory content.
A low level at the chip-select input(s) enables each PROM except the ' 186 , which is enabled by a high level at both chip-select inputs. The opposite level at any chip-select input causes the outputs to be off.
The three-state output offers the convenience of an open-collector output with the speed of a totem-pole output; it can be bus-connected to other similar outputs yet it retains the fast rise time characteristic of the TTL totem-pole output. The open-collector output offers the capability of direct interface with a data line having a passive pull-up.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

[^11]
TYPES SN54186, SN74186

PROGRAMMABLE READ-ONLY MEMORIES

${ }^{\dagger}$ Absolute maximum ratings.
\ddagger Clamp to ensure output does not exceed $-0.5 \vee$ with respect to GND 1
NOTES: 2 Voltage values are with respect to the GND 2 terminals.
3. The high-level (off) output of a Series $54 / 74$ or $54 \mathrm{~S} / 74 \mathrm{~S}$ open-collector gate with no pull-up resistor meets the requirements for a high-level input condition.
4. The low-level input voltage must be within ± 0.5 volts of the applied voltage at GND 1 .
5. Programming is guaranteed if the pulse is applied to the output for 10 ms . Typically, programming occurs in less than 1 ms .

step-by-step programming procedure

Programming the SN54186 or SN74186 is performed individually for each of the 512 bit locations and consists basically of applying a current pulse to each output terminal where a low logic level is to be changed to a high (off) level. The power supply and ground connections described below are designed to ensure that alteration of the memory content occurs during the programming procedure only.

1. Connect the memory as shown in Figure 1. To address a particular word in the memory, set the input switches to the binary equivalent of that word where a low logic level is as specified under "recommended conditions for programming" and a high logic level is either an open circuit or connection to an open-collector TTL gate with no pull-up resistor.
2. Apply a programming current pulse as specified to the pin associated with the first bit to be changed from a low-level to a high-level output.
3. Repeat Step 2 for each high-level output desired in the word addressed (program only one bit at a time). Any bit that is to remain at a low level should have its respective output open-circuited during the entire programming cycle for the addressed word.
4. Set the next input address and repeat steps 2 and 3 at a programming duty cycle of 35% maximum. This procedure is repeated for each input address for which a specific output word pattern is desired. A low logic level can always be changed to a high logic level simply by repeating Steps 1 and 2 . Once programmed to provide a high logic level, the output cannot be changed to supply a low logic level.

NOTE: When verification indicates that a bit did not program, repeat steps 2 through 4. If the bit did not program after the second application of a 1 -millisecond programming pulse, repeat steps 2 through 4 using programming pulse time of 10 to 20 milliseconds. Regardless of the programming pulse duration, its total average pulse time should be no more than 35% of the programming cycle.

FIGURE 1-PROGRAMMING CONNECTIONS

TYPES SN54188A, SN74188A, AND SERIES 54S/74S PROGRAMMABLE READ-ONLY MEMORIES

recommended conditions for programming

${ }^{\dagger}$ Absolute maximum ratings.
NOTES: 6. Voltage values are with respect to the GND 2 terminals.
7. The '188A, 'S 188 , 'S288, 'S470, 'S471, 'S472, and 'S473 are supplied with all bit locations containing a low logic level, and programming a bit changes the output of the bit to high logic level. The 'S287 and 'S387 are supplied with all bit 0utputs at a high logic level, and programming a bit changes it to a low logic level.
8. Programming is guaranteed if the pulse applied is 10 ms long. Typically, programming occurs in 1 ms .
step-by-step programming procedure

1. Apply steady-state supply voltage ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$) and address the word to be programmed.
2. Verify that the bit location needs to be programmed. If not, proceed to the next bit.
3. If the bit requires programming, disable the outputs by applying a high-logic-level voltage to the chip-select input(s).
4. Only one bit location is programmed at a time. Connect each output not being programmed to 5 V through $3.9 \mathrm{k} \Omega$ and apply the voltage specified in the table to the output to be programmed. Maximum current out of the programming output supply during programming is 150 mA .
5. Step V_{CC} to 10.5 V nominal. Maximum supply current required during programming is 750 mA .
6. Apply a low-logic-level voltage to the chip-select input(s). This should occur between $10 \mu \mathrm{~s}$ and 1 ms after V_{CC} has reached its $10.5-\mathrm{V}$ level. See programming sequence of Figure 3.
7. After the X pulse time (1 ms) is reached, a high logic level is applied to the chip-select inputs to disable the outputs.
8. Within $10 \mu \mathrm{~s}$ to 1 ms after the chip-select input(s) reach a high logic level, V_{CC} should be stepped down to 5 V at which level verification can be accomplished.
9. The chip-select input(s) may be taken to a low logic level (to permit program verification) $10 \mu \mathrm{~s}$ or more after V_{CC} reaches its steady-state value of 5 V .
10. At a Y pulse duty cycle of 35% or less, repeat steps 1 through 8 for each output where it is desired to program a bit.
NOTES: A) $V_{C C}$ should be removed between program pulses to reduce dissipation and chip temperatures. See Figure 3 .
B) When verification indicates that a bit did not program, repeat steps 3 through 9 . If the bit did not program after the second application of a $1-\mathrm{ms} \times$ pulse, repeat steps 3 through 9 using an \times pulse time of 10 to 20 ms . Regardtess of the X duration, the total average pulse time of Y should be no more than 35% of the programming cycle.

LOAD CIRCUIT FOR EACH OUTPUT
NOT BEING PROGRAMMED OR FOR program verification

FIGURE 2

figure 3-voltage waveforms for programming

TYPES SN54186, SN54188A, SN74186, SN74188A
 PROGRAMMABLE READ-ONLY MEMORIES

recommended operating conditions							
	SN54186 SN54188A			SN74186 SN74188A			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	v
High-level output voltage, V_{OH}			5.5			5.5	V
Low-level output current, $\mathrm{IOL}_{\mathrm{OL}}$			12			12	mA
Operating free-air temperature, T_{A}	-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		'186			'188A			UNIT		
		MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$V_{\text {IH }}$	High-level input voltage					2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8			0.8	V		
$V_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5			-1.5	V		
${ }^{1} \mathrm{OH}$	High-level output current	$\begin{aligned} & V_{C C}=M I N, \quad V_{I H}=2 \mathrm{~V} \\ & V_{I L}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$			100				$\mu \mathrm{A}$		
			$\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$			200			100			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{array}$				0.4			0.45	V		
11	Input current at maximum input voltage	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$				1			1	mA		
$\mathrm{I}_{1 \mathrm{H}}$	High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$				40			40	$\mu \mathrm{A}$		
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1			-1	mA		
ICC Supply current		$\mathrm{V}_{\text {CC }}=$ MAX, See Note 9	Both CS at 0 V		47	95				mA		
		Both CS at 4.5 V		80	120							
${ }^{\text {ICCH }}$	Supply current, alloutputs high		$V_{C C}=M A X$	See Note 10					50	80	mA	
${ }^{\text {I CCL }}$	Supply current, all outputslow	See Note 11						82	110			
C_{0}	Off-state output capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}, \quad \mathrm{f}=1 \mathrm{MHz}$		6.5				6.5		pF		

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 9. ICC of ' 186 is measured with all outputs open and the address inputs at 4.5 V . Typical values are for 50% of the bits programmed.
10. ${ }^{\mathrm{I}} \mathrm{CCH}$ of ' 188 A is measured with all inputs at 4.5 V , all outputs open.
11. ICCL of ' 188 A is measured with the chip-select input grounded, all other inputs at 4.5 V , and all outputs open. The typical value shown is for the worst-case condition of all eight outputs low at one time. This condition may not be possible after the device has been programmed.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

TYPE	TEST CONDITIONS	$t_{a}(\mathrm{ad})$ (ns) Access time from address		$t_{\mathrm{a}}(\mathrm{CS} / \overline{\mathrm{CS}})(\mathrm{ns})$ Access time from chip select (enable time)		tpLH (ns) Propagation delay time, low-to-high-level output from chip select (disable time)	
		TYP	MAX	TYP	MAX	TYP	MAX
'186	$\begin{array}{ll} C_{L}=30 \mathrm{pF}, & R_{\mathrm{L} 1}=400 \Omega, \\ R_{\mathrm{L} 2}=600 \Omega, & \text { See Figure } 4 \end{array}$	50	75	55	75	40	75
'188A		30	50	34	50	23	50

SERIES 54S/74S PROGRAMMABLE READ-ONLY MEMORIES WITH OPEN-COLLECTOR OUTPUTS

recommended operating conditions

		'S188			$\begin{gathered} \text { 'S387, } \\ \text { 'S470, 'S473 } \end{gathered}$			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	Series 54S	4.5	5	5.5	4.5	5	5.5	V
	Series 74S	4.75	5	5.25	4.75	5	5.25	
Low-level output current, IOL				5.5			5.5	V
				20			16	mA
Operating free-air temperature, $\mathrm{T}^{\text {A }}$	Series 54S	-55		125	-55		125*	${ }^{\circ} \mathrm{C}$
	Series 74S	0		70	0		70	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger	MAX	$\begin{array}{\|c\|} \hline \text { UNIT } \\ \hline V \end{array}$
$\mathrm{V}_{\text {IH }}$	High-level input voltage			2			
$V_{\text {IL }}$	Low-level input voltage					0.8	V
VIK	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	18 mA			-1.2	V
${ }^{\mathrm{I}} \mathrm{OH}$.	High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	2.4 V			50	$\mu \mathrm{A}$
			5.5 V			100	
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \hline 2 \mathrm{~V}, \\ & \text { MAX } \end{aligned}$			0.5	V
$1 /$	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	5 V			1	mA
$\mathrm{IIH}^{\text {H }}$	High-level input current	$V_{C C}=M A X$,	. V			25	$\mu \mathrm{A}$
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	5 V			-250	$\mu \mathrm{A}$
${ }^{1} \mathrm{Cc}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$ Chip select(s) at 0 V , Outputs open, See Note 12	'S188		80	110	mA
			'S387		100	135	
			'S470		110	155	
			'S473		120		

switching characteristics over recommended ranges of T_{A} and $V_{C C}$ (unless otherwise noted)

TYPE	TEST CONDITIONS	$t_{a(a d)}$ (ns) Access time from address		$\mathrm{t}_{\mathrm{a}}(\overline{\mathrm{CS}})(\mathrm{ns})$ Access time from chip select (enable time)		$\mathbf{t}^{\mathbf{P L H}}$ (ns) Propagation delay time, low-to-high-level output from chip select (disable time)	
		TYP \ddagger	MAX	TYP \ddagger	MAX	TYP \ddagger	MAX
SN54S188	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L} 1}=300 \Omega, \\ & \mathrm{R}_{\mathrm{L} 2}=600 \Omega, \\ & \text { See Figure } 4 \end{aligned}$	25	50	12	30	12	30
SN74S188		25	40	12	25	12	25
SN54S387		42	75	15	$40 ¢$	15	40¢
SN74S387		42	65	15	35	15	35
SN54S470		50	80	20	40	15	35
SN74S470		50	70	20	35	15	30
SN54S473		55		20		15	
SN74S473		55		20		15	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
-An SN54S387 in the W package operating at free-air temperatures above $108^{\circ} \mathrm{C}$ requires a heat sink that provides a thermal resistance from case to free air, $\mathrm{R}_{\theta \mathrm{CA}}$, of not more than $42{ }^{\circ} \mathrm{C} / \mathrm{W}$.
$\oint^{\text {Tentative speciicications. }}$
NOTE 12: The typical values of I CC shown are with all outputs low.

SERIES 54S/74S
PROGRAMMABLE READ-ONLY MEMORIES WITH 3-STATE OUTPUTS
recommended operating conditions

		$\begin{gathered} \text { 'S287 } \\ \text { 'S471,'S472 } \end{gathered}$			'S288			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	Series 54S	4.5	5	5.5	4.5	5	5.5	V
	Series 74S	4.75	5	5.25	4.75	5	5.25	
High-level output current, IOH	Series 54S			-2			-2	mA
	Series 74S			-6.5			-6.5	
Low-level output current, 1OL				16			20	mA
Operating free-air temperature, T_{A}	Series 54S	-55		125	-55		125	${ }^{\circ} \mathrm{C}$
Operating free-air temperature, $\mathrm{T}_{\text {A }}$	Series 74S	0		70	0		70	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		SN54S'			SN74S'			UNIT		
		MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage					2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8			0.8	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2			-1.2	V		
V_{OH}	High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	2.4	3.4		2.4	3.2		V		
V_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{aligned}$			0.5			0.5	V		
${ }^{1} \mathrm{OZH}$	Off-state output current, high-level voltage applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{O}}=2.4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V},$			50			50	$\mu \mathrm{A}$		
IOZL	Off-state output current, low-level voltage applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V},$			-50			-50	$\mu \mathrm{A}$		
11	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA		
IIH	High-level input current	$V_{C C}=$ MAX,	$V_{1}=2.7 \mathrm{~V}$			25			25	$\mu \mathrm{A}$		
$\mathrm{IIL}_{\text {L }}$	Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-250			-250	$\mu \mathrm{A}$		
Ios	Short-circuit output current \S	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-30		-100	-30		-100	mA		
Icc	Supply current	$V_{C C}=M A X,$ Chip select(s) at 0 V , Outputs open, See Note 12	'S287		100	135		100	135	mA		
			'S288		80	110		80	110			
			'S471		110	155		110	155			
			'S472		120			120				

switching characteristics over recommended ranges of T_{A} and $V_{C C}$ (unless otherwise noted)

TYPE	TEST CONDITIONS	$t_{\mathrm{a}(\mathrm{ad})}(\mathrm{ns})$ Access time from address		$\mathrm{t}_{\mathrm{a}(\overline{\mathrm{CS}})}(\mathrm{ns})$ Access time from chip select (enable time)		${ }^{\mathrm{t}} \mathrm{PXZ} \text { (ns) }$ Disable time from high or low level	
		TYP \ddagger	MAX	TYP \ddagger	MAX	TYP \ddagger	MAX
SN54S287	$\begin{aligned} & C_{L}=30 \mathrm{pF} \text { for } \\ & \mathrm{t}_{\mathrm{a}(\mathrm{ad})} \text { and } \mathrm{t}_{\mathrm{a}}(\overrightarrow{\mathrm{CS}}), \\ & 5 \mathrm{pF} \text { for } \mathrm{t} \times \mathrm{Z} ; \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega ; \\ & \text { See Figure } 5 \end{aligned}$	42	$75 ¢$	15	$40 ¢$	12	
SN74S287		42	65	15	35	12	
SN54S288		25	50	12	30	8	30
SN74S288		25	40	12	25	8	20
SN54S471		50	80	20	40	15	35
SN74S471		50	70	20	35	15	30
SN54S472		55		20		15	
SN74S472		55		20		15	

[^12]
SERIES 54/74, 54S/74S PROGRAMMABLE READ-ONLY MEMORIES

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input pulse generator has the following characteristics: $Z_{\text {out }} \approx 50 \Omega$ and $P R R \leqslant 1 \mathrm{MHz}$. For $\mathrm{Series} 54 / 74$, $\mathrm{t}_{\mathrm{r}} \leqslant 7 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leqslant 7 \mathrm{~ns}$. For Series $54 \mathrm{~S} / 74 \mathrm{~S}, \mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}$.
B. C_{L} includes probe and jig capacitance.
C. The pulse generator is connected to the input under test. The other inputs, memory content permitting, are connected so that the input will switch the output under test.

FIGURE 4-SWITCHING TIMES OF '186, '188A, 'S188, 'S470, 'S387, AND 'S473

NOTES: A. When measuring access times from address inputs, the chip-select input(s) is(are) low.
B. When measuring access and disable times from chip-select input(s), the address inputs are steady-state.
C. Waveform 1 is for the output with internal conditions such that the output is low except when disabled. Waveform 2 is for the output with internal conditions such that the output is high except when disabled.
D. Input waveforms are supplied by pulse generators having the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}, \mathrm{PRR} \leqslant 1 \mathrm{MHz}$, and $Z_{\text {out }} \approx 50 \Omega$.

FIGURE 5-SWITCHING TIMES OF 'S287, 'S288, 'S471, AND 'S472

- Mask-Programmed Memories That Can Replace PROMs
- Full On-Chip Decoding and Fast Chip Select(s) Simplify System Decoding
- All Schottky-Clamped ROMs Offer

> -Choice of 3-State or Open-Collector Outputs -P-N-P Inputs for Reduced Loading on System Buffers/Drivers

- Applications Include:
-Microprogramming Firmware/Firmware Loaders
-Code Converters/Character Generators
-Translators/Emulators
-Address Mapping/Look-Up Tables

TYPE NUMBER (PACKAGES)		TYPE OF OUTPUT(S)	BIT SIZE (ORGANIZATION)	TYPICAL ACCESS TIMES	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			CHIP-SELECT	ADDRESS
SN5488A(J, W)	SN7488A(J, N)	Open-Collector	$\begin{gathered} 256 \text { Bits } \\ (32 \mathrm{~W} \times 8 \mathrm{~B}) \end{gathered}$	22 ns	26 ns
SN54187(J, W)	SN74187(J, N)	Open-Collector	$\begin{gathered} 1024 \text { Bits } \\ (256 \mathrm{~W} \times 4 \mathrm{~B}) \end{gathered}$	20 ns	40 ns
SN54S270(J)	SN74S270(J, N)	Open-Collector	2048 Bits		
SN54S370(J)	SN74S370(J, N)	3-State	($512 \mathrm{~W} \times 4 \mathrm{~B}$)	15 ns	
SN54S271(J)	SN74S271(J, N)	Open-Collector	2048 Bits	15 ns	45 ns
SN54S371(J)	SN74S371(J, N)	3-State	($256 \mathrm{~W} \times 8 \mathrm{~B}$)		

description

These monolithic TTL custom-programmed read-only memories (ROMs) are particularly attractive for applications requiring medium to large quantities of the same bit pattern. Plug-in replacements can be obtained for most of the popular TTL PROMs.

The high-complexity 2048 -bit ROMs can be used to significantly improve system bit density for fixed memory as all are offered in compact 16 - or 20 -pin dual-in-line packages having pin-row spacings of 0.300 -inch.

The Schottky-clamped versions offer considerable flexibility for upgrading existing designs or improving new designs as they feature improved performance; plus, they offer low-current MOS-compatible p-n-p inputs, choice of bus-driving three-state or open-collector outputs, and improved chip-select access times.

Data from a sequenced deck of data cards punched according to the specified format are permanently programmed by the factory into the monolithic structure for all bit locations. Upon receipt of the order, Texas Instruments will assign a special identifying number for each pattern programmed according to the order. The completed devices will be marked with the appropriate TI special device number. It is important that the customer specify not only the output levels desired at all bit locations, but also the other information requested under ordering instructions.

The three-state outputs offer the convenience of an open-collector output with the speed of a totem-pole output: they can be bus-connected to other similar outputs yet they retain the fast rise time characteristic of the TTL totem-pole output. The open-collector outputs offer the capability of direct interface with a data line having a passive pull-up.

Word-addressing is accomplished in straight positive-logic binary and the memory may be read when all $\overline{\mathrm{CS}}$ inputs are low. A high at any $\overline{\mathrm{CS}}$ input causes the outputs to be off.
PPin assignments for all of these memories

SN54S370, SN74S730 Same as SN54S270, SN74S270 except outputs are as shown below:

word addressing

'88A

WORD ADDRESS TABLE

WORD	INPUTS				
	E	D	C	B	A
0	L	L	L	L	L
1	L	L	L	L.	H
2	L	L	L	H	L
3	L	L	L	H	H
4	L	L	H	L	L
5	L	L	H	L	H
6	L	L	H	H	L
7	L	L	H	H	H
8	L	H	L	L	L
		Words 9 thru			
27		26	omitted		
28	H	H	L	H	H
29	H	H	H	L	L
30	H	H	H	H	L
31	H	H	H	H	H

'187, 'S271, 'S371
WORD ADDRESS TABLE

WORD	INPUTS									
	H	G		F	E	D	C	B		A
0	L	L			L	L	L	L		L
1	L	L	L	L	L	L	L	L		H
2	L	L			L	L	L	H	H	L
3	L	L	L	L	L	L	L	H		H
4	L	L			L	L	H			L
5	L	L	L	L	L	L	H	L		
6	L	L	L	L	L.	L	H	H		L
7	L	L		L	L	L	H	H		H
8	L	L		.	L	H	L.	L		L
		ord	ds	th	ru		0	mi	itt	
251	H	H	H	H	H	H	L			H
252	H	H	H	H	H	H	H	L		L
253	H	H	H	H	H	H	H	L		H
254	H	H	H	H	H	H	H	H		L
255	H	H		H	H	H	H	H		H

SN54187, SN74187

SN54S371, SN74S371
Same as SN54S271, SN74S271 except
outputs are as shown below:

'S270, 'S370
WORD ADDRESS TABLE

WORD	INPUTS										
	1	H	G	G	F	E		C	B	B	
0		L	L	L	L	L	L	L	L	L	
1		L	L	L	L	L	L	ப	L	L	
2		L	L	L	L	L	L		H		L
3	L	L	L	L	L	L	L	L	H	H	
4		L	L		L	L	L	H	H	L	
5	L	L	L		L	L	L	H	H	L	
6		L	L	L	L	L	L	H	H	H	
7	L	L	L		L	L	L	H	H	H	
8	L	L	L		L	L	H	L	L		
			ords	5	thr	5	506	or	mit	te	
507	H	H			H	H				H	
508	H	H	H		H	H	H	H	H	L	L
509	H	H	H	H	H	H	H	H	H	L	H
510	H	H	H		H	H	H		H		L
511	H	H	H		1	H	H	H	H	H	

Word selection is accomplished in a conventional positive-logic binary code with the A address input being the least-significant bit progressing alphabetically through the address inputs to the most-significant bit.

SERIES 54/74, 54S/74S
 READ-ONLY MEMORIES

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal.
2. An SN54187 in the W package operating at free-air temperatures above $111^{\circ} \mathrm{C}$ requires a heat sink that provides a thermal resistance from case-to-free-air, $R_{\theta C A}$, of not more than $46^{\circ} \mathrm{C} / \mathrm{W}$.

SERIES 54/74 READ-ONLY MEMORIES

recommended operating conditions

	SN5488A			SN7488A			SN54187			SN74187			UNIT
	MIN	NOM	MAX										
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V_{OH}			5.5			5.5			5.5			5.5	V
Low-level output current, IOL			12			12			16			16	mA
Operating free-air temperature, T_{A} (see Note 2)	-55		125	0		70	-55		125	0		70	${ }^{\circ} \mathrm{C}$

NOTE 2: An SN54187 in the W package operating at free-air temperatures above $111^{\circ} \mathrm{C}$ requires a heat sink that provides a thermal resistance from case-to-free-air, $R_{\theta C A}$, of not more than $46^{\circ} \mathrm{C} / \mathrm{W}$.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		'88A			'187			UNIT		
		MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage					2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8			0.8	V		
$\mathrm{V}_{\text {IK }}$	Input clarnp voltage	$\mathrm{V}_{\text {CC }}=$ MIN,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5			-1.5	V		
${ }^{1} \mathrm{OH}$	High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{aligned}$			40			40	$\mu \mathrm{A}$		
V_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\text {IH }}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IL }}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=12 \mathrm{~mA}$		0.2	0.4			0.4	V		
			$\mathrm{I}^{\text {OL }}=16 \mathrm{~mA}$						0.45			
$1 /$	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA		
$I_{\text {IH }}$	High-level input current	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			25			40	$\mu \mathrm{A}$		
1 IL	Low-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-1			-1	mA		
${ }^{\text {I CC }}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	See Note 3		64	80		92	130	mA		
C_{0}	Off-state output capacitance	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V},$		6.5			6.5		pF		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
\ddagger All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
NOTE 3: With outputs open and $\overline{C S}$ input(s) grounded, ${ }^{1} \mathrm{CC}$ is measured first by selecting a word that contains the maximum number of programmed high-level outputs, then by selecting a word that contains the maximumnumber of programmed low-level outputs.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	'88A		'187		UNIT	
		TYP	MAX	TYP	MAX			
$\mathrm{ta}_{\mathrm{a}}(\mathrm{ad})$	Access time from address		$\begin{aligned} & C_{L}=30 \mathrm{pF}, \\ & R_{\mathrm{L} 1}=400 \Omega\left({ }^{\prime} 88 \mathrm{~A}\right) \\ & 300 \Omega(' 187) \end{aligned}$	26	45	40	60	ns
$\mathrm{ta}_{\mathrm{a}}(\overline{\mathrm{CS}})$	Access time from chip select (enable time)	22		35	20	30	ns	
tPLH	Propagation delay time, low-to-high-level output from chip select (disable time)	$\begin{aligned} & 300 \Omega(' 187) \\ & R_{\mathrm{L} 2}=600 \Omega, \end{aligned}$ See Figure 1	22	35	20	30	ns	

SERIES 54S/74S
READ-ONLY MEMORIES
recommended operating conditions

	SN54S270 SN54S271			$\begin{aligned} & \text { SN74S270 } \\ & \text { SN74S271 } \end{aligned}$			$\begin{aligned} & \text { SN54S370 } \\ & \text { SN54S371 } \end{aligned}$			$\begin{aligned} & \hline \text { SN74S370 } \\ & \text { SN74S371 } \\ & \hline \end{aligned}$			UNIT
	MIN	NOM	MAX										
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V_{OH}			5.5			5.5							V
High-level output current, IOH									-2			-6.5	mA
Low-level output current, IOL			16			16			16			16	mA
Operating free-air temperature, T_{A}	-55		125	0		70	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		'S270, 'S271			'S370, 'S371			UNIT		
		MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage					2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8			0.8	V		
$V_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2			-1.2	V		
V_{OH}	High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$				2.4			V		
${ }^{\mathrm{IOH}}$	High-level output current	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$			50				$\mu \mathrm{A}$		
			$\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$			100				$\mu \mathrm{A}$		
VOL	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{aligned}$			0.5			0.5	V		
${ }^{1} \mathrm{OZH}$	Off-state output current, high-level voltage applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{O}}=2.4 \mathrm{~V} \end{aligned}$	$V_{I H}=2 \mathrm{~V},$						50	$\mu \mathrm{A}$		
IOZL	Off-state output current low-level voltage applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \end{aligned}$	$V_{\text {IH }}=2 \mathrm{~V}$						-50	$\mu \mathrm{A}$		
$1 /$	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA		
$\mathrm{I}_{1 \mathrm{H}}$	High-level input current	$V_{C C}=M A X$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			25			25	$\mu \mathrm{A}$		
IIL	Low-level input current	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.25			-0.25	mA		
Ios	Short-circuit output current \S	$V_{C C}=$ MAX					-30		-100	mA		
${ }^{\text {I CC }}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	See Note 4		105	155		105	155	mA		
C_{0}	Off-state output capacitance	$\begin{aligned} & V_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$V_{O}=5 \mathrm{~V},$		6.5			6.5		pF		

\dagger For conditions shown as MIN or MAX, use the appropriate value specifjed under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\S_{\text {Not more the the }}$ one output should be shorted at a time and duration of the short-circuit should not exceed one second.
NOTE 4: With outputs open and CS input(s) grounded, ICC is measured first by selecting a word that contains the maximum number of programmed high-level outputs; then by selecting a word that contains the maximum number of programmed low-level outputs.
switching characteristics over recommended ranges of T_{A} and $V_{C C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	SN54270 SN54271		SN74270 SN74271		SN54370 SN54370		SN74370SN74370		UNIT	
		TYP \ddagger	MAX									
talad)	Access time from address		$R_{L 2}=600 \Omega$, See Figure 1	45	95	45	70					ns
$\mathrm{ta}_{\text {a }}(\overline{\mathrm{CS}})$	Access time from chip select (enable time)	15		45	15	30					ns	
tPLH	Propagation delay time, low-to-high-level output from chip select (disable time)			40	15	25					ns	
$t_{\text {a }}$ (ad)	Access time from address	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ See Figure 2					45	95	45	70	ns	
$\mathrm{ta}_{\mathrm{a}}(\overline{\mathrm{CS}})$	Access time from chip select (enable time)						15	45	15	30	ns	
tPXZ	Disable time from high or low level	$C_{L}=5 \mathrm{pF},$ See Figure 2					10	40	10	25	ns	

[^13]
PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input pulse generator has the following characteristics: $P R R \leqslant 1 \mathrm{MHz}, \mathrm{Z}_{\text {out }} \approx 50 \Omega$. For Series $54 / 74, \mathrm{t}_{\mathrm{r}} \leqslant 7 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 7 \mathrm{~ns}$, for Series $54 \mathrm{~S} / 74 \mathrm{~S}, \mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}$.
B. C_{L} includes probe and jig capacitance.
C. The pulse generator is connected to the input under test. The other inputs, memory content permitting, are connected so that the input will switch the output under test.

FIGURE 1-SWITCHING TIMES OF '88A, '187, 'S270, AND 'S271 (OPEN-COLLECTOR OUTPUTS)

NOTES: A. When measuring access times from address inputs, the chip-select input(s) is(are) low.
B. When measuring access and disable times from chip-select input(s) the address inputs are steady-state.
C. Waveform 1 is for the output with internal conditions such that the output is low except when disabled. Waveform 2 is for the output with internal conditions such that the output is high except when disabled.
D. Input waveforms are supplied by pulse generators having the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}, \mathrm{PRR} \leqslant 1 \mathrm{MHz}$, and $Z_{\text {out }} \approx 50 \Omega$.

FIGURE 2-SWITCHING TIMES OF 'S370 AND 'S371 (3-STATE OUTPUTS)

ORDERING INSTRUCTIONS

Programming instructions for these read-only memories are solicited in the form of a sequenced deck of standard 80 -column data cards providing the information requested under "data card format," accompanied by a properly sequenced listing of these cards, and the supplementary ordering data. Upon receipt of these items, a computer run will be made from the deck of cards which will produce a complete function table for the requested part. This function table, showing output conditions for each of the words, will be forwarded to the purchaser as verification of the input data as interpreted by the computerautomated design (CAD) program. This single run also generates mask and test program data; therefore, verification of the function table should be completed promptly.

Each card in the data deck prepared by the purchaser identifies the words specified and describes the levels at the outputs for each of those words. All addresses must have all outputs defined and columns designated as "blank" must not be punched. Cards should be punched according to the data card format shown.

SUPPLEMENTARY ORDERING DATA

Submit the following information with the data cards:
a) Customer's name and address
b) Customer's purchase order number
c) Customer's drawing number.

The following information will be furnished to the customer by Texas Instruments:
a) TI part number
b) TI sales order number
c) Date received.
'88A DATA CARD FORMAT (32 CARDS)

Column

1-2 Punch a right-justified integer representing the positive-logic binary input address (00-31) for the word described on the card.

3-4 Blank
5 Punch " H " or " L " for output Y8. $H=$ high-voltage-level output, $\mathrm{L}=$ low-voltage-level output

6-9 Blank
10 Punch "H" or "L" for output DO 7.

15 Punch " H " or " L " for output DO 6.
16-19 Blank
20 Punch " H " or " L " for output DO 5.
21-24 Blank
25 Punch "H" or "L" for output DO 4.
26-29 Blank
30 Punch "H" or "L" for output DO 3.
31-34 Blank
35 Punch " H " or " L " for output DO 2.
36-39 Blank
40 Punch "H" or "L" for output DO 1.
41-49 Blank
50-51 Punch a right-justified integer representing the current calendar day of the month.
52 Blank
53-55 Punch an alphabetic abbreviation representing the current month.

56 Blank
57-58 Punch the last two digits of the current year.
59 Blank
60-61 Punch "SN"
62-66 Punch a left-justified integer representing the Texas Instruments part number. This is supplied by the factory through a TI sales representative.

67-68 Blank

69-80 Preferably these columns should be punched to reflect the customer's part or specification-control number. This information is not essential.

'187 DATA CARD FORMAT (32 CARDS)

Column

1. 3 Punch a right-justified integer representing the binary input address $(000-248)$ for the first set of outputs described on the card.
4 Punch a "-" (Minus sign)
2. 7 Punch a right-justified integer representing the binary input address (007-255) for the last set of outputs described on the card.
3. 9 Blank

ORDERING INSTRUCTIONS

10-13 Punch " H ", " L ", or " X " for bits four, three, two, and one (outputs DO 4, DO 3, DO 2 and DO 1 in that order) for the first set of outputs specified on the card. $H=$ high-voltage-level output, $L=$ low-voltage-level output, $X=$ output level irrelevant.

14 Blank

15-18 Punch " H ", " L ", or " X " for the second set of outputs.

19 Blank

20-23 Punch " H ", " L ", or " X " for the third set of outputs.
24 Blank
25-28 Punch " H " " L ", or " X " for the fourth set of outputs.

29	Blank
30-33	Punch "H", "L", or "X" for the fifth set of outputs.
34	Blank
35-38	Punch " H ", " L ", or " X " for the sixth set of outputs.
39	Blank
40.43	Punch " H ", " L ", or " X " for the seventh set of outputs.
44	Blank
45.48	Punch " H ", " L ", or " X " for the eighth set of outputs.
49	Blank
50.51	Punch a right-justified integer representing the current calendar day of the month.
52	Blank
53-55	Punch an alphabetic abbreviation representing the current month.
56	Blank
57-58	Punch the last two digits of the current year.
59	Blank
60-61	Punch 'SN"
62-66	Punch a left-justified integer representing the Texas instruments part number. This is supplied by the factory through a TI sales representative.
67-68	Blank

69-80 Preferably these columns should be punched to reflect the customer's part or specification-control number. This information is not essential.
‘S270, ‘S370 DATA CARD FORMAT (64 CARDS)

Column

1-3 Punch a right-justified integer representing the binary input address (000-504) for the first set of outputs described on the card.
4 Punch a "-" (Minus sign)
5-7 Punch a right-justified integer representing the binary input address (007-511) for the last set of outputs described on the card.

8-80 Same as the '187 data card format.
'S271, 'S371 DATA CARD FORMAT (64 CARDS)

Column

1. 3 Punch a right-justified integer representing the binary input address (000-252) for the first set of outputs described on the card.
4 Punch a "-" (Minus sign)
5-7 Punch a right-justified integer representing the binary input address (003-255) for the last set of outputs described on the card.

8- 9 Blank
10-17 Punch " H ", " L ", or " X " for bits eight, seven, six, five, four, three, two, and one (outputs DO 8, DO 7, DO 6, DO 5, DO 4, DO 3, DO 2, and DO 1 in that order) for the first set of outputs specified on the card. $H=$ high-voltage-level output, $L=$ low-voltage-level output, $\mathrm{X}=$ output level irrelevant.

18 Blank
19-26 Punch "H", "L", or "X" for the second set of outputs.
27 Blank
28-35 Punch " H ", " L ", or " X " for the third set of outputs.
36 Blank
37-44 Punch " H ", " L ", or " X " for the fourth set of outputs.
45-49 Blank
50-80 Same as the '187 data card format.

TTL MEMORIES MECHANICAL DATA

general

The availability of a particular TTL memory in a particular package is denoted by an alphabetical reference in a table on the data sheet for that type of memory, or above the pin-connection diagram. These letters refer to mechanical outline drawings shown in this section. Orders for these memories should include the package outline letter at the end of the circuit type number; e.g., SN54S287W, SN74S470J

W ceramic flat packages

These hermetically sealed flat packages consist of an electrically nonconductive ceramic base and cap, and a 16- or 24 -lead frame. Hermetic sealing is accomplished with glass. Tin-plated ("bright-dipped") leads (-00) require no additional cleaning or processing when used in soldered assembly.

J ceramic dual-in-line packages

These hermetically sealed dual-in-line packages consist of a ceramic base, ceramic cap, and a 16-, 20-, or 24-lead frame. The packages are intended for insertion in mounting-hole rows on 0.300 -inch or 0.600 -inch centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped') leads (-00) require no additional cleaning or processing when used in soldered assembly.

TTL MEMORIES MECHANICAL DATA

N plastic dual-in-line packages

These dual-in-line packages consist of a circuit mounted on a 16 - 20 , or 24 -lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. These packages are intended for insertion in mounting-hole rows on 0.300 -inch or 0.600 -inch centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly.

ECL
 Memories

- Full On-Chip Address Decoding and Output-Sense Amplification
- Constant Current Drain Over a Wide Supply Voltage Range
- Logic Levels Compatible with Series SN10000 Logic Levels
- Compatible for Wired-OR Word Expansion
PAGE
SN10139 32×8 Bit Programmable Read-Only Memory 203
SN10140 64×1 Bit Random-Access Memory (Drives 90-Ohm Loads) 208
SN10142 64×1 Bit Random-Access Memory 208
SN10144 256×1 Bit Random-Access Memory 211
SN10145 16×4 Bit Random-Access Memory 214
SN10147 128×1 Bit Random-Access Memory 217
SN10148 64×1 Bit Random-Access Memory 208
Typical Characteristics 221
Mechanical Data and Ordering Instructions 222
absolute maximum ratings over operating ambient temperature range ${ }^{\dagger}$ (unless otherwise noted)

NOTE 1: Unless otherwise noted all voltage values are with respect to the $V_{C C}$ terminals and all $V_{C C}$ terminals must be connected in parallel. ${ }^{\dagger}$ The ambient temperature conditions assume air moving perpendicular to the longitudinal axis and parallel to the seating plane of the device at a velocity of 500 feet per minute with the device under test soldered to a $4 \times 6 \times 0.062$-inch double-sided 2 -oz copper-clad circuit board.

TYPE SN10139 256-BIT PROGRAMMABLE READ-ONLY MEMORY

- 32-Word-by-Eight-Bit Organization
- Full On-Chip Address Decoding and Output-Sensing Amplification
- Capability for Wired-OR Connections
- Easy Programming

description

The SN10139 is a field-programmable, 256-bit readonly memory organized as 32 words of eight bits each. Full address decoding and output sense amplification are included on the chip. Each of the 32 words is addressed by the binary address inputs A0 through A4. The outputs Y1 through Y8 can be connected to other emitter-follower outputs to achieve wired-OR word expansion. An enable input, \bar{E}, is provided for ease in expansion. The device is enabled when the enable input is low. When the enable input is high, all outputs are forced low.

Data can be electronically programmed, as desired, at any of the 256 bit locations in accordance with the programming procedure specified. Prior to programming, the memory contains a low-logic-level output condition at all bit locations. The programming procedure open-circuits metal links, which results in a high-logic-level output at the selected locations. The procedure is irreversible; once altered, the output for that bit is permanently programmed to provide a high logic level. Outputs never having been altered may later be programmed to supply a high-level output. Operation of the device within the recommended operating conditions will not alter the memory content.

DUAL-IN-LINE PACKAGE (TOP VIEW)

functional block diagram

TYPE SN10139

256-BIT PROGRAMMABLE READ-ONLY MEMORY
recommended operating conditions

	NOM (SEE NOTE 3)		UNIT	
Supply voltage, $V_{\text {EE }}$	-5.72	-5.2	-4.68	V
Operating ambient temperature, T_{A}	0		85	${ }^{\circ} \mathrm{C}$

electrical characteristics at specified ambient temperature \dagger

	PARAMETER	TEST CONDITIONS (SEE NOTES 1 AND 2)		B TYP A(SEE NOTE 3)		UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage	.	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{array}{r} \hline-1020 \\ -980 \\ -910 \\ \hline \end{array}$	$\begin{array}{r} -840 \\ -810 \\ -700 \\ \hline \end{array}$	mV
$\mathrm{V}_{1 \mathrm{H}^{\prime}}$	High-level input voltage		$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & -1145 \\ & -1105 \\ & -1035 \end{aligned}$		mV
$V_{\text {IL }}$	Low-level input voltage		$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & \hline-1645 \\ & -1630 \\ & -1595 \\ & \hline \end{aligned}$	mV
$V_{\text {IL }}{ }^{\prime}$	Low-level input voltage		$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & \hline-1490 \\ & -1475 \\ & -1440 \end{aligned}$	mV
V_{OH}	High-level output voltage	$V_{\text {IH }}=V_{\text {IHB }}, \quad V_{\text {IL }}=V_{\text {ILA }}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} \hline-1000 \\ -960 \\ -890 \\ \hline \end{array}$	$\begin{aligned} & -840 \\ & -810 \\ & -700 \\ & \hline \end{aligned}$	mV
$\mathrm{VOL}_{\text {OL }}$	Low-level output voltage	$V_{\text {IH }}=V_{\text {IHB }}, \quad V_{\text {IL }}=V_{\text {ILA }}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & -1870 \\ & -1850 \\ & -1825 \\ & \hline \end{aligned}$	$\begin{aligned} & -1665 \\ & -1650 \\ & -1615 \\ & \hline \end{aligned}$	mV
$\mathrm{V}^{\text {OH' }}$	High-level output voltage	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {IH }}{ }^{\prime} \mathrm{B}, \quad \mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}{ }^{\prime} \mathrm{A}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{array}{\|r\|} \hline-1020 \\ -980 \\ -910 \\ \hline \end{array}$	$\begin{aligned} & -840 \\ & -810 \\ & -700 \\ & \hline \end{aligned}$	mV
$\mathrm{V}_{\text {OL' }}$	Low-level output voltage	$V_{I H}=V_{I H}{ }^{\prime} \mathrm{B}, \quad \mathrm{V}_{\text {IL }}=V_{\text {IL }}{ }^{\prime} \mathrm{A}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \hline-1870 \\ & -1850 \\ & -1825 \end{aligned}$	$\begin{aligned} & \hline-1645 \\ & -1630 \\ & -1595 \end{aligned}$	mV
Ith	High-level input current	$V_{1}=-810 \mathrm{mV},$ Other inputs open	$25^{\circ} \mathrm{C}$		265	$\mu \mathrm{A}$
IIL	Low-level input current	$\begin{aligned} & \hline V_{1}=-1850 \mathrm{mV}, \\ & \text { Other inputs open } \\ & \hline \end{aligned}$	$25^{\circ} \mathrm{C}$	0.5		$\mu \mathrm{A}$
'EE	Supply current	All inputs and outputs open All inputs at -810 mV , All outputs open	$25^{\circ} \mathrm{C}$	-145 -145	$\frac{-107}{-110}$	mA

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	B (SEE NOTE 3)	UNIT
$\mathrm{ta}_{\mathrm{a}}(\mathrm{ad})$ Access time from address	$\begin{aligned} & C_{L}=3.5 \mathrm{pF} \\ & R_{L}=50 \Omega \end{aligned}$ See Figures 1 and 2	20	ns
tPLH Propagation delay time, low-to-high-levei output from $\overline{\mathrm{E}}$ (enable time)		15	ns
${ }^{\text {tPHL }}$. Propagation delay time, high-to-low-level output from $\overline{\mathrm{E}}$ (disable time)		15	ns

2. Test conditions stating $V_{I H}=V_{I H B}$ (or $V_{I H}{ }^{\prime} B$) and/or $V_{I L}=V$ ILA (or VIL'A) mean that the high-level input voltages are equal o the B limit of VIH (or VIH') specified for the particular temperature (see note 3) and/or the low-level input voltages are equal o the appropriate A limit of VIL (or VIL'). The output voltage limits are guaranteed for any appropriate combination of inpu conditions for the desired output.
3. This data sheet uses the algebraic-limit system that has been adopted by the International Electrotechnical Commission. The A limit is the more positive (less negative) limit; the B limit is the less positive (more negative) limit
t The ambient temperature conditions assume air moving perpendicular to the longitudinal axis and parallel to the seating plane of the device at a velocity of 500 feet per minute with the device under test soldered to a $4 \times 6 \times 0.062$-inch double-sided 2 -oz copper-clad circuit board.

TYPE SN10139
 256-BIT PROGRAMMABLE READ-ONLY MEMORY

NOTES: A. The input waveforms are supplied by generators having the following characteristics: $Z_{\text {out }}=50 \Omega, P R R=2 M H z$. Transition times of input waveforms are $2 \pm 0.1 \mathrm{~ns}$ between the 20% and 80% levels and are determined with no device in the socket.
B. The waveforms are monitored on an oscilloscope having the following characteristics: $\mathrm{t}_{\mathbf{r}} \leqslant 0.35 \mathrm{~ns}, \mathrm{R}_{\text {in }}=50 \Omega$. Input and output cables are equal lengths of $50-\Omega$ coaxial cable.
C. C_{L} includes jig capacitance.
D. All address lines not under test must be biased to select a memory cell.
E. If the enable line is not under test, it must be at a low logic level.
FIGURE 1-TEST CIRCUIT

NOTES: A. Voltage values on input waveforms are with respect to ground.
B. The enable input is low.
C. The bit location addressed contains high-level data.

FIGURE 2-VOLTAGE WAVEFORMS

TYPE SN10139

256-BIT PROGRAMMABLE READ-ONLY MEMORY

step-by-step programming procedure

manual

1. Connect $V_{\text {EE }}(\operatorname{Pin} 8)$ to ground and $V_{C C}(P i n 16)$ to 5.2 V . See Figure 3. Address the word to be programmed by applying to the appropriate address inputs 4 to 4.6 V for a high level and 0 to 1 V for a low level.
2. Raise $\mathrm{V}_{\mathrm{CC}}(\mathrm{Pin} 16)$ to 12 V . This level must not be maintained longer than 1 second. Maximum supply current during programming is 250 mA .
3. After V_{CC} has stabilized at 12 V (including any ringing that may be present on the V_{CC} line), apply a current pulse of 2.5 mA to the output corresponding to the bit to be programmed to a high.
4. Return V_{C} to 5.2 V .

CAUTION: To prevent excessive chip temperature rise, V_{CC} should not be allowed to remain at 12 V for more than 1 second.
5. Verify that the selected bit has programmed by connecting a $460-\Omega$ resistor to ground and measuring the voltage at the output. If a high level $\left(V_{O} \geqslant 4.2 \mathrm{~V}\right)$ is not detected at the output, the programming procedure should be repeated once.
6. If verification is positive, proceed to next bit to be programmed.

automatic

1. Connect VEE ($\operatorname{Pin} 8$) to ground and $V_{C C}(\operatorname{Pin} 16)$ to 5.2 V . See Figure 3. Address the word to be programmed by applying to the appropriate address inputs 4 to 4.6 V for a high level and 0 to 1 V for a low level.
2. Raise V_{CC} (Pin 16) to 12 V . This level must not be maintained longer than 1 second. Maximum supply current during programming is 250 mA .
3. After a delay of $100 \mu \mathrm{~s}$ minimum, 1 ms maximum, apply a $2.5 \cdot \mathrm{~mA}$ current pulse to the output corresponding to the first bit to be programmed to a high. This output pulse is maintained between 0.5 and 1 ms . See Figure 4 .
4. Repeat step 3 for each bit of the selected word specified as a high. (Program only one bit at a time; the delay between output programming pulses should not be greater than 1 ms .)
5. After all the desired bits of the selected word have been programmed, change address data and repeat the preceeding two paragraphs.
NOTE: If all the maximum times listed above are maintained, the entire memory will program in less than 1 second. Therefore, it would be permissable for $V_{C C}$ to remain at 12 V during the entire programming time.
6. After stepping through all address words, return $V_{C C}$ to 5.2 V and verify that each bit has programmed. If one or more bits have not programmed, repeat the entire programming procedure once.
recommended conditions for programming

		(SEE NOTE 3)			UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$	To program	11.5	12	12.5	V
	To verify	5	5.2	5.4	
Input voltage	High level	4		4.6	V
	Low level	0		1	
Output current during programming		2	2.5	3	mA
Programming pulse width, $\mathrm{t}_{\mathrm{w}}(\mathrm{p})$ (See Note 4)		0.5		1	ms
Programming pulse rise time				10	$\mu \mathrm{s}$
Programming pulse delay (See Note 4)	Following $\mathrm{V}_{\mathbf{C C}}$ change, $\mathrm{t}_{\text {d }}(1)$	0.1		1	ms
	Between output pulses, $\mathrm{t}_{\mathrm{d}}(2)$	0.01		1	

NOTES: 3. This data sheet uses the algebraic-limit system that has been adopted by the International Electrotechnical Commission. The A limit is the more positive (less negative) limit; the 8 limit is the less positive (more negative) limit.
4. These maximum times are specified to minimize the amount of time V_{CC} is at 12 V .

TYPE SN10139
256-BIT PROGRAMMABLE READ-ONLY MEMORY

PROGRAMMING INFORMATION

FIGURE 3-PROGRAMMING CIRCUIT

FIGURE 4-TIMING DIAGRAM FOR AUTOMATIC PROGRAMMING

TYPES SN10140, SN10142, SN10148 64-BIT RANDOM-ACCESS MEMORIES

- SN10140 Drives 90-Ohm Loads
- SN10142 and SN10148 Drive 50-Ohm Loads
- Fast Access Times:

10 ns Max (SN10142)
15 ns Max (SN10140, SN10148)

- 64-Word-by-One-Bit Organization
- Full On-Chip Address Decoding and Output-Sense Amplification
- Capability for Wired-OR Connections
- Low Sensitivity to Supply Voltage Variation

description

These 64-bit active-element memories are monolithic, high-speed, emitter-coupled-logic (ECL) arrays of 64 storage cells organized to provide 64 words of one bit each. Full address decoding and output sense amplification are included on the chip. An additional level of decoding is provided for memory systems by the two enable inputs. Each of the 64 words is addressed by the binary address inputs A0 through A5. The output can be connected to other emitter-follower outputs to achieve wired-OR word expansion. The SN10140, SN10142, and SN10148 are fully compatible with the SN10000 logic family. The SN10148 and SN 10142 are specified to meet SN10000 levels when driving 50 -ohm loads and the SN10140 is specified to drive a 90 -ohm load.

Information at the data input is written into the memory by addressing the desired word with the address lines and taking the read/write input low while both enable inputs are held low. The output is forced low while the memory is in the write mode.

Information stored in the memory is read out by holding the read/write line high, selecting the desired address, and taking both enable inputs low.

FUNCTION TABLE

READ/	ENABLE		OPERATION
WRITE	$\overline{\text { En }}$	$\overline{\text { E }} 2$	
L	L	L	Write (output low)
H	L	L	Read
X	H	X	Chip disabled (output low)
X	X	H	Chip disabled (output low)

[^14]
JOR JE

 DUAL-IN-LINE PACKAGE (TOP VIEW)
functional block diagram

TYPES SN10140, SN10142, SN10148 64-BIT RANDOM-ACCESS MEMORIES

recommended operating conditions

		B NOM A(SEE NOTE 3)		UNIT
Supply voltage, V_{EE}		-5.72	$\begin{array}{ll}-5.2 & -4.68\end{array}$	V
Width of write pulse, $\mathrm{t}_{\mathrm{w}}(\mathrm{wr})$ (see Figure 9)		10		ns
Setup time, $\mathrm{t}_{\text {su }}$ (see Figure 9)	Address before write pulse	5		ns
	Enable before write pulse	3		
	Data before end of write pulse	10		
Hold time, $\mathrm{th}^{\text {(}}$ (see Figure 9)	Address after write pulse	3		ns
	Enable after write pulse	0		
	Data after write pulse	3		
Operating ambient temperature, T_{A}		0	85	${ }^{\circ} \mathrm{C}$

electrical characteristics at specified ambient temperature ${ }^{\dagger}$

PARAMETER			TEST CONDITIONS (SEE NOTES 1 AND 2)		B TYP A(SEE NOTE 3)		UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage			$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{array}{r} -1020 \\ -980 \\ -910 \\ \hline \end{array}$	-840 -810 -700	mV
$\mathrm{V}_{1 \mathrm{H}^{\prime}}$	High-level input voltage			$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \hline-1145 \\ & -1105 \\ & -1035 \end{aligned}$		mV
$V_{\text {IL }}$	Low-level input voltage			$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	-1645 -1630 -1595	mV
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & \hline-1490 \\ & -1475 \\ & -1440 \end{aligned}$	mV
V_{OH}	High-level output voltage		$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {IHB }}, \quad \mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {ILA }}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{array}{r} -1000 \\ -960 \\ -890 \end{array}$	$\begin{aligned} & -840 \\ & -810 \\ & -700 \end{aligned}$	mV
V_{OL}	Low-level output voltage		$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {IHB }}, \quad \mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {ILA }}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & -2000 \\ & -1990 \\ & -1920 \\ & \hline \end{aligned}$	-1665 -1650 -1615	mV
$\mathrm{V}^{\text {OH }}{ }^{\prime}$	High-level output voltage		$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {IH }}{ }^{\prime} \mathrm{B}, \quad \mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}{ }^{\prime} \mathrm{A}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} \hline-1020 \\ -980 \\ -910 \\ \hline \end{array}$	$\begin{aligned} & -840 \\ & -810 \\ & -700 \\ & \hline \end{aligned}$	mV
$\mathrm{V}_{\text {OL' }}{ }^{\prime}$	Low-level output voltage		$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {IH }}{ }^{\prime} \mathrm{B}, \quad \mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}{ }^{\prime} \mathrm{A}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & -2000 \\ & -1990 \\ & -1920 \end{aligned}$	$\begin{aligned} & -1645 \\ & -1630 \\ & -1595 \end{aligned}$	mV
1/H	High-level input current	Read/Write Other inputs	$V_{1}=-810 \mathrm{mV}$ Other inputs open	$25^{\circ} \mathrm{C}$		355	$\mu \mathrm{A}$
IIL	Low-level input current		$V_{1}=-1990 \mathrm{mV},$ Other inputs open	$25^{\circ} \mathrm{C}$	0.5		$\mu \mathrm{A}$
IEE	Supply current		All inputs and the output open	$25^{\circ} \mathrm{C}$	-103	-85	mA

TYPES SN10140, SN10142, SN10148 64-BIT RANDOM-ACCESS MEMORIES

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	SN10140 SN10148	SN10142	UNIT
		$\begin{array}{lcc} \hline \text { B TYP } & \text { A } \\ \text { (SEE NOTE 3) } \end{array}$	B TYP A (SEE NOTE 3)	
$\mathrm{t}_{\mathrm{a}}(\mathrm{ad})$ Access time from address	$\begin{aligned} C_{\mathrm{L}}= & 3.5 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}= & 90 \Omega(\mathrm{SN} 10140) \\ & 50 \Omega(\mathrm{SN} 10142, \mathrm{SN} 10148) \end{aligned}$ See Figures 5 and 9	1015	$8 \quad 10$	ns
tPLH Propagation delay time, low-to-high-level ${ }^{\text {tPLH }}$ output from $\overline{\mathrm{E}}$ (enable time)		$7 \quad 12$	$7 \quad 12$	ns
$\begin{array}{ll} \hline \text { tPHL } & \begin{array}{l} \text { Propagation delay time, high-to-low-level } \\ \text { output from } \bar{E} \text { (disable time) } \end{array} \end{array}$		$7 \quad 12$	$7 \quad 12$	ns
${ }^{\mathrm{t}} \mathrm{TLH} \quad \begin{aligned} & \text { Transition time, } \\ & \text { low-to-high-level output (} 20 \% \text { to } 80 \% \text {) }\end{aligned}$		2.5	2.5	ns
 THL Transition time, high-to-low-level output (80% to 20%)		2.5	2.5	ns
${ }^{\text {t SR }}$ S Sense recovery time		10	10	ns

NOTE 3: This data sheet uses the algebraic-limit system that has been adopted by the International Electrotechnical Commission. The A limit is the more positive (less neagtive) limit; the B limit is the less positive (more negative) limit.

NOTES: A. The input waveforms are supplied by generators having the following characteristics: $Z_{\text {out }}=50 \Omega, P R R=2 \mathrm{MHz}$. Transition times of input waveforms are $2 \pm 0.1 \mathrm{~ns}$ between the 20% and 80% levels and are determined with no device in the socket
B. The waveforms are monitored on an oscilloscope having the following characteristics: $t_{r} \leqslant 0.35 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}=50 \Omega$. Input and output cables are equal lengths of $50-\Omega$ coaxial cable.
C. C_{L} includes jig capacitance.
D. All address lines not under test must be biased to select a memory cell.
E. Enable line(s) not under test must be at a low logic level.
F. $40-\Omega$ external resistor shown is used for SN10140 only. When testing SN10142 or SN10148, connect point (A) directly to $50-\Omega$ output cable.

FIGURE 5-TEST CIRCUIT

- Fast Access Time . . . 18 ns Typical
- 256-Word-by-One-Bit Organization
- Drives 50-Ohm Loads
- Full On-Chip Address Decoding and Output-Sense Amplification
- Capability for Wired-OR Connections
- Low Sensitivity to Supply Voltage Variation description

This 256-bit active-element memory is a monolithic high-speed, emitter-coupled-logic (ECL) array of 256 storage cells organized to provide 256 words of one bit each. Full address decoding and output sense amplification are included on the chip. An additional level of decoding is provided for memory systems by the three enable inputs. Each of the 256 words is addressed by the binary address inputs $A 0$ through A7. The output can be connected to other emitterfollower outputs to achieve wired-OR word expansion.

Information at the data input is written into the memory by addressing the desired word with the address lines and taking the read/write input low while all enable inputs are held low. The output is forced low while the memory is in the write mode.

Information stored in the memory is read out by holding the read/write line high, selecting the desired address, and taking all enable inputs low.

FUNCTION TABLE

READ/	ENABLE			OPERATION
WRITE	$\overline{\text { E }}$	$\overline{\text { E } 2}$	$\overline{\text { E } 3 ~}$	
L	L	L	L	Write (output low)
H	L	L	L	Read
X	H	X	X	Chip disabled (output low)
X	X	H	X	Chip disabled (output low)
X	X	X	H	Chip disabled (output low)

[^15]J OR JE
DUAL-IN-LINE PACKAGE (TOP VIEW)
AO
functional block diagram

TYPE SN10144

256-BIT RANDOM-ACCESS MEMORY

\dagger^{\dagger} Note that this setup time is referenced to the end of the write pulse. With a minimum-width (25 -ns) write pulse, this limit is equivalent to a 2 -ns setup time referenced to the start of the write pulse. The setup-time requirement is thus made independent of write pulse width.
electrical characteristics at specified ambient temperature \ddagger

PARAMETER			TEST CONDITIONS (SEE NOTES 1 AND 2)		B TYP A(SEE NOTE 3)		UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage			$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{array}{r} -1020 \\ -980 \\ -910 \\ \hline \end{array}$	$\begin{aligned} & \hline-840 \\ & -810 \\ & -700 \\ & \hline \end{aligned}$	mV
$\mathrm{V}_{1 \mathrm{H}^{\prime}}$	High-level input voltage			$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & -1145 \\ & -1105 \\ & -1035 \end{aligned}$		mV
$V_{\text {IL }}$	Low-level input voltage			$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	-1645 -1630 -1595	mV
$V_{\text {IL }}$	Low-level input voltage			$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$		$\begin{aligned} & \hline-1490 \\ & -1475 \\ & -1440 \\ & \hline \end{aligned}$	mV
V_{OH}	High-level output voltage		$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {IHB }}, \quad \mathrm{V}_{\text {IL }}=V_{\text {ILA }}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{array}{r} -1000 \\ -960 \\ -890 \\ \hline \end{array}$	$\begin{aligned} & -840 \\ & -810 \\ & -700 \end{aligned}$	mV
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {IHB }}, \quad \mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {ILA }}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1870 \\ -1850 \\ -1825 \\ \hline \end{array}$	$\begin{aligned} & -1665 \\ & -1650 \\ & -1615 \\ & \hline \end{aligned}$	mV
VOH^{\prime}	High-level output voltage		$V_{I H}=V_{I H}{ }^{\prime} \mathrm{B}, \quad \mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}{ }^{\prime} \mathrm{A}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} -1020 \\ -980 \\ -910 \end{array}$	$\begin{aligned} & -840 \\ & -810 \\ & -700 \\ & \hline \end{aligned}$	mV
$\mathrm{V}_{\text {OL' }}$	Low-level output voltage		$V_{I H}=V_{I H}{ }^{\prime} \mathrm{B}, \quad \mathrm{V}_{\text {IL }}=V_{\text {IL }}{ }^{\prime} \mathrm{A}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & -1870 \\ & -1850 \\ & -1825 \end{aligned}$	$\begin{aligned} & -1645 \\ & -1630 \\ & -1595 \\ & \hline \end{aligned}$	mV
${ }^{1} \mathrm{IH}$	High-level input current	\bar{E} inputs Other inputs	$V_{I}=-810 \mathrm{mV}$ Other inputs open	$25^{\circ} \mathrm{C}$		265	$\mu \mathrm{A}$
IIL	Low-level input current	$\overline{\mathrm{E}}$ inputs Other inputs	$V_{1}=-1850 \mathrm{mV}$ Other inputs open	$25^{\circ} \mathrm{C}$	0.5 -50		$\mu \mathrm{A}$
IEE	Supply current		All inputs and the output open	$25^{\circ} \mathrm{C}$	-125	-90	mA

NOTES: 1. All parameters are measured with $V_{E E}=-5.200 \mathrm{~V}, V_{C C}=0 \mathrm{~V}$, and (unless otherwise noted) the output is connected to -2.000 V through 50Ω.
2. Test conditions stating $V_{I H}=V_{I H B}$ (or $V_{I H}{ }_{I B}$) and/or $V_{I L}=V_{I L A}$ (or $V_{I L} A_{A}$) mean that the high-level input voltages are equal to the B limit of $V_{I H}$ (or $V_{1 H}$) specified for the particular temperature (see note 3) and/or the low-level input voltages are equal to the appropriate A limit of $V_{I L}$ (or $V_{I L}$ '). The output voltage limits are guaranteed for any appropriate combination of input conditions specified by the function table for the desired output.
3. This data sheet uses the algebraic-limit system that has been adopted by the International Electrotechnical Commission. The A limit is the more positive (less negative) limit; the B limit is the less positive (more negative) limit.
\ddagger The ambient temperature conditions assume air moving perpendicular to the longitudinal axis and parallel to the seating plane of the device at a velocity of 500 feet per minute with the device under test soldered to a $4 \times 6 \times 0.062$-inch double-sided 2 -oz copper-clad circuit board.

TYPE SN10144 256-BIT RANDOM-ACCESS MEMORY

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	B TYP		UNIT
$\mathrm{ta}_{\mathrm{a}}(\mathrm{ad})$	Access time from address		$\begin{aligned} & C_{L}=3.5 \mathrm{pF}, \\ & R_{L}=50 \Omega, \end{aligned}$ See Figures 6 and 9 and Note 4	18	35	ns
tPLH -	Propagation delay time, low-to-high-level output from \bar{E} (enable time)			8	12	ns
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level output from \bar{E} (disable time)			8	12	s
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level output from read/write			8	17	ns
tTLH	Transition time, low-to-high-level output (20\% to 80\%)			2.5		ns
${ }_{\text {t }}$ HL	Transition time, high	(80% to 20%)		2.5		ns
${ }^{\text {t }}$ SR	Sense recovery time			8	17	ns
${ }^{t}$ w $(\mathrm{wr}, \mathrm{min})$	Minimum width of write pulse			15	25	ns
$\mathrm{t}_{\text {su }}(\mathrm{min})$	Minimum setup time	Address before write pulse		-15	8	ns
		Enable before write pulse		-8	2	
		Data before end of write pulse		8	27	
$\mathrm{t}_{\mathrm{h}}(\mathrm{min})$	Minimum hold time	Address after write pulse		-3	2	ns
		Enable after write pulse		-8	2	
		Data after write pulse		-7	2	

NOTES: 3. This data sheet uses the algebraic limit system that has been adopted by the International Electrotechnical Commission. The A limit is the more positive (less negative) limit; the B limit is the less positive (more negative) limit.
4. Actual values for the minimum width of write pulse, the three minimum setup times, and the three minimum hold times can each be determined separately by setting the other six intervals at their A-limit values.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input waveforms are supplied by generators having the following characteristics: $Z_{\text {out }}=50 \Omega$, PRR $=2 \mathrm{MHz}$. Transition times of input waveforms are $2 \pm 0.1 \mathrm{~ns}$ between the 20% and 80% levels and are determined with no device in the socket.
B. The waveforms are monitored on an oscilloscope having the following characteristics: $t_{r} \leqslant 0.35 \mathrm{~ns}, \mathrm{R}_{\text {in }}=50 \Omega$. Input and output cables are equal lengths of $50-\Omega$ coaxial cable.
C. C_{L} includes jig capacitance.
D. All address lines not under test must be biased to select a memory cell.
E. Enable lines not under test must be at a low logic level.

TYPE SN10145

64-BIT RANDOM-ACCESS MEMORY

MAY 1975

- Fast Access Time . . . 9 ns Typical
- 16-Word-by-Four-Bit Organization
- Drives 50-Ohm Loads
- Full On-Chip Address Decoding and Output-Sense Amplification
- Capability for Wired-OR Connections
- Low Sensitivity to Supply Voltage Variation

description

This 64-bit active-element memory is a monolithic high-speed, emitter-coupled-logic (ECL) array of 64 storage cells organized to provide 16 words of four bits each. This organization and the high speed makes the SN10145 particularly useful in register file or small scratch-pad applications. Full address decoding and output sense amplification are included on the chip. Each of the 16 words is addressed by the binary address inputs A0 through A3. The output can be connected to other emitter-follower outputs to achieve wired-OR word expansion. The SN10145 is fully compatible with the SN10000 logic family.

Information at the data input is written into the memory by addressing the desired word with the address lines and taking the read/write input low while the enable input is held low. The output is forced low while the memory is in the write mode.

Information stored in the memory is read out by holding the read/write line high, selecting the desired address, and taking the enable input low.

FUNCTION TABLE		
READ/WRITE R $/ \bar{W}$	ENABLE \bar{E}	OPERATION
L	L	Write (output low)
H	L	Read
X	H	Chip disabled (output low)

$H=$ high level, $L=$ low level, $X=$ irrelevant

DUAL-IN-LINE PACKAGE (TOP VIEW)

functional block diagram

TYPE SN10145 64-BIT RANDOM-ACCESS MEMORY

recommended operating conditions

		B NOM A(SEE NOTE 3)			UNIT
Supply voltage, $\mathrm{V}_{\text {EE }}$		-5.72	-5.2	-4.68	V
Width of write pulse, $\mathrm{t}_{\mathrm{w}}(\mathrm{wr})$ (see Figure 9)		7.5			ns
Setup time, $\mathrm{t}_{\text {su }}$ (see Figure 9)	Address before write pulse	3.5			ns
	Enable before write pulse	3			
	Data before end of write pulse	7.5			
Hold time, $\mathrm{th}^{\text {(see Figure 9) }}$	Address after write pulse	3.5			ns
	Enable after write pulse	3			
	Data after write pulse	3			
Operating ambient temperature, T_{A}		0		85	${ }^{\circ} \mathrm{C}$

electrical characteristics at specified ambient temperature ${ }^{\dagger}$

PARAMETER			TEST CONDITIONS (SEE NOTES 1 AND 2)			(SEE NOTE 3)		UNIT
$\mathrm{V}_{\text {IH }}$	High-level inpu	voltage			$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} -1020 \\ -980 \\ -910 \\ \hline \end{array}$	$\begin{aligned} & \hline-840 \\ & -810 \\ & -700 \\ & \hline \end{aligned}$	mV
$\mathrm{V}_{1 \mathrm{H}^{\prime}}$	High-level inpu	voltage			$\begin{array}{r} J^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & -1145 \\ & -1105 \\ & -1035 \end{aligned}$		mV
$V_{\text {IL }}$	Low-level inpu	voitage			$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{EE}} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-1645 \\ & -1630 \\ & -1595 \\ & \hline \end{aligned}$	mV
$\mathrm{V}_{\text {IL }}{ }^{\prime}$	Low-level inpu	voltage			$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & -1490 \\ & -1475 \\ & -1440 \end{aligned}$	mV
V_{OH}	High-level outp	t voltage	$\mathrm{V}_{1 \mathrm{H}}=\mathrm{V}_{1} \mathrm{HB}$,	$V_{\text {IL }}=V_{\text {ILA }}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{array}{\|r\|} \hline-1000 \\ -960 \\ -890 \end{array}$	$\begin{aligned} & -840 \\ & -810 \\ & -700 \end{aligned}$	mV
V_{OL}	Low-level outp	voltage	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {IHB }}$,	$V_{\text {IL }}=V_{\text {ILA }}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & -1870 \\ & -1850 \\ & -1825 \\ & \hline \end{aligned}$	$\begin{aligned} & -1665 \\ & -1650 \\ & -1615 \end{aligned}$	mV
$\mathrm{V}^{\text {OH }}{ }^{\prime}$	High-level outp	t voltage	$\mathrm{V}_{\mathbf{I H}}=\mathrm{V}_{1 H}{ }^{\text {B }}$,	$V_{\text {IL }}=V_{\text {IL }}{ }^{\prime}$ A	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} -1020 \\ -980 \\ -910 \end{array}$	$\begin{aligned} & -840 \\ & -810 \\ & -700 \end{aligned}$	mV
$\mathrm{V}_{\text {OL }}{ }^{\prime}$	Low-level outp	t voltage	$V_{1 H}=V_{\text {IH }}{ }^{\prime}$.	$V_{\text {IL }}=V_{\text {IL }}$ 'A	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & -1870 \\ & -1850 \\ & -1825 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-1645 \\ & -1630 \\ & -1595 \end{aligned}$	mV
${ }^{1 / H}$	High-leve! input current	Any Data input Read/Write input Any Address or $\overline{\mathrm{E}}$ input	$V_{1}=-810 \mathrm{mv}$ Other inputs o		$25^{\circ} \mathrm{C}$		220 470 200	$\mu \mathrm{A}$
IIL	Low-level inpu	current	$V_{1}=-1850 m$ Other inputs o		$25^{\circ} \mathrm{C}$	0.5		$\mu \mathrm{A}$
IEE	Supply current		All inputs and	open	$25^{\circ} \mathrm{C}$	-150		mA

NOTES: 1. All parameters are measured with $V_{E E}=-5.200 \mathrm{~V}, V_{C C}=0 \mathrm{~V}$, and (unless otherwise noted) the output is connected to -2.000 V through 50Ω.
2. Test conditions stating $V_{I H}=V_{I H B}$ (or $V_{I H}{ }_{I B}$) and/or $V_{I L}=V_{I L A}$ (or $V_{I L}$ 'A $^{\prime}$) mean that the high-level input voltages are equal to the B limit of $\mathrm{V}_{\mathbf{I H}}$ (or $\mathrm{V}_{1 \mathrm{H}}$) specified for the particular temperature (see note 3) and/or the low-level input voltages are equal to the appropriate A limit of $V_{I L}$ (or $V_{1 L}{ }^{\prime}$). The output voltage limits are guaranteed for any appropriate combination of input conditions specified by the function table for the desired output.
3. This data sheet uses the algebraic-limit system that has been adopted by the International Electrotechnical Commission. The A limit is the more positive (less negative) limit; the \mathbf{B} limit is the less positive (more negative) limit.
${ }^{\dagger}$ The ambient temperature conditions assume air moving perpendicular to the fongitudinal axis and parallel to the seating plane of the device at a velocity of 500 feet per minute with the device under test soldered to a $4 \times 6 \times 0.062$-inch double-sided 2 -oz copper-clad circuit board.

TYPE SN10145

64-BIT RANDOM-ACCESS MEMORY
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$\begin{array}{lcc} \hline \text { B } & \text { TYP A } \\ \text { (SEE NOTE 3) } \end{array}$	UNIT
$\mathrm{t}_{\mathrm{a}}(\mathrm{ad})$ Access time from address	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=3.5 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$ See Figures 7 and 9	6	ns
tpLH Propagation delay time, low-to-high-level output from $\overline{\mathrm{E}}$ (enable time)		6	ns
tPHL Propagation delay time, high-to-low-level output from $\overline{\mathrm{E}}$ (disable time)		9	
t TLH Transition time, low-to-high-level output (20\% to 80\%)		2.5	
${ }^{\text {t }}$ THL Transition time, high-to-low-level output (80\% to 20%)		2.5	ns
tSR Sense recovery time		7.5	ns

NOTE 3: This data sheet uses the algebraic-limit system that has been adopted by the International Electrotechnical Commission. The A limit is the more positive (less negative) limit; the B limit is the less positive (more negative) limit.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input waveforms are supplied by generators having the following characteristics: $Z_{\text {out }}=50 \Omega, P R R=2$ MHz. Transition times of input waveforms are $2 \pm 0.1 \mathrm{~ns}$ between the 20% and 80% levels and are determined with no device in the socket.
B. The waveforms are monitored on an oscilloscope having the following characteristics: $\mathrm{t}_{\mathbf{r}} \leqslant 0.35 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}=50 \Omega$. Input and output cables are equal lengths of $50-\Omega$ coaxial cable.
C. C_{L} includes jig capacitance.
D. All address lines not under test must be biased to select a memory cell.

FIGURE 7-TEST CIRCUIT

TYPE SN10147
 128-BIT RANDOM-ACCESS MEMORY

MAY 1975

- Fast Access Time . . . 15 ns Maximum

DUAL-IN-LINE PACKAGE (TOP VIEW)

- 128-Word-by-One-Bit Organization
- Full On-Chip Address Decoding and Output-Sense Amplification
- Capability for Wired-OR Connections
- Low Sensitivity to Supply Voltage Variation

description

This 128 -bit active-element memory is a monolithic, high-speed, emitter-coupled-logic (ECL) array of 128 storage cells organized to provide 128 words of one bit each. Full address decoding and output sense amplification are included on the chip. An additional level of decoding is provided for memory systems by the two enable inputs. Each of the 128 words is addressed by the binary address inputs AO through A6. The output can be connected to other emitterfollower outputs to achieve wired-OR word expansion.

Information at the data input is written into the memory by addressing the desired word with the address lines and taking the read/write input low while both enable inputs are held low. The output is forced low while the memory is in the write mode.

Information stored in the memory is read out by holding the read/write line high, selecting the desired address, and taking both enable inputs low.

FUNCTION TABLE

READ/	ENABLE		OPERATION
WRITE	$\bar{E} 1$	$\overline{\text { E }} 2$	
L	L	L	Write (output low)
H	L	L	Read
X	H	X	Chip disabled (output low)
X	X	H	Chip disabled (output low)

[^16]128-BIT RANDOM-ACCESS MEMORY
recommended operating conditions

		B NOM A(SEE NOTE 3)			UNIT
Supply voltage, V_{EE}		-5.72	-5.2	-4.68	V
Width of write pulse, $\mathrm{t}_{\text {w }}(\mathrm{wr})$ (see Figure 9)		8			ns
Setup time, $\mathrm{t}_{\text {su }}$ (see Figure 9)	Address before write pulse	4			ns
	Enable before write pulse	1			
	Data before end of write pulse	8			
	Address after write pulse	3			
Hold time, th_{h} (see Figure 9)	Enable after write pulse	1			ns
	Data after write pulse	1			
Operating ambient temperature, T_{A}		0		85	${ }^{\circ} \mathrm{C}$

electrical characteristics at specified ambient temperature ${ }^{\dagger}$

PARAMETER			TEST CONDITIONS (SEE NOTES 1 AND 2)		B TYP A(SEE NOTE 3)			UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage			$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{array}{r} \hline-1020 \\ -980 \\ -910 \\ \hline \end{array}$		$\begin{aligned} & \hline-840 \\ & -810 \\ & -700 \\ & \hline \end{aligned}$	mV
$\mathrm{V}_{1 \mathrm{H}^{\prime}}$	High-level input voltage			$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & -1145 \\ & -1105 \\ & -1035 \end{aligned}$			mV
$V_{\text {IL }}$	Low-level input voltage			$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$		$\begin{aligned} & \hline-1645 \\ & -1630 \\ & -1595 \end{aligned}$	mV
VIL'	Low-level input voltage			$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$			$\begin{aligned} & \hline-1490 \\ & -1475 \\ & -1440 \end{aligned}$	mV
V_{OH}	High-level output voltage		$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {IHB }}, \quad \mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {ILA }}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{array}{r} -1000 \\ -960 \\ -890 \end{array}$		$\begin{aligned} & -840 \\ & -810 \\ & -700 \end{aligned}$	mV
V_{OL}	Low-level output voltage		$V_{I H}=V_{I H B}, \quad V_{I L}=V_{I L A}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-2000 \\ -1990 \\ -1920 \\ \hline \end{array}$		$\begin{aligned} & -1665 \\ & -1650 \\ & -1615 \\ & \hline \end{aligned}$	mV
$\mathrm{V}^{\text {OH }}{ }^{\prime}$	High-level output voltage		$V_{I H}=V_{I H}{ }^{\prime} \mathrm{B}, \quad \mathrm{V}_{\text {IL }}=V_{\text {IL }}{ }^{\prime} \mathrm{A}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{array}{r} -1020 \\ -980 \\ -910 \\ \hline \end{array}$		$\begin{array}{r} -840 \\ -810 \\ -700 \end{array}$	mV
$\mathrm{V}_{\text {OL' }}$	Low-level output voltage		$V_{I H}=V_{I H}{ }^{\prime} \mathrm{B}, \quad \mathrm{V}_{\text {IL }}=V_{\text {IL }}{ }^{\prime}$ A	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-2000 \\ -1990 \\ -1920 \\ \hline \end{array}$		$\begin{aligned} & \hline-1645 \\ & -1630 \\ & -1595 \\ & \hline \end{aligned}$	mV
${ }_{1} \mathrm{H}$	High-level input current	Read/Write Other inputs	$\mathrm{V}_{1}=-810 \mathrm{mV}$ Other inputs open	$25^{\circ} \mathrm{C}$			355	$\mu \mathrm{A}$
${ }^{1} \mathrm{IL}$	Low-level input current		$V_{1}=-1990 \mathrm{mV}$ Other inputs open	$25^{\circ} \mathrm{C}$	0.5			$\mu \mathrm{A}$
IEE	Supply current		All inputs and the output open	$25^{\circ} \mathrm{C}$	-100	-85	-50	mA

NOTES: 1. All parameters are measured with $V_{E E}=-5.200 \mathrm{~V}, V_{C C 1}=V_{C C 2}=0 \mathrm{~V}$, and (unless otherwise noted) the output is connected to -2.000 V through 50Ω.
2. Test conditions stating $V_{1 H}=V_{I H B}$ (or $V_{I H}{ }^{\prime}$) and/or $V_{I L}=V_{I L A}$ (or $V_{I L}{ }^{\prime} A$) mean that the high-level input voltages are equal to the B limit of $V_{I H}$ (or $V_{I H}$) specified for the particular temperature (see note 3) and/or the low-level input voltages are equal to the appropriate A limit of $V_{I L}$ (or $V_{I L}$ '). The output voltage limits are guaranteed for any appropriate combination of input conditions specified by the function table for the desired output.
3. This data sheet uses the algebraic-limit system that has been adopted by the International Electrotechnical Commission. The A limit is the more positive (less negative) limit; the B limit is the less positive (more negative) limit.
\dagger The ambient temperature conditions assume air moving perpendicular to the longitudinal axis and parallel to the seating plane of the device at a velocity of 500 feet per minute with the device under test soldered to a $4 \times 6 \times 0.062$-inch double-sided 2 -oz copper-clad circuit board.

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { B A } \\ & \text { (SEE NOTE 3) } \end{aligned}$	UNIT
$\mathrm{ta}_{\mathrm{a}}(\mathrm{ad})$ Access time from address	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=3.5 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$ See Figures 8 and 9	15	ns
${ }^{\text {t PLH }}$ (Propagation delay time, low-to-high-level output from \bar{E} (enable time)		3 - 8.5	ns
tPHL Propagation delay time, high-to-low-level output from E (disable time)		3 l	
tTLH Transition time, low-to-high-level output (20\% to 80\%)		1 1-2.5	ns
${ }^{\text {t }}$ THL Transition time, high-to-low-level output (80\% to 20\%)		12.5	
tSR Sense recovery time		10	ns

NOTE 3: This data sheet uses the algebraic-limit system that has been adopted by the International Electrotechnical Commission. The A limit is the more positive (less negative) limit; the B limit is the less positive (more negative) limit.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input waveforms are supplied by generators having the following characteristics: $Z_{\text {out }}=50 \Omega$, PRR $=2 \mathrm{MHz}$. Transition times of input waveforms are $2 \pm 0.1 \mathrm{~ns}$ between the 20% and 80% levels and are determined with no device in the socket.
B. The waveforms are monitored on an oscilloscope having the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 0.35 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}=50 \Omega$. Input and output cables are equal lengths of $50-\Omega$ coaxial cable.
C. C_{L} includes jig capacitance.
D. All address lines not under test must be biased to select a memory cell.
E. Enable line(s) not under test must be at a low logic level.

FIGURE 8-TEST CIRCUIT

SERIES SN10000
 MEMORIES

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Voltage values on input waveforms are with respect to ground
B. Sense recovery time can only be measured following the writing of a high-level input.
C. All enable inputs are low, read/write input is high.
D. Read/write input is high, other enable input(s) is(are) low, bit location addressed contains high-level data.

FIGURE 9-VOLTAGE WAVEFORMS

TYPICAL CHARACTERISTICS \dagger

The ambient temperature conditions assume air moving perpendicular to the longitudinal axis and parallel to the seating plane of the device at a velocity of 500 feet per minute with the device under test soldered to a $4 \times 6 \times 0.062$-inch double-sided 2 -oz copper-clad circuit board.

MECHANICAL DATA AND ORDERING INSTRUCTIONS

general

The availability of a particular Series SN10000 part in a particular package is denoted by an alphabetical reference above the pin-connection diagrams. Series SN10000 memories are available in the J and JE ceramic packages. Orders for these circuits should include the package outline letter(s) (J or JE) at the end of the circuit type number; e.g., SN10139J, SN10145JE.

J ceramic dual-in-line package

This hermetically sealed, dual-in-line package consists of a ceramic base, ceramic cap, and 16 -lead frame. The package is intended for insertion in mounting-hole rows on 0.300 -inch centers. Once the leads are compressed to 0.300 -inch separation, sufficient tension is provided to secure the package in the board during soldering. Tin-plated (bright-dipped) leads require no additional cleaning or processing when used in soldered assembly.

NOTES: a. Each pin centerline is located within 0.010 inch of its true longitudinal position.
b. All dimensions are in inches unless otherwise noted.

JE ceramic dual-in-line package

This ceramic dual-in-line package has 16 leads attached by brazing and a gold-plated lid hermetically sealed to the header at relatively low temperature using a solder preform. The package is intended for insertion in mounting-hole rows on 0.300 -inch centers. The gold-plated leads require no additional cleaning or processing when used in soldered or welded assembly.

NOTES: a. Terminal identification is provided by either a notch with a nominal radius of 0.032 inch or a dot on the body near the number-one terminal.
b. Each pin centerline is located within 0.010 inch of its true longitudinal position.
c. All dimensions are in inches.

Microprocessor Summary

SBP0400
4-BIT BINARY PROCESSOR ELEMENT

SBP0400

4-bit slice microprogrammable microprocessor element. Integrated Injection Logic. from Texas Instruments.

The SBP 0400 is a digital processor building block and the first of the standard Integrated Injection Logic ($\mathrm{I}^{2} \mathrm{~L}$) ICs from TI.
The 0400 combines the unique properties of $I^{2} \mathrm{~L}$ technology with an expandable 4 -bit slice architecture to offer an unmatched level of performance and design flexibility.

It's microprogrammable. You build instructions by externally sequencing the 0400 's factory-programmed micro-operations. Emulate existing designs, at either the micro or macro level, with software compatibility. Or create highly efficient new designs with tailored instructions.
With over 1,600 gates, monolithically integrated into a 40 -pin package, the 0400 offers the basis for efficient, low cost design solutions to a host of applications in both industrial $\left(0^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ and military $\left(-55^{\circ}\right.$ to $125^{\circ} \mathrm{C}$) environments.
The SBP0400 is also directly expandable to any word size which is a multiple of 4 -bits.

Some examples: One SBP0400 can make a basic 4-bit intelligent controller. Two, in parallel, makes an 8 -bit dedicated processor. Three makes a 12 -bit controller. And, with four - the CPU of a general purpose 16-bit "mini".
SBP0400 is characterized by the ability to perform any one of its 512 preprogrammed micro-operations within a single clock cycle.

Basic Architecture

- Microprogrammable, bit-slice design expandable in 4 -bit multiples.
- Parallel access to all control, data and address functions.
- 16-Iunction ALU with full-carry look ahead capability.
- 8-word genera! register file including independent program counter with incrementor.
- Dual 4 -bit working registers with full shitting capability.
- On-chip factory programmable logic array (PLA) contains a repertoire of 512 micro-operations.

Functional Power

- Static edge-triggered operation with full TLL compatibility.
- ALU operand modifications/combination via 8 arithmetic or 8 Boolean functions.
- Bidirectional logic/arithmetic shift/circulate of single/double signed, single/double precision binary words.
- Single clock ALU-shift combinations simplity imptementation of iterative multiply and non-restore divide algorithms.
- Internal operation register and independent program counter provide pipelining capability.

Performance: The SBP0400 operates at a constant speed X power product over a 10° performance range. Virtually any single DC power source, voltage or current, can be used.

Speed is a direct function of supply current. As the graph shows: For typical microcycle times of one
microsecond, just over 100 milliamps of total supply current is required. Any point along the constant speed X power plot can be chosen. Down to one microamp of total supply current for corresponding microcycles of 100 milliseconds.

Design with the 0400 and the choice is yours: Word size. Instruction set. Power and speed. Use your imagination. The SBP0400 is just the beginning.

Engineering evaluation devices are available now. Designated X0400N, they are $\$ 90.00$ each (1-24). Order directly from your nearest TI Sales Office. A product manual accompanies purchase. For a "MiniSpec" write Texas Instruments Incorporated, P.O. Box 5012 M/S 308, Dallas, Texas 75222.

TMS 1000 NC, TMS 1200 NC MICROCOMPUTERS

DESCRIPTION

The TMS1000 series is a family of P-channel MOS four-bit microcomputers with a ROM, a RAM, and an arithmetic logic unit on a single semiconductor chip. The TMS1000 family is unique in the field of microprocessors because this device is a single-chip binary computer. A customer's specification determines the software that is reproduced during wafer processing by a single-level mask technique that defines a fixed ROM pattern. This versatile one-chip computer is very cost effective and capable of performing a variety of complex functions.

Key features of the TMS1000 series are:

- 8192-bit Read-Only Memory (ROM) on chip
- 256-bit Random-Access Memory (RAM) on chip
- 11 latched control/data-strobe outputs in a 28 -pin package
- 13 latched control/data-strobe outputs in a 40-pin package
- 8 parallel data outputs and output programmable logic array (PLA)
- Arithmetic Logic Unit (ALU) and 2 four-bit working registers on chip
- On-chip oscillator, or external synchronization if desired
- Conditional branching and subroutines
- Four-bit parallel data input
- Programmable instruction decoder
- Single-power-supply operation
- TTL compatible

One major advantage of the TMS1000 series is flexibility. The TMS1000 series is effective in applications such as printer controllers, data terminals, remote sensing systems, cash registers, appliance controls, and automotive applications. Through the TMS1000 series versatility, a wide range of systems realize reduced costs, fewer parts, and high reliability.

The microcomputer's ROM program controls data input, storage, processing, and output. Data processing takes place in the arithmetic logic unit. K input data goes into the ALU, as shown in the figure above, and is stored in the four-bit accumulator. The accumulator output accesses the output latches, the RAM storage cells, and the adder input. Data storage in the 256 -bit RAM is organized into 64 words, four bits per word. The four-bit words are conveniently grouped into four 16 -word files addressed by a two-bit register. A four-bit register addresses one of the 16 words in a file by ROM control.

The O outputs and the R outputs are the output channels. The eight parallel O outputs are decoded from five data latches. The O outputs serve many applications because the decoder is a programmable logic array (PLA) that is modified by changing the gate-level mask tooling. Each of the thirteen R outputs of the TMS1200NC and the eleven R

TMS 1000 NC, TMS 1200 NC
 MICROCOMPUTERS

outputs on the TMS1000NC has an individual storage element that can be set or reset by program control. The R outputs send status or enable signals to external devices. The R outputs strobe the O outputs to displays, to other TMS1000 series chips, or to TTL and other interface circuits. The same R outputs multiplex data into the K inputs whenever necessary.

There are 43 basic instructions that handle $1 / 0$, constant data from the ROM, bit control, internal data transfer, arithmetic processing, branching, looping, and subroutines. The eight-bit instruction word performs 256 unique operations for maximum efficiency.

DESIGN SUPPORT

Through a staff of experienced application programmers, Texas Instruments will, upon request, assist customers in evaluating applications, in training designers to program the TMS1000 series and in simulating programs. TI will also contract to write programs to customer's specifications.

Tl has developed an assembler and simulator for aiding software designs. These programs are available on nationwide time-sharing systems and at Tl computer facilities.

A TMS1000 series program (see flowchart) is written in assembly language using standard mnemonics. The assembler converts the source code (assembly language program) into machine code, which is transferred to a software simulation program. Also the assembler produces a machine code object deck. The object deck is used to produce a tape for hardware simulation or a tape for generating prototype tooling.

The TMS1000 series programs are checked by software and hardware simulation. The software simulation offers the advantages of printed outputs for instruction traces or periodic outputs. The hardware simulation offers the designer the advantages of real-time simulation and testing asynchronous inputs. A software user's guide is available.

After the algorithms have been checked and approved by the customer, the final object code and machine option statements are supplied to TI. A gate mask is generated and slices produced. After assembly and testing, the prototypes are shipped to the customer for approval. Upon receiving final approval, the part is released for volume production at the required rate as one unique version of the TMS 1000 family.

TMS 8080
 An Eight-Bit Central Process Unit

- 2- $\mu \mathrm{s}$ Instruction Cycle Time
- Addresses up to 65,536 Words of Memory
- 8-Bit Bidirectional I/O Bus
- Serves up to 256 Input and 256 Output Ports
- Uses a Memory Stack for Subroutine Saves
- 8 Vectored Interrupts
- 9 Internal Registers
- 78 Instructions
- Power Supplies: $12 \mathrm{~V}, 5 \mathrm{~V}, 0 \mathrm{~V},-5 \mathrm{~V}$
- TTL-Compatible

A multifunction input/output circuit that is controlled by the TMS 8080 through memory referencing instructions. The TMS 5501 provides a TMS 8080 microprocessor system with a synchronous data interface, data $1 / \mathrm{O}$ buffers, interrupt control logic, and interval timers. The TMS 8080 causes data to be transferred by the TMS 5501 by issuing commands via the system address bus. These commands include:

- read the serial receive register
- read the external data input lines
- read the interrupt address
- read TMS 5501 status information
- issue discrete commands
- load baud-rate register
- load the serial transmiter register
- load the output register
- load the interrupt mask
- load an interval timer

38510/MACH IV
 High-Reliability Microelectronics Procurement Specifications MIL-STD-883

CONTENTS		
SECTION		PAGE
1.0	SCOPE	233
2.0	APPLICABLE DOCUMENTS	233
3.0	GENERAL REQUIREMENTS	235
4.0	QUALITY ASSURANCE PROVISIONS	245
5.0	PREPARATION FOR DELIVERY	256
6.0	NOTES	257

REVISIONS					
CMASSIFIMATION	date code effectivity	LTR	DESCRIPTION	DATE	APPROVED
Major	7040	A	Incorporate MIL-M-38510 and Revision Notice 2 of MIL-STD-883	8/15/70	 cur
Major	7239	B	Incorporate Revision Notice 3 and 4 of MIL-STD-883 and Revision A of MIL-STD-38510	9/1/72	
Major	7401	c	Incorporate revised Level IV (SNH) processing with inclusion of recorded electrical data with delta requirements; incorporate technological criteria in Table III for precap of complex circuits.	1/1/74	$\begin{array}{ll} \pi & 2 \\ u k & B H \\ A F & B H K \\ x F \end{array}$
Minor	7518	D	Incorporate Revision A of MIL-STD-883 and provisions for MOS LSI and CMOS devices	4/15/75	

38510/MACH IV PROGRAM

1.0
 SCOPE

1.1 This specification establishes standards for materials, workmanship, performance capabilities, identification, and processing of high-reliability monolithic integrated circuits.

Intent
The intent of this document is such as to recognize that quality and reliability are built into, not tested into, a product. There is no specification or screening procedure that can substitute for inherent, built-in reliability. However, it must be realized that irrespective of lot quality, there will always be some small percentage of devices that are subject to early failure (infant mortality). A well engineered screening procedure will eliminate most, if not all, of these early failures. Secondly, the screening and acceptance testing described herein will also serve to demonstrate, with a high degree of statistical confidence, that the required levels of quality and reliability have, in fact, been built into the product.

2.0 APPLICABLE DOCUMENTS

2.1 The following specifications and standards, of the issue in effect on the date of invitation for bids or request for proposal, form a part of this specification to the extent specified herein:
2.2 Specifications

Military

$\begin{array}{ll}\text { MIL-M-55565 } & \text { Microcircuits, Packaging of } \\ \text { MIL-M-38510 } & \text { Microcircuits devices, general specification for }\end{array}$

38510/MACH IV PROCUREMENT SPECIFICATION

Standards

MIL-STD-105	Sampling Procedures and Tables for Inspection by Attributes
MIL-STD-883	Test Methods and Procedures for Microelectronics
MIL-STD-790	Reliability Assurance Program for Electronic Parts Specification
MIL-STD-1276	Leads, Weldable, for Electronic Components Parts
MIL-STD-1313	Microelectronics Terms and Definitions

Detail Specifications

SNXXXX (Bipolar)	Detail Specification for a Particular
TMSXXXX (MOS LSI)	Part Type (e.g., Manufacturer's
TFXXXX (CMOS)	Data Sheet)

Precedence of Documents

For the purpose of interpretation, in case of any conflicts, the following order of precedence shall apply:

a) Purchase Order	-The purchase order shall have precedence over any referenced specification.
b) Detail Specification	-The detail specification shall have precedence over this specification and other referenced specifications.
c) This Specification	-This specification shall have precedence over all referenced specifications.
d) Referenced	-Referenced Specifications shall apply to the extent specified herein.

2.5 Federal and/or military specifications and standards required shall be obtained from the usual government sources.

38510/MACH IV PROCUREMENT SPECIFICATION

3.0 GENERAL REQUIREMENTS

The individual item requirements shall be as specified herein and in accordance with the applicable detail specification. In the event of any conflict between the requirements of this specification and the detail specification, the latter shall govern. The static and dynamic electrical performance requirements of the integrated circuits plus absolute maximum ratings and test methods shall be as specified in the detail specifications.
3.1.1 Definitions
\(\left.$$
\begin{array}{ll}\text { a) LTPD } & \begin{array}{l}\text { Lot Tolerance Percent Defective shall be as } \\
\text { defined by MIL-M-38510. }\end{array} \\
\text { b) } \lambda & \begin{array}{l}\text { Lambda, stated in percent per } 1000 \text { hours as } \\
\text { defined by MIL-M- } 38510 .\end{array} \\
\text { c) MRN } & \begin{array}{l}\text { Minimum reject number as defined by MIL-M-38510. }\end{array} \\
\text { d) Production } & \begin{array}{l}\text { For the purpose of this specification, a production } \\
\text { Lot }\end{array}
$$

lot shall be defined per MIL-M-38510.\end{array}\right\}\)| Inspection | An inspection lot shall be as defined in |
| :--- | :--- |
| Lot | MIL-M-38510. |

3.1.2 Terms and Definitions
 Terms and definitions shall be as defined in MIL-STD-1313.

3.1.3 Classification of Requirements

The requirements for the integrated circuits are classified herein as follows:

Requirement	Paragraph
Process Conditioning, Testing and Screening	3.2
Qualification	3.3
Design and Construction	3.4

38510/MACH IV PROCUREMENT SPECIFICATION

Marking of Integrated Circuits 3.5
Product Assurance 3.6
Workmanship 3.7
Performance Capabilities 3.8
Quality and Reliability Assurance Program Plan 3.9

Process Conditioning, Testing and Screening

Three levels of screening and quality assurance for integrated circuits are provided for in this specification. Process conditioning, testing and screening shall be as specified in 4.3 and the applicable figure for the appropriate quality assurance level stated on the purchase order and defined as follows:

SCREENING LEVEL	PART NUMBER PREFIX		APPLICABLE	
	BIPOLAR	CMOS		FLOW CHART
$38510 / 883$ Class A (Level IV)	SNH	TFH	Not Avail.	Figure 4
$38510 / 883$ Class B (Level III)	SNC	TFC		Figure 3
			SMC	Figure 2
$38510 / 883$ Class C (Level I)	SNM	TFM	Not Avail.	Figure 1

3.3 Qualification

Vendor qualification for delivery of integrated circuits to this specification shall be as specified in paragraph 4.2.
3.4 Design and Construction

Integrated circuit design and construction shall be in accordance with the requirements specified herein and in the applicable detail specification.

3.4.1 Topography

Integrated circuits furnished under this specification shall have topography information available for review by procuring activity. The information made available shall provide sufficient data for thorough circuit design, application, performance, and failure analysis studies.

3.4.1.1 Monolithic Die Topography

An enlarged photograph or drawing (to scale) with a minimum magnification of 80 times the die (chip) size showing the topography of elements formed on the silicon monolithic die shall be available for review. This shall be identified with the specific detail integrated circuit part-type in which it is used and the applicable detail specification.

TEXAS INSTRUMENTS

NOIL甘כIJIJヨdS INヨWヨynjoyd AI Hכ甘W／OLG8E

38510/MACH IV PROCUREMENT SPECIFICATION

38510/MACH IV PROCUREMENT SPECIFICATION

3.4.1.2 Die Intraconnection Pattern

An enlarged photograph or drawing (to scale) with a minimum magnification of 80 times the die (chip) size showing the specific intraconnection pattern utilized to intraconnect the elements in the circuit. This shall be in the same scale as the die topography 3.4.1.1 so that the elements utilized and those not being used can easily be determined.

3.4.2 Materials

Materials shall be inherently non-nutrient to fungus and shall not blister, crack, outgas, soften, flow or exhibit other immediate or latent defects that adversely affect storage, operation or environmental capabilities of integrated circuits.

3.4.2.1 Material Selection

Materials selected for use in the construction of the integrated circuits shall be chosen for maximum suitability for the application. This shall include consideration of the best balance for:
a) Electrical performance
b) Thermal compatibility and conductivity
c) Chemical stability including resistance to deleterious interactions with other materials
d) Metallurgical stability with respect to adjacent materials and change in crystal configuration
e) Maximum stability with regard to continued uniform performance through the specified environmental conditions and life.

3.4.2.2 Foreign Materials

No lacquer, grease, paste, desiccant or other similar foreign encapsulant or coating material shall be included in the circuit enclosure nor applied to any part of the internal circuit assembly.
3.4.3 Mechanical

3.4.3.1 Case

Each integrated circuit shall be securely mounted and hermetically sealed within a case designed and constructed to conform to the outline and physical dimensions shown in the detailed specification.

38510/MACH IV PROCUREMENT SPECIFICATION

3.4.3.2 Interconnections

Interconnections within the integrated circuit case shall be minimized and there shall be no wire crossovers. Circuit intraconnections by means of wire jumpers shall not be used. (See Note 6.2)

3.4.3.3 Leads

Lead material, construction, and outline shall be as specified on the detail specification and shall be capable of meeting the solderability test of MIL-STD-883, Method 2003. (See note 6.4).
3.4.3.3.1 Lead Size

Lead outline and dimensions shall be as specified in the detail specification.

3.4.3.3.2 Lead Surface Condition

Leads shall be free of the following defects over their entire length when inspected under a minimum of 4X magnification:
a) Foreign materials adhering to the leads such as paint, film, deposits and dust. Where adherence of such foreign materials is in question, leads may be subjected to a clean, contaminant-free (e.g., oil, dust, etc.), filtered air stream (suction or expulsion) of 88 feet per second maximum, or a wash/rinse as necessary and reinspected.
b) Nicks, cuts, scratches or other surface defacing defects which expose the base metal.

3.4.3.3.3 Lead Straightness

Leads shall be aligned within a 0.050 -inch diameter, 0.050 -inch length cylinder concentric to the point of lead emergence from the case and the X -axis (the axis parallel to the lead axis). Along the remaining lead length, there shall be no unspecified bend whose radius is less than 0.10 inch and no twist whose angle is greater than 30° (ribbon leads, only).

3.4.3.3.4 Preformed Leads

Preformed leads, when specified, shall be in accordance with the detail specification. The part number of the integrated circuit shall remain as specified in the applicable detail specification or purchase order, the applicable suffix designation shall appear on the purchase order but shall not be marked on the device.

38510/MACH IV PROCUREMENT SPECIFICATION

3.4.3.3.5 Carriers (Mech-Pak Carrier)

Carrier-matrix assemblies consisting of individually mounted integrated circuits shall be furnished when so specified by purchase order. The individual carriers shall have provisions for use with automatic test equipment contacts. Devices supplied "clipped-out" of the Mech-Pak Carrier shall be supplied in the Barnes Carrier type $029-188$ or equivalent. (Applicable to Flat Packs only.)
3.5 Marking of Integrated Circuits
3.5.1 Legibility

All marking shall be permanent in nature and remain legible when subjected to specified operating, storage, and environmental requirements. All markings shall be insoluble in standard solvents such as trichlorethylene, water and xylene.

3.5.2 Marking Details

Marking of the integrated circuits shall be located as follows unless otherwise specified in the detail specification:
a) TO-99, TO-100, and similar "can" cases shall be marked on the top of the case. Where space limitations exist, the side of the case may be used.
b) Flat Packs shall be marked on the top of the case. Where space limitation exists, the bottom of the package may be utilized as necessary. As a minimum the top of the package shall show the manufacturer's identification mark or symbol, the device part number, date code, and pin 1 orientation mark (where applicable).
c) Dual-in-line plug-in packages shall be marked in the same manner as flat packs.
3.5.3 Required Device Marking
a) Index point indicating the starting point for numbering of leads shall be as indicated in the detail specification. The indexing point may be a tab, color dot, or other suitable indicator.
b) Manufacturer's identification mark or symbol.
c) An alpha-numeric lot date code indicating the week of initial submission for screening or inspection. The date code shall be as follows:

1) EIA four-digit date code, the first two numbers shall be the last two digits of the year, the last two numbers shall indicate the calendar week.

38510/MACH IV PROCUREMENT SPECIFICATION

Abstract

2) A Gothic letter which identifies separate lots of the same device type processed within the same calendar week. (If no more than one lot is processed through screening or inspection in a given calendar week, the Gothic letter may be omitted.) d) Manufacturer's part number defining circuit type and applicable MIL-STD-883 screening level and MIL-M-38510 product assurance level as defined in paragraph 3.2. e) Individual device serial number is required for Class A (SNH). f) A dot to indicate acceptance by Radiographic inspection

NOTE: When a color dot is used to identify pin one, the radiographic inspection acceptance dot shall be placed on the bottom of the package. g) Gothic letter per U.S. Customs code preceding data code identifies assembly location.

\subsection*{3.6.1 Visual and Mechanical Examination}

Integrated circuits shall be examined to verify that material, design, construction, physical dimensions, marking and workmanship are in accordance with the specified acceptance criteria. Product Assurance

The manufacturer shall establish and maintain a reliability assurance program that complies with the basic intent of MIL-STD-790. Furthermore, it is intended that each integrated circuit delivered shall be free of any defect in design, material, manufacturing process, testing and handling, which would degrade or otherwise limit its performance when used within the specified limits.

\subsection*{3.6.2 Test Equipment}

The manufacturer shall prepare and maintain a current list, by name and drawing number or other unique identification, of test equipment used in the manufacturing and testing of devices submitted for acceptance inspection under this specification. This list shall be made available to the procuring activity representative upon request. 3.6.3 Process Controls

Each integrated circuit shall be constructed by manufacturing processes which are under the surveillance of the manufacturer's Quality Control department. The processes shall be monitored and controlled by use of statistical techniques in accordance with published specifications and procedures. The manufacturer shall prepare and maintain suitable documentation (such as quality control manuals, inspection instructions, control charts, etc.) covering all phases of incoming part and material inspection and in-process inspections required to assure that product quality meets the requirements of this specification. The

38510/MACH IV PROCUREMENT SPECIFICATION

procuring activity may verify, with the permission of and in the company of the manufacturer's designated representative, that suitable documentation exists and is being applied. Information designated as proprietary by the manufacturer will be made available to the procuring activity or its representative only with the written permission of the manufacturer.

Process control is recognized as being vital to the concept of "built-in" quality. The process control program shall include a scanning electron microscope (SEM) monitor program for evaluating the metal integrity over oxide step and oxide step contour. The SEM analysis will be defined in a Quality \& Reliability Assurance document.

3.6.4 Production Changes

The manufacturer shall advise the procuring activity of the time at which any major change(s) in production or QC methods or documentation become effective during the period of device production for delivery against any given purchase order referencing this specification.

3.7 Workmanship

Integrated circuits shall be manufactured and processed in a careful and workmanlike manner, in accordance with the production processes, workmanship instructions, inspection and test procedures, and training aids prepared by the manufacturer in fulfillment of the reliability assurance program established by paragraph 3.6.

3.7.1 Personnel Certification

The manufacturer shall be responsible for training, testing and certification of personnel involved in producing integrated circuits. Training shall be commensurate and consistent with the requirements of this specification and in conformance to the basic intent of MIL-STD-790. Training aids in the form of satisfactory criteria shall be available for operator and inspector review at any time.
3.7.2 Personnel Evaluation

The supplier shall maintain a continuous evaluation of the proficiency of personnel concerned with production and inspection. Retraining of an operator or inspector shall be required when this evaluation establishes that a degree of proficiency necessary to meet the requirements of this specification is not being exercised.

38510/MACH IV PROCUREMENT SPECIFICATION

3.7.3 Rework provisions

3.7.3.1 Rework

All rework on micorcircuits manufactured under this specification shall be accomplished in accordance with paragraph 3.7.1 of MIL-M-38510 as defined herein.

3.7.3.2 Rebonding

Rebonding shall be in accordance with MIL-M-38510, as defined herein (see Note 6.5)

Performance Capabilities

The integrated circuits delivered to this specification shall be designed to be capable of meeting the environmental requirements specified in Table II. The manufacturer need not perform these tests specifically for the contract or specification, but shall provide data which demonstrates the ability of the integrated circuits to pass the environmental tests. The data shall have been generated on devices from the same generic family as the circuits being supplied to this specification, and the package configuration shall be the same as for the delivered parts (i.e., Flat Pack, TO-100, etc.).

Quality and Reliability Assurance Program Plan

The manufacturer shall establish and implement a Quality and Reliability Assurance Program Plan that meets the intent of MIL-M-38510, Appendix A. Submission of the program plan to the procuring activity shall not be a requirement of this specification; however, the program plan shall be maintained by the manufacturer and shall be available for review by the procuring activity.

38510/MACH IV PROCUREMENT SPECIFICATION

4.0 QUALITY ASSURANCE PROVISIONS

4.1 Responsibility for Inspection

Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection requirements specified herein. Except as otherwise specified, the manufacturer may utilize his own facilities or any commercial laboratory acceptable to the procuring activity. The procuring activity may, at its discretion, perform any of the inspections set forth in the specification where such inspections are deemed necessary to assure supplies and services conform to prescribed requirements.

4.1.1 Inspection and Testing Procedures Coverage

Inspection and testing processes and procedures prepared in fulfillment of the reliability assurance program established per paragraph 3.6 siall be prescribed by clear, complete and current instructions. These instructions shall assure inspection and test of materials, work in process and completed integrated circuits as required by this specification. In addition, criteria for approval and rejection of materials and integrated circuits shall be included.

4.1.2 Inspection at Point of Delivery

The procuring activity may, at its discretion, reinspect any or all of the delivered parts excluding Group B and C destructive samples as defined by MIL-STD-883. All parts found to be defective, excluding devices exhibiting damage from use, may be returned to the manufacturer at the manufacturer's expense.

4.1.3 Inspection Records

The manufacturer shall maintain a reliability data and records library. This library shall have on file, for review by the procuring activity, records of examination, qualification test results, variables data (when required) and all other pertinent data generated on devices manufactured to this specification.

4.1.4 Control of Procurement Sources

The manufacturer shall be responsible for assuring that all supplies and services conform to this specification, the detail specification and the manufacturer's procurement requirements.

38510/MACH IV PROCUREMENT SPECIFICATION

4.1.4.1 Manufacturer's Receiving Inspection

Purchased supplies shall be subjected to inspection after receipt as necessary to ensure conformance to contract requirements. In selecting sampling plans, consideration shall be given to the controls exercised by the procurement source and evidence of sustained quality conformance.
4.1.4.2 The manufacturer shall provide procedures for withholding from use all incoming supplies pending completion of required tests or receipt of necessary certification or test records and their evaluation.
4.1.4.3 The manufacturer shall initiate corrective action with the procurement source depending upon the nature and frequency of receipt of nonconforming supplies.

4.1.5 Procuring Activity Quality Assurance Representative

The procuring activity, may, at its discretion, place quality assurance representatives in the manufacturer's plant as deemed necessary to assure conformance to contract requirements in any non-proprietary phase of design, fabrication, processing, inspection, and testing of the integrated circuits being produced. The manufacturer shall provide reasonable facilities and assistance for the safety and convenience of such personnel in the performance of their duties. Inspection and test procedures shall be made available for review by the quality assurance representative.
4.2 Qualification and Quality Conformance Inspection

4.2.1 Qualification

Manufacturer's specific device qualification shall be based on compliance with the quality conformance test per Table III for MOS LSI devices. Qualification for other technologies shall be per Table 1 except that the testing will be to one LTPD level tighter than as defined in Table B-I of MIL-M-38510.

4.2.1.2 Procedures and Definitions

4.2.1.2.1 Sampling Procedure

Device selection for the qualification procedure of 4.2 .1 shall be based on a random sampling technique and will be selected from a generic family.

4.2.1.2.2 Generic Family

Electrically and structurally similar devices shall be said to comprise a generic family (e.g., TTL) if they meet the following criteria:
a) Are designed with the same basic circuit-element configuration such as TTL, TTL Schottky, DTL, CMOS, MOS metal-gate, or MOS silicon-gate, and differ only in the number or complexity of specified circuits which they contain. Generic family for linear circuits is defined by circuit function (e.g. op amp, comparator, etc.).
b) Are designed for the same supply, bias and signal voltage, and for input/output capability with each other under an established set of loading rules.
c) Are enclosed in housings (packages) of the same basic construction (e.g., hermetically sealed flat packages, dual-in-line ceramic, dual-inline plastic) and outline, differing only in the number of active housing terminals included and/or utilized.

4.2.2 Quality Conformance Inspection

Quality conformance inspection group B and C requirements are per Tables I and II, Table II shall apply to MOS LSI and Table I to other technologies.
a) When specifically called out and funded on the purchase order or contract, the manufacturer shall perform the quality conformance inspections (Group B and/or Group C) on a lot-by-lot basis.
b) The manufacturer shall, upon request, make available for review generic quality conformance inspection and data. Data on Group B shall be by package type, number of pins, and assembly location for all subgroups.

Data on Group C, subgroups 1,2 , and 3 , shall be by package type, number of pins, and assembly location. Subgroups 4 and 5 by chip generic family in hermetic packages.

4.2.2.1 Lot Acceptance Sampling

Statistical sampling for quality conformance inspections shall be in accordance with MIL-M-38510 Table B-I.

Group B samples, except bond strength samples, shall be selected from sublots that have successfully completed all of the 100% processing steps specified on the applicable process flow chart.

4.2.2.2 Resubmission of Failed Lots

When any lot submitted for quality conformance inspection fails any subgroup requirement, it may be resubmitted a maximum of one time for that particular subgroup. One additional submission is permitted, provided an analysis is performed to determine the failure mechanism for each reject device in the subgroup, and that it is determined that the failures are due to one of the following:
a) Testing error resulting in electrical damage to devices

38510/MACH IV PROCUREMENT SPECIFICATION

b) A defect that can effectively be removed by rescreening the lot
c) Random defects which do not reflect poor basic device designs or poor workmanship.

4.2.2.3 Early Shipments

When quality conformance inspection is being performed for a specific contract or purchase order, the accepted Group A devices that are awaiting shipment pending successful completion of Group B and/or Group C, shall be stored in the Quality Assurance test area. Under no circumstances shall such parts be shipped prior to the successful completion of the Group B tests.

4.2.2.4 Groups B and C Test Data

All lot-by-lot data generated by Group B and/or Group C testing when specifically called out and funded on the purchase order, shall accompany the initial shipment of devices. This data shall consist, at a minimum, of the following:
a) Attributes data for Group B. Endpoints for the subgroups are visual per the applicable MIL-STD-883 test method.
b) Attributes data for Group C subgroups 1, 2, 4 and 5. Endpoints for these subgroups shall be per Table I and II.

4.2.2.5 Precedure in Case of Test Equipment Failure or Operator Error

Where an integrated circuit is believed to have failed as a result of faulty test equipment or operator error, the failure shall be entered in the test record which shall be retained for review along with a complete explanation verifying why the failure is believed to be invalid. If it is determined that the failure is invalid, a replacement integrated circuit from the same inspection lot may be added to the sample. The replacement integrated circuit shall be subjected to all those tests to which the discarded integrated circuit was submitted prior to its failure, and any remaining specified test to which the discarded integrated circuit was not subjected prior to its failure.
4.3 Quality Assurance Processing, Methods and Procedures

This section establishes the test methods and conditions to be used for the 100% processing (screening) requirements specified by the applicable process flow chart.
4.3.1 Precap Visual Inspection

Each microcircuit shall be required to pass the appropriate precap visual inspection defined as follows. Precap Lot Acceptance shall be per paragraph 4.6.

38510/MACH IV PROCUREMENT SPECIFICATION

4.3.1.1 38510 Class C (Level I) and 38510 Class (Level III) devices shall be visually inspected in accordance with MIL-STD-883, Method 2010, Condition B.
4.3.1.2 38510A (Level IV) devices (designated for NASA type applications) shall be visually inspected in accordance with MIL-STD-883, Method 2010, Condition A. (See notes 6.1.1.1 and 6.1.1.2).
4.3.1.3 Complex MSI and LSI circuits as defined in MIL-STD-883, Method 5004, paragraph 3.3 may be precap inspected per MIL-STD-883, Method 5004, paragraph 3.3.1 for 38510 Class B (Level III) and paragraph 3.3.2 for 38510 Class C (Level I).
4.3.2 Stabilization Bake

The purpose of this test is to determine the effect on microelectronic devices of baking at elevated temperatures without electrical stress applied. Test shall be performed in accordance with MIL-STD-883, Method 1008, Condition C.
4.3.3 Thermal Shock

The purpose of this test is to determine the resistance of the device to sudden exposure to extreme changes in temperature. Test shall be performed in accordance with MIL-STD-883, Method 1011.1, Condition A.

4.3.4 Temperature Cycle

This test is conducted for the purpose of determining the resistance of a part to exposures to extremes of high and low temperatures, and to the effect of alternate exposures to these extremes, such as would be experienced when equipment or parts are transferred to and from heated shelters in arctic areas. Test shall be performed in accordance with MIL-STD-883, Method 1010, Condition C, minimum of 10 cycles. For MSI and LSI complex devices as defined in MIL-STD-883, Method 5004, paragraph 3.3, 50 cycles may be used in lieu of alternate pre-cap visual inspection criteria.
4.3.5 Mechanical Shock

The shock test is intended to determine the suitability of the devices for use in electronic equipment which may be subjected to moderately severe shocks as a result of suddenly applied forces or abrupt changes in motion produced by rough handling, transportation, or field operation. Test shall be performed in accordance with MIL-STD-883, Method 2002, Condition B, five blows minimum.
4.3.6 Centrifuge (Constant Acceleration)

The centrifuge test is used to determine the effects on microelectronics devices of a centrifugal force. This test is designed to indicate structural and mechanical weaknesses not necessarily detected in shock and vibration tests. Test shall be performed in accordance with MIL-STD-883, Method 2002, Condition E for devices having less than 20 pins and Condition D for those having more than 20 pins.

38510/MACH IV PROCUREMENT SPECIFICATION

4.3.7 Fine Leak Test

Each integrated circuit for 38510 Class C (Level I), 38510 Class B (Level III), and 38510 Class A (Level IV) screens shall be subject to a fine leak test in accordance with paragraph 4.3.7.1 or 4.3.7.2. The method shall be optional providing it is consistent with and capable of detecting the specified leak rate of the applicable process flow chart.

4.3.7.1 Helium Leak Test

Helium leak test shall be performed in accordance with MIL-STD-883, Method 1014, Condition A.
4.3.7.2 Radiflo Leak Test

Radiflo leak test shall be performed in accordance with MIL-STD-883, Method 1014, Condition B. Krypton 85 bomb pressure and dwell time are a function of the radioactivity level and shall be selected so as to conform to the equations given in Condition B.
4.3.8 Gross-Leak Test

Each integrated circuit for 38510 Class C (Level I), 38510 Class B, (Level III) and 38510 Class A (Level IV) screens shall be subjected to the appropriate gross-leak test of paragraph 4.3.8.1 or 4.3.8.2, or an approved equivalent. The manufacturer may, at his option, perform gross-leak testing after the Set I Electrical Tests of paragraph 4.3.9.
4.3.8.1 When specifically called out and funded on the purchase order or contract, units will be bombed 2 hours minimum at 30 psig in $\mathrm{FC}-78$, or equivalent. Units will then be immersed in FC- 40 or equivalent at $+125^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for 30 seconds minimum and observed for for a definite stream of bubbles, more than two large bubbles, or an attached bubble that grows in size, per MIL-STD-883, Method 1014, Condition C2.
4.3.8.2 Units will be immersed in FC- 40 or equivalent at $+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for 30 seconds minimum and observed for a definite stream of bubbles, more than two large bubbles or an attached bubble that grows in size, per MIL-STD-883, Method 1015, Condition C1,.

4.3.9 Final Electrical Test (Set I)

Each integrated circuit shall be required to pass the electrical requirements of the data sheet. The manufacturer shall also perform such additional testing necessary to assure the parts will meet the temperature extreme limits. MOS LSI memory devices will be $100 \% \mathrm{dc}$ and ac tested both at $25^{\circ} \mathrm{C}$ and at high temperature.

When specifically called out and funded on the purchase order or contract, the manufacturer shall perform subgroups 2,3 , and 4 of paragraph 4.4 in accordance with Method 5004 of MIL-STD-883.

38510/MACH IV PROCUREMENT SPECIFICATION

4.3.10 Burn-In

The burn-in screen is performed for the purpose of eliminating marginal devices and early-life failures evidenced as time and stress dependent. Test shall be in accordance with MIL-STD-883; Method 1015, Condition A, D, or E at $125 \pm 5^{\circ} \mathrm{C}$ for digital circuits and Conditions A, B, C, or D for linear circuits. 38510 Class B (Level III) MSI and LSI complex devices, as defined in MIL-STD-883, paragraph 3.3.1, may receive a 240-hour-minimum burn-in in lieu of alternate precap visual inspection criteria per MIL-STD-883, Method 5004, paragraph 3.3.1.

4.3.11 Final Electrical Test (Set II)

Each 38510 Class A (Level IV) integrated circuit shall be required to pass the electrical requirements of the detail specifications. The following tests shall be performed as a minimum: dc parameters at maximum and minimum rated temperatures, and switching parameters at $25^{\circ} \mathrm{C}$. In addition, each bipolar device shall have critical $25^{\circ} \mathrm{C}$ dc electrical parameters read and recorded by serial number and shall pass the following delta requirements:
PARAMETER
$V_{O O L}$
$V_{O H}$
$I_{I H}$

DELTA LIMIT
$\pm 10 \%$ of detail specification limit $\pm 10 \%$ of detail specification limit $\pm 10 \%$ of detail specification limit $\pm 10 \%$ of detail specification limit

CMOS recorded parameters and delta limits will be defined by the manufacturer as required.

One copy of the pre-burn-in and post-burn-in recorded data with delta calculations shall be shipped with each lot. Data will not be available for the metal flat pack (T). See MIL-M-38510, Class S. The manufacturer may, when deemed necessary, elect to perform additional electrical testing over and above the requirements stated herein.
4.3.12 Radiographic Inspection (X-ray)

Test shall be performed in accordance with MIL-STD-883, Method 2012. X-ray may be performed at any point after serialization at the manufacturer's option. (see note 6.3).
4.3.13 External Visual Inspection

The purpose of this examination is to verify that materials, construction, marking, and general workmanship are as specified. Examination shall be in accordance with MIL-STD-883, Method 2009.

4.3.14 Voltage Stress

Selected n-channel MOS LSI devices will be voltage stressed for 40 hours minimum at $25^{\circ} \mathrm{C}$ min per MIL-STD-883 Method 10155, Condition D.

38510/MACH IV PROCUREMENT SPECIFICATION

4.4 Group A Conformance

Group A conformance shall consist of the electrical parameters in the manufacturer's data sheet. If an inspection lot is made up of a collection of sublots, each sublot shall conform to Group A, as specified.

SUBGROUP	LTPD (\%)			
	$\begin{aligned} & \text { LEVEL I } \\ & 38510 \mathrm{C} \end{aligned}$	LEVEL II	$\begin{aligned} & \text { LEVEL III } \\ & 38510 \mathrm{~B} \end{aligned}$	$\begin{gathered} \text { LEVEL IV } \\ 38510 \mathrm{~A} \end{gathered}$
Subgroup 1	5	7	5	5
$25^{\circ} \mathrm{C}$, dc				
Subgroup 2	10	10	7	5
High Temperature, dc				
Subgroup 3	10	10	7	5
Low Temperature, dc				
Subgroup 4	10	10	7	5

Dynamic and Switching Tests @ $25^{\circ} \mathrm{C}$
NOTE: Functional tests included in dc tests.
4.5 Certification

The manufacturer shall include a certificate of compliance with each shipment of parts if requested on the purchase order. This certificate shall indicate that all specified tests and requirements of this specification have been made or met, and that the lot of devices (identified by lot and/or batch number) is acceptable. The certificate shall bear the name and signature of the manufacturer's Quality Control representative, the date of acceptance or signing, and any pertinent notes as applicable.
4.6 Precap Lot Acceptance

After each precap inspection the lot of devices shall be sampled by quality control and inspected for the specified visual criteria.

38510/MACH IV PROCUREMENT SPECIFICATION

QUALITY CONFORMANCE TEST (GROUP B/GROUP C)

TEST	MIL-STD-883 METHOD	CONDITIONS	$\begin{gathered} \text { LEVEL IV } \\ 38510 \mathrm{~A} \end{gathered}$	LTPD LEVEL III 38510B	$\begin{array}{\|c\|} \hline \text { LEVEL I } \\ 38510 C \end{array}$
Subgroup 1^{2}					
Physical Dimensions	2016		19	15	20
Subgroup $\mathbf{2}^{2}$					
Marking Permanency	2015				
Visual and Mechanical	2014				
Bond Strength ${ }^{1}$	2011	Condition C or D	10	15	20
		2 grams for Au bonds			
		1.5 grams for Al bonds			
Subgroup 3^{2}					
Solderability	2003	Omit Aging	10	15	15
Subgroup 4^{2}					
Lead Fatigue	2004	Conditions B_{2}			
Fine Leak	1014	Conditions A or B, per para. 4.3.7 of this spec.			
Gross Leak	1014	Condition C, per para. 4.3.8 of this spec.	10	15	15
		GROUP C			
Subgroup 1					
Thermal Shock	1011	Condition B			
Temp. Cycle	1010	Condition C			
Moisture Resistance	1004	Omit Initial Cond.			
Fine Leak	1014	Conditions A or B, per para 4.3.7 herein			
Gross Leak	1014	Condition C, per para. 4.3.8 herein	10	15	15
Electrical End Points	5005	Subgroups 1, 2, 3, and 7			
Subgroup 2					
Mechanical Shock	2002	Condition B			
Vibration Variable Freq.	2007	Condition A			
Constant Acceleration	2001	Condition E^{3}			
Fine Leak	1014	Conditions A or B, per para. 4.3.7 herein			
Gross Leak	1014	Condition C, per para. 4.3.8 herein	10	15	15
Electrical End Points	5005	Subgroups 1, 2, 3, and 7			
Subgroup 3					
Salt Atmosphere	1009	Condition A Omit Initial Conditioning	10	15	15
Subgroup 4					
High Temp Storage	1008	$150^{\circ} \mathrm{C}, 1000 \mathrm{Hrs}$.			
Electrical End Points	5005	Subgroups 1, 2, 3, and 7	7	7	7
Subgroup 6					
Operating Life Test	1005	$125^{\circ} \mathrm{C}, 1000 \mathrm{Hrs}$. Minimum			
Electrical End Points	5005	Subgroups 1, 2, 3, and 7	5	5	5

1. Bond strength test may be performed on samples randomly selected immediately following internal visual prior to sealing.
2. Visual and/or hermetic end points; hence, electrical or visual rejects may be used. Reference MIL-STD-883, Method 5005.2, para. 3.4.
3. Condition D for packages with 20 pins or more. Condition E for packages with less than 20 pins.

38510/MACH IV PROCUREMENT SPECIFICATION

TABLE II			
QUALITY CONFORMANCE TEST			
MOS LSI CIRCUIT			
TEST	MIL-STD-883	CONDITIONS	LTPD
Subgroup 1			
Temperature Cycle	1001	Condition C	
Constant Acceleration	2001	Condition D1, Y_{1} Plane	
Electrical End Points	5005	Subgroup 1	15
Subgroup 2			
Operating Life	1005	Condition D, 500 Hrs. Mini	
Electrical End Points	5005	Subgroup 1	10

1. Condition D for packages with 20 pins or more. Condition E for packages with less than 20 pins.

38510/MACH IV PROCUREMENT SPECIFICATION

2. Electrical end points only.
3. Condition D for packages with 20 pins or more. Condition E for packages with less than 20 pins.

38510/MACH IV PROCUREMENT SPECIFICATION

5.0 PREPARATION FOR DELIVERY

5.1 Final Visual Shipping Inspection

Each lot of microcircuits and its associated documentation shall be sampled by Quality Control and visually inspected for the following:
a) Scratched, nicked or bent leads
b) Damaged header (packages)
c) All test data specified in section 4.0
d) Certificate of Compliance as specified in section 4.0
e) All other pertinent documentation required and specified by this specification.
5.2 Packing Requirements

Parts shall be packed in containers of the type, size, and kind commonly used which will ensure acceptance by common carriers and safe delivery at the destination and in accordance with MIL-M-55565, Level C, bulk pack. The containers shall be clearly marked with manufacturer's name or symbol.
5.3 Preservation and Package Identification

The package shall be marked with the following:
The country of origin if other than U.S.A.
Procuring activity parts number
Purchase order number
Material nomenclature
Quantity
Lot number
Date code
This information shall appear on the label or shall be directly marked on each container. Method is optional.

38510/MACH IV PROCUREMENT SPECIFICATION

6.0 NOTES

6.1 Precap Visual Method 2010

The following criteria may be in conflict with the circuit design topology and construction techniques of some microcircuit manufacturers. Where such a conflict does exist, the inspection criteria listed herein may be waived. (Reference paragraph 3.0 of MIL-STD-883, Method 2010).
6.1.1 Preseat Visual Inspection, Test Condition B [38510 Class B (Level III) and 38510 Class C (Level I)] .
6.1.1.1 Paragraph 3.2: a 20-PSI minimum blow-off prior to seal will be performed to meet the intent of a controlled environment.
6.1.1.2 For titanium-tungsten, gold, titanium-tungsten multilayered systems, the underlying metal is defined as the bottom titanium tungsten and the top layer is defined as gold.

38510/MACH IV PROCUREMENT SPECIFICATION

Interconnections

Circuit interconnections (metallization pattern) shall be designed so that no properly fabricated connection shall experience a current density greater than 5×105 amperes $/ \mathrm{cm}^{2}$, including allowances for worst-case conductor composition, normal production tolerances on design dimensions, and nominal thickness at critical areas such as contact windows.
6.3 X-Ray Method 2012

Paragraph 3.9.2.2a(2) and (3) delete and replace with: "Cause for rejection shall be a single void in the bar attachment material opening two adjacent sides and exceeding 50% of the length of one side and 100% of the length of the other side."
6.4 Salt Atmosphere Test, Method 1009

Where package design considerations necessitate (such as 0.75 -inch tip-to-tip metal flat packs), there may be a conformal coating applied prior to the salt atmosphere test.

6.5 Rebonding

Attempts to bond where only impressions have been made in the metal and where the bond did not make a physical attachment to the pad or post shall not be considered evidence of rebonding.

JAN MIL-M-38510 Integrated Circuits

JAN MIL-M-38510 INTEGRATED CIRCUITS

The MIL-M-38510 JAN Program implemented by Texas Instruments provides a standardized qualification and specification system for high-reliability military applications. The program covers a wide range of monolithic integrated circuits including digital and linear device types in both dual-in-line and flat pack configurations. For device types not yet covered by MIL-M-38510 JAN slash sheets or for cost-effectivity and improved availability, the Texas Instruments 38510/MACH IV Program is recommended. It includes all the significant and practical controls, lot acceptances, and screenings included in the MIL-M-38510 JAN Program and is available at approximately one-third of the cost. The 38510/MACH IV Program includes a controlled procurement document encompassing general specifications MIL-M-38510A and MIL-STD-883A dated 15 November 1974. Revision D of the TI 38510/MACH IV specification is included in Tab Section 7 of this book.

The TI 38510/MACH IV Program also offers an aid to specification writing by providing a cost-effective 38510 and 883 base document, whereby special device program specifications may be written invoking any additional testing options unique to a specific program. The TI 38510/MACH IV specification is organized and written per MIL-STD-100 to allow its use as a program specification by merely adding the user's company name and drawing number, as well as any required additions or deletions necessary to meet the specific program goals.

Table I provides a convenient cross-reference from the JAN part numbers to the corresponding standard catalog part numbers. The cross reference from the catalog numbers to the JAN slash sheet numbers is provided in Table II.

The complete JAN part number with the tables of class, case, and lead finish codes is given in Table III, along with a cross reference to the TI 38510/MACH IV part number. A table of standard TI cases and lead finishes is also provided to assist in specifying the proper JAN part number. It is imperative that the proper case and lead finish shown in the table be specified on the parts list and procurement documentation. The specific package for each device is determined by referring to the proper data sheet.

The following figure defines the reliability classes of MIL-M-38510 JAN and TI 38510/MACH IV ICs, and the intended areas of application. MIL-M-38510 recommends that for original equipment complements, the device class appropriate to the need be used, while Class B is recommended for spare parts for logistic support.

RECOMMENDED USE	TYPICAL SYSTEM APPLICATIONS	MIL-STD-883 MIL-M-38510 CLASS	38510/MACH IV LEVEL
Where repair or replacement is readily accomplished and "down time" is not critical Where repair or replacement is difficult or impossible and reliability is vital Where repair or replacement is difficult or impossible and reliability is imperative	Prototype, noncritical support or gronstems missile systems	Class C Critical avionics, space and strategic missile systems	Class B (SNM)

Wide acceptance of TI 38510/MACH IV Class B "SNC" level devices has made possible improved availability thru distributor and factory stocking programs. The following military documents (see Note 1) establish the processing, quality, and reliability assurance requirements for JAN integrated circuits. The detail requirements of each individual JAN device are specified in the slash sheets.

> MIL-M-38510/XXX, Microcircuits, Digital, TTL,, Monolithic Silicon (Slash Sheets)
> MIL-M-38510A, Microcircuits, General Specification for
> MIL-STD-883A, Test Methods and Procedures for Microelectronics
> QPL-38510, Qualified Products List for MIL-M-38510

NOTE 1: Copies of these documents may be requested from the Naval Pulbications and Forms Center, 5801 Tabor Avenue, Philadelphia, Pa. 19120.

JAN MIL-M-38510 INTEGRATED CIRCUITS

TABLE I. JAN INTEGRATED CIRCUITS AND CIRCUIT-TYPE CROSS-REFERENCE								
JAN	CKT	JAN	CKT	JAN	CKT	JAN	CKT	
/NO.	TYPE	/NO.	TYPE	/NO.	TYPE	/NO.	TYPE	
00101	5430	01401	54150	04001	54H50	$07501 \dagger$	54586	
00102	5420	01402	9312年	04002	54 H 51	07502†	54S135	
00103	5410	01403	54153	04003	54 H 53	$07601 \dagger$	54S194	
00104	5400	01404	9309	04004	54H54	07602†	54S195	
00105	5404	01405	54157	04005	54H55	$07701 \dagger$	$54 \mathrm{S138}$	
00106	5412	$01406 \dagger$	54151	04101	54L51	$07702 \dagger$	$54 \mathrm{S139}$	
00107	5401	01501	5475	04102	54L54	$07703 \dagger$	545280	
00108	5405	01502	5477	04103	54L55	$07801 \dagger$	545181	
00109	5403	01503	54116	04104*	54L54	07802†	545182	
00201	5472	01504	9314٪	04201	54L121	$07901 \dagger$	$54 \mathrm{S151}$	
00202	5473	01601	5408	04202	54 L 122	$07902 \dagger$	$54 \mathrm{S153}$	
00203	54107	01602	5409	05001	4011A	$07903 \dagger$	545157	
00204	5476	01701	54174	05002	4012A	$07904 \dagger$	$54 \mathrm{S158}$	
00205	5474	01702	54175	05003	4023A	$07905 t$	545251	
00206	5470	01703t	54173	05101	4013A	$07906 \dagger$	545257	
00207	$5479 \ddagger$	$01801 \dagger$	54170	05102	4027A	$07907 \dagger$	54S258	
00301	5440	01901 t	54180	05201	4000A	$08001 \dagger$	54 S 11	
00302	5437	02001	54L30	05202	4001A	08002 \dagger	$54 \mathrm{S15}$	
00303	5438	02002	54L20	05203	4002A	$08101 \dagger$	$54 \mathrm{S140}$	
00401	5402	02003	54 L 10	05204	4025A	$08201 \dagger$	54585	
00402	5423	02004	54 LOO	05301	4007A	10101	52741	
00403	5425	02005	54L04	0.5302	4019A	10102	52747	
00404	5427	02006	54L01/54L03	05303	4030A	10103	52101A	
00501	5450	02101	54L71	05401	4008A	10104	52108A	
00502	5451	02102	54L72	05501	4009A	$10105 t$	LH2101A	
00503	5453	02103	54L73	05502	4010A	10106t	LH2108A	
00504	5454	02104	54L78	05503	4049A	10201	52723	
00601	5482	02105	54L74	05504	4050A	$10202 \dagger$	52104	
00602	5483	02201	54 H 72	05601	4017A	10203t	52105	
00603	9304才	02202	54 H 73	05602	4018A	10301	52710	
00701	5486	02203	54 H 74	05603	4020A	10302	52711	
00801	5406	02204	54H76	05604	4022A	10303	52106	
00802	5416	02205	54H101	05605	4024A	10304	52111	
00803	5407	02206	54 H 103	05701	4006A	10401	55107	
00804	5417	02301	54 H 30	05702	4014A	10402	55108	
00805	5426	02302	54 H 20	05703	4015A	10403	55114	
00901	5495	02303	54 H 10	05704	4021A	10404	55115	
00902	5496	02304	54 HOO	05705	4031A	10405	55113	
00903	54164	02305	$54 \mathrm{H04}$	05706t	4035A	$10406 \dagger$	7831	
00904	54165	02306	$54 \mathrm{H01}$	05707t	4034A	10501 t	52733	
00905	54194	02307	54 H 22	05801 †	4016A	10601	LM102 \ddagger	
00906	54195	02401	54 H 40	06001 .	10501 \ddagger	10602	52110	
$00907 \dagger$	9300\%	02501	54L90	06002	10502 \ddagger	10701	52109	
$00908 \dagger$	9328	02502	54L93	06003	$10505 \ddagger$	$10801 \dagger$	3018A	
$00909 \dagger$	54198	02503t	54L193	06004	10506	10802t	3045	
00910t	54166	$02504 \dagger$	93L10	06005	10507 \ddagger	15001	5485	
01001	5442	$02505 \dagger$	$93 \mathrm{~L} 16$	06006	10509 ¢	15101	5413	
01002	5443	02601	54L86	06101t	10531 ¥	15102	5414	
01003	5444	02701	$54 \mathrm{LO2}$	06102†	10631 \ddagger	15103	54132	
01004	5445	02801	$54 L 95$	$06103 t$	10576 \ddagger	$15201 \dagger$	54154	
01005	54145	02802	54L164	06104†	10535 \ddagger	15202t	54155	
01006	5446	02803	93L28 \ddagger	07001	54500	15203t	54156	
01007	5447	02804	$93 L 00$	07002	$54 S 03$	$15204 t$	8250	
01008	5448	02805	76L70	07003	$54 S 04$	$15205 t$	8251	
01009	5449	02806	$54 \mathrm{~L} 91$	07004	$54 S 05$	$15206 \dagger$	8252	
01101	54181	02901	54L42	07005	54510	$15301 \dagger$	54125	$\dot{8}$
01102	54182	02902	54L43	07006	54S20	15302 \dagger	54126	
01201	54121	02903	$54 \mathrm{~L} 44$	07007	54522	$15501+$	54 H 08	
01202	54122	02904	54L46	07008	54530	15502t	54 H 11	
01203	54123	02905	54 L 47	07009	545133	15601 t	54147	
01301	5492	02906	76L42A	07010	545134	15602†	54148	
01302	5493	03001	15930	07101	54574	$15801 \dagger$	9321	
01303	54160	03002	15935	07102	54 S 112	$15802 \dagger$	9301	
01304	54163	03003	15936	07103	$54 S 113$	$15803 \dagger$	9311	
01305	54162	03004	15946	07104	54 S 114	$15804 t$	9317	
01306	54161	03005	15962	07105	54S174	20101	54186 (PROM 512)	
01307	5490	03101	15932	07106	$54 \mathrm{S175}$	20102	MCM5304 \ddagger	
01308	54192	03102	15944	07201	54540	20103t	IM5603A	
01309	54193	03103	15957	07301	$54 \mathrm{SO2}$	$20201 \dagger$	545387 (PROM 1024)	
$01310 t$.	54196	03104	15958	07401	54 S 51	20202†	IM5623	
$01311 t$	54197	03105	15933	07402	54564	$23001 \dagger$	$5531 \text { (256 RAM) }$	
$01312 t$	54177	03501	MH0026	07403	54565	23002†	93410 (256 RAM)	

NOTE: Only the basic JAN and SN numbers are shown. Complete the numbers as shown in Table III.
${ }^{\dagger}$ Slash sheets not released as of date of this publication.
\ddagger Not recommended for new designs.
-Class S only.

JAN MIL-M-38510 INTEGRATED CIRCUITS

TABLE 1. JAN INTEGRATED CIRCUITS AND CIRCUIT-TYPE CROSS-REFERENCE							
JAN	СКт	JAN	СКт	JAN	CKT	JAN	CKT
/NO.	TYPE	/NO.	TYPE	/NO.	TYPE	/NO.	TYPE
23501 t	TMS4060 (4K RAM)	$30109 \dagger$	54LS109	$30701+$	54LS138	$31202 \dagger$	54LS283
23502 \dagger	TMS4050 (4K RAM)	$30201+$	54LS40	30702 \dagger	54LS139	$31301 \dagger$	54LS13
$30001 \dagger$	54LS00	$30202 \dagger$	54LS37	$30703 \dagger$	54LS42	$31302 \dagger$	54LS14
30002 \dagger	54LS03	$30203 \dagger$	54LS38	$30704 \dagger$	54LS47	$31303 \dagger$	54LS132
$30003 \dagger$	54LS04	30301 \dagger	54LS02	$30801+$	54LS181	$31401+$	54LS123
$30004 \dagger$	54LS05	$30302 \dagger$	54LS27	30901 t	54LS151	$31402 \dagger$	54LS221
$30005 \dagger$	54LS10	$30303 \dagger$	54LS266	$30902 \dagger$	54LS153	$31501 \dagger$	54LS90
$30006 \dagger$	54LS12	$30401+$	54LS51	$30903 \dagger$	54LS157	$31502 \dagger$	54LS93
$30007 \dagger$	54LS20	$30402 \dagger$	54LS54	$30904 \dagger$	54LS158	$31503 \dagger$	54LS160
$30008 \dagger$	54LS22	$30501 \dagger$	54LS32	$30905 \dagger$	54LS251	$31504 \dagger$	54LS161
$30009 \dagger$	54LS30	$30502 \dagger$	54LS86	$30906 \dagger$	54LS257	$31505 \dagger$	54LS168
$30101 \dagger$	54LS73	$30601 \dagger$	54LS194	$30907 \dagger$	54LS258	$31506 \dagger$	54LS169
$30102 \dagger$	54LS74	$30602 \dagger$	54LS195	$30908 \dagger$	54LS253	$31507 \dagger$	54LS192
$30103 t$	54LS112	$30603 \dagger$	54LS95	$31001 \dagger$	54LS11	$31508 \dagger$	54LS193
$30104 \dagger$	54LS113	$30604 \dagger$	54LS96	$31002 \dagger$	54LS15	31601 t	54LS75
$30105 \dagger$	54LS114	$30605 \dagger$	54LS164	$31003 t$	54LS21	$31602 \dagger$	54LS279
$30106 \dagger$	54LS174	$30606 \dagger$	54LS298	$31004 \dagger$	54LS08	$31701 \dagger$	54LS124
30107 \dagger	54LS175	$30607 \dagger$	54LS395	$31101 \dagger$	54LS85	$31702 \dagger$	54LS324
$30108 t$	54LS107	$30608 \dagger$	54LS670	31201 t	54LS83A	31801 †	54LS261

TABLE II. CIRCUIT-TYPE AND JAN INTEGRATED CIRCUITS CROSS-REFERENCE

CKT	JAN	CKT	JAN	CKT	JAN	CKT	JAN
TYPE	/NO.	TYPE	/NO.	TYPE	/NO.	TYPE	/NO.
LH2101A	$10105 \dagger$	4016A	$05801 \dagger$	54H72	02201	54LS114	$30105 \dagger$
LH2108A	$10106 t$	4017A	05601	54 H 73	02202	54LS123	31401 t
LM102	10601	4018A	05602	54 H 74	02203	54LS124	$31701+$
MCM5304 \ddagger	20102	4019A	05302	54 H 76	02204	54LS132	$31303 t$
MH0026	03501	4020A	05603	54 H 101	02205	54LS138	30701 t
TMS4050	23502 (4K RAM)	4021A	05704	54 H 103	02206	54LS139	30702†
TMS4060	23501 (4K RAM)	4022A	05604	54LS00	$30001 \dagger$	54LS151	$30901 \dagger$
1M5600	20103	4023A	05003	54LS02	$30301 \dagger$	54LS153	30902†
1M5603A	$20103 \dagger$	4024A	05605	54LS03	30002†	54LS157	30903 t
1 M 5623	$20202 \dagger$	4025A	05204	54LS04	$30003 \dagger$	54LS158	$30904 \dagger$
10501才	06001	4027A	05102	54LS05	$30004 \dagger$	54LS160	31503 t
10502 \ddagger	06002	4030A	05303	54LS08	$31004 t$	54LS161	$31504 \dagger$
$10505 \ddagger$	06003	4031A	05705	54LS10	$30005 \dagger$	54LS164	$30605 \dagger$
$10506 \ddagger$	06004	4034A	$05706 \dagger$	54LS11	$31001+$	54LS168	$31505 \dagger$
10507	06005	4035A	$05707 \dagger$	54LS12	$30006 \dagger$	54LS169	$31506 \dagger$
10509	06006	4049A	05503	54LS13	$31301 \dagger$	54LS174	$30106 t$
$10531 \pm$	$06101 \dagger$	4050A	05504	54LS14	$31302 \dagger$	54LS175	$30107 \dagger$
$10535 \ddagger$	$06104 t$	52101A	10103	54LS15	$31002 \dagger$	54LS181	30801 t
10576乐	$06103 \dagger$	52104	$10202 \dagger$	54LS20	$30007 \dagger$	54LS192	31507 t
10631 ¢	$06102 \dagger$	52105	$10203 \dagger$	54LS21	$31003 \dagger$	54LS193	$31508 \dagger$
15930	03001	52106	10303	54LS22	$31008 \dagger$	54LS194	30601 t
15932	03101	52108A	10104	54LS27	$30302 \dagger$	54LS195	$30602 \dagger$
15933	03105	52109	10701	54LS30	$30009 \dagger$	54LS221	$31402 \dagger$
15935	03002	52110	10602	54LS32	$30501 \dagger$	54LS251	$30905 \dagger$
15936	03003	52111	10304	54LS37	$30202 \dagger$	54LS253	$30908 t$
15944	03102	52710	10301	54LS38	$30203 \dagger$	54LS257	$30906 t$
15946	03004	52711	10302	54LS40	30201 \dagger	54LS258	30907 t
15957	03103	52723	10201	54LS42	$30703 \dagger$	54LS261	31801 t
15958	03104	52733	$10501 \dagger$	54LS47	$30704 \dagger$	54LS266	30303 t
15962	03005	52741	10101	54LS51	$30401 \dagger$	54LS279	31602t
3018A	$10801 \dagger$	54 HOO	02304	54LS54	$30402 \dagger$	54LS283	31202 \dagger
3045	10802†	54H01	02306	54LS73	$30101+$	54LS298	$30606 \dagger$
4000A	05201	54 H 04	02305	54LS74	$30102 \dagger$	54LS324	31702t
4001A	05202	$54 \mathrm{H08}$	$15501 \dagger$	54LS75	31601†	54LS395	$30607 \dagger$
4002A	05203	54 H 10	02303	54LS83A	$31201 \dagger$	54LS670	$30608 \dagger$
4006A	05701	54 H 11	15502†	54LS85	$31101+$	54L00	02004
4007A	05301	54 H 20	02302	54LS86	$30502 \dagger$	54L01	02006
4008A	05401	54 H 22	02307	54LS90	$31501+$	54L02	02701
4009A	05501	54H30	02301	54LS93	$31502 \dagger$	54L03	02006
4010A	05502	54H40	02401	54LS95	$30603 \dagger$	54L04	02005
4011A	05001	54H50	04001	54LS96	$30604 \dagger$	54L10	02003
4012A	05002	54 H 51	04002	54LS107	$30108 \dagger$	54L20	02002
4013A	05101	54H53	04003	54LS109	30109 \dagger	54L30	02001
4014A	05702	54H54	04004	54LS112	$30103+$	54 L 42	02901
4015A	05703	54H55	04005	54LS113	30104 \dagger	54L43	02902

[^17]JAN MIL-M-38510 INTEGRATED CIRCUITS

TABLE IS. CIRCUIT-TYPE AND JAN INTEGRATED CIRCUITS CROSS-REFERENCE

CKT	JAN	CKT	JAN	CKT	JAN	CKT	JAN
TYPE	/NO.	TYPE	/NO.	TYPE	/NO.	TYPE	/NO.
54L44	02903	54S140	08101 \dagger	5447	01007	54164	00903
54L46	02904	54S151	$07901 \dagger$	5448	01008	54165	00904
54L47	02905	54S153	07902t	5449	01009	54166	$00910 \dagger$
54L51	04101	54 S 157	07903t	5450	00501	54173	01703t
54L54	04102, 04104*	54S158	07904 \dagger	5451	00502	54174	01701
54L55	04103	54S174	07105	5453	00503	54175	01702
54L71	02101	54S175	07106	5454	00504	53177	01312 t
54 L 72	02102	54 S 181	$07801 \dagger$	5470	00206	54180	01901†
54 L 73	02103	54S182	07802 t	5472	00201	54181	01101
54 L 74	02105	$54 S 194$	07601t	5473	00202	54182	01102
54 L 78	02104	54S195	07602†	5474	00205	54186	20101
54L86	02601	$54 S 251$	07905†	5475	01501	54192	01308
54 L 90	02501	54S257	$07906 \dagger$	5476	00204	54193	01309
54L91	02806	545258	07907t	5477	01502	54194	00905
54L93	02502	545280	07703t	5479才	00207	54195	00906
54L95	02801	545387	20201†	5482	00601	54196	01310
54L121	04201	5400	00104	5483	00602	54197	$01311 \dagger$
54L122	04202	5401	00107	5485	15001	54198	00909 \dagger
54L164	02802	5402	00401	5486	00701	5531	23001† (256 RAM)
54L193	02503†	5403	00109	5490	01307	55107	10401
54 SOO	07001	5404	00105	5492	01301	55108	10402
$54 \mathrm{SO2}$	07301t	5405	00108	5493	01302	55113	10405
54 SO	07002	5406	00801	5495	00901	55114	10403
54S04	07003	5407	00803	5496	00902	55115	10404
$54 \mathrm{SO5}$	07004	5408	01601	54107	00203	76L42A	02906
54 S 10	07005	5409	01602	54116	01503	76L70	02805
54S11	$08001 \dagger$	5410	00103	54121	01201	7831	10406t
$54 \mathrm{S15}$	08002†	5412	00106	54122	01202	8250	15204t
54S20	07006	5413	15101	54123	01203	8251	15205 \dagger
54S22	07007	5414	15102	54125	15301t	8252	15206t
54530	07008	5416	00802	54126	15302t	93L00	02804
54540	07201	5417	00804	54132	15103	93L10	$02504 \dagger$
54S51	07401	5420	00102	54145	01005	93 L 16	02505 \dagger
54S64	07402	5423	00402	54147	15601 t	93L28 \ddagger	02803
54S65	07403	5425	00403	54148	15602†	9300\$	$00907 \dagger$
54574	07101	5426	00805	54150	01401	9301	15802†
54585	08201	5427	00404	54151	$01406 \dagger$	9304	00603
54886	07501t	5430	00101	54153	01403	9308	01503
54S112	07102	5437	00302	54154	15201t	9309	01404
54S113	07103	5438	00303	54155	15202t	9311	15803†
545114	07104	5440	00301	54156	15203t	9312本	01402
545133	07009	5442	01001	54157	01405	$9314 \ddagger$	01504
54S134	07010	5443	01002	54160	01303	9317	15804†
54S135	07502†	5444	01003	54161	01306	9322	01405
545138	07701t	5445	01004	54162	01305	9328	00908
545139	07702†	5446	01006	54163	01304	93410	23002 (266 RAM)

NOTE: Only the basic JAN and SN numbers are shown. Complete the numbers as shown in Table III.
${ }^{\dagger}$ Slash sheets not released as of date of this publication.
\ddagger Not recommended for new designs.
-Class S only.

JAN MIL-M-38510 INTEGRATED CIRCUITS

TABLE III. TI JAN AND 38510/MACH IV INTEGRATED CIRCUITS

'Prefix designation for Class B 38510/MACH-IV for CMOS is "TFC" and for MOS LSt is "SMC".
\#Unassigned.
*Per MIL-M-0038510B.

IC Sockets and

Interconnection Panels

IC SOCKETS AND INTERCONNECTION PANELS

Texas Instruments lines of off-the-shelf interconnection products are designed specifically to meet the performance needs of volume commercial applications. They provide both the economy of a standard product line and performance features developed after many year's experience with custom designs. Foremost among these is our ability to selectively bond a wrought gold stripe at the contact point. No waste. Reduced cost. Reliable contacts.

Wrought Gold Contact

Plate a contact with gold and you get a better contact. More reliable, longer lasting. Increase the gold, you improve the contact. But gold is precious, so improved performance has to be costly - right? Wrong. Because now you can get the gold only where it is needed - at the point of contact.

How? With selective metallurgical bonding; a gold stripe inlay. Not porous plating, but durable wrought gold bonded to the contact by the same technology used to produce clad coins and thermostat metals.

Texas Instruments, Attleboro, Massachusetts, is the world's largest producer of these multimetal systems. We also know our way around electronics. The result? A full line of reliable, low cost, interconnection systems featuring an extra measure of gold where it's needed. Premium performance at no premium in price.

IC Sockets

Texas Instruments family of IC sockets includes every type and size in common use today, and as wide a choice of contact materials as you'll find anywhere. Choose from open or closed entry wire-wrapped ${ }^{\dagger}$ sockets, standard or low profile solder tail sockets, cable plugs, and component platforms. Sizes from 8 to 40 pins.

IC Panels

To match the industry's broadest line of IC sockets TI offers one of the industry's widest selections of off-the-shelf socket panel products. Logic panels. Logic cards. Accessories. Add TI's custom design capability and wire wrapping for full service.

Additional information including pricing and delivery quotations may be obtained from your nearest TI Distributor, TI Representative, or:

Texas Instruments Incorporated
Connector Systems Department
MS 2-16
Attleboro, Massachusetts 02703
Telephone: (617) 222-2800
TELEX: ABORA927708

LOW PROFILE SOCKETS

SOLDER TAIL

C-93 SERIES GOLD-CLAD CONTACTS C- 83 SERIES TIN-PLATED CONTACTS

- Universal mounting and packaging
- Anti-wicking wafer
- Stand-off tabs on base for solder flush
- Redundant contact points for low contact resistance, high reliability and repetitive insertion
- Closed entry construction

PART NO. SCHEDULE

BLACK BODY
NOMEX ANTI-WICKING WAFER

Pins	C-93 SERIES	C-83 SERIES

8	$C 930810$	$C 830810$
14	$C 931410$	$C 831410$
16	$C 931610$	$C 831610$
18	$C 931810$	$C 831810$
20	$C 932010$	$C 832010$
22	$C 932210$	$C 832210$
24	$C 932410$	$C 832410$
28	$C 932810$	$C 832810$
40	$C 934010$	$C 934010$

CONTACT FINISH C-93 SERIES: 100 microinch minimum gold stripe inlay
C-83 SERIES:
200 microinch minimum bright tin plate

STANDARD PROFILE SOCKET

SOLDER TAIL

C－82 SERIES PLATED CONTACTS－C－92 SERIES GOLD CLAD CONTACTS
 WIRE WRAP
 C－81 SERIES PLATED CONTACTS－C－91 SERIES GOLD CLAD CONTACTS

－Designed for low cost，reliable，high density production packaging
－Universal mounting and packaging capabilities
－ 8 to $\mathbf{4 0}$ pin lead configurations
－Contacts accommodate $.015^{\prime \prime}$ through $.024^{\prime \prime}$ rectangular or round dual－in－line leads
－Wire wrap posts held to true position of $.015^{\prime \prime}$ providing a true position of $.020^{\prime \prime}$ on boards for efficient automatic wire wrapping

MATERIAL： A．Body－glass filled nylon（GFN） B．Contact－phosphor bronze per QQ－B－750 （C－81）copper nickel alloy（C－91） C．Finish－see part number schedule	NOTE A．So Ins and B．Co C．Co D．Co E．Co pla pos F．Op		ments cificatio 001 ble dant sp and orie ate max sure re -65°	exas S－0003 element in the um $0+150^{\circ}$	\qquad UMMULATIVE TYPICAL LO QUES USED \qquad G． H． I． J． K．	ets are ity on b row to d entry matic in st dama mmoda ＇square act rete ets are or semi	TAIL ned to a and may centers is provid on and p tandard tangular $-7 \mathrm{lbs}$ le of be maticall	ve maxi moun to fac ct IC le ads up 024＂di ． automa re wrap	SOLDER TANDOFFS ． \qquad \qquad n e
	8 Pin	14 Pin	16 Pin	18 Pin	20 Pin	24 Pin	28 Pin	36 Pin	40 Pin
Dimension $\mathrm{V} \pm 0.10$	． 465	． 765	． 865	． 965	1.065	1.280	1.480	1.845	2.045
Dimension W（max）	． 400	． 400	． 400	． 400	． 400	． 700	． 700	． 700	． 700
Dimension $\mathrm{X} \pm .005$	． 300	． 300	． 300	． 300	． 300	． 600	． 600	． 600	． 600
Dimension $\mathrm{Y} \pm 0.10$	NA	． 400	． 400	． 400	． 400	． 500	． 500	． 800	1.000
Dimension $\mathrm{Z} \pm .005$	． 280	． 280	． 280	． 280	． 280	． 280	． 280	． 325	． 325

WIRE WRAP

		OPEN ENTRY	CLOSED ENTRY
PART NUMBER SCHEDULE			
Contact Finish	Pins	Black Body	Black Cover
Series C-81 200-400 microinch \min tin per MIL-T-10727	$\begin{array}{r} 8 \\ 14 \\ 16 \\ 18 \\ 20 \\ 24 \\ 28 \\ 36 \\ 40 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { C810854 } \\ & \text { C811454 } \\ & \text { C811654 } \\ & \text { C811854 } \\ & \text { C812054 } \\ & \text { C812454 } \\ & \text { C812854 } \end{aligned}$	C810804 C811404 C811604 C811804 C812004 C812404 C812804 C813604 C814004
Series C-91 50 microinch min gold stripe inlay	$\begin{array}{r} \hline 8 \\ 14 \\ 16 \\ 18 \\ 20 \\ 24 \\ 28 \\ 36 \\ 40 \\ \hline \end{array}$	$C 910850$ $C 911450$ C911650 $C 911450$ $C 912050$ $C 912450$ $C 912850$	C910800 C911400 C911600 C911400 C911800 C912000 C912800 C913600 C914000

SOLDER TAIL

		OPEN ENTRY	CLOSED ENTRY
PART NUMBER SCHEDULE		牛	
Contact Finish	Pins	Black Body	Black Cover
Series C-82 30 microinch min gold per MIL-G-45204 over 50 microinch min nickel per QQ-N-290	8	C820850	C820800
	14	C821450	C821400
	16	C821650	C821600
	18	C821850	C821800
	24	C822450	C822400
	28	C822850	C822800
	36		C823600
	40		C824000
Series C-82 50 microinch min gold per MI L-G-45204 over 100 microinch min nickel per QQ-N-290	8	C820852	C820802
	14	C821452	C821402
	16	C821652	C821602
	18	C821852	C821802
	24	C822452	C822402
	28	C822852	C822802
	36		C823602
	40		C824002
Series C-82 200-400 microinch min tin per MIL-T-10727	8	C820854	C820804
	14	C821454	C821404
	16	C821654	C821604
	18	C821854	C821604
	24	C822454	C822404
	28	C822854	C822804
	36		C823604
	40		C824004
Series C-92 100-microinch min gold stripe inlay	8	C920850	C920800
	14	C921450	C921400
	16	C921650	C921600
	18	C921850	C921800
	24	C922450	C922400
	28	C922850	C922800
	36		C923600
	40		C924000

SOCKET PANELS

STANDARD

D4 SERies

- $\mathbf{1 8 0}$ position panel or multiples of 30 position with 14 or 16 position socket pattern
- I/O - 4 rows with 13 pins per row or 3-14 pin sockets
- Low cost standard hardware
- Available in 98 standard series
- Off-the-shelf availability

NOTE: Dimensions shown are nominal. Detail information and
tolerances available on request (indicate series and group number).

STANDARD SOCKETS

C-81 or C-91 series, 14 pin
or 16 pin, closed entry
sockets as designated in the Part No. Schedule at
right. See pages 7 and 8 for complete socket
information.

C-81 SERIES SOCKETS
Body.........
Glass filled nylon
Contact Phosphor bronze per QQ-B-750
Finish $\mathbf{3 0}$ microinch min. gold per MIL-G-45204 over
50 microinch min. nickel per QQ-N-290

C-91 SERIES SOCKETS
Body
Glass filled nylon
Contact ... Copper nickel alloy
Finish 50 microinch min. gold stripe inlay

STANDARD PANEL PART NO. SCHEDULE -D4 Series

Group No.	1/O Option		C. 81 Sockets	$\begin{gathered} \text { C-91 } \\ \text { Sockets } \end{gathered}$	
Group I 14 Pin PIN 14 \qquad VCC PIN 7 \qquad GRD	SOCKETS	30 60 90 120 150 180	D411211 D411212 D411213 D411214 D411215 D411216	D411231 D411232 D411233 D411234 D411235 D411236	
	$\begin{aligned} & \text { FEED-THRU } \\ & \text { PNS } \end{aligned}$	30 60 90 120 150 180	D411411 D411412 D411413 D411414 D411415 D411416	D411431 D411432 D411433 D411434 D411435 D411436	
Group II 14 Pin PIN V \qquad VCC PIN G \qquad GRD	SOCKETS	30 60 90 120 150 180	D434211 D434212 D434213 D434214 D434215 D434216	D434231 D434232 D434233 D434234 D434235 D434236	
	FEED-THRU PINS PINS \|	1	30 60 90 120 150 180	$\begin{aligned} & \text { D434411 } \\ & \text { D434412 } \\ & \text { D434413 } \\ & \text { D434414 } \\ & \text { D434415 } \\ & \text { D434416 } \end{aligned}$	D434431 D434432 D434433 D434434 D434435 D434436
Group III 16 Pin PIN 16 \qquad VCC PIN 8 \qquad GRD	SOCKETS	30 60 90 120 150 180	D423211 D423212 D423213 D423214 D423215 D423216	D423231 D423232 D423233 D423234 D423235 D423236	
	FEED-THRU PINS	30 60 90 120 150 180	D423411 D423412 D423413 D423414 D423415 D423416	D423431 D423432 D423433 D423434 D423435 D423436	
Group IV 16 Pin PIN V \qquad VCC PIN G \qquad GRD	SOCKETS	30 60 90 120 150 180	D444211 D444212 D444213 D444214 D444215 D444216	D444231 D444232 D444233 D444234 D444235 D444236	
	FEED-THRU PINS \qquad	30 60 90 120 150 180	D444411 D444412 D444413 D444414 D444415 D444416	$\begin{array}{\|l} \text { D444431 } \\ \text { D444432 } \\ \text { D444433 } \\ \text { D444434 } \\ \text { D444435 } \\ \text { D444436 } \end{array}$	

SOCKET CARDS

STANDARD
DO2 SERIES

- Low Cost
- 14-16 pin socket pattern 60 position
- Standard ground and power pin commitment
- 8 standard designs
- Mates with dual 60 position edge connector

P/C BOARD MATERIAL
1/16 and $1 / 8$ thick Glass Epoxy, 2 oz. Copper Circuitry both sides, Tin Plated

NOTE: Dimensions shown are nominal. Detail information and tolerances available on request (indicate series and group number).

DO2 Series
STANDARD CARD PART NO. SCHEDULE

Group No.	Board Thk.	C-81 Sock ets	C-91 Sockets
Group 114 Pin PIN 14 VCC PIN 7 GRD	1/16"	D022110	D022130
	1/8"	D021110	D021130
Group II 14 Pin PIN V \qquad VCC PIN G \qquad GRD	1/16"	D022310	D022330
	1/8"	D021310	D021330
Group III 16 Pin PIN 16 \qquad VCC PIN 8 \qquad GRD	1/16"	D022210	D022230
	1/8"	D021210	D021230
Group I \square 16 Pin PIN V \qquad VCC PIN G \qquad GRD	1/16"	D022410	D022430
	1/8''	D021410	D021430

$$
!
$$

[^0]: Current out of a terminal is given as a negative value

[^1]: $\uparrow \downarrow$ The arrow indicates the edge of the chip enable pulse used for reference: \uparrow for the rising edge, \downarrow for the falling edge.
 *If R/W is low before CE goes high then DI must be valid when CE goes high.

[^2]: addresses (A0-A7)
 The eight address inputs select one of 256 4-bit words. The address inputs can be driven directly from standard Series 54/74 TTL with no external pull-up resistors.
 chip enable ($\overline{\mathrm{CE}}$)
 To enable the device, $\overline{\mathrm{CE}}$ must be low. When the memory is disabled, data cannot be entered and the outputs are in the high-impedance state.

[^3]: ${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^4]: NOTE: For the chip-enable input, high and low timing points are 3.0 V (high) and 1.0 V (tow). Other timing points are 0.6 V (low) and 2.2 V (high). Output timing points are 0.4 V (low) and 2.4 V (high).
 *The write pulse must go low at least $t_{s u}(w r)$ minimum before $\overline{C E}$ goes high. If R / \bar{W} remains high more than $t_{d}(\overline{C E} L-w r$) maximum (60 ns) after $\overline{C E}$ goes low, the data-in driver must be disabled until R/ \bar{W} goes low since additional power to overcome the output buffer may be

[^5]: ${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.

[^6]: Recirculate occurs on the low-to-high clock transition with the recirculate control low. The recirculate control must be set up a minimum time before this transition and held a minimum time after the transition. Data is entered with the recirculate control high. During recirculation, data is continuously available at the output and the data input is inhibited.

[^7]: To allow for a wide range of possible configurations, three-state push-pull buffers have been used on all outputs except
 Transmitter Output (TO) and Transmitter Register Empty (TRE). They allow the wire-OR configuration.

[^8]: ${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal voltages.

[^9]: ${ }^{\dagger}$ There are no products shown in this data book in the 8-pin ceramic package or the ceramic or plastic 10-pin or 24-pin, 400-mil package.

[^10]: RANDOM-ACCESS READ/WRITE MEMORIES WITH 3-STATE OUTPUTS

[^11]: Supply voltage (see Note 1)
 7 V
 Input voltage . 5.5 V
 Off-state output voltage . 5.5 V
 Operating free-air temperature range: SN54', SN54S' Circuits $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
 SN74', SN74S' Circuits $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
 Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
 NOTE 1: Voltage values are with respect to network ground terminal (GND 2 of ' 186), . For ' 186 GND 1 and both GND 2 terminals are all connected to system ground except during programming. The supply-voltage rating does not apply during programming of the ' 188 , '188A, or the 54S/74S PROM's.

[^12]: ${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 \#All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 § Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
 ${ }^{*}$ An SN54S287 in the W package operating at free-air temperatures above $108^{\circ} \mathrm{C}$ requires a heat sink that provides a thermal resistance from case-to-free-air, $R_{\theta C A}$, of not more than $42^{\circ} \mathrm{C} / \mathrm{W}$.
 NOTE 12: The typical values of ${ }^{\mathrm{C}} \mathrm{C}$, shown are with all outputs low.
 \oint Tentative specifications

[^13]: \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^14]: $\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant

[^15]: $H=$ high level, $L=$ low level, $X=$ irrelevant

[^16]: $H=$ high level, $L=$ low level, $X=$ irrelevant

[^17]: NOTE: Only the basic JAN and SN numbers are shown. Complete the numbers as shown in Table lll.
 ${ }^{\dagger}$ Slash sheets not released as of date of this publication.
 \ddagger Not recommended for new designs.

